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ABSTRACT

SUPER-GAIN PARAMETRIC WAVE AMPLIFICATION IN
OPTICAL MICRO-RESONATORS USING ULTRASHORT PUMP WAVES

Asirim, Oziim Emre
Doctor of Philosophy, Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. Mustafa Kuzuoglu

June 2020, 135 pages

The aim of this thesis is to show that super-gain electromagnetic wave amplification can
be achieved in a small micro-resonator using high-intensity ultrashort pump waves,
provided that the frequencies of the ultrashort pulses are tuned to maximize the intracavity
magnitude of the wave to be amplified, which is called the stimulus wave. In order to
accomplish this, a dispersion analysis is performed via numerical modeling of the
polarization density in terms of the nonlinear electron cloud motion. The polarization
density is then concurrently solved with the wave equation for the electric field. Through
a series of nonlinear programming integrated finite difference time domain simulations,
we have determined the optimum pump wave frequencies that simultaneously maximize
the stored electric energy density and the polarization density inside a micro-resonator by
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm. Based on
the results of our numerical experiments, we propose that micrometer-scale achievement
of super-gain electromagnetic wave amplification is possible in a micro-resonator with
high-intensity ultrashort “pump wave” pulses, by determining the optimum frequencies
that concurrently maximize the stored electric energy density and the polarization density
in a dielectric interaction medium.

Keywords: Wave amplification, Nonlinear wave mixing, Micro-resonator, Optimization
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OPTIK MiKRO-YANKILAYICILARDA COK KISA SURELI KAYNAK
DALGALARI iLE ELEKTROMANYETIK DALGALARIN SUPER-KAZANCLI
GENLIiK YUKSELTIMI

Asirim, Oziim Emre
Doktora, Elektrik Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Mustafa Kuzuoglu

Haziran 2020, 135 Sayfa

Bu tezde mikroyankilayicilarin kisa siireli kaynak dalgalar ile genis bantli ve yiiksek
kazangli elektromanyetik dalga yiikseltgeci olarak kullanilabilmesine yonelik en iyileme
ve gelistirme yontemleri ele alinmaktadir. Denetimsel yontem olarak bilgisayar
hesaplamas1 kullanilmistir. Hesaplamalar dalga denkleminin egrisel elektron hareketi
denklemi ile ayn1 anda ¢6ziilmesi yolu ile gerceklestirilmistir. Bu hesaplamalar yapilirken
zaman boyutunda sonlu fark ydnteminden yararlanilmistir. Oncelikle yankilayici
igerisinde ki enerji en yliksek seviyeye cikarilacak sekilde kaynak dalgas titresim sikligt
ayarlamas1 yapilmistir. Bununla birlikte, kaynak dalgasindan genligi yiikseltilecek
dalgaya enerji aktariminin fazla olmasi i¢in egrisel baglanti katsayisinin da yiiksek olmasi
saglanmistir. Bunlara ek olarak, ytlik kutuplasmasi yogunlugunun fazla olmasini saglamak
ve enerji birikimini arttirmak i¢in soniimlenme katsayisinin diisiik secilmesi gerektigine
vurgu yapilmis ve bu vurgu bilgisayar hesaplamalari ile belirtilmistir. Son olarak, kazang
ortaminin yankilayicr titresim sikliginin diisiik olmasinin egrisel kazanci arttiracagi
gosterilmis ve kazang ortaminin buna gore secilmesi gerektigi belirtilmistir. Bugiin kii
kuramsal onerilere aykir1 olarak mikroyankilayicilarda genis bantli ve yiiksek kazanclh
genlik yiikseltmesi yapilabilecegi onerilmis, ve bunun i¢in kaynak dalgasinin titresim
sikliginin ayarlanmasi gerektigi sonucuna varilmstir.

Anahtar  Kelimeler:  Genlik yiikseltimi, dogrusal olmayan dalga karisimu,
Mikroyankilayici, Optimizasyon
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CHAPTER 1

INTRODUCTION

Parametric wave amplification is a broadband amplification technique that is based on
nonlinear wave interaction. It allows for high-gain amplification in a wide spectral band,
especially in the optical region. Therefore, it is a commonly used technique of wave
amplification, when a sufficiently-long nonlinear gain medium, and an intense pump wave
that can supply the input wave with energy, are simultaneously available. In the
micrometer scale, even materials with a high second or third order electric susceptibility,
are not useful to yield a significant gain factor. Based on many recent studies on optical
parametric amplification, a significant gain in the micrometer scale is not achievable.
Some previous studies have reported a high-gain optical parametric amplification in the
millimeter scale, however, these studies have assumed for a single resonance (emission)
frequency and have not considered the case of multiple resonance frequencies for an
interaction medium. A more realistic approach is to consider an interaction material with
multiple resonance frequencies in a given spectral band. More importantly, the vast
majority of studies on optical parametric amplification have treated the nonlinear electric
susceptibilities (second and third order) as time independent constants. However, when
the pump wave is an ultrashort pulse (with a duration of less than several picoseconds),
which is usually the case given that most intense pump waves have practically very short
durations, this is not a realistic assumption. Several computational studies have modeled
the nonlinear electric susceptibilities as functions of time, though their results were not
perfectly reliable as these computational studies have relied on experimental data to create
the time dependent nonlinear susceptibility models, which is subject to a variety of errors

due to harmonic generation and spectral broadening. Moreover, experimental



data for the nonlinear electric susceptibility of most materials are not available, which
limits the applicability of time dependent nonlinear susceptibility models. Recent
experimental studies on nonlinear optics, are mostly focusing on improving harmonic
conversion efficiencies and generating an ultra-wideband supercontinuum using ultrashort
pulses. In the last two decades, optical parametric amplification technique has been
investigated to be employed in milimetric “on-chip” optical devices with promising
results. However, micro-scale optical amplification seems to be unfeasible and remains

uninvestigated.

Optical parametric amplification usually enables the achievement of a high gain factor for
interaction mediums with a length of a few centimeters [1]. For interaction mediums with
unusually high nonlinear electric susceptibilities, the required length reduces to a few
milimeters. In the micrometer scale, the achievement of a high gain factor might be
possible with artificially created materials, such as glass doped with gold nanoparticles
[2]. However, the fabrication of these materials with necessary interaction lengths is
challenging and these materials can be quite expensive. Some experimental studies report
novel materials with extraordinarily-high resonant nonlinear susceptibilities for certain
frequencies [1-2], which can be used for the applications of nonlinear integrated optics.
Though, these materials are not suitable for optical amplification as their dielectric
absorption is very strong at these frequencies where nonlinear response displays a
resonance behaviour. Hence, experimental studies, for the most part, do not focus on
enhancing the gain factor of an optical parametric amplification. In addition,
computational studies on nonlinear optics is quite limited as the required interaction length
is hundreds of wavelengths long, which requires an enormous computational power.
Commercially important optical frequencies are on the nanometer scale and a few
centimeters long interaction medium would require a computational domain of thousands
of wavelengths, which restricts the duration of simulation and increases the cost of

computation [1-3].

Theoretically, high gain optical parametric amplification can be achieved in the
micrometer scale by increasing the intensity of the pump wave pulse to a level where the

interaction medium starts to couple the pump wave to the input wave to be amplified.



However, this will practically breakdown the interaction medium and will cause ionization
of the interaction medium [4-5]. This is due to the optical breakdown of the interaction
medium due to very high intensity. Different materials have different optical breakdown
intensities, but a pump wave intensity that is high enough to provide amplification
(theoretically) in the micrometer scale would breakdown almost any interaction medium.
Therefore, increasing the intensity of the pump wave for achieving a considerable gain in
the micrometer scale is not feasible and will damage the interaction medium. Furthermore,
one may increase the frequencies of the pump wave and the input wave (assuming both
are perfectly monochromatic) for a higher gain factor in the micrometer scale, but this
would offer a noticably enhanced gain factor only in the near ultraviolet part of the
spectrum and beyond[6-8]. For these reasons, a computational study that involves an in-
depth dispersion analysis remains necessary for the possibility of achieving wideband

high-gain optical parametric amplification in the micrometer scale.

Performing parametric optical amplification in the microscale could offer a wideband
high-gain amplification feature for microphotonic devices and might enable wideband
optical antennas for future applications in integrated photonics. Currently no experimental
study has reported wideband high-gain optical parametric amplification in a
microresonator or in any other microscale device based on our investigations of recently

available reviews on wave amplification via nonlinear mixing.

A recent computational study [32] has shown the achievement of super-gain optical
parametric amplification in a microresonator. In this study, a single resonance interaction
medium is considered. Although some media have only a single resonance frequency
(such as excitonic materials), in practice most media have multiple resonance frequencies.
This thesis aims to investigate the achievement of super-gain optical parametric
amplification in an interaction medium with multiple resonance frequencies, using the
finite difference time domain method (FDTD), incorporated with a constrained numerical

optimization algorithm.

In this study, the dispersion analysis is based on the modeling of polarization density by
using the nonlinear equation of electron motion. The treatment is classical instead of a

qguantum one. The wave equations for the electric field of the pump wave and the input



wave to be amplified, will be solved in parallel with the dispersion equations that involve
the polarization density. The total polarization density is considered to be due to the sum
of all electron polarizations with respect to the nucleus, based on each different resonance
frequency (atomic model “spring constant”). Each resonance frequency will result in the
addition of a dispersion equation that involve the corresponding polarization density
component. The polarization density components will finally be added to obtain the total
polarization density due to all resonance frequencies and all the corresponding damping
rates (state lifetimes). It is essential to note that each resonance frequency and each
corresponding polarization density component will have a weight factor that is equal to
the ratio of the electrons oscillating at that particular resonance frequency. This is a result

of the quantum mechanical (probabilistic) interpretation of the atomic model.

This study aims to build on the study given in [32] in order to present a more realistic
picture on the feasibility of optical parametric amplification in a microresonator. A simple
fabry perot type microresonator will be assumed in the discussion. The basic form of
Newton’s optimization algorithm that involves penalty functions (constraints) will be
incorporated in the FDTD method to optimize the gain factor for an interaction medium

with multiple resonance frequencies under certain restrictions.

The propagation of waves in nonlinear dispersive media will be presented firstly as the
background subject for the subsequent optimization analysis. Two simulations will be
presented and their results will be analyzed in the discussion section. The conclusion of
this study aims to provide a recipe for high-gain optical amplification in a microresonator
with an ordinary interaction medium with multiple emission frequencies. Importance of
careful nonlinear programming for any given experimental setup and the flowchart of the
complete algorithm is emphasized in the concluding comments.

1.1 Basics of parametric amplification

Parametric amplification is a nonlinear process in which a low intensity input wave is
amplified by a high intensity pump wave. The high intensity of the pump wave is what

makes the parametric amplification possible through nonlinear coupling in an interaction



medium. The required intensity for nonlinear coupling depends on the nonlinearity of the
interaction medium [9-11]. For strongly nonlinear interaction mediums, the required
pump wave intensity can be relatively low. For an interaction medium with minimal
nonlinearity, the required intensity can be very high and sometimes high enough to
damage the interaction medium, for this reason, interaction mediums exhibiting low
nonlinearities are not preferred for the optical parametric amplification process. In most
research papers and book chapters about optical parametric amplification, the nonlinearity
coefficients of most interaction mediums are assumed to be constant during the interaction
of the input wave and the pump wave. This is a valid assumption when the durations of
the input wave and the pump wave are much longer than the nonlinear response time of
the interaction medium, however, when the nonlinear response time of the interaction
medium is long or when the duration of the high-intensity pump wave is very short, such
an assumption might be inaccurate [12-13]. Since the period of an electromagnetic wave
in the optical frequency range is very small ( on the order of femtoseconds), the pump
wave is mostly assumed to be monochromatic, even when it is generated by systems that
are known to generate ultrashort pump wave pulses, such as mode-locked lasers or Q-
switched lasers. The pump wave amplitude is usually assumed to be constant during the
interaction time, this is a reasonable assumption when the gain factor of the input wave is
not very high. However, for high-gain amplifications of the input wave, the pump wave
amplitude decreases significantly over time and the assumption of constant pump wave
amplitude is not valid [14-16].

Parametric amplification is more efficient at relatively high frequencies. For example, the
amplification efficiency in the ultraviolet range is much higher than the amplification
efficiency in the far infra-red frequency range. In the microwave frequency range, the
efficiency of parametric amplification is quite low and requires a long interaction medium
to compensate for low efficiency. One of the most attractive features of optical parametric
amplification is that it can be achieved in a very wide frequency band. The bandwidth of
the amplification is not limited to the emission bandwidth of the interaction material as in
the case for lasers. The amplification bandwidth is limited only by the pump wave
frequency, which has to be higher than the frequency of the input wave. Therefore, in

terms of monochromatic description, a visible input wave cannot be amplified by an
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infrared pump wave or a visible pump wave cannot be used to amplify an ultraviolet input
wave. Hence, it is better to use a high frequency pump wave to increase the amplification
bandwidth. An ultraviolet pump wave for example, can be generated via frequency

doubling of an intense visible pump wave by using a highly efficient frequency doubler.

One weakness of optical parametric amplification (OPA) technique is that it works very
poorly for microscale interaction mediums. OPA relies heavily on the interaction medium
length. Even under very intense pump wave excitations, the amplification of an input wave
Is negligible in the micrometer scale. One practical way of increasing the amplifiation
efficiency is to increase the pump wave amplitude to the optical power threshold without
causing breakdown, and by increasing the pump wave and the input wave frequencies,
however, this will limit the amplification to higher frequencies and most importantly will
cause damage to the interaction material over time, since microscale interaction materials
are susceptible for optical breakdown, especially at high frequencies. This makes OPA

not suitable for the applications of integrated nonlinear photonics.

A possible solution is to use an interaction medium with an extraordinarily high
nonlinearity, although such materials are very rare, there are artifical materials that
demonstrate superior nonlinear optical response. These artifical materials are usually
expensive and exhibit high conduction and scattering losses under excitation, which is not

ideal for optical amplification.

The low gain available from a micrometer scale interaction medium is not sufficient to
support for a significant optical amplification in a microresonator. This is due to the loss
factor exceeding the small signal optical gain. The loss factor of a microresonator is the
multiplication of all individual loss factors, such as the reflection losses, the dielectric
absorption loss of the interaction medium, the conduction loss of the interaction medium,
scattering losses due to material impurities in the interaction medium and any other loss
that can occur in a simple cavity [17-19]. The combination of all losses results in a loss
factor that is practically much higher than the gain factor achieved from a microscale gain
medium. Even if the microresonator walls would be perfect reflectors, the conduction loss
would be zero, and the material impurities would be nonexistent, the practical dielectric

loss would still exceed the available gain factor. Hence, optical microresonators do not



provide a significant gain factor via the technique of optical parametric amplification,
which is why microchip lasers are of high interest for integrated optics.

The gain factor of OPA is highly sensitive to many microresonator parameters. It is most
sensitive to the intensity of the pump wave amplitude, even a very small decrease in the
pump wave intensity can severely degrade the OPA performance, which is why preserving
the pump wave amplitude is of key interest in OPA. Another major parameter that heavily
affects the amplification performance is the nonlinearity of the interaction medium. As
mentioned before, interaction mediums with low nonlinearities may not yield any
amplification via nonlinear wave mixing under intense pump wave excitations, but a
highly nonlinear medium can yield a very strong amplification even under moderate pump
wave intensities. Silicon is a good example of a highly nonlinear material that is non-
centrosymmetric (possesses only third order nonlinearity with second order nonlinearity
being zero). Gallium arsenide is another semiconductor that demonstrates a highly

nonlinear response under excitation.

The loss factor of the OPA process in a microresonator is highly nonlinear. Any loss that
results in the cavity will lead to a decrease in the pump wave amplitude, which will cause
more loss at the next round trip due to decreased nonlinearity. Even in a highly nonlinear
interaction medium, a small decrease in pump wave amplitude will cause a drastic
decrease in input wave amplification (gain factor) [20-22]. For this reason, controlling the
pump wave amplitude is crucial. In microresonators, maintaining a stable pump wave

amplitude can be achieved by maximizing the constructive interface in the cavity.

The main question is, how to increase the gain factor in a microresonator with a
micrometer-scale interaction medium? This depends on the nonlinear dispersion
charactheristics of the interaction medium [23-25]. There are many experimental studies
that aim to achieve a resonant nonlinear response for certain excitation frequencies (using
the “Z-Scan” technique). Currently, there are many materials that are experimentally
proven to demonstrate a resonant nonlinear response under certain excitation frequencies.
These materials can be used in microresonators for an enhanced gain factor for OPA.
However, rather than focusing on certain materials for high-gain microscale OPA, it is

better to develop an algorithm that can enable high-gain OPA for any optical microcavity



involving any kind of interaction material. This study involves a computational approach
as a recipe for achieving high-gain OPA in an arbitrary microresonator containing an
arbitrary interaction medium. The computational method that is used in this study involves
the combination of Newton’s optimization method and the finite difference time domain
method. At each step of the optimization, the wave equation and the dispersion equations
that involve the polarization density, are discretized using the finite difference time
domain method. A brief summary of the Newton’s method will be mentioned for

clarification in the following sections.

Assume that we want to amplify the low-intensity input wave E; using a high-intensity
pump wave E,. In order to solve for the gain factor of E;, the following two equations
must be solved [26-28]

62(E2) d(E3) aZ{X(Z)(Ez)Z +X(3)(E2)3}
V2(E,) — .“050(1 + X(l))w = o0 5 + o€ 912 1)
0%E,
V2E; — .“050(1 + X(l)) 32
a(Ey) 02 YD (E\® + 2E1Ey) + P (E,® + 3E,°E, + 3E,E,)}
= MOGT-F#OSO atz (2)

&o: Permittivity of free space
Uo: Permeability of free space
x@: First order electric susceptibility
x@:Second order electric susceptibility
x®: Third order electric susceptibility
o: Electric conductivity

Based on equations, the solution for the gain factor of E; after the propagation through an

interaction medium of length L, is given by the following formula

E/(x =1
% = G = cosh {(Ld\/wl(wz - wl)n3J0.50n€0Epump2>} 3)

c: Speed of light, &,: Permittivity of free space, L: Medium length



d: Nonlinearity coefficient, n: Refractive index, #: Intrinsic impedance

wq: Angular frequency of the input wave, w,: Angular frequency of the pump wave

Epump Epump
[ | ]
G = cosh?(dL\/w ;M3 [0.5cne0Epymp”)

Einput EiHPUf

Interaction medium
]
L
x=0 x =1L

Figure 1.1 Single pass optical parametric amplification

Since the gain factor that can be obtained from a single pass is negligible, we need to
investigate the parametric amplification process inside a micro-resonator. Inside a low-
loss resonator the gain is expected to be much higher as every round trip yields further
amplification, however, since the interaction medium length is very small, the resonator
losses prevents the achievement of a significant gain factor. Assuming the gain factor
definition in equation, the gain factor that is achieved in a micro-resonator after N round

trips is given as

N
Gain(N) = H(z X cosh? {Ld\/ha)l(wz - wl)n3\/0.56n£0Epump(i)2 } 4)

i=1
Epunp () = Epump (0) X *
i: Number of round trips
Gain(N) = Overall gain after N round trips
Where the round-trip loss ¢ is defined as
Round trip loss factor = { = Ry Ryexp(—ay4l) exp(—a.L) exp(—asl) (5)

(R1, Ry): Reflectivity imperfections of the cavity walls (R, R,).



a4 Dielectric absorption loss, a.: Conduction loss, a,: Scattering losses

Epump Epump

G = cosh? (dLy/w;0,m3_[0.5cneoEpymp )
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A
v

x=0 x=1L

Figure 1.2 Optical parametric amplification in a resonator

In order to show that the overall achievable micro-resonator gain is small, and the optical
amplification efficiency is low, as an example, consider the following micro-resonator

parameters
w, = 2m(120 THz), d =1%x 10721 C/V? 6~0, Ry =R, =1

Round trip loss factor = { = exp(—a4lL) exp(—asl) =1 — 1073 = 0.999

16
w; = 2n(180 THZ), L = 10 um, & = 10, I = 0.5cneEpump” 0 (*oz)

m2
Input wave electric field amplitude at the 1st round trip =1V /m

Note that practically such a round trip loss factor is unattainably low. The resulting input
wave amplitude variation with respect to the number of round trips is plotted in Figure.
As we can easily notice, the input wave amplitude keeps on increasing while the small
signal gain is greater than the loss factor. Since the pump wave amplitude keeps on
decreasing due to the resonator losses at each round trip, the small signal gain of the input
wave also decreases at each round trip and eventually the loss factor exceeds the gain
factor. After this, the input wave amplitude starts to decrease. As the process of parametric
amplification strongly depends on the pump wave amplitude, the resonator loss

exponentially increases with the number of round trips.
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Input wave amplification versus # of round trips

2500 T T
— Epump=2*10° V/m
Epump=1.95*10° V/m
2000 Epump=1.9*10° V/im | -
o Epump=1.85*10° V/im
=
[0)
S 1500 | .
=4
€
@
(0]
& 1000 ]
=
5
Q.
£
500 i
0 1 1 1 1 1 1 1 1

1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of round trips

Figure 1.3 Input wave amplitude versus number of round trips in a micro-resonator

Figurel.3 shows the variation of the input wave amplitude with respect to the number of
round trips in the micro-resonator when the nonlinearity coefficient is decreased (halved)
to d =5x%x10"%22C/V?, notice that the amplification performance has severely

decreased, even though the nonlinearity (d) is still considered as quite high.

Input wave amplification versus # of round trips
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Figure 1.4 Input wave amplitude versus number of round trips in a micro-resonator
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Figurel.4 shows the variation of the input wave amplitude with respect to the number of
round trips in the micro-resonator when the nonlinearity coefficient is increased to d =
3 x 10721 ¢ /V?, and the round trip loss factor is changedto { = 1 — 1072 = 0.99.

Note that, even though this round trip loss is quite small and still practically very hard to

ensure, the optical amplification is quite weak and has a low efficiency.

Input wave amplification versus # of round trips
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Figure 1.5 Input wave amplitude versus number of round trips in a micro-resonator

These examples clearly indicate that high-gain optical parametric amplification is not
feasible in a micro-resonator as the interaction medium length is too small to yield enough
small signal gain to compensate for the resonator losses. In this study, a numerical
approach will be used to prove that high-gain optical parametric amplification may be
achieved by performing an extensive dispersion analysis that measures the nonlinear
electrical response of an arbitrary micro-resonator for each quasi-monochromatic pump
wave center frequency. This analysis will be carried out by solving the electric field wave
equation in parallel with the equation of nonlinear electron cloud motion for an interaction
medium with multiple emission (resonance) frequencies. We will often focus our

investigation on the dominant resonance frequency for the dispersion analysis.
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CHAPTER 2

POLARIZATION DENSITY AND LIGHT MATTER INTERACTION

2.1 Basics of charge polarization and polarization density

The atoms or molecules of a material are stimulated when an electric field is applied. This
IS because the electrons of an atom are bound to the nucleus by a very strong electrostatic
force and the excitation of a material by an electric field will create a distortion in the net
force applied on the electrons and they will start to oscillate in space towards the nucleus
and back. As a result, the dipole moment of the nucleus-electron pair will keep on
changing in time as long as the external electric field is applied. Since the electrical
permittivity of a material is related to the vectorial sum of all of the individual electrical
dipoles, depending on the frequency and intensity of the applied field, the resulting
electrical permittivity of the material can change. It is known that when the intensity of
the applied electric field is very strong, the positions of the electrons in the atom are highly
distorted and the net force on an electron changes significantly. This significant change of
the net force on an electron causes the electrical permittivity of the material to change. As
the intensity of the applied electric field increases, the change in the electrical permittivity
of the material will also increase. Since the electrostatic binding force applied on the
electrons by the nucleus is also very high ( usually much higher than the force applied by
an external electric field), the resulting change in the electrical permittivity will be very
small in percentage. However, even this very small change causes a variety of interesting
phenomena, such as the electro-optic effect. The change in the electrical permittivity or
the refractive index of a material depends on it’s experimentally determined nonlinear
susceptibility value. For some materials the nonlinear susceptibility values are
extraordinarily high, which makes them suitable for applications that requires refractive

index modulation. Gold and silicon are two example materials of this kind.
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One important utilization of nonlinear materials in the field of nonlinear optics is the self
focusing phenomenon. When we apply an intense laser beam to a nonlinear material, the
beam automatically focuses itself while propagating inside the material and remains
focused after leaving the material [29]. This helps us to overcome the diffraction limit and
focus the beam on the nanometer scale. If the beam is precisely focused and controlled,
this technique may be used in a variety of applications. In certain conditions, this
technique can be used in nanoscopy to observe the world in the nanoscale, provided that
the focused beam intensity is not damagingly high and will not harm the tissue or the

surface that is being investigated[1-4].

Figure 2.1 Electrons are bounded to the nucleus via the electrostatic force, resembled here as

springs. An external electric field will change the relative positions of the electrons [7].

The physical idea behind the nonlinear dielectric polarization is related to the changes in
the nucleus of the atom under very high intensity electric field excitation. When the
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applied field intensity is extremely high, the relation between the restoring (electrostatic
binding) force of the nucleus and the position of the electron becomes nonlinear.

Therefore the polarization density vector becomes nonlinear. Since the position of the
electron depends on the applied field strength, the resulting relation between the
polarization density vector and the field strength is also nonlinear.

The degree of nonlinearity depends heavily on the crystal structure of a material.
Depending on the lattice/crystal structure, some materials only exhibit third order
nonlinear polarization density while others can exhibit both second and third order
nonlinear polarization density under high electric field excitation. Certain materials have
a lattice structure that is symmetric with respect to the lattice center, such materials are
called centro-symmetric materials. Centro-symmetric materials only exhibit third order
nonlinearity and their associated second order nonlinear susceptibility is zero. One
example is silicon, which has an unusually high third order susceptibility value, but since
it has a centro-symmietric crystal structure, it’s associated second order susceptibility value
is zero. There are also materials with a non centrosymmetric crystal structure, for such
materials both the second and the third order susceptibilities are nonzero. A well known
example of a non centro-symmetric material is Gallium-Arsenide (GaAs). Gallium-
Arsenide also has an unusually high third order susceptibility value and it’s response to
an applied electric field is anisotropic, meaning that in the case of GaAs the associated
third order susceptibility is a tensor. As GaAs is non centro-symmetric, it also has a
nonzero second order susceptibility tensor and it is known to exhibit a very strong second
order electrical nonlinearity. Gold is also known to have a very strong second and third
order nonlinear electrical susceptibility and in order to utilize it’s nonlinearity, gold
nanoparticles are usually doped in glass. Other examples of well known electrically
nonlinear materials include some polymers such as polydiacetylenes. Other sorts of
materials that are nonlinear in nature include germanium, silver, titanium dioxide,

chalcogenide glass, lithium niobate and some nanoparticles [5,6].

Insulators have a certain dielectric strength that can withstand high electric fields up to a

certain threshold. After that threshold insulators can break down and may start to act as a
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conductor. Some insulators may still remain dielectric, but they can weakly or locally
conduct electrical currents. Therefore, even though some materials have a very high
nonlinear susceptibility, they might also have a low dielectric strength and before we can
observe any nonlinear effects under high electric field excitation, the materials may break

down and change their properties.

Recall that the polarization vector for a linear anisotropic material under excitation can be
expressed as (assuming either the intensity of the electric field is not very high and

x@, x® terms can be ignored, or the material exhibits low nonlinearity and has ignorable
1@, x® values).

P = gOXxx(l)Ex + SOXxy(Z)Ey + EOXJCZ(3)EZ (6)

Py = gOny(l)Ex + SOny(Z)Ey - EOXyz(3)Ez (7)

P, = gO)(zx(l)Ex + gOXzy(z)Ey + EOXZZ(3)EZ (8)

In the linear case the susceptibility tensor has only 9 elements. For the nonlinear case the
second order susceptibility tensor ) has 27 elements and the third order suseptibility

tensor ¥ has 81 elements. Now let us consider the nonlinear case;

The first three orders of the i component of the polarization vector is expressed as;

3 3

3 3 3
2 —%Zm} 5 +sozz;a,k( BB+ ) > > x@EEE  (9)

j=1 j=1k= j=1k=11=1

Elements of the higher order susceptibility tensors are negligible in value and can be
ignored. For centro-symmetric materials the second order susceptibility tensor is zero,

therefore the resulting i component of the polarization vector can be written as;

3 3
P = EOZXU( Biteo Yy > > xya®EEE  (10)

j=1k=11=1



For an isotropic nonlinear material (though most materials are anisotropic in nature), the
{x,y,z} components of the polarization vector can be written as;

P, = eox WEy + eoxPE* + ey PES  (11)

P, = eoxWE, + egxPE,? + e x¥E,*  (12)

Pz = goX(l)Ez + SOX(Z)EZZ + SOX(3)E23 (13)
The materials that are both nonlinear and anisotropic in nature are way more cumbersome
in mathematical description, though for such materials most of the elements of the
susceptibility tensor are very small. Furthermore most nonzero elements of the

susceptibility tensor are nearly equal to each other, so the mathematical expressions of the

wave equation for such materials can be greatly simplified.

Recall that for a linear media under an external electric field excitation E, the position x
of an electron that is bound to the nucleus by the electrostatic binding force is decribed by

the following differential equation [1,7]

mEE E() (14
pre mvd Mmwy’x = —e (14)

v: Damping coef ficient (material dependent)
m: Electron mass (9.11 x 10731 kg)

Frestoring = mwy?x (restoring force of the nucleus)

wo = Resonance frequency of the atom
e: Electron charge

For a second order nonlinear material, the equation that describes the position of an

electron with respect to the nucleus is given by the following equation

L + E(®) (15
moztmv— mwy?x + mnx? e (15)

Notice the extra term mnx? in the equation, which is related to the nonlinear restoring

force of the nucleus. The term n resembles the strength of nonlinearity of the atom and is
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therefore material dependent. It has been theoretically established that the nonlinearity

coefficient n is related to the resonance frequency w, of the atom by the following relation

[1]

= 2o 16

d: Atomic size (around 3 Angstroms for solids)

Which suggests that the degree of nonlinearity strongly depends on the resonance
frequency of the atom. This makes perfect sense as w, is a measure of strength of the

nuclear binding force and the nonlinear susceptibility of an atom depends on nothing but

the binding force.
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Figure 2.2 Electrostatic restoring force of the nucleus acting on an electron [21].

In order to find a solution for Eq.10, we start with a solution of the form

x(t) = ex1(t) + %x,(t) + @3x3(O) + - (17)

If the terms in Eq.10 are proportional to the coupling coefficients ¢, ¢?, @3 in Eq.17, then

the substitution of this form of solution into the nonlinear differential equation will

decouple the nonlinear differential equation into the following linear differential equations
dle dX1

Tz Tmv——+ mwy?x, = —eE(t) (18)

m
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dzxZ de

Mmoot mv—=+t Mwy’xy + nx,2 = (19)
d2x3 dx:; 2
m 72 + mvd—t + mwy“x3 + 2nxx, =0 (20)

And so on so forth for the remaining terms. Notice that the first equation is the differential
equation that describes the position of an electron with respect to the nucleus for a linear
media. After solving for x4 we can substitute it into the second equation and solve the for

x,. Then we can plug x4, x, into the third equation and solve for x3 and etc.

For most solids the second order nonlinear susceptibility is found to be approximately

around the following value [1]:

3 10—12

de m
@Dx—T ___—gox— (21
> gom?wytd* %4 @1
0'® rad b
wy:l X ————, d = 0.3nm, q. = 1.6 x 107° Coulomb
S

However, some solids have much lower resonance frequency values and therefore have a
much greater y® value. The atomic diameter d is assumed to be the same for most solids.
Therefore, the only variable in Eqg.21 is the angular resonance frequency w, which is

material dependent.

Similarly, for most solids the third order nonlinear susceptibility is found to be
approximately around the following value [1]

4 2

de pm
3 ~ = 344 —— 22
X gom3(0.7w,)0d> /& (22)

Hence, if we determine the ¥ value of a material experimentally, we can solve for it’s
resonance frequency and plug it in the equation for ¥ and roughly estimate the value of
1@ and vice versa (both for isotropic and anisotropic materials). For anisotropic materials

the estimation is usually for the largest tensor element.
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Ex: Gallium-Arsenide has a y® value of 1.4 x 1078 m?/V? one of the highest y©)

values among solids. It’s corresponding y ) value can be estimated to be around

/
w0 =" (@) Gem?d5(0.7)%) = 2.5025 x 10%

3

de _
@ r— = —176%x10"°m/V
X gom?wytd* m/

Note that the resulting value is not precise. The actual value of the highest tensor element
is around 1.48 x 10~° m/V. However these formulas give a rough estimation of the
degree of the second and the third order nonlinearities. One can also estimate the value

of the second order susceptibility from Miller’s rule.

For nanoparticles the corresponding x® and y® values are much higher because the
resonance frequency of nanoparticles is lower compared to bulk materials. The physics
behind this phenomenon can be described by quantum mechanics and is related to the
discretization of atomic energy levels for nanoparticles compared to a continuum of
energy levels for bulk materials. When the energy levels are discrete, the restoring force
becomes weaker, as a result the resonance frequency decreases. This leads to a higher
nonlinear susceptibility. We can think of this as the accessibility of an electron by the
nucleus. When the material is bulk the energy levels are continuous in the valence band
and therefore the electron is “accessible”, 1.e, easier to restore to it’s original position by
the electrostatic binding force. When the material is in nanoparticle form, the energy levels
become discrete and the nucleus has to exert a specific minimum amount of force to be
able to restore the electron back to it’s initial position. In some sense the electron is not as

accessible as it is in the bulk material case.
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Gold nanoparticles for example have a 1000 times higher third order susceptibility
compared to their bulk counterparts and can be doped in glass for applications in nonlinear
optics. Also nanoparticles have lower conductivities compared to their bulk counterparts
as the bandgap energy for a nanoparticle increases. Nanoparticles are also called quantum

dots in literature and their production is known to be rather challenging.

To observe nonlinear effects on a laser beam, the required laser beam power must be on
the order of gigawatts. This amount of power is not very straightforward to achieve. There
are ways to produce very high intensity laser beams (usually in pulsed form), one of them
is to use a mode locked laser which produces very short but very intense laser beams.
Another way is to maximize the constructive interference inside a cavity. The simplest

technique is to focus a medium power laser beam by a lens of high focusing ability.
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Figure 2.4 Focusing of a laser beam by a thin lens [6].

Observing nonlinear effects in optical frequencies is much easier than observing them in
radio frequencies and microwave regions, as focusing a radio frequency electromagnetic
wave is not very straightforward. This is one of the reasons that the field of nonlinear
electromagnetics is concentrated on the optical frequency range. Another and a more
important reason is that in the optical range of the spectrum, most solid materials exhibit
a resonant nonlinear susceptibility. The nonlinear susceptibility of many solids can be
greatly enhanced via plasmon resonance in the optical range. Current research on
nonlinear materials is focused on creating artificial and composite materials that may show
an unusually high second or third order susceptibility in optical frequencies. For example,
nanoantennas of different shapes and sizes are modified by the addition of further
nanoparticles to yield a boosted nonlinear response both in terms of second and third order
susceptibility. It has been found that along with the size of a nanoparticle, it’s shape also
significantly affect it’s nonlinear response. A triangular shaped nanomaterial as an
example, can have a stronger nonlinear response than a square shaped nanomaterial in the
optical frequency range. Just like the first order susceptibility, second and third order
susceptibilities do not display any resonance in the microwave region of the
electromagnetic spectrum. Though for some specially designed metamaterials, resonance

in the microwave region may be possible.

The frequency response or the dispersion relation of the second and third order
susceptibilities is not as precisely defined as it is for the first order susceptibility. However
certain relations that relates the dispersion relation of the first order susceptibility to the

second and the third orders exist. The frequency dispersion curve for the first order electric
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susceptibility is as shown in Figure2.5. For many materials, resonances of the first order
electric susceptibility exist in the infra-red or in the ultra-violet region, and some materials
have strong resonances only in the visible range. A material might have more than one
resonance frequency due to the electrons being in different positions or in different energy
levels and the nucleus having different “spring constants” with “springs” of different
strengths being attached to the electrons. This phenomena is included in the expression of
the complex refractive index A. Each resonance frequency w,; with an oscillator strength
fj has a contribution to the overall value of the complex refractive index as given by Eq.23.

As dictated by quantum mechanics, the sum of all oscillator strengths is equal to 1 [2,7].

2
Ne [ fi
mey wo;i* — w? —iyjw

N
A2=(n+i}c)2=1+z 1 (23)
=1

N
dh=1 @
=1

fj: Oscillator strength
Yj: Damping coef ficient

The atom has an electron cloud around the nucleus and according to quantum mechanics
the electron can be anywhere around the nucleus. As the distance from the nucleus
decreases, the probability of finding an electron increases. And as the distance from the
nucleus increases, the probability of finding an electron decreases. This is why we model
the binding forces as different springs having different spring constants. Each spring
resembles the electrostatic binding force whose strength depends on the relative position
of the electron. As the total probability that an electron can be anywhere inside the whole
atomic volume is 1, the integrated oscillation strength of all springs is equal to 1 as given
by Eq.24.
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Figure 2.5 Resonance frequencies of an atom with multiple “springs” [2,7].

From the dispersion relation of the first order susceptibility, we can estimate the value of

the second order susceptibility at a given frequency using the Miller’s rule. This rule
suggests that the expression [1]

¥ P (wy + Wy, w1, W5)
XD (wz + 0)xV(w))x®(w;)

(25)

is almost constant for all non-centrosymmetric materials. From this relation we can
conclude that in the radio frequency and in the microwave frequency regions of the
spectrum, y® is almost constant. In the visible part of the spectrum this rule can help us
estimate the resonance charactheristics of a material. Similarly for the third order
susceptibility, we have the following relation [1]

bme,3
Xijir® (g, W, wp) = ANt X (@) x® (@) x® () x™ (@)]

X [8:j6k1 + 6 6j1 + 6116 ] (26)
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From which we can conclude that in the radio frequency and in the microwave regions of

the spectrum ¥ is almost constant.

At frequencies below the infra-red range, the first, second, and third order susceptibilities
are nearly constant for all materials and any variation is negligible. However, especially
in the optical frequency range, all three orders of susceptibilities are highly dispersive. In
this case the electrical polarization is related to the susceptibility by the following relations
[1,8-11]

PD(t) = ¢, foo)((l)(Tl)E(t —1)dty (27)
0

PO(D) = & f fx@)(n,rz)E(t—n)E(t—rz)drldrz 28)
0 0

PO@ = [ [ [ 4O mmEC-EC - B
0 0 0
— 13)d1,dT,d15 (29)
At frequencies below the infra-red range, the susceptibilities can be expressed as
X(g) (11,72, T3) = )(0(3)5(‘[1, T2, T3) (30)
X(Z) (11, 72) = X0(2)5(T1'T2) (31)
xP () = o Wé()  (32)
So that
PO(0) = goxo®E3 (1), PA(0) = oxo@PE* (1), PD(0) = oxoME®)  (33)
In the frequency domain Eq.27 can be expressed as
(D (wy) = 6§D (w)P(wy) (34

Where

P(wq) = fooE(Tl)e_i“’lfldrl (35)
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£D (wy) = f D (e)e omdr, (36

(D (wy) = f PO (r)e tormidy,  (37)

EQ.28 is expressed in the frequency domain as follows

5(2)((01’0)2) = 305(2)(‘01"02)‘1’(0)1: w;) (38)

Where

qb(wl,wz)zf f E(ty,1,)e 1T1g~i@2%2qr dr,  (39)
sD@no) = [ [ x@@ e memdndn,  40)

(@ (wy, wy) :f f P@ (1, 1,)e"01T1e 022, d1, (41)

Similarly Eq.29 is expressed in the frequency domain as follows

5(3)(0)1;0)2»0)3) = £0§® (w1, Wy, W3)P (W1, Wz, W3) (42)
D (wq, Wy, w3) =f f f E(t,7T,, T3)e ‘@1T1g 02T~ 03T q . dr, dr,  (43)

5(3) ((Ul, w3y, 0)3)

=f f f)((3)(11,1'2,13)e‘iw1T1e‘iw2T2e‘i“’3f3drldtzd1'3 (44)

((3)(0)11 W2, (Ug)

= f f f PO (1,1, 15)e i 01T1e 0272 o~ l03T3 41 g1, dT,  (45)
These fourier transform relations and dispersion formulas are useful in the optical region
of the spectrum, which includes the infra-red, visible, and the ultraviolet regions of the

spectrum. Though special metamaterials may exhibit dispersion even in the microwave

region of the spectrum.
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2.2. Composite materials and nanocomposites for nonlinear electromagnetics

Using the latest advancements in production technology, we can design new artificial
materials that are based on the composition of several materials, which are already found
in nature. The purpose of creating composite materials is to utilize the unique features of
all materials that are in the composition, by using a single artificial material. One example
is the field of metamaterials, which usually aims to observe the negative refractive index
phenomenon or to create artificial materials that yields to a zero reflection of
electromagnetic waves when illuminated. Metamaterials are “meta” or artificial in the
sense that while a classical or natural material forms a density of electric dipoles in its
volume when excited by an electromagnetic wave, a metamaterial forms densities of both
electric and magnetic dipoles in its volume when excited by an electromagnetic wave.
Another example of a composite material is the doping of one material into another
material. In such a case the one we dope is called the dopant material and the material that
is being doped is called the host material. The resulting composite material carries the
properties of both the dopant and the host materials and the charactheristics of the
composite material can be changed by changing the doping concentration. An example is
the doping of gold nanoparticles in glass.

A composite material has a conductivity, electrical and magnetic susceptibility, etc. The
values of these parameters depend on the concentration of individual materials that form
the composite material. If we dope a silicate glass with gold nanoparticles for example,
the conductivity of the resulting composite material will be higher than undoped silicate
glass. Or, if we dope silicon into a gallium-arsenide crystal, the resulting composite
material will have a higher conductivity than the undoped gallium-arsenide crystal. Same
thing is valid for the overall electric susceptibility of composite materials. Assume that
we dope a silicate glass with germanium, since germanium has a higher electric
susceptibility than the silicate glass, the resulting composite material will have a higher
electric susceptibility than the undoped silicate glass. Composite materials of dopant/host

type are mostly produced as thin films.

Recently the research has focused on nanocomposites, as nanoparticles have unique

properties that are not observed with bulk materials. Especially in the field of nonlinear
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optics, nanocomposites are found to be very promising for current and future research as
they tend to display a higher nonlinear electric susceptibility, which can be modified by
changing their shape and size. For example, a triangular shaped nanoparticle and an equal
size circular shaped one exhibit different nonlinear electrical responses for the same
excitation. Nanoparticles of materials that already have a high nonlinear susceptibility can
be deposited on glass substrates to be used in applications of nonlinear optics. Structures
of metal nanoparticles mounted on a glass substrate are called optical nano-antennas due
to the effect of plasmon resonance. Since nanoparticles are very small, when a light beam
is incident on them a very large locally enhanced electric near field is induced. This locally
enhanced electric field can be utilized to generate a second or third order nonlinear
response. Note that in the visible range of the spectrum, metals are less conductive
compared to the microwave range. Therefore, instead of a complete scattering of the light
beam, they absorb a portion of it and create a free electron density. This intense charge
density produces a very strong electric field in the near field range. Intense locally
enhanced electric near fields are used in microscopy to break the diffraction limit and to

investigate the nanometer scale.

Figure 2.6 A light beam hits a gold bowtie nanoantenna array, forming plasmon resonances on

the metal surfaces that create intense locally enhanced fields in the near field range [23].
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Locally enhanced near fields can be better taken advantage of, if we mount highly
nonlinear nanoparticles near the metal nanoparticles. Recall that metal nanoparticles are
used to generate plasmon resonances, which yield to the intense locally enhanced electric
near fields. To generate an efficient nonlinear electrical response, nanoparticles of highly
nonlinear materials can be employed. As an example, highly nonlinear lithium-niobate
nanoparticles can be mounted on a gold bowtie nanoantenna array structure to generate a

second order nonlinear response as shown in Figure2.6.

When an incident light beam hits the surface of a metal structure, it induces electron
stream oscillations (surface plasmons) inside the metal structure. Which is basically a
plasma oscillation. Since the skin depth for an electromagnetic wave in the optical
frequency range, is very small inside a metal structure (such as gold), plasma oscillations
are concentrated on the surface of the metal. Hence the term surface plasmons. Recall that

the skin depth for a good conductor is approximated by the following formula

, 2
o= oo (46)

Assuming the following values are good approximations for our case, we calculate a
typical skin depth value for a wave in the visible frequency range, that propagates inside

a metal as

.S 0 rad L, H
Ocora = 4.1 x10 — w=2nx2.5xT, U =4 x 10 -

The resulting skin depth value is § = 4 nm. Which indicates that the plasma oscillations
are concentrated on the surface of the metal structure. The current density on the surface
can be determined from the following simple relation

J = 0Eign: = Apsin(wt — k.7) k: Wave vector, r:Position vector
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Figure 2.7 Surface plasmon resonance versus localized surface plasmon resonance [12].

When illuminated by an incident light beam, optical antennas such as gold nanostructures
produce an enhanced scattered light in the near field range. This is not the case for example

in the radio frequency range. The reason for that difference can be explained as follows:
On the metal surface where the current density forms
J =0Eygne (47)

Due to this current density there is an associated magnetic vector potential

,Ll (o) [e) e—ij
A=— ds'’ 48
a1 j_oo J_Oo] R (48)
From which the scattered electric field can be calculated as
E=—jwA—j ! V(V.A) (49
=jed=j o2V (49)
In the optical frequency range we can  approximate E  as

,Ll [e) (o) e—ij
E~—jwA=—jw— das’ 50
jw Jw4nj_ooj_wl R (50)

Which shows that the magnitude of the scattered electric field increases as the frequency
of the incident electromagnetic wave increases. Since an electromagnetic wave in the
optical region of the spectrum has a frequency that is typically a million times greater than
an electromagnetic wave in the radio frequency range, the resulting scattered field is way

much stronger. Note that the magnitude of the scattered field decreases with distance,
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which gives a hint about why we have a locally enhanced field in the vicinity of the
scatterer.

2.3. Plasma frequency and its effect on nonlinear susceptibility

The plasma frequency of a material is related to its atom density. Semiconductors such as
silicon have a higher atom density and therefore a higher plasma frequency. We have
already seen that as the resonance frequency of a material increases, it’s second and third
order nonlinear susceptibility decreases. The plasma frequency is related to the resonance
frequency via plasmon resonance. Most solids have a plasma frequency in the visible or
in the ultraviolet part of the spectrum due to their high atomic densities, therefore the
electrical susceptibilities of these materials have a resonance behavior at these frequencies
along with a much higher dielectric absorption loss. Apart from the resonance frequency,
the behavior of the electrical susceptibility is mostly constant at the other parts of the
spectrum. If we can somehow decrease the density of atoms in a material, it’s resulting
plasma frequency will decrease and this will lead to a lower plasmon resonance frequency
and a higher nonlinear susceptibility. But how can we decrease the atom density of a
material? We cannot! But we can mimic a decrease in the atom density of a material. We
can do this by creating artificial atoms, which are known as nanoparticles or quantum dots.
Let us consider a nanoparticle with a size of 30 nanometers. If we fill a material with such
nanoparticles, each nanoparticle will act as an artificial atom and will form a local plasmon
resonance when excited by an electric field, just like an ordinary atom. However, the
“artificial atom” density is now lower compared to the case of ordinary atoms. This will
cause a decrease in the plasma frequency (due to the existence of nanoparticles) and will
yield a lower plasmon resonance frequency. Because of this decrease, the third and second
order susceptibilities of this artificial material will increase. For example, gold has a third
order susceptibility in the 10719 scale in it’s bulk form, however, gold nanoparticles
embedded in a very thin glass slab, have a third order susceptibility that is in the 10716
scale. Nanoparticles act like artificial atoms because they have discrete energy levels just
like an ordinary atom. Though a perfectly discrete energy level density occurs only in an

ordinary atom, nanoparticles have a much more discrete distribution of energy levels

31



compared to a bulk material, just like an ordinary atom. As the material gets bulkier, the
distribution of energy levels has a more continuous structure. Nanoparticles are called
quantum dots as they resemble a quantum equivalent of an ordinary atom in terms of

energy level distribution.

| r——— == e |
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a ‘ : : E : : of surface §
I I o I | -
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Figure 2.8 Electron movement between atoms inside a plasma slab [24].

Let us consider the plasma slab shown in Figure2.8 above. When the slab is excited or
perturbed by an impulsive electric field E, that lasts a few picoseconds and then subsides,
the electrons will move away from one atom towards the other leaving behind a
“positively charged” atom and creating a new “negatively charged” atom. Due to this
charge separation, a local, restoring, static electric field E, will form [24]. This static
electric field will try to restore the electrons back to their initial positions, but the electrons
will displace further into the left and will create a negatively charged atom on the left,
while the initially positively charged atom still remains positively charged. This time the
static electric field E, will pull the electrons to the right and try to restore them to their
original positions, but the same cycle will continue, and the electrons will keep on
oscillating this way. After the perturbing electric field subsides, the equation of motion
for an electron is given by [24] (ignoring collusions)
d?x
Metectron 75 = deBx  (51)
Let us apply Gauss’ law on the cross-sectional surface of figure8, assuming the thickness

of the box is ‘b’ along the z direction.
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_Q

0

The cross-sectional area S is equal to ab. The total charge enclosed by the box volume

within an electron displacement range X is
Q = N.q.abx (53)
Therefore, the restoring field can be found as

Q Neqeabx _ Negex
Ex = == —
abg, abg, &

(54)

Substituting E,, back into Eq.51 gives out

d?x N,q,>
dt?>  me,

x=0 (55)

Which can be rewritten in a more compact form as

d?x 5
F-I- Wy~ X = 0 (56)
N,.q,>
wp? = —= (57)

me,

Where w,, is known as the plasma frequency and is related to the atom density of a
material. The solutions to Eq.55 are steady oscillating functions with an oscillation
frequency of w,, which can be either expressed as sines and cosines or complex

exponential functions [24].
x(t) = Acos(a)pt) + Bsin(wpt) , or

x(t) = Aexp(jwpt) + Bexp(—ja)pt) (58)

Hence, we call these oscillations as plasma oscillations with the oscillation frequency
being equal to the plasma frequency. Plasma oscillations are also called plasmons and a
plasmon is considered a quanta of plasma oscillations. Just like a phonon, which is a
guanta of lattice vibrations. In a collision-less plasma, these oscillations are undamped or

steady, however, when we account for the collisions, these oscillations are damped and
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will die out over time. Plasmas tend to stay neutral and they induce plasma oscillations as
an effort to restore neutrality. Note that we have ignored the displacement of ions and
treated them as stable in position since ions have a much greater mass compared to
electrons. Recent research suggests that by using artificial materials made up of
nanoparticles, we can create plasma oscillations of lower frequencies and change the
frequency response of the first, second and third order nonlinear electrical susceptibilities.
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CHAPTER 3

WAVE AMPLIFICATION VIA NONLINEAR COUPLING

3.1. Quality (Q) factor of a cavity: The quality factor indicates the maximum amount of
energy that can be stored in a cavity. It is desirable to have a high Q factor for applications
that require or utilize a high amount of stored energy density. The Q factor may be
enhanced by increasing the length of the cavity, increasing the mean reflection coefficient
by choosing the cavity walls as highly reflective, increasing the frequency of the wave
that interacts with the cavity, decreasing the overall absorption coefficient of the
interaction medium, and by minimizing any other kinds of losses that may result in a
cavity. The formal definition of the Q factor can be expressed as

Energy stored
CAVITY QUALITY (Q)FACTOR = 2r — , (59)
Energy dissipated per round trip

fo: Resonance frequency ,y: Damping coef ficient

€: Dielectric coefficient

E: Electric field

Figure 3.1 Configuration of an optical cavity
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2T
CAVITY QUALITY (Q)FACTOR = fTrt? (60)

T,¢: Cavity round trip time  f:Wave frequency
(: Fractional power loss per round trip

The cavity round trip time is defined as

!

2L
Tre=— (61)

Where c is the speed of light. Therefore, the Q factor can be written as

AfL'm

CAVITY QUALITY (Q)FACTOR = 2

(62)

The accumulation of energy in a resonator is related to the amplitude of the intracavity

electric field intensity and the resulting charge polarization in the interaction medium. It

is feasible to store an enormous amount of energy in a resonator either by trapping a high

amplitude wave pulse of long duration or by using a medium that has a high electric

polarization density. In either case there must be an efficient trapping of the wave pulse

in the cavity by using highly reflective cavity walls. Without highly reflective cavity walls,

high energy cannot be stored.

fo: Resonance frequency ,y: Damping coef ficient

€: Dielectric coefficient

E: Electric field

v

Figure 3.2 Configuration of an optical cavity
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1 1 1 1
W, = Stored energy density = EED = EE(foE +P)= ESOEZ + EEP (63)

D: Electric flux density
P: Electric polarization density
E: Electric field intensity
For instance, high energy can be accumulated in a resonator with a highly polarizable
interaction medium that has a resonance behavior displayed by its permittivity, which is

expressed as

() =1+ +N62[ ! ] 64
N X meg lw? — wy? — iyw (64)
Assume that wy < (w? — wy?), then we can write
2
SPTPRNLCl H  p”
e(w) X Pz — e (65)

When the angular frequency w of the monochromatic electromagnetic wave satisfies w =
w, mMeaning that the wave frequency is around the polarization resonance of the

interaction medium, then the intracavity electric energy density becomes quite large.

fo: Resonance frequency ,y: Damping coef ficient

@) ~14g e 1
g(w) ~ — [
A4 meo[wz—woz]

E: Electric field (w = wy)

v

Figure 3.3 A cavity with maximized electric energy density due to polarization resonance.
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If the damping coefficient (y) is small, then the cavity would posess a very large electric
energy as long as there is wave propagation inside. When y is small and the cavity walls
are highly reflective, wave propagation lasts for a long duration inside the cavity and
electric energy can be stored for a longer time. But how can we make use of the high
electric energy stored inside such a cavity? In order to transfer some of that huge energy,
we need a coupling mechanism. Assume that we send another wave in the cavity whose
frequency is not near the resonance frequency of the interaction medium, if this second
wave does not have a nonlinearity inducing intensity, this second wave will not raise the
intracavity energy significantly as it’s frequency is different than the medium’s resonance
frequency. Moreover, although the accumulation of energy is high, the second wave
cannot absorb any energy from the energized resonator as the intensities of the waves are

not sufficiently high to induce any nonlinearity that is required for energy coupling.

fo: Resonance frequency ,y: Damping coef ficient
Ne? 1

~lt+y+—[5——
€@ = 1y + ]

Ei(w=w)

Figure 3.4 A cavity with maximized electric energy density and two propagating waves.

3.2. Wave analysis in dispersive cavities
The equation for wave analysis in a linear, isotropic, homogenous medium is stated as

, 0?E OF o2P
VE — Hogo 57 = Moo 5 + Hofo 57 (66)
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When the medium is dispersive, the above equation can be rewritten as

02E OE oY [," x P (DE(t — Ddr}
VZE — piogg 52~ Moo + o€ ( 912 (67)

P=g¢ fwx(l)(T)E(t —ndr  (68)
0

Where y @ (t) = yoe "tsin(w,t) is the impulse polarization response of the dispersive
medium. Obviously, the electric polarization in the medium lasts longer if the damping

coefficient y is lower. Eq.67 can be rewritten as

92E 9E (az{fooo Xoe V¥ sin(woT) E(t — T)dT}) 69)

2 _
v E‘ﬂofoﬁ—#oaa‘ﬂiogo 52

Assume that we excite a high Q (low loss) cavity that houses a dispersive medium with a
damping coefficient of y = 101° Hz, by an ultrashort pulse of 300 femtosecond duration.

In that case there will be wave propagation inside the cavity for a few & duration, where

&= i = 10715 =100 ps. The initially ultrashort pulse will expand in time to last

around a few hundred picoseconds. In that sense y and the choice of material is critical

for energy storage inside a cavity.

0°E oE 62{f0°o Xoe " TsinfdyT)E(t — 1)dT}
VZE—#080W=HOUE+M080( 562 )
1 > 1
W, = EEOE + EEP
Tl rZ
LI

Figure 3.5 Dispersive medium placed in a cavity
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3.3. Wave analysis in nonlinear dispersive cavities

The equation for wave analysis in a nonlinear, isotropic, homogenous, dispersive

medium is expressed as

, 0?6 O o2p
V°E — Hoo 57 = Ho0 o + Hofo 57 (70)

Where

P(t) = PO+ PO +P®() (71)

PMO(t) = ¢, wa(l) (tDE( —1)dry  (72)
0

PA(t) = & f fX(Z)(TLTz)E(t—T1)E(t—T2)dT1dTZ (73)
0 0

PED) = & f f f 2D (0,10, T)E(t — 1)E(t — 1)E(t — t5)dtidtydts (74)
0 0 0

The difficulty of analysis in such a media is the unavailability of the dispersion
charactheristics of the terms y® and y®. It is known that the nonlinear polarization
impulse response is instantaneous (around 5 femtoseconds), however, the exact functions

of y@ and ¥® in time is unavailable for most materials.

PO(E) = & f xD@)EE —1,)dr,
0
PO@ =& [ [ xP@rIEC - 0B - m)dndr,
0 0

PO@ =2 [ [ [ x®@m B = m)EE = B - wdndrdr,
0 0 0

\/WV\N\/VV\/V\W/\/

»
|

<&
«

I

Figure 3.6 Nonlinear, dispersive interaction medium.
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For a medium that is both dispersive and nonlinear, it is better to solve the wave equation
in concurrence with the equation of nonlinear polarization density. Notice that these two
equations are coupled to each other, the polarization density depends on the amplitude of
the electric field and the electric field amplitude depends on the polarization density. Most
resonator parameters have typical values (these parameters include the resonance
frequency, the damping rate, and the atom density of the interaction medium), which
allows the computational results to be more realistic. The set of equations to be solved for
obtaining the variation of the electric field amplitude with respect to time in a nonlinear
and a dispersive cavity is expressed as [1]
VZE — uogo dZ_E = .UoUd_E + oo dZ_P (75)
dt? ot dt?

2

d*P  dP wo? Ne
P3 — TE (76)

F-FYE'{'G)OZP—

2
Wo
Pz +
Ned NZ2e2d?
Resonance frequency of the nonlinear medium: fy =1 x 10> Hz
Damping rate of the nonlinear medium: y = 1 x 101° Hz

Electron density of the nonlinear medium: N = 3.5 x 1028 /m3

Atomic or molecular diameter : d = 0.3 nanometers

) d’E dE d’P
VEE — pogo 7 = o0 o0+ Hofo 7

d2P+ dP+ 2p we? 0o s _ NezE
atz Vg T T Nea NZe2@z© — m
W /VEVWWY\
F1 rZ
LI

Figure 3.7 Nonlinear, dispersive medium placed in a cavity.
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Now let us presume that two waves are simultaneously present in a nonlinear dispersive
interaction medium and their electric fields are called E; and E,, then the set of equations

that model the total electric field amplitude in this medium is stated as

CPEAE) _ dE+E) P
VZ(E; + E;) — po&o iz MO T b3 (77)
d?(P") d(P’) P 2 P Ne?
+ W (P) = 3= ( )+ (P = —— (B + ) (78)

a2V Tar NZe2d?

Assume that we want to determine the time variation of the low amplitude field E; in the
presence of the high amplitude field E,, i.e. we want to obtain the time variation of E;
while there is an electric energy transfer from E,. In order to do that, we first write the

pair of equations for E, assuming that E; is not present in the medium [30-32]

d?(E,) d(E,) d*p
VZ(E;) — Mogo Tzz = Uo0 atz + Hofo 7 di2 (79)
d?P dpP wo? Ne?
8 2(p) — 2 (p)2 + 3 _ %
Yo 4 a2 (P) — e (P 4 S (P = (E;)  (80)

Subtracting Eq 79 and 80 from Eq 77 and 78 respectively, we get

d*(Ey) _  d(E) d*(P' = P)

VZ(E1) — oo PR TE + Uo&o di2

(81)

2 r__ r_
d2(P P)+yd(P P)

/ wOZ /
— g~ P) ()2~ (PY?)

Ne?
Nz Zdz {(P )3 (P)g} = T(El) (82)

If we call P" = P; + P,,and P = P,, then we have

d?(Ey) _  d(Ey) d*(Py)

gz~ M0t Hofo 5 (83)

VZ(E1) — Ho&p

d*(Py) N d(Py)
dt? 14 dt

2
Wo
+ w2 (Py) — W{Plz + 2P, P,}

Ne?
+ >+ 3P,°P, + 3P,P,%} = — (E)  (84)

Wo
NZ2e2d2 {Pl
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Eqg 83 and 84 represent the propagation of E; under the presence of E,. As we can easily

notice, in this nonlinear medium, E, acts as a source for E;.

E;

VAVVVVAVNVAVVVIS

for v
ET

Nonlinear, dispersive material

\VVAVVVVVVVVVVVYM

Eq

r I

Figure 3.8 Simultaneous propagation of two waves in a resonator.

Similarly, E; acts as a source for E,, going back to the wave equation for the total wave
E = E1 + Ez, we haVE

d?(E; + E,) d(E; + E,) + d?(Py + P,)

VZ(E; + E3) — togo 12 o0 ——— + oo 7 (85)
d*(P, + Py) d(Py + P;) wo? wo*
pTE: +v it +w02(P1+P2)—N_ed(P1+P2)2+m(P1+P2)3

—NeZE E 86
—7(1"‘ 2)  (86)

Assume that we want to determine the propagation of E, in the presence of E;, i.e. our
goal is to obtain the time variation of E, while there is an electric energy transfer from E;.

In order to do that we write the pair of equations for E; assuming E, is not present in the

medium
d?(E,) d(E;) d?P;
VZ(E1)—H050_dt2 = o0 —— +H0€o_dt2 (87)
aph 4P 2(p,) Wo° ()2 + Wo” (P)3—N92(E) 88
acz TV g @0t P) — e (P)T e (P)7 = = (B (88)
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Subtracting Egs 87 and 88 from Eqs 85 and 86 respectively, we get the pair of equations
that represents the propagation of E, under the presence of E;:

d?(E) d(E) d’P,
VZ(E3) — Mogo —dtz = Hoa—at *+ oo a2 (89)
d?p, dp, 3 2 2
a2 + ]/E + wy? (P, ‘4 2P2P1} + W{Pz + 3P,°P; + 3P,P; }

Ne 2
=7(E2) (90)

Ex: The low amplitude wave with an electric field E; and the high amplitude wave with
an electric field E, are concurrently propagating in a simple Fabry-Perot type resonator.
The low amplitude field E4; has an amplitude of 1 VV/m and a frequency of 160 THz. The
nonlinearity inducing high amplitude field E, has an amplitude of 1.5 x 10° V/m and a
frequency of 240 THz. E, is an ultrashort pulse with a pulse width of 300 femtoseconds
and E has a pulse width of 30 picoseconds. The parameters that are related to the medium
are given in Figure 3.9.

sin(2m(1.6 X 10*)¢t) V
E{(x=25um,t) =1x — , for 0<t<30ps

sin(2m(2.4 x 10**)¢t) V
E,(x =25um,t) = 1.5 x 10° X - , for 0<t<300fs

In such a case, E, will act as a source for E; because E, is the wave that creates the
nonlinearity in the medium and enables power coupling. Since the damping coefficient
inside the medium is relatively low, E, will yield a high amplitude wave propagation

inside the cavity for at least a few hundred picoseconds.
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E,: Pump wave (240 THz) i !

fo=1x10%Hz , y=1x10'1Hz ' '
' &(f=0)=1+yx=10 ! i

! Nonlinear, dispersive material - I

E: Input wave (160 THz) . |

.
~ [,=0.94 | :
=1 2 ! '
1
LEFT PML : RIGHT PML
BOUNDARY BOUNDARY

Figure 3.9 The cavity described in the example along with the given parameters.

Assume that we want to determine the time variation of E at any given point inside the
cavity. There are four differential equations to be solved. The first two of them is to
determine the amplitude of the pump wave and its associated polarization density at any
given time instant at any point inside the cavity, and then substituting their values in the

pair of differential equations for E. These four equations are respectively as follows
d?(E,) d(E;) d?P,
aiz M0 g ThefoTg

d*p, dP, wo? wo? Ne?
P,) — —> (P,)? + ——— (P,) = —(E
dtz +y dt +(A)0 ( 2) Ned( 2) N2 Zdz( 2) m ( 2)

d?(Ey) d(E,) d?(Py)
VZ(E1) — Uogo 7 = Ho0 —5— + Hofo 57—

d*(Py)  d(P ), o’
o Gt 2(101)— {P1 +2P1P2}+N2 53 (P’
2

” Ne
+ 3P, P, }:7(51)

VZ(E;) — oo (91-94)

+ 3P,*P,
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The degree of nonlinearity depends on the amplitude of the pump wave E,. If the peak
amplitude of E, is very high, the resulting nonlinear coupling will be stronger. On the
other hand, if the amplitude of E is not sufficiently high, nonlinear coupling of the two
waves will be negligible. The pulse duration of the pump wave in this case is ultrashort
but since the medium is highly dispersive, once the electrons in the medium are excited
by a stimulus, they tend to keep on oscillating and this oscillation damps very slowly if
the damping coefficient of the medium is low. This causes a much longer duration of high
amplitude wave propagation inside the cavity and in turn a very high electric energy
density stored for a much longer duration. This allows energy coupling from the cavity to
the low amplitude input wave. Therefore, the high amplitude ultrashort pulse is used to
create an accumulation of energy inside the low loss cavity. Similarly, we can use the
other set of four equations to determine the time variation of E, at any given point inside

the cavity. As stated previously, these are

d*(E,) d(Ey) d*P,
VZ(E1) — o€ gz = P05 thefo g
d2P1 dp; " wo? wo? , Ne?
TP T tzezgz (M) = 5 (B
d*(E,) d(E>) d*P,
VZ(E3) — Hogo BT T + oo ez
P, | dP, ,
Tz TV T @ 2(p,) — {P2 +2P,P )} + W{Pz + 3P,%P; + 3P,P,%}
_ Ne? £
=— (E2)

Though since E, has a very high amplitude and E; is low in amplitude, E; will be a
negligibly small source for E,. And the propagation of E, will not be affected by the
presence of E; until E{ has been significantly amplified. Note that for now we do not
know whether E; will be amplified due to nonlinear coupling or not. As of yet the
amplification of E4 is just an assumption. We will investigate the time variation of E at

any given point in a specified cavity via finite difference time domain analysis.
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3.4. Finite difference time domain analysis of nonlinear coupling in a resonator

Assume that E, is the electric field of the intense wave that induces the nonlinear coupling
and E; is the electric field of the low intensity wave that absorbs energy from the resonator
that is energized by E,. First we write the set of equations that needs to be discretized in

time and space

d?(E,) d(E,) d?P
VZ(E;) — to&o dt22 = Wo0 6t2 + Uo&o dt22 (95—-98)
d’*p,  dP, 5 2 o 2 Ne?
2 TV T @ (P )——( P,) W(Pz) =—(Ez)
d*(E,) d(E1) d*(Py)
V2(E1) — Hogo gz~ Moo T hefo 7
d*(Py)  d(P ) 0’
dt; +y— + wy2(Py) ——{P1 + 2P Py} + e N2 2d2 (P,® + 3P,%P, + 3P, P,%}
_ Ne? .
= — (&)

Assume a single dimensional analysis (x direction) so that we can write

d*(Ey)
dx?

d*(E,)
dx?

V2(Ey) = , VAH(E) =

We discretize the set of four equations as follows; first let us discretize equations (95)

and (96)

Ax? ~ Koo At?
= Ho0 At + Uo€o At

(99)

P(i,j+1) = 2P,(0,j) + P,(i,j — 1) 4 sz(i,J') + P03, - 1)

Atz At + wOZ(PZ(ilj))

02 2 woz 3 Ne?
Neq P2N) +3zzgz (P20 )))” =——(E2(.)))  (100)

Our aim is to solve for E, (i, j + 1) i.e the amplitude of E, at a certain point at the adjacent
time step. As E, and P, are coupled to each other, we initially solve for P,(i,j + 1) and
then insert its value into the equation for E,(i,j + 1). We repeat this procedure for all
instances and all coordinates in the solution domain of a given problem. For an accurate

solution, one should select At and Ax as narrow as one can.

47



Similarly, we discretize equations (97) and (98) as

Ei(i+1,j)—2E.(i,j) + E.(i — 1,)) E (i,j+1) —2E.(, ) +E(i,j— 1) 101
Ax? — Ho€o A2 ( )
_ Ei(i,j) —E;(i,j— 1) Pi(i,j+1) — 2P (i,j) + P, (i,j — 1)
= Ho0 At + Uo&o At

Pi(i,j+1)—=2P,(i,j) + P(i,j — 1) P, j)+P(0,j—1) ..
: th ! +y : At1 +<U02(P1(l;]))

—2 2
~ 2 (PG D) + 2P GNP + 1 (PG D)’
N 2
+ 3(P1(i,j))2P2(i,j) + 3P1(i,j)(P2(i,j))2} = %(El(i;j)) (102)

By solving these 4 equations, one can solve for the fields E; and E, at any given point in

a single dimensional solution domain for a given instance.

The total wave in the medium is E = E; + E,, we can get the time variation of the total

wave by solving the following equations

d?(E) d(E) d?p
V2(E) — togo—75— a2 P05 T hefo s (103)
d2P+ dP+ 2(p 24 2 P)? = e’ E) (104
dtz ydt (1)0 ) ( ) NZ Zdz( ) - ( ) ( )
These equations are discretized as
EG+1,j))—2EG)+EG—1,)) EGj+1)—-2EG)+EG—1)
Ax2 — Hoéo At2 (105)
E(1,j)—EGj—1) P(,j+1)—2P0, )+ P>, j—1)

= U0 At + Ho&o AL

2
Ne
Note that At and Ax must be chosen as small as possible. This drastically increases the

computational cost; however, it is necessary as the problem is nonlinear. The stability

condition At < Ax/c is not always valid in the nonlinear case, as a result At must be chosen

to be much smaller than Ax/c.
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3.5. Simulations of wave amplification via nonlinear coupling

Simulation 3.1:

The input wave E4 to be amplified and the intense pump wave E, are simultaneously
present in a simple Fabry-Perot type resonator. The reflectance of the left and right walls
of the resonator are I3 and I, respectively. Both waves are generated at x=2.5 um inside
the cavity at time t=0. The amplitude of the electric field (E,) of the input wave is 1 V/m
and its frequency is 30 THz. The electric field (E,;) of the pump wave has a large
amplitude of 2 x 10° V/m and its frequency is 50 THz.

Ei(x =25um,t) =1 xsin(2r(3 x 103t + ¢,) V/m
For simplicity, assume that ¢, =0
E,(x =25um,t) = 2 x 10% x sin(2r(5 X 1013)t + ¢,) V/m
For simplicity, assume that ¢, = 0
Time interval and duration of simulation: 0 <t < 50 ps
Spatial range of the simulation domain: 0 < x < 10 um
Resonance frequency of the nonlinear medium: f, = 8 x 10** Hz
Damping rate of the nonlinear medium: y =5 x 101° Hz
Dielectric constant of the nonlinear material (¢,) =10 (u, = 1)
Left perfectly matched layer is fromx = 0to x = 2.25 um
Right perfectly matched layer is fromx = 7.75 ymto x = 10 um
Nonlinear dielectric material spatial range: 3.33 ym < x < 6.66 um
Left cavity wall reflection coef ficient: I7 = 0.87 for —oo < w < ©
Right cavity wall reflection coef ficient: I, = 0.87 for —oo < w < o
Electron density of the nonlinear medium: N = 3.5 x 1028 /m3

Atomic or molecular diameter : d = 0.3 nanometers

After the interaction with the pump wave inside the cavity, the input wave E; is recorded
over time at x=7.06 um inside the cavity. Both waves’ amplitude variations are plotted

with respect to time in figures 3.10 and 3.11.
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«10° Pump wave amplitude versus time

25 T T T T

Amplitude

_25 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 285 3 3.5 4 4.5 5

time «10° 1

Figure 3.10 Pump wave amplitude versus time at x=7.06 um (inside the cavity).

] «10° Input wave amplitude versus time
T T T T T T T T T

0.8

0.2

Amplitude

_1 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time <10 M
Figure 3.11 Input wave amplitude versus time at x=7.06 um (inside the cavity).
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E,: Pump wave
fo=8x10"%Hz , y=5x10"Hz

&(f=0)=1+x=10

Nonlinear, dispersive material

AN

E;: Input wave

;=0.87 =0.87
LEFT PML RIGHT PML
BOUNDARY BOUNDARY

Figure 3.12 The cavity that is simulated in Simulation 3.1 along with the given parameters.

The input wave gets amplified, but over time it becomes highly polychromatic, having
frequency components from the infra-red to the ultraviolet region of the spectrum. Since
the initial input wave was monochromatic with a frequency of 30 THz, we want to see
how much the 30 THz frequency component of the wave is amplified. Using a band-stop
filter with a central frequency of 30 THz and a bandwidth of 0.5 THz, we get the 30 THz
component of the polychromatic amplified wave. It is clear via Figure 3.13 that the 30
THz component of the input wave, which initially had a 1 V/m amplitude has been

amplified by a factor of approximately k=3000.

The amplification of the input wave depends on the value of the resonance frequency f,,
the value of the decay rate y and the reflectance of the resonator walls. If the values of the
reflection coefficients are high, the damping rate is low, and the resonance frequency is
not too large, then the amplification of the input wave is usually more efficient. Though
amplification also depends on other factors such as the length of the nonlinear material,
the permittivity of the interaction medium, the length of the cavity, and the pulse duration
of both waves. The existence of so many variables makes the determination of the required

values of different parameters for efficient amplification extremely complex.
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Figure 3.13 Amplification of the input wave at the frequency of 30 THz.

Nonlinear, dispersive material Einput, amplitiea(f = 30THz)

Einput(f = 30THz)

Ain = 1V/m

Figure 3.14 Monochromatic wave amplification at f=30 THz
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CHAPTER 4

ENHANCEMENT OF NONLINEAR WAVE AMPLIFICATION EFFICIENCY
IN MICRORESONATORS VIA PARAMETER TUNING

This chapter focuses on the performance enhancement of nonlinear wave amplification.
Our aim is to examine the influence of the polarization damping coefficient (y), and the
dominant resonance frequency (f;) on wave amplification via nonlinear coupling in an
optical microcavity. The optimal range of values for the damping rate and the dominant
resonance frequency will be determined for a high-gain amplification of the stimulus
wave. An interaction medium with a large damping rate will attenuate the intensity of the
pump wave, and thereby will cause a lower rate of stimulus wave amplification. Our aim
Is to identify a critical or a threshold value of the polarization damping coefficient, beyond
which the gain factor of the amplified stimulus wave will drastically reduce to an
insignificant level. If this could be shown, this would mean that the influence of the
damping rate (or polarization damping coefficient) is much stronger when nonlinearity is
involved. An identical threshold-value investigation will also be carried out for the

dominant resonance frequency.

The effect of the polarization damping rate and the dominant resonance frequency can be
disregarded for a single pass gain factor analysis (without the cavity walls). However,
when an interaction medium is placed inside a cavity, electric energy is accumulated, and
a much higher gain factor can be attained. This energy accumulation is strongly dependent
on the values of the damping rate and the resonance frequency of the interaction medium.
Assuming an interaction medium with a single (dominant) resonance, three example
simulations based on arbitrary parameters will be investigated via finite difference time
domain analysis and the obtained gain factor versus damping rate/resonance frequency

functions are plotted and tabulated to illustrate the drastic gain sensitivity. Finally, the

53



effect of the reflectance of the cavity walls will be examined and incorporated in the

performance enhancement analysis.

Simulation7: The input wave to be amplified and the high intensity pump wave are
simultaneously present in a simple Fabry-Perot resonator. The reflectance of the left and
right resonator wall is I; and I, respectively. The waves are originated at x=2.5 um inside
the resonator at time t=0. The amplitude of the input wave electric field (E;) is 1 V/m its
frequency is 10 THz. The amplitude of the pump wave electric field (E;) is 1 x 10° V/m
its frequency is 300 THz.

sin(2m(1 X 1013)¢t + 1%
E{(x=25um,t) =1x (2n( m) ¢1) , for 0<t<50ps

sin(2m(3 X 10t + 1%
E,(x =25um,t) =1x 10% x (2 m) 92) , for 0<t<500fs

Time interval and duration of simulation: 0 <t < 50 ps
Spatial range of the simulation domain: 0 < x < 10 um
Resonance frequency of the gain medium: f, = 600 THz
Polarization decay rate of the gain medium: y =5 X 107 Hz
Dielectric constant of the gain medium (&,) =12 (U = 1)
Left perfectly matched layer (pml)is fromx = 0 to x = 2.40 um
Right perfectly matched layer (pml)is fromx = 7.6 umtox = 10 um
Gain medium spatial range:3.33 ym < x < 6.66 um
Left cavity wall reflection coef ficient: I; = 0.96
Right cavity wall reflection coef ficient: I, = 0.96
Left cavity wall location: x = 2.53 um; Right cavity wall location: x = 7.3 ym
Electron density of the gain medium: N = 3.5 x 10%8/m3

Atomic diameter : d = 0.3 nanometers
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The electric field of the input wave (E;) is computed for all instances at x=5.73 um in the
micro-resonator. Since the pump wave is very intense, there is a nonlinear coupling of the
pump wave and the input wave. The pump wave energizes the cavity via accumulation of

the polarization density, and this enables high-gain nonlinear wave amplification.

The time variation of the amplitude of the input wave with respect to the damping
coefficient (y) is illustrated in Figures (4.2-4.5). These figures show that the gain factor
sharply decreases beyond the threshold value of the damping coefficient due to
insufficient stored energy. Good dielectric media usually has a lower damping coefficient

and therefore can be preferred for wave amplification via nonlinear mixing.

As previously pointed out, the time variation of the electric fields (E; and E,) can be

obtained by solving the following set of equations.

d*(E;) _  d(Ep) d*P,

VZ(E3) — Hogo a2z Moot oo m

2 2

d?P. dP Ne
Sty (P)* = — (E2)

2
Wo Wo

NZ2e2d?

d*(E,) _ O_d(El)_I_ . d*(Py)
dt2 Ho0 =5~ T Hodo ™72

v? (E1) — to&o

wo?

d?(P,) d(P,)
+
Ned

dt? 14 dt + wOZ(Pl) -

+3P,%P,

2 Wo 3
{P* +2P,P,} + W{Pl

,. Ne?
+ 3P, P,"} :T(El)

The initial, excitation, and boundary conditions are

P;(x,0) = P;'(x,0) =0, P,(x,0) = P,'(x,0) =0, E;(x,0) = E;"(x,0) =0,
E,(x,0) = E,'(x,0) =0

Ei(x=0um,t) =E;(x =10um,t) = E,(x =0um,t) = E,(x =10 um,t) =0V /m

sin(2m(1 x 103)t) V

Ei(x =25um,t) =1X
1(x pm, t) m

E,(x =25um,t) =1 x 10° X sin(2r(3 x 10*)¢t) V/m
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E,: Pump wave (f=300 THz, T,, =500fs) H
fo, ¥=5x10"Hz
g(f=0)=1+yx=12
Nonlinear, dispersive material

E: Input wave (10 THz, T, = 50ps)

17=0.96 I,=0.96
LEFT PML RIGHT PML
BOUNDARY x=7 4um BOUNDARY
Figure 4.1 The configuration of the resonator given in Simulation 7.
15 «10° Input wave amplitude variation at x=5.73um
1k Gamma=5*1017
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Figure 4.2 Amplitude variation of the input wave (E;) as computed in the resonator at x=5.73
um with respect to time for an original pump wave amplitude of 1 x 10° V/m for f; = 6 x
10'* Hz and for y=5 X 107 Hz.
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Input wave amplitude variation at x=5.73um
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Figure 4.3 Amplitude variation of the input wave (E;) as computed in the resonator at x=5.73
um with respect to time for an original pump wave amplitude of 1 x 10° V/m for f, = 6 x

10'* Hz and for y=1 x 10° Hz.

Input wave amplitude variation at x=5.73um
T T

100

Amplitude

Gamma=1*10*11

-100

1 1.5 2 25 3 3.5 4 4.5 5
time (in seconds) x10™M

Figure 4.4 Amplitude variation of the input wave (E;) as computed in the resonator at x=5.73
um with respect to time for an original pump wave amplitude of 1 x 10° V/m for f, = 6 x

10'* Hz and for y=1 x 1011 Hz.
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Input wave amplitude variation at x=5.73um
T T T

Gamma=1*10"12 -
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Figure 4.5 Amplitude variation of the input wave (E;) as computed in the resonator at x=5.73
um with respect to time for an original pump wave amplitude of 1 x 10° V/m for f, = 6 X
10* Hz and for y=1 x 102 Hz.

x10°

Maximum input wave amplitude versus Gamma
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Damping coefficient (Gamma)

Figure 4.6 Maximum amplitude of the input wave (gain factor) computed at x=5.73 um versus
the damping rate of the interaction medium (gamma (y)).
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5 «10° Maximum input wave amplitude versus mean reflection coefficient
I T I T T I T
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Figure 4.7 Maximum amplitude of the input wave (gain factor) computed at x=5.73 um with
respect to the mean cavity wall reflectance for an original pump wave amplitude of 1 x
10°V/mfor f, = 6 x 10'* Hz and for y=5 x 107 Hz.

Figures 4.6 and 4.7 indicate that an interaction material with a low damping coefficient
and cavity walls with high reflectance may strongly enhance the gain factor of the input
wave as more electric energy can be stored. Notice that both parameters have
critical/threshold values for gain factor enhancement.

Figures 4.6 and 4.7 are illustrated for a dominant resonance frequency of f, = 6 X
10'* Hz. If we use an interaction medium with a higher resonance frequency, the
threshold pump wave amplitude that is necessary for an enhanced input wave

amplification gets higher and the resulting gain is lower. This is tabulated in Table 4.1.

The gain factor of the input wave is also dependent on the permittivity of the interaction
medium. A resonator medium with a lower permittivity can store less energy and yields a

lower gain factor. This is tabulated in Table 4.2.
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As a result, the gain factor of a non-linear electromagnetic wave amplification process
can be strongly increased by doing the followings

1) Using a resonator medium with a lower dominant resonance frequency.
2) Using a resonator medium with a low polarization damping rate.
3) Choosing cavity walls with high reflectance.

4) Using a resonator medium with a high permittivity.

fo: Resonance frequency of the interaction medium
y:Damping coefficient of the interaction medium
€w: Dielectric constant of the interaction medium
Gaing,q,: Maximum gain that has been achieved in the cavity for 0 <t < 30ps

Epp min: Minimum pump wave amplitude required to produce a gain factor

that is greater than 107.

Table 4.1: Maximum attainable gain Gain,,,, versus resonance frequency f;.

fo y(THz) €0 Gainymqy Eppmin (VIM)
400THz 5x 107 12 1.6x 10° 1.3 x 108
500THz 5x 107 12 1.4x 10° 1.5x 108
600THz 5x 107 12 1.3x 10° 1.8x 108
700THz 5x 107 12 1.1x 10° 2% 108
800THz 5x 107 12 9 x 108 2.3x 108
900THz 5x 107 12 8x 108 2.7 x 108
1000THz 5x 107 12 6 x 108 3.3x 108
1100THz 5x 107 12 4 x 108 3.9x 108
1200THz 5x 107 12 2% 108 4.6x 108
1300THz 5x 107 12 1x 108 5.4% 108
1400THz 5x 107 12 8 x 107 6.3x 108
1500THz 5x 107 12 7x 107 7.3x 108
1600THz 5x 107 12 5x 107 8.5x 108
1700THz 5x 107 12 4 x 107 9.9x 108
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Table 4.2: Maximum attainable gain Gain,,,, versus material permittivity.

fo y(THz) £ Gaing, gy

600THz 5x 107 2 59.48

600THz 5x 107 4 3134

600THz 5x 107 6 82450

600THz 5x 107 8 1.67 x 10°
600THz 5x 107 10 3.06 x 107
600THz 5 x 107 12 1.4 x 10°
600THz 5x 107 14 1.3 x 10°
600THz 5x 107 16 1.5 x 10°
600THz 5 x 107 18 1.2 x 10°
600THz 5x 107 20 1.4 x 10°

Simulation8: The input wave (E;) and the pump wave (E,) are simultaneously present
in a simple Fabry-Perot resonator. The left resonator wall has a reflectance of I; and the
right one has a reflectance of I;,. The waves are originated at x=2.5 um in the resonator
at time t=0 s. The amplitude of the electric field of the input wave (E4) is 1 V/m and its
frequency is 300 THz. The amplitude of the electric field of the pump wave (E,) is 2.75 X
108 V/m and its frequency is 200 THz.

sin(2m(3 x 10)¢t + /4
Ei(x=25um,t) =1x (2n( m) 2 , for 0 <t<50ps

For simplicity, assume that ¢, =0

sin(2m(2 x 10t + 1%
E,(x =2.5um,t) = 2.75 x 108 x (2n m) $2) , 0<t<300fs

For simplicity, assume that ¢, = 0
Time interval and duration of simulation: 0 <t < 50 ps
Spatial range of the simulation domain: 0 < x < 10 um
Resonance frequency of the gain medium: f, =400 THz
Damping coef ficient of the gain medium: y =5 x 10° Hz
Dielectric constant of the gain medium (e,) =10 (Ue, = 1)

Left perfectly matched layer is fromx = 0to x = 2.40 um
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Right perfectly matched layer is fromx = 7.6 umto x = 10 um
Gain medium spatial range:3 ym < x < 7 um
Left cavity wall reflection coef ficient: I; = 0.96
Right cavity wall reflection coef ficient: I, = 0.94
Right cavity wall location: x = 7.3 pym
Left cavity wall location: x = 2.53 pym
Electron density of the gain medium: N = 3.5 x 1028 /m3

Atomic diameter : d = 0.3 nanometers

While interacting with the high intensity (pump) wave, the electric field of the input wave
(E¢) is computed for every instance at x=5.73 pum in the micro-resonator. The time
variation of the input wave electric field amplitude is illustrated in Figure4.9 with respect
to time (t) and decay rate (y). It is clear from Figures 4.9 and 4.10 that the gain factor
decreases as the polarization decay rate is increased. These results indicate that the
damping coefficient (polarization decay rate (y)) is an important parameter to take into
account in the amplification of the low intensity input (stimulus) wave. Since an
interaction medium with a low polarization decay rate enables the charge polarization
density in the micro-resonator to accumulate for a longer duration, the stored energy in
the resonator increases. A high stored electric energy allows the pump wave to maintain

its high intensity for a longer time in the resonator and this yields to a high gain factor.

62



E;: Pump wave (f=200 THz, T,, =300fs)

fo =400THz, y =5x 10°Hz

&(f =) =1+ =10

Nonlinear, dispersive material

E;: Input wave (300 THz, T,, = 50ps)

1=0.96 [,=0.94
LEFT PML RIGHT PML
BOUNDARY BOUNDARY
x=7.4um

Figure 4.8 The configuration of the resonator given in Simulation 8.
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Figure 4.9 Amplitude of the input wave (V/m) at x=5.73 um vs the decay rate (y).
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«10° Maximum input wave amplitude versus Gamma
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Figure 4.10 Highest input wave amplitude (\//m) recorded at x=5.73 um with respect to the
damping coefficient (y).

«10° Maximum input wave amplitude versus mean reflection coefficient
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Figure 4.11 Highest input wave amplitude (gain factor) recorded at x=5.73 um plotted with
respect to the mean cavity wall reflectance for an original pump wave amplitude of 2.75 x
108 V/m for fy = 4 x 10'* Hz and for y=5 x 10° Hz.
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Figures 4.10 and 4.11 summarize that choosing an interaction material with a low
polarization decay rate and using resonator walls with a high reflectance significantly
improves the gain factor of the input wave, since the accumulated electric energy density
can be increased further via these preferences. Both variables (reflectance, decay rate)
have critical values for gain factor improvement. Figures 4.10 and 4.11 are illustrated for
a dominant resonance frequency of f, = 4 x 10* Hz. Since the dominant resonance
frequency is in the infra-red spectral range, the required pump wave amplitude for
nonlinear coupling is lower and consequently the input wave gain factor is higher. For
interaction media with higher resonance frequencies, the maximum attainable gain factor

is lower for the same pump wave amplitude. This relation is tabulated in Table 4.3.
fo: Resonance frequency of the interaction medium
y:Damping coefficient of the interaction medium
£w: Dielectric constant of the interaction medium
Gaingq,: Maximum gain that has been achieved in the cavity for 0 <t < 30 ps
Eppmin: Minimum pump wave amplitude required to produce a gain factor

that is greater than 107.

Table 4.3: Maximum gain factor Gain,,,, versus resonance frequency f, (Simulation 8)

fo y(THz) € Gainmay Enpmin (V/M)
400THz 5x 10° 10 1.1x 10° 1.6 x 108
500THz 5% 10° 10 1.0x 10° 1.8x 108
600THz 5x 10° 10 8x 108 2.0x 108
700THz 5% 10° 10 6 x 108 2.2x 108
800THz 5% 10° 10 5% 108 2.5% 108
900THz 5x 10° 10 3x 108 2.9 x 108
1000THz 5% 10° 10 3 x 108 3.4 x 108
1100THz 5x 10° 10 2x 108 3.9x% 108
1200THz 5x 10° 10 1x 108 4.6% 108
1300THz 5% 10° 10 5% 107 5.5% 108
1400THz 5x 10° 10 3 x 107 6.5% 108
1500THz 5% 10° 10 2% 107 7.6x 108
1600THz 5% 10° 10 1.5 x 107 8.8x 108
1700THz 5x 10° 10 1.1 x 107 1.0x 10°
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Table 4.4: Maximum attainable gain factor Gain,,,, versus medium permittivity (Simulation8)

fo y(THz) Eo Gaing,qy

400THz 5x 10° 2 49.7
400THz 5x 10° 4 2857
400THz 5 x 10° 6 79676
400THz 5x 10° 8 1.81 x 10°
400THz 5x 10° 10 2.99 x 107
400THz 5x10° 12 1.3 x 10°
400THz 5x10° 14 1.4 x 10°
400THz 5x 10° 16 1.5 x 10°
400THz 5x 10° 18 1.5 x 10°
400THz 5x 10° 20 1.4 x 10°

Simulation9:

The low intensity input wave (E;) and the high intensity pump wave (E,) are

simultaneously present in a two-port Fabry-Perot resonator. The waves are originated at

the point x=0 um and at the instance t=0 sec. The configuration is as stated below
sin(2m(2.5 x 10'%)t) V

Ei(x=0um,t) =1x — , for 0 <t <50ps

sin(2m(1 x 10*)¢t) V
E,(x =0 um,t) =3.75 x 108 x — , for 0<t<1ps

Resonance frequency of the gain medium: f, = 800 THz
Damping rate of the gain medium: y =1 x 10° Hz
Dielectric constant of the gain medium (e5,) = 10 (U = 1)
Spatial range of the simulation domain: 0 < x < 15 um
Gain medium spatial range: O um < x < 10 um

Left wall reflection coef ficient: I; = 0.96

Right wall reflection coef ficient: I, = 0.96

1028
m

-, Atomic diameter:d = 0.3 nm

Electron density of the gain medium: N = 3.5 X
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E,: Pump wave (f=100 THz, T,, =1ps)

fo = 800THz, y =1x 10°Hz
&(f =) =1+ =10

Nonlinear, dispersive material

Ey: Input wave (250 THz, T,, = 50ps)

VAVAVAYA

VAVAVAVA

h g
LEFT PML RIGHT PML
BOUNDARY BOUNDARY

Figure 4.12 The configuration of the described resonator in Simulation 4

Maximum input wave

5 T T T T

amplitude versus Gamma

Reflection coefficients: R1=0.96 , R2=0.96 7

Maximum input wave amplitude

X: 1.469e+11  X:3.341e+12  X: 9.496e+13
Y:3.927e+04  Y:119.7 Y: 2.231

O ool ool tiaal L N \H‘.\ MR | L .\|1\||| Hu.' M |

107 108 10° 100 10" 102 103 10" 10'®

Damping coefficient (Gamma)

Figure 4.13 Max. amplitude of the input wave (V/m) at x=5.73 pum vs the damping coefficient.
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35 «10° Maximum input wave amplitude versus mean reflection coefficient
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Figure 4.14 Max. amplitude of the input wave (gain factor) at x=5.73 pum vs mean resonator wall
reflectance for an original pump wave amplitude of 3.75 x 108 V /m for a resonance frequency
of f, = 8 x 10'* Hz and for a damping rate of y=1 x 10° Hz.

From Figures 4.13 and 4.14, one can deduce that by choosing an interaction material with
a low polarization decay rate (damping coefficient) and by adjusting the resonator walls
to be highly reflective, one can significantly improve the gain factor of the input wave.
Both the polarization decay rate and the mean resonator reflectance have threshold/critical
values for gain factor improvement, below which the amplification is insignificant. Both
figures (4.13 and 4.14) are illustrated for a dominant resonance frequency of f, = 8 X
10%* Hz. For interaction mediums with higher resonance frequencies, the critical pump
wave intensity that is necessary for nonlinear coupling is larger and the attained gain factor

is smaller, this relation is tabulated in Table 4.5.
fo: Resonance frequency of the gain medium
y:Damping coef ficient of the gain medium
£w: Dielectric constant of the gain medium
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Gaing,q,: Maximum gain that has been achieved in the cavity for 0 <t < 30 ps

Enp min: Minimum pump wave amplitude required to produce a gain factor

that is greater than 107.

Table 4.5: Max. attainable gain factor Gain,,, Vversus the dominant resonance frequency f5.

fO V(THZ) €0 Gainmux Ehp,min (V/m)
400THz 1x10° 10 2.2x 10° 1.6 x 108
500THz 1x10° 10 2.1x 10° 1.8x 108
600THz 1x10° 10 2x 10° 2.1x 108
700THz 1x10° 10 1.9 x 10° 2.5x 108
800THz 1x10° 10 1.7 x 10° 3.0x 108
900THz 1x10° 10 1.5 x 10° 3.6 x 108
1000THz 1x10° 10 1.2 x 10° 4.4 %108
1100THz 1x10° 10 1x10° 5.4% 108
1200THz 1x10° 10 7% 108 6.5x 108
1300THz 1x10° 10 4x 108 7.7x 108
1400THz 1x10° 10 2x 108 8.8x 108
1500THz 1x10° 10 9x 107 1x 10°
1600THz 1x10° 10 4 x107 1.1x 10°
1700THz 1x10° 10 1.5 x 107 1.2x 10°

Table 4.6: Maximum attainable gain factor Gain,,, versus interaction medium permittivity. The
gain factor increases with the medium permittivity as the stored energy is proportional to the
permittivity value.

fo y(THz) € Gainmay

800THz 1x10° 2 69.7
800THz 1x10° 4 3301
800THz 1x10° 6 62575
800THz 1x10° 8 1.57 x 10°
800THz 1x10° 10 3.08 x 107
800THz 1x10° 12 1.2 x 10°
800THz 1x10° 14 1.3 x 10°
800THz 1x10° 16 1.3 x 10°
800THz 1x10° 18 1.4 x 10°
800THz 1x10° 20 1.5 x 10°
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Simulation 4.10 — part 1: Choosing the optimum pump wave frequency

A 300 THz infra-red stimulus (input) wave E,. and a high-intensity pump wave Ej,, are
simultaneously present in a Fabry-Perot resonator. The left wall of the resonator is an
optical isolator with an amplitude reflectance of I7 = 1, and the right wall is a shutter
equipped bandpass filter with a frequency selective reflectance of I'(f). The waves are
originated at x=0 um at the instance t=0s. The configuration of the resonator is as stated

below:
Epp(x = 0 um,t) = 5 x 108 x sin(2n(f,)t) V/m, for 0<t<1ps

Eq(x =0pm,t) =1 xsin(2r(3 x 10*)t) V/m, for 0 <t <10ps
Dielectric constant of the gain medium (&,) = 10  (u, = 1)
Resonance frequency of the gain medium = f, = 800 THz

Damping coef ficient of the gain medium: y = 1x 107 Hz

Time interval and duration of simulation: 0 <t < 10 ps

Spatial range of the gain medium: Oum < x < 10 um

Right wall location: x =10 um ; Left wall location: x = 0 um

Electron density: N = 3.5 X 1028/m3 ; Atomic diameter : d = 0.3 nm

Eyyp: High power (pump) wave ( f,,, AT, )

fo v
o =14+y

Interaction material

E: Stimulus wave ( f,, AT, )

risolator U)andpass (f)

X = Xinput X = Xoutput
Figure 4.15 Configuration of the cavity and the parameters of the simulation.
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Aim: Identifying the pump (source) wave frequency f, that yields the maximum stimulus
wave magnitude (|E,|) inside the resonator, in the spectral range 10 THz <f, <

1000 THz, for Oum < x < 10 um, 0 <t < 10 ps, given that

VZEnp (fp) = Ho€oo % = U0 aEhgffp) + Uo a;f;lp-

a;f;m +y agftm + 0% (Pryp) — ;—(ii (Prp)” + #Ojdz (Pap)’ = NTeZEhp(fp)-
V2Est(fp) — Mo % = MOU—aESatEﬂJ) + Uo ‘GZEszgﬁO)'

026(:;5 Dy a(g ;t) + wo?(Py) — %{Pstz + 2Py Py} + #‘fdz{gﬁ + 3Py 2Py,

,. Ne?
+ 3Pstphp } = TESL“(]%)

Initial values:

Php(xJ 0) = Php,(x' O) = Ehp(xl 0) = Ehp’(xi 0) = Pst(x' O) = Pst,(xf 0) = Est(x' 0)
= ESt,(xl O) = 0

Excitation conditions:

Epp(x =0 um, t) = 5 x 108 x sin(2n(f,)t) V/m, for 0<t<1ps
Eq(x=0um,t) =1xsin(2r(3 x 101*)t) V/m, for 0<t <10ps
Epp(x =15um,t) = Eq(x =15um,t) =0  for 0 <t <10ps
Absorbing layer for computational domain termination:

o) ={(x—(L—-8))oy, (L—A)<x<L }hforL=15um, A=25um, o
=4.5x 10% S/m

Optical isolator: Perfect reflection at x = 0 um

I'(x=0um,t) =1 (Reflection coefficient is equal to 1)
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Shutter equipped band-pass filter: Located at x = 10 um. Perfect reflection for t<10

ps, frequency selective reflection for t>10 ps.

I(l forallf', for x=10um, 0<t<10ps
rel=1 e,
L 1—e V2THz , for x=10um, t> 10ps

To identify the optimal pump wave frequency that maximizes the magnitude of the
stimulus wave electric field in the resonator (for 0<t<1Ops), at each step of the
optimization we use a simple recursive equation derived from Newton’s update formula.

Accordingly, the frequency of the pump wave and the optimal step length are stated as

|Est (fo.0)|
Est(fp,k)l 4 |Est(fp,k—1)

fp,k+1 = fp,k — Pk | | (fp,k — fp,k_l) , k=1,2,..

|Est(fp,k)| I

| |Est(fp.i0)l |
1
(los A T o - oy |

P = 1.467 ||Est(fp,k)|_|Est(fp,k—1)||

)

After 60 updates (at the iteration k=61), the highest stimulus wave amplitude that is
attained in the resonator for 0<t<10ps is found as Gain,,,, = |Estlmax = 7.74 X 106V /
m. This amplitude is reached at a pump wave frequency of f, =349.5THz. The

optimization process is shown in Table 4.7.

Table4.7: Updating the pump wave frequency for gain factor maximization.

fo y(THz) €0 GaiNyay fo k (iteration #)

800THz 1x 107 10 3.48 500THz 1

800THz 1x 107 10 7.13 488THz 4

800THz 1x 107 10 6.22 441THz 7

800THz 1x 107 10 18.61 402THz 10
800THz 1x 107 10 26.59 317THz 13
800THz 1x 107 10 21.42 393THz 16
800THz 1x 107 10 53.38 322THz 19
800THz 1x 107 10 151.4 294THz 22
800THz 1x 107 10 137.7 265THz 25
800THz 1x 107 10 28.81 282THz 28
800THz 1x 107 10 4.97 289THz 31
800THz 1x 107 10 3.75% 10?2 377THz 34
800THz 1% 107 10 69.07 386THz 37
800THz 1x 107 10 2.34%x 103 365THz 40
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Table4.7: (Continued)

800THz 1% 107 10 4,18x 103 364THz 43
800THz 1x 107 10 7.92x 10* 353THz 46
800THz 1% 107 10 5.53 x 103 340THz 49
800THz 1x 107 10 1.68x 10° 348.5THz 52
800THz 1x 107 10 5.37x 10° 349.1THz 55
800THz 1% 107 10 7.02%x 10° 349.4THz 58
800THz 1x 107 10 7.74 X 10° 349.5THz 61

To uncover the physical phenomena behind the super-gain at this specific pump wave
frequency, the frequency of the pump wave is varied from 10 THz to 1000 THz in 10 THz
increments, so that we can observe the gain factor in a wide spectral range. The density of
intracavity electric energy (W, ) and the intracavity polarization density (Py,, ) induced by
the high intensity of the pump wave are illustrated against the pump wave frequency in
Figures 4.16 and 4.17. It is clear from Figure 4.16 that the stored electric energy density
is the highest near f, = 350 THz, and our optimization problem essentially determines
the optimal excitation frequency of the pump wave that yields the highest electric energy
in the cavity. If we investigate the highest gain peak which occurs at f, = 350 THz, we
can see that the intracavity polarization density (Py,) induced by the pump wave (which
enables the energy transfer) is the highest for this excitation frequency. The pump wave
induced electric energy density W, also has its maximum value around f,, = 350 THz.
Consequently, we have the strongest gain factor peak around f, = 350 THz. As tabulated
in Table4.8, when the stored electric energy density and the intracavity polarization
density induced by the pump wave are simultaneously high, the stimulus wave
amplification is stronger. As the pump wave frequency of f,, = 350 THz yields the major
peak in the electric energy density and amplifies the electric field of the stimulus wave,
this frequency is selected as the pump wave excitation frequency for the computation of
the gain spectrum of the stimulus wave. After its amplification, the stimulus wave
becomes slightly polychromatic as a consequence of the spectral broadening in the
resonator. For this reason, it is necessary to perform another investigation to attain the
amplification spectrum of the stimulus wave using a 350 THz (optimal) pump wave

excitation.
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3 «10° Electric energy density (J/m3) versus pump wave frequency
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Figure 4.16 Pump wave induced electric energy density (0<t<10ps) as computed in the resonator
(at x=5.73 um) versus the pump wave frequency.
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Figure 4.17 Pump wave induced polarization density (highest value in the range 0<t<10ps) as
computed in the resonator (computation coordinate: X=5.73 um) versus pump wave frequency.
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W,: Maximum electric energy density created by the pump wave in the cavity

Pyp: Maximum charge polarization density created by the pump wave in the cavity

Astmax: Maximum stimulus wave amplitude in the cavity

Table4.8: Pump wave frequency, highest amplitude of the stimulus wave (gain factor), highest electric

energy density induced via pump wave, highest polarization density induced via pump wave

fp(THZ) Ast,max VVe Php fp (THZ) Ast,max VVe Php
10 5.883986 29699657 0.027091 510 1211.665 5.33E+08 0.200157
20 13.42542 5.13E+08 0.118397 520 12.03636 2.24E+08 0.128374
30 12.99005 48849682 0.033976 530 6380.668 6.2E+08 0.237481
40 9.096766 7.58E+08 0.14055 540 197.2572 4.04E+08 0.196768
50 17.10611 93371276 0.048789 550 2.228608 2E+08 0.118366
60 4.474521 6.09E+08 0.131476 560 3341.632 6.28E+08 0.211868
70 5.069646 1.42E+08 0.057396 570 50526.02 3.97E+08 0.160384
80 3.561172 2.05E+08 0.073801 580 1.952741 3.91E+08 0.160039
90 2.641755 74279614 0.042153 590 1.836473 1.45E+08 0.105914
100 4.077828 72125541 0.045394 600 2.067759 1.29E+08 0.103506
110 8.999627 6.04E+08 0.13448 610 2.159113 88756343 0.089169
120 2.613823 97309728 0.049051 620 7.876075 56936698 0.072166
130 3.933646 6.07E+08 0.135959 630 2.014397 1719389 0.012014
140 2.685399 89828810 0.047224 640 2.002486 867505.3 0.008003
150 2.446767 2.58E+08 0.08447 650 1.99723 594922.3 0.006319
160 2.277283 2.01E+08 0.071119 660 1.992377 454115.5 0.005502
170 2.568835 78977510 0.045889 670 1.992079 380584.9 0.004912
180 3.640279 7.35E+08 0.134221 680 1.99609 327444.1 0.004525
190 3.496944 50155368 0.036736 690 1.992056 281248.6 0.004147
200 5.209949 69704490 0.045108 700 1.994624 254086.5 0.003786
210 39.38512 1.25E+09 0.19136 710 2.003631 239090.8 0.003631
220 17.4777 9.3E+08 0.155742 720 2.008237 224470.1 0.003453
230 3.781144 73950854 0.046904 730 2.014686 212223.1 0.003299
240 6.847807 79718064 0.049873 740 2.08819 194997.7 0.00319
250 66.4612 1.03E+09 0.156807 750 2.020707 189412.7 0.003079
260 1354.073 2.03E+09 0.350968 760 2.026132 182209.2 0.003019
270 14.35446 4.2E+08 0.105385 770 2.031172 171364.8 0.002977
280 13.4472 65372520 0.045401 780 2.106717 167320.3 0.002944
290 6.311408 70860412 0.046055 790 2.062642 160819.4 0.002907
300 2.760757 83057212 0.048992 800 2.123964 154567 0.00289
310 2.27222 96378435 0.057127 810 2.074114 150234.4 0.002923
320 2.685882 1.17E+08 0.057266 820 2.043318 146722.7 0.002912
330 2.403513 60937048 0.046658 830 2.033978 142738.8 0.00291
340 1.907491 1.22E+08 0.06329 840 2.02517 137337.5 0.002947
350 6835947 2.65E+09 0.36398 850 2.07065 135352.4 0.002973
360 51.09379 5.4E+08 0.134201 860 2.042151 133736 0.003041
370 2.244881 82294755 0.055986 870 2.013683 130354.1 0.003091
380 4.045674 3.28E+08 0.099051 880 2.048405 129162.4 0.003179
390 2.385328 2.36E+08 0.099527 890 1.986717 133554.1 0.003284
400 1.914928 36407088 0.038589 900 2.000912 135280.2 0.003413
410 2.245768 1.57E+08 0.081641 910 1.981226 141468.3 0.003604
420 60.8144 1.04E+09 0.209959 920 2.02185 150727.1 0.003847
430 2.316941 1.14E+08 0.070736 930 2.017607 161806.4 0.004165
440 2.424293 74048560 0.059251 940 2.009308 175362.1 0.004584
450 1.903607 50132227 0.048627 950 2.004022 198713 0.005175
460 22.94166 4.85E+08 0.173972 960 2.00816 238825.9 0.006067
470 2.353593 2.17E+08 0.114367 970 2.008864 307733 0.008694
480 11.76979 3.42E+08 0.172466 980 122.4469 48819069 0.090452
490 7.203818 1.12E+08 0.097311 990 404.8945 1.14E+08 0.10242
500 7.889092 1.68E+08 0.110958 1000 34391.77 1.74E+08 0.126597

75




wave amplitude variation at x=5.73um for fpump=350THz
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Figure 4.18 Amplitude of the stimulus wave versus time as computed at x=5.73 um for a pump
wave excitation at f,, = 350 THz.

Simulation 10 - Part2: Amplification (gain) spectrum of the stimulus wave under the

optimal pump wave excitation frequency of f, = 350 THz

Aim: For the optimal (f, = 350 THz) pump wave frequency, determine the stimulus
wave gain factor |Eg|max IN the micro-resonator for every stimulus frequency f; in the
interval 10 THz <f; <1000THz (Oum <x <10um, 0 <t <10 ps), given the

following equations

02(E o(E 0P
VZ(Enp) — HoEoo _gt;m) = Uoo (azp) + g at;m_ (107a)
0Py, 0P, wo? , 2 P 3 _ Ne?
g e o0 (i) = og () + gzgz (Pro) = (Bw)- - 1070)

az(Est): O_a(Est) N 02(Pst)
ot2 Ho —5¢ o5z

VZ(Est) ~ Moo (1O8a)
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0% (Pg) N 9(Pg)
ot?2 14 ot

+

2
Wy
+ a)OZ(Pst) - W{Pstz + ZPstPhp}

Ne?(E
Pst® + 3P Pyy + 3Py Pry” } = % (108b)

Wo
NZeZdZ {
Initial values:

Ppy(x,0) = Ppp'(x,0) = Epp(x,0) = Ep,,'(x,0) = Py (x,0) = P, (x,0) = Eg(x,0)
— E,'(x,0) = 0

Excitation conditions:

Epp(x = 0pum,t) = 5 x 10® x sin(2m(3.5 x 10'*)t) V/m, for 0<t<1ps
Egi(x =0um,t) =1 xsin(2re( f;)t) V/m, for 0 <t <10ps

Epp(x =15um,t) = Eq(x = 15um,t) =0  for 0 <t < 10ps

Absorbing layer for computational domain termination:

() ={(x—(L—-D))oy, (L—A)< x<L }forl=15um, A=2.5um, o
= 4.5 % 108 S/m
Optical isolator: Displays perfect reflection at the location x = 0 um
I'(x=0um,t) =1 (Reflection coefficient is equal to 1)

Shutter equipped band-pass filter: Displays perfect reflection at x = 10 um before t=10
ps, displays frequency selective reflection at x = 10 um after t=10 ps. For a stimulus

frequency (f), the spectral response of the band-pass filter is adjusted to be
1 forallf', for x=10um, 0 <t <10ps
Ir(ol = _ =0,
k 1—e V2THz , for x=10um, t> 10ps

The gain response of the stimulus wave for 10 THz < f; < 1000 THz, f,ymp = 350 THz
is illustrated in Figure 4.19. The stimulus wave is fed to the resonator at t=0 s as a
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semi-monochromatic wave. For an original (for t=0 s) stimulus wave frequency, the
central frequency of the bandpass filter is selected to be the same frequency with the
original stimulus wave frequency. This allows us to examine the maximum gain that can
be achieved from the resonator for each stimulus wave excitation frequency. We select
the pump wave excitation frequency as f = 350 THz as it enables the highest gain factor
to be achieved and we vary the stimulus wave frequency from 10 THz to 1000 THz by 10
THz at each step.

35 <107 Gain spectrum of the stimulus wave for fpump=350THz
. T T T T T T T T T
’ fpump=350THz‘
3r i
f0=800THz
25 B
2 r |
c
‘©
(]
1.5 - i
1 - -
0.5 b
0 /\_,_/\//\‘ | 1 | JJ
0 1 2 3 4 5 6 7 8 9 10

Stimulus wave input frequency (Hz) at t=0 <1014

Figure 4.19 Variation of the stimulus wave gain factor with respect to the stimulus wave
excitation frequency for f,,my = 350 THz and f, = 800 THz.
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Simulation 11: A stimulus wave with an electric field E;; and a high-intensity pump wave
with an electric field £, are simultaneously present in a high-Q Fabry-Perot resonator.
The left wall is an optical isolator and has a reflectance of I; = 1. The right one is a band-
pass filter with a frequency selective reflectance I'(f). The waves are originated at the

point x=0.1 um (interior to the resonator), and at the instance t=0 s.
Epp(x = 0.1 pm, t) = 7 X 10® X sin(2m(2.82 x 10'*)t) V/m, for 0 <t <500 fs
Ey(x =0.1pum,t) =1 X sin(2r(4.4 x 10')t) V/m , for 0<t <30ps
Dielectric constant of the nonlinear material (ef=oo) =12 (ur=1)
Resonance frequency of the dispersive material = f,
Time interval and duration of simulation: 0 <t < 30 ps
Strongly nonlinear dielectric material spatial range: 0.15 ym < x < 9.85 um
Right cavity wall location: x = 0 um , Left cavity wall location: x = 10 um
Electron density of the nonlinear medium: N = 3.5 x 1028 /m3

Atomic diameter : d = 0.3 nanometers

Eyp: High power wave ( =282 THz, T,, = 500fs)

fo, ¥ =1x10°Hz
&e(f=0)=1+yx=12

Nonlinear, dispersive material

E: Stimulus wave ( f=440 THz, T,, = 30ps)

nL~=1 I (w)

LEFT PML

RIGHT PML

BOUNDARY BOUNDARY
x>10pum

Figure 4.20 The micro-resonator described in Simulation 11.
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Ideally, the magnitude spectral response of the band-pass filter should be

1 forallw, 0<t<30ps
I'(w) = 1 forw<4375THzand w >442.5THz , t>30ps
0 for4375THz< w <4425THz , t>30ps

Evidently, during the computation I'(w) = 1 for all w. The filter is used for post-
processing of the simulation results. In order to solve for the pump wave Ej,, at each point

in the computation domain and at every instance, the equations that need to be solved are

P(Ery) _ d(En) | 4Py
VZ(Ehp) — Ho€wo sz = HoO 6tp + Uo dtzp
dzphp dPhp (1)02 2 (1)02 Nez
a2tV g oo ) ~ g () + gzgags Puw)® = o (Bi)

After solving for Pp,,,, we substitute it in the equations below to solve for Ej;.

d?(Es) d(Est) d? (Pst)
VZ(Ese) — Hooo a2 M50 + Uo a2
d?(Pst) d(Ps¢) Wo° 0%
dtzs +y d: + wOZ(Pst) - Ned {Pst2 + 2Pstphp} + N2e2d2 {Pst3 + 3Pst2Php

,.  Ne?
+ 3PstPhp }= 7 (Est)

The initial values and excitation conditions are as follows
Prp(x,0) = Ppp,/(x,0) =0, Py(x,0) = Py,'(x,0) = 0
Epp(x,0) = Epp'(x,0) =0, Eg(x,0) = Eg,(x,0) = 0
Epp(x = 0.1um,t) = 7 x 10® x sin(2w(2.82 x 10t + ¢,) V/m, 0 <t <500 fs
Eqe(x = 0.1um,t) = 1 X sin(2n(4.4 X 10"t + ¢;) V/m , 0<t <30ps
Epp(x = 10um, t) = Ep,(x = 0um,t) =0 , 0<t<30ps

Eg(x =10um,t) = Eg;(x = 0um,t) =0 , 0<t<30ps

1 __ dPst

1 __ dEg
» Pt = dt

dPhp
- B = dt

Where Pp,' = —  Enp

1 dEhp
dt

80



«108 Electric energy density (J/m3) versus resonance frequency
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Figure 4.21 Intracavity electric energy density induced by the pump wave at x=5.73 um vs f;.

High power wave polarization density (C/mz) versus f0
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Figure 4.22 Intracavity polarization density induced by the pump wave at x=5.73 pm vs fj,.
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«102 Maximum amplification of the stimulus wave amplitude vs f0
T
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Figure 4.23 Highest intracavity stimulus wave amplitude computed at x=5.73 pm (t<30ps) Vs f;.

Identifying the optimal dominant resonance frequency values that enable a large gain
factor for the stimulus wave is a challenging issue. Nevertheless, it is clear that high-gain
amplification of an input wave requires a large amount of stored energy [29-32] and a
large intracavity polarization density (Pp,) in the resonator. If we check the plots of the
stored energy density W, and the polarization density P, induced by the pump wave,
versus the dominant resonance frequency of the interaction medium, we notice that
amplifying the stimulus wave requires either the electric energy density or the polarization

density induced by the pump wave to be high (ideally both should be high).

If we examine the gain peaks, one of the main peaks occurs at f, = 400 THz and it is
clear from Figure 4.22 that the energy coupling coefficient i.e. the polarization density
Py

p induced by the high-intensity pump wave is quite large (highest in the examined

range) at this resonance frequency. The stored electric energy is also high at f, =
400 THz (W, = 1.78 x 108 J/m3). Consequently, there is a gain peak at f, = 400 THz.
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The major peak is located at f;, = 590 THz, where the stored energy density has the fourth
highest peak along the examined frequency range (W, = 6 x 108 J/m3). The polarization
density induced by the ultra-short pump wave is also quite high at f, = 590 THz. For this

reason, as W, and Py, are both very high at f, = 590 THz, strongest amplification of the
stimulus wave corresponds to this resonance frequency. Ideally, W, and Py, should be

concurrently high for super-gain amplification.

«10° Amplitude variation of the stimulus wave at x=5.73um

2.5 T T
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1.5
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-1.5
-2 L 1
1.5 2 2.5 3

time (in seconds) <10 M
Figure 4.24 Stimulus wave amplitude vs time (computed at x=5.73 pum) for f; = 590 THz.
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T
1.5 -
1+
05
(6]
el
=
= 0
1S
<C
_05 |
1k
-1.5
-2 1 1
1.5 2 2.5 3

time (in seconds) =107

Figure 4.25 Stimulus wave filtered at 440 THz (computed at x=5.73 um) for f, = 590 THz
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The gain spectrum of the amplified stimulus wave as computed inside the resonator
illustrated in Figure 4.26 for f,=590 THz is shown in Figure 4.27. The original stimulus
wave is fed to the resonator (at t=0 s) as a single (pure) harmonic. For each stimulus wave
excitation (initial) frequency, the center frequency of the ideal band-pass filter is selected
to be the same with the stimulus frequency. This way we can examine the maximum
attainable gain factor for each stimulus wave excitation frequency. The dominant
resonance frequency is selected as f, = 590 THz as the gain factor is the highest at this
frequency of the interaction medium. For a particular stimulus wave excitation frequency

(f), the magnitude spectral response of the bandpass filter is adjusted as

1 forallw, 0<t<30ps
r'w) = 1 forw<(f—25)THz and w > (f+25)THz , t>30ps
0 for(f—25)THz<w<(f+25)THz , t>30ps

The bandwidth of the ideal band-pass filter is 5 THz. During the computation (t<30ps)
I'(w) = 1 for every w. The bandpass filter is applied for postprocessing of the computed

output data. The obtained gain spectrum for this configuration is illustrated in Figure 4.27.
Epp(x = 0.1 pum,t) =7 x 10® x sin(2m(2.82 x 10'*)t) V/m, for 0 <t <500 fs

Ei(x=01um,t) =1xsin(2e(f)t) V/m , for 0<t <30ps

Eyp: High power wave ( f=282 THz, T,, = 500fs)

fo, ¥ =1x10°Hz
g(f=0)=1+x =12

Nonlinear, dispersive material

Eg: Stimulus wave ( f, T,, = 30ps)

‘o~ rw)

LEFT PML : RIGHT PML
BOUNDARY BOUNDARY
x>10um

Figure 4.26 The setting for gain spectrum computation (Simulationl) at f; = 590 THz.
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<108 Gain spectrum of the cavity at f0=590THz
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Figure 4.27 Stimulus wave gain spectrum for f, = 590 THz.
Table 4.9: Tabulated stimulus wave gain spectrum (in THz)
fs Gain fs Gain fs Gain fs Gain fs Gain

10 30146501 210 9073455 410 18995936 610 4745551 810 4.69E+08

20 6315998 220 4143911 420 57818957 | 620 1387913 820 3.33E+08

30 4856142 230 19179642 430 1.01E+08 630 23927640 830 1.2E+08

40 6196092 240 5165912 440 1.7E+08 640 4104084 840 39081126

50 4644096 250 39191087 450 2.33E+08 650 12407045 850 41146885

60 3520963 260 72396979 | 460 2.29E+08 660 11480627 | 860 5811195

70 13694626 | 270 65253901 | 470 36571306 | 670 7139056 870 22822690

80 3963803 280 59980997 480 25562630 680 460438.1 880 31321327

90 11806260 | 290 31820617 | 490 22958180 | 690 5972771 890 3974897

100 | 9887131 300 3971916 500 8880452 700 1744340 900 11546997

110 | 16369671 | 310 16678550 | 510 6049155 710 3298178 910 1.35E+08

120 | 17883189 | 320 10275157 520 15035671 | 720 9744849 920 50681316

130 | 1011830 330 13669901 530 13971732 730 33825692 930 13150568

140 | 3281272 340 56145982 540 4989822 740 21018890 940 2744665

150 | 3160314 350 2.32E+08 550 5520565 750 18017909 950 15563149

160 | 7462489 360 1.13E+08 560 2561821 760 20640943 960 14521315

170 | 3517446 370 1.35E+08 570 3321717 770 41988101 970 23910817

180 | 6653450 380 15293782 580 1688068 780 66391643 980 31200048

190 | 7045155 390 52030388 590 3174574 790 1.09E+08 990 28690920

200 | 1027926 400 5360851 600 905915.7 800 2.69E+08 1000 | 6297730
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CHAPTER 5

NUMERICAL EXPERIMENTS ON THE OPTIMIZATION OF NONLINEAR
WAVE AMPLIFICATION EFFICIENCY USING THE BFGS ALGORITHM

5.1 Formulation of the problem

The source term of the stimulus wave, which is the polarization density of the stimulus
wave, is dependent on the source term (polarization density) of the high-intensity pump
wave. This means that in order to solve for the stimulus wave E;, we need to solve for the
pump wave E, as the equations for the stimulus wave and the pump wave are coupled to
each other. Therefore, the stimulus wave can be solved by simultaneously solving for the

pump wave.

Our goal is to maximize the stimulus wave magnitude at a given stimulus wave frequency
fse = f's max |E;(fse = f)] . In order to achieve this, we will make a dispersion analysis
that is based on the high-intensity pump wave frequency. By sweeping the excitation
frequency of the pump wave (f;,) in a large spectral interval that extends from the far-
infrared region to the near ultraviolet region, we can investigate the pump wave frequency
dependent variation of the maximum stimulus wave magnitude for f;; = f', and we can
select the optimum pump wave frequency value that maximizes the magnitude of the

stimulus wave for f;; = f'. Mathematically our optimization problem can be stated as:

fmin < fp < fmax = max|E;(fi: = f")| based on the following equations

0 (EZ(fp)) p Ja (Ez(fp)) N 0°P,

VA(E>(fy) — Mot —— 35— = fo0 —— Moz (109 -112)
0%P, oP, X wo? " wo? , Ne?
5z TV T @ (PZ)_Ned (P) +W(P2) _W(EZ(fp))
0% (E,(fp) d(E1(fp) a*(P,)
Vz(El(fp)) - #Ogoo(a%p) = U0 ( gt 2 ) + Uo atzl
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2 2
0°(h) 0P

2
FIE IR Sarn +2P1P2}+1v2 77 {P,® +3P,%P,

) Ne?
+ 3P, P,"} = 7(E1(fp))
Where
Ez(x = Xinput» t) = Apcos(anpt + l/)p) (u(t) - u(t - ATp))%
vV
E1(x = Xinput t) = Ascos(2rfst + Pgt) (u(t) —ult— ATSt)) m

A, > Ay, AT, K ATy

E,: High power (pump) wave

fo V) €o=1+x

Interaction material

E,: Stimulus wave

I—Esalator rbandpass (f)

X = Xinput X = Xoutput

Figure 5.1 Configuration of the cavity.

If we are using N ultrashort high-intensity pulse excitations to amplify the low-intensity

stimulus wave:
N
El(x = Xinputs t) = ZAl-cos(anit + ;) (u(t) — u(t — ATi)) V/m

Ey(x = Xinput» t) = At COS(ZT[(fst)t + ¢st)(u(t) — u(t - ATst)) V/m
Where 4; > Ay, AT; & ATg, i =1,2,...,N
Then the dispersion analysis-based optimization problem is stated as follows:
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fp ={fi.fa,rfn}
fmin = {fmin,l »fmin,z ’ --wfmin,N b fmax = {fmax,l 'fmax,z ’ ---:fmax,N }

[min < fp < fmax; max|E;(fs = f')| based on the following equations

0 (E:(f,)  0(&(f)  oep,

VZ(Ez(fp)) - ﬂogooT = ﬂoUT + Uo 9t2 (113 —116)
0%P aP 02 02 Ne?
Y B gk (B) o () e (P = R (B ()
0%(E1(fp)) 9(E1(fp)) 0% (Py)
VZ(E1(fp)) ~ Moo > O HOUT + Uo otz
02 (Py) a(Pl) p o’ 2
atz +y at (Pl)__{Pl +2P1P2}+N2 ZdZ{Pl +3P1 PZ

Ne?
+ 3P1P22} = 7 (El(fp))

Note that in this case the pump wave is comprised of N ultrashort pulses instead of a single

ultrashort pulse. Therefore, we have a multiparameter optimization problem.

The physics behind the efficient amplification of the stimulus wave involves the
simultaneous maximization of the stored electric energy density and the polarization
density originated by the pump wave in the resonator. This can be explained in two steps,
first we need to maximize the stored energy in the cavity in order to transfer a high amount
of energy to the stimulus wave. Second, we need to maximize the polarization density of

the pump wave, which acts as the energy coupling coefficient based on Eq.116.

Even if we maximize the stored electric energy density in a resonator, if the nonlinear
coupling coefficient P, is not high, then we cannot efficiently transfer the accumulated
energy into the stimulus wave and high-gain amplification of the stimulus wave does not
occur. In order to perform the optimization of the stimulus wave magnitude at a given
stimulus wave frequency (max |E;(fs: = f')]), we need an efficient optimization

algorithm. In the next section, we will use the computationally efficient Quasi-Newton
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BFGS algorithm to perform the maximization of the stimulus wave magnitude at a desired

frequency.

5.2. Optimization of optical parametric amplification gain factor in a micro-

resonator

Assume that we are using N ultrashort high-power pulses to amplify the stimulus wave.
These ultrashort pulses have similar pulse energies so that each of them affects the
amplification performance in the same degree. The ultrashort high-power pulses are
summed up to form the pump wave. At a given spatial input point, the pump wave and the

stimulus wave are given as
N
Ep(x = Xinput» t) = Z A;cos(2mv;t + ;) (u(t) — u(t — ATL-)) V/m
i=1

Eqe(x = Xinput» t) = Agt COS(Zﬂ:(Vst)t + l/)st)(u(t) — u(t— ATst)) V/m
Where A; » Ag, AT; K AT, i =1,2,...,N

We want to tune the frequencies (v4, vy, ..., vy) of these ultrashort pulses so that the gain
factor is maximized. In order to do that, we use the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm, so that the Hessian matrix of each iteration is recursively updated. The
BFGS algorithm is one of the Quasi-Newton Methods that are used to compute the
Hessian matrix. Recursive computation reduces the computational cost of the optimization
by eliminating the need to compute the second derivative at each iteration. We will use
the BFGS algorithm because of its accuracy and simplicity. The most general form of the

Quasi-Newton method is given as [20]

-1
x® = x&=D — g (H*-D) " (wf(x* V), k=123,.. (117)
f(x®=): Cost function, x: Optimization parameters, H*~V: Hessian matrix, a,: Step size

Quasi-Newton methods, like steepest descent, require only the gradient of the objective
function to be supplied at each iteration. The Hessian is updated by analyzing successive

gradient vectors. The whole BFGS algorithm is as described below [20]:
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Given a starting point x,, convergence tolerance >0, inverse Hessian approximation
Hy;

k « 0;
while [|Vfill > &;

Compute search direction

Pr = — H Vfi;

Set x 11 = xx + ai pr Where a; is computed from a line search procedure to satisfy
the Wolfe conditions.

Define sp = X1 — xp and y = Vi1 — Vs

Compute Hj,4 using;

Hyv1 = (I = preseye D He (I — pryisi”) + pesisk”  (BFGS)

1
Where =—
Pk YicTsk

k<k+1;

end (while)

The step size a; can be computed from a line search procedure to satisfy the Wolfe
conditions:

fCo+ ap pi) < fOq) + ¢ Vi b (118-119)

IVf(xx + o pi) il < Cz|‘7fkTPk| 0<c <c<1

Alternatively, the step size a;, can be computed from the so-called Backtracking
Approach:

Choose @ >0, pe(0,1), ce(0,1)

repeat until f(xx + apy) < f(x) + caVf, pe
a < pa

end
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Since our problem is the amplification of a stimulus (input) wave via nonlinear wave
mixing with a high-power pump wave, for this problem, the optimization parameters are
the frequencies of the N ultrashort pulses v4, v, ..., vy that constitute the total pump wave.
Assume that E; is the low power stimulus wave to be amplified, and E, is the high-power
pump wave, which is the combination of N ultrashort pulses. The general formulation for

the maximization of the stimulus wave magnitude (gain factor) is summarized as follows:
Optimization parameters: v = [vq, vy, ..., Vy], Cost function to be maximized: f = |E; (v)|

Constraints: g,(v) <c;, g.(¥v) <cy, ..., gv(V) <cy

Equations:

2(E,m) d(E,(v) d?P,
gz 0T 5 THo g

V2(E,(v)) — Hotw (120 - 123)

d*P,  dP, y
aez tV g Pt

wozpzz n (U02P23 _ NeZ(EZ(v))
Ned NZ2e2d? m

0%*(E o(E d?(P
e

V2(E; (V) — Uo€oo

d*(Py) 4+, 2P

wo2(Py2 + 2P, Py)  wo?(P,® + 3P, %P, + 3P, P,?)
dt? 14 dt +

2
+ wo*(Py) — Ned N2e242

_ Ne?(E,(v))
m
This problem is a constrained optimization problem, we can convert this problem into an
unconstrained optimization problem by modifying the cost function via the addition of
penalty functions. In the case of a maximization problem, these penalty functions yield a
decrease in the cost function when the constraints are violated. In our case, the penalty for

violating the constraints is adjusted to yield a quadratic decrease.

Augmented cost function: (Penalty function method)

0 if gg(v)<¢

q
' >0 if g(W)>¢

f=|E1(v>|—L{i6i(gi<v>—ci)} 5= { }aze
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q: Positive valued penalty exponent, L: Positive valued penalty constant, §;: Penalty

coefficients

Optimization process:
Vk+1 = Vi T g Pk
Pr=—HyVfx , Sk=Vis1 = Vi » Yk =Vfre1—Vfk
Hy1 = (I — prsiyi")Hy (I — pryis”) + pessi”  (BFGS)
[f(vi+€Vy, .., Vy) — fF(V1, Vg, oo, V)T
€

fv,vy+6€,vy) — f(vy, vy, o, Vi)
€ 1

fvy, vy, e, vy +€) — f(vy, Vg, oo, V)
€

The convergence rate of the BFGS algorithm is super-linear, but our formulated problem
is a nonlinear optimization problem (nonlinear programming). Therefore, the convergence
is not reached immediately. Furthermore, the recursive computation of the Hessian matrix
slows down the convergence rate. For these reasons, the computation of the optimum

frequency values takes a great amount of time.

E,: High power (pump) wave

fO' V) Eo=1+%

Interaction material

E: Stimulus wave

I—Esolator Fbandpass (f )

X =Xinput  Figure 5.2 Configuration of the cavity =~ * _ ~Youtput
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5.3. Finite difference time domain formulation-based solution of the gain factor

optimization problem in optical parametric amplification

We can discretize equations (120-123) using the finite difference time domain (FDTD)
method as shown in equations (125-128) at each iteration k of the optimization problem.
Our first aim is to discretize equations (120,123) and solve for E; (i, j + 1) i.e. the value
of E; at a given point at the next time step. Since E; is coupled to P, ;, we first solve
for P, (i,j + 1) and then substitute it into the equation for E, ;(i,j + 1). We keep on
solving these two equations iteratively for all time steps and for all points in the spatial
domain of a given one dimensional problem. For a higher accuracy of the resulting
solution, we choose At and Ax as small as possible [11,12]. Then we discretize equations
(7a,7b) and substitute the value of P, , (i, ) obtained from equations (120,121) to solve
for E1 . (i,j + 1) inequations (122,123). Finally, we modify the values of the optimization
parameters based on the BFGS algorithm, and we repeat this procedure for each iteration

of the optimization process until the desired gain factor is attained.

FDTD Equations: (125-128)

Eyp (i +1,)) — 2B (i, )+Ep (i — 1, )
Ax?

B+ 1) = 2B, (4, )) + Bz (i,j — 1)
— Ho&w (i, )) A2

Ep(i,)) — Epp(i,j — 1) Pyp(i,j+1) = 2P, (i, ) +Po(i,j — 1)
At T Ho At?

= P-oa(i,]')

Poge(ij + 1) = 2Py (i) + Pog(ij — 1) | Pogi)) = Poye(iyj — 1)
+vy +

At* At

47'[2f02 o 2 47T2f02 -
_—Ned (Pz,k(l:])) +—N2€2d2 (Pz‘k(l;]))

4m?fy? (Pz,k(i']'))
3 N 2

— (Bak@.).

Eyp(@+1,)) — 2B (i,)) + Er (i — 1, )
Ax?

c B+ 1) = 2B, () + Ey () — 1)
— Ho€oo (1)) A2

Evp()) —Ee(i,j—1) Pyp(i,j+1) = 2Py (i,j) + P i (i,j — 1)
At + Ho At?

= .“00(1"]')

Pi(ij +1) = 2P (6, )) + P, — 1) Ppg(ij) — Py j—1) L N
At? ty At + 41 fo (P1,k(l.]))
47T2f02 .. 2 - .. 47T2f02 L. 3
— Ned {(Pl_k(l;])) + 2P1‘k(l,])P2'k(l,])} + m{(Pl.k(l'])>

2 2 Ne?
+3(PuiiN) Por(e) +3Pu()) (P (@) } = — (B (0))).
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x: Spatial coordinate, t: Time, k: Iteration number, Ej (x,t) = Ej(iAx,jAt) — E,(i,j)
E, : High intensity pump wave at iteration k

Ey y: Stimulus wave at iteration k

Cost function: |E;(v)]

Augmented cost function: (Penalty function method)

N M
femeHJE&@m—mﬂu229@m—@z
i=1 j=1

0 if gi(v) <g¢
6-={ oot _‘}, =0 if bi(v)#a;
S0 if gW>al Y fhw =
Iterations: Vier1 = Vi + O P
Pr=—H,Vf
Sk = Xg+1 — Xk
Yie =Vfri1 —Vfi
— T T T
Hiy1 = (1= presiyie” )Hi (I — pryisi”) + pesesk”  (BFGS)
1
Pr =
Vi sk
Wolfe conditions for a;, : Fxe + ag pr) < f) + ¢ i Vi
T T
IVf e + ar pi)"piel < 2|V pi| 0<c;<c;<1
BFGS
ITERATION ’
Wolfe No No
conditions
Yes satisfied?
Noanea.r Oor N Maximum Stimulus
SICEZ I FerItE dlffergnce Convergence Wave Gain factor
_asq 1 time domain criteria |Estlmax

Wave equations bj(x) =a; analySIS satisfied? Yes

+
Polarization
density equations

Figure 5.3 Flowchart diagram of BFGS based nonlinear programming in FDTD analysis.
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5.4 Numerical experiment
5.4.1. Double frequency tuning for gain factor optimization

Assume that a 250 THz infrared stimulus wave E, and a high power pump wave Ej,, that
Is composed of two high-intensity ultrashort pulses (frequencies are to be determined) are
propagating inside a low-loss (high Q) cavity that has two reflecting walls. The reflecting
wall on the left side can be thought as an optical isolator and has a reflection coefficient
of I =~ 1, the one on the right side represents an optical band-pass filter with a frequency
dependent reflection coefficient I'(f). Both waves are generated at x=0 um, at the time

instant t=0 s. The waves and the parameters of the gain medium are as given below:

2
Epp(x =0pm,t) = ZAicos(anl-t + ;) (u(t) — u(t— ATi)) V/m

i=1
Where A; = 2 x 108, 4, =1.5%x 108, ¢, =0, Y, =0, AT, = 0.5 ps, AT, = 1 ps
Eq(x = 0um,t) = 1 X sin(2mr(2.5 x 10**)t) V/m, for 0<t < 10ps
Dielectric constant of the gain medium = ¢, =1+ =12 (u, =1)
Resonance frequency of the gain medium: f, = 500 THz

Damping coef ficient of the gain medium: y = 1 x 10° Hz

Time interval and duration of simulation: 0 <t < 10 ps

Spatial range of the gain medium: 0 ym < x < 10 um

Right cavity wall location: x = 10 ym ; Left cavity wall location: x = 0 um

Electron density of the gain medium: N = 3.5 X 10?8 /m3 ; Atomic diameter :

d =0.3nm
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Eyp: High power (pump) wave (fp , ATp )

for ¥
o =14+y

Interaction material

Eg: Stimulus wave ( fg; , AT, )

nsolator I—bandpass (f)

X = Xinput X = Xoutput

Figure 5.4 Configuration of the cavity and the parameters for subsection 5.4.1.

Our problem: Find the optimum pump wave pulse frequencies f, 1, f,. that maximize the magnitude of the
monochromatic stimulus wave in the cavity ( |Es.(fs; = 250THz)| ), in the cavity, for 10 THz

<{fp1, fp2} <1000 THz (THz to UV), and for 0 um < x <10 um, 0 <t < 10 ps, such that

athp(fplrpr) aEhp(fpl»fpz) azphp
Vthp(fplrpr) - MOSWT = UpO ot Ho otz
aZPhp OPhp (4)02 2 0)02 3 N€2
gz "V a0+ 0" () = g (Po)” + zpzgs (Pro)” = S B G S
azEst(fpl'pr) aEst(fpl»pr) aZPst
VzESt(fpl'pr) — Uoo 9i2 = Uoo at + U 912
0%(Pst) 0(Pst) wo” wo?
6t; Y a; + wOZ(Pst) - M{Pstz + 2PstPhp} + m{Pst3 + 3Pst2Php + 3PstPhp2}

2

Ne
= —Est(fplﬂfpz)

m

Our aim is to maximize the magnitude of the stimulus wave at its original frequency f;; =
250 THz (monochromatic form). This is a precaution against any degree of spectral
broadening that the stimulus wave may go through while being amplified. Therefore, our

cost function is chosen as (at any spatial point x = x’ inside the cavity)
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2.5xX10M+Af AT ] '
Q = |Est(fs = 250 THz)| = f { {Est(x = x',t) e‘l(z’m)t}dt}el(zm)td.(l‘
2 0

5X1014—Af

where AT = 10 ps, 0<t<10ps, (2.5 x 10 — Af) <2 < (2.5 x 10™ + Af),
Af = 1 THz

Initial conditions:
Php(xv 0) = Php,(xv 0) = Ehp(xv 0) = Ehp’(xf O) = Pst(xv 0) = Pst,(x’ 0) = Est(x! 0) = Est’(x: 0) =0
Boundary and excitation conditions:

Epp(x = Opm, t) = ZAicos(anit + ;) (u(t) — u(t— ATi)) V/m

i=1

Where 4; = 2 x 10™, 4, = 1.5 x 10, 3, = 0, 1, = 0, AT, = 0.5 ps, AT, = 1ps
Eq(x =0pum,t) =1 xsin(2r(2.5 x 10™)¢t) V/m, for 0<t <10ps

Epp(x =15pum,t) = Eq(x = 15um,t) =0, for0<t < 10ps
Absorbing boundary condition (perfectly matched layer):

o) ={(x—=(L-A)oy, (L—A)< x<L }forL=15pum, A=25pum, g, =4.5x10%S/m
Optical isolator condition: Full reflection at x = 0 um

I'(x =0um,t) =1 (Reflection coefficient is equal to 1)

Optical bandpass filter condition: Frequency dependent reflection at x = 10 um

_((f'—ZSOTHz))Z
IF(fl=1—¢ " voriz

Cost function to be maximized: Q(fy1, fp2) = |Es¢( for = 250 THz)| — &, (fp1 — fmax)2 -
62(fmin _fpl)z - 53(fp2 - fmax)z - 64(fmin _fpz)z
Where:

{ 0 if fpl < frmax } [ 0 if fpl = finin }
81 = ’ 62 =

|Est(fst=250THz)| . |Es¢( fs¢=250THZz)| .
1027 lf fpl > fmax - 1027 lf fpl < fmin

|Est(fst=250THz)| . |Est( fs¢=250THZ)| ]
1027 lf fpz > fmax - 1027 lf fpz < fmin

{ 0 if fpz < frmax } { 0 if fpz = fmin }
83 = ’ 64- =
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Optilllization algorithlll (BFGS)
Set H [ ] f 100THz ’P 102THz
1= v Jp10 = | i 11 = | i

pr,O =100 THZ; fpz'l =103 THZ, a = 0.5

[Q (fpl,k'fpz,k) - Q(fpl,k—lrfpz,k)]
Q — fpl,k - fpl,k—l
k [Q (fpl,k:fpz,k) - Q(fpl,k'fpz,k—l)

fpz,k - fpz,k—l

Pr=—H VQy

fok+1 =Fprxt @i, fpr=

fpl,k]

fr2.k
Sk = fp,k+1 — fp,k

[Q (fpl,k+1'fp2,k) _ Q(fpl,k'fpz,k)]
fpl,k+1 - fpl,k
llQ (fpl,k; fpz,k+1) - Q(fpl,k; pr,k)Jl

fp2,k+1 - fpz,k

V@1 =

Yk =VQri1 —VQi

1
p =
k V'S

Hyp1 = I = piesiyi DH (I — pryese’) + peSksk”  (BFGS)
I: Identity matrix

In order to satisfy the Wolfe conditions, the step size at each iteration is chosen as

| elfer) |
1
ak = C( ong(fp,k)_Q(fp,k—1)|

| Q(fp.k) |
)/(|Q(fp_k)_Q(f,,,k_1)|) (129)

Where C is just a constant (1 < C < 1.5) and «;, is the step size at iteration k. This formula
(Eq.129) was determined by trial and error and was found to satisfy the Wolfe’s conditions
automatically at each iteration. This saves us from the huge computational cost of running
another iteration loop to determine the step size at each iteration of the optimization

process. In this simulation C=1.445. Based on the above formulations, the maximum
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stimulus wave amplitude that has been reached in the cavity (for 0<t<10ps) is determined
as Gainggy = |Est( for = 250 THZ)|jpay = 4.67 X 108 V/m, which corresponds to
fp1 =387.2THz, f,, =319.4THz (see Table 5.1).

We,p = Stored electric energy density via pump wave

1 ) Joules
= E gooEpump + E Epumpppump- T
Byump: Polarization density created by the pump wave (%)

Epump: Pump wave electric field intensity, &.:Background permittivity

Table 5.1: BFGS algorithm-based optimization process

fo1 fo2 Gaing,qy W, (#) Ppump(%) k (iteration #)

100THz 100THz 0.84 1.29 x 107 0.08 1

107.2THz 115.7THz 6.23 1.80 x 107 0.09 4

154.9THz 156.6THz 4.44 3.36 x 107 0.08 7

218.6THz 199.5THz 313.52 448 x 107 0.10 10
198.3THz 214.5THz 37.16 1.67 x 107 0.10 13
229.5THz 243.0THz 240.58 5.97 x 107 0.09 16
263.1THz 227.2THz 646.72 5.54 x 107 0.10 19
322.7THz 278.9THz 1.57x 103 6.12 x 107 0.12 22
396.0THz 299.8THz 4.28x 10* 9.39 x 108 0.15 25
391.6THz 293.4THz 9.16 x 10* 1.76 x 108 0.16 28
380.7THz 311.7THz 3.85 x 10° 1.26 x 108 0.20 30
383.4THz 317.2THz 8.11 x 10* 6.40 x 107 0.20 32
386.0THz 318.4THz 6.32 x 10° 2.89 x 108 0.23 34
386.8THz 318.8THz 9.79x 107 2.63x 108 0.27 36
387.2THz 319.3THz 3.96x 108 2.51x 108 0.29 38
387.2THz 319.4THz 4.67x 108 2.95% 108 0.29 39

As we can see from Table 5.1, the optimum ultrashort pulse frequencies correspond to a
very high stored electric energy density and a high polarization density. The stored electric
energy density and the polarization density must be simultaneously high for a significant
stimulus wave amplification. The stored electric energy density indicates the achievable
order of stimulus wave amplification [13,14], and the polarization density acts as a

100



coupling coefficient, which is a measure of how much stored electric energy can be

coupled to the stimulus wave.

The time variation of the spectrally broadened (polychromatic) stimulus wave between
t=6.6 picoseconds and t=10 picoseconds is shown in Figure 5.5. From the figure, we can
see that the polychromatic stimulus wave reaches an amplitude of approximately 8 x
108 V /m.

«10° Stimulus wave amplitude versus time
T

1 T T T

0.6

0.2

Stimulus wave amplitude (polychromatic)

1 ! ! ! ! 1 1
7 7.5 8 8.5 9 9.5 10

time (in seconds) x10712

Figure 5.5 Stimulus wave amplification (in polychromatic form) inside the cavity at x= 5.73um
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CHAPTER 6

SUPER-GAIN PARAMETRIC AMPLIFICATION IN MULTIRESONANT
OPTICAL MICROCAVITIES VIA NON-LINEAR PROGRAMMING

Up until this point it was assumed that an interaction medium has a single dominant
resonance, although this is a valid assumption for many materials (especially for excitonic
materials), most materials have more than one dominant resonance, in this case the total
polarization density is the sum of all polarization densities that arise from each dominant
resonance. Based on quantum mechanics, if there are k different dominant resonances,
each resonance has an oscillator strength ¢;, and the sum of all oscillator strengths is equal

to 1. The mathematical description of this paragraph can be formulated as follows:

zk:fi =1 (135)

i=1
K K
P=>P=) Np= Nz §pi (136)
i=1 i=1
P: Polarization density, N:Electron density

In this case, the wave equation and the corresponding dispersion equations can be

formulated as follows:

0%(E) a(E) d’p
2
VA(E) — HoEw—5— 9t2 = U0 ot — tho5 7 EYD) (137)
d?P; dp, w,?P,>  w.?P,® N,e’E
— 2p, — = 138
dt? g dt T w"h N ed +N1262d2 m (138)
dZPz dpP, w,2P%  w,2P,>  N,e’E
+ w,2P, — + = 139
acz Vg T T g Tz (139)
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d?p,  dP,

n wkZPkZ wk2pk3 NkezE
acz " Vege

2p, — = 140
+wk k Nked +Nk232d2 m ( )

E: High power wave

\VVVVVVVVVVVIVVV

fuo fare  fu Y V2o oo s ¥ $10 &or e Sy
g(f=w)=1+x

Nonlinear, dispersive interaction

VVVVVVVVVVVV VA

E': Stimulus wave

L b

Figure 6.1 Parametric amplification in a multi-resonant cavity.

Where N;, N,, ..., N, are the number of electrons oscillating at each resonance frequency.
Assume that we have a medium with three dominant resonance frequencies f, f2, f3 with
oscillator strengths &, &,, &5, in order to formulate the optical parametric amplification

problem, we denote the pump wave as E and the stimulus wave as E'.

The equations that solely model the propagation of the pump wave (excluding the stimulus
wave) are given as

92(E) d(E)  d?P

VZ(E) ~ Hofoo —5 5~ = Ho0 — + Uo 9¢2 (141)

dzp, dP, wi?P,*  w,?P,®  Nye?E

+ + w2P, — + = 142
dez " de TN T Nied T N Ze2d? (142)
d?Pp, dPp, w,%P,*  w,?P,>  N,e?E

+ + w, 2P, — + = 143
atz " 2ar T2 2T Ned T N, %e2d? (143)
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d?Py dPs _ w3*Ps” N ws*Py® _ Nae’E
—2 TV3 dt 3 13 Nsed N3Zezd2

a2 (144)

N=N;+N,+ N3, P=P;,+P,+P; (145)

Similarly, when both waves are present in the micro-resonator, the equations that describe
the propagation of the total wave in the interaction medium are given as

0%(E+E") d(E+E'") 4 d*(P+ P")
PEEEE—— o —_—

gz Mg Tho G (146-149)

VZ(E +E') — Hotoo

0)12(P1 + P1’)2 w12(P1 + P1’)3

d*(P, + Py d(P, + Py 4
(1 1)+y (1 1)+a)12(P1+P1)—

dt? 4t N,ed N,%e2d?
_ Nie?(E+E")
B m

0)22(P2 + le)z wzz(Pz + le)s

d*(P, + P, d(P, + P, )
(2 2)+y (2 2)+a)22(P2+P2)—

dt? 2 dt N,ed N,%e2d?
_ N;e*(E+E)
B m

w32(P3 + P32 wi?(Ps+ P3')?

d?(P; + P;' d(P; + P;’ ,
(3 3)+ (3 3)+(1)32(P3+P3)—

dt? [T Nsed Ny2e2d?
 Nse*(E+E)
N m

By subtracting equations 141-144 from equations 146-149 respectively, we can get the
equations that model the propagation of the stimulus wave under the influence of the pump
wave:

0%(E") d(E") d*(P")

20! —
V(E)—/vlogoo?—l«loa ot + U EYD)

(150 — 153)

P'=P'+P/ +P
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‘012(P1’2 + 2P, P,")
N;ed

d*(P,") N d(P,")
dt2 £

+ w2(Py) —

N w 2Py + 3PPy +3P,%P)  Nye*(E')

N,%e2dz m

wzz(lez + szpzl)
N,ed

dz(Pz')Jr d(P,")
dt2 V2= r

+ w2 (P) —

.\ wo?(P)” +3P,Py'% +3P,%P,)  Npe?(E")

N,2e2d? m

0)32(133’2 + 2P;P;")
Nsed

d?(Ps") d(Ps")
dt2 [

+ w3?(P') —

) w3?(Ps" +3P;P;"* +3P;2Py')  Nye?(E')

N;2e2d? m

From equations 150-153, we can get the time variation of the stimulus wave at a given
point in a micro-resonator and by using the non-linear programming approach, we can
maximize the amplitude of the stimulus wave in a micro-resonator. In this chapter, instead
of the previously applied BFGS algorithm, we will use Newton’s algorithm in its plain
form. The reason of this preference is that we will now use a single ultra-short pump wave
pulse as the number of equations is now increased due to the presence of multiple
resonance frequencies and we want to save on the computational cost. Since there is only
a single frequency to be tuned, the BFGS approach is not necessary. As we can remember
from the previous chapter, the Newton algorithm is given as

v® =y _ (2 (vED) L F (VD)) k=123,.. (154)

For a single optimization parameter, Equation 154 can be rewritten as

f(V(k_l)) _ f(v(k—z))
k) — ,(k—-1) _ (k-1) _ ,(k-2) —
v = =) _ P D)~ D) (v v2), k=123,.. (155)
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The step size p, can be determined by the Wolfe conditions and the corresponding
formula described in Chapter 5. Hence, there are 8 equations to be solved at each iteration
of the optimization algorithm. These equations (156-163) are given below

Vp: Pump wave frequency

0%(E o(E d*p
VZ(E(Vp)) — Ho€wo —(at(:p)) = HoO ( a(:p)) Ho 912

d?p, N dp, wo.2p w,%P,? N w%P®  Nie(E(vp))
dtz )/1 dt 0)1 1 Nled leezdz - m
d?Pp, N dp, T w,%P,* 4 w;,%P,>  Npe*(E(vy))
dtz VZ dt (1)2 2 Nzed szezdz 2 m
dzp, N dp, T w32 P32 { w3%P;®  Nse*(E(vy))
dt2 V3 dt w3 I3 N3ed N32€2d2 - m

, 0%(E' (vp)) d(E'(vp)) d?(P")
V2(E'(vp)) = to€eo sz = Ho0 — 50 222+ o 352

w 2P, +2P,P,")
N;ed

d*(P,") d(P,")
dt2 S

+w,2(Py) -

N W 2(P,” +3PP" +3P2P)  Nje(E'(v))

N,%e2dz m

wzz(lez + 2P2P2’)
N,ed

d*(P,") d(P,")
dt2 V2"t

+ w2 (P) —

.\ w2 (P)” +3P,Py"" +3P,%P,)  Npe?(E'(vp))

N,%e2d? m

0)32(1133’2 +2P;P;")
Nsed

dz(Pg')Jr d(Ps")
dt2 V3Tt

+ w32(Py') —

N ws?(Ps"” +3PsPy'* +3P;%P;")  Nye?(E'(v))

N;%e2d? m

P=P,+P,+P;, PP=P  +P,/ +P
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Polarization density

/T\ {y1, &} {v2,82} 50

fi f2 f3 Frequency

Figure 6.2 Dispersion plot of the polarization density in a multiresonant medium.

FDTD Equations: (163-170)

Equations (156-163) are discretized using the finite difference time domain as follows:

E.(i+1,)) —2E. (i, )+E (i —1,)) e (i) E (i,j+1)—2E.(i,)) + Ex(i,j— 1)
Ax? Hofeolhs] At?
0 4 Ek(l'])_Ek(l']_l) Pk(lt]+1)_Zpk(lt])+Pk(l;]_ 1)
= poo (i, )) A + Ho e

Py (i j+1) = 2P (i, )) + Py (i j— 1) Py, f) = Pri(ij— 1) - N
At? T At +4ncf (P1,k(l;]))
4’ fy’ SN2 AmPf? © \3  Nje? N
_ Noed (P1,k(l:])) + 7N12€2d2 (P1,k(l,])) == (Ek(l,])).

Po(oj+1) = 2Py ) + Pope(tj = 1) | Por(6)) = Poie(j — 1) 2¢2 .
At? tr At +4An°f (Pz,k(l,]))
47T2f22 . 2 4ﬂ2f22 L. 3 N262 o
" Nyed (Pz'k(l’])) N 2erdz (Pz'k(l'])) = — (B (@.))-

Psjeij +1) = 2Py (i) + Pag(ij =1 Paye(i)) — Paye(ij — 1) -
i SAktz 2 +7s = At3 £ + 47Tzf32 (P3,k(l:]))

amft o N2 AT SN Nge?,
h N3ed (P3'k(l'])) +N32€2d2 (P3,k(l’])) = m (Ek(l,]))

ES+1,))—2E/0,)+E'(G—1,)) e (i) ES(,j+1)—2E/(,)+E/(G,j—1)
Ax? HofoollJ NG
ES,)—E/{,j—1) PG, j+1)—2P, (i,))+ P (i,j— 1)
At +Ho At2

= poo (i, J)
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Pu(j+1) = 2P (L) + Py (6 - 1) + Py (6,)) = Py’ (i, — 1)
At? 4! At
am’fy® )2 o

B N,ed {(Pl‘k (l’])) + 2P (l'])PLk(l,])} +

/..2 PR Tre ..2 ]vle2 Trs o+
+3 (P’ D) P + 3P’ () (Puai))) } = —— (B G ))).

+4m?f,? (Pl,k,(i:j))

dnfy {(Pl,kl(i'j))3

N,%e2d?

P+ 1) =2P, (i, )+ Py (i,j— 1 P (L) — Py, j— 1
20 (L] ) 2k (6 ) 20 (L] )+y 20 (6 )) 2u (L] )+4n2f22(P2,k'(i,j))

At? ? At
4n2f22 Trs o« 2 Tpe o« .. 47-[2f22 o 3
= Noed {(Pz,k (l.])) + 2P, (L])Pz,k(l’])} + —szezdz {(Pz,k (l,]))

l..2 .o Tre ..2 ]vZe2 Trs o+
+3(Poi’ D)) Pos() +3Po’ () (Pos (i) } = = (B (0.))):

Pyy'(i,j+ 1) = 2Ps (i, ) + P3y' (6,5 — 1) Pyy'(i,)) = P3y'(i,j — 1) P
+v + 4n2f,? (P3,k (1'1))

Atz 3 At
il LR (A Lo AT R
_ N3ecsl {(Pg,k (l:])) ar 2P3_k (l;])P3,k(l:])} +N3T2:;2{(P3'k (L,]))

rre )2 4P Ay, . Nze?
+3(Pas’ (D) Por() +3Psi () (Pas(i))) } = —— (B (0)))-

P=P +P,+P;, PP=P +P'+P (171)

x: Space coordinate, t: Time, k: Iteration, Ej(x,t) = E} (iAx,jAt) — Ex(i,j)
Ej: pump wave at each iteration

E.': Input (stimulus) wave at each iteration

Cost function: f = |E’(vp("))|
Newton’s Algorithm:

v ) =y (k=1) f(p* V) - f(np,"?)
p p fr(vp(k—l)) _ fr(vp(k—z))

(vp("‘l) _ vp(k—Z)), k=123,..
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6.1. Simulations of wave amplification in multi-resonant nonlinear optical cavities
Simulation 6.1.1:

The low-intensity input wave E4 to be amplified and the high-intensity pump wave E, are
propagating in a simple Fabry-Perot type optical microcavity with an optical isolator
acting as the left cavity wall and a bandpass-filter acting as the right cavity wall. The
waves are simultaneously originated at x=2.5 um at time t=0 s. The input wave E; has a
normalized electric field amplitude of 1 V/m and a frequency of 350 THz. The intense
pump wave E, has an amplitude of 1.75 x 108 VV/m (frequency to be determined). The

waves and the values of the cavity parameters are as stated below:
Ei(x =25um,t) = 1 xsin(2r(3.5 x 10)t) V/m
Ey(x = 2.5um,t) = 1.75 x 10® x sin(2n (v, )t) V/m
Spatial and temporal parameters: 0 < x <10 um,0 <t < 30ps
Cavity resonances: f, = {4 x 10'* Hz,6.3 x 10'* Hz,8.8 x 10'* Hz}
Damping rates of the cavity: y = {1 x 10° Hz,2 X 10° Hz,4 X 10° Hz}
Relative permittivity: (¢,) = 12 (4, = 1)
Optical isolator location (left wall): x = 0 um
Bandpass filter (right wall) location: x = 10 um
Interaction medium range : Oum < x < 10 um
Number of electrons per volume: N = 3.5 X 10?8 /m3
Atomic diameter: d = 0.3 nanometers
Cost function: C

Problem definition: Determine the optimal excitation frequency of the pump wave v,, in
order to maximize the absolute value of the peak amplitude of the input wave at 350 THz
(|E;n(f = 350 THz)| ) inside the cavity, for 10 THz < {v,,} < 500 THz, and for 0 um <

x<10pum, 0 <t < 10ps.
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3.5X10M+Af
C = |Ejn(f =350THz)| = f
3

AT
{f {Eipn(x = x",t) e—i(Znﬂ)t}dt}ei(Znﬂ)tdQ
0

5X10M4-Af

AT =30ps,(3.5x 10 —Af) Hz < 0 < (3.5 x 10 + Af) Hz,  Af = 1.2THz

E;: Pump wave (T, = 1ps)

froy
g(f=0)=1+ =12

Interaction material

E: Input wave (f=350 THz, T}, = 30ps)

Fisolator I}ilter (f)

Figure 6.3 Configuration of the cavity for simulation 6.1.1

Initial conditions: (Prime indicates derivative)
PZ(x' 0) = le(x’ 0) = EZ(x' 0) = EZI(x' 0) = Pl(xt 0) = Pll(xt 0) = El(x: 0) = Ell(xr 0) =0
Band-pass filter: Frequency dependent reflection at x = 10 um

_ (f'-350THz)

2
Ir(l =1 ViThz

Objective (cost) function via penalties: C(v,) = |Es( fsr = 350 THz)| —

8 (vp — vmax)z ~ 85 (Vinin — Vp)z

0 Vp < Vinax 0 Vp 2 Viin
81 = {|E.( f=350 THz)| . , 0y =1|E;(f=350THz)|
(0.5x1026) if Vp > Vmax (0.5%x1026) Vp < Vmin
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FDTD Equations:

Equations for the pump wave: (172-175)

Epi(i+ 1)) = 25, (L D+E2 (L = 1)) e (i) Epr(i,j+1) = 2E5,(i,j) + E5 e (i,j — 1)
Ax? Hofallr At?
_ B () — Epr(ij— 1) Poy(l,j+1) = 2P, (4,)+Py(i,j — 1)
= poo(,)) At + Ho Ae2

Pyip(i,j+1) = 2Py (0,)) + Poy i (i, — 1) Py1s(i,)) = Poype(i,j — 1) .
: th : +1 0 +4m?f,? (P21,k(l;]))
4_1.[2]:12 . \2 4'7T2f12 03 Nge? .
_W(PZLk(l:])) +m(1)21,k(l:])) = (Ez,k(l:]))-

Poai(ij + 1) = 2Py (i, ) + Pz (i,j — 1) Paa (i) = Py (i,j — 1)

2 .,
At? tr: At +4nf, (PZZ,R(L:]))
4-7T2f22 RY 47'[2f22 N3 Nye? .
— —Nzed (Pzz,k(l:])) + —szezdz (P22,k (l,])) = T (EZ,k (li]))

Py3p(i,j + 1) = 2Po3, (i, )) + Pozp(i,j — 1) Py3 (i) — Pagp(i,j — 1) 02 .
ALZ T V3 At + 41 f; (Pzz,k(ld))
4 f,? 4mf,?

Nood (P23,k(i,j))2 + W(Pm(i,j))g = N%Z(Ez‘k(i,j)),

P2=P21+P22+P23, N=N1+N2+N3

Equations for the input wave: (176-179)

Evi(+ 1)) = 2E (L) + B = 1,)) e (i) Evp(j+1) = 2B () + Ee(i,j — 1)
sz .uO [e5) :] At2
B —EGj -1 Py (i,j+1) — 2P (i,)) + P (i, j— 1)
= oo (i, )) AL + Uo AL2
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Pyl j+1) = 2Py (6, ) + Pryp(i,j — 1) Py (6,)) = Pryp(i,j— 1) ..
A2 N At +4m?f,? (Pll,k(l:]))

4n’f,’ 4n’f,’ 3
_ArtfiT AR (b

N;ed Ny*e?d? (Paste)
N;e?
m

(P + 2Prsi Pk} +

+3(Pus)) Pk id) +3Pras(e) (P (@) } = o (Bvi ).

PlZ,k(i’j + 1) - 2P12’k(i,j) + PlZ,k(ilj — 1) P].Z,k(i‘j) — PlZ,k(i!j _ 1) 5 o
Atz + Y2 At + 47T2f2 (Plz,k (l,j))
47T2f22 o) . .. 47T2f22 N\3
— Nzed {(P12,k(l,])) + 2P12,k(l;])P22’k(l,])} + m{(Pllk(l']))

N 2
+3 (Pras@)) Paasce) +3Pros@)) (Praif)) ) =~ By ).

P, i,j+1)—2P i,j)+ P i,j—1 P i,j)— P, i,j—1
136 (L) ) 13,6 (L) 136 (L) )+y 13,6 (L)) 1360 ) )+47r2f32 (Plg,k(i,j))

AtZ 3 At
4 f,? N ., . 4m2f,* 3
i N3ed {(P13,k(l:])) - 2P13,k(l;])P23,k(l,])} + m{(PB'k(l’]))
. A\ .. L. 0\ 2 N3€2 .
+ 3 (P13,k(l;])) P23‘k(l,]) + 3P13'k(l,]) (P23,k(l!])) } = m (El_k(LJ]))'

P1:P11+P12+P13, N:N1+N2+N3

x: Space coordinate, t: Time, k: Iteration, Ej(x,t) = Ej(iAx,jAt) — E,(i,j)
E, x: Pump wave at iteration k

E; . : Input (stimulus) wave at iteration k

These equations for the pump wave and the input wave are solved at every iteration of the
optimization process until the desired gain factor at a specific input wave frequency is obtained.
If N is the number of resonances for a given multi-resonant interaction medium, then there are
(2N+2) equations to solve at each iteration. Therefore, as the number of resonances in the cavity
increase, the computational cost increases. For this reason, we will only use a single pump wave

pulse in order to perform an optimization based on a single parameter, which is the center

(excitation) frequency of the pump wave pulse.
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Newton’s method:
Cost function: C = |E;(f = 350 THz)|

Newton’s Algorithm: (C' indicates derivative)

C(Vp(k_l)) - C(Vp(k_z))
) B ()

v, =y (D) (v * D — 9, (=2 k=123, ...

For each iteration, the optimal step size is determined as

C(vp(k)) | | C(vp("))
B RO R CRC)) R OO CAC)

)

W = (180)

Where c is a constant (1.001 < ¢ < 1.499). Equation eliminates the necessity of running
an additional iteration to identify the optimal step size. For this simulation, the constant ¢
is selected as c=1.37. According to the stated formulations, the highest intracavity input

wave amplitude (for 0<t<30ps) is determined as

GaiNmay = |E1 (v, = 350 THz)|max = 3.32 x 108 VV/m, which occurs at a pump wave

excitation frequency of v, = 234.1 THz (see Table 6.1).

W, = Intracavity electric energy density, P,ymp: Induced polarization density

Table 6.1: Newton’s algorithm-based optimization

i C k (iteration #
| S ] B | <
225.0THz 1.84 1.88 x 107 0.05 1
275.8THz 21.32 2.15 x 107 0.05 3
332.4THz 59196.44 8.62 x 107 0.16 5
389.4THz 1.72 2.3 x10° 0.06 7
381.4THz 2.23 3.5 x 10° 0.07 9
392.3THz 1.47 1.6 x 10° 0.05 10
345.5THz 146.13 1.0 x 10° 0.11 11
272.3THz 3.53x 103 5.85 x 107 0.12 12
199.1THz 4.28% 10* 6.90 x 107 0.14 13
234.1THz 3.32x 108 2.56 x 108 0.16 14

In table 6.1, it is clearly shown that the optimal excitation frequency concurrently yields

to a high intracavity energy and a high polarization density.
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Therefore, we can deduce that the intracavity electric energy density and the intracavity
polarization density should be simultaneously high for intense input wave amplification.

The polychromatic input wave is plotted in Figure6.4 between t=15 picoseconds and t=30
picoseconds. This figure shows that the polychromatic input wave gradually increases to

an amplitude of nearly 8 x 108 V/m.

«10° Input wave amplitude variation at x=5.73um

o
oo
T

o
o
T

&
N
T

o
N
T

Input wave amplitude (V/m)
o

-1 1 1
1.5 2 2.5 3

time (in seconds) %107

Figure 6.4 Input wave amplification (polychromatic) in the cavity versus time.

Note that although the input wave is spectrally broadened while being amplified, we are
actually maximizing the magnitude of the peak amplitude of the input wave at its
excitation frequency v, = 350 THz (quasi-monochromatic). Therefore, we exclude the
other spectral components. A direct frequency independent approach to optimize the
magnitude of the input wave results in an amplified input wave with many additional
spectral components. These additional spectral components would most likely be more

prominent than the initial excitation frequency of the input wave.
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Simulation 6.1.2:

The low-intensity input wave E4 to be amplified and the high-intensity pump wave E, are
propagating in a simple Fabry-Perot type optical microcavity with an optical isolator
acting as the left cavity wall and a bandpass-filter acting as the right cavity wall. The
waves are simultaneously originated at x=0 um at time t=0 s. The input wave E; has a
normalized electric field amplitude of 1 VV/m and a frequency of 440 THz. The intense
pump wave E, has an amplitude of 3 x 108 VV/m (frequency to be determined). The waves

and the values of the cavity parameters are as stated below:
E{(x =0pum,t) =1 xsin(2r(4.4 X 10*)¢) V/m
Ey(x = 0 um, t) = 3 x 108 x sin(2n(v,)t) V/m
Spatial and temporal parameters: 0 < x <10um,0 <t < 10ps
Cavity resonances: f, = {5.2 X 10* Hz,7.6 x 10* Hz}
Damping rates of the cavity: y = {2 X 10° Hz, 4 x 10° Hz}
Relative permittivity: (¢,) = 10 (u, = 1)
Optical isolator location (left wall): x = 0 um
Bandpass filter location (right wall) location: x = 10 um
Interaction medium range : 0 um < x < 10 um
Number of electrons per volume: N = 3.5 x 1028 /m3
Atomic diameter: d = 0.3 nanometers
Cost function: C

Problem definition: Determine the optimal excitation frequency of the pump wave v,, in
order to maximize the absolute value of the peak amplitude of the input wave at 440 THz
( |Eqn(f =440THz)| ) inside the cavity, for 120 THz < {vp} <400 THz, and for

Oum <x<10um, 0 <t <10 ps.
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4.4x10Y+Af
C = |Ejn(f =440THz)| = f
4

AT
{f {Eipn(x = x",t) e—i(Znﬂ)t}dt}ei(Znﬂ)tdQ
0

AX10M4-Af

AT =10 ps, (4.4 x 10 — Af) Hz < 0 < (4.4 x 10 + Af)Hz,  Af = 1.2 THz

E;: Pump wave (T, = 1ps)

froy
&(f=0)=1+x=10

Interaction material

E: Input wave (f=440 THz, T}, = 10ps)

Fisolator I}ilter (f)

Figure 6.5 Configuration of the cavity for simulation 6.1.2

Initial conditions: (Prime indicates derivative)
PZ(x' 0) = le(x’ 0) = EZ(x' 0) = EZI(x' 0) = Pl(xt 0) = Pll(xt 0) = El(x: 0) = Ell(xr 0) =0
Band-pass filter: Frequency dependent reflection at x = 10 um

_ (f'-440TH2)

2
Ir(l =1~ VEThz

Objective (cost) function via penalties: C(v,) = |Es( fsr = 440 THz)| —

8 (vp — vmax)z ~ 85 (Vinin — Vp)z

0 Vp < Vinax 0 Vp 2 Viin
01 = {|E1( f=440THz)| . . Oy = {|E{(f=440THz)|
(0.5x1026) if Vp > Vmax (0.5x1026) Vp < Vmin
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FDTD Equations:

Equations for the pump wave: (181-183)

Epi(i+ 1)) = 25, (L D+E2 (L = 1)) e (i) Epr(i,j+1) = 2E5,(i,j) + E5 e (i,j — 1)
Ax? Hofallr At?
_ B () — Epr(ij— 1) Poy(l,j+1) = 2P, (4,)+Py(i,j — 1)
= poo(,)) At + Ho Ae2

Pyip(i,j+1) = 2Py (0,)) + Poy i (i, — 1) Py1s(i,)) = Poype(i,j — 1) .
: th : +1 0 +4m?f,? (P21,k(l;]))
4_1.[2]:12 . \2 4'7T2f12 03 Nge? .
_W(PZLk(l:])) +m(1)21,k(l:])) = (Ez,k(l:]))-

Poai(ij + 1) = 2Py (i, ) + Pz (i,j — 1) Paa (i) = Py (i,j — 1)

2 .,
At? tr: At +4nf, (PZZ,R(L:]))
4-7T2f22 RY 47'[2f22 N3 Nye? .
— —Nzed (Pzz,k(l:])) + —szezdz (P22,k (l,])) = T (EZ,k (li]))

P2:P21+P22, N:N1+N2

Equations for the input wave: (184-186)

Eyp(@+1,)) = 2B (i,)) + Er (i — 1, ) e (i) Eip(,j+1) —2E,(0,)) + By (i,j— 1)
sz .MO o !] At2
B —EGj—1) Pyy(i,j+1) = 2P (6,)) + P (i,j — 1)
= poo (i, )) Y + Ko A2
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Pyl j+1) = 2Py (6, ) + Pryp(i,j — 1) 4 Py (6,)) = Pryp(i,j— 1)
At? € At
47'[2f12
N,ed

+4m?f,? (Pll,k(i'j))

A’ f,? PN
m{(Pll,k(l:]))

N;e?
m

(P + 2Prsi Pk} +

+3(Pus)) Pk id) +3Pras(e) (P (@) } = o (Bvi ).

Piow(i,j +1) = 2P (6, ) + Pipp(i,j — 1) +y Piox(i,)) = Piap(i,j — 1)
2

+4m?f,? (P12,k (i']'))

A At

4m2f,* 2 Am2f,? X
—_ P " . ZP -‘ . P .’ . P " 3

N,ed {( 12,5 (0 ])) + 2Py (1, )P i (0 ])} +—N22e2d2 {( 12, (0 ]))

N 2
+3 (Pras@)) Paasce) +3Pros@)) (Praif)) ) =~ By ).

P1=P11+P12, N=N1+N2 (187)

x: Space coordinate, t: Time, k: Iteration, E,(x,t) = Ej(iAx,jAt) — E(i,j)
E, x: pump wave at each iteration k

E; . : Input (stimulus)wave at iteration k

Newton’s method:
Cost function: C = |E,(f = 440 THz)|

Newton’s Algorithm: (C' indicates derivative)

C(Vp(k_l)) - C(Vp(k_z))
Ty TD) =€ (1, D)

v, ) =y =1 (v kD —y (k=2) k=123, ..

For each iteration, the optimal step size is determined as

| cmp®) | c(p®)
B RO ) B E O R CNE)

)

Wi = (188)

Where c is a constant (1.001 < ¢ < 1.499). For this simulation, the constant c is selected
as ¢c=1.35. According to the stated formulations, the highest intracavity input wave

amplitude (for 0<t<10ps) is determined as
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GaiNmay = |E1 (v, = 440 THz)|max = 2.26 x 108 VV/m, which occurs at a pump

wave excitation frequency of v, = 302.9 THz (see Table6.2).

W, = Intracavity electric energy density, Pyymp: Induced polarization density

Table 6.2: Newton’s algorithm-based optimization

v Gain J C k (iteration #)
p e VVe,p (_3) I pump (_2)
m m
175.0THz 17.09 3.37 x 108 0.202 1
250.0THz 13.21 4.02 x 108 0.166 2
158.0THz 4.08 0.42 x 108 0.051 3
238.5THz 43.85 2.26 x 108 0.246 4
320.2THz 340.84 1.79 x 108 0.160 5
403.9THz 58.84 0.95 x 108 0.127 6
339.4THz 5.13x 10* 3.06 x 108 0.224 7
275.0THz 3.86 0.97 x 108 0.090 8
288.3THz 8.87 0.89 x 108 0.095 9
302.9THz 2.26x 108 3.67 x 108 0.253 10
4 «108 Input wave amplitude variation at x=5.73um
T T T T T
3 | -
2 | -
E
2 1F
3
2
=
IS] $
©
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Figure 6.6 Input wave amplification (polychromatic) in the cavity versus time.
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6.2. Validation of the numerical model

The results of our numerical model that is based on the FDTD equations given in equations
and the embedded Newton’s algorithm that is given in equation, are compared with the
results available from the experimentally validated theoretical formulas of nonlinear wave
mixing in the following examples. In the first example we will compare our numerical
model with the experimental formula in the context of optical frequency conversion. In
the second example, the numerical model will be compared with the experimental formula

in the context of second harmonic generation.
Example 6.2.1: Optical frequency conversion by nonlinear wave mixing

In this example, a higher frequency component (w3) is generated via interaction of two
quasi monochromatic waves with frequencies w; and w,. The high-intensity wave has
an angular frequency of w, and the relatively low-intensity signal wave has an angular
frequency of w,. The resulting high frequency wave has an angular frequency of w; =

w; + w,. The numerical conversion efficiency will be tested based on theory.

The 180 THz high-intensity source wave E is originated at x=2.6 um. The 120 THz input
wave E; is also generated at x=2.6 um. The amplitudes of the waves are A, and A,
respectively.

E,(x = 2.6 um,t) = A, X sin(2n(1.8 X 10t + ¢,) V/m

E{(x =26 um,t) = A; x sin(2r(1.2 X 10t + ;) V/m (@, =0,¢, =0)
Spatial and temporal simulation parameters: 0 < x <10um, 0 <t < 30ps
Emission (resonance) frequencies of the cavity material: f,. = {1 X

10'° Hz,1.2 x 10'® Hz, 1.5 x 10'° Hz}

Damping (decay) rates of the cavity material: y = {3 X 1012 Hz,1 X

1012 Hz,2 x 102 Hz}

Permittivity of the cavity material (e,,) =1+ =12 (u, =1)

Left termination layer (absorber) is fromx = 0to x = 2.3 um

Right termination layer (absorber)is from x = 7.7 um to x = 10 um
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E,: Pump wave ( f=180 THz, T,, = 30ps)
fr ={1 x10%Hz, 1.2 x 10'°Hz,1.5 x 10'°Hz}

y = {3x10'2,1 x 10'2,2 x 102} Hz

&(f =) =1+y=12
E: Input wave (f=120 THz, T), = 30ps)

Figure 6.7 Configuration for example 6.2.1

Ntheoretical = Z_z( sin\/2d2n3w32(cnsoA22)L2 ) 2 (189)

d= Strength of Nonlinearity, n = Intrinsic impedance, n= Refractive index
A, = High-intensity source wave amplitude
A;= Input wave amplitude, L= Interaction (medium) length
w3 = w1 + w, = Frequency of the generated harmonic
The numerical model is implemented based on Equations (163-170).

For a simulation duration of 0 < t < t;,,4, the numerical expression for harmonic

(frequency) conversion efficiency is given as

Power of the new w5 harmonic of the total wave at t = t,,,4,

Nnumerical =

190
Power of the w, harmonic of the total wave att = 0 (190

The values of each parameter are as stated below:
w, = Source (pump) wave angular frequency = (2w x 180) THz,
w, = Input wave angular frequency = (2m X 120) THz

L=Cavity medium length=3.33 micrometers (from x=3.33 um to 6.66 um)
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w3 = Converted harmonic angular frequency = 2 X 300 THz, n=+/12

d= Strength of nonlinearity= 3.31 x 10723 (The experimental and the numerical results
match for this value at a source wave amplitude of 4, = 10° V /m. Hence this value is

our initial estimate)
A,= Amplitude of the source wave (Swept from 1 x 108 V/m to 2.5 x 10° V/m)

A;= Amplitude of the input wave = 4,/10

111

Resonator (oscillator) strengths = § = { 3 5,5}

05 X 1073 Frequency upconversion:f1(180THz)+f2(120THz)=f3(300THz)
. T T T T

Computational results
Theoretical results

-
o
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1

Frequency conversion efficiency
T
1

o
o
T
I

0 | | I I
0 0.5 1 1.5 2 25

Source wave amplitude %10°

Figure6.8: Comparison of the frequency up-conversion efficiencies for f;=300 THz and d=

3.31 x 10722, versus the pump wave amplitude.

The numerical and the theoretical results perfectly agree as shown in Figure6.8. This
figure shows that once we obtain an initial estimate of the nonlinearity coefficient at a
sample pump wave amplitude (preferably for a high pump wave amplitude), that initial
estimate often turns out to be a very accurate one. This example proves that our numerical

model is quite accurate based on the experimentally verified theoretical results.
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Example 6.2.2: Second harmonic generation by nonlinear wave mixing

In this example, the second harmonic generation efficiency of a source wave is
investigated in a nonlinear medium. The initially monochromatic source wave has an
angular frequency of w;. The second harmonic of the source wave has an angular

frequency of w, = 2w;. Theoretical and numerical results are compared.

The 100 THz high-intensity source wave E; is originated at x=2.4 um. The amplitude of
the wave is A; (V/m).

Ei(x =24 um,t) = A; x sinu(1 x 10¥*)t + @) V/m (@, =0)
Spatial and temporal simulation parameters: 0 < x <10um, 0 <t < 30ps

Emission (resonance) frequencies of the cavity material: f, = {7.8 X
10'* Hz,9.5 x 10* Hz, 1.4 x 10'° Hz}

Damping (decay) rates of the cavity material: y = {4 X 1012 Hz,3 x
10'2 Hz,1 x 10'? Hz}

Permittivity of the cavity material (¢,) =1+ =12 (4, =1)

Left termination layer (absorber) is from x = 0 to x = 2.35 um

Right termination layer (absorber)is from x = 7.65 um to x = 10 um

f. ={7.8x10*Hz,9.5 x 10*Hz, 1.4 x 10'5Hz}
y ={4x10'2,3 x 10'2,1 x 102} Hz

g(f=0)=1+y=12
E,: Source wave (f=100 THz, T,, = 30ps)

Figure6.9: Configuration for Example 6.2.2
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The experimentally validated theoretical efficiency of the second harmonic generation
process is given as

n= (tathd2n3w2cneoA12L2 )2 (191)
d= Strength of Nonlinearity, n = Intrinsic impedance, n= Refractive index
A;= High-intensity source wave amplitude
L= Interaction (medium) length
w, = Angular frequency of the second harmonic
The numerical model is implemented based on Equations (163-170).

For a simulation duration of 0 < t < t,,,4, the numerical expression for second

harmonic generation efficiency is given as

Power of the second harmonic of the source wave att = t,,,,,

(192)

Nnumerical = ~p 0 “CFthe first harmonic of the source wave att = 0

The value of each parameter is as stated below:
w1 = Source wave first harmonic angular frequency = (2m X 100) THz
L=Cavity medium length=3.33 micrometers (from x=3.33 pm to 6.66 um)
w, = Second harmonic angular frequency = 2w X 300 THz, n =12

d= Strength of nonlinearity= 1.21 x 10722 (The experimental and the numerical results
match for this value at a source wave amplitude of 4; = 10° V /m. Hence this value is

chosen as our initial estimate)
A;= Amplitude of the source wave (Swept from 1 x 108 V/m to 2.5 x 10° V/m)

Resonator (oscillator) strengths =& ={0.3,0.4,0.3 }
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Figure6.10: Comparison of the numerical and theoretical second harmonic generation
efficiencies for ;=100 THz and d= 1.21 x 10721, versus the source wave amplitude.
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CHAPTER 7

CONCLUSION

Micrometer scale amplification of electromagnetic waves is well known to be possible via
stimulated emission. However, optical amplification using nonlinear wave mixing has
poor performance in the micrometer range as the gain medium length is too small for
considerable amplification. Without the use of a resonator, optical amplification using
nonlinear wave mixing is negligible. Even with the use of a resonator, achieving
significant amplification is not feasible as the resonator loss factor for a nonlinear
interaction is very high. Detectable amplification inside a micro-resonator via nonlinear
wave interaction may only be possible if the pump wave is too strong, the cavity loss
factor is very small, the frequencies of the interacting waves are relatively high, and the
interaction time is very long. Achieving a long interaction time is especially very difficult
as the high-intensity pump wave usually has an ultrashort pulse duration. Considering all
these difficulties, optical amplification is much more feasible using the stimulated
emission technique unless the interaction medium displays an unusually strong
nonlinearity. A strongly nonlinear gain (or interaction) medium might be able to yield a
comparable amplification efficiency with that of amplification by stimulated emission.
Such highly nonlinear materials are of significant interest for the nonlinear optics
community not only for amplification purposes but also for purposes other than wave
amplification such as harmonic generation or frequency conversion, in fact artificially
materials such as materials that are doped with highly nonlinear nanoparticles (e.g. gold
nanoparticles doped in glass) already display unusually high nonlinear response.
However, for optical amplification purposes such materials are not feasible as they also
display a strong absorption around their resonant nonlinear response frequency.
Furthermore, these artificial materials can be both very costly and very hard to fabricate.

Production of nanoparticles and their embedding in a host material is of high challenge.
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Most importantly, such materials are produced in thin film form, which is of no use for
wave amplification purposes. Apart from the trivial technique of using very intense pump
wave pulses in extremely low-loss (High-Q) resonators, optical amplification in a micro-
resonator cannot be achieved by nonlinear wave mixing. This trivial technique also carries
the risk of damaging the gain medium due to very high-intensity levels as a result of
dielectric breakdown. Hence, an alternative technique for nonlinear wave amplification in
the micrometer scale is of high importance and that is why we have chosen a
computational approach, in which we can tune every parameter to investigate the wave

amplification performance.

We have determined that in order to have a strong amplification in a micro-resonator using
nonlinear wave mixing, the electric energy density and the polarization density in the
micro-resonator must be concurrently high. Having a high intracavity energy alone is not
enough, since a coupling mechanism to transfer some of that stored energy to the wave to
be amplified is necessary. The polarization density in the micro-resonator acts as a
coupling coefficient between the high-intensity pump wave and the input wave and
therefore must also be maximized. Simultaneous maximization of the electric energy and
the polarization density is computationally plausible by embedding a nonlinear
programming (nonlinear optimization) algorithm in a wave equation discretization
method such as the finite difference time domain method. Since the combined numerical
algorithm is of high computational cost, we have chosen a method of optimization (BFGS)
that computes the second derivative (Hessian) of each iteration in a recursive manner,
thereby reducing the computational cost. The results of our numerical experiments show
that the frequencies of high-intensity ultrashort pulses (pump waves) can be adjusted via
nonlinear programming to optimize the gain factor of the nonlinear optical amplification,
and the gain factor can be further enhanced by choosing an interaction medium with a low
polarization damping coefficient and by choosing the micro-resonator walls to be highly
reflective. We believe these results indicate that nonlinear electromagnetic wave
amplification or optical amplification by nonlinear wave mixing may be an alternative of
the stimulated emission technique for amplification in the micrometer scale, provided that

the resonator parameters and the pump wave frequencies are adjusted accordingly.
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The suggested experimental setup is shown in Figure 7.1. The frequencies of the intense
ultrashort pulses that form the excitation can be tuned via a controller device that takes
the micro-resonator parameters as inputs and adjusts the frequencies of the ultrashort
pulses accordingly through interfacing with a wavelength tuner, such as a simple movable
slit. The controller device may perform the maximization of the output intensity of the
input beam by executing the algorithm presented in this study. The input parameters for
the controller involve the resonance frequencies and the polarization damping rates of the
micro-resonator medium, the length of the resonator, background permittivity and
conductivity of the medium, and the electric field amplitudes of the excitation pulses.
Based on these parameters, the controller device can adjust the position of the movable
slit (wavelength tuner) that is depicted in Figure 7.2 to select the wavelength of the
maximum transmission for each excitation pulse. Figure 7.1 illustrates the simple
experimental configuration for implementation and Figure 7.2 illustrates the configuration
of the source device (such as a tunable solid-state bulk laser [24]) and its’ integration with
the movable slit that acts as a wavelength tuner. Note that although the numerical
simulations that are performed in this study assumes a micrometer scale micro-resonator,
the suggested BFGS nonlinear optimization can be used to enhance the cavity gain of a

nonlinear wave mixing process at any scale.

Controller
Device

Excitation Tuned Excitation
Source
device )
Micro-Resonator
Reflect/
Wavelength Input beam
Tuner
Input
Device

Figure 7.1 Proposed experimental setup for the implementation of the process.
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pair
output
coupler \

movable
slit

Figure 7.2 Configuration of a tunable solid-state bulk laser [24].

For a high parametric cavity-gain, the cavity walls should be highly reflective. However,
the most important criteria for high-gain amplification are the resonance frequencies of a
material, which should reside in the near infra-red frequency range. Germanium and
Gallium-Arsenide are two nice examples of the semiconductor class that can be used as
an interaction medium due to their strong resonance features in the infra-red region and
low polarization decay rate. Fused silica, crystalline quartz and borosilicate crown glass
are also suitable for use as an interaction medium for their strong near-infrared emission
features. As a good dielectric, Lithium-Niobate is one of the best materials to be used as
an interaction medium due its’ high permittivity, low polarization decay rate, and strong
near-infrared emission attributes. Other possible candidates for use as an interaction
medium for parametric amplification are zinc selenide and sapphire for their low
polarization decay rate and fair infra-red emission features. In short, any material that has
a strong emission in the near infra-red frequency range is a good choice for parametric
wave amplification regardless of their polarization decay rate as low polarization decay

rate can be easily compensated by increasing the reflection coefficients of the cavity walls.

The algorithm presented in this study features a simple optical set-up, and an enhanced
gain factor for the parametric wave amplification process in the microscale. Further
studies can be done to examine the optical beam cross section, optical power, and other

features via a two-dimensional analysis using a suitable discretization algorithm.
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