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ABSTRACT

UTILIZATION OF 3D CELL CULTURE METHODOLOGIES TO
MODEL ALZHEIMER’S DISEASE

This thesis introduces modeling Alzheimer’s disease within a three-dimensional
(3D) in-vitro platform by employing Magnetic Levitation (Maglev) technology.
Alzheimer’s disease is characterized by amyloid beta (AP) accumulation, leading to
cognitive decline and neuronal degeneration. Alzheimer’s disease has been modeled
using conventional two-dimensional (2D) cell cultures and animal models. Despite
experimental models having provided valuable insights, these models fail to recapitulate
the human brain's physiology. Therefore, there is a need for more realistic experimental
platforms.

This study involved the fabrication of 3D Alzheimer’s disease models from two
different cell lines. SH-SY5Y and PC-12 cells were cultured to form 3D cellular structures
using MagLev technology. Then, 3D Alzheimer’s disease models were established by the
incorporation of AB1-42 aggregates, which are known to drive neurotoxicity and disease
progression in Alzheimer’s pathology.

Another aspect of this study is utilizing the 3D disease model as a drug screening
platform by evaluating the neuroprotective potential of Curcumin, which is known for the
disassociation of AP aggregates. The findings revealed that Curcumin, at optimal
concentrations, significantly reduced AB-induced neurotoxicity, underscoring its potential
as a therapeutic agent.

This study demonstrated that Ap-induced three-dimensional models of
Alzheimer’s disease were successfully developed through the MaglLev technique and
applied as a drug screening platform. This model represents a valuable alternative to
traditional approaches in neurodegenerative disease research. This model can provide an
understanding of the underlying mechanisms of Alzheimer’s disease and facilitate the

exploration of novel therapeutic strategies.



OZET

ALZAYMIR HASTALIGINI MODELLEMEK iCiN 3B HUCRE
KULTURU METODOLOJILERININ KULLANILMASI

Bu tez, Manyetik Levitasyon (MagLev) teknolojisini kullanarak Alzaymir
hastaliginin ii¢ boyutlu (3B) bir in-vitro platformda modellenmesini tanitmaktadir.
Alzaymir hastalig1, biligsel gerileme ve ndronal dejenerasyona yol agan amiloid beta (A)
birikimi ile karakterize edilir. Alzaymir hastaligi, geleneksel iki boyutlu (2B) hiicre
kiiltiirleri ve hayvan modelleri kullanilarak modellenmistir. Deneysel modeller degerli
bilgiler saglamig olsa da bu modeller insan beyninin fizyolojisini yansitmakta basarisiz
olmaktadir. Bu nedenle, daha gercekei deneysel platformlara ihtiyag vardir.

Bu caligsmada, iki farkli hiicre hatt1 kullanilarak 3B Alzaymir hastaligi modelleri
olusturulmustur. SH-SYSY ve PC-12 hiicreleri, MaglLev teknolojisi kullanilarak 3B
hiicresel yapilar olusturacak sekilde kiiltiirlenmistir. Daha sonra, Alzaymir hastaliginin
patolojisinde norotoksisiteyi artiran ve hastaligin ilerlemesine neden olan AB1-42
agregatlar1t modele eklenerek 3B Alzaymir hastalik modelleri olusturulmustur.

Bu ¢alismanin bir diger yonii, AP agregatlarini disosiye ettigi bilinen Kurkumin'in
noroprotektif potansiyelini degerlendirerek 3B hastalik modelini bir ila¢ tarama
platformu olarak kullanmaktir. Elde edilen bulgular, optimal konsantrasyonlarda
Kurkumin’in, AP kaynakli norotoksisiteyi onemli dlclide azalttigini gostererek terapotik
bir ajan olarak potansiyelini vurgulamaktadir.

Bu calisma, AP ile indiiklenen 3B Alzaymir hastaligit modellerinin MagLev
teknigi kullanilarak basariyla gelistirildigini ve bir ila¢ tarama platformu olarak
uygulandigin1 gostermektedir. Bu model, nérodejeneratif hastalik arastirmalarinda
geleneksel yaklagimlara degerli bir alternatif sunmaktadir. Ayrica, Alzaymir hastaliginin
altinda yatan mekanizmalarin anlagilmasina katkida bulunarak yeni terapotik stratejilerin

kesfini kolaylastirabilir.
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CHAPTER 1

INTRODUCTION

1.1. Neurodegenerative Diseases

Neurodegenerative disorders are age-related diseases that involve the
uncontrolled death of neurons, resulting in a progressive decline in the cognitive function
of the brain. These diseases show a wide range of clinical symptoms, such as cognitive
decline and the loss of motor functions. The prevalence of these conditions is increasing
due to the aging global population, and their detrimental impact on quality of life has
burdened healthcare systems worldwide (Heemels, 2016). Among age-related
neurodegenerative diseases, dementias pose the most significant challenge. This term
encompasses various conditions characterized by cognitive impairments, including
Alzheimer's disease, vascular dementia, frontotemporal dementia, mixed dementia, and
dementia with Lewy bodies. Additionally, other neurodegenerative diseases primarily
affect the motor system, such as amyotrophic lateral sclerosis, Huntington's disease,
Parkinson's disease, multiple sclerosis, and spinocerebellar ataxias. Key features of
neurodegenerative diseases include the death of neuronal cells, the accumulation of
abnormal proteins, and defects in synaptic function (Figure 1). Each feature corresponds
to a specific mechanism, such as inflammatory processes, disturbances in energy
homeostasis, and damage to DNA and RNA that play a significant role in the progression
of diseases like Alzheimer’s and Parkinson’s. The resulting clinical syndromes differ
based on the specific protein(s) and brain region(s) implicated (Wray, 2021). Key
indicators of these disorders include the existence of Amyloid B (AB) plaques and
phosphorylated Tau (pTau)-containing tangles in Alzheimer's disease (Masters et al.,
2015), a-synuclein-associated Lewy bodies in Parkinson's disease (Dettmer et al., 2015),

and mutant huntingtin (Htt)-containing inclusion bodies in Huntington's disease (Jeon et



al., 2012). The aggregation of these proteins can lead to neuronal axon damage through

loss-of-function or gain-of-toxicity mechanisms.

Figure 1. The hallmarks of neurodegenerative diseases (Wilson et al., 2023).

1.2. Alzheimer's Disease and its Pathology

Alzheimer's disease is a prevalent neurodegenerative disease that impacts almost
50 million individuals across the globe, and this figure will reach 78 million by 2030
(Gauthier et al., 2021). The risk factors associated with Alzheimer's disease involve both
genetic and environmental influences. These factors include chronic stress, dietary
patterns, physical activity levels, smoking habits, traumatic brain injuries, diabetes, toxic
metals, industrial chemicals, pesticides, and other medical conditions (Cetin et al., 2022;
Sehar et al., 2022; Slanzi et al., 2020).



Alzheimer's disease is characterized by the loss of synapses, leading to neuronal
atrophy across the cerebral cortex, with the medial temporal lobe being the most severely
affected (Chen et al., 2018; Sheng et al., 2012). The pathological process is first observed
in the hippocampus and entorhinal areas, later propagating through the frontotemporal
cortices. This progression extends to the striatum and thalamus, while typically
preserving the cerebellum (Duara et al., 2008; Mann, 1991; McDonald et al., 2009).
Macroscale MRI assessments demonstrate a shrinkage of these specific regions, as well
(Perl, 2010) (Figure 2). Although the reason behind the disease remains incompletely
elucidated, the distinctive neuropathological features of Alzheimer's disease include the
existence of extracellular plaques, primarily made up of amyloid beta (AB) peptides, and
intracellular tangles consisting of hyperphosphorylated accumulations of the
microtubule-associated protein tau (NFT), which is not necessarily observed in all cases
(Finder and Glockshuber, 2007) (Figure 2A). They are co-localized with neuronal debris
and activate microglia. They initially appear in the frontal, temporal, and occipital lobes
of the neocortex (Sheppard and Coleman, 2020). Then, these pathological markers are
found throughout neocortical areas, the hippocampus, and the entorhinal region, followed
by spreading throughout the cerebral cortex to the striatum and thalamus at the end of the
disease stages (Figure 2B) (Braak and Braak, 1991).

The majority of Alzheimer's disease cases are sporadic and occur due to the
inefficient removal of AP peptide (Kummer and Heneka, 2014). The cause of sporadic
Alzheimer's disease (SAD) remains unknown; however, potential factors contributing to
its development include aging, as well as the intricate interaction between genetic and
environmental risk factors (Sehar et al., 2022). In contrast, familial Alzheimer's disease
(FAD), which is less common, is caused by mutations in genes related to AB metabolism
(Barber, 2012). This type of Alzheimer's disease is known as early onset and is usually
inherited in a Mendelian fashion. FAD is an extremely rare autosomal dominant disease
that occurs at a young age and is caused by mutations in the Amyloid precursor protein
(APP) and presenilin genes, each of which plays a role in AB metabolism (Finder and
Glockshuber, 2007).



. Amyloid plaque
Amyloid plaque

- STEC 5
"N /(' f N{\/\ 2
Y{‘\’{‘- |~/ B
— RS e )
I\ NEY ‘@‘ |\ Nl
A\ A\
Stage A Stage B
Neurofibrillary tangle
- T FEESr
A —
I > .
\ \ \
| == =

L \ ) |\
rey Stage land Il Stage Ill and IV Stage Vand V|
Severity

Nature Reviews | Disease Primers

Figure 2. A) AP plaques and neurofibrillary tangles B) Brain atrophy, which correlates
with a reduction in both synapses and neurons at an anatomical scale (Masters

etal., 2015).

APP processing through non-amyloidogenic pathways involves the activity of a-
secretase, an enzyme bound to the cell membrane (Figure 3). This enzyme cleaves the A
sequence within APP, generating two fragments: CTFa, which remains bound to the
membrane, and sAPPa, which is released into the extracellular space. CTFa can undergo
additional processing to produce P3 fragments that are found outside the cell, as well as
the intracellular domain of APP (AICD) (Chen et al., 2017). In the amyloidogenic
pathway, APP is processed by B and Y'-secretases. B-Secretase (BACE-1) cuts APP into
C-terminal fragment (CTF) and N-terminal soluble APP (sAPP). CTF is subsequently
cleaved by Y-secretases to generate A protein fragments and AICD (Chen et al., 2017;
Tackenberg and Nitsch, 2019) . Depending on the cutting side of the y-Secretase on APP
change, the ratio of AP(1-42)/AP(1-40) increases. Long AP is more prone to form
insoluble fibrils and is more likely to cause neurotoxicity. Af1-40 has 40 amino acids and
is relatively soluble in aqueous media, while AB1-42 consists of 42 amino acid residues

and is more prone to form aggregates.
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Figure 3. The schematic shows proteolytic pathways of human amyloid precursor protein

(APP): non-amyloidogenic and amyloidogenic pathways (Chen et al., 2017).

AP fibrillation and associated neuronal damage begins with the cleavage of APP
by B and 7y secretases. This cleavage yields a peptide fragment that ranges from 39 to 42
amino acids, depending on the cleavage site. Subsequently, AR monomers begin to self-
assemble, forming soluble toxic aggregates that eventually develop into insoluble fibrils
(Figure 4). During this process, the formation of soluble oligomers from AP peptides
occurs under in-vitro conditions, resulting in small, globular oligomers that range in size
from trimers to 24-mers (Klein, 2002). AP protofibrils are identified as curvy structures
with diameters between 4 and 10 nm and lengths reaching up to 200 nm (Harper et al.,
1997; Walsh et al., 1997). These structures display a beaded appearance with a periodicity
of 3 to 6 nm. Importantly, they are soluble and do not precipitate during centrifugation at
moderate speeds of 16,000 to 18,000 x g. Protofibrils can further aggregate to form
insoluble fibrils and are characterized by lengths greater than 200 nm, while their
diameters remain similar to those of protofibrils (Walsh et al., 1997). These structures can
be easily pelleted through centrifugation and bind to dyes such as Congo red, and
Thioflavin T (Walsh et al., 1997). Research indicates that AP fibrils are composed of 5 to
6 protofilaments, with B-strands oriented perpendicular to the axis of the fiber, stabilized
by hydrogen bonds (Serio et al., 2000). The strands are likely organized in a parallel

configuration, creating a parallel-crossed B-sheet, with a turn occurring at residues 25 to



30. The majority of the amino acids within the core of the B-sheet are neutral and
predominantly hydrophobic, except aspartic acid at position 23, which establishes a salt
bridge with lysine at position 28 (Petkova et al., 2002). These fibrils are responsible for
inducing synaptic dysfunction and neuronal cell death (Jokar et al., 2020).
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Figure 4. The aggregation mechanism of AP plaques (Jokar et al., 2020).

1.3. Diagnosis of Alzheimer’s Disease

The early and accurate identification of Alzheimer’s disease-related symptoms in
clinical practice is a crucial but challenging advancement in Alzheimer’s disease care. In
the past, Alzheimer’s disease was exclusively diagnosed postmortem until advancements
in technology allowed for the detection of the underlying pathology of the disease through
imaging and fluid biomarkers (Jack Jr et al., 2018). Despite promising results from trials
conducted at single and multiple centers, the utilization and financial coverage for
imaging and fluid biomarkers to assist in the diagnosis of Alzheimer’s disease differ

significantly across different countries (Porsteinsson et al., 2021). The advice categorizes



the diagnosis of Alzheimer’s disease into the following phases: detection,

evaluation/discrimination, identification, and treatment (Figure 5).
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Figure 5. A visual representation illustrating the critical phases of the diagnostic process,
in addition to the suggested tests to reinforce each phase (Porsteinsson et al.,
2021).

1.3.1. PET Scanning for Ap and Tau Detection

Recent developments have enabled physicians to visualize the proteins associated
with Alzheimer’s disease, which are AP and tau, using positron emission tomography
(PET) scanning. Amyloid PET is currently the only imaging approach recommended by
the Alzheimer’s Association and the Amyloid Imaging Task Force to support the
diagnosis of Alzheimer’s disease. It utilizes tracers that specifically bind to AP within
plaques (Frisoni et al., 2017). A positive amyloid PET scan shows increased cortical
retention of the tracer in regions of AP deposition within the brain (Villemagne et al.,

2018), confirming the presence of AP plaques (Clark et al., 2012; Villemagne et al., 2018)
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and directly quantifying brain amyloid pathology (Wong et al., 2010). However, a
positive amyloid PET scan alone does not definitively diagnose clinical Alzheimer’s
disease, and these results must be combined with other clinical assessments for an
accurate diagnosis (Villemagne et al., 2018). It is important to note that amyloid PET is
expensive and not readily reimbursed by health insurance providers (Frisoni et al., 2017);
if it is not possible to access amyloid PET, biomarker confirmation can be assessed using
cerebrospinal fluid (CSF).

1.3.2. CSF for AP Detection

An additional or alternate method to amyloid PET involves the collection and
examination of CSF for biomarkers associated with Alzheimer’s disease pathology.
Patients displaying symptoms suggestive of Alzheimer’s disease can undergo a lumbar
puncture to analyze their CSF for specific Alzheimer’s disease-related biomarkers (Jack
Jr et al., 2018; Porsteinsson et al., 2021; Zhao, 2020). The strong correlation between
CSF biomarkers and amyloid PET allows for them to be used in confirming A burden
(Hansson et al., 2018). Therefore, CSF biomarkers are widely accepted within the
Alzheimer’s disease community to support a diagnosis (Blennow et al., 2015).
Alzheimer’s disease biomarkers from the brain can be detected in CSF before the onset
of overt clinical symptoms in early-stage Alzheimer’s disease (Bateman et al., 2012; Jack
Jr et al., 2018). When analyzing CSF results for a patient with suspected Alzheimer’s
disease, it is essential to note that decreased CSF AP42 levels and increased tau isoforms
are commonly associated with the disease (Blennow and Zetterberg, 2018). The decline
in CSF AP42 reflects an increase in AP aggregation and deposition in the brain (Blennow
and Zetterberg, 2018). The concentration of CSF AB42 is directly correlated with the
patient's amyloid status, such as the presence or absence of significant amyloid pathology
and the total amount of A peptides, including Ap42 and AB40 (Blennow and Zetterberg,
2018).



1.3.3. MRI for Brain Volume

MRI (magnetic resonance imaging) is capable of detecting brain abnormalities
that are connected to mild cognitive impairment. A brain MRI allows a healthcare
provider to evaluate neurodegeneration in the early phases of the disease. In general
terms, structural MRI in Alzheimer’s disease can be divided into two categories:
assessing atrophy (or volumes) and changes in tissue characteristics that lead to signal
alterations on specific sequences. During the initial stages of Alzheimer's disease, brain
MRI might show no abnormalities, but in the later stages, MRI may indicate a decrease

in the size of different brain regions (Johnson et al., 2012).

1.4. Alzheimer's Disease Models

The intricate nature of Alzheimer's disease pathology has led to the development
and enhancement of numerous preclinical disease models. These models encompass a
range of approaches, including transgenic animals, two-dimensional (2D) cell cultures,
and three-dimensional (3D) cell cultures. Their primary objective is to replicate the
human brain environment closely, which is essential for insight into Alzheimer's disease
pathology and the evaluation of new therapeutic strategies (Yanakiev et al., 2023).

Alzheimer's disease has been modeled by different approaches in the literature.
Genetically induced SAD models employ induced pluripotent stem cells (iPSCs) obtained
from individuals carrying the Alzheimer's disease APOE4 allele or utilize CRISPR/Cas9
technology to modify genomes to incorporate the €4 isoform (Lin et al., 2018). In FAD-
induced models, APP, PSEN1, and PSEN2 mutation led to A accumulation within the
cells. Following the development of cerebral organoids derived from stem cells that
harbor one or more of these inherited mutations, models of FAD have been widely utilized
to investigate various pathologies. On the other hand, there is another approach that
models Alzheimer's disease by chemical induction way rather than utilizing mutations,
namely AB-induced models (Bhattarai et al., 2018; Cai et al., 2020; Labour et al., 2016).

This approach utilizes Ap aggregates, which can be in oligomer or fibril form for



simulating neurotoxicity as observed in Alzheimer's disease. This alternative model offers
distinct advantages and mechanisms that allow for the characterization of Alzheimer's

disease without using genetic modifications of FAD or SAD.

1.4.1. Animal Models of Alzheimer's Disease

Animal models provide a unique opportunity to investigate physiological and
behavioral mechanisms that many other alternatives do not offer. However, due to inter-
species variations, the results obtained from these models may not always be directly
applicable to preclinical drug screening for humans (Centeno et al., 2018). The utilization
of animal models has limitations, including the inability to accurately represent human
physiology and the difficulty in developing realistic disease models (Figure 6). For
example, while there are equal proportions of neurons and glial cells in the human brain
(Azevedo et al., 2009; Sreenivasamurthy et al., 2023), the glial/neuron ratio is 35.4% in
mice (Ero et al., 2018; Sreenivasamurthy et al., 2023). Another difference is that although
97% of the wild mouse APP gene is similar to the human APP gene, AB plagues do not
form in mice due to three amino acid differences in the APP sequence between mice and
humans (Drummond and Wisniewski, 2017; Tanzi et al., 1987). These differences have
changed the functioning and mechanism of Alzheimer's disease in the human and mouse
brain. Alzheimer's disease was closely modeled in animals by creating FAD
mutations, but it still does not represent the disease itself (Drummond and Wisniewski,
2017; Granzotto et al., 2024; Zhong et al., 2024). Also, the expected improvement was
not achieved in these models; no correlation was observed between neural death and AP
accumulation (Irizarry et al., 1997). Therefore, the FAD mutation could not provide a
complete solution for modeling Alzheimer's disease in animals. The observation of neural
death was possible with multiple mutations (FAD and frontotemporal dementia (FTD)
tau mutation) not seen in Alzheimer's pathology (Cavanaugh et al., 2014; Choi et al.,
2016; Drummond and Wisniewski, 2017). Although plaque formation and cognitive
impairment are observed in these mouse models, one of the problems is that the
development of cognitive impairment coincides with the onset of plaque development
because plaque deposition is observed in 20 years before cognitive impairment in the
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human brain (Bateman et al., 2012; Masters et al., 2015). In addition, regional brain
atropia and neurodegeneration cannot be observed in these models as in humans
(Drummond and Wisniewski, 2017). While neuronal cell death increases linearly with
age in human Alzheimer's disease, brain shrinkage in transgenic mouse models occurs
early in life before A accumulation as in human Alzheimer's disease (Ranjan et al.,
2018). As another approach, models with tau and APP mutant forms in mice carrying
FTD mutations have been developed. However, these models do not fully represent the
disease because these mutations do not cause Alzheimer's disease (D’Avanzo et al.,
2015). According to the studies, mouse models cannot fully reflect the Alzheimer's
pathology in the human brain (Duff and Rao, 2001; Sreenivasamurthy et al., 2023). One
of the main reasons for this is the physiological and genetic differences between mice and
humans (D’Avanzo et al., 2015).

Moreover, the investigation of Alzheimer's disease has expanded to include
nonhuman primates, specifically rhesus monkeys (Macaca mulattas), stump-tailed
macaques (M.arctoides), mouse lemurs (M.murinus), common marmosets (C.jacchus),
and cynomolgus monkeys (M.fascicularis). These primate models present a valuable
opportunity to study the effects of aging on primates that closely mirror the aging process
in the human brain (Sreenivasamurthy et al., 2023). However, in these models, A protein
accumulation tended to accumulate in the cerebral, temporal, and limbic cortex instead
of the hippocampus (Maclean et al., 2000; Sreenivasamurthy et al., 2023).

In conclusion, even though animal models provide valuable insights into
Alzheimer’s disease pathology, in practice, there is no animal model that mimics the
disease pathology accurately due to their limitations. This highlights the requirement for
alternative techniques in pre-clinical drug screening and disease modeling (Goldstein et
al., 2015).

1.4.2. 2D In-vitro Models of Alzheimer's Disease

2D in-vitro cell cultures have been extensively utilized in scientific research for
over a century (Sreenivasamurthy et al., 2023). These cultures involve the growth of cells

in specialized wells or trans-wells that are often coated with substances like fibronectin,
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laminin, and collagen (Hazel and Miiller, 1997). These coatings enhance cell adhesion
and facilitate cellular differentiation. One of the primary advantages of 2D models is their
simplicity, cost-effectiveness, and ability to conduct high-throughput screening.
However, neurons cultured in 2D cell culture environment can spread horizontally but
lack vertical support, leading to incorrect apical-basal polarity instead of the desired
morphology (Figure 6). Moreover, cells in 2D models are less precise, resulting in fewer
connections between neurons and larger synaptic distances. Furthermore, these 2D
models fail to accurately replicate the in-vivo cytoarchitectural organization and the
synaptic connections present in the brain (D’Avanzo et al., 2015). Therefore, it is
important to note that 2D models are inadequate for accurately representing the
complexities of Alzheimer's disease pathology due to their inability to mimic the structure
and functionality of the brain.

In 2D in-vitro models, various limitations hinder the accurate modeling of
Alzheimer's disease. These limitations include inadequate cell-cell and cell-matrix
interactions, inability to maintain culture for extended periods, and inability to replicate
the accumulation of A in the extracellular environment due to media refreshing (Cenini
et al., 2021; D’Avanzo et al., 2015). Also, FAD-induced models in 2D don’t allow
aggregation of robust AB (Choi et al., 2014). Furthermore, when neurons interact with A
in a 2D culture, there is no disruption in the neuronal structure as observed in the human
brain affected by Alzheimer's disease (Hasan and Trushina, 2022; Zhang et al., 2014).

Therefore, 3D cell culture techniques in modeling Alzheimer’s disease have been

accelerated due to problems experienced in animals and 2D in-vitro models.

1.4.3. 3D In-vitro Models of Alzheimer's Disease

3D in-vitro models closely resemble in-vivo environments, promoting faster
neuronal differentiation and the formation of neural networks (Berthiaume and Morgan,
2010; Li et al., 2012; Liedmann et al., 2012; Ortinau et al., 2010; Tang-Schomer et al.,
2014). In 3D cell culture, neurons exhibit more accurate gene expressions, including
neuronal markers compared to 2D cell culture (Duval et al., 2017; Park et al., 2023). In

this context, it is crucial to emphasize that 3D cell culture provides disease modeling more
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reliably as it can better replicate the original tissue microenvironment. The development
of 3D cell cultures can be approached through two main methods: scaffold-free and
scaffold-based techniques. Scaffold-free techniques involve the cultivation of cells in 3D
self-assembled spherical clusters, such as cell aggregates or spheroids, without
incorporating external biomaterials. In this process, the extracellular matrix (ECM) is
exclusively generated by the cells. On the other hand, scaffold-based 3D cultures are
achieved through seeding cells into 3D matrices composed of natural, synthetic, or hybrid
materials. These matrices serve to facilitate cell-matrix interaction and direct cell
behavior. 3D in-vitro models offer a significant advancement in mimicking the complex
microenvironment of the human brain. These models provide more accurate
representations of neuronal behavior, gene expression, and disease pathology compared
to traditional 2D cultures (Figure 6). These approaches have shown promise in replicating
key aspects of Alzheimer's disease, such as AP accumulation and tau protein pathology.
Moreover, these advancements not only improve our understanding of Alzheimer's
disease but also open new avenues for developing drugs for Alzheimer's disease.

In the literature, there are various studies that have focused on developing 3D
Alzheimer's disease models based on using different methods (Lee et al., 2016; Park et
al., 2015; Seidel et al., 2012) (Table 1), and some studies specifically focus on spheroid-
based models. In a reported study by Park et al. (2015) a microchip was developed to
provide slow flow owing to a flow osmotic pump and mimic the brain microenvironment.
Spheroids were obtained by culturing neural progenitor cells in hollow microwells.
Longer neural networks were formed in neurospheroids in dynamic culture compared to
statically cultured cells. It was also observed that AP significantly decreased the viability
in dynamic culture and caused further destruction of neural networks. It was reported that
the microfluidic chip developed based on 3D culture can be used as an in-vitro brain
model and drug screening for neurodegenerative diseases (Park et al., 2015). In another
study, Lee et al. (2016) developed a 3D human neuro-spheroid model of Alzheimer’s
disease using iPSC derived from Alzheimer’s disease patients. The cells were
differentiated into 3D neuronal cultures and the study evaluated Ap peptide generation
and drug response by treating 3D-differentiated neurons with BACE1 and y-secretase
inhibitors. While these inhibitors effectively reduced AP levels in 2D cultures, they
exhibited significantly lower efficacy in 3D cultures, suggesting differences in drug
penetration or cellular responses. Proteomic analysis further revealed variations in protein

expression that might contribute to the differential drug effects. This study highlights the
13



importance of 3D neuronal models in Alzheimer’s disease research, providing a more
physiologically relevant system for evaluating disease mechanisms and potential
therapies (Lee et al., 2016). In addition to these studies, an array platform consisting of
PDMS was developed, and neurospheroids were generated by culturing ReN. Induced
IPSCs containing FAD mutation were differentiated by seeding on Matrigel and used in
a 3D Alzheimer's disease model. After 8 weeks of differentiation, Af and p-tau
formations were observed in different sequences. It was reported that the developed
PDMS array platform has the potential for rapid drug screening in neurodegenerative
disease models (Jorfi et al., 2018). In another study, neurospheroids were produced by
facilitating cell-cell interaction with an acoustofluidic chip. 3D cell culture was performed
using N2A cell line, and 3D Alzheimer’s disease model was developed by an Ap-induced
approach by adding aggregates to the cell culture. In the developed model, microglia cell
activity was also examined, and it was observed that these cells migrated to surround A
aggregates. It was reported that a platform that can mimic the in-vivo-like brain
microenvironment was developed (Cai et al., 2020). Another study investigated the
effects of dynamic versus static systems on modeling AB-induced neuronal toxicity using
a neural stem cell (NSC)-based spheroid system that simulates the brain
microenvironment. The dynamic system, which uses an osmotic micropump for
continuous medium flow, provided a more biomimetic environment, enhancing neuronal
differentiation and complex neural network formation compared to the static system.
Parameters such as cytotoxicity, cell viability, neuron/astrocyte differentiation, reactive
oxygen species (ROS) production, neuron marker expression, and acetylcholine release
were evaluated. Results indicated that the dynamic system supported cell viability and
reduced ROS production, while AP exposure led to significant neuronal damage and
dysfunction in both systems. Real-time impedance recording further highlighted the
dynamic system's ability to monitor neural network connectivity and degeneration,
demonstrating its potential for advancing neurodegenerative disease research and drug
discovery (Liang et al., 2024).

In addition to the above-mentioned studies, scaffold-based approaches in 3D
Alzheimer's disease model studies (Benwood et al., 2023; Choi et al., 2014; Labour et al.,
2016; Park et al., 2018; Rouleau et al., 2020; Zhang et al., 2022) have recently increased
(Table 1). In a prominent study, ReN cells containing FAD mutation in a scaffold
composed of Matrigel were cultured by differentiating into neurons and glial cells within
3 weeks. Compared to the 2D model, Ap 1-40 was produced 9-fold more, and AP 1-42
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was expressed 17-fold more within 6 weeks. At the same time, AB-induced tau formation
was observed. The developed 3D neuronal model successfully mimicked Ap-induced p-
tau pathology without the need for mutation (Choi et al., 2014). In another study, a
collagen-based hydrogel was produced, and a neuronal model was established with
differentiated SH-SY5Y and PC-12 cells. Cells were cultured in a scaffold containing A
1-42 peptide and collagen. AP aggregates were visualized with Congo red and anti-Af3
biomarkers. Interaction of AP aggregates with cells resulted in the shortening of neurite
extension. As a result, it was observed that AP aggregates have a cytotoxic effect on
neurons. It was emphasized that it could be a potential model for understanding neuronal
death in Alzheimer's disease in future studies (Labour et al., 2016). In another 3D
Alzheimer's disease modeling study, a scaffold was fabricated from poly (lactic-co-
glycolic acid) (PLGA) fibers using electrospinning. iPSC-derived neural cells carrying
FAD mutation were cultured in 3D on the scaffold until the cells differentiated. At the
end of the 19" day, AB 1-42 and p-tau (highly phosphorylated tau protein) expression
were observed, and both were reported to be significantly increased compared to the 2D
control. 3D cell culture on PLGA microfiber scaffold proved that FAD-iPSC-derived
neuronal cells can show their characteristic features and are a successful in-vitro model
(Ranjan et al., 2020). Apart from these, a few studies developed 3D Alzheimer's disease
model using the bioprinting technique. In a study reported in recent years, a scaffold
consisting of Matrigel and alginate to mimic neural tissue was produced by 3D
bioprinting method. Subsequently, the aim was to develop a 3D Alzheimer's disease
model using neural progenitor cells containing FAD mutation. After 14 days of culture,
8.2-fold more 4R-tau isoforms were observed in the 3D model in the scaffold produced
by the bioprinting technique than in the 2D model. Additionally, there was a 1.6-fold
greater formation and accumulation of AP aggregates in the 3D model. This model was
reported to be more reliable for investigating Alzheimer's disease pathology than 2D cell
culture (Zhang et al., 2022). In another study, fibrin-based Polycaprolactone (PCL)
microsphere and cell-containing bioink were developed and bioprinted. In this study,
human iPSCs derived from both healthy and patient-derived cells were differentiated into
basal forebrain-like cholinergic neurons in the 3D model, and analyses were performed
to evaluate cell viability, immunostaining, and electrical signals at days 1, 30, and 45 of
3D cell culture. It has been reported that the developed model can be used in the future
to screen drug candidates and to facilitate personalized medicine with models developed

by taking cells from patients (Benwood et al., 2023). Apart from this, there are also studies
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using organoids to model Alzheimer's disease (Chen et al., 2021; Raja et al., 2016). One
of them studies explored the use of 3D brain organoids to model Alzheimer’s disease
pathology more effectively than traditional 2D cell cultures. The researchers developed
organoids from familial FAD patients carrying APP gene duplications or PSENI1
mutations and observed amyloid-beta aggregation, tau hyperphosphorylation, and
endosomal abnormalities in an age-dependent manner. Additionally, treatment with -
and y-secretase inhibitors significantly reduced Alzheimer’s disease-related pathologies,
demonstrating the potential of this system for drug discovery (Raja et al., 2016). In
another study, APPSwe/Ind (APP) and PSEN1 (PS1) mutant genes were transfected into
iPSCs from mice. Alzheimer's disease model consisting of cerebral organoids at various
ages was developed without using modified serum. In the developed model, a high
increase in AP40 and AB42 levels was observed. The proposed model has the potential to
be used in many biomedical fields, including drug screening, stem cell transplantation,
and neuronal tissue engineering (Fan et al., 2022).

Despite the contribution of scaffold-based and organoid models in modeling
Alzheimer's disease, they also have limitations (Figure 6). For example, Matrigel is a
commonly used material in both approaches (Benwood et al., 2023; Cenini et al., 2021;
Choi et al., 2014; Cuni-Lopez et al., 2024; Hernandez-Sapiéns et al., 2020). Matrigel-
derived scaffolds have difficulty accurately mimicking the mechanical, chemical, and
biological features of the human brain tissue microenvironment and ECM (Cenini et al.,
2021). These challenges are attributed to the nature of Matrigel itself, as well as issues
related to poor characterization, batch variability, and heterogeneity (Hebisch et al.,
2023). Moreover, the possible cytotoxicity associated with scaffolds and their limited
degradation properties pose further challenges for the scaffold-based strategy (Louit et
al., 2023; Zhou et al., 2024). On the other hand, organoid models are subject to significant
drawbacks, characterized by limited reproducibility, labor-intensive methodologies, high
financial requirements, and ethical considerations (Slanzi et al., 2020). In addition to that,
although organoid models predominantly utilize iPSCs, studies have demonstrated that
the pathogenic A concentration in neuronal models derived from iPSCs is less than that
found in the brains of patients with Alzheimer's disease (Choi et al., 2016; D’ Avanzo et
al., 2015). Generating iPSCs is significant as it involves a complete reprogramming of
cells, effectively eliminating the aging-related phenotypes, including mitochondrial
function and telomere length. This reprogramming returns the cells to an "embryonic-
like" state (Mahmoudi and Brunet, 2012; Sen et al., 2016). Therefore, even when iPSC
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lines are derived from SAD patients (Choi et al., 2014), the reprogramming may have
erased a notable proportion of the epigenetic marks that contribute to a genetic

background for the disease (Pavoni et al., 2018).
Thus, scaffold-free strategies have emerged as a significant tool to overcome these

obstacles. These techniques eliminate the requirement for external scaffolding materials,

facilitating the self-organization of cells and, eventually, the formation of spheroids.
Among these techniques, Magnetic levitation (MagLev) technology has attracted

considerable attention due to its rapid and easy operational process (Ashkarran et al.,

2020; Gao et al., 2022; Onbas and Arslan Yildiz, 2021; Quagliarini et al., 2022; Tiirker et

al., 2018). Recently, its use has been accelerated in 3D cell culture studies.
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Figure 6. The advantages and disadvantages of in-vivo and in-vitro models in the diagram,

showing the disadvantages and advantages of employing animal models, 2D

or 3D, and organ-on-a-chip platforms (Balestri et al., 2024).
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1.5. 3D Cell Culture by MagLev

MagLev technology is one of the scaffold-free approaches that gained attention in
3D cell culture. The principles of MagLev, originally demonstrated recently on living
objects by Geim's group (Berry and Geim, 1997), have found successful applications in
chemistry, material science, and biochemistry, with implications for tissue engineering
(Ge et al., 2020). MagLev is a newly developed, simple, and cost-effective methodology
that can perform 3D assembly of cells. The underlying principle is applying a magnetic
force to levitate objects in a paramagnetic medium. The gradient of the external magnetic
field causes the diamagnetic material, like the cells, to move from areas of high magnetic
fields to low magnetic fields, thereby positioning them based on their density differences
(Cui et al., 2023). Ultimately, buoyancy, gravitational, and magnetic forces acting on the
cell balance each other, and cells are levitated at a certain levitation height within the
magnetic field. MagLev setup components typically comprise two permanent magnets
(e.g., Neodymium Iron Boron - NdFeB) arranged in an anti-Helmholtz configuration,
where the same poles are oriented towards each other. This configuration enables the
generation of a magnetic field and magnetic field gradient.

Positive magnetophoresis involves labeling the cells with magnetic nanoparticles
(MNPs) to gain magnetic properties in cells (Seo et al., 2023). The direct uptake of MNPs
by cells can result in the development of magnetic sensitivity (Souza et al., 2010).
However, the endocytic introduction of MNPs into cells has been shown to cause
cytotoxicity (Tomitaka et al., 2011). Therefore, negative magnetophoresis can be an
alternative way to positive magnetophoresis.

Negative magnetophoresis serves as an effective method for the 3D assembly of
cells through the process of levitation (Costa et al., 2016). Negative magnetophoresis does
not require labeling MNPs to cellular structures (Tepe et al., 2023). This method
successfully mitigates challenges related to MNPs, such as cytotoxic effects. In this
approach, cells are suspended in a solution of paramagnetic salts (Tirker et al., 2018).
Commonly utilized paramagnetic salt solutions include manganese (II) chloride (MnCI2)
(Mirica et al., 2009; Subramaniam et al., 2014), gadolinium (III) chloride (GdC13) (Mirica
etal., 2010), and Gd (DTPA) (Guevorkian and Valles Jr, 2006; Mirica et al., 2010). These

materials are easily accessible, cost-effective, and provide a transparent medium that
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allows for the observation of samples (Onbas and Arslan Yildiz, 2021; Tiirker et al.,
2018).

Recently, MagLev technology has emerged as a new tool for developing spheroids
and 3D cellular structures. This technique utilizes the magnetic field to gather cells at a
specific levitation height. Cell-cell interactions are enhanced by accumulating cells at the
same levitation height, forming cellular aggregates and, eventually, spheroids. MagLev
technology enables manipulating cells without physical contact and provides spatial
control in a 3D environment that promotes cell-cell interactions. This allows cells to
establish their ECM and facilitate the formation of more complex and heterogeneous 3D
cellular structures.

MagLev technology offers several advantages in 3D cell culture over other
scaffold-free techniques. While the hanging drop method is known for its simplicity,
speed, and conventional approach to spheroid formation, it has significant limitations.
One major drawback is its inability to refresh the culture medium, making it challenging
to introduce chemicals at precise time intervals, such as those needed for differentiation
protocols (Klingelhutz et al., 2018). Additionally, maintaining long term cultures with
this technique is difficult due to its low working volume (Klingelhutz et al., 2018) and
the risk of drop dislodgement (Lv et al., 2017). Bioreactors offer another scaffold-free
option, extending culture duration and enabling high-throughput production. However,
the continuous rotation involved in bioreactors can create shear stress on cells, leading to
potential cell damage (Lv et al., 2017). Cell sheet engineering, another scaffold-free
approach, mimics the architecture of native tissues, allowing for the creation of complex
tissue structures (De Pieri et al., 2021). Despite this, it is limited by the achievable
thickness due to poor vascularization, high demand for cell numbers, and considerable
costs (De Pieri et al., 2021).

In contrast, MagLev technology supports spheroid formation with high circularity
and precise control over spheroid size and area by adjusting various parameters. Obtained
spheroids exhibit high cell viability even in the long term cultures. Also, MaglLev
technology provides high reproducibility and cost-effective biofabrication without any
ethical concerns. This technique can be adapted to several cell types, such as adipose cells
(Daquinag et al., 2013), aortic valve cells (Tseng et al., 2014), saliva gland-derived cells
(Ferreira et al., 2019), and chondrocytes (Parfenov et al., 2020) for desired tissue targets.
These studies showed that magnetically guided cells exhibited higher proliferation

resembling in-vivo conditions compared to 2D cell culture (Souza et al., 2010; Tseng et
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al., 2014). Therefore, MagLev technology, with its numerous advantages over other 3D
fabrication methods, stands out as a particularly promising tool in this field. To date,
various pioneering studies have explored using MagLev technology for creating 3D
cultures across different tissue types.

Daquinag et al. (2013) utilized a ring magnet levitation (RM-LEV) tissue culture
system, which is founded on the assembly of magnetic nanoparticles, to fabricate a model
for the development and growth of white adipose tissue (WAT) in organoids known as
adipospheres (Figure 7). This research demonstrated that levitated cell spheroids are
suitable for prolonged multicellular studies and more faithfully mimic the spatial
organization of cells than traditional 2D cell culture methods (Daquinag et al., 2013).

minutes < 24 Hours
- T mmp =

E—
— [ T 4 [T —
Levitated Cells 3D Multicellular Structures

Figure 7. The setup and testing of a magnetic levitation system for 3D culture of adipocyte

cells (Daquinag et al., 2013).

- -

In addition, MagLev setup can be fabricated with different designs including 4
mirrors and poly (methyl methacrylate) (PMMA) holders. Tiirker et al. (2018) utilized a
4-mirror-based MagLev setup that allows monitoring of the 3D cell culture formation via
mirrors under the microscope (Figure 8). In this study, MagLev setup was utilized for
spheroid formation with NIH 3T3 and HCC 827 cells. The results indicated that the
established MagLev system is a valuable method for non-contact cell manipulation and

3D cell culture formation (Tiirker et al., 2018).
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presented in 2D and 3D drawings. C) A frontal and 3D perspective of the
MagLev components: mirrors, a capillary glass channel, and NdFeB magnets

and transparent PMMA holders (Ttrker et al., 2018).

On the other hand, the magnetic force in the Maglev system can be adjustable,
and it has been shown that a high magnetic field does not adversely affect cell viability
as shown in the study performed by Parfenov et al. (2020) The aim of the study is to
decrease the concentration of paramagnetic agents by increasing the magnetic field within
the custom design of the MagLev setup (Figure 9). Spheroids were fabricated from the
SW1353 chondrosarcoma cell line in MagLev setup, employing a gadobutrol salt solution
containing 0.8 mM Gd*" within a 19 T magnetic field. Also, an assessment of viability
conducted after a one-hour exposure to high magnetic fields, with strengths of up to 30
T, revealed no significant cytotoxicity or changes in the morphology of the spheroids
(Parfenov et al., 2020).
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Figure 9. Illustration of the MagLev setup. A) 32T bitter magnet installation B) Image of
the bitter magnet C) Cuvette with paramagnetic agent and medium, placed in

the custom-designed setup (Parfenov et al., 2020).

In another study, Onbas and Arslan Yildiz (2021) developed another design of
Maglev setup that allows for a tunable 3D cellular structure and spheroid formation
(Figure 10). Also, this study showed that MagLev technology allows co-culture. Here,
different cell lines with varied cell numbers and paramagnetic agent concentrations were
carried out to show the adjustable size of 3D cellular structures and the effect of these
parameters on cell viability and circularity of the 3D cellular structures. The methodology
facilitates the production of adjustable spheroids, allowing adjustment in spheroid size,
surface area, circularity, and the development of necrotic cores through the manipulation
of cell seeding density, Gx concentration, and duration of culture. Also, it showed that
Maglev methodology allows 3D cell culture utilizing different types of cell lines (Onbas
and Arslan Yildiz, 2021).
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Figure 10. The illustration of the developed MaglLev setup and formation of 3D cellular
structures (Onbas and Arslan Yildiz, 2021).

Overall, these studies collectively demonstrate that MagLev technology is highly
versatile, enabling 3D cell culture of a wide variety of cell types within setups that can be
tailored with different design configurations. This technology not only facilitates
the creation of complex 3D cellular structures by allowing precise adjustments to various
parameters but also supports the maintenance of these cultures over extended periods with
high cell viability. This makes it a crucial tool for researchers to conduct studies that
require sustained high cell viability for specific research targets.

On the other hand, there are a few studies about neural tissue engineering using
MagLev methodologies (Onbas and Arslan Yildiz, 2021). MagLev technology in 3D
Alzheimer's disease modeling has not been explored in existing studies, indicating a
significant gap in research within this field. This gap provides a valuable opportunity to
advance the understanding of the disease through innovative modeling approaches.

1.6. Current Therapeutics for the Treatment of Alzheimer's Disease

To date, synthetic and natural sources of drugs have been developed for
Alzheimer's disease; however, a few drugs have been approved by the Food and Drug
Administration (FDA) for improving the symptoms of Alzheimer's disease. One
mechanism involves cholinesterase inhibition, which reduces symptoms by improving

the cholinergic function in neuronal synapses. These drugs act by blocking the hydrolysis
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of the critical neurotransmitter acetylcholine. Only four drugs have been approved by
FDA in this context up to now: Tacrine (1993, Cognex™), Donepezil (1996, Aricept™),
Rivastigmine (2000, Exelon™), and Galantamine (2001, Razadyne™) (Dos Santos
Picanco and Ozela, 2018; Park, 2010). Tacrine was a synthetic compound that was the
first approved drug, having dose-dependent efficacy, short half-life, and high adverse
effects such as hepatotoxicity (Engelhardt et al., 2005). Donepezil is another synthetic
drug that was developed by a Japanese company and highly improves symptoms of
Alzheimer’s disease. However, it can interact with other drugs when it is used in
combination (Engelhardt et al., 2005). Galantamine is a natural source-derived drug
obtained from the bulbs and flowers of snowdrop Galanthus woronowii Losinsk (Park,
2010). It has a similar acting mechanism to Donepezil, but it requires caution when
combined with another drug (Engelhardt et al., 2005). Rivastigmine is a synthetic drug
that exhibits good activity and tolerance in patients with a neuroprotective effect and
improves cognition (Rosler et al., 1999). The other mechanism involves memantine,
which was approved in 2003. It is a synthetic drug that is a non-competitive N-methyl-
D-aspartate (NMDA) channel blocker that reduces the activity of the neurotransmitter
glutamate, which plays a crucial role in learning and memory by binding to the NMDA
receptor (Park, 2010). Memantine decreases excessive glutamatergic neurotransmission
and protects from Ap-induced neurotoxicity. However, Memantine cannot improve
people with moderate to severe Alzheimer’s disease (Fox et al., 2012). On the other hand,
these drugs can have serious side effects, such as nausea, vomiting, diarrhea, and
dizziness (Hansen et al., 2008; Manap et al., 2019).

In addition, the current drug development pipeline is a strong reflection of
ongoing research efforts with 32.5% of the 126 active clinical trials for Alzheimer's
disease concentrating on either AB (30 trials, representing 23.8%) or tau (11 trials,
accounting for 8.7%). Among the phase 3 trials, 52% (13 out of 25) are focused on these
targets with 12 focused on AP and one on tau (Hara et al., 2019). While therapeutic
strategies aimed at eliminating or reducing the production of A have shown promise in
preclinical and early-phase studies, they have largely failed to impact the progression of
Alzheimer's Disease in later-phase clinical trials (Hara et al., 2019). it is essential to
highlight that Aducanumab (Decourt et al., 2022), Blarcamesine (ANAVEX2-73)
(Abdulraheem et al., 2024), ALZT-OP1a/b (Lozupone et al., 2022), CAD106 (Riviere et
al., 2024), Crenezumab (Yoshida et al., 2020), and Elenbecestat (E2609) (Kocienski,
2022), targeting different mechanisms, constitute a considerable share of the drugs
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undergoing phase 111 trials, representing 61% of the total. Besides, other targets, such as
neurotransmitters, tau proteins, antioxidants, and anti-inflammatory processes, are also
being explored in clinical studies (Long and Holtzman, 2019). Among these, two trials
are concentrating on inflammatory pathways, indicating that neuroinflammation may be
a significant factor contributing to the pathophysiology of Alzheimer's disease
(Cummings et al., 2019; Singh et al., 2021).

Also, there are alternative natural compounds in which bioactive components are
known to possess various beneficial biological effects that get the attention of researchers.
Reports indicate that 63% of the low molecular weight drugs developed from 1981 to
2006 are classified as natural products or compounds derived from natural sources
(Newman and Cragg, 2007). This finding suggests that natural products hold considerable
promise for the development of biologically active compounds that might exhibit anti-
Alzheimer's disease activity (Park, 2010). Several innovative therapeutic strategies
derived from natural sources for Alzheimer's disease have been discovered up to date,
and some of them concentrate on decreasing the levels of Ap aggregates. Curcumin, also
known as 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, is a naturally
occurring yellow-orange pigment obtained from the rhizomes of Curcuma longa L.
(Zingiberaceae) (Figure 11). It has several pharmacological features such as antitumor,
anti-inflammatory, antioxidant, and neuroprotective effect (Ak and Giilgin, 2008; Menon
and Sudheer, 2007). This compound has been found to have inhibitory effects on the
formation of AP oligomers and fibrils, as well as it has ability to bind to plaques and
reduce amyloid concentrations in the brains of animal models (Chen et al., 2017; Garcia-
Alloza et al., 2007; Ma et al., 2013; Yang et al., 2005). Moreover, molecular dynamics
simulation studies showed that the main factor in preventing oligomerization and
promoting the formation of nontoxic aggregates is the distortion of protofibrils resulting
from the interaction with Curcumin (Battisti et al., 2017; Kundaikar and Degani, 2015;
Ngo and Li, 2012; Rao et al., 2015). In addition, Curcumin crosses the blood-brain barrier
and binds to aggregates in-vivo owing to its symmetrical phenol groups (Rossi et al.,
2008; Yang et al., 2005). These properties of Curcumin have attracted the attention of
researchers, and recently, the use of Curcumin in Alzheimer's disease modeling has

increased.
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Figure 11. Curcumin's chemical structure: a beta-diketone compound containing two
substituted aromatic rings linked by a seven-carbon chain and an aromatic

ring with one hydroxy and one methoxy group (Zhai et al., 2020).

Recently, the neuroprotective effect of Curcumin has been investigated in 3D
Alzheimer’s disease modeling. For instance, Silveira et al. developed a herpes virus-
induced Alzheimer’s disease model on a silk-based scaffold. Twenty-one compounds,
including Curcumin, were screened on the model. Results showed that Curcumin reduced
aggregate formation at 10 uM, which was the minimum effective concentration (Silveira
et al., 2022). In another study, Park et al. developed a 3D Alzheimer’s disease model
using patient-derived cells. Then, Curcumin was screened on this model, resulting in
an anti-Ap aggregate effect (Park et al., 2023). These studies highlight the importance of
3D culture systems in evaluating the neuroprotective effect of Curcumin, as they provide
a more accurate representation of the complex cellular interactions and disease

mechanisms that occur in the human brain compared to traditional 2D models.

1.7. Scope of the Thesis

This thesis aims to develop a novel 3D in-vitro experimental platform for
Alzheimer’s disease modeling using MaglLev technology (Figure 12), whereas the
platform provides screening of therapeutic interventions for Alzheimer's disease. Current
animal and in-vitro models, often relying on 2D cell cultures, fail to capture the spatial

and cellular organization of the brain, limiting their utility in understanding disease
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mechanisms and testing therapeutic agents. This thesis addresses these limitations using
MagLev technology to develop a more physiologically relevant 3D model.
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Figure 12. Depiction of the 3D Alzheimer’s disease model formation (A) 3D cell culture
formation via MagLev (B) AP 1-42 aggregates induction to 3D cell culture (C)
Curcumin treatment and AP 1-42 aggregates disassociation (7The illustration

was created by BioRender.com).

The scope of this research encompasses the use of differentiated SH-SY5Y
neuronal cells and PC-12 cells as key components in 3D cell culture formation (Figure
12A). MagLev technology facilitates the assembly of these cells into 3D structures
without needing external scaffolds, relying instead on magnetic forces to position cells
within a paramagnetic medium. This scaffold-free approach ensures that cells interact
naturally with one another, promoting cell-cell and cell-matrix interactions. The thesis

explores the application of MagLev technology in forming spheroids with high circularity
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and uniform size, which are essential for achieving consistent experimental results. The
study optimizes parameters such as Gx concentration and cell density for the initial step.
By adjusting these parameters, the study aims to establish a reproducible method for
generating 3D cell cultures that can be used for various experimental applications. A
critical aspect of this research is the simulation of Alzheimer’s disease conditions within
the 3D model by inducing AB1-42 aggregates. This is achieved by introducing Ap1-42
aggregates into the cell culture medium (Figure 12B), which induces neurotoxic effects.
The study examines the impact of AB1-42 on neuronal viability.

In addition to modeling the disease, the thesis investigates the neuroprotective
potential of Curcumin, known for its antioxidant and anti-inflammatory properties, and
can disassociate AP aggregates. Curcumin is introduced into the 3D cell culture system
to assess its ability to suppress AB1-42-induced neurotoxicity (Figure 12C). The research
evaluates various concentrations of Curcumin to determine the optimal dosage for
reducing AB-induced damage while maintaining cell viability. This aspect of the study
not only explores Curcumin's potential as a therapeutic agent but also demonstrates the
utility of the 3D model as a drug screening platform.

In conclusion, the scope of this thesis encompasses the development,
optimization, and application of 3D in-vitro platform for Alzheimer’s disease modeling
using MagLev technology. The research aims to provide a reliable and reproducible

method for studying Alzheimer’s disease pathology and evaluating potential therapeutics.
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CHAPTER 2

MATERIALS & METHODS

2.1. Standard 2D Cell Culture

SH-SY5Y (Human bone marrow neuroblastoma, ATCC® CRL-2266™) cell line
was utilized in this study due to its extensive usage as a model cell line in Alzheimer's
disease research (Abdul Manap et al., 2020; Calan et al., 2016; Krishtal et al., 2017;
Manap et al., 2019). This cell line is of human origin; thereby, it can produce disease-
related proteins in a cellular environment that reflects human protein and gene expression
patterns (Strother et al., 2021). Also, it provides a homogeneous population that supports
reproducibility, making it an appropriate choice for large-scale culture (De Conto et al.,
2021). In this study, the cells were cultivated under standard conditions, which involved
using DMEM (Gibco, USA), 15% FBS (Gibco), and 1% PenStrep (Gibco, USA) in a
culture medium, and they were maintained at 37°C with 5% CO.. Subsequently, the cells
were employed for further investigations.

PC-12 is a cell line derived from rat pheochromocytoma (ATCC® CRL-1721 ™)
and can synthesize nicotinic receptors (as a subtype of cholinergic receptors), which
makes it an ideal model to study the pathology of Alzheimer’s disease (Xie et al., 2023).
On the other hand, this cell line is more prone to be dopaminergic neurons after
differentiation (Guroff, 1985; Jao et al., 2024; Srivastava et al., 2018) rather than the
cholinergic neuron character. Therefore, in this study, PC-12 cells were not differentiated
during 3D cell culture. In this study, PC-12 cells were maintained in a standard culture
medium consisting of DMEM (Sakagami et al., 2017), 10% FBS, and 1% PenStrep at
37°C and 5% CO». Subsequently, the cells were employed for further studies.
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2.2. MagLev Setup for 3D Cell Culture

3D cell culture of SH-SY5Y and PC-12 cells was carried out using MagLev
technology, as depicted elsewhere (Onbas and Arslan Yildiz, 2021). This system consists
of two permanent NdFeB N35 disc magnets (Miknatis Teknik Company, Turkey) with
40x5 mm dimensions arranged in an anti-Helmholtz configuration and replaced in poly
(methyl methacrylate) (PMMA) holders (Figure 13). A Petri dish (Ibidi-80131, 35 mm)
containing cells, cell medium, and the paramagnetic agent (Gadobutrol (Gx)/Gadavist,
Bayer, Germany) was positioned between the magnets within the setup to conduct 3D

cell culture experiments.
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Figure 13. MagLev setup components: NdFeB N35 disc magnets, PMMA holders, and
petri dish.

The optimal Gx concentration and cell number were determined for 3D cell
culture formation. First, 10-100 mM Gx was investigated at 25x10° cell number, then SH-
SY5Y cell number optimization was conducted at 10 mM Gx, while PC-12 cell number
optimization was done at 30 mM Gx for 5-100 x10° cells. Following 3D cell culturing,
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structural changes of 3D cellular assembly were monitored by light microscopy, while
cell viability was assessed by Live-Dead assay with Calcein Green/Propidium lodide (P1)
staining (ATT Bioquest, USA) for 9 days. Cell viability (%) and circularity versus area
changes were characterized using Image J software (Onbas and Arslan Yildiz, 2021)

(NIH). Circularity was measured based on the formula (Onbas and Arslan Yildiz, 2021).

2.3. Differentiation of SH-SYSY Spheroids in MagLev Setup

Differentiation of SH-SY5Y proceeded on 2D cell culture for optimization before
maintaining on 3D cell culture studies. The common protocol was utilized based on the
literature (Bilginer Kartal and Arslan Yildiz, 2024; de Medeiros et al., 2019; Serdar et al.,
2020), which applied Retinoic acid (RA, Across organics, Belgium) and Brain-derived
neurotrophic factor (BDNF, MedChem, USA). Firstly, the cell number was optimized for
differentiation using only RA before sequential treatment. For this purpose, 25x10° and
50x102 cell numbers were utilized. Following optimization, SH-SY5Y differentiation was
carried out via RA-BDNF. Briefly, 10 uM RA that was dissolved in DMSO on day 1 was
supplemented to cell culture with 1% FBS for 5 days by refreshing the medium every
other day. On day 5, 50 ng/mL BDNF was supplemented into the cell medium; again, the
medium was refreshed every other day until day 9. Cellular morphology and
differentiation progress were monitored by Zeiss Axio Observer microscopy. Following
the optimization of the differentiation protocol in 2D cell culture, the differentiation
protocol was adapted to 3D cell culture, which was maintained in the MagLev setup.

The characterization of differentiation was carried out by the Neuron J program
(NIH, USA), which traces and quantifies neurites for 2D cell culture. Also,
immunostaining was performed for neuronal characterization to confirm B-I11 tubulin
(ABclonal, USA) and neuronal nuclei (NeuN, ABclonal, USA) neuronal marker
expressions in both 2D and 3D cell cultures. Fluorescence intensities of B-111 tubulin and
NeuN were measured for un-/differentiated cells in both models using Image J (NIH,
USA) software.
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2.4. 3D Alzheimer's Disease Modeling through AP 1-42 Induction

The primary aim of this investigation was to develop a 3D model of Alzheimer's
disease induced by AB1-42 through the application of MagLev technology. The process
involved generating AB1-42 aggregates by dissolving AB1-42 monomers (Royobiotech,
China) in DMSO and incubating at 37°C for 72 hours. The aggregate formation was
confirmed using Congo red staining (Isolab, Germany), where 40 uM Congo red was
added to AP1-42 aggregates ranging from 0 to 100 uM and incubated overnight. The
spectral analysis was conducted by recording the Congo red spectrum between 400-700
nm with 10 nm intervals using a Multiskan™ GO microplate spectrophotometer (Feng et
al., 2021; Klunk et al., 1999). Subsequently, the aggregates were examined under light
microscopy after centrifugation at 14000 rpm. Additionally, scanning electron
microscopy (SEM) analysis was employed to evaluate the formation of AB1-42
aggregates. Following the characterization of the aggregates, 5-15 uM AB1-42 aggregates
were introduced to un-/differentiated SH-SY5Y and PC-12 in 2D cell culture to determine
neurotoxic concentration before examining it on 3D cell culture. The aggregates were
incubated in 2D cell culture environment for 24h, 48h, and 72h. The neurotoxicity of
aggregates was evaluated by Live-Dead (Calcein AM-Propidium lodide) and MTT (3-
(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays. After establishing
the effective neurotoxic concentrations in 2D models, un-/differentiated SH-SY5Y
spheroids and 3D culture of PC-12 were incubated with AB1-42 aggregates at
concentrations of 10-50 uM for 7 days for SH-SY5Y and 21 days for PC-12 to model
Alzheimer's disease, as shown in Figure 14. This figure illustrates the experimental
timeline for developing 3D Alzheimer’s disease models using SH-SYSY and PC-12 cells
through MaglLev. For SH-SYSY cells, cells were seeded in the MaglLev setup, initially
(day 0). Spheroid formation was obtained, and RA was applied to induce neuronal
differentiation on day 4. BDNF was introduced to 3D cell culture to promote neuronal
differentiation on day 9. AP 1-42 aggregates were introduced on day 13. and Alzheimer’s
disease model was developed on day 20.

For PC-12 cells, the timeline also starts with cell seeding in the MagLev setup,
initially (day 0). 3D cultured of PC-12 cells was then incubated with AP 1-42 aggregates
from day 4 to day 25 for 3D Alzheimer’s disease modeling. Then, cell viability was

34



measured to evaluate neurotoxic parameters using Image J software. To further
characterize the 3D Alzheimer's disease model, immunostaining of Choline
acetyltransferase (ChAT, ABclonal, USA) was conducted to evaluate cholinergic neuron
activity loss for differentiated SH-SY5Y spheroids and 3D cultured PC-12 cells after
exposure AP 1-42 aggregates. The fluorescence intensities of ChAT were measured using

Image J software, allowing for quantitative comparisons between control and AB-treated

groups.
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Figure 14. Depiction of 3D Alzheimer's disease protocol: SH-SY5Y cells formed spheroid
and differentiated via RA-BDNF sequentially in MaglLev, then induced by A}
aggregates. PC-12 cells formed 3D cell culture and were induced by AR

aggregates.

2.5. Curcumin Treatment on 3D Cell Culture

The potential of Curcumin to disassociate Ap 1-42 aggregates was examined by

utilizing Congo red (Isolab, Germany) and Thioflavin T (MedChemExpress, USA) assays
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(Ding et al., 2024) before testing it on 3D Alzheimer’s disease models. Curcumin was
incubated at 25, 50, 75, and 100 uM with 50 uM AP 1-42 aggregates for 72h. Following
this incubation, Congo red and Thioflavin T assays were conducted separately using a
spectrophotometer (DaSilva et al., 2010; Zhu et al., 2007). Subsequently, Curcumin at
25,50, 75, and 100 uM was introduced to SH-SY5Y and PC-12 cells on 2D cell culture
to determine the proper concentration range for 3D cell culture. The cytotoxicity of
Curcumin was evaluated by Live-Dead and MTT assays. Then, a similar investigation
was done on SH-SY5Y and PC-12 in 3D culture using Live-Dead assay. Cell viability
(%) was measured using Image J software. After optimization, 25-100 uM Curcumin
(AFG Bioscience, USA) was screened on 3D Alzheimer’s disease models of SH-SY5Y
for 72h and PC-12 for 21 days (Durairajan et al., 2008; Lee et al., 2012; Xu et al., 2019).
Then, Live-Dead assay was performed to determine cell viability, and cell viability (%)
was evaluated using Image J software. Anti-APB biomarker (Proteintech, USA) was
utilized in 3D Alzheimer’s disease models to detect the presence of A 1-42 in 3D cell

culture environment before and after Curcumin treatment.

2.6. Statistical Analysis

The assessment of cell viability and proliferation was performed with at least three
independent replicates, and the findings were expressed as mean + standard deviation
(SD). One-way and two-way ANOVA, along with Tukey's test for multiple comparisons,
were conducted using GraphPad Prism 9 software (GraphPad Prism, Inc., San Diego).
Statistical significance between groups was determined at *p < 0.05, **p < 0.01, ***p <
0.001, and ****p <0.0001.
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CHAPTER 3

RESULTS & DISCUSSION

3.1. Formation of SH-SYS5Y Spheroids via MagLev

3.1.1. Optimization of Gx Concentration for 3D Cell Culture Formation

of SH-SYSY in MagLev Setup

MagLev setup facilitates the easy and rapid formation of SH-SY5Y spheroids
using the magnetic levitation principle (Onbas and Arslan Yildiz, 2021). The optimization
of Gx concentration and cell number is crucial for the formation of 3D cellular spheroids
(Figure 15-18). For this purpose, the effect of Gx concentrations ranging from 10 to 100
mM on spheroid formation was analyzed over 24h. The magnetic, gravitational, and
buoyancy forces aided in gathering cells, resulting in the observation of cell clusters
starting from the 4™ hour, as shown in bright-field images (Figure 15). Over time, the size
of these cellular clusters progressively increased, eventually leading to the formation of
compact spheroids within 24h, even at low Gx concentrations. This can be attributed to
the aggregation of cells through magnetic guidance, which enhances cell-cell interactions.
Also, the upregulation of hemophilic cadherin and connexin expressions may contribute
to this process (Cui et al., 2017; Lin and Chang, 2008) because these proteins have a
crucial role in self-assembly (Bao et al., 2011). As cells aggregate, the contacts between
cells are enhanced, and the behaviors associated with migration and aggregation during
self-assembly are determined by the expression of cell adhesion proteins, including
cadherins and surface adhesion molecules (Zhou, 2016).

Overall, the results of this study demonstrated that MagLev technology facilitates
the rapid formation of spheroids within a 24h-period (Ferreira et al., 2019). In contrast,

the scaffold-based approach requires an extended culture time to achieve spheroid
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formation at a size of 200 pum (Srinivasan et al., 2017). Thus, MagLev technology
significantly reduces the time needed to produce spheroids of comparable size (Tseng et
al., 2013).

Figure 15. Bright-field and fluorescence microscopy images for SH-SYS5Y spheroid
formation at 25x10° cell number between 10-100 mM Gx with for 24h (Scale
bar: 200 um, Green: Live, Red: Dead).

Moreover, the cell viability (%) measurements for Gx with varying concentrations
are shown in Figure 16. SH-SY5Y spheroids were produced using the MaglLev
technology and exhibited remarkable cell viability, even at higher Gx concentrations. Cell
viability remained at 98% and 96% for 10 mM and 100 mM Gx, respectively with no
significant difference (ns). In conclusion, Gx does not have a considerable cytotoxic

impact on cells during 24h observation, thereby affirming its biocompatibility.
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Figure 16. Cell viability results of SH-SY5Y spheroids between 10-100 mM Gx at 25x10°
cell number for 24h (n=6, there is no significant difference between groups,

one-way ANOVA followed by Tukey’s test).

3.1.2. Optimization SH-SYS5Y Cell Number for 3D Cell Culture

Formation in MagLev Setup

Next, cell number optimization was carried out at 10 mM Gx, which provided
high cell viability and sufficient levitation of cells (Figure 17). 3D cellular clusters were
observed starting from 4h and gained a more compact structure in time. 3D cellular
structure formation was obtained at 24h, and the size and area of the cells increased with
the increase in cell numbers. When 5x10° cells were cultured, smaller spheroids were
formed. 100x102 cells were formed irregular and larger cellular clusters compared to the

others.
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Figure 17. Bright-field and fluorescence microscopy images for SH-SYSY spheroid
formation between 5x103-100x10* cell number at 10 mM Gx cells for 24h
(Scale bar: 200 um, Green: Live, Red: Dead).

Cell number optimization studies showed that cell number did not significantly
influence cell viability, ranging between 100-94% (Figure 18). These findings showed
that cell numbers have a high impact on the size of 3D cellular structures and morphology
(Onbas and Arslan Yildiz, 2021). Also, cell numbers can influence cell viability for long
term culture since spheroid size can limit oxygen and nutrient diffusion into the core of
the spheroids (Lin and Chang, 2008). Therefore, a proper cell number is important for 3D
cell culture, especially in the long term culturing.

Although there was no significant difference between 25x10° and 50x10° in terms
of cell viability and morphological structure, subsequent studies were conducted using

25x10% cells since lower cell number provides a more controlled environment, and
spheroid formation parameters can be tuned in this way (Onbas and Arslan Yildiz, 2021),

making it a suitable starting point for further investigations.
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Figure 18. Cell viability results of SH-SY5Y spheroids between 5x103-100x10° cell
number at 10 mM Gx for 24h (n=6, there is no significant difference (ns)

between groups, one-way ANOVA followed by Tukey’s test).

3.1.3. Differentiation of SH-SYSY Cells Using RA-BDNF

The differentiation of neuroblastoma cells is a crucial step in neuroscience, as it
facilitates the development of similar morphological and biochemical properties in-vivo
(Lone et al., 2016; Mufoz-Llancao et al., 2017; Sidell et al., 2003). This process is
essential for both neural development and the establishment of models for
neurodegenerative diseases, which are crucial for drug discovery and screening (Forster
et al., 2016; Schneider et al., 2011). SH-SY5Y neuroblastoma cell line is extensively
utilized in neuronal research, particularly in studies focused on differentiation (Costas-
Rodriguez et al., 2019; da Costa et al., 2021) and modeling neurodegenerative diseases
(Fiore et al., 2022; Kruger et al., 2020; Santillo, 2022). SH-SY5Y cells can possess
cholinergic neuron character by expressing ChAT after differentiation (Adem et al., 1987,
de Medeiros et al., 2019; Korecka et al., 2013; Kovalevich and Langford, 2013), which
is important for Alzheimer’s disease modeling studies ( de Medeiros et al., 2019; Krishtal
et al., 2017; Webberley et al., 2023).
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In the literature, RA is commonly employed to differentiate SH-SY5Y cells, while
BDNF is often used to enhance the effects of neuronal differentiation (de Medeiros et al.,
2019; Encinas et al., 2000; Gimenez-Cassina et al., 2006; Murillo et al., 2017; Sahin et
al., 2021; Schneider et al., 2011). During differentiation, significant biochemical and
morphological changes occur, including the growth of neurites, alterations in the
expression of neuronal markers and cell density, and accumulation of specific
neurotransmitters, ultimately resulting in a phenotype closely resembling that of primary
neurons (Cheung et al., 2009; Dwane et al., 2013; Encinas et al., 2000; Grover et al., 2011;
Serdar et al., 2020).

3.1.3.1.Optimization and Characterization of Differentiation Protocol

for SH-SYSY on 2D Cell Culture

In this study, SH-SY5Y cells were sequentially differentiated with RA-BDNF,
and characterized by neurite extension analysis and immunostaining of neuronal markers.
First, cell number optimization was carried out when only RA was applied in 2D cell
culture before differentiation of SH-SY5Y cells in 3D cell culture (Figure 19-20). As
shown in Figure 19, there was a noticeable morphological change in SH-SY5Y cells
regarding neurite extension. In undifferentiated cells, neurite extension was not observed,
as expected. On day 5, the growth of neurites started to shorten, which can be attributed
to the instability of RA beyond that time frame (Sharow et al., 2012; Temova Rakusa et
al., 2021).

On the other hand, in groups containing 1% FBS and 1% FBS and DMSO,
detachment of cells was observed due to a low amount of FBS (Strother et al., 2021).
However, this was not observed for the RA-treated group; likely, RA increases survival
factors in cells (Encinas et al., 1999). Also, this can be attributed to the increase in cellular
adhesion molecules (CAMs) after differentiation with RA in neuroblastoma cell line
(Melino et al., 1997). In addition, the cell density in the undifferentiated group increased,
and the RA-treated group remained more stable. Differentiation induced a post-mitotic
condition that generated a stable cell population, showing no noticeable increase in cell

density over time (Dravid et al., 2021).
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Figure 19. Differentiation of SH-SYSY cells via 10 uM RA with high cell density
(50x10%) for 10 days (Scale bar: 100 pm).
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A similar result was observed when differentiation was carried out with low cell
density (Figure 20). On the other hand, neurite extension in low-density cultures was
notably longer compared to differentiation performed at high cell densities. Neurite
extension was observed after 24h, but it could be maintained until day 5, as it was
observed in high cell density results. SH-SY5Y cell morphology changed after day 7,
maintaining S-type (substrate-adherent) morphology instead of N-type (neuronal). While
RA differentiation effectively promotes neurite outgrowth, its prolonged exposure leads
to an increase in S-type cells. These findings underscore the critical role of differentiation
conditions, such as initial cell density and RA treatment duration, in determining SH-
SYS5SY cell morphology and neuronal characteristics. Optimization of timing and dosing
is essential to maintain a consistent neuronal phenotype, as variations in these parameters
can significantly influence differentiation outcomes. For instance, initial cell density has
been shown to impact not only cell viability but also neurite outgrowth and the expression
levels of neuronal markers. In a study by Dravid et al. (2021), it was reported that
differentiation under low cell density conditions allowed for a more precise and detailed
analysis of neurite growth, facilitating better visualization and segmentation of individual
neurites. However, this approach also posed challenges, as low cell density differentiation
was associated with reduced cell viability, potentially due to decreased cell-cell
interactions and support. (Dravid et al.,, 2021). The importance of cell density in
differentiation efficiency was further highlighted in a study by Dwane et al. (2013), which
investigated how varying initial cell densities influence cell attachment, adhesion
dynamics, and differentiation outcomes. The study revealed that higher cell densities
promote stronger cell adhesion, which is crucial for efficient differentiation, while lower
densities may compromise these processes (Dwane et al., 2013). Another study provided
valuable insights into the role of seeding concentration and spatial constraints on SH-
SYS5Y cell proliferation dynamics, highlighting the impact of initial cell density, chamber
size, and available surface area on growth rates and aggregation tendencies (Kalwarczyk

et al., 2024).
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Figure 20. Differentiation of SH-SY5Y cells via 10 uM RA with low cell density (25x10°)
for 10 days (Scale bar: 100 um).
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Differentiated SH-SY5Y cells with RA exhibit neurite growth cones, including

Focal adhesion kinase (FAK), which is necessary for neurite growth (Dwane et al., 2013).

Therefore, differentiation was confirmed by measuring neurite growth using the Neuron

J program, a widely used tool for assessing neurite outgrowth. Figure 21 shows neurite

extension based on the cell density of SH-SY5Y after RA treatment. The findings

revealed that the maximum neurite length for high cell density was observed on day 1 and

day 3, which were 92 and 90 um, respectively. The results in low cell density exhibited

longer neurites, measuring 107 um on day 5. Following these peak days, the neurite

lengths for both cell densities declined until day 10.
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Figure 21. Neurite extension analysis of A) high (50x10%) and B) low cell density (25x
10%) for SH-SYSY after differentiation via 10 uM RA for 10 days (n=10,

ns:not significant, ***p <0.001, ****p<0.0001 compared to the control of

each group, two-way ANOVA followed by Tukey’s test).
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These results suggest that neurite length is influenced by cell density, likely due
to the overcrowding associated with high cell density, which limits neurite extension
owing to decreased surface area (Dravid et al., 2021). Conversely, in low cell density, the
greater availability of space allows neurites to extend further, leading to longer lengths.
Overall, the findings indicate that neurite length in differentiated SH-SY5Y cells is
significantly influenced by cell density, with low-density cultures exhibiting longer
neurites while high cell density limits neurite outgrowth. In addition, RA alone appears
insufficient for maintaining long-term neurite length stability, as neurite lengths declined
after the 7" day, suggesting that additional differentiation factors are required to sustain
neuronal morphology for extended periods (Riegerova et al., 2021; Strother et al., 2021).
To address this limitation, BDNF supplementation was used, as it is widely recognized
for its role in promoting neurite extension and neuronal differentiation. BDNF plays a
key role in inducing a more stable and functionally mature neuronal phenotype, making
it a preferred choice for long-term differentiation protocols (Riegerova et al., 2021;
Strother et al., 2021). Thus, combining RA with BDNF supplementation represents a
promising strategy for achieving more robust and stable neuronal differentiation in SH-
SY5Y cells. For that reason, further studies were carried out with BDNF since the
supplementation of BDNF allows for longer neurites over a prolonged time.

Following cell number optimization, SH-SY5Y cells were differentiated via RA-
BDNF (Figure 22). Differentiation is a complex process influenced by various factors.
RA triggers the expression of tyrosine kinase receptor B (TrkB), which is essential for
binding BDNF (Kaplan et al., 1993; Ruiz-Leon and Pascual, 2003). Subsequently, BDNF
activates P1 3-K and ERK pathways, which are crucial for cell survival and neuritogenesis
(Encinas et al., 2000, 1999; Szobota et al., 2019). Therefore, neurite extension analysis
was done to confirm RA-BDNF differentiation and to optimize the differentiation
process. Neurite extension was observed from day 0 to day 5 after RA addition. The
addition of BDNF on day 5 resulted in longer and more branched neurites, particularly
on day 9, as expected. Moreover, it was observed that the cells within the RA-BDNF
group did not proliferate as they did in the undifferentiated group due to the suppression
of DNA synthesis after RA treatment (Qiao et al., 2012; Simdes et al., 2021). Cells began
to display a neuronal phenotype from day 5 onwards, confirming the differentiation
induced by RA-BDNF. BDNF could enhance the differentiation of RA and cells

maintained differentiated properties until day 9.
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Figure 22. Morphology of un-/differentiated SH-SYSY after sequential treatment with
RA and RA-BDNF for 9 days (Scale bar: 50 pm).

Then, neurite lengths were measured using Neuron J software (Figure 23). A
comparison of neurite lengths between undifferentiated and differentiated SH-SY5Y cells
from day O to day 9 showed that differentiated cells had significantly longer neurites,
reaching up to 150 um while undifferentiated cells remained at 28-31 um. BDNF, in
combination with RA, has been shown to increase neurite length from 125 pm to 150 um
permanently. The sequential treatment of RA and RA-BDNF resulted in a nearly 4-fold
increase in neurite lengths by day 9 compared to day 0, highlighting the differentiation
potential of this combined approach. This finding aligns with a previous report indicating
that neurite length was shorter in SH-SY5Y cells treated with RA alone compared to RA-
BDNF (Serdar et al., 2020). In literature, it is reported that prolonged RA treatment for
more than 5 days failed to maintain a homogeneous population of SH-SY5Y cells, leading
to increased S-type cells. However, the addition of BDNF resulted in more branched and
abundant neurites (Encinas et al., 2000). Conversely, another report found that RA
treatment exceeding 3 days increased the percentage of apoptotic cell death (Yang et al.,
2016). These findings collectively indicate that while RA treatment initiates the
differentiation process, it is not efficient in differentiating cells when used alone.
Therefore, a combined approach is necessary to achieve efficient neuronal differentiation,
which results in stronger changes in the expression of neuronal markers (Riegerova et al.,
2021). Apart from these studies, differentiated SH-SY5Y cells represent a suitable in-
vitro model for neurodegenerative disease research, as they mimic several aging-related

48



characteristics, which are critical for understanding age-associated neuronal decline
(Strother et al., 2021).
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Figure 23. Neurite extension analysis of un-/differentiated SH-SYSY cells after sequential
treatment by RA and RA-BDNF for 9 days (n = 10, ns: not significant, ****p
<0.0001, two-way ANOVA followed by Tukey’s test).

In addition to the neurite length analysis, immunostaining was also used for
assessing cellular differentiation through the expression of neuronal markers. To confirm
the neuronal differentiation of SH-SYS5Y cells, B-111 tubulin and NeuN immunostaining
were performed. B-111 Tubulin is a specific type of tubulin that is found in neurons, and
its levels increase as neuronal differentiation occurs. Neuronal nuclei (NeuN) is only
observed in cells that have undergone differentiation. Figure 24 illustrates the expression
of B-111 tubulin and NeuN in both un-/differentiated cells. B-I1l tubulin was slightly
expressed in undifferentiated cells, but its expression was clearly observed in the
differentiated groups (Figure 24A—24C). On the other hand, NeuN showed weak
expression in undifferentiated groups, while its expression increased, especially on day 9
for differentiated cells (Figure 24A—24C).
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Differentiated Undifferentiated

Figure 24. Immunostaining of B-III tubulin and NeuN for un-/differentiated SH-SY5Y
cells on A) day 5, B) day 7, and C) day 9 (Scale bar: 50 um, Blue: DAPI,
Green: B-III tubulin and NeuN).

The relative fluorescence intensity (F.I.) of B-111 tubulin was 2-fold higher for all
time intervals in differentiated cells compared to the un-/differentiated control groups
(Figure 25A). NeuN relative F.I. increased five-fold on day 9 in differentiated cells
compared to the undifferentiated groups (Figure 25B). These findings are consistent with
studies that have reported an increase in -111 tubulin and NeuN expression following the
differentiation of SH-SY5Y cells, indicating the acquisition of neuronal characteristics
(Dravid et al., 2021; Dwane et al., 2013; Serdar et al., 2020). This suggests that the
differentiation process successfully induced a neuronal phenotype, confirming their
utility as a model system for studying neurobiological processes and neurodegenerative

diseases.
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Figure 25. Relative fluorescence intensity (F.I.) of A) B-III tubulin and B) NeuN for un-
/differentiated SH-SYSY cells (n = 6, ns: not significant ***p < 0.001, ****p
<0.0001, two-way ANOVA followed by Tukey’s test).

Overall, this study demonstrated that RA alone might be insufficient for sustained
neuronal differentiation, as evidenced by temporary neurite extension and morphological
changes after prolonged treatment. The sequential treatment of RA and BDNF resulted
in significant improvements in differentiation, promoting longer, more branched neurites
and maintaining neuronal properties for long time. Immunostaining revealed increased
expression of B-111 tubulin and NeuN, markers of neuronal differentiation, further
confirming the successful differentiation of SH-SY5Y cells into a neuronal phenotype.
Therefore, further studies were carried out using optimized parameters to differentiate
SH-SY5Y in 3D cell culture.

3.1.3.2.3D Cell Culture in MagLev Setup while Maintaining Optimized

Differentiation Protocol

Further, the differentiation process was adapted to 3D cell culture because
neuronal cells cultured in a 2D environment cannot maintain the features of primary
neurons (Fiore et al., 2022; Li et al., 2022). Therefore, in this study, SH-SY5Y cells were
cultured in a 3D environment and differentiated using RA-BDNF (Figure 26-27). The
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differentiation process was carried out simultaneously with MagLev setup. As previously
described, the process involved the initial addition of 10 uM RA, followed by adding 50
ng/mL BDNF on the 5" and 7" days. To ensure long term maintenance of differentiated
SH-SY5Y cells MagLev setup, 10 mM Gx was used, and the spheroids were evaluated in
terms of structure and viability (Figure 26-27). It was observed that the addition of 10
mM Gx successfully created a paramagnetic cell culture environment, allowing for the
levitation of both un-/differentiated spheroids for 9 days, which aligns with findings in
the literature (Onbas and Arslan Yildiz, 2021). Moreover, this concentration of Gx
provided high cell viability for un-/differentiated spheroids, as evidenced by fluorescence
microscopy images (Figure 26).

Undifferentiated

Differentiated

Figure 26. Bright-field and fluorescence microscopy images for un-/differentiated 3D
SH-SYS5Y spheroids analyzed by Live-Dead assay on day 5, 7, and 9 (Scale
bar: 200 um, Green: Live, Red: Dead).

The cell viability measurements demonstrated a high survival rate in both
undifferentiated and differentiated spheroids, with viability ranging between 94-95% in
undifferentiated spheroids and 98-100% in differentiated spheroids, showing no
statistically significant difference (Figure 27A-27B). The slightly higher viability
observed in differentiated spheroids can be attributed to the activation of the PI13-K/Akt
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pathway, which plays a crucial role in cell survival, growth, and metabolic regulation,

particularly in response to BDNF (Strother et al., 2021).
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Figure 27. Cell viability results of A) undifferentiated and B) differentiated SH-SYS5Y
spheroids for days 5, 7, and 9 (n=3, there is no significant difference between

groups, one-way ANOVA followed by Tukey’s test).

Overall, un-/differentiated spheroids maintained their circular and compact
structures. This compact form of the spheroid can be associated with MagLev technology,
as it allows for a more efficient 3D cellular formation relative to other conventional
methods (Moncal et al., 2022). Furthermore, differentiated spheroids exhibited a more
compact structure compared to undifferentiated ones. The increased compactness in
differentiated SH-SY5Y spheroids can be attributed to the elevated levels of cell adhesion
molecules present in them compared to undifferentiated spheroids (Jung et al., 2013). As
a result, MagLev technology offers a significant advantage in 3D neuronal culture
systems, providing a controlled and efficient method for spheroid formation. These
findings showed that MagLev is an effective, powerful, and biocompatible method for
3D cell culture formation. It enables efficient 3D neuronal differentiation while
maintaining high cell viability, even under long-term culture conditions, making it a
promising approach for neurodegenerative disease modeling applications.

The circularity and area analysis were also carried out to characterize the

structural features of un-/differentiated SH-SY5Y spheroids, which were influenced by
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factors such as Gx concentration, cell number, and incubation time. Therefore, circularity
and area were measured based on the incubation time for un-/differentiated spheroids.
The circularity of undifferentiated spheroids reached 0.87 on day 9, while differentiated
spheroids reached 0.89 (Figure 28A). In addition to circularity, the spheroid area was
analyzed and there was a notable difference between the two groups (Figure 28B).
Undifferentiated spheroids showed an increase in spheroid area, indicating ongoing cell
proliferation and expansion, whereas differentiated spheroids maintained a relatively
stable area, exhibiting a more compact structure throughout the 9-day period.
Specifically, the area of undifferentiated spheroids ranged between 0.162-0.224 mm?,
whereas the differentiated spheroids remained within a smaller range of 0.09-0.107 mm?.
This observation may be attributed to RA treatment, which induces p21 activation (Qiao
et al., 2012; Simdes et al., 2021), resulting in the inhibition of cell proliferation due to

cell cycle arrest in the G1 phase, and inhibition of DNA synthesis (Qiao et al., 2012) .
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Figure 28. Circularity and area analysis of A) undifferentiated and B) differentiated SH-
SYS5Y spheroids on days 5, 7, and 9.

Moreover, cells that were differentiated in 2D and then cultured in MagLev
formed cell clusters with low cell viability rather than spheroids (Figure 29). This
observation suggests that the transition of differentiated cells from a 2D cell culture
environment to a 3D cell culture may disrupt normal cellular organization and cell
survival. This can be attributed to the replating of the differentiated cells, which can

damage neurite extension (Dravid et al., 2021). Therefore, inducing differentiation
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directly within a 3D culture system, such as Maglev, is a more effective strategy for
generating 3D-differentiated spheroids with higher cell viability. Overall, the findings
highlighted that differentiation of cells in MagLev setup results in proper spheroid size
with remarkable cell viability, indicating the suitability of Maglev system for potential
use in 3D neuronal differentiation. Differentiation in MagLev setup is a superior approach
for achieving optimal spheroid size, enhanced cell viability, and sustained neuronal
function. This highlights the suitability of the Maglev system for 3D neuronal
differentiation, making it an efficient platform for neuroscience research, regenerative

medicine, and drug discovery applications.

4h 6h 8h 24h 24h

Figure 29. Bright-field and fluorescence microscopy images of SH-SYSY cells
differentiated in 2D and cultured in MagLev (Scale bar: 200 um, Green: Live,
Red: Dead).

Moreover, immunostaining of B-III Tubulin and NeuN was performed to evaluate
the neuronal differentiation in 3D SH-SYS5Y spheroids, following a similar approach as
in 2D cell cultures. These markers were assessed to confirm the neuronal differentiation
of spheroids under 3D cell culture conditions. Figure 30 shows fluorescence microscopy
images of B-III Tubulin and NeuN immunostaining, comparing undifferentiated and
differentiated SH-SYSY spheroids. The B-III Tubulin expression was analyzed across
different time points, revealing its presence in both un-/differentiated groups. The highest
B-IIT Tubulin expression was observed in differentiated groups on day 9 (Figure 30A-

30C). Despite its presence in undifferentiated spheroids, its elevated expression in
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differentiated groups suggests that RA-BDNF treatment successfully promoted neuronal
markers in 3D cell culture. On the other hand, NeuN expression was slightly detected in
undifferentiated spheroids, it was significantly increased in differentiated spheroids

(Figure 30A-30C).

Undifferentiated Differentiated Undifferentiated Differentiated Undifferentiated

Differentiated

Figure 30. Fluorescence microscopy images of [B-III tubulin and NeuN for un-
/differentiated SH-SYSY spheroids on A) day 5, B) day 7, and C) day 9 (Scale
bar: 100 um, Blue: DAPI, Green: B-III tubulin and NeuN).

The F.I. of B-III Tubulin exhibited 6.8, 1.5, and 2.3-fold increases when
comparing un-/differentiated spheroids on days 5, 7, and 9, respectively (Figure 31).
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Notably, the highest F.I. for B-III Tubulin was recorded on day 9 within the differentiated
group. Significant differences were observed between day 9 and both day 7 and day 5
within differentiated groups. On the other hand, F.I. of NeuN demonstrated 34-fold, 4-
fold, and 11.7-fold differences between the un-/differentiated groups on days 5, 7, and 9,
respectively. These findings affirm that differentiated 3D spheroids maintained neuronal

features (de Medeiros et al., 2019; Serdar et al., 2020; Simdes et al., 2021).
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Figure 31. Relative fluorescence intensity (F.I.) of A) B-III tubulin and B) NeuN for un-
/differentiated SH-SYS5Y spheroids (n = 3, *p <0.05, **p<0.01, two-way
ANOVA followed by Tukey’s test).

These results highlight the effectiveness of RA-BDNF sequential treatment in
promoting neuronal differentiation within 3D SH-SYSY spheroids, as evidenced by the
increase in B-III Tubulin and NeuN expression over time, underscores the applicability of
the differentiation protocol in 3D cell culture. The successful implementation of this

protocol in 3D culture opens new avenues for research in neurodevelopmental studies,

drug screening, and disease modeling
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3.2. Utilizing SH-SYSY Spheroids to Model Alzheimer's Disease in 3D

3.2.1. Formation and Characterization of A 1-42 Aggregates

AP 1-40 and/or AP 1-42 peptides are commonly encountered in Alzheimer's
pathology, and associated with neurotoxicity; thereby, they have been utilized as tools for
Alzheimer’s disease modeling (Abdul Manap et al., 2020; Calan et al., 2016; Park et al.,
2015). However, AP 1-42 is insoluble, prone to aggregate formation, and more toxic than
AP 1-40 (Evin and Weidemann, 2002; Portelius et al., 2010) ; thus, it has been commonly
employed in modeling Alzheimer's disease (Calan et al., 2016; Choi et al., 2013; Labour
et al., 2016; Park et al., 2015). In this work, AB1-42 was used to model Alzheimer’s
disease. Prior to 3D Alzheimer’s disease modeling, aggregate formation was confirmed
by Congo red staining, (Klunk et al., 1999) and SEM analysis (Figure 32). Congo red
interacts with the hydrophobic groove of the AB1-42 aggregates (Maiti et al., 2016),
resulting in the observation of red staining. Congo red staining results of Ap1-42
monomer and aggregates were given in Figure 32A-32B, respectively. As expected, no
staining was observed for the monomers while AB1-42 aggregates were stained,
confirming aggregate formation (Figure 32A-32B). Additionally, Ap 1-42 aggregate

formation was also observed by SEM analysis successfully as depicted in Figure 32C.

Figure 32. Monitoring AP 1-42 A) monomer and B) aggregates by light microscopy after
applying Congo red (Scale bar 50 pm) C) Morphology of AP 1-42 aggregates
monitoring by SEM (Scale bar: 500 nm).
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Besides, formation of AP 1-42 aggregate stained with Congo red dye and it was
investigated by spectrophotometric analysis (Wu et al., 2012). The absorbance maximum
of Congo red was observed at 490 nm, which shifted to 540 nm after the formation of a
complex between A 1-42 aggregate and Congo red (Lee et al., 2019), especially at high
concentrations of AP 1-42 aggregate, such as 75 and 100 uM (Figure 33).
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Figure 33. Spectrophotometric analysis of AP 1-42 aggregates formation through Congo

red assay.

After confirming aggregate formation, the size distribution profile of AB1-42
aggregates was analyzed using light microscopy images, revealing that the aggregates
frequently ranged between 20-60 uM (Figure 34). A detailed examination of these
distributions demonstrated a consistent trend with previously reported findings in the
literature, where AP aggregates in 3D in-vitro models typically vary between 40-80 um,
while those observed in post-mortem brain slices range between 20-60 um (Armstrong,
2007; Labour et al., 2016). The similarity in size between the in-vitro aggregates and
those present in brain tissue highlights the potential of the AB-induced 3D in-vitro model

in mirroring the pathological conditions associated with Alzheimer’s disease. Also, these
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findings may contribute to future studies aimed at targeting specific aggregate sizes for

therapeutic intervention.

404

35+
304
251

20+

151 /
10-/

2 N
0 e
0 20 40 60 80 100 120 140 160

Count

AB 1-42 aggregate size (M)

Figure 34. Size distribution profile of AP 1-42 aggregates by histogram graph (n=100).

3.2.2. Optimization of Ap 1-42 Aggregate Concentration on 2D Cell
Culture of SH-SYSY Cells

AP 1-42 aggregates are key in Alzheimer’s disease pathology by triggering
neurotoxicity (Abdul Manap et al., 2019). A variety of in-vitro studies have identified
several mechanisms that may lead to neuronal cell death in response to A addition. These
mechanisms include oxidative stress, alterations in Ca®* homeostasis, microglial
activation, nitric oxide production, mitochondrial dysfunction, and additional factors.
Nevertheless, the specific mechanism that triggers these events is still not fully
understood (Kumar et al., 2012).

Therefore, this study investigated the neurotoxicity of Ap 1-42 aggregates on un-
/differentiated SH-SY5Y spheroids. Prior to starting the application of AP 1-42
aggregates on 3D cell culture, optimization studies were carried out on 2D cell culture of
un-/differentiated SH-SY5Y. Here, 1-15 uM A 1-42 aggregates were introduced to
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undifferentiated SH-SY5Y for 24h, 48h, and 72h (Figure 35A-35C). Bright-field images
showed cell detachment correlating with increasing Ap 1-42 aggregate concentration and
incubation time. There were almost no cells on the surface, especially at 15 uM. There
was no cell remaining at the end of 72h incubation, especially after 10 uM AP 1-42

aggregates.

' ---

Figure 35. Bright-field and fluorescence microscopy images of SH-SYSY cells after 0-15
uM AB 1-42 exposure for A) 24h, B) 48h, and C) 72h (Scale bar: 50 pum,
Green: Live, Red: Dead).
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In addition, the cell viability of undifferentiated SH-SY5Y cells was analyzed via
MTT after addition of AP 1-42 aggregates (Figure 36). It was observed that cell viability
decreased, correlating with AP 1-42 aggregate concentration and incubation time, which
is in concordance with live-dead assay results. The cell viability decreased up to 46% at
10 uM for 72h with a significant difference, which was acceptable for modeling
Alzheimer’s disease via AP 1-42 induction. In literature, it was reported that Ap

aggregates reduced cell viability to around 44% at 25 uM (Lee et al., 2012).
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Figure 36. Cell viability measurement of SH-SY5Y cells after 0-15 uM A 1-42 exposure
for 24h, 48h, and 72h, analyzed by MTT (n=5, *p<0.05, **p<0.01,
*#%p <0.001, ****p<0.0001 compared to the control of each group, two-way

ANOVA followed by Tukey’s test).

Then, differentiated SH-SY5Y was also exposed to AP 1-42 aggregates by
applying the same protocol as it was done with undifferentiated SH-SY5Y for 24h, 48h,
and 72h (Figure 37A-37C). When the concentration of AB1-42 was increased for all time
intervals, the dead cell rate was accelerated. On the other hand, AB1-42 did not change
cell morphology for 24h and 48h, but cell detachment was observed at a high

concentration of AB1-42, such as 10 uM and 15 pM.
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Figure 37. Bright-field and fluorescence microscopy images of differentiated SH-SY5Y
cells after 0-15 uM AP 1-42 exposure for A) 24h, B) 48h, and C) 72h, analyzed
by Live-dead assay (Scale bar: 50 um, Green: Live, Red: Dead).

Next, MTT analysis was done to analyze cell viability quantitatively after
exposure of 0-15 uM AP 1-42 aggregates. Cell viability of differentiated SH-SY5Y cells
varied between 100-63% and 100-57% for 24h and 48h, respectively (Figure 38). At 72h,
cell viability decreased to 47% at 10 uM with a significant difference, which can be an
applicable concentration for modeling Alzheimer's disease (Thapa et al., 2016). In a
literature, AP exposure decreased cell viability to 70% in SH-SY5Y cell line, whereas 5
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days of incubation resulted in around 55% cell viability (Thapa et al., 2016). In another
study, A treatment decreased cell viability to around 70% in SH-SY5Y cells (Wang et
al., 2012). These studies showed that the cell profile after AP treatment is in a suitable

range for modeling Alzheimer's disease.
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Figure 38. Cell viability measurement of differentiated SH-SY5Y cells after 0-15 uM A
1-42 exposure for 24h, 48h, and 72h, analyzed by MTT (n=5, *p <0 .05,
**p<0.01, ***p<0.001, ****p<0.0001 compared to the control of each

group, two-way ANOVA followed by Tukey’s test).

On the other hand, un-/differentiated SH-SY5Y cells displayed similar cell
viability profile (Fernandez-Busquets et al., 2010), which is in line with some studies in
the literature. Besides, some studies report that differentiated cells are more sensitive
compared to undifferentiated in terms of cell proliferation profiles (Lambert et al., 1994).
Overall, these findings indicated that 10 uM AP 1-42 aggregates exposed to SH-SY5Y
cells for 72h are the appropriate condition for modeling Alzheimer's disease. As a result,
subsequent studies focused on Alzheimer's disease in 3D cell culture models were
initiated using these parameters of 10 uM for 72h incubation.

Then, the presence of AP 1-42 aggregates in the SH-SYS5Y cell culture
environment was tested via Congo red and Thioflavin T assays (Figure 39A-39B). The
results showed that Congo red dye and Thioflavin T both bound to cells and AP 1-42
aggregates. Therefore, they could not be distinguished from each other and do not
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specifically bind to AB1-42 aggregates. This indicates that neither dye is specific solely
to AP 1-42 aggregates, as they also exhibit affinity for cellular components. This finding
highlights potential limitations in using these dyes for the selective detection of AB1-42
aggregates in 2D and 3D cell culture, as cellular components may lead to false-positive
signals or misinterpretation of aggregates. On the other hand, there are contrary results in
the literature that show the presence of Ap 1-42 aggregates in cell culture environment
without binding to cells (Abdul Manap et al., 2020; Park et al., 2023).

Control

Figure 39. AP 1-42 aggregate staining in cell culture environment via A) Congo red and

B) Thioflavin T assays (Scale bar: 50 um).

3.2.3. Alzheimer’s Disease Modeling via Af Induction Using SH-SYSY
Spheroids

Following the optimization of AP 1-42 induction on 2D cell culture, un-
/differentiated spheroids were exposed to 10-50 uM A 1-42 aggregates to determine
neurotoxic parameters reducing cell viability around 50% (Calan et al., 2016; Zhang et
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al., 2017). Spheroid structure and cell viability were monitored after exposing 10-50 uM
AP 1-42 aggregates on un-/differentiated spheroids for 72h (Figure 40). A concentration-
dependent decrease in cell viability was observed, with significant cell death occurring at

50 uM for un-/differentiated SH-SY5Y spheroids (Cai et al., 2020).

Differentiated Undifferentiated

Figure 40. A) Bright-field and fluorescence microscopy images of un-/differentiated SH-
SYS5Y spheroids after 10-50 uM AP 1-42 aggregate exposure for 72h,
analyzed by Live-dead assay (Scale bar: 200 um, Green: Live, Red: Dead).

The cell viability of undifferentiated spheroids decreased from 96% to 71%, while
it decreased from 96% to 68% in differentiated spheroids with a significant difference
compared to control (Figure 41). It was 87% and 82% at 10 uM for un-/differentiated
spheroids for 72h, respectively. This indicates that AP 1-42 aggregates resulted in
different neurotoxicity profiles in 2D versus 3D cell cultures, as expected. This resistance
in 3D cell culture against screened compounds, including AB 1-42 aggregates, arises from
its more complex architecture, such as cell-cell and cell-matrix interactions (Calan et al.,
2016; Gonzalez et al., 2018; Terrasso et al., 2015; Thapa et al., 2016; Wang et al., 2012).
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Figure 41. Cell viability of un-/differentiated SH-SY5Y spheroids after 10-50 uM AP 1-
42 exposure for 72h (n=5, *p <0 .05, ***p <0.001, ****p<0.0001 compared
to the DMSO control of each group, two-way ANOVA followed by Tukey’s
test).

On the other hand, the findings showed that cell viability did not decrease to the
targeted level, which is around 50%. Therefore, the incubation time with 50 pM AP 1-42
aggregates was extended from 3 to 7 days to be able to model 3D Alzheimer’s disease
realistically.

Furthermore, the neurotoxicity of 50 uM AP 1-42 aggregates was investigated
based on incubation time (Figure 42). Cell death increased in correlation with the
extended incubation time of AP 1-42 aggregates for both un-/differentiated spheroids. The
findings revealed a time-dependent increase in cell death for both un-/differentiated
spheroids, with a significant decline in cell viability observed on day 7, suggesting that
prolonged exposure to AP1-42 aggregates increases their toxic effects. The results
underscore the importance of incubation time as a crucial factor in studying Ap-induced

neurotoxicity.
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Figure 42. Bright-field and fluorescence microscopy images of un-/differentiated SH-
SYSY spheroids after 3-7 days of 50 uM AP 1-42 exposure, analyzed by Live-
dead assay (Scale bar:200 um, Green: Live, Red: Dead).

Cell viability results showed that it decreased from 92% to 65% for
undifferentiated spheroids, while it decreased to 51% for differentiated spheroids (Figure
43), which are acceptable neurotoxicity profiles for modeling Alzheimer's disease on 3D
cell culture (Calan et al., 2016; Thapa et al., 2016; Wang et al., 2012). Also, there is a
significant difference in cell viability between un-/differentiated spheroids on day 7. This
observation indicates that the neurotoxic effects of AB1-42 aggregates are influenced by
both concentration and duration of exposure, where longer exposure times result in
decreased cell viability. In addition, differentiated spheroids are more sensitive to toxins
compared to undifferentiated spheroids, consistent with similar studies (Forster et al.,
2016; Krishtal et al., 2017; Simdes et al., 2021). This can be attributed to undifferentiated
cells having smaller surface areas due to lacking longer neurites, resulting in smaller
contact areas with AP 1-42 aggregates (Krishtal et al., 2017). Also, the findings support
that differentiated spheroids are more suitable for studying 3D Alzheimer's disease model
(Krishtal et al., 2017) due to the response to the Ap 1-42 aggregates. Consequently,
differentiated spheroids were utilized for 3D Alzheimer's disease modeling and

investigating the neuroprotective effect of Curcumin for further studies.
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Figure 43. Cell viability of un-/differentiated SH-SY5Y spheroids after 3-7 days of 50
UM AB 1-42 exposure (n=5, *p <0 .05, ***p <0 .001, ***p<0.0001 compared
to DMSO control of each group, two-way ANOVA followed by Tukey’s test).

3.2.4. Characterization of 3D Alzheimer's Disease Modeling of SH-

SYSY Using Immunostaining

The cholinergic system is continuously affected, and significant loss of
cholinergic neurons is observed in Alzheimer's disease. ChAT expression has been
investigated in Alzheimer's disease models for cholinergic neuron activity (Bowen et al.,
1976, de Medeiros et al., 2019; Wilcock et al., 1982). Hence, the characterization of 3D
Alzheimer's disease model was carried out by immunostaining of ChAT (Figure 44).
Fluorescence microscopy images showed that the control group expressed ChAT, while
ChAT expression in 3D Alzheimer's disease model reduced significantly (Figure 44A).
There is a 2.2-fold decrease in ChAT relative fluorescence intensity in 3D Alzheimer's
disease model (Figure 44B), consistent with studies in the literature (Gil-Bea et al., 2005).
These findings indicate that 3D Alzheimer's disease model was successfully developed,
offering a valuable tool for studying Alzheimer’s disease and testing potential therapeutic

candidates.

69



* %

-

(=]

o
|

Control

" T

Relative F.l. (%)

AD

0- T
Control AD

Figure 44. A) Fluorescence microscopy images of ChAT marker for 3D Alzheimer’s
disease model of SH-SYSY spheroids B) Calculated fluorescence intensity
(F.I) of ChAT for Control and AD (Alzheimer’s disease) model (Scale bar:200
um) (Blue: DAPI, Green: ChAT) (n=4, **p <0 .0, t-test analysis).

3.3. Investigating the Neuroprotective Effect of Curcumin on 3D

Alzheimer's Disease Model of SH-SY5SY

3.3.1. Evaluating the Disassociation Ability of Curcumin Against Ap 1-
42 Aggregates

Curcumin has shown potential as a neuroprotective agent for Alzheimer's disease
by disassociating aggregates, and reducing neurotoxicity (Abdul Manap et al., 2020; Park
et al., 2008; Yan et al., 2017). Moreover, studies reported that Curcumin can bind to A}
plaques with different forms in post-mortem samples with high affinity (den Haan et al.,
2018). Therefore, Curcumin can be a promising compound to suppress disease
progression (Abdul Manap et al., 2020). For this purpose, Curcumin at varied
concentrations was incubated with AP 1-42 aggregates for 72h exogenously (Figure 45).
The samples were monitored by light microscopy then analyzed by Congo red and

Thioflavin T assays. Bright-field images showed that Curcumin disassociated AP 1-42
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aggregates effectively, while reducing their size with increasing Curcumin concentration.
These results indicated that Curcumin possesses the ability to disassociate A 1-42
aggregates by disrupting intra- and interstrand distances of preformed fibrils, as reported
in literature, and reduced aggregate size and numbers (Silveira et al., 2022). It was also

reported that Curcumin can change the AP fibrillar structure with a non-toxic form (Thapa

et al., 2016).

AB+25 uM Cur AB+50 M Cur

AB+75 uM Cur AB+100 pM Cur

Figure 45. A) Monitoring AP 1-42 aggregates by bright-field microscopy following 0-100
puM Curcumin treatment for 72h (Scale bar: 200 pm).

Then, the size distribution of AB1-42 aggregates following Curcumin treatment
was measured and analyzed as given in Figure 46, enabling a comparative analysis of
aggregate size before and after treatment. Prior to Curcumin application, the majority of
AP1-42 aggregates ranged between 20-60 pum. Additionally, although less frequently
observed, larger aggregates measuring between 100-160 um were also detected,
indicating that in the absence of Curcumin. Following Curcumin treatment, a significant
shift in AP1-42 aggregate size distribution was observed, particularly at 100 pM
Curcumin concentration, where larger aggregates underwent disassociation, leading to
the formation of smaller aggregates ranging between 20-50 um (Figure 46 A-46E). This
reduction in aggregate size and frequency of large amyloid plaques indicates that
Curcumin effectively disassociated with AP aggregation. These findings indicate the
potential application of Curcumin as a neuroprotective agent, supporting its use in

preventing AP aggregates neurotoxicity in Alzheimer’s disease research.
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Figure 46. Size distribution profile of Ap 1-42 aggregates after Curcumin treatment with
varied concentrations A) 0 uM B) 25 uM C) 50 uM D) 75 uM and E) 100 pM.

Congo red assay provides quantitative evidence of Curcumin's effect in
disassociating AB1-42 aggregates. Congo red dye specifically binds to the beta-sheet
structures that are indicative of amyloid aggregates. This binding facilitates the spectral
changes, serving as an indicator for the presence of AP aggregates (Klunk et al., 1999;
Yakupova et al., 2019). Upon treating the AB1-42 aggregates with Curcumin, a noticeable

decrease in relative absorbance intensity was observed, ranging between 55-60% with
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significant differences, which indicates that Curcumin effectively disassociated the AP1-

42 aggregates (Figure 47).
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Figure 47. Relative absorbance (Abs.) values of Congo red staining following 0-100 pM
Curcumin treatment for 72h (n=6, **p<0.01 ***p <0.001, compared 0 uM
(AP), one-way ANOVA followed by Tukey’s test).

Thioflavin T assay is another assay for evaluating AP aggregate formation
quantitatively (Zhu et al., 2007). Thioflavin T is a fluorescence dye that exhibits enhanced
fluorescence upon binding to the B-sheet-rich structures of A fibrils (Walsh et al., 1997).
In the study, Thioflavin T assay was employed to evaluate the disassociation effect of
Curcumin against Ap 1-42 aggregates. Figure 48 shows that F.I. intensity decreased,
ranging between 71-53 % after Curcumin treatment. Also, there is a significant difference
between the control (0 pM) and Curcumin-treated group. A similar observation was
reported in other studies in the literature. For example, Manap et al. (2019) screened
Curcumin on the developed 2D Alzheimer's disease model via inducing AR 1-42
aggregates. Thioflavin T results showed that 49.1 uM Curcumin decreased F.I. almost
50% (Manap et al., 2019).
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Figure 48. Relative fluorescence intensity (F.I.) of Thioflavin T assay following 0-100
uM Curcumin treatment for 72h (n=6, **p<0.01 ***p <0 .001, compared 0
uM (Ap), one-way ANOVA followed by Tukey’s test).

Overall, these results showed that Curcumin successfully disassociated AP 1-42
aggregates by some mechanism as mentioned in the literature. The aromatic rings of
curcumin bind in parallel to the side chains of aromatic amino acids in Af fibrils. This
bonding occurs by the overlapping of electron clouds and is referred to as n-m stacking
interactions. This interaction impairs fibril stability by weakening the natural bonding
between aromatic rings present in the fibril structure (Sarvestani et al., 2023). In addition,
molecular docking and molecular dynamics simulations have shown that curcumin's keto-
enol functional groups form hydrogen bonds with the backbone amide groups of the -
sheet. This interaction weakens the intra- and inter-strand hydrogen bonds that maintain
the structural integrity of the fibril. For example, curcumin has been observed to bind
within amyloidogenic sequences like the KLVFFA segment of A fibrils, targeting critical
residues through hydrogen bonding and hydrophobic interactions. These interactions
induce perturbations in the B-sheet alignment, reducing the structural stability and leading

to fibril disassembly or the formation of less toxic aggregates (Velander et al., 2017).
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3.3.2. Optimization of Curcumin Concentration on 2D Cell Culture of

SH-SYSY

The cytotoxicity of Curcumin was investigated on SH-SY5Y in 2D cell culture to
determine the proper concentration for 3D cell culture (Figure 49). Bright-field and
fluorescence microscopy images showed that Curcumin has a cytotoxic effect at
concentrations above 25 uM after 72h. These findings are consistent with other studies,
such as one that reported Curcumin displaying significant cytotoxicity at a concentration

of 100 uM (Silveira et al., 2022)

0 M 25 uM 50 uM 75 uM 100 uM
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Figure 49. Bright-field and fluorescence microscopy images of SH-SY5Y after 0-100 uM

Curcumin screening for 72h (Scale bar: 50 um, Green: Live, Red: Dead).

Further studies were carried out between 25-100 uM Curcumin since 3D cell
culture is more resistant to screened compounds due to its more compact and complex
structure compared to 2D cell culture. Cell viability results in 2D cell culture showed that
Curcumin exhibited high cell viability at 25 and 50 uM with 100 and 74%, respectively
(Figure 50). However, there is a significant cytotoxicity after 50 uM.

75



*kkk

edesiek

*K

*%

100- x&

*kkk o

Relative Cell viability (%)

0 25 50 75 100
Curcumin concentration (uM)

Figure 50. Evaluation of cell viability of SH-SYS5Y after 0-100 uM Curcumin screening
for 72h by MTT (n=6, **p<0.01, ***p <0.001, ****p <0 .0001 compared 0
uM, one-way ANOVA followed by Tukey’s test).

This finding is important because it suggests that Curcumin, despite being widely
recognized for its neuroprotective effect, can induce cell death at certain concentrations
(Silveira et al., 2022). The underlying mechanism of Curcumin-induced cytotoxicity has
been attributed to its prooxidant properties, which is in contrast with its well-known
antioxidant and anti-inflammatory effects at lower doses. (Banerjee et al., 2008; Shi et
al., 2007). At elevated concentrations, Curcumin has been shown to induce apoptosis,
trigger oxidative stress, and lead to DNA damage (Park et al., 2008). Therefore,

determining the concentration of Curcumin is essential for its neuroprotective potential.

3.3.3. Investigating Curcumin Cytotoxicity on 3D SH-SYSY Spheroids

The cytotoxicity of Curcumin was investigated on 3D SH-SYSY spheroids
fabricated by MaglLev before 3D Alzheimer’s disease modeling (Figure 51). The study
involved treating SH-SYSY spheroids with varying concentrations of Curcumin and

assessing the effects on cell viability. The result showed that Curcumin did not exhibit a

76



cytotoxic effect as observed in 2D cell culture on SH-SYSY spheroids. In contrast,

spheroids exhibited high cell viability even at 100 pM of Curcumin, as expected.

0 uM 25 uM 50 uM 75 uM 100 uM

Figure 51. Bright-field and fluorescence microscopy images of SH-SYS5Y spheroids after
Curcumin cytotoxicity assessment by Live-Dead assay (Scale bar: 200 pm,

Green: Live, Red: Dead).

Also, cell viability ranged between 91-72%, even at 100 pM Curcumin (Figure
52), indicating low toxicity of Curcumin on 3D cell culture. Following these findings,
Curcumin was tested in the 3D Alzheimer's disease model of SH-SY5Y to evaluate its

disassociation capability on AP 1-42 aggregates.
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Figure 52. Cell viability measurement of SH-SY5Y spheroids after Curcumin cytotoxicity
assessment by Live-Dead assay (n=6, *p <0.05, **p <0.01, ****p<(0.0001
compared to the control of each group, one-way ANOVA followed by Tukey’s
test).
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These results emphasize the differences in cellular responses between 2D and 3D
cultures, as 3D spheroids better mimic the complex microenvironment of the brain,
providing a more physiologically relevant model for drug testing. This suggests that
toxicity assays on 2D cell culture may not fully capture cellular responses observed in 3D
cell culture, further highlighting the importance of validating neuroprotective compounds

in 3D models before translating findings to in-vivo studies.

3.3.4. Evaluation of the Neuroprotective Effect of Curcumin on 3D

Alzheimer’s Disease Model of SH-SYSY

The evaluation of the neuroprotective effect of Curcumin was conducted on 3D
Alzheimer’s disease model of SH-SY5Y (Figure 53). Fluorescence microscopy images
revealed that Curcumin significantly inhibited AP 1-42-induced cell death, highlighting
its potential as a neuroprotective agent. Spheroids treated with Curcumin showed
remarkably higher cell viability compared to untreated spheroids exposed to AB 1-42
aggregates, indicating that Curcumin inhibited the neurotoxic effects of AP 1-42

aggregates.

AB+25 yM Cur AB+50 uM Cur AB+75 uM Cur AB+100 uM Cur
- £,

Figure 53. Investigating neuroprotective effect of Curcumin on AP 1-42 aggregates in 3D
spheroids; Bright-field and fluorescence images of spheroids before and after
0-100 uM Curcumin treatment for 72h on AB—induced 3D Alzheimer’s disease
model (Scale bar: 200 um, Green: Live, Red: Dead).
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Cell viability results showed that Curcumin increased cell viability within a
certain concentration range, particularly at 25 puM, which effectively inhibited Af-
induced neurotoxicity. This resulted in an increase in cell viability from 51% to 94%,

demonstrating a significant difference (Figure 54).
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Figure 54. Cell viability after 0-100 uM Curcumin treatment for 72h in AB—induced 3D
Alzheimer’s disease model of SH-SYS5Y (n=5, *p<0.05, **p<0.01,
compared AB-treated group (0 pM), one-way ANOVA followed by Tukey’s
test).

In a similar study, Curcumin treatment increased cell viability from 45% to around
75% in the AB-induced model of SH-SYS5Y (Thapa et al., 2016). The neuroprotectivity of
Curcumin is attributed to the decreasing permeability of the cell membrane against A}
after Curcumin treatment. In another report, it was found that the minimum effective
concentration of Curcumin is 10 uM (Silveira et al., 2022), suggesting that even at lower
doses, it can exert protective effects against AP neurotoxicity. In another study, 30 pM
Curcumin exhibited a neuroprotective effect on 2D AB-induced model of SH-SYS5Y cells
(Yanagisawa et al., 2015). Another study investigated the neuroprotective effect of
Curcumin against pesticide and Ap-induced damage. Curcumin exhibited a
neuroprotective effect by activating some mechanisms. For example, (i) Nrf2 protein,
which activates the neuroprotective system in cells, (ii) APE1 activation, which takes a

role in DNA repair, and (ii1) inhibition of AP fibril formation (Sarkar et al., 2017). These
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findings highlight Curcumin's potential as a neuroprotective agent that can inhibit Af-
induced damage, offering a promising avenue for further research in Alzheimer's disease.

In addition, the disassociation of AP 1-42 aggregates within 3D cell culture
environment was investigated by immunostaining before and after Curcumin treatment
(Figure 55). Fluorescence images showed that Curcumin disassociated Ap 1-42, and

smaller fragments were observed after Curcumin treatment, as expected.

- AB+Curcumin
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Figure 55. Fluorescence microscopy images of AB 1-42 aggregates in 3D Alzheimer’s

disease model before and after Curcumin treatment at 25 pM (Scale bar: 100

um).

These findings strongly suggest that Curcumin's ability to disassociate AP
aggregates plays a crucial role in reducing neurotoxicity, thereby protecting neuronal cells
from AB-induced damage, supported by several studies (Abdul Manap et al., 2019; Yang
et al., 2005; Yin et al., 2012; Zhang et al., 2018). Its neuroprotective effect can also be
attributed to inducing PI3K, Akt, and Nrf2, which play a role in cytoprotecting (Yin et al.,
2012). By both disassociation of toxic amyloid structures and activating protective
signaling cascades, Curcumin shows promise as a therapeutic candidate for suppressing
Alzheimer’s disease progression, offering a multifaceted approach for preserving

neuronal viability (Velankanni et al., 2019).
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CHAPTER 4

4.1. Formation 3D cell culture of PC-12 via MagLev

4.1.1. Optimization of Gx Concentration for 3D Cell Culture Formation

of PC-12 in MagLev Setup

PC-12 cell line is a commonly utilized cell line in neuroscience, particularly in
Alzheimer's disease research. Recent studies have investigated the use of PC-12 for 3D
cell culture in neuroscience(Javkhlan et al., 2024; Krokker et al., 2021). This study
utilized PC-12 cells to fabricate 3D cell culture model via MagLev technology. A
MagLev setup was used to facilitate the rapid and easy formation of 3D cell cultures. The
study involved optimizing the concentration of paramagnetic agents and the number of
cells for 24h culture time to form 3D cell cultures (Figure 56). Initially, the levitation
capability and cytotoxicity of Gx were tested for 24 hours, revealing the formation of
small aggregates and the acquisition of 3D cellular clusters after 4h.

The 3D cell culture formation displayed irregular shapes with increasing
aggregate sizes by the end of the 24h culture period (Figure 56). This irregular shape may
be due to the characteristics of endocrine tumor-type cell lines that do not naturally form
spheroids and require an ECM (Krokker et al., 2021). Additionally, the size of compact
3D cell clusters increased with higher Gx concentrations. Gx with 10 mM resulted in
smaller 3D cellular structures, while concentrations exceeding 10 mM led to larger
clusters. This phenomenon can be attributed to the effect of magnetic guidance on cell

aggregation, resulting in the development of larger 3D cellular clusters.
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Figure 56. Bright-field and fluorescence microscopy images of 3D cell culture of PC-12
at 25x10° cell number between 10-100 mM Gx for 24h (Scale bar:200 pm,
Green:Live, Red:Dead).

Furthermore, 3D cell culture exhibited high cell viability even at high Gx
concentrations. Notably, there was no significant change in cell viability from 10 to 100
mM, ranging from 93% to 92% (Figure 57). Further studies were carried out at 30 mM
since 10 mM resulted in looser and smaller 3D cellular structure compared to the more
compact and stable structures observed at 30 mM. Despite the differences in 3D cellular
structures, no significant difference in cell viability was observed between 10 mM and 30
mM, indicating that the increase in Gx concentration primarily influenced the
morphology of the 3D culture without affecting cell survival. In addition, there is no
significant difference (ns) observed between other concentrations. This finding highlights
the importance of optimizing Gx concentration not only for maintaining high cell viability
but also for promoting the formation of robust and well-defined 3D cultures, which are

essential for reliable in-vitro modeling.
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Figure 57. Cell viability results of 3D cultured PC-12 at 10-100 mM Gx with 25x10° cell

number for 24h (n=6, there is no significant difference between groups).

4.1.2. Optimization of PC-12 Cell Number for 3D Cell Culture

Formation in MagLev Setup

Cell number optimization was conducted at 30 mM Gx concentration, as shown
in Figure 58. During this process, cellular aggregation began to occur starting from 4" h,
with cells gradually coming together to form increasingly larger and more tightly
structured aggregates over time. 3D cellular clusters formed at 24h, and their size
increased from 5x102 to 100x10° cells. The progressive growth and tight structure of these
aggregates underscore the importance of optimizing cell density, as these factors are

crucial in promoting the development of 3D cellular structures.
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Figure 58. Bright-field and fluorescence microscopy images for 3D cell culture formation
of PC-12 cells between 5x10°-100x10° cell number at 30 mM Gx cells for 24h
(Scale bar:200 pm, Green: Live, Red: Dead).

In addition, high cell viability was observed, especially with 5 and 25 x103 cells,
which was 96% and 93%, respectively (Figure 59). On the other hand, higher cell
numbers resulted in 77% and 76% cell viability (Figure 59). This decrease in cell viability
can be explained by the diffusion limitation of nutrients and oxygen, causing metabolic
waste accumulation within the 3D cell culture structure exceeding a size of 200 pm (Lin
and Chang, 2008). These findings indicate that maintaining a lower cell number leads to
higher cell viability, whereas increasing the cell number tends to decrease cell viability
(Onbas and Arslan Yildiz, 2021). Also, higher cell numbers led to faster formation of
necrotic cores compared to lower cell numbers in 3D cell culture (Browning et al., 2021).
Therefore, determining proper initial cell density is important for optimizing the balance
between growth and viability in 3D cell culture. Selecting the appropriate cell number
may prevent excessive aggregation, and minimize metabolic stress, all of which are
crucial for maintaining viability of 3D cell culture, especially in long term culture.
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Figure 59. Cell viability measurement for 3D cellular structure of PC-12 between 5x10°-
100x10°3 cell number at 30 mM Gx for 24h (n=6, ***p <0 .001, ****p<0.0001,
two-way ANOVA followed by Tukey’s test).

Next, the 3D cellular clusters of PC-12 cells were measured based on varying Gx
concentrations and cell numbers, as depicted in Figure 60. It was observed that the cell
area increased proportionally with the rise in Gx concentration. This phenomenon can be
attributed to the increasing magnetic force acting on the cells (Onbas and Arslan Yildiz,
2021), which facilitates the aggregation of the cells into a more compact structure (Figure
60). In addition, the number of cells also played a significant role in the expansion of the
3D cellular area. As the cell number increased, there was a corresponding increase in the
overall 3D cellular area, as expected. Overall, these findings highlighted the interplay
between Gx concentrations and cell density in determining the 3D structure of the cell.
MagLev technology allows for controlled cell aggregation and spatial arrangement,
which is pivotal for the successful fabrication of tissue constructs. Further studies were
carried out using 25x10° cell numbers due to the forming of tight 3D cellular structures
and high cell viability, while 5x10° cells did not form 3D cellular structures, instead

forming smaller aggregates.
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On the other hand, circularity analysis was not done for 3D cultured PC-12 cells,
since it formed irregular cellular clusters rather than spheroid formation. The irregular
shape could be attributed to the nature of endocrine tumor-type cell lines, which typically
do not form spheroids (Krokker et al., 2021).
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Figure 60. Area analysis of 3D cultured PC-12 cells based on A) Gx concentration and B)
cell number for 24h.

4.1.3. 3D Cell Culture of PC-12 Cells in MagLev Setup for Long Term

Culture

Furthermore, the long term culture of PC-12 cells via Maglev was further
investigated to evaluate the levitation capability of the system and cytotoxicity of Gx
(Figure 61). Bright-field images showed that PC-12 formed loose 3D cellular structure
on days 1-3, forming a tight structure over time after day 3. This finding shows that
different types of cells can show varying aggregation behavior in 3D cell cultures, which
may result in either loosely formed aggregates or disconnected and floating cells (Leung
etal., 2015). Moreover, the cell-to-cell junctions, particularly gap junctions, might impact
on the compactness of the self-assembled structures when exposed to a magnetic field, as

highlighted in the literature (McEvoy et al., 2020).
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Figure 61. Bright-field and fluorescence microscopy images of 3D cell culture of PC-12
at 25x10* and 30 mM Gx for long term culture (Scale bar:200 um, Green:
Live, Red: Dead).

3D cultured PC-12 cells showed high viability (99-97%), and Gx exhibited no
cytotoxicity, even in long-term cultures (Figure 62). These findings confirmed that Gx is
a reliable paramagnetic agent even during prolonged culture for the formation of 3D

cellular structures (Onbas and Arslan Yildiz, 2021; Tiirker et al., 2018).
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Figure 62. Cell viability measurement for 3D cellular structure of PC-12 12 at 25x10° and
30 mM Gx for long term culture (n=6, there is no significant difference

between groups).
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Overall, the results indicated that MagLev method is a biocompatible method for
3D cell culture, demonstrating broad applicability across various cell types. Also,
Maglev in 3D cell culture enhances cell aggregation, allows for the formation of larger
structures, and promotes rapid 3D cell culture formation without inducing cytotoxicity,
unlike traditional methods (Marques et al., 2022). Another significant advantage of
MagL ev is its ability to support long-term cell culture while maintaining consistently high
cell viability (Moncal et al., 2022). Also, MagLev enables fabrication of 3D cell culture
in a shorter time compared to scaffold-based approaches, further highlighting its potential

in biomedical research.

4.2. Utilizing 3D Cultured PC-12 Cells to Model Alzheimer's Disease
in 3D

4.2.1. Optimization of Ap 1-42 Aggregate Concentration on 2D Cell
Culture of PC-12 Cells

Here, a similar protocol that was used for un-/differentiated SH-SYS5Y cells in 2D
cell culture was applied to PC-12 cells to evaluate the neurotoxicity of AR 1-42
aggregates. Briefly, PC-12 cells were treated with varying concentrations of Af 1-42
(ranging from 1 to 15 uM) for different time periods (24 hours, 48 hours, and 72 hours).
The impact of AP exposure on cell viability and cytotoxicity was assessed using live-dead
assays and MTT assays in (Figures 63-64). The results revealed a concentration- and time-
dependent increase in cell death following AP 1-42 exposure. Specifically, the number of
dead cells significantly rose with higher concentrations of AP aggregates, particularly at
concentrations exceeding 5 uM after 48 hours of treatment. This trend suggests that the
toxic effect of AP 1-42 aggregates on PC-12 cells increases with higher concentration of

AP and prolonged exposure times.
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Figure 63. Bright-field and fluorescence microscopy images of PC-12 cells after 0-15 uM
AP 1-42 exposure for A) 24h, B) 48h, and C) 72h (Scale bar: 50 pum,
Green: Live, Red: Dead).

Furthermore, cell viability was quantitatively analyzed by MTT, resulting in a
concentration-dependent decrease in cell viability for each time interval (Figure 64).
However, cell viability increased at 72h compared to 24h and 48h, correlating with the
results of Live-Dead assay. This increase may stem from the high proliferation rate of PC-
12 cell line, which dominated the AB-induced cytotoxicity of 24h. In line with these

findings, studies on AB-induced Alzheimer’s disease model with PC-12 cells in the
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literature have shown 75% viability at 10 pM AP (Xu et al., 2019), 72% viability at 0.5
uM AP (Jiang et al., 2018), and around 50% viability at 15 uM AP (Zhou et al., 2011).
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Figure 64. Cell viability measurement of PC-12 cells after 0-15 uM A 1-42 exposure for
24h, 48h, and 72h, analyzed by MTT (n=6, *p<0.005, **p<0.01,
*H%p <0.001, ****p<0.0001 compared to 0 uM, one-way ANOVA followed
by Tukey’s test).

4.2.2. Alzheimer’s Disease Modeling via AP Induction Using 3D
Cultured PC-12 Cells

Moreover, the neurotoxicity of A 1-42 was investigated in 3D cell culture, and
10-50 uM A 1-42 was applied to PC-12 cells to determine neurotoxic effects. The results
demonstrated that exposure to AP 1-42 aggregates significantly increased the proportion

of dead cells within the 3D cultured PC-12 cells (Figure 65).

90



Figure 65. Bright-field and fluorescence microscopy images of 3D cultured PC-12 after

10-50 pM AP 1-42 exposure for 72h (Scale bar:200 um, Green: Live, Red:
Dead).

The cell viability exhibited a progressive decline, ranging between 94%-85%,
following the application of AP 1-42 aggregates (Figure 66). Furthermore, a significant
difference was noted between the DMSO control group and the 50 uM AB-treated group.
Further studies were conducted using 50 uM AP 1-42 with an extended incubation time

to observe the neurotoxic effect, targeting a cell viability reduction around 50%.

*%

—~ 100

50+

Cell viability (%

DMSO 10 30 50
AR Concentration (uM)

Figure 66. Cell viability measurement of 3D cultured PC-12 after 10-50 uM AB 1-42
exposure for 72h (n=6, *p<0.005, **p<0.01, one-way ANOVA analysis).
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Furthermore, neurotoxicity of the AP 1-42 aggregates was investigated in 3D cell
culture with extended incubation time (Figure 67). Notably, the most significant cell
death was observed on days 15-21, indicating a progressive toxic effect of Ap 1-42
aggregates over time. However, there is no remarkable difference in cell viability between
days 15 and 21. The neurotoxicity of AB 1-42 on PC-12 cells has been investigated with
different mechanisms by several studies. In one of the reports, it was observed that Af 1-
42 aggregates on PC-12 cells are neurotoxic due to the interference of the nicotinic
acetylcholine receptor by AP 1-42 aggregates (Li and Buccafusco, 2003). In another
study, AB-treated PC-12 cells exhibited increasing p53 levels, involving the activation of
Bax protein, which then coordinates with Bcl-2 to trigger a mitochondrial apoptotic
pathway (Xie etal.,2015; Xu et al., 2019). Also, DNA fragmentation showed an increased
apoptosis index in AB-induced PC-12 cells (Nishida et al., 2007) and AP disrupted the
nuclear structure and cell integrity (Ding et al., 2024). Moreover, AP cytotoxicity was

attributed to the increasing ROS activity in PC-12 cells (Zhu et al., 2007).

Figure 67. Bright-field and fluorescence microscopy images of 3D cultured PC-12 after
50 uM AP 1-42 exposure for 3-21 days (Scale bar:200 um, Green: Live, Red:
Dead).

Cell viability decreased up to 63% on day 15 for the AB-exposed group and there
1s no significant difference between day 15 and day 21 (Figure 68). This data underscores
the importance of incubation time as a factor in neurotoxicity studies, particularly in
mimicking the slow, progressive cellular damage seen in Alzheimer's disease. Also, this
result showed that PC-12 cells are more resistant to A} neurotoxicity compared to other

cell lines, which was an expected result due to native endocrine cell lines (Krokker et al.,
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2021). The observed neurotoxicity in the 3D cell culture of PC-12 is within the
appropriate range (20-50% inhibition) for studying Alzheimer’s disease model when
comparing the studies in the literature (Jayaprakasam et al., 2010; Zeng et al., 2017;
Zhang et al., 2015).
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Figure 68. Cell viability measurement of 3D cultured PC-12 after 50 uM AP 1-42
exposure for 3-21 days (n=6, *p<0.005, **p<0.01, ****p<0.0001 compared
to 0 uM, one-way ANOVA followed by Tukey’s test).

4.2.3. Characterization of 3D Alzheimer's Disease Modeling of PC-12

Using Immunostaining

The cholinergic hypothesis is one of the primary models explaining the
neurodegeneration observed in Alzheimer’s disease. In particular, PC-12 cells can
synthesize cholinergic receptors and have been extensively used in Alzheimer’s disease
model (Pokharel et al., 2018; Xie et al., 2023) because nicotinic receptors (as a subtype
of cholinergic receptor) (Xie et al., 2023) in PC-12 cells have a high affinity with A
(Farhat and Ahmed, 2017). Moreover, ChAT expression of PC-12 cells has been
previously investigated in Alzheimer’s disease models, highlighting their relevance in

studying cholinergic deficits and neuronal dysfunction (Rubenstein et al.,
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1991). Therefore, ChAT immunostaining was performed to assess cholinergic neuron
activity to further characterize 3D Alzheimer’s disease model of PC-12 (Figure 69). The
result showed that while the control group expressed ChAT, the AB-exposed group (AD)
expressed it slightly (Figure 69A). On the other hand, F.I. of ChAT decreased to 2.8 in the
AD group, indicating an almost two-fold decrease in F.I. (Figure 69B)
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Figure 69. A) Fluorescence microscopy images of ChAT marker B) Calculated

>
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fluorescence intensity (F.I.) of ChAT based on the area (%) for Control and
AD (Alzheimer’s disease) model (Scale bar:100 um) (Blue: DAPI, Green:
ChAT) (n=4, **p <0 .01, t-test analysis).

These results overlap with the findings in the literature, which report an 18%
activity decrease (Rubenstein et al., 1991). Overall, results showed that 3D Alzheimer's
disease modeling using PC-12 cells was successfully developed, offering a valuable tool
for studying Alzheimer’s disease and testing potential therapeutic candidates.
Consequently, Curcumin, a well-known neuroprotective compound, was selected for
further investigation in this model to assess its potential therapeutic effects against Af-

induced neurotoxicity.

94



4.3. Investigating the Neuroprotective Effect of Curcumin on 3D

Alzheimer's Disease Modeling of PC-12

4.3.1. Optimization of Curcumin Concentration on 2D Cell Culture of

PC-12

Here, the neuroprotective effect of Curcumin was tested in 3D Alzheimer's disease
model of PC-12 with applying similar steps as it was done in SH-SY5Y model.

Curcumin cytotoxicity assessment was done on 2D cell culture of PC-12 for 72h
before applying it on 3D cell culture. Bright-field and fluorescence microscopy images
showed that Curcumin exhibited a cytotoxic effect at concentrations above 50 uM, as also

observed in SH-SYS5Y (Figure 70).

Figure 70. Bright-field and fluorescence microscopy images of PC-12 after 0-100 pM

Curcumin screening for 72h (Scale bar: 50 pum, Green: Live, Red: Dead).

Then, relative cell viability was assessed in PC-12 cells following Curcumin
treatment (Figure 71). The analysis revealed that cell viability remained at 92% when
treated with 25 uM Curcumin, indicating that this concentration had a minimal cytotoxic
effect, allowing for cellular survival and normal metabolic activity. However, beyond this

concentration, a significant decrease in cell viability was observed, suggesting that higher
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doses of Curcumin could exert cytotoxic effects, as observed in SH-SYSY cells. Another
report showed that exceeding 16 pug/mL (43.43 uM) caused cytotoxicity in PC-12 cells,
highlighting that higher concentration may pose a risk of toxicity (Mendonca et al., 2009).
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Figure 71. Cell viability measurement of PC-12 cells after 0-100 pM Curcumin screening
for 72h (n=6, ***p <0.001, ****p<0.0001 compared to the control of each
group, one-way ANOVA followed by Tukey’s test).

4.3.2. Investigating Curcumin Cytotoxicity on 3D Cultured PC-12 Cells

The cytotoxicity of Curcumin was tested on 3D cell cultured PC-12 before its
application on 3D Alzheimer’s disease model (Figure 72). Results showed that Curcumin
did not have cytotoxicity on 3D cultured PC-12, and the Curcumin-treated group had
similar cell viability with the control group, as well. The difference in the cytotoxicity of
Curcumin between 2D and 3D cell cultures can be attributed to the resistance of 3D cell

culture against compounds compared to 2D cell cultures.
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Figure 72. Bright-field and fluorescence microscopy images of 3D culture of PC-12 after
Curcumin cytotoxicity assessment by Live-Dead assay (Scale bar: 200 pm,

Green: Live, Red: Dead).

Then, the cell viability of 3D cultured PC-12 cells was measured to assess the
cytotoxicity of Curcumin before screening it on 3D Alzheimer’s disease model. Results
demonstrated that high cell viability was observed, ranging between 96-91% with no

significant difference (ns) (Figure 73).
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Figure 73. Cell viability measurement of 3D cultured PC-12 after Curcumin cytotoxicity
assessment by Live-Dead assay (n=6, there is no significant difference

between groups).
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4.3.3. Evaluation of the Neuroprotective Effect of Curcumin on 3D

Alzheimer’s Disease Model of PC-12

Curcumin neuroprotective effect was evaluated on 3D Alzheimer’s disease model
(Figure 74). For this purpose, 0-100 uM Curcumin was screened on 3D Alzheimer’s
disease model for 72h culture time. Fluorescence microscopy images of cell viability

assays demonstrated that Curcumin-treated groups maintained high cell viability.
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Figure 74. Bright-field and fluorescence images of 3D cultured PC-12 before and after 0-
100 uM Curcumin treatment for 72h in AB—induced 3D Alzheimer’s disease
model (Scale bar: 200 um, Green: Live, Red: Dead).

It was observed that Curcumin increased cell viability within a given range, and
Curcumin prevented AB-induced neurotoxicity, evidenced by the increase in cell viability
from 87 to 98% (Figure 75). The result showed the potential neuroprotective effect of
Curcumin despite a lack of significant improvement in cell viability. Therefore, further

studies were carried out of 25 uM Curcumin on 3D Alzheimer’s disease model.
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Figure 75. Cell viability measurement after 0-100 uM Curcumin treatment for 72h in AB—
induced 3D Alzheimer’s disease model of PC-12 (n=6, there is no significant

difference between groups).

Furthermore, the neuroprotective effect of Curcumin was investigated for 21 days
(Figure 76). The result showed that high cell viability was observed at all time intervals,
showing that Curcumin protects cells from AB-induced neurotoxicity even in the long
term. The results demonstrated that high cell viability was maintained throughout all time

intervals, suggesting that Curcumin provided consistent neuroprotection for 21 days.
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Figure 76. Bright-field and fluorescence images of 3D culture of PC-12 before and after

Curcumin treatment at 25 pM for 21 days in Ap—induced 3D Alzheimer’s
disease model (Scale bar: 200 um, Green: Live, Red: Dead).
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Cell viability results showed that Curcumin increased cell viability from 70 to 92,
63 to 86, and 64 to 76% on days 7, 15, and 21, respectively (Figure 77). This showed
22%, 23%, and 13% increases in cell viability when Curcumin was treated on days 7, 15,
and 21, respectively. Curcumin’s neuroprotection was maintained until day 15, after
which cytotoxicity of the Curcumin was observed, even though it continued to protect the

cells compared to the AB-induced group.
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Figure 77. Cell viability after Curcumin treatment at 25 uM for 21 days in Ap—induced
3D Alzheimer’s disease model of PC-12 (n=6, *p<0.05, **p<0.01,
*E%p <0.001, ****p<0.0001 compared to the control of each group, two-way

ANOVA followed by Tukey’s test).

This neuroprotective effect of Curcumin on PC-12 cells was explained by several
mechanisms. It was reported that the protective effect of Curcumin on PC-12 cells against
cytotoxicity induced by AP 1-42 is associated with the presence of a B-diketone moiety,
which plays a vital role in its activity (Park and Kim, 2002). Another study reported that
Curcumin derivatives increase the Bcl-2/Bax ratio and reduce Cyt-c release, thereby
preventing cell apoptosis through the activation of Keapl/Nrf2/HO-1 pathways (Xu et
al., 2019). Also, it was reported that Curcumin reduced fibril formation and decreased
ROS activity, resulting in increasing cell viability from 58% to 90% nearly on PC-12 cells
(Mazaheri et al., 2015). Curcumin increased cell viability by 19-32% on the hydrogen
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peroxide (H20)-induced model of PC-12 cells in another report (Siddiqui et al., 2011).
This study highlighted that Curcumin has a neuroprotective effect, but its therapeutic
effect might be limited.

Furthermore, the disassociation of AP 1-42 aggregates by Curcumin on 3D
cultured PC-12 cells was examined through immunostaining of A 1-42 pre- and post-
Curcumin treatment (Figure 78). The fluorescence microscopy images revealed that
Curcumin effectively disassociated AP 1-42 into smaller fragments. These results suggest
that Curcumin exhibits a neuroprotective effect against AP aggregates by disassociating
them in 3D Alzheimer’s disease model, as supported by the literature. These findings
showed that Curcumin may play a role in delaying disease progression, particularly
considering that the symptoms of Alzheimer’s disease typically develop following the
formation of pathological hallmarks, a process that can take up to 20 years in
the preclinical stage (Finder and Glockshuber, 2007; Jack Jr et al., 2018; Porsteinsson et
al., 2021).

AB+Curcumin

Figure 78. Fluorescence microscopy images of AP 1-42 aggregates in 3D Alzheimer’s

disease model before and after Curcumin treatment at 25 pM (Scale bar: 100

pm).

Overall, these findings suggest that Curcumin exerts a neuroprotective effect by
disrupting AP 1-42 aggregates and engaging in multiple mechanisms beyond the scope of
this thesis. Through these actions, Curcumin may help slow the progression of
Alzheimer's disease, particularly during its preclinical stages. Despite its promising
neuroprotective properties, additional research is necessary to understand Curcumin’s

pharmacokinetics, bioavailability, and long-term effects (Bourang et al., 2024; Peng and
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Qian, 2014; Ratnatilaka Na Bhuket et al., 2017). In addition, there are some debates on
Curcumin in terms of its unstable, reactive characteristics and poor bioavailability. The
authors state that no double-blind, placebo-controlled clinical trials have successfully
demonstrated curcumin’s therapeutic benefits. Based on this assessment, they suggest that
curcumin is unlikely to be a viable direct drug candidate (Nelson et al., 2017).
Comprehensive clinical studies are essential to optimize its formulation, dosage, and
delivery methods, ensuring its efficacy and safety for therapeutic use. On the other hand,
the authors respond to previous claims that curcumin lacks therapeutic efficacy despite
thousands of research papers and over 120 clinical trials by highlighting that a PubMed
search for double-blind, placebo-controlled clinical trials on curcumin yields 49 studies,
with 17 reporting significant efficacy. Additionally, 27 other clinical trials and at least five
animal studies suggest curcumin has therapeutic benefits. Therefore, Curcumin should
not be disregarded simply because it does not fit the conventional single-target drug
model, and more research is needed to understand its potential therapeutic applications,

particularly in multi-pathway diseases like Alzheimer’s disease (Heger, 2017).
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CHAPTER 5

CONCLUSION

This thesis introduces a 3D in-vitro model for Alzheimer’s disease using MaglLev
technology, offering a significant advancement in the field of neurodegenerative disease
research. For this purpose, Gx concentration and cell number for 3D cell culture formation
were optimized. Cell viability ranged between 98-96% for SH-SYSY cells and 93-92%
for PC-12 cells at 10-100 mM Gx. Cell number optimization demonstrated its significant
impact on the size, morphology, and viability of the 3D cultures. Additionally, spheroids
were smaller and less compact at lower cell numbers (5x 10° cells), while excessively
high cell numbers (100x 10° cells) resulted in irregular and oversized aggregates.
Optimized Gx concentration and cell number were determined as 25x10°, 10 mM Gx for
SHS-YSY cells, while they were 25x10°, 30 mM Gx for PC-12 cells. 3D cellular
aggregates from differentiated SH-SYSY and PC-12 cells were successfully developed
using Maglev, effectively. Then, SH-SYS5Y cells were differentiated via RA-BDNF
sequentially during 3D cell culture. Differentiated spheroids exhibited high cell viability
with notable neuronal characteristics as indicated by increased B-III tubulin and NeuN
expressions. In addition, PC-12 aggregates exhibited remarkable cell viability with a
compact and stable structure. Then, AB1-42 aggregates were obtained from monomers at
37 °C for 72h. AB1-42 aggregation was confirmed by bright-field microscopy imaging,
Congo red assay, and SEM analysis, successfully. Further, differentiated SH-SYSY
spheroids and PC-12 aggregates were used to model Alzheimer’s disease by incorporating
AP1-42 aggregates, which are known to induce neurotoxicity. Differentiated spheroids
and PC-12 aggregates resulted in 51% cell viability for 7 days and 63% for 15 days,
respectively after exposure of 50 uM AP1-42 aggregates. These findings showed that
while SH-SY5Y spheroids were more sensitive to AB-induced neurotoxicity, PC-12
aggregates exhibited higher tolerance to AB1-42 toxicity, suggesting their potential utility
in long term toxicity studies. The characterization of the 3D Alzheimer’s disease models

was conducted through immunostaining of ChAT, demonstrating a decrease in
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fluorescence intensity of ChAT in both 3D Alzheimer’s disease models compared to the
control group.

Another significant contribution of this research is the evaluation of Curcumin as
a therapeutic agent, which can disassociate AB1-42 aggregates. Before testing Curcumin
on 3D Alzheimer’s disease models, the disassociation of AB1-42 aggregates by Curcumin
was tested by Congo red and Thioflavin T assays, spectrophotometrically. Both
absorbance and fluorescence intensity values were decreased after Curcumin treatment.
In addition, bright-field images showed that Curcumin disassociated AB1-42 aggregates
into smaller fragments. Next, various concentrations of Curcumin were tested on 3D
Alzheimer’s disease models, and optimal doses were identified for maximum
neuroprotection without compromising cell viability. Curcumin showed promising results
in reducing AB-induced neurotoxicity. It suppressed AB1-42 neurotoxicity and increased
cell viability from 51 to 94% in 3D SH-SYS5Y Alzheimer’s disease model, while also
increasing cell viability from 63 to 86% in 3D PC-12 Alzheimer’s disease model. These
results were supported by immunostaining of AP aggregates in 3D cell culture
environment, resulting in smaller AP aggregate formation after Curcumin treatment.

In conclusion, this thesis demonstrates the potential of MaglLev technology in
advancing 3D cell culture methodologies, especially for Alzheimer’s disease modeling.
The proposed platform not only enriches the understanding of neurodegenerative
mechanisms but also provides a valuable tool for exploring novel therapeutic
interventions, marking a significant contribution to the field of neurodegenerative disease

modeling in 3D.
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