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ABSTRACT 

PREDICTING BATTERY HEALTH FOR ELECTRIC VEHICLES USING MACHINE 

LEARNING APPROACH 

Research utilized data-driven models to investigate SoH estimation methodologies for 

lithium-ion batteries, particularly focusing on their effectiveness in capturing degradation 

trends. The study evaluated four different deep learning approaches-DNN, CNN, RNN, and 

LSTM-using various metrics, including MAE, RMSE, R², and validation loss. Results reveal 

that the LSTM model outperforms others, achieving the lowest MAE (0.1293), RMSE 

(0.1680), and validation loss (0.0282), with an R² of 0.9790, making it the most reliable 

predictor of battery SoH. The study highlights a strong linear correlation between SoH and 

parameters such as capacity and charge voltage, affirming their role as critical indicators of 

battery health. Conversely, temperature exhibited negligible impact on SoH within the 

narrow range studied, necessitating further research under diverse environmental conditions. 

Anomalies in terminal current during charge-discharge cycles suggest potential operational 

irregularities requiring deeper analysis. The study underscores the limitations of CNN in 

modeling temporal dependencies, advocating for hybrid architectures like CNN-LSTM for 

enhanced predictive accuracy. Findings also demonstrate consistent SoC transitions across 

cycles, emphasizing the stability of the battery's charge-discharge behavior and its 

implications for long-term durability. Recommendations include adopting LSTM-based 

models in battery management systems, refining anomaly detection mechanisms, and 

optimizing charge protocols to prevent premature degradation. The study's outcomes provide 

a robust framework for enhancing battery health monitoring and forecasting, contributing to 

the advancement of energy storage technologies. The focus of future research will be 

expanded thermal ranges, cutting-edge hybrid models, and the integration of real-world 

applications in validation of these findings. This shows potential value in using these findings 

for optimizations that affect the performance and life of LiBs, whether for EVs or renewable 

energy systems. 

 

Keywords: Lithium Li-ion batteries, State of Health, State of Charge, Battery management 

system 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Electric vehicles (EVs) represent a crucial step in the global evolution toward 

sustainable and environmentally friendly transportation. Central to their operation is the 

lithium-ion (Li-ion) battery, a technology celebrated for its high energy density, longevity, 

and efficiency. However, as EV adoption accelerates, a pressing challenge emerges: the 

degradation of battery health over time. This deterioration directly impacts the vehicle’s 

range, performance, and overall reliability, raising concerns for both manufacturers and 

consumers. Addressing this issue requires a robust methodology to predict the State of Health 

(SOH) of EV batteries, ensuring optimal performance and extending their usable lifespan. 

This study focuses on the development of a novel DNN model to predict battery health 

accurately, leveraging advanced data-driven techniques and experimental data. 

Battery degradation is an inevitable phenomenon triggered by a mixture of chemical, 

thermal, and mechanical aspects [1]. These issues are exacerbated by real-world conditions 

such as extreme temperatures, frequent fast charging, and deep discharging cycles [2]. 

Effective management of these challenges demands a comprehensive understanding of the 

underlying mechanisms and a predictive framework to mitigate their impact [3]. Adding to 

the complexity is the variability in battery performance due to differences in manufacturing 

processes, usage patterns, and environmental conditions [4]. Achieving reliable SOH 

predictions requires integrating advanced sensing technologies with sophisticated 

computational models [5]. Traditional methods based on electrochemical principles, while 

accurate, often fall short in real-time applications due to their computational intensity [6]. In 

this context, data-driven approaches, particularly those leveraging ML and DL present a 

compelling alternative [7]. 
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Li-ion batteries have significantly improved in terms of materials, designs, and 

management systems over time [8]. An emphasis has been placed on innovations like solid-

state electrolytes and advanced cathode materials like nickel-manganese-cobalt (NMC) and 

lithium iron phosphate (LFP) in order to create greener and more sustainable batteries [9]. 

Even with these advancements, degradation is still a problem, requiring ongoing observation 

and forecasting of battery health [10]. The combination of data analytics and conventional 

battery modeling is one of the major advancements in battery management [11]. Global 

research endeavors are progressively centering on the advancement of hybrid methodologies 

that merge machine learning techniques with physics-based models [12]. Large datasets can 

be meaningfully analyzed thanks to this synergy, which opens the door to more precise and 

trustworthy SOH predictions [13]. 

Data driven models have transformed the battery health management domain 

completely utilizing huge volumes of operational data [14]. Machine learning proved 

capability in predicting the cycle life of batteries well before the onset of significant capacity 

degradation [15]. Assuming the voltage, current, temperature, and charging/discharging 

profiles, such models can be utilized for very accurate estimates of the remaining useful life 

of the batteries [16]. Due to its ability to derive complex non-linear data relationships, deep 

learning is arguably the most used of these machine learning methods [17]. The analysis of 

high-dimensional datasets has previously been achieved using DNN, CNN, and RNN 

models, which have given uncharted insight into battery behavior [18]. For instance, 

applications of machine-learning-based methods of SOH estimation found their way into 

real-life applications [19]. Long short-term memory (LSTM) networks also estimate battery 

health leveraging cut-off, time-based features showing how equitable these deep learning 

architectures are [20]. 

Despite the progress made, predicting battery health remains a challenging endeavor 

[21]. The dynamic nature of Li-ion batteries, influenced by factors such as aging, temperature 

variations, and cycling conditions, poses significant hurdles for model development [22]. 

There are limitations of existing approaches in capturing the intricate interplay between these 

variables, underscoring the need for more sophisticated modeling techniques [23]. Another 
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challenge lies in the availability and quality of data [24]. Comprehensive datasets that 

encompass diverse operating conditions are essential for training robust models [25]. The 

importance of standardized data collection protocols is stressed to facilitate the development 

of generalized models applicable across different battery chemistries and configurations [26]. 

This study suggests a DNN model intended to precisely approximate SOH of EV 

batteries as a solution to these problems [27]. The model predicts battery health with high 

precision by utilizing experimental data, such as voltage, current, temperature, and available 

health indicators [28]. The model uses cutting-edge feature extraction and optimization 

techniques in an effort to get beyond the drawbacks of conventional approaches and offer 

useful insights for battery management [29]. Transfer learning and hybrid modeling are the 

foundations of the suggested DNN framework [30]. It produces a reliable and scalable 

solution by fusing deep learning algorithms' predictive capability with domain expertise from 

electrochemical models [31]. Moreover, the architecture of the model is designed to manage 

extensive, high-dimensional datasets, guaranteeing its practicality in real-life situations [32]. 

The suggested methodology is consistent with the patterns noted in current research 

[33]. In order to predict battery health, feature selection and model optimization are crucial, 

and methods like random forest classification and DNNs play a significant part in this regard 

[34]. It is commonly known that data-driven approaches have the ability to increase the 

precision and dependability of SOH predictions [35]. Furthermore, a key component of the 

suggested remedy is the fusion of data-driven models with insights derived from physics 

[36]. The study intends to provide EV stakeholders with useful insights into battery behavior 

and a comprehensive understanding of battery behavior by merging the advantages of both 

methodologies [37]. 

This study aims to: (1) develop a DNN model for accurate prediction of the SOH of 

EV batteries, (2) leverage experimental data, including voltage, current, temperature, and 

health indicators, to train and validate the model, (3) integrate physics-based insights with 

data-driven methods to enhance the model’s predictive capabilities, (4) address the 

challenges of data variability and dynamic operating conditions through advanced feature 

extraction and optimization methods, and (5) provide actionable insights for battery 
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management, contributing to the longevity and reliability of EVs [38]. By achieving these 

objectives, the study seeks to advance the state of the art in battery health prediction, offering 

a scalable and practical solution for the growing EV market [39]. 

1.2 Application of Lithium Li-ion Batteries (LiB) 

 Indeed, lithium-ion batteries (LiBs) are ubiquitous in advanced technology and are 

extensively varied for applications in all types of industries. They provide power in today's 

consumer electronic devices and several renewable energy storage applications. These 

batteries have become the most preferred choice in many industries due to their long cycle 

life, high energy density, and very low self-discharge rate. To examine the various 

applications of LiBs through the lens of industry reports and scientific studies, this paper 

discusses data. 

1.2.1 Consumer Electronics 

In today's consumer electronics, Li-ion batteries are essential for powering gadgets 

like wearables, laptops, tablets, and smartphones. Li-ion batteries' high energy density makes 

them ideal for prolonged use, which is a crucial need for contemporary electronics. This 

technology greatly benefits smartphones because it permits lightweight designs without 

sacrificing battery life [1]. Li-ion batteries in smartphones are now even more useful thanks 

to fast charging capabilities, which satisfy users who need quick and effective recharging [2]. 

Li-ion batteries play a major role in the dependable performance and portability of laptops 

and tablets. High-performance computer tasks are supported by Li-ion batteries' energy 

efficiency, allowing users to work without constantly needing access to power outlets [3]. 

Tablets take advantage of these batteries' small size to create stylish designs that suit a variety 

of personal and business applications [4]. 

Human wearable devices such as smartwatches and fitness trackers also rely on Li-

ion batteries for their operation. These devices demand compact, lightweight batteries with 

sufficient capacity to sustain continuous operation. Li-ion batteries meet these requirements, 

enabling functionalities like heart rate monitoring, GPS tracking, and real-time notifications 

[5]. Beyond their role in specific devices, Li-ion batteries have revolutionized the consumer 
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electronics industry by driving innovations in device design and functionality. Their 

efficiency and compact size have opened new possibilities for product development, allowing 

manufacturers to create thinner, lighter, and more versatile devices [6]. Additionally, the 

recyclability of Li-ion batteries aligns with sustainability goals, contributing to the reduction 

of electronic waste [7]. 

1.2.2 Electric Vehicles (EVs) 

The electric vehicle (EV) revolution owes much of its success to the advancements 

in Li-ion battery technology. These batteries provide the high energy density and efficiency 

required to power EVs, making them the cornerstone of sustainable transportation. Li-ion 

batteries enable extended driving ranges, which is a critical factor for consumer adoption of 

EVs [8]. Moreover, their ability to handle fast charging enhances the convenience of owning 

an EV, reducing downtime for users [9]. Automakers are leveraging Li-ion technology to 

improve the performance and reliability of EVs. Innovations in battery design, such as the 

development of thermal management systems, have addressed challenges related to 

overheating, safeguarding the safety and longevity of the batteries [10]. Furthermore, 

improvements in energy density have allowed manufacturers to design vehicles with greater 

range without increasing the battery size or weight [11]. 

LiBs use in electric vehicles (EVs) is also in line with international initiatives to lower 

greenhouse gas emissions. A cleaner environment results from a reduced reliance on fossil 

fuels as EVs replace conventional internal combustion engine vehicles [12]. Li-ion battery 

demand is being further driven by governments and organizations around the world 

encouraging the use of EVs through infrastructure development and incentives [13]. Li-ion 

battery recycling and reuse are now essential components of the electric vehicle ecosystem. 

The environmental impact of battery production is lessened by efforts to create sustainable 

recycling methods that guarantee the recovery and reuse of valuable materials like cobalt and 

lithium [14]. Li-ion batteries are a sustainable option for EVs because of these initiatives, 

which not only support environmental goals but also address the financial aspects of resource 

management [15]. 
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1.2.3 Renewable Energy Storage 

Lithium-ion batteries are essential for storage renewable energies and to cope with 

their intermittency. These batteries can store the excess energy produced during its maximum 

production times to supply a regular and reliable energy source during low generation periods 

from the solar and wind systems [16]. This capability is called balancing between supply and 

demand, which is essential in integrating renewable energy resources into the grid [17]. Li-

ion batteries, thus, can be said to be a part of grid-scale energy storage systems that build 

energy security while reducing the dependency upon fossil fuels. With the aid of these 

systems, utilities maximize the energy efficiency and reduce waste by storing excess 

renewable energy and discharging it during peak demand [18]. Li-ion battery systems can 

serve not only larger grid applications but also smaller community-based energy projects due 

to the scalability provision [19]. 

LiBs are frequently used with solar panels in residential settings. By storing energy 

during the day and using it at night, homeowners can lessen their reliance on the grid and cut 

their monthly electricity costs [20]. This application promotes energy independence and 

resilience against power outages in addition to its financial benefits [21]. Li-ion batteries are 

also utilized in microgrid applications, which provide electricity to isolated communities and 

commercial locations that are cut off from the main power system. They are a dependable 

option for these applications because of their effective energy storage and delivery 

capabilities, which guarantee a constant power supply [22]. Li-ion batteries are also 

becoming more and more viable for the storage of renewable energy due to advances in 

battery technology, such as longer cycle lives and higher energy efficiency [23]. 

1.2.4 Aerospace and Defense 

In aerospace and defense, LiBs are valued for their lightweight nature, high energy 

output, and reliability. Satellites and spacecraft depend on Li-ion batteries to store solar 

energy, ensuring continuous operation during periods when sunlight is unavailable [24]. The 

ability to operate efficiently in extreme conditions makes these batteries indispensable for 

space exploration missions [25]. Drones and unmanned aerial vehicles (UAVs) used in 

defense applications rely on Li-ion batteries for power. These batteries provide the energy 
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needed for long flight durations and high-performance operations, making them critical for 

surveillance, reconnaissance, and combat missions [26]. Portable communication devices 

and radar systems also benefit from the compact and reliable power supply provided by Li-

ion batteries, ensuring functionality in remote and challenging environments [27]. 

Innovations in Li-ion battery technology, such as improved thermal stability and 

energy density, have further enhanced their suitability for aerospace and defense applications. 

Research and development efforts continue to focus on making these batteries more robust 

and efficient, meeting the demanding requirements of these sectors [28]. The versatility and 

performance of Li-ion batteries have positioned them as a key enabler of advancements in 

aerospace and defense technologies [29]. 

1.2.5 Public Transportation 

The introduction of electric buses and trains that run on Li-ion batteries is drastically 

altering public transportation networks. These batteries are suitable for the demanding 

requirements of public transportation operations because of their high energy density and 

effective rechargeability [30]. In line with international environmental goals, electric buses 

fitted with Li-ion batteries lower greenhouse gas emissions and enhance urban air quality 

[31]. Electric buses benefit greatly from Li-ion batteries' quick charging capability, which 

enables rapid turnaround times while in operation [32]. Improvements in battery technology, 

such as longer cycle life and better heat management, have increased the dependability and 

longevity of electric buses [33]. Li-ion technology also facilitates regenerative braking 

systems, which increase efficiency even further by recovering and storing energy during 

deceleration [34]. Li-ion batteries are utilized in commuter trains and light rail systems in 

addition to buses. These applications benefit from the scalability and efficiency of Li-ion 

technology, enabling sustainable and cost-effective public transportation [35]. The 

integration of Li-ion batteries into public transit systems represents a significant step toward 

reducing the carbon footprint of transportation while providing reliable and efficient mobility 

solutions for urban populations [36]. 
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1.2.6 Industrial and Commercial Equipment 

Li-ion batteries are becoming increasingly critical in industrial and commercial 

equipment, providing power for forklifts, cranes, automated guided vehicles (AGVs), and 

commercial cleaning machines. They are a great option for industrial settings where 

downtime must be kept to a minimum because of their high energy density and quick 

rechargeability [37]. Li-ion batteries provide longer cycle life and more energy efficiency 

than conventional lead-acid batteries, which lowers overall maintenance costs [38]. Li-ion 

batteries are used by forklifts and AGVs in warehouses and manufacturing facilities to ensure 

reliable performance and efficient operations. Their rapid recharging during breaks 

guarantees continuous workflow, thereby optimizing productivity [39]. These batteries 

provide dependable and transportable energy solutions for industrial uses, such as powering 

construction tools and cleaning equipment [40]. Li-ion technology is still essential to 

enabling effective and environmentally friendly operations as the need for sustainable energy 

solutions in industrial settings rises [41]. 

1.2.7 Telecommunications and Backup Power Systems 

The telecommunications sector heavily depends on Li-ion batteries for reliable 

backup power solutions. Base stations, data centers, and telecommunication networks require 

consistent power to avoid disruptions, and Li-ion technology delivers this with high 

efficiency [42]. During power outages, Li-ion batteries ensure that communication systems 

remain operational, providing critical support in emergencies [43]. Li-ion batteries are 

preferred in telecommunication applications for their compact design, scalability, and ability 

to handle high energy demands. Data centers use Li-ion battery systems to power server 

operations during outages, reducing downtime and data loss risks [44]. As the reliance on 

telecommunication networks grows with the expansion of IoT and 5G technologies, the 

importance of resilient and efficient energy storage systems has increased, cementing Li-ion 

batteries as a critical component in this field [45]. 

1.2.8 Marine Applications and Shipping 

The maritime industry is adopting Li-ion batteries for electric and hybrid vessels, 

ranging from small recreational boats to large cargo ships. These batteries contribute to 
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reducing emissions and improving fuel efficiency, addressing growing environmental 

regulations [46]. Hybrid systems in ships use Li-ion batteries for peak power demands, 

allowing for quieter and more efficient operations, especially in ports and ecologically 

sensitive areas [47]. Li-ion batteries are also instrumental in powering auxiliary systems in 

traditional ships, enhancing overall energy management. Their lightweight design and 

scalability make them suitable for various marine applications, supporting the transition 

toward greener maritime operations [48]. As global regulations tighten, Li-ion technology is 

expected to lead the way in transforming the shipping industry toward sustainability and 

reduced carbon footprints [49]. 

1.2.9 Agriculture and Farming Equipment 

In modern agriculture, Li-ion batteries are becoming a cornerstone of innovative 

farming practices. They are used in electric tractors, harvesters, and drones for precision 

agriculture, enabling efficient monitoring and management of crops [50]. Li-ion batteries 

offer portability and long operational times, essential for remote and large-scale farming tasks 

[51]. Electric irrigation systems powered by Li-ion batteries reduce dependency on 

traditional energy sources, providing sustainable water management solutions. Moreover, 

drones equipped with Li-ion batteries aid in crop spraying, monitoring soil conditions, and 

assessing plant health, enhancing productivity and resource optimization [52]. As agriculture 

evolves toward sustainability and smart technologies, Li-ion batteries will continue to play a 

critical role in powering equipment that supports modern farming practices [53]. 

1.2.10 Wearable Technology and Implantable Medical Devices 

Beyond portable electronics, Li-ion batteries power advanced wearable technologies 

such as augmented reality (AR) glasses and exoskeletons. In the medical field, these batteries 

are used in implantable devices such as pacemakers and neurostimulators, ensuring reliable 

operation over extended periods. The miniaturization of Li-ion batteries continues to open 

new possibilities for innovative wearable and medical applications, enhancing human health 

and performance. Li-ion batteries power a range of wearable technologies, including augmented 

reality (AR) glasses, fitness trackers, and exoskeletons. Their compact size and high energy density 

enable these devices to perform advanced functions such as real-time monitoring and enhanced 
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interactivity [54]. In the medical field, Li-ion batteries are used in implantable devices like 

pacemakers and neurostimulators, where long-term reliability is paramount. These batteries 

provide consistent power, ensuring the safety and efficacy of life-critical devices [55]. 

Miniaturization advancements in Li-ion technology continue to drive innovation, enabling 

the development of smaller, more efficient medical and wearable devices that enhance quality 

of life and expand the possibilities of health monitoring and treatment [56]. 
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CHAPTER: 2 

LITERATURE REVIEW 

2.1 LITHIUM-ION BATTERY (LiB) 

Transportation electrification and renewable energy integration are essential 

strategies. These approaches mitigate global warming and protect the environment [1]. 

Energy storage devices significantly influence system efficiency, robustness, and protection. 

Considerable progress has advanced reliable, cost-effective energy storage solutions recently. 

These advancements have fostered a diversity of energy storing technologies [2]. Lithium-

ion batteries (LiBs) are the preferred choice commercially. They offer immense energy 

density, design diversity, and long lifecycle [3]. LiB dominate both energy storage markets 

and research landscapes. They provide significant advantages such as superior energy 

efficiency and minimal memory effects. These batteries also offer energy concentration 

suitable for large-scale energy systems. Additionally, they support battery and HEVs [4]. As 

a result, LiB production and usage have expanded rapidly. Their applications have become 

increasingly widespread worldwide [5]. LIBs are now critical for moveable electronics, EVs, 

and smart grids. 

In practical use, battery systems consist of many interconnected cells. This setup 

ensures high output voltage and adequate energy storage. Across the value chain, data drives 

decisions during the battery lifecycle. It plays an essential role in design, production, sales, 

deployment, and management [6]. During the design phase, data accelerates innovation in 

components. Examples include electrodes, electrolytes, additives, and formation processes 

[7]. During sales, data helps classify batteries by expected lifespan. This improves reliability 

and consumer satisfaction [8]. Data is also essential during deployment for performance 

analysis. Insights cover battery chemistries, configurations, and manufacturer-specific 

details. This ensures batteries are matched to their operational requirements. Factors 

influencing selection include charge/discharge cycles and temperatures. Depth of discharge 

(DOD) and inactivity periods are additional considerations [9]. When in use, battery 
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management systems (BMS) ensure efficient operation. BMS depend heavily on data for 

their design and operational calibration. 

BMS perform vital tasks like estimating charge and well-being states. The SOC 

ensures efficient battery operation and reliability. Monitoring the State of Health (SOH) 

improves system safety as well as longevity. LiB are favored for their high-capacity density 

and cycle life. Their advantages make them ideal for energy storage in EVs [10]. However, 

performance degradation occurs over time and with cycling. Degradation impacts energy and 

power capacities [11]. Battery aging reduces efficiency, driving range, and dynamic 

performance. These challenges pose risks for electric vehicles and reliability [12]. Correct 

SOH estimation is thus critically significant. SOH utilization ensures both operational safety 

and performance reliability [10]. Advanced data analytics and robust BMS technologies 

address aging issues effectively. These measures solidify LiB as leading energy storage 

solutions. 

 

Figure 2.1.Lithium-Ion Battery Charging and Discharging [208] 
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LiB are rechargeable batteries with high energy density. They also offer an extended 

cycle life, making them reliable. The development of LiB has advanced rapidly. However, 

their lifespan is limited, and storage capacity decreases. This decline occurs with time and 

continuous usage. Therefore, assessing the SOH is crucial. SOH estimation helps in planning 

battery maintenance effectively. Reliable methods to estimate SOH ensure safe and efficient 

battery performance [13] analyzed regression techniques for estimating SoH. The study 

utilized multiple regression methods for this purpose. The various models are XGBoost, 

Support Vector Regression (SVR), random forest regression, Simple linear regression, 

Gradient-boosting regression, and Decision tree regression. NASA's Prognostics Data 

Repository provided data for the study. The method that proved the best among the tested 

ones was SVR. The results from SVR yielded RMSE, MSE, MAE, and MAPE values of 

0.0226, 0.0005, 0.0208, and 0.0264, respectively. Hence, it can be said that SVR is a good 

estimator model for LiB SoH. This kind of advancement plays a major role in battery health 

management. 

Following the research provided by [14] they suggested a data-driven SoH evaluation 

approach. This method used a simple yet effective health indicator (HI). The HI was extracted 

from a truncated 110-second discharge process. This approach addresses challenges in 

analyzing uncontrollable discharge processes. Unlike conventional HIs, the proposed HI uses 

different voltage ranges. This flexibility enhances its applicability to various scenarios. A  

(LSTM) deep learning model was employed. The LSTM learned the relationship between HI 

and practical SOH. Tests on an open dataset showed high estimation accuracy. This method 

requires no additional hardware or downtime for implementation. Such advancements 

simplify battery health monitoring and improve reliability. They developed another data-

driven SOH estimation method. They introduced a novel energy-based health indicator (HI). 

This HI focuses on discharge processes that are less controllable. Unlike earlier methods, it 

combines voltage sequences and discharge rates. The inclusion of discharge rates improves 

the HI’s accuracy. The method allows online SOH estimation using offline training datasets. 

Validation on an open dataset reported an average RMSE of 1.23%. This demonstrates the 

effectiveness of this novel approach. These techniques offer significant potential for real-time 

applications. 
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In history, attention in cell chemistries and testing circumstances changed. These 

changes reflect advancements in battery technologies over time. NASA published the first 

public battery dataset in 2008. As new chemistries emerged, focus shifted from LFP to NMC 

and NCA batteries. Both NMC and NCA chemistries suit power tools, e-bikes, and EVs. 

They bargain higher detailed energy, decent power, and extended lifespans. The number of 

cells tested has significantly increased over time. This growth supports the study of complex 

battery interactions. NASA hosts couple of high-throughput battery datasets, totaling 62 cells. 

These datasets enable research on cell chemistry and testing conditions. They are essential 

for advancing LiB technology and diverse applications. 

 

Figure 2.2.Historical Evolution of Dataset of Existing Batteries [16] 

The literature highlights significant advancements in LiB technologies, particularly 

in SOH estimation methods, yet critical gaps remain in developing accurate, scalable, and 

real-time predictive models tailored for electric vehicle (EV) applications. Existing studies 

primarily focus on offline SOH estimation using controlled datasets, which do not adequately 

capture the dynamic and variable conditions of real-world EV operations. While data-driven 

techniques such as Support Vector Regression (SVR) and LSTM models have demonstrated 
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high accuracy, their reliance on laboratory datasets limits their applicability in operational 

EV scenarios. Furthermore, challenges persist in addressing uncontrollable discharge 

processes, with proposed health indicators (HIs) like voltage sequences and discharge rates 

still underexplored in practical contexts. 

Another key gap lies in the adaptability of prediction models to emerging battery 

chemistries such as Nickel Manganese Cobalt (NMC) and Nickel Cobalt Aluminum (NCA), 

which exhibit unique degradation patterns under high energy and power demands. Although 

promising novel HIs have been introduced, their integration into real-world Battery 

Management Systems (BMS) for EVs remains limited. Additionally, current methods often 

require complex data inputs and computationally intensive processes, which may hinder 

scalability and cost-effectiveness, especially for large-scale EV fleets. Moreover, the long-

term reliability of predictive models is affected by aging and performance degradation, yet 

there is insufficient research on how aging impacts prediction accuracy over extended battery 

lifespans. Lastly, real-world validation of these models is constrained by the availability of 

diverse datasets. Many studies rely on publicly available datasets such as those from NASA, 

which lack the variability of actual EV operational conditions, including temperature 

fluctuations, diverse driving behaviors, and environmental factors. Addressing these gaps 

requires the development of novel, real-time predictive models like a Deep Neural Network 

(DNN) that effectively utilize experimental data, as well as voltage, current, temperature, and 

advanced health indicators, to approximation SOH with higher accuracy and practical 

applicability in EV contexts. 

2.2 LITHIUM IRON PHOSPHATE BATTERIES (LIPB) 

Indeed, this is quite advantageous research. Many nations set active implement 

delinquent suppuration for electric vehicle (EV) development, of which lithium li-ion 

batteries (LiBs) form the essential influence source [16]. With a rapidly increasing demand 

for power LiBs, they are also becoming highly adept at making them [17]. However, 

commercial life span of these batteries is in the range of approximately 3 - 6 years; thus, the 

number of retired power batteries is increasing considerably [18]. Further, with the expected 

rapid growth of the EVs market, the enhancement of the importance and economic value 
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associated with battery recycling in the near future will be enhanced [19,20]. Recycling from 

retired power LiPBs is, therefore, strategically important to reduce production costs and 

resource conservation [21,22]. As to the cathode composition, lithium-ion batteries (LiBs) 

may be categorized under LiFePO₄, lithium cobalt oxide (LCO) batteries, lithium manganese 

oxide batteries (LMOB), lithium nickel cobalt manganese oxide batteries (NCMB), and 

lithium nickel cobalt aluminum oxide batteries (NCA). Among these, LiFePO₄ and NCMB 

batteries are the most used forms in the global electric vehicle (EV) industry [23]. 

In the context of an LFP battery, its discharge would include the following processes: 

electrons will break off from the lithium stored in the graphene layers of the negative 

electrode and form corresponding lithium ions. These travel through their separator to the 

positive pole, where they combine with iron phosphates. Going through the same steps as 

discharging, charging reverses that and lithium is blown up from the iron phosphate at the 

positive electrode, where it forms lithium ions and electrons in return traveling toward the 

negative electrode where it will reintegrate into the graphene layers. Some electrochemical 

reactions involved in these processes are shown in the table 2.1 below [24]. 

Table 2.1 

Lithium iron phosphate (LiPB) battery during Electrochemical reactions [24] 

Electrode Electrochemical Reactions 

Anode LinC6 â†’ Li0C6 + nLi+ + neâˆ’ 

Cathode Lim âˆ’ nFePO4 + nLi+ + neâˆ’ â†’ LimFePO4 

Overall LinC6 + Lim âˆ’ nFePO4 â†’ Li0C6 + LimFePO4 

 

Lithium polymer batteries are quite common today because they have better thermal 

stability and cycling performance, are nonpoisonous, and are inexpensive. The increase in 

use has indeed resulted in the disposal of a huge number of spent batteries. Data as of 2020 

from the CIAPS, for instance, indicated that NCM had accumulated total installed capacity 

of 61.1% and LiPB of 38.3% in China, by which time this figure had already increased 

considerably as a result of further development [25]. Based on installation data released, 

LiPB accounted for more than 51.7% of total installed capacity in vehicles by 2021, marking 

not just an improvement but surpassing NCM batteries as well [25]. LiPB batteries are 

popular in medium- and low-range vehicles because they extend battery life, have lower 
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costs, and are more environmentally friendly than NCM batteries [26,7]. LiPB battery main 

components are the shell, cathode electrode, anode electrode, electrolyte, and organic 

separator [27]. Structurally, the crystal framework of liPB batteries is formed by unit cells 

consisting of four LiFePO4 units that change from one LiFePO4 phase to a new LiFePO4 

phase upon lithium removal [28]. The charge-discharge mechanism of LiPB batteries consists 

of two different phases: LiFePO4 and FePO4. In the charging process, LiFePO4 de-

lithificates to convert into FePO4, while, in the discharging process, lithium ions re-embed 

into FePO4 to revert it to LiFePO4 [29]. This is how efficient energy storage and discharge 

become one of the reasons that make LiPB batteries a widely accepted devices choice in 

different applications. 

Following the research conducted by [30] they evaluated on 160 Ah LiFePO₄ 

prismatic cells, evaluating their capacity, cycle life, and real-world road test performance for 

electric vehicle (EV) applications. The primary aim was to compare the performance of 

LiFePO₄ cells with LiCoO₂ cells, which had been previously deemed unsuitable for EV use. 

The capacity tests revealed that the LiFePO₄ cells maintained their full 160 Ah capacity, even 

after 50 cycles of testing. Road tests were performed on both types of cells under four ambient 

temperatures (-20°C, 0°C, +20°C, and +40°C), with each temperature condition tested four 

times. The results demonstrated that LiFePO₄ cells outperformed LiCoO₂ cells across all 

testing parameters, leading to the conclusion that LiFePO₄ cells are better suited for EV 

applications and should be considered in future designs.  

Following the study by [31] they conducted a detailed analysis of waste LiPB battery 

treatment methods, emphasizing their impact across five critical dimensions: resources, 

energy, environment, economy, and society. The study highlighted that recycling waste LiPB 

batteries is vital for addressing the environmental hazards posed by their toxic components. 

Recycling also allows for the recovery of valuable materials, improving resource efficiency 

and reducing the demand for raw material extraction. Additionally, the study underscored the 

broader benefits of recycling, including fostering sustainable energy development, generating 

economic gains, supporting social progress, and creating employment opportunities. 
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Consequently, the recycling of discarded LiPB batteries is not only crucial but also inevitable 

for sustainable growth in the energy sector.  

Following the work of [32] they proposed an innovative fast-charging strategy for 

high-power LiFePO₄ cells and conducted comprehensive evaluations to assess its impact on 

capacity fade, cycle life, and energy efficiency. The research adhered to the performance 

standards outlined by the U.S. Advanced Battery Consortium (USABC). The study's findings 

indicated that the fast-charging approach caused minimal degradation in the cells while 

maintaining high energy efficiency. Furthermore, the results showed that the observed 

performance losses were predominantly attributed to capacity fade rather than an increase in 

internal resistance. This underscores the method's practicality and its ability to preserve cell 

durability and efficiency, making it appropriate for real-world applications. 

Another study structured by [33] they showcased the development of a thermally 

modulated lithium-ion phosphate battery (LiPB) designed to address range anxiety in electric 

vehicles (EVs). The battery provides an adequate cruising range per charge, with the 

capability to extend the range further with a 10-minute recharge under any climate condition. 

This thermally modulated battery operates at a stable working temperature of approximately 

60°C, regardless of ambient conditions, making it a versatile powertrain solution for mass-

market EVs. The study also revealed that low-surface-area graphite can be used when 

operating at high temperatures for brief periods, which could increase the EV's range to more 

than two million miles. These developments highlight the important breakthroughs in battery 

technology meant to improve the sustainability and performance of EVs. 

Reference [34] considered a sustainable, scalable approach to selective lithium 

leaching from spent LiFePO₄ batteries. By optimally adjusting the oxidative state and proton 

activity of the leaching solution, it yielded very high lithium recovery efficiency while being 

selective to lithium. The research has revealed mechanisms for the selective reaction, and 

rate-controlling step in leaching kinetics. From the laboratory scale, continued into the 

development and simulation of a pilot batch process. Paved progressive mileages with regard 

to environmental friendliness and caution feasibility in accordance with the tenets of green 

chemistry. The process allowed for high-purity Li₂CO₃ (99.95 wt%) to be recovered at very 
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high recovery rates, and minimal environmental impact. Notably, this approach serves to 

boost the environmental sustainability of the LiB industry as well as increase recycling 

efficiency of metals from spent LiFePO₄ batteries. The research emphasizes the possibility 

of integrating green chemistry principles into battery recycling processes to promote circular 

economy practices and resource efficiency in the energy sector. 

Despite significant advancements in LiPB for EVs, gaps persist in integrating 

predictive models for battery health management. While studies like [30] and [32] have 

examined performance and cycle life, limited research focuses on real-time SOH predictions. 

The present study introduces a Deep Neural Network (DNN) for SOH estimation using 

voltage, current, and temperature data, but its integration with recycling strategies, such as 

those by [34] and [31], remains unexplored. Predictive SOH modeling could optimize end-

of-life recycling and material recovery efforts. Additionally, fast-charging impacts on SOH, 

as noted by [32], require predictive analytics to prevent degradation. Incorporating SOH 

models with thermal modulation data and recycling processes offers an opportunity for 

sustainable and efficient battery management in the EV sector. 

2.3. MODELING OF LIB 

Reference [209] provides a detailed categorization of methods used to estimate the 

State of Health (SOH) of a system, likely focusing on battery systems. These methods are 

divided into two primary categories: Experimental Methods and Model-Based Methods, each 

offering distinct approaches for health estimation. Under Experimental Methods, there are 

two subcategories: Direct Measurement Methods and Indirect Analysis Methods. Direct 

methods involve physically testing the system’s performance, such as Capacity Tests to 

measure charge storage, Impedance Spectroscopy to analyze the system's impedance, Cycle 

Counting to track charge-discharge cycles, and Coulomb Counting to measure the total 

charge flow. These methods provide direct insight into system health by monitoring 

fundamental parameters. In contrast, Indirect Analysis Methods offer techniques that infer 

health based on system behavior. This includes CC-CV Charging, a method that tests the 

system under constant current and voltage to assess performance indirectly, and Incremental 

Capacity Analysis, which examines small, incremental changes in capacity over time to 
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detect degradation patterns. On the other hand, Model-Based Methods leverage mathematical 

and computational models for estimating SOH. These are split into two subcategories: 

Adaptive Filtering Methods and Data Driven Methods. Adaptive Filtering Methods include 

approaches like Kalman Filters, Particle Filters, and Least Squares, all of which adapt model 

parameters based on incoming data to refine SOH predictions. These techniques are 

particularly useful for dynamic systems where the state is continuously evolving. In contrast, 

Data Driven Methods focus on leveraging large datasets and machine learning techniques to 

estimate SOH. This includes methods like Fuzzy Logic, which allows for dealing with 

uncertainties in system behavior, Neural Networks, which use deep learning models for 

predictive analysis, and Support Vector Machines, which perform classification and 

regression to estimate SOH. Together, these methods provide a comprehensive framework 

for assessing system health, ranging from simple experimental tests to advanced model-based 

predictions, offering flexibility in terms of complexity and accuracy based on the specific 

application. 
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Figure 2.3 Different Methods of Measurement of SOH [209] 

2.3.1 FRACTIONAL-ORDER CALCULUS (FOC) 

First developed by Leibniz in 1695 when he introduced the non-integer orders of 

derivatives and integrals, fractional calculus has only recently peaked the interest of physical 

systems, specifically concerning mass transport, diffusion dynamics, memory, and hysteresis 

effects. Research indicates that modeling with fractional-order gives better results in 

representing real systems as permanent magnet synchronous motors and flexible robots 

whose control design relies on viscoelastic principles [36]. The improvement is attributed to 

the ability of the FOC to model distributed parameter systems, which closely approximates 

LiBs' characteristics. The important fractional-order derivatives are also converted into 

numerical implementation of FOC that considers approximating them for integer-order 

derivatives or state functions because of the necessity to apply FOC for practical applications. 

Apart from the definitions by Grünwald-Letnikov, definition criteria of fractional-order 
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derivatives include those of Riemann-Liouville and Caputo formulations. In this work, the 

definition used is that of Grünwald-Letnikov since it is the simplest definition that can readily 

be fitted within Kalman filtering techniques without much encumbrance for the subsequent 

integration with numerical models to give a more accurate presentation of the dynamic 

behavior of systems [37]. 

 

Figure 2.3.Charging effect of Lithium Li-Ion Battery [41] 

Figure 2.3 actually depicts a skeptical view of an exponential map showed as a very 

versatile response of the complex impedance spectra of a Lithium Ion Battery with the x-axis 

portraying the real components of the impedance Re(Z) and y-axis negative imaginary 

components -Im(Z). These curves can generally reflect portions that represent an ongoing 

process; every segment shows different electrochemical processes in the battery. The extreme 

low-frequency right end of the graph reflects ionic diffusion and transport in the electrolyte 

and also in the materials of the electrodes. This indicates Warburg impedance, which is 

dominant at lower frequencies since lithium doesn't have fast diffusion. The two semisections 

towards the higher frequencies refer to the charge transport-reaction and double-layer 
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capacitance effects at the electrode-electrolyte interface: transfer-control resistance (Rct) and 

formation of the double-layer at the interface between which there interaction occurs between 

ions and electrode surfaces. In the leftmost end of the plot, that is, in the highest frequencies, 

the inductive effect dominates. It is due to inductances generally being parasitic current 

collectors, electrical connections, or other elements of the circuit. It shows the direction of 

increment in frequencies from the low-frequency domain onto the right, to the high one on 

the left. These different segments in the plot also represent different but multiplex processes 

within the battery towards which researchers can move closer to evaluating the important 

performance, degradation, as well as impedance parameters. These parameters help 

understand the health status and behavior of the battery. 

2.3.2 FRACTIONAL-ORDER MODELING FOR LIBS 

EIS is a powerful tool for probing LiBs and offers a comprehensive look at their 

internal action through impedance measurements over a wide frequency range. EIS is 

performed by applying a sinusoidal current signal of known amplitude to the battery and 

accurately measuring the voltage response across the battery terminals. The complex 

impedance, Z* is then obtained from the ratio of measured voltage to applied current. In order 

to obtain a complete impedance profile, measurements are made at different frequencies and 

plotted typically using a Nyquist plot showing the real vs. imaginary component of 

impedance as a function of frequency.   

Figure 2.4 illustrates the relationship between the real and imaginary components of 

impedance, was conducted by [210]. This experiment likely involves impedance 

spectroscopy, where the real part of the impedance (Z real) represents resistance, and the 

imaginary part (Z imaginary) reflects reactance. The data shows a non-linear trend, with an 

initial stable region followed by a sudden increase in the impedance values, which may 

indicate a change in the system's behavior, such as a transition to a dominant capacitive or 

inductive effect. The reference [210] provides the source for this experimental setup and the 

data collected. 
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Figure 2.4.Nyquist diagram interpretation [210] 

The Nyquist plot for a typical LIB, given in figure 2.4, can be divided into three major 

regions, namely low, mid, and high-frequency regions: the low-frequency region appears as 

a straight line of constant slope due to the diffusion of lithium ions within the electrodes; the 

mid-frequency range is characterized by a reduced semi-circle, which indicates the 

involvement of charge transfer and double-layer capacicitance phenomena [36]. The most 

important parameter displayed in Nyquist plot is the phase difference, determined by slope 

of the low-frequency line and the form of semi-circle in the mid-frequency region. A pure 

capacitance shows constant phase shift π/2 in accordance with plate hypothesis using battery 

electrodes according to [37].  

Traditionally, second-order equivalent circuit models, or ECMs, make use of RC 

branches with simple capacitances so as to mimic the dynamics of Li-ion batteries. This 

approach does not effectively replicate the semi-circle shapes in the impedance spectra in the 

mid-frequency zone. This would be overcome by using a form of fractional-order capacitor 

called Constant Phase Element (CPE) which introduces a phase shift of -απ/2, where α ranges 

between 0 and 1. This feature allows the model to better capture non-uniform boundaries and 

distributed intercalation/de-intercalation processes within porous electrodes [38,39]. 

Allowing the incorporation of CPE into ECMs greatly boosts the exercise of the ECM in 
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accurately modeling LIBs. The manpower and presentation of a CPE class as avowed [40] 

would constitute a solid foundation for interpreting these complex electrochemical dynamics. 

Hence, the equivalent circuit model with CPEs would be followed in this work to take LiB 

modeling to a higher point in accuracy and consistency. 

Z(s) = 1/(Csα) 

Where Z is the complex impedance, C is a constant representing the main capacitance 

effect, and s is a complex variable. 

 

Figure 2.5.Fractional Order Modeling [41] 

Figure 2.5 illustrates a Fractional Order Equivalent Circuit Model (FO-ECM) used 

for accurately representing the electrochemical behavior of LiB. This model integrates both 

traditional circuit components and fractional-order elements, offering enhanced precision in 

apprehending the multifaceted changing aspects of battery systems. The circuit begins with 

R₀, representing the internal ohmic resistance, which accounts for the immediate voltage drop 

caused by current flow through the electrolyte, electrodes, and internal components. 

Following this, a parallel combination of R₁ and CPE₁ (Constant Phase Element) models the 

charge transfer resistance and the double-layer capacitance at the electrode-electrolyte 
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interface. The use of a CPE, instead of an ideal capacitor, captures the frequency-dependent 

behavior of the interface, reflecting the non-ideal capacitive characteristics observed in real 

batteries. 

Further along the circuit, another parallel combination of R₂ and CPE₂ represents 

slower processes such as ion diffusion and mass transport effects within the battery. These 

elements contribute to modeling the long-term electrochemical phenomena affecting battery 

performance. The model also includes the Open Circuit Voltage (OCV), which represents the 

battery's voltage in a no-load condition, and V₀, which denotes the output voltage under 

operating conditions. The current I₀ flows through the circuit, driving the system’s overall 

dynamic response. This fractional-order approach provides significant advantages over 

traditional integer-order models by incorporating the frequency-dependent properties of real-

world batteries, especially through the use of CPEs. It allows for more accurate modeling of 

processes like charge transfer, diffusion, and mass transport, making it highly suitable for 

applications such as SOH estimation, impedance spectroscopy, and predictive maintenance 

of batteries in various industrial and energy storage systems. 

The application of fractional-order calculus (FOC) and fractional-order modeling has 

demonstrated significant potential in improving the accuracy of LiB models, particularly in 

capturing the complex internal processes and dynamics of LIBs. Techniques such as 

Electrochemical Impedance Spectroscopy (EIS) provide detailed insights into the battery's 

behavior across frequency domains, while fractional-order capacitors (CPEs) address 

limitations in traditional second-order equivalent circuit models (ECMs). Despite these 

advancements, critical gaps remain in the context of forecasting battery health for electric 

vehicles (EVs). While FOC-based approaches offer theoretical accuracy in modeling LIB 

behavior, their application in real-time SOH estimation for EVs remains underexplored. The 

inherent complexity of fractional-order models and their reliance on sophisticated 

computational techniques, such as Kalman filtering, pose challenges for practical 

implementation in dynamic EV environments. 

Additionally, existing studies primarily focus on characterizing battery impedance 

and internal dynamics through controlled experimental setups. These approaches often lack 
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integration with real-world operational data, such as voltage, current, temperature, and 

evolving health indicators, which are crucial for SOH prediction in EVs. The reliance on 

parameters like Nyquist plots and impedance spectra also limits their scalability for large-

scale deployment in EV fleets. Furthermore, fractional-order models, while effective in 

explaining charge transfer and diffusive properties, have not been directly linked to advanced 

data-driven techniques, such as Deep Neural Networks (DNNs), that can leverage diverse 

experimental data for predictive modeling. Finally, there is limited research bridging the gap 

between fractional-order modeling and the development of real-time, scalable, and cost-

effective SOH estimation models for EVs. Addressing this gap through a novel DNN model 

that utilizes experimental data, including voltage, current, temperature, and health indicators, 

offers a promising solution to enhance prediction accuracy and practical applicability in 

dynamic EV environments. 

2.3.3 ADVANCED ALGORITHMS FOR SOH ESTIMATION 

With the rapid expansion of computational models and machine learning algorithms 

(MLA), several advanced methods have been introduced to estimate the SOH more 

accurately and in real-time. Among these, Kalman filtering (KF) and its variants, such as the 

unscented Kalman filter (UKF), are popular choices. Kalman filters provide an optimal 

solution to approximation the state of a system by combining noisy sensor data with a 

mathematical model. In the context of LiB, KF can estimate the SOH by incorporating 

charge-discharge data, temperature, and other operational parameters into a state-space 

model [109]. UKF, a more advanced variant of the Kalman filter, is particularly effective in 

non-linear systems, such as those found in battery modeling, where the battery’s performance 

does not follow linear dynamics. The particle filter (PF) is another promising approach used 

for SOH estimation. Unlike Kalman filters, which rely on linear models, particle filters can 

handle highly nonlinear and non-Gaussian systems by using Monte Carlo sampling methods 

to approximate the distribution of the system states. Particle filters have been successfully 

functional to estimate SOH in LiB, particularly in dynamic environments where the battery's 

health changes rapidly due to varying load conditions [146]. This method is robust against 
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measurement noise and can provide reliable estimates even when only limited data is 

available.  

2.3.3.1 KAMLAN FILTERS 

Kalman Filtering (KF) is a widely employed recursive algorithm that optimally 

estimates the state of a dynamic system by integrating sensor data, potentially afflicted by 

noise, with a mathematical model. It functions within a linear state-space paradigm, seeking 

to minimize the mean squared error of state estimation. In battery management, Kalman 

Filtering (KF) has been widely employed for state-of-health (SOH) estimation by 

incorporating multiple operational parameters, including charge-discharge cycles, voltage, 

current, and temperature [109]. The algorithm's capacity for recursive state estimate updates 

renders it appropriate for real-time applications. Nonetheless, numerous battery systems 

demonstrate nonlinear characteristics, particularly regarding performance fluctuations over 

time. To mitigate these non-linearities, sophisticated adaptations of the Kalman Filter, 

including the Unscented Kalman Filter (UKF), have been created.  

UKF is especially proficient for systems exhibiting nonlinear dynamics, as it employs 

a selection of meticulously chosen sample points, referred to as sigma points, to approximate 

the nonlinear transformations of the system. This approach yields more precise state 

estimations than the conventional Kalman Filter when the system's behavior markedly 

diverges from linearity [109]. The UKF is particularly advantageous for modeling battery 

performance under diverse conditions, including variable loads, temperatures, and charge-

discharge cycles. A prevalent method for managing non-linear systems is the Extended 

Kalman Filter (EKF). The EKF linearizes the system through a first-order Taylor expansion 

to approximate nonlinear behavior [109]. Although effective, the EKF may encounter 

inaccuracies when the system displays pronounced nonlinear characteristics.  

The particle filter (PF) algorithm can integrate components of the EKF or UKF to enhance 

performance. In the context of PF, the importance density function is frequently derived using 

the EKF. This entails updating the sampled particles using the EKF algorithm, resampling 

them according to their revised weights, and producing new particles via the importance 

density function. Conversely, the UKF can be integrated into the PF framework by utilizing 
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its unscented transformation, which circumvents linearization and incorporates higher-order 

terms. This method guarantees that the mean and covariance estimations retain exceptional 

precision, even in nonlinear systems. The UKF updates particles by computing their mean 

and variance, which are subsequently employed in the following iterations of the particle 

filter.  

The Regularized Particle Filter (RPF) algorithm employs an enhanced resampling 

technique to mitigate the problem of particle diversity degradation, a prevalent issue in 

conventional particle filters. By augmenting particle diversity during resampling, the RPF 

preserves the accuracy and robustness of the particle filter, rendering it especially effective 

for applications involving intricate and nonlinear battery dynamics. Advanced filtering 

techniques, such as UKF, EKF, and RPF, provide effective means for enhancing the accuracy 

and reliability of State of Health assessment in LiB.  

2.3.3.2 LINEAR REGRESSION (LR) 

LR is a statistical method employed to forecast a target variable by modeling it as a 

weighted amount of input features. The linear nature of the relationship between the inputs 

and the target makes the model straightforward to interpret. This simplicity has made linear 

regression a widely used method among statisticians, computer scientists, and professionals 

dealing with quantitative analysis across various domains. LR model for the population can 

be represented by  

yi = β0 + β1x1 + "; " belongs to N(0; σ2) 

Since the equation represents the population distribution, the regression model 

derived from a sample can be expressed as follows. LR model is used to examine and quantify 

the impact of one independent variable on a dependent variable. It estimates the relationship 

between these variables based on observed data, allowing predictions and insights about how 

changes in the IV influence the DV.  

y^
i = β^0 + β^

1x1 + "; " belongs to N(0; σ2) 
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The goal of LR is to determine regression coefficients that minimize the sum of 

squared errors (SSE). Ang and Paw [147] showed that a linear regression model trained on 

discharge voltage data can estimate battery SOH with a root mean square error (RMSE) of 

less than 12%. However, this technique has limitations, as it requires a complete discharge 

voltage profile until the battery reaches the end of its SOC for SOH estimation. This means 

that the SOH can only be estimated after a full discharge cycle has been completed. 

Consequently, the SOH estimate provided by this model reflects the battery's condition based 

solely on the most recently completed discharge cycle. 

This delay in SOH estimation poses two significant challenges. First, in scenarios 

where there is a prolonged storage period between the previous and current usage cycles, the 

SOH estimated from the last discharge cycle may no longer be accurate. During storage, the 

battery could experience significant degradation due to suboptimal storage conditions [56]. 

Second, the need for a complete discharge profile necessitates the battery to be fully charged 

and then fully discharged for data collection, which limits the method's practicality in real-

world engineering applications. Batteries in operational systems, such as electric vehicles 

(EVs), often do not undergo full charge or discharge cycles in every use case [119,97]. 

LR remains one of the simplest and most frequently used MLM for SOH estimation. 

This statistical method accepts a linear relationship between the dependent variable (e.g., 

battery health) and one or more independent variables, such as voltage, current, temperature, 

and cycle count. Despite its simplicity, linear regression is effective in identifying trends 

when the relationships between variables are approximately linear. In battery management 

systems, it can be applied to model the deprivation of key battery parameters, such as capacity 

and internal confrontation, using operational data [41]. 

The primary advantage of LR lies in its ease of implementation and interpretability, 

making it suitable for situations where a quick and understandable model is needed. However, 

its limitation is that it may not perform well in complex scenarios where the degradation of 

battery health involves nonlinear interactions among variables. For instance, when external 

factors like temperature fluctuations and high charge-discharge cycles affect the battery’s 

SOH, linear regression may fail to capture the intricate relationships, leading to inaccurate 
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predictions [126]. Nonetheless, linear regression can serve as a baseline model and is often 

used in combination with more advanced techniques. 

2.3.3.3 SUPPORT VECTOR REGRESSION (SVR) 

The SVR algorithm proves to be one among the most effective techniques for framing 

complex nonlinear relations in inputs and corresponding outputs and hence is well apt for 

SOH estimation. The main idea behind SVR is the concept of a non-linear mapping function 

applied on the input data into a much larger dimensional space wherein the input data can be 

separated using linear regression. This is done through a specified kernel function of the 

mapping, finding the optimal hyperplane, the support vector, that maximizes the margin 

between the data points in that higher-dimensional space. 

For an illustration, let us consider a battery dataset (x1,y1),...,(xi,yi)(x_1, y_1), ..., 

(x_i, y_i)(x1,y1),...,(xi,yi): such that xi∈Rnx_i \in R^nxi∈Rn refers to the regional capacity 

for the ith cycle, while yiy_iyi refers to the SOH value or the targeted output. This is how the 

SVR function is mathematically defined in this scenario to predict the relationship between 

input structures and the SOH, due to its ability to harness complex nonlinear interaction 

effects. 

f(xi) = wT φ(xi) + b 

Where output values are denoted by f(xi), other form of mapping function nonlinear 

is represented by φ(xi), while w and b are the unknown parameters. Objective of both 

regressions is to make output of model as much similar the output 'yi'. Support Vector 

Regression (SVR) is an extension of Support Vector Machines (SVM) in the field of 

regression analysis. The basic idea behind SVR is to find such function which can represent 

the data in such a way that the margin of error remains small. This approach works 

particularly well for high dimensional data as well as on both linear and nonlinear 

relationships through kernel functions [57]. Hence, this technique is very useful for 

estimating battery SOH from information regarding health indicators of batteries in 

functioning conditions like charge-discharge cycles and environmental factors. 
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SVR mainly advantageous when dealing with small datasets, as it is less prone to 

overfitting than other models [84]. Moreover, by adjusting the kernel function (e.g., radial 

basis function or polynomial kernel), SVR can handle nonlinearity in battery degradation 

patterns effectively. A study by [51] demonstrated the application of SVR to forecast the 

capacity degradation of LiB under various operating circumstances, achieving higher 

prediction accuracy than traditional methods. However, SVR’s primary drawback is the need 

for careful selection of hyperparameters, which can be computationally luxurious and time-

consuming. 

2.3.3.4 FEED-FORWARD NEURAL NETWORK (FFNN) 

The feedforward neural network, a species of the neural networks, has input and 

output layers as well as several hidden layers, whose neurons have learnable weights and 

biases. Each neuron in a layer, other than the input layer, connects to all neurons of the 

previous layer, with equal weight for every attachment within each layer. Hence, the weights 

comprise all knowledge learnt by the network. Now, when we consider an input layer 

consisting of features regarding SOH, we will have on the other side the output concerning 

SOH; for the example at hand, it would be the capacity of the battery. The input layer size 

corresponds to the entry data. In contrast, the hidden-layer structures and the number of 

neurons in them are aspects of the model hyper parameters that will be fine-tuned during the 

exercise called validation. Most commonly, these are nodes, which will only feed forward 

and will not participate into loops or memories. With respect to estimating SOH for batteries, 

this input layer is expected to contain features referring to SOH, and on the other side, the 

output would refer to SOH, which, in this case, is the capacity of the battery. 

An FFNN, a kind of artificial neural network (ANN), is planned to learn complex and 

nonlinear relationships within data through techniques like backpropagation and gradient 

descent. This architecture is increasingly utilized for battery SOH estimation because of its 

ability to capture detailed and intricate patterns in battery behavior (Bishop, 2006). By 

analyzing large datasets containing historical battery performance metrics—such as charge-

discharge cycles, voltage, temperature, and current—FFNNs can predict key battery metrics 

like remaining useful life (RUL) and capacity fade [148]. 
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One of the key strengths of FFNNs is their capability to simplify effectively to novel, 

unseen data, which is critical for SOH estimation given the variability in battery data due to 

changing operating conditions over time. However, FFNNs also present challenges. They 

require substantial amounts of data to prevent overfitting and ensure accurate predictions, 

and their training process can be computationally intensive, particularly for large networks 

with many layers and parameters. Despite these challenges, FFNNs continue a influential 

tool for battery management, providing flexible and robust solutions for predicting SOH and 

RUL in dynamic environments. 

2.3.3.5 DECISION TREE REGRESSION (DTR) 

Decision Tree Regression organizes data in a hierarchical tree-like form, starting from 

the root node, branching off to leaf nodes where final predictions can be made based on 

analysis of residuals. Each node's impurity is measured using measures like sum of squared 

residuals or variance [149]. In this non-linear machine learning, the input space is divided 

into smaller regions recursively using input feature values. Each node in the tree signifies 

one decision rule, while leaf nodes represent the predicted output values. In addition, its 

interpretability and intuition allows decision trees to be used in practice, which includes 

applications like battery health monitoring where the opacity of the model is critical. So much 

so that they are able to cater non-linearity which can provide a clear way of decision-making 

when predicting and interpreting battery performance. 

Decision trees are widely utilized in battery SOH estimation to predict metrics like 

remaining capacity or state of health based on various features, including charge-discharge 

cycles, temperature, and charge rates. A significant advantage of decision tree regression is 

its versatility, as it processes both definite and constant data effectively. However, when 

decision trees become excessively deep, they are prone to overfitting, which negatively 

impacts their ability to simplify to original, hidden data. To address this issue, pruning 

techniques are commonly used, reducing the tree's complexity and improving performance. 

Despite the peril of overfitting, decision trees remain a popular method for battery health 

approximation due to their straightforward construction and ease of execution [138]. 
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2.3.3.6 RANDOM FOREST REGRESSION (RFR) 

Using a lot of decision trees, Random Forest Regression (RFR) is used to develop 

approximations. And it doesn't use a single tree; it combines the outputs of many trees to 

come to the final output. An assessment of the error that has gone into the mean squares might 

also be used in the analysis of the data splits at each node in the forest [149]. It minimizes 

overfitting and improves the accuracy of predictions by training each decision tree on a 

randomly selected portion of the datasets. Henceforth, the final prediction is made up of all 

the trees in the ensemble. It is specially valid for estimating SOH in batteries since it handles 

noisy inputs and captures the complex, nonlinear interactions between health parameters and 

the operating conditions. Its capability of generalizing different data sets makes Random 

Forest Regression a suitable method for battery performance analysis and SOH prediction 

under various scenarios. 

Random Forest has been applied in various studies to estimate battery performance 

pointers such as volume degradation and interior confrontation over time. A study by [130] 

demonstrated the use of Random Forest Regression to predict the SOH of LiB in electric 

vehicles, achieving high prediction accuracy in both laboratory and real-world conditions. 

The model was able to handle a huge number of input features and capture the nonlinear 

relationships between them. Random Forest also offers the advantage of being less prone to 

overfitting compared to individual decision trees. However, it requires significant 

computational resources when the number of trees is large, and the model can become less 

interpretable as the quantity of trees upsurges. 

2.3.3.7 K-NEAREST NEIGHBOR REGRESSION 

K-Nearest Neighbor (KNN) Regression is an instance-based learning algorithm that 

predicts outcomes by averaging the values of the kkk nearest neighbors in the training data. 

The algorithm determines the distance between a new data point and each training point, 

using metrics such as Euclidean distance to identify the closest neighbors. Based on the 

selected kkk value, the algorithm computes the output by considering the nearest data points 

[149]. Recently, KNN has gained attention for LiB life estimation due to its ability to model 

complex, nonlinear relationships and familiarize to varying battery circumstances [150]. 
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KNN does not assume any specific data distribution, creation it particularly suitable 

for battery health estimation, where the underlying patterns can be highly variable. In the 

context of SOH estimation, KNN can predict the remaining capacity or health status of a 

battery by comparing historical data—such as voltage and current readings—that resemble 

current operating conditions. The algorithm's simplicity and ease of implementation, as it 

does not require a training phase, are among its advantages. However, KNN has limitations, 

including computational expense at prediction time, especially for large datasets, as it must 

calculate distances between the query point and all training points. Additionally, KNN is 

sensitive to noisy data, and its presentation depends heavily on the choice of kkk and the 

distance metric used [130]. 

The growing acceptance of EVs has highlighted the necessity for efficient and 

accurate methods to estimate battery SOH, a critical factor in ensuring optimal battery 

performance and longevity. While machine learning techniques, including linear regression, 

SVR, FFNN, decision trees, random forests, and KNN regression, have been applied to SOH 

estimation, these methods face several challenges. Many struggle to get the nonlinear and 

dynamic interactions amid battery health parameters such as voltage, current, temperature, 

and charge-discharge cycles. Linear regression, for example, is unable to model complex 

relationships, while methods like SVR and FFNN are often computationally intensive, 

sensitive to hyperparameter tuning, and reliant on extensive datasets. 

Furthermore, traditional SOH estimation techniques often lack the ability to provide 

real-time predictions and are less robust against variations in battery operating conditions, 

limiting their practical applicability in real-world EV scenarios. Despite significant 

advancements, there remains a need for a model that is both highly accurate and 

computationally efficient, capable of leveraging diverse experimental data for reliable SOH 

estimation. This study addresses these gaps by introducing a novel Deep Neural Network 

(DNN) model. By integrating experimental data, including voltage, current, temperature, and 

other health indicators, the proposed DNN model offers a robust and scalable solution for 

precise SOH prediction in EV batteries, overcoming the limitations of existing approaches. 
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2.3.4 EQUIVALENT CIRCUIT MODELS FOR LIB (ECM) 

In fact, it is very important to model lithium-ion battery for better performance and 

safety in applications extending from electric vehicles to grid energy storage systems. The 

equivalent circuit models normally employ integrity of a resistor-capacitor (RC) network 

which simulates most internal dynamics of a lithium-ion battery, including internal 

confrontation, actual capacitor, or equivalent voltage potential. The most marketable RC 

network model was first industrialized by SAFT using the PSpice software and later extended 

for MATLAB, an ADVISOR stage [46]. The origin of this model is the Thevenin equivalent 

consisting of a number of RC networks connected in series to represent the fast response time 

characteristics of a battery. 

 

Figure 2.6.ECM diagrams, (a) first-order (1RC), and (b) second-order (2RC) [24] 

Figure 2.6 illustrates a first-order ECM (1RC), which contains of key components 

such as UCV, resistors (Ro, RTh) representing ohmic and divergence confrontation, and a 

capacitor that models the battery’s transient behavior during charging and discharging 

processes. The second-order equivalent circuit model (2RC), also depicted in Figure 2.5, is a 

dual polarization (DP) model that offers a more detailed representation of polarization effects, 

including electrochemical and concentration polarization, independently [42]. The 2RC 

model includes internal resistance (Ro) and two divergence confrontations, Rpa and Rpc, 

which represent the resistances associated with electrochemical and absorption polarization, 

respectively. Additionally, the model incorporates effective capacitances, Cpa and Cpc, to 
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represent the battery's transient charge/discharge response and polarization effects. Factors 

like computational efficiency, model accuracy, and parameterization are critical for an 

effective battery management system (BMS) [43]. While adding RC networks up to a fifth-

order model can improve accuracy, increasing the complexity beyond the second-order 

model often leads to diminishing returns in terms of computational efficiency versus accuracy 

[67]. 

Hysteresis is a common phenomenon in modern battery chemistries, influencing the 

open-circuit voltage (OCV) during charging or discharging. It also happen in sluggish 

conditions, referred to as "zero-current hysteresis," where the OCV response may vary by up 

to 50 mV or more [44]. The extent of hysteresis is prejudiced by aspects such as the battery's 

relaxation time during charging or discharging, its chemistry, and its SOC. Hysteresis effects 

are particularly pronounced in lithium iron phosphate (LFP) chemistries and in specific SOC 

regions, such as 0–20% and 80–100% [45]. To improve accuracy in SOC estimation, OCV-

based estimation models integrate a dynamic hysteresis model with an n-RC equivalent 

circuit model (ECM). For this purpose, specific circuit elements are introduced into the n-th-

order RC model to account for hysteresis, forming n-th-order RC models with hysteresis [24]. 

Batteries with significant hysteresis can experience challenges when using OCV-based SOC 

estimation techniques [46]. This study focuses on the first-order ECM with hysteresis. 

Following the research by [24] conducted experiments to evaluate the presentation of 

three equivalent circuit models (ECMs)—1RC, 2RC, and 1RC with hysteresis—across four 

LiB chemistries: LFP, NMC, LMO, and NCA. The findings demonstrated that all three 

models could effectively simulate the behavior of these battery chemistries with minimal 

errors. The study also revealed that ECMs performed more accurately under dynamic current 

profiles than under non-dynamic conditions. For LFP and NCA chemistries, the 1RC with 

hysteresis model provided the best results, while the 1RC model was the most appropriate 

for NMC and LMO chemistries. These results highlight the need to match specific ECMs to 

the appropriate battery chemistry in real-world applications, emphasizing their importance in 

battery management systems (BMS) and practical battery usage. 
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 The works by [47] presented a generalized and equivalently inspirited circuit model 

for lithium iron phosphate batteries. It would rely solely on the nominal capacity given in the 

cell datasheet. Thus, the new zeroth-order generalized model can be constructed using data 

from previously characterized cells. By applying this new method, experimental time and 

costs will diminish and achieved a reduced testing matrix. The excellent model not only 

captures electrical behavior for low-energy, but also for high-energy cells, with error 

remaining consistently below 2% in all cases without reference to detailed knowledge 

concerning the dependence of electrical parameters towards SOC, c-rate, and temperature. 

The cell internal resistance will be characterized concerning a new characteristic coefficient, 

which is typical of this specific LiB chemistry, fitted to an exponentially temperature-

dependent function, which has physical significance, as internal resistance is expected to 

have Arrhenius-type dependence on temperature under these conditions. Therefore, this 

model is more straightforward in construction and more versatile in the application it assumes 

for control, while at the same time serving offline analysis. 

 Works of [48] critically evaluate ECM modeling methodology and PBM using a case 

study of 60 Ah prismatic graphite/lithium iron-phosphate batteries. The advantages of ECM 

are as follows: CPU speed, ease of calibration, and accuracy, within its calibration range, for 

variable current profiles. Accuracy for ECM becomes worse at the higher currents, especially 

when the current pulse lasts for a long duration, and even much reduced when the test moves 

beyond the calibration range in the charging scenarios of more than 1C. While the PBM keeps 

its accuracy away from the calibration dataset, it needs the estimate of several physical 

parameters against an extremely tiring calibration process and long computational times 

during variable current conditions. Under the range of conditions studied (with current levels 

from C/3 to 2C at temperatures from 10 °C to 40 °C), average voltage prediction errors were 

found to be 51.5 mV for ECM and 19.3 mV for PBM, while, in terms of temperature 

prediction, they were 0.9 °C for ECM and 0.4 °C for PBM. The study by [49] proposed 

various ECM: like Rint model, RC model, Thevenin model, or PNGV model and DP model, 

which are being used recently widely in studies related to EV. These are as follows: 
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2.3.4.1 The Rint Model (RM) 

RM illustrated in Figure 2.6 below employs a perfect voltage source (Uoc) to denote 

the battery's OCV. The resistance (Ro) and OCV are contingent upon the battery's SOC, SoH, 

and temperature. The load current (IL) is positive during discharge and negative during 

charging, whereas UL represents the terminal voltage. 

 

Figure 2.7. Schematic diagram of the Rint model [49] 

2.3.4.2 The RC Model (RCM) 

Prior to all this, RCM was authored by a battery manufacturer SAFT and was put into 

practical use through Advisor software. This is the model in Figure 2.7 which contains two 

capacitors (Cc and Cb) and three resistors (Rt, Re, and Rc). The capacitor Cc is capacitor 

with such small capacitance, and it signifies surface phenomena of the battery, and due to 

this, it is generally called the surface capacitor. But, the bigger capacity capacitor, Cb, shows 

the chemical storage capacity of the battery thus SOC is measured by taking the voltage 

reading generated across the bulk capacitor (Cb). Resistors Rt, Re, and Rc are terminal 

resistor, end resistor, and capacitor resistor, respectively. Ub refers to the surface capacitor 

voltage, while Uc refers to bulk capacitor voltage. 
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Figure 2.8.Schematic diagram of the RC model [49] 

2.3.4.3 The Thevenin Model (TM) 

The authored TM improves upon the RM by interfacing its parallel RC network in 

series thereby enabling capable modeling of battery dynamic behavior. The user may observe 

in Fig. 2.8 that this model contains three primary components: UCV, internal resistances, and 

equivalent capacitances. Specifically, the internal resistances comprise ohmic resistance (Ro) 

as well as the polarization resistance (RTh). CTh is referred to as equivalent capacitance and 

represents the dynamics of the transient behavior of the battery charge-discharge cycles. The 

voltage across the equivalent capacitance is denoted as UTh, while ITh indicates the current 

that passes through CTh.  
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Figure 2.9.Schematic diagram for the Thevenin model [49] 

2.3.4.4 The PNGV Model  

The PNGV model, depicted in Figure 2.9, enhances the Thevenin model by 

incorporating an additional capacitor (Uoc1) in series. This capacitor compensates for 

fluctuations in the OCV resulting from the time-dependent buildup of load current. This 

improvement allows the model to more precisely depict the battery's dynamic behavior across 

various operating conditions. 

 

Figure 2.10.Schematic diagram of the PNGV model [49] 
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2.3.4.5 The DP Model  

Analyses of lithium-ion power batteries indicate substantial polarization effects. 

Although the Thevenin model can partially replicate these characteristics, it inadequately 

distinguishes between concentration polarization and electrochemical polarization, 

especially at the conclusion of charge or discharge cycles. To overcome this limitation, an 

enhanced circuit model, illustrated in Figure 2.10 and designated as the Dual Polarization 

(DP) model, was created. This model enhances the depiction of polarization by individually 

simulating concentration polarization and electrochemical polarization, yielding a more 

precise and comprehensive understanding of battery performance. 

 

Figure 2.11.Schematic diagram for the DP model [49] 

The DP model has three main elements: (1) the OCV; (2) internal resistances; and (3) 

effective capacitances. They comprise internal resistances: ohmic resistance (Ro) and 

polarization resistances, among these being Rpa, representing electrochemical polarization, 

and Rpc, denoting concentration polarization. The effective capacitances, Cpa and Cpc, 

portray the transient reaction regarding the transfer of energy towards or away from a battery. 

Cpa emphasizes electrochemical polarization, and Cpc concentration polarization. Upa and 

Upc denote the voltages across such capacitances, while Ipa and Ipc represent the respective 

outflow currents.  



 
 

 

43 
 

However, despite very good improvements in the ECMs for LiB, there is still a long 

way towards the real capacity of accurately predicting the health of a battery or its SOH under 

actual conditions. A recently proposed DNN model has incorporated voltage, current, 

temperature, and health variables in predicting SOH estimation, offering options for data-

driven approaches. However, inadequate research has been done into the combination of 

DNN predictions using ECMs like Thevenin, PNGV, and DP models. The joining together 

of DNN prognostics with the physical insights of ECMs might prove remarkably beneficial 

for SOH estimation under dynamic conditions, fast charging, and temperature variations. 

While the DP model has performed well as far as simulating the polarization effects, the 

enhanced long-term prediction using DNNs for diverse chemistries and operating conditions 

still needs to be researched.  

2.3.5 Electrochemical Models 

LiPB are widely utilized in EVs due to their strong safety features and long cycle life. 

Before being deployed for practical applications, these batteries typically undergo extensive 

functional and extreme condition testing. To prevent potential damage to battery capacity 

during testing, simulation methods are commonly employed for performance verification and 

functional assessment [50]. Electrochemical models (EM) are frequently used by researchers 

to simulate battery behavior. Unlike equivalent circuit models, electrochemical models offer 

greater accuracy as they describe physical and chemical processes through mathematical 

formulations derived from a microscopic perspective. EM is usually referred to as the Doyle–

Fuller–Newman (DFN) model and it has conquered battery continuum modelling in the 

meantime of early 1990s. These models maintain high fidelity even with low-frequency 

current variations, making them a preferred tool for simulating battery performance under 

various conditions [51.52]. 

The classical electrochemical modeling includes the pseudo-two-dimensional (P2D) 

model [53] and the single-particle (SP) model [54]. The P2D model consists of a group of 

partial differential equations (PDEs) that model phenomena occurring within a battery, 

including diffusion within the solid and liquid phases and electrochemical reactions, 

providing a very detailed microcosmic view. It is thus more precise compared to equivalent 
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circuit models. Nevertheless, the coupling of PDEs requires time and space variable 

separation, which increases the number of equations hugely that need to be solved, leading 

to increased simulation time. It is also difficult to identify model parameters due to intrinsic 

cell-to-cell variations [55]. The SP model reduces this complexity by assuming uniform 

chemical reactions along the thickness of the electrode and neglecting liquid-phase diffusion 

below a certain C-rate where concentration overpotential is negligible. This makes it 

practically very suitable for some applications. 

The SP model has quite a simple structure but has a reduced performance in 

simulating terminal voltage as soon as the current loads become high. Although it uses fewer 

parameters than the case of the P2D model, determining the parameters is difficult because 

of the equations' coupling. According to the comparison between the electrochemical models 

and ECU models, electrochemical models provide better simulation results than the 

equivalent circuit models. However, the parameters need to be accurately identified. 

Therefore, different techniques have been considered for parameter identification, including 

destructive electrochemical test methods [56] and also non-destructive methods [57]. 

Destructive electrochemical testing is when a measurement of parameters like liquid-phase 

conductivity and the open-circuit potential curve has been made on a half-cell type 

configuration. It, however, destroys the battery cells permanently and gives only specific 

parameters, which makes it infeasible for repeat or large-scale usage.  

They have conducted genetic algorithms for battery modeling [58,59] and particle 

swarm optimization [57] as the nondestructive parameter identification techniques. These 

techniques obtain model parameters as variables in aiming to minimize the difference 

between simulated and measured voltages under defined operating conditions. This process 

uses the performance of objective functions iteratively updating of the parameters with the 

aim of achieving optimal solution. [54] elaborated this method into improved SP model-

based electrochemical aging model which takes identification of more than 20 parameters. 

They conducted sensitivity analysis prior to finding the best optimal poked around-geological 

GA algorithms since they are time-consuming to find optimal solution. The analysis now 

reduces key parameters to 16, which were narrowed down through thermal; all others, 
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including liquid-phase diffusion coefficient, activation energy coefficient, and so on, were 

taken from the similar study to smoothened process. The methodology of handling sensitivity 

analysis and optimization has improved efficiency and accuracy in parameter identification. 

Battery performance is greatly impacted by temperature; capacities can vary by up to 

15% depending on the temperature. Furthermore, extremes in temperature—both high and 

low—can have a significant impact on battery life. [57] created a numerical model to simulate 

voltage and temperature profiles using ANSYS CFD software, and the model showed good 

agreement with experimental data. Their results showed that the highest simulated 

temperature was 46.86 °C at a 4C discharge rate. These findings highlight how crucial it is 

to have a precise thermal-inclusive model in order to guarantee that the battery operates 

within a safe temperature range. [58] created a P2D-based model that included 

electrochemical kinetics and the laws of mass, charge, and energy conservation for prismatic 

lithium iron phosphate batteries. In order to account for current-collecting tabs, the model 

treated the battery as a 3D system in the through-plane direction, but it treated local cell units 

as 1D. Their study demonstrated that the reaction rate distribution within the local cell units 

was uneven and significantly influenced by the positioning of the positive and negative 

current-collecting tabs. This work highlights the need to consider spatial variations in 

reaction rates for improved thermal and electrochemical modeling. Their study demonstrated 

that the reaction rate distribution within the local cell units was uneven and significantly 

influenced by the positioning of the positive and negative current-collecting tabs. This work 

highlights the need to consider spatial variations in reaction rates for improved thermal and 

electrochemical modeling.  

Models of the electrochemical and thermal behaviors of batteries during charging and 

discharging are possible, but they frequently need significant parameter adjustments. [59] 

used a predictor-corrector strategy along with quasi-linearization techniques to create a 

thermally simplified multi-particle model. Over a wide temperature range (10–45 °C), the 

model reached a maximum root-mean-square error of 22.70 mV while keeping accuracy 

close to the thermal P2D model. But there are still a lot of parameters to figure out, especially 
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for the thermal resistance and isothermal physics models, since thermal behavior complicates 

the parameter identification procedure. 

In their study, [60] created and simulated models of lithium iron-phosphate batteries 

for 45 °C to -10 °C ambient temperatures. A pre-existing electrochemical model was 

modified to improve simulation accuracy at lower temperatures. Excitation response analysis 

and a multi-group particle swarm optimization algorithm were used to determine the model 

parameters. According to the simulation results, the mean absolute errors of terminal voltage 

were within 20 mV at ambient temperatures of 20 °C or higher. In the lower temperature 

range of -10 °C to 10 °C, the mean absolute errors for single cells were 9–14 mV and for 

battery packs, 11–21 mV. To manage parameter uncertainties at varying ambient 

temperatures, analytic methods such as Hermite interpolation, polynomial fitting, and 

sinusoidal fitting were implemented, making the model more suitable for practical 

applications in diverse temperature conditions. 

Following the study by [50] developed an electrochemical–thermal model to predict 

the behavior of a commercial LiFePO₄ battery during discharge. The model integrates 

parameters dependent on temperature and lithium-ion concentration, which affect reaction 

rates and Li⁺ transport. Additionally, it considers the role of current collectors in contributing 

to overall heat generation within the battery. Simulation results for rate capability and 

temperature performance showed strong agreement with existing literature. The model 

explores Li⁺ distribution during pulse-relaxation discharge and examines variations in 

electrochemical reaction rates and thermal responses during constant current discharge. 

Pulse-relaxation results reveal dynamic shifts in Li⁺ concentration in both liquid and solid 

phases, offering valuable insights into polarization effects. For constant current discharge, 

the reaction rate on the positive electrode evolves over time and spatial position. After 

discharge, some LiFePO₄ material remains underutilized. At low discharge rates, both 

endothermic and exothermic processes are observed; however, as the rate increases, the 

endothermic phase diminishes, leaving only exothermic behavior at high rates. 

While significant advancements have been made in electrochemical modeling for 

lithium iron phosphate batteries, gaps remain in integrating predictive tools with real-time 
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applications. The present study introduces a Deep Neural Network (DNN) model that 

estimates the state of health (SOH) of batteries using voltage, current, temperature, and health 

indicators, offering a data-driven approach to battery diagnostics. However, the integration 

of such DNN models with established electrochemical models, such as the P2D and SP 

models, remains underexplored. Combining the high accuracy of electrochemical models 

with the predictive capabilities of DNNs could enhance SOH estimation, especially under 

dynamic operating conditions like temperature variations or high current loads. Moreover, 

while electrochemical models effectively simulate thermal and electrochemical behaviors, 

their complexity in parameter identification limits their real-time applicability. A hybrid 

approach incorporating DNN-driven insights and electrochemical model fidelity could 

bridge this gap, providing improved accuracy and scalability for practical battery 

management systems. 

2.3.6 Physics-Based Models (PBM) 

In porous electrode theory, physics-based electrochemical battery models (PBM) are 

powerful instruments for understanding lithium-ion batteries and their better design and 

management. Each PBM has its shortcomings, for example, those from LiB, while it 

promises to be the alternative from equivalent circuit models. The most promising PBM 

features include more internal electrochemical states of the battery. Different model 

uniqueities require different model fidelity, and hence model complexity. While greatly 

appropriate batteries can use high-performance supercomputers for long computation times, 

real-time battery control such as those for electric vehicles requires very quick calculations 

on simple machines. Simplified models, keeping most features, are often used in such cases 

for cost-effective computations. The great continuum physics-based electrochemical battery 

models started in the 1960s [61]; since then, they have been amended for various types of 

battery, e.g. lead-acid [62], nickel/metal hydride [63], lithium-air [64] and lithium-ion [65-

68].  

These physics-based models were initiated from the previously mentioned single 

particle model (SPM), introduced by [69], and expanded later by [70] to include lithium-ion 

distribution within the electrolyte. SPMs assume that all particles in an electrode can be 
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modeled as a single spherical particle, thereby significantly simplifying the model's 

complexity. These physics-based electrochemical models within Figure 1 describe the 

behavior of various internal variables that are not measurable directly in an in-operando 

configuration. Particularly, they prescribe the potential and current distribution in the porous 

electrodes and the electrolyte, li concentration in the electrolyte, and the distribution of 

intercalated lithium within the electrode particles.  

Another study conducted by [71] sought to establish a model at reduced order for 

lithium-ion batteries that optimizes the fidelity and the computational expense embodied in 

a physics-based model. The criterion for the parameters is based on the value of the 

determinant and condition number of the Fisher information matrix (FIM). First, they get a 

subspace consisting of at most nine identifiable parameters that are then identified with a 

nonlinear least squares regression algorithm with respect to their confidence region 

determined by Fisher Information Matrix. The proposed strategies to extend battery modeling 

are validated with the output of commercial software for their efficacy. The estimated 

parameters tend to be slightly different from the actual values leading to insignificant voltage 

errors against different current profiles.  

The thermal generation inside lithium-ion batteries by prediction for two distinct 

methodologies, the physics and machine learning-based approaches. A validated multi-

physics and neural network model for commercial lithium-ion batteries (LIBs) with 

LiFePO4/G, LMO/G, and LCO/G electrodes (lithium iron phosphate/graphite, lithium 

manganese oxide/graphite, and lithium cobalt oxide/graphite) is used to calculate heat 

generation and, simultaneously, to delineate the LIB energy efficiency contours thereby 

justifying the nominal capacity as the critical parameter for manufacturing LIBs. These 

contours help energy systems designers have a better view of the LIB's actual efficiency as 

they incorporate LIBs into their devices. Thermal behavior shows its effect on 

charge/discharge energy efficiency of LIBs-LFP/graphite. For three types of LIBs available 

in the market showing performance at extremely low-temperature conditions, the focuses are 

applied to general applications-from consumer uses like electric vehicles (EVs) to industrial 

applications such as uninterruptible power supplies (UPSes). 
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A study conducted by [73] explored and evaluated two innovative lightweight 

physics-informed machine learning methods for accurately estimating a battery cell's 

capacity and diagnosing its primary degradation mechanisms using only limited early-life 

experimental data. To enable predictions for late-life performance (e.g., beyond 1.5 years) 

without the need for long-term experimental data, these methods were trained using 

simulated data from a physics-based half-cell model alongside early-life degradation data 

(e.g., within the first three months) obtained through cycling tests. The evaluation leveraged 

data from a 3.5-year cycling experiment involving 16 implantable-grade lithium-ion cells, 

which were subjected to different temperature conditions and C-rates. The results of a four-

fold cross-validation analysis revealed that the proposed physics-informed models 

significantly outperformed traditional data-driven approaches, improving the accuracy of 

capacity estimation and identifying three key degradation modes by over 50%. Additionally, 

the study provided valuable insights into the effects of temperature and C-rate on battery cell 

degradation.  

According to the research paper [74], there are various order reduction methods 

available pertinent to physics-based Li-ion battery models and their significant importance 

in next-gen battery management systems (BMSs). Thus, we review and compare these 

methods, particularly regarding model fidelity, computational efficiency, as well as 

applicable domains for these techniques. Reduced-order models have been represented as 

equivalent circuits to make it easier for designers and practitioners who do not necessarily 

have electrochemical backgrounds but rather a grasp of circuit theory to apply them towards 

multi-physical dynamics and interrelated battery effects. They are given the key pointers in 

selecting the right physics-based models for varied model-based applications in battery 

management. Discussions are then finalized with the possible obstacles and future research 

lines associated with multi-physical BMS.  

Although physics-based models (PBMs) provide comprehensive insights into the 

internal electrochemical and thermal conditions of lithium-ion batteries, obstacles persist in 

their utilization for real-time battery management and state-of-health (SOH) forecasting. This 

study presents a Deep Neural Network (DNN) model for State of Health (SOH) estimation 
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utilizing experimental data such as voltage, current, temperature, and health indicators. The 

amalgamation of data-driven deep neural network methodologies with pharmacy benefit 

managers is still inadequately investigated. Pharmacological Benefit Managers (PBMs) offer 

precise descriptions of internal processes; however, they are computationally demanding and 

necessitate intricate parameter identification, thereby constraining their feasibility in real-

time applications. DNN models exhibit computational efficiency; however, they lack the 

interpretability and mechanistic insights provided by PBMs. A hybrid methodology that 

integrates the predictive capabilities of DNNs with the mechanistic precision of PBMs may 

address this disparity, facilitating accurate SOH predictions in dynamic environments. 

Subsequent research ought to concentrate on integrating these methodologies to improve 

battery performance modeling and management.  

2.3.7 Impedance Spectroscopy (IS) 

Impedance Spectroscopy (IS) is a powerful diagnostic technique used in 

electrochemical systems to measure impedance as a function of frequency. It involves 

applying a small alternating current (AC) signal to a system and analyzing the voltage 

response. This technique provides valuable information about the electrochemical properties 

of materials, such as charge transfer resistance, double-layer capacitance, and diffusion 

coefficients. IS is widely used in studying batteries, fuel cells, and corrosion mechanisms. Its 

capability to probe internal processes at different time scales makes it ideal for diagnosing 

and modeling electrochemical systems [159]. IS is represented mathematically using 

complex impedance, expressed as Z(ω)=Z′(ω)+jZ′′(ω)Z(\omega) = Z'(\omega) + 

jZ''(\omega)Z(ω)=Z′(ω)+jZ′′(ω), where Z′(ω)Z'(\omega)Z′(ω) and Z′′(ω)Z''(\omega)Z′′(ω) 

are the real and imaginary components of impedance, respectively. A Nyquist plot, which 

represents Z′′(ω)Z''(\omega)Z′′(ω) versus Z′(ω)Z'(\omega)Z′(ω), is commonly used for 

analyzing IS data. Equivalent circuit modeling further interprets IS data by fitting it to 

electrical circuit analogs that describe the system's behavior [160]. 

IS plays a critical role in diagnosing and monitoring lithium-ion batteries. It is used 

to measure key parameters like internal resistance, charge transfer resistance, and diffusion 

resistance. These parameters provide insights into battery performance, degradation, and 
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state-of-health (SoH). IS is particularly valuable because it is non-invasive and can detect 

early signs of aging and performance degradation. It allows researchers to study battery 

behaviors under varying conditions, such as different temperatures, states of charge, and 

cycling frequencies [161]. IS commonly applied in LiB studies to construct equivalent circuit 

models, which simulate the battery's internal electrochemical processes. The technique helps 

in separating contributions from the electrode-electrolyte interface, solid-electrolyte 

interphase (SEI) layer, and bulk material properties. For example, Osaka et al. [162] used IS 

to diagnose commercially available lithium-ion batteries and identified changes in SEI 

resistance due to aging. IS also enables real-time monitoring, which is crucial for advanced 

battery management systems [163]. 

The study by [168] investigated lithium-ion batteries using two- and three-electrode 

setups with IS. They identified that SEI resistance and charge transfer resistance are critical 

for understanding battery degradation. Their findings emphasized that the SEI layer 

significantly contributes to impedance at low frequencies. This study provided a framework 

for separating electrode-specific contributions using IS. [166] analyzed the Nyquist plots of 

lithium-ion batteries to diagnose aging mechanisms. They observed that the semicircles in 

Nyquist plots expanded with cycling, indicating increased charge transfer resistance. This 

method effectively correlated impedance changes with capacity fade, making it useful for 

SoH estimation. [167] examined the performance of lithium iron phosphate batteries under 

high-rate discharge conditions using IS. Their study found that high-rate cycling led to 

significant increases in diffusion resistance, which was linked to structural degradation of the 

electrode materials. They proposed optimizing electrode compositions to mitigate these 

effects. 

Following the research by [165] introduced nonlinear electrochemical impedance 

spectroscopy (NLEIS) for lithium-ion batteries. Unlike traditional IS, NLEIS considers 

nonlinear interactions within the battery. This technique improved the accuracy of identifying 

degradation mechanisms, especially under dynamic operating conditions. [164] applied IS to 

assess the SoH of lithium-ion batteries in high-power applications. They developed an 

equivalent circuit model that incorporated inductive effects observed at high frequencies. 
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This model improved SoH estimation accuracy for high-current scenarios. [160] studied IS 

for different electrode materials and proposed material-specific equivalent circuit models. 

Their work demonstrated that impedance behavior varies significantly based on material 

composition, highlighting the need for customized models for each battery type. 

Another study employed by [163] explored the temperature dependence of IS 

parameters in lithium-ion batteries. They found that both charge transfer resistance and 

diffusion resistance decreased with increasing temperature. Their study suggested that IS can 

be used to optimize battery performance under varying thermal conditions. [163] developed 

an IS-based SoH estimation method for lithium-ion batteries. By analyzing impedance data 

across a wide frequency range, their model achieved high accuracy in predicting SoH. This 

method demonstrated the potential of IS in advanced battery management systems. [161] 

used IS to characterize the aging effects in lithium-ion batteries over extended cycling. They 

identified correlations between impedance growth and cycle life, enabling the prediction of 

battery lifespan. Their equivalent circuit model captured both reversible and irreversible 

degradation mechanisms. [162] proposed a real-time diagnostic framework using IS for 

commercial lithium-ion batteries. Their approach combined impedance data with 

temperature and voltage measurements to enhance predictive accuracy. This model was 

particularly useful for safety-critical applications. 

Despite advancements in State-of-Health (SoH) estimation for electric vehicle (EV) 

batteries, significant gaps remain in integrating comprehensive datasets and leveraging 

advanced machine learning techniques. Existing studies primarily rely on conventional 

methods like Impedance Spectroscopy (IS) and equivalent circuit models (ECMs), which, 

while effective, lack scalability for real-time applications and often require extensive 

experimental setups. Although recent approaches using data-driven models, including 

Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs), have 

improved prediction accuracy, they fail to holistically address the multidimensional nature of 

battery health. These models often neglect critical parameters like temperature fluctuations, 

variable load profiles, and nonlinear aging mechanisms, leading to suboptimal performance 

under dynamic conditions. There is a need for a novel Deep Neural Network (DNN) 
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framework capable of integrating diverse indicators such as voltage, current, and temperature 

to provide real-time, accurate, and adaptable SoH predictions. This study aims to fill this gap 

by proposing an advanced DNN model tailored for dynamic EV battery scenarios. 

2.3.8 Deep Neural Networks (DNN) 

In many real-world applications, estimating remaining useful life (RUL) has become 

crucial to lowering maintenance costs and enhancing system efficiency and reliability. Deep 

learning developments in the last few years have greatly improved machinery prognostic 

RUL estimation and degradation progression accuracy. Deep learning is a branch of machine 

learning that mimics human intelligence by modeling the structure and functions of the 

human brain. A basic Deep Neural Network (DNN) is made up of a hierarchical configuration 

of neurons that interact with one another and process input data to create a complex network 

that learns via feedback mechanisms. The input data enters the first layer of neurons, where 

the output is processed and passed to subsequent layers until the final prediction is achieved. 

The output is typically represented as a probability, predicting outcomes such as "Yes" or 

"No." Each neuron computes an "activation function," which facilitates signal transmission 

to the relevant neurons in the next layer.  

DNNs consist of multiple fully connected layers to map complex relationships in 

battery data. The layer computation is as follows;  

𝑎(𝑙) =  ∅ (𝑊(𝑙) . 𝑎(𝑙−1) +  𝑏(𝑙) 

Where: 𝑎(𝑙) is the activation in layer l, 𝑊(𝑙) , 𝑏(𝑙) are weights and biases for layer l, 

∅ is the activation function (e.g., ReLU). The output layer is as follows; 

𝑦 =  𝜎 (𝑊𝑜 . 𝑎(𝐿) +  𝑏𝑜) 

Where, 𝑎(𝐿) is the final hidden layer activations, 𝜎 is the softmax or sigmoid activation for 

classification or regression tasks. DNNs are powerful for analyzing high-dimensional data 

like battery impedance spectroscopy or voltage/current profiles. 

Neurons in successive layers of a Deep Neural Network (DNN) are connected 

through weights. These weights play a crucial role in determining the significance of 
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individual features when predicting the target output. Figure 2.12 illustrates a DNN with four 

hidden layers. Initially, the weights are assigned random values, but as the model undergoes 

training, these weights are iteratively updated to optimize learning and improve prediction 

accuracy. The advent of advanced computational power and increased data storage 

capabilities has significantly boosted the adoption of deep learning models across various 

domains. These models are now integral to numerous aspects of both digital and everyday 

life. From healthcare and aviation to banking, retail, and telecommunications, deep learning 

has become a transformative tool across virtually every industry, enabling smarter decision-

making and more efficient processes. 

 

Figure 2.12. Deep neural network with multiple hidden layers [75] 

Following the study conducted by [76] proposed a state-of-charge (SOC) estimation 

model for Li-ion batteries utilizing an advanced deep neural network (DNN) methodology 

specifically designed for electric vehicle applications. The research indicated that a suitably 

configured DNN with an ideal quantity of hidden layers could precisely forecast the SOC of 

drive cycles absent from the training dataset. A variety of DNN models with distinct hidden 

layer configurations were created and assessed to evaluate their performance across different 

drive cycles. The findings demonstrated that augmenting the number of hidden layers to four 
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markedly diminished the error rate and enhanced SOC estimation precision. Nevertheless, 

incorporating more than four hidden layers resulted in elevated error rates, indicating 

diminishing returns and the possibility of overfitting. The research highlighted that a DNN 

with four hidden layers, trained on the Dynamic Stress Test drive cycle, excelled in predicting 

SOC for novel drive cycles, such as the Federal Urban Driving Schedule, Beijing Dynamic 

Stress Test, and Supplemental Federal Test Procedure. 

The research by [77] presented a novel approach for state-of-charge (SOC) estimation 

in Li-ion batteries utilizing Deep Feedforward Neural Networks (DFNN). This method 

directly correlates battery measurements to SOC, utilizing an extensive dataset produced in 

the laboratory. The training data encompassed drive cycle loads imposed on a Li-ion battery 

across diverse ambient temperatures, subjecting the battery to variable conditions. The study 

emphasized the DNN's capacity to encode temporal dependencies within its network weights, 

facilitating precise SOC predictions. The training dataset included measurements taken at 

ambient temperatures between −20 °C and 25 °C. Upon training, the DNN exhibited the 

ability to estimate SOC under various temperature conditions utilizing a singular model. 

Validation across diverse datasets demonstrated remarkable performance, with a Mean 

Absolute Error (MAE) of 1.10% at 25 °C and 2.17% at −20 °C, signifying the model's 

robustness and precision under different thermal conditions. 

A feedforward deep neural network model for predicting the parameters of lithium-

ion batteries used in electric vehicles was presented in the works of [78]. In order to identify 

suitable candidate parameters, the model excluded categorical variables using correlation 

analysis. To estimate the battery's state-of-charge (SOC) and produce an inverse model for 

extensive parameter prediction, a feedforward artificial neural network was built. Four virtual 

functions were incorporated into the SOC prediction of the direct model to serve as input 

variables for the inverse model, increasing the predictive accuracy of the latter. The suggested 

inverse model demonstrated the ability to predict multiple outputs, such as velocity, voltage, 

speed, mileage, and (SOC). Because of its multi-output capability, it was better than 

traditional single-output feedforward networks, which primarily focus on SOC. Simulations 

employing the inverse model, augmented with virtual functions, attained an accuracy 44.43 
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times superior to that of traditional inverse deep neural network models. The mean square 

error metric was utilized to assess the model's performance. The study's results indicate that 

incorporating virtual functions into the inverse model framework markedly enhances the 

precision of predictions concerning battery and electric vehicle parameters, thereby enabling 

more informed decision-making in design and simulation processes. 

In order to estimate the state-of-charge (SOC) of batteries, a deep neural network 

(DNN) model was developed by [79]. This model uses temperature, voltage, and current 

samples that are taken every 10 seconds as input data. A convolutional layer is used for 

feature extraction and sequence generation, a simple recurrent unit (SRU) layer is used for 

sequence processing and historical information transfer, an ultra-lightweight subspace 

attention mechanism (ULSAM) layer is used to highlight important information within the 

sequence, and a dense layer is used to output the SOC estimate. The model's robustness and 

effectiveness in real-world applications were demonstrated by its high accuracy in (SOC) 

estimation and notable adaptability to battery degradation, varying ambient temperatures, and 

a variety of discharge conditions. The model was validated using two public battery datasets. 

According to the study by [80] presented a deep neural network (DNN)-based methodology 

for estimating the state-of-charge (SOC) of batteries utilizing merely 10 minutes of charging 

voltage and current data as input.  

This technique is suitable for calibrating the Ampere-hour counting method because 

it yields fast and accurate (SOC) estimation with an error rate that is less than 2.03% over the 

whole SOC spectrum. The study found that by reducing the impact of error spikes and 

random noise, the DNN combined with a Kalman filter enhances the accuracy of SOC 

estimation. A root mean square error of 0.385% was maintained by the method in spite of 

significant perturbations. Using the transfer learning methodology, the DNN showed 

adaptability to a variety of conditions, such as battery aging and different charging rates. By 

optimizing one layer of a pre-trained model, this technique reduces training costs while 

increasing estimation accuracy, producing root mean square errors of less than 3.146% for 

older batteries and 2.315% for different kinds of batteries. Refining supplementary layers 
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further improved performance, rendering the method efficient and adaptable for various 

situations. 

In research, [81] developed a novel data-driven approach that uses a hybrid deep 

learning model that combines convolutional neural networks (CNN), long short-term 

memory (LSTM), and conventional neural networks to estimate the Remaining Useful Life 

(RUL) of batteries. In order to improve the accuracy of RUL predictions, this hybrid CNN-

LSTM architecture was created expressly to extract both spatial and temporal features from 

multivariate time series data while capturing nonlinear behaviors. Particle swarm 

optimization (PSO) was used for hyperparameter tuning, which improved the model's 

performance by optimizing parameters like the number of epochs, the arrangement of LSTM 

and convolutional layers, and the size of units or filters within each layer. Using NASA's 

well-known lithium-ion battery (LiB) dataset, the CNN–LSTM–PSO framework underwent 

extensive validation and is capable of supporting multi-step-ahead forecasting. According to 

experimental results, the CNN–LSTM–PSO model performed better than other deep learning 

and advanced machine learning techniques on a number of evaluation metrics, proving its 

usefulness as a reliable tool for RUL prediction. The application of deep neural networks 

(DNNs) to battery management systems has advanced significantly, but there are still many 

obstacles to overcome before state-of-health (SOH) estimation for electric vehicle (EV) 

batteries can be considered practically applicable and its predictive accuracy can be further 

improved.  

This work proposes a DNN-based approach for State of Health estimation using 

experimental data, including voltage, current, temperature, and health indicators. However, 

there is still insufficient research on the integration of advanced DNN architectures, like 

CNN-LSTM hybrids, which have demonstrated remarkable spatiotemporal feature extraction 

capabilities in remaining useful life (RUL) estimation. Furthermore, while existing 

approaches address specific tasks like degradation modeling or State of Health (SOH) 

estimation, few approaches effectively combine SOH estimation with multi-output 

predictions like degradation modes and operational metrics. Efficiency and scalability may 

be improved by adapting models for different battery chemistries and aging scenarios using 
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strategies like transfer learning. Future work should look into multi-task learning frameworks 

and the integration of hybrid DNN models with real-time datasets for thorough battery health 

management.  

2.3.9 Convolutional Neural Network (CNN) 

 Within the deep learning model category, Convolutional Neural Networks (CNNs) 

are designed to analyze data that has a spatial or grid-like configuration, such as images or 

time-series data [82]. Convolutional filters are applied to the input data by a CNN in order to 

help capture spatial hierarchies and patterns. Convolutional, pooling, and fully connected 

layers typically make up a CNN's architecture. While pooling layers downsample the feature 

maps to reduce dimensionality and highlight the most prominent features, convolutional 

layers extract features by applying filters that traverse the input data. At the end of the 

network, fully connected layers combine the extracted features to produce predictions. 

ReLU-style activation functions are used in layers to introduce non-linearity, and 

backpropagation is used to improve the filter weights over the time training process. This 

architecture renders CNNs especially proficient for feature-dense, high-dimensional data, 

ensuring strong performance across various applications [83]. 

Three main parts make up the structure of a Convolutional Neural Network (CNN), 

a particular kind of multilayer perceptron (MLP): the input layer, hidden layers, and output 

layer. While the output layer creates the final predictions that can be used in further tasks or 

applications, the input layer receives the raw data and passes it to the first hidden layer. The 

convolutional, max-pooling, and fully connected layers are examples of the hidden layers. 

Convolutional layers are essential to CNNs because they enable the extraction of local 

features from the input data, their hierarchical processing, and the transmission of the 

resulting information to deeper layers for more sophisticated feature learning and analysis. 

The vector output from the first convolutional layer can be represented mathematically as 

follows:   
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𝑂𝑖𝑗
1 = 𝜎(𝑏𝑗

1 + ∑ 𝑤 𝑓𝑣,𝑗
1 𝑋𝑖 +  𝑓𝑣

𝑜 − 1, 𝑗 )

𝑀

𝑓 𝑣=1

 

Where σ, b_j, and w stand for sigmoid activation function, the bias for the j feature map, and 

the sigmoid activation function, respectively. The filter index is denoted by f_v, while the 

power production input vector is represented by x. Similarly, the vector o output of the l 

convolutional layer can have the following expression as its result.: 

𝑂𝑖𝑗
1 = 𝜎(𝑏𝑗

1 + ∑ 𝑤 𝑓𝑣,𝑗
1 𝑋𝑖 +  𝑓𝑣

𝑜 − 1, 𝑗 )

𝑀

𝑓 𝑣=1

 

Max-pooling layers are used to reduce the representation's dimensionality, which 

lessens the model's computational load. The max-pooling layer operates as follows:  

𝑂𝑖𝑗
1 = max  𝑦𝑖  ×  𝑇𝑙−1 + 𝑟, 𝑗 (𝑟 ∈ 𝑅) 

R is the size of the pooling. T is the step that calculates the moving distance of the 

input data area, which must be less than the input size y. Every neuron in a layer is connected 

to every other neuron in the output layer by fully connected layers. 

CNNs have been widely adopted in the field of LiB research for state-of-charge 

(SOC), state-of-health (SOH), capacity estimation, and fault diagnosis. The nonlinear and 

complex electrochemical behaviors of lithium-ion batteries, including lithium iron phosphate 

(LiFePO₄) batteries, make conventional modeling techniques less effective. CNNs excel in 

analyzing multidimensional data such as voltage, current, temperature, and impedance 

spectra, providing accurate predictions and diagnostics by extracting hierarchical features 

[84]. CNNs capture spatio-temporal dependencies, making them highly adaptable to battery 

conditions such as aging, varying ambient temperatures, and cycling conditions [85]. By 

leveraging convolutional layers, CNNs can identify intricate patterns and degradation trends 

in batteries, offering substantial improvements over traditional algorithms [86].  
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Following the study by [82] introduced a pruned CNN model for LiB capacity 

estimation, integrating transfer learning to reduce computational overhead while maintaining 

high accuracy. [83] demonstrated the use of CNNs for parameter identification in 

electrochemical battery models, highlighting the efficiency of CNNs in accurately predicting 

essential parameters like resistance and capacity. [84] reviewed advancements in deep CNNs 

for state prediction, emphasizing their effectiveness in handling multi-timescale challenges 

in lithium-ion batteries. [85] combined CNNs with transformer models for SOH estimation, 

achieving high accuracy under various environmental conditions and battery degradation 

states. [87] utilized a CNN and a knee-point detection algorithm to predict battery 

degradation curves, showcasing the model’s capability in estimating lifespan. [88] proposed 

a hybrid CNN and Gaussian process regression approach for probabilistic SOH prediction, 

improving uncertainty quantification in battery monitoring systems. 

The research by [89] employed CNNs with impedance spectra for capacity 

estimation, demonstrating high precision and adaptability to complex datasets. [90] 

developed a CNN to estimate SOH during constant current operations, which showed 

resilience to charge-discharge variations. [91] integrated empirical mode decomposition and 

CNNs for fault diagnosis in battery packs, accurately identifying faults in multi-cell systems. 

Similarly, [92] applied CNNs for defect detection in polymer lithium-ion batteries, achieving 

a high detection rate for manufacturing flaws. [93] proposed a CNN-based SOH estimation 

model using charge profiles, providing high prediction accuracy across multiple cycling 

datasets. [94] used CNNs to diagnose battery degradation modes, demonstrating their ability 

to identify specific degradation mechanisms. [95] applied CNNs to estimate capacity using 

random charging curve segments, achieving consistent performance under varying cycling 

conditions. 

The study by [96] developed a CNN in the time-frequency domain for SOC 

estimation, effectively capturing spectral and temporal dependencies. [97] combined CNNs 

with random forests to create a robust SOH estimation model, excelling in noisy datasets. A 

CNN with U-Net architecture for SOC estimation was introduced in the works of [84], 

achieving high accuracy over a variety of datasets and operating conditions. In order to 
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estimate remaining useful life (RUL), [98] developed a hybrid CNN–LSTM–DNN model 

that combined the advantages of LSTMs for sequential data processing and CNNs for feature 

extraction. By incorporating an adaptive Kalman filter for SOE estimation, [99] improved 

CNN performance and showed resilience in challenging thermal conditions. [54] combined 

CNNs and LSTMs to model multiphysics and capture complex interactions between different 

domains. In order to estimate capacity using short-duration constant-current charging 

voltages, [100] used a CNN and produced accurate predictions in a variety of charging 

scenarios. Their model demonstrated CNNs' versatility in practical applications, highlighting 

their importance in battery research. 

Despite advancements in leveraging deep neural networks (DNNs) for battery health 

estimation, critical research gaps remain, particularly in their integration with real-world 

applications and advanced architectures. The present study introduces a novel DNN model 

to estimate the SOH using experimental data, including voltage, current, temperature, and 

health indicators. However, the study lacks exploration of convolutional neural networks 

(CNNs), which excel in capturing spatial hierarchies and temporal dependencies from multi-

dimensional data. Hybrid models, such as CNN-LSTM combinations, have demonstrated 

superior accuracy by integrating spatial and sequential data processing capabilities. 

Furthermore, the potential of transfer learning for adapting models across battery chemistries, 

degradation states, and environmental conditions remains underutilized. Addressing these 

gaps through hybrid frameworks and leveraging advanced techniques like transfer learning 

and uncertainty quantification could significantly enhance SOH estimation, ensuring robust 

and scalable solutions for electric vehicle battery management. 

2.3.10 Recurrent Neural Network (RNN) 

 An artificial neural network type called Recurrent Neural Networks (RNNs) is made 

especially to process sequential data. RNNs, as opposed to FNNs, have loops in their 

architecture, which enable them to feed back their output into the network in order to retain 

information from prior inputs. RNNs are especially well-suited for tasks involving sequential 

or time-dependent inputs because of their feedback mechanism, which allows them to model 

temporal dependencies and identify patterns in time-series data [102]. The architecture 
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creates a dynamic link between past and present data by relying on hidden states that are 

updated iteratively as new inputs are processed. But conventional RNNs have drawbacks, 

like the vanishing gradient issue, which makes it difficult for them to understand long-term 

dependencies. To overcome these issues, advanced variants like  (LSTM) networks and Gated 

Recurrent Units (GRUs) were introduced. These architectures use gating mechanisms to 

regulate the flow of information, allowing them to effectively capture and learn long-term 

dependencies [103]. 

 RNNs process sequential data by maintaining a hidden state that captures temporal 

dependencies. For battery data (e.g., voltage, current, temperature): The hidden state update 

is as follows;  

ℎ𝑡 =  ∅ ( 𝑊ℎ. ℎ𝑡−1 +  𝑊𝑥 . 𝑥𝑡 +  𝑏ℎ 

 Where,ℎ𝑡𝑖𝑠 𝑡ℎ𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡, ℎ𝑡−1 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 −

1, 𝑥𝑡 𝑖𝑛𝑝𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒, 𝑏ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑖𝑎𝑠 𝑓𝑎𝑐𝑡𝑜𝑟. The output computation is as follows; 

𝑦𝑡 =  𝑊𝑡 . ℎ𝑡 + 𝑏𝑦 

The capacity of Recurrent Neural Networks (RNNs) to handle temporal data and 

capture dynamic relationships in battery performance has led to their considerable attention 

in LiB applications. Lithium-ion batteries, which comprise lithium iron phosphate (LiFePO₄) 

batteries, display intricate behaviors that are impacted by various factors, including 

temperature, charge-discharge cycles, (SOH), and (SOC). Because traditional models cannot 

process sequential data well, they are unable to predict battery parameters with any degree 

of accuracy. By utilizing their memory and feedback capabilities, RNNs get around this 

restriction and allow for precise estimations of SOC, SOH, and remaining useful life (RUL) 

[106]. For battery diagnostics and prognostics, variants like LSTM and GRU have gained 

popularity because of their exceptional efficacy in controlling nonlinear battery behaviors 

[108,111]. RNNs capture temporal dependencies and offer insights into capacity degradation 

and battery aging, and thermal characteristics, enhancing battery management systems 

(BMS) [104]. 
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 The study by [105] combined denoising autoencoders with GRU-based RNNs for 

SOC estimation, demonstrating improved accuracy in handling noisy data. Similarly, [108] 

proposed a clockwork RNN for SOC estimation, which effectively reduced computational 

complexity while maintaining accuracy. [106] introduced time-delayed RNNs to improve 

SOC estimation reliability by addressing overexcited neurons. These models achieved robust 

SOC predictions under varying operating conditions. [111] developed a GRU-based RNN for 

SOC estimation, achieving high precision in dynamic conditions. [105] conducted a 

comparative study of different RNN architectures for SOC estimation in electric vehicles. 

Their findings emphasized the advantages of GRUs and LSTMs in capturing battery 

dynamics. [109] proposed a physics-informed RNN with fractional-order gradients, 

enhancing SOC estimation by incorporating domain-specific knowledge. [107] used a 

jellyfish-optimized RNN for SOH estimation, showcasing improved performance over 

traditional optimization techniques. [117] applied RNNs to estimate SOH, demonstrating 

their adaptability to varying battery conditions. [119] proposed an RNN-based framework for 

battery degradation prediction under uncertain future conditions, highlighting the importance 

of RNNs in long-term health monitoring. 

The research by [110] employed RNNs for RUL estimation, achieving accurate 

predictions across different battery chemistries. [86] developed a compact RNN methodology 

for equivalent circuit modeling, enabling precise SOH estimations. [115] introduced a multi-

charging profile framework using RNNs for RUL prediction, demonstrating the flexibility of 

RNNs in handling diverse operational scenarios. [112] utilized RNNs for temperature 

estimation in lithium-ion batteries, providing valuable insights into thermal management. 

[104] applied RNNs to model the large deformation of battery cells, capturing complex 

mechanical behaviors. These studies highlight the versatility of RNNs in addressing thermal 

and structural challenges in battery systems. 

Following the study by [116] employed LSTM-based RNNs for capacity prediction, 

achieving high accuracy in validation tests. [118] proposed a hybrid RNN and support vector 

machine (SVM) model for co-estimation of SOC and capacity, emphasizing the effectiveness 

of integrating RNNs with other machine learning techniques. [113] introduced an adaptive 
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RNN for RUL prediction, showcasing its ability to adapt to changing conditions. [114] 

developed a unified RNN methodology for voltage and SOC modeling, achieving reliable 

predictions across varying cycles. [121] compared RNNs, CNNs, and BP networks for 

capacity prediction, demonstrating RNNs' superior performance in temporal data analysis. 

Following the research by [111] integrated empirical mode decomposition with deep 

RNNs for predictive maintenance, improving fault detection accuracy. Another study by 

[122] introduced LSTM-based RNNs for SOC estimation, emphasizing their robustness in 

dynamic environments. Moreover, the study by [124] proposed an LSTM-based RNN for 

SOC estimation, achieving significant improvements in prediction accuracy. Following the 

research by [114] and [123] highlighted the versatility of RNNs for equivalent circuit 

modeling, demonstrating their applicability across different battery chemistries. The 

investigation by [119] showcased RNNs' ability to predict battery degradation under varying 

operational conditions, emphasizing their importance in future-proofing battery systems. 

 Despite significant advancements in battery health estimation using deep neural 

networks (DNNs), several research gaps remain unaddressed. The present study proposes a 

novel DNN model utilizing experimental data such as voltage, current, temperature, and 

existing health indicators to estimate the SOH. However, it lacks an exploration of RNNs, 

including advanced variants like LSTM and GRU, which are well-suited for capturing 

temporal dependencies and handling sequential data inherent in battery performance. 

Additionally, hybrid models combining DNNs with RNNs or other architectures such as 

CNNs could improve prediction accuracy by leveraging complementary strengths. The 

integration of physics-informed features into data-driven approaches, such as incorporating 

electrochemical behaviors or degradation mechanisms, also remains underexplored. 

Addressing these gaps through hybrid frameworks, temporal modeling, and domain 

knowledge integration could enhance SOH predictions, ensuring robust and scalable 

solutions for electric vehicle battery management.  

2.3.11 Long Short-Term Memory (LSTM) 

The development of neural network algorithms—such as feedforward, convolutional, 

and (LSTM) networks—has made a substantial impact on data analysis and our 
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understanding of the connection between charging profiles and battery capacity. Recurrent 

neural networks (RNNs) have limitations, such as vanishing and exploding gradient issues. 

LSTM networks, a specialized version of RNNs, are made to handle sequential data. Initially 

presented by Hochreiter and Schmidhuber in 1997, LSTMs control the information flow 

within the network by means of gating mechanisms, namely forget, input, and output gates. 

These gates facilitate the efficient modeling of long-term dependencies by allowing LSTMs 

to selectively keep or discard data from earlier time steps. To be more precise, the output gate 

produces the current output based on the updated cell state, the input gate adds new input, 

and the forget gate determines which information to discard [123]. Owing to this architecture, 

temporal understanding tasks like language processing, sequential decision-making, and 

time-series forecasting are especially well-suited for LSTM networks [126]. 

LSTMs address the vanishing gradient issue by incorporating gates to regulate 

information flow. Forget gate is as follows;  

𝑓𝑡 =  𝜎 (𝑊𝑓 .  [ℎ𝑡−1 ,𝑥𝑡]+ 𝑏𝑓
 

Where, 𝑓𝑡 is the forget gate output 𝑤𝑓 weight matrix and bias for forget gate, 𝜎 is the 

sigmoid activation function. The input gate is as follows; 

𝑖𝑡 =  𝜎 (𝑊𝑖 .  [ℎ𝑡−1 ,𝑥𝑡]+ 𝑏𝑖
 

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 .  [ℎ𝑡−1 ,𝑥𝑡]+ 𝑏𝑐
 

Where, it  is input gate output, Ct is the candidate memory content. The memory cell 

update is as follows; 

Ct=ft⋅Ct−1+it⋅Ct 

The output state and hidden gate is as follows 
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𝑜𝑡 =  𝜎 (𝑊𝑜 .  [ℎ𝑡−1 ,𝑥𝑡]+ 𝑏𝑜
 

ht=ot⋅tanh(Ct) 

The final output yt is computed similarly to RNN,  

yt=Wy⋅ht+by 

LSTMs capture long-term dependencies in battery degradation data, improving SOH 

and SOC estimation. 

LSTM networks are widely used in LiB applications, such as LiFePO₄ batteries, for 

tasks like capacity fade prediction, RUL forecasting, SOC estimation, and SOH monitoring. 

Since temperature, cycling conditions, and aging all affect battery behavior, traditional 

models frequently find it difficult to accurately capture the complex and nonlinear behavior 

of batteries. Because LSTM networks can handle sequential data such as voltage, current, 

and temperature profiles, they are useful for diagnostics and accurate prediction [127]. They 

are also very useful for BMS, where accurate, real-time predictions are necessary to 

guarantee optimal performance and dependability, due to their resilience in the face of noise 

and nonlinear patterns [129, 130]. 

The study by [125] developed a digital twin model based on LSTMs for real-time 

temperature prediction and degradation analysis in lithium-ion batteries. This model provided 

actionable insights into thermal characteristics and degradation under varied conditions. The 

research by [126] proposed an LSTM network for predicting the remaining useful life (RUL) 

of lithium-ion batteries. The study demonstrated high accuracy in capturing long-term 

dependencies, making it suitable for real-world applications. Following the study by [127] 

presented an LSTM-based method for state-of-charge (SOC) estimation, achieving reliable 

predictions across diverse operational scenarios. Following the research by [128] investigated 

the impact of loading variations on lithium iron phosphate battery electrodes using LSTMs. 
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Their model accurately predicted electrode behavior under dynamic conditions. The study by 

[129] proposed an LSTM model for SOC estimation, emphasizing robustness in noisy 

datasets. The research investigated by [130] integrated LSTMs with an improved sparrow 

search algorithm for RUL prediction, achieving significant improvements in accuracy and 

efficiency. 

Another study by [126] combined LSTMs with board learning systems for LiB 

capacity and RUL prediction. The approach demonstrated robustness across various 

operational conditions. The study by [132] conducted a comparative study of deep learning 

methods for SOC estimation, confirming LSTMs' superiority in handling lithium iron 

phosphate (LiFePO₄) battery data. The research  by [133] utilized LSTMs for real-time 

parameter estimation in electrochemical battery models, showcasing adaptability to real-

world battery behaviors. The works by [134] combined LSTMs with convolutional neural 

networks (CNNs) for multiphysics modeling of lithium-ion batteries. Their hybrid model 

successfully captured complex spatial-temporal interactions. The investigation conducted by  

[135] proposed a variant LSTM for SOH estimation and RUL prediction, achieving precise 

forecasts across varying battery degradation states. The study by [136] introduced a transfer 

learning-enhanced LSTM model for capacity fade and cycle life prediction, reducing training 

time and improving accuracy. 

Following the research by [137] applied LSTMs to estimate SOC for a group of 

lithium-ion batteries, achieving consistent and reliable performance. Following the study by  

[139] developed a deep LSTM model for real-time capacity estimation, ensuring accurate 

predictions in battery management systems (BMS). Another study by [140] explored 

bidirectional LSTMs for SOC estimation, improving predictions by capturing forward and 

backward temporal dependencies. The investigation by [141] proposed an enhanced SOC 

estimation method using LSTMs integrated with adaptive state update filters. This approach 

addressed uncertainties in battery parameters effectively. The study by [142] leveraged 

transfer learning with LSTMs for SOH prediction, enabling adaptation to diverse battery 

types and cycling conditions. The research by [143] proposed an improved LSTM-based 

SOH estimation algorithm, resilient to battery degradation and environmental variability. 
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Following the study by [144] utilized stacked bidirectional LSTMs for LiB health 

management, demonstrating their efficacy in handling multivariate and complex datasets. 

Another study by [145] introduced a cost-effective LSTM-based framework for LiB 

diagnosis and prognosis, reducing computational overhead. The study by [116] integrated 

empirical mode decomposition with LSTMs for predictive maintenance, enhancing fault 

detection accuracy. The research by [124] applied LSTMs for SOC estimation, emphasizing 

their ability to process large datasets and dynamic conditions. Another investigation by [123] 

highlighted the versatility of LSTMs in equivalent circuit modeling for voltage and SOC 

predictions. The research by [121] compared LSTMs with CNNs and BP networks for 

capacity prediction, showcasing their superior performance in temporal data analysis. The 

study by [141] demonstrated the application of LSTMs in SOC estimation across varying 

environmental conditions, highlighting their adaptability in practical scenarios. These studies 

collectively underscore LSTMs' pivotal role in advancing LiB diagnostics, prognostics, and 

management systems. 

Despite the growing body of research on battery state-of-health (SOH) estimation 

using machine learning models, critical gaps remain in integrating advanced neural network 

architectures with real-world applications. The proposed study introduces a Deep Neural 

Network (DNN) for predicting SOH using experimental data, including voltage, current, 

temperature, and health indicators. However, current approaches often overlook the 

challenges posed by varying environmental conditions, battery chemistries, and degradation 

profiles that impact prediction accuracy. While DNN models demonstrate promise in 

identifying nonlinear relationships, their integration with physics-informed features and 

dynamic real-time adaptability is underexplored. Moreover, the scalability and robustness of 

these models for large-scale deployments in electric vehicles (EVs) are not fully validated. 

Addressing the alignment of DNN-based estimations with diverse battery usage scenarios, 

including rapid charging cycles and extreme temperatures, is critical. This research aims to 

bridge these gaps by enhancing model precision, generalizability, and computational 

efficiency across variable operational contexts. 
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2.4 Proposed Methods in Literature 

Following the study by [151] focused on analyzing LiB degradation using a realistic 

forklift mission profile to evaluate state-of-health (SOH) and predict battery lifetime. This 

method involves subjecting three prismatic LiB cells to a forklift load profile under varying 

temperatures (45 °C, 40 °C, and 35 °C) to simulate accelerated aging. The experimental setup 

incorporates dynamic charging and discharging conditions, with aging cycles followed by 

Reference Performance Tests (RPTs) to monitor capacity and internal resistance. Data is 

collected at high frequency, capturing second-by-second measurements of key variables, 

such as current, voltage, energy, and temperature. This dataset is intended for developing and 

validating various models, including electrochemical, statistical, and artificial intelligence 

models, for SOH estimation and lifetime prediction. 

The advantages of this method are its realistic simulation of operational conditions, 

making it relevant to real-world applications. The dynamic load profile reflects variable 

usage patterns, enhancing the accuracy of battery behavior modeling. The high-resolution 

dataset provides comprehensive information, enabling detailed analysis and the development 

of versatile models. Additionally, despite its specificity to forklifts, the method can be 

adapted to electric vehicles due to similarities in operational characteristics. However, some 

limitations exist. The method's focus on forklift-like applications may restrict its broader 

applicability, and the loss of some aging and RPT data could introduce biases or necessitate 

data imputation. Furthermore, the study isolates calendar and cycling aging effects, missing 

insights into their interactions. Experimental constraints, such as fixed charging/discharging 

currents and temperature settings, may limit generalization to other battery chemistries or 

conditions. This approach contributes significantly to the field by combining realistic load 

profiles with systematic aging cycles, offering a robust framework for evaluating LiB. It 

bridges the gap between laboratory and field applications, providing high-resolution data for 

advanced modeling techniques and practical utility. This study's findings can improve state-

of-health estimation and extend battery life, particularly for applications in electric vehicles 

and industrial settings.  
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Following the research by [152] employs an advanced method for forecasting the  

(SOH) of LiBs using deep learning (DL) models, focusing on their application in truck energy 

systems. The methodology begins with an extensive literature review on battery degradation 

and aging mechanisms, leveraging insights to address the challenges of SOH prediction. 

Using an open-source dataset, the study aggregates stressor signals, such as temperature, 

current, and SOC, into structured stressor tables. Feature reduction is applied to improve 

model efficiency by eliminating irrelevant data. The modeling process begins with Gaussian 

Process Regression (GPR), Multilayer Perceptrons (MLP), and CNN for initial validation. 

Advanced DL models like LSTM, GRU, and FNN are then evaluated for their ability to 

handle sequential data. Additionally, lightweight models such as Support Vector Regression 

(SVR) are employed to test performance in computationally constrained scenarios. To 

enhance interpretability, explainable machine learning (XML) techniques, including SHAP 

(SHapley Additive exPlanations) and Saliency Maps, are integrated. These techniques allow 

researchers to visualize and better understand the decision-making process of the models. 

The models are trained to predict SOH until failure, defined as an 80% capacity threshold, 

and are validated using performance metrics like RMSE and R². 

The method offers several advantages. Deep learning models, particularly LSTM and 

GRU, demonstrate high accuracy in forecasting SOH under complex degradation conditions. 

The approach is versatile, as stressor-based feature aggregation ensures robustness, and XML 

techniques provide a layer of interpretability critical for practical applications. Additionally, 

lightweight models like SVR ensure scalability by offering competitive performance in 

resource-constrained environments. However, the method also has limitations. Deep learning 

models are computationally intensive and require significant expertise for tuning. The 

reliance on a single dataset may limit the generalizability of results, while the exclusion of 

physical or hybrid modeling approaches restricts insights into battery chemistry. Despite 

XML enhancements, interpretability remains a challenge due to the inherent complexity of 

DL architectures. 

The contributions of the study are significant. By integrating stressor-based features 

with deep learning and XML, it bridges the gap between high performance and 
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interpretability. The combination of various models caters to different resource scenarios, 

making the approach adaptable for both high-performance and computationally limited 

applications. This methodology advances predictive maintenance strategies and provides 

actionable insights into battery aging. The study underscores the utility of XML in clarifying 

complex predictions, thereby improving reliability and user trust in machine learning models 

for SOH forecasting. Key references supporting this approach include Another study by 

[153], which provide foundational methodologies and data for battery aging and modeling 

research. 

Following the study by [154] proposes a method for predicting the remaining useful 

life (RUL) of LiBs using a comparative analysis of machine learning (ML) models, with an 

emphasis on enhancing prediction accuracy and applicability. The methodology incorporates 

a multi-feature multi-target (MFMT) feature mapping framework, enabling accurate 

predictions of capacity fade and RUL across the entire lifecycle of batteries. To validate the 

approach, three case studies are conducted using two distinct datasets. The first two cases 

utilize a synthetic dataset representing linear battery degradation, while the third case 

employs a real-world dataset capturing nonlinear and complex degradation behaviors. Eight 

ML models, including Random Forest (RF), Multi-Layer Perceptron (MLP), XGBoost, 

XGBoost with hyperparameter tuning (XGBoost-HT), Light Gradient Boosting Machine 

(LightGBM), LightGBM with hyperparameter tuning (LightGBM-HT), LSTM, and 

Attention-LSTM, are analyzed. The study highlights the superior performance of XGBoost-

HT, which incorporates hyperparameter optimization and regularization techniques, 

achieving the lowest root mean squared error (RMSE) and mean absolute percentage error 

(MAPE) across all cases. This robust approach is further strengthened by the application of 

MFMT feature mapping, which enhances the models' ability to predict nonlinear battery 

degradation. 

The proposed method offers several advantages. The integration of MFMT feature 

mapping and hyperparameter tuning significantly improves predictive accuracy, particularly 

for batteries exhibiting nonlinear degradation patterns. The diversity of ML algorithms 

ensures flexibility, enabling practitioners to choose models based on computational resources 
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and application requirements. Additionally, the use of both synthetic and real-world datasets 

ensures comprehensive validation, enhancing the approach's robustness. However, the 

method also presents challenges. The reliance on specific datasets may limit its 

generalizability, and the advanced models require substantial computational resources for 

training and optimization. Furthermore, the exclusion of physics-based modeling means that 

some insights related to battery chemistry and degradation mechanisms may be overlooked. 

The models' dependency on precise hyperparameter tuning adds complexity to the 

implementation process. 

Following the research by [155] proposed a comprehensive methodology for predicting 

the SoH and performance of LiBs in EVs by employing a comparative analysis of ML and DL 

approaches. Various techniques, including LR, DTs, support vector machines (SVMs), and ensemble 

methods, as well as advanced methods like artificial neural networks (ANNs),  LSTM, and 

bidirectional LSTM (Bi-LSTM), are utilized. These methods are applied to publicly available datasets 

containing charge-discharge cycles of LiBs, focusing on improving model accuracy through 

preprocessing, feature selection, and hyperparameter tuning. The models are evaluated using metrics 

such as mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), 

and R-squared to identify the most effective techniques. Among these, Bi-LSTM is highlighted for 

its ability to capture nonlinear battery degradation patterns and is proposed as a superior solution for 

implementation in battery management systems (BMSs). 

The advantages of this methodology include its comprehensive nature, providing 

insights into the strengths and weaknesses of different ML and DL models for SoH prediction. 

The integration of hyperparameter tuning and feature selection ensures optimized model 

performance, while the use of real-world datasets enhances the practical applicability of the 

findings. The approach is also scalable, with lightweight models like DTs and SVMs suitable 

for real-time applications in BMSs with limited computational resources. Advanced models 

such as Bi-LSTM demonstrate exceptional predictive power, particularly in scenarios 

involving complex nonlinear degradation behaviors. However, there are notable limitations. 

The DL models, including Bi-LSTM, require significant computational resources and 

expertise for training and implementation. The method’s reliance on specific datasets may 

limit its generalizability to other battery chemistries or applications. Additionally, the lack of 
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integration with physical or hybrid modeling approaches may restrict insights into underlying 

degradation mechanisms. The study makes significant contributions to the field by 

systematically comparing ML and DL approaches, identifying Bi-LSTM as a leading method 

for handling nonlinear data in battery performance prediction. The findings enable the 

development of more reliable and efficient BMSs, supporting better range prediction, safety, 

and maintenance planning for EVs. By optimizing model architecture and parameters, the 

research bridges the gap between theoretical advancements and real-world applications, 

paving the way for future technological innovations in EV battery management.  

The study by [156] introduced a data-driven multi-model fusion methodology to 

improve the accuracy and robustness of LiB aging diagnostics and prognostics. This 

approach leverages both laboratory cycling data and real-world field data to estimate the  SoH 

and predict the RUL of batteries. For SoH estimation, six distinct operational scenarios are 

identified, and features specific to each scenario are extracted to capture battery degradation 

under diverse conditions. A Kalman filter-based fusion algorithm combines predictions from 

various machine learning models, enhancing the reliability and precision of the estimations. 

To address the challenges of nonlinear and variable aging patterns observed in real-world 

applications, a histogram-based feature extraction strategy is implemented. This approach 

accommodates noisy field data and enables robust predictions of aging trajectories. 

Moreover, an online adaptive correction model refines the predictions in real time to account 

for cell-to-cell variations. For RUL prediction, the study investigates the use of time-series 

measurement data and histogram features, demonstrating their complementary roles in 

improving prognostic accuracy. The method is validated using datasets from both controlled 

laboratory conditions and real-world operations, ensuring its applicability across a wide 

range of use cases. 

The proposed method offers several advantages. It is highly applicable to real-world 

scenarios due to the integration of field and laboratory data, ensuring practical relevance for 

electric vehicles and energy storage systems. The multi-model fusion approach and scenario-

specific feature extraction significantly enhance the accuracy of SoH and RUL predictions. 

The method’s robustness to noisy and variable field data is further strengthened by the 
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histogram-based features and online adaptive correction models, while its computational 

efficiency allows for potential implementation in battery management systems (BMS). 

However, the methodology also presents some challenges. Its reliance on high-quality and 

representative data limits its generalizability to different battery chemistries or operational 

conditions. The complexity of implementation, requiring expertise in model configuration 

and computational resources, can be a barrier. Additionally, as a data-driven approach, it 

provides limited insight into the underlying physical degradation mechanisms, which could 

reduce interpretability. Integrating laboratory and field data with different formats and 

resolutions also introduces preprocessing challenges. 

The research by [73] proposed a hybrid framework that combines model-based and 

data-driven approaches to enhance the accuracy and reliability of LiB aging diagnostics and 

prognostics. The method leverages the strengths of both approaches, with model-based 

components providing physical interpretability and ML techniques improving predictive 

accuracy and adaptability. The framework is designed to estimate the SoH and RUL of 

batteries under a variety of operating conditions. It adopts a two-step methodology: first, 

offline training of data-driven models to correct errors in model-based RUL predictions, and 

second, real-time error correction during online deployment. Feature engineering is 

employed to extract critical attributes such as voltage, current, and temperature, which serve 

as inputs for training ML models. The framework is validated on multiple datasets, including 

laboratory, real-world, and out-of-distribution (OOD) scenarios, to ensure robustness across 

diverse conditions. Furthermore, uncertainty quantification techniques are integrated to 

improve prediction reliability and provide conservative estimates, which are essential for 

safety-critical applications. 

The proposed method offers several advantages. It significantly enhances predictive 

accuracy by combining the interpretability of model-based methods with the flexibility of 

data-driven techniques. The framework is robust across various conditions, as it incorporates 

real-world and OOD datasets, making it applicable to diverse use cases. Its integration of 

uncertainty quantification ensures reliable and conservative estimates, which are critical for 

operational safety. Additionally, the modular design of the framework allows for scalability, 
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enabling the integration of new datasets and algorithms as battery technologies evolve. 

However, the approach also presents challenges. The hybrid framework requires substantial 

computational resources for training and deployment, which may limit its use in resource-

constrained environments. Its performance is heavily dependent on the quality and 

representativeness of the training datasets, and the integration of model-based and data-

driven methods requires careful calibration and tuning, adding complexity to 

implementation. Furthermore, the framework may need retraining to generalize effectively 

for significantly different battery chemistries or use cases. 

The hybrid framework makes a significant contribution to battery aging prediction by 

addressing key challenges such as variability in real-world data and OOD scenarios. The 

study demonstrates that the approach reduces RUL prediction errors by 40% and improves 

uncertainty calibration by 34%, underscoring its effectiveness compared to traditional 

methods. By integrating advanced techniques, the framework supports the development of 

reliable and scalable battery management systems, which are critical for the safe and efficient 

deployment of energy storage solutions. This research provides a foundation for future 

advancements in battery diagnostics and prognostics, aligning with the evolving needs of 

modern energy systems. 

In order to precisely predict the SoH and RUL of LiBs, a sophisticated DNN 

framework is introduced in the study reviewed by [157]. Rather than requiring laborious 

manual feature engineering, this novel framework uses automatic feature extraction to fully 

utilize the potential of deep learning. The model captures the dynamic and nonlinear aging 

behaviors intrinsic to Lithium-ion batteries, making it especially well-suited for processing 

time-series data. The framework uses methods such as data augmentation and TL to improve 

its robustness and adaptability. This allows it to function well on a variety of datasets, 

including those from lab and real-world settings. The DNN architecture is optimized through 

hyperparameter tuning, which guarantees high predictive accuracy and generalizability. The 

model performs better than conventional machine learning techniques after being validated 

on large datasets. 
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The suggested approach has a number of benefits. It is appropriate for real-world 

applications because it captures complex nonlinear relationships in battery aging data 

effectively, resulting in high predictive accuracy. While data augmentation and TL improve 

the framework's resilience across a range of scenarios, the integration of automatic feature 

extraction streamlines implementation and lessens dependency on domain-specific expertise. 

Furthermore, the DNN's modular architecture promotes scalability by enabling the 

incorporation of fresh data sources and flexibility in response to developing battery 

technologies. Notwithstanding these benefits, there are certain drawbacks to the approach. 

The DNN's high computational requirements for training and optimization make it difficult 

to implement in environments with limited resources. Because the model relies on the 

representativeness and quality of the input datasets, thorough data preprocessing is essential. 

Furthermore, as a "black-box" model, the DNN provides limited interpretability, making it 

difficult to derive insights into the physical mechanisms underlying battery degradation. The 

implementation process also requires significant expertise in neural network design, training, 

and validation, adding complexity to its deployment. 

The study combines cutting-edge machine learning techniques with scalable and 

effective methodologies, which significantly advances the field of battery diagnostics and 

prognostics. Through data augmentation and TL, the framework addresses issues like 

variability and scarcity of data, setting a new benchmark for predictive maintenance 

strategies in BMS. These developments support sustainable energy solutions and lower 

operating costs by improving the safety and longevity of LiBs. The amalgamation of resilient 

data-driven methodologies showcases the possibility of productive amalgamations of 

inventive approaches to address crucial predicaments in energy storage systems. 

A hybrid data-driven method for estimating the SoH and forecasting the RUL of LiBs 

is proposed in the study by [158]. To increase prediction accuracy, robustness, and 

computational efficiency, this technique combines two sophisticated randomized learning 

algorithms—Random Vector Functional Link (RVFL) networks and Extreme Learning 

Machines (ELM)—within an ensemble framework. The ensemble structure lowers prediction 

variance and increases learning diversity by utilizing the advantages of both algorithms. The 
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study uses a NAR structure, which links historical, present, and future data to better capture 

dynamic battery degradation trends, in order to further refine predictions. The primary health 

indicator is a particular feature derived from the charging voltage that shows a strong 

correlation with battery aging. To address uncertainty in predictions, the method employs a 

Bootstrap-based uncertainty management technique that quantifies prediction intervals, 

improving reliability and enabling informed decision-making. Validation of the method using 

two publicly available datasets—one from laboratory conditions and the other representing 

real-world scenarios—demonstrates its applicability and effectiveness across diverse 

operational settings. 

The proposed method offers several advantages. Its ensemble structure, combining 

ELM and RVFL algorithms, achieves superior predictive accuracy compared to single-model 

approaches. The inclusion of randomized learning techniques ensures rapid training and 

computational efficiency, making the framework feasible for real-time applications in battery 

management systems. Moreover, the method's robustness across different datasets highlights 

its generalizability, while the Bootstrap-based uncertainty quantification enhances prediction 

reliability. The modularity of the framework allows for scalability, enabling the integration 

of additional models or indicators as new battery technologies emerge. However, the method 

also presents some challenges. The complexity of integrating multiple learning algorithms 

within an ensemble structure requires expertise and computational resources. The approach 

is heavily dependent on the quality and representativeness of training datasets, which may 

limit its adaptability to different battery chemistries or operating conditions. Additionally, 

while effective, the ensemble learning methodology provides limited insight into the physical 

mechanisms underlying battery degradation. Expanding the ensemble size to further improve 

accuracy can also increase computational demands during the training and integration 

processes. 

This hybrid approach significantly advances battery health diagnostics and 

prognostics by addressing critical challenges in SoH and RUL prediction. The method 

enhances prediction accuracy and robustness by combining the complementary strengths of 

ELM and RVFL algorithms while incorporating the NAR structure to capture nonlinear aging 
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behaviors. The inclusion of uncertainty management through Bootstrap analysis adds a layer 

of reliability to predictions, making the framework suitable for deployment in energy storage 

and electric vehicle systems. By outperforming traditional and state-of-the-art methods in 

accuracy and efficiency, this study provides a scalable and practical solution for modern 

battery management systems, exemplifying the successful integration of diverse 

methodologies to solve complex engineering problems. 

Despite the advancements presented in the study "Predicting Battery Health for 

Electric Vehicles," several research gaps remain that highlight opportunities for further 

exploration. The proposed Deep Neural Network (DNN) model, while effective in leveraging 

experimental data such as voltage, current, temperature, and health indicators, may face 

challenges in generalizing to other battery chemistries, such as solid-state batteries or 

emerging lithium-ion variants. This limitation underscores the need for validation across 

diverse battery types to enhance the model's broader applicability. Additionally, the model’s 

reliance on experimental data does not fully account for the complexities of real-world EV 

usage, such as variable driving patterns, fluctuating environmental conditions, and user 

behaviors. Incorporating real-world field data would improve the robustness and reliability 

of predictions. 

Moreover, the study lacks integration with physics-based models, which provide 

insights into the electrochemical mechanisms of battery aging. A hybrid approach combining 

machine learning and physics-informed modeling could offer greater interpretability and 

more accurate predictions. Another significant gap is the absence of uncertainty 

quantification, which is essential for addressing the variability in manufacturing processes, 

measurement noise, and data sparsity. Implementing methods to quantify prediction 

uncertainties could enhance the reliability of the model, especially in safety-critical 

applications. 

The computational intensity of DNNs also poses a challenge for real-time deployment 

in battery management systems (BMS), necessitating research into optimizing model 

architectures for efficient inference without compromising accuracy. Additionally, the study 

does not address how the model adapts to long-term changes in battery behavior due to aging 
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or evolving battery technologies. Developing scalable, adaptive models capable of learning 

from new operational data would be crucial for maintaining prediction accuracy over time. 

Furthermore, the lack of explainability in DNN models, often perceived as "black boxes," 

can hinder their industrial adoption. Incorporating explainable AI (XAI) techniques would 

enhance transparency and foster trust in the model’s predictions. Lastly, the study does not 

explore the economic or environmental implications of deploying the proposed model for 

predictive maintenance in EVs. A comprehensive evaluation of cost savings and 

environmental benefits, such as reduced battery waste and extended battery life, could 

provide valuable insights into the practical impact of the model. Addressing these research 

gaps would not only advance the current state of EV battery health prediction but also pave 

the way for more reliable, interpretable, and scalable solutions in battery management 

systems. 
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CHAPTER 3 

IMPORTANCE OF STATE OF HEALTH (SOH) IN 

LIBs 

One crucial LiB parameter is the SoH. It gauges the battery's general state in relation 

to its starting capacity. The safety, effectiveness, and dependability of batteries in a variety 

of applications are ensured by an understanding of and adherence to SoH. SoH is especially 

important for portable electronics, renewable energy systems, and EVs. This parameter 

guides maintenance strategies and performance optimization by offering insights into battery 

aging. The percentage of a battery's performance and capacity is represented by SoH. It 

makes a comparison between the current state and the one in which it was manufactured. An 

80% SoH battery retains 80% of its initial capacity. For the purpose of determining 

performance degradation and replacement planning, SoH is essential. 

The measurement of SoH involves multiple methods. Electrochemical Impedance 

Spectroscopy (EIS) is widely used. It assesses impedance growth, which indicates aging. 

Thermal measurements track heat generation, another sign of deterioration. Voltage and 

current trends are also monitored. Researchers introduced a machine learning model. This 

model accurately estimated SoH using real-time sensor data [1]. Accurate SoH assessment 

ensures optimal battery utilization. It minimizes risks such as unexpected failures and 

capacity loss. Without monitoring SoH, users may face operational inefficiencies or safety 

issues. Battery Management Systems (BMS) rely heavily on SoH data. SoH informs decisions about 

charging, discharging, and fault prevention. A well-calibrated BMS can extend battery life by 

managing stress factors. 

Researchers emphasized the importance of SoH for fault detection. Their system used 

SoH data to identify overcharging risks. This approach prevented overheating and capacity 

fade [2]. Adaptive charging protocols also utilize SoH. Studies demonstrated pulse charging 

techniques. These techniques adjusted charging rates based on SoH levels [3]. This reduced 

lithium plating and enhanced cycle stability. Furthermore, SoH helps balance cells in battery 

packs. Imbalanced cells degrade faster, reducing overall performance. SoH monitoring 
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ensures uniform degradation. This increases the pack’s lifespan and safety. SoH is essential for 

predicting the RUL of batteries. RUL estimation combines historical data and real-time monitoring. 

Accurate RUL predictions prevent unexpected failures and improve maintenance scheduling. 

Researchers proposed a hybrid model integrating SoH data. Their model predicted RUL with 

90% accuracy [1]. This approach combined electrochemical simulations and machine 

learning. By incorporating SoH trends, the model identified degradation mechanisms. 

Experimental validation highlighted its effectiveness for EV battery packs [2]. RUL 

predictions are particularly beneficial for industrial applications. They ensure uninterrupted 

operations and reduce downtime. SoH serves as a foundation for reliable and precise RUL 

forecasts. 

For EVs, SoH is a vital parameter for performance and safety. It influences range 

estimation, charging strategies, and safety protocols. Degraded SoH leads to reduced driving 

range and slower charging rates. Studies analyzed SoH’s impact on EV performance. Their 

findings showed a direct correlation between SoH and energy efficiency [3]. Batteries with 

70% SoH exhibited a 30% reduction in range. This underscores the need for accurate SoH 

tracking. Moreover, SoH affects resale value. Buyers of used EVs consider SoH a key factor. 

High SoH values increase marketability and reliability. Regular SoH assessments build 

consumer trust and confidence. Despite its importance, SoH estimation faces challenges. 

Variability in operating conditions complicates assessments. Extreme temperatures accelerate aging, 

skewing SoH predictions. Researchers proposed temperature-adjusted algorithms to address this [2]. 

Their models accounted for thermal effects, improving accuracy. Data availability is another issue. 

High-quality datasets are necessary for machine learning models. Studies highlighted the lack 

of standardized data formats [3]. Collaborative efforts can bridge this gap, enabling better 

SoH predictions.  

 Selecting the correct parameters for SoH measurement is vital for accuracy and 

reliability. Different parameters provide insights into various aspects of battery health. The 

key parameters include capacity retention, internal resistance, and coulombic efficiency. 

These parameters correlate directly with the performance and aging of the battery. Capacity 

retention is a primary indicator of SoH, representing the battery’s ability to store charge 
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compared to its original capacity. Internal resistance measurements highlight the impedance 

growth, which indicates aging. High internal resistance leads to power loss and inefficient 

energy delivery. Coulombic efficiency assesses the ratio of charge delivered to charge 

accepted during cycles, revealing energy loss through side reactions. External factors like 

temperature, charge-discharge rates, and voltage fluctuations also influence these parameters. 

Accurate measurement requires advanced techniques and consistent monitoring conditions. 

For example, EIS effectively measures internal resistance and provides a detailed view of 

degradation mechanisms. However, its implementation is complex and requires specialized 

equipment. 

Incorporating multiple parameters into SoH assessment models improves prediction 

accuracy. A balanced approach ensures comprehensive insights, enabling effective battery 

management strategies. Without the correct parameters, SoH evaluations may lead to 

misleading conclusions, impacting overall performance and safety. Several methods are 

employed to measure the  (SoH) of LiB. These methods vary in complexity, accuracy, and 

applicability. Each technique has its advantages and disadvantages, making the choice of 

method application-dependent. EIS is a highly accurate method for measuring SoH. It 

analyzes the impedance of a battery over a range of frequencies. This provides insights into 

internal resistance, electrolyte degradation, and SEI layer growth. The primary advantage of 

EIS is its ability to detect early signs of degradation. However, it requires expensive 

equipment and skilled operation, making it less suitable for on-field applications. 

An easy way to gauge SoH is through capacity retention. The current capacity of the 

battery is compared to its initial capacity. This is an easy method that doesn't require 

complicated equipment. It takes a while, though, because it requires complete charge-

discharge cycles, which might not be possible for real-time monitoring. Measurements of 

internal resistance offer fast and accurate indicators of SoH. Degradation of battery 

components is indicated by an increase in internal resistance. This approach works well for 

real-time monitoring and is less intrusive. It might, however, miss some degradation 

mechanisms, producing assessments that are insufficient. Machine learning (ML) models 

have been introduced recently for SoH prediction. Large datasets of historical and current 
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battery data are analyzed by these models. High accuracy and adaptability to changing 

conditions are offered by ML models. However, their reliability depends on the quality and 

quantity of training data. Developing these models requires significant computational 

resources and expertise. 

 SoC and SoH are interconnected parameters essential for comprehensive battery 

management. While SoC measures the current energy level, SoH assesses the battery’s 

overall condition. Accurate SoC estimation depends on reliable SoH data. For instance, 

degraded batteries exhibit inaccurate SoC readings due to reduced capacity and increased 

resistance. Combining SoC and SoH assessments enhances predictive capabilities. SoC 

provides short-term insights into energy availability, while SoH predicts long-term 

performance and degradation trends. Integrated models improve fault detection, optimize 

charging strategies, and extend battery lifespan. For example, adaptive charging protocols 

use SoC and SoH data to adjust current and voltage dynamically, minimizing stress on the 

battery. Advanced battery management systems (BMS) leverage both SoC and SoH for real-

time monitoring and decision-making. Machine learning algorithms effectively integrate 

these parameters, enabling precise predictions and proactive management. However, the 

integration process is complex, requiring robust algorithms and extensive datasets. 

Each method for measuring SoH has its strengths and limitations, influencing its 

applicability. Electrochemical Impedance Spectroscopy (EIS) offers high accuracy and 

detailed insights into aging mechanisms, making it ideal for laboratory analysis. However, it 

requires expensive equipment and skilled operation, limiting its use in field applications. 

Capacity retention measurement is straightforward and effective for benchmarking battery 

health, but it is time-intensive as it involves full charge-discharge cycles, which are 

impractical for continuous monitoring. Internal resistance measurement provides rapid and 

reliable indicators of degradation, suitable for real-time applications. However, it may not 

capture all the nuanced aspects of battery aging, leading to incomplete assessments. Machine 

learning models bring a new dimension to SoH evaluation by leveraging vast datasets to 

deliver high accuracy and adaptability. These models can process diverse operational data 

but are dependent on data quality and computational resources, making them challenging to 



 
 

 

84 
 

implement without extensive preparation. Understanding the advantages and disadvantages 

of each method is essential for selecting the most appropriate approach for specific 

applications. 
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CHAPTER 4 

LI-ION BATTERY AGING AND DEGRADATION 

4.1 AGEING OF BATTERIES 

Battery ageing occurs when the performance of batteries steadily declines over time 

due to a reduction in genuine volume or an upsurge in sequence confrontation [11]. At the 

beginning of a battery’s lifecycle, its chemical components are in a high-energy state, 

intended to facilitate the conversion between chemical and electrical energy, as described by 

[1]. However, several side reactions can occur within the battery, prejudiced by aspects such 

as  (SOC), C-rate and temperature. These side responses irreversibly drive the system towards 

a more constant, lower-energy state, leading to outcomes such as electrolyte degradation, 

reduction of lively material at the anode or cathode, and a damage of cyclable lithium [174]. 

Figure 4.1 shows how lithium-ion batteries age at the anode, cathode, and current 

collectors. As the carbon anode ages, copper dissolution and dendrite formation can cause 

loss of internal short circuits and capacity. Graphite exfoliation and solvent co-intercalation 

damage the anode structure. Internal resistance increases as the Solid Electrolyte Interphase 

(SEI) coating forms and grows. Particle cracking and mechanical Stress can weaken the 

anode’s structure, reducing performance. Cracking and contact loss weaken copper current 

collectors’ current conductivity. Lithium plating and dendrite formation can pierce the 

separator, causing short circuits and safety hazards. Cathode issues are similar. Dendrite 

formation and transition metal dissolution degrade cathode stability and performance. 

Cathode structure disorder affects lithium-ion reversibility. Particle cracking and cathodic 

surface film formation cause capacity fade and internal resistance. Corrosion and contact loss 

in the aluminium current collector and cathode binder reduce electrical conductivity and 

mechanical stability [181]. 
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Figure 4.1. Different aging mechanisms [181] 

4.2 ORIGIN OF AGEING OF BATTERIES 

Battery ageing divided into couple of components: calendar aging and cycle aging 

[47]. Separately, term delineates the modifications induced by various applications of the 

battery. Consequently, calendar aging pertains to the phenomena and repercussions 

associated with battery storage. Conversely, cycle aging pertains to the effects of battery 

usage durations referred to as cycles (including both charging and discharging). 

4.2.1 AGEING OF CALENDAR LIFE SPAN  

Calendar ageing denotes to the irreparable loss of storing volume in batteries, also 

termed battery storage degradation [48, 49]. The rate of self-discharge can vary considerably 

based on storage conditions, which can either accelerate or decelerate battery ageing effects 

[50]. Extensive experimental studies have demonstrated the influence of storing conditions 

on battery ageing. For instance, the study by [51] tested sixty cells, another research by [52] 

analyzed three hundred cells, and  [53] examined cells under varying end-of-charge voltages 

and temperature conditions. Both calendar ageing and self-discharge are highly dependent 

on storage temperature [54]. Elevated temperatures can intensify secondary reactions, such 

as corrosion, and increase lithium loss, ultimately contributing to capacity fade [51, 52, 55]. 
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Various capacity fade phenomena in LiB have been defined by [173] and are illustrated in 

Figure 4.2 below. 

  

Figure 4.2.Capacity Fade phenomenon in LiB [173] 

Lower temperatures reduce these phenomena, minimize material loss, and affect 

battery chemistry [56]. Another critical variable in calendar ageing studies is the storage  

(SOC) [57]. Cells can exhibit varying ageing behaviors even when stored at the same 

temperature but under different SOC levels. Higher SOC levels accelerate battery 

degradation [36]. Since SOC indicates the ratio of ions present on the electrodes, elevated 

SOC results in significant potential imbalance at the electrode/electrolyte interface, 

promoting earlier chemical reactions. However, limited research specifically isolates SOC as 

an independent factor in calendar ageing, separate from temperature effects. Both variables—

SOC and temperature—impact capacity and resistance in a non-linear manner over time. 

Research findings by [58, 59] suggest that high SOC has a more substantial limiting effect 

than elevated temperature. Despite these insights, the combined impact of SOC and 

temperature on calendar ageing remains partially understood. Both factors directly contribute 

to battery calendar ageing, and the observed size fade and confrontation increase are non-

linear over time, highlighting a complex interaction between ageing behavior and temporal 

factors. 

 



 
 

 

88 
 

4.2.2 CYCLE AGEING 

Battery charging and discharging cause cycle ageing. This depends on battery level, 

utilization mode, temperature, and current requests. Many factors affect this type of aging. 

First, all aspects previously described affect calendar ageing and are included in cycle ageing 

studies because ageing phenomena occur regardless of battery use. Exothermic reactions are 

common in used batteries [60, 61], and high temperatures can accelerate battery ageing. 

However, very low temperatures must be considered [59]. Studies show ambient temperature 

affects batteries, but none do so directly. This concept is still unclear. Except for these 

variables, battery utilization mode determines cycling ageing. Literature frequently 

references the ∆SOC, which represents charge variation during a cycle. The battery's 

discharge (charge) is largely determined by this [35, 62].  

In their study [51], researchers examined Lithium-ion cells under similar 

temperatures and initial SOC but with varying ∆SOC levels. The results revealed that higher 

∆SOC leads to significant battery power loss, regardless of other influencing factors. Further 

experiments corroborated these findings [63]. This phenomenon is primarily attributed to 

positive electrode degradation and the formation of the SEI layer caused by extensive 

discharge or charge cycles. Charging and discharging voltages also play a serious role in 

Lithium-ion battery ageing and operational efficiency. Elevated charging voltages accelerate 

the ageing process [64]. As demonstrated by Asakura et al. [65], even a 0.1V increase in 

charging voltage can reduce battery lifespan by half, with the End of Life (EOL) defined at 

70% of the preliminary size. Additionally, impedance rise due to discharge voltage 

significantly impacts battery ageing [66, 42]. Lastly, current peaks are another contributing 

factor, as a substantial current peak can deliver excessive energy to the battery, potentially 

accelerating ageing. 
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4.3 AGEING ESTIMATION 

4.3.1 SOH ESTIMATION 

Several indicators or metrics have been developed to enumerate the health status of a 

battery to assess ageing. One of the most commonly employed indicators in the literature is 

the SOH, which is typically defined by [71, 72]: 

SOH (t) = 
𝑵𝒐𝒎𝒊𝒏𝒂𝒍 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 𝒂𝒕 𝒕

𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚
% 

SOH of a battery is a critical stricture implemented to assess its performance, capacity, 

and overall condition compared to its original state. Mathematically, SOH is naturally 

articulated as the ratio of the current capacity 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the nominal capacity 𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙, 

represented by the equation:  

SOH=
𝑪𝒄𝒖𝒓𝒓𝒆𝒏𝒕

𝑪𝒏𝒐𝒎𝒊𝒏𝒂𝒍
×100%. 

Over time, battery capacity degrades with repeated charge and discharge cycles, often 

modeled as 

𝑪𝒄𝒖𝒓𝒓𝒆𝒏𝒕=𝑪𝒏𝒐𝒎𝒊𝒏𝒂𝒍 × (1 – k. √𝑵 

where N represents the quantity of cycles, and k is a capacity fade coefficient. 

Temperature also significantly impacts battery health, and this relationship can be described 

using the Arrhenius equation:  

𝑲𝑻=A.e
𝑬𝒂

𝑲𝑻
, 

where higher temperatures typically accelerate aging. Similarly, the Depth of Discharge 

(DoD) affects battery lifespan, as higher DoD values reduce the number of effective cycles, 

modeled by  

L=
𝟏

𝒂.𝑫𝒐𝑫𝒃
, 
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where a and b are empirical constants. Furthermore, battery degradation results from both 

cycle aging and calendar aging, expressed collectively as,  

𝑺𝒐𝑯 = 𝟏 − (𝒌𝒄𝒚𝒄𝒍𝒆 . 𝑵 + 𝒌𝒄𝒂𝒍𝒆𝒏𝒅𝒆𝒓 . 𝒕) 

where t denotes time in years. A more comprehensive representation combines multiple 

factors, including cycle count, temperature, depth of discharge, and aging, into a single 

equation:  

𝑺𝒐𝑯 = 𝑪𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑿 𝒆−(𝒌𝒄𝒚𝒄𝒍𝒆 .𝑵+ 𝒌𝒄𝒂𝒍𝒆𝒏𝒅𝒆𝒓 .𝒕+ 𝒌𝑫𝒐𝑫+ 𝒌𝒕 .𝑻. 

Mathematical models enable engineers and researchers to predict battery health, enhance 

performance, and design improved energy storage systems by considering the intricate 

interactions of these influencing factors. Alternative definitions of SOH often rely on the End 

of Life (EOL) criterion [73], which essentially reflects the proportion of the battery's residual 

volume. This measure serves as an indicator of capacity fade [74, 75]. Since the term "ageing" 

lacks a precise definition, other metrics such as State of Function [73] and RUL [76] have 

been introduced. These metrics are primarily derived from the battery's size state, 

overlooking certain aspects of ageing, particularly resistance. However, resistance growth 

plays a significant role, especially in high-power applications, where its impact becomes 

more pronounced. 

4.3.2 SOC ESTIMATION 

 The SoC defines the battery capacity available for withdrawal, preventing over-

discharge or over-charge and reducing ageing effects. Many researchers are studying SoC 

estimation. Various methods have been suggested by [183]. Classifying methods is 

challenging as many approaches involve combining multiple methods and using various 

heuristic or deterministic mathematical methods. The review reveals a typical mixture OCV 

and CC methods [183]. These combinations often involve initial and online SoC estimation 

improvements due to inaccuracies in individual methods. For instance, a study by [183] 

utilized the OCV method, a full charge detector/dynamic load observer, and the CC method 
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with REKF as the key function. Combinations make it challenging to classify each approach 

by method.  

Direct SoC approximation techniques use mathematical equations or relationships to 

evaluate and estimate current battery characteristics, such as voltage, current, and 

temperature. In the industry, CC has become the accepted technique for estimating SoC [39]. 

Because of its superior accuracy in short-term calculations, the current method of choice for 

SoC valuation is the ampere-hour balancing method, or CC method. SoC is defined by the 

CC method as [183]: 

𝑺𝒐𝑪(𝒕) = 𝑺𝒐𝑪(𝒕𝒐 ) + 
𝟏

𝑪𝒏
∫

𝒕𝒐

𝒕𝟎+𝒕
𝑰𝒃𝒂𝒕(𝒅𝒕) × 𝟏𝟎𝟎% 

 where Ibat is the charging/discharging current, Cn is the nominal capacity, and SoC(t0) 

is the initial SoC. The charge and discharge current time integral as well as the initial SoC 

value must be known in order to calculate CC. If unknown, it is typically assumed. This 

approach is reliant on the early SoC value and cannot completely eliminate growing error. 

All estimates would be impacted by an incorrect initial SoC value, which would result in 

errors all along the estimation process. Despite being widely used recently, CC is typically 

used to estimate SoC in conjunction with other methods rather than as a stand-alone 

instrument. Certain publications, like, only compute SoC using the CC method [183]. 

 The OCV method is widely employed, relying on the description of the OCV curve, 

typically represented either through a polynomial function or a look-up table. This method 

generally adopts one of two approaches: a straight OCV curve inversion method, which is 

feasible when the application allows steady-state voltage measurements of the cell, or a cell 

model-based approach [42]. By performing voltage measurements to estimate the SoC of the 

cell, the relationship can be defined as: 

𝑺𝒐𝑪 = ∫
−𝟏

(𝑶𝑪𝑽) 

The OCV method involves continuously measuring the cell’s voltage and determining 

the SoC from a predefined table. However, in practical applications, this method encounters 
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challenges, such as the need for high-resolution sensors to evaluate voltage exactly and 

allowing enough time for the system to reach equilibrium. While the OCV method is precise, 

it necessitates rest periods to estimate the SoC, making it unsuitable for real-time monitoring. 

Furthermore, the relationship between OCV and SoC can differ amongst cells, which could 

result in substantial errors. Notwithstanding these drawbacks, the OCV approach is 

frequently used in conjunction with noise filtering and adaptive techniques to calibrate the 

Constant Current (CC) method [40]. OCV is often employed to improve other techniques. 

For example, in [183], the OCV–SoC relationship is characterized by applying an 

intermittent discharging method, which computes the interior confrontation of the model 

battery and estimates SoC using an extended Kalman observer and an Equivalent Circuit 

Model (ECM). Cell ECM parameters are also determined by this method [46, 47]. 

Additionally, to investigate the hysteresis phenomenon, the OCV curve is incorporated into 

a circuit model in [48–50], which reveals a discrepancy in the equilibrium OCV during 

battery charge and discharge cycles. 

4.4 AGING MECHANISMS OF LIB 

4.4.1 DECOMPOSITION MECHANISMS 

Rechargeable LiB are widely employed in mobile communications and moveable 

devices due to their numerous rewards, including immense volumetric energy (VE) and 

gravimetric energy (GE) densities and a low self-discharge rate. These batteries are also 

considered a leading choice for power sources in (hybrid) EVs and stationary energy storing 

systems. In applications where long-lasting performance is crucial, understanding the long-

term cycling and storage behavior of LiB converts increasingly important. However, like all 

energy storage technologies, LiB undergo aging processes that progressively degrade their 

performance over time. Unfortunately, LiB are multifaceted systems, and their aging 

processes are even more intricate. The loss of volume and energy degradation arise not from 

a single cause but from multiple interacting processes. Furthermore, many of these processes 

occur simultaneously on similar timescales, making it challenging to fully understand the 

underlying aging mechanisms [169]. 



 
 

 

93 
 

4.4.2 AGEING OF CARBONACEOUS ANODES 

Graphite, particularly in its use as an anode material, is crucial in LiB, making 

graphite-based cells the most studied in terms of anode aging. Recently, substitute anode 

materials, such as lithium loading metals and alloys, have achieved attention. However, the 

majority of research has concentrated on vigorous materials and associated challenges (e.g., 

nanostructured materials, volume change control), with limited focus on aging effects [4–6]. 

The existing literature presents a challenging scenario for analysis, as individually lithium-

ion cell system has a unique chemistry, and numerous aging properties are prejudiced by 

various cell components, such as the active material, electrode design, electrolyte 

composition, and impurities. Most studies tend to focus on complete cells without isolating 

the impacts on the anode or cathode.   

During storage, aging effects such as self-discharge and an increase in impedance can 

influence both the calendar life and cycle life of the battery. When in use, aging effects like 

mechanical damage and lithium metal plating can also take place [8]. To monitor storage-

related aging, electrochemical parameters for instance capacity loss, impedance rise, 

potential changes, SOC, and SOH can be assessed [9]. Anode materials, such as graphite 

show discharge plateaus, where the electrode potential remains relatively unchanged with 

varying charge states [10-12]. Cycling enables the measurement of capacity fade, impedance 

increase, power fade, and overpotentials, all of which influence the charge and discharge 

curves. 

Many researchers attribute anode ageing to variations at the electrode/electrolyte line 

Figure 4.3 below caused by anode reactions with the electrolyte [15]. LiB anodes operate at 

voltages outside the electrolyte components’ electrochemical stability window. Thus, 

reductive electrolyte decomposition and irreversible lithium-ion consumption occur when the 

electrode is charged at the electrode/electrolyte interface. Decomposition products form 

“protective layers” on the electrode. This process is most common in the first cycle of 

cycling. Based on their functions, graphite layers can be divided into two types. 

Intercalation/deintercalation transports lithium ions into/from graphite structures at prismatic 

surfaces and basal plane defects. Solid electrolyte interphase (SEI) protective layers are 
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needed [16]. SEI layers are unique because they are penetrable to lithium cations but 

impermeable to other electrolytes and electrons [169]. 

 

Figure 4.3.Changes in anode/electrolyte interface [169] 

It has been discovered that there are notable differences in the configuration of the 

SEI and non-SEI layers [17]. These variations in composition and function suggest that aging 

processes may differ between the non-SEI and SEI layers. The SEI can penetrate the 

electrode's holes and possibly even reach the separator's pores over time, reducing the 

electrode's usable active surface area. Numerous investigations have found a correlation 

between the cell's power fade and an increase in electrode impedance [22–32]. The expansion 

of the SEI and changes to its composition and structure are the main causes of this increase 

in resistance. In summary, although the majority of SEI formation occurs during the initial 

charge/discharge cycles, SEI conversion, stabilization, and growth occur during the 

subsequent cycles. 
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The gradual reduction in the amount of charge that a lithium-ion battery can hold over 

several cycles of charging and discharging is known as capacity fade. The deterioration of 

the electrode materials and damage to active lithium ions are the primary causes of this 

reduction. The formation of the SEI on the anode during the initial charging cycles is a major 

factor in capacity fade [4, 5]. Chemical reactions between the electrolyte and the anode 

surface give rise to the SEI layer. Lithium ions are consumed by the SEI as it grows, even 

though it serves as a barrier to stop additional reactions. As a result, over time, there is less 

available active lithium for intercalation and deintercalation, which lowers battery capacity 

[6, 7]. The growth of the SEI is accelerated by influences such as high temperatures, elevated 

charging currents, and extended cycling, which all contribute to faster electrolyte 

decomposition reactions [8]. 

The mechanical degradation of electrode materials also causes capacity fade. For 

instance, lithium intercalation and deintercalation during cycling expand and contract the 

anode and cathode. This mechanical Stress causes cracking, pulverization, and electrical 

contact loss, reducing battery charge storage [9]. Cathode materials with high energy 

densities are prone to structural instability and phase transitions, which cause capacity fade 

[9]. The impact of SEI thermal behaviour on cell properties, such as power fades, impedance 

rise, and safety, should be discussed [37–39]. As mentioned, elevated temperatures upsurge 

the kinetics of lithium insertion/removal from the host lattice. Many believe SEI morphology 

and arrangement change at high temperatures [40–48]. The cell may catch fire or explode if 

thermal runaway occurs. Several groups have studied electrode or cell behaviour at high 

temperatures using DSC and ARC [49–52]. 

Exothermic side reactions in lithiated carbon lead to self-heating, particularly at 

temperatures around 80 °C, as observed in different electrolytes through Accelerating Rate 

Calorimetry (ARC) tests. The temperature at which these reactions begin varies depending 

on the electrolyte salt, with LiBF4-based electrolytes starting around 60 °C [53]. 

Electrochemical cycling studies indicate that Li/graphite half-cells show capacity loss even 

at temperatures below 60 °C [54]. High temperatures accelerate the degradation of the Solid 

Electrolyte Interphase (SEI), causing it to either distort or dissolve. On the other hand, the 
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dissolved products might precipitate again, or the damaged SEI might reform. Under high 

temperatures, more stable inorganic compounds such as lithium salts (such as carbonate and 

fluoride) can be formed from metastable organic components of the SEI, such as lithium alkyl 

carbonates [51, 53]. Although the growth of these inorganic SEI products may lessen the 

ionic conductivity of the lithium SEI, they are more stable and less prone to be pierced by 

solvent molecules. 

Aging effects are usually negligible in the majority of active materials. Depending on 

the material, volume changes in graphite during the insertion and removal of lithium ions 

usually stay below 10% and have a negligible effect on reversibility. But structural 

alterations, like crystal phase shifts, can cause mechanical stress on defects and carbon-

carbon bonds during lithium insertion, which can result in cracking or other types of 

structural damage. Cell aging is generally not significantly affected by redox reactions 

involving the exchange of lithium ions and interactions with surface groups at the surface of 

the active material. However, exfoliation and particle cracking can result from processes like 

solvent co-intercalation, electrolyte reduction, and gas evolution within the graphite, which 

seriously deteriorate the electrode [12]. These processes have the most significant impact on 

the active material, thereby accelerating the aging of the cell. 

Cell impedance in composite electrodes rises due to mechanical or electrical contact 

loss, which accelerates aging. Changes in the active anode material's volume may cause this 

kind of contact loss, which could cause the composite electrode to mechanically disintegrate. 

Loss of contact between the carbon particles, the binder, and the current collector may result 

from this disintegration. As previously discussed in relation to SEI effects on electrode 

porosity, these volume changes also have an impact on the electrode's porosity, which is 

important for optimal anode performance because it facilitates electrolyte penetration. The 

internal pressure of the cell also needs to be taken into account. Commonly used as binders 

in composite electrodes, fluorine-containing copolymers and polymers react with the charged 

anode to form LiF, which deteriorates the mechanical properties of the electrode over time. 

Moreover, corrosion of the current collector, which can occur due to electrolyte reactions or 
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when the anode potential exceeds that of Li/Li+, can result in both electronic and mechanical 

contact loss between the current collector and other electrode components. 

Table 4.1 

Lithium-ion anode ageing—causes, effects, and influences [169] 

Origin Consequence Results in Mitigated by Exacerbated by 

Electrolyte 

degradation (SEI 

growth) 

Loss of lithium, 

Increased 

impedance 

Diminished 

capacity, 

Decreased 

power 

Additives for 

stable SEI, 

Slower 

progression 

over time 

Elevated 

temperatures, High 

state of charge 

(SOC) 

Solvent co-

intercalation, gas 

evolution, and 

particle cracking 

Loss of active 

material and 

lithium 

Reduced 

capacity 

Stable SEI 

through 

additives, 

Carbon pre-

treatment 

Overcharging 

Reduced surface 

area from SEI 

growth 

Increased 

impedance 

Lower power 

output 

Stable SEI 

through 

additives 

Elevated 

temperatures, High 

SOC 

Changes in 

porosity due to 

volume changes 

and SEI growth 

Increased 

impedance 

Reduced 

power 

Application of 

external 

pressure, Stable 

SEI additives 

High cycling rates, 

High SOC 

Loss of contact 

between active 

material particles 

during cycling 

Loss of active 

material 

Lower 

capacity 

External 

pressure 

application 

High cycling rate, 

High depth of 

discharge (DOD) 

Binder 

degradation 
Loss of lithium 

Decreased 

capacity 

Using suitable 

binder materials 

Elevated 

temperatures, High 

SOC 

Corrosion of the 

current collector 

Increased 

overpotentials, 

Higher 

impedance 

Reduced 

power 

Pre-treatment of 

the current 

collector 

Overdischarge, Low 

SOC 

Uneven current 

and potential 

distribution 

Amplifies other 

aging 

mechanisms 

Accelerated 

aging 

Uniform cell 

structure 

High cycling rates, 

Poor cell balancing 

Metallic lithium 

plating and 

Loss of lithium 

and electrolyte 

Diminished 

capacity, 

Narrowing 

potential 

window 

Low temperatures, 

High cycling rates, 



 
 

 

98 
 

Origin Consequence Results in Mitigated by Exacerbated by 

electrolyte 

breakdown 

Reduced 

power 

Geometric 

misalignment 

 

4.4.3 AGEING OF LITHIUM METAL OXIDE CATHODES 

The longevity, cycling characteristics, and performance of lithium-ion batteries are 

all significantly influenced by the cathode materials used. Lithium manganese oxide 

(LiMn2O4) and lithium nickel-cobalt mixed oxide (Li(Ni,Co)O2) have been extensively 

studied as potential cathode material substitutes for LiCoO2. These materials are appealing 

options for high-energy and high-power batteries because they have benefits like reduced 

costs, improved availability, and improved performance. Even with the advancements, 

research is still being done to determine what causes capacity degradation and how to prevent 

it. Recent research has examined the aging processes of lithium batteries, with an emphasis 

on the effects on cathode materials [1-3,8,78]. The battery's overall lifespan is shortened by 

the aging of the active material and the degradation of electrode components, including 

binders, conducting agents, current collector corrosion, oxidation of electrolyte components, 

and surface film formation. Because of their interdependence, these processes cannot be 

viewed in isolation. These degradation mechanisms heavily depend on the specific 

composition of the electrodes as well as the storage and cycling conditions of the battery.  

Changes in the surface film, dissolution reactions, chemical breakdown, and 

structural changes during cycling can all lead to capacity fading in the positive active 

material. The positive active materials deteriorate according to the charging and cycling 

conditions, just like the negative carbon electrode. The electrochemical reaction of these 

materials involves the insertion of lithium ions into the metal oxide structure. 

𝑳𝒊𝑴𝒆𝑶𝟐 =  𝑳𝒊𝑴𝒆𝑶𝟐 + (𝟏 − 𝒙)𝑳𝒊+ + (𝟏 − 𝒙) 𝒆− 

Changes in the molar volume of the materials brought about by the insertion and 

removal of lithium ions have the potential to induce mechanical stress and strain in the oxide 

particles and, as a result, the electrode. Additionally, this process might cause phase 

transitions that distort the crystal lattice and raise mechanical stress even more. The aging 
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mechanisms connected to lithium-ion cathode materials, as discovered in earlier research, are 

depicted in figures 4.3 and 4.4 below. The homogeneous solid solution series is terminated 

by LiNiO2 and LiCoO2, which crystallize in the α-NaFeO2 structure. In this structure, nickel 

and cobalt are both in their trivalent states and retain a low-spin configuration. 

(𝑪𝒐𝟑+ 𝒕𝟐𝒈 𝟔 𝒆𝒈𝟎; 𝑵𝒊𝟑+ 𝒕𝟐𝒈 𝟔 𝒆𝒈𝟏 ). 

Pure stoichiometric LiNiO2 is exceedingly challenging to produce [80,81]. It results 

from a structural disorder reaction in which divalent nickel ions replace lithium ions at their 

respective locations. Concurrently, the nickel sites undergo a reduction of trivalent nickel 

ions to the divalent state to achieve a balance in charge. The reaction of complete disorder 

can be expressed as: 

𝑳𝒊𝑵𝒊𝑶𝟐  ⇄ {𝑳𝒊𝟏−𝒙 𝑵𝒊(𝑰𝑰) 𝒙
𝟐⁄  }𝑵𝒊(𝑰𝑰𝑰)𝟏−𝒙 } 𝑶𝟐−𝒙 + 𝒙 𝟐⁄  𝑳𝒊𝟐𝑶 + 

𝒙

𝟒
 𝑶𝟐  

 

Figure 4.4. Overview on basic ageing mechanisms of cathode materials [169] 

As the mixed oxide's cobalt content rises, the lithium-nandel-disorder diminishes and 

the layered structure is stabilized [82]. Pure lithium nickel oxide goes through a number of 

reversible phase transitions during electrochemical lithiation/delithiation [83–92]. Large 
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anisotropic volume jumps and a rapid capacity decrease are caused by the monoclinic phase 

domain M1 transition and the delighted phase H3 formation, as shown in figure 4.5 below. 

Phase transitions from monoclinic to hexagonal can be avoided with 20 moles of cobalt. 

Dopants of magnesium and aluminum stabilize the layers. Volume changes in lithium nickel 

cobalt oxide are lessened [93] when doped with magnesium [96,97] or aluminum [94,95]. 

Lithium nickel cobalt oxides doped with Al or Mg thus have longer cycle lives [98–100]. 

Doped Li (Ni, Co)O2 with optimized compositions is stable in the discharged state even at 

higher temperatures and has a good cycle life if the end-of-charge voltage is controlled and 

overcharge is avoided. 

 

Figure 4.5. Cause and effect of ageing mechanisms of cathode materials [169]. 
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Lithium nickel cobalt oxides dissolve well in practical electrolytes. LixCoO2 

dissolves and deposits cobalt on the anode when charged above 4.2 V versus Li/Li+ 

[101,102]. Lithium-ion battery anode materials have been extensively studied for surface–

electrolyte interactions and SEI formation [14,103]. Increased carbon anode interfacial 

impedance causes high-energy battery capacity fading, according to Broussely et al. [8]. High 

power batteries' lithium nickel cobalt oxide cathodes increased interfacial impedance, 

causing power loss [20,22,28,29,32,38,41,42,45,46,72,104–116]. This increase is accelerated 

by higher temperatures and positive end-of-charge voltages of 4.2 V versus Li/Li+. Surface 

films are formed by LiPF6 decomposition and electrolyte oxidation, as reported in literature. 

Lithium nickel cobalt oxide can also supply oxygen for these oxidation reactions through a 

subsurface layer of a lithium/oxygen deficient oxide phase of the rock-salt structure 

[104,117]. The mechanisms of charged lithium nickel cobalt oxide surface film formation are 

summarized in figure 4.6 below. Surface impedance rises as a result of the low lithium-ion 

conductivity of the lithium nickel cobalt oxide with a rock-salt structure. Furthermore, 

gaseous species are frequently released along with surface electrolyte reactions [120]. 

 

Figure 4.6. Mechanisms of surface alteration of lithium nickel cobalt oxide electrodes in 

LiPF6-based electrolytes [169] 
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4.4.4 DEGRADATION CAUSES 

New cells degrade quickly in the first few cycles due to the solid electrolyte interface 

layer on the negative electrode. After a few cycles, formation cycles stop when all surfaces 

are coated in decomposition products. Cell performance is stable and capacity loss is absent 

in subsequent cycles. Prepassivation or prelithiation is needed to maximize active material 

capacity without sacrificing cyclable lithium [1]. Calendar aging is battery capacity loss from 

self-discharge during storage. This phenomenon is heavily influenced by cell SOC and 

storage temperature. [1], [2]. Overcharge/overdischarge occurs when the cell exceeds the 

manufacturer's voltage. Overcharge deposits metallic lithium on the negative electrode 

surface when graphite lithium solubility exceeds [1], [3]. Deintercalating a lot of lithium from 

the positive electrode may cause a structural collapse evident from figure 4.7 below. 

Furthermore, overdischarge can dissolve positive current collector (copper) [1]. Regular 

battery use is likely the main cause of lithium-ion cell degradation. Lithium insertion and 

extraction during cell charge and discharge stress the active material particles, causing crack 

propagation. Indeed, active material is micrometer-sized particles. Due to lithium 

insertion/extraction, crack propagation creates new free surfaces for electrolyte 

decomposition, lithium-ion consumption, and cell degradation. Electrical load intensity 

increases damage rate by stressing the active material. [1], [4].  

 

Figure 4.7.Causes, mechanisms and effects of the most common degradation modes in LiB 

[170] 
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Different temperatures affect cell performance. The main effect is to accelerate SEI, 

electrolyte, and binder decomposition [1, 5, 6]. Temperature accelerates battery cycling-

induced capacity loss [7, 4]. Extreme heat generation can cause thermal deformation in active 

material [8]. Temperature also accelerates calendar aging [1], [2]. Finally, extreme heat 

generation causes thermal run-away, which can cause fires and explosions depicted in figure 

4.8 below. Few studies examined how external mechanical stress affects battery performance. 

Many studies examined the effects of cell penetration or indentation to describe how the cell 

reacts to this type of load, which could result from accidents or system failure. Initially, the 

cell loses power and energy. After the internal structure collapses, cell voltage and power 

drop dramatically as temperature rises [9], [10]. The depletion of cyclable lithium during 

storage is regarded as the primary cause of irreversible capacity loss across all storage 

conditions. Notably, [172] in their study indicated that during storage at 60 °C, another 

significant degradation process was identified evident from figure 3.6: the inaccessibility of 

graphite. The degradation of graphite electrodes has been quantitatively assessed through 

nondestructive analyses utilizing 𝑑𝑉𝐸𝑀𝐹/𝑑𝑄 curves. The deposition of iron on the graphite 

electrode has been experimentally validated through X-ray photoelectron spectroscopy 

(XPS) and inductively coupled plasma (ICP) analysis. The rising inaccessibility of graphite 

is attributed to the dissolution of Fe from the cathode, followed by its deposition onto the 

anode. 
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Figure 4.8.Temperature based ageing of Lithium Li-ion Batteries [172] 

Therefore, LiB are critical to electric vehicles (EVs). EV batteries experience unique aging 

mechanisms. Their usage differs from standard consumer applications. In EVs, batteries undergo 

rapid charge-discharge cycles. These cycles lead to significant capacity and power fade [16, 18]. 

Thermal management in EV batteries is vital. Poor thermal control accelerates capacity fade. 

High charging speeds, common in EVs, also stress battery components [20, 21]. Battery 

aging reduces the range and efficiency of EVs [22]. Environmental exposure plays a role in 

EV battery degradation. Factors like humidity and vibrations affect performance. 

Deterioration is also linked to electrode material fatigue [167]. Newer designs focus on 

improving cycling stability [167, 168]. 

4.5 FACTORS AFFECTING the HEALTH OF SOH and SOC 

Given the growing use of large-capacity lithium batteries in electric vehicles, the most 

recent study has emphasized the significance of ongoing monitoring of lithium batteries to 

ensure their safe and dependable operation. LiB SOH indicates how long it can hold a charge. 

By monitoring variables like operating voltage, charge and discharge currents, and thermal 

management, BMS is crucial for maximizing battery efficiency. Lithium-ion batteries (LiBs) 

are praised for their high energy density, uniform voltage, and low self-discharge rate; 

however, misuse can lead to serious risks like combustion or explosions. As such, 

determining the SOH of lithium batteries accurately is essential to preserving system safety 

and stability. For battery systems to operate dependably, SOH monitoring is necessary. The 

SOH is affected by various factors and is contingent upon the battery’s ageing process, 

making accurate estimation and prediction difficult. Despite the numerous methods proposed 

for diagnosing and forecasting the SOH in lithium batteries, further detailed discourse on 

effectively characterizing SOH remains necessary. 

The Battery SOH denotes a particular stage in its lifespan and represents the battery’s 

present performance relative to its optimal condition. Unlike terminal voltage, SOH cannot 

be directly quantified, complicating its application in longevity evaluations. The battery's 

usage history has a major impact on the estimation of SOH, and external factors that affect 

the ageing process include temperature, current rates (C-rates), and the battery's operational 
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range. Different aging trajectories are caused by these factors. Furthermore, variations in the 

battery's ageing characteristics can be caused by minor manufacturing defects, which further 

complicates accurate monitoring. Scholars generally employ metrics like capacity or 

impedance to evaluate the current energy or power capacity that a battery is capable of 

producing. Some focus on mechanisms of ageing, such as the amount of cyclable lithium 

ions [181] or the time it takes for lithium ions to diffuse into the solid phase in the positive 

electrode [176]. SOH is an estimate that is produced by analyzing a series of measurements 

using specific criteria. The battery’s ageing state can be assessed through quantitative or 

qualitative evaluation. The principal objectives of SOH monitoring are to guarantee the safe 

and dependable functioning of battery systems, enhance battery management, and provide 

early alerts. 

The Battery SOH denotes a particular stage in its lifespan and represents the battery’s 

present performance relative to its optimal condition. Unlike terminal voltage, SOH cannot 

be directly quantified, complicating its application in longevity evaluations. The estimation 

of SOH is significantly affected by the battery’s usage history, with external factors including 

current rates (C-rates), temperature, and the operational range of the battery substantially 

influencing the ageing process. These factors lead to diverse ageing trajectories. Moreover, 

even slight manufacturing defects can result in variations in the battery’s ageing 

characteristics, thereby complicating the precise monitoring. Researchers typically utilize 

parameters such as capacity or impedance to assess the energy or power capacity that a 

battery can presently deliver. Some concentrate on ageing mechanisms, including the 

quantity of cyclable lithium ions [181] or the solid-phase diffusion duration of lithium ions 

in the positive electrode [176]. Essentially, SOH is an estimation derived from a sequence of 

measurements analyzed according to particular criteria. The battery’s ageing state can be 

assessed through quantitative or qualitative evaluation. The principal objectives of SOH 

monitoring are to guarantee the safe and dependable functioning of battery systems, enhance 

battery management, and provide early alerts.  

Both internally and externally, the difficulties in estimating the SOH and RUL have 

been investigated. Data-driven methods for lifetime prediction and SOH estimation were the 
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subject of a review by [142]. The differences between battery operations in EV and 

photovoltaic (PV) systems were examined in [67], with particular attention paid to SOH 

estimation techniques designed for PV applications based on signal types. Furthermore, [12] 

examined the reasons behind LiB aging and presented a novel SOH prediction method 

classification scheme, weighing the benefits and drawbacks of each. LiB, which are 

frequently used in energy storage, depend on two essential metrics: SoC and (SoH) for 

performance evaluation. SoH assesses the overall state and degree of degradation, while SoC 

shows the amount of charge left in relation to the battery's capacity. Accurate estimation of 

these parameters is crucial for ensuring safe and efficient battery operation. Several factors, 

including environmental conditions, operational settings, and material properties, influence 

both SoC and SoH.  

4.5.1 KEY FACTORS AFFECTING THE HEALTH OF SOC 

Temperature significantly influences lithium-ion battery performance. High 

temperatures accelerate chemical reactions within the battery. These reactions increase 

internal resistance and alter voltage profiles. Consequently, temperature variations distort 

SoC estimation [4, 5]. Low temperatures slow lithium-ion transport through electrodes. This 

leads to incomplete charging and discharging cycles. Temperature-induced capacity fade also 

affects SoC accuracy [6]. Advanced thermal management systems help mitigate temperature 

impacts on SoC [7].  Charge and discharge rates directly affect SoC. High current rates lead 

to significant voltage drops. This makes voltage-based SoC estimation less reliable [8, 9]. 

Rapid charging or discharging causes lithium plating on the anode. This alters the battery’s 

voltage response and impacts SoC estimation accuracy. Low-rate cycling is less likely to 

cause such distortions [10]. 

Depth of discharge refers to how deeply a battery is discharged. High DoD cycles 

strain the battery’s electrodes. This leads to voltage hysteresis, affecting SoC estimation [11]. 

Shallow DoD cycles result in smaller voltage swings. These are easier to track during SoC 

estimation. Optimizing DoD can improve both SoC accuracy and battery lifespan [12]. Self-

discharge refers to the battery losing charge when idle. This phenomenon is more pronounced 

at high temperatures [13]. Self-discharge alters the open-circuit voltage (OCV). Since OCV 
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is used in SoC estimation, self-discharge reduces accuracy. Advanced battery management 

systems (BMS) account for self-discharge effects [14]. Aging alters battery capacity and 

internal resistance. These changes distort the voltage-capacity relationship. Consequently, 

aged batteries show inaccurate SoC estimates [15]. Advanced SoC algorithms compensate 

for aging effects. These use adaptive models to track degradation trends [16, 17]. 

4.5.2 KEY FACTORS AFFECTING STATE OF HEALTH (SOH) 

Battery usage patterns significantly affect SoH. Frequent deep discharge cycles 

accelerate degradation. Shallow cycling reduces stress on electrodes and improves SoH [18]. 

Cycle life depends on charge-discharge rates and cycling depth. Rapid cycling causes higher 

internal resistance. This leads to capacity fade, impacting SoH estimation [19, 20]. 

Temperature extremes greatly influence SoH. High temperatures degrade electrolyte and 

electrode materials. This accelerates the growth of the Solid Electrolyte Interphase (SEI) 

layer [21]. Low temperatures reduce lithium-ion mobility. This results in lithium plating, 

which damages anode surfaces. Both scenarios reduce battery lifespan and SoH [22]. As 

batteries age, internal resistance increases. This resistance rise reduces energy output 

efficiency. It also increases heat generation during charging and discharging [23].  

Internal resistance growth is caused by SEI layer thickening and material fatigue. 

Advanced SoH models incorporate resistance changes for accurate estimation [24]. 

Degradation of active materials affects battery performance. Cathode materials are prone to 

phase transitions and structural instability [9]. Anode materials experience cracking and 

lithium plating over time. Both processes reduce the battery’s ability to store and deliver 

energy. Material degradation is a primary factor in SoH estimation [10]. Electrochemical 

aging involves side reactions within the battery. These reactions consume active lithium and 

electrolyte components [25]. SEI layer formation is a key aging mechanism. Over time, it 

thickens and reduces lithium-ion transport. This leads to capacity fade, affecting SoH 

estimation [26]. Lithium-ion intercalation causes volumetric expansion and contraction. 

Repeated cycling introduces mechanical stress on electrodes [27]. Mechanical stress leads to 

particle cracking and electrode delamination. These reduce electrical contact, impairing SoH. 

Advanced cell designs minimize mechanical stress impacts [28]. 
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4.6 METHODS OF IMPROVING THE LIFE-SPAN OF THE BATTERY 

 The table 3.2 depicted the deficiencies in Lithium Li-ion batteries highlighted by 

[178], the study determined lists lithium-ion battery (LIB) issues and suggests solutions. 

Replace carbonaceous anodes (negative electrodes) with advanced alloy anodes for high 

coulombic efficiency, power capability, reduced irreversible capacity loss, and cost-

effectiveness to improve energy storage efficiency. Solid electrolyte interphase (SEI) growth 

during the initial cycle and ongoing cycling reduces coulombic efficiency at the negative 

electrode–electrolyte interface. Interface stabilization with coatings, functional binders, and 

electrolyte additives can reduce this. New cathode materials with high efficiency and low-

capacity loss can improve the positive electrode (lithiated transition metal oxide or 

phosphate)'s low specific capacity and charging voltage.  

High voltage operation at the positive electrode–electrolyte interface lowers 

coulombic efficiency, increases cell impedance, and shortens cycle life. These issues can be 

addressed with better coatings, binders, and electrolytes. Conductive particles and lithium 

dendrites can penetrate separators, causing short circuits. Ion flux, salt diffusion, and fluid 

flow can be maintained and structural strength improved with advanced separator coatings. 

Finally, metal collectors are necessary for conductivity and thermal performance but cost 

more and reduce energy efficiency due to their thickness. Optimizing perforated or expanded 

metal collectors, which work in other battery systems, could solve this problem. These 

targeted solutions emphasize material innovation and interface engineering to improve 

lithium-ion battery performance, efficiency, and lifespan. 
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Table 4.2 

Deficiencies in Lithium Li-ion Batteries highlighted by [178] 

Location of Deficiency Deficiencies Possible Remedies 

Carbonaceous Anode 

(Negative Electrode) 

Low-capacity density (Ah 

l⁻¹) 

Use advanced alloy anodes with 

high efficiency, power, and low 

capacity loss. 

Negative Electrode–

Electrolyte Interface 

Low coulombic efficiency 

due to SEI growth 

Apply protective coatings, 

binders, and electrolyte 

additives. 

Positive Electrode (Lithiated 

Transition Metal Oxide or 

Phosphate) 

Low specific capacity (Ah 

kg⁻¹) and limited charge 

voltage 

Use new cathode materials with 

high efficiency and capacity 

retention. 

Positive Electrode–

Electrolyte Interface 

Reduced efficiency at 

higher voltages, increased 

impedance 

Improve cathode coatings, 

binders, and additives to prevent 

degradation. 

Separator 

Penetration by conductive 

particles or lithium 

dendrites 

Enhance separator coatings for 

better strength and dendrite 

resistance. 

Metal Collectors 

Solid metal foils increase 

costs and reduce 

efficiency 

Use perforated or expanded 

metal collectors for better 

optimization. 

 

The development of long-lasting battery materials and designs has been a key focus, 

with increasing attention given to battery lifespan management as it helps reduce costs and 

environmental impact, supporting sustainable development. Numerous studies have explored 

various battery materials to enhance the cycling stability of active materials for longer-lasting 

batteries. For instance, cycling tests in half-cells demonstrated the potential of hierarchically 

structured Li4Ti5O12 anodes, with nano and microstructures, to achieve long life under 

ultrafast charging conditions. Furthermore, battery designs have been shown to extend 

lifespan as well. Research on synchronized lithium and LiB included the use of a thin lithium 

reservoir electrode, which minimizes lithium and capacity loss during formation, thereby 

prolonging battery life. Additionally, an asymmetric temperature modulation battery utilizing 

Ni foil for self-heating has been developed to maintain a stable lifetime even during fast 

charging. 
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The figure 4.9 highlights crucial parameters for electrode performance highlighted by 

[178], essential for optimizing energy storage systems. In part (a), key parameters include 

coulombic efficiency, cell voltage, conductivity, specific capacity, gravimetric and 

volumetric energy density, toxicity and safety issues, capacity retention, and power density. 

These factors collectively determine the efficiency, stability, and overall functionality of 

electrodes in energy storage applications. Part (b) illustrates energy level alignment in a liquid 

electrolyte system with solid electrodes. It shows the Highest Occupied Molecular Orbital 

(HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) levels of the electrolyte, along 

with the energy gap (Eg) and open-circuit voltage (eVoc), which influence charge transfer 

efficiency and energy output. Part (c) depicts energy level alignment in a solid electrolyte 

system with liquid or gaseous reactants. It highlights the conduction band (C.B.), valence 

band (V.B.), HOMO, and LUMO levels, showing their roles in electron and ion transport. 

Both diagrams emphasize the importance of proper energy level alignment for efficient 

energy storage performance and long-term stability. 

 

 

Figure 4.9. (a) Performance parameters of electrodes, (b) Liquid electrolyte with solid 

electrodes, . (c) Solid electrolyte with liquid or gaseous reactants [178] 
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 Improving electrode materials is highly effective for extending battery life. These 

materials degrade structurally over time due to cycling. This degradation reduces capacity 

and causes mechanical failures. Recent studies have focused on nanostructured materials for 

stability enhancement. The study by [7] investigated silicon nanocomposites for anodes. 

Their findings showed these designs accommodated volume changes without cracking. This 

approach improved cycle life by 20%. Similarly, [51] explored cathode doping with 

aluminum or magnesium. These doped cathodes exhibited reduced phase transitions, 

improving durability. This innovation was particularly effective in high-temperature 

environments. Protective coatings have been introduced to minimize unwanted reactions. 

[34] reviewed techniques such as atomic layer deposition (ALD). These coatings acted as 

barriers to prevent electrolyte decomposition. Batteries with such coatings showed a 30% 

reduction in capacity fade. Combining nanostructures, doping strategies, and coatings 

significantly enhances durability. These methods not only extend lifespan but also improve 

safety. Future research should focus on scaling these techniques commercially. 

 The electrolyte facilitates lithium-ion movement between the electrodes. Over time, 

electrolyte degradation produces side products like SEI. This reduces active lithium ions and 

diminishes capacity. A research by [64] studied additives like fluoroethylene carbonate (FEC) 

in electrolytes. Their results indicated enhanced thermal stability and reduced decomposition. 

Batteries using FEC showed a 15% improvement in cycle life. High-concentration 

electrolytes reduce solvent decomposition. [126] found these electrolytes suppressed dendrite 

formation. This improvement was most beneficial in fast-charging scenarios. Solid-state 

electrolytes eliminate risks of leakage and flammability. [26] highlighted sulfide-based solid 

electrolytes with superior stability. These batteries retained over 80% capacity after 1,000 

cycles. Optimizing electrolytes, through additives or solid-state formulations, mitigates 

degradation. Future research should address cost and scalability challenges. 

Battery management differs from material and design improvements by controlling 

the operation of the battery without altering its structure or components to extend its lifespan. 

Key stress factors, including temperature, current rates, lower and upper cutoff voltages, SoC, 

and depth of discharge (DoD), are taken into account in lifespan management to evaluate 
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battery durability and develop effective usage strategies. High temperatures during cycling 

accelerate degradation reactions, such as active material loss and SEI film growth, leading to 

capacity fade. High current rates increase diffusion stress and cause electrode particle 

cracking, resulting in battery degradation, especially at moderate temperatures. Battery 

management typically focuses on controlling temperature and current rates to optimize 

performance. Additionally, cycling tests must factor in the voltage range, which involves a 

combination of cutoff voltage, SoC, and DoD. Figure 4.10 below provides an overview of a 

typical Battery Management System (BMS). 
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Figure 4.10. Overview of the functions of a typical BMS [181]. 

A study conducted by [143] investigated the aging mechanisms of Li(Ni, Mn, Co)O2 

cathode batteries cycled through five different  (SoC) ranges with a 20% Depth of Discharge 

(DoD). It was concluded that lithium inventory loss is the main contributor to battery 

degradation. Following the research by [177] proposed that cycling within moderate SoC 

ranges using blends of cathode materials like LiNi0.5Co0.2Mn0.3O2 (NCM) and 

LiNi0.9Co0.05Al0.05O2 (NCA), paired with graphite anodes, results in reduced capacity 

loss and improved performance compared to cycling at extreme SoC ranges. This approach 

helps mitigate the likelihood of nonlinear capacity fade. Additionally, Aiken et al. introduced 

a low-voltage cycling method for pouch cells using LiNi0.5Mn0.3Co0.2O2 cathodes, which 

showed that cycling at voltages of 3.65 V and 3.80 V (roughly corresponding to 0%-30% and 

0%-60% SoC) yields better capacity retention compared to cycling at 4.2 V. The study 

indicated that passivation of the negative electrode is likely the cause of capacity fade at 

lower voltages, while the positive electrode remains largely unaffected. 

The studies referenced emphasize the importance of avoiding extreme voltages to 

minimize the degradation of cathode materials at high voltages, ultimately helping to prolong 

the battery's lifespan. By preventing the electrochemical activation of the Li0.75Si phase in 

the anode, shifting the cycling voltage window from 2.65–4.2 V (0%–100% SoC) to 3.1–4.2 

V (10%–100% SoC) improves the longevity of commercial 18650 cells. However, using a 

narrower voltage window at the beginning of the battery's life reduces cell efficiency, which 

conflicts with the goal of achieving high energy density for longer driving ranges in electric 

devices. Despite these considerations, research on battery usage and lifespan remains limited. 

Bharathraj et al. introduced a dynamic charging protocol simulation aimed at extending 

battery cycle life. This protocol gradually increases the charge cutoff voltage to the 

manufacturer's recommended maximum, balancing between the extractable per-cycle 

capacity and the degradation that leads to capacity fade.  

Moreover, when LiBs are utilized and stored within the parameters prescribed by 

manufacturers, the probability of malfunction is approximately 1 in 40 million [9,15]. 

Nonetheless, incidents of accidents resulting from LiB igniting or detonating in entirely 
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distinct devices have been documented, as shown in Table 3.3. Table 3.3 illustrates that 

accidents have transpired across a diverse range of devices employing LIBs, including small 

consumer products, electric vehicles, and aircraft. The causes of accidents include 

overheating, short circuits, overcharging, self-heating, and mechanical damage. The 

aforementioned incidents, along with numerous others, prompted modifications to the 

regulations governing the transport and storage of LIBs. The International Civil Aviation 

Organization (ICAO) has prohibited the transport of LiB as cargo on passenger aircraft, 

stipulating that these batteries must not be charged beyond 30% when transported by air. In 

order to ensure greater security of LiBs, there are two possibilities: Improving stability 

through modification of chemistry and/or structure, by adding internal safety devices [9], 

[16], [17]. 

Table 4.3 

Some LIB fire and explosion accidents [179] 

No Date Accidents Accident Causes 

1 
March 

2010 

Two iPod Nano music players caught fire 

in Japan 

Overheating of Lithium-ion 

Batteries (LIBs) 

2 
26 April 

2010 

Acer recalled 2,700 laptop batteries, 

similar to recalls by other companies in 

2006 

Overheating and potential fire 

hazards in LIBs 

3 
11 April 

2011 
EV taxi fire incident in Hangzhou, China 

Short circuit leading to 

electrolyte combustion 

4 
Oct–Nov 

2013 
Fires in six Tesla Model S EV cars 

Battery short circuit due to 

crash, self-ignition 

5 
Jan 2013 & 

2014 

Three fire incidents of Boeing 747 in 

Boston, Takamatsu, and Tokyo 

Internal short circuit in LIBs 

and BMS failure 

6 April 2015 
EV bus fire during charging in Shenzhen, 

China 

Battery overcharge due to BMS 

malfunction 

7 
31 May 

2016 
LIB storage explosion in Jiangsu, China 

Fully charged LIBs potentially 

leading to self-ignition 

8 
16 May 

2017 
Panasonic recalled over 270,000 LIBs 

Risk of overheating and fire in 

LIBs 

9 2 July 2018 
Energy storage system fire and explosion 

in Korea (4 MW/12 MWh) 

LIB fire spread to over 3,500 

LIBs 

10 
29 July 

2018 

Electric scooter fire and explosion during 

charging in China 
Likely caused by overcharging 
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No Date Accidents Accident Causes 

11 
18 October 

2017 
EV car fire in Austria LIB ignited after vehicle crash 

 

Two methods have been used to modify the cathode. The first involves a coating that 

enhances cathode thermal stability. Li [18] improved the discharge capacity and cycle 

stability of the LiNi1/3Co1/3Mn1/3O2 battery by applying a TiO2 coating to the cathode, 

without affecting the grid. In addition to the MnSiO4 coating in LCO batteries, the Co3(PO4) 

coating in LiNi0.93Co0.07 O2 demonstrated improved thermal stability and tolerance to 

overcharging [19]. Cathode modification can also be done structurally by inserting specific 

metals into the structure. Cell ventilation design is one solution. In prismatic batteries, the 

charging opening acts as ventilation "windows" to release internal pressure. The positive 

terminal cover was designed with small ventilation "windows" to accommodate the 18650 

battery [23], as shown in Figure 4. In both cases, the ventilation "window" is a fragile cap 

that breaks at critical pressure. 

4.7 LITHIUM LI-ION BATTERY MODELS 

The condition-based maintenance (CBM) plan for the system needs to take battery 

prognostic health management (PHM) into account. As a preventive measure, the CBM plan 

makes sure that maintenance tasks are only carried out when absolutely necessary. Evaluate 

the health status of a system’s components or the entire system to determine its need [11]. 

Diagnostics and prognostics are CBM’s main tasks. A system is remaining useful life (RUL) 

is the time until failure [12]. Maintenance should be done while the system is running to 

prevent failure to prevent negative consequences. These maintenance tasks require early 

planning and preparation [13]. CBM should be integrated into system operations, particularly 

for critical systems [179]. Battery aging diagnostic algorithms are designed to assess the 

current state of battery aging, while battery aging prognostic algorithms aim to forecast the 

remaining lifespan of the batteries until they reach their end of life (EOL), as shown in Figure 

4.11. Based on the prediction focus, prognostic methods can be classified into future aging 

trajectory prediction [181] and Remaining Useful Life (RUL) point prediction [50]. 
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Figure 4.11. Illustration of battery aging diagnostics and prognostics [181] 

4.7.1 DIAGNOSTIC MODELS FOR LITHIUM LI-ION BATTERIES 

 The first type of battery aging model of interest are diagnostic models. Battery 

diagnostic models are built to estimate cell health using some measurable quantities of the 

cell. Batteries degrade over time due to the main electrochemical reactions and several 

complex and interacting side reactions during charging and discharging. Accurate and 

reliable ageing diagnostics are necessary for battery system safety and efficiency. Estimating 

SoH for battery ageing is common [181]. Diagnostics is the process of locating errors and 

determining a portion of the system's current state of health, or SoH [179]. Diagnostic models 

focus on identifying the current state and health of LiB. These models detect issues such as 

capacity fade, internal resistance changes, and thermal imbalances. Several approaches and 

methodologies are employed for diagnostics.  

The Battery (SOH) indicates a specific phase of the battery's life and shows how well 

the battery is performing right now in comparison to when it was in ideal condition. The 

inability to quantify (SOH), in contrast to terminal voltage, makes it more difficult to use in 

longevity assessments. The battery's usage history has a major impact on the estimation of 

(SOH), and external factors such as temperature, current rates (C-rates), and the battery's 

operational range have a significant impact on the aging process. Different aging trajectories 

are caused by these factors. Furthermore, even minute manufacturing flaws can cause 

differences in the battery's aging characteristics, making accurate SoH monitoring more 
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difficult. Scholars generally employ metrics like capacity or impedance to evaluate the 

current energy or power capacity that a battery is capable of producing. Some focus on aging 

mechanisms, such as the amount of cyclable lithium ions [181] or the time it takes for lithium 

ions to diffuse into the solid phase in the positive electrode [176]. SOH is essentially an 

estimate that is obtained by analyzing a series of measurements based on specific criteria. It 

is possible to evaluate the battery's aging state quantitatively or qualitatively. The main goals 

of SOH monitoring are to improve battery management, ensure the safe and dependable 

operation of battery systems, and provide early warnings. 

 As covered in [181], recent reviews demonstrate the advancements made in battery 

capacity estimation by both industry and academia. These techniques can be broadly divided 

into three groups: data-driven, model-based, and empirical. A mathematical relationship is 

established between cell capacity and common degradation indicators such as Ah counting, 

equivalent cycle number, or time by the empirical model, which is based on extensive 

laboratory cycling data. But because it was developed in controlled laboratory settings, this 

model has trouble being applied correctly to real-world situations where batteries must 

contend with dynamic and fluctuating operating conditions. However, by updating internal 

parameters based on real-time measurements, model-based approaches improve performance 

for particular applications and are therefore more flexible than empirical models, albeit with 

potentially limited generalizability. These methods often integrate sophisticated filtering 

techniques, such as the Kalman filter and particle filter, to monitor the voltage versus capacity 

curve (V-Q curve), update model parameters, and predict future degradation, thereby offering 

a more reliable assessment of battery health.  

The battery model is employed to assess the current capacity. Filtering methods attain 

satisfactory accuracy; however, they are constrained in their capacity to disseminate 

information among cells. The absence of shared information among cells restricts the 

applicability of filtering methods to extensive datasets, rendering these methods increasingly 

less advantageous as contemporary datasets expand [182]. Most model-based methods use 

ECM models. ECMs used only electric circuitry powers. Simple implementation makes them 

appealing for battery aging diagnostics. Electric vehicle batteries may degrade over time due 
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to harsh operating conditions. Model accuracy may decline without regular RPT tests [55]. 

The porous electrode and liquid-concentrated solution theory describes the battery's internals 

[68], [69]. The original EM is coupled with SEI [70], [71], lithium plating [26], and particle 

cracking [72] to model aging. Computationally intensive models and parameterization 

difficulties make them unsuitable for online applications [73].  

 Unlike building an aging model from scratch, data-driven methods use measured 

battery signals to capture aging state without considering mechanisms. Recent digitalization 

and new technologies like digital twins and battery intelligent management systems have 

sparked interest in data-driven methods for battery diagnostics [39], [74], [75]. Several 

methods, including feature-based ML algorithms and end-to-end deep learning, have been 

proposed to estimate battery capacity [51-67]. Designers manually select relevant features to 

determine aging states from measured raw data or estimated BMS states using domain 

knowledge in feature-based methods [76], [77]. Common characteristics are derived from 

measured voltage, current, temperature, or time. 

The study by [169] employed EIS to identify capacity fade mechanisms in LiB. Their 

findings revealed a correlation between impedance growth and electrolyte decomposition. 

This technique has been particularly effective for detecting early signs of capacity 

degradation and power fade. Accurate SoC estimation is critical for monitoring battery 

performance. Diagnostic models utilize algorithms such as the Extended Kalman Filter 

(EKF) and particle filtering. The research by [176] demonstrated a data-driven SoC 

estimation model using machine learning. Their approach achieved high accuracy, reducing 

estimation errors to less than 5%. Fault detection systems identify anomalies such as thermal 

runaway, overcharging, and short circuits. Following the study by [162] proposed an 

advanced FDI system integrating real-time sensor data and predictive analytics. This system 

effectively isolated faults, improving battery safety and operational reliability. Thermal 

diagnostics evaluate heat generation and dissipation within batteries. Thermal imaging 

techniques detect localized hotspots, indicating potential failures. Another study by [178] 

highlighted the importance of thermal diagnostics for preventing thermal runaway incidents. 

Their study recommended advanced cooling systems to mitigate thermal risks. 
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4.7.2 PROGNOSTIC MODELS FOR LITHIUM LI-ION BATTERIES 

For lithium-ion battery systems to operate dependably, a mechanism for tracking and 

determining the battery's state of health (SoH) and remaining useful life (RUL) is essential. 

This method provides helpful information to predict when the battery needs to be replaced or 

taken out. Unlike diagnostic models, which predict a battery's life cycle, prognostic models 

evaluate a battery's health in the future and often predict how many cycles or how long it will 

take the battery to reach a capacity threshold [182]. This type of assessment is part of a system 

called prognostic and health management (PHM). PHM continuously assesses SoH and RUL 

to ensure that LiB operate reliably and safely. Prognostics is the prediction of a battery's time 

to failure. Researchers from a variety of fields have made significant contributions to the 

PHM of LiB. For instance, a study by [3] presented a prognostic method based on physics 

that takes into consideration several simultaneous degradation mechanisms. 

Similar to diagnostic models, predictive models rely on a variety of input data, 

including voltage, current, temperature, time, charge/discharge voltage relaxation, voltage 

pulses, acceleration and deceleration, ultrasound, and pressure data streams [182]. The 

outputs of predictive models typically include a capacity trajectory, the RUL expressed in 

cycles or time, and the anticipated battery lifetime. To evaluate the SoH of lithium-ion 

batteries (LiB), for instance, [162] combined data from Gaussian distribution with the least 

squares support vector machine regression technique. [172] estimated SoH and RUL and 

evaluated battery degradation using the Rao-Blackwellization particle filter. In a different 

work, [173] developed a model-free approach that uses the Kalman filter and ANN to 

enhance the health management of lithium batteries (LiB). PHM for LiB has also used other 

filtering techniques, such as particle filtering [7] and the unscented particle filter [8]. The 

Gauss–Hermite particle filter (GHPF) methodology for state-of-charge estimation was 

recently presented by [179]. It reduces the number of sampling particles and streamlines the 

algorithm while improving estimation precision.  

 There are two primary stages to the prognostic process. The first stage is centered on 

evaluating the state of health, or SoH, which is also referred to as degradation detection or 

severity detection in the literature and is a component of diagnostics. Throughout this stage, 
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pattern recognition is frequently accomplished using methods like classification or clustering. 

The purpose of the second phase is to forecast the degradation trend and calculate the RUL 

in order to predict the failure time. Typically, trend projection, tracking strategies, or time 

series analysis are used in this phase. The first phase is the focus of many academic studies 

on prognostics [14]. Model-based or data-driven models can be used to predict battery life. 

Both approaches rely on historical cell data, but their methodologies differ. Model-based 

prognostic models update and extrapolate predefined degradation models, such as physics-

based models that simulate internal degradation mechanisms, to predict future capacity, 

resistance, and overall cell health. In contrast, empirical capacity fade models use explicit 

mathematical functions and stochastic process models to track and predict capacity 

degradation. 

Equivalent circuit models and physics-based degradation models estimate cell health 

by combining cell data and physics. Model parameters must be extrapolated to forecast cell 

health. It is difficult to determine the trajectory for each parameter in physics-based models 

without disrupting cells midway through cycle aging experiments or employing costly 

measurement tools such as EIS. These models have not yet been widely used or studied. 

Using an empirical capacity fade model to demonstrate a cell's capacity trajectory is simpler. 

Empirical capacity fade models incorporate explicit and two exponential terms, a power-law 

function, a linear function, and a hybrid exponential-linear function.Empirical model-based 

approaches, like others, rely on online cell capacity measurements to estimate/update model 

parameters. Recursive Bayesian filtering is a popular method for parameter estimation. Many 

Kalman filter variants and generic particle filters are widely used Bayesian filters. 

Probabilistic predictions are a significant advantage of these filtering methods. In contrast to 

model-based approaches, data-driven battery prognostics employ machine learning to 

determine the relationship between input features and capacity or lifetime.  

Data-driven prognostic models are typically trained in three ways: 1) feature-to-

capacity mapping; 2) feature-to-life mapping; and 3) capacity time-series forecasting. Direct 

mapping methods build models based on strong correlations between input features (V, I, T, 

t, Q, EIS, etc.) and cell capacity/lifetime. With enough data and strong input-output 



 
 

 

121 
 

correlations, data-driven models can accurately predict new cell capacity or lifetime under 

previously untested conditions. Popular models for estimating direct mapping capacity 

include support vector machines (Klass et al.), relevance vector machines, and neural 

networks.A Gaussian Process (GP) can be used for capacity estimation through data-driven 

direct mapping. GP regression models were used as regressors alongside other models. Time 

series forecasting approaches, on the other hand, use machine learning models such as 

support vector machines, relevance vector machines combined with empirical capacity fade 

models, GP regression models without trend functions, and recurrent neural networks to 

predict a cell's capacity trajectory and RUL.Data-driven lifetime prediction models have 

recently received attention due to their novel input feature engineering techniques.  

Coulombic efficiency, or the ratio of charge to discharge capacity, assesses cell 

performance. A value of 1.000 represents perfect cyclic efficiency. Measure cell coulombic 

efficiency with greater precision than 0.01% to quantify cell-to-cell differences in the rate of 

undesirable side reactions that cause capacity fade and identify cells with longer lifespans. 

Jeff's team published a paper comparing long-term cycling data (> 750 cycles) with predicted 

lifetimes from short-term (< 500 hours) high-precision coulombic inefficiency measurements 

using coulometry equipment. For the first time, this study demonstrated that early cycling 

measurements can predict long-term cell aging performance. Table 3.5 summarizes the 

information on the differences and advantages of each model. [179] has highlighted various 

aspects of data-driven and physics-based model in his study as given below in table 3.4.\ 
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Table 4.4 

Difference between data-driven and physics-based models for diagnostics and prognostics 

[179]. 

Aspect Models based on data-driven [15] Models based on Physics [16,17] 

Based on 
Historical operational data as well as 

empirical lifetime data. 

Both precise mathematical formulas 

and a physical comprehension of the 

system are represented. 

Advantages 

Real-world complex physical system 

behavior is not necessary. 

increased accuracy because it is 

based on real or almost real physical 

systems. 

 
Models are simpler to use and more 

practical in practical situations. 

The model can be evaluated more 

realistically because it depicts a real 

system. 

Drawbacks 
Requires a large dataset to build an 

accurate model. 

Highly complex and computationally 

intensive, requiring significant 

resources. 

 
Does not directly represent the actual 

system, requiring extra effort to 

interpret system behavior. 

Limitations in modeling complex 

systems with non-measurable 

variables. 

 

The data repository of the NASA Ames Prognostics Center of Excellence (PCoE) 

provided the lithium-ion battery dataset used in this study [18]. Commercial 1850-sized 

rechargeable lithium-ion batteries were tested under controlled circumstances as part of the 

NASA prognostics testbed [19]. At room temperature, charge, discharge, and impedance tests 

were performed to collect experimental data. In the charging phase, the voltage was held 

constant until the current dropped to 20 µA, and a current of 1.5 A was applied until the 

voltage reached 4.2 V. Batteries with the numbers 05, 06, 07, and 18 were put through 

discharge tests with a current of 2 A. The voltage was dropped to 2.7 V, 2.5 V, 2.2 V, and back 

to 2.5 V. Impedance was measured using Electrochemical Impedance Spectroscopy (EIS), 

with frequency adjustments spanning from 0.1 Hz to 5 kHz. Batteries were aged more quickly 

by using multi-cycle charge and discharge tests. The physics-based model presented in [20] 

can be used to represent the aging behavior of these batteries. The batteries' testing came to 

an end when their capacity dropped by 30% and they satisfied the end-of-life requirements. 
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 The battery under test is shown schematically in Figure 3.12, along with important 

specifications including Warburg impedance (RW), electrolyte resistance (RE), charge transfer 

resistance (RCT), and double-layer capacitance (CDL). Interestingly, during the battery aging 

process, the parameters RW and CDL exhibited negligible variation, obviating the need for additional 

analysis [21]. This schematic diagram sheds light on the structural elements of the battery and 

emphasizes their roles in its overall behavior. The main dataset for training and analysis is the 

characteristic profile of battery No. 05. Furthermore, battery No. 05's current and voltage profiles 

during charging and discharging cycles are depicted in Figure 4.12, providing a thorough 

understanding of its performance under test conditions. To help with understanding the internal 

structure of the tested battery, Figure 4.12 also presents a schematic representation of the battery with 

parameters like RW, RE, RCT, and CDL displayed. RW and CDL were not included in the analysis 

because they showed very little change as they aged [21]. The training dataset is built upon the 

combination of battery No. 05's characteristic performance profile and schematic diagram. The 

battery's current and voltage behavior during the charging and discharging cycles is captured in Figure 

4.12, offering crucial information for further analysis. 

 

Figure 4.12. The schematic diagram of the tested battery [21] 

To evaluate its prognostics, the battery's SoH must be defined. Battery data 

prognostics often rely on identifying the battery's SoH. Understanding the definition of SoH 

is crucial, as it is, along with RUL, the primary prediction attribute in the proposed data-

driven model. 

4.8 THE ROLE OF BMS IN FAULT DIAGNOSIS 

 The core function of the BMS is to mitigate the risks associated with operating a LiB 

pack, ensuring both the safety of the battery and its users. Hazardous conditions typically 

arise from faults, and the safety functions of the BMS aim to reduce both the likelihood and 
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severity of these faults. Standard components such as sensors, contactors, and insulation are 

integrated into the battery system to maintain safety [13]. These sensors continuously monitor 

operational limits for voltage, current, and temperature, providing real-time data to ensure 

the battery's performance stays within safe parameters [41]. However, as BMS hardware and 

software become more complex, battery faults evolve and become harder to detect, which 

may render basic safety measures insufficient [42,43]. This makes fault diagnostic algorithms 

crucial to BMS operations. These algorithms are designed to promptly detect faults and 

activate appropriate control measures to protect both the battery and its users. Figure 4.13 

below illustrates the mechanism of fault diagnosis within the BMS. 

 

Figure 4.13.A schematic of fault diagnosis in the BMS [180] 

 BMS is crucial for fault diagnosis as it contains all diagnostic subsystems and 

algorithms [180]. It oversees the battery system via sensors and state estimation, employing 

modeling or data analysis to identify any irregularities during the operation of the battery 

system [13]. The presence of numerous internal and external faults complicates the efficient 

execution of this task. Diverse fault diagnostic methods must operate concurrently to 
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accurately identify and isolate a particular fault, thereby facilitating the appropriate control 

action. Nonetheless, the fault diagnostic algorithms within the BMS are constrained by 

limited computational resources and time. Due to the extensive number of cells in certain 

battery systems, fault diagnostic algorithms must exhibit minimal computational demand 

while ensuring accuracy and reliability [44]. Recent years have witnessed significant efforts 

in the research and development of effective fault diagnostic methodologies for LiB, which 

will be addressed in the subsequent section. Fault diagnosis is a critical function within the 

BMS. Fault diagnosis encompasses fault detection, isolation, and estimation. Numerous fault 

diagnostic methodologies exist across diverse industries. In Li-ion battery applications, faults 

may be internal and interconnected; therefore, many conventional methods from other 

domains are inappropriate. Fault diagnostic methods for Li-ion batteries are classified into 

two categories: model-based and non-model-based [9].  
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CHAPTER 5 

EXPERIMENTAL SETUP AND PREDICTED 

RESULTS 

5.1 INTRODUCTION 

The study employed detailed experimental data for a 26650-battery cell capturing 

critical parameters related to the battery’s performance under various operational conditions. 

The key variables include terminal voltage (V) and terminal current (A), which reflect the 

battery's electrical behavior during operation. The dataset also records the temperature (°C) 

to monitor thermal performance and the charge current (A) and charge voltage (A) during 

charging processes. The capacity (Ah) measures the battery's storage capability, while the 

cycle tracks the operational cycles. Additionally, the dataset included two essential metrics:  

(SoC), indicating the battery's current charge level as a percentage, and  (SoH), which 

measures the battery's overall health, typically starting near 100% for a new cell. This 

comprehensive dataset enabled the analysis of trends and relationships between these 

variables. For instance, it can be used to investigate how SoC and SoH evolve over cycles or 

how factors such as temperature and current influence battery performance. The rich 

information in the dataset makes it ideal for validating experimental results, exploring 

correlations, identifying clusters or outliers, and comparing outcomes with predictive models. 

5.2 RESULTS OF THE STUDY 

5.2.1 CYCLE VS TERMINAL VOLTAGE 

 Figure 5.1 below illustrates the relationship between terminal voltage and cycle count, 

providing several key insights into battery performance. Initially, the terminal voltage 

experiences a sharp drop, stabilizing quickly around 3.0 V. This stabilization reflects the 

battery's ability to maintain consistent voltage during operation. Over the majority of the 

cycles, the voltage remains steady, indicating stable performance with minor fluctuations due 

to normal operational variations. Periodic voltage drops are observed, potentially linked to 

discharge cycles or temporary anomalies in operation. The maximum terminal voltage 

reaches slightly above 3.0 V during stable periods, while the minimum voltage, observed 
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during the initial drop, is approximately 2.0 V. Outliers in the graph highlight deviations that 

may warrant further investigation into specific operational conditions. Overall, the figure 

depicts the battery's ability to sustain voltage stability across several hundred cycles, 

demonstrating reliable long-term performance despite occasional fluctuations and drops. 

 

Figure 5.1.Relationship between Terminal Voltage and Cycle 

5.2.2 CYCLE VS TERMINAL CURRENT 

 Figure 5.2 below depicts the relationship between terminal current and cycle count. 

Terminal current oscillates between positive and negative values, indicating charge and 

discharge cycles. Positive current values, peaking at 1 A, represent charging events. Negative 

current values, reaching approximately -1 A, represent discharging cycles. Anomalies are 

observed with drops below -2 A, likely indicating abnormal operational conditions. The 

current stabilizes after initial fluctuations, maintaining consistent oscillations. This behavior 

reflects standard battery cycling with controlled charge-discharge alternations. Early cycles 

show slightly uneven patterns, suggesting initialization effects. The stability in most cycles 
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signifies reliable current regulation over time. Key statistics include a peak positive current 

of 1 A and a minimum current below -2 A. These extremes may indicate outliers requiring 

further investigation. Overall, the graph highlights the battery's ability to handle consistent 

current during long-term cycling. Occasional deviations suggest operational interruptions or 

extreme conditions affecting current flow. 

 

Figure 5.2.Relationship between Terminal Current and Cycle 

5.2.3 CYCLE VS CHARGE VOLTAGE 

Figure 5.3 below demonstrates the relationship between charge voltage and cycle. 

Charge voltage remains stable around 3.5 V for most cycles. Initial cycles show consistent 

voltage with minor variations. Occasional dips below 3.0 V indicate brief irregularities. These 

dips may be caused by operational interruptions or anomalies. The voltage stability reflects 

consistent charging behavior across cycles. The maximum charge voltage observed is 

approximately 3.65 V. The minimum charge voltage drops below 2.0 V during certain cycles. 

This behavior highlights effective charge regulation during normal operations. Outliers, 
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represented by sharp drops, warrant further investigation. Key statistics include a peak charge 

voltage of 3.65 V and dips below 3.0 V. Overall, the graph demonstrates reliable voltage 

stability across long-term battery cycling. Occasional deviations could indicate external 

factors affecting the charging process. 

 

Figure 5.3.Relationship between Charge Voltage and Cycle 

5.2.4 CYCLE VS CHARGE CURRENT 

 Figure 5.4 below depicts the relationship between charge current and cycle. Charge 

current primarily stabilizes around 2.0 A after initial cycles. The early cycles exhibit 

fluctuations, starting near 1.0 A. Occasional dips below 1.5 A are observed in some cycles. 

These irregularities may indicate operational interruptions or transient effects. The maximum 

charge current reaches approximately 2.0 A during stable periods. The minimum charge 
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current during early cycles is around 1.0 A. The consistent current across most cycles 

highlights reliable charging performance. Outliers, represented by brief drops, could reflect 

anomalies in the charging process. Overall, the graph demonstrates the cell's ability to 

maintain consistent charging currents over prolonged cycling. The few deviations suggest 

temporary disturbances or system adjustments during early cycles. Key statistics include a 

peak charge current of 2.0 A and a minimum of 1.0 A. These patterns confirm stable and 

predictable charging behavior across cycles. 

 

Figure 5.4.Relationship between Charge Current and Cycle 

5.2.5 CYCLE VS CAPACITY 

 Figure 5.5 below illustrates the relationship between battery capacity and cycle count. 

Capacity exhibits a gradual decline as the cycle count increases. The initial capacity starts 
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around 2.25 Ah, representing the battery’s full potential. Over time, a stepwise decrease in 

capacity is observed. This decrease reflects the natural degradation of the battery during 

repeated charge-discharge cycles. By the final cycles, capacity falls below 2.175 Ah, 

indicating significant wear. The steady downward trend confirms capacity fading, a common 

phenomenon in battery aging. The graph shows no sudden drops, indicating consistent and 

predictable degradation. Key statistics include an initial capacity of approximately 2.25 Ah 

and a minimum capacity below 2.175 Ah. Each step in the graph represents measurable wear, 

likely due to electrode degradation or material aging. The predictable capacity loss highlights 

the cell’s long-term stability despite aging effects. Overall, the graph demonstrates the 

battery’s durability and gradual decline in energy storage capabilities over extended cycling. 

 

Figure 5.5.Relationship between Capacity and Cycle 
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5.2.6 CYCLE VS STATE OF HEALTH (SOH) 

 Figure 5.6 below showed the relationship between the SoH and cycle count, showing 

a gradual decline. The SoH starts near 100% at the initial cycles, representing optimal battery 

health. Over time, the SoH decreases stepwise, indicating predictable capacity degradation. 

The consistent downward trend reflects the natural aging process of the battery during 

operation. By the final cycles, the SoH drops to approximately 96%, confirming long-term 

wear and reduced capacity. The absence of abrupt drops indicates stable degradation without 

sudden failures or anomalies. Key statistics include an initial SoH of 100% and a final SoH 

of around 96%, with measurable steps between cycles. Each step in the graph likely 

represents specific capacity losses due to cycling stress. This pattern highlights the battery’s 

durability and resistance to irregular degradation over extended usage. Overall, the graph 

demonstrates gradual and predictable health loss, aligning with typical aging characteristics 

of batteries subjected to repeated cycling. 
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Figure 5.6.Relationship between State of Health and Cycle 

5.2.7 STATE OF HEALTH (SOH) VS CHARGE VOLTAGE 

Figure 5.7 below depicted the relationship between the SoH and charge voltage, 

showing SoH values ranging from 96% to 100% as the charge voltage varies between 2.0 V 

and 3.5 V. At lower charge voltages around 2.0 V, the SoH stabilizes near 96%, indicating a 

degraded health state. As the charge voltage increases linearly toward 3.5 V, the SoH rises 

correspondingly to nearly 100%, representing optimal health. This trend reveals a strong 

positive correlation between charge voltage and battery health, with higher voltages aligning 

with better SoH. Key statistics include a minimum charge voltage of 2.0 V, a maximum of 

3.5 V, and a SoH decline from 100% to 96% at lower voltages. The sharp transitions at 

extreme voltage ranges suggest the need for precise charge voltage management. Overall, the 
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graph highlights the critical role of maintaining higher charge voltages to sustain optimal 

SoH and ensure consistent battery performance over operational cycles. SoH can be 

calculated with charge voltage using the following mathematical equation. 

𝑺𝒐𝑯 ∝  
𝑽𝒄𝒉𝒂𝒓𝒈𝒆

𝑽𝒏𝒐𝒎𝒊𝒏𝒂𝒍
 

 

Figure 5.7.Relationship between Charge Voltage and SOH 

5.2.8 STATE OF HEALTH (SOH) VS CHARGE CURRENT 

Figure 5.8 below provides the relationship between the  SoH and charge current, 

showing a linear increase in SoH as the charge current rises from 1.0 A to 2.0 A. At lower 

charge currents around 1.0 A, the SoH stabilizes near 96%, indicating a degraded battery 
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state. As the charge current increases toward 2.0 A, the SoH improves, reaching close to 

100%, representing optimal battery health. This positive correlation suggests that higher 

charge currents contribute to better maintenance of SoH, likely due to more effective charging 

processes. Key statistics include a minimum charge current of 1.0 A and a maximum of 2.0 

A, with SoH ranging from 96% to 100% across the current range. The linear trend emphasizes 

the importance of maintaining appropriate charge currents to support long-term battery 

health. Overall, the graph highlights the beneficial effects of controlled higher charge currents 

in sustaining consistent and reliable battery performance.  

 

Figure 5.8.Relationship between Charge Current and SOH 
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5.2.9 STATE OF HEALTH (SOH) VS CAPACITY 

Figure 5.9 below demonstrate the relationship between the SoH and capacity, 

showing a strong linear correlation. As the capacity increases from 2.175 Ah to 2.250 Ah, the 

SoH also rises from 96% to 100%. This positive trend indicates that higher battery capacity 

corresponds to better health, reflecting the natural degradation of both parameters over time. 

Key statistics include a minimum capacity of 2.175 Ah at 96% SoH and a maximum capacity 

of 2.250 Ah at 100% SoH. The linear relationship highlights how capacity acts as a direct 

indicator of battery health, with reductions in capacity signaling aging and wear. The 

consistent slope suggests predictable and steady degradation, with no abrupt drops or 

irregularities. This trend demonstrates the battery's durability in maintaining a gradual and 

stable loss of health and capacity over cycles. Monitoring capacity is crucial for assessing the 

overall state of the battery and predicting its remaining useful life. Overall, the graph 

emphasizes the importance of maintaining capacity to sustain a high SoH, underlining the 

interconnectedness of these metrics in evaluating battery performance and longevity. SoH 

can be calculated with charge voltage using the following mathematical equation. 

𝑺𝒐𝑯 =  
𝑪𝒂𝒄𝒕𝒖𝒂𝒍

𝑪𝒏𝒐𝒎𝒊𝒏𝒂𝒍
 × 𝟏𝟎𝟎 
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Figure 5.9.Relationship between Capacity and SOH 

5.2.10 STATE OF HEALTH (SOH) VS TEMPERATURE 

Figure 5.10 below illustrates the relationship between  SoH and Temperature (°C). 

This visualization implies that no clear or meaningful relationship between temperature and 

SoH can be inferred due to the limited or fixed range of temperature in the dataset. The 

concentration of data points around a single temperature may indicate either a controlled 

experimental setup, where temperature was deliberately held constant, or a limitation in data 

collection, where a broader range of temperatures was not captured. This restricted variability 

prevents the analysis from exploring potential trends or interactions between temperature and 

SoH, which could otherwise be important for understanding the relationship. As such, while 

some patterns in SoH can be observed within the narrow temperature range, these findings 
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are limited in scope and do not allow for generalizations across a wider range of temperatures. 

To draw more robust conclusions, future studies should aim to include a more diverse and 

representative range of temperature values to assess whether temperature plays a significant 

role in influencing SoH. SoH can be calculated with temperature using the following 

mathematical equation. 

𝑪𝒍𝒐𝒔𝒔 ∝  𝒆
−𝑬𝒂
𝑹𝑻

 . 𝒕 

 

Figure 5.10.Relationship between Temperature and SOH 

5.2.11 STATE OF CHARGE (SOC) VS TERMINAL VOLTAGE 

Figure 5.11 below depicts the relationship between the SoC and terminal voltage, 

showing a steep linear rise. At terminal voltages below approximately 2.5 V, the SoC remains 
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at 0%, indicating a discharged state. Once the terminal voltage exceeds 2.5 V, the SoC 

increases rapidly, reaching 100% near 3.0 V. This trend highlights a strong and direct 

correlation between terminal voltage and the battery’s SoC. Key statistics include a minimum 

SoC of 0% below 2.5 V and a maximum SoC of 100% at or above 3.0 V. The sharp slope in 

the graph indicates that the SoC is highly sensitive to changes in terminal voltage within this 

range. This relationship reflects the charging behavior of the battery, where voltage increases 

significantly during the transition from a low to a high charge state. Overall, the graph 

emphasizes the importance of monitoring terminal voltage as a reliable indicator of the 

battery’s charge level, particularly in applications requiring precise SoC estimation. This 

steep linear trend further underscores the efficiency of voltage-based SoC monitoring 

methods for battery management systems. SoC can be calculated with terminal voltage using 

the following mathematical equation. 

𝑺𝒐𝑪 =  
𝑽𝒕 − 𝑽𝒎

𝑽𝒎𝒂𝒙 − 𝑽𝒎𝒊𝒏
 × 𝟏𝟎𝟎 
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Figure 5.11.Relationship between Terminal Voltage and SOC 

5.2.12 STATE OF CHARGE (SOC) VS CHARGE VOLTAGE 

Figure 5.12 depict the relationship between the  SoC and charge voltage, showing a 

strong linear correlation. At lower charge voltages around 2.0 V, the SoC is near 0%, 

indicating a discharged state. As the charge voltage increases, the SoC rises proportionally, 

reaching 100% at approximately 3.5 V. The linearity of the graph indicates that the SoC is 

directly influenced by the charge voltage, reflecting the battery's charging behavior. Key 

statistics include a minimum SoC of 0% at 2.0 V and a maximum SoC of 100% at 3.5 V, with 

no significant anomalies or deviations. The steep slope emphasizes the sensitivity of SoC to 

changes in charge voltage, particularly during the transition from a discharged to a fully 

charged state. This trend underscores the reliability of charge voltage as an accurate indicator 
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of SoC, making it a crucial parameter for battery management systems to monitor and control. 

Overall, the graph highlights the predictable and efficient charging characteristics of the 

battery. SoC can be calculated with terminal current using the following mathematical 

equation. 

𝑺𝒐𝑪 =  
𝑽𝒄𝒉𝒂𝒓𝒈𝒆 − 𝑽𝒎𝒊𝒏

𝑽𝒎𝒂𝒙 − 𝑽𝒎𝒊𝒏
 × 𝟏𝟎𝟎 

 

 

Figure 5.12.Relationship between Charge Current and SOC 
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5.2.13 STATE OF CHARGE (SOC) VS CHARGE CURRENT 

Figure 5.13 below illustrates the relationship between the  SoC and charge current, 

showing an inverse linear correlation. At higher charge currents around 2.0 A, the SoC drops 

to 0%, indicating a discharged state. Conversely, at lower charge currents near 1.0 A, the SoC 

reaches 100%, reflecting a fully charged battery. This negative linear relationship indicates 

that higher currents correspond to lower SoC values, likely due to increased discharge rates 

or incomplete charging cycles. Key statistics include a maximum SoC of 100% at 1.0 A and 

a minimum SoC of 0% at 2.0 A, with no anomalies or deviations from the trend. The steep 

negative slope emphasizes the sensitivity of SoC to variations in charge current, with higher 

currents accelerating the discharge process. This relationship underscores the importance of 

optimizing charge current to maintain a balanced and efficient charging process. Overall, the 

graph highlights the critical role of current regulation in sustaining battery performance and 

ensuring accurate SoC estimation for effective battery management. SoC can be calculated 

with terminal current using the following mathematical equation. 

𝑺𝒐𝑪𝒕 =  𝑺𝒐𝑪𝒕−𝟏 + 
𝑰𝒄𝒉𝒂𝒓𝒈𝒆 . ∆𝒕

𝑪𝒏𝒐𝒎𝒊𝒏𝒂𝒍
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Figure 5.13.Relationship between Charge Current and SOC 

5.2.14 STATE OF CHARGE (SOC) VS TEMPERATURE 

Figure 5.14 below depicts the relationship between the SoC and temperature, showing 

a narrow vertical distribution. The temperature remains fixed around 25°C, while the SoC 

spans its full range from 0% to 100%. This suggests that temperature has minimal variability 

and does not significantly influence SoC within this narrow range. Key statistics include a 

temperature range of approximately 24.95°C to 25.025°C and a complete SoC range from 

0% to 100%. The lack of variation in temperature indicates that the battery was likely 

operated under controlled thermal conditions. While the graph highlights consistent 

temperature during charging and discharging, it limits the ability to analyze broader 

temperature effects on SoC. This trend underscores the importance of maintaining stable 
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thermal conditions for reliable battery operation. However, further analysis over a wider 

temperature range would be needed to understand how temperature impacts the SoC in more 

diverse scenarios. 

 

Figure 5.14.Relationship between Temperature and SOC 

5.3 ALGORITHM EXPLAINING AND SOH PREDICTION RESULTS 

5.3.1 DNN (Deep Neural Network) 

For a number of applications, such as energy storage systems, electric vehicles, and 

battery management systems, accurate battery SoH prediction is essential. The creation and 

assessment of a DNN model intended to forecast battery SoH based on historical data are 

described in this paper. A thorough methodology was used for the study, which included data 
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preprocessing, model design, training, assessment, and result analysis. Features including 

voltage, current, temperature, and cycle count were included in the dataset used for this 

investigation. The preprocessing stages comprised cleaning the data, identifying and 

eliminating outliers with statistical techniques like the interquartile range (IQR), and impute 

missing values with KNN imputation. Feature engineering was also performed, creating 

time-based features (e.g., time since the last charge or discharge cycle) and derived features 

such as the rate of SoH change and current derivatives. Finally, the data was normalized using 

min-max scaling to ensure all features contributed equally to the model training process. 

A feedforward neural network with numerous densely connected hidden layers made 

up the DNN model architecture. Preprocessed data was fed into the input layer, and fully 

connected neurons with ReLU activation, batch normalization to stabilize training, and 

dropout layers to avoid overfitting were all part of the hidden layers. The SoH was predicted 

by a single neuron in the output layer. The performance was assessed using the Mean Squared 

Error (MSE) loss function, and the Adam optimizer was used for training. The training 

parameters comprised of 32 batches, 1000 epochs, and 0.000001 as the initial learning rate. 

Callbacks were introduced to prevent overfitting and dynamically modify the learning rate 

during training, such as EarlyStopping and ReduceLROnPlateau. 

The model's working was measured using metrics such as Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and R-squared. Initial results revealed 

significant underestimation, with predicted SoH values consistently lying below the actual 

values. High MAE and RMSE values indicated large prediction errors, and a negative R-

squared value suggested that the model performed worse than simply predicting the mean of 

the target variable. To address these issues, several improvements were made, including 

reducing the learning rate for better training stability, increasing model depth to capture 

complex patterns, raising the dropout rate to prevent overfitting, and applying L2 

regularization to improve generalization. 

Despite these improvements, the model exhibited stagnation in subsequent iterations, 

predicting constant values, which pointed to underfitting and an inability to capture the 

dynamics of battery degradation. Future work involves conducting a more detailed analysis 
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of the data to identify biases, inconsistencies, or missing values. Additionally, exploring 

advanced feature engineering, alternative data normalization techniques, and different model 

architectures like CNNs, RNNs, and LSTM networks could improve performance. Attention 

mechanisms may also uplift the model’s capability to focus on relevant parts of the input 

sequence. 

Hyperparameter optimization, using methods like grid search, random search, or 

Bayesian optimization, could further improve learning rates, dropout rates, and other 

parameters. Ensemble methods such as bagging or boosting may also be considered to 

combine predictions from multiple models for better performance. In conclusion, while the 

initial results of the DNN model were not satisfactory, various strategies, including data 

preprocessing, model adjustments, and hyperparameter optimization, were explored to 

improve its performance. Upcoming investigation is essential to examine the impact of these 

strategies and explore additional approaches to improve the model's correctness and strength 

for battery SoH prediction. MAE is selected as the loss function, defined as: 

 

Where: 

• yi  is the true value. 

• Yi is the predicted value. 

• N is the total number of data points. 

Strengths: 

• MAE is more robust to outliers because it does not square the errors, giving equal 

weight to all errors. 

• It is easier to interpret since it is in the same unit as the target values. 

Weaknesses: 
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• MAE does not penalize larger errors as heavily as MSE, which could be a 

disadvantage if large errors need to be prioritized. 

• Optimization of MAE can be more challenging since it is not differentiable at every 

point. 

MAE directly measures prediction accuracy without squaring errors, making it robust to 

outliers. The utility of MAE in regression tasks is supported by studies in [7]. The Adam 

optimizer is employed due to its adaptive learning rate properties and superior performance 

on noisy gradients. Adam updates parameters as follows: 

 

where m^t\hat{m}_tm^t and v^t\hat{v}_tv^t are bias-corrected approximations of the first 

and second moments of the gradient. 

• Parameters: 

o β1=0.9\beta_1 = 0.9β1=0.9 for momentum. 

o β2=0.999\beta_2 = 0.999β2=0.999 for variance scaling. 

o ϵ=10−8\epsilon = 10^{-8}ϵ=10−8 for numerical stability. 

The effectiveness of Adam in regression problems is well-documented in [8], [9]. The model 

achieves an MAE of 0.1673, which corresponds to an average prediction error of 

approximately 16.73%. This low value underscores the model's capability to make accurate 

predictions. MAE's application to regression tasks is further validated in [7]. RMSE is 

defined as: 
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An RMSE of 0.2024 reflects the model's sensitivity to larger errors. Its slightly higher value 

compared to MAE highlights occasional deviations, as discussed in [10]. R² measures the 

proportion of variance explained by the model: 

 

The DNN achieves R2=0.9695R^2 = 0.9695R2=0.9695, capturing 96.95% of the variance in 

SoH. This result signifies high predictive power, as supported by metrics analysis in [11]. 

The training process involves fitting the DNN model to the preprocessed data and evaluating 

its performance on unseen validation data. Here's a breakdown of the code and its 

functionalities: 

1. Model Fitting (model.fit()) 

o model.fit(x=X_train, y=Y_train, batch_size=25, epochs=130): This line 

initiates the training process.  

▪ x=X_train: The preprocessed training data features are provided as 

input (X_train). 

▪ y=Y_train: The corresponding SoH labels for the training data are 

provided as target variables (Y_train). 

▪ batch_size=25: The training data is fed to the model in batches of 25 

samples at a time. This helps to improve memory efficiency and 

potentially speed up training. 

▪ epochs=130: The model is trained for a total of 130 epochs. An epoch 

represents one complete pass through the entire training dataset. 

2. Model Evaluation (model.evaluate()) 
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o After training, the model's performance is evaluated on the validation data 

(X_val, Y_val).  

▪ loss = model.evaluate(X_val, Y_val): This line calculates the loss 

(MSE in this case) on the validation set. 

▪ The resulting loss value (loss) is printed to the console, indicating how 

well the model generalizes to unseen data. 

5.3.1.1 Visualization and Error Analysis 

1. Actual vs. Predicted SoH Plot (Matplotlib) 

o The code utilizes Matplotlib to create a visualization comparing the actual 

SoH values (Y_val) with the DNN's predicted SoH values (dnn_pred). 

o The plot allows for visual inspection of the model's performance and 

identification of potential biases or patterns in the errors. 

2. Error Metrics Calculation 

o Several error metrics are calculated to quantify the model's performance:  

▪ Mean Absolute Error (MAE) 

▪ Root Mean Squared Error (RMSE) 

▪ R-squared (R²) 

o The calculated values for MAE, RMSE, and R² are printed to the console, 

providing numerical insights into the model's accuracy. 

3. Absolute Error vs. Cycle Number Plot 

o This plot visualizes the absolute error (difference between actual and 

predicted SoH) for each data point in the validation set. 

o Analyzing this plot can reveal trends or patterns in the errors, potentially 

suggesting areas for improvement in the model or data preprocessing. 



 
 

 

150 
 

4. Additional Plots (Optional) 

o The commented-out code demonstrates the creation of additional plots using 

potentially user-defined functions:  

▪ plot_actual_soh(Y_val): This function might plot the actual SoH 

values over time or against another relevant variable. 

▪ plot_predicted_soh(predicted_soh): This function might plot the 

predicted SoH values over time or against another relevant variable. 

▪ plot_both(Y_val, predicted_soh): This function might create a 

combined plot showing both actual and predicted SoH values. 

5.3.1.2 Training Considerations 

• Hyperparameter Tuning: Hyperparameters such as batch size, epochs, and learning 

rate are set during the training process. Techniques such as grid search or random 

search can be used to find optimal values for these parameters, which can have a 

significant impact on the model's performance.. 

• Early Stopping: To avoid overfitting, the training process can be stopped early. This 

is done by an EarlyStopping callback [5]. It monitors the validation error and stops 

training if the error is not getting better for a given epoch. 

• Learning Rate Scheduling: Using a ReduceLROnPlateau callback [6], the learning 

rate can be dynamically adjusted during training. The learning rate is reduced by a 

factor if the validation loss does not improve for a given number of epochs. It allows 

the model to explore the solution space better. 

Figure 5.15 below presents a comparison between the actual and predicted SoH values 

using a DNN. The blue line represents the actual SoH, which follows a stepwise declining 

pattern, while the orange dashed line indicates the predicted SoH, which aligns closely with 

the actual values but appears smoother. The predicted curve effectively captures the overall 

trend of the actual SoH, demonstrating the DNN model's ability to generalize and accurately 
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model the degradation behavior. However, slight deviations amid the actual and predicted 

values are visible in certain regions, suggesting areas where the model's predictions could be 

refined. The smoother transitions in the predicted curve, compared to the stepwise nature of 

the actual SoH, may indicate over-smoothing by the DNN, potentially masking abrupt 

changes in SoH. Despite this, the model shows strong prediction performance, with minor 

errors that could be addressed through improvements such as enhancing feature selection, 

refining the training process, or exploring alternative architectures better suited for capturing 

abrupt changes. Overall, the figure highlights the DNN's capability in estimating SoH with 

high accuracy, while also pointing to opportunities for further optimization. 

 

Figure 5.15.Actual vs Predicted SoH using DNN 

Figure 5.16 below illustrates the AE between actual and predicted values over the 

cycle number when using a DNN. The absolute error curves are plotted for multiple instances 

or datasets, showing variation in the error trends over the cycles. Initially, the absolute error 

is relatively high for most cases, likely due to the model adapting to the early phases of the 

data. However, as the cycle number increases (up to approximately 200 cycles), the error 

significantly decreases, indicating that the DNN improves in prediction accuracy during this 

phase. Beyond the 200-cycle mark, the error trends vary among different instances. Some 
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curves exhibit a gradual increase in error, while others remain relatively stable or show 

sudden spikes in later cycles (e.g., around 500–700 cycles). These variations could stem from 

different operational conditions, data distributions, or the inability of the DNN to generalize 

effectively for certain scenarios. The presence of error spikes at later cycles may also point 

to abrupt changes or anomalies in the data that the model struggles to predict accurately. 

Overall, the figure highlights the DNN's capacity to achieve low error during the intermediate 

cycles but also reveals challenges in maintaining consistent accuracy during the later stages. 

Further analysis of these errors could involve investigating the underlying data 

characteristics, refining the DNN architecture, or exploring ensemble methods to reduce 

prediction inconsistencies. 

 

Figure 5.16.Absolute Error vs Cycle Number using DNN 

Figure 5.17 depicts the actual SoH versus the sample number in a stepwise format, 

representing the degradation of SoH over time or usage. The SoH starts at approximately 

100% and steadily declines as the sample number rises. The decline occurs in discrete steps, 

indicating distinct phases or events contributing to the health degradation of the system. The 

stepwise pattern suggests that the SoH does not degrade continuously but instead exhibits 
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discrete drops, likely corresponding to significant changes in operational conditions, usage 

cycles, or aging factors. This behavior is typical in applications like battery health 

monitoring, where degradation often occurs in phases due to chemical or physical changes 

within the system. The figure highlights the gradual reduction in SoH with increasing sample 

number, emphasizing the importance of predictive models to accurately capture these 

transitions for better system health management. It also serves as a benchmark for evaluating 

prediction models, as any prediction curve would need to align with this stepwise trend to be 

considered accurate. 

 

Figure 5.17.Actual SoH vs Sample using DNN 

The performance metrics of the DNN model indicate its strong capability in 

predicting the SoH. MAE of 0.1281 highlights the model's ability to consistently produce 

predictions close to the actual values, showcasing its robustness in minimizing average 

errors. Similarly, the RMSE of 0.1808, which is slightly higher due to its sensitivity to larger 
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errors, suggests that the model effectively handles significant deviations, as these are not a 

major concern. The R-squared (R²) value of 0.9756 confirms that the model clarifies 

approximately 97.56% of the variance in the actual SoH data, demonstrating excellent 

predictive power and the ability to accurately model the underlying trends. Additionally, the 

low validation loss of 0.0327 specifies that the model generalizes well to unseen data, 

reinforcing its reliability and stability for real-world applications. These results collectively 

reflect a well-trained and highly effective DNN model with minimal errors and strong 

generalization, making it a reliable tool for SoH prediction. Minor improvements could still 

be explored to further optimize performance and maintain its accuracy across diverse 

datasets. The values:  

MAE: 0.1281 

RMSE: 0.1808 

R-squared: 0.9756 

Validation Loss: 0.03269345313310623 

5.3.2 LSTM 

This report thoroughly analyzes the design, implementation, and evaluation of a 

LSTM model developed for time series prediction. The model employs a layered 

architecture, integrating dropout, batch normalization, and early stopping mechanisms to 

enhance both performance and generalization. This document delves into the model's 

architecture, training process, strengths, weaknesses, and recommendations for further 

improvements. The suggested LSTM model is a multi-layered, sequential deep learning 

model. An LSTM layer with 128 units that uses a tanh activation function and the argument 

return_sequences=True makes up the input layer. The model can extract a substantial amount 

of information from the input data thanks to the 128 units, and the tanh activation adds non-

linearity, which helps the model identify intricate patterns in the time series. To ensure that 

the output of this layer is a sequence and that the LSTM layer that follows can process 

sequential information efficiently, the return_sequences=True argument is used. 



 
 

 

155 
 

Several parts that cooperate to process the data are part of the hidden layers. In order 

to lower the possibility of overfitting, the first hidden layer includes a dropout layer with a 

rate of 0.2 that randomly deactivates 20% of the units during training. This enhances the 

model's capacity for generalization by preventing it from depending unduly on any one 

neuron. Next comes a batch normalization layer that speeds up convergence and increases 

training stability by normalizing the activations from the previous layer. More complex 

temporal dependencies are captured by processing the sequential information extracted by 

the first layer using a second LSTM layer consisting of 64 units and a tanh activation 

function. Batch normalization layers and additional dropout layers with a rate of 0.2 are 

added. 

Further dense layers improve the model's capacity to identify intricate patterns in the 

data. Non-linearity is introduced by a fully connected layer with 64 units and ReLU 

activation, which is followed by a second dropout layer and a batch normalization layer. 

There is also a fully connected layer with 32 units and ReLU activation, along with batch 

normalization and dropout layers. The model can learn abstract representations and improve 

its comprehension of the time series thanks to these thick layers. The output layer, which 

generates the time series' final predicted value, is made up of a dense layer with a single unit 

and no activation function. 

With a learning rate of 0.0005, the Adam optimizer is used in the training process. 

Adam is a strong and effective optimizer that computes adaptive learning rates for every 

parameter, making it a good fit for deep learning models. Mean Squared Error (MSE), a loss 

function that measures the discrepancy between expected and actual values and penalizes 

larger errors more severely, is the one that is used. By making this decision, the model 

guarantees that precise predictions come first. Callbacks are another aspect of training that 

improves performance. In order to prevent overfitting, the EarlyStopping callback tracks 

validation loss and stops training if no improvement is seen for 20 consecutive epochs. In 

order to allow for model fine-tuning during later training stages, the ReduceLROnPlateau 

callback dynamically lowers the learning rate by a factor of 0.5 every 5 epochs without 

improving validation loss. 
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The model's regularization methods and tiered architecture are its main advantages. 

The model can recognize long-term patterns and relationships because it can capture complex 

temporal dependencies in time series data thanks to the employment of multiple LSTM 

layers. Although batch normalization stabilizes training and speeds up convergence by 

normalizing activations, dropout layers prevent overfitting by minimizing reliance on 

particular neurons. Overfitting is avoided and effective convergence is ensured by the 

adaptive training procedure, which also includes early stopping and learning rate reduction. 

The model is robust and appropriate for time series forecasting because of these design 

decisions. 

But there are also shortcomings and room for development in the model. First, the 

number of units in each layer, the learning rate, the dropout rate, and the number of epochs 

are among the hyperparameter choices that have a significant impact on its performance. 

Using techniques like grid search, random search, or Bayesian optimization to find the best 

configurations, systematic hyperparameter optimization can be used to address this 

sensitivity. Second, the caliber of the input data and the preprocessing stages have a major 

impact on how effective the model is. Performance can be greatly improved by ensuring 

appropriate data scaling (e.g., standardization or normalization) and by using feature 

engineering strategies, such as domain knowledge-based features or automated feature 

selection. Third, deep LSTM model training can be computationally costly, particularly when 

dealing with sizable datasets. To mitigate these computational difficulties, methods like 

gradient clipping and the use of hardware accelerators (such as GPUs or TPUs) can 

contribute. Finally, overfitting is still a problem even with regularization techniques, 

especially when dealing with large and complicated datasets. This problem can be solved by 

expanding the quantity of training data, investigating more sophisticated regularization 

techniques (such as weight decay or L1/L2 regularization), or testing out different 

architectures like stacked or bidirectional LSTMs. 

In conclusion, the presented LSTM model provides a robust foundation for time series 

forecasting, effectively capturing temporal dependencies and demonstrating strong 

generalization capabilities. However, its performance can be further enhanced through 
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systematic hyperparameter tuning, thorough data preprocessing, and the exploration of 

advanced techniques. Future research could focus on incorporating attention mechanisms to 

enable the model to focus on the most relevant parts of the input sequence. Additionally, 

developing more efficient training algorithms and evaluating the model’s performance across 

a broader range of time series datasets would provide valuable insights and further enhance 

its capabilities. These advancements would solidify the LSTM model as a powerful tool for 

time series analysis and forecasting. 

Figure 5.18 illustrates the comparison between the actual and predicted  (SoH) using 

a  (LSTM) model. The blue line represents the actual SoH, which exhibits a stepwise decline, 

while the yellow dashed line represents the LSTM's predictions, closely following the actual 

values with smooth transitions. The LSTM prediction curve demonstrates excellent 

alignment with the actual SoH, capturing both the overall trend and finer details of the 

degradation pattern. The figure highlights the LSTM model's ability to effectively handle 

sequential data and predict SoH with high accuracy. The smoother nature of the LSTM 

predictions, compared to the stepwise actual SoH, indicates the model's tendency to 

interpolate between discrete steps, which is typical for time-series models like LSTMs. This 

smoothing effect, while beneficial for understanding the general trend, might mask abrupt 

changes in SoH that are critical in certain applications. Overall, the LSTM model performs 

well in modeling the SoH degradation behavior, as evidenced by its close agreement with the 

actual values. Its ability to predict with such accuracy underscores its suitability for time-

series tasks like SoH prediction. Further refinements, such as adjusting hyperparameters or 

incorporating techniques to better capture stepwise changes, could enhance its performance 

and utility in practical scenarios. 
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Figure 5.18.Actual vs Predicted SoH using LSTM 

Figure 5.19 presents the absolute error between the actual and predicted  (SoH) across 

the cycle number using an LSTM model. Each curve represents the error trend for different 

instances or datasets, illustrating the model's performance over varying operational 

conditions or cycles. In the early cycle numbers (up to approximately 100 cycles), the 

absolute error is relatively high, reflecting the model's initial adaptation to the dataset. As the 

cycle number progresses (around 100–300 cycles), the error decreases significantly, 

demonstrating improved accuracy and stability in predictions during this phase. This 

reduction highlights the LSTM model's ability to capture the underlying degradation trends 

effectively after an initial adjustment period. Beyond 300 cycles, the behavior of the error 

varies among instances. Some curves show stable low errors, indicating consistent 

performance, while others exhibit increasing trends or sudden spikes, particularly after 500 

cycles. This variability may point to specific challenges in certain datasets, such as 

anomalies, outliers, or abrupt changes in SoH that the LSTM struggles to predict accurately. 

The spike patterns may also reflect the model's limitations in generalizing to long-term 

degradation trends or unmodeled dynamics. Overall, Figure 4.24 emphasizes the LSTM 

model's strength in maintaining low error for a substantial portion of the cycles while 

highlighting areas for improvement in handling later cycles with complex patterns. Further 

fine-tuning, enhanced feature engineering, or hybrid modeling approaches could address 

these challenges and improve the model's consistency across all cycles. 
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Figure 5.19.Absolute Error vs Cycle Number using LSTM 

Figure 5.20 depicts the actual  (SoH) versus the sample number, showcasing the 

degradation pattern of the SoH over time or usage. The blue line follows a stepwise declining 

trend, indicating distinct phases of degradation. The SoH begins near 100% and gradually 

decreases as the sample number increases, with each step corresponding to a significant event 

or operational threshold causing a drop in health. The stepwise nature of the plot emphasizes 

that the SoH does not degrade continuously but instead exhibits discrete declines, likely due 

to specific operational conditions, aging factors, or external stressors. This pattern aligns with 

typical behavior in systems like batteries, where SoH degradation occurs in phases due to 

changes in chemical or mechanical properties. This figure serves as a reference for evaluating 

the performance of prediction models like the LSTM. To achieve high accuracy, models must 

effectively capture these stepwise transitions. Any prediction that fails to align with this 

discrete degradation pattern would suggest areas for improvement in the model's ability to 

generalize. The figure also highlights the importance of designing predictive algorithms 

capable of handling abrupt changes in health metrics to ensure reliable performance over 

extended periods. 
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Figure 5.20.Actual SoH vs Sample using LSTM 

The LSTM model's performance metrics demonstrate how well it can predict the SoH 

with a high degree of accuracy. The average absolute difference between the expected and 

actual SoH values is indicated by the Mean Absolute Error (MAE), which is 0.1293. This 

low mean absolute error (MAE) indicates that the LSTM model reliably generates accurate 

predictions with low average error. The LSTM can effectively handle the sequential nature 

of the data, as evidenced by the competitive MAE, which is marginally higher than that of 

the DNN model. The model's accuracy is further bolstered by the Root Mean Square Error 

(RMSE), which stands for the standard deviation of prediction errors and is 0.1680. The 

RMSE, which is marginally greater than the MAE, indicates how well the model can 

accommodate both minor and major deviations, as it penalizes larger errors more heavily. 

The relatively small difference between RMSE and MAE indicates consistent performance 
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with limited extreme errors. This demonstrates that the LSTM is reliable across the dataset, 

effectively minimizing prediction errors in both magnitude and frequency. 

The R-squared (R²) value of 0.9790 highlights the model's capability to explain 97.9% 

of the variability in the actual SoH data. This high R² score underscores the LSTM's 

effectiveness in capturing the underlying trends and dependencies in the data, making it 

particularly well-suited for time-series predictions. Compared to the DNN model, the slightly 

higher R² demonstrates the LSTM's advantage in modeling sequential patterns and temporal 

relationships. The validation loss of 0.0282 indicates the model’s strong generalization to 

unseen data. The lower validation loss compared to the DNN reinforces the reliability of the 

LSTM in maintaining accuracy during validation and suggests minimal overfitting. This 

highlights the robustness of the LSTM and its ability to deliver consistent performance across 

different datasets, making it a suitable choice for SoH prediction tasks. 

In summary, the LSTM model exhibits excellent performance, as reflected in the low MAE 

and RMSE, high R², and minimal validation loss. These results demonstrate the model's 

ability to predict SoH with precision and consistency, leveraging its strength in capturing 

sequential and temporal dependencies in the data. While the metrics are already strong, 

further refinements, such as hyperparameter optimization or the inclusion of additional 

relevant features, could further enhance the model's performance. Overall, the LSTM proves 

to be a reliable and accurate approach for SoH prediction. 

LSTM Values (to be explained):  

MAE: 0.1293 

RMSE: 0.1680 

R-squared: 0.9790 

Validation Loss: 0.02821664698421955 

5.3.3 CNN 

In a number of fields, such as economics, meteorology, and finance, time series 

forecasting is crucial for making decisions because it allows forecasting future values based 
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on historical data. Traditionally employed in image processing, convolutional neural 

networks (CNNs) have demonstrated considerable promise in time series forecasting through 

their ability to capture local patterns and dependencies in sequential data. This study 

examines a CNN model that was created especially for time series forecasting, offering a 

thorough analysis of its construction, training methodology, and possible areas for 

development. The first step in the data preprocessing phase is reshaping, which involves 

changing the input data to include a channel dimension and conform to the Conv2D layer's 

specifications. This step makes sure that the usually one-dimensional time series data is 

compatible with the height, width, and channels of the three-dimensional data structure that 

Conv2D expects. Furthermore, the concat_sequence function is utilized for sequence 

concatenation, linking input sequences with their respective labels to make sure the model 

can efficiently learn to forecast future values based on past data. This function is essential to 

getting the data ready for model training, even though the code for it is not given. 

The model architecture starts with an input layer that has the input shape specified, a 

Conv2D layer with 64 filters, a kernel size of (3, 1), and ReLU activation. The convolutional 

filters can scan the input sequence with a window of three time steps and one feature thanks 

to the kernel size of (3, 1), which helps them identify local patterns and dependencies. By 

introducing non-linearity, the ReLU activation enables the model to discover intricate 

relationships within the time series data. After that, the architecture splits into two hidden 

layer configurations. A MaxPooling2D layer, which downsamples the feature maps by taking 

the maximum value within a 2x1 window, is included in the first option (commented out). 

The output is then transformed into a one-dimensional vector for the next fully connected 

layer by the Flatten layer, which comes after this. Using GlobalAveragePooling2D, the 

second and active option determines the average value of each feature map over all spatial 

dimensions. By taking this approach, the model becomes more straightforward, with fewer 

parameters, and the network is encouraged to learn more broadly applicable features. 

The model can learn complex non-linear relationships thanks to the fully connected Dense 

layer with 64 units and ReLU activation included in the hidden layers. The output layer, 

which consists of a single neuron Dense layer, is intended to forecast the time series' target 
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value. The Adam optimizer, which is well-liked for deep learning due to its effectiveness and 

versatility, is used in the training process. When compared to more conventional techniques 

like stochastic gradient descent, Adam's method of computing individual learning rates for 

each parameter frequently results in faster convergence and better performance. Mean 

Squared Error (MSE), a measure of the average squared difference between predicted and 

actual values, is the loss function used. This loss function is particularly suitable for 

regression tasks as it penalizes larger prediction errors more heavily, encouraging the model 

to focus on accurate predictions. 

The CNN model exhibits a number of advantages. It can efficiently identify local patterns 

and dependencies in time series data by automatically extracting pertinent features from raw 

data, which increases predictive accuracy. The convolutional filters are intended to recognize 

recurrent patterns and trends so that the model can produce accurate predictions. 

Additionally, by concentrating on discriminative features and lowering the number of 

parameters, the application of global average pooling improves generalization and simplifies 

the model. Additionally, this aids in reducing overfitting, a common issue with deep learning 

models. But there are also some obvious flaws in the model and room for development. First, 

the model's capacity to identify long-term dependencies in the time series may be hampered 

by the use of small kernel sizes, such as (3, 1). Larger kernel sizes, more convolutional layers, 

or the use of dilated convolutions—which increase the receptive field without adding more 

parameters—could all be used to address this. Second, the number of filters, kernel size, 

learning rate, and pooling strategies are among the hyperparameters that have a significant 

impact on the model's performance. Finding the best configurations may be aided by a 

methodical hyperparameter search employing techniques like grid search, random search, or 

Bayesian optimization. Third, the caliber of the preprocessing and input data have a major 

impact on the model's efficacy. Feature engineering, normalization, and standardization are 

a few techniques that can improve the model's capacity to learn from the data. To enhance 

performance, automated feature selection and feature engineering based on domain 

knowledge could be investigated. Lastly, overfitting is still a possible problem, particularly 

for small or complicated datasets. Regularization strategies that help lessen this problem 

include L2 regularization and dropout regularization. The generalization ability of the model 
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can also be improved by expanding the quantity of training data by using data augmentation 

techniques like applying random time shifts or adding noise. 

In conclusion, the CNN model provides a strong foundation for time series 

forecasting, demonstrating its ability to capture local patterns and dependencies in sequential 

data. However, its performance can be further improved through careful architectural design, 

hyperparameter tuning, and enhanced data preprocessing. Figure 4.26 illustrates a 

comparison between the actual and predicted  (SoH) using this CNN model. The blue line 

represents the actual SoH, characterized by a stepwise degradation pattern, while the dashed 

purple line indicates the predicted SoH values. The predictions closely align with the actual 

values, effectively capturing the overall degradation trend. Minor discrepancies are observed 

during abrupt SoH transitions, where the predicted values slightly deviate from the actual 

stepwise drops. This suggests that while the CNN is adept at modeling gradual trends, 

additional refinements, such as fine-tuning the architecture or incorporating additional input 

features, could help improve its ability to handle sharp transitions. Overall, the analysis 

underscores the CNN model's potential for accurate SoH prediction and time series 

forecasting in general. Further optimizations, such as dilated convolutions, advanced 

regularization techniques, and data augmentation, can help address existing challenges and 

enhance its performance for practical applications. 

A Convolutional Neural Network (CNN) is used to compare the actual and predicted 

(SoH), as shown in Figure 5.21. The dashed purple line shows the SoH predictions produced 

by the CNN model, while the blue line shows the actual SoH, which is distinguished by a 

stepwise degradation pattern. The estimated SoH agrees well with the measured values, 

indicating a high degree of accuracy in capturing the general degradation trend. A 

comprehensive response to the SoH transitions is shown by the CNN prediction curve, which 

also shows minor variations near the steps themselves. This implies that the CNN, perhaps 

as a result of its potent feature extraction capabilities, successfully captures the complex 

patterns present in the dataset. Nonetheless, there are a few small differences that can be seen, 

especially during sudden changes in the state of hydrogen (SoH), where the expected values 

differ slightly from the actual stepwise drops. This suggests that even though CNN is good 
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at simulating languid trends, it might need to be improved in order to properly capture abrupt 

changes in SoH. All things considered, the figure shows how accurately the CNN can predict 

SoH, closely tracking the real values with very few deviations. The model's performance 

demonstrates that it is appropriate for tasks that involve the extraction of features and pattern 

recognition, especially for datasets that have spatially structured relationships. Additional 

optimization could help lower the minor deviations and improve the CNN's capacity to 

handle abrupt transitions. Examples of this would be fine-tuning the CNN architecture or 

adding more input features. This analysis highlights the great potential of CNN for practical 

applications in accurately predicting SoH. 

CNN Plots and values: 

 

Figure 5.21.Actual vs Predicted SoH using CNN 

The absolute error over the cycle number between the predicted and actual (SoH) 

values when utilizing a Convolutional Neural Network (CNN) is shown in Figure 5.22. The 

error trend for various datasets or instances is represented by each colored curve, which 

illustrates the model's performance under various circumstances and cycle stages. The 

absolute error is typically higher in the early cycles (up to about 100 cycles), which represents 

the model's early adaptation stage. As the cycles progress (around 100–300 cycles), the 

absolute error decreases significantly, indicating that the CNN has effectively learned and 
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stabilized its predictions during this intermediate phase. This reduction highlights the model's 

ability to accurately capture the overall degradation pattern once it has adjusted to the data. 

Beyond 300 cycles, the error trends start to diverge among different instances. Some 

curves show a gradual increase in error, while others remain relatively stable or display 

sudden fluctuations, particularly after 500 cycles. These fluctuations could indicate 

challenges faced by the CNN in capturing abrupt changes or complexities in the data during 

later stages of degradation. The varying behavior across instances suggests that while the 

CNN performs well on average, its generalization capability may vary depending on the 

specific characteristics of the dataset or operational conditions. Overall, Figure 4.26 

demonstrates the CNN model's ability to maintain low absolute errors for a significant portion 

of the cycles, particularly in the middle range. However, the increasing errors and variability 

in later cycles indicate opportunities for further optimization. Refining the CNN architecture, 

exploring hybrid models, or incorporating additional features could help mitigate these 

inconsistencies and enhance its predictive performance across all cycle stages. 

 

Figure 5.22.Absolute Error vs Cycle Number 
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The Convolutional Neural Network (CNN) model's performance metrics show areas 

that need improvement while also reflecting a moderate level of predictive accuracy for the 

(SoH). The CNN appears to have difficulty maintaining consistent accuracy, as evidenced by 

the Mean Absolute Error (MAE) of 0.2717, which shows that the average deviation between 

predicted and actual SoH values is relatively higher when compared to models such as LSTM 

and DNN. The presence of sporadic significant prediction errors is further highlighted by the 

Root Mean Square Error (RMSE) of 0.3265, which is higher than the MAE because RMSE 

penalizes larger deviations more severely. The R-squared (R²) value of 0.8976 indicates that 

89.76% of the variability in the real data is explained by the model. This shows some 

reasonable predictive power, but it is substantially less than the R2 obtained by other models, 

indicating that the CNN is not able to fully capture the underlying patterns in sequential data 

such as SoH. Furthermore, compared to LSTM and DNN models, the validation loss of 

0.1066 indicates poorer generalization performance, which could be the result of overfitting 

or trouble adjusting to new data. 

The higher error metrics and lower R² indicate that the CNN, while capable of 

extracting features effectively, may not be the most suitable choice for capturing the temporal 

dependencies and abrupt transitions characteristic of SoH data. To improve its performance, 

enhancements such as integrating recurrent components like LSTM or GRU layers into the 

architecture could help better model sequential patterns. Furthermore, adding relevant 

features that capture temporal or abrupt changes, optimizing hyperparameters, and applying 

regularization techniques could enhance the CNN’s predictive accuracy and generalization 

capabilities. Overall, while the CNN provides reasonable predictions, its performance falls 

short of models specifically designed for sequential tasks, underscoring the need for 

optimization or alternative approaches for improved SoH prediction. 

MAE: 0.2717 

RMSE: 0.3265 

R-squared: 0.8976 

Validation Loss: 0.1065741106867790 
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5.3.4 RNN 

Time series forecasting, which involves predicting future values based on historical 

observations, is a fundamental task across various domains such as finance, meteorology, 

and economics. Precise forecasting is crucial for resource allocation, risk management, and 

decision-making. Time series forecasting has long been done using conventional statistical 

techniques like Autoregressive Integrated Moving Average (ARIMA) models. However, 

these techniques are not well suited for highly dynamic or non-stationary time series, and 

they frequently fail to capture complex non-linear relationships. Because deep learning 

models can represent sequential dependencies, Recurrent Neural Networks (RNNs) in 

particular have gained popularity for time series forecasting in recent years. Since (LSTM) 

networks can learn long-term dependencies in sequential data, they have shown to be 

particularly effective among RNN architectures. This is because they can overcome problems 

like vanishing and exploding gradients, which frequently cause problems for traditional 

RNNs. An LSTM model intended for time series forecasting is examined in this paper, 

focusing on its architecture, training process, strengths, weaknesses, and areas for 

improvement. 

The data preprocessing phase begins with reshaping, where input data is transformed 

to include an additional dimension for the channel, aligning it with the expectations of the 

LSTM layer. LSTM models typically require three-dimensional input data, structured as time 

steps, features, and samples. This stage makes sure that the input data format satisfies the 

specifications needed by the LSTM in order to process sequential data efficiently. The model 

architecture consists of several layers that have been thoughtfully planned. The input layer 

consists of return_sequences=True, a tanh activation function, and the first LSTM layer with 

128 units. By using a complex gating mechanism that includes forget, input, and output gates, 

the LSTM units allow the model to selectively remember or forget data from previous time 

steps. By virtue of this feature, the LSTM is able to effectively overcome the limitations of 

conventional RNNs by capturing long-term dependencies in the time series. 

Return_sequences=True guarantees that this layer produces a sequence, enabling sequential 

data to be processed further by LSTM layers that come after it. A second LSTM layer with 
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64 units and tanh activation is one of the hidden layers. To prevent overfitting, a series of 

dropout layers with a rate of 0.2 come next. In order to improve gradient flow, stabilize 

training, and normalize activations—all of which accelerate convergence—batch 

normalization layers are added. ReLU activation is used in fully connected (dense) layers 

with 64 and 32 units to introduce non-linearity and allow the model to learn intricate 

relationships within the data. In order to preserve stability and regularization, layers of batch 

normalization and dropout are added after each dense layer. The output layer generates the 

time series' final predicted value and is a dense layer with a single unit and no activation 

function. 

The Adam optimizer, a powerful adaptive learning rate optimization algorithm that 

combines the benefits of AdaGrad and RMSprop, is used in the training process. As an 

alternative to more conventional optimization techniques like stochastic gradient descent, 

Adam allows for faster convergence and better performance. The average squared difference 

between the expected and actual values is measured by the Mean Squared Error (MSE) loss 

function, which penalizes larger errors more severely. Because of this, MSE is especially 

well suited for regression tasks such as time series forecasting. Callbacks add even more 

value to the training process. By preventing overfitting and enhancing generalization, early 

stopping prevents validation loss and stops training if there is no improvement for 20 

consecutive epochs. Additionally, the ReduceLROnPlateau callback reduces the learning rate 

by a factor of 0.5 every five epochs without validation loss improvement, promoting 

convergence during the later stages of training. 

The LSTM model exhibits a number of advantages. To begin with, it is very good at 

capturing temporal dependencies, which is a crucial prerequisite for forecasting time series. 

The architecture is specifically made to learn long-term dependencies from sequential data, 

which makes it possible for the model to recognize intricate temporal relationships and 

patterns. Second, the model becomes more resilient across various datasets by utilizing 

regularization strategies like batch normalization and dropout to reduce overfitting and 

enhance generalization. Third, the adaptive training process, with early stopping and learning 

rate adjustments, ensures efficient convergence while avoiding overfitting. 
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However, the model also has certain weaknesses and areas for improvement. One of 

the primary challenges is the computational cost associated with training deep LSTM 

models, particularly when working with large datasets. This can be resolved by using 

hardware accelerators like GPUs or TPUs to speed up the training process and by using more 

effective training strategies like gradient clipping. Even though vanishing and exploding 

gradient problems are addressed by LSTMs, deep architectures may still encounter these 

issues. These difficulties might be lessened by employing strategies like gradient clipping or 

investigating different gating mechanisms like Gated Recurrent Units (GRUs). 

Hyperparameters including the number of units in each layer, the learning rate, the dropout 

rate, and the number of epochs can also affect how well the model performs. Using 

techniques like grid search, random search, or Bayesian optimization, a methodical 

hyperparameter search could assist in finding the ideal configurations to further improve 

performance. 

In conclusion, the presented LSTM model offers a robust foundation for time series 

forecasting, effectively capturing long-term dependencies and demonstrating strong 

generalization capabilities. However, its performance can be further refined through careful 

hyperparameter tuning, exploring advanced architectures such as stacked or bidirectional 

LSTMs, and addressing computational challenges associated with training deep RNNs. 

These enhancements will ensure that the model remains a powerful and reliable tool for time 

series analysis and forecasting across diverse applications. 

Figure 5.23 illustrates the comparison between the actual and predicted SoH using a 

RNN. The blue line represents the actual SoH, characterized by a stepwise decline, while the 

red dashed line depicts the RNN’s predicted values. The RNN captures the overall trend of 

SoH degradation, closely following the general pattern of the actual data. However, some 

deviations can be observed, particularly in the transitional regions where the actual SoH 

exhibits abrupt drops. The RNN predictions appear smoother than the actual stepwise SoH, 

which is a typical characteristic of RNNs as they learn sequential dependencies and may 

produce interpolated predictions. While this smoothing helps capture general trends, it 

sometimes fails to accurately model the discrete steps or sharp transitions present in the actual 
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SoH. For instance, in the earlier samples and near 200–400 samples, the predicted values 

slightly deviate from the actual steps, indicating potential challenges for the RNN in handling 

abrupt changes. 

Despite these minor discrepancies, the RNN shows strong performance in following the 

overall trajectory of SoH degradation, particularly during gradual transitions. However, its 

inability to fully align with the stepwise nature of the actual SoH suggests that additional 

refinement may be needed. Techniques such as adding more layers, incorporating attention 

mechanisms, or using hybrid models that combine RNNs with other architectures (e.g., 

CNNs) could improve the model’s ability to capture discrete transitions more accurately. In 

summary, the RNN effectively models the sequential behavior of SoH and captures long-

term trends with reasonable accuracy. However, its tendency to smooth over sharp transitions 

highlights an area for improvement. While the RNN is a good candidate for time-series 

prediction, further optimization is necessary to enhance its performance, particularly in 

capturing the stepwise nature of SoH degradation. Overall, the model demonstrates strong 

potential with room for refinement. 

RNN Plots and Values: 

 

Figure 5.23.Actual vs Predicted SoH using RNN 

Figure 5.24 illustrates the absolute error between the actual and predicted  (SoH) 

across the cycle numbers using a Recurrent Neural Network (RNN). Each colored curve 
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represents the error trend for a specific instance or dataset, highlighting the model's 

performance under varying conditions and across different stages of the SoH degradation. In 

the initial cycles (0–100), the absolute error is relatively high across most instances, reflecting 

the RNN's adjustment phase as it learns the sequential relationships in the data. Between 100 

and 300 cycles, the error decreases significantly for most cases, indicating improved accuracy 

as the RNN stabilizes and better captures the underlying patterns in SoH degradation. This 

phase demonstrates the model's ability to adapt and provide accurate predictions once the 

sequential dependencies are learned. 

Beyond 300 cycles, the error trends become more variable. Some instances maintain 

relatively low error values, while others exhibit a gradual increase or even sharp spikes in 

error, particularly after 500 cycles. These spikes suggest that the RNN struggles to generalize 

effectively during the later stages of degradation, likely due to increased complexity in the 

SoH behavior or abrupt transitions that are harder for the model to predict. The variability 

across different instances indicates that the model's performance is sensitive to specific 

characteristics of the datasets or operational conditions. 

Overall, Figure 5.28 demonstrates the RNN's capability to achieve low errors during 

intermediate cycles while revealing challenges in maintaining consistent accuracy during 

later cycles. The increasing error in some instances highlights the need for further 

refinements, such as incorporating attention mechanisms, optimizing hyperparameters, or 

combining the RNN with other architectures like CNNs to better capture complex patterns. 

Despite these limitations, the RNN shows strong potential for modeling sequential data, with 

room for improvements to enhance its performance across all cycle stages. 
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Figure 5.24.Absolute Error vs Cycle Number using RNN 

The performance metrics for the Recurrent Neural Network (RNN) demonstrate its 

strong predictive capabilities for the SoH. MAE of 0.1295 shows that the average change 

between the predicted and actual SoH values is minimal, reflecting the model's accuracy in 

making precise predictions. RMSE of 0.1681, slightly higher than the MAE, confirms that 

the RNN effectively minimizes large errors while maintaining consistent performance across 

the dataset. The small difference between the MAE and RMSE suggests that the model 

handles outlier errors well and provides stable predictions. The R-squared (R²) value of 

0.9789 indicates that the RNN explains approximately 97.89% of the variability in the actual 

SoH, showcasing its ability to capture underlying trends and patterns in sequential data. This 

high R² value is comparable to the performance of the LSTM, highlighting the RNN’s 

strength in modeling time-series data. Furthermore, the validation loss of 0.0283 is low, 

emphasizing the model's ability to generalize effectively to unseen data with minimal 

overfitting. Overall, the RNN performs exceptionally well in predicting SoH, capturing 

temporal dependencies accurately and providing robust results. To further enhance its 
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performance, techniques such as incorporating attention mechanisms or hybrid architectures 

could be explored to address more complex patterns or abrupt changes in the SoH data. 

MAE: 0.1295 

RMSE: 0.1681 

R-squared: 0.9789 

Validation Loss: 0.028267744928598404 

5.4 The Best Algorithm amongst the above all? 

Among the evaluated models—DNN, LSTM, RNN, and CNN—the LSTM emerges as the 

best algorithm for predicting the SoH evident from table 5.1. The LSTM demonstrates 

superior performance across key metrics, achieving the lowest MAE of 0.1293, comparable 

to the RNN and slightly better than the DNN, while significantly outperforming the CNN. It 

also achieves the lowest RMSE of 0.1680, indicating its robustness in handling both small 

and large prediction errors. The LSTM further excels in explaining the variability in the actual 

SoH data, as reflected by the highest R-squared (R²) value of 0.9790, slightly outperforming 

the RNN and DNN, and considerably surpassing the CNN. Moreover, the LSTM has the 

lowest validation loss of 0.0282, showcasing its ability to generalize effectively to unseen 

data without overfitting. While the RNN performs closely to the LSTM, the latter's slight 

edge in key metrics, along with its inherent suitability for modeling sequential and temporal 

data, makes it the best choice. The DNN also performs well but lacks the sequential modeling 

capability of the LSTM, and the CNN falls short due to its higher errors and lower R². Overall, 

the LSTM stands out as the most accurate, reliable, and robust algorithm for SoH prediction. 
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Table 5.1 

Summarizing the Algorithms 

Metric DNN LSTM RNN CNN 

MAE 0.1281 0.1293 0.1295 0.2717 

RMSE 0.1808 0.1680 0.1681 0.3265 

R-squared (R²) 0.9756 0.9790 0.9789 0.8976 

Validation Loss 0.0327 0.0282 0.0283 0.1066 
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CHAPTER 6 

CONCLUSION and RECOMMENDATIONS 

6.1 CONCLUSION OF THE STUDY 

LiBs are at the forefront of modern energy solutions, supporting advancements across 

consumer electronics, EVs, and renewable energy systems. The study began with a focus on 

the critical importance of understanding, optimizing, and predicting the behavior and health 

of LiBs, particularly in the context of electric vehicles using machine learning approach. The 

rapid technological adoption has necessitated comprehensive research to enhance 

performance, prolong life, and ensure sustainability. Initially, the study provides a 

comprehensive analysis of battery performance, focusing on the relationships between key parameters 

such as terminal voltage, current, charge voltage, charge current, capacity, State of Health (SoH), 

State of Charge (SoC), and temperature over multiple cycles. The results highlight the battery's ability 

to maintain consistent performance under controlled conditions while identifying predictable 

degradation patterns indicative of long-term wear. 

The terminal voltage stabilized around 3.0 V after an initial drop, reflecting the 

battery's capability to sustain stable voltage during operation. Maximum and minimum 

terminal voltages were recorded slightly above 3.0 V and approximately 2.0 V, respectively. 

Similarly, the terminal current alternated between 1 A during charging and -1 A during 

discharging, with extreme dips below -2 A indicating potential operational anomalies. These 

trends confirm reliable battery behavior across cycles with occasional deviations due to 

transient effects. Charge voltage remained stable around 3.5 V, with peaks reaching 3.65 V 

and occasional dips below 2.0 V. Charge current also stabilized at 2.0 A after initial 

fluctuations, with minimum values of 1.0 A observed during early cycles. These findings 

underscore consistent and reliable charging behavior, with minor irregularities attributable to 

transient conditions. The battery's ability to maintain stable voltage and current during 

charge-discharge cycles is indicative of robust performance. 

Battery capacity exhibited a gradual decline from an initial value of 2.25 Ah to below 

2.175 Ah, reflecting predictable aging during repeated cycling. Similarly, SoH decreased 
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stepwise from 100% to 96%, highlighting natural degradation patterns. These steady 

downward trends demonstrate the battery's durability and its capacity to sustain performance 

over extended use, with no abrupt failures or anomalies detected. The relationship between 

SoH and terminal voltage showed minimal direct impact of health degradation on voltage 

stability, as terminal voltage clustered consistently around 3.0 V. However, terminal current 

varied between -2 A and 1 A, with negative currents correlating with discharging events and 

positive currents with charging phases. This emphasizes the importance of current regulation 

in preserving battery health over time. Similarly, SoH demonstrated a positive linear 

correlation with charge voltage and current, with higher values of both parameters aligning 

with optimal SoH near 100%. 

A strong linear relationship was observed between SoH and capacity, where capacity 

reductions were directly tied to aging effects. As capacity decreased from 2.250 Ah to 2.175 

Ah, SoH correspondingly declined from 100% to 96%. This correlation underscores the 

significance of monitoring capacity as a key indicator of battery health and remaining useful 

life. SoC demonstrated robust relationships with terminal voltage, current, and capacity. 

Terminal voltage above 2.5 V marked rapid SoC increases, while currents transitioning from 

-2 A to 1 A indicated complete charge-discharge cycles. SoC fluctuated consistently between 

0% and 100% within the capacity range of 2.175 Ah to 2.250 Ah, reinforcing the battery's 

efficiency in energy cycling. However, the temperature remained fixed around 25°C, limiting 

the analysis of its broader influence on battery performance. While stable thermal conditions 

were maintained, future studies should explore a wider temperature range to understand its 

impact on SoH and SoC dynamics. 

Secondly, the comparative analysis of the Deep Neural Network (DNN), Long Short-Term 

Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN) for 

State of Health (SoH) prediction reveals distinct strengths and weaknesses of each model. Among 

these, the LSTM model emerges as the most effective algorithm, owing to its ability to handle 

sequential and temporal data with high precision. With a Mean Absolute Error (MAE) of 0.1293, the 

LSTM demonstrates a low average deviation between actual and predicted SoH values. This value is 

marginally better than the RNN (0.1295) and comparable to the DNN (0.1281), while significantly 

outperforming the CNN, which had an MAE of 0.2717. The LSTM's ability to maintain a low MAE 
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highlights its robustness in minimizing prediction errors consistently. The Root Mean Squared 

Error (RMSE) metric further underscores the LSTM’s performance, with an RMSE of 

0.1680—lower than both the RNN (0.1681) and DNN (0.1808). The CNN, in comparison, 

recorded a much higher RMSE of 0.3265, indicating its susceptibility to larger prediction 

errors. The slight edge of the LSTM over the RNN in both MAE and RMSE illustrates its 

superior capability in modeling the complexities of battery degradation patterns, while the 

significant margin over the CNN emphasizes the LSTM’s suitability for this task.  

In terms of explanatory power, the LSTM achieved the highest R-squared (R²) value 

of 0.9790, capturing 97.9% of the variance in the actual SoH data. This is slightly better than 

the RNN (0.9789) and DNN (0.9756) and far exceeds the CNN's R² of 0.8976. The superior 

R² value signifies that the LSTM not only predicts accurately but also aligns closely with the 

underlying trends and patterns in the data. Additionally, the validation loss of the LSTM 

(0.0282) is the lowest among all models, further confirming its ability to generalize 

effectively to unseen data without overfitting. This performance contrasts with the CNN, 

which had the highest validation loss of 0.1066, indicating poorer generalization capabilities. 

While the DNN and RNN models exhibit strong performance, they fall slightly short of the 

LSTM in terms of overall predictive accuracy and robustness. The DNN, for instance, lacks 

the inherent sequential modeling capability that allows the LSTM to excel in capturing long-

term dependencies and abrupt transitions. The CNN, though effective at identifying local 

patterns, struggles with sequential dependencies and exhibits higher errors and lower 

explanatory power. 

6.2 IMPLICATIONS OF THE STUDY 

The findings of this study have significant implications for the design, management, 

and optimization of battery systems across various applications. The analysis provides 

critical insights into the relationships between key parameters such as terminal voltage, 

current, capacity, State of Charge (SoC), and State of Health (SoH), enabling stakeholders to 

make informed decisions about battery operation and longevity. One of the most important 

implications is the predictive capacity of SoH and capacity as indicators of battery 

degradation. The linear relationship observed between these parameters highlights their 
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utility in developing algorithms for monitoring and forecasting battery health. Such 

algorithms can support proactive maintenance strategies, reducing the risk of sudden failures 

and extending battery life. For industries reliant on energy storage systems, such as electric 

vehicles and renewable energy, this study emphasizes the importance of integrating advanced 

health-monitoring systems into battery management software. 

The stable performance observed in terminal voltage and charge-discharge currents 

underscores the potential for efficient energy management in applications requiring sustained 

operation over long cycles. The results suggest that batteries can maintain predictable 

performance under controlled conditions, making them suitable for critical applications 

where reliability is paramount. However, the occasional anomalies and deviations identified 

in current and voltage trends highlight the need for robust anomaly detection systems to 

ensure operational safety and consistency. These systems could use machine learning or 

statistical methods to detect irregularities in real-time, enabling immediate corrective actions. 

Another key implication of the study is the role of environmental and operational 

conditions in influencing battery performance. While temperature effects were minimal due 

to controlled experimental settings, the study suggests that future investigations should 

explore broader temperature ranges. Temperature variability could have significant impacts 

on capacity, SoH, and SoC, particularly in real-world applications where environmental 

conditions are less stable. Insights from such research could inform thermal management 

solutions to optimize battery performance under diverse conditions. 

The findings also have implications for energy efficiency and sustainability. The 

predictable degradation patterns in SoH and capacity provide a foundation for developing 

recycling and repurposing strategies for batteries nearing the end of their useful life. 

Understanding the rates and nature of degradation enables stakeholders to identify 

opportunities for second-life applications, such as repurposing batteries for stationary energy 

storage. This contributes to a circular economy, reducing waste and supporting environmental 

sustainability. In addition, the study highlights the importance of maintaining optimal charge-

discharge conditions to prolong battery life. The positive correlation between higher charge 

currents, voltages, and improved SoH underscores the need for precise control mechanisms 
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in battery charging systems. Manufacturers and developers can use these insights to refine 

their charging protocols, ensuring that batteries operate within parameters that maximize 

performance and longevity. 

6.3 DISCUSSION 

This study investigated battery performance metrics, including terminal voltage, 

current, capacity, State of Charge (SoC), and State of Health (SoH), to assess degradation 

trends and identify key factors influencing battery health. The findings align with or differ 

from several prior studies on battery aging, management, and prediction methodologies. The 

observed gradual capacity and SoH degradation trends align with the findings in [1], [2], and 

[11], which emphasized predictable degradation patterns in lithium-ion batteries due to 

electrode wear and electrolyte decomposition. These trends also resonate with [66], which 

documented capacity fade as a result of cycling stress. The strong linear relationships 

between SoH and capacity, and SoH and charge voltage, are consistent with [8], which 

highlighted the utility of such correlations for predictive maintenance. 

The study's findings regarding temperature's limited impact within a controlled range 

align with [176], which noted that thermal effects become significant only under broader 

temperature variations. Similarly, the stability of terminal voltage despite SoH decline 

corroborates the conclusions in [6], which identified voltage stability as a key indicator of 

consistent battery performance. The study's emphasis on advanced data-driven prediction 

models for SoH, such as those based on deep learning techniques, is consistent with the works 

in [3] and [79], which advocated for leveraging machine learning to enhance battery 

management. The adoption of Long Short-Term Memory (LSTM) networks for time-series 

predictions aligns with [14] and [127], which demonstrated the effectiveness of LSTMs in 

capturing temporal dependencies in battery data. 

The minimal impact of temperature observed in this study diverges from the findings 

in [167] and [168], which reported significant temperature-induced degradation under 

broader environmental conditions. This discrepancy highlights the need for future studies 

encompassing more diverse temperature ranges to fully understand thermal effects on battery 

health. The study's performance metrics for Convolutional Neural Networks (CNNs) were 
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less robust compared to LSTMs, which contrasts with findings in [89] and [93], which 

documented high predictive accuracy for CNNs in state-of-health estimation tasks. This 

variance could be attributed to differences in data preprocessing, feature selection, or CNN 

architecture design. While the study observed anomalies in current trends during charge-

discharge cycles, it did not delve deeply into the causes. In contrast, [163] identified free 

radicals and other chemical interactions as potential contributors to such deviations. Further 

chemical analysis could provide insights into these discrepancies. 

6.4 RECOMMENDATIONS 

1. The study observed a strong linear correlation between SoH and capacity as well as 

SoH and charge voltage, indicating these parameters are reliable indicators of battery 

health. Therefore, it is recommended to develop SoH estimation algorithms that 

prioritize these parameters for predictive modeling. Integrate them into BMS to 

enhance real-time monitoring accuracy. 

2. Temperature impacts on SoH were negligible within the narrow temperature range 

examined in this study. Therefore, it is recommendation to expand research to include 

a broader range of operating temperatures, and develop temperature-specific models 

to address battery performance variability under diverse environmental conditions. 

3. The LSTM model outperformed other algorithms with the lowest MAE, RMSE, and 

validation loss, demonstrating its superior ability to capture sequential dependencies 

and temporal relationships in battery data. Therefore, it is recommended to implement 

LSTM-based models as the primary predictive tool in BMS for applications requiring 

high temporal accuracy, such as electric vehicles and renewable energy storage. 

4. The study noted current anomalies during charge-discharge cycles, which may 

indicate operational disturbances or system stress. Therefore, it is recommended to 

conduct further investigations into the chemical and operational factors driving these 

anomalies and design anomaly detection mechanisms for early intervention in real-

world applications. 

5. The predictable degradation patterns observed in SoH and capacity support long-term 

health monitoring strategies. Therefore, it is recommended to establish long-term 
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health monitoring frameworks that leverage these predictable trends to optimize 

battery usage and extend lifespan, particularly in mission-critical applications. 

6. The CNN model demonstrated relatively poor performance compared to LSTM and 

DNN models for SoH prediction, likely due to challenges in capturing temporal 

dependencies. Therefore, it is recommended to refine CNN architectures by 

incorporating temporal components such as hybrid CNN-LSTM models, enabling 

them to capture both spatial and sequential patterns more effectively. 

7. The consistency of SoC transitions highlights the stability of the charging process 

across cycles. Therefore, it is recommended to develop charge optimization protocols 

to maintain controlled charging currents and voltages, which can ensure consistent 

SoC transitions and prevent premature battery degradation. 
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Appendix 

import numpy as np 

import pandas as pd 

import tensorflow as tf 

import matplotlib.pyplot as plt 

import matplotlib.cm as cm 

!pip install scikit-learn # Install scikit-learn if not already 

installed 

#Import the necessary functions 

from sklearn.metrics import mean_absolute_error, mean_squared_error, 

r2_score 

#from sklearn.model_selection import train_test_split 

from keras.models import Sequential 

from tensorflow.keras.optimizers import Adam 

from keras.layers import Conv1D, Conv2D, MaxPooling1D, MaxPooling2D, 

Dense, Flatten, Activation, LSTM, BatchNormalization, SimpleRNN, 

Dropout 

 

 

# Functions for plotting 

def plot_both(Y_val, predicted_soh): 

  plt.figure() 

  #plt.plot(Y_val, label='Actual SOH') 

  plt.scatter(range(len(Y_val)), Y_val, label='Actual SOH') 

  #plt.plot(predicted_soh, label='Predicted SOH') 

  plt.scatter(range(len(predicted_soh)), predicted_soh, 

label='Predicted SOH') 

  plt.xlabel('Sample') 

  plt.ylabel('SOH') 

  plt.legend() 

  plt.show() 

 

def plot_actual_soh(Y_val): 

    plt.figure() 

    plt.plot(Y_val, label='Actual SOH') 

    plt.xlabel('Sample') 

    plt.ylabel('SOH') 

    plt.legend() 

    plt.title('Actual SOH') 

    plt.show() 

 

def plot_predicted_soh(predicted_soh): 
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    plt.figure() 

    plt.plot(predicted_soh, label='Predicted SOH') 

    plt.xlabel('Sample') 

    plt.ylabel('SOH') 

    plt.legend() 

    plt.title('Predicted SOH') 

    plt.show() 

 

 

 

#data = pd.read_csv('/content/26650 Cell Data_V7.csv') 

data = pd.read_csv('/content/26650 Cell Data_V7.csv') 

 

 

# Drop rows with missing values 

data = data.dropna() 

 

 

#X = data[['terminal_voltage','terminal_current', 'temperature' 

,'charge_current' ,'charge_voltage' , 'capacity', 

'cycle',  'SoC']].values 

#Y = data['SoH'].values 

Training_data = data[(data['temperature'] == 25)] 

Validating_data = data[data['temperature'] == 25] 

 

 

print(len(Training_data)) 

 

 

# Split data into training and validation sets 

## X_train, X_val, Y_train, Y_val = train_test_split(X, Y, 

test_size=0.2, random_state=101) 

X_train = Training_data[['terminal_voltage','terminal_current', 

'temperature' ,'charge_current' ,'charge_voltage' , 'capacity', 

'cycle',  'SoC']].values 

Y_train = Training_data['SoH'].values 

X_val = Validating_data[['terminal_voltage','terminal_current', 

'temperature' ,'charge_current' ,'charge_voltage' , 'capacity', 

'cycle',  'SoC']].values 

Y_val = Validating_data['SoH'].values 

 

print(X_train.shape) 
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# Create TensorFlow Datasets from the numpy arrays 

train_dataset = tf.data.Dataset.from_tensor_slices((X_train,Y_train)) 

test_dataset = tf.data.Dataset.from_tensor_slices((X_val, Y_val)) 

 

# Shuffle and Batch the Data 

batch_size = 32 

train_dataset = 

train_dataset.shuffle(buffer_size=len(X_train)).batch(batch_size) 

test_dataset = test_dataset.batch(batch_size) 

 

 

 

DNN 

 

####################### 

##### BUILD MODEL ##### 

####################### 

 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, BatchNormalization, Dropout 

 

model = Sequential() 

model.add(Dense(8, activation='relu', input_dim=X_train.shape[1])) 

model.add(BatchNormalization()) 

model.add(Dense(64, activation='relu')) 

model.add(BatchNormalization()) 

model.add(Dense(128, activation='relu')) 

model.add(BatchNormalization()) 

model.add(Dense(64, activation='relu'))  # Added layer 

model.add(BatchNormalization()) 

model.add(Dense(32, activation='relu'))  # Added layer 

model.add(BatchNormalization()) 

model.add(Dropout(rate=0.2)) 

model.add(Dense(1)) 

 

model.summary() 

model.compile(optimizer=Adam(beta_1=0.9, beta_2=0.999, epsilon=1e-08), 

loss='mean_absolute_error') 

 

 

####################### 
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##### TRAIN MODEL ##### 

####################### 

 

model.fit(x=X_train, y=Y_train, batch_size=25, epochs=130) 

 

# Evaluate the model 

loss = model.evaluate(X_val, Y_val) 

print("Validation Loss:", loss) 

 

# Create a figure with specified size 

plt.figure(figsize=(12, 6)) 

 

# Plot Actual SOH 

plt.plot(Y_val, label='Actual SOH', color='blue', linewidth=2) 

dnn_pred = model.predict(X_val) 

predicted_soh = dnn_pred 

# Plot DNN Prediction 

plt.plot(dnn_pred, label='DNN Prediction', color='orange', 

linestyle='--', marker='o', markersize=3) 

 

# Customize plot 

plt.xlabel('Sample', fontsize=12) 

plt.ylabel('SoH', fontsize=12) 

plt.title('Actual vs. Predicted SoH (DNN)', fontsize=14) 

plt.legend(fontsize=10) 

plt.grid(True, linestyle='--', alpha=0.5)  # Lighter gridlines 

plt.tight_layout() 

 

# Show the plot 

plt.show() 

 

# Calculate Error Metrics 

mae = mean_absolute_error(Y_val, predicted_soh) 

rmse = np.sqrt(mean_squared_error(Y_val, predicted_soh)) 

r2 = r2_score(Y_val, predicted_soh) 

print(f"MAE: {mae:.4f}") 

print(f"RMSE: {rmse:.4f}") 

print(f"R-squared: {r2:.4f}") 

 

# Calculate absolute error 

absolute_error = np.abs(Y_val - predicted_soh) 

 

# Plot error vs. cycle number 
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plt.figure(figsize=(10, 5)) 

plt.plot(absolute_error) 

plt.xlabel("Cycle Number") 

plt.ylabel("Absolute Error") 

plt.title("Absolute Error vs. Cycle Number") 

plt.grid(True) 

plt.show() 

 

# Plot output 

plot_actual_soh(Y_val) 

plot_predicted_soh(predicted_soh) 

plot_both(Y_val, predicted_soh) 

 

 

CNN 

 

def concat_sequence(data, labels, window_size=50): 

 

    # Prepare the sequences 

    sequences = np.lib.stride_tricks.as_strided( 

        data, 

        shape=(data.shape[0] - window_size + 1, window_size, 

data.shape[1]), 

        strides=(data.strides[0], data.strides[0], data.strides[1]) 

    ) 

 

    sequence_labels = labels[window_size-1:] 

 

    return sequences, sequence_labels 

 

 

from keras.layers import GlobalAveragePooling2D 

 

# Reshape input data for CNN (add one dimension for channel) 

X_train = X_train.reshape(-1, X_train.shape[1], 1) # remove extra 

dimension 

X_val = X_val.reshape(-1, X_val.shape[1], 1) # remove extra dimension 

 

print(X_train.shape) 

print(Y_train.shape) 

print(X_val.shape) 

seq_train, seq_label_train = concat_sequence(X_train, Y_train) 
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seq_val, seq_label_val = concat_sequence(X_val, Y_val) 

 

# Define the CNN model 

 

model = Sequential([ 

    Conv2D(64, kernel_size=(3, 1), activation='relu', 

input_shape=(seq_train.shape[1], seq_train.shape[2], 1)), # Adjust 

input_shape 

    #MaxPooling2D(pool_size=(2, 1)), 

    Flatten(), 

    Dense(64, activation='relu'), 

    Dense(1)  # Output layer with 1 neuron for SOH prediction 

]) 

''' 

model = Sequential([ 

    Conv2D(64, kernel_size=(3, 1), activation='relu', 

input_shape=(seq_train.shape[1], seq_train.shape[2], 1)), 

    GlobalAveragePooling2D(), 

    Dense(64, activation='relu'), 

    Dense(1)  # Output layer with 1 neuron for SOH prediction 

]) 

''' 

# Compile the model 

model.compile(optimizer='adam', loss='mean_squared_error') 

 

# Print model summary 

model.summary() 

 

 

 

print(seq_train.shape) 

print(seq_label_train.shape) 

 

# Train the model 

history = model.fit(seq_train, seq_label_train, 

validation_data=(seq_val, seq_label_val), epochs=130, batch_size=32) 

 

# Evaluate the model 

loss = model.evaluate(seq_val, seq_label_val) 

print("Validation Loss:", loss) 

 

# Predict SOH 

predicted_soh = model.predict(seq_val) 
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print("Predicted SOH:", predicted_soh) 

cnn_pred = predicted_soh 

 

# Create a figure with specified size 

plt.figure(figsize=(15, 6)) 

 

# Plot Actual SOH 

plt.plot(Y_val, label='Actual SOH', color='blue', linewidth=3) 

 

# Plot CNN Prediction 

plt.plot(cnn_pred, label='CNN Prediction', color='purple', 

linestyle='--', marker='.', markersize=2) 

 

# Customize plot 

plt.xlabel('Sample', fontsize=14) 

plt.ylabel('SoH', fontsize=14) 

plt.title('Actual vs. Predicted SoH (CNN)', fontsize=16) 

plt.legend(fontsize=12, loc='upper right')  # Place legend outside the 

plot 

plt.grid(True, linestyle='--', alpha=0.5)  # Lighter gridlines 

plt.tight_layout() 

# Plot output 

plot_actual_soh(seq_label_val) 

plot_predicted_soh(predicted_soh) 

plot_both(seq_label_val,predicted_soh) 

 

 

# Calculate Error Metrics 

mae = mean_absolute_error(seq_label_val, predicted_soh) # Use 

seq_label_val instead of Y_val 

rmse = np.sqrt(mean_squared_error(seq_label_val, predicted_soh)) # Use 

seq_label_val instead of Y_val 

r2 = r2_score(seq_label_val, predicted_soh) # Use seq_label_val 

instead of Y_val 

print(f"MAE: {mae:.4f}") 

print(f"RMSE: {rmse:.4f}") 

print(f"R-squared: {r2:.4f}") 

 

# Calculate absolute error 

absolute_error = np.abs(seq_label_val - predicted_soh) # Use 

seq_label_val instead of Y_val 

 

# Plot error vs. cycle number 
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plt.figure(figsize=(10, 5)) 

plt.plot(absolute_error) 

plt.xlabel("Cycle Number") 

plt.ylabel("Absolute Error") 

plt.title("Absolute Error vs. Cycle Number") 

plt.grid(True) 

plt.show() 

 

# Plot output 

plot_actual_soh(Y_val) 

plot_predicted_soh(predicted_soh) 

plot_both(Y_val, predicted_soh) 

 

 

RNN 

 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import SimpleRNN, BatchNormalization, 

Dense, Dropout 

from tensorflow.keras.callbacks import EarlyStopping, 

ReduceLROnPlateau 

 

 

X_train = X_train.reshape(-1, X_train.shape[1], 1)  # Remove the extra 

dimension 

X_val = X_val.reshape(-1, X_val.shape[1], 1) 

 

# Define RNN model 

model = Sequential([ 

    LSTM(128, activation='tanh', return_sequences=True, 

input_shape=(X_train.shape[1], X_train.shape[2])), 

    Dropout(0.2), 

    BatchNormalization(), 

    LSTM(64, activation='tanh', return_sequences=False), 

    Dropout(0.2), 

    BatchNormalization(), 

    Dense(64, activation='relu'), 

    Dropout(0.2), 

    BatchNormalization(), 

    Dense(32, activation='relu'), 

    Dropout(0.2), 

    BatchNormalization(), 
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    Dense(1) 

]) 

# Compile the model 

optimizer = tf.keras.optimizers.Adam(learning_rate=0.0005) 

model.compile(optimizer=optimizer, loss='mean_squared_error') 

 

# Define callbacks 

early_stopping = EarlyStopping(monitor='val_loss', patience=20, 

restore_best_weights=True) 

reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, 

patience=5, min_lr=1e-6) 

 

# Print model summary 

model.summary() 

 

 

  

 

 

# Train the model 

history = model.fit(X_train, Y_train, epochs=200, batch_size=32, 

validation_data=(X_val, Y_val), 

                   callbacks=[early_stopping, reduce_lr]) 

 

# Evaluate the model 

loss = model.evaluate(X_val, Y_val) 

print("Validation Loss:", loss) 

 

# Predict SOH for RNN model 

rnn_pred = predicted_soh 

 

# Create a figure with specified size 

plt.figure(figsize=(15, 6)) 

 

# Plot Actual SOH 

plt.plot(Y_val, label='Actual SOH', color='blue', linewidth=3) 

 

# Plot RNN Prediction 

plt.plot(rnn_pred, label='RNN Prediction', color='red', linestyle='--

', marker='.', markersize=2) 

 

# Customize plot 

plt.xlabel('Sample', fontsize=14) 
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plt.ylabel('SoH', fontsize=14) 

plt.title('Actual vs. Predicted SoH (RNN)', fontsize=16) 

plt.legend(fontsize=12, loc='upper right')  # Place legend outside the 

plot 

plt.grid(True, linestyle='--', alpha=0.5)  # Lighter gridlines 

plt.tight_layout() 

 

# Predict SOH for RNN model 

predicted_soh_rnn = model.predict(X_val)  # Predict using the RNN 

model 

rnn_pred = predicted_soh_rnn 

 

# ... (rest of your plotting code) ... 

 

# Calculate Error Metrics using predicted_soh_rnn 

mae = mean_absolute_error(Y_val, predicted_soh_rnn) 

rmse = np.sqrt(mean_squared_error(Y_val, predicted_soh_rnn)) 

r2 = r2_score(Y_val, predicted_soh_rnn) 

print(f"MAE: {mae:.4f}") 

print(f"RMSE: {rmse:.4f}") 

print(f"R-squared: {r2:.4f}") 

 

# Calculate absolute error using predicted_soh_rnn 

absolute_error = np.abs(Y_val - predicted_soh_rnn) 

 

# Plot error vs. cycle number 

plt.figure(figsize=(10, 5)) 

plt.plot(absolute_error) 

plt.xlabel("Cycle Number") 

plt.ylabel("Absolute Error") 

plt.title("Absolute Error vs. Cycle Number") 

plt.grid(True) 

plt.show() 

 

# Plot output 

plot_actual_soh(Y_val) 

plot_predicted_soh(predicted_soh) 

plot_both(Y_val, predicted_soh) 
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LSTM 

 
from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import LSTM, BatchNormalization, Dense, 

Dropout 

from tensorflow.keras.callbacks import EarlyStopping, 

ReduceLROnPlateau 

 

# ... (rest of your code) 

 

X_train = X_train.reshape(-1, X_train.shape[1], 1)  # Remove the extra 

dimension 

X_val = X_val.reshape(-1, X_val.shape[1], 1) 

 

# Define the LSTM model 

model = Sequential([ 

    LSTM(128, activation='tanh', return_sequences=True, 

input_shape=(X_train.shape[1], X_train.shape[2])), 

    Dropout(0.2), 

    BatchNormalization(), 

    LSTM(64, activation='tanh', return_sequences=False), 

    Dropout(0.2), 

    BatchNormalization(), 

    Dense(64, activation='relu'), 

    Dropout(0.2), 

    BatchNormalization(), 

    Dense(32, activation='relu'), 

    Dropout(0.2), 

    BatchNormalization(), 

    Dense(1) 

]) 

 

# Compile the model 

optimizer = tf.keras.optimizers.Adam(learning_rate=0.0005)  # Slightly 

reduced learning rate 

model.compile(optimizer=optimizer, loss='mean_squared_error') 

 

# Define callbacks 

early_stopping = EarlyStopping(monitor='val_loss', patience=20, 

restore_best_weights=True)  # Increased patience 
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reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, 

patience=5, min_lr=1e-6) 

 

# Print model summary 

model.summary() 

 

 
# Train the model 

history = model.fit(X_train, Y_train, epochs=200, batch_size=32, 

validation_data=(X_val, Y_val), 

                   callbacks=[EarlyStopping(monitor='val_loss', 

patience=20, restore_best_weights=True), reduce_lr]) 

 

# Evaluate the model 

loss = model.evaluate(X_val, Y_val) 

print("Validation Loss:", loss) 

 

# Create a figure with specified size 

plt.figure(figsize=(15, 6)) 

 

# Plot Actual SOH 

plt.plot(Y_val, label='Actual SOH', color='blue', linewidth=3) 

lstm_pred = model.predict(X_val) 

# Plot LSTM Prediction 

plt.plot(lstm_pred, label='LSTM Prediction', color='yellow', 

linestyle='--', marker='.', markersize=2) 

 

# Customize plot 

plt.xlabel('Sample', fontsize=14) 

plt.ylabel('SoH', fontsize=14) 

plt.title('Actual vs. Predicted SoH (LSTM)', fontsize=16) 

plt.legend(fontsize=12, loc='upper right')  # Place legend outside the 

plot 

plt.grid(True, linestyle='--', alpha=0.5)  # Lighter gridlines 

plt.tight_layout() 

 

# Calculate Error Metrics 

# Use lstm_pred which has the same shape as Y_val 

mae = mean_absolute_error(Y_val, lstm_pred) 
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rmse = np.sqrt(mean_squared_error(Y_val, lstm_pred)) 

r2 = r2_score(Y_val, lstm_pred) 

print(f"MAE: {mae:.4f}") 

print(f"RMSE: {rmse:.4f}") 

print(f"R-squared: {r2:.4f}") 

 

# Calculate absolute error 

absolute_error = np.abs(Y_val - lstm_pred) 

 

# Plot error vs. cycle number 

plt.figure(figsize=(10, 5)) 

plt.plot(absolute_error) 

plt.xlabel("Cycle Number") 

plt.ylabel("Absolute Error") 

plt.title("Absolute Error vs. Cycle Number") 

plt.grid(True) 

plt.show() 

 

# Plot output 

plot_actual_soh(Y_val) 

plot_predicted_soh(lstm_pred) # Use lstm_pred for plotting 

plot_both(Y_val, lstm_pred) # Use lstm_pred for plotting 
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For plotting All 

 
import matplotlib.pyplot as plt 

 

plt.figure(figsize=(15, 6)) 

 

# Plot Actual SOH 

plt.plot(Y_val, label='Actual SOH', color='blue', linewidth=2) 

 

# Plot Model Predictions with distinct colors and markers 

plt.plot(dnn_pred, label='DNN Prediction', color='orange', 

linestyle='-', marker='o', markersize=3) 

plt.plot(cnn_pred, label='CNN Prediction', color='green', linestyle='-

-', marker='s', markersize=3) 

plt.plot(rnn_pred, label='RNN Prediction', color='red', linestyle=':', 

marker='^', markersize=3) 

plt.plot(lstm_pred, label='LSTM Prediction', color='purple', 

linestyle='-.', marker='x', markersize=3) 

 

plt.xlabel('Sample') 

plt.ylabel('SoH') 

plt.title('Actual vs. Predicted SoH') 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

 

plt.show() 

 
 

 


