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OZET

Cansel, B. Box-Jenkins Zaman Serisi Analiz Yontemi ile ileri Beslemeli
Yapay Sinir Aglari Tahminlerinin Karsilastirmasi. Hacettepe Universitesi
Saglik Bilimleri Enstitlisi Biyoistatistik Programi Yiiksek Lisans Tezi,
Ankara, 2006. Box Jenkins zaman serileri analizi yontemi, kestirimlerde
yaygin bir sekilde kullanilan kabul gormus bir yontemdir. Box-Jenkins
yontemi, dogrusal olmayan zaman serilerinde yetersizdir. Diger taraftan
yapay sinir aglari dogrusal ve dogrusal olmayan modellemede geleneksel
istatistik tahmin yontemlerine gore alternatif olarak kullaniimaktadir. Yapay
sinir aglarindaki en temel dezavantaj ise uygun olan model mimarisini
belirlemedeki gugluklerdir. Bu galismada, Yapay Sinir Aglari ve Box-Jenkins
yontemlerinin  kestirim araci olarak kullaniimasina iligkin ayrintilar
aciklanmigtir. Geri yayilim 6grenme algoritmasinin mantigi gosterilmistir. Her
iki ydntem ile, Ankara ili SO, 8lgiimlerine iliskin 83 adet aylik veri kullanilarak
kestirim yapiimigtir. Modellemede yer alan bazi énemli agamalar yontemler
bazinda agiklanmistir. SO, délgimlerine iligkin veri 6rnegi ile kurulan modeller,
performans istatistikleri ile yorumlanmistir.

Anahtar Kelimeler: Kestirim, Zaman Serileri, Yapay Sinir Aglari.



vi

ABSTRACT

Cansel, B. Comparison between the Box-Jenkins and feed forward
artificial neural network forecasts in time series analysis method.
Hacettepe University Institute of Health Sciences, Ms Thesis in
Biostatistics, Ankara, 2006. Box Jenkins time series analysis methodology
is an acceptable prediction methodology that has been widely used. Box-
Jenkins methodology is inefficient for nonlinear series. Whilst artificial neural
network has been used as an alternative to the traditional statistical
forecasting methods for linear and non-linear modelling. Most basic
disadvantage of the artificial neural network is the difficulties in the identifying
appropriate model architechture. This study presents in detail Box-Jenkins
and artificial neural network methodologies as a forecasting tool. Logic of the
Back Propogation algorithm is shown. 83 monthly SO, measurements data in
Ankara municipality are forecasted by both methodologies. In modelling
some important methodology based stages are described. Constructed
models with SO, data are analysed by the performance statistics.

Key Words: Forecasting, Time Series, Artificial Neural Network
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1.GIRIS

Kestirim (6ngorii) kavrami, bir degiskenin belirli varsayimlar altinda
gelecekte alabilecegi degerlerin Onceden yaklasik olarak belirlenmesi olarak
tanimlanir. Zaman serisi ¢oziimlemesi ile 6ngorii, incelenen bir degiskenin simdiki
ve geemis donemdeki gozlem degerlerini kullanarak ve birtakim varsayimlar altinda
Ongorli degerlerinin hangi sinirlar arasinda geceklesebilecegini ortaya koymak icin

yapilan ugraslardir (1).

Tibbi karar uygulamalarinda amag¢ dogru tanidir. Dogru tanida yanhs kararlar
alma riskinin getirecegi olumsuzluklar1 ortadan kaldirilabilmek {izere, uzman
sistemler, tibbi goriintii analizi, konsiiltasyon, literatiir vb. karar destek sistemlerinin
yani sira ongoriilerde, gerek zaman serisi analizinden gerekse yapay sinir aglarindan
(YSA) siklikla faydalanilmaktadir. Ongoriiler daima, karar vericilerin iistlendigi
riskleri azaltarak karar vericiye destek olmaktadir. Tibbi tanilara iliskin hesapsal
giicliikleri ¢cozmek iizere Yapay Sinir Aglar1 yonteminden artan sayida uygulamalar
ile yararlanildig1 goriilmiistiir. Yapay Sinir Aglari elde edilen deneyimler ve teorik
derinligi ile kayda deger Olciide hatasiz ve kesin basar1 elde etmesi bakimindan, diger
kaliplagsmis uygulamalara gore, hala geng bir disiplindir. Son yillarda 6zellikle tibbi

fizik alanindaki tan1 uygulamalarinda anlamli katkilar1 bulunmaktadir.

Tibbi tanilarin ¢ok ¢abuk verilmesinin hastaya saglayacagi yarari tartismak
bile gereksizdir. Ornegin, agir kafa yaralanmasi yasayan hastalarin yaris1 genellikle
36 saat icinde 6lmektedir. Bunun yani sira nérolojik tanida kapsamli testler ortalama
24 saatte gerceklestirilebilmektedir. Dolayisiyla, karar destek anlaminda YSA
teknolojisi ile gelistirilen uygulamalardan yararlanilmasi, noérolojik bileskelerin
Ogrenilmesine yonelik testlerin daha hizli, daha sik yapilabilmesi tibbi tanidaki basari
bakimindan 6nemli bir kazanimdir (41). Herhangi bir degiskenin gelecekte alacagi
degerlerin kestirimi, degiskenin ge¢mis donemlerdeki gozlem degerleri kullanilarak
olusturulan modeller yardimi ile saglanir. Kestirim analizi model belirleme ve

kestirim agamasindan olusur. Kestirim modelinin verinin gegmis degerleri ile en 1yi



uyumu saglayan ve gelecegi en iyi temsil eden nitelikte olmasi Ongoriilerdeki

basariy arttirir.

Model kurma agamasinin baglangicinda ilgili probleme ait veriler saglikli bir
sekilde toplanir ve toplanan verilere uygun model belirlenir. Belirlenen modelin
matematiksel bi¢cimi atanarak, var olan veriler yardimi ile modelin parametreleri
belirlenmeye calisilir. Modelin uyumu hata testleri ile saglanabilir. Eger kurulan

model uygun bir model ise, gelecek icin kestirimler yapilabilir.

Kestirim yontemleri, nitel kestirim yontemleri ve nicel kestirim yontemleri
olmak tizere iki sekilde siniflandirilabilir. Her iki yontemin c¢ikis noktast ilgili
degiskene ait gdzlem degerleridir. Gegmis ve simdiki donem goézlem degerlerinden,

gelecek donem gozlem degerleri belirli kurallar ¢ercevesinde kestirilir (2).

Nicel kestirim yontemleri ise istatistiksel yontemlere dayanir. Nicel kestirim
yontemlerinde nasil kestirimde bulunuldugu net olarak bellidir ve islemler
matematikseldir. Gegmis gozlem degerleri kullanilarak siirecin olugmasina katkida
bulunan iligkiler belirlenir ve bu iliskilerin gelecege yansimasi belirlenmeye ¢alisilir.
Nicel kestirimde bulunabilmek i¢in iki temel yaklasim kullanilmaktadir: neden-sonug
iligkisine dayanan modeller ve zaman serileri analizine dayali modeller (3). Neden-
sonug iligkisine dayanan kestirim modelleri, regresyon yontemi ve ekonometrik
modellerdir. Regresyon yontemi, bir ya da daha fazla degiskenin iizerinde etkili
oldugu bir baska degiskenle aralarindaki iliskinin matematiksel olarak ifade
edilmesidir. Boyle bir yontemde, etkilenen degiskene bagimli degisken ve etkileyen
degiskene(lere) de bagimsiz degisken(ler) ad1 verilir. Bagimli degisken ile bagimsiz
degisken(ler) arasindaki neden sonug iliskisi gegmis gozlem degerleri yardimi ile
belirlenir. Daha sonra bagimsiz degiskenlerin gelecekteki cesitli degerleri igin

bagimli degiskenin alacagi deger kestirilmeye caligilir.

Ekonometrik modeller, neden-sonug iliskisi gosteren iki ya da daha g¢ok
regresyon modelinden olusan denklem sistemidir. Dolayisiyla, ekonometrik

modellerde birden fazla bagimli degisken bulunur. Ekonometrik modellerde tim



bagimli ve bagimsiz degiskenler arasindaki iligkiler eszamanli olarak incelenir.
Boylece, bagimli ve bagimsiz degiskenler arasindaki iligkiler daha gergek¢i bir

sekilde degerlendirilir (2).

Bir zaman serisi, bir degiskene iligkin zamana gore siralanmis gozlem
degerleridir. Zaman serisi analizi, kestirimde bulunulacak degiskenin ge¢mis zaman
serisini kullanarak gelecek degerlerin kestirimi i¢in model gelistirmede kullanilir.
Model gelistirme, ilgili degiskene ait zaman serisinin analiz edilmesi, serinin ana
egiliminin ve oOzelliklerinin belirlenmesine dayanir. Serinin ana egilimini ve
Ozelliklerini yansitacagi diisiiniilen bir model segilir ve varoldugu seri degerleri
kullanilarak modelin parametreleri yaklasik olarak bulunur. Serinin gelecekte de ayni
ozellikleri koruyacagi ve aym egilimi gosterecegi varsayilarak, belirlenen model

yardimi ile gelecek donem degerleri kestirilmeye calisilir (2).

Zaman serileri analizi i¢in yaygin olarak kullanilan bazi yontemler vardir.
Dogrusal zaman serilerinin analizinde oldukga basarili sonuglar veren Box-Jenkins
modelleri bu tekniklerin en 6nemlilerindendir. Dogrusal ve duragan siireglerde ya da
duragan olmayan fakat bazi1 doniistimlerle duraganlastirilabilen serilerde Box-Jenkins
yontemi basarilt sonuglar verebilir. Ancak, gercek hayata iliskin seriler genellikle
dogrusal degildir. Bu nedenle dogrusal olmayan zaman serilerini modellemede farkli

yontemlere gereksinim duyulur.

1980'li yillarin sonlarindan baslamak {izere zaman serilerine iliskin
kestirimler i¢in kullanilmakta olan yontemlerden biri de Yapay Sinir Aglar1 (YSA)
yontemidir. YSA, girdi ve ¢iktt degiskenleri arasindaki herhangi bir 6n bilgiye
gereksinim  duymadan  dogrusal ve  dogrusal olmayan  modellemeyi
saglayabilmektedir. Bu nedenle YSA, kestirim araci olarak diger yontemlere gore

daha genel ve esnektir (4).

YSA'nin bir kestirim araci olarak kullanilmasina iliskin bir ¢ok arastirmaci
tarafindan yapilmis cok sayida calisma olmasina ragmen, YSA'nin performansini

etkileyen anahtar faktorlerin neler oldugu konusunda kesin bir yargi yoktur. Bu



konuda Zhang ve dig.(6)’leri bir benzetim ¢alismasi1 yaparak YSA'nin performansini
etkileyebilecek ana faktorleri belirlemeye c¢alismistir. Yazarlar, sozii edilen
faktorleri; girdi noronu sayisi, gizli ndron sayisi ve egitim kiimesi biiyiikliigli olarak
incelemislerdir. Belirtilen bu faktorlere ek olarak, egitim algoritmasi, veri kiimesinin
diizenlenmesi, kestirim dénemi uzunlugu faktorlerinin de YSA performansi tizerinde
etkili oldugu distiniilmektedir. Bu nedenle biitiin bu faktorlerin etkisini arastiracak

bir ¢alismanin faydali olacagina inanilmaktadir.

Bu c¢aligmada, YSA ile gelistirilen model ile zaman serileri analizinde siklikla
kullanilan ve bagarili sonuglar iireten Box-Jenkins modelleri yonteminin genel
tanimlamalar1 yapilarak, ger¢ek veri uygulamasi iizerinden elde edilen performans
istatistikleri yardimi ile modeller karsilastirilacaktir. YSA ile bulunan sonuglarin
etkinligi, literatiire uygun sekilde, Box-Jenkins modelleri sonuglar1 ile
karsilastirilarak arastirllmistir. Box-Jenkins modellerinin genis kabul gormesi,
gelistirilen her yeni model icin iyi bir karsilastirma araci olmalarin1 saglamustir.
Ayrica, Al-Saba ve Al-Amin (7) Box-Jenkins modellerinin; bilesenlerine ayirma
(decomposition), basit listel diizeltme ve Winters Yontemi gibi diger kestirim

yontemlerinden daha dogru sonuglar verdigini belirtmektedir.

Bu caligma, amaci1 dogrultusunda su sekilde planlanmistir: Boliim 2'de zaman
serileri analizi i¢in Box-Jenkins modelleri agiklanmistir. Bolim 3'te YSA hakkinda
ayrintili  bilgi verilmis, bilinen geri yayilim Ogrenme algoritmasinin mantigi
gosterilmigtir.  Bolim 4°de, YSA'nin kestirim aract olarak kullanilmasini
icermektedir. YSA'nin kestirim araci olarak kullanilmasina iligkin literatiir taramasi
ve onemli ayrintilar bu boliimde agiklanmistir. Boliim 5°de, gergek zaman serileri
ornegi olarak ele alinan; Refik Saydam Hifszisihha Baskanligi’'ndan alinan, Ankara
Ili 1999 Yil1-2005 (Kasim Sonu) itibariyle, SO, dl¢iimleri ortalamasina iliskin 83
adet aylik veri ile kestirim ¢alismalart yapilmigtir. S6zii gecen veri lizerinden Box-
Jenkins modellerine uygun olarak iiretilen ARIMA modeli ve YSA teknikleri ile elde

edilen model ve sonuglarinin performans istatistiklerine yer verilmistir.



2. ZAMAN SERILERI ANALIZI

2.1. Zaman Serisi

Zaman serisi, zaman sirasina konmus goézlem degerleri kiimesi olarak
tanimlanabilir. Zaman serisinde ilgilenilen 6zellik bir degiskendir. Bu degisken
zaman icerisinde ¢esitli nedenlere bagl olarak farkli degerler alir. Dolayisiyla zaman
serisi, zaman sirasina konmus degisken deger kiimesi olarak ifade edilebilir (2).
Zaman araliklar her seride farkli farklidir. Saatlik, giinliik, haftalik, aylik, ii¢ aylik,
yillik veya daha farkli zaman araliklarina gore deger almig zaman serileri olabilir. Bir
zaman serisinde, t, zaman devresini, Yt ise degiskenin t donemindeki goézlem

degerini gosterir.

Zaman serisini olusturan degerler kiimesi siirekli bir kiime ise zaman serisinin
siirekli oldugu, eger kiime kesikli ise zaman serisinin kesikli oldugu sodylenebilir.
Kesikli bir zaman serisinden alinan goézlem degerleri Yy , Y, ....., Ym olarak
gosterilebilir. t, t,......t, gdzlem zamanlarin1 gostermektedir. Gozlem zamanlar
arasindaki fark esittir ve sabittir. Kesikli zaman serilerinde gozlem zamanlar
arasindaki fark esit ve sabit olmayabilir. Kesikli zaman serileri iki sekilde elde

edilebilir: (8)

1. Stirekli bir zaman serisinden 6rnekleme yapilarak,

2. Bir degiskenin degerini belli bir zaman diliminde gozleyerek.

Zaman serileri i¢in bir bagka smiflandirma da seriyi olusturan degiskenin
ortalama ve varyansinin zaman boyunca gosterdigi degiskenlige gore yapilmaktadir.
flgili degiskenin ortalama ve varyansi zaman boyunca sabit ve ¢esitli gecikmelerde
kovaryansi t'ye baglh degil ise, zaman serisine duragan, eger serinin ortalama ve

varyans1 zamana bagli olarak degisiyorsa seriye duragan olmayan zaman serisi denir.



2.2. Zaman Serilerinin Ozellikleri

Bir zaman serisinde diizenli ya da diizensiz ¢esitli degismeler olabilir. Zaman
serilerinde goriilen diizenli degismeler genel ve siirekli nedenlerin etkisi sonucu
meydana gelirken, diizensiz degismeler gecici ve rasgele nedenlerin etkisinden

olusur.

Ancak bir ¢ok zaman serisi, tutarli bir davranig yapisi gosterir. Bir zaman
serisi kestirimi yapabilmek i¢in bu davramis yapisinin belirlenmesi ve gelecege
yansitilmas1 gerekir. Zaman serilerinde genel olarak goriilen davranis yapilar

asagidaki gibi 6zetlenebilir (13):

1. Uzun dénem egilimi: Trend
2. Periyodik dalgalanmalar
3. Cevrimsel degismeler

4. Dlizensiz dalgalanmalar

2.2.1. Trend (Egilim)

Trend, bir zaman serisinde goriilen siirekli artis ya da siirekli azalis egilimidir.
Trendin bi¢iminin bilinmesi, isletmelerin uzun déneme gore siiresi sinirlanmis (uzun
vadeli) plan ve programlarinin en iyi bigimde diizenlenmesine olanak tanir. Trend,

genel ve siirekli nedenlerin etkisinden dolayi ortaya cikar.

2.2.2. Belirli Araliklarla Yinelenen (Periyodik) ve Mevsimlik
Dalgalanmalar

Esit araliklarla diizenli bir bigimde tekrarlanan dalgalanmalara periyodik
degisme ad1 verilir. Birbirini izleyen iki en yiiksek veya en diisiik degisme arasinda
gecen siireye de degisimin periyodu denir. Periyodik degisme, degismenin

tamamlanmas1 i¢in gegen siirenin uzunluguna goére adlandirilir. Glinliik, haftalik,



aylik, yillik vb. periyodik degismeler olabilir. En 6nemli periyodik degisme
mevsimlik degismedir. Bu sebeple mevsimlik degisme ifadesi de siklikla kullanilir.
Mevsimlik degismeler bir yildan kisa siireli ay ve ii¢ aylik zaman serilerinde
goriilebilir. Bir yildan daha uzun siireli zaman serilerinde mevsimlik degisme

goriilmez (2).
2.2.3. Cevrimsel (Devri) degismeler

Bir yildan uzun fakat degisik stirelerle tekrarlanan dalgalanmalardir.
Cevrimsel degismelerin siireleri ¢ogunlukla 3-15 yil arasinda degisir. Genel ve
stirekli nedenlerin ortaya ¢ikardigi ¢evrimsel degismeler az olarak bazi ekonomik
zaman serilerinde goriiliir. Bir ¢ok zaman serisinde cevrimsel (devri) degisme

goriilmez.

2.2.4. Diizensiz degisme

Ne zaman ne bigimde meydana gelecegi bilinmeyen dalgalanmalardir.
Diizensiz degismelerin nedeni gegici ve raslantisal nedenlerlerdir. Diizensiz

degismeler her zaman serisinde bulunabilir.

Sekil 2.1.'de, zaman serilerinin 0zellik yapilarma iliskin grafikler
gosterilmistir. Sekil 2.1.a, zaman boyunca sabit bir diizeyde kalan bir siireci
gostermektedir. Bu siire¢ sadece raslantisal nedenlerlerden dolayr degiskenlik
gostermektedir. Sekil 2.1.b'de siirecin ¢evrimsel ve raslantisal nedenlerden
degismelerin etkisinde oldugu goriilmektedir. Sekil 2.1.c'de siire¢ diizeyi mevsimsel
bir degiskenlik gostermektedir. Sekil 2.1.d'de ise siire¢ artan bir trend
gostermektedir. Bir ¢ok zaman serisi modeli bu yapilardan birini ya da bunlarin

bilesimini temsil etmek tizere gelistirilirler (13).

Zaman serisinin temelindeki yap1 tanimlandiktan sonra bu yapinin davranisi
matematiksel bir modelle ortaya konmalidir. Higbir matematiksel modelin zaman

serisindeki her bir degeri tam dengi ile liretemeyecegi agiktir. Gergek zaman serisi



degerleri ile matematiksel formiillerle tretilen seri degerleri arasinda bir fark
olacaktir. Bundan dolay1 zaman serisinin iki bilesenden olusacagi sdylenebilir (8)
Zaman serisi = model degeri + hata [2.1]

Yi=Fit+e [2.2]
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Sekil 2.1. Tipik zaman serisi yapilar1 (13)

2.3. Zaman Serilerinin Gosterimi

Zaman serilerini gostermek {izere kullanilan modellerin ¢ogu matematiksel

modellerdir. Ornegin, gozlem degerleri bir olasilik dagilimindan alinan rasgele



orneklerse ve dagilimin ortalamasi zamana bagli olarak degismiyorsa, asagidaki sabit

model bu durum i¢in kullanilabilir.
Yi=u+sg

Y;, t anindaki gézlem degeri, p, siirecin ortalamasi, € hata terimi ya da giiriiltii
degiskeni olarak adlandirilir. Hatta raslant1 degiskeninin, beklenen degerinin sifir ve
genellikle varyansinin V (g) = 0% sabit oldugu kabul edilir. Anilan model Sekil

2.1.a’daki siire¢ i¢in uygun bir modeldir.

Sekil 2.1.d’deki siireci temsil eden modeli gostermek icin slirecin

PR

ortalamasinin zaman bagl olarak dogrusal degistigi varsayillmis ve dogrusal bir trend

modeli kullanilmugtir.

Y, =by+ bt + g [2.4]

by ve b; sabit katsayilardir. b; bir periyottan diger periyota goézlem
degerindeki ortalama degisim miktarini gostermektedir. Es.2.5, karesel bir trend
modelini gostermektedir.

Yy=by+bit+bF+¢g [2.5]

Periyodik degismeler, modele transdental terim eklenmesi ile gosterilebilirler:
2mt 2m
Yi=bo+b; sin — + brcos — + & 2.6
t 0 1 81 12 2 12 t [2.6]

Yukarida tanimlanan modeller asagidaki gibi genel bir bigimde yazilabilir :

Yt:b()Zo(l‘)‘i‘b[Z] (l‘)"’ ......... +kak(t)+5t [27]
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b; katsayilari, z(t) t’ye baglhh matematiksel fonksiyonlar1 ve & de hata rasgele
degiskenini ifade etmektedir. Bu gosterim, siirecin beklenen degerini t’nin

matematiksel bir fonksiyonu olarak sunmaktadir (3).

2.4. Zaman Serileri Modelleri ile Kestirim

Zaman serileri modelleri ile kestirim, uygun bir modelin parametrelerinin
kestirimi yardimu ile saglanir. Ornegin ilgili modelin Es. 2.4.'teki gibi oldugu bir
durumda, B; ve B, parametrelerinin bir kestirimi olan b; ve b, kullanilarak gelecege

yonelik kestirim yapilabilir.
Fi=by+ bt [2.8]

T gozlem degerine sahip bir seride, T (T periyodunun sonu) zaman

diliminden gelecek bir periyoda (7' + 7) yonelik bir kestirim yapilacaksa,
Frie (T) = by + by (T+7) [2.9]

esitligi istenen kestirim degerini verecektir.

2.5. Performans Olciitii

Kestirim sisteminin etkinligini degerlendirmek iizere bircok olgiit
kullanilabilir. Bunlarin en onemlisi, kestirim dogrulugudur. Kestirim ydnteminin
dogrulugu, kestirim hatalarinin analiz edilmesi ile belirlenir. Kestirim hatasi, gergek
gbzlem degeri ile kestirim edilen deger arasindaki farktir. Herhangi bir t periyodu

icin kestirim hatast,

e=Y-F [2.10]
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esitligi ile hesaplanir. Y, gergek gozlem degerini ve F; de modelin iirettigi degeri

ifade etmektedir.

Incelenilen bir siire¢ ve kestirim metodu igin kestirim hatasmin, ortalamasi
E(e) ve varyansi .- olan normal raslantisal bir degisken oldugu varsayilir. Eger
kestirim yanli degilse, E(e)=0 olur. Yanli olmayan bir kestirim isteniyorsa, ¢ok

sayida gozlem degeri ile ¢alisilmasi oldukga dnemlidir (3).

Asagidaki esitliklerde siklikla kullanilan performans o6lgiitlerine yer

verilmigtir.

Ortalama Hata (OH) = 1 e [2.11]

i=1

n

Ortalama Mutlak Hata (OMH) = 1 e/ [2.12]
n i=1

Hata Kareleri Toplami (HKT) = e’ [2.13]
i=1

Hata Kareleri Ortalamas1 (HKO) = 1 Zef [2.14]

i=1

Yukaridaki 6l¢iitlerin disinda, daha agiklayici segenek (alternatif) Olgiitler de
onerilmistir (13). Bu segeneklerin en énemlileri ylizde hata 6lciitleridir. Baz1 yiizde

hata 6lgiitleri soyledir :

(Yt-Ft)

t

Yiizde Hata (YH) = *100 [2.15]

Ortalama Yiizde Hata (OYH) = 1 A=) 100 [2.16]
n

i=1 t
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n

(Yt - Ft)
Y,

t

Ortalama Mutlak Yiizde Hata (OMYH) = 1 *100 [2.17]
n

i=1
Makridakis (9), ortalama mutlak yiizde hata degerinin % 5 oldugunun
bilinmesinin, hata kareleri ortalamasinin degerinin 183 oldugunun bilinmesinden

daha anlamli oldugunu ifade etmektedir.

2.6. Box-Jenkins Modelleri

Zaman serilerinde bir ¢oziimleme ve kestirim yontemi olan Box-Jenkins
yontemi; kesikli, dogrusal stokastik silireglere dayanir. Otoregresif (Auto Regressive-
AR), Hareketli Ortalama (Moving Average - MA), Otoregresif-Hareketli Ortalama
(Autoregressive-Moving Average - ARMA) ve Biitlinlesik Otoregresif-Hareketli
Ortalama (Autoregressive Integrated Moving Average - ARIMA), Box-Jenkins
kestirim modelleridir. AR(p), MA(q) ve bunlarin birlesimi olan ARMA(p,q)
modelleri duragan siireclere uygulanirken, ARIMA(p,d,q) modelleri duragan

olmayan siire¢ler i¢in kullanilmaktadir.

Zaman serileri ile kestirimde bulunabilmek igin bilinen ve yaygin kullanilan

istatistik yontemlerin en kapsamlis1 Box-Jenkins modelleridir.

Box-Jenkins yaklagimi ile bir zaman serisini modelleyebilmek ig¢in ilgili
serinin duragan olmas1 gerekir. Zaman serisinin ortalama ve varyansinda sistematik
bir degisme yok ise serinin duragan oldugu sdylenebilir. Bir seri sabit bir biiyiime
oOriintiisii ya da genelde bir trend gosteriyorsa ya da bir seviyeden bir baska seviyeye
geri doniiyor veya ilerliyor ise, bu yapidaki seriler duragan bir seriye
doniistiirilmeden modellenemezler. Eger siirecin Ozellikleri zaman orjininin
degismesinden etkilenmiyorsa bu tiir sliregler tam duragan siiregler olarak
adlandirilir. Bunun anlami sudur : t;, t,.......... , tm zamanlarinda gergeklesen m
gozlem degeri ile tiik, trikyeeeoven.... , tmik zamanlarinda gerceklesen m gozlem
degerinin ortak olasilik fonksiyonu ayni ise bu tiir seriler tam duragan seri olarak

adlandirilir (8).
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Zaman serilerinin genelde duragan ozellige sahip olmadigi bilinmektedir.
Zaman serisinin ortalamasi ve varyansinda zamana bagh bir trendin olup olmadigini
belirlemede iizerinde uzlasilmis bir yontem yoktur, bu nedenle verilerin grafigini

incelemenin en kolay yol oldugunu belirtmektedirler.

Zaman serisinin sabit bir ortalama etrafinda dagilmamasi veya stokastik
siirecin Ozelliklerinin zamana baglh olarak degismesi nedeni ile duragan olmayan
seriler ~ ortaya  c¢ikmaktadir.  Boyle  serilerin  modellenebilmesi  igin
duraganlastirilmalar1 gerekmektedir. Duraganlastirma genelde fark alma iglemi ile
saglanir. Fark alma islemi seri duraganlagincaya kadar yapilir. Uygulamada genelde
1 veya 2 defa fark alma islemi gergeklestirilir. Varyansta duraganligi saglamak i¢in

de serinin logaritmasi aliabilir (10).

2.6.1. Box-Jenkins Modelinin Kurulumu

Box-Jenkins tekniginde amag, zaman serisine en iyi uyan ve en az parametre
iceren dogrusal stokastik siire¢ modelini elde etmektir. Box-Jenkins modelinin

kurulmasi dort asamada 6zetlenebilir:

1. Model tanimlama asamasi: ge¢mis verilere gore model parametreleri
belirlenir.

2. Model parametreleri kestirim asamasi: model parametrelerinin kestirimi
yapilir. Hata kareleri toplamini en az yapan parametre degerleri elde edilir.

3. Model gecerlilik asamasi: parametreleri kestirilen modelin verilere uygun
olup olmadiginin testi yapilir. Segenek (alternatif) modeller onerilir.

4. Model kestirim asamasi: gegerliligi sinanan model ile, zaman serisinin
gelecek donem degerleri kestirilir ve bu degerlere iligskin giiven araliklar

bulunur.

Zaman serisi i¢in en uygun model gecici modeller arasindan seg¢ilmektedir.
Gecici modellerin parametre kestirimleri ve uygunluk testleri uzun islemler

gerektirse de bilgisayar yardimi ile bu islemler kolayca yapilabilmektedir.
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Model belirleme asamasinda, zaman serisinin otokovaryans ve otokorelasyon
fonksiyonlarina basvurulur. Otokovaryans ve otokorelasyon fonksiyonlari, siirecin
AR(p), MA(q), ARMA(p,q) ya da ARIMA(p,d,q) modellerinden hangisine

uydugunun tespitinde 6nemlidir (8).

2.6.2. Otokovaryans ve Otokorelasyon Fonksiyonlari

Zaman serisini olusturan siirecin kesin bir taniminin yapilabilmesi igin
siirecin olasilik dagiliminin tanimlanmasi1 gerekir. Ancak genellikle bu miimkiin
olmamaktadir. Bu durumda siirecin 6zelliklerini saptayabilmek i¢in otokovaryans
fonksiyonu, otokorelasyon fonksiyonu ve kismi otokorelasyon fonksiyonu gibi

araglardan yararlanilir.

Bir zaman serisinde k donem uzakliktaki gozlem degerleri arasindaki
kovaryansa k gecikmeli otokovaryans, korelasyon ve korelasyon katsayisina da,

otokorelasyon ve otokorelasyon katsayisi denir (2).

Zaman serisinin analizi swrasinda otokovaryans fonksiyonu (OKF) ornek
momentleri kullanilarak kestirim edilmektedir. iki rasgele degisken arasindaki

kovaryansin genel gosterimi,

Kov(x, y) = E[(x- EQ)(y - E(®))] [2.18]

seklindedir. Benzer sekilde stokastik siirecin aralarinda k donem bulunan, y, y. gibi

degerleri i¢in otokovaryansi,

Vi = Kov(ysyie) = E[(ve -EG) ek -EVee))] = E[(Ve-1) Ve -9]  [2.19]
biciminde gosterilir. )i, otokovaryans fonksiyonunu ifade etmektedir (10).
Otokorelasyonlar, farkli zamanlardaki gozlemler arasindaki dogrusal iligkiyi

gosterir. Genel kavram olarak iki veri seti arasindaki korelasyonun 6lglilmesi islemi,

zaman serisi otokorelasyonunun Slgiilmesi icin temel olusturur. Bir seride herhangi
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bir k gecikme degeri i¢in otokorelasyon degerinin hesaplanmasi islemi, orijinal seri
ile orijinal seri k zaman degeri kadar tasinarak elde edilen yeni seri arasindaki

korelasyon degerinin hesaplanmasidir.

Gecikme degeri k’nin fonksiyonu olarak elde edilen otokorelasyon katsayilar
(OKK), otokorelasyon fonksiyonu (OKF) olarak adlandirilmakta ve siirecin bir
degerinin iligkili oldugu daha 6nceki degerlerinin yayilimini 6lgerek siirecin ge¢mis
donemlerle dogrusal iligkisinin giiciinii gostermektedir (10).

Gecikme degeri k’ya bagli olarak otokorelasyon katsayisi asagidaki gibi

tanimlanmaktadir :

o = E[(yt—/;t)(y,_k—u)] : 2.20]
VEI(y, = 1) JE[(y,  — )]

Duragan bir siire¢ i¢in varyans, t-k ve t zamanlar1 i¢in esit oldugundan,

otokorelasyon katsayisi,

o = El(y, =)y — 1] 2.21]

2

oy

seklinde yazilabilir. Boylece, k gecikmesi i¢in otokorelasyon,

o= 2k [2.22]

Yo
esitligi ile ifade edilir. Yukaridaki esitlige gore, py = I olmaktadir.

Otokovaryans ve otokorelasyonlarla ilgili olarak,

Yi= Ty [2.23]
Ve
D= P [2.24]

esitlikleri, otokovaryans ve otokorelasyonlarin simetrik oldugunu gostermektedir.
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OKF zaman serisinin duragan olup olmadiginin belirlenmesi amaci ile
kullanilmaktadir. Gecikme uzunlugu k arttikca, serinin Ornek otokorelasyon
fonksiyonu (OOKF) hizla azaliyor ve kisa gecikmelerde ekseni kesiyor ise serinin
duragan olduguna, serinin OOKF yavasca azaliyor ve uzun gecikmelerde ekseni

kesiyorsa serinin duragan olmadigina karar verilir (10).

2.6.3. Otokovaryans ve Otokorelasyon Fonksiyonlarinin Kestirimi

k gecikmeli otokovaryans kestirimi cy ile gosterilirse, cx,
1 N-k _ _
k= NZ(yt (Y, —Y) k=0,1,2.......k [2.25]
t=1

esitligi ile hesaplanir. Benzer sekilde otokorelasyon fonksiyonu p;'nin kestirimi 7y ile

gosterildiginde, 7y,

o= S [2.26]

esitligi ile elde edilir. Burada cy siirecin varyansi olan o 'nin kestirimidir.

Uygulamalarda otokorelasyonu virgiilden iki basamak sonra yuvarlamak
yeterlidir. Otokorelasyon fonksiyonunun kestiriminde giivenilir sonuglar elde etmek
icin en az 50 gozleme ihtiyag vardir ve ayrica ry otokorelasyonlarin kestiriminde en

fazla N/4 gecikmeye kadar hesaplama yapilmalidir (8).

2.6.4. Ornek Otokorelasyonlari Standart Hatasi

Bir zaman serisi i¢in uygun modelin belirlenebilmesi otokorelasyon
fonksiyonunun belirli bir gecikme degerinde kesilip kesilmediginin bilinmesine
bagldir. Ornek otokorelasyonu standart hatadan iki kat daha biiyiikse, %95 giiven
diizeyinde anlamli oldugu sdylenir. Standart hatanin + 2 kati, 6rnek otokorelasyonu

icin giiven aralig1 olarak tanimlanir (8).
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Otokorelasyon katsayilarinin analizi yapilirken Kkatsayilarin istatistiksel

anlamhiliklarmnin da sinanmasi gereklidir. Ornek otokorelasyon katsayilar1 icin,

Ho DOk = 0
Hi:pe#0 [2.27]

hipotezi test edilir.

Duragan normal dagilmis bir siire¢ i¢in 6rnek otokorelasyonun kestiriminin
(ry) varyansi i¢in, teorik otokorelasyon fonksiyonunun kesildigi q degerinden biiyiik

k gecikmeleri i¢in Barlett’in yaklasimi Es.2.28’de verilmistir (8).

q
Var[r] = %{1 + 2242} , k>q [2.28]
Jj=1

Testin karar agsamasinda izlenecek yaklasim soyledir :

1. % 95 giiven araliginda gecerli olan yaklasik 2 standart sapma igin,

2
hesaplanan degerinin |r,|>—— olmast durumunda, k.derece
p Pk g | k| \/ﬁ

otokorelasyon katsayisinin sifirdan 6nemli derecede farkli olduguna karar

verilir.

2. e < %oldugunda ise, k.derece otokorelasyon katsayisinin sifirdan

farkli olmadigina karar verilir.

Otokorelasyon katsayilarinin istatistiksel acgidan farkli olup, olmadiginin
testinde t istatistigi de kullanilmaktadir. Yukaridaki hipotezler i¢in, hesaplanan t
degeri 2 degeri ile karsilastirilmaktadir. t istatistigi asagidaki esitlikle

hesaplanmaktadir.
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Tk

1 k-1 )
—— 142 r
WJ 2

t:

[2.29]

Es. 2.29'da k gecikme sayisini, N gozlem sayisint gdstermektedir. |t| <2 ise,

otokorelasyonun istatistiksel olarak énemli olmadigina yani o = 0 olduguna karar

verilir (10).

Otokorelasyonlar  i¢in  giiven  araliklari,  sifirdan  farkli  Ornek
otokorelasyonlarinin g6z oniinde bulundurulmamasi ve anlamli sayilmasi kararinin

verilmesinde kabaca yol gosterir (8).

2.6.5. Kismi Otokorelasyonlar

Kismi otokorelasyonlar, otokorelasyonlar gibi seri degerleri arasindaki
iliskiyi degerlendirmek amaci ile kullanilan bir baska istatistiksel 6l¢li kiimesidir.
Kismi otokorelasyonlar, serinin hareketli ortalama ya da otoregresif siirecten

hangisine uydugunu anlamada otokorelasyonlarin tamamlayicisidirlar.

Bir zaman serisinde Y ile Yk arasindaki korelasyonun biiyiik bir kisminin,
bu degiskenlerin arasindaki korelasyonun Y, Y2, ...., Yk gecikmelerine sahip
olmasi nedeni ile oldugu belirtilmektedir. Bu korelasyonlar1 diizeltmek amaci ile
hesaplanan kismi otokorelasyon katsayilari, duragan bir degiskenin t ve t-k gibi iki
farkli donemde birbirleri ile olan iligkisini, yani Y ve Yk arasindaki iligkiyi, bu
zaman donemleri arasinda kalan diger tlim donemlerdeki t-1, t-2, .... gibi gecikmeleri
dislayarak veya sabit tutarak ortaya koymaktadir. Kismi otokorelasyonlar da,
otokorelasyonlar gibi Yule-Walker denklem sisteminin ¢oziimiinden elde edilirler ve
literatiirde ¢y ile gosterilirler. Ornek kismi otokorelasyonu varyansi Es.2.30’da

verilmistir (10).

A 1
var [%} =y [2.30]
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Bir AR(p) modelinde, k<p oldugu durumda kismi otokorelasyonlar sifirdan
farkli ve k>p oldugu durumda da kismi otokorelasyonlar sifira esittir. Diger yandan,

bir MA siirecinde kismi otokorelasyonlar biitiin gecikme degerleri i¢in sifirdan

farklidir (8).

Yule-Walker denklem sisteminin ¢Oziimlenmesinden kismi

otokorelasyonlarin k=1, 2 ve 3 degerleri i¢in Es. 2.31 elde edilir.

¢11:pl

b2 =
1 P1 P1
P1 1 P2
P2 P1 P3
¢33 = 1 o, o) [23 1]
P1 1 P1
P2 P1 1

2.6.6. Model Kurma

Box ve Jenkins (8), duragan zaman serileri i¢in iic genel stokastik model
smifi Onermektedir. Bunlar otoregresif (autoregressive-AR), hareketli ortalama
(moving average-MA) ve bu iki siirecin karisimi otoregresif hareketli ortalama

(autoregressive moving average-ARMA) stokastik siire¢ modelleridir.

AR modelleri ilk defa 1926 yilinda Yule tarafindan onerilmis ve daha sonra
1931°de Walker tarafindan genellestirilmistir. MA modelleri ise ilk defa 1937 yilinda
Slutzky tarafindan kullanilmistir (13).
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2.6.7. Otoregresif (Auto Regressive-AR) Modeller

AR (p) modelinde Y degeri, serinin p donem ge¢mis degerlerinin agirlikli
toplaminin ve rasgele hata teriminin dogrusal fonksiyonudur. AR (p) modelleri genel

olarak asagidaki gibi gosterilir :

}It = ﬂ+¢[ Yt_] + o + ¢pyl—p + oy [232]

Serinin ortalamasi p, seri degerlerinden ¢ikarildiginda elde edilen yeni seri

icin AR(p) modeli, Es. 2.33’teki gibidir.

Ve = ¢] Vi1 + ¢2yt-2 +o. + ¢p Y}.p + a; [233]

Es.2.33’te, yei, V2, eenene Yip gecmis gozlem degerleri, ¢, ¢, ....... , &
gegmis gozlem degerleri i¢in katsayilar ve a, de hata terimidir. Geri kaydirma

islemcisi B kullanilarak, yukaridaki model Es. 2.34’teki gibi ifade edilmektedir.

Ve :ﬁ a, [2.34]
Burada ¢(B),
dB)=1-¢;B-¢p B -......- ,B" [2.35]

esitligine sahiptir.

Otoregresif ifadenin temelindeki esitlik regresyon esitligine benzemektedir.
Bu esitlikte y; bagimli degisken ve y.i, yi2, ..... bagimsiz degisken roliinii
tistlenmektedir. Ayrica yei, Yi2, ...... ’ler, y; ile aym1 yapida degiskenler olup,
aralarinda bir donem zaman farki vardir. ¢, birinci dereceden otoregresif parametre,

¢, ikinci dereceden otoregresif parametre ve ¢, p. dereceden otoregresif
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parametredir. Model, p, ¢1, ¢2, ...-..., ¢, , 0. olmak iizere p+2 tane bilinmeyen

parametre igermektedir. Uygulamada var olan verilerden bu parametrelerin

kestirimleri elde edilir.

Otoregresif model, dogrusal filtreleme modelinin 6zel bir durumu olup, yi.i

Es. 2.36’daki ifade ile yazilabilir.

Vi1 = @1 Y2+ 2 yes o + @ Yipr + o [2.36]

Benzer sekilde, otoregresif model esitliginden yii, ye2, -..... sirastyla
modelden kaldirilip yerlerine esitleri konarak model yeniden yazildiginda sonsuz

sayida hata teriminden olugan seri elde edilir. Dolayisiyla,

HB)y = o [2.37]

esitligi elde edilir. Buradan,

yi=y(B)oy [2.38]
yazilabilir. Bu esitlikten de,

B)— 4 (B) = 2.39
wB)= ¢ (B) WB) [2.39]

ifadesi elde edilir.

Boylece otoregresif siireg, girdisi a, ¢iktisi y, olan, ¢'(B) transfer
fonksiyonuna sahip dogrusal filtreleme olarak diisiiniilebilir. Otoregresif siireg
duragan veya duragan olmayan bir siire¢ olabilir. Siirecin duragan olabilmesi i¢in
Es. 2.39’daki vy, wo,....., agirhiklarimin y(B) yakinsak bir seri olacak sekilde

secilmesi gerekir (8).
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AR(1) siireci igin,
B¢ B)=(1-4B)' = > 4B’ [2.40]

esitligi yazilabilir. AR(1) silirecinin duragan olabilmesi i¢in ¢(1) parametresinin

|¢( 1 )|<1 ve dolayisiyla 1-¢(1)B=0"1n kokii B=¢(1)" kosulunu saglamasi gereklidir.

Bu kosul ¢(B)=1-¢(1)B=0 kokiiniin birim ¢emberin disinda olmasi ile ayn1 anlami
ifade eder. ¢(B)=0 esitligi, siirecin karakteristik esitligi olarak adlandirilir. Genel bir
AR(p) siireci i¢in karakteristik esitlik asagidaki gibi yazilabilir.

B)=[] (1-GB)=(1-GiB) (1-G:B) .... (1-G;B) [2.41]

P
i=1

Burada Gl'l, Gg'l,. e Gp'1 karakteristik esitligin kokleridir. Duraganlik kosulu
sartlar1 geregi karakteristik esitligin koklerinin birim ¢emberin disinda yer almasi

gerekir.
p. dereceden bir otoregresif model Es. 2.33’te verilmistir.

Es.2.33, yix ile ¢arpilip beklenen degeri alinirsa, yu’nin (t-k)’mc1 zamana
kadarki soklar1 icerdigi ve a; ile korelasyonu olmadigi bilindiginde Es. 2.42 elde
edilir:

Yi=¢1 i+ s +... ... ¢p)/}c_p k>0 [2.42]

Es. 2.42°deki ifade vy, ile boliinecek olursa otokorelasyon fonksiyonu
2.43°deki esitligi saglayacaktir.

Pk = @101 T G2k2 T...... + dporp k>0 [2.43]

Bu da ¢(B)px = 0 olarak yazilabilir. Burada ¢(B),



$(B)=1-¢:B - 2B -

esitligine sahiptir.

Genel ¢ozlimde asagidaki gibidir :

P =A1G "+ AyG,* +

23

[2.44]

[2.45]

Duraganlik i¢in karakteristik esitligin koklerinin birim ¢emberin disinda yer

almasi gereklidir. Eger kokler farkli ise iki farkli durumla karsilasilabilir :

1. Kok G; gercektir ve k arttikca sifira dogru azalan bir A;G;* terimi bulunur.

2. Kok ciftlerinden biri komplekstik ve sinus fonksiyonunu takip eden bir

terim eklenir.

Genel olarak bir duragan otoregresif siirecin otokorelasyon fonksiyonu {istel

ve sinus fonksiyonunun bilesiminden olusacaktir (8). Bir AR(p) modeli ig¢in

otokorelasyon fonksiyonu iistel olarak azalan ya da siniis egrisi seklinde bir yapi

gosterirken, kismi otokorelasyon fonksiyonu da p gecikmeden sonra kesilir. Sekil

2.2, bu durumu gostermektedir.

Pk

Pk

Sekil 2.2. AR (p) siireci otokorelasyon ve kismi otokorelasyon

fonksiyonu (10)
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2.6.7.1. Yule-Walker Esitligi Cinsinden Otoregresif Parametreler

Es.2.43°te pr (k=1,2,.....p) yerine konulursa, p;, p», ...... Py cinsinden ¢;, 2,
...... ¢, icin p tane dogrusal esitlik elde edilir. Bu p tane esitlik Yule-Walker esitligi

olarak bilinir :
pr = ¢ + dip + . F dippa
P2 = 1p + d2 + .. + dppp-2 [2.46]
Pp = dippr F dpp2

Yule-Walker denklemlerinde parametrelerin  kestirimi, 1, kestirimi

otokorelasyonlar ile py teorik otokorelasyonlar yer degistirerek elde edilir (8).

2.6.7.2. AR(1) Siireci

AR (1) modelinde y; degeri, 1 donem geg¢mis gozlem degerinin ve rasgele
hata teriminin dogrusal fonksiyonudur. Birinci dereceden otoregresif siire¢ asagidaki

bi¢imdedir.

Vi=@1yer T

=a;+01ac + ¢t ... [2.47]
Siirecin duragan olmasi igin esitligin koklerinin birim ¢emberin disinda

kalmas1 gerekmektedir. Bu da ¢; parametresinin -1 < ¢; p < 1 sartin1 saglamasini

gerektirmektedir. Es.2.43 kullanilarak,

Px = §1 Pk-1 k>0 [2.48]

elde edilir.
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p = 1 oldugundan,

P =0 k>0 [2.49]

olur. Es. 2.49, AR(1) siirecinde teorik otokorelasyon fonksiyonunun sifira dogru
iistel olarak azaldigim1 gostermektedir. Sekil 2.3°te otokorelasyon fonksiyonun {istel
olarak azaldig1 ve kismi otokorelasyon fonksiyonunun k=1 gecikmeden sonra sifir

oldugu goriilmektedir.

Px Pk

v
y

AR (1) stireci

Sekil 2.3. AR(1) siireci otokorelasyon ve kismi otokorelasyon fonksiyonu (10)

Stirecin varyansi asagidaki esitlikle hesaplanir :

o2 =2 [2.50]

2.6.7.3. AR(2) Siireci

AR(2) modelinde y; degeri, serinin 2 donem ge¢mis gozlem degerlerinin
agirhikll toplammin ve rasgele hata teriminin dogrusal fonksiyonudur. Ikinci

dereceden otoregresif slire¢ agagidaki bicimdedir :

W= G yer + Gyt a [2.51]
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Stirecin karakteristik esitligi, Es.2.52’de verilmistir.
¢(B)) 1-¢:B-$B*=0 [2.52]

Stirecin duragan olmasi, karakteristik esitligin koklerinin birim g¢emberin
disinda olmasma baghdir. Dolayisiyla ¢; ve ¢,’nin asagidaki sartlar1 saglamasi

gerekmektedir.
b1+ o<1
G2- ¢1<1 [2.53]
-1 <<

Es.2.43, kullanilarak px = ¢1px1 + d2px2 k> 0, elde edilir.

po=1, [2.54]

o=t [2.55]

Pk = A le + A, sz

_ G(1-G3)G\ -G,(1-G})G;
(Gl _Gz)(1+G1G2)

[2.56]
G ve G, karakteristik esitligin kokleridir.
d1 ve ¢, parametreleri i¢in Yule-Walker denklem sistemi ¢oziiliirse,

(1)1 — 91(1_1232) [257]
1—p;
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elde edilir.

Es.2.57 ¢; ve ¢, otoregresif parametrelerin kestirimini, r; ve r, kestirimi

otokorelasyon katsayilarindan elde etmek i¢in kullanilabilir.

AR(2) siireci Yule-Walker denklem sistemi, otokorelasyonlar1 otoregresif

parametreler terimleri ile ifade edilmek icin ¢oziilebilir :

o= [2.58]

AR(2) siirecinin duragan olabilmesi i¢in otokorelasyonlarin Es.2.59’daki
sartlar1 saglamasi gerekir :

-1<p <1

-I<pa<l1 [2.59]

1
pi° < 5 (1+p2)

Siirecin varyansi,

2
2 o

a

1-pd — p,0,,

~ | 1=4 %, 2.60
(1+¢2j{(1_¢2)2_¢12} [ ]

Gy

esitligi ile tanimlanir (8).
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Sekil 2.4, AR(2) siireci otokorelasyon ve kismi otokorelasyonlart igin

ornekler gostermektedir.

2.6.8. Hareketli Ortalama (Moving Average-MA) Modelleri

MA(q) modelinde y: degeri, serinin geriye dogru q donem geg¢mis hata

terimlerinin dogrusal fonksiyonudur. MA(q) modelleri genel olarak asagidaki gibi

gosterilir.
yvi=a;- 6. - & aes- G, [2.61]
Burada ay, agq, ac, ....... , ar.q hata terimlerini 04, 0,, ...... , 04 hata terimleri ile

ilgili katsayilar1 gostermektedir. Hareketli ortalama islemcisi ile model,

e = OB)a, [2.62]

seklinde gosterilir.



Pk

a)

Pk

b)

P

c)

v

v

Pk

Pk

P

v

v

v

Sekil 2.4. AR(2) modeli otokorelasyon ve kismi otokorelasyon fonksiyonlari (10)

29
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Hareketli ortalama islemcisi,
OB)=1-6,B-6:,B-..... -6, B [2.63]
esitligi ile tantmlanmaktadir.

Hareketli ortalama kavrami, seri degerlerinin ge¢mis hata terimlerinin
dogrusal bir fonksiyonu oldugunu belirtmektedir. Derecesi q olan bir hareketli
ortalama modelinde, herhangi bir seri degeri, geriye dogru q donem hata terimlerinin
dogrusal bilesimine esittir. 0, 0, ...... ,0q,saswyla 1,2, ....... , q derece hareketli
ortalama parametrelerini gostermektedir. Model x4, 6;, 6, ...... , 0, Ga2 olmak tizere
q+2 adet bilinmeyen parametre icermektedir. Bu parametrelerin kestirimleri var olan

verilerden elde edilmektedir.

Genel olarak Es.2.62°deki gibi gosterilen siire¢ i¢in,

7(B)y:=a; [2.64]
esitligi yazilabilir.
1
7(B)=0"(B)= —— 2.65
(B) (B) 6®) [2.65]
oldugu agiktir.

Dogrusal bir siirecin g¢evrilebilir olmasi i¢in © (B) serisinin, B‘Sl i¢cin
yakinsak olmasi gereklidir. MA(q) siireci i¢in g¢evrilebilirlik kosulu karakteristik

esitligin kokleri birim ¢emberin disinda olmalidir.

OB)=1-6,B-6:B-..... -9,B'=0 [2.66]
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yB)=6B)=1-6,B-6B - ... - 6, BY, serisi sonlu ise MA siireci

duragandir.

Siirecin varyansi,

yo=(1+67+ 67+ ... +6,) 4 [2.67]
ve otokorelasyon fonksiyonu,

-6, +606,,+..+6,,0,
= k=1,2,..., 2.68
P 1+607 +..+0, q [2.68]

0 k>q

seklinde tanimlanir.

MA(q) siirecinde otokorelasyon fonksiyonu q gecikmeden sonra kesilirken,
kismi otokorelasyon fonksiyonu listel olarak azalir ya da siniis egrisi seklinde bir
yap1 gosterir. Sekil 2.5, MA(q) stlireci otokorelasyon ve kismi otokorelasyon

fonksiyonlar1 i¢in bir 6rnek gostermektedir.

Pk Pk

v

~ v

1] | o

Sekil 2.5. MA(q) modeli otokorelasyon ve kismi otokorelasyon fonksiyonu (10)
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2.6.8.1. MA(1) Siireci

MA(1) modelinde y, degeri, serinin geriye dogru 1 donem gecmis hata

teriminin dogrusal fonksiyonudur. MA(1) siireci, asagidaki gibi gosterilir :

Vie=a;- 0 ag [2.69]
— (1-6, B)a,

Siirecin karakteristik esitligi,

0(B) = 1 - 6, B=0. [2.70]

Stirecin  ¢evrilebilir olmasi i¢in, karakteristik esitligin koklerinin birim

cemberin disinda kalmasi gerekir. Dolayisiyla 0, parametresinin,

-1<0,<1 [2.71]

sartin1 saglamasi gerekir. MA modellerinde tiim 6; ‘ler i¢in silire¢ duragandir. MA(1)

slirecinin varyanst,

vo=(01+67) o/ [2.72]

ve otokorelasyon fonksiyonu,

k= [2.73]

esitligi ile elde edilir.

Kismi otokorelasyon fonksiyonu ise Es.2.74’te verilmistir.
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q)kk — ek (1_612)

-0 gy [2.74]

Sekil 2.6 MA(1) stireci otokorelasyon ve kismi otokorelasyon fonksiyonunu

gostermektedir.

Pk Pr

v
A

Sekil 2.6. MA(1) siireci otokorelasyon ve kismi otokorelasyon fonksiyonu (10)

2.6.8.2. MA(2) Siireci

MA(2) modelinde y, degeri, serinin geriye dogru 2 donem gecmis hata
teriminin dogrusal fonksiyonudur. MA(2) siireci, Es.2.75teki gibi gosterilir :

Vi=ai-0ran; - 6 a [2.75]

Stirecin karakteristik esitligi,

0(B)=1-06,B-0,B=0 [2.76]

denklemi ile belirtilir.
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Stirecin ¢evrilebilir olmasi i¢in, karakteristik esitligin koklerinin birim

cemberin disinda kalmasi gereklidir. Dolayisiyla 6,, 0, parametreleri asagidaki

sartlar1 saglamalidir :
0,+6,<1
0,-0,<1
-1<0,<1

Siirecin varyansi,

vo=04. (1+0,°+0,)

esitligi ile, otokorelasyon fonksiyonu

p1= _61(1'62)
1+0; +0;
= -9,
P2 1+07 +03
Pk = 0 k>2

[2.77]

[2.78]

[2.79]

esitlikleri ile elde edilir. Sekil 2.7, MA(2) siireci i¢in 6rnekler gostermektedir.

2.6.9. Karisik (ARMA) Modeller

Birinci dereceden hareketli ortalama modeli y=(1-0B)a; asagidaki sekilde

yazilabilir :

I
=a
a-em) " "

(1+6B + 0°B* + 0°B* + ...) y, = a,

yt=-9yt.1 '92%-2'93%-3' st

[2.80]
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Boylece, ger¢ek MA(1) siireci, ¢ok parametreli otoregresif model bigimine
dontstiiriilebilir. AR(1) modeli de MA modeline doniistiiriiliirse cok parametreli bir
model elde edilir. Pratikte ise az parametreli model elde etmek icin hem otoregresif

hem de hareketli ortalama terimlerinin bazi durumlarda modelde bulunmasi

gereklidir.
A A
Px Px
‘ R e R
‘ k | K
a)
A A
Px Px
| R v | ‘ | TTTTTTI k'
b)
A A
Px Px
‘ — LR >
<)

Sekil 2.7. MA(2) siireci otokorelasyon ve kismi otokorelasyon fonksiyonlari (10)
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Bu modeller AR ve MA parametrelerini icerip ARMA modeli olarak
adlandirilir ve asagidaki yapidadir :

_ 9B)

= ¢ 2.81
4B) [281]

8%

ARMA modelinin derecesi p ve q cinsinden ifade edilir. Model p+q+2
(Lo, @, oo, @, 01, 0o, ... , 0, 0'[,2) parametre igerir. Pratikte p ve q’nun degerleri

2’den biiyiik degildir.

Bir ARMA siireci asagidaki gibi gosterilir.

V=0t oyt byt a - 018, -080- ... -0, [2.82]

Bu da,

(1- $:B-¢2 B* - ... - ¢, B* )y, = (1- 6,B-0, B*- ... - 6, B%)a, [2.83]
ya da,

d(B) y: = 6(B)ay [2.84]

esitligi ile gosterilir.

Hareketli ortalama terimlerinin AR(p) slirecinin duraganhik kosulunu
etkilemediginden ¢(B) y, = 6(B)a; bir duragan siireci gostermektedir. Eger ¢(B) = 0
denkleminin kokleri birim c¢emberin disinda kaliyor ise, ARMA (p,q) siireci
cevrilebilirdir (8).
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2.6.9.1. ARMA (1,1) Siireci

ARMA (1,1) stireci,
(1-¢1 B) y: = (1-0,B)a [2.85]

seklinde tanimlanir. Eger -1 < ¢; <l ise slire¢ duragan ve -1 < 0; <I ise siire¢

cevrilebilir. Siirecin varyansi,

2

yo= 1HO =200, 2.86]

1-4¢
ve otokorelasyon fonksiyonu,
_ (1-9,0)(e,—6))

p1 2
1+6; —2¢,0,

p2= 1P [2.87]

Pk = G1p1 k>2

esitlikleri ile tanimlanmaktadir. Boylece, otokorelasyon fonksiyonu p; baslangic
noktasindan itibaren 6; ve ¢; degerlerine bagh olarak {istel olarak azalir. Sekil 2.8,
ARMA (1,1) siirecinin otokorelasyon ve kismi otokorelasyon fonksiyonlarina

ornekler gostermektedir.

2.6.10. Duragan Olmayan Dogrusal Stokastik Modeller

Zaman serisinin duragan oldugu durumlarda, yani siirecin ortalamasinin,
varyansinin ve kovaryansinin zamana bagli olarak degismedigi durumlarda
ARMA(p,q) veya ARMA(p,q)’nin 6zel hali olan AR(p) veya MA(q) modellerinden

uygun olan1 kullanilir.
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Sekil 2.8. ARMA (1,1) otokorelasyon ve kismi otokorelasyon fonksiyonlari (10)
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Ancak ger¢ekte zaman serilerinin ortalama ve varyansinda zamana bagh
olarak bir degisim olmaktadir. Bu durum duragan olmayan durum olarak adlandirilir.
Bu tip zaman serileri duragan hale doniistiiriildiigiinde daha once so6zii edilen
ARMA(p,q) modelleri  kestirim  i¢in  kullanilabilir. =~ Zaman  serisinin
duraganlastirilmas1 ise fark almak suretiyle yapilir. Zaman serisinin dogrusal bir
egilimi var ise birinci fark serisi duragan olur. Eger zaman serisinin egrisel bir
egilimi var ise farklarin farki alindiginda ikinci farklar serisi duragan olur. Bu
durumda model, ARIMA(p,d,q) olarak ifade edilir. Burada d serinin duraganlastirma

(fark alma) parametresidir .

ARIMA(p,d,q) seklinde gosterilen otoregresif biitlinlesik hareketli ortalama

modelinin genel ifadesi,

Zy = ¢]Zt_1 + ¢ZZt-2 +.o. + ¢pZ,_p + aj - (91a,_1 - 9261;_2 e - Oyl q [288]
esitligi ile verilir.

Es. 2.88'deki model, ARMA(p,q) modelindeki y; teriminin yerine z teriminin
yazilmig halidir. Bu durum, duragan olmayan y; siirecinin d derece farki alinarak
duraganlastirilmasi sonucu z; siirecinin elde edilmesinden kaynaklanmaktadir.

z=Ay, [2.89]
esitliginde,

z, = fark alma sonucu olusan seriyi

A = fark alma islemcisini

d = fark alma derecesini

gostermektedir. Birinci farklar serisi duragan ise,

Ayt =Zt = ViVl T (I'B) Vi [290]
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esitligi yazilabilir. Benzer sekilde serinin duragan hale gelmesi i¢in d defa fark

alinmissa,

A'y,=z,=(1-B)* y, [2.91]

ifadesi yazilabilir.

Biitiinlesik ARMA modelleri olarak adlandirilan ARIMA modelleri, duragan
olmayan serilerin duragan olana kadar ka¢ defa farklarinin alindigim1 gosteren d
derecesine, AR terim sayist p ve MA terim sayist q'nun ilave edilmesi ile

belirlenmektedir (10).

ARMA(p,q) modellerinin 6zel durumlart AR(p) ve MA(q) olabildigi gibi
ARIMA(p,d,q) modellerinde de &zel durum s6z konusudur. Ornegin ARIMA(p,d,q)
modeli hareketli ortalama parametresi igermiyorsa yani q=0 ise ARI(p,d), eger
ARIMA(p,d,q) modeli otoregresif model parametresi i¢ermiyorsa yani p=0 ise
IMA(d,q) modeli s6z konusudur. Uygulamada sik kullanilan ARIMA modelleri,
IMA(1,1) ve ARI(1,1) ya da ARIMA(L, 1,1) modelleridir (2).

2.6.11. Model Belirleme

Model belirleme, zaman serisinin 6nceki boliimlerde bahsettigimiz AR(p),
MA(q), ARMA(p,q) ve ARIMA(p,d,q) siireclerinden hangisine uydugunun ve uygun
stirecin derecelerinin ne oldugunun belirlenmesi islemidir. En genis hali ile ifade
edilirse, ARIMA(p,d,q) stirecinde, p, q ve d degerlerinin ne olmasi gerektiginin
belirlenmesidir. Duragan olmayan zaman serileri i¢in duraganlastirma parametresini
ifade eden d degerinin belirlenmesi kolaydir. Seri kaginci fark alma isleminden sonra
duraganlasmis ise, d parametresinin degeri bu sayiya esittir, p ve q parametrelerinin
belirlenmesi ise otokorelasyon ve kismi otokorelasyon fonksiyonlar1 yardimi ile olur.
Sekil 2.9, model belirleme asamalarinm1 gostermektedir. Otokorelasyon ve kismi

otokorelasyon fonksiyonlar1 hakkinda onceki boliimlerde ayrintili bilgi verilmistir.



41

Tablo 2.1 OKF ve KOKF’nun model belirlemede nasil yardimci oldugunu

Ozetlemektedir.

Model tanimlama isleminden sonra, secilen gec¢ici model i¢in parametre
kestirimi yapilmasi gerekir. En iyi parametre kestirimi, hata kareler toplamini en
kiiciik yapan kestirimlerdir. Bu islem i¢in en ¢ok olabilirlik (maksimum likelihood),

Bayes yaklagimi ya da en kiictlik kareler yaklasimi kullanilabilir (2).

Model tanimlanip parametre kestirimleri yapildiktan sonra yapilmasi gereken,
modelin gecerliliginin sianmasidir. Eger kurulan model gegerli bir model ise bu
model ile gelecege yonelik kestirim yapilabilir, aksi halde yeni bir model
tanimlanmal1 ve ayn1 islemler bu yeni model i¢in yapilmalidir. Modelin gegerliliginin

simanmasl, Q istatistigi adi ile bilinen bir test ile yapilabilir.

Model tamimlama

Y

Model parametrelerinin
tahmini

Model

Yeni model gecerli mi ?

tamimla

l Tahmin

Sekil 2.9 Box-Jenkins modelinin kurulumu
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Tablo 2.1 Model belirlemede OKF ve KOKF kullanimi

OKF KOKF

AR(p) Ustel olarak ya da siniis egrisi|p gecikme sonra istatistiksel olarak
seklinde azalir. anlaml degildir.

MA(q) q gecikme sonra istatistiksel olarak|Ustel olarak ya da siniis egrisi seklinde
anlaml degildir. azalir.

ARMA(p,q) Ustel olarak ya da siniis dalgalan|{Ustel olarak ya da siniis dalgalan
seklinde azalir. g-p gecikme sonra|seklinde azalir. p-q gecikme sonrasi
istatistiksel olarak anlamli degildir. istatistiksel olarak anlaml degildir.

2.6.12. Q test istatistigi

Q istatistigi 1970 yilinda Box ve Pierce (11) tarafindan gelistirilmis, 1978
yilinda Ljung ve Box (12) tarafindan diizeltilmistir. ¥ dagilimina uyan Q istatistigi,
parametre kestirimi yapilmig modelin verdigi artik degerlerini test ederek, modelin

gecerliligi hakkinda bilgi verir.

Box ve Jenkins (8) hatalarin ilk 20-25 otokorelasyonuna bir biitliin olarak
bakmayi saglayan Q istatistiginin kullanimini énermistir. Ancak, Ljung ve Box (18),
gozlem sayismim 100'den kiigiik olmasi durumunda x> dagilimmin zayif bir istatistik

olmasi nedeni ile diizeltilmis Q istatistiginin kullanilmasin1 dnermektedir (10).

Q istatistigi, otokorelasyonlarin ilk m tanesinin sifirdan farkli olup olmadigini
belirlemektedir. Eger tiim px = 0 ise slire¢ tamamen raslantisaldir. Box ve Pierce'nin

onerdigi Q istatistigi,
Q =n Zrkz 5 XZ m-p-q [292]
k=1

seklindedir.
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Diizeltilmis Ljung-Box istatistigi ise,

2
e g [2.92]

n

Q*=n(nt2) Y

bi¢imindedir. Yukaridaki esitliklerde,
n: gozlem sayist,
m: test edilecek otokorelasyon katsayisi
p: AR modelinin derecesi
q: MA modelinin derecesi

olarak tanimlanmaktadir.

Q istatistigi, hata terimlerinin aralarinda otokorelasyon olmadigina iliskin

asagidaki,

Ho : pi(a) = p2(a) = ...... = px(a)=0 [2.94]
hipotezinin kabul edilip edilmeyecegine karar vermede kullanilir. Eger hesaplanan Q
degeri,

Q> U g 1-a [2.95]

ise, Ho hipotezi red edilir ve modelin gegerli bir model olmadigina karar verilir.

Hesaplanan Q degerinin,

Q< U mpata [2.96]

olmasi durumunda ise, Hy hipotezi kabul edilir ve modelin gegerli bir model

olduguna karar verilir.
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2.6.13. Kestirim

Modelin gecerliligi sinandiktan sonra, gegerli oldugu kabul edilen model

gelecek donemlere ait kestirim i¢in kullanilabilir.

Biitiin tek degiskenli zaman serisi modellerinde oldugu gibi ARIMA
modellerinde de tek bir mantiktan hareket edilir. Ik olarak zaman serisi siirecinin
beklenen degeri hesaplanir, daha sonra beklenen deger yardimi ile gelecege ait
degerler elde edilmeye c¢alisilir. Zaman serisinin bugiinkii degeri Y; oldugunda ve
Y1, Ye2,....., Yo degerleri kestirilmek istendiginde, Yyp'nin kestirimi Y¢(L)

biciminde gosterilir.

ARIMA modeli ile kestirim yapilirken ilk olarak bir donem sonraki kestirim
degeri hesaplanmakta, bulunan kestirim degeri iki donem sonraki kestirim degerinin
hesaplanmasinda kullanilmaktadir. Bu islemler kestirilecek donem sayisi bitinceye

kadar devam etmektedir (10).

Bir ¢evrilebilir ve duragan ARIMA(p,0,q) stokastik siireci y; i¢in, t=n+L

oldugunda, siireg,

YotL = ¢1yn+L-1 t.o... ¢1yn+L-p tap+r '91 Ap+L-1 = evee An+L-q [297]

esitligi ile gosterilebilir. Burada, n en son gozlem donemini, L de kestirilecek

donemi gostermektedir. Es. 2.97'den y,:1 'nin beklenen degeri su sekilde bulunur:

1. Simdiki ve ge¢mis hata terimleri any (j <0) i¢in gercek hata terimleri,

2. Gelecek donem hata terimlerinin an+y (0<j<L) beklenen degeri i¢in sifir,

3. Simdiki ve gecmis gozlem degerleri yn.y (J < 0) i¢in gergek gdzlem
degerleri,

4. Gelecek donem gozlem degerleri yn,; (0<j<L) i¢in yu'min yaklasik

kestirimi kullanilir (2).
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Duragan olmayan zaman serilerinde once seri duraganlastirilir ve daha sonra
ARMA (p,q) stirecinde oldugu gibi kestirim yapilmaya calisilir. Fark alinarak
duraganlastirilmig seri i¢in yapilan kestirimlerden sonra orijinal seriye doniisiim
yapilir. Es. 2.89, duraganlastirilmis seriyi gostermektedir. Buradaki d parametresi
ka¢ defa fark alma isleminin yapildigimi belirtmektedir. Ornegin, d=1 oldugunda

Y¢nin L dénem kestirim i,

ye)=yi+z (D) +zQ2)+.... +z (L) [2.98]

olarak hesaplanir.

Zaman serilerinde kestirim, nokta kestirimi olarak yapilabilecegi gibi, aralik
kestirimi olarak da yapilabilir. Aralik seklinde kestirim i¢in, standart hatasinin
hesaplanmasi gereklidir. Kestirim standart hatasinin hesaplanmasi, ARIMA modelini
hata terimleri cinsinden ifade ederek yapilabilir. Yani modeldeki gecmis gozlem

degerleri hata terimleri cinsinden yazilmalidir. Bu durumda y; siireci,

ye=a: Yiapr T yiae .. [2.99]
seklinde yazilabilir. Burada y; , y, ..... ARIMA modeli parametreleri cinsinden
katsayilardir.

Gelecek donem kestirim hatasi a, (L) 'nin beklenen degeri, kestirim hatasinin
ortalamasini verecektir ve sifira esittir. Varyansi ise,
k-1
Var [a,(L)] = E[a*y ()] = 02> [2-100]
j=0

formiilii ile hesaplanabilir. Burada o =1 'dir.

Hata varyanst da hesaplaninca, kestirim i¢in giiven aralig1 asagidaki

formiille bulunabilir.

yo= (L) £ 1.96 Jvar[a,(L)] [2.101]
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2.6.14. Mevsimlik zaman serileri icin Box-Jenkins modelleri

Daha o6nce de belirtildigi gibi mevsimlik de§ismeler esit zaman aralari ile
tekrarlanan diizenli degismelerdir. Mevsimlik degismeler bir yildan kisa siireli zaman
serilerinde goriiliir. Mevsimlik zaman serilerinde iki ¢esit zaman araligi bulunur.
Bunlar, birbirini izleyen iki gozlem degeri arasindaki zaman araligi ve birbirini
izleyen ayni mevsim gozlem degerleri arasindaki zaman aralifidir. Bir mevsimlik
zaman serisinde iki tiir degisme s6z konusudur. Birbirini izleyen gozlem degerleri
arasindaki degisme ve birbirini izleyen ayni mevsim gozlem degerleri arasindaki
degismedir. Dolayisiyla birbirini izleyen gozlem degerleri arasinda iliski oldugu gibi,

birbirini izleyen ayni mevsim gozlem degerleri arasinda da iligki vardir.

Mevsimsel zaman serilerinde, birbirini izleyen gozlem degerleri arasindaki
iliskiyi gosteren bir ARIMA(p,d,q) modeli uygulanabildigi gibi, birbirini izleyen
ayni mevsim gozlem degerleri arasindaki iliskiyi gosteren ARIMA(P,D,Q)S modeli
uygulanabilir. Mevsimsel ARIMA(P,D,Q)S modelindeki P, D ve Q parametreleri,
ARIMA(p,d,q) modelinde oldugu gibi sirasiyla otoregresif siire¢ derecesi, fark
derecesi ve hareketli ortalama siire¢ derecesi belirtmektedir, s ise birbirini izleyen
aynt mevsim gozlem degerleri arasindaki zaman araligidir. Aylik zaman serilerinde

s=12, li¢ aylik zaman serilerinde s=4'tiir.

Bir mevsimlik zaman serisi i¢in model belirlerken, yukarida ifade edilen iki
cesit degismeyi de yansitacak model belirlenmelidir. Zaman serilerinde
bulunabilecek degiskenlikler arasinda c¢arpimsal iliski oldugu varsayimindan
hareketle mevsimlik zaman serisi modeli kisaca, ARIMA(p,d,q)x(P,D,Q)s seklinde
gosterilir (2).

Ornegin bir ARIMA(1,1,1)(1,1,1)4 modeli asagidaki gibi gosterilir (13):

(1-4,B) (1-,B°)(1-B)(1-B")Y=(1-6,B)(1-0,B")a, [2.102]

Daha genel gosterimle carpimsal mevsimlik zaman serisi kestirim modeli,
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$o(B) Dp(B) A'AP)Y, = 0,00(B’)a, [2.103]

biciminde gosterilir. Bu genel gosterim asagidaki acik ifadelerle daha kolay

anlasilacaktir.
$,(B)= 1-¢B-$:B - ..... $,B"
@,(B)= 1-D,B*-D,B” - ..... ©,B" [2.104]
6,(B)=1-6,B-0:B’ - ..... §,B"
Oo(B)= 1-0;B-0,B” - ..... OpB?
BY:=Yu
B’Y.=Yw
BY, = Y
AYt = Yt - Yt—k [2 105)

AZYt = A(AYt ) = A( Yt - Yt—l) = Yt - Yt—l (Yt—l - Yt—Z) = Yt - 2Yt—1 + Yt—2

AYi=Yi- Yo
Astt = A (Yt - Yt—s) = (Yt - Yt—s) (Yt - Yt-zs) =Yi-2Yus + Yios

Mevsimlik zaman serileri i¢in uygun kestirim modellerinin belirlenmesi,
parametrelerin kestirimi, uygunluk testleri ve gelecek donemler i¢in yapilmasi,
mevsimlik olmayan modellerde oldugu gibi yapilir. Zaman serilerinde mevsimlik
degismelerin olup olmadig1 otokorelasyon analizi ile ortaya konabilir. Ornegin
zaman serisi li¢ aylik gozlem degerlerinden olusuyorsa ve seri duragan ise, seride
mevsimlik degismeler s6z konusu ise, her dordiincli gecikmedeki otokorelasyon
sifirdan 6nemli Ol¢iide farkli, bunlari izleyen otokorelasyon degerleri ise kiiciik
olacaktir. Seri duragan degilse, duraganlagtirma isleminden sonra otokorelasyon

analizi yapilarak serinin mevsimsel olup olmadigina karar verilir (2).
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3.  YAPAY SINiR AGLARI

3.1. Giris

Insan beyninin ¢alisma ilkelerini dykiinen yapay sinir aglar1 (YSA), érnek
siiflandirma ve oriintii tanimada 6nemli bir aragtir. YSA, deneme-yanilma yolu ile
ogrenebilmekte ve daha sonra da genelleme yapabilmektedir. YSA; isletme bilimi,
sanayi ve fen bilimleri gibi bir ¢ok degisik alanda basar1 ile kullanilmaktadir.
Y SA'nin kullanildigr alanlardan biri de kestirim problemleridir. YSA'nin bir kestirim
araci olarak genis kabul gormesi ancak kigisel bilgisayarlarin gelismesi ve YSA

yazilimlarinin yayginlagsmasi sonucu olmustur.

Haykin (13) YSA'y1 s6yle tanimlar:

Yapay sinir agi; deneyime dayali bilgiyi depolamaya ve bu bilgiyi kullanima
sunmaya yonelik dogal bir egilim icinde olan yogun paralel dagitilmis bir islemcidir.
YSA iki agidan insan beynine benzemektedir: Bilgi ag tarafindan bir ogrenme stireci
aractligi ile elde edilmektedir ve sinir hiicreleri arasinda snaptik agwrlik olarak

adlandwrilan baglar bilgiyi depolamakta kullaniimaktadir.

YSA, temel biyolojik sinir sistemlerinin taklididir. Insan beyni, néron adi
verilen birbirleri ile baglantili islem elemanlarindan olusmaktadir. Her bir néron bir
diger noronun c¢iktisin1 (toplam bilgisini) veya disaridan gelen bir uyariyr girdi
sinyali olarak alir, bir aktivasyon veya transfer fonksiyonu ile isler ve bir diger
norona veya disariya verilmek iizere ¢ikti sinyalini iiretir. Her bir néron kendi
gorevini yavas ve eksik yerine getirmesine ragmen, biitiin ag sasirtict bir sekilde ¢ok
sayida ki gorevi eksiksiz ve oldukca etkin bir sekilde yapar (41). Bu bilgi isleme
karakteristigi YSA'ya gii¢lii bir hesaplama aygiti olma 6zelligi saglar.

Insan beyninin ve YSA'nin temel yapi tas1 sinir hiicreleridir. Temel insan sinir

hiicresi Sekil 3.1.'de gosterilmistir. Saglikli bir insan beyni yaklagik olarak birbirine
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bagli 10" sinir hiicresinden olusarak, beynin paralel islem yetenegini saglamaktadir

(14).

Insan sinir hiicresi; cekirdek, gdévde ve iki uzantidan olusmaktadir. Bu
uzantilardan dentrit adi verilen kisadir ve binlerce dala dallanmistir. Gorevi giris
bilgilerini almaktir. Tek ve uzun olan uzantiya ise akson adi verilir. Gorevi ¢ikti
bilgilerini diger sinir hiicrelerine tasimaktir. Akson ve dentritin birlestigi yere sinaps

ad1 verilir ve yaklasik olarak 10" sinaps var oldugu kestirilmektedir (14).

Sekil 3.1. Temel insan sinir hiicresi (15)

Sekil 3.2.'de bir yapay sinir hiicresi gosterilmektedir. Girdiler sinir hiicresine
girdikten sonra snaptik agirliklar1 ile carpilirlar, daha sonra toplanirlar ve bir
aktivasyon fonksiyonu tarafindan islenirler. Aktivasyon fonksiyonu, sinir hiicresinin

ciktisinin sinirlarini belirler.
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Sekil 3.2. Yapay sinir hiicresi modeli (16)

YSA, yapay sinir hiicrelerinin gruplanmasi ile olusmus sistemin adidir (16).
Bu gruplandirma, birbirine bagli katmanlardan meydana gelir. Sekil 3.3, bir YSA
yapisint gostermektedir. Bu yapidaki aglar, cok katmanl algilayict (Multi-layer
perceptrons - MLP) olarak adlandirilir. Sekil 3.3'te de gortilecegi iizere YSA'lar,
verileri alan ndronlarmm bulundugu girdi katmanindan, agin sonuglarini veren
noronlarin olusturdugu ¢ikt1 katmanindan ve bu iki katman arasindaki bir veya daha
fazla gizli katmandan olugmaktadir (15). Bir ¢ok agda gizli katmanlardaki néronlar
sinyallerini bir 6nceki katmandaki néronlardan alirlar. Herhangi bir néron kendi
fonksiyonunu yerine getirdikten sonra ¢iktisin1 bir sonraki katmaninin noéronlarina

gonderir.

3.2. YSA'min Temelleri

Cok katmanl algilayicilar (CKA), en bilinen ve en yaygin kullanilan YSA
tiriidiir. Bir CKA asagidaki bilesenlerden olusur:
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3.2.1.

AT L R T

Girdi Katmani

Gizli Katman
(Birden fazla gizli
katman olabilir.)

Cikti Katmani

Sekil 3.3. Basit bir YSA Yapisi (15)

Girdiler,

Islem birimleri kiimesi,

Her bir birimin ¢iktisina esit olan aktivasyon degeri,
Birimler aras1 baglantilar,

Katmanlar,

Birlestirme fonksiyonu,

Aktivasyon fonksiyonu,

Ogrenme algoritmasi,

Ogrenme metodu,

Islem Birimi
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Noron ya da diiglim diye de adlandirilan bir islem birimi, tek basina ele

alindiklarinda cok basit isleve sahip islemcilerdir. Islem birimi (Sekil 3.4), dis

kaynaklardan veya komsularindan girdiyi alir ve diger birimlere yayilacak sinyali

hesaplamak iizere kullanir (16).
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~
|
Akivasy
Femksiyonu
A
Cikn
i < () - Y
Birlestirme
Forksiyonn
X
9 P

Ajpriklar

Sekil 3.4. Islem birimi (13)
Yapay sinir sistemlerinde ii¢ ¢esit ndron vardir:

Girdi noronlari: ag disindan veriyi alir,
b. Cikti ndronlart: agin digina veriyi gonderir,
c. Gizli noronlar: bir onceki katman noronlarindan girdiyi alir ve c¢iktisini

sonraki katman noronlarina gonderir.

Her bir noron birden fazla (x, xa,...... ,Xn) girdiye sahip olabilir ancak her bir
ndronun sadece bir ¢iktis1 vardir. Bir ndronun girdisi agin disindan olabilecegi gibi
bir bagka birimin ¢iktis1 ya da kendi ¢iktisi olabilir. Bir néronun girdileri agirliklar

ile carpilarak birlestirme fonksiyonuna girerler.

3.2.2. Toplama (Birlestirme) Fonksiyonu

Bir YSA'da, girdi birimi olmayan her bir néron baglantilar yardimi ile diger
noronlardan gelen degerleri toplar ve net girdiyi iiretir. Diger ndronlardan gelen
degerleri toplayan bu fonksiyona, toplama (birlestirme) fonksiyonu denir. Bir ¢ok
YSA’da, her bir ndronun baglantili oldugu diger ndéronun girdisine ek bir katkida
bulundugu varsayilir. Herhangi bir j néronunun toplam girdisi, diger ndronlardan

gelen degerlerin agirlikli toplami ile esik (bias) degerinin toplamina esittir:
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a;= D w;x, +0, [3.1]

Yukaridaki fonksiyona toplam fonksiyonu denir. Toplam fonksiyonundan
baska kullanilan birlestirme fonksiyonlari da vardir. En ¢ok kullanilan birlestirme

fonksiyonlar1 Tablo 3.I'de gosterilmistir (17).

Tablo 3.1. Baz1 Birlestirme Fonksiyonlari

Toplam a;= Zwﬁxi Carpim a;= Hwﬁxl.
! i

Maksimum  a; = Maks (w j; x;) Minimum  a;= Min (w; x;)

Cogunluk a; = ZSgn( WX, )

X; =1 ndéronunun ¢iktisi
Wii = j ve 1 noronlar arasindaki baglantinin agirligi
a = j néronunun net girdisi

3.2.3 Aktivasyon Fonksiyonu

Noron davranisini belirleyen 6nemli faktorlerden biri néronun aktivasyon
fonksiyonudur. Toplama fonksiyonunun sonuglari aktivasyon fonksiyonu diye
bilinen bir siire¢ yardimi ile ¢iktrya doniistiiriiliir. Literatiirde, sikistirma veya esik
fonksiyonu olarak da adlandirilmaktadir. Bunun nedeni, ¢ikti sinyallerini [0,1] veya
[-1,1] araliginda simirlandirmasidir. Ilgilenilen problem tiiriine ve ag yapisina bagh
olarak degisik aktivasyon fonksiyonlar1 kullanilabilir. Genellikle kullanilan

aktivasyon fonksiyonlaria asagida deginilmistir (4):

i. Dogrusal Fonksiyon

Fonksiyon Es.3.2’de ve fonksiyona ait grafik Sekil 3.5’te gosterilmistir.




g(x) =x [3.2]

Sekil 3.5. Dogrusal fonksiyon

ii. Basamak Fonksiyonu

Fonksiyon Es.3.3’te ve fonksiyona ait grafik Sekil 3.6’da gosterilmistir.

1 ifx>0
g(x)= [3.3]
0 ifx<9
g(x)

Sekil 3.6 Basamak fonksiyonu

Basamak fonksiyonu genellikle tek katmanli aglarda kullanilir.

iii. Sigmoid Fonksiyonu

Fonksiyon Es.3.4’te ve fonksiyona ait grafik Sekil 3.7°de gosterilmistir.

54
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gV =1 [3.4]
+e

Sekil 3.7 Sigmoid fonksiyonu

Sigmoid fonksiyonu ozellikle geri yayilim (backpropagation) teknigi ile

egitilen aglarda avantajlhidir. Sigmoid fonksiyonunun ¢iktisi [0,1] araligindadir.

iv. Hiperbolik Tanjant Fonksiyonu

Fonksiyon Es.3.5’te ve fonksiyona ait grafik Sekil 3.8’de gosterilmistir.

Sekil 3.8 Hiperbolik tanjant fonksiyonu

—X

— [3.5]

e —e
gx) = —

e +e
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Hiperbolik tanjant fonksiyonu, c¢iktisinin [-1,1] araliginda olmasi1 gereken

uygulamalarda kullanighdir.

3.2.4. YSA'min Yapisi

YSA'nin yapisi; katman sayisina veya katmanlar arasindaki baglantilarin
durumuna gore tanimlanmaktadir. YSA'lar katmanlar arasindaki baglantinin yapisina

gore iki siifta incelenir:

i. Ileri Beslemeli Aglar: Verilerin girdi birimlerinden ¢ikt1 birimlerine ileri
dogru aktig1 ag yapisidir. Bu ag yapisinda (Sekil 3.9) geri besleme yoktur. Sekil
3.9'da, {Xi,..,Xa} girdi noronlarini, {Hi,..,Hp} gizli noéronlar, {Yi,..,Ym} cikti
noronlarini, vj;, 1 girdi néronundan j gizli néronuna olan baglantinin agirligini ve wi,
j gizli néronundan k ¢ikti ndronuna olan baglantinin agirligin1 gostermektedir. +1

olarak gosterilen birimler esik (bias term) degerleridir.

i=1,2,....n j=1,2,....,p k=1.2,:..m

Girdi Katman Gizli Katman Cikti Katmam

Sekil 3.9. ileri Beslemeli Ag Yapist

i1. Geri Beslemeli Aglar: Veri akisinin sadece ileriye dogru degil geriye dogru
da olabilecegi ag yapisidir. Bu ag yapisinda (Sekil 3.10), ag ciktis1 ayn1 zamanda
girdi olarak da kullanilabilmektedir.
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v

} Cikt1

v

Sekil 3.10. Geri Beslemeli Ag Yapisi (13)

3.2.5. YSA'nin Egitimi

-----

arasindaki iliskinin 6grenilmesi amaci ile baglantilarin agirliklariin hesaplanmasi
islemi agin egitimi olarak adlandirilir. Baslangi¢c agirliklar1 keyfi olarak segilir ve
O0grenme islemi baglar. Problemin ¢o6ziimiinde en iyi agirlik kiimesini bulmaya
yardim eden birgok 6grenme algoritmasi ileri siiriilmiistiir. Bu algoritmalar kabaca
iki sinifta incelenebilir: 6greticili 6grenme ve Ogreticisiz 6grenme algoritmalari. Bir
YSA'nin egitiminde, 6grenme algoritmalarinin yani sira, 6grenme orani ve dgrenme

kurali da 6nemli rol oynar. Asagida kisaca bu konulara deginilmistir.
i. Ogreticili Ogrenme:
Agin egitiminde, c¢iktilarin istenen degerleri aga tanitilabiliyorsa, bu tip

ogrenme, ogreticili 6grenme adini alir. Girdi ve ¢ikt1 kiimeleri aga verilir. Ag, girdiyi

isleyerek kendi ¢iktism iiretir ve gercek cikt1 ile karsilastirir. Ogrenme metodu
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sayesinde, var olan hatay1r en aza indirmek i¢in baglantilardaki agirliklar yeniden
diizenlenir. Bu islem kabul edilebilir bir hata seviyesine ulasilincaya kadar devam
eder. Sekil 3.11, ogreticili 6grenme algoritmasini gostermektedir. Algilayici, geri

yayilim ag1 ve boltzmann makinesi en yaygin kullanilan 6greticili aglardir (15).

Girdi Gergek Cikti
Istenen Cikt1

A

Amag
kt > .
Ciku Fonksiyonu

Degistirilir

T Agirliklar

Ogrenme Algoritmasi

A

Sekil 3.11. Ogreticili Ogrenme

ii. Ogreticisiz Ogrenme:

Ciktilarin istenen degerleri aga tanitilamiyorsa, bu tip Ogrenme sekli
ogreticisiz 6grenme olarak adlandirilir. Ogreticisiz 6grenme algoritmalar1 daha gok
sistemin ge¢miste karsilagtigi veri kiimesinin igerdigi istatistiksel bilgilerin elde
edilmesini amaglar. Cok elemanli veri kiimeleri icerisinde deneme-yanilma yoluyla
bilgi genellestirilmesi yapilabilir (18).

Ogreticisiz 6grenmede girdiler aym zamanda ¢ikti gérevi gérmektedir. Hem
¢ikti hem de girdi olan veriler arasindaki kural ve iligkilerin arastirilmasi ve en
uygununun bulunmast agin egitilmesi anlamina gelmektedir. Adaptif Rezonans
Teorisi (ART), Hopfield Agi,, Kohonen Agi, Sayacli Yayilim Ag§1 en c¢ok

kullanilanlardir.
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iii. Ogrenme Orami:

Ogrenme oram baglantilarin agirhk degerlerindeki degisim miktarm belirler.
Ogrenme orani, genellikle 0 ile 1 arasinda bir degerdir. Ogrenme oraninmn biiyiik
degerleri degisim miktarin1 artirirken, kiiciik degerleri de degisim miktarin
azaltacaktir. Ogrenme oraninin ¢ok biiyiik degerleri kararsizliga, ¢ok kiigiik degerleri
de oOgrenme siirecinin kabul edilemeyecek sekilde yavaglamasina sebep olur.
Ogrenme oraninm I'den biiyiik oldugu durumlarda ag yerel minimumlarin arasinda
salir. Ogrenme oranmin ¢ok diisiik olmas1 da genel minimumu bulmaya imkan
vermeyebilir. Tang ve dig. (20)’leri, az karmasik veri yapisinda yliksek 6grenme

oraninin iyi oldugunu ifade etmektedir.

iv. Momentum Katsayisi:

Agin daha hizli toparlanmasina yardim eden bir faktordiir. Daha oOnceki
degisimin bir kisminin o andaki degisime eklemek seklinde ifade edilebilir. Bunu
yapma amaci, dgrenme sirasinda agin salinimini engellemektir. 0 ile 1 arasinda
degerler alir (4). Tang ve arkadaslar1 (20) ¢ok karmasik veri yapisinda, diisiik
o0grenme orani ve yiiksek momentum katsayis1 kullanilmasinin iyi olacagini ifade

etmektedir.

v. Ogrenme Kurallar :

Ogrenme islemini kolaylastirmak amaci ile 6grenme kurallar1 (algoritmalari)
gelistirilmistir. Bir ¢cok 6grenme kurali kullanilmaktadir. Bunlarin bir ¢ogu, en eski
ve en bilinen Hebb Algoritmasinim bir ¢esididir. Onemli &grenme kurallarindan
bazilar1 agagida kisaca aciklanmistir.

a. Hebb Kural:

Ponald Hebb tarafindan gelistirilen bu kural, 6grenme kurallar1 arasinda en

cok bilinenidir ve ilk 6grenme kuralidir. Tanimlama, 1949 yilinda yayinlanan The
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Organization of Behavior adli kitabinda verilmistir (21). Bu kuralin temel tanimi
sOyledir: eger bir noron diger bir nérondan girdi aldiginda, bu iki néron yiiksek
aktivitede ise (matematiksel olarak ayni igarete sahip ise), noronlar arasindaki agirlik

giiclendirilmelidir.

b. Hopfield Kurah:

Hebb kuralina benzer ancak bir istisnasi vardir. Hopfield kurali, agirliklarin
giiclendirilmesi igleminde giiclendirme veya zayiflatma i¢in bir biiyiiklik
tanimlamaktadir. Istenen ¢ikt1 ve girdinin her ikisi de aktif veya pasif ise, baglanti

agirlig1 6grenme orani kadar artirilir, tersi durumda da 6grenme orani kadar azaltilir.

c. Delta Kural:

En ¢ok kullanilanlardan biridir. Istenen ¢ikt1 ile islem biriminin gercek ¢iktis
arasindaki farkin (delta) azaltilmasi amaci ile girdi baglantilarinin agirliklarinin
degistirilmesi temeline dayanir. Bu kural snaptik agirliklari, agin hata kareleri
ortalamasini minimize etme yolu ile degistirir. Bu kural Widrow-Hoff Ogrenme

Kural1 veya En Kiigiik Kareler Ogrenme Kurali olarak da bilinir.

d. Egim Diisme (Gradient Descend) Kurali:

Delta Kuralinin benzeridir. Agirliklarin diizenlenmesi islemi, bir islem birimi
icin arzu edilen ¢ikt1 ile gercek c¢ikti arasindaki hatanin birinci tiirevine (gradient)
gore orantili bir sekilde gergeklestirilir. Amag, hata fonksiyonunu azaltarak, yerel

minimumdan kurtulmak ve genel minimumu yakalamaktir.
e. Kohonen Ogrenme Kurah:
Teuvo Kohonen tarafindan biyolojik sistemlerdeki 6grenmeden esinlenerek

gelistirilmigtir. Bu kurala gore, islem birimi 6grenme firsati i¢in yarigir veya

agirliklarini giinceller. En genis ¢iktiya sahip islem birimi kazanan olarak ilan edilir.
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Bu islem birimi komsularin1 heyecanlandirdigi gibi, rakiplerini de engelleme
yetenegine sahiptir. Sadece galip gelenin ¢iktisina izin verilir ve yine sadece galip
gelenin ve komsularinin baglanti agirliklarinin ayarlanmasina izin verilir. Komsu
genigligi egitim siiresi boyunca degisebilir. Genellikle genis bir komsu tanimlamasi

ile baglanir ve egitim siireci isledik¢e daraltilir (22, 30).

3.2.6. Amac Fonksiyonu

Egitilen agmn performansim1 6lgmek i¢in bir amag¢ fonksiyonu (maliyet
fonksiyonu) tanimlanmalidir. Hata Kareleri Toplami ve Hata Kareleri Ortalamasi,
hata terimine bagl olarak tanimlandiklarindan dolay: tipik olarak kullanilir. Finansal
kestirim ve benzeri bazi1 problemlerde, hasila, kar, fayda maksimizasyonu gibi farkli
amag¢ fonksiyonlar1 da uygun olabilir. Refenes (23), 0grenme algoritmasi (geri
yayilim algoritmasi) ve diger parametrelerin sabit oldugu bir YSA'da, farkli amag
fonksiyonlariin agin kestirim performansini etkiledigini belirtmektedir. Bu durumda
amagc fonksiyonunun en iy1 degerini bulabilmenin bir olas1 yolu, tarama algoritmasini
geri yayilim tipinden, genetik algoritmalar, tavlama benzetimi ya da benzeri diger

optimizasyon metotlarina doniistiirmektir (4).

3.3. Ogrenme Algoritmalar:

YSA'nin en 6énemli 6zelliklerinden biri, ilgili probleme ait 6rneklerle veriler
arasindaki iliskiyi Ogrenmesidir. YSA'nin, veri yapisindaki iliskiyi 6grenmesi,
probleme ait Ornekler yardimi ile ag agirhiklarinin en uygun degerlerinin

belirlenmesine dayanir. Herhangi bir agirlik icin;
VVyem’ = Weski + AW [36]

denklemi, 6grenmenin matematiksel olarak nasil gerceklestigini ifade etmektedir. Es.
3.6'daki AW degeri belli bir kurala gére hesaplanarak var olan agirlik degerlerinin
degisim miktarin1 verir. AW'yi belirlemek igin tanimlanmis kurallara &grenme

algoritmalar1 denir.
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Bu bolimde, YSA'min egitiminde kullanilan geri yayillm &grenme

algoritmasina deginilecektir.

3.3.1. Geri yayilim algoritmasi

Geri yayilim algoritmas1 (GYA), YSA tarihindeki en dnemli gelismelerden
biridir. Bu 6grenme algoritmasi, siirekli, tiirevi alinabilir aktivasyon fonksiyonuna
sahip noronlardan meydana gelen CKA'da uygulanabilmektedir. GYA'nin
kullanildigir CKA'lar geri yayilim aglar olarak da adlandirilmaktadirlar. Girdi ve bu
girdilere karsilik gelen giktilardan meydana gelen egitim kiimesi {x, t*}, k=1,2,...p,
seklinde ifade edilirse, GYA, verilen egitim seti i¢cin en uygun ¢0ziimii iiretecek
agirliklart bulmayi saglar. Agirliklarin diizenlenmesi islemi, basitge gradyan inise

dayanmaktadir.

Sekil 3.9'a gore, yx agn irettigi ¢iktiy1 ve t gercek ciktiy1 temsil ettiginde,

agin egitimi,
1 m
E= EZ(% - ) [3.7]
k=1

hata fonksiyonunun minimizasyonu ile saglanir. E hata fonksiyonunun agirliklara

gore tiirevi alinirsa, agirliklardaki degisim miktari elde edilir.

Geri yayilim 6grenme siirecini baslatmadan 6nce asagidakilerin belirlenmig

olmas1 gerekir (22):

1. Egitim kiimesi,

Ogrenme orani,

Algoritmay1 sonlandirma kriteri,
Agirliklar diizenleme metodolojisi,

Aktivasyon fonksiyonu,

A

Baglangi¢ agirliklari.
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Egitim kiimesindeki girdiler, agin girdi katmanindaki ndronlarin bir ¢ikti
tiretmesini saglarlar. Bu ¢ikt1 bir sonraki katman ndronlarmin girdisini olusturur.
Boylece c¢ikti katmanindaki ndronlarin agin c¢iktisini lretmeleri saglanir. Agin
trettigi ¢ikt1 ile egitim kiimesindeki gercek degerler karsilagtirilir. Aradaki fark
hesaplanir. Hatayr minimize etmek icin, algoritma, geriye dogru ¢ikti katman
agirliklarim (son gizli katman ile ¢ikti katmani arasindaki agirliklar) yeniden
hesaplamaya calisir. Daha sonra son gizli katmandaki ve girdi katmanina dogru
biitiin katmanlardaki agirliklar yeniden hesaplanir. Algoritmay1 sonlandirma kriteri
saglanana kadar bu islem siirer. Algoritma, agirliklarin geriye dogru

diizenlenmesinden dolay1, GY A adin1 almistir (22).

Gizli katman ve c¢ikti katman aktivasyon fonksiyonu olarak sigmoid
fonksiyonun kullanildig1r bir CKA i¢in, GYA matematiksel olarak asagidaki gibi
ifade edilebilir:

Aw[k,j] =-n0(E) / ow[k,j] [3.8]

h; ve yx arasindaki baglantinin j = k olmast durumunda,

8(E) owlk,j] = [0(E) o[w™h]i] [A([w™h])/ ow [kjll=-8hy  [3.9]

8=-0(E)/ o[w™h]x = - [0(E)/dyi] [oyw/o[w™h]i] [3.10]
yi=g((w™ h]o) [3.11]
S=-[0(E)/ dyx]g' ([w™h]) [3.12]
S=-[y-tlg' ((w"hly) [3.13]
Aw[k,j] = - n&yh; [3.14]
xj ve h; arasindaki baglantinin i = j olmasi durumunda,

A(E)/ ov[j,i] = [OE) o[v"x]] [O[v™"x];)/ ov [j,i]]=-8ixi [3.15]
8= -[0(E)/ 6[v*"x]] = - [6(E)/oh;] [ohy/o[v"x];] [3.16]
A(E)/ oh; = 2y [6(E)/ o[w™h]i] [8([w™h]y)/ oh; = - Swlk,j] [3.17]
ohy / o[v'x]; = g ([v'x]y) [3.18]
Boylece,

8 = S Siwlk,jl g' ([v"x]y) [3.19]

Av[j,1] = - ndxi [3.20]
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elde edilmis olur. Asagida algoritmanin bir 6zeti verilmistir.

1. Baslangi¢ agirlik degerlerini rasgele olarak ata.
2. Egitim kiimesindeki verilere gore ileriye dogru hesaplama yap ve kaydet.

3. Egitim kiimesinden her bir girdi-¢ikt1 koleksiyonlari i¢in delta degerini

hesapla.
8ic= [y-the' ([W"hJi) = [y-the ([w"h) [1-g([w"hli)
= [y-theyk (1-yx) [3.21]
4. Hatayi geriye dogru yay.
8= (T S wlk,jDg' ([vV"x]) = (Zk 8 wlk,iDhy (1-hy) [3.22]
5. Agirliklan diizenle.
AV[j,i] = ndixi [3.23]

6. Sonlandirma kriteri saglanincaya kadar adim 3-5’1 tekrarla.
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4. GELECEGI KESTIRIM PROBLEMLERI ICIN YSA

4.1. Giris

Daha onceki boliimlerde de belirtildigi gibi YSA'nin basari ile kullanildig:
alanlardan biri de gelecegi kestirim problemleridir. Gelecegi kestirim problemleri,
neden-sonug iliskisine dayanan kestirim problemleri ve zaman serilerine dayali
kestirim problemleri olarak iki grupta incelenebilir. Neden-sonug iliskisine dayali
kestirim problemleri, bir veya daha fazla agiklayici degiskenin, bir agiklanan
degisken {izerindeki etkisinin incelendigi problemler, zaman serilerine dayal
kestirim problemleri ise, zaman boyutunda var olan veriler ile gelecek donemlere ait
degerlerin kestirilmesi olarak bilinir. Neden-sonug iliskisine dayanan bir kestirim
probleminde, YSA'min girdileri genellikle bagimsiz degisken veya degiskenlerdir,
YSA ¢iktis1 da bagimli degiskendir. YSA tarafindan kestirilen fonksiyonel iligki su

sekilde yazilabilir:
y =1t (X1, X2,....... ,Xp) [4.1]
Yukaridaki esitlikte x;, xa,......... Xp , p adet bagimsiz degiskeni, y ise

bagiml degiskeni ifade etmektedir. Bu sekilde bakildiginda YSA, dogrusal olmayan

bir regresyon modeli gibi diisiiniilebilir.

Diger yandan gelecege iliskin veya zaman serilerine dayali kestirim
probleminde, girdiler veri serisinin ge¢mis gdzlemlerinden olusurken, ¢ikti
gelecekteki kestirim degerini temsil etmektedir. Bu durumda YSA i¢in iliski su

sekilde yazilabilir:

Vert = f(Ye, YetseeooensYip) [4.2]

yi, t zamaninda gerceklesen gozlem degerini ifade etmektedir. Boylece
YSA'nin, zaman serileri kestirim probleminde dogrusal olmayan otoregresif

modellere esdeger oldugu sdylenebilir (4).
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YSA'min gelecegi kestirimde kullanilmasina yonelik literatiirde ¢ok sayida
calisma vardir. Bir ¢ok farkli disiplinden arastirmacilar, bir kestirim araci olarak
YSA'nin kullanilabilirligini arastirmislardir. Yapilan calismalarin bir ¢ogunda,
geleneksel metotlar ile YSA teknikleri karsilastirilmis ve hangi yontemin daha iyi
sonug verdigi aragtirilmistir. YSA'nin bir kestirim araci olarak kullanilmasina yonelik
literatiir taramasi, yapilan ¢alismalarin uygulama alanlar1 ve amaci hakkinda bir bilgi

verecektir.

4.2. Konu ile Ilgili Yapilmis Calismalar

YSA'nin gelecegi kestirime iliskin ilk uygulamalar1 1964 yilinda olmustur.
Hu (24) tezinde Widrow'un uyarlanabilir dogrusal agini (adaptive linear network)
hava kestirimi i¢in kullanmistir. Ancak ¢ok katmanli aglar1 egitecek algoritmanin

olmayisindan dolay1 bu ¢alisma oldukga kisithidir (4).

1986 yilinda geri yayilim algoritmasinin tanitilmasindan sonra (25), YSA'nin
kestirimde kullanilmasinda bir ¢ok gelisme olmustur. Werbos 1974 yilinda (41) geri
yayilim algoritmasini ilk formiile eden kisidir ve geri yayilim algoritmasi ile egitilen
YSA'nin regresyon analizi ve Box-Jenkins analizi gibi geleneksel yaklagimlardan

daha iyi sonug verdigini gostermistir.

Sharda ve Patil (26), Tang ve Fishwick (27) ¢aligmalarinda, YSA ve Box-

Jenkins modellerinin sonuglarini irdelemislerdir.

Elena Montanes ve dig. (42)’leri Niikleer Enerji iinitesinden alinan gercek
veriler ile Box-Jenkins ve YSA Modellerini karsilastirmiglar ve  Box-Jenkins
tekniginin veri serisindeki ani sistematik degisiklikleri Ongdéremedigini = One

stirmiislerdir.

Hanh H., Nguyen Christine ve W Chan (43) uzun donemli zaman serisi
analizinde coklu YSA’larin tekli YSA modeline gore daha iyi sonu¢ verdigini

gostermistir.
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T.Taskaya.,Temizel ve M.C.Casey (44) mevsimsel 6zellik gosteren ekonomik
veriler i¢in yeni bir doniisiim algoritmasit Onermistir. Markus ve dig.’leri gen

aciklayici verilerin siniflandirilmasinda YSA’lardan faydalanmislardir.

Saglik alaninda genis 6l¢ekli calismalarin yer aldig1 YSA uygulamalar1 genel
olarak; tani, beklenen yasam, goriintii analizi, siniflama konularinda odaklanmustir.
D.Ripley yasam analizi uygulamalarinda YSA’larin gecerli bir istatistiksel yontem

oldugunu gostermistir.

M. Swiercsz ve dig.’leri nodrocerrahi uygulamalarina yonelik ICP

Trendlerinin kestirimini YSA uygulamasi ile gergeklestirmislerdir.

Saglik alanina yonelik olarak YSA teknolojisinin kullanildig1 ticari
uygulamalar da vardir. Bunlardan birisi PAPNET sistemidir. PAPNET Yontemi ile,
300.000°den fazla hiicresi bulunan smear 6rnegi taranarak merkezi tarama {initesine
gonderilmekte ve veri olarak saklanmaktadir. Bu veriler PAPNET sistemi ile kisa
stirede incelenmekte ve geleneksel yontemler ile yanlis taniya gidilmeksizin saglam
sonuglar ile birlikte potansiyel kanser hiicreleri de onceden ayirt edilebilmektedir

(36).

Selami Serhatlioglu, Firat Hardalag, ve Inan Giiler (38) beynin temporal

bolgesi doppler sinyallerini tan1 amacgli YSA uygulamasi ile incelemislerdir.

Samuel, Eldar ve dig. (39)’leri cerrahi laparoskopi yerine agik
cholecystectomy uygulamasina karar vermek iizere YSA ile lojistik regresyon, ve
dogrusal ayirma (discriminant) analizi tekniklerini karsilastirmislar ve YSA ile elde

edilen sonuglarin daha anlamli ve faydali oldugu sonucuna varmislardir.

Cenk Sahin ve S.Noyan Ogulata (40) tiroid bezi bozukluklarinin YSA ile

tanisina yonelik bir ¢alisma gergeklestirmistir.
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Al-Saba ve El-Amin (7), Suudi Arabistan i¢in 1997-2006 tarihleri arasinda en
yuksek yiik istemini kestirmeye caligmistir. Yazarlar calismalarinda, YSA ile
bulduklar1 sonuglar, AR, ARMA ve ARIMA yontemleri ile karsilastirmistir.

Yazarlar YSA ile yapilan kestirim sonuglarinin daha iyi oldugunu ifade etmektedir.

Bir ¢ok arastirmaci, YSA modelleri ile bilinen istatistiksel ydntemlerin
karsilagtirmast i¢in ¢ok kullanilan M-Competition verilerini kullanmistir. M-
Competition verileri isletme, ekonomi ve finansman verileridir. Bu sekilde yapilmis
bazi ¢aligmalar : Tang ve dig. (20)’leri ile Tang ve Fishwick (27) tarafindan da ele

alinmustir.

YSA, cok baska alanlardaki kestirim problemlerinin ¢6zliimiinde de
kullanilmistir. R.J.FRANK ve dig.’leri ileri beslemeli YSA modellerini Lorenz
Verisi, hava trafik talebi, hava trafik isletimi modellemesi ve Tree Ring Verisi

tizerinde deneyerek modellerin genelleyebilme performansini incelemislerdir.

Zhang (30), iki gizli katmanli aglarin, veri yapisini modellemede ve
kestirimin dogruluk derecesini arttirmada tek gizli katmanli aglardan daha iyi
oldugunu, bazi Santa Fe zaman serileri lizerinde yaptig1 ¢alismalar sonucunda ifade

etmistir.

Tang ve dig. (20)’leri, 6grenme parametrelerinin YSA'nin 6grenmesindeki
etkisini aragtiran bir calisma yapmistir. Yazarlar, karmasikligi az olan verilerde
yiiksek 6grenme oraninin iyi oldugunu ve ¢ok karmasik verilerde ise diisiik 6grenme

oranini ve yiiksek momentum katsayisinin kullanislt oldugunu rapor etmistir.

4.3. Gelecegi Kestirimde YSA ile Modellemede Onemli Noktalar

YSA'min istenen bir gorevi yerine getirebilmesi i¢in Oncelikli olarak
egitilmesi gerekir. Egitim islemi girdi verileri, girdi degiskenleri vektorleridir. Girdi
vektoriindeki birbirleriyle benzer her bir eleman, agin girdi katmanindaki girdi

ndronlarni olusturmaktadir. Boylece girdi ndronu sayisinin, girdi vektoriiniin



69

boyutuna esit oldugu sdylenebilir. Neden-sonug iligkisine dayanan bir kestirim
probleminde girdi néron sayisinin belirlenmesi ¢ok kolaydir. Probleme iligskin
bagimsiz degisken sayist girdi ndronu sayisin1 verecektir. Ancak, bir zaman serisi
kestirim probleminde uygun girdi néronu sayisin1 belirlemek kolay degildir. Boyutu
ne olursa olsun, zaman serileri kestirim probleminde girdi vektorii, sabit uzunluktaki
serinin ileri dogru hareketli pencerelerinden olugsmalidir. Eldeki toplam kullanilabilir
veri genellikle egitim ve test kiimesi olmak tizere ikiye boliiniir. Egitim kiimesi agin
agirliklariin - belirlenmesinde  kullanilirken, test kiimesi agin  genellestirme

yeteneginin 6l¢iimiinde kullanilir.

Her modellemede oldugu gibi YSA'nin performansinda da modelleme 6nemli
bir yer tuttugundan dikkatli bir sekilde ele alinmalidir. Onemli kritik kararlardan biri
agin yapisidir. Ag yapisindan kasit, katman sayisi, her katmandaki néron sayisi ve
noronlar arasindaki baglantilarin sayisidir. Diger kritik kararlar ise gizli katman ve
cikti katmanindaki aktivasyon fonksiyonunun se¢imi, egitim algoritmasi, veri
normallestirme yontemi, egitim ve test kiimelerinin belirlenmesi ve performans

Olciitleridir.

4.3.1. Ag Yapisi

Tipik bir YSA, noronlardan olusan katmanlarin bilesimidir. Bir CKA'larda,
biitiin girdi néronlar1 girdi katmaninda, biitiin ¢ikti néronlar1 ¢ikti katmaninda ve
gizli ndronlar da bir veya daha fazla katmana dagitilmistir. Kestirim i¢in kurulan

CKA'"'n tasariminda asagidaki degiskenlerin belirlenmesi gerekir:

1. Girdi néronu sayist
2. Gizli katman ve gizli noron sayisi

3. Cikt1 néronu sayisi

Yukaridaki parametrelerin se¢imi ilgilenilen probleme gore degisecektir.
Optimal ag mimarisinin belirlenmesinde, onerilen bazi yontemler olmasina ragmen,

bu yontemler olduk¢a karmasiktirlar ve yerine getirilmeleri zordur. Ayrica, bu
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yontemlerder higbirisi gergek kestirim problemleri i¢in en uygun (optimal) ¢ézliimii
garanti etmemektedir. Daha dogrusu bu parametrelerin belirlenmesinde kesin-agik
yontemler yoktur. Sezgisel yaklasimlar ve kisitli deneylere dayali benzetim
calismalar1 yardimci olabilir. Bu nedenle, bir YSA'nin tasarimi bir bilimden daha ¢ok

bir sanattir (4).

4.3.2. Girdi néronu sayisi

Girdi noronu sayisi, girdi vektoriindeki degisken sayisina baghdir. Neden-
sonug iliskisine dayali kestirim problemlerinde girdi néron sayisint belirlemek
kolaydir. Zaman serisi kestirim problemlerinde, girdi ndronu sayist gecikme sayisi

ile iligkilidir. Ancak bu say1y1 belirlemede Onerilen herhangi bir kesin yol yoktur.

Tang ve Fishwick (27) tek degiskenli bir zaman serisi i¢in, girdi néronu
sayisinin basitce Box-Jenkins AR(p) modelinin derecesine esit oldugunu ileri
stirmektedirler. Zhang vd’ne. (4) gore bu asagidaki iki nedenden dolayr dogru
degildir:

1. Hareketli ortalama MA(q) modelinde, otoregresif (AR) terimler yoktur,
2. Box-Jenkins modelleri dogrusal modellerdir. Otoregresif terimler, ge¢mis
gbozlem degerlerinin, kestirilmek istenen deger ile aralarindaki dogrusal

iligkiyi ifade eder. YSA ise dogrusal olmayan bir modeldir.

Yukaridaki elestirilere ragmen, AR(p) modelinin derecesinin bir baglangi¢
¢Oziimii olarak iyi bir baglangic olabilecegi diisiiniilebilir. Bu diisiince, AR
modellerinin MA modellerine ve MA modellerinin AR modellerine bazi sartlari

saglamalar1 durumunda doniistiiriilebilmesinden kaynaklanmaktadir.

Bir ¢ok aragtirmaci girdi ndronu sayisini belirlemek i¢in deney tasarimi
yaparken, bazilar1 sezgisel yaklasimlarda bulunmuslardir. Ornegin, Sharda ve Patil
(28) ve Tang ve dig. (20)’leri aylik veriler i¢in 12 girdi noronu ve ii¢ aylik veriler

icin 4 girdi néronu kullanmiglardir. Girdi néronu sayisinin belirlenmesine yonelik
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literatiirde tutarli bir Oneri yoktur. Bazilar1 fazla girdi néronu kullanmanin
faydalarindan so6z ederken (20), digerleri tam tersini ifade etmektedir (29).
Lachtermacher ve Fuller fazla girdi ndronunun, birer birer kestirimde kotii sonuglar

verdigini, ancak ¢oklu kestirimde iyi sonuglar verdigini belirtmektedir.

Veri yapisindaki otokorelasyon bilgisini ortaya ¢ikarmada 6nemli oldugu igin,
girdi ndronu sayisimin belirlenmesi belki de YSA'nin kurulmasindaki en kritik
karardir (4). Kestirimi yonlendiren uzmanin veriyi iyi tanimasi ve verinin zamana
bagli degisiminin niteligini iyi bilmesi de noron sayisini belirlemede 6nemli rol

oynar.

4.3.3. Gizli katman ve gizli noron sayisi

Gizli katman ve gizli noronlar, YSA'nin basarisinda biiyiik bir 6neme sahiptir.
Veri icerisindeki belirleyici ozellikleri ortaya ¢ikartan ve girdi ile ¢ikti arasindaki
dogrusal olmayan iligkinin kurulmasina yardimeir olan, gizli katman ve bu
katmanlardaki néronlardir. Yapilan ¢aligmalar tek gizli katmanin, dogrusal olmayan
karmasik fonksiyon yaklasimlarinda istenilen herhangi bir dogruluk derecesinde
basarili sonuglar verdigini gostermistir. Birden fazla gizli katman olabilir, ancak bir
cok aragtirmaci gelecegi kestirim i¢in kurduklar1 agda tek gizli katman kullanmay1

tercih etmislerdir.

Gizli katman sayisinin artirilmasi, hesaplama zamanini artirmakta ayrica agin
O0grenme yerine ezberlemesine neden olabilmektedir. Ezberleme, kestirim modelinin
serbestlik derecesi ¢ok diisiik oldugunda ortaya cikabilir. Bir baska deyisle, gozlem
sayisinin model parametre sayisina gore miktar1 diisiik ise ag, zaman serisindeki
genel yapiyr 68renme yerine, 6zel noktalari ezberler. Ag agirliklarinin sayisi, gizli
katman ve ndron sayisina bagli olarak degistigi i¢in egitim kiimesinin biiylkligii
ezberleme isleminin ortaya ¢ikip ¢ikmayacagini belirler. Egitim kiimesine gore ¢ok

sayidaki agirlik degeri, agin 6zel gozlem degerlerini ezberlemesine neden olacaktir

(19).
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Iki gizli katmanl1 aglar, baz1 problemler igin yararl olabilir. Zhang (30), iki
gizli katmanl aglarin, veri yapisint modellemede ve kestirimin dogruluk derecesini
arttirmada tek gizli katmanl aglardan daha iyi oldugunu, bazi Santa Fe zaman
serileri ilizerinde yaptig1 caligmalar sonucunda ifade etmektedir. Zhang (30), ikiden
fazla gizli katmanin herhangi bir iyilestirme meydana getirmedigini de
sOylemektedir. Zhang ve dig. (4)'lerine gore, bir ¢ok kestirim problemi i¢in tek gizli
katman yeterlidir. Ancak, baz1 6zel problemlerde, iki gizli katmanli ag yapisinin tek

gizli katmanli ag yapisindan daha iyi sonug¢ vermesi olasidir.

Kaastra ve Boyd (19) biitiin YSA'larin 6ncelikle bir gizli katman ya da en
fazla iki gizli katman kurularak c¢alistirilmasin1 6nermektedir. Eger dort katmanli bir
ag farkli gizli ndron sayis1 ve rasgele baslangic degerleri ile ¢aligtirildiginda iyi
sonu¢ vermiyorsa, girdi degiskenlerinin gbézden gegirilmesi ve yeniden
diizenlenmesinde fayda vardir. Teori ve hemen hemen biitiin deneysel ¢alismalar

ikiden fazla gizli katmanin agin performansini iyilestirmedigini ifade etmektedir.

Bir agda gizli ndron sayisinin belirlenmesi kritik bir karardir. Ancak 6nemine
ragmen en 1iyi gizli noron sayisinin belirlenmesinde herhangi bir sihirli formiil
yoktur. Genelde az sayida gizli noron ile ¢aligma tercih edilir. Ciinkii genellestirme
yetenekleri daha yiiksektir. Cok sayida gizli noron, agin genellestirmeden daha ¢ok
ezberleme yetenegi kazanmasina sebep olur. Bu da istenilen bir durum degildir.
Ancak, ¢ok az sayida gizli noron da agin 6grenmesi i¢in yeterli degildir. Bu nedenle
aragtirmacilar gizli ndron sayisini belirlemede deneysel bir ¢aligmaya basvurabilirler.
Ancak sistematik bir yontem olarak, kiiclik bir baslangi¢c degeri ile baglanmasi ve ag

performansi iyilesene kadar gizli ndron sayisinin artirilmasi dnerilebilir (19).

Gizli noron sayisini belirlemede deneme-yanilma yontemi siklikla kullanilir.
Ancak, yine de bazi deneysel caligmalar gizli néron sayisint siirlayict Oneriler
sunmaktadir. Tek gizli katmanli aglarda gizli ndron sayisina iliskin bazi Oneriler

sunlardir:
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a) n

b) n/2

c) 2ntl

d) 2n

e) n*m
f) 0,75%n

Yukaridaki ifadelerde n girdi néronu ve m ¢iktt néronu sayisini
gostermektedir. Bu yaklagimlardan higbirisinin biitiin problemlerde iyi sonug
verdigini sdylemek dogru olmaz (4). Tang ve Fishwick (27), gizli néron sayisinin
kestirim performansinda etkili oldugunu ancak bu etkinin ¢ok da 6nemli olmadigini
belirtmektedir. Zhang (5), ise girdi ndron sayisi ile gizli ndron sayisinin esit oldugu
ag yapilarinda daha iyi kestirimde bulunuldugunu, bir ¢ok arastirmanin bunu ortaya

koydugunu sdylemektedir.

4.3.4. Cikt1 noronu sayisi

Cikt1 noronu sayisint hesaplamak kolaydir ve calisilan probleme dogrudan
baglidir. Bir zaman serisi kestirim probleminde, c¢iktt néronu sayisi, kestirim

doneminin uzunluguna esittir. Iki sekilde kestirimde bulunulabilir:

1. Tek donemlik kestirim,

2. Cok donemlik kestirim.

Tek donemlik kestirimde ¢ikti ndronu sayisi 1°e esittir. Cok donemli kestirim
ise iki yolla yapilabilir. Birincisi, Box-Jenkins modelindeki gibi iteratif kestirimdir.
Kestirim edilen dénem degeri, bir sonraki donem i¢in girdi olarak kullanilir. Bu
durumda yine sadece tek ¢ikti ndronu yeterlidir. Ikincisi ise, birden fazla dénemin
ayn1 anda kestirildigi dogrudan yaklasim yontemi (direct method) olarak adlandirilan
durumdur. Bu durumda ¢ikti néronu sayisi kestirilmek istenen donem sayisina

esittir. Zhang (30), her iki yontemi de deneyerek c¢oklu donem kestiriminde
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bulunmaya caligmistir. Zhang (30)’in belirttigine goére ayni anda birden fazla

donemin kestirildigi dogrudan yaklasim yontemi daha iyi sonuglar vermistir.

Zhang ve dig. (4)’leri, dogrudan coklu donem kestiriminin asagidaki
nedenden dolay1 daha iyi sonu¢ verecegini ifade etmektedir: YSA, dogrudan ¢oklu
donem kestiriminde bulunacak sekilde kurulabilir. Box-Jenkins modelinde oldugu
gibi, iteratif yontem sadece bir donem kestirimde bulunmak iizere kullanilabilir.
Bulunan kestirim degeri girdi olarak kullanilir ve bir sonraki donem kestirilir.
Kestirilecek donem sayisi uzun bir dilim ise ge¢mis goézlem degerleri kullanilmadan,
sadece bulunan kestirim degerlerinin girdi olarak kullanildigi bir durumla karsilagilir.
Bu da kestirimin dogrulugunu azaltir. Bu nokta, Box-Jenkins modellerinin neden
kisa donemli kestirim i¢in daha uygun oldugunun da bir yaniti niteligindedir.

Asagidaki esitlikler bu durumu agik olarak gosterir:

Ft+1 = f(Yt, Yt-l, ....... 9Yt-n),
Ft+2 = f(FH-l, Yt, Yt-], ....... ,Yt-n+l)9
Ft+3 = f(Ft+2: Ft+1 7YtaYt-19 """" 7Yt-n+2)9 [4‘3]

Fux= f(Ft+k-1, Feieayennnnnn Fet,Yo Yet,e.o.... aYt-n+k-1)a

Y4, t donemi gbézlem degerini, Fy, t donemi kestirim degerini, f ise YSA'nin
atadig1 fonksiyonu temsil etmektedir. Dogrudan ¢oklu donem kestiriminde ise, YSA,
biitlin gecmis donem gozlem degerlerini kullanarak, k donem gelecek degeri ayni
anda talimin edebilir. Bu k adet ¢ikt1 noronu kullanarak saglanabilir. Bu durumda

yukaridaki esitlikler agagidaki gibi diizenlenir:

FH’] = fl (Yta Yt- Iy ceveees )Yt-n)a
Ft+2 = f2 (Yt, Yt. loevooenns ,Yt-n+l ),
Ft+3 = f3(Yt,Yt_1, ....... ,Yt_n), [44]
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4.3.5. Noronlar arasi baglantilar

Ag yapisi, katman ve noron sayisina gore sekillenmekle beraber, néronlar
arasindaki baglantilar da ag yapisini karakterize etmektedir. Noronlar arasindaki
baglantilar, temel olarak agin davramisini belirlemektedir. Bir ¢ok kestirim
probleminde, diger uygulamalarda da oldugu gibi, girdi katmanindaki ve gizli
katmandaki noronlar, kendilerinden sonra gelen katmandaki noronlar ile tam bir
baglanti icerisindedirler. Ancak, seyrek baglantili (biitin ndronlar arasinda
baglantinin olmadig1) ag yapilar1 da vardir. Yine, farkli olarak, girdi katmanindan

cikti katmanina direk baglantilarin oldugu ag yapilari da vardir (31).

4.3.6. Aktivasyon fonksiyonu

Aktivasyon fonksiyonu, transfer fonksiyonu olarak da adlandirilmaktadir. Bir
ndronun veya agin girdisi ve ¢iktisi arasindaki iligkiyi belirlemektedir. Uygulamada,
siurly, tekdiize artan ve tiirevi alinabilen aktivasyon fonksiyonlar1 kullanilmaktadir.

Daha 6nceki boliimlerde de degindigimiz gibi bunlardan bazilari sunlardir:

1. Sigmoid (Lojistik) Fonksiyonu
2. Hiperbolik Tanjant (tanh) Fonksiyonu
3. Dogrusal Fonksiyon

Bunlarin arasinda en yaygin kullanilani, Sigmoid transfer fonksiyonudur.
Genel olarak, bir agin, ayn1 ya da farkli katmanlarindaki néronlar farkli
aktivasyon fonksiyonunu kullanabilirler. Uygulamalarin ¢ogunda ise, ayni

katmandaki ndronlarin ayni aktivasyon fonksiyonunu kullandiklar1 goriilmektedir.

Lojistik aktivasyon fonksiyonu, ikili hedef degerlerin oldugu siniflandirma

problemleri i¢in ¢ikti katmaninda siklikla kullanilmistir. Ancak, hedef degerlerin
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stireklilik gosterdigi kestirim problemi gibi problemlerde, ¢ikti katmaninda dogrusal

bir aktivasyon fonksiyonunun kullanilmasi tercih edilmelidir.

Burada su noktanin unutulmamasi gerekir: agin trettigi ¢iktig1 degerleri,
kullanilan fonksiyona gore [0,1] veya [-1,1] araliginda olacagi i¢in, hedef degerler de
kullanilan fonksiyonla uyumlu bir sekilde yukaridaki araliklar1 dikkate alarak

normallestirilmelidir.

4.3.7. Ogrenme algoritmasi

Bir YSA'min egitimi, ag agriliklarinin, ag ciktisi ile istenilen deger arasindaki
toplam ya da ortalama hata karelerinin enkiiciiklenmesi igin siirekli olarak
degistirildigi, smirsiz dogrusal olmayan enkiigiiklenme problemidir. Ag egitimi i¢in
bir ¢ok degisik optimizasyon yontemi vardir. Ancak, genel bir dogrusal olmayan
optimizasyon problemi i¢in uygun bir zamanda genel optimumu garanti eden
herhangi bir algoritma yoktur. Uygulamada biitiin optimizasyon algoritmalarinin
sikintis1 yerel optimuma takilmaktir. Genel ¢6ziimiin miimkiin olmadig1 durumlarda,

en iyi yerel optimumu veren algoritmalar1 kullanmak akillicadir.

En yaygin kullanilan 6grenme (egitim) algoritmasi, gergekte bir gradyan dik
inis algoritmasi olan geri yayilim algoritmasidir. Gradyan inis algoritmasi i¢in YSA
literatiiriinde 6grenme orani olarak adlandirilan bir adim biiyilikligli tantmlanmalidir.
Ogrenme orani, agirliklarin degisim biiyiikliigiinii belirledigi igin geri yayilim
O0grenme algoritmasinda ¢ok Onemlidir. Yavas ilerlemesi ve verimsizligi dik inis
algoritmasiin yetersiz yoOnleridir. Ayrica, Ogrenme oranindaki degisimlere
duyarhdir. Kiiciik 6grenme orani, 0grenme siirecinin yavas ilerlemesine sebep
olurken, biiyiikk 6grenme orani1 da agirlik uzaymda ag agirliklarmin sarka¢ gibi
salinim gostermesine sebep olur. Orijinal gradyan inig algoritmasini gelistirmenin bir
yolu, algoritmaya bir momentum parametresinin eklenmesidir. Momentum
parametresi, biiyiilk 6grenme oranmiyla egitim siirecinin hizlanmasini saglarken,

salinma egilimini de en aza indirmeye yardime1 olur.
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Momentum terimini igeren standart geri yayilim teknigi, bir ¢ok arastirmaci
tarafindan uyarlanmistir. Ogrenme oraninin ve momentum katsayisinin es zamanl
olarak se¢iminde sadece birka¢ sistematik yol oldugu icin, bu Ogrenme
parametrelerinin en iyi degerleri genellikle deneme yolu ile segilir. Ogrenme orani ve
momentum katsayisi, her ikisi de genellikle O ile 1 arasinda herhangi bir deger
alabilir. Ancak bu iki terimin en iyl kombinasyonunu bulmak imkansizdir.
Arastirmacilar sectikleri degerleri dikkate almistir. Ornegin, Sharda ve Patil (28), ii¢
O6grenme oranmin (0,1 , 0,5, 0,9) ve iic momentum katsayisinin (0,1 , 0,5 , 0,9),

dokuz kombinasyonunu denemistir.

Tang ve Fishwick (27) 6grenme parametrelerinin YSA'nin performansinda
kritik bir rol oynadiklarin1 sdylemektedir. Yazarlar, daha onceki ¢aligmalarda, YSA
ile kotii sonuglar alindig1 rapor edilen bir ¢ok zaman serisini, degisik 6grenme
parametreleri kullanarak test etmistir. Bu ¢alisma sonucunda, her bir zaman serisi
eger uygun 6grenme parametreleri uygulanirsa, iyi sonuglar alinacagini belirtilmistir.
Tang ve dig. (20)’leri, 6grenme parametrelerinin YSA'nin 6grenmesindeki etkisini
arastiran bir calisma yapmustir. Yazarlar, karmasikligi az olan verilerde yiiksek
O0grenme oraninin iyi oldugunu ve ¢ok karmasik verilerde ise diisiik 6grenme oranini

ve yiiksek momentum katsayisinin kullanigh oldugunu rapor etmektedir.

Geleneksel geri yayilim algoritmasinin zayif yonleri dogrultusunda, geri
yayilim algoritmasinin bazi varyasyonlari ve modifikasyonlar1 6nerilmistir: Bunlarin
arasinda en etkili olanlar ikinci derece (Levenberg-Marquardt) yontemlerdir. Hizli
calismalar1 ve en iyi yerel minimumu bulmadaki basarilari, ikinci derece yontemlerin

YSA egitiminde tercih edilmelerini saglamistir (4).

4.3.8. Veri normallestirme

Daha 6nce de belirttigimiz gibi, eger ¢ikti ndronlar i¢in dogrusal olmayan bir
aktivasyon fonksiyonu kullanilmis ise, hedef degerlerin ag ciktist ile ayni aralikta
olacak sekilde doniisiim uygulanmasi gerekir. Lojistik fonksiyonu gibi dogrusal

olmayan aktivasyon fonksiyonlari, bir néronun ¢iktisin1 [0,1] veya [-LI] araligina
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sikigtirma gibi bir rol {istlenirler. Eger ¢ikti néronlarinda dogrusal bir aktivasyon
fonksiyonu kullanilmis ise, hesaplama hatalarindan kaginmak i¢in hem ¢iktilar1 hem
de girdileri standartlagtirma avantajli olacaktir. Veri normallestirme (data
normalization), egitme siireci baslamadan wuygulanir. Veri normallestirme

yaklasimlarinda, siklikla asagidaki formiiller kullanilmaktadir:

a) [0,1] araligina dogrusal doniislim: Xnorm=(X0-Xmin)/(Xmaks-Xmin),
b) [a,b] araligina dogrusal doniisim: Xporm=(b-2)(X0-Xmin)/(Xmaks~Xmin)1a,
¢) Basit normalizasyon: Xnorm= X0/Xmaks, (29)

d) [statistiksel normalizasyon: Xperm=(Xo- ;c )/s,

Xnorm NOrmallestirilmis, Xo orijinal veriyi temsil etmektedir. Xmin, Xmaks, X V€ S,
sirastyla satir veya kolon boyunca minimum, maksimum, ortalama ve standart

sapmay1 ifade etmektedir.

Agin 6grenmesinde veri normallestirmenin 6nemini arastiran bazi ¢aligmalar
yapilmistir. Yazarlar, veri normallestirmenin genelde faydali oldugu kanisina
varmigtir.  Ancak  Ornek  bliylikligi arttiginda bu faydamin  azaldigim

belirtmektedirler.

Cikt1 hedeflerinin normallestirilmesi, genellikle girdilerin
normallestirilmesinden bagimsizdir. Zaman serileri kestirim probleminde, girdilerin
ve hedeflerin normallestirilmesi birlikte yapilir. Girdilerin ve hedeflerin
normallestirme araligmin sec¢imi, ¢ikti noronlarinin aktivasyon fonksiyonuna
baghdir. Eger sigmoid fonksiyonu kullanilmis ise normallestirme araligi [0,1],
hiperbolik tanjant fonksiyonu kullanilmig ise normallestirme araligi [-1,1] olarak
secilir.

Hedef degerleri normallestirmenin bir sonucu olarak, gézlemlenen ag ¢iktilari
normallestirme aralig1 ile uyumlu olmalidir. Agdan alinan sonuglarin yorumlanmast,
c¢iktilarin orijinal araliga donistiiriilmesinden sonra olabilir. Agin iirettigi degerlerin
dogrulugu orijinal veri kiimesi temel alinarak hesaplanmalidir. Performans olgiitii de,

¢iktilarin orijinal araliga doniistiiriilmesinden sonra hesaplanmalidir.
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Verileri normallestirmenin bir diger yolu da, bitiin verileri egitim
kiimesindeki en biiylik veriden daha biiyiik bir sayiya bolmektir. Lachtermacher ve
Fuller (29), bu biiyiik saytyr normallestirme faktorii olarak adlandirmaktadir.
Yazarlar, bu saymin egitim kiimesindeki en biiyiikk saymin % 30- % 100 fazlasi
olabilecegini belirtmektedirler. Bu yaklasim, egitim kiimesindeki verilerden daha
bliyiik degerlerde kestirimin ortaya ¢ikabilecegi durumda olusabilecek problemleri
ortadan kaldirmaya yoneliktir. Yazarlar, gelecek donemlerdeki kestirim degerlerinin,
normallestirme faktoriinden de biiyiikk olmasi durumunda iki defa normallestirme

yapilabilecegini sOylemektedir.

4.3.9. Egitim kiimesi ve test kiimesi

Daha 6nce de deginildigi gibi, bir YSA kestiricisinin kurulumunda egitim ve
test Orneklerine ihtiya¢ vardir. Egitim Ornekleri, YSA modeli gelistirmek i¢in
kullanilirken, test ornekleri ise, gelistirilen modelin kestirim yeteneginin
degerlendirilmesinde kullanilir. Bazen, dogrulama kiimesi olarak adlandirilan bir
ticiincti kiime kullanilir. Dogrulama kiimesi, egitim stirecinin durdurulacagi noktanin
belirlenmesinde veya fazla egitme probleminden kaginmada kullanilabilir. Zhang ve
dig. (4)'lerine gore, egitim ve test orneklerinin se¢imi, YSA'nin performansini

etkilemektedir.

I1k olarak, veri, egitim ve test kiimesi olmak {izere ikiye béliiniir. Ancak bunu
yapmanin genel bir yontemi yoktur. Problem 6zelligi, veri tipi ve eldeki veri miktari
bu karar1 vermede dikkate alinir. Hem egitim kiimesinin hem de test kiimesinin
biitiiniin 6zelliklerine sahip kiimeler olmasi kritik bir noktadir. Bu nokta 6zellikle
zaman serileri kestirim problemlerinde Onemlidir. Egitim ve test kiimelerinin
uygunsuz belirlenmesi, optimal YSA yapisinin se¢imini ve YSA'min kestirim
performansinin  degerlendirilmesini etkileyecektir. Literatiirde egitim ve test
kiimelerinin belirlenmesine yonelik az da olsa oneriler vardir. Bir ¢ok arastirmaci
% 90, % 10 veya % 80, % 20 ya da % 70, % 30 kuralin1 temel alan bir yontem
izlemigtir (4).
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YSA kestiricisinin performansini etkileyen bir diger yakin ilgili faktor de
ornek biiytlikliigiidir. Verilen bir problemin ¢dziimii i¢in ne kadar biiyiikliikte bir
ornek gerektigi hakkinda kesin bir kural yoktur. Agin egitiminde gerekli veri miktari
agin yapisina, egitim yontemi, calisilan problemin karmasikligina baglidir. Genel
olarak, herhangi bir istatistiksel yaklagimdaki gibi, 6rnek biiyikligl, ¢oziimiin
dogrulugu ile yakindan ilgilidir. Ornek biiyiikliigii ne kadar fazla olursa, sonuglarin

dogrulugu da o oranda artar.

Yeterli biiytlikliikte bir 6rnek kullanildiginda YSA, verideki herhangi bir
karmasik yapiyr modelleyebilir. Bu nedenle, biiyiik 6rneklerde bir YSA, dogrusal
istatistiksel yontemlerden daha fazla yararli olabilir. YSA, dogrusal modellerin gerek
duydugundan daha fazla bir veriye gereksinim duymamaktadir. Box-Jenkins

modelleri ise bagarili bir kestirim i¢in en az 50 veriye gereksinim duymaktadir (4).

4.3.10. YSA'nin performansinin belirlenmesi

Bir YSA kestiricisi i¢in, modelleme zamani veya egitim zamani gibi bir ¢ok
performans 0l¢iitii olabilirken, en iyi ve en Onemli performans Ol¢iitii kestirimin
dogrulugudur. Ancak, kestirim akademisyenleri ve pratisyenlerinin verilen bir
problem i¢in yaygin olarak kabul ettigi uygun bir dogruluk 6lgiitii yoktur. Dogruluk
Olctisli, gercek deger/istenilen deger ile kestirilen deger arasindaki fark olarak
tanimlanir. Bu fark kestirim hatast diye bilinir. Kestirim literatiiriinde bir ¢ok
dogruluk o6l¢iisii tanimlanmistir ve her birinin kendine goére avantajlar1 ve
yetersizlikleri vardir (13). Siklikla kullanilan performans o6lgiisii Bolim 2.5 'te

verilmistir.

Her bir 6l¢iiniin kendine gore kisitlamalar1 oldugundan dolay1, herhangi bir

0zel problem i¢in birden fazla performans 6l¢iisii kullanilabilir.
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4.4. YSA'nin Kestirimde Goreceli Performansi

YSA'nin bir kestirim araci olarak performansi, yaygin kullanilan istatistiksel
yontemler ile karsilastirilmistir. Literatiirde birbiri ile tutarsiz bir ¢ok ¢alisma vardir.
Bunun ana sebebi, YSA'nin kestirim yetenegini etkileyen, ag yapisi, egitim yontemi,
ornek veri gibi bir ¢cok etken olabilir. Bazi durumlarda, YSA, dogrusal istatistiksel
modellerden daha kotii sonug verebilir. Bu, verinin dogrusal olmasindan
kaynaklanabilir. Dogrusal bir iliskiye sahip veri yapisinda, YSA'nin dogrusal
modellerden daha iyi sonu¢ vermesi beklenemez. Diger yandan, ideal ag yapisinin
kullanilmadig1 da soylenebilir. Tang ve dig. (20)’leri, Tang ve Fishwick (27)
calismalarinda YSA kestiricisinin hangi kosullarda, Box-Jenkins modelleri gibi
geleneksel zaman serisi kestirim yontemlerinden daha iyi sonu¢ verdigi sorusunu

cevaplamaya calismislar ve asagidaki sonuglara ulagmiglardir:

1. YSA, kestirim donemi uzunlugu artik¢a daha iyi sonu¢ vermektedir.
2. Gozlem sayisinin az oldugu zaman serilerinde, YSA daha iyi sonug
vermektedir. Sharda ve Patil (28), benzer sonuca ulasmistir.

3. Daha fazla girdi ndronu ile YSA daha iyi sonug¢ vermektedir.

4.5. YSA'nn istatistiksel Yontemlere Gore Giiclii ve Zayif Yanlari

Daha onceki boliimlerde YSA'nin degisik alanlarda kestirim amagli olarak
kullanilmasina ve diger yontemlerle performanslarinin karsilastirilmasina yer verildi.
Bu boliimde, YSA'nin istatistik tekniklere kiyasla giiglii ve zayif oldugu yanlar
Ozetlenecektir.

4.5.1. YSA'nin gii¢clii oldugu yanlan

YSA'min gii¢lii oldugu yanlar1 dért maddede 6zetlenebilir:

1. Dogrusal olmayan iliskiyi bagar1 ile modelleyebilir:
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Sekil 4.1 Dogrusal kestiricisinin egrisel bir yapiy1 kestirimindeki

performansi

YSA'nin dogrusal olmayan aktivasyon fonksiyonuna sahip olmasi, ilgili
problemin yapisindaki iliski dogrusal olmadigi durumlarda daha etkin bir model
tiretilmesini saglar. Sekil 4.1 dogrusal olmayan bir iliskinin dogrusal bir model ile
nasil kestirilmeye calisildigini gostermektedir. Sekil 4.1'e gore, 0 noktasindan t
noktasina kadar olan veriler t+1 anindaki gozlem degerinin kestirimi ig¢in
kullanildiginda dogrusal model, B'yi kestirmede 1yi bir kestirici olarak iglev gorebilir,
ancak daha ileriki noktalar i¢in Ornegin t+4 aninda dogrusal model C degerini
tiretirken bu deger gercek degerden oldukga farklidir. Bu durum, YSA'nin uzun
donemli kestirimde dogrusal modellerden neden daha i1yi sonug¢ verdigini de

aciklamaktadir (33).

2. Veri yapisindaki fonksiyonel iliski i¢in herhangi bir 6nbilgiye gereksinim
duymaz:

Bazi dogrusal olmayan modellerin de YSA kadar iyi sonuglar verebilecegi
ileri siiriilebilir. Ancak bu durum dogrusal olmayan yap1 hakkinda bir dnbilgiye sahip
olundugunda gecerli olabilir. Ornegin dogrusal olmayan regresyon modellerinin
dogrusal olmayan bir iliskinin var oldugu bir problemde, YSA kadar iyi sonug
verebilecegi iddia edilebilir. Teorik olarak bu dogrudur. Ancak uygulamada,
aragtirmacinin dogrusal olmayan regresyon modelinin derecesi ve bi¢imi hakkinda

bir varsayimda bulunmasi gerekir. YSA i¢in ise bdyle bir durum s6z konusu degildir.
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3. Veri kayb1 yoktur:
YSA, Box-Jenkins modellerinde oldugu gibi seriyi duraganlagtirmak i¢in fark

alma gibi bir islem yapmadigindan herhangi bir veri kaybina sebep olmaz.

4. Ag yapist esnektir:

YSA'min dordiincii bir avantaji da ag yapisinin esnekligidir. Istatistik
tekniklerin (dogrusal regresyon, ikili probit model, otoregresif modeller vb.) biiytik
bir ¢cogunlugu, agin aktivasyon fonksiyonunda yapilacak ¢ok kiiciik degisikliklerle

YSA igin kullanilabilir hale getirilir. Bu da ayn1 ag yapisinin esnekligi gosterir.

4.5.2. YSA'nin zayif oldugu yanlan

YSA'nin zayif oldugu yanlar1 dort maddede kisaca agiklanabilir:

1. Kara kutu problemi:

Agm agirliklarinin  yorumlanmasi zordur. Dogrusal regresyon modelinde
bagimsiz degiskenlerin katsayilari, bagimli degisken tizerindeki etkilerini agik olarak
gosterirler. Ancak YSA'da, girdi degiskenlerinin ¢ikt1 iizerindeki etkilerini analitik

olarak belirlemek ¢ok zordur.

2. Genel minimumu bulamama:
Biitiin dogrusal olmayan kestirim metotlarinda oldugu gibi YSA'da da genel
minimumu bulamama riski vardir. Ancak, genel minimuma yakin yerel minimumlar

da oldukea 1y1 sonuglar verebilir.

3. Ornek sayisiin biiyiikliigii:
YSA'nin tam olarak genellestirme yapabilmesi i¢in yeterli miktarda 6rnekle
ag egitilmelidir. Aksi durumlarda veri yapisindaki iliskiyi ortaya ¢ikartamama ya da

yanlis egitme (overfitting -ezberleme) durumlar ile karsilasilabilir.
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4. Modellemenin ¢ok zaman almasi:
Bir YSA'nin kurulumu ve egitimi ¢ok zaman alabilir. Bu da arastirmacilar

i¢in bezdirici bir durumdur.
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S. BULGULAR

5.1. Giris

YSA'nin zaman serileri kestirimindeki performansi, ger¢cek zaman serileri ile
calisilarak aragtirllmistir. Gergek zaman serileri; Refik Saydam Hifzisihha
Baskanligi’nin, 1999 Yili Ocak Ayr’ndan 2005 Yil’'min Kasim sonuna kadarki,
Ankara ili hava kalitesi 6l¢iim raporlaridir. Hava kirliliginin 6nemli gostergelerinden
biri olan giinlilk SO, (Kiikiirtdioksit) dlgiimlerinin aylik ortalamasi alinarak elde

edilen 83 adet aylik veri, YSA ve Box-Jenkins Yontemleri ile kestirilmistir.

Tablo 5.1. Zaman Serisi Uygulama Verisi’

Aylar 1999 2000 2001 2002 2003 2004 2005
Ocak 80 74 86 105 82 72 95
Subat 50 69 57 102 47 75 62
Mart 57 60 49 74 59 64 51
Nisan 35 32 31 62 54 60 51
Mayi1s 29 29 31 37 40 32 35
Haziran 25 26 23 38 35 28 24
Temmuz 26 33 25 45 37 22 27
Agustos 29 23 27 46 42 33 32
Eyliil 42 49 36 48 45 46 41
Ekim 66 64 47 60 59 40 63
Kasim 105 126 81 113 86 66 87
Aralik 129 106 53 99 87 92

* Refik Saydam Hifzisthha Merkezi Baskanligi, 1999-2005 (Kasim sonu) Ankara ili Hava

Kalitesi SO, (Kiikiirtoksit) Ol¢iim Sonuglari.

SO, hava kirliligini olusturan birincil kirleticiler grubundadir. Komiir ve fuel-
oil’in dogal olarak yapisinda bulunan kiikiirt bilesiklerinin yanmasi ile agiga
cikmaktadir. Diinya ¢apindaki temel kaynaklari, endiistriyel iglemler, 1stnma amaclh
kullanilan evsel yakitlar ve termik santrallerdir. Cok az miktar1 ise dizel yakith tagit
araglarindan kaynaklanmaktadir. SO, nin yiiksek konsantrasyonlari oksiirik ve
bunun sonucunda akciger fonksiyonlarinda degisime neden olarak solunum sistemi
tahribatina neden olmaktadir. Bu gaz ayrica tas binalarin ve diger materyallerin de
korozyonuna neden olur, bitkilere zarar verebilir ve asit yagmurlarinin ve ikincil

partikiillerin temel kaynagidir.
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Bu ¢alismada, Ankara ili SO, 6l¢iimlerinin kestirim degerleri, ger¢ek degerler
ile karsilastirilarak hangi kestirim yonteminin daha i1yi sonug¢ verdigi istatistiksel
performans degerleri ile acgiklanmistir. Ayrica sonraki 13 aylik donem igin

kestirimler elde edilmistir.

Yapilan analizlerde asagidaki sorulara yanit bulunmaya caligilmistir:

1. GYA ile egitilen YSA'min, zaman serileri kestiriminde Box-Jenkins
modellerine gore performansi nasildir?

2. En diisiik OMYH degerini hangi model vermektedir?

5.2. Kestirimlerin tuiretilmesi

Verinin Box-Jenkins yontemi ile kestirimi i¢in SPSS- Decision Time (34) ve
YSA teknikleri ile kestirimi icin de MATLAB Neural Network ToolBox 7.0 (35)

programlar1 kullanilmustir.

5.3. Box-Jenkins Yontemi ile SO, verilerinin Kkestirimi

Box-Jenkins modelinin SO, verilerine goére kurulumu asamalarina bu

boliimde deginilecektir.

5.3.1. Model tanimlama ve parametre tahmin asamasi

Modellemeye ge¢cmeden dnce model belirleme asamasinda otokorelasyon ve
kismi otokorelasyon fonksiyonlarina basvurulur. Sekil 5.1.°de yer alan SO

verilerinin zamana bagli grafiginde ilk olarak mevsimsellik géze ¢arpmaktadir.
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Sekil 5.1. SO; verilerinin zaman serisi

Kurulacak modelin belirlenmesi i¢in serinin duraganlastirilmasi gereklidir.

Sekil 5.2.°de serinin duraganlastirilmis grafigi yer almistir.

80
70 so2
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40
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u -
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-60 T T T T T T
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Sekil 5.2. SO, verilerinin duraganlagtirilmis zaman serisi grafigi

Duraganlastirma islemi sonrasinda da mevsimselligin devam ettigi gozlenmis
ve mevsimsel duraganlastirma islemi yapilmistir. Sekil 5.3. mevsimsel

duraganlastima uygulanmis zaman serisini gostermektedir.
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Sekil 5.3. SO, verilerinin mevsimsel duraganlastirilmis zaman serisi grafigi

Mevsimsel duraganlastirma 1. fark alma islemi islemi sonrasinda elde

edilmistir. Bu nedenle d=1 ‘dir.

Modelin AR(p) ve MA(q) parametreleri otokorelasyon ve kismi

otokorelasyon fonksiyonlarina basvurularak tahmin edilmistir.

so0l Autocorrelations

T T T T I T
1 2 3z 4 5 & T 2 9 10 11 1@ 1% 14 15 16 17 13 19 20 21 22 23 M

Sekil 5.4. Mevsimsel duraganlastirilmis serinin otokorelasyonlari
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sol Partial Autocorrelations
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Sekil 5.5. Mevsimsel duraganlastirilmis serinin kismi otokorelasyonlari

Sekil.5.4 ve sekil 5.5’te yer alan otokorelasyon ve kismi otokorelasyon

fonksiyonlart ARMA(1,1) siirecinin modelde uygun olabilecegini gostermektedir.

SO, serisi, en kii¢iik hata kareler ortalamasinit veren ARIMA (100)(011)

modeli ile agiklanmustir.

5.3.2. Modelin gecerliligi

Modelin gegerliliginin sinanmas1 Box-Ljung istatistiginin testi ile yapilmistir.
Box-Ljung istatistigi 6.0476 ‘dir. Bu deger p=0.05 seviyesinde anlamli degildir. Bu
sonu¢ kestirim hatasinin rassal oldugunu ve serinin model varsayimlarin

karsiladigini gosterir.

Sekil 5.6, Sekil 5.7 ve Sekil 5.8 kestirim hatasinin rassalligini1 grafiksel olarak
ta aciklamaktadir.



0.7

0.6+
0.5
0.4
0.3+
0.2+
0.14

0

s02 - ARTMA(1,0,0)(0,1,1)

-0.1
0.2
03
0.4
0.5

-0.6

07T

011999

rr 1171710 rrrrrrrrrrv 0101171111 rrTrTT T T TT T T 17T T T T T 1T 1771
07.1999 01.2000 072000 01.2001 O7.2001 01.2002 OF.2002 01.2003 07.2003 01.2004 072004 01.2005 O7.2005

Sekil 5.6. SO, verileri kestirim hatalari
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Sekil 5.7. SO, verileri kestirim hatalar1 otokorelasyonlari
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sol - ARTMVA(L,0,0)(0,1,1) Partial Autocorrelations
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Sekil 5.8. SO, verileri kestirim hatalar1 kismi otokorelasyonlari

5.3.3. Kestirim

Modelin gegerliligi smmandiktan sonra gecerli oldugu kabul edilen

ARIMA (100) (01 1) modeli kestirim i¢in kullanilmistir.

Model ile kestirilen ilk deger 2005 Yilmin 12. aymna aittir. Ust kontrol limiti
137 ve alt kontrol limiti 58 olmak iizere, bu tarihteki SO2 verisi kestirim degeri
91‘dir. Bu sonuglar baz alindiginda SO, verisinin gercek degerinin, % 95

giivenilirlikle iist ve alt kontrol limitleri igerisinde gergeklesecegi sdylenebilir.

Sekil 5.9°da ARIMA (1 00) (0 1 1) modeli ile elde edilen 13 aylik kestirim

degerleri grafigi yer almustir.



92

160
150 sol
140
130
120
110
100
90
20
70
60
50
40
0
20

10 ARIMA(LLDO,LL)
il r r
01,1999 01,2002 01,2005

Sekil 5.9. SO, verileri kestirimi

5.4. YSA ile Modelleme ve SO, Verilerinin Kestirimi

YSA ile modelleme i¢in kurulacak ag yapisinin belirlenmesi ve veri 6nigleme

yapilmasi gereklidir.

5.4.1. Kullanilan seri degerlerinin normallestirilmesi

Veri normallestirme YSA'nin basarisinda etkilidir. Kurulan YSA'nin yapisina
uygun olacak sekilde verilerin normallestirilmesi gereklidir. Ara katman ve c¢ikti
katmaninda kullanilan aktivasyon fonksiyonlari, veri normallestirmenin [0 1] ya da

[-1 1] araliklarindan hangisine gore yapilacagini belirler.

Bu ¢aligmada yer alan veriler dogrusal olmayan 6zelliktedir. Bu bakimdan
veriler [-1 1] araligina gore normallestirilmistir. [0 1] araligina normallestirme islemi
ise zaman (t) degerleri igin, Lachtermacher ve Fuller (29)'in 6nerdigi basit
normalizasyon ile gergeklestirilmistir. [-1 1] araligina normallestirme ise,

Xnorm = (2 * (X0 = Xmin) / (Xmaks - Xmin)) -1 esitligine gore yapilmistir.
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5.4.2. Calismada kullanilan ag yapisi

Zaman serileri kestirimi i¢in kurulacak YSA'nin olasi ag yapilar1 lizerinden
uygulamalar yapilarak en iyi sonucu veren YSA yapist se¢ilmistir. Girdi néronu ve
gizli néron sayisinin belirlenmesinde literatiirdeki uygulamalardan da goézlendigi
lizere deneme-yanilma yontemi ile uygun degerler belirlenmeye calisilir. Cikti
katman1 noron sayisi, eger iteratif bir kestirim yapilacaksa 1, ayn1 anda birden fazla
donemin kestirimi yapilacaksa kestirilecek donem sayis1 kadar olabilir. Box-Jenkins
yontemi de iteratif kestirimde bulunmaktadir. Her iki teknigin karsilagtirilmasi
bakimindan, YSA uygulamasinda da iteratif kestirim yontemi segilerek, ¢iktt néronu

sayist 1 olarak alinmustir.

Girdi ndronu zaman serisi olarak ele alinan veriler aylik SO; verileridir. Bir
cok calismada girdi néronu sayisinin, ARIMA(p,d,q) modellerindeki p veya q
derecelerine esit ya da yakininda bir deger olabilecegi belirtilmektedir. Bu ¢aligmada
girdi néronu sayist 1 olarak belirlenmistir. Gizli néron sayisinin belirlenmesinde
herhangi bir kesin kural olmamasindan dolay: seri iizerinde 6n deneme calismalari
yapilmigtir. Yapilan 6n deneme g¢aligmalarinda gizli néron sayisinin, girdi néronu
sayisina esit veya bir eksigi ya da bir veya iki fazlast denenmistir. Her bir durumda
agin irettigl sonuglar kaydedilmistir. Agin performansinda en kiigiik degeri veren
gizli néron sayisi ilk katmanda 2, ikinci katmanda 1 olarak alinmistir. YSA modeli
yapisi;1 girdi ndronu, iki katman, ilk katmanda 2, ikinci katmanda 1 gizli ndron,
nodlarda sigmoid aktivasyon fonksiyonu ve Levenberg-Marquardt (trainlm) 6grenme
algoritmasi ile olusmustur. Sekil 5.10, kullanilan aga iliskin genel YSA yapisini

gostermektedir.

Sekil 5.10. SO, verilerinin kestirimi i¢in kurulan YSA yapisi
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Sekil 5.1'de gosterilen agin iirettigi ¢iktinin matematiksel ifadesi Es. 5.2'de

verilmigtir.

Y= 0o+ ivj Uzklwy x_1+90J+ei [5.2]

Es. 5.2'de, Y4, t donemindeki seri degerini, {Y¢; , i=1,2,...k} k donem ge¢cmis
gozlem degerini, {wj , 1=1,2,...k ; j=1,2,..,m} girdi katman noronlarindan gizli katman
noronlarina olan baglantilarin agirhiklarini, & ve 0g esik (bias) terimlerinin
baglantilarma ait agirhiklar, {v; , j=12,...m} gizli katman noronlarindan c¢ikt1
katman1 ndronuna olan baglantilarin agirhiklarini, f kullanilan aktivasyon

fonksiyonunu ve e;’de hata terimini ifade etmektedir.

5.4.3. Ogrenme algoritmasi

YSA’nin performansinda biiyiik etkiye sahip faktorlerden biri de 6grenme
(egitim) algoritmasidir. Egitim algoritmasi ag agirliklarinin hangi kurala gore

diizenlenecegini belirleyen algoritmadir. Bu ¢alismada GY A ¢alistirilmastir.

MATLAB programi bir ¢ok GYA'mi igermektedir (35). Hangi Ogrenme
yonteminin kullanilmast gerektigini  belirlemek i¢in  Genellestirilmis Delta
(traingdm), Levenberg-Marquardt (trainlm) ve Conjugate Gradient (traincgf)
ogrenme yontemlerinin karsilastirildigr 6n deneme calismalarinda, 6grenme yontemi
olarak Levenberg-Marquardt (trainlm) algoritmasinin kullanildigi agda daha iyi
sonuclar elde edildigi goriilmiistiir. Bu sebeple GYA olarak, Levenberg-Marquardt

(trainlm) 6grenme yontemi segilmistir.



95

5.4.4. Egitim ve test kiimesi

Kurulan YSA'nin egitimi ic¢in kullanilan veriler egitim kiimesi olarak
adlandirilmaktadir. Test kiimesi ise egitim kiimesinin disinda, agin egitim sirasinda
gormedigi verilerdir. Test kiimesinin amaci, agin §grenmesinin yeterli ya da dogru
olup olmadigmin sinanmasidir. Literatiirde egitim ve test kiimesinin biiytkligiliniin
ne olmasi gerektigi cogunlukla % 90, % 10 veya % 80, % 20 ya da % 70, % 30

oranlaria gore belirlenmektedir (4).

Bazi caligmalarda da veri kiimesi egitim, dogrulama ve test kiimesi olmak
lizere ii¢ parcaya bolinmistir. Egitim kiimesi agin 6grenmesinde kullanilirken,
dogrulama kiimesi en iyi ag modelinin sec¢ilmesinde ve test kiimesi de bulunan

sonuclarin genellestirilmesinde kullanilmaktadir.

Veri kiimesinin, egitim-test olarak ayirmada % 84, % 16 oran1 uygulanmustir.
Bu oranin se¢ilme nedeni test i¢in ayrilan 13 adet aylik verinin 2005 yilimi temsil
edecek sayida olmasini saglamak, mevsimsel etkileri kapsayacak periyotlari
icermesini saglamak ve ayrica 2004 yilimin bir bolimiini de kapsamasini
saglamaktir. Dolayisiyla egitim i¢in ilk 70 adet veri, test i¢in de son 13 adet veri

ayrilmastir.

5.4.5. Cahsmada kullanilan performans olciitleri

SO, zaman serilerinin kestiriminde YSA modellerinin Box-Jenkins
modellerinden daha iyi sonug verip vermediginin karsilastirmalari, YSA’da egitim ve
test kiimesi, Box-Jenkins tekniginde 71 adet kestirim degeri lizerinden yapilmustir.
Bu calismada: ortalama hata (OH), ortalama mutlak hata (OMH), hata kareleri
toplam1 (HKT), hata kareleri ortalamasi (HKO), ortalama yiizde hata (OYH),
ortalama mutlak yilizde hata (OMYH) performans 6lglitleri hesaplanmistir.



5.4.6. Kestirim tekniklerinin performans ol¢iitiine etkisi

Kullanilan kestirim tekniklerinin birbirlerinden farkli olup olmadigim

anlamak i¢in uyum iyiligi performans sonuglar1 Tablo 5.2°de yer almigstir.

Tablo 5.2 Uyum iyiligi performans sonuclar:

Tammlayici YSA
istatistikler SO2 VERI EGITIM | TEST | EGITIM+TEST | ARIMA(100)(011)
Gozlem Sayist 83 70 13 83 71
Min. 22 22 24 24 25
Max. 129 129 95 125 145
Ortanca 49 49 51 50 52
OH (Ortalama Hata) -0.02 0.005 0.016 0.876
OMH (Ortalama Mutlak Hata) 0.67 0.005 0.56 10.4
HKT (Hata Kareler Toplami) 52.3 0.0043 52.3 14744.7
HKO (Hata Kareler Ortalamasi) 0.75 0.00033 0.63 207.7
OYH (Ortalama % Hata) -0.31 0.006 -0.240 -4.0
OMYH (Ortalama Mutlak % Hata) 1.5 0.6 1.3 18.0

Tablo 5.2°de 0,05 anlamlilik diizeyinde kullanilan ARIMA ve YSA yontemi

uygulamasinda en diisik OMYH degerini YSA uygulamasinin verdigi
goriilmektedir. Ayrica sadece test verileri iizerinden egitim sonrasi elde edilen
kestirim degerlerinin, sifira yakin bir hata ile elde edilmis olmasi da 6nemli bir
basaridir. sekilde YSA’na ait

ARIMA (1 0 0) (0 1 1) modeline gore daha basarilidir. Bu da, 1 girdi néronu, iki

Benzer diger tamimlayict istatistikler de
katman, ilk katmanda 2, ikinci katmanda 1 gizli néron, nodlarda sigmoid aktivasyon
fonksiyonu ve Levenberg-Marquardt (trainlm) 6grenme algoritmasi ile olusan YSA
modelinin SO, gibi meteorolojik verilerin kestiriminde kullanilabilir oldugu
distincesini  kuvvetlendirmektedir. Sonucumuzu destekler nitelikte, Gardner ve
Dorling, Boznar et al. (37), YSA’larda aktivasyon fonksiyonu olarak kulanilan
Sigmoid fonksiyonunun meteorolojik verilerde en iyi optimizasyonu sagladigini

belirtmislerdir.
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5.4.7. Kestirim donemi ve sonuclarinin grafiksel karsilastirmasi

Sekil-5.11, YSA ve ARIMA yontemleri ile elde edilen 13 Aylik SO,

kestirimleri yer almistir.
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Sekil 5.11. Yontemlere gore kestirim sonuglari

Sekil-5.2 incelendiginde, verilerin mevsimsellik gosterdigi ve her iki
yontemden elde edilen kestirimlerde, mevsimselligin Ongoriilere yansidigi
anlasilmaktadir. Nelson ve dig. (32)’leri YSA'nin, mevsimsel zaman serilerinde,
mevsimselligi 6grenmeye uygun olmadigmi, daha dogru kestirim yapmak igin
onceden mevsimselligin giderilmesinin yararli olacagini sdylemektedir. Ancak, bu
calismada mevsimselligin YSA Modeli ile 6grenilmis oldugu anlasilmaktadir. Bu
konuyu destekler nitelikte olan goriislerinde, Sharda ve Patil (28) zaman serisinin

mevsimselliginin YSA'nin performansin etkilemedigini ve YSA'nin mevsimselligi

de tam olarak i¢ine alabilmeye yetenekli oldugunu belirtmektedir.
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Bu asamada, SO, serisi i¢in belirlenmis YSA yapisi tizerinden 83 adet verinin
egitim ve test oranlart modelin performanst ve mevsimselligi yansitabildigini
gozlemlemek iizere degistirilmistir. Yeni oranlarda egitim verisi olarak, bitimi yil
ortasina raslayan ilk 66 veri alinmig ve geriye kalan 17 adet veri test amagh

kullanilmistir.

Tablo 5.3, SO; serisi i¢in belirlenmis YSA modelinin, 70-13 ve 66-17 egitim

ve test oranlarina gore kestirim performanslarini gdstermektedir.

Tablo 5.3. Egitim-test oranlarina gore uyum iyiligi sonu¢lari

Tammlayici SO2 VERI YSA
Istatistikler EGITIM TEST EGITIM+TEST
Gozlem Sayisi 83 70 13 83
OMYH (Ortalama Mutlak % Hata) 1.5 0.6 1.3
HKO (Hata Kareler Ortalamasi) 0.75 0.00033 52.3
Gozlem Sayisi 83 66 17 83
OMYH (Ortalama Mutlak % Hata) 14 1.5 14
HKO (Hata Kareler Ortalamast) 0.63 0.44 0.59

Test kiimesinin amaci, agin Ogrenmesinin yeterli ya da dogru olup
olmadiginin sinanmasidir. Tablo 5.3 ‘te yer alan test verilerinin OMYH ve HKO
sonuglari, 13 adet test verisinin, 17 adet test verisine gore daha iyi performans
sergiledigini goOstermistir. 13 adet test verisi 2005 yilim1 kapsayacak sekilde
secilmigtir ve biitliniin 6zelliklerine sahip kiimeleri temsil edecek niteliktedir. Bu
durumun OMYH ve HKO sonuglarinin daha diisiik ¢ikmasinda etkisi oldugu

sOylenebilir.
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SO; serisi i¢in belirlenmis YSA yapisiin kestirimlerde mevsimselligi igine
alip alamayacagini anlamak tizere, serinin son 17 verisi yi1l ortasindan boliinerek test
verisi olarak alinmigstir. Sekil 5.3’te yer alan kestirim grafiginde mevsimsellik

gozlenmistir.

140

120 o

100 o

80 1

60 o

40 «

20 o

S0O2

0

1 611 4 9 2 712510 3 8 1 6 11 4 9 2 7 12
MONTH, period 12

Sekil 5.12. Egitim-test oranlar1 degistirildiginde elde edilen kestirim
sonuclari
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6. TARTISMA VE SONUC

Gelecege iliskin karar problemlerini zorlagtiran belirsizliktir. Karar vericiler
i¢in belirsizligin giderilmesi miimkiin olmasa da azaltilmasi saglanabilir. Bu da iyi
yapilmis kestirimlerle gerceklestirilebilir. Iyi bir kestirim, minimum hatay1 veren
tutarli sonuglar iireten kestirimdir. Kestirim ugrasisi igerisinde olan uzmanlar tek
kestirim teknigine bagli kalmak yerine, kestirim modellerini destekleyecek farkli

kestirim yontemlerini de denemelidirler.

Dogrusal zaman serileri kestiriminde basarili bir yontem oldugu bilinen Box-
Jenkins modelleri, ayn1 basartyt dogrusal olmayan zaman serilerinde
gosterememektedir. Ote yandan gergek hayata iliskin zaman serileri cogu zaman
dogrusal degildir. Bu nedenle, zaman serileri ile kestirimde Box-Jenkins
modellerinden daha iyi sonug¢ verebilecek yeni yontemler arayist siiregelmektedir.

Alternatif yontemlerden biri de YSA yontemidir.

YSA, smiflandirma, kiimeleme, Oriintii tanima vb. bir ¢ok alanda kullanilan
bir aractir. Basar ile kullanildig1 alanlardan biri de gelecegi kestirim problemleridir.
1980'li yillardan beri, bir kestirim araci olarak kullanilmaktadir. Zaman serileri
kestiriminde basarili sonuglar verip vermedigini aragtirmak i¢in bir ¢ok calisma
yapilmistir. Bu ¢alismalarin bir kism1 YSA tekniklerinin, geleneksel yontemlerden
daha iyi sonug verdigini sdylerken bir kism1 da herhangi bir farklilik olmadigini ileri

surmektedir.

Bu ¢alismada, YSA'nin bir kestirim araci olarak kestirim uygulamasinda
genis kabul goren Box-Jenkins modellerinden farkliliginin olup olmadig:
arastirilarak SO, zaman serisi verileri ile bir uygulama gergeklestirilmistir. Kestirim
modeli ile ¢alisan uzmanlarin, YSA’da gelistirilen her yeni model i¢in karsilagtirma

araci olmas1 bakimindan diger teknikler ile de model gelistirmeleri faydalidir.
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Calismada ele alman SO, O6l¢limiine dayali zaman serilerinde YSA,
karsilastirma aracit olarak kullanilan Box-Jenkins modellerinden daha iyi1 sonug

vermektedir.

Gergek zamanli veri 0rnegi olarak ele alinan SO, verilerinde mevsimsellik
gozlenmistir. YSA ¢alismasinin basinda mevsimselligin s6zkonusu oldugu verilerde
YSA’nin optimizasyonunda yasanabilecek giicliiklere iliskin literatiirde yer alan

-----

olabildigi gozlenmistir.

Ornege yonelik olarak YSA'nin zaman serileri ile gelecegi kestirimde,
dogrusal olmayan zaman serilerinde Box-Jenkins modellerinden daha basarili oldugu

sOylenebilir.
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