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ABSTRACT

IMPROVED HANDLING OF SMS MESSAGES WITH STATISTICAL
NATURAL LANGUAGE PROCESSING TECHNIQUES

The Short Messaging Service (SMS) is built on the ability of mobile telephones to
send and receive text messages. SMS based applications are increasing dramatically day by
day in the telecommunications industry. The most common use of SMS is for notifying
mobile phone users that they have new voice or fax mail messages waiting. Whenever a
new message is dispatched into the mailbox, an alert by SMS informs the user of this fact.
The Short Message Service can also be used to deliver a wide range of information to
mobile phone users from share prices, match scores, weather, flight information, news
headlines, lottery results, jokes. In general, user interaction based SMS services request
some predefined keywords from the users and respond to them after processing their

messages.

However, most users think that they are communicating not with a machine but with
humans, so they compose misspelled and/or machine specific messages containing more
than just the needed keywords. As a result, they receive error messages from the server and
generally do not continue to use the software after trying two or three times by making

same mistakes.

In this thesis, I introduce a new Short Message Service (SMS) parsing model using
Statistical NLP Techniques, whose aim is to solve the existing SMS user subscription
problem of a real software company. To do this, the N-Gram statistical approach will be

used.



OZET

SMS MESAJLARININ iSTATISTiKSEL DOGAL DiL iSLEME
YONTEMLERI KULLANILARAK ANLAMLANDIRILMASI

Giinlimiizde mobil telefonlarin  metin  tipindeki  mesajlar1  kabul edip
gonderebilmelerini saglayan SMS (Kisa Mesaj Servisi) son kullanicilar arasinda oldukc¢a
yogun bir bi¢cimde kullanilmaktadir. SMS protokoliiniin 160 karakterlik limiti (Unicode
karakterler i¢in bu limit mesaj basina 70 karaktere diismektedir), HTML, XML gibi
herhangi bir 6zel formati olmadan sadece diiz metinlerden kurulu olmasina ragmen
giiniimiizde kisa mesaj servislerinin sayist telekomiinikasyon sektoriinde her gecen giin

artis gostermektedir.

Telekomiinikasyon sirketlerinin spor, haber, hava durumu gibi c¢esitli icerik
hizmetlerinin saglanmasinda bu yonteme sik¢a bagvurduklar goriilmektedir. Giintimiizde
bu c¢esit kisa mesaj servisiyle verilen bir ¢ok servis bulunmakta, bunlarin abonelik, iptal ve
servis igeriginin tiirline gore gereken bazi parametreleri yine SMS protokolii ile son
kullanicilardan toplanmaktadir. Bu servislerin abonelik islemlerinde kullanicilardan daha
onceden belirlenmis bir anahtar kelime yada kelimeler istenmekte buna gdre son
kullanicilarin  istekleri belirlenip arzu ettikleri hizmet kendilerine verilmektedir. Ancak
kullanicilarin bir cogu gonderdikleri mesajlarin karsida bir insan tarafindan okundugunu
diistinmekte ve ¢cogu zaman kendilerinden istenen 6rnegin onceden belirlenmis “ABONE
HABER NTV” yerine “ABONE HBR MTV” gibi mesajlar gondererek sadece gelen
anahtar kelimeleri islemeye gore programlanmig yazilimlarin hatali yanitlar vermesine yol
acmaktadirlar. Ust iiste basarisiz bir iki denemeden sonra, bu tiir yanitlarla devamli hata
mesajini yanit olarak alan son kullanicilar da servis almaktan vazgecmekte, bu da ilgili
icerik saglayicinin hem gelir kaybetmesine neden olmakta hem de miisteri memnuniyetini

olumsuz yonde etkilemektedir.
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Bu tezde istatistiksel dogal dil isleme yOntemlerinin basinda gelen N-Gram
yontemiyle bu probleme bir ¢oziim yontemi getirilmeye caligilarak, yeni bir SMS islemi
modiilii gelistirilecek ve bu modiiliin son kullanicilar1 olan gercek bir abonelik sistemi

tizerinde calistirllmasiyla, yontem ve sonuglar tartisilacaktir.



vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ttt ettt sttt iii
ABSTRACT ...ttt ettt sttt v
OZET ..ottt et e v
LIST OF FIGURES ...ttt ettt ettt e ix
LIST OF TABLES ...ttt sttt sttt e xi
LIST OF SYMBOLS / ABBREVIATIONS......cceiiiiiinieienteeeeeeeeee e xiil
1. INTRODUCTION .....ooiiiiiiiiiiienteteeieeteteet ettt ettt sttt 1
2. BACKGROUND ...ttt ettt sttt sttt s naeeteenean 3

2.1. Overview of statistical NLP techniques...........ccceeeveeriieeniiieeniieeieeeiee e 4

2.1.1. Probability of a Word String w;...w, and the Markov Assumption...5

2.2. The N—Gram approachi.........ccccceeevueiiiiiiiiiieniieeeiieeete et 6
2.2.1. Why N-Grams? .....ooeeeiieiiieiieiiteseeeee ettt 7
2.2.2. Simple (unsmoothed) N-Grams..........ccccccueeriieeniiieeniiieeniieeiee e 9

2.2.2.1. Unigram language models ..........ccocceeevviiiiniiiiniiiennieenieennns 9
2.2.2.2. Bigram language models .......c.cccoevviieniiiiniiiiniieeieeeeeene 10
2.2.2.3. N-Gram language models .........cccooevuieeiriiiiieiniiieeenieeen. 12
2.2.2.4. SMOONING ....viiiiiieiiiieeiiee ettt e e e e 13
2.2.2.5. Add-one sSmoothing.........ccccceeevviiiniiiiiniiiiiniieeiieeeeeeeeenn 13
3. OUR APPROACH. ....cc.eeitiitetintetetest ettt sttt sttt st 16

3.1. Turtle SMS Handling SYStEM ......cccueeeruiieeriieeiieeeiieeeieeesieeesieeeseveeeevee e 16
3.1.1. Campaign Package Service Scenario for SMS Subscription Flow...16

3.2, Data CoOllECHION ...cuveeiiieiiieciieeieeecee ettt 19
3.2.1. The meSSage SIIUCIUTE.......cceueirririeriieeeireeeiteesieeesieeesiieeesireessiree e 19
3.2.2. TaggIng PrOCESS ....ccocuetiiiiiiiiieiite ettt 20

3.2.2.1. TYPING CITOTS....uvveeeerieeeiieeerireeenieeenreeessreeerereeessreeessreesnsseens 21
3.2.2.2. Mobile device specific problems...........ccccceeeerveeerreennnnn. 22
3.2.2.3. Proper SENteNCeS ........cccceeerueeenueerniieeeiiieeeiieeenireesieeesieeen 22
3.2.2.4. Reflected MESSAZES ...cccuveeerureeeiiieeiiieeiieeeitee e 22
3.2.2.5. Dialog based MeSSAZES .....ccvveerereeerrieeririeerieeerieeeireeeeneens 22

3.2.2.6. Inappropriate MeESSAZES ......cvveerrreerreeerreeerreeerreeerreesnsneens 23



viii

3.2.2.77. WIONGZ SEIVICES ..eeeuvireirieeriiieeniieeenieeeenireesnireesnireessieeesiaeeens 23

3.2.2.8. Undefined MEeSSAZES ...cvvveererreerireerireeerireeeireeenireeeareesaneens 23

3.3. Computation of the N-gram probabilities..........cccccceervurieriiiieniiieeriee e, 26
3.3.1. Computing Statistics within N-Gram Table Data Structure.............. 29

3.4, N-Gram Phase]l .......ccooioiiiiiiiieccceeeee e 32
3.4.1. Processing Messages in the N-Gram Phasel Module ..................... 34

3.5, N-Gram Phase2........couooiiiiiiiiiieee ettt 39
3.5.1. Reconstructing N-Gram Tables by Using Existing Data.................. 40

3.5.2. Creating N-Gram Tables from Scratch..........ccoccoeviiiiniiinninnnenn. 41

4. RESULTS AND EVALUATION ....cccoitiiiiiiiienieeeteeeeeetesie et 43
4.1, N-Gram Phasel ......cccooiioiiiiiiiieeete e 43
4.2, N-Gram Phase?2.........cooeiiiiiiiiiieeieeetee ettt 46
4.2.1. Reconstructing N-Gram Tables By Using Existing Data.................. 46

4.2.2. Creating N-Gram Tables from Scratch........c..ccccoooiiiiiiininnnennne. 49

5. CONCLUSION AND FUTURE WORK .......cccoiiiiiiiieiieienieieeeeeeieeie e 53
APPENDIX A: TURTLE SYSTEM......coiiiiiiiiiiieeieeeeeeeee e 54
A.1. Overview of the Turtle SyStem ........ccueerriiiiniiiiniiieieeee e 54
A.1.1. Presentation Layer .........ccocueeiiiiiiiiiiiiiieiieeieeeee e 55

A.1.2. Business LogiC Layer.......cccceouieeiiiiiiiieeiiieeiie e 56

A.1.3. Data Model Layer .........ccocuieeiiieiiiieeieeeiieeeee e e 56

A.1.4. Communication Layer .........cccccueeviiiiiiiiiiniiiiiiieeeeeeeeeeeeeee e 56
APPENDIX B: SMS HANDLING SYSTEM ......cocoiiiiiiiiinieenieneeeeceeeeeeeieae 57
B.1. Some benefits of the SMS Handling Subsystem.............ccccceeevvieenieennnennns 57
B.1.1. Additional features ............coeeeriiiiiiiniiienieiieeeeeeee e 58
APPENDIX C: IMPLEMENTATION DETAILS ......cooiiiiiiiinienieeecceeeeenee 59
C.1. Microsoft .NET OVEIVIEW ......ccceeevuiiriiriiiiniiniienieeieesee et 59
C.2. TaZING PrOCESS ...eeoutiiuiiiiiieiieie ettt 59
C.2.1. Tagging Strategies and Rules............cccceevviiieniiieniieeniiecee e 60
APPENDIX D: RUNTIME ENVIRONMENT .....c.cccooiiiiiiiniiiinienieeiceeceeeeeieeeae 64
D1, Platform...co.ceoiieiieeieeeeceeee e 64
REFERENCES ...ttt sttt ettt ettt st sb et aeenaeens 65

REFERENCES NOT CITED .....cociiiiiiiiiiiiiiccecee e 66



Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 3.6.

Figure 3.7.

Figure 3.8.

Figure 3.9.

Figure 3.10.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

X

LIST OF FIGURES
SMS subscription flow steps . . . . . .. ... .. ... .. 17
Subscription flow for package ex: “HABER” case . . .. .. 19
SMS messagesmap . . . . . . . . ..o 20
Error distribution . . . . .. ... ... oo 24
Error categories . . . . . . . ... ... 25
Training N-Gram dataflow . . . . .. ... ... ... .... 27
SMS message map for N-Gram table example . . . . . . . .. 28
Implementation of N-Gram phase 1 . . . . . ... ... .... 33
N-Gram module sequence diagram forphase 1 . . . . . .. .. 35
Adding new package into the messagemap . . . . . . .. ... 40
Resultsofphase 1 . . . . . ... ... .. ... ........ 45
Error distributions afterphase 1 . . . . . ... ... ... ... 46
Results graph by using existingdata . . . ... ... .. ... 47
Error distribution by using existingdata . . . . . .. ... .. 48
Effect of the existing keyword difference . . . . . . . ... .. 49



Figure 4.6. Result graphs for N-Gram tables from scratch . . . . . . . .. 50
Figure 4.7. Error distributions for N-Gram table from scratch . . . . . . . 51
Figure 4.8. Effect of adding new keywords . . . . . ... ... ... ... 52
Figure A.1. Black box diagram of the Turtle system . . . . ... ... .. 54
Figure A.2. Turtle n-tier architecture diagram . . . . . . . . ... ... .. 55
Figure B.1. SMS handling system . . . . ... ... ... ......... 57
Figure C.1. Tagging utility screenshot . . . . . . ... ... ... .... 60

Figure C.2. Tagged datain the database . . . . . . ... ... ....... 63



Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 2.5.

Table 2.6.

Table 2.7.

Table 2.8.

Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 3.5.

Table 4.1.

Table 4.2.

X1

LIST OF TABLES
Some attested real world spelling errors from Kukich (1992) . . 8
Unigramexample . . . . . . .. .. ... ... ... ... .. 10
Berkeley restaurant project . . . . . . .. ... ... ... .. 11
Bigram values of the restaurant project . . . . . . . ... ... 12

More fragments from the bigram grammar from the restaurant

PIrOJECt . . . o o i e e e e 13
Add one smoothed bigram . . . . . ... ... ........ 14
Add one smoothed unigram counts . . . . . .. ... ... .. 15
Result of add one smoothed bigram . . . . .. ... ... ... 15
SMS Message table design . . . . . . ... ... ... .... 19
Distribution of the error messages . . . . . . . ... ... ... 23
Error categories . . . . . . . . ... 24

Example of N-Gram table data structure for “ABONE-HABER” 30

N-Gram table results for Ss=”ABONEHBR” . . . . . ... .. 39

Resultsof phasel . . . . . .. .. .. ... ... ..., 44

Error distribution after phasel . . . . . . ... ... ... ... 45



Table 4.3.

Table 4.4.

Table 4.5.

Table 4.6.

Xii

Results graph by using existingdata . . . . . ... ... ... 47
Error distribution by using existingdata . . . . . . ... ... 48
Result graphs for N-Gram tables from scratch . . . . . . . .. 50
Error distribution for N-Gram tables from scratch . . . . . . . 51



Xiii

LIST OF SYMBOLS / ABBREVIATIONS

Telco Telecommunications company

SMS Short Message Service

CSPS Corporate Services Providing Subscriber System.
UMS User Management System.

SIS Subscription information system

PDO Product data object

MLE Maximum likelihood estimation

TH Threshold value

UML Unified modeling language

B2B Business to business

B2C Business to customer

GUI Graphical user interface

RDBMS Relational Data Base Management System

SMSC Short Message Service Center.



1. INTRODUCTION

Besides being text based, the Short Messaging Service (SMS) has some well known
limitations. The length limit of short messages is 160 characters when ASCII (e.g. English)
alphabets are used and 70 characters when Unicode alphabets such as Turkish, Arabic and

Chinese are used.

There are many elements that need to be taken into account when developing and
deploying SMS. Essentially, any information that fits into a short message can be delivered
by SMS. Therefore, the most difficult part of SMS based applications is the fact that
customers can send any kind of messages without regard to some predefined key-based

structures like “ABONE HABER NTV”, “IPTAL TRIBUN”, etc.

However, most users compose complicated messages containing more than just the
needed keywords. As a result, they receive error messages from the server. There are also
some errors that are not dealing with the users’ faults like machine specific error that will

be discussed in the following chapters.

In this thesis, a solution of this problem will be studied. To do this, a real world SMS
based application server will be used as a platform. So our solution will be tested against
the real persons not only in some simulation environment with hypothetically generated

random text messages.

Firstly, this application server (Turtle SMS Handling System) will be studied with its
infrastructures and some special features built on it. After that, some historical background
of statistical natural language processing methods will be discussed. You can find some
useful information about statistical methods especially N-Gram method which is used for

the solution in chapter 2.

In chapter 3, our approach for this problem will be examined and its results,

evaluations and conclusions will be presented in chapter 4.



Finally, you can find more details of the Turtle System and SMS Handling System
in Appendix B.



2. BACKGROUND

Famous quotes:

¢ The notion “probability of a sentence" is an entirely useless one. . .

[Noam Chomsky 1969] [1]

* Anytime a linguist leaves the group, the recognition rate goes up.

[Fred Jelinek 1988] [1]

In fact, the use of probability in linguistic theory has been under discussion for many

years.

There are two main approaches for Natural Language Processing: rule based and
statistics-oriented approaches. In the rule-based approach, the expected input sentences are
often modeled by a strict grammar. In this case, the user is only allowed to utter those

sentences, which are explicitly covered by the (often hand-written) grammar [2].

Rule-based approaches, with rules induced by human experts, had been the dominant
paradigm in the natural language processing community. Such approaches, however, suffer
from serious difficulties in knowledge acquisition in terms of cost and consistency.

Therefore, it is very difficult for such systems to be scaled up.

Statistics-oriented approaches are now dominant in natural language processing, and
are gaining ground in theoretical linguistics. Since there is no robust “theory of

everything", probabilities serve as a useful approximation of the world.



2.1. Overview of statistical NLP techniques

Abney [6] describes the ultimate goal of linguistics as understanding language.
Traditional linguistics study firstly tries to describe a grammar for the language which will
be studied. Thus, sentences that can be generated by the grammar are defined as
grammatical. Other sentences are regarded as ungrammatical, that is, they are not

acceptable according to the language’s grammar.

This grammaticality of sentences is binary. Either a sentence is grammatically
correct or not. Thus, the sentences which will be considered as grammatical are determined
only according to whether they are well formed or not. This grammaticality however does
not include the sentences which are semantically correct or the type of things people would

practically say.

The traditional linguistics approach may work for ‘simple’ cases, but becomes harder
for many real-world examples that are much more complex in structure. This kind of
classification also does not provide any information about the frequency with which
different sentence types and sentences are used. The structure and use of language also
changes over time. For example some definitions of grammaticality that may be true at the

time of study little by little become false over time.

Therefore, to help with this grammar categorization and changes in language,
frequencies of use and statistical measures of words within a language can be obtained and
analyzed. A major part of S-NLP (statistical NLP) is determining how to model the
language by deriving good probability estimates for unseen events, such as new words
appearing in previously unseen text. Although it may be harder to think about how
semantics in S-NLP can be described, one way can be thinking about the distribution of

contexts over which words are used.

For example, S-NLP disambiguation automatically learns lexical and structural
knowledge from corpora (a collection of texts) by determining statistically which words

have a tendency to group together.



Statistical NLP looks at common patterns in text using statistics (i.e. counting things)
and probability (i.e. predicting things). Building a statistical model of the language can
provide a solution for many natural language tasks, for example parsing texts, word-sense

disambiguation and information retrieval.

Work in S-NLP comes from Shannon’s ideas [3] of assigning probabilities to
linguistic events. This is opposed to Chomsky’s [3] formal language theory. Thus S-NLP

approaches help enable linguists to say which sentences are ‘usual’ and ‘unusual’.
2.1.1. Probability of a Word String w;...w,, and the Markov Assumption

If we consider each word occurring in its correct location as an independent event,

we can represent this probability as follows: P(w, ,w,,wy..,w,_,,Ww,)

We can use the chain rule to decompose this probability:
P(w') = P(w, )P(w, | w)P(w; | w)..P(w, |w™") = HP(wk lw™) 2.1)
k=1

The problem with the (Equation 2.1) is we do not know any easy way to compute the
probabilities like P(w, |w/™"). For example, we can not just count the number of times

every word occurs following every long string. We need a very big corpus for that.

This problem is solved by making a useful simplification: We can approximate the
probability of a word given all the previous words. The approximation we will use is very

simple: the probability of the word given the single previous word!

In other words, instead of computing the probability
P(Istanbul | ABONE HABER NTV) we approximate it with the probability
P(Istanbul | NTV). Thus our assumption can be formulated as (Equation 2.2).



Pw, Iw/™)y=Pw, lw, ) (2.2)
So
P(w)') = ﬁP(wk lw,,) (2.3)

This assumption that the probability of a word depends only on the previous word is
called a Markov assumption. Thus, with Markov models we can predict the probability of

some future units without looking too far into the past.

2.2. The N-Gram approach

The N-gram method was first proposed by Markov (1913)[1] in his studies that are
now called “Markov chains” (bigrams and trigrams) to predict whether an upcoming letter

in Pushkin’s Eugene Onegin would be a vowel or a consonant.

Markov classified 20,000 letters as Vowel or Consonant and computed the bigram
and trigram probability that a given letter would be a vowel given the previous one or two
letters. Shannon (1948)[1] applied N-grams to compute approximations to English word
sequences. Based on Shannon’s work, Markov Models were commonly used in modeling

word sequences by the 1950s.

Today an N-Gram grammar is defined as a representation of an Nth order Markov
language model in which the probability of occurrence of a symbol is conditioned upon the

prior occurrence of N-1 other symbols.

N-Gram grammars are typically constructed from statistics obtained from a large
corpus of text using the co-occurrences of words in the corpus to determine word sequence
probabilities. N-Gram grammars have the advantage of being able to cover a much larger
language than would normally be derived directly from a corpus. Open vocabulary

applications are easily supported with N-Gram grammars.



2.2.1. Why N-Grams?

One of the main problems in the speech recognition, handwriting recognition,
augmentative communication for the disabled and spelling error detection studies is
finding the next word (or character) from given words (or characters). In such tasks, word-

identification is difficult because the input is very noisy and ambiguous.

In simple speech recognition/speech understanding systems, the expected input
sentences are often modeled by a strict grammar. In this case, the user is only allowed to
complete those sentences, which are explicitly covered by the (often hand-written)

grammar.

Experience shows that a context free grammar with reasonable complexity can never
predict all the different sentence patterns that users come up with in spontaneous input.
This approach is therefore not sufficient for robust speech recognition/understanding tasks

or free text input applications such as dictation.

Thus, looking at previous words can give us an important indication of the next one
that we are trying to guess. Imagine the given word of a sentence is like following: “Bugiin

hava ¢ok gezel.”

The word “gezel” is definitely not a Turkish word. For a human being, it is easy to
work out this problem. Because by our knowledge of word sequences in Turkish and by
experience we can predict that correct form of this sentence should be “Bugiin hava cok
giizel.” Especially if we have known the context, it is much easier to guess the next word.
One another interesting study is made by Russell and Norvig[1] in which they give an
example from Woody Allen’s “Take the Money and Run” movie. In the hold-up scene a
bank teller interprets Woody Allen’s sloppily written hold-up not as saying “I have a gub”.
A speech recognition system (and a person) can avoid this problem by saying that “a gub”
is not an English word sequence and especially in the context of a hold-up, “I have a gun”

will have a much higher probability than “I have a gub” or even “I have a gull”.



Consider the problem [1] of detecting real-world spelling errors. These are spelling
errors that result in real English words (although not the ones the writer intended) and so
detecting them is difficult (we can not find them by just looking for words that are not in

the dictionary). Table 2.1. contains some examples.

Table 2.1. Some attested real world spelling errors from Kukich (1992) [5]

Example phases

They are leaving in about fifteen minuets to go to her house.

The study was conducted mainly be John Black.

The design an construction of the system will take more than a year.

Hopefully, all with continue smoothly in my absence.

Can they lave him my messages?

I need to notified the bank of [this problem.]

He is trying to fine out.

For example, while the phrase in about fifteen minuets is perfectly grammatical
English, it is a very unlikely combination of words. Spell checkers can look for low

probability combinations like this.

N-Gram language models are traditionally used in large vocabulary speech
recognition systems to provide the recognizer with an a-priori likelihood P(W) of a given
word sequence W. The N-Gram language model is usually derived from large training
texts that share the same language characteristics as expected input.

N-Gram language models rely on the likelihood of sequences of words, such as word
pairs (in the case of bigrams) or word triples (in the case of trigrams) and are therefore less
restrictive. The use of stochastic N-Gram models has a long and successful history in the
research community and is now more and more effecting commercial systems, as the

market asks for more robust and flexible solutions.



2.2.2. Simple (unsmoothed) N-Grams

N-Gram analysis is based on the probability formula:

PW,..W,)

P W IW,...W,_)=
PW,..W,)

(2.4)

where W is the word string. So P (W |W,....W ) is the probability of occurrence

of W _given that W,....W, _, sequence has occurred.

N-Gram probabilities can be computed by simply counting in a corpus and
normalizing (the Maximum Likelihood Estimate) or they can be computed by more

sophisticated algorithms.

The most common N-Gram language models are “unigram” , “bigram” and
“trigram” models that depend on the Nth order Markov model where N=1,2 and 3,

respectively.

2.2.2.1. Unigram language models

The simplest possible model of word sequences would simply let any word of the
language follow any other word. In the probabilistic version of this theory, then, every
word would have an equal probability of following every other word. If English had
100000 words, the probability of any word following any other word would be 1/100000
or 0.00001.

In a slightly more complex model of word sequences, any word could follow any
other word, but the following word would appear with its normal frequency of occurrence.
For example, the word the has a high relative frequency, it occurs 69971 times in the
Brown corpus of 1.000.000 words (i.e. , 7 per cent of the words in this particular corpus

are the). [1] By contrast the word rabbit occurs only 11 times in the Brown corpus.
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We can use these relative frequencies to assign a probability distribution across
following words. So if we have just seen the string Anyhow, we can use the probability

0.07 for the and 0.00001 for rabbit to guess the next word.

Probabilities from a corpus are calculated by counting words in a large corpus (body)
of text. If C(w) is the number of times word w occurs in a corpus of N words, then we can
simply use maximum likelihood estimation (MLE) to calculate P(w) as follows:

P(w) =C(w)/N

In terms of the N-Gram jargon, instead of word, we say unigram, meaning “word

sequence of length 1.

So we constructed a unigram language model using maximum likelihood estimation.

In Table 2.2., there is an example of unigram probabilities.

Table 2.2. Unigram example [3]

P(w) Value
P(a) 0.0368
P(aardvak) 0.0001
P(aback) 0.0005
P(abacus) 0.0001
P(abandon) 0.0011
P(abide) 0.0003

2.2.2.2. Bigram language models

Bigram language models use conditional probabilities to predict what the next word
will be, given the previous word. Consider the example given for the unigram language

models. Suppose we have just seen the following string: “Bugiin hava ¢ok”.

In this context, “giizel* seems like a more reasonable word to follow white than “ve
does. This suggests that instead of just looking at the individual relative frequencies of

words, we should look at the conditional probability of a word given the previous words.
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That is, the probability of seeing “giize/“given that we just saw “cok* (which will represent

as P(giizellgok)) is higher than the probability of ”giizel* otherwise.

Example from the Berkeley Restaurant Project [1]:

The Berkeley Restaurant Project is a speech based restaurant consultant; the user
asks questions about restaurant in Berkeley, California, and system displays appropriate
information from a database of local restaurants (Jurafsky 1994)[1]. Here are some sample

queries:

I’'m looking for Cantonese food.

I'd like to eat dinner someplace nearby.

Tell me about Chez Panisse.

Can you give me a listing of the kinds of food that are available?
I’'m looking for a good place to eat breakfast.

I definitely do not want to have cheap Chinese food.

When is Caffe Venezia open during the day?

I don’t wanna walk more than ten minutes.

Table 2.3. Berkeley restaurant project

P(w) Value P(w) Value
eat on 0.16 eat Thai 0.03
eat some 0.06 eat Breakfast 0.03
eat lunch 0.06 eat in 0.02
eat dinner 0.05 eat Chinese 0.02
eat at 0.04 eat Mexican 0.02
eat at 0.04 eat tomorrow 0.01
eat Indian 0.04 eat dessert 0.007
eat today 0.03 eat British 0.001

In Table 2.3. you can see a fragment of a bigram grammar from the Berkeley

restaurant project showing the most likely words to follow “ear”.

For example, P (onleat)=0.16
P (British | eat) = 0.001
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2.2.2.3. N-Gram language models

As mentioned previously, an n-gram language model uses the previous n - 1 words to
predict the next one. The number of probability numbers (parameters) required for an N-

Gram model increases exponentially with n, so in practice “n” never goes beyond trigram

models (n=3).

For example, assume a 20,000-word vocabulary
¢ A unigram model requires calculating 20,000 numbers
® A bigram model requires 20.000x20.000 = 400 million numbers
e A trigram model requires 20.000x20.000x20.000 = 8 trillion numbers

® A 4-gram model requires 1.6x10""  and so on...

Computing these parameters for a particular corpus is called training the language
model on that corpus.To clarify this, let us calculate the Probability of “I want to eat

British food" [1] from Berkeley restaurant project that we mentioned before.

Table 2.4. Bigram values of restaurant project

P(w) Value P(w) Value

eat on 0.16 eat Thai 0.03
eat some 0.06 eat Breakfast 0.03
eat dinner 0.05 eat Chinese 0.02

eat at 0.04 eat Mexican 0.02

eat at 0.04 eat tomorrow 0.01
eat Indian 0.04 eat dessert 0.007
eat today 0.03 eat British 0.001

Assume that in addition to the probabilities in Table 2.4. , our grammar also includes
the bigram probabilities in Table 2.5. with “<s>” special word meaning “Start of

sentence”.
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Table 2.5. More fragments from the bigram grammar from the restaurant project

P(w) | Value | P(w) | Value | P(w) | Value | P(w) | Value P(w) Value

<>l | 025 |Twant | 032 | V| 065 |toeat | 026 | Brtish | g eo
to food

<s>Id | 006 | I 020 |Want| g5 | © | g | British g
would a have restaurant

<s>Tell | 00.04 | Tdont | 008 | Y| 004 | © | 009 | British | g4
some Spend cuisine

<ssI'm | 0.02 | Thave | 004 | Y1 001 | tobe | 0.02 | Bitsh | 9o
Thai lunch

Now we can calculate probabilities of sentences like “I want to eat British food” or “I
want to eat Chinese food” by simply multiplying the appropriate bigram probabilities

together, as follows:

P(I want to eat British food) =P(I|<s>)x P(want |1) x P(to|want ) P( eat | to)x
P( British | eat) x P(food | British)
=0.25 x 0.32 x 0.65 x 0.26 x 0.001 x 0.60
=0.0000081

2.2.2.4. Smoothing

In the N-gram approach, some word sequence probabilities could be zero. This is too
strict, because there are many perfectly good n-grams that just happen not to be in the

corpus. If this occurs, then a smoothing algorithm must be used to correct these cases.

“Smoothing” is assigning new (small but non-zero) probability values to the cases
which seem to have zero probability. Smoothing is also called discounting because the
probabilities of the non-zero-probability n-grams are discounted a certain amount, and this

amount is redistributed among the zero probability ones.

2.2.2.5. Add-one smoothing

Add-one (Laplace) smoothing adds 1 to each count, then normalizes by adding the

vocabulary size V to the denominator
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For unigrams:

, Cw)+1
P(w)=——"F"—"- 2.4
(w) NV (2.4)
For n-grams:
Cw..w,)+1

(2.5)

P(w lw.w )=
O T0-3000) C(w,..w, )+V

In order to make clear the (Equation 2.5), let us smooth Berkeley Restaurant Project

bigram that we mentioned before.

Table 2.6. shows add one smoothed bigram counts for seven of the words (out of

1616 total word types) in Berkeley restaurant project corpus of ~10.000 sentences.

Table 2.6. Add one smoothed bigram

I | want | to | eat | Chinese | food | lunch
I 9 | 1088 | 1 14 1 1 1
want 4 1 787 | 1 7 9 7
To 4 1 11 | 861 4 1 13
Eat 1 1 3 1 20 3 53
Chinese | 3 1 1 1 1 121 2
Food |20 1 18 1 1 1 1
Lunch | 5 1 1 1 1 2 1

Recall that normal bigram probabilities are computed by normalizing each row of

counts by the unigram count:

C(Wn—l Wn )
Cw,,)

P(w,lw, )= (2.6)

For add-one-smoothed bigram counts we need to first augment the unigram count by

the number of total word types in the vocabulary V:



P'(wn lw, )=

Cw,_w,)+1

Cw, )tV
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2.7)

We need to add V (that is, 1616) to each of the unigram counts. Add one smoothed

unigram counts are showed in Table 2.7.

Table 2.7. Add one smoothed unigram counts

Word Counts

I 3437+1616=5053
want 1215+1616=2931
to 3256+1616=2931
eat 938+1616=2554
Chinese 213+1616=1829
food 1506+1616=3122
lunch 459+1616=2075

Finally, the result is the smoothed bigram probabilities as shown in Table 2.8.

Table 2.8. Result of add one smoothed bigram

| want to eat Chinese | food lunch
I 0.0018 0.22 0.00020 | 0.0028 | 0.00020 | 0.00020 | 0.00020
want 0.0014 | 0.00035 0.28 0.00035 | 0.0025 | 0.0032 | 0.0025
to 0.00082 | 0.00021 | 0.0023 0.18 0.00082 | 0.00021 | 0.0027
eat 0.00039 | 0.00039 | 0.0012 | 0.00039 | 0.0078 | 0.0012 | 0.021
Chinese | 0.0016 | 0.00055 | 0.00055 | 0.00055 | 0.00055 | 0.066 | 0.0011
food 0.0064 | 0.00032 [ 0.0058 | 0.00032 | 0.00032 | 0.00032 | 0.00032
lunch | 0.0024 | 0.00048 | 0.00048 | 0.00048 | 0.00048 | 0.00096 | 0.00048
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3. OUR APPROACH

3.1. Turtle SMS Handling System

Turtle is designed especially for the Telecommunication industry. Turtle can be
evaluated as a kind of portal system, which contains many modules including “SMS User
Subscription System” that we will examine in this thesis. You can examine Appendix A to

get more details about the Turtle system.

The SMS Handling System of Turtle is designed for the short message based user
subscriptions. It has a message parsing logic working with simple and manually added
“Variant Keys”. There is also special chapter about the SMS Handling system and its

features in the Appendix.

For instance, we will consider Turtle as a black box and we will focus only “SMS

Subscription System” of the Turtle platform.

3.1.1. Campaign Package Service Scenario for SMS Subscription Flow

SMS Subscription flow starts with the user sending an SMS message containing
predefined and announced keywords to Subscription Service Short number. For instance,

subscription operations start with an SMS of the form “ABONE XXX'.

The step-by-step subscription flow may be summarized as follows (Figure 3.1.):
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Figure 3.1. SMS subscription flow steps

The user sends an SMS message to XXXX (specific short message number

of the service) which has a content like “ABONE HABER”.

The message goes from the phone to SMSC and then to Operator’s SMS
Proxy Application that enables Turtle to receive and send the user’s

message via http based protocol.

The Turtle Messenger System continuously queries the SMS Proxy for

incoming messages over http.

Once Messenger receives the message, it is written to the Turtle DB to be

read and interpreted by the servlet running on the SMS Server.

The SMS Server polls the Turtle DB for incoming messages and retrieves
the message. Then the SMS Server finds the related servlet that will

interpret the incoming message.

The Servlet checks the current subscription status of the user through the
user management system (UMS) and the package / service subscription

status through the subscription system.



18

The Servlet writes the response SMS message to Turtle DB. The Messenger
retrieves and delivers this message to the user through the SMS Proxy.

There may be more than one response message.

After the Servlet finishes collecting the necessary data, it initiates the

subscription process through the Subscription System.
The 3rd party, which is continuously polling the SMS Proxy about new
service subscriptions, retrieves the new subscription information that has

just been stored into the Turtle SIS DB.

The 3rd party starts service to the new user.

In Figure 3.2. you can see the Subscription flow between Turtle and the End-user.

PAKET >

Kevword
(ARONF)

<PaketAd >

A
v
v

Mesailar

Mz
Yasadiginiz iin adin Om ISTANBUL yazarak bu mesaj
cevaplayiniz Gondereceginiz ce i ucretsizdir

or vap mesaj
AKSAM NTV SHOWTV SKYTURK igi

Adana Antalyz Bursa Dbaki Esehi Gantef Kayser Kony: Samst (S A DGR

nve Trabzon illerinden birini va da plaka kodunu yazip
gonderinii. Orn Adana) YEREL igin

BBC igin MESAJ GELMIYOR

Akis

ABONE
<BrandAd >
Abane Haber

Figure 3.2. Subscription flow for package ex: “HABER” case
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3.2. Data Collection

First, we need the data to process. To do this, we used old SMS messages that had
already been sent by real customers. We collected more than 6 million SMS messages to
analyze. We created a separate system with a new database and stored all these SMS
messages in this database. To compute statistics, we added new fields into the original

message specific data table.

In Table 3.1., the final SMS messages table design is showed with column

definitions. Notice that the new columns marked as “*”.

Table 3.1. SMS Message table design

COLUMN NAME DEFINITION
MSGID Message ID : primary key of the table
SERVICENO Short number of the SMS message. Ex: 1234
MSISDN GSM Number of the customer
MSGBODY Message body : Message content
DATE Received date of the message
STATUS 0: received but not processed 1:processing 2:processed
*SequencelD Dialogue ID. It is common for every message sent in
the dialogue
*HataTipi The Error type of the message
*OlmasiGereken The correct message that customer should send
*HangiPaketicin Which package is the message sent for
*SonucaUlasmismi Has the conversation ended successfully after this
sequence ?
*KacAdimdaUlasmis Number of steps to reach to the end
*HangiNoktada The state of the conversation

3.2.1. The message structure

For our case, four levels are enough in order to categorize all SMS messages

(Fig.3.3).



UNKNOWN MESSAGES
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ABONE
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HABER TRIBUN HABER TRIBUN
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/ / \, LIGTV VATAN
34 BJK GS

Figure 3.3. SMS messages map

Some possible subscription message combinations are:

20

ABONE HABER —NTV—34: the case where the user subscribes to the

package in three steps.
ABONE HABER NTV—34: the subscription is made in two steps.
ABONE HABER NTYV 34: the subscription is made in one step.

Some possible cancellation message combinations are:

3.2.2. Tagging Process

IPTAL—-HABER—NTYV: in three steps.
IPTAL TRIBUN—LIGTV: in two steps.
IPTAL HABER BBC: in one step.

In order to calculate N-Gram statistics, we needed to count unigram, bigram and

trigram values of the SMS messages. To do this we needed to set every message’s
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SequencelD, HataTipi, OlmasiGereken, HangiPaketicin, SonucaUlasmismi,

KacAdimdaUlasmis, HangiNoktada values of the data collection table.

We called this operation “Tagging” because we mark and regroup every message for
extracting and representing the similarity of meaning of words. Because we needed to
analyze more than 6 million SMS messages, a small utility program was written to make
the tagging process faster. It simply gets data from the SMS message table and allows the

users to select tagging parameters for the dialogue.

To make the tagging process as fast as possible, a simple graphical user interface
was generated. This GUI allows selecting multiple messages from the same user, to help
understand what the user is trying to achieve. A more detailed explanation of this program

can be found in appendix C.

By using the tagging program, all the SMS data were reorganized in order to be used
for the N-Gram process. To do this, 20 per cent of the tagged data were separated for

testing the performance.

For the rest of the data, SequencelD’s were regrouped for the available six packages
(TRIBUN, FLORT, HABER, POP, FINANS, and GEZEGLEN) and three commands
(ABONE for subscription, IPTAL for cancellation YARDIM for help).

Therefore, with all the combinations there were 18 major groups. After evaluating

the tagging results, the major error types in these messages can be regrouped as follows:

3.2.2.1. Typing errors

This kind of errors occurred mainly when the content of the messages are not correct
due to mistyping. For example, when users type “ABONE” or "ABNE” instead of
“ABONE”.
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3.2.2.2. Mobile device specific problems

Some devices can produce unsupported characters without the user’s intention. For
example some Panasonic models add a pattern like “</XY>" to every SMS message, so
when the user sends “ABONE HABER”, this message is received by the SMS handler
system like “ABONE HABER<!01>".

3.2.2.3. Proper sentences

Some users send proper Turkish sentences instead of obeying the required format.
For example: “HABER PAKETIMIN IPTALINI ISTIYORUM” instead of simply “IPTAL
HABER”.

3.2.2.4. Reflected messages

Some users can reply to the SMS handler System’s questions within the template of
the question messages. For example, when the SMS handler asks: “ABONE OLMAK
ISTEDIGINIZ PAKET ADINI ABONE BOSLUK PAKET ADI YAZARAK GIRINIZ”, the
user replies to this message as follows: “ABONE OLMAK ISTEDIGINIZ PAKET ADINI
ABONE BOSLUK PAKET ADI YAZARAK GIRINIZ ABONE HABER NTV”

3.2.2.5. Dialog based messages

Some users may think that they are in conversation with a real human. Therefore,
they reply as if they are talking to a human. For example, a reply to the question
“ABONELIK ISLEMLERINIZE BASLAMAK ICIN BIR PAKET ISMI GIRINIZ” could be

“HABER PAKETINI ISTIYORUM SIZI AILECEK COK SEVIYOR VE ILGIYLE
TAKIP EDIYORUZ".
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3.2.2.6. Inappropriate messages

Some users may send messages that contain some insult or inappropriate words or

phrases.

3.2.2.7. Wrong services

Some users intend to get a Telco service other than Turtle. This could simply be due
to mistyping the short service number. For example “7V PRG SHOW” which is similar to
key based SMS command syntax, is correct call for another short number to demand a
television program schedule of specific service but not valid for Turtle services. Some

users can send these kinds of messages to Turtle by mistake.

3.2.2.8. Undefined messages

Some messages may not be possible to understand even for a human being.

For example: “JGLK TYDDS "+ 4r44 4344”

After processing all data in the tagging process, the distribution of the SMS messages

was obtained as in Table 3.2.

Table 3.2. Distribution of the error messages

MESSAGE TYPE PER CENT
Valid 68.50
Invalid: 31.50
Total: 100

By examining the results we can say that 31.50 per cent of the messages are invalid,
and not understood by the existing systems. So our scope is focused these 31.50 per cent of
the wrong messages. Graphical representation of the error distribution is shown in Figure

3.4.
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Figure 3.4. Error distribution

By evaluating these results, we can say that the most common error type is regrouped

in the “Typing Error” category with 12 per cent value of the all SMS messages.

Table 3.3. Error categories

Category Per cent
Typing errors 12.35
Mobile device specific problems 0.82
Proper sentences: 3.24
Reflected messages 3.75
Dialog based messages 8.06
Inappropriate messages 1.63
Wrong services 0.63
Undefined messages 1.02
TOTAL 31.50

The per cent values of the Error categories are shown in Table 3.3.After examining

these statistics from our tagging process we can say that, 31.50 per cent of the all messages

are incorrect; which means that the current system does not understand the content and set

messages’ status to invalid state. When we regroup these wrong messages within each

others we obtained following results:
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¢ 39 per cent of the invalid messages are in the “Typing errors” category

e 3 per cent of the invalid messages are in the “Mobile device specific
problems” category.

e 10 per cent of the invalid messages are in the “Proper sentences’” category.

e 12 per cent of the invalid messages are in the “Reflected messages” category.

e 26 per cent of the invalid messages are in the “Dialog based messages”
category.

e 5 per cent of the invalid messages are in the “Inappropriate messages”
category.

e 2 per cent of the invalid messages are in the “Wrong services” category.

e 3 per cent of the invalid messages are in the “Undefined messages” category.

These new percentages can be defined as error categories of the wrong SMS

messages. Graphical representation of the error categories is shown in Figure 3.5.
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Figure 3.5. Error categories
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3.3. Computation of the N-gram probabilities

By using the statistics from the tagging process, the following decisions were taken

to implement the computation of N-Gram probabilities:

e Computation of the Unigram, Bigram and Trigram probabilities is
enough to determine the context of the short messages sent by the

users.

e Because of the 160 character limitation of the SMS messages, to
cover up every possibility, instead of using word based approach we
used characters for counting N-Gram values. For a character-based
approach, possible N-Grams of the string fork are given as following:

the empty context, f, o, r, k, fo, or, rk, for, ork, fork.

e 20 per cent of the tagging data has been reserved for evaluating of the
performance of the N-Gram approach.

e Because the probabilities of the N-Gram values are too small to
compute, logarithm probabilities were used to determine weight of the

sequences.

e [t is sufficient to use Bayesian Maximum Likelihood hypothesis
formula which is mentioned in chapter 3 (Equation 3.9) in order to
determine the most probable result. Because prior probability parts of

the Bayesian formula P(h) are very similar
¢ In order to determine whether a given message belongs to a specific
N-Gram table, it is necessary to give an acceptable weight limit

(threshold value) for every N-Gram table.

Finally, our N-gram approach algorithm for the training data is shown in Figure 3.6.
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TRAINING DATA

(Prepare all sequences)_ — — 7 Ex: abone haber ntv istanbul

[Construct sequence trees]; — — 4 Ex: abone-haber-ntv-istanbul

[Prepare N-Grams for all sequences]

[Calculate weight of N-Gram values for every sequence]

Cl'rain every N-Gram table with the data)

(Determine the weight formula)— —— —| Exilog Y(el)> L

[Calculate acceptable weight limits for every table with the formula)

(Test with the non-trained data)

Figure 3.6. Training N-Gram data flow

The first step is preparing all the sequences and creating N-Gram tables. N-gram
tables are simply a data structure that contains unigram, bigram, trigram statistics of the

elements of the SMS message which is mentioned in section 3.1.1.
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To clarify this, for example imagine that our message map includes only following

structure as shown in Figure 3.7.

UNKNOWN MESSAGES

\ 4

ABONE
HABER TRIBUN
NTV LIGTV

Figure 3.7. SMS message map for N-Gram table example

In this case we need to process given SMS messages for six alternative answers:

e “UNKNOWN”: This node contains all the SMS messages in the system. For
every SMS message we count its unigram, bigram, trigram statistics to be
sure that at least one of the node of the SMS message map contain all SMS
statistics. We can also say that these statistics are our corpus for the SMS

messages of the Turtle.

e “ABONE”: This node contains only unigram, bigram, trigram statistics for
the SMS messages which have been marked as “ABONE” in the tagging step.
For example all variations of the “ABONE” SMS messages (i.e. “ABN, abon,

bone, abOne... etc”) are processed in this node.

e “ABONE-HABER”: This node contains N-Gram statistics for the SMS
messages which have been marked as “ANONE HABER” in the tagging

2

process. For example: “abone haber , ABone Hbr,Ab?n Haner ... etc”.
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o “ABONE-HABER-NTV”: This node contains N-Gram statistics for the SMS
messages which have been marked as “ANONE HABER NTV” in the
tagging process. For example: “abone haber MTV, ABone Hbr NTV,Haber
NTV ... etc”.

e “ABONE-TRIBUN-": This node contains N-Gram statistics for the SMS
messages which have been marked as “ANONE TRIBUN” in the tagging

2

process. For example: “abone trbn, ABone tiiriibiin,Abone trubun... etc”.

e “ABONE-TRIBUN-LIGTV”: This node contains N-Gram statistics for the
SMS messages which have been marked as “ANONE TRIBUN LIGTV” in
the tagging process. For example: “abone trbn ligtivi, ABone tiiriibiin

L1gtv,Abone trubun ligtv... etc”.

Thus for this example we need to create six different N-Gram table data structures to

compute N-Gram statistics of every element (node) of the SMS message map.

3.3.1. Computing Statistics within N-Gram Table Data Structure

As mentioned before N-gram tables are simply used for unigram, bigram and trigram

statistics of the SM'S message map nodes which are mentioned in section 3.1.1.

In Table 3.4. you can examine some part of the statistics for the “ABONE HABER”
case. Notice that there are three different statistics computed for unigram , bigram and
trigram cases stored in the “ABONE HABER_UNI",”ABONE HABER_BI” and
“ABONE HABER_TRI” columns of the table respectively.
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Table 3.4. Example of N-Gram table data structure for “ABONE-HABER”
ABONE HABER_TRI | ABONE HABER _BI | ABONE HABER_UNI

_AB=0.036429872495 H=0.10904134484 =(0.081174042650
ABO=0.072859744990 N=0.00090867787 _=0.02315982572
BON=0.072859744990 S=0.00136301681 A=0.1706030726
ONE=0.072859744990 T=0.00181735574 B=0.2309103416
NE =0.072859744990 _A=0.04543389368 E=0.13781242834

E H=0.072859744990 _1=0.000454338936 H=0.12015592753
HA=0.072859744990 AB=0.19990913221 1=0.002522357257
HAB=0.072859744990 | AL=0.0009086778736 | K=0.0006879156156
ABE=0.072859744990 | B0=0.018173557473 L=0.00091722082091
BER=0.072859744990 BE=0.09086778736 N=0.09286860811740
ER =0.036794171220 B0=0.09086778736 | NULL=0.00022930520
R N=0.019307832422 BR=0.01817355747 0=0.0924099977069
NT=0.019307832422 BU=0.001363016810 | P=0.00091722082091
NTV=0.019307832422 | E =0.045433893684 R=0.036000917220
R $=0.01020036429 ER=0.045888232621 S5=0.0016051364365
SK=0.01020036429 HA=0.09086778736 T=0.004127493694

For example “AB0=0.072859744990” can be read as the probability of the trigram
“ABO” is equal to 0.0728597449908925 for “ABONE HABER” cases. Notice that the
value of the trigram “ABO” of the “ABONE HABER” (=0.07285974) is different than the
value of the “ABONE HABER NTV” (=0.06039). So for every step of the SMS message

map we use different N-Gram data table to compute N-gram statistics of this step.

Thus we can compute statistics with the N-Gram table data structure for every input

SMS message. Let’s compute the N-gram statistics for the given message “ABONE”.

e unigram: P(ABONE)=P(A)*P(B)*P(0)*P(N)*(E)
=0.170603073*0.230910342%0.092409998+0.092868608*
0.137812428=4.65915E-05
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Because we deal with very small numbers , we use log probabilities , so for this case
result is log(P(ABONE))=log(4.65915E-05)= -14.38957428. Notice that we use logarithm

base as 2 which is most commonly used in NLP [1] .

¢ bigram:P(ABONE)= P(_A)*P(AB)*P(BO)*P(ON)*P(NE)
=(0.045691906*0.199303742*0.089208007*0.09051349*
0.092689295=6.81556E-06

Same as above, we use log probabilities so the result is -17.16273667. Notice that

the character ‘_’ is used to mark the beginning of the sentence as we mentioned in chapter

2.

e trigram :P(ABONE)= P(_AB)*P(ABO)*P(BON)*P(ONE)
=0.087354409*0.085690516*0.084858569+0.088186356
=5.60163E-05

And log probability for the trigram value of the input message “ABONE” in the
“ABONE HABER? case is equal to -14.12379289.

As we mentioned before the given input SMS message can vary for every N-Gram
data table structure. For example trigram value of the same SMS message “ABONE” for
the “ABONE” N-Gram data structure is equal to -8.315805366. So we should consider
every result only in its area which is N-Gram data structure for our case. We can not

compare the probability obtained from one N-Gram data structure with the one another.

For our system, in the training process, all the N-Gram tables are created and
computed by using tagging data. After that for every N-gram table a specific threshold

value is determined to accept or reject a given string for this table.

Finally, the entire system is tested against non trained data from the tagging process
that we reserved for this process. If the test results are not acceptable, the threshold values
for every N-gram table are recalculated and the testing step is repeated until all the results

are acceptable.
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3.4. N-Gram Phasel

As mentioned in 3.2, after we created N-gram tables by our algorithm we have to
calculate threshold values for every N-gram table until the results are acceptable in order to
parse SMS messages correctly. Thus, we decided to start with making a simulation of the
N-Gram flow to be sure that our system will work against 6 million of the data. Because it
would take very long time if we directly use 6 million SMS messages to determine these

threshold values.

Thus, in the simulation environment, we used only 100000 SMS messages in order to
repeat the whole simulation easily and more than once a day. For the calculation of the

weight formulas, we wrote a .NET assembly module to implement our approach.

After running the simulation for many times we made an assumption like following:
In order to calculate threshold values for every N-gram table , it is sufficient to use
Zero probabilities from the smoothing algorithms and the length of the input SMS

message. Consider the equation

TH (message) = log(] | 2) = D log(Z) (3.1
: 3
where TH is the threshold value for the specific N-gram table, Z is the zero probability of
the N-Gram table and L is the length of the input message. We can say that if the
combination of the unigram, bigram and trigram probabilities for the input message is
lower than the unigram, bigram and trigram probabilities of the half of the length times of
the zero probabilities, the input message will not be acceptable and will be filtered from
the results. Or we can say simply that, at least half of the message character combinations
should be similar to the N-gram table statistics to accept for computing the given message
for the N-gram table. You can see the given example in the section “Processing Messages
in the N-Gram Phasel Module” to see how the threshold values are used in order to use for
filtering barrier which determines minimum N-gram value to accept the given message by

the table.
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So our final implementation for Phasel is depicted in Fig.3.8, where SMSHandler
system is divided by four modules: SMSHandler, SMSHandlerAction, N-GramPhasel and
SMSHandlerError.

The SMSHandler module contains existing SMS parse logic. If the given SMS
message is evaluated correctly by this module, it is sent to the SMSHandlerAction module

in which there are some specific routines about the Turtle Subscription system.

SMS HANDLER phase1

Q Send SMS
Message Unknown
SMSHandler
N-GramPhase1

User Message Knowr MessageError

Message Knowr

SMSHandlerAction / E SMSHandlerError

MessageSuccess
\

Message Error

Figure 3.8. Implementation of N-Gram phasel

Sms messages are parsed in our N-Gram phasel module only if they could not be
evaluated by the existing SMSHandler module. If the given SMS corresponds to one of our
N-Gram tables, it is sent to the SMSHandlerAction module for processing; otherwise it is
sent to the SMSHandlerError module which is responsible for sending the User an

appropriate Turtle Error Message.
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After determining how to calculate threshold values in our simulation environment,
we trained the whole system with 6 million messages, we deployed the SMSHandler into
the real system and started to observe the performance of the new module, whose results

can be checked in Chapter 4.

3.4.1. Processing Messages in the N-Gram Phasel Module

You can see the UML sequence diagram for the N-Gram module phasel in Figure
3.7. Thus, as mentioned before, when a new message comes into the system and
SMSHandler can not directly evaluate the message, it calls N-Gram module’s evaluate

method which returns a message after parsed in the N-Gram module.

After that, if the returned message (which is shown as Ng_msg in Figure 3.9.) is
equal to the input message, SMSHandler sends the message into the Error module. If the
input message changed in the N-Gram module, it means that the N-Gram module could
find a corresponding result for the given message, SMSHandler sends the message into the

Action module.
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N-Gram Handler Handler Handler
SMS Module Maptable T1 T2 Error Action
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> parse(message): ! ! !
—’-‘— 1 | 1
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1 1
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1
returnT2() |:| 1
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1
1
1
1
1
]
]
]
1
1
1
1
1
1
1
|

:lmax(ﬁ Tn) !

]
[message!=Ng_msg] error(message}
1 1

:D:Jerror()

[message=ng_msg] success(rﬁessage)
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[EE S IR I Zon YO

».
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1

Figure 3.9. N-Gram module sequence diagram for phasel

In order to parse SMS messages, the N-Gram module uses HandlerMaptable which
is a typical hash map of the all trained N-Gram tables (T1...Tn). The idea is to process
given message’s N-Gram values for every table which is defined in the HandlerMaptable

and then to choose the best result that gives the message the highest probability.

That is, given a message M={T1,T2,...,Tk,.....,Tn}, where Tk is combined value of
the different N-Gram orders (in our case these are unigram , bigram , trigram) by using the
deleted interpolation algorithm[Jelinek and Mercer (1980)] [1]. As shown in Figure 4.7.,
for each table HandlerMaptable calls the computeUBT function which estimates the
probability P (w, lw,_,..w, ,) by mixing together the unigram, bigram, and trigram

probabilities.
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Each of these is weighted by a linear weight A:

Pw, Iw, .w )=AP (W, Iw  .w )
+A,P (w, lw, ) (3.2)
+A,P (w,)

such that the A sum to 1:
> A =1 (3.3)

Notice that, for the lambda of the trigram we give more weight in the interpolation
than the one of the bigram. After repeating many times in the simulation environment we

set the lambda values for every N-gram table as following:

e Unigram:0.1
e Bigram: 0.3
e Trigram:0.6

After calling computeUBT method of the each table in the hash map,
HandlerMaptable obtains a list of the N-gram results. And then HandlerMaptable filters
the results by using each of the threshold value of the N-Gram tables. If the result is
smaller than the threshold value (Ln) obtained after training the N-Gram Table (Tn),

HandlerMaptable remove it from the list.

Finally after calling the parse(message) method ,the N-Gram module receives a N-
Gram table list (T1...Tn) filtered in the HandlerMaptable, and then maximizes the values
of the list to select the Tn which gives the message the highest prior probability and returns

the computed probability of the message (Ng_message) to the SMSHandler as a result.

In Figure 3.9., there are two N-Gram tables (T1, T2) used as example, imagine that
both T1 and T2 are returned in the fablelist result of the parse (message) method of the
HandlerMaptable if P(T1)>P(T2) N-Gram module returns Ng_message of the T1 as a to
the SMSHandler module.
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To clarify this, let us give an example: Imagine that given SMS string S="ABONE
HBR”. As mentioned before, in order to evaluate this message, the SMSHandler sends it to
the N-Gram module. So it calls N-Gram module evaluate (“ABONE HBR”). After that N-
Gram module calls parse(“ABONE HBR”) of the HandlerMaptable which calls directly
ComputeUBT(“ABONE HBR ) methods for every N-Gram table (Tn).

As we mentioned in the Figure 3.1.1., for our case some of the N-Gram table list is

given as following:

T1: UNKNOWN
T2:ABONE
T3:ABONE-HABER
T4:ABONE-HABER-NTV
T5:ABONE-HABER-BBC
T6:ABONE-TRIBUN
TT7:IPTAL
T8:IPTAL-HABER

T9: IPTAL -HABER-NTV
TI10:IPTAL-TRIBUN

Thus what we need is to compute N-Gram statistics via computeUBT method for

every N-Gram data table (T1...Tn) for our case n is equal to 10.

ComputeUBT method just calculates unigram, bigram and trigram probabilities for
the given string and then interpolates the tree results according to (Equation 4.1). Recall
that we have already calculated unigram, bigram and trigram log probabilities for

T3(“ABONE”) in 3.2.1.

The results were :
¢ U(unigram): -14.38957428
e B(bigram): -17.16273667
e T(trigram) : -14.12379289
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Thus, T3—ComputeUBT(“ABONE”)= 0.6U+0.3B+0.1T= -15.06205416 where the
multipliers 0.6 , 0.3 and 0.1 are the interpolation coefficients for the trigram, bigram and

unigram respectively.

However, for our example we need to calculate T3—ComputeUBT(“ABONE
HBR”),so the same as before we can easily compute interpolated unigram , bigram and

trigram statistics as following:

T3—U(ABONE HBR)=-log(P(A)*P(B)*P(O)*P(N)*(E)* (* *)*P(H)*P(A)*P(B)*(E)* (R))
=-log(P(A) -log(P(B) -log(P(O) -log(P(N) -log( (E) -log( (* *)-
log(P(H) -log(P(A) -log(P(B) -log( (E) -log( (R))
= -33.30188495

T3—B(ABONE HBR)=-log(P(_A)*P(AB)*P(BO)*P(ON)*(NE)* (E’ )*P(‘ ‘H) *P(HB)
*P(BR))
=log(P(_A)-log(P(AB)-log(P(BO) -log(P(ON) -log( (NE) -log( (E’
)-log(P(* ‘H) -log(P(HB) -log(P(BR))
=-34.82741728

T3—T(ABONE HBR)= -log(P(_AB)*P(ABO)*P(BON)*P(ONE)*(NE’ *)* (E’ ‘H)*

P(* ‘HB)*P(HBR))

=-log(P(_AB) -log(P(ABO) -log(P(BON) -log(P(ONE) -log( (NE’
)-log( (E’ ‘H) -log(P(* ‘HB) -log(P(HBR))

=-31.34550563

and T3->ComputeUBT(ABONE HBR)=0.6T+0.3B+0.1U=-32.4697309

In Table 3.5., all results of the N-Gram tables for the given string S=”ABONE HBR”

are shown.
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Table 3.5. N-Gram table results for S=”ABONE HBR”
T:N-Gram table T(ABONE HBR)

UNKNOWN -37.21703869
ABONE -51.29579233
ABONE-HABER -32.4697309

ABONE-HABER-NTV -35.70986535
ABONE-HABER-BBC -34.60801572

ABONE-TRIBUN -52.48618861
IPTAL -89.27481631
IPTAL-HABER -70.18319687
IPTAL-HABER-NTV -66.6359062
IPTAL-TRIBUN -84.03804728

As we showed in Figure 3.9., the N-Gram module receives all these N-gram table
results and finds the maximum value for the T(ABONE HBR). In this specific example,
the maximum result is reached only when N-Gram table value is equal to -32.4697309.
Finally, the message S="ABONE HBR” will be considered as ABONE-HABER in the

Handler Action module.

3.5. N-Gram Phase2

The problem with the approach described in the previous section is that the N-Gram
tables are constructed only after the tagging process, which needs to evaluate more than 6
million of the SMS messages .This process takes a very long time (for our case it takes 3
months with our tagging utility program) and needs a lot of manual work. It is not possible
to repeat every step for each new package or SMS keyword that will be created in the

future.

In order to see whether there is any way of automating the Phasel steps without any

manual work, we have tried two different approaches:

a-) Reconstructing N-gram tables by replacing and overriding existing tagged data

b-) Creating N-gram tables only by simple variants and reconstructing them at the

runtime with predefined threshold values
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3.5.1. Reconstructing N-Gram Tables by Using Existing Data

After reconsidering the construction of N-Gram Tables, we tried to reuse the N-Gram
statistics of the existing tagged data for the new SMS scenarios (i.e. new packages, new

campaigns ...etc).

For example, assume that a new package names “SKY” is to be introduced for the
category “HABER”. For the construction of the N-Gram tables, the only difference

between the “NTV” package and the “SKY” package is the package name.

UNKNOWN MESSAGES

/\

ABONE IPTAL
A 4 /\
HABER TRIBUN HABER TRIBUN
SKY NTV | BBC LIGTV VATAN NTV BBC /
/ / LIGTV
A4 VATAN
34 BJK GS

Figure 3.10. Adding New Package into the Message Map

If we continue our example, in order to consider N-Gram tables for the new

packages, (in this case the “SKY” package) we have to create following N-Gram tables:

e “ABONE”: This is already known by existing tagged data, there is no need to
recalculate for the new package.

e “ABONE HABER’: This is also known by previous statistics.

e “ABONE HABER SKY’: The only difference is here, we can use existing
“ABONE HABER NTV” statistics to create “ABONE HABER SKY” by using the

following mask technique:
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“ABONE HABER SKY’= “ABONE HABER’<“ABONE HABER NTV’> +”
SKY”

Note that “X<Y>" means N-Gram statistics of the X part in Y context. In our case in
order to create “ABONE HABER SKY” N-Gram table we use the same statistics for the
“ABONE HABER NTV” N-Gram Table until the “SKY”’(package name part) and after that
part we replace “NTV” with the “SKY”.

3.5.2. Creating N-Gram Tables from Scratch

In this case, instead of using tagged data, firstly we manually add some predefined
obvious variants of the keys and we define a threshold value for every N-Gram tables as
we did in phasel, but this case if the given message is accepted we add this message into

the tables as a new variant and recalculate statistics in runtime.

For example, imagine a new package named “SHOW?” will be created. The process

of this approach will be as follows:

For the “ABONE HABER SHOW? the following N-gram tables should be created:

e “ABONE”: This is already known by existing tagged data, there is no need to

recalculate for the new package.

e “ABONE HABER’: This is also known by previous statistics.

e “ABONE HABER SHOW’: For this table we add manually some initial obvious
variants like ABONE HABER SHOV”, “ABONE HABER SOV”, “ABONE
HABER SHW”, “ABONE HABER SOW”...etc. And for this table a threshold
value for the acceptance will be defined. This could be parametric and it could

be modified at runtime.

Finally, at runtime, when a new message is evaluated for this table, if the calculated

value for the N-Gram evaluation is smaller than the threshold, the message will be rejected,
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otherwise (calculated value is bigger than the threshold) the message will be accepted and
the statistics of the table will be recalculated because the accepted message is inserted into

the N-Gram Data table.

Thus in this case the N-Gram data table and its statistics are evaluated in runtime.

The results for both of these cases are presented in the chapter 4.
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4. RESULTS AND EVALUATION

In this chapter, the results and evaluations of the N-Gram techniques that we
mentioned in the previous chapters will be presented. There are two big sections Phasel
and Phase2. Constructing N-Gram tables with the tagged data is evaluated in section 4.1.

The rest of the work is evaluated in section 4.2, including runtime training of the N-Gram

Phasel.

4.1. N-Gram Phasel

The implementation of this phase was finished in the spring of 2004. After that, the
implementation was deployed in the production system and it ran against more than 10

million SMS messages until the spring of 2005.

In order to evaluate the results, the raw data and evaluated data by N-Gram were

considered separately. Thus, we could calculate False Acceptance and False Reject values.

“False Accepted Message” signifies the messages that are accepted by the N-Gram

approach but normally they are wrong or should not be accepted.

“False Rejected Message” signifies the messages that are rejected by N-Gram

approach but normally they are correct and should be accepted by the system.

Therefore, in the evaluation process we also calculated False Acceptance and False
Reject counts in order to measure N-Gram performance. These values are also used in
order to set correctly threshold values of the N-Gram tables. By trying different values a
better solution is obtained where “False Acceptance”= 2 per cent, “False Reject’=1 per

cent and “Resolved Typing Errors”=10 per cent.
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“Resolved Typing Errors” signify the messages that are correctly handled by the N-
Gram system but caused errors in the previous system. By using this approach, 10 per cent

of the Error messages are decreased and correctly handled.

N-Gram Phasel results and their numerical representations are shown in Table 4.1.

and Figure 4.1. respectively.

Table 4.1. Results of phasel

Result type Per cent
Valid 67.52
Typing Errors 2.32
Mobile Device specific problems 0.29
Proper sentences: 3.17
Reflected messages 3.67
Dialog based messages 7.76
Inappropriate messages 1.42
Wrong services 0.59
Undefined messages 0.93

Resolved Typing Errors after Phasel 9.72

False Acceptance 2.07
False Reject 0.54
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Phase | Dialog based messages
8%
° Inappropriate messages
1%

Reflected messages 4%

Proper sentences: 3% Wrong services 1%

Mobile Device specific
problems 0%

Typing Errors 2%

Undefined messages 1%

Resolved Typing Errors
after Phase1 10%

False Acceptance 2%

valid 67% False Reject 1%

Figure 4.1. Results of phasel
In Figure 4.1., we see the results after evaluating N-Gram approach in the real
system. With this approach mainly Typing errors are resolved. Typing errors are decreased

from 12 per cent to 2 per cent.

However other erroneous messages like “Dialog based Messages”,” Reflected

Messages” and “Phrased Messages” still can not be handled correctly.

Table 4.2. Error distribution after phasel

Result type Count
valid 7724
Typing errors 232
Mobile device specific problems 29
Proper sentences: 317
Reflected messages 367
Dialog based messages 776
Inappropriate messages 142
Wrong services 59
Undefined messages 354




After the Phasel
Figure 4.2
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evaluation overall system’s error distribution graph is shown in

Error Distribution after Phase |

O valid
7%

O Dialog based messages
8%

B Reflected messages
4%

O Proper sentences:
3%

W Inappropriate messages

1%

B Undefined messages
4%

0O Wrong services
1%

X B Typing errors
2%
O Mobile device specific
problems
0%

Figure 4.2. Error distribution after phasel

Total valid messages percentage has increased from 68 per cent to 77 per cent. This

means that our approach increased the SMS handling performance significantly.

4.2. N-Gram Phase2

As mentioned before, Phase2 has two different approaches: ‘“Reconstructing N-Gram

Tables by Using Existing Data” and “Creating N-Gram Tables from Scratch”. These

approaches could not be run in the production system. Instead of this, they were run in the

simulation environment against 100000 SMS messages for evaluation purposes.

4.2.1. Reconstructing N-Gram Tables By Using Existing Data

After the necessary configurations algorithm was deployed in the simulation

environment and tested with the 100000 messages.
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Table 4.3. Results graph by using existing data

Result type Count
valid 6742
Typing Errors 587
Mobile Device specific problems 38
Proper sentences: 317
Reflected messages 358
Dialog based messages 759
Inappropriate messages 141
Wrong services 45
Undefined messages 89
Resolved Typing Errors after Phasel | 537
False Acceptance 304
False Reject 83

Result graph is shown in Figure 4.3.

Phase I Mobile Device specific  Reflected messages
Proper sentences: 4%
problems 39, °
Typing Errors 0% °

; Dialog based messages

6% 8%

Inappropriate messages
1%

Wrong services
0% Undefined messages

1%
Resolved Typing Errors after
Phase1
5%

Other
10% False Acceptance

3%

False Reject
1%

valid
68%

Figure 4.3. Results Graph by Using Existing Data

As shown in Fig. 4.3, the results are very similar to Phasel . The main difference
between Phasel and this algorithm is the performance. The False Acceptance value is
increased from 2 per cent to 3 per cent and “Resolved Typing Errors” is decreased from 10

per cent to 5 per cent.
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Table 4.4. Error distribution by using existing data

Result type Count
valid 7279
Typing errors 587
Mobile device specific problems 38
Proper sentences: 317
Reflected messages 358
Dialog based messages 759
Inappropriate messages 141
Wrong services 45
Undefined messages 476

The overall score is shown in the Table 4.4. and Figure 4.4. respectively. It means
that by using this algorithm, handled (valid) SMS percentage is increased from 68 per cent
to 73 per cent (It was 77 per cent in the Phasel).

Error Distribution after Phasell

O Dialog based messages
8%

x B Inappropriate messages

1%

B Reflected messages
4% O Wrong services
@ Other 0%

27%

O valid
73%

B Undefined messages

5%
\l Typing errors

O Mobile device specific 6%
problems
0%

O Proper sentences:
3%

Figure 4.4. Error distributions by using existing data

However, these results are not as good as they seem, because they have been
obtained by replacing keywords exactly same length of the old ones. For example,
“ABONE HABER SKY” package is obtained by using the same statistics of the “ABONE
HABER NTV”. When the new keyword length is different, the performance is decreased.
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For example instead of “SKY” package if we want to use “ABONE HABER KANAL7”

everything would be changed.

It means that this algorithm is very sensitive to the length of the difference. To make
this issue clearer, we have prepared new simulations. If the same simulation runs with the

difference length of the keyword, Figure 4.5. will be obtained:

600

500 -

N
o
o

—— Existing Keyword Delta
—— Resolved Typing Errors

Resolved Typing Errors
W
o
o

N
o
o

100

1 2 3 4 5
Existing Keyword Difference

Figure 4.5. Effect of the existing keyword length difference

As shown in Figure 4.5., especially if the difference of the length is bigger than three

characters, the resolved typing errors performance is decreasing dramatically.

4.2.2. Creating N-Gram Tables from Scratch

To do this firstly N-Gram tables are constructed manually with some obvious
variants as mentioned before. After the simulation, best results are obtained as seen in

Table 4.5.
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Result type Count
Valid 6682
Typing Errors 709
Mobile Device specific problems 43
Proper sentences: 324
Reflected messages 365
Dialog based messages 763
Inappropriate messages 146
Wrong services 48
Undefined messages 93
Resolved Typing Errors after Phasel 437
False Acceptance 314
False Reject 76
Phase Il M°b“ep|3r§g:g;2pe°iﬁc por soronces: | "1eCed messages

Typing Errors
7%

0% 39

Dialog based messages
8%
Inappropriate messages
1%

Wrong services Undefined messages
0% 1%

Resolved Typing Errors after
Phase1
4%

Other
9% False Acceptance
3%

False Reject
1%

valid
68%

Figure 4.6. Result graphs for N-Gram tables from scratch

As shown in Figure 4.2.2. results are very similar to Phasel. The main difference

cent to 4 per cent (1t was 5 per cent for the first algorithm of the Phase?2).

So the overall Score is shown Table 4.6. as follows:

between Phasel and this algorithm is the performance. False Acceptance value is increased

from 2 per cent to the 3 per cent and ‘“Resolved Typing Errors” is decreased from 10 per
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Table 4.6. Error distribution for N-Gram tables from scratch

Result type Count
Valid 7119
Typing errors 709
Mobile device specific problems 43
Proper sentences: 324
Reflected messages 365
Dialog based messages 763
Inappropriate messages 146
Wrong services 48
Undefined messages 483

Error Distribution after Phasell

O Dialog based messages
8%

/ B Inappropriate messages

%

B Reflected messages
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O Wrong services
@ Other 0%
29%
0O Proper sentences:
3%

@ valid
72%
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0O Mobile device specific
problems
o
0% B Typing errors
7%

Figure 4.7. Error distributions for N-Gram table from scratch

As shown in Figure 4.7., the handled SMS percentage is increased from 68 per cent
to 72 per cent with this algorithm (It was 77 per cent in Phasel and 73 in the first
Algorithm of the Phase2).

As mentioned before, these results are the best ones for this approach. There are also
some other problems with this algorithm. This algorithm tries to fill N-Gram tables in
runtime by using some threshold values. So after a certain time algorithm does not work
because “False Acceptance” value increase dramatically. It means that it accepts every

word as valid SMS.
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It can be easily seen (in Figure 4.8.) that after the algorithm accepts 200 distinct new

keywords overall performance is starting to decrease to zero.
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Figure 4.8. Effect of adding new keywords

To resolve this problem, we changed the algorithm as follows: After it accepts and
adds new distinct keywords, a new keyword count control is added to the algorithm. If the
different keyword count is achieved, no new keyword is added into the N-Gram table even
if the other conditions are satisfied. So we obtained every time similar results that we

mentioned 4.2.2.
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5. CONCLUSION AND FUTURE WORK

The list of future improvements is quite long. In SNLP world there are many
approaches to handle our problem. This study only introduced basic concepts of the N-

Gram approach and its example of the use in order to increase SMS parsing performance.

It is necessary to say that N-Gram Approach is not very helpful for the Dialog based
Error types. It is very sensible to the length of the sending message. When the length of the

message increases, the N-Gram approach will lead to wrong results.

For the future, it would be very helpful to add some new algorithms in order to

resolve long messages like the following:

“LUTFEN BENIM TRIBUN PAKETIMI IPTAL EDERMISINIZ”

One implementation could be to concentrate on dialog based conversation techniques

in order to handle these types of errors.

There would be also some other improvements for our approach. For example, recall
that we have used only first part of the Bayesian formula (Equation 2.9), so for the future
work, using Bayesian prior information could be very helpful in order to increase SMS

parsing performance.

However our approach is very useful to resolve the small typing problems. In fact
most of the cases the customers make this kind of mistakes. As mentioned in Chapter 4,

customers’ typing problems are automatically resolved by this approach.

Finally, overall results can be seen as satisfactory, because the total valid messages
percentage has increased from 68 per cent to 77 per cent. This means that company’s
successful customer subscription ratio has increased 13 per cent, which is directly related

to the profit of the Company and the customer satisfaction.



APPENDIX A: TURTLE SYSTEM

A.1. Overview of the Turtle System
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Turtle is mainly an integration project including B2B and B2C features. One of its

main requirements is to integrate different parties using different technologies, with

minimum set of requirements.

In fact, it consists of a technical architecture that bridges the gap between the

external systems and the Telco infrastructure, foundation components, modules, and

guidelines to achieve the synchronization between each other. You can see black box

diagram of the Turtle system in Figure A.1.
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Figure A.1. Black box diagram of the Turtle system
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The Turtle system architecture can be decomposed (Figure A.2.) into four main
parts:
® Presentation Layer
¢ Business Logic Layer
e Data Model Layer

¢ Communication Layer
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Figure A.2. Turtle n-tier architecture diagram

A.1.1. Presentation Layer

Turtle Release 2.0’s SMS/WEB/WAP User interfaces, TAM/TBO, CURE, Support,

and Marketing Operation interfaces are in the Presentation Layer.
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As seen in Figure A.2., SMS is one of the channels for the Presentation Layer. In
fact, 80 per cent of Turtle user subscriptions are made via the SMS channel. Thus,

customer satisfaction mainly has to do with SMS operations.

A.1.2. Business Logic Layer

Turtle Release 2.0 has many features, such as campaign administration, charging,

user subscription, etc. All of these features’ logic and rules are in this layer.

A.1.3. Data Model Layer

In order to keep Campaign, Packets, Service, Parameter Definitions, User
subscription and Charging Data, 31 party’s synchronization Data Turtle Release 2.0 needs

a powerful Data Model to handle all the new and old features of the system.

The business logic layer uses and stores Turtle data in the data model layer. Data are

stored in two main formats: XML and RDBMS.

XML is used mostly for the data representation for example Campaign list in the

Web interface is made by using XSLT transformation of the Campaign XML.

User’s product information is stored in the Database; Oracle 9i is used as RDBMS

for the turtle.

A.1.4. Communication Layer

This layer is responsible for communication with external systems such as Telco’s

billing interface or third Parties subscription Information system interfaces.

The communication protocol depends on the system, for example, billing interface is
based on HTTP proxy, while third party integration system is made with Web Services
technology.
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APPENDIX B: SMS HANDLING SYSTEM

SMS Handling Subsystem is responsible for parsing Users’ Short Messages from

SMS Gateway. In fact our approach is working behind the SMS Handling system.

SMS Handling subsystem has the architecture, shown in fig B.1
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Figure B.1. SMS handling system.

B.1. Some benefits of the SMS Handling Subsystem

In the current System of Turtle, the SMS parsing operation is not flexible. It uses

restricted format.

In the SMSHandling subsystem, the following benefits will be provided:
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e Faster subscription process.

e Package and service parameters will have an option which will specify
whether a given parameters can be taken from the user profile; this parameter

will specify the field of the profile to be used.

e Easier to use: The user will be allowed to enter the parameters in any order. A
user will be able to subscribe in one SMS by sending the subscription
keyword and as many parameters as he can. The system should look at
parameters if any and then ask for the missing ones only. The user will skip
package name if the brand name is sufficient. If a given brand name is
(ABONE SHOWTYV), if a given brand name maps to more than one package
the system will prompt the user with the package first. If there are garbage
keywords in the SMS they will be ignored. In case of a keyword conflict the
user will be asked to specify the action he wants to perform. When the
permissible value of a parameter is one of value of a finite list of discrete
value, the user will be able to select the index of the value instead of entering

the value.

B.1.1. Additional features

Support for a new keyword to continue a service without entering any new
parameter. For example suppose that we accept the keyword “Devam”, on receipt of that
keyword the system will look at packages/services which are marked to accept such a

command and renew the subscription if appropriate (need to be defined a bit more.)

Query of the user’s status at Turtle.

The messages which are part of the subscription flow will be stored in a user-

readable format that can be changed with any text editor. Performance monitor and

integration to HPOV.
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APPENDIX C: IMPLEMENTATION DETAILS

C.1. Microsoft .NET Overview

All business logic in the Turtle system has been implemented in Microsoft .NET
Framework version 1.1. For Application server Microsoft .NET Framework 1.1 used as an
Integrated Development environment. In order to handle Service, Package, Campaign
structures, SMS Handler will use Web service technology provided by Service, Package,

and Campaign system.

Because of this, the code for this study is also implemented in .NET language for

integration purposes.

.NET is defined [4] as the Microsoft Web services strategy to connect information,

people, systems, and devices through software.

Integrated across the Microsoft platform, .NET technology provides the ability to
quickly build, deploy, manage, and use connected, security-enhanced solutions with Web
services. .NET-connected solutions enable businesses to integrate their systems more
rapidly and in a more agile manner and help they realize the promise of information

anytime, anywhere, on any device.

C.2. Tagging Process

As mentioned in the thesis, Tagging process was one of the main steps of the
evaluation part. There were more than 6 million SMS messages to evaluate in order to
regroup them to calculate statistics values. Therefore, it was necessary to write a utility
program built in via graphical user interface to process all data in the limited time. To do
this, .NET Framework libraries was used. A simple form based data entry tool was created.

The form screenshot is in Fig.C.1.
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Figure C.1. Tagging utility screen shot

C.2.1. Tagging Strategies and Rules

In order to process large amount of data in a very limited time some strategies were
employed in the Tagging process. Firstly messages sent by the same user within a same
day are regrouped and shown at the same time in the GUI screen. These regrouped
messages are called “SEQUENCE”, Every subscription message step is in fact an element
of the “SEQUENCE” So, seeing all the messages at the same time gives more clear

information to us about to learn users’ aims.

There are also some other elements to make programs more user friendly such as”

possible correct text” area,” Error type”,” Package identifier of the sequence”.
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Finally, all error messages are categorized like following:

Typing errors: Errors occurred due to pressing wrong button combinations.
These are generally simple errors, which changes one or two letters in whole

message.
Examples:
o ABONE IPTAIL
o ABONE TRIBN
o Iptal haber skytrl

Mobile device specific problems: Some of the mobile devices add special
characters to end of the messages, or some cannot send words with Turkish

characters, so that devices change some characters.
Examples:

o OPTAL (means IPTAL)

o “HUBO (means SHUBUO)

o abone flCrt (means abone flort)

Proper sentences: This error type occurs when individuals do not use
keywords. Except keywords, they write sentences to express their request.

Examples:
o Kontorumu istyorummmm
o Gunluk burc iptal edilsin
o Pop Muzik Abonemi iptal etmek istiyorum

Reflected messages: This case is generated, if user forwards the message,

which the system sent, back to the system.
Examples:

o Flort Paketi aboneligin bulunmamaktadir. Sen de Flort Paketine uye

olmak istiyorsan ABONE FLORT yaz XXXXye gonder.
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o KampusCelliye 2 mujdemiz var! 30Nisana kadar aboneligini yenile
S50kampusici SMS kazan. Ustelik 6Nisandan itibaren grupici dk.si
1kontor/8,5Ykra konus

o SuperSifreniz:473485. Guvenliginiz icin sifrenizi kimse ile

paylasmayiniz. Bu mesaj icin ucret alinmamaktadir.

¢ Dialog based messages: user interacts with system, as there is a human-being

reading and replying messages.
Examples:

o YOK KALSIN AMA DUR DUR KABUL EDOYOM NASIL
YAPCAM

o NEZAMAN IPTAL OLACAK ASTROLOJI
o Sen iptal ettir kayit oldugu yerleri...

* Inappropriate messages: the words are legal and exist in lexicon, but total

message does not satisfy meaningful sentence.
Examples:
o ABONE IPTAL
o HABER FLORT
o IPTAL EVET
e  Wrong services: messages that was sent to wrong service number.
Examples:
o Avanskontur
o KONTORBIZDEN
o WAP AYAR NOKIA

® Undefined messages: the messages which does not mean anything and/or

irrelevant with the system.
Examples:

o Bentrkiyedeyasamucgeniolusturdum
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o Ama seni seviyorum

After selecting the error category of the messages, if we can predict what user

requests then, we enter this to the meaningful term to the system and save messages to DB.

After tagging messages with this GUI data in the table looks like Figure C.2.1. as

follows:
IMSGID  |MESSAGEBODY IMEAN |
25475686 ABOME ABONE
25475687 IPTAL SAMSUNSPOR IPTAL SAMSUNSPOR,

254756858 BLOKE 8090

25475689 AJUD2GIM

25475590 NASSSIN

23475692 KB

25475693 Tribun.Paket

25475694 IPTAL HABER NTY IPTAL HABER. MTW
25475695

25475696 Gagaga

25475699 null

25475701 A,dpmprmpmalijrlar

25475704 ABOME ABONE

25475706 iptal IPTAL

25475707 null

20475708 ABONE POPMUZIE AEONE POPMUZIE
25475709 Optal aa IPTAL AA
25475710 IPTAL IPTAL

25475711 ABOMNE POPMUZIK ABONE POPMUZIE
25475713 IPTAL IPTAL

25475714 IPTAL IPTAL

22475715 IPTAL HABER. SHOWTY IPTAL HABER. SHOWTS
20475716 ABONE POPMUZIK ABONE POPMUZIE
20475717 IPTAL IPTAL

20475718 ARA

25475719 ABOMNE HABER NTY ABONE HABER. MTY
25475720 Ipkal.Haber

25475721 Paket PAKET

25475723 null

22475724 IPTAL IPTAL

25475725 Cewvap: EVET ---Orijinal mesaj--- TAHMIN MACKOLIK paket PAKET MACKOLIK 24
20475726 Qrorpu
25475727 BLOKE 8090

25475728  Abone Hava 34 ABONE 34
25475729 Haber HAEER.
25475730 ABOME POPMUZIK ABOMNE POPMUZTE

25475731  Kontrbizden
25475732 null

Figure C.2. Tagged data in the database
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APPENDIX D: RUNTIME ENVIRONMENT

D.1. Platform

Because of the confidentiality and the company policies, we cannot give all hardware

infrastructure information here.

However, to give some idea, we can cite some information about the runtime
environment. In the runtime environment there are Windows and Unix systems working

together.

Their Versions and capacities are as follows:

Unix :

Sun Solaris 8

Sun Cluster 3.0

BEA Weblogic 8.1 SP1
Oracle 9.2.0.4

Apache Webserver 1.3.2.2.

Microsoft :

.NET Framework 1.1

Window Server 2003 (Enterprise)
MS SQL Server 2000
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