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ÖZET 
Cansel, B. Box-Jenkins Zaman Serisi Analiz Yöntemi ile İleri Beslemeli 
Yapay Sinir Ağları Tahminlerinin Karşılaştırması. Hacettepe Üniversitesi 
Sağlık Bilimleri Enstitüsü Biyoistatistik Programı Yüksek Lisans Tezi, 
Ankara, 2006. Box Jenkins zaman serileri analizi yöntemi, kestirimlerde 
yaygın bir şekilde kullanılan kabul görmüş bir yöntemdir. Box-Jenkins 
yöntemi, doğrusal olmayan zaman serilerinde yetersizdir. Diğer taraftan 
yapay sinir ağları doğrusal ve doğrusal olmayan modellemede geleneksel 
istatistik tahmin yöntemlerine göre alternatif olarak kullanılmaktadır. Yapay 
sinir ağlarındaki en temel dezavantaj ise uygun olan model mimarisini 
belirlemedeki güçlüklerdir. Bu çalışmada, Yapay Sinir Ağları ve Box-Jenkins 
yöntemlerinin kestirim aracı olarak kullanılmasına ilişkin ayrıntılar 
açıklanmıştır. Geri yayılım öğrenme algoritmasının mantığı gösterilmiştir. Her 
iki yöntem ile,  Ankara İli SO2 ölçümlerine ilişkin 83 adet aylık veri kullanılarak 
kestirim yapılmıştır. Modellemede yer alan bazı önemli aşamalar yöntemler 
bazında açıklanmıştır. SO2 ölçümlerine ilişkin veri örneği ile kurulan modeller, 
performans istatistikleri ile yorumlanmıştır. 
 
 
Anahtar Kelimeler: Kestirim, Zaman Serileri, Yapay Sinir Ağları.  
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ABSTRACT 
Cansel, B. Comparison between the Box-Jenkins and feed forward 
artificial neural network forecasts in time series analysis method. 
Hacettepe University Institute of Health Sciences, Ms Thesis in 
Biostatistics, Ankara, 2006. Box Jenkins time series analysis methodology 
is an acceptable prediction methodology that has been widely used. Box-
Jenkins methodology is inefficient for nonlinear series. Whilst artificial neural 
network has been used as an alternative to the traditional statistical 
forecasting methods for linear and non-linear modelling. Most basic 
disadvantage of the artificial neural network is the difficulties in the identifying 
appropriate model architechture. This study presents in detail Box-Jenkins 
and artificial neural network methodologies as a forecasting tool. Logic of the 
Back Propogation algorithm is shown. 83 monthly SO2 measurements data in 
Ankara municipality are forecasted by both methodologies. In modelling 
some important methodology based stages are described. Constructed 
models with SO2 data are analysed by the performance statistics. 
 
 
Key Words: Forecasting, Time Series, Artificial Neural Network  
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1.GİRİŞ 
 

Kestirim (öngörü) kavramı, bir değişkenin belirli varsayımlar altında 

gelecekte alabileceği değerlerin önceden yaklaşık olarak belirlenmesi olarak 

tanımlanır. Zaman serisi çözümlemesi ile öngörü, incelenen bir değişkenin şimdiki 

ve geçmiş dönemdeki gözlem değerlerini kullanarak ve birtakım varsayımlar altında 

öngörü değerlerinin hangi sınırlar arasında geçekleşebileceğini ortaya koymak için 

yapılan uğraşlardır (1).  

 

Tıbbi karar uygulamalarında amaç doğru tanıdır. Doğru tanıda yanlış kararlar 

alma riskinin getireceği olumsuzlukları ortadan kaldırılabilmek üzere, uzman 

sistemler, tıbbi görüntü analizi, konsültasyon, literatür vb. karar destek sistemlerinin 

yanı sıra öngörülerde, gerek zaman serisi analizinden gerekse yapay sinir ağlarından 

(YSA) sıklıkla faydalanılmaktadır. Öngörüler daima, karar vericilerin üstlendiği 

riskleri azaltarak  karar vericiye destek olmaktadır. Tıbbi tanılara ilişkin hesapsal 

güçlükleri çözmek üzere Yapay Sinir Ağları yönteminden artan sayıda uygulamalar 

ile yararlanıldığı görülmüştür. Yapay Sinir Ağları elde edilen deneyimler ve teorik 

derinliği ile kayda değer ölçüde hatasız ve kesin başarı elde etmesi bakımından, diğer 

kalıplaşmış uygulamalara göre, hala genç bir disiplindir. Son yıllarda özellikle tıbbi 

fizik alanındaki tanı uygulamalarında anlamlı katkıları bulunmaktadır.  

 

Tıbbi tanıların çok çabuk verilmesinin hastaya sağlayacağı yararı tartışmak 

bile gereksizdir. Örneğin, ağır kafa yaralanması yaşayan hastaların yarısı genellikle 

36 saat içinde ölmektedir. Bunun yanı sıra nörolojik tanıda kapsamlı testler ortalama 

24 saatte gerçekleştirilebilmektedir. Dolayısıyla, karar destek anlamında YSA 

teknolojisi ile geliştirilen uygulamalardan yararlanılması, nörolojik bileşkelerin 

öğrenilmesine yönelik testlerin daha hızlı, daha sık yapılabilmesi tıbbi tanıdaki başarı 

bakımından önemli bir kazanımdır (41). Herhangi bir değişkenin gelecekte alacağı 

değerlerin kestirimi, değişkenin geçmiş dönemlerdeki gözlem  değerleri kullanılarak  

oluşturulan modeller yardımı ile sağlanır. Kestirim analizi model belirleme ve 

kestirim aşamasından oluşur. Kestirim modelinin verinin geçmiş değerleri ile en iyi 
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uyumu sağlayan ve geleceği en iyi temsil eden nitelikte olması öngörülerdeki 

başarıyı arttırır. 

  

 Model kurma aşamasının başlangıcında ilgili probleme ait veriler sağlıklı bir 

şekilde toplanır ve toplanan verilere uygun model belirlenir. Belirlenen modelin 

matematiksel biçimi atanarak, var olan veriler yardımı ile modelin parametreleri 

belirlenmeye çalışılır. Modelin uyumu hata testleri ile sağlanabilir. Eğer kurulan 

model uygun bir model ise, gelecek için kestirimler yapılabilir. 

 

 Kestirim yöntemleri, nitel kestirim yöntemleri ve nicel kestirim yöntemleri 

olmak üzere iki şekilde sınıflandırılabilir. Her iki yöntemin çıkış noktası ilgili 

değişkene ait gözlem değerleridir. Geçmiş ve şimdiki dönem gözlem değerlerinden, 

gelecek dönem gözlem değerleri belirli kurallar çerçevesinde kestirilir (2). 

 

 Nicel kestirim yöntemleri ise istatistiksel yöntemlere dayanır. Nicel kestirim 

yöntemlerinde nasıl kestirimde bulunulduğu net olarak bellidir ve işlemler 

matematikseldir. Geçmiş gözlem değerleri kullanılarak sürecin oluşmasına katkıda 

bulunan ilişkiler belirlenir ve bu ilişkilerin geleceğe yansıması belirlenmeye çalışılır. 

Nicel kestirimde bulunabilmek için iki temel yaklaşım kullanılmaktadır: neden-sonuç 

ilişkisine dayanan modeller ve zaman serileri analizine dayalı modeller (3). Neden-

sonuç ilişkisine dayanan kestirim modelleri, regresyon yöntemi ve ekonometrik 

modellerdir. Regresyon yöntemi, bir ya da daha fazla değişkenin üzerinde etkili 

olduğu bir başka değişkenle aralarındaki ilişkinin matematiksel olarak ifade 

edilmesidir. Böyle bir yöntemde, etkilenen değişkene bağımlı değişken ve etkileyen 

değişkene(lere) de bağımsız değişken(ler) adı verilir. Bağımlı değişken ile bağımsız 

değişken(ler) arasındaki neden sonuç ilişkisi geçmiş gözlem değerleri yardımı ile 

belirlenir. Daha sonra bağımsız değişkenlerin gelecekteki çeşitli değerleri için 

bağımlı değişkenin alacağı değer kestirilmeye çalışılır. 

 

 Ekonometrik modeller, neden-sonuç ilişkisi gösteren iki ya da daha çok 

regresyon modelinden oluşan denklem sistemidir. Dolayısıyla, ekonometrik 

modellerde birden fazla bağımlı değişken bulunur. Ekonometrik modellerde tüm 
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bağımlı ve bağımsız değişkenler arasındaki ilişkiler eşzamanlı olarak incelenir. 

Böylece, bağımlı ve bağımsız değişkenler arasındaki ilişkiler daha gerçekçi bir 

şekilde değerlendirilir (2). 

 

 Bir zaman serisi, bir değişkene ilişkin zamana göre sıralanmış gözlem 

değerleridir. Zaman serisi analizi, kestirimde bulunulacak değişkenin geçmiş zaman 

serisini kullanarak gelecek değerlerin kestirimi için model geliştirmede kullanılır. 

Model geliştirme, ilgili değişkene ait zaman serisinin analiz edilmesi, serinin ana 

eğiliminin ve özelliklerinin belirlenmesine dayanır. Serinin ana eğilimini ve 

özelliklerini yansıtacağı düşünülen bir model seçilir ve varolduğu seri değerleri 

kullanılarak modelin parametreleri yaklaşık olarak bulunur. Serinin gelecekte de aynı 

özellikleri koruyacağı ve aynı eğilimi göstereceği varsayılarak, belirlenen model 

yardımı ile gelecek dönem değerleri kestirilmeye çalışılır (2). 

 

 Zaman serileri analizi için yaygın olarak kullanılan bazı yöntemler vardır. 

Doğrusal zaman serilerinin analizinde oldukça başarılı sonuçlar veren Box-Jenkins 

modelleri bu tekniklerin en önemlilerindendir. Doğrusal ve durağan süreçlerde ya da 

durağan olmayan fakat bazı dönüşümlerle durağanlaştırılabilen serilerde Box-Jenkins 

yöntemi başarılı sonuçlar verebilir. Ancak, gerçek hayata ilişkin seriler genellikle 

doğrusal değildir. Bu nedenle doğrusal olmayan zaman serilerini modellemede farklı 

yöntemlere gereksinim duyulur.  

 

 1980'li yılların sonlarından başlamak üzere zaman serilerine ilişkin 

kestirimler için kullanılmakta olan yöntemlerden biri de Yapay Sinir Ağları (YSA) 

yöntemidir. YSA, girdi ve çıktı değişkenleri arasındaki herhangi bir ön bilgiye 

gereksinim duymadan doğrusal ve doğrusal olmayan modellemeyi 

sağlayabilmektedir. Bu nedenle YSA, kestirim  aracı olarak diğer yöntemlere göre 

daha genel ve esnektir (4). 

 

 YSA'nın bir kestirim aracı olarak kullanılmasına ilişkin bir çok araştırmacı 

tarafından yapılmış çok sayıda çalışma olmasına rağmen, YSA'nın performansını 

etkileyen anahtar faktörlerin neler olduğu konusunda kesin bir yargı yoktur. Bu 
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konuda Zhang ve diğ.(6)’leri bir benzetim çalışması yaparak YSA'nın performansını 

etkileyebilecek ana faktörleri belirlemeye çalışmıştır. Yazarlar, sözü edilen 

faktörleri; girdi nöronu sayısı, gizli nöron sayısı ve eğitim kümesi büyüklüğü olarak 

incelemişlerdir. Belirtilen bu faktörlere ek olarak, eğitim algoritması, veri kümesinin 

düzenlenmesi, kestirim dönemi uzunluğu faktörlerinin de YSA performansı üzerinde 

etkili olduğu düşünülmektedir. Bu nedenle bütün bu faktörlerin etkisini araştıracak 

bir çalışmanın faydalı olacağına inanılmaktadır. 

 

 Bu çalışmada, YSA ile geliştirilen model ile zaman serileri analizinde sıklıkla 

kullanılan ve başarılı sonuçlar üreten  Box-Jenkins modelleri yönteminin genel 

tanımlamaları yapılarak, gerçek veri uygulaması üzerinden elde edilen performans 

istatistikleri yardımı ile modeller  karşılaştırılacaktır. YSA ile bulunan sonuçların 

etkinliği, literatüre uygun şekilde, Box-Jenkins modelleri sonuçları ile 

karşılaştırılarak araştırılmıştır. Box-Jenkins modellerinin geniş kabul görmesi, 

geliştirilen her yeni model için iyi bir karşılaştırma aracı olmalarını sağlamıştır. 

Ayrıca, Al-Saba ve Al-Amin (7) Box-Jenkins modellerinin; bileşenlerine ayırma 

(decomposition), basit üstel düzeltme ve Winters Yöntemi gibi diğer kestirim 

yöntemlerinden daha doğru sonuçlar verdiğini belirtmektedir. 

 

 Bu çalışma, amacı doğrultusunda şu şekilde planlanmıştır: Bölüm 2'de zaman 

serileri analizi için Box-Jenkins modelleri açıklanmıştır. Bölüm 3'te YSA hakkında 

ayrıntılı bilgi verilmiş, bilinen geri yayılım öğrenme algoritmasının mantığı 

gösterilmiştir. Bölüm 4’de, YSA'nın kestirim aracı olarak kullanılmasını 

içermektedir. YSA'nın kestirim  aracı olarak kullanılmasına ilişkin literatür taraması 

ve önemli ayrıntılar bu bölümde açıklanmıştır. Bölüm 5’de, gerçek zaman serileri 

örneği olarak ele alınan; Refik Saydam Hıfszısıhha Başkanlığı’ndan alınan, Ankara 

İli 1999 Yılı-2005 (Kasım Sonu) itibariyle, SO2 ölçümleri ortalamasına ilişkin 83 

adet aylık veri ile kestirim çalışmaları yapılmıştır. Sözü geçen veri üzerinden Box-

Jenkins modellerine uygun olarak üretilen ARIMA modeli ve YSA teknikleri ile elde 

edilen model ve sonuçlarının performans istatistiklerine yer verilmiştir. 
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2.  ZAMAN SERİLERİ ANALİZİ  
 

2.1. Zaman Serisi 
 

 Zaman serisi, zaman sırasına konmuş gözlem değerleri kümesi olarak 

tanımlanabilir. Zaman serisinde ilgilenilen özellik bir değişkendir. Bu değişken 

zaman içerisinde çeşitli nedenlere bağlı olarak farklı değerler alır. Dolayısıyla zaman 

serisi, zaman sırasına konmuş değişken değer kümesi olarak ifade edilebilir (2). 

Zaman aralıkları her seride farklı farklıdır. Saatlik, günlük, haftalık, aylık, üç aylık, 

yıllık veya daha farklı zaman aralıklarına göre değer almış zaman serileri olabilir. Bir 

zaman serisinde, t, zaman devresini, Yt ise değişkenin t dönemindeki gözlem 

değerini gösterir. 

 

 Zaman serisini oluşturan değerler kümesi sürekli bir küme ise zaman serisinin 

sürekli olduğu, eğer küme kesikli ise zaman serisinin kesikli olduğu söylenebilir. 

Kesikli bir zaman serisinden alınan gözlem değerleri Yt1 , Yt2, ….., Ytn olarak 

gösterilebilir. t1, t2,…..,tn gözlem zamanlarını göstermektedir. Gözlem zamanları 

arasındaki fark eşittir ve sabittir. Kesikli zaman serilerinde gözlem zamanları 

arasındaki fark eşit ve sabit olmayabilir. Kesikli zaman serileri iki şekilde elde 

edilebilir: (8) 

 

 1. Sürekli bir zaman serisinden örnekleme yapılarak, 

 2. Bir değişkenin değerini belli bir zaman diliminde gözleyerek. 

 

 Zaman serileri için bir başka sınıflandırma da seriyi oluşturan değişkenin 

ortalama ve varyansının zaman boyunca gösterdiği değişkenliğe göre yapılmaktadır. 

İlgili değişkenin ortalama ve varyansı zaman boyunca sabit ve çeşitli gecikmelerde 

kovaryansı t'ye bağlı değil ise, zaman serisine durağan, eğer serinin ortalama ve 

varyansı zamana bağlı olarak değişiyorsa seriye durağan olmayan zaman serisi denir. 
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2.2. Zaman Serilerinin Özellikleri  
 

 Bir zaman serisinde düzenli ya da düzensiz çeşitli değişmeler olabilir. Zaman 

serilerinde görülen düzenli değişmeler genel ve sürekli nedenlerin etkisi sonucu 

meydana gelirken, düzensiz değişmeler geçici ve rasgele nedenlerin etkisinden 

oluşur. 

 

 Ancak bir çok zaman serisi, tutarlı bir davranış yapısı gösterir. Bir zaman 

serisi kestirimi yapabilmek için bu davranış yapısının belirlenmesi ve geleceğe 

yansıtılması gerekir. Zaman serilerinde genel olarak görülen davranış yapıları 

aşağıdaki gibi özetlenebilir (13): 

 

 1. Uzun dönem eğilimi: Trend 

 2. Periyodik dalgalanmalar 

 3. Çevrimsel değişmeler  

 4. Düzensiz dalgalanmalar 

 

2.2.1. Trend (Eğilim) 
 

 Trend, bir zaman serisinde görülen sürekli artış ya da sürekli azalış eğilimidir. 

Trendin biçiminin bilinmesi, işletmelerin uzun döneme göre süresi sınırlanmış (uzun 

vadeli) plan ve programlarının en iyi biçimde düzenlenmesine olanak tanır. Trend, 

genel ve sürekli nedenlerin etkisinden dolayı ortaya çıkar. 

 

2.2.2. Belirli Aralıklarla Yinelenen (Periyodik) ve Mevsimlik 
 Dalgalanmalar 
 

 Eşit aralıklarla düzenli bir biçimde tekrarlanan dalgalanmalara periyodik 

değişme adı verilir. Birbirini izleyen iki en yüksek veya en düşük değişme arasında 

geçen süreye de değişimin periyodu denir. Periyodik değişme, değişmenin 

tamamlanması için geçen sürenin uzunluğuna göre adlandırılır. Günlük, haftalık, 
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aylık, yıllık vb. periyodik değişmeler olabilir. En önemli periyodik değişme 

mevsimlik değişmedir. Bu sebeple mevsimlik değişme ifadesi de sıklıkla kullanılır. 

Mevsimlik değişmeler bir yıldan kısa süreli ay ve üç aylık zaman serilerinde 

görülebilir. Bir yıldan daha uzun süreli zaman serilerinde mevsimlik değişme 

görülmez (2).  

2.2.3. Çevrimsel (Devri) değişmeler 
 

 Bir yıldan uzun fakat değişik sürelerle tekrarlanan dalgalanmalardır. 

Çevrimsel değişmelerin süreleri çoğunlukla 3-15 yıl arasında değişir. Genel ve 

sürekli nedenlerin ortaya çıkardığı çevrimsel değişmeler az olarak bazı ekonomik 

zaman serilerinde görülür. Bir çok zaman serisinde çevrimsel (devri) değişme 

görülmez. 

 

2.2.4. Düzensiz değişme 
 

 Ne zaman ne biçimde meydana geleceği bilinmeyen dalgalanmalardır. 

Düzensiz değişmelerin nedeni geçici ve raslantısal nedenlerlerdir. Düzensiz 

değişmeler her zaman serisinde bulunabilir. 

 

 Şekil 2.1.'de, zaman serilerinin özellik yapılarına ilişkin grafikler 

gösterilmiştir. Şekil 2.1.a, zaman boyunca sabit bir düzeyde kalan bir süreci 

göstermektedir. Bu süreç sadece raslantısal nedenlerlerden dolayı değişkenlik 

göstermektedir. Şekil 2.1.b'de sürecin çevrimsel ve raslantısal nedenlerden 

değişmelerin etkisinde olduğu görülmektedir. Şekil 2.1.c'de süreç düzeyi mevsimsel 

bir değişkenlik göstermektedir. Şekil 2.1.d'de ise süreç artan bir trend 

göstermektedir. Bir çok zaman serisi modeli bu yapılardan birini ya da bunların 

bileşimini temsil etmek üzere geliştirilirler (13). 

 

 Zaman serisinin temelindeki yapı tanımlandıktan sonra bu yapının davranışı 

matematiksel bir modelle ortaya konmalıdır. Hiçbir matematiksel modelin zaman 

serisindeki her bir değeri tam dengi ile üretemeyeceği açıktır. Gerçek zaman serisi 
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değerleri ile matematiksel formüllerle üretilen seri değerleri arasında bir fark 

olacaktır. Bundan dolayı zaman serisinin iki bileşenden oluşacağı söylenebilir (8)

 Zaman serisi = model değeri + hata     [2.1] 

 Yt = Ft + et        [2.2] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Şekil 2.1. Tipik zaman serisi yapıları (13) 

 

2.3. Zaman Serilerinin Gösterimi 
  

 Zaman serilerini göstermek üzere kullanılan modellerin çoğu matematiksel 

modellerdir. Örneğin, gözlem değerleri bir olasılık dağılımından alınan rasgele 

S S F W S S F W S F W

1979 1980 1981 1982
Zaman 

a) Raslantısal değişmeler c) Mevsimsel değişmeler

Y Y

Zaman 

Zaman Zaman 

1972 73 74 75 76 77 78 79 80 81 82

b) Çevrimsel değişmeler d) Trend

Y Y
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örneklerse ve dağılımın ortalaması zamana bağlı olarak değişmiyorsa, aşağıdaki sabit 

model bu durum için kullanılabilir. 

 

 Yt = μ + εt 

 

 Yt, t anındaki gözlem değeri, μ, sürecin ortalaması, εt hata terimi ya da gürültü 

değişkeni olarak adlandırılır. Hatta raslantı değişkeninin, beklenen değerinin sıfır ve 

genellikle varyansının V (εt) = σ2
ε  sabit olduğu kabul edilir. Anılan model Şekil 

2.1.a’daki süreç için uygun bir modeldir. 

 

 Şekil 2.1.d’deki süreci temsil eden modeli göstermek için sürecin 

ortalamasının zaman bağlı olarak doğrusal değiştiği varsayılmış ve doğrusal bir trend 

modeli kullanılmıştır. 

 

 Yt =b0 + b1t + εt      [2.4] 

 

 b0 ve b1 sabit katsayılardır. b1 bir periyottan diğer periyota gözlem 

değerindeki ortalama değişim miktarını göstermektedir. Eş.2.5, karesel bir trend 

modelini göstermektedir.  

 

 Yt = b0 + b1 t + b2 t2 + εt      [2.5] 

 

 Periyodik değişmeler, modele transdental terim eklenmesi ile gösterilebilirler: 

 

 Yt = b0 + b1  sin 
12

t2π  + b2 cos 
12

t2π + εt   [2.6] 

  

 Yukarıda tanımlanan modeller aşağıdaki gibi genel bir biçimde yazılabilir : 

 

 Yt = b0 z0 (t) + b1 z1 (t) + ……… + bk zk (t) + εt   [2.7] 
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 bi katsayıları, zi(t) t’ye bağlı matematiksel fonksiyonları ve εt de hata rasgele 

değişkenini ifade etmektedir. Bu gösterim, sürecin beklenen değerini t’nin 

matematiksel bir fonksiyonu olarak sunmaktadır (3).  

 

2.4. Zaman Serileri Modelleri ile Kestirim 
 

 Zaman serileri modelleri ile kestirim, uygun bir modelin parametrelerinin 

kestirimi yardımı ile sağlanır. Örneğin ilgili modelin Eş. 2.4.'teki gibi olduğu bir 

durumda, β1 ve β2 parametrelerinin bir kestirimi olan b1 ve b2 kullanılarak geleceğe 

yönelik kestirim yapılabilir. 

 

 Ft = b0 + b1 t        [2.8] 

 

 T gözlem değerine sahip bir seride, T (T periyodunun sonu) zaman 

diliminden gelecek bir periyoda (T + τ)   yönelik bir kestirim  yapılacaksa, 

 

 FT+τ  (T) =  b0 + b1 (T+τ)      [2.9] 

 

eşitliği istenen kestirim  değerini verecektir. 

 

2.5. Performans Ölçütü 
 

 Kestirim sisteminin etkinliğini değerlendirmek üzere birçok ölçüt 

kullanılabilir. Bunların en önemlisi, kestirim doğruluğudur. Kestirim yönteminin 

doğruluğu, kestirim hatalarının analiz edilmesi ile belirlenir. Kestirim hatası, gerçek 

gözlem değeri ile kestirim edilen değer arasındaki farktır. Herhangi bir t periyodu 

için kestirim hatası, 

 

 et = Yt - Ft        [2.10] 
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eşitliği ile hesaplanır. Yt, gerçek gözlem değerini ve Ft de modelin ürettiği değeri 

ifade etmektedir. 

 

 İncelenilen bir süreç ve kestirim metodu için kestirim hatasının, ortalaması 

E(e) ve varyansı σe
2 olan normal raslantısal bir değişken olduğu varsayılır. Eğer 

kestirim  yanlı değilse, E(e)=0 olur. Yanlı olmayan bir kestirim  isteniyorsa, çok 

sayıda gözlem değeri ile çalışılması oldukça önemlidir (3). 

 

 Aşağıdaki eşitliklerde sıklıkla kullanılan performans ölçütlerine yer 

verilmiştir. 

 

 Ortalama Hata (OH) =   e 
n

n

1i
i∑

=

1      [2.11] 

 

 Ortalama Mutlak Hata (OMH) = i

n

1i
e 

n ∑=
1     [2.12] 

  

 Hata Kareleri Toplamı (HKT) =   e
n

1i
i∑

=

2     [2.13] 

 

 Hata Kareleri Ortalaması (HKO) =     e 
n

n

1i

2
i∑

=

1    [2.14] 

 

 Yukarıdaki ölçütlerin dışında, daha açıklayıcı seçenek (alternatif) ölçütler de 

önerilmiştir (13). Bu seçeneklerin en önemlileri yüzde hata ölçütleridir. Bazı yüzde 

hata ölçütleri şöyledir : 

 

 Yüzde Hata (YH) =  100 * 
Y

F - 

t

t )Y( t      [2.15] 

 

 Ortalama Yüzde Hata (OYH) = 100*  
Y

)F - (Y 
n t

tt
n

1i
∑
=

1   [2.16] 
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 Ortalama Mutlak Yüzde Hata (OMYH) = 100 * 
Y

F - (Y
  1

t

tt
n

1i

)
n ∑=

          [2.17] 

 Makridakis (9), ortalama mutlak yüzde hata değerinin % 5 olduğunun 

bilinmesinin, hata kareleri ortalamasının değerinin 183 olduğunun bilinmesinden 

daha anlamlı olduğunu ifade etmektedir. 

 

2.6. Box-Jenkins Modelleri 
 

 Zaman serilerinde bir çözümleme ve kestirim yöntemi olan Box-Jenkins 

yöntemi; kesikli, doğrusal stokastik süreçlere dayanır. Otoregresif (Auto Regressive-

AR), Hareketli Ortalama (Moving Average - MA), Otoregresif-Hareketli Ortalama 

(Autoregressive-Moving Average - ARMA) ve Bütünleşik Otoregresif-Hareketli 

Ortalama (Autoregressive Integrated Moving Average - ARIMA), Box-Jenkins 

kestirim modelleridir. AR(p), MA(q) ve bunların birleşimi olan ARMA(p,q) 

modelleri durağan süreçlere uygulanırken, ARIMA(p,d,q) modelleri durağan 

olmayan süreçler için kullanılmaktadır. 

 

 Zaman serileri ile kestirimde bulunabilmek için bilinen ve yaygın kullanılan 

istatistik yöntemlerin en kapsamlısı Box-Jenkins modelleridir. 

 

 Box-Jenkins yaklaşımı ile bir zaman serisini modelleyebilmek için ilgili 

serinin durağan olması gerekir. Zaman serisinin ortalama ve varyansında sistematik 

bir değişme yok ise serinin durağan olduğu söylenebilir. Bir seri sabit bir büyüme 

örüntüsü ya da genelde bir trend gösteriyorsa ya da bir seviyeden bir başka seviyeye 

geri dönüyor veya ilerliyor ise, bu yapıdaki seriler durağan bir seriye 

dönüştürülmeden modellenemezler. Eğer sürecin özellikleri zaman orjininin 

değişmesinden etkilenmiyorsa bu tür süreçler tam durağan süreçler olarak 

adlandırılır. Bunun anlamı şudur : t1, t2,………., tm zamanlarında gerçekleşen m 

gözlem değeri ile t1+k, t2+k,……….., tm+k zamanlarında gerçekleşen m gözlem 

değerinin ortak olasılık fonksiyonu aynı ise bu tür seriler tam durağan seri olarak 

adlandırılır (8). 
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 Zaman serilerinin genelde durağan özelliğe sahip olmadığı bilinmektedir. 

Zaman serisinin ortalaması ve varyansında zamana bağlı bir trendin olup olmadığını 

belirlemede üzerinde uzlaşılmış bir yöntem yoktur, bu nedenle verilerin grafiğini 

incelemenin en kolay yol olduğunu belirtmektedirler. 

 

 Zaman serisinin sabit bir ortalama etrafında dağılmaması veya stokastik 

sürecin özelliklerinin zamana bağlı olarak değişmesi nedeni ile durağan olmayan 

seriler ortaya çıkmaktadır. Böyle serilerin modellenebilmesi için 

durağanlaştırılmaları gerekmektedir. Durağanlaştırma genelde fark alma işlemi ile 

sağlanır. Fark alma işlemi seri durağanlaşıncaya kadar yapılır. Uygulamada genelde 

1 veya 2 defa fark alma işlemi gerçekleştirilir. Varyansta durağanlığı sağlamak için 

de serinin logaritması alınabilir (10).  

 

2.6.1. Box-Jenkins Modelinin Kurulumu 
 

 Box-Jenkins tekniğinde amaç, zaman serisine en iyi uyan ve en az parametre 

içeren doğrusal stokastik süreç modelini elde etmektir. Box-Jenkins modelinin 

kurulması dört aşamada özetlenebilir: 

 

1. Model tanımlama aşaması: geçmiş verilere göre model parametreleri 

belirlenir. 

2. Model parametreleri kestirim  aşaması: model parametrelerinin kestirimi 

yapılır. Hata kareleri toplamını en az yapan parametre değerleri elde edilir. 

3. Model geçerlilik aşaması: parametreleri kestirilen modelin verilere uygun 

olup olmadığının testi yapılır. Seçenek (alternatif) modeller önerilir. 

4. Model kestirim aşaması: geçerliliği sınanan model ile, zaman serisinin 

gelecek dönem değerleri kestirilir ve bu değerlere ilişkin güven aralıkları 

bulunur. 

 

 Zaman serisi için en uygun model geçici modeller arasından seçilmektedir. 

Geçici modellerin parametre kestirimleri ve uygunluk testleri uzun işlemler 

gerektirse de bilgisayar yardımı ile bu işlemler kolayca yapılabilmektedir. 
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 Model belirleme aşamasında, zaman serisinin otokovaryans ve otokorelasyon 

fonksiyonlarına başvurulur. Otokovaryans ve otokorelasyon fonksiyonları, sürecin 

AR(p), MA(q), ARMA(p,q) ya da ARIMA(p,d,q) modellerinden hangisine 

uyduğunun tespitinde önemlidir (8).  

2.6.2. Otokovaryans ve Otokorelasyon Fonksiyonları 
 

 Zaman serisini oluşturan sürecin kesin bir tanımının yapılabilmesi için 

sürecin olasılık dağılımının tanımlanması gerekir. Ancak genellikle bu mümkün 

olmamaktadır. Bu durumda sürecin özelliklerini saptayabilmek için otokovaryans 

fonksiyonu, otokorelasyon fonksiyonu ve kısmi otokorelasyon fonksiyonu gibi 

araçlardan yararlanılır. 

 

 Bir zaman serisinde k dönem uzaklıktaki gözlem değerleri arasındaki 

kovaryansa k gecikmeli otokovaryans, korelasyon ve korelasyon katsayısına da, 

otokorelasyon ve otokorelasyon katsayısı denir (2). 

 

 Zaman serisinin analizi sırasında otokovaryans fonksiyonu (OKF) örnek 

momentleri kullanılarak kestirim  edilmektedir. İki rasgele değişken arasındaki 

kovaryansın genel gösterimi, 

 

 Kov(x, y) = E[(x- E(x))(y - E(y))]     [2.18] 

 

şeklindedir. Benzer şekilde stokastik sürecin aralarında k dönem bulunan, yt, yt-k gibi 

değerleri için otokovaryansı, 

 

 ϒk = Kov(yt,yt-k) = E[(yt, -E(yt))(yt-k -E(yt-k))] = E[(yt -μ)(yt-k -μ)]  [2.19]  

 

biçiminde gösterilir. ϒk, otokovaryans fonksiyonunu ifade etmektedir (10). 

 

 Otokorelasyonlar, farklı zamanlardaki gözlemler arasındaki doğrusal ilişkiyi 

gösterir. Genel kavram olarak iki veri seti arasındaki korelasyonun ölçülmesi işlemi, 

zaman serisi otokorelasyonunun ölçülmesi için temel oluşturur. Bir seride herhangi 
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bir k gecikme değeri için otokorelasyon değerinin hesaplanması işlemi, orijinal seri 

ile orijinal seri k zaman değeri kadar taşınarak elde edilen yeni seri arasındaki 

korelasyon değerinin hesaplanmasıdır. 

 

 Gecikme değeri k’nın fonksiyonu olarak elde edilen otokorelasyon katsayıları 

(OKK), otokorelasyon fonksiyonu (OKF) olarak adlandırılmakta ve sürecin bir 

değerinin ilişkili olduğu daha önceki değerlerinin yayılımını ölçerek sürecin geçmiş 

dönemlerle doğrusal ilişkisinin gücünü göstermektedir (10). 

 Gecikme değeri k’ya bağlı olarak otokorelasyon katsayısı aşağıdaki gibi 

tanımlanmaktadır : 

 

 ρk = 
])y[(E])y[(E

)]y)(y[(E

ktt

ktt
22 μμ

μμ
−−

−−

−

−     [2.20] 

 

 Durağan bir süreç için varyans, t-k ve t zamanları için eşit olduğundan, 

otokorelasyon katsayısı, 

 

 ρk = 2

)])([(

y

ktt yyE
σ

μμ −− −       [2.21] 

  

şeklinde yazılabilir. Böylece, k gecikmesi için otokorelasyon, 

 

 ρk = 
0γ
γ k         [2.22] 

 

eşitliği ile ifade edilir. Yukarıdaki eşitliğe göre, ρ0 = 1 olmaktadır. 

 

 Otokovaryans ve otokorelasyonlarla ilgili olarak, 

 ϒk = ϒ-k        [2.23] 

 ve 

 ρk = ρ-k        [2.24] 

eşitlikleri, otokovaryans ve otokorelasyonların simetrik olduğunu göstermektedir. 
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 OKF zaman serisinin durağan olup olmadığının belirlenmesi amacı ile 

kullanılmaktadır. Gecikme uzunluğu k arttıkça, serinin örnek otokorelasyon 

fonksiyonu (ÖOKF) hızla azalıyor ve kısa gecikmelerde ekseni kesiyor ise serinin 

durağan olduğuna, serinin ÖOKF yavaşça azalıyor ve uzun gecikmelerde ekseni 

kesiyorsa serinin durağan olmadığına karar verilir (10).  

 

2.6.3. Otokovaryans ve Otokorelasyon Fonksiyonlarının Kestirimi 
 

 k gecikmeli otokovaryans kestirimi ck ile gösterilirse, ck, 

 

 ck = )(1
1

yy
N

kN

t
t −∑

−

=

( )yy kt −+  k=0,1,2,........,k               [2.25] 

 

eşitliği ile hesaplanır. Benzer şekilde otokorelasyon fonksiyonu ρk'nın kestirimi rk ile 

gösterildiğinde, rk,  

 rk = 
0c

ck         [2.26] 

eşitliği ile elde edilir. Burada c0 sürecin varyansı olan 2
yσ  'nin kestirimidir. 

 

 Uygulamalarda otokorelasyonu virgülden iki basamak sonra yuvarlamak 

yeterlidir. Otokorelasyon fonksiyonunun kestiriminde güvenilir sonuçlar elde etmek 

için en az 50 gözleme ihtiyaç vardır ve ayrıca rk otokorelasyonların kestiriminde en 

fazla N/4 gecikmeye kadar hesaplama yapılmalıdır (8).  

 

2.6.4. Örnek Otokorelasyonları Standart Hatası 
 

 Bir zaman serisi için uygun modelin belirlenebilmesi otokorelasyon 

fonksiyonunun belirli bir gecikme değerinde kesilip kesilmediğinin bilinmesine 

bağlıdır. Örnek otokorelasyonu standart hatadan iki kat daha büyükse, %95 güven 

düzeyinde anlamlı olduğu söylenir. Standart hatanın ± 2 katı, örnek otokorelasyonu 

için güven aralığı olarak tanımlanır (8).  
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 Otokorelasyon katsayılarının analizi yapılırken katsayıların istatistiksel 

anlamlılıklarının da sınanması gereklidir. Örnek otokorelasyon katsayıları için, 

 

 H0 : ρk = 0 

 H1 : ρk ≠  0        [2.27] 

 

hipotezi test edilir. 

 

 Durağan normal dağılmış bir süreç için örnek otokorelasyonun kestiriminin 

(rk) varyansı için, teorik otokorelasyon fonksiyonunun kesildiği q değerinden büyük 

k gecikmeleri için Barlett’in yaklaşımı Eş.2.28’de verilmiştir (8). 

 Var[rk] ≅ 
⎭
⎬
⎫

⎩
⎨
⎧
+ ∑

=

q

j
jr

N 1

2211  ,  k>q     [2.28] 

 

 Testin karar aşamasında izlenecek yaklaşım şöyledir : 

 

1. % 95 güven aralığında geçerli olan yaklaşık 2 standart sapma için, 

hesaplanan ρk değerinin 
N

rk
2

>  olması durumunda, k.derece 

otokorelasyon katsayısının sıfırdan önemli derecede farklı olduğuna karar 

verilir. 

2. rk < 
N
2 olduğunda ise, k.derece otokorelasyon katsayısının sıfırdan 

farklı olmadığına karar verilir. 

 

 Otokorelasyon katsayılarının istatistiksel açıdan farklı olup, olmadığının 

testinde t istatistiği de kullanılmaktadır. Yukarıdaki hipotezler için, hesaplanan t 

değeri 2 değeri ile karşılaştırılmaktadır. t istatistiği aşağıdaki eşitlikle 

hesaplanmaktadır.  
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 t = 

∑
−

=

+
1

1

2211 k

j
j

k

r
N

r        [2.29] 

 

 Eş. 2.29'da k gecikme sayısını, N gözlem sayısını göstermektedir. t  <2 ise, 

otokorelasyonun istatistiksel olarak önemli olmadığına yani  ρk = 0 olduğuna karar 

verilir (10). 

 

 Otokorelasyonlar için güven aralıkları, sıfırdan farklı örnek 

otokorelasyonlarının göz önünde bulundurulmaması ve anlamlı sayılması kararının 

verilmesinde kabaca yol gösterir (8).  

2.6.5. Kısmi Otokorelasyonlar 
 

 Kısmi otokorelasyonlar, otokorelasyonlar gibi seri değerleri arasındaki 

ilişkiyi değerlendirmek amacı ile kullanılan bir başka istatistiksel ölçü kümesidir. 

Kısmi otokorelasyonlar, serinin hareketli ortalama ya da otoregresif süreçten 

hangisine uyduğunu anlamada otokorelasyonların tamamlayıcısıdırlar. 

 

 Bir zaman serisinde Yt ile Yt-k arasındaki korelasyonun büyük bir kısmının, 

bu değişkenlerin arasındaki korelasyonun Yt-1, Yt-2, ...., Yt-k+ı gecikmelerine sahip 

olması nedeni ile olduğu belirtilmektedir. Bu korelasyonları düzeltmek amacı ile 

hesaplanan kısmi otokorelasyon katsayıları, durağan bir değişkenin t ve t-k gibi iki 

farklı dönemde birbirleri ile olan ilişkisini, yani Yt ve Yt-k arasındaki ilişkiyi, bu 

zaman dönemleri arasında kalan diğer tüm dönemlerdeki t-1, t-2, .... gibi gecikmeleri 

dışlayarak veya sabit tutarak ortaya koymaktadır. Kısmi otokorelasyonlar da, 

otokorelasyonlar gibi Yule-Walker denklem sisteminin çözümünden elde edilirler ve 

literatürde φkk ile gösterilirler. Örnek kısmi otokorelasyonu varyansı Eş.2.30’da 

verilmiştir (10).  

 

 var 
Nkk
1

≅⎥⎦
⎤

⎢⎣
⎡ ∧

φ  ,       [2.30] 
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 Bir AR(p) modelinde, k<p olduğu durumda kısmi otokorelasyonlar sıfırdan 

farklı ve k>p olduğu durumda da kısmi otokorelasyonlar sıfıra eşittir. Diğer yandan, 

bir MA sürecinde kısmi otokorelasyonlar bütün gecikme değerleri için sıfırdan 

farklıdır (8).  

 

 Yule-Walker denklem sisteminin çözümlenmesinden kısmi 

otokorelasyonların k=1, 2 ve 3 değerleri için Eş. 2.31 elde edilir.  

 

 φ11 = ρ1 

 

 φ22 =         = 2
1

2
12

1 ρ
ρρ

−
−   

 

 

 

 φ33 =         [2.31] 

 

 

 

2.6.6. Model Kurma 
 

 Box ve Jenkins (8), durağan zaman serileri için üç genel stokastik model 

sınıfı önermektedir. Bunlar otoregresif (autoregressive-AR), hareketli ortalama 

(moving average-MA) ve bu iki sürecin karışımı otoregresif hareketli ortalama 

(autoregressive moving average-ARMA) stokastik süreç modelleridir. 

 

 AR modelleri ilk defa 1926 yılında Yule tarafından önerilmiş ve daha sonra 

1931’de Walker tarafından genelleştirilmiştir. MA modelleri ise ilk defa 1937 yılında 

Slutzky tarafından kullanılmıştır (13). 

1             ρ 1

ρ 1 ρ 2

1             ρ 1

ρ 1 1

1            ρ1                ρ1

ρ1 1             ρ2

ρ2 ρ1 ρ3

1            ρ1 ρ2

ρ1 1             ρ1

ρ2 ρ1 1
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2.6.7. Otoregresif (Auto Regressive-AR) Modeller 
 

 AR (p) modelinde Yt değeri, serinin p dönem geçmiş değerlerinin ağırlıklı 

toplamının ve rasgele hata teriminin doğrusal fonksiyonudur. AR (p) modelleri genel 

olarak aşağıdaki gibi gösterilir : 

 

 Yt = μ+φ1 Yt-1 + ……. + φp yt-p + αt     [2.32] 

  

 Serinin ortalaması μ, seri değerlerinden çıkarıldığında elde edilen yeni seri 

için AR(p) modeli, Eş. 2.33’teki gibidir. 

 

 yt = φ1 yt-1 + φ2 yt-2 +……. + φp Yt-p + at    [2.33] 

 

 Eş.2.33’te, yt-1, yt-2, …….. yt-p geçmiş gözlem değerleri, φ1, φ2, ……., φp 

geçmiş gözlem değerleri için katsayılar ve at de hata terimidir. Geri kaydırma 

işlemcisi B kullanılarak, yukarıdaki model Eş. 2.34’teki gibi ifade edilmektedir. 

 

 yt =    a 
)B( tφ

1         [2.34] 

 

 Burada φ(B), 

 

 φ(B) = 1 - φ1 B - φ2 B2 -……- φpBp     [2.35] 

 

eşitliğine sahiptir. 

 

 Otoregresif ifadenin temelindeki eşitlik regresyon eşitliğine benzemektedir. 

Bu eşitlikte yt bağımlı değişken ve yt-1, yt-2, ….. bağımsız değişken rolünü 

üstlenmektedir. Ayrıca yt-1, yt-2, ……’ler, yt ile aynı yapıda değişkenler olup, 

aralarında bir dönem zaman farkı vardır. φ1 birinci dereceden otoregresif parametre, 

φ2 ikinci dereceden otoregresif parametre ve φp p. dereceden otoregresif 
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parametredir. Model, μ, φ1, φ2, …-…, φp , 2
aσ  olmak üzere p+2 tane bilinmeyen 

parametre içermektedir. Uygulamada var olan verilerden bu parametrelerin 

kestirimleri elde edilir. 

 

 Otoregresif model, doğrusal filtreleme modelinin özel bir durumu olup, yt-1 

Eş. 2.36’daki ifade ile yazılabilir. 

 

 yt-1 = φ1 yt-2 + φ2 yt-3 +……. + φp Yt-p-1 + αt-1   [2.36] 

 

 Benzer şekilde, otoregresif model eşitliğinden yt-1, yt-2, …… sırasıyla 

modelden kaldırılıp yerlerine eşitleri konarak model yeniden yazıldığında sonsuz 

sayıda hata teriminden oluşan seri elde edilir. Dolayısıyla, 

 

 φ(B)yt = αt         [2.37] 

 

 

eşitliği elde edilir. Buradan, 

 

 yt = ψ(B)αt        [2.38] 

 

yazılabilir. Bu eşitlikten de, 

 

 ψ(B)= φ-1 (B) = 
)B(φ

1       [2.39] 

 

ifadesi elde edilir. 

 

 Böylece otoregresif süreç, girdisi at, çıktısı yt olan, φ-1(B) transfer 

fonksiyonuna sahip doğrusal filtreleme olarak düşünülebilir. Otoregresif süreç 

durağan  veya durağan olmayan bir süreç olabilir. Sürecin durağan olabilmesi için 

Eş. 2.39’daki ψ1, ψ2,….., ağırlıklarının ψ(B) yakınsak bir seri olacak şekilde 

seçilmesi gerekir (8).  
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 AR(1) süreci için, 

 

 ψ(B)= φ-1 (B) = (1-φ1B)-1 = ∑
∞

=0
1

j

jj Bφ      [2.40] 

 

eşitliği yazılabilir. AR(1) sürecinin durağan olabilmesi için φ(1) parametresinin 

)(1φ <1 ve dolayısıyla 1-φ(1)B=0’ın kökü B=φ(1)-1 koşulunu sağlaması gereklidir. 

Bu koşul φ(B)=1-φ(1)B=0 kökünün birim çemberin dışında olması ile aynı anlamı 

ifade eder. φ(B)=0 eşitliği, sürecin karakteristik eşitliği olarak adlandırılır. Genel bir 

AR(p) süreci için karakteristik eşitlik aşağıdaki gibi yazılabilir. 

  

 φ(B) = ∏
=

p

i 1

(1-GiB) = (1-G1B) (1-G2B) …. (1-GpB)  [2.41] 

 

 Burada G1
-1, G2

-1,….. Gp
-1 karakteristik eşitliğin kökleridir. Durağanlık koşulu 

şartları gereği karakteristik eşitliğin köklerinin birim çemberin dışında yer alması 

gerekir. 

 

 p. dereceden bir otoregresif model Eş. 2.33’te verilmiştir. 

 

 Eş.2.33, yt-k ile çarpılıp beklenen değeri alınırsa, yt-k’nın (t-k)’ıncı zamana 

kadarki şokları içerdiği ve at ile korelasyonu olmadığı bilindiğinde Eş. 2.42 elde 

edilir: 

 ϒk = φ1ϒk-1 + φ2ϒk-2 +……φpϒk-p  k > 0    [2.42] 

 

 Eş. 2.42’deki ifade γ0 ile bölünecek olursa otokorelasyon fonksiyonu 

2.43’deki eşitliği sağlayacaktır. 

 ρk = φ1ρk-1 + φ2ρk-2 +……+ φpρk-p   k > 0    [2.43] 

 Bu da φ(B)ρk = 0 olarak yazılabilir. Burada φ(B), 
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 φ(B) = 1 - φ1B - φ2B2 - ……. - φpBp      [2.44] 

 

eşitliğine sahiptir. 

 

 Genel çözümde aşağıdaki gibidir : 

 

 ρk = A1G1
k + A2G2

k +……. + ApGp
k      [2.45] 

 

 Durağanlık için karakteristik eşitliğin köklerinin birim çemberin dışında yer 

alması gereklidir. Eğer kökler farklı ise iki farklı durumla karşılaşılabilir : 

 

1. Kök Gi gerçektir ve k arttıkça sıfıra doğru azalan bir AiGi
k terimi bulunur. 

2. Kök çiftlerinden biri komplekstik ve sinus fonksiyonunu takip eden bir 

terim eklenir. 

 

 Genel olarak bir durağan otoregresif sürecin otokorelasyon fonksiyonu üstel 

ve sinus fonksiyonunun bileşiminden oluşacaktır (8). Bir AR(p) modeli için 

otokorelasyon fonksiyonu üstel olarak azalan ya da sinüs eğrisi şeklinde bir yapı 

gösterirken, kısmi otokorelasyon fonksiyonu da p gecikmeden sonra kesilir. Şekil 

2.2, bu durumu göstermektedir. 

 

 

 

 

 

 

 

 
 

 Şekil 2.2. AR (p) süreci otokorelasyon ve kısmi otokorelasyon  
      fonksiyonu (10)  

ρk ρk

k k
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2.6.7.1. Yule-Walker Eşitliği Cinsinden Otoregresif Parametreler 
 

 Eş.2.43’te ρk (k=1,2,…..p) yerine konulursa, ρ1, ρ2, …… ρp cinsinden φ1, φ2, 

…… φp için p tane doğrusal eşitlik elde edilir. Bu p tane eşitlik Yule-Walker eşitliği 

olarak bilinir : 

 

 ρ1   =   φ1         +        φ1ρ1 +      …       +   φ1ρp-1  
 ρ2   =   φ1 ρ1            +        φ2  +      …       +   φpρp-2  [2.46] 
 ⋮  ⋮ ⋮               ⋮      ⋮           ⋮    …         ⋮  
 ρp   =   φ1 ρp-1         +        φ2ρp-2 +      …       +   φp 
 

 Yule-Walker denklemlerinde parametrelerin kestirimi, rk kestirimi 

otokorelasyonlar ile ρk teorik otokorelasyonlar yer değiştirerek elde edilir (8).  

 

2.6.7.2. AR(1) Süreci 
 

 AR (1) modelinde yt değeri, 1 dönem geçmiş gözlem değerinin ve rasgele 

hata teriminin doğrusal fonksiyonudur. Birinci dereceden otoregresif süreç aşağıdaki 

biçimdedir.  

 

 y1 = φ1 yt-1 + at 

     = a1 + φ1 at-1 + φ2
1 at-2 + ….     [2.47] 

 

 Sürecin durağan olması için eşitliğin köklerinin birim çemberin dışında 

kalması gerekmektedir. Bu da φ1 parametresinin -1 < φ1 p < 1 şartını sağlamasını 

gerektirmektedir. Eş.2.43 kullanılarak, 

 

 ρk = φ1 ρk-1           k > 0      [2.48] 

 

elde edilir. 
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 ρ = 1 olduğundan,  

  

 ρk = φk
1            k ≥ 0       [2.49] 

 

olur. Eş. 2.49, AR(1) sürecinde teorik otokorelasyon fonksiyonunun sıfıra doğru 

üstel olarak azaldığını göstermektedir. Şekil 2.3’te otokorelasyon fonksiyonun üstel 

olarak azaldığı ve kısmi otokorelasyon fonksiyonunun k=1 gecikmeden sonra sıfır 

olduğu görülmektedir. 

 

 

 

 

 

 

 

 

 
 

        Şekil 2.3. AR(1) süreci otokorelasyon ve kısmi otokorelasyon fonksiyonu (10)  

 

 Sürecin varyansı aşağıdaki eşitlikle hesaplanır : 

 

     
-1

  2
1

2
a

y φ
σσ =2         [2.50] 

 

2.6.7.3.  AR(2) Süreci 
 

 AR(2) modelinde yt değeri, serinin 2 dönem geçmiş gözlem değerlerinin 

ağırlıklı toplamının ve rasgele hata teriminin doğrusal fonksiyonudur. İkinci 

dereceden otoregresif süreç aşağıdaki biçimdedir : 

 

 yt = φ1 yt-1 + φ2 yt-2 + at       [2.51] 

AR (1) süreci

ρk ρk

k k
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 Sürecin karakteristik eşitliği, Eş.2.52’de verilmiştir. 

 

 φ(B) ) 1 - φ1B - φ2B2 = 0      [2.52] 

 

 Sürecin durağan olması, karakteristik eşitliğin köklerinin birim çemberin 

dışında olmasına bağlıdır. Dolayısıyla φ1 ve φ2’nin aşağıdaki şartları sağlaması 

gerekmektedir.  

  

 φ1 + φ2 < 1 

 φ2 -  φ1 < 1        [2.53] 

 -1 < φ2 < 1 

 

 Eş.2.43, kullanılarak  ρk = φ1ρk-1 + φ2ρk-2  k > 0, elde edilir.  

 

 ρ0 = 1,          [2.54] 

 

 ρ1 = 
2

1

1 φ
φ
−

,        [2.55] 

 

 

 ρk = A1 G1
k + A2 G2

k  

     = 
)GG)(1G(G

)GG(1G)GG(1G
2121

k
2

2
12

k
1

2
21

+−
−−−      [2.56] 

 

 G1
-1 ve G2

-1 karakteristik eşitliğin kökleridir. 

 

 φ1 ve φ2 parametreleri için Yule-Walker denklem sistemi çözülürse, 

 

 φ1 = 2
1

21

ρ1
)ρ(1ρ

−
−        [2.57] 
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 φ2 = 2
1

2
12

ρ1
ρρ

−
−  

 

elde edilir. 

 

 Eş.2.57 φ1 ve φ2 otoregresif parametrelerin kestirimini, r1 ve r2 kestirimi 

otokorelasyon katsayılarından elde etmek için kullanılabilir. 

 

 AR(2) süreci Yule-Walker denklem sistemi, otokorelasyonları otoregresif 

parametreler terimleri ile ifade edilmek için çözülebilir : 

 

 ρ1 = 
2

1

1 φ
φ
−

        [2.58] 

 ρ2 = φ2 + 
2

2
1

1 φ
φ
−

 

 

 AR(2) sürecinin durağan olabilmesi için otokorelasyonların Eş.2.59’daki 

şartları sağlaması gerekir : 

 -1 < ρ1 < 1 

 -1 < ρ2 < 1        [2.59] 

 ρ1
2 < 

2
1  (1 + ρ2) 

 Sürecin varyansı, 

 

 σy
2 = 

21211

2

1 φρφρ
σ
−−
a  

       = { }2
1

2
2

2

2

2

11
1

φφ
σ

φ
φ

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

)(
a      [2.60] 

 

eşitliği ile tanımlanır (8).  
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 Şekil 2.4, AR(2) süreci otokorelasyon ve kısmi otokorelasyonları için 

örnekler göstermektedir. 

 

2.6.8. Hareketli Ortalama (Moving Average-MA) Modelleri 
 

 MA(q) modelinde yt değeri, serinin geriye doğru q dönem geçmiş hata 

terimlerinin doğrusal fonksiyonudur. MA(q) modelleri genel olarak aşağıdaki gibi 

gösterilir.  

 

 yt = at - θ1at-1 - θ2 at-2 - θqat-q      [2.61] 

   

 Burada at, at-1, at-2, ……., at-q hata terimlerini θ1, θ2, ……, θq hata terimleri ile 

ilgili katsayıları göstermektedir. Hareketli ortalama işlemcisi ile model,  

 

 yt = θ(B)at         [2.62] 

 

şeklinde gösterilir. 
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Şekil 2.4. AR(2) modeli otokorelasyon ve kısmi otokorelasyon fonksiyonları (10)  
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 Hareketli ortalama işlemcisi, 

 

 θ(B) = 1 - θ1 B - θ2 B2 - …….. - θq Bq    [2.63] 

 

eşitliği ile tanımlanmaktadır. 

 

 Hareketli ortalama kavramı, seri değerlerinin geçmiş hata terimlerinin 

doğrusal bir fonksiyonu olduğunu belirtmektedir. Derecesi q olan bir hareketli 

ortalama modelinde, herhangi bir seri değeri, geriye doğru q dönem hata terimlerinin 

doğrusal bileşimine eşittir. θ1, θ2, ……, θq , sırasıyla 1, 2, ……., q derece hareketli 

ortalama parametrelerini göstermektedir. Model μ, θ1, θ2, ……, θq, σa
2 olmak üzere 

q+2 adet bilinmeyen parametre içermektedir. Bu parametrelerin kestirimleri var olan 

verilerden elde edilmektedir. 

 

 Genel olarak Eş.2.62’deki gibi gösterilen süreç için, 

 

 π (B) yt = at        [2.64] 

 

eşitliği yazılabilir. 

 

 π (B) = θ-1 (B) = 
θ(B)

1       [2.65]  

 

olduğu açıktır. 

 

 Doğrusal bir sürecin çevrilebilir olması için π (B) serisinin, ⏐B⏐≤1 için 

yakınsak olması gereklidir. MA(q) süreci için çevrilebilirlik koşulu karakteristik 

eşitliğin kökleri birim çemberin dışında olmalıdır. 

 

 θ(B) = 1 - θ1 B - θ2 B2 - …….. - θq Bq = 0    [2.66] 
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 ψ(B) = θ(B) = 1 - θ1 B - θ2 B2 - …….. - θq Bq, serisi sonlu ise MA süreci 

durağandır. 

 

 Sürecin varyansı, 

 

 y0 = (1 + θ1
2 + θ2

2 + …….. + θq
2) σ2

a     [2.67] 

 

ve otokorelasyon fonksiyonu, 

 

 ρk = 22
1

11

1
  

q

qkqkk

...
...
θθ

θθθθθ
+++
+++− ++    k = 1,2,…,q   [2.68] 

          0                                k > q 
 

şeklinde tanımlanır. 

 

 MA(q) sürecinde otokorelasyon fonksiyonu q gecikmeden sonra kesilirken, 

kısmi otokorelasyon fonksiyonu üstel olarak azalır ya da sinüs eğrisi şeklinde bir 

yapı gösterir. Şekil 2.5, MA(q) süreci otokorelasyon ve kısmi otokorelasyon 

fonksiyonları için bir örnek göstermektedir. 

 

 

 

 

 

 

 

 

 

 
 

       Şekil 2.5. MA(q) modeli otokorelasyon ve kısmi otokorelasyon fonksiyonu (10)  
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2.6.8.1. MA(1) Süreci 
 

 MA(1) modelinde yt değeri, serinin geriye doğru 1 dönem geçmiş hata 

teriminin doğrusal fonksiyonudur. MA(1) süreci, aşağıdaki gibi gösterilir : 

 

 yt = at - θ1 at-1        [2.69] 

     = (1-θ1 B)at  

 

 Sürecin karakteristik eşitliği, 

 

 θ(B) = 1 - θ1 B=0.       [2.70] 

 

 Sürecin çevrilebilir olması için, karakteristik eşitliğin köklerinin birim 

çemberin dışında kalması gerekir. Dolayısıyla θ1 parametresinin, 

 

 - 1 < θ1 < 1        [2.71] 

 

şartını sağlaması gerekir. MA modellerinde tüm θi ‘ler için süreç durağandır. MA(1) 

sürecinin varyansı,  

 

 γ0 = (1 + θ1
2) σ a

2         [2.72] 

 

ve otokorelasyon fonksiyonu, 

 

 ρk =    2
1

1

1 θ
θ
+
−    k = 1       [2.73] 

            0            k > 1 
 

eşitliği ile elde edilir. 

 

 Kısmi otokorelasyon fonksiyonu ise Eş.2.74’te verilmiştir. 
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 φkk = 
)θ-(1

θ-(1 θ 1)2(k
1

2)
1k

1 +−        [2.74] 

 

 Şekil 2.6 MA(1) süreci otokorelasyon ve kısmi otokorelasyon fonksiyonunu 

göstermektedir. 

 

 

 

 

 

 

 

 

 
 

        Şekil 2.6. MA(1) süreci otokorelasyon ve kısmi otokorelasyon fonksiyonu (10)  

 

2.6.8.2.  MA(2) Süreci 
 

 MA(2) modelinde yt değeri, serinin geriye doğru 2 dönem geçmiş hata 

teriminin doğrusal fonksiyonudur. MA(2) süreci, Eş.2.75’teki gibi gösterilir : 

 

 yt = at - θ1 at-1  - θ2 at-2      [2.75]  

 

 Sürecin karakteristik eşitliği, 

 

 θ(B) = 1- θ1B - θ2 B2= 0      [2.76] 

 

denklemi ile belirtilir. 

 

kk

ρk ρk
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 Sürecin çevrilebilir olması için, karakteristik eşitliğin köklerinin birim 

çemberin dışında kalması gereklidir. Dolayısıyla θ1, θ2 parametreleri aşağıdaki 

şartları sağlamalıdır : 

 θ2 + θ1 < 1 

 θ2 - θ1 < 1        [2.77] 

 -1 < θ2 < 1 

 

 Sürecin varyansı, 

 

 γ0 = σ a
2 (1 + θ1

2 + θ2
2)      [2.78] 

 

eşitliği ile, otokorelasyon fonksiyonu 

 

 ρ1 = 2
2

2
1

21

θθ1
)θ-(1 θ 

++
−     

 ρ2 = 2
2

2
1

2

θθ1
θ 
++

−           [2.79] 

 ρk =  0  k > 2    

 

eşitlikleri ile elde edilir. Şekil 2.7, MA(2) süreci için örnekler göstermektedir. 

 

2.6.9.  Karışık (ARMA) Modeller 
 

 Birinci dereceden hareketli ortalama modeli yt=(1-θB)at aşağıdaki şekilde 

yazılabilir : 

 

 
θB)(1

1
−

 yt = at  

 (1+θB + θ2B2 + θ3B3 + …) yt = at     [2.80] 

 yt = - θyt-1 - θ2 yt-2 - θ3 yt-3 - … + at  
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 Böylece, gerçek MA(1) süreci, çok parametreli otoregresif model biçimine 

dönüştürülebilir. AR(1) modeli de MA modeline dönüştürülürse çok parametreli bir 

model elde edilir. Pratikte ise az parametreli model elde etmek için hem otoregresif 

hem de hareketli ortalama terimlerinin bazı durumlarda modelde bulunması 

gereklidir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

    Şekil 2.7. MA(2) süreci otokorelasyon ve kısmi otokorelasyon fonksiyonları (10)  
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 Bu modeller AR ve MA parametrelerini içerip ARMA modeli olarak 

adlandırılır ve aşağıdaki yapıdadır : 

 

 yt = 
(B)
(B)

φ
θ  at        [2.81] 

 

 ARMA modelinin derecesi p ve q cinsinden ifade edilir. Model p+q+2  

(μ,φ1, φ2, ……, φp, θ1, θ2, ……, θq, σa
2) parametre içerir. Pratikte p ve q’nun değerleri 

2’den büyük değildir. 

 

 Bir ARMA süreci aşağıdaki gibi gösterilir. 

 

 yt = φ1yt-1 + φ2 yt-2 + … + φp yt-p + at - θ1at-1 - θ2 at-2 - … - θqat-q  [2.82] 

  

 Bu da, 

 

 (1- φ1B-φ2 B2 - … - φp Bp ) yt = (1- θ1B-θ2 B2 - … - θq Bq )at    [2.83] 

  

ya da, 

 

 φ(B) yt = θ(B)at       [2.84] 

 

eşitliği ile gösterilir. 

 

 Hareketli ortalama terimlerinin AR(p) sürecinin durağanlık koşulunu 

etkilemediğinden φ(B) yt = θ(B)at bir durağan süreci göstermektedir. Eğer φ(B) = 0 

denkleminin kökleri birim çemberin dışında kalıyor ise, ARMA (p,q) süreci 

çevrilebilirdir (8).  
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2.6.9.1.  ARMA (1,1) Süreci 
 

 ARMA (1,1) süreci, 

 (1-φ1 B) yt = (1-θ1B)at      [2.85] 

 

şeklinde tanımlanır. Eğer -1 < φ1 <1 ise süreç durağan ve -1 < θ1 <1 ise süreç 

çevrilebilir. Sürecin varyansı, 

 

 γ0 = 2
a2

1

11
2

1   
1

21 σ
φ

θφθ
−
−+       [2.86] 

 

ve otokorelasyon fonksiyonu, 

 

 ρ1 = 
11

2
1

1111

θ2φθ1
)θ)(φθ φ(1 

−+
−−     

 ρ2 =  φ1ρ1           [2.87] 

 ρk =  φ1ρk-1   k > 2    

 

eşitlikleri ile tanımlanmaktadır. Böylece, otokorelasyon fonksiyonu ρ1 başlangıç 

noktasından itibaren θ1 ve φ1 değerlerine bağlı olarak üstel olarak azalır. Şekil 2.8, 

ARMA (1,1) sürecinin otokorelasyon ve kısmi otokorelasyon fonksiyonlarına 

örnekler göstermektedir. 

 

2.6.10.  Durağan Olmayan Doğrusal Stokastik Modeller 
 

 Zaman serisinin durağan olduğu durumlarda, yani sürecin ortalamasının, 

varyansının ve kovaryansının zamana bağlı olarak değişmediği durumlarda 

ARMA(p,q) veya ARMA(p,q)’nın özel hali olan AR(p) veya MA(q) modellerinden 

uygun olanı kullanılır. 
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   Şekil 2.8. ARMA (1,1) otokorelasyon ve kısmi otokorelasyon fonksiyonları (10)  
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 Ancak gerçekte zaman serilerinin ortalama ve varyansında zamana bağlı 

olarak bir değişim olmaktadır. Bu durum durağan olmayan durum olarak adlandırılır. 

Bu tip zaman serileri durağan hale dönüştürüldüğünde daha önce sözü edilen 

ARMA(p,q) modelleri kestirim için kullanılabilir. Zaman serisinin 

durağanlaştırılması ise fark almak suretiyle yapılır. Zaman serisinin doğrusal bir 

eğilimi var ise birinci fark serisi durağan olur. Eğer zaman serisinin eğrisel bir 

eğilimi var ise farkların farkı alındığında ikinci farklar serisi durağan olur. Bu 

durumda model, ARIMA(p,d,q) olarak ifade edilir. Burada d serinin durağanlaştırma 

(fark alma) parametresidir . 

 

 ARIMA(p,d,q) şeklinde gösterilen otoregresif bütünleşik hareketli ortalama 

modelinin genel ifadesi, 

 

 zt = φ1zt-1 + φ2zt-2 +…..+ φpzt-p + a1 - θ1at-1 - θ2at-2 -…..- θqat-q  [2.88] 

 

eşitliği ile verilir. 

 

 Eş. 2.88'deki model, ARMA(p,q) modelindeki yt teriminin yerine zt teriminin 

yazılmış halidir. Bu durum, durağan olmayan yt sürecinin d derece farkı alınarak 

durağanlaştırılması sonucu zt sürecinin elde edilmesinden kaynaklanmaktadır. 

 

 zt =Δd yt         [2.89] 

 

eşitliğinde, 

 

 zt = fark alma sonucu oluşan seriyi 

 Δ = fark alma işlemcisini 

 d = fark alma derecesini 

 

göstermektedir. Birinci farklar serisi durağan ise, 

 

 Δ yt = zt = yt - yt-1 = (1-B) yt       [2.90] 
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eşitliği yazılabilir. Benzer şekilde serinin durağan hale gelmesi için d defa fark 

alınmışsa, 

 

 Δd yt = zt = (1-B)d yt        [2.91] 

 

ifadesi yazılabilir. 

 

 Bütünleşik ARMA modelleri olarak adlandırılan ARIMA modelleri, durağan 

olmayan serilerin durağan olana kadar kaç defa farklarının alındığını gösteren d 

derecesine, AR terim sayısı p ve MA terim sayısı q'nun ilave edilmesi ile 

belirlenmektedir (10). 

 

 ARMA(p,q) modellerinin özel durumları AR(p) ve MA(q) olabildiği gibi 

ARIMA(p,d,q) modellerinde de özel durum söz konusudur. Örneğin ARIMA(p,d,q) 

modeli hareketli ortalama parametresi içermiyorsa yani q=0 ise ARI(p,d), eğer 

ARIMA(p,d,q) modeli otoregresif model parametresi içermiyorsa yani p=0 ise 

IMA(d,q) modeli söz konusudur. Uygulamada sık kullanılan ARIMA modelleri, 

IMA(1,1) ve ARI(1,1) ya da ARIMA(l, 1,1) modelleridir (2). 

 

2.6.11.  Model Belirleme 
 

 Model belirleme, zaman serisinin önceki bölümlerde bahsettiğimiz AR(p), 

MA(q), ARMA(p,q) ve ARIMA(p,d,q) süreçlerinden hangisine uyduğunun ve uygun 

sürecin derecelerinin ne olduğunun belirlenmesi işlemidir. En geniş hali ile ifade 

edilirse, ARIMA(p,d,q) sürecinde, p, q ve d değerlerinin ne olması gerektiğinin 

belirlenmesidir. Durağan olmayan zaman serileri için durağanlaştırma parametresini 

ifade eden d değerinin belirlenmesi kolaydır. Seri kaçıncı fark alma işleminden sonra 

durağanlaşmış ise, d parametresinin değeri bu sayıya eşittir, p ve q parametrelerinin 

belirlenmesi ise otokorelasyon ve kısmi otokorelasyon fonksiyonları yardımı ile olur. 

Şekil 2.9, model belirleme aşamalarını göstermektedir. Otokorelasyon ve kısmi 

otokorelasyon fonksiyonları hakkında önceki bölümlerde ayrıntılı bilgi verilmiştir. 
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Tablo 2.1 OKF ve KOKF’nun model belirlemede nasıl yardımcı olduğunu 

özetlemektedir. 

 

 Model tanımlama işleminden sonra, seçilen geçici model için parametre 

kestirimi yapılması gerekir. En iyi parametre kestirimi, hata kareler toplamını en 

küçük yapan kestirimlerdir. Bu işlem için en çok olabilirlik (maksimum likelihood), 

Bayes yaklaşımı ya da en küçük kareler yaklaşımı kullanılabilir (2). 

 

 Model tanımlanıp parametre kestirimleri yapıldıktan sonra yapılması gereken, 

modelin geçerliliğinin sınanmasıdır. Eğer kurulan model geçerli bir model ise bu 

model ile geleceğe yönelik kestirim yapılabilir, aksi halde yeni bir model 

tanımlanmalı ve aynı işlemler bu yeni model için yapılmalıdır. Modelin geçerliliğinin 

sınanması, Q istatistiği adı ile bilinen bir test ile yapılabilir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

                 Şekil 2.9 Box-Jenkins modelinin kurulumu 
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Tablo 2.1 Model belirlemede OKF ve KOKF kullanımı 
 

 OKF KOKF 

AR(p) Üstel olarak ya da sinüs eğrisi 

şeklinde azalır. 

p gecikme sonra istatistiksel olarak 

anlamlı değildir. 

MA(q) q gecikme sonra istatistiksel olarak 

anlamlı değildir. 

Üstel olarak ya da sinüs eğrisi şeklinde 

azalır. 

ARMA(p,q) Üstel olarak ya da sinüs dalgalan 

şeklinde azalır. q-p gecikme sonra 

istatistiksel olarak anlamlı değildir. 

Üstel olarak ya da sinüs dalgalan 

şeklinde azalır. p-q gecikme sonrası 

istatistiksel olarak anlamlı değildir. 

 

2.6.12.  Q test istatistiği 
 

 Q istatistiği 1970 yılında Box ve Pierce (11) tarafından geliştirilmiş, 1978 

yılında Ljung ve Box (12) tarafından düzeltilmiştir. χ2 dağılımına uyan Q istatistiği, 

parametre kestirimi yapılmış modelin verdiği artık değerlerini test ederek, modelin 

geçerliliği hakkında bilgi verir. 

 

 Box ve Jenkins (8) hataların ilk 20-25 otokorelasyonuna bir bütün olarak 

bakmayı sağlayan Q istatistiğinin kullanımını önermiştir. Ancak, Ljung ve Box (18), 

gözlem sayısının 100'den küçük olması durumunda χ2 dağılımının zayıf bir istatistik 

olması nedeni ile düzeltilmiş Q istatistiğinin kullanılmasını önermektedir (10).  

 

 Q istatistiği, otokorelasyonların ilk m tanesinin sıfırdan farklı olup olmadığını 

belirlemektedir. Eğer tüm ρk = 0 ise süreç tamamen raslantısaldır. Box ve Pierce'nin 

önerdiği Q istatistiği, 

 

 Q = n ∑
=

m

lk
kr
2  ,     χ2 m-p-q      [2.92] 

 

şeklindedir. 
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 Düzeltilmiş Ljung-Box istatistiği ise, 

 

 Q° = n(n+2) 
kn

rk
m

lk −∑
=

2
 ,        χ2 m-p-q     [2.92] 

 

biçimindedir. Yukarıdaki eşitliklerde, 

 

 n: gözlem sayısı, 

 m: test edilecek otokorelasyon katsayısı 

 p: AR modelinin derecesi 

 q: MA modelinin derecesi 

 

olarak tanımlanmaktadır. 

 

 Q istatistiği, hata terimlerinin aralarında otokorelasyon olmadığına ilişkin 

aşağıdaki, 

 

 H0 : ρl(α) = ρ2(α) = ….. = ρk(α)=0     [2.94] 

hipotezinin kabul edilip edilmeyeceğine karar vermede kullanılır. Eğer hesaplanan Q 

değeri, 

 

 Q > χ2
m-p-q,1-a        [2.95] 

 

ise, H0 hipotezi red edilir ve modelin geçerli bir model olmadığına karar verilir. 

Hesaplanan Q değerinin, 

 

 Q ≤ χ2
m-p-q,1-a        [2.96] 

  

 

olması durumunda ise, H0 hipotezi kabul edilir ve modelin geçerli bir model 

olduğuna karar verilir. 
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2.6.13. Kestirim 
 

 Modelin geçerliliği sınandıktan sonra, geçerli olduğu kabul edilen model 

gelecek dönemlere ait kestirim için kullanılabilir. 

 

 Bütün tek değişkenli zaman serisi modellerinde olduğu gibi ARIMA 

modellerinde de tek bir mantıktan hareket edilir. İlk olarak zaman serisi sürecinin 

beklenen değeri hesaplanır, daha sonra beklenen değer yardımı ile geleceğe ait 

değerler elde edilmeye çalışılır. Zaman serisinin bugünkü değeri Yt olduğunda ve 

Yt+1, Yt+2,….., Yt+L değerleri kestirilmek istendiğinde, Yt+L'nin kestirimi Yt(L) 

biçiminde gösterilir. 

 

 ARIMA modeli ile kestirim yapılırken ilk olarak bir dönem sonraki kestirim 

değeri hesaplanmakta, bulunan kestirim değeri iki dönem sonraki kestirim değerinin 

hesaplanmasında kullanılmaktadır. Bu işlemler kestirilecek dönem sayısı bitinceye 

kadar devam etmektedir (10).  

 

 Bir çevrilebilir ve durağan ARIMA(p,0,q) stokastik süreci yt için, t=n+L 

olduğunda, süreç, 

 

 yn+L = φ1yn+L-1 +…..φ1yn+L-p +an+L -θ1 an+L-1 - ….. an+L-q  [2.97] 

 

eşitliği ile gösterilebilir. Burada,  n en son gözlem dönemini, L de kestirilecek 

dönemi göstermektedir. Eş. 2.97'den yn+L’nin beklenen değeri şu şekilde bulunur: 

 

1. Şimdiki ve geçmiş hata terimleri   an+J (j < 0) için gerçek hata terimleri, 

2. Gelecek dönem hata terimlerinin  an+J  (0<j<L) beklenen değeri için sıfır, 

3. Şimdiki ve geçmiş gözlem değerleri  yn+J  (j ≤ 0) için gerçek gözlem 

değerleri, 

4. Gelecek dönem gözlem değerleri yn+J (0<j<L) için yn+L'nin yaklaşık 

kestirimi kullanılır (2). 
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 Durağan olmayan zaman serilerinde önce seri durağanlaştırılır ve daha sonra 

ARMA (p,q) sürecinde olduğu gibi kestirim yapılmaya çalışılır. Fark alınarak 

durağanlaştırılmış seri için yapılan kestirimlerden sonra orijinal seriye dönüşüm 

yapılır. Eş. 2.89, durağanlaştırılmış seriyi göstermektedir. Buradaki d parametresi 

kaç defa fark alma işleminin yapıldığını belirtmektedir. Örneğin, d=l olduğunda 

Yt'nin L dönem kestirim i, 

 

 yt (L) = yt +zt (1) + zt (2) + ..... + zt (L)    [2.98] 

 

olarak hesaplanır. 

 

 Zaman serilerinde kestirim, nokta kestirimi olarak yapılabileceği gibi, aralık 

kestirimi olarak da yapılabilir. Aralık şeklinde kestirim için, standart hatasının 

hesaplanması gereklidir. Kestirim standart hatasının hesaplanması, ARIMA modelini 

hata terimleri cinsinden ifade ederek yapılabilir. Yani modeldeki geçmiş gözlem 

değerleri hata terimleri cinsinden yazılmalıdır. Bu durumda yt süreci, 

 

 yt =at ψ1at-1 + ψ1at-2 + …..      [2.99] 

 

şeklinde yazılabilir. Burada ψ1 , ψ2 ….. ARIMA modeli parametreleri cinsinden 

katsayılardır. 

 

 Gelecek dönem kestirim hatası an (L) 'nin beklenen değeri, kestirim hatasının 

ortalamasını verecektir ve sıfıra eşittir. Varyansı ise, 

 

 Var [an(L)] = E[a2
n (L)] =  ∑

−

=

1

0

22
k

j
ja ψσ      [2-100] 

formülü ile hesaplanabilir. Burada  ψ0 = 1 'dir. 

 

 Hata varyansı  da hesaplanınca,  kestirim için  güven  aralığı  aşağıdaki  

formülle bulunabilir. 

 yn =  (L) ± 1.96 )]L(a[Var n         [2.101] 
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2.6.14.  Mevsimlik zaman serileri için Box-Jenkins modelleri 
 

 Daha önce de belirtildiği gibi mevsimlik değişmeler eşit zaman araları ile 

tekrarlanan düzenli değişmelerdir. Mevsimlik değişmeler bir yıldan kısa süreli zaman 

serilerinde görülür. Mevsimlik zaman serilerinde iki çeşit zaman aralığı bulunur. 

Bunlar, birbirini izleyen iki gözlem değeri arasındaki zaman aralığı ve birbirini 

izleyen aynı mevsim gözlem değerleri arasındaki zaman aralığıdır. Bir mevsimlik 

zaman serisinde iki tür değişme söz konusudur. Birbirini izleyen gözlem değerleri 

arasındaki değişme ve birbirini izleyen aynı mevsim gözlem değerleri arasındaki 

değişmedir. Dolayısıyla birbirini izleyen gözlem değerleri arasında ilişki olduğu gibi, 

birbirini izleyen aynı mevsim gözlem değerleri arasında da ilişki vardır. 

 

 Mevsimsel zaman serilerinde, birbirini izleyen gözlem değerleri arasındaki 

ilişkiyi gösteren bir ARIMA(p,d,q) modeli uygulanabildiği gibi, birbirini izleyen 

aynı mevsim gözlem değerleri arasındaki ilişkiyi gösteren ARIMA(P,D,Q)S modeli 

uygulanabilir. Mevsimsel ARIMA(P,D,Q)S modelindeki P, D ve Q parametreleri, 

ARIMA(p,d,q) modelinde olduğu gibi sırasıyla otoregresif süreç derecesi, fark 

derecesi ve hareketli ortalama süreç derecesi belirtmektedir, s ise birbirini izleyen 

aynı mevsim gözlem değerleri arasındaki zaman aralığıdır. Aylık zaman serilerinde 

s=12, üç aylık zaman serilerinde s=4'tür. 

 

 Bir mevsimlik zaman serisi için model belirlerken, yukarıda ifade edilen iki 

çeşit değişmeyi de yansıtacak model belirlenmelidir. Zaman serilerinde 

bulunabilecek değişkenlikler arasında çarpımsal ilişki olduğu varsayımından 

hareketle mevsimlik zaman serisi modeli kısaca, ARIMA(p,d,q)x(P,D,Q)s şeklinde 

gösterilir (2). 

 

Örneğin bir ARIMA(1,1,1)(1,1,1)4 modeli aşağıdaki gibi gösterilir (13): 

 

 (1-φ1B) (1-Φ1B4)(1-B)(1-B4)Yt=(1-θ1B)(1-O1B4)at     [2.102] 

 

Daha genel gösterimle çarpımsal mevsimlik zaman serisi kestirim modeli, 
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 φp(B)Φp(Bs)ΔdΔ D)Yt  = θqOQ(Bs)at                        [2.103] 

 

biçiminde gösterilir. Bu genel gösterim aşağıdaki açık ifadelerle daha kolay 

anlaşılacaktır. 

 φp(B)= 1-φ1B-φ2B2 - ….. φpBp  

 Φp(B)= 1-Φ1Bs-Φ2B2s - ….. ΦpBps     [2.104]  

 θp(B)= 1-θ1B-θ2B2 - ….. θpBq  

 OQ(B)= 1-O1B-O2B2s - ….. OQBQs 

 

 BYt = Yt-1 

 B2Yt = Yt-2 

 ….. 

 BkYt = Yt-k 

 

 ΔYt = Yt – Yt-k         [2.105) 

 Δ2Yt = Δ(ΔYt ) = Δ( Yt - Yt-1) = Yt - Yt-1 (Yt-1 - Yt-2) = Yt - 2Yt-1 + Yt-2             

 ….. 

 ΔsYt = Yt - Yt-2 

 Δ2
sYt = Δs (Yt - Yt-s) = (Yt - Yt-s) (Yt - Yt-2s) = Yt - 2Yt-s + Yt-2s             

 

 Mevsimlik zaman serileri için uygun kestirim modellerinin belirlenmesi, 

parametrelerin kestirimi, uygunluk testleri ve gelecek dönemler için  yapılması, 

mevsimlik olmayan modellerde olduğu gibi yapılır. Zaman serilerinde mevsimlik 

değişmelerin olup olmadığı otokorelasyon analizi ile ortaya konabilir. Örneğin 

zaman serisi üç aylık gözlem değerlerinden oluşuyorsa ve seri durağan ise, seride 

mevsimlik değişmeler söz konusu ise, her dördüncü gecikmedeki otokorelasyon 

sıfırdan önemli ölçüde farklı, bunları izleyen otokorelasyon değerleri ise küçük 

olacaktır. Seri durağan değilse, durağanlaştırma işleminden sonra otokorelasyon 

analizi yapılarak serinin mevsimsel olup olmadığına karar verilir (2). 
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3. YAPAY SİNİR AĞLARI  
 

3.1. Giriş 
 

 İnsan beyninin çalışma ilkelerini öykünen yapay sinir ağları (YSA), örnek 

sınıflandırma ve örüntü tanımada önemli bir araçtır. YSA, deneme-yanılma yolu ile 

öğrenebilmekte ve daha sonra da genelleme yapabilmektedir. YSA; işletme bilimi, 

sanayi ve fen bilimleri gibi bir çok değişik alanda başarı ile kullanılmaktadır. 

YSA'nın kullanıldığı alanlardan biri de kestirim problemleridir. YSA'nın bir kestirim 

aracı olarak geniş kabul görmesi ancak kişisel bilgisayarların gelişmesi ve YSA 

yazılımlarının yaygınlaşması sonucu olmuştur. 

 

 Haykin (13) YSA'yı şöyle tanımlar: 

 

 Yapay sinir ağı; deneyime dayalı bilgiyi depolamaya ve bu bilgiyi kullanıma 

sunmaya yönelik doğal bir eğilim içinde olan yoğun paralel dağıtılmış bir işlemcidir. 

YSA iki açıdan insan beynine benzemektedir: Bilgi ağ tarafından bir öğrenme süreci 

aracılığı ile elde edilmektedir ve sinir hücreleri arasında snaptik ağırlık olarak 

adlandırılan bağlar bilgiyi depolamakta kullanılmaktadır. 

 

 YSA, temel biyolojik sinir sistemlerinin taklididir. İnsan beyni, nöron adı 

verilen birbirleri ile bağlantılı işlem elemanlarından oluşmaktadır. Her bir nöron bir 

diğer nöronun çıktısını (toplam bilgisini) veya dışarıdan gelen bir uyarıyı girdi 

sinyali olarak alır, bir aktivasyon veya transfer fonksiyonu ile işler ve bir diğer 

nörona veya dışarıya verilmek üzere çıktı sinyalini üretir. Her bir nöron kendi 

görevini yavaş ve eksik yerine getirmesine rağmen, bütün ağ şaşırtıcı bir şekilde çok 

sayıda ki görevi eksiksiz ve oldukça etkin bir şekilde yapar (41). Bu bilgi işleme 

karakteristiği YSA'ya güçlü bir hesaplama aygıtı olma özelliği sağlar. 

 

 İnsan beyninin ve YSA'nın temel yapı taşı sinir hücreleridir. Temel insan sinir 

hücresi Şekil 3.1.'de gösterilmiştir. Sağlıklı bir insan beyni yaklaşık olarak birbirine 
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bağlı 1011 sinir hücresinden oluşarak, beynin paralel işlem yeteneğini sağlamaktadır 

(14).  

 

 İnsan sinir hücresi; çekirdek, gövde ve iki uzantıdan oluşmaktadır. Bu 

uzantılardan dentrit adı verilen kısadır ve binlerce dala dallanmıştır. Görevi giriş 

bilgilerini almaktır. Tek ve uzun olan uzantıya ise akson adı verilir. Görevi çıktı 

bilgilerini diğer sinir hücrelerine taşımaktır. Akson ve dentritin birleştiği yere sinaps 

adı verilir ve yaklaşık olarak 1014 sinaps var olduğu kestirilmektedir (14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     

                                  Şekil 3.1. Temel insan sinir hücresi (15)  

 

 Şekil 3.2.'de bir yapay sinir hücresi gösterilmektedir. Girdiler sinir hücresine 

girdikten sonra snaptik ağırlıkları ile çarpılırlar, daha sonra toplanırlar ve bir 

aktivasyon fonksiyonu tarafından işlenirler. Aktivasyon fonksiyonu, sinir hücresinin 

çıktısının sınırlarını belirler. 
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Şekil 3.2. Yapay sinir hücresi modeli (16) 

 

 YSA, yapay sinir hücrelerinin gruplanması ile oluşmuş sistemin adıdır (16). 

Bu gruplandırma, birbirine bağlı katmanlardan meydana gelir. Şekil 3.3, bir YSA 

yapısını göstermektedir. Bu yapıdaki ağlar, çok katmanlı algılayıcı (Multi-layer 

perceptrons - MLP) olarak adlandırılır. Şekil 3.3'te de görüleceği üzere YSA'lar, 

verileri alan nöronların bulunduğu girdi katmanından, ağın sonuçlarını veren 

nöronların oluşturduğu çıktı katmanından ve bu iki katman arasındaki bir veya daha 

fazla gizli katmandan oluşmaktadır (15). Bir çok ağda gizli katmanlardaki nöronlar 

sinyallerini bir önceki katmandaki nöronlardan alırlar. Herhangi bir nöron kendi 

fonksiyonunu yerine getirdikten sonra çıktısını bir sonraki katmanının nöronlarına 

gönderir. 

 

3.2. YSA'nın Temelleri 
 

 Çok katmanlı algılayıcılar (ÇKA), en bilinen ve en yaygın kullanılan YSA 

türüdür. Bir ÇKA aşağıdaki bileşenlerden oluşur: 

 

 

Σ f o

x1

x2

x3

xn

w1

wn

b = ± 1
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  Şekil 3.3. Basit bir YSA Yapısı (15)  

 

1. Girdiler, 

2. İşlem birimleri kümesi, 

3. Her bir birimin çıktısına eşit olan aktivasyon değeri, 

4. Birimler arası bağlantılar, 

5. Katmanlar, 

6. Birleştirme fonksiyonu, 

7. Aktivasyon fonksiyonu, 

8. Öğrenme algoritması, 

9. Öğrenme metodu, 

 

3.2.1. İşlem Birimi 
 

 Nöron ya da düğüm diye de adlandırılan bir işlem birimi, tek başına ele 

alındıklarında çok basit işleve sahip işlemcilerdir. İşlem birimi (Şekil 3.4), dış 

kaynaklardan veya komşularından girdiyi alır ve diğer birimlere yayılacak sinyali 

hesaplamak üzere kullanır (16). 
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  Şekil 3.4. İşlem birimi (13)  

 

Yapay sinir sistemlerinde üç çeşit nöron vardır: 

 

a. Girdi nöronları: ağ dışından veriyi alır, 

b. Çıktı nöronları: ağın dışına veriyi gönderir, 

c. Gizli nöronlar: bir önceki katman nöronlarından girdiyi alır ve çıktısını 

sonraki katman nöronlarına gönderir. 

 

 Her bir nöron birden fazla (x1, x2,……,xn) girdiye sahip olabilir ancak her bir 

nöronun sadece bir çıktısı vardır. Bir nöronun girdisi ağın dışından olabileceği gibi 

bir başka birimin çıktısı ya da kendi çıktısı olabilir. Bir nöronun girdileri ağırlıkları 

ile çarpılarak birleştirme fonksiyonuna girerler.  

3.2.2. Toplama (Birleştirme) Fonksiyonu 
 

 Bir YSA'da, girdi birimi olmayan her bir nöron bağlantılar yardımı ile diğer 

nöronlardan gelen değerleri toplar ve net girdiyi üretir. Diğer nöronlardan gelen 

değerleri toplayan bu fonksiyona, toplama (birleştirme) fonksiyonu denir. Bir çok 

YSA’da, her bir nöronun bağlantılı olduğu diğer nöronun girdisine ek bir katkıda 

bulunduğu varsayılır. Herhangi bir j nöronunun toplam girdisi, diğer nöronlardan 

gelen değerlerin ağırlıklı toplamı ile eşik (bias) değerinin toplamına eşittir: 
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 aj = ∑ +
i

jiji xw θ        [3.1] 

 

 Yukarıdaki fonksiyona toplam fonksiyonu denir. Toplam fonksiyonundan 

başka kullanılan birleştirme fonksiyonları da vardır. En çok kullanılan birleştirme 

fonksiyonları Tablo 3.l'de gösterilmiştir (17). 

 

Tablo 3.1. Bazı Birleştirme Fonksiyonları 
 

Toplam            aj = ∑
i

iji xw  Çarpım           aj = ∏
i

iji xw  

Maksimum      aj = Maks (w ji  xi) Minimum       aj = Min (w ji  xi) 

Çoğunluk        aj = ∑
i

iji )xw(Sgn   

 

 xi  = i nöronunun çıktısı 

 wji  = j ve i nöronları arasındaki bağlantının ağırlığı 

 aj  = j nöronunun net girdisi 

 

3.2.3 Aktivasyon Fonksiyonu 
 

 Nöron davranışını belirleyen önemli faktörlerden biri nöronun aktivasyon 

fonksiyonudur. Toplama fonksiyonunun sonuçları aktivasyon fonksiyonu diye 

bilinen bir süreç yardımı ile çıktıya dönüştürülür. Literatürde, sıkıştırma veya eşik 

fonksiyonu olarak da adlandırılmaktadır. Bunun nedeni, çıktı sinyallerini [0,1] veya 

[-1,1] aralığında sınırlandırmasıdır. İlgilenilen problem türüne ve ağ yapısına bağlı 

olarak değişik aktivasyon fonksiyonları kullanılabilir. Genellikle kullanılan 

aktivasyon fonksiyonlarına aşağıda değinilmiştir (4): 

 

 i. Doğrusal Fonksiyon 

 

 Fonksiyon Eş.3.2’de ve fonksiyona ait grafik Şekil 3.5’te gösterilmiştir. 

 



 54

 g(x) = x        [3.2] 

 

 

 

 

 

 

 

         Şekil 3.5. Doğrusal fonksiyon 

 

 ii. Basamak Fonksiyonu 

 

 Fonksiyon Eş.3.3’te ve fonksiyona ait grafik Şekil 3.6’da gösterilmiştir. 

 

               1       if(x ≥ θ) 
 g(x) =                 [3.3] 
                          0 if(x < θ) 
 

 

 

 

 

 

 

 

 

          Şekil 3.6 Basamak fonksiyonu 

 

 Basamak fonksiyonu genellikle tek katmanlı ağlarda kullanılır. 

 

 iii. Sigmoid Fonksiyonu 

 

 Fonksiyon Eş.3.4’te ve fonksiyona ait grafik Şekil 3.7’de gösterilmiştir. 
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 g(x) = xe−+1
1         [3.4] 

 

 

 

 

 

 

 

 

 Şekil 3.7 Sigmoid fonksiyonu 

 

 Sigmoid fonksiyonu özellikle geri yayılım (backpropagation) tekniği ile 

eğitilen ağlarda avantajlıdır. Sigmoid fonksiyonunun çıktısı [0,1] aralığındadır. 

 

 iv. Hiperbolik Tanjant Fonksiyonu 

 

 Fonksiyon Eş.3.5’te ve fonksiyona ait grafik Şekil 3.8’de gösterilmiştir. 

 

 

 

 

 

 

 

 

 Şekil 3.8 Hiperbolik tanjant fonksiyonu 

 

 g(x) = xx

xx

ee
ee
−

−

+
−        [3.5] 
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 Hiperbolik tanjant fonksiyonu, çıktısının [-1,1] aralığında olması gereken 

uygulamalarda kullanışlıdır. 

 

3.2.4.  YSA'nın Yapısı 
 

 YSA'nın yapısı; katman sayısına veya katmanlar arasındaki bağlantıların 

durumuna göre tanımlanmaktadır. YSA'lar katmanlar arasındaki bağlantının yapısına 

göre iki sınıfta incelenir: 

 

 i. İleri Beslemeli Ağlar: Verilerin girdi birimlerinden çıktı birimlerine ileri 

doğru aktığı ağ yapısıdır. Bu ağ yapısında (Şekil 3.9) geri besleme yoktur. Şekil 

3.9'da, {X1,..,Xn} girdi nöronlarını, {H1,...,Hp} gizli nöronları, {Y1,..,Ym} çıktı 

nöronlarını, vij, i girdi nöronundan j gizli nöronuna olan bağlantının ağırlığını ve wjk, 

j gizli nöronundan k çıktı nöronuna olan bağlantının ağırlığını göstermektedir. +1 

olarak gösterilen birimler eşik (bias term) değerleridir. 

 

 

 

 

 

 

 

 

 

 

 

                      Şekil 3.9. İleri Beslemeli Ağ Yapısı 

 

 ii. Geri Beslemeli Ağlar: Veri akışının sadece ileriye doğru değil geriye doğru 

da olabileceği ağ yapısıdır. Bu ağ yapısında (Şekil 3.10), ağ çıktısı aynı zamanda 

girdi olarak da kullanılabilmektedir. 

 



 57

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 3.10. Geri Beslemeli Ağ Yapısı (13) 

 

3.2.5. YSA'nın Eğitimi 
 

 YSA'nın en temel özelliği öğrenme yeteneğidir. YSA'da girdi ile çıktı 

arasındaki ilişkinin öğrenilmesi amacı ile bağlantıların ağırlıklarının hesaplanması 

işlemi ağın eğitimi olarak adlandırılır. Başlangıç ağırlıkları keyfi olarak seçilir ve 

öğrenme işlemi başlar. Problemin çözümünde en iyi ağırlık kümesini bulmaya 

yardım eden birçok öğrenme algoritması ileri sürülmüştür. Bu algoritmalar kabaca 

iki sınıfta incelenebilir: öğreticili öğrenme ve öğreticisiz öğrenme algoritmaları. Bir 

YSA'nın eğitiminde, öğrenme algoritmalarının yanı sıra, öğrenme oranı ve öğrenme 

kuralı da önemli rol oynar. Aşağıda kısaca bu konulara değinilmiştir. 

 

 i. Öğreticili Öğrenme: 

 

 Ağın eğitiminde, çıktıların istenen değerleri ağa tanıtılabiliyorsa, bu tip 

öğrenme, öğreticili öğrenme adını alır. Girdi ve çıktı kümeleri ağa verilir. Ağ, girdiyi 

işleyerek kendi çıktısını üretir ve gerçek çıktı ile karşılaştırır. Öğrenme metodu 

 

Z-1

Z-1

Z-1

Z-1

{Girdi 

} Çıktı 



 58

sayesinde, var olan hatayı en aza indirmek için bağlantılardaki ağırlıklar yeniden 

düzenlenir. Bu işlem kabul edilebilir bir hata seviyesine ulaşılıncaya kadar devam 

eder. Şekil 3.11, öğreticili öğrenme algoritmasını göstermektedir. Algılayıcı, geri 

yayılım ağı ve boltzmann makinesi en yaygın kullanılan öğreticili ağlardır (15).  

 

 
 

Şekil 3.11. Öğreticili Öğrenme 

 

 ii. Öğreticisiz Öğrenme: 

 

 Çıktıların istenen değerleri ağa tanıtılamıyorsa, bu tip öğrenme şekli 

öğreticisiz öğrenme olarak adlandırılır. Öğreticisiz öğrenme algoritmaları daha çok 

sistemin geçmişte karşılaştığı veri kümesinin içerdiği istatistiksel bilgilerin elde 

edilmesini amaçlar. Çok elemanlı veri kümeleri içerisinde deneme-yanılma yoluyla 

bilgi genelleştirilmesi yapılabilir (18). 

 

 Öğreticisiz öğrenmede girdiler aynı zamanda çıktı görevi görmektedir. Hem 

çıktı hem de girdi olan veriler arasındaki kural ve ilişkilerin araştırılması ve en 

uygununun bulunması ağın eğitilmesi anlamına gelmektedir. Adaptif Rezonans 

Teorisi (ART), Hopfıeld Ağı, Kohonen Ağı, Sayaçlı Yayılım Ağı en çok 

kullanılanlarıdır. 

   Girdi         Gerçek Çıktı 
        İstenen Çıktı 

   Çıktı       Amaç 
Fonksiyonu 

    Öğrenme Algoritması 

Ağırlıklar  
Değiştirilir 
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 iii. Öğrenme Oranı: 

 

 Öğrenme oranı bağlantıların ağırlık değerlerindeki değişim miktarını belirler. 

Öğrenme oranı, genellikle 0 ile 1 arasında bir değerdir. Öğrenme oranının büyük 

değerleri değişim miktarını artırırken, küçük değerleri de değişim miktarını 

azaltacaktır. Öğrenme oranının çok büyük değerleri kararsızlığa, çok küçük değerleri 

de öğrenme sürecinin kabul edilemeyecek şekilde yavaşlamasına sebep olur. 

Öğrenme oranının l'den büyük olduğu durumlarda ağ yerel minimumların arasında 

salınır. Öğrenme oranının çok düşük olması da genel minimumu bulmaya imkan 

vermeyebilir. Tang ve diğ. (20)’leri, az karmaşık veri yapısında yüksek öğrenme 

oranının iyi olduğunu ifade etmektedir. 

 

 iv. Momentum Katsayısı: 

 

 Ağın daha hızlı toparlanmasına yardım eden bir faktördür. Daha önceki 

değişimin bir kısmının o andaki değişime eklemek şeklinde ifade edilebilir. Bunu 

yapma amacı, öğrenme sırasında ağın salınımını engellemektir. 0 ile 1 arasında 

değerler alır (4). Tang ve arkadaşları (20) çok karmaşık veri yapısında, düşük 

öğrenme oranı ve yüksek momentum katsayısı kullanılmasının iyi olacağını ifade 

etmektedir. 

 

 v. Öğrenme Kuralları : 

 

 Öğrenme işlemini kolaylaştırmak amacı ile öğrenme kuralları (algoritmaları) 

geliştirilmiştir. Bir çok öğrenme kuralı kullanılmaktadır. Bunların bir çoğu, en eski 

ve en bilinen Hebb Algoritmasının bir çeşididir. Önemli öğrenme kurallarından 

bazıları aşağıda kısaca açıklanmıştır. 

 

 a. Hebb Kuralı: 

 

 Ponald Hebb tarafından geliştirilen bu kural, öğrenme kuralları arasında en 

çok bilinenidir ve ilk öğrenme kuralıdır. Tanımlama, 1949 yılında yayınlanan The 
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Organization of Behavior adlı kitabında verilmiştir (21). Bu kuralın temel tanımı 

şöyledir: eğer bir nöron diğer bir nörondan girdi aldığında, bu iki nöron yüksek 

aktivitede ise (matematiksel olarak aynı işarete sahip ise), nöronlar arasındaki ağırlık 

güçlendirilmelidir. 

 

 b. Hopfield Kuralı: 

 

 Hebb kuralına benzer ancak bir istisnası vardır. Hopfıeld kuralı, ağırlıkların 

güçlendirilmesi işleminde güçlendirme veya zayıflatma için bir büyüklük 

tanımlamaktadır. İstenen çıktı ve girdinin her ikisi de aktif veya pasif ise, bağlantı 

ağırlığı öğrenme oranı kadar artırılır, tersi durumda da öğrenme oranı kadar azaltılır. 

 

 c. Delta Kuralı: 

 

 En çok kullanılanlardan biridir. İstenen çıktı ile işlem biriminin gerçek çıktısı 

arasındaki farkın (delta) azaltılması amacı ile girdi bağlantılarının ağırlıklarının 

değiştirilmesi temeline dayanır. Bu kural snaptik ağırlıkları, ağın hata kareleri 

ortalamasını minimize etme yolu ile değiştirir. Bu kural Widrow-Hoff Öğrenme 

Kuralı veya En Küçük Kareler Öğrenme Kuralı olarak da bilinir. 

 

 d. Eğim Düşme (Gradient Descend) Kuralı: 

 

 Delta Kuralının benzeridir. Ağırlıkların düzenlenmesi işlemi, bir işlem birimi 

için arzu edilen çıktı ile gerçek çıktı arasındaki hatanın birinci türevine (gradient) 

göre orantılı bir şekilde gerçekleştirilir. Amaç, hata fonksiyonunu azaltarak, yerel 

minimumdan kurtulmak ve genel minimumu yakalamaktır. 

 

 e. Kohonen Öğrenme Kuralı: 

 

 Teuvo Kohonen tarafından biyolojik sistemlerdeki öğrenmeden esinlenerek 

geliştirilmiştir. Bu kurala göre, işlem birimi öğrenme fırsatı için yarışır veya 

ağırlıklarını günceller. En geniş çıktıya sahip işlem birimi kazanan olarak ilan edilir. 



 61

Bu işlem birimi komşularını heyecanlandırdığı gibi, rakiplerini de engelleme 

yeteneğine sahiptir. Sadece galip gelenin çıktısına izin verilir ve yine sadece galip 

gelenin ve komşularının bağlantı ağırlıklarının ayarlanmasına izin verilir. Komşu 

genişliği eğitim süresi boyunca değişebilir. Genellikle geniş bir komşu tanımlaması 

ile başlanır ve eğitim süreci işledikçe daraltılır (22, 30). 

 

3.2.6. Amaç Fonksiyonu 
 

 Eğitilen ağın performansını ölçmek için bir amaç fonksiyonu (maliyet 

fonksiyonu) tanımlanmalıdır. Hata Kareleri Toplamı ve Hata Kareleri Ortalaması, 

hata terimine bağlı olarak tanımlandıklarından dolayı tipik olarak kullanılır. Finansal 

kestirim ve benzeri bazı problemlerde, hasıla, kar, fayda maksimizasyonu gibi farklı 

amaç fonksiyonları da uygun olabilir. Refenes (23), öğrenme algoritması (geri 

yayılım algoritması) ve diğer parametrelerin sabit olduğu bir YSA'da, farklı amaç 

fonksiyonlarının ağın kestirim performansını etkilediğini belirtmektedir. Bu durumda 

amaç fonksiyonunun en iyi değerini bulabilmenin bir olası yolu, tarama algoritmasını 

geri yayılım tipinden, genetik algoritmalar, tavlama benzetimi ya da benzeri diğer 

optimizasyon metotlarına dönüştürmektir (4).  

3.3. Öğrenme Algoritmaları 
 

 YSA'nın en önemli özelliklerinden biri, ilgili probleme ait örneklerle veriler 

arasındaki ilişkiyi öğrenmesidir. YSA'nın, veri yapısındaki ilişkiyi öğrenmesi, 

probleme ait örnekler yardımı ile ağ ağırlıklarının en uygun değerlerinin 

belirlenmesine dayanır. Herhangi bir ağırlık için; 

 

 Wyeni = Weski + ΔW       [3.6] 

 

denklemi, öğrenmenin matematiksel olarak nasıl gerçekleştiğini ifade etmektedir. Eş. 

3.6'daki ΔW değeri belli bir kurala göre hesaplanarak var olan ağırlık değerlerinin 

değişim miktarını verir. ΔW'yi belirlemek için tanımlanmış kurallara öğrenme 

algoritmaları denir. 
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 Bu bölümde, YSA'nın eğitiminde kullanılan geri yayılım öğrenme 

algoritmasına değinilecektir. 

3.3.1. Geri yayılım algoritması 
 

 Geri yayılım algoritması (GYA), YSA tarihindeki en önemli gelişmelerden 

biridir. Bu öğrenme algoritması, sürekli, türevi alınabilir aktivasyon fonksiyonuna 

sahip nöronlardan meydana gelen ÇKA'da uygulanabilmektedir. GYA'nın 

kullanıldığı ÇKA'lar geri yayılım ağları olarak da adlandırılmaktadırlar. Girdi ve bu 

girdilere karşılık gelen çıktılardan meydana gelen eğitim kümesi {x(k), t(k)}, k=l,2,...p, 

şeklinde ifade edilirse, GYA, verilen eğitim seti için en uygun çözümü üretecek 

ağırlıkları bulmayı sağlar. Ağırlıkların düzenlenmesi işlemi, basitçe gradyan inişe 

dayanmaktadır. 

 

 Şekil 3.9'a göre, yk ağın ürettiği çıktıyı ve tk gerçek çıktıyı temsil ettiğinde, 

ağın eğitimi, 

 

 E = ∑
=

−
m

k
kk )yt(

1

2

2
1        [3.7] 

 

hata fonksiyonunun minimizasyonu ile sağlanır. E hata fonksiyonunun ağırlıklara 

göre türevi alınırsa, ağırlıklardaki değişim miktarı elde edilir. 

 

 Geri yayılım öğrenme sürecini başlatmadan önce aşağıdakilerin belirlenmiş 

olması gerekir (22):  

 

1. Eğitim kümesi, 

2. Öğrenme oranı, 

3. Algoritmayı sonlandırma kriteri, 

4. Ağırlıkları düzenleme metodolojisi, 

5. Aktivasyon fonksiyonu, 

6. Başlangıç ağırlıkları. 
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 Eğitim kümesindeki girdiler, ağın girdi katmanındaki nöronların bir çıktı 

üretmesini sağlarlar. Bu çıktı bir sonraki katman nöronlarının girdisini oluşturur. 

Böylece çıktı katmanındaki nöronların ağın çıktısını üretmeleri sağlanır. Ağın 

ürettiği çıktı ile eğitim kümesindeki gerçek değerler karşılaştırılır. Aradaki fark 

hesaplanır. Hatayı minimize etmek için, algoritma, geriye doğru çıktı katman 

ağırlıklarını (son gizli katman ile çıktı katmanı arasındaki ağırlıklar) yeniden 

hesaplamaya çalışır. Daha sonra son gizli katmandaki ve girdi katmanına doğru 

bütün katmanlardaki ağırlıklar yeniden hesaplanır. Algoritmayı sonlandırma kriteri 

sağlanana kadar bu işlem sürer. Algoritma, ağırlıkların geriye doğru 

düzenlenmesinden dolayı, GYA adını almıştır (22).  

 

 Gizli katman ve çıktı katman aktivasyon fonksiyonu olarak sigmoid 

fonksiyonun kullanıldığı bir ÇKA için, GYA matematiksel olarak aşağıdaki gibi 

ifade edilebilir: 

 Δw[k,j] = - η∂(E) / ∂w[k,j]      [3.8] 

 hj ve yk arasındaki bağlantının j  k olması durumunda, 

 ∂(E)/ ∂w[k,j] = [∂(E)/ ∂[whyh]k]  [∂([whyh]k)/ ∂w [k,j]]=-δkhj [3.9] 

 δk=-∂(E)/ ∂[whyh]k  = - [∂(E)/∂yk] [∂yk/∂[whyh]k]   [3.10] 

 yk = g([why h]k)       [3.11] 

 δk=-[∂(E)/ ∂yk]gı ([whyh]k)      [3.12] 

 δk=-[y-t]kgı ([whyh]k)       [3.13] 

 Δw[k,j] = - ηδkhj       [3.14] 

 xj ve hj arasındaki bağlantının i  j olması durumunda, 

 ∂(E)/ ∂v[j,i] = [∂(E)/ ∂[vxhx]j]  [∂[vxhx]j)/ ∂v [j,i]]=-δjxi  [3.15] 

 δj = -[∂(E)/ ∂[vxhx]j] = - [∂(E)/∂hj] [∂hj/∂[vxhx]j]   [3.16] 

 ∂(E)/ ∂hj = Σk [∂(E)/ ∂[whyh]k]  [∂([whyh]k)/ ∂hj = -Σk δkw[k,j] [3.17] 

 ∂hj / ∂[vxhx]j = gı ([vxhx]j)      [3.18] 

 

 Böylece, 

 

 δj = Σk δiw[k,j] gı ([vxhx]j)      [3.19] 

 Δv[j,i] = - ηδjxi       [3.20] 
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elde edilmiş olur. Aşağıda algoritmanın bir özeti verilmiştir. 

 

1. Başlangıç ağırlık değerlerini rasgele olarak ata. 

2. Eğitim kümesindeki verilere göre ileriye doğru hesaplama yap ve kaydet. 

3. Eğitim kümesinden her bir girdi-çıktı koleksiyonları için delta değerini 

hesapla. 

       δk = [y-t]kgı ([whyh]k) = [y-t]kg ([whyh]k) [1-g([whyh]k) 

         = [y-t]kyk (1-yk)    [3.21] 

 4. Hatayı geriye doğru yay. 

δk = (Σk δk w[k,j])gı ([vxhx]j) = (Σk δi w[k,j])hj (1-hj)   [3.22] 

 5. Ağırlıkları düzenle. 

Δv[j,i] = ηδjxi       [3.23] 

 6. Sonlandırma kriteri sağlanıncaya kadar adım 3-5’i tekrarla. 
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4. GELECEĞİ KESTİRİM PROBLEMLERİ İÇİN YSA  
 

4.1. Giriş 
 

 Daha önceki bölümlerde de belirtildiği gibi YSA'nın başarı ile kullanıldığı 

alanlardan biri de geleceği kestirim problemleridir. Geleceği kestirim problemleri, 

neden-sonuç ilişkisine dayanan kestirim problemleri ve zaman serilerine dayalı 

kestirim problemleri olarak iki grupta incelenebilir. Neden-sonuç ilişkisine dayalı 

kestirim problemleri, bir veya daha fazla açıklayıcı değişkenin, bir açıklanan 

değişken üzerindeki etkisinin incelendiği problemler, zaman serilerine dayalı 

kestirim problemleri ise, zaman boyutunda var olan veriler ile gelecek dönemlere ait 

değerlerin kestirilmesi olarak bilinir. Neden-sonuç ilişkisine dayanan bir kestirim 

probleminde, YSA'nın girdileri genellikle bağımsız değişken veya değişkenlerdir, 

YSA çıktısı da bağımlı değişkendir. YSA tarafından kestirilen fonksiyonel ilişki şu 

şekilde yazılabilir: 

 

 y = f (x1, x2,…….,xp)       [4.1] 

 

 Yukarıdaki eşitlikte x1, x2,………,xp , p adet bağımsız değişkeni, y ise 

bağımlı değişkeni ifade etmektedir. Bu şekilde bakıldığında YSA, doğrusal olmayan 

bir regresyon modeli gibi düşünülebilir. 

 

 Diğer yandan geleceğe ilişkin veya zaman serilerine dayalı kestirim 

probleminde, girdiler veri serisinin geçmiş gözlemlerinden oluşurken, çıktı 

gelecekteki kestirim değerini temsil etmektedir. Bu durumda YSA için ilişki şu 

şekilde yazılabilir: 

 

 yt+1 = f(yt, yt-1,…...,yt-p)      [4.2] 

 

 yt, t zamanında gerçekleşen gözlem değerini ifade etmektedir. Böylece 

YSA'nın, zaman serileri kestirim probleminde doğrusal olmayan otoregresif 

modellere eşdeğer olduğu söylenebilir (4). 
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 YSA'nın geleceği kestirimde kullanılmasına yönelik literatürde çok sayıda 

çalışma vardır. Bir çok farklı disiplinden araştırmacılar, bir kestirim aracı olarak 

YSA'nın kullanılabilirliğini araştırmışlardır. Yapılan çalışmaların bir çoğunda, 

geleneksel metotlar ile YSA teknikleri karşılaştırılmış ve hangi yöntemin daha iyi 

sonuç verdiği araştırılmıştır. YSA'nın bir kestirim aracı olarak kullanılmasına yönelik 

literatür taraması, yapılan çalışmaların uygulama alanları ve amacı hakkında bir bilgi 

verecektir. 

 

4.2. Konu ile İlgili Yapılmış Çalışmalar  
 

 YSA'nın geleceği kestirime ilişkin ilk uygulamaları 1964 yılında olmuştur. 

Hu (24) tezinde Widrow'un uyarlanabilir doğrusal ağını (adaptive linear network) 

hava kestirimi için kullanmıştır. Ancak çok katmanlı ağları eğitecek algoritmanın 

olmayışından dolayı bu çalışma oldukça kısıtlıdır (4).  

 

 1986 yılında geri yayılım algoritmasının tanıtılmasından sonra (25), YSA'nın 

kestirimde kullanılmasında bir çok gelişme olmuştur. Werbos 1974 yılında (41) geri 

yayılım algoritmasını ilk formüle eden kişidir ve geri yayılım algoritması ile eğitilen 

YSA'nın regresyon analizi ve Box-Jenkins analizi gibi geleneksel yaklaşımlardan 

daha iyi sonuç verdiğini göstermiştir. 

 

  Sharda ve Patil (26), Tang ve Fishwick (27) çalışmalarında, YSA ve Box-

Jenkins modellerinin sonuçlarını irdelemişlerdir. 

 

 Elena Montanes ve diğ. (42)’leri Nükleer Enerji ünitesinden alınan gerçek 

veriler ile Box-Jenkins ve YSA Modellerini karşılaştırmışlar ve  Box-Jenkins  

tekniğinin veri serisindeki ani sistematik değişiklikleri öngöremediğini  öne 

sürmüşlerdir.  

 

 Hanh H., Nguyen Christine ve W Chan (43) uzun dönemli zaman serisi 

analizinde çoklu YSA’ların tekli YSA modeline göre daha iyi sonuç verdiğini 

göstermiştir.  
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 T.Taskaya.,Temizel ve M.C.Casey (44) mevsimsel özellik gösteren ekonomik 

veriler için yeni bir dönüşüm algoritması önermiştir. Markus ve diğ.’leri gen 

açıklayıcı verilerin sınıflandırılmasında YSA’lardan faydalanmışlardır.  

 

Sağlık alanında geniş ölçekli çalışmaların yer aldığı YSA uygulamaları genel 

olarak; tanı, beklenen yaşam, görüntü analizi, sınıflama konularında odaklanmıştır. 

D.Ripley  yaşam analizi uygulamalarında YSA’ların geçerli bir istatistiksel yöntem 

olduğunu göstermiştir. 

 

 M. Swiercsz ve diğ.’leri nörocerrahi uygulamalarına yönelik ICP 

Trendlerinin kestirimini YSA uygulaması ile gerçekleştirmişlerdir.  

 

Sağlık alanına yönelik olarak YSA teknolojisinin kullanıldığı ticari 

uygulamalar da vardır. Bunlardan birisi PAPNET  sistemidir. PAPNET Yöntemi ile, 

300.000’den fazla hücresi bulunan smear örneği taranarak merkezi tarama ünitesine 

gönderilmekte ve veri olarak saklanmaktadır. Bu veriler PAPNET sistemi ile kısa 

sürede incelenmekte ve geleneksel yöntemler ile yanlış tanıya gidilmeksizin sağlam 

sonuçlar ile birlikte potansiyel kanser hücreleri de önceden ayırt edilebilmektedir 

(36).  

 

Selami Serhatlioglu, Fırat Hardalaç, ve İnan Güler (38) beynin temporal 

bölgesi doppler sinyallerini tanı amaçlı YSA uygulaması ile incelemişlerdir. 

 

 Samuel, Eldar ve diğ. (39)’leri cerrahi laparoskopi yerine açık 

cholecystectomy uygulamasına karar vermek üzere YSA ile lojistik regresyon, ve 

doğrusal ayırma (discriminant) analizi tekniklerini karşılaştırmışlar ve YSA ile elde 

edilen sonuçların daha anlamlı ve faydalı olduğu sonucuna varmışlardır.  

 

Cenk Şahin ve S.Noyan Oğulata (40) tiroid bezi bozukluklarının YSA ile 

tanısına yönelik bir çalışma gerçekleştirmiştir. 
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 Al-Saba ve El-Amin (7), Suudi Arabistan için 1997-2006 tarihleri arasında en 

yüksek yük istemini kestirmeye çalışmıştır. Yazarlar çalışmalarında, YSA ile 

buldukları sonuçları, AR, ARMA ve ARIMA yöntemleri ile karşılaştırmıştır. 

Yazarlar YSA ile yapılan kestirim sonuçlarının daha iyi olduğunu ifade etmektedir. 

 

 Bir çok araştırmacı, YSA modelleri ile bilinen istatistiksel yöntemlerin 

karşılaştırması için çok kullanılan M-Competition verilerini kullanmıştır. M-

Competition verileri işletme, ekonomi ve finansman verileridir. Bu şekilde yapılmış 

bazı çalışmalar : Tang ve diğ. (20)’leri ile Tang ve Fishwick (27) tarafından da ele 

alınmıştır. 

 

 YSA, çok başka alanlardaki kestirim problemlerinin çözümünde de 

kullanılmıştır. R.J.FRANK ve diğ.’leri ileri beslemeli YSA modellerini Lorenz 

Verisi, hava trafik talebi, hava trafik işletimi modellemesi ve Tree Ring Verisi 

üzerinde deneyerek modellerin genelleyebilme performansını incelemişlerdir.  

 

 Zhang (30), iki gizli katmanlı ağların, veri yapısını modellemede ve 

kestirimin doğruluk derecesini arttırmada tek gizli katmanlı ağlardan daha iyi 

olduğunu, bazı Santa Fe zaman serileri üzerinde yaptığı çalışmalar sonucunda ifade 

etmiştir. 

 

 Tang ve diğ. (20)’leri, öğrenme parametrelerinin YSA'nın öğrenmesindeki 

etkisini araştıran bir çalışma yapmıştır. Yazarlar, karmaşıklığı az olan verilerde 

yüksek öğrenme oranının iyi olduğunu ve çok karmaşık verilerde ise düşük öğrenme 

oranını ve yüksek momentum katsayısının kullanışlı olduğunu rapor etmiştir. 

 

4.3. Geleceği Kestirimde YSA ile Modellemede Önemli Noktalar 
 

 YSA'nın istenen bir görevi yerine getirebilmesi için öncelikli olarak 

eğitilmesi gerekir. Eğitim işlemi girdi verileri, girdi değişkenleri vektörleridir. Girdi 

vektöründeki birbirleriyle benzer her bir eleman, ağın girdi katmanındaki girdi 

nöronlarını oluşturmaktadır. Böylece girdi nöronu sayısının, girdi vektörünün 
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boyutuna eşit olduğu söylenebilir. Neden-sonuç ilişkisine dayanan bir kestirim 

probleminde girdi nöron sayısının belirlenmesi çok kolaydır. Probleme ilişkin 

bağımsız değişken sayısı girdi nöronu sayısını verecektir. Ancak, bir zaman serisi 

kestirim probleminde uygun girdi nöronu sayısını belirlemek kolay değildir. Boyutu 

ne olursa olsun, zaman serileri kestirim probleminde girdi vektörü, sabit uzunluktaki 

serinin ileri doğru hareketli pencerelerinden oluşmalıdır. Eldeki toplam kullanılabilir 

veri genellikle eğitim ve test kümesi olmak üzere ikiye bölünür. Eğitim kümesi ağın 

ağırlıklarının belirlenmesinde kullanılırken, test kümesi ağın genelleştirme 

yeteneğinin ölçümünde kullanılır. 

 

 Her modellemede olduğu gibi YSA'nın performansında da modelleme önemli 

bir yer tuttuğundan dikkatli bir şekilde ele alınmalıdır. Önemli kritik kararlardan biri 

ağın yapısıdır. Ağ yapısından kasıt, katman sayısı, her katmandaki nöron sayısı ve 

nöronlar arasındaki bağlantıların sayısıdır. Diğer kritik kararlar ise gizli katman ve 

çıktı katmanındaki aktivasyon fonksiyonunun seçimi, eğitim algoritması, veri 

normalleştirme yöntemi, eğitim ve test kümelerinin belirlenmesi ve performans 

ölçütleridir. 

 

4.3.1. Ağ Yapısı 
 

 Tipik bir YSA, nöronlardan oluşan katmanların bileşimidir. Bir ÇKA'larda, 

bütün girdi nöronları girdi katmanında, bütün çıktı nöronları çıktı katmanında ve 

gizli nöronlar da bir veya daha fazla katmana dağıtılmıştır. Kestirim için kurulan 

ÇKA'ın tasarımında aşağıdaki değişkenlerin belirlenmesi gerekir: 

 

 1. Girdi nöronu sayısı 

 2. Gizli katman ve gizli nöron sayısı 

 3. Çıktı nöronu sayısı 

 

 Yukarıdaki parametrelerin seçimi ilgilenilen probleme göre değişecektir. 

Optimal ağ mimarisinin belirlenmesinde, önerilen bazı yöntemler olmasına rağmen, 

bu yöntemler oldukça karmaşıktırlar ve yerine getirilmeleri zordur. Ayrıca, bu 
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yöntemlerder hiçbirisi gerçek kestirim problemleri için en uygun (optimal) çözümü 

garanti etmemektedir. Daha doğrusu bu parametrelerin belirlenmesinde kesin-açık 

yöntemler yoktur. Sezgisel yaklaşımlar ve kısıtlı deneylere dayalı benzetim 

çalışmaları yardımcı olabilir. Bu nedenle, bir YSA'nın tasarımı bir bilimden daha çok 

bir sanattır (4).  

4.3.2. Girdi nöronu sayısı 
 

 Girdi nöronu sayısı, girdi vektöründeki değişken sayısına bağlıdır. Neden-

sonuç ilişkisine dayalı kestirim problemlerinde girdi nöron sayısını belirlemek 

kolaydır. Zaman serisi kestirim problemlerinde, girdi nöronu sayısı gecikme sayısı 

ile ilişkilidir. Ancak bu sayıyı belirlemede önerilen herhangi bir kesin yol yoktur. 

 

 Tang ve Fishwick (27) tek değişkenli bir zaman serisi için, girdi nöronu 

sayısının basitçe Box-Jenkins AR(p) modelinin derecesine eşit olduğunu ileri 

sürmektedirler. Zhang vd’ne. (4) göre bu aşağıdaki iki nedenden dolayı doğru 

değildir: 

 

 

1. Hareketli ortalama MA(q) modelinde, otoregresif (AR) terimler yoktur, 

2. Box-Jenkins modelleri doğrusal modellerdir. Otoregresif terimler, geçmiş 

gözlem değerlerinin, kestirilmek  istenen değer ile aralarındaki doğrusal 

ilişkiyi ifade eder. YSA ise doğrusal olmayan bir modeldir. 

 

 Yukarıdaki eleştirilere rağmen, AR(p) modelinin derecesinin bir başlangıç 

çözümü olarak iyi bir başlangıç olabileceği düşünülebilir. Bu düşünce, AR 

modellerinin MA modellerine ve MA modellerinin AR modellerine bazı şartları 

sağlamaları durumunda dönüştürülebilmesinden kaynaklanmaktadır. 

 

 Bir çok araştırmacı girdi nöronu sayısını belirlemek için deney tasarımı 

yaparken, bazıları sezgisel yaklaşımlarda bulunmuşlardır. Örneğin, Sharda ve Patil 

(28) ve Tang ve diğ. (20)’leri aylık veriler için 12 girdi nöronu ve üç aylık veriler 

için 4 girdi nöronu kullanmışlardır. Girdi nöronu sayısının belirlenmesine yönelik 
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literatürde tutarlı bir öneri yoktur. Bazıları fazla girdi nöronu kullanmanın 

faydalarından söz ederken (20), diğerleri tam tersini ifade etmektedir (29). 

Lachtermacher ve Fuller fazla girdi nöronunun, birer birer kestirimde kötü sonuçlar 

verdiğini, ancak çoklu kestirimde iyi sonuçlar verdiğini belirtmektedir. 

 

 Veri yapısındaki otokorelasyon bilgisini ortaya çıkarmada önemli olduğu için, 

girdi nöronu sayısının belirlenmesi belki de YSA'nın kurulmasındaki en kritik 

karardır (4). Kestirimi yönlendiren uzmanın veriyi iyi tanıması ve verinin zamana 

bağlı değişiminin niteliğini iyi bilmesi de  nöron sayısını belirlemede önemli rol 

oynar.  

4.3.3. Gizli katman ve gizli nöron sayısı 
 

 Gizli katman ve gizli nöronlar, YSA'nın başarısında büyük bir öneme sahiptir. 

Veri içerisindeki belirleyici özellikleri ortaya çıkartan ve girdi ile çıktı arasındaki 

doğrusal olmayan ilişkinin kurulmasına yardımcı olan, gizli katman ve bu 

katmanlardaki nöronlardır. Yapılan çalışmalar tek gizli katmanın, doğrusal olmayan 

karmaşık fonksiyon yaklaşımlarında istenilen herhangi bir doğruluk derecesinde 

başarılı sonuçlar verdiğini göstermiştir. Birden fazla gizli katman olabilir, ancak bir 

çok araştırmacı geleceği kestirim için kurdukları ağda tek gizli katman kullanmayı 

tercih etmişlerdir. 

 

 Gizli katman sayısının artırılması, hesaplama zamanını artırmakta ayrıca ağın 

öğrenme yerine ezberlemesine neden olabilmektedir. Ezberleme, kestirim  modelinin 

serbestlik derecesi çok düşük olduğunda ortaya çıkabilir. Bir başka deyişle, gözlem 

sayısının model parametre sayısına göre miktarı düşük ise ağ, zaman serisindeki 

genel yapıyı öğrenme yerine, özel noktaları ezberler. Ağ ağırlıklarının sayısı, gizli 

katman ve nöron sayısına bağlı olarak değiştiği için eğitim kümesinin büyüklüğü 

ezberleme işleminin ortaya çıkıp çıkmayacağını belirler. Eğitim kümesine göre çok 

sayıdaki ağırlık değeri, ağın özel gözlem değerlerini ezberlemesine neden olacaktır 

(19).  
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 İki gizli katmanlı ağlar, bazı problemler için yararlı olabilir. Zhang (30), iki 

gizli katmanlı ağların, veri yapısını modellemede ve kestirimin doğruluk derecesini 

arttırmada tek gizli katmanlı ağlardan daha iyi olduğunu, bazı Santa Fe zaman 

serileri üzerinde yaptığı çalışmalar sonucunda ifade etmektedir. Zhang (30), ikiden 

fazla gizli katmanın herhangi bir iyileştirme meydana getirmediğini de 

söylemektedir. Zhang ve diğ. (4)'lerine göre, bir çok kestirim  problemi için tek gizli 

katman yeterlidir. Ancak, bazı özel problemlerde, iki gizli katmanlı ağ yapısının tek 

gizli katmanlı ağ yapısından daha iyi sonuç vermesi olasıdır. 

 

 Kaastra ve Boyd (19) bütün YSA'ların öncelikle bir gizli katman ya da en 

fazla iki gizli katman kurularak çalıştırılmasını önermektedir. Eğer dört katmanlı bir 

ağ farklı gizli nöron sayısı ve rasgele başlangıç değerleri ile çalıştırıldığında iyi 

sonuç vermiyorsa, girdi değişkenlerinin gözden geçirilmesi ve yeniden 

düzenlenmesinde fayda vardır. Teori ve hemen hemen bütün deneysel çalışmalar 

ikiden fazla gizli katmanın ağın performansını iyileştirmediğini ifade etmektedir. 

 

 Bir ağda gizli nöron sayısının belirlenmesi kritik bir karardır. Ancak önemine 

rağmen en iyi gizli nöron sayısının belirlenmesinde herhangi bir sihirli formül 

yoktur. Genelde az sayıda gizli nöron ile çalışma tercih edilir. Çünkü genelleştirme 

yetenekleri daha yüksektir. Çok sayıda gizli nöron, ağın genelleştirmeden daha çok 

ezberleme yeteneği kazanmasına sebep olur. Bu da istenilen bir durum değildir. 

Ancak, çok az sayıda gizli nöron da ağın öğrenmesi için yeterli değildir. Bu nedenle 

araştırmacılar gizli nöron sayısını belirlemede deneysel bir çalışmaya başvurabilirler. 

Ancak sistematik bir yöntem olarak, küçük bir başlangıç değeri ile başlanması ve ağ 

performansı iyileşene kadar gizli nöron sayısının artırılması önerilebilir (19).  

 

 Gizli nöron sayısını belirlemede deneme-yanılma yöntemi sıklıkla kullanılır. 

Ancak, yine de bazı deneysel çalışmalar gizli nöron sayısını sınırlayıcı öneriler 

sunmaktadır. Tek gizli katmanlı ağlarda gizli nöron sayısına ilişkin bazı öneriler 

şunlardır: 
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a) n  
b) n/2  
c) 2n+l  
d) 2n  
e) m*n   
f) 0,75* n  

 

 Yukarıdaki ifadelerde n girdi nöronu ve m çıktı nöronu sayısını 

göstermektedir. Bu yaklaşımlardan hiçbirisinin bütün problemlerde iyi sonuç 

verdiğini söylemek doğru olmaz (4).  Tang ve Fishwick (27), gizli nöron sayısının 

kestirim performansında etkili olduğunu ancak bu etkinin çok da önemli olmadığını 

belirtmektedir. Zhang (5), ise girdi nöron sayısı ile gizli nöron sayısının eşit olduğu 

ağ yapılarında daha iyi kestirimde bulunulduğunu, bir çok araştırmanın bunu ortaya 

koyduğunu söylemektedir. 

 

4.3.4. Çıktı nöronu sayısı 
 

 Çıktı nöronu sayısını hesaplamak kolaydır ve çalışılan probleme doğrudan 

bağlıdır. Bir zaman serisi kestirim probleminde, çıktı nöronu sayısı, kestirim 

döneminin uzunluğuna eşittir. İki şekilde kestirimde bulunulabilir: 

 

 

 1. Tek dönemlik kestirim, 

 2. Çok dönemlik kestirim. 

 

 Tek dönemlik kestirimde çıktı nöronu sayısı 1’e eşittir. Çok dönemli kestirim 

ise iki yolla yapılabilir. Birincisi, Box-Jenkins modelindeki gibi iteratif kestirimdir. 

Kestirim edilen dönem değeri, bir sonraki dönem için girdi olarak kullanılır. Bu 

durumda yine sadece tek çıktı nöronu yeterlidir. İkincisi ise, birden fazla dönemin 

aynı anda kestirildiği doğrudan yaklaşım yöntemi (direct method) olarak adlandırılan 

durumdur. Bu durumda çıktı nöronu sayısı kestirilmek  istenen dönem sayısına 

eşittir. Zhang (30), her iki yöntemi de deneyerek çoklu dönem kestiriminde 
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bulunmaya çalışmıştır. Zhang (30)’in belirttiğine göre aynı anda birden fazla 

dönemin kestirildiği doğrudan yaklaşım yöntemi daha iyi sonuçlar vermiştir. 

 

 Zhang ve diğ. (4)’leri, doğrudan çoklu dönem kestiriminin aşağıdaki 

nedenden dolayı daha iyi sonuç vereceğini ifade etmektedir: YSA, doğrudan çoklu 

dönem kestiriminde bulunacak şekilde kurulabilir. Box-Jenkins modelinde olduğu 

gibi, iteratif yöntem sadece bir dönem kestirimde bulunmak üzere kullanılabilir. 

Bulunan kestirim değeri girdi olarak kullanılır ve bir sonraki dönem kestirilir. 

Kestirilecek dönem sayısı uzun bir dilim ise geçmiş gözlem değerleri kullanılmadan, 

sadece bulunan kestirim değerlerinin girdi olarak kullanıldığı bir durumla karşılaşılır. 

Bu da kestirimin doğruluğunu azaltır. Bu nokta, Box-Jenkins modellerinin neden 

kısa dönemli kestirim için daha uygun olduğunun da bir yanıtı niteliğindedir. 

Aşağıdaki eşitlikler bu durumu açık olarak gösterir: 

 

 Ft+1 = f(Yt, Yt-1, …….,Yt-n), 

 Ft+2 = f(Ft+1, Yt, Yt-1,…….,Yt-n+1), 

 Ft+3 = f(Ft+2, Ft+1,Yt,Yt-1, …….,Yt-n+2),    [4.3] 

 …………………………………….... 

 Ft+k = f(Ft+k-1, Ft+k-2,…….Ft+1,Yt,Yt-1,…….,Yt-n+k-1), 

 

 Yt, t dönemi gözlem değerini, Ft, t dönemi kestirim değerini, f ise YSA'nın 

atadığı fonksiyonu temsil etmektedir. Doğrudan çoklu dönem kestiriminde ise, YSA, 

bütün geçmiş dönem gözlem değerlerini kullanarak, k dönem gelecek değeri aynı 

anda talimin edebilir. Bu k adet çıktı nöronu kullanarak sağlanabilir. Bu durumda 

yukarıdaki eşitlikler aşağıdaki gibi düzenlenir: 

 

 Ft+1 = f1(Yt, Yt-1, …….,Yt-n), 

 Ft+2 = f2(Yt, Yt-1,….….,Yt-n+1), 

 Ft+3 = f3(Yt,Yt-1, …….,Yt-n),      [4.4] 

 …………………………… 

 Ft+k = fk(Yt,Yt-1,…….,Yt-n), 

 f1, f2,…….,fk ağ tarafından belirlenen fonksiyonları temsil etmektedir. 
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4.3.5. Nöronlar arası bağlantılar 
 

 Ağ yapısı, katman ve nöron sayısına göre şekillenmekle beraber, nöronlar 

arasındaki bağlantılar da ağ yapısını karakterize etmektedir. Nöronlar arasındaki 

bağlantılar, temel olarak ağın davranışını belirlemektedir. Bir çok kestirim 

probleminde, diğer uygulamalarda da olduğu gibi, girdi katmanındaki ve gizli 

katmandaki nöronlar, kendilerinden sonra gelen katmandaki nöronlar ile tam bir 

bağlantı içerisindedirler. Ancak, seyrek bağlantılı (bütün nöronlar arasında 

bağlantının olmadığı) ağ yapıları da vardır. Yine, farklı olarak, girdi katmanından 

çıktı katmanına direk bağlantıların olduğu ağ yapıları da vardır (31).  

 

4.3.6. Aktivasyon fonksiyonu 
 

 Aktivasyon fonksiyonu, transfer fonksiyonu olarak da adlandırılmaktadır. Bir 

nöronun veya ağın girdisi ve çıktısı arasındaki ilişkiyi belirlemektedir. Uygulamada, 

sınırlı, tekdüze artan ve türevi alınabilen aktivasyon fonksiyonları kullanılmaktadır. 

Daha önceki bölümlerde de değindiğimiz gibi bunlardan bazıları şunlardır: 

 

 

 1. Sigmoid (Lojistik) Fonksiyonu 

 2. Hiperbolik Tanjant (tanh) Fonksiyonu 

 3. Doğrusal Fonksiyon 

 

 Bunların arasında en yaygın kullanılanı, Sigmoid transfer fonksiyonudur. 

 

 Genel olarak, bir ağın, aynı ya da farklı katmanlarındaki nöronlar farklı 

aktivasyon fonksiyonunu kullanabilirler. Uygulamaların çoğunda ise, aynı 

katmandaki nöronların aynı aktivasyon fonksiyonunu kullandıkları görülmektedir. 

 

 Lojistik aktivasyon fonksiyonu, ikili hedef değerlerin olduğu sınıflandırma 

problemleri için çıktı katmanında sıklıkla kullanılmıştır. Ancak, hedef değerlerin 
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süreklilik gösterdiği kestirim problemi gibi problemlerde, çıktı katmanında doğrusal 

bir aktivasyon fonksiyonunun kullanılması tercih edilmelidir. 

 

 Burada şu noktanın unutulmaması gerekir: ağın ürettiği çıktığı değerleri, 

kullanılan fonksiyona göre [0,1] veya [-1,1] aralığında olacağı için, hedef değerler de 

kullanılan fonksiyonla uyumlu bir şekilde yukarıdaki aralıkları dikkate alarak 

normalleştirilmelidir. 

4.3.7. Öğrenme algoritması 
 

 Bir YSA'nın eğitimi, ağ ağrılıklarının, ağ çıktısı ile istenilen değer arasındaki 

toplam ya da ortalama hata karelerinin enküçüklenmesi için sürekli olarak 

değiştirildiği, sınırsız doğrusal olmayan enküçüklenme problemidir. Ağ eğitimi için 

bir çok değişik optimizasyon yöntemi vardır. Ancak, genel bir doğrusal olmayan 

optimizasyon problemi için uygun bir zamanda genel optimumu garanti eden 

herhangi bir algoritma yoktur. Uygulamada bütün optimizasyon algoritmalarının 

sıkıntısı yerel optimuma takılmaktır. Genel çözümün mümkün olmadığı durumlarda, 

en iyi yerel optimumu veren algoritmaları kullanmak akıllıcadır. 

 

 En yaygın kullanılan öğrenme (eğitim) algoritması, gerçekte bir gradyan dik 

iniş algoritması olan geri yayılım algoritmasıdır. Gradyan iniş algoritması için YSA 

literatüründe öğrenme oranı olarak adlandırılan bir adım büyüklüğü tanımlanmalıdır. 

Öğrenme oranı, ağırlıkların değişim büyüklüğünü belirlediği için geri yayılım 

öğrenme algoritmasında çok önemlidir. Yavaş ilerlemesi ve verimsizliği dik iniş 

algoritmasının yetersiz yönleridir. Ayrıca, öğrenme oranındaki değişimlere 

duyarlıdır. Küçük öğrenme oranı, öğrenme sürecinin yavaş ilerlemesine sebep 

olurken, büyük öğrenme oranı da ağırlık uzayında ağ ağırlıklarının sarkaç gibi 

salınım göstermesine sebep olur. Orijinal gradyan iniş algoritmasını geliştirmenin bir 

yolu, algoritmaya bir momentum parametresinin eklenmesidir. Momentum 

parametresi, büyük öğrenme oranıyla eğitim sürecinin hızlanmasını sağlarken, 

salınma eğilimini de en aza indirmeye yardımcı olur. 
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 Momentum terimini içeren standart geri yayılım tekniği, bir çok araştırmacı 

tarafından uyarlanmıştır. Öğrenme oranının ve momentum katsayısının eş zamanlı 

olarak seçiminde sadece birkaç sistematik yol olduğu için, bu öğrenme 

parametrelerinin en iyi değerleri genellikle deneme yolu ile seçilir. Öğrenme oranı ve 

momentum katsayısı, her ikisi de genellikle 0 ile 1 arasında herhangi bir değer 

alabilir. Ancak bu iki terimin en iyi kombinasyonunu bulmak imkansızdır. 

Araştırmacılar seçtikleri değerleri dikkate almıştır. Örneğin, Sharda ve Patil (28), üç 

öğrenme oranının (0,1 , 0,5 , 0,9) ve üç momentum katsayısının (0,1 , 0,5 , 0,9), 

dokuz kombinasyonunu denemiştir. 

 

 Tang ve Fishwick (27) öğrenme parametrelerinin YSA'nın performansında 

kritik bir rol oynadıklarını söylemektedir. Yazarlar, daha önceki çalışmalarda, YSA 

ile kötü sonuçlar alındığı rapor edilen bir çok zaman serisini, değişik öğrenme 

parametreleri kullanarak test etmiştir. Bu çalışma sonucunda, her bir zaman serisi 

eğer uygun öğrenme parametreleri uygulanırsa, iyi sonuçlar alınacağını belirtilmiştir. 

Tang ve diğ. (20)’leri, öğrenme parametrelerinin YSA'nın öğrenmesindeki etkisini 

araştıran bir çalışma yapmıştır. Yazarlar, karmaşıklığı az olan verilerde yüksek 

öğrenme oranının iyi olduğunu ve çok karmaşık verilerde ise düşük öğrenme oranını 

ve yüksek momentum katsayısının kullanışlı olduğunu rapor etmektedir. 

 

 Geleneksel geri yayılım algoritmasının zayıf yönleri doğrultusunda, geri 

yayılım algoritmasının bazı varyasyonları ve modifikasyonları önerilmiştir: Bunların 

arasında en etkili olanları ikinci derece (Levenberg-Marquardt) yöntemlerdir. Hızlı 

çalışmaları ve en iyi yerel minimumu bulmadaki başarıları, ikinci derece yöntemlerin 

YSA eğitiminde tercih edilmelerini sağlamıştır (4). 

 

4.3.8. Veri normalleştirme 
 

 Daha önce de belirttiğimiz gibi, eğer çıktı nöronları için doğrusal olmayan bir 

aktivasyon fonksiyonu kullanılmış ise, hedef değerlerin ağ çıktısı ile aynı aralıkta 

olacak şekilde dönüşüm uygulanması gerekir. Lojistik fonksiyonu gibi doğrusal 

olmayan aktivasyon fonksiyonları, bir nöronun çıktısını [0,1] veya [-l,l] aralığına 
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sıkıştırma gibi bir rol üstlenirler. Eğer çıktı nöronlarında doğrusal bir aktivasyon 

fonksiyonu kullanılmış ise, hesaplama hatalarından kaçınmak için hem çıktıları hem 

de girdileri standartlaştırma avantajlı olacaktır. Veri normalleştirme (data 

normalization), eğitme süreci başlamadan uygulanır. Veri normalleştirme 

yaklaşımlarında, sıklıkla aşağıdaki formüller kullanılmaktadır: 

 

 a) [0,1] aralığına doğrusal dönüşüm: xnorm=(x0-xmin)/(xmaks-xmin),  

 b) [a,b] aralığına doğrusal dönüşüm: xnorm=(b-a)(x0-xmin)/(xmaks-xmin)+a,  

 c) Basit normalizasyon: xnorm= x0/xmaks, (29) 

 d) İstatistiksel normalizasyon: xnorm=(x0-
−

x )/s,  

 

 xnorm normalleştirilmiş, x0 orijinal veriyi temsil etmektedir. xmin, xmaks, 
−
x ve s, 

sırasıyla satır veya kolon boyunca minimum, maksimum, ortalama ve standart 

sapmayı ifade etmektedir. 

 

 Ağın öğrenmesinde veri normalleştirmenin önemini araştıran bazı çalışmalar 

yapılmıştır. Yazarlar, veri normalleştirmenin genelde faydalı olduğu kanısına 

varmıştır. Ancak örnek büyüklüğü arttığında bu faydanın azaldığını 

belirtmektedirler. 

 

 Çıktı hedeflerinin normalleştirilmesi, genellikle girdilerin 

normalleştirilmesinden bağımsızdır. Zaman serileri kestirim probleminde, girdilerin 

ve hedeflerin normalleştirilmesi birlikte yapılır. Girdilerin ve hedeflerin 

normalleştirme aralığının seçimi, çıktı nöronlarının aktivasyon fonksiyonuna 

bağlıdır. Eğer sigmoid fonksiyonu kullanılmış ise normalleştirme aralığı [0,1], 

hiperbolik tanjant fonksiyonu kullanılmış ise normalleştirme aralığı [-1,1] olarak 

seçilir. 

 Hedef değerleri normalleştirmenin bir sonucu olarak, gözlemlenen ağ çıktıları 

normalleştirme aralığı ile uyumlu olmalıdır. Ağdan alınan sonuçların yorumlanması, 

çıktıların orijinal aralığa dönüştürülmesinden sonra olabilir. Ağın ürettiği değerlerin 

doğruluğu orijinal veri kümesi temel alınarak hesaplanmalıdır. Performans ölçütü de, 

çıktıların orijinal aralığa dönüştürülmesinden sonra hesaplanmalıdır. 
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 Verileri normalleştirmenin bir diğer yolu da, bütün verileri eğitim 

kümesindeki en büyük veriden daha büyük bir sayıya bölmektir. Lachtermacher ve 

Fuller (29), bu büyük sayıyı normalleştirme faktörü olarak adlandırmaktadır. 

Yazarlar, bu sayının eğitim kümesindeki en büyük sayının % 30- % 100 fazlası 

olabileceğini belirtmektedirler. Bu yaklaşım, eğitim kümesindeki verilerden daha 

büyük değerlerde kestirimin ortaya çıkabileceği durumda oluşabilecek problemleri 

ortadan kaldırmaya yöneliktir. Yazarlar, gelecek dönemlerdeki kestirim değerlerinin, 

normalleştirme faktöründen de büyük olması durumunda iki defa normalleştirme 

yapılabileceğini söylemektedir. 

 

4.3.9. Eğitim kümesi ve test kümesi 
 

 Daha önce de değinildiği gibi, bir YSA kestiricisinin kurulumunda eğitim ve 

test örneklerine ihtiyaç vardır. Eğitim örnekleri, YSA modeli geliştirmek için 

kullanılırken, test örnekleri ise, geliştirilen modelin kestirim yeteneğinin 

değerlendirilmesinde kullanılır. Bazen, doğrulama kümesi olarak adlandırılan bir 

üçüncü küme kullanılır. Doğrulama kümesi, eğitim sürecinin durdurulacağı noktanın 

belirlenmesinde veya fazla eğitme probleminden kaçınmada kullanılabilir. Zhang ve 

diğ. (4)'lerine göre, eğitim ve test örneklerinin seçimi, YSA'nın performansını 

etkilemektedir. 

 

 İlk olarak, veri, eğitim ve test kümesi olmak üzere ikiye bölünür. Ancak bunu 

yapmanın genel bir yöntemi yoktur. Problem özelliği, veri tipi ve eldeki veri miktarı 

bu kararı vermede dikkate alınır. Hem eğitim kümesinin hem de test kümesinin 

bütünün özelliklerine sahip kümeler olması kritik bir noktadır. Bu nokta özellikle 

zaman serileri kestirim problemlerinde önemlidir. Eğitim ve test kümelerinin 

uygunsuz belirlenmesi, optimal YSA yapısının seçimini ve YSA'nın kestirim 

performansının değerlendirilmesini etkileyecektir. Literatürde eğitim ve test 

kümelerinin belirlenmesine yönelik az da olsa öneriler vardır. Bir çok araştırmacı    

% 90, % 10 veya % 80, % 20 ya da % 70, % 30 kuralını temel alan bir yöntem 

izlemiştir (4).  
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 YSA kestiricisinin performansını etkileyen bir diğer yakın ilgili faktör de 

örnek büyüklüğüdür. Verilen bir problemin çözümü için ne kadar büyüklükte bir 

örnek gerektiği hakkında kesin bir kural yoktur. Ağın eğitiminde gerekli veri miktarı 

ağın yapısına, eğitim yöntemi, çalışılan problemin karmaşıklığına bağlıdır. Genel 

olarak, herhangi bir istatistiksel yaklaşımdaki gibi, örnek büyüklüğü, çözümün 

doğruluğu ile yakından ilgilidir. Örnek büyüklüğü ne kadar fazla olursa, sonuçların 

doğruluğu da o oranda artar. 

  

 Yeterli büyüklükte bir örnek kullanıldığında YSA, verideki herhangi bir 

karmaşık yapıyı modelleyebilir. Bu nedenle, büyük örneklerde bir YSA, doğrusal 

istatistiksel yöntemlerden daha fazla yararlı olabilir. YSA, doğrusal modellerin gerek 

duyduğundan daha fazla bir veriye gereksinim duymamaktadır. Box-Jenkins 

modelleri ise başarılı bir kestirim için en az 50 veriye gereksinim duymaktadır (4). 

4.3.10. YSA'nın performansının belirlenmesi 
 

 Bir YSA kestiricisi için, modelleme zamanı veya eğitim zamanı gibi bir çok 

performans ölçütü olabilirken, en iyi ve en önemli performans ölçütü kestirimin 

doğruluğudur. Ancak, kestirim akademisyenleri ve pratisyenlerinin verilen bir 

problem için yaygın olarak kabul ettiği uygun bir doğruluk ölçütü yoktur. Doğruluk 

ölçüsü, gerçek değer/istenilen değer ile kestirilen değer arasındaki fark olarak 

tanımlanır. Bu fark kestirim hatası diye bilinir. Kestirim literatüründe bir çok 

doğruluk ölçüsü tanımlanmıştır ve her birinin kendine göre avantajları ve 

yetersizlikleri vardır (13). Sıklıkla kullanılan performans ölçüsü Bölüm 2.5 'te 

verilmiştir. 

 

 Her bir ölçünün kendine göre kısıtlamaları olduğundan dolayı, herhangi bir 

özel problem için birden fazla performans ölçüsü kullanılabilir. 
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4.4. YSA'nın Kestirimde Göreceli Performansı 
 

 YSA'nın bir kestirim aracı olarak performansı, yaygın kullanılan istatistiksel 

yöntemler ile karşılaştırılmıştır. Literatürde birbiri ile tutarsız bir çok çalışma vardır. 

Bunun ana sebebi, YSA'nın kestirim yeteneğini etkileyen, ağ yapısı, eğitim yöntemi, 

örnek veri gibi bir çok etken olabilir. Bazı durumlarda, YSA, doğrusal istatistiksel 

modellerden daha kötü sonuç verebilir. Bu, verinin doğrusal olmasından 

kaynaklanabilir. Doğrusal bir ilişkiye sahip veri yapısında, YSA'nın doğrusal 

modellerden daha iyi sonuç vermesi beklenemez. Diğer yandan, ideal ağ yapısının 

kullanılmadığı da söylenebilir. Tang ve diğ. (20)’leri, Tang ve Fishwick (27) 

çalışmalarında YSA kestiricisinin hangi koşullarda, Box-Jenkins modelleri gibi 

geleneksel zaman serisi kestirim yöntemlerinden daha iyi sonuç verdiği sorusunu 

cevaplamaya çalışmışlar ve aşağıdaki sonuçlara ulaşmışlardır: 

 

1. YSA, kestirim dönemi uzunluğu artıkça daha iyi sonuç vermektedir.  

2. Gözlem sayısının az olduğu zaman serilerinde, YSA daha iyi sonuç 

vermektedir. Sharda ve Patil (28), benzer sonuca ulaşmıştır. 

3. Daha fazla girdi nöronu ile YSA daha iyi sonuç vermektedir. 

 

4.5. YSA'nın İstatistiksel Yöntemlere Göre Güçlü ve Zayıf Yanları 
 

 Daha önceki bölümlerde YSA'nın değişik alanlarda kestirim amaçlı olarak 

kullanılmasına ve diğer yöntemlerle performanslarının karşılaştırılmasına yer verildi. 

Bu bölümde, YSA'nın istatistik tekniklere kıyasla güçlü ve zayıf olduğu yanları 

özetlenecektir. 

 

4.5.1. YSA'nın güçlü olduğu yanları 
 

 YSA'nın güçlü olduğu yanları dört maddede özetlenebilir: 

 

 1. Doğrusal olmayan ilişkiyi başarı ile modelleyebilir: 
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 Şekil 4.1 Doğrusal kestiricisinin eğrisel bir yapıyı kestirimindeki 

     performansı 

 
 YSA'nın doğrusal olmayan aktivasyon fonksiyonuna sahip olması, ilgili 

problemin yapısındaki ilişki doğrusal olmadığı durumlarda daha etkin bir model 

üretilmesini sağlar. Şekil 4.1 doğrusal olmayan bir ilişkinin doğrusal bir model ile 

nasıl kestirilmeye çalışıldığını göstermektedir. Şekil 4.1'e göre, 0 noktasından t 

noktasına kadar olan veriler t+1 anındaki gözlem değerinin kestirimi için 

kullanıldığında doğrusal model, B'yi kestirmede iyi bir kestirici olarak işlev görebilir, 

ancak daha ileriki noktalar için örneğin t+4 anında doğrusal model C değerini 

üretirken bu değer gerçek değerden oldukça farklıdır. Bu durum, YSA'nın uzun 

dönemli kestirimde doğrusal modellerden neden daha iyi sonuç verdiğini de 

açıklamaktadır (33). 

 

 2. Veri yapısındaki fonksiyonel ilişki için herhangi bir önbilgiye gereksinim 

duymaz: 

 Bazı doğrusal olmayan modellerin de YSA kadar iyi sonuçlar verebileceği 

ileri sürülebilir. Ancak bu durum doğrusal olmayan yapı hakkında bir önbilgiye sahip 

olunduğunda geçerli olabilir. Örneğin doğrusal olmayan regresyon modellerinin 

doğrusal olmayan bir ilişkinin var olduğu bir problemde, YSA kadar iyi sonuç 

verebileceği iddia edilebilir. Teorik olarak bu doğrudur. Ancak uygulamada, 

araştırmacının doğrusal olmayan regresyon modelinin derecesi ve biçimi hakkında 

bir varsayımda bulunması gerekir. YSA için ise böyle bir durum söz konusu değildir. 
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 3. Veri kaybı yoktur: 

 YSA, Box-Jenkins modellerinde olduğu gibi seriyi durağanlaştırmak için fark 

alma gibi bir işlem yapmadığından herhangi bir veri kaybına sebep olmaz. 

 

 4. Ağ yapısı esnektir: 

 YSA'nın dördüncü bir avantajı da ağ yapısının esnekliğidir. İstatistik 

tekniklerin (doğrusal regresyon, ikili probit model, otoregresif modeller vb.) büyük 

bir çoğunluğu, ağın aktivasyon fonksiyonunda yapılacak çok küçük değişikliklerle 

YSA için kullanılabilir hale getirilir. Bu da aynı ağ yapısının esnekliği gösterir. 

 

4.5.2. YSA'nın zayıf olduğu yanları 
 

 YSA'nın zayıf olduğu yanları dört maddede kısaca açıklanabilir: 

 

 1. Kara kutu problemi: 

 Ağın ağırlıklarının yorumlanması zordur. Doğrusal regresyon modelinde 

bağımsız değişkenlerin katsayıları, bağımlı değişken üzerindeki etkilerini açık olarak 

gösterirler. Ancak YSA'da, girdi değişkenlerinin çıktı üzerindeki etkilerini analitik 

olarak belirlemek çok zordur. 

 

 2. Genel minimumu bulamama: 

 Bütün doğrusal olmayan kestirim metotlarında olduğu gibi YSA'da da genel 

minimumu bulamama riski vardır. Ancak, genel minimuma yakın yerel minimumlar 

da oldukça iyi sonuçlar verebilir. 

 

 3. Örnek sayısının büyüklüğü: 

 YSA'nın tam olarak genelleştirme yapabilmesi için yeterli miktarda örnekle 

ağ eğitilmelidir. Aksi durumlarda veri yapısındaki ilişkiyi ortaya çıkartamama ya da 

yanlış eğitme (overfitting -ezberleme) durumları ile karşılaşılabilir. 
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 4. Modellemenin çok zaman alması: 

 Bir YSA'nın kurulumu ve eğitimi çok zaman alabilir. Bu da araştırmacılar 

için bezdirici bir durumdur. 
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5. BULGULAR  
 

5.1. Giriş 
 

  YSA'nın zaman serileri kestirimindeki performansı, gerçek zaman serileri ile 

çalışılarak araştırılmıştır. Gerçek zaman serileri; Refik Saydam Hıfzısıhha 

Başkanlığı’nın, 1999 Yılı Ocak Ayı’ndan 2005 Yılı’nın Kasım sonuna kadarki,  

Ankara ili hava kalitesi ölçüm raporlarıdır. Hava kirliliğinin önemli göstergelerinden 

biri olan günlük SO2 (Kükürtdioksit) ölçümlerinin aylık ortalaması alınarak elde 

edilen 83 adet aylık veri, YSA ve Box-Jenkins Yöntemleri ile kestirilmiştir.  

 

Tablo  5.1. Zaman Serisi Uygulama Verisi* 

 

Aylar 1999 2000 2001 2002 2003 2004 2005
Ocak 80        74        86        105      82        72        95        
Şubat 50        69        57        102      47        75        62        
Mart 57        60        49        74        59        64        51        
Nisan 35        32        31        62        54        60        51        
Mayıs 29        29        31        37        40        32        35        
Haziran 25        26        23        38        35        28        24        
Temmuz 26        33        25        45        37        22        27        
Ağustos 29        23        27        46        42        33        32        
Eylül 42        49        36        48        45        46        41        
Ekim 66        64        47        60        59        40        63        
Kasım 105      126      81        113      86        66        87        
Aralık 129      106      53        99        87        92         
*  Refik Saydam Hıfzısıhha Merkezi Başkanlığı, 1999-2005 (Kasım sonu) Ankara İli Hava 
 Kalitesi SO2 (Kükürtoksit) Ölçüm Sonuçları. 
 

 SO2 hava kirliliğini oluşturan birincil kirleticiler grubundadır. Kömür ve fuel-

oil’in doğal olarak yapısında bulunan kükürt bileşiklerinin yanması ile açığa 

çıkmaktadır. Dünya çapındaki temel kaynakları, endüstriyel işlemler, ısınma amaçlı 

kullanılan evsel yakıtlar ve termik santrallerdir. Çok az miktarı ise dizel yakıtlı taşıt 

araçlarından kaynaklanmaktadır. SO2’nin yüksek konsantrasyonları öksürük ve 

bunun sonucunda akciğer fonksiyonlarında değişime neden olarak solunum sistemi 

tahribatına neden olmaktadır. Bu gaz ayrıca taş binaların ve diğer materyallerin de 

korozyonuna neden olur, bitkilere zarar verebilir ve asit yağmurlarının ve ikincil 

partiküllerin temel kaynağıdır.  
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 Bu çalışmada, Ankara ili SO2 ölçümlerinin kestirim değerleri, gerçek değerler 

ile karşılaştırılarak hangi kestirim yönteminin daha iyi sonuç verdiği istatistiksel 

performans değerleri ile açıklanmıştır. Ayrıca sonraki 13 aylık dönem için 

kestirimler elde edilmiştir.  

 

 Yapılan analizlerde aşağıdaki sorulara yanıt bulunmaya çalışılmıştır: 

 

1.  GYA ile eğitilen YSA'nın, zaman serileri kestiriminde Box-Jenkins 

modellerine göre performansı nasıldır? 

2. En düşük OMYH değerini hangi model vermektedir? 

5.2. Kestirimlerin üretilmesi 
 

 Verinin Box-Jenkins yöntemi ile kestirimi için SPSS- Decision Time (34) ve 

YSA teknikleri ile kestirimi için de MATLAB Neural Network ToolBox 7.0 (35) 

programları kullanılmıştır. 

  

5.3. Box-Jenkins Yöntemi ile SO2 verilerinin kestirimi  
 

 Box-Jenkins modelinin SO2 verilerine göre kurulumu aşamalarına bu 

bölümde değinilecektir.  

 

5.3.1. Model tanımlama ve parametre tahmin aşaması 
 

 Modellemeye geçmeden önce model belirleme aşamasında otokorelasyon ve 

kısmi otokorelasyon fonksiyonlarına başvurulur. Şekil 5.1.‘de yer alan SO2 

verilerinin zamana bağlı grafiğinde ilk olarak mevsimsellik göze çarpmaktadır.  
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Şekil 5.1. SO2 verilerinin zaman serisi 

 

 Kurulacak modelin belirlenmesi için serinin durağanlaştırılması gereklidir. 

Şekil 5.2.’de serinin durağanlaştırılmış grafiği yer almıştır.  

 

 
 

Şekil 5.2. SO2 verilerinin durağanlaştırılmış zaman serisi grafiği 
 
 Durağanlaştırma işlemi sonrasında da mevsimselliğin devam ettiği gözlenmiş 

ve mevsimsel durağanlaştırma işlemi yapılmıştır. Şekil 5.3. mevsimsel 

durağanlaştıma uygulanmış zaman serisini göstermektedir.  
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Şekil 5.3. SO2 verilerinin mevsimsel durağanlaştırılmış zaman serisi grafiği 
 
 
 Mevsimsel durağanlaştırma 1. fark alma işlemi işlemi sonrasında elde 

edilmiştir. Bu nedenle d=1 ‘dir. 

 

 Modelin AR(p) ve MA(q) parametreleri otokorelasyon ve kısmi 

otokorelasyon fonksiyonlarına başvurularak tahmin edilmiştir.  

 

 
 

Şekil 5.4. Mevsimsel durağanlaştırılmış serinin otokorelasyonları 
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Şekil 5.5. Mevsimsel durağanlaştırılmış serinin kısmi otokorelasyonları 
 

 Şekil.5.4 ve şekil 5.5’te yer alan otokorelasyon ve kısmi otokorelasyon 

fonksiyonları ARMA(1,1) sürecinin modelde uygun olabileceğini göstermektedir.  

 

 SO2 serisi, en küçük hata kareler ortalamasını veren ARIMA (1 0 0 ) ( 0 1 1 ) 

modeli ile açıklanmıştır. 

 

5.3.2. Modelin geçerliliği  
 
 Modelin geçerliliğinin sınanması Box-Ljung istatistiğinin testi ile yapılmıştır. 

Box-Ljung istatistiği 6.0476 ‘dır. Bu değer p=0.05 seviyesinde anlamlı değildir. Bu 

sonuç kestirim hatasının rassal olduğunu ve serinin model varsayımlarını 

karşıladığını gösterir.  

 

 Şekil 5.6, Şekil 5.7 ve Şekil 5.8 kestirim hatasının rassallığını grafiksel olarak 

ta açıklamaktadır.  
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Şekil 5.6. SO2 verileri kestirim hataları 

 

 

 

Şekil 5.7. SO2 verileri kestirim hataları otokorelasyonları 
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Şekil 5.8. SO2 verileri kestirim hataları kısmi otokorelasyonları 

 

5.3.3. Kestirim  
 

 Modelin geçerliliği sınandıktan sonra geçerli olduğu kabul edilen         

ARIMA (1 0 0 ) ( 0 1 1 ) modeli kestirim için kullanılmıştır.  

 

 Model ile kestirilen ilk değer 2005 Yılının 12. ayına aittir. Üst kontrol limiti 

137 ve alt kontrol limiti 58 olmak üzere, bu tarihteki SO2 verisi kestirim değeri       

91‘dir. Bu sonuçlar baz alındığında SO2 verisinin gerçek değerinin, % 95 

güvenilirlikle üst ve alt kontrol limitleri içerisinde gerçekleşeceği söylenebilir.  

 

 Şekil 5.9’da ARIMA (1 0 0 ) (0 1 1) modeli ile elde edilen 13 aylık kestirim 

değerleri grafiği yer almıştır.  
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     Şekil 5.9. SO2 verileri kestirimi 

 

5.4. YSA ile Modelleme ve SO2 Verilerinin Kestirimi 
 

 YSA ile modelleme için kurulacak ağ yapısının belirlenmesi ve veri önişleme 

yapılması gereklidir. 

 

5.4.1. Kullanılan seri değerlerinin normalleştirilmesi 
 

 Veri normalleştirme YSA'nın başarısında etkilidir. Kurulan YSA'nın yapısına 

uygun olacak şekilde verilerin normalleştirilmesi gereklidir. Ara katman ve çıktı 

katmanında kullanılan aktivasyon fonksiyonları, veri normalleştirmenin [0 1] ya da  

[-1 1] aralıklarından hangisine göre yapılacağını belirler. 

 

 Bu çalışmada yer alan veriler doğrusal olmayan özelliktedir. Bu bakımdan 

veriler [-1 1] aralığına göre normalleştirilmiştir. [0 1] aralığına normalleştirme işlemi 

ise zaman (t) değerleri için, Lachtermacher ve Fuller (29)'in önerdiği basit 

normalizasyon ile gerçekleştirilmiştir. [-1 1] aralığına normalleştirme ise, 

xnorm = (2 * (x0 - xmin) / (xmaks - xmin)) -1 eşitliğine göre yapılmıştır. 
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5.4.2. Çalışmada kullanılan ağ yapısı 
 

 Zaman serileri kestirimi için kurulacak YSA'nın olası ağ yapıları üzerinden 

uygulamalar yapılarak en iyi sonucu veren YSA yapısı seçilmiştir. Girdi nöronu ve 

gizli nöron sayısının belirlenmesinde literatürdeki uygulamalardan da gözlendiği 

üzere deneme-yanılma yöntemi ile uygun değerler belirlenmeye çalışılır. Çıktı 

katmanı nöron sayısı, eğer iteratif bir kestirim yapılacaksa 1, aynı anda birden fazla 

dönemin kestirimi yapılacaksa kestirilecek dönem sayısı kadar olabilir. Box-Jenkins 

yöntemi de iteratif  kestirimde bulunmaktadır. Her iki tekniğin karşılaştırılması 

bakımından, YSA uygulamasında da iteratif kestirim yöntemi seçilerek, çıktı nöronu 

sayısı 1 olarak alınmıştır. 

 

 Girdi nöronu  zaman serisi olarak ele alınan veriler aylık SO2 verileridir. Bir 

çok çalışmada girdi nöronu sayısının, ARIMA(p,d,q) modellerindeki p veya q 

derecelerine eşit ya da yakınında bir değer olabileceği belirtilmektedir. Bu çalışmada 

girdi nöronu sayısı 1 olarak belirlenmiştir. Gizli nöron sayısının belirlenmesinde 

herhangi bir kesin kural olmamasından dolayı seri üzerinde ön deneme çalışmaları 

yapılmıştır. Yapılan ön deneme çalışmalarında gizli nöron sayısının, girdi nöronu 

sayısına eşit veya bir eksiği ya da bir veya iki fazlası denenmiştir. Her bir durumda 

ağın ürettiği sonuçlar kaydedilmiştir. Ağın performansında en küçük değeri veren 

gizli nöron sayısı ilk katmanda 2, ikinci katmanda 1 olarak alınmıştır. YSA modeli 

yapısı;1 girdi nöronu, iki katman, ilk katmanda 2, ikinci katmanda 1 gizli nöron, 

nodlarda sigmoid aktivasyon fonksiyonu ve Levenberg-Marquardt (trainlm) öğrenme 

algoritması ile oluşmuştur. Şekil 5.10, kullanılan ağa ilişkin genel YSA yapısını 

göstermektedir.  

 

 

 

 

 

 
 

Şekil 5.10. SO2 verilerinin kestirimi için kurulan YSA yapısı 
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 Şekil 5.1'de gösterilen ağın ürettiği çıktının matematiksel ifadesi Eş. 5.2'de 

verilmiştir. 
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 Eş. 5.2'de, Yt, t dönemindeki seri değerini, {Yt-i , i=l,2,..,k} k dönem geçmiş 

gözlem değerini, {wij , i=l,2,..,k ; j=l,2,..,m} girdi katman nöronlarından gizli katman 

nöronlarına olan bağlantıların ağırlıklarını, θ0 ve θ0j eşik (bias) terimlerinin 

bağlantılarına ait ağırlıkları, {vj , j=l,2,...,m} gizli katman nöronlarından çıktı 

katmanı nöronuna olan bağlantıların ağırlıklarını, f kullanılan aktivasyon 

fonksiyonunu ve ei’de hata terimini ifade etmektedir. 

 

5.4.3. Öğrenme algoritması 
 

 YSA’nın performansında büyük etkiye sahip faktörlerden biri de öğrenme 

(eğitim) algoritmasıdır. Eğitim algoritması ağ ağırlıklarının hangi kurala göre 

düzenleneceğini belirleyen algoritmadır. Bu çalışmada GYA çalıştırılmıştır. 

 

 MATLAB programı bir çok GYA'nı içermektedir (35). Hangi öğrenme 

yönteminin kullanılması gerektiğini belirlemek için Genelleştirilmiş Delta 

(traingdm), Levenberg-Marquardt (trainlm) ve Conjugate Gradient (traincgf) 

öğrenme yöntemlerinin karşılaştırıldığı ön deneme çalışmalarında, öğrenme yöntemi 

olarak Levenberg-Marquardt (trainlm) algoritmasının kullanıldığı ağda daha iyi 

sonuçlar elde edildiği görülmüştür. Bu sebeple GYA olarak, Levenberg-Marquardt 

(trainlm) öğrenme yöntemi seçilmiştir.  
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5.4.4. Eğitim ve test kümesi 
 

 Kurulan YSA'nın eğitimi için kullanılan veriler eğitim kümesi olarak 

adlandırılmaktadır. Test kümesi ise eğitim kümesinin dışında, ağın eğitim sırasında 

görmediği verilerdir. Test kümesinin amacı, ağın öğrenmesinin yeterli ya da doğru 

olup olmadığının sınanmasıdır. Literatürde eğitim ve test kümesinin büyüklüğünün 

ne olması gerektiği çoğunlukla  % 90, % 10 veya % 80, % 20 ya da % 70, % 30 

oranlarına göre belirlenmektedir (4). 

 

 Bazı çalışmalarda da veri kümesi eğitim, doğrulama ve test kümesi olmak 

üzere üç parçaya bölünmüştür. Eğitim kümesi ağın öğrenmesinde kullanılırken, 

doğrulama kümesi en iyi ağ modelinin seçilmesinde ve test kümesi de bulunan 

sonuçların genelleştirilmesinde kullanılmaktadır. 

 

 Veri kümesinin, eğitim-test olarak ayırmada % 84, % 16 oranı uygulanmıştır. 

Bu oranın seçilme nedeni test için ayrılan 13 adet aylık verinin 2005 yılını temsil 

edecek sayıda olmasını sağlamak, mevsimsel etkileri kapsayacak periyotları 

içermesini sağlamak ve ayrıca 2004 yılının bir bölümünü de kapsamasını 

sağlamaktır. Dolayısıyla eğitim için ilk 70 adet veri, test için de son 13 adet veri 

ayrılmıştır. 

 

5.4.5. Çalışmada kullanılan performans ölçütleri 
 

  SO2 zaman serilerinin kestiriminde YSA modellerinin Box-Jenkins 

modellerinden daha iyi sonuç verip vermediğinin karşılaştırmaları, YSA’da eğitim ve 

test kümesi, Box-Jenkins tekniğinde 71 adet kestirim değeri üzerinden yapılmıştır.  

Bu çalışmada: ortalama hata (OH), ortalama mutlak hata (OMH), hata kareleri 

toplamı (HKT), hata kareleri ortalaması (HKO), ortalama yüzde hata (OYH), 

ortalama mutlak yüzde hata (OMYH) performans ölçütleri hesaplanmıştır. 
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5.4.6. Kestirim tekniklerinin performans ölçütüne etkisi 
 

 Kullanılan kestirim tekniklerinin birbirlerinden farklı olup olmadığını 

anlamak için uyum iyiliği performans sonuçları Tablo 5.2’de yer almıştır. 

 

Tablo  5.2 Uyum iyiliği performans sonuçları 
 

YSA Tanımlayıcı 

İstatistikler 

 

SO2 VERİ EĞİTİM TEST EĞİTİM+TEST 

 

ARIMA (1 0 0) (0 1 1) 

Gözlem Sayısı 83 70 13 83 71 

Min. 22 22 24 24 25 

Max. 129 129 95 125 145 

Ortanca 49 49 51 50 52 

OH (Ortalama Hata) -0.02 0.005 0.016 0.876 

OMH (Ortalama Mutlak Hata) 0.67 0.005 0.56 10.4 

HKT (Hata Kareler Toplamı) 52.3 0.0043 52.3 14744.7 

HKO (Hata Kareler Ortalaması) 0.75 0.00033 0.63 207.7 

OYH (Ortalama % Hata) -0.31 0.006 -0.240 -4.0 

OMYH (Ortalama Mutlak % Hata) 1.5 0.6 1.3 18.0 

 

 Tablo 5.2’de 0,05 anlamlılık düzeyinde kullanılan ARIMA ve YSA yöntemi 

uygulamasında en düşük OMYH değerini YSA uygulamasının verdiği 

görülmektedir. Ayrıca sadece test verileri üzerinden eğitim sonrası elde edilen 

kestirim değerlerinin, sıfıra yakın bir hata ile elde edilmiş olması da önemli bir 

başarıdır. Benzer şekilde YSA’na ait diğer tanımlayıcı istatistikler de               

ARIMA (1 0 0) (0 1 1) modeline göre daha başarılıdır. Bu da, 1 girdi nöronu, iki 

katman, ilk katmanda 2, ikinci katmanda 1 gizli nöron, nodlarda sigmoid aktivasyon 

fonksiyonu ve Levenberg-Marquardt (trainlm) öğrenme algoritması ile oluşan YSA 

modelinin SO2 gibi meteorolojik verilerin kestiriminde kullanılabilir olduğu 

düşüncesini kuvvetlendirmektedir. Sonucumuzu destekler nitelikte, Gardner ve 

Dorling, Boznar et al. (37), YSA’larda aktivasyon fonksiyonu olarak kulanılan 

Sigmoid fonksiyonunun meteorolojik verilerde en iyi optimizasyonu sağladığını 

belirtmişlerdir.  
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5.4.7. Kestirim dönemi ve sonuçlarının grafiksel karşılaştırması 
 

Şekil-5.11, YSA ve ARIMA yöntemleri ile elde edilen 13 Aylık SO2  

kestirimleri yer almıştır. 
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        Şekil 5.11. Yöntemlere göre kestirim sonuçları 
 

 Şekil-5.2 incelendiğinde, verilerin mevsimsellik gösterdiği ve her iki 

yöntemden elde edilen kestirimlerde, mevsimselliğin öngörülere yansıdığı 

anlaşılmaktadır. Nelson ve diğ. (32)’leri YSA'nın, mevsimsel zaman serilerinde, 

mevsimselliği öğrenmeye uygun olmadığını, daha doğru kestirim yapmak için 

önceden mevsimselliğin giderilmesinin yararlı olacağını söylemektedir. Ancak, bu 

çalışmada mevsimselliğin YSA Modeli ile öğrenilmiş olduğu anlaşılmaktadır. Bu 

konuyu destekler nitelikte olan görüşlerinde, Sharda ve Patil (28) zaman serisinin 

mevsimselliğinin YSA'nın performansını etkilemediğini ve YSA'nın mevsimselliği 

de tam olarak içine alabilmeye yetenekli olduğunu belirtmektedir.  
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 Bu aşamada, SO2 serisi için belirlenmiş YSA yapısı üzerinden 83 adet verinin 

eğitim ve test oranları modelin performansı ve mevsimselliği yansıtabildiğini 

gözlemlemek üzere değiştirilmiştir. Yeni oranlarda eğitim verisi olarak, bitimi yıl 

ortasına raslayan ilk 66 veri alınmış ve geriye kalan 17 adet veri test amaçlı 

kullanılmıştır.  

 

 Tablo 5.3, SO2 serisi için belirlenmiş YSA modelinin, 70-13 ve 66-17 eğitim 

ve test oranlarına göre kestirim performanslarını göstermektedir.  

 

Tablo 5.3. Eğitim-test oranlarına göre uyum iyiliği sonuçları 
 

YSA Tanımlayıcı 

İstatistikler 
SO2 VERİ 

EĞİTİM TEST EĞİTİM+TEST 

Gözlem Sayısı 83 70 13 83 

OMYH (Ortalama Mutlak % Hata) 1.5 0.6 1.3 

HKO (Hata Kareler Ortalaması) 0.75 0.00033 52.3 

Gözlem Sayısı 83 66 17 83 

OMYH (Ortalama Mutlak % Hata) 1.4 1.5 1.4 

HKO (Hata Kareler Ortalaması) 0.63 0.44 0.59 

 
 

 Test kümesinin amacı, ağın öğrenmesinin yeterli ya da doğru olup 

olmadığının sınanmasıdır. Tablo 5.3 ‘te yer alan test verilerinin OMYH ve HKO 

sonuçları, 13 adet test verisinin, 17 adet test verisine göre daha iyi performans 

sergilediğini göstermiştir. 13 adet test verisi 2005 yılını kapsayacak şekilde 

seçilmiştir ve bütünün özelliklerine sahip kümeleri temsil edecek niteliktedir. Bu 

durumun OMYH ve HKO sonuçlarının daha düşük çıkmasında etkisi olduğu 

söylenebilir. 
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 SO2 serisi için belirlenmiş YSA yapısının kestirimlerde mevsimselliği içine 

alıp alamayacağını anlamak üzere, serinin son 17 verisi yıl ortasından bölünerek test 

verisi olarak alınmıştır. Şekil 5.3’te yer alan kestirim grafiğinde mevsimsellik 

gözlenmiştir.
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                  Şekil 5.12. Eğitim-test oranları değiştirildiğinde elde edilen kestirim  
             sonuçları 
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6. TARTIŞMA VE SONUÇ 
 

 Geleceğe ilişkin karar problemlerini zorlaştıran belirsizliktir. Karar vericiler 

için belirsizliğin giderilmesi mümkün olmasa da azaltılması sağlanabilir. Bu da iyi 

yapılmış kestirimlerle gerçekleştirilebilir. İyi bir kestirim, minimum hatayı veren 

tutarlı sonuçlar üreten kestirimdir. Kestirim uğraşısı içerisinde olan uzmanlar tek 

kestirim tekniğine bağlı kalmak yerine, kestirim modellerini destekleyecek farklı 

kestirim yöntemlerini de denemelidirler. 

 

 Doğrusal zaman serileri kestiriminde başarılı bir yöntem olduğu bilinen Box-

Jenkins modelleri, aynı başarıyı doğrusal olmayan zaman serilerinde 

gösterememektedir. Öte yandan gerçek hayata ilişkin zaman serileri çoğu zaman 

doğrusal değildir. Bu nedenle, zaman serileri ile kestirimde Box-Jenkins 

modellerinden daha iyi sonuç verebilecek yeni yöntemler arayışı süregelmektedir. 

Alternatif yöntemlerden biri de YSA yöntemidir. 

 

 YSA, sınıflandırma, kümeleme, örüntü tanıma vb. bir çok alanda kullanılan 

bir araçtır. Başarı ile kullanıldığı alanlardan biri de geleceği kestirim problemleridir. 

1980'li yıllardan beri, bir kestirim aracı olarak kullanılmaktadır. Zaman serileri 

kestiriminde başarılı sonuçlar verip vermediğini araştırmak için bir çok çalışma 

yapılmıştır. Bu çalışmaların bir kısmı YSA tekniklerinin, geleneksel yöntemlerden 

daha iyi sonuç verdiğini söylerken bir kısmı da herhangi bir farklılık olmadığını ileri 

sürmektedir. 

 

 Bu çalışmada, YSA'nın bir kestirim aracı olarak kestirim uygulamasında 

geniş kabul gören Box-Jenkins modellerinden farklılığının olup olmadığı 

araştırılarak SO2 zaman serisi verileri ile bir uygulama gerçekleştirilmiştir. Kestirim 

modeli ile çalışan uzmanların, YSA’da geliştirilen her yeni model için karşılaştırma 

aracı olması bakımından diğer teknikler ile de model geliştirmeleri faydalıdır. 
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 Çalışmada ele alınan SO2 ölçümüne dayalı zaman serilerinde YSA, 

karşılaştırma aracı olarak kullanılan Box-Jenkins modellerinden daha iyi sonuç 

vermektedir. 

 

 Gerçek zamanlı veri örneği olarak ele alınan SO2 verilerinde mevsimsellik 

gözlenmiştir. YSA çalışmasının başında mevsimselliğin sözkonusu olduğu verilerde 

YSA’nın optimizasyonunda yaşanabilecek güçlüklere ilişkin literatürde yer alan 

çelişkili yorumlar ortadan kaldırılarak, YSA’ların mevsimselliği öğrenmede başarılı 

olabildiği gözlenmiştir. 

 

 Örneğe yönelik olarak YSA'nın zaman serileri ile geleceği kestirimde, 

doğrusal olmayan zaman serilerinde Box-Jenkins modellerinden daha başarılı olduğu 

söylenebilir.  
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