

ISTANBUL TECHNICAL UNIVERSITY % GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

DEEP LEARNING BASED
DYNAMIC TURKISH SIGN LANGUAGE RECOGNITION
WITH LEAP MOTION

M.Sc. THESIS

Burcak DEMIRCIOGLU KAM

Department of Computer Engineering

Computer Engineering Programme

JULY 2020

ISTANBUL TECHNICAL UNIVERSITY % GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

DEEP LEARNING BASED
DYNAMIC TURKISH SIGN LANGUAGE RECOGNITION
WITH LEAP MOTION

M.Sc. THESIS

Burcak DEMIRCIOGLU KAM
(504171505)

Department of Computer Engineering

Computer Engineering Programme

Thesis Advisor: Assoc. Prof. Dr. Hatice Kose

JULY 2020

ISTANBUL TEKNIK UNIVERSITESI % FEN BILIMLERI ENSTITUSU

DERIN OGRENME TABANLI
LEAP MOTION ILE
DINAMIK TURK ISARET DILI TANIMA

YUKSEK LISANS TEZI

Burcak DEMIRCIOGLU KAM
(504171505)

Bilgisayar Miihendisligi Anabilim Dah

Bilgisayar Miihendisligi Programi

Tez Damismani: Do¢. Dr. Hatice Kose

TEMMUZ 2020

Burgak DEMIRCIOGLU KAM, a M.Sc. student of ITU Graduate School of Sci-
ence Engineering and Technology 504171505 successfully defended the thesis entitled
“DEEP LEARNING BASED DYNAMIC TURKISH SIGN LANGUAGE RECOGNI-
TION WITH LEAP MOTION”, which he/she prepared after fulfilling the requirements
specified in the associated legislations, before the jury whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. Hatice Kose .o,
Istanbul Technical University

Jury Members : Prof. Dr. Duygun Erol Barkana
Yeditepe University

Assoc. Prof. Dr. Giilay Oke Giinelc............
Istanbul Technical University

Date of Submission : 15 June 2020
Date of Defense : 24 July 2020

To my husband and my mother who supported me no matter what,

vii

FOREWORD

This master thesis is written under the supervision of Assoc. Prof. Dr. Hatice Kose, at
Istanbul Technical University, during the time period from fall 2019 until spring 2020
which also includes the times when the infamous COVID-19 situation is occurred. On
top of being a recently relocated expat to a different country, the health situation made
the development of this thesis much harder than it originally was because of being
under house lockdown and trying to persist the social distance.

The aim of the thesis is to create a sign language recognition system using deep
learning approaches for the dynamic, 2 handed signs which are the key building blocks
of the sign languages.

I want to thank my supervisor, Hatice Kdse, of being more than great help during the
development of this thesis, my mother Giiliz Demircioglu and my husband Ugur Kam
of being so supportive and patient with me during this process.

July 2020 Bur¢ak DEMIRCIOGLU KAM

iX

TABLE OF CONTENTS

FOREWORD

TABLE OF CONTENTS

ABBREVIATIONS

LIST OF TABLES

LIST OF FIGURES

SUMMARY

OZET
1. INTRODUCTION

1.1 PUIpOSe Of TRESIS .eeeuvvieiiiiiiiiiiiieeiee ettt st
1.2 Literature REVIEWcooiiiiiiiiiiiiinieiieeeesite et
1.3 HYPOTNESIS .eeeeeiiiieeiiiee ettt ettt et e e e e e

2. DATA ACQUISITION

2.1 MOTIVALION. ...ttt ettt st eanees
2.1.1 Leap Motion Controller (LMOC)........ccocieiniiiniiiiniiiiieeiieceieeeene
2.1.2 Windows Forms Application............cceceeevveeriiiiniiieniieeniee e

2.2 Design of the APPliCAtiON........c.ceeriiieiiieiiiieeiie et

2.3 Usage of the ApPlICAtIONcovviiiiiiiiniiiiiieeeiee et

2.4 Collected Datacceeevveeriiriiiieeiierieeeeeeeee et
2.4.1 Sign RECOZNILION ..eoovvieeiiieeiiieeiieeeiee ettt eae e eaae e

3. DATA PREPROCESSING....

4. MACHINE LEARNING BASED SIGN RECOGNITION MODULE

4.1 MOtIVALION.c.ceiiiiiiiiiiieeeeeeeiciieeeeeeeeeectitreeeeeeeeebreeeeaeeeeeastaeeeeeeeeesssreseaaeaans
4.1.1 Gaussian Naive Bayes Classifiers.......ccocccevvveeriiiinieeniieinieenieeeee,
4.1.2 Support Vector Machine (SVM)......ccccevviriiiiiniieeiieeieeee e

4.2 K-Nearest Neighbours (K-ININ)cocoiiiiiiiiiiieeeeeee

4.3 Random FOTESt........cccccuiiiiiiiiiee ettt e e e

4.4 Linear Discriminant Analysis (LDA)cccooveiiiieiiiieeiiieeieeeee e

4.5 Multilayer Perceptron (MLP)c.ccooiiiiiiiiniiiieeeeeeeeeeeeee

5. DEEP LEARNING BASED SIGN RECOGNITION MODULE.............

5.1 MOTIVALION.eiiiiiieee e ettt e e e eeeeitte e e e e e etvr e e e e e eeetrareeeeeeeesnsaeseeaeeeennnnes
5.1.1 Convolutional Neural Network (CINN)........ccccceovvviiveeeeeeeeicinrieeeeeen.
5.1.2 Recurrent Neural Networks (RNNS)ccccvvveiiiiiiiiiiieeieeeeeeiiveeeeeeen

5.1.2.1 Long Short-Term Memory Neural Network (LSTM-NN)

6. EXPERIMENTS

6.1 Experimented APProaches...........coovvuieeeriiiieiiniiieeeiiiee e
6.2 EXPEITIMENLSeeiiiiiieiieiieiieeteeteesiee ettt et et

7. CONCLUSIONS AND RECOMMENDATIONS

xi

Page

.. Xiii

REFERENCES.

APPENDICES..

APPENDIX A.1: Data Features Collected From Leap Motion Controller
CURRICULUM VITAE

oooooo

Xii

oooooo

ABBREVIATIONS

App
ArSL
ASL
Auslan
BLSTM-NN :
CNN
CSL
FC
HMM
ISL
k-NN
LDA
LMC
LSTM
MLP
NBC
NN
ReLU
RF
RGB
RNN
SDK
SGD
SVM
TID
UKF

: Appendix

: Arabic Sign Language

: American Sign Language
: Australian Sign Language

Bidirectional Long Short-Term Memory Neural Networks

: Convolutional Neural Network
: Chinese Sign Language

: Fully Connected

: Hidden Markov Model

: Indian Sign Language

: k-Nearest Neighbour

: Linear Discriminant Analysis
: Leap Motion Controller

: Long Short-Term Memory
: Multilayer Perceptron

: Naive Based Classifier

: Neural Network

: Rectified Linear Unit

: Random Forest

: Red Green Blue

: Recurrent Neural Network
: Software Development Kit
: Stochastic Gradient Decent
: Support Vector Machine

: Turkish Sign Language

: Unscented Kalman Filter

Xiii

LIST OF TABLES

Page
Table 1.1 : Summary of the studies in the literature.............cccoceeeerieiriieniieennenn. 2
Table 6.1 : Experimented machine learning and deep learning approaches. 34
Table 6.2 : Machine Learning Classifier ACCUTACIES.......cccververciieriieneinieereeneens 35

XV

LIST OF FIGURES

Figure 2.1
Figure 2.2

Figure 4.1 :

Figure 4.2
Figure 4.3

Page

: Usage workflow of the data collection application............c..cc.ceueee. 15
¢ An example setup to use the application.cceeevveeeeriieeeeniieeenns 17
SVC Graphs trained with different kernels. [1]......ccccceeviiiiiinniiin, 23

¢ A sample decision tree. [2]....cooviieriieiiiieriieeeeee e 24

¢ 2D Coordinate System with the straight line which is created by

LDA for dimensionality reduction. [3]......cccccceerviirniieeniieinieeniieeen. 24
Figure 4.4 : A Sample MLP Structure. [4].......ccooieeriiiiiiiiiieieeeeeeeeeee e, 25
Figure 5.1 : CNN WOTKAOW [5] ..eooiieiiiieie et 28
Figure 5.2 : General Architecture for RNN [6]cooovveevvieniieeiieeieecieeeee e 29
Figure 5.3 : Many-to-one case Architecture for RNN [6]cccccceevviiinivenieennnen. 29
Figure 5.4 : An LSTM neuron [6]......cccceeciieiiiiiiieeiiieeieeeite e 31
Figure 6.1 : LDA Confussion MatriX.......c.ccoerierienieniiieiiienie et 36
Figure 6.2 : CNN archit@Cture.cc.ceeeviuveieeiiiieeeeiieeeeeireeeeereeeeiaeeeeeareeeenanaeees 37
Figure 6.3 : CNN 10SSES Sraph.cecviieiiiieiiieeiieeeiee ettt aee e e 37
Figure 6.4 : CNN accuracies graph.c..ccccoceeverieniniinienienenicne s 38
Figure 6.5 : CNN confuSion MatriX........ccceeeeeiiieeeriuiieeesiiieeesieeeeeeiaeeeeeeveeeeeneneeens 38
Figure 6.6 : RNN arcChiteCtUIE.cccceeriirieeiiieniienieeie ettt 39
Figure 6.7 : RNN 10SSES raph.coceevuiriiiiiriiiinieieeeeteeeeee e 39
Figure 6.8 : RNN accuracies graph.ccccceevveeriiiieniieniieenieeesieeeeiee e sieeesieees 40
Figure 6.9 : RNN confusSion MAtliX.cccveerveeeiieerieeesieeenieeeneeesieeessseessneeensnens 40
Figure 6.10: LSTM architeCture.cccoeouieiiiiniiiniieieeiieeee et 41
Figure 6.11: LSTM 10SS€S Zraph.......cccccuiiriiiiiniiiiiieeiieeieeeeiee ettt 41
Figure 6.12: LSTM accuracies graph.ccocceeevieeriieeiieeniie e e esvee e e 42
Figure 6.13: LSTM confuSsion MAtTiX.ceevuieriierieeiieeniienieeieeiee e eee e 42
Figure 6.14: Cross validation results of LDA, CNN, RNN and LSTM. 44
Figure 7.1 : LDA variance graph.cccccecveeviiiiiiieniie et 46
Figure 7.2 : Feature reduction to 2 dimensions with LDA graph.c..cc......... 47

Xvii

XVviii

DEEP LEARNING BASED
DYNAMIC TURKISH SIGN LANGUAGE RECOGNITION
WITH LEAP MOTION

SUMMARY

Communication with the society is a challenging issue for deaf and hard-of-hearing
people. This project aims to fulfill the need of a robust, usable and cost efficient
communication system by using minimal resources such as compact sensor devices
in combination with a mobile computational device, like a laptop, tablet or even
a mobile phone. The purpose of this thesis is to develop an efficient gesture/sign
recognition system using the power of machine learning and deep learning approaches,
to achieve this goal. Therefore in this project, sign language recognition is achieved by
adopting various traditional machine learning and deep learning techniques after the
desired dataset is created. The project can be explained in 2 consecutive steps as; the
data collection and processing step and design/implementation and evaluation of these
machine learning classifiers and deep learning models with the collected data.

Leap Motion Controller device which is a compact and cost efficient sensor for the
hand gesture recognition is used in this project as the sensory hardware to collect the
data. For the first step, a data collection tool is developed for LMC, to make the data
collection process more efficient, easy and fast. Also with this tool a need in the
literature is fulfilled, since there is no similar tool developed for the Leap Motion
device. The tool introduces many benefits for the users who are creating the data
samples for the dataset. These benefits can be summarized as; ease of use, automatic
labeling, including reference sign video and device status checking. With these benefits
in mind, the workflow of the application is as following; user connects the Leap Motion
Controller to her/his computer, starts the tool via the .exe file, chooses a sign from
the list provided in the interface, watches the reference video of the sign, pushes the
start button, tool checks the device and driver connection and informs the user about
their status, user sees herself/himself in the webcam viewer, tool waits for the user to
show her/his hands to the sensor, user shows both hands to the sensor, tool starts a
countdown and starts recording when the countdown ends, user simulates the sign and
pushes stop button, tool stops the recording and saves the collected data files into a
local folder which are timestamped and labeled with the information from the sign list
member that the user selected at the beginning of the process. Also this application
designed as highly configurable as possible to make it usable as broadly as possible.
For this purpose the sign selection list is constructed from the folder that includes all
the reference videos, which means if, for any other research purposes, another set of
hand sign samples are desired to be collected, the researcher just needs to change the
videos in the reference video folder, no any other change is necessary to make the tool
configured to satisfy the new purposes, especially any code change is not required.

For the dataset, 12 dynamic 2 handed word signs are chosen from the Turkish Sign
Language (71D). These signs are selected based on the results of our previous studies,

Xix

which involve the recognition of static hand gestures in 7ID. The chosen signs include
one of these static hand gestures, applied in dynamic hand motion patterns.

After the tool is created, for the experiment purposes, total of 200 samples per sign
are collected from multiple signers under various different environmental conditions.
With these collected samples, a dataset is created with a total of 2400 samples which
are evenly distributed across the signs. After dataset is created some preprocessing
steps are applied to data to make it more convenient and efficient for the learning
modals.

For the recognition step, six different traditional machine learning classifiers as
Gaussian Naive Bayes, Support Vector Machine, K-Nearest Neighbour, Random
Forest, Linear Discriminant Analysis and Multilayer Perceptron classifiers and 3
different deep learning models which are Convolutional Neural Networks, Basic
Recurrent Neural Networks and Long Short-Term Memory Neural Networks are
created and tested. @ While the experiments are conducted, various different
hyperparameters are used with different loss and optimizer functions to increase the
accuracy of the system. As the loss function, Cross Entropy Loss is used with
Stochastic Gradient Decent and Adam optimizer functions.

The experiments are done in three parts. First, the traditional machine learning
methods are experimented on with multiple varying hyperparameters. The most
successful method is found as the optimized LDA classifier with 99.9% train, 98.2%
validation and 95% test accuracy. As the second part of the experiments, deep learning
models are experimented on with again multiple varying hyperparameters. All three
models are optimized by the analysis of multiple runs and as the result CNN became
the most successful approach among them with 100% training, 97.7% validation and
96.7% test accuracy. For the last part of the experiments, 5 different train-test set
pairs are created with shuffling the collected dataset and all the deep learning methods
together with LDA are run with these pairs for 5 times to get the average results. As
the final best results; 98.8% test accuracy is reached with the optimized LDA classifier
and CNN model while the best accuracy remained at 88.3% for the RNN and 85.0%
for the LSTM models. Also the overall average results became like 97.4% for LDA,
96.9% for CNN, 82.8% for RNN and 79.2% for LSTM as the test accuracies. From
these results it is concluded that for the purpose of the study and the used dataset, it is
seen that the most successful approaches are the LDA and CNN. As the last evaluation
because the test accuracies of these two approaches are pretty close to each other, the
confusion matrices of these two approaches are analyzed and it is seen that CNN’s sign
individual results are better than LDA by having more homogeneously distributed right
predictions over all the signs.

XX

DERIN OGRENME TABANLI
LEAP MOTION iLE
DINAMIK TURK ISARET DILI TANIMA

OZET

Toplumumuzda, sagir ya da isitme problemi yasayan kisiler giinliik yasamlarinda
ozellikle isaret dili bilinmeyen ortamlarda cevreleriyle iletisim zorlugu yasayabilmek-
tedir. Bu tez kapsaminda gelistirilen ve kiiciik boyuttaki bir sensor ve islemci giicii
olan bilgisayar, tablet ve/veya telefon gibi bir alet yardimiyla ¢alisan iletigim sistemi
ile bu problemin ¢oziilmesi hedef olarak belirlenmistir. Bu hedefi gerceklestirmek
icin bu projede verimli bir tanima sisteminin derin 6grenme metotlar1 kullanilarak
gelistirilmesi amaclanmistir. Gerekli olan veri seti olusturulduktan sonra, derin
o0grenme yontemleri kullanilarak isaret dili tanima yapilmistir. Bu proje 2 farkh
boliime ayrilabilir. Ik boliimde data toplama ve hazirlama yapilmis, ikinci boliimde
ise geleneksel makine 6grenmesi siniflandiricilart ve derin 68renme modellerinin
olusturulup hazirlanan veri seti kullanilarak bu modeller ve siniflandiricilar {izerinde
deneyler yapilmistir.

Ik boliimde veri toplama islemi igin bir uygulama gelistirilmistir. Veri toplama islemi
icin Leap Motion Controller cihazi sensor olarak secilmis ve uygulama bu cihaz ile
caligsacak sekilde tasarlanmigtir. Gelistirme yapilirken uygulamanin 6zellikle kolay
kullanilabilir ve anlagilabilir olmasina ve ayn1 zamanda da veri toplama islemini biiyiik
oranda hizlandirmasina 6nem verilmistir. Ayni1 zamanda bu ¢alismadan 6nce benzer bir
uygulamanin yapilmamis olmasindan dolayi bu ¢aligma literatiirde var olan bir boglugu
da doldurmustur.

Uygulama Windows Forms uygulamasi olarak .NET catis1 ile C# programlama dili
kullanilarak olusturulmustur. Uygulamay1 gelistirirken Leap Motion’in resmi olarak
C# programlama dili i¢in yayinladig kiitiiphanelerin yani sira kamera goriintiisii alip
goriintiileyebilmek icin Windows Media Player kiitiiphaneleri ve Accord.Net catisinda
bulunan Kkiitiiphaneler kullanilmistir. Gelistirilen uygulamanin veri seti olusturma
asamasin1 daha efektif ve kolay hale getiren bir¢ok arti noktas: bulunmaktadir. Bu
noktalar su sekilde ozetlenebilir; kullanim kolayligi, otomatik etiketleme, referans
isaret videosu icerme ve cihaz durum kontrolii.

Uygulamanin kullanim akigt su sekildedir; kullanic1 Leap Motion Controller cihazim
bilgisayarina baglar ve .exe uzantili dosya ile uygulamay: baglatir, uygulamanin ara
yiiziinde bulunan igaret listesinden veri liretmek istedigi isareti secer, secilen isaretin
referans videosunu izler ve hazir oldugunda baglatma butonuna basar. Uygulama
sensor cihazinin ve cihaz siiriiciisiiniin durumunu kontrol eder ve kullaniciya rapor
eder, kullanic1 bilgisayarin donaniminda bulunan kamera araciligiyla alinan goriintiiyii
gosteren boliimden kendini goriintiiler ve hareketi dogru yapip yapmadigint kontrol
eder. Uygulama kullanicinin iki elini de sensdre gostermesini bekler, kullanici iki
elini birden sensore gosterdiginde uygulama geri sayimi ve bu geri sayim bittiginde
goriintii ve veri kaydini baglatir. Kullanici se¢mis oldugu isareti videoda gosterildigi

xXxi

sekilde ve Leap Motion Controller sensoriiniin sinirlar1 digina tasmadan yapar ve
durdurma butonuna basar. Uygulama kayit iglemini durdurur ve toplanan veriler
ile olusturdugu dosyalar1 olusturma zamani bilgisi ve kullanicinin iglemin basinda
listeden se¢mis oldugu isaretin ismini kullanarak etiketleyip, yerel klasore kaydeder.
Aym1 zamanda bu uygulamanin tasarimi yapilirken, kullanim alaninin miimkiin
oldugunca genis olabilmesi i¢in biiyiikk onem gosterilmistir. Bu amag¢ dogrultusunda
kullanicinin igaret secimini yaptig1 liste statik olarak veya kod araciligi ile degil
referans videolarin bulundugu klasoriin igerigi kullanilarak olusturulmaktadir. Yani
bu uygulama bagka bir arastirma i¢in kullanilmak istendiginde, bu yeni arastirma
icin belirlenen el isaretlerinin uygulama araciligi ile dogru bir sekilde toplanabilmesi
ve etiketlenebilmesi i¢in, aragtirmacinin gerekli yeni referans videolar: bahsedilen
klasore eklemesi yeterli olacaktir. Uygulamanin yeni amaca uygun calisabilmesi i¢in
herhangi baska bir giincellemeye, 6zellikle uygulama kodunda yapilacak herhangi bir
degisiklige gerek yoktur.

Bu proje icin veri kiimesi olarak Tiirk Isaret Dili’nden 12 dinamik ve iki eli
birden iceren kelime isaretleri secilmistir. Veri toplama uygulamasi gelistirildikten
sonra deneylerde girdi olarak kullanilmak iizere birden cok isaret¢i tarafindan, farkl
ortamlarda, isaret basina toplamda 200 adet 6rnek toplanmistir. Toplanan bu drnekler
ile toplamda 2400 6rnek iceren ve isaretler arasinda esit bir dagilima sahip olan bir
veri kiimesi olusturulmustur. Bu veri kiimesi olusturulduktan sonra 6grenme modelleri
tarafindan daha iyi kullanilabilirligini saglamak amaciyla bazi 6n islemlerden gecirilip
veri e8itim islemi i¢in hazirlanmigtir. Veri kiimesindeki orneklerin her biri yiiksek
miktarda niimerik veri icermektedir. Bu niimerik veriler 6rnek dosyasmna 178
kolon ve veri kaydina gore degiskenlik gosteren satir sayisinda kaydedilmistir. Her
bir kolon orneklenen isaretten alinan bir 6zelligi icermekte her bir satir ise anlik
zaman cercevesini icermektedir. Yani her zaman cercevesi dahilinde sensdrden
aliman 178 tane 6zellik kaydedilmistir. Her drnege gore zaman cgergevesi sayisi, her
kullanicinin kaydi baglatmasi ve bitirmesi arasindaki gecen siire farklilik gosterecegi
icin degiskendir. Ancak bu durum verinin iglenmemis hali ile 6grenme modellerine
verilmesine engel olmaktadir ¢iinkii modele verilen 6rneklerin boyutlarinin esit olmasi
gerekmektedir. Yapilan On iglemlerden bir kismi Orneklerin hepsinin boyutunu
esitleyerek bu sorunu gidermekte, kalan kismui ise alinan verinin ve etiketlerin modeller
tarafindan anlagilabilir hale getirilmesini saglayan standart islemlerden olugmaktadir.

Projenin ikinci boliimiinde 6 farkli geleneksel makine Ogrenmesi siniflandiricisi:
Gauss Naif Bayes (Gaussian Naive Bayes), Destek Vektor Makinesi (Support Vector
Machine), K-En Yakin Komsu (K-Nearest Neighbour), Rassal Orman (Random
Forest), Dogrusal Ayrimcilik Analizi (Linear Discriminant Analysis) ve Cok Katmanli
Alguayicilar (Multilayer Perceptron); ve 3 farkli derin 6grenme modeli: Evrisimsel
Sinir Aglart (Convolutional Neural Networks-CNN), Tekrarlayan Yapay Sinir Aglart
(Recurrent Neural Networks-RNN) ve Uzun Kisa Vadeli Hafiza Aglart (Long
Short-Term Memory-LSTM) yaratilmis ve yiiksek tanima basarisina ulasabilmek icin
bu siniflandiricilar ve modeller iizerinde deneyler yapilmugtir.

Bu smiflandiricilar ve modeller literatiirde benzer arastirmalar degerlendirilerek,
aym zamanda tammnmak istenen verinin yapisi diisiiniilerek secilmistir. Ornek
bagina diisen veri miktar1 oldukca fazla ve karmagik oldugu i¢in sezgisel yontemler
yerine 6grenmeye dayali yontemlerin kullanilmasi kararlagtirilmistir. Derin 6§renme
yontemleri arasindan secim yapilirken; Evrisimsel Sinir Aglarr’nin segilmesinin

xxii

nedeni bu tip sinir aglarinda resim verilerinin daha basarili sonu¢ vermesinin goz
oniinde bulundurulmasi ve bu projedeki verinin 2 boyutlu olusu nedeniyle yapisal
olarak tek renkli bir resim verisine benzetilmesi, Tekrarlayan Yapay Sinir Aglari’’ nin
secilmesinin nedeni ise projedeki verinin zamansal bilgi icermesi ve bu derin 6grenme
yonteminin zamansal boyutta degerlendirme yapabilme yeteneginin yiiksek olmasidir.
Uzun Kisa Vadeli Hafiza Aglarr’nin se¢ilme nedeni ise zamansal verinin boyutunun
biiyiik olmasidir. Bahsedilen yontemler 1s18inda modeller Python programlama
dili ve agik kaynak kodlu bir derin 6grenme Kkiitiiphanesi olan Pytorch catisi
siiflandiricilar ise sklearn kiitiiphanesi kullamlarak olusturulmustur. Ogrenme ve
tanima igleminin basaridan 6diin vermeyerek miimkiin oldugunca hizli tutulabilmesi
icin modeller olabildigince basit mimariler kullanilarak tasarlanmig ve kullanima
sunulmus, Microsoft Azure: Bulut Bilisim Hizmetleri lizerinde yaratilmig olan ve grafik
islemci birimleri (Graphics Processing Unit-GPU) iceren sanal bir makine (Virtual
Machine) izerinde yiiriitilmiistiir. Sistemin performansini yiikseltmek i¢in olusturulan
modeller tizerinde farkli hiper parametre kombinasyonlari farkli kayip ve iyilestirici
fonksiyonlar ile birlikte denenmistir. Kayip fonksiyonu olarak Cross Entropy
fonksiyonu 1iyilestirici olarak Stochastic Gradient Decent ve Adam fonksiyonlari
ile birlikte kullanilmustir. Iyilestirici fonksiyonlarin farkli kombinasyonlar1 denenen
parametreleri 6§renme oran1 ve momentumdur.

Deneyler iic boliim halinde yapilmistir. Ilk olarak geleneksel makine &grenmesi
metodlar1 {izerinde hiper parametreler degistirilerek farkli egitimler yapilmis ve
siniflandiricilar optimize edilmistir. Bu metodlar arasinda en iyi sonucu veren optimize
edilen LDA simiflandiricisi olmustur. Bu siniflandirict ile %99.9 egitim, %98.2
dogrulama ve %95 test dogruluk oranlarina erisilmistir. Deneylerin ikinci boliimiinde
derin 6grenme metodlart iizerinde deneyler yapilmis ve yine hiper parametreler
degistirilerek modeller optimize edilmistir. Sonu¢ olarak bu modeller arasinda en
basarili olan CNN modeli olmustur. Bu model ile %100 egitim, %97.7 dogrulama ve
%96.7 test dogruluk oranlarina ulasilmigtir. Deneylerin son boliimii olarak toplanmig
olan veri kiimesi karistirilarak 5 farkli egitim-test kiimesi olusturulmustur. Olusturulan
5 farkli veri kiimesi lizerinde derin 6grenme modelleri ve LDA simiflandiricis1 5 kez
yiiriitiilmiis ve ortalama sonucglar hesaplanmistir. Ulasilan en iyi sonuglar; LDA
siniflandiricist ile %98.8, CNN modeli ile %98.8, RNN modeli ile %88.3, LSTM
modeli ile %85.0 test dogruluk oranidir. Ulagilan genel ortalama sonuglar ise LDA
siniflandiricist ile %97.4, CNN modeli ile %96.9, RNN modeli ile %82.8, LSTM
modeli ile %79.2 test dogruluk oramdir. Elde edilen sonucglar goz oniine alindiginda
calismanin amaci ve kullanilan veri kiimesi i¢in en iyi metodlarin LDA ve CNN oldugu
goriilmiistiir. Son bir degerlendirme olarak bu iki metodun test dogruluk oranlarinin
birbirine oldukga yakin olmasi nedeniyle hata matrisleri analiz edilmistir. Isaretlerin
bireysel sonuclar1 géz oniine alindiginda CNN modelinde dogru isaret tahminlerinin
daha homojen olmasi dolayisiyla CNN metodunun LDA’den daha basarili oldugu
goriilmiistiir. Aym1 zamanda bu projenin devamui niteliginde, gelistirilmis olan model
kullanilarak gercek zamanli tanimanin yapilabilecegi bir uygulamanin gelistirilmesi
kararlastirilmig ve planlanmstir.

xxiii

1. INTRODUCTION

1.1 Purpose of Thesis

The main purpose of this thesis is to create a deep learning based dynamic sign
language recognition system via hand gestures. In this system Leap Motion Controller
(LMC) is chosen for gathering hand gesture data. To achieve this purpose also
an efficient data collection system is created which is highly adaptable for any
data collection purpose with LMC. As a future work, this thesis can be extended
to an application for real time sign language recognition which can serve to

hearing-impaired people as a translator.

This study is a part of RoboRehab: Assistive Audiology Rehabilitation Robot project
where we aim to develop an effectively aware robotic rehabilitation platform to assist
hearing-impaired children in hospitals with their audiology tests. This system can be
used by the children as another modality to interact with the humanoid robot Pepper in

the project. !

1.2 Literature Review

There are several studies on the recognition of Sign Languages using depth sensors
such as Leap Motion Controller and Microsoft Kinect. Traditional machine learning
methods, and lately, deep learning based approaches are employed for the recognition
process. Even though some studies include time-series data, most of the studies in
the literature include static single hand gesture data which consist of one labeled data

frame per sign which is similar to the predecessor study [7] [8] of this thesis.

Sign languages are visual languages consist of gestures of face, upper body, arm,
hand and fingers. Since Leap Motion Sensor can only detect hands, and fingers, it

is employed to recognize only the alphabet, or hand signs of the sign languages.

I'This project is funded under the grant TUBITAK 118E214.

1

INLSTAMNIN saImsen) dreuA(q [L€]
NLST S[eugIs [euOISUAWIP-§ $9IM)sn) JrwreuAq X9 [9¢€]
%8'€8 NND-d¢-d saImsen) dlweuA(67 | g ONd + STESJ 192U os [s¢]
%.16°S8 NLST S SINISID) YOI\ MBS SAINISON) JIWRUA(] OF yorepewg Auog
BITLL NNY + NND S 2IMsan agpuquie) SaINISen) JIWRUA(] 6 SAOIAS(] S[qRIBIA [rel
TouSIS-N[W %0’ LY 8
1ouS1s-or3uts 9,°¢9 INIAH + yoeoiddy [eonsners | 1oyeap-XINHOHd-HLMY <- ISV
= * S9OUIJUAS SnoNUNUOD) rIOWER)) [e€]
JUBIS-NINW 95(0"LYy oeoixddy [eonsner <- .
10uS1S S[3UIS %0°06 INIAH + Y Vv [edonsnels INANDIS <- 1SV
%EE LY | MY d[onted [eLIos + opOW + URIPOW 0S-NOLSO4d-HIMY <- ISV O9pIA ‘9[qNOP ‘PAR[OSL ‘G| elowen [zel
996"+ = SUIAJOSAI UOISN[ID0 MAU + %/ 6 ‘sse[D) ISI(] ‘[ong SV PAIB[OST O rIOWE)) [1¢]
%S 6L uu-3f
- SaIN}S! jJo9ur
% 6 WNAS D6 5] [og]
%S 6L = %HS'8T + Nﬁm M1d 180 POYRIOST 1SS 001 ‘S
%998 ININH Jooury l6z]
%H8LY ININH-Sed-9T ‘ '
SnoNUNUOd Juds
%998 WINH-€1 50 . vor-s
(919N0P) %SG 16 + (ABUIS) %G8'L6 NN-INLSTL + WINH ST d[qnop + J[3uIs Og 30Uy + DIN'T [82]
[qnOp %/8°96 - AABUIS %68°L6 odI + WNH
J[qnop + 9[3urs orweuk j00uTy +
319N0P %LT 76 - A13UIS %5096 WINH ST [qnop + 9[suls oI P IS DI+ DN [L2]
%BLY6 49 19%9 1
armsag 1o9ury] +
%596 NAS ISV o1 DI+ DIN'T [92]
%8T’ 16 INAS sse[o-pnw ‘udiy 1SV ones 01 30Uy + DIN'T [s]
%001 <= 8¢T/CT TN pasiatadng ydiy 181V onels 8¢ 302Uy + DIN'T [l
%Y1°¢6 ININH N4 S2INISAN N3P 6-0 SOIN'T [e]
P1°L6 ‘sse[D e uorsny -vdal
yd T S
BL L6 1 18 WOV] ydiy ISV 8¢ DIN'TT kd|
(J119) %G 9+ ("809a1) %66+ = AE 01 AT ININH
(J131) %G 6+ ('30931) 9%58'9+ = dE 01 AT NN-Y - | soamyeu31s (¢ 1oA puw 30021 OWT || [l
%ST18 NN-INLSTH
- umer,
%3808 WINE P dg OIN'T [oz]
%6°56 NND + ALST - saImson) drweuiq 9 OIN'T [61]
%Y"96 NN Puq£y paseq NLST-INAS orureup ¢ OIN'T [81]
%99°'86 ‘08¢ NAS PUE SLINV - saImsen O OIN'T [L1]
- 031V SI+ MIA 181 - OIN'T [91]
%96 1or0 NNY 4 OIN'T [1]
%LS €9 NN-INLSTI + INAS uneT + 781 UmEeIp ¢ + A[3UIS 87 OIN'T [¥1]
BILTY VD +.1d oy qdiv 1SV onels y OIN'T [e1]
%TE06 ‘wis sop
yd 9[qnop ‘onels
%6533 981 Tong ydary IS1 [qnop *ot ¢ JOIN'T [c1]
%16 IWAS susIq + ydiy 181V oness 8¢ OWT|| 11
%166 dTN .
d T Jr3urs ‘one)s
%26 JaN qdiv ISV [oUls "onels 8¢ OIN'T [oT1]
%ES 6L INAS
yd S[Surs ‘onels
BSLTL NN qdiy 1SV [oUIs “oness 9g OIN'T [6]
Koemooy yoeoiddy | 1see(| od£T, ereq uonod[[0) e | 2oua1dpay |

QINJBINI[Y} UI SAIPNIS 9Y) Jo Arewrwuns : [T d[qeL,

There are several studies which are recognizing the static sign language handshapes via
LMC on various different sign languages. In the study [9], 26 static alphabet signs of
American Sign Language are recognized with Leap Motion Controller. The signs are
single hand gestures and two different machine learning methods such as k-Nearest
Neighbor(k-NN) and Support Vector Machine(SVM) are employed to recognize this
data. For both methods 4-fold cross validation is used and the success rate of this study
is reflected as 72.78% for k-NN and 79.83% for SVM. As another sign language, 28
static alphabet signs of Arabic Sign Language (ArSL) are recognized with Leap Motion
in another study [10]. These signs are single hand gestures, too. Two different machine
learning methods, Naive Based Classifier(NBC) and Multilayer Perceptron (MLP) for
the classification of the data are used and the success rates reflected are 98.3% for
NBC and 99.1% for MLP. There is also another study [11] on ArSL which proposes
a pattern recognition based SVM method for the recognition of the signs which are
gathered with LMC. Total of 28 static hand gestures are used from the alphabet and
0-9 digit signs to evaluate the approach. 91% accuracy of classification rate is reached
as the result of the study. Similarly Indian Sign Language is studied in [12] where
a sign language recognition system is developed using Leap Motion Controller on a
10 degree inclined surface, to extract the depth information properly. As the data,
26 alphabet signs and 5 digit signs of Indian Sign Language, which includes both
hands, is chosen to be recognized and this data is collected from 10 different signers.
Two different methods are used for the recognition; with Euclidean Distance Method
88.39% average accuracy is reached while 90.32% average accuracy is reached with
the Cosine Similarity Method. Apart from the supervised learning methods, there are
also heuristic approaches present in the literature like [13]. In this particular study,
a heuristic decision tree is implemented to recognize the American Sign Language
data acquired via Leap Motion Controller. The data includes 24 static alphabet finger
spelling signs. The decision tree includes 16 kinds of decisions which focus hand
and finger characteristics. To sort these decisions genetic algorithms are experimented
to achieve the most efficient order for the recognition. As the result the achieved,

accuracy is pointed out as 82.71%.

Apart from studies which focus on static hand shapes, there are a couple of studies

on dynamic gestures of sign languages. In [14], 56 different annotations are included

in the recognition process which are gathered with LMC and are separated into two
groups; 28 of them are single-handed-isolated sign gestures of Indian Sign Language
and remaining 28 are Latin Language fingerspelling words (air writing). Support
Vector Machine(SVM) classifier is used as the first step of the recognition to classify the
signs according to these two groups. After the separation is done, two Bidirectional
Long Short-Term Memory Neural Networks(BLSTM-NN) classifiers are used for the
recognition. These two networks have different approaches per group; the approach
is sequenced classification for the manual signs and sequence transcription for the
fingerspelling. In real-time recognition 63.57% accuracy is reached in this study. In a
similar study, [15] the hand gestures chosen from American Sign Language(ASL) are
recognized by an RNN which is trained with the data of finger bone angles acquired
via Leap Motion Controller. The recognition accuracy of the system is reflected as
over 96%. The method is also used with SHREC dataset, which includes semaphoric
hand gestures, where it is stated that the method outperformed compared with the
current approaches in the literature. In another one, a system, which combines DTW
with IS algorithm is proposed to convert the hand gestures of Indian Sign Language
(ISL) gathered with Leap Motion Controller device into text [16]. IS algorithm is
used to detect the dynamic environment changes and DTW is used for the gesture

transformation with the map of the similar patterns.

While there are just a little amount of studies in the literature which are focusing
on dynamic sign language gestures using LMC, there are a lot of studies for the
recognition of general dynamic hand gestures, like waving or clasping which are also
gather data via LMC. In [17], a robot control system is developed which is based
on these kinds of 10 hand gestures. The data for the hand gestures are acquired via
Leap Motion Controller, with using noise suppression, coordinate transformations and
inverse kinematics. For the classification of the gestures ANFIS and SVM algorithms
are implemented in the system. The recognition accuracy of the approach is given
per sign in the study which reaches to 98.66% in average. In another study [18],
including similar dataset, a 3D dynamic gesture interaction system is developed by
using SVM-LSTM based hybrid neural network model. The gesture data is captured
by Leap Motion. The start and end points of the gestures are automatically defined

by the model and 96.4% accuracy is reached by the system. It is also reflected that

the prediction of the gestures in the system is taking 0.15 seconds in average. Also
in [19] 3D hand positions and velocities gathered from LMC are used to recognize 6
types of dynamic hand gestures with a Long Short-Term Memory and Convolutional
Neural Networks based techniques. In the real time experiments, 97% F-measure is
achieved and the recognition accuracy is found as 95.9%. As another set of used hand
gestures, which do not belong to sign languages, some of the studies are focused on
finger drawing kind of dataset which are specifically using the motion of the hand
rather than the hand shape. In [20] 3D finger drawn text gathered with LMC is
recognized. The data is gathered as sentences and a heuristic analysis conducted for
the word segmentation by paying attention to the stroke lengths between the words. In
the segmentation part 78.2% accuracy is achieved. As the continuation of the study,
sequential classifiers are used for the recognition. The achieved accuracy became
86.88% with Hidden Markov Model (HMM) classifier and 81.25% with Bidirectional
Long Short-Term Memory Neural Networks (BLSTM-NNs). As another study which
uses similar data, a system to recognize and verify 3D signatures is proposed in [21].
The 2D features gathered from Leap Motion is extended to 3D with using instantaneous
pressure of the writing. A dataset with 2000 signatures is created with these features.
The recognition is done by applying k-NN and HMM. With the 3D dataset higher
accuracies are recorded for recognition and verification via both classifying methods.
With k-NN 6.8% and with HMM 9.9% accuracy increases are recorded for recognition
while the increases are 9.5% and 6.5% for verification respectively. Also same methods
are also experimented with benchmark datasets and similar results are recorded. It is
concluded that this new addition to the data can improve the accuracy of the biometric

systems and for the existing biometric setups, Leap Motion can be an alternative.

In some studies multiple sensors are used to increase the success of the recognition.
This is due to the fact that, sometimes one hand or fingers can be occluded by other
hand and the signs cannot be recognized correctly. Multiple sensors can be employed
from different angles and the data could be fused to increase the recognition success
rate. In some of these studies, multiple LMCs are used to recognize static handshapes
of sign languages. As an example to this category in [22], 28 Arabic Alphabet Signs
are recognized using the data collected by using two LMCs. The data coming from

these sensors are fused either in the feature extraction or the classification phase where,

Linear Discriminant Analysis classifier is employed. The accuracy reflected as 97.7%
when the fusion is made at the feature extraction level and as 97.1% when the fusion is
made at classifier level. In the study it is also pointed out that using two LM Cs resulted
with a better performance, then using a single one. In another study [23], also multiple
Leap Motion Controller’s are used for the recognition of American Sign Language’s
0-9 digit signs. The data coming from both the devices are fused together and Hidden
Markov Models (HMM:s) are used for the recognition. As the result of the experiments,
it is pointed out that using multiple sensors can result with higher recognition accuracy
than the systems which use single sensor. The accuracy achieved with multiple sensors

15 93.14% in average.

Rather than using multiple LMCs some of the studies use various different sensors
together to include different kinds of features into the dataset. The most commonly
used sensors are Leap Motion Controller together with Microsoft’s Kinect sensor.
These specific sensors are used in [24] while a supervised machine learning model
is developed to recognize Arabic Sign Language’s (ArSL) hand gestures. The sensors
are used together to collect depth images from 28 static alphabet signs of the sign
language, that are used for the evaluation of the model. In the study recognition
accuracy of 22 out of 28 signs reached to 100%. In a similar study, multi-class
SVM classifier is used to recognize 10 hand gestures of American Manual Alphabet
by using Leap Motion Controller together with Kinect sensor [25]. The fingertip
position and orientation data coming from Leap Motion is combined with the depth
information coming from Kinect sensor and the combined data is used to create an
ad hoc feature set. With the proposed approach the achieved recognition accuracy is
reflected as 91.28%. Apart from a couple of studies which use these sensors on static
hand shapes, there are more studies which used this pair for dynamic gestures. For
example, in [26], Leap Motion Controller is used together with Microsoft Kinect sensor
jointly to achieve a real-time recognition system. By adding Microsoft Kinect sensor
to the study, additional features are collected as hand contours and distance between
hand samples from the centroid. In this study 10 American Sign Language gestures are
recognized by using multi-class Support Vector Machine classifier and one exploiting
Random Forest classifier together with 3 different feature selection methods; F-Score,

Sequential and Random Forests. The achieved accuracy is 96.5% for SVM and 94.7%

for Random Forest classifier. In another study [27] the data coming from Leap Motion
Controller is combined with the facial data of the signer which is gathered with Kinect
simultaneously. 51 dynamic sign word gestures (31 double hand - 20 single hand)
of Indian Sign Language are collected as the dataset and the recognition is done with
Hidden Markov Model (HMM). After the HMM, Independent Bayesian Classification
Combination approach is used to improve the performance of recognition. For single
hand gestures recognition rate is reflected as 96.05% and for double hand gestures,
the rate reflected is 94.27%. The study is concluded with a comparison of unimodal
and multimodal network where multimodal network’s rates show gains of 1.84% for
single and 2.60% for double hand gestures. The same pair of sensors are also used
in [28] to gather Indian Sign Language data to be recognized by implementation
of two different sequential classifier models namely; Hidden Markov Model (HMM)
and Bidirectional Long Short-Term Memory Neural Network (BLSTM-NN). The data
included 7500 total samples of 50 different sign-word gestures, which include both
single and double-handed signs. To improve the recognition accuracies both HMM
and BLSTM-NN results are combined and 97.85% for single and 94.55% for double

hand overall accuracies are reached.

In some of the studies, it is preferred to use just one Kinect sensor rather than using its
combination with a LMC like in [29] where a fast and less complex algorithm based on
Hidden Markov Model (HMM) is proposed to calculate the similarity between the sign
and the sign sequence . Also to improve the accuracy of the recognition, grammar and
sign length constraints are added together with a proposed coarse segmentation method
to the system. As the data, a Kinect dataset of 100 different sentences of Chinese Sign
Language which are composed from 5 signs are used. For the continuous (sentences)
sign recognition, with the LB-HMM approach the recognition accuracy found as 86.6%
while it raised to 87.8% with LB-Fast-HMM. For the isolated sign recognition HMM
and DTW are experimented on where the accuracies found as 97.8% and 95.1%
respectively. In a related study [30] Support Vector Machine and K-Nearest Neighbour
Classifier is used to recognize 9 hand gestures which are not chosen particularly from
any sign language. The features used in the recognition is handcrafted by using the
Kinect’s Skeleton Data’s simulated signatures. Also data augmentation is done to

create synthetic samples by using synthetic minority oversampling technique. The

achieved classification rate is 71.1% for the SVM and 51% for the k-Nearest Neighbour.
Also to improve the accuracy action pair based one vs. one classification layer weights

are used and the improvement is seen as 24.7% and 28.5% respectively.

As an alternative to depth sensors such as LMC and Kinect, regular RGB cameras
are also used in several studies in the literature. As it is used in [31] 30 isolated
words from Arabic Sign Language are used to evaluate the proposed Automatic Sign
Language Recognition System. The sign language data is gathered with a single
camera. 83% of these words were having the different occlusion states. There
were 4 stages in the study; hand segmentation, tracking, feature extraction and
classification. A skin detector is used for the hand segmentation and a proposed
skin-blob tracking technique is used for tracking. In the experiments with Euclidean
Distance Classifier 97% recognition rate is achieved which is independent of the
signer. Also to improve the recognition of the similar gestures an occlusion resolving
technique is proposed which requires specification of the position of the hands and
the head but also results with 2.56% improvement. In some other studies, the public
databases are used for the experiments which consist of the same kind of data gathered
with camera. As an example in a study [32], a methodology for hand tracking and
feature extraction is proposed for the recognition of sign gestures which are sampled
from the American Sign Language. 15 signs (black-white videos) which are simulated
with both hands are chosen from RWTH-BOSTON-50 dataset as the evaluation data
for the proposed approach. The method showed 87.33% recognition accuracy in
the experiments conducted. The methodology includes feature covariance matrix
based serial particle filter for the isolated hand gestures. Before the feature matrix
1s constructed for the detection, median and mode filters are combined to extract the
foreground for better recognition. As an addition to the proposal, to reduce tracking
errors, serial tracking of the hands are suggested rather than parallel tracking. By
combining these two proposals, the region around the hands is extracted to create the
covariance matrix which represents the hand position, and as a result decreases the
number of features compared to the original data. Also it is reflected that the feature
matrix is adaptable to new signs without any retraining process because it is able to
integrate multiple correlated features. In a similar study [33], a statistical approach

is presented for continuous sign language recognition with changing signers. It is

reflected that it is important to use both landmarks from hand and face is important
for the recognition of the sign languages. CMLLR adaptation and class language
models are used to improve the recognition. Two different datasets are used to evaluate
the proposed system. As the lab data, SIGNUM database is used (Gathered with
camera, 25 signers, 455 sign vocabulary, 19k sentences) and as the ’real-life’ data,
RWTH-PHOENIX-Weather database is used (Gathered with camera, 9 signers, 1081
sign vocabulary, 7k sentences). While evaluating the approach for the recognition
method, HMM is used and with the lab-data data 10.0%/16.4% word error rates are
achieved and with the ’real-life’ data 34.3%/53.0% word error rates are achieved for

single signer/multi-signer setups.

There are also some other studies which are using various different sensors to recognize
general dynamic hand gestures which are not based on sign languages. In such a
study [34] two recognition techniques based on Recurrent Neural Network (RNN) are
developed to recognize dynamic hand gestures which are from Cambridge Gesture
Dataset and SmartWatch Gestures Dataset. In Cambridge Gesture Dataset there are
9 classes which include 3 different handshapes combined with 3 different movements.
For the recognition of this dataset Convolutional Neural Network (CNN) is combined
with RNN. The data in SmartWatch Gestures Dataset includes 20 arm gestures which
are gathered with Sony SmartWarch accelerometer and for the recognition LSTM
technique is used. An optimization is made to decrease the required power in the
implementation, considering both hardware and software, a fixed-point optimization
is used to quantize the weights into two bits which results with decrease in the
needed storage size for the weights. With combined neural network approach (CNN
+ RNN) the accuracy is shown as 77.31% and with the RNN approach the accuracy
is shown as 88.57%. In another study, 25 dynamic hand gestures are captured with
depth, color and stereo-IR sensors to be recognized by recurrent three-dimensional
Convolutional Neural Network [35]. The depth and color information is gathered
with SoftKinect DS325 sensor and stereo-IR data is gathered with DUO 3D sensor.
The proposed recognition system achieved 83.8% recognition accuracy where it is
pointed out that the human accuracy is 88.4% for the same dataset. It is also
reflected that this performance achieves state-of-the-art performance on SKIG and

ChaLearn2014 benchmarks. As an example of using completely different sensor

device, which is also presented in the study, in [36], Flex sensor is used, which
is an armband including four flex resistance sensors to collect data from forearm
muscles. The device provides 4-dimensional signals from the muscles which can
be used to recognize the gestures of the hand it is worn on. Also with the data
including 4 different gestures and additional noise gestures as plus 1 gathered via Flex,
a Long Short-Term Memory Network (LSTM) is trained for the real-time recognition
of the hand gestures and the classification accuracy is achieved as 93.4%. In
a similar study [37], a nested interval Unscented Kalman Filter(UKF) with Long
Short-Term Memory(NIUKF-LSTM) network is proposed for the hand joints-based
gesture recognition systems which use sequential skeletal datasets. This kind of
datasets includes joint identification using hand pose estimations which are generally
noisy and error-prone. The proposed method changes the distribution of the sigma
points between two intervals which enable the system to revise the noise and improves

the accuracy of the recognition.

Apart from the studies which are experimenting on the kinds of hand and/or hand
movement recognition, there are also a lot of studies which are reviewing the LMC
according to its sensing abilities for gathering hand data, if it is rather sufficient to
recognize sign language gestures or not. A review of the Leap Motion Controller, and
the analysis of its abilities for the recognition of Australian Sign Language (Auslan) are
presented in [38]. It is reflected that the device is able to track the hands and fingers
accurately while the accuracy decreases for some particular cases. These cases are
pointed out as; when the position of the hands obstructs the device’s view and when
the elements of the hands, like fingers, are brought together. It is concluded that the
device has potential but further development in the Leap Motion API is needed to be

used for the recognition of Auslan.

All the studies that are examined above are especially focused on the recognition but
how the data is collected and annotated, which is a crucial part of these studies is
not covered and reported in detail. Importance of the data collection and annotation
process can be considered from the different aspects. For the approaches based on
machine learning methods, especially deep learning models, a huge amount of data
is needed to achieve the results with acceptably high success rates, where generally,

more data leads to better recognition. As another aspect, because large amount of

10

data is needed, collection of the data and labeling processes are very time consuming.
Especially if the method or tool used for the data collection is not easy to use and
is not efficient, this causes additional problems. Lack of efficiency may also lead
to spending more time in the pre-processing step of the data. To overcome all of
the difficulties on these aspects, the interface which is used in the process should be
easy and it should include demo videos for the participants who will generate and the
annotate the data, since they might not be fluent in the sign language(s). The demo
videos are also necessary for the possible conflicts due to different sayings, accents
of the same sign. Unfortunately, there are just a few studies which are especially
focused on the data collection and annotation of the sign languages with Leap Motion
Controller device. In a related study [39], a data collection tool is created to gather
data via Microsoft Kinect 2 together with Leap Motion Controller by synchronizing
them together. In the study the data is collected as video and data tables, by using
C++ framework, and the official SDKs of Microsoft Kinect 2 and Leap Motion APIs.
The tool also includes a command-line interface, and a Matlab GUI to initiate, inspect,

and load Kinect 2 recordings. This GUI doesn’t include data gathering from LMC.

1.3 Hypothesis

There are several research questions related to the thesis, and a hypothesis build
upon these questions. We collected dynamic sign data (hand gestures) using the
efficient and broadly usable application that we designed and developed, and tested
several approaches including traditional machine learning methods and deep learning
based methods (CNN, RNN and LSTM) to see which approach is more successful in
recognizing these dynamic hand gestures. We come up with the following hypothesis
based on these studies:

Hypothesis 1 (H1): The CNN based approach will show higher success rate then RNN
and LSTM approaches in the recognition of the selected set of dynamic signs from
TID (the 2-dimensional labelled time-series data of Turkish Sign Language’s dynamic
hand signs which is collected with this application).

Hypothesis 2 (H2): The deep learning based methods will show a higher success rate

than traditional machine learning methods, in the recognition of the selected set of

11

dynamic signs from 71D (the 2-dimensional labeled time series data of Turkish Sign

Language’s dynamic hand signs which is collected with this application).

12

2. DATA ACQUISITION

2.1 Motivation

The data acquisition is the first step of the study, which is the most time-consuming
part and very important for the success of the study. This part should be efficient in
terms of resource consumption, modular and adaptable for the collection of similar
data types, for broader usage. To achieve this aim, the Leap Motion Controller is
chosen as the sensor, and Windows Forms Application is chosen for the graphical user

interface library to be used for the development process of the data acquisition tool.

2.1.1 Leap Motion Controller (LMC)

Leap Motion Controller is a small and portable commercial device which has two
infrared cameras and three LEDs in its hardware. It is connected to the computer
from a USB port and it has its own SDK which recognizes hands and hand movements
and gives the directional and positional vector data for hands it senses, after it makes
uncompromised calculations on the raw data coming from its cameras. It also has
some default applications as well as the basic utilities (like pause, reset, calibrate,
troubleshoot the device) supplied by its driver which helps to visualize the observed
data. The most important of these applications is the Visualizer which can be started
from the dock icon of the driver. The Visualizer is a screen that shows a coordinate
template including the real time skeleton and the data points of the hands which are

recognized by the device.

In the most recent official updates of the SDK of the controller, the main application
area is mostly shifted to the virtual reality applications, where the device can also
be combined with virtual reality equipment like Oculus Rift and HTC Vive. On the
other hand, the older official SDK’s are in distribution for the applications which don’t

consist of virtual reality, even though these SDKs are not supported anymore.

13

2.1.2 Windows Forms Application

Windows Forms Application is a Graphical User Interface (GUI) library which belongs
to .NET Framework. 1t is easy to use to create applications for Windows desktop
computers. The design and coding phases can be done by Visual Studio Application.
The development of the application can be done either by the toolbox supplied by
Visual Studio, or by C# language. In either case data binding to the interface can
be done by coding. The most important thing to consider is the thread safety of the
application. The GUI thread has to differ from the other possible calculations or any

other operations to make the GUI always responsive for the user.

2.2 Design of the Application

The application is developed by using Leap Motion SDK v2 which is published
officially by Leap Motion Company, and C# is used as the programming language.
Additionally Windows Forms Application libraries are used for GUI in combination
with Windows Media Player libraries and NuGet packages from Accord Net
Framework. Windows Media Player libraries are used to display the reference sign
videos and the Accord libraries are used for obtaining and displaying the sequence of

image frames (as video) from the Webcam.

The screenshot of the application can be seen on the upper part of the Fig: 2.1. As it
is seen in the application screen, the design of the application interface is divided into
3 vertical parts. These parts are ordered from left to right by mostly considering the
workflow of the usage. The leftmost part is the first part that user has to interact with the
application. From this part, user chooses which sign she/he wants to demonstrate and
watches the sign she/he chose from the list. After the video is finished, the user pushes
the start button and then her/his attention is directed to the Webcam screening which
is the next vertical part of the interface, as well as to the text box on the right most
side of the application which includes information about the recording states which is
updated along the process. Also the start and stop buttons’ sizes kept relatively large
to increase the ease of the usage while their colors are chosen as green for start and red

for stop which are commonly accepted colors for these specific behaviors.

14

Sl

‘uonedridde uonooa[od vlEp Ay} JO MOPNIoM dFes() : [°Z 2INSL

‘fio10311p uoneol|dde sy ‘Buipiodal ayy Buiels aloyaq Jasn ayy Aq Jazijensip UORON
apisul 1ap|o} elep, aU} Ojul paAes ale syndino ejep pue 0apiA dea ayy woly payoayd aq 0} paysabbns si aje;s uoiopy dea

wey| njboronwa(yeaing Aq psjeai)

€S 22 L1 70202

AR'£67227/ 170200

yibuay

ipaddojs buipioday

_umn_oumwwmm_wm_mﬂm_wmmm "UONOI Qmmn_ 3y} 0] umoys ale

L JUMOpUN0d spuey yloq pue passald si uopng Auipioosy Lels, du) Joye suels Buipioosy

Z ‘umopjuno)
€ “UMOpJUNoD
ipaziubodal a1e spuey yjog
“Bunrepy
dea)| 2y} 0} spuey yjoq INoA moys
"ssaooid
9j0YM By} J0j LWBIGDM BU} Ul B|qISIA
9le Spuey INoA 91nS 9y ew ases|d
PajoaUU0D HIBYD IR
‘pajIsuu0Y I3y a0eQg
1SI| BU} WO} PIOM B }IB|9S

“gpew s

0 Yeoing Aq pajeain E E uono9jes piom ay}
Jaye sfejd ospip

oneln

-shiels

I0UM BU) 10} LUBIGAM 3L Ul

Umwwm_a w_ COﬂ.:D :DC_U.,_OOQm are mc.;mf:gmg 5 3Bl a5esld
doig, ay; Jaye sdoys Buipiossy

uonop dea1 L om0 21eq @

'Snjels ‘Wengapm

x o - usnoly deaT A uamaIIE) B1q [

2.3 Usage of the Application

To use the application, the only external requirement is a Leap Motion Controller with
its driver installed on a Windows computer. The first step to use the application is to
choose the sign to be simulated from the word list, as seen on upper left side of the Fig:
2.1. After a sign is chosen, as shown in Fig: 2.1, as the next step, the sign’s simulation
example video plays on the player at the left bottom side of the application, to show
the user how to generate the sign. As an optional step, to be sure that if the LMC
is working and able to provide the data to the application, the Visualizer application
can be used which is included in the Leap Motion’s driver. After watching the video,
the user has to press the "Start Recording" button to start the data collection. The
application checks for the controller and driver service’s status and also shows the real
time Webcam video output as the reaction to the button press. If the checks result
with successful connections then the application waits for the user to show her/his
both hands to the controller to make the data collection’s start point more consistent
for every simulation. After both hands are shown by the user, as in the Fig: 2.2, and
recognized by the device, a count down starts in the text box located right side of the
application. When countdown reaches to O then the recording starts for both data file
and reference video file. To start the recording, the application waits for the user to
press "Stop recording" button. After the button is pressed, the recording stops and the
application shows the data frame amount recorded to the data file in the text box, which
can be seen on the right side of the Fig: 2.1. This process can be done from start to
end repeatedly as much as the user desires until she/he explicitly presses the window
close button of the application. After each recording process, the recorded video and
data file are saved under the "data" folder. The example local "data" folder screenshot

can be seen in the Fig: 2.1 as the last step of the flow.

2.4 Collected Data

Two types of data are collected with this application: vector data coming from the Leap
Motion Controller and video reference data. Both files are saved under the "data"

folder which is in the same location with the application’s executable file after the

16

Figure 2.2 : An example setup to use the application.

recording is terminated. Also both files are labeled with the sign name automatically
which is taken from the chosen sign from the list in the application which can be seen
in the left side of the Fig: 2.1. The label is included in the name of the files together

with the timestamp taken at the instance when the recording is started.

The data coming from LMC is saved as a .csv file. It consists of 178 features which
can be seen in the Appendix A. These features are the columns of the data file. The
features include various directional and positional vectors for palms and fingers as well
as other specific boolean data related to the positions of the limbs like if the fingers are
extended or not. While recording the data floating data points are recorded without
any change while the boolean data converted to binary to make it more efficient to
use in the further usage. In some edge cases, it is observed that, sometimes LMC is
not recognizing both hands and it just sends the data of one hand. To overcome this
inconsistency, the second hand’s expected data is filled with Os (NULL value) while
recording the data into the file. With this padding strategy, the data size kept consistent

even though the data coming from LMC is not consistent.

2.4.1 Sign Recognition

The dataset used in the evaluation of the system includes 12 word signs of Turkish
Sign Language whose example videos are collected from 77D’s online dictionary [40].

While choosing these specific signs, the results from the previous studies [7] [8] are

17

adopted. The most successfully recognized 4 different hand shapes are chosen based on
the adopted information and then for each one, 3 different signs (words) are selected,
which include different movements of the chosen hand shape. The dataset is limited
with just 4 hand shapes because in this study, main purpose is to recognize the hand
shape with its movement rather than just the hand shape itself. Therefore all the
signs in the dataset are dynamic signs which include multiple time frames. While
the recognition of the static hand shapes are experimented in the previous studies, it is
realized that for the full recognition of any sign language the static recognition is not
enough because every hand shape may result with multiple different meanings with its
different movements. Therefore, this study is more challenging and complex compared

to the previous studies.

On the other hand, compared with static hand shape data recognition of dynamic
signs are significantly harder. In the dynamic dataset, the input size of one sample
is significantly higher than static signs, because of the included time frames. In the
dynamic dataset, the number of features per time frame, per sample is equal to the
number of features per sample in the static dataset. This means a static sample is just
a snapshot of a dynamic sample at a particular instance and in dynamic datasets, to
find the actual input size to the learning model per one sample, the number of features
has to be multiplied by the amount of the time frame in the specific sample while the
input size for the static dataset sample remains equal to the number of features per
sign. Therefore the system has to recognize the sign’s movements as well as the static

hand shape it includes in each time frame.

The created dataset for the study includes only features which are collected from both
hands, and excludes the features from any other body parts like face or torso. This may
seem as a disadvantage of this study because with the other body parts’ position and
movements, the meanings may change in the sign languages but to keep the system
efficient, easy and commercially usable by the end user, the best sensor to use is the
LMC which unfortunately only collects the data from hands. The sensors which can
collect data from other body parts are all either bulky and can not be integrated to the
daily usage like Kinect or just gives very raw data (like just image or video) which is

very hard to extract the specific finger information from like standard RGB cameras.

18

3. DATA PREPROCESSING

The sign/gesture data collected by the data collection tool explained in the chapter 2
is processed and fed to the neural network models. This processing step is required
because the frame sizes are not same in all the data even though the number of features
are the same. Therefore as the frames are forming the rows and the features are forming
the columns, all the data has consistent column size but varying row size which is not
acceptable by the neural networks in most of the cases. To overcome this situation a
padding operation is done to fix the row size to the maximum, acquired from the whole

data.

y= 10~ ([log(minxé|datal)[]+1) (3.1)

To minimize the effects of the padding, some precautions are taken. For the padding a
very small value which is close to zero and does not exist in the data set is used, not to
interfere with the real data values. For this processing, first the real data point closest
to the O is found in all of the data, after the absolute value of this number is achieved,
the logarithm of this number is taken with base 10. Then the absolute value and ceil of
this result is taken in order. Then the reached result is increased by 1 to create a safety
margin. The result of this calculation is chosen to be the necessary negative power
of 10 to create the required smallest number. These calculations can be seen in Eq:
3.1. After this number is found, the data is padded by filling the missing rows with
this number until all the sample lengths (row amounts) reached to the maximum. With
these processes the data is prepared to be used as the input for the neural networks with
a fixed and consistent size and also the possible negative effects of the alterations are

minimized.

Although there are a lot of different padding approaches in the literature, like
interpolation, getting average size, etc. previously mentioned effective and simple
approach is taken because it doesn’t need high computing power and it is a lot faster

than most of the others. An approach with a need for low computing power is necessary

19

because the ultimate goal of this study is to develop a real-time sign language translator.
This translator has to be usable on also mobile devices like phones which don’t have
high computer power generally and speed of the prediction is very important to make

the product easily usable as natural speaking.

As the additional processing the data is divided into two parts as train and test. Test
percentage is chosen to be 10% including same amount of sample for each label in
the dataset. While dividing the data, the samples are shuffled. This process is done
to keep the test set absolutely separate then the rest of the dataset to keep the test
samples same for each trained model and each trial to achieve maximum precision on

the comparisons.

20

4. MACHINE LEARNING BASED SIGN RECOGNITION MODULE

4.1 Motivation

In the previous studies, traditional machine learning approaches are designed and
tested for static hand signs [7] [8]. In the first trials of this work, similar approaches

are tested with the new data and compared with the deep learning models.

4.1.1 Gaussian Naive Bayes Classifiers

Naive Bayes approach takes the Bayes’s Theorem as the base of its classification
algorithms. The most important characteristic of this classifier is its assumptions on the
features. The classifier evaluates each feature independent from each other and gives
equal importance to every single of them which doesn’t actually reflect the truth in the
real life where most of the features are connected to each other for an event to happen.
This classifier evaluates the features and concludes with the results by calculating the
probability of the results (posterior probabilities) based on the known data just like in
the Bayes’s Theorem on Eq: 4.1 where it shows the condition for the probability of
event A to happen where event B is already happened. In this generalization event A
can be seen as the label and event B can be seen as the feature vector. To reach the
result, the classifier calculates probabilities of each possible label with this formula
where P(BIA) is the conditional probability of the features, also called as likelihood,
while P(A) and P(B) are the prior probabilities. Then the classifier decides on the label
which has the highest probability as the result output. This approach is useful when
the data is discrete because it actually counts the feature values while calculating the

P(BIA) (conditional probability) which is not the case in this study.

B|A)P(A)

P(A|B) = il PB) (4.1)

To make this approach work for continues values in features, an additional assumption
is made which constructs the Gaussian Naive Bayes Classifiers. In this approach

the continuous feature values are assumed to be distributed according to a Gaussian

21

distribution and the probability equation of this distribution is used while calculating
the conditional probabilities. The probability equation can be seen in Eq: 4.2, where

o is standard deviation and u is the mean of the distribution.

(Xi B .uy>2>

L exp(
exp (—
\/2702 207

P(B|A) = P(xily) = (4.2)

4.1.2 Support Vector Machine (SVM)

For Support Vector Machine (SVM) approach (also the classifier trained using this
approach is referred as Support Vector Classifier, SVC) the objective is to find a
hyperplane in the N-dimensional space, where N equals to the feature amount, which
can classify the labels distinctly. While finding the optimal hyperplane there are a lot
of possibilities but the one which has a maximum margin between the data points are
chosen as the optimal. These chosen hyperplanes are used as the decision boundaries
while making predictions on the labels. As some simple examples; when there are two
features the hyperplane can be shown as a line (1D) where if there are three features
the hyperplane becomes a plane (2D) rather than a line. Therefore more broadly it can
be said that when the feature amount is N, then the hyperplane dimension becomes
N-1. While training this algorithm hinge loss is used to optimize the algorithm while
maximizing the hyperplane margin. When the predicted value is true then no loss
is calculated in this approach but when the predicted value is false then the loss is
calculated and a regularization parameter is added to balance the loss with the margin
maximization goal. After the loss is calculated the back propagation is done to train
the model. While training this model various kernel functions can be used for analysis
of the patterns in the data. The kernel options are Radial Basis Function (RBF) Kernel,
Polynomial (Poly) Kernel, Linear Kernel and LinearSVC Kernel. The difference

between these kernels can be seen in Fig: 4.1.

4.2 K-Nearest Neighbours (k-NN)

K-Nearest Neighbours classifier has one of the most basic algorithms among the
machine learning approaches. The algorithm doesn’t make any analysis on the
distribution of the features. The approach is purely standing on the Euclidean distance

calculations (Eq: 4.3). When the classifier is predicting a label for a data it calculates

22

SVC with linear kernel LinearSVC (linear kernel)

Sepal width
Sepal width

Sepal length Sepal length

SVC with RBF kernel SVC with polynomial (degree 3) kernel

Sepal width
Sepal width

=]

Sepal length Sepal length

Figure 4.1 : SVC Graphs trained with different kernels. [1]

the distances between the known points (q) and the current data point (p) by using
the features (i) as the dimensions. After doing the calculations, it takes k amount of
known points which are nearest to the current point and returns the majority label of

these nearest points as the decided label for the current data.

n
distance(p,q) = distance(q,p) = (gi — pi)? (4.3)
V i=1

4.3 Random Forest

Random Forest Classifiers are based on multiple decision trees which are constructed
with the features. A sample decision tree can be seen in Fig: 4.2. While prediction is
made the algorithm goes through all of the constructed decision trees, gets individual
predictions from each of them and uses the one with the most voted. The key point of
this algorithm is the low correlation between the models(trees) because when their
correlation is low then they are protecting them from each other’s errors. While
creating the trees to keep the correlation low, the algorithm follows two approaches.
The first approach to reach the low correlation is sampling the dataset randomly with
replacement while creating the trees. While this sampling the sample size stays same
but the content of the sample set changes because of the replacement. This approach
makes the trees significantly different because the decision trees are very sensitive to
the data they use. The second approach is the randomized choice of features. In normal

decision trees while a splitting has to be always made the feature with the ability of

23

Yes i Is red? i No
110 0O 0 0 O
l
Yes l Is underlined? 1 No
: 2 0

Figure 4.2 : A sample decision tree. [2]

X

Figure 4.3 : 2D Coordinate System with the straight line which is created by LDA for
dimensionality reduction. [3]

the largest separation is chosen but in Random Forest algorithms, because the sample

set is differentiated for each tree, feature order changes for the decision points which

creates diversification as well as low correlation.

4.4 Linear Discriminant Analysis (LDA)

LDA is a dimensionality reduction technique. In this technique the features can be
seen as the dimensions. For the ease of the explanation assume that there are 2 features
which can be shown as a 2D coordinate system and the data points are marked on this
graph as the points with the color labels. This approach tries to find a straight line on
the graph which can be the new 1D graph with the projections of the points on the
line. While finding this straight line, two criteria must be followed in this approach:
the distance between the means of the classes has to be maximized and the variation

within each class has to be minimized. The process can be seen in the Fig: 4.3

24

Input Output

Input Fi_rst Second Output
La Hidden Output Layer
ver
Layer Layer

Figure 4.4 : A Sample MLP Structure. [4]

While using this approach, three different solvers can be used: Singular Value
Decomposition (SVD), Least Squares Solution (LSQR) and Eigenvalue Decomposition
(EIGEN). Among those solvers just SVD is not computing the covariance matrix which
makes it able to be used with large number of features while others are unacceptably

slow for such usage.

4.5 Multilayer Perceptron (MLP)

Multilayer Perceptron is the most typical and straight forward neural network model
which consists of just multiple fully connected linear layers as it can be seen in Fig:
4.4. The linear layers use the function in Eq: 4.4 to calculate the outputs where f is the
activation function, W is the weights, x is the input vector and b is the bias vector.
Activation functions are used to increase the non-linearity to increase the model’s
flexibility while finding the relations between data. The common activation functions
are Sigmoid, ReLU and Tanh.

y=f(WxT +b) 4.4)

The last layer of this algorithm outputs the probabilities for each label option and the
prediction is reflected as the one label which’s probability is the highest among. After
the output is created, a loss function is used to back propagate the model and optimize

the weights.

25

S. DEEP LEARNING BASED SIGN RECOGNITION MODULE

5.1 Motivation

Deep learning based approaches are designed and implemented for the recognition
of the sign language data that is collected by the application explained in Chapter 2,
since deep learning based approaches are generally more efficient than the traditional
heuristic methods to process the big and bulky data. In this study since the signs will be
dynamic and feature extraction might be a costly process, three different deep learning
based approaches are trained and tested in this study to get the best recognition results.
These are: Convolutional Neural Network (CNN), Recurrent Neural Network (RNN)
and Long Short-Term Neural Network (LSTM-NN).

5.1.1 Convolutional Neural Network (CNN)

Convolutional Neural Network is the most commonly used deep learning method for
recognition and classification. It is generally used on big data sets involving images.
CNN s can be examined by units consist of several layers. In a basic unit of CNN, the
first layer is the convolutional layer which makes the main computation in the network.
The layer has filters or kernels which are moved on the input data, as a sliding window,
and calculations are processed by combining both the data surfaces (image and filter)
to create the output data. The output data size of the layer changes according to the
filter’s size and filter’s sliding step size used in the layer; as the n-sized filter is on
one location of the input, it outputs just one data point to the next layer rather than n.
After the convolutional layer the second layer is the activation layer in the unit. This
layer is the data rectifier part of the unit to increase non-linearity of the network. The
commonly used activation functions are ReLU, Leaky ReLU and ELU. The third layer
is the pooling layer which makes down sampling on the data. Also these three part
units of the network can be added to the network multiple times sequentially, which

causes the network to grow in depth. After the layer units, at the end of the network,

27

Input image Convolutions Pooling Fully Connected

Figure 5.1 : CNN workflow [5]

one or multiple Fully Connected (FC) Layers has to be added to the process to make
the data even narrower, as 1 dimensional. To get the label predictions from this last
layer a Softmax function is applied as the last step which converts the data coming from
FC layer to vector of output probabilities, where the highest probability represents the
predicted classification label. The basic architecture with one unit can be seen in the

Fig: 5.1.

5.1.2 Recurrent Neural Networks (RNNs)

RNNs are the most common approaches for processing the data which include time
series, such as the data in this study. They are fed forward networks with an internal
memory which make them give the outputs, depending on the previous ones. This
approach is very important for the times series data because this kind of data is highly
dependent on all the time frames it includes in that particular order. This kind of
networks give the partial outputs to the next layers (as shown in Fig: 5.2) as the
additional inputs. The general architecture of RNNs can be seen in the Fig: 5.2. In
the figure ¢ is the time step, a is the activation and y is the output. These variables can
be shown with the Eq: 5.1 and Eq: 5.2. W, W,, and Wy, are the weight coefficients, b,
and by are the bias coefficients g1 and g are the activation functions which are same in
every neuron. The commonly used activation functions are Sigmoid, Tanh, and ReLU
for RNNs. For this kind of neural networks, the loss function is calculated by summing

up all the previous step losses in the network.

a~"”” = g1 (Waa™ 1> + Wox™"> +b,) (5.1

y'7 = g2 (Wyea™"" +by) 5.2)

28

<1m | e ,<> <
™ T T D a<t71> e T N Cb<t> - T N a<t+1>
a<0> — — — - - o -
I R N o
$<1> I’ .T<2> | $<t> w<t+1>l
Figure 5.2 : General Architecture for RNN [6]
~ B
j
& y
& B - B 4 = f T =
0 <0> _.‘ _..‘ e
_ o T _/ _ T J '\h T J
$<1> x<2> $<Tm>

\ \
=i - =

Figure 5.3 : Many-to-one case Architecture for RNN [6]

These networks can be used in various different cases according to the desired input
and output sizes. The types of the cases are one-to-one, one-to-many, many-to-one,
and many-to-many. In this study the most applicable type is the many-to-one case
since the data have multiple inputs as the time frames and it desires one output as the

sign label. The related structure can be seen on the Fig: 5.3

Basic RNNs have a common problem named vanishing or exploding gradient problems
caused by the activation functions. During the back propagation, since the loss function
is the sum-up of all previous losses and it creates a multiplicative gradient, if the time
step amount is very large then derivative of the activation function causes the weights
to vanish, because its value is smaller than 1. In the other case, if the weights become
very large then the value of the gradient becomes too small to affect the weights which
results in the exploding gradient problem. The data in this study is prone to have

the vanishing gradient problem because the data size is fairly large. Therefore Long

29

Short-Term Memory approach is chosen to be the next step for better results since it

solves these problems with additional gates in the neurons.

5.1.2.1 Long Short-Term Memory Neural Network (LSTM-NN)

LSTM-NNs are special Recurrent Neural Networks which resolves the vanish-
ing/exploding gradient problems that make them able to have longer memories. This
solution is achieved by having various gates in the neurons which are update gate (I',)
to decide how much past should matter, relevance gate (I';) to decide if the previous
information should be dropped, forget gate (I'y) to decide if current info has to be
erased and output gate (I',) to decide how much current output should be revealed. The
architecture of one neuron of the LSTM-NN can be seen in the Fig: 5.4 The equations
for the gates can be seen in Eq: 5.3 where W, U and b are the specific coefficients for
the gates and o is the Sigmoid function. Also the additional functions for LSTM can be
seen in Eq: 5.4, Eq: 5.5 and Eq: 5.6 where © is used for element-wise multiplication

between two vectors.

I'=oc(Wx<"" +Ua~"""> +b) (5.3)

& =tanh(W,[[, ©a~""1> x| +b,) (5.4)
=T, +T o~ 1> (5.5)
ad=T,oc"” (5.6)

30

o<t—1> a <t>
[

5<t>4—

[<t—1> Lj t t (T,) g <t>

Figure 5.4 : An LSTM neuron [6]

31

6. EXPERIMENTS

6.1 Experimented Approaches

In this study six different traditional machine learning approaches and three different
deep learning neural networks are used. These approaches are summarized as seen in

Table: 6.1.

As the machine learning approaches; Gaussian Naive Bayes, SVM, k-NN, Random
Forest, LDA and MLP are experimented. The explanations of these approaches can
be seen in Chapter 4. For all of these methods, 10 fold cross-validation is used to
validate the classifiers to keep the validation subset size same with the deep learning
approaches. As the hyperparameters ’priors’ parameter of the Gaussian Naive Bayes
method is set to ’None’ while other parameters are kept as their default values in
sklearn.scikit library. For SVM approach all 5 different kernels (rbf, poly, linear,
sigmoid, linearSVC) are experimented on individually. All the hyperparameters are
used with their default values except gamma which is set to be 0.001 for all of the
kernels which require gamma value. Also for the k-NN approach all hyperparameters
are used with the default values where neighbour amount is set to 5. In the Random
Forest approach maximum depth hyperparameter is set to 2 and random state is set to
0 while other parameters are left with the default values where estimator amount is set
to 100. For LDA classifiers the solver is chosen as ’svd’ and tol parameter is set to
0.0001 while other parameters are used with the default values. To consider the other
solver options ’Isqr’ option is tried but, because of its unacceptable slowness a result
cannot be achieved. The cause of this slowness is explained in the Chapter 4. While

training MLP none of the default values for hyperparameters are changed again.

As it is explained in the Chapter 2 and 3, the data in this project consist of 2
dimensional time series values. Even though it is a time series problem, because it is
2 dimensional it seems very similar to a monochromatic image data. Considering this

similarity as the first deep learning approach, a CNN modal is created and trained. As

33

Table 6.1 : Experimented machine learning and deep learning approaches.

Method Purpose
Gaussian Naive Bayes
Support Vector Machine
K-Nearest Neighbour
Random Forest

Linear Discriminant Analysis

Adopted from previous studies [7] [8].

Multilayer Perceptron

CNN Image Like
RNN Timeseries
LSTM Large Timeseries

the activation layer ReLU is used after the convolutional layers and as the loss function
Cross Entropy Loss is used. As the optimizer Stochastic Gradient Decent (SGD)
and Adam functions are used with varying learning rates and varying momentum (for
SGD). Also 3 Fully-Connected (FC) linear layers are added to the end of the network

with a Softmax functions at the end to get the predicted label.

As the second deep learning approach, a basic RNN model is created and trained
because the data includes time series. The model created with one RNN layer and

3 FC linear layers with a Softmax function as in the previous CNN approach.

As the third deep learning approach LSTM-NN model is created and trained because
the data consists of around 300 time frames as one input which would be the cause
of RNN’s low results because of its characteristic of not being able to keep enough
memory caused by its vanishing gradient problem. Therefore an LSTM-NN model
created with one LSTM layer with dropout, and three Fully Connected linear layers
together with a Soffmax function at the end. As the loss function same Cross Entropy
Loss function is used and as the optimizer SGD and Adam functions are used with

varying learning rates as in other deep learning approaches.

6.2 Experiments

For the experiments, first of all, a sign dataset is created with 2400 samples that are
collected via the developed tool that is explained in Chapter 2. While collecting the
data multiple, cross-gender and cross-age signers used the tool to give the samples. All

the data is collected in indoor environments which are under various light conditions;

34

Table 6.2 : Machine Learning Classifier Accuracies

ML Model Train Acc % Val Acc % Test Acc %
Gaussian Naive Bayes 85.926 78.19 74.583
SVM (kernel: rbf) 1 8.33 8.333
SVM (kernel: poly) 1 79.81 77.083
SVM (kernel: linear) 1 88.56 85.833
SVM (kernel: sigmoid) 0.231 0.32 0
SVM (LinearSVC) 1 88.38 82.916
Kneighbours 89.768 81.67 78.75
Random Forest 74.166 69.491 72.083
LDA 99.907 98.24 95
MLP 98.889 85.88 75.417

naturally lighted, artificially well lighted, artificially mildly lighted, artificially less

lighted. The dataset includes 200 samples per each word sign.

The experiments are implemented with Python language using sklearn for traditional
machine learning classifiers and Pytorch for deep learning models, which is an open
source machine learning framework. Before starting the training, the data processing

steps in Chapter 3 are performed.

For the traditional machine learning approaches the datasets are used as they are
and 10 fold cross validation is performed to evaluate the classifiers before testing.
Although various different hyperparameters are tried in multiple runs of training the
best hyperparameters are found as mostly the defaults as it is explained in the Section
6.1. The results of the classifiers can be seen in Table 6.2. The best test accuracy is
achieved with LDA classifier which is significantly higher than other machine learning
approaches. Which means although the classifier is a very simple one, while being
robust, it is very successful on the test set because the data used in this experiment
is separable with linear boundaries adequately to reach 95% test accuracy. Also the

confusion matrix of this classifier can be seen in Fig: 6.1.

After the machine learning experiments also the deep learning approaches are
experimented on with the same dataset but, after the preprocessing, the train dataset is
randomly divided into two as training and validation sets by keeping sample amount
equal for each sign for each partition. For the training 90% of the train dataset is used
which means, it consists of 180 % 90 = 162 samples for each sign, as a total of 2160

% 90 = 1944 samples. For the validation datasets, the remaining of the train dataset

35

Confusion Matrix of Model Test Predictions
& & &
> > S &@o 5 &

3 & &
3 . o & & K
& F & & & & & & o o o o

S+ - 17 0 0 o o 1 o o 0 0 1 1
&
&
> - 0 o o o o o o o o o o
o n

True Labels

Predicted Labels

Figure 6.1 : LDA Confussion Matrix

is used, which means it includes 180 - 162 = 18 samples for each sign as a total of
2160 - 1944 =216 samples. By partitioning the dataset like this, the validation set size
kept equal with the validation set size of the traditional machine learning approaches
which creates validation sets with 10 fold cross validation. To use these datasets in
the neural network models, data loaders are generated for each of them with shuffling

feature enabled to keep the bias of the data order as small as possible.

After the data loaders are prepared, a simple CNN is created to keep the neural network
as shallow as possible to make the training process faster with high accuracy results.
In this CNN, two convolution layers are used with Rectified Linear Unit (ReLU) and
MaxPool2d functions consecutively, continuing with two consecutive Fully Connected
(FC) layers paired with again ReLU function and an additional F'C and Softmax layer at
the end to output the label together with a dropout layer. The architecture of the neural
network can be seen in the Fig: 6.2. With this model Cross Entropy Loss is used as
the loss function, and Stochastic Gradient Decent (without momentum) with "learning
rate" feature is set to 0.001 are used. The training is run for 100 epochs with a batch

size of 5 by using the Graphical Programming Units (GPUs) that Microsoft Azure

36

CHNNet(
(convl): Conv2d(1l, 6, kernel_size=(5, 5), 1, 1))
(conv2): Conv2d(6, 16, kern : 5), stride=(1, 1))
(pool): MaxPool2d{kernel_si stride=2, padding=8, dilation=1, ceil_mode=False)

(fcl): Linear(in_features=39360, out_features=128, bias=True)
(fc2): Linear(in_feature 20, out_features=88, bias=True)

(fc3): Linear(in_features=88, out_ features=12, bias=True)
(dropout): Dropout(p=08.3, inplace=False)

Figure 6.2 : CNN architecture.

— Validation Loss

Epoch

Figure 6.3 : CNN losses graph.

Virtual Machine includes to reach the results faster than the local computer. After
several trials with different hyperparameters, achieved best accuracy result became as
100% for training, 97.7% for validation and 96.7% for test. The loss and accuracy
graphs can be seen in the Fig: 6.3 and Fig: 6.4 respectively. Also the confusion matrix

can be seen in the Fig: 6.5.

As the second deep learning model experiment, an RNN model is created with 1 RNN
layer, 1 droupout layer, 2 F'C layers combined with ReLU function and one final FC
layer following with a Softmax layer to get the outputs as labels which are exactly
same with the previous CNN model. The architecture can be seen in the Fig: 6.6. With
this model the same Cross Entropy Loss is used as the one used with the CNN but
the optimizer is changed to Adam function after some trials with SGD because it gave
better results for this neural network. The Adam function is used with a "learning rate"
feature which is set to 0.001. This neural network also trained for 100 epochs with
batch size set to 1 with same provided GPUs. 1 is the optimized value of the batch size

where some other values are also experimented on. After several results with different

37

Accuracies

—— Train Accuracy
— Validation Accuracy

True Labels

&
ES

%,

Epoch

Figure 6.4 : CNN accuracies graph.

Confusion Matrix of Model Test Predictions

& & @"‘g a“@ &

0 0 0 0 1
0 0 0 0

0 0 1 0

0 0

0 0

0 0

1 0

0 0

0 0 0 0 0

0 0 (1]) (1]

0 1 0 0 0

0 0 0 0 0

Predicted Labels

Figure 6.5 : CNN confusion matrix.

38

3
@
&

o

S s@“’
0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 0
0 0

0

100

RNNNet (
{rnn): RNN(44856, 258, batch_first=True, dropout=8.3)
{dropout): Dropout(p=8.3, inplace=False)

{(fcl): Linear(in_features=258, out_features=128, bias=True)
(fc2): Linear(in_features=128, out_features=88, bias=True)
{(fc3): Linear(in_features=80, out_features=12, bias=True)

Figure 6.6 : RNN architecture.

Epoch

Figure 6.7 : RNN losses graph.

hyperparameters the best achieved accuracy results are as 97.8% for training, 84.3%
for validation and 85.4% for test. The loss and accuracy graphs can be seen in the Fig:

6.7 and Fig: 6.8. Also the confusion matrix can be seen in the Table: 6.9.

As the third deep learning model experiment, an LSTM model is created with 1 LSTM
layer with 2 hidden layers, 1 droupout layer, 2 FC layers combined with ReLU function
and one final FC layer following with a Softmax layer to get the outputs as labels
which are exactly same with the previous models. The architecture can be seen in
the Fig: 6.10. With this model the same Cross Entropy Loss is used as the one
used with the previous models and for the optimizer both SGD and Adam functions
experimented on but as it is seen with the RNN Adam function gave better results with
this model too. The Adam function is used with a "learning rate" feature which is
set to 0.001. This neural network also trained for 100 epochs with optimized batch
size (after multiple trials) as 1 with same provided GPUs. After several results with

different hyperparameters the best achieved results are as 97.1% for training, 80.6%

39

10

Accuracies

—— Train Accuracy
—— Valigation Accuracy

True Labels

%,
%

K

%,
2

Epoch

Figure 6.8 : RNN accuracies graph.

Confusion Matrix of Model Test Predictions

B v‘é @"‘g Ie\"g .‘“f @“ @ Isfﬁ £ I@"o
0 0 0 0 0 1 o 0 0 2 1
16 0] o 1 1 o 2 0 0 0
0 16 0 4 0 0 o 0 0 0 0
0 0 o 1 o 0 0 0 0 0
0 2 1 15 0 0 o 1 0 0 1
0 0 1 o 16 1 0o 0 0 0 0
0 0 0 0 0 17 o 2 0 0 1
0 0 0 0 0 0 0 2 0 0
0 2 0 1 0 0 o 17 0 0 0
0 0 0 o 0 o 1 0

0 0 0 0 0 0 o 0

0 1 o o o o 0o 0

Predicted Labels

Figure 6.9 : RNN confussion matrix.

40

LSTMMet(
(lstm): LSTM(44856, 258, num_layers=2, batch_first=True, dropout=0.3)
(dropout): Dropout(p=8.3, inplace=False)
(fcl): Linear(im_ features=258, out features=128, bias=True)

28, out_features=88, bias=True)

B8, out_features=12, bias=True)

X

5=2
(fc2): Linear(in_features=1

5=5

(fc3): Linear(in_features=

Figure 6.10 : LSTM architecture.

Losses

Epoch

Figure 6.11 : LSTM losses graph.

for validation and 80.4% for test. The loss and accuracy graphs can be seen in the Fig:

6.11 and Fig: 6.12. Also the confusion matrix can be seen in the Table: 6.13.

After the best hyperparameters of the models are found for the current dataset one more
experiment set is conducted on LDA (which gave the best results among the traditional
machine learning approaches), CNN, RNN and LSTM to do cross validation on the
whole dataset for all models with the same train-test dataset pairs and get the average
results. For this part of the experiments, 5 different train-test pairs are created with
the whole dataset. All pairs have same number of samples for each dataset as it is
explained in the previous part of the experiment. Therefore difference between the
dataset pairs are; they include different samples for each sign for test and train. When
the whole dataset is divided into two as train and test, the sample picking is done
randomly for each 5 pairs while keeping the sample amount same for each different
sign (label). After the dataset pairs are created, for each pair the models are run for 5
times to get the average results for more precise resolutions. The results can be seen
in Fig: 6.14. The highlighted parts in the table reflects the best run for the particular

dataset with particular model among the 5 trials. As it can be seen from the table, the

41

Accuracies
10

—— Train Accuracy
—— Valigation Accuracy

Epoch

Figure 6.12 : LSTM accuracies graph.

Confusion Matrix of Model Test Predictions
¢+ g+ N

& & & & & & £y &
& & & & FH e # o F

o 14 1 1 0 o 1 1 o 0 0 2 0
> - 0 14 0] o 1 3 o 2 0 0 0
=
w’.‘" - 0 0 17 0 1 0 1 1 0 0 0 0
L
&
& 0 0 0 o 0 o 0 0 0 0 0
r
&
@!.}_ - 0 0 0 1 1 o o 1 0 0 1
&
n @és\,b\ - 1 0 0 1 o 16 o 0o 0 1 1 0
8
3
g
K]
= - 0 2 1 0 o 1 13 o 2 0 0 1
&
s
S - 0 0 0] o] o 17 0 3 0 0
¥
és:s‘- - 0 0 1 0 o 0 1 o 16 1 0 1
o
4 - 0 0 0 0 o 0 o 0o 1
rad
5
9@ - 3 0 0] o] o o 0
o 0 0 2 o o 1 o 0o 0
<&

Predicted Labels

Figure 6.13 : LSTM confussion matrix.

42

best test accuracies are 98.8% for LDA, 98.8% for CNN, 88.3% for RNN and 85.0%
for LSTM while the best average test accuracies are 98.8% for LDA, 97.9% for CNN,
94.9% for RNN and 82.3% for LSTM. Also the average of all paired datasets’ test
accuracy average results are as following: 97.4% for LDA, 96.9% for CNN, 82.8% for
RNN and 79.2% for LSTM.

43

144

NLST PUe NNY ‘NND VAT JO S)NSa1 UOTRPITeA SSOI)) : HT°9 In31g

BTI8L16S BOE60-LE-T0 EELLO |BYIBO |LTL6°0 |vBEL'6CE €05°TZ-SY-00 OSTE'0 |6SC8°0 |9VL6°0 |PS6B'EOT T9L°0€:60:00 0596°0 |£596°0 1666°0 |VIBT 09 0S9°TZ-00:00 B0L6°0 |608B6°0 98660 T
066 EFS EGZ°Z0YZ 0 8S6L°0 |THEB'0 ZT1L6°0 |OBET'TSE E6F'ET:SH00 |LT#FB'0 |EEEB"0 |0TBG'0 |OSSO'vOZ CEeO0'TER0:00 €8S6'0 |T986°0 |0000'T |OSBE'LS BCS'TZ.00:00 B80L6°0 |ST26°0 |9866°0 S o
019Z°619 SLS'PTSEE0 |SLBL0 | 10L8°0 |ESLE'0 (08TOVEE SvL GESPI00 |€B08°0 |8F18°0 |9996°0 0Z6T°S0T L29°7E60:00 |£996°0 |9496°0 S666°0 (091895 09L°TZ-00:00 |B0L6°0 |PE86°0 986670 ¥ m
(09827955 TBOZSETZ0 00080 |E96L°0 |S¥96°0 0ZFB'TEE SOB'ST:S¥:00 |€644°0 |LBEB0 |8VL670 OZEL00T €£9€°6Z:60:00 |£996°0 |T6V6'0 |S666°0 00Z+°8S £49°TZ:00°00 |8046°0 |6T86°0 |9866°0 € m
0t91°£8S CEG'OT¥EZ0 |0SZL0 | TELL'D |69L6°0 00¥9°8T1E £86'8T-S¥:00 |Z¥08°0 |Z0T8°0 |T896°0 0GLB°20T STETERD:00 |B0L6°0 | 6946°0 |6966°0 0B66°ED L8G°TZ00:00 B0L6°0 (964670 986670 [4 w
0t0Z°259 000°LT:8EZ0 |E8BCSL'0 |Z0T80 L0460 (06SEECE OBY ET:ST00 LIFB'0 |9Zv¥B°0 SE86°0 0ECT L0T 008°87'60:00 |SZ96°0 |T6¥60 S666°0 0880°t9 0£9°TZ200:00 B80L6°0 264670 986670 T
BEGSCTO 557029220 BS18°0 O0BBL'0 CTL6°0 |9L9€°BTE 6527025100 | L998°0 VTER'D 6C.L6°0 |B00L'00T FEQ'TEGO'00 |BSL6°0 (ETLO°0 BGOG'0 |C9ES°6S €66°TZ-00:00 T646°0 | TTEB6°0 0000'T Sy
0BVT LYS 6TO'SEETC0 LT6L'0 |WEBL0 |WZ96°0 |OOLV'IEE 089°ST:S¥:00 0SL8'0 |08E8°0 |TL96°0 |O96E'E0T ST¥'TE60:00 Z6L6°0 |STEBE°0 |0000°T |OETT LS EVSTZ:00:00 Z646°0 |¥IB6°0 |0000T S o
OTEZTED TIS90:EZ:E0 00S8'0 |9S08°0 |Evi6'0 |0BEO'TCE LOV0Z:S100 €EBB'0 |0BEB'D ESL6°0 |OBEZ'BOT 0LYEE60:00 |£996°0 |ZZL6°0 |S666°0 |OTBG'6S B6L°TZW00:00 Z646°0 |vEB6°0 |0000°T 14 m
0EZF 509 FLUTCECE0 EB08'0 |SBOL0 |T696°0 |OWBO'GEE OT¥ L2500 LTPE'0 |P6TE°0 |Bri6e'0 |OGET'BOT QLY EE60:00 | £996°0 |ZZL6°0 |S666°0 |OELG'SO 000°€Z:00:00 |Z646°0 |9086°0 |0000°T € m
0oFE"v19 BLOTTETC0 BSEL'0 |PEBLO |LZL6°0 |OEBE'LEE QL 8E-S00 | L998°0 |9Z¥E°0 |Z0L6°0 |OSTO'ZOT Cr.'TE'60:00 E€EB6'0 |EBSA'0 000O'T |OBBELS BT9°TZ.00:00 |Z6L6°0 |Z8L6°0 |0000°T [4 -
0TZZvIL 88L°/TBE'Z0 EEEB'0 |6008°0 |¥#LL6°0 |OLBY'ECE CE0'60:SH-00 |£998°0 |T¥EZ80 |¥#LL6°0 |OSTO'TIZ 0L0°€E'60:00 |€EB6'0 |ZZ/6°0 |0000'T |O9EELS 000°¢Z:00:00 26460 |6T86°0 |0000°T T
0F6L"ES9 EEF'ESDETCO BSLL'0 |BOEBL'O |L996°0 |ZEVD'BLE 6LL"BT:St-00 SLT8'0 |LOVB°0 |9¢L6°0 |0Z6W'LOT 6.F'TE:60:00 B0L6'0 |94/6°0 56660 |00WZ'T9 08T ¥ 00:00 S£86'0 |vIB6°0 |S5666°0 T
0GET 6ED FOT EV¥E-20 |B0LL°0 |LT6L°0 059670 (0EO0F SEE SEE'0Z:SP00 |LT6L°0 |£L598°0 |8¥L670 0ZBE°0TE £6¢°EE60:00 |Z646°0 |ST286°0 |0000'T 09629 £89°TZ:00°00 |SL86°0 |6E86°0 |S6E66'0 S o
(0SSEBTO 60/ 8T:0%20 |Z¥SL'0 |E6SL°0 |5596°0 0FB0°CEE L68°62:5¥:00 |L9T8°0 |B8FIB°0 EELG'OD OTSOZTE B89°TE60:00 |£996°0 |T6V60 S666°0 0zZ0L29 €89°TZ:00°00 |SL86°0 |EEB6°0 |S6E66'0 ¥ m
(0EED"FED QG0°LZ:0F 20 |EEBL'O |ZEZEL0 |S¥PO96°0 0TTOSEE OFe LT:S¥:00 EEEB'0 |0GLB°0 |T¥B6°0 (0E06°E0T S6S°0E:60:00 |S296°0 |STB6°0 |S666°0 0594709 000°TZ-00:00 |S£86°0 |6Z86°0 S666°0 € m
0868°L80 TELEC0F-C0 8S6L°0 |TFEB'0 £046°0 (0STS9ZE LTLGEISYI00 |B0Z8°0 | TFER°0 |T896°0 0S2.L°502 LSYTER000 |B0L6°0 |0666°0 066670 OF68 85 F£S TZ00:00 |S£86°0 |6EZ86°0 |S666°0 [4 w
(0S¥ 680 £00°9E:8ET0 |0SLL™0 |6TSE'0 (949670 0EOZ'TEE 9/9°00:S¥:00 |0S28°0 |T¥FE8°0 |0E96'0 0664102 £9€°6Z:60:00 |0SL6°0 |69L6°0 |S666°0 (0E9809 686°FE00:00 S£86°0 |TOB6'0 S666°0 T
OTLL7899 FSTOT-6E-C0 STT80 |VIBLO |6TL6°0 |IVTT'SKE ELVOT:SY-00 CoWEB'0 |LIVE0 |0ELE6'0 |OSLE'TOT BSE°6C0:60°00 | €6L6°0 |OBBO0 |9606°0 |9BOLLS COE'TT-00-00 SLB6'0 |LEBG'0 |TS66°0 “any
06617689 FrLC56E:€0 0S80 |LT6L0 |EvL6'0 |OWSS'PEE YOv°vLS00 £8GSB'0 |EEER0 (059670 JOETO'TOT ¥95°0E:60:00 |B0L6°0 |STB6°0 |0000'T |OVEYOS L6E'TZ00:00 S£86°0 |6T86°0 (986670 S o
0S6L°EZL9 000°61-6E-Z0 BOZB'0 |¥IBL0 |Brie'0 |OVBL'BCE 6FZ8T-S00 L9T8B'0 |0SLB°0 |EWL6°0 |OSZB'BET £79°0E'60:00 S£86°0 |STB6°0 |00D0'T |OEGS'BS ZSP'TZ-00-00 S£86°0 |9866°0 |STBE0 v m
09T0°00L [88°GE'GE-Z0 Z6Z8°0 |€96.°0 |T696°0 |OBOE'POE 6FEET-SH-00 |SLEB'0 |PETB°0 |ZZL6°0 |ODBE'LGT BCB'8Z'60:00 |05L6°0 |¥S66°0 |S666°0 |OTLG™GS FCETZ00:00 S£86°0 |Z8L6°0 (986670 € m
0FS0°6F9 06Z°0F-8E'C0 SZT8'0 |STEL'D |Te96'0 |O6ZF'IVE 000°ST:S+:00 ST98'0 |EEE8°0 |69L6'0 |OSLE'EOT L6T'8T'60:00 |S£86°0 |¥S66°0 |S666°0 |OLBS°BS €0¥'TZ-00-00 S£86'0 |BLL6°0 986670 [4 N
06 CED 6FE"LT:BET0 05280 |Z0T8'0 |E2.6°0 (0861°GSE YOETT:S#:00 B0L8'0 |2Lv¥B°0 69670 0Z/9°502 ¥y 82-60:00 |0546°0 |L066°0 06660 0B68°LS OSE'TZ00:00 |S£86°0 |6T86°0 986670 T
08947019 LY 856720 ZV6L°0 | YREL0 VE96'0 |99T6'TEE ELT6T-OF00 €6E8°0 ETC8°0 TOLG'0 |696°T0C 6YZ T1-60°:00 B956°0 |96/6°0 BG6O6'0 |VOT6'T9 CELTENDD00 005670 |BEB6°0 166670 “dny
00047199 LSV TYBEZO |SL8L°0 |P6T8°0 989670 (0954 °ETE 000°FT:S¥:00 |L9T8°0 |6TS8°0 999670 (0909°202 EECS'TT:60:00 |SLEG'0 |B6OL6°0 |SE66'0 (0008°S9 6LT'EEN00°00 |00S6°0 |¥E86°0 |T666°0 S o
0£6879L9 B60'GSBEZO ZV0B'0 |9G508°0 €TL6°0 006" L2E 000 TH:S#:00 €¥58°0 |9Zv¥B°0 ¥BL6°0 (00£9°86T SE9°ZT:60:00 |£996°0 |69L6°0 |S666°0 0ZL6°T9 SPS'¥EN00-00 |00S6°0 |L¥BE°0 |T666°0 ¥ m
00TE8" V5SS CET'BS-ETC0 O0SLL0 |6EQL0 |69L6°0 |09LE°LCE OTE0T:S¥00 STT8'0 |£96L°0 |¥#Z96°0 |OSBZ 60T €SLCT:60:00 85¥6°0 |69L6°0 |0000°T |OSZO'99 CTEYEN00-00 00S6e'0 |6T8B6°0 |Te660 € m
090L°TZ9 BE66T-WE:E0 BS6L0 |LTEL'0 (949670 |OELB'LEE 08v ¢S Lv00 EEEB'O |¥6T8°0 |ESLE6°0 |O90L'TOT £C9'¥T:60:00 |SZ96°0 |L066°0 |0000°T |OZL9°9S 0Sy'TZ:00:00 00S6°0 |vE86°0 |166670 [4 =
00EL"BES LETLLSETE0 EBOBO0 |LT6BL°0 |0E96°0 |OVTO'TVE EL0°BE 100 |€628°0 |E96L°0 (949670 |00Z9°96T ¥89°60:60:00 £996°0 |69/6°0 |0000'T |OETT¥9 E4T"SEN00:00 00S6'0 |¥EB6°0 |T66670 T
[Sw)awil 1531 oWl Ulel] 3y 1531 20V [BA| 0% UIEIL | (SWawil 1591 SWIL UIEl]| 22\ 1531 | 23 [EA 20\ UIELL| [SW)awWi] 1591 SWIl Ulel]| 22y 1531 | 20V [EA] 22y UIEdL| [Sw]3wWil 1531 awil Ulel]| 23y 3531 29y [EA| 22 ulel] |jenr
W1s1 NNY NND val

7. CONCLUSIONS AND RECOMMENDATIONS

The aim of this study is to recognize dynamic hand gestures and signs using Leap
Motion sensor. For this aim, several methods based on traditional machine learning and
deep learning based approaches are developed and tested on 12 words from the Turkish
Sign Language, which have dynamic two-handed signs. Leap Motion Controller is
employed as the depth sensor in this study, since it is compact, cost-efficient and

suitable for mobile use.

In the first step of the project, an efficient and broadly usable tool is created to collect
sign gesture data samples via Leap Motion Controller. This tool collects multiple time
frames with 178 different features for each sample simulation data and automatically
labels the data at the end of the recording. By using this tool, 2400 evenly distributed
data samples are collected. After the dataset is created some preprocessing steps are
applied to the data to make it usable for the deep learning approaches. In the second
step of the project six different traditional machine learning and three different deep

learning approaches are adopted in combination with multiple optimizers.

As the traditional machine learning approaches, Gaussian Naive Bayes, Support
Vector Machine, K-Nearest Neighbour, Random Forest, Linear Discriminant Analysis
and Multilayer Perceptron methods are used and classifiers are created with these
methods. With different parameters multiple experimental runs are conducted with
these classifiers and they are optimized. According to the results, it is concluded that
LDA 1is the most successful method among the machine learning approaches. LDA is
followed by SVM with linear kernels as it is seen in the test results. These results show
that the dataset is linearly separable, but also contains high similarities between labels.
Both of these approaches are very successful for linearly separable datasets but LDA
does better predictions when the data is highly linear because SVM does more complex
operations on the data even though it uses linear kernel. To verify this high linearity in
the dataset, first the variance of the feature components are analyzed with LDA. This

analysis can be seen on the Fig: 7.1. Then again with LDA, a dimensionality reduction

45

individual variance

0.30

0.25

0.20

Variance ratic

0.05

0.00

0 2 3 6 B 10
Principal components
Figure 7.1 : LDA variance graph.
is applied to create a 2 dimensional graph to visualize the data as seen on Fig: 7.2.

From the graph it can be observed that the dataset is mostly linear separable, therefore

using SVM on this dataset resulted an overfitting problem and lower test accuracy.

As the first deep learning approach, a Convolutional Neural Network model is
created with Cross Entropy Loss and Stochastic Gradient Decent optimizer. The
hyperparameters are altered between each training runs and the model optimized
according to the training and validation result analysis. As the second approach a
Basic Recurrent Neural Network model is created with Cross Entropy Loss and Adam
optimizer and the model is optimized by altering the hyperparameters and analyzing
the results. As the third approach, a Long Short-Term Memory Neural Network model
is created with again Cross Entropy Loss and Adam optimizer. This model is also
optimized by altering the hyperparameters between training runs and analyzing the
training and validation results. After both of the models are optimized a test sample set,
which is evenly distributed across the signs and is not used for training or validation,

is given to the models to get the test results.

As the final part of the experiments, 5 different train-test dataset pairs are created
from the whole dataset to do precise cross validation on all of the chosen models. On
these 5 dataset pairs optimized LDA, CNN, RNN and LSTM models are trained and
tested again for 5 times and average values are collected for train, validation and test

accuracies with the train time and test time. The average of all dataset pairs’ average

46

LDA 2

Linear Discriminant Analysis

acmak
ayni
birlikte
eglenmek
evienmek
festival
ihtivac
ilgi
oynamak
sinav

sira
tiyatro

15 -10 5 0 5 10
LDA_1

Figure 7.2 : Feature reduction to 2 dimensions with LDA graph.

47

test accuracy results are achieved as following: 97.4% for LDA, 96.9% for CNN,
82.8% for RNN and 79.2% for LSTM.

As the conclusion, it is shown that for the recognition of the chosen dataset CNN
approach is more successful than both RNN and LSTM approaches while it is slightly
less than the LDA approach. These results verify H1 where CNN shows a higher
success rate than other deep learning approaches but because LDA is as successful

as CNN, H2 cannot be verified with these results.

These results lead to the following conclusions. As the first and most apparent
conclusion; although the dataset consists of time series and the most popular
approaches are RNNs for this kind of datasets, both RNN and LSTM had significantly
worse results than both LDA and CNN approaches which are known to be simpler
learning methods. The most probable cause of this is the size of the dataset because
this kind of neural networks generally need huge amount of data to learn the relations
in between the data and the labels. Another highly probable cause is the structure of the
data. RNN kind neural networks need properly structured data for high success rates
but to construct the data as properly as they need costs high computation power for
preprocessing and time which is not desirable when the ultimate aim is the real-time
recognition. Also as it can be seen on the Fig: 6.14 the test times are very high for these
models which means models are more complex and there is latency in the recognition.
Therefore with their low test accuracies and high test times these two models are
dropped for model considerations of following studies where similar dataset will be

used.

As the second conclusion; the collected dataset is linearly separable for accurate
classification of 12 chosen labels and this characteristic of the dataset is resulted with a
successful LDA classifier for the recognition. On the other hand, this characteristic of
the dataset is highly dependent on the label amount. Because this study aims to cover
whole sign language in the future, 12 labels can be accepted as just the initiation of the
sign language recognition system and although LDA is very successful for this amount
of label its success will most probably drop as the label amount increases. While
this dependency exists for LDA and it is logically apparent, CNN also gives nearly as

successful results without any similar apparent dependency on the dataset. With this

48

consideration for the future experiments, CNN seems like a better approach for similar

datasets with more labels.

For the third conclusion, the confusion matrices of LDA and CNN approaches are
considered. As it can be seen from the confusion matrices in Fig: 6.1 and Fig: 6.5, the
worst result is for "eglenmek" label for both methods. CNN is more successful on this
sign with 18/20 correct predictions while LDA gives just 16/20 correct predictions for
the same label and it confuses the label mostly with the label "oynamak". Moreover
although overall accuracy results are slightly better for LDA it has 2 signs which’s
prediction accuracies are less than 18/20 where CNN correctly predicted all of the
labels for more than or equal to 18/20. Therefore this conclusion also supports the
previous one as LDA’s success highly varies with the different labels especially when
the data for multiple labels gets similar to each other which most probably means they
lose the linear separability characteristic. As the results of this evaluation, H2 can be
verified while CNN can be accepted as more successful than LDA with this point of

view.

Even though this study only includes 12 signs, the results are very promising, and the
study can be extended to cover as much of the Turkish Sign Language as possible, to
fulfill the needs of the deaf and hard-of-hearing people, which is the ultimate purpose

of this research.

To reach better results several different approaches can be adopted for the future
studies. These approaches can be summarized as; increasing the sample dataset size
as much as possible (at least 500 samples per sign), increasing the number of features
by using multiple sensors which are located at the different angles, applying a feature
selection strategy to prevent the noise in the data additional to making the process

faster.

Also as a future study of this project, a new application for the real-time recognition of
signs, is going to be developed by using the proposed model. This new application

is going to work cross platform and also across mobile devices and it will be

49

user-friendly, to be used in daily life communication of deaf and hard-of-hearing

people.

50

REFERENCES

[1] learn developers, S., Support Vector Machines, https://scikit-learn.
org/stable/modules/svm.html, reference date: 2020-06-16.

[2] Yiu, T., Understanding Random Forest, https://towardsdatascience.
com/understanding-random-forest-58381e0602d2, refer-
ence date: 2020-06-16.

[3] raman_257, ML [Linear Discriminant Analysis,
https://www.geeksforgeeks.org/
ml-linear—-discriminant—-analysis/, reference date:
2020-06-16.

[4] Kain, N.K., Understanding of Multilayer perceptron
(MLP), https://medium.com/Q@AI_with_Kain/

understanding-of-multilayer—-perceptron-mlp-8£f179c4al35f,
reference date: 2020-06-16.

[5] Amidi, A. and Amidi, S., CS 230 - Deep Learning -
Convolutional Neural Networks cheatsheet, https://
stanford.edu/~shervine/teaching/cs-230/

cheatsheet—-convolutional—-neural—-networks, reference
date: 2020-05-03.

[6] Amidi, A. and Amidi, S., CS 230 - Deep Learning - Recurrent Neural Networks
cheatsheet, https://stanford.edu/~shervine/teaching/

cs—-230/cheatsheet-recurrent—-neural—-networks,
reference date: 2020-05-03.

[7] Demircioglu, B., Bulbul, G. and Kose, H. (2016). Recognition of Sign
Language Hand Shape Primitives With Leap Motion, 7th Workshop on
the Representation and Processing of Sign Languages: Corpus Mining,

Language Resources and Evaluation Conference (LREC 2016), volume 1,
pp-47-52.

[8] Demircioglu, B., Bulbul, G. and Kose, H. (2016). Turkish Sign Language
recognition with Leap Motion, 2016 24th Signal Processing and
Communication Application Conference (SIU), pp.589-592.

[9] Chuan, C.H., Regina, E. and Guardino, C. (2014). American Sign Language
Recognition Using Leap Motion Sensor, Machine Learning and Applica-
tions (ICMLA), 2014 13th International Conference on, pp.541-544.

51

[10] Mohandes, M., Aliyu, S. and Deriche, M. (2014). Arabic sign language
recognition using the leap motion controller, Industrial Electronics (ISIE),
2014 IEEE 23rd International Symposium on, pp.960-965.

[11] Bassem Khelil, H.A. (2016). Hand Gesture Recognition Using Leap Motion
Controller for Recognition of Arabic Sign Language, 3rd International

Conference on Automation, Control, Engineering and Computer Science
(ACECS’16), pp.233-238.

[12] Mapari, R.B. and Kharat, G. (2015). Real time human pose recognition using
leap motion sensor, 2015 IEEE International Conference on Research
in Computational Intelligence and Communication Networks (ICRCICN),
pp-323-328.

[13] Makiko Funasaka, Yu Ishikawa, M.T. and Joe, K. (2015). Sign Language
Recognition using Leap Motion Controller, Int’l Conf. Par. and Dist. Proc.
Tech. and Appl. | PDPTA’15 |, p.263.

[14] Kumar, P., Saini, R., Behera, S.K., Dogra, D.P. and Roy, P.P. (2017).
Real-time recognition of sign language gestures and air-writing using leap
motion, 2017 Fifteenth IAPR International Conference on Machine Vision
Applications (MVA).

[15] Avola, D., Bernardi, M., Cinque, L., Foresti, G.L. and Massaroni, C. (2019).
Exploiting Recurrent Neural Networks and Leap Motion Controller for
the Recognition of Sign Language and Semaphoric Hand Gestures, /[EEE
Transactions on Multimedia, 21(1), 234-245.

[16] P.Karthick, N.Prathiba, V. and S.Thanalaxmi (2014). Transforming Indian
Sign Language into Text Using Leap Motion, International Journal of
Innovative Research in Science, Engineering and Technology, volume 3,
pp-10906-10910.

[17] etal., C.Y. (2016). Human—Robot Interaction Interface, Advanced Technologies in
Modern Robotic Applications, pp.257-301.

[18] Tao Wang, Xiaolong Cai, L.W. and Tian, H. (2018). Interactive Design of 3D
Dynamic Gesture Based on SVM-LSTM Model, International Journal of
Mobile Human Computer Interaction, p. 15.

[19] Naguri, C.R. and Bunescu, R.C. (2017). Recognition of Dynamic Hand Gestures
from 3D Motion Data Using LSTM and CNN Architectures, 2017 16th
IEEE International Conference on Machine Learning and Applications

(ICMLA), pp.1130-1133.

[20] Kumar, P., Saini, R., Roy, P.P. and Dogra, D.P. (2016). Study of Text
Segmentation and Recognition Using Leap Motion Sensor, IEEE Sensors
Journal.

[21] Behera, S., Dogra, D. and Roy, P. (2017). Analysis of 3D signatures
recorded using leap motion sensor, Multimedia Tools and Applications 77,
p-14029-14054.

52

[22] Mohandes, M., Aliyu, S. and Deriche, M. (2015). Prototype Arabic Sign
language recognition using multi-sensor data fusion of two leap motion
controllers, 2015 IEEE 12th International Multi-Conference on Systems,
Signals & Devices (SSD15).

[23] Fok, K., Ganganath, N., Cheng, C. and Tse, C.K. (2015). A Real-Time ASL
Recognition System Using Leap Motion Sensors, 2015 International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery, pp.411-414.

[24] Miada A. Almasre, H.A.N. (2016). A Real-Time Letter Recognition Model
for Arabic Sign Language Using Kinect and Leap Motion Controller
v2, International Journal of Advanced Engineering, Management and
Science, 2.

[25] Marin, G., Dominio, F. and Zanuttigh, P. (2014). Hand gesture recognition with
leap motion and kinect devices, 2014 IEEE International Conference on
Image Processing (ICIP), pp.1565-1569.

[26] Marin, G., Dominio, F. and Zanuttigh. (2015). Hand gesture recognition with
jointly calibrated Leap Motion and depth sensor, P. Multimed Tools Appl
(2016).

[27] Pradeep Kumar, Partha Pratim Roy, D.P.D. (2018). Independent Bayesian
classifier combination based sign language recognition using facial
expression, Information Sciences, volume428, pp.30—48.

[28] Pradeep Kumar, Himaanshu Gauba, P.P.R. and Dogra, D.P. (2017). A
multimodel framework for sensor based sign language recognition,
Neurocomputing, volume259, pp.21-38.

[29] Wenwen Yang, Jinxu Tao, Z.Y. (2016). Continuous sign language recognition
using level building based on fast hidden Markov model, Pattern
Recognition Letters, pp.28-35.

[30] Jiayi Li, Aman Shrestha, J.L.K. and Fioranelli, F. (2019). From Kinect skeleton
data to hand gesture recognition with radar, The Journal of Engineering
IET International Radar Conference (IRC 2018), pp.6914—6919.

[31] Nada B. Ibrahim, Mazen M. Selim, H.H.Z. (2018). An Automatic Arabic
Sign Language Recognition System (ArSLRS), Journal of King Saud
University — Computer and Information Sciences, volume 30, pp.470-477.

[32] Kian Ming Lim, AlanW.C. Tan, S.T. (2016). A feature covariance matrix with
serial particle filter for isolated sign language recognition, Expert Systems
With Applications, volume 54, pp.208-218.

[33] Oscar Koller, Jens Forster, H.N. (2015). Continuous sign language recognition:
Towards large vocabulary statistical recognition systems handling multiple

signers, Computer Vision and Image Understanding, volumel4l,
pp-108-125.

53

[34] Shin, S. and Sung, W. (2016). Dynamic hand gesture recognition for
wearable devices with low complexity recurrent neural networks, 2016
IEEE International Symposium on Circuits and Systems (ISCAS),
pp.2274-22717.

[35] Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S. and Kautz, J. (2016).
Online Detection and Classification of Dynamic Hand Gestures with
Recurrent 3D Convolutional Neural Networks, 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.4207-4215.

[36] Eckhardt, C., Sullivan, J. and Pietroszek, K. (2017). Flex: Hand Gesture
Recognition Using Muscle Flexing Sensors, Proceedings of the 5th
Symposium on Spatial User Interaction, SUI 17, Association for
Computing Machinery, New York, NY, USA, p.164, https://doi.
org/10.1145/3131277.3134360.

[37] Ma, C., Wang, A. and Chen, G.e.a. (2018). Hand joints-based gesture recognition
for noisy dataset using nested interval unscented Kalman filter with LSTM
network, The Visual Computer, volume 34, p.1053—1063.

[38] Potter, L.E., Araullo, J. and Carter, L. (2013). The Leap Motion controller: a
view on sign language, OzCHI ’13: Proceedings of the 25th Australian
Computer-Human Interaction Conference: Augmentation, Application,
Innovation, Collaboration, pp.175-178.

[39] Kooij, J.F. (2016). SenseCap: Synchronized Data Collection with Microsoft
Kinect2 and LeapMotion, Proceedings of the 24th ACM International
Conference on Multimedia, MM ’16, Association for Computing
Machinery, New York, NY, USA, p.1218-1221, https://doi.org/
10.1145/2964284.2973805.

[40] Giincel Tiirk I§aret Dili Sozliigi, http://tidsozluk.net/, reference date:
2020-04-08.

54

APPENDICES

APPENDIX A.1 : Data Features Collected From Leap Motion Controller

55

APPENDIX A.1: Data Features Collected From Leap Motion Controller

Data features (columns) are as following (in order):

e Hand_Left PalmNormal X

e Hand Left PalmNormal Y

e Hand Left PalmNormal Z

e Hand Left PalmNormal PITCH

e Hand Left PalmNormal YAW

e Hand_Left PalmNormal ROLL

e Hand_Left_PalmVelocityl_X

e Hand_Left PalmVelocity Y

e Hand_Left PalmVelocity_Z

e Hand_Left_PalmVelocity_PITCH

e Hand_Left_PalmVelocity_ YAW

e Hand_Left_PalmVelocity_ROLL

e Hand_Left Direction_X

e Hand Left Direction_Y

e Hand Left Direction_Z

e Hand Left Direction_ PITCH

e Hand Left Direction. YAW

e Hand_Left Direction ROLL

e Hand Left Arm_ Direction_X

e Hand Left Arm_ Direction Y

e Hand Left Arm_ Direction 7

e Hand_Left Arm_Direction_ PITCH

e Hand_Left_ Arm_Direction_ YAW

e Hand_Left Arm_Direction. ROLL

e Hand_Left_Finger TYPE_THUMB_IsExtended
57

Hand_Left_Finger TYPE_THUMB_Direction_X
Hand_Left_Finger TYPE_THUMB_Direction_Y
Hand_Left_Finger_TYPE_THUMB_Direction_Z
Hand_Left_Finger TYPE_THUMB_Direction_PITCH
Hand_Left_Finger TYPE_THUMB_Direction_YAW
Hand_Left_Finger TYPE_THUMB_Direction_ROLL
Hand_Left_Finger TYPE_THUMB_TipVelocity_X
Hand_Left_Finger TYPE_THUMB_TipVelocity_Y
Hand_Left_Finger TYPE_THUMB_TipVelocity_Z
Hand_Left_Finger TYPE_THUMB_TipVelocity_PITCH
Hand_Left_Finger TYPE_THUMB_TipVelocity_ YAW
Hand_Left_Finger TYPE_THUMB_TipVelocity_ ROLL
Hand_Left_Finger_TYPE_INDEX_IsExtended
Hand_Left_Finger TYPE_INDEX_Direction_X
Hand_Left_Finger TYPE_INDEX_Direction_Y
Hand_Left_Finger TYPE_INDEX_Direction_Z
Hand_Left_Finger_ TYPE_INDEX_Direction_PITCH
Hand_Left_Finger TYPE_INDEX_Direction_ YAW
Hand_Left_Finger_ TYPE_INDEX_Direction_ROLL
Hand_Left_Finger TYPE_INDEX_TipVelocity_X
Hand_Left Finger TYPE_INDEX_ TipVelocity_Y
Hand_Left_Finger_ TYPE_INDEX_TipVelocity_Z
Hand_Left_Finger_TYPE_INDEX_TipVelocity_PITCH
Hand_Left_Finger_TYPE_INDEX_TipVelocity_YAW
Hand_Left_Finger_TYPE_INDEX_TipVelocity_ROLL
Hand_Left_Finger TYPE_MIDDLE_IsExtended
Hand_Left_Finger_ TYPE_MIDDLE_Direction_X
Hand_Left_Finger_ TYPE_MIDDLE_Direction_Y

Hand_Left_Finger TYPE_MIDDLE_Direction_Z

58

Hand_Left_Finger_TYPE_MIDDLE_Direction_PITCH
Hand_Left_Finger_ TYPE_MIDDLE_Direction_YAW
Hand_Left_Finger_TYPE_MIDDLE_Direction_ROLL
Hand_Left_Finger_ TYPE_MIDDLE_TipVelocity_X
Hand_Left_Finger TYPE_MIDDLE_TipVelocity_Y
Hand_Left_Finger TYPE_MIDDLE_TipVelocity_Z
Hand_Left_Finger_TYPE_MIDDLE_TipVelocity_ PITCH
Hand_Left_Finger_ TYPE_MIDDLE_TipVelocity_ YAW
Hand_Left_Finger_ TYPE_MIDDLE_TipVelocity_ ROLL
Hand_Left_Finger_TYPE_RING_IsExtended
Hand_Left_Finger_TYPE_RING_Direction_X
Hand_Left_Finger_ TYPE_RING_Direction_Y
Hand_Left_Finger_TYPE_RING_Direction_Z
Hand_Left_Finger_TYPE_RING_Direction_PITCH
Hand_Left_Finger_ TYPE_RING_Direction_YAW
Hand_Left_Finger_ TYPE_RING_Direction_ROLL
Hand_Left_Finger_TYPE_RING_TipVelocity_X
Hand_Left_Finger_ TYPE_RING_TipVelocity_Y
Hand_Left_Finger_ TYPE_RING_TipVelocity_Z
Hand_Left_Finger_TYPE_RING_TipVelocity_PITCH
Hand_Left_Finger_TYPE_RING_TipVelocity_ YAW
Hand_Left_Finger_TYPE_RING_TipVelocity_ ROLL
Hand_Left_Finger_TYPE_PINKY_IsExtended
Hand_Left_Finger_TYPE_PINKY_Direction_X
Hand_Left_Finger_ TYPE_PINKY_Direction_Y
Hand_Left_Finger_ TYPE_PINKY_Direction_Z
Hand_Left_Finger_ TYPE_PINKY_Direction_PITCH
Hand_Left_Finger_TYPE_PINKY_Direction_YAW

Hand_Left_Finger_TYPE_PINKY_Direction_ROLL

59

Hand_Left Finger TYPE_PINKY_TipVelocity_X
Hand_Left_Finger TYPE_PINKY_TipVelocity_Y
Hand_Left_Finger_TYPE_PINKY_TipVelocity_Z
Hand_Left_Finger_TYPE_PINKY_TipVelocity_ PITCH
Hand_Left_Finger_TYPE_PINKY_TipVelocity_ YAW
Hand_Left_Finger TYPE_PINKY_TipVelocity_ROLL
Hand_Right_PalmNormal_X
Hand_Right_PalmNormal_Y
Hand_Right_PalmNormal_Z
Hand_Right_PalmNormal_PITCH

Hand_Right PalmNormal YAW
Hand_Right_PalmNormal_ROLL
Hand_Right_PalmVelocityl_X
Hand_Right_PalmVelocity_Y
Hand_Right_PalmVelocity_Z
Hand_Right_PalmVelocity_ PITCH
Hand_Right_PalmVelocity_ YAW

Hand_Right PalmVelocity_ ROLL
Hand_Right_Direction_X

Hand_Right_Direction_Y

Hand_Right_Direction_Z
Hand_Right_Direction_PITCH
Hand_Right_Direction_ YAW
Hand_Right_Direction_ROLL
Hand_Right_Arm_Direction_X
Hand_Right_Arm_Direction_Y
Hand_Right_Arm_Direction_Z
Hand_Right_Arm_Direction_PITCH

Hand_Right_Arm_Direction_ YAW

60

Hand_Right_Arm_Direction_ROLL
Hand_Right_Finger_ TYPE_THUMB_IsExtended
Hand_Right_Finger TYPE_THUMB_Direction_X
Hand_Right_Finger_TYPE_THUMB_Direction_Y
Hand_Right_Finger_TYPE_THUMB_Direction_Z
Hand_Right_Finger_ TYPE_THUMB_Direction_PITCH
Hand_Right_Finger_TYPE_THUMB_Direction_YAW
Hand_Right_Finger_TYPE_THUMB_Direction_ROLL
Hand_Right_Finger_ TYPE_THUMB_TipVelocity_X
Hand_Right_Finger_TYPE_THUMB_TipVelocity_Y
Hand_Right_Finger_TYPE_THUMB_TipVelocity_Z
Hand_Right_Finger_TYPE_THUMB_TipVelocity_PITCH
Hand_Right_Finger TYPE_THUMB_TipVelocity_ YAW
Hand_Right_Finger_TYPE_THUMB_TipVelocity_ROLL
Hand_Right_Finger_TYPE_INDEX_IsExtended
Hand_Right_Finger_TYPE_INDEX_Direction_X
Hand_Right_Finger_TYPE_INDEX_Direction_Y
Hand_Right_Finger_TYPE_INDEX_Direction_Z
Hand_Right_Finger_ TYPE_INDEX_Direction_PITCH
Hand_Right_Finger_TYPE_INDEX_Direction_YAW
Hand_Right_Finger_TYPE_INDEX_Direction_ROLL
Hand_Right_Finger_TYPE_INDEX_TipVelocity_X
Hand_Right_Finger_ TYPE_INDEX_TipVelocity_Y
Hand_Right_Finger_TYPE_INDEX_TipVelocity_Z
Hand_Right_Finger_TYPE_INDEX_TipVelocity_ PITCH
Hand_Right_Finger_TYPE_INDEX_TipVelocity_ YAW
Hand_Right_Finger_TYPE_INDEX_TipVelocity_ROLL
Hand_Right Finger TYPE_MIDDLE_IsExtended

Hand_Right_Finger_ TYPE_MIDDLE_Direction_X

61

Hand_Right_Finger_TYPE_MIDDLE_Direction_Y
Hand_Right_Finger_TYPE_MIDDLE_Direction_Z
Hand_Right_Finger_TYPE_MIDDLE_Direction_PITCH
Hand_Right_Finger_TYPE_MIDDLE_Direction_YAW
Hand_Right_Finger_TYPE_MIDDLE_Direction_ROLL
Hand_Right_Finger_TYPE_MIDDLE_TipVelocity_X
Hand_Right_Finger_TYPE_MIDDLE_TipVelocity_Y
Hand_Right_Finger_TYPE_MIDDLE_TipVelocity_Z
Hand_Right_Finger_TYPE_MIDDLE_TipVelocity_PITCH
Hand_Right_Finger_TYPE_MIDDLE_TipVelocity_ YAW
Hand_Right_Finger_TYPE_MIDDLE_TipVelocity_ROLL
Hand_Right_Finger_TYPE_RING_IsExtended
Hand_Right_Finger_TYPE_RING_Direction_X
Hand_Right_Finger_TYPE_RING_Direction_Y
Hand_Right_Finger_TYPE_RING_Direction_Z
Hand_Right_Finger_TYPE_RING_Direction_PITCH
Hand_Right_Finger_TYPE_RING_Direction_YAW
Hand_Right_Finger_TYPE_RING_Direction_ROLL
Hand_Right_Finger_TYPE_RING_TipVelocity_X
Hand_Right_Finger_TYPE_RING_TipVelocity_Y
Hand_Right_Finger_TYPE_RING_TipVelocity_Z
Hand_Right_Finger_TYPE_RING_TipVelocity_ PITCH
Hand_Right_Finger_TYPE_RING_TipVelocity_ YAW
Hand_Right_Finger_TYPE_RING_TipVelocity_ ROLL
Hand_Right Finger TYPE_PINKY_IsExtended
Hand_Right_Finger_ TYPE_PINKY _Direction_X
Hand_Right_Finger_TYPE_PINKY_Direction_Y
Hand_Right_Finger_TYPE_PINKY_Direction_Z

Hand_Right_Finger_TYPE_PINKY_Direction_PITCH

62

Hand_Right Finger TYPE_PINKY_Direction_ YAW
Hand_Right_Finger_TYPE_PINKY_Direction_ROLL
Hand_Right_Finger_TYPE_PINKY _TipVelocity_X
Hand_Right_Finger_TYPE_PINKY_TipVelocity_Y
Hand_Right_Finger_TYPE_PINKY_TipVelocity_Z
Hand_Right_Finger_TYPE_PINKY_TipVelocity_ PITCH
Hand_Right_Finger_TYPE_PINKY_TipVelocity_ YAW

Hand_Right Finger TYPE_PINKY_TipVelocity_ ROLL

63

CURRICULUM VITAE

Name Surname: Burcak Demircioglu Kam
Place and Date of Birth: 24.11.1991 Bornova

E-Mail: burcakdemircioglu @gmail.com

EDUCATION:

e B.Sc.: 2015, Istanbul Technical University, Computer and Informatics Engineering,
Computer Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

e 2019-Present Software Engineer at Microsoft
e 2016-2019 Software Engineer at Hive Bilisim ve Yazilhim A.S$.

e 2016 3rd Place in Enterprising and Innovative Graduation Design Project
Competition of ITU ARI Teknokent

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

e B. Demircioglu Kam, and H. Kose, "A New Data Collection Interface for Dynamic
Gesture and Sign Recognition with Leap Motion Sensor," PUDCAD Game+Design
Education International Conference, Istanbul, 24-26 June,2020.

65

