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1.GİRİŞ 

Pozitif tanımlı matrisler ve pozitif  yarıtanımlı  matrisler ile ilgili birçok eşitsizlik 

bulunmaktadır. Biz bu çalışmamızda bu eşitsizlikleri ve ispatlarını inceledik. 

(Zhan 2003)  Bütün A,B matrislerinden dolayı Bhatia ve Kittaneh aritmetik-

geometrik ortalama eşitsizliğini vererek bunu pozitif tanımlı matrislerde iz eşitsizliğini 

geliştirmek için kullanmıştır. 

(Uchiyama 2001) B-A pozitif yarıtanımlı matris olmak üzere bir karma 

eşitsizlik vermiştir. 

(Hu,Zhang ve Yong 2004) Üç veya daha fazla pozitif tanımlı matrisler için 

karma ortalama takdim edip bunlara bağlı karma ortalama eşitsizlikleri vermişlerdir. 

(Liu ve Zhu 1997) Pozitif tanımlı Hermityen matrislerin toplamı ve Schur 

tamamlayıcılarının özdeğerleri ile ilgili eşitsizlikler vermişlerdir. 

(Chen 2002) A=(aij) ve B=(bij) M matrisleri ile veya pozitif tanımlı matris 

sırası n olan, AoB Hadamard çarpımı ile ilgili eşitsizlik vermiştir. 

(Neubauer 1997) Pozitif tanımlı matrisler için Hadamard eşitsizliğini 

kuvvetlendirmiştir. Sonuçlar (±1) matrislerin determinantları ile ilgili eşitsizlikleri 

göstermek için kullanılabilecektir. 

(Markham ve Smith 1998) A ve B Hadamard matrislerinin Schur 

tamamlayıcıları ile ilişki kuran bir eşitsizlik türetilmiştir. 

(Drury 2001) A pozitif tanımlı bloklara ayrılmış matrisin kanonik ılıntıları 

üzerine çalışmıştır. 

(Jiang 1999) A1 , …, As pozitif tanımlı matrisleri, I birim matrisi göstersin , ci , 

1≤i≤s sabitler olsun. A1 , …, A0 , X1 ,…, Xs pozitif numaralara bağlı olmak 

üzere Ai ≤
i

i

x

c
2

(I+∑
=

s

j 1

xjAj) 
2, 1≤i≤s olduğunu ispat etmiştir.                                                  
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2. ÖN BİLGİLER 

Bu bölümde çalışmamıza yardımcı olan bazı temel tanım ve teoremlere yer 

verilecektir. 

2.1. Pozitif Tanımlı Matris  

(Bhatia 1996) Bir A n × n Hermit matrisi, eğer her sıfır olmayan n-boyutlu x 

vektörü için,  

<Ax, x>>0 sağlanıyorsa pozitif tanımlı matris, eğer  

<Ax, x>≥0 sağlanıyorsa yarı pozitif tanımlı matris denir. 

Aynı tipte iki pozitif tanımlı matrisin toplamı yine aynı tipte pozitif tanımlı bir 

matristir, pozitif tanımlı bir matrisin Hermit transpozu da pozitif tanımlıdır. 

Teorem 2.1. (Bozkurt ve Türen 2003) A, n-kare hermityen ve P, sütunları A 

matrisinin normalize edilmiş öz vektörlerinden oluşan bir üniter matris olsun.                

u [u1 … un]
T  vektörü için x=Pu ve 

iλ  (i =1,2, … ,n) A matrisinin özdeğerleri ise, 

xHAx =uH(PHAP)u=
−−−

+++ nnn uuuuuu λλλ ...222111  dir. 

Teorem 2.2. (Bozkurt ve Türen 2003) xHAx formunun pozitif tanımlı olması 

için gerek ve yeter şart A matrisinin bütün öz değerlerinin pozitif olmasıdır. 

İspat: A matrisinin bütün öz değerleri pozitif olsun. Teorem 2.1'den P düzgün 

matris olmak üzere  

xHAx =uH(PHAP)u=
−−−

+++ nnn uuuuuu λλλ ...222111                                          (2.1) 

olacak şekilde x =Pu dönüşümünü tanımlayalım. Her iλ  pozitif olduğundan, (2.1) 

denkleminin sağ yanındaki form pozitif tanımlıdır. 

xHAx formu pozitif tanımlı olsun. Teorem 2.1'den PHAP=B olacak şekilde P 

düzgün matrisi vardır ve xHBx formu pozitif tanımlıdır. O halde iλ 'ler, A matrisinin 
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özdeğerleri olmak üzere QHAQ= Λ =köş(
nλλλ ,...,, 21 ) olacak şekilde bir Q düzgün 

matrisi vardır. Teorem 2.1'den xH(QHAQ)=xH Λ x olur ki, xH Λ x pozitif tanımlıdır. 

Dolayısıyla A matrisinin bütün özdeğerleri pozitiftir. 

Teorem 2.3. (Bozkurt ve Türen 2003) A bir hermityen matris olsun. A matrisi 

pozitif tanımlı ise; 

 i) A'nın esas köşegen elemanlarının hepsi pozitiftir. 

ii) i≠j için aiiajj>|aij|
2'dir. 

iii) A'nın esas değerce en büyük elemanı esas köşegeni üzerindedir. 

iv) det(A)>0'dır. 

İspat: i) xHAx kuadratik formunda, xj hariç bütün xi'leri  (1≤i,j,k≤n) sıfır 

seçelim. Bu takdirde form  xHAx=ajj|xj|
2 haline dönüşür. xj≠0 ve form pozitif tanımlı 

olduğundan ajj>0 olur. Bu her j için gösterilebileceğinden A'nın  esas köşegen 

elemanlarının hepsi pozitiftir. 

ii) İspat için bu seferde xj ve xk hariç bütün xi'leri (1≤i,j,k≤n) sıfır seçelim. 

Bu durumda form 

 xHAx=ajj|xj|
2+

2

kkkkjjkkjjk xaxxaxxa ++
−−−

 

         =ajj

2

jj

kjk

j
a

xa
x  +

[ ]
jj

kjkkkj

a

xaaa
22

−
 şekline gelir. xj=-

jj

kjk

a

xa
 

seçelim. ajj>0 olduğundan formun pozitif tanımlı olması için ajjakk>
2

jka  (i≠j) olması 

gerekir. 

iii) Kabul edelim ki, bazı i,j'ler için aii,ajj≤ ija  olsun. O halde 

 aiiajj≤
2

ija                                                                                               (2.2) 
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olur. (i)'den aii,ajj>0 olduğundan  (2.2) ile, (ii) ile çelişir. 

iv) xHAx kuadratik formu pozitif tanımlı olduğundan teorem 2.2'den A 

matrisinin bütün özdeğerleri pozitiftir.A matrisinin determinantı da öz değrlerin çarpımı 

olduğundan det(A)>0'dır. 

           Teorem 2.4. (Bozkurt ve Türen 2003) A hermityen matris ve Ai, A matrisinin sol 

üst tarafındaki i×i alt matris olsun. 1≤i≤n için her Ai düzgünse, L; esas köşegen 

elemanları 1 olan alt üçgen matris ve K da köşegen elemanları sıfır olmayan reel 

köşegen matris olmak üzere A matrisi 

     A=LKLH                                                                                                       (2.3) 

 Teorem 2.5. (Bozkurt ve Türen 2003) xHAx (A hermityen) formunun pozitif 

tanımlı olması için gerek ve yeter şart ya, 

i) A matrisinin esas köşegeni boyunca satır eşelon forma getirilirken 

 kullanılan pivotların hepsinin pozitif olmasıdır, veya 

ii) A'nın sol üst köşesindeki i×i (i=1,2, … ,n) determinantlardan ibaret esas 

determinantlarının hepsinin pozitif olmasıdır.Yani, 

 a11>0, 
21

11

a

a
  

22

12

a

a
>0, 

31

21

11

a

a

a

  

32

22

12

a

a

a

  

33

23

13

a

a

a

>0, …                                                    (2.4) 

 İspat: i) xHAx  (A hermityen) formu pozitif tanımlı olsun. A matrisi satır-eşelon 

forma indirgenirken elde edilen pivotlar ak  (k=1,2, … ,n) ise det(Ai)=a1a2 … ai olur. 

Her i için det(Ai)>0 olduğundan her ak pozitif olmalıdır. 

 Pivotların hepsi pozitif olsunlar. O halde det(Ai)>0 ve dolayısıyla her i için Ai 

düzgün olacaktır. O halde teorem 2.4'den A, (2.3)'deki gibi yazılabilir ki, bu da bize A 

matrisinin, K reel köşegen matrisiyle hermityen-denk olduğunu verir. xHAx kuadratik 

formu pozitif tanımlı olduğundan xHAx formu da pozitif tanımlıdır. 
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ii)xHAx  (A hermityen) formu pozitif tanımlı olsun. A matrisinin sol üst 

yanındaki  i× i  (i=1,2, … ,n) alt matrisini Ai ile gösterelim. A pozitif tanımlı 

olduğundan i=1,2, … ,n için her Ai pozitif tanımlıdır. A matrisinin sol üst yanındaki   

i× i (i=1,2, … ,n) Ai alt matrisleri pozitif tanımlı olsunlar. Teorem 2.3 (iv)'den 

i=1,2,…,n için det (Ai)>0'dır. 

Pozitif tanmlılık testlerini yukarıda verdiğimiz teoremlerin ışığında aşağıdaki 

gibi düzenleyelim. 

 2.1.1. Pozitif Tanımlılık Testleri 

(Bhatia 1996) Aşağıdaki üç testin herbiri bir A n×n Hermit matrisinin pozitif 

tanımlı olması için gerek ve yeter koşulları verir.Yani, A Hermit matrisi bu testlerin 

herhangi birini geçerse pozitif tanımlı bir matristir. 

1) A, ancak ve ancak sadece E3 temel satır işlemleri ile üstüçgensel biçime 

indirgenebiliyorsa ve sonuçta bulunan matrisin tüm köşegen elemanları pozitif ise 

pozitif tanımlıdır. 

2) A matrisinin bir asli minörü, A’nın son k satır ve kolonu(k=0, 1, …, n-1) 

çıkarılarak elde edilen alt matrisin determinantıdır. A, ancak ve ancak tüm asli minörleri 

pozitif ise pozitif tanımlıdır. 

3) A, ancak ve ancak tüm özdeğerleri pozitif ise pozitif tanımlıdır. 

Aşağıdaki testler bir A=[aij] n×n matrisinin pozitif tanımlı olması için gerekli 

koşulları verir. Bu testlerin herhangi birinden kalan bir Hermit matrisi pozitif tanımlı 

değildir, ancak testleri geçen bir Hermit matrisi bir sonuca varılamaz. 

4) A’nın köşegen elemanları pozitif olmalıdır. 

5) A’nın en büyük mutlak değerli elemanı, A’nın köşegeni üzerinde olmalıdır. 

6) aiiajj>│aij│2 (i≠j).  

Örnek 2.1: 

















−−

−

−

1022

262

226

       matrisinin pozitif tanımlılığını inceleyelim. 
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→

















−−

−

−

1022

3/43/160

226

       Birinci satırın 






 −

3

1
 katı ikinci satırla toplanır. 









→

0

0

6

   

3/4

3/16

2

−

   









−

−

3/28

3/4

2

        Birinci satırın 
3

1
 katı üçüncü satırla toplanır. 









→

0

0

6

   

0

3/16

2

   









−

−

3/27

3/4

2

         İkinci satırın 
4

1
 katı üçüncü satırla toplanır. 

6, 16/3, 27/3 köşegen elemanlarının tümü pozitif olduğundan, matris pozitif 

tanımlıdır.Veya; 

 A'nın asli minörleri, 

 det[6]=6   
2

6
   

6

2
=36-4=32 ve 

2

2

6

−

   

2

6

2

−

   

10

2

2

−

−

=288 dir. 

Tüm asli minörler pozitif olduğundan, matris pozitif tanımlıdır. 

 Örnek 2.2: Aşağıdaki  A matrisinin pozitif tanımlı olup olmadığını belirleyelim. 

 A=



















−−

−

−−−

−−

16088

01955

85113

85311

. 

A yı sadece E3 temel işlemlerini kullanarak aşağıdaki biçime indirgeriz: 

 



















−−

−−

0000

07/10800

11/11211/4011/1120

85311
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Merkezi elemanların, 11, 112/11, 108/7 ve 0, tümü pozitif olmadığından, matris pozitif 

tanımlı değildir. Ancak, bu merkezi elemanlar negatif değildir, böylece A bir pozitif 

yarı-tanımlı matristir. 

 Tanım 2.1.  

 (Horn ve Jhonson 1985) A,B∈Mn, Hermityen matrisler olsun. Eğer A-B pozitif 

yarı-tanımlı matrisler ise A≥B olarak yazabiliriz. Benzer olarak, A>B'nin anlamı da A-

B'nin pozitif tanımlı olduğudur. 

2.2. Matris İzleri ve Özdeğerleri 

Tanım 2.2.1. (Özdeğer-Özvektör) :  

(Bhatia 1996) F bir cisim olmak üzere AєMn(F) olsun. 

Ax=λxj(x≠0)  

Olacak şekilde, λєF skalerine A matrisinin özdeğeri, x’e de A matrisinin λ 

özdeğerine karşılık gelen özvektörü denir. 

 Teorem 2.6. (Horn ve Jhonson 1985) A∈Mn Hermityen matrisinin 

özdeğerleri azalan sırada ; 

λmin=λ1≤λ2≤ … ≤λn=λmax  şeklindedir. 

Teorem 2.7. (Weyl Teoremi): (Horn ve Jhonson 1985) A, B∈Mn Hermityen 

ve öz değerleri λi(A), λi(B) ve λi(A+B) k=1,2, … ,n için teorem 2.6 dan azalan sırada 

olsun. 

λk(A)+λ1(B) ≤ λk(A+B) ≤ λk(A)+λn(B)                                              (2.2.1) 

Tanım 2.2.2. (Matris İzi) :  

(Bronson 1989) A, n×n tipinde matris olmak üzere, A’nın esas köşegeni 

üzerindeki elemanlarının toplamına A matrisinin izi denir ve 

izA= 
n

i 1=
∑ aii şeklinde gösterilir.  

Teorem 2.2.1. (Bronson 1989) A n×n tipinde kare matrisler olmak üzere; 

    iz(AB)=iz(BA)  dır. 
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     2.3. Singüler Değer 

(Bozkurt ve Türen 2003) A genel m×n matris olsun. AHA matrisinin özdeğerleri 

λi (i=1, 2, …, m) ise σi=√λi değerlerine A matrisinin singüler değerleri denir.  

Teorem 2.3.1. (Horn ve Jhonson 1985) A∈Mm,n bir matris olarak verilsin. 

∧

A 'da, A'nın herhangi bir sütununun silinmesiyle oluşsun, {σi} A'nın singüler 

değerlerini, {
∧

iσ }  de 
∧

A 'nın singüler değerlerini göstersin, artmayan sırada; 

a) Eğer m≥n ise, 

σ1≥ 1

∧

σ  ≥ σ2≥ 2

∧

σ  ≥… ≥ 1−

∧

nσ  ≥ σn≥0 

b) Eğer m<n ise, 

σ1≥ 1

∧

σ  ≥ σ2≥ 2

∧

σ  ≥… ≥ σm≥ m

∧

σ  ≥0 

Eğer A'nın bir sütunu yerine bir satırı silinerek oluşursa, (a) ve (b) içindeki m 

ve n'yi yerdeğiştiririz. 

2.4. Hermityen, Monoton, Konkav, Birim, P-Matrisler 

Tanım 2.4.1. (Hermityen Matris) :  

(Bellman 1996) Bir matris, eğer kompleks eşlenik transpozuna eşit ise, Hermit 

matristir, yani A için eğer,  

A=AH ise A Hermittir. 

Tanım 2.4.2. (Monoton Matris) :  

(Uchiyama 2001) Eğer A, f[0, ∞) sürekli fonksiyon üzerinde bir matris ve 

0≤A<B  için f(A) ≤f(B)’yi kapsarsa monoton matrisdir. 

Tanım 2.4.3. (Konkav Matris) :  

(Uchiyama 2001) Bütün A, B≥0 ve bütün 0<λ<1  için,  

f(λA+(1-λ) B) ≥ λf(A) +(1-λ) f(B) ise konkav matrisdir. 
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Tanım 2.4.4. (Birim Matris) :  

(Bozkurt ve Türen 2003) Esas köşegeni üzerindeki elemanlarının hepsi 1 olan 

köşegen matrise birim matris denir ve 

In=



















1...00

::

0...10

0...01

 

olarak gösterilir.  

Tanım 2.4.5. (Üniter Matris) :  

(Bhatia 1996) AєMn(C) matrisi için;  

AA*=A*A=I 

Özelliği sağlanırsa A matrisine üniter matris denir. Burada A*, A matrisinin 

eşleniğinin transpozunu göstermektedir. 

Tanım 2.4.6. (P-Matris) :  

(Chen 2002) A bütün prensibal minörleri pozitif olan nxn türünde bir matris 

ise, böyle bir A matrisine P-matris denir. 

Örnek 2.3: A = 
















241

273

123

 3x3 prensibal minörü det(A) =15, 2x2 prensibal 

minörleri  

det 








73

23
= 15; det 









21

13
= 5; det 









24

27
= 6 

1x1 prensibal minörleri ise, 3, 7 ve 2’dir. 

2.5. Sürekli ve İyi Tanımlanmış Fonksiyonlar  

Tanım 2.5.1. (Sürekli Fonksiyon) :  

(Bhatia 1996) f: A→R bir fonksiyon ve aєA olsun. f fonksiyonu a noktasında 

tanımlı ise, f fonksiyonun a noktasında limiti varsa, fonksiyonun a noktasındaki limiti a 

noktasındaki değerine eşitse bu fonksiyonlara sürekli fonksiyon denir.  
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Tanım 2.5.2. ( İyi Tanımlanmış Fonksiyonlar) :  

(Bhatia 1996) Eğer z kompleks değişkeninin f(z) fonksiyonunun bir Maclaurin 

seri açılımı varsa,  

f(z) = ∑
∞

=0n

anz
n ve bu │z│<R için yakınsaksa o zaman ∑

∞

=0n

anA
n matris serisi 

yakınsaktır, burada A kare matris ve özdeğerlerinin mutlak değeri R’den küçük 

olmalıdır. Böyle bir durumda, f(A)  

f(A) = ∑
∞

=0n

anA
n ile tanımlanır ve iyi tanımlanmış fonksiyon olarak adlandırılır. 

Tam olarak, A0=I’dır. 

2.6. Hadamard (Schur) Çarpımı  

(Horn ve Jhonson 1985) A=[aij]m×n ve B=[bij]m×n olsun. 

AoB=[aij bij]m×n çarpımına A ile B matrislerinin Hadamard çarpımı denir. 

 A ve B pozitif tanımlı matrisler ise det(AoB)≥detA.detB dir. 

A ve B pozitif tanımlı matrisler ise AoB de pozitif tanımlıdır. 
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3. POZİTİF TANIMLI MATRİSLER İLE İLGİLİ EŞİTSİZLİKLER 

3.1. Bazı Matris Eşitsizlikleri Üzerine 

(Zhan 2003) Çalışmamızın temelini teşkil eden bu bölümde Mn n×n kompleks  

matrisler olmak üzere, AЄMn matrisinin singüler değerlerinin s1 (A) ≥ s 2 (A) ≥…≥sn (A) 

olduğunu 2.3.1'den biliyoruz ve singüler değerler için Bhatia ve Kittaneh’in söylediği, 

iyi bilinen aritmetik-geometrik eşitsizliği olan;  

2 s j (AB * ) ≤ s j (A * A+ B * B), j=1,2,…, n                                            (3.1.1)  

eşitsizliğini, (burada A, BЄMn ve B *  da B’nin eşlenik transpozunu göstermektedir) ve 

A, BЄMn pozitif yarıtanımlı matrisleri için A ⊕  B blok köşegen matrisleri için 




0

A





B

0
 

göstermek üzere,  

s j (A-B) ≤ s j (A ⊕  B), j=1,2,…, n                                                       (3.1.2)  

eşitsizliklerini ispatladık. Daha sonra bu iki eşitsizliği, A0, bir pozitif tanımlı matris,  

A1, … ,Ak pozitif yarı-tanımlı matrisler olmak üzere, 

 iz∑
=

k

J 1

(∑
=

j

i 0

A i ) 2−  A j <izA 1
0
−  iz eşitsizliğini geliştirmek için kullanacağız. 

Şimdi 3.1.1 ve 3.1.2 eşitsizliklerini ispatlayalım. 

G, H Hermityen matrisleri için, G≤H anlamı H-G nin pozitif yarıtanımlı 

matrisler olduğudur. Eğer H ЄMn Hermityen ise, her zaman özdeğerlerinin artan sırada,  

λ 1 (H) ≥ λ 2 (H) ≥…≥λ n (H) olduğunu teorem 2.6'den biliyoruz. 

Teorem 2.7 (Weyl’in monotonicity prensibi)den, G≤H için λ j (G) ≤λ j (H), 

j=1,2,…,n olduğunu biliyoruz. Bu Hermityen matrislerin özdeğerlerinin minimax 

karakterizasyonundan takip edilir. 
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İspat (3.1.1) :  

X= 




B

A





0

0
, Y= 




*

0

BA
 






0

*
AB

 

Sonra,  

X * X= 


 +

0

**
BBBA

 




0

0
, XX * = 





*

*

BA

AA
 





*

*

BB

AB
 ve 

0≤ 




− B

A
 




0

0
 




− B

A
 




0

0 *

 = 





− *

*

BA

AA
 




−
*

*

BB

AB
= XX * -2Y j ’dir. 

Öyleyse 2Y≤ XX *  olur. Weyl’in monotonicity prensibinden,  

2 λ j (Y) ≤ λ (XX * ), j =1, 2, …, 2n ’dir.                                                   (3.1.3)  

j=1, 2, …, n için, XX * ’ın özdeğerleri, s j (A * A+B * B ), Y’nin  özdeğerleri, 

s j (AB *  ), buradan, (3.1.3)  

2 s j (AB *  ) ≤ s j (A * A+B * B ), j=1, 2, …, n olduğunu verir. 

Lemma 3.1.1. (Zhan 2003) Eğer H ЄMn Hermityen ise  

s j (H) = λ j (H ⊕ -H), j=1, 2,…, n olur. 

İspat (3.1.2) : Lemma 3.1.1 den  

s j (A-B) = λ j [(A-B) ⊕ (B-A) ], j=1, 2, …, n                                         (3.1.4)   

(A-B) ⊕ (B-A) ≤ A ⊕ B olduğundan, Weyl’in monotonicity prensibinden 

λ j [(A-B) ⊕ (B-A) ] ≤λ j (A ⊕ B) j=1, 2, …, 2n                                   (3.1.5)  

elde ederiz. 
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 λ j (A ⊕ B) = s j (A ⊕ B), j=1, 2,…, 2n olduğuna dikkat edelim. (3.1.4) ve 

(3.1.5)’i birleştirerek, s j (A-B) ≤ s j (A ⊕ B), j=1, 2,…, n elde ederiz. 

3.2 İz Eşitsizlikleri (Zhan 2003) 

Teorem 3.2.1. (Zhan 2003) A 0  pozitif tanımlı matris ve A 1 ,…,A
k
 pozitif yarı-

tanımlı matrisler olsun. Sonra, 

iz∑
=

k

J 1

(∑
=

j

i 0

A i ) 2−  A j <izA 1
0
−  'dir.                                                           (3.2.1)  

İspat: Sonuç 1≤j≤k için  

iz (∑
=

j

i 0

A i ) 2−  A j <iz{(∑
−

=

1

0

j

i

A i ) 1− -(∑
=

j

i 0

A i ) 1− }                                   (3.2.2) 

den takip edilecek. 

Eğer X, Y pozitif tanımlı matrisler ise,  (3.1.1)’den 

2 s j (X) = 2 s j [Y 2/1  (XY 2/1− ) ]≤ s j (Y+Y 2/1− X 2  Y 2/1− ) elde ederiz. 

Öyle ki, izWZ=izZW  (Teorem 2.2.1) den 

2izX≤iz(Y+X 2 Y 1− )                                                                                    (3.2.3)  

olur. 

(3.2.3)’de, X=(∑
=

j

i 0

A i ) 1−  ve Y=(∑
−

=

1

0

j

i

A i ) 1−  yerleştirerek,  

iz{(∑
=

j

i 0

Ai)
-1-(∑

=

j

i 0

Ai)
-2(∑

−

=

1

0

j

i

A i )}≤iz{(∑
−

=

1

0

j

i

A i ) 1− -(∑
=

j

i 0

A i ) 1− }elde ederiz. 

 Sol tarafını basitleştirerek (3.2.2)'yi elde ederiz. (3.2.2)'yi j için 1 den k ya toplayarak, 

iz∑
=

k

J 1

(∑
=

j

i 0

A i ) 2−  A j <izA 1
0
− - iz(∑

=

k

J 1

A i ) 1− < izA 1
0
− ’e sahip oluruz. Buda 

ispatı tamamlar. 
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Örnek 3.1.1: A0 pozitif tanımlı bir matris, A1, A2 ,…, Ak pozitif yarı-tanımlı 

matrisler olsun,  iz∑
=

k

J 1

(∑
=

j

i 0

A i ) 2−  A j <izA 1
0
−  eşitsizliğinin sağlandığını gösterelim: 

A0=

















100

030

002

, A1=









0

0

1

  

0

0

1

  









1

1

0

, A2=









0

0

1

  

0

0

0

  









1

1

0

, A3=









0

0

2

  

0

0

0

  









1

1

0

 olsun. 1≤j≤k ise j=2, 

k=3 için; 

∑
=

j

i 0

A i =A0+A1+A2=









0

0

4

  

0

3

1

  









3

2

0

, (∑
=

j

i 0

A i ) 2− =









0

0

16/1

  

0

9/1

9/7

  







−

9/1

27/4

27/14

=A 

∑
=

k

J 1

(∑
=

j

i 0

A
i

) 2−  A j =A.A1+A.A2+A.A3 

=









0

0

72/17

  

0

0

16/1

  









3/1

9/7

9/7

 

iz∑
=

k

J 1

(∑
=

j

i 0

A i ) 2− =
72

17
+

3

1
=0,569  

A 1
0
− =









0

0

2/1

  

0

3/1

0

  









1

0

0

, izA 1
0
− =

2

1
+

3

1
+1=1,833 

0,569<1,833 olur. 

3.3. Karma Matris Eşitsizlikleri 

(Uchiyama 2001) Bu bölümde, eğer 0≤A, B, C ve S * S+T * T≤1 ise, o zaman, 

A≤ S * BS+ T * CT 

Ar/2(S * B s S+ T * Cs T) Ar/2 

≤{ Ar/2(S * BtS+ T * CtT) Ar/2}(s+r) /(t+r) (t≥1, t≥s≥0, r>0 için)   
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A1+r≤{ Ar/2(S * BtS+ T * CtT) Ar/2}(1+r)/(t+r) ) (t≥1, r>0 için) olduklarını gösterdik. 

Burada büyük harfler matrisleri temsil etmektedir. Tanım 2.2 den A≤B’nin 

anlamının B-A’nın pozitif yarıtanımlı matris olduğudur. A, f[0, ∞) sürekli fonksiyon 

üzerinde bir matris ve 0 ≤A<B için, f(A) ≤f(B)’yi kapsarsa monoton matris,  A, B≥0 ve  

0<λ<1 için f(λA+(1-λ) f(B)≥f(A)+(1-λ)f(B) ise konkav matrisdir. 

Hansen ve Pedersen pozitif sürekli fonksiyon f[0, ∞) için verilen şartların 

geçerli olduğunu göstermişlerdir. 

i) f monoton operatör 

ii) f konkav operatör 

iii) Bütün T matrisi (gerekmedikçe kare), ||T||≤1 ve bütün A≥0 için;  

T * f(A) T≤f(T * AT). 

iv) Bütün P izdüşümü ve A≥0 için Pf(A) P≤f(PAP), 

v) Bütün S, T çiftleri için, S * S+ T * T ≤1 ile A, B≥0 için  

S * f(A) S+ T * f(B) T≤f(S * AS+ T * BT)  

Burada, bu beş özelliğe bir kolay özellik ekleyebiliriz. 

Lemma3.3.1. (Uchiyama 2001) 

(vi) Bütün tersi olan T ve T * T≥1 için f(T * AT) ≤ T * f(A) T . 

İspat: (iii) ⇒ (vi): (T * 1−  T * ATT 1− ) ≥ T * 1−
f(T * AT) T 1−  

(vi) ⇒ (iv): keyfi bir A≥0 ve keyfi bir P izdüşümünü alalım. 

{1/(1+Є(P+ Є) } 2−  ≥1 (Є>0) ’ dan.  

(vi)’de T={1/(1+Є(P+ Є))} 1−  ve B= T 1− A T 1−  yerine koyarak, 

 f(A) =f(TBT) ≤T f(B) T, v.s. T 1− f(A) T 1− ≤ f(T 1− A T 1− ) elde ederiz. 
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ε →0 iken, genel olarak, ||x n -x|| →0 için Pf(A)P≤f(PAP); ||f(x n ) -f(x)||→0’ı 

kapsar. f sürekli fonksiyon için, x’de interval spektrumu içerir. 

Gerçek, f(x) =x a (0<a<=1) monoton matris Lowner –Heinz eşitsizliği olarak 

adlandırılır. Furuta, 0≤A≤B’nin 

 (A 2/r B t  A 2/r ) )/()1( rtr ++ ≥A 1+r , 

(B 2/r A t  B 2/r ) )/()1( rtr ++ ≤B 1+r  (t≥1, r>0)                                                   (3.3.1)  

kapsadığını  

(A 2/r B t  A 2/r ) )/()( rts ++λ ≥A 2/r B s  A 2/r ,  

(B 2/r A t  B 2/r ) )/()( rts ++λ ≤B 2/r A s  B 2/r (t≥s>0, r>0)                                   (3.3.2)  

göstermiştir. 

U, V fonksiyon çifti üzerinde çalışalım. V(U 1− (x) ) yeni operatör fonksiyon 

elde etmek için monoton operatör: (3.3.1)’i daha fazla monoton oparatör fonksiyonlarla 

genelleştirdik. (3.3.2), A ve B ters çevrilebilir ve logA ≤ logB olduğunu içine alır.  

Harmonik ortalama, A λ
!

B, A ve B, A λ
!

B=( λ A 1− +(1- λ ) B 1− ) 1−  tarafından 

tespit edilir. Eğer A ve B ters çevrilebilir ve (A+Є) λ
!

(B+ Є) eğer Є→+0 kuvvetsiz 

limiti değilse, (3.3.2)’yi takip ederek A, B, C ≥ 0, 0<s≤ t ve 0<r için, A≤B λ
!

C ise  

{Ar/2( λ  Bt+(1- λ ) Ct) Ar/2}(s+r) /(t+r) ≥Ar/2 ( λ Bs+(1- λ ) CS) Ar/2                  (3.3.3)  

olur. 

Eğer 0≤A, B, C ve S * S+ T * T ≤1 ise A≤ S * BS+ T * CT, t≥1, t≥s>0, r>0 için,  

{ Ar/2(S *  BtS+ T * CT) Ar/2}(s+r) /(t+r) ≥ Ar/2(S *  BsS+ T * CsT) Ar/2 olur. 

(3.3.3)’ ün bir uzantısı olan, B λ
!

C≤λ B+(1- λ ) C eşitsizliğinden 



17 

{ Ar/2(S *  BtS+ T * CtT) Ar/2}(1+r) /(t+r) ≥A1+r, eşitsizliği (3.3.1)’i içine alır. Şimdi 

yukarıdaki ve (v). eşitsizliği kapsayan bir karma eşitsizlik verelim. 

3.4. Genelleştirilmiş Eşitsizlik 

(Uchiyama 2001) Bu kısımda (3.3.2) eşitsizliğini genelleştirdik. Bunu yapmak 

için öncelikle monoton operatör fonksiyonlarla ilgili yeni bir aile kurduk. 

(0, ∞) aralığında f(x) ≥0 bir monoton operatör fonksiyon olarak verilsin ve t>0 

ve r≥0 reel sayıları, φr, t(x) [0, ∞)’da bir fonksiyon belirtsin. 

φr, t(x) =xr/(r+t) f(xt/(r+t) ), i.e., φr, t(x
rxt) =xrf(xt)                                              (3.4.1) 

de  00=1 olarak yerleştiririz. 

φ ar, at(x) = φr, t(x) (a>0), φ0, t(x) =f(x) (x≥0) olduğu aşikar, Lowner’in 

teoreminden φr, t(x) monoton operatörüdür. 

 0≤s≤t için f(x) =xs/t koyarız. φ r, t(x) =x(s+r) /(t+r) için (3.3.2)’yi r>0 için tekrar 

yazabiliriz. 

φr, t(A
r/2B tA r//2) ≥A r/2 f(Bt) Ar/2,  

φr, t(B
r/2 A tB r//2) ≤B r/2 f(At) Br/2. (3.3.2)’nin uzantısını Teorem 3.4.1 içinde 

göstereceğiz, bu eşitsizlikler keyfi bir f≥0 operatör monoton fonksiyon ve φr, t(x) için 

(3.4.1) tarafından tespit edilir. 

Lemma 3.4.1: (Uchiyama 2001) φ(x) ≥0 [0, ∞) aralığında operatör monoton 

fonksiyon olsun ve k(x) ve l (x) pozitif artan devamlı fonksiyonlar olsun öyle ki;  

φ(xk(x) =x l (x) olur. 

Sonra, 0≤H≤K için,  

 φ(H1/2k(K) H1/2) ≥ H1/2
l (K) H1/2 

 φ(K1/2k(H) K1/2≤K K1/2
l (H) K1/2 eşitsizliğini içine alır. 

İspat: φ(x) devamlı olduğundan beri K ve H ters çevrilebilir olduğunu 

farzedebiliriz. Sonra ispat 0≤H≤K için H1/2K-1 H1/2≤1’dan takip edilir. (iii)’den ,  
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φ(H1/2k(K) H1/2) = φ(H1/2 K-1/2Kk(K) K-1/2 H1/2)  

≤ H1/2 K-1/2 φ(Kk(K) ) K-1/2 H1/2 

=H1/2
l (K) H1/2 olur. 

3.3.2 eşitsizliğini görmek için (K1/2H-1K1/2) ≥1 ve (vi)’yi kullandık. Lemma 

3.4.1’den operatör ortalamayı kullanarak Kuba-Ando’dan dolayı б nin, φ ile bağlantılı 

olduğunu göstereceğiz. 

H-1 бk(K) ≥K-1 бK= l (K), 1. eşitsizlik Lemma 3.4.1 ile denk olur. 

Teorem 3.4.1. 

(Uchiyama 2001) f(x) ≥0 [0, ∞)’da bir operatör fonksiyon olsun ve monoton 

operatör fonksiyon r≥0, t>0 için фr, t’yi (3.4.1) ile tespit edelim. Sonra 0≤A≤B için,  

фr, t(A
r/2BtAr/2) ≥ Ar/2f(Bt) Ar/2                                                                     (3.4.2)  

фr, t(B
r/2AtBr/2) ≤ Br/2f(At) Br/2                                                                                                        (3.4.3)  

içine alır. 

Lemma 3.4.2. (Uchiyama 2001) φ(x)≥0 [0, ∞) aralığında bir operatör monoton 

fonksiyon olsun ve k(x) ve l (x) pozitif artan devamlı fonksiyonlar ise,  

φ(xk(x) ) =x l (x) olur. Sonra 0≤H≤K için,  

φ(H1/2k(K) H1/2) ≥ H1/2
l (K) H1/2 

φ(K1/2k(H) K1/2) ≤K1/2
l (H) K1/2 eşitsizliğini içine alır. 

 

фr, t(A
r/2BtAr/2) = фr, t(A

r/2B-r/2Bt+rB-r/2Ar/2)  

 ≥ Ar/2B-r/2 фr, t B
t+rB-r/2Ar/2 

 = Ar/2f(Bt) Ar/2’dir. 
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Böylece 0≤r≤1 için (3.4.2)’yi içine alır. 0≤r≤2n için, bütün operatör monoton 

fonksiyon f ve (3.4.1) tarafından tespit edilen фr, t için (3.4.2)’nin içine aldığını 

farzedelim. 

[2n, 2n+1] aralığında r/2 ≤2n için, keyfi bir r alalım,  

фr/2, t(A
r/4BtAr/4) ≥ Ar/4f(Bt) Ar/4 olduğu farzedilebilir. 

F(x) =1 ve фr, t(x) =xr/(t+r)                                                                                                                   (3.4.4)  

içinde göz önünde tutulursa,  

(Ar/4BtAr/4) r/(2t+r) ≥ Ar/2 olur. 

Eşitsizliğin sol tarafını K ve sağ tarafını H ile gösterelim ve (3.4.1)’de yerine 

koyalım. 

y=xr/2, k(y) =xr/2xt=y(r+2t) /r, l (y) =xr/2 f(xt) = фr/2, t(k(y) ),  

фr, t(y(k(y) ) =y l (y) elde edilir. 

Lemma 3.4.1 den, K≥H ise,  

фr, t(H
1/2k(K) H1/2) ≥ Hr/2

l (K) H1/2’dir. 

K(K) =K(r+2t) /r=Ar/4BtAr/4 olduğundan, bu  

фr, t(A
r/4Ar/4BtAr/4Ar/4) ≥ фr/2, t(A

r/4BtAr/4) Ar/4 olduğunu meydana çıkarır. 

(3.4.2)’i elde etmek için bunu (3.4.4) ’ye katalım, r≥0 için (3.4.2)’i elde ederiz 

ve (3.4.3) ’ü daha iyi görebiliriz. 

(3.4.2) ve (3.4.3) ’nin (3.3.2)’nin uzantısı olduğuna dikkat edelim, f(x) =xs/t 

koyarak (3.3.2)’yi küçültürüz. Yukarıdaki ispatın, A ve B Hilbert boşluğunda 

operatörlerse yürürlükte olabileceğine dikkat edelim. Şimdi 0≤A≤B şartını genişleterek 

yukarıdaki teoremde logA≤logB şartını yerine getirelim. Eğer A ve B operatörler ise 

logA ve logB ölçüsüz olabilir. 
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Teorem 3.4.2. (Uchiyama 2001) [0, ∞) aralığında f monoton operatör 

fonksiyon olsun ve фr, t’yi (3.4.1) ile tespit edelim. Eğer logA≤ logB ise (3.4.2) ve 

(3.4.3) içine alır. 

İspat: (1-1/nlogA) -1 ve (1-1/nlogB) -1 ikisi de sınırlı.Yeterli genişlikte n için,  

0≤(1-1/nlogA) -1≤(1-1/nlogB) -1’dir. Bundan dolayı bu eşitsizliğe ve 

fonksiyona müracaat edebiliriz. 

Фnr, ntx
nrxnt) =xnrf(xnt)’den (3.4.2) ye, sonra,  

ф ntnr , 







− A

n
log

1
1 2/nr−









− B

n
log

1
1 nt−









− A

n
log

1
1 2/nr− ≥  

         







− A

n
log

1
1 2/nr− f( 








− B

n
log

1
1 nt− ) 2. 








− A

n
log

1
1 2/nr−  

ф
ntnr ,  = ф

tr ,  ise n ∞→  için (3.4.2) meydana çıkar. 

3.4.1. Karma Eşitsizlikler (Uchiyama 2001) 

Teorem 3.4.3. (Uchiyama 2001) S * S+T * T≤1 ve A,B,C≥0 olsun. Eğer t≥1, r>0 

için 0≤A≤S * BS+ T * CT ise, 

 ф tr , (Ar/2(S * BtS+ T * CtT)Ar/2)≥ Ar/2(S*f(Bt)S+T*f(Ct)T)Ar/2,                                   (3.4.5) 

 { Ar/2(S * BtS+ T * CtT)Ar/2}(s+r)/(t+r)≥ Ar/2(S * BsS+ T * CsT)Ar/2( t≥s≥0),             (3.4.6) 

 { Ar/2(S * BtS+ T * CtT)Ar/2}(1+r)/(t+r)≥A1+r    .                                                   (3.4.7) 

 İspat: x1/t ( t≥1) monoton operatör ise 

  A≤ S * BS+ T * CT≤(S * BtS+ T * CtT)1/t olur. 

 Teorem  3.4.1'den  ф tr , (Ar/2(S * BtS+ T * CtT)Ar/2) 

    = ф tr , (Ar/2 {(S * BtS+ T * CtT)1/t}Ar/2) 

    ≥ Ar/2(f(S*BtS+T*CtT Ar/2) 
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≥ Ar/2(S*f(Bt)S+T*f(Ct)T)Ar/2.      

Burada son eşitsizlik (v)'den takip edilir. Böylece   (3.4.5)'i elde ederiz. (3.4.6)'yı elde 

etmek için (3.4.5)'de f(x)=xs/t yerleştirmeliyiz ve sonra s=1 yerleştirerek (3.4.7) elde 

ederiz. (3.4.5) ve (3.4.7), sırasıyla (3.3.1) ve (3.3.2) nin uzantısıdır.   

3.5. Pozitif Tanımlı Matrisler İçin Çeşitli Karma Ortalama Eşitsizlikler  

(Hu,Zhang ve Yang 2004) Bu bölümde üç veya daha fazla pozitif tanımlı 

matris için geometrik ortalama, aritmetik ortalama, harmonik ortalama içeren çeşitli 

ortalamalar ve bazı karma ortalamaların ispatları sunulmuştur. 

A1, A2 aynı düzende iki pozitif tanımlı matris olsun. A1, A2 nin geometrik 

ortalaması G(A1, A2) ile gösterilsin, Puzz ve Woronowicz tarafından:  

G(A1, A2) =A1
1/2(A1

-1/2A2 A1
-1/2) 1/2A1

1/2                                                                               (3.5.1) 

takdim edildi. 

Keyfi bir pozitif tanımlı matris A için, Ι birim matrisi göstermek üzere, 

G(Ι, A) =A1/2’dir. 

Keyfi (n-1) için pozitif tanımlı matrisler A1, …, An-1 için, farzedelim ki 

geometrik ortalama G(A1, …, An-1) iyi tanımlı olsun. 

n≥3 için aynı düzende A1, …, An pozitif tanımlı matrisler olarak verilsin,  

{(A1(k) , …, An
(k) ) } sırasını tanıttık. 

Aj
(0) =Aj, Aj

(k) =G((Al
(k-1) ) l≠j), k=1, 2, …                                                   (3.5.2)  

Burada ve neticede, sembol (Bl) l≠j (n-1) için 

(B1, …, Bj-1, Bj+1, …, Bn) ’dir. 

Şimdi k=0, 1, … için R(k) =∑
=

n

i

k

iA
1

olsun. 

Burada A pozitif tanımlı matris, öyle ki 
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+∞→k

lim
 Ai

(k), k=Ã, i=1, 2, …, n                                                                (3.5.3)  

k=0, 1, … için {R(k) } sınırlanmış ve azalmış;  

R(k) ≥ R(k+1)                                                                                                              (3.5.4)  

Bu, {R(k) }’nın, bazı pozitif tanımlı matrislerle bir noktada birleşen olduğunu 

ima eder. ((3.5.3)’den)  

 R=n Ã, veya eşit bir şekilde,  

 Ã=
n

1
 

+∞→k

lim
R(k) =

n

1
R’dir.    (3.5.5) 

(3.5.3)’de Ã matrisi, A1, …, An’nin geometrik ortalaması G(A1, …, An) olarak 

tespit edilmiştir. 

Bu tip pozitif tanımlı matrisler için birçok özellik geometrik ortalamadan 

tahmin edilir. 

A1, …, An gibi pozitif tanımlı matrislerin geometrik ortası G(A1, …, An) 

aşağıda verilen limit tarafından determine edilebilir. 

G(A1, …, An): 
0

lim

↓ε
G(A1+ε Ι, …, An+ ε Ι). 

Şimdi, bizim için yararlı olacak bazı G(A1,…,An)’nin bazı özelliklerini 

düzenleyelim. 

P1: Skalerle tutarlılık: Eğer A1 ,…, An’i ortaklaşa değiş tokuş edersek, sonra 

 G(A1, …, An) = (A1, …, An) 
1/n olur. 

P2: Permütasyon invaryans: (A1,…, An)’nin herhangi permütasyonu olan 

bütün (Ai1, …, Ain) için 

 G(Ai1, …, Ain) =G(A1, …, An) ’dir. 

P3: Monotonluk: (A1, …, An)→G(A1,…,An) monoton.  
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Eğer B1≥ A1,…, Bn≥An ise  G(B1, …, Bn) ≥G (A1, …, An) ’dir. 

P4: Uygunluk invaryansı: Herhangi ters çevrilebilir S matrisi için 

G(S*A1S, …, S*AnS) =S*G(A1, …, An) S’dir. 

P5: Müşterek Konkavlık: : (A1, …, An) → G(A1, …, An), eğer 0<α<1 ise  

konkav olur, sonra 

 G(αA1+(1- α) B1, …, αAn+(1- α) Bn)  

 ≥α G(A1, …, An) + (1- α) G(B1, …, Bn) ’dir. 

P6: Öz-çiftlik: G(A1, …, An) =G(A1
-1, …, An

-1) -1. 

P7: Devamlılık: Eğer herhangi bir pozitif tanımlı matris ardışık ise 

 {Ai
(k) }0

+∞(1≤i≤n) k→∞’a kadar pozitif tanımlı matris içerir, sonra 

+∞→k

lim
G(A1

(k), …, An
(k) ) = G(A1, …, An) olur. 

(3.5.4) ve (3.5.5)’den klasik aritmetik-geometrik-harmonik ortalama 

eşitsizlikleri:  

H(A1, …, An) ≤ G(A1, …, An) ≤ A(A1, …, An)                                          (3.5.6)  

H(A1, …, An): =((A1
-1+…+An

-1) /n) -1                                                        (3.5.7)  

A(A1, …, An): =(A1+…+An) /n 

A1, …, An’nin harmonik ve aritmetik ortalaması olarak adlandırılır. 

3.6. Esas Lemmalar 

(Hu,Zhang ve Yang 2004) Bu kısımda, bizim araştırmamız için sonra 

kullanacağımız yardımcı önergeleri kurduk. 

Öncelikle P1, P2 ve P4’den, özel bir n için (A1, …, An)’nin, geometrik 

ortalaması G(A1, …, An) için formül elde edilir. 
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Lemma3.6.1. (Hu,Zhang ve Yang 2004) Farzedelim ki A ve B iki pozitif 

tanımlı matris olsun, sonra,  

 G(A1, …, An) = G (
321

pn

AA

−

,,...,
321

p

BB,..., ) =A1/2(A-1/2BA-1/2) p/n A1/2       (3.6.1)  

 Eğer A=I ise o zaman,  

 G(A1, …, An) =G(
321321

ppn

BBII ,...,,,...,
−

) =Bp/n                                            (3.6.2)  

Sonra P5 ve matematiksel tanım, G(A1, …, An)’nin aşağıdaki özelliğini ortaya 

çıkarır. 

Lemma 3.6.2. (Hu,Zhang ve Yang 2004)  Eğer Aij (1≤i≤n, 1≤j≤m) pozitif 

tanımlı matrisler ise,  

G( ),...,(),..., 1
11

1
1

njj

m

j

jnj

m

j

jj

m

j

j AAGtAtAt ∑∑∑
===

≥                                             (3.6..3)  

Lemma 3.6.3. (Hu,Zhang ve Yang 2004) Aij (1≤i≤n, 1≤j≤m) pozitif tanımlı 

matrisler ise,  

G( ),...,(),..., 1
11

1
1

njj

m

j

nj

m

j

j

m

j

AAGAA ∑∑∑
===

≥                                                 (3.6.4)  

Aşağıda vereceğimiz 2 lemma Teorem 3.7.1’in ispatı için gereklidir. İlki   

m=n-1 seçilerek lemma 3.6.3’den neticelendirilebilir ve verilen A1, …, An pozitif 

tanımlı matrisler için (A11, …, Aim) =(Ak) k≠i dir. 2.side G(A1, …, An)’nin üst sınırını 

veren ortalama eşitsizliğidir. 

Lemma 3.6.4. (Hu,Zhang ve Yang 2004) A1, …, An (n≥3) pozitif tanımlı 

matrisler olsun, o zaman,  

G( ∑∑
≠≠ ni

i

i

i AA ,...,
1

≥
)1(

2

−nn
∑

≤<≤ nji1
∑

−

=

1

1

n

k

G(
4342143421

kdefan

jj

kdefa

ii AAAA

−

,...,,,..., )                    (3.6.5) 

 olur. 
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İspat: Π (1, …, n) için keyfi bir permütasyon olsun. P2’den ve Lemma 

3.6.3’den,  

G( ),...,(),..., )(
1

)(
1

∑∑∑∑
≠

∏
≠

∏
≠≠

=
ni

i

i

i

ni

i

i

i AAGAA  

≥G(AΠ(2), AΠ(1),…, AΠ(1) ) +G(A Π(3), A Π(3), AΠ(2),…, AΠ(2) )+…+G(AΠ(n),…, 

AΠ(n), AΠ(n-1) ) ’dir. 

Bütün permütasyonların (1, …, n) numaraları n!’den ötürü,  

 n!G( ),...,
1

∑∑
≠≠ ni

i

i

i AA ≥∑
∏

[G(AΠ(2), AΠ(1), …, AΠ(1) ) + G(A Π(3), A Π(3)  

, AΠ(2), …, AΠ(2) +…+G(AΠ(n), …, AΠ(n), AΠ(n-1) ) ] 

= ∑∑
−

=∏

1

1

n

k

 G(
443442144 344 21

kdefan

kk

kdefa

kk AAAA

−

++ ),()(),1()1( ,...,,,..., ππππ )                                           (3.6.6)  

i≠j için (n-2) ! defa (3.6.6)’nın sağ tarafında belirir, çünkü permütasyonların 

numarası, Π, öyle ki 

Π(k+1) =i, Π(k) =j, (1≤k≤(n-1), i≠j için (n-2) !’dir. Böylece,  

n(n-1) G( ),...,
1

∑∑
≠≠ ni

i

i

i AA ≥ ∑∑
−

=≠

1

1

n

kji

G(
4342143421

kdefan

jj

kdefa

ii AAAA

−

,...,,,..., )  

=2 ∑∑
−

=≤≤≤

1

11

n

knji

G(
4342143421

kdefan

jj

kdefa

ii AAAA

−

,...,,,..., )’dir. 

Son eşitlikten (3.6.5) eşitsizliği neticelendirilir. 

Lemma 3.6.5.  (Hu,Zhang ve Yang 2004) n≥3 için A1, …, An pozitif tanımlı 

matrisler olsun, sonra,  

G(A1, …, An) ≤
)1(

2

−nn
 ∑

≤<≤ nji1

G(AiAj)                                                     (3.6.7)  

İspat: Öncelikle özel durum n=3 için ele alalım, (3.5.4 ve 3.5.5)’den 
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G(A1, A2, A3) = Ã=1/3R≤1/3R(1)  

=1/3(G(A1, A2) +G(A1, A3) +G(A2, A3) ) n=3 için elde edilir. 

Farzedelim ki (3.6.7) n=p (≥3) için elde edilsin. 

G(A1, …, Ap) ≤
pp )1(

2

−
∑

+≤<≤ 11 pji

 G(AiAj)                                                  (3.6.8)  

 G(A1, …, Ap+1) ≤
pp )1(

2

+
∑

+≤<≤ 11 pji

 G(AiAj)                                                 (3.6.9)  

G(A1, …, Ap+1)  

= Ã=
1

1

+p
R≤

1

1

+p
R(1)  

≤
)1()1(

2

−+ ppp 















+≠

+≤<≤

∑++

≠

+≤<≤

∑

1,

11

),(...),(

1,

11

pji

pji

AAGAAG

ji

pji

jiji

 

=
pp )1(

2

+
∑

+≤<≤ 11 pji

 G(AiAj),  

 3.6.9 eşitsizliği takip edilerek lemmanın ispatı tamamlanır. 

3.7. Karma Ortalama Eşitsizlikleri 

(Hu,Zhang ve Yang 2004) Bu kısımda, üç veya daha fazla pozitif tanımlı 

matris için  karma ortalama eşitsizlikleri türettik. 

Burada G, A, H 3.5 deki sembollerdir. 

(1) G�(A1, …, An): G(A(Ai) i≠1), A((Ai) i≠2), …, A((Ai) i≠n) );  

(2) Ã(A1, …, An): A(G((Ai) i≠1), G((Ai) i≠2), …, G((Ai) i≠n) );  

(3)G
∧

(A1, …, An): =G(H((Ai) i≠1), H((Ai) i≠2), …, H((Ai) i≠n) );  
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(4) H
∧

(A1, …, An): =H(G((Ai) i≠1), G((Ai) i≠2), …, G((Ai) i≠n) ). 

Şimdi amacımız, pozitif yarı-tanımlı matrisler için aritmetik, geometrik, 

harmonik ortalama ve üç ve daha fazla pozitif tanımlı matris için yukarıdaki 4 çeşit 

karma ortalamaları düzenlemek. 

Teorem 3.7.1. (Hu,Zhang ve Yang 2004)  n≥3 için A1, …, An pozitif tanımlı 

matrisler olsun. Takip eden karma ortalama eşitsizlikleri 

G(A1, …, An ) ≤ Ã(A1, …, An) ≤ G�(A1, …, An) ≤A(A1, …, An)                (3.7.1)  

İspat: (3.5.4) ve (3.5.5)’den,  

G(A1, …, An ) = Ã= ( )111
R

n
R

n
≤

  

=
( ) ) ( )( ) ( )( )(

n

AGAGAG
niiiiii ≠≠≠ +++ K21

 

= Ã(A1, …, An). 

Sonra 1. eşitsizlik(3.7.1)’i kapsar. 

Bundan başka (3.5.6), 2. eşitsizlikten 

G�(A1, …, An) ≤
( ) ) ( )( ) ( )( )(

n

AAAAAA
niiiiii ≠≠≠ +++ K21

 

=
n

AAA n+++ K21 =A(A1,…,An) .                                                               (3.7.2)  

Lemma 3.6.5’in tanımından 

Ã(A1, …, An) = 
( ) ) ( )( ) ( )( )(

n

AGAGAG
niiiiii ≠≠≠ +++ K21

 

≤
)2)(1(

2

−− nnn
( ∑

≤<≤ nji1

 G(AiAj) +…+ ∑
≤<≤ nji1

G(AiAj) )                              (3.7.3)  
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=
)1(

2

−nn
∑

≤<≤ nji1

G(AiAj). 

Diğer taraftan Lemma 3.7.4’den 

G�(A1, …, An) =G(
1

1

−n
∑

≠1i

iA , 
1

1

−n
, ∑

≠2i

iA , …, 
1

1

−n
, ∑

≠ni

iA )  

≥
2)1(

2

−nn
∑

≤<≤ nji1

 ∑
−

=

1

1

n

k

G (
4342143421

kdefan

jj

kdefa

ii AAAA

−

,...,,,..., )                                      (3.7.4)  

P4’den genelliği kaybetmeden, Ai=I ve Aj=A farzedebiliriz. 

∑
−

=

1

1

n

k

G  (
4342143421

kdefan

jj

kdefa

ii AAAA

−

,...,,,..., ) ≥(n-1) G(AiAj)                                                  (3.7.5)  

(3.7.5) bütün i, j (i≠j) için tekrar kontrol edilir. 

A n

n 1−

+…+A n

2

+A n

1

≥(n-1) A 2

1

                                                                 (3.7.6)  

gibi tekrar yazılabilir,  

A n

n 1−

+…+ A n

2

+A n

1

-(n-1) A1/2=
2

1
 ∑

−

=

1

1

n

k

( n

k

A 2 - n

kn

A 2

−

) 2 ≥0 

Böylece 3.7.6 eşitsizliği doğrulanır. 

(3.7.3), (3.7.4) ve (3.7.5)’den (3.7.2) eşitsizliğini çıkarabiliriz. Teorem 3.7.1 

bundan dolayı ispatlanmıştır. 

Uyarı:  

1) 3.7.6 eşitsizliği P1’den çıkartılabilir. 

2) Ai+ΣI limitlerini alalım, A1, …, An pozitif yarıtanımlı matrisler için teorem 

3.7.1 yürürlüktedir. 

Teorem 3.7.2. (Hu,Zhang ve Yang 2004) n ≥3 için A1, …, An pozitif tanımlı 

matrisler olsun. O zaman matris ortalama eşitsizliklerini,  
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H(A1, …, An) ≤ G
∧

 (A1, …, An) ≤H
∧

(A1, …, An) ≤ G(A1, …, An) (3.7.7) 

olarak ifade edelim. 

İspat: A1, …, An pozitif tanımlı matrisler olduğundan, bunların tersleri 

A1
-1, …, An

-1 matrislerinin pozitif tanımlı matrisler olduğunu biliyoruz. Bütün Ai’lerin 

terslerini (3.7.1)’de yer değiştirirsek 

G(A1
-1, …, An

-1) ≤ Ã(A1
-1, …, An

-1) ≤ G�(A1
-1, …, An

-1) ≤ A(A1
-1, …, An

-1) ve 

böylece 

A(A1
-1, …, An

-1) -1≤ G�(A1
-1, …, An

-1) -1 ≤ Ã(A1
-1, …, An

-1) -1≤G(A1
-1, …, An

-1) -1 (3.7.8) 

elde edilir. 

P6’dan, aşağıdaki bağıntıları kolayca kontrol edebiliriz. 

H(A1, …, An) = A(A1
-1, …, An

-1) -1,  

G(A1, …, An) = G(A1
-1, …, An

-1) -1,  

H
∧

 (A1, …, An) = Ã(A1
-1, …, An

-1) -1                                                        (3.7.9)  

G
∧

 (A1, …, An) = G�(A1
-1, …, An

-1) -1. 

(3.7.9)’yi (3.7.8)’de’yerleştirerek (3.7.7) elde ederiz. Buda ispatı tamamlar. 

3.8. Hadamard Matris Çarpımlarıyla İlgili Bazı Determinantal 

Eşitsizlikler 

3.8.1. Oppenheim Eşitsizliği (Chen 2002) 

A = (aij) ЄS +
n  ve B = (bij) ЄS +

n ise 

det(AoB) ≥ 



















=

∏ iia

1i

n

 detB 
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Örnek 3.8.1:  

A= 

















221

211

112

Єs +
n , b = 

















100

030

002

ЄS +
n olup, det(B) = 6 

AoB = 

















200

030

004

dir. det (AoB) = 24 



















=

∏ iia

1i

n

= a11.a22.a33 = 2.1.2. = 4 

24 = 4.6 = 24 olup 

det (AoB) ≥ 



















=

∏ iia

1i

n

detB eşitsizliği sağlandı. 

3.8.2. Lynn Ve Ando Eşitsizliği (Chen 2002) 

A = (aij) Є Mn ve B = (bij) ЄMn ise 

det(AoB) + det A.detB≥(detA) 



















=

∏ iib

1i

n

 + (detB) 



















=

∏ iia

1i

n

, (1)  

det(AoB) ≥ det (AB) 





























−
=

+
=

∏∏

1
detA

b

1i

detB

b

1i

ii

n

ii

n
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Örnek 3.8.2 :  

A= 

















−

−−

−−

310

222

124

ЄMn ve B = 

















−

−−

−

430

122

013

ЄMn 

det A = 2    det B = 7 

AoB= 

















1230

244

0212

ise det (AoB) = 408 

1i

3n

=

=

∏ bii = b11.b22.b33 = 24, 

1i

3n

=

=

∏ aii = 24 

det(AoB) + detA.detB≥(det(A) 

1i =

∏
n

bii+(detB) 

1i

n

=

∏ aii ), (1)  

408+2.7≥2.24+7.24 

422>216 olup (1) eşitsizlik sağlandı. 

AB= 

















−

−−

−−

13112

101210

2516

ise det (AB) = 14 

7

24

detB

b

1i

ii

n

=
=

∏

 
2

24

detA

b

1i

ii

n

=
=

∏
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det (AoB) ≥ det (AB) 





























−
=

+
=

∏∏

1
detA

a

1i

detB

b

1i

iiii

nn

 

408>14. 







−+ 1

2

24

7

24
 

408>202 olup (2) eşitsizlik sağlandı. 

3.8.3. Livrezhu Eşitsizliği (Chen 2002) 

Oppenheim eşitsizliğini geliştirerek aşağıdaki eşitsizliğe ulaşmışlardır. 

A=(aij) ЄMn ve B=(bij) ЄMnUS +
n ise 

det (AoB) ≥a11b11

2k

n

=

∏
































=

∑

−

+
−− ii

kiik

1k

k

1k

kkk

a

aa

1i

1k

detB

detB

detA

detAb
 

Örnek 3.8.3:  

A= 

















−

−−

−−

310

222

124

ЄMn ve B = 

















500

030

002

ЄMnUS +
n  

AoB= 

















1500

060

008

det(AoB) = 720 

a11b11=8 
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2k

n

=

∏
































=

∑

−

+
−− ii

kiik

1k

k

1k

kkk

a

aa

1i

1k

detB

detB

detA

detAb
ise (1)  

(2) 
11

1111

ii

kiik

22

3223

11

3113

ii

kiik

a

aa

1i

1

,
a

aa

ii

2

a

aa

a

aa

a

aa
=

=

∑+=

=

∑  (3)  

(2) = 
4

.1 a−
+1=1 (3) = 4 

 





















=

∑+

(3)

a

aa

1i

1

.
deB

detB

detA

detAb

ii

kiik

1

2

1

222
 (a)  

= 66.114.
15

10

4

12.3
=+  

 





















=

∑+

(2)

a

aa

1i

2

.
deB

detB

detA

detAb

33

3ii3

2

3

2

333
 (b)  

= 866.21.
10

6

12

4.5
=+  

(1) = (a).(b) ise (1) = 33.442533 

a11b11.(1) = 8 x 33.442533 = 267.540 olup 

720 > 267.540 olur, böylece Livre Zhu eşitsizliği sağlanır. 
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Lemma 3.8.1. (Chen 2002) Eğer AЄHn, BЄHnUS +
n  ise AoB ЄHndir. 

Örnek 3.8.4:  

A= 

















−+−

−

−−+

35ii4

5i2i2

i4i21

ЄHn B = 

















−−

++

−

112

1131

2311

ii

ii

ii

ЄHnUS +
n  

AoB = 

















−+

+−+

−

35i-5i82

5i5255

i825i-51

i ЄHn olup lemma 3.8.1 sağlanır. 

Lemma 3.8.2. (Chen 2002) Eğer AЄS +
n ve BЄS +

n ise AoB ЄS +
n  olur. 

Örnek 3.8.5:  

A= 

















221

211

112

ve B = 

















100

030

002

 ЄS +
n  

AoB= 

















220

030

004

 ЄS +
n  olup Lemma 3.8.2 sağlanır. 

Lemma 3.8.3. (Chen 2002) Eğer A=(aij) ЄRnxn∩Hn, aii > O (∀ iЄN) ise    

detA≥ detV(A) >O 

İspat: AЄHn ise D gibi pozitif diagonal bir matris oluşur. Bunun gibi AD’de 

tam manasıyla diagonal olur, şöyle ki;  

iiida >
ij ≠

∑
jijda  (j=1, 2, …, n)  

Şimdi aiidi> O (∀ iGN) için det (AD) ≥detV(AD) > O elde edilir. 

det(AD) = detA.detD ve detV(AD) = detV (A).detD olduğundan 

detA≥detV(A) >O elde edilir. 
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Lemma 3.8.4. (Chen 2002) Eğer A ve B’nin her ikisi MnUS +
n ye aitse, AoB bir 

P-matrisdir. 

İspat: Aşağıdaki iki durumu ayırt edebiliriz. 

1. durum: Lemma 3.8.2.’ye göre, eğer AЄS +
n

 ve BЄS +
n

iseAoBЄS +
n

dir. Bu 

nedenle AoB ayrıca bir P-matrisdir. 

2. durum: Eğer A ve B’den biri Mn’ye aitse, AoBЄHn olur. 

AoB bir reel pozitif değerli H-matris olduğundan bunun bütün alt matrisleri 

için geçerlidir. Lemma 3.8.3’ü AoB’nin bütün alt matrisleri için uygularsak AoB’nin bir 

P-matris olduğu sonucuna ulaşırız. 

Örnek 3.8.6:  

A= 
















−

−

101

010

101

ЄMnUS +
n
 B= 

















500

030

002

 ЄMnUS +
n
 

AoB = 

















500

030

002

ЄP olup, Lemma 3.8.4 gerçekleşir. 

Teorem 3.8.1. (Chen 2002) 

a) Eğer A = (aij) ve B= (bij) ’ler MnVS +
n ’e aitse, daha sonra şu gerçekleşir:  

det(AoB) ≥det(AB) 

2k =

∏
n









−+

−−
1

det

det

det

det 11

k

kkk

k

kkk

B

Bb

A

Aa
 

b) Eğer A=(aij) ЄHn ve B=(bij) ЄHn olursa 

det u(AoB) ≥ det(u(A) u(B) ) 

2k

n

=

∏ 









−+

−−
1

det

)(det

)(det

)(det 11

k

kkk

k

kkk

B

BUb

AU

AUa
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İspat: 

a) Ak ve Bk her ikisi de MnUS +
n ’e ait olsun. 

x>akk-
1det

det

−k

k

A

A
 ve y>bkk-

1det

det

−k

k

B

B
, xy>akkbkk-

)det(

)det(

11 −− kk

kk

oBA

oBA
 

olduğundan ∀∑>O için;  









∑+−

− 1det

det

k

k
kk

A

A
a  








∑+−

− 1det

det

k

k
kk

B

B
b > akkbkk -

)det(

)det(

11 −− kk

kk

oBA

oBA
 

∑→0 durumunda limiti alındığında sabit değerler olan determinant 

değerlerinde hiçbir değişiklik olmayacaktır. Sadece ∑=O olur. 









−

− 1det

det

k

k
kk

A

A
a 








−

− 1det

det

k

k
kk

B

B
b ≥akkbkk- 

)det(

)det(

11 −− kk

kk

oBA

oBA
 

Buradan şunu elde ederiz:  

Akkbkk-akk 
1det

det

−k

k

B

B
-bkk

1det

det

−k

k

A

A
+

11det

det.det

−− kk

kk

BA

BA
≥akkbkk-

)det(

)det(

11 −− kk

kk

oBA

oBA
 

)det(

)det(

11 −− kk

kk

oBA

oBA
≥akk

1det

det

−k

k

B

B
-bkk

1det

det

−k

k

A

A
-

11detdet

det.det

−− kk

kk

BA

BA
 (1)  

Buradan;  

)det(

)det(

11 −− kk

kk

oBA

oBA
≥

11detdet

det.det

−− kk

kk

BA

BA








+

−−

k

kkk

k

kkk

B

Bb

A

Aa

det

det

det

det 11
 

denklemi açılıp payda eşitlenirse;  

)det(

)det(

11 −− kk

kk

oBA

oBA
≥

11

1

11

1

det.detdet

detdetdet

detdet.det

det.detdet

−−

−

−−

−
+

kkk

kkkkk

kkk

kkkkk

ABB

ABBb

BAA

BAAa
 

-
11detdet

detdet

−− kk

kk

BA

BA
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)det(

)det(

11 −− kk

kk

oBA

oBA
≥akk

1det

det

−k

k

B

B
+ bkk

1det

det

−k

k

A

A
-

11detdet

det.det

−− kk

kk

BA

BA
 (1)  

)det(

)det(

11 −− kk

kk

oBA

oBA
≥

11detdet

det.det

−− kk

kk

BA

BA








+

−−

k

kkk

k

kkk

B

Bb

A

Aa

det

det

det

det 11
 

2k

n

=

∏ )det(

)det(

11 −− kk

kk

oBA

oBA
≥

2k

n

=

∏
11detdet

det.det

−− kk

kk

BA

BA








+

−−

k

kkk

k

kkk

B

Bb

A

Aa

det

det

det

det 11
 

Sonuçta;  

det(AoB) ≥ det(AB) 

2k

n

=

∏ 







−+

−−
1

det

det

det

det 11

k

kkk

k

kkk

B

Bb

A

Aa
olur. 

b) AkЄHk ve BkЄHk (2≤k≤n), ∀∑>O için 









∑+−

− )(det

)(det

1k

k
kk

AU

AU
a  








∑+−

− )(det

)(det

1k

k
kk

BU

BU
b > 

)(det

det

11 −−

−
kk

kk
kkkk

oBAU

oBUA
ba  elde ederiz. (2)  

Şimdi (2) (1)’in kanıtlandığı gibi benzer bir durumla kanıtlanabilir. 

Örnek 3.8.7:  

A= 
















−

−

101

010

101

ЄMnUS +
n  ve B= 

















500

030

002

 ЄMnUS +
n  ise 

AoB = 

















500

030

002

⇒ 30 = det (AoB) olur. 
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A.B= 

















−

−

502

030

502

 ⇒ det (A.B) =0 olur. 

det (AoB) ≥ det (AB) 

2k

n

=

∏ 







−+

−−
1

det

det

det

det 11

k

kkk

k

kkk

B

Bb

A

Aa
teoremi 

30≥0. (

2k

n

=

∏ 







−+

−−
1

det

det

det

det 11

k

kkk

k

kkk

B

Bb

A

Aa
)  

30≥0 olduğundan gerçeklenir. 

Önerme 3.8.1. 

A= (aij) ve B = (bij) R
nxn∩Hn de tanımlı olsun, 

1i =

∏
n

aiibii>O olup,  

det(AoB) ≥det(u(A) u(B) ) 

2k =

∏
n











−+

−−
1

)(det

)(det

)(det

)(det 11

k

k
kk

k

kkk

Bu

Bu
b

Au

Aua
dir. 

İspat:  

D=diag(d1, d2, …, dn), nxn tipinde köşegen matris olarak tanımlansın. 

Eğer x>0 ise Sgn(x) = 1 olduğundan di=Sgn(aiibii) (∀ iЄN) olarak tanımlanır. 

Çünkü;  

1i

n

=

∏ aiibii > O dır ve 
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1i =

∏
n

│aiibii│=

1i

n

=

∏ aiibiidi = (

1i =

∏
n

aiibii) (

1i

n

=

∏ di) olur. 

det D = 

1i =

∏
n

di = 1 olduğunu biliyoruz. Sonuç olarak, 

det (AoB) = det [(AoB) ∆] = det [Ao(BD) ] olur. 

AЄRnxn ∩Hn ve BЄRnxn
 ∩Hn ise Lemma 2.1 tarafından;  

Ao(BD) ЄRnxn ∩Hn ve Ao(BD) pozitif diagonal; │a11b11│, │a22b22│, …, 

│annbnn│ olur. 

A=(aij) ЄRnxn ∩Hn, aii > O ise det A≥detU(A) >O lemması tarafından 

det(AoB) ≥detU(AoB) dir. 

Teorem 3.8.1’den önermemiz geçerlidir. 

Önerme 3.8.2. 

A= (aij) ve B = (bij) MnUS +
n ye ait olursa,  

det(AoB) ≥det(AB) olur. 

İspat: 

Hadamard-Fischer eşitsizliğine göre;  

k

kkk

A

Aa

det

det 1−
≥1 ve 

k

kkk

B

Bb

det

det 1−
≥1(2≤k≤n)  

k

kkk

A

Aa

det

det 1−
+

k

kkk

B

Bb

det

det 1−
-1≥1 ise Teorem 3.8.1’den det (AoB) ≥detAB olur. 
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3.8.4. Önceki Sonuçların İlişkisi (Chen 2002) 

Öneri 3.8.1. 

A= (aij) ve B = (bij) MnUS +
n
(n≥2)’de tanımlı olsun. 

2k

n

=

∏ 







−+

−−
1

det

det

det

det 11

k

kkk

k

kkk

B

Bb

A

Aa ≥





























−
=

+
=

∏∏

1
det

1

det

1

A

a

i

B

b

i

ii

n

ii

n

 

İspat:  

n=2 için önerimizin doğru olduğunu kolayca görebiliriz. 

n>2 için, önerimizin n-1 durumu için doğru olduğunu farzederek tanıtım 

hipotezini takip edelim. 

2k

n

=

∏ 







−+

−−
1

det

det

det

det 11

k

kkk

k

kkk

B

Bb

A

Aa
 

≥ 





























−
=

+
=

−−

∏∏

1
det

1

det

1

11 n

ii

n

n

ii

n

A

a

i

B

b

i








−+

−−
1

det

det

det

det 11

B

Bb

A

Aa nnnnnn
 

= 
1

1

det

1

det

1

det

1

−

−

=
+

=
+

=

∏∏∏

n

ii

n

ii

n

ii

n

B

b

i

B

b

i

A

a

i








−

−
1

det

det 1

A

Aa nnn
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+ 







−

= −

−

∏

B

Bb

A

a

i nnn

n

ii

n

det

det

det

1 1

1
 

- 







+







−+








−

−−
11

det

det
1

det

det 11

B

Bb

A

Aa nnnnnn
 

= 





























−
=









−+

=
−

=

−

−

−

∏∏∏

1
det

1
1

det

det

det

1

det

1

1

1

1

n

ii

n

nnn

ii

n

ii

n

B

b

i

A

Aa

B

b

i

A

a

i
 

+ 





























−
=









−

−

−

−

∏

1
det

1
1

det

det

1

1

1

n

ii

n

nnn

A

a

i

B

Bb
-1 

≥ 
B

b

i

A

a

i

ii

n

ii

n

det

1

det

1 =
−

=

∏∏

-1 olur. 

Öneri 3.8.2. 

A= (aij) ЄMn ise 

1det

det

−kkk

k

AA

A
≤1-

1

1

=

∑

−

i

k

kkii

kiik

aa

aa
(2≤k≤n). 
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İspat:  

α=(ak1…akk-1) ve ß=(a1k…ak-1k) 
T değerlerini alalım. 

Buradan detAk = detAk-1 (akk-αA 1
1

−
−k

B)  

Ak-1 ≤diag(aii, …, ak-1k-1)  

αA 1
1

−
−k ß≥αdiag 









−− 1111

1
,...,

1

kkaa
 

ß=akk 

1

1

=

∑

−

i

k

kkii

kiik

aa

aa
ve böylece 

detAk ≤detAk-1 




























=
∑
−

−
kkii

kiik
kkkk

aa

aa

i

k
aa

1

1
 

= akk detAk-1 













=
∑
−

−
kkii

kiik

aa

aa

i

k

1

1
1 . 

akkdetAk-1>O olduğundan önerimizin geçerli olduğunu iddia ederiz. 

Sonuç: 

a11b11

2k

n

=

∏
11detdet

detdet

−− kk

kk

BA

BA





























=
∑
−

+
−

kkii

kiik

k

kkk

k

kkk

aa

aa

i

k

A

Aa

B

Bb

1

1

det

det

det

det 1
 

= det(AB) 

2k

n

=

∏




























=
∑
−

+
−

kkii

kiik

k

kkk

k

kkk

aa

aa

i

k

A

Aa

B

Bb

1

1

det

det

det

det 1
. 

Öneri 3.8.3 tarafından;  

k

kkk

k

kkk

A

Aa

A

Aa

det

det
1

det

det 11 −−
−







−















=
∑
−

kkii

kiik

aa

aa

i

k

1

1
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k

kkk

A

Aa

det

det 1−















=
∑
−

−
kkii

kiik

aa

aa

i

k

1

1
1 -1≥O 

ve böylece;  

k

kkk

A

Aa

det

det 1−
+

k

kkk

B

Bb

det

det 1−
-1 

≥
k

kkk

B

Bb

det

det 1−
+

k

kkk

A

Aa

det

det 1−















=
∑
−

kkii

kiik

aa

aa

i

k

1

1
 

Bütün bu çalışmalarımızın asıl sonucu şu şekildedir;  

A=(aij) ve B=(bij) matrislerinin Hadamard çarpımı, AoB ile nitelendirilmiştir, 

Ak ve Bk (k=1, 2, …, n) A ve B’nin kxk altmatrisleri olmak üzere 

det(AoB) ≥det(AB) 

2k

n

=

∏ 







−+

−−
1

det

det

det

det 11

k

kkk

k

kkk

B

Bb

A

Aa
’dir. 

3.9.  P-Matrisleri İçin Bir Schur Tamamlayıcısı Eşitsizliği 

(Markham ve Smith 1998) Bu bölümde A ve B Hadamard matrisleri ve A ve B 

pozitif tanımlı matrisler için Schur tamamlayıcıları ile ilgili bir eşitsizlik ispatlandı. 

3.9.1.Pozitif Tanımlı Matrisler İçin Bir Eşitsizlik 

(Markham ve Smith 1998) A ve B n×n kompleks sayı alanı üzerinde pozitif 

tanımlı matrisler olsun. 

A= 








22

12

21

11

A

A

A

A
                                                                                                (3.9.1) 

 A11 ve A12 olarak sırasıyla k ve n-k kare olarak bölünebilir. 

Genellikle (A/A22) =A11-A12A22
-1A21

                                                                                    (3.9.2)  



44 

A’nın içindeki A22’nin ters çevrilebilir sağlandığı Schur tamamlayıcısı olarak 

çağrılır.Baştan sona (3.9.1)’deki A’nın boyutları gibi B’nin bloklara ayrıldığını 

farzettik. 

A ve B Hadamard matrisleri, A*B ile gösterilsin ve A ve B pozitif tanımlı ise 

A*B’ninde pozitif tanımlı olduğu iyi bilinir. A≥B’de A-B≥0 veya A-B’nin pozitif 

yarıtanımlı olduğu anlamındadır. Bu kısmi düzen genellikle Loewner olarak adlandırılır. 

Eğer A (3.9.1)’deki gibi parçalanırsa, A22 ters çevrilebilir ve ann ters çevrilebilir elemanı 

için Crabtree ve Haynsworth bölüm kuralını ispatlar 

((A/ann) /(A22/ann) ) =(A/A22) .                                                                   (3.9.3)  

Lemma 3.9.1. (Markham ve Smith 1998) Eğer A n×n pozitif tanımlı matris ve 

B n× r tipinde bir matris ise, sonra, 

C=A∗ (BB*)=0, sade ve sadece B=0 ise, doğru olur. 

Teorem 3.9.1. (Markham ve Smith 1998)  A ve B (3.9.1)’deki gibi bloklara 

ayrılmış n×n pozitif tanımlı matrisler ise, 

(A*B/A22*B22) ≥(A/A22*B22)                                                                     (3.9.4)  

Sade ve sadece A ve B (3.9.1)’deki gibi blok köşegen ise (3.9.4) eşitsizliği 

sağlanır. 

İspat:  

Â= 






 −

22

12

21

21
1

2212

A

A

A

AAA
ve B̂  benzer  şekilde tanımlansın. 

A22 n-k olduğundan, n-k ranklı Â  ve B̂  pozitif yarı-tanımlıdır. Bundan sonra 

BA ˆ*ˆ pozitif yarı-tanımlı (rank≥n-k) ve ayrıca 

BA ˆ*ˆ  /A22*B22≥0. Şimdi (3.9.4) eşitsizliğini 

(A/ A22) *(B12 B22
-1B21) +(A12A22

-1A21) *(B/B22) + BA ˆ*ˆ /(A22*B22) ≥0 (3.9.5) 

olarak yazabiliriz. 
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Fakat (3.9.5) eşitliğinden pozitif yarı-tanımlı matrislerin toplamı da pozitif 

yarı-tanımlıdır. Bu (3.9.4) ’ün ispatını bitirir. 

A ve B n×n pozitif yarı-tanımlı matrisler olsun ve A ve B’nin öz değerleri aynı 

artan düzende düzenlendi. Sonra, eğer det(.) determinant fonksiyon gösterirse,

 det(A*B) ≥det(A) det(B) olduğu iyi bilinir. 

λ1(A*B) ≥ λ1(AB) ≥ λ1(A) λ1(B) ve A-1*B-1≥(A*B) -1, eğer A≥B ise 

det(A) ≥det(B), B-1≥A-1 ve λk(A) ≥ λk(B), k=1, 2, …, n olduğu iyi bilinir. 

Bu Schur Tamamlayıcı formundan takip edilir ki, n≥3 için (3.9.4) eşitsizliği,  

(A/A22) 
-1*(B/B22) 

-1≥(A*B/ A22* B22) 
-1 ile denk veya eşit bir şekilde,  

(A*B/A22* B22) ≥[(A/A22) 
-1*(B/B22) 

-1]-1, bütün k=1, …, n-1için (n-k) × (n-k) 

için A ve B’nin prensibal alt matrisleri sırasıyla A22, B22 ‘dir.   

  (A/A22) *(B/ B22) ≥[(A/A22) 
-1*(B/B22) 

-1]-1 olduğundan beri bütün A22 ve 

B22 için (3.9.4) eşitsizliğini görürüz. 

 (A11* B11) 
-1≤(A*B/A22* B22) 

–1 eşitsizliğine denk şekilde,  

(A*B/A22* B22) ≤ A11* B11’dir. Son olarak, B=A değeri vurgulanarak, bizim 

eşitsizliğimiz,  

(A*A/A22* A22) ≥(A/ A22) *(A/A22) şekline dönüşür. 

Sonuç 3.9.1. Eğer A ve B (3.9.1)’deki gibi parçalanmış n×n tipinde pozitif 

tanımlı matrisler ise, 

(i) det(A*B) /det(A22* B22) ≥(det(A) det(B) ) /(det(A22) det(B22) ),  

(ii) (A/A22)
-1*(B/B22)

-1≥[(A/A22)*(B/B22) ]
-1≥(A*B/A22* B22)

-1≥ (A11* B11) 
-1,  

(iii) j=1, 2, …, k için λj(A*B/ A22* B22) ≥λj[(A/ A22) *(B/B22) ]  

Özellikle, λ1(A11* B11) ≥ λ1[(A/B) *(A22/B22) ] ≥ λ1[(A/A22) *(B/B22) ] 

≥λ1[(A/ A22) λ1 (B/B22) ]. 

İspat: (3.9.4) eşitsizliğinden 
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det(A*B/A22* B22) ≥[(A/A22) *(B/B22) ] ≥det(A/A22) det(B/B22). 

(i) det(A/ A22) ≥det(A) /det(A22) Schur’un formülüne dikkat ederek takip edilir. 

(ii) ve (iii) teoremin ifadesinden önce takip edilir.  

Örnek 3.9.1: det(A*B) /det(A22* B22) ≥(det(A) det(B))/(det(A22)det(B22)) 

eşitsizliğinin sağlandığını gösterelim. 

A=



















−−

−

−

−−

6303

3930

0363

3039

, B=



















−

−

−−

1121

1342

2431

1211

 olsun. 

A*B=



















−

−

6303

327120

012183

3039

 ise, det(A*B) =13203 

A22= 








−

−

63

39
, B22= 









11

13
 olup, A22* B22= 









−

−

63

327
=153 

det(A*B) /det(A22* B22) =86.29 olur. 

det(A) =-15.552, det(B) =-36 ise, det(A) det(B) =559.872 

det(A22) =45, det(B22) =2 ise, det(A22)det(B22) =90 

(det(A) det(B))/(det(A22)det(B22)) =0.22 olup 

86.29>0.22 dir. 
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