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ABSTRACT

ORBITS IN THE ANTI-INVARIANT SUBLATTICE OF
THE K3-LATTICE

Caner Koca
M.S. in Mathematics
Supervisor: Assoc. Prof. Dr. Sinan Sertoz
July, 2005

When a K3-surface X doubly-covers an Enriques surface, the covering transfor-
mation induces an involution on H?(X,Z). This cohomology group forms a lattice
Lx under the cup-product, and as such is isometric to EZ @ U3 =: A. Its anti-
invariant sublattice is denoted by Ly and it is isometric to Eg(2)®U (2)®U =: A~.
In this thesis, we will determine the number of orbits of primitive cohomology
classes in A~ under the action of its self-isometries. We will also derive some
conclusions on certain divisors of the moduli space of Enriques surfaces. Also a
short survey on finiteness results of linear system of curves on K3 and Enriques

surfaces is given. Some of the new results in this thesis also appear in [9].

Keywords: Lattices, K3 surfaces, Enriques surfaces.
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OZET

K3 ORGUSUNUN TERS-DEGISMEZ
ALTORGUSUNDEKI YORUNGELER

Caner Koca
Matematik, Yiiksek Lisans
Tez Yoneticisi: Dog. Dr. Sinan Sertoz
Temmuz, 2005

Bir X K3 yiizeyi Enriques ylizeyini orttiiginde ortii dontigimic X yiizeyinin
ikinci kohomolojisinde bir diirme tamimlar. Bu grup Lx ile gosterilir, topolojik
kesigim indeksiyle beraber bir 6rgii yapisina sahiptir ve bu haliyle E2 & U? =: A
orglisiine egolcevli olur. Bunun ters-degismez altorgiisii Ly ile gosterilir ve Eg(2)®
U(2) @ U =: A~ orgilisiine egolcevlidir. Bu tezde A~ igindeki ilkel kohomoloji
siniflarinin yoriinge sayisini tespit ettik. Bunun yaninda Enriques yiizeylerinin
ornek uzaylarindaki bolenler tizerine birtakim sonuglar elde ettik. Ayrica K3 ve
Enriques yiizeyleri tizerindeki egrilerin dogrusal sistemlerinin sonlulugu hakkinda
bilinen bazi teoremlerin kisa bir ozetini sunduk. Bu tezdeki yeni sonuglarin bir

kismi [9] numarali makalede de yer almigtir.

Anahtar sézcikler: Orgiler, K3 yiizeyi, Enriques yiizeyi.
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Chapter 1

Introduction

In this chapter we give basic definitions and facts from the theory of algebraic

surfaces and integral lattices.

1.1 K3 and Enriques surfaces

A compact complex surface X is called a K3 surface if the irregularity ¢(X) =0

and the canonical line bundle Kx is trivial (i.e. = Ox).

Since ¢ = 0, we have b; = dim H'(X,Z), = 0, because by Hodge Decomposi-
tion ¢ = 2b;. Moreover, H'(X,Z) has no torsion (see [2, §VIII, 3.2]). Therefore
Hi(X,Z) and hence m(X) are trivial, that is X is simply-connected (see [6,
§2.A)).

Since the canonical bundle Kx is trivial, the geometric genus p,(X) =
dim H*?(X) = dimH*(X,0%) = dimH*(X,0x) = dimH’(X,Kx) =
dim H°(X,Ox) = 1, by Serre Duality [3, §I.11]. Thus, there is a nowhere-

vanishing holomorphic 2-form €2 on X.

We have x(0,) = h%(X, Ox)—h'(X,0x)+h*(X,0x) = 1—q+p, = 2, which
implies by Noether formula (see [3, §1.14]) that x(X) = 12 x(O) — ¢1(Kx)? = 24
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(here we use that the first Chern class map ¢; is injective for K3 surfaces, because
HY(X,Ox) = 0 since ¢ = 0 and it has no torsion). Since by = by =1, by = b3 =0
by Poincaré duality, this implies that b, = dim H*(X,C) = 22. So we have
rank H?(X,7Z) = 22.

The fact that H'(X,Z) = 0 implies that H?*(X,Z) is torsion-free: Indeed, any
compact manifold X has a finite dimensional finite skeleton. In particular, all ho-
mology groups are finitely generated (i.e. it consists of a free and a torsion part).
Moreover, if X is closed (i.e. it has no boundary), connected and orientable, then
by Poincaré duality, there is a canonical isomorphism H,(X,Z) = H" ?(X,Z).

However by universal coefficient formulae
H"?(X,Z) ~Hom (H,_,(X,Z),Z) ® Ext (H,,_,-1(X,Z),Z) .
Note that

Hom (Z,Z) =7  Hom(Z,,7Z) =0
Ext(Z,Z) =0 Ext(Z,Z) = Z,.

These calculations imply that H,(X,Z) and H,,_,(X,Z) have the same free part,
and the torsion part of H,(X,Z) is the same as the torsion part of H,_, 1(X,Z).
Now, for X a K3 surface, simply put n =4, p = 2. Since H;(X,Z) is torsion-free,
so is Hy(X,Z).

So H*(X,Z) is a free Z module of rank 22. Moreover, there is a natural

integral bilinear product on it, namely the cup-product,
U: H*(X,7Z) x H*(X,Z) — H*(X,7) ~ Hy(X,7) ~ 7.

Thus, H*(X,Z) equipped with this product forms a lattice which we denote by
Lx for short. Moreover, by Poincaré duality, this pairing is unimodular. By
Milnor’s classification of unimodular lattices (see [12],[13],[17],[20]), such a lattice
is determined uniquely by its rank, signature and parity. By Hodge index theorem
2, §IV 2.13], we have sign Lx = (3, 19), and by Wu's formula o? = a-¢; (Kx) =0
mod 2, Vo € H*(X,Z), i.e. the product is even. Now, it follows from Milnor’s
theorem that Lx ~ E2 & U? where Ey is the negative definite root lattice of rank

8, and U is the hyperbolic plane.
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A surface E is called an Enriques surface if the geometric genus p,(E) = 0, the
irregularity ¢(£) = 0 and the square of the canonical bundle X%? = Op. Enriques
surfaces are not simply-connected, as m(F) ~ Z,. By similar calculations as
above, x(Og) = 1, x(E) = 12, bg = by = 1, by = by = 0 and by = 10. Thus,
H?*(E,Z) ~ 7' & Zy, and by Milnor’s theorem, its free part is isometric to
Es ® U =: © which is called the Enriques lattice.

The relation between K3 and Enriques surfaces is given in

Theorem 1.1.1 (see [3, §VIIL.17]) The universal (unbranched) double cover of
any Enriques surface is K3. Conversely, any K3 surface X with a fixed point free

involution v doubly-covers an Enriques surface, namely X /1 .

Assume that the K3 surface X covers an Enriques surface E. Then the
fixed point free involution 2 : X — X induces an involution homomorphism
v* 2 H*(X,Z) — H*(X,Z). This is an isomorphism between two integral lattices,
so it can have only two eigenvalues +1 over Z. The positive eigenspace (called
the invariant sublattice) is denoted by L and is isometric to Fg(2)®U(2) =: AT,
The negative eigenspace (called the anti-invariant sublattice) is denoted by Ly
and is isometric to Eg(2) @ U(2) ® U =: A~ (see [14]) .

Since p, = 0, by Hodge decomplosition we have H?(E,Z) = Pic(E), i.e.
Enriques surfaces are algebraic. If we pullback (algebraic) cycles on E by p*,
where p : X — FE' is the double covering, we get algebraic cycles that are invariant
under ¢*, i.e. cycles in LY. But by [14, Prop. 2.3] due to Mukai, it turns out that
these are all the cycles in L. In particular, this means N.S(X) contains L%.
Although for a generic K3 surface covering an Enriques surface NS(X)N Ly = 0,
in the non-generic case this intersection is nonempty, i.e. there are algebraic
cycles that are anti-invariant under ¢+*. To understand these cycles one needs to

study the lattice Ly ~ A~ closely.
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1.2 Periods of Enriques surfaces

Let X be any K3 surface. Denote the class of a nowhere vanishing holomorphic
two form Q by w € H°(X,Q%). By De Rham theorem and the Hodge decompo-
sition we can regard w as a point in H?(X,C). Since p, = 1, this w is unique up

to a multiplicative constant.

Now, assume that X covers an Enriques surface F. Let » : X — X be the
involution on X. Choose a marking (i.e. a fixed isometry) ¢ : H*(X,Z) — A
such that ¢ o1* = p o v where

A=FEodoEaeUaeUpU — A

P(€17@27U1au27u3) = (62,61,—U2,—U1,U3).

Such a marking always exists (see [7, 5.1], [2, §VIII 19.1]). Since X covers an
Enriques surface, we must have 1*(w) = —w; because otherwise (i.e. 1*(w) = w)
w would induce a holomorphic 2-form on E, which is impossible since p,(E) = 0.
Sow € (Ly)c and ¢(w) € Ag. Therefore, to a given Enriques surface we can
associate a point p(w) € Ag. But since w is unique up to a multiplicative
constant, this defines a line in A~ passing through the origin, and this further
defines a point (w) in P(Ag). Moreover w € H*(X,C) = H*(X,Z) ® C must also
satisfy the Riemann relations w-w = 0 and w-w > 0. So, at the end of this

process we get a point in
D={(w) eP(A¢) :w-w=0,w-w >0}

Note that this association essentially depends on the marking ¢, but it is unique

mod I', where
I' = restry-{g € O(A) : gp = pg}.

This defines the period map

® : Enriques Surfaces — D/T
E — (w) modT.

Namikawa [14] showed that in fact I' = O(A™). This period map was first studied
by Horikawa [7],[8]. He proved that
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(i) Weak Torelli Theorem holds for Enriques surfaces, i.e. ®(E) = ®(E’) implies
E~FE.

(7i) The image of ® is everything except the divisor H := U H;, where H; =
2=—2

D—-H
{(w) € P(Ag) : w-1=0}. That is, ® is surjective onto . This is called

the moduli space of Enriques surfaces.




Chapter 2

Orbits in A~

In the previous chapter we have seen that the lattice A~ and its automorphism
group O(A™) appear in various geometrical contents related to the algebraic
curves on K3 surfaces and to the moduli space of Enriques surfaces. However, A~
is a quite complicated lattice; its discriminant is equal to 1024 and its signature
is (2,10). In general, O(A™) is also very hard to deal with; for instance, given any
two vectors in A~ known to be equivalent mod O(A™), it is virtually impossible

to construct an isometry in O(A~) mapping one vector to the other.

In this chapter we will determine all orbits of the action of O(A™) on A~.
Our proof is inspired by a lattice-theoretical trick of Allcock [1] and a theorem
of Wall [20, Theorem 4]. It will turn out that the orbit of a vector depends only
on its norm, divisor and type. We will also count the number of orbits in the set
of primitive (2n)-vectors. The chapter will close with a characterization of these

orbits for primitive cohomology classes in Ly on any K3 surface X.

2.1 Definitions

By Milnor’s classification theorem for indefinite unimodular lattices, any odd

lattice with signature (s,t) is isomorphic to Iy, := (1)* @ (—1)" and any even
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a—

one to Il;; := (Bs(+1))*5" @ U® where a = max{s,t} and b = min{s,¢}. In

particular, signature of any even indefinite unimodular lattice is divisible by 8.

The type of an element w € L is defined to be characteristic if w-n=n-n
mod 2 for all n € L, and ordinary otherwise. According to a theorem of Van der
Blij [13, §II 5.2] if a vector w in a unimodular lattice L is characteristic, then

w-w = sign(L) mod 8.

2.2 Allcock’s trick

In [1], Allcock used a subtle lattice-theoretical trick to show that O(B(2) @ U) ~
O(Is:), where B is any even indefinite unimodular lattice of signature (s—1,t—1)
(hence, B is isometric to I1,_1;—1). Note that putting B = Eg @ U gives the
isomorphism O(A™) ~ O(I319). The latter isomorphism had also been discovered
by Kondo by different methods in 1994 (see [10]).

Allcock’s argument is as follows: Let A be any lattice isometric to B(2) @ U.
Then (\%A)* ~ B @& U(2). Now, notice that the primitive embeddings of a
lattice L into a unimodular lattice is characterized by the nontrivial elements
of its discriminant group L*/L. In our case, for L = B @ U(2) this group has
discr L = 4 elements, and it is isomorphic to Zy X Zs. 1t is easy to see that only the
embedding corresponding to the element (1, 1) € Zy X Zs gives an embedding into
an odd unimodular lattice, say A. By Milnor’s theorem A~Ba I, 1 (here the
uniqueness of embedding L — A is crucial). Conversely, given any A~BoI 11
then A ~ v/2(A°)* is isometric to B(2) @ U, where A° is the maximal even
sublattice of A (which is unique!). Considering A and A in R™ as euclidian
lattices, it follows that any isometry of one of them preserves the other (after

extending by linearity). This implies O(B(2) @ U) ~ O(B & I, ).

Here, we will give a coordinate-wise and constructive proof of Allcock’s iso-

morphism. This method later will also help us to determine the orbits in A~.
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For any lattice L of rank n fix a basis and define

1 1
(§)L = {§L :w € L and coordinates of w have the same parity},

and extend the bilinear product on L linearly to (3)L.

Now let rank B=(s— 1)+ (t—1)=s+t—2=:r

Lemma 2.2.1 An element w = (ay,...,a,,m,n) € B® I, is characteristic if

and only if m and n are odd and a;’s are all even.

Proof. Assume that w is characteristic. Let n = (0,...,0,1,0). Since w-n=m
and 1 -n = 1, it follows that m is odd. Similarly n is odd. Now, let n =
(c1,...,¢,0,0) where ¢ = (cy,...,c,.) is obtained from the product ¢! = B~ le;,
where e; is the column vector with 1 at i*® row and 0’s elsewhere (here, we use
the fact that B~! actually exists since discr B = +1). Now, for a = (ay,...,a,)

we have ¢!Ba = a;. So, w-n=a; and -7 =0 mod 2. Therefore a; is even.

Converse is straightforward. O
Lemma 2.2.2 O(B® (3)I1,1) ~ O(B & I,).

Proof. B @ I, is a submodule of B & (%)]1,1. After tensoring with R, consider
them as submodules in R™2. Let g € O(B @ (5)[11). It is easy to see that
the matrix representation of g in the standard basis of B @ (3)I;; has integer
entries. This matrix then defines an isometry of B @ I;;, thus an element in
O(B @ I,1). This association is clearly injective. Conversely, take any isometry
g € O(B® I;). In order to extend g to all of B & (3)]1; we have to define the
image of an element w of the form w = (ay,...,a,,m + %,n + %) By previous
lemma, 2w is a characteristic element of B & I, and so is g(2w) because the
type is an isometry invariant. Now, again by Lemma 2.2.1, 3¢(2w) is in B®& 11, ;.
Now put g(w) := 3g(2w). This defines an isomorphism on B & (3)I1,1 because its
matrix is the same as the matrix of the initial g on B & I; 1, hence unimodular.
O
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Lemma 2.2.3 (Allcock’s trick) If B is an even indefinite unimodular lattice
of signature (s — 1,t — 1), then O(B(2) & U) ~ O(B @ 11) >~ O(Ls4).

Proof.  Let {e1,...,e.} be the basis for B(2), {u,v} be the basis for U, and
{z,y} be the basis for I; ;. We define a map

¢p:B2)eU — BEB(%)IM

by + by by — by
2 72

).

(a1,...,a;,b1,b0) —  (a1,...,a.,
Clearly, this is a Z-module isomorphism with
w - wz =2 P(wi) - P(ws)
for any wy,ws € B(2) @ U.

Such isomorphisms multiplying the form by a non-zero scalar are called quasi-
isometries. Clearly, any two quasi-isometric (Q-valued) lattices (not necessarily
isometric) have isomorphic automorphism groups. Therefore O(B(2) & U) =~
O(B @ (3)I11). On the other hand, by Milnor’s theorem O(B @ I11) ~ O(I;).

L.

Using the previous lemma we complete the proof.

2.3 Main theorem

Using Allcock’s trick and the quasi-isometry that we defined in the previous
section, the problem of finding orbits in B(2)®U is ‘reduced’ to the same problem

in I;;. However, the orbits in I, are already known [20]:

Theorem 2.3.1 (Wall) If s,t > 2, then O(I;;) acts transitively on primitive

vectors of given norm and type (i.e. characteristic or ordinary).

Using this we deduce our
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Main Theorem 2.3.2 Let B be an even, indefinite, unimodular lattice. Con-
sider the action of O(B(2) @ U) on B(2) & U. Then the set of primitive (2n)-

vectors in B(2) @ U consists of one orbit if n is odd, and two orbits if n is even.

Again, letting B = Eg @ U, the theorem applies to A™.

We remind that some special cases of the theorem for A~ were proven by
Namikawa (for n = —1, -2, [14, Theorems 2.13, 2.15]), by Allcock (n = 0, —1,
[1]) and by Sterk (n = 0,—2, [18, 4.5]).

Proof of the main theorem. We will consider two cases:

Case 1: n is odd
Let w = (ai,...,a,,b1,by) be a primitive vector in B(2) & U. Then w-w =
4k + 2b1by = 2n. Since n is odd, we have b; and by both odd. So, ¢(w) =
(ay,...,a,, %, %) is an integral and primitive vector; moreover it is ordinary
since n # 0 mod 8. Since O(I,;) >~ O(B & I1,), all such elements are equivalent
mod O(B & I, ;). Since B(2) @ U and B & I, are quasi-isometric it turns out
that all primitive (2n)-vectors in B(2) @ U are transitive mod O(B(2) @ U). It
remains to show the existence of such a vector. But clearly w = (0,...,0,1,n) is

such a primitive (2n)-vector.

Case 2: n is even
Since w - w = 4k + 2b1b; = 2n =0 mod 4, by and by cannot be both odd.

Case 2.1: Only one of b; and b, is even:

bi+bs b1—bo
2 2

consider 2¢(w), which is integral, primitive and, by lemma 1, characteristic. All

In this case, ¢(w) = (a1,...,ar, ) has fractional coordinates. Instead,
such vectors are transitive by Wall’s theorem. Therefore, all such w’s are transitive
by similar arguments. Now, note that w = (0,...,0,1,n) in B(2) @ U is such a

primitive (2n)-vector.

Case 2.2: b; and by are both even:
In this case, ¢(w) is integral, primitive and ordinary. By similar arguments, w’s

are again transitive under the action of O(B(2) @ U). It remains to show the
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existence of such w:

Since B is even, unimodular and indefinite, B ~ Eg(+1)" ® U’ where j > 1
and ¢ > 0. For any k € Z, (1,k) € U(2) is a primitive vector of norm 4k, so in
particular B(2) contains a primitive element w of norm 4k. Let n = 2k. Then

w:=w" @ (0,0) € B(2) ® U is the required primitive vector of norm 2n.

Finally, note that the number of orbits of primitive (2n)-vectors is one if n is

odd, and two if n is even. This completes the proof. O

Application Our theorem can be used to simplify the proofs of some theorems
of Sterk [18]. In his paper, Sterk considers the action of a certain subgroup, which
he calls T, of the group O(A™) [18, p.8]. He calculates that this action on the
set of isotropic vectors has five orbits, each generated by primitive vectors e, €',
¢+ f+w, e +2f +a,2e+2f+ a. Here a and w are some elements in Fg(2)
such that o? = —8 and w? = —4. e, f are standard basis for U, and ¢, f’ for
U(2) (see [18, 4.2.3]). He also claims that under the action of O(A™) the last four
vectors are transitive, whereas the first vector lies in a different orbit (see [18,

4.5]). Using our theorem we can easily see this, because

e = (0,...,1,0)
¢ = (0,...,1,0,0,0)
7w871717070)

(

(
d+f+w = (w,
d+2f +a = (

(

ag,...,a8,1,20,0)
o, 05,0,0,2,2).

2e+2f+a = (ag,

Since all of the above vectors are primitive and isotropic (i.e. their norm is 0),
we already know that there are exactly two orbits of such vectors. By the proof
of the main theorem, the orbit of a primitive vector is determined by the parity
of its last two coordinates. Indeed, all the vectors above except the vector e have
the last two coordinate even, so they are transitive by Case 2.2. Note that e is

not equivalent to them because it has one odd coordinate (Case 2.1).

Taking all (2n)-vectors into account including those that are not necessarily

primitive we get the following:
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-1 n/d>
Corollary 2.3.3 Let A\(n) = Z L

d?|n, d>0

(2n)-vectors in B(2) @ U is precisely A(n).

. Then the number of orbits of

Proof. Given two (2n)-vectors w and w’. Write w = dv and v’ = d'v/, where v,/
are primitive vectors, and d, d’ are positive integers. Notice that this representa-
tion is unique. d is called the divisor of w. Since divisor is an isometry invariant,
it is clear that w and w’ are not equivalent unless d = d’. In this case, v and 1/
are two primitive vectors of norm 2n/d?. Such vectors have two orbits if n/d? is
even, and one orbit if it is odd, or shortly w orbits. In the case of v and
V' are transitive under an isometry, the same isometry would map one of w,w’ to

the other. So, for fixed n, it suffices to sum these numbers over divisors d, i.e.

over all positive integers d such that d?|n. O

Notice that in the proof of our theorem the orbit in which a (2n)-vector w
falls, depends only on the parity of the last two coordinates of w in a fixed basis.
However, for primitive cohomology classes in Ly on a K3 surface X we have also

a basis-free characterization of those orbits:

A primitive (2n)-class w € Ly is defined to be of even parity if there is a

primitive (2n)-vector w’ € L such that w +w’ € 2Lx (cf. [14, 2.16)).

Theorem 2.3.4 Let n be an even integer. Let ¢ be the quasi-isometry defined
in Lemma 2.2.3. A primitive (2n)-vector w € Ly is of even parity if and only if

o(a(w))) has integral coordinates where o : Ly — A~ is any isometry.

Proof. Since any self-isometry of LE extends to a self-isometry of Ly (see [14,
1.4]), without loss of generality we can fix a primitive embedding of A~ into A,
and prove the statement for the image of this embedding. Therefore, we fix the

following embedding

A =E(2)aeU?2) 66U — EaoUb=A

(e,u,v) — (e,—e,u,—u,v)
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and identify the domain with its image in A. The orthogonal complement of the

image is precisely the image of the primitive embedding

AT =Es2)oU(2) — E@U*=A

(e,u) — (e, e,u,u,0).

Moreover, the primitive (2n)-vectors w € A~ with integral images are transitive
by Case 2.2. Therefore, it suffices to prove the statement for special vectors in
A~

Let w = (0,...,0,k,1,0,0) € A~ be a primitive vector with w? = 2n = 4k,
and identify w with its image in A with coordinates (0,...,0,k,1,—k, —1,0,0),
by the above embedding. Notice that ¢(w) has integral coordinates. Now choose
W' =(0,...,0,k,1) € AT which corresponds similarly to (0,...,0,k,1,k,1,0,0) €
A. Now it is clear that w + ' € 2A.

On the other hand, the ¢ image of the vector w = (0,...,0,2k,1) € A~ has
fractional coordinates, and for no vector ' in AT can we have w + W' € 2A,

because the last coordinate of w + w' is always 1.
This completes the proof. O

Now, a primitive (2n)-vector in A~ with n even is called of odd parity if its
¢-image is fractional (case 2.1) and of even parity if it is integral (case 2.2).
Equivalently, w is even if w-n = 0 mod 2, Vn € A~, and odd otherwise. The
equivalence follows from the fact that (i) even vectors have the last two coordi-
nates even, (i) any product in Fg(2) @ U(2) is even. We extend the definition of
this parity to arbitrary vectors w in A~ by considering @ := w/d where d is the

divisor of w (see the proof of Corollary 2.3.3). Then we have:

Corollary 2.3.5 Ifn is odd, O(A™) acts transitively on (2n)-vectors having the
same divisor. If n is even, O(A™) acts transitively on (2n)-vectors having the

same parity and divisor.

Proof. Let n be odd. Then for two (2n)-vectors w,w’ with the same divisor d

the primitive vectors w/d and w'/d are equivalent modulo isometries by the main
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theorem. By linearity, this implies that w and w’ are equivalent as well.

The idea is similar for n even. However, one has to take the parity of w and

W' into account. O



Chapter 3

Geometric applications

In this chapter we will present some applications of the main theorem in Chap-
ter 2. Some of these results are new, and some of them are due to Allcock,
Namikawa and Sterk, who had proven our theorem for A~ for special values of n
(=0,-1,-2).

It turns out that our theorem is quite useful to understand the moduli space

of %riqftil_es surfaces. Recall that the moduli space of Enriques surfaces is defined

as via periods. Here I' = O(A™); D is a hermitian symmetric bounded
domain of type IV in P! cut out by Riemann relations; H is the union of hyper-
planes orthogonal to (—2)-vectors in D with respect to the product of A~. Tt is
known that this space is rational [10] and quasi-affine [4]. In a sense, our theorem

gives a rule for equivalence of ‘rational’” points in the moduli space.

On the other hand, the theorem seems to be less useful for the problems
related to the ‘anti-invariant’ curves on K3 surfaces. The reason is that not any
isometry of A~ is induced by an isometry of a K3 surface. The global Torelli
theorem for K3 surfaces asserts that only those isometries Ly — Lx preserving
the ‘Hodge structure of weight 2’ are induced by an automorphism of the surface
[2, §VIII]. In particular, any such isometry must preserve the period and the
‘positive cone’ which are already a big restriction. Despite this, we will give here

a survey of results about curves on K3 surfaces obtained by Namikawa and Sterk

15
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who studied the isometry groups of certain sublattices of A~ and the Néron-Severi

lattice.

The first immediate applications are due to Allcock. By the quasi-isometry
¢ that we defined in Chapter 2, the (—2)-vectors are in 1-1 correspondence with
the (integral) (—1)-vectors in (Es @ U) @ I;1 ~ Iyj9. So, we have a ‘simpler’

representation of the moduli space of Enriques surfaces.

Theorem 3.0.6 (Allcock) The period map establishes a bijection between the

!/

o where TV =

1somorphism classes of Enriques surfaces and points of

O(I2,10), H' = U H/, H ={(w) € D:w-1l=0}.

2=—1

The fact that the (—2)-vectors are O(A~)-transitive was first proven by
Namikawa [14, 2.13] using intricate analysis of Nikulin [15] on primitive embed-
dings of non-unimodular lattices. Later, Allcock [1] gave an elegant proof using

his trick that we described in Chapter 2. From this fact it easily follows
Theorem 3.0.7 (Namikawa, Allcock) H/T is and irreducible divisor of D/T.
Our theorem can be used in order to generalize the above theorem:

Theorem 3.0.8 Let N;, =|JN,, N, = {(w) € D:w -1l =0} where the union is
taken over all primitive (2n)-vectors if n is odd, or all primitive (2n)-vectors of

the same parity if n is even. Then N,,/T' C D/T is an irreducible divisor.

The above theorem was also stated in Namikawa [14, 6.4] for n = —2.

Another known application of our theorem is related to the Satake-Baily-Borel
compactification of this moduli space, D_/F The boundary components of this
compactification is defined in terms of isotropic sublattices of A~. In particular,
orbits of isotropic vectors in A~ correspond to the 0-dimensional boundary com-
ponents of D/T. Tt was Sterk [18, 4.5] who first proved that there are two orbits
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of such vectors. Later, Allcock showed it by using the trick. Our proof is in fact

different from theirs, but in any case it implies this fact. So, we have:

Theorem 3.0.9 (Sterk, Allcock) There are two 0-dimensional boundary com-
ponents of D/T".

Another application is the following theorem, though we don’t give a proof
here, due to Allcock:

Theorem 3.0.10 (Allcock) The universal cover of Dy = D — H is contractible,

as is the universal orbifold cover of Dy/T .

Now, we give a survey of results on curves on K3 and Enriques surfaces:
Namikawa studied ‘algebraic’ (—2)-classes in Ly, and deduced the following the-
orems [14, 6.2].

Theorem 3.0.11 (Namikawa) Let E be an Enriques surface, X its universal
double cover, wy € H?*(X,C) the period of X. Then E has a smooth rational
curve if and only if there is a (—4)-vector in Ly N NS(X) of even parity.

As a corollary he gets [14, 6.5]:

Theorem 3.0.12 (Namikawa) On an Enriques surface E there are only

finitely many smooth rational curves modulo automorphisms of E.
He also proves a similar theorem for elliptic curves [14, 6.7]:

Theorem 3.0.13 (Namikawa) On an Enriques surface E there are only

finitely many smooth elliptic curves up to Aut(E) and linear equivalence.

We remark that the K3 analogue of these theorems was proven by Sterk [19,
0.1]
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Theorem 3.0.14 (Sterk) Let X be a K3 surface. Then
(1) The group Aut(X) is finitely generated.
(2) For every d > 2, the number of Aut(X)-orbits in the collection of complete

linear systems which contain an irreducible curve of self-intersection d is finite.

A corollary of this theorem is

Theorem 3.0.15 (Sterk) Aut(X) is finite if and only if X contains finitely

many smooth rational curves.



Chapter 4
Problems for further research

The main theorem in Chapter 2 can be used to study the moduli space problems

for Enriques surfaces. A possible application is as follows:

Nikulin [16] defined a root invariant for an Enriques surface E. This invariant
is a pair consisting of a lattice K and an inner product space over the field Z,.

By definition, K is generated by A~ where
A" ={we LynNNS(X):w® = —4,3u € LENNS(X),w? = —4 s.t. wtw' € 2Ly}

where X is the double cover of . The product in K is the product of Ly divided
by 4. H is the kernel of the homomorphism

£:K/2K — LLNNS(X)/2(Ly N NS(X))

w mod?2 +— & mod?2.

The following problem is suggested by Igor Dolgachev [5]: Stratify the moduli
space of all Enriques surfaces in terms of moduli spaces of Enriques surfaces with

fixed root invariant. That is, find a representation as
Mg =[[Me(8)
A

where A stands for a root invariant (K, H).

19
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For instance, let us find Mg(Ay) where Ay = (K, H) with rank K = 1 (in
this case clearly ¢ is injective, and so H = {0}). These correspond to Enriques
surfaces with a unique rational curve C. Then, on the K3 surface X, we have
7(C) = R+ R’ where R and R’ are two disjoint rational curves on X. Then K
is indeed generated by R — R’. Now, the period of such Enriques surfaces are in
C* N D where C* consists of vectors orthogonal two C. Since all such C’s are
equivalent modulo O(A™), so are the hyperplanes C+, and we deduce that in fact

all such Enriques surfaces lie on the same irreducible divisor in the moduli space.

By the way, we should point out that not any pair (K, H) is realized by an
Enriques surface. K has rank at most 10, and it is a root system, i.e. direct some
of Ay, Dy, Ex’s. It is an interesting problem to find all such root invariants and

classify them.

Nikulin in his paper [16] in 1984 gave a list of six root invariants of Enriques
surfaces having a finite automorphism group. Later, in 1986, Kondo completed
the list by adding a seventh root invariant non-isomorpic to the previous six and

still realized by an Enriques surface with finite automorphism group (see [11]).
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