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FOREWORD

This master thesis is written under the supervision of Assoc. Prof. Dr. Hatice Köse, at
Istanbul Technical University, during the time period from fall 2019 until spring 2020
which also includes the times when the infamous COVID-19 situation is occurred. On
top of being a recently relocated expat to a different country, the health situation made
the development of this thesis much harder than it originally was because of being
under house lockdown and trying to persist the social distance.

The aim of the thesis is to create a sign language recognition system using deep
learning approaches for the dynamic, 2 handed signs which are the key building blocks
of the sign languages.

I want to thank my supervisor, Hatice Köse, of being more than great help during the
development of this thesis, my mother Güliz Demircioğlu and my husband Uğur Kam
of being so supportive and patient with me during this process.

July 2020 Burçak DEMİRCİOĞLU KAM
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DEEP LEARNING BASED
DYNAMIC TURKISH SIGN LANGUAGE RECOGNITION

WITH LEAP MOTION

SUMMARY

Communication with the society is a challenging issue for deaf and hard-of-hearing
people. This project aims to fulfill the need of a robust, usable and cost efficient
communication system by using minimal resources such as compact sensor devices
in combination with a mobile computational device, like a laptop, tablet or even
a mobile phone. The purpose of this thesis is to develop an efficient gesture/sign
recognition system using the power of machine learning and deep learning approaches,
to achieve this goal. Therefore in this project, sign language recognition is achieved by
adopting various traditional machine learning and deep learning techniques after the
desired dataset is created. The project can be explained in 2 consecutive steps as; the
data collection and processing step and design/implementation and evaluation of these
machine learning classifiers and deep learning models with the collected data.

Leap Motion Controller device which is a compact and cost efficient sensor for the
hand gesture recognition is used in this project as the sensory hardware to collect the
data. For the first step, a data collection tool is developed for LMC, to make the data
collection process more efficient, easy and fast. Also with this tool a need in the
literature is fulfilled, since there is no similar tool developed for the Leap Motion
device. The tool introduces many benefits for the users who are creating the data
samples for the dataset. These benefits can be summarized as; ease of use, automatic
labeling, including reference sign video and device status checking. With these benefits
in mind, the workflow of the application is as following; user connects the Leap Motion
Controller to her/his computer, starts the tool via the .exe file, chooses a sign from
the list provided in the interface, watches the reference video of the sign, pushes the
start button, tool checks the device and driver connection and informs the user about
their status, user sees herself/himself in the webcam viewer, tool waits for the user to
show her/his hands to the sensor, user shows both hands to the sensor, tool starts a
countdown and starts recording when the countdown ends, user simulates the sign and
pushes stop button, tool stops the recording and saves the collected data files into a
local folder which are timestamped and labeled with the information from the sign list
member that the user selected at the beginning of the process. Also this application
designed as highly configurable as possible to make it usable as broadly as possible.
For this purpose the sign selection list is constructed from the folder that includes all
the reference videos, which means if, for any other research purposes, another set of
hand sign samples are desired to be collected, the researcher just needs to change the
videos in the reference video folder, no any other change is necessary to make the tool
configured to satisfy the new purposes, especially any code change is not required.

For the dataset, 12 dynamic 2 handed word signs are chosen from the Turkish Sign
Language (TID). These signs are selected based on the results of our previous studies,
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which involve the recognition of static hand gestures in TID. The chosen signs include
one of these static hand gestures, applied in dynamic hand motion patterns.

After the tool is created, for the experiment purposes, total of 200 samples per sign
are collected from multiple signers under various different environmental conditions.
With these collected samples, a dataset is created with a total of 2400 samples which
are evenly distributed across the signs. After dataset is created some preprocessing
steps are applied to data to make it more convenient and efficient for the learning
modals.

For the recognition step, six different traditional machine learning classifiers as
Gaussian Naïve Bayes, Support Vector Machine, K-Nearest Neighbour, Random
Forest, Linear Discriminant Analysis and Multilayer Perceptron classifiers and 3
different deep learning models which are Convolutional Neural Networks, Basic
Recurrent Neural Networks and Long Short-Term Memory Neural Networks are
created and tested. While the experiments are conducted, various different
hyperparameters are used with different loss and optimizer functions to increase the
accuracy of the system. As the loss function, Cross Entropy Loss is used with
Stochastic Gradient Decent and Adam optimizer functions.

The experiments are done in three parts. First, the traditional machine learning
methods are experimented on with multiple varying hyperparameters. The most
successful method is found as the optimized LDA classifier with 99.9% train, 98.2%
validation and 95% test accuracy. As the second part of the experiments, deep learning
models are experimented on with again multiple varying hyperparameters. All three
models are optimized by the analysis of multiple runs and as the result CNN became
the most successful approach among them with 100% training, 97.7% validation and
96.7% test accuracy. For the last part of the experiments, 5 different train-test set
pairs are created with shuffling the collected dataset and all the deep learning methods
together with LDA are run with these pairs for 5 times to get the average results. As
the final best results; 98.8% test accuracy is reached with the optimized LDA classifier
and CNN model while the best accuracy remained at 88.3% for the RNN and 85.0%
for the LSTM models. Also the overall average results became like 97.4% for LDA,
96.9% for CNN, 82.8% for RNN and 79.2% for LSTM as the test accuracies. From
these results it is concluded that for the purpose of the study and the used dataset, it is
seen that the most successful approaches are the LDA and CNN. As the last evaluation
because the test accuracies of these two approaches are pretty close to each other, the
confusion matrices of these two approaches are analyzed and it is seen that CNN’s sign
individual results are better than LDA by having more homogeneously distributed right
predictions over all the signs.
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DERİN ÖĞRENME TABANLI
LEAP MOTION İLE

DİNAMİK TÜRK İŞARET DİLİ TANIMA

ÖZET

Toplumumuzda, sağır ya da işitme problemi yaşayan kişiler günlük yaşamlarında
özellikle işaret dili bilinmeyen ortamlarda çevreleriyle iletişim zorluğu yaşayabilmek-
tedir. Bu tez kapsamında geliştirilen ve küçük boyuttaki bir sensor ve işlemci gücü
olan bilgisayar, tablet ve/veya telefon gibi bir alet yardımıyla çalışan iletişim sistemi
ile bu problemin çözülmesi hedef olarak belirlenmiştir. Bu hedefi gerçekleştirmek
için bu projede verimli bir tanıma sisteminin derin öğrenme metotları kullanılarak
geliştirilmesi amaçlanmıştır. Gerekli olan veri seti oluşturulduktan sonra, derin
öğrenme yöntemleri kullanılarak işaret dili tanıma yapılmıştır. Bu proje 2 farklı
bölüme ayrılabilir. İlk bölümde data toplama ve hazırlama yapılmış, ikinci bölümde
ise geleneksel makine öğrenmesi sınıflandırıcıları ve derin öğrenme modellerinin
oluşturulup hazırlanan veri seti kullanılarak bu modeller ve sınıflandırıcılar üzerinde
deneyler yapılmıştır.

İlk bölümde veri toplama işlemi için bir uygulama geliştirilmiştir. Veri toplama işlemi
için Leap Motion Controller cihazı sensor olarak seçilmiş ve uygulama bu cihaz ile
çalışacak şekilde tasarlanmıştır. Geliştirme yapılırken uygulamanın özellikle kolay
kullanılabilir ve anlaşılabilir olmasına ve aynı zamanda da veri toplama işlemini büyük
oranda hızlandırmasına önem verilmiştir. Aynı zamanda bu çalışmadan önce benzer bir
uygulamanın yapılmamış olmasından dolayı bu çalışma literatürde var olan bir boşluğu
da doldurmuştur.

Uygulama Windows Forms uygulaması olarak .NET çatısı ile C# programlama dili
kullanılarak oluşturulmuştur. Uygulamayı geliştirirken Leap Motion’ın resmi olarak
C# programlama dili için yayınladığı kütüphanelerin yanı sıra kamera görüntüsü alıp
görüntüleyebilmek için Windows Media Player kütüphaneleri ve Accord.Net çatısında
bulunan kütüphaneler kullanılmıştır. Geliştirilen uygulamanın veri seti oluşturma
aşamasını daha efektif ve kolay hale getiren birçok artı noktası bulunmaktadır. Bu
noktalar şu şekilde özetlenebilir; kullanım kolaylığı, otomatik etiketleme, referans
işaret videosu içerme ve cihaz durum kontrolü.

Uygulamanın kullanım akışı şu şekildedir; kullanıcı Leap Motion Controller cihazını
bilgisayarına bağlar ve .exe uzantılı dosya ile uygulamayı başlatır, uygulamanın ara
yüzünde bulunan işaret listesinden veri üretmek istediği işareti seçer, seçilen işaretin
referans videosunu izler ve hazır olduğunda başlatma butonuna basar. Uygulama
sensor cihazının ve cihaz sürücüsünün durumunu kontrol eder ve kullanıcıya rapor
eder, kullanıcı bilgisayarın donanımında bulunan kamera aracılığıyla alınan görüntüyü
gösteren bölümden kendini görüntüler ve hareketi doğru yapıp yapmadığını kontrol
eder. Uygulama kullanıcının iki elini de sensöre göstermesini bekler, kullanıcı iki
elini birden sensöre gösterdiğinde uygulama geri sayımı ve bu geri sayım bittiğinde
görüntü ve veri kaydını başlatır. Kullanıcı seçmiş olduğu işareti videoda gösterildiği
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şekilde ve Leap Motion Controller sensörünün sınırları dışına taşmadan yapar ve
durdurma butonuna basar. Uygulama kayıt işlemini durdurur ve toplanan veriler
ile oluşturduğu dosyaları oluşturma zamanı bilgisi ve kullanıcının işlemin başında
listeden seçmiş olduğu işaretin ismini kullanarak etiketleyip, yerel klasöre kaydeder.
Aynı zamanda bu uygulamanın tasarımı yapılırken, kullanım alanının mümkün
olduğunca geniş olabilmesi için büyük önem gösterilmiştir. Bu amaç doğrultusunda
kullanıcının işaret seçimini yaptığı liste statik olarak veya kod aracılığı ile değil
referans videoların bulunduğu klasörün içeriği kullanılarak oluşturulmaktadır. Yani
bu uygulama başka bir araştırma için kullanılmak istendiğinde, bu yeni araştırma
için belirlenen el işaretlerinin uygulama aracılığı ile doğru bir şekilde toplanabilmesi
ve etiketlenebilmesi için, araştırmacının gerekli yeni referans videoları bahsedilen
klasöre eklemesi yeterli olacaktır. Uygulamanın yeni amaca uygun çalışabilmesi için
herhangi başka bir güncellemeye, özellikle uygulama kodunda yapılacak herhangi bir
değişikliğe gerek yoktur.

Bu proje için veri kümesi olarak Türk İşaret Dili’nden 12 dinamik ve iki eli
birden içeren kelime işaretleri seçilmiştir. Veri toplama uygulaması geliştirildikten
sonra deneylerde girdi olarak kullanılmak üzere birden çok işaretçi tarafından, farklı
ortamlarda, işaret başına toplamda 200 adet örnek toplanmıştır. Toplanan bu örnekler
ile toplamda 2400 örnek içeren ve işaretler arasında eşit bir dağılıma sahip olan bir
veri kümesi oluşturulmuştur. Bu veri kümesi oluşturulduktan sonra öğrenme modelleri
tarafından daha iyi kullanılabilirliğini sağlamak amacıyla bazı ön işlemlerden geçirilip
veri eğitim işlemi için hazırlanmıştır. Veri kümesindeki örneklerin her biri yüksek
miktarda nümerik veri içermektedir. Bu nümerik veriler örnek dosyasına 178
kolon ve veri kaydına göre değişkenlik gösteren satır sayısında kaydedilmiştir. Her
bir kolon örneklenen işaretten alınan bir özelliği içermekte her bir satır ise anlık
zaman çerçevesini içermektedir. Yani her zaman çerçevesi dahilinde sensörden
alınan 178 tane özellik kaydedilmiştir. Her örneğe göre zaman çerçevesi sayısı, her
kullanıcının kaydı başlatması ve bitirmesi arasındaki geçen süre farklılık göstereceği
için değişkendir. Ancak bu durum verinin işlenmemiş hali ile öğrenme modellerine
verilmesine engel olmaktadır çünkü modele verilen örneklerin boyutlarının eşit olması
gerekmektedir. Yapılan ön işlemlerden bir kısmı örneklerin hepsinin boyutunu
eşitleyerek bu sorunu gidermekte, kalan kısmı ise alınan verinin ve etiketlerin modeller
tarafından anlaşılabilir hale getirilmesini sağlayan standart işlemlerden oluşmaktadır.

Projenin ikinci bölümünde 6 farklı geleneksel makine öğrenmesi sınıflandırıcısı:
Gauss Naif Bayes (Gaussian Naïve Bayes), Destek Vektor Makinesi (Support Vector
Machine), K-En Yakın Komşu (K-Nearest Neighbour), Rassal Orman (Random
Forest), Doğrusal Ayrımcılık Analizi (Linear Discriminant Analysis) ve Çok Katmanlı
Algılayıcılar (Multilayer Perceptron); ve 3 farklı derin öğrenme modeli: Evrişimsel
Sinir Ağları (Convolutional Neural Networks-CNN), Tekrarlayan Yapay Sinir Ağları
(Recurrent Neural Networks-RNN) ve Uzun Kısa Vadeli Hafıza Ağları (Long
Short-Term Memory-LSTM) yaratılmış ve yüksek tanıma başarısına ulaşabilmek için
bu sınıflandırıcılar ve modeller üzerinde deneyler yapılmıştır.

Bu sınıflandırıcılar ve modeller literatürde benzer araştırmalar değerlendirilerek,
aynı zamanda tanınmak istenen verinin yapısı düşünülerek seçilmiştir. Örnek
başına düşen veri miktarı oldukça fazla ve karmaşık olduğu için sezgisel yöntemler
yerine öğrenmeye dayalı yöntemlerin kullanılması kararlaştırılmıştır. Derin öğrenme
yöntemleri arasından seçim yapılırken; Evrişimsel Sinir Ağları’nın seçilmesinin
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nedeni bu tip sinir ağlarında resim verilerinin daha başarılı sonuç vermesinin göz
önünde bulundurulması ve bu projedeki verinin 2 boyutlu oluşu nedeniyle yapısal
olarak tek renkli bir resim verisine benzetilmesi, Tekrarlayan Yapay Sinir Ağları’nın
seçilmesinin nedeni ise projedeki verinin zamansal bilgi içermesi ve bu derin öğrenme
yönteminin zamansal boyutta değerlendirme yapabilme yeteneğinin yüksek olmasıdır.
Uzun Kısa Vadeli Hafıza Ağları’nin seçilme nedeni ise zamansal verinin boyutunun
büyük olmasıdır. Bahsedilen yöntemler ışığında modeller Python programlama
dili ve açık kaynak kodlu bir derin öğrenme kütüphanesi olan Pytorch çatısı
sınıflandırıcılar ise sklearn kütüphanesi kullanılarak oluşturulmuştur. Öğrenme ve
tanıma işleminin başarıdan ödün vermeyerek mümkün olduğunca hızlı tutulabilmesi
için modeller olabildiğince basit mimariler kullanılarak tasarlanmış ve kullanıma
sunulmuş, Microsoft Azure: Bulut Bilişim Hizmetleri üzerinde yaratılmış olan ve grafik
işlemci birimleri (Graphics Processing Unit-GPU) içeren sanal bir makine (Virtual
Machine) üzerinde yürütülmüştür. Sistemin performansını yükseltmek için oluşturulan
modeller üzerinde farklı hiper parametre kombinasyonları farklı kayıp ve iyileştirici
fonksiyonlar ile birlikte denenmiştir. Kayıp fonksiyonu olarak Cross Entropy
fonksiyonu iyileştirici olarak Stochastic Gradient Decent ve Adam fonksiyonları
ile birlikte kullanılmıştır. İyileştirici fonksiyonların farklı kombinasyonları denenen
parametreleri öğrenme oranı ve momentumdur.

Deneyler üç bölüm halinde yapılmıştır. İlk olarak geleneksel makine öğrenmesi
metodları üzerinde hiper parametreler değiştirilerek farklı eğitimler yapılmış ve
sınıflandırıcılar optimize edilmiştir. Bu metodlar arasında en iyi sonucu veren optimize
edilen LDA sınıflandırıcısı olmuştur. Bu sınıflandırıcı ile %99.9 eğitim, %98.2
doğrulama ve %95 test doğruluk oranlarına erişilmiştir. Deneylerin ikinci bölümünde
derin öğrenme metodları üzerinde deneyler yapılmış ve yine hiper parametreler
değiştirilerek modeller optimize edilmiştir. Sonuç olarak bu modeller arasında en
başarılı olan CNN modeli olmuştur. Bu model ile %100 eğitim, %97.7 doğrulama ve
%96.7 test doğruluk oranlarına ulaşılmıştır. Deneylerin son bölümü olarak toplanmış
olan veri kümesi karıştırılarak 5 farklı eğitim-test kümesi oluşturulmuştur. Oluşturulan
5 farklı veri kümesi üzerinde derin öğrenme modelleri ve LDA sınıflandırıcısı 5 kez
yürütülmüş ve ortalama sonuçlar hesaplanmıştır. Ulaşılan en iyi sonuçlar; LDA
sınıflandırıcısı ile %98.8, CNN modeli ile %98.8, RNN modeli ile %88.3, LSTM
modeli ile %85.0 test doğruluk oranıdır. Ulaşılan genel ortalama sonuçlar ise LDA
sınıflandırıcısı ile %97.4, CNN modeli ile %96.9, RNN modeli ile %82.8, LSTM
modeli ile %79.2 test doğruluk oranıdır. Elde edilen sonuçlar göz önüne alındığında
çalışmanın amacı ve kullanılan veri kümesi için en iyi metodların LDA ve CNN olduğu
görülmüştür. Son bir değerlendirme olarak bu iki metodun test doğruluk oranlarının
birbirine oldukça yakın olması nedeniyle hata matrisleri analiz edilmiştir. İşaretlerin
bireysel sonuçları göz önüne alındığında CNN modelinde doğru işaret tahminlerinin
daha homojen olması dolayısıyla CNN metodunun LDA’den daha başarılı olduğu
görülmüştür. Aynı zamanda bu projenin devamı niteliğinde, geliştirilmiş olan model
kullanılarak gerçek zamanlı tanımanın yapılabileceği bir uygulamanın geliştirilmesi
kararlaştırılmış ve planlanmıştır.
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1. INTRODUCTION

1.1 Purpose of Thesis

The main purpose of this thesis is to create a deep learning based dynamic sign

language recognition system via hand gestures. In this system Leap Motion Controller

(LMC) is chosen for gathering hand gesture data. To achieve this purpose also

an efficient data collection system is created which is highly adaptable for any

data collection purpose with LMC. As a future work, this thesis can be extended

to an application for real time sign language recognition which can serve to

hearing-impaired people as a translator.

This study is a part of RoboRehab: Assistive Audiology Rehabilitation Robot project

where we aim to develop an effectively aware robotic rehabilitation platform to assist

hearing-impaired children in hospitals with their audiology tests. This system can be

used by the children as another modality to interact with the humanoid robot Pepper in

the project. 1

1.2 Literature Review

There are several studies on the recognition of Sign Languages using depth sensors

such as Leap Motion Controller and Microsoft Kinect. Traditional machine learning

methods, and lately, deep learning based approaches are employed for the recognition

process. Even though some studies include time-series data, most of the studies in

the literature include static single hand gesture data which consist of one labeled data

frame per sign which is similar to the predecessor study [7] [8] of this thesis.

Sign languages are visual languages consist of gestures of face, upper body, arm,

hand and fingers. Since Leap Motion Sensor can only detect hands, and fingers, it

is employed to recognize only the alphabet, or hand signs of the sign languages.

1This project is funded under the grant TUBITAK 118E214.
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There are several studies which are recognizing the static sign language handshapes via

LMC on various different sign languages. In the study [9], 26 static alphabet signs of

American Sign Language are recognized with Leap Motion Controller. The signs are

single hand gestures and two different machine learning methods such as k-Nearest

Neighbor(k-NN) and Support Vector Machine(SVM) are employed to recognize this

data. For both methods 4-fold cross validation is used and the success rate of this study

is reflected as 72.78% for k-NN and 79.83% for SVM. As another sign language, 28

static alphabet signs of Arabic Sign Language (ArSL) are recognized with Leap Motion

in another study [10]. These signs are single hand gestures, too. Two different machine

learning methods, Naïve Based Classifier(NBC) and Multilayer Perceptron (MLP) for

the classification of the data are used and the success rates reflected are 98.3% for

NBC and 99.1% for MLP. There is also another study [11] on ArSL which proposes

a pattern recognition based SVM method for the recognition of the signs which are

gathered with LMC. Total of 28 static hand gestures are used from the alphabet and

0-9 digit signs to evaluate the approach. 91% accuracy of classification rate is reached

as the result of the study. Similarly Indian Sign Language is studied in [12] where

a sign language recognition system is developed using Leap Motion Controller on a

10 degree inclined surface, to extract the depth information properly. As the data,

26 alphabet signs and 5 digit signs of Indian Sign Language, which includes both

hands, is chosen to be recognized and this data is collected from 10 different signers.

Two different methods are used for the recognition; with Euclidean Distance Method

88.39% average accuracy is reached while 90.32% average accuracy is reached with

the Cosine Similarity Method. Apart from the supervised learning methods, there are

also heuristic approaches present in the literature like [13]. In this particular study,

a heuristic decision tree is implemented to recognize the American Sign Language

data acquired via Leap Motion Controller. The data includes 24 static alphabet finger

spelling signs. The decision tree includes 16 kinds of decisions which focus hand

and finger characteristics. To sort these decisions genetic algorithms are experimented

to achieve the most efficient order for the recognition. As the result the achieved,

accuracy is pointed out as 82.71%.

Apart from studies which focus on static hand shapes, there are a couple of studies

on dynamic gestures of sign languages. In [14], 56 different annotations are included
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in the recognition process which are gathered with LMC and are separated into two

groups; 28 of them are single-handed-isolated sign gestures of Indian Sign Language

and remaining 28 are Latin Language fingerspelling words (air writing). Support

Vector Machine(SVM) classifier is used as the first step of the recognition to classify the

signs according to these two groups. After the separation is done, two Bidirectional

Long Short-Term Memory Neural Networks(BLSTM-NN) classifiers are used for the

recognition. These two networks have different approaches per group; the approach

is sequenced classification for the manual signs and sequence transcription for the

fingerspelling. In real-time recognition 63.57% accuracy is reached in this study. In a

similar study, [15] the hand gestures chosen from American Sign Language(ASL) are

recognized by an RNN which is trained with the data of finger bone angles acquired

via Leap Motion Controller. The recognition accuracy of the system is reflected as

over 96%. The method is also used with SHREC dataset, which includes semaphoric

hand gestures, where it is stated that the method outperformed compared with the

current approaches in the literature. In another one, a system, which combines DTW

with IS algorithm is proposed to convert the hand gestures of Indian Sign Language

(ISL) gathered with Leap Motion Controller device into text [16]. IS algorithm is

used to detect the dynamic environment changes and DTW is used for the gesture

transformation with the map of the similar patterns.

While there are just a little amount of studies in the literature which are focusing

on dynamic sign language gestures using LMC, there are a lot of studies for the

recognition of general dynamic hand gestures, like waving or clasping which are also

gather data via LMC. In [17], a robot control system is developed which is based

on these kinds of 10 hand gestures. The data for the hand gestures are acquired via

Leap Motion Controller, with using noise suppression, coordinate transformations and

inverse kinematics. For the classification of the gestures ANFIS and SVM algorithms

are implemented in the system. The recognition accuracy of the approach is given

per sign in the study which reaches to 98.66% in average. In another study [18],

including similar dataset, a 3D dynamic gesture interaction system is developed by

using SVM-LSTM based hybrid neural network model. The gesture data is captured

by Leap Motion. The start and end points of the gestures are automatically defined

by the model and 96.4% accuracy is reached by the system. It is also reflected that
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the prediction of the gestures in the system is taking 0.15 seconds in average. Also

in [19] 3D hand positions and velocities gathered from LMC are used to recognize 6

types of dynamic hand gestures with a Long Short-Term Memory and Convolutional

Neural Networks based techniques. In the real time experiments, 97% F-measure is

achieved and the recognition accuracy is found as 95.9%. As another set of used hand

gestures, which do not belong to sign languages, some of the studies are focused on

finger drawing kind of dataset which are specifically using the motion of the hand

rather than the hand shape. In [20] 3D finger drawn text gathered with LMC is

recognized. The data is gathered as sentences and a heuristic analysis conducted for

the word segmentation by paying attention to the stroke lengths between the words. In

the segmentation part 78.2% accuracy is achieved. As the continuation of the study,

sequential classifiers are used for the recognition. The achieved accuracy became

86.88% with Hidden Markov Model (HMM) classifier and 81.25% with Bidirectional

Long Short-Term Memory Neural Networks (BLSTM-NNs). As another study which

uses similar data, a system to recognize and verify 3D signatures is proposed in [21].

The 2D features gathered from Leap Motion is extended to 3D with using instantaneous

pressure of the writing. A dataset with 2000 signatures is created with these features.

The recognition is done by applying k-NN and HMM. With the 3D dataset higher

accuracies are recorded for recognition and verification via both classifying methods.

With k-NN 6.8% and with HMM 9.9% accuracy increases are recorded for recognition

while the increases are 9.5% and 6.5% for verification respectively. Also same methods

are also experimented with benchmark datasets and similar results are recorded. It is

concluded that this new addition to the data can improve the accuracy of the biometric

systems and for the existing biometric setups, Leap Motion can be an alternative.

In some studies multiple sensors are used to increase the success of the recognition.

This is due to the fact that, sometimes one hand or fingers can be occluded by other

hand and the signs cannot be recognized correctly. Multiple sensors can be employed

from different angles and the data could be fused to increase the recognition success

rate. In some of these studies, multiple LMCs are used to recognize static handshapes

of sign languages. As an example to this category in [22], 28 Arabic Alphabet Signs

are recognized using the data collected by using two LMCs. The data coming from

these sensors are fused either in the feature extraction or the classification phase where,
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Linear Discriminant Analysis classifier is employed. The accuracy reflected as 97.7%

when the fusion is made at the feature extraction level and as 97.1% when the fusion is

made at classifier level. In the study it is also pointed out that using two LMCs resulted

with a better performance, then using a single one. In another study [23], also multiple

Leap Motion Controller’s are used for the recognition of American Sign Language’s

0-9 digit signs. The data coming from both the devices are fused together and Hidden

Markov Models (HMMs) are used for the recognition. As the result of the experiments,

it is pointed out that using multiple sensors can result with higher recognition accuracy

than the systems which use single sensor. The accuracy achieved with multiple sensors

is 93.14% in average.

Rather than using multiple LMCs some of the studies use various different sensors

together to include different kinds of features into the dataset. The most commonly

used sensors are Leap Motion Controller together with Microsoft’s Kinect sensor.

These specific sensors are used in [24] while a supervised machine learning model

is developed to recognize Arabic Sign Language’s (ArSL) hand gestures. The sensors

are used together to collect depth images from 28 static alphabet signs of the sign

language, that are used for the evaluation of the model. In the study recognition

accuracy of 22 out of 28 signs reached to 100%. In a similar study, multi-class

SVM classifier is used to recognize 10 hand gestures of American Manual Alphabet

by using Leap Motion Controller together with Kinect sensor [25]. The fingertip

position and orientation data coming from Leap Motion is combined with the depth

information coming from Kinect sensor and the combined data is used to create an

ad hoc feature set. With the proposed approach the achieved recognition accuracy is

reflected as 91.28%. Apart from a couple of studies which use these sensors on static

hand shapes, there are more studies which used this pair for dynamic gestures. For

example, in [26], Leap Motion Controller is used together with Microsoft Kinect sensor

jointly to achieve a real-time recognition system. By adding Microsoft Kinect sensor

to the study, additional features are collected as hand contours and distance between

hand samples from the centroid. In this study 10 American Sign Language gestures are

recognized by using multi-class Support Vector Machine classifier and one exploiting

Random Forest classifier together with 3 different feature selection methods; F-Score,

Sequential and Random Forests. The achieved accuracy is 96.5% for SVM and 94.7%
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for Random Forest classifier. In another study [27] the data coming from Leap Motion

Controller is combined with the facial data of the signer which is gathered with Kinect

simultaneously. 51 dynamic sign word gestures (31 double hand - 20 single hand)

of Indian Sign Language are collected as the dataset and the recognition is done with

Hidden Markov Model (HMM). After the HMM, Independent Bayesian Classification

Combination approach is used to improve the performance of recognition. For single

hand gestures recognition rate is reflected as 96.05% and for double hand gestures,

the rate reflected is 94.27%. The study is concluded with a comparison of unimodal

and multimodal network where multimodal network’s rates show gains of 1.84% for

single and 2.60% for double hand gestures. The same pair of sensors are also used

in [28] to gather Indian Sign Language data to be recognized by implementation

of two different sequential classifier models namely; Hidden Markov Model (HMM)

and Bidirectional Long Short-Term Memory Neural Network (BLSTM-NN). The data

included 7500 total samples of 50 different sign-word gestures, which include both

single and double-handed signs. To improve the recognition accuracies both HMM

and BLSTM-NN results are combined and 97.85% for single and 94.55% for double

hand overall accuracies are reached.

In some of the studies, it is preferred to use just one Kinect sensor rather than using its

combination with a LMC like in [29] where a fast and less complex algorithm based on

Hidden Markov Model (HMM) is proposed to calculate the similarity between the sign

and the sign sequence . Also to improve the accuracy of the recognition, grammar and

sign length constraints are added together with a proposed coarse segmentation method

to the system. As the data, a Kinect dataset of 100 different sentences of Chinese Sign

Language which are composed from 5 signs are used. For the continuous (sentences)

sign recognition, with the LB-HMM approach the recognition accuracy found as 86.6%

while it raised to 87.8% with LB-Fast-HMM. For the isolated sign recognition HMM

and DTW are experimented on where the accuracies found as 97.8% and 95.1%

respectively. In a related study [30] Support Vector Machine and K-Nearest Neighbour

Classifier is used to recognize 9 hand gestures which are not chosen particularly from

any sign language. The features used in the recognition is handcrafted by using the

Kinect’s Skeleton Data’s simulated signatures. Also data augmentation is done to

create synthetic samples by using synthetic minority oversampling technique. The
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achieved classification rate is 71.1% for the SVM and 51% for the k-Nearest Neighbour.

Also to improve the accuracy action pair based one vs. one classification layer weights

are used and the improvement is seen as 24.7% and 28.5% respectively.

As an alternative to depth sensors such as LMC and Kinect, regular RGB cameras

are also used in several studies in the literature. As it is used in [31] 30 isolated

words from Arabic Sign Language are used to evaluate the proposed Automatic Sign

Language Recognition System. The sign language data is gathered with a single

camera. 83% of these words were having the different occlusion states. There

were 4 stages in the study; hand segmentation, tracking, feature extraction and

classification. A skin detector is used for the hand segmentation and a proposed

skin-blob tracking technique is used for tracking. In the experiments with Euclidean

Distance Classifier 97% recognition rate is achieved which is independent of the

signer. Also to improve the recognition of the similar gestures an occlusion resolving

technique is proposed which requires specification of the position of the hands and

the head but also results with 2.56% improvement. In some other studies, the public

databases are used for the experiments which consist of the same kind of data gathered

with camera. As an example in a study [32], a methodology for hand tracking and

feature extraction is proposed for the recognition of sign gestures which are sampled

from the American Sign Language. 15 signs (black-white videos) which are simulated

with both hands are chosen from RWTH-BOSTON-50 dataset as the evaluation data

for the proposed approach. The method showed 87.33% recognition accuracy in

the experiments conducted. The methodology includes feature covariance matrix

based serial particle filter for the isolated hand gestures. Before the feature matrix

is constructed for the detection, median and mode filters are combined to extract the

foreground for better recognition. As an addition to the proposal, to reduce tracking

errors, serial tracking of the hands are suggested rather than parallel tracking. By

combining these two proposals, the region around the hands is extracted to create the

covariance matrix which represents the hand position, and as a result decreases the

number of features compared to the original data. Also it is reflected that the feature

matrix is adaptable to new signs without any retraining process because it is able to

integrate multiple correlated features. In a similar study [33], a statistical approach

is presented for continuous sign language recognition with changing signers. It is
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reflected that it is important to use both landmarks from hand and face is important

for the recognition of the sign languages. CMLLR adaptation and class language

models are used to improve the recognition. Two different datasets are used to evaluate

the proposed system. As the lab data, SIGNUM database is used (Gathered with

camera, 25 signers, 455 sign vocabulary, 19k sentences) and as the ’real-life’ data,

RWTH-PHOENIX-Weather database is used (Gathered with camera, 9 signers, 1081

sign vocabulary, 7k sentences). While evaluating the approach for the recognition

method, HMM is used and with the lab-data data 10.0%/16.4% word error rates are

achieved and with the ’real-life’ data 34.3%/53.0% word error rates are achieved for

single signer/multi-signer setups.

There are also some other studies which are using various different sensors to recognize

general dynamic hand gestures which are not based on sign languages. In such a

study [34] two recognition techniques based on Recurrent Neural Network (RNN) are

developed to recognize dynamic hand gestures which are from Cambridge Gesture

Dataset and SmartWatch Gestures Dataset. In Cambridge Gesture Dataset there are

9 classes which include 3 different handshapes combined with 3 different movements.

For the recognition of this dataset Convolutional Neural Network (CNN) is combined

with RNN. The data in SmartWatch Gestures Dataset includes 20 arm gestures which

are gathered with Sony SmartWarch accelerometer and for the recognition LSTM

technique is used. An optimization is made to decrease the required power in the

implementation, considering both hardware and software, a fixed-point optimization

is used to quantize the weights into two bits which results with decrease in the

needed storage size for the weights. With combined neural network approach (CNN

+ RNN) the accuracy is shown as 77.31% and with the RNN approach the accuracy

is shown as 88.57%. In another study, 25 dynamic hand gestures are captured with

depth, color and stereo-IR sensors to be recognized by recurrent three-dimensional

Convolutional Neural Network [35]. The depth and color information is gathered

with SoftKinect DS325 sensor and stereo-IR data is gathered with DUO 3D sensor.

The proposed recognition system achieved 83.8% recognition accuracy where it is

pointed out that the human accuracy is 88.4% for the same dataset. It is also

reflected that this performance achieves state-of-the-art performance on SKIG and

ChaLearn2014 benchmarks. As an example of using completely different sensor
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device, which is also presented in the study, in [36], Flex sensor is used, which

is an armband including four flex resistance sensors to collect data from forearm

muscles. The device provides 4-dimensional signals from the muscles which can

be used to recognize the gestures of the hand it is worn on. Also with the data

including 4 different gestures and additional noise gestures as plus 1 gathered via Flex,

a Long Short-Term Memory Network (LSTM) is trained for the real-time recognition

of the hand gestures and the classification accuracy is achieved as 93.4%. In

a similar study [37], a nested interval Unscented Kalman Filter(UKF) with Long

Short-Term Memory(NIUKF-LSTM) network is proposed for the hand joints-based

gesture recognition systems which use sequential skeletal datasets. This kind of

datasets includes joint identification using hand pose estimations which are generally

noisy and error-prone. The proposed method changes the distribution of the sigma

points between two intervals which enable the system to revise the noise and improves

the accuracy of the recognition.

Apart from the studies which are experimenting on the kinds of hand and/or hand

movement recognition, there are also a lot of studies which are reviewing the LMC

according to its sensing abilities for gathering hand data, if it is rather sufficient to

recognize sign language gestures or not. A review of the Leap Motion Controller, and

the analysis of its abilities for the recognition of Australian Sign Language (Auslan) are

presented in [38]. It is reflected that the device is able to track the hands and fingers

accurately while the accuracy decreases for some particular cases. These cases are

pointed out as; when the position of the hands obstructs the device’s view and when

the elements of the hands, like fingers, are brought together. It is concluded that the

device has potential but further development in the Leap Motion API is needed to be

used for the recognition of Auslan.

All the studies that are examined above are especially focused on the recognition but

how the data is collected and annotated, which is a crucial part of these studies is

not covered and reported in detail. Importance of the data collection and annotation

process can be considered from the different aspects. For the approaches based on

machine learning methods, especially deep learning models, a huge amount of data

is needed to achieve the results with acceptably high success rates, where generally,

more data leads to better recognition. As another aspect, because large amount of

10



data is needed, collection of the data and labeling processes are very time consuming.

Especially if the method or tool used for the data collection is not easy to use and

is not efficient, this causes additional problems. Lack of efficiency may also lead

to spending more time in the pre-processing step of the data. To overcome all of

the difficulties on these aspects, the interface which is used in the process should be

easy and it should include demo videos for the participants who will generate and the

annotate the data, since they might not be fluent in the sign language(s). The demo

videos are also necessary for the possible conflicts due to different sayings, accents

of the same sign. Unfortunately, there are just a few studies which are especially

focused on the data collection and annotation of the sign languages with Leap Motion

Controller device. In a related study [39], a data collection tool is created to gather

data via Microsoft Kinect 2 together with Leap Motion Controller by synchronizing

them together. In the study the data is collected as video and data tables, by using

C++ framework, and the official SDKs of Microsoft Kinect 2 and Leap Motion APIs.

The tool also includes a command-line interface, and a Matlab GUI to initiate, inspect,

and load Kinect 2 recordings. This GUI doesn’t include data gathering from LMC.

1.3 Hypothesis

There are several research questions related to the thesis, and a hypothesis build

upon these questions. We collected dynamic sign data (hand gestures) using the

efficient and broadly usable application that we designed and developed, and tested

several approaches including traditional machine learning methods and deep learning

based methods (CNN, RNN and LSTM) to see which approach is more successful in

recognizing these dynamic hand gestures. We come up with the following hypothesis

based on these studies:

Hypothesis 1 (H1): The CNN based approach will show higher success rate then RNN

and LSTM approaches in the recognition of the selected set of dynamic signs from

TID (the 2-dimensional labelled time-series data of Turkish Sign Language’s dynamic

hand signs which is collected with this application).

Hypothesis 2 (H2): The deep learning based methods will show a higher success rate

than traditional machine learning methods, in the recognition of the selected set of
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dynamic signs from TID (the 2-dimensional labeled time series data of Turkish Sign

Language’s dynamic hand signs which is collected with this application).
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2. DATA ACQUISITION

2.1 Motivation

The data acquisition is the first step of the study, which is the most time-consuming

part and very important for the success of the study. This part should be efficient in

terms of resource consumption, modular and adaptable for the collection of similar

data types, for broader usage. To achieve this aim, the Leap Motion Controller is

chosen as the sensor, and Windows Forms Application is chosen for the graphical user

interface library to be used for the development process of the data acquisition tool.

2.1.1 Leap Motion Controller (LMC)

Leap Motion Controller is a small and portable commercial device which has two

infrared cameras and three LEDs in its hardware. It is connected to the computer

from a USB port and it has its own SDK which recognizes hands and hand movements

and gives the directional and positional vector data for hands it senses, after it makes

uncompromised calculations on the raw data coming from its cameras. It also has

some default applications as well as the basic utilities (like pause, reset, calibrate,

troubleshoot the device) supplied by its driver which helps to visualize the observed

data. The most important of these applications is the Visualizer which can be started

from the dock icon of the driver. The Visualizer is a screen that shows a coordinate

template including the real time skeleton and the data points of the hands which are

recognized by the device.

In the most recent official updates of the SDK of the controller, the main application

area is mostly shifted to the virtual reality applications, where the device can also

be combined with virtual reality equipment like Oculus Rift and HTC Vive. On the

other hand, the older official SDK’s are in distribution for the applications which don’t

consist of virtual reality, even though these SDKs are not supported anymore.
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2.1.2 Windows Forms Application

Windows Forms Application is a Graphical User Interface (GUI) library which belongs

to .NET Framework. It is easy to use to create applications for Windows desktop

computers. The design and coding phases can be done by Visual Studio Application.

The development of the application can be done either by the toolbox supplied by

Visual Studio, or by C# language. In either case data binding to the interface can

be done by coding. The most important thing to consider is the thread safety of the

application. The GUI thread has to differ from the other possible calculations or any

other operations to make the GUI always responsive for the user.

2.2 Design of the Application

The application is developed by using Leap Motion SDK v2 which is published

officially by Leap Motion Company, and C# is used as the programming language.

Additionally Windows Forms Application libraries are used for GUI in combination

with Windows Media Player libraries and NuGet packages from Accord.Net

Framework. Windows Media Player libraries are used to display the reference sign

videos and the Accord libraries are used for obtaining and displaying the sequence of

image frames (as video) from the Webcam.

The screenshot of the application can be seen on the upper part of the Fig: 2.1. As it

is seen in the application screen, the design of the application interface is divided into

3 vertical parts. These parts are ordered from left to right by mostly considering the

workflow of the usage. The leftmost part is the first part that user has to interact with the

application. From this part, user chooses which sign she/he wants to demonstrate and

watches the sign she/he chose from the list. After the video is finished, the user pushes

the start button and then her/his attention is directed to the Webcam screening which

is the next vertical part of the interface, as well as to the text box on the right most

side of the application which includes information about the recording states which is

updated along the process. Also the start and stop buttons’ sizes kept relatively large

to increase the ease of the usage while their colors are chosen as green for start and red

for stop which are commonly accepted colors for these specific behaviors.
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2.3 Usage of the Application

To use the application, the only external requirement is a Leap Motion Controller with

its driver installed on a Windows computer. The first step to use the application is to

choose the sign to be simulated from the word list, as seen on upper left side of the Fig:

2.1. After a sign is chosen, as shown in Fig: 2.1, as the next step, the sign’s simulation

example video plays on the player at the left bottom side of the application, to show

the user how to generate the sign. As an optional step, to be sure that if the LMC

is working and able to provide the data to the application, the Visualizer application

can be used which is included in the Leap Motion’s driver. After watching the video,

the user has to press the "Start Recording" button to start the data collection. The

application checks for the controller and driver service’s status and also shows the real

time Webcam video output as the reaction to the button press. If the checks result

with successful connections then the application waits for the user to show her/his

both hands to the controller to make the data collection’s start point more consistent

for every simulation. After both hands are shown by the user, as in the Fig: 2.2, and

recognized by the device, a count down starts in the text box located right side of the

application. When countdown reaches to 0 then the recording starts for both data file

and reference video file. To start the recording, the application waits for the user to

press "Stop recording" button. After the button is pressed, the recording stops and the

application shows the data frame amount recorded to the data file in the text box, which

can be seen on the right side of the Fig: 2.1. This process can be done from start to

end repeatedly as much as the user desires until she/he explicitly presses the window

close button of the application. After each recording process, the recorded video and

data file are saved under the "data" folder. The example local "data" folder screenshot

can be seen in the Fig: 2.1 as the last step of the flow.

2.4 Collected Data

Two types of data are collected with this application: vector data coming from the Leap

Motion Controller and video reference data. Both files are saved under the "data"

folder which is in the same location with the application’s executable file after the
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Figure 2.2 : An example setup to use the application.

recording is terminated. Also both files are labeled with the sign name automatically

which is taken from the chosen sign from the list in the application which can be seen

in the left side of the Fig: 2.1. The label is included in the name of the files together

with the timestamp taken at the instance when the recording is started.

The data coming from LMC is saved as a .csv file. It consists of 178 features which

can be seen in the Appendix A. These features are the columns of the data file. The

features include various directional and positional vectors for palms and fingers as well

as other specific boolean data related to the positions of the limbs like if the fingers are

extended or not. While recording the data floating data points are recorded without

any change while the boolean data converted to binary to make it more efficient to

use in the further usage. In some edge cases, it is observed that, sometimes LMC is

not recognizing both hands and it just sends the data of one hand. To overcome this

inconsistency, the second hand’s expected data is filled with 0s (NULL value) while

recording the data into the file. With this padding strategy, the data size kept consistent

even though the data coming from LMC is not consistent.

2.4.1 Sign Recognition

The dataset used in the evaluation of the system includes 12 word signs of Turkish

Sign Language whose example videos are collected from TID’s online dictionary [40].

While choosing these specific signs, the results from the previous studies [7] [8] are
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adopted. The most successfully recognized 4 different hand shapes are chosen based on

the adopted information and then for each one, 3 different signs (words) are selected,

which include different movements of the chosen hand shape. The dataset is limited

with just 4 hand shapes because in this study, main purpose is to recognize the hand

shape with its movement rather than just the hand shape itself. Therefore all the

signs in the dataset are dynamic signs which include multiple time frames. While

the recognition of the static hand shapes are experimented in the previous studies, it is

realized that for the full recognition of any sign language the static recognition is not

enough because every hand shape may result with multiple different meanings with its

different movements. Therefore, this study is more challenging and complex compared

to the previous studies.

On the other hand, compared with static hand shape data recognition of dynamic

signs are significantly harder. In the dynamic dataset, the input size of one sample

is significantly higher than static signs, because of the included time frames. In the

dynamic dataset, the number of features per time frame, per sample is equal to the

number of features per sample in the static dataset. This means a static sample is just

a snapshot of a dynamic sample at a particular instance and in dynamic datasets, to

find the actual input size to the learning model per one sample, the number of features

has to be multiplied by the amount of the time frame in the specific sample while the

input size for the static dataset sample remains equal to the number of features per

sign. Therefore the system has to recognize the sign’s movements as well as the static

hand shape it includes in each time frame.

The created dataset for the study includes only features which are collected from both

hands, and excludes the features from any other body parts like face or torso. This may

seem as a disadvantage of this study because with the other body parts’ position and

movements, the meanings may change in the sign languages but to keep the system

efficient, easy and commercially usable by the end user, the best sensor to use is the

LMC which unfortunately only collects the data from hands. The sensors which can

collect data from other body parts are all either bulky and can not be integrated to the

daily usage like Kinect or just gives very raw data (like just image or video) which is

very hard to extract the specific finger information from like standard RGB cameras.
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3. DATA PREPROCESSING

The sign/gesture data collected by the data collection tool explained in the chapter 2

is processed and fed to the neural network models. This processing step is required

because the frame sizes are not same in all the data even though the number of features

are the same. Therefore as the frames are forming the rows and the features are forming

the columns, all the data has consistent column size but varying row size which is not

acceptable by the neural networks in most of the cases. To overcome this situation a

padding operation is done to fix the row size to the maximum, acquired from the whole

data.

y = 10−(d|log(minx∈|data|)|e+1) (3.1)

To minimize the effects of the padding, some precautions are taken. For the padding a

very small value which is close to zero and does not exist in the data set is used, not to

interfere with the real data values. For this processing, first the real data point closest

to the 0 is found in all of the data, after the absolute value of this number is achieved,

the logarithm of this number is taken with base 10. Then the absolute value and ceil of

this result is taken in order. Then the reached result is increased by 1 to create a safety

margin. The result of this calculation is chosen to be the necessary negative power

of 10 to create the required smallest number. These calculations can be seen in Eq:

3.1. After this number is found, the data is padded by filling the missing rows with

this number until all the sample lengths (row amounts) reached to the maximum. With

these processes the data is prepared to be used as the input for the neural networks with

a fixed and consistent size and also the possible negative effects of the alterations are

minimized.

Although there are a lot of different padding approaches in the literature, like

interpolation, getting average size, etc. previously mentioned effective and simple

approach is taken because it doesn’t need high computing power and it is a lot faster

than most of the others. An approach with a need for low computing power is necessary
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because the ultimate goal of this study is to develop a real-time sign language translator.

This translator has to be usable on also mobile devices like phones which don’t have

high computer power generally and speed of the prediction is very important to make

the product easily usable as natural speaking.

As the additional processing the data is divided into two parts as train and test. Test

percentage is chosen to be 10% including same amount of sample for each label in

the dataset. While dividing the data, the samples are shuffled. This process is done

to keep the test set absolutely separate then the rest of the dataset to keep the test

samples same for each trained model and each trial to achieve maximum precision on

the comparisons.
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4. MACHINE LEARNING BASED SIGN RECOGNITION MODULE

4.1 Motivation

In the previous studies, traditional machine learning approaches are designed and

tested for static hand signs [7] [8]. In the first trials of this work, similar approaches

are tested with the new data and compared with the deep learning models.

4.1.1 Gaussian Naïve Bayes Classifiers

Naïve Bayes approach takes the Bayes’s Theorem as the base of its classification

algorithms. The most important characteristic of this classifier is its assumptions on the

features. The classifier evaluates each feature independent from each other and gives

equal importance to every single of them which doesn’t actually reflect the truth in the

real life where most of the features are connected to each other for an event to happen.

This classifier evaluates the features and concludes with the results by calculating the

probability of the results (posterior probabilities) based on the known data just like in

the Bayes’s Theorem on Eq: 4.1 where it shows the condition for the probability of

event A to happen where event B is already happened. In this generalization event A

can be seen as the label and event B can be seen as the feature vector. To reach the

result, the classifier calculates probabilities of each possible label with this formula

where P(B|A) is the conditional probability of the features, also called as likelihood,

while P(A) and P(B) are the prior probabilities. Then the classifier decides on the label

which has the highest probability as the result output. This approach is useful when

the data is discrete because it actually counts the feature values while calculating the

P(B|A) (conditional probability) which is not the case in this study.

P(A|B) = P(B|A)P(A)
P(B)

(4.1)

To make this approach work for continues values in features, an additional assumption

is made which constructs the Gaussian Naïve Bayes Classifiers. In this approach

the continuous feature values are assumed to be distributed according to a Gaussian
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distribution and the probability equation of this distribution is used while calculating

the conditional probabilities. The probability equation can be seen in Eq: 4.2, where

σ is standard deviation and µ is the mean of the distribution.

P(B|A) =⇒ P(xi|y) =
1√

2πσ2
y

exp(−
(xi−µy)

2

2σ2
y

) (4.2)

4.1.2 Support Vector Machine (SVM)

For Support Vector Machine (SVM) approach (also the classifier trained using this

approach is referred as Support Vector Classifier, SVC) the objective is to find a

hyperplane in the N-dimensional space, where N equals to the feature amount, which

can classify the labels distinctly. While finding the optimal hyperplane there are a lot

of possibilities but the one which has a maximum margin between the data points are

chosen as the optimal. These chosen hyperplanes are used as the decision boundaries

while making predictions on the labels. As some simple examples; when there are two

features the hyperplane can be shown as a line (1D) where if there are three features

the hyperplane becomes a plane (2D) rather than a line. Therefore more broadly it can

be said that when the feature amount is N, then the hyperplane dimension becomes

N-1. While training this algorithm hinge loss is used to optimize the algorithm while

maximizing the hyperplane margin. When the predicted value is true then no loss

is calculated in this approach but when the predicted value is false then the loss is

calculated and a regularization parameter is added to balance the loss with the margin

maximization goal. After the loss is calculated the back propagation is done to train

the model. While training this model various kernel functions can be used for analysis

of the patterns in the data. The kernel options are Radial Basis Function (RBF) Kernel,

Polynomial (Poly) Kernel, Linear Kernel and LinearSVC Kernel. The difference

between these kernels can be seen in Fig: 4.1.

4.2 K-Nearest Neighbours (k-NN)

K-Nearest Neighbours classifier has one of the most basic algorithms among the

machine learning approaches. The algorithm doesn’t make any analysis on the

distribution of the features. The approach is purely standing on the Euclidean distance

calculations (Eq: 4.3). When the classifier is predicting a label for a data it calculates
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Figure 4.1 : SVC Graphs trained with different kernels. [1]

the distances between the known points (q) and the current data point (p) by using

the features (i) as the dimensions. After doing the calculations, it takes k amount of

known points which are nearest to the current point and returns the majority label of

these nearest points as the decided label for the current data.

distance(p,q) = distance(q, p) =

√
n

∑
i=1

(qi− pi)2 (4.3)

4.3 Random Forest

Random Forest Classifiers are based on multiple decision trees which are constructed

with the features. A sample decision tree can be seen in Fig: 4.2. While prediction is

made the algorithm goes through all of the constructed decision trees, gets individual

predictions from each of them and uses the one with the most voted. The key point of

this algorithm is the low correlation between the models(trees) because when their

correlation is low then they are protecting them from each other’s errors. While

creating the trees to keep the correlation low, the algorithm follows two approaches.

The first approach to reach the low correlation is sampling the dataset randomly with

replacement while creating the trees. While this sampling the sample size stays same

but the content of the sample set changes because of the replacement. This approach

makes the trees significantly different because the decision trees are very sensitive to

the data they use. The second approach is the randomized choice of features. In normal

decision trees while a splitting has to be always made the feature with the ability of
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Figure 4.2 : A sample decision tree. [2]

Figure 4.3 : 2D Coordinate System with the straight line which is created by LDA for
dimensionality reduction. [3]

the largest separation is chosen but in Random Forest algorithms, because the sample

set is differentiated for each tree, feature order changes for the decision points which

creates diversification as well as low correlation.

4.4 Linear Discriminant Analysis (LDA)

LDA is a dimensionality reduction technique. In this technique the features can be

seen as the dimensions. For the ease of the explanation assume that there are 2 features

which can be shown as a 2D coordinate system and the data points are marked on this

graph as the points with the color labels. This approach tries to find a straight line on

the graph which can be the new 1D graph with the projections of the points on the

line. While finding this straight line, two criteria must be followed in this approach:

the distance between the means of the classes has to be maximized and the variation

within each class has to be minimized. The process can be seen in the Fig: 4.3
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Figure 4.4 : A Sample MLP Structure. [4]

While using this approach, three different solvers can be used: Singular Value

Decomposition (SVD), Least Squares Solution (LSQR) and Eigenvalue Decomposition

(EIGEN). Among those solvers just SVD is not computing the covariance matrix which

makes it able to be used with large number of features while others are unacceptably

slow for such usage.

4.5 Multilayer Perceptron (MLP)

Multilayer Perceptron is the most typical and straight forward neural network model

which consists of just multiple fully connected linear layers as it can be seen in Fig:

4.4. The linear layers use the function in Eq: 4.4 to calculate the outputs where f is the

activation function, W is the weights, x is the input vector and b is the bias vector.

Activation functions are used to increase the non-linearity to increase the model’s

flexibility while finding the relations between data. The common activation functions

are Sigmoid, ReLU and Tanh.

y = f (WxT +b) (4.4)

The last layer of this algorithm outputs the probabilities for each label option and the

prediction is reflected as the one label which’s probability is the highest among. After

the output is created, a loss function is used to back propagate the model and optimize

the weights.
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5. DEEP LEARNING BASED SIGN RECOGNITION MODULE

5.1 Motivation

Deep learning based approaches are designed and implemented for the recognition

of the sign language data that is collected by the application explained in Chapter 2,

since deep learning based approaches are generally more efficient than the traditional

heuristic methods to process the big and bulky data. In this study since the signs will be

dynamic and feature extraction might be a costly process, three different deep learning

based approaches are trained and tested in this study to get the best recognition results.

These are: Convolutional Neural Network (CNN), Recurrent Neural Network (RNN)

and Long Short-Term Neural Network (LSTM-NN).

5.1.1 Convolutional Neural Network (CNN)

Convolutional Neural Network is the most commonly used deep learning method for

recognition and classification. It is generally used on big data sets involving images.

CNNs can be examined by units consist of several layers. In a basic unit of CNN, the

first layer is the convolutional layer which makes the main computation in the network.

The layer has filters or kernels which are moved on the input data, as a sliding window,

and calculations are processed by combining both the data surfaces (image and filter)

to create the output data. The output data size of the layer changes according to the

filter’s size and filter’s sliding step size used in the layer; as the n-sized filter is on

one location of the input, it outputs just one data point to the next layer rather than n.

After the convolutional layer the second layer is the activation layer in the unit. This

layer is the data rectifier part of the unit to increase non-linearity of the network. The

commonly used activation functions are ReLU, Leaky ReLU and ELU. The third layer

is the pooling layer which makes down sampling on the data. Also these three part

units of the network can be added to the network multiple times sequentially, which

causes the network to grow in depth. After the layer units, at the end of the network,

27



Figure 5.1 : CNN workflow [5]

one or multiple Fully Connected (FC) Layers has to be added to the process to make

the data even narrower, as 1 dimensional. To get the label predictions from this last

layer a Softmax function is applied as the last step which converts the data coming from

FC layer to vector of output probabilities, where the highest probability represents the

predicted classification label. The basic architecture with one unit can be seen in the

Fig: 5.1.

5.1.2 Recurrent Neural Networks (RNNs)

RNNs are the most common approaches for processing the data which include time

series, such as the data in this study. They are fed forward networks with an internal

memory which make them give the outputs, depending on the previous ones. This

approach is very important for the times series data because this kind of data is highly

dependent on all the time frames it includes in that particular order. This kind of

networks give the partial outputs to the next layers (as shown in Fig: 5.2) as the

additional inputs. The general architecture of RNNs can be seen in the Fig: 5.2. In

the figure t is the time step, a is the activation and y is the output. These variables can

be shown with the Eq: 5.1 and Eq: 5.2. Wax, Waa and Wya are the weight coefficients, ba

and by are the bias coefficients g1 and g2 are the activation functions which are same in

every neuron. The commonly used activation functions are Sigmoid, Tanh, and ReLU

for RNNs. For this kind of neural networks, the loss function is calculated by summing

up all the previous step losses in the network.

a<t> = g1(Waaa<t−1>+Waxx<t>+ba) (5.1)

y<t> = g2(Wyaa<t>+by) (5.2)
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Figure 5.2 : General Architecture for RNN [6]

Figure 5.3 : Many-to-one case Architecture for RNN [6]

These networks can be used in various different cases according to the desired input

and output sizes. The types of the cases are one-to-one, one-to-many, many-to-one,

and many-to-many. In this study the most applicable type is the many-to-one case

since the data have multiple inputs as the time frames and it desires one output as the

sign label. The related structure can be seen on the Fig: 5.3

Basic RNNs have a common problem named vanishing or exploding gradient problems

caused by the activation functions. During the back propagation, since the loss function

is the sum-up of all previous losses and it creates a multiplicative gradient, if the time

step amount is very large then derivative of the activation function causes the weights

to vanish, because its value is smaller than 1. In the other case, if the weights become

very large then the value of the gradient becomes too small to affect the weights which

results in the exploding gradient problem. The data in this study is prone to have

the vanishing gradient problem because the data size is fairly large. Therefore Long
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Short-Term Memory approach is chosen to be the next step for better results since it

solves these problems with additional gates in the neurons.

5.1.2.1 Long Short-Term Memory Neural Network (LSTM-NN)

LSTM-NNs are special Recurrent Neural Networks which resolves the vanish-

ing/exploding gradient problems that make them able to have longer memories. This

solution is achieved by having various gates in the neurons which are update gate (Γu)

to decide how much past should matter, relevance gate (Γr) to decide if the previous

information should be dropped, forget gate (Γ f ) to decide if current info has to be

erased and output gate (Γo) to decide how much current output should be revealed. The

architecture of one neuron of the LSTM-NN can be seen in the Fig: 5.4 The equations

for the gates can be seen in Eq: 5.3 where W , U and b are the specific coefficients for

the gates and σ is the Sigmoid function. Also the additional functions for LSTM can be

seen in Eq: 5.4, Eq: 5.5 and Eq: 5.6 where � is used for element-wise multiplication

between two vectors.

Γ = σ(Wx<t>+Ua<t−1>+b) (5.3)

c̃t = tanh(Wc[Γr�a<t−1>,x<t>]+bc) (5.4)

ct = Γu� c̃<t>+Γ f � c<t−1> (5.5)

at = Γo� c<t> (5.6)
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Figure 5.4 : An LSTM neuron [6]
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6. EXPERIMENTS

6.1 Experimented Approaches

In this study six different traditional machine learning approaches and three different

deep learning neural networks are used. These approaches are summarized as seen in

Table: 6.1.

As the machine learning approaches; Gaussian Naïve Bayes, SVM, k-NN, Random

Forest, LDA and MLP are experimented. The explanations of these approaches can

be seen in Chapter 4. For all of these methods, 10 fold cross-validation is used to

validate the classifiers to keep the validation subset size same with the deep learning

approaches. As the hyperparameters ’priors’ parameter of the Gaussian Naïve Bayes

method is set to ’None’ while other parameters are kept as their default values in

sklearn.scikit library. For SVM approach all 5 different kernels (rbf, poly, linear,

sigmoid, linearSVC) are experimented on individually. All the hyperparameters are

used with their default values except gamma which is set to be 0.001 for all of the

kernels which require gamma value. Also for the k-NN approach all hyperparameters

are used with the default values where neighbour amount is set to 5. In the Random

Forest approach maximum depth hyperparameter is set to 2 and random state is set to

0 while other parameters are left with the default values where estimator amount is set

to 100. For LDA classifiers the solver is chosen as ’svd’ and tol parameter is set to

0.0001 while other parameters are used with the default values. To consider the other

solver options ’lsqr’ option is tried but, because of its unacceptable slowness a result

cannot be achieved. The cause of this slowness is explained in the Chapter 4. While

training MLP none of the default values for hyperparameters are changed again.

As it is explained in the Chapter 2 and 3, the data in this project consist of 2

dimensional time series values. Even though it is a time series problem, because it is

2 dimensional it seems very similar to a monochromatic image data. Considering this

similarity as the first deep learning approach, a CNN modal is created and trained. As
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Table 6.1 : Experimented machine learning and deep learning approaches.

Method Purpose
Gaussian Naïve Bayes

Adopted from previous studies [7] [8].

Support Vector Machine
K-Nearest Neighbour
Random Forest
Linear Discriminant Analysis
Multilayer Perceptron
CNN Image Like
RNN Timeseries
LSTM Large Timeseries

the activation layer ReLU is used after the convolutional layers and as the loss function

Cross Entropy Loss is used. As the optimizer Stochastic Gradient Decent (SGD)

and Adam functions are used with varying learning rates and varying momentum (for

SGD). Also 3 Fully-Connected (FC) linear layers are added to the end of the network

with a Softmax functions at the end to get the predicted label.

As the second deep learning approach, a basic RNN model is created and trained

because the data includes time series. The model created with one RNN layer and

3 FC linear layers with a Softmax function as in the previous CNN approach.

As the third deep learning approach LSTM-NN model is created and trained because

the data consists of around 300 time frames as one input which would be the cause

of RNN’s low results because of its characteristic of not being able to keep enough

memory caused by its vanishing gradient problem. Therefore an LSTM-NN model

created with one LSTM layer with dropout, and three Fully Connected linear layers

together with a Softmax function at the end. As the loss function same Cross Entropy

Loss function is used and as the optimizer SGD and Adam functions are used with

varying learning rates as in other deep learning approaches.

6.2 Experiments

For the experiments, first of all, a sign dataset is created with 2400 samples that are

collected via the developed tool that is explained in Chapter 2. While collecting the

data multiple, cross-gender and cross-age signers used the tool to give the samples. All

the data is collected in indoor environments which are under various light conditions;
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Table 6.2 : Machine Learning Classifier Accuracies

ML Model Train Acc % Val Acc % Test Acc %
Gaussian Naïve Bayes 85.926 78.19 74.583
SVM (kernel: rbf) 1 8.33 8.333
SVM (kernel: poly) 1 79.81 77.083
SVM (kernel: linear) 1 88.56 85.833
SVM (kernel: sigmoid) 0.231 0.32 0
SVM (LinearSVC) 1 88.38 82.916
Kneighbours 89.768 81.67 78.75
Random Forest 74.166 69.491 72.083
LDA 99.907 98.24 95
MLP 98.889 85.88 75.417

naturally lighted, artificially well lighted, artificially mildly lighted, artificially less

lighted. The dataset includes 200 samples per each word sign.

The experiments are implemented with Python language using sklearn for traditional

machine learning classifiers and Pytorch for deep learning models, which is an open

source machine learning framework. Before starting the training, the data processing

steps in Chapter 3 are performed.

For the traditional machine learning approaches the datasets are used as they are

and 10 fold cross validation is performed to evaluate the classifiers before testing.

Although various different hyperparameters are tried in multiple runs of training the

best hyperparameters are found as mostly the defaults as it is explained in the Section

6.1. The results of the classifiers can be seen in Table 6.2. The best test accuracy is

achieved with LDA classifier which is significantly higher than other machine learning

approaches. Which means although the classifier is a very simple one, while being

robust, it is very successful on the test set because the data used in this experiment

is separable with linear boundaries adequately to reach 95% test accuracy. Also the

confusion matrix of this classifier can be seen in Fig: 6.1.

After the machine learning experiments also the deep learning approaches are

experimented on with the same dataset but, after the preprocessing, the train dataset is

randomly divided into two as training and validation sets by keeping sample amount

equal for each sign for each partition. For the training 90% of the train dataset is used

which means, it consists of 180 % 90 = 162 samples for each sign, as a total of 2160

% 90 = 1944 samples. For the validation datasets, the remaining of the train dataset
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Figure 6.1 : LDA Confussion Matrix

is used, which means it includes 180 - 162 = 18 samples for each sign as a total of

2160 - 1944 = 216 samples. By partitioning the dataset like this, the validation set size

kept equal with the validation set size of the traditional machine learning approaches

which creates validation sets with 10 fold cross validation. To use these datasets in

the neural network models, data loaders are generated for each of them with shuffling

feature enabled to keep the bias of the data order as small as possible.

After the data loaders are prepared, a simple CNN is created to keep the neural network

as shallow as possible to make the training process faster with high accuracy results.

In this CNN, two convolution layers are used with Rectified Linear Unit (ReLU) and

MaxPool2d functions consecutively, continuing with two consecutive Fully Connected

(FC) layers paired with again ReLU function and an additional FC and Softmax layer at

the end to output the label together with a dropout layer. The architecture of the neural

network can be seen in the Fig: 6.2. With this model Cross Entropy Loss is used as

the loss function, and Stochastic Gradient Decent (without momentum) with "learning

rate" feature is set to 0.001 are used. The training is run for 100 epochs with a batch

size of 5 by using the Graphical Programming Units (GPUs) that Microsoft Azure
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Figure 6.2 : CNN architecture.

Figure 6.3 : CNN losses graph.

Virtual Machine includes to reach the results faster than the local computer. After

several trials with different hyperparameters, achieved best accuracy result became as

100% for training, 97.7% for validation and 96.7% for test. The loss and accuracy

graphs can be seen in the Fig: 6.3 and Fig: 6.4 respectively. Also the confusion matrix

can be seen in the Fig: 6.5.

As the second deep learning model experiment, an RNN model is created with 1 RNN

layer, 1 droupout layer, 2 FC layers combined with ReLU function and one final FC

layer following with a Softmax layer to get the outputs as labels which are exactly

same with the previous CNN model. The architecture can be seen in the Fig: 6.6. With

this model the same Cross Entropy Loss is used as the one used with the CNN but

the optimizer is changed to Adam function after some trials with SGD because it gave

better results for this neural network. The Adam function is used with a "learning rate"

feature which is set to 0.001. This neural network also trained for 100 epochs with

batch size set to 1 with same provided GPUs. 1 is the optimized value of the batch size

where some other values are also experimented on. After several results with different
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Figure 6.4 : CNN accuracies graph.

Figure 6.5 : CNN confusion matrix.
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Figure 6.6 : RNN architecture.

Figure 6.7 : RNN losses graph.

hyperparameters the best achieved accuracy results are as 97.8% for training, 84.3%

for validation and 85.4% for test. The loss and accuracy graphs can be seen in the Fig:

6.7 and Fig: 6.8. Also the confusion matrix can be seen in the Table: 6.9.

As the third deep learning model experiment, an LSTM model is created with 1 LSTM

layer with 2 hidden layers, 1 droupout layer, 2 FC layers combined with ReLU function

and one final FC layer following with a Softmax layer to get the outputs as labels

which are exactly same with the previous models. The architecture can be seen in

the Fig: 6.10. With this model the same Cross Entropy Loss is used as the one

used with the previous models and for the optimizer both SGD and Adam functions

experimented on but as it is seen with the RNN Adam function gave better results with

this model too. The Adam function is used with a "learning rate" feature which is

set to 0.001. This neural network also trained for 100 epochs with optimized batch

size (after multiple trials) as 1 with same provided GPUs. After several results with

different hyperparameters the best achieved results are as 97.1% for training, 80.6%
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Figure 6.8 : RNN accuracies graph.

Figure 6.9 : RNN confussion matrix.
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Figure 6.10 : LSTM architecture.

Figure 6.11 : LSTM losses graph.

for validation and 80.4% for test. The loss and accuracy graphs can be seen in the Fig:

6.11 and Fig: 6.12. Also the confusion matrix can be seen in the Table: 6.13.

After the best hyperparameters of the models are found for the current dataset one more

experiment set is conducted on LDA (which gave the best results among the traditional

machine learning approaches), CNN, RNN and LSTM to do cross validation on the

whole dataset for all models with the same train-test dataset pairs and get the average

results. For this part of the experiments, 5 different train-test pairs are created with

the whole dataset. All pairs have same number of samples for each dataset as it is

explained in the previous part of the experiment. Therefore difference between the

dataset pairs are; they include different samples for each sign for test and train. When

the whole dataset is divided into two as train and test, the sample picking is done

randomly for each 5 pairs while keeping the sample amount same for each different

sign (label). After the dataset pairs are created, for each pair the models are run for 5

times to get the average results for more precise resolutions. The results can be seen

in Fig: 6.14. The highlighted parts in the table reflects the best run for the particular

dataset with particular model among the 5 trials. As it can be seen from the table, the
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Figure 6.12 : LSTM accuracies graph.

Figure 6.13 : LSTM confussion matrix.
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best test accuracies are 98.8% for LDA, 98.8% for CNN, 88.3% for RNN and 85.0%

for LSTM while the best average test accuracies are 98.8% for LDA, 97.9% for CNN,

94.9% for RNN and 82.3% for LSTM. Also the average of all paired datasets’ test

accuracy average results are as following: 97.4% for LDA, 96.9% for CNN, 82.8% for

RNN and 79.2% for LSTM.
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7. CONCLUSIONS AND RECOMMENDATIONS

The aim of this study is to recognize dynamic hand gestures and signs using Leap

Motion sensor. For this aim, several methods based on traditional machine learning and

deep learning based approaches are developed and tested on 12 words from the Turkish

Sign Language, which have dynamic two-handed signs. Leap Motion Controller is

employed as the depth sensor in this study, since it is compact, cost-efficient and

suitable for mobile use.

In the first step of the project, an efficient and broadly usable tool is created to collect

sign gesture data samples via Leap Motion Controller. This tool collects multiple time

frames with 178 different features for each sample simulation data and automatically

labels the data at the end of the recording. By using this tool, 2400 evenly distributed

data samples are collected. After the dataset is created some preprocessing steps are

applied to the data to make it usable for the deep learning approaches. In the second

step of the project six different traditional machine learning and three different deep

learning approaches are adopted in combination with multiple optimizers.

As the traditional machine learning approaches, Gaussian Naive Bayes, Support

Vector Machine, K-Nearest Neighbour, Random Forest, Linear Discriminant Analysis

and Multilayer Perceptron methods are used and classifiers are created with these

methods. With different parameters multiple experimental runs are conducted with

these classifiers and they are optimized. According to the results, it is concluded that

LDA is the most successful method among the machine learning approaches. LDA is

followed by SVM with linear kernels as it is seen in the test results. These results show

that the dataset is linearly separable, but also contains high similarities between labels.

Both of these approaches are very successful for linearly separable datasets but LDA

does better predictions when the data is highly linear because SVM does more complex

operations on the data even though it uses linear kernel. To verify this high linearity in

the dataset, first the variance of the feature components are analyzed with LDA. This

analysis can be seen on the Fig: 7.1. Then again with LDA, a dimensionality reduction
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Figure 7.1 : LDA variance graph.

is applied to create a 2 dimensional graph to visualize the data as seen on Fig: 7.2.

From the graph it can be observed that the dataset is mostly linear separable, therefore

using SVM on this dataset resulted an overfitting problem and lower test accuracy.

As the first deep learning approach, a Convolutional Neural Network model is

created with Cross Entropy Loss and Stochastic Gradient Decent optimizer. The

hyperparameters are altered between each training runs and the model optimized

according to the training and validation result analysis. As the second approach a

Basic Recurrent Neural Network model is created with Cross Entropy Loss and Adam

optimizer and the model is optimized by altering the hyperparameters and analyzing

the results. As the third approach, a Long Short-Term Memory Neural Network model

is created with again Cross Entropy Loss and Adam optimizer. This model is also

optimized by altering the hyperparameters between training runs and analyzing the

training and validation results. After both of the models are optimized a test sample set,

which is evenly distributed across the signs and is not used for training or validation,

is given to the models to get the test results.

As the final part of the experiments, 5 different train-test dataset pairs are created

from the whole dataset to do precise cross validation on all of the chosen models. On

these 5 dataset pairs optimized LDA, CNN, RNN and LSTM models are trained and

tested again for 5 times and average values are collected for train, validation and test

accuracies with the train time and test time. The average of all dataset pairs’ average
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Figure 7.2 : Feature reduction to 2 dimensions with LDA graph.
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test accuracy results are achieved as following: 97.4% for LDA, 96.9% for CNN,

82.8% for RNN and 79.2% for LSTM.

As the conclusion, it is shown that for the recognition of the chosen dataset CNN

approach is more successful than both RNN and LSTM approaches while it is slightly

less than the LDA approach. These results verify H1 where CNN shows a higher

success rate than other deep learning approaches but because LDA is as successful

as CNN, H2 cannot be verified with these results.

These results lead to the following conclusions. As the first and most apparent

conclusion; although the dataset consists of time series and the most popular

approaches are RNNs for this kind of datasets, both RNN and LSTM had significantly

worse results than both LDA and CNN approaches which are known to be simpler

learning methods. The most probable cause of this is the size of the dataset because

this kind of neural networks generally need huge amount of data to learn the relations

in between the data and the labels. Another highly probable cause is the structure of the

data. RNN kind neural networks need properly structured data for high success rates

but to construct the data as properly as they need costs high computation power for

preprocessing and time which is not desirable when the ultimate aim is the real-time

recognition. Also as it can be seen on the Fig: 6.14 the test times are very high for these

models which means models are more complex and there is latency in the recognition.

Therefore with their low test accuracies and high test times these two models are

dropped for model considerations of following studies where similar dataset will be

used.

As the second conclusion; the collected dataset is linearly separable for accurate

classification of 12 chosen labels and this characteristic of the dataset is resulted with a

successful LDA classifier for the recognition. On the other hand, this characteristic of

the dataset is highly dependent on the label amount. Because this study aims to cover

whole sign language in the future, 12 labels can be accepted as just the initiation of the

sign language recognition system and although LDA is very successful for this amount

of label its success will most probably drop as the label amount increases. While

this dependency exists for LDA and it is logically apparent, CNN also gives nearly as

successful results without any similar apparent dependency on the dataset. With this
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consideration for the future experiments, CNN seems like a better approach for similar

datasets with more labels.

For the third conclusion, the confusion matrices of LDA and CNN approaches are

considered. As it can be seen from the confusion matrices in Fig: 6.1 and Fig: 6.5, the

worst result is for "eglenmek" label for both methods. CNN is more successful on this

sign with 18/20 correct predictions while LDA gives just 16/20 correct predictions for

the same label and it confuses the label mostly with the label "oynamak". Moreover

although overall accuracy results are slightly better for LDA it has 2 signs which’s

prediction accuracies are less than 18/20 where CNN correctly predicted all of the

labels for more than or equal to 18/20. Therefore this conclusion also supports the

previous one as LDA’s success highly varies with the different labels especially when

the data for multiple labels gets similar to each other which most probably means they

lose the linear separability characteristic. As the results of this evaluation, H2 can be

verified while CNN can be accepted as more successful than LDA with this point of

view.

Even though this study only includes 12 signs, the results are very promising, and the

study can be extended to cover as much of the Turkish Sign Language as possible, to

fulfill the needs of the deaf and hard-of-hearing people, which is the ultimate purpose

of this research.

To reach better results several different approaches can be adopted for the future

studies. These approaches can be summarized as; increasing the sample dataset size

as much as possible (at least 500 samples per sign), increasing the number of features

by using multiple sensors which are located at the different angles, applying a feature

selection strategy to prevent the noise in the data additional to making the process

faster.

Also as a future study of this project, a new application for the real-time recognition of

signs, is going to be developed by using the proposed model. This new application

is going to work cross platform and also across mobile devices and it will be
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user-friendly, to be used in daily life communication of deaf and hard-of-hearing

people.
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[40] Güncel Türk İşaret Dili Sözlüğü, http://tidsozluk.net/, reference date:
2020-04-08.

54



APPENDICES

APPENDIX A.1 : Data Features Collected From Leap Motion Controller

55



56



APPENDIX A.1: Data Features Collected From Leap Motion Controller

Data features (columns) are as following (in order):

• Hand_Left_PalmNormal_X

• Hand_Left_PalmNormal_Y

• Hand_Left_PalmNormal_Z

• Hand_Left_PalmNormal_PITCH

• Hand_Left_PalmNormal_YAW

• Hand_Left_PalmNormal_ROLL

• Hand_Left_PalmVelocityl_X

• Hand_Left_PalmVelocity_Y

• Hand_Left_PalmVelocity_Z

• Hand_Left_PalmVelocity_PITCH

• Hand_Left_PalmVelocity_YAW

• Hand_Left_PalmVelocity_ROLL

• Hand_Left_Direction_X

• Hand_Left_Direction_Y

• Hand_Left_Direction_Z
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