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1.GIRIS

Pozitif tanimli matrisler ve pozitif yaritanimli matrisler ile ilgili bir¢ok esitsizlik

bulunmaktadir. Biz bu ¢aligmamizda bu esitsizlikleri ve ispatlarini inceledik.

(Zhan 2003) Biitiin A,B matrislerinden dolay1 Bhatia ve Kittaneh aritmetik-
geometrik ortalama esitsizligini vererek bunu pozitif tamimli matrislerde iz esitsizligini

gelistirmek i¢in kullanmustir.

(Uchiyama 2001) B-A pozitif yaritanimli matris olmak {iizere bir karma

esitsizlik vermistir.

(Hu,Zhang ve Yong 2004) U¢ veya daha fazla pozitif tamiml matrisler icin

karma ortalama takdim edip bunlara bagh karma ortalama esitsizlikleri vermislerdir.

(Liu ve Zhu 1997) Pozitif tanimli Hermityen matrislerin toplami1 ve Schur

tamamlayicilarinin 6zdegerleri ile ilgili esitsizlikler vermislerdir.

(Chen 2002) A=(ajj) ve B=(b;j) M matrisleri ile veya pozitif tanimli matris

strast n olan, AoB Hadamard ¢arpimu ile ilgili esitsizlik vermistir.

(Neubauer 1997) Pozitif tanimli matrisler icin Hadamard esitsizligini
kuvvetlendirmistir. Sonuglar (*1) matrislerin determinantlar1 ile ilgili esitsizlikleri

gostermek icin kullanilabilecektir.

(Markham ve Smith 1998) A ve B Hadamard matrislerinin Schur

tamamlayicilar ile iliski kuran bir esitsizlik tiiretilmistir.

(Drury 2001) A pozitif tanimhi bloklara ayrilmis matrisin kanonik 1ilintilari

izerine calismistir.

(Jiang 1999) A |, ..., As pozitif tanimli matrisleri, I birim matrisi gostersin , c;,

I<i<s sabitler olsun. A, ..., Ay, X ,..., X, pozitif numaralara baghh olmak

C. 2 . - . ..
lizere A; S# I+ Z XjAj) 2, 1<i<s oldugunu ispat etmistir.
i j=1



2. ON BILGILER

Bu boliimde c¢aligmamiza yardimci olan bazi temel tanim ve teoremlere yer

verilecektir.
2.1. Pozitif Tammmli Matris

(Bhatia 1996) Bir A nx n Hermit matrisi, eger her sifir olmayan n-boyutlu x

vektorii icin,
<Ax, x>>0 saglantyorsa pozitif tanimli matris, eger

<AX, x>>0 saglaniyorsa yar1 pozitif taniml1 matris denir.

Aym tipte iki pozitif tanimli matrisin toplam1 yine aym tipte pozitif tanimli bir

matristir, pozitif taniml1 bir matrisin Hermit transpozu da pozitif tanimlidir.

Teorem 2.1. (Bozkurt ve Tiiren 2003) A, n-kare hermityen ve P, siitunlar1 A
matrisinin normalize edilmis 6z vektorlerinden olugsan bir iiniter matris olsun.

u[ug ... un]T vektoril igin x=Pu ve 4, (i=1,2, ... ,n) A matrisinin 6zdegerleri ise,

x"Ax =u"(P"AP)u= Au, I/;1+ Au, u_2+ ot Au u, dir.

n-—n n

Teorem 2.2. (Bozkurt ve Tiiren 2003) x"Ax formunun pozitif tanmimli olmasi

icin gerek ve yeter sart A matrisinin biitiin 6z degerlerinin pozitif olmasidir.
Ispat: A matrisinin biitiin 6z degerleri pozitif olsun. Teorem 2.1'den P diizgiin

matris olmak iizere

x"Ax =u"(P"AP)u= Au, I/;1+ Au, u_2+ A (2.1)

n-—n n

olacak sekilde x =Pu doniisiimiinii tanimlayalim. Her A, pozitif oldugundan, (2.1)

denkleminin sag yanindaki form pozitif tanimlidir.

x"Ax formu pozitif tanimli olsun. Teorem 2.1'den PYAP=B olacak sekilde P

diizglin matrisi vardir ve xBx formu pozitif tanimlidir. O halde A 'ler, A matrisinin



ozdegerleri olmak iizere Q"AQ= A =kds( A, A,,...,A,) olacak sekilde bir Q diizgiin

matrisi vardir. Teorem 2.1'den XH(QHAQ)=XHAX olur ki, x"Ax pozitif tanimlidir.

Dolayisiyla A matrisinin biitiin 6zdegerleri pozitiftir.

Teorem 2.3. (Bozkurt ve Tiiren 2003) A bir hermityen matris olsun. A matrisi

pozitif tamimli ise;
i) A'nin esas kosegen elemanlarinin hepsi pozitiftir.
i) i# igin aja;>lay|*dir.
iii) A'nin esas degerce en bilyiik elemani1 esas kosegeni iizerindedir.
iv) det(A)>0'dir.
ispat: i) x"Ax kuadratik formunda, Xj harig biitiin x;'leri (1<i,j,k<n) sifir

segelim. Bu takdirde form  x"'Ax=ajjlx;|* haline doniisiir. x;#0 ve form pozitif tanimli
oldugundan a;>0 olur. Bu her j icin gosterilebileceginden A'nin  esas kosegen

elemanlarinin hepsi pozitiftir.
ii) Ispat icin bu seferde x; ve xy harig biitiin x;'leri (1<i,j,k<n) sifir secelim.

Bu durumda form

H 2 N o 2
X Ax=ajlxjl"+a, x; x, +a; x; x+ akk|xk|

g a5l

i“re | % jk k . .

+= - sekline gelir. xj=-
a ..

Ji ajj

ay X, a ji Xy

=ajj|x

ajj

2
secelim. a;>0 oldugundan formun pozitif tanimli olmas1 i¢in ajjakk>‘a jk‘ (i#)) olmast

gerekir.
iii) Kabul edelim ki, baz1 i,j'ler i¢in aii,ajj§|aij| olsun. O halde

2.2)

2
aiiajj§|aij |



olur. (i)'den a;,a;;>0 oldugundan (2.2) ile, (ii) ile ¢elisir.
iv) x"Ax kuadratik formu pozitif tanimli oldugundan teorem 2.2'den A

matrisinin biitiin 6zdegerleri pozitiftir. A matrisinin determinant1 da 6z degrlerin ¢arpim

oldugundan det(A)>0'd1r.

Teorem 2.4. (Bozkurt ve Tiiren 2003) A hermityen matris ve A;, A matrisinin sol
iist tarafindaki ixi alt matris olsun. 1<i<n i¢in her A; diizgiinse, L; esas kosegen
elemanlart 1 olan alt iicgen matris ve K da kosegen elemanlart sifir olmayan reel

kosegen matris olmak iizere A matrisi
A=LKL" (2.3)

Teorem 2.5. (Bozkurt ve Tiiren 2003) x"Ax (A hermityen) formunun pozitif

taniml olmasi icin gerek ve yeter sart ya,

i) A matrisinin esas kosegeni boyunca satir eselon forma getirilirken
kullanilan pivotlarin hepsinin pozitif olmasidir, veya

ii) A'nin sol iist kosesindeki ixi (i=1,2, ... ,n) determinantlardan ibaret esas

determinantlarinin hepsinin pozitif olmasidir. Yani,

a4y, a4

R ) 0 2.4
>0, |a,, a, a,]>0, ... 2.4)

311>0,

Ay Ay
Q3 43 Ay

ispat: i) xX"Ax (A hermityen) formu pozitif taniml olsun. A matrisi satir-eselon

forma indirgenirken elde edilen pivotlar ay (k=1,2, ... ,n) ise det(Aj)=a;ay ... a; olur.

Her i i¢in det(A;)>0 oldugundan her ay pozitif olmalidir.

Pivotlarin hepsi pozitif olsunlar. O halde det(A;)>0 ve dolayisiyla her i icin A;
diizgiin olacaktir. O halde teorem 2.4'den A, (2.3)'deki gibi yazilabilir ki, bu da bize A
matrisinin, K reel kdsegen matrisiyle hermityen-denk oldugunu verir. x"Ax kuadratik

formu pozitif tamml1 oldugundan x"Ax formu da pozitif tanimlidur.



ii)x"Ax (A hermityen) formu pozitif tanimli olsun. A matrisinin sol {ist

yamindaki ixi (i=1,2, ... ,n) alt matrisini A; ile gosterelim. A pozitif tanimh
oldugundan i=1,2, ... ,n icin her A; pozitif tamimlidir. A matrisinin sol iist yanindaki
ixi (i=1,2, ... ,n) A; alt matrisleri pozitif tanimli olsunlar. Teorem 2.3 (iv)'den

i=1,2,...,n i¢in det (A;)>0'd1r.

Pozitif tanmlilik testlerini yukarida verdigimiz teoremlerin 1s18inda asagidaki

gibi diizenleyelim.
2.1.1. Pozitif Tanmimlihik Testleri

(Bhatia 1996) Asagidaki ii¢ testin herbiri bir A nxn Hermit matrisinin pozitif
tanimh olmasi i¢in gerek ve yeter kosullar1 verir.Yani, A Hermit matrisi bu testlerin

herhangi birini gecerse pozitif tanimli bir matristir.

1) A, ancak ve ancak sadece E3 temel satir islemleri ile iistiiggensel bicime
indirgenebiliyorsa ve sonucta bulunan matrisin tim kosegen elemanlar1 pozitif ise

pozitif tamimlidir.

2) A matrisinin bir asli minorii, A’nin son k satir ve kolonu(k=0, 1, ..., n-1)
cikarilarak elde edilen alt matrisin determinantidir. A, ancak ve ancak tiim asli minorleri

pozitif ise pozitif tanimlidir.
3) A, ancak ve ancak tiim 6zdegerleri pozitif ise pozitif tanimlidir.

Asagidaki testler bir A=[a;j] nxn matrisinin pozitif tanimli olmasi i¢in gerekli
kosullar1 verir. Bu testlerin herhangi birinden kalan bir Hermit matrisi pozitif taniml

degildir, ancak testleri gecen bir Hermit matrisi bir sonuca varilamaz.
4) A’nin kdsegen elemanlar pozitif olmalidir.

5) A’nin en biiyiik mutlak degerli elemani, A’nin kdsegeni iizerinde olmalidir.

6) aj;aj> | ajj | 2 (17%])

6 2 =2
Ornek2.1:| 2 6 -2 matrisinin pozitif tanimliligini inceleyelim.
-2 -2 10



6 2 -2
—| 0 16/3 —-4/3 Birinci satirin (_?lj kat1 ikinci satirla toplanir.

-2 =2 10
6 2 -2 |

—|0 16/3 —-4/3 Birinci satirin 3 kat1 tigiincii satirla toplanir.
10 —4/3 28/3
6 2 -2 |

—|0 16/3 -4/3 Ikinci satirin 2 kat1 tigiincii satirla toplanir.
00 27/3

6, 16/3, 27/3 kosegen elemanlarinin tiimii pozitif oldugundan, matris pozitif

tanimlidir. Veya;

A'nin asli minorleri,

6 2 6 2 =2
det[6]=6 ‘2 6‘ =36-4=32 ve | 2 6 —2/=288dir.
-2 =2 10

Tiim asli minorler pozitif oldugundan, matris pozitif tanimhdir.
Ornek 2.2: Asagidaki A matrisinin pozitif taniml olup olmadigim belirleyelim.

11 -3 5 -8

-3 11 -5 -8
A= .

5 =5 19 O

-8 -8 0 16

A y1 sadece E3 temel iglemlerini kullanarak asagidaki bicime indirgeriz:

11 -3 5 -8
0 112/11 -40/11 -112/11
0 0 108/7 0
0 0 0 0



Merkezi elemanlarin, 11, 112/11, 108/7 ve 0, tiimil pozitif olmadigindan, matris pozitif
tanimh degildir. Ancak, bu merkezi elemanlar negatif degildir, boylece A bir pozitif

yari-tanimli matristir.
Tanm 2.1.

(Horn ve Jhonson 1985) A,B€ M,,, Hermityen matrisler olsun. Eger A-B pozitif
yari-tanimli matrisler ise A>B olarak yazabiliriz. Benzer olarak, A>B'nin anlam1 da A-

B'nin pozitif taniml1i oldugudur.
2.2. Matris izleri ve Ozdegerleri
Tamm 2.2.1. (()zdeéer-ézvektiir) :
(Bhatia 1996) F bir cisim olmak iizere AeM,(F) olsun.

Ax=Ax;(x£0)

Olacak sekilde, AcF skalerine A matrisinin 6zdegeri, x’e de A matrisinin A

0zdegerine karsilik gelen 6zvektorii denir.

Teorem 2.6. (Horn ve Jhonson 1985) A€M, Hermityen matrisinin

Ozdegerleri azalan sirada ;
Anin= M <A< ... Ay=Amax seklindedir.

Teorem 2.7. (Weyl Teoremi): (Horn ve Jhonson 1985) A, Be M, Hermityen
ve 0z degerleri Ai(A), Mi(B) ve Li(A+B) k=1,2, ... ,n i¢in teorem 2.6 dan azalan sirada

olsun.
M(A)+A(B) < M(A+B) < M (A)+1n(B) (2.2.1)
Tamm 2.2.2. (Matris izi) :
(Bronson 1989) A, nxn tipinde matris olmak iizere, A’nin esas kodsegeni
iizerindeki elemanlarinin toplamina A matrisinin izi denir ve

izA= 2 a; seklinde gosterilir.
i=1

Teorem 2.2.1. (Bronson 1989) A nxn tipinde kare matrisler olmak iizere;

iz(AB)=iz(BA) dir.



2.3. Singiiler Deger

(Bozkurt ve Tiiren 2003) A genel mxn matris olsun. A”A matrisinin 6zdegerleri

A (=1, 2, ..., m) ise Gi=\/7\,i degerlerine A matrisinin singiiler degerleri denir.

Teorem 2.3.1. (Horn ve Jhonson 1985) A€ M,,, bir matris olarak verilsin.

A

A'da, A'min herhangi bir siitununun silinmesiyle olussun, {o;} A'min singiiler
degerlerini, { 0, } de A 'mn singiiler degerlerini gostersin, artmayan sirada;

a) Eger m>n ise,

A A

A
6120-1 2 0220-2 2--- 20-11—1 2 ano

b) Eger m<n ise,

A A

61201 26202 2... 2 csng'm >0
Eger A'min bir siitunu yerine bir satinn silinerek olusursa, (a) ve (b) icindeki m
ve n'yi yerdegistiririz.
2.4. Hermityen, Monoton, Konkav, Birim, P-Matrisler
Tamm 2.4.1. (Hermityen Matris) :

(Bellman 1996) Bir matris, eger kompleks eslenik transpozuna esit ise, Hermit

matristir, yani A icin eger,
A=A" ise A Hermittir.
Tamm 2.4.2. (Monoton Matris) :

(Uchiyama 2001) Eger A, [0, «) siirekli fonksiyon iizerinde bir matris ve

0<A<B icin f(A) <f(B)’yi kapsarsa monoton matrisdir.
Tamm 2.4.3. (Konkav Matris) :
(Uchiyama 2001) Biitiin A, B>0 ve biitiin O<A<1 igin,

f(LMA+(1-1) B) > Af(A) +(1-)1) f(B) ise konkav matrisdir.



Tanim 2.4.4. (Birim Matris) :

(Bozkurt ve Tiiren 2003) Esas kosegeni iizerindeki elemanlarinin hepsi 1 olan

kosegen matrise birim matris denir ve

1 0 ... 0
1 0

L= .
00 1

olarak gosterilir.
Tamm 2.4.5. (Uniter Matris) :
(Bhatia 1996) AeM,(C) matrisi icin;
AA=A"A=]

Ozelligi saglanirsa A matrisine iiniter matris denir. Burada A", A matrisinin

esleniginin transpozunu gostermektedir.
Tamm 2.4.6. (P-Matris) :

(Chen 2002) A biitiin prensibal minorleri pozitif olan nxn tiiriinde bir matris

ise, boyle bir A matrisine P-matris denir.

3
Ornek 2.3: A = |3 3x3 prensibal minorii det(A) =15, 2x2 prensibal
1

EE NI ]
NSRS R

minorleri

3 2 31 7 2
det = 15; det =5; det =6
3 7 1 2 4 2

1x1 prensibal minorleri ise, 3, 7 ve 2’dir.
2.5. Siirekli ve Iyi Tammlanmus Fonksiyonlar
Tamm 2.5.1. (Siirekli Fonksiyon) :

(Bhatia 1996) f: A—R bir fonksiyon ve a€A olsun. f fonksiyonu a noktasinda
taniml ise, f fonksiyonun a noktasinda limiti varsa, fonksiyonun a noktasindaki limiti a

noktasindaki degerine esitse bu fonksiyonlara siirekli fonksiyon denir.



Tanim 2.5.2. ( Iyi Tammlanms Fonksiyonlar) :

(Bhatia 1996) Eger z kompleks degiskeninin f(z) fonksiyonunun bir Maclaurin

seri acilimi varsa,

f(z) = z a,z" ve bu | 4 | <R i¢in yakinsaksa o zaman z a,A" matris serisi
n=0 n=0

yakinsaktir, burada A kare matris ve ozdegerlerinin mutlak degeri R’den kiigiik

olmalidir. Boyle bir durumda, f(A)

f(A) = z a,A" ile tamimlanir ve iyi tanimlanmig fonksiyon olarak adlandirilir.
n=0

Tam olarak, A'=Ddir.
2.6. Hadamard (Schur) Carpim
(Horn ve Jhonson 1985) A=[ajj]mxn V€ B=[bjj]lmxn Olsun.
AoB=[aj; bjj]mxn carpimina A ile B matrislerinin Hadamard ¢arpimui denir.
A ve B pozitif tanimli matrisler ise det(AoB)>detA.detB dir.

A ve B pozitif tamiml1 matrisler ise AoB de pozitif tanimlidir.

10



3. POZIiTiF TANIMLI MATRISLER iLE iLGILi ESITSIZLIKLER
3.1. Baz1 Matris Esitsizlikleri Uzerine

(Zhan 2003) Calismamizin temelini teskil eden bu boliimde M, nxn kompleks
matrisler olmak iizere, A€M, matrisinin singiiler degerlerinin s,(A) > s, (A) >...>s, (A)

oldugunu 2.3.1'den biliyoruz ve singiiler degerler i¢cin Bhatia ve Kittaneh’in sdyledigi,

1yi bilinen aritmetik-geometrik esitsizligi olan;
2sj(AB*)Ssj(A*A+B*B),j:1,2,...,n 3.1.1)

esitsizligini, (burada A, BEM, ve B~ da B’nin eslenik transpozunu gostermektedir) ve

A 0
A, BEM, pozitif yaritanimli matrisleri icin A® B blok kdsegen matrisleri icin (0 Bj

gostermek lizere,

s, (A-B)<s,(A® B),j=1,2,....,n (3.1.2)

esitsizliklerini ispatladik. Daha sonra bu iki esitsizligi, Ao, bir pozitif tanimli matris,

Ay, ... ,Ax pozitif yari-tanimli matrisler olmak iizere,

[
iz) (O A,) 7 A <izA} izesitsizligini geligtirmek i¢in kullanacagiz.
J=1 i=0

Simdi 3.1.1 ve 3.1.2 esitsizliklerini ispatlayalim.

G, H Hermityen matrisleri i¢in, GSH anlami H-G nin pozitif yaritaniml

matrisler oldugudur. Eger H €M,, Hermityen ise, her zaman 6zdegerlerinin artan sirada,

A,(H)>A1,H)>.>1, (H) oldugunu teorem 2.6'den biliyoruz.

Teorem 2.7 (Weyl’in monotonicity prensibi)den, G<H i¢in4 ;(G) <4 ; (H),

j=1,2,...,n oldugunu biliyoruz. Bu Hermityen matrislerin 6zdegerlerinin minimax

karakterizasyonundan takip edilir.
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ispat (3.1.1) :

A O 0
X= Y= * AB
B 0 BA 0O

Sonra,

. ‘B O . (AA" AB°
XX:AB+BB j,xx: ) | ve
0 0 BA® BB’

A 0 A 0)* (AA°™ —-AB’ .
0< = . . |=XX-2Y [ dir.
-B 0 -B 0 —BA" BB’ !

Oyleyse 2Y< XX " olur. Weyl’in monotonicity prensibinden,

24 ,(Y)< A(XX"),j=1,2, ..., 2n "dir. (3.1.3)

j=1, 2, ..., n icin, XX ’1n 6zdegerleri, s j(A*A+B*B ), Y’nin ozdegerleri,

S (AB" ), buradan, (3.1.3)
25, (AB )< sj(A*A+B*B ), j=1, 2, ..., n oldugunu verir.
Lemma 3.1.1. (Zhan 2003) Eger H €M, Hermityen ise
s;(H)= A ;(H®-H), j=1,2,..., nolur.
ispat (3.1.2) : Lemma 3.1.1 den
s;(A-B)= 1 ;[(A-B) ®(B-A) ],j=1,2,...,n (3.1.4)
(A-B) ® (B-A) < A® B oldugundan, Weyl’in monotonicity prensibinden
A, [(A-B) ®(B-A) <1 ;(A®B)j=1,2,...,2n (3.1.5)

elde ederiz.
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A J(A®B) =5, (A®B), j=1, 2,..., 2n olduguna dikkat edelim. (3.1.4) ve
(3.1.5)’1 birlestirerek, s ; (A-B) <s ; (A® B), j=1, 2,..., n elde ederiz.
3.2 iz Esitsizlikleri (Zhan 2003)

Teorem 3.2.1. (Zhan 2003) A, pozitif taniml matris ve A ,...,A, pozitif yar-

tanimli matrisler olsun. Sonra,

k J
iz) (O A) 7 A <izA]' dir. (3.2.1)

J=1 i=0

Ispat: Sonug 1<j<k icin

J J—1 J
iz(Y A) A <iz{(), AT, AT (3.2.2)
i=0 i=0 i=0
den takip edilecek.

Eger X, Y pozitif tamiml1 matrisler ise, (3.1.1)’den

25,(X)=2s, [Y" (XYT?)]<s  (Y+Y 72X Y7''?) elde ederiz.

Oyle ki, izWZ=izZW (Teorem 2.2.1) den

2izX<iz(Y+X*’Y™) (3.2.3)

olur.

J J—1
(3.2.3yde, X=(), A,) " veY=(D_ A,) " yerlestirerek,
i=0

iz{(Zj‘, Ai)'l—(zj: Ai)-z(i Ai)}siz{(f Ai)*l-(i A,) ' }elde ederiz.

Sol tarafini basitlestirerek (3.2.2)'yi elde ederiz. (3.2.2)"yi j icin 1 den k ya toplayarak,

k J k
izz (z A) 7 Aj<izA(_)1— iz(z A,) "'<izA;" e sahip oluruz. Buda
J=1

J=1 i=0

ispat1 tamamlar.
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Ornek 3.1.1: A, pozitif tanimli bir matris, Aj, A ,..., Ay pozitif yari-taniml

k i
matrisler olsun, izz (z A)7A j<izA .} esitsizliginin saglandigini gosterelim:
J=1 i=0

1 1 00 200
Ap=|0 3 0[,A=|0 0 1|,A>=|0 0 1|,As=|0 0 1] olsun. Igj<k ise j=2,
1 0 0 1 0 0 1
k=3 icin;
} 41 0] 1/16 7/9 —14/27
DA SAGAHA=|0 3 2(, (D) A) | 0 1/9 4727 |=A
=0 00 3 ™ 0 0 1/9
k J
D (D) A A SAAFAANAA;
J=1 i=0
17/72 1/16 7/9
= 0 0 7/9
0 0 1/3

RS 2 171 s
iz O, A) = 370569

J=1 i=0

172 0 0 .
Ay'=| 0 173 0 izAgl=o+-+1=1,833
0 0 1

0,569<1,833 olur.

3.3. Karma Matris Esitsizlikleri

(Uchiyama 2001) Bu béliimde, eger 0<A, B, C ve S CS+T T T<1 ise, 0 zaman,
A<S ' BS+T CT

A(S B S+T CT)A™”

<{ A™(S" B'S+ T  C'T) A} (1>1, t>5>0, r>0 igin)
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AM<{ A™(ST B'S+ T C'T) A0 (1>1 150 icin) olduklarim gosterdik.

Burada biiyiik harfler matrisleri temsil etmektedir. Tanim 2.2 den A<B’nin
anlaminin B-A’nin pozitif yaritamimli matris oldugudur. A, [0, oo) siirekli fonksiyon
iizerinde bir matris ve 0 <A<B icin, f(A) <f(B)’yi kapsarsa monoton matris, A, B>0 ve

0<i<1 icin f(AA+(1-1) f(B)>f(A)+(1-A)f(B) ise konkav matrisdir.

Hansen ve Pedersen pozitif siirekli fonksiyon f[0, o) icin verilen sartlarin

gecerli oldugunu gostermislerdir.
i) f monoton operator
ii) f konkav operator
iii) Biitiin T matrisi (gerekmedikce kare), ITII<I ve biitiin A>0 icin;
T f(A) T<E(T™ AT).
iv) Biitiin P izdiisiimii ve A>0 i¢in Pf(A) P<f(PAP),
v) Biitiin S, T ciftleri i¢in, S "S+T T<lile A, B>0 i¢in
S f(A) S+ T f(B) T<f(S" AS+ T BT)
Burada, bu bes 6zellige bir kolay 6zellik ekleyebiliriz.

Lemma3.3.1. (Uchiyama 2001)

(vi) Biitiin tersi olan T ve T~ T>1 icin (T~ AT)<T f(A)T.
ispat: (iii) = (vi): (T " T"ATT)>T" T AT)T"
(vi) = (iv): keyfi bir A>0 ve keyfi bir P izdiistimiinii alalim.
{1/(1+4€(P+ €) } 7 >1 (€>0) * dan.

(vi)’de T={1/(1+€EP+ €))} ' ve B=T'A T yerine koyarak,

f(A) =f(TBT) <T f(B) T, v.s. T ' f(A) T"'<f(T'A T™") elde ederiz.
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£ —0 iken, genel olarak, lIx, -xll =0 i¢in Pf(A)P<f(PAP); llf(x ) -f(x)ll—=0’1

kapsar. f siirekli fonksiyon i¢in, x’de interval spektrumu igerir.

Gergek, f(x) =x“(0<a<=1) monoton matris Lowner —Heinz esitsizligi olarak

adlandirilir. Furuta, 0<A<B’nin

(ATPB ATI?) 0l S AT

(B"?A" B"'?) I <B T (21, 1>0) (3.3.1)
kapsadigini

(ATPB" ATy GHDIS A2 A2

(B"2 A" B"'?) (DD <R ri2 A s B2 (1550, 1>0) (3.3.2)
gostermistir.

U, V fonksiyon cifti iizerinde ¢calisahm. V(U ™' (x) ) yeni operatdr fonksiyon
elde etmek icin monoton operator: (3.3.1)’i daha fazla monoton oparator fonksiyonlarla

genellestirdik. (3.3.2), A ve B ters cevrilebilir ve logA < logB oldugunu i¢ine alir.

Harmonik ortalama, Al’lB, A ve B, A"1B=(/?,A’1 +(1-1) B™") 7' tarafindan

tespit edilir. Eger A ve B ters cevrilebilir ve (A+€) Z(B+ €) eger €—+0 kuvvetsiz
limiti degilse, (3.3.2)’yi takip ederek A, B, C >0, O<s< t ve O<r i¢in, A<B ] Cise
{A"(A B4+(1-1) C") A} EISA (A B+(1-4) C%) A™ (3.3.3)
olur.
Eger 0<A,B,Cve S S+ T T<lise A<S BS+T CT,t>1, t>s>0, r>0 i¢in,

{ A”(S" B'S+ T  CT) A}/ 0> A"2(§" BSS+ T  CT) A” olur.

(3.3.3)’ iin bir uzantisi olan, B 2 C<AB+(1- 1) C esitsizliginden
g
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{A"(S" B'S+ T  C'T) A"}/ 0> AT esitsizligi (3.3.1)1 igine alir. Simdi

yukaridaki ve (v). esitsizligi kapsayan bir karma esitsizlik verelim.
3.4. Genellestirilmis Esitsizlik

(Uchiyama 2001) Bu kisimda (3.3.2) esitsizligini genellestirdik. Bunu yapmak

icin 6ncelikle monoton operator fonksiyonlarla ilgili yeni bir aile kurduk.

(0, o0) araliginda f(x) >0 bir monoton operator fonksiyon olarak verilsin ve t>0

ve >0 reel sayilari, @, (x) [0, o©)’da bir fonksiyon belirtsin.
r. (%) =x"TV ), e, @r (XY =X(X) (3.4.1)
de 0°=1 olarak yerlestiririz.

O a aX) = ¢ (x) (a>0), @, (x) =f(x) (x>0) oldugu asikar, Lowner’in

teoreminden @;, (X) monoton operatdriidiir.

(s+r) /(t+1)

0<s<t i¢in f(x) =x*" koyanz. ¢, (x) =x icin (3.3.2)’yi r>0 i¢in tekrar

yazabiliriz.
(pr’ t(Ar/ZB tA I‘//Z) EA /2 f(Bt) AI‘/Z’

o (B> AB™) <B™f(A") B". (3.3.2)’nin uzantisii Teorem 3.4.1 icinde

gosterecegiz, bu esitsizlikler keyfi bir >0 operatdr monoton fonksiyon ve @, (X) i¢in

(3.4.1) tarafindan tespit edilir.

Lemma 3.4.1: (Uchiyama 2001) ¢(x) >0 [0, ) aralifinda operatér monoton

fonksiyon olsun ve k(x) ve ¢ (x) pozitif artan devamli fonksiyonlar olsun 6yle ki;
o(xk(x) =x/ (x) olur.
Sonra, 0<H<K i¢in,
o(H"k(K) H"?) > H" ¢ (K) H'?
o(K"*k(H) K"*<K K"? ¢ (H) K" esitsizligini icine alir.
Ispat: ¢(x) devamli oldugundan beri K ve H ters cevrilebilir oldugunu

farzedebiliriz. Sonra ispat 0<H<K icin H"?K™' H"*<1"dan takip edilir. (iii)’den ,
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(p(H1/2k(K) H1/2) — (p(H1/2 K—1/2Kk(K) K—1/2 H1/2)
S H1/2 K—l/2 (p(Kk(K) ) K—l/2 H1/2
=H"? ¢ (K) H"? olur.

3.3.2 esitsizligini gormek icin (K"*H'K"?) >1 ve (vi)’yi kullandik. Lemma
3.4.1’den operator ortalamay1 kullanarak Kuba-Ando’dan dolay1 6 nin, ¢ ile baglantili

oldugunu gosterecegiz.
H' 6k(K) >K ™' 6K=/ (K), 1. esitsizlik Lemma 3.4.1 ile denk olur.
Teorem 3.4.1.

(Uchiyama 2001) f(x) >0 [0, o)’da bir operatér fonksiyon olsun ve monoton

operator fonksiyon r>0, t>0 icin ¢, 'yi (3.4.1) ile tespit edelim. Sonra 0<A<B icin,
br (A”B'A™) > ATH(B) AT (34.2)
.. (BA'B™) <B"f(A") B™ (3.4.3)
igine alir.

Lemma 3.4.2. (Uchiyama 2001) ¢(x)>0 [0, ) araliginda bir operatér monoton

fonksiyon olsun ve k(x) ve ¢ (x) pozitif artan devamli fonksiyonlar ise,
o(xk(x) ) =x ¢ (x) olur. Sonra O<H<K icin,

(p(K” *k(H) K% <k'?¢ (H) K" esitsizligini icine alir.

(br’ t(Al'/thAl'/Z) — (br’ t(AI‘/ZB—1'/2Bt+I‘B—I‘/2Ar/2)

> Ar/2B»r/2 q)r,t Bt+rB—r/2 Ar/2

=Ar/2f(Bt) Ar/z’dir.
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Boylece 0<r<1 i¢in (3.4.2)yi i¢ine alir. 0<r<2" i¢in, biitiin operatér monoton
fonksiyon f ve (3.4.1) tarafindan tespit edilen ¢, . icin (3.4.2)’nin i¢ine aldigini
farzedelim.

[2", 2"*'] araliginda /2 <2" i¢in, keyfi bir r alalim,

duo. (A™B'A™) > A™(B") A™ oldugu farzedilebilir.

F(x) =1 ve ¢, (x) =x"*" (3.4.4)
i¢inde goz Oniinde tutulursa,

(Ar/4BtAr/4) 1/(2t+r) Z Ar/2 Olur.

Esitsizligin sol tarafim K ve sag tarafim H ile gosterelim ve (3.4.1)’de yerine

koyalim.
y=x"%, k(y) =x"x'=y "0 0 (y) =) = b, (k(y)),
Or. (y(k(y) ) =y ¢ (y) elde edilir.
Lemma 3.4.1 den, K>H ise,
dr, (H"k(K) H"?) = H? ¢ (K) H" dir.
K(K) =K "=A™B'A™ oldugundan, bu
dr (AT ATB'AT A > ¢y (ATB'A™) A 0ldugunu meydana cikarir.

(3.4.2)’1 elde etmek i¢in bunu (3.4.4) ’ye katalim, r>0 i¢in (3.4.2)’i elde ederiz
ve (3.4.3) ’ii daha iyi gorebiliriz.

(3.4.2) ve (3.4.3) ’nin (3.3.2)’nin uzantis1 olduguna dikkat edelim, f(x) =x""
koyarak (3.3.2)’yi Kkiigiiltiiriiz. Yukaridaki ispatin, A ve B Hilbert boslugunda
operatorlerse yiiriirliikkte olabilecegine dikkat edelim. Simdi 0<A<B sartin1 genisleterek
yukaridaki teoremde logA<logB sartin1 yerine getirelim. Eger A ve B operatorler ise

logA ve logB 06l¢iisiiz olabilir.
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Teorem 3.4.2. (Uchiyama 2001) [0, o) araliginda f monoton operator

fonksiyon olsun ve ¢, (yi (3.4.1) ile tespit edelim. Eger logA< logB ise (3.4.2) ve
(3.4.3) i¢ine alir.

ispat: (1-1/nlogA) ' ve (1-1/nlogB) ™ ikisi de simirh. Yeterli genislikte n igin,

0<(1-1/nlogA) ’ls(l—llnlogB) dir. Bundan dolayr bu esitsizlige ve

fonksiyona miiracaat edebiliriz.

Dy (x"x™) =x"1(x")’den (3.4.2) ye, sonra,

1—110 Al 1—110 B|™ 1—110 Al >
nr,nt g g g
n n n

(l_lIOgAJ nr/2f((1_llogBj —m) 2. (l_llOgAJ —nrl2
n n n

¢, =, ise n— oo i¢in (3.4.2) meydana ¢ikar.

3.4.1. Karma Egsitsizlikler (Uchiyama 2001)

Teorem 3.4.3. (Uchiyama 2001) S“S+T " T<I ve A,B,C>0 olsun. Eger t>1, r>0

icin 0SA<S "BS+ T'CT ise,
d,, (A™(S"B'S+ T C'T)A™)> A™(S f(B)S+T f(CYT)A™, (3.4.5)
{ A”(S"B'S+ T ' C'T)A™} 0> A"2(S*BS+ T C*T)A"( t>5>0), (3.4.6)

{ Ar/z(s #* BtS+ T * CtT)Ar/Z}(1+r)/(t+r)2A1+r ) (347)

" (t>1) monoton operator ise

ispat: x
A< S BS+ T CT<(S"B'S+ T C'T)" olur.
Teorem 3.4.1'den ¢, ,(A"(S"B'S+ T C'T)A™)

— (1) iy (Ar/2 {(S * BtS+ T" CtT)l/t}Ar/Z)

> A(f(S'B'S+T C'T A™)
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> A”(S"T(BYHYS+T f(CHT)A™.

Burada son esitsizlik (v)'den takip edilir. Boylece (3.4.5)"1 elde ederiz. (3.4.6)'y1 elde
etmek icin (3.4.5)'de f(x)=x" yerlestirmeliyiz ve sonra s=1 yerlestirerek (3.4.7) elde
ederiz. (3.4.5) ve (3.4.7), sirasiyla (3.3.1) ve (3.3.2) nin uzantisidir.

3.5. Pozitif Tamimhi Matrisler icin Cesitli Karma Ortalama Esitsizlikler

(Hu,Zhang ve Yang 2004) Bu béliimde ii¢ veya daha fazla pozitif tanimh
matris icin geometrik ortalama, aritmetik ortalama, harmonik ortalama iceren cesitli

ortalamalar ve bazi1 karma ortalamalarin ispatlar1 sunulmustur.

Aj, Ay aym diizende iki pozitif tanimli matris olsun. A;, A; nin geometrik

ortalamasi G(Aj, A) ile gosterilsin, Puzz ve Woronowicz tarafindan:

G(A1, A2) =A1 (AP A AT AL (3.5.1)
takdim edildi.
Keyfi bir pozitif taniml1 matris A icin, [ birim matrisi gostermek iizere,

G, A) =A"*dir.

Keyfi (n-1) icin pozitif tamimh matrisler A;, ..., A, i¢in, farzedelim ki

geometrik ortalama G(Aj, ..., A,.1) iyi tanimli olsun.
n>3 i¢in aym diizende Ay, ..., A, pozitif tamiml1 matrisler olarak verilsin,
{(Al(k), ey An(k)) } sirasini tanittik.
A=A, AP =G(ANY) 1y, k=1, 2, ... (3.5.2)
Burada ve neticede, sembol (B)) 14 (n-1) i¢in

(Bl, ceey Bj—ly Bj+1, ceey Bn) *dir.
Simdi k=0, 1, ... icin R(k)=ZAik olsun.
i=1

Burada A pozitif tanimli matris, 6yle ki
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lim @ .
A k=A,i=1,2, ...,n (3.5.3)
k — 400

k=0, 1, ... i¢in {R(k) } sinirlanmis ve azalmis;
R® >RV (3.5.4)

Bu, {R(k) }’nin, bazi pozitif tanimli matrislerle bir noktada birlesen oldugunu

ima eder. ((3.5.3)’den)
R=n A, veya esit bir sekilde,

~ 1 lim

L R® _1L R’dir. (3.5.5)
n —> +oo n

(3.5.3)’de A matrisi, Ay, ..., Ay’nin geometrik ortalamasit G(Ay, ..., A,) olarak

tespit edilmistir.

Bu tip pozitif tamimli matrisler i¢in birgok Ozellik geometrik ortalamadan

tahmin edilir.

Aj, ..., A, gibi pozitif tamimli matrislerin geometrik ortasi G(Aj, ..., Ayp)

asagida verilen limit tarafindan determine edilebilir.

lim
G(Al, ceey AH)I

G(Aj+el, ..., A+ €.
8\1/0 ( 1 )

Simdi, bizim i¢in yararli olacak bazi G(Aj,...,Ay)’nin baz1 Ozelliklerini
diizenleyelim.
P1: Skalerle tutarhilik: Eger A, ,..., A, i ortaklasa degis tokus edersek, sonra
G(Al, ..., An) = (Ay, ..., Ay) " olur.

P2: Permiitasyon invaryans: (Aj,..., A,)’nin herhangi permiitasyonu olan

biitiin (Ajg, ..., Aip) icin
G(Aij, ..., Ain) =G(Ay, ..., Ap) 'dir.

P3: Monotonluk: (A, ..., A)—G(A,,...,A,) monoton.
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Eger B> Ay,..., B>A,ise G(By, ..., By)>G (A, ..., A)) ’dir.
P4: Uygunluk invaryansi: Herhangi ters gevrilebilir S matrisi igin
G(S'AS, ..., S'ALS) =S'G(Ay, ..., Ay) S’dir.

P5: Miisterek Konkavhk: : (Aj, ..., A)) — G(Ay, ..., Ay), eger O<o<l1 ise

konkav olur, sonra
G(aA+(1- o) By, ..., aA+(1- o) By)
>0 G(Aq, ..., Ap) + (1- o) G(By, ..., By) ’dir.
P6: Oz-ciftlik: G(Ay, ..., A) =G(A, ", ..., A, ) ™.
P7: Devamhilik: Eger herhangi bir pozitif tanimli matris ardigik ise
{Ai(k) }o"(1<i<n) k—o0’a kadar pozitif tanimli matris icerir, sonra

;
M GA® LAY =GA,, ... Ay) olur.
k — 4o

(3.54) ve (3.5.5)den klasik aritmetik-geometrik-harmonik ortalama

esitsizlikleri:
H(A, ..., A) <G(Aq, ..., A)<A(Ay, ..., Ay (3.5.6)
H(A, ..., An): =(Ar'+...+A ) /) ! (3.5.7)

A(AL, ..., Ay): =(A1+...+A,) /n
Ay, ..., Ay’nin harmonik ve aritmetik ortalamasi olarak adlandirilir.
3.6. Esas Lemmalar

(Hu,Zhang ve Yang 2004) Bu kisimda, bizim arastirmamiz igin sonra

kullanacagimiz yardimci 6nergeleri kurduk.

Oncelikle P1, P2 ve P4’den, 6zel bir n icin (A, ..., Ap)’nin, geometrik

ortalamasi G(Ay, ..., Ay) i¢in formiil elde edilir.
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Lemma3.6.1. (Hu,Zhang ve Yang 2004) Farzedelim ki A ve B iki pozitif

tanimli matris olsun, sonra,

G(Al, ..., A)) =G (A,...,A, B,..,B) =A(A?BA) PP A2 (3.6.1)
H/_/ %/_/

n—-p p
Eger A=I ise o zaman,
G(Ay, ..., A)=G(I,...,1,B,...,B) =B (3.6.2)
H,_/H,_J
n-p p

Sonra P5 ve matematiksel tanim, G(Aj, ..., Ay)’nin asagidaki 6zelligini ortaya

cikarir.

Lemma 3.6.2. (Hu,Zhang ve Yang 2004) Eger A; (1<i<n, 1<j<m) pozitif

tanimli matrisler ise,
GO 1A e D 1A 2D 1,G(A 0 A (3.6..3)
j=1 j=1 j=1

Lemma 3.6.3. (Hu,Zhang ve Yang 2004) Aj; (I1<i<n, 1<j<m) pozitif taniml

matrisler ise,
GO, A, A2 G(A LA, (3.6.4)

Asagida verecegimiz 2 lemma Teorem 3.7.1°in ispat1 icin gereklidir. Ilki
m=n-1 secilerek lemma 3.6.3’den neticelendirilebilir ve verilen A;, ..., A, pozitif
tanimh matrisler igin (Ayy, ..., Aim) =(Ax) ke dir. 2.side G(A;, ..., Ay)’nin iist sinirini

veren ortalama esitsizligidir.

Lemma 3.6.4. (Hu,Zhang ve Yang 2004) A,, ..., A, (n=3) pozitif taniml

matrisler olsun, o zaman,

2 n—1
G(Y A Y A > G(AnAnA s A)) (365
; ; nn—-1) ls;gn ; Wﬁgfj

olur.
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Ispat: I (1, ..., n) icin keyfi bir permiitasyon olsun. P2’den ve Lemma

3.6.3’den,

G(Z Al. ,...,Z A,-) = G(z AH(i) ""’Z AH(!’))

i#l i#n i#l i#n

ZG(AH(Z), AH(l),---’ AH(I) ) +G(A (3), A (3), An(z),..., An(z) )+...+G(AH(H),...,

An(n), Al‘[(n»l) ) ’ diI‘.

Biitiin permiitasyonlarmm (1, ..., n) numaralar1 n!’den otiiri,

nlG(Y A,... > A=Y [G(Anw), Anqy, ..., Angy) + G(A ng), Ang,)

i#l i#n I1

5 AH(Z), EERD) AH(Z) +.. -+G(AH(n), cees AH(n), AH(n-l) ) ]

—_

n—

=> G( Aty oees Aianys Anciy oo Argr.) (3.6.6)
I1

1
kdefa n—kdefa

>~
I

i# icin (n-2) ! defa (3.6.6)’min sag tarafinda belirir, ¢linkii permiitasyonlarin
numarasi, I1, 6yle ki
[I(k+1) =i, II(k) =5, (1=k<(n-1), i#j i¢in (n-2) !I’dir. Boylece,

n-1

-1 G A 2 A)ZD, 3 (A AA) e A))
izl i%n i#j k=l WW

=2 G( Ay ALA, s A, ) dir.

I<i<j<n k=1 v
kdefa n—kdefa

Son esitlikten (3.6.5) esitsizligi neticelendirilir.

Lemma 3.6.5. (Hu,Zhang ve Yang 2004) n>3 icin Ay, ..., A, pozitif tanimh

matrisler olsun, sonra,

2
G, ..., Ap < G(AA) (3.6.7)
n(n—1) Z !

Ispat: Oncelikle 6zel durum n=3 icin ele alalim, (3.5.4 ve 3.5.5)’den
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G(Ay, Ay, A3) = A=1/3R<1/3R"
=1/3(G(A, Az) +G(A1, A3) +G(A,, A3) ) n=3 icin elde edilir.

Farzedelim ki (3.6.7) n=p (=3) icin elde edilsin.

2
G, ..., Ap < G(AA) (3.6.8)
b (p—-Dp 1Si<jzs;a+1 !

G(Ay, ..., Ap)) < D GAA) (3.6.9)

(P+Dp 1<i552pn

G(Al, ey Ap+1)

_A=_Ll Rl RO
p+1 p+1
> G(A,A)+..+ZG(A,A)
S; 1<i<j<p+1 1<i<j<p+1
(p+Dp(p-1 . .
i,j#1 i,j#p+l1
. G(AAY),

- (P+Dp 1wizpn
3.6.9 esitsizligi takip edilerek lemmanin ispati tamamlanir.
3.7. Karma Ortalama Esitsizlikleri

(Hu,Zhang ve Yang 2004) Bu kisimda, iic veya daha fazla pozitif tanimh

matris i¢in karma ortalama esitsizlikleri tiirettik.
Burada G, A, H 3.5 deki sembollerdir.
(1) G(AL ..., Ap): G(A(A) i21), A((AD) i), -..s A(AD i) );

(2) A(Ay, .., An: AG((A) i), GI(A) i2), -, G((A) i) )

(3) é (At <oy An): =GH(AY) 1), HI(A) i), -, H(AY) izn) )3
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“4) I:] (A1, ..os An): =H(G((A) i1), G((AD) i), ..., G((A) izn) ).

Simdi amacimiz, pozitif yari-tanimli matrisler i¢in aritmetik, geometrik,
harmonik ortalama ve ii¢ ve daha fazla pozitif tanimli matris icin yukanidaki 4 cesit

karma ortalamalar1 diizenlemek.

Teorem 3.7.1. (Hu,Zhang ve Yang 2004) n>3 i¢in Ay, ..., A, pozitif tanimh

matrisler olsun. Takip eden karma ortalama esitsizlikleri
G(AL, ..., A) <AL .., A)<GAL, ..., A) <A(A, ..., A) (3.7.1)
Ispat: (3.5.4) ve (3.5.5)’den,

1

G(Al, ooy An) = A:lRS_R(l)
n n

Gla),, )+a6la).,)+...+6((4).,)

n

=AA, ..., Ay).
Sonra 1. esitsizlik(3.7.1)’1 kapsar.

Bundan baska (3.5.6), 2. esitsizlikten

Al4),, )+ A(A),,)+...+ Al(4),.,)

n

GA,, ..., Ap <

_A+HA A+ HA

n

=A(Aj,....Ap) . (3.7.2)

Lemma 3.6.5’in tanimindan

Gl(a). )+6(4)..)+..+6l4),,)

AA, ..., Ay = .

2
_— G(AA) +... G(AA; 3.7.3
S oo (L, ARt 3 GAR) 673
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- D G(AA).

n(n—1) I<i< j<n

Diger taraftan Lemma 3.7.4’den

N 1 1 1
G(Ay, ..., An) _G(;ZAZ., DAL — ;Ai)

b
i#1 n—-1 3

—1

2 n
> c G(A,AA . A) (3.7.4)
n(n - 1)2 lsgﬂ ; kdvefa W

P4’den genelligi kaybetmeden, Ai=I ve Aj=A farzedebiliriz.

n—

G (ApsALA,uA)) 2(0-1) G(AA)) (3.7.5)

1 %/_J
kdefa n—kdefa

-~
]

(3.7.5) biitiin 1, j (i7j) icin tekrar kontrol edilir.

n—-1 2 1 1

A"+ +A+A>1n-1) A2 (3.7.6)
gibi tekrar yazilabilir,

1 2 1

A"+ +A"+A " -(n-1) A=

n 1 k n—k

(A?-A2)2>0

n

k=1

N | =

Boylece 3.7.6 esitsizligi dogrulanir.

(3.7.3), (3.7.4) ve (3.7.5)’den (3.7.2) esitsizligini ¢ikarabiliriz. Teorem 3.7.1

bundan dolay1 ispatlanmistir.
Uyarr:
1) 3.7.6 esitsizligi P1’den c¢ikartilabilir.

2) Aj+ZI limitlerini alalim, Ay, ..., A, pozitif yaritanimli matrisler i¢in teorem

3.7.1 yiiriirliktedir.

Teorem 3.7.2. (Hu,Zhang ve Yang 2004) n >3 i¢in Ay, ..., A, pozitif tanimlh

matrisler olsun. O zaman matris ortalama esitsizliklerini,
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H(Aq, ..., Ay < G (A1, ..., Ay sﬁ](Al, s A < G(A, ..., Ay) 3.7.7)

olarak ifade edelim.

Ispat: A,, ..., A, pozitif tammli matrisler oldugundan, bunlarin tersleri
Al'l, ey An'1 matrislerinin pozitif tanimli matrisler oldugunu biliyoruz. Biitiin A;’lerin

terslerini (3.7.1)’de yer degistirirsek

GA, .., AH<AAT, L ATH<SGAT . AT <AA LAY ve

boylece

AAY, L AD TISGAT, L AT T AN, L AT TISGA, L AT T (37.8)
elde edilir.

P6’dan, asagidaki bagintilar1 kolayca kontrol edebiliriz.
H(Al, LRRS] Al’l) = A(Al-la ey An-l) _1,

G(A17 LR} AH) = G(Al-ly RS An-l) _17

ﬁ] (A, ..., A =AA", . AT (3.7.9)

G (A17 LR} AH) = G(A{ly ey AIl»l) >1'
(3.7.9)’yi (3.7.8)’de’yerlestirerek (3.7.7) elde ederiz. Buda ispati tamamlar.

3.8. Hadamard Matris Carpmmlariyla ilgili Baz1 Determinantal

Esitsizlikler
3.8.1. Oppenheim Esitsizligi (Chen 2002)

A = (a;j) €S ve B =(b;) €S ise

n

det(AoB) > | [] ai| detB

i=1
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Ornek 3.8.1:

2 1 1 2 0 0
A=|1 1 2|€s',b=[0 3 0|€S’olup, det(B)=6
1 2 2 00 1
4.0 0
AoB=|0 3 0|dir. det (AoB) =24
00 2

n

H adii |= djp1.422.433 = 2.1.2.=4

i=1

24 =4.6 =24 olup

n

det (AoB) > | ] ai |detB esitsizligi sagland:.
i=1

3.8.2. Lynn Ve Ando Esitsizligi (Chen 2002)

A = (a;) € M, ve B = (b;j)) €M, ise

n

det(AoB) + det A.detB>(detA) | [ bi | +(deB) | [T ai|. (D)

i=1 i=1
H bii H bii
i=1 i=1
det(AoB) > det (AB) + -1
detB detA
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Ornek 3.8.2 :

4 =2 -1 3 -1 0
A=|-2 2 =-2|€EM,veB=|-2 2 -1|€EM,
0O -1 3 0 -3 4
det A=2 detB=7

12 2 0
AoB=|4 4 2 |ise det (AoB) =408
0 3 12
n=3 n=3
[T bi=bibrnbs=24 [ ai=24
i=1 i=1

det(AoB) + detA.detB>(det(A) fl bii+(detB) fl a;), (1)

i=1 i=1
408+2.7>2.24+7.24

422>216 olup (1) esitsizlik sagland.

16 -5 =2

AB=|-10 12 —10|ise det (AB)=14
2 —-11 13

H bii H bii

i=1 24 i=1 _24

detB 7  detA 2
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ﬁ bii fl aii
i=1 i=1
+ p—
detB detA

det (AoB) > det (AB)

408>14. (% + 24_ IJ
7 2

408>202 olup (2) esitsizlik sagland.
3.8.3. Livrezhu Ejsitsizligi (Chen 2002)
Oppenheim esitsizligini gelistirerek asagidaki esitsizlige ulagmiglardir.

A=(a;j) EM, ve B=(b;;) EM,US | ise

k-1
1 brdetAx detBx aikaki
det (AoB) >a;b +
( ) Zaubu H detAx-1 detBx-1] . aii
k=2 =1
Ornek 3.8.3:
4 -2 -1 2 00
A=|-2 2 -2|€EM,veB=|0 3 0|EM,US’
0O -1 3 0 0 5
8 0 0
AoB=|0 6 0 |det(AoB) =720
0 0 15
ab;=8
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k-1

L brkdetAx detBx aikaki
I1 + se (1)
detAx-1 detBx-1] . _1 aii
k=2 1=
2 1
@ ¥ aikAki _ 13431 N a23a32’ 5 aiaki _ anan 3)
C L ai ain a» . aii ai
1=1 i=1
—l.a
2)= +1=1(3)=4
1
bxdetA> detB: Qikaki
+ . (a)
detA: deB1 | . ) aii
1=
(3)
= —3'12 +£.4 =11.66
4 15

2
bssdetAs N detBs ainasi
detA> deB: 1 ass
i=
()

(b)

=22, 0 1-2366
12 10

(1) = (a).(b) 1se (1) = 33.442533
arbii.(1) = 8 x 33.442533 = 267.540 olup

720 > 267.540 olur, boylece Livre Zhu esitsizligi saglanir.
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Lemma 3.8.1. (Chen 2002) Eger A€H,, BEH,US | ise AoB €H,dir.

Ornek 3.8.4:
1 2+1 —4-i 1 1-3i 2§
A=| 2-i 2 5i |EH,B=|1+3i 1 1+i|€H,US;
—-4+i -5i 3 -2 1-i 1

1 5-51 2-8i
AoB = |5+5i 2 —545i |€H, olup lemma 3.8.1 saglanir.
2+81 —5-5i 3

Lemma 3.8.2. (Chen 2002) Eger AES | ve BES | ise AoB €S olur.

Ornek 3.8.5:
2 1 1 2 00
A=|1 1 2|veB=|0 3 0|€S;
1 2 2 0 01
4 0 0
AoB=|0 3 0| €S olup Lemma 3.8.2 saglanir.
0 2 2

Lemma 3.8.3. (Chen 2002) Eger A=(a;) €ER™NH,, a; > O (Vi€EN) ise
detA>detV(A) >O

Ispat: ACH, ise D gibi pozitif diagonal bir matris olusur. Bunun gibi AD’de

tam manastyla diagonal olur, soyle ki;
|aiidi|>z': ) |aijdj| G=1,2,...,n)
JER

Simdi a;di> O (V ;GN) icin det (AD) >detV(AD) > O elde edilir.
det(AD) = detA.detD ve detV(AD) = detV (A).detD oldugundan

detA>detV(A) >0 elde edilir.
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Lemma 3.8.4. (Chen 2002) Eger A ve B’nin her ikisi M,US | ye aitse, AoB bir

P-matrisdir.
Ispat: Asagidaki iki durumu ayirt edebiliriz.

1. durum: Lemma 3.8.2.°ye gore, eger AES’ ve BES iseAoBES dir. Bu

nedenle AoB ayrica bir P-matrisdir.
2. durum: Eger A ve B’den biri M, ye aitse, AoB€H, olur.

AoB bir reel pozitif degerli H-matris oldugundan bunun biitiin alt matrisleri
i¢in gegerlidir. Lemma 3.8.3’i AoB’nin biitiin alt matrisleri i¢in uygularsak AoB’nin bir

P-matris oldugu sonucuna ulasiriz.

Ornek 3.8.6:
1 0 -1 2 00
A= 0 1 0|€EMUS; B=|0 3 0| EM,US;
-1 0 1 0 05
2 00
AoB=[0 3 O0]|€P olup, Lemma 3.8.4 gerceklesir.
0 05

Teorem 3.8.1. (Chen 2002)

a) Eger A = (a;j) ve B= (byj) ’ler M, VS | ’e aitse, daha sonra su gergeklesir:

det(AoB) >det(AB) H (akk det Ak -1 N budet Be-1 lj

det A« det Bx
k=2

b) Eger A=(a;j) €H, ve B=(b;;) €H, olursa

n |ak1<\ detU (Ax-1) |bkk\ detU (Bk-1)
det u(AoB) > det(u(A) u(B) ) H detU (Ar) + sy -1

k=2
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ispat:
a) Ax ve By her ikisi de M,US "e ait olsun.

det Ax det B« det(AxoBx)
ve y>by- , Xy>aubg- ——————
det Ax -1 det Bk -1 det(Ax -10Bk - 1)

det Ax det B« det(A«oBk)
- +2 | | b — +2 >agby-——m—F—
(akk A j ( “ B j Kk det(Ax -10Bk - 1)

>—0 durumunda limiti alindiinda sabit degerler olan determinant

degerlerinde hicbir degisiklik olmayacaktir. Sadece > =O olur.

det Ax det Bx det(A«0Bk)
aik — b — Zapby- ———————
det Ak -1 det Bi -1 det(Ax -10Bk - 1)

Buradan sunu elde ederiz:

Aubuea det Bx ) det Ax N det Ax.det Bk S aubie det(AxoBk)
KKk det Bi -1 kkdetAk—l det Ax -1Br-1 Kk det(Ax - 10Bk -1)
det(AxoBx) S det Bx det Ax det Ar.det B

Zakk -Dkk -
det(Ax - 10Bk -1) det Bx -1 det Ax-1 det Ax-1det B -1

Buradan;

det(A«oBk) S det Ax.det Bk ardet Ak -1 N bu det Bx -1
det(Ax -10Bx -1)  det Ax-1det Bi -1 det Ax det Bx

denklemi acilip payda esitlenirse;

det(Ax0Bk) S Ak det Ax -1det Ax.det Bk N bu det Bx -1det Brdet Ax
det(Ax -10Bx -1)  det Ar.det Ak -1det B« -1 det Bedet B -1.det Ak -1

i det Axdet Bx
det Ax-1det Bk -1
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det(AxoBx) >a det Bx +b det Ax i det Ar.det B
det(Ax -10Bx -1) K det Bx -1 KK det Ax-1 det Ax-1det Bk -1

det(Ax0Bk) S det Ar.det Bx aikdet Ak -1 N bidet Bk -1
det(Ax -10Bx-1)  det Ax-1det Bi -1 det A« det Bx

ﬁ det(AxoBk) - 11[ det Ar.det B awcdet Ak -1 4 budet Bk -1
det(Ax -10Bx 1) det Ax-1det Bk -1 det Ax det Bx
Sonucta;

det(AoB) > det(AB) [ (‘”"‘jet 2"“ +2 “getg"“ —1j olur.
et Ax et bk

k=2

b) Aker ve Bker (2§k§n), \vd Z>O 191n

(|akk| _ detU(An) ZJ (W _ detUBY ZJ S
detU (Ak-1) detU (Bk-1)

|akkbkk| - detUAwB« elde ederiz. (2)

detU (Ax -10Bk -1)

Simdi (2) (1)’in kanitlandig1 gibi benzer bir durumla kanitlanabilir.

Ornek 3.8.7:
1 0 -1 2 00
A= 0 1 0 |€EMUS veB=|0 3 0| €EM,US’ ise
-1 0 1 0 0 5
2 00
AoB=|0 3 0|= 30=det(AoB) olur.
0 0 5
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2 0 -5
AB=| 0 3 0 | = det(A.B)=0olur.
-2 0 5

det (AoB) > det (AB) H (akk;lettjk -1, bkk(;lettgk -1 lj teoremi
el Ak el Dk

k=2

L awdet Ak -1 biudet Bk -1
30>0. | I + -1
( ( det Ax det Bk ) )

k=2
30>0 oldugundan gerceklenir.

Onerme 3.8.1.

A= (a;j) ve B = (b;j) R™"NH, de taniml olsun, H a;b;>0 olup,

i=1

r [ |aw| det u(Ax 1) detu(Bi-1) ) ..
det(AoB) >det(u(A) uB)) [] (—detu(Ak) +|bkk|—detu(Bk) 1|dir.
k=2

Ispat:
D=diag(d,, dy, ..., dn), nxn tipinde késegen matris olarak tanimlansin.

Eger x>0 ise Sgn(x) = 1 oldugundan d;=Sgn(a;b;;) (Vi€N) olarak tanimlanir.

Ciinkii;

H a;ib; > O dir ve
i=1
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fI | aiiby | =fl a;bid; = (fI a;ibi) (fI d;) olur.

i=1 i=1 i=1 i=1

det D = H di = 1 oldugunu biliyoruz. Sonug olarak,
i=1

det (AoB) =det [(AoB) A] = det [Ao(BD) ] olur.

AER™" NH, ve BER™ NH, ise Lemma 2.1 tarafindan;

Ao(BD) €ER™ NH, ve Ao(BD) porzitif diagonal; |a11b11 |, |a22b22 |, e

| annbnn | olur.
A=(a;j) ER™ NH,, a; > O ise det A>detU(A) >0 lemmas! tarafindan
det(AoB) >detU(AoB) dir.
Teorem 3.8.1’den 6nermemiz gecerlidir.
Onerme 3.8.2.
A= (a;)) ve B = (b;j) M,US | ye ait olursa,
det(AoB) >det(AB) olur.
Ispat:
Hadamard-Fischer esitsizligine gore;

awdet Ax -1 >1 ve bu.det Br -1 >1(2<k<n)
det Ax det B«
awdet Ax -1 + b det Bi -1

-1>1 ise Teorem 3.8.1°’den det (AoB) >detAB olur.
det Ax det B
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3.8.4. Onceki Sonuclarm iliskisi (Chen 2002)

Oneri 3.8.1.

A= (a;) ve B = (b;j) M,US " (n>2)’de taniml olsun.

f[ bii f[ aii

awdet Ak -1 bwdet Br -1 i=1 i=1
+ -1z + -
det A« det B« det B detA

ispat:
n=2 i¢in 6nerimizin dogru oldugunu kolayca gorebiliriz.
n>2 icin, onerimizin n-1 durumu i¢in dogru oldugunu farzederek tanitim

hipotezini takip edelim.

awdet Ak -1 bwdet Br -1 _lj

I +
det Ax det B«

H bii H aii
i = 1 l = 1 dnn det An -1 blm det Bn -1

+ - + -1
det Bn -1 det An -1 det A det B

v

n n n—1
H aii H bii H bii
i=1 i=1 i=1 almdetAn—l
= + + -1
det A detB detBn-i detA
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H aii
" i=1 bnndetBn—l_
det An -1 detB

amdet An-1 bundet Bn-1
- —1|+ -1
detA detB

8

n—1

H aii H bii H bii
_izl _izl " anndetAn—l_l l:1
det A detB det A det Bn -1

n—1
I «

+ bnndetBn—l_l i=1 1121
detB det An-1

ﬁ aii ﬁ bii

> i=1 _i=1 -1 olur.
detA detB
Oneri 3.8.2.
A= (a;)) €M, ise
k—1
_ detAr <1- AR ) <k<n).
A det Ak -1 1 QiiClkk
1=
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ispat:
0=(akj...ax.1) ve B=(ax...ax1x) T degerlerini alalim.

Buradan detAy = detAy; (a-0A ', B)

Ay <diag(ajj, ..., ak-1k-1)

oA ! Badiag (i ! j
aill ak —1k -1
k-1
B=a Y % ve boylece
AiiAkk

1=

k-1, ..
detAy <detAy [akk — akk[ > dndi J]
[ = | QiiQkk

k-1, ..
= ay detAy (1— > alkwﬂ}.

i =1 Qiikk

agkdetAy ;>0 oldugundan dnerimizin gegerli oldugunu iddia ederiz.

Sonug:

n k-1, ..
aubiy H det Axdet Bk b det Bx . awdet Ak -1 5 Qikki
det Ax-1detBx-1| detBsk det Ax i =1 Giiaik

k=2

n k-1, ..
_ det(AB) H b det Bk N awdet Ak -1 5 QikQki .
det Bk detAx | ;= aiiak

k=2

Oneri 3.8.3 tarafindan;

awdet Ak -1 1) awdet Ak -1 kil AikQki
det Ax det Ax

i =1 qiiakk
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k-1, ..
awdet Ak -1 -y Qikdlii |- 150
det Ak [ =1 Giiak

ve boylece;

awdet Ax -1 +bkkdetBk—1 1
det Ax det B«

+
det B« det Ax

k-1, ..
> buwdet Bc -1 amdet Ax -1 3 QikCki
i =1 qiark

Biitiin bu ¢alismalarimizin asil sonucu su sekildedir;

A=(a;;) ve B=(b;j) matrislerinin Hadamard ¢arpimi, AoB ile nitelendirilmistir,

Ay ve By (k=1, 2, ..., n) A ve B’nin kxk altmatrisleri olmak iizere

det(AoB) >det(AB) ] (“"k detAc-1 | budetBe-1 1) > dir.

det Ax det Bk
k=2
3.9. P-Matrisleri Icin Bir Schur Tamamlayicis1 Esitsizligi

(Markham ve Smith 1998) Bu boliimde A ve B Hadamard matrisleri ve A ve B

pozitif tamimli matrisler i¢in Schur tamamlayicilar ile ilgili bir esitsizlik ispatlandi.
3.9.1.Pozitif Tammh Matrisler icin Bir Esitsizlik

(Markham ve Smith 1998) A ve B nxn kompleks say1 alam iizerinde pozitif

tanimli matrisler olsun.

A, A
A=[ 1 12} (3.9.1)
A21A22

Ay ve Ay, olarak sirasiyla k ve n-k kare olarak boliinebilir.

Genellikle (A/Azz) =A11—A12A22_1A21 (392)
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A’nin i¢indeki Ay ’nin ters cevrilebilir saglandigr Schur tamamlayicisi olarak
cagrilir.Bagtan sona (3.9.1)’deki A’nin boyutlar1 gibi B’nin bloklara ayrildigini
farzettik.

A ve B Hadamard matrisleri, A*B ile gosterilsin ve A ve B pozitif taniml ise
A*B’ninde pozitif tanimli oldugu iyi bilinir. A>B’de A-B>0 veya A-B’nin pozitif
yaritanimli oldugu anlamindadir. Bu kismi diizen genellikle Loewner olarak adlandirilir.
Eger A (3.9.1)’deki gibi pargalanirsa, Ay, ters ¢evrilebilir ve ay, ters ¢evrilebilir elemant

i¢cin Crabtree ve Haynsworth boliim kuralini ispatlar
((Alann) /(Axafan) ) =(A/A2) . (3.9.3)

Lemma 3.9.1. (Markham ve Smith 1998) Eger A nXxn pozitif taniml matris ve

B nxr tipinde bir matris ise, sonra,
C=A*(BB*)=0, sade ve sadece B=0 ise, dogru olur.

Teorem 3.9.1. (Markham ve Smith 1998) A ve B (3.9.1)’deki gibi bloklara

ayrilmis nXn pozitif tamimli matrisler ise,
(A*B/A2*B2) 2(A/A2*B12) (3.9.4)

Sade ve sadece A ve B (3.9.1)’deki gibi blok kosegen ise (3.9.4) esitsizligi

saglanir.

Ispat:

A: |:A12A2_21A21 A12
A21 A22

}Ve B benzer sekilde tanimlansin.
Ay n-k oldugundan, n-k rankl A ve B pozitif yari-tanimlidir. Bundan sonra
A*B pozitif yari-tanimli (rank>n-k) ve ayrica

A* B /A»*B>0. Simdi (3.9.4) esitsizligini

(A/ Az) *(Biz By 'Bay) +#(A1nAxn ' Agy) *(B/By) + A* B/(An*By) >0 (3.9.5)

olarak yazabiliriz.
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Fakat (3.9.5) esitliginden pozitif yari-tanimli matrislerin toplami da pozitif

yari-tanimlidir. Bu (3.9.4) *iin ispatin1 bitirir.

A ve B nxn pozitif yari-tanimli matrisler olsun ve A ve B’nin 6z degerleri aym
artan diizende diizenlendi. Sonra, eger det(.) determinant fonksiyon gosterirse,

det(A*B) >det(A) det(B) oldugu iyi bilinir.
AM(A*B) > A (AB) > Mi(A) M(B) ve A *B'>(A*B) !, eger A>B ise
det(A) >det(B), B'>A" ve M(A) > M(B), k=1, 2, ..., n oldugu iyi bilinir.
Bu Schur Tamamlayici formundan takip edilir ki, n>3 icin (3.9.4) esitsizligi,
(A/A2) "#(B/Ba) ">(A*B/ Axp* Byy) ! ile denk veya esit bir sekilde,

(A*B/Ax* By) >[(A/Ax) "*(B/By) 17, biitiin k=1, ..., n-licin (n-k) x(n-k)
icin A ve B’nin prensibal alt matrisleri sirasiyla Ay, By, ‘dir.
(A/A2) *(B/ Bx) >[(A/Ax) "#(B/By,) 1" oldugundan beri biitiin A,, ve

B2, icin (3.9.4) esitsizligini goriiriiz.
(A11* Byy) '1S(A*B/A22* By,) - esitsizligine denk sekilde,

(A*B/An* Bp) < Ap* Bj’dir. Son olarak, B=A degeri vurgulanarak, bizim

esitsizligimiz,
(1A>‘<A/A22>‘< A22) E(A/ A22) *(A/Azg) sekline dénﬁsiir.

Sonug¢ 3.9.1. Eger A ve B (3.9.1)’deki gibi par¢alanmis nxn tipinde pozitif

tanimli matrisler ise,
(i) det(A*B) /det(Ax* Bay) >(det(A) det(B) ) /(det(Azz) det(Bay) ),
(ii) (A/A2)"(B/B22) 2[(A/A2)*(B/Bx) I 2(A*B/An* Bo) 2 (An* Bip) 7,
(iii) j=1, 2, ..., ki¢in Lj(A*B/ Axn* B2) 2A[(A/ Ay) *(B/Byy) |
Ozellikle, A;(A;1* Byy) > M[(A/B) *(A2/Bas) 1 > Mi[(A/A) *(B/Bx) |
>M[(A/ Ax) M (B/B2) .

Ispat: (3.9.4) esitsizliginden
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det(A*B/Ax* By) >[(A/Ay) *(B/Byy) | >det(A/Ay;) det(B/By,).
(i) det(A/ App) >det(A) /det(Azz) Schur’un formiiliine dikkat ederek takip edilir.
(ii) ve (iii) teoremin ifadesinden 6nce takip edilir.

Ornek 3.9.1: det(A*B) /det(Axp* Bj) >(det(A) det(B))/(det(Azy)det(Byy))

esitsizliginin saglandigini gosterelim.

9 -3 0 -3 I -1 2 -1
-3 6 3 0 -1 3 4 2
A= , B= olsun.
0O 3 9 -3 2 4 3 1
-3 0 -3 6 -1 2 1 1
9 3 0 3
3 18 12 0.
A*B= ise, det(A*B) =13203
0 12 27 -3
3 0 -3 6

A= 3 Byo= 31 1[1[) Ax* Bor= 3 =153
= s = 0 , = =
22 3 ) 22 11 22 22 3 )

det(A*B) /det(Axn™* By) =86.29 olur.

det(A) =-15.552, det(B) =-36 ise, det(A) det(B) =559.872
det(Ay,) =45, det(By,) =2 ise, det(Ay,)det(B,,) =90
(det(A) det(B))/(det(Azz)det(Ba2y)) =0.22 olup

86.29>0.22 dir.
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