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ÖZ 

Ventriküler geç potansiyeller (VLPs), ventrikül taşikardisi (VT) geliştirmeye 

yatkın olan myokard enfarktüslü hastaların non-invazif markerleri olarak 

değerlendirilmektedir. Geç potansiyellerin tabiatı ve gerçek nedeni tam olarak 

anlaşılmamıştır ve bu nedenle iyi tanımlanmamıştır ve sinyal genlikleri genel 

olarak gürültüden ayırt etmek için çok fazla düşüktür. 

 

Bir VT hastasını standart yöntemlerle sınıflamak yanıltıcı olabilir ve başka 

şekilde önlenebilecek ölüme bile yol açabilen ağır sonuçları bulunmaktadır. 

VT’nin non-invazif göstergesi olarak VLP’nin analizinde ve tespitinde mevcut 

yöntemlerin düşük tahmin oranı, elde edilen sinyallerin net olmayan tabiatının 

yanı sıra, bu yöntemlerle ilgili güçlüklere de bağlı olabilir. Eğer hemen yardım 

edilirse ve kalp krizi hastasının yaşamını kurtaracak anahtar olan hemen tıbbi 

bakım sağlanırsa kalp krizi geri döndürülebilir, fakat istatistiklere göre kalp 

krizi kurbanlarının yüzde 95’i hastaneye ulaşmadan ölmektedir. EKG’lerinde 

VLP bulunmayan hastaların gösterilmiş VLP bulunanlara göre daha büyük 

hayatta kalma şansı bulunmaktadır. Aritmik olaylarda ve ani kardiyak ölümde 

tahmin aracı olarak bunların değeri hala oldukça düşüktür (%10-30), fakat 

VLP negatifse %95’inde olaysız olduğunu göstererek, iyi seyir tahmininde çok 

yüksek değer taşımaktadır.  

Bu çalışmanın temel amacı, sosyal karakteristikleri açısından VLP’leri 

meydana getiren şeyi tanımlamak ve analiz bölgesini QRS kompleksinin sonu 

yerine tüm kardiyak siklusu (döngüyü) kapsayacak şekilde genişletmektir. 



Tahmin oranlarını artırmak ve daha iyi alternatifler sunmak amacıyla, mevcut 

yöntemlerin güçlüklerini de en aza indirmeyi amaçlıyoruz.  

İnfarktın fiziksel özelliklerinin dinamiklerine, yani Büyüklük (Size), Konum 

(Position) ve Oryantasyonun (Orientation) yanı sıra Zaman (Time) 

varyasyonlarına (SPOT)  dayanarak geç potansiyelleri meydana getiren şeyin 

genel tanımını sunduk. Ayrıca günümüzdeki yöntemlerin temel güçlüklerini 

belirledik ve ayrı zaman ve frekans yöntemlerinin bildirilen başarılarını 

kullanan birörnek yaklaşımı sunduk. Bu alternatif yollar geç potansiyellerin 

tespit oranlarını ve analiz doğruluğunu artırmaya yardımcı olabilir ve umarız 

daha fazla hayat kurtarır.  

Bu birörnek yöntem mevcut yöntemlerin güçlüklerinden kaçınırken, bildirilen 

başarılarının avantajlarını kullanmaktadır. Dalga biçimi dönüşüm yöntemi 

(wavelet transform method), karmaşık cepstrum, homomorfik filtreleme ve 

yapay nöral ağlarla destklenen sürecin iskeletini meydana getirdi. 

Günümüzdeki yöntemlerin bildirilen sonuçları ile kıyaslandığında, bu yöntem 

artmış bir performans gösterdi.  

Anahtar Kelimeler: Ventriküler geç potansiyeller (VLPs), ventrikül taşikardisi 

(VT), SPOT 
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ABSTRACT  
 
Ventricular late potentials (VLPs) are considered as non-invasive markers of 

patients with myocardial infarction, which are prone to the development of 

ventricular tachycardia (VT). The nature and exact cause of late potentials are 

not well understood and therefore not well defined and signal amplitudes are 

usually too low to be differentiated from noise. 

 
Classifying a VT patient by standard methods can be misleading and have 

grave consequences that may even lead to an otherwise preventable death. 

The low prediction rate of current methods in the analysis and detection of 

VLP as a non-invasive indicator of VT may be due to the drawbacks 

associated with these methods as well as the unclear nature of the sought 

signal. Heart attack can be reversed if help is given quickly and the key to 

saving the life of a heart attack patient is immediate medical care but 

according to statistics, 95 percent of heart attack victims die before reaching 

the hospital. Patients without VLP in their ECGs have a greater chance of 

survival than those who have demonstrated VLP. Their value as predictive of 

arrhythmic events and sudden cardiac death is still relatively low (10-30%), 

but very high in predicting a good outcome, showing 95% event free if VLP 

negative.  

The main aim of this work is to define what constitutes VLPs in terms of their 

physical characteristics and to broaden the analysis region to include the 

entire cardiac cycle rather than just the end of the QRS complex. We also aim 



to minimize the drawbacks of current methods in order to increase their 

predictive rates and present better alternatives. 

We have introduced a general definition to what constitutes late potentials 

based on the dynamics of the physical properties of the infarct; namely Size, 

Position Orientation in addition to their Time variations (SPOT). Also we 

tackled the major drawbacks of current methods and presented a unified 

approach that utilizes the reported successes of individual time and frequency 

methods. These alternative means may help in improving the detection rates 

and analysis accuracy of late potentials and hopefully save more lives.   

This unified method avoids the potential pitfalls of current methods while 

taking advantage of their reported successes. The wavelet transform method 

formed the backbone of the process supported by the complex cepstrum, 

homomorphic filtering and artificial neural networks. The method showed an 

improved performance as compared to the reported results of current 

methods.  

Keywords: Ventricular late potentials (VLP), Ventricular tachycardia (VT), 

SPOT. 
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CHAPTER 1 

 
 

INTRODUCTION 
 

1.1 Introduction 

Ventricular late potentials (VLP) or simply late potentials (LP) are fragmented 

activities originating from electrically unstable regions of myocardium, and are 

markers of reentry arrhythmia in a period of one year after the myocardial 

infarction (MI). The medical term for a heart attack is acute myocardial 

infarction.  The term acute means sudden, myo refers to muscle, and cardia 

refers to heart. Myocardium is the medical name for the heart muscle and 

infarct refers to the artery being plugged or clogged up.  If an AMI results in 

the stopping of the heart then this is termed sudden cardiac death (SCD).The 

delayed activity in the form of fragmented deflections, seen terminal with the 

ventricular depolarization wave front, is usually found in border zones 

surrounding the scar tissue of previous myocardial infarctions. The border 

zone that exists is composed of conducting and non-conducting tissue, which 

slows and fragments the wave of electrical depolarization as it sweeps through 

the ventricular myocardium (Breithardt et al. 1991). 

Late potentials are obscured in the conventional surface ECG because of their 

low amplitude and the overlay of noise, but they can be visualized through 

special processing such as high resolution and signal-averaged ECG. LPs are 

thought to be a non-invasive marker of potential ventricular tachycardia (VT).  

This hypothesis has been confirmed by a large number of studies in the last 

decade.  However, LP analysis has not yet become a routine diagnostic tool in 

clinical cardiology.  There are on going studies including this one to show that 

LP analysis might become an important noninvasive means for LP detection.  

The two main problems in detecting ventricular late potentials from surface 

ECGs are that the inherent additive noise and QRS morphology effectively 
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mask the time and frequency domain late potential characteristics.  Therefore 

from the surface ECG, the morphology of a complex containing late potential 

activity is similar to the morphology of one without LP (Cain et al. 1996)(Jane, 

Rix and Caminal, 1991). 

1.2 Studies on analysis methods for VLP 

Signal-averaging technique was first applied to the human heart as a tool for 

enhancing biological signals.  In 1875 signal-averaging principles were first 

used, and in 1947 the technique began to be used to improve detection of 

electroencephalographic signals.  Hon and Lee in 1963 were able to detect 

fetal heart signals from skin surface electrograms by a so-called “computer of 

average transient’s” method. Eddlemon described a computer-based 

modification of the original averaging technique in 1968, essentially the 

approach used today.  Edward Berhari one of the pioneers of this new tech-

nique, described signal-averaging in 1973 as a signal processing technique 

usually done digitally, whereby repeated or periodic waveforms which are 

contaminated by noise can be enhanced.  That is, the signal-to-noise ratio can 

be improved. By summing successive noisy waveforms the random 

components (noise), will decrease while the deterministic components, (the 

desired signal), will be unchanged.  During 1973 Berhari’s group and one year 

later the group of Nancy Flowers published their first success in recording His 

potentials from the body surface.  By the year 1973 it was further observed 

that electrocardiograms from ischaemic canine myocardium were delayed and 

fragmented and that electrical activity was detectable, bridging diastole and 

preceding the onset of ventricular tachyarrhythmia. Guy Fontaine and 

colleagues in 1977 were the first to describe the detection of ventricular late 

potentials from the body surface in a patient with ventricular tachycardia: 

Fontaine had earlier recorded delayed potentials on the endocardium in the 

same patient.  In the years that followed, the relationship between ventricular 

late potentials detected by the signal-averaging technique and reentrant 

ventricular tachycardia in patients following myocardial infarction was 

established by a number of authors.  One of the most important contributions 

leading to widespread acceptance and use of the method came from Michael 
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Simson, who developed criteria for the detection of LP in 1981.  This 

technique is now widely accepted and since 1991 it has become an 

international Standard that two out of three Simson-derived criteria constitute a 

positive LP.  In addition to the usual analysis of LP in the time domain, 

frequency domain analysis using fast Fourier transformation and spectral 

turbulences during the entire QRS complex have been developed though not 

yet standardized.  Further promising tools for detecting dynamic changes of 

electrical activity is beat-to-beat, and wavelet transform analysis (Vester, 

Strauer 1994)(Rompelman, Ros, 1986)(Simson, 1981). 

1.3 Commonly applied methods for VLP  

A number of different methods have been used to identify Late Potentials and 

thereby assess the risk of serious ventricular arrhythmias and sudden death. 

Time domain signal averaging of many complexes is one existing technique, 

which suppresses the random noise component of periodic data.  Simson 

adopts this method of noise reduction before high pass filtering XYZ lead data 

and forming the vector magnitude to determine the existence of late potentials.  

Typically, a large number of complexes are required to reduce the noise to a 

level below that of the late potential activity. 

Frequency domain analysis suffers from several drawbacks: it fails to provide 

time localization of signal singularities characterized by high-frequency 

components and hence information on the precise incidence of LP is lost. In 

an effort to widen the window and thus increase frequency resolution, many 

investigators have extended the analyzed region toward the end of the ECG 

signal (T-wave), covering the entire ST-segment.   

1.3.1 Time domain analysis 
 
Time domain analysis divides further into: 

• High-resolution Low-noise ECG 

• Signal averaging 

• Beat-by-beat analysis  

 

 3



1.3.1.1 High-resolution low-noise ECG 
 
Non-invasive methods of diagnosis of cardiac disorders involve digital 

recording of cardiac signals at the body surface (chest) and subsequent 

computerized analysis. Such methods and instruments provide a vital first 

step to the diagnosis of the heart without involving surgical procedures.  One 

such non-invasive field is High Resolution ECG (HRECG) described in detail 

by Zimmermann and co-workers. Three channels are recorded 

simultaneously and the analog input signal is fed through a preamplifier with a 

fixed gain of 1000 times.  Adjustable high-pass and low-pass filters perform 

band-pass filtering.  In optimal clinical conditions the noise level can be 

reduced to 1 to 2 µV from peak to peak, a usual value can be as high as the 

maximum gain of the amplifier used. A high-resolution electrocardiogram 

detects very low amplitude signals such as LPs. High Resolution 

Electrocardiography is not being the sole diagnostic tool, but it does provide 

information on cardiac electrical instability that is not available through other 

noninvasive tests. A standard electrocardiogram cannot detect these signals. 

High-resolution electrocardiography enhances the diagnostic capabilities of 

ECG signals. 

 
1.3.1.2 Signal-averaging 
 
The purpose of signal averaging is to reduce the level of noise, which 

contaminates the surface ECG, and to detect low-amplitude signals in the 

terminal QRS complex.  The main source of noise is skeletal muscle activity 

exhibiting amplitudes of 5 to 25 µV.  Muscle noise cannot easily be 

eliminated by filtering, because its frequency content corresponds with that of 

high-frequency cardiac potentials, but it may be markedly reduced by the 

signal averaging technique which amplifies repetitive waveforms like the QRS 

complex and suppresses random non-repeating waveforms like skeletal 

muscle noise (Jane, Rix and Caminal, 1991). 

 
The most common type of processing is ensemble signal averaging for which 

a few prerequisites are necessary.  Thus the waveform of interest must first 

be repetitive so that multiple samples can be obtained to form an averaged 
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waveform. Before averaging, by comparing every new beat against a template 

of previous beats, ectopic beats can be excluded prior to processing.  

 
Second, waveforms must have a common fiducial point (usually a large or 

rapidly moving component of the QRS complex) used as a reference time 

enabling the computer to average similar sampling points of the repeating 

signal.  

 
A third prerequisite is that the waveform of interest be independent from 

noise, meaning noise must be random.  If there is a repetitive noise artifact 

arising from electrode motion or other sources, the signal-averaging process 

will amplify it.  Using this method, noise reduction is proportional to the square 

root of the number of QRS complexes averaged.  

 
1.3.1.3 Beat-by-beat analysis (spatial averaging) 
 
A second form of signal averaging is spatial averaging which allows the 

analysis of beat-to-beat events, which cannot be detected by the temporal 

averaging technique. A number of closely spaced independent electrode pairs 

are summed up to reduce the expected noise, representing a substantial 

disadvantage compared to temporal averaging. The advantage of this 

technique, however, is the detection of dynamic changes of VLP in real time. 

Other methods use adaptive identification to achieve a beat-by-beat fine ECG 

estimation. Information provided by this method allows for better interpretation 

of low and very low level signals (Wu, Qiao, Gao and Lin, 2001). 

 
1.3.2 Frequency domain analysis 

Spectral or frequency analysis method examines the voltage or power over a 

spectrum of frequencies within a pre-selected time interval. The generally 

accepted hypothesis is that VLP or late depolarizations are characterized by 

higher frequency content than expected from repolarizations. Fast Fourier 

transformation (FFT) is usually used to estimate the scalar lead spectral of the 

terminal QRS and ST segment of signal-averaged XYZ. Results may be given 

as relative contributions of specific frequencies constituting these ECG 

segments.   
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Different techniques have been developed to quantify the spectral content of 

the QRS complex, and account at least in part, for the inconsistency of the 

results.  Area ratios of the energy spectral derived from the FFT were 

calculated using separate intervals.  These started after QRS onset and 

before QRS finished, extending to the T wave as described by Worley et al. 

This suggests that frequency analysis of signal-averaged ECGs with FFT is an 

available method for detecting the high-frequency component within the QRS 

complex in some patients with VT. 

 
As with time domain analysis, accepted standards are not yet established. 

Nevertheless, frequency analysis offers potential advantages for the 

identification and characterization of patients prone to ventricular tachycardia 

(VT).  A complex high-pass filtering is not necessary and differentiation of VLP 

and noise is improved.  

 
1.3.3 Previous results of time domain and frequency domain analysis 
 
The results of clinical studies comparing time domain and frequency analysis 

give a controversial picture. Engel and co-workers found that spectral analysis 

was not as reproducible as duration measurements performed in the time 

domain.  Furthermore, the results of spectral analysis were more noise 

dependent.  On the one hand the poor frequency resolution of short data 

segments and spectral leakage is a known limitation of conventional spectral 

analysis.  On the other, the limitations of the conventional time domain 

analysis are that high-pass filtering may disturb signals that discrimination 

between LP and noise may be difficult and that patients with bundle branch 

block (BBB) are usually excluded from analysis. According to an expert 

consensus document: 

 
“These findings provide an objective rationale for expansion of the ECG 
interval analyzed to include more of the cardiac cycle, which should increase 
the chances of detection of signals generated by myocardium critical to 
ventricular tachycardia. Indeed, previously undefined magnitude, phase and 
spatial features over the entire cardiac cycle of sinus beats that distinguish 
signal-averaged ECGs from patients with from those without sustained 
ventricular tachycardia have recently been identified.” (CAIN et al., 1996) 
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A number of studies have been performed to compare both methods in 

different clinical settings.  Most of the studies deal with patients presenting 

sustained ventricular tachycardia.  Worley et al, found FFT analysis the only 

significant index to differentiate between patients after myocardial infarction 

without VT and normal controls, whereas filtered QRS (FQRS) duration in the 

time domain was the only independent factor to separate patients with or 

without VT.  Machac and Gomesi found frequency domain analysis no 

improvement over time domain analysis in differentiating patients with 

ventricular tachycardia from those without.  In contrast, Pierce et. al., 

concluded from their study, which included similar patients that high 

frequencies in late potentials, but not their duration or reduced voltage, most 

usefully identify with coronary heart disease prone to VT.  Kinoshita published 

data on patients with ventricular tachycardia of left ventricular origin where 

area ratios calculated from FFT analysis showed significantly higher values in 

patients with VT as compared to those without, whereas time domain analysis 

gave negative results in all cases.  Nogamilul suggested, as a conclusion from 

his analysis of a great number of different time domain and frequency domain 

parameters, the use of a combination of both approaches to enhance the 

accuracy of this technique for screening post-myocardial infarction patients 

prone to VT.  

 
The prevalence of LP after acute myocardial infarction depends on the time of 

recording, the analyzing technique, the site of myocardial infarction and 

definition of what constitutes an LP. El-Sherif found more LP at 6 to 30 days 

than before or later.  In general, LP measurement is recommended upon 

patient discharge.  The incidence of LP slowly declines during long-term 

follow-up, as was shown by Kuchar and co-workers.  Frequency domain 

analysis gave results independent of infarct location, whereas time domain 

analysis showed lower sensitivity with anterior than with inferior infarction. 

 
1.4 Aim and scope of work 
 
This thesis is concerned with the extraction of small cardiac signals normally 

concealed by noise in the recorded ECG.  These microvolt signals are derived 

from the cardiac conducting system and from the fragmented activation of 
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damaged areas of heart muscle as in the case of Ventricular Late Potentials 

(VLP).  VLPs are found in ventricular tachycardia (VT) patients that could be 

used as an early warning to the development of VT. The detection and 

delineation of these signals can give early warning of various cardiac 

disorders.  This is challenging since the nature and exact causes of late 

potentials are not well understood and therefore not well defined and are 

usually concealed in noise and other portions of the ECG signal. Wrongly 

classifying a VT patient may have grave consequences that may even lead to 

an otherwise preventable death. Based on the findings of the analysis of the 

QRS portion alone, a case with abnormalities at other portions of the 

conduction path may wrongly be classified as normal and discharged from 

hospital.  This situation deprives the patient from a vital chance to receive 

immediate medical care and might lead to his death.  The low prediction rate 

of current methods in the analysis and detection of VLP as a non-invasive 

indicator of VT may be due to the drawbacks associated with these methods 

as well as the unclear nature of the sought signal. The main aim of this work 

is to define what constitutes VLPs in terms of their physical characteristics 

and to broaden the analysis region to include the entire cardiac cycle rather 

than just the end of the QRS complex. This enables the detection of 

abnormalities that might occur anywhere in the conduction path of the heart.  

We also aim to minimize these drawbacks in order to increase the predictive 

rate and present better alternatives based on our tests.  

 
Digital signal processing techniques such as, wavelet transforms, complex 

cepstrum and artificial neural network are employed to provide signal 

enhancement and provide better classification. 

 
In order not to reinvent the wheel, this work starts at where others have left 

off.  This means taking advantage of the reported successes of commonly 

accepted and applied methods while avoiding their drawbacks and problem 

causing issues. We begin by providing suitable data for the analysis. This 

implied the design and implementation of a high-resolution data recording 

system with controllable gain. Both time-domain and frequency-domain 

methods are utilized here for their individual performance using the wavelet 
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transform techniques.  In addition to the WT denoising ability, we aim to apply 

signal averaging to reduce noise in the signal without its associated problems 

such as offline analysis, alignment errors and averaging of uncorrelated 

beats.  The application of the wavelet transform along with our suggested 

method of dynamic averaging aim to avoid the drawbacks of signal averaging 

techniques and allowing real time analysis.  Calculating the vector magnitude 

without the generation of cross terms associated with classical methods is 

another aim of this study. The final aim is to set up an automatic scheme for 

the recognition and classification of different signals according to their status 

abnormality content. 

 
1.5 Outline of thesis 
 
The structure of the remainder of the thesis is as follows: 

 
Chapter 2 describes the electrical behavior of the heart and the origin of the 

recorded surface ECG.  It introduces the concept of the lead systems and 

discusses the theory, which forms the basis of the ECG techniques.  It 

expands on the details of the lead system used.  It also covers the basics of 

myocardial infarctions and ventricular late potentials both their origin and their 

diagnostic values. 

 
Chapter 3 Limitations and drawbacks of standard detection methods look at 

the problems associated with standard methods and in particular the Simson 

method.  The three standard parameters are investigated in order to identify 

problematic issues.  It investigates the problems associated in calculating the 

vector magnitude based on the classical methods.  It suggests a new wavelet 

transform based method to calculate the vector magnitude.  The chapter also 

covers problems encountered in the VLP detection process. 

 
Chapter 4 covers the different DSP techniques used and is divided as follows: 

 
Section 4.1 covers wavelet transforms theory and its practical sides in a 

simple and easy to understand way, avoiding the cumbersome and detailed 

abstract mathematics normally encountered in the study of wavelet 

transforms.  The section concludes with the presentation of the Mallat’s 
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algorithm known as the pyramid algorithm, both forward and inverse 

operations.  A simple example is given for clarifying the basic concepts. 

 
Section 4.2 introduces the notion of the complex cepstrum and the associated 

mathematical background.  The homomorphic theory is covered in this 

chapter.  Other needed topics such as minimum and maximum phase are 

presented, as well as the concept of signal length. 

 
Section 4.3 gives a brief insight into artificial neural networks.  It discusses the 

feed-forward multi-layer perceptron (MLP) artificial neural network (ANN), 

which is used as the classifier for the pre-processed data.  It includes a 

discussion of ANN's, learning characteristics and general performance. 

 
Chapter 5 is concerned with the data acquisition system, which was designed 

and implemented for this thesis at Hacettepe University.  The chapter starts 

with introducing the basic instrumentation amplifier and progresses to the 

complete system. The chapter discusses the operation of the isolation 

instrumentation amplifier and other hardware components employed.  Here 

we cover the basic problems encountered in the recording of high-resolution 

ECG signals and how to minimize their effects.  The chapter discusses the 

various techniques for improving the systems performance. It gives a brief 

introduction to data acquisition principles and the associated problems 

involved. 

 
Chapter 6 covers a process that clusters the information contained in long-

term ECG records. This clustering process summarizes the entire record and 

serves as a preprocessing step prior to analysis. 

 
Chapter 7 presents a detailed look at the methods employed in this work. It 

also covers the entire analysis method carried out.  It discusses the different 

patient categories and introduces the data acquisition techniques employed.  

The chapter presents the different DSP methods used in an integrated 

analysis approach.  In this chapter the graphics user interface for both 

acquisition and analysis is introduced. 

 
Chapter 8 presents results and conclusions reached in this study. 
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CHAPTER 2 

 
VENTRICULAR LATE POTENTIALS 

 

2.1 Introduction 
 
The beating heart generates an electric signal called electrocardiogram (ECG) 

that can be used as a diagnostic tool for examining some of the functions of 

the heart.  The ECG is a clinical tool to measure the electrical activity of the 

heart from the exterior of the body non-invasively.  With the ECG, important 

information about the live beating heart can be observed. ECG produces 

timing information on the electrical activity of the heart, a graph with time on 

the x-axis and voltage on the y-axis.  We collect spatial information by looking 

at the heart from different directions using the 12-lead or a three orthogonal 

XYZ lead system.  The latter approach is the type used in the data acquisition 

in this thesis.  The electric activity of the heart can be approximately 

represented as a vector quantity, thus we need to know the location at which 

signals are detected, as well as the time-dependence of the amplitude of the 

signals (Malmivuo, Plonsey, 1995). 

This chapter introduces the material needed to discuss the subject of 

ventricular late potentials starting from the different ECG components to the 

concept of myocardial infarction. 

 
2.2 Components of the Normal Cardiac cycle 
 

The electrocardiogram represents the depolarization and repolarization of the 

major chambers of the heart as shown in Fig. 2.1. Depolarization is the 

electrical activation of the myocardium while repolarization is the restoration 

of the electrical potential of the myocardial cell. Changing charges create the 

voltage outside the heart and the waves of depolarization produce voltages on 

the outside.  For the entire time that the myocardium is totally depolarized, 

there is zero voltage on the ECG and after depolarization, myocytes 

spontaneously repolarize. 
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Depolarization occurs at the sino-atrial (SA) node where current travels 

through internodal tracts of the atria to the Atrioventricular (AV) node; then 

through the Bundle of Hiss, which divides into right and left bundle branches. 

The left bundle branch divides into left anterior and posterior fascicles.  

In a normal heart rhythm, the SA node generates an electrical impulse, which 

travels through the right and left atrial muscles producing electrical changes, 

which is represented on the ECG by the P-wave.  The electrical impulse then 

continues to travel through specialized tissue known as the AV node, which 

conducts electricity at a slower pace. This will create a pause (PR interval) 

before the ventricles are stimulated. This pause is helpful since it allows blood 

to be emptied into the ventricles from the atria prior to ventricular contraction 

to propel blood out into the rest of the body. The ventricular contraction is 

represented electrically on the ECG by the QRS complex. This is followed by 

the T wave, which represents the electrical changes in the ventricles, as they 

are relaxing.  The cardiac cycle after a short pause repeats itself, and so on. 

Therefore, on an ECG in normal sinus rhythm P waves are followed after a 

brief pause by a QRS complex, then a T wave.  Normal sinus rhythm not only 

indicate that the rhythm is normally generated by the sinus node and traveling 

in a normal fashion in the heart, but also that the heart rate, i.e. the rate at 

which the sinus node is generating impulses is within normal limits. There is 

no one normal heart rate, but this varies by age and other factors. It is normal 

for a newborn to have a heart rate up to 150 beats per minute, while a child of 

five years of age may have a heart rate of 100 beats per minute. The adult's 

heart rate is even slower at about 60-80 beats per minute. 

 
Figure 2.1 ECG signal showing different cardiac components 
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The P-Wave 
 
Normal SA nodal cells have fastest depolarization, so they are the first to 

depolarize. However, there is so little SA nodal tissue so that the 

depolarization of the SA node is not easily detected. The depolarization then 

passes as a wave through the atria. This wave passes from the SA node 

inferiorly and leftward to the AV node and left atrium. This produces a positive 

potential recorded as a positive deflection in the ECG tracing which is defined 

as the P wave. The P wave is relatively small because the atrial muscle mass 

is relatively small and ends when all the atria are depolarized. The wave of 

depolarization is then present inside the AV node. The P wave represents the 

sequential activation of the left and right atria (atrial depolarization) and lasts 

from 60 ms to 110 ms. 

 
The PR interval 
 
The PR interval represents the conduction of electricity from the SA node to 

the AV node and atrial depolarization through the AV node. It is measured 

from the beginning of the P wave to the beginning of the QRS complex. The 

AV node contains specialized cells that slow the speed of the depolarization 

wave. Like the SA node, there is so little AV nodal tissue that no 

depolarization is detected. The space between the P wave and the QRS 

complex is called the PR segment. The time from the beginning of the P wave 

to the beginning of the QRS complex is called the PR interval.   

The PR interval is empirically the best measure of the time that it takes for the 

wave of depolarization to pass through the AV node.  A normal PR interval is 

between 120 and 200 ms. 

 
The QRS Complex 
 
The QRS complex is the result of ventricular depolarization through the 

Bundle Branches and Purkinje fibers. It is measured from the beginning of the 

first wave in the QRS to where the last wave in the QRS returns to the 

baseline.  Normal measurements for this interval are 60 ms to 100 ms.  
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When the wave of depolarization passes into the bundle of Hiss and out into 

the Purkinje system and ventricle, there is a large positive potential which is 

the QRS complex. The amplitude is large because there is a large mass of 

ventricular muscle.  Depending on where you measure the voltage across the 

heart, the QRS complex can be either positive or negative. For any QRS 

complex, if the deflection at first is negative, then it starts with a Q wave. The 

first positive deflection is the R wave regardless of whether there was a Q 

wave or not.  A negative deflection after an R wave is called an S wave. 

As the wave of depolarization passes through the thickness of the ventricle, a 

voltage is still present.  When the whole thickness of the left ventricle is totally 

depolarized, the surface charge of both the endocardium and epicardium is 

negative. Therefore, there is no longer any voltage difference across the 

ventricle and the recorded voltage is again zero. This is the end of the QRS 

complex. The QRS complex is the electrical signature of the wave of 

depolarization passing over the ventricle.  The normal QRS complex lasts 

about 80 ms. The QRS complex occurs only when the ventricles are changing 

from resting to depolarized state. 

 
The QT interval 
 
The QT interval is measured from the beginning of the QRS complex to the 

end of the T-wave.  Normal measurements for this interval are based on the 

heart rate. Generally it should be about 40 % of the total time between two 

QRS complexes, typically between 0.34 to 0.42 seconds.   

The normal corrected QT interval (QTc) is between 0.34 and 0.44 seconds.  

The QTc is calculated as the QT interval divided by the square root of the RR 

interval (the RR interval is the time between subsequent QRS complexes) as 

in the following equation:  

 

/cQT QT RR=  (2.1) 
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The T Wave 
 
In normal hearts, the epicardial usually repolarizes first, despite having 

depolarized last. When the epicardium repolarizes, its surface charge 

becomes positive which produces a positive voltage, which is defined as the 

beginning of the T wave. When the repolarization reaches the endocardial 

surface, there are no longer any voltages and the T wave ends. 

 
ST segment 
 
When the wave of depolarization fully passes through the ventricle it produces 

no measurable potential on the surface electrodes. This represents ventricular 

depolarization and is called the ST segment. The ST segment contains 

information about myocardial ischemia and injury. Myocardial injury is when 

myocardial cells are dying (acute myocardial infarction) or if the epicardium is 

irritated. The hallmark of myocardial injury is ST elevation: the ST segment 

will have a higher voltage than the heart at rest.  Acute MI is a focal process; 

therefore there will be focal elevation in the ST segment, frequently with the 

development of focal Q waves.  However, early during an acute MI, Q waves 

are not always seen. The ST elevation of a classic acute MI is typically 

convex up. The TP segment, from the end of the T to the beginning of the P, 

is defined as zero voltage and represents the heart at rest. 

 

2.3  Characteristics of ECG components, artifacts and noise 
 
The theoretical frequency distributions of ECG signals are classified as lower 

frequency P and T waves, middle-to-high frequency QRS complex and high 

frequency late potentials when they exist. In this thesis we designate the P 

and T waves as medium-amplitude low-frequency signals (MALFS), the QRS 

complex as high-amplitude medium-frequency signal (HAMFS) and the VLP is 

as low-amplitude high-frequency signal (LAHFS).  Fig. 2.2 shows a diagram of 

the different frequency components presented against their respective 

strengths (Mousa, Yilmaz, 2002) (Mousa, Yilmaz, 2004-a).   
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Figure 2.2  Theoretical frequency distribution of ECG signal components 

 
The recorded signal usually contains the desired part plus other undesirable 

interferences added to the signal through the recording instrumentation and 

the environment including the patients.  In Fig. 2.3 we show the approximate 

spectrum distribution of these different components. The parts not shown 

here, are the interferences caused by power lines and their possible 

harmonics. In the following subsection we present some of the ECG 

components and their properties since they make up the main concern in the 

work of isolating and detecting delayed potentials (DP).  

 
The main components of the recorded ECG in addition to possible harmonics 

are: 

• P, T waves: 0-10 Hz 

• Motion artefacts: 0-10 Hz 

• QRS complex: 0-40 Hz 

• AC line: 50/60 Hz 

• EMG: 0-10000 Hz 

• VLP: 50-250 
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Figure 2.3 Frequency-amplitude relationships of different ECG components 
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2.4 Noise types and sources 
 
An ECG signal may contain any or all of the following types of interferences 

(Friesen et al. 1990):  

 
1. Power line interference 

2. Electrode contact 

3. Motion artefacts 

4. Muscle contractions (EMG) 

5. Baseline drift and ECG amplitude modulation with respiration 

6. Instrumentation noise 

7. Electrosurgical noise 

 

A summary of the main noise types and their important properties including 

duration, amplitude and frequency is shown in table 2.1. 

 
Table 2.1 Summaries of noise types and their properties 

 
Noise type Amplitude1 Frequency (HZ) Duration (msec.) 

Power line interference Up to 50 % 50/60 Persistent 

Electrode contact noise Recorder gain 50/60 1000 

Motion artifacts 500% Base-line drift 100-500 
Baseline drift 15% 0.15-0.3 Varies 

Muscle contractions 10% DC-to-10000 50 
Electrosurgical noise 200% Aliased high frequencies 1000-10000 

1. Expressed as % of the peak-to-peak of ECG amplitude 
 

A summary of the characteristics of the different ECG components including 

durations and frequencies are presented in Table 2.2 below. 

 
Table 2.2 Durations and approximate frequencies of different Cardiac components 

 
Wave Duration (ms) Frequency (Hz) 

P wave duration: 60 ms to 110 ms 0-10 
P-R interval: 120 ms to 200 ms 0-40 
QRS duration: 60 ms to 100 ms 0-40 
Q-T interval: 340 ms to 420 ms 0-40 
T wave duration: 120 ms to 180 ms 0-10 
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2.5 Lead systems: viewing the heart from different directions 
 
The standard ECG is collected from a series of electrodes attached to the 

body surface. These electrodes measure the electrical activity of the heart.  In 

one type of configuration, three limb electrodes form a triangle called 

Einthoven’s triangle and the fourth (right leg) is electrical ground.  Einthoven’s 

triangle is considered an equilateral triangle for measurement purposes. The 

voltage measured across the two arms is lead-I (the left arm is defined as 

positive).  Lead-II is measured from the right arm to the left leg (the left leg is 

defined as positive).  Lead III is measured from the left arm to the left leg (the 

left leg is defined as positive).  Lead-III looks at the heart from the right of 

Lead-I.  

Orthogonal X, Y, Z lead system is another type of configuration and is the one 

used in this study are assumed to be placed in perfect orthogonal 

configuration as shown in Fig. 2.4 (Malmivuo, Plonsey, 1995). The X 

electrodes are placed at opposite end in front and back of patient with the 

frontal lead at  position.  The Y lead is placed between the right and left 

midauxillary lines at the fourth intercostals space. The Z lead is placed at the 

superior aspect of the manubrium and the proximity of the left leg. In reality 

these leads are only approximately orthogonal and the assumption of perfect 

orthogonality does not exist resulting in some correlation in the different leads. 

2V

 

 

 
 

Figure 2.4 The orthogonal XYZ lead system , (Malmivuo, Plonsey, 1995) 
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2.6 Acute Myocardial Infarction (AMI) 
 
The subject of myocardial infarction is introduced here in order to pave the 

way and introduce late potentials, which are thought to be a direct 

consequence of damaged portions of the heart.  In the next section we 

introduce the concept of late potentials, which are considered as noninvasive 

markers that may help in saving of lives (Breithardt et al.1991)(Makuavi et al. 

1994).  

Heart attack is a condition technically known as a myocardial infarction MI.  MI 

is a "plumbing problem" in which a blockage in a blood vessel interrupts the 

flow of blood to the heart causing an "infarct"; an area of dead heart muscle.  

 

Sudden Cardiac Death (SCD), or Cardiac Arrest, kills half of all people who 

die of heart disease, the number one cause of death in the United States, 

accounting for more than 400,000 deaths each year.  SCD is a catastrophe in 

which the heart abruptly and without warning ceases to function. It is an 

"electrical problem" caused by a heart rhythm disorder called Ventricular 

Fibrillation (VF). It is particularly terrifying because it kills its victims within 

minutes and often occurs in outwardly healthy people who have no known 

heart disease. Without emergency help, SCD leads to death within minutes. 

95 percent of victims die before reaching the hospital. Victims of cardiac 

arrest can be saved if immediate medical care is provided.  

Heart attacks or "acute myocardial infarction" (AMI), are very common and 

also very deadly. The underlying cause of a heart attack is usually "coronary 

thrombosis", which is a blockage of the blood vessels of the heart. The most 

common symptom is chest pain or discomfort, but in many cases even the 

patient is uncertain of having a heart attack. 

However, many cases go undiagnosed even in the emergency department, 

and this diagnostic error makes AMI the single leading malpractice litigation-

related condition. AMI is often under diagnosed in women or younger adults. 

In any age patients, AMI can have a variety of presentations, and diagnostic 

tests such as an ECG may still be normal (NHS 2003)(AIHW 2004). 
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2.6.1 Prevalence and Incidence of AMI  
 
The term prevalence of heart attack usually refers to the estimated population 

of people who are managing heart attack at any given time.  The term 

incidence of heart attack refers to the annual diagnosis rate, or the number of 

new cases diagnosed each year.  Hence, these two statistics types can differ: 

a short-lived disease like flu can have high annual incidence but low 

prevalence, but a life-long disease like diabetes has a low annual incidence 

but high prevalence.  Some of the available information about prevalence and 

incidence statistics are: 

 
• Prevalence of Heart attack: 7.5 million people with acute myocardial 

infarction (NHLBI).  

• Prevalence Rate: approximately 1 in 36 or 2.76% or 7.5 million people in 

USA. 

• Incidence (annual) of Heart attack: 1.25 million annually USA (NHLBI); 

1.1 million with 650,000 new events and 450,000 recurrences.  

• Incidence Rate: approximately 1 in 217 or 0.46% or 1.2 million people in 

USA. 

• Incidence of Heart attack: Each year, about 1.1 million Americans 

suffer a heart attack. 
 
People who have had one heart attack are at much higher risk for a second 

attack.  Cardiovascular disease is world’s greatest health problem.  It kills 

more people than any other disease (almost 51,000 deaths in 1998 in 

Australia) and creates enormous costs for the health care system.  It also 

places a heavy burden on individuals and the community due to the resulting 

disabilities.  Cardiovascular disease was estimated to account for 22% of the 

disease burden in Australia in 1996, 33% of premature mortality and 9% of 

years of equivalent ‘healthy’ life lost through disease, impairment and 

disability.  Coronary heart disease and stroke accounted for almost 57% and 

25% of the cardiovascular disease burden, respectively (NHLBI 2003). 
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2.6.2 Prognosis and recurrence of AMI  
 
The prognosis of AMI usually refers to the likely outcome of heart attack which 

may include the duration of the attack, chances of complications, probable 

outcomes, and prospects for recovery, recovery period, survival rates, death 

rates, and other outcome possibilities in the overall prognosis of heart attack. 

Naturally, such forecast issues are by their nature unpredictable. 
 
1-year survival rate for Heart attack: 24 out of 25 patients will survive if they 

survive the attack (1 in 25 dies within a year)  

 
Deaths from Heart attack: 459,841 deaths in 1998 (NHLBI); 199,154 deaths 

for AMI reported in USA 1999 (NVSR Sep 2001)  

 
The key to saving the life of a heart attack patient is immediate medical care. 

Doctors have clot-busting drugs and other artery-opening procedures that can 

stop or reverse a heart attack, if given quickly. These drugs can limit the 

damage to the heart muscle by removing the blockage and restoring blood 

flow. Less heart damage means a better quality of life after a heart attack.  

The odds of women having a second heart attack are relatively high.  In fact, 

more women than men will suffer a second heart attack within four years after 

having their first attack.  

 
2.6.3 Diagnosis errors of myocardial infarction 
 
The most common medical diagnosis error is failure to diagnose, or a delay in 

diagnosing, an acute myocardial infarction.  Infarction means "death of tissue” 

and a myocardial infarction occur when the heart muscle (tissue) dies.  

Time is of the essence when a patient makes a trip to the emergency room 

complaining of chest pain. With immediate and proper care, the damage from 

a heart attack can be minimized. However, when an emergency room 

physician or other healthcare professional mistakes chest pain for indigestion 

and sends the patient home, the result is often catastrophic. More often than 

not, an otherwise preventable death occurs, all due to the negligence of the 

medical professional.  
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Statistics reveal that a heart attack victim is twice as likely to die if the 

attending physician significantly delays the diagnosis of myocardial infarction. 

Since such an unfortunate outcome is so easily avoided, medical malpractice 

lawsuits based on failure to diagnose often exact a heavy financial toll on the 

negligent doctor.  

After a myocardial infarction (MI), there is a region of the heart with dead 

myocardium. The ECG undergoes some changes. In some people, the first 

ECG change is a high peaked T wave.  Peaked T waves, if they occur, last 

only a short time.  Convex ST elevation is the next typical change in the ECG. 

In many people, this occurs within 30 sec after occlusion of the coronary 

artery and is not preceded by peaked T waves.  As the myocardial cells die, R 

wave voltage decreases and then Q waves develop.  The key to diagnosis of 

an old or recent MI is the presence of abnormal Q waves.  An abnormal Q 

wave is at least 0.04 seconds wide and at least ¼ of the total height of the 

QRS complex.  For the diagnosis of MI, there should be Q waves in at least 2 

leads. Q waves are present on the ECG because the scar of the myocardial 

infarction does not produce a wave of depolarization.  If there is an ECG lead 

directly over the scarred tissue, the lead sees “through” the scar and detects 

the voltage of the opposite myocardial wall. For example, if there is an 

anterior MI, then a lead will see through the anterior LV wall and see the 

vector of the posterior LV wall. The posterior wall vector is pointed to the back 

away from the lead, producing a Q wave. In essence, the Q wave reflects 

absence of electrical activity in the region of the MI. The location of Q waves 

is a predictor of the location of the MI. This occurs over a variable time course 

of minutes to hours.  

After several hours to days, the ST segments return back to their resting 

values, but the T wave remains inverted. This indicates that the injured cells 

are either dead (MI) or that blood flow has returned to the artery (reperfusion). 

Q waves with inverted T waves are consistent with a recent or old MI. After 

months to years, the heart scars and the T waves can return to their normal 

upright position. Q waves with normal upright T waves are consistent with an 

old MI. In some people with small MIs, the Q waves can disappear as the 

heart scar shrinks after few years. In a large anterior MI (AMI), large Q waves 
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are typically present.  It is the large MI that frequently causes congestive heart 

failure from the loss of contractile myocardium. 

Myocardial tissue does not regenerate once it is damaged. If an area of the 

myocardium becomes damaged from myocardial infarction, it goes through a 

4- to 6- week healing process where it eventually becomes connective or scar 

tissue and never functions as cardiac tissue again. The electrical activity 

through this area of damaged tissue is altered and can only be detected on 

ECG by digital signal processing.  

Delayed activations of myocardium, appear to generate delayed potentials 

(DP) on the body surface, which were previously termed as ventricular late 

potentials (VLP). These VLPs are low-amplitude high-frequency potentials 

that have been observed in ECG signals of patients after myocardial infarction 

(MI) and considered as a noninvasive indicator of Ventricular Tachycardia 

(VT). Ventricular Late Potentials are covered in more detail in the next 

section. 

 
2.7 Ventricular Late Potentials 
 
Ventricular late potentials (VLP) are low amplitude signals that occur in the 

ventricles.  Also called Late Potentials (LP), these signals are caused by slow 

or delayed conduction of the cardiac activation sequence. Under certain 

abnormal conditions, there may be small regions of the ventricles within a 

diseased or ischemic region that generate such delayed conduction, Fig. 2.5. 

This results in depolarization signals that prolong past the refractory period of 

surrounding tissues and re-excite the ventricles. This re-excitement is known 

as reentry (Lander, Deal and Berberi, 1988)(Mousa, Yilmaz, 2001-a).  

 
Due to their very low magnitudes, late potentials are not visible in a standard 

ECG.  Moreover, factors such as increased distance of the body surface 

electrodes from the heart, and inherent noise in patients make identification of 

VLP beyond the resolution limits of a standard ECG. As a result, high- 

resolution recording techniques and computerized ECG processing are 

necessary for detection of late potentials (Rioul,Vetterli,   1991)(Raghuveer, et 

al  1992)(Thakor, et al. 1993.)(Mallat , 1989). 
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Figure 2.5 Vector magnitude of ECG signal showing the presence of VLP 

(source: Gang et al. 2000)  

 

Such ECG signal processing includes techniques to improve the ability of 

detecting and identifying LPs include wavelet transform (WT), complex 

cepstrum analysis (CCEPS), artificial neural networks (ANN) and other.  

Some of these DSP tools have been used in this study as will be seen in later 

chapters. 

 

2.7.1 Diagnostic values of VLP 
 
Ventricular Late Potentials appear to arise from small areas of structurally 

abnormal myocardium in which ventricular activation is delayed and 

asynchronous. When surviving heart fibers are separated by connective 

tissue, delayed activation patterns may occur. The result is a low-amplitude, 

fragmented local potential. This activity can be recorded in most patients with 

remote myocardial infarction (heart attack), but is detected at fewer recording 

sites and is of shorter duration in infarction patients without clinical VT.  Late 

potentials imply that the substrate for reentry is present, and then be 

precipitated by such triggers as premature ventricular beats, myocardial 

ischemia (lack of oxygen), or autonomic nervous system instability. Late 

potentials occur more frequently and are of greater duration in patients with 

sustained VT than in patients with ventricular fibrillation, a rhythm less 

associated with conduction delay (Simson 1981)(Vester, Strauer,1994).  
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Common criteria defining late potentials include the following: 

1. The filtered QRS complex is longer than 114 ms 

2. The terminal filtered QRS complex remains below 40 µ volt for more 
than 38 ms, and  

3. There is less than 20 µ volt of signal in the last 40 ms of the filtered 
QRS complex. 

 
2.7.2  Problems encountered in the detection of late potentials 
 
The nature and exact cause of late potentials are not well understood and 

therefore not well defined. Late potentials are not present in all patients with 

recurrent VT. In some instances the fragmented activity may be too brief or 

the late potential may be masked by bundle branch block (BBB). 

The signal amplitude is usually too low to be differentiated from noise. 

Therefore, advanced signal processing must employed in order to extract the 

needed information.  

Detecting VLPs is a challenging task due to the nature of these potentials and 

the environment in which they exist. The next chapter deals with the 

limitations and drawbacks of the commonly employed methods in VLP 

detection. 
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CHAPTER 3 

 
 

LIMITATIONS AND DRAWBACKS OF STANDARD DETECTION 
METHODS 

 

 

3.1 Introduction 

 
In this chapter we investigate some of the standard and widely accepted 

approaches employed in the detection of VLPs. We also examine their related 

assumptions and try to pinpoint the drawbacks and inaccuracies of these 

methods and their assumptions. The three widely accepted criteria; QRS 

duration, root-mean-square and duration of the signal at the end of QRS for 

VLP detection are used in the investigation (Simson 1981).  

 
According to the mechanism of distorted myocardial activity important 

information to detect Ventricular Late Potentials (VLP) or simply Late 

Potentials (LP), may be extracted from high-resolution recordings through 

advanced signal processing techniques. These VLPs are low-amplitude high-

frequency potentials that have been observed in ECG signals of patients after 

myocardial infarction (MI) and considered as a noninvasive indicator of 

Ventricular Tachycardia (VT).  Previous studies have shown that patients with 

VLP in their ECG have a higher possibility to develop a cardiac event than 

those without VLPs.  Several studies have reported an increased possibility of 

spontaneous VT or sudden cardiac death in patients with abnormal ECG.  

Myocardial activation may be delayed due to increased length of the pathway 

of excitation or due to slowing conduction velocity.  Physical characteristics of 

the myocardium can be critical factors in the delayed activation.  The amount 

of dead myocardium is variable and may be located anywhere in the heart. 

Regions of dead myocardium create barriers that lengthen the excitation 

pathway. The increased separation of myocardial bundles and disruption of 

their parallel orientation by fibrosis distort ventricular activation.  Electrograms 
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recorded from such bundles usually have small amplitudes because of the 

intervening layers of nonconductive tissue and small diameter of the muscle 

bundles. When individual bundles are separated by nonconductive regions 

heterogeneous patterns of activation may occur and result in fragmentation of 

local electrograms. In regions bordering the infarct, abnormal ventricular 

conduction during sinus rhythm has been observed and appears to be related 

to the development of ventricular tachycardia (VT) (Meste,Rix,1994) 

(Mousa,Yilmaz,2001-a) (Mousa,Yilmaz,2001-b).  

 
Delayed activations of myocardium, appear to generate delayed potentials 

(DP) on the body surface, which were previously termed as late potentials 

(Mousa,Yilmaz, 2004-a).  Delayed potentials have been recorded from dogs 

with experimental infarction and corresponded in time with fragmented and 

delayed electrocardiograms recorded from the epicardium.  Potentials 

recorded from the body surface of human patients, have been accompanied 

by late, fragmented electrograms recorded directly from the heart.  

 
Although fragmented electrograms can be recorded from most patients with 

myocardial infarction, delayed activation is more profound and detectable in 

patients with, compared with those without sustained ventricular tachycardia. 

The finding of fragmented local electrograms or delayed potentials on the 

body surface may indicate that the substrate for reentry is present.  

 
Since VLPs are of undefined nature and possibly varying frequency 

superimposed on a relatively high amplitude medium frequency QRS 

complex, time domain analysis alone did not yield sufficient diagnostic values 

and was not able to accurately detect these pathologic oscillations.  

 
The relatively low positive predictive accuracy for identifying vulnerability to 

ventricular arrhythmias possibly caused researchers to look for other 

predictive means and almost abandon the subject of ventricular late 

potentials. This limited performance calls for the need for improved methods 

in VLP analysis rather than abandoning the subject entirely. These methods 

should be tested in a frame with wide range of possibilities that might occur.   
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The task is by no means an easy one due to the composite nature of ECG 

signals and the difficult environment in which they exist, let alone the unknown 

nature of these LPs themselves. The diversity of methods available in the 

analysis of VLP in ECG signals arises from the difficulty of the task. 

Unfortunately, no single approach has provided a satisfactory conclusion to 

the problem at hand.  Wavelet transform is shown to be a possible alternative 

to approach the problem of identifying late potentials (LP) and in addition it is 

also able to detect (DP) that might occur anywhere in the cardiac cycle. 

 
The study emphasizes that some standard methods are not capable of 

detecting DPs in general and limit their focus on LPs only. 

 
3.2  Standard detection methods using Simson’s parameters 
 
Present studies in the field underlined a variety of methods and approaches 

and at times making assumptions about the nature of VLP. These studies 

have been using mainly adapted methods based on signal averaging of a 

large number beats in order to improve the signal to noise ratio (SNR). Then a 

vector magnitude is calculated using a three orthogonal lead system. High-

pass filtering is then applied in order to remove the high-amplitude low to 

medium frequency components in the signal.  Time domain analysis of filtered 

QRS (FQRS) is the most widely used method in the analysis of VLP. Simson 

has developed a technique, which is based on FQRS and is still widely used 

(Simson, 1981). The three parameters he suggested were introduced in 

section 2.7.1 of this thesis which will be revisited in the corresponding part of 

the wavelet transform. This method depends considerably on the accurate 

detection of the QRS endpoints, the correct detection of which is not always 

guaranteed. This detection process is the bottleneck of the entire analysis and 

any approximation errors can be projected onto the rest of the works and their 

results. The analysis procedure proposed by Simson is summarized as 

follows. 
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3.2.1 Signal averaging and digital filtering 
 
The ECG signal from each lead is aligned and averaged after passing though 

a template program to reject ectopic beats and grossly noisy signals.  Each 

averaged lead is filtered to remove the low-frequency content.  The choice of 

the filter type, size and corner frequency, have a pronounced effect on the 

values of the calculated parameters. The filter used by Simson as well as in 

the first part of this work is a 4-pole high-pass Butterworth filter with corner 

frequency of 25-Hz (Rompelman, Ros 1989). 

 
3.2.2  Vector magnitude calculation 
 
The filtered signal from the three X, Y and Z leads are combined into a vector 

magnitude )( 222 ZYXM ++= , which allows for the detection of high-

frequency voltages in any lead.  The vector magnitude of the filtered signals is 

referred to as the filtered QRS (FQRS) complex (Lander, Deal, Berberi, 1988). 

 
The X, Y, Z leads used in this system are assumed to be placed in a perfect 

orthogonal configuration. The X lead is placed between the right and left 

midauxillary lines at the fourth intercostals space. The Y lead is placed at the 

superior aspect of the manubrium and the proximity of the left leg. The Z 

electrodes are placed at opposite end in front and back of patient with the 

frontal lead at  position. In reality these leads are only approximately 

orthogonal and the assumption of perfect orthogonality does not exist 

resulting in some correlation in the different leads.  This concept is detailed in 

section 5.4.2 of this thesis. 

2V

 
3.2.3  Extracted Parameter 
 
Based on the vector magnitude, the three parameters calculated by Simson 

are given as follows: 

 
• Duration of the QRS complex denoted as QRSDUR:  
 
From the vector magnitude of the signal a noise sample was measured and 

its mean and standard deviations were calculated for use in the detection of 
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end points.  A threshold value was defined as the mean plus three times the 

standard deviation of the noise sample. The noise sample for the QRS onset 

was chosen to be 20 msec wide and began about 50 msec before the 

approximate QRS onset. The noise sample for the QRS offset was 40 msec 

wide and began about 60 msec after the QRS.  A search where the average 

of the samples exceeds the threshold value within a 5-msec segment was 

performed.  When the sample average exceeds the required threshold, the 

midpoint of the 5-msec segment was called the endpoint (onset or offset). 

 
• Duration of the low-amplitude signal in the last 40 msec, denoted as 

LAS40 is calculated.  

• The root-mean-square (RMS) value of LAS40 denoted by RMS40 is 

calculated.  

 
The 40 msec value was chosen as the interval because it is the period of the 

25-Hz used as a corner frequency of the filter. 

 
A parameter is considered a positive indicator when it exceeds a certain 

threshold value.  In Simson’s method, the threshold value for the QRS 

duration was 120 msec, a 25 µ v for the RMS40 and about 100 msec for the 

duration of LAS40. A case is classified as VLP positive when any two of the 

three parameters are found to be positive indicators.  For this work, a similar 

procedure is carried out with the threshold values extracted from the base 

ECG signal. 

 
3.3  Problems encountered in the detection of VLP 
 
Many observers have recorded VLPs and disorganized activations from 

infaracted myocardium. The source of VLP was attributed to the delay in 

activation due to the damaged myocardium region. These VLPs activities in 

the form of fragmented deflections are found in border zones surrounding the 

scar tissue of a myocardium infarct (MI). This border zone is composed of 

conducting and non-conducting regions, which slow and fragment the 

depolarization wave. This behavior resembles a capacitor composed of 
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dielectric placed between two conducting plates. One has to note that still little 

is known about VLP in terms of their occurrence.  

 
Questions that still to be answered include: 

 
• Do they occur periodically at every beat or do they occur at an interval of 

beats? 

• Do they always occur at the exact location? 

• Do they always have the same duration, frequency, and amplitude?  

 
The exact answers to these questions are not yet addressed properly 

however, it is fair to say that they are important to form the prerequisite to 

isolate VLP from ECG signals and draw accurate conclusions.   

 
The end of the QRS complex is a reasonable choice for detecting of VLP 

since it is the relaxation period of the myocardium and any signal in that 

portion can be detected easily, but not for other potentials occurring in other 

regions of the ECG signal such as DP. The effect of type of infarct and its 

variable manner is also reported by Simson in his work and is reproduced 

here in the table (3.1). Voltage in last 40 msec of the filtered QRS complex, 

are shown for two different types of infarctions, with values in µ volts listed as 

mean ± one standard deviation. This table shows the dependence of 

parameter values on the type of infarct. We can see the difference in both 

mean and standard deviations with change of infarct type even for the same 

type of patient.  
 

Table 3.1 Voltage in last 40 msec of filtered QRS for two different types of infarctions 
(source: Simson 1981) 

 
 Control Patients Patients with VT 
Anterior MI 86.6 ± 56.5 µV 20.6 ± 20.7 µV 
Inferior MI 55.4 ± 25.2 µV 10.9 ± 5.2 µV 

 
 
Table (3.1) shows an example of the dependence of parameter values on the 

type of infarct and in some sense supports our argument about the variability 
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of the occurrence of VLP. There are some other problems that exist in the 

detection process. In the next part we shall touch upon these difficulties.  

 
3.4  General problems in some of the standard VLP detection methods  
 
In addition to the particular parametric values of the desired signal, the 

different approaches used may influence the end results and can even reduce 

its prevalence.  A sample of these different approaches is discussed below. 

One should note that we are not questioning the integrity of the three 

parameters set by Simson; rather, it is the method by which they are 

extracted.  

 
3.4.1 Signal averaging 
 
Signal averaging is a common method used for improving the signal to noise 

ratio (SNR) that is essential to detect low-level signals. High sampling 

frequencies (>1000 Hz) and high-resolution analog to digital conversion (12-

16 bit or higher) are required. Signal averaging process is essentially 

statistical in nature and it is based on white noise assumption.  Some studies 

have defined VLP as having a repetitive and deterministic in nature as 

opposed to periodic one (Lander, Deal, Berberi, 1988). Furthermore, in 

contrast to stationary processes, late potentials are a transient or short time 

phenomenon. Therefore, it would be expected that their statistical properties 

should change with time. Hence, late potentials are considered as non-

stationary waveforms. Unless the desired signal repeats at every beat, 

averaging will tend to reduce its strength rather than improve its SNR. 

Therefore, we must know the repetition nature of the VLP before applying any 

averaging in order to get optimum improvement in SNR. Of course averaging 

every beat is optimal if the desired signal is repeated at every beat 

periodically, and results in SNR improvement equal to N where N is the 

number of averages. According to an expert consensus document: 

 
“Current research is establishing the extent to which the terminal QRS complex and 
ST segment are optimal ECG intervals and orthogonal ECGs are the ideal leads for 
detecting signals generated by myocardial tissue responsible for sustained ventricular 
arrhythmias. Results of analysis of three dimensional, computer-assisted, ventricular 
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activation maps recorded during sustained ventricular tachycardia and sinus rhythm 
from patients with healed myocardial infarction undergoing arrhythmia surgery have 
shown that current methods of signal-averaged ECG analysis limiting interrogation 
to the terminal QRS/ST segment exclude detection of 95% of the signals generated by 
myocardium responsible for sustained ventricular tachycardia” (CAIN  et al., 1996) 
 
 
3.4.2 Vector magnitude 
 
Calculation of the vector magnitude means taking the square root of the sum 

of squares of the bipolar X, Y, Z leads.  Anatomically perpendicular leads on 

the body surface give no guarantee of electrical orthogonality as stated by the 

study of (Lander, Deal, Berberi, 1988).   

 

Without perfect orthogonality of the leads, the vector magnitude distorts the 

signal content in these leads. When combining the three leads into a single 

vector magnitude, information in these individual leads is weakened in the 

transformation. The vector magnitude is not a unique representation of the 

three leads since we may have many signals making up the same vector 

magnitude. The standard way of calculating the vector magnitude produced 

undesirable cross terms that can overshadow the desired part and may even 

prevent their accurate detection. These cross terms arise from the different 

frequency components contained in the signal including noise and VLP when 

they exist (Mousa, Yilmaz, 2002). 

 
3.4.3 Filtering and cutoff frequencies 
 
The ECG is high-pass filtered to reduce the low frequency signals contained 

in the QRS complex. The high-amplitude low-frequency component may 

interfere with the measurement of the desired microvolt level signals, the VLP. 

The main problem seems to be the selection of a steep and linear phase filter 

causing little or no ringing in the QRS being examined while preserving signal 

morphology. In reality, bi-directional filtering is appropriate if one is 

considering the entire signal but if the interest lies in its end, as is the case of 

VLP, filtering a reversed version of the signal will be adequate.  A bi-

directional IIR filter may strongly influence signal morphology, whereas 

alternative FIR filters are difficult to optimize.  A low number of taps results in 
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a poor frequency response, while a large number of taps increases filter 

ringing and obstructs precise detection of low-amplitude signals (Oppenheim 

and Schafer, 1989).  No consensus has been established so far for any 

frequency band to extract reliable time domain parameters.  The choice of 

filter cutoff as reported by some of the researchers is presented in Table (3.2), 

and as can be seen the choice will affect all resultant parameters where 

prevalence indicates the number of accurately detected cases (Gramatikov, 

1993) (Makuavi et al., 1994). 

Table 3.2 Effect of cutoff frequency of the filters on VLP prevalence.  

 
Filter 
(Hz) 

VLP prevalence 
(%) 

QRSDUR 
(msec) 

LAS40  
(msec) 

RMS40        
(µVolts) 

25 29.2 103.7±13.9 30.5±14.8 3.5±1.0 
40 25.0 98.0±13.7 31.9±13.3 3.5±1.0 
80 20.8 97.0±13.9 40.4±14.2 2.7±1.0 

 
 
3.4.4  QRS duration and endpoint detection 
 
Another fundamental problem in QRS detection is the accurate determination 

of RR intervals. The first difference in amplitude of successive samples of the 

ECG signal is one of the commonly used methods for this purpose. However, 

this method and many of the other methods used are very sensitive to motion 

artifacts and other interference and noise. 

 

The detection of the QRS complex, as well as the T and P waves is the most 

important task in ECG signal analysis.  In general, once the QRS complex has 

been identified, a more detailed examination of ECG signal, including the 

heart rate, the ST segment, etc., can be performed. There are many 

algorithms for QRS detection with different reported performance (Friesen, 

1990).  

 
Next chapter introduces the suggested signal processing tools to detect 

abnormalities occurring anywhere in the conduction path. This includes 

wavelet transform as the major tool supported by the application of the 

complex cepstrum and artificial neural network techniques.  
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CHAPTER 4 

 
 

DSP TOOLS USED IN UNIFIED FRAME 
 
 
 

4.0 Introduction 
 
Digital signal processing uses sophisticated mathematical analysis and 

algorithms to extract information hidden in signals derived from sensors. In 

biomedical applications, these sensors, such as electrodes, accelerometers, 

optical imager’s etc. record signals from biologic tissue with the goal of 

revealing their health and well being in clinical and research settings.  

Refining these sign-processing algorithms for biologic applications requires 

building suitable signal models to capture signal features and components 

that are of diagnostic importance. Since most signals of biologic origin, are 

time varying there is a special need for capturing transient phenomena in both 

healthy and chronically ill states. A critical feature of many biologic signals is 

frequency-domain parameters. Time localization of these changes is an issue 

for biomedical researchers who need to understand subtle frequency content 

changes over time. Certainly signals marking the transition from severe 

normative to diseased states of an organism sometimes undergo severe 

changes that can easily be detected using methods such as the short-time 

Fourier transform (STFT) for deterministic or energy signals and its 

companion, the spectrogram, for power signals. The basis function for the 

STFT is the complex sinusoid, which is suitable for analysis of narrow-band 

signals. For signals of biological origin, the sinusoid may not be a suitable 

analysis signal. 

 
Biologic signals are often spread out over wide areas of the spectrum.  Also 

as Rioul and Vetterli point out, when the frequency content of a signal 

changes in a rapid fashion, the frequency content becomes smeared over the 

entire frequency spectrum, as it does in the case of the onset of seizure 

spikes in epilepsy or a fibrillating heartbeat as revealed on an ECG.  The use 
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of narrow-band basis function does not accurately represent wide-band 

signals. We would prefer that our basis function be similar to the function 

under study. In fact, for a compact representation using as few bases as 

possible, it is desirable to use basis functions that have a wider frequency 

spread, as most biologic signals do. There are a number of methods of 

transforming a 1-D signal in time into a 2-D distribution of signal strengths in 

time and frequency. The time frequency distribution (TFD) gives a measure of 

intensity of frequencies over time. Various transformation methods such as 

the short time Fourier transform, Wigner distribution, smoothed pseudo 

Wigner-Villa distribution and cone-shaped kernel are the well known ones. 

The properties of each of these time-frequency analysis methods are 

described elsewhere. 

 
Wavelet theory, which provides for wide-band representation of signals, is 

therefore a natural choice for biomedical engineers involved in signal 

processing and is currently under intense study. These characteristics 

motivated our approach, which makes use of wavelet, transforms (WT) to be 

presented later in this thesis.  
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4.1 Wavelet transform 
 
 
4.1.1 Introduction 
 
Various digital-signal-processing methods are applied to the ECG to identify, 

extract and analyze the different ECG signal components.  In this large set of 

signal-processing tools, a technique called wavelet transform proved to be a 

suitable one describing time and frequency characteristics of ECG waves.  Here 

we present an overview of the wavelet technique applied to the area of ECG 

signal analysis.  We will first give some rationale for the utilization of new ECG 

processing tools and then describe the contribution of the wavelet transform in 

the analysis of ECG signals. 

 
This technique will be discussed and compared to the classical techniques using 

the time-domain and frequency-domain methods.  The frequency representation 

of a signal can be obtained using different techniques including the most 

frequently used Fourier transformation that is able to decompose any temporal 

signal in an infinite set of sinusoid functions.  This set of sinusoid functions is 

then represented in the frequency space using the amplitude and the phase of 

each of these functions thus provides a link between the time representation of a 

signal in seconds and the frequency representation in cycle/second. Theoretically 

these signals should be deterministic and periodic in nature (Oppenheim, 

Schafer, 1989). 

 
As the digitized ECG is a finite signal, its boundaries are usually abrupt and 

these abrupt cuts of the signal make it discontinuous which introduces a 

smearing or a decrease and spread of all the estimated frequency peaks.  In 

order to avoid this, the calculation of the FFT is applied to the windowed ECG.  
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Windowing aims at removing this discontinuity by smoothing and decreasing the 

boundary of the ECG signal to near zero which in effect reduce the frequency 

resolution and therefore lowers the quality of the estimation of the ECG signal 

frequencies.  Another unavoidable limitation of the Fourier transformation for the 

ECG analysis is that this technique does not provide insight into exact location of 

frequency components in time.  

 
The frequency content of the ECG varies in time; the QRS complex is a high 

frequency wave whereas the P and T waves contain low-frequency components, 

therefore, an accurate description and representation of the ECG frequency 

contents according to their location in time is needed. This kind of representation 

provides insight into three dimensions of the ECG signal: the time, the frequency 

and the amplitude. Utilization of time-frequency representation in ECG analysis is 

thus justified which be introduced in the next sections.   

 
4.1.2 Wavelet basics 
 
A wavelet is a small wave with its energy concentrated in time to give a tool for 

the analysis of transients, non-stationary or time-varying signals.  The goal of 

most expansions of a signal is to have the coefficients of the expansion give 

more useful information about the signal than is directly obvious from the signal 

itself. A second goal is to have most of these coefficients be zero or very small.  

This is what is called sparse representation and is extremely important in 

applications for statistical estimation and detection, data compression, non-linear 

noise reduction and fast algorithms (Burrus, Gopinath and Guo, 1998). 

 
4.1.3  Why Wavelets? 
 
The basic properties that make wavelet transforms very useful, efficient and 

effective in analyzing a very wide class of signals and phenomena are:    

 

1. The wavelet expansion allows the separation of components of a signal 

that overlap in time or frequency. 
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2. A wavelet expansion coefficient represents a component that is itself local 

and is easier to interpret and allows a more accurate local description and 

separation of signal characteristics.  

3. Ideal for adaptive systems that adjust to suit the signal since they are 

adjustable and adaptable and can be designed to fit individual 

applications.   

4. The size of the wavelet expansion coefficients drops off rapidly for a large 

class of signals a useful property in signal and image compression, 

denoising and detection. 

5. Calculation of the discrete wavelet transform (DWT) is well suited for 

digital computers since only multiplications and additions are included in 

the defining equations of the wavelet transform. 

 
4.1.4 Wavelets and Wavelet expansion systems 
  
The wavelet transform decomposes a signal  into a set )(tf )(tψ of orthogonal 

basis functions that make the wavelet family (Mallat , 1989) (Rioul,Vetterli,   

1991)  . The general formula for representing the decomposition of the signal as 

a linear combination of this expansion set )(tψ  is: 

 
∑=

k
k tkatf )(][)( ψ  (4.1.1) 

 
If the expansion set is also orthogonal it forms a basis for that class of functions 

where orthogonality means:  

 
0)()(),( == ∫ dtttt lklk ψψψψ             k ≠ l  (4.1.2) 

 
The s are the real valued expansion coefficients which can be calculated 

using the inner product  

][ka

 

dtttftfka kk )()(),(][ ψψ ∫==  (4.1.3) 
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The inner product for two functions  and  is defined as  scalar a 

obtained as: 

)(tx )(ty a

 

∫>==< dttytxtytxa )()()(),( *  (4.1.4) 

 
where  is the complex conjugate of  with the range of integration 

depending on the signal class considered. 

)(* tx )(tx

 
Two signals with nonzero norms are called orthogonal if their inner product is 

zero. Where the norm or length of a vector is defined as: 

 
><= fff ,   (4.1.5) 

 
In the Fourier transform, the orthogonal basis functions  )(tkψ  are sin(  kt0ω ) and 

cos( kt0ω ), for the wavelet expansion, a two-parameter system is constructed as: 

 
∑∑=

k l
kjkj tatf )()( ,, ψ   (4.1.6) 

 
where both j and k are integers and the )(, tkjψ  are the wavelet expansion 

functions that usually form an orthogonal basis. The set of expansion coefficients 

 are called the discrete wavelet transform (DWT) of .  kja , )(tf

 
The Fourier transform maps a one-dimensional signal into a one-dimensional 

sequence of coefficients; the wavelet expansion maps it into a two-dimensional 

array of coefficients. It is this two-dimensional representation that allows 

localizing the signal in both time and frequency in the wavelet transform. And the 

two-dimensional representation is achieved from a mother wavelet )(tψ by: 

 

0)(1)( >
−

= a
a

bt
a

t ψψ  (4.1.9) 
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The factor 

a
1  is introduced to guarantee energy preservation and a represents 

the scale parameter and b represents the translation parameter producing the 

time-shift. The function  is obtained by scaling and translation of the 

mother wavelet 

)(, tbaψ

)(tψ  at time b and scale a.  Increasing the scale value will stretch 

the function , a useful form for the analysis of low frequency contents while 

lowering this factor will shrink the function  producing a form suitable for 

the analysis of high frequency contents of signals (Burrus et al, 1998).   

)(, tbaψ

)(, tbaψ

 
There are many wavelet systems but all have some general characteristics as: 

 
1. It is a two-dimensional set (a basis) for some class of one-dimensional 

signals. 

2. Gives time-frequency localizations of the signal. 

3. Calculation of the wavelet transform coefficients from the signal requires 

O(N log N) operations which is the same as for the fast Fourier transform 

(FFT).  

 
While the Fourier series maps a one-dimensional signal into a one-dimensional 

sequence of coefficients, the wavelet expansion maps it into a two-dimensional 

array of coefficients.  It is this two-dimensional representation that allows 

localizing the signal in both time and frequency. 

 
Three more additional characteristics are more specific to wavelet expansion: 

1. The two-dimensional representation is achieved from a mother wavelet 

)(tψ by: 

 
Ζ∈−= kjktt jj

kj ,)2(2)( 2/
, ψψ                                             (4.1.10) 

 
the factor  maintains a constant norm independent of the scale j. 2/2 j
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2. Multi-resolution is useful property of wavelet systems.  if a set of signals 

can be represented by a weighted sum of

2. Multi-resolution is useful property of wavelet systems.  if a set of signals 

can be represented by a weighted sum of )( kt
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)( kt −ϕ , then a larger set 

(including the original) can be represented by a weighted sum )2( kt −ϕ .   

3. Lower resolution coefficients can be calculated from higher resolution 

coefficients by a tree-structured algorithm called filter bank of the DWT. 

 
The multi-resolution formulation needs closely related basic functions.  In 

addition to the mother wavelet )(tψ , we will need another basic function called the 

scaling function )(tϕ . The simplest possible orthogonal wavelet system is 

generated from the Haar scaling function and wavelet. These are shown in 

Figure (4.1.1)  

 

 

                              
t   

)()12()2()( tttt ψφφφ −+ 
 

Figure 4.1.1 Haar scaling )(tϕ  and wavelet )(tψ functions  

 
Using the combination of these scaling functions and wavelets allows a larger 

class of signals to be represented by: 

 

)2()()(
0

, ktdktCtf j

j
kjk −+−= ∑∑∑

∞

∞−

∞

=

∞

∞−

ψϕ                                             (4.1.11) 

 
4.1.5  Basics of the Daubechies wavelets 
 
The function displayed in Figure 4.1.2 is the so-called wavelet function from the 

Daubechies family of wavelet functions which is only one of a number of wavelet 

families (Burrus, Gopinath and Guo, 1998).  
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Figure 4.1.2 Daubechies wavelet 

 

The wavelet function (mother wavelet) is orthogonal to all functions, which are 

obtained by shifting the mother by an integer amount. Furthermore, the mother 

wavelet is orthogonal to all functions, which are obtained by dilating (stretching) 

the mother by a factor of  and shifting by multiples of  units. j2 j2

 
The orthogonality property means that the inner product of the mother wavelet 

with itself is one and the inner products between the mother wavelet and the 

aforementioned shifts and dilates of the mother are zero.  The collection of 

shifted and dilated wavelet functions is called a wavelet basis.  The grid in shift-

scale space on which the wavelet basis functions are defined is called the dyadic 

grid. The orthonormality of the wavelets has a very important mathematical and 

engineering consequence: any continuous function may be uniquely projected 

onto the wavelet basis functions and expressed as a linear combination of the 

basis functions.  The collection of coefficients, which weight the wavelet basis, 

functions when representing an arbitrary continuous function are referred to as 

the wavelet transform of the given function. 

 
Representation of an arbitrary function by an infinite collection of wavelet 

transform coefficients may not, at first glance, appear to be worthwhile.  The real 

strength of wavelet transform representations, however, is that functions (or 

signals or images) that look like the wavelet function at any scale may be well 

represented by only a few of the wavelet basis functions.  The wavelet transform 

therefore provides an efficient representation for functions, which have similar 

character to the functions in the wavelet basis. 
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Decomposition of functions in terms of orthonormal basis functions has been 

known for centuries where continuous functions may be represented by an 

orthonormal basis of sinusoidal functions. The wavelet basis functions have what 

is called compact support.  This means that the basis functions are non-zero only 

on a finite interval.  In contrast, the sinusoidal basis functions of the Fourier 

expansion are infinite in extent (Rajoub B., 2002). 

 
The compact support of the wavelet basis functions allows the wavelet 

transformation to efficiently represent functions or signals, which have localized 

features.  Many real-world signals have these features, and decompositions such 

as the Fourier transform are not well suited to represent such signals.  The 

efficiency of the representation is important in applications such as compression, 

signal detection, denoising, and interference excision.  The common thread 

throughout all these applications is that the structured component of a signal is 

well represented by a relative few of the wavelet basis functions, whereas the 

unstructured component on the signal (e.g. noise) projects almost equally onto all 

of the basis functions.  The structured and unstructured parts of the signal are 

then easily separated in the wavelet transform domain. 

 
Even if a signal is not well represented by one member of the wavelet family, 

another may still very efficiently represent it.  Selecting a wavelet function, which 

closely matches the signal to be processed, is of utmost importance in wavelet 

applications. 

 
The Daubechies family is just one of a number of wavelet families.  Some of the 

families are characterized by orthonormal basis functions as described above. 

Other wavelet families, for example the biorthogonal wavelets, are orthogonal in 

a more general sense than has been described.  Still other families of wavelet 

basis functions are not orthogonal in any sense.  The large number of known 

wavelet families and functions provides a rich space in which to search for a 
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wavelet, which will very efficiently represent a signal of interest in a large variety 

of applications. 

 
The great interest in wavelets today is only partly due to their ability to efficiently 

represent functions with localized features.  The interest is also due to the fact 

that it was discovered that some wavelets might be implemented in an extremely 

computationally efficient manner by means of what is called a multi-resolution 

analysis.  Just as Fast Fourier Transform (FFT) algorithms made the Fourier 

Transform a practical tool for spectral analysis, the multi-resolution analysis has 

made the Discrete Wavelet Transform (DWT) a viable tool for computational 

time-scale analysis (Raghuveer, et al 1992). 

 
4.1.6  Wavelet transform decomposition of ECG signals 
 
To illustrate how wavelet decomposition works, Fig. 4.1.4 shows the 

decomposition of a signal into its wavelet components (Rioul,Vetterli, 1991)  . 

 
The signal is an actual vector magnitude of an ECG signal and below it are the 

eight separate sub-signals, which have been obtained by decomposing this ECG 

signal into its wavelet components.  Each component is called a level and the 

levels are numbered from –1 upwards.  

 
When the separate wavelet levels are added together, the original signal is 

regained. This is shown in Fig. 4.1.5.  Starting at the top left-hand diagram, which 

shows level –1 alone, and moving down successive levels is added until finally, 

at the bottom diagram, the original signal has been regained.  

 
Depending on the type of wavelet used the dividing line between frequency 

bands may overlap and frequency content of neighboring levels may also 

overlap.  The number of levels n is related to the signal size N according to 

 therefore a signal of 128 samples will have a total of n = 7 levels.  nN 2=
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Figure 4.1.4 Wavelet decomposition of an actual ECG signal 

 

 
Figure 4.1.5 Step by step reconstruction of ECG signal from its levels 

 
The frequency content of these levels is shown in table 4.1.1 computed for a 

sampling frequency = 1024 Hz. We see that the highest frequency content 

falls in L7, which is equal to the Nyquist frequency. 

sf
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Table 4.1.1 Frequency distribution of different levels  

 
Level L7 L6 L5 L4 L3 L2 L1 

Frequency 
(Hz) 

512 : 256 256 : 128 128 : 64 64 : 32 32 : 16 16 : 8 8 : dc 

 

Due to the overlapping spectral components in the ECG signal, the WT provides 

some advantages in the analysis and in separating the P, QRS, and T waves 

since it looks at both time and frequency domains.  As can be seen, P-wave, T-

wave and motion artifacts are contained in levels L2 and L1 in this example. 

Muscle noise and QRS last for the entire spectrum of the ECG with the QRS 

having the higher relative strength.  

 
Fundamental to the problem of rhythm monitoring is the detection and delineation 

of QRS complexes, and quite often the processes required for this purpose are 

more complicated than the classification scheme.  In this part, a method for the 

detection of QRS complexes and a classification scheme using the wavelet 

transform is presented. The detection of the QRS complex, as well as the T and 

P waves is one of the most important starting points in ECG signal analysis.  

Once the QRS complex has been identified, a more detailed examination of ECG 

signal, including the heart rate, the ST segment, etc., can be performed. 

 
Wavelet transform is a suitable technique for time-frequency analysis. By 

decomposing signals into elementary building blocks that are well localized both 

in time and frequency, the WT can characterize the local regularity of signals.  

This feature can be used to distinguish ECG waves from serious noise, artifacts 

and baseline drift. An algorithm based on the WT for detecting QRS complex, P 

and T waves have been used.  A dyadic wavelet transform is used for extracting 

ECG characteristic points.  The local maxima of the WT modulus at different 

scales can be used to locate the sharp variation points of ECG signals. The 

algorithm first detects the QRS complex, then the T wave, and finally the P wave. 
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Signal singularities often carry the most important information.  It is important to 

find the location of singularity and characterize the singular degree in signal 

processing (Meste, Rix, 1994)(Mousa, Yilmaz, 2004-a). 

Signal singularities often carry the most important information.  It is important to 

find the location of singularity and characterize the singular degree in signal 

processing (Meste, Rix, 1994)(Mousa, Yilmaz, 2004-a). 

  
4.1.7 WT filtering and detection of the R peak 4.1.7 WT filtering and detection of the R peak 
  
A major task of the method; which is also sensitive to noise lies in the process of 

isolating independent beats. The WT method was employed in this process as 

well as other parts of the analysis by combining levels L10 and L11 which 

emphasize the presence of the R-peak, reduce and remove base-line drift as 

seen in Fig. 4.1.6. During this process the mid-point between two R-peaks is 

taken as the dividing point between two successive beats. The heart rate (HR) 

and RR intervals are then easily obtained (Mousa, Yilmaz, 2004-c). 

A major task of the method; which is also sensitive to noise lies in the process of 

isolating independent beats. The WT method was employed in this process as 

well as other parts of the analysis by combining levels L10 and L11 which 

emphasize the presence of the R-peak, reduce and remove base-line drift as 

seen in Fig. 4.1.6. During this process the mid-point between two R-peaks is 

taken as the dividing point between two successive beats. The heart rate (HR) 

and RR intervals are then easily obtained (Mousa, Yilmaz, 2004-c). 
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Fig. 4.1.6 Detection of R-peak using WT to remove base line variations 

 

4.1.8 WT application in clustering of similar beats 
 
As we will see later in chapter 6, the WT plays an important role in the process of 

clustering of similar ECG beats. Introduced here is a portion of that analysis. We 

begin by assigning the first beat as the template. The second beat received is 

compared to this template, aligned with template and averaged together if the 

correlation value exceeds the predefined threshold. If the beat and template are 

not similar (i.e., correlation value is less than the threshold), this new beat is 

appended to template increasing the size of template by one beat. This in effect 
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generates a multi-beat template. The process is continued to the end of the 

record. The resulting multi-beat template is then taken as the template for that 

patient that also summarizes the contents of the entire record. 

Due to heart rate variability in the different data sets, these processes generate 

R-R intervals that are not all equal. The portions of signal falling between three 

R-peaks were separated and their lengths made equal by centering them in a 

zero-padded vector. A total of 13 different matrices resulted each containing 

corresponding levels from all beats and designated as {L1, L2, … ,L13}. A cross-

correlation process generated the different templates. The size of the templates 

{T1, T2, …, T13} depended on the degree of similarity set by the threshold value,  

with high similarity giving a smaller size template.   

 
To explain how the different templates labeled T1, T2, …,Tn are formed we will 

consider one of them since the process applies to the rest in exactly the same 

manner. The T may be regarded as column matrix with variable size that is 

decided by the number of beats appended to it. First the WT of a beat is 

performed producing a number of levels that is related to the number of samples 

in that beat. 

 
As an example taking the WT of record of 4096 samples will produce 13 different 

levels. Each level in the decomposition of the first received beat is appended to 

the corresponding T1, T2, …,Tn to form the starting template. At this point we 

have 13 different column vectors each containing one level representing the first 

beat. When the second beat is received, it will go through the process of 

decomposition again producing a total of 13 different levels. The cross-

correlation of each one of these levels is calculated with the corresponding entry 

contained in each T vector, i.e., L1 with T1, L2 with T2 and so on. If the signal in 

a particular level say L1, meets the threshold value implying similarity, this level 

is aligned and averaged with that of T1 otherwise L1 is appended to T1 

increasing the size of T1 by one, similarly for the rest of the levels and T vectors. 

This is continued until the last beat after which the T vectors will have different 

numbers of levels appended to them depending on their similarity. 
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4.1.9 WT-based vector magnitude calculation 
 
The ECG leads may be composed of a number of different components such as: 

 
X = X1 + X2 + … + X9,                                                             (4.1.12-a) 

Y = Y1 + Y2 + … + Y9,                                                       (4.1.12-b) 

Z =  Z1 + Z2 + … +  Z9,                                                      (4.1.12-c) 

 
With X, Y and Z defined as above where the numbers indicate the level number 

and represent a signal with different frequency content.  The lower numbers are 

the low levels, which contain low frequencies, and the higher numbers are the 

high levels containing high frequency part of the signals.  For a signal with 512 

samples, the WT decomposes the three X, Y and Z leads into nine different 

levels.  When taking the vector magnitude we will have: 

 
2 2 2( )M X Y Z= + +  

2 2 2 2

2 2 2

2 2 2

1 2 ... 9
1 2 ... 9
1 2 ... 9 2

M X X X
Y Y Y
Z Z Z

= + + + +

+ + + +

+ + + + CT
                                                             (4.1.13) 

The CT component in (4.1.13) represents the product of cross-terms between all 

different frequencies in the signal as shown in (4.1.14). 

 
CT = X1X2  + X1X3 + …+ X8X9 +  

         Y1Y2  + Y1Y3 +… + Y8Y9 +  

         Z1Z2  + Z1Z3 + …+ Z8Z9                                                             (4.1.14) 
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To simplify the presentation let us combine some of the levels to form a 

frequency separation similar to that defined for (P, T), QRS and VLP. With this 

division we have signals, which are composed of three frequency bands. When 

these signals are used in the calculation of the vector magnitude we have: 

 
VQT XXXX ++=                                                                          (4.1.16-a) 

VQT YYYY ++=                                                                                (4.1.16-b) 

VQT ZZZZ ++=                                                                              (4.1.16-c) 
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                                (4.1.17) 

Where: 

 
( )
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T Q T V Q V

T Q T V Q V

CT X X X X X X

Y Y Y Y Y Y

Z Z Z Z Z Z

= + +

+ + +

+ +

                                                       (4.1.18) 

 
The desired part of this composite signal is the square root of the term containing 

the square terms of signals with V subscripts i.e., 

 
)( 222

VVV ZYXDS ++=          (4.1.19) 

 
As we have seen in the different formulae, the classical way of calculating the 

vector magnitude produced undesirable terms that can overshadow the desired 

part and may even prevent their accurate detection. Therefore, the proposed 

method presents the vector magnitude in a decomposed form that enables us to 

choose the exact regions of interest. The method, however, requires more 

calculations since a WT decomposition of each level has to be carried out.  When 

calculating the vector magnitude directly in the classical method or using all 

levels in WT method, we observe the reduced strength of the desired signal 

(VLP) from the O ( ) to O ( ) due to squaring.  Another term is introduced 610− 1210−
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which is HALFS modulated by the LAHFS; the degree of modulation may be an 

indication of the presence and strength of VLP in the signal (Mousa, Yilmaz, 

2000-a). 

which is HALFS modulated by the LAHFS; the degree of modulation may be an 

indication of the presence and strength of VLP in the signal (Mousa, Yilmaz, 

2000-a). 

  
We have demonstrated that the desired signal components XV, YV and ZV can be 

isolated prior to the calculation of the vector magnitude.  Our method uses WT 

(see section 6.2) to decompose the three X, Y and Z leads and choose the 

appropriate levels based on their frequency content which are then defined as 

XV, YV, and ZV. 

We have demonstrated that the desired signal components XV, YV and ZV can be 

isolated prior to the calculation of the vector magnitude.  Our method uses WT 

(see section 6.2) to decompose the three X, Y and Z leads and choose the 

appropriate levels based on their frequency content which are then defined as 

XV, YV, and ZV. 

The two methods show exact match when the non-filtered vector magnitude is 

calculated adding all levels of the WT and compared to that of the normal method 

as shown below in Fig. 4.1.7. 

The two methods show exact match when the non-filtered vector magnitude is 

calculated adding all levels of the WT and compared to that of the normal method 

as shown below in Fig. 4.1.7. 
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Figure 4.1.7 A plot of the non-filtered vector magnitudes  

 
4.1.10 QRS onset and offset detection  
 
For the first part of the analysis to minimize variations from the Simson’s method, 

the QRS detection in the first part of this work followed the same method outlined 

by Simson as introduced in section 2.3.  Since the result is directly related to the 

correct QRS end points detection, one can argue that this is also a weak point of 

this type of methods. 
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For the detection of R peaks, the onset and offset of the QRS complex are also 

detected.  The onset of the QRS complex is defined as the beginning of the Q 

wave (or R wave when Q wave is not present), and the offset of the QRS 

complex is defined as the ending of the S wave (or R wave when the S wave is 

not present). Ordinarily, the Q and S waves are high frequency and low 

amplitude waves and their energies are mainly at small scale.   

 
T and P wave detection 
 
After the detection of the QRS complex, the peaks, onsets, and offsets of T and 

P waves are also detected. The peak, onset, and offset of the P wave are 

detected similarly to those of the T wave within a time window before the 

detected R wave. 
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4.2  Cepstrum analysis and homomorphic deconvolution 

 

4.2.1 Introduction 
 
In this chapter we introduce the concepts of the complex cepstrum and 

homomorphic filtering techniques for their abilities to separate signal 

components in ways that could be utilized in the analysis of late potentials. A 

variety of signal processing applications use the collection of nonlinear 

techniques known as complex cepstral analysis. The complex cepstrum 

rearranges the power spectrum of the signal in such a way that the slowly 

varying components of the signal are represented by the low frequencies or 

early coefficients and the fine detail by the high frequencies or late 

coefficients. The complex cepstrum of a signal is defined in terms of its z-

transform while the z-transform of the cepstrum, is defined as the logarithm of 

the z -ransform of the sequence. The full complex cepstrum is computed with 

the complex logarithm (Oppenheim, Schafer, 1989). 

 
Given the complex cepstrum, we can use techniques similar to frequency-

domain filtering methods to deconvolve the signal into its constituents. The 

low-time portion of the cepstrum coefficients corresponds to the low frequency 

of the input signal, so by windowing the signal with an appropriate filter, we 

can separate it from the high-time portion of the signal. (See, for example, 

Section 12.8.4 of Oppenheim and Schafer for more details.) This technique is 

called homomorphic deconvolution.  

 
It can be seen that most of the detail occurs near the origin and in peaks 

higher up the cepstrum. Thus the lower numbered coefficients provide the 

envelope information. The remainder of the detail is mostly contained in the 

peaks. Therefore, using the complex cepstrum enables the separation of 

signals combined through the operation of convolution. 
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The cepstrum and homomorphic deconvolution systems satisfy the principle 

of superposition; i.e., input signals and their corresponding responses are 

combined by an operation having the properties of addition.  These systems 

have proved useful in signal analysis and have been applied with success in 

processing signals, and in particular biomedical signals.  The complex 

cepstrum has found broad application in speech processing, seismic analysis, 

and many other fields. A number of researchers in the field of ECG analysis 

have reported some success when applying complex cepstrum and signal 

length methods (Murthy, Rangaraj, Udupa, Goyal 1997)( Murthy, Rangaraj, 

1997). In this work we incorporate their methods as a further support to the 

wavelet transform method in order to achieve the maximum accuracy 

possible. 

 
The transformation of a signal into its cepstrum is a homomorphic 

transformation, and the concept of the cepstrum is a fundamental part of the 

theory of homomorphic systems for processing signals that have been 

combined by convolution. Homomorphic filtering is very general, but it has 

been studied most extensively for the combining operations of multiplication 

and convolution because many signal models involve these operations. 

 
These properties are described in full detail in Oppenheim and Schafer 

(1989).  

 

The complex cepstrum can be difficult to compute analytically, however, we 

can define the cepstra in terms of the discrete Fourier transform. Given the 

Fourier transform, we can find the real cepstrum of the data sequence quite 

easily. The real cepstrum while not as useful for deconvolution applications is 

applied where the energy in various parts of the signal needs to be computed. 

 
Computation of the inverse cepstrum is simpler than the cepstrum, since 

special care is not required with respect to the phase. The inverse cepstrum is 

computed by taking the inverse transform of the exponent of the Fourier 

transform.  
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4.2.2 The cepstrum and the complex cepstrum 
 
The z-transform of a given stable sequence x[n] defined as: 

n

n

z]n[x)Z(X
∞

∞
∑
=

=  (4.2.1) 

or represented in polar form : 

 
X(Z)jeX(z)X(z) ∠=                                                    (4.2.2) 

 
where )z(X  is the magnitude and  is the angle, of X(z).  For a stable 

x[n], the region of convergence for X(z) includes the unit circle, and the 

Fourier transform of x[n] exists and is equal to .  

)z(X∠

)e(X ωj

 
The complex cepstrum of x[n] is defined as the stable sequence  with z-

transform: 

]n[x
∧

 
[ ]                                                                         (4.2.3) )z(Xlog)z(X =

∧

 
With 

 
Log [X(z)] = log [ )z(Xe)z(X ∠ ] = log )z(Xj)z(X ∠+ s                   ( 4.2.4) 

 
 
The complex cepstrum exists if log[X(z)] and has all the properties of the z-

transform of a stable sequence has a convergent power series representation 

as: 

 

[ ] 1z]n[x)z(Xlog)z(X z n

n

===
=

∞

∞

∧∧ ∑                                   (4.2.5) 

 
Therefore the sequence of coefficients of the power series corresponds to the 

complex cepstrum of x[n].  The complex cepstrum can be represented using 

the inverse Fourier transform since we require  being stable and the 

region of convergence includes the unit circle. 

]n[x
∧

 56



 

4.2.3 Homomorphic deconvolution 
 
An important property of the cepstrum is that it is a homomorphic 

transformation. A homomorphic system is one in which the output is a 

superposition of the input signals, i.e., the input signals are combined by an 

operation that has the algebraic characteristics of addition. Under a cepstral 

transformation, the convolution of two signals becomes equivalent to the sum 

of the cepstra of the signals (Murthy, Rangaraj, Udupa, Goyal 1997)( Murthy, 

Rangaraj, 1997) (Oppenheim, Schafer, 1989).  

 
The operations that defined the complex cepstrum were the same as those 

shown in block diagram form in Fig. 4.2.1.a.  The cascade of z-transform, 

complex logarithm, and inverse z-transform can be thought of as a 

representation of the characteristic system .  Since we are assuming that 

all sequences and their complex cepstra are stable, the associated z-

transform always include the unit circle in their regions of convergence; 

consequently the z-transforms in Fig. 4.2.1 can also be specialized to Fourier 

transforms as in (4.2.8).  Each of the three basic component transformations 

is also homomorphic, and the corresponding input and output operations are 

indicated in Fig. 4.2.1 (a).  The z-transform maps convolution to multiplication; 

the complex logarithm converts multiplication to addition; and the inverse 

transform is a linear transformation. 

[.]*D

 
The third system Fig. 4.2.1 is the inverse of the characteristic system for 

convolution; its input must be the complex cepstrum of its output, i.e. 

⎥⎦
⎤

⎢⎣
⎡= ][][
∧

1-
* nyDny                                                                   (4.2.6) 

 

The basic operations that define the inverse characteristic system for 

convolution are depicted in Fig. 4.2.1 (b).  The linearity of the z-transform 

takes a sum of complex cepstrums into a sum of transforms; the complex 

exponential maps a sum into a product; and the inverse transform maps a 

product into a convolution. 
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Figure 4.2.1   (a) Characteristic system for convolution and (b) its inverse. 

 
 
 
Properties of the complex cepstrum 
 
Some of the properties of the complex cepstrum are: 

 

PROPERTY 1: The complex cepstrum decays at least as fast as n/1 . 

PROPERTY 2: If x[n] is real,  is also real. ]n[x
∧

PROPERTY 3: The complex cepstrum 
∧
x [n] = 0 for n < 0 if and only if x[n] is 

minimum phase, i.e., X(z) has all its poles and zeros inside the unit circle. 

PROPERTY 4: The complex cepstrum 
∧
x [n] = 0 for n > 0 if and only if x[n] is 

maximum phase, i.e.  X(z) has all its poles and zeros outside the unit circle. 

 

4.2.4  Minimum-phase and maximum-phase sequences 
 
Minimum-phase sequences are real, causal, and stable sequences whose 

poles and zeros are inside the unit circle.  Since we require that the region of 

convergence of log[X(z)] include the unit circle so that 
∧
x [n] is stable, and 

since causal sequences have a region of convergence includes ∞=z  it follows 

that there can be no singularities of log[X(z)] on or outside the unit circle if  
∧
x [n] = 0 for n < 0, conversely, if all the singularities of = log[X(z)] are 

∧
)Z(X
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inside the unit circle, then it follows that [n] = 0 for n < 0. Since the 

singularities of 

∧
x

∧
X (z) are the poles and the zeros of X(z).  The complex 

cepstrum of x[n] will be causal (
∧
x [n] = 0 for n <0) if and only if the poles and 

zeros of X(z) are inside the unit circle. In other words, x[n] is a minimum-

phase sequence if and only if its complex cepstrum is causal. 

 
Causality of the complex cepstrum is equivalent to the minimum phase lag, 

minimum group delay, and minimum energy delay properties that also 

characterize minimum-phase sequences. This property motivated the use of 

the complex cepstrum in order to try to separate envelopes that contain little 

changes from components that include delayed activities such as VLPs. 

 
Maximum-phase sequences are stable sequences whose poles and zeros are 

all outside the unit circle.  Thus, maximum-phase sequences are left-sided, 

and, it follows that the complex cepstrum of a maximum-phase sequence is 

also left-sided. Our initial hypothesis was that any delayed activities should be 

of the maximum-phase type and by separating the two types of signals, we 

can gain better insight into the concept of VLP. 

 
4.2.5 Minimum-phase/maximum-phase decomposition by homomorphic 

filtering  
 
If no poles or zeros lie on the unit circle, then  

 
)Z(X).Z(X)Z(X mxmn=                                                (4.2.7) 

 
where Xmn(z) is minimum phase and Xmx(z) is maximum phase.   

a sequence of the form 

 
]n[x*]n[x]n[x mxmn=                                                (4.2.8) 

having a complex cepstrum: 

 

]n[x]n[x]n[x mxmn
∧∧∧

+=                                         (4.2.9) 
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Then xmn[n] and xmx[n] may be extracted from x[n] by homomorphic filtering 

using:  

 

]n[x]n[l]n[x mnmn
∧∧

=                                                   (4.2.10a) 

 
where 

 
]n[u]n[lmn =                                                                  (4.210b) 

 
and 

 
]n[x]n[l]n[x mxmn

∧∧
=                                (4.2.11a) 

 
where: 

 
]1[][ −−= nunlmx                                 (4.2.11b) 

 

And xmn[n] and xmx[n] can be obtained from and . The 

operations required for the decomposition of (4.2.8) are depicted in Fig. 4.2.2 

with  and representing the frequency invariant filters. 

]n[x mn

∧
]n[xmx

∧

][nlmn ][nlmx

 

 
 

Figure 4.2.2 Minimum-phase / Max-phase decomposition 
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4.2.6 Minimum-phase correspondence (MPC) 
 
While there exists only one minimum phase signal for given amplitude 

spectrum, a number of non-minimum phase signals can exist with varying 

degrees of phase lags. Homomorphic filtering can be employed to convert a 

non-minimum phase signal into its minimum-phase correspondence (MPC). 

Some of the important properties of a minimum phase signal are presented in 

section 4.2 of this thesis. Of all energy bounded one-sided signals with 

identical amplitude spectra the energy of minimum phase signal is optimally 

concentrated towards the origin and the signal has the smallest phase lag and 

phase-lag derivative for each frequency. The resultant y(n) is the MPC of x(n), 

having an amplitude spectrum identical to that of x(n), but with energy 

concentrated optimally towards the origin (Murthy, Rangaraj, Udupa, Goyal 

1997)( Murthy, Rangaraj, 1997). 

 
4.2.7 Signal length 
 
Signal length is a quantity, which gives information about distribution of 

energy over the duration of the signal. For a given amplitude spectrum, 

signals which have their energy optimally concentrated at the origin have 

minimum signal length while signals with distributed energy have greater 

signal lengths. More often, an abnormal signal has a much wider than a 

normal QRS complex and while the amplitude spectra of the two are almost 

identical, they are known to differ in phase. Signal length implicitly takes into 

account the phase of the signal. Hence, depending upon the type of the 

abnormality, its signal length could be quite different from that of a normal 

ECG complex. It is shown that better feature separation and parameter 

extraction is achieved in some cases when the signal length of the minimum 

phase correspondent of the signal is considered and classification can be 

performed using a Neural Networks. Signal length and signal duration are two 

different concepts while signal duration gives the interval outside which the 

signal is zero, signal length gives information as to how the energy of the 

signal is distributed within its duration. Signal length depends on both 

amplitude and phase spectra of the signal, and for one sided signals minimum 
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length implies minimum phase and vice versa. The signal length (SL) of a 

one-sided signal x[n] of duration L is defined as  

[ ]

[ ]∑

∑
1L

0n

2

1L

0n

2

]n[x

]n[x]n[w

SL

=

==  (4.2.12) 

 
where w[n] is an increasing series in n, the choice of which depends upon the 

application. Here it is chosen as the index n itself. As can be seen from 

(4.2.12), sample points away from the origin (n = 0) receive progressively 

heavier weighting. For a given amplitude spectrum and hence total energy, 

the signal that has its energy concentrated optimally at the origin has 

minimum length, while signals with added delay have greater lengths. Thus, 

an ECG that has a wider QRS complex with larger phase lag than a normal 

ECG complex can be expected to have greater signal length. 

 
4.2.8 Application of the Complex cepstrum analysis to recorded data 
 
Presented here is a sample of applying the complex cepstrum to two different 

real ECG signals from our own data base. The first signal comes from a 

normal subject used for control and the other signal is from a patient classified 

as having anterior myocardial infarction. 
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a. Normal                                         b. Anterior MI 
 
 

Figure 4.2.3 Two sample signals from the Hacettepe database 
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The different properties of the complex cepstrum outlined in this chapter will 

be used in our unified approach to the problem of identifying delayed 

potentials. The ability of the complex cepstrum to separate a signal into its 

minimum-phase and maximum-phase components will be used in the 

calculation of the additional parameters such as the signal length as shown in 

Table 4.2.1.  
 

Table 4.2.1 Complex cepstrum related parameters 
 

Signals and parameters Anterior MI Normal 
SL 47.7786 47.2568 MPC 
rms 3.1638 2.7603 
SL 98.8368 36.3296 

Min-PH 
rms 1.6137 2.0417 
SL 60.7077 34.2436 

Max-PH 
rms 2.1781 2.5675 
SL 59.9564 61.8233 

Signal 
rms 0.5038 0.4008 

 
 
 
 
 
    
   
 
 
 
 
 
Using the original signals the SL parameter failed to classify the differences 

as expected since there were no rearrangement of coefficients but the rms 

parameter showed a small difference between the two signals. After 

calculating the MPC both parameters performance showed improvement and 

were able to detect the two signals correctly. The SL parameter differences 

were not wide with only differences in the fraction parts. The minimum-phase 

and maximum-phase portions showed a clear margin in differences as can be 

seen in their corresponding entries.  
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Figure 4.2.4 Normal signal results 
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Figure 4.2.5 Anterior MI signal results 
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4.3 Artificial neural networks 
 

 

4.3.1 Introduction  
 
Artificial neural networks (ANN’s) have been widely used over the past few 

years as pattern and statistical classifiers in many application areas including 

medicine.  ANN’s were used for QRS/PVC classification or for the detection of 

atrial fibrillation.  Neural network-based ST segment analysis has been used 

for automated detection of the J-point to identify hypothermic patients and the 

onset of the T-wave, using adaptive theory, and also for the classification of 

ST-T segments.  Classical back propagation (BP) NN using inputs of 

measured ST-T data such as ST slope, ST-J amplitude, and positive and 

negative amplitudes of the T wave with emphasis in data coming from 

myocardial infarction patients have been employed.  Only recently, some 

algorithms for ischemia detection and analysis were tested with varying 

degrees of success.  This chapter describes the implementation of a BP NN 

for VLP detection.  The performance of the algorithm was tested on the ECG 

database, which has been described earlier with sample results presented 

here. The approach in this part differs considerably from previously used 

algorithms in that it avoids reliance on the QRS region, because of its 

problematic detection, concentrating instead on information coming from the 

whole ECG pattern (Mousa, Yilmaz, 2001-b)(Gang, Wenyu, Ling, Qilian, 

Xuemin, 2000)( Xue, Reddy, 1997). 

  
The artificial neural network structure is based on our present understanding 

of biological nervous systems.  Although a great deal of biological detail is 

eliminated in these computing models, the artificial neural networks retain 

enough of the structure observed in the brain to provide insight into how 

biological neural processing may work.  These models are composed of many 

non-linear computational elements operating in parallel and arranged in 

patterns similar to biological neural nets.   

65 



 

Computational elements or nodes are connected via weights that are typically 

adapted during use to improve performance.  Neural networks utilize a 

parallel processing structure that has large numbers of processors (neurons) 

and many interconnections between them.  Each processor is linked to many 

of its neighbours so that there are many more interconnections than 

processors. The power of the neural network lies in the tremendous number 

of interconnections. 

 
4.3.2 Computing with neural networks  
 
A neural network is a system that is designed to model the way in which the 

brain performs a particular task or function of interest.  A neural network is a 

massively parallel-distributed processor, which is able to store knowledge and 

making it available for use. It resembles the brain in two respects:  

 
1. Knowledge is acquired by the network through a learning process, 

2. Inter-neuron connection strengths known as synaptic weights are used 

to store the knowledge. 

 
The procedure used to perform the learning process is called a learning 

algorithm, the function of which is to modify the synaptic weights of the 

network in an orderly fashion so as to attain a desired design objective. The 

modification of synaptic weights provides the method for the design of neural 

networks (Haykin 1999)(Fu 1994).  

 
Nodes 

 
Computational elements or nodes used in neural net models are non-linear. 

The simplest node sums N weighted inputs and passes the result through a 

non-linearity. The node is characterised by an internal threshold, or offset, and 

by the type of non-linearity. There are three common types of non-linearities: 

hard limiters, threshold logic elements and sigmoidal non-linearities.  
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Topology 

 
Neural networks are specified by the net topology node characteristics and 

training or learning rules. These rules specify an initial set of weights and 

indicate how weights should be adapted during use to improve performance. 

Neural networks typically provide a greater degree of robustness or fault 

tolerance because there are many more processing nodes each with primarily 

local connections. Damage to a few nodes or links thus need not impair 

overall performance significantly.  

 
Network training 

 
The ability to adapt and continue learning is essential in areas such as 

biomedical signal analysis and processing. Adaptation also provides a degree 

of robustness by compensating for minor variabilities in characteristics of 

processing elements.  Neural network classifiers are also non-parametric and 

make weaker assumptions concerning the shapes of underlying distributions 

than traditional statistical classifiers. 

  
4.3.3 The neuron model   
 
A simple description of the operation of a neuron is that it processes the 

electric currents, which arrive on its dendrites, and transmits the resulting 

electric currents to other connected neurons using its axon. The classical 

biological explanation of this processing is that the cell carries out a 

summation of the incoming signals on its dendrites. If this summation exceeds 

a certain threshold, the neuron responds by issuing a new pulse, which is 

propagated along its axon but If it is less than the threshold the neuron 

remains inactive. 

 
The three basic elements of the neuron model are: 

 
1. A set of synapses, each of which is characterised by a weight or 

strength of its own. A signal x, at the input of synapse i connected to 

neuron j is multiplied by the synaptic weight wij. The first subscript 

refers to the neuron in question and the second subscript refers to the 
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input end of the synapse to which the weight refers.  The weight wij is 

positive if the associated synapse is excitatory, it is negative if the 

synapse is inhibitory.    

2. An adder for summing the input signals, weighted by the respective 

synapses of the neuron (a linear combiner). 

 

   f( uj )
Output (yj)

Threshold (θj )

uj

wj1

wj2

wj3

wjN

Inputs
x1.....xN

 
 

Fig. 4.3.1 Computational model of a neural network 

 
3. An activation function for limiting the amplitude of the output of a 

neuron.  The activation function is also referred to as a squashing 

function in that it squashes the permissible amplitude range of the 

output signal to some finite value. 

 

         u                            (4.3.1) wj
i

N

i=
=
∑

1
xji

j )                                          (4.3.2) y f uj j= −( θ

 
 

4.3.4 Network architectures   
 
4.3.4.1 Single-layer feed forward networks  
 
A layered neural network is a network of neurons organised in the form of 

layers. The simplest form of a layered network has an input layer of source 

nodes that projects onto an output layer of neurons but not vice versa. In 

other words, this network is strictly of a feed forward type. The designation 

'single-layer' refers to the output layer of computation nodes. The input layer 

of source nodes does not count, because no computation is performed there. 
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A linear associative memory is an example of a single-layer neural network.  

In such an application, the network associates an output pattern (vector) with 

an input pattern (vector), and the information is stored in the network by virtue 

of modifications made to the synaptic weights of the network. 

 
 

 

Input  
Layer 

Output 
Layer 

 
 

Fig. 4.3.2   Single layer feed-forward network 

 

4.3.4.2 Multi-layer feed-forward networks 

 
Multi-layer perceptrons are feed-forward nets with one or more layers of 

nodes between the input and output nodes.  These additional layers contain 

hidden units or nodes that are not directly connected to both the input and 

output nodes.  Multi-layer perceptrons overcome many of the limitations of 

single-layer perceptrons, but were generally not used in the past because 

effective training algorithms were not available.  

 
The neural network is fully connected in the sense that every node in each 

layer of the network is connected to every other node in the adjacent forward 

layer. If, some of the synaptic connections are missing from the network, then 

the network is partially connected. Each neuron in the hidden layer is 

connected to a local set of source nodes that lie in its immediate 

neighbourhood. Likewise, each neuron in the output layer is connected to a 

local set of hidden neurons.  Thus, each hidden neurons responds essentially 

to local variations of the source signal. 
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Fig 4.3.3  Multi-layer feed-forward network 

4.3.5 Non-linearities of multi-layer perceptron  

 
The capabilities of multi-layer perceptrons stem from the non-linearities used 

within nodes.  If nodes were linear elements, then a single-layer net with 

appropriately chosen weights could exactly duplicate those calculations per 

formed by any multi-layer net. A single-layer perceptron forms half-plane 

decision regions.  A two-layer perceptron can form any, possibly unbounded, 

convex region in the space spanned by the inputs.  Such regions include 

convex polygons sometimes called convex hulls. Here the term convex 

means that any line joining points on the border of a region goes only through 

points within that region.  

 
4.3.6 Required nodes and layers  
 
The number of nodes must be large enough to form a decision region that is 

as complex as is required by a given problem. It must not, however, be so 

large that the many weights required cannot be reliably estimated from the 

available training data. No more than three layers are required in perceptron-

like feed-forward nets because a three-layer net can generate arbitrarily 

complex decision regions. The number of nodes in the second layer must be 

greater than one when decision regions are disconnected or meshed and 

cannot be formed from one convex area. The number of second layer nodes 

required in the worst case is equal to the number of disconnected regions in 

input distributions.  
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4.3.7 Multi-layer perceptron with sigmoidal on outputs 

 
The above discussion centred primarily on multi-layer perceptrons with one 

output, which utilise hard limiting non-linearities as activation functions. 

Similar behaviour is exhibited by multi-layer perceptrons with multiple output 

nodes when sigmoidal non-linearities are used and the decision rule is to 

select the class corresponding to the output node with the largest output. The 

behaviour of these nets is more complex because decision regions are 

typically bounded by smooth curves instead of by straight-line segments and 

analysis is thus more difficult.  

 
4.3.8 Back propagation 
 
The back-propagation algorithm is a generalisation of the LMS algorithm. It 

uses a gradient search technique to minimise an error function equal to the 

mean square difference between the desired and the actual net outputs.  The 

desired output of all nodes is typically "low" (0 or <0.1) unless that node 

corresponds to the class the current input is from in which case it is "high" (1.0 

or >0.9).  Initially selecting small random weights and internal thresholds and 

then presenting all training data repeatedly train the net. 

  
Weights are adjusted after every trial using side information specifying the 

correct class until weights converge and the cost function is reduced to an 

acceptable value.  An essential component of the algorithm is the iterative 

method described in Table 4.3.1 that propagates error terms required to adapt 

weights back from nodes in the output layer to nodes in lower layers. 
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Table 4.3.1 Back-propagation training algorithm 
 

Step 1. Initialise weights and offsets: 
Set all weights and node offsets to small random values.  

Step 2. 
 
 
 
 

Present input and desired outputs: 
Present a continuous valued input vector , and specify 
the desired outputs .  If the net is used as a classifier 
then that desired output is 1.  

110 ,...,, −mxxx

110 ,...,, −mddd

The input could be new on each trial or samples. 
Step 3. 
 
 

Forward Calculation: 
Use the sigmoid non-linearity from above and calculate outputs      

             110 ,...,, −myyy
Step 4. 
 
 

Backward calculation: 
The local gradient δ  is calculated as: 

])[1]([][][ nononen jjjj −=δ  for output layer 

∑−=
k

kjkjjj nwnnynyn ][][])[1]([][ δδ  for other neurons 

Adapt weights: 
Use a recursive algorithm starting at the output nodes and working 
back to the first hidden layer. Adjust weights by           

][][]}1[][{][]1[ nynnWnWnWnW ijjijijiji ηδα +−−+=+  
Where:  
α  = momentum constant ,δ ’s = local gradients , η  = learning rate 

 Step 5. Repeat by going to step 2  
 

4.3.9 The back-propagation training algorithm   

 
The back-propagation training algorithm is an iterative gradient algorithm 

designed to minimise the mean square error between the actual output to a 

multi-layer feed-forward perceptron and the desired output. It requires 

continuous differentiable non-linearities. The following assumes a sigmoid 

logistic non-linearity is used where the function f (v) is:   

 
)1/(1)( avevf −+=  (4.3.3) 

 
 
One of the major problems with the error back-propagation learning algorithm 

is it runs the risk of being trapped in a local minimum.  These are points where 

the gradient goes to zero but the network is not at the global minimum.  As the 

network trains, the algorithm will get stuck at these points because the error 

gradient goes to zero.  
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The error back-propagation learning algorithm will not always find the global 

minimum, even though it is present.  Then the network must be restarted and 

a new search is carried out. This is typically done with a new random set of 

starting weights and by presenting the training data in a different order. This 

allows the network to find an alternative route to an optimum set of weights 

avoiding the local minima.  

 
4.3.10 Matlab algorithm 
  
Feed-forward backpropagation networks are created using the Matlab 

command NEWFF according to: 

   
     net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) 

 
which returns an N layer feed-forward backprop network. 

    
 with: 

 
     PR    - Rx2 matrix of min and max values for R input elements. 

     Si      - Size of ith layer, for Nl layers. 

     TFi    - Transfer function of ith layer, default = 'tansig'. 

     BTF  - Backprop network training function, default = 'trainlm'. 

     BLF  - Backprop weight/bias learning function, default = 'learngdm'. 

     PF    - Performance function, default = 'mse'. 

 
The feed-forward network consists of layers set by Nl and using the 

DOTPROD weight function, NETSUM net input function, and the specified 

transfer functions. 

  
The first layer has weights coming from the input.  Each subsequent layer has 

a weight coming from the previous layer.  All layers have biases set to default 

values.  The last layer is the network output. 

  
Each layer's weights and biases are initialized with INITNW. Adaptation is 

done with TRAINS which updates weights with the specified learning function. 
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Training is done with the specified training function. Performance is measured 

according to the specified performance function. 

 
The differentiable transfer function TFi was either the sigmoid tLOGSIG or the 

TANSIG function. The training function BTF was TRAINLM and the learning 

function BLF was the backpropagation learning function LEARNGD. The 

performance function was the differentiable performance functions MSE. The 

data consisted of inputs P and targets T to be solved with a neural network. 

 After the two-layer feed-forward network was created.  The network's input 

ranges from [min to max].  The first layer has five TANSIG neurons, the 

second layer has one PURELIN neuron.  The TRAINLM network training 

function was used. The network was simulated and trained for 50 epochs and 

the network's output was plotted. 

 
Once the parameters are extracted, they are used as inputs to a feed-forward 

neural network (ANN) for classification as shown in Fig. 4.3.4. 

 

 

 
Fig 4.3.4 Classification of extracted parameters 

 

The process is composed of 1) taking the wavelet transform of the three X,Y 

and Z leads , 2) parameter extraction, 3) design, train and test neural 

networks.  

 
4.3.11 Application of ANN in VLP classification using WT parameters: 
 
A feed-forward neural network containing two hidden layers was designed 

and trained using the back-propagation learning algorithm. The network was 

trained for a number of times and the best result was chosen.  The hyperbolic 

tangent function was used as the activation function. 

 
The extracted three classical parameters, i.e., QRS duration, voltage in the 

terminal of the QRS and the duration of the low amplitude terminal signal 

were used as input to ANN. A sample of the training error performance is 
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shown in Fig. 4.3.5 while the result of ANN classification is presented in Fig. 

4.3.6 and as can be seen did not give acceptable classification results.   
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Fig. 4.3.5  A sample of the training performance for the network. 
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Fig. 4.3.6  Classification using classical parameters. 
normal (o) and abnormal signals (*). 

 
 

The symbol (o) represents signals for normal subjects while; symbol (*) 

represents those with VLP in their ECG recordings. 

 
Due to the small number of data size and limiting the region of analysis to the 

end of the QRS complex, results obtained here were not satisfactory and did 

not give acceptable classification results. This problem will be dealt with in the 

upcoming chapters through introducing more data and enlarging the region of 

analysis to include the entire cardiac cycle. 
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CHAPTER 5 

 
 

INSTRUMENTATION AND DATA ACQUISITION 
 
 
5.1 Introduction  
 
In this chapter we introduce the work carried out in the design and 

implementation of our ECG recording system. We start by presenting the 

basic theories involved and concluding with the complete data acquisition 

system. A great deal of time and effort were devoted to the development of an 

appropriate device according to our specification but the task was at last 

completed.   

 
The system can be divided into two main parts, the analog part and the digital 

part integrated together to give the complete acquisition system in addition to 

the software needed for acquisition and analysis. The block diagram shown in 

Fig 5.1 depicts the main components of ECG recording instruments. 

 

 
Fig 5.1-a The analog part of the system 

ISO175 ISO175 ISO175 dc-dc 
Converters 

Filters Filters Filters

Amplifier Amplifier Amplifier

X-Lead X-Lead X-Lead

To Part B

 76



Part A is the analog part which records, amplifies and band-limit the signal 

prior to digitization.  Part B is the digital part that receives its input from part A.  

This part samples the signals at a preset sampling rate and sends it through 

to the laptop for display, processing and storage for future use. The recording 

system connects to laptop via the USB port that can also supply the 

necessary power to run the system.  The device is capable of recording three 

separate channels simultaneously or 12 channels multiplexed using the 

special properties of the three onboard ADC converters. 

From part A 

16-bit ADC  16-bit ADC 

To Laptop via USB  Oscillator  RAM ROM 

Microprocessor 

16-bit ADC  

 
Fig 5.1-b The digital part of the system 

 
Recording of ECG signals for the purpose of VLP analysis is a very 

challenging task due to a number of factors.  One such factor is the fact that 

ECG signals as well as any signal of biologic origin are very weak with 

magnitudes in the range of 1-10 mV.  Furthermore, these signals have very 

low drive, i.e. source has very high output impedance. Another important 

factor is the noise that can corrupt the recorded signal in addition to the fact 

that recordings are carried out in a noninvasive manner. The use of 

equipment with very good specifications does not guarantee interference free 

recordings as will be seen in section 5.3.  

 
In the following sections we introduce the different parts making up the 

acquisition system and some of the theories behind their operation.  
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5.2 Bio-potential amplifiers  
 
An ECG amplifier is usually required to have the following properties: 

 
• Ability to sense low amplitude signals in the range of 0.1 - 10 mV or less  

• Very high input impedance, usually more than 5 Mega-Ohms 

• Very low input leakage current, 1 micro-Amps or below 

• Flat frequency response of 0.1 - 100 Hz  

• High common mode rejection ratio (CMRR). 

 
Input leakage current is defined as the current an amplifier sends to the unit 

connected to its input terminals (human body in our case) (Webster, 1998).  

 
Common Mode Rejection Ratio (CMRR) is defined as the ratio of the 

magnitude of the differential gain to the magnitude of the common mode gain, 

as given below: 
 

C

D

A
ACMRR=   (5.1) 

 
where AD is the differential gain of the amplifier and is given by 
 

OUT
D

IN IN

VA
V V+ −

=
−

 (5.2) 

 

where  and AIN INV V+ ≠ − C  is the common gain of the amplifier and is given by 
 

OUT
C

IN

VA
V +

=  (5.3) 

 

where IN INV V+ −=  

 
A high CMRR is essential since the capacitive coupling from the external 

electrical sources such as power lines would create a strong common mode 

signal in comparison to the differential ECG signal. A high CMRR would mean 

that the AD is much larger than AC, and the differential amplification of low 

amplitude ECG signals would be possible in the presence of common 50/60 

Hz signal coupled from the power mains (Winter, Webster, 1983-a).  
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Common mode voltage reduction remains important because differences in 

electrode impedance cause differential mode interference, even if the 

impedances of the amplifier inputs are equal.  Although good preparation of 

the electrodes and the skin may reduce this type of interference, electrode 

impedances differ with every new recording and are inherently an uncertain 

factor. Some reduction of the common mode voltage can be obtained by a 

good isolation of the amplifier circuit, i.e. the capacitances of the amplifier to 

mains and ground should be much smaller than the capacitances of the body 

to mains and ground.  However, these low capacitances are usually not easy 

to achieve and isolation must therefore be regarded mainly as a way to 

improve patient safety. A special class of interference is the high frequency 

interference caused by for instance fluorescent tubes or switching power 

supplies. Common mode voltage reduction is less effective at higher 

frequencies since circuit gain decreases with frequency. Moreover, at high 

frequencies the input impedance of an amplifier will decrease because of its 

capacitive component, increasing the effect of the common mode interference 

voltage. Although high frequencies are usually filtered out in bioelectric 

measurements, amplifiers can easily saturate or produce low frequency 

distortion components. High frequency interference therefore remains a factor 

of great concern (Winter, Webster, 1983-a) (Winter, Webster, 1983-b). 

 
5.2.1 The differential amplifier 
 
To improve the signal to noise ratio (SNR), we use the configuration shown 

below in Fig. 5.2.  This is called a differential amplifier, because it amplifies 

the difference between the two input voltages.  

 
The gain is given by: 
 
 

2

1

( IN IN
RGain V V
R

)+ −= −  (5.4) 
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Figure 5.2 The differential amplifier 

 
Since the output is proportional to the difference between the two input 

voltages, this circuit has the advantage of good common mode rejection. This 

means that any input present on both terminals will be cancelled out.  So, only 

a signal, which is different on the two, inputs will be amplified, which of course 

is exactly what we want. The ISO175 used in our instrument contains a 

differential amplifier similar to the one introduced here with a controllable gain 

using a single resistor connected between the negative inputs as shown in the 

next section (Webster, 1998).   

 
5.2.2  The instrumentation amplifier 
 
The differential amplifier is limited in its performance because of the low input 

impedance. To improve this, two bootstrapped buffer amplifiers (which are 

simply op-amps with unity gain) are commonly added, which results in the 

simple instrumentation amplifier. Basically the instrumentation amplifier is 

made up of a buffer and a differential amplifier in cascade as shown in Fig. 

5.3.  In practice, it is difficult to precisely match resistors that are discrete 

components. To overcome this problem the entire circuit is put on a single 

integrated circuit, since IC manufacturing technology enables precise resistor 

ratios to be obtained. Chips such as Analog Devices AD620 or Texas 

instruments ISO175 find widespread use in working with low-level signals with 

large common-mode components in noisy environments and in particular in 

biomedical engineering application and measurements of bio-potential 

signals.   
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Figure 5.3 The three op-amp instrumentation amplifier 

 
The most commonly applied ways of acquiring ECG signals are described in 

the following paragraphs.  
 
5.2.3 AC coupling 
 
DC voltage offsets present on the body or electrodes will be amplified.  These 

are quite common, especially if the electrodes are moved (motion artifact). 

The effect is to cause the baseline of the ECG to wander around, and it can 

be so serious to saturate the amplifier.  To avoid this, a high-pass filter with a 

very low cutoff frequency (block DC) can be used.  

 
5.3 Noise and interference 
 
An excessive level of interference often disturbs bioelectric recordings and 

degrades the quality of the recorded signal.  In many cases very sophisticated 

equipment is needed even though interference free recordings cannot be 

guaranteed and one has to settle for a compromise. In most bioelectric 

measurements an interference level of 1 - 10 µV or less than 1% of the peak-

peak value of an ECG is acceptable. As the noise of a typical electrode is also 

several µV, in most circumstances 10 µV can be accepted as the upper level 

of interference (Pickering P. 1999).   
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5.3.1 Interference currents through the body  
 
The capacitances between the patient, the power lines and ground cause a 

small interference current to flow through the body. These capacitances 

cause an interference current of approximately 0.5 ppA −µ  to flow from the 

power supply lines through the body to ground.  If an amplifier is connected to 

the patient, part of the current from mains to patient will flow to ground. 

  
5.3.2 Interference currents into the amplifier  
 
In an isolated bioelectric measurement (i. e. no galvanic connection between 

the amplifier common and ground) the capacitances between the amplifier 

common and mains and between amplifiers common and ground should also 

be considered. These capacitances can cause additional interference currents 

to flow from the amplifier to ground, which contribute to the common mode 

voltage. 

 
5.3.3 Interference currents into the measurement cables  
 
A major source of interference in bioelectric measurements results from the 

capacitive coupling of the measurement cables with the mains. The currents 

induced in the wires flow to the body via the electrodes and from the body to 

ground. Because both the currents induced in the wires and the electrode 

impedances generally differ significantly, a relatively large differential voltage 

Vab is produced between the amplifier inputs.  

 
 

A typical situation with a mean current of 10  in the wires, a mean 

electrode impedance of 20 

ppAn −

ΩK  and a relative difference in interference 

current and electrode impedance of 50%, leads to an unacceptable high 

interference level of 200 ppV −µ .  Given the inherent variability of the electrode 

impedances and the level of interference among recordings, there is only one 

practical way to reduce interference currents in the wires: shielding of the 

measuring cables.  

 

 82



5.3.4 Magnetically induced interference  
 
Magnetically induced interference is easily distinguished from other types of 

interference because it varies with the area and orientation of the loop formed 

by the measurement cables. Suppression is easy in theory by reducing this 

area as much as possible through twisting of the measurement cables. In 

practice, this is not always feasible. For example, the usual electrode 

configuration in ECG measurements with electrodes placed at the extremities 

of the body might cause a considerable area between the input cables. 

  
5.4  Influence and reduction of common mode voltage  
 
There are two ways by which a high common mode voltage may cause 

interference.  The first, obvious way is when the common mode rejection ratio 

(CMRR) of the amplifier is limited. This mechanism is not often problematic 

with modern differential amplifiers: a common mode rejection ratio of 80 - 120 

dB is customary. A second and much more important way a high common 

mode voltage may cause interference is when there are differences in 

electrode impedances and/or input impedances which convert common mode 

voltage into a differential input voltage. This mechanism is the main reason for 

the need to reduce the common mode voltage as much as possible (Winter, 

Webster 1983-a)( Winter, Webster 1983-a).  

 
The usual electrodes may show a mean impedance of 20 kΩ at 50 Hz and 

impedance differences of up to 50 %. Differences in input impedances should 

not exist in a carefully designed amplifier system, but often these differences 

are not easy to avoid.  

 
An isolated measurement is very safe if the capacitance between the amplifier 

common and ground and the capacitance between the amplifier common and 

mains are kept sufficiently small. 

 
5.5 Isolation and patient safety 
 
Recording ECG signals means low-level signals must be detected and 

amplified in the presence of potentially dangerous voltages. An isolation 

 83



device acts as an interface between external devices and the data acquisition 

system. It provides galvanic isolation between the input and output. It also 

rejects large common-mode signals appearing at the input and breaks ground 

loops since the input and output are floating relative to each other.   

 

In the medical field, patients are susceptible to electrical shock hazards. A 

normally harmless 50 Hz current can cause cardiac arrest under certain 

circumstances. As a result, manufacturers of bioelectric amplifiers, especially 

EEG and ECG equipment, use isolation amplifiers that provide appropriate 

isolation between the patient and the AC power line mains cord.  

 
The effect of AC current passing through the body is a potentially dangerous 

situation and may lead to death. A 30 mA current can cause stopping of 

breath while a current as low as 20 µA directly applied to the heart would 

cause ventricular fibrillation and possible death. 

 
There are several other key parameters that define the performance of an 

isolation device. A wide variety of isolation devices are available in fields 

ranging from industrial process control to medical instrumentation to PC-

based data acquisition systems.  

 
An isolation device passes a signal, either analog or digital, from input to 

output across an isolation barrier. This barrier ensures that there is no 

galvanic (ohmic) connection between input and output. To be effective, the 

isolation barrier must have high breakdown voltage, low DC leakage (high 

barrier resistance), and low AC leakage (low barrier capacitance). 

 
The isolation voltage, the parasitic resistance, and the capacitance specify the 

barrier.  The isolation voltage is a measure of the device's ability to protect 

itself and the surrounding circuitry against physical damage resulting from 

different voltage potentials. An isolation amplifier rejects the common-mode 

voltage and allows the signal of interest to be accurately measured. 
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Figure 5.4. An ideal isolation device (source: Pickering P. 1999 ) 

 
An ideal isolation device would transmit the input signal VSIG across the barrier 

and reproduce it perfectly at the output.  Real-world devices introduce errors 

due to the common-mode voltage, VCM, and the isolation-mode voltage, VIM. 

The barrier resistance and capacitance are modeled as shown. 

 
5.6 Isolation device techniques 
 
The three techniques commonly used are optical isolation, inductive isolation, 

and capacitive isolation. In the optical isolation the barrier consists of an LED 

and a photodetector. The input signal modulates the LED and the 

photodetector converts the light back into current.  In inductive isolation the 

signal modulates a high-frequency carrier and is transformer-coupled from 

input to output. Transformer-coupled devices are the most effective at 

transmitting power in a given volume and are invariably used in dc-dc 

converters. The capacitive isolation modulates a high-frequency carrier and is 

capacitively coupled from input to output. Either duty-cycle or frequency 

modulation techniques are used, and then the signal is passed differentially 

across the barrier. The capacitors can be formed from elements of the IC 

package lead frame, reducing the overall cost.  

 
5.7 Data acquisition methodology 
 
5.7.1 Filtering 
 
In a first order filter, the roll-off is very gradual (20 dB/decade, or 6dB/octave). 

This results in the cutoff between signal and noise being rather poor and 

noise will still continue to exist even with a low cutoff frequency.   
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To improve this, we need to make the cutoff cleaner. There are several 

common filters used in practice and they each have their relative advantages 

and disadvantages. The Butterworth filter was used due to the following 

properties: 

1. Flat response in the pass band - minimal distortion  

2. adequate rate of rolloff  

3. large transition region  

4. good all-round filter  

5. simple to understand  

6. Suitable for such applications as audio processing  

 
In practice, higher-order filters are difficult to make with purely passive 

components (resistors and capacitors).  Instead active filters are used, based 

around op-amps as seen in Fig. 5.5 and in Fig. 5.6. 

 

 
Fig 5.5 A single op amp realizations of active filters 

 

 
Fig 5.6 A two-op amp realizations of active filters 

 

 

5.7.2 Analog to digital conversion (ADC) 
 
In the process of analog to digital conversion, an analogue signal is converted 

into a digital signal, which can then be stored in a computer for further 
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processing.  Analog signals are "real world" signals as is the case of the ECG 

signal recorded by the instrumentation amplifier. In order for these signals to 

be stored and manipulated by a computer, these signals must be converted 

into a discrete digital form.  

 
The main advantages are 

1. Data is easily transported and manipulated  

2. Computer analysis of signals can be far more efficient  

3. Real-time analysis can be performed  

A number of important factors must be considered when converting analog 

signals into their digital equivalent.  These include factors such as: 

• Sampling and aliasing 

• Resolution 

• Saturation 

• Quantization 

• Dynamic range 

 
Sampling and aliasing  

 
The object of A/D conversion is to convert this signal into a digital 

representation, and this is done through sampling the signal. The sampling 

rate is the frequency expressed in Hertz (Hz) at which the ADC samples the 

input analog signal.  

 
If the sampling rate is insufficient, the rapidly rising phase of a waveform may 

not be represented as well in the sampled waveform as is the more slowly 

changing part.  In fact, it can be proven mathematically that the sampling rate 

to be used must be greater than twice the highest frequency contained in the 

analog signal.  This critical sampling rate is called the Nyquist Frequency.  If 

sampling rate is lower than the Nyquist, an artifact called aliasing can result. 

To allow for underestimates and give a margin of error, it is traditional in 

practice to use a figure of four times the maximum frequency.  
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For a signal of given frequency content, increasing the sampling rate beyond 

a certain point does not significantly increase the fidelity with which the signal 

is rendered.  There is a tradeoff between fidelity of reproduction on the one 

hand, and computer storage space, computing time, and cost on the other.  

 
As far as the ADC is concerned, noise is also a signal, so to prevent aliasing, 

the sampling rate calculation should allow for any noise in the signal.  It is a 

usual to pass the analog signal through a low-pass filter before the ADC.  This 

filter acts to remove some of the high-frequency content of the signal that 

would otherwise alias down in frequency.  Note that this anti-alias filtering 

could remove high frequency information of physiological importance to the 

phenomenon under investigation. If it is important to retain these higher 

frequencies, one has no choice but to use a better data acquisition system 

that has a higher sampling rate.  

 
Resolution 

 
Resolution refers to the ability of the ADC to capture the smallest variations or 

changes in the voltage levels.  This factor depends on both the span and the 

number of bits (N) used.  The span is the maximum voltage used in 

accordance to the following formula: 

 
Resolution = Span / 2N

 
The type of ADC used forms an important factor since the number of bits the 

converted binary number can take is one of 2N values, where N = number of 

bits in the ADC. For N=12, then there can be 4096 values, representing the 

integers from 0 to 4095.  The ADC also has an input range (span), measured 

in volts. Thus, the input voltage range is divided into 4096 levels, with each 

level being Span/4096. So, with a span of 10 V, the resolution is 0.0024 volts.  

Our choice for this part of the circuit was the ADC since it provides a 16-bit 

resolution and which could be used to record up to 12 channels of ECG data.      
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Saturation 

 
When carrying out A/D conversion it is important to keep the input signal 

within the span of the ADC.  If the input signal exceeded the supply voltage 

VS, a 12 bit binary number with an equivalent decimal number of the 

maximum value would be still returned to the computer. The computer would 

thus interpret the voltage being sent to be the same value, which would be in 

error. This error is called saturation of the ADC. However, the input signal 

should span as much of the ADC input voltage range as possible, without 

saturating the ADC, since this increases the signal to noise ratio.  Thus if the 

voltage range of the input signal is much smaller than ± VS volts, the signal 

should be amplified before being fed to the input of the ADC.  

 
Quantization Noise 

 
The uncertainty introduced by rounding the sample amplitudes to discrete 

levels adds noise, called quantization noise, to the signal.  The amount of this 

'noise' decreases with increasing resolution.  Because a sample is stored as a 

binary number, the total number of values that can be stored = 2N, with N 

being the number of bits in the ADC.  It can be shown that the RMS amplitude 

of the quantization noise = q / (12) 0.5 (or 0.29 q) where q is the resolution of 

the ADC. 

 
Dynamic Range  

 
Dynamic range refers to the range of values between the high and low values 

that can be recorded by the ADC. A 16-bit ADC with more bits was chosen to 

reduce the effects of quantization noise.  In addition to our desire to represent 

both low and high amplitude signals with reasonable fidelity.  The need for this 

dynamic range can result in more bits. Using an 8-bit ADC, then 255 

correspond to the highest amplitude and the lowest amplitude is 0.255 

represented by the least significant bit (LSB).  For a 12-bit ADC, the lowest 

amplitudes are allocated about 2 bits; and for a 16-bit ADC, about 6 bits.  
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5.8 The complete data acquisition system 
 
The instrumentation developed for this thesis is meant to provide the high-

resolution high-sampling rate data needed for the analysis of VLP.  It consists 

of an analog part and a digital part.  The analog part is dedicated to record the 

ECG signal directly from the body surface of the patient. It provides the 

necessary patient safety through the use of special components designed for 

this purpose. It includes components such as the ISO175 isolation 

instrumentation amplifier and dc-dc converters. There are three isolation 

amplifiers that can provide a 12-channel data recording through the use of 

three 4-channel ADC. The role of the dc-dc converters is twofold; they provide 

supply isolation for patient safety and the needed positive and negative 

voltages needed to operate the circuit.   

 
5.8.1  Isolation instrumentation amplifiers 
 
The ISO175 is a precision isolated instrumentation amplifier incorporating a 

novel duty cycle modulation/demodulation technique and excellent accuracy.  

A single external resistor sets the gain. Internal input protection can withstand 

up to ±40V without damage. The signal is transmitted digitally across a 

differential capacitive barrier. With digital modulation the barrier 

characteristics do not affect signal integrity.   

 
This results in excellent reliability and good high frequency transient immunity 

across the barrier.  Both the amplifier and barrier capacitors are housed in a 

24-pin plastic DIP that is only 0.3" wide. 

 
The ISO175 is easy to use and its gain is set with a single external resistor 

placed between pins 2 and 22.  A power supply range of ±4.5V to ±18V 

makes this amplifier ideal for a wide range of applications. The device has a 

CMRR of 115dB and a non-linearity of less than 0.01%.  The stages of this 

amplifier are shown in Fig.5.7 along with the pin distribution and numbers. 
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Fig. 5.7 ISO175 instrumentation amplifier pin distribution  

(source: Texas Instruments ) 

 

5.8.2 The dc-dc converter 
 
The DCP01B series is a family of 1W, unregulated and isolated dc-dc 

converters. Requiring a minimum of external components and including on-

chip device protection, the DCP01B series provides extra features such as 

output disable and synchronization of switching frequencies. The internal 

structure of the device is shown in Fig 5.8.   

 
Fig. 5.8 Internal structure of the dc-dc converter  

(source: Texas Instruments ) 
 

To generate a bi-polar supply, the dc-dc converter was used according to the 

configuration shown in Fig 5.9.   
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Fig. 5.9 Bi-polar supply structure of the dc-dc converter 

(source: Texas Instruments ) 
 

The material discussed up to this point was utilized to produce the portable 

high-resolution system shown in Fig. 5.10. The system connects to laptop via 

the versatile USB port.  

 

 
 
 
 

Fig. 5.10 A snapshot of the system components 
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CHAPTER 6 

 
 

CLUSTERING OF PATIENT DEPENDENT FEATURES  
 

 

6.1 Introduction 
 
Material presented in this chapter follows the path of minimizing drawbacks of 

commonly used methods such as alignment, averaging of uncorrelated beats 

and the rest. It should serve as a preprocessing operation to the input data for 

and is part of the unified method. The preprocessing operation clusters ECG 

beats into templates that have common characteristics. Templates are usually 

employed in the analysis of ECG signals in order to control the quality of the 

incoming beats as they are recorded or during the classification stage.  A 

possible application area of the method is in Holter recordings with higher 

sampling rates and better resolutions. Recording a long-term record 

generates large sizes of data records and analyzing such records is only 

approximate and is usually done in a short time through visual inspection. In 

Holter recordings, a 24-hour or sometimes more is usually recorded. The 

recorded signal is normally sampled at less than 250 samples per second and 

a resolution of 10 bits or less to keep the data size within a manageable 

range. The rates used represent a minimum requirement and must be 

increased in order to capture important hidden information in biological signals 

such as the ECG. Increasing these values will definitely increase the size of 

data collected. To be useful and give better insights into many abnormalities 

these values need to be increased to sampling rates of 1000 Hz or higher and 

resolutions of 12 to 16 bits. At a heart rate (HR) of 60 beats per minute (BPM), 

which is one beat/second, when sampled at 1000 samples/second and a 

resolution of 10 bits results in a data size of 10000 bits/second. For a 24 hour 

Holter recording this means, 864 mega-bit or 54 mega-byte of data. Even 

though today’s storage devices are capable of storing large quantities of data 

in small and portable media such as flash cards, the problem remains at the 

doctor’s end. Any cardiologist analyzing such data will only sample and 
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approximate these records with the possibility of unintentionally missing 

important details. It is impossible for any cardiologist to examine the complete 

long time records such as those of the Holter recordings.  At best they will 

sample these records to try to spot distinguishing features that may have 

medical value in a laborious way (Mousa, Yilmaz, 2004-c).  

 
The template may be a universal one representing a particular illness applied 

to all patients or might be extracted from individual patients by visually 

inspecting a clean beat, which is then used as the template. However, all 

these techniques come with their associated drawbacks and the currently 

applied methods may not be the best implementation possible. All incoming 

beats will be categorized with respect to this template regardless of their 

information content. In addition, a small variation that may not occur at every 

beat will be masked out by such methods in present. The universal template 

is not an accurate one since it attempts to mach all patients to common beat, 

which may be appropriate for general inspection and rejection of ectopic 

beats, but such a method is definitely inappropriate for detailed analysis of 

abnormalities such as ventricular late potentials (VLP) as microvolt signals 

used for prognosis of ventricular tachycardia (VT).  

 
A major difficulty in averaging a number of beats to generate the improved 

template is alignment of the beats to a certain reference point. It has been 

found that the existence of a timing error or trigger jitter in the synchronization 

process causes a low-pass filtering effect in the averaged signal (Jane et 

al1991)( Rompelman and Ros,1986). Noise constitutes another major 

challenge to any working procedure especially if the desired signal is in the 

same range as that of the noise as the case of VLPs (Friesen et al., 1990).  

 
What is presented here is an improved method for patient-dependent 

template generation that takes into account the possible variation in ECG 

signals from patient to patient and even from beat to beat for the same 

patient. In addition to template generation, the method allows for good 

reduction of data size without loss of information. The method shows good 

performance even for noisy signals since it isolates noise in a separate 

wavelet transform (WT) level.  
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To help in the diagnosis and summarize this large data with minimum or no 

loss at all, we introduce a method that extracts templates from patient data 

rather than using a general golden template. This approach uses a simple 

method named as dynamic averaging. Dynamic averaging allows for real time 

computation of the average of beats as they are recorded or received. The 

size of the template refers to how many different beats are clustered together 

to form the overall multi-beat template. A template of a user-defined size is 

generated for each patient and extracted from her/his own data. Data 

reduction is accomplished through the resulting size of data while cross-

correlation values are used in the coding process in order to preserve 

information about all averaged beats that contributed to the generated 

templates. 

 
In the following section we present a brief background on some of the tools 

employed in this study. Other sections introduce the methodology followed 

and finally their results are presented followed by some conclusions about the 

introduced method. 

 
6.2 Theory and tools 

6.2.1 Normal and dynamic signal averaging 

 
Signal averaging is a common method used for improving the signal to noise 

ratio (SNR) and is essentially statistical in nature based on white noise 

assumption (Rompelman and Ros,1986).  Unless the desired signal repeats 

at every beat, averaging will tend to reduce its strength rather than improve its 

SNR. Therefore, we must know the repetition nature of the desired part of the 

signal before applying any averaging in order to get optimum improvement in 

SNR. Of course averaging every beat is optimal if the desired signal is 

repeated at every beat and results in SNR improvement equal to N where N 

is the number of averages. The usual averaging process waits for an 

ensemble of data to be collected before averaging. This prohibits online 

averaging and renders the calculated average to static. On the other hand, 

dynamic averaging, which we have suggested here, allows for real time of 

beat averaging as they are acquired and allows for continuous updating of the 
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calculated average. The usual averaging scheme sums up N-points and 

divides that sum by the total number of data points N according to the 

following formula: 

 
( NNxxxx /}[...]2[]1[ +++= )(  (6.1) 

 
Dynamic averaging introduced here in this work is a variation from the normal 

averaging process. The dynamic averaging process recalculates the average 

as new beats are received under predefined conditions at a sample k as: 
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where Mk is the kth average and its initial value M1 is set equal to the first 

sample received.                                                                                                            

 
6.2.2 Wavelet transform 
 
The forward and inverse WT are implemented as a tree-structured perfect 

reconstruction bank as illustrated in Fig 6.1.  

     

 
Fig. 6.1 Forward and inverse WT 

 
The process takes an input signal  and applies a pair of analysis filters G 

and H. The G is a high pass filter while H is a low pass filter. The resulting 

signals are then down sampled by a factor of two, which forms the output of 

the analysis stage. Usually this process is continued for a number of stages 

where the output of the low pass filter becomes the input to the next stage, 
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Analysis Synthesis

f f

H 

G 

2 2 E

2 2 F

 96



while the output of the high pass filter is retained. The synthesis stage is 

comprised of the opposite operations carried out in the analysis part where 

the full signal is regained using the pair of filters E and F where E is a time-

reversed version of H and F is a time-reversed version of G as required by the 

orthogonal wavelet system. Any processing of the signal f(t) has to take place 

between the two stages (Burrus, Gopinath and Guo, 1998).  

 
6.3 Methods of analysis 
 
E. Laciar et al. applied a similar method which they called multi-scale cross-

correlation for the alignment process and concentrated their work on the 

alignment of noisy signals (Laciar et al, 2003). In this work, cross-correlation 

is used for several purposes such as alignment of individual levels, improving 

template generation and data size reduction. Using WT decomposition further 

extends this method. 

 
The cross-correlation is a measure of the similarities or shared features 

between two signals (Oppenheim and Schafer, 1989). It is frequently 

necessary to be able to quantify the degree of interdependence of one 

process upon another, or to establish the similarity between one set of data 

and another. The existence of a finite sum will indicate a degree of correlation. 

The cross-correlation between two data sequences x1[n] and x2{n} each 

containing N data might be written as: 
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  (6.3) 

 
The correlation is computed for a number of different lags, k in order to 

establish the largest value of the correlation, which is then taken to be the 

correct value. 

 
Once the cross-correlation coefficient is calculated, it can be used for the 

alignment process for coinciding two beats properly. In this case the sample 

number of maximum lag value is taken as the alignment point. The correlation 

process is applied to each level and the alignment process is then carried out. 
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The overall process clusters the different information contained in ECG 

records into separate groups that could be utilized in further analysis and 

illness classification in a way similar to the usual template except instead of 

having a single beat as a template we have multiple beats. 

 
The diagram in Fig 6.2 shows the flow of analysis of ECG signals under WT 

and the correlation process. The choice of record size and degree of similarity 

can be set according to the particular application at hand. Analysis for the 

detection of finite duration, low amplitude activities require a larger record size 

and a higher degree of similarity. Since these levels represent signals with 

certain frequency content and they fall in the same frequency range, individual 

levels are tested for correlation.  

 
 
 

 
ECG Record 

 
 
 
 
 
 

 
 
 
 
 
 

Wavelet transform levels    L1, L2, …, Ln 

Cross-correlation (rxy)

Clustering 
T1, T2, …, Tn 

Coding using WT  
(correlation and lag) 

 
Fig. 6.2 Flowchart of analysis 

 
The wavelet type used in this analysis was the Daubechies (D-20) wavelet 

shown in Fig. 6.3 below. Applying the WT to each beat produces a set of 

levels each containing a time signal with certain frequency characteristics 

(Mousa and Yilmaz, 2001). After the correlation process the new level, if there 

is any, is properly aligned and averaged with the previous average result 

using the dynamic averaging process producing a new and improved template 

including that particular level.  One has to note that this process is performed 

according to a condition defined by correlation stage. When the process 

described above is applied to these levels then we have another dimension or 

signal added to the multi-beat template.  
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Fig.6.3 Daubechies D-20 wavelet 
 

Only similar levels are aligned and averaged which ensures better association 

of contents. Cross-correlation values are used in both the measure of 

similarity and in alignment of beats prior to averaging to gain better results. 

After generating the final template, the cross correlation process is 

recalculated. The auto correlation of the final template is used as the 

threshold for comparison. A two-parameter scheme is used in the coding 

process.  The first parameter is the maximum correlation value between each 

beat and the beats in the templates and the second is the lag value at which 

the cross correlation is maximum. 

 
Using WT coding, the template entry that resulted from averaging the highest 

number of signals was used as the representative template for cross-

correlation. Using that template, the correlation coefficient and lag values, for 

the coding scheme is generated as mentioned above. 

 
6.3.1 Clustering patient dependent features 
 
Averaging is based on the assumption that the signal of interest is periodic 

and repeats itself with every beat, a situation that cannot be guaranteed in the 

case of VLPs. The threshold chosen for correlation as a similarity criterion for 

features in comparison stage can be set as tight as the application requires 

for better beat association and feature discrimination. In order to cluster some 

features in different ECG waveforms, a number of records from signals with 

different abnormalities were used in the analysis. 

 
The signals included normal sinus (NS), Atrial fibrillation (AF), partial epillipsy 

(PE) and heart failure (HF), sample plots from each signal are shown in Fig. 
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6.4. The entire 4096-sample signal was wavelet transformed and a detection 

process for R-peaks was performed. As an example taking the WT of record 

of 4096 samples will produce 13 different levels {L1, L2, … , L13}.as 

calculated from the length of the sequence as 2n = 4096 or n=13. The L1 level 

contained the lowest frequency while the L13 level contained the highest 

frequency. At this point we have 13 different column vectors each containing 

one level representing the first beat. When the second beat is received, it will 

go through the process of decomposition again producing a total of 13 

different levels each containing corresponding levels from all beats. A cross-

correlation process generated the different templates. The size of the 

templates {T1, T2, …, T13} in cluster table depended on the degree of 

similarity set by the threshold value.  
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a- Normal Sinus                                     b- Atrial Fibrillation 
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c- Partial Epilipsy                                         d- Heart failure 

 
Fig.6.4 Parts of the original signals, a-NS, b-AF, c- PE, d-HF. 

 
The process begins with assigning the first beat as the initial template. The 

second beat received is compared to this template, aligned and averaged 

together if the correlation value exceeds the predefined threshold as an 

accepted degree of similarity. If the beat and template are not similar (i.e., 

correlation value is less than the threshold), this new beat is appended to 
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template increasing the size of template by one beat generating a multi-beat 

template. The resulting multi-beat template is then taken as the final feature 

clusters for that patient that also summarizes the contents of the entire record. 

Each level in the WT decomposition of the first beat in the signal is assigned 

to the corresponding cluster table of that level which are labeled as T1, T2, 
…,Tn to form the starting template. The content of each cluster table is 

compared with appropriate levels of other newly decomposed beats, (e.g. L1 

with T1, L2 with T2 and so on) by calculating their cross-correlation values. If 

a particular WT level with calculated correlation value exceeds the predefined 

threshold, this level is properly aligned and averaged with the corresponding T 

cluster (e.g. L1 with T1).  Otherwise the WT level is accepted as new template 

and is appended to the same T cluster without averaging; increasing the size 

of the corresponding T cluster by one more beat.  

 
The process is similar for the rest of the WT levels and T levels in clustering 

table. This is continued until the last beat after which the T vectors will have 

different numbers of levels appended to them depending on their similarity. 

 
A major task of the method, which is sensitive to noise, lies also in the 

process of isolating independent beats. The WT method was employed in this 

process as well as other parts of the analysis by combining levels L10 and 

L11 which emphasize the presence of the R-peak, reduce and remove base-

line drift as seen in Fig. 5. During this process the mid-point between two R-

peaks is taken as the dividing point between two successive beats. The heart 

rate (HR) and RR intervals are then easily obtained. 
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a. Original signal                                                  b. Appropriate WT levels 

 
Fig. 6.5 Detection of R-peak using WT to remove base line variations 
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6.4 Results  
 
A summary of the performance of the method as applied to the set of data is 

presented in Table (6.1). In this summary we record the effect of different 

signal categories on the number of beats within the chosen length of 4096 

samples. The other important observation is that the degree of reduction 

varies from patient to patient and from level to level. The first two template 

entries, T1 and T2 produced equal reduction for the same patient but different 

for different patients. These levels represent the low frequency content in the 

data records. There is no particular pattern that can be seen from the values 

in the table therefore the results are signal-dependent. 

     
The table presents the overall results of the method as applied to the four test 

signals with a middle value for the threshold of 0.5 chosen and presenting the 

sizes in terms of the number of beats in that portion. Each signal contained 

different number of total beats within the same chosen record length of 4096 

samples per record indicated as N in the table. Since the WT produced 13 

different levels we had a similar number for the multi-beat templates marked 

as T1, T2, and so on. The entries in these tables represent the size in beats of 

the resultant template.  

  
Without data reduction the entries in the table should be equal to index N the 

size of each type of signal used. 

 
Table 6.1 

Size of each cluster level expressed as the number of beats at a threshold value of 
0.5 for all signals. 

 
Signal T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

NS(N=50) 1 1 1 1 1 1 1 1 1 1 2 1 2 
AF(N=22) 1 1 2 1 1 1 1 1 1 1 1 2 3 
PE(N=22) 1 1 1 1 1 1 1 1 2 2 2 10 12
HF(N=20) 2 1 2 1 1 1 1 1 1 1 2 6 3 
 
Level L12 and L13 show less similarity and therefore vary the most. This is 

reflected on the number of entries retained in the resulting template (T12 and 
L13) especially for PE and HF which is reflected in the calculation of the 

overall performance as shown in Table.   
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The reduction percentages are calculated based on the number of beats in 

the original signal and that of the resultant individual templates as in: 
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The normal signal (NS) had the most reduction (98%) while partial epilepsy 

signal (PE) was the least reduction (87%) but still shows the efficiency of the 

method as in Table 6.2. 

 
Table 6.2 Comparisons of size reduction values 

 
NS AF PE HF Average Reduction 

Values 98% 94% 87% 91% 
 

The average reduction in cluster levels as applied to all signals expressed as 

percentage values is shown in Table 6.3. It can be seen that most levels 

achieved very high reduction values ranging from 93 to 96%. The least 

reduced clusters were T12 and T13 with a reduction value of 78%, which as 

we mentioned earlier contains mostly noise. 

 
Table 6.3 Average compression of individual levels 

 
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

95% 96% 94% 96% 96% 96% 96% 96% 95% 95% 93% 78% 78%
 
It was also observed that lowering the threshold values of the correlation 

coefficient to zero resulted in combining all beats in the template into a single 

beat as expected while setting the value to one resulted in preserving the 

entire record without any averaging.  These two situations are extremes and 

are included only as a control to process. 

 
A sample of the reconstruction process is shown in Fig. 6.6-a where the 

original signal beats can be reconstructed using the generated templates. The 

plot shows an arbitrary beat superimposed on one of the generated cluster 

templates. The system is also registering the number of beats involved in the 

averaging of individual templates to reveal the overall weight of contributions 

in each cluster. Fig. 6.6-b displays two beats from the NS which were 
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classified as different beats in the same patient as indicated by the entry 

under T11 in Table 6.1 with 48 out of 50 beats were associated with one of 

the templates while 2 beats were associated with the other. 
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(a)                                                              (b) 

 
Fig. 6.6 (a)-Sample plot of a reconstructed beat superimposed over one of the 
cluster templates and      (b)- two beats from the NS which were classified as 

different beats in the same patient 
 

A composite signal made up from a combination of NS and AF signals was 

also applied to test the performance of the method. Results obtained using 

the composite signal show that all clusters produced one template at the 

threshold value of 0.5 while T11, T12 and T13 produced two templates with 

varying number of beats averaged in each template as in Table 6.4. Examples 

of rebuilding beats from these templates are shown in Fig 6.7. 

 
Table 6.4 distribution of averaged beats in each cluster 

 
Cluster Template T11 T12 T13 

23 35 34 Number of beats averaged 
14 2 3 
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Fig. 6.7 Example of rebuilding beats from templates 
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6.5 Analysis of the method’s performance 
 
The method was tested and the results are presented in Table 6.5 and Table 

6.6 for both noise and correlation threshold sensitivity respectively. Each 

normalized signal is corrupted with different levels of white noise and different 

correlation values set as thresholds and the proposed method applied. These 

signals were not free of noise to begin with so the added noise was in addition 

to that originally contained in the signal. A sample of both original signal and 

the noise-corrupted versions are shown in Fig. 6.8. Noise levels from zero to 

0.2, representing signal to noise ratios of up to 20% of signal amplitudes have 

been used.  The correlation values were varied from perfect match or a value 

of one to zero match. 
Table 6.5 

Results of different noise levels1

 
NS with noise n=0.05:0.05:0.2 and a threshold = 0.5 

Noise T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 
  5 % 1 1 1 1 1 1 1 1 1 1 2 1 2 
10 % 1 1 1 1 1 1 1 1 1 1 2 1 2 
15 % 1 1 1 1 1 1 1 1 1 1 2 1 2 
20 % 1 1 1 1 1 1 1 1 1 1 2 1 2 

 
AF with noise n=0.05:0.05:0.2 and a threshold = 0.5 

Noise T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 
5 % 1 1 2 1 1 1 1 2 1 1 1 2 1 

10 % 1 1 2 2 1 1 1 2 1 1 1 1 1 
15 % 1 1 2 2 1 1 1 2 2 1 1 1 1 
20 % 1 1 2 2 1 1 1 2 3 2 2 1 1 

 
PE with noise n=0.05:0.05:0.2 and a threshold = 0.5 

Noise T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 
5 % 1 1 1 1 1 1 1 1 2 2 3 1 1 

10 % 1 1 1 1 1 1 1 1 1 2 2 5 8 
15 % 1 1 1 1 1 1 1 1 2 2 2 9 11 
20 % 1 1 1 1 1 1 1 1 2 2 2 10 11 

 
HF with noise n=0.05:0.05:0.2 and a threshold = 0.5 

Noise T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 
  5 % 1 1 2 1 1 1 1 1 1 1 3 1 1 
10 % 2 1 2 1 1 1 1 1 1 1 2 4 4 
15 % 2 1 2 1 1 1 1 1 1 1 2 5 4 
20 % 2 1 2 1 1 1 1 1 1 1 2 5 6 

 
1. Size of each averaged level expressed as the number of beats at a threshold value of 0.5.  
T is the number of differences detected and considered as templates based on the given 
threshold. 
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(a)                                                                (b) 

 
Fig. 6.8 Samples of (a) original signal and (b) signal plus noise 

 
The method kept a constant behavior even when the noise levels were 

increased to 20% of the signal amplitude.  

 
 

Table 6.6 
Cluster level sizes expressed as the number of beats at different threshold values. 

 
NS with different threshold values (THD) 

THD T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 
0.6 1 1 1 1 1 1 1 1 1 1 2 1 3 
0.7 1 1 1 1 1 1 1 1 2 1 2 1 3 
0.8 1 1 1 1 1 1 1 1 2 1 3 3 4 
0.9 1 1 1 1 1 1 1 1 2 3 6 4 8 

 
AF with different threshold values (THD) 

THD T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 
0.6 1 2 2 1 1 2 1 2 2 1 1 4 7 
0.7 1 2 2 2 2 2 2 4 4 2 2 6 14 
0.8 1 2 2 2 2 2 4 6 8 5 4 11 19 
0.9 1 2 3 3 3 3 5 10 14 12 18 14 22 

 
PE with different threshold values (THD) 

THD T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 
0.6 1 1 1 1 1 1 1 1 2 2 4 15 16 
0.7 1 1 1 1 1 1 1 1 3 4 6 16 18 
0.8 1 1 1 1 1 1 1 2 3 4 7 17 19 
0.9 1 1 1 1 1 1 2 2 6 7 10 19 19 

 
HF with different threshold values (THD) 

THD T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 
0.6 2 2 2 1 1 1 1 1 1 2 4 5 6 
0.7 2 2 2 2 2 2 1 1 1 2 4 9 8 
0.8 2 2 2 2 2 2 1 1 1 2 5 10 13 
0.9 2 2 2 2 2 2 1 2 1 4 9 14 17 
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Threshold values were varied in steps of 0.1 from zero to one and some of the 

results from this part are presented in Table 6.6. The size of the resultant 

cluster template increases with the increase in the threshold value, especially 

in the upper levels. This property can be utilized depending on the accuracy 

required. 

 
The algorithm presented in this chapter is well suited for real time ECG 

preanalysis, classification and data size reduction. It retains the clinically 

significant details of the individual ECG signal. It provides cardiologists and 

doctors with a summary of the signal characteristics to ease the analysis and 

bring their attention to the portions that may be of clinical value. This 

approach does not attempt to reduce the sampling rate, as is the case with 

other compression algorithms. 

 
This chapter serves as a preprocessing step to the unified method, which is 

introduced, in the next chapter. The unified method is applied to different sets 

of data with their results compared to previously gained results using common 

methods. 
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CHAPTER 7 

 
 

DATA PREPARATION, ANALYSIS AND RESULTS IN UNIFIED FRAME  
 

 
7.1 Introduction 
 
In this chapter we present the results obtained using the processes and 

methodologies outlined in the previous chapters. Conclusions, comments and 

plans to be followed in the future for this subject will be introduced in the next 

chapter.  

 
It is clear at this stage that current methods and approaches suffer from 

certain drawbacks due to some of the assumptions that limited their 

performance and resulted in low prediction rates to the problem of VLP 

identification. Itemized here are some of drawbacks to serve as a frame for 

the accomplished work in this thesis and these are:  

 

 

1. Absence of exact properties and definitions of what constitutes VLP 

2. Limited region of analysis  

3. Low number of parameters  

4. Cross-term generation in the calculation of the vector magnitude 

5. Orthogonality assumption of the XYZ leads  

6. Overlap of noise and VLP ranges  

7. Averaging of uncorrelated beats and the need for beat rejection 

8. Requirement for suitable data (high-resolution, high-sampling rates)  

9. Need to minimize human involvement in classification 

10. Importance of the Use of modern technology  

11. Alignment problems  

12. Lack of real time processing  
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7.2 Parameter extraction and analysis methods 
 
A set of parameters is extracted from each process and is used as inputs to a 

feed-forward neural network for classification. Once the parameters have 

been extracted, they are used as inputs to a feed-forward neural network 

(ANN) for classification as shown in Fig. 7.1. 

 
The roadmap for the analysis and extraction of appropriate parameters for the 

proposed method is as follows: 

 
• WT decomposition and analysis including detection of characteristic points 

• Complex cepstrum and homomorphic deconvolution 

• Minimum-phase, Maximum-phase, MPC,  and SL calculation 

• Parameter extraction 

• Neural Network classification of the extracted parameters 

 

 

 
Fig. 7.1 Classification of extracted parameters 

 
Snapshots of some of the GUI windows designed to organize the data 

acquisition and analysis processes using different DSP techniques are shown 

in Fig. 7.2 and Fig. 7.3 below. 

 

   

Figure 7.2 Snapshots of the user interface windows 
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Figure 7.3 Snapshots of some of the analysis GUI using Matlab 

 
Parameters can either be extracted from the vector magnitudes or directly 

from individual beats based on beat-to-beat analysis. The flowchart shown in 

Fig. 7.4 shows the application of the WT to the individual leads prior to 

calculating the vector magnitudes, while the flowchart of WT parameter 

extraction from the individual beats is illustrated in Fig 7.5 and the flowchart of 

CC parameter extraction from the individual beats is illustrated in Fig 7.6. The 

vector magnitude MQ is calculated based on the individual vector magnitudes 

MX, MY and MZ which were calculated using the WT method introduced in 

chapter three of this thesis and is defined as: 

 
222 MZMYMXMQ ++=  (7.1) 

 
 
 
 
 
 
 

ECG 

X-lead Y-lead Z-lead 

WT WT WT 

 

Calculate MX Calculate MY Calculate MZ 

Fig.7.4 WT based vector magnitude calculation flowchart  
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Fig. 7.5 Extraction of different WT parameters  
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Fig. 7.6 Extraction of different Complex Cepstrum parameters  
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Fig. 7.7 Unified method parameter extraction and training stage 
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Parameters extracted for the WT employed the first three details D1, D2 and 

D3 resulting from the application of the wavelet transform. They included the 

area under the curve and its RMS values. For the complex cepstrum the 

parameters were the signal lengths and the RMS values for the derived 

minimum-phase correspondence (MPC), the minimum-phase and maximum-

phase components of the signal. The flowchart presented in Fig. 7.7 shows 

the process of training the neural network using the extracted parameters 

prior to classification. 
 
7.3 Data used in the analysis 
 
The data used in this work is composed of different sets. The first is a 

synthetic set and is comprised of 1100 different signals.  The synthetic signals 

were generated based on variations of a real ECG signal. The second data 

set is comprised of a number of actual ECG signals from Sussex University 

and those recorded at the Cardiology department of the Hacettepe University, 

Ankara. The system developed and built specially for this project was 

employed in the recording process. The full detail of the system is described 

in chapter 5 of this thesis.  

 
7.3.1 Real ECG signals 
 
This set contains data from two different sources.  The first set comes from 

the database of the Sussex University, England and our team at the 

Hacettepe University recorded the other set.  The Sussex database contained 

a total of 156 different ECG signals. There were 78 signals classified as VT 

and 78 classified as normal while the rest contained different abnormalities.  

Orthogonal X, Y, and Z-leads were recorded during sinus rhythm over a 

bandwidth of 0.0-500 Hz and amplified (1500) times, using techniques 

reported previously.  Signals were digitized at 3000 samples per second with 

16 bit of precision. The X, Y, and Z leads were monitored continuously in real 

time enabling display of the entire cardiac cycle in each patient.  The sample 

points were stored in a digital form for future analysis and to be used as our 

own database.   
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7.3.2 Delayed potentials approximation (synthetic) 
 
An infarct is a physical damage that has certain physical characteristics. 

These physical characteristics include the Size of the damage, Orientation, 

Type and Position or in general, (SPOT) parameters.  The resultant delayed 

and disorganized activities will depend on the severity of these parameters. 

Because, the signal named in literature as VLP may be located anywhere 

along the conduction path and may not be restricted to the end of the QRS 

complex, we have defined a wider set to include the entire cardiac cycle. 

Since this large set includes LP as a subset, we have defined another name 

covering this range, and will be denoted as delayed potentials (DP).  The 

duration, frequency, amplitude, position and periodicity are possible 

candidates for the characterization of DP in our set (Mousa, Yilmaz 2004-a).  

 
Sufficiently large set of synthetic signals underlying the behavior of physical 

characteristics of the infarct parameters was employed to represent the effect 

of physical size, position, orientation and time of the infarct. The approximated 

signals are variations from real ECG signals by convolving signals 

representing late potentials based on duration, frequency, amplitude and 

position. The aim is not to exactly model VLP but rather generating an 

approximate set of signals to examine the performance of the standard 

methods for different possibilities in infarct dynamics. The position of this 

added signal was varied in steps to cover a range from 50 to 450 samples 

and added to the ECG signal extending outside the QRS complex at various 

durations ranging from 2 percent (8 sample in 512 signal length) to 5 percent 

(24 samples).  These durations are based on the sampling rate of 1000 

samples per second and a 12 bit resolutions used by Simson in his work. The 

amplitude was approximated according to usual recorded ECG signal of 1mV 

to 10mV as reported by Simson and compared to that used in the Hacettepe 

cardiology department. In order to compare the different approaches the 

same data set was used in all analysis stages (Simson, 1981). 

 
The signals generated for this part are based on the fact that the accepted 

definition of VLP is a low-amplitude, high frequency, short-duration potential. 

The magnitude of VLP is thought to be in the µ volt range (0-20 µV), a value 
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close to noise and a wide frequency range of (40-200 Hz).  These are the 

standards set by several international committees, including the European 

society of cardiology.  This definition is used to generate a sinusoidal signal 

with amplitude (A), a frequency (F) and duration (D).  The position (P) of this 

model signal is varied and the resultant signal is convolved with the base 

ECG signal.  All values (A, F, D, P) are varied according to Table 7.1 to give 

the 1100 different signals defining delayed potentials.  The base signal was 

an actual ECG signal taken from the Sussex university database sampled at 

2200 samples per second. The Nyquist frequency was 1100 Hz and time 

increment of 0.45 ms. 

 
Table 7.1 Different parameters used to generate the set of test signals 

 Duration     (Samples) 8 – 24 
Amplitude  (of signal max) 0.01 – 0.1  
Frequency (Hz) 80 – 150 
Positioned (sample number) 10 – 450 

 

 

 

As a first attempt, those potentials and the base signal were combined 

through the operation of addition. The resultant signals were examined and 

put through a neural network to search for commonalities between synthetic 

DP and real VLP but the outcome was unsatisfactory. Secondly, convolution 

was employed as the operation of combining these potentials and the base 

signal. The convolution-based approximation was compared to that of the 

addition-based one. Parameters of the common methods were used in the 

comparison process which included the QRS duration, the LAS40 and RMS40 

as defined before. The convolution approach was found to be a better 

approximation to VLPs than directly adding the small variations representing 

the DPs. This time the neural network was able to detect commonalities and 

identify all VLP positive signals based on prior knowledge of synthetic signals 

only. The plots in Fig. 7.8 show the effect on the QRS duration as a result of 

adding potentials through convolution. The top vector magnitude is the normal 

base signal while the bottom graph represents on of the synthetic signals. The 

plots clearly present the success of the model in reflecting the effect of the 

presence of DP including VLP on the QRS duration parameter. 
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Fig. 7.8 Vector magnitudes of (a) Normal (b) Synthetic (c) vector magnitude of 

ECG signal showing the presence of VLP (source: Gang et al. 2000)  
 
 
7.4 Artificial data set tested using Simson’s methods 
 
The Simson’s method is first applied to the synthetic data then the same 

method is applied to the set of real ECG signals. For Simson’s method, any 

two of the following parameters imply VLP positive when FQRS > 114 ms, 

RMS40 < 20 µV and LAS > 38 ms. 
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(a) D=10                                                                     (b) D=30 

                                       
 
 
 
 
 

(c) D=50                                                                          (d) D=100 
 
 
 

Fig. 7.9 QRSDUR1

 
1.Duration of the QRS complex for added signals of different durations (D) as the position is varied. The 
horizontal axis represents position and the vertical axis the calculated parameter value. 
 

The plots in Fig. 7.9 represent the duration of the QRS and are for an added 

signal with an amplitude of one percent of the base ECG signal and a 

frequency of 100 Hz. Fig. 7.9-a is for an added potential with duration of 2 

percent, shows no variation from the base value up to sample number 205. 

Fig. 7.9-b is for duration of 30 samples or 6 percent of base signal, shows a 

small peak around sample 180. This peak grows with increased duration of 

the added signal but around the same region only, which is around sample 

number 300 as can be seen.  In other regions, we see that this parameter 

shows a drop especially as the position is after the QRS end-point. 
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(a) D=10                                                  (b) D=30 
 

                                             
 
 
 
 
 
 

(c) D=50                                                                    (d) D=100 
 

Fig. 7.10 RMS401

 
1.RMS value of the last 40 ms of the QRS for signals with different durations (D) as the position is 
varied. The horizontal axis represents position and the vertical axis represents the calculated parameter 
value in mV. 
 
The plots in Fig. 7.10 represent the RMS40 at the end of the QRS and are for 

an added signal with an amplitude of one percent of the base ECG signal and 

a of 100 Hz. Frequency. Fig. 7.10-a for an added potential with duration of 2 

percent, shows a drop in variation from the base value at sample value 150.  

Fig. 7.10-b is for a duration of 30 samples or 6 percent of base signal, shows 

more oscillatory variations around the same sample. This variation grows with 

increased duration of the added signal but around the same region as can be 

seen in the other parts of this figure. In other regions, we see that this 

parameter shows a drop especially if the position is after the QRS end-point. 
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(a) D=10                                                     (b) D=30 

                                                 
 
 
 
 
    
 

(c) D=50                                                                              (d) D=100 
 

Fig. 7.11 The LAS401

1.Different durations (D) of low amplitude signal as the position is varied. The horizontal axis represents 
position and the vertical axis the calculated parameter value in msec. 
 

The plots in Fig. 7.11 represent LAS40, the duration of the low amplitude 

signal at the end of the QRS and are for an added signal with amplitude of 

one percent of the base ECG signal and a frequency of 100 Hz.  Fig. 7.11-a is 

for an added potential with duration of 2 percent, shows small variation from 

the base value. Fig. 7.11-b is for duration of 30 samples or 6 percent of base 

signal, shows a small peak around sample number 180 with more decreasing 

values. This parameter shows a drop at other positions as can be seen and 

this parameter in general does not show significant variations from the base 

value of the normal ECG signal. In most regions, we see that this parameter 

shows a drop especially as the position is after the QRS end-point. 
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The overall observation in the Simson’s method is the ability of these standard 

parameters to accurately detect signals falling at the end of the QRS. 

However, these parameters fail to detect delayed potentials even when they 

actually exist. The overall performance of common methods as applied to the 

set of 1100 different signals is summarized in Table 7.2. The table shows the 

percent of positive identification of delayed potentials for individual 

parameters and the overall performance when any two parameters are 

satisfied at the same time as required by Simson’s method.  

 
Out of the 24% signals correctly classified, 28.57% of signals fall in the first 

half of the signal and 71.44% fall in the second half (i.e., region that includes 

the QRS complex). 

 
Table 7.2 Percent of positive identification of delayed potentials using Simson’s 

method. 

QRSDUR LAS40 RMS40 Overall performance 
38 % 22 % 39 % 24 % 

 

7.5 Artificial data set tested using wavelet transform 
 
There exist a large number of wavelets that can be used in the wavelet 

transform. The results of applying Daub-4 type of wavelet are presented in the 

sample given in Fig. 7.12.  

 

 
Fig. 7.12 A sample plot of WT analysis. 
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In Fig 7.12, the horizontal axis represents time and the vertical axis 

represents the different frequency scales. 

 
The WT was applied to the same set of signals used in the previous part. The 

WT method was able to classify and detect all added potentials even at lower 

amplitudes than the 0.1 % used in the common methods analysis.  

 
All added signals with a frequency of 125 Hz with a sampling rate of 2200 Hz 

and an amplitude as low as 0.1 % from base signal have accurately been 

identified as can be seen from the figure. In addition, the amplitude, time 

position and durations were detected reliably. In addition, the strength, 

duration and position can clearly be seen. 
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Fig 7.13 A sample of WT decomposition: the sum of level-7 and level-8. 

 
The sum of level L7 and level L8 is presented in Fig 7.13 where the existence 

of added potential is clearly apparent at the left between sample number (1) 

and sample number (100). The plots to the right are for the base signals 

without added potentials presented here for comparison. 
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7.6 Simson’s parameters using WT filtering for real ECG data 
 
Two more parameters extracted from the WT were added. These parameters 

are the root-mean-square values of level L7 and level L8. The choice for 

these levels is based on their frequency content, which contains the range 

defined for ventricular late potentials. An increase from 63% to 74% positive 

detection has been observed (Mousa, Yilmaz, 2001-b).  

 
The following tables summarize the parameters generated for the Sussex 

data base ECG signals using the Simson’s method.  Based on the method we 

proposed for the proper calculation of the vector magnitude using the WT 

method, we have recalculated the parameters for the detection of VLP.  

 
Table 7.3 WT-based Simson’s parameters for normal signals 

Normal ECG signals 
QM using L7+L8 

QRS  RMS LAS RMS Area 
95 132 17 115 128 
108 69 20 109 152 
107 54 19 97 56 
80 50 21 67 26 
93 102 24 88 104 
120 31 30 80 21 
94 86 20 82 36 
101 73 20 108 85 
90 64 16 98 34 
94 75 18 69 41 
92 76 17 90 39 
85 166 12 84 113 
80 103 21 74 36 
123 40 35 115 47 
101 30 32 81 38 
80 50 21 67 26 

  

93 102 24 88 104 
Mean 96 77 22 89 64 
STD 12 35 6 16 40 
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Tables 7.3 and 7.4 show these parameters calculated for two different types 

of ECG signals. Table 7.3 gives those values for a normal signals and table 

7.4 is for the abnormal ECG signals.  The calculations in each table are based 

on WT levels 7 and 8 for the vector magnitude calculation as presented in 

chapter 3 of this thesis. The mean and standard deviation are presented on 

the bottom of the table. 

 
Table 7.4 WT-based Simson’s parameters for abnormal signals 

 
VT classified ECG signals 

QM using L7+L8 
QRS  RMS LAS RMS Area 
85 40 24 94 17 
130 18 37 197 24 
146 14 37 110 26 
118 28 33 104 70 
104 65 20 105 47 
85 129 40 120 36 
183 23 37 197 8 
97 25 33 73 7 
165 9 37 117 34 
159 8 37 103 88 
99 67 30 101 100 
172 18 37 162 9 
96 136 4 116 181 
97 32 30 81 48 
115 21 36 117 84 
95 26 37 97 16 
165 9 37 117 34 
89 34 37 109 7 
85 40 24 94 17 
149 18 37 136 17 

 

102 90 15 84 62 
Mean 121 41 32 116 45 
STD 33 37 9 33 42 

 

 

A summary of these results based on the obtained means and standard 

deviations is presented in Table 7.5 and Table 7.6 for normal and abnormal 

signals respectively. 
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Table 7.5 Mean and standard deviations of the WT parameters 

 
Signal Normal 
Parameter. QRS RMS40 LAS RMS Area 
Mean 96 77 22 89 64 
STD 12 35 6 16 40 

 
Table 7.6 Mean and standard deviations for the abnormal signals. 

 
Signal VT 
Parameter. QRS RMS40 LAS RMS Area 
Mean 121 41 32 116 45 
STD 33 37 9 33 42 

 
 
7.7 Hacettepe university hospital data analysis 
 
The system introduced in chapter 5 was used to carry out the recordings at 

the intensive care unit of the cardiology department of the Hacettepe hospital, 

a snapshot of the system in operation is shown in Fig. 7.14. 

 
 

 
 

Fig. 7.14 A snapshot of the system in operation 
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A number of signals were recorded at the intensive care unit at the Hacettepe 

University hospital. A list of some of the characteristics and medical records 

are listed in Table 7.7. 

 

Due to the difficult conditions of those patients, only two minutes were 

recorded for each one. The sampling rate was set at 3000 samples per 

second and the system’s ADC is fixed at 16-bits.  The entire records of these 

signals along with other data used in this thesis are included in the 

accompanying CD.  

 
Table 7.7 Hacettepe database 

 
NO. Gender Age Weight Smoking Illness Other 

1 M 73 75 No Unstable angina 
pectoris 

HC 
 

2 F 72 80 No Myocardial Infarction 
(inferior) HT, D 

3 M 75 70 No Myocardial Infarction 
(postoperatively) 

HT, D, 
HC 

4 M 75 65 No Myocardial Infarction 
(inferior) HC 

5 M 58 75 Yes Coronary artery disease   
start implantation HT 

6 M 46 70 No Myocardial Infarction 
(anterior) No 

 
HT: Hypertension, HC: Hypercholesterolemia, D: Diabetic 
 

Presented here in Fig 7.15 is a sample of applying the proposed method to 

these data sets. The first signal comes from patient number six in Table 7.7 

classified as anterior myocardial infarction (AMI) and the other signal is from a 

normal subject used for control. 
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Fig. 7.15 Sample results from the Hacettepe database 
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7.8 Results of unified method 
 
A number of networks were created to form the building blocks of the 

classification system as part of the unified method. A network from each of the 

WT and the complex cepstrum was chosen and were trained with only 

synthetic and normal real ECG signals without the introduction of any VLP 

positive signals to allow the network to find the required common features. 

 
A sample of the training stage results is presented in Fig. 7.16 below. 
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Fig. 7.16 A sample of the training results 
 
 
 
First test 
 
Results of applying the other types of signals to the neural networks are 

presented below in Fig. 7.17 with their corresponding statistics presented in 

Table 7.8. 
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Table 7.8 Classification of synthetic data  
 

Original statistics 
-ve +ve Total %-ve %+ve 
0 1100 1100 0 100 

 
Statistics from CC 

-ve +ve Total %-ve %+ve 
1 1099   1100 0.09 99.9 

 
Statistics from WT 

-ve +ve Total %-ve %+ve 
0 1100   1100 0 100 
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Fig. 7.17  Results of the classification of synthetic data 

 
 
Second test 
 

A number of VLP positive signals extracted from the Sussex database were 

applied to the network as a testing set with their results presented in Fig. 7.18 

with their corresponding statistics presented in Table 7.9. The network was 

able to find common features relating synthetic signals to real VLP and 

classified all as DP positive. 
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Table 7.9 Classification of VLP positive data  
 

Original statistics 
-ve +ve Total %-ve %+ve 
0 6 6 0 100 

 
Statistics from CC 

-ve +ve Total %-ve %+ve 
6 0 6 100 0 

 
Statistics from WT 

-ve +ve Total %-ve %+ve 
0 6 6 0 100 
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Fig. 7.18 Results of classification of VLP positive signals 

 

Third test 
 
Finally the unified method was used to classify real data sets that included 

signals classified by experts as normal and others as VT cases. The results 

are shown in Table 10 and their classification results presented in Fig. 7.19.  
 

Table 7.10 Unified method classification results for real ECG data 

Original statistics 
Normal   VT Total 

78 78 156 
 

Statistics from CC 
DP-ve DP+ve Total 

72 84 156 
 

Statistics from WT 
DP-ve DP+ve Total 

81   75 156 
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Fig. 7.19  Results of classification of real ECG signals 

 

 
The application of the unified method gave excellent results in identifying the 

different types of signals including VLP positive ones. The WT classifier in the 

unified method was able to classify VLP positive cases based only on 

previous synthetic data knowledge while the complex cepstrum classier failed 

to capture commonalities between synthetic signals and VLPs.  

 
The performances of different approaches are summarized in Table 7.11 

below and it should be noted that if survival rates were increased from 5% to 

20% about 40000 more lives could be saved each year in the USA according 

to the American Heart Association statistics. 

 
Table 7.11 Results of all approaches for synthetic and real ECG signals 

 
Synthetic:                                     DP+ve               
Simson (VLP)   24%  (264/1100) 
Simson + WT              45% (495 /1100) 
Unified method  99.5%(1100 /1100) 
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These results can be compared to the results of previous works in the field as 

can be seen in Table 7.12 below. The table shows 24% to 45% of VLP 

detection during a period of 10 years and a total of 1288 patients (E. Vester 

and B. Strauer, 1994). 

 
Table 7.12 Results of different studies of the significance of late potentials following 

acute myocardial infarction 

 
Authors Numberof patients VLP + (%) 

Breithardt et al         132 59(45) 
Denniss et al          306 80(26) 
Kuchar et al         200 78(39) 
Gomes et al         115 48(42) 
Vezoni et al          220 62(28) 
Gripps et al          159 38(24) 
El-Sherif et al         156 39(25) 
Total         1288 404(31) 
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CHAPTER 8 

 
 

CONCLUSIONS 
 
 

 
Standard methods are able to accurately detect signals falling at the end of 

the QRS and the three Simson parameters do show the presence of 

ventricular late potentials in general. However, they fail to detect delayed 

potentials outside this region when they actually exist.  

 
Since VLP defines a limited class of potentials that can result from heart 

abnormalities that may occur anywhere in the cardiac cycle, it seems to be 

possible to give an alternative name as “delayed potential (DP)” to define a 

general space with VLP being a subspace of it. We conclude that these 

standard parameters are able to detect delayed signals only when they fall in 

the region of VLP.  Furthermore, limiting the scope of analysis to a part of the 

signal only, the QRS will not give the complete picture regarding abnormalities 

occurring at other regions. 

 
In this work we presented a broad definition of what may constitute VLPs 

namely delayed potentials (DP). In addition, a working model signal 

representing delayed potentials that represents and contains common 

features with VLPs. We also aimed at enlarging the window of ECG analysis 

outside the QRS complex to enable the detection of DP and other types of 

abnormalities.   

 
The physical characteristics of the infarcts namely, size, position, orientation 

and type (SPOT) have a pronounced effect on the ability to detect their effect 

more readily.  

 
Two basic needs were uncovered during this study, a need for good data and 

a need for good analysis methods. The need for good data necessitated the 

design and development of a data acquisition system with particular features 
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and characteristics. The designed system is a portable easy to use with 

special emphasis on patient safety. The system uses the USB port for 

communicating with laptop employed. It is a high-resolution with adjustable 

sampling rates of 3000 samples and more. It is also a multi-channel system 

with up to 12 leads multiplexed or 4 channels simultaneously.      

 
The need for good analysis methods necessitated the development of the 

unified analysis approach employing different DSP techniques and tools. Use 

of more advanced digital signal processing tools is required in order to cover 

potentials existing in the entire cardiac cycle which included WT, complex 

cepstrum and artificial neural network applications. 

 
The unified method includes an algorithm well suited for real time ECG 

preanalysis, classification and data size reduction based on correlation 

between different beats. It retains the clinically significant details of the 

individual ECG signal. It provides cardiologists and doctors with a summary of 

the signal characteristics to ease the analysis and bring their attention to the 

portions that may be of clinical value. This approach does not attempt to 

reduce the sampling rate as is the case with other compression algorithms. 

 
There is no reason to assume that beats which are different from the template 

should be regarded as ectopic beats or be removed. On the contrary these 

beats may be the information carrying parts of the signal. Therefore, this 

method combines similar beats through correlation and does not eliminate 

any beats no matter how different they might be. Depending on the type of 

abnormality, beats that deviate from normal pattern may indeed carry the 

important information (clinically significant waveform features) and for this 

reason they are retained. 

 
If a general opinion about status of the patient is sought, a low correlation 

value will suffice producing a template with minimum number of beats.  If on 

the other hand the analysis dictates the discovery of finite details such as 

VLPs, the threshold value of correlation must be kept high which will in turn 

produce a template with a larger number of beats. 
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The WT provides good means of noise filtering and calculation of the vector 

magnitude without introducing cross-terms. These cross-terms arise when we 

square ECG leads containing different frequency components such as P, T, 

QRS and delayed potentials (DP). By choosing only appropriate levels to 

include in the calculation of the vector magnitude, we remove other 

undesirable components defined as cross-terms in our discussion. Based on 

the frequency content of the individual levels of the WT, the content of 

individual levels may be used to classify different abnormalities contained in 

ECG signals. 

 
In conclusion the prevalence of VLP after acute myocardial infarction depends 

on the definition of what constitutes VLP, the site and type of myocardial 

infarction, time of recording and the analyzing technique.   

 
It should be emphasized that the true test of any new method such as the one 

presented here is long-term application. Therefore, we strongly recommend 

that the proposed analysis scheme be employed under the cooperation of 

both the Electrical department and the cardiology department at the 

Hacettepe University hospital.  

 
To finalize this work we present a list of the accomplished tasks during the 

entire study. 

ACCOMPLISHMENTS 
 

 A more general definition that takes into account the physical 
variation behind the causes of VLP namely the infarct expressed as 
SPOT 
 Expanded analysis region to cover the entire cardiac cycle 
 New method for V.M. calculation without cross-term components  
 Noise reduction using WT denoising capabilities 
 Portable high-resolution data acquisition system using USB port 

 
1. 3000 samples per second 
2. 16-bit resolution 
3. patient safety and isolation 
4. up to 12-channels 
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 New combined analysis method using time-domain, frequency-
domain and the complex cepstrum based on the reported success 
of their individual performances. 
 More parameters have been added from WT and the cepstrum 
 Improved performance relative to current methods 
 Our own data base 
 Better alignment through the use of correlation and WT templates 
with only correlated beats averaged using the correlation template 
 Information in ECG records are summarized in clusters for better 
classification 
 Real time analysis are made possible through the use of dynamic 
averaging 

 
In addition, the work was published in international conferences and 
journals: 
 

 Seven conference papers 
 Two Journal articles 
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