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ELEKTROKARDIYOGRAFIDE VENTRIKUL TASIKARDISININ NON-
INVAZIF PREDIKTORLERI OLARAK GEG POTANSIYELLERIN TESPITi
VE ANALIZi iGIN BIRORNEK YONTEM GELISTIRILMESI

Ayad Adam Mousa

Hacettepe Universitesi, Elektrik ve Elektronik Miihendisligi Balimdi

0z

Ventrikller ge¢ potansiyeller (VLPs), ventrikll tasikardisi (VT) gelistirmeye
yatkin olan myokard enfarktlsli hastalarin non-invazif markerleri olarak
degerlendiriimektedir. Geg potansiyellerin tabiati ve gergek nedeni tam olarak
anlasiimamistir ve bu nedenle iyi tanimlanmamistir ve sinyal genlikleri genel

olarak gurultiden ayirt etmek icin ¢ok fazla duguktar.

Bir VT hastasini standart yontemlerle siniflamak yaniltici olabilir ve bagka
sekilde onlenebilecek 6lime bile yol agabilen agir sonuglari bulunmaktadir.
VT’nin non-invazif géstergesi olarak VLP’nin analizinde ve tespitinde mevcut
yontemlerin dusuk tahmin orani, elde edilen sinyallerin net olmayan tabiatinin
yani sira, bu yontemlerle ilgili gtugluklere de bagl olabilir. EGer hemen yardim
edilirse ve kalp krizi hastasinin yagamini kurtaracak anahtar olan hemen tibbi
bakim saglanirsa kalp krizi geri dondurulebilir, fakat istatistiklere gore kalp
krizi kurbanlarinin yizde 95’i hastaneye ulasmadan dlmektedir. EKG’lerinde
VLP bulunmayan hastalarin gosterilmis VLP bulunanlara gore daha buyuk
hayatta kalma sansi bulunmaktadir. Aritmik olaylarda ve ani kardiyak 6limde
tahmin araci olarak bunlarin degeri hala oldukg¢a dusuktur (%10-30), fakat
VLP negatifse %95’'inde olaysiz oldugunu gostererek, iyi seyir tahmininde ¢ok

yuksek deger tasimaktadir.

Bu calismanin temel amaci, sosyal karakteristikleri agisindan VLP’leri
meydana getiren seyi tanimlamak ve analiz bdlgesini QRS kompleksinin sonu

yerine tum kardiyak siklusu (donguyl) kapsayacak sekilde genigletmektir.



Tahmin oranlarini artirmak ve daha iyi alternatifler sunmak amaciyla, mevcut

yontemlerin guglUklerini de en aza indirmeyi amagliyoruz.

infarktin fiziksel 6zelliklerinin dinamiklerine, yani Buylklik (Size), Konum
(Position) ve Oryantasyonun (Orientation) yani sira Zaman (Time)
varyasyonlarina (SPOT) dayanarak ge¢ potansiyelleri meydana getiren seyin
genel tanimini sunduk. Ayrica gunumuzdeki yontemlerin temel gugcluklerini
belirledik ve ayri zaman ve frekans yontemlerinin bildirilen basarilarini
kullanan birornek yaklasimi sunduk. Bu alternatif yollar ge¢ potansiyellerin
tespit oranlarini ve analiz dogrulugunu artirmaya yardimci olabilir ve umariz

daha fazla hayat kurtarir.

Bu birérnek yontem mevcut yontemlerin gugluklerinden kaginirken, bildirilen
basarilarinin avantajlarini kullanmaktadir. Dalga bigimi dénisim yodntemi
(wavelet transform method), karmasik cepstrum, homomorfik filtreleme ve
yapay noral aglarla destklenen surecin iskeletini meydana getirdi.
Gunumuzdeki yontemlerin bildirilen sonugclari ile kiyaslandiginda, bu yontem

artmis bir performans gosterdi.

Anahtar Kelimeler: Ventrikuler ge¢ potansiyeller (VLPs), ventrikil tagikardisi
(VT), SPOT

Danigsman: Yrd. Dog. Dr. Atila YILMAZ, Hacettepe Universitesi, Elektrik ve

Elektronik Muhendisligi Bolumu
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ABSTRACT

Ventricular late potentials (VLPs) are considered as non-invasive markers of
patients with myocardial infarction, which are prone to the development of
ventricular tachycardia (VT). The nature and exact cause of late potentials are
not well understood and therefore not well defined and signal amplitudes are

usually too low to be differentiated from noise.

Classifying a VT patient by standard methods can be misleading and have
grave consequences that may even lead to an otherwise preventable death.
The low prediction rate of current methods in the analysis and detection of
VLP as a non-invasive indicator of VT may be due to the drawbacks
associated with these methods as well as the unclear nature of the sought
signal. Heart attack can be reversed if help is given quickly and the key to
saving the life of a heart attack patient is immediate medical care but
according to statistics, 95 percent of heart attack victims die before reaching
the hospital. Patients without VLP in their ECGs have a greater chance of
survival than those who have demonstrated VLP. Their value as predictive of
arrhythmic events and sudden cardiac death is still relatively low (10-30%),
but very high in predicting a good outcome, showing 95% event free if VLP

negative.

The main aim of this work is to define what constitutes VLPs in terms of their
physical characteristics and to broaden the analysis region to include the

entire cardiac cycle rather than just the end of the QRS complex. We also aim



to minimize the drawbacks of current methods in order to increase their

predictive rates and present better alternatives.

We have introduced a general definition to what constitutes late potentials
based on the dynamics of the physical properties of the infarct; namely Size,
Position Orientation in addition to their Time variations (SPOT). Also we
tackled the major drawbacks of current methods and presented a unified
approach that utilizes the reported successes of individual time and frequency
methods. These alternative means may help in improving the detection rates

and analysis accuracy of late potentials and hopefully save more lives.

This unified method avoids the potential pitfalls of current methods while
taking advantage of their reported successes. The wavelet transform method
formed the backbone of the process supported by the complex cepstrum,
homomorphic filtering and artificial neural networks. The method showed an
improved performance as compared to the reported results of current

methods.

Keywords: Ventricular late potentials (VLP), Ventricular tachycardia (VT),
SPOT.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Ventricular late potentials (VLP) or simply late potentials (LP) are fragmented
activities originating from electrically unstable regions of myocardium, and are
markers of reentry arrhythmia in a period of one year after the myocardial

infarction (MI). The medical term for a heart attack is acute myocardial

infarction. The term acute means sudden, myo refers to muscle, and cardia
refers to heart. Myocardium is the medical name for the heart muscle and
infarct refers to the artery being plugged or clogged up. If an AMI results in
the stopping of the heart then this is termed sudden cardiac death (SCD).The
delayed activity in the form of fragmented deflections, seen terminal with the
ventricular depolarization wave front, is usually found in border zones
surrounding the scar tissue of previous myocardial infarctions. The border
zone that exists is composed of conducting and non-conducting tissue, which
slows and fragments the wave of electrical depolarization as it sweeps through

the ventricular myocardium (Breithardt et al. 1991).

Late potentials are obscured in the conventional surface ECG because of their
low amplitude and the overlay of noise, but they can be visualized through
special processing such as high resolution and signal-averaged ECG. LPs are
thought to be a non-invasive marker of potential ventricular tachycardia (VT).
This hypothesis has been confirmed by a large number of studies in the last
decade. However, LP analysis has not yet become a routine diagnostic tool in
clinical cardiology. There are on going studies including this one to show that

LP analysis might become an important noninvasive means for LP detection.

The two main problems in detecting ventricular late potentials from surface

ECGs are that the inherent additive noise and QRS morphology effectively



mask the time and frequency domain late potential characteristics. Therefore
from the surface ECG, the morphology of a complex containing late potential
activity is similar to the morphology of one without LP (Cain et al. 1996)(Jane,
Rix and Caminal, 1991).

1.2 Studies on analysis methods for VLP

Signal-averaging technique was first applied to the human heart as a tool for
enhancing biological signals. In 1875 signal-averaging principles were first
used, and in 1947 the technique began to be used to improve detection of
electroencephalographic signals. Hon and Lee in 1963 were able to detect
fetal heart signals from skin surface electrograms by a so-called “computer of
average transient's” method. Eddlemon described a computer-based
modification of the original averaging technique in 1968, essentially the
approach used today. Edward Berhari one of the pioneers of this new tech-
nique, described signal-averaging in 1973 as a signal processing technique
usually done digitally, whereby repeated or periodic waveforms which are
contaminated by noise can be enhanced. That is, the signal-to-noise ratio can
be improved. By summing successive noisy waveforms the random
components (noise), will decrease while the deterministic components, (the
desired signal), will be unchanged. During 1973 Berhari’'s group and one year
later the group of Nancy Flowers published their first success in recording His
potentials from the body surface. By the year 1973 it was further observed
that electrocardiograms from ischaemic canine myocardium were delayed and
fragmented and that electrical activity was detectable, bridging diastole and
preceding the onset of ventricular tachyarrhythmia. Guy Fontaine and
colleagues in 1977 were the first to describe the detection of ventricular late
potentials from the body surface in a patient with ventricular tachycardia:
Fontaine had earlier recorded delayed potentials on the endocardium in the
same patient. In the years that followed, the relationship between ventricular
late potentials detected by the signal-averaging technique and reentrant
ventricular tachycardia in patients following myocardial infarction was
established by a number of authors. One of the most important contributions

leading to widespread acceptance and use of the method came from Michael



Simson, who developed criteria for the detection of LP in 1981. This
technique is now widely accepted and since 1991 it has become an
international Standard that two out of three Simson-derived criteria constitute a
positive LP. In addition to the usual analysis of LP in the time domain,
frequency domain analysis using fast Fourier transformation and spectral
turbulences during the entire QRS complex have been developed though not
yet standardized. Further promising tools for detecting dynamic changes of
electrical activity is beat-to-beat, and wavelet transform analysis (Vester,
Strauer 1994)(Rompelman, Ros, 1986)(Simson, 1981).

1.3 Commonly applied methods for VLP

A number of different methods have been used to identify Late Potentials and
thereby assess the risk of serious ventricular arrhythmias and sudden death.
Time domain signal averaging of many complexes is one existing technique,
which suppresses the random noise component of periodic data. Simson
adopts this method of noise reduction before high pass filtering XYZ lead data
and forming the vector magnitude to determine the existence of late potentials.
Typically, a large number of complexes are required to reduce the noise to a

level below that of the late potential activity.

Frequency domain analysis suffers from several drawbacks: it fails to provide
time localization of signal singularities characterized by high-frequency
components and hence information on the precise incidence of LP is lost. In
an effort to widen the window and thus increase frequency resolution, many
investigators have extended the analyzed region toward the end of the ECG

signal (T-wave), covering the entire ST-segment.

1.3.1 Time domain analysis

Time domain analysis divides further into:
e High-resolution Low-noise ECG
e Signal averaging

e Beat-by-beat analysis



1.3.1.1 High-resolution low-noise ECG

Non-invasive methods of diagnosis of cardiac disorders involve digital
recording of cardiac signals at the body surface (chest) and subsequent
computerized analysis. Such methods and instruments provide a vital first
step to the diagnosis of the heart without involving surgical procedures. One
such non-invasive field is High Resolution ECG (HRECG) described in detail
by Zimmermann and co-workers. Three channels are recorded
simultaneously and the analog input signal is fed through a preamplifier with a
fixed gain of 1000 times. Adjustable high-pass and low-pass filters perform
band-pass filtering. In optimal clinical conditions the noise level can be

reduced to 1 to 2 &V from peak to peak, a usual value can be as high as the

maximum gain of the amplifier used. A high-resolution electrocardiogram
detects very low amplitude signals such as LPs. High Resolution
Electrocardiography is not being the sole diagnostic tool, but it does provide
information on cardiac electrical instability that is not available through other
noninvasive tests. A standard electrocardiogram cannot detect these signals.
High-resolution electrocardiography enhances the diagnostic capabilities of

ECG signals.
1.3.1.2 Signal-averaging

The purpose of signal averaging is to reduce the level of noise, which
contaminates the surface ECG, and to detect low-amplitude signals in the
terminal QRS complex. The main source of noise is skeletal muscle activity

exhibiting amplitudes of 5 to 25 4V. Muscle noise cannot easily be

eliminated by filtering, because its frequency content corresponds with that of
high-frequency cardiac potentials, but it may be markedly reduced by the
signal averaging technique which amplifies repetitive waveforms like the QRS
complex and suppresses random non-repeating waveforms like skeletal

muscle noise (Jane, Rix and Caminal, 1991).

The most common type of processing is ensemble signal averaging for which
a few prerequisites are necessary. Thus the waveform of interest must first

be repetitive so that multiple samples can be obtained to form an averaged



waveform. Before averaging, by comparing every new beat against a template

of previous beats, ectopic beats can be excluded prior to processing.

Second, waveforms must have a common fiducial point (usually a large or
rapidly moving component of the QRS complex) used as a reference time
enabling the computer to average similar sampling points of the repeating

signal.

A third prerequisite is that the waveform of interest be independent from
noise, meaning noise must be random. If there is a repetitive noise artifact
arising from electrode motion or other sources, the signal-averaging process
will amplify it. Using this method, noise reduction is proportional to the square

root of the number of QRS complexes averaged.

1.3.1.3 Beat-by-beat analysis (spatial averaging)

A second form of signal averaging is spatial averaging which allows the
analysis of beat-to-beat events, which cannot be detected by the temporal
averaging technique. A number of closely spaced independent electrode pairs
are summed up to reduce the expected noise, representing a substantial
disadvantage compared to temporal averaging. The advantage of this
technique, however, is the detection of dynamic changes of VLP in real time.

Other methods use adaptive identification to achieve a beat-by-beat fine ECG
estimation. Information provided by this method allows for better interpretation

of low and very low level signals (Wu, Qiao, Gao and Lin, 2001).

1.3.2 Frequency domain analysis

Spectral or frequency analysis method examines the voltage or power over a
spectrum of frequencies within a pre-selected time interval. The generally
accepted hypothesis is that VLP or late depolarizations are characterized by
higher frequency content than expected from repolarizations. Fast Fourier
transformation (FFT) is usually used to estimate the scalar lead spectral of the
terminal QRS and ST segment of signal-averaged XYZ. Results may be given
as relative contributions of specific frequencies constituting these ECG

segments.



Different techniques have been developed to quantify the spectral content of
the QRS complex, and account at least in part, for the inconsistency of the
results. Area ratios of the energy spectral derived from the FFT were
calculated using separate intervals. These started after QRS onset and
before QRS finished, extending to the T wave as described by Worley et al.
This suggests that frequency analysis of signal-averaged ECGs with FFT is an
available method for detecting the high-frequency component within the QRS

complex in some patients with VT.

As with time domain analysis, accepted standards are not yet established.
Nevertheless, frequency analysis offers potential advantages for the
identification and characterization of patients prone to ventricular tachycardia
(VT). A complex high-pass filtering is not necessary and differentiation of VLP

and noise is improved.
1.3.3 Previous results of time domain and frequency domain analysis

The results of clinical studies comparing time domain and frequency analysis
give a controversial picture. Engel and co-workers found that spectral analysis
was not as reproducible as duration measurements performed in the time
domain. Furthermore, the results of spectral analysis were more noise
dependent. On the one hand the poor frequency resolution of short data
segments and spectral leakage is a known limitation of conventional spectral
analysis. On the other, the limitations of the conventional time domain
analysis are that high-pass filtering may disturb signals that discrimination
between LP and noise may be difficult and that patients with bundle branch
block (BBB) are usually excluded from analysis. According to an expert

consensus document:

“These findings provide an objective rationale for expansion of the ECG
interval analyzed to include more of the cardiac cycle, which should increase
the chances of detection of signals generated by myocardium critical to
ventricular tachycardia. Indeed, previously undefined magnitude, phase and
spatial features over the entire cardiac cycle of sinus beats that distinguish
signal-averaged ECGs from patients with from those without sustained
ventricular tachycardia have recently been identified.” (CAIN et al., 1996)



A number of studies have been performed to compare both methods in
different clinical settings. Most of the studies deal with patients presenting
sustained ventricular tachycardia. Worley et al, found FFT analysis the only
significant index to differentiate between patients after myocardial infarction
without VT and normal controls, whereas filtered QRS (FQRS) duration in the
time domain was the only independent factor to separate patients with or
without VT. Machac and Gomesi found frequency domain analysis no
improvement over time domain analysis in differentiating patients with
ventricular tachycardia from those without. In contrast, Pierce et. al.,
concluded from their study, which included similar patients that high
frequencies in late potentials, but not their duration or reduced voltage, most
usefully identify with coronary heart disease prone to VT. Kinoshita published
data on patients with ventricular tachycardia of left ventricular origin where
area ratios calculated from FFT analysis showed significantly higher values in
patients with VT as compared to those without, whereas time domain analysis
gave negative results in all cases. Nogamilul suggested, as a conclusion from
his analysis of a great number of different time domain and frequency domain
parameters, the use of a combination of both approaches to enhance the
accuracy of this technique for screening post-myocardial infarction patients

prone to VT.

The prevalence of LP after acute myocardial infarction depends on the time of
recording, the analyzing technique, the site of myocardial infarction and
definition of what constitutes an LP. El-Sherif found more LP at 6 to 30 days
than before or later. In general, LP measurement is recommended upon
patient discharge. The incidence of LP slowly declines during long-term
follow-up, as was shown by Kuchar and co-workers. Frequency domain
analysis gave results independent of infarct location, whereas time domain

analysis showed lower sensitivity with anterior than with inferior infarction.

1.4 Aim and scope of work

This thesis is concerned with the extraction of small cardiac signals normally
concealed by noise in the recorded ECG. These microvolt signals are derived
from the cardiac conducting system and from the fragmented activation of



damaged areas of heart muscle as in the case of Ventricular Late Potentials
(VLP). VLPs are found in ventricular tachycardia (VT) patients that could be
used as an early warning to the development of VT. The detection and
delineation of these signals can give early warning of various cardiac
disorders. This is challenging since the nature and exact causes of late
potentials are not well understood and therefore not well defined and are
usually concealed in noise and other portions of the ECG signal. Wrongly
classifying a VT patient may have grave consequences that may even lead to
an otherwise preventable death. Based on the findings of the analysis of the
QRS portion alone, a case with abnormalities at other portions of the
conduction path may wrongly be classified as normal and discharged from
hospital. This situation deprives the patient from a vital chance to receive
immediate medical care and might lead to his death. The low prediction rate
of current methods in the analysis and detection of VLP as a non-invasive
indicator of VT may be due to the drawbacks associated with these methods
as well as the unclear nature of the sought signal. The main aim of this work
is to define what constitutes VLPs in terms of their physical characteristics
and to broaden the analysis region to include the entire cardiac cycle rather
than just the end of the QRS complex. This enables the detection of
abnormalities that might occur anywhere in the conduction path of the heart.
We also aim to minimize these drawbacks in order to increase the predictive
rate and present better alternatives based on our tests.

Digital signal processing techniques such as, wavelet transforms, complex
cepstrum and artificial neural network are employed to provide signal

enhancement and provide better classification.

In order not to reinvent the wheel, this work starts at where others have left
off. This means taking advantage of the reported successes of commonly
accepted and applied methods while avoiding their drawbacks and problem
causing issues. We begin by providing suitable data for the analysis. This
implied the design and implementation of a high-resolution data recording
system with controllable gain. Both time-domain and frequency-domain

methods are utilized here for their individual performance using the wavelet



transform techniques. In addition to the WT denoising ability, we aim to apply
signal averaging to reduce noise in the signal without its associated problems
such as offline analysis, alignment errors and averaging of uncorrelated
beats. The application of the wavelet transform along with our suggested
method of dynamic averaging aim to avoid the drawbacks of signal averaging
techniques and allowing real time analysis. Calculating the vector magnitude
without the generation of cross terms associated with classical methods is
another aim of this study. The final aim is to set up an automatic scheme for
the recognition and classification of different signals according to their status

abnormality content.

1.5 Outline of thesis

The structure of the remainder of the thesis is as follows:

Chapter 2 describes the electrical behavior of the heart and the origin of the
recorded surface ECG. It introduces the concept of the lead systems and
discusses the theory, which forms the basis of the ECG techniques. It
expands on the details of the lead system used. It also covers the basics of
myocardial infarctions and ventricular late potentials both their origin and their

diagnostic values.

Chapter 3 Limitations and drawbacks of standard detection methods look at
the problems associated with standard methods and in particular the Simson
method. The three standard parameters are investigated in order to identify
problematic issues. It investigates the problems associated in calculating the
vector magnitude based on the classical methods. It suggests a new wavelet
transform based method to calculate the vector magnitude. The chapter also
covers problems encountered in the VLP detection process.

Chapter 4 covers the different DSP techniques used and is divided as follows:

Section 4.1 covers wavelet transforms theory and its practical sides in a
simple and easy to understand way, avoiding the cumbersome and detailed
abstract mathematics normally encountered in the study of wavelet

transforms. The section concludes with the presentation of the Mallat's



algorithm known as the pyramid algorithm, both forward and inverse

operations. A simple example is given for clarifying the basic concepts.

Section 4.2 introduces the notion of the complex cepstrum and the associated
mathematical background. The homomorphic theory is covered in this
chapter. Other needed topics such as minimum and maximum phase are

presented, as well as the concept of signal length.

Section 4.3 gives a brief insight into artificial neural networks. It discusses the
feed-forward multi-layer perceptron (MLP) artificial neural network (ANN),
which is used as the classifier for the pre-processed data. It includes a

discussion of ANN's, learning characteristics and general performance.

Chapter 5 is concerned with the data acquisition system, which was designed
and implemented for this thesis at Hacettepe University. The chapter starts
with introducing the basic instrumentation amplifier and progresses to the
complete system. The chapter discusses the operation of the isolation
instrumentation amplifier and other hardware components employed. Here
we cover the basic problems encountered in the recording of high-resolution
ECG signals and how to minimize their effects. The chapter discusses the
various techniques for improving the systems performance. It gives a brief
introduction to data acquisition principles and the associated problems

involved.

Chapter 6 covers a process that clusters the information contained in long-
term ECG records. This clustering process summarizes the entire record and

serves as a preprocessing step prior to analysis.

Chapter 7 presents a detailed look at the methods employed in this work. It
also covers the entire analysis method carried out. It discusses the different
patient categories and introduces the data acquisition techniqgues employed.
The chapter presents the different DSP methods used in an integrated
analysis approach. In this chapter the graphics user interface for both

acquisition and analysis is introduced.

Chapter 8 presents results and conclusions reached in this study.
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CHAPTER 2

VENTRICULAR LATE POTENTIALS

2.1 Introduction

The beating heart generates an electric signal called electrocardiogram (ECG)
that can be used as a diagnostic tool for examining some of the functions of
the heart. The ECG is a clinical tool to measure the electrical activity of the
heart from the exterior of the body non-invasively. With the ECG, important
information about the live beating heart can be observed. ECG produces
timing information on the electrical activity of the heart, a graph with time on
the x-axis and voltage on the y-axis. We collect spatial information by looking
at the heart from different directions using the 12-lead or a three orthogonal
XYZ lead system. The latter approach is the type used in the data acquisition
in this thesis. The electric activity of the heart can be approximately
represented as a vector quantity, thus we need to know the location at which
signals are detected, as well as the time-dependence of the amplitude of the

signals (Malmivuo, Plonsey, 1995).

This chapter introduces the material needed to discuss the subject of
ventricular late potentials starting from the different ECG components to the

concept of myocardial infarction.

2.2 Components of the Normal Cardiac cycle

The electrocardiogram represents the depolarization and repolarization of the
major chambers of the heart as shown in Fig. 2.1. Depolarization is the
electrical activation of the myocardium while repolarization is the restoration
of the electrical potential of the myocardial cell. Changing charges create the
voltage outside the heart and the waves of depolarization produce voltages on
the outside. For the entire time that the myocardium is totally depolarized,
there is zero voltage on the ECG and after depolarization, myocytes

spontaneously repolarize.
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Depolarization occurs at the sino-atrial (SA) node where current travels
through internodal tracts of the atria to the Atrioventricular (AV) node; then
through the Bundle of Hiss, which divides into right and left bundle branches.

The left bundle branch divides into left anterior and posterior fascicles.

In a normal heart rhythm, the SA node generates an electrical impulse, which
travels through the right and left atrial muscles producing electrical changes,
which is represented on the ECG by the P-wave. The electrical impulse then
continues to travel through specialized tissue known as the AV node, which
conducts electricity at a slower pace. This will create a pause (PR interval)
before the ventricles are stimulated. This pause is helpful since it allows blood
to be emptied into the ventricles from the atria prior to ventricular contraction
to propel blood out into the rest of the body. The ventricular contraction is
represented electrically on the ECG by the QRS complex. This is followed by
the T wave, which represents the electrical changes in the ventricles, as they
are relaxing. The cardiac cycle after a short pause repeats itself, and so on.
Therefore, on an ECG in normal sinus rhythm P waves are followed after a
brief pause by a QRS complex, then a T wave. Normal sinus rhythm not only
indicate that the rhythm is normally generated by the sinus node and traveling
in a normal fashion in the heart, but also that the heart rate, i.e. the rate at
which the sinus node is generating impulses is within normal limits. There is
no one normal heart rate, but this varies by age and other factors. It is normal
for a newborn to have a heart rate up to 150 beats per minute, while a child of
five years of age may have a heart rate of 100 beats per minute. The adult's

heart rate is even slower at about 60-80 beats per minute.
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Figure 2.1 ECG signal showing different cardiac components
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The P-Wave

Normal SA nodal cells have fastest depolarization, so they are the first to
depolarize. However, there is so little SA nodal tissue so that the
depolarization of the SA node is not easily detected. The depolarization then
passes as a wave through the atria. This wave passes from the SA node
inferiorly and leftward to the AV node and left atrium. This produces a positive
potential recorded as a positive deflection in the ECG tracing which is defined
as the P wave. The P wave is relatively small because the atrial muscle mass
is relatively small and ends when all the atria are depolarized. The wave of
depolarization is then present inside the AV node. The P wave represents the
sequential activation of the left and right atria (atrial depolarization) and lasts

from 60 ms to 110 ms.

The PR interval

The PR interval represents the conduction of electricity from the SA node to
the AV node and atrial depolarization through the AV node. It is measured
from the beginning of the P wave to the beginning of the QRS complex. The
AV node contains specialized cells that slow the speed of the depolarization
wave. Like the SA node, there is so little AV nodal tissue that no
depolarization is detected. The space between the P wave and the QRS
complex is called the PR segment. The time from the beginning of the P wave
to the beginning of the QRS complex is called the PR interval.

The PR interval is empirically the best measure of the time that it takes for the
wave of depolarization to pass through the AV node. A normal PR interval is
between 120 and 200 ms.

The QRS Complex

The QRS complex is the result of ventricular depolarization through the
Bundle Branches and Purkinje fibers. It is measured from the beginning of the
first wave in the QRS to where the last wave in the QRS returns to the

baseline. Normal measurements for this interval are 60 ms to 100 ms.
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When the wave of depolarization passes into the bundle of Hiss and out into
the Purkinje system and ventricle, there is a large positive potential which is
the QRS complex. The amplitude is large because there is a large mass of
ventricular muscle. Depending on where you measure the voltage across the
heart, the QRS complex can be either positive or negative. For any QRS
complex, if the deflection at first is negative, then it starts with a Q wave. The
first positive deflection is the R wave regardless of whether there was a Q

wave or not. A negative deflection after an R wave is called an S wave.

As the wave of depolarization passes through the thickness of the ventricle, a
voltage is still present. When the whole thickness of the left ventricle is totally
depolarized, the surface charge of both the endocardium and epicardium is
negative. Therefore, there is no longer any voltage difference across the

ventricle and the recorded voltage is again zero. This is the end of the QRS

complex. The QRS complex is the electrical signature of the wave of
depolarization passing over the ventricle. The normal QRS complex lasts
about 80 ms. The QRS complex occurs only when the ventricles are changing

from resting to depolarized state.

The QT interval

The QT interval is measured from the beginning of the QRS complex to the
end of the T-wave. Normal measurements for this interval are based on the
heart rate. Generally it should be about 40 % of the total time between two

QRS complexes, typically between 0.34 to 0.42 seconds.

The normal corrected QT interval (QTc) is between 0.34 and 0.44 seconds.
The QTc is calculated as the QT interval divided by the square root of the RR
interval (the RR interval is the time between subsequent QRS complexes) as

in the following equation:

QT,=QT/vRR 2.1)
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The T Wave

In normal hearts, the epicardial usually repolarizes first, despite having
depolarized last. When the epicardium repolarizes, its surface charge
becomes positive which produces a positive voltage, which is defined as the
beginning of the T wave. When the repolarization reaches the endocardial

surface, there are no longer any voltages and the T wave ends.

ST segment

When the wave of depolarization fully passes through the ventricle it produces
no measurable potential on the surface electrodes. This represents ventricular
depolarization and is called the ST segment. The ST segment contains
information about myocardial ischemia and injury. Myocardial injury is when
myocardial cells are dying (acute myocardial infarction) or if the epicardium is
irritated. The hallmark of myocardial injury is ST elevation: the ST segment
will have a higher voltage than the heart at rest. Acute MI is a focal process;
therefore there will be focal elevation in the ST segment, frequently with the
development of focal Q waves. However, early during an acute MI, Q waves
are not always seen. The ST elevation of a classic acute Ml is typically
convex up. The TP segment, from the end of the T to the beginning of the P,

is defined as zero voltage and represents the heart at rest.

2.3 Characteristics of ECG components, artifacts and noise

The theoretical frequency distributions of ECG signals are classified as lower
frequency P and T waves, middle-to-high frequency QRS complex and high
frequency late potentials when they exist. In this thesis we designate the P
and T waves as medium-amplitude low-frequency signals (MALFS), the QRS
complex as high-amplitude medium-frequency signal (HAMFS) and the VLP is
as low-amplitude high-frequency signal (LAHFS). Fig. 2.2 shows a diagram of
the different frequency components presented against their respective
strengths (Mousa, Yilmaz, 2002) (Mousa, Yilmaz, 2004-a).

15



QRS complex
P and T waves

VLP

Amplitude

Frequency

Figure 2.2 Theoretical frequency distribution of ECG signal components

The recorded signal usually contains the desired part plus other undesirable
interferences added to the signal through the recording instrumentation and
the environment including the patients. In Fig. 2.3 we show the approximate
spectrum distribution of these different components. The parts not shown
here, are the interferences caused by power lines and their possible
harmonics. In the following subsection we present some of the ECG
components and their properties since they make up the main concern in the

work of isolating and detecting delayed potentials (DP).

The main components of the recorded ECG in addition to possible harmonics
are:

e P, Twaves: 0-10 Hz

e Motion artefacts: 0-10 Hz

e QRS complex: 0-40 Hz

e AC line: 50/60 Hz

e EMG: 0-10000 Hz

e VLP:50-250

12

10

80 90 100

Figure 2.3 Frequency-amplitude relationships of different ECG components
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2.4 Noise types and sources

An ECG signal may contain any or all of the following types of interferences
(Friesen et al. 1990):

Power line interference

Electrode contact

Motion artefacts

Muscle contractions (EMG)

Baseline drift and ECG amplitude modulation with respiration

Instrumentation noise

N o gk~ wDbd e

Electrosurgical noise

A summary of the main noise types and their important properties including

duration, amplitude and frequency is shown in table 2.1.

Table 2.1 Summaries of noise types and their properties

Noise type Amplitude’ Frequency (HZ) Duration (msec.)
Power line interference Up to 50 % 50/60 Persistent
Electrode contact noise | Recorder gain 50/60 1000

Motion artifacts 500% Base-line drift 100-500
Baseline drift 15% 0.15-0.3 Varies
Muscle contractions 10% DC-to-10000 50
Electrosurgical noise 200% Aliased high frequencies 1000-10000

1. Expressed as % of the peak-to-peak of ECG amplitude

A summary of the characteristics of the different ECG components including

durations and frequencies are presented in Table 2.2 below.

Table 2.2 Durations and approximate frequencies of different Cardiac components

Duration (ms) Frequency (Hz)
P wave duration: 60 msto 110 ms 0-10
P-R interval: 120 ms to 200 ms 0-40
QRS duration: 60 ms to 100 ms 0-40
Q-T interval: 340 ms to 420 ms 0-40
T wave duration: 120 ms to 180 ms 0-10
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2.5 Lead systems: viewing the heart from different directions

The standard ECG is collected from a series of electrodes attached to the
body surface. These electrodes measure the electrical activity of the heart. In
one type of configuration, three limb electrodes form a triangle called
Einthoven’s triangle and the fourth (right leg) is electrical ground. Einthoven’s
triangle is considered an equilateral triangle for measurement purposes. The
voltage measured across the two arms is lead-I (the left arm is defined as
positive). Lead-Il is measured from the right arm to the left leg (the left leg is
defined as positive). Lead lll is measured from the left arm to the left leg (the
left leg is defined as positive). Lead-lll looks at the heart from the right of
Lead-I.

Orthogonal X, Y, Z lead system is another type of configuration and is the one
used in this study are assumed to be placed in perfect orthogonal
configuration as shown in Fig. 2.4 (Malmivuo, Plonsey, 1995). The X
electrodes are placed at opposite end in front and back of patient with the

frontal lead at V, position. The Y lead is placed between the right and left

midauxillary lines at the fourth intercostals space. The Z lead is placed at the
superior aspect of the manubrium and the proximity of the left leg. In reality
these leads are only approximately orthogonal and the assumption of perfect

orthogonality does not exist resulting in some correlation in the different leads.

FRONTAL

Figure 2.4 The orthogonal XYZ lead system , (Malmivuo, Plonsey, 1995)
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2.6 Acute Myocardial Infarction (AMI)

The subject of myocardial infarction is introduced here in order to pave the
way and introduce late potentials, which are thought to be a direct
consequence of damaged portions of the heart. In the next section we
introduce the concept of late potentials, which are considered as noninvasive
markers that may help in saving of lives (Breithardt et al.1991)(Makuavi et al.
1994).

Heart attack is a condition technically known as a myocardial infarction MI. Ml
is a "plumbing problem” in which a blockage in a blood vessel interrupts the

flow of blood to the heart causing an "infarct"; an area of dead heart muscle.

Sudden Cardiac Death (SCD), or Cardiac Arrest, kills half of all people who
die of heart disease, the number one cause of death in the United States,
accounting for more than 400,000 deaths each year. SCD is a catastrophe in
which the heart abruptly and without warning ceases to function. It is an
"electrical problem” caused by a heart rhythm disorder called Ventricular
Fibrillation (VF). It is particularly terrifying because it kills its victims within
minutes and often occurs in outwardly healthy people who have no known
heart disease. Without emergency help, SCD leads to death within minutes.
95 percent of victims die before reaching the hospital. Victims of cardiac

arrest can be saved if immediate medical care is provided.

Heart attacks or "acute myocardial infarction” (AMI), are very common and
also very deadly. The underlying cause of a heart attack is usually "coronary
thrombosis", which is a blockage of the blood vessels of the heart. The most
common symptom is chest pain or discomfort, but in many cases even the

patient is uncertain of having a heart attack.

However, many cases go undiagnosed even in the emergency department,
and this diagnostic error makes AMI the single leading malpractice litigation-
related condition. AMI is often under diagnosed in women or younger adults.
In any age patients, AMI can have a variety of presentations, and diagnostic
tests such as an ECG may still be normal (NHS 2003)(AIHW 2004).
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2.6.1 Prevalence and Incidence of AMI

The term prevalence of heart attack usually refers to the estimated population
of people who are managing heart attack at any given time. The term
incidence of heart attack refers to the annual diagnosis rate, or the number of
new cases diagnosed each year. Hence, these two statistics types can differ:
a short-lived disease like flu can have high annual incidence but low
prevalence, but a life-long disease like diabetes has a low annual incidence
but high prevalence. Some of the available information about prevalence and

incidence statistics are:

e Prevalence of Heart attack: 7.5 million people with acute myocardial
infarction (NHLBI).

e Prevalence Rate: approximately 1 in 36 or 2.76% or 7.5 million people in
USA.

¢ Incidence (annual) of Heart attack: 1.25 million annually USA (NHLBI);
1.1 million with 650,000 new events and 450,000 recurrences.

¢ Incidence Rate: approximately 1 in 217 or 0.46% or 1.2 million people in
USA.

e Incidence of Heart attack: Each year, about 1.1 million Americans

suffer a heart attack.

People who have had one heart attack are at much higher risk for a second
attack. Cardiovascular disease is world’'s greatest health problem. It Kills
more people than any other disease (almost 51,000 deaths in 1998 in
Australia) and creates enormous costs for the health care system. It also
places a heavy burden on individuals and the community due to the resulting
disabilities. Cardiovascular disease was estimated to account for 22% of the
disease burden in Australia in 1996, 33% of premature mortality and 9% of
years of equivalent ‘healthy’ life lost through disease, impairment and
disability. Coronary heart disease and stroke accounted for almost 57% and

25% of the cardiovascular disease burden, respectively (NHLBI 2003).
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2.6.2 Prognosis and recurrence of AMI

The prognosis of AMI usually refers to the likely outcome of heart attack which
may include the duration of the attack, chances of complications, probable
outcomes, and prospects for recovery, recovery period, survival rates, death
rates, and other outcome possibilities in the overall prognosis of heart attack.
Naturally, such forecast issues are by their nature unpredictable.

1-year survival rate for Heart attack: 24 out of 25 patients will survive if they
survive the attack (1 in 25 dies within a year)

Deaths from Heart attack: 459,841 deaths in 1998 (NHLBI); 199,154 deaths
for AMI reported in USA 1999 (NVSR Sep 2001)

The key to saving the life of a heart attack patient is immediate medical care.
Doctors have clot-busting drugs and other artery-opening procedures that can
stop or reverse a heart attack, if given quickly. These drugs can limit the
damage to the heart muscle by removing the blockage and restoring blood
flow. Less heart damage means a better quality of life after a heart attack.
The odds of women having a second heart attack are relatively high. In fact,
more women than men will suffer a second heart attack within four years after

having their first attack.

2.6.3 Diagnosis errors of myocardial infarction

The most common medical diagnosis error is failure to diagnose, or a delay in
diagnosing, an acute myocardial infarction. Infarction means "death of tissue”

and a myocardial infarction occur when the heart muscle (tissue) dies.

Time is of the essence when a patient makes a trip to the emergency room
complaining of chest pain. With immediate and proper care, the damage from
a heart attack can be minimized. However, when an emergency room
physician or other healthcare professional mistakes chest pain for indigestion
and sends the patient home, the result is often catastrophic. More often than
not, an otherwise preventable death occurs, all due to the negligence of the

medical professional.
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Statistics reveal that a heart attack victim is twice as likely to die if the
attending physician significantly delays the diagnosis of myocardial infarction.
Since such an unfortunate outcome is so easily avoided, medical malpractice
lawsuits based on failure to diagnose often exact a heavy financial toll on the

negligent doctor.

After a myocardial infarction (Ml), there is a region of the heart with dead
myocardium. The ECG undergoes some changes. In some people, the first
ECG change is a high peaked T wave. Peaked T waves, if they occur, last
only a short time. Convex ST elevation is the next typical change in the ECG.
In many people, this occurs within 30 sec after occlusion of the coronary
artery and is not preceded by peaked T waves. As the myocardial cells die, R
wave voltage decreases and then Q waves develop. The key to diagnosis of

an old or recent Ml is the presence of abnormal Q waves. An abnormal Q

wave is at least 0.04 seconds wide and at least ¥ of the total height of the
QRS complex. For the diagnosis of MI, there should be Q waves in at least 2
leads. Q waves are present on the ECG because the scar of the myocardial
infarction does not produce a wave of depolarization. If there is an ECG lead
directly over the scarred tissue, the lead sees “through” the scar and detects
the voltage of the opposite myocardial wall. For example, if there is an
anterior MI, then a lead will see through the anterior LV wall and see the
vector of the posterior LV wall. The posterior wall vector is pointed to the back
away from the lead, producing a Q wave. In essence, the Q wave reflects
absence of electrical activity in the region of the MI. The location of Q waves
is a predictor of the location of the MI. This occurs over a variable time course

of minutes to hours.

After several hours to days, the ST segments return back to their resting
values, but the T wave remains inverted. This indicates that the injured cells
are either dead (Ml) or that blood flow has returned to the artery (reperfusion).
Q waves with inverted T waves are consistent with a recent or old MI. After
months to years, the heart scars and the T waves can return to their normal
upright position. Q waves with normal upright T waves are consistent with an
old MI. In some people with small Mls, the Q waves can disappear as the
heart scar shrinks after few years. In a large anterior Ml (AMI), large Q waves
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are typically present. Itis the large MI that frequently causes congestive heart

failure from the loss of contractile myocardium.

Myocardial tissue does not regenerate once it is damaged. If an area of the
myocardium becomes damaged from myocardial infarction, it goes through a
4- to 6- week healing process where it eventually becomes connective or scar
tissue and never functions as cardiac tissue again. The electrical activity
through this area of damaged tissue is altered and can only be detected on

ECG by digital signal processing.

Delayed activations of myocardium, appear to generate delayed potentials
(DP) on the body surface, which were previously termed as ventricular late
potentials (VLP). These VLPs are low-amplitude high-frequency potentials
that have been observed in ECG signals of patients after myocardial infarction
(MI) and considered as a noninvasive indicator of Ventricular Tachycardia
(VT). Ventricular Late Potentials are covered in more detail in the next

section.

2.7 Ventricular Late Potentials

Ventricular late potentials (VLP) are low amplitude signals that occur in the
ventricles. Also called Late Potentials (LP), these signals are caused by slow
or delayed conduction of the cardiac activation sequence. Under certain
abnormal conditions, there may be small regions of the ventricles within a
diseased or ischemic region that generate such delayed conduction, Fig. 2.5.
This results in depolarization signals that prolong past the refractory period of
surrounding tissues and re-excite the ventricles. This re-excitement is known

as reentry (Lander, Deal and Berberi, 1988)(Mousa, Yilmaz, 2001-a).

Due to their very low magnitudes, late potentials are not visible in a standard
ECG. Moreover, factors such as increased distance of the body surface
electrodes from the heart, and inherent noise in patients make identification of
VLP beyond the resolution limits of a standard ECG. As a result, high-
resolution recording techniques and computerized ECG processing are
necessary for detection of late potentials (Rioul,Vetterli, 1991)(Raghuveer, et
al 1992)(Thakor, et al. 1993.)(Mallat , 1989).
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Figure 2.5 Vector magnitude of ECG signal showing the presence of VLP
(source: Gang et al. 2000)

Such ECG signal processing includes techniques to improve the ability of
detecting and identifying LPs include wavelet transform (WT), complex
cepstrum analysis (CCEPS), artificial neural networks (ANN) and other.
Some of these DSP tools have been used in this study as will be seen in later

chapters.

2.7.1 Diagnostic values of VLP

Ventricular Late Potentials appear to arise from small areas of structurally
abnormal myocardium in which ventricular activation is delayed and
asynchronous. When surviving heart fibers are separated by connective
tissue, delayed activation patterns may occur. The result is a low-amplitude,
fragmented local potential. This activity can be recorded in most patients with
remote myocardial infarction (heart attack), but is detected at fewer recording
sites and is of shorter duration in infarction patients without clinical VT. Late
potentials imply that the substrate for reentry is present, and then be
precipitated by such triggers as premature ventricular beats, myocardial
ischemia (lack of oxygen), or autonomic nervous system instability. Late
potentials occur more frequently and are of greater duration in patients with
sustained VT than in patients with ventricular fibrillation, a rhythm less

associated with conduction delay (Simson 1981)(Vester, Strauer,1994).
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Common criteria defining late potentials include the following:

1. The filtered QRS complex is longer than 114 ms

2. The terminal filtered QRS complex remains below 40 p volt for more
than 38 ms, and

3. There is less than 20 u volt of signal in the last 40 ms of the filtered
QRS complex.

2.7.2 Problems encountered in the detection of late potentials

The nature and exact cause of late potentials are not well understood and
therefore not well defined. Late potentials are not present in all patients with
recurrent VT. In some instances the fragmented activity may be too brief or

the late potential may be masked by bundle branch block (BBB).

The signal amplitude is usually too low to be differentiated from noise.
Therefore, advanced signal processing must employed in order to extract the

needed information.

Detecting VLPs is a challenging task due to the nature of these potentials and
the environment in which they exist. The next chapter deals with the
limitations and drawbacks of the commonly employed methods in VLP

detection.
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CHAPTER 3

LIMITATIONS AND DRAWBACKS OF STANDARD DETECTION
METHODS

3.1 Introduction

In this chapter we investigate some of the standard and widely accepted
approaches employed in the detection of VLPs. We also examine their related
assumptions and try to pinpoint the drawbacks and inaccuracies of these
methods and their assumptions. The three widely accepted criteria; QRS
duration, root-mean-square and duration of the signal at the end of QRS for

VLP detection are used in the investigation (Simson 1981).

According to the mechanism of distorted myocardial activity important
information to detect Ventricular Late Potentials (VLP) or simply Late
Potentials (LP), may be extracted from high-resolution recordings through
advanced signal processing techniques. These VLPs are low-amplitude high-
frequency potentials that have been observed in ECG signals of patients after
myocardial infarction (MI) and considered as a noninvasive indicator of
Ventricular Tachycardia (VT). Previous studies have shown that patients with
VLP in their ECG have a higher possibility to develop a cardiac event than
those without VLPs. Several studies have reported an increased possibility of
spontaneous VT or sudden cardiac death in patients with abnormal ECG.
Myocardial activation may be delayed due to increased length of the pathway
of excitation or due to slowing conduction velocity. Physical characteristics of
the myocardium can be critical factors in the delayed activation. The amount
of dead myocardium is variable and may be located anywhere in the heart.
Regions of dead myocardium create barriers that lengthen the excitation
pathway. The increased separation of myocardial bundles and disruption of

their parallel orientation by fibrosis distort ventricular activation. Electrograms
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recorded from such bundles usually have small amplitudes because of the
intervening layers of nonconductive tissue and small diameter of the muscle
bundles. When individual bundles are separated by nonconductive regions
heterogeneous patterns of activation may occur and result in fragmentation of
local electrograms. In regions bordering the infarct, abnormal ventricular
conduction during sinus rhythm has been observed and appears to be related
to the development of ventricular tachycardia (VT) (Meste,Rix,1994)
(Mousa,Yilmaz,2001-a) (Mousa,Yilmaz,2001-b).

Delayed activations of myocardium, appear to generate delayed potentials
(DP) on the body surface, which were previously termed as late potentials
(Mousa,Yilmaz, 2004-a). Delayed potentials have been recorded from dogs
with experimental infarction and corresponded in time with fragmented and
delayed electrocardiograms recorded from the epicardium. Potentials
recorded from the body surface of human patients, have been accompanied
by late, fragmented electrograms recorded directly from the heart.

Although fragmented electrograms can be recorded from most patients with
myocardial infarction, delayed activation is more profound and detectable in
patients with, compared with those without sustained ventricular tachycardia.
The finding of fragmented local electrograms or delayed potentials on the

body surface may indicate that the substrate for reentry is present.

Since VLPs are of undefined nature and possibly varying frequency
superimposed on a relatively high amplitude medium frequency QRS
complex, time domain analysis alone did not yield sufficient diagnostic values
and was not able to accurately detect these pathologic oscillations.

The relatively low positive predictive accuracy for identifying vulnerability to
ventricular arrhythmias possibly caused researchers to look for other
predictive means and almost abandon the subject of ventricular late
potentials. This limited performance calls for the need for improved methods
in VLP analysis rather than abandoning the subject entirely. These methods
should be tested in a frame with wide range of possibilities that might occur.
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The task is by no means an easy one due to the composite nature of ECG
signals and the difficult environment in which they exist, let alone the unknown
nature of these LPs themselves. The diversity of methods available in the
analysis of VLP in ECG signals arises from the difficulty of the task.
Unfortunately, no single approach has provided a satisfactory conclusion to
the problem at hand. Wavelet transform is shown to be a possible alternative
to approach the problem of identifying late potentials (LP) and in addition it is

also able to detect (DP) that might occur anywhere in the cardiac cycle.

The study emphasizes that some standard methods are not capable of

detecting DPs in general and limit their focus on LPs only.
3.2 Standard detection methods using Simson’s parameters

Present studies in the field underlined a variety of methods and approaches
and at times making assumptions about the nature of VLP. These studies
have been using mainly adapted methods based on signal averaging of a
large number beats in order to improve the signal to noise ratio (SNR). Then a
vector magnitude is calculated using a three orthogonal lead system. High-
pass filtering is then applied in order to remove the high-amplitude low to
medium frequency components in the signal. Time domain analysis of filtered
QRS (FQRS) is the most widely used method in the analysis of VLP. Simson
has developed a technique, which is based on FQRS and is still widely used
(Simson, 1981). The three parameters he suggested were introduced in
section 2.7.1 of this thesis which will be revisited in the corresponding part of
the wavelet transform. This method depends considerably on the accurate
detection of the QRS endpoints, the correct detection of which is not always
guaranteed. This detection process is the bottleneck of the entire analysis and
any approximation errors can be projected onto the rest of the works and their
results. The analysis procedure proposed by Simson is summarized as

follows.

28



3.2.1 Signal averaging and digital filtering

The ECG signal from each lead is aligned and averaged after passing though
a template program to reject ectopic beats and grossly noisy signals. Each
averaged lead is filtered to remove the low-frequency content. The choice of
the filter type, size and corner frequency, have a pronounced effect on the
values of the calculated parameters. The filter used by Simson as well as in
the first part of this work is a 4-pole high-pass Butterworth filter with corner
frequency of 25-Hz (Rompelman, Ros 1989).

3.2.2 Vector magnitude calculation

The filtered signal from the three X, Y and Z leads are combined into a vector

magnitude M =/(X*+Y?+Z?), which allows for the detection of high-

frequency voltages in any lead. The vector magnitude of the filtered signals is
referred to as the filtered QRS (FQRS) complex (Lander, Deal, Berberi, 1988).

The X, Y, Z leads used in this system are assumed to be placed in a perfect
orthogonal configuration. The X lead is placed between the right and left
midauxillary lines at the fourth intercostals space. The Y lead is placed at the
superior aspect of the manubrium and the proximity of the left leg. The Z
electrodes are placed at opposite end in front and back of patient with the
frontal lead at V, position. In reality these leads are only approximately
orthogonal and the assumption of perfect orthogonality does not exist
resulting in some correlation in the different leads. This concept is detailed in

section 5.4.2 of this thesis.
3.2.3 Extracted Parameter

Based on the vector magnitude, the three parameters calculated by Simson

are given as follows:
e Duration of the QRS complex denoted as QRSDUR:

From the vector magnitude of the signal a noise sample was measured and

its mean and standard deviations were calculated for use in the detection of
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end points. A threshold value was defined as the mean plus three times the
standard deviation of the noise sample. The noise sample for the QRS onset
was chosen to be 20 msec wide and began about 50 msec before the
approximate QRS onset. The noise sample for the QRS offset was 40 msec
wide and began about 60 msec after the QRS. A search where the average
of the samples exceeds the threshold value within a 5-msec segment was
performed. When the sample average exceeds the required threshold, the

midpoint of the 5-msec segment was called the endpoint (onset or offset).

e Duration of the low-amplitude signal in the last 40 msec, denoted as
LASA40 is calculated.

e The root-mean-square (RMS) value of LAS40 denoted by RMS40 is
calculated.

The 40 msec value was chosen as the interval because it is the period of the
25-Hz used as a corner frequency of the filter.

A parameter is considered a positive indicator when it exceeds a certain
threshold value. In Simson’s method, the threshold value for the QRS
duration was 120 msec, a 25 p v for the RMS40 and about 100 msec for the
duration of LAS40. A case is classified as VLP positive when any two of the
three parameters are found to be positive indicators. For this work, a similar
procedure is carried out with the threshold values extracted from the base
ECG signal.

3.3 Problems encountered in the detection of VLP

Many observers have recorded VLPs and disorganized activations from
infaracted myocardium. The source of VLP was attributed to the delay in
activation due to the damaged myocardium region. These VLPs activities in
the form of fragmented deflections are found in border zones surrounding the
scar tissue of a myocardium infarct (MI). This border zone is composed of
conducting and non-conducting regions, which slow and fragment the

depolarization wave. This behavior resembles a capacitor composed of
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dielectric placed between two conducting plates. One has to note that still little

is known about VLP in terms of their occurrence.

Questions that still to be answered include:

e Do they occur periodically at every beat or do they occur at an interval of
beats?
e Do they always occur at the exact location?

¢ Do they always have the same duration, frequency, and amplitude?

The exact answers to these questions are not yet addressed properly
however, it is fair to say that they are important to form the prerequisite to

isolate VLP from ECG signals and draw accurate conclusions.

The end of the QRS complex is a reasonable choice for detecting of VLP
since it is the relaxation period of the myocardium and any signal in that
portion can be detected easily, but not for other potentials occurring in other
regions of the ECG signal such as DP. The effect of type of infarct and its
variable manner is also reported by Simson in his work and is reproduced
here in the table (3.1). Voltage in last 40 msec of the filtered QRS complex,
are shown for two different types of infarctions, with values in p volts listed as
mean + one standard deviation. This table shows the dependence of
parameter values on the type of infarct. We can see the difference in both
mean and standard deviations with change of infarct type even for the same

type of patient.

Table 3.1 Voltage in last 40 msec of filtered QRS for two different types of infarctions
(source: Simson 1981)

Control Patients | Patients with VT
Anterior Ml 86.6 £56.5 uV 20.6 £20.7 uV
Inferior Ml 55.4£25.2 uVv 10.9+£5.2 uVv

Table (3.1) shows an example of the dependence of parameter values on the

type of infarct and in some sense supports our argument about the variability
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of the occurrence of VLP. There are some other problems that exist in the

detection process. In the next part we shall touch upon these difficulties.
3.4 General problems in some of the standard VLP detection methods

In addition to the particular parametric values of the desired signal, the
different approaches used may influence the end results and can even reduce
its prevalence. A sample of these different approaches is discussed below.
One should note that we are not questioning the integrity of the three
parameters set by Simson; rather, it is the method by which they are
extracted.

3.4.1 Signal averaging

Signal averaging is a common method used for improving the signal to noise
ratio (SNR) that is essential to detect low-level signals. High sampling
frequencies (>1000 Hz) and high-resolution analog to digital conversion (12-
16 bit or higher) are required. Signal averaging process is essentially
statistical in nature and it is based on white noise assumption. Some studies
have defined VLP as having a repetitive and deterministic in nature as
opposed to periodic one (Lander, Deal, Berberi, 1988). Furthermore, in
contrast to stationary processes, late potentials are a transient or short time
phenomenon. Therefore, it would be expected that their statistical properties
should change with time. Hence, late potentials are considered as non-
stationary waveforms. Unless the desired signal repeats at every beat,
averaging will tend to reduce its strength rather than improve its SNR.
Therefore, we must know the repetition nature of the VLP before applying any
averaging in order to get optimum improvement in SNR. Of course averaging

every beat is optimal if the desired signal is repeated at every beat

periodically, and results in SNR improvement equal to JN where N is the

number of averages. According to an expert consensus document:

“Current research is establishing the extent to which the terminal QRS complex and
ST segment are optimal ECG intervals and orthogonal ECGs are the ideal leads for
detecting signals generated by myocardial tissue responsible for sustained ventricular
arrhythmias. Results of analysis of three dimensional, computer-assisted, ventricular
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activation maps recorded during sustained ventricular tachycardia and sinus rhythm
from patients with healed myocardial infarction undergoing arrhythmia surgery have
shown that current methods of signal-averaged ECG analysis limiting interrogation
to the terminal QRS/ST segment exclude detection of 95% of the signals generated by
myocardium responsible for sustained ventricular tachycardia™ (CAIN et al., 1996)

3.4.2 Vector magnitude

Calculation of the vector magnitude means taking the square root of the sum
of squares of the bipolar X, Y, Z leads. Anatomically perpendicular leads on
the body surface give no guarantee of electrical orthogonality as stated by the
study of (Lander, Deal, Berberi, 1988).

Without perfect orthogonality of the leads, the vector magnitude distorts the
signal content in these leads. When combining the three leads into a single
vector magnitude, information in these individual leads is weakened in the
transformation. The vector magnitude is not a unique representation of the
three leads since we may have many signals making up the same vector
magnitude. The standard way of calculating the vector magnitude produced
undesirable cross terms that can overshadow the desired part and may even
prevent their accurate detection. These cross terms arise from the different
frequency components contained in the signal including noise and VLP when
they exist (Mousa, Yilmaz, 2002).

3.4.3 Filtering and cutoff frequencies

The ECG is high-pass filtered to reduce the low frequency signals contained
in the QRS complex. The high-amplitude low-frequency component may
interfere with the measurement of the desired microvolt level signals, the VLP.
The main problem seems to be the selection of a steep and linear phase filter
causing little or no ringing in the QRS being examined while preserving signal
morphology. In reality, bi-directional filtering is appropriate if one is
considering the entire signal but if the interest lies in its end, as is the case of
VLP, filtering a reversed version of the signal will be adequate. A bi-
directional IIR filter may strongly influence signal morphology, whereas

alternative FIR filters are difficult to optimize. A low number of taps results in
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a poor frequency response, while a large number of taps increases filter
ringing and obstructs precise detection of low-amplitude signals (Oppenheim
and Schafer, 1989). No consensus has been established so far for any
frequency band to extract reliable time domain parameters. The choice of
filter cutoff as reported by some of the researchers is presented in Table (3.2),
and as can be seen the choice will affect all resultant parameters where
prevalence indicates the number of accurately detected cases (Gramatikov,
1993) (Makuavi et al., 1994).

Table 3.2 Effect of cutoff frequency of the filters on VLP prevalence.

Filter VLP prevalence QRSDUR LAS40 RMS40
(Hz) (%) (msec) (msec) (uVolts)
25 29.2 103.7+£13.9 30.5£14.8 3.5£1.0
40 25.0 98.0+£13.7 31.9£13.3 3.5¢1.0
80 20.8 97.0£13.9 40.4+14.2 2.7£1.0

3.4.4 QRS duration and endpoint detection

Another fundamental problem in QRS detection is the accurate determination
of RR intervals. The first difference in amplitude of successive samples of the
ECG signal is one of the commonly used methods for this purpose. However,
this method and many of the other methods used are very sensitive to motion
artifacts and other interference and noise.

The detection of the QRS complex, as well as the T and P waves is the most
important task in ECG signal analysis. In general, once the QRS complex has
been identified, a more detailed examination of ECG signal, including the
heart rate, the ST segment, etc., can be performed. There are many
algorithms for QRS detection with different reported performance (Friesen,
1990).

Next chapter introduces the suggested signal processing tools to detect
abnormalities occurring anywhere in the conduction path. This includes
wavelet transform as the major tool supported by the application of the

complex cepstrum and artificial neural network techniques.
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CHAPTER 4

DSP TOOLS USED IN UNIFIED FRAME

4.0 Introduction

Digital signal processing uses sophisticated mathematical analysis and
algorithms to extract information hidden in signals derived from sensors. In
biomedical applications, these sensors, such as electrodes, accelerometers,
optical imager's etc. record signals from biologic tissue with the goal of
revealing their health and well being in clinical and research settings.
Refining these sign-processing algorithms for biologic applications requires
building suitable signal models to capture signal features and components
that are of diagnostic importance. Since most signals of biologic origin, are
time varying there is a special need for capturing transient phenomena in both
healthy and chronically ill states. A critical feature of many biologic signals is
frequency-domain parameters. Time localization of these changes is an issue
for biomedical researchers who need to understand subtle frequency content
changes over time. Certainly signals marking the transition from severe
normative to diseased states of an organism sometimes undergo severe
changes that can easily be detected using methods such as the short-time
Fourier transform (STFT) for deterministic or energy signals and its
companion, the spectrogram, for power signals. The basis function for the
STFT is the complex sinusoid, which is suitable for analysis of narrow-band
signals. For signals of biological origin, the sinusoid may not be a suitable

analysis signal.

Biologic signals are often spread out over wide areas of the spectrum. Also
as Rioul and Vetterli point out, when the frequency content of a signal
changes in a rapid fashion, the frequency content becomes smeared over the
entire frequency spectrum, as it does in the case of the onset of seizure
spikes in epilepsy or a fibrillating heartbeat as revealed on an ECG. The use

35



of narrow-band basis function does not accurately represent wide-band
signals. We would prefer that our basis function be similar to the function
under study. In fact, for a compact representation using as few bases as
possible, it is desirable to use basis functions that have a wider frequency
spread, as most biologic signals do. There are a number of methods of
transforming a 1-D signal in time into a 2-D distribution of signal strengths in
time and frequency. The time frequency distribution (TFD) gives a measure of
intensity of frequencies over time. Various transformation methods such as
the short time Fourier transform, Wigner distribution, smoothed pseudo
Wigner-Villa distribution and cone-shaped kernel are the well known ones.
The properties of each of these time-frequency analysis methods are

described elsewhere.

Wavelet theory, which provides for wide-band representation of signals, is
therefore a natural choice for biomedical engineers involved in signal
processing and is currently under intense study. These characteristics
motivated our approach, which makes use of wavelet, transforms (WT) to be

presented later in this thesis.
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4.1 Wavelet transform

4.1.1 Introduction

Various digital-signal-processing methods are applied to the ECG to identify,
extract and analyze the different ECG signal components. In this large set of
signal-processing tools, a technique called wavelet transform proved to be a
suitable one describing time and frequency characteristics of ECG waves. Here
we present an overview of the wavelet technique applied to the area of ECG
signal analysis. We will first give some rationale for the utilization of new ECG
processing tools and then describe the contribution of the wavelet transform in

the analysis of ECG signals.

This technique will be discussed and compared to the classical techniques using
the time-domain and frequency-domain methods. The frequency representation
of a signal can be obtained using different techniques including the most
frequently used Fourier transformation that is able to decompose any temporal
signal in an infinite set of sinusoid functions. This set of sinusoid functions is
then represented in the frequency space using the amplitude and the phase of
each of these functions thus provides a link between the time representation of a
signal in seconds and the frequency representation in cycle/second. Theoretically
these signals should be deterministic and periodic in nature (Oppenheim,
Schafer, 1989).

As the digitized ECG is a finite signal, its boundaries are usually abrupt and
these abrupt cuts of the signal make it discontinuous which introduces a
smearing or a decrease and spread of all the estimated frequency peaks. In

order to avoid this, the calculation of the FFT is applied to the windowed ECG.
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Windowing aims at removing this discontinuity by smoothing and decreasing the
boundary of the ECG signal to near zero which in effect reduce the frequency
resolution and therefore lowers the quality of the estimation of the ECG signal
frequencies. Another unavoidable limitation of the Fourier transformation for the
ECG analysis is that this technique does not provide insight into exact location of

frequency components in time.

The frequency content of the ECG varies in time; the QRS complex is a high
frequency wave whereas the P and T waves contain low-frequency components,
therefore, an accurate description and representation of the ECG frequency
contents according to their location in time is needed. This kind of representation
provides insight into three dimensions of the ECG signal: the time, the frequency
and the amplitude. Utilization of time-frequency representation in ECG analysis is

thus justified which be introduced in the next sections.

4.1.2 Wavelet basics

A wavelet is a small wave with its energy concentrated in time to give a tool for
the analysis of transients, non-stationary or time-varying signals. The goal of
most expansions of a signal is to have the coefficients of the expansion give
more useful information about the signal than is directly obvious from the signal
itself. A second goal is to have most of these coefficients be zero or very small.
This is what is called sparse representation and is extremely important in
applications for statistical estimation and detection, data compression, non-linear

noise reduction and fast algorithms (Burrus, Gopinath and Guo, 1998).

4.1.3 Why Wavelets?

The basic properties that make wavelet transforms very useful, efficient and

effective in analyzing a very wide class of signals and phenomena are:

1. The wavelet expansion allows the separation of components of a signal

that overlap in time or frequency.
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2. A wavelet expansion coefficient represents a component that is itself local
and is easier to interpret and allows a more accurate local description and
separation of signal characteristics.

3. ldeal for adaptive systems that adjust to suit the signal since they are
adjustable and adaptable and can be designed to fit individual
applications.

4. The size of the wavelet expansion coefficients drops off rapidly for a large
class of signals a useful property in signal and image compression,
denoising and detection.

5. Calculation of the discrete wavelet transform (DWT) is well suited for
digital computers since only multiplications and additions are included in

the defining equations of the wavelet transform.
4.1.4 Wavelets and Wavelet expansion systems

The wavelet transform decomposes a signal f(t) into a set y(t) of orthogonal

basis functions that make the wavelet family (Mallat , 1989) (Rioul,Vetterli,
1991) . The general formula for representing the decomposition of the signal as

a linear combination of this expansion set w(t) is:

f(t)=> alkly (t) (4.1.1)
k

If the expansion set is also orthogonal it forms a basis for that class of functions

where orthogonality means:
(Wi ©.9, ) = v, (Odt =0 kel (4.1.2)

The a[k]s are the real valued expansion coefficients which can be calculated

using the inner product

alk]= (f(t)w,)=] f(th (Dt (4.1.3)
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The inner product for two functions x(t) and y(t) is defined as a scalar a

obtained as:

a=<x(t), y(t) >= jx* )yt (4.1.4)
where x'(t) is the complex conjugate of x(t) with the range of integration
depending on the signal class considered.

Two signals with nonzero norms are called orthogonal if their inner product is

zero. Where the norm or length of a vector is defined as:

Ifl=v<f. 1> (4.1.9)

In the Fourier transform, the orthogonal basis functions w, (t) are sin(wkt) and

cos( wykt ), for the wavelet expansion, a two-parameter system is constructed as:
f(t) =zzaj,k‘ﬂj,k (t) (4.1.6)
k 1

where both j and k are integers and the yx(t) are the wavelet expansion
functions that usually form an orthogonal basis. The set of expansion coefficients

a; are called the discrete wavelet transform (DWT) of f(t).

The Fourier transform maps a one-dimensional signal into a one-dimensional
sequence of coefficients; the wavelet expansion maps it into a two-dimensional
array of coefficients. It is this two-dimensional representation that allows
localizing the signal in both time and frequency in the wavelet transform. And the

two-dimensional representation is achieved from a mother wavelet w(t) by:

W(t):%w(%) a>0 (4.1.9)
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The factor - is introduced to guarantee energy preservation and a represents

Ja
the scale parameter and b represents the translation parameter producing the

time-shift. The function y,,(t) is obtained by scaling and translation of the
mother wavelet y(t) at time b and scale a. Increasing the scale value will stretch
the function y, (t) , a useful form for the analysis of low frequency contents while
lowering this factor will shrink the function y,,(t) producing a form suitable for

the analysis of high frequency contents of signals (Burrus et al, 1998).

There are many wavelet systems but all have some general characteristics as:

1. It is a two-dimensional set (a basis) for some class of one-dimensional
signals.

2. Gives time-frequency localizations of the signal.

3. Calculation of the wavelet transform coefficients from the signal requires
O(N log N) operations which is the same as for the fast Fourier transform
(FFT).

While the Fourier series maps a one-dimensional signal into a one-dimensional
sequence of coefficients, the wavelet expansion maps it into a two-dimensional
array of coefficients. It is this two-dimensional representation that allows

localizing the signal in both time and frequency.

Three more additional characteristics are more specific to wavelet expansion:

1. The two-dimensional representation is achieved from a mother wavelet
w(t) by:

w0 =212y (21t k) jkez (4.1.10)

the factor 2!/ maintains a constant norm independent of the scale j.
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2. Multi-resolution is useful property of wavelet systems. if a set of signals

can be represented by a weighted sum ofp(t—k), then a larger set
(including the original) can be represented by a weighted sum ¢(2t — k).

3. Lower resolution coefficients can be calculated from higher resolution

coefficients by a tree-structured algorithm called filter bank of the DWT.

The multi-resolution formulation needs closely related basic functions. In

addition to the mother wavelety (t), we will need another basic function called the
scaling functiong(t). The simplest possible orthogonal wavelet system is

generated from the Haar scaling function and wavelet. These are shown in

Figure (4.1.1)

(1) p2)+g(2t-1)  y(1)

v
—

Figure 4.1.1 Haar scaling ¢(t) and wavelet y(t) functions

Using the combination of these scaling functions and wavelets allows a larger

class of signals to be represented by:

F) =3 Copt-K)+ 3 3 d, w2t k) (4.1.11)

-0 j=0
415 Basics of the Daubechies wavelets

The function displayed in Figure 4.1.2 is the so-called wavelet function from the
Daubechies family of wavelet functions which is only one of a number of wavelet

families (Burrus, Gopinath and Guo, 1998).
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Figure 4.1.2 Daubechies wavelet

The wavelet function (mother wavelet) is orthogonal to all functions, which are
obtained by shifting the mother by an integer amount. Furthermore, the mother

wavelet is orthogonal to all functions, which are obtained by dilating (stretching)

the mother by a factor of 2! and shifting by multiples of 2 units.

The orthogonality property means that the inner product of the mother wavelet
with itself is one and the inner products between the mother wavelet and the
aforementioned shifts and dilates of the mother are zero. The collection of
shifted and dilated wavelet functions is called a wavelet basis. The grid in shift-
scale space on which the wavelet basis functions are defined is called the dyadic
grid. The orthonormality of the wavelets has a very important mathematical and
engineering consequence: any continuous function may be uniquely projected
onto the wavelet basis functions and expressed as a linear combination of the
basis functions. The collection of coefficients, which weight the wavelet basis,
functions when representing an arbitrary continuous function are referred to as

the wavelet transform of the given function.

Representation of an arbitrary function by an infinite collection of wavelet
transform coefficients may not, at first glance, appear to be worthwhile. The real
strength of wavelet transform representations, however, is that functions (or
signals or images) that look like the wavelet function at any scale may be well
represented by only a few of the wavelet basis functions. The wavelet transform
therefore provides an efficient representation for functions, which have similar

character to the functions in the wavelet basis.
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Decomposition of functions in terms of orthonormal basis functions has been
known for centuries where continuous functions may be represented by an
orthonormal basis of sinusoidal functions. The wavelet basis functions have what
is called compact support. This means that the basis functions are non-zero only
on a finite interval. In contrast, the sinusoidal basis functions of the Fourier

expansion are infinite in extent (Rajoub B., 2002).

The compact support of the wavelet basis functions allows the wavelet
transformation to efficiently represent functions or signals, which have localized
features. Many real-world signals have these features, and decompositions such
as the Fourier transform are not well suited to represent such signals. The
efficiency of the representation is important in applications such as compression,
signal detection, denoising, and interference excision. The common thread
throughout all these applications is that the structured component of a signal is
well represented by a relative few of the wavelet basis functions, whereas the

unstructured component on the signal (e.g. noise) projects almost equally onto all

of the basis functions. The structured and unstructured parts of the signal are

then easily separated in the wavelet transform domain.

Even if a signal is not well represented by one member of the wavelet family,
another may still very efficiently represent it. Selecting a wavelet function, which
closely matches the signal to be processed, is of utmost importance in wavelet

applications.

The Daubechies family is just one of a number of wavelet families. Some of the
families are characterized by orthonormal basis functions as described above.
Other wavelet families, for example the biorthogonal wavelets, are orthogonal in
a more general sense than has been described. Still other families of wavelet
basis functions are not orthogonal in any sense. The large number of known

wavelet families and functions provides a rich space in which to search for a
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wavelet, which will very efficiently represent a signal of interest in a large variety

of applications.

The great interest in wavelets today is only partly due to their ability to efficiently
represent functions with localized features. The interest is also due to the fact
that it was discovered that some wavelets might be implemented in an extremely
computationally efficient manner by means of what is called a multi-resolution
analysis. Just as Fast Fourier Transform (FFT) algorithms made the Fourier
Transform a practical tool for spectral analysis, the multi-resolution analysis has
made the Discrete Wavelet Transform (DWT) a viable tool for computational

time-scale analysis (Raghuveer, et al 1992).

4.1.6 Wavelet transform decomposition of ECG signals

To illustrate how wavelet decomposition works, Fig. 4.1.4 shows the

decomposition of a signal into its wavelet components (Rioul,Vetterli, 1991) .

The signal is an actual vector magnitude of an ECG signal and below it are the
eight separate sub-signals, which have been obtained by decomposing this ECG
signal into its wavelet components. Each component is called a level and the

levels are numbered from —1 upwards.

When the separate wavelet levels are added together, the original signal is
regained. This is shown in Fig. 4.1.5. Starting at the top left-hand diagram, which
shows level —1 alone, and moving down successive levels is added until finally,

at the bottom diagram, the original signal has been regained.

Depending on the type of wavelet used the dividing line between frequency
bands may overlap and frequency content of neighboring levels may also
overlap. The number of levels n is related to the signal size N according to

N = 2" therefore a signal of 128 samples will have a total of n = 7 levels.
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Decomposition atlevel 5:s=as5 +ds5 + d4 + d3 + d2 + d1.
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Figure 4.1.5 Step by step reconstruction of ECG signal from its levels

The frequency content of these levels is shown in table 4.1.1 computed for a

sampling frequency f .= 1024 Hz. We see that the highest frequency content

falls in L7, which is equal to the Nyquist frequency.
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Table 4.1.1 Frequency distribution of different levels

Level L7 L6 L5 L4 L3 L2 L1
Frequency | 512 :256 | 256:128 | 128:64 | 64:32 | 32:16 | 16:8 | 8:dc
(Hz)

Due to the overlapping spectral components in the ECG signal, the WT provides
some advantages in the analysis and in separating the P, QRS, and T waves
since it looks at both time and frequency domains. As can be seen, P-wave, T-
wave and motion artifacts are contained in levels L2 and L1 in this example.
Muscle noise and QRS last for the entire spectrum of the ECG with the QRS

having the higher relative strength.

Fundamental to the problem of rhythm monitoring is the detection and delineation
of QRS complexes, and quite often the processes required for this purpose are
more complicated than the classification scheme. In this part, a method for the
detection of QRS complexes and a classification scheme using the wavelet
transform is presented. The detection of the QRS complex, as well as the T and
P waves is one of the most important starting points in ECG signal analysis.
Once the QRS complex has been identified, a more detailed examination of ECG

signal, including the heart rate, the ST segment, etc., can be performed.

Wavelet transform is a suitable technique for time-frequency analysis. By
decomposing signals into elementary building blocks that are well localized both
in time and frequency, the WT can characterize the local regularity of signals.
This feature can be used to distinguish ECG waves from serious noise, artifacts
and baseline drift. An algorithm based on the WT for detecting QRS complex, P
and T waves have been used. A dyadic wavelet transform is used for extracting
ECG characteristic points. The local maxima of the WT modulus at different
scales can be used to locate the sharp variation points of ECG signals. The

algorithm first detects the QRS complex, then the T wave, and finally the P wave.
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Signal singularities often carry the most important information. It is important to
find the location of singularity and characterize the singular degree in signal

processing (Meste, Rix, 1994)(Mousa, Yilmaz, 2004-a).
4.1.7 WT filtering and detection of the R peak

A major task of the method; which is also sensitive to noise lies in the process of
isolating independent beats. The WT method was employed in this process as
well as other parts of the analysis by combining levels L10 and L11 which
emphasize the presence of the R-peak, reduce and remove base-line drift as
seen in Fig. 4.1.6. During this process the mid-point between two R-peaks is
taken as the dividing point between two successive beats. The heart rate (HR)

and RR intervals are then easily obtained (Mousa, Yilmaz, 2004-c).

0.5H

w X 1

e
i
Normalized Amplitude

. L L L L L L L L 1 L L L L L L L L
0o 500 1000 1500 2000 2500 3000 3500 4000 4500 o 500 1000 1500 2000 2500 3000 3500 4000 4500

Samples
a. Original signal b. Appropriate WT levels

Fig. 4.1.6 Detection of R-peak using WT to remove base line variations
4.1.8 WT application in clustering of similar beats

As we will see later in chapter 6, the WT plays an important role in the process of
clustering of similar ECG beats. Introduced here is a portion of that analysis. We
begin by assigning the first beat as the template. The second beat received is
compared to this template, aligned with template and averaged together if the
correlation value exceeds the predefined threshold. If the beat and template are
not similar (i.e., correlation value is less than the threshold), this new beat is

appended to template increasing the size of template by one beat. This in effect
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generates a multi-beat template. The process is continued to the end of the
record. The resulting multi-beat template is then taken as the template for that
patient that also summarizes the contents of the entire record.

Due to heart rate variability in the different data sets, these processes generate
R-R intervals that are not all equal. The portions of signal falling between three
R-peaks were separated and their lengths made equal by centering them in a
zero-padded vector. A total of 13 different matrices resulted each containing
corresponding levels from all beats and designated as {L1, L2, ... ,L13}. A cross-
correlation process generated the different templates. The size of the templates
{T1, T2, ..., T13} depended on the degree of similarity set by the threshold value,

with high similarity giving a smaller size template.

To explain how the different templates labeled T1, T2, ...,T, are formed we will
consider one of them since the process applies to the rest in exactly the same
manner. The T may be regarded as column matrix with variable size that is
decided by the number of beats appended to it. First the WT of a beat is
performed producing a number of levels that is related to the number of samples
in that beat.

As an example taking the WT of record of 4096 samples will produce 13 different
levels. Each level in the decomposition of the first received beat is appended to
the corresponding T1, T2, ...,T, to form the starting template. At this point we
have 13 different column vectors each containing one level representing the first
beat. When the second beat is received, it will go through the process of
decomposition again producing a total of 13 different levels. The cross-
correlation of each one of these levels is calculated with the corresponding entry
contained in each T vector, i.e., L1 with T1, L2 with T2 and so on. If the signal in
a particular level say L1, meets the threshold value implying similarity, this level
is aligned and averaged with that of T1 otherwise L1 is appended to T1
increasing the size of T1 by one, similarly for the rest of the levels and T vectors.
This is continued until the last beat after which the T vectors will have different

numbers of levels appended to them depending on their similarity.
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4.1.9 WT-based vector magnitude calculation

The ECG leads may be composed of a number of different components such as:

X =X1+X2+ ... +X9, (4.1.12-a)
Y=Y1+Y2+.. +Y9, (4.1.12-b)
Z=Z1+22+.. + 29, (4.1.12-c)

With X, Y and Z defined as above where the numbers indicate the level number
and represent a signal with different frequency content. The lower numbers are
the low levels, which contain low frequencies, and the higher numbers are the
high levels containing high frequency part of the signals. For a signal with 512
samples, the WT decomposes the three X, Y and Z leads into nine different

levels. When taking the vector magnitude we will have:

M=(X*+Y?+2?%)

M2=X1*+X2%+..+ X9+
Y2 +Y2% +..+ Y9 + (4.1.13)
ZP +22* +..+ 29 +2CT

The CT component in (4.1.13) represents the product of cross-terms between all

different frequencies in the signal as shown in (4.1.14).

CT =X1X2 + X1X3 + ...+ X8X9 +
Y1Y2 +Y1Y3 +... + Y8YO +

2122 +71Z3 + ...+ 7829 (4.1.14)
9
x2=(x12+...+x92)+2{x1{2 Xk ” (4.1.15-a)
k=j+1
9
Y2 = (Y12 + ..+Y9%)+ 2[\(j D> Yk } (4.1.15-b)
k=j+1
9
22(212+...+292)+2{zj > Zk } (4.1.15-c)
k=j+1
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To simplify the presentation let us combine some of the levels to form a
frequency separation similar to that defined for (P, T), QRS and VLP. With this
division we have signals, which are composed of three frequency bands. When

these signals are used in the calculation of the vector magnitude we have:

X =X; + Xy + X, (4.1.16-a)
Y=Y +Y, +Y, (4.1.16-b)
Z=2,+2,+Z, (4.1.16-c)
MZ2=(X;2+Y;2+2Z,%)+
(X Q2+ Y2+ Z,%)+ (4.1.17)
(X, 2+Y,?2+2,%)+2CT

Where:

CT = (X; Xg + Xy Xy + XXy )+
(Y, Yo + Y, Y, +Y Y, )+ (4.1.18)
(2,24 +2,Z, +2,Z,)

The desired part of this composite signal is the square root of the term containing

the square terms of signals with V subscripts i.e.,
DS =, (X, +Y,%+Z,%) (4.1.19)

As we have seen in the different formulae, the classical way of calculating the
vector magnitude produced undesirable terms that can overshadow the desired
part and may even prevent their accurate detection. Therefore, the proposed
method presents the vector magnitude in a decomposed form that enables us to
choose the exact regions of interest. The method, however, requires more
calculations since a WT decomposition of each level has to be carried out. When
calculating the vector magnitude directly in the classical method or using all

levels in WT method, we observe the reduced strength of the desired signal

(VLP) from the O (107°) to O (107**) due to squaring. Another term is introduced
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which is HALFS modulated by the LAHFS; the degree of modulation may be an
indication of the presence and strength of VLP in the signal (Mousa, Yilmaz,
2000-a).

We have demonstrated that the desired signal components Xy, Yy and Zy can be
isolated prior to the calculation of the vector magnitude. Our method uses WT
(see section 6.2) to decompose the three X, Y and Z leads and choose the
appropriate levels based on their frequency content which are then defined as
Xv, Yy, and Zy.

The two methods show exact match when the non-filtered vector magnitude is
calculated adding all levels of the WT and compared to that of the normal method

as shown below in Fig. 4.1.7.

Normalized amplitude

300

260 600
Samples

Figure 4.1.7 A plot of the non-filtered vector magnitudes

4.1.10 QRS onset and offset detection

For the first part of the analysis to minimize variations from the Simson’s method,
the QRS detection in the first part of this work followed the same method outlined
by Simson as introduced in section 2.3. Since the result is directly related to the
correct QRS end points detection, one can argue that this is also a weak point of

this type of methods.
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For the detection of R peaks, the onset and offset of the QRS complex are also
detected. The onset of the QRS complex is defined as the beginning of the Q
wave (or R wave when Q wave is not present), and the offset of the QRS
complex is defined as the ending of the S wave (or R wave when the S wave is
not present). Ordinarily, the Q and S waves are high frequency and low

amplitude waves and their energies are mainly at small scale.
T and P wave detection

After the detection of the QRS complex, the peaks, onsets, and offsets of T and
P waves are also detected. The peak, onset, and offset of the P wave are
detected similarly to those of the T wave within a time window before the

detected R wave.
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4.2 Cepstrum analysis and homomorphic deconvolution

4.2.1 Introduction

In this chapter we introduce the concepts of the complex cepstrum and
homomorphic filtering techniques for their abilities to separate signal
components in ways that could be utilized in the analysis of late potentials. A
variety of signal processing applications use the collection of nonlinear
techniques known as complex cepstral analysis. The complex cepstrum
rearranges the power spectrum of the signal in such a way that the slowly
varying components of the signal are represented by the low frequencies or
early coefficients and the fine detail by the high frequencies or late
coefficients. The complex cepstrum of a signal is defined in terms of its z-
transform while the z-transform of the cepstrum, is defined as the logarithm of
the z -ransform of the sequence. The full complex cepstrum is computed with

the complex logarithm (Oppenheim, Schafer, 1989).

Given the complex cepstrum, we can use techniques similar to frequency-
domain filtering methods to deconvolve the signal into its constituents. The
low-time portion of the cepstrum coefficients corresponds to the low frequency
of the input signal, so by windowing the signal with an appropriate filter, we
can separate it from the high-time portion of the signal. (See, for example,
Section 12.8.4 of Oppenheim and Schafer for more details.) This technique is

called homomorphic deconvolution.

It can be seen that most of the detail occurs near the origin and in peaks
higher up the cepstrum. Thus the lower numbered coefficients provide the
envelope information. The remainder of the detail is mostly contained in the
peaks. Therefore, using the complex cepstrum enables the separation of

signals combined through the operation of convolution.
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The cepstrum and homomorphic deconvolution systems satisfy the principle
of superposition; i.e., input signals and their corresponding responses are
combined by an operation having the properties of addition. These systems
have proved useful in signal analysis and have been applied with success in
processing signals, and in particular biomedical signals. The complex
cepstrum has found broad application in speech processing, seismic analysis,
and many other fields. A number of researchers in the field of ECG analysis
have reported some success when applying complex cepstrum and signal
length methods (Murthy, Rangaraj, Udupa, Goyal 1997)( Murthy, Rangaraj,
1997). In this work we incorporate their methods as a further support to the
wavelet transform method in order to achieve the maximum accuracy

possible.

The transformation of a signal into its cepstrum is a homomorphic
transformation, and the concept of the cepstrum is a fundamental part of the
theory of homomorphic systems for processing signals that have been
combined by convolution. Homomorphic filtering is very general, but it has
been studied most extensively for the combining operations of multiplication

and convolution because many signal models involve these operations.

These properties are described in full detail in Oppenheim and Schafer
(1989).

The complex cepstrum can be difficult to compute analytically, however, we
can define the cepstra in terms of the discrete Fourier transform. Given the
Fourier transform, we can find the real cepstrum of the data sequence quite
easily. The real cepstrum while not as useful for deconvolution applications is
applied where the energy in various parts of the signal needs to be computed.

Computation of the inverse cepstrum is simpler than the cepstrum, since
special care is not required with respect to the phase. The inverse cepstrum is
computed by taking the inverse transform of the exponent of the Fourier

transform.
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4.2.2 The cepstrum and the complex cepstrum

The z-transform of a given stable sequence x[n] defined as:
X(Z)= D.x[njz " (4.2.1)

or represented in polar form :
X(z) =|X(z) |el<*® (4.2.2)

where |x (z)| is the magnitude and « X(z) is the angle, of X(z). For a stable

x[n], the region of convergence for X(z) includes the unit circle, and the

Fourier transform of x[n] exists and is equal to X(e’).

The complex cepstrum of x[n] is defined as the stable sequence I)\<[n] with z-

transform:

X(z)=log[X(2)] (4.2.3)
With

Log [X(2)] = log [|X(z)|e“*(*] = log|X(z)|+ jeX(z) S (4.2.4)

The complex cepstrum exists if log[X(z)] and has all the properties of the z-
transform of a stable sequence has a convergent power series representation

as:

X (z)=log[X(z)]= D.x[n]7 " 2= 1 (4.2.5)

n= o

Therefore the sequence of coefficients of the power series corresponds to the

complex cepstrum of x[n]. The complex cepstrum can be represented using

A
the inverse Fourier transform since we require x/n] being stable and the

region of convergence includes the unit circle.
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4.2.3 Homomorphic deconvolution

An important property of the cepstrum is that it is a homomorphic
transformation. A homomorphic system is one in which the output is a
superposition of the input signals, i.e., the input signals are combined by an
operation that has the algebraic characteristics of addition. Under a cepstral
transformation, the convolution of two signals becomes equivalent to the sum
of the cepstra of the signals (Murthy, Rangaraj, Udupa, Goyal 1997)( Murthy,
Rangaraj, 1997) (Oppenheim, Schafer, 1989).

The operations that defined the complex cepstrum were the same as those
shown in block diagram form in Fig. 4.2.1.a. The cascade of z-transform,

complex logarithm, and inverse z-transform can be thought of as a
representation of the characteristic systemD.[.]. Since we are assuming that

all sequences and their complex cepstra are stable, the associated z-
transform always include the unit circle in their regions of convergence;
consequently the z-transforms in Fig. 4.2.1 can also be specialized to Fourier
transforms as in (4.2.8). Each of the three basic component transformations
is also homomorphic, and the corresponding input and output operations are
indicated in Fig. 4.2.1 (a). The z-transform maps convolution to multiplication;
the complex logarithm converts multiplication to addition; and the inverse

transform is a linear transformation.

The third system Fig. 4.2.1 is the inverse of the characteristic system for

convolution; its input must be the complex cepstrum of its output, i.e.

yIn]=D. '{“y[n]} (4.2.6)

The basic operations that define the inverse characteristic system for
convolution are depicted in Fig. 4.2.1 (b). The linearity of the z-transform
takes a sum of complex cepstrums into a sum of transforms; the complex
exponential maps a sum into a product; and the inverse transform maps a

product into a convolution.
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Figure 4.2.1 (a) Characteristic system for convolution and (b) its inverse.

Properties of the complex cepstrum

Some of the properties of the complex cepstrum are:

PROPERTY 1: The complex cepstrum decays at least as fast as 1/|n|.
PROPERTY 2: If X[n] is real, ﬁ([n] is also real.

PROPERTY 3: The complex cepstrum §<[n] = 0 for n < 0 if and only if x[n] is

minimum phase, i.e., X(z) has all its poles and zeros inside the unit circle.

PROPERTY 4: The complex cepstrum §<[n] = 0 for n > 0 if and only if x[n] is

maximum phase, i.e. X(z) has all its poles and zeros outside the unit circle.

4.2.4 Minimum-phase and maximum-phase sequences

Minimum-phase sequences are real, causal, and stable sequences whose

poles and zeros are inside the unit circle. Since we require that the region of

convergence of log[X(z)] include the unit circle so that Q[n] is stable, and

since causal sequences have a region of convergence includes |zF » it follows

that there can be no singularities of log[X(z)] on or outside the unit circle if

§<[n] = 0 for n < 0, conversely, if all the singularities of X?Z): log[X(z)] are
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A
inside the unit circle, then it follows that x [n] = 0 for n < 0. Since the
singularities of X (z) are the poles and the zeros of X(z). The complex

cepstrum of x[n] will be causal (§< [n] = O for n <0) if and only if the poles and
zeros of X(z) are inside the unit circle. In other words, x[n] is a minimum-

phase sequence if and only if its complex cepstrum is causal.

Causality of the complex cepstrum is equivalent to the minimum phase lag,
minimum group delay, and minimum energy delay properties that also
characterize minimum-phase sequences. This property motivated the use of
the complex cepstrum in order to try to separate envelopes that contain little

changes from components that include delayed activities such as VLPs.

Maximum-phase sequences are stable sequences whose poles and zeros are
all outside the unit circle. Thus, maximum-phase sequences are left-sided,
and, it follows that the complex cepstrum of a maximum-phase sequence is
also left-sided. Our initial hypothesis was that any delayed activities should be
of the maximum-phase type and by separating the two types of signals, we

can gain better insight into the concept of VLP.

4.2.5 Minimum-phase/maximum-phase decomposition by homomorphic

filtering
If no poles or zeros lie on the unit circle, then
X(Z)=Xun(Z)-Xnx(£) (4.2.7)

where Xmn(z) is minimum phase and Xmx(z) is maximum phase.

a sequence of the form

X[N]= X [N] * X [N] (4.2.8)

having a complex cepstrum:

/)\([n]:/)\(mn[n]+/)\(mx[n] (4.2.9)
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Then xmn[n] and xmx[N] may be extracted from x[n] by homomorphic filtering

using:

X [1]= 1 [n] X[N]
where

Imn [n]=u[n]

and

X[ = I [n] X[7]
where:

Imx[n] =U[—n _1]

(4.2.10a)

(4.210D)

(4.2.11a)

(4.2.11b)

And Xmi[n] and xmy[n] can be obtained from ;<mn [n] and xm[n] . The

operations required for the decomposition of (4.2.8) are depicted in Fig. 4.2.2

with 1 [n] and I _ [n]representing the frequency invariant filters.

— 0,11 (X }——{ 07 1 }—
x[n] x[n] \( Ko [11] X (0]
Conn (1]

Dy [+] ——

Figure 4.2.2 Minimum-phase / Max-phase decomposition
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4.2.6 Minimum-phase correspondence (MPC)

While there exists only one minimum phase signal for given amplitude
spectrum, a number of non-minimum phase signals can exist with varying
degrees of phase lags. Homomorphic filtering can be employed to convert a
non-minimum phase signal into its minimum-phase correspondence (MPC).
Some of the important properties of a minimum phase signal are presented in
section 4.2 of this thesis. Of all energy bounded one-sided signals with
identical amplitude spectra the energy of minimum phase signal is optimally
concentrated towards the origin and the signal has the smallest phase lag and
phase-lag derivative for each frequency. The resultant y(n) is the MPC of x(n),
having an amplitude spectrum identical to that of x(n), but with energy
concentrated optimally towards the origin (Murthy, Rangaraj, Udupa, Goyal
1997)( Murthy, Rangaraj, 1997).

4.2.7 Signal length

Signal length is a quantity, which gives information about distribution of
energy over the duration of the signal. For a given amplitude spectrum,
signals which have their energy optimally concentrated at the origin have
minimum signal length while signals with distributed energy have greater
signal lengths. More often, an abnormal signal has a much wider than a
normal QRS complex and while the amplitude spectra of the two are almost
identical, they are known to differ in phase. Signal length implicitly takes into
account the phase of the signal. Hence, depending upon the type of the
abnormality, its signal length could be quite different from that of a normal
ECG complex. It is shown that better feature separation and parameter
extraction is achieved in some cases when the signal length of the minimum
phase correspondent of the signal is considered and classification can be
performed using a Neural Networks. Signal length and signal duration are two
different concepts while signal duration gives the interval outside which the
signal is zero, signal length gives information as to how the energy of the
signal is distributed within its duration. Signal length depends on both

amplitude and phase spectra of the signal, and for one sided signals minimum
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length implies minimum phase and vice versa. The signal length (SL) of a

one-sided signal x[n] of duration L is defined as

L1
> winjlx(n]l?
SL_n:0 _ (4212)

- L1
D lxngl?
n=0

where w[n] is an increasing series in n, the choice of which depends upon the
application. Here it is chosen as the index n itself. As can be seen from
(4.2.12), sample points away from the origin (n = 0) receive progressively
heavier weighting. For a given amplitude spectrum and hence total energy,
the signal that has its energy concentrated optimally at the origin has
minimum length, while signals with added delay have greater lengths. Thus,
an ECG that has a wider QRS complex with larger phase lag than a normal

ECG complex can be expected to have greater signal length.
4.2.8 Application of the Complex cepstrum analysis to recorded data

Presented here is a sample of applying the complex cepstrum to two different
real ECG signals from our own data base. The first signal comes from a
normal subject used for control and the other signal is from a patient classified

as having anterior myocardial infarction.

6000 T T T T T 2500

5000 - 2000

4000 -
1500 -

3000 -
1000 -
2000
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1000 +

-1000} 1 -500¢

-2000 L L L L L -1000
] 0

a. Normal b. Anterior Ml

Figure 4.2.3 Two sample signals from the Hacettepe database
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The different properties of the complex cepstrum outlined in this chapter will
be used in our unified approach to the problem of identifying delayed
potentials. The ability of the complex cepstrum to separate a signal into its
minimum-phase and maximum-phase components will be used in the
calculation of the additional parameters such as the signal length as shown in
Table 4.2.1.

Table 4.2.1 Complex cepstrum related parameters

Signals and parameters Anterior Ml Normal
MPC SL 47.7786 47.2568
rms 3.1638 2.7603
Min-PH SL 98.8368 36.3296
rms 1.6137 2.0417
SL 60.7077 34.2436
Max-PH
rms 2.1781 2.5675
) SL 59.9564 61.8233
Signal
rms 0.5038 0.4008

Using the original signals the SL parameter failed to classify the differences
as expected since there were no rearrangement of coefficients but the rms
parameter showed a small difference between the two signals. After
calculating the MPC both parameters performance showed improvement and
were able to detect the two signals correctly. The SL parameter differences
were not wide with only differences in the fraction parts. The minimum-phase
and maximum-phase portions showed a clear margin in differences as can be

seen in their corresponding entries.
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Figure 4.2.5 Anterior Ml signal results
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4.3 Artificial neural networks

4.3.1 Introduction

Artificial neural networks (ANN’s) have been widely used over the past few
years as pattern and statistical classifiers in many application areas including
medicine. ANN’s were used for QRS/PVC classification or for the detection of
atrial fibrillation. Neural network-based ST segment analysis has been used
for automated detection of the J-point to identify hypothermic patients and the
onset of the T-wave, using adaptive theory, and also for the classification of
ST-T segments. Classical back propagation (BP) NN using inputs of
measured ST-T data such as ST slope, ST-J amplitude, and positive and
negative amplitudes of the T wave with emphasis in data coming from
myocardial infarction patients have been employed. Only recently, some
algorithms for ischemia detection and analysis were tested with varying
degrees of success. This chapter describes the implementation of a BP NN
for VLP detection. The performance of the algorithm was tested on the ECG
database, which has been described earlier with sample results presented
here. The approach in this part differs considerably from previously used
algorithms in that it avoids reliance on the QRS region, because of its
problematic detection, concentrating instead on information coming from the
whole ECG pattern (Mousa, Yilmaz, 2001-b)(Gang, Wenyu, Ling, Qilian,
Xuemin, 2000)( Xue, Reddy, 1997).

The artificial neural network structure is based on our present understanding
of biological nervous systems. Although a great deal of biological detail is
eliminated in these computing models, the artificial neural networks retain
enough of the structure observed in the brain to provide insight into how
biological neural processing may work. These models are composed of many
non-linear computational elements operating in parallel and arranged in

patterns similar to biological neural nets.
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Computational elements or nodes are connected via weights that are typically
adapted during use to improve performance. Neural networks utilize a
parallel processing structure that has large numbers of processors (neurons)
and many interconnections between them. Each processor is linked to many
of its neighbours so that there are many more interconnections than
processors. The power of the neural network lies in the tremendous number

of interconnections.

4.3.2 Computing with neural networks

A neural network is a system that is designed to model the way in which the
brain performs a particular task or function of interest. A neural network is a
massively parallel-distributed processor, which is able to store knowledge and
making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process,
2. Inter-neuron connection strengths known as synaptic weights are used

to store the knowledge.

The procedure used to perform the learning process is called a learning
algorithm, the function of which is to modify the synaptic weights of the
network in an orderly fashion so as to attain a desired design objective. The
modification of synaptic weights provides the method for the design of neural
networks (Haykin 1999)(Fu 1994).

Nodes

Computational elements or nodes used in neural net models are non-linear.
The simplest node sums N weighted inputs and passes the result through a
non-linearity. The node is characterised by an internal threshold, or offset, and
by the type of non-linearity. There are three common types of non-linearities:

hard limiters, threshold logic elements and sigmoidal non-linearities.
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Topology

Neural networks are specified by the net topology node characteristics and
training or learning rules. These rules specify an initial set of weights and
indicate how weights should be adapted during use to improve performance.
Neural networks typically provide a greater degree of robustness or fault
tolerance because there are many more processing nodes each with primarily
local connections. Damage to a few nodes or links thus need not impair

overall performance significantly.
Network training

The ability to adapt and continue learning is essential in areas such as
biomedical signal analysis and processing. Adaptation also provides a degree
of robustness by compensating for minor variabilities in characteristics of
processing elements. Neural network classifiers are also non-parametric and
make weaker assumptions concerning the shapes of underlying distributions
than traditional statistical classifiers.

4.3.3 The neuron model

A simple description of the operation of a neuron is that it processes the
electric currents, which arrive on its dendrites, and transmits the resulting
electric currents to other connected neurons using its axon. The classical
biological explanation of this processing is that the cell carries out a
summation of the incoming signals on its dendrites. If this summation exceeds
a certain threshold, the neuron responds by issuing a new pulse, which is
propagated along its axon but If it is less than the threshold the neuron

remains inactive.
The three basic elements of the neuron model are:

1. A set of synapses, each of which is characterised by a weight or
strength of its own. A signal x, at the input of synapse i connected to
neuron j is multiplied by the synaptic weight w;. The first subscript

refers to the neuron in question and the second subscript refers to the
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input end of the synapse to which the weight refers. The weight w; is

positive if the associated synapse is excitatory, it is negative if the

synapse is inhibitory.

2. An adder for summing the input signals, weighted by the respective

synapses of the neuron (a linear combiner).

;Wi
[

s —" [V\fa

Kewrr X % /

Fig. 4.3.1 Computational model of a neural network
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3. An activation function for limiting the amplitude of the output of a

neuron. The activation function is also referred to as a squashing

function in that it squashes the permissible amplitude range of the

output signal to some finite value.

4.3.4 Network architectures

4.3.4.1 Single-layer feed forward networks

(4.3.1)

(4.3.2)

A layered neural network is a network of neurons organised in the form of

layers. The simplest form of a layered network has an input layer of source

nodes that projects onto an output layer of neurons but not vice versa. In

other words, this network is strictly of a feed forward type. The designation

'single-layer' refers to the output layer of computation nodes. The input layer

of source nodes does not count, because no computation is performed there.
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A linear associative memory is an example of a single-layer neural network.
In such an application, the network associates an output pattern (vector) with
an input pattern (vector), and the information is stored in the network by virtue

of modifications made to the synaptic weights of the network.

Input x »— Output
Layer Layer

Fig. 4.3.2 Single layer feed-forward network

4.3.4.2 Multi-layer feed-forward networks

Multi-layer perceptrons are feed-forward nets with one or more layers of
nodes between the input and output nodes. These additional layers contain
hidden units or nodes that are not directly connected to both the input and
output nodes. Multi-layer perceptrons overcome many of the limitations of
single-layer perceptrons, but were generally not used in the past because

effective training algorithms were not available.

The neural network is fully connected in the sense that every node in each
layer of the network is connected to every other node in the adjacent forward
layer. If, some of the synaptic connections are missing from the network, then
the network is partially connected. Each neuron in the hidden layer is
connected to a local set of source nodes that lie in its immediate
neighbourhood. Likewise, each neuron in the output layer is connected to a
local set of hidden neurons. Thus, each hidden neurons responds essentially

to local variations of the source signal.
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Fig 4.3.3 Multi-layer feed-forward network

4.3.5 Non-linearities of multi-layer perceptron

The capabilities of multi-layer perceptrons stem from the non-linearities used
within nodes. If nodes were linear elements, then a single-layer net with
appropriately chosen weights could exactly duplicate those calculations per
formed by any multi-layer net. A single-layer perceptron forms half-plane
decision regions. A two-layer perceptron can form any, possibly unbounded,
convex region in the space spanned by the inputs. Such regions include
convex polygons sometimes called convex hulls. Here the term convex
means that any line joining points on the border of a region goes only through

points within that region.
4.3.6 Required nodes and layers

The number of nodes must be large enough to form a decision region that is
as complex as is required by a given problem. It must not, however, be so
large that the many weights required cannot be reliably estimated from the
available training data. No more than three layers are required in perceptron-
like feed-forward nets because a three-layer net can generate arbitrarily
complex decision regions. The number of nodes in the second layer must be
greater than one when decision regions are disconnected or meshed and
cannot be formed from one convex area. The number of second layer nodes
required in the worst case is equal to the number of disconnected regions in

input distributions.
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4.3.7 Multi-layer perceptron with sigmoidal on outputs

The above discussion centred primarily on multi-layer perceptrons with one
output, which utilise hard limiting non-linearities as activation functions.
Similar behaviour is exhibited by multi-layer perceptrons with multiple output
nodes when sigmoidal non-linearities are used and the decision rule is to
select the class corresponding to the output node with the largest output. The
behaviour of these nets is more complex because decision regions are
typically bounded by smooth curves instead of by straight-line segments and
analysis is thus more difficult.

4.3.8 Back propagation

The back-propagation algorithm is a generalisation of the LMS algorithm. It
uses a gradient search technique to minimise an error function equal to the
mean square difference between the desired and the actual net outputs. The
desired output of all nodes is typically "low" (0 or <0.1) unless that node
corresponds to the class the current input is from in which case it is "high" (1.0
or >0.9). Initially selecting small random weights and internal thresholds and
then presenting all training data repeatedly train the net.

Weights are adjusted after every trial using side information specifying the
correct class until weights converge and the cost function is reduced to an
acceptable value. An essential component of the algorithm is the iterative
method described in Table 4.3.1 that propagates error terms required to adapt

weights back from nodes in the output layer to nodes in lower layers.
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Table 4.3.1 Back-propagation training algorithm

Step 1. Initialise weights and offsets:
Set all weights and node offsets to small random values.

Step 2. Present input and desired outputs:
Present a continuous valued input vector X,, X;,..., X,,_; , and specify
the desired outputs d,,d,,...,d,, ;. If the netis used as a classifier

then that desired output is 1.
The input could be new on each trial or samples.

Step 3. Forward Calculation:
Use the sigmoid non-linearity from above and calculate outputs
Yor Yireen Yma
Step 4. Backward calculation:

The local gradient ¢ is calculated as:
d;[n]=¢;[n]o;[n](X-0;[n]) for output layer

5,[n1=y,;[nN1@-y;[nNDD_ 5 [nlwg[n] for other neurons

Adapt weights:
Use a recursive algorithm starting at the output nodes and working
back to the first hidden layer. Adjust weights by

Wi [n +1]:Wji [n]+ a{\Nji [n] -W; [n-1]}+ no; [n]y;[n]
Where:
a = momentum constant, o ’s = local gradients , 77 = learning rate

Step 5. Repeat by going to step 2

4.3.9 The back-propagation training algorithm

The back-propagation training algorithm is an iterative gradient algorithm
designed to minimise the mean square error between the actual output to a
multi-layer feed-forward perceptron and the desired output. It requires
continuous differentiable non-linearities. The following assumes a sigmoid

logistic non-linearity is used where the function f (v) is:

f(V)=1/1+e™) (4.3.3)

One of the major problems with the error back-propagation learning algorithm
is it runs the risk of being trapped in a local minimum. These are points where
the gradient goes to zero but the network is not at the global minimum. As the
network trains, the algorithm will get stuck at these points because the error

gradient goes to zero.
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The error back-propagation learning algorithm will not always find the global
minimum, even though it is present. Then the network must be restarted and
a new search is carried out. This is typically done with a new random set of
starting weights and by presenting the training data in a different order. This
allows the network to find an alternative route to an optimum set of weights

avoiding the local minima.
4.3.10 Matlab algorithm

Feed-forward backpropagation networks are created using the Matlab

command NEWFF according to:

net = newff(PR,[S1 S2...SNI]{TF1 TF2...TFNI},BTF,BLF,PF)
which returns an N layer feed-forward backprop network.
with:

PR - Rx2 matrix of min and max values for R input elements.

Si - Size of ith layer, for NI layers.

TFi - Transfer function of ith layer, default = 'tansig'.

BTF - Backprop network training function, default = ‘trainim’.

BLF - Backprop weight/bias learning function, default = 'learngdm’.

PF - Performance function, default = 'mse’.

The feed-forward network consists of layers set by NI and using the
DOTPROD weight function, NETSUM net input function, and the specified

transfer functions.

The first layer has weights coming from the input. Each subsequent layer has
a weight coming from the previous layer. All layers have biases set to default
values. The last layer is the network output.

Each layer's weights and biases are initialized with INITNW. Adaptation is
done with TRAINS which updates weights with the specified learning function.
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Training is done with the specified training function. Performance is measured

according to the specified performance function.

The differentiable transfer function TFi was either the sigmoid tLOGSIG or the
TANSIG function. The training function BTF was TRAINLM and the learning
function BLF was the backpropagation learning function LEARNGD. The
performance function was the differentiable performance functions MSE. The
data consisted of inputs P and targets T to be solved with a neural network.

After the two-layer feed-forward network was created. The network's input
ranges from [min to max]. The first layer has five TANSIG neurons, the
second layer has one PURELIN neuron. The TRAINLM network training
function was used. The network was simulated and trained for 50 epochs and

the network's output was plotted.

Once the parameters are extracted, they are used as inputs to a feed-forward

neural network (ANN) for classification as shown in Fig. 4.3.4.

( ECG H Parameter Extraction H ANN Classification

Fig 4.3.4 Classification of extracted parameters

The process is composed of 1) taking the wavelet transform of the three X,Y
and Z leads , 2) parameter extraction, 3) design, train and test neural

networks.

4.3.11 Application of ANN in VLP classification using WT parameters:

A feed-forward neural network containing two hidden layers was designed
and trained using the back-propagation learning algorithm. The network was
trained for a number of times and the best result was chosen. The hyperbolic

tangent function was used as the activation function.

The extracted three classical parameters, i.e., QRS duration, voltage in the
terminal of the QRS and the duration of the low amplitude terminal signal

were used as input to ANN. A sample of the training error performance is
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shown in Fig. 4.3.5 while the result of ANN classification is presented in Fig.

4.3.6 and as can be seen did not give acceptable classification results.

Performance is 0.0316479, Goalis 0
10

10 =

Training-Blue

I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200
200 Epochs

Fig. 4.3.5 A sample of the training performance for the network.

I I Q
0 5 10 15 20 25

Fig. 4.3.6 Classification using classical parameters.
normal (0) and abnormal signals (*).

The symbol (0) represents signals for normal subjects while; symbol (*)

represents those with VLP in their ECG recordings.

Due to the small number of data size and limiting the region of analysis to the
end of the QRS complex, results obtained here were not satisfactory and did
not give acceptable classification results. This problem will be dealt with in the
upcoming chapters through introducing more data and enlarging the region of

analysis to include the entire cardiac cycle.

75



CHAPTER 5

INSTRUMENTATION AND DATA ACQUISITION

5.1 Introduction

In this chapter we introduce the work carried out in the design and
implementation of our ECG recording system. We start by presenting the
basic theories involved and concluding with the complete data acquisition
system. A great deal of time and effort were devoted to the development of an
appropriate device according to our specification but the task was at last

completed.

The system can be divided into two main parts, the analog part and the digital
part integrated together to give the complete acquisition system in addition to
the software needed for acquisition and analysis. The block diagram shown in
Fig 5.1 depicts the main components of ECG recording instruments.

X-Lead

X-Lead

X-Lead

v

v

v

|| 1SO175 || || 1SO175 || || 1SO175 | de-dc
* * * Converters
Filters Filters Filters
Amplifier Amplifier Amplifier
] ] v 4

To Part B

Fig 5.1-a The analog part of the system
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Part A is the analog part which records, amplifies and band-limit the signal
prior to digitization. Part B is the digital part that receives its input from part A.
This part samples the signals at a preset sampling rate and sends it through
to the laptop for display, processing and storage for future use. The recording
system connects to laptop via the USB port that can also supply the
necessary power to run the system. The device is capable of recording three
separate channels simultaneously or 12 channels multiplexed using the

special properties of the three onboard ADC converters.

From part A

v v A\ 4
|| 16-bit ADC || 16-bit ADC 16-bit ADC ||

A A a

\ 4 \ 4 \ 4

Microprocessor

I 1 1 1

RAM ROM || Oscillator || To Laptop via USB ||

Fig 5.1-b The digital part of the system

Recording of ECG signals for the purpose of VLP analysis is a very
challenging task due to a number of factors. One such factor is the fact that
ECG signals as well as any signal of biologic origin are very weak with
magnitudes in the range of 1-10 mV. Furthermore, these signals have very
low drive, i.e. source has very high output impedance. Another important
factor is the noise that can corrupt the recorded signal in addition to the fact
that recordings are carried out in a noninvasive manner. The use of
equipment with very good specifications does not guarantee interference free

recordings as will be seen in section 5.3.

In the following sections we introduce the different parts making up the

acquisition system and some of the theories behind their operation.
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5.2 Bio-potential amplifiers
An ECG amplifier is usually required to have the following properties:

e Ability to sense low amplitude signals in the range of 0.1 - 10 mV or less
e Very high input impedance, usually more than 5 Mega-Ohms

e Very low input leakage current, 1 micro-Amps or below

e Flat frequency response of 0.1 - 100 Hz

e High common mode rejection ratio (CMRR).

Input leakage current is defined as the current an amplifier sends to the unit

connected to its input terminals (human body in our case) (Webster, 1998).

Common Mode Rejection Ratio (CMRR) is defined as the ratio of the
magnitude of the differential gain to the magnitude of the common mode gain,

as given below:

A
CMRR=-2 5.1
A (5.1)

where Ap is the differential gain of the amplifier and is given by

V
Ag=——UT (5.2)
VIN+ _VIN—

where V,,, #V,,_ and Ac is the common gain of the amplifier and is given by

V,

A= 5:3)

where V., =V,

A high CMRR is essential since the capacitive coupling from the external
electrical sources such as power lines would create a strong common mode
signal in comparison to the differential ECG signal. A high CMRR would mean
that the Ap is much larger than Ac, and the differential amplification of low
amplitude ECG signals would be possible in the presence of common 50/60
Hz signal coupled from the power mains (Winter, Webster, 1983-a).
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Common mode voltage reduction remains important because differences in
electrode impedance cause differential mode interference, even if the
impedances of the amplifier inputs are equal. Although good preparation of
the electrodes and the skin may reduce this type of interference, electrode
impedances differ with every new recording and are inherently an uncertain
factor. Some reduction of the common mode voltage can be obtained by a
good isolation of the amplifier circuit, i.e. the capacitances of the amplifier to
mains and ground should be much smaller than the capacitances of the body
to mains and ground. However, these low capacitances are usually not easy
to achieve and isolation must therefore be regarded mainly as a way to
improve patient safety. A special class of interference is the high frequency
interference caused by for instance fluorescent tubes or switching power
supplies. Common mode voltage reduction is less effective at higher
frequencies since circuit gain decreases with frequency. Moreover, at high
frequencies the input impedance of an amplifier will decrease because of its
capacitive component, increasing the effect of the common mode interference
voltage. Although high frequencies are usually filtered out in bioelectric
measurements, amplifiers can easily saturate or produce low frequency
distortion components. High frequency interference therefore remains a factor
of great concern (Winter, Webster, 1983-a) (Winter, Webster, 1983-b).

5.2.1 The differential amplifier

To improve the signal to noise ratio (SNR), we use the configuration shown
below in Fig. 5.2. This is called a differential amplifier, because it amplifies

the difference between the two input voltages.

The gain is given by:

. R
Gain=—2(V,,, -V 5.4
ain R, \Y ) (5.4)
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Figure 5.2 The differential amplifier

Since the output is proportional to the difference between the two input
voltages, this circuit has the advantage of good common mode rejection. This
means that any input present on both terminals will be cancelled out. So, only
a signal, which is different on the two, inputs will be amplified, which of course
is exactly what we want. The ISO175 used in our instrument contains a
differential amplifier similar to the one introduced here with a controllable gain
using a single resistor connected between the negative inputs as shown in the
next section (Webster, 1998).

5.2.2 Theinstrumentation amplifier

The differential amplifier is limited in its performance because of the low input
impedance. To improve this, two bootstrapped buffer amplifiers (which are
simply op-amps with unity gain) are commonly added, which results in the
simple instrumentation amplifier. Basically the instrumentation amplifier is
made up of a buffer and a differential amplifier in cascade as shown in Fig.
5.3. In practice, it is difficult to precisely match resistors that are discrete
components. To overcome this problem the entire circuit is put on a single
integrated circuit, since IC manufacturing technology enables precise resistor
ratios to be obtained. Chips such as Analog Devices AD620 or Texas
instruments 1ISO175 find widespread use in working with low-level signals with
large common-mode components in noisy environments and in particular in
biomedical engineering application and measurements of bio-potential

signals.
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Figure 5.3 The three op-amp instrumentation amplifier

The most commonly applied ways of acquiring ECG signals are described in

the following paragraphs.
5.2.3 AC coupling

DC voltage offsets present on the body or electrodes will be amplified. These
are quite common, especially if the electrodes are moved (motion artifact).
The effect is to cause the baseline of the ECG to wander around, and it can
be so serious to saturate the amplifier. To avoid this, a high-pass filter with a
very low cutoff frequency (block DC) can be used.

5.3 Noise and interference

An excessive level of interference often disturbs bioelectric recordings and
degrades the quality of the recorded signal. In many cases very sophisticated
equipment is needed even though interference free recordings cannot be
guaranteed and one has to settle for a compromise. In most bioelectric
measurements an interference level of 1 - 10 pV or less than 1% of the peak-
peak value of an ECG is acceptable. As the noise of a typical electrode is also
several uV, in most circumstances 10 uV can be accepted as the upper level

of interference (Pickering P. 1999).
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5.3.1 Interference currents through the body

The capacitances between the patient, the power lines and ground cause a
small interference current to flow through the body. These capacitances

cause an interference current of approximately 0.5 xA, , to flow from the

power supply lines through the body to ground. If an amplifier is connected to

the patient, part of the current from mains to patient will flow to ground.
5.3.2 Interference currents into the amplifier

In an isolated bioelectric measurement (i. e. no galvanic connection between
the amplifier common and ground) the capacitances between the amplifier
common and mains and between amplifiers common and ground should also
be considered. These capacitances can cause additional interference currents
to flow from the amplifier to ground, which contribute to the common mode
voltage.

5.3.3 Interference currents into the measurement cables

A major source of interference in bioelectric measurements results from the
capacitive coupling of the measurement cables with the mains. The currents
induced in the wires flow to the body via the electrodes and from the body to
ground. Because both the currents induced in the wires and the electrode
impedances generally differ significantly, a relatively large differential voltage

Vap IS produced between the amplifier inputs.

A typical situation with a mean current of 10 nA, _, in the wires, a mean

electrode impedance of 20 KQ and a relative difference in interference
current and electrode impedance of 50%, leads to an unacceptable high

interference level of 200 4V, ;. Given the inherent variability of the electrode

impedances and the level of interference among recordings, there is only one
practical way to reduce interference currents in the wires: shielding of the

measuring cables.
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5.3.4 Magnetically induced interference

Magnetically induced interference is easily distinguished from other types of
interference because it varies with the area and orientation of the loop formed
by the measurement cables. Suppression is easy in theory by reducing this
area as much as possible through twisting of the measurement cables. In
practice, this is not always feasible. For example, the usual electrode
configuration in ECG measurements with electrodes placed at the extremities

of the body might cause a considerable area between the input cables.

5.4 Influence and reduction of common mode voltage

There are two ways by which a high common mode voltage may cause
interference. The first, obvious way is when the common mode rejection ratio
(CMRR) of the amplifier is limited. This mechanism is not often problematic
with modern differential amplifiers: a common mode rejection ratio of 80 - 120
dB is customary. A second and much more important way a high common
mode voltage may cause interference is when there are differences in
electrode impedances and/or input impedances which convert common mode
voltage into a differential input voltage. This mechanism is the main reason for
the need to reduce the common mode voltage as much as possible (Winter,
Webster 1983-a)( Winter, Webster 1983-a).

The usual electrodes may show a mean impedance of 20 kQ at 50 Hz and
impedance differences of up to 50 %. Differences in input impedances should
not exist in a carefully designed amplifier system, but often these differences
are not easy to avoid.

An isolated measurement is very safe if the capacitance between the amplifier
common and ground and the capacitance between the amplifier common and

mains are kept sufficiently small.

5.5 Isolation and patient safety

Recording ECG signals means low-level signals must be detected and
amplified in the presence of potentially dangerous voltages. An isolation
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device acts as an interface between external devices and the data acquisition
system. It provides galvanic isolation between the input and output. It also
rejects large common-mode signals appearing at the input and breaks ground

loops since the input and output are floating relative to each other.

In the medical field, patients are susceptible to electrical shock hazards. A
normally harmless 50 Hz current can cause cardiac arrest under certain
circumstances. As a result, manufacturers of bioelectric amplifiers, especially
EEG and ECG equipment, use isolation amplifiers that provide appropriate

isolation between the patient and the AC power line mains cord.

The effect of AC current passing through the body is a potentially dangerous
situation and may lead to death. A 30 mA current can cause stopping of
breath while a current as low as 20 pA directly applied to the heart would

cause ventricular fibrillation and possible death.

There are several other key parameters that define the performance of an
isolation device. A wide variety of isolation devices are available in fields
ranging from industrial process control to medical instrumentation to PC-

based data acquisition systems.

An isolation device passes a signal, either analog or digital, from input to
output across an isolation barrier. This barrier ensures that there is no
galvanic (ohmic) connection between input and output. To be effective, the
isolation barrier must have high breakdown voltage, low DC leakage (high

barrier resistance), and low AC leakage (low barrier capacitance).

The isolation voltage, the parasitic resistance, and the capacitance specify the
barrier. The isolation voltage is a measure of the device's ability to protect
itself and the surrounding circuitry against physical damage resulting from
different voltage potentials. An isolation amplifier rejects the common-mode

voltage and allows the signal of interest to be accurately measured.
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ISOLATION
:BARRIER

Figure 5.4. An ideal isolation device (source: Pickering P. 1999 )

An ideal isolation device would transmit the input signal Vs across the barrier
and reproduce it perfectly at the output. Real-world devices introduce errors
due to the common-mode voltage, Vcnm, and the isolation-mode voltage, Viu.
The barrier resistance and capacitance are modeled as shown.

5.6 Isolation device techniques

The three technigues commonly used are optical isolation, inductive isolation,
and capacitive isolation. In the optical isolation the barrier consists of an LED
and a photodetector. The input signal modulates the LED and the
photodetector converts the light back into current. In inductive isolation the
signal modulates a high-frequency carrier and is transformer-coupled from
input to output. Transformer-coupled devices are the most effective at
transmitting power in a given volume and are invariably used in dc-dc
converters. The capacitive isolation modulates a high-frequency carrier and is
capacitively coupled from input to output. Either duty-cycle or frequency
modulation techniques are used, and then the signal is passed differentially
across the barrier. The capacitors can be formed from elements of the IC

package lead frame, reducing the overall cost.
5.7 Data acquisition methodology
5.7.1 Filtering

In a first order filter, the roll-off is very gradual (20 dB/decade, or 6dB/octave).
This results in the cutoff between signal and noise being rather poor and

noise will still continue to exist even with a low cutoff frequency.
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To improve this, we need to make the cutoff cleaner. There are several
common filters used in practice and they each have their relative advantages

and disadvantages. The Butterworth filter was used due to the following

properties:
1. Flat response in the pass band - minimal distortion
2. adequate rate of rolloff

large transition region

good all-round filter

simple to understand

S

Suitable for such applications as audio processing

In practice, higher-order filters are difficult to make with purely passive
components (resistors and capacitors). Instead active filters are used, based

around op-amps as seen in Fig. 5.5 and in Fig. 5.6.

Low-pass High- pass

c2

Fig 5.5 A single op amp realizations of active filters

1t B cal s
e Lindun ok

Ca -

Fig 5.6 A two-op amp realizations of active filters

5.7.2 Analog to digital conversion (ADC)

In the process of analog to digital conversion, an analogue signal is converted

into a digital signal, which can then be stored in a computer for further
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processing. Analog signals are "real world" signals as is the case of the ECG
signal recorded by the instrumentation amplifier. In order for these signals to
be stored and manipulated by a computer, these signals must be converted

into a discrete digital form.

The main advantages are
1. Data is easily transported and manipulated
2. Computer analysis of signals can be far more efficient
3. Real-time analysis can be performed

A number of important factors must be considered when converting analog

signals into their digital equivalent. These include factors such as:
e Sampling and aliasing
e Resolution
e Saturation
¢ Quantization

e Dynamic range

Sampling and aliasing

The object of A/D conversion is to convert this signal into a digital
representation, and this is done through sampling the signal. The sampling
rate is the frequency expressed in Hertz (Hz) at which the ADC samples the

input analog signal.

If the sampling rate is insufficient, the rapidly rising phase of a waveform may
not be represented as well in the sampled waveform as is the more slowly
changing part. In fact, it can be proven mathematically that the sampling rate
to be used must be greater than twice the highest frequency contained in the
analog signal. This critical sampling rate is called the Nyquist Frequency. If
sampling rate is lower than the Nyquist, an artifact called aliasing can result.
To allow for underestimates and give a margin of error, it is traditional in

practice to use a figure of four times the maximum frequency.
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For a signal of given frequency content, increasing the sampling rate beyond
a certain point does not significantly increase the fidelity with which the signal
is rendered. There is a tradeoff between fidelity of reproduction on the one

hand, and computer storage space, computing time, and cost on the other.

As far as the ADC is concerned, noise is also a signal, so to prevent aliasing,
the sampling rate calculation should allow for any noise in the signal. It is a
usual to pass the analog signal through a low-pass filter before the ADC. This
filter acts to remove some of the high-frequency content of the signal that
would otherwise alias down in frequency. Note that this anti-alias filtering
could remove high frequency information of physiological importance to the
phenomenon under investigation. If it is important to retain these higher
frequencies, one has no choice but to use a better data acquisition system

that has a higher sampling rate.

Resolution

Resolution refers to the ability of the ADC to capture the smallest variations or
changes in the voltage levels. This factor depends on both the span and the
number of bits (N) used. The span is the maximum voltage used in

accordance to the following formula:

Resolution = Span / 2"

The type of ADC used forms an important factor since the number of bits the
converted binary number can take is one of 2" values, where N = number of
bits in the ADC. For N=12, then there can be 4096 values, representing the
integers from 0 to 4095. The ADC also has an input range (span), measured
in volts. Thus, the input voltage range is divided into 4096 levels, with each
level being Span/4096. So, with a span of 10 V, the resolution is 0.0024 volts.
Our choice for this part of the circuit was the ADC since it provides a 16-bit

resolution and which could be used to record up to 12 channels of ECG data.
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Saturation

When carrying out A/D conversion it is important to keep the input signal
within the span of the ADC. If the input signal exceeded the supply voltage
Vs, a 12 bit binary number with an equivalent decimal number of the
maximum value would be still returned to the computer. The computer would
thus interpret the voltage being sent to be the same value, which would be in
error. This error is called saturation of the ADC. However, the input signal
should span as much of the ADC input voltage range as possible, without
saturating the ADC, since this increases the signal to noise ratio. Thus if the
voltage range of the input signal is much smaller than + Vs volts, the signal

should be amplified before being fed to the input of the ADC.
Quantization Noise

The uncertainty introduced by rounding the sample amplitudes to discrete
levels adds noise, called quantization noise, to the signal. The amount of this
'noise’ decreases with increasing resolution. Because a sample is stored as a
binary number, the total number of values that can be stored = 2", with N
being the number of bits in the ADC. It can be shown that the RMS amplitude
of the quantization noise = q / (12) °° (or 0.29 q) where q is the resolution of
the ADC.

Dynamic Range

Dynamic range refers to the range of values between the high and low values
that can be recorded by the ADC. A 16-bit ADC with more bits was chosen to
reduce the effects of quantization noise. In addition to our desire to represent
both low and high amplitude signals with reasonable fidelity. The need for this
dynamic range can result in more bits. Using an 8-bit ADC, then 255
correspond to the highest amplitude and the lowest amplitude is 0.255
represented by the least significant bit (LSB). For a 12-bit ADC, the lowest
amplitudes are allocated about 2 bits; and for a 16-bit ADC, about 6 bits.
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5.8 The complete data acquisition system

The instrumentation developed for this thesis is meant to provide the high-
resolution high-sampling rate data needed for the analysis of VLP. It consists
of an analog part and a digital part. The analog part is dedicated to record the
ECG signal directly from the body surface of the patient. It provides the
necessary patient safety through the use of special components designed for
this purpose. It includes components such as the [SO175 isolation
instrumentation amplifier and dc-dc converters. There are three isolation
amplifiers that can provide a 12-channel data recording through the use of
three 4-channel ADC. The role of the dc-dc converters is twofold; they provide
supply isolation for patient safety and the needed positive and negative

voltages needed to operate the circuit.

5.8.1 Isolation instrumentation amplifiers

The 1SO175 is a precision isolated instrumentation amplifier incorporating a
novel duty cycle modulation/demodulation technique and excellent accuracy.
A single external resistor sets the gain. Internal input protection can withstand
up to +40V without damage. The signal is transmitted digitally across a
differential capacitive barrier. With digital modulation the barrier

characteristics do not affect signal integrity.

This results in excellent reliability and good high frequency transient immunity
across the barrier. Both the amplifier and barrier capacitors are housed in a

24-pin plastic DIP that is only 0.3" wide.

The ISO175 is easy to use and its gain is set with a single external resistor
placed between pins 2 and 22. A power supply range of +4.5V to +18V
makes this amplifier ideal for a wide range of applications. The device has a
CMRR of 115dB and a non-linearity of less than 0.01%. The stages of this
amplifier are shown in Fig.5.7 along with the pin distribution and numbers.
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Fig. 5.7 1ISO175 instrumentation amplifier pin distribution

(source: Texas Instruments )

5.8.2 The dc-dc converter

The DCPO1B series is a family of 1W, unregulated and isolated dc-dc
converters. Requiring a minimum of external components and including on-
chip device protection, the DCPO0O1B series provides extra features such as
output disable and synchronization of switching frequencies. The internal

structure of the device is shown in Fig 5.8.
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Fig. 5.8 Internal structure of the dc-dc converter

(source: Texas Instruments )

To generate a bi-polar supply, the dc-dc converter was used according to the

configuration shown in Fig 5.9.
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Fig. 5.9 Bi-polar supply structure of the dc-dc converter

(source: Texas Instruments )

The material discussed up to this point was utilized to produce the portable
high-resolution system shown in Fig. 5.10. The system connects to laptop via

the versatile USB port.

Fig. 5.10 A snapshot of the system components
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CHAPTER 6

CLUSTERING OF PATIENT DEPENDENT FEATURES

6.1 Introduction

Material presented in this chapter follows the path of minimizing drawbacks of
commonly used methods such as alignment, averaging of uncorrelated beats
and the rest. It should serve as a preprocessing operation to the input data for
and is part of the unified method. The preprocessing operation clusters ECG
beats into templates that have common characteristics. Templates are usually
employed in the analysis of ECG signals in order to control the quality of the
incoming beats as they are recorded or during the classification stage. A
possible application area of the method is in Holter recordings with higher
sampling rates and better resolutions. Recording a long-term record
generates large sizes of data records and analyzing such records is only
approximate and is usually done in a short time through visual inspection. In
Holter recordings, a 24-hour or sometimes more is usually recorded. The
recorded signal is normally sampled at less than 250 samples per second and
a resolution of 10 bits or less to keep the data size within a manageable
range. The rates used represent a minimum requirement and must be
increased in order to capture important hidden information in biological signals
such as the ECG. Increasing these values will definitely increase the size of
data collected. To be useful and give better insights into many abnormalities
these values need to be increased to sampling rates of 1000 Hz or higher and
resolutions of 12 to 16 bits. At a heart rate (HR) of 60 beats per minute (BPM),
which is one beat/second, when sampled at 1000 samples/second and a
resolution of 10 bits results in a data size of 10000 bits/second. For a 24 hour
Holter recording this means, 864 mega-bit or 54 mega-byte of data. Even
though today’s storage devices are capable of storing large quantities of data
in small and portable media such as flash cards, the problem remains at the

doctor's end. Any cardiologist analyzing such data will only sample and
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approximate these records with the possibility of unintentionally missing
important details. It is impossible for any cardiologist to examine the complete
long time records such as those of the Holter recordings. At best they will
sample these records to try to spot distinguishing features that may have
medical value in a laborious way (Mousa, Yilmaz, 2004-c).

The template may be a universal one representing a particular illness applied
to all patients or might be extracted from individual patients by visually
inspecting a clean beat, which is then used as the template. However, all
these techniques come with their associated drawbacks and the currently
applied methods may not be the best implementation possible. All incoming
beats will be categorized with respect to this template regardless of their
information content. In addition, a small variation that may not occur at every
beat will be masked out by such methods in present. The universal template
IS not an accurate one since it attempts to mach all patients to common beat,
which may be appropriate for general inspection and rejection of ectopic
beats, but such a method is definitely inappropriate for detailed analysis of
abnormalities such as ventricular late potentials (VLP) as microvolt signals

used for prognosis of ventricular tachycardia (VT).

A major difficulty in averaging a number of beats to generate the improved
template is alignment of the beats to a certain reference point. It has been
found that the existence of a timing error or trigger jitter in the synchronization
process causes a low-pass filtering effect in the averaged signal (Jane et
al1991)( Rompelman and Ro0s,1986). Noise constitutes another major
challenge to any working procedure especially if the desired signal is in the

same range as that of the noise as the case of VLPs (Friesen et al., 1990).

What is presented here is an improved method for patient-dependent
template generation that takes into account the possible variation in ECG
signals from patient to patient and even from beat to beat for the same
patient. In addition to template generation, the method allows for good
reduction of data size without loss of information. The method shows good
performance even for noisy signals since it isolates noise in a separate

wavelet transform (WT) level.
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To help in the diagnosis and summarize this large data with minimum or no
loss at all, we introduce a method that extracts templates from patient data
rather than using a general golden template. This approach uses a simple
method named as dynamic averaging. Dynamic averaging allows for real time
computation of the average of beats as they are recorded or received. The
size of the template refers to how many different beats are clustered together
to form the overall multi-beat template. A template of a user-defined size is
generated for each patient and extracted from her/his own data. Data
reduction is accomplished through the resulting size of data while cross-
correlation values are used in the coding process in order to preserve
information about all averaged beats that contributed to the generated

templates.

In the following section we present a brief background on some of the tools
employed in this study. Other sections introduce the methodology followed
and finally their results are presented followed by some conclusions about the

introduced method.

6.2 Theory and tools

6.2.1 Normal and dynamic signal averaging

Signal averaging is a common method used for improving the signal to noise
ratio (SNR) and is essentially statistical in nature based on white noise
assumption (Rompelman and Ro0s,1986). Unless the desired signal repeats
at every beat, averaging will tend to reduce its strength rather than improve its
SNR. Therefore, we must know the repetition nature of the desired part of the
signal before applying any averaging in order to get optimum improvement in
SNR. Of course averaging every beat is optimal if the desired signal is
repeated at every beat and results in SNR improvement equal to /N where N
is the number of averages. The usual averaging process waits for an
ensemble of data to be collected before averaging. This prohibits online
averaging and renders the calculated average to static. On the other hand,
dynamic averaging, which we have suggested here, allows for real time of

beat averaging as they are acquired and allows for continuous updating of the
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calculated average. The usual averaging scheme sums up N-points and
divides that sum by the total number of data points N according to the

following formula:
X=(x[1]+ x[2] +...+ X[N})/N (6.1)

Dynamic averaging introduced here in this work is a variation from the normal
averaging process. The dynamic averaging process recalculates the average
as new beats are received under predefined conditions at a sample k as:

k=M, , +x[K]]
k

m, =L 6.2

where My is the k™ average and its initial value M; is set equal to the first

sample received.
6.2.2 Wavelet transform

The forward and inverse WT are implemented as a tree-structured perfect

reconstruction bank as illustrated in Fig 6.1.

- ~TH
\'

Analysis : Synthesis

Fig. 6.1 Forward and inverse WT

The process takes an input signal f(t) and applies a pair of analysis filters G

and H. The G is a high pass filter while H is a low pass filter. The resulting
signals are then down sampled by a factor of two, which forms the output of
the analysis stage. Usually this process is continued for a number of stages

where the output of the low pass filter becomes the input to the next stage,
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while the output of the high pass filter is retained. The synthesis stage is
comprised of the opposite operations carried out in the analysis part where
the full signal is regained using the pair of filters E and F where E is a time-
reversed version of H and F is a time-reversed version of G as required by the
orthogonal wavelet system. Any processing of the signal f(t) has to take place

between the two stages (Burrus, Gopinath and Guo, 1998).
6.3 Methods of analysis

E. Laciar et al. applied a similar method which they called multi-scale cross-
correlation for the alignment process and concentrated their work on the
alignment of noisy signals (Laciar et al, 2003). In this work, cross-correlation
is used for several purposes such as alignment of individual levels, improving
template generation and data size reduction. Using WT decomposition further
extends this method.

The cross-correlation is a measure of the similarities or shared features
between two signals (Oppenheim and Schafer, 1989). It is frequently
necessary to be able to quantify the degree of interdependence of one
process upon another, or to establish the similarity between one set of data
and another. The existence of a finite sum will indicate a degree of correlation.
The cross-correlation between two data sequences Xxi[n] and xx{n} each
containing N data might be written as:

1 N
rlz[k]=W;) x,[n]x,[k — n] for k =0.1,... (6.3)
The correlation is computed for a number of different lags, k in order to
establish the largest value of the correlation, which is then taken to be the

correct value.

Once the cross-correlation coefficient is calculated, it can be used for the
alignment process for coinciding two beats properly. In this case the sample
number of maximum lag value is taken as the alignment point. The correlation

process is applied to each level and the alignment process is then carried out.
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The overall process clusters the different information contained in ECG
records into separate groups that could be utilized in further analysis and
illness classification in a way similar to the usual template except instead of

having a single beat as a template we have multiple beats.

The diagram in Fig 6.2 shows the flow of analysis of ECG signals under WT
and the correlation process. The choice of record size and degree of similarity
can be set according to the particular application at hand. Analysis for the
detection of finite duration, low amplitude activities require a larger record size
and a higher degree of similarity. Since these levels represent signals with
certain frequency content and they fall in the same frequency range, individual
levels are tested for correlation.

ECG Record

Wavelet transform levels L1, L2, ...,Ln

Cross-correlation (ryy)

Clustering v Coding using WT
T1,T2,...,Tn (correlation and lag)

Fig. 6.2 Flowchart of analysis

The wavelet type used in this analysis was the Daubechies (D-20) wavelet
shown in Fig. 6.3 below. Applying the WT to each beat produces a set of
levels each containing a time signal with certain frequency characteristics
(Mousa and Yilmaz, 2001). After the correlation process the new level, if there
is any, is properly aligned and averaged with the previous average result
using the dynamic averaging process producing a new and improved template
including that particular level. One has to note that this process is performed
according to a condition defined by correlation stage. When the process
described above is applied to these levels then we have another dimension or

signal added to the multi-beat template.
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Samples
Fig.6.3 Daubechies D-20 wavelet

Only similar levels are aligned and averaged which ensures better association
of contents. Cross-correlation values are used in both the measure of
similarity and in alignment of beats prior to averaging to gain better results.

After generating the final template, the cross correlation process is
recalculated. The auto correlation of the final template is used as the
threshold for comparison. A two-parameter scheme is used in the coding
process. The first parameter is the maximum correlation value between each
beat and the beats in the templates and the second is the lag value at which

the cross correlation is maximum.

Using WT coding, the template entry that resulted from averaging the highest
number of signals was used as the representative template for cross-
correlation. Using that template, the correlation coefficient and lag values, for

the coding scheme is generated as mentioned above.
6.3.1 Clustering patient dependent features

Averaging is based on the assumption that the signal of interest is periodic
and repeats itself with every beat, a situation that cannot be guaranteed in the
case of VLPs. The threshold chosen for correlation as a similarity criterion for
features in comparison stage can be set as tight as the application requires
for better beat association and feature discrimination. In order to cluster some
features in different ECG waveforms, a number of records from signals with

different abnormalities were used in the analysis.

The signals included normal sinus (NS), Atrial fibrillation (AF), partial epillipsy

(PE) and heart failure (HF), sample plots from each signal are shown in Fig.
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6.4. The entire 4096-sample signal was wavelet transformed and a detection
process for R-peaks was performed. As an example taking the WT of record
of 4096 samples will produce 13 different levels {L1, L2, ... , L13}.as
calculated from the length of the sequence as 2" = 4096 or n=13. The L1 level
contained the lowest frequency while the L13 level contained the highest
frequency. At this point we have 13 different column vectors each containing
one level representing the first beat. When the second beat is received, it will
go through the process of decomposition again producing a total of 13
different levels each containing corresponding levels from all beats. A cross-
correlation process generated the different templates. The size of the
templates {T1, T2, ..., T13} in cluster table depended on the degree of

similarity set by the threshold value.

PR R,

- L L L L R L L L L L L L L L
0 50 100 150 200 250 0 100 200 300 400 500 600 700 800 900 1000

a- Normal Sinus b- Atrial Fibrillation

L L L L L L L L L 05 L L L L L L L L L
[ 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

c- Partial Epilipsy d- Heart failure
Fig.6.4 Parts of the original signals, a-NS, b-AF, c- PE, d-HF.

The process begins with assigning the first beat as the initial template. The
second beat received is compared to this template, aligned and averaged
together if the correlation value exceeds the predefined threshold as an
accepted degree of similarity. If the beat and template are not similar (i.e.,

correlation value is less than the threshold), this new beat is appended to
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template increasing the size of template by one beat generating a multi-beat
template. The resulting multi-beat template is then taken as the final feature
clusters for that patient that also summarizes the contents of the entire record.
Each level in the WT decomposition of the first beat in the signal is assigned
to the corresponding cluster table of that level which are labeled as T1, T2,
...,Tn to form the starting template. The content of each cluster table is
compared with appropriate levels of other newly decomposed beats, (e.g. L1
with T1, L2 with T2 and so on) by calculating their cross-correlation values. If
a particular WT level with calculated correlation value exceeds the predefined
threshold, this level is properly aligned and averaged with the corresponding T
cluster (e.g. L1 with T1). Otherwise the WT level is accepted as new template
and is appended to the same T cluster without averaging; increasing the size
of the corresponding T cluster by one more beat.

The process is similar for the rest of the WT levels and T levels in clustering
table. This is continued until the last beat after which the T vectors will have

different numbers of levels appended to them depending on their similarity.

A major task of the method, which is sensitive to noise, lies also in the
process of isolating independent beats. The WT method was employed in this
process as well as other parts of the analysis by combining levels L10 and
L11 which emphasize the presence of the R-peak, reduce and remove base-
line drift as seen in Fig. 5. During this process the mid-point between two R-
peaks is taken as the dividing point between two successive beats. The heart

rate (HR) and RR intervals are then easily obtained.

1 T T T T T T T T 1
0.8
0.5H ~ 0.6

0.4

i T

-0.4

-1H ~ -0.6

-0.8

L L L L L L L L a L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

a. Original signal b. Appropriate WT levels

Fig. 6.5 Detection of R-peak using WT to remove base line variations
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6.4 Results

A summary of the performance of the method as applied to the set of data is
presented in Table (6.1). In this summary we record the effect of different
signal categories on the number of beats within the chosen length of 4096
samples. The other important observation is that the degree of reduction
varies from patient to patient and from level to level. The first two template
entries, T1 and T2 produced equal reduction for the same patient but different
for different patients. These levels represent the low frequency content in the
data records. There is no particular pattern that can be seen from the values

in the table therefore the results are signal-dependent.

The table presents the overall results of the method as applied to the four test
signals with a middle value for the threshold of 0.5 chosen and presenting the
sizes in terms of the number of beats in that portion. Each signal contained
different number of total beats within the same chosen record length of 4096
samples per record indicated as N in the table. Since the WT produced 13
different levels we had a similar number for the multi-beat templates marked
as T1, T2, and so on. The entries in these tables represent the size in beats of
the resultant template.

Without data reduction the entries in the table should be equal to index N the

size of each type of signal used.

Table 6.1
Size of each cluster level expressed as the number of beats at a threshold value of
0.5 for all signals.

Signal | T | T2 [ T3 | T4 |T5]T6 | T7 | T8 | T9 | T10 | T11 | T12 |T13
NSN=50)| 1 [ 1 [ 12 |22 ][22 |2]2] 1] 2 1 ]2
AFN=22) 1 [ 1 [ 2 [ 1|12 ]2 11| 1 1 2 |3
PEN=22)] 1 [ 1 |12 [ 1221|2122 ]2]21]2/]10 [12
HEN=20)] 2 | 1 |2 [ 1|11 21|11 ] 1] 2 6 |3

Level L12 and L13 show less similarity and therefore vary the most. This is
reflected on the number of entries retained in the resulting template (T12 and
L13) especially for PE and HF which is reflected in the calculation of the

overall performance as shown in Table.
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The reduction percentages are calculated based on the number of beats in

the original signal and that of the resultant individual templates as in:

_ size of original signal (beats )—size of each template (beats )
size of original signal (beats )

Value x100

The normal signal (NS) had the most reduction (98%) while partial epilepsy
signal (PE) was the least reduction (87%) but still shows the efficiency of the
method as in Table 6.2.

Table 6.2 Comparisons of size reduction values

Average Reduction NS AF PE HF
Values 98% 94% 87% 91%

The average reduction in cluster levels as applied to all signals expressed as
percentage values is shown in Table 6.3. It can be seen that most levels
achieved very high reduction values ranging from 93 to 96%. The least
reduced clusters were T12 and T13 with a reduction value of 78%, which as

we mentioned earlier contains mostly noise.

Table 6.3 Average compression of individual levels

T1 T2 T3 T4 T5 T6 T7 T8 T9 | T10 | T11 | T12 | T13
95% | 96% | 94% | 96% | 96% | 96% | 96% | 96% | 95% | 95% | 93% | 78% | 78%

It was also observed that lowering the threshold values of the correlation
coefficient to zero resulted in combining all beats in the template into a single
beat as expected while setting the value to one resulted in preserving the
entire record without any averaging. These two situations are extremes and

are included only as a control to process.

A sample of the reconstruction process is shown in Fig. 6.6-a where the
original signal beats can be reconstructed using the generated templates. The
plot shows an arbitrary beat superimposed on one of the generated cluster
templates. The system is also registering the number of beats involved in the
averaging of individual templates to reveal the overall weight of contributions

in each cluster. Fig. 6.6-b displays two beats from the NS which were
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classified as different beats in the same patient as indicated by the entry

under T11 in Table 6.1 with 48 out of 50 beats were associated with one of

the templates while 2 beats were associated with the other.
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Fig. 6.6 (a)-Sample plot of a reconstructed beat superimposed over one of the
cluster templates and  (b)- two beats from the NS which were classified as
different beats in the same patient

A composite signal made up from a combination of NS and AF signals was

also applied to test the performance of the method. Results obtained using

the composite signal show that all clusters produced one template at the

threshold value of 0.5 while T11, T12 and T13 produced two templates with

varying number of beats averaged in each template as in Table 6.4. Examples

of rebuilding beats from these templates are shown in Fig 6.7.

Table 6.4 distribution of averaged beats in each cluster

Cluster Template T11 | T12 | T13
23 35 34
Number of beats averaged 14 > 3
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Fig. 6.7 Example of rebuilding beats from templates
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6.5 Analysis of the method’s performance

The method was tested and the results are presented in Table 6.5 and Table
6.6 for both noise and correlation threshold sensitivity respectively. Each
normalized signal is corrupted with different levels of white noise and different
correlation values set as thresholds and the proposed method applied. These
signals were not free of noise to begin with so the added noise was in addition
to that originally contained in the signal. A sample of both original signal and
the noise-corrupted versions are shown in Fig. 6.8. Noise levels from zero to
0.2, representing signal to noise ratios of up to 20% of signal amplitudes have
been used. The correlation values were varied from perfect match or a value

of one to zero match.

Table 6.5
Results of different noise levels!

NS with noise n=0.05:0.05:0.2 and a threshold = 0.5

Noise |T1 T2 |T3 | T4 |T5 |T6 |T7 | T8 | T9 | T10 | T11 | T12 | T13
5% 1 1 1 1 1 1 1 1 1 1 2 1 2
10 % 1 1 1 1 1 1 1 1 1 1 2 1 2
15 % 1 1 1 1 1 1 1 1 1 1 2 1 2
20 % 1 1 1 1 1 1 1 1 1 1 2 1 2
AF with noise n=0.05:0.05:0.2 and a threshold = 0.5
Noise | T1 | T2 | T3 | T4 | T5|T6 | T7 | T8 | T9 | T10 | T11l | T12 | T13
5% 1 1 2 1 1 1 1 2 1 1 1 2 1
10% | 1 1 2 2 1 1 1 2 1 1 1 1 1
15% | 1 1 2 2 1 1 1 2 2 1 1 1 1
20% | 1 1 2 2 1 1 1 2 3 2 2 1 1
PE with noise n=0.05:0.05:0.2 and a threshold = 0.5
Noise | T1 | T2 |T3 | T4 |T5|T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13
5% 1 1 1 1 1 1 1 1 2 2 3 1 1
10% | 1 1 1 1 1 1 1 1 1 2 2 5 8
15% | 1 1 1 1 1 1 1 1 2 2 2 9 11
20 | 1 1 1 1 1 1 1 1 2 2 2 10 11

HF with noise n=0.05:0.05:0.2 and a threshold = 0.5
Noise | T1 | T2 T3 | T4 |T5 |T6 |T7 | T8 | T9 | T10 | T11 | T12 | T13

5% 1 1 2 1 1 1 1 1 1 1 3 1 1
10 % 2 1 2 1 1 1 1 1 1 1 2 4 4
15% 2 1 2 1 1 1 1 1 1 1 2 5 4
20 % 2 1 2 1 1 1 1 1 1 1 2 5 6

1. Size of each averaged level expressed as the number of beats at a threshold value of 0.5.
T is the number of differences detected and considered as templates based on the given
threshold.
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Fig. 6.8 Samples of (a) original signal and (b) signal plus noise
The method kept a constant behavior even when the noise levels were

increased to 20% of the signal amplitude.

Table 6.6
Cluster level sizes expressed as the number of beats at different threshold values.

NS with different threshold values (THD)

THD | T1 | T2 | T3 | T4 | T5|T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13
0.6 1 1 1 1 1 1 1 1 1 1 2 1 3
0.7 1 1 1 1 1 1 1 1 2 1 2 1 3
0.8 1 1 1 1 1 1 1 1 2 1 3 3 4
0.9 1 1 1 1 1 1 1 1 2 3 6 4 8

AF with different threshold values (THD)

THD | T1| T2 | T3 | T4 |T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13
0.6 1 2 2 1 1 2 1 2 2 1 1 4 7

0.7 1 2 2 | 2 2 2 2 4 4 2 2 6 14
0.8 1 2 2 | 2 2 2 4 6 8 5 4 11 19
0.9 1 2 3] 3 3 3 5 1014 ] 12 18 14 22

PE with different threshold values (THD)
THD | T1 | T2 T3 | T4 |T5|T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13

0.6 1 1 1 1 1 1 1 1 2 2 4 15 16
0.7 1 1 1 1 1 1 1 1 3 4 6 16 18
0.8 1 1 1 1 1 1 1 2 3 4 7 17 19
0.9 1 1 1 1 1 1 2 2 6 7 10 19 19

HF with different threshold values (THD)
THD |T1 (T2 |T3 |T4 |T5 |T6 |T7 |[T8 |T9 |T10 | T11l | T12 | T13

0.6 2 2 2 1 1 1 1 1 1 2 4 5 6
0.7 2 2 2 | 2 2 2 1 1 1 2 4 9 8
0.8 2 2 2 | 2 2 2 1 1 1 2 5 10 13
0.9 2 2 2 | 2 2 2 1 2 1 4 9 14 17
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Threshold values were varied in steps of 0.1 from zero to one and some of the
results from this part are presented in Table 6.6. The size of the resultant
cluster template increases with the increase in the threshold value, especially
in the upper levels. This property can be utilized depending on the accuracy
required.

The algorithm presented in this chapter is well suited for real time ECG
preanalysis, classification and data size reduction. It retains the clinically
significant details of the individual ECG signal. It provides cardiologists and
doctors with a summary of the signal characteristics to ease the analysis and
bring their attention to the portions that may be of clinical value. This
approach does not attempt to reduce the sampling rate, as is the case with

other compression algorithms.

This chapter serves as a preprocessing step to the unified method, which is
introduced, in the next chapter. The unified method is applied to different sets
of data with their results compared to previously gained results using common

methods.
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CHAPTER 7

DATA PREPARATION, ANALYSIS AND RESULTS IN UNIFIED FRAME

7.1 Introduction

In this chapter we present the results obtained using the processes and
methodologies outlined in the previous chapters. Conclusions, comments and
plans to be followed in the future for this subject will be introduced in the next
chapter.

It is clear at this stage that current methods and approaches suffer from
certain drawbacks due to some of the assumptions that limited their
performance and resulted in low prediction rates to the problem of VLP
identification. Itemized here are some of drawbacks to serve as a frame for

the accomplished work in this thesis and these are:

Absence of exact properties and definitions of what constitutes VLP
Limited region of analysis

Low number of parameters

Cross-term generation in the calculation of the vector magnitude
Orthogonality assumption of the XYZ leads

Overlap of noise and VLP ranges

Averaging of uncorrelated beats and the need for beat rejection
Requirement for suitable data (high-resolution, high-sampling rates)

© © N o g s~ wDdhPE

Need to minimize human involvement in classification
10. Importance of the Use of modern technology

11. Alignment problems

12.Lack of real time processing
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7.2 Parameter extraction and analysis methods

A set of parameters is extracted from each process and is used as inputs to a
feed-forward neural network for classification. Once the parameters have
been extracted, they are used as inputs to a feed-forward neural network

(ANN) for classification as shown in Fig. 7.1.

The roadmap for the analysis and extraction of appropriate parameters for the

proposed method is as follows:

o WT decomposition and analysis including detection of characteristic points
e Complex cepstrum and homomorphic deconvolution

e Minimum-phase, Maximum-phase, MPC, and SL calculation

e Parameter extraction

e Neural Network classification of the extracted parameters

( ECG H Parameter Extraction H ANN Classification

Fig. 7.1 Classification of extracted parameters

Snapshots of some of the GUI windows designed to organize the data
acquisition and analysis processes using different DSP techniques are shown
in Fig. 7.2 and Fig. 7.3 below.

J Ayad A. Mousa EJ|§|E|

Hacettepe Liniversity

Electrical and Electronics Engineering

| |
Ayad A. Mousa

I Open Mat I I Open File I I Plot I

I Wavelet I I Cepstrum I I ANN I

New

| In Partial Fulfilment of the Ph.D. Program |

Figure 7.2 Snapshots of the user interface windows
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Figure 7.3 Snapshots of some of the analysis GUI using Matlab

Parameters can either be extracted from the vector magnitudes or directly
from individual beats based on beat-to-beat analysis. The flowchart shown in
Fig. 7.4 shows the application of the WT to the individual leads prior to
calculating the vector magnitudes, while the flowchart of WT parameter
extraction from the individual beats is illustrated in Fig 7.5 and the flowchart of
CC parameter extraction from the individual beats is illustrated in Fig 7.6. The
vector magnitude MQ is calculated based on the individual vector magnitudes
MX, MY and MZ which were calculated using the WT method introduced in

chapter three of this thesis and is defined as:

MQ=+/MX % + MY %+ MZ? (7.1)

X-lead Z-lead

[ ]
wi ) w ) ([ w
[ ]

| | I
[ Calculate MX Calculate MY Calculate MZ ]

Fig.7.4 WT based vector magnitude calculation flowchart
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Fig. 7.7 Unified method parameter extraction and training stage
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Parameters extracted for the WT employed the first three details D1, D2 and
D3 resulting from the application of the wavelet transform. They included the
area under the curve and its RMS values. For the complex cepstrum the
parameters were the signal lengths and the RMS values for the derived
minimum-phase correspondence (MPC), the minimum-phase and maximum-
phase components of the signal. The flowchart presented in Fig. 7.7 shows
the process of training the neural network using the extracted parameters

prior to classification.
7.3 Data used in the analysis

The data used in this work is composed of different sets. The first is a
synthetic set and is comprised of 1100 different signals. The synthetic signals
were generated based on variations of a real ECG signal. The second data
set is comprised of a number of actual ECG signals from Sussex University
and those recorded at the Cardiology department of the Hacettepe University,
Ankara. The system developed and built specially for this project was
employed in the recording process. The full detail of the system is described

in chapter 5 of this thesis.
7.3.1 Real ECG signals

This set contains data from two different sources. The first set comes from
the database of the Sussex University, England and our team at the
Hacettepe University recorded the other set. The Sussex database contained
a total of 156 different ECG signals. There were 78 signals classified as VT
and 78 classified as normal while the rest contained different abnormalities.
Orthogonal X, Y, and Z-leads were recorded during sinus rhythm over a
bandwidth of 0.0-500 Hz and amplified (1500) times, using techniques
reported previously. Signals were digitized at 3000 samples per second with
16 bit of precision. The X, Y, and Z leads were monitored continuously in real
time enabling display of the entire cardiac cycle in each patient. The sample
points were stored in a digital form for future analysis and to be used as our

own database.
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7.3.2 Delayed potentials approximation (synthetic)

An infarct is a physical damage that has certain physical characteristics.
These physical characteristics include the Size of the damage, Orientation,
Type and Position or in general, (SPOT) parameters. The resultant delayed
and disorganized activities will depend on the severity of these parameters.
Because, the signal named in literature as VLP may be located anywhere
along the conduction path and may not be restricted to the end of the QRS
complex, we have defined a wider set to include the entire cardiac cycle.
Since this large set includes LP as a subset, we have defined another name
covering this range, and will be denoted as delayed potentials (DP). The
duration, frequency, amplitude, position and periodicity are possible

candidates for the characterization of DP in our set (Mousa, Yilmaz 2004-a).

Sufficiently large set of synthetic signals underlying the behavior of physical
characteristics of the infarct parameters was employed to represent the effect
of physical size, position, orientation and time of the infarct. The approximated
signals are variations from real ECG signals by convolving signals
representing late potentials based on duration, frequency, amplitude and
position. The aim is not to exactly model VLP but rather generating an
approximate set of signals to examine the performance of the standard
methods for different possibilities in infarct dynamics. The position of this
added signal was varied in steps to cover a range from 50 to 450 samples
and added to the ECG signal extending outside the QRS complex at various
durations ranging from 2 percent (8 sample in 512 signal length) to 5 percent
(24 samples). These durations are based on the sampling rate of 1000
samples per second and a 12 bit resolutions used by Simson in his work. The
amplitude was approximated according to usual recorded ECG signal of 1mV
to 10mV as reported by Simson and compared to that used in the Hacettepe
cardiology department. In order to compare the different approaches the

same data set was used in all analysis stages (Simson, 1981).

The signals generated for this part are based on the fact that the accepted
definition of VLP is a low-amplitude, high frequency, short-duration potential.

The magnitude of VLP is thought to be in the p volt range (0-20 uV), a value
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close to noise and a wide frequency range of (40-200 Hz). These are the
standards set by several international committees, including the European
society of cardiology. This definition is used to generate a sinusoidal signal
with amplitude (A), a frequency (F) and duration (D). The position (P) of this
model signal is varied and the resultant signal is convolved with the base
ECG signal. All values (A, F, D, P) are varied according to Table 7.1 to give
the 1100 different signals defining delayed potentials. The base signal was
an actual ECG signal taken from the Sussex university database sampled at
2200 samples per second. The Nyquist frequency was 1100 Hz and time

increment of 0.45 ms.

Table 7.1 Different parameters used to generate the set of test signals

Duration  (Samples) 8-24

Amplitude (of signal max) 0.01-01
Frequency (Hz) 80 — 150
Positioned (sample number) 10— 450

As a first attempt, those potentials and the base signal were combined
through the operation of addition. The resultant signals were examined and
put through a neural network to search for commonalities between synthetic
DP and real VLP but the outcome was unsatisfactory. Secondly, convolution
was employed as the operation of combining these potentials and the base
signal. The convolution-based approximation was compared to that of the
addition-based one. Parameters of the common methods were used in the
comparison process which included the QRS duration, the LAS40 and RMS40
as defined before. The convolution approach was found to be a better
approximation to VLPs than directly adding the small variations representing
the DPs. This time the neural network was able to detect commonalities and
identify all VLP positive signals based on prior knowledge of synthetic signals
only. The plots in Fig. 7.8 show the effect on the QRS duration as a result of
adding potentials through convolution. The top vector magnitude is the normal
base signal while the bottom graph represents on of the synthetic signals. The
plots clearly present the success of the model in reflecting the effect of the

presence of DP including VLP on the QRS duration parameter.
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Fig. 7.8 Vector magnitudes of (a) Normal (b) Synthetic (c) vector magnitude of
ECG signal showing the presence of VLP (source: Gang et al. 2000)

7.4 Artificial data set tested using Simson’s methods

The Simson’s method is first applied to the synthetic data then the same
method is applied to the set of real ECG signals. For Simson’s method, any
two of the following parameters imply VLP positive when FQRS > 114 ms,
RMS40 < 20 pV and LAS > 38 ms.
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1.Duration of the QRS complex for added signals of different durations (D) as the position is varied. The
horizontal axis represents position and the vertical axis the calculated parameter value.

The plots in Fig. 7.9 represent the duration of the QRS and are for an added
signal with an amplitude of one percent of the base ECG signal and a
frequency of 100 Hz. Fig. 7.9-a is for an added potential with duration of 2
percent, shows no variation from the base value up to sample number 205.
Fig. 7.9-b is for duration of 30 samples or 6 percent of base signal, shows a
small peak around sample 180. This peak grows with increased duration of
the added signal but around the same region only, which is around sample
number 300 as can be seen. In other regions, we see that this parameter
shows a drop especially as the position is after the QRS end-point.
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1.RMS value of the last 40 ms of the QRS for signals with different durations (D) as the position is
varied. The horizontal axis represents position and the vertical axis represents the calculated parameter
value in mV.

The plots in Fig. 7.10 represent the RMS40 at the end of the QRS and are for
an added signal with an amplitude of one percent of the base ECG signal and
a of 100 Hz. Frequency. Fig. 7.10-a for an added potential with duration of 2
percent, shows a drop in variation from the base value at sample value 150.
Fig. 7.10-b is for a duration of 30 samples or 6 percent of base signal, shows
more oscillatory variations around the same sample. This variation grows with
increased duration of the added signal but around the same region as can be
seen in the other parts of this figure. In other regions, we see that this

parameter shows a drop especially if the position is after the QRS end-point.
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Fig. 7.11 The LAS40*
1.Different durations (D) of low amplitude signal as the position is varied. The horizontal axis represents
position and the vertical axis the calculated parameter value in msec.

The plots in Fig. 7.11 represent LAS40, the duration of the low amplitude
signal at the end of the QRS and are for an added signal with amplitude of
one percent of the base ECG signal and a frequency of 100 Hz. Fig. 7.11-ais
for an added potential with duration of 2 percent, shows small variation from
the base value. Fig. 7.11-b is for duration of 30 samples or 6 percent of base
signal, shows a small peak around sample number 180 with more decreasing
values. This parameter shows a drop at other positions as can be seen and
this parameter in general does not show significant variations from the base
value of the normal ECG signal. In most regions, we see that this parameter

shows a drop especially as the position is after the QRS end-point.
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The overall observation in the Simson’s method is the ability of these standard
parameters to accurately detect signals falling at the end of the QRS.
However, these parameters fail to detect delayed potentials even when they
actually exist. The overall performance of common methods as applied to the
set of 1100 different signals is summarized in Table 7.2. The table shows the
percent of positive identification of delayed potentials for individual
parameters and the overall performance when any two parameters are

satisfied at the same time as required by Simson’s method.

Out of the 24% signals correctly classified, 28.57% of signals fall in the first
half of the signal and 71.44% fall in the second half (i.e., region that includes
the QRS complex).

Table 7.2 Percent of positive identification of delayed potentials using Simson’s
method.

QRSDUR LAS40 RMS40 | Overall performance
38 % 22 % 39 % 24 %

7.5 Artificial data set tested using wavelet transform

There exist a large number of wavelets that can be used in the wavelet
transform. The results of applying Daub-4 type of wavelet are presented in the

sample given in Fig. 7.12.

Decomposition st lewsl S = =35 +d5 +d4 + dZF + d2 + d1 .

s os| A |
d5 DW

L 1 1 L L 1 1 1 L
so 100 150 =00 =50 elalal IS0 aoo0 as0 so0

Fig. 7.12 A sample plot of WT analysis.
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In Fig 7.12, the horizontal axis represents time and the vertical axis

represents the different frequency scales.

The WT was applied to the same set of signals used in the previous part. The
WT method was able to classify and detect all added potentials even at lower

amplitudes than the 0.1 % used in the common methods analysis.

All added signals with a frequency of 125 Hz with a sampling rate of 2200 Hz
and an amplitude as low as 0.1 % from base signal have accurately been
identified as can be seen from the figure. In addition, the amplitude, time
position and durations were detected reliably. In addition, the strength,

duration and position can clearly be seen.
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Fig 7.13 A sample of WT decomposition: the sum of level-7 and level-8.

The sum of level L7 and level L8 is presented in Fig 7.13 where the existence
of added potential is clearly apparent at the left between sample number (1)
and sample number (100). The plots to the right are for the base signals

without added potentials presented here for comparison.
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7.6 Simson’s parameters using WT filtering for real ECG data

Two more parameters extracted from the WT were added. These parameters
are the root-mean-square values of level L7 and level L8. The choice for
these levels is based on their frequency content, which contains the range
defined for ventricular late potentials. An increase from 63% to 74% positive
detection has been observed (Mousa, Yilmaz, 2001-b).

The following tables summarize the parameters generated for the Sussex
data base ECG signals using the Simson’s method. Based on the method we
proposed for the proper calculation of the vector magnitude using the WT

method, we have recalculated the parameters for the detection of VLP.

Table 7.3 WT-based Simson’s parameters for normal signals

Normal ECG signals
QM using L7+L8
QRS | RMS | LAS | RMS Area

95 132 17 115 128
108 69 20 109 152
107 54 19 97 56
80 50 21 67 26
93 102 24 88 104
120 31 30 80 21
94 86 20 82 36
101 73 20 108 85
90 64 16 98 34
94 75 18 69 41
92 76 17 90 39
85 166 12 84 113
80 103 21 74 36
123 40 35 115 47
101 30 32 81 38
80 50 21 67 26
93 102 24 88 104
Mean | 96 77 22 89 64
STD 12 35 6 16 40
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Tables 7.3 and 7.4 show these parameters calculated for two different types
of ECG signals. Table 7.3 gives those values for a normal signals and table
7.4 is for the abnormal ECG signals. The calculations in each table are based
on WT levels 7 and 8 for the vector magnitude calculation as presented in
chapter 3 of this thesis. The mean and standard deviation are presented on
the bottom of the table.

Table 7.4 WT-based Simson’s parameters for abnormal signals
VT classified ECG signals

QM using L7+L8
QRS RMS | LAS | RMS Area

85 40 24 94 17
130 18 37 197 24
146 14 37 110 26
118 28 33 104 70
104 65 20 105 47
85 129 40 120 36
183 23 37 197 8
97 25 33 73 7
165 9 37 117 34
159 8 37 103 88
99 67 30 101 100
172 18 37 162 9
96 136 4 116 181
97 32 30 81 48
115 21 36 117 84
95 26 37 97 16
165 9 37 117 34
89 34 37 109 7
85 40 24 94 17
149 18 37 136 17
102 90 15 84 62
Mean | 121 41 32 116 45
STD 33 37 9 33 42

A summary of these results based on the obtained means and standard
deviations is presented in Table 7.5 and Table 7.6 for normal and abnormal

signals respectively.
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Table 7.5 Mean and standard deviations of the WT parameters

Signal Normal

Parameter. QRS | RMS40 | LAS | RMS | Area
Mean 96 77 22 89 64
STD 12 35 6 16 40

Table 7.6 Mean and standard deviations for the abnormal signals.

Signal VT

Parameter. QRS | RMS40 | LAS | RMS | Area
Mean 121 41 32 116 45
STD 33 37 9 33 42

7.7 Hacettepe university hospital data analysis

The system introduced in chapter 5 was used to carry out the recordings at
the intensive care unit of the cardiology department of the Hacettepe hospital,

a snapshot of the system in operation is shown in Fig. 7.14.

Fig. 7.14 A snapshot of the system in operation
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A number of signals were recorded at the intensive care unit at the Hacettepe
University hospital. A list of some of the characteristics and medical records

are listed in Table 7.7.

Due to the difficult conditions of those patients, only two minutes were
recorded for each one. The sampling rate was set at 3000 samples per
second and the system’s ADC is fixed at 16-bits. The entire records of these
signals along with other data used in this thesis are included in the

accompanying CD.

Table 7.7 Hacettepe database

NO. | Gender | Age | Weight | Smoking lliness Other
1 M 73 75 No Unstable angina HC
pectoris
> = 72 80 No Myocardial Infarction HT, D

(inferior)
Myocardial Infarction HT, D,

° v I 70 No (postoperatively) HC
4 M 75 65 NoO Myocardial Infarction He
(inferior)
5 M 58 75 Ves | Coronary artery disease | .
start implantation
6 M 46 70 No Myocardial Infarction NG

(anterior)

HT: Hypertension, HC: Hypercholesterolemia, D: Diabetic

Presented here in Fig 7.15 is a sample of applying the proposed method to
these data sets. The first signal comes from patient number six in Table 7.7
classified as anterior myocardial infarction (AMI) and the other signal is from a

normal subject used for control.
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7.8 Results of unified method

A number of networks were created to form the building blocks of the
classification system as part of the unified method. A network from each of the
WT and the complex cepstrum was chosen and were trained with only
synthetic and normal real ECG signals without the introduction of any VLP

positive signals to allow the network to find the required common features.

A sample of the training stage results is presented in Fig. 7.16 below.

Performance is 4.69662e-015, Goal is O

101°

. . . .
o 500 1000 1500 2000
2397 Epochs

0.9 |

0.8 |-

0.7 |-

0.6 |-

0.5 |

0.4

0.3 |-

0.2 |-

O.1 |

L L L L L L ,
o 100 200 300 400 500 600 700

Fig. 7.16 A sample of the training results

First test

Results of applying the other types of signals to the neural networks are
presented below in Fig. 7.17 with their corresponding statistics presented in
Table 7.8.
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Table 7.8 Classification of synthetic data

Original statistics
-ve +ve Total %-ve | %+ve
0 1100 1100 0 100

Statistics from CC
-ve +ve Total %-ve | %+ve
1 1099 1100 0.09 99.9

Statistics from WT
-ve +ve Total %-ve | %+ve
0 1100 1100 0 100

Complex Cepstrum classification results

0.8

0.6

0.2

QL

1 1 1 1 1 |
0 200 400 600 800 1000 1200 1400

WT classification results

0.98)

0. 96 | | | | | | J
0 200 400 600 800 1000 1200 1400

Fig. 7.17 Results of the classification of synthetic data

Second test

A number of VLP positive signals extracted from the Sussex database were
applied to the network as a testing set with their results presented in Fig. 7.18
with their corresponding statistics presented in Table 7.9. The network was

able to find common features relating synthetic signals to real VLP and

classified all as DP positive.
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Table 7.9 Classification of VLP positive data

Original statistics
-ve +ve Total %-ve | %+ve
0 6 6 0 100
Statistics from CC
-ve +ve Total %-ve | %+ve
6 0 6 100 0
Statistics from WT
-ve +ve Total %-ve | %+ve
0 6 6 0 100

Fig. 7.18 Results of classification of VLP positive signals

Third test

Finally the unified method was used to classify real data sets that included

signals classified by experts as normal and others as VT cases. The results

are shown in Table 10 and their classification results presented in Fig. 7.19.

Table 7.10 Unified method classification results for real ECG data

Original statistics

Normal VT Total
78 78 156
Statistics from CC
DP-ve DP+ve Total
72 84 156

Statistics from WT

DP-ve

DP+ve

Total

81

75

156
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Complex Cepstrum classification results
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Fig. 7.19 Results of classification of real ECG signals

The application of the unified method gave excellent results in identifying the
different types of signals including VLP positive ones. The WT classifier in the
unified method was able to classify VLP positive cases based only on
previous synthetic data knowledge while the complex cepstrum classier failed
to capture commonalities between synthetic signals and VLPs.

The performances of different approaches are summarized in Table 7.11
below and it should be noted that if survival rates were increased from 5% to
20% about 40000 more lives could be saved each year in the USA according

to the American Heart Association statistics.

Table 7.11 Results of all approaches for synthetic and real ECG signals

Synthetic: DP+ve
Simson (VLP) 24% (264/1100)
Simson + WT 45% (495 /1100)
Unified method 99.5%(1100 /1100)
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These results can be compared to the results of previous works in the field as
can be seen in Table 7.12 below. The table shows 24% to 45% of VLP
detection during a period of 10 years and a total of 1288 patients (E. Vester
and B. Strauer, 1994).

Table 7.12 Results of different studies of the significance of late potentials following
acute myocardial infarction

Authors Numberof patients VLP + (%)
Breithardt et al 132 59(45)
Denniss et al 306 80(26)
Kuchar et al 200 78(39)
Gomes et al 115 48(42)
Vezoni et al 220 62(28)
Gripps et al 159 38(24)
El-Sherif et al 156 39(25)
Total 1288 404(31)
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CHAPTER 8

CONCLUSIONS

Standard methods are able to accurately detect signals falling at the end of
the QRS and the three Simson parameters do show the presence of
ventricular late potentials in general. However, they fail to detect delayed

potentials outside this region when they actually exist.

Since VLP defines a limited class of potentials that can result from heart
abnormalities that may occur anywhere in the cardiac cycle, it seems to be
possible to give an alternative name as “delayed potential (DP)” to define a
general space with VLP being a subspace of it. We conclude that these
standard parameters are able to detect delayed signals only when they fall in
the region of VLP. Furthermore, limiting the scope of analysis to a part of the
signal only, the QRS will not give the complete picture regarding abnormalities

occurring at other regions.

In this work we presented a broad definition of what may constitute VLPs
namely delayed potentials (DP). In addition, a working model signal
representing delayed potentials that represents and contains common
features with VLPs. We also aimed at enlarging the window of ECG analysis
outside the QRS complex to enable the detection of DP and other types of

abnormalities.

The physical characteristics of the infarcts namely, size, position, orientation
and type (SPOT) have a pronounced effect on the ability to detect their effect
more readily.

Two basic needs were uncovered during this study, a need for good data and
a need for good analysis methods. The need for good data necessitated the

design and development of a data acquisition system with particular features
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and characteristics. The designed system is a portable easy to use with
special emphasis on patient safety. The system uses the USB port for
communicating with laptop employed. It is a high-resolution with adjustable
sampling rates of 3000 samples and more. It is also a multi-channel system
with up to 12 leads multiplexed or 4 channels simultaneously.

The need for good analysis methods necessitated the development of the
unified analysis approach employing different DSP techniques and tools. Use
of more advanced digital signal processing tools is required in order to cover
potentials existing in the entire cardiac cycle which included WT, complex

cepstrum and artificial neural network applications.

The unified method includes an algorithm well suited for real time ECG
preanalysis, classification and data size reduction based on correlation
between different beats. It retains the clinically significant details of the
individual ECG signal. It provides cardiologists and doctors with a summary of
the signal characteristics to ease the analysis and bring their attention to the
portions that may be of clinical value. This approach does not attempt to
reduce the sampling rate as is the case with other compression algorithms.

There is no reason to assume that beats which are different from the template
should be regarded as ectopic beats or be removed. On the contrary these
beats may be the information carrying parts of the signal. Therefore, this
method combines similar beats through correlation and does not eliminate
any beats no matter how different they might be. Depending on the type of
abnormality, beats that deviate from normal pattern may indeed carry the
important information (clinically significant waveform features) and for this

reason they are retained.

If a general opinion about status of the patient is sought, a low correlation
value will suffice producing a template with minimum number of beats. If on
the other hand the analysis dictates the discovery of finite details such as
VLPs, the threshold value of correlation must be kept high which will in turn
produce a template with a larger number of beats.
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The WT provides good means of noise filtering and calculation of the vector
magnitude without introducing cross-terms. These cross-terms arise when we
square ECG leads containing different frequency components such as P, T,
QRS and delayed potentials (DP). By choosing only appropriate levels to
include in the calculation of the vector magnitude, we remove other
undesirable components defined as cross-terms in our discussion. Based on
the frequency content of the individual levels of the WT, the content of
individual levels may be used to classify different abnormalities contained in
ECG signals.

In conclusion the prevalence of VLP after acute myocardial infarction depends
on the definition of what constitutes VLP, the site and type of myocardial

infarction, time of recording and the analyzing technique.

It should be emphasized that the true test of any new method such as the one
presented here is long-term application. Therefore, we strongly recommend
that the proposed analysis scheme be employed under the cooperation of
both the Electrical department and the cardiology department at the

Hacettepe University hospital.

To finalize this work we present a list of the accomplished tasks during the

entire study.

ACCOMPLISHMENTS

M A more general definition that takes into account the physical
variation behind the causes of VLP namely the infarct expressed as
SPOT

M Expanded analysis region to cover the entire cardiac cycle

M New method for V.M. calculation without cross-term components
M Noise reduction using WT denoising capabilities

M Portable high-resolution data acquisition system using USB port

3000 samples per second
. 16-bit resolution

patient safety and isolation
up to 12-channels

RSN
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M New combined analysis method using time-domain, frequency-
domain and the complex cepstrum based on the reported success
of their individual performances.

M More parameters have been added from WT and the cepstrum
M Improved performance relative to current methods
M our own data base

M Better alignment through the use of correlation and WT templates
with only correlated beats averaged using the correlation template

|Zl Information in ECG records are summarized in clusters for better
classification

M Real time analysis are made possible through the use of dynamic
averaging

In addition, the work was published in international conferences and
journals:

|Z[ Seven conference papers
|Zl Two Journal articles
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