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BOGEL SUREKLi FONKSIYONLAR iCiN A-iISTATISTiKSEL YAKLASIM
0z

Bu doktora tezinde ilk olarak, kullanacagimiz bazi tanim, teorem ve semboller
verilmistir.

Daha sonra, bulgular boliimiiniin ilk kisminda, cift indisli fonksiyon dizileri icin
alisilmig diizgiin yakinsakliktan kuvvetli olan A-istatistiksel diizgiin yakinsaklik
kavramui kullanilarak, siirekli fonksiyonlarin uzayindan daha genis olan Bogel-siirekli
(B-siirekli) fonksiyonlarin uzayinda Korovkin tipi yaklasim teoremi calisilmistir. Ayrica
elde edilen yaklasim teoreminin daha kuvvetli olduguna dair bir 6rnek verilmistir. Son
olarak bu teorem icin A-istatistiksel yakinsaklik orani hesaplanmistir.

Bulgular boliimiiniin ikinci kisminda, her iki degiskene gore 2m-periyodik ve
stirekli fonksiyonlarin uzayindan daha genis olan B-2m-periyodik ve B-siirekli
fonksiyonlarin uzayinda A-istatistiksel yakinsaklik kavrami kullanilarak Korovkin tipi
yaklagim teoremi elde edilmistir. Ayrica, bu yeni teoremi saglayan fakat klasik durumda
calismayan bir ornek verilmistir. Son olarak, pozitif lineer operatorlerin dizilerinin A-
istatistiksel yakinsaklik orani hesaplanmistir.

Bulgular bolimiiniin son kisminda, n-indisli diziler igin istatistiksel yakinsaklik
kavrami yardimiyla R" uzayinin kompakt bir alt kiimesi {izerinde tanimli n-degiskenli
B-siirekli fonksiyonlarin uzayinda Korovkin tipi yaklasim teoremi elde edilmistir.
Ayrica, yeni yaklagim teoreminde ¢alisan fakat klasik durumda calismayan bir 6rnek

verilmistir.

Anahtar kelimeler: ¢ift indisli fonksiyon dizileri icin alhisilmis diizgiin
yakinsaklik, ¢ift indisli diziler i¢cin A-istatistiksel yakinsaklik, B-siireklilik, B-2m-
periyodiklik, pozitif lineer operator, Korovkin tipi yaklasim teoremi, n-degiskenli B-

stirekli fonksiyonlar, n-indisli diziler.
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A-STATISTICAL APPROXIMATION FOR BOGEL-CONTINUOUS
FUNCTIONS

ABSTRACT

Firstly, in this thesis, main definitions, theorems and symbols used have been
given.

Then, in first part of findings section, using the concept of A-statistical uniform
convergence, which is stronger than usual uniform convergence for double function
sequences, Korovkin-type approximation theorem has been studied in the space of all
Bogel-continuous (B-continuous) functions which is wider than the space of all
continuous functions. Also, an example that shows the obtained approximation theorem
is stronger has been given. Finally, the rate of A-statistical convergence for this theorem
has been computed.

In the second part of findings section, by using the concept of A-statistical
convergence, Korovkin-type approximation theorem has been obtained in the space of
all B-2z-periodic and B-continuous functions which is wider than the space of all
continuous and 2m-periodic with respect to both variables. Moreover, an example that
shows this new result works but its classical case doesn’t work has been given. Lastly,
the rate of A-statistical convergence of a sequence of positive linear operators has been
calculated.

In the end of the section, Korovkin-type approximation theorem has been obtained
in the space of all n-variate B-continuous functions defined on a compact subset of the
real n-dimensional space via the concept of statistical convergence for n-multiple
sequences. Also, an example such that our new approximation result works but its

classical case doesn’t work has been given.

Key words: Usual unifom convergence for double function sequences, A-
statistical convergence for double sequence, B- continuity, B-2m-periodic, positive
linear operators, Korovkin-type approximation theorem, n-variate B-continuous

functions, n-multiple sequence.
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SIMGE VE KISALTMALAR LiSTESI

|K| : K kiimesinin eleman sayisi

) : Yogunluk fonksiyonu

o, : A-yogunluk fonksiyonu

(Ax) : x dizisinin A matrisi altindaki doniisiim dizisi

S : Istatistiksel yakinsak diziler uzayi

c : Yakinsak dizilerin uzay1

C, : Cesdro matrisi

Ak : K kiimesinin karakteristik fonksiyonu

R : Reel sayilar kiimesi

N : Dogal sayilar kiimesi

B(D) : D tizerindeki sinirh fonksiyonlarin uzayi

||.||B(D) : B(D) uzayinn aligilmig supremum normu

C(D) : D lizerindeki siirekli fonksiyonlarin uzay1

c : R tizerinde tanimli reel degerli tiim siirekli ve 2m-periyodik
fonksiyonlarin uzay1

|||| o : C" uzaymn alisilmis supremum normu

A, [f (u, v)] : f fonksiyonunun karisik farki

C, (D) : D ¢ R? iizerinde tanimh reel degerli tiim B-siirekli fonksiyonlarin
uzay1
B,, : R? {izerinde tanimli reel degerli tiim B- 27 -periyodik ve B-siirekli

fonksiyonlarin uzay1

Ciron : R? iizerinde tanimh reel degerli tiim iki degiskenli siirekli ve her iki

degiskene gore 2m-periyodik olan fonksiyonlarin uzay1

®, (£;9,,0,) : Karisik B-siireklilik modiilii



1. GIRIS

Istatistiksel yakinsaklik kavramm ilk olarak 1951 yilinda Steinhaus tarafindan
Polonya’da yapilan bir konferansta tanitildi ve yine ayni yil Fast tarafindan gelistirildi.
“Istatistiksel Yakinsaklik” kavrami, Toplanabilme Teorisi (Schoenberg, 1959 ve Fridy,
1985), Fourier Serileri (Zygmund, 1979), Fonksiyonel Analiz (Connor, 1988, 1989,
2000; Demirci ve Orhan 1999; Kline, 1995), Sayilar Teorisi (Erdés ve Tenenbaum,
1989) ve son zamanlarda ise Olgu Teorisi (Miller, 1995; Miller ve Orhan, 2001),
[statistik (Fridy ve Khan, 1998), Optimizasyon Teorisi (Pehlivan ve Mamedov, 2000)
ve Yaklasim Teorisi ( Gadjiev ve Orhan, 2002) gibi matematigin temel alanlariyla olan
iliskisi nedeniyle yaklasik yarim asirdir bircok matematik¢inin ilgilendigi 6nemli bir
konu haline gelmistir. Korovkin tipi yaklagim teoremleri, yaklagimlar teorisinde temel

olusturmaktadir (Korovkin, 1960; DeVore, 1972). C[a,b] ile [a,b] tizerindeki siirekli
fonksiyonlarin uzayi ve B[a,b] ile [a,b] tizerindeki sinirli fonksiyonlarin uzayini
gosterelim. Korovkin, C[a,b] uzayindan B[a,b] uzayma tamml {L,} pozitif lineer

operatorlerinin R {lizerinde sinirli herhangi fe C[a,b] fonksiyonuna yakinsamasi

problemini incelemistir (Korovkin, 1960). Pozitif lineer operatorlerin dizileri yardimiyla,
stirekli fonksiyonlarin yaklasimi bircok aragtirmada gbz Oniine alinmis ve bir¢ok
operatoriin Korovkin tipi yaklasim ozellikleri aragtirnlmistir. Bununla birlikte, Korovkin
teorisi daha sonra siireklilik yerine Bogel-siireklilik (B-stireklilik) kavrami kullanilarak
genellestirildi (Bogel, 1934, 1935, 1962). Goz Oniine alinan islemlerin, siirekli
fonksiyonlarin uzayindan daha genis olan Bogel-siirekli (B-siirekli) fonksiyonlar uzay1
icinde gecerli oldugu C. Badea, I. Badea ve H.H. Gonksa tarafindan gosterilmistir
(Badea ve ark., 1986). Daha sonra, siirekli ve her iki degiskene gore 2m-periyodik
fonksiyonlarin uzayindan daha genis olan B-siirekli ve B —2m-periyodik fonksiyonlar
uzay1 i¢inde gecerli oldugu C. Badea, I. Badea ve C. Cottin tarafindan gosterilmistir
(Badea ve ark., 1988). 2001 yilinda D. Barbosu tarafindan R" uzayimin kompakt bir alt
kiimesi tizerinde tanimli n-indisli pozitif lineer operatorler i¢in Korovkin tipi yaklagim
teoremi elde edilmistir (Barbosu, 2001).

Bu doktora tezinin birinci boliimiinde, c¢ift indisli dizilerin A-istatistiksel
yakinsaklik tanimini kullanarak, C. Badea, I. Badea ve H.H. Gonksa tarafindan verilen

Korovkin tipi yaklagim teoreminden daha kuvvetli sonuglar elde edecegiz. Ayrica,



verdigimiz teoremin daha kuvvetli olduguna dair bir 6rnek verip, verdigimiz teorem igin
A-istatistiksel yakinsaklik oranim hesaplayacagiz. Ikinci boliimde, C. Badea, I. Badea
ve C. Cottin tarafindan verilen Korovkin tipi yaklasim teoremden daha kuvvetli
sonuclar elde edecegiz. Ayrica, elde ettigimiz teoremin daha kuvvetli olduguna dair bir
ornek verip, bu teorem icin A-istatistiksel yakinsaklik oranmm hesaplayacagiz. Son
olarak, n-indisli diziler i¢in istatistiksel yakinsaklik kavrami yardimiyla R" uzayinin
kompakt bir alt kiimesi lizerinde tanimli n-degiskenli B-siirekli fonksiyonlarin uzayinda
D. Barbosu tarafindan verilen Korovkin tipi yaklasim teoreminden daha kuvvetli
sonuclar elde edecegiz. Ayrica, yeni yaklasim teoremimizde c¢alisan fakat klasik

durumda ¢aligmayan bir drnek verecegiz.



2. GENEL BILGILER

Bu boliimde hazirlanacak olan tezin igeriginde kullamilacak olan bazi1 onemli
tanim, teorem ve semboller tanitilacaktir.,

X ve Y reel degerli fonksiyonlarin iki fonksiyon uzay1 olsun.
2.1. Tanim: X uzaymin her bir elemanim Y nin bir ve yalniz bir elemanina karsilik

getiren L kuralina X wuzayindan Y uzayma bir operatdr denir. Bu durum
L(f(t);x)=g(x) seklinde gosterilir. Burada L(f(t);x) gosterimi yerine L(f;x)
yazacagiz. Ayrica, X kiimesine L operatoriiniin tamm kiimesi denir ve D(L) ile
gosterili. R(L)={g:L(f;x)=g(x),fe D(L)} kimesine L operatoriinin deger
kiimesi denir ve R(L) Y olur.

X bir lineer fonksiyon uzay1 olmak iizere lineer operatoriin tanimini verebiliriz.

2.2. Tamm: f,,f,, X uzayinda herhangi iki fonksiyon ve her xe X, her a,,a, € R igin

L operatorii
L(a,f, +a,f,;x)=aL(f;;x)+a,L(f,;x)

kosulunu saglhiyor ise o taktirde L operatoriine lineer operatér denir. Bu tanimdan
goriilecegi gibi L(0;x)=0 olur.

Lineer operatorler kiimesi i¢inde ¢ok dnemli bir alt sinif vardir ki o da pozitif lineer
operatorlerdir.
2.3. Tanm: X" ={fe X:f(x)20}, Y ={ge Y:g(x)20} olsun. Eger X uzayinda
tammlanmis bir L lineer operatorii X' kiimesindeki herhangi bir f fonksiyonunu

pozitif fonksiyona doniistiiriiyor ise o taktirde L operatoriine pozitif lineer operator
denir. Yani f (x)>0 oldugunda L(f;x)>0 olur.

Ayrica f(x)<g(x) oldugunda L(f;x)<L(g;x) olur ki bu ise pozitif lineer
operatdrlerin monoton oldugunu gosterir.

Ornegin; 1912 yilinda S. Bernstein, [O,l] araliginda verilmis siirekli bir

fonksiyona yakinsayan polinom tanimlamistir. 0 <x <1 olmak iizere



Bn(f;x)zi;f(kj[njxk(l—x)“‘k 2.1)

seklindedir. x* (1-x)"" >0 oldugundan B, (f;x) pozitif lineer operatordiir.
D, R nin kompakt bir alt kiimesi olmak iizere sirastyla C(D) ve B(D) ile D
iizerinde tanimli reel degerli tiim siirekli fonksiyonlarin uzaymmi ve tiim sinirh

fonksiyonlarin uzayim gosterelim. C(D) ve B(D) uzaylan |f|, o = sup|f (x)| normu
xeD

ile birer Banach uzayidir. Ayrica bu norma gore yakinsaklik diizgiin yakinsakliktir.
C" ile reel sayilar kiimesi iizerinde tamimh reel degerli tiim siirekli ve 27m-
periyodik fonksiyonlarin uzaymm gosterelim. C  uzay: iizerindeki norm supremum

normu, yani [f]. = sup|f (x)| normudur.
¢ xeR

2.1. P. P. Korovkin Teoremleri

1951 yilinda H. Bohman, toplam seklindeki pozitif lineer operatorler dizisinin [0,1]
arahiginda siirekli f(x) fonksiyonuna yaklagmasi problemini incelemistir. H. Bohman,

xe[0,1], 0< o, , <1 oldugunda

n

L, (f;x) :zf(a’k,n)Pk,n (X) » Pea (X) 20

k=0

pozitif operatorler dizisinin, n — oo i¢in [0,1] arahginda L (f;x)=f(x) olmast i¢in
gerekli ve yeterli kosul

(L, (Lx)=1

) L, (tx)=x

3) L, (tz;x) —=x°
oldugunu gostermistir. Burada “—=” simgesi diizgiin yakinsakligni gostermektedir.
Bohman’nin arastirdign operatorlerin degerinin, f fonksiyonunun [0,1] araliginin

disindaki degerlerden bagimsiz oldugu agiktir.



1953 yilinda P.P. Korovkin, Bohman’nin kosullarinin genel halde de

gerceklendigini genel bir teoremle ispatlamistir.
2.1.1. Teorem: Eger {L }, L, : C[a,b] = B[a,b] pozitif lineer operatérler dizisi, [a,b]
araliginda (1), (2), (3) kosullarim1 gercekliyorsa bu taktirde tiim reel eksende sinirli

herhangi f e C[a,b] icin n — oo gittiginde
L, (f;x)=f(x),a<x<b

olur (Korovkin, 1960).
Simdi Korovkin teoreminin kosullarimi saglayan bir 6rnek verelim. (2.1) deki

Bernstein polinomunu g6z 6niine alinirsa,

n

) Bn(l;x):z@xk(l-x)"‘k =(1-x+x)" =1

k=0

I k n! n-k
) B (tx)=Y S0 (-
@ B, (6x) k:On(n—k)!kzx( x)

n ~1)! .
=X K (n-1) xk_l(l—x) ‘

0 k- ~1)! kX ~1)! .
=X k=l (n-1) xk_l(l—x) g (n-1) xk_l(l—x) ‘
_ n _2 | . n-1 _1 nek—
—x*2 ! (n-2) x?(1-x) kXS x“(1-x) kl

n k=2 (l’l—k)!(k—z)' n k=0 k



olur. Dolayisiyla n — oo i¢in

M |

B, (1:x) -] ;=0

B[0.1

@) |

B, (t;x)- x”B[OJ] -0

3 |

B, (tz;x)—xzu -0

B[0,1]

saglanir. 2.1.1. Teoreme gore herhangif e C[O,l] icin

B, (f;x)—f(x)”B[OJ] -0

gerceklenir.

2.1.2. Teorem: {L }, L :C —C pozitf lineer operatdrler dizisi olsun. [a,b]
araliginda {L_(1;x)-1}, {L, (cost; x)-cos x} ve {L, (sint;x)-sinx} dizileri sifira
diizgiin yakinsak ise [a,b] aralig iizerinde smirli herhangi feC  icin

L, (f;x)=f(x) olur (Korovkin, 1960).

2002 yilinda Gadjiev ve Orhan tarafindan yakinsakliktan daha kuvvetli olan
istatistiksel yakinsaklik kavrami kullanilarak, C[a,b] uzay1 lizerinde Korovkin tipi
yaklagim teoremi verilmistir. Daha sonra, 2003 yilinda Duman, periyodik fonksiyonlar
uzayr iizerinde tamimli pozitif lineer operatorler ig¢in A-istatistiksel yakinsaklik
kavramini kullanarak Korovkin tarafindan verilen sonucgtan daha kuvvetli sonuclar elde
etmistir. Bunu vermeden Once istatistiksel ve A-istatistiksel yakinsaklik kavramini

hatirlatalim.

2.2. istatistiksel ve A-istatistiksel Yakisaklik

N dogal sayilar kiimesinin bir altkiimesi K ve K, :={k<n:ke K} olsun. K,

kiimesinin eleman sayisini da |Kn ile gosterelim.

2.2.1. Tanim: K C N olsun. Eger



limiti mevcut ise, bu limit degerine K kiimesinin “yogunlugu” denir ve 8{K} ile
gosterilir (Niven ve Zuckerman, 1980).

{a,} pozitif tamsayilarin bir dizisi ve K={a, :ke N} olmak iizere 3{K}

mevcut ise
§{K}=lim—
n an

olur (Niven ve Zuckerman, 1980).
Ornegin; 8{N}=1, ES{n2 ‘ne N}zO, 8{2n:ne N} =8{2n+1:ne N}:%

oldugu yogunluk tammindan kolayhikla elde edilebilir. 8{A} ve &{N\A}

yogunluklarindan biri mevcut ise, bu durumda 3{N\A}=1-8{A} olacaktir (Niven ve

Zuckerman, 1980; Freedman ve Sember, 1981).
Simdi yogunluk kavramini kullanarak istatistiksel yakinsaklik tanimim

hatirlatalim:

2.2.2. Tamm: x ={x, } reel ya da kompleks terimli bir dizi olsun. Eger her € > 0i¢in
8{ke N:|x, -L|2¢e}=0

olacak sekilde bir L sayist varsa, bu durumda x dizisi L sayisina “istatistiksel
yakinsaktir” denir ve bu durum st—limx =L seklinde gosterilir (Fast, 1951; Steinhaus,

1951).

Simdi istatistiksel yakinsaklik kavrami i¢in bazi karakterizasyonlar hatirlatalim.



2.2.3. Teorem: x ={x,} dizisinin bir L sayisina istatistiksel yakinsak olmasi igin

gerekli ve yeterli kosul 8{n, :ke N} =1 olmasi ve lilzn x, =L olacak sekilde en az bir

{xnk} yakinsak alt dizisinin bulunmasidir (Connor, 1989; Fridy, 1985; Salat, 1980).

2.2.3. Teoremden goriilecegi iizere st—limx =L olmas1 i¢in gerekli ve yeterli

kosul her €¢>0 ve n=n, olacak sekildeki her ne K i¢in |xn —L| <¢& olacak sekilde

3{K} =1 olan bir K c N altkiimesi ve n, =n,(&)e N sayisi vardir.

2.2.4. Ornek: x ={x,} dizisinin genel terimi

1, k=
X, = T m=123,..
0 , k#m

seklinde tanimlansin. Her € >0 icin

0<[{k<n:|x|>e}{<[{k<n:x, #0}|<vn

oldugundan

OSIiml‘{kSn:|xk|28}‘S1im£:0
non noon

bulunur. Boylece st—limx =0 elde edilir.
Ayrica yakinsak her dizinin simirli oldugunu klasik analizden biliyoruz. Fakat

istatistiksel yakinsak dizilerin sinirli olmasi gerekmez. Simdi buna bir 6rnek verelim.

2.2.5. Ornek: Genel terimi

,m=123,...

{\/E , k=m’
Xk:

0 , k#m’

seklinde tanimlanan x = {xk} dizisi i¢in st—limx =0 oldugu acgiktir ve bu dizi iistten

sinirsizdir.



2.2.2. Tamim ve 2.2.3. Teoremden anlasilacag: gibi, eger x dizisi L sayisina
istatistiksel yakinsak ise, L sayisinin herhangi bir € >0 komsulugunda dizinin sonsuz
coklukta terimi bulunurken bu komsulugun disinda, indis kiimesinin yogunlugu sifir
olmak kosulu ile, yine diziye ait sonsuz ¢oklukta terim bulunabilir. Bu ise, istatistiksel
yakinsakligin bilinen anlamdaki yakinsakliktan daha genel oldugunu gostermektedir.
Boylece yakinsak diziler uzaym c ile ve istatistiksel yakinsak diziler uzaymi da S ile
gosterecek olursak, ccS oldugu acgiktir. Yani yakinsak her dizi istatistiksel

yakinsaktir. Yukaridaki drneklerden de anlagilacag gibi tersi dogru degildir.

Simdi A-istatistiksel yakinsaklik kavramini hatirlatalim. Ilk olarak toplanabilme

hakkinda biraz bilgi verecegiz.

X ve Y, tim diziler uzay1 olan ® nin iki altkiimesi ve A=(a,) reel ya da

kompleks terimli bir sonsuz matris olmak iizere, x ={x, }€ X ve her n>1 igin

yn = (AX)n = Zankxk
k=1

serisi yakinsak ise y=Ax=(y,)= ((Ax)n) doniisiim dizisi mevcuttur denir. Eger her
xe X igin y:((Ax)n) doniisiim dizisi meveut ve yeY ise A=(a,) matrisi X

uzaymdan Y igine bir matris doniisiimii tamimlar denir. Eger bir x dizisi i¢in Ax
doniisiim dizisi mevcut ve bir L degerine yakinsak ise x dizisi L sayisina, A -

toplanabilirdir denir ve A —limx =L yazilir. X dizi uzayini, Y i¢ine doniistiiren biitiin
matrislerin simifi (X,Y) ile gosterilir. Eger, A, X den Y igine bir matris doniigiimii ise
A€ (X)Y) yazilir. Toplami ya da limiti koruyan matrislerin simfi ise (X,Y;p) ile
gosterilir. Ozel olarak X =Y =c (yakinsak dizilerin uzay1) olmak iizere A€ (c,c) ise

A matrisine konservatif matris denir.

2.2.6. Tamm: A=(a,) k,n=12,.., sonsuz bir matris olmak iizere verilen bir

durumda A matrisine “regiiler matris” denir (Hardy, 1949).
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Bir A=(a,) matrisinin regiiler olmasi, Silverman-Toeplitz kosullari olarak

bilinen asagidaki teorem ile karakterize edilir.

2.2.7. Teorem: (Silverman-Toeplitz) Bir A =(a,) matrisinin regiiler olmasi igin

gerekli ve yeterli kosul

@) [JA] = sup fa| <o
o k=]

(ii) Her sabit k i¢in lima , =0
(iii) lim ) a,, =1
=

kosullarmin saglamasidir (Hardy, 1949; Maddox, 1970).

Ornegin, toplanabilme teorisinde (birinci mertebeden) Cesdro matrisi olarak

adlandirilan ve agagidaki sekilde tanimli olan C, =(c,, ) matrisi,

1 0 0
LI
2 2
C, = .
r 1 1
n n n n
regiilerdir.

Bir x ={x,} dizisinin L sayisina istatistiksel yakinsak olmast Ve >0 igin

liml‘{k <n :|xk —L| 28}‘ =0
non
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olmasi demektir. Bir toplanabilme metodundan bir yogunluk elde edilebildiginden
istatistiksel yakinsaklik tanimu, K::K(e):{kSn:|xk —L|28} ve Y, K kiimesinin

karakteristik fonksiyonu olmak iizere her Ve >0 igin

()

n

lim(Cpxy ), =lim ) Xy (k) =lim =0
n n =1 n

seklinde ifade edilebilir.

Freedman ve Sember 1981 yilinda istatistiksel yakinsaklik taniminda C; Cesaro
matrisi yerine negatif olmayan regiiler bir A =(a ) sonsuz matrisi alarak istatistiksel

yakinsaklig1 A-Istatistiksel yakinsakliga genisletmislerdir.

Simdi A-istatistiksel yakinsaklik tanimimi verecegiz. Fakat ilk olarak bir K

kiimesinin A-yogunlugu tanimini verelim. A =(a,, ) negatif olmayan regiiler bir matris

olsun.

2.2.8. Tamim: K c N olsun. Eger

8, {K}=lim(Ay,) =lim)» a,

keK

limiti mevcut ise 8,{K]} sayismna K kiimesinin A-yogunlugu denir (Freedman ve
Sember, 1981).

8,{K} veya 8,{N\K} yogunluklarindan herhangi biri mevcut ise
3, {K}=1-8,{N\K} olur. Ayrica K kiimesi sonlu elemanl: bir kiime ise 8, {K} =0

oldugu aciktir.
2.2.9. Ornek:

1 , k=m’
a, = 0 K £ ,m=12,...
, m
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seklinde tammlanan A =(a, ) matrisini goz Oniine alalm. Bu durumda
K, = {k #m’:me N} kiimesi i¢in 3,{K,} =0 olur. Dolayisiyla
K, :{k =m’:me N} kiimesinin A-yogunlugu 1, yani 8, {K,}=1 olur.

2.210. Tamm: x={x,} reel terimli bir dizi olsun. Eger her €>0 igin

K:=K(g)={k:|x, —L| 2 €} olmak iizere

8A {K} = lil{nzankXK(s) (k) = hl{n Z ank = 0
k=1

keK

ise x ={x,} dizisi L sayisina “A-istatistiksel yakinsaktir” denir ve st, —limx =L ile
gosterilir (Freedman ve Sember, 1981; Kolk, 1993; Miller, 1995).

Eger 2.2.10. Tamimda A matrisi yerine I birim matrisi alinirsa, klasik anlamdaki
yakinsaklik, A matrisi yerine C, Cesdro matrisi alinirsa, istatistiksel yakinsaklik elde
edilir.

A-istatistiksel yakinsaklik icin 2.2.3. Teoremin benzerini asagidaki gibi ifade

edebiliriz : st, —limx =L olmast i¢in gerekli ve yeterli kosul 8, {n, :ke N} =1 olmasi

ve limx, =L olacak sekilde en az bir {xnk} yakinsak alt dizisinin bulunmasidir (Kolk,

n

1993; Miller, 1995).
2.3. istatistiksel Yakinsak Fonksiyon Dizileri

2004 yilinda Duman ve Orhan, istatistiksel yakinsaklik kavramini kullanarak reel
sayllarin bir D altkiimesi {izerinde tanimli fonksiyon dizilerinin istatistiksel

yakinsakligin1 problemini incelemiglerdir.

DcR ve {f,}, D iizerinde tamimli reel degerli fonksiyonlarin bir dizisi olsun.

2.3.1. Tanim: Her € >0 ve her bir xe D i¢in




13

kosulu gergekleniyorsa, bu durumda {f,} dizisi f:D — R fonksiyonuna D iizerinde

“istatistiksel noktasal yakinsakti” denir. Bu durum f, — f(stat) seklinde gosterilir

(Duman ve Orhan, 2004).

2.3.2. Tamm: {f, }, D iizerinde sirli fonksiyonlarin bir dizisi olsun. Her € >0 i¢in

5{n:

£, ], 2€}=0

ise, bu durumda {f,} dizisi f:D — R fonksiyonuna D iizerinde “istatistiksel diizgiin

yakinsaktir” denir. Bu durum f, = f (stat) seklinde gosterilir (Duman ve Orhan, 2004).

2.4. Istatistiksel Yakinsaklik Yardimiyla Baz1 Yaklasim Teoremleri

Bu kisimda yakinsakliktan daha kuvvetli olan istatistiksel yakinsaklik kavrami
yardimiyla 2002 yilinda Gadjiev ve Orhan tarafindan verilen Korovkin tipi yaklagim
teoremini verecegiz. Daha sonra, 2003 yilinda Duman tarafindan A-istatistiksel
yakinsaklik kavrami kullanilarak elde edilen periyodik fonksiyonlar uzayi iizerinde

tanimh pozitif lineer operatorler i¢in Korovkin tipi yaklagim teoremi verecegiz.

2.4.1. Teorem: Eger {A }, A, :C[a,b] — B[a,b] pozitif lineer operatérler dizisi

st—limHAn(ti;x)—xi

| =0,1i=0,1,2

Bla.b

kosullarim sagliyor ise R iizerinde sinirli herhangi bir f e C[a,b] fonksiyonu i¢in

Bla,b]

st—lim[|A, (f:x)—f (x)

olur (Gadjiev ve Orhan, 2002).

2.4.2. Teorem: A=(a,) negatif olmayan regiiler bir matris olsun. Eger {L,},

L, :C — C pozitif lineer operatorler dizisi
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st —lim|[L, (1;x)-1] . =0,
st —lim”Lk (cost;x)—cos x”c* =0,

st —lim”Lk (sint;x)—sin x”@ =0,

kosullarim sagliyor ise herhangi bir fe C™ fonksiyonu igin
st, —lim||L, (f;x)=f (x)]. =0

olur (Duman, 2003).
2.5. Cift Indisli Dizilerin Pringsheim Anlaminda Yakinsakhg

Cift indisli dizilerin yakinsaklig1 ilk olarak Pringsheim tarafindan 1900 yilinda

tanimlandi.

2.5.1. Tanim: x :{xm,n} reel terimli bir ¢ift indisli dizi olsun. x dizisinin L sayisina
Pringsheim anlaminda yakinsak (P-yakinsak) olmasi igin gerekli ve yeterli kosul her
e>0 ve her m,n>N i¢in |xm’n—L|<£ olacak sekilde en az bir N=N(g)e N

sayisinin var olmasidir. Buradaki L sayisma x dizisinin P-limiti denir. Bu durum,

P-limx =L ile gosterilir (Pringsheim, 1900).

2.5.2. Tamm: x ={x,,,} reel terimli bir cift indisli dizi olsun. Tiim (m,n)e N* i¢in

|xm,n <M olacak sekilde bir M >0 sayis1 var ise x dizisine sinirhdir denir

(Pringsheim, 1900).
Biliyoruz ki yakinsak her dizi simirhidir fakat P-yakinsak cift indisli dizilerin

sinirli olmasi gerekmez. Ornegin, genel terimi

, m=1,
m,n

1
X =m , n=2,
0

, diger durumlarda,
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olacak sekilde x:{xm,n} dizisini tanimlayalim. P-limx =0 fakat bu dizi smrh

degildir.
2.6. Cift Indisli Dizilerin A- Istatistiksel Yakinsakhig

2003 yilinda Mursaleen ve Edely tarafindan verilen, cift indisli diziler ig¢in

istatistiksel yakinsaklik kavramin1 vermeden dnce yogunluk kavramini verelim.

E, N? =NxN nin bir alt kiimesi ve E,_ | ::{jSm,kSn:(j,k)e E} olsun.

2.6.1. Tamm: N” nin bir E alt kiimesi i¢in

P—1imL|Em,n
pr—

limiti mevcut ise, bu limit degerine E kiimesinin “yogunlugu” denir ve & {E} ile
gosterilir (Mursaleen ve Edely, 2003).

Ornegin; SZ{Nz}:l, 82{(m2,n2):m,ne N}zO oldugu kolaylikla goriilebilir.
Ayrica; &8 {E} ve SZ{NZ \E} yogunluklarindan biri mevcut ise, bu durumda

&’ {NZ \E} =1-8"{E} olacaktir (Mursaleen ve Edely, 2003; Moricz, 2003).

2.6.2. Tanim: X = {xm,n} reel terimli bir ¢ift indisli dizi olsun. Eger her € >0 i¢in
& {(m,n)e N’ :|xm,n —L| >e}=0

olacak sekilde bir L sayis1 varsa x dizisi L sayisina “istatistiksel yakinsaktir” denir ve
st> —limx = L ile gosterilir (Mursaleen ve Edely, 2003).
Simdi ¢ift indisli dizilerin istatistiksel yakinsaklik kavrami i¢in bazi

karakterizasyonlar hatirlatalim.
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2.6.3. Teorem: x:{xm,n} cift indisli dizisinin bir L sayisina istatistiksel yakinsak

olmasi icin gerekli ve yeterli kosul 8 {K}=1 ve P—j}(igl x;, =L olacak sekilde
(j.k)eK

K= {( jk):jke N} < N* alt kiimesinin olmasidir (Mursaleen ve Edely, 2003).

Simdi cift indisli diziler icin A-istatistiksel yakinsaklik kavramini hatirlatalim.
2.6.4. Tanm: A= (a j,k,m,n) 4-boyutlu toplanabilme matrisi olsun. Verilen bir
x={x,,,} ¢ift indisli dizisi i¢in x dizisinin A-doniisiimii, her (j,k)e N* igin, ¢ift
indisli seriler Pringsheim anlaminda yakinsak olmak kosulu ile

(AX)j’k = Z aj,k,m,nxm,n

(m,n)eN2

seklindedir ve Ax := ((Ax)j’k) ile gosterilir.

1926 yilinda Robison 4-boyutlu matrislerin regiilerligini asagidaki gibi
tanimlamigtir. Bu kosullar Robison-Hamilton kosullart veya RH-regiilerlik olarak
bilinir.

Bir A= (a j,k,m,n) 4-boyutlu matrisinin RH-regiiler olmasi i¢in gerekli ve yeterli
kosul sl her x={x,,} cift indisli dizisi i¢in P-limx,,=L oldugunda
P—lim(Ax) =L olmasidir.

ik ik
A:(a

j,k,m,n) 4-boyutlu matrisinin RH-regiiler olmasi i¢in gerekli ve yeterli

kosul asagidaki Robison-Hamilton kosullarinin saglanmasidir:

(i) Her bir (m,n)e N* igin P—l%’rkn i ma =0,
(ii) P—lim > aa. =1

(m.n)eN?
(iiii) her bir ne N iginP—l%?%‘a omn] =0
(iv) her bir me N iginP—lim ¥ [a, | =0 .

" neN
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(v) her (j,k)e N* igin ) ‘aj’k’m’n , P-yakinsak,
(m,n)eN2
(vi) her (j,k)e N? igin Z ‘a ikma| <A olacak sekilde sonlu pozitif A ve B sayilari
m,n>B

vardir.

Ornegin, 4-boyutlu Cesédro matrisi olarak adlandirilan ve C(1,1) = (c j,k,m,n) ,

1
= jk
0 , diger durumlarda,

, 1€<m<j1<n<Kk,
c

j.k,m,n

seklinde tanimlanan C(1,1) 4-boyutlu matrisi RH-regiilerdir.

Ayrica bir x = {xm,n} cift indisli dizisinin L say1sina istatistiksel yakinsak olmasi

demek Ve > 0 icin

P—lrirlTﬁ{jSm,kSn:‘xj,k—L‘Ze}‘zo

olmas1 demektir.

Buradan istatistiksel yakinsaklik tanimi, K:= K(e) = { j€m,k<n: ‘x ik L‘ > 8}

ve X, K kiimesinin karakteristik fonksiyonu olmak iizere her Ve >0 i¢in

. ik . |K(8)|
P_lfkn(COCK )j’k = P—lir](rlm;lxm) (m,n)= P_lgknj— =0

seklinde ifade edilebilir.

A:(aj’k,m’n) 4-boyutlu negatif olmayan RH-regiiller matris olsun. Simdi

K c N? kiimesinin A-yogunlugu tanimini verelim.

2.6.5. Tamm: K c N? alt kiimesi i¢in
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6(2A) {K} =P- lﬁrkn Z aj,k,m,n

(m,n)eK

limiti mevcut ise, bu limit degerine K kiimesinin “ A -yogunlugu” denir.

Eger, S(ZA){E} ve 8(2A){N2\E} yogunluklarindan biri mevcut ise, bu durumda
S(a) {NZ\E} =1-98;,,{E} olacaktr.

2.6.6. Tanim: x = {xm,n} reel terimli bir cift indisli dizi olsun. Eger her € >0 icin

52

() {(m’n)e N’ :|xmm —L| > s} =0

olacak sekilde bir L sayis1 varsa x dizisi L sayisia “A-istatistiksel yakinsaktir” denir.
Bu durum st(zA) —limx =L ile gosterilir.
Ayrica, yukandaki tamimda A=C(1,1) alinirsa A-istatistiksel yakinsaklik,

Mursaleen ve Edely tarafindan verilen ¢ift indisli dizilerin istatistiksel yakinsaklig ile
cakisir. Eger A matrisi yerine 4-boyutlu birim matris alinirsa A-istatistiksel yakimsaklik
Pringsheim anlamda yakinsakliga indirgenir.

Pringsheim anlamda yakinsak her ¢ift indisli dizinin, ayn1 sayiya A-istatistiksel
yakinsak oldugu aciktir. Fakat tersi dogru degildir. Ayrica A-istatistiksel yakinsak cift

indisli dizilerin sinirli olmasi gerekmez.

2.6.7. Ornek: x ={x,,,} ¢ift indisli dizisinin genel terimi

m,n

{mn, m ve n tam kare,

0, diger durumlarda,

olsun. x dizisi siurl bir ¢ift indisli dizi degildir. Ayrica, eger A =C(1,1), 4-boyutlu

2

Cesaro matris, alinirsa st(C(U))—limx:O elde edilir fakat bu x dizisi Pringsheim

anlamda yakinsak degildir.
Simdi cift indisli dizilerin A-istatistiksel yakinsaklik kavrami icin bazi

karakterizasyonlar hatirlatalim.
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2.6.8. Teorem: x :{xm,n} cift indisli dizisinin bir L sayisina A-istatistiksel yakinsak

olmasi i¢in gerekli ve yeterli kosul S(ZA){K}zl ve P—lim x;, =L olacak sekilde
Jk—eo 7
(j.k)eK

K= {( jk):jke N} c N? alt kiimesinin olmasidir.

2.7. Bogel-siirekli (B-siirekli) ve B- 27 -periyodik Fonksiyonlar

Bogel-siireklilik (B-siireklilik) kavramui ilk olarak K. Bogel tarafindan verildi
(Bogel, 1934, 1935, 1962).

Kabul edelim ki X ve Y reel sayilar kiimesinin kompakt iki alt kiimesi,

D=XxY ve f:D—R bir fonksiyon olsun. Ayrica, Axgy[f(u,v)] sembolii

fonksiyonunun
Axgy [f(u,v)] =f (u,v)—f (X,V)—f (u,y)+f (x,y)

ile verilen karisik farkini gostersin.

2.7.1. Tamm: f:D — R fonksiyonunun (x,y)e D noktasinda B-siirekli olmasi igin
gerekli ve yeterli kosul her €¢>0 ve |u—x|<8 ve |V—y|<8 saglayan herhangi
(u,v)e D igin ‘Ax’y [f(u,v)]‘<8 olacak sekilde en az bir §=38(g)>0 sayis1 var

olmasidir. Yani ( lim A [f(u,v)] =0 olmasidir (Bogel, 1934, 1935, 1962).

u,v)-(x.y)

C, (D) ile D iizerinde taniml reel degerli tiim B-siirekli fonksiyonlarin uzayini
gosterelim. Ayrica C(D)c C, (D) yani siirekli her fonksiyon B-siireklidir. Fakat tersi
dogru degildir.

2.7.2. Ornek: D = [O,I]X[O,l] olmak iizere f : D — R fonksiyonunu

0, u=0 0, v=0
f(u,v): l uz0 * l v#0
u’ v’
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olacak sekilde tanimlayalim. f sinirsiz bir fonksiyon olup A, | [f (u,v)] =0 oldugu

kolayca goriilebilir. Ayrica f fonksiyonu siirekli degildir.
1986 yilinda C. Badea, 1. Badea ve H.H. Gonksa, siirekli fonksiyonlarin uzayini
kapsayan B-siirekli fonksiyonlarin uzaymi kullanarak Korovkin tipi yaklasim teoremi

ispatladi.
e()(X’Y):L el(X’Y):X’ ez(X’Y)ZYv e3(x,y)=xz+y2 ve

E , (u,v)=f(u,y)+f(x,v)=f(u,v) olsun. Ayrica, tim (u,v),(x,y)e D igin

A, [Fx,y (u,V)] =K, (u, V)—Fx,y (x, V)—Fx,y (u, y) +F (x, y)
=f(u,y)+f(x,v)=f(u,v)=f(x,y)=f(x,v)+f(x,v)=f(u,y)
—f(x,y)+f(u,y)+f(x,y)+f(x,y)—f(x,y)

=—f (u,v)+f(x,v)+f(u,y)-f(x,y)

=—A,, [f (u, V)]

olup, sabit (x,y)e D igin f nin B-siirekliligi (Jim A, [f(u.v)]=0) F_, nin B-

uv)5(x.y)

siirekliligini (( lim )Ax,y [Fx,y (u, V):I =0) saglar.

u,v)—)(x,y
Simdi bize gerekli olan C. Badea, 1. Badea ve H.H. Gonksa tarafindan ispatlanan

bir Lemma verelim.

2.7.3. Lemma: f € C, (D) ise her € >0 ve tiim (u,v),(x,y)e D i¢gin

A [f(uy)] s§+A(s)(u—x)2 +B(e)(v-y)’

olacak sekilde A(g)=A(e,f),B(g)=B(e,f)>0 sayilan vardir (Badea ve ark., 1986).
2.74. Teorem: L_ :C,(D)—B(D) pozitif lineer operatér olsun. Asagidaki

kosullarmm saglandigini kabul edelim:
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(i) Tim (x,y)e D ve (m,n)e N> =NxN i¢in L (e;;X,y)=¢,(x,y),
(i) Ly, (e3xy) =€ (xy) +up, (%),
(i) L, (e x,y)=e, (x,¥)+ v, (x,y),

(iv) L., (es;x,y)=es(x,y)+w,, (X,y).
Eger m,n — oo icin

P —lim”u =
B(D)

=0, P—lim”v

=0, P—lim”w

m.n||g(p) m,n||g(p) m,n

ise herhangi bir f € C, (D) fonksiyonu i¢in m,n — oo gittiginde

=0

BD)

P-lim|L,, (E,,)-f

olur (Badea ve ark., 1986).

C. Badea, I. Badea, C. Cottin ve HH. Gonksa 1988 yilinda
L,..:C,(D)—>B(D) pozitif lineer operatdrler igin, karisik B-siireklilik modiiliinii

kullanarak yakinsaklik oranini hesaplamustir (Badea ve ark., 1988). Ilk olarak karisik B-

suireklilik modiliinii hatirlatalim.

f e C, (D) i¢in karigik B-siireklilik modiilii

o, (f;f31,82):=sup{IAx,y [f(u,v)]l:|u—x| <39,

v-y|<8,}. (3,8, 20)

seklinde tanimlidir.

2.7.5. Teorem: L :C, (D) — B(D) pozitif lineer operatdr olsun. Tim (x,y)e D ve

(m,n)e N? icin L, (e,;x,y) =¢,(x,y) olmak iizere

‘Lm,n (Fx,y;x,y)—f(x,y)‘ < {HSLI\/L“”“ ((u—x)2 ;x,y) +5iz\/Lm,n ((V_y)z ;X’y)
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e JLm,n((u—x)z;x,y)\/Lm,n((v—y)z;x,y)}mm@;&,ﬁz)

olur (Badea ve ark., 1988).
2.7.6. Tamm: f :R* — R fonksiyonunun B- 2x-periyodik olmast icin gerekli ve yeterli
kosul her (x.,y).(u,v)eR® igin A [f(u+2mv+27)|=A, [f(u,v)] olmasidir
(Bogel, 1934, 1935, 1962).

B,, ile R® iizerinde tammli reel degerli tim B-27-periyodik ve B-siirekli
fonksiyonlarin uzaymni, C,,,, ile de reel degerli tiim iki degiskenli siirekli ve her iki
degiskene gore 2m-periyodik olan fonksiyonlarin uzaymm gosterelim. Buradan
C,.2: ©B,, olur. Fakat tersi dogru degildir.

2.7.7. Ornek: f:R* - R fonksiyonunu, k, € Z olmak iizere ue |2k,m.2(k, +1)7)

icin
f(u,v)=(u—2k,m)sinv+2k,n
olacak sekilde tammlayalim. V(x,y),(u,v)e R i¢in

f(x,y)—f(x,v)=(x-2k m)siny+2k n—(x—2k @)sinv+2k 7

)
)

x =2k, )(siny—sinv)

X

+2n-2(k, +1)7)siny+2(k +1)7

X

>

(
(k,
(
(

—(x+2n-2(k, +1)7)sinv-2(k +1)7

X

=
=(x+2n-2(k, +1)m)(siny—sinv)
=(
=f

(X+2Tc y) f(x+27t,v)

elde edilir. Benzer sekilde f(u,v)—f(u,y)=f(u+2m v)—f(u+2my) bulunur. f

fonksiyonu ikinci degiskene gore 27 -periyodik oldugundan
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A [f(u+2mv+2m)]=A  [f(u,v)] elde edilir. Bu ise f fonksiyonun B-27-

periyodik oldugunu gosterir. Ayrica

At (u,v)]‘ = |f (u,v)=f(x,v)=f(u,y)+f (x,y)|
=|(x =2k, 7)(sin y —sin v) - (u—2k,7) (siny —sin v) - 2k, + 2k, 7
= |(u —2k,m)(siny—sinv)—(x -2k m)(sin y—sin v)|

:‘(11—)(—2(ku —kx)n)(siny—sinv)‘

olup lim )Ax,y [f(u,v)]zo elde edilir. Bu ise f fonksiyonunun B-siirekli, yani

u,v)->(x,y
feB,, oldugunu gosterir. Fakat f fonksiyonu 1. degiskene gore 27-periyodik
olmadigindan f ¢ C,_,_ olur.

1988 yilinda B-2m-periyodik ve B-siirekli fonksiyonlar i¢cin C. Badea, 1. Badea

ve C. Cottin, Korovkin tipi yaklasim teoremi ispatladi.
f,(x,y)=1, f (x,y)=sinx, f,(x,y)=siny, f,(x,y)=cosx, f,(x,y)=cosy

ve E (u,v)=f(u,y)+f(x,v)=f(u,v) olsun. Ayrica, tim (u,v),(x,y)e R* i¢in

Ax!y [Fx,y (u, V):' = —Ax,y [f (u, V):'

oldugundan sabit (x,y)e R? i¢in f fonksiyonunun B-siirekliligi ve B-27-periyodikligi,
E , nin B-siirekliligi ve B- 27t-periyodikligini saglar.

Simdi bize gerekli olan C. Badea, I. Badea ve C. Cottin tarafindan ispatlanan bir

Lemma verelim.

2.7.8. Lemma: f e B, ise her €>0 ve tiim (u,v),(x,y)e R’ icin

u—Xx

A, [f(u,v)]‘ﬁ§+A(£)sin2 %—B(i—:)sinzv;zy

olacak sekilde A(g)=A(e,f),B(g)=B(e,f)>0 sayilan vardir (Badea ve ark., 1988).
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2.7.9. Teorem: L :B, — B(Rz) pozitif lineer operator olsun. Asagidaki kosullarin

saglandigini kabul edelim:

(i) Tim (x,y)e R* ve (m,n)e N” i¢in L, (f,;x,y)=f,(x,y),
fix,y)=f (x,y)+u,,(xy),

2(X’ y)+Vm,n (X’ y) ’

-~
[\]
‘s
<
Il
-~

)
fxy)=f;(x,y)+t,,(xy),
)

X, y)+wm,n (X’ y) *

é—h
g
<
Il
‘b’—h
—_

Eger m,n — o i¢in

2 =0

B(x)

P—lim”um,n

=0, P—]jm"Vmn

=0, P—lim"tm

=0, P—]jm”wmJl

B(R?) B(¥’) B{’)

ise herhangi bir f € B,, fonksiyonu i¢in m,n — oo gittiginde
P-lim|L,, (E,, )—fHB ) =0

olur (Badea ve ark., 1988).

Cottin, 1992 yilinda L :B,, —» B (R2) pozitif lineer operatorler i¢in karisik B-

stireklilik modiiliinii kullanarak yakinsaklik oranini hesaplamistir.

2.7.10. Teorem: L, :B, — B(R?) pozitif lineer operator olsun. Tim (x,y)e R* ve

(m,n)e N” i¢in L, (f,;x,y) =1, (x,y) olmak iizere

‘Lm,n (Fx!y;x,y)—f(x,y)‘ < {1+8£\/Lm’" (sinz%;x, yj +8£\/Lm’" (sin2 V;y ;x,yj
1 2

2 — —
+ \/Lm,n (sinz%sinzv—;;x,yj}wm(f;ﬁl,ﬁz)
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olur (Cottin, 1992).
B-siireklilik kavrami ilk olarak K. Bogel tarafindan verilmistir ve daha sonra bu
kavram D. Béarbosu tarafindan n-degiskenli fonksiyonlar i¢in genigletilmistir (Barbosu,

2001).
Kabul edelim ki X reel sayilar kiimesinin kompakt bir alt kiimesi, D =X" ve
f:D—>R bir fonksiyon olsun. Aynca A [f;x,,X,,., X, ] sembolii, f

fonksiyonunun

n
A 5% X X ] = (81085000008, ) = D (X X810 X0 X, )
i=1
L n
D (Koo XS0 Koo Xy 810 X s Xy ) =t (=1) £ (X0 X550 X))
il
ile verilen karigik farkini1 gostersin.

2.7.11. Tamm: f:D—R fonksiyonunun (X,,X,,...X,)€ D noktasinda B-siirekli

olmasi i¢in gerekli ve yeterli kosul

lim Ao [fi%, X5, %, ] =0

(51582 9085 ) (X5 X2 e Xy )

olmasidir (Barbosu, 2001).

C, (D) ile D iizerinde taniml reel degerli tiim B-siirekli fonksiyonlarin uzayin

gosterelim. Ayrica C(D) < C, (D), yani siirekli her fonksiyon B-siireklidir. Fakat tersi

dogru degildir. Karsitinin dogru olmadigi n =2 icin 2.7.2. Ornekten goriilebilir.
Son olarak bize gerekli olan D. Bérbosu tarafindan ispatlanan bir Lemma

verelim.

2.7.12. Lemma: f e C, (D) ise her €>0 ve tiim (s,,s,,....s,)€ D i¢in

n

<t YA (E)(s-x,)

[£:x0%5000%, ] n+l 53

81,8058,

olacak sekilde A, = A, (€)>0, i=1,...,n sayilar vardir (Barbosu, 2001).
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2001 yilinda D. Barbosu tarafindan verilen, R" uzayimnin kompakt bir alt kiimesi
iizerinde tanimh n-degiskenli B-siirekli fonksiyonlar uzay1 iizerinde tanimli n-indisli

pozitif lineer operatorler icin Korovkin tipi yaklagim teoremini verelim.

N", n pozitif bir tamsay1 olmak iizere, m; koordinatlar i¢in negatif olmayan
tamsayilarn =~ m=(m,,m,,...,m,) n-lilerinin kiimesi ve  €,(s,,8,,.-,8,) =1,
€, (858558, ) =8;, i=1,..,n, (8,,8,,....8, )€ D olsun.

2.7.13. Teorem: L :C, (D) — B(D) pozitif lineer operatdr olsun. Kabul edelim ki

asagidaki kosullar saglansin:

(i) Tim (x,,X,,....X, )€ D ve me N" i¢in L (€,5X,, X550 X, ) =€ (X5 X5s000s X, ) 5

(i) L, (€%, Xp0e X, ) =€, (X, Xy X, )40 (X, X500 X, ), i= 1.0,

n n
(iii) L, (Zef;xl,xz,...,xnj = el (X1 Xg X, )+ Vi (X1 X500 X, ),
= i

Eger minm; — oo igin

1imHufj} oy =00 1= len ve Tim|v, [, =0

ise herhangi bir f € C, (D) fonksiyonu i¢in, minm; — eo gittiginde

limHLm (£ (X5 Xgseen Xy ) = AL [F3X)3 X e X, 3% Xgyeens X, ) —=F (X0 X500 X, )

B(D)

olur (Barbosu, 2001).
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3. MATERYAL VE YONTEMLER

Bulgular kisminin ilk béliimiinde, cift indisli dizilerin A-istatistiksel yakinsaklik
kavrami yardimi ile C. Badea, 1. Badea ve H.H. Gonksa (1986) calismasindaki
yontemler kullanilarak Korovkin tipi yaklagim teoremi elde edildi. Ayrica Korovkin tipi
yaklagim teoreminin A-istatistiksel yakinsaklik orani hesaplandi.

Bu boliimiin ikinci kisminda C. Badea, 1. Badea ve C. Cottin (1988)
calismasindaki yontemler kullanilarak c¢ift indisli dizilerin A-istatistiksel yakinsaklik

kavrami yardimi ile B,  uzay1 ilizerinde Korovkin tipi yaklasim teoremi ispatlandi. Bu

teorem icin A-istatistiksel yakinsaklik orani hesaplandi.
Bu bolimiin son kisminda D. Barbosu (2001) calismasindaki yoOntemler
kullanilarak n-indisli dizilerin istatistiksel yakinsakligi kavrami kullanilarak Korovkin

tipi yaklasim teoremi elde edildi.
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4. BULGULAR

4.1. Pozitif Lineer Operatorler Yardimyla B-siirekli Fonksiyonlar icin A-

Istatistiksel Anlamda Yaklasim

Bu boliimiinde, cift indisli dizilerin A-istatistiksel yakinsaklik tanimim
kullanarak, C. Badea, I. Badea ve H.H. Gonksa tarafindan verilen Korovkin tipi
yaklasim teoreminden daha kuvvetli sonuglar elde edecegiz. Ayrica, verdigimiz
teoremin daha kuvvetli olduguna dair bir Ornek verip, verdigimiz teorem icin A-

istatistiksel yakinsaklik oranini hesaplayacagiz.

4.1.1. Teorem: A:(aj’k,m’n) 4-boyutlu negatif olmayan RH-regiiler matris ve

L,..:C,(D)— B(D) pozitif lineer operatdr olsun. Asagidaki kosullarin saglandigini

kabul edelim:

(i) K:={(m,n)e N’:tim (x,y)e DiginL,, (e);x,y)=¢,(x.y)} olmak iizere

8y (K} =P=lim > a;,,, =1

(m,n)eK

(i) e (x,y)=x, e, (x,y)=y, e, (x,y)=x"+y’ olmak lizere

st{y —lim|L,,, (e)—e[ ~=0,i=123.

B(D)

Bu durumda herhangi bir f € C, (D) fonksiyonu i¢in,

=0

BD)

stiy ~lim|L,, (F., )~

olur.

Ispat: fe C, (D) ve (x,y)e D sabit olsun.

K={(m,n)e N’:tim (x,y)e Digin L, (e);x,y)=¢,(x,y)}

olmak iizere (i) ifadesinden
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&, {N*\K}=0 (4.1.1)

elde edilir. 2.7.3. Lemmadan F_ fonksiyonunun B-siirekliliginden her (u,v)e D igin

A, [E y(u,v)]\s§+A(s)(u—x)2+B(s)(v—y)2 (4.1.2)

olacak sekilde A(g),B(g)>0 sayilari vardir. Ayrica tim (m,n)e K igin

Lo, (F 5% y)=fuy) =L, , (B ;% y) = fxyL,, (ex,y)

L..(E, (uv)-f(x,y)x, y)

L,

(
(

Loa (=A,, [f(u.v) ]ixy)
.(a

[ Eoy (wv) ix.y) (4.1.3)

olur. Bu durumda tiim (m,n)e K igin L, nin lineerliligi ve monotonlugundan

n (Ax,y [Fx,y (u, V)] X y)‘

A, [Fx,y (u, V):I 3 X, y)

<L,, (§+A(8)(u—x)2 +B(e)(v-y) ;x,yj

Lo (Foyixy) =f 05, y)|=|L

<L,

B %Lm,n (CO;X, Y) + A(S)Lm’“ ((u B X)2 % y)
+B(e)L,, ((v-y)"sx.y)
:§+A(8){Lm,n (0%3x.y) = 2xL,, (wix, y) +x°}

+B(8){Lm,n (Vz;X, y) -2yL,., (vix,y)+ y2}

elde edilir. C(g)=max{A(g),B(€)} olmak iizere tim (m,n)e K icin
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‘Lm,n (Fx,y;x, y) —f(x, y)‘ < §+C(£){Lm’n (u2;X, y)—2me’n (u;x,y)+x?
+L,.., (Vz;x,y)—ZyLm,n (V;X,y)+ yz}
:§+C(8){[Lm,n(e3;x,y)—e3(x,y)]

=2y[L,, (e;:x.y)—e, (x.y) |-2x[L,,, (e;:x.y) —¢, (x.y) ]}

bulunur. Son esitsizlikten tim (m,n)e K igin

‘Lm,n (Fx!y;x,y)—f(x,y)‘ S§+C(£)Z:|Lm,n (e;;x,y)—¢; (x,y)| (4.1.4)

i=1

elde edilir. (4.1.4) esitsizliginin her iki yanindan (x,y)e D iizerinden supremum

alimirsa tiim (m,n)e K i¢in

3
HL“"“ (F"’y ) B fHB(D) = §+ C (8) ;”me (ei ) B ei”B(D) (4.1.5)

bulunur. Simdi verilen bir r>0 i¢cin €>0 sayisin1 €<3r olacak sekilde secelim.

Buradan

U= {(m,n)e N:|L,, (E,)-f

> r}
B(D)

— 2. 3r—¢ .
U, = {(m,n)e N .||Lm,n (ei)—ei”B(D) ZC—} ,1=1,2,3.
kiimelerini tanimlayalim. Boylece (4.1.5) esitsizliginden

UchOUimK

i=1
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elde edilir. Bu ise tim (j,k)e N* icin

3

Z aj,k,m,n < Z Z aj,k,m,n < Z Z aj,k,m,n (416)

3
(m,n)eUnK i=1 (m,n)eU;nK i=1 (m,n)eU;

oldugunu gosterir. Simdi (4.1.6) esitsizliginde j,k — o icin limit alinirsa ve ayrica (ii)

den

P—lim > a,,,=0 4.1.7)

7 (m,n)eUnK

oldugu kolayca elde eldir. Buradan

Y A= 2 Apmat 2 A

(m.n)eU (m.n)eUNK (m.n)eUn(N?K)
S 2 At 2 A
(m,n)eUNK (m,n)eN>\K

esitsizligi kullanilir ve j,k — oo ic¢in limit alinirsa (4.1.1) ve (4.1.7) ifadelerinden

yani
st —limHLm,n (E,) —fHB(D) =0

oldugu elde edilir. Bu ise ispat1 tamamlar.
4.1.2. Uyar:: Bazi fe C, (D) fonksiyonlarinin D kompakt kiimesi iizerinde sinirl

olmayabilecegi biliniyor. Ama 4.1.1. Teoremdeki

HL“"“ (Fx,y ) - fHB(D)
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ifadesi K, (i) de verilen kiime olmak {iizere (i), (4.1.2) ve (4.1.3) den her bir (m,n)e K

i¢in sonludur.
4.1.3. Uyarn: 4.1.1. Teoremdeki A matrisi, 4-boyutlu birim matris ile yer degistirilirse
2.7.4. Teorem elde edilir.

Simdi 4.1.1. Teoremde elde edilen A-istatistiksel sonucun, 2.7.4. Teoremdeki

klasik sonugtan daha kuvvetli oldugunu gostermek icin bir 6rnek verelim.

4.1.4. Ornek: D =[0,1]x[0,1] olmak iizere f € C, (D) igin

(f:xy :étn f( j(r:lj[r:jxsm—x)“ v (1—y)"™

ile verilen ¢ift indisli Bernstein operatoriinii g6z 6niine alalim. Ayrica

s=0 1=0 \_S t

Z(mjﬂ)[ jy‘(l—y)"*

= (x+1-x)" (y+1-y) =¢, (x.)
S »or ) WO
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:i{mjxs (1_x)m-sjﬁ(ltljyt 1y

& 5
= (x+1-x) :()%—(nf't()r;g(lt)_!l)!y‘(l—y)n_t
-

Sy OIDL g Sy (y+-y) (x.y)

=0 n 1- tvt'

B (o032 33 {(ﬂ*(i)}[ﬂ(tj (1= y' (1-y)""

L T | (m—l)' , s )
B (1= +1-
Xzo: m (m—l-s)ls!" (1=x)" " (y+1-y)

“lt+1  (n-1)!

+(x+1-x)" Y=-y)

(x+1-x) YZO . (n—l—t)!t!Y( y)

m— m—l—s m-1 —1)! ) m—I—s
Z —)Xs(l_x) - x L&Xs(l_x) !
- m (m—1-s)!s! < m(m-1-s)!s!

nlt n—l el n—ll n_l ‘ L
A s IR

—on (n—1-1t)!t! “n(n—1-t)!t!

, m— 13 (m 2) s—l _\mles i oyt
=X ;(m - 1)' (1-x) +m(x+l X)

n-1% (n=2)! ) iy .
+y? (1= A
g n o (n—l—t)!(t—l)!y (1-) n(y y)

2 n_l(y+l—y)n_2+l
n n

(x+1—x)m_2+1+y
m
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2m—1+£+y2n—1 y x—x y-y°
m m n n m n

=X

olur. Boylece {Bm,n} operatorler dizisi 2.7.4. Teoremin kosullarin1 saglar. Buradan
herhangi bir f € C, (D) i¢in

=0

B(D)

P-lim|B,,, (E,,)-f

gerceklenir. Simdi A = C(1,1) matrisini ve genel terimi

1, m ve n tam kare ise,
X =
™" 10, diger durumlarda,

olacak sekilde x :{xm,n} cift indisli dizisini alalim. Bu durumda st(2

o)~ limx =0

olur. Ayrica X cift indisli dizisi P-yakinsak degildir.
E, (u,v)=f(u,y)+f(x,v)=f(u,v) olmak iizere f € C, (D) icin

s=0 1=0 S

(fixy) =2 D, ( )(mJ[TJXS(l—X)m'Sy‘(l—y)n"

operatdriinii goz 6niine alalim. Simdi C, (D) iizerinde,

L,.(x,y)=(1+x,,)H, f:xy). (4.1.8)
pozitif lineer operatdriinii tanimlayalim. Basit hesaplamalar ile

Lm,n (e(); X’ y) = 1+ Xm,n >

I“m,n (el;x’ Y) = (1+Xm,n )el (X’y) ’
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Lm,n (CZ;X’ y) = (1+Xm,n)62 (X’ y) ’

—x2 y—_vy?
L. (e;:x,y) :(1+Xm,n)(e3 (x,y)+&+u],

elde edilir. Simdi de 4.1.1. Teoremin kosullarinin saglandigini gosterelim:
(i) 8(2(1(1,1)) {(m, n):m,ne N, tam kare} =0 oldugundan
K:={(m,n)e N*:tim (x,y)e Digin L, , (e);x.y) =¢,(x,y)} olmak lizere
S(ca (K} =1 olur.

(i) L, (e

)=y, =59P[L (e, ¥) = e (%) = sup[x, 0, (x.y) =%

[En (e2) =y, =5UP [, (e23%¥) =€ (x,y)] = sUP |00 (%, 3)| = X

[Fonn () =3[, = s0P[Lins (155, y) —es (x.)

X_X2 _ 2
(1+xm,n)(e3(x,y)+ + 1Y j—e3(x,y)

=Ssup
xeD

m n

=sup
xeD

—x?2 _ - 2
xox' oy +Xm(ea(x,y)+&+uj
m n

2 2
SsupX X +supy y +supx, e (x,y)

xeD m xeD n xeD

% —x2 y 2
+supx,  ———+supx, ———
xeD m xeD
1 1 1 1
=—+—+2X,  F— X, t X,
2m 2n 2m 2n

olup st(2 )—hmx 0 oldugundan st( hm”L ; —ei”B(D) =0, i=1,2,3 elde
edilir. Yani (4.1.8) ile verilen pozitif lineer operator dizisi 4.1.1. Teoremin kosullarini

saglar. Bu durumda herhangi bir f € C, (D) fonksiyonu i¢in

st C(l ) hm”L f”

B(D)
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saglanir. Fakat x dizisi P-yakinsak olmadigindan (4.1.8) ile verilen pozitif lineer

operatorlerin dizisi 2.7.4. Teoremin kosullarim1 saglamaz. Yani (4.1.8) deki L

operatorleri 4.1.1. Teoremde calisirken 2.7.4. Teoreminde ¢alismaz.
Simdi 4.1.1. Teoremdeki A -istatistiksel yakinsakliga karsilik gelen orani dort
farkli yolla hesaplayacagiz.

4.1.5. Tanim: A = (a 4-boyutlu negatif olmayan RH-regiiler matris, x :{xm,n}

Jj.k,m,n )

reel terimli bir cift indisli dizi ve {ocm,n} negatif olmayan, artmayan bir cift indisli dizi

olsun. Eger her € >0 icin, K(¢):= {(m n)e N*: |xm,n - L| > 8} olmak iizere

P—liAmL z aj,k,m,n=0

POy (manjeK(e)

ise x :{xm,n} dizisi o(ocm,n) orani ile L sayisina A-istatistiksel yakinsaktir denir. Bu

durum x,,, —L=st/, - o(a,,), mn— oo ile gosterilir.

4.1.6. Tanim: A = (a 4-boyutlu negatif olmayan RH-regiiler matris, x :{xm,n}

j.k,m,n )

reel terimli bir cift indisli dizi ve {ocm’n} negatif olmayan, artmayan bir ¢ift indisli dizi

olsun. Eger her € >0 i¢in, L(g) :={(m,n)e N* :|xm,n| > 8} olmak iizere

1
sup— Z Qg mn <

ik (xj,k (m,n)eL()

ise x:{xm,n} dizisi O(ocm,n) orani ile A-istatistiksel siirhidir denir. Bu durum

X = St(a) —O(Ocm,n) , m,n — oo ile gosterilir.

4.1.7. Tamm: A = (a j,k,m,n) 4-boyutlu negatif olmayan RH-regiiler matris, x ={xm,n}

m,n

reel terimli bir cift indisli dizi ve {oc } negatif olmayan, artmayan bir ¢ift indisli dizi

olsun. Eger her € >0 icin, M(¢) :={(m,n)e N? :|xm,n —L| > eocm,n} olmak iizere
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ise x = {xm’n} dizisi o, (ocm,n) orani ile L sayisina A-istatistiksel yakinsaktir denir. Bu

2

durum x,,  —L=st, —o,, (ocmn ) , m,n —> oo ile gosterilir.

4.1.8. Tanim: A = (a 4-boyutlu negatif olmayan RH-regiiler matris, x :{xm,n}

j.k,m,n )

reel terimli bir cift indisli dizi ve {oc } negatif olmayan, artmayan bir ¢ift indisli dizi

m,n

olsun. Eger her € >0 i¢in, N(¢):= {(m,n) e N’ :|xm,n > eocm,n} olmak iizere

ise x:{xm,n} dizisi Om,n(ocm,n) oranm ile A-istatistiksel sinirlidir denir. Bu durum

2
X —st(A)

m,n

-0, ((xm,n ) , m,n —> oo ile gosterilir.

Simdi yukaridaki tanimlar1 kullanarak asagidaki yardimer sonuclar verelim.

4.1.9. Lemma: A = (a 4-boyutlu negatif olmayan RH-regiiler matris ve {Ocm,n}

j.k,m,n )
ve {Bm,n} negatif olmayan artmayan ¢ift indisli diziler olsun. {xm,n} ve {ym,n} iki reel

terimli  ¢ift  indisli  dizi  olsun. Eger x_ ,-L,= st(zA) -0 (ocm,n ) ve

Ym,n _LZ = St(zA) _O(Bm,n) ise

() Her bir (mn)eN’ icin vy,,=max{a,,.B,.}] olmak iizere,

(Xm,n _Ll)$(ym,n _L2)=St(2A) _O(Ym,n)’ m’n —> )

(ii) Herhangi A reel sayis1 i¢in K(x -L, ) = st(zA) _O((x’m,n ) , mn— oo,

m,n

Ayrica bu sonuglar “0” sembolii ile “O” sembolii degistirilerek de elde edilir.

2
(A

Ispat: (i) x,,-L,=st} —o(0t,,) ve y,,—L,=st ) ~0(B,..) oldugunu kabul

(a

edelim. Ayrica € >0 igin,

Kzz{(m,n)e N? :‘(xmn ~L)F(Ymn —Lz)‘ZS},
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K, = {(m,n)e N* :|xm,n —L1| 2%} ,

K, = {(m,n)e N? :|ym,n —L2| 2%}

kiimelerini tanimlayalim.

\(xmn ~L)F(Ymn —Lz)‘ <[Xppn =L+ [Yinw = L]

oldugundan K c K, UK, oldugunu gésterebiliriz. Bu ise tim (j,k)e N i¢in

Z Ajpomn S Z A mn T Z Qi mn 4.1.9)

saglar. v, . = max{ocm,n,[’)m,n} oldugundan (4.1.9) esitsizliginden

1
_ Z aj,k,m,nS

1
Yj,k (m,n)eK a’j,k (m,n)eK,

1
Z aj,k,m,n+_ Z aj,k,m,n
Bj,k (m

n)ekK,

oldugu elde edilir. Buradan j,k — oo limit alinirsa ve hipotezleri kullanilirsa

elde edilir. Boylece ispat tamamlanir.

@) x,,—-L,= st(zA) _O((x’m,n) oldugunu kabul edelim. A reel say1s1 i¢in

{(m,n)e N* :‘K(xm,n —Ll)‘ > 8}:{(m,n)e N’ :|xm,n —L1| Zﬁ}

olup kabuliimiizden ispat elde edilir.
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Simdi verecegimiz Lemmanin ispat1 yukaridaki gibi kolaylikla elde edilebilir.

4.1.10. Lemma: A = (a 4-boyutlu negatif olmayan RH-regiiler matris ve {Ocm,n}

j.k,m,n )

ve {Bm,n} negatif olmayan, artmayan cift indisli diziler olsun. {xm,n} ve {ym,n} reel
terimli  iki cift indisli dizi olsun. Eger x,,-L,=st}, —o, (a,,) ve

ym,n - L2 = St(A) _Om,n (Bm,n) iSC

() Her bir (mn)eN® i¢in v, =max{a,,.B,.,}] olmak iizere,

(Xm,n _I“‘l)¢ (Ym,n _L2) = St(2A) _Om,n (Ym,n ) > m’n —> 0 >
(ii) Herhangi A reel sayisi i¢in k(xm,n - Ll) = st(zA) -0, (Ocm,n) , m,n—>oc0,
Ayrica bu sonuglar “o, 7 sembolii ile “O, " sembolii degistirilerek de elde edilir.

Asagidaki teoremi ispat etmek i¢in, A,,A, >0 olmak iizere
o, (f54,8,,1,8,) <(1+A,)(1+4,) o, (£:9,,5,) (4.1.10)

esitsizligini kullanacagiz.

4.1.11. Teorem: A::(a ) 4-boyutlu negatif olmayan RH-regiiler matris ve

j-k,m,n

L,.:C,(D)— B(D) pozitif lineer operatér olsun. {o,,,} ve {B,..} negatif olmayan,

artmayan cift indisli diziler olsun. Asagidaki kosullarin saglandigini kabul edelim:

() K:={(m,n)e N*:tim (x,y)e DiginL,, (e);x,y)=¢,(x,y)} olmak iizere

P—li'mL Z a =1

X jk.m,n
> a’j,k (m,n)eK

(i) ¢(u,v)=(-x)*, y(u,v)=(v—y)> fonksiyonlari i¢in 7, , = I”me ((p)”B(D) ,

O, = ||Lm’n(\lj)||B(D) olmak iizere

m,n

O (3 Y0580 ) =8tia, —0(Brn ) » MmN —> 0.
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Bu durumda herhangi bir fe C,(D) fonksiyonu icin c, , =max{a, B, ,}olmak

uzere

=st?
B(D)

Lo (B, )£

olur. Benzer sonuglar “o0” ile “O” yer degistirilerek de elde edilebilir.

Ispat: fe C, (D) ve (x,y)e D sabit olsun.
K:={(m,n)e N’:tim (x,y)e Digin L, (e);x.y) =¢,(x,y)}
olmak iizere (i) den

P—nmi > a,,,=0 (4.1.11)

X
PO (maneN? K

elde edilir. Ayrica F, | fonksiyonunun B-siirekliliginden her (u,v)e D igin

olacak sekilde A(g),B(g)>0 sayilari vardir. Tim (m,n)e K igin

L,.(E :x.y)-f(x,y)=L,, (Axgy [Fw (u, V)] i X, y)

oldugunu biliyoruz. ®, in dzelliklerini kullanarak

A, [Fw (u, V)]‘ <o, (f;|u - x|,|V - y|)

s(1+i|u—x|J(1+i|v—y|Jmm(f;61,52) (4.1.12)
81 82
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elde edilir Bu durumda tim (m,n)eK i¢in L nin lineerliliginden,

m,n

monotonlugundan ve (4.1.12) ifadesinden

‘Lm'" (Fx,y 2 X, Y) —f(x, y)‘ =

Lo (A, [Ey (0v)]ix, y)‘

A, [Fx,y (u, V)]‘ iX, y)

SLmn((1+l|u—X|J(l+i|v—y|j;x,yjmm(f;51,82)
’ 3, 3,

<L, (

:{l+iLmn(u_X|;X’y)+iLmn(V_y|;X’y)

5 ™ 5, ™

- Lmn(u—XIIV—.‘/I;X’.‘/)}wm(f;81,82) (4.1.13)
88,

bulunur. (4.1.13) esitsizliginde Cauchy-Schwarz esitsizligi kullanilirsa tim (m,n)e K

icin

‘Lm'ﬂ (Fx,y;x’ Y) —f(x, y)‘ < {1+

1
88 \/Lm,n ((p;x7y)\/Lm,n (W’X’y)}mm(f’sl’SZ) (4114)
172

elde edilir. (4.1.14) esitsizliginin her iki yanindan (x,y)e D iizerinden supremum

alinirsa tim (m,n)e K igin v, , = I”me ((p)”B(D) y O = ”Lm,n (\p)”B(D) olmak iizere
L () =t], ) <do, (:,,.8,,) (4.1.15)

bulunur. Simdi verilen bir € >0 sayis1 icin

U= {(m,n)e N*:|L,.,(F,)-f

o).
B(D)
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U, = {(m,n)e N*: o, (f;’Ym,n’am,n)Zz}'

kiimelerini tanimlayalim. Boylece (4.1.15) esitsizliginden

UnKcUnK

elde edilir. Bu ise tiim (j,k)e N* i¢in, c,,, =max{a,, ,.B,,} oldugundan

1 1
- Z aj,k,m,n S _ Z aj,k,m,n

Cj,k (m,n)eUnK jk (mn)eU;nK

1
=— Z aj,k,m,n

Cix (mnky,

1
s— Z aj,k,m,n

(xj,k (m,n)eU,

(4.1.16)

oldugu gosterir. Simdi (4.1.16) da j,k — oo i¢in limit alinirsa ve ayrica (ii) den

P—liAmL z Qjpmn =0

ik Cj,k (m,n)eUNK

oldugu kolayca elde edilir. Buradan

z aj,k,m,n = Z aj,k,m,n + Z aj,k,m,n

(m,n)eU (m,n)eUnK (m,n)eUr\(N2 K)
S Z aj,k,m,n + Z aj,k,m,n
(m,n)eUnK (m,n)eN? K

olup buradan ise

1 1
Z aj,k,m,n S - Z aj,k,m,n +(x_ Z aj,k,m,n

1
Cj,k (m,n)eU Cj,k (m,n)eUNK jk (m,n)eN’> K

(4.1.17)

(4.1.18)
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bulunur. (4.1.18) esitsizliginde j,k — o ic¢in limit alinirsa (4.1.11) ve (4.1.17) den

istenilen elde edilir. Bu ise ispat1 tamamlar.

Asagidaki teorem benzer yolla ispatlanabilir.

4.1.12. Teorem: A::(aj,k’m,n) 4-boyutlu negatif olmayan RH-regiiler matris ve

L,.:C,(D)—B(D) pozitif lineer operator olsun. {o,,,} ve {B,..} negatif olmayan

artmayan cift indisli diziler olsun. Asagidaki kosullarin saglandigini kabul edelim:

() K:={(m,n)e N*:tim (x,y)e DiginL,, (e);x,y)=¢,(x,y)} olmak iizere

(i) ¢(u,v)=(-x)*, y(u,v)=(v—y)* fonksiyonlari i¢in 7, , = IHLm’n ((p)HB(D) ,

S0 = ||Lm,n (\p)”B(D) olmak tizere

mm (f;Ym,n’Sm,n ) = St(2A) _Om,n (Bm,n ) ’ m’n —> oo,

Bu durumda herhangi bir f € C, (D) fonksiyonu i¢in

HLm,n (Fx,y ) _fH = S'[(2A) “Omn (Bm,n) , M,N — 00,

B(D) -

olur. Benzer sonuglar “o,_ 7 ile “O, "~ yer degistirilerek de elde edilebilir.

4.2. Bogel-siirekli ve Periyodik Fonksiyonlar icin A-istatistiksel Yaklasim

Bu kisimda, cift indisli dizilerin A-istatistiksel yakinsaklik tanimini kullanarak,
C. Badea, 1. Badea ve C. Cottin tarafindan B-siirekli ve B-2m-periyodik fonksiyonlar
i¢in verilen Korovkin tipi yaklasim teoremden daha kuvvetli sonuglar elde edecegiz.
Ayrica, verdigimiz teoremin daha kuvvetli olduguna dair bir 6rnek verip, verdigimiz

teorem icin A-istatistiksel yakinsaklik oranini hesaplayacagiz.
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4.2.1. Teorem: A:(a j,k,m,n) 4-boyutlu negatif olmayan RH-regiiler matris ve

L., B, —>B(]R2) pozitif lineer operatdr olsun. Asagidaki kosullarin saglandigini
kabul edelim:

() K:={(m,n)e N*:tim (x,y)e R i¢in L, , (f,;x,y)=f,(x,y)} olmak iizere

8y {K}=P=lim > a;,,, =1

(m,n)eK

(i) f(x,y)=sinx, f,(x,y)=siny, f;(x,y)=cosx, f,(x,y)=cosy olmak iizere

sty ~lim|L,, () =], .. =0, i=12.3.4.

i”B(Rz

Bu durumda herhangi bir f € B, fonksiyonu i¢in,
2 . —
Stia) — hmHme (FX,y ) - fHB<R2) =0

olur.

Ispat: fe B, ve (x,y)e R? sabit olsun.

K:={(m,n)e N*:tim (x,y)e R*i¢in L, (f,;x.y) =1, (x.y)}

olmak iizere (i) den

&, {N*\K} =0 (4.2.1)
elde edilir. 2.7.8 Lemmadan, F,_ fonksiyonunun B-suirekliliginden, her (u,v)e R? icin

u—Xx

A, [Fw (u, V)]‘ < §+ A(g)sin’

+B(e)sin® V;zy (4.2.2)

olacak sekilde A(€),B(€)>0 sayilari vardir. Ayrica tiim (m,n)e K igin
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ngn(FX,y;x,y)—f(x,y) L..(E X, y) f(x,y)L,,, (f;x,y)

L..(f(uy)+f(x,v) f(u,v)—f(x,y);x,y)

m,n

L,

(
(F(

Lo ( Axy[f u.v) |ix.y)
.

oo [Boy (wv) Jix.y) 4.2.3)

olur. Bu durumda tim (m,n)e K i¢in L nin lineerliligi ve monotonlugundan,

C(e)=max{A(e),B(e)} olmak iizere

n (Ax,y [Fx,y (u’ V)] X y)‘
AR, (uv)]

Lo (Foyixoy) =f 05, y)| = |L

<L x,y)

<L,. (§+A(8)sin2 27X 4 B(e)sin’ V;y;x,yj

=-L,.(f;x.y)+A(e)L,, (sin2 U;X ;X,y}

+B(e)L,, (sin2 V;y ;x,yj
e 1—cos(u—x)
=—+A(€e)L — X,
JHAE) m,n( > ny
1— —
B(e)L,. (#yj

C
< §+%{2 —sinxL,, , (f;;x,y)—sinyL,_ , (f,;x,y)

—Cos8 XLm,n (f3;X, y) —Cos yLm,n (f4’ X, y)}

elde edilir. Son esitsizlikten tiim (m,n)e K igin

‘Lm’n(ny, X,y ) f(x, y)‘< +C(28 {|smx||L (f;x,y)- f(x,y)|

+|smy||L (f,;x,y)—f (x,y)|
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+|cos XHLm,n (f3;x, y) -1, (x, y)|

+|cos y||Lm,n (%, y)=f, (%, Y)|}

bulunur. Son esitsizlikten tim (m,n)e K igin

C 4
‘Lm,n (Fx,y;x,y)—f(x,y)‘gg.p gS)Z|Lm,n (fi;x,y)—fi(x,y)| 4.2.4)
i=1

elde edilir. (4.2.4) esitsizliginin her iki yanindan (x,y)e R? iizerinden supremum

alimirsa tiim (m,n)e K i¢in

HL“"“ (F"’y ) - fHB(RZ) =2+ _iil:”Lm,n (fi ) N fi ||B(]R2) (4.2.5)

bulunur. Simdi verilen bir r>0 i¢in €<3r olacak sekilde €>0 sayis1 secelim.

Buradan

U= {(m,n)e N*:|L,. (FX~y)_fHB(R2) > r},

S 3r—¢

U = {(m,n)e N*:|L,, (fi)—fi||B(R2) > o)

}, 1=1,2,3,4.
kiimelerini tanimlayalim. Boylece (4.2.5) esitsizliginden

UchOUimK

i=1
elde edilir. Bu ise tim (j,k)e N* icin

4

Z aj,k,m,n < Z Z aj,k,m,n < Z Z aj,k,m,n (426)

4
(m,n)eUNK i=1 (m,n)eU;nK i=1 (m,n)eU;



47

oldugunu gosterir. Simdi (4.2.6) da j,k — oo icin limit alinirsa ve ayrica (ii) den

P-lim > a,,,=0 (4.2.7)

ik (m,n)eUnK

oldugu kolayca elde eldir. Buradan

D e = 2, Apmat DL 3w

(m.meu (m.n)eUAK (m.n)eUn(R\K)
S z aj,k,m,n + Z aj,k,m,n
(m.n)eUNK (m,n)e(Nz\K)

esitsizligi kullanilir ve j,k — oo icin limit alinirsa (4.2.1) ve (4.2.7) den

yani

=0

B(E?)

sty ~lim|L,,, (F,, )~ f

oldugu elde edilir. Bu ise ispat1 tamamlar.

4.2.2. Uyan: Baz1 f € B, fonksiyonlarinin sinirli olmayabilecegi biliniyor. Fakat 4.2.1.

Teoremdeki

Lo (B )£

B(E?)

ifadesi K, (i) de verilen kiime olmak iizere (i), (4.2.2) ve (4.2.3) den her bir (m,n)e K

icin sonludur.
4.2.3. Uyarn: 4.2.1. Teoremdeki A matrisi, 4-boyutlu birim matris ile yer degistirilirse
2.7.9. Teorem elde edilir.
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Simdi 4.2.1. Teoremde elde edilen A-istatistiksel sonucun, 2.7.9. Teoremdeki
klasik sonugtan daha kuvvetli oldugunu gostermek icin bir 6rnek verelim.

28T

424. Ornek: t = ,s=12,.,N +2 ve ,  limp,, =1 ile
s,p Np + 2 p q)n 300 pl,n
1 &
0, (x)= E+ Z P, cosvx formundaki negatif olmayan kosiniis polinomu olmak iizere
v=l
4 N,+2 N, +2
Km,n (f’ X, Y) = f (tk,m ’ tl,n )q)m (tk,m _X)(])n (tl,n _y)

operatoriinii goz Oniine alalim (Bojanic, 1974; Shisha ve Bond, 1968).

f e C,,,, olmak iizere siireklilik modiilii,

m(f,Sl):sup{|f(u,v)—f(x,y)|:(u,v),(x,y)e Rz,\/(u—x)2+(v—y)2 <51}, 3,>0

seklinde tammhdir. C, , uzay1 iizerinde tanimli herhangi bir {Sm,n} pozitif lineer

operatdrii icin o, (X,y) = \/Sm,n (sin2 % rsin® V;y ;x,yj olmak iizere

|Sm,n (f3x,y)—f(x, y)| < (Sm,n (l;x,y)+7£2)(so(f;0cm,n (x,y))+|f(x, y)||Sm,n (1;X,y)—1|

oldugunu gosterebiliriz.

Derecesi d olan olan herhangi T trigonometrik polinomu icin eger d <n-—1 ise

git(ﬁjzl]?‘t(t)dt

n 0

esitliginin oldugu biliniyor (DeVore, 1972). Simdi, K, (Lx,y) ve o, (x,y)=

K., sin? 2% 4 jn2 Y X,y ifadelerini  hesaplamaliyiz. t,= 25 ,
’ 2 2 YN, +2

s=1,2,..,N +2 olmak iizere derecesi <N +1 olan her T trigonometrik polinomu
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icin 2 = l I dt dir.  ¢,(u-x) ve 0, (v—y) trigonometrik
N, +2 3 T
fonksiyonlarinin derecesi swrasiyla N_, N, ayrica sin® — 0, (u—x) ve

sin? ~— 0, (v—y) trigonometrik fonksiyonlarinin derecesi sirastyla N +1, N, +1

oldugundan
4 N,+2 N, +2
K 1’ 4 = t m°~ n t n-
o (XY = N 32) & Zq» (t )0, (t1,)
Ny, +2 2 N, +2
- = t, -
X) (Nn+2) IZ:l: q)n( I,n Y)
1 |
=|— )d dv [=1
(n-([ u—x uj( I(b v-y) VJ
ve
_ _ 4 N,+2 N, +2 t —X
K .2ux+.2vy;’J= o b O (-
m,n(sm 5 ¥ — K.y N (N2 & 2 sin” =5 — 0, (t )9, (¢, ,-y)
4 N, +2 N, +2 —y

. 2 by
Sln2 qu)m (tk,m -X)q)n (tl,n 'Y)

N, +2 t _ N,+2
:( 2 sinzk’meq)m(tk,m-X)j( z o, (t,, Y)J

l'l

2 N, +2 2 N, +2 . t],n -y ]
+( q)m(tk,m-x)j((Nn +2) ; S 2 q)n (tl,n y)j

0

‘Xq»m(u—x)duj[{f%(v—y>dv]
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elde edilir. Buradan

1/2
|Km,n(f?x,}’)—f(x,y)|s(1+n2)m(f{1_phm—+pmlj J

2
bulunur. Yani, herhangi bir f € C,, ,, fonksiyonu igin

=0

B(R?)

P—lim|K,,, (f)—f|

elde edilir. sinx, siny, cosx ve cosy fonksiyonlart C, ,. uzayina ait oldugundan
(dolayistyla B, uzayina ait oldugundan) 2.7.9. Teoreminin kosullar1 saglanir. Boylece
herhangi bir f € B, icin

=0

B(R?) -

P-lim|K,, (F,,)-f

bulunur. Simdi, A =C(1,1) matrisini ve genel terimi

1, m ven tam kare ise,
Xm n =

0, diger durumlarda,

2

(L) —limx =0

olacak sekilde x ={Xm’n} cift indisli dizisini alalim. Bu durumda st

olur. Ayrica X cift indisli dizisi P-yakinsak degildir.
E , (u,v)=f(u,y)+f(x,v)=f(u,v) olmak iizere f € B,, icin

N,+2 N, +2

4
H__(f; = F - -
ma (fi77) (N, +2)(N, +2) &= = X'Y(tk’m’tl'n)q)m(tk’m Ot y)

operatdriinii géz Oniine alalim. $imdi B, iizerinde
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L,.(xy)= (1 + X )Hm,n (f;x,y)

pozitif lineer operatoriinii tanimlayalim Buradan

elde edilir. Simdi de 4.2.1. Teoremin kosullarinin saglandigini gosterelim:

(i) 8(2c(1,1)) {(m,n) ‘m,ne N, tam kare} =0 oldugundan
K:={(m,n)e N’:tim (x,y)e R”igin L, (f,:x,y)=f,(x,y)} olmak

B(ZC(M)) {K}=1 olur.

(ii) Herhangi f € B, icin M= sup |K_ (f ;x,y)| olmak iizere,

(x.y)eR?

||Lm,n (fl ) _fl ||B(]R2) = (X,;;e%{z Lm,n (fl;x’ Y) _fl (X’ y)|
= sup |(1+x,,)K,,(f;x,y)—sin x‘
(x,y)E]R2
< sup [K, . (f;x,y)—sin x| +Mx,,,
(x,y)e]R2

[ (£) =] e, = sup, L, (£:%,y) £, (x,y)
x,y)eR?

(

= sup ‘(1+Xm,n)Km,n (fz;x,y)—siny‘

(x.y)eR?

< sup Km(fz;x,y)—siny|+Mxm,n

(x.y)eR?

||Lm,n (f3) —f3||B(R2) = sup. L. (fsxy)-f(x, Y)|

(x.y)eR

(4.2.8)

lizere
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= sup |(1+x,,)K,.(f;;x,y)—cos x‘

(x.y)eR?

< sup |Km,n (f3;x,y)—cosx|+Mxmn
(x.y)eR?

”Lm,n (f,)-1, "B(Rz) = sup |L,,(f;:x,y)=f,(x y)|

(x.y)eR?

= sup |(1+x,,)K,.,(f;;x,y)—cos y‘

(x.y)eR?

< sup |K,, (f;;x,y)—cos y| +Mx,, ,

(x.y)eR?

olup sty ~limx,,, =0 oldugundan st} ~lim|L,, (f)~f| . i=1,2,3,4

,, =0
B(R")
elde edilir. Yani (4.2.8) ile verilen pozitif lineer operator dizisi 4.2.1. Teoremin

kosullarini saglar. Bu durumda herhangi bir f € B, fonksiyonu i¢in

St o) —lim”me (f)—f"B(Rz) =0

saglanir. Fakat x dizisi P-yakinsak olmadigindan (4.2.8) ile verilen pozitif lineer
operatorlerin dizisi 2.7.9. Teoremin kosullarim1 saglamaz. Yani (4.2.8) deki L |
operatorleri 4.2.1. Teoremde calisirken 2.7.9. deki Teoremde ¢alismaz.

Simdi 4.2.1.Teoremdeki A -istatistiksel yakinsakliga karsilik gelen orami, 4.1.5.,
4.1.6., 4.1.7. ve 4.1.8. tanimlarin1 kullanarak dort farkli yolla hesaplayacagiz. Bu

ispatlan yaparken 4.1.9. ve 4.1.10. Lemmalarin1 kullanacagiz.

4.2.5. Teorem: A:z(a 4-boyutlu negatif olmayan RH-regiiler matris ve

j-k.m,n )
L.,:B,,— B(Rz) pozitif lineer operatdr olsun. {(xm,n} ve {Bm,n} negatif olmayan,
artmayan cift indisli diziler olsun. Asagidaki kosullarin saglandigini kabul edelim:

() K:={(m,n)e N’:tim (x,y)e R* i¢in L, , (f,;x,y)=f,(x,y)} olmak iizere

P—liAmL z aj’k,m’nzl

U a’j,k (m,n)eK
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(i) ¢(u,v)=sin’ (u ;Xj , y(u,v) =sin’ (V;ZYJ fonksiyonlar1 igin

Voun = /”Lmn ((P)”B(Rz) Oy = ”me (W)”B(Rz) olmak iizere

('Om (f;Ym,n’Sm,n ) = St(2A) _O(Bm,n) > M, — 00,

Bu durumda herhangi bir f € B,, fonksiyonu igin ¢ = max{ocm,n,Bm,n} olmak iizere

HL“"“ (FX’Y)_fHB(Rz) - St(zA) _O(Cm,n )’ m,n = co,

olur. Benzer sonuglar “o0” ile “O” yer degistirilerek de elde edilebilir.

Ispat: fe B,, ve (x,y)e R sabit olsun.
K:={(m,n)e N’:tim (x,y)e R?igin L, (f,:x,y)=f,(x,y)}
olmak iizere (i) den

P—umi > a,,=0 (4.2.9)

.k
! a’j,k (m,n)eN? K

elde edilir. Ayrica her bir (u,v)e R* igin,

u-x|<7m ve |V'—y|<m olacak sekilde

u,v )=(u+2m v+2km),Lke secelim. Buradan timevarim yontemaiyle
‘v 21 2kn),lLk e Z secelim. Burad y iyl

A [F(ev)]=a,, [f (v )]

elde edilir. Ayrica

. (u-x
sin
( 2 j

|u'—x|£n

Vi—yl<m

B

sin(v_yj
2
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olur. ®, in ozelliklerini kullanarak

A [ (uv) ] =[a, [f (0, v)]
<o, (f:Ju"=x[.[v'-y])
s(n%m%“?j}(n% sin(V;ijwm (£:5,.8,) (4.2.10)

elde edilir. Bu durumda tim (m,n)e K igin L, ., nin lineerliligi, monotonlugu ve

(4.2.10) ifadesinden

L, (Fyixy)—f(x,y)|= ‘—Lm (A, [f(wv)]ix, y)‘

<L

Axy[f u, v

X,y)

<L, [ 3 sm J(l+— sin jJ;X,yJO)m(f;5l,52)
{1+£Lmn sm( j j (sm(v_yj;x,yj
o 2 2
+iLm a—x sin(ﬂ x.y |bo, (£:8,.5,) @.2.11)
85, ™ 2 2 )7 Bae -

bulunur. (4.2.11) ifadesinde Cauchy-Schwarz esitsizligi kullamlirsa tim (m,n)e K igin

¢(u,v)=sin® (%) , W(u,v) =sin’ (%) olmak iizere

B B [ e BN B )
! 2

2
5 \/Lm,n (o; x,y)\/Lm,n (y;x, y)}wm (f;8,,8,) (4.2.12)
2
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elde edilir. (4.2.12) esitsizliginin her iki yanindan (x,y)e R? iizerinden supremum

alimirsa tim  (m,n)e K igin v, , = ,”Lm’“((p)”B(]RZ)’ On = ||ngn(\|f)||B(R2) olmak

lizere
HLm,n (F,)-f \\B<R2) <(1+7) @, (£:V0 000 ) (4.2.13)

bulunur. Simdi verilen bir € >0 sayis1 igin

U= {(m,n)e N* :HLm,n (FX~Y)_fHB(R2) > 8},

U, = (m,n)eszwm(f;’Ymn’Smn)Z - 2 ("
O (14w

kiimelerini tanimlayalim. Boylece (4.2.13) esitsizliginden

UnKcUnK

elde edilir. Bu ise tiim (j,k)e N* i¢in, c,,, =max{a,, ,.B,,} oldugundan

1 1
o z aj’kvm'ﬂ S — Z aj,k,m,n

Cj,k (m,n)eUNK Cj,k (m,n)eU;NK

1
S - Z aj,k,m,n

Cix (mn)ky,

<L Yo, (4.2.14)
oldugunu gosterir. Simdi (4.2.14) de j,k — oo i¢in limit alinirsa ve ayrica (ii) den

P—umi > . =0 (4.2.15)

U Cj,k (m,n)eUNK
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oldugu kolayca elde edilir. Buradan

D e = 2, Apmat DL B

(m.nU (m.n)eUnK (mn)e UV K)
S Z aj,k,m,n + Z aj,k,m,n
(m,n)eUNK (m,n)e(N2 K)

olup buradan ise

L Z aj,k,m,n = L Z aj,k,m,n +(XL Z aj,k,m,n (4216)

quk (m,n)eU Cj,k (m,n)eUnK jk (mn)eN? K

bulunur. (4.2.16) da j,k — oo i¢in limit alinirsa (4.2.9) ve (4.2.15) den istenilen elde

edilir. Bu ise ispati tamamlar.

Asagidaki teorem benzer yolla ispatlanabilir.
4.2.6. Teorem: A= (a j,k,m,n) 4-boyutlu negatif olmayan RH-regiiler matris ve
L.,:B,,— B(Rz) pozitif lineer operatdr olsun. {(xm,n} ve {Bm,n} negatif olmayan,

artmayan cift indisli diziler olsun. Asagidaki kosullarin saglandigini kabul edelim:

(i) K:={(m.n)e N’:tim (x,y)e R* i¢in L, , (f,:x,y)=f,(x,y)} olmak iizere

P—lim Y a, . =I

ik (m,n)eK

(i) ¢(u,v)= sin’ (u — Xj , Wy(u, V) =sin’ (%) fonksiyonlari icin

Yo = /”Lm,n((P)”B(Rz) 0 8, = ||Lm,n (W)”B(Rz) olmak iizere

('Omixed (f’Ymn 4 6m,n ) = St(2A) _Om,n (Bm,n ) , M,N —> o0,

Bu durumda herhangi bir f € B, fonksiyonu i¢in

HLm,n (FX~Y)_fHB(RZ) = st(zA) —0,0 (Bun)s mn— o0,
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olur. Benzer sonuglar “o, 7 ile “O, " yer degistirilerek de elde edilebilir.

4.3. Porzitif Lineer Operatorler Yardimiyla n-degiskenli B-siirekli Fonksiyonlar

icin Istatistiksel Anlamda Yaklasim

Son olarak, istatistiksel yakinsaklik kavrami yardimiyla R" uzaymin kompakt
bir alt kiimesi iizerinde tamimli n-degiskenli B-siirekli fonksiyonlarin uzayinda D.
Barbosu tarafindan verilen Korovkin tipi yaklagim teoreminden daha kuvvetli sonuglar
elde edecegiz. Ayrica, yeni yaklasim teoremimizde calisan fakat D. Barbosu tarafindan
verilen teoremde ¢alismayan bir ornek verecegiz.

[1k olarak kullanacaginmiz bazi tanim ve sembolleri hatirlatalim.

n pozitif bir tamsay1 olmak iizere, negatif olmayan tamsayilarin m; koordinatlart
icin - m=(m,,m,,...m,) n-lilerinin kiimesi N" olmak iizere iki m ve
k =(k,,k,,....k,) n-lilerinin farkli olmas1 i¢in gerekli ve yeterli kosul en az bir j icin
m; #k; olmasidir. Ayrica N", m <k olmasi i¢in gerekli ve yeterli kosul her bir j i¢in
m; <k; olacak bicimdeki kismi siral bir kiimedir.

2003 yilinda F. Modricz tarafindan verilen, n-indisli diziler igin istatistiksel

yakinsaklik kavramini vermeden 6nce yogunluk kavramini verelim.

E, N" nin bir alt kiimesi, E, ={m<k:me E} ve |k| =ij olsun.
i=1

4.3.1. Tanim: N" nin bir E alt kiimesi i¢in

lim i
min k;—eo |k|

[E]

limiti mevcut ise, bu limit degerine E kiimesinin “yogunlugu” denir ve 8{E} ile

gosterilir (Méricz, 2003).
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Omegin; 3{N"}=1, &{(m},mj....m}):m,,.m, e N}=0 oldugu kolaylhkla
goriilebilir. Ayrica; 8{E} ve S{N“ \E} yogunluklarindan biri mevcut ise, bu durumda
3{N"\E} =1-8{E} olacaktir (Méricz, 2003).

4.3.2. Tamm: x ={x,,} reel terimli bir n-indisli dizi olsun. Eger her € >0 i¢in

B{me N": xm—L|28}=O

olacak sekilde bir L sayis1 varsa x dizisi L sayisina “istatistiksel yakinsaktir” denir ve
st—limx,, =L ile gosterilir (Moricz, 2003).

Simdi elde ettigimiz asagidaki teoremi verelim. e, (s,,S,,....8, ) =1,
€, (8585558, ) =8;, i=1,...,n olsun.
4.3.3. Teorem: L :C, (D) — B(D) pozitif lineer operator olsun. Asagidaki kosullarin

saglandigin kabul edelim:

M) K={meN":tim (x,,X,,...x,)€ Digin L, ()X, X,,.0. X, ) =€ (X}, X5, X, )}

olmak iizere 8{K} =1,

(ii) st—lim”Lm (€5X1s Xgses Xy ) =€ (X15 Xg0ees X, ) by =

(iii) st —lim

n n
2, 2
‘Lm( > e; ,xl,xz,...,an— > e (X, Xp0e0 X))
i=1 i=1

B(D)

Bu durumda herhangi bir f € C, (D) fonksiyonu igin,

B(D) N

st—limHLm (F (X1 X Xy )= A [F5X0, X e X [5X s X eees Xy ) =F (X1, X510 X, )

olur.

Ispat: fe C, (D) ve (x,,X,,....,X, )€ D sabit olsun.



59

K={me N":tim (x,,X,,...x,)€ D igin L, (€:X,,X,,.... X, ) =€, (X, X100 X, )}
olmak iizere (i) den

3{N"\K}=0 (4.3.1)

elde edilir. 2.7.12. Lemmadan, f fonksiyonunun B-siirekliliginden her (sl,...,sn)e D

icin

A [f;xl,xz,...,xn]

1,82 508

€ N 2
<——+)» A (e)(s;, —x, 432
L PA )6 @32
olacak sekilde A, (g¢)>0, i=1,...,n sayilar1 vardir. Ayrica tim me K igin

=1 (Xp, X 0o X, ) Ly (€03 %1 X oo Xy ) = L (£ (X1 X e X, ) = A [F5X0, X000 X, |5 X ), X s X, )
=L, (F (X X0 X, )= £ (XX g X ) F A [F5X X0 X, [1X 0 X0 X, )
Lo (A [£:%0 X g0 X, [ X0 X0 X, ) (4.3.3)

<L, EL+ZA1 (e)(s; _Xi)z;xwxzv""xnj

n+l ‘S

8 n
= + 2 A (e)L, (512 —2s8,X; +xi2;x1,x2,...,xn)
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elde edilir. C(g)=max{A, (€);i=1...,n} olmak iizere tim me K igin

n

2.
<E+C Lm(s —251x1+xi,x1,x2,...,xn)

<% i {_@1( /I3 MC AR S |

n+l P

bulunur. Son esitsizlikten, d = max{ =

n} olmak {izere tim me K i¢in

‘f (X1, Xgees X, )= Loy (£ (X0 X500 X

<

i1+2dC(£)Z|Lm(ei;xl ..... x,)=e (X,.nx,)
i=1

(4.3.4)

n n
2, 2
Lm(g ei,xl,...,xnj— > e} (X)X,
i=1 i=1

elde edilir. (4.3.4) esitsizliginin her iki yanindan (xl,xz,...,xn)eD tizerinden

supremum alinirsa tim me K i¢in

(4.3.5)

bulunur. Simdi verilen bir r>0 i¢in €<(n+1)r olacak sekilde € >0 sayist secelim.

Buradan
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U::{me N":|IL, (f(xl,xz,...,xn)—Aw [f;xl,xz,...,xn];xl,xz,...,xn)—f(xl,xz,...,xn) 50) Zr}
d d +1)r—g
U, =ime N":|L_ ef;x ,...,an— ei2 Xpyeens X,y Z(H—
’ { (Z ‘ Z & )B(D) (n+1)°C(e)
1 _
U, =ime N":|L_(e;X,.... X, )—¢ (X,-, X, ) Z(DJFZ# ,i=1..,n
B0 (n+1)"2dC(e)

kiimelerini tanimlayalim. Boylece (4.3.5) esitsizliginden

UnKc|J(U,nK)

i=0

elde edilir. Bu ise
3{UNK}<> 3{U,nK}<> 5{U }
i=0 i=0

oldugunu gosterir. Simdi son esitsizlikte (ii) ve (iii) den
3{UNK}=0 (4.3.6)
oldugu kolayca elde eldir. Buradan

8{Ut=8{Un(Ku(N"\K))]
< 8{UmK}+8{Um(N“ \K)}

<8{UNK}+3{N"\K]}
esitsizligi ve (4.3.1) ve (4.3.6) ifadeleri kullanilirsa 8{U} =0 yani

BD)

AAAAAA

st—lim“Lm (f(xl,xz,...,xn)—A [f;xl,xz,...,xn];xl,xz,...,xn)—f(xl,xz,...,xn)
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oldugu elde edilir. Bu ise ispat1 tamamlar.

4.3.4. Uyar:: Bazi fe C, (D) fonksiyonlarinin D kompakt kiimesi iizerinde sinirl

olmayabilecegi biliniyor. Ama 4.3.3. Teoremdeki

B(D)

ifadesi K, (i) de verilen kiime olmak iizere (i), (4.3.2) ve (4.3.3) den her bir me K i¢in
sonludur.
Simdi 4.3.3. Teoremde elde edilen istatistiksel sonucun, 2.7.13. Teoremdeki

klasik sonugtan daha kuvvetli oldugunu gostermek icin bir 6rnek verelim.
4.3.5. Ornek: D =[0,1]x[0,1]x[0,1] olmak iizere fe C,(D), m=(m,,m,,m,)e N’

icin

Bm(f;xl,xz,XB):i“”z“zf[i,i,ﬂ(“‘l}(ﬂ(nﬂx;(1_Xl)mﬁ (1=, (1=,

i=0 =0 k=0 \ 1T} LA

ile verilen 3-indisli Bernstein operatoriinii goz Oniine alalim. Ayrica
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:XI(X1+1_X1)m]_1 :el(XI’XZ’X3)

Bm(GZ;XI’X2’X3):ZEEL(H?IJ(H?2J(HQ3JX;(l_xl)mli X%(I_X )m -lxlg (1 X )m3*k

i=0 j=0 k=0 M, \ 1 ]

=0 =0 M, k=0

DI “"‘*Z—[ et B -

| .
=(x +1-x)" X2Z J)‘l) XEH(1=%,)" (x +1=x)™
my—1 m. —1)! e
:X2Z ( 2 ) Jz( _ 2) 1-j

B, (63;X1’X2’X3)

D)) [ . J( J J(zji(l—xl)‘““i X (1=, )™ xE (1= x, )™

i=0 j=0 k=0 M3

= io(n:ljxl (1—X1)ml'ii{m.2Jx§ (1—x2)m2'Ji_

=0

m T e [ .
= (x4 (5 1-%,)™ 1) (12)'(13 X1 (1-x, )"

m, m, m - \2 . 2 . .
S5 e s s
i=0 j=0 k=0 m, m; 1 ] k

Hligjxi (1_ X )ml_i Xi (l_xz)mz_j x;‘ (1_X3)m3_k
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jZFmJXHI—XJWAEEC?qX%ﬂ—xﬁmﬂzipiqxgU_deﬁ

=0
2
S m, i m;—i < J m, i my—j o m; k m3—k
+ 1- —_ J(1- 1-
i—O( ; jxl( Xl) ;(mzj [ i sz( Xz) k—O( K jxa( X3)
IR R RITRSED YR j WSS
1 =0\ J k=0 k

ml_li+1 m _1 ' ; m,—1-i m, mj
:X1§ m, ( (—ll—i))!-yxl(l_xl) 1 (% +1=x) ™ (x; +1-x5)

_ J + 1 m2 1) ' j m,—l-j _ my
+(x, +1-x, ;}mz (m, 1= J)J'X2(1 X, ) (x;+1-x;)

m m S k+l (my—1)!
+(X1+1—X1) (X2+1—X2) x3k:O m3( (_31 k))‘k‘ X,

i (m-1)! 1 (m-1)!

(1 X3 )m3—1—k

1 . i m;—1-i . . m,—1—i
= [ S S A 1- 1 + R - 1
X‘g‘ml (ml—l—i)!i!xl( %) Xlg‘ml (ml—l—i)!i!xl( x,)
my,—1 = 2
] (m2 —1)! j m,—1—j (m2 —1)! , _—
+Xx —_ == x}(1-x +X [ S VARG I P
Z;mﬂm”ﬂm”( ) 2;mﬂw4ﬂMN( :)
m3—1 1)| . I m;—1 1 (m3_1)| )
+ - 2 7 1— 3 + b imy =) -
X3Z(;m% mz_l k)'k' 3( X3) XSk:o m; (m3—1—k)!k!x3( X3)
o My —1 & (m1 - 2)' i1 m-l-i X, my-1
- 1- +— +1-
i m, izo:(ml—l—i)!(i—l)!Xl (1-x,) ml(xl X,)
m, -1 (m, —2)! g X .
+ 2 2 2 1 1— B ]+_2 - N
2 m, ;):(mz_l_j)!(j_l)!x2 ( Xz) m, (X2 Xz)
m, —1 %) (m, —2)! B o X .
+ 2 3 3 k-1 1_ 3 +_3 +1_ 5
%3 m, i (m3—1—k)!(k_1)!x3 ( X3) m, (X3 X3)
= X (1) T R (x, 41k, )T 2R
1 m, 2 m,
X3 —— (x; +1-x;)"™ +%
3 3
R Tt ST L S +i+ , My 1+X3
ml ml m2 m2 m, m3

2 2 2
X, —X X, —X X, —X
1 1 + 2 2+ 3 3

:elz(XI’XZ’X3)+G§(XI’XZ’X3)+e§(XI’XZ’X3)+
m, m, m,
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elde edilir. Boylece {B,} operatorler dizisi 2.7.13. Teoremin kosullarii saglar.

Buradan herhangi bir f € C, (D) igin

limHBm (f(xl,xz,x3)—AW [fQlexzvX3]§X1vX2vX3)_f(XpoXg)HB(D) =

gerceklenir. Simdi, m =(m,,m,, m,)e N* olmak iizere, genel terimi

{1, m,, m, ve m, tam kare ise,
u =

0, diger durumlarda,

olacak sekilde u={u,} 3-indisli dizisini alahm. Bu durumda st—limu, =0 olur.
Ayrica u, 3-indisli dizisi yakinsak degildir. Simdi C, (D) iizerinde asagidaki pozitif

lineer operatorii tanimlayalim:

L‘l’n(f(XI’XZ’X3)_A4,<.,. [f;xl’xzvX3];X1’X2’X3)=(1+um)Bm(f(X17X2vX3)_A4,4.,. [f;XI,Xz,X3];Xl,X2,X3) .

(4.3.7)

Basit hesaplamalar ile

€0 X, X, X5 ) =1+u,,

Lll'l
Lll'l

m

L

m

( )
( )
L. (e, %, %) =(1+u, ) e, (X,,X,,X5),
(e3:X,, X5, %5 ) =(1+u, ) e, (X, X,,X5),
L, (el

2, 2.
e +e] +eniX,,X,,X,)

m

2 2 2
X, —X X, —X X, —X
1 1 2 2 3 3J’

=(1+um)(ef(xl,xz,x3>+e§(xl,x2,x3)+e§(xl,xz,x3>+
m, m, my

elde edilir. Simdi de 4.3.3. Teoremin kosullarinin saglandigini gosterelim:

(i) S{m =(m,,m,,m,)e N’ :m,,m,, m, tam kare} =0 oldugundan
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K:={me N°:tim (x,,x,,x,)€ D icin L, (e):X,.X,,X;) =€, (X,,X,,X;)} olmak iizere
3{K} =1 olur.

L, (3%, %5, X5 ) =, (%, X5, X, )”

(ii)

B(D) :le€1]£,|Lm (erxp %50 %;) — e (X, X5, X, )|

= Sup|umel (XI’XZ’X3)| = um’
xeD

||Lm (e2:X,,X,,X5)—€, (XI’XZ’X3)”B<D) =su]]jo|Lm (ez;xl,xz,x3)—e2(xl,xz,x3)|
Xe

= Sup|um62 (Xl’ X2’X3 )| = um s
xeD

||Lm (e4:X,,X,,X5) —¢€; (xl,xz,x3)||B(D) = su][))|Lm (e4:X,,X,,X;)—¢, (xl,xz,x3)|
Xe

m

= sup|ume3 (X1 X5 X5 )| =u
xeD

2, 2, 2. 2, 2, 2
HLm (e1 +e; +e3,xl,);2,)(3)—(e1 +e; +e3)(x1,x2,x;)

B(D)

=Ssup
xeD

2 2 2. 2 2 2
Lm(e1 +ez+e3,xl,xz,x3)—(e1 +ez+e3)(xl,xz,x3)‘

2 2 2
X, —X X, —X X;—X
1 1 + 2 2+ 3 3

=sup|(1+u,) (el2 +e§+e§)(xl,xz,x3)+ —(elz+e§ +e§)(x1,x2,x3)

xeD m, m, m,
2 2 2 2 2 2
X, —X X, —X X, —X X, —X X, —X X, —X
=sup|—L—L 42224 20 S3 gy (e el +ed ) (X, X, Xy ) Ly sy 23D
xeD m, m, m; m,; m, m,
1 1 1 1 1 1
< + + +3u,, + u, + u, + u,
2m, 2m, 2m, 2m, 2m, 2m,

>

olup st—limu,=0 oldugundan st—lim”Lm(ei;xl,xz,x3)—ei(Xl,xz,x3)”B(D)=

i=1,2,3 ve st—limHLm (ef+e§+e§;x1,x2,x3)—(ef+e§+e§)(x1,x2,x3)

=0 elde
B(D)

edilir. Yani (4.3.7) ile verilen pozitif lineer operator dizisi 4.3.3. Teoremin kosullarini

saglar. Bu durumda herhangi bir f € C, (D) fonksiyonu i¢in

St_lim”Lm(f (X17X2’X3)_A4,.4,4 [f;xl,xz,x3];xl,xz,x3)—f (XI’X2’X3 )”B(D) =0
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saglanir. Fakat x dizisi yakinsak olmadigindan (4.3.7) ile verilen pozitif lineer
operatOrlerin dizisi 2.7.13. Teoremin kosullarim saglamaz. Yani (4.3.7) deki L,

operatorleri 4.3.3. Teoremde calisirken 2.7.13. deki Teoremde ¢aligsmaz.
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5. TARTISMA

Bu calismada cift indisli fonksiyon dizileri i¢in alisilmis diizgiin yakinsakliktan
daha kuvvetli olan A-istatistiksel diizgiin yakinsaklik kavrami kullanilarak, bulgular
kisminin birinci boliimiinde siirekli fonksiyonlarm uzaymdan daha genis olan Bogel-
stirekli fonksiyonlarin uzayinda tamimli pozitif lineer operatorler icin Korovkin tipi
yaklasim teoremi elde edilmistir. Ayrica, C. Badea, 1. Badea ve H.H. Gonksa (1986)
tarafindan verilen teoremden daha kuvvetli olduguna dair bir 6rnek verip, elde ettigimiz
teorem icin A-istatistiksel yakinsaklik oranini hesaplanmaistir.

Ikinci boliimde, A-istatistiksel yakinsaklik yardimi ile B, uzayi iizerinde tamimli

pozitif lineer operatorler icin Korovkin tipi yaklasim teoremi elde edilmistir. Ayrica,
verdigimiz teoremin Badea, Badea, ve Cottin (1988) tarafindan verilen sonuglardan
daha kuvvetli olduguna dair bir 6rnek verip, verdigimiz teorem igin A-istatistiksel
yakinsaklik oraninmi hesaplanmistir.

Son olarak, n-indisli diziler i¢in istatistiksel yakinsaklik kavrami yardimiyla R"
uzaymin kompakt bir alt kiimesi iizerinde tanimli n-degiskenli B-siirekli fonksiyonlarin
uzaymda D. Barbosu (2001) tarafindan verilen Korovkin tipi yaklasim teoreminden
daha kuvvetli sonuclar elde edilmistir. Burada verilen ornekten de goriilecegi gibi elde
ettigimiz sonug¢ alisilmis diizgiin yakinsaklik kavrami kullanilarak elde edilen sonuctan daha

kuvvetlidir.
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6. SONUC VE ONERILER

Bu calismada cift indisli fonksiyon dizileri i¢in alisilmis diizgiin yakinsakliktan
daha kuvvetli olan A-istatistiksel diizgiin yakinsaklik kavrami kullanilmistir.

Bu calismada bulunan sonuglar, n-indisli diziler icin istatistiksel yakinsaklik
kavrami kullanilarak n-boyutlu reel sayilar kiimesi tizerinde taniml1 Bogel-siirekli ve B-
2n-periyodik fonksiyonlarin uzayinda incelenebilir. Ayrica, Bogel-siirekli fonksiyonlar
icin A-istatistiksel yakinsaklik yardimiyla Modiiler uzayda Korovkin tipi teorem

incelenebilir.
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