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1. GiRIS VE TEORIK CERCEVE

1935 yilinda J. Von Neuman [Neuman 1935] L? uzayi iizerinde tanimli lineer integral
operatdrlerinin karakterizasyonu problemini ortaya atti. Bu problem 1974 yilinda A.V.
Bukhvalov [Bukhvalov 1974] tarafindan lineer sira smirli operatorlerin  temel
hesaplama araci olarak kullanilmasi ile ¢oziilmiistiir. Bu hesaplama yontemi daha 6nce
benzer sekilde W.A.J.Luxemburg ve A.C.Zaanen [Luxemburg and Zaanen 1971]
tarafindan kullanilmisti. Lineer olmayan operatorlerin integral gdosterimleri igin
Bukhvalov tipi bir teorem elde etmek i¢in lineer sira sinirl operatdrlerin roliinii tistlenen
lineer olmayan operatorlerin bir siifina ihtiya¢ duyuldu. Bu ihtiya¢ Mazon ve Segura
de Leon [Mazo and Segura de Leon 1990a,1990b] tarafindan vektor oOrgiileri
tizerindeki sira sinirl, dik toplamsal operatorlerin tanimlanmasiyla giderilmistir.
Dolayisiyla, bu operatorler sinifinin 6zgiin degeri lineer olmayan integral denklemleri
teorisine olan uygulamalarindan kaynaklanmaktadir. Ayrica son yillarda dik toplamsal
olan baz1 operatorler ailesi lizerinde yogun bir sekilde calisilmaktadir. Bu tezde nispeten
yeni tanitilmis olarak kabul edebilecegimiz dik toplamsal operatorler teorisinin

fonksiyonel analizde ki bazi1 kullanimlarini1 gostermeyi amacliyoruz.

Fonksiyonel analizdeki kompak operatdrlerin bir genellemesi olarak dar operatorler
(tanimu farkli uzaylar igin revize edilerek ileride ki tinitelerde verilecektir) Plichko ve
Popov [Plichko and Popov 1990] tarafindan tanitilmis ve calisilmistir. Aslinda bu
operatorlerle ilgili ¢aligmalar daha Oncesinden baslamistir. Dar operatorler teorisi ile
ilgili son gelismeleri [Popov 2011] makalede ve [Popov and Randrianantoanina 2013]
kitapta bulabiliriz. Hemen belirtelim ki skaler ¢arpim altinda dar operatorler ailesi
kapaldir. Fakat herhangi iki dar operatoriin toplami dar olmayabilir. Bununla ilgili
literatiirde pek ¢ok 6rnek mevcuttur. Fakat toplamlari dar olan iki dar operator 6rnegi
bulmak her zaman kolay olmayabilir. Bu tezde literatiirde toplamlar1 da dar olan ya da
olmayan operator orneklerini inceleyecegiz. Bu 6rneklerde de gorecegimiz ekstra kosul,
verilen dar operatorlerin ayn1 zamanda dik toplamsal olmasidir. Bu da bize dik
toplamsal operatorlerin baska bir kullanim alaninin da dar operatorlerin toplaminin da
dar olmasinin saglamasinda oynayacagi roldiir. Bu baglamda {i¢ arastirma makalesini

irdeleyecegiz.



Bu tezin ilk tinitesi tez ¢aligmasinin ana hatlarini bir giris olarak vermektedir.

Ikinci iinite sirali vektor uzaylari, Riesz uzaylar1 (vektor orgiileri) ve bunlar
arasindaki operatorlerle ilgili bazi temel tanimlari, 6rnekleri ve sonuglart icermektedir.
Bu iinite ve tez boyunca Riesz uzaylariyla ilgili agiklanmayan kavramlar igin

[Luxemburg and Zaanen 1971] kitabina bagvurulabilir.

Uciincii iinite . Humenchuk’m [Humenchuk 2015] makalesine odaklanmaktadir. Bu
makalede atomsuz Dedekind tam bir vektor orgiistinden bir Banach uzayina tanimh dar
dik toplamsal bir operator ile sonlu rankli yanal norm siirekli dik toplamsal bir

operatoriin toplaminin da dar oldugu gosterilmektedir.

Dérdiincii iinite V.V. Mykhaylyuk ve M.M. Popov ‘un [Mykhaylyuk and Popov
2013] makalesine odaklanmaktadir. Bu makalede [0,1] iizerinde tanimli bir Kéthe
Banach uzayi E ve bir Banach uzay1 X {izerinde hangi yeter ve gerek kosullar altinda bu
iki uzay arasinda tanimlanan dar operatdrlerin toplaminin dar oldugu arastirilmaktadir.
Bu durum kullanilarak [0,1] tlizerinde tanimli bir Kothe Banach uzay1 E verildiginde
Oyle bir Banach uzay1 X in varlig1 gosterilmekte dyle ki dar olan iki Ty, T,: E = X igin
T, + T, nin dar olmadigr gosterilmistir. Dolayisiyla bu sonucgta bize V. M. Kadets
tarafindan ortaya atilan Her Banach uzay1 X i¢in L, den X e tanimli “ iki dar operatoriin
toplami1 dar midir? *’ sorusunun cevabinin olumsuz oldugunu gostermektedir. Ayrica
her 1 < p < o igin toplamlar1 dar olmayan iki regiiler dar Ty, T,: L, = L, operatorler

tanimlanmaistir. p = oo i¢in bu sonug¢ O. V. Maslyuchenko’nun sorusu i¢in bir cevaptir.

Besinci iinite M.A. Pliev, F. Polat ve M. R. Weber ‘in [Pliev et al. (2019)] makalesine
odaklanmaktadir. Bu makalede Orgii normlu uzaylar iizerindeki dik toplamsal
operatdrler ele alinmaktadir. Makalenin ilk kisminda 6rgii normlu bir uzay tizerinde

tanimlanan ve bir Banach uzayinda degerler alan dar yanal norm-siirekli ve €-kompak

operatorlerle ilgili baz1 6rnekler verilmektedir

Ayrica yine makalenin ilk kisminda izdiisim 6zelliine sahip bir atomik E vektor
orgiisii lizerine tanimli (V, E') ayristirilabilir 6rgii normlu uzay {izerinde tanimli normlu
bir X uzayinda degerler alan yanal norm siirekli dar dik toplamsal operatoriin sifir

operat0rii oldugu gosterilmistir.



Makalenin ikinci kisminda sira tam ayristirilabilir 6rgli normlu uzayindan bir
Banach uzay1 X i¢ine tanimli sirasiyla yanal norm siirekli C —kompak ve dar operatorler

S,T:V — X nin toplamlar1 olan S+T nin de dar oldugu gosterilmistir.



2. On Bilgiler
2.1. Siral Vektor Uzaylari

E bir reel vektor uzayi dyle ki tizerinde " <" bir siralama bagintis1 (yani yansiyan,

terssimetrik ve gecisken ) olsun. Asagida ki 6zellikler saglanirsa E' ye bir sirali vektor

uzayi denir.

(i) Egeru,v € Eveu < vise,ozamantimw € E iginu +w < v + w dur.

(ii) Egeru,v € Eveu < vise, 0 zaman her 0 < A € R igin Au < Av dir.

E de her hangi iki u, v eleman i¢in u < v gosterimi i¢in baska bir gosterim v > u dur.

E nin u > 0 sartin1 saglayan biitiin u elemanlarina pozitif elemanlar1 denir ve u > 0

ise u ya kesinlikle pozitif eleman denir. E nin biitiin pozitif elemanlarinin kiimesi

E* ={u € E:u = 0} ile gosterilir ve bu kiimeye E nin pozitif konisi denir. E siral

vektor uzayinda, her u, v € E i¢in (varsa) asagidakileri yazariz.
sup(u,v) = u Vv v,inf(u,v) = u Av,sup(u,0) = ut,sup(—u,0) =u", |[u|=uV—-u

Tamim 2.1.1. E bir sirali vektor uzayi olsun. Eger her u, v € E i¢in u V v E de mevcut
ise E ye Riesz uzay1 veya vektor orgiisii denir. Bazi sirali vektor uzaylari ve Riesz

uzaylar1 asagida verilmistir.

Ornek 2.1.2. 1. E bos olmayan bir kiime, X,E iizerinde tanimli tiim reel degerli
fonksiyonlarin vektor uzayi olsun. X kiimesi noktasal toplama ve skalerle carpma islemi
altinda bir vektor uzayidir. Yani her x € X ve @ € R igin (f; + f5)(x) = fi(x) + fo(x)
ve (af)(x) = af(x) ile tanimlayalim. Ayrica "f < g" bagntisim1 her x € X igin
f(x) < g(x) olarak tanimlayalim. Bu siralamaya noktasal siralama denir. Bu siralama

altinda X bir Riesz uzayidir.



2. X topolojik uzayi iizerinde C(X), reel degerli siirekli fonksiyonlar kiimesi, noktasal
islemler ve noktasal siralama altinda sirali bir vektdr uzayidir. Ayrica C(X) ayni
zamanda Riesz uzayidir. C(X) deki tiim sinirh fonksiyonlarin Cp(X) alt kiimesi de bir
Riesz uzayidir. Eger X yerel kompak ise C(X) deki tiim siirekli fonksiyonlarin C.(x)

kompak alt kiimeleride bir Riesz uzayidir.

3. L =]]L, kartezyen ¢arpiminin {L,: @ € I} bilesenleri sirali vektor uzaylari olsun. O

zaman L bir Riesz uzayidir ve her biri (u,), (v,) € L igin, (uy) V (v,) = (uy V 1,),

(ue) A (Wg) = (ug A vy) dir.

4. R™ koordinatsal toplama ve skaler ile ¢arpma islemi altinda n boyutlu reel bir vektor

uzayidir. Eger siralamay1 da ayni sekilde koordinatsal olarak tanimlarsak, yani,

x=(x1,%5, 0, %), Yy = V1, V2, -, V) i¢in, x <y olmast her k =1,23,..,n i¢in
X < Vi olmasi durumunda saglaniyorsa R™ bu siralama altinda bir Riesz uzayidir.

Burada R nin sirali yapisi ile vektor uzayinin yapisinin uygun olmasi kullanilir.

5.R? de su siralamayr diisiinelim: x; <y, veya (x; =y; Vex, <Yy,) oldugunda
(x1,%3) < (¥1,y,) olsun. Bu siralama altinda R? Riesz uzayidir. Bu siralamaya

sOzliiksel (lexicographical ) siralama denir.

6. u, R™ deki Lebesgue 6l¢timil olsun. R™ {izerinde reel u —dlgiilebilir fonksiyonlarin
M(R", u) kiimesi reel bir vektor uzayidir (toplama ve skaler ile carpma noktasaldir).
Simdi f ve gicin M(R", u) de f = g ancak ve ancak f ve g hemen hemen her yerde

esittir.

Acikca =~ bir denklik bagmntisidir. Ly = Ly(R", ) = denklik bagmtisi ile belirlenen
denklik smiflarinin kiimesi olsun. f, g, ... denklik smiflarin1 [f], [g], ... ile belirtiriz. L,
kiimesi a reel sayisi i¢in [f] + [g] = [f + g] ve a[f] = [af] yi tanimlanarak reel bir
vektor uzayr haline getirilir. Bu tanimlar f ve g denklik siniflarinin seg¢imine baglh
degildir. [f] < [g] hemen hemen her x € R" i¢in f(x) < g(x) anlamma geldigini
belirtirsek, L, daki kismi siralama igin gegerlidir. L, vektor uzay1 simdide bir Riesz
uzay1 olsun. Uygulamada, L, elemanlar1 genellikle f, g, ... ile gosterilir ve denklik

smiflar1 yerine fonksiyonlarmis gibi varsayulir.



Teorem 2.1.3. Eger E bir Riesz uzay1 ve u ve v elemanlari ise, o zaman,

(1) u*t ve u"ET ya aittir; (—u)* =u~, ve benzer sekilde (—u)~ =u*. Ayrica

|—ul = |ul.

Qu=ut—u",utAu"=0,velul =u*t+u".
B)o<sut<|ulve0<u < |u|l.Ayricau” <u<utvel|lu|=0o u=0.
@Wusveoeu <vtveu =v-.

Simdi bazi tamimlar1 verecegiz. E bir Riesz uzayir olsun. Eger |u|A|v]| =0 ise, E
icindeki u ve v oOgelerinin birbirinden ayrik oldugu sdylenir. u ve v nin birbirinden

ayrik oldugunu gostermek i¢in u L v notasyonu kullanilcaktir.
Tamim 2. 1.4. Riesz uzaymnin bos olmayan herhangi bir D alt kiimesi i¢in
D*={u€E:ulvVveED}

kiimesine D nin ayrik tiimleyeni denir. D¢ nin ayrik tiimleyeni D¢ = (D%)%, D nin

ikinci ayrik tiimleyeni olarak adlandirilir.

Tamm 2.1.5. E bir Riesz uzay olsun. E nin alt kiimelerinin E de ki siralamaya sahip

oldugunu varsayiyoruz.

1. E nin lineer K alt uzaymna, eger her u,v € K icinu Vv ve u Av K yaait ise , E nin

bir Riesz alt uzay denir.

2. S, E nin bir alt kiimesi olmak tizere |v| < |u| u € S ifadesi v € S olmasini sagliyorsa

S ye solid kiime denir.

3. A, E nin solid bir lineer alt uzay ise, A ya E de ideal denir. Bazen bunu bir halkadaki

cebirsel bir idealden ayirt etmek igin E de sira ideali denir.

4. E, ={veE: 3IA1>0 ile |v] < Au|} kiimesine u eleman: tarafinda iiretilen ideal

denir.



5. E deki ideal B, B alt kiimesinin E de bir supremuma sahip olmasi durumunda, bu

supremum B nin de bir iiyesi ise bir bant olarak adlandirilir, yani D € B iken
u =supD € Bolur.

6. E Riesz uzaymin bir D bandim1 kapsayan en kii¢iik bandina D tarafindan iiretilen
band denir ve {D} ile gosterilir. Bir u eleman: tarafindan iretilen esas band B, ile
gosterilir. E Riesz uzayinin bir izdiisiim B bandi, E = B @ B¢ sartin1 saglayan banddir.
Bir izdiisiim elemani temel bandi olusturan bir izdiisim bandimnin herhangi bir
elemanidir. E bir Riesz uzay1 olmak ilizere B, = E sartin1 saglayan 0 < e eleman1 zayif

sira birimi olarak adlandirilir.

Ornek2.1.6. 1. E = {f:f:[0,1] » R, f(x) = ax + b} kiimesi C[0,1] nin bir vektdr
alt uzayidir, fakat bir Riesz alt uzay degildir; ve 1 sabit 1 fonsiyonunu gostermek {izere

{al : a € R} kiimesi C[0,1] nin bir Riesz alt uzayidir, fakat bir ideali degildir.

2. Koordinatsal siralama altinda s tiim dizilerin kiimesi ve ¢, reel sifira yakinsayan
dizilerin kiimesi olsun. [; uzay1 ¢, da 6z alt bir idealdir, c, uzay1 l,, da 6z alt idealdir ve

l,, da s de 6z alt bir idealdir. Bu ideallerin hicbiri band degildir.

Tamm 2.1.7. Her u € E* icin inf{ln"'u:n = 1,2,3,..} = 0 ise, E Riesz uzaymm

Arsimedyan oldugu soylenir.

C(X) Riesz uzayi, M(R" p)ve n boyutlu vektdor uzayr R", koordinatsal siralama
altinda Arsimedyandir. Arsimedyan olmayan Riesz uzaylar1 var. Ornek olarak, E = R?

1

de sozliik siralamasi olsun. E deki (0,1) eleman1, (n~1,n™1) dizisinin bir alt siniridir.

Bu nedenle, u = (1,1) elemam inf{n"u : n = 1,2,3,...} = 0 kosulunu saglamaz.

Aslinda biitiin (n~u) dizilerinin tiimiiniin bu durumda infimumu yoktur. Asagidaki

teorem, Arsimedyan 6zelliginin basit bir karakterizasyonudur.



Teorem 2.1.8. E bir Riesz uzay1 olsun.

(i) E uzay1 Arsimedyandir ancak ve ancak her u € E* igin &, — 0 saglayan negatif

olmayan reel sayilarin her dizisi (&) i¢in

infle,u:n=1,23,..}=0
sart1 gecerli olmalidir.
(i) E uzayr Arsimedyandir ancak ve ancak E™ iginde verilen u ve v dyleki
n =123, .., i¢cin 0 < nv < u ifadesi v = 0 olmasin1 gerektirir. Yani, her
v> 0w =0,v # 0) i¢in (nv) dizisi sinirsizdir.

(iii) Eger E Arsimedyan ise, E nin tiim Riesz alt uzaylarida Arsimedyandir. Ozellikle,

E i¢inde ki idealler ve bandlar Arsimedyan Riesz uzaylaridir.

Sonraki bolimlerde tim Riesz uzaylar1 Arsimedyan Riesz uzaylar1 olarak kabul

edilecektir.

2. 2. Riesz Uzaylarindaki Operatorler

Bu boliimde pozitif operatorlerin 6zel bazi smiflart ele alinacaktir. Bunlar orgii
islemlerini koruyan ve 6rgii (veya Riesz ) homomorfizmalari olarak bilinen operatorler,

regiiler operatorler ve sira sinirl operatorlerdir.

Tamm 2.2.1. ki sirali vektdr uzay arasindaki bir T: E — F operatorii E deki her
x =0 elemanin1 F de T(x) = 0 elemanina gétiiriiyorsa, T ye pozitif operator denir.

T = 0veya 0 < T ile gosterilir.

Tamim 2.2.2. Iki Riesz uzay: arasindaki bir T:E — F operatérii her x,y € E igin
T(xVvy)=T(x)VT(y) sartim sagliyorsa T ye Orgii veya Riesz homomorfizmasi
denir. Her orgii homomorfizmast T nin mutlaka bir pozitif operatér oldugunu

gozlemleyelim. Eger x € ET ise T(x) =T(x v 0) =T(x) vT(0) = [T(x)]* = 0 dur.

Ayrica, bir 6rgii homomorfizmasinin goriintiisii bir Riesz alt uzayidir. Simdi orgii

homomorfizmalarinin temel karekterizasyonlarii gorelim.



Teorem 2.2.3. Iki Riesz uzay: arasinda tanimli T: E — F operatdrii i¢in asagidaki

ifadeler denktir:

1. T bir 6rgii homomorfizmasidir.

2.Herx € Ei¢cin T(x%) = (T(x))+ dir.

3.T(xAy) =T(x)AT(y)Vx,y €EE.

4, EgerEdex Ay =0ise Fde T(x) AT(y) = 0 dir.
5.T(|x]) = |T(x)|i¢inV x € E.

Tamim 2.2.4. Bire-bir ve orten bir T 6rgii homomorfizmasina 6rgii izomorfizmasi

denir.

E ve F iki Riesz uzayina eger E den F ye bir 6rgii izomorfizmasi varsa bu durumda
Riesz izomorfik uzaylar denir. Her Riesz izomorfizmas1 T : E — F bire-bir ve pozitiftir.
Tersine, birebir, orten ve pozitif olan iki Riesz uzayr arasinda tanimli herhangi bir
dogrusal operator T : E — F bir izomorfizma midir? Asagidaki drnekte gosterildigi gibi

cevap olumsuzdur.

Ornek 2.2.5. Bilinen koordinat diizleminde E = R?, sozliiksel siralamasi F = R?
yani, (x1,x;) < (¥1,y2) oldugu zaman x; < y; yadax; = y;,x, <y,veT:E — F nin
birim operatorleri olsun. O zaman T birebir, 6rten ve pozitif ancak T bir Riesz

izomorfizmasi degildir. Ciinkii T~ pozitif degildir. T~ pozitif ise durum diizelir.

Teorem 2.2.6. Iki Riesz uzay: arasindaki bir T : E — F operatdriiniin birebir ve orten
oldugunu varsayalim. O zaman, T bir 6rgii izomorfizmidir, eger T ve T~ nin her

ikiside pozitif operatorlerdir.

Ornek 2.2.7. Vektor uzaylar arasindaki bir dogrusal operator T :V — W nin
cekirdegi veya bos uzayr (yani, kiime k(T) = {f:Tf = 0}), V nin dogrusal bir alt
uzayidir ve T (yani, kime {g:g =Tf icin f € V}) aralifi, W nin dogrusal bir alt

uzayidir.



E ve F Riesz uzaylari ve T: E — F, bir Riesz homomorfizmasi ise, T goriintiisii F nin
bir Riesz alt uzaylari oldugu agiktir ve T nin ¢ekirdeginin k(T) nin bir E ideali
oldugunu gérmek zor degildir. ispat igin, ilk énce T(|f]) = |Tf| bu f € k(T) & |f| €
k(T). Bu nedenle, eger f € k(T) ve |g| < |f|, 0 <T(lgl) < T(UfI) =0, |g| € k(T),
bunun anlam1 g € k(T). Boylece ¢ekirdek k(T) idealdir.

Tamim 2.2.8. E,F Riesz uzaylari olsun. T: E — F operatérii i¢in T V (=T) var ise bu

supremuma T nin modiilii denir ve |T| ile gosterilir.

Teorem 2.2.9. Bir Riesz uzaymnda |x| < |y, + -+ yy| iS€, xq,...,x, eclemanlar
vardir 8yleki x = x; + -+ x, ve her i, i = 1, ...,nicin |x;| < |y;| dir. Ustelik x pozitif

ise, x; ler de pozitif segilebilir.

Teorem 2.2.10. E,F Riesz uzaylari ve T: E — F operator olsun oyleki her x € E*

icin sup{|Ty|: |y| < x} € F olsun. Bu taktirde T nin modiilii vardir ve her x € E* i¢gin
IT1(x) = sup{|Ty |: [y] < x}

dir.

Tanmm 2.2.11. A, Riesz uzayimin bir alt kiimesi olsun.

Her y € A i¢in y < x olacak sekilde x varsa, A ya “ {istten sinirl”

Her y € A igin x < y olacak sekilde x varsa, A ya “ alttan sinirli”

A alttan ve lsten sinirh ise, A ya “sira sinrl’” denir. Riesz uzaymin, herhangi iki x,y
elemant i¢cin (x <y) [x,y] ={z € E:x <z <y} seklinde tanimlanan alt kiimesine

“sira aralig1 ” denir.
Tanim 2.2.12. L(E,F) = {T:E - F |T lineer}

T:E — F operatorii, E nin sira siirh alt kiimelerini F nin sira sirl alt kiimelerine
dontistiiriiyorsa, T ye “sira sinirli operatdr” denir. Sira sinirli operatorlerin alt vektor

uzayi Ly, (E, F) ile gosterilir.

L,(E,F) ={T € y(E,F): A € E sira sinirh = T(A) E F sira sinirli }
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T : E - F operatorii, iki pozitif operatoriin farkli seklinde yazilabiliyorsa, T Yye

“regiiler operator” denir. Regiiler operatorlerin alt vektor uzayi L, (E, F) ile gosterilir.
L.(E,F)={Te€y(E,F):T=T,—T, T, T,€y(EF), T,=0 T,=>0}

Ly(E,F) ve L.(E,F),(T; + T,)x = Tyx + T,x ve (AT)x = ATx islemleri ile vektor

uzaylaridir. Her pozitif operator sira siirlidir.
(AS[x,y]>hera€Aicinx<a<y=>T,<T, <T, >T@A) c [Ty, Ty]).

Dolayisiyla her regiiler operatér sira smirhidir. (L, (E, F) vektor uzayr oldugundan

T=T,—T,€ L,(E,F)). Dolayisiyla L,(E, F) € L,(E,F) € L(E, F) dir.

Tamim 2.2.13. Bir Riesz uzayinin bostan farkli ve iistten sinirli her alt kiimesinin
supremumu (veya bostan farkli sinirh her alt kiimesinin infimumu) varsa, bu uzaya

Dedekind tam Riesz uzayi denir.
Onerme 2.2.14. E Dedekind tamdir & 0 < x, T< x olmak iizere sup(x,) vardir.

Tammm 2.2.15. Bir Riesz uzaymnm {stten smirlt sayilabilir her alt kiimesinin
supremumu (veya alttan sinirli sayilabilir her alt kiimesinin infimumu) varsa, bu uzaya

o —Dedekind tam uzay denir.
Onerme 2.2.16. E o —Dedekind tamdir & 0 < x,, T< x olmak iizere sup(x,,) vardir.
Notasyon: L, (E,R) = {f: E - R |lineer ve sirali sinirli} = E~

Teorem 2.2.16. E ve F Riesz uzaylari, F Dedekind tam olsun. L,(E, F) Dedekind
tam Riesz uzayidir ve her S,T € L, (E, F) ve her x € E* igin

SVT(x)=sup{S(y)+T(2):y,z€ E*tvey+z = x}

SAT(x) =inf{S(y) + T(2):y,z € E* ve y + z = x} dir.
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3. DAR VE SONLU RANKLI DiK TOPLAMSAL OPERATORLERIN
TOPLAMI UZERINE: H. I. HUMENCHUK’IN YAKLASIMI

3. 1. Giris

3.1.1. Terminoloji ve Notasyon. Vektor orgiileri ile ilgili standart notasyonlari
(Aliprants and Burkinshaw 2006 ) referansim1 kullanacagiz. E bir vektor orgii ve
X,y € E olsun. Eger x L (y — x) ise bir x elemanina bir y elemanin fragmani deriz ve
x C y seklinde gosteririz (Baska bir terminolojide x elemanina y nin bir bileseni de
denir). Eger E fonksiyonlarin bir vektor orgiisii ise o zaman x =y bir x fonksiyonu
grafiginin bir y fonksiyonun grafiginden x in sifir oldugu kisimlarini ¢ikarilmasiyla elde
edilen grafigin bir alt kiimesi oldugu anlamina gelir. E {izerine E bagmtisinin kismi
siralama bagintisinin oldugunu gérmek zor degildir. (Mykhaylyuk, Pliev, and Popov,
2015) referansta bu siralama bagintist  yanal siralama bagintisi  olarak

adlandirilmigtir. u > 0 bir E' vektor 6rgiisiiniin bir elemani olsun. Eger 0 < x < u,

0<y<uvexAy=0hize x =0 veya y = 0 1 veriyorsa bu u elemanina E nin bir
atomu denir. Eger bir vektor orgiisii hicbir atom icermiyorsa bu vektdr Orgiisiine
atomsuz denir. Sifirdan farkli bir x € E nin bir atom olmas1 i¢in gerek ve yeter sartinin
x elemanin tek fragmanlarinin sifir ve x in kendisi oldugunu gostermek hicte zor
degildir. Boylece bir vektor orgiisii £ nin atomsuz olmasi i¢in gerek ve yeter sart her
sifirdan farkli x € E nin bir y fragmnina sahip olmasidir 6yle ki 0 # y # x tir. E de
(Xa)aen neti verilsin. Eger Oyle bir x € E varsa ve Oyle bir E de (u,)qen Neti varsa

(aym indekse sahip) dyle ki u, 1 0ve her g €A igin |xg — x| < ug oluyorsa bu

. 0 i
durumda (x,)4ep Netine x € E ye sira yakinsaktir ( ve x, = x yazilir ) denir.
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gosterimi her i # j igin x; L x; ve

n
x=2xi

anlamina gelir. E' vektor orgiisiiniin bir A alt kiimesi verilsin. Eger bir e € E varsa Oyle

ki her x € A i¢in x £ e oluyorsa bu durumda A ya yanal smirlidir denir. (Gumenchuk

o
2015) referansa gore eger bazi1 a, indeksleri i¢in x5, — X V€ (Xg) g2q, Yanal smirli ise E

de (x4)qen neti verildiginde bu net bir x € E ye yanal yakinsaktir deriz (ve x,

lat
i>xyazarlz.). Bir E vektor orgiisiinden bir X Banach uzaymna tanimhi f:E — X

fonksiyonu verilsin.

Eger E de ki her (x,) neti igin x, Sx sartt bize ||f(xq) — f(x)|| = 0; sartim
veriyorsa bu durumda f fonksiyonuna bir x € E de sira-norm siireklidir denir. Eger
f fonksiyonu E nin her noktasinda sira-norm siirekli ise bu durumda f ye kisaca sira-

norm suirekli denir.

lat
Eger E deki her (x,) neti i¢in x, Sx sart1 bize ||f (x,) — f(x) || = 0 sartin1 verirse

bu durumda f ye x € E noktasinda yanal-norm stireklidir denir.

Eger f fonksiyonu E nin her noktasinda yanal-norm siirekli ise bu durumda f ye
kisaca yanal-norm siireklidir denir. Tanimdan yanal yakinsakligin sira yakinsakligini
verdigini kolayca soyleyebiliriz. Boylece her sira-norm siirekli fonksiyon yanal-norm

stireklidir.
3.1.2. Vektor Orgiileri Uzerinde Tanmimh Dik Toplamsal Operatorler.

Vektor orglileri arasinda tanimli dik toplamsal operatdrler 1990 yilinda Mazon ve
Segura de Leon (Mazon and Segura de Leon 1990 a,b) tarafindan tanitilmis ve
calistlmistir. Daha sonralar1 Kusraev ve Pliev (Kusraev and Pliev, 1990,1999,2007)

tarafindan bu kavramlar sira-norm siirekli uzaylara genellestirilmistir.
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Dik toplamsal operatorlerin genislemeleri problemi (Gumenchuk, Pliev and Popov
2014) referansi ile c¢alisilmistir.(Gumenchuk 2015) referansta dik toplamsal bir
operatoriin yanal-norm siirekliliginin ayni operatoriiniin orjinde ki  yanal-norm
stirekliligine denk oldugu gosterilmistir. E bir vektor o6rglisii ve F de reel bir vektor
uzay1 olsun. Eger herhangi iki ayrik x,y € E i¢in T(x + y) = T(x) + T(y) oluyorsa bu

durumda T: E — F operatoriine dik toplamsal operator denir.

Yukaridaki tanimdan dik toplamsal operatorler kiimesinin alisilmis islemler altinda bir
vektor uzayr oldugunu ve her T dik toplamsal operatorii igin T(0) = 0 oldugunu
gostermek higte zor degildir. Simdi lineer olmayan dik toplamsal operatdrlerin literatiir

de karsilasilan baz1 6rneklerini gorelim:

(i) 1 < p < oo igin (O, X, 1) bir 6l¢ii uzay: olsun, her x € L, (u) icin T (x) = ||x]|| ile

tanimlanan T: L, (u) — R operatdrii bir dik toplamsal operatordiir.
(ii) E atomsuz bir vektor orgisii ve T;: E - E (i = 1,2,3) operatorleri x € E igin

T,(x) =x%, T,(x) = x7,T3(x) = |x| ile tamimlansin. Biitin bu T; operatérleri dik

toplamsaldir.

3.1.3. Dar Operatorler. Fonksiyonel analizdeki kompak operatorlerin bir genellemesi
olarak dar operatorler (Plichko and Popov 1990) referansta tanitilmis ve galisiimistir.
Aslinda bu operatorlerle ilgili ¢calismalar daha oncesinden baslamistir. Dar operatorler
teorisi ile ilgili son gelismeleri (Popov 2011)  makalede ve (Popov and

Randrianantoanina, 2013) kitapta bulabiliriz.

Eger atomsuz bir (£, %, u) 0l¢li uzayinda tanimli Kéthe uzayr E bir mutlak stirekli
norma sahipse o zaman E den her hangi bir F —uzayi i¢ine tanimli her kompak operator
dardir. Yine de, normu mutlak siirekli olmayan L, uzay1 iginde lineer siirekli dar
olmayan fonksiyoneller vardir. Ote yandan, 1 < p < oo olmak iizere Lp uzayi icerisinde

bile iki dar operatdriin toplaminin dar olmasi gerekli degildir.
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Boylece asagidaki soruyu sormak oldukca dogaldir: Dar kompak bir operatdr ile dar
bir operatoriin toplami1 daima dar midir[Popov and Randrianantoanina 2013,
Problem 5.6]? Bu soruya pozitif bir cevap Mykhailyuk (Mykhaylyuk 2014) tarafindan
verilmistir. Bu bolimde bir vektor orgiisiinden bir Banach uzayi igine tanimli dar bir
operatér i¢in (ki bu operator (Maslyuchenko, Mykhaylyuk, and Popov 2009)

referansta tanimlanmistir) benzer bir sonucu ispatlayacagiz.

3.2. Dar Dik Toplamsal Operatorler Ve Bazi Bilindik Sonuclar

E atomsuz bir vektor orgilisii ve X te bir Banach uzayi olsun. E nin elemanlar1 i¢in
e=-e lle, notasyonu bize e=e +e, Vve e Le, oldugunu soyler.
(Plievand Popov 2014) referansa gore eger rastgele bir e € E i¢in e = e4 Ll e, sart1

saglaniyor Oyle ki bu ey, e, ler i¢in ve her € > 0 igin
[IT(e1) —T(e)ll < ¢
oluyorsa dik toplamsal bir T: E — X operatoriine dardir denir.

E bir vektor orgiisii ve e € E olsun. F, sembolii ile e elemanin biitiin fragmanlarinin
kiimesini gosterecegiz. [Aliprantis and Burkinshaw 2006] referanstaki Teorem 3.15 e
gore eger e > 0 ise 0 zaman F, kiimesi V ve A latis islemlerine gore bir Boolean
cebiridir ve latis siralamas1 <, F, iizerinde ki yanal siralama C ile ¢akisir. Ustelik, eger

E sira tam vektor Orgiisii ise F, de sira tam vektor orgiisiidiir.

Lemma 3.2.1. E bir vektor orgiisii ve 0 < e € E olsun. Her x,y € F, i¢in asagidaki

bagint1 dogrudur:
x=xAyld(x—xAy).

Ispat. x Ay < x ve F, iizerindeki 6rgii siralama bagntis1 yanal siralama bagmtisi ile
cakistigindan x A y £ x olur ve boylelikle x Ay L x —x Ay elde edilir. Bu da ispati

tamamlar.

Eger her x € F, icin (x # 0) dyle bir d € D varsa ve 0 # d C x oluyorsa bu durumda
D € F, kiimesine F, i¢inde yanal yogun denir. Eger her e € E i¢in F, igerisinde yanal

yogun olan en fazla sayilabilir bir D varsa bu durumda E ye yanal ayrilabilir denir.
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Eger e; =e ve her n €N i¢in e, = e,, Ll e;,41 Oluyor ise bu durumda E deki
elemanlarin bir (e,)n=, dizisine e € E elemani {izerinde ayristirict agag denir. Agiktir

ki, bu durumda biitiin e,, ler e nin fragmanlaridir. Ustelik , her k = 1,2, .... i¢in
e = e,k (] €okyq U...u €okyok_q

ve her n > 2k*1 indisleri icin &yle bir tek tiirlii belirlenen € € {0, ..., 2% — 1} indisi

vardir yle ki e,, £ e,k_, dir.

Lemma 3.2.2. E bir vektor orgiisii ve x,y € E olsun. x £y dir ancak ve ancak

xTCEyt vex Cy dir.

Ispat. x Sy yani, y = x U (y — x) olsun. O zaman y* = x* U (y — x)* dir. Bu bize

xt <y*tve(y—x)* =yt —x* oldugunu verir. Boylece,
yr=xtu @yt -x"),
yani, x* C y* dir. Benzer sekilde x~ < y~ ve x~ E y~ oldugu gosterilebilir.
x* Ey*vex™ Cy~ olsun. Ilk denklemden x* < y* dir. Boylece
0<x*Ay " <y*Ay =0
ve boylelikle x* L y~ dir. Ustelik x* L (y* —x%) ve x* L x~ dir. Boylece

xt Lyt —xT—y 4+x7), yani, x* L (y —x) oldugu ve dolayisiyla x L (y — x)

oldugu gosterilebilir. Bu da ispat1 tamalar.

Lemma 3.2.3. E bir atomsuz sira tam yanal ayrilabilir bir vektor orgiisii olsun. O
zaman her e € E igin, e iizerinde bir aynstirilabilir agac (e,)e-; vardir. Oyle ki
sayilarin herhangi bir my, m,, ... dizisi igin ve f,, E e, dizisi i¢in dyle bir (f, )x=, alt

dizisi vardir ve bu alt dizi sifira yanal yakinsaktir.

Ispat. Lemma y1 rastgele bir e >0 igin ispatlamak yeterlidir. Gercekten genel
durumdan e = et — e~ yazlabilir ve e* flizerinde ayrigtirict agag¢ (en)m=; V€ €~
tizerinde ayrigtirict aga¢ (e )n=; 1 insa edilebilir ve onceki bilinen sonuglari

kullanabiliriz.
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Hern € Ni¢in e, = e, — e, yazalim. O zaman, her sayilarin m; < m,, ... dizisi igin
Ve f, E ey, dizisi i¢in Lemma 3.2.2. gbre f," E e’y Ve f Ee’y, i elde ederiz.

Ik 6nce sifira sira yakinsak bir (fir k=1 alt dizisini segelim. O zaman sayilarin bir

My, < My,,.. dizisi i¢in ve f; E e,’,’lnk dizisi i¢in sifira sira yakinsak (f,{kj)j?"=1 alt
dizisini segeriz.
Sonugta,
N )
Fu, = fie, = fo, =0
elde ederiz ve boylelikle fnkj € F, oldugundan Lemma 3.2.2 ye gore

lat

fnkj = fntj - fn_kj —0

elde ederiz. e € E ve (d,)n=, dizisi de F, kiimesi i¢inde yanal yogun olsun. Simdi

ardisik olarak gerekli agacie; = even = 1,2, ..., igin
en = ex Ndy, €n+1 = €n — e Ndy

olarak tanimlayalim. Lemma 3.2.1 den e, = e, U e;,41 ve boylelikle (e,)n=, dizisi
E iizerinde ayristirict bir agactir. Sayilarin bir my < m, < --- dizisi ve bir f, E ey,
dizisi verilsin. k =1,2,.. icin dyle bir ¢, € {0,...,2%¥ — 1} dizisinin oldugunu

gosterecegiz Oyle ki
ezk+1+[k+1 = ezk+‘[k’ (1)

ve her k € N i¢in {n € N: f, £ e,x,, } kiimesi sonsuz olsun. k = 1igin e = e, U e3
diir. Egern > 2 ise ya f, E e, Ee,yadaf, Ee, E e; tir. Boylece,{n €EN:f, C

e,i,p}, (£ =0,1) kiimelerinin en az biri sonsuzdur.

£; € {0,1} ile karsilik gelen indisi gosterelim. k = 2 igine = e, Ll eg L eg U e, dir. O
zaman n = 8 olmak iizere tipki e, deki gibi her bir f, elemani e, es, es veya e,

elemanlarinin birinin fragmanidir.
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Boylece
{nEeN:f, C ey, (¢=0,1,2,3)

kiimelerinden en az birisi sonsuzdur. ¢, € {0,1,2,3} ile karsilik gelen indisi gosterelim.

Boyle devam edersek sonugta gerekli olan diziyi elde ederiz. Her {n € N: f;, E e, {k}

kiimesinin sonsuz oldugunu géz 6niine bulundurarak f, T e,k . ozelligini saglayan

Oyle bir (f,, )g=1 alt dizisini segebiliriz ve buradan da f;, %0 oldugunu ispatlariz. Her

k € N igin
U = SUPj>k fn,-
yazalim.

Bu supremum vardir zira E sira tam bir vektor orgiisiidiir ve kiime E nin bir elemani
ile tisten smrhdir (latis ve yanal siralama bagmtilarinin F, iizerinde g¢akistigini ve
boylelikle siradan supremumla yanal supremumun u; nin tanimi izerinde
alinabilecegini hatirlayalim). Dolaysiyla 0 < f,,, <wu, | dir. Sadece infyu, =0
oldugunu gostermek kalir. Tersine, her k i¢in 0 # z £ u,  sartin1 saglayan Oyle bir
z € F, oldugunu varsayalim. (d,)n=, dizisi F, de yanal yogun oldugundan d,, C z

sartin1 saglayan en az bir m € N vardir. O zaman her k € N i¢in
eom =em Ndy E dy E 2 E uy dir (2)
(1) den j = k igin fnj C e,j,, lde edilir ve boylece uy E eyi,, dir. (2) den her
k € N igin
eam U eame1 = €am & €y p,

elde edilir. 2¥ < 4m < 2%*1 sartim saglayan k € N segeriz ve dolayisiyla 4m = 2% + ¢
sartin1 saglayan £ € {0, ..., 2% — 1} seceriz. Boylece 4m + 1 = 2% + £ + 1 dir. Ustelik
4m ¢ift oldugundan ¢ < 2k — 2 sartim1 saglayan £ buluruz ve boylelikle £ + 1 < 2% — 1

esitsizligini elde ederiz.
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€ykyp = €am & €k, sartindan £ = £ elde edilir, aksine ey, py 1 = €ami1 E €p2pp,

sartindan € + 1 = ¢, elde edilir. Boylelikle bir ¢eligski yakalamis oluruz ki bu ¢eligki

lat
bize f, %0 yakinsakhigini verir. Her k €N icin f, € F.oldugundan f, =0

yakinsakligini elde ederiz. Bu da ispat1 tamamlar.

Lemma 3.2.4. E atomsuz sira tam bir vektor 6rgiisii, X bir normlu uzay ve T: E - X
sonlu rankli yanal norm siirekli dik toplamsal bir operator olsun. O zaman her e € E
icin e lizerinde Oyle bir ayrisabilir agac vardir dyle ki € > 0 i¢in dyle bir k € N vardir

Syle ki her £ € {0, ..., 2k — 1} ve f T e,i,, i¢in [|T(f)|| < & dur.

Ispat. Rastgele bir e € E yi sabitleyelim ve Lemma 3.2.3 ten e iizerinde 6yle bir
ayristirict agag (e,)n=q1 secelim Oyle ki sayillarin m; < m, < --- her dizisi ve her
fn E e, dizisi igin sifira yanal yakinsayan bir (fy, )g=q alt dizisi olsun. Simdi bu
(én)p=; dizisinin bizim ihtiya¢ duydugumuz aga¢ oldugunu ispatlayalim. Aksine
verilen bir § > 0 ve her n € N igin, dyle bir £, € {0,...,2" — 1} ve bir f;, Eesnyyp
fragmani olsun Oyle ki ||T(f,,)|| = 6 saglansin. Bu durumda sifira yanal yakinsayan bir
(fa)k=1 alt dizisi segebiliriz. Bu da bize bu alt dizinin orjinde yanal norm

stirekliliginden dolay1 bir geligki verir. Boylece dik toplamsal bir operator sifirt sifira

gotiirir. Bu da ispat1 tamamlar.

Bir sonraki sonu¢ dimX =1 i¢in [Kadets and Kadets 1991, s. 14| referansindaki

katsayilarin yuvarlanmasiyla ilgili lemmadan saglanir.

Lemma 3.2.5. €e>0,n€N, ay,..,a, €ER ve k=1,..,n igin |a,| < & olsun. O

zaman Oyle bir par¢alanma {1, ...,n} = I U] vardir 6yleki

ST <

il j€J

dur.
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3.3. Ana Sonug¢

Teorem 3.3.1. E atomsuz sira tam bir vektor 6rgiisii, X bir normlu uzay ve S,T: E —
X dik toplamsal operatorler olsun. Eger S dar bir operator ve T sonlu ranka sahip yanal-

norm siirekli bir operator ise bu durumda S + T toplami dar bir operatordiir.

Ispat. flk 6nce T nin ranki bir olan bir operatér olmasi durumunun ispatin
tamamlanmasi icin yeterli olacagini gosterecegiz. Bu durumda T yi ranki bir olan iki
operatoriin toplami seklinde yeniden yazacagiz. Gergekten X; = T(E) ve n = dim X;
diyelim. Lineer bagimsiz bir sistem x4, ..., x, € X; ve Hahn-Banach teoreminden her
I,j <n igin fl-(xj) = §;; sartimt saglayan fi,..,f, € X* fonksiyonellerini secelim.

Boylece x € X icin

PG = ) fitox
i=1

formiilii X ten X; iizerine lineer siirekli bir izdiisiim tanimlar. Ozel olarak her e € E igin

7(e) = P(T(e) = ) fi(T(@)x,
i=1

dir. Dik toplamsal operator ile lineer bir operatdriin bileskesi acgikg¢a dik toplamsal
operatdr oldugundan, f; o T operatorii dik toplamsal operatordiir. Benzer sekilde yanal-
norm siirekli bir operatdrdiir ve bdylece her i = 1, ...,ni¢in f; o T operatorii yanal-norm
stirekli bir operatordiir. Boylece , T yanal- norm siirekli dik toplamsal bir rankina sahip
operatorlerin sonlu bir toplamidir. Eger teorem T nin rank bir operatorii olmasi
varsayimi altinda dogruysa o zaman teoremin genel sonucu tiimevarimla ispatlanabilir.
Boylece , T rank bir operatorii, x € X her e € E igin bir ¢: E — R fonksiyonu verilsin
oyle ki ||x|| =1 ve T(e) = ¢(e)x olsun. Kolay bir sekilde ¢ yanal-norm siirekli dik

toplamsal bir operator oldugunu gosterebiliriz.

Ayrica, S + T toplaminin dar oldugunu gosterecegiz. Rastgele bir e € E sabitleyelim
ve € > 0 olsun. Lemma 3.2.4 ten Gyle bir e iizerinde ayristirict aga¢ (e;,)n=; secebiliriz
ve k € N igin, dyle ki her £ € {0, ..., 2% — 1} ve her f £ e,k , i¢in asagidaki esitsizlik
saglanir: ||T(f)|] < €/2, yani, |o(f)| < /2.
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Lemma 3.2.5 ten &yle bir {0, ..., 2% — 1} = I U J béliintiisii secebiliriz oyle ki

z (p(ezk+i) - z (P(ezk+j) < %

i=I j=]

IS +T)(e) = (S +T)(eMI| < [IS(e) = S| +1IT(e") = T(e"

= z S(egy;) — z S(ezesj)

i=I J€J
) oles) = ) olens)
i€l j€J
&
< D JIsCeaendl| + D |IsCean )l +5
i€l JjE€J
2 & & &
= Z(:) ||S(€2k_€)|| +E < §+§ =¢

saglanir. Bu da teoremin ispatini1 tamamlar.

Lemma 3.2.4 ve Teorem 3.3.1 in ispatlarinda sadece T operatdriiniin orjindeki yanal-
norm siirekliligini kullanildi. Oysa (Gumenchuk 2015) referansindanda goriilebilecegi
gibi dik toplamsal bir operatdr i¢in bu Ozellik biitlin noktalarda ki yanal-norm

stirekliligine denktir.
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4. KOTHE FONKSIiYON UZAYLARI UZERINE TANIMLI DAR
OPERATORLERIN TOPLAMLARI: V.V.MYKHAYLUK VE M.M. POPOV’UN
YAKLASIMI

4.1. Giris

Dar operatorler ilk defa kompak operatorlerin bir genellemesi olarak A.M. Plichko ve
M.M. Popov (Plichko and Popov 1990) tarafindan tanitilmistir. Kompak operatorlerin
baz1 Ozellikleri dar operatorler tarafindan saglansa da kompak operatorlerin tim
ozellikler saglanmaz (Bknz ( Plichko and Popov, 1990), ( Popov 2011) ve (Popov,

Randrianantoanina 2013) ).

Dar operatorler tlizerindeki en ilging sonucglardan biride eger [0,1] lizerine tanimli
yeniden diizenlendiginde degismez bir E uzayi sartsiz bir tabana sahipse E uzayi
lizerinde taniml1 iki dar operatoriin toplami dar olmayabilir (Ustelik E {izerinde tanimli
her operator iki dar operatoriin toplamidir) sonucudur(Plichko and Popov 1990).
Aksine L; lizerinde tanimli iki dar operatoriin toplam1 yine dardir. Daha az ilging olan
sudur ki son sonuc¢ ilk sonuctan daha karmasiktir. Ilk zamanlar bu derin sonug

(Plichko and Popov 1990) referansta yanlis bir ispat ile verilmistir.

Daha  sonralart  [( Shvydkoy 2001), (Kadets and Popov 2003), Maslyuchenko,
Mykhaylyuk, and Popov 2006)] referanslardaki farkli fikirlere dayanan bazi farkli
yazarlarin makalelerinde degisik ispatlar goriilmistiir. Dar operatorlerin toplaminin
yukaridaki durumu vektor orgiileri iizerinde tanimli dar operatdrlerin daha genel bir
durumda giizel bir tanima sahiptir. (Maslyuchenko, Mykhaylyuk, and Popov 2009)
referansta O.V. Maslyuchenko ve diger yazarlar Ko6the fonksiyon uzaylar iizerinde
taniml1 dar operatorler kavramini vektor orgiileri lizerinde tanimli dar operatorler
kavramina genisletmislerdir. (Maslyuchenko, Mykhaylyuk and Popov, 2009) referansta
P. Enflo, N.J. Kalton, H.P. Rosenthal ve T.W. Starbird gibi yazarlarin fikirlerine

dayanarak 0zel bir teknikle asagidaki sonug ispatlanmastir.

Teorem 4.1.1. E,F iki sira siirekli Banach 6rgiisii olsun. Oyle ki E atomsuz olsun. O
zaman E den F e tanimli biitiin regiiler dar operatérlerin kiimesi N,.(E,F) E den F e
taniml biitlin regiiler operatorlerin kiimesi L, (E, F) vektor orglisii iginde bir banttir.

Ozel olarak E den F e tammli iki regiiler dar operatoriin toplami1 yine dardir.

22



Hemen hatirlatalim ki eger iki vektor orgiisii arasinda tanimlanan lineer bir operatdr iki
pozitif lineer operatoriin farki olarak yazilabilirse bu lineer operatore regiiler denir. L;
tizerinde tanimli biitiin siirekli operatorler regiiler oldugundan [(Schaefer 1974),sayfa
232] Teorem 4.1.1. L, iizerinde tanimli iki dar operatoriin toplamimin darliginin
sonucunu kapsar. Ote yandan yeniden diizenleme altinda [0,1] aralig1 iizerinde tanimli
sartsiz tabana sahip degismez uzaylar lizerinde tanimli iki dar operatdriin dar olmayan

toplaminin her 6rnegi regiiler olmayan toplam bilesenlerini igerir.

Yine de bu arastirmanin ana sonucu olan asagidaki agik problem heniiz
¢oziimlenememistir.[(Kadets and Popov 2003), (Popov 2011)]
[( Popov and Randrianantoanina 2013), Problem7.52].

Problem 4.1.2. X herhangi bir Banach uzay1 olsun. L(L4, X) iginde iki dar operatoriin

toplam1 dar midir?

Ana sonucumuzun (Teorem 4.4.2) 6zel bir durumu olarak E = L, alirsak bu probleme

olumsuz bir cevap elde edecegiz.

Diger problem klasik atomsuz Banach oOrgilisii Lo, ile ilgilidir. L, sira siirekli

olmadigindan Teorem 4.1.1 L, iizerinde taniml1 operatdrlere uygulanamaz.

Ustelik (Maslyuchenko, Mykhaylyuk and Popov 2009) referansta gosterildigi gibi L,
tizerinde tanimli biitlin dar regiiler operatdrlerin kiimesi L, (L) i¢inde bir bant degildir.
Yine de asagidaki problem hala agiktir (Maslyuchenko, Mykhaylyuk, Popov,2009)

[(Popov and Randrianantoanina 2013), Problem 11.62].

Problem 4. 1.3. L, lizerinde tanimli iki regiiler dar operatoriin toplam1 dar midir?

Diizgiinlik varsayim: olmaksizin benzer bir problem negatif bir cevaba sahiptir
(Krasikova 2009). Bu boliimde Problem 4.1.3 e negatif bir cevap veriyoruz (Bknz.
Teorem 5.1 ve Sonug 5.2).

(Plichko and Popov 1990) referanstan bu bdliim i¢in ¢ok 6nemli olan [0,1] kapali
aralig1 lizerinde tanimli sartsiz bir tabana sahip yeniden diizenleme altinda de§ismez bir
E Banach uzaymin birim operatorii Id yi Id =S+ T, S,T € L(E) seklinde nasil dar

bilesenlere ayirabilecegimiz fikrini agiklayalim.
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[( Lindenstrauss and Tzafriri 1979) sayfa 156] dan [0,1] tizerindeki Haar sistemi E

k-1 k
2n Jon

icinde sartsizdir. Uygunluk agisindan Haar sistemini IX = [ | diyadik araliklar

olmak iizere n =0,1,... ve k = 1,...,2" igin hy, = 1jg 1] V€ Ry = 11227%_1 — 11225 ile
gosterelim. O zaman Haar sistemini tek ve ¢ift kisimlardan olusmak {izere iki kisma
bolebiliriz ve bu kisimlardan @ = {(0,0), (n, k) ¢ift, k =1,...,2"} ve B = {(n,k): n
tektir, k = 1,...,2"} olmak iizere E; = [hpx]miea V€ E2 = [Anilmi)ea NN linger
gerenlerini diisiinebiliriz. Haar sisteminin sartsizligindan E = E; @ E, kapali alt uzaylar
icine bir ayrisima sahiptir. Dolayistyla P; ve P, karsilikli izdiigtimler olmak iizere
Id = P, + P, dir. P; ve P, nin dar oldugunu gostermek oldukg¢a teknik bir ispata
dayanir. Bu boliimiin fikri bu 6rnege dayanir ve Haar tipi sisteminin teknigi kullanilir.
Burada ve sonraki boliimlerde £(X,Y) ile X ten Y ye tamimli biitiin lineer siirekli

operatorii gosterecegiz.

(, %, 1) sonlu atomsuz bir 6l¢li uzayr Ly(p) K € [R, C] olmak iizere X- olgiilebilir
x:Q = K fonksiyonlarinin biitiin denklik siiflarinin lineer uzay1 ve 1, da bir A € X
kiimesinin Karakteristik fonksiyonunu gostersin. X(4) = {B € Z:B € A},Z%(4) =
{B€Z(A):u(B) >0} ve kismi bir durum olarak ¥ = X*(Q) yazalim. A=BUC
sembolii bize A =B U C ve BN C = 0 versin. "sign" sembolii ile {—1,0,1} — degerli
x € Lo(u) fonksiyonunu anlayacagiz. Daha agik olarak sign x bir A kiimesi iizerindeki
supp x = A sartim1 saglayan bir A kiimesi lizerindeki bir isaret fonksiyonu olarak

adlandirilir. Bir sign x € Ly(u) fonksiyonuna eger x du =0 sartin1 sagliyorsa

f{ﬂ}
ortalamast sifirdir denir. x € Ly(u) A € Z {izerinde bir isaret fonksiyonudur ancak ve
ancak A = B U C saglayan baz1 B,C € X igin x = 15 — 1, dir, buna ilaveten u(B) =

u(C) esitliginin saglanmast x in sifir ortalama olmasi demektir.

Lo(w) niin lineer bir alt F-uzay1 (degismez bir P(x,y) = P(x + z, y + z) metrigine
sahip tam metrik lineer uzay) E eger 15 € E ve her x € Ly(u) ve y € E i¢in |x| < |y|
iken x € E ve ||x]|| < |lyl] sartim1 sagliyorsa bu uzaya (Q, %, u) lizerinde bir Kothe
F —uzay1 denir. Eger istelik E bir Banach uzayr ve E € L;(u) ise 0 zaman E ye

(Q, %, u) tzerinde taniml1 bir Kéthe Banach uzay1 denir.
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Lindenstrauss-Tzafriri [(Lindenstrauss and Tzafriri ), sayfa 28] nin terminolojisine
gore elemanlariin integrallenebilirligi varsayimi olmaksizin bizim terminolojimizde bir
Kothe foksiyon uzayi aslinda Kothe Banach uzayidir. E bir Kéthe Banach uzay1 olsun.
Kapali Grafik Teoremini kullanarak E nin L;(p) i¢ine gomme fonksiyonun siirekli
oldugu gosterebilir. Ayn1 sebepten her x € E i¢in x.y € L, (1) olacak sekilde her L, (1)
birg € E*1

g(x) = [ xy du (1.1)

formili ile tanimlanir. E* m (1.1) formundaki biitiin elemanlarmin kiimesi E’ ile
gosterilir  ve E  nin  Kothe duali olarak  adlandirilir.  Bu  kiime
[|y]|g & sup{fQ xy du': x € Bg} normuna gore bir Kothe Banach uzayidir. "E' = E*
dir ancak ve ancak E o sira siireklidir [(Lindenstrauss and Tzafriri 1979),sayfa 29]."
ifadesi bahsetmeye degerdir. Burada E nin ¢ sira siirekli olmasi demek E deki her

azalan (x,,) dizisi i¢in inf, x, = 0 Ve lim,_||x,|| = 0 olmasi demektir.

Lebesgue X cebiri ve Lebesgue 6l¢iisii i¢in kullandigimiz £ ve u notasyonlarimi [0,1]
izerinde tamimli Lebesgue 6l¢iisii i¢inde kullanacagiz. x,y € Lo(u) elemanlart igin
hemen hemen t € Q igin x <y swralamast x(t) < y(t) demektir. Eger (x,) bir
F —uzay1 X te bir dizi ise 0 zaman [x,] bize (x,) dizisinin X teki kapali lineer gerenini

gosterecektir.

E (Q,%,u) tzerinde tanimh bir Kéthe F uzayi, ve X te bir F uzay: olsun. Bir T €
L(E,X) operatoriine eger her A € I ve € > 0 igin yle bir ortalamas sifir A tizerinde

tanimli ||Tx|| < € olan sign x fonksiyonu varsa dar operator denir.

Eger E bir mutlak siirekli norma sahipse, yani her x € E ve ¥ da ara kesitleri bos olan
her A,.1 S A, kiime dizisi i¢in lim,_ e ||x 1An|| = 0 oluyorsa bu durumda bir dar

operatoriiniin taniminda sign fonksiyonun sifir ortalamasina sahip olmasi durumu

(Plichko and Popov 1990) referansta oldugu gibi denk olarak kaldirilabilir.
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Hemen not edelim ki bu makaledeki durum olan sonlu 6l¢ii uzaylari i¢in bir Kothe

F —uzay1 E mutlak siirekli bir norma sahiptir ancak ve ancak her x € F i¢in
lim, 40 | |x. 14 || =0 dir. [(Popov and Randrianantoanina 2013), Tanim1.1]
refaransin1 kullanarak eger limu(A)_>0||1A|| =0 ise sonlu atomsuz bir O6l¢ii uzayi
tizerinde taniml1 bir Kothe F uzay1 E birim elemani lizerinde mutlak siirekli bir norma

sahiptir.

Agiktir ki eger E mutlak siirekli bir norma sahipse E birim iizerinde mutlak siirekli bir

norma sahiptir. Buna ragmen tersi dogru degildir [(Popov and Randrianantoanina 2013),

Ornek 1.2].

4.2. lyi bilinen baz1 sonuclar

Bu boliimde ileride ihtiyacimiz olacak bazi basit ifadeleri ispatlayacagiz.

Lemma4.2.1. X [0,1] aralig1 tizerinde bir Kothe F uzayi, Y bir F uzay1 ve T €
k m

L(X,Y) olsun. Herhangi diyadik aralig1 I = [?’z_n] icin [ tlizerinde Gyle bir ortalamasi

sifir olan sign x fonksiyonunun oldugunu Oyle ki Tx =0 ve limH(A)_,0|IT1AI| =0

oldugunu varsayalim. O zaman T dardir.

Ispat. A€ Xt ve £ > 0 verilsin. u(B) > & saglayan her B € X kiimesinin iizerinde

tanimli her sing x igin ||Tx|| <€ / 4 olacak sekilde bir 6 > 0 segelim. O zaman
B = Uﬁzl%‘ olacak sekilde u(B) < 8 ve A € Uj_, I sartlarini saglayan ayrik diyadik
I, ..., I, araliklarint secelim. Her k = 1, ..., n i¢in I} lizerinde Tx; = 0 sartin1 saglayan
ortalamasi sifir olan sign x; igin x = ), x; yazalim. Hemen gozlemleyelim ki
Uk=1 [ tzerinde x ortalama sifir olan isaret fonksiyonudur ve Tx = 0 dir. O zaman
BT ={teB:x(t)} =1, B-={teB:x(t) =—-1},AT ={t e A:x(t) = 1} ve
A ={t € A:x(t) = —1} yazalim. x ortalamasi sifir oldugundan A = u(B*) —
u(B™) = u(A™) — u(A*) dir. Genelligi kaybetmeden A >0 oldugunu varsayalim.

“V_pcat
u(C) = M sartin1 saglayan bir C € X(A™) secelimkiz =x — 15+ + 15- + 2.1,

yazalim.
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Hemen gozlemleyelim ki z A tizerinde ortalamas sifir olan isaret fonksiyondur ve
[ITzI| < [ITx|| + [IT15+1] + [IT15-1| + 2|IT1c]| < € n
dur. Bu da ispat1 bitirir.

Lemma 4.2.2. E [0,1] ilizerinde tanimli bir Kothe F uzayi, X bir F uzayi, T,T, €
L(E,X) 6yle ki her n € N igin T, ler dar olsun. Eger (T),)n=, dizisi E de sifirin bir U

komsulugu iizerinde T ye diizgilin yakinsak ise T dardir.

Ispat. Herhangi bir A € 2% y1 sabitleyelim ve & > 0 verilsin. E [0,1] iizerinde taniml1
bir Kéthe F uzayir oldugundan her A iizerinde tanimli signs x i¢in x € mU sartini
saglayan Oyle bir m € N vardir. O zaman her u € U i¢in ||Tu — T,ul|| < &/(2m) olacak
sekilde bir n € N secelim. T, dar oldugundan A iizerinde ortalamasi sifir olan ve
||T,x|] < €/2 sartim saglayan oOyle bir sign x segebiliriz. Her y € X igin {liggen
esitsizliginden ||my|| < m||y|| dir. Boylece

e €

17| < |ITx = x| + | Txl| < m“(T—Tn)%” Fo<mo—+

om 2 ¢

dur.

Lemma 4.2.3. E [0,1] iizerinde tanimh bir Kothe F uzayi, X bir F uzayi, x, € X,
T € L(E,X) bir dar operator, z € X bir basit fonksiyon (yani, sonlu degerli) olsun.
f EE" her x € Ly, igin f(x) = f[o,1] zx du sartin1 saglasin ve S € L(E,X) her x €E

icin Sx = f(x)x, ile tanimli bir operator olsun. T + S dardur.

Ispat. C, € R ve [0,1] =U}_; Ay olmak iizere z = Yj_, Cy 14, olsun. Her hangi bir
A € 7 y1 sabitleyelim ve & > 0 verilsin. Her k i¢in A;, N A iizerinde taniml ||Tx;|| <
€/n sartim1 saglayan Oyle bir sifir ortalamali sign x; segelim. Sx = 0 oldugundan
X =x; + -+ x, A lizerinde ortalama sifir isaret fonksiyonu olmak iizere ||Tx +

Sx|| = ||Tx|| < € olur. Bu da ispat1 tamamlar.

Lemma 4.2.3 teki sartlari saglayan bir f fonksiyonelinin varligi en az bir K > 0 ve her

x€UNLy(u) igin | f[o R du| < K sartim1 saglayan E de sifirin bir konveks

komsulugu U nun varligina denktir.
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Asagidaki ifade bize normun mutlak stirekliligini bir K6the uzayinin Fatou 6zelligine

yakin bir 6zelliginin oldugunu sdyler.

Lemma 4.2.4. E [0,1] aralig1 lizerinde birim eleman {izerinde mutlak siirekli norma
sahip bir Kothe Banach uzayr olsun. O zaman hemen hemen her yerde x, € Lo,

elemanina yakinsayan artan her x,, € L, dizisi igin limn_,oo||xn|| = ||xo]| dur.

Ispat. &> 0 verilsin. Genelligi bozmadan her n € N ve x, < 104 i¢in x, =0
oldugunu varsayalim. pu(B) < § sartin1 saglayan B € ¥ i¢in ||xo1p|| < &/2 olacak
sekilde 6 > 0 secelim. Simdi ||y1[0,1]|| < £/2 olacak sekilde y > 0 secelim. O zaman
her n € N i¢in u(B) < § sartim saglayan B = [0,1]/A ve ||(xn - xO)lAlloo < y olacak

sekilde N € N ve A € X vardir. Sonug olarak her n > N igin

||xn —x0|| < ||(xn _x0)1A|| + 1 — x0) 15|

&

2~ ¢

€
= ||#1[0,1]|| +|lxo15l| < St
dur.

Lemma 4.2.5. E [0,1] aralig: lizerinde birim eleman iizerinde mutlak siirekli norma
sahip bir Kéthe Banach uzay1 olsun. O zaman her x € L, igin f(x) = [ X dp olacak

sekilde A € Z* ve f € E* vardur.

Ispat. Her x € L, icin g(x) = fo du ile tanimh g: L, = R ye smirli fonksiyonunu
veren A € X% oldugunu gostermek yeterlidir. Aksinin dogru oldugunu varsayalim. Yani

her A € £* ve her € > 0 igin |fo du| > C||x||E olacak sekilde x € L, olsun. K&the

5 —_ 2 .
uzaymin tanimindan x > 0 oldugunu varsayabiliriz. C = TE yazalim ve Y de biitiin
0,1]

1]
X € Lo, larm kiimesini gostersin. Oyle ki x ler asagidaki iki kosulu saglasin:

(1) 0 <x < 1[0'1] ;

1
2) (x| S—j xdu.
[Ixl], < o
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Y deki dogal siralamaya gore her zincir sayilabilir cofinality ye sahiptir. Yani eger
M # @ Y nin higbir maksimal eleman igermeyen lineer sirali bir alt kiimesi ise M de
Oyle bir x,, dizisi vardir dyle ki her x € M i¢in x < x,, sartin1 saglayan en az birn € N

vardir.

Dolayisiyla Lemma 4.2.4 ve Lebesgue yakinsaklik teoreminden Y deki her zincirin bir
ist sinira sahip oldugunu soyleyebiliriz. Zorn Lemmasindan Y nin bir x, maksimal

eleman vardir. Agikga xo # 1o 1 dir.

Simdi A ={t € [0,1]:x,(t) <1 —y} kiimesini pozitif oligili yapan bir y >0
segelim. Varsayimdan [ L X1du >C ||x1||E olacak sekilde x; € Ly, x; = 0 vardir ve

boylece
[ [] <1f d <1f d
X <—=|xdu<—= X1 du
1llg CAl C [0'1]1

dir, yani x; € Y dir. Genelligi kaybetmeden ||x;||s = 1 oldugunu varsayalim. Ote
yandan y, = xo + yx;.14 € Y oldugu kolayca ispatlanabilir. Ayrica y, > x, bize x, in
maksimal eleman olmasindan dolayr bir c¢eliski verir. Buda ispati tamamlar.

4. 3. Haar Tipi Sistemler

A < [0,1] olgiilebilir bir kiime olsun. A, € X olmak tizere (An,k):;o an | kiimelerinin
bir sistemine eger her n, k i¢in Go; = A Ve G = Gpiq2k—1 U Gn+1’2k,,u(Gn+1'2k) =

% M(Gn,k) sartin1 sagliyorsa A iizerinde kiimelerin bir agaci denir. n =0,1,... ve

[o'0) 2n

k=1,..,2" i¢in gng formiilii ile tanimlanan (gn'k)

= 1Gn+1,2k—1 - 1Gn+1,2k n=0p=1
fonksiyonlariin sistemine A iizerinde bir Haar tipi sistem denir. Haar tipi sistemin her
eleman1 ortalamasi sifir igaret fonksiyonudur ve alisilmis Haar sistemiyle
karsilastirildiginda birinci eleman1 1, yoktur. Bunun sebebi E(A) = {x € E:supp x <

A} nin ortalamasinin yalnizca ortalamas sifir elemanlarini genislettigimizden dolayidir.

Ote yandan (gp, k)?lo=0;2<11 sisteminde 1, elemani i¢in uygun bir numaralandirma yoktur.
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Asagidaki iki teorem bize hangi durumlar altinda dyle bir F —uzay1 X ve toplamlari
dar olmayan iki Ty, T, € C(E, X) dar operatorlerinin bulunabilecegini veren [0,1] aralig

tizerinde bir Kothe F — uzayinin hangi sartlar1 saglamasi gerektigini verecektir.

Teorem 4.3.1. E her x € L, i¢in f(x) = f[o R du formiilii ile tanimlanan bir f € E*

fonksiyonun veren bir [0,1] tizerinde tanimli K6the F uzayi, X bir F uzay1 ve Ty, T, €

L(E, X) toplamlar1 dar olmayan dar operatérler olsun. O zaman § > 0, A € £+ bir Haar

0 2n

tipi A tizerinde tanimlt (g, k) p=o o1 sistemi ve S;, S, € L(E, X) dar operatorleri vardir

Oyle ki asagidaki kosullar saglanir:

(1) Egerngiftve k = 1, ...,2" ise S1 g, = 0 dir;

(2) Egerntekvek =1,..,2" ise S, gy, = 0 dir;

(3) Her ortalamas: sifir A tizerinde tanimli isaret x igin ||S;x + S,x|| = & dir.

Ispat. T =T, + T, dar olmadigindan her ortalamasi sifir A iizerinde taniml1 isaret x
icin ||Tx|| = 26 sartin1 saglayan § > 0 ve A € L% vardir. n lizerinde ardisik olarak T,

ve T, nin darligin1 kullanarak A iizerinde n tek ve k = 1, ...,2™ ise i = 1 igin ve n ¢ift
ve k=1,..,2" ise i =2 i¢in ||T;(gnr)l] < o sartin1 saglayan bir Haar tipi

23n+1

(gn,k);.f:oiz , Sistemini kolayca insaa edebiliriz. $imdi her x € E i¢in

o 4™
Six =Tyx — Z Z 4™ f(Gomk- X)T1G2m i
m=0 k=1
ve
0 22m+1
Sx =Tox — z Z 22m+1f(92m+1,kx)T292m+1,k
m=0 k=1
yazalim.
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S1 ve S, nin iyi tanimli oldugunu gdstermek igin
u={x€E: ||x|| <nlc{xeE:|f(x)| <1}

olacak sekilde n > 0 secelim. Her x € U ve n=0,1, ... i¢cin her n =0,1, ... ve k =

1,..,2" icin ||gp k- x|| < ||x|| oldugundan g,, . x € U dur ve boylece

21’l
Z an(gn,k- x)Tlgn,k
k=1

2n . 2n i 5 5
k=1 k=1

dir. Lemma 4.2.3 ten her [ € N i¢in

1 4m
Spx =Tix — z Z 4mf(92m,k-x)T192m,k

m=0 k=1
ve

1 22m+1

Sox =Tox — z z 22m+1f(92m+1,k-x)T292m+1,k

m=0 k=1

formiilleri ile tanmimlanan operatorler dardir. 3.1 den S; ve S, operatorleri karsilikli
olarak (S1;);21 Ve (Sz,;);21 dizilerinin U iizerindeki diizgiin limitleridir. Lemma 4.2.2

den S; ve S, dar operatorlerdir.

S ve S, (1) ve (2) sartlarini saglar. x A tizerinde ortalamasi sifir isaretli olsun. Her

n=01,..vek=1,..,2"icin |f (hy k. x)| < 1 oldugunu goz 6niinde bulundurursak

o 2M [
n é
[1S12 + Sox|| = ||Tx — Z Z 2™ (g )T (i) || = 26 - Z =0
n=0k=1 n=0
dir. Yani dolayisiyla (3) saglanir. Buda ispat1 tamamlar. [
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Teorem 4.3.2. E [0,1] iizerinde bir K6the F uzay1 olsun. Oyle ki her x € L, i¢cin

flx) = f[o 1y X du saglayan bir f € E* olsun. O zaman

(i) Oyle bir Banach uzay1 X ve dar operatorler T;, T, € L(E, X) vardir. Oyle ki bunlarin
T =T, + T, toplami1 dar degildir. Sart1 bize;

(ii) “Oyle bir A € ¥+, A iizerinde bir Haar tipi (g )0 s=1 Ve E de sifirn mutlak
konveks komsulugu vardir. Oyle ki E; = [gomrlm=o iinll ve E; = [gom+1klm=0 izﬁ
olmak tizere A tizerindeki her ortalama sifir isaret fonksiyonu i¢in x & (E; + U) N

(E5 + U) olacak sekilde vardir.” verir.

Ustiine iistliik p E {izerinde U tarafindan {iretilen Minkowski fonksiyoneli olmak
sartiyla U limy,4)0p(14) = 0 sartim saglarsa (6zel olarak E birim iizerinde mutlak

stirekli bir norma sahipse ) 0 zaman (ii) ifadesi (i) ifadesini gerektirir.

Ispat. (i) = (ii): Teorem 4.3.1 den, 6yle bir § > 0,4 € ¥+, A iizerinde bir Haar tipi
(Ini)n=o 2% sistemi ve (1),(2) ve (3) ozelliklerini saglayan Sy,S, € L(E,X)

secelim. Hemen not edelim ki (1) ve (2) bize E; € kerS; ve E, C kerS, i verir.

U ={x € E||Syx|| < 6/2&|IS,x|| < §/2} yazahm ve varsayalim ki x € (E, + U) N

(E; + U) olacak sekilde A tizerinde ortalamast sifir isaret fonksiyonu x olsun. O zaman

6 O
[1S12 + Spxl| < [ISuxl| + [ISox1] < 5 +5 =6,

saglanir. Buda (3) ile celisir.

(ii) = (i): Genelligi bozmadan A = [0,1] alabiliriz. Z [0,1] tizerinde ortalamasi sifir
olan biitiin igaret fonksiyonlarinin kiimesini gostersin. z € Z yi sabitleyelim ve (ii) den

oyle bir i = i, € {1,2} sayisi1 segelim 6yle ki z & (E; + U), yani (z,U) N E; = @ olsun.
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O zaman E, = span(z + E;) ve g,:E, —» R fonksiyonelini « € R ve v € E; olmak

uzere
g(az+v)=a

ile tanimlayalim. Eger a # 0,z + v € U sartin1 saglarsa o zaman (z +%U) NE; =0

ve |a| < 1 olur. Bdylece her x € U N E, i¢in |g,(x)| < 1 olur. Boylelikle her x € E,
icin |g,(x)| < p(x) saglanir. Hahn-Banach teoreminden Gyle bir lineer fonksiyonel

f:E = R vardir 6yle ki her x € E, i¢in f,(x) = g,(x) ve bdylelikle her x € E igin
If, ()| < p(x) olur.

Y =1, (2) yazalim ve Ty x(z) = {fZ(x)' 2 = 1 ve
o ,i,=2,
0 =
D=0y s

ile tanimlanan T;,T, € L(E, X) operatorlerini diisiinelim.(f;),cz nin diizgiin smirlilig

T; ve T, nin siirekliligini verir.

limygy-op(15) = 0 oldugundan

limu(B)eOlITllBll = limu(B)—>0||T218|| =0
dur.

Ustelik, E; € ker T; ve E, € kerT, dir. Ote yandan f,(z) = 1 bize her z € Z igin
||T1z + T,z|| = 1 1 esitsizligini verir ve boylece T = T; + T, toplami dar degildir. Buda
ispat1 tamamlar. ]
4.4. Banach Kothe Uzaylar: Icin Temel Sonuclar

Asagidaki onerme temel sonuglarin elde edilmesinde yarar. Buna benzer argiimanlar

[(Kadets, Kalton and Werner 2005),Lemma 4.2] referansinda kullanilmistir.

33



Onerme 4.4.1. z[0,1] iizerinde taniml1 ortalamas1 sifir isaret fonksiyonu, € > 0, ], €
{1,2,...,2"} olmak flizere (Jp)p=q1 bir dizi ve x = Y o Yye), Anihni € Ly Oyle ki
llx — z|| <& olsun. O zaman Oyle bir y = Y7o Yke), bnxhnx € L1 vardir dyle ki

|lyl| < 1velly—z|| <edur.

Ispat. M = {(n,k):n = 10,1, ..., k € J,,} kiimesini sonsuz almak ispat: tamamlamak i¢in
yeterlidir. ¢: M — {1,2,...,N} herhangi bir n>m i¢in @(n,k) > @(m,l) sartini

saglayan birebir ve orten fonksiyonu olsun. Her j =1,...,N i¢in h; = hy,_4(;), @; =

Ap-1(j) V& Xj = Z{=1 a;h; yazalim. Hemen not edelim ki x = x dir.

Varsayalim ||x| |oo > 1 olsun. m € {1, ..., N} kiimesinden en kii¢iik say1y1 segelim ve
bu say1 igin ||xm| |oo > 1 olsun. Simdi gdsterecegiz ki u = 7(x) = Y~, ¢;h; dyle ki her

j=1,.,N icin w =Y/ ch olmak iizere |lu—z||<|lx—z| ve

max{||u1||oo, . Ium||oo} = 1 olsun.

Her ] =1,..,N 1(}111 I] = Supp hj,I]+ = {t € [0,1] h](t) = 1} ve I]_ = I]\ 1]+
yazalim. O zaman A = {t € [0,1]: |x,,(t)| = ||xm||oo} ve B =[0,1]\ [, yazalim. m

nin minimalliginden A € {I,,,, I}, I;;} dir. Simdi

¢ = am—signam(||xm||oo—1), j=m
aj, I] .¢_ A
ile tanimlanan (cj)ﬂyzl dizisini tanimlayalim. u; = X4, ..., U1 = X1, ||um|| =1 ve

u.1p = x.1p oldugunu gozlemleyelim.

Simdi A = I}, oldugu durumu diisiinelim. v = ), j>mE;CE, ajh; yazalim. O zaman

U=x—v-—Signa,, (“xmllm - l)hm

dir.
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w = x — v fonksiyonu I}, iizerinde sabittir ve her t € I}, i¢in w(t) = x,,(t) dir. Her
t € I, icin |x,,(t)] > 1 oldugunu goz Oniine alirsak ve z nin [0,1] lizerinde isaret
fonksiyonu oldugunu diisiiniirsek w — z fonksiyonu I} iizerinde ortak bir isaret

fonksiyonudur. ., v du oldugundan
lw—zldu<| |w—-2z+v|du,

yani [[(w = 2). 1z || < ||(x = 2). L[| ve [|(w = 2). 1, || < ||(x = 2). 1, || dur.

Her t € I}, i¢in |xp_1 ()| <1 ve |x,(t)] > 1 oldugundan sign a = sign a,, dir.

Varsayalim a, a,,, > 0 olsun.
O zaman u =w — (a — 1)h,, dir. Simdi, her t € I}, icin u(t) =1 oldugunu goz

Oniine alirsak

|u—z|du=f (u—2z)du+ | |lu—z|ldu
I

Im Im

<[ w-2du—(a-Dul) + f w = 2] dy + (a — Du(lz)
Im

I

= w—z|du

Im

elde ederiz. Eger a, a,, < Oise hert € I}, icinu = w — (a + 1)h,,, u(t) = —1 dir ve

lu—zldu=—| (u—2)du+ | |lu—z|du

Im Iy, Im

< f w—2) du + (a+ Du() + f w— 2l d + |a + 1|u(iz)
I I

= | |w-—z|du.

Im

Dolayisiyla ||(u —2).1; || < ||(w —2).1,; ]| dir. Béylece,

[(u—2).1; || <||(x—2).1; || ve|lu—z|| < |1x — z|| elde edilir.
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A € {I,,, I;,} durumu benzer sekilde ispatlanabilir. Boylece 7(x) in varlig1 ispatlanmis

olur. Simdi 7 fonksiyonunun birgok kez kullanarak arzu edilen y yi elde ederiz. ]

Teorem 4.4.2. E [0,1] {izerinde birimde mutlak siirekli bir norma sahip K6the Banach
uzay1 olsun. O zaman 6yle bir Banach uzay1 X ve dar operatorler T;, T, € L(E, X) vardir

Oyleki T = T; + T, dar degildir.

Ispat. Lemma 4.2.5 ten B €Y' secebiliriz. Oyle ki her x € Lo, icin f(x) =
fo du olacak sekilde f € E* vardir. Genelligi kaybetmeden B = [0,1] oldugunu

varsayalim.

6§ >0 segelim Oyle ki her x € U ={u € E:||u|| <} i¢in |f(x)| < 1/4 olsun.
Teorem 4.3.2 den sifirm bir U komsulugu ile A = [0,1] aralig1 ve (hyx)neo iil Haar

sisteminin Teorem 4.3.2 nin (ii) sartin1 sagladigini goéstermek yeterlidir.

Aksine [0,1] iizerinde Oyle bir ortalamasi sifir isaret fonksiyonu z olsun Oyle ki
Ey=hypn=01,..,k=1,.,2"" ve E, =[hyyr1:n=0]1,.. k=1,..,22"1"
olmak tizere z € (E; +U) N (E, + U) olsun. x; € E; ve x, € E, segelim dyle ki
Z—x,,Z—x, €U olsun. E Koéthe uzayr oldugundan |z —x4],|z —x,| € U dur.
Boylece ||Z—x1||1 =f(lz—x) <1/4 ve ||z—x2||1 = f(|z—x,]) < 1/4 dir.
Onerme 4.1 den, dyle y, € E; Ve y, € E, vardir yle ki ||yl||Oo <1, ||yzl|OO <1ve

|ly2 = zI|, < 1/4 diir. Simdi i € {1,2} igin

1
(yl-—z)Zduszf [y~ 2l dp <3

[0,1] [0,1]
dir.
o 21
2= ) anihu (4.1)
n=0k=1

z nin L, igerisindeki bir a¢ilimi1 olsun.
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w 22m oo 22M+1
Zev = Z Aznjer Non e V€ Zoa = E E Azn+1kRantii (4.2)
n=0 k=1 n=0 k=1

yazalim. Onceki yaklagik degerleri goz 6niine aldigimiz zaman

2 2 1 1
1=lz]I5 = ||Zevl |5 + |120all5 < ||Z—3’z||2 + ||Z—3’1||2 <ztz= 1

elde ederiz, buda bize bir ¢eliski verir. [ |

Her z € Z icin (4.1) deki seriyi (E = L, deki aym katsayilarla) harhangi bir [0,1]
tizerinde tamiml1 Haar sistemi temeli olan bir Kéthe Banach uzay1 E i¢inde yakinsaktir.
Ustelik (4.2) acilimi yalnizca [0,1] iizerinde tanimli Kéthe Banach uzay: E de (dyle ki
Haar sistemi durumsal olmayan) gegerli degil ayn1 zamanda eger L, € E ise, diyelim Ki

E = L, olsun yine gecerlidir.

Teknik sebeplerden dolayi, E nin birim {izerindeki normunun mutlak siirekliligine
Teorem 4.4.2 de varsayiyoruz. Buna ragmen basit bir argiiman bize eger bir Kothe
Banach uzay1 E bagka bir birim iizerinde mutlak siirekli norma sahip K&the Banach
uzay1 F icerisinde kaliyorsa o zaman bir Banach uzay1 X in bir 6rnegi ve toplamlar1 dar
olmayan iki dar S;,S, € L(F,X) vardir. Oyle ki T;,T, € L(E,X) operatorleri icin
T =T, + T, dar degildir. Gergekten, eger | € L(E, F) kapsama gommesi ise, yani her
x €E igin Jx =x oluyorsa i = 1,2 i¢in T; = S;0] bize istedigimizi verir. Bizim
tanimimizdaki [0,1] tizerinde tanimli her Ko6the Banach uzayr E L; in alt kiimesi
oldugundan ve boylelikle L; i¢inde siirekli olarak kapsandigindan Teorem 4.4.2 deki
E lizerinde birimin normunun mutlak siirekliligini goéz ardi edebiliriz. Dolayisiyla

asagidaki sonuca ulasiriz.

Sonuc¢ 4.4.3. E [0,1] iizerinde tanimli bir K&the Banach uzay1 olsun. O zaman Banach

uzay1 X ve toplamlar1 dar olmayan iki dar T}, T, € L(E, X) operatdrleri vardir.

4. 5. Iki Regiiler Dar Operatoriin Toplam

Asagidaki teorem bize neden Teorem 4.1.1 de F {izerindeki normun sira siirekliliginin

gerekli oldugunu agiklar.
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Teorem 4.5.1. E [0,1] lizerinde taniml1 bir Kéthe Banach uzay1 dyle ki E nin K&the
duali E' Haar sistemi sartsiz tabana sahip bir Kéthe Banach uzay1 F yi igersin. O zaman
oyle regiler dar Ty, T, € N.(E,Ls) operatorleri vardir. Oyle ki toplamlar1 yani
T =T, + T, dar degildir.

Ispat. Oncelikle F € E’ kapsamasinin siirekli oldugunu gozlemleyelim. Gergekten
[0,1] tzerinde verilen, herhangi bir Kd&the Banach uzayr G i¢in G € L; € L,
kapsamalarinin siirekliliginden (L, daki yakinsaklik ol¢tideki yakinsakliga denktir) G

deki her yakinsak dizinin 6l¢iisel yakinsak oldugunu sdyleyebiliriz.

Bu sonucu ve kapali grafik teoremini kullanarak K&éthe Banach uzayinin herhangi bir

kapsanmasinin siirekli oldugunu kolayca sdyleyebiliriz.

Z [0,1] aralig1 lizerinde tanimli biitiin ortalamasi sifir igsaret fonksiyonlarinin kiimesi
olsun. Z de L, normuna gore yogun olan herhangi bir (z,,)m=4 dizisini secelim. Verilen
herhangi bir m € N igin, z,, = X2 X201 ap i (Zm) An s agilim ve z, nin F deki Haar
sistemine gore Fourier serisi agilimi olsun. z nin (4.2) de z,, ile verilen ¢ift ve tek
kisimlarint zp, o, V€ Zpoq ile gosterelim. [0,1] = Ly-14,, ifadesi A,, € X" i¢in

yazilsin. Ty, T, € L(E, L) operatorlerini her t € A4,, ve m € N i¢in

0@ = |

e X g vE (T0®) = | 7moq x di
[0,1]

[0,1]

formiilleri ile tanimlayalim. Her m € N i¢in ve M F € E' kapsamasinin normu ve K E’

icerisinde Haar sisteminin sartli olmayan sabit olmak {izere

max{| |Zm,ev| B ) ||Zm,od||E,} <M. max{“Zm,evl F ) ||Zm,od||F }
< MK||zyl|, = MK ||1[0_1]||F

oldugundan T; ve T, operatorleri sinirlidir.
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Ustelik T, ve T, regiilerdir, ¢iinkii her t € A,, ve m € N igin

ro© = |

Zr-itt,ev x dp — f Zmev X du
[0,1]

[0,1]
dir. (Benzer sekilde T, nin de regiiler oldugu gosterilebilir.) Simdi her

n=01,...k=1.,2"" ve l =1,..,2°"*"" i¢in Tyhyns1x = Tohyn; = 0 oldugunu
gozlemleyelim ve limﬂ(A)_,0||T11A|| = limH(A)_)()HTZ 1A|| =0 oldugunu gorelim.

Lemma 4.2.1 den T; ve T, dar operatorlerdir.
T nin dar olmadigimi gdstermek igin herhangi bir z € Z yi sabitleyelim ve

||Z — Zp | |2 < 1/2 olacak sekilde m € N segelim.

O zaman her t € 4,, igin;

[ITzl| = I(T2) ()| =

f z? d/x‘ -
[0,1]

1
21—||z—zm||2>§

f ZZpy d,u’ > f z(z — zpy,) d,u‘
[0,1] [0,1]

olur. Buda ispat1 tamamlar. [ ]

Ozel olarak Teorem 4.5.1 in varsayimi 1 < p < o olmak iizere E = L, F =E igin
saglanir iistene istlik E = L, i¢in dyle ki F = L, € L, = L}, i¢inde saglanir. Boylece

asagidaki sonuca ulasiriz.

Sonu¢ 4.5.2. 1 <p < o olsun. O zaman dyle regiiler dar Ty, T, € N,.(Ly, Lo,) dardir
Oyle ki toplamlar1 T = T; + T, dar degildir.

4. 6. Kothe Fonksiyon Uzaylar ile Tlgili Bir Soru

Sonug 4.4.3 ten her [0,1] {izerinde tanimli K6the Banach uzay1 E i¢in 6yle bir Banach
uzayr X ve toplamlar1 dar olmayan operatorler Ty, T, € L(E,X) varlifin1 biliyoruz.
Bizim tanimimizda E € L; oldugu varsayildi. Bu varsayimi goz ardi edersek sonucun
dogru olup olmadigini bilmiyoruz. Daha agik bir sekilde asagidaki problem acik bir
problemdir.
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Problem 4.6.1. [0,1] iizerinde tanimli bir K6the fonksiyon uzayr E varmidir 6yle ki

her Banach uzay1 X i¢in E den X tanimli herhangi iki dar operatoriin toplami dar olsun.

Hemen belirtelim ki Problem 4.6.1 in cevabi su genel durum altinda dogrudur: eger
0<p<1ise o zaman her F — uzayr X icin L, den X e tek dar operator sifir

operatdrdiir (Plichko and Popov 1990).
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5. ORGU NORMLU UZAYLAR UZERINDE TANIMLI TOPLAMSAL
OPERATORLER: M.A. PLIEV, F. POLAT VE M.R. WEBER’IN YAKLASIMI
flk olarak (Maslyuchenko, Mykhaylyuk and Popov 2009) referansta sira siirekli
atomsuz bir Banach o6rgiisii E lizerinde tanimli ve sira siirekli bir Banach vektor orglisii
F te deger alan dar regiiler operatorlerin kiimesinin, E den F ye tanimli biitiin regiiler
lineer operatorler ailesi L,.(E,F) icinde bir bant oldugu gosterilmistir. Sonugta bu
durumda iki dar regiiler operatdriin toplamininda dar regiiler operator oldugu
gdsterilmistir. Ikinci olarak iki dar operatdriin toplammin dar olmadigi gdsterilmistir.
(Mykhaylyuk and Popov 2013) referansta herhangi bir [0,1] {izerinde tanimli Kothe-
Banach uzay1 E i¢in Oyle bir Banach uzay1 X ve Sy, S,: E — X iki dar operatdriin varligi
gosterilmistir. Bu S; ve S, operatorleri i¢cinde S; + S, nin dar olmadig gosterilmistir.
Yine de (Mykhaylyuk 2014) referansta kompak dar lineer bir operatorle dar bir
operatoriiniin toplaminin dar oldugu gosterilmistir. Son yillarda dar operatér kavrami
(Pliev 2011, Pliev and Popov 2014) referanslarinda lineer olmayan dik toplamsal
operatorler uzayma genisletilmistir. Hemen belirtelim ki bu operatorlerin teorisi

matematigin aktif bir arastirma alanidir. Bunun i¢in

[(Abasov and Pliev 2017), (Feldman 2013) — (Humenchuk 2016) et al. ]

referanslarina bakilabilir. (Humenchuk 2016) referansta dar dik toplamsal bir
operatorle atomsuz Dedekind tam bir vektor orgilisiinden bir Banach uzayma taniml
sonlu ranka sahip yanal norm siirekli dik toplamsal operatdriin toplaminin yine bir dar
operator oldugu gosterilmistir. Bu bdliimde arastirmamizi bu yonde devam ettirecegiz.
(Humenchuk 2016) makalenin ana sonucunu iki yonde genelleyecegiz. ilk olarak
(Humenchuk 2016) referansin sonucunu Orgii normlu uzaylara genelleyecegiz.
Gozlemleyelim ki aslinda o6rgli normlu uzaylar Banach uzay1r ve vektor orglisi
kavramlarmin bir genellemesidir. Ikinci olarak (Humenchuk 2016) referansta galigilan
sonlu ranka sahip dik toplamsal operatorlerin yerine temelde daha genis bir kavram olan
sira tam ayristirilabilir 6rgii normlu uzaylar tizerinde tanimli bir Banach uzayinda deger
alan C-kompak dik toplamsal operatdrleri ele alacagiz. Bu boliimiin ilk kisminda 6rgii
normlu bir uzayda tanimli ve bir Banach uzayi iizerinde degerler alan dar, yanal-norm

stirekli ve C-kompak operatorlerle ilgili baz1 6rnekleri verecegiz.
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Herhangi bir ayristirilabilir 6rgii normlu (V, E) uzaymdan izdiisim 6zelligine sahip
atomlu bir vektor Orglisii lizerine tanimli yanal-norm stirekli, dar dik toplamsal

operatdriin sifir operatorii oldugunu gosterecegiz.

Bu boliimiin son kisminda herhangi bir sira tam, ayristirilabilir 6rgii normlu V uzayi ve
herhangi bir Banach uzay1 X i¢in S:V — X dar dik toplamsal operatorii ve T:V — X
yanal-norm siirekli C-kompak operatorii i¢in S+ T nin bir dar operatér oldugunu

gosterecegiz.

Asagidaki biitliin vektor orgiilerinin Arsimedyan oldugunu varsayiyoruz. Bir vektor
orgiisic E nin iki elemani e, f ye eger |e| A|f| = 0 ise ayriktir denir ve e L f ile

gosterilir.

5. 1. Giris.

Tammm 5.1.1. Bir V vektor uzaymi ve bir reel Arsimedyan vektor orglisi E i
digiinelim. Bir |.|:V — E fonksiyonuna asagidaki aksiyomlar saglarsa E — degerli

vektor normu denir:
Dlv|=0,lv|=0=v=0, (vel).
2)|vy + v, < vy + |v2l, (1, v, €V).
D|Av| = |Al|v], A ER, v EV).

Bir vektor norumuna eger

4)Her e;, e, € E, ve x € V igin |x| = e, + e, iken Oyle x,,x, € V varsave x = x; +

X, Ve |x| = e (k € {1,2}) saglaniyorsa ayristirilabilir denir.

(V, -], E) tgliistine yada (V, E) ikilisine yada kisaca herhangi bir karigiklik yoksa V' ye
E degerli 6rgii normlu uzay denir. Eger 6rgii normlu |. | ayristirilabilir ise bu durumda V
ye ayristirilabilir denir. Eger E de azalan bir (e, )q4ea neti varsa oyle ki infe (e, ) =
0 ise ve @ > «a, olacak sekilde en az bir a i¢in |v — v, | < e, saglaniyorsa bu durumda
(Vo) aen Netine v € V ye sira yakinsaktir denir ve v = bo — lim, v, yazilir. Bir (v,) gen

netine eger (Vg — V) (a,8)e axa NEti 0° a sira yakinsak ise sira temelli denir.
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Eger bir 6rgii normlu uzaydaki her sira temelli net yine bu uzay igerisinde bir elemana
sira yakinsak ise bu Orgii normlu uzaya sira tamdir denir. Bir sira tam ayristirilabilir
orgii normlu uzaya kisaca Banach Kantrovich uzay: denir. Bir 6rgii normlu V uzaynin
bir D alt kiimesi verildiginde eger Oyle bir e € E, varsa ve her v € D i¢in |v| < e

oluyorsa bu D uzayna sira siirlidir denir.

Bir 6rgii normlu V uzaymin iki elemani x,y i¢in |x| A|y| = 0 saglamiyor ise bu
elemanlara ayriktir denir. x = LIiL,x; esitligi x = XL, x; ve her i #j icin x; L x;
anlamina gelecektir. n = 2 i¢in x = x; Ll x, sartin1 sagliyor ise bu bilesenlere karsilikli
olarak birbirini tiimleyen denir. Bir x € V nin biitiin bilesenlerinin kiimesi F, notasyonu
ile gosterilecektir. Bir x vektor uzaymin H ve K alt kiimeleri igin H + K = {v+uw:v €
H;u € K} venH :=H+ -+ H notasyonlarim1 kullanacagiz. Bir D kiimesinin
karekteristik fonksiyonunu 1, ile gosterilecektir. Verilen Ay, ..., A, kimeleri i¢in
A =L, A; notasyonu A = Uj_;A; ve her i #j igin A;NA; =@ demektir. Eger

n = 2ise A; U A, yazacagiz.

5.2. Orgii Normlu Uzaylar Uzerinde Tamimh Dar Dik Toplamsal Operatérler

Bu boélimde 6rgli normlu uzaylar {izerinde tanimli dik toplamsal operatorlerin bazi
smiflarini tanimlayacagiz. Ayrica ayristirilabilir 6rgii normlu (V, E) uzaymdan izdiisiim
ozelligine sahip ve bir normlu X uzay: iizerinde degerler alan dik toplamsal T:V — X

operatoriiniin sifir operatdrii oldugunu gosterecegiz.

Tamm 5.2.1. (V,E) o6rgii normlu bir uzay ve X de reel bir vektor uzayr olsun. Eger
her ayrik u,v €V igin T(u+v) =Tu+ Tv oluyor ise T:V — X operatoriine dik

toplamsal operator denir.

Agciktir ki dik toplamsal T operatorii igin T(0) = 0 dir. Biitiin V den X e tanimli dik

toplamsal operatorlerin kiimesi alisilmig lineer islemler altinda bir vektor uzayidir.
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Tanim 5.2.2. (V,E) bir ayristirilabilir 6rgii normlu uzay ve X’ te bir normlu uzay
olsun. Eger her v € V ve &€ > 0 i¢in Oyle ikiserli v nin karsilikli birbirini tiimleyen
bilesenleri vy, v, varsa ve ||Tv; — Tv,|| < € oluyor ise dik toplamsal bir T:V — X
operatdriine dardir denir. X = R olmasi durumunda yukaridaki T operatdriine dar
fonksiyonel denir. Hemen belirtelim ki 6rgii normlu uzaylar {izerinde tanimli dar dik

toplamsal operatorler ilk defa (Pliev and Fang 2017) referansta tanitilmigtir.

Tamm 5.2.3. (V,E) bir 6rgii normlu uzay olsun. Eger v = bo — lim, v, (v = bo —
lim,v,) ve her pBy€eA dyle ki p>y i¢in |vg—v|1l]|y|
(Hern,m € Noylekin > migin |v, —vp| L |[vn])  iSe (Vg)aen €V netine
((Wp)nen € V dizisine) v ye yanal yakinsaktir denir. Agiktir ki her y € A i¢in |v —

v,| L |v,| dir (her m € Nigin |[v — vy, | L vy dir).

Tamim 5.2.4. (V,E) 6rgl normlu uzay ve X de bir normlu uzay olsun. Eger bir dik

toplamsal T: V — X operatorii:

1) V deki yanal yakinsak netleri X teki norm yakinsak netlere gotiiriirse T ye yanal-

norm siirekli operator denir.

2) V deki yanal yakinsak dizileri X teki norm yakinsak dizilere gdtiiriirse h T ye o —

yanal norm siirekli operator denir.

Tanim 5.2.14. (V, E) bir 6rgii normlu uzay X de bir normal uzay olsun. Dik toplamsal

T:V — X operatdriine eger

1) T, V nin sira sinirh kiimelerini X teki goreceli kompak kiimelere gotiiriiyorsa AM —

kompak denir.
2) Her v € V i¢in T (F,) kiimesi X te goreceli kompak ise C — kompak denir.

Ornek 5.2.15. (V, E) 6rgii normlu bir uzay X te bir Banach uzay1 olsun. v € V alahm
ve e = ||v|| yazalim. Her u € F, i¢in ||u|| < e oldugundan herhangi bir AM — kompak

T:V — X operatorii C — kompaktir.

44



Ornek 5.2.16. Hatirlatalim ki OA,.(R) := OA, (R, R) uzay: biitiin f: R - R dyleki
f(0) = 0 fonksiyonlarinin kiimesi ile aynidir. Bir vektor orgiisii E 6rgii normlu bir V
uzaymin E ile gakigsmasinin 6zel bir durumdur ve vektdor normu ||.||:E = E ile

|. |: E = E modiilii gakisir, yani [v| = vV (-v), (v€E). (V,E) =E =X =R olsun.

Dik toplamsal bir S: R — R operatérii asagidaki sekilde tanimlansin:

1 .
Sw) =52 eger v # 0 ise

0 egerv =0ise
R atomik bir vektor orgiisii oldugundan her v € R i¢in F, = {0, v} dir. Boylece S bir
C — kompak operatordiir. Ote yandan S([0,1]) kiimesi R de smirsiz bir kiimedir ve
dolayisiyla S AM — kompakt degildir. Hemen belirtelim ki E, F Banach vektor orgiileri
arasinda Oyle ki F o — Dedekind tam, tanimlanan C — kompakt kiimeler iizerinde

diizgiin siirekli olmast durumunda AM — kompaktir [(Mazon et al. 1990), Teorem 3.4].

Tanmim 5.2.18. Bir E vektor orgiisiiniin bir e elemani verilsin. Eger 0 < x < |e]|,
0 <y < |e|] vex Ay =0 sartin1 saglayan x ve y lerden en az biri sifir ise bu durumda
e ye bir atom denir. Bir (V, E) 6rgii normlu uzayinin bir v elemani igin ||v|| elemani E
de atom ise v ye (V, E) de bir atom denir. Hemen belirtelim ki 6rgii normlu uzaylardaki

atomlar vektor orgiilerindeki atomlarin birgok 1yi bilinen 6zelliklerini alir.

Onerme 5.2.19. (V,E) aynstirilabilir 6rgii normlu bir uzay, v,V de bir atom ve

v; Lv,iginv =v; +v,o0lsun. O zamanyav, = v, v, =0yadav, = v,v; =0 dir.
Ispat. v nin bir ayrik ayrisgimi v = v; + v, olsun. O zaman
e = |Ivl| = [lvg + val| = [lval| + [Iv2l| = e + ez

saglanir ve e nin E de bir atom oldugunu goz Oniine alirsak ya e; = e, e, = 0 ya da

e;,=¢e,e, =0 [ |

V aynistirilabilir 6rgii normlu bir uzay ve X bir normlu uzay olsun. Herhangi bir
T:V - X dar operatorii ve her v € V atomu i¢in Tv = 0 dir. Gergekten, bir v atomu
onceki Onermeyle uyumlu olarak yalnizca asikar bir v = v + 0 ayrisimma sahip

oldugundan her & > 0 igin ||Tv|| < & dir ve dolayisiyla Tv = 0 dur.
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Tammm 5.2.20. Bir vektor orgiisii hicbir atoma sahip degilse bu vektor orgiisiine
atomsuz vektor orgiisii denir. E bir vektor orgiisii olsun. Eger ET da atomlarmn bir
(e;)ier koleksiyonu varsa ( ki bu koleksiyona atomlarin yarattigi koleksiyon denir) ve
Oyle ki her i # j icin e; L e; ve her e € E ve her i €1 igin |e|Ae; = 0 iken e =0
oluyor ise E ye saf atomik denir. Eger bir E vektor orgiisiindeki her bant bir izdiisiim
bant1 ise bu durumda E ye izdiisiim &zelligne sahip denir. Ornegin her Dedekind tam

vektor orglisii izdiisiim 6zelligine sahiptir.

Onerme 5.2.21. ((Luxemburgand Zaanen 1971), Teorem 26,4(ii)). E vektor
orgiistindeki herhangi iki u,v € VV atomlariginya u L vyada0 # A € Rigin v = Au

dur.

Bir vektor orgiisiindeki duruma benzer olarak bir 6rgli normlu V' uzayindaki bir

@ # D c V i¢in tammlanan D' = {v € V:v 1 u, u € D} kiimesi de bir banttir.

Onerme 5.2.22. ([(Kusraev2000), Onerme 2.12]). (V,E) aynstirilabilir 6rgii
normlu bir uzay ve v € V olsun. O zaman her ayrik eq,e, € E ikilileri i¢in v = v; +

v, ayrisimi i¢in ||v1|| =e, Ve ||v2|| = e, tektir.

Onerme 5.2.23. (V,E) bir izdiisiim 6zelligine sahip E vektdr orgiisii iizerinde tanimli
ayristirilabilir 6rgii normlu uzay olsun. O zaman E; atomik vektor orgiisii, E, atomsuz

vektor orgiisti ve E = E{@® E, olmak tizere (V,E) = (V4, E;) ®(V,, E,) dir.

Ispat. Onerme 5.2.21. den bir vektor orgiisiinde permiitasyon ve sifirdan farkli
carpimlara gore atomlarn irettigi bir koleksiyon tektir. E de (e;);e; atomlarinin
herhangi bir maksimal koleksiyonununu diisiinelim ki bdyle bir koleksiyonun varligi
Onerme 5.2.21. ve Zorn's Lemma ile garanti edilmistir. E; her i € I icin e; leri iceren
minimal bir bant olsun. E; bir izdiisim banti oldugundan E, = E* olmak iizere
E =E, ®E, dir. Burada E, ,E nin atomsuz bir vektor alt orgilisiidiir. Herhangi bir
v € V yi sabitleyelim.
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O zaman
e, EE,, e, € E;vee; 1 e, olmak iizere
||v|| =e=¢e +e,

dir. Vektér normunun ayristirilabilirliginden ve Onerme 5.2.22. den V nin dyle tek

tiirli v4, v, ayrik elemanlarinin ikilisini bulabiliriz dyle ki
vV =v; + vy, ||vl-|| €EE;,i€{12}

dir. V; = {v ev; ||vl-|| € Ei},i € {1,2} olsun. Boylece v; Ve v, nin sirasiyla E; ve E,
{izerine taniml1 6rgii normlu uzaylar oldugunu sdyleyebiliriz. Ustelik V =V, @V, ve V;

ve V, V de karsilikli ayrik bantlardir. ]

Tamm 5.2.24. E bir vektor orgiisii olsun. A= Pr; (1) , I nm biitiin sonlu alt
kiimelerinin bir kiimesi ve g, = Y.;eq €; Olmak lizere (e;);e; € E neti (gg)qen Neti ile
eslestirilsin. Eger e := o — lim, g, Vvarsa (e;);c; ailesine (o) — toplanabilir denir ve
burada e bu ailenin toplamidir. Bu durumda e = 0 — };¢; e; yazariz. Asagidaki teorem

bu bolimiin ilk sonucudur.

Teorem 5.2.25. (V,E) atomik bir vektor orgiisii E lizerine tanmiml ayristirilabilir 6rgii
normlu bir uzay, X normlu bir uzay ve T:V — X e yanal norm siirekli dik toplamsal bir

operator olsun. Bu durumda her v € V i¢in Tv = 0 dur.

Ispat. E vektor orgiisiiniin karsilikli ayrik (f;);e; atomlarmin ailesi tarafindan
tiretildigini varsayalim. v € E yi sabitleyelim. O zaman ||v|| = e € E, e; ler karsilikli
ayrik elemanlar ve her i € I i¢in e; € {f;}** olmak iizere e = 0 Y;; e; gosterimine
sahiptir. (e;) ailesi i¢in Tanim 5.2.24. teki gibi (g,) e netini diisiinelim. O zaman her

a € Aligin
e=g.l(e—9ga)

dir ve (g,) neti e ye yanal yakinsaktir.

47



V de ki vektér normunun ayristirabilirliginden ve Onerme 5.2.22 den v vektorii

(Wga) qen Neti v ye yanal yakinsak olmak tizere tek tiirlii olarak
v=w,lu,

dir. Ustelik her a € Aigin ||wl-|| = e;(i € I) V deki karsilikli ayrik atomlarin bir ailesi

olmak iizere
Wy = Z Wi
IEa
seklinde yazabiliriz. Boylece

Tv=Tw, +Tu,, (a €N)

dir. (Wg)qen nin yanal yakinsakligindan (Twg)q.en Tv ye yakinsaktir ve dolayisiyla

(Tugy) qen neti sifira yakinsar. Tantm 5.2.18. gore her bir w; bir atomdur.

Twyg = Yieq TW; Ve T operatoriiniin darhigindan her a € A igin Tw, = 0 dir. Sonug

olarak
Tv=0—limyep,Tu, =0
dir ve bu da ispati tamamlar. [

Teorem 5.2.25 ten bir ayrigtirilabilir 6rgii normlu E vektor orgiisii iizerine tanimli
izdiisiim 6zelligine sahip X normlu uzayina giden yanal norm siirekli dar dik toplamsal
operatorlerin arastirilmasindaki genelligi bozmadan sonuglar1 atomsuz bir vektor orgiisii

E ye kisitlayabiliriz.

5.3. iki Dar Operatoriin Toplam

Bu boliimde iki dik toplamsal S ve T operatdrlerinin toplami olan S + T operatoriiniin
darlig1 ile ilgili bir sonucu ispatlayacagiz. Yani bu boliimiin ikinci ana sonucu asagidaki

teorem olacaktir.
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Teorem5.3.1. V bir Banach Kantrovich uzayi, (V,||.||,E) Dedekind tam
atomsuz vektor orgiisii E tlizerine bir 6rgii normlu uzay, X bir Banach uzayi, S:V - X
bir dar dik toplamsal operatér ve T:V — X yanal norm siirekli C —kompak dik

toplamsal bir operator olsun. O zaman R = S + T bir dar operatordiir.
Bu teoremin ispatin1 vermeden once bazi sonuglara ihtiyacimiz vardir.

Onerme 5.3.2. [(Plievand Fang 2017), Teorem 1]. V atomsuz Dedekind tam bir E
vektor orgiisii tizerine tanimli Banach Kantrovich uzayi ve X bir Banach uzayi olsun.

O zaman her yanal siirekli C — kompak dik toplamsal T: V — X operatorii dardir.
Asagidaki bilindik 6nerme bu boliimiin devamindaki sonuglar i¢in oldukca faydalidir.

Onerme 5.3.3. V atomsuz Dedekind tam bir vektor Orgiisi E iizerine tanimli
Banach — Kantrovich uzayi, X bir Banach uzay1 ve T:V — X bir yanal norm siirekli
C —kompak dik toplamsal operator olsun. Bu durumda her v € V ve € > 0 igin dyle bir
v =[I%,v; ayngmm vardir. Oyle ki 1 <i <n olmak {izere v; nin karsihkli ayrik

herhangi bir v}, v? ikilisi igin

||Tv} —Tv?|| < e
esitsizligi saglanir.
Ispat. Teoremi geliski yontemiyle ispatlayacagiz. v € V yi sabitleyelim ve & > 0 olsun
oyle ki herhangi bir v = [[{L; v;,(n € N) ayrisim i¢in 1 < i, <n olsun ve v; m
karsilikli ayrik bilesenlerinin bir vilo ,vizo ikilisi olsun oyle ki ||T( v —vE )|| =€

saglansin. Her k € N igin v nin karsilikli ayrik bilesenlerinin bir vy, ..., v ailesinin

oldugunu o6yle ki her 1<i<k i¢in v; nin karsihkli tiimleyen bilesenlerinin
v}, v? ikilisi oldugunu dyle ki ||Tvi1 — Tvi2|| > § oldugunu gosterecegiz. Bunu tiime
varim ile yapacagiz. k = 1 i¢in sonug agiktir. Varsayalim k > 1 i¢in dogru olsun ve
k + 1 i¢in dogrulugunu ispatlayalim. Tiimevarim hipotezini saglayan v nin karsilikli

ayrik bilesenlerinin bir ailesi vy, ..., v, Ve z = v — [[, v; olsun.
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Eger ||T21 — TZZ|| >§ sartin1 saglayan z nin karsilikli tiimleyen bilesenlerinin bir

74, Zy iKilisi var ise vy, = z oldugunu varsayiyoruz. Aksi durumda dyle bir 1 < i, < k
saylst ve v;, 1 ayrik tiimleyen bilesenleri olan v}, v% olmak iizere v nin bir vy,
bileseni vardir ve ||Tv}, — Tv?|| = € esitsizligi saglanir. Genelligi bozmadan iy, = k
alabiliriz. Onerme 5.3.2. den T bir dar operatdrdiir. Buradan v, ve her § > 0 icin
||Tu — Tw|| < 6 sartin1 saglayan v, nin karsilikli tiimleyen bilesenleri u ve w vardir. O

Zaman
1l | = [ul|U[Iwl] = [1v}1|u]1v2]]

yazabiliriz. Riesz ayristirma 6zelligini (bkz [(Aliprantis etal. 2006), Teorem 1.20])

uygularsak eq, e, f1, f> € E, elemanlarini bulabiliriz 6yle ki
||u|| =e; ey, ||W|| = fill f2,
||v1%||=ell—|f1; ||771%||=92|—|f2

saglanir. Simdi V nin vektér normunun ayristirila bilirliginde Onerme 5.2.22 den

u= u1|Ju2, w = W1|J U4
||u1||=f1: ||u2||=ez
||W1||=f1» ||W2||=f2

vi = uldwy, v =u,lw,

Ozelliklerini saglayan u ve w nun sirasiyla tek tiirlii olarak belirlenen karsilikli ayrik

bilesenleri u;, u, ve wy, w, vardir. Ustelik asagidaki esitsizlikler saglanir.

||Tu1 +Twy; —Tu, —TW2|| = ||T(u1 +wy) —T(u, +W2)|| = ||Tv,1 —Tv,%l > &
Ote yandan
[ITuy + Twy — Tuy — Twyl| = [IT(uy +uy) = T(wy + wo)l| = |ITu—Tw|| < §

yazabiliriz. Sonug olarak asagidaki esitsizlikleri elde ederiz.
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£S||Tu1+TW1—Tu2—TW2||
= ||Tu1 + Tuz - Tuz + TW1 - Tuz - TW]_ + TW1 - TW2||
< [ITuy + Tuy — Twy — Twy || + 2||Twy — Tu,||

< 8+ 2||Twy — Tu,l|

ve
8S||Tu1+TW1—Tu2—Tw2||
== ||Tu1+TW1+TW2—TW2—TuZ—Tu1+Tu1—TW2||
< [ITwy + Tu, — Ty — Tu,l| + 2||Tw, — Tuy||
<8+ 2||Twy — Tuy.
E . .
5—5 icin

17wy = Tuy || ve |ITw, = Ty || > 5
tur.
hk = qu uq, h'k+1 = W1|Ju2,

1 _ 2 _ 1 _ 2
hi = wsy, hiy =uy, hgyq =wy, A = Uy

yazalim. O zaman vy, ..., Vg_1, hg, hip1elemanlart v nin istenen karsiliklt ayrik

bilesenlerinin dizisidir ve dolayisiyla tiimevarim ile sonug ispatlanmis olur.

Z,={Tu—Tw:u,w € F,} oldugunu varsayalim. T bir C —kompakt operator

oldugundan K,, := Z,, kiimesi X in kompakt bir alt kiimesidir. B = {x € X : ||x]|| < %}

yazalim. O zaman Oyle bir n € N ve dyle bir X in 0 — komsulugu olan agik bir By

kiimesi vardir. Oyle ki Kv + B; c nB dir.
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B kiimesinin alt kiimesi olan sifirin bir H agik komsulugunu ve

m
nH c By ve K, C U(xl- + H)
i=1

Ozelliklerini saglayan K,, nin elemanlarinin sonlu bir ailesi x4, ..., X, 1 secelim . | = nm
yazalim. Yukardaki ifadeleri goz oniine aldigimizda v nin karsilikli ayrik bilegenlerinin

bir v, ..., v; ailesi oldugu sonucuna ve
1 2 € ;
||Tvi—Tvi||>§ 1<ig)

sartin1 saglayan karsilikli ayrik bilesenlerin bir v}, v? ikilisinin her v; igin oldugu

sonucunu ¢ikartiriz.
m
{Tv}! —Tv?:1<i<nm}c U(xk+H)
k=1

oldugundan &yle bir kg <m vardir dyle ki card{i <1:Tv} —Tv} € xy, + H} = n
dir. Genelligi bozmadan her 1<i<n i¢in Tv —Tv} € x, + H oldugunu

varsayalim.

||T77i1 —Tvi2|| >§, HcB= {x € X:|lx|| <£} oldugundan ||xk0|

S > < Dolayisiyla

-3

buradan da x, € B dir. q; =X, v} ve g, =X, v} olsun. v; bilesenlerinin

karsilikl1 ayrik oldugunu g6z dniine alirsak

n
> (vl =Tv?) =Tay ~Ta,
i=1

dir ve dolayisiyla x =Tqq —Tq, € Z, dir. O zaman x € nxy, + nH € nx,, + B;
yazabiliriz. Boylelikle nx; € K, + By € nH tir ve buradanda x;, € H tir. Buda bize

celiski verir. [

Asagidaki Onerme iyi bilinen bir onermedir(bkz. [(Popov et al. 2013), Lemma
10.20]).
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Onerme 5.3.4. (x;)™, ailesi sonlu boyutlu normlu bir X vektér uzayinda vektorlerin
sonlu bir koleksiyonu ve her i i¢in 0 < A; < 1 olmak iizere (4;)j=; reel sayilarm bir
koleksiyonu olsun. O zaman 6; € {0,1} olmak iizere 6yle bir (6;)}=, koleksiyonu vardir

oyle ki

n

Z(Ai —0;)x;

i=1

m(X
< 2( )maXleiII
l

dir.

Tanmm 5.3.5. (V,E) bir 6rgii normlu uzay ve X de bir vektor uzayi olsun. Eger T(V)
kiimesi X in sonlu boyutlu bir X; vektor alt uzayinda ise bu durumda T:V — X dik

toplamsal operatoriine sonlu rank a sahip operator denir.

Onerme 5.3.6. V atomsuz Dedekind tam bir vektdr drgiisii E iizerine taniml1 Banach
Kontrovich uzayi, X bir Banach uzayi, S:V — X dik toplamsal dar bir operator ve
G:V — X yanal norm siirekli C — kompak sonlu rank a sahip bir operator olsun. Bu

durumda R = S + G dar bir operatordiir.

Ispat. v € V yi sabitleyelim ve £ > 0 verilsin. Onerme 5.3.3 ii uygularsak v = [, v;
ayrigimimi buluruz dyle ki v; nin karsihkli ayrik herhangi iki v}, v? bilesenleri igin

asagidaki

£
1 _ 2 - -
||le- Gv; || < 2 dmxD)

esitsizligi 1 < i < n i¢in saglanir. Her v; i¢in S dar bir operatdr oldugundan dyle bir

u;,w; karsilikli timleyen bilesenleri vardir 6yle ki 1 < i < ni¢in

&

||Sul- _SWill <F

- . .. 1 o
saglanir. 1 < i <niginx; = Gu; — Gw; ve A; = > oldugunu varsayalim.
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O zaman Onerme 5.3.4 ten her 1 < i < ni¢in a; € {—1,1} olmak iizere

n
Z(“i —0;)x;
i=1

tir ve boylece i a;x; < % elde edilir. O zaman a; = 1,i € I ve a; = —1,i € ] olmak

dim(X,)

€
< max ||x|| < -
2 i

4

tizere Oyle ki ayrik I ve J kiimeleri vardir dyle ki {1, ..., n} kiimesinin I ve J kiimelerinin

i¢ine bir ayrisimi elde edilir. [{;e; u; U [y w; ve [ie; u; U 1ie; wi yazalim.
Bu durumda

[IRu — Rwl| = |I(S + Gu— (S + G)wl| < |ISu — Swl| + ||Gu — Gw]|

ZSUL'FZSWL—ZSUL—ZSWL

i€l i€J ieJ i€l
+ ZGul+ZGwl—ZGul —zGWl
i€l i€J i€J i€l
i€l i€J
+ Z(Gui ~SG) + Z(Gwi — Guy)
i€l i€J

n

i=1

n
SZ|ISui—SwiI|+
i=1

n
& &
<Zzi+1+§<g
i=1

yazabiliriz. Boylece u ve w, v nin arzu edilen karsilikli ayrik iki bilesenidir ve bu da

ispat1 tamamlar. Simdi bu bdliimiin ana sonucunu ispatlamaya haziriz.
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Teorem 5.3.1. ispat. X & X** & [ (By+) oldugundan X ’i I, (By+) 1n kapali bir
vektor alt uzayr olarak diislinebiliriz. Burada & Sembolii ile izometrik gommeyi ve
l(Bx+) ile de X* dual uzayindaki birim yuvar By« lizerinde tanimli biitiin reel-degerli
siirli fonksiyonlarin Banach uzayini kast ediyoruz. Eger H, W nun goreceli kompakt
bir alt kiimesi € > 0 ise dyle bir lineer sonlu ranka sahip R € L(W) operatérii vardir
Oyle ki her x € H i¢in ||x — Rx|| < € dur [Popov and Randrianantoanina 2013, Lemma
10.25]. v € V alalim ve € > 0’ 1 sabitleyelim. T bir C —kompak operatdr oldugundan
K =T(F,),X te dolayisiyla W da goreceli kompakt bir kiimedir. Yukarida soylenildigi
gibi sonlu ranka sahip lineer bir R € L(W) operatorii vardir 6yle ki her w € K igin

|[lw — Rw|| SZtﬁr.

Agiktir ki R o T operatorii dik toplamsal yanal norm stirekli , C —kompak, sonlu ranka
sahip operatordiir. Onerme 5.3.6. dan v nin dyle bir karsilikli ayrik v, v, bilesenleri

vardir. Oyle ki

£
(S + G)v, — (S + G)v, <§

dir. Simdi
||(S + T)U1 - (S + T)vzll = ||Sv1 _sz + Tvl - Tvz + le - GVZ - le + szll

< IS+ G)vy — (S + G)v,l| + ||Tvy — Tv, — Gvy + Gy ||

€
<E+||Tv1—Tv2—RoTv1+RoTv2||

< =+ |ITv, = R@Tw)I| +|ITv, — R(T)|| S§+§: .

N m

dur. Boylece v4, v, v nin arzu edilen bilesenlerinin ikilisidir ve bu da ispati1 tamamlar.m

Ozel olarak yukaridaki ifade eger T bir yanal norm siirekli AM —kompak dik

toplamsal operatdr iken de dogrudur.
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