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BÖGEL SÜREKLİ FONKSİYONLAR İÇİN A-İSTATİSTİKSEL YAKLAŞIM 

ÖZ 

 

           Bu doktora tezinde ilk olarak, kullanacağımız bazı tanım, teorem ve semboller 

verilmiştir. 

          Daha sonra, bulgular bölümünün ilk kısmında, çift indisli fonksiyon dizileri için 

alışılmış düzgün yakınsaklıktan kuvvetli olan A-istatistiksel düzgün yakınsaklık 

kavramı kullanılarak, sürekli fonksiyonların uzayından daha geniş olan Bögel-sürekli 

(B-sürekli) fonksiyonların uzayında Korovkin tipi yaklaşım teoremi çalışılmıştır. Ayrıca 

elde edilen yaklaşım teoreminin daha kuvvetli olduğuna dair bir örnek verilmiştir. Son 

olarak bu teorem için A-istatistiksel yakınsaklık oranı hesaplanmıştır. 

           Bulgular bölümünün ikinci kısmında, her iki değişkene göre 2π -periyodik ve 

sürekli fonksiyonların uzayından daha geniş olan B- 2π -periyodik ve B-sürekli 

fonksiyonların uzayında A-istatistiksel yakınsaklık kavramı kullanılarak Korovkin tipi 

yaklaşım teoremi elde edilmiştir. Ayrıca, bu yeni teoremi sağlayan fakat klasik durumda 

çalışmayan bir örnek verilmiştir. Son olarak, pozitif lineer operatörlerin dizilerinin A-

istatistiksel yakınsaklık oranı hesaplanmıştır. 

           Bulgular bölümünün son kısmında, n-indisli diziler için istatistiksel yakınsaklık 

kavramı yardımıyla n�  uzayının kompakt bir alt kümesi üzerinde tanımlı n-değişkenli 

B-sürekli fonksiyonların uzayında Korovkin tipi yaklaşım teoremi elde edilmiştir. 

Ayrıca, yeni yaklaşım teoreminde çalışan fakat klasik durumda çalışmayan bir örnek 

verilmiştir. 

 

 

           Anahtar kelimeler: çift indisli fonksiyon dizileri için alışılmış düzgün 

yakınsaklık, çift indisli diziler için A-istatistiksel yakınsaklık, B-süreklilik, B- 2π -

periyodiklik, pozitif lineer operatör, Korovkin tipi yaklaşım teoremi, n-değişkenli B-

sürekli fonksiyonlar, n-indisli diziler. 
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A-STATISTICAL APPROXIMATION FOR BÖGEL-CONTINUOUS 

FUNCTIONS 

 

ABSTRACT 

 

           Firstly, in this thesis,  main definitions, theorems and symbols used have been 

given. 

          Then, in first part of findings section, using the concept of A-statistical uniform 

convergence, which is stronger than usual uniform convergence for double function 

sequences, Korovkin-type approximation theorem has been studied in the space of all 

Bögel-continuous (B-continuous) functions which is wider than the space of all 

continuous functions. Also, an example that shows the obtained approximation theorem 

is stronger has been given. Finally, the rate of A-statistical convergence for this theorem 

has been computed. 

           In the second part of findings section, by using the concept of A-statistical 

convergence, Korovkin-type approximation theorem has been obtained in the space of 

all B- 2π -periodic and B-continuous functions which is wider than the space of all 

continuous and 2π -periodic with respect to both variables. Moreover, an example that 

shows this new result works but its classical case doesn’t work has been given. Lastly, 

the rate of A-statistical convergence of a sequence of positive linear operators has been 

calculated. 

           In the end of the section, Korovkin-type approximation theorem has been obtained 

in the space of all n-variate B-continuous functions defined on a compact subset of the 

real n-dimensional space via the concept of statistical convergence for n-multiple 

sequences. Also, an example such that our new approximation result works but its 

classical case doesn’t work has been given. 

 

           Key words: Usual unifom convergence for double function sequences, A-

statistical convergence for double sequence, B- continuity, B- 2π -periodic, positive 

linear operators, Korovkin-type approximation theorem, n-variate B-continuous 

functions, n-multiple sequence. 
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SİMGE VE KISALTMALAR LİSTESİ 

 
K   : K kümesinin eleman sayısı 

δ   : Yoğunluk fonksiyonu 

Aδ   : A-yoğunluk fonksiyonu 

( )n
Ax   : x dizisinin A matrisi altındaki dönüşüm dizisi 

S  : İstatistiksel yakınsak diziler uzayı 

c  : Yakınsak dizilerin uzayı 

1C   : Cesáro matrisi 

Kχ   : K kümesinin karakteristik fonksiyonu 

�   : Reel sayılar kümesi 

�   : Doğal sayılar kümesi 

( )B D   : D üzerindeki sınırlı fonksiyonların uzayı 

( )B D
.   : ( )B D  uzayının alışılmış supremum normu 

( )C D   : D  üzerindeki sürekli fonksiyonların uzayı 

*C   : �  üzerinde tanımlı reel değerli tüm sürekli ve 2π -periyodik 

fonksiyonların uzayı 

*C
.   : *C  uzayının alışılmış supremum normu 

( )x,y f u, v∆     : f  fonksiyonunun karışık farkı 

( )bC D  : 2D ⊂ �  üzerinde tanımlı reel değerli tüm B-sürekli fonksiyonların  

uzayı 

2B π   : 2�  üzerinde tanımlı reel değerli tüm B- 2π -periyodik ve B-sürekli 

fonksiyonların uzayı 

2 ,2C π π  : 2
�  üzerinde tanımlı reel değerli tüm iki değişkenli sürekli ve her iki 

değişkene göre 2π -periyodik olan fonksiyonların uzayı 

m 1 2(f; , )ω δ δ  : Karışık B-süreklilik modülü 
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1. GİRİŞ 

 

           İstatistiksel yakınsaklık kavramı ilk olarak 1951 yılında Steinhaus tarafından 

Polonya’da yapılan bir konferansta tanıtıldı ve yine aynı yıl Fast tarafından geliştirildi. 

“İstatistiksel Yakınsaklık” kavramı, Toplanabilme Teorisi (Schoenberg, 1959 ve Fridy, 

1985), Fourier Serileri (Zygmund, 1979), Fonksiyonel Analiz (Connor, 1988, 1989, 

2000; Demirci ve Orhan 1999; Kline, 1995), Sayılar Teorisi (Erdös ve Tenenbaum, 

1989) ve son zamanlarda ise Ölçü Teorisi (Miller, 1995; Miller ve Orhan, 2001), 

İstatistik (Fridy ve Khan, 1998), Optimizasyon Teorisi (Pehlivan ve Mamedov, 2000) 

ve Yaklaşım Teorisi ( Gadjiev ve Orhan, 2002) gibi matematiğin temel alanlarıyla olan 

ilişkisi nedeniyle yaklaşık yarım asırdır birçok matematikçinin ilgilendiği önemli bir 

konu haline gelmiştir. Korovkin tipi yaklaşım teoremleri, yaklaşımlar teorisinde temel 

oluşturmaktadır (Korovkin, 1960; DeVore, 1972). [ ]C a, b  ile [ ]a,b  üzerindeki sürekli 

fonksiyonların uzayı ve [ ]B a, b  ile [ ]a,b  üzerindeki sınırlı fonksiyonların uzayını 

gösterelim. Korovkin, [ ]C a,b  uzayından [ ]B a, b  uzayına tanımlı  { }nL  pozitif lineer 

operatörlerinin �  üzerinde sınırlı herhangi [ ]f C a,b∈  fonksiyonuna yakınsaması 

problemini incelemiştir (Korovkin, 1960). Pozitif lineer operatörlerin dizileri yardımıyla, 

sürekli fonksiyonların yaklaşımı birçok araştırmada göz önüne alınmış ve birçok 

operatörün Korovkin tipi yaklaşım özellikleri araştırılmıştır. Bununla birlikte, Korovkin 

teorisi daha sonra süreklilik yerine Bögel-süreklilik (B-süreklilik) kavramı kullanılarak 

genelleştirildi (Bögel, 1934, 1935, 1962). Göz önüne alınan işlemlerin, sürekli 

fonksiyonların uzayından daha geniş olan Bögel-sürekli (B-sürekli) fonksiyonlar uzayı 

içinde geçerli olduğu C. Badea, I. Badea ve H.H. Gonksa tarafından gösterilmiştir 

(Badea ve ark., 1986). Daha sonra, sürekli ve her iki değişkene göre 2π -periyodik 

fonksiyonların uzayından daha geniş olan B-sürekli ve B 2− π -periyodik fonksiyonlar 

uzayı içinde geçerli olduğu C. Badea, I. Badea ve C. Cottin tarafından gösterilmiştir 

(Badea ve ark., 1988). 2001 yılında D. Bărbosu tarafından n�  uzayının kompakt bir alt 

kümesi üzerinde tanımlı n-indisli pozitif lineer operatörler için Korovkin tipi yaklaşım 

teoremi elde edilmiştir (Bărbosu, 2001). 

           Bu doktora tezinin birinci bölümünde, çift indisli dizilerin A-istatistiksel 

yakınsaklık tanımını kullanarak, C. Badea, I. Badea ve H.H. Gonksa tarafından verilen 

Korovkin tipi yaklaşım teoreminden daha kuvvetli sonuçlar elde edeceğiz. Ayrıca, 
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verdiğimiz teoremin daha kuvvetli olduğuna dair bir örnek verip, verdiğimiz teorem için 

A-istatistiksel yakınsaklık oranını hesaplayacağız. İkinci bölümde, C. Badea, I. Badea 

ve C. Cottin tarafından verilen Korovkin tipi yaklaşım teoremden daha kuvvetli 

sonuçlar elde edeceğiz. Ayrıca, elde ettiğimiz teoremin daha kuvvetli olduğuna dair bir 

örnek verip, bu teorem için A-istatistiksel yakınsaklık oranını hesaplayacağız. Son 

olarak, n-indisli diziler için istatistiksel yakınsaklık kavramı yardımıyla n
�  uzayının 

kompakt bir alt kümesi üzerinde tanımlı n-değişkenli B-sürekli fonksiyonların uzayında 

D. Bărbosu tarafından verilen Korovkin tipi yaklaşım teoreminden daha kuvvetli 

sonuçlar elde edeceğiz. Ayrıca, yeni yaklaşım teoremimizde çalışan fakat klasik 

durumda çalışmayan bir örnek vereceğiz. 
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2. GENEL BİLGİLER 

 

           Bu bölümde hazırlanacak olan tezin içeriğinde kullanılacak olan bazı önemli 

tanım, teorem ve semboller tanıtılacaktır., 

           X ve Y reel değerli fonksiyonların iki fonksiyon uzayı olsun. 

2.1. Tanım: X  uzayının her bir elemanını Y nin bir ve yalnız bir elemanına karşılık 

getiren L  kuralına X  uzayından Y uzayına bir operatör denir. Bu durum 

( )( ) ( )L f t ;x g x=  şeklinde gösterilir. Burada ( )( )L f t ;x  gösterimi yerine ( )L f ;x  

yazacağız. Ayrıca, X  kümesine L operatörünün tanım kümesi denir ve ( )D L  ile 

gösterilir. ( ) ( ) ( ) ( ){ }R L g : L f ; x g x , f D L= = ∈  kümesine L  operatörünün değer 

kümesi denir ve ( )R L Y⊂  olur. 

           X  bir lineer fonksiyon uzayı olmak üzere lineer operatörün tanımını verebiliriz.  

2.2. Tanım: 1 2f , f , X uzayında herhangi iki fonksiyon ve her x X∈ , her 1 2a , a ∈�  için 

L operatörü 

 

( ) ( ) ( )1 1 2 2 1 1 2 2L a f a f ;x a L f ;x a L f ;x+ = +  

 

koşulunu sağlıyor ise o taktirde L operatörüne lineer operatör denir. Bu tanımdan 

görüleceği gibi ( )L 0; x 0=  olur. 

       Lineer operatörler kümesi içinde çok önemli bir alt sınıf vardır ki o da pozitif lineer 

operatörlerdir.  

2.3. Tanım: ( ){ }X f X : f x 0+ = ∈ ≥ , ( ){ }Y g Y : g x 0+ = ∈ ≥  olsun. Eğer X uzayında 

tanımlanmış bir L lineer operatörü X+  kümesindeki herhangi bir f  fonksiyonunu 

pozitif fonksiyona dönüştürüyor ise o taktirde L operatörüne pozitif lineer operatör 

denir. Yani ( )f x 0≥  olduğunda ( )L f ;x 0≥  olur.  

           Ayrıca ( ) ( )f x g x≤  olduğunda ( ) ( )L f ;x L g; x≤  olur ki bu ise pozitif lineer 

operatörlerin monoton olduğunu gösterir. 

           Örneğin; 1912 yılında S. Bernstein, [ ]0,1  aralığında verilmiş sürekli bir 

fonksiyona yakınsayan polinom tanımlamıştır. 0 x 1≤ ≤  olmak üzere  
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( ) ( )
n

n kk
n

k 0

nk
B f ;x f x 1 x

kn
−

=

  
= −  

  
∑                                                                            (2.1) 

 

şeklindedir. ( )
n kkx 1 x 0

−
− ≥  olduğundan ( )nB f ;x  pozitif lineer operatördür. 

           D , �  nin kompakt bir alt kümesi olmak üzere sırasıyla ( )C D  ve ( )B D  ile D  

üzerinde tanımlı reel değerli tüm sürekli fonksiyonların uzayını ve tüm sınırlı 

fonksiyonların uzayını gösterelim. ( )C D  ve ( )B D  uzayları ( )B(D)
x D

f : sup f x
∈

=  normu 

ile birer Banach uzayıdır. Ayrıca bu norma göre yakınsaklık düzgün yakınsaklıktır. 

           *C  ile reel sayılar kümesi üzerinde tanımlı reel değerli tüm sürekli ve 2π -

periyodik fonksiyonların uzayını gösterelim. *C  uzayı üzerindeki norm supremum 

normu, yani ( )*C
x

f : sup f x
∈

=
�

 normudur. 

 

2.1. P. P. Korovkin Teoremleri 

 

       1951 yılında H. Bohman, toplam şeklindeki pozitif lineer operatörler dizisinin [ ]0,1  

aralığında sürekli ( )f x  fonksiyonuna yaklaşması problemini incelemiştir. H. Bohman, 

[ ]x 0,1∈ , k,n0 1≤ α ≤  olduğunda  

 

( ) ( ) ( )
n

n k,n k,n
k 0

L f ; x f P x
=

= α∑ , ( )k,nP x 0≥  

 

pozitif operatörler dizisinin, n → ∞  için [ ]0,1  aralığında ( ) ( )nL f; x f x⇒  olması için 

gerekli ve yeterli koşul  

           (1) ( )nL 1;x 1⇒  

           (2) ( )nL t;x x⇒ 

           (3) ( )2 2
nL t ; x x⇒  

olduğunu göstermiştir. Burada “⇒” simgesi düzgün yakınsaklığı göstermektedir. 

Bohman’nın araştırdığı operatörlerin değerinin, f  fonksiyonunun [ ]0,1  aralığının 

dışındaki değerlerden bağımsız olduğu açıktır.  
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           1953 yılında P.P. Korovkin, Bohman’nın koşullarının genel halde de 

gerçeklendiğini genel bir teoremle ispatlamıştır. 

2.1.1. Teorem: Eğer { }nL , [ ] [ ]nL : C a,b B a,b→  pozitif lineer operatörler dizisi, [ ]a,b  

aralığında (1), (2), (3) koşullarını gerçekliyorsa bu taktirde tüm reel eksende sınırlı 

herhangi [ ]f C a,b∈  için n → ∞  gittiğinde 

 

( ) ( )nL f;x f x⇒  , a x b≤ ≤  

 

olur (Korovkin, 1960). 

           Şimdi Korovkin teoreminin koşullarını sağlayan bir örnek verelim. (2.1) deki 

Bernstein polinomunu göz önüne alınırsa, 

(1) ( ) ( ) ( )
n

n k nk
n

k 0

n
B 1;x x 1 x 1 x x 1

k
−

=

 
= − = − + = 

 
∑  

(2) ( )
( )

( )
n

n kk
n

k 0

k n!
B t;x x 1 x

n n k !k!
−

=

= −
−

∑  

                   
( )

( ) ( )
( )

n
n kk 1

k 1

n 1 !
x x 1 x

n k ! k 1 !
−−

=

−
= −

− −
∑  

                   
( )

( )
( )

n 1
n k 1k 1

k 0

n 1 !
x x 1 x

n k 1 !k!

−
− −−

=

−
= −

− −
∑  

                   ( ) ( )
n 1

n k 1 n 1k

k 0

n 1
x x 1 x x 1 x x x

k

−
− − −

=

− 
= − = − + = 

 
∑  

(3) ( )
( )

( )
2n

n k2 k
n

k 0

k n!
B t ; x x 1 x

n n k !k!
−

=

 
= − 

− 
∑  

                    
( )

( ) ( )
( )

n
n kk 1

k 1

n 1 !k
x x 1 x

n n k ! k 1 !

−−

=

−
= −

− −
∑  

                  
( )

( ) ( )
( )

( )
( ) ( )

( )
n n

n k n kk 1 k 1

k 2 k 1

n 1 ! n 1 !k 1 x
x x 1 x x 1 x

n n k ! k 1 ! n n k ! k 1 !
− −− −

= =

− −−
= − + −

− − − −
∑ ∑  

                   
( )

( ) ( )
( ) ( )

n n 1
n k n k 12 k 2 k

k 2 k 0

n 1n 2 !n 1 x
x x 1 x x 1 x

kn n k ! k 2 ! n

−
− − −−

= =

−−  −
= − + − 

− −  
∑ ∑  

                   ( )
n 2

n k 22 k

k 0

n 2n 1 x
x x 1 x

kn n

−
− −

=

− −
= − + 

 
∑ 2 n 1 x

x
n n

−
= +   
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olur. Dolayısıyla n → ∞  için 

(1) ( )
[ ]n B 0,1

B 1; x 1 0− →  

(2) ( )
[ ]n B 0,1

B t; x x 0− →  

(3) ( )
[ ]

2 2
n

B 0,1
B t ; x x 0− →     

sağlanır. 2.1.1.  Teoreme göre  herhangi [ ]f C 0,1∈  için  

 

( ) ( )
[ ]n B 0,1

B f; x f x 0− →  

 

gerçeklenir.  

2.1.2. Teorem: { }nL , * *
nL : C C→  pozitif lineer operatörler dizisi olsun. [ ]a,b  

aralığında n{L (1; x)-1}, n{L (cos t; x)-cos x}  ve n{L (sin t; x)-sin x} dizileri sıfıra 

düzgün yakınsak ise [a, b]  aralığı üzerinde sınırlı herhangi *f C∈  için 

( ) ( )nL f ; x f x⇒   olur (Korovkin, 1960). 

           2002 yılında Gadjiev ve Orhan tarafından yakınsaklıktan daha kuvvetli olan 

istatistiksel yakınsaklık kavramı kullanılarak, [ ]C a, b  uzayı üzerinde Korovkin tipi 

yaklaşım teoremi verilmiştir. Daha sonra, 2003 yılında Duman, periyodik fonksiyonlar 

uzayı üzerinde tanımlı pozitif lineer operatörler için A-istatistiksel yakınsaklık 

kavramını kullanarak Korovkin tarafından verilen sonuçtan daha kuvvetli sonuçlar elde 

etmiştir. Bunu vermeden önce istatistiksel ve A-istatistiksel yakınsaklık kavramını 

hatırlatalım. 

 

2.2. İstatistiksel ve A-istatistiksel Yakınsaklık 

 

           �  doğal sayılar kümesinin bir altkümesi K  ve { }nK : k n : k K= ≤ ∈  olsun. nK  

kümesinin eleman sayısını da nK  ile gösterelim. 

2.2.1. Tanım: K⊆�  olsun. Eğer  
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n

n

K
lim

n
 

 

limiti mevcut ise, bu limit değerine K kümesinin “yoğunluğu” denir ve { }Kδ  ile 

gösterilir (Niven ve Zuckerman, 1980). 

           { }ka  pozitif tamsayıların bir dizisi ve { }kK a : k= ∈�  olmak üzere { }Kδ  

mevcut ise 

 

{ }
n

n

n
K lim

a
δ =  

 

olur (Niven ve Zuckerman, 1980). 

           Örneğin; { } 1,δ =�  { }2n : n 0δ ∈ =� , { } { }
1

2n : n 2n 1: n
2

δ ∈ = δ + ∈ =� �  

olduğu yoğunluk tanımından kolaylıkla elde edilebilir. { }Aδ  ve { }Aδ � \  

yoğunluklarından biri mevcut ise, bu durumda { } { }A 1 Aδ = − δ� \  olacaktır (Niven ve 

Zuckerman, 1980; Freedman ve Sember, 1981). 

           Şimdi yoğunluk kavramını kullanarak istatistiksel yakınsaklık tanımını 

hatırlatalım: 

2.2.2. Tanım: { }kx x=  reel ya da kompleks terimli bir dizi olsun. Eğer her 0ε > için 

  

{ }kk : x L 0δ ∈ − ≥ ε =�  

 

olacak şekilde bir L sayısı varsa, bu durumda x  dizisi L sayısına “istatistiksel 

yakınsaktır” denir ve bu durum st lim x L− =  şeklinde gösterilir (Fast, 1951; Steinhaus, 

1951). 

           Şimdi istatistiksel yakınsaklık kavramı için bazı karakterizasyonlar hatırlatalım. 
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2.2.3. Teorem: { }kx x=  dizisinin bir L sayısına istatistiksel yakınsak olması için 

gerekli ve yeterli koşul { }kn : k 1δ ∈ =�  olması ve 
kn

k
lim x L=  olacak şekilde en az bir 

{ }
knx  yakınsak alt dizisinin bulunmasıdır (Connor, 1989; Fridy, 1985; Šàlàt, 1980). 

           2.2.3. Teoremden görüleceği üzere st lim x L− =  olması için gerekli ve yeterli 

koşul her 0ε >  ve 0n n≥  olacak şekildeki her n K∈  için nx L− < ε  olacak şekilde 

{ }K 1δ =  olan bir K ⊆ �  altkümesi ve ( )0 0n n= ε ∈�  sayısı vardır. 

2.2.4. Örnek: { }kx x=  dizisinin genel terimi  

 

2

k 2

1 , k m
x

0 , k m

 =
= 

≠
, m 1,2,3,...=  

 

şeklinde tanımlansın. Her 0ε >  için 

 

{ } { }k k0 k n : x k n : x 0 n≤ ≤ ≥ ε ≤ ≤ ≠ ≤  

 

olduğundan  

 

{ }k
n n

1 n
0 lim k n : x lim 0

n n
≤ ≤ ≥ ε ≤ =  

 

bulunur. Böylece st lim x 0− =  elde edilir. 

           Ayrıca yakınsak her dizinin sınırlı olduğunu klasik analizden biliyoruz. Fakat 

istatistiksel yakınsak dizilerin sınırlı olması gerekmez. Şimdi buna bir örnek verelim. 

2.2.5. Örnek: Genel terimi  

 

2

k 2

k , k m
x

0 , k m

 =
= 

≠
, m 1,2,3,...=  

 

şeklinde tanımlanan { }kx x=  dizisi için st lim x 0− =  olduğu açıktır ve bu dizi üstten 

sınırsızdır.  
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           2.2.2. Tanım ve 2.2.3. Teoremden anlaşılacağı gibi, eğer x  dizisi L sayısına 

istatistiksel yakınsak ise, L sayısının herhangi bir 0ε >  komşuluğunda dizinin sonsuz 

çoklukta terimi bulunurken bu komşuluğun dışında, indis kümesinin yoğunluğu sıfır 

olmak koşulu ile, yine diziye ait sonsuz çoklukta terim bulunabilir. Bu ise, istatistiksel 

yakınsaklığın bilinen anlamdaki yakınsaklıktan daha genel olduğunu göstermektedir. 

Böylece yakınsak diziler uzayını c  ile ve istatistiksel yakınsak diziler uzayını da S  ile 

gösterecek olursak, c S⊂  olduğu açıktır. Yani yakınsak her dizi istatistiksel 

yakınsaktır. Yukarıdaki örneklerden de anlaşılacağı gibi tersi doğru değildir. 

           Şimdi A-istatistiksel yakınsaklık kavramını hatırlatalım. İlk olarak toplanabilme 

hakkında biraz bilgi vereceğiz. 

            X ve Y, tüm diziler uzayı olan ω  nın iki altkümesi ve ( )nkA a=  reel ya da 

kompleks terimli bir sonsuz matris olmak üzere, { }kx x X= ∈  ve her n 1≥  için  

 

( )n nk kn
k 1

y : Ax : a x
∞

=

= =∑  

 

serisi yakınsak ise ( ) ( )( )n n
y Ax y Ax= = =  dönüşüm dizisi mevcuttur denir. Eğer her 

x X∈  için ( )( )n
y Ax=  dönüşüm dizisi mevcut ve y Y∈  ise ( )nkA a=  matrisi X 

uzayından Y içine bir matris dönüşümü tanımlar denir. Eğer bir x  dizisi için Ax  

dönüşüm dizisi mevcut ve bir L değerine yakınsak ise x  dizisi L sayısına, A -

toplanabilirdir denir ve A lim x L− =  yazılır. X dizi uzayını, Y içine dönüştüren bütün 

matrislerin sınıfı ( )X,Y  ile gösterilir. Eğer, A, X den Y içine bir matris dönüşümü ise 

( )A X,Y∈  yazılır. Toplamı ya da limiti koruyan matrislerin sınıfı ise ( )X,Y;p  ile 

gösterilir. Özel olarak X Y c= =  (yakınsak dizilerin uzayı) olmak üzere ( )A c,c∈  ise 

A matrisine konservatif matris denir. 

2.2.6. Tanım: ( )nkA a=  k, n 1, 2,...= , sonsuz bir matris olmak üzere verilen bir 

{ }kx x=  dizisi için k
k

lim x L=  olduğunda  ( )nn
lim Ax L=  koşulu gerçekleniyorsa, bu 

durumda A matrisine “regüler matris” denir (Hardy, 1949). 
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           Bir ( )nkA a=  matrisinin regüler olması, Silverman-Toeplitz koşulları olarak 

bilinen aşağıdaki teorem ile karakterize edilir. 

2.2.7. Teorem: (Silverman-Toeplitz) Bir ( )nkA a=  matrisinin regüler olması için 

gerekli ve yeterli koşul  

 

(i) nk
n k 1

A sup a
∞

=

= < ∞∑  

(ii) Her sabit k için nkn
lima 0=  

(iii) nkn
k 1

lim a 1
∞

=

=∑   

 

koşullarının sağlamasıdır (Hardy, 1949; Maddox, 1970). 

           Örneğin, toplanabilme teorisinde (birinci mertebeden) Cesáro matrisi olarak 

adlandırılan ve aşağıdaki şekilde tanımlı olan ( )1 nkC c=  matrisi,  

 

1

1 0 0 . . . . . . .

1 1
0 . . . . . . .

2 2
. . . . . . . . . .

. . . . . . . . . .

C . . . . . . . . . .

1 1 1 1
. . . . . .

n n n n
. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
  
 

 

 

regülerdir. 

           Bir { }kx x=  dizisinin L sayısına istatistiksel yakınsak olması 0∀ε >  için  

 

{ }k
n

1
lim k n : x L 0

n
≤ − ≥ ε =   
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olması demektir. Bir toplanabilme metodundan bir yoğunluk elde edilebildiğinden 

istatistiksel yakınsaklık tanımı, ( ) { }kK : K k n : x L= ε = ≤ − ≥ ε  ve Kχ , K kümesinin 

karakteristik fonksiyonu olmak üzere her 0∀ε >  için  

 

( ) ( ) ( )
( )n

1 K Knn n n
k 1

K
lim C lim k lim 0

nε
=

ε
χ = χ = =∑  

 

şeklinde ifade edilebilir. 

           Freedman ve Sember 1981 yılında istatistiksel yakınsaklık tanımında 1C  Cesáro 

matrisi yerine negatif olmayan regüler bir ( )nkA a=  sonsuz matrisi alarak istatistiksel 

yakınsaklığı A-İstatistiksel yakınsaklığa genişletmişlerdir. 

           Şimdi A-istatistiksel yakınsaklık tanımını vereceğiz. Fakat ilk olarak bir K 

kümesinin A-yoğunluğu tanımını verelim. ( )nkA a=  negatif olmayan regüler bir matris 

olsun. 

2.2.8. Tanım: K ⊆ �  olsun. Eğer 

 

{ } ( )A K nknn n
k K

K : lim A lim a
∈

δ = χ = ∑  

 
limiti mevcut ise { }A Kδ  sayısına K kümesinin A-yoğunluğu denir (Freedman ve 

Sember, 1981). 

           { }A Kδ  veya { }A \Kδ �  yoğunluklarından herhangi biri mevcut ise 

{ } { }A AK 1 \Kδ = − δ �  olur. Ayrıca K kümesi sonlu elemanlı bir küme ise { }A K 0δ =  

olduğu açıktır.  

2.2.9. Örnek: 

 

2

nk 2

1 , k m
a

0 , k m

 =
= 

≠
 , m 1,2,...=  
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şeklinde tanımlanan ( )nkA a=  matrisini göz önüne alalım. Bu durumda 

{ }2
1K k m : m= ≠ ∈�  kümesi için { }A 1K 0δ =  olur. Dolayısıyla 

{ }2
2K k m : m= = ∈�  kümesinin A-yoğunluğu 1, yani { }A 2K 1δ =  olur. 

2.2.10. Tanım: { }kx x=  reel terimli bir dizi olsun. Eğer her 0ε >  için 

( ) { }kK : K k : x L= ε = − ≥ ε  olmak üzere  

 

{ } ( ) ( )A nk nkKn n
k 1 k K

K lim a k lim a 0
∞

ε
= ∈

δ = χ = =∑ ∑  

 

ise { }kx x=  dizisi L sayısına “A-istatistiksel yakınsaktır” denir ve Ast lim x L− =  ile 

gösterilir (Freedman ve Sember, 1981; Kolk, 1993; Miller, 1995). 

           Eğer 2.2.10. Tanımda A matrisi yerine I birim matrisi alınırsa, klasik anlamdaki 

yakınsaklık, A matrisi yerine 1C  Cesáro matrisi alınırsa, istatistiksel yakınsaklık elde 

edilir. 

           A-istatistiksel yakınsaklık için 2.2.3. Teoremin benzerini aşağıdaki gibi ifade 

edebiliriz : Ast lim x L− =  olması için gerekli ve yeterli koşul { }A kn : k 1δ ∈ =�  olması 

ve 
kn

n
lim x L=  olacak şekilde en az bir { }

knx  yakınsak alt dizisinin bulunmasıdır (Kolk, 

1993; Miller, 1995).  

 

2.3. İstatistiksel Yakınsak Fonksiyon Dizileri 

 

           2004 yılında Duman ve Orhan, istatistiksel yakınsaklık kavramını kullanarak reel 

sayıların bir D  altkümesi üzerinde tanımlı fonksiyon dizilerinin istatistiksel 

yakınsaklığını problemini incelemişlerdir.  

           D ⊂ �  ve { }nf , D  üzerinde tanımlı reel değerli fonksiyonların bir dizisi olsun. 

2.3.1. Tanım: Her 0ε >  ve her bir x D∈  için  

 

( ) ( ){ }nn : f x f x 0δ − ≥ ε =  
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 koşulu gerçekleniyorsa, bu durumda { }nf  dizisi f : D → �  fonksiyonuna D üzerinde 

“istatistiksel noktasal yakınsaktır” denir. Bu durum ( )nf f stat→  şeklinde gösterilir 

(Duman ve Orhan, 2004).  

2.3.2. Tanım: { }nf , D üzerinde sınırlı fonksiyonların bir dizisi olsun. Her 0ε >  için 

 

{ }n B(D)
n : f f 0δ − ≥ ε =  

 

ise, bu durumda { }nf  dizisi f : D →�  fonksiyonuna D üzerinde “istatistiksel düzgün 

yakınsaktır” denir. Bu durum ( )nf f stat⇒  şeklinde gösterilir (Duman ve Orhan, 2004). 

 

2.4. İstatistiksel Yakınsaklık Yardımıyla Bazı Yaklaşım Teoremleri 

 

           Bu kısımda yakınsaklıktan daha kuvvetli olan istatistiksel yakınsaklık kavramı 

yardımıyla 2002 yılında Gadjiev ve Orhan tarafından verilen Korovkin tipi yaklaşım 

teoremini vereceğiz. Daha sonra, 2003 yılında Duman tarafından A-istatistiksel 

yakınsaklık kavramı kullanılarak elde edilen periyodik fonksiyonlar uzayı üzerinde 

tanımlı pozitif lineer operatörler için Korovkin tipi yaklaşım  teoremi vereceğiz. 

2.4.1. Teorem: Eğer { }nA , [ ] [ ]nA : C a, b B a,b→  pozitif lineer operatörler dizisi 

 

( )
[ ]

i i
n

B a,b
st lim A t ; x x 0− − = , i=0,1,2 

 

koşullarını sağlıyor ise �  üzerinde sınırlı herhangi bir  [ ]f C a,b∈  fonksiyonu için  

 

( ) ( )
[ ]n B a,b

st lim A f; x f x 0− − =  

 

olur (Gadjiev ve Orhan, 2002). 

2.4.2. Teorem: ( )nkA a=  negatif olmayan regüler bir matris olsun. Eğer { }kL , 

* *
kL : C C→  pozitif lineer operatörler dizisi 
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( ) *A k C
st lim L 1; x 1 0− − = , 

( ) *A k C
st lim L cos t; x cos x 0− − = , 

( ) *A k C
st lim L sin t; x sin x 0− − = , 

 

koşullarını sağlıyor ise herhangi bir  *f C∈  fonksiyonu için  

 

( ) ( ) *A k C
st lim L f ; x f x 0− − =  

 

olur (Duman, 2003). 

 

2.5. Çift İndisli Dizilerin Pringsheim Anlamında Yakınsaklığı 

 

           Çift indisli dizilerin yakınsaklığı ilk olarak Pringsheim tarafından 1900 yılında 

tanımlandı. 

2.5.1. Tanım: { }m,nx x=  reel terimli bir çift indisli dizi olsun. x  dizisinin L  sayısına 

Pringsheim anlamında yakınsak (P-yakınsak) olması için gerekli ve yeterli koşul her 

0ε >  ve her m,n N>  için m,nx L− < ε  olacak şekilde en az bir ( )N N= ε ∈�  

sayısının var olmasıdır. Buradaki L sayısına x dizisinin P-limiti denir. Bu durum, 

P lim x L− =  ile gösterilir (Pringsheim, 1900).  

2.5.2. Tanım: { }m,nx x=  reel terimli bir çift indisli dizi olsun. Tüm ( ) 2m,n ∈�  için 

m,nx M<  olacak şekilde bir M 0>  sayısı var ise x dizisine sınırlıdır denir 

(Pringsheim, 1900). 

           Biliyoruz ki yakınsak her dizi sınırlıdır fakat P-yakınsak çift indisli dizilerin 

sınırlı olması gerekmez. Örneğin, genel terimi 

 

m,n

1 , m 1,

x m , n 2,

0 , diğer durumlarda,

=


= =


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olacak şekilde { }m,nx x=  dizisini tanımlayalım. P lim x 0− =  fakat bu dizi sınırlı 

değildir. 

 

2.6. Çift İndisli Dizilerin A- İstatistiksel Yakınsaklığı  

 

         2003 yılında Mursaleen ve Edely tarafından verilen, çift indisli diziler için 

istatistiksel yakınsaklık kavramını vermeden önce yoğunluk kavramını verelim.  

           E , 2 = ×� � �  nin bir alt kümesi ve ( ){ }m,nE : j m,k n : j, k E= ≤ ≤ ∈  olsun. 

2.6.1. Tanım: 2
�  nin bir E  alt kümesi için  

 

m,n
m,n

1
P lim E

mn
−  

 

limiti mevcut ise, bu limit değerine E  kümesinin “yoğunluğu” denir ve { }2 Eδ  ile 

gösterilir (Mursaleen ve Edely, 2003).  

       Örneğin; { }2 2 1δ =� , ( ){ }2 2 2m ,n : m, n 0δ ∈ =�  olduğu kolaylıkla görülebilir. 

Ayrıca; { }2 Eδ  ve { }2 2 Eδ � \  yoğunluklarından biri mevcut ise, bu durumda 

{ } { }2 2 2E 1 Eδ = − δ� \  olacaktır (Mursaleen ve Edely, 2003; Moricz, 2003). 

2.6.2. Tanım: { }m,nx x=  reel terimli bir çift indisli dizi olsun. Eğer her 0ε >  için 

  

( ){ }2 2
m,nm,n : x L 0δ ∈ − ≥ ε =�  

 

olacak şekilde bir L sayısı varsa x dizisi L sayısına “istatistiksel yakınsaktır” denir ve 

2st lim x L− =  ile gösterilir (Mursaleen ve Edely, 2003). 

           Şimdi çift indisli dizilerin istatistiksel yakınsaklık kavramı için bazı 

karakterizasyonlar hatırlatalım. 
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2.6.3. Teorem: { }m,nx x=  çift indisli dizisinin bir L sayısına istatistiksel yakınsak 

olması için gerekli ve yeterli koşul { }2 K 1δ =  ve 
( )

j,k
j,k
j,k K

P lim x L
→∞

∈

− =  olacak şekilde 

( ){ } 2K j,k : j, k= ∈ ⊆� �   alt kümesinin olmasıdır (Mursaleen ve Edely, 2003). 

           Şimdi çift indisli diziler için A-istatistiksel yakınsaklık kavramını hatırlatalım.  

2.6.4. Tanım: ( )j,k,m,nA : a=  4-boyutlu toplanabilme matrisi olsun. Verilen bir 

{ }m,nx x=  çift indisli dizisi için x dizisinin A-dönüşümü, her ( ) 2j, k ∈�  için, çift 

indisli seriler Pringsheim anlamında yakınsak olmak koşulu ile  

 

( )
( ) 2

j,k,m,n m,nj,k
m,n

Ax : a x
∈

= ∑
�

 

 

 şeklindedir ve ( )( )j,k
Ax : Ax=  ile gösterilir. 

           1926 yılında Robison 4-boyutlu matrislerin regülerliğini aşağıdaki gibi 

tanımlamıştır. Bu koşullar Robison-Hamilton koşulları veya RH-regülerlik olarak 

bilinir. 

           Bir ( )j,k,m,nA a=  4-boyutlu matrisinin RH-regüler olması için gerekli ve yeterli 

koşul sınırlı her { }m,nx x=  çift indisli dizisi için m,n
m,n

P lim x L− =  olduğunda  

( ) j,kj,k
P lim Ax L− =  olmasıdır.              

           ( )j,k,m,nA a=  4-boyutlu matrisinin RH-regüler olması için gerekli ve yeterli 

koşul aşağıdaki Robison-Hamilton koşullarının sağlanmasıdır: 

 

(i) Her bir ( ) 2m,n ∈�  için j,k,m,n
j,k

P lim a 0− = , 

(ii)
( )

j,k,m,n
j,k

m,n ²

P lim a 1
∈

− =∑
�

, 

(iii) her bir n ∈�  için j,k ,m,n
j,k

m

P lim a 0 
∈

− =∑
�

, 

(iv) her bir m ∈�  için j,k,m,n
j,k

n

P lim a 0 
∈

− =∑
�

, 
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(v) her ( ) 2j, k ∈�  için  
( )

j,k,m,n
m,n ²

a
∈

∑
�

, P-yakınsak, 

(vi) her ( ) 2j, k ∈�  için j,k,m,n
m,n B

a A 
>

<∑  olacak şekilde sonlu pozitif A ve B sayıları 

vardır. 

           Örneğin, 4-boyutlu Cesáro matrisi olarak adlandırılan ve ( ) ( )j,k,m,nC 1,1 c= ,  

 

j,k,m,n

1
, 1 m j,1 n k,

jkc

0 , diğer durumlarda,


≤ ≤ ≤ ≤

= 



 

 

şeklinde tanımlanan ( )C 1,1  4-boyutlu matrisi RH-regülerdir. 

           Ayrıca bir { }m,nx x=  çift indisli dizisinin L sayısına istatistiksel yakınsak olması 

demek 0∀ε >  için  

 

{ }j,k
m,n

1
P lim j m,k n : x L 0

mn
− ≤ ≤ − ≥ ε =   

 

olması demektir. 

           Buradan istatistiksel yakınsaklık tanımı, ( ) { }j,kK : K j m,k n : x L= ε = ≤ ≤ − ≥ ε  

ve Kχ , K  kümesinin karakteristik fonksiyonu olmak üzere her 0∀ε >  için  

 

( ) ( ) ( )
( )j,k

1 K Kj,kj,k j,k j,k
m,n 1

K
P lim C P lim m,n P lim 0

jkε
=

ε
− χ = − χ = − =∑  

 

şeklinde ifade edilebilir. 

           ( )j,k,m,nA a=  4-boyutlu negatif olmayan RH-regüler matris olsun. Şimdi 

2K  ⊂ �  kümesinin A-yoğunluğu tanımını verelim. 

2.6.5. Tanım:  2K  ⊂ �  alt kümesi için  
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( ) { }
( )

2
j,k,m,nA j,k

m,n K

K P lim a
∈

δ = − ∑  

 

limiti mevcut ise, bu limit değerine K  kümesinin “ A -yoğunluğu” denir.  

           Eğer, ( ) { }2
A Eδ  ve ( ) { }2 2

A \Eδ �  yoğunluklarından biri mevcut ise, bu durumda 

( ) { } ( ) { }2 2 2
A A\E 1 Eδ = − δ�  olacaktır. 

2.6.6. Tanım: { }m,nx x=  reel terimli bir çift indisli dizi olsun. Eğer her 0ε >  için  

 

( ) ( ){ }2 2
m,nA m,n : x L 0δ ∈ − ≥ ε =�  

 

olacak şekilde bir L sayısı varsa x dizisi L sayısına “A-istatistiksel yakınsaktır” denir. 

Bu durum ( )
2
Ast lim x L− =  ile gösterilir. 

           Ayrıca, yukarıdaki tanımda A=C(1,1)  alınırsa A-istatistiksel yakınsaklık, 

Mursaleen ve Edely tarafından verilen çift indisli dizilerin istatistiksel yakınsaklığı ile 

çakışır. Eğer A matrisi yerine 4-boyutlu birim matris alınırsa A-istatistiksel yakınsaklık 

Pringsheim anlamda yakınsaklığa indirgenir. 

           Pringsheim anlamda yakınsak her çift indisli dizinin, aynı sayıya A-istatistiksel 

yakınsak olduğu açıktır. Fakat tersi doğru değildir. Ayrıca A-istatistiksel yakınsak çift 

indisli dizilerin sınırlı olması gerekmez.  

2.6.7. Örnek: { }m,nx x=  çift indisli dizisinin genel terimi 

 

m,n

mn, m ve n tam kare,
x

0, diğer durumlarda,


= 


 

 

olsun. x  dizisi sınırlı bir çift indisli dizi değildir. Ayrıca, eğer ( )A C 1,1= , 4-boyutlu 

Cesáro matris, alınırsa 
( )( )

2
C 1,1

st lim x 0− =  elde edilir fakat bu x  dizisi Pringsheim 

anlamda yakınsak değildir. 

           Şimdi çift indisli dizilerin A-istatistiksel yakınsaklık kavramı için bazı 

karakterizasyonlar hatırlatalım. 
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2.6.8. Teorem: { }m,nx x=  çift indisli dizisinin bir L sayısına A-istatistiksel yakınsak 

olması için gerekli ve yeterli koşul ( ) { }2
A K 1δ =  ve 

( )

j,k
j,k
j,k K

P lim x L
→∞

∈

− =  olacak şekilde 

( ){ } 2K j,k : j, k= ∈ ⊆� �   alt kümesinin olmasıdır. 

 

2.7. Bögel-sürekli (B-sürekli) ve B- 2π -periyodik Fonksiyonlar  

 

           Bögel-süreklilik (B-süreklilik) kavramı ilk olarak K. Bögel tarafından verildi 

(Bögel, 1934, 1935, 1962). 

           Kabul edelim ki X  ve Y  reel sayılar kümesinin kompakt iki alt kümesi, 

D X Y= ×  ve f : D →�  bir fonksiyon olsun. Ayrıca, ( )x,y f u, v∆     sembolü f  

fonksiyonunun  

 

( ) ( ) ( ) ( ) ( )x,y f u, v f u, v f x, v f u, y f x, y∆ = − − +    

 

ile verilen karışık farkını göstersin. 

2.7.1. Tanım: f : D → �  fonksiyonunun ( )x, y D∈  noktasında B-sürekli olması için 

gerekli ve yeterli koşul her 0ε >  ve u x− < δ  ve v y− < δ  sağlayan herhangi 

( )u, v D∈  için ( )x,y f u, v∆ < ε     olacak şekilde en az bir ( ) 0δ = δ ε >  sayısı var  

olmasıdır. Yani 
( ) ( )

( )x,y
u,v x,y

lim f u, v 0
→

∆ =    olmasıdır (Bögel, 1934, 1935, 1962).  

           ( )bC D  ile D  üzerinde tanımlı reel değerli tüm B-sürekli fonksiyonların uzayını 

gösterelim. Ayrıca ( ) ( )bC D C D⊂  yani sürekli her fonksiyon B-süreklidir. Fakat tersi 

doğru değildir.  

2.7.2. Örnek: [ ] [ ]D 0,1 0,1= ×  olmak üzere f : D →�  fonksiyonunu 

 

( )
0, u 0 0, v 0

f u, v 1 1
, u 0 , v 0

u v

= = 
 

= + 
≠ ≠  
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olacak şekilde tanımlayalım. f  sınırsız bir fonksiyon olup ( )x,y f u, v 0∆ =    olduğu 

kolayca görülebilir. Ayrıca f  fonksiyonu sürekli değildir. 

           1986 yılında C. Badea, I. Badea ve H.H. Gonksa, sürekli fonksiyonların uzayını 

kapsayan B-sürekli fonksiyonların uzayını kullanarak Korovkin tipi yaklaşım teoremi  

ispatladı. 

           ( )0e x, y 1= , ( )1e x, y x= , ( )2e x, y y= , ( ) 2 2
3e x, y x y= +  ve 

( ) ( ) ( ) ( )x,yF u, v f u, y f x, v f u, v= + −  olsun. Ayrıca, tüm ( ) ( )u, v , x, y D∈  için  

 

( ) ( ) ( ) ( ) ( )x,y x,y x,y x,y x,y x,yF u, v F u, v F x, v F u, y F x, y ∆ = − − +   

                           = ( ) ( ) ( ) ( ) ( ) ( ) ( )f u, y f x, v f u, v f x, y f x, v f x, v f u, y+ − − − + −  

                            ( ) ( ) ( ) ( ) ( )f x, y f u, y f x, y f x, y f x, y− + + + −  

                           = ( ) ( ) ( ) ( )f u, v f x, v f u, y f x, y− + + −  

                           = ( )x,y f u, v−∆     

 

olup, sabit ( )x, y D∈  için f nin B-sürekliliği (
( ) ( )

( )x,y
u,v x,y

lim f u, v 0
→

∆ =   ) x,yF  nin B-

sürekliliğini (
( ) ( )

( )x,y x,y
u,v x,y

lim F u, v 0
→

 ∆ =  ) sağlar. 

           Şimdi bize gerekli olan C. Badea, I. Badea ve H.H. Gonksa tarafından ispatlanan 

bir Lemma verelim. 

2.7.3. Lemma: ( )bf C D∈  ise her 0ε >  ve tüm ( ) ( )u, v , x, y D∈  için  

 

( ) ( )( ) ( )( )
2 2

x,y f u, v A u x B v y
3

ε
∆ ≤ + ε − + ε −    

 

olacak şekilde ( ) ( ) ( ) ( )A A ,f ,B B ,f 0ε = ε ε = ε >  sayıları vardır (Badea ve ark., 1986). 

2.7.4. Teorem: ( ) ( )m,n bL : C D B D→  pozitif lineer operatör olsun. Aşağıdaki 

koşulların sağlandığını kabul edelim: 
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(i) Tüm ( )x, y D∈  ve ( ) 2m,n ∈ = ×� � �  için ( ) ( )m,n 0 0L e ;x, y e x, y= , 

(ii) ( ) ( ) ( )m,n 1 1 m,nL e ;x, y e x, y u x, y= + , 

(iii) ( ) ( ) ( )m,n 2 2 m,nL e ;x, y e x, y v x, y= + , 

(iv) ( ) ( ) ( )m,n 3 3 m,nL e ; x, y e x, y w x, y= + . 

 

Eğer m, n → ∞  için  

 

m,n B(D)
P lim u 0− = , m,n B(D)

P lim v 0− = , m,n B(D)
P lim w 0− =  

 

ise herhangi bir ( )bf C D∈  fonksiyonu için m, n → ∞  gittiğinde 

 

( )m,n x,y
B(D)

P lim L F f 0− − =  

 

olur (Badea ve ark., 1986). 

           C. Badea, I. Badea, C. Cottin ve H.H. Gonksa 1988 yılında 

( ) ( )m,n bL : C D B D→  pozitif lineer operatörler için, karışık B-süreklilik modülünü 

kullanarak yakınsaklık oranını hesaplamıştır (Badea ve ark., 1988). İlk olarak karışık B-

süreklilik modülünü hatırlatalım. 

           ( )bf C D∈  için karışık B-süreklilik modülü 

 

{ }m 1 2 x,y 1 2 1 2(f; , ):=sup | [f(u,v)]|: u-x , v y , ( , 0)ω δ δ ∆ ≤ δ − ≤ δ δ δ ≥  

 

şeklinde tanımlıdır. 

2.7.5. Teorem: ( ) ( )m,n bL : C D B D→  pozitif lineer operatör olsun. Tüm ( )x, y D∈  ve 

( ) 2m,n ∈�  için ( ) ( )m,n 0 0L e ;x, y e x, y=  olmak üzere 

 

( ) ( ) ( )( ) ( )( )2 2

m,n x,y m,n m,n
1 2

1 1
L F ;x, y f x, y 1 L u x ;x, y L v y ; x, y


− ≤ + − + −

δ δ
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                                     ( )( ) ( )( )2 2

m,n m,n m 1 2
1 2

1
L u x ;x, y L v y ;x, y (f; , )


+ − − ω δ δ

δ δ 
 

 

olur (Badea ve ark., 1988). 

2.7.6. Tanım: 2f : →� �  fonksiyonunun B- 2π-periyodik olması için gerekli ve yeterli 

koşul her ( ) ( ) 2x, y , u, v ∈�  için ( ) ( )x,y x,yf u 2 , v 2 f u, v∆ + π + π = ∆        olmasıdır 

(Bögel, 1934, 1935, 1962). 

           2B π  ile 2
�  üzerinde tanımlı reel değerli tüm B- 2π -periyodik ve B-sürekli 

fonksiyonların uzayını, 2 ,2C π π  ile de reel değerli tüm iki değişkenli sürekli ve her iki 

değişkene göre 2π -periyodik olan fonksiyonların uzayını gösterelim. Buradan 

2 ,2 2C Bπ π π⊂  olur. Fakat tersi doğru değildir.  

2.7.7. Örnek: 2f : →� �  fonksiyonunu, uk ∈�  olmak üzere ( ) )u uu 2k ,2 k 1∈ π + π  

için 

 

( ) ( )u uf u, v u 2k sin v 2k= − π + π  

 

olacak şekilde tanımlayalım. ( ) ( ) 2x, y , u, v∀ ∈�  için 

 

( ) ( ) ( ) ( )x x x xf x, y f x, v x 2k sin y 2k x 2k sin v 2k− = − π + π − − π + π  

                           ( )( )xx 2k sin y sin v= − π −  

                           ( )( )( )xx 2 2 k 1 sin y sin v= + π − + π −  

                           ( )( ) ( )x xx 2 2 k 1 sin y 2 k 1= + π − + π + + π  

                           ( )( ) ( )x xx 2 2 k 1 sin v 2 k 1− + π − + π − + π  

                           ( ) ( )f x 2 , y f x 2 , v= + π − + π  

 

elde edilir. Benzer şekilde ( ) ( ) ( ) ( )f u, v f u, y f u 2 , v f u 2 , y− = + π − + π  bulunur. f 

fonksiyonu ikinci değişkene göre 2π -periyodik olduğundan 
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( ) ( )x,y x,yf u 2 , v 2 f u, v∆ + π + π = ∆        elde edilir. Bu ise f  fonksiyonun B- 2π -

periyodik olduğunu gösterir. Ayrıca  

 

( ) ( ) ( ) ( ) ( )x,y f u, v f u, v f x, v f u, y f x, y∆ = − − +    

                        ( )( ) ( )( )x u u ux 2k sin y sin v u 2k sin y sin v 2k 2k= − π − − − π − − π + π  

                        ( )( ) ( )( )u xu 2k sin y sin v x 2k sin y sin v= − π − − − π −  

                        ( )( )( )u xu x 2 k k sin y sin v= − − − π −  

 

olup 
( ) ( )

( )x,y
u,v x,y

lim f u, v 0
→

∆ =    elde edilir. Bu ise f fonksiyonunun B-sürekli, yani 

2f B π∈  olduğunu gösterir. Fakat f fonksiyonu 1. değişkene göre 2π -periyodik 

olmadığından 2 ,2f C π π∉  olur. 

           1988 yılında B- 2π -periyodik ve B-sürekli fonksiyonlar için C. Badea, I. Badea 

ve C. Cottin, Korovkin tipi yaklaşım teoremi ispatladı. 

           ( )0f x, y 1= , ( )1f x, y sin x= , ( )2f x, y sin y= , ( )3f x, y cos x= , ( )4f x, y cos y=  

ve ( ) ( ) ( ) ( )x,yF u, v f u, y f x, v f u, v= + −  olsun. Ayrıca, tüm ( ) ( ) 2u, v , x, y ∈�  için  

 

( ) ( )x,y x,y x,yF u, v f u, v ∆ = −∆      

 

olduğundan sabit ( ) 2x, y ∈�  için f fonksiyonunun B-sürekliliği ve B- 2π -periyodikliği, 

x,yF  nin B-sürekliliği ve B- 2π -periyodikliğini sağlar. 

           Şimdi bize gerekli olan C. Badea, I. Badea ve C. Cottin tarafından ispatlanan bir 

Lemma verelim. 

2.7.8. Lemma: 2f B π∈  ise her 0ε >  ve tüm ( ) ( ) 2u, v , x, y ∈�  için 

 

( ) ( ) ( )2 2
x,y

u x v y
f u, v A sin B sin

3 2 2

ε − −
∆ ≤ + ε + ε    

 

olacak şekilde ( ) ( ) ( ) ( )A A ,f ,B B ,f 0ε = ε ε = ε >  sayıları vardır (Badea ve ark., 1988). 
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2.7.9. Teorem: ( )2
m,n 2L : B Bπ → �  pozitif lineer operatör olsun. Aşağıdaki koşulların 

sağlandığını kabul edelim:  

 

(i) Tüm ( ) 2x, y ∈�  ve ( ) 2m,n ∈�  için ( ) ( )m,n 0 0L f ;x, y f x, y= , 

(ii)  ( ) ( ) ( )m,n 1 1 m,nL f ;x, y f x, y u x, y= + , 

(iii) ( ) ( ) ( )m,n 2 2 m,nL f ;x, y f x, y v x, y= + , 

(iv) ( ) ( ) ( )m,n 3 3 m,nL f ;x, y f x, y t x, y= + , 

(v)  ( ) ( ) ( )m,n 4 4 m,nL f ;x, y f x, y w x, y= + . 

 

Eğer m, n → ∞  için  

 

( )2m,n B
P lim u 0− =

�
, 

( )2m,n B
P lim v 0− =

�
, 

( )2m,n B
P lim t 0− =

�
, 

( )2m,n B
P lim w 0− =

�
 

 

ise herhangi bir 2f B π∈  fonksiyonu için m, n → ∞ gittiğinde 

 

( )
( )2m,n x,y B

P lim L F f 0− − =
�

 , 

 

olur (Badea ve ark., 1988). 

           Cottin, 1992 yılında ( )2
m,n 2L : B Bπ → �  pozitif lineer operatörler için karışık B-

süreklilik modülünü kullanarak yakınsaklık oranını hesaplamıştır.  

2.7.10. Teorem: ( )2
m,n 2L : B Bπ → �  pozitif lineer operatör olsun. Tüm ( ) 2x, y ∈�  ve 

( ) 2m,n ∈�  için ( ) ( )m,n 0 0L f ;x, y f x, y=  olmak üzere 

 

( ) ( ) 2 2
m,n x,y m,n m,n

1 2

u x v y
L F ;x, y f x, y 1 L sin ;x, y L sin ;x, y

2 2

 π − π −    
− ≤ + +    

δ δ   
 

                                           
2

2 2
m,n m 1 2

1 2

u x v y
L sin sin ;x, y (f; , )

2 2

π − −  
+ ω δ δ 

δ δ  
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olur (Cottin, 1992).              

           B-süreklilik kavramı ilk olarak K. Bögel tarafından verilmiştir ve daha sonra bu 

kavram D. Bărbosu tarafından n-değişkenli fonksiyonlar için genişletilmiştir (Bărbosu, 

2001). 

           Kabul edelim ki X  reel sayılar kümesinin kompakt bir alt kümesi, nD X=  ve 

f : D →�  bir fonksiyon olsun. Ayrıca [ ]
1 2 ns ,s ,...s 1 2 nf ; x , x ,..., x∆  sembolü, f  

fonksiyonunun  

 

[ ] ( ) ( )
1 2 n

n

s ,s ,...s 1 2 n 1 2 n 1 i 1 i i 1 n
i 1

f ; x , x ,..., x f s ,s ,...,s f x ,.., x ,s , x ,.., x− +
=

∆ = −∑  

                            ( ) ( ) ( )
n

n

1 i 1 i i 1 j 1 j j 1 n 1 2 n
i, j 1

f x ,.., x ,s , x ,..., x ,s , x ,.., x ... 1 f x , x ,..., x− + − +
=

+ − + −∑  

 

ile verilen karışık farkını göstersin. 

2.7.11. Tanım: f : D →�  fonksiyonunun ( )1 2 nx , x ,..., x D∈  noktasında B-sürekli 

olması için gerekli ve yeterli koşul  

 

( ) ( )
[ ]

1 2 n
1 2 n 1 2 n

s ,s ,...s 1 2 n
s ,s ,...s x ,x ,...,x

lim f ; x , x ,..., x 0
→

∆ =  

 

olmasıdır (Bărbosu, 2001).  

           ( )bC D  ile D  üzerinde tanımlı reel değerli tüm B-sürekli fonksiyonların uzayını 

gösterelim. Ayrıca ( ) ( )bC D C D⊂ , yani sürekli her fonksiyon B-süreklidir. Fakat tersi 

doğru değildir. Karşıtının doğru olmadığı n 2=  için 2.7.2. Örnekten görülebilir. 

            Son olarak bize gerekli olan D. Bărbosu tarafından ispatlanan bir Lemma 

verelim. 

2.7.12. Lemma: ( )bf C D∈  ise her 0ε >  ve  tüm ( )1 2 ns ,s ,...,s D∈  için  

 

[ ] ( )( )
1 2 n

n
2

s ,s ,...s 1 2 n i i i
i 1

f ; x , x ,..., x A s x
n 1 =

ε
∆ ≤ + ε −

+
∑  

 

olacak şekilde ( )i iA A 0= ε > , i 1,..., n=  sayıları vardır (Bărbosu, 2001). 
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           2001 yılında D. Bărbosu tarafından verilen, n
�  uzayının kompakt bir alt kümesi 

üzerinde tanımlı n-değişkenli B-sürekli fonksiyonlar uzayı üzerinde tanımlı n-indisli 

pozitif lineer operatörler için Korovkin tipi yaklaşım teoremini verelim. 

            n
� , n pozitif bir tamsayı olmak üzere, jm  koordinatları için negatif olmayan 

tamsayıların ( )1 2 nm ,m ,...,m=m  n-lilerinin kümesi ve ( )0 1 2 ne s ,s ,...,s 1= , 

( )i 1 2 n ie s ,s ,...,s s= , i 1,..., n= , ( )1 2 ns ,s ,...,s D∈  olsun.  

2.7.13. Teorem: ( ) ( )bL : C D B D→m  pozitif lineer operatör olsun. Kabul edelim ki 

aşağıdaki koşullar sağlansın: 

(i) Tüm ( )1 2 nx , x ,..., x D∈  ve n∈m �  için ( ) ( )0 1 2 n 0 1 2 nL e ;x , x ,..., x e x , x ,..., x=m , 

(ii) ( ) ( ) ( ) ( )i
i 1 2 n i 1 2 n 1 2 nL e ;x , x ,..., x e x , x ,..., x u x , x ,..., x= +m m , i 1,..., n= , 

(iii) ( ) ( )
n n

2 2
i 1 2 n i 1 2 n 1 2 n

i 1 i 1

L e ;x , x ,..., x e x , x ,..., x v x , x ,..., x
= =

 
= + 

 
∑ ∑m m , 

 

Eğer jmin m → ∞  için  

 

( )i

B(D)
lim u 0=m , i 1,..., n=  ve  

B(D)
lim v 0=m  

 

ise herhangi bir ( )bf C D∈  fonksiyonu için, jmin m → ∞  gittiğinde 

 

( ) [ ]( ) ( )1 2 n .,..,. 1 2 n 1 2 n 1 2 n B(D)
lim L f x , x ,..., x f ; x , x ,..., x ;x , x ,..., x f x , x ,..., x 0− ∆ − =m   

 

olur (Bărbosu, 2001). 
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3. MATERYAL VE YÖNTEMLER 

 

           Bulgular kısmının ilk bölümünde, çift indisli dizilerin A-istatistiksel yakınsaklık 

kavramı yardımı ile C. Badea, I. Badea ve H.H. Gonksa (1986) çalışmasındaki 

yöntemler kullanılarak Korovkin tipi yaklaşım teoremi elde edildi. Ayrıca Korovkin tipi 

yaklaşım teoreminin A-istatistiksel yakınsaklık oranı hesaplandı.  

           Bu bölümün ikinci kısmında C. Badea, I. Badea ve C. Cottin (1988) 

çalışmasındaki yöntemler kullanılarak çift indisli dizilerin A-istatistiksel yakınsaklık 

kavramı yardımı ile 2B π  uzayı üzerinde Korovkin tipi yaklaşım teoremi ispatlandı. Bu 

teorem için A-istatistiksel yakınsaklık oranı hesaplandı. 

           Bu bölümün son kısmında D. Bărbosu (2001) çalışmasındaki yöntemler 

kullanılarak n-indisli dizilerin istatistiksel yakınsaklığı kavramı kullanılarak Korovkin 

tipi yaklaşım teoremi elde edildi. 
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4. BULGULAR 

 

4.1. Pozitif Lineer Operatörler Yardımıyla B-sürekli Fonksiyonlar için A-

İstatistiksel Anlamda Yaklaşım  

 

           Bu bölümünde, çift indisli dizilerin A-istatistiksel yakınsaklık tanımını 

kullanarak, C. Badea, I. Badea ve H.H. Gonksa tarafından verilen Korovkin tipi 

yaklaşım teoreminden daha kuvvetli sonuçlar elde edeceğiz. Ayrıca, verdiğimiz 

teoremin daha kuvvetli olduğuna dair bir örnek verip, verdiğimiz teorem için A-

istatistiksel yakınsaklık oranını hesaplayacağız. 

4.1.1. Teorem: ( )j,k,m,nA a=  4-boyutlu negatif olmayan RH-regüler matris ve 

( ) ( )m,n bL : C D B D→  pozitif lineer operatör olsun. Aşağıdaki koşulların sağlandığını 

kabul edelim: 

(i)  ( ) ( ) ( ) ( ){ }2
m,n 0 0K : m,n : tüm x, y D için L e ; x, y e x, y= ∈ ∈ =�  olmak üzere  

 

( ) { }
( )

2
j,k,m,nA j,k

m,n K

K P lim a 1
∈

δ = − =∑  

 

(ii) ( )1e x, y x= , ( )2e x, y y= , ( ) 2 2
3e x, y x y= +  olmak üzere 

( ) ( )2
m,n i iA B(D)

st lim L e e 0− − = , i 1, 2,3.=  

Bu durumda herhangi bir ( )bf C D∈  fonksiyonu için,  

 

( ) ( )2
m,n x,yA B(D)

st lim L F f 0− − =  

 

olur. 

İspat: ( )bf C D∈  ve ( )x, y D∈  sabit olsun.  

 

( ) ( ) ( ) ( ){ }2
m,n 0 0K : m,n : tüm x, y D için L e ; x, y e x, y= ∈ ∈ =�  

 

olmak üzere (i) ifadesinden 
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( ) { }2 2
A \K 0δ =�                                                                                                          (4.1.1) 

 

elde edilir. 2.7.3. Lemmadan x,yF  fonksiyonunun B-sürekliliğinden her ( )u, v D∈  için 

 

( ) ( )( ) ( )( )
2 2

x,y x,yF u, v A u x B v y
3

ε
 ∆ ≤ + ε − + ε −                                                 (4.1.2) 

 

olacak şekilde ( ) ( )A ,B 0ε ε >  sayıları vardır.  Ayrıca tüm ( )m,n K∈  için  

 

( ) ( ) ( )m,n x,y m,n x,y m,n 0L F ; x, y f (x, y) L F ; x, y f (x, y)L e ; x, y− = −  

                                      ( )m,n x,yL F (u, v) f (x, y); x, y= −  

                                      ( )( )m,n x,yL f u, v ;x, y= −∆     

                                      ( )( )m,n x,y x,yL F u, v ;x, y = ∆                                                (4.1.3) 

 

olur. Bu durumda tüm ( )m,n K∈  için m,nL  nin lineerliliği ve monotonluğundan  

 

( ) ( )( )m,n x,y m,n x,y x,yL F ;x, y f (x, y) L F u, v ;x, y − = ∆    

                                      ( )( )m,n x,y x,yL F u, v ;x, y ≤ ∆    

                                      ( )( ) ( )( )
2 2

m,nL A u x B v y ; x, y
3

ε 
≤ + ε − + ε − 

 
 

                                     ( ) ( ) ( )( )2

m,n 0 m,nL e ; x, y A L u x ; x, y
3

ε
= + ε −  

                                     ( ) ( )( )2

m,nB L v y ;x, y+ ε −  

                                     ( ) ( ) ( ){ }2 2
m,n m,nA L u ;x, y 2xL u;x, y x

3

ε
= + ε − +  

                                     ( ) ( ) ( ){ }2 2
m,n m,nB L v ;x, y 2yL v;x, y y+ ε − +                        

 

elde edilir. ( ) ( ) ( ){ }C max A , Bε = ε ε  olmak üzere tüm ( )m,n K∈  için  
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( ) ( ) ( ){ ( )2 2
m,n x,y m,n m,nL F ; x, y f (x, y) C L u ; x, y 2xL u; x, y x

3

ε
− ≤ + ε − +  

                                          ( ) ( ) }2 2
m,n m,nL v ;x, y 2yL v;x, y y+ − +  

                                      ( ) ( ) ( ){ m,n 3 3C L e ;x, y e x, y
3

ε
 = + ε −   

                                      ( ) ( ) ( ) ( ) }m,n 2 2 m,n 1 12y L e ;x, y e x, y 2x L e ;x, y e x, y   − − − −                                     

 

bulunur. Son eşitsizlikten tüm ( )m,n K∈  için 

 

( ) ( ) ( ) ( )
3

m,n x,y m,n i i
i 1

L F ; x, y f (x, y) C L e ; x, y e x, y
3 =

ε
− ≤ + ε −∑                               (4.1.4) 

 

elde edilir.  (4.1.4) eşitsizliğinin her iki yanından ( )x, y D∈  üzerinden supremum 

alınırsa tüm ( )m,n K∈  için 

 

( )
( )

( ) ( )
( )

3

m,n x,y m,n i i B DB D
i 1

L F f C L e e
3 =

ε
− ≤ + ε −∑                                                  (4.1.5) 

 

bulunur. Şimdi verilen bir r 0>  için 0ε >  sayısını 3rε <  olacak şekilde seçelim. 

Buradan 

 

( ) ( )
( ){ }2

m,n x,y B D
U : m,n : L F f r= ∈ − ≥�  

( ) ( )
( ) ( )

2
i m,n i i B D

3r
U : m, n : L e e

9C

 − ε 
= ∈ − ≥ 

ε  
� , i 1, 2,3.=  

 

kümelerini tanımlayalım. Böylece (4.1.5) eşitsizliğinden  

 

3

i
i 1

U K U K
=

∩ ⊂ ∩∪  
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elde edilir. Bu ise tüm ( ) 2j, k ∈�  için 

 

( ) ( ) ( )i i

3 3

j,k,m,n j,k,m,n j,k,m,n
m,n U K i 1 m,n U K i 1 m,n U

a a a
∈ ∩ = ∈ ∩ = ∈

≤ ≤∑ ∑ ∑ ∑ ∑                                              (4.1.6) 

 

olduğunu gösterir. Şimdi (4.1.6) eşitsizliğinde j, k → ∞  için limit alınırsa ve ayrıca (ii) 

den 

 

( )
j,k,m,n

j,k
m,n U K

P lim a 0
∈ ∩

− =∑                                                                                          (4.1.7)  

 

olduğu kolayca elde eldir. Buradan 

 

( ) ( ) ( ) ( )2
j,k,m,n j,k,m,n j,k,m,n

m,n U m,n U K m,n U \K

a a a
∈ ∈ ∩ ∈ ∩

= +∑ ∑ ∑
�

 

                    
( ) ( ) 2

j,k,m,n j,k,m,n
m,n U K m,n \K

a a
∈ ∩ ∈

≤ +∑ ∑
�

                                                      

 

eşitsizliği kullanılır ve j, k → ∞  için limit alınırsa (4.1.1) ve (4.1.7) ifadelerinden 

 

( )
j,k,m,n

j,k
m,n U

P lim a 0
∈

− =∑  

 

yani  

 

( ) ( )2
m,n x,yA B(D)

st lim L F f 0− − =  

 

olduğu elde edilir. Bu ise ispatı tamamlar. 

4.1.2. Uyarı: Bazı ( )bf C D∈  fonksiyonlarının D kompakt kümesi üzerinde sınırlı 

olmayabileceği biliniyor. Ama 4.1.1. Teoremdeki  

 

( )m,n x,y
B(D)

L F f−  
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ifadesi K, (i) de verilen küme olmak üzere (i), (4.1.2) ve (4.1.3) den her bir ( )m,n K∈  

için sonludur. 

4.1.3. Uyarı: 4.1.1. Teoremdeki A matrisi, 4-boyutlu birim matris ile yer değiştirilirse 

2.7.4. Teorem elde edilir. 

          Şimdi 4.1.1. Teoremde elde edilen A-istatistiksel sonucun, 2.7.4. Teoremdeki 

klasik sonuçtan daha kuvvetli olduğunu göstermek için bir örnek verelim.  

4.1.4. Örnek:  [ ] [ ]D 0,1 0,1= ×  olmak üzere ( )bf C D∈  için  

 

( ) ( ) ( )
m n

m s n ts t
m,n

s 0 t 0

m ns t
B f ;x, y f , x 1 x y 1 y

s tm n
− −

= =

   
= − −   

   
∑∑  

 

ile verilen çift indisli Bernstein operatörünü göz önüne alalım. Ayrıca 

 

( ) ( ) ( )
m n

m s n ts t
m,n 0

s 0 t 0

m n
B e ;x, y x 1 x y 1 y

s t
− −

= =

  
= − −  

  
∑∑  

                     ( ) ( )
m n

m s n ts t

s 0 t 0

m n
x 1 x y 1 y

s t
− −

= =

   
= − −   

   
∑ ∑             

                     ( ) ( ) ( )
m n

0x 1 x y 1 y e x, y= + − + − =   

( ) ( ) ( )
m n

m s n ts t
m,n 1

s 0 t 0

m ns
B e ;x, y x 1 x y 1 y

s tm
− −

= =

  
= − −  

  
∑∑  

                      ( ) ( )
m n

m s n ts t

s 0 t 0

m ns
x 1 x y 1 y

s tm
− −

= =

   
= − −   

   
∑ ∑  

                      
( )

( ) ( )
m

m s ns

s 0

s m.(m 1)!
x 1 x y 1 y

m m s !s.(s 1)!
−

=

−
= − + −

− −
∑  

                      
( )

( )
m

m ss 1

s 1

(m 1)!
x x 1 x

m s !(s 1)!
−−

=

−
= −

− −
∑  

                      
( )

( ) ( ) ( )
m 1

m 1 s m 1s
1

s 0

(m 1)!
x x 1 x x x 1 x e x, y

m 1 s !s!

−
− − −

=

−
= − = + − =

− −
∑   

( ) ( ) ( )
m n

m s n ts t
m,n 2

s 0 t 0

m nt
B e ;x, y x 1 x y 1 y

s tn
− −

= =

  
= − −  

  
∑∑  
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                      ( ) ( )
m n

m s n ts t

s 0 t 0

m nt
x 1 x y 1 y

s tn
− −

= =

   
= − −   

   
∑ ∑  

                      ( )
( )

( )
n

m n tt

t 0

t n.(n 1)!
x 1 x y 1 y

n n t !t.(t 1)!
−

=

−
= + − −

− −
∑  

                      
( )

( )
n

n tt 1

t 1

(n 1)!
y y 1 y

n t !(t 1)!
−−

=

−
= −

− −
∑  

                      
( )

( ) ( ) ( )
n 1

n 1 t n 1t
2

t 0

(n 1)!
y y 1 y y y 1 y e x, y

n 1 t !t!

−
− − −

=

−
= − = + − =

− −
∑  

( ) ( ) ( )
2 2m n

m s n ts t
m,n 3

s 0 t 0

m ns t
B e ; x, y x 1 x y 1 y

s tm n
− −

= =

       
= + − −      

        
∑∑  

                       ( ) ( )
2m n

m s n ts t

s 0 t 0

m ns
x 1 x y 1 y

s tm
− −

= =

   
= − −   

    
∑∑  

                         ( ) ( )
2m n

m s n ts t

s 0 t 0

m nt
x 1 x y 1 y

s tn
− −

= =

   
+ − −   

    
∑∑         

                       
( )

( ) ( )
m 1

m 1 s ns

s 0

m 1 !s 1
x x 1 x y 1 y

m (m 1 s)!s!

−
− −

=

−+
= − + −

− −
∑                                                                                         

                         ( )
( )

( )
n 1

m n 1 tt

t 0

n 1 !t 1
x 1 x y y 1 y

n (n 1 t)!t!

−
− −

=

−+
+ + − −

− −
∑                              

                       
( )

( )
( )

( )
m 1 m 1

m 1 s m 1 ss s

s 0 s 0

m 1 ! m 1 !s 1
x x 1 x x x 1 x

m (m 1 s)!s! m (m 1 s)!s!

− −
− − − −

= =

− −
= − + −

− − − −
∑ ∑                                                                                                                                    

                         
( )

( )
( )

( )
n 1 n 1

n 1 t n 1 tt t

t 0 t 0

n 1 ! n 1 !t 1
y y 1 y y y 1 y

n (n 1 t)!t! n (n 1 t)!t!

− −
− − − −

= =

− −
+ − + −

− − − −
∑ ∑           

                       
( )

( ) ( )
m 1

m 1 s m 12 s 1

s 1

m 2 !m 1 x
x x 1 x x 1 x

m (m 1 s)!(s 1)! m

−
− − −−

=

−−
= − + + −

− − −
∑  

                         
( )

( ) ( )
n 1

n 1 t n 12 t 1

t 1

n 2 !n 1 y
y y 1 y y 1 y

n (n 1 t)!(t 1)! n

−
− − −−

=

−−
+ − + + −

− − −
∑  

                       ( ) ( )
m 2 n 22 2m 1 x n 1 y

x x 1 x y y 1 y
m m n n

− −− −
= + − + + + − +   
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                       ( )
2 2

2 2
3

m 1 x n 1 y x x y y
x y e x, y

m m n n m n

− − − −
= + + + = + +      

 

olur. Böylece { }m,nB  operatörler dizisi 2.7.4. Teoremin koşullarını sağlar. Buradan 

herhangi bir ( )bf C D∈  için 

 

( )m,n x,y
B(D)

P lim B F f 0− − =  

 

gerçeklenir. Şimdi A C(1,1)=  matrisini ve genel terimi 

 

m,n

1, m ve n tam kare ise,
x

0, diğer durumlarda,


= 


 

 

olacak şekilde { }m,nx x=  çift indisli dizisini alalım. Bu durumda 
( )( )

2

C 1,1
st lim x 0− =  

olur. Ayrıca x çift indisli dizisi P-yakınsak değildir. 

( ) ( ) ( ) ( )x,yF u, v f u, y f x, v f u, v= + −  olmak üzere ( )bf C D∈  için 

 

( ) ( ) ( )
m n

m s n ts t
m,n x,y

s 0 t 0

m ns t
H f ;x, y F , x 1 x y 1 y

s tm n
− −

= =

   
= − −   

   
∑∑  

 

operatörünü göz önüne alalım. Şimdi ( )bC D  üzerinde,  

 

( )m,n m,n m,nL (f ; x, y) 1 x H (f ; x, y)= + .                                                                     (4.1.8) 

 

pozitif lineer operatörünü tanımlayalım. Basit hesaplamalar ile  

 

( )m,n 0 m,nL e ;x, y 1 x= + , 

( ) ( ) ( )m,n 1 m,n 1L e ; x, y 1 x e x, y= + , 
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( ) ( ) ( )m,n 2 m,n 2L e ; x, y 1 x e x, y= + , 

( ) ( ) ( )
2 2

m,n 3 m,n 3

x x y y
L e ;x, y 1 x e x, y

m n

 − −
= + + + 

 
, 

 

elde edilir.  Şimdi de 4.1.1. Teoremin koşullarının sağlandığını gösterelim: 

(i) 
( )( ) ( ){ }2

C 1,1
m,n : m,n , tam kare 0δ ∈ =�  olduğundan  

( ) ( ) ( ) ( ){ }2
m,n 0 0K : m,n : tüm x, y D için L e ; x, y e x, y= ∈ ∈ =�  olmak üzere 

( ) { }2
C(1,1) K 1δ =  olur. 

(ii) ( ) ( ) ( ) ( )m,n 1 1 m,n 1 1 m,n 1 m,nB(D)
x D x D

L e e sup L e ;x, y e x, y sup x e x, y x
∈ ∈

− = − = = , 

      ( ) ( ) ( ) ( )m,n 2 2 m,n 2 2 m,n 2 m,nB(D)
x D x D

L e e sup L e ;x, y e x, y sup x e x, y x
∈ ∈

− = − = = , 

      ( ) ( ) ( )m,n 3 3 m,n 3 3B(D)
x D

L e e sup L e ;x, y e x, y
∈

− = −  

                                  ( ) ( ) ( )
2 2

m,n 3 3
x D

x x y y
sup 1 x e x, y e x, y

m n∈

 − −
= + + + − 

 
 

                                 ( )
2 2 2 2

m,n 3
x D

x x y y x x y y
sup x e x, y

m n m n∈

 − − − −
= + + + + 

 
 

                                 ( )
2 2

m,n 3
x D x D x D

x x y y
sup sup sup x e x, y

m n∈ ∈ ∈

− −
≤ + +  

                                    
2 2

m,n m,n
x D x D

x x y y
sup x sup x

m n∈ ∈

− −
+ +  

                                  m,n m,n m,n

1 1 1 1
2x x x

2m 2n 2m 2n
= + + + +  

 

olup 
( )( )

2

C 1,1
st lim x 0− =  olduğundan 

( )( ) ( )2
m,n i iC 1,1 B(D)

st lim L e e 0− − = , i 1,2,3=  elde 

edilir. Yani (4.1.8) ile verilen pozitif lineer operatör dizisi 4.1.1. Teoremin koşullarını 

sağlar. Bu durumda herhangi bir ( )bf C D∈  fonksiyonu için 

 

( ) ( )2
m,nC(1,1) B(D)

st lim L f f 0− − =  
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sağlanır. Fakat x dizisi P-yakınsak olmadığından (4.1.8) ile verilen pozitif lineer 

operatörlerin dizisi 2.7.4. Teoremin koşullarını sağlamaz. Yani (4.1.8) deki  m,nL  

operatörleri 4.1.1. Teoremde çalışırken 2.7.4. Teoreminde çalışmaz. 

       Şimdi 4.1.1. Teoremdeki A -istatistiksel yakınsaklığa karşılık gelen oranı dört 

farklı yolla hesaplayacağız. 

4.1.5. Tanım: ( )j,k,m,nA : a=  4-boyutlu negatif olmayan RH-regüler matris, { }m,nx x=  

reel terimli bir çift indisli dizi ve { }m,nα  negatif olmayan, artmayan bir çift indisli dizi 

olsun. Eğer her 0ε >  için, ( ) ( ){ }2
m,nK : m, n : x Lε = ∈ − ≥ ε�  olmak üzere 

 

( ) ( )
j,k,m,n

j,k
m,n Kj,k

1
P lim a 0

∈ ε

− =
α

∑  

 

ise { }m,nx x=  dizisi ( )m,no α  oranı ile L sayısına A-istatistiksel yakınsaktır denir. Bu 

durum ( ) ( )2
m,n m,nAx L st o− = − α , m,n → ∞  ile gösterilir. 

4.1.6. Tanım: ( )j,k,m,nA : a=  4-boyutlu negatif olmayan RH-regüler matris, { }m,nx x=  

reel terimli bir çift indisli dizi ve { }m,nα  negatif olmayan, artmayan bir çift indisli dizi 

olsun. Eğer her 0ε >  için, ( ) ( ){ }2
m,nL : m,n : xε = ∈ ≥ ε�  olmak üzere  

 

( ) ( )
j,k,m,n

j,k m,n Lj,k

1
sup a

∈ ε

< ∞
α

∑  

 

ise { }m,nx x=  dizisi ( )m,nO α  oranı ile A-istatistiksel sınırlıdır denir. Bu durum 

( ) ( )2
m,n m,nAx st O= − α , m,n → ∞  ile gösterilir. 

4.1.7. Tanım: ( )j,k,m,nA : a=  4-boyutlu negatif olmayan RH-regüler matris, { }m,nx x=  

reel terimli bir çift indisli dizi ve { }m,nα  negatif olmayan, artmayan bir çift indisli dizi 

olsun. Eğer her 0ε >  için, ( ) ( ){ }2
m,n m,nM : m,n : x Lε = ∈ − ≥ εα�  olmak üzere  
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( ) ( )
j,k,m,n

j,k
m,n M

P lim a 0
∈ ε

− =∑  

 

ise { }m,nx x=  dizisi ( )m,n m,no α  oranı ile L sayısına A-istatistiksel yakınsaktır denir. Bu 

durum ( ) ( )2
m,n m,n m,nAx L st o− = − α , m,n → ∞  ile gösterilir. 

4.1.8. Tanım: ( )j,k,m,nA : a=  4-boyutlu negatif olmayan RH-regüler matris, { }m,nx x=  

reel terimli bir çift indisli dizi ve { }m,nα  negatif olmayan, artmayan bir çift indisli dizi 

olsun. Eğer her 0ε >  için, ( ) ( ){ }2
m,n m,nN : m,n : xε = ∈ ≥ εα�  olmak üzere  

 

( ) ( )
j,k,m,n

j,k
m,n N

P lim a 0
∈ ε

− =∑  

 

ise { }m,nx x=  dizisi ( )m,n m,nO α  oranı ile A-istatistiksel sınırlıdır denir. Bu durum 

( ) ( )2
m,n m,n m,nAx st O= − α , m,n → ∞  ile gösterilir. 

Şimdi yukarıdaki tanımları kullanarak aşağıdaki yardımcı sonuçları verelim. 

4.1.9. Lemma: ( )j,k,m,nA : a=  4-boyutlu negatif olmayan RH-regüler matris ve { }m,nα  

ve { }m,nβ  negatif olmayan artmayan çift indisli diziler olsun. { }m,nx  ve { }m,ny  iki reel 

terimli çift indisli dizi olsun. Eğer ( ) ( )2
m,n 1 m,nAx L st o− = − α  ve 

( ) ( )2
m,n 2 m,nAy L st o− = − β  ise 

(i) Her bir ( ) 2m,n ∈�  için { }m,n m,n m,nmax ,γ = α β  olmak üzere, 

( ) ( ) ( ) ( )2
m,n 1 m,n 2 m,nAx L y L st o− − = − γ∓ , m,n → ∞ , 

(ii) Herhangi  λ  reel sayısı için  ( ) ( ) ( )2
m,n 1 m,nAx L st oλ − = − α ,  m,n → ∞ .  

Ayrıca bu sonuçlar “o” sembolü ile “O” sembolü değiştirilerek de elde edilir. 

İspat: (i) ( ) ( )2
m,n 1 m,nAx L st o− = − α  ve ( ) ( )2

m,n 2 m,nAy L st o− = − β  olduğunu kabul 

edelim. Ayrıca 0ε >  için, 

 

( ) ( ) ( ){ }2
m,n 1 m,n 2K : m, n : x L y L= ∈ − − ≥ ε� ∓ , 
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( ) 2
1 m,n 1K : m,n : x L

2

ε 
= ∈ − ≥ 
 

� , 

( ) 2
2 m,n 2K : m,n : y L

2

ε 
= ∈ − ≥ 
 

�  

 

kümelerini tanımlayalım.  

 

( ) ( )m,n 1 m,n 2 m,n 1 m,n 2x L y L x L y L− − ≤ − + −∓   

 

olduğundan  1 2K K K⊂ ∪  olduğunu gösterebiliriz. Bu ise tüm ( ) 2j, k ∈�  için  

 

( ) ( ) ( )1 2

j,k,m,n j,k,m,n j,k,m,n
m,n K m,n K m,n K

a a a
∈ ∈ ∈

≤ +∑ ∑ ∑                                                             (4.1.9) 

 

sağlar. { }m,n m,n m,nmax ,γ = α β  olduğundan (4.1.9) eşitsizliğinden  

 

( ) ( ) ( )1 2

j,k,m,n j,k,m,n j,k,m,n
m,n K m,n K m,n Kj,k j,k j,k

1 1 1
a a a

∈ ∈ ∈

≤ +
γ α β

∑ ∑ ∑                                          

 

olduğu elde edilir. Buradan j, k → ∞  limit alınırsa ve hipotezleri kullanılırsa 

  

( )
j,k,m,n

j,k
m,n Kj,k

1
P lim a 0

∈

− =
γ

∑  

 

elde edilir. Böylece ispat tamamlanır. 

(ii) ( ) ( )2
m,n 1 m,nAx L st o− = − α  olduğunu kabul edelim.  λ  reel sayısı için 

 

( ) ( ){ } ( )2 2
m,n 1 m,n 1m,n : x L m,n : x L

 ε 
∈ λ − ≥ ε = ∈ − ≥ 

λ  
� �  

 

olup kabulümüzden ispat elde edilir. 
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           Şimdi vereceğimiz Lemmanın ispatı yukarıdaki gibi kolaylıkla elde edilebilir. 

4.1.10. Lemma: ( )j,k,m,nA : a=  4-boyutlu negatif olmayan RH-regüler matris ve { }m,nα  

ve { }m,nβ  negatif olmayan, artmayan çift indisli diziler olsun. { }m,nx  ve { }m,ny  reel 

terimli iki çift indisli dizi olsun. Eğer ( ) ( )2
m,n 1 m,n m,nAx L st o− = − α  ve 

( ) ( )2
m,n 2 m,n m,nAy L st o− = − β  ise 

(i) Her bir ( ) 2m,n ∈�  için { }m,n m,n m,nmax ,γ = α β  olmak üzere, 

( ) ( ) ( ) ( )2
m,n 1 m,n 2 m,n m,nAx L y L st o− − = − γ∓ , m,n → ∞ , 

(ii) Herhangi  λ  reel sayısı için  ( ) ( ) ( )2
m,n 1 m,n m,nAx L st oλ − = − α ,  m,n → ∞ .  

Ayrıca bu sonuçlar “ m,no ” sembolü ile “ m,nO ” sembolü değiştirilerek de elde edilir. 

           Aşağıdaki teoremi ispat etmek için,  1 2, 0λ λ >  olmak üzere 

 

( ) ( )( ) ( )m 1 1 2 2 1 2 m 1 2f ; , 1 1 f ; ,ω λ δ λ δ ≤ + λ + λ ω δ δ                                                     (4.1.10) 

 

eşitsizliğini kullanacağız. 

4.1.11. Teorem:  ( )j,k,m,nA : a=  4-boyutlu negatif olmayan RH-regüler matris ve 

( ) ( )m,n bL : C D B D→  pozitif lineer operatör olsun. { }m,nα  ve { }m,nβ  negatif olmayan, 

artmayan çift indisli diziler olsun. Aşağıdaki koşulların sağlandığını kabul edelim: 

(i)  ( ) ( ) ( ) ( ){ }2
m,n 0 0K : m,n : tüm x, y D için L e ; x, y e x, y= ∈ ∈ =�  olmak üzere  

 

( )
j,k,m,n

j,k
m,n Kj,k

1
P lim a 1

∈

− =
α

∑  

 

(ii) ( ) 2u, v (u x)ϕ = − , 2(u, v) (v y)ψ = −  fonksiyonları için 
( )m,n m,n B D

: L ( )γ = ϕ , 

( )m,n m,n B D
: L ( )δ = ψ  olmak üzere  

 

( ) ( )2
m m,n m,n (A) m,nf ; , st oω γ δ = − β , m,n → ∞ . 
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Bu durumda herhangi bir ( )bf C D∈  fonksiyonu için { }m,n m,n m,nc max ,= α β olmak 

üzere 

 

( ) ( ) ( )2
m,n x,y m,nAB(D)

L F f st o c− = − , m,n → ∞ , 

 

olur. Benzer sonuçlar “o” ile “O” yer değiştirilerek de elde edilebilir. 

İspat: ( )bf C D∈  ve ( )x, y D∈  sabit olsun. 

 

( ) ( ) ( ) ( ){ }2
m,n 0 0K : m,n : tüm x, y D için L e ; x, y e x, y= ∈ ∈ =�  

 

olmak üzere (i) den 

 

( ) 2
j,k,m,n

j,k
m,n Kj,k

1
P lim a 0

∈

− =
α

∑
� \

                                                                                (4.1.11) 

 

elde edilir. Ayrıca x,yF  fonksiyonunun B-sürekliliğinden her ( )u, v D∈  için 

 

( ) ( )( ) ( )( )
2 2

x,y x,yF u, v A u x B v y
3

ε
 ∆ ≤ + ε − + ε −                                                

 

olacak şekilde ( ) ( )A ,B 0ε ε >  sayıları vardır.  Tüm ( )m,n K∈  için  

 

( ) ( )( )m,n x,y m,n x,y x,yL F ;x, y f (x, y) L F u, v ;x, y − = ∆                                              

 

olduğunu biliyoruz.  mω  in özelliklerini kullanarak  

 

( ) ( )x,y x,y mF u, v f ; u x , v y ∆ ≤ ω − −   

                            ( )m 1 2
1 2

1 1
1 u x 1 v y f ; ,
  

≤ + − + − ω δ δ  
δ δ  

                              (4.1.12) 
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elde edilir. Bu durumda tüm ( )m,n K∈  için m,nL  nin lineerliliğinden, 

monotonluğundan ve (4.1.12) ifadesinden  

 

( ) ( )( )m,n x,y m,n x,y x,yL F ;x, y f (x, y) L F u, v ;x, y − = ∆    

                                      ( )( )m,n x,y x,yL F u, v ;x, y ≤ ∆    

                                      ( )m,n m 1 2
1 2

1 1
L 1 u x 1 v y ; x, y f ; ,

   
≤ + − + − ω δ δ   

δ δ   
 

                                      ( ) ( )m,n m,n
1 2

1 1
1 L u x ;x, y L v y ;x, y


= + − + −
δ δ

 

                                      ( ) ( )m,n m 1 2
1 2

1
L u x v y ; x, y f ; ,


+ − − ω δ δ

δ δ 
                   (4.1.13) 

 

bulunur.  (4.1.13) eşitsizliğinde Cauchy-Schwarz eşitsizliği kullanılırsa tüm ( )m,n K∈  

için 

 

( ) ( ) ( )m,n x,y m,n m,n
1 2

1 1
L F ;x, y f (x, y) 1 L ;x, y L ;x, y


− ≤ + ϕ + ψ

δ δ
 

                                         ( ) ( ) ( )m,n m,n m 1 2
1 2

1
L ; x, y L ; x, y f ; ,


+ ϕ ψ ω δ δ

δ δ 
      (4.1.14)                                                   

 

elde edilir. (4.1.14) eşitsizliğinin her iki yanından ( )x, y D∈  üzerinden supremum 

alınırsa tüm ( )m,n K∈  için 
( )m,n m,n B D

: L ( )γ = ϕ , 
( )m,n m,n B D

: L ( )δ = ψ  olmak üzere  

 

( )
( )

( )m,n x,y m m,n m,nB D
L F f 4 f ; ,− ≤ ω γ δ                                                                   (4.1.15) 

 

bulunur. Şimdi verilen bir 0ε >  sayısı için 

 

( ) ( )
( ){ }2

m,n x,y B D
U : m,n : L F f= ∈ − ≥ ε� , 
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( ) ( )2
1 m m,n m,nU : m,n : f ; ,

4

ε 
= ∈ ω γ δ ≥ 
 

� . 

 

kümelerini tanımlayalım. Böylece (4.1.15) eşitsizliğinden  

 

1U K U K∩ ⊂ ∩  

 

elde edilir. Bu ise tüm ( ) 2j, k ∈�  için, { }m,n m,n m,nc max ,= α β  olduğundan 

 

( ) ( ) 1

j,k,m,n j,k,m,n
m,n U K m,n U Kj,k j,k

1 1
a a

c c∈ ∩ ∈ ∩

≤∑ ∑   

                              
( ) 1

j,k ,m,n
m,n Uj,k

1
a

c ∈

≤ ∑  

                              
( ) 1

j,k,m,n
m,n Uj,k

1
a

∈

≤
α

∑                                                                    (4.1.16) 

 

olduğu gösterir. Şimdi (4.1.16) da j, k → ∞  için limit alınırsa ve ayrıca (ii) den 

 

( )
j,k,m,n

j,k
m,n U Kj,k

1
P lim a 0

c ∈ ∩

− =∑                                                                                  (4.1.17)  

 

olduğu kolayca elde edilir. Buradan 

 

( ) ( ) ( ) ( )2
j,k,m,n j,k,m,n j,k,m,n

m,n U m,n U K m,n U K

a a a
∈ ∈ ∩ ∈ ∩

= +∑ ∑ ∑
�\

 

                    
( ) ( ) 2

j,k,m,n j,k ,m,n
m,n U K m,n K

a a
∈ ∩ ∈

≤ +∑ ∑
�\

 

 

olup buradan ise                

 

( ) ( ) ( ) 2
j,k,m,n j,k,m,n j,k,m,n

m,n U m,n U K m,n Kj,k j,k j,k

1 1 1
a a a

c c∈ ∈ ∩ ∈

≤ +
α

∑ ∑ ∑
�\

                             (4.1.18) 
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bulunur.  (4.1.18) eşitsizliğinde j, k → ∞  için limit alınırsa (4.1.11) ve (4.1.17) den 

istenilen elde edilir. Bu ise ispatı tamamlar. 

           Aşağıdaki teorem benzer yolla ispatlanabilir. 

4.1.12. Teorem:  ( )j,k,m,nA : a=  4-boyutlu negatif olmayan RH-regüler matris ve 

( ) ( )m,n bL : C D B D→  pozitif lineer operatör olsun. { }m,nα  ve { }m,nβ  negatif olmayan 

artmayan çift indisli diziler olsun. Aşağıdaki koşulların sağlandığını kabul edelim: 

(i)  ( ) ( ) ( ) ( ){ }2
m,n 0 0K : m,n : tüm x, y D için L e ; x, y e x, y= ∈ ∈ =�  olmak üzere  

 

( )
j,k,m,n

j,k
m,n K

P lim a 1
∈

− =∑  

 

(ii) ( ) 2u, v (u x)ϕ = − , 2(u, v) (v y)ψ = −  fonksiyonları için 
( )m,n m,n B D

: L ( )γ = ϕ , 

( )m,n m,n B D
: L ( )δ = ψ  olmak üzere  

 

( ) ( )2
m m,n m,n (A) m,n m,nf ; , st oω γ δ = − β , m,n → ∞ . 

 

Bu durumda herhangi bir ( )bf C D∈  fonksiyonu için 

 

( ) ( ) ( )2
m,n x,y m,n m,nAB(D)

L F f st o− = − β , m,n → ∞ , 

 

olur. Benzer sonuçlar “ m,no ” ile “ m,nO ” yer değiştirilerek de elde edilebilir. 

 

4.2.  Bögel-sürekli ve Periyodik Fonksiyonlar için A-İstatistiksel Yaklaşım 

 

           Bu kısımda, çift indisli dizilerin A-istatistiksel yakınsaklık tanımını kullanarak, 

C. Badea, I. Badea ve C. Cottin tarafından B-sürekli ve B- 2π-periyodik fonksiyonlar 

için verilen Korovkin tipi yaklaşım teoremden daha kuvvetli sonuçlar elde edeceğiz. 

Ayrıca, verdiğimiz teoremin daha kuvvetli olduğuna dair bir örnek verip, verdiğimiz 

teorem için A-istatistiksel yakınsaklık oranını hesaplayacağız. 
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4.2.1. Teorem: ( )j,k,m,nA a=  4-boyutlu negatif olmayan RH-regüler matris ve 

( )2
m,n 2L : B Bπ → �  pozitif lineer operatör olsun. Aşağıdaki koşulların sağlandığını 

kabul edelim: 

(i)  ( ) ( ) ( ) ( ){ }2 2
m,n 0 0K : m, n : tüm x, y  için L f ; x, y f x, y= ∈ ∈ =� �  olmak üzere  

 

( ) { }
( )

2
j,k,m,nA j,k

m,n K

K P lim a 1
∈

δ = − =∑  

 

(ii) ( )1f x, y sin x= , ( )2f x, y sin y= , ( )3f x, y cos x= , ( )4f x, y cos y=   olmak üzere 

( ) ( ) 2

2
m,n i iA B( )

st lim L f f 0− − =
�

, i 1,2,3,4.=  

Bu durumda herhangi bir 2f B π∈  fonksiyonu için,  

 

( ) ( ) 2

2
m,n x,yA B( )

st lim L F f 0− − =
�

 

 

olur. 

İspat: 2f B π∈  ve ( ) 2x, y ∈�  sabit olsun.  

 

( ) ( ) ( ) ( ){ }2 2
m,n 0 0K : m, n : tüm x, y  için L f ; x, y f x, y= ∈ ∈ =� �  

 

olmak üzere (i) den 

 

( ) { }2 2
A K 0δ =� \                                                                                                        (4.2.1) 

 

elde edilir. 2.7.8 Lemmadan, x,yF  fonksiyonunun B-sürekliliğinden, her ( ) 2u, v ∈�  için 

 

( ) ( ) ( )2 2
x,y x,y

u x v y
F u, v A sin B sin

3 2 2

ε − −
 ∆ ≤ + ε + ε                                           (4.2.2) 

 

olacak şekilde ( ) ( )A ,B 0ε ε >  sayıları vardır.  Ayrıca tüm ( )m,n K∈  için  



 45 
 

( ) ( ) ( )m,n x,y m,n x,y m,n 0L F ; x, y f (x, y) L F ; x, y f (x, y)L f ; x, y− = −  

                                      ( ) ( ) ( )( )m,nL f u, y f x, v f u, v f (x, y); x, y= + − −  

                                      ( )( )m,n x,yL f u, v ;x, y= −∆     

                                      ( )( )m,n x,y x,yL F u, v ;x, y = ∆                                                (4.2.3) 

 

olur. Bu durumda tüm ( )m,n K∈  için m,nL  nin lineerliliği ve monotonluğundan, 

( ) ( ) ( ){ }C max A , Bε = ε ε  olmak üzere  

 

( ) ( )( )m,n x,y m,n x,y x,yL F ;x, y f (x, y) L F u, v ;x, y − = ∆    

                                      ( )( )m,n x,y x,yL F u, v ;x, y ≤ ∆    

                                      ( ) ( )2 2
m,n

u x v y
L A sin B sin ; x, y

3 2 2

ε − − 
≤ + ε + ε 

 
 

                                     ( ) ( ) 2
m,n 0 m,n

u x
L f ;x, y A L sin ;x,y

3 2

ε − 
= + ε  

 
 

                                     ( ) 2
m,n

v y
B L sin ; x, y

2

− 
+ ε  

 
 

                                     ( )
( )

m,n

1 cos u x
A L ;x, y

3 2

− − ε
= + ε  

 
 

                                     ( )
( )

m,n

1 cos v y
B L ;x, y

2

− − 
+ ε  

 
 

                                     
( )

( ) ( ){ m,n 1 m,n 2

C
2 sin xL f ; x, y sin yL f ; x, y

3 2

εε
≤ + − −  

                                     ( ) ( )}m,n 3 m,n 4cos xL f ; x, y cos yL f ; x, y− −                        

 

elde edilir.  Son eşitsizlikten tüm ( )m,n K∈  için 

 

( )
( )

( ) ( ){m,n x,y m,n 1 1

C
L F ; x, y f (x, y) sin x L f ; x, y f x, y

3 2

εε
− ≤ + −  

                                                         ( ) ( )m,n 2 2sin y L f ; x, y f x, y+ −  
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                                                         ( ) ( )m,n 3 3cos x L f ; x, y f x, y+ −  

                                                         ( ) ( )}m,n 4 4cos y L f ;x, y f x, y+ −                 

 

bulunur. Son eşitsizlikten tüm ( )m,n K∈  için 

 

( )
( )

( ) ( )
4

m,n x,y m,n i i
i 1

C
L F ; x, y f (x, y) L f ; x, y f x, y

3 2 =

εε
− ≤ + −∑                               (4.2.4) 

 

elde edilir.  (4.2.4) eşitsizliğinin her iki yanından ( ) 2x, y ∈�  üzerinden supremum 

alınırsa tüm ( )m,n K∈  için 

 

( )
( )

( )
( ) ( )22

4

m,n x,y m,n i i BB
i 1

C
L F f L f f

3 2 =

εε
− ≤ + −∑ ��

                                               (4.2.5) 

 

bulunur. Şimdi verilen bir r 0>  için 3rε <  olacak şekilde 0ε >  sayısı seçelim. 

Buradan  

 

( ) ( )
( )2

2
m,n x,y

B
U : m, n : L F f r

 
= ∈ − ≥ 
 �

� , 

( ) ( ) ( ) ( )
2

2
i m,n i i B

3r
U : m, n : L f f

6C

 − ε 
= ∈ − ≥ 

ε  
�

� , i 1, 2,3, 4.=  

 

kümelerini tanımlayalım. Böylece (4.2.5) eşitsizliğinden  

 

4

i
i 1

U K U K
=

∩ ⊂ ∩∪  

 

elde edilir. Bu ise tüm ( ) 2j, k ∈�  için 

 

( ) ( ) ( )i i

4 4

j,k,m,n j,k,m,n j,k,m,n
m,n U K i 1 m,n U K i 1 m,n U

a a a
∈ ∩ = ∈ ∩ = ∈

≤ ≤∑ ∑ ∑ ∑ ∑                                              (4.2.6) 
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olduğunu gösterir. Şimdi (4.2.6) da j, k → ∞  için limit alınırsa ve ayrıca (ii) den 

 

( )
j,k,m,n

j,k
m,n U K

P lim a 0
∈ ∩

− =∑                                                                                          (4.2.7)  

 

olduğu kolayca elde eldir. Buradan 

 

( ) ( ) ( ) ( )2
j,k,m,n j,k,m,n j,k,m,n

m,n U m,n U K m,n U K

a a a
∈ ∈ ∩ ∈ ∩

= +∑ ∑ ∑
� \

 

                    
( ) ( ) ( )2

j,k,m,n j,k,m,n
m,n U K m,n K

a a
∈ ∩ ∈

≤ +∑ ∑
� \

                                                        

 

eşitsizliği kullanılır ve j, k → ∞  için limit alınırsa (4.2.1) ve (4.2.7) den 

 

( )
j,k,m,n

j,k
m,n U

P lim a 0
∈

− =∑  

 

yani  

 

( ) ( )
( )2

2
m,n x,yA B

st lim L F f 0− − =
�

 

 

olduğu elde edilir. Bu ise ispatı tamamlar. 

4.2.2. Uyarı: Bazı 2f B π∈  fonksiyonlarının sınırlı olmayabileceği biliniyor. Fakat 4.2.1. 

Teoremdeki  

 

( )
( )2m,n x,y B

L F f−
�

 

 

ifadesi K, (i) de verilen küme olmak üzere (i), (4.2.2) ve (4.2.3) den her bir ( )m, n K∈  

için sonludur. 

4.2.3. Uyarı: 4.2.1. Teoremdeki A matrisi, 4-boyutlu birim matris ile yer değiştirilirse 

2.7.9. Teorem elde edilir. 
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           Şimdi 4.2.1. Teoremde elde edilen A-istatistiksel sonucun, 2.7.9. Teoremdeki 

klasik sonuçtan daha kuvvetli olduğunu göstermek için bir örnek verelim.  

4.2.4. Örnek: s,p p
p

2s
t , s 1,2,..., N 2

N 2

π
= = +

+
 ve nφ  , 1,n

n
lim 1

→∞
ρ =  ile 

( )
nN

n v,n
v 1

1
x cos vx

2 =

φ = + ρ∑  formundaki negatif olmayan kosinüs polinomu olmak üzere 

 

( )
( )( )

( )
m nN 2 N 2

m,n k,m l,n m k,m n l,n
k 1 l 1m n

4
K f ; x, y f t , t (t -x) (t -y)

N 2 N 2

+ +

= =

= φ φ
+ +

∑ ∑  

 

operatörünü göz önüne alalım (Bojanic, 1974; Shisha ve Bond, 1968). 

            2 ,2f C π π∈  olmak üzere süreklilik modülü, 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 22
1 1f , sup f u, v f x, y : u, v , x, y , u x v yω δ = − ∈ − + − < δ� , 1 0δ >  

şeklinde tanımlıdır. 2 ,2C π π  uzayı üzerinde tanımlı herhangi bir { }m,nS  pozitif lineer 

operatörü için ( ) 2 2
m,n m,n

u x v y
x, y S sin sin ; x, y

2 2

− − 
α = + 

 
 olmak üzere 

 

( ) ( )( ) ( )( ) ( )2
m,n m,n m,n m,nS f ; x, y f (x, y) S 1; x, y f ; x, y f (x, y) S 1; x, y 1− ≤ + π ω α + −  

 

olduğunu gösterebiliriz.  

           Derecesi d olan olan herhangi τ  trigonometrik polinomu için eğer d n 1≤ −  ise  

 

( )
2n

k 1 0

2 2k 1
t dt

n n

π

=

π 
τ = τ 

π 
∑ ∫  

 

eşitliğinin olduğu biliniyor (DeVore, 1972). Şimdi, ( )m,nK 1; x, y  ve ( )m,n x, yα =  

2 2
m,n

u x v y
K sin sin ; x, y

2 2

− − 
+ 

 
 ifadelerini hesaplamalıyız.  s,p

p

2s
t ,

N 2

π
=

+
 

ps 1, 2,..., N 2= +  olmak üzere derecesi pN 1≤ +  olan her τ  trigonometrik polinomu 
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için ( ) ( )
pN 2 2

s,p
s 1p 0

2 1
t t dt

N 2

+ π

=

τ = τ
+ π
∑ ∫  dir.  ( )m u xφ −  ve ( )n v yφ −  trigonometrik 

fonksiyonlarının derecesi sırasıyla mN , nN  ayrıca  ( )2
m

u x
sin u x

2

−
φ −  ve 

( )2
n

v y
sin v y

2

−
φ −  trigonometrik fonksiyonlarının derecesi sırasıyla mN 1+ , nN 1+  

olduğundan 

 

( )
( )( )

m nN 2 N 2

m,n m k,m n l,n
k 1 l 1m n

4
K 1; x, y (t -x) (t -y)

N 2 N 2

+ +

= =

= φ φ
+ +

∑ ∑  

                    
( ) ( )

m nN 2 N 2

m k,m n l,n
k 1 l 1m n

2 2
(t -x) (t -y)

N 2 N 2

+ +

= =

  
= φ φ    + +  

∑ ∑  

                    ( ) ( )
2 2

m n

0 0

1 1
u x du v y dv 1

π π  
= φ − φ − =  

π π  
∫ ∫  

 

ve 

 

( )( )

m nN 2 N 2
k,m2 2 2

m,n m k,m n l,n
k 1 l 1m n

t xu x v y 4
K sin sin ;x,y sin (t -x) (t -y)

2 2 N 2 N 2 2

+ +

= =

−− − 
+ = φ φ 

+ + 
∑ ∑                                         

                                      
( )( )

m nN 2 N 2
l,n2

m k,m n l,n
k 1 l 1m n

t y4
sin (t -x) (t -y)

N 2 N 2 2

+ +

= =

−
+ φ φ

+ +
∑ ∑  

                                       
( ) ( )

m nN 2 N 2
k,m2

m k,m n l,n
k 1 l 1m n

t x2 2
sin (t -x) (t -y)

N 2 2 N 2

+ +

= =

  −
= φ φ    + +  

∑ ∑  

                                     
( ) ( )

m nN 2 N 2
l,n2

m k,m n l,n
k 1 l 1m n

t y2 2
(t -x) sin (t -y)

N 2 N 2 2

+ +

= =

  −
+ φ φ    + +  

∑ ∑  

                                        ( ) ( )
2 2

2
m n

0 0

1 u x 1
sin u x du v y dv

2

π π  −
= φ − φ −  

π π  
∫ ∫  

                                         ( ) ( )
2 2

2
m n

0 0

1 1 v y
u x du s in v y dv

2

π π  −
+ φ − φ −  

π π  
∫ ∫                                

                                        1,m 1,n 1,m 1,n1 1
1

2 2 2

− ρ − ρ ρ + ρ
= + = −  
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elde edilir. Buradan  

 

( ) ( )
1/ 2

1,m 1,n2
m,nK f; x, y f (x, y) 1 f ; 1

2

 ρ + ρ 
 − ≤ + π ω −    

 

 

bulunur.  Yani, herhangi bir 2 ,2f C π π∈  fonksiyonu için 

 

( ) 2m,n B( )
P lim K f f 0− − =

�
  

 

elde edilir. sin x , sin y , cos x  ve cos y  fonksiyonları 2 ,2C π π  uzayına ait olduğundan 

(dolayısıyla 2B π  uzayına ait olduğundan) 2.7.9. Teoreminin koşulları sağlanır. Böylece 

herhangi bir 2f B π∈  için 

 

( ) 2m,n x,y
B( )

P lim K F f 0− − =
�

  

 

bulunur. Şimdi, A C(1,1)=  matrisini ve genel terimi 

 

m,n

1, m ve n tam kare ise,
x

0, diğer durumlarda,


= 


 

 

olacak şekilde { }m,nx x=  çift indisli dizisini alalım. Bu durumda 
( )( )

2
C 1,1

st lim x 0− =  

olur. Ayrıca x çift indisli dizisi P-yakınsak değildir. 

( ) ( ) ( ) ( )x,yF u, v f u, y f x, v f u, v= + −  olmak üzere 2f B π∈  için 

 

( )
( )( )

( )
m nN 2 N 2

m,n x,y k,m l,n m k,m n l,n
k 1 l 1m n

4
H f ; x, y F t , t (t -x) (t -y)

N 2 N 2

+ +

= =

= φ φ
+ +

∑ ∑  

 

operatörünü göz önüne alalım. Şimdi 2B π  üzerinde 
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( )m,n m,n m,nL (f ; x, y) 1 x H (f ; x, y)= +                                                                         (4.2.8) 

 

pozitif lineer operatörünü tanımlayalım Buradan 

 

( )m,n 0 m,nL f ; x, y 1 x= + , 

( ) ( ) ( )m,n 1 m,n m,n 1L f ; x, y 1 x K f ; x, y= + , 

( ) ( ) ( )m,n 2 m,n m,n 2L f ; x, y 1 x K f ; x, y= + , 

( ) ( ) ( )m,n 3 m,n m,n 3L f ; x, y 1 x K f ; x, y= + , 

( ) ( ) ( )m,n 4 m,n m,n 4L f ; x, y 1 x K f ; x, y= + , 

 

elde edilir. Şimdi de 4.2.1. Teoremin koşullarının sağlandığını gösterelim: 

(i) 
( )( ) ( ){ }2

C 1,1
m, n : m, n , tam kare 0δ ∈ =�  olduğundan  

( ) ( ) ( ) ( ){ }2 2
m,n 0 0K : m, n : tüm x, y  için L f ; x, y f x, y= ∈ ∈ =� �  olmak üzere 

( ) { }2
C(1,1) K 1δ =  olur. 

(ii) Herhangi 2f B π∈  için 
( )

( )
2

m,n
x,y

M sup K f; x, y
∈

=
�

 olmak üzere, 

 

( )
( )

( ) ( )2
2

m,n 1 1 m,n 1 1B( )
x,y

L f f sup L f ; x, y f x, y
∈

− = −
�

�

 

                             
( )

( ) ( )
2

m,n m,n 1
x,y

sup 1 x K f ; x, y sin x
∈

= + −
�

                                                          

                             
( )

( )
2

m,n 1 m,n
x,y

sup K f ; x, y sin x Mx
∈

≤ − +
�

 

( )
( )

( ) ( )2
2

m,n 2 2 m,n 2 2B( )
x,y

L f f sup L f ; x, y f x, y
∈

− = −
�

�

 

                               
( )

( ) ( )
2

m,n m,n 2
x,y

sup 1 x K f ; x, y sin y
∈

= + −
�

                                                          

                              
( )

( )
2

m,n 2 m,n
x,y

sup K f ; x, y sin y Mx
∈

≤ − +
�

 

( )
( )

( ) ( )2
2

m,n 3 3 m,n 3 3B( )
x,y

L f f sup L f ; x, y f x, y
∈

− = −
�

�
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( )

( ) ( )
2

m,n m,n 3
x,y

sup 1 x K f ; x, y cos x
∈

= + −
�

                                                          

                              
( )

( )
2

m,n 3 m,n
x,y

sup K f ; x, y cos x Mx
∈

≤ − +
�

 

( )
( )

( ) ( )2
2

m,n 4 4 m,n 4 4B( )
x,y

L f f sup L f ; x, y f x, y
∈

− = −
�

�

 

                               
( )

( ) ( )
2

m,n m,n 4
x,y

sup 1 x K f ; x, y cos y
∈

= + −
�

                                                          

                               
( )

( )
2

m,n 4 m,n
x,y

sup K f ; x, y cos y Mx
∈

≤ − +
�

             

  

olup 
( )( )

2
m,nC 1,1

st lim x 0− =  olduğundan 
( )( ) ( ) 2

2
m,n i iC 1,1 B( )

st lim L f f 0− − =
�

, i 1, 2,3, 4=  

elde edilir. Yani (4.2.8) ile verilen pozitif lineer operatör dizisi 4.2.1. Teoremin 

koşullarını sağlar. Bu durumda herhangi bir 2f B π∈  fonksiyonu için 

 

( )( ) ( ) 2

2
m,nC 1,1 B( )

st lim L f f 0− − =
�

 

 

sağlanır. Fakat x dizisi P-yakınsak olmadığından (4.2.8) ile verilen pozitif lineer 

operatörlerin dizisi 2.7.9. Teoremin koşullarını sağlamaz. Yani (4.2.8) deki  m,nL  

operatörleri 4.2.1. Teoremde çalışırken 2.7.9. deki Teoremde çalışmaz. 

       Şimdi 4.2.1.Teoremdeki A -istatistiksel yakınsaklığa karşılık gelen oranı, 4.1.5., 

4.1.6., 4.1.7. ve 4.1.8.  tanımlarını kullanarak dört farklı yolla hesaplayacağız. Bu 

ispatları yaparken 4.1.9. ve 4.1.10. Lemmalarını kullanacağız. 

4.2.5. Teorem:  ( )j,k,m,nA : a=  4-boyutlu negatif olmayan RH-regüler matris ve 

( )2
m,n 2L : B Bπ → �   pozitif lineer operatör olsun. { }m,nα  ve { }m,nβ  negatif olmayan, 

artmayan çift indisli diziler olsun. Aşağıdaki koşulların sağlandığını kabul edelim: 

(i)  ( ) ( ) ( ) ( ){ }2 2
m,n 0 0K : m, n : tüm x, y  için L f ; x, y f x, y= ∈ ∈ =� �  olmak üzere  

 

( )
j,k,m,n

j,k
m,n Kj,k

1
P lim a 1

∈

− =
α

∑  
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(ii) ( ) 2 u x
u, v sin

2

− 
ϕ =  

 
, 2 v y

(u, v) sin
2

− 
ψ =  

 
 fonksiyonları için 

( )2m,n m,n B
: L ( )γ = ϕ

�
,

( )2m,n m,n B
: L ( )δ = ψ

�
 olmak üzere  

 

( ) ( )2
m m,n m,n (A) m,nf ; , st oω γ δ = − β , m,n → ∞ . 

 

Bu durumda herhangi bir 2f B π∈  fonksiyonu için { }m,n m,n m,nc max ,= α β olmak üzere 

 

( ) ( ) ( )2

2
m,n x,y m,nAB( )

L F f st o c− = −
�

, m, n → ∞ , 

 

olur. Benzer sonuçlar “o” ile “O” yer değiştirilerek de elde edilebilir. 

İspat: 2f B π∈  ve ( ) 2x, y ∈�  sabit olsun. 

 

( ) ( ) ( ) ( ){ }2 2
m,n 0 0K : m, n : tüm x, y  için L f ; x, y f x, y= ∈ ∈ =� �  

 

olmak üzere (i) den 

 

( ) 2
j,k,m,n

j,k
m,n Kj,k

1
P lim a 0

∈

− =
α

∑
�\

                                                                                (4.2.9) 

 

elde edilir. Ayrıca her bir ( ) 2u, v ∈�  için, u x′ − ≤ π  ve v y′ − ≤ π  olacak şekilde 

( ) ( )u , v u 2l , v 2k , l, k′ ′ = + π + π ∈�  seçelim. Buradan tümevarım yöntemiyle 

 

( ) ( )x,y x,yf u, v f u , v′ ′∆ = ∆        

 

elde edilir. Ayrıca 

 

u x
u x sin

2

− 
′ − ≤ π  

 
, 

v y
v y sin

2

− 
′ − ≤ π  

 
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olur. mω  in özelliklerini kullanarak  

 

( ) ( )x,y x,yf u, v f u , v′ ′∆ = ∆        

                        ( )m f ; u x , v y′ ′≤ ω − −  

                        ( )m 1 2
1 2

u x v y
1 sin 1 sin f ; ,

2 2

  π − π −   
≤ + + ω δ δ     

δ δ     
               (4.2.10) 

 

elde edilir. Bu durumda tüm ( )m,n K∈  için m,nL  nin lineerliliği, monotonluğu ve 

(4.2.10) ifadesinden 

 

( ) ( )( )m,n x,y m,n x,yL F ; x, y f (x, y) L f u, v ; x, y− = − ∆     

                                        ( )( )m,n x,yL f u, v ; x, y≤ ∆                                                             

                                        ( )m,n m 1 2
1 2

u x v y
L 1 sin 1 sin ;x,y f; ,

2 2

   π − π −   
≤ + + ω δ δ       δ δ      

 

                                        m,n m,n
1 2

u x v y
1 L sin ; x, y L sin ; x, y

2 2

    π − π −    
= + +       

δ δ       
 

                                        ( )
2

m,n m 1 2
1 2

u x v y
L sin sin ;x,y f; ,

2 2

 π − −    
+ ω δ δ    

δδ      
            (4.2.11) 

 

bulunur. (4.2.11) ifadesinde Cauchy-Schwarz eşitsizliği kullanılırsa tüm ( )m,n K∈  için 

( ) 2 u x
u, v sin

2

− 
ϕ =  

 
, 2 v y

(u, v) sin
2

− 
ψ =  

 
 olmak üzere 

 

( ) ( ) ( )m,n x,y m,n m,n
1 2

L F ;x, y f (x, y) 1 L ;x, y L ;x, y
 π π

− ≤ + ϕ + ψ
δ δ

 

                                         ( ) ( ) ( )
2

m,n m,n m 1 2
1 2

L ; x, y L ; x, y f ; ,
π

+ ϕ ψ ω δ δ
δ δ 

      (4.2.12)                                                   
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elde edilir. (4.2.12) eşitsizliğinin her iki yanından ( ) 2x, y ∈�  üzerinden supremum 

alınırsa tüm ( )m,n K∈  için 
( )2m,n m,n B

: L ( )γ = ϕ
�

, 
( )2m,n m,n B

: L ( )δ = ψ
�

 olmak 

üzere  

 

( )
( )

( ) ( )2

2

m,n x,y m m,n m,nB
L F f 1 f ; ,− ≤ + π ω γ δ

�
                                                       (4.2.13) 

 

bulunur. Şimdi verilen bir 0ε >  sayısı için 

 

( ) ( )
( )2

2
m,n x,y

B
U : m, n : L F f

 
= ∈ − ≥ ε 
 �

� , 

( ) ( )
( )

2
1 m m,n m,n 2U : m, n : f ; ,

1

 ε 
= ∈ ω γ δ ≥ 

+ π  
� . 

 

kümelerini tanımlayalım. Böylece (4.2.13) eşitsizliğinden  

 

1U K U K∩ ⊂ ∩  

 

elde edilir. Bu ise tüm ( ) 2j, k ∈�  için, { }m,n m,n m,nc max ,= α β  olduğundan 

 

( ) ( ) 1

j,k,m,n j,k,m,n
m,n U K m,n U Kj,k j,k

1 1
a a

c c∈ ∩ ∈ ∩

≤∑ ∑   

                              
( ) 1

j,k ,m,n
m,n Uj,k

1
a

c ∈

≤ ∑  

                              
( ) 1

j,k,m,n
m,n Uj,k

1
a

∈

≤
α

∑                                                                    (4.2.14) 

 

olduğunu gösterir. Şimdi (4.2.14) de j, k → ∞  için limit alınırsa ve ayrıca (ii) den 

 

( )
j,k,m,n

j,k
m,n U Kj,k

1
P lim a 0

c ∈ ∩

− =∑                                                                                  (4.2.15)  
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olduğu kolayca elde edilir. Buradan 

 

( ) ( ) ( ) ( )2
j,k,m,n j,k,m,n j,k,m,n

m,n U m,n U K m,n U K

a a a
∈ ∈ ∩ ∈ ∩

= +∑ ∑ ∑
�\

 

                    
( ) ( ) ( )2

j,k,m,n j,k,m,n
m,n U K m,n K

a a
∈ ∩ ∈

≤ +∑ ∑
�\

 

 

olup buradan ise                

 

( ) ( ) ( ) 2
j,k,m,n j,k,m,n j,k,m,n

m,n U m,n U K m,n Kj,k j,k j,k

1 1 1
a a a

c c∈ ∈ ∩ ∈

≤ +
α

∑ ∑ ∑
�\

                                   (4.2.16) 

 

bulunur.  (4.2.16) da j, k → ∞  için limit alınırsa (4.2.9) ve (4.2.15) den istenilen elde 

edilir. Bu ise ispatı tamamlar. 

           Aşağıdaki teorem benzer yolla ispatlanabilir. 

4.2.6. Teorem:  ( )j,k,m,nA : a=  4-boyutlu negatif olmayan RH-regüler matris ve 

( )2
m,n 2L : B Bπ → �   pozitif lineer operatör olsun. { }m,nα  ve { }m,nβ  negatif olmayan, 

artmayan çift indisli diziler olsun. Aşağıdaki koşulların sağlandığını kabul edelim: 

(i)  ( ) ( ) ( ) ( ){ }2 2
m,n 0 0K : m, n : tüm x, y  için L f ; x, y f x, y= ∈ ∈ =� �  olmak üzere  

 

( )
j,k,m,n

j,k
m,n K

P lim a 1
∈

− =∑  

 

(ii) ( ) 2 u x
u, v sin

2

− 
ϕ =  

 
, 2 v y

(u, v) sin
2

− 
ψ =  

 
 fonksiyonları için 

( )2m,n m,n B
: L ( )γ = ϕ

�
,

( )2m,n m,n B
: L ( )δ = ψ

�
 olmak üzere  

( ) ( )2
mixed m,n m,n (A) m,n m,nf ; , st oω γ δ = − β , m, n → ∞ . 

 

Bu durumda herhangi bir 2f B π∈  fonksiyonu için 

 

( ) ( ) ( )2

2
m,n x,y m,n m,nAB( )

L F f st o− = − β
�

, m, n → ∞ , 
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olur. Benzer sonuçlar “ m,no ” ile “ m,nO ” yer değiştirilerek de elde edilebilir. 

 

4.3.    Pozitif Lineer Operatörler Yardımıyla n-değişkenli B-sürekli Fonksiyonlar 

için İstatistiksel Anlamda Yaklaşım 

 

           Son olarak, istatistiksel yakınsaklık kavramı yardımıyla n�  uzayının kompakt 

bir alt kümesi üzerinde tanımlı n-değişkenli B-sürekli fonksiyonların uzayında D. 

Bărbosu tarafından verilen Korovkin tipi yaklaşım teoreminden daha kuvvetli sonuçlar 

elde edeceğiz. Ayrıca, yeni yaklaşım teoremimizde çalışan fakat D. Bărbosu tarafından 

verilen teoremde çalışmayan bir örnek vereceğiz. 

           İlk olarak kullanacağımız bazı tanım ve sembolleri hatırlatalım. 

           n pozitif bir tamsayı olmak üzere, negatif olmayan tamsayıların  jm  koordinatları 

için ( )1 2 nm ,m ,...,m=m  n-lilerinin kümesi n
�  olmak üzere iki m  ve 

( )1 2 nk ,k ,..., k=k  n-lilerinin farklı olması için gerekli ve yeterli koşul en az bir j için 

j jm k≠  olmasıdır. Ayrıca n
� , ≤m k  olması için gerekli ve yeterli koşul her bir j için 

j jm k≤  olacak biçimdeki kısmi sıralı bir kümedir. 

           2003 yılında F. Móricz tarafından verilen, n-indisli diziler için istatistiksel 

yakınsaklık kavramını vermeden önce yoğunluk kavramını verelim.  

           E , n
�  nin bir alt kümesi, { }E : : E= ≤ ∈k m k m  ve 

n

j
j 1

k
=

= ∏k  olsun. 

4.3.1. Tanım: n
�  nin bir E  alt kümesi için  

 

jmin k

1
lim E

→∞
kk

 

 

limiti mevcut ise, bu limit değerine E  kümesinin “yoğunluğu” denir ve { }Eδ  ile 

gösterilir (Móricz, 2003).  



 58 
 

           Örneğin; { }n 1δ =� , ( ){ }2 2 2
1 2 n 1 nm ,m ,...,m : m ,...m 0δ ∈ =�  olduğu kolaylıkla 

görülebilir. Ayrıca; { }Eδ  ve { }n Eδ � \  yoğunluklarından biri mevcut ise, bu durumda 

{ } { }n E 1 Eδ = − δ� \  olacaktır (Móricz, 2003).  

4.3.2. Tanım: { }x x= m  reel terimli bir n-indisli dizi olsun. Eğer her 0ε >  için 

  

{ }n : x L 0δ ∈ − ≥ ε =mm �  

 

olacak şekilde bir L sayısı varsa x dizisi L sayısına “istatistiksel yakınsaktır” denir ve 

st lim x L− =m  ile gösterilir (Móricz, 2003). 

           Şimdi elde ettiğimiz aşağıdaki teoremi verelim. ( )0 1 2 ne s ,s ,...,s 1= , 

( )i 1 2 n ie s ,s ,...,s s= , i 1,..., n=  olsun. 

4.3.3. Teorem: ( ) ( )bL : C D B D→m  pozitif lineer operatör olsun. Aşağıdaki koşulların 

sağlandığını kabul edelim: 

 

(i) ( ) ( ) ( ){ }n
1 2 n 0 1 2 n 0 1 2 nK : : tüm x , x ,..., x D için L e ; x , x ,..., x e x , x ,..., x= ∈ ∈ =mm �  

olmak üzere { }K 1δ = , 

(ii) ( ) ( )i 1 2 n i 1 2 n B(D)
st lim L e ; x , x ,..., x e x , x ,..., x 0− − =m , i 1,..., n= , 

(iii) ( )
n n

2 2
i 1 2 n i 1 2 n

i 1 i 1 B(D)

st lim L e ; x , x ,..., x e x , x ,..., x 0
= =

 
− − = 

 
∑ ∑m . 

 

Bu durumda herhangi bir ( )bf C D∈  fonksiyonu için,  

 

( ) [ ]( ) ( )1 2 n .,..,. 1 2 n 1 2 n 1 2 n B(D)
st lim L f x , x ,..., x f ; x , x ,..., x ;x , x ,..., x f x , x ,..., x 0− − ∆ − =m 

 

olur. 

İspat: ( )bf C D∈  ve ( )1 2 nx , x ,..., x D∈  sabit olsun.  
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( ) ( ) ( ){ }n
1 2 n 0 1 2 n 0 1 2 nK : : tüm x , x ,..., x D için L e ; x , x ,..., x e x , x ,..., x= ∈ ∈ =mm �  

 

olmak üzere (i) den 

 

{ }n K 0δ =� \                                                                                                            (4.3.1) 

 

elde edilir. 2.7.12. Lemmadan, f  fonksiyonunun B-sürekliliğinden her ( )1 ns ,..., s D∈  

için 

 

[ ] ( )( )
1 2 n

n
2

s ,s ,...s 1 2 n i i i
i 1

f ; x , x ,..., x A s x
n 1 =

ε
∆ ≤ + ε −

+
∑                                                (4.3.2) 

 

olacak şekilde ( )iA 0ε > , i 1,..., n=  sayıları vardır. Ayrıca tüm K∈m  için  

 

( ) ( ) [ ]( )1 2 n 1 2 n .,..,. 1 2 n 1 2 nf x , x ,..., x L f x , x ,..., x f ; x , x ,..., x ; x , x ,..., x− − ∆m  

( ) ( ) ( ) [ ]( )1 2 n 0 1 2 n 1 2 n .,..,. 1 2 n 1 2 nf x , x ,..., x L e ; x , x ,..., x L f x , x ,..., x f ; x , x ,..., x ; x , x ,..., x= − − ∆m m

( ) ( ) [ ]( )1 2 n 1 2 n .,..,. 1 2 n 1 2 nL f x , x , ..., x f x , x , ..., x f ; x , x , ..., x ; x , x , ..., x= − + ∆m  

[ ]( ).,..,. 1 2 n 1 2 nL f ; x , x ,..., x ; x , x ,..., x= ∆m                                                                  (4.3.3) 

 

elde edilir. Bu durumda tüm K∈m  için Lm  nin lineerliliği ve monotonluğundan  

 

( ) ( ) [ ]( )1 2 n 1 2 n .,..,. 1 2 n 1 2 nf x , x ,..., x L f x , x ,..., x f ; x , x ,..., x ; x , x ,..., x− − ∆m

[ ]( ).,..,. 1 2 n 1 2 nL f;x , x ,..., x ;x , x ,..., x= ∆m  

[ ]( ).,..,. 1 2 n 1 2 nL f ;x , x ,..., x ;x , x ,..., x≤ ∆m  

( )( )
n

2

i i i 1 2 n
i 1

L A s x ;x , x ,..., x
n 1 =

ε 
≤ + ε − + 

∑m                                      

( ) ( )
n

2 2
i i i i i 1 2 n

i 1

A L s 2s x x ; x , x ,..., x
n 1 =

ε
= + ε − +

+
∑ m                                                   
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elde edilir. ( ) ( ){ }iC max A ;i 1,..., nε = ε =  olmak üzere tüm K∈m  için  

 

( ) ( ) [ ]( )1 2 n 1 2 n .,..,. 1 2 n 1 2 nf x , x ,..., x L f x , x ,..., x f ; x , x ,..., x ; x , x ,..., x− − ∆m

( ) ( )
n

2 2
i i i i 1 2 n

i 1

C L s 2s x x ; x , x ,..., x
n 1 =

ε
≤ + ε − +

+
∑ m  

( ) ( ) ( )( ) ( ) ( )( )
n n

2 2
i i 1 n i 1 n i 1 n i 1 n

i 1 i 1

C 2 x L e ;x ,...,x e x ,...,x L e ;x ,...,x e x ,...,x
n 1 = =

ε  
≤ + ε − − + − 

+  
∑ ∑m m             

                                          

bulunur. Son eşitsizlikten, { }id max x ;i 1,..., n= =  olmak üzere tüm K∈m  için 

 

( ) ( ) [ ]( )1 2 n 1 2 n .,..,. 1 2 n 1 2 nf x , x , ..., x L f x , x , ..., x f ; x , x , ..., x ; x , x , ..., x− − ∆m  

( ) ( ) ( )
n

i 1 n i 1 n
i 1

2dC L e ; x , ..., x e x , ..., x
n 1 =

ε
≤ + ε −

+
∑ m

 

( ) ( )
n n

2 2
i 1 n i 1 n

i 1 i 1

C L e ; x ,..., x e x ,..., x
= =

 
+ ε − 

 
∑ ∑m                                                        (4.3.4) 

                                                                                                         

elde edilir. (4.3.4) eşitsizliğinin her iki yanından ( )1 2 nx , x ,..., x D∈  üzerinden 

supremum alınırsa tüm K∈m  için 

 

( ) [ ]( ) ( )
( )1 2 n .,..,. 1 2 n 1 2 n 1 2 n B D

L f x , x ,..., x f ; x , x ,..., x ;x , x ,..., x f x , x ,..., x− ∆ −m    

( ) ( ) ( )
( )

n

i 1 n i 1 n B D
i 1

2dC L e ; x ,..., x e x ,..., x
n 1 =

ε
≤ + ε −

+
∑ m

 

( ) ( )
( )

n n
2 2
i 1 n i 1 n

i 1 i 1 B D

C L e ; x ,..., x e x ,..., x
= =

 
+ ε − 

 
∑ ∑m                                                   (4.3.5) 

                                                                                                                              

bulunur. Şimdi verilen bir r 0>  için ( )n 1 rε < +  olacak şekilde 0ε >  sayısı seçelim. 

Buradan 
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( ) [ ]( ) ( )
( ){ }n

1 2 n .,..,. 1 2 n 1 2 n 1 2 n B D
U: : L f x ,x ,...,x f;x ,x ,...,x ;x ,x ,...,x f x ,x ,...,x r= ∈ −∆ − ≥mm � 

( )
( )

( )

( ) ( )

n n
n 2 2

0 i 1 n i 1 n 2
i 1 i 1 B D

n 1 r
U : : L e ; x ,..., x e x ,..., x

n 1 C= =

 + − ε  
= ∈ − ≥  

+ ε   
∑ ∑mm �  

( ) ( )
( )

( )

( ) ( )
n

i i 1 n i 1 n 2B D

n 1 r
U : : L e ;x ,..., x e x ,..., x

n 1 2dC

 + − ε 
= ∈ − ≥ 

+ ε  
mm � , i 1,..., n.=  

 

kümelerini tanımlayalım. Böylece (4.3.5) eşitsizliğinden  

 

( )
n

i
i 0

U K U K
=

∩ ⊂ ∩∪  

 

elde edilir. Bu ise 

 

{ } { } { }
n n

i i
i 0 i 0

U K U K U
= =

δ ∩ ≤ δ ∩ ≤ δ∑ ∑                                                                       

 

olduğunu gösterir. Şimdi son eşitsizlikte (ii) ve (iii) den 

 

{ }U K 0δ ∩ =                                                                                                            (4.3.6)  

 

olduğu kolayca elde eldir. Buradan 

 

{ } ( )( ){ }nU U K Kδ = δ ∩ ∪ � \  

           { } ( ){ }nU K U K≤ δ ∩ + δ ∩ � \   

           { } { }nU K K≤ δ ∩ + δ � \                                                                                

 

eşitsizliği ve (4.3.1) ve (4.3.6) ifadeleri kullanılırsa { }U 0δ =  yani  

 

( ) [ ]( ) ( )1 2 n .,..,. 1 2 n 1 2 n 1 2 n B(D)
st lim L f x ,x ,...,x f ;x ,x ,..., x ;x ,x ,..., x f x ,x ,..., x 0− − ∆ − =m   
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olduğu elde edilir. Bu ise ispatı tamamlar. 

4.3.4. Uyarı: Bazı ( )bf C D∈  fonksiyonlarının D kompakt kümesi üzerinde sınırlı 

olmayabileceği biliniyor. Ama 4.3.3. Teoremdeki  

 

( ) [ ]( ) ( )1 2 n .,..,. 1 2 n 1 2 n 1 2 n B(D)
L f x , x ,..., x f ; x , x ,..., x ;x , x ,..., x f x , x ,..., x− ∆ −m   

 

ifadesi K, (i) de verilen küme olmak üzere (i), (4.3.2) ve (4.3.3) den her bir K∈m  için 

sonludur. 

           Şimdi 4.3.3. Teoremde elde edilen istatistiksel sonucun, 2.7.13. Teoremdeki 

klasik sonuçtan daha kuvvetli olduğunu göstermek için bir örnek verelim.  

4.3.5. Örnek: [ ] [ ] [ ]D 0,1 0,1 0,1= × ×  olmak üzere ( )bf C D∈ , ( ) 3
1 2 3m , m ,m= ∈m �  

için  

 

( ) ( ) ( ) ( )
31 2

1 2 3

mm m
m i m j m k1 2 3 i j k

1 2 3 1 1 2 2 3 3
i 0 j 0 k 0 1 2 3

m m mi j k
B f;x ,x ,x f , , x 1 x x 1 x x 1 x

i j km m m
− − −

= = =

    
= − − −    

    
∑∑∑m  

 

ile verilen 3-indisli Bernstein operatörünü göz önüne alalım. Ayrıca 

 

( ) ( ) ( ) ( )
31 2

1 2 3

mm m
m i m j m k1 2 3 i j k

0 1 2 3 1 1 2 2 3 3
i 0 j 0 k 0

m m m
B e ;x , x , x x 1 x x 1 x x 1 x

i j k
− − −

= = =

   
= − − −   

   
∑∑∑m  

                             ( ) ( ) ( )
31 2

1 2 3

mm m
m i m j m k1 2 3i j k

1 1 2 2 3 3
i 0 j 0 k 0

m m m
x 1 x x 1 x x 1 x

i j k
− − −

= = =

     
= − − −     

     
∑ ∑ ∑             

                             ( ) ( ) ( ) ( )1 2 3m m m

1 1 2 2 3 3 0 1 2 3x 1 x x 1 x x 1 x e x , x , x= + − + − + − =   

( ) ( ) ( ) ( )
31 2

1 2 3

mm m
m i m j m k1 2 3 i j k

1 1 2 3 1 1 2 2 3 3
i 0 j 0 k 0 1

m m mi
B e ;x , x ,x x 1 x x 1 x x 1 x

i j km

− − −

= = =

   
= − − −   

   
∑∑∑m                         

                           ( ) ( ) ( )
31 2

1 2 3

mm m
m i m j m k1 2 3i j k

1 1 2 2 3 3
i 0 j 0 k 01

m m mi
x 1 x x 1 x x 1 x

i j km

− − −

= = =

     
= − − −     

     
∑ ∑ ∑  

                           
( )

( ) ( )
( ) ( ) ( )

1
1 2 3

m
m i m m1 i 1

1 1 1 2 2 3 3
i 1 1

m 1 !
x x 1 x x 1 x x 1 x

m i ! i 1 !
−−

=

−
= − + − + −

− −
∑  

                           
( )

( )
( )

1
1

m 1
m 1 i1 i

1 1 1
i 0 1

m 1 !
x x 1 x

m 1 i !i!

−
− −

=

−
= −

− −
∑  
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                           ( ) ( )1m 1

1 1 1 1 1 2 3x x 1 x e x , x , x
−

= + − =   

( ) ( ) ( ) ( )
31 2

1 2 3

mm m
m i m j m k1 2 3 i j k

2 1 2 3 1 1 2 2 3 3
i 0 j 0 k 0 2

m m mj
B e ;x ,x ,x x 1 x x 1 x x 1 x

i j km
− − −

= = =

   
= − − −   

   
∑∑∑m                          

                           ( ) ( ) ( )
31 2

1 2 3

mm m
m i m j m k1 2 3i j k

1 1 2 2 3 3
i 0 j 0 k 02

m m mj
x 1 x x 1 x x 1 x

i j km

− − −

= = =

     
= − − −     

     
∑ ∑ ∑           

                           ( )
( )

( ) ( )
( ) ( )

2
1 2 3

m
m m j m2 j 1

1 1 2 2 2 3 3
j 1 2

m 1 !
x 1 x x x 1 x x 1 x

m j ! j 1 !
−−

=

−
= + − − + −

− −
∑                      

                           
( )

( )
( )

2
2

m 1
m 1 j2 j

2 2 2
j 0 2

m 1 !
x x 1 x

m 1 j ! j!

−
− −

=

−
= −

− −
∑  

                           ( ) ( )2m 1

2 2 2 2 1 2 3x x 1 x e x , x , x
−

= + − =  

( )3 1 2 3B e ; x , x , xm  

( ) ( ) ( )
31 2

1 2 3

mm m
m i m j m k1 2 3 i j k

1 1 2 2 3 3
i 0 j 0 k 0 3

m m mk
x 1 x x 1 x x 1 x

i j km
− − −

= = =

   
= − − −   

   
∑∑∑                         

( ) ( ) ( )
31 2

1 2 3

mm m
m i m j m k1 2 3i j k

1 1 2 2 3 3
i 0 j 0 k 0 3

m m mk
x 1 x x 1 x x 1 x

i j km
− − −

= = =

     
= − − −     

     
∑ ∑ ∑           

( ) ( )
( )

( ) ( )
( )

3
1 2 3

m
m m m k3 k 1

1 1 2 2 3 3 3
k 1 3

m 1 !
x 1 x x 1 x x x 1 x

m k ! k 1 !
−−

=

−
= + − + − −

− −
∑                      

( )
( )

( )
3

3

m 1
m 1 k3 k

3 3 3
k 0 3

m 1 !
x x 1 x

m 1 k !k!

−
− −

=

−
= −

− −
∑  

( ) ( )3m 1

3 3 3 3 1 2 3x x 1 x e x , x , x
−

= + − =  

( )2 2 2
1 2 3 1 2 3B e e e ; x , x , x+ +m  

( ) ( ) ( )
31 2

1 2 3

22mm m
m i m j m k1 2 3 i j k

1 1 2 2 3 3
i 0 j 0 k 0 1 2 3

m m mi j k
x 1 x x 1 x x 1 x

i j km m m
− − −

= = =

          
= + + − − −         

          
∑∑∑  

( ) ( ) ( )
31 2

1 2 3

2mm m
m i m j m k1 2 3 i j k

1 1 2 2 3 3
i 0 j 0 k 0 1

m m mi
x 1 x x 1 x x 1 x

i j km

− − −

= = =

       
= − − −       

      
∑∑∑  

( ) ( ) ( )
31 2

1 2 3

2mm m
m i m j m k1 2 3 i j k

1 1 2 2 3 3
i 0 j 0 k 0 2

m m mj
x 1 x x 1 x x 1 x

i j km

− − −

= = =

       
+ − − −       

      
∑∑∑  

( ) ( ) ( )
31 2

1 2 3

2mm m
m i m j m k1 2 3 i j k

1 1 2 2 3 3
i 0 j 0 k 0 3

m m mk
x 1 x x 1 x x 1 x

i j km

− − −

= = =

       
+ − − −       

      
∑∑∑         
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( ) ( ) ( )
31 2

1 2 3

2 mm m
m i m j m k1 2 3i j k

1 1 2 2 3 3
i 0 j 0 k 01

m m mi
x 1 x x 1 x x 1 x

i j km
− − −

= = =

       
= − − −       

      
∑ ∑ ∑

( ) ( ) ( )
31 2

1 2 3

2 mm m
m i m j m k1 2 3i j k

1 1 2 2 3 3
i 0 j 0 k 02

m m mj
x 1 x x 1 x x 1 x

i j km
− − −

= = =

      
+ − − −      

      
∑ ∑ ∑

( ) ( ) ( )
31 2

1 2 3

2mm m
m i m j m k1 2 3i j k

1 1 2 2 3 3
i 0 j 0 k 0 3

m m mk
x 1 x x 1 x x 1 x

i j km
− − −

= = =

      
+ − − −      

      
∑ ∑ ∑

( )
( )

( ) ( ) ( )
1

1 2 3

m 1
m 1 i m m1 i

1 1 1 2 2 3 3
i 0 1 1

m 1 !i 1
x x 1 x x 1 x x 1 x

m m 1 i !i!

−
− −

=

−+
= − + − + −

− −
∑

( )
( )

( )
( ) ( )

2
1 2 3

m 1
m m 1 j m2 j

1 1 2 2 2 3 3
j 0 2 2

m 1 !j 1
x 1 x x x 1 x x 1 x

m m 1 j ! j!

−
− −

=

−+
+ + − − + −

− −
∑

( ) ( )
( )

( )
( )

3
1 2 3

m 1
m m m 1 k3 k

1 1 2 2 3 3 3
k 0 3 3

m 1 !k 1
x 1 x x 1 x x x 1 x

m m 1 k !k!

−
− −

=

−+
+ + − + − −

− −
∑

( )
( )

( )
( )

( )
( )

1 1
1 1

m 1 m 1
m 1 i m 1 i1 1i i

1 1 1 1 1 1
i 0 i 01 1 1 1

m 1 ! m 1 !i 1
x x 1 x x x 1 x

m m 1 i !i! m m 1 i !i!

− −
− − − −

= =

− −
= − + −

− − − −
∑ ∑  

( )
( )

( )
( )

( )
( )

2 2
2 2

m 1 m 1
m 1 j m 1 j2 2j j

2 2 2 2 2 2
j 0 j 02 2 2 2

m 1 ! m 1 !j 1
x x 1 x x x 1 x

m m 1 j ! j! m m 1 j ! j!

− −
− − − −

= =

− −
+ − + −

− − − −
∑ ∑  

( )
( )

( )
( )

( )
( )

3 3
3 3

m 1 m 1
m 1 k m 1 k3 3k k

3 3 3 3 3 3
k 0 k 03 3 3 3

m 1 ! m 1 !k 1
x x 1 x x x 1 x

m m 1 k !k! m m 1 k !k!

− −
− − − −

= =

− −
+ − + −

− − − −
∑ ∑

( )
( ) ( )

( ) ( )
1

1 1

m 2
m 1 i m 112 i 11 1

1 1 1 1 1
i 01 1 1

m 2 !m 1 x
x x 1 x x 1 x

m m 1 i ! i 1 ! m

−
− − −−

=

−−
= − + + −

− − −
∑

( )
( ) ( )

( ) ( )
2

2 2

m 1
m 1 j m 122 j 12 2

2 2 2 2 2
j 02 2 2

m 2 !m 1 x
x x 1 x x 1 x

m m 1 j ! j 1 ! m

−
− − −−

=

−−
+ − + + −

− − −
∑

( )
( ) ( )

( ) ( )
3

3 3

m 1
m 1 k m 132 k 13 3

3 3 3 3 3
k 03 3 3

m 2 !m 1 x
x x 1 x x 1 x

m m 1 k ! k 1 ! m

−
− − −−

=

−−
+ − + + −

− − −
∑        

( ) ( )1 2m 2 m 22 21 1 2 2
1 1 1 2 2 2

1 1 2 2

m 1 x m 1 x
x x 1 x x x 1 x

m m m m

− −− −
= + − + + + − +

( ) 3m 22 3 3
3 3 3

3 3

m 1 x
x x 1 x

m m

−−
+ + − +         

2 2 2 3 31 1 2 2
1 2 3

1 1 2 2 3 3

m 1 xm 1 x m 1 x
x x x

m m m m m m

−− −
= + + + + +  

( ) ( ) ( )
22 2

2 2 2 3 31 1 2 2
1 1 2 3 2 1 2 3 3 1 2 3

1 2 3

x xx x x x
e x , x , x e x , x , x e x , x , x

m m m

−− −
= + + + + +  
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elde edilir. Böylece { }Bm  operatörler dizisi 2.7.13. Teoremin koşullarını sağlar. 

Buradan herhangi bir ( )bf C D∈  için 

 

( ) [ ]( ) ( )1 2 3 .,..,. 1 2 3 1 2 3 1 2 3 B(D)
lim B f x , x , x f ;x , x , x ;x , x , x f x , x , x 0− ∆ − =m   

 

gerçeklenir. Şimdi, ( ) 3
1 2 3m , m ,m= ∈m �  olmak üzere, genel terimi 

 

1 2 31, m , m ve m tam kare ise,
u

0, diğer durumlarda,


= 


m  

 

olacak şekilde { }u u= m  3-indisli dizisini alalım. Bu durumda st lim u 0− =m  olur. 

Ayrıca u , 3-indisli dizisi yakınsak değildir. Şimdi ( )bC D  üzerinde aşağıdaki pozitif 

lineer operatörü tanımlayalım: 

 

( ) [ ] ( ) ( ) [ ]( )1 2 3 .,..,. 1 2 3 1 2 3 1 2 3 .,..,. 1 2 3 1 2 3L (f x ,x ,x f;x ,x ,x ;x ,x ,x ) 1 u B f x ,x ,x f;x ,x ,x ;x ,x ,x−∆ = + −∆m m m . 

                                                                  (4.3.7)                                                                 

Basit hesaplamalar ile  

 

( )0 1 2 3L e ;x , x , x 1 u= +m m , 

( ) ( ) ( )1 1 2 3 1 1 2 3L e ;x , x , x 1 u e x , x , x= +m m , 

( ) ( ) ( )2 1 2 3 2 1 2 3L e ; x , x , x 1 u e x , x , x= +m m , 

( ) ( ) ( )3 1 2 3 3 1 2 3L e ;x , x , x 1 u e x , x , x= +m m , 

( )2 2 2
1 2 3 1 2 3L e e e ; x , x , x+ +m  

( ) ( ) ( ) ( )
22 2

2 2 2 3 31 1 2 2
1 1 2 3 2 1 2 3 3 1 2 3

1 2 3

x xx x x x
1 u e x , x , x e x , x , x e x , x , x

m m m

 −− −
= + + + + + + 

 
m , 

 

elde edilir.  Şimdi de 4.3.3. Teoremin koşullarının sağlandığını gösterelim: 

(i) ( ){ }3
1 2 3 1 2 3m ,m , m : m ,m , m tam kare 0δ = ∈ =m �  olduğundan  
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( ) ( ) ( ){ }3
1 2 3 0 1 2 3 0 1 2 3K : : tüm x , x , x D için L e ; x , x , x e x , x , x= ∈ ∈ =mm �  olmak üzere 

{ }K 1δ =  olur. 

(ii) ( ) ( ) ( ) ( )1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3B(D)
x D

L e ; x , x , x e x , x , x sup L e ;x , x , x e x , x , x
∈

− = −m m  

                                                                 ( )1 1 2 3
x D
sup u e x , x , x u

∈

= =m m , 

( ) ( ) ( ) ( )2 1 2 3 2 1 2 3 2 1 2 3 2 1 2 3B(D)
x D

L e ; x , x , x e x , x , x sup L e ;x , x , x e x , x , x
∈

− = −m m  

                                                             ( )2 1 2 3
x D
sup u e x , x , x u

∈

= =m m , 

( ) ( ) ( ) ( )3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3B(D)
x D

L e ;x , x , x e x , x , x sup L e ;x , x , x e x , x , x
∈

− = −m m  

                                                             ( )3 1 2 3
x D
sup u e x , x , x u

∈

= =m m  

( ) ( )( )2 2 2 2 2 2
1 2 3 1 2 3 1 2 3 1 2 3

B(D)
L e e e ; x , x , x e e e x , x , x+ + − + +m  

( ) ( )( )2 2 2 2 2 2
1 2 3 1 2 3 1 2 3 1 2 3

x D
sup L e e e ;x , x , x e e e x , x , x

∈

= + + − + +m                                   

( ) ( )( ) ( )( )
22 2

2 2 2 2 2 23 31 1 2 2
1 2 3 1 2 3 1 2 3 1 2 3

x D 1 2 3

x xx x x x
sup 1 u e e e x ,x ,x e e e x ,x ,x

m m m∈

 −− −
= + + + + + + − + + 

 
m  

( )( )
2 22 2 2 2

2 2 23 3 3 31 1 2 2 1 1 2 2
1 2 3 1 2 3

x D 1 2 3 1 2 3

x x x xx x x x x x x x
sup u e e e x , x , x

m m m m m m∈

 − −− − − −
= + + + + + + + + 

 
m

 

1 2 3 1 2 3

1 1 1 1 1 1
3u u u u

2m 2m 2m 2m 2m 2m
≤ + + + + + +m m m m  

 

olup st lim u 0− =m  olduğundan ( ) ( )i 1 2 3 i 1 2 3 B(D)
st lim L e ; x , x , x e x , x , x 0− − =m , 

i 1,2,3=  ve ( ) ( )( )2 2 2 2 2 2
1 2 3 1 2 3 1 2 3 1 2 3

B(D)
st lim L e e e ;x , x , x e e e x , x , x 0− + + − + + =m  elde 

edilir. Yani (4.3.7) ile verilen pozitif lineer operatör dizisi 4.3.3. Teoremin koşullarını 

sağlar. Bu durumda herhangi bir ( )bf C D∈  fonksiyonu için 

 

( ) [ ] ( )1 2 3 .,..,. 1 2 3 1 2 3 1 2 3 B(D)
st lim L (f x , x , x f ;x , x , x ;x , x , x ) f x , x , x 0− − ∆ − =m  
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sağlanır. Fakat x dizisi yakınsak olmadığından (4.3.7) ile verilen pozitif lineer 

operatörlerin dizisi 2.7.13. Teoremin koşullarını sağlamaz. Yani (4.3.7) deki  Lm  

operatörleri 4.3.3. Teoremde çalışırken 2.7.13. deki Teoremde çalışmaz. 
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5. TARTIŞMA 

 

           Bu çalışmada çift indisli fonksiyon dizileri için alışılmış düzgün yakınsaklıktan 

daha kuvvetli olan A-istatistiksel düzgün yakınsaklık kavramı kullanılarak, bulgular 

kısmının birinci bölümünde sürekli fonksiyonların uzayından daha geniş olan Bögel-

sürekli fonksiyonların uzayında tanımlı pozitif lineer operatörler için Korovkin tipi 

yaklaşım teoremi elde edilmiştir. Ayrıca, C. Badea, I. Badea ve H.H. Gonksa (1986) 

tarafından verilen teoremden daha kuvvetli olduğuna dair bir örnek verip, elde ettiğimiz 

teorem için A-istatistiksel yakınsaklık oranını hesaplanmıştır.  

           İkinci bölümde, A-istatistiksel yakınsaklık yardımı ile 2B π  uzayı üzerinde tanımlı 

pozitif lineer operatörler için Korovkin tipi yaklaşım teoremi elde edilmiştir. Ayrıca, 

verdiğimiz teoremin Badea, Badea, ve Cottin (1988) tarafından verilen sonuçlardan 

daha kuvvetli olduğuna dair bir örnek verip, verdiğimiz teorem için A-istatistiksel 

yakınsaklık oranını hesaplanmıştır. 

           Son olarak, n-indisli diziler için istatistiksel yakınsaklık kavramı yardımıyla n�  

uzayının kompakt bir alt kümesi üzerinde tanımlı n-değişkenli B-sürekli fonksiyonların 

uzayında D. Bărbosu (2001) tarafından verilen Korovkin tipi yaklaşım teoreminden 

daha kuvvetli sonuçlar elde edilmiştir. Burada verilen örnekten de görüleceği gibi elde 

ettiğimiz sonuç alışılmış düzgün yakınsaklık kavramı kullanılarak elde edilen sonuçtan daha 

kuvvetlidir. 
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6. SONUÇ VE ÖNERİLER 

 

           Bu çalışmada çift indisli fonksiyon dizileri için alışılmış düzgün yakınsaklıktan 

daha kuvvetli olan A-istatistiksel düzgün yakınsaklık kavramı kullanılmıştır.   

           Bu çalışmada bulunan sonuçlar, n-indisli diziler için istatistiksel yakınsaklık 

kavramı kullanılarak n-boyutlu reel sayılar kümesi üzerinde tanımlı Bögel-sürekli ve B-

2π-periyodik fonksiyonların uzayında incelenebilir. Ayrıca, Bögel-sürekli fonksiyonlar 

için A-istatistiksel yakınsaklık yardımıyla Modüler uzayda Korovkin tipi teorem 

incelenebilir.  
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