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ABSTRACT
PREDICTING BATTERY HEALTH FOR ELECTRIC VEHICLES USING MACHINE

LEARNING APPROACH

Research utilized data-driven models to investigate SoH estimation methodologies for
lithium-ion batteries, particularly focusing on their effectiveness in capturing degradation
trends. The study evaluated four different deep learning approaches-DNN, CNN, RNN, and
LSTM-using various metrics, including MAE, RMSE, R?, and validation loss. Results reveal
that the LSTM model outperforms others, achieving the lowest MAE (0.1293), RMSE
(0.1680), and validation loss (0.0282), with an R? of 0.9790, making it the most reliable
predictor of battery SoH. The study highlights a strong linear correlation between SoH and
parameters such as capacity and charge voltage, affirming their role as critical indicators of
battery health. Conversely, temperature exhibited negligible impact on SoH within the
narrow range studied, necessitating further research under diverse environmental conditions.
Anomalies in terminal current during charge-discharge cycles suggest potential operational
irregularities requiring deeper analysis. The study underscores the limitations of CNN in
modeling temporal dependencies, advocating for hybrid architectures like CNN-LSTM for
enhanced predictive accuracy. Findings also demonstrate consistent SoC transitions across
cycles, emphasizing the stability of the battery's charge-discharge behavior and its
implications for long-term durability. Recommendations include adopting LSTM-based
models in battery management systems, refining anomaly detection mechanisms, and
optimizing charge protocols to prevent premature degradation. The study's outcomes provide
a robust framework for enhancing battery health monitoring and forecasting, contributing to
the advancement of energy storage technologies. The focus of future research will be
expanded thermal ranges, cutting-edge hybrid models, and the integration of real-world
applications in validation of these findings. This shows potential value in using these findings
for optimizations that affect the performance and life of LiBs, whether for EVs or renewable
energy systems.

Keywords: Lithium Li-ion batteries, State of Health, State of Charge, Battery management
system
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CHAPTER 1

INTRODUCTION
1.1 INTRODUCTION

Electric vehicles (EVs) represent a crucial step in the global evolution toward
sustainable and environmentally friendly transportation. Central to their operation is the
lithium-ion (Li-ion) battery, a technology celebrated for its high energy density, longevity,
and efficiency. However, as EV adoption accelerates, a pressing challenge emerges: the
degradation of battery health over time. This deterioration directly impacts the vehicle’s
range, performance, and overall reliability, raising concerns for both manufacturers and
consumers. Addressing this issue requires a robust methodology to predict the State of Health
(SOH) of EV batteries, ensuring optimal performance and extending their usable lifespan.
This study focuses on the development of a novel DNN model to predict battery health

accurately, leveraging advanced data-driven techniques and experimental data.

Battery degradation is an inevitable phenomenon triggered by a mixture of chemical,
thermal, and mechanical aspects [1]. These issues are exacerbated by real-world conditions
such as extreme temperatures, frequent fast charging, and deep discharging cycles [2].
Effective management of these challenges demands a comprehensive understanding of the
underlying mechanisms and a predictive framework to mitigate their impact [3]. Adding to
the complexity is the variability in battery performance due to differences in manufacturing
processes, usage patterns, and environmental conditions [4]. Achieving reliable SOH
predictions requires integrating advanced sensing technologies with sophisticated
computational models [5]. Traditional methods based on electrochemical principles, while
accurate, often fall short in real-time applications due to their computational intensity [6]. In
this context, data-driven approaches, particularly those leveraging ML and DL present a

compelling alternative [7].



Li-ion batteries have significantly improved in terms of materials, designs, and
management systems over time [8]. An emphasis has been placed on innovations like solid-
state electrolytes and advanced cathode materials like nickel-manganese-cobalt (NMC) and
lithium iron phosphate (LFP) in order to create greener and more sustainable batteries [9].
Even with these advancements, degradation is still a problem, requiring ongoing observation
and forecasting of battery health [10]. The combination of data analytics and conventional
battery modeling is one of the major advancements in battery management [11]. Global
research endeavors are progressively centering on the advancement of hybrid methodologies
that merge machine learning techniques with physics-based models [12]. Large datasets can
be meaningfully analyzed thanks to this synergy, which opens the door to more precise and

trustworthy SOH predictions [13].

Data driven models have transformed the battery health management domain
completely utilizing huge volumes of operational data [14]. Machine learning proved
capability in predicting the cycle life of batteries well before the onset of significant capacity
degradation [15]. Assuming the voltage, current, temperature, and charging/discharging
profiles, such models can be utilized for very accurate estimates of the remaining useful life
of the batteries [16]. Due to its ability to derive complex non-linear data relationships, deep
learning is arguably the most used of these machine learning methods [17]. The analysis of
high-dimensional datasets has previously been achieved using DNN, CNN, and RNN
models, which have given uncharted insight into battery behavior [18]. For instance,
applications of machine-learning-based methods of SOH estimation found their way into
real-life applications [19]. Long short-term memory (LSTM) networks also estimate battery
health leveraging cut-off, time-based features showing how equitable these deep learning

architectures are [20].

Despite the progress made, predicting battery health remains a challenging endeavor
[21]. The dynamic nature of Li-ion batteries, influenced by factors such as aging, temperature
variations, and cycling conditions, poses significant hurdles for model development [22].
There are limitations of existing approaches in capturing the intricate interplay between these

variables, underscoring the need for more sophisticated modeling techniques [23]. Another



challenge lies in the availability and quality of data [24]. Comprehensive datasets that
encompass diverse operating conditions are essential for training robust models [25]. The
importance of standardized data collection protocols is stressed to facilitate the development

of generalized models applicable across different battery chemistries and configurations [26].

This study suggests a DNN model intended to precisely approximate SOH of EV
batteries as a solution to these problems [27]. The model predicts battery health with high
precision by utilizing experimental data, such as voltage, current, temperature, and available
health indicators [28]. The model uses cutting-edge feature extraction and optimization
techniques in an effort to get beyond the drawbacks of conventional approaches and offer
useful insights for battery management [29]. Transfer learning and hybrid modeling are the
foundations of the suggested DNN framework [30]. It produces a reliable and scalable
solution by fusing deep learning algorithms' predictive capability with domain expertise from
electrochemical models [31]. Moreover, the architecture of the model is designed to manage

extensive, high-dimensional datasets, guaranteeing its practicality in real-life situations [32].

The suggested methodology is consistent with the patterns noted in current research
[33]. In order to predict battery health, feature selection and model optimization are crucial,
and methods like random forest classification and DNNs play a significant part in this regard
[34]. It is commonly known that data-driven approaches have the ability to increase the
precision and dependability of SOH predictions [35]. Furthermore, a key component of the
suggested remedy is the fusion of data-driven models with insights derived from physics
[36]. The study intends to provide EV stakeholders with useful insights into battery behavior
and a comprehensive understanding of battery behavior by merging the advantages of both

methodologies [37].

This study aims to: (1) develop a DNN model for accurate prediction of the SOH of
EV batteries, (2) leverage experimental data, including voltage, current, temperature, and
health indicators, to train and validate the model, (3) integrate physics-based insights with
data-driven methods to enhance the model’s predictive capabilities, (4) address the
challenges of data variability and dynamic operating conditions through advanced feature

extraction and optimization methods, and (5) provide actionable insights for battery



management, contributing to the longevity and reliability of EVs [38]. By achieving these
objectives, the study seeks to advance the state of the art in battery health prediction, offering

a scalable and practical solution for the growing EV market [39].

1.2 Application of Lithium Li-ion Batteries (LiB)

Indeed, lithium-ion batteries (LiBs) are ubiquitous in advanced technology and are
extensively varied for applications in all types of industries. They provide power in today's
consumer electronic devices and several renewable energy storage applications. These
batteries have become the most preferred choice in many industries due to their long cycle
life, high energy density, and very low self-discharge rate. To examine the various
applications of LiBs through the lens of industry reports and scientific studies, this paper

discusses data.

1.2.1 Consumer Electronics

In today's consumer electronics, Li-ion batteries are essential for powering gadgets
like wearables, laptops, tablets, and smartphones. Li-ion batteries' high energy density makes
them ideal for prolonged use, which is a crucial need for contemporary electronics. This
technology greatly benefits smartphones because it permits lightweight designs without
sacrificing battery life [1]. Li-ion batteries in smartphones are now even more useful thanks
to fast charging capabilities, which satisfy users who need quick and effective recharging [2].
Li-ion batteries play a major role in the dependable performance and portability of laptops
and tablets. High-performance computer tasks are supported by Li-ion batteries' energy
efficiency, allowing users to work without constantly needing access to power outlets [3].
Tablets take advantage of these batteries' small size to create stylish designs that suit a variety

of personal and business applications [4].

Human wearable devices such as smartwatches and fitness trackers also rely on Li-
ion batteries for their operation. These devices demand compact, lightweight batteries with
sufficient capacity to sustain continuous operation. Li-ion batteries meet these requirements,
enabling functionalities like heart rate monitoring, GPS tracking, and real-time notifications

[5]. Beyond their role in specific devices, Li-ion batteries have revolutionized the consumer



electronics industry by driving innovations in device design and functionality. Their
efficiency and compact size have opened new possibilities for product development, allowing
manufacturers to create thinner, lighter, and more versatile devices [6]. Additionally, the
recyclability of Li-ion batteries aligns with sustainability goals, contributing to the reduction

of electronic waste [7].

1.2.2 Electric Vehicles (EVs)

The electric vehicle (EV) revolution owes much of its success to the advancements
in Li-ion battery technology. These batteries provide the high energy density and efficiency
required to power EVs, making them the cornerstone of sustainable transportation. Li-ion
batteries enable extended driving ranges, which is a critical factor for consumer adoption of
EVs [8]. Moreover, their ability to handle fast charging enhances the convenience of owning
an EV, reducing downtime for users [9]. Automakers are leveraging Li-ion technology to
improve the performance and reliability of EVs. Innovations in battery design, such as the
development of thermal management systems, have addressed challenges related to
overheating, safeguarding the safety and longevity of the batteries [10]. Furthermore,
improvements in energy density have allowed manufacturers to design vehicles with greater

range without increasing the battery size or weight [11].

LiBs use in electric vehicles (EVs) is also in line with international initiatives to lower
greenhouse gas emissions. A cleaner environment results from a reduced reliance on fossil
fuels as EVs replace conventional internal combustion engine vehicles [12]. Li-ion battery
demand is being further driven by governments and organizations around the world
encouraging the use of EVs through infrastructure development and incentives [13]. Li-ion
battery recycling and reuse are now essential components of the electric vehicle ecosystem.
The environmental impact of battery production is lessened by efforts to create sustainable
recycling methods that guarantee the recovery and reuse of valuable materials like cobalt and
lithium [14]. Li-ion batteries are a sustainable option for EVs because of these initiatives,
which not only support environmental goals but also address the financial aspects of resource

management [15].



1.2.3 Renewable Energy Storage

Lithium-ion batteries are essential for storage renewable energies and to cope with
their intermittency. These batteries can store the excess energy produced during its maximum
production times to supply a regular and reliable energy source during low generation periods
from the solar and wind systems [16]. This capability is called balancing between supply and
demand, which is essential in integrating renewable energy resources into the grid [17]. Li-
ion batteries, thus, can be said to be a part of grid-scale energy storage systems that build
energy security while reducing the dependency upon fossil fuels. With the aid of these
systems, utilities maximize the energy efficiency and reduce waste by storing excess
renewable energy and discharging it during peak demand [18]. Li-ion battery systems can
serve not only larger grid applications but also smaller community-based energy projects due

to the scalability provision [19].

LiBs are frequently used with solar panels in residential settings. By storing energy
during the day and using it at night, homeowners can lessen their reliance on the grid and cut
their monthly electricity costs [20]. This application promotes energy independence and
resilience against power outages in addition to its financial benefits [21]. Li-ion batteries are
also utilized in microgrid applications, which provide electricity to isolated communities and
commercial locations that are cut off from the main power system. They are a dependable
option for these applications because of their effective energy storage and delivery
capabilities, which guarantee a constant power supply [22]. Li-ion batteries are also
becoming more and more viable for the storage of renewable energy due to advances in

battery technology, such as longer cycle lives and higher energy efficiency [23].

1.2.4 Aerospace and Defense

In aerospace and defense, LiBs are valued for their lightweight nature, high energy
output, and reliability. Satellites and spacecraft depend on Li-ion batteries to store solar
energy, ensuring continuous operation during periods when sunlight is unavailable [24]. The
ability to operate efficiently in extreme conditions makes these batteries indispensable for
space exploration missions [25]. Drones and unmanned aerial vehicles (UAVs) used in

defense applications rely on Li-ion batteries for power. These batteries provide the energy



needed for long flight durations and high-performance operations, making them critical for
surveillance, reconnaissance, and combat missions [26]. Portable communication devices
and radar systems also benefit from the compact and reliable power supply provided by Li-

ion batteries, ensuring functionality in remote and challenging environments [27].

Innovations in Li-ion battery technology, such as improved thermal stability and
energy density, have further enhanced their suitability for aerospace and defense applications.
Research and development efforts continue to focus on making these batteries more robust
and efficient, meeting the demanding requirements of these sectors [28]. The versatility and
performance of Li-ion batteries have positioned them as a key enabler of advancements in

aerospace and defense technologies [29].

1.2.5 Public Transportation

The introduction of electric buses and trains that run on Li-ion batteries is drastically
altering public transportation networks. These batteries are suitable for the demanding
requirements of public transportation operations because of their high energy density and
effective rechargeability [30]. In line with international environmental goals, electric buses
fitted with Li-ion batteries lower greenhouse gas emissions and enhance urban air quality
[31]. Electric buses benefit greatly from Li-ion batteries' quick charging capability, which
enables rapid turnaround times while in operation [32]. Improvements in battery technology,
such as longer cycle life and better heat management, have increased the dependability and
longevity of electric buses [33]. Li-ion technology also facilitates regenerative braking
systems, which increase efficiency even further by recovering and storing energy during
deceleration [34]. Li-ion batteries are utilized in commuter trains and light rail systems in
addition to buses. These applications benefit from the scalability and efficiency of Li-ion
technology, enabling sustainable and cost-effective public transportation [35]. The
integration of Li-ion batteries into public transit systems represents a significant step toward
reducing the carbon footprint of transportation while providing reliable and efficient mobility

solutions for urban populations [36].



1.2.6 Industrial and Commercial Equipment

Li-ion batteries are becoming increasingly critical in industrial and commercial
equipment, providing power for forklifts, cranes, automated guided vehicles (AGVs), and
commercial cleaning machines. They are a great option for industrial settings where
downtime must be kept to a minimum because of their high energy density and quick
rechargeability [37]. Li-ion batteries provide longer cycle life and more energy efficiency
than conventional lead-acid batteries, which lowers overall maintenance costs [38]. Li-ion
batteries are used by forklifts and AGVs in warehouses and manufacturing facilities to ensure
reliable performance and efficient operations. Their rapid recharging during breaks
guarantees continuous workflow, thereby optimizing productivity [39]. These batteries
provide dependable and transportable energy solutions for industrial uses, such as powering
construction tools and cleaning equipment [40]. Li-ion technology is still essential to
enabling effective and environmentally friendly operations as the need for sustainable energy

solutions in industrial settings rises [41].

1.2.7 Telecommunications and Backup Power Systems

The telecommunications sector heavily depends on Li-ion batteries for reliable
backup power solutions. Base stations, data centers, and telecommunication networks require
consistent power to avoid disruptions, and Li-ion technology delivers this with high
efficiency [42]. During power outages, Li-ion batteries ensure that communication systems
remain operational, providing critical support in emergencies [43]. Li-ion batteries are
preferred in telecommunication applications for their compact design, scalability, and ability
to handle high energy demands. Data centers use Li-ion battery systems to power server
operations during outages, reducing downtime and data loss risks [44]. As the reliance on
telecommunication networks grows with the expansion of IoT and 5G technologies, the
importance of resilient and efficient energy storage systems has increased, cementing Li-ion

batteries as a critical component in this field [45].

1.2.8 Marine Applications and Shipping

The maritime industry is adopting Li-ion batteries for electric and hybrid vessels,

ranging from small recreational boats to large cargo ships. These batteries contribute to



reducing emissions and improving fuel efficiency, addressing growing environmental
regulations [46]. Hybrid systems in ships use Li-ion batteries for peak power demands,
allowing for quieter and more efficient operations, especially in ports and ecologically
sensitive areas [47]. Li-ion batteries are also instrumental in powering auxiliary systems in
traditional ships, enhancing overall energy management. Their lightweight design and
scalability make them suitable for various marine applications, supporting the transition
toward greener maritime operations [48]. As global regulations tighten, Li-ion technology is
expected to lead the way in transforming the shipping industry toward sustainability and

reduced carbon footprints [49].

1.2.9 Agriculture and Farming Equipment

In modern agriculture, Li-ion batteries are becoming a cornerstone of innovative
farming practices. They are used in electric tractors, harvesters, and drones for precision
agriculture, enabling efficient monitoring and management of crops [50]. Li-ion batteries
offer portability and long operational times, essential for remote and large-scale farming tasks
[51]. Electric irrigation systems powered by Li-ion batteries reduce dependency on
traditional energy sources, providing sustainable water management solutions. Moreover,
drones equipped with Li-ion batteries aid in crop spraying, monitoring soil conditions, and
assessing plant health, enhancing productivity and resource optimization [52]. As agriculture
evolves toward sustainability and smart technologies, Li-ion batteries will continue to play a

critical role in powering equipment that supports modern farming practices [53].

1.2.10 Wearable Technology and Implantable Medical Devices

Beyond portable electronics, Li-ion batteries power advanced wearable technologies
such as augmented reality (AR) glasses and exoskeletons. In the medical field, these batteries
are used in implantable devices such as pacemakers and neurostimulators, ensuring reliable
operation over extended periods. The miniaturization of Li-ion batteries continues to open
new possibilities for innovative wearable and medical applications, enhancing human health
and performance. Li-ion batteries power a range of wearable technologies, including augmented

reality (AR) glasses, fitness trackers, and exoskeletons. Their compact size and high energy density

enable these devices to perform advanced functions such as real-time monitoring and enhanced



interactivity [54]. In the medical field, Li-ion batteries are used in implantable devices like
pacemakers and neurostimulators, where long-term reliability is paramount. These batteries
provide consistent power, ensuring the safety and efficacy of life-critical devices [55].
Miniaturization advancements in Li-ion technology continue to drive innovation, enabling
the development of smaller, more efficient medical and wearable devices that enhance quality

of life and expand the possibilities of health monitoring and treatment [56].
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CHAPTER: 2

LITERATURE REVIEW
2.1 LITHIUM-ION BATTERY (LiB)

Transportation electrification and renewable energy integration are essential
strategies. These approaches mitigate global warming and protect the environment [1].
Energy storage devices significantly influence system efficiency, robustness, and protection.
Considerable progress has advanced reliable, cost-effective energy storage solutions recently.
These advancements have fostered a diversity of energy storing technologies [2]. Lithium-
ion batteries (LiBs) are the preferred choice commercially. They offer immense energy
density, design diversity, and long lifecycle [3]. LiB dominate both energy storage markets
and research landscapes. They provide significant advantages such as superior energy
efficiency and minimal memory effects. These batteries also offer energy concentration
suitable for large-scale energy systems. Additionally, they support battery and HEVs [4]. As
a result, LiB production and usage have expanded rapidly. Their applications have become
increasingly widespread worldwide [5]. LIBs are now critical for moveable electronics, EVs,

and smart grids.

In practical use, battery systems consist of many interconnected cells. This setup
ensures high output voltage and adequate energy storage. Across the value chain, data drives
decisions during the battery lifecycle. It plays an essential role in design, production, sales,
deployment, and management [6]. During the design phase, data accelerates innovation in
components. Examples include electrodes, electrolytes, additives, and formation processes
[7]. During sales, data helps classify batteries by expected lifespan. This improves reliability
and consumer satisfaction [8]. Data is also essential during deployment for performance
analysis. Insights cover battery chemistries, configurations, and manufacturer-specific
details. This ensures batteries are matched to their operational requirements. Factors
influencing selection include charge/discharge cycles and temperatures. Depth of discharge

(DOD) and inactivity periods are additional considerations [9]. When in use, battery
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management systems (BMS) ensure efficient operation. BMS depend heavily on data for

their design and operational calibration.

BMS perform vital tasks like estimating charge and well-being states. The SOC
ensures efficient battery operation and reliability. Monitoring the State of Health (SOH)
improves system safety as well as longevity. LiB are favored for their high-capacity density
and cycle life. Their advantages make them ideal for energy storage in EVs [10]. However,
performance degradation occurs over time and with cycling. Degradation impacts energy and
power capacities [11]. Battery aging reduces efficiency, driving range, and dynamic
performance. These challenges pose risks for electric vehicles and reliability [12]. Correct
SOH estimation is thus critically significant. SOH utilization ensures both operational safety
and performance reliability [10]. Advanced data analytics and robust BMS technologies
address aging issues effectively. These measures solidify LiB as leading energy storage

solutions.
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Figure 2.1.Lithium-Ion Battery Charging and Discharging [208]
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LiB are rechargeable batteries with high energy density. They also offer an extended
cycle life, making them reliable. The development of LiB has advanced rapidly. However,
their lifespan is limited, and storage capacity decreases. This decline occurs with time and
continuous usage. Therefore, assessing the SOH is crucial. SOH estimation helps in planning
battery maintenance effectively. Reliable methods to estimate SOH ensure safe and efficient
battery performance [13] analyzed regression techniques for estimating SoH. The study
utilized multiple regression methods for this purpose. The various models are XGBoost,
Support Vector Regression (SVR), random forest regression, Simple linear regression,
Gradient-boosting regression, and Decision tree regression. NASA's Prognostics Data
Repository provided data for the study. The method that proved the best among the tested
ones was SVR. The results from SVR yielded RMSE, MSE, MAE, and MAPE values of
0.0226, 0.0005, 0.0208, and 0.0264, respectively. Hence, it can be said that SVR is a good
estimator model for LiB SoH. This kind of advancement plays a major role in battery health

management.

Following the research provided by [14] they suggested a data-driven SoH evaluation
approach. This method used a simple yet effective health indicator (HI). The HI was extracted
from a truncated 110-second discharge process. This approach addresses challenges in
analyzing uncontrollable discharge processes. Unlike conventional HIs, the proposed HI uses
different voltage ranges. This flexibility enhances its applicability to various scenarios. A
(LSTM) deep learning model was employed. The LSTM learned the relationship between HI
and practical SOH. Tests on an open dataset showed high estimation accuracy. This method
requires no additional hardware or downtime for implementation. Such advancements
simplify battery health monitoring and improve reliability. They developed another data-
driven SOH estimation method. They introduced a novel energy-based health indicator (HI).
This HI focuses on discharge processes that are less controllable. Unlike earlier methods, it
combines voltage sequences and discharge rates. The inclusion of discharge rates improves
the HI’s accuracy. The method allows online SOH estimation using offline training datasets.
Validation on an open dataset reported an average RMSE of 1.23%. This demonstrates the
effectiveness of this novel approach. These techniques offer significant potential for real-time

applications.
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In history, attention in cell chemistries and testing circumstances changed. These
changes reflect advancements in battery technologies over time. NASA published the first
public battery dataset in 2008. As new chemistries emerged, focus shifted from LFP to NMC
and NCA batteries. Both NMC and NCA chemistries suit power tools, e-bikes, and EVs.
They bargain higher detailed energy, decent power, and extended lifespans. The number of
cells tested has significantly increased over time. This growth supports the study of complex
battery interactions. NASA hosts couple of high-throughput battery datasets, totaling 62 cells.
These datasets enable research on cell chemistry and testing conditions. They are essential

for advancing LiB technology and diverse applications.
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Figure 2.2.Historical Evolution of Dataset of Existing Batteries [16]

The literature highlights significant advancements in LiB technologies, particularly
in SOH estimation methods, yet critical gaps remain in developing accurate, scalable, and
real-time predictive models tailored for electric vehicle (EV) applications. Existing studies
primarily focus on offline SOH estimation using controlled datasets, which do not adequately
capture the dynamic and variable conditions of real-world EV operations. While data-driven

techniques such as Support Vector Regression (SVR) and LSTM models have demonstrated
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high accuracy, their reliance on laboratory datasets limits their applicability in operational
EV scenarios. Furthermore, challenges persist in addressing uncontrollable discharge
processes, with proposed health indicators (HIs) like voltage sequences and discharge rates

still underexplored in practical contexts.

Another key gap lies in the adaptability of prediction models to emerging battery
chemistries such as Nickel Manganese Cobalt (NMC) and Nickel Cobalt Aluminum (NCA),
which exhibit unique degradation patterns under high energy and power demands. Although
promising novel HIs have been introduced, their integration into real-world Battery
Management Systems (BMS) for EVs remains limited. Additionally, current methods often
require complex data inputs and computationally intensive processes, which may hinder
scalability and cost-effectiveness, especially for large-scale EV fleets. Moreover, the long-
term reliability of predictive models is affected by aging and performance degradation, yet
there is insufficient research on how aging impacts prediction accuracy over extended battery
lifespans. Lastly, real-world validation of these models is constrained by the availability of
diverse datasets. Many studies rely on publicly available datasets such as those from NASA,
which lack the variability of actual EV operational conditions, including temperature
fluctuations, diverse driving behaviors, and environmental factors. Addressing these gaps
requires the development of novel, real-time predictive models like a Deep Neural Network
(DNN) that effectively utilize experimental data, as well as voltage, current, temperature, and
advanced health indicators, to approximation SOH with higher accuracy and practical

applicability in EV contexts.

2.2 LITHIUM IRON PHOSPHATE BATTERIES (LIPB)

Indeed, this is quite advantageous research. Many nations set active implement
delinquent suppuration for electric vehicle (EV) development, of which lithium li-ion
batteries (LiBs) form the essential influence source [16]. With a rapidly increasing demand
for power LiBs, they are also becoming highly adept at making them [17]. However,
commercial life span of these batteries is in the range of approximately 3 - 6 years; thus, the
number of retired power batteries is increasing considerably [18]. Further, with the expected

rapid growth of the EVs market, the enhancement of the importance and economic value

15



associated with battery recycling in the near future will be enhanced [19,20]. Recycling from
retired power LiPBs is, therefore, strategically important to reduce production costs and
resource conservation [21,22]. As to the cathode composition, lithium-ion batteries (LiBs)
may be categorized under LiFePOs, lithium cobalt oxide (LCO) batteries, lithium manganese
oxide batteries (LMOB), lithium nickel cobalt manganese oxide batteries (NCMB), and
lithium nickel cobalt aluminum oxide batteries (NCA). Among these, LiFePOs and NCMB

batteries are the most used forms in the global electric vehicle (EV) industry [23].

In the context of an LFP battery, its discharge would include the following processes:
electrons will break off from the lithium stored in the graphene layers of the negative
electrode and form corresponding lithium ions. These travel through their separator to the
positive pole, where they combine with iron phosphates. Going through the same steps as
discharging, charging reverses that and lithium is blown up from the iron phosphate at the
positive electrode, where it forms lithium ions and electrons in return traveling toward the
negative electrode where it will reintegrate into the graphene layers. Some electrochemical

reactions involved in these processes are shown in the table 2.1 below [24].

Table 2.1
Lithium iron phosphate (LiPB) battery during Electrochemical reactions [24]
Electrode Electrochemical Reactions
Anode LinC6 a7’ Li0C6 + nLi+ + nea”™
Cathode Lim 4" nFePO4 + nLi+ + ned™ 1> LimFePO4
Overall LinC6 + Lim 4" nFePO4 aj’ Li0C6 + LimFePO4

Lithium polymer batteries are quite common today because they have better thermal
stability and cycling performance, are nonpoisonous, and are inexpensive. The increase in
use has indeed resulted in the disposal of a huge number of spent batteries. Data as of 2020
from the CIAPS, for instance, indicated that NCM had accumulated total installed capacity
of 61.1% and LiPB of 38.3% in China, by which time this figure had already increased
considerably as a result of further development [25]. Based on installation data released,
LiPB accounted for more than 51.7% of total installed capacity in vehicles by 2021, marking
not just an improvement but surpassing NCM batteries as well [25]. LiPB batteries are

popular in medium- and low-range vehicles because they extend battery life, have lower
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costs, and are more environmentally friendly than NCM batteries [26,7]. LiPB battery main
components are the shell, cathode electrode, anode electrode, electrolyte, and organic
separator [27]. Structurally, the crystal framework of 1iPB batteries is formed by unit cells
consisting of four LiFePO4 units that change from one LiFePO4 phase to a new LiFePO4
phase upon lithium removal [28]. The charge-discharge mechanism of LiPB batteries consists
of two different phases: LiFePO4 and FePO4. In the charging process, LiFePO4 de-
lithificates to convert into FePO4, while, in the discharging process, lithium ions re-embed
into FePO4 to revert it to LiFePO4 [29]. This is how efficient energy storage and discharge
become one of the reasons that make LiPB batteries a widely accepted devices choice in

different applications.

Following the research conducted by [30] they evaluated on 160 Ah LiFePOs
prismatic cells, evaluating their capacity, cycle life, and real-world road test performance for
electric vehicle (EV) applications. The primary aim was to compare the performance of
LiFePOa cells with LiCoO: cells, which had been previously deemed unsuitable for EV use.
The capacity tests revealed that the LiFePOs cells maintained their full 160 Ah capacity, even
after 50 cycles of testing. Road tests were performed on both types of cells under four ambient
temperatures (-20°C, 0°C, +20°C, and +40°C), with each temperature condition tested four
times. The results demonstrated that LiFePOa. cells outperformed LiCoO: cells across all
testing parameters, leading to the conclusion that LiFePOa cells are better suited for EV

applications and should be considered in future designs.

Following the study by [31] they conducted a detailed analysis of waste LiPB battery
treatment methods, emphasizing their impact across five critical dimensions: resources,
energy, environment, economy, and society. The study highlighted that recycling waste LiPB
batteries is vital for addressing the environmental hazards posed by their toxic components.
Recycling also allows for the recovery of valuable materials, improving resource efficiency
and reducing the demand for raw material extraction. Additionally, the study underscored the
broader benefits of recycling, including fostering sustainable energy development, generating

economic gains, supporting social progress, and creating employment opportunities.
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Consequently, the recycling of discarded LiPB batteries is not only crucial but also inevitable

for sustainable growth in the energy sector.

Following the work of [32] they proposed an innovative fast-charging strategy for
high-power LiFePOs cells and conducted comprehensive evaluations to assess its impact on
capacity fade, cycle life, and energy efficiency. The research adhered to the performance
standards outlined by the U.S. Advanced Battery Consortium (USABC). The study's findings
indicated that the fast-charging approach caused minimal degradation in the cells while
maintaining high energy efficiency. Furthermore, the results showed that the observed
performance losses were predominantly attributed to capacity fade rather than an increase in
internal resistance. This underscores the method's practicality and its ability to preserve cell

durability and efficiency, making it appropriate for real-world applications.

Another study structured by [33] they showcased the development of a thermally
modulated lithium-ion phosphate battery (LiPB) designed to address range anxiety in electric
vehicles (EVs). The battery provides an adequate cruising range per charge, with the
capability to extend the range further with a 10-minute recharge under any climate condition.
This thermally modulated battery operates at a stable working temperature of approximately
60°C, regardless of ambient conditions, making it a versatile powertrain solution for mass-
market EVs. The study also revealed that low-surface-area graphite can be used when
operating at high temperatures for brief periods, which could increase the EV's range to more
than two million miles. These developments highlight the important breakthroughs in battery

technology meant to improve the sustainability and performance of EVs.

Reference [34] considered a sustainable, scalable approach to selective lithium
leaching from spent LiFePOs batteries. By optimally adjusting the oxidative state and proton
activity of the leaching solution, it yielded very high lithium recovery efficiency while being
selective to lithium. The research has revealed mechanisms for the selective reaction, and
rate-controlling step in leaching kinetics. From the laboratory scale, continued into the
development and simulation of a pilot batch process. Paved progressive mileages with regard
to environmental friendliness and caution feasibility in accordance with the tenets of green

chemistry. The process allowed for high-purity Li2COs (99.95 wt%) to be recovered at very
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high recovery rates, and minimal environmental impact. Notably, this approach serves to
boost the environmental sustainability of the LiB industry as well as increase recycling
efficiency of metals from spent LiFePOus batteries. The research emphasizes the possibility
of integrating green chemistry principles into battery recycling processes to promote circular

economy practices and resource efficiency in the energy sector.

Despite significant advancements in LiPB for EVs, gaps persist in integrating
predictive models for battery health management. While studies like [30] and [32] have
examined performance and cycle life, limited research focuses on real-time SOH predictions.
The present study introduces a Deep Neural Network (DNN) for SOH estimation using
voltage, current, and temperature data, but its integration with recycling strategies, such as
those by [34] and [31], remains unexplored. Predictive SOH modeling could optimize end-
of-life recycling and material recovery efforts. Additionally, fast-charging impacts on SOH,
as noted by [32], require predictive analytics to prevent degradation. Incorporating SOH
models with thermal modulation data and recycling processes offers an opportunity for

sustainable and efficient battery management in the EV sector.

2.3. MODELING OF LIB

Reference [209] provides a detailed categorization of methods used to estimate the
State of Health (SOH) of a system, likely focusing on battery systems. These methods are
divided into two primary categories: Experimental Methods and Model-Based Methods, each
offering distinct approaches for health estimation. Under Experimental Methods, there are
two subcategories: Direct Measurement Methods and Indirect Analysis Methods. Direct
methods involve physically testing the system’s performance, such as Capacity Tests to
measure charge storage, Impedance Spectroscopy to analyze the system's impedance, Cycle
Counting to track charge-discharge cycles, and Coulomb Counting to measure the total
charge flow. These methods provide direct insight into system health by monitoring
fundamental parameters. In contrast, Indirect Analysis Methods offer techniques that infer
health based on system behavior. This includes CC-CV Charging, a method that tests the
system under constant current and voltage to assess performance indirectly, and Incremental

Capacity Analysis, which examines small, incremental changes in capacity over time to
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detect degradation patterns. On the other hand, Model-Based Methods leverage mathematical
and computational models for estimating SOH. These are split into two subcategories:
Adaptive Filtering Methods and Data Driven Methods. Adaptive Filtering Methods include
approaches like Kalman Filters, Particle Filters, and Least Squares, all of which adapt model
parameters based on incoming data to refine SOH predictions. These techniques are
particularly useful for dynamic systems where the state is continuously evolving. In contrast,
Data Driven Methods focus on leveraging large datasets and machine learning techniques to
estimate SOH. This includes methods like Fuzzy Logic, which allows for dealing with
uncertainties in system behavior, Neural Networks, which use deep learning models for
predictive analysis, and Support Vector Machines, which perform classification and
regression to estimate SOH. Together, these methods provide a comprehensive framework
for assessing system health, ranging from simple experimental tests to advanced model-based
predictions, offering flexibility in terms of complexity and accuracy based on the specific

application.
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Figure 2.3 Different Methods of Measurement of SOH [209]

2.3.1 FRACTIONAL-ORDER CALCULUS (FOC)

First developed by Leibniz in 1695 when he introduced the non-integer orders of
derivatives and integrals, fractional calculus has only recently peaked the interest of physical
systems, specifically concerning mass transport, diffusion dynamics, memory, and hysteresis
effects. Research indicates that modeling with fractional-order gives better results in
representing real systems as permanent magnet synchronous motors and flexible robots
whose control design relies on viscoelastic principles [36]. The improvement is attributed to
the ability of the FOC to model distributed parameter systems, which closely approximates
LiBs' characteristics. The important fractional-order derivatives are also converted into
numerical implementation of FOC that considers approximating them for integer-order
derivatives or state functions because of the necessity to apply FOC for practical applications.

Apart from the definitions by Griinwald-Letnikov, definition criteria of fractional-order
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derivatives include those of Riemann-Liouville and Caputo formulations. In this work, the
definition used is that of Griinwald-Letnikov since it is the simplest definition that can readily
be fitted within Kalman filtering techniques without much encumbrance for the subsequent
integration with numerical models to give a more accurate presentation of the dynamic

behavior of systems [37].
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Figure 2.3.Charging effect of Lithium Li-lon Battery [41]

Figure 2.3 actually depicts a skeptical view of an exponential map showed as a very
versatile response of the complex impedance spectra of a Lithium Ion Battery with the x-axis
portraying the real components of the impedance Re(Z) and y-axis negative imaginary
components -Im(Z). These curves can generally reflect portions that represent an ongoing
process; every segment shows different electrochemical processes in the battery. The extreme
low-frequency right end of the graph reflects ionic diffusion and transport in the electrolyte
and also in the materials of the electrodes. This indicates Warburg impedance, which is
dominant at lower frequencies since lithium doesn't have fast diffusion. The two semisections

towards the higher frequencies refer to the charge transport-reaction and double-layer
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capacitance effects at the electrode-electrolyte interface: transfer-control resistance (Rct) and
formation of the double-layer at the interface between which there interaction occurs between
ions and electrode surfaces. In the leftmost end of the plot, that is, in the highest frequencies,
the inductive effect dominates. It is due to inductances generally being parasitic current
collectors, electrical connections, or other elements of the circuit. It shows the direction of
increment in frequencies from the low-frequency domain onto the right, to the high one on
the left. These different segments in the plot also represent different but multiplex processes
within the battery towards which researchers can move closer to evaluating the important
performance, degradation, as well as impedance parameters. These parameters help

understand the health status and behavior of the battery.

2.3.2 FRACTIONAL-ORDER MODELING FOR LIBS

EIS is a powerful tool for probing LiBs and offers a comprehensive look at their
internal action through impedance measurements over a wide frequency range. EIS is
performed by applying a sinusoidal current signal of known amplitude to the battery and
accurately measuring the voltage response across the battery terminals. The complex
impedance, Z* is then obtained from the ratio of measured voltage to applied current. In order
to obtain a complete impedance profile, measurements are made at different frequencies and
plotted typically using a Nyquist plot showing the real vs. imaginary component of

impedance as a function of frequency.

Figure 2.4 illustrates the relationship between the real and imaginary components of
impedance, was conducted by [210]. This experiment likely involves impedance
spectroscopy, where the real part of the impedance (Z real) represents resistance, and the
imaginary part (Z imaginary) reflects reactance. The data shows a non-linear trend, with an
initial stable region followed by a sudden increase in the impedance values, which may
indicate a change in the system's behavior, such as a transition to a dominant capacitive or
inductive effect. The reference [210] provides the source for this experimental setup and the

data collected.
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Figure 2.4.Nyquist diagram interpretation [210]

The Nyquist plot for a typical LIB, given in figure 2.4, can be divided into three major
regions, namely low, mid, and high-frequency regions: the low-frequency region appears as
a straight line of constant slope due to the diffusion of lithium ions within the electrodes; the
mid-frequency range is characterized by a reduced semi-circle, which indicates the
involvement of charge transfer and double-layer capacicitance phenomena [36]. The most
important parameter displayed in Nyquist plot is the phase difference, determined by slope
of the low-frequency line and the form of semi-circle in the mid-frequency region. A pure
capacitance shows constant phase shift n/2 in accordance with plate hypothesis using battery

electrodes according to [37].

Traditionally, second-order equivalent circuit models, or ECMs, make use of RC
branches with simple capacitances so as to mimic the dynamics of Li-ion batteries. This
approach does not effectively replicate the semi-circle shapes in the impedance spectra in the
mid-frequency zone. This would be overcome by using a form of fractional-order capacitor
called Constant Phase Element (CPE) which introduces a phase shift of -an/2, where o ranges
between 0 and 1. This feature allows the model to better capture non-uniform boundaries and
distributed intercalation/de-intercalation processes within porous electrodes [38,39].

Allowing the incorporation of CPE into ECMs greatly boosts the exercise of the ECM in
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accurately modeling LIBs. The manpower and presentation of a CPE class as avowed [40]
would constitute a solid foundation for interpreting these complex electrochemical dynamics.
Hence, the equivalent circuit model with CPEs would be followed in this work to take LiB

modeling to a higher point in accuracy and consistency.
Z(s) = 1/(Cs%)

Where Z is the complex impedance, C is a constant representing the main capacitance

effect, and s is a complex variable.

Ry

A
ol

Figure 2.5.Fractional Order Modeling [41]

Figure 2.5 illustrates a Fractional Order Equivalent Circuit Model (FO-ECM) used
for accurately representing the electrochemical behavior of LiB. This model integrates both
traditional circuit components and fractional-order elements, offering enhanced precision in
apprehending the multifaceted changing aspects of battery systems. The circuit begins with
Ro, representing the internal ohmic resistance, which accounts for the immediate voltage drop
caused by current flow through the electrolyte, electrodes, and internal components.
Following this, a parallel combination of R: and CPE: (Constant Phase Element) models the

charge transfer resistance and the double-layer capacitance at the electrode-electrolyte
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interface. The use of a CPE, instead of an ideal capacitor, captures the frequency-dependent
behavior of the interface, reflecting the non-ideal capacitive characteristics observed in real

batteries.

Further along the circuit, another parallel combination of R> and CPE-: represents
slower processes such as ion diffusion and mass transport effects within the battery. These
elements contribute to modeling the long-term electrochemical phenomena affecting battery
performance. The model also includes the Open Circuit Voltage (OCV), which represents the
battery's voltage in a no-load condition, and Vo, which denotes the output voltage under
operating conditions. The current Io flows through the circuit, driving the system’s overall
dynamic response. This fractional-order approach provides significant advantages over
traditional integer-order models by incorporating the frequency-dependent properties of real-
world batteries, especially through the use of CPEs. It allows for more accurate modeling of
processes like charge transfer, diffusion, and mass transport, making it highly suitable for
applications such as SOH estimation, impedance spectroscopy, and predictive maintenance

of batteries in various industrial and energy storage systems.

The application of fractional-order calculus (FOC) and fractional-order modeling has
demonstrated significant potential in improving the accuracy of LiB models, particularly in
capturing the complex internal processes and dynamics of LIBs. Techniques such as
Electrochemical Impedance Spectroscopy (EIS) provide detailed insights into the battery's
behavior across frequency domains, while fractional-order capacitors (CPEs) address
limitations in traditional second-order equivalent circuit models (ECMs). Despite these
advancements, critical gaps remain in the context of forecasting battery health for electric
vehicles (EVs). While FOC-based approaches offer theoretical accuracy in modeling LIB
behavior, their application in real-time SOH estimation for EVs remains underexplored. The
inherent complexity of fractional-order models and their reliance on sophisticated
computational techniques, such as Kalman filtering, pose challenges for practical

implementation in dynamic EV environments.

Additionally, existing studies primarily focus on characterizing battery impedance

and internal dynamics through controlled experimental setups. These approaches often lack
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integration with real-world operational data, such as voltage, current, temperature, and
evolving health indicators, which are crucial for SOH prediction in EVs. The reliance on
parameters like Nyquist plots and impedance spectra also limits their scalability for large-
scale deployment in EV fleets. Furthermore, fractional-order models, while effective in
explaining charge transfer and diffusive properties, have not been directly linked to advanced
data-driven techniques, such as Deep Neural Networks (DNNs), that can leverage diverse
experimental data for predictive modeling. Finally, there is limited research bridging the gap
between fractional-order modeling and the development of real-time, scalable, and cost-
effective SOH estimation models for EVs. Addressing this gap through a novel DNN model
that utilizes experimental data, including voltage, current, temperature, and health indicators,
offers a promising solution to enhance prediction accuracy and practical applicability in

dynamic EV environments.

2.3.3 ADVANCED ALGORITHMS FOR SOH ESTIMATION

With the rapid expansion of computational models and machine learning algorithms
(MLA), several advanced methods have been introduced to estimate the SOH more
accurately and in real-time. Among these, Kalman filtering (KF) and its variants, such as the
unscented Kalman filter (UKF), are popular choices. Kalman filters provide an optimal
solution to approximation the state of a system by combining noisy sensor data with a
mathematical model. In the context of LiB, KF can estimate the SOH by incorporating
charge-discharge data, temperature, and other operational parameters into a state-space
model [109]. UKF, a more advanced variant of the Kalman filter, is particularly effective in
non-linear systems, such as those found in battery modeling, where the battery’s performance
does not follow linear dynamics. The particle filter (PF) is another promising approach used
for SOH estimation. Unlike Kalman filters, which rely on linear models, particle filters can
handle highly nonlinear and non-Gaussian systems by using Monte Carlo sampling methods
to approximate the distribution of the system states. Particle filters have been successfully
functional to estimate SOH in LiB, particularly in dynamic environments where the battery's

health changes rapidly due to varying load conditions [146]. This method is robust against
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measurement noise and can provide reliable estimates even when only limited data is

available.

2.3.3.1 KAMLAN FILTERS

Kalman Filtering (KF) is a widely employed recursive algorithm that optimally
estimates the state of a dynamic system by integrating sensor data, potentially afflicted by
noise, with a mathematical model. It functions within a linear state-space paradigm, seeking
to minimize the mean squared error of state estimation. In battery management, Kalman
Filtering (KF) has been widely employed for state-of-health (SOH) estimation by
incorporating multiple operational parameters, including charge-discharge cycles, voltage,
current, and temperature [109]. The algorithm's capacity for recursive state estimate updates
renders it appropriate for real-time applications. Nonetheless, numerous battery systems
demonstrate nonlinear characteristics, particularly regarding performance fluctuations over
time. To mitigate these non-linearities, sophisticated adaptations of the Kalman Filter,

including the Unscented Kalman Filter (UKF), have been created.

UKF is especially proficient for systems exhibiting nonlinear dynamics, as it employs
a selection of meticulously chosen sample points, referred to as sigma points, to approximate
the nonlinear transformations of the system. This approach yields more precise state
estimations than the conventional Kalman Filter when the system's behavior markedly
diverges from linearity [109]. The UKF is particularly advantageous for modeling battery
performance under diverse conditions, including variable loads, temperatures, and charge-
discharge cycles. A prevalent method for managing non-linear systems is the Extended
Kalman Filter (EKF). The EKF linearizes the system through a first-order Taylor expansion
to approximate nonlinear behavior [109]. Although effective, the EKF may encounter
inaccuracies when the system displays pronounced nonlinear characteristics.
The particle filter (PF) algorithm can integrate components of the EKF or UKF to enhance
performance. In the context of PF, the importance density function is frequently derived using
the EKF. This entails updating the sampled particles using the EKF algorithm, resampling
them according to their revised weights, and producing new particles via the importance

density function. Conversely, the UKF can be integrated into the PF framework by utilizing
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its unscented transformation, which circumvents linearization and incorporates higher-order
terms. This method guarantees that the mean and covariance estimations retain exceptional
precision, even in nonlinear systems. The UKF updates particles by computing their mean
and variance, which are subsequently employed in the following iterations of the particle

filter.

The Regularized Particle Filter (RPF) algorithm employs an enhanced resampling
technique to mitigate the problem of particle diversity degradation, a prevalent issue in
conventional particle filters. By augmenting particle diversity during resampling, the RPF
preserves the accuracy and robustness of the particle filter, rendering it especially effective
for applications involving intricate and nonlinear battery dynamics. Advanced filtering
techniques, such as UKF, EKF, and RPF, provide effective means for enhancing the accuracy

and reliability of State of Health assessment in LiB.

2.3.3.2 LINEAR REGRESSION (LR)

LR is a statistical method employed to forecast a target variable by modeling it as a
weighted amount of input features. The linear nature of the relationship between the inputs
and the target makes the model straightforward to interpret. This simplicity has made linear
regression a widely used method among statisticians, computer scientists, and professionals
dealing with quantitative analysis across various domains. LR model for the population can

be represented by
yi= o+ Bix1+"; " belongs to N(0; ¢?)

Since the equation represents the population distribution, the regression model
derived from a sample can be expressed as follows. LR model is used to examine and quantify
the impact of one independent variable on a dependent variable. It estimates the relationship
between these variables based on observed data, allowing predictions and insights about how

changes in the IV influence the DV.

yi=80+p1x1+"; " belongs to N(0; ¢°)
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The goal of LR is to determine regression coefficients that minimize the sum of
squared errors (SSE). Ang and Paw [147] showed that a linear regression model trained on
discharge voltage data can estimate battery SOH with a root mean square error (RMSE) of
less than 12%. However, this technique has limitations, as it requires a complete discharge
voltage profile until the battery reaches the end of its SOC for SOH estimation. This means
that the SOH can only be estimated after a full discharge cycle has been completed.
Consequently, the SOH estimate provided by this model reflects the battery's condition based

solely on the most recently completed discharge cycle.

This delay in SOH estimation poses two significant challenges. First, in scenarios
where there is a prolonged storage period between the previous and current usage cycles, the
SOH estimated from the last discharge cycle may no longer be accurate. During storage, the
battery could experience significant degradation due to suboptimal storage conditions [56].
Second, the need for a complete discharge profile necessitates the battery to be fully charged
and then fully discharged for data collection, which limits the method's practicality in real-
world engineering applications. Batteries in operational systems, such as electric vehicles

(EVs), often do not undergo full charge or discharge cycles in every use case [119,97].

LR remains one of the simplest and most frequently used MLM for SOH estimation.
This statistical method accepts a linear relationship between the dependent variable (e.g.,
battery health) and one or more independent variables, such as voltage, current, temperature,
and cycle count. Despite its simplicity, linear regression is effective in identifying trends
when the relationships between variables are approximately linear. In battery management
systems, it can be applied to model the deprivation of key battery parameters, such as capacity

and internal confrontation, using operational data [41].

The primary advantage of LR lies in its ease of implementation and interpretability,
making it suitable for situations where a quick and understandable model is needed. However,
its limitation is that it may not perform well in complex scenarios where the degradation of
battery health involves nonlinear interactions among variables. For instance, when external
factors like temperature fluctuations and high charge-discharge cycles affect the battery’s

SOH, linear regression may fail to capture the intricate relationships, leading to inaccurate
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predictions [126]. Nonetheless, linear regression can serve as a baseline model and is often

used in combination with more advanced techniques.

2.3.3.3 SUPPORT VECTOR REGRESSION (SVR)

The SVR algorithm proves to be one among the most effective techniques for framing
complex nonlinear relations in inputs and corresponding outputs and hence is well apt for
SOH estimation. The main idea behind SVR is the concept of a non-linear mapping function
applied on the input data into a much larger dimensional space wherein the input data can be
separated using linear regression. This is done through a specified kernel function of the
mapping, finding the optimal hyperplane, the support vector, that maximizes the margin

between the data points in that higher-dimensional space.

For an illustration, let us consider a battery dataset (x1,yl),...,(xi,y1)(x 1,y 1), ...,
(x_i, y_1)(xl,yl),...,(xi,yi): such that xi€ERnx_ i \in R*nxi€Rn refers to the regional capacity
for the ith cycle, while yiy_iyi refers to the SOH value or the targeted output. This is how the
SVR function is mathematically defined in this scenario to predict the relationship between
input structures and the SOH, due to its ability to harness complex nonlinear interaction

effects.
fix)=wl p(xi) + b

Where output values are denoted by f(xi), other form of mapping function nonlinear
is represented by ¢(xi), while w and b are the unknown parameters. Objective of both
regressions is to make output of model as much similar the output 'yi'. Support Vector
Regression (SVR) is an extension of Support Vector Machines (SVM) in the field of
regression analysis. The basic idea behind SVR is to find such function which can represent
the data in such a way that the margin of error remains small. This approach works
particularly well for high dimensional data as well as on both linear and nonlinear
relationships through kernel functions [57]. Hence, this technique is very useful for
estimating battery SOH from information regarding health indicators of batteries in

functioning conditions like charge-discharge cycles and environmental factors.
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SVR mainly advantageous when dealing with small datasets, as it is less prone to
overfitting than other models [84]. Moreover, by adjusting the kernel function (e.g., radial
basis function or polynomial kernel), SVR can handle nonlinearity in battery degradation
patterns effectively. A study by [51] demonstrated the application of SVR to forecast the
capacity degradation of LiB under various operating circumstances, achieving higher
prediction accuracy than traditional methods. However, SVR’s primary drawback is the need
for careful selection of hyperparameters, which can be computationally luxurious and time-

consuming.

2.3.3.4 FEED-FORWARD NEURAL NETWORK (FFNN)

The feedforward neural network, a species of the neural networks, has input and
output layers as well as several hidden layers, whose neurons have learnable weights and
biases. Each neuron in a layer, other than the input layer, connects to all neurons of the
previous layer, with equal weight for every attachment within each layer. Hence, the weights
comprise all knowledge learnt by the network. Now, when we consider an input layer
consisting of features regarding SOH, we will have on the other side the output concerning
SOH; for the example at hand, it would be the capacity of the battery. The input layer size
corresponds to the entry data. In contrast, the hidden-layer structures and the number of
neurons in them are aspects of the model hyper parameters that will be fine-tuned during the
exercise called validation. Most commonly, these are nodes, which will only feed forward
and will not participate into loops or memories. With respect to estimating SOH for batteries,
this input layer is expected to contain features referring to SOH, and on the other side, the

output would refer to SOH, which, in this case, is the capacity of the battery.

An FFNN, a kind of artificial neural network (ANN), is planned to learn complex and
nonlinear relationships within data through techniques like backpropagation and gradient
descent. This architecture is increasingly utilized for battery SOH estimation because of its
ability to capture detailed and intricate patterns in battery behavior (Bishop, 2006). By
analyzing large datasets containing historical battery performance metrics—such as charge-
discharge cycles, voltage, temperature, and current—FFNNs can predict key battery metrics

like remaining useful life (RUL) and capacity fade [148].
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One of the key strengths of FFNNSs is their capability to simplify effectively to novel,
unseen data, which is critical for SOH estimation given the variability in battery data due to
changing operating conditions over time. However, FFNNs also present challenges. They
require substantial amounts of data to prevent overfitting and ensure accurate predictions,
and their training process can be computationally intensive, particularly for large networks
with many layers and parameters. Despite these challenges, FFNNs continue a influential
tool for battery management, providing flexible and robust solutions for predicting SOH and

RUL in dynamic environments.

2.3.3.5 DECISION TREE REGRESSION (DTR)

Decision Tree Regression organizes data in a hierarchical tree-like form, starting from
the root node, branching off to leaf nodes where final predictions can be made based on
analysis of residuals. Each node's impurity is measured using measures like sum of squared
residuals or variance [149]. In this non-linear machine learning, the input space is divided
into smaller regions recursively using input feature values. Each node in the tree signifies
one decision rule, while leaf nodes represent the predicted output values. In addition, its
interpretability and intuition allows decision trees to be used in practice, which includes
applications like battery health monitoring where the opacity of the model is critical. So much
so that they are able to cater non-linearity which can provide a clear way of decision-making

when predicting and interpreting battery performance.

Decision trees are widely utilized in battery SOH estimation to predict metrics like
remaining capacity or state of health based on various features, including charge-discharge
cycles, temperature, and charge rates. A significant advantage of decision tree regression is
its versatility, as it processes both definite and constant data effectively. However, when
decision trees become excessively deep, they are prone to overfitting, which negatively
impacts their ability to simplify to original, hidden data. To address this issue, pruning
techniques are commonly used, reducing the tree's complexity and improving performance.
Despite the peril of overfitting, decision trees remain a popular method for battery health

approximation due to their straightforward construction and ease of execution [138§].
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2.3.3.6 RANDOM FOREST REGRESSION (RFR)

Using a lot of decision trees, Random Forest Regression (RFR) is used to develop
approximations. And it doesn't use a single tree; it combines the outputs of many trees to
come to the final output. An assessment of the error that has gone into the mean squares might
also be used in the analysis of the data splits at each node in the forest [149]. It minimizes
overfitting and improves the accuracy of predictions by training each decision tree on a
randomly selected portion of the datasets. Henceforth, the final prediction is made up of all
the trees in the ensemble. It is specially valid for estimating SOH in batteries since it handles
noisy inputs and captures the complex, nonlinear interactions between health parameters and
the operating conditions. Its capability of generalizing different data sets makes Random
Forest Regression a suitable method for battery performance analysis and SOH prediction

under various scenarios.

Random Forest has been applied in various studies to estimate battery performance
pointers such as volume degradation and interior confrontation over time. A study by [130]
demonstrated the use of Random Forest Regression to predict the SOH of LiB in electric
vehicles, achieving high prediction accuracy in both laboratory and real-world conditions.
The model was able to handle a huge number of input features and capture the nonlinear
relationships between them. Random Forest also offers the advantage of being less prone to
overfitting compared to individual decision trees. However, it requires significant
computational resources when the number of trees is large, and the model can become less

interpretable as the quantity of trees upsurges.

2.3.3.7 K-NEAREST NEIGHBOR REGRESSION

K-Nearest Neighbor (KNN) Regression is an instance-based learning algorithm that
predicts outcomes by averaging the values of the kkk nearest neighbors in the training data.
The algorithm determines the distance between a new data point and each training point,
using metrics such as Euclidean distance to identify the closest neighbors. Based on the
selected kkk value, the algorithm computes the output by considering the nearest data points
[149]. Recently, KNN has gained attention for LiB life estimation due to its ability to model

complex, nonlinear relationships and familiarize to varying battery circumstances [150].
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KNN does not assume any specific data distribution, creation it particularly suitable
for battery health estimation, where the underlying patterns can be highly variable. In the
context of SOH estimation, KNN can predict the remaining capacity or health status of a
battery by comparing historical data—such as voltage and current readings—that resemble
current operating conditions. The algorithm's simplicity and ease of implementation, as it
does not require a training phase, are among its advantages. However, KNN has limitations,
including computational expense at prediction time, especially for large datasets, as it must
calculate distances between the query point and all training points. Additionally, KNN is
sensitive to noisy data, and its presentation depends heavily on the choice of kkk and the

distance metric used [130].

The growing acceptance of EVs has highlighted the necessity for efficient and
accurate methods to estimate battery SOH, a critical factor in ensuring optimal battery
performance and longevity. While machine learning techniques, including linear regression,
SVR, FFNN, decision trees, random forests, and KNN regression, have been applied to SOH
estimation, these methods face several challenges. Many struggle to get the nonlinear and
dynamic interactions amid battery health parameters such as voltage, current, temperature,
and charge-discharge cycles. Linear regression, for example, is unable to model complex
relationships, while methods like SVR and FFNN are often computationally intensive,

sensitive to hyperparameter tuning, and reliant on extensive datasets.

Furthermore, traditional SOH estimation techniques often lack the ability to provide
real-time predictions and are less robust against variations in battery operating conditions,
limiting their practical applicability in real-world EV scenarios. Despite significant
advancements, there remains a need for a model that is both highly accurate and
computationally efficient, capable of leveraging diverse experimental data for reliable SOH
estimation. This study addresses these gaps by introducing a novel Deep Neural Network
(DNN) model. By integrating experimental data, including voltage, current, temperature, and
other health indicators, the proposed DNN model offers a robust and scalable solution for

precise SOH prediction in EV batteries, overcoming the limitations of existing approaches.
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2.3.4 EQUIVALENT CIRCUIT MODELS FOR LIB (ECM)

In fact, it is very important to model lithium-ion battery for better performance and
safety in applications extending from electric vehicles to grid energy storage systems. The
equivalent circuit models normally employ integrity of a resistor-capacitor (RC) network
which simulates most internal dynamics of a lithium-ion battery, including internal
confrontation, actual capacitor, or equivalent voltage potential. The most marketable RC
network model was first industrialized by SAFT using the PSpice software and later extended
for MATLAB, an ADVISOR stage [46]. The origin of this model is the Thevenin equivalent
consisting of a number of RC networks connected in series to represent the fast response time

characteristics of a battery.

(rﬁTh

(a) (b)
Figure 2.6.ECM diagrams, (a) first-order (1RC), and (b) second-order (2RC) [24]

Figure 2.6 illustrates a first-order ECM (1RC), which contains of key components
such as UCYV, resistors (Ro, RTh) representing ohmic and divergence confrontation, and a
capacitor that models the battery’s transient behavior during charging and discharging
processes. The second-order equivalent circuit model (2RC), also depicted in Figure 2.5, is a
dual polarization (DP) model that offers a more detailed representation of polarization effects,
including electrochemical and concentration polarization, independently [42]. The 2RC
model includes internal resistance (Ro) and two divergence confrontations, Rpa and Rpc,
which represent the resistances associated with electrochemical and absorption polarization,

respectively. Additionally, the model incorporates effective capacitances, Cpa and Cpc, to
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represent the battery's transient charge/discharge response and polarization effects. Factors
like computational efficiency, model accuracy, and parameterization are critical for an
effective battery management system (BMS) [43]. While adding RC networks up to a fifth-
order model can improve accuracy, increasing the complexity beyond the second-order
model often leads to diminishing returns in terms of computational efficiency versus accuracy

[67].

Hysteresis is a common phenomenon in modern battery chemistries, influencing the
open-circuit voltage (OCV) during charging or discharging. It also happen in sluggish
conditions, referred to as "zero-current hysteresis," where the OCV response may vary by up
to 50 mV or more [44]. The extent of hysteresis is prejudiced by aspects such as the battery's
relaxation time during charging or discharging, its chemistry, and its SOC. Hysteresis effects
are particularly pronounced in lithium iron phosphate (LFP) chemistries and in specific SOC
regions, such as 0-20% and 80-100% [45]. To improve accuracy in SOC estimation, OCV-
based estimation models integrate a dynamic hysteresis model with an n-RC equivalent
circuit model (ECM). For this purpose, specific circuit elements are introduced into the n-th-
order RC model to account for hysteresis, forming n-th-order RC models with hysteresis [24].
Batteries with significant hysteresis can experience challenges when using OCV-based SOC

estimation techniques [46]. This study focuses on the first-order ECM with hysteresis.

Following the research by [24] conducted experiments to evaluate the presentation of
three equivalent circuit models (ECMs)—IRC, 2RC, and 1RC with hysteresis—across four
LiB chemistries: LFP, NMC, LMO, and NCA. The findings demonstrated that all three
models could effectively simulate the behavior of these battery chemistries with minimal
errors. The study also revealed that ECMs performed more accurately under dynamic current
profiles than under non-dynamic conditions. For LFP and NCA chemistries, the 1RC with
hysteresis model provided the best results, while the 1RC model was the most appropriate
for NMC and LMO chemistries. These results highlight the need to match specific ECMs to
the appropriate battery chemistry in real-world applications, emphasizing their importance in

battery management systems (BMS) and practical battery usage.
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The works by [47] presented a generalized and equivalently inspirited circuit model
for lithium iron phosphate batteries. It would rely solely on the nominal capacity given in the
cell datasheet. Thus, the new zeroth-order generalized model can be constructed using data
from previously characterized cells. By applying this new method, experimental time and
costs will diminish and achieved a reduced testing matrix. The excellent model not only
captures electrical behavior for low-energy, but also for high-energy cells, with error
remaining consistently below 2% in all cases without reference to detailed knowledge
concerning the dependence of electrical parameters towards SOC, c-rate, and temperature.
The cell internal resistance will be characterized concerning a new characteristic coefficient,
which is typical of this specific LiB chemistry, fitted to an exponentially temperature-
dependent function, which has physical significance, as internal resistance is expected to
have Arrhenius-type dependence on temperature under these conditions. Therefore, this
model is more straightforward in construction and more versatile in the application it assumes

for control, while at the same time serving offline analysis.

Works of [48] critically evaluate ECM modeling methodology and PBM using a case
study of 60 Ah prismatic graphite/lithium iron-phosphate batteries. The advantages of ECM
are as follows: CPU speed, ease of calibration, and accuracy, within its calibration range, for
variable current profiles. Accuracy for ECM becomes worse at the higher currents, especially
when the current pulse lasts for a long duration, and even much reduced when the test moves
beyond the calibration range in the charging scenarios of more than 1C. While the PBM keeps
its accuracy away from the calibration dataset, it needs the estimate of several physical
parameters against an extremely tiring calibration process and long computational times
during variable current conditions. Under the range of conditions studied (with current levels
from C/3 to 2C at temperatures from 10 °C to 40 °C), average voltage prediction errors were
found to be 51.5 mV for ECM and 19.3 mV for PBM, while, in terms of temperature
prediction, they were 0.9 °C for ECM and 0.4 °C for PBM. The study by [49] proposed
various ECM: like Rint model, RC model, Thevenin model, or PNGV model and DP model,

which are being used recently widely in studies related to EV. These are as follows:
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2.3.4.1 The Rint Model (RM)

RM illustrated in Figure 2.6 below employs a perfect voltage source (Uoc) to denote
the battery's OCV. The resistance (Ro) and OCV are contingent upon the battery's SOC, SoH,
and temperature. The load current (IL) is positive during discharge and negative during

charging, whereas UL represents the terminal voltage.
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Figure 2.7. Schematic diagram of the Rint model [49]

2.3.4.2 The RC Model (RCM)

Prior to all this, RCM was authored by a battery manufacturer SAFT and was put into
practical use through Advisor software. This is the model in Figure 2.7 which contains two
capacitors (Cc and Cb) and three resistors (Rt, Re, and Rc). The capacitor Cc is capacitor
with such small capacitance, and it signifies surface phenomena of the battery, and due to
this, it is generally called the surface capacitor. But, the bigger capacity capacitor, Cb, shows
the chemical storage capacity of the battery thus SOC is measured by taking the voltage
reading generated across the bulk capacitor (Cb). Resistors Rt, Re, and Rc are terminal
resistor, end resistor, and capacitor resistor, respectively. Ub refers to the surface capacitor

voltage, while Uc refers to bulk capacitor voltage.
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Figure 2.8.Schematic diagram of the RC model [49]

2.3.4.3 The Thevenin Model (TM)

The authored TM improves upon the RM by interfacing its parallel RC network in
series thereby enabling capable modeling of battery dynamic behavior. The user may observe
in Fig. 2.8 that this model contains three primary components: UCYV, internal resistances, and
equivalent capacitances. Specifically, the internal resistances comprise ohmic resistance (Ro)
as well as the polarization resistance (RTh). CTh is referred to as equivalent capacitance and
represents the dynamics of the transient behavior of the battery charge-discharge cycles. The
voltage across the equivalent capacitance is denoted as UTh, while ITh indicates the current

that passes through CTh.
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Figure 2.9.Schematic diagram for the Thevenin model [49]

2.3.4.4 The PNGV Model

The PNGV model, depicted in Figure 2.9, enhances the Thevenin model by
incorporating an additional capacitor (Uocl) in series. This capacitor compensates for
fluctuations in the OCV resulting from the time-dependent buildup of load current. This
improvement allows the model to more precisely depict the battery's dynamic behavior across

various operating conditions.

Figure 2.10.Schematic diagram of the PNGV model [49]
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2.3.4.5 The DP Model

Analyses of lithium-ion power batteries indicate substantial polarization effects.
Although the Thevenin model can partially replicate these characteristics, it inadequately
distinguishes between concentration polarization and electrochemical polarization,
especially at the conclusion of charge or discharge cycles. To overcome this limitation, an
enhanced circuit model, illustrated in Figure 2.10 and designated as the Dual Polarization
(DP) model, was created. This model enhances the depiction of polarization by individually
simulating concentration polarization and electrochemical polarization, yielding a more

precise and comprehensive understanding of battery performance.
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Figure 2.11.Schematic diagram for the DP model [49]

The DP model has three main elements: (1) the OCV; (2) internal resistances; and (3)
effective capacitances. They comprise internal resistances: ohmic resistance (Ro) and
polarization resistances, among these being Rpa, representing electrochemical polarization,
and Rpc, denoting concentration polarization. The effective capacitances, Cpa and Cpc,
portray the transient reaction regarding the transfer of energy towards or away from a battery.
Cpa emphasizes electrochemical polarization, and Cpc concentration polarization. Upa and
Upc denote the voltages across such capacitances, while Ipa and Ipc represent the respective

outflow currents.
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However, despite very good improvements in the ECMs for LiB, there is still a long
way towards the real capacity of accurately predicting the health of a battery or its SOH under
actual conditions. A recently proposed DNN model has incorporated voltage, current,
temperature, and health variables in predicting SOH estimation, offering options for data-
driven approaches. However, inadequate research has been done into the combination of
DNN predictions using ECMs like Thevenin, PNGV, and DP models. The joining together
of DNN prognostics with the physical insights of ECMs might prove remarkably beneficial
for SOH estimation under dynamic conditions, fast charging, and temperature variations.
While the DP model has performed well as far as simulating the polarization effects, the
enhanced long-term prediction using DNNs for diverse chemistries and operating conditions

still needs to be researched.

2.3.5 Electrochemical Models

LiPB are widely utilized in EVs due to their strong safety features and long cycle life.
Before being deployed for practical applications, these batteries typically undergo extensive
functional and extreme condition testing. To prevent potential damage to battery capacity
during testing, simulation methods are commonly employed for performance verification and
functional assessment [50]. Electrochemical models (EM) are frequently used by researchers
to simulate battery behavior. Unlike equivalent circuit models, electrochemical models offer
greater accuracy as they describe physical and chemical processes through mathematical
formulations derived from a microscopic perspective. EM is usually referred to as the Doyle—
Fuller—Newman (DFN) model and it has conquered battery continuum modelling in the
meantime of early 1990s. These models maintain high fidelity even with low-frequency
current variations, making them a preferred tool for simulating battery performance under

various conditions [51.52].

The classical electrochemical modeling includes the pseudo-two-dimensional (P2D)
model [53] and the single-particle (SP) model [54]. The P2D model consists of a group of
partial differential equations (PDEs) that model phenomena occurring within a battery,
including diffusion within the solid and liquid phases and electrochemical reactions,

providing a very detailed microcosmic view. It is thus more precise compared to equivalent
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circuit models. Nevertheless, the coupling of PDEs requires time and space variable
separation, which increases the number of equations hugely that need to be solved, leading
to increased simulation time. It is also difficult to identify model parameters due to intrinsic
cell-to-cell variations [55]. The SP model reduces this complexity by assuming uniform
chemical reactions along the thickness of the electrode and neglecting liquid-phase diffusion
below a certain C-rate where concentration overpotential is negligible. This makes it

practically very suitable for some applications.

The SP model has quite a simple structure but has a reduced performance in
simulating terminal voltage as soon as the current loads become high. Although it uses fewer
parameters than the case of the P2D model, determining the parameters is difficult because
of the equations' coupling. According to the comparison between the electrochemical models
and ECU models, electrochemical models provide better simulation results than the
equivalent circuit models. However, the parameters need to be accurately identified.
Therefore, different techniques have been considered for parameter identification, including
destructive electrochemical test methods [56] and also non-destructive methods [57].
Destructive electrochemical testing is when a measurement of parameters like liquid-phase
conductivity and the open-circuit potential curve has been made on a half-cell type
configuration. It, however, destroys the battery cells permanently and gives only specific

parameters, which makes it infeasible for repeat or large-scale usage.

They have conducted genetic algorithms for battery modeling [58,59] and particle
swarm optimization [57] as the nondestructive parameter identification techniques. These
techniques obtain model parameters as variables in aiming to minimize the difference
between simulated and measured voltages under defined operating conditions. This process
uses the performance of objective functions iteratively updating of the parameters with the
aim of achieving optimal solution. [54] elaborated this method into improved SP model-
based electrochemical aging model which takes identification of more than 20 parameters.
They conducted sensitivity analysis prior to finding the best optimal poked around-geological
GA algorithms since they are time-consuming to find optimal solution. The analysis now

reduces key parameters to 16, which were narrowed down through thermal; all others,
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including liquid-phase diffusion coefficient, activation energy coefficient, and so on, were
taken from the similar study to smoothened process. The methodology of handling sensitivity

analysis and optimization has improved efficiency and accuracy in parameter identification.

Battery performance is greatly impacted by temperature; capacities can vary by up to
15% depending on the temperature. Furthermore, extremes in temperature—both high and
low—can have a significant impact on battery life. [57] created a numerical model to simulate
voltage and temperature profiles using ANSYS CFD software, and the model showed good
agreement with experimental data. Their results showed that the highest simulated
temperature was 46.86 °C at a 4C discharge rate. These findings highlight how crucial it is
to have a precise thermal-inclusive model in order to guarantee that the battery operates
within a safe temperature range. [58] created a P2D-based model that included
electrochemical kinetics and the laws of mass, charge, and energy conservation for prismatic
lithium iron phosphate batteries. In order to account for current-collecting tabs, the model
treated the battery as a 3D system in the through-plane direction, but it treated local cell units
as 1D. Their study demonstrated that the reaction rate distribution within the local cell units
was uneven and significantly influenced by the positioning of the positive and negative
current-collecting tabs. This work highlights the need to consider spatial variations in
reaction rates for improved thermal and electrochemical modeling. Their study demonstrated
that the reaction rate distribution within the local cell units was uneven and significantly
influenced by the positioning of the positive and negative current-collecting tabs. This work
highlights the need to consider spatial variations in reaction rates for improved thermal and

electrochemical modeling.

Models of the electrochemical and thermal behaviors of batteries during charging and
discharging are possible, but they frequently need significant parameter adjustments. [59]
used a predictor-corrector strategy along with quasi-linearization techniques to create a
thermally simplified multi-particle model. Over a wide temperature range (10—45 °C), the
model reached a maximum root-mean-square error of 22.70 mV while keeping accuracy

close to the thermal P2D model. But there are still a lot of parameters to figure out, especially
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for the thermal resistance and isothermal physics models, since thermal behavior complicates

the parameter identification procedure.

In their study, [60] created and simulated models of lithium iron-phosphate batteries
for 45 °C to -10 °C ambient temperatures. A pre-existing electrochemical model was
modified to improve simulation accuracy at lower temperatures. Excitation response analysis
and a multi-group particle swarm optimization algorithm were used to determine the model
parameters. According to the simulation results, the mean absolute errors of terminal voltage
were within 20 mV at ambient temperatures of 20 °C or higher. In the lower temperature
range of -10 °C to 10 °C, the mean absolute errors for single cells were 9-14 mV and for
battery packs, 11-21 mV. To manage parameter uncertainties at varying ambient
temperatures, analytic methods such as Hermite interpolation, polynomial fitting, and
sinusoidal fitting were implemented, making the model more suitable for practical

applications in diverse temperature conditions.

Following the study by [50] developed an electrochemical-thermal model to predict
the behavior of a commercial LiFePO4 battery during discharge. The model integrates
parameters dependent on temperature and lithium-ion concentration, which affect reaction
rates and Li* transport. Additionally, it considers the role of current collectors in contributing
to overall heat generation within the battery. Simulation results for rate capability and
temperature performance showed strong agreement with existing literature. The model
explores Li* distribution during pulse-relaxation discharge and examines variations in
electrochemical reaction rates and thermal responses during constant current discharge.
Pulse-relaxation results reveal dynamic shifts in Li* concentration in both liquid and solid
phases, offering valuable insights into polarization effects. For constant current discharge,
the reaction rate on the positive electrode evolves over time and spatial position. After
discharge, some LiFePO. material remains underutilized. At low discharge rates, both
endothermic and exothermic processes are observed; however, as the rate increases, the

endothermic phase diminishes, leaving only exothermic behavior at high rates.

While significant advancements have been made in electrochemical modeling for

lithium iron phosphate batteries, gaps remain in integrating predictive tools with real-time
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applications. The present study introduces a Deep Neural Network (DNN) model that
estimates the state of health (SOH) of batteries using voltage, current, temperature, and health
indicators, offering a data-driven approach to battery diagnostics. However, the integration
of such DNN models with established electrochemical models, such as the P2D and SP
models, remains underexplored. Combining the high accuracy of electrochemical models
with the predictive capabilities of DNNs could enhance SOH estimation, especially under
dynamic operating conditions like temperature variations or high current loads. Moreover,
while electrochemical models effectively simulate thermal and electrochemical behaviors,
their complexity in parameter identification limits their real-time applicability. A hybrid
approach incorporating DNN-driven insights and electrochemical model fidelity could
bridge this gap, providing improved accuracy and scalability for practical battery

management systems.

2.3.6 Physics-Based Models (PBM)

In porous electrode theory, physics-based electrochemical battery models (PBM) are
powerful instruments for understanding lithium-ion batteries and their better design and
management. Each PBM has its shortcomings, for example, those from LiB, while it
promises to be the alternative from equivalent circuit models. The most promising PBM
features include more internal electrochemical states of the battery. Different model
uniqueities require different model fidelity, and hence model complexity. While greatly
appropriate batteries can use high-performance supercomputers for long computation times,
real-time battery control such as those for electric vehicles requires very quick calculations
on simple machines. Simplified models, keeping most features, are often used in such cases
for cost-effective computations. The great continuum physics-based electrochemical battery
models started in the 1960s [61]; since then, they have been amended for various types of
battery, e.g. lead-acid [62], nickel/metal hydride [63], lithium-air [64] and lithium-ion [65-
68].

These physics-based models were initiated from the previously mentioned single
particle model (SPM), introduced by [69], and expanded later by [70] to include lithium-ion

distribution within the electrolyte. SPMs assume that all particles in an electrode can be
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modeled as a single spherical particle, thereby significantly simplifying the model's
complexity. These physics-based electrochemical models within Figure 1 describe the
behavior of various internal variables that are not measurable directly in an in-operando
configuration. Particularly, they prescribe the potential and current distribution in the porous
electrodes and the electrolyte, 1i concentration in the electrolyte, and the distribution of

intercalated lithium within the electrode particles.

Another study conducted by [71] sought to establish a model at reduced order for
lithium-ion batteries that optimizes the fidelity and the computational expense embodied in
a physics-based model. The criterion for the parameters is based on the value of the
determinant and condition number of the Fisher information matrix (FIM). First, they get a
subspace consisting of at most nine identifiable parameters that are then identified with a
nonlinear least squares regression algorithm with respect to their confidence region
determined by Fisher Information Matrix. The proposed strategies to extend battery modeling
are validated with the output of commercial software for their efficacy. The estimated
parameters tend to be slightly different from the actual values leading to insignificant voltage

errors against different current profiles.

The thermal generation inside lithium-ion batteries by prediction for two distinct
methodologies, the physics and machine learning-based approaches. A validated multi-
physics and neural network model for commercial lithium-ion batteries (LIBs) with
LiFePO4/G, LMO/G, and LCO/G electrodes (lithium iron phosphate/graphite, lithium
manganese oxide/graphite, and lithium cobalt oxide/graphite) is used to calculate heat
generation and, simultaneously, to delineate the LIB energy efficiency contours thereby
justifying the nominal capacity as the critical parameter for manufacturing LIBs. These
contours help energy systems designers have a better view of the LIB's actual efficiency as
they incorporate LIBs into their devices. Thermal behavior shows its effect on
charge/discharge energy efficiency of LIBs-LFP/graphite. For three types of LIBs available
in the market showing performance at extremely low-temperature conditions, the focuses are
applied to general applications-from consumer uses like electric vehicles (EVs) to industrial

applications such as uninterruptible power supplies (UPSes).
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A study conducted by [73] explored and evaluated two innovative lightweight
physics-informed machine learning methods for accurately estimating a battery cell's
capacity and diagnosing its primary degradation mechanisms using only limited early-life
experimental data. To enable predictions for late-life performance (e.g., beyond 1.5 years)
without the need for long-term experimental data, these methods were trained using
simulated data from a physics-based half-cell model alongside early-life degradation data
(e.g., within the first three months) obtained through cycling tests. The evaluation leveraged
data from a 3.5-year cycling experiment involving 16 implantable-grade lithium-ion cells,
which were subjected to different temperature conditions and C-rates. The results of a four-
fold cross-validation analysis revealed that the proposed physics-informed models
significantly outperformed traditional data-driven approaches, improving the accuracy of
capacity estimation and identifying three key degradation modes by over 50%. Additionally,
the study provided valuable insights into the effects of temperature and C-rate on battery cell

degradation.

According to the research paper [74], there are various order reduction methods
available pertinent to physics-based Li-ion battery models and their significant importance
in next-gen battery management systems (BMSs). Thus, we review and compare these
methods, particularly regarding model fidelity, computational efficiency, as well as
applicable domains for these techniques. Reduced-order models have been represented as
equivalent circuits to make it easier for designers and practitioners who do not necessarily
have electrochemical backgrounds but rather a grasp of circuit theory to apply them towards
multi-physical dynamics and interrelated battery effects. They are given the key pointers in
selecting the right physics-based models for varied model-based applications in battery
management. Discussions are then finalized with the possible obstacles and future research

lines associated with multi-physical BMS.

Although physics-based models (PBMs) provide comprehensive insights into the
internal electrochemical and thermal conditions of lithium-ion batteries, obstacles persist in
their utilization for real-time battery management and state-of-health (SOH) forecasting. This

study presents a Deep Neural Network (DNN) model for State of Health (SOH) estimation
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utilizing experimental data such as voltage, current, temperature, and health indicators. The
amalgamation of data-driven deep neural network methodologies with pharmacy benefit
managers is still inadequately investigated. Pharmacological Benefit Managers (PBMs) offer
precise descriptions of internal processes; however, they are computationally demanding and
necessitate intricate parameter identification, thereby constraining their feasibility in real-
time applications. DNN models exhibit computational efficiency; however, they lack the
interpretability and mechanistic insights provided by PBMs. A hybrid methodology that
integrates the predictive capabilities of DNNs with the mechanistic precision of PBMs may
address this disparity, facilitating accurate SOH predictions in dynamic environments.
Subsequent research ought to concentrate on integrating these methodologies to improve

battery performance modeling and management.

2.3.7 Impedance Spectroscopy (IS)

Impedance Spectroscopy (IS) is a powerful diagnostic technique used in
electrochemical systems to measure impedance as a function of frequency. It involves
applying a small alternating current (AC) signal to a system and analyzing the voltage
response. This technique provides valuable information about the electrochemical properties
of materials, such as charge transfer resistance, double-layer capacitance, and diffusion
coefficients. IS is widely used in studying batteries, fuel cells, and corrosion mechanisms. Its
capability to probe internal processes at different time scales makes it ideal for diagnosing
and modeling electrochemical systems [159]. IS is represented mathematically using
complex impedance, expressed as Z(w)=Z'(®0)+HZ"(w)Z(\omega) = Z'(\omega) -+
j1Z"(\omega)Z(w)=Z'(0)+jZ"(®), where Z'(w)Z'(\omega)Z'(®) and Z"(®)Z"(\omega)Z' (®)
are the real and imaginary components of impedance, respectively. A Nyquist plot, which
represents Z''(0)Z"(\omega)Z'"'(w) versus Z'(w)Z'(\omega)Z'(w), is commonly used for
analyzing IS data. Equivalent circuit modeling further interprets IS data by fitting it to

electrical circuit analogs that describe the system's behavior [160].

IS plays a critical role in diagnosing and monitoring lithium-ion batteries. It is used
to measure key parameters like internal resistance, charge transfer resistance, and diffusion

resistance. These parameters provide insights into battery performance, degradation, and
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state-of-health (SoH). IS is particularly valuable because it is non-invasive and can detect
early signs of aging and performance degradation. It allows researchers to study battery
behaviors under varying conditions, such as different temperatures, states of charge, and
cycling frequencies [161]. IS commonly applied in LiB studies to construct equivalent circuit
models, which simulate the battery's internal electrochemical processes. The technique helps
in separating contributions from the -electrode-electrolyte interface, solid-electrolyte
interphase (SEI) layer, and bulk material properties. For example, Osaka et al. [162] used IS
to diagnose commercially available lithium-ion batteries and identified changes in SEI
resistance due to aging. IS also enables real-time monitoring, which is crucial for advanced

battery management systems [163].

The study by [168] investigated lithium-ion batteries using two- and three-electrode
setups with IS. They identified that SEI resistance and charge transfer resistance are critical
for understanding battery degradation. Their findings emphasized that the SEI layer
significantly contributes to impedance at low frequencies. This study provided a framework
for separating electrode-specific contributions using IS. [166] analyzed the Nyquist plots of
lithium-ion batteries to diagnose aging mechanisms. They observed that the semicircles in
Nyquist plots expanded with cycling, indicating increased charge transfer resistance. This
method effectively correlated impedance changes with capacity fade, making it useful for
SoH estimation. [167] examined the performance of lithium iron phosphate batteries under
high-rate discharge conditions using IS. Their study found that high-rate cycling led to
significant increases in diffusion resistance, which was linked to structural degradation of the
electrode materials. They proposed optimizing electrode compositions to mitigate these

effects.

Following the research by [165] introduced nonlinear electrochemical impedance
spectroscopy (NLEIS) for lithium-ion batteries. Unlike traditional IS, NLEIS considers
nonlinear interactions within the battery. This technique improved the accuracy of identifying
degradation mechanisms, especially under dynamic operating conditions. [164] applied IS to
assess the SoH of lithium-ion batteries in high-power applications. They developed an

equivalent circuit model that incorporated inductive effects observed at high frequencies.
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This model improved SoH estimation accuracy for high-current scenarios. [160] studied IS
for different electrode materials and proposed material-specific equivalent circuit models.
Their work demonstrated that impedance behavior varies significantly based on material

composition, highlighting the need for customized models for each battery type.

Another study employed by [163] explored the temperature dependence of IS
parameters in lithium-ion batteries. They found that both charge transfer resistance and
diffusion resistance decreased with increasing temperature. Their study suggested that IS can
be used to optimize battery performance under varying thermal conditions. [163] developed
an IS-based SoH estimation method for lithium-ion batteries. By analyzing impedance data
across a wide frequency range, their model achieved high accuracy in predicting SoH. This
method demonstrated the potential of IS in advanced battery management systems. [161]
used IS to characterize the aging effects in lithium-ion batteries over extended cycling. They
identified correlations between impedance growth and cycle life, enabling the prediction of
battery lifespan. Their equivalent circuit model captured both reversible and irreversible
degradation mechanisms. [162] proposed a real-time diagnostic framework using IS for
commercial lithium-ion batteries. Their approach combined impedance data with
temperature and voltage measurements to enhance predictive accuracy. This model was

particularly useful for safety-critical applications.

Despite advancements in State-of-Health (SoH) estimation for electric vehicle (EV)
batteries, significant gaps remain in integrating comprehensive datasets and leveraging
advanced machine learning techniques. Existing studies primarily rely on conventional
methods like Impedance Spectroscopy (IS) and equivalent circuit models (ECMs), which,
while effective, lack scalability for real-time applications and often require extensive
experimental setups. Although recent approaches using data-driven models, including
Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs), have
improved prediction accuracy, they fail to holistically address the multidimensional nature of
battery health. These models often neglect critical parameters like temperature fluctuations,
variable load profiles, and nonlinear aging mechanisms, leading to suboptimal performance

under dynamic conditions. There is a need for a novel Deep Neural Network (DNN)
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framework capable of integrating diverse indicators such as voltage, current, and temperature
to provide real-time, accurate, and adaptable SoH predictions. This study aims to fill this gap

by proposing an advanced DNN model tailored for dynamic EV battery scenarios.

2.3.8 Deep Neural Networks (DNN)

In many real-world applications, estimating remaining useful life (RUL) has become
crucial to lowering maintenance costs and enhancing system efficiency and reliability. Deep
learning developments in the last few years have greatly improved machinery prognostic
RUL estimation and degradation progression accuracy. Deep learning is a branch of machine
learning that mimics human intelligence by modeling the structure and functions of the
human brain. A basic Deep Neural Network (DNN) is made up of a hierarchical configuration
of neurons that interact with one another and process input data to create a complex network
that learns via feedback mechanisms. The input data enters the first layer of neurons, where
the output is processed and passed to subsequent layers until the final prediction is achieved.
The output is typically represented as a probability, predicting outcomes such as "Yes" or
"No." Each neuron computes an "activation function," which facilitates signal transmission

to the relevant neurons in the next layer.

DNNSs consist of multiple fully connected layers to map complex relationships in

battery data. The layer computation is as follows;
a® = ¢ (W(l) a1 1 p®

Where: a® is the activation in layer I, W® | b® are weights and biases for layer 1,

@ is the activation function (e.g., ReLU). The output layer is as follows;
y=0W,.a® + b,)

Where, a®™ is the final hidden layer activations, ¢ is the softmax or sigmoid activation for
classification or regression tasks. DNNs are powerful for analyzing high-dimensional data

like battery impedance spectroscopy or voltage/current profiles.

Neurons in successive layers of a Deep Neural Network (DNN) are connected

through weights. These weights play a crucial role in determining the significance of
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individual features when predicting the target output. Figure 2.12 illustrates a DNN with four
hidden layers. Initially, the weights are assigned random values, but as the model undergoes
training, these weights are iteratively updated to optimize learning and improve prediction
accuracy. The advent of advanced computational power and increased data storage
capabilities has significantly boosted the adoption of deep learning models across various
domains. These models are now integral to numerous aspects of both digital and everyday
life. From healthcare and aviation to banking, retail, and telecommunications, deep learning
has become a transformative tool across virtually every industry, enabling smarter decision-

making and more efficient processes.
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Figure 2.12. Deep neural network with multiple hidden layers [75]

Following the study conducted by [76] proposed a state-of-charge (SOC) estimation
model for Li-ion batteries utilizing an advanced deep neural network (DNN) methodology
specifically designed for electric vehicle applications. The research indicated that a suitably
configured DNN with an ideal quantity of hidden layers could precisely forecast the SOC of
drive cycles absent from the training dataset. A variety of DNN models with distinct hidden
layer configurations were created and assessed to evaluate their performance across different

drive cycles. The findings demonstrated that augmenting the number of hidden layers to four
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markedly diminished the error rate and enhanced SOC estimation precision. Nevertheless,
incorporating more than four hidden layers resulted in elevated error rates, indicating
diminishing returns and the possibility of overfitting. The research highlighted that a DNN
with four hidden layers, trained on the Dynamic Stress Test drive cycle, excelled in predicting
SOC for novel drive cycles, such as the Federal Urban Driving Schedule, Beijing Dynamic

Stress Test, and Supplemental Federal Test Procedure.

The research by [77] presented a novel approach for state-of-charge (SOC) estimation
in Li-ion batteries utilizing Deep Feedforward Neural Networks (DFNN). This method
directly correlates battery measurements to SOC, utilizing an extensive dataset produced in
the laboratory. The training data encompassed drive cycle loads imposed on a Li-ion battery
across diverse ambient temperatures, subjecting the battery to variable conditions. The study
emphasized the DNN's capacity to encode temporal dependencies within its network weights,
facilitating precise SOC predictions. The training dataset included measurements taken at
ambient temperatures between —20 °C and 25 °C. Upon training, the DNN exhibited the
ability to estimate SOC under various temperature conditions utilizing a singular model.
Validation across diverse datasets demonstrated remarkable performance, with a Mean
Absolute Error (MAE) of 1.10% at 25°C and 2.17% at —20 °C, signifying the model's

robustness and precision under different thermal conditions.

A feedforward deep neural network model for predicting the parameters of lithium-
ion batteries used in electric vehicles was presented in the works of [78]. In order to identify
suitable candidate parameters, the model excluded categorical variables using correlation
analysis. To estimate the battery's state-of-charge (SOC) and produce an inverse model for
extensive parameter prediction, a feedforward artificial neural network was built. Four virtual
functions were incorporated into the SOC prediction of the direct model to serve as input
variables for the inverse model, increasing the predictive accuracy of the latter. The suggested
inverse model demonstrated the ability to predict multiple outputs, such as velocity, voltage,
speed, mileage, and (SOC). Because of its multi-output capability, it was better than
traditional single-output feedforward networks, which primarily focus on SOC. Simulations

employing the inverse model, augmented with virtual functions, attained an accuracy 44.43
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times superior to that of traditional inverse deep neural network models. The mean square
error metric was utilized to assess the model's performance. The study's results indicate that
incorporating virtual functions into the inverse model framework markedly enhances the
precision of predictions concerning battery and electric vehicle parameters, thereby enabling

more informed decision-making in design and simulation processes.

In order to estimate the state-of-charge (SOC) of batteries, a deep neural network
(DNN) model was developed by [79]. This model uses temperature, voltage, and current
samples that are taken every 10 seconds as input data. A convolutional layer is used for
feature extraction and sequence generation, a simple recurrent unit (SRU) layer is used for
sequence processing and historical information transfer, an ultra-lightweight subspace
attention mechanism (ULSAM) layer is used to highlight important information within the
sequence, and a dense layer is used to output the SOC estimate. The model's robustness and
effectiveness in real-world applications were demonstrated by its high accuracy in (SOC)
estimation and notable adaptability to battery degradation, varying ambient temperatures, and
a variety of discharge conditions. The model was validated using two public battery datasets.
According to the study by [80] presented a deep neural network (DNN)-based methodology
for estimating the state-of-charge (SOC) of batteries utilizing merely 10 minutes of charging

voltage and current data as input.

This technique is suitable for calibrating the Ampere-hour counting method because
it yields fast and accurate (SOC) estimation with an error rate that is less than 2.03% over the
whole SOC spectrum. The study found that by reducing the impact of error spikes and
random noise, the DNN combined with a Kalman filter enhances the accuracy of SOC
estimation. A root mean square error of 0.385% was maintained by the method in spite of
significant perturbations. Using the transfer learning methodology, the DNN showed
adaptability to a variety of conditions, such as battery aging and different charging rates. By
optimizing one layer of a pre-trained model, this technique reduces training costs while
increasing estimation accuracy, producing root mean square errors of less than 3.146% for

older batteries and 2.315% for different kinds of batteries. Refining supplementary layers
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further improved performance, rendering the method efficient and adaptable for various

situations.

In research, [81] developed a novel data-driven approach that uses a hybrid deep
learning model that combines convolutional neural networks (CNN), long short-term
memory (LSTM), and conventional neural networks to estimate the Remaining Useful Life
(RUL) of batteries. In order to improve the accuracy of RUL predictions, this hybrid CNN-
LSTM architecture was created expressly to extract both spatial and temporal features from
multivariate time series data while capturing nonlinear behaviors. Particle swarm
optimization (PSO) was used for hyperparameter tuning, which improved the model's
performance by optimizing parameters like the number of epochs, the arrangement of LSTM
and convolutional layers, and the size of units or filters within each layer. Using NASA's
well-known lithium-ion battery (LiB) dataset, the CNN-LSTM-PSO framework underwent
extensive validation and is capable of supporting multi-step-ahead forecasting. According to
experimental results, the CNN-LSTM-PSO model performed better than other deep learning
and advanced machine learning techniques on a number of evaluation metrics, proving its
usefulness as a reliable tool for RUL prediction. The application of deep neural networks
(DNNSs) to battery management systems has advanced significantly, but there are still many
obstacles to overcome before state-of-health (SOH) estimation for electric vehicle (EV)
batteries can be considered practically applicable and its predictive accuracy can be further

improved.

This work proposes a DNN-based approach for State of Health estimation using
experimental data, including voltage, current, temperature, and health indicators. However,
there is still insufficient research on the integration of advanced DNN architectures, like
CNN-LSTM hybrids, which have demonstrated remarkable spatiotemporal feature extraction
capabilities in remaining useful life (RUL) estimation. Furthermore, while existing
approaches address specific tasks like degradation modeling or State of Health (SOH)
estimation, few approaches effectively combine SOH estimation with multi-output
predictions like degradation modes and operational metrics. Efficiency and scalability may

be improved by adapting models for different battery chemistries and aging scenarios using
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strategies like transfer learning. Future work should look into multi-task learning frameworks
and the integration of hybrid DNN models with real-time datasets for thorough battery health

management.

2.3.9 Convolutional Neural Network (CNN)

Within the deep learning model category, Convolutional Neural Networks (CNNs)
are designed to analyze data that has a spatial or grid-like configuration, such as images or
time-series data [82]. Convolutional filters are applied to the input data by a CNN in order to
help capture spatial hierarchies and patterns. Convolutional, pooling, and fully connected
layers typically make up a CNN's architecture. While pooling layers downsample the feature
maps to reduce dimensionality and highlight the most prominent features, convolutional
layers extract features by applying filters that traverse the input data. At the end of the
network, fully connected layers combine the extracted features to produce predictions.
ReLU-style activation functions are used in layers to introduce non-linearity, and
backpropagation is used to improve the filter weights over the time training process. This
architecture renders CNNs especially proficient for feature-dense, high-dimensional data,

ensuring strong performance across various applications [83].

Three main parts make up the structure of a Convolutional Neural Network (CNN),
a particular kind of multilayer perceptron (MLP): the input layer, hidden layers, and output
layer. While the output layer creates the final predictions that can be used in further tasks or
applications, the input layer receives the raw data and passes it to the first hidden layer. The
convolutional, max-pooling, and fully connected layers are examples of the hidden layers.
Convolutional layers are essential to CNNs because they enable the extraction of local
features from the input data, their hierarchical processing, and the transmission of the
resulting information to deeper layers for more sophisticated feature learning and analysis.
The vector output from the first convolutional layer can be represented mathematically as

follows:

58



0L = (b} + Z wELX + £2—1,))
fv=1

Where 6, b_j, and w stand for sigmoid activation function, the bias for the j feature map, and
the sigmoid activation function, respectively. The filter index is denoted by f v, while the
power production input vector is represented by x. Similarly, the vector o output of the 1

convolutional layer can have the following expression as its result.:

M
0L = (b + z wELX + £2—1,))

fv=1

Max-pooling layers are used to reduce the representation's dimensionality, which

lessens the model's computational load. The max-pooling layer operates as follows:
1 _ [-1 ;
Ojj =max y; X T"""+r,j(r €R)

R is the size of the pooling. T is the step that calculates the moving distance of the
input data area, which must be less than the input size y. Every neuron in a layer is connected

to every other neuron in the output layer by fully connected layers.

CNNs have been widely adopted in the field of LiB research for state-of-charge
(SOC), state-of-health (SOH), capacity estimation, and fault diagnosis. The nonlinear and
complex electrochemical behaviors of lithium-ion batteries, including lithium iron phosphate
(LiFePOs) batteries, make conventional modeling techniques less effective. CNNs excel in
analyzing multidimensional data such as voltage, current, temperature, and impedance
spectra, providing accurate predictions and diagnostics by extracting hierarchical features
[84]. CNNs capture spatio-temporal dependencies, making them highly adaptable to battery
conditions such as aging, varying ambient temperatures, and cycling conditions [85]. By
leveraging convolutional layers, CNNs can identify intricate patterns and degradation trends

in batteries, offering substantial improvements over traditional algorithms [86].
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Following the study by [82] introduced a pruned CNN model for LiB capacity
estimation, integrating transfer learning to reduce computational overhead while maintaining
high accuracy. [83] demonstrated the use of CNNs for parameter identification in
electrochemical battery models, highlighting the efficiency of CNNs in accurately predicting
essential parameters like resistance and capacity. [84] reviewed advancements in deep CNNs
for state prediction, emphasizing their effectiveness in handling multi-timescale challenges
in lithium-ion batteries. [85] combined CNNs with transformer models for SOH estimation,
achieving high accuracy under various environmental conditions and battery degradation
states. [87] utilized a CNN and a knee-point detection algorithm to predict battery
degradation curves, showcasing the model’s capability in estimating lifespan. [88] proposed
a hybrid CNN and Gaussian process regression approach for probabilistic SOH prediction,

improving uncertainty quantification in battery monitoring systems.

The research by [89] employed CNNs with impedance spectra for capacity
estimation, demonstrating high precision and adaptability to complex datasets. [90]
developed a CNN to estimate SOH during constant current operations, which showed
resilience to charge-discharge variations. [91] integrated empirical mode decomposition and
CNNe s for fault diagnosis in battery packs, accurately identifying faults in multi-cell systems.
Similarly, [92] applied CNNs for defect detection in polymer lithium-ion batteries, achieving
a high detection rate for manufacturing flaws. [93] proposed a CNN-based SOH estimation
model using charge profiles, providing high prediction accuracy across multiple cycling
datasets. [94] used CNNs to diagnose battery degradation modes, demonstrating their ability
to identify specific degradation mechanisms. [95] applied CNNs to estimate capacity using
random charging curve segments, achieving consistent performance under varying cycling

conditions.

The study by [96] developed a CNN in the time-frequency domain for SOC
estimation, effectively capturing spectral and temporal dependencies. [97] combined CNNs
with random forests to create a robust SOH estimation model, excelling in noisy datasets. A
CNN with U-Net architecture for SOC estimation was introduced in the works of [84],

achieving high accuracy over a variety of datasets and operating conditions. In order to
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estimate remaining useful life (RUL), [98] developed a hybrid CNN-LSTM-DNN model
that combined the advantages of LSTMs for sequential data processing and CNNs for feature
extraction. By incorporating an adaptive Kalman filter for SOE estimation, [99] improved
CNN performance and showed resilience in challenging thermal conditions. [54] combined
CNNs and LSTMs to model multiphysics and capture complex interactions between different
domains. In order to estimate capacity using short-duration constant-current charging
voltages, [100] used a CNN and produced accurate predictions in a variety of charging
scenarios. Their model demonstrated CNNs' versatility in practical applications, highlighting

their importance in battery research.

Despite advancements in leveraging deep neural networks (DNNs) for battery health
estimation, critical research gaps remain, particularly in their integration with real-world
applications and advanced architectures. The present study introduces a novel DNN model
to estimate the SOH using experimental data, including voltage, current, temperature, and
health indicators. However, the study lacks exploration of convolutional neural networks
(CNNs), which excel in capturing spatial hierarchies and temporal dependencies from multi-
dimensional data. Hybrid models, such as CNN-LSTM combinations, have demonstrated
superior accuracy by integrating spatial and sequential data processing capabilities.
Furthermore, the potential of transfer learning for adapting models across battery chemistries,
degradation states, and environmental conditions remains underutilized. Addressing these
gaps through hybrid frameworks and leveraging advanced techniques like transfer learning
and uncertainty quantification could significantly enhance SOH estimation, ensuring robust

and scalable solutions for electric vehicle battery management.

2.3.10 Recurrent Neural Network (RNN)

An artificial neural network type called Recurrent Neural Networks (RNNs) is made
especially to process sequential data. RNNs, as opposed to FNNs, have loops in their
architecture, which enable them to feed back their output into the network in order to retain
information from prior inputs. RNNs are especially well-suited for tasks involving sequential
or time-dependent inputs because of their feedback mechanism, which allows them to model

temporal dependencies and identify patterns in time-series data [102]. The architecture
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creates a dynamic link between past and present data by relying on hidden states that are
updated iteratively as new inputs are processed. But conventional RNNs have drawbacks,
like the vanishing gradient issue, which makes it difficult for them to understand long-term
dependencies. To overcome these issues, advanced variants like (LSTM) networks and Gated
Recurrent Units (GRUs) were introduced. These architectures use gating mechanisms to
regulate the flow of information, allowing them to effectively capture and learn long-term

dependencies [103].

RNNSs process sequential data by maintaining a hidden state that captures temporal
dependencies. For battery data (e.g., voltage, current, temperature): The hidden state update

is as follows;
ht == ® (Wh'ht—l + Wx .xt + bh

Where,h,is the hidden state at time t, h,_, hidden state at time t —

1, x; input at time, by, is the bias factor. The output computation is as follows;
Ye = Wt . h’t + by

The capacity of Recurrent Neural Networks (RNNs) to handle temporal data and
capture dynamic relationships in battery performance has led to their considerable attention
in LiB applications. Lithium-ion batteries, which comprise lithium iron phosphate (LiFePOa)
batteries, display intricate behaviors that are impacted by various factors, including
temperature, charge-discharge cycles, (SOH), and (SOC). Because traditional models cannot
process sequential data well, they are unable to predict battery parameters with any degree
of accuracy. By utilizing their memory and feedback capabilities, RNNs get around this
restriction and allow for precise estimations of SOC, SOH, and remaining useful life (RUL)
[106]. For battery diagnostics and prognostics, variants like LSTM and GRU have gained
popularity because of their exceptional efficacy in controlling nonlinear battery behaviors
[108,111]. RNNs capture temporal dependencies and offer insights into capacity degradation
and battery aging, and thermal characteristics, enhancing battery management systems

(BMS) [104].
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The study by [105] combined denoising autoencoders with GRU-based RNNs for
SOC estimation, demonstrating improved accuracy in handling noisy data. Similarly, [108]
proposed a clockwork RNN for SOC estimation, which effectively reduced computational
complexity while maintaining accuracy. [106] introduced time-delayed RNNs to improve
SOC estimation reliability by addressing overexcited neurons. These models achieved robust
SOC predictions under varying operating conditions. [111] developed a GRU-based RNN for
SOC estimation, achieving high precision in dynamic conditions. [105] conducted a
comparative study of different RNN architectures for SOC estimation in electric vehicles.
Their findings emphasized the advantages of GRUs and LSTMs in capturing battery
dynamics. [109] proposed a physics-informed RNN with fractional-order gradients,
enhancing SOC estimation by incorporating domain-specific knowledge. [107] used a
jellyfish-optimized RNN for SOH estimation, showcasing improved performance over
traditional optimization techniques. [117] applied RNNs to estimate SOH, demonstrating
their adaptability to varying battery conditions. [119] proposed an RNN-based framework for
battery degradation prediction under uncertain future conditions, highlighting the importance

of RNNs in long-term health monitoring.

The research by [110] employed RNNs for RUL estimation, achieving accurate
predictions across different battery chemistries. [86] developed a compact RNN methodology
for equivalent circuit modeling, enabling precise SOH estimations. [115] introduced a multi-
charging profile framework using RNNs for RUL prediction, demonstrating the flexibility of
RNNs in handling diverse operational scenarios. [112] utilized RNNs for temperature
estimation in lithtum-ion batteries, providing valuable insights into thermal management.
[104] applied RNNs to model the large deformation of battery cells, capturing complex
mechanical behaviors. These studies highlight the versatility of RNNs in addressing thermal

and structural challenges in battery systems.

Following the study by [116] employed LSTM-based RNNs for capacity prediction,
achieving high accuracy in validation tests. [ 118] proposed a hybrid RNN and support vector
machine (SVM) model for co-estimation of SOC and capacity, emphasizing the effectiveness

of integrating RNNs with other machine learning techniques. [113] introduced an adaptive
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RNN for RUL prediction, showcasing its ability to adapt to changing conditions. [114]
developed a unified RNN methodology for voltage and SOC modeling, achieving reliable
predictions across varying cycles. [121] compared RNNs, CNNs, and BP networks for

capacity prediction, demonstrating RNNs' superior performance in temporal data analysis.

Following the research by [111] integrated empirical mode decomposition with deep
RNNs for predictive maintenance, improving fault detection accuracy. Another study by
[122] introduced LSTM-based RNNs for SOC estimation, emphasizing their robustness in
dynamic environments. Moreover, the study by [124] proposed an LSTM-based RNN for
SOC estimation, achieving significant improvements in prediction accuracy. Following the
research by [114] and [123] highlighted the versatility of RNNs for equivalent circuit
modeling, demonstrating their applicability across different battery chemistries. The
investigation by [119] showcased RNNs' ability to predict battery degradation under varying

operational conditions, emphasizing their importance in future-proofing battery systems.

Despite significant advancements in battery health estimation using deep neural
networks (DNNs), several research gaps remain unaddressed. The present study proposes a
novel DNN model utilizing experimental data such as voltage, current, temperature, and
existing health indicators to estimate the SOH. However, it lacks an exploration of RNNss,
including advanced variants like LSTM and GRU, which are well-suited for capturing
temporal dependencies and handling sequential data inherent in battery performance.
Additionally, hybrid models combining DNNs with RNNs or other architectures such as
CNNs could improve prediction accuracy by leveraging complementary strengths. The
integration of physics-informed features into data-driven approaches, such as incorporating
electrochemical behaviors or degradation mechanisms, also remains underexplored.
Addressing these gaps through hybrid frameworks, temporal modeling, and domain
knowledge integration could enhance SOH predictions, ensuring robust and scalable

solutions for electric vehicle battery management.

2.3.11 Long Short-Term Memory (LSTM)

The development of neural network algorithms—such as feedforward, convolutional,

and (LSTM) networks—has made a substantial impact on data analysis and our
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understanding of the connection between charging profiles and battery capacity. Recurrent
neural networks (RNNs) have limitations, such as vanishing and exploding gradient issues.
LSTM networks, a specialized version of RNNs, are made to handle sequential data. Initially
presented by Hochreiter and Schmidhuber in 1997, LSTMs control the information flow
within the network by means of gating mechanisms, namely forget, input, and output gates.
These gates facilitate the efficient modeling of long-term dependencies by allowing LSTMs
to selectively keep or discard data from earlier time steps. To be more precise, the output gate
produces the current output based on the updated cell state, the input gate adds new input,
and the forget gate determines which information to discard [123]. Owing to this architecture,
temporal understanding tasks like language processing, sequential decision-making, and

time-series forecasting are especially well-suited for LSTM networks [126].

LSTMs address the vanishing gradient issue by incorporating gates to regulate

information flow. Forget gate is as follows;
ft = 0 (Wf . [ht—l ,xt]+ bf

Where, f; is the forget gate output wy weight matrix and bias for forget gate, o is the

sigmoid activation function. The input gate is as follows;
lt =0 (Wl [he—1 ,x¢]+ by
Ct = tanh(WC . [ht—l ,xt]+ bC

Where, i; is input gate output, C; is the candidate memory content. The memory cell

update is as follows;
Ce=t¢-Ce—111¢-Ce

The output state and hidden gate is as follows
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O = 0 (WO [he—1 ,x¢]+ by

h=o¢tanh(Cy)
The final output Yt is computed similarly to RNN,

Yt:Wy y ht+by

LSTMs capture long-term dependencies in battery degradation data, improving SOH

and SOC estimation.

LSTM networks are widely used in LiB applications, such as LiFePOs batteries, for
tasks like capacity fade prediction, RUL forecasting, SOC estimation, and SOH monitoring.
Since temperature, cycling conditions, and aging all affect battery behavior, traditional
models frequently find it difficult to accurately capture the complex and nonlinear behavior
of batteries. Because LSTM networks can handle sequential data such as voltage, current,
and temperature profiles, they are useful for diagnostics and accurate prediction [127]. They
are also very useful for BMS, where accurate, real-time predictions are necessary to
guarantee optimal performance and dependability, due to their resilience in the face of noise

and nonlinear patterns [129, 130].

The study by [125] developed a digital twin model based on LSTMs for real-time
temperature prediction and degradation analysis in lithium-ion batteries. This model provided
actionable insights into thermal characteristics and degradation under varied conditions. The
research by [126] proposed an LSTM network for predicting the remaining useful life (RUL)
of lithium-ion batteries. The study demonstrated high accuracy in capturing long-term
dependencies, making it suitable for real-world applications. Following the study by [127]
presented an LSTM-based method for state-of-charge (SOC) estimation, achieving reliable
predictions across diverse operational scenarios. Following the research by [128] investigated

the impact of loading variations on lithium iron phosphate battery electrodes using LSTMs.
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Their model accurately predicted electrode behavior under dynamic conditions. The study by
[129] proposed an LSTM model for SOC estimation, emphasizing robustness in noisy
datasets. The research investigated by [130] integrated LSTMs with an improved sparrow
search algorithm for RUL prediction, achieving significant improvements in accuracy and

efficiency.

Another study by [126] combined LSTMs with board learning systems for LiB
capacity and RUL prediction. The approach demonstrated robustness across various
operational conditions. The study by [132] conducted a comparative study of deep learning
methods for SOC estimation, confirming LSTMs' superiority in handling lithium iron
phosphate (LiFePOQ.) battery data. The research by [133] utilized LSTMs for real-time
parameter estimation in electrochemical battery models, showcasing adaptability to real-
world battery behaviors. The works by [134] combined LSTMs with convolutional neural
networks (CNNs) for multiphysics modeling of lithium-ion batteries. Their hybrid model
successfully captured complex spatial-temporal interactions. The investigation conducted by
[135] proposed a variant LSTM for SOH estimation and RUL prediction, achieving precise
forecasts across varying battery degradation states. The study by [136] introduced a transfer
learning-enhanced LSTM model for capacity fade and cycle life prediction, reducing training

time and improving accuracy.

Following the research by [137] applied LSTMs to estimate SOC for a group of
lithium-ion batteries, achieving consistent and reliable performance. Following the study by
[139] developed a deep LSTM model for real-time capacity estimation, ensuring accurate
predictions in battery management systems (BMS). Another study by [140] explored
bidirectional LSTMs for SOC estimation, improving predictions by capturing forward and
backward temporal dependencies. The investigation by [141] proposed an enhanced SOC
estimation method using LSTMs integrated with adaptive state update filters. This approach
addressed uncertainties in battery parameters effectively. The study by [142] leveraged
transfer learning with LSTMs for SOH prediction, enabling adaptation to diverse battery
types and cycling conditions. The research by [143] proposed an improved LSTM-based

SOH estimation algorithm, resilient to battery degradation and environmental variability.
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Following the study by [144] utilized stacked bidirectional LSTMs for LiB health
management, demonstrating their efficacy in handling multivariate and complex datasets.
Another study by [145] introduced a cost-effective LSTM-based framework for LiB
diagnosis and prognosis, reducing computational overhead. The study by [116] integrated
empirical mode decomposition with LSTMs for predictive maintenance, enhancing fault
detection accuracy. The research by [124] applied LSTMs for SOC estimation, emphasizing
their ability to process large datasets and dynamic conditions. Another investigation by [123]
highlighted the versatility of LSTMs in equivalent circuit modeling for voltage and SOC
predictions. The research by [121] compared LSTMs with CNNs and BP networks for
capacity prediction, showcasing their superior performance in temporal data analysis. The
study by [141] demonstrated the application of LSTMs in SOC estimation across varying
environmental conditions, highlighting their adaptability in practical scenarios. These studies
collectively underscore LSTMs' pivotal role in advancing LiB diagnostics, prognostics, and

management systems.

Despite the growing body of research on battery state-of-health (SOH) estimation
using machine learning models, critical gaps remain in integrating advanced neural network
architectures with real-world applications. The proposed study introduces a Deep Neural
Network (DNN) for predicting SOH using experimental data, including voltage, current,
temperature, and health indicators. However, current approaches often overlook the
challenges posed by varying environmental conditions, battery chemistries, and degradation
profiles that impact prediction accuracy. While DNN models demonstrate promise in
identifying nonlinear relationships, their integration with physics-informed features and
dynamic real-time adaptability is underexplored. Moreover, the scalability and robustness of
these models for large-scale deployments in electric vehicles (EVs) are not fully validated.
Addressing the alignment of DNN-based estimations with diverse battery usage scenarios,
including rapid charging cycles and extreme temperatures, is critical. This research aims to
bridge these gaps by enhancing model precision, generalizability, and computational

efficiency across variable operational contexts.
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2.4 Proposed Methods in Literature

Following the study by [151] focused on analyzing LiB degradation using a realistic
forklift mission profile to evaluate state-of-health (SOH) and predict battery lifetime. This
method involves subjecting three prismatic LiB cells to a forklift load profile under varying
temperatures (45 °C, 40 °C, and 35 °C) to simulate accelerated aging. The experimental setup
incorporates dynamic charging and discharging conditions, with aging cycles followed by
Reference Performance Tests (RPTs) to monitor capacity and internal resistance. Data is
collected at high frequency, capturing second-by-second measurements of key variables,
such as current, voltage, energy, and temperature. This dataset is intended for developing and
validating various models, including electrochemical, statistical, and artificial intelligence

models, for SOH estimation and lifetime prediction.

The advantages of this method are its realistic simulation of operational conditions,
making it relevant to real-world applications. The dynamic load profile reflects variable
usage patterns, enhancing the accuracy of battery behavior modeling. The high-resolution
dataset provides comprehensive information, enabling detailed analysis and the development
of versatile models. Additionally, despite its specificity to forklifts, the method can be
adapted to electric vehicles due to similarities in operational characteristics. However, some
limitations exist. The method's focus on forklift-like applications may restrict its broader
applicability, and the loss of some aging and RPT data could introduce biases or necessitate
data imputation. Furthermore, the study isolates calendar and cycling aging effects, missing
insights into their interactions. Experimental constraints, such as fixed charging/discharging
currents and temperature settings, may limit generalization to other battery chemistries or
conditions. This approach contributes significantly to the field by combining realistic load
profiles with systematic aging cycles, offering a robust framework for evaluating LiB. It
bridges the gap between laboratory and field applications, providing high-resolution data for
advanced modeling techniques and practical utility. This study's findings can improve state-
of-health estimation and extend battery life, particularly for applications in electric vehicles

and industrial settings.
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Following the research by [152] employs an advanced method for forecasting the
(SOH) of LiBs using deep learning (DL) models, focusing on their application in truck energy
systems. The methodology begins with an extensive literature review on battery degradation
and aging mechanisms, leveraging insights to address the challenges of SOH prediction.
Using an open-source dataset, the study aggregates stressor signals, such as temperature,
current, and SOC, into structured stressor tables. Feature reduction is applied to improve
model efficiency by eliminating irrelevant data. The modeling process begins with Gaussian
Process Regression (GPR), Multilayer Perceptrons (MLP), and CNN for initial validation.
Advanced DL models like LSTM, GRU, and FNN are then evaluated for their ability to
handle sequential data. Additionally, lightweight models such as Support Vector Regression
(SVR) are employed to test performance in computationally constrained scenarios. To
enhance interpretability, explainable machine learning (XML) techniques, including SHAP
(SHapley Additive exPlanations) and Saliency Maps, are integrated. These techniques allow
researchers to visualize and better understand the decision-making process of the models.
The models are trained to predict SOH until failure, defined as an 80% capacity threshold,

and are validated using performance metrics like RMSE and R2.

The method offers several advantages. Deep learning models, particularly LSTM and
GRU, demonstrate high accuracy in forecasting SOH under complex degradation conditions.
The approach is versatile, as stressor-based feature aggregation ensures robustness, and XML
techniques provide a layer of interpretability critical for practical applications. Additionally,
lightweight models like SVR ensure scalability by offering competitive performance in
resource-constrained environments. However, the method also has limitations. Deep learning
models are computationally intensive and require significant expertise for tuning. The
reliance on a single dataset may limit the generalizability of results, while the exclusion of
physical or hybrid modeling approaches restricts insights into battery chemistry. Despite
XML enhancements, interpretability remains a challenge due to the inherent complexity of

DL architectures.

The contributions of the study are significant. By integrating stressor-based features

with deep learning and XML, it bridges the gap between high performance and
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interpretability. The combination of various models caters to different resource scenarios,
making the approach adaptable for both high-performance and computationally limited
applications. This methodology advances predictive maintenance strategies and provides
actionable insights into battery aging. The study underscores the utility of XML in clarifying
complex predictions, thereby improving reliability and user trust in machine learning models
for SOH forecasting. Key references supporting this approach include Another study by
[153], which provide foundational methodologies and data for battery aging and modeling

research.

Following the study by [154] proposes a method for predicting the remaining useful
life (RUL) of LiBs using a comparative analysis of machine learning (ML) models, with an
emphasis on enhancing prediction accuracy and applicability. The methodology incorporates
a multi-feature multi-target (MFMT) feature mapping framework, enabling accurate
predictions of capacity fade and RUL across the entire lifecycle of batteries. To validate the
approach, three case studies are conducted using two distinct datasets. The first two cases
utilize a synthetic dataset representing linear battery degradation, while the third case
employs a real-world dataset capturing nonlinear and complex degradation behaviors. Eight
ML models, including Random Forest (RF), Multi-Layer Perceptron (MLP), XGBoost,
XGBoost with hyperparameter tuning (XGBoost-HT), Light Gradient Boosting Machine
(LightGBM), LightGBM with hyperparameter tuning (LightGBM-HT), LSTM, and
Attention-LSTM, are analyzed. The study highlights the superior performance of XGBoost-
HT, which incorporates hyperparameter optimization and regularization techniques,
achieving the lowest root mean squared error (RMSE) and mean absolute percentage error
(MAPE) across all cases. This robust approach is further strengthened by the application of
MFMT feature mapping, which enhances the models' ability to predict nonlinear battery

degradation.

The proposed method offers several advantages. The integration of MFMT feature
mapping and hyperparameter tuning significantly improves predictive accuracy, particularly
for batteries exhibiting nonlinear degradation patterns. The diversity of ML algorithms

ensures flexibility, enabling practitioners to choose models based on computational resources
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and application requirements. Additionally, the use of both synthetic and real-world datasets
ensures comprehensive validation, enhancing the approach's robustness. However, the
method also presents challenges. The reliance on specific datasets may limit its
generalizability, and the advanced models require substantial computational resources for
training and optimization. Furthermore, the exclusion of physics-based modeling means that
some insights related to battery chemistry and degradation mechanisms may be overlooked.
The models' dependency on precise hyperparameter tuning adds complexity to the

implementation process.

Following the research by [155] proposed a comprehensive methodology for predicting
the SoH and performance of LiBs in EVs by employing a comparative analysis of ML and DL
approaches. Various techniques, including LR, DTs, support vector machines (SVMs), and ensemble
methods, as well as advanced methods like artificial neural networks (ANNs), LSTM, and
bidirectional LSTM (Bi-LSTM), are utilized. These methods are applied to publicly available datasets
containing charge-discharge cycles of LiBs, focusing on improving model accuracy through
preprocessing, feature selection, and hyperparameter tuning. The models are evaluated using metrics
such as mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE),
and R-squared to identify the most effective techniques. Among these, Bi-LSTM is highlighted for
its ability to capture nonlinear battery degradation patterns and is proposed as a superior solution for

implementation in battery management systems (BMSs).

The advantages of this methodology include its comprehensive nature, providing
insights into the strengths and weaknesses of different ML and DL models for SoH prediction.
The integration of hyperparameter tuning and feature selection ensures optimized model
performance, while the use of real-world datasets enhances the practical applicability of the
findings. The approach is also scalable, with lightweight models like DTs and SVMs suitable
for real-time applications in BMSs with limited computational resources. Advanced models
such as Bi-LSTM demonstrate exceptional predictive power, particularly in scenarios
involving complex nonlinear degradation behaviors. However, there are notable limitations.
The DL models, including Bi-LSTM, require significant computational resources and
expertise for training and implementation. The method’s reliance on specific datasets may

limit its generalizability to other battery chemistries or applications. Additionally, the lack of
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integration with physical or hybrid modeling approaches may restrict insights into underlying
degradation mechanisms. The study makes significant contributions to the field by
systematically comparing ML and DL approaches, identifying Bi-LSTM as a leading method
for handling nonlinear data in battery performance prediction. The findings enable the
development of more reliable and efficient BMSs, supporting better range prediction, safety,
and maintenance planning for EVs. By optimizing model architecture and parameters, the
research bridges the gap between theoretical advancements and real-world applications,

paving the way for future technological innovations in EV battery management.

The study by [156] introduced a data-driven multi-model fusion methodology to
improve the accuracy and robustness of LiB aging diagnostics and prognostics. This
approach leverages both laboratory cycling data and real-world field data to estimate the SoH
and predict the RUL of batteries. For SoH estimation, six distinct operational scenarios are
identified, and features specific to each scenario are extracted to capture battery degradation
under diverse conditions. A Kalman filter-based fusion algorithm combines predictions from
various machine learning models, enhancing the reliability and precision of the estimations.
To address the challenges of nonlinear and variable aging patterns observed in real-world
applications, a histogram-based feature extraction strategy is implemented. This approach
accommodates noisy field data and enables robust predictions of aging trajectories.
Moreover, an online adaptive correction model refines the predictions in real time to account
for cell-to-cell variations. For RUL prediction, the study investigates the use of time-series
measurement data and histogram features, demonstrating their complementary roles in
improving prognostic accuracy. The method is validated using datasets from both controlled
laboratory conditions and real-world operations, ensuring its applicability across a wide

range of use cases.

The proposed method offers several advantages. It is highly applicable to real-world
scenarios due to the integration of field and laboratory data, ensuring practical relevance for
electric vehicles and energy storage systems. The multi-model fusion approach and scenario-
specific feature extraction significantly enhance the accuracy of SoH and RUL predictions.

The method’s robustness to noisy and variable field data is further strengthened by the
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histogram-based features and online adaptive correction models, while its computational
efficiency allows for potential implementation in battery management systems (BMS).
However, the methodology also presents some challenges. Its reliance on high-quality and
representative data limits its generalizability to different battery chemistries or operational
conditions. The complexity of implementation, requiring expertise in model configuration
and computational resources, can be a barrier. Additionally, as a data-driven approach, it
provides limited insight into the underlying physical degradation mechanisms, which could
reduce interpretability. Integrating laboratory and field data with different formats and

resolutions also introduces preprocessing challenges.

The research by [73] proposed a hybrid framework that combines model-based and
data-driven approaches to enhance the accuracy and reliability of LiB aging diagnostics and
prognostics. The method leverages the strengths of both approaches, with model-based
components providing physical interpretability and ML techniques improving predictive
accuracy and adaptability. The framework is designed to estimate the SoH and RUL of
batteries under a variety of operating conditions. It adopts a two-step methodology: first,
offline training of data-driven models to correct errors in model-based RUL predictions, and
second, real-time error correction during online deployment. Feature engineering is
employed to extract critical attributes such as voltage, current, and temperature, which serve
as inputs for training ML models. The framework is validated on multiple datasets, including
laboratory, real-world, and out-of-distribution (OOD) scenarios, to ensure robustness across
diverse conditions. Furthermore, uncertainty quantification techniques are integrated to
improve prediction reliability and provide conservative estimates, which are essential for

safety-critical applications.

The proposed method offers several advantages. It significantly enhances predictive
accuracy by combining the interpretability of model-based methods with the flexibility of
data-driven techniques. The framework is robust across various conditions, as it incorporates
real-world and OOD datasets, making it applicable to diverse use cases. Its integration of
uncertainty quantification ensures reliable and conservative estimates, which are critical for

operational safety. Additionally, the modular design of the framework allows for scalability,
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enabling the integration of new datasets and algorithms as battery technologies evolve.
However, the approach also presents challenges. The hybrid framework requires substantial
computational resources for training and deployment, which may limit its use in resource-
constrained environments. Its performance is heavily dependent on the quality and
representativeness of the training datasets, and the integration of model-based and data-
driven methods requires careful calibration and tuning, adding complexity to
implementation. Furthermore, the framework may need retraining to generalize effectively

for significantly different battery chemistries or use cases.

The hybrid framework makes a significant contribution to battery aging prediction by
addressing key challenges such as variability in real-world data and OOD scenarios. The
study demonstrates that the approach reduces RUL prediction errors by 40% and improves
uncertainty calibration by 34%, underscoring its effectiveness compared to traditional
methods. By integrating advanced techniques, the framework supports the development of
reliable and scalable battery management systems, which are critical for the safe and efficient
deployment of energy storage solutions. This research provides a foundation for future
advancements in battery diagnostics and prognostics, aligning with the evolving needs of

modern energy systems.

In order to precisely predict the SoH and RUL of LiBs, a sophisticated DNN
framework is introduced in the study reviewed by [157]. Rather than requiring laborious
manual feature engineering, this novel framework uses automatic feature extraction to fully
utilize the potential of deep learning. The model captures the dynamic and nonlinear aging
behaviors intrinsic to Lithium-ion batteries, making it especially well-suited for processing
time-series data. The framework uses methods such as data augmentation and TL to improve
its robustness and adaptability. This allows it to function well on a variety of datasets,
including those from lab and real-world settings. The DNN architecture is optimized through
hyperparameter tuning, which guarantees high predictive accuracy and generalizability. The
model performs better than conventional machine learning techniques after being validated

on large datasets.
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The suggested approach has a number of benefits. It is appropriate for real-world
applications because it captures complex nonlinear relationships in battery aging data
effectively, resulting in high predictive accuracy. While data augmentation and TL improve
the framework's resilience across a range of scenarios, the integration of automatic feature
extraction streamlines implementation and lessens dependency on domain-specific expertise.
Furthermore, the DNN's modular architecture promotes scalability by enabling the
incorporation of fresh data sources and flexibility in response to developing battery
technologies. Notwithstanding these benefits, there are certain drawbacks to the approach.
The DNN's high computational requirements for training and optimization make it difficult
to implement in environments with limited resources. Because the model relies on the
representativeness and quality of the input datasets, thorough data preprocessing is essential.
Furthermore, as a "black-box" model, the DNN provides limited interpretability, making it
difficult to derive insights into the physical mechanisms underlying battery degradation. The
implementation process also requires significant expertise in neural network design, training,

and validation, adding complexity to its deployment.

The study combines cutting-edge machine learning techniques with scalable and
effective methodologies, which significantly advances the field of battery diagnostics and
prognostics. Through data augmentation and TL, the framework addresses issues like
variability and scarcity of data, setting a new benchmark for predictive maintenance
strategies in BMS. These developments support sustainable energy solutions and lower
operating costs by improving the safety and longevity of LiBs. The amalgamation of resilient
data-driven methodologies showcases the possibility of productive amalgamations of

inventive approaches to address crucial predicaments in energy storage systems.

A hybrid data-driven method for estimating the SoH and forecasting the RUL of LiBs
is proposed in the study by [158]. To increase prediction accuracy, robustness, and
computational efficiency, this technique combines two sophisticated randomized learning
algorithms—Random Vector Functional Link (RVFL) networks and Extreme Learning
Machines (ELM)—within an ensemble framework. The ensemble structure lowers prediction

variance and increases learning diversity by utilizing the advantages of both algorithms. The
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study uses a NAR structure, which links historical, present, and future data to better capture
dynamic battery degradation trends, in order to further refine predictions. The primary health
indicator is a particular feature derived from the charging voltage that shows a strong
correlation with battery aging. To address uncertainty in predictions, the method employs a
Bootstrap-based uncertainty management technique that quantifies prediction intervals,
improving reliability and enabling informed decision-making. Validation of the method using
two publicly available datasets—one from laboratory conditions and the other representing
real-world scenarios—demonstrates its applicability and effectiveness across diverse

operational settings.

The proposed method offers several advantages. Its ensemble structure, combining
ELM and RVFL algorithms, achieves superior predictive accuracy compared to single-model
approaches. The inclusion of randomized learning techniques ensures rapid training and
computational efficiency, making the framework feasible for real-time applications in battery
management systems. Moreover, the method's robustness across different datasets highlights
its generalizability, while the Bootstrap-based uncertainty quantification enhances prediction
reliability. The modularity of the framework allows for scalability, enabling the integration
of additional models or indicators as new battery technologies emerge. However, the method
also presents some challenges. The complexity of integrating multiple learning algorithms
within an ensemble structure requires expertise and computational resources. The approach
is heavily dependent on the quality and representativeness of training datasets, which may
limit its adaptability to different battery chemistries or operating conditions. Additionally,
while effective, the ensemble learning methodology provides limited insight into the physical
mechanisms underlying battery degradation. Expanding the ensemble size to further improve
accuracy can also increase computational demands during the training and integration

processes.

This hybrid approach significantly advances battery health diagnostics and
prognostics by addressing critical challenges in SoH and RUL prediction. The method
enhances prediction accuracy and robustness by combining the complementary strengths of

ELM and RVFL algorithms while incorporating the NAR structure to capture nonlinear aging
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behaviors. The inclusion of uncertainty management through Bootstrap analysis adds a layer
of reliability to predictions, making the framework suitable for deployment in energy storage
and electric vehicle systems. By outperforming traditional and state-of-the-art methods in
accuracy and efficiency, this study provides a scalable and practical solution for modern
battery management systems, exemplifying the successful integration of diverse

methodologies to solve complex engineering problems.

Despite the advancements presented in the study "Predicting Battery Health for
Electric Vehicles," several research gaps remain that highlight opportunities for further
exploration. The proposed Deep Neural Network (DNN) model, while effective in leveraging
experimental data such as voltage, current, temperature, and health indicators, may face
challenges in generalizing to other battery chemistries, such as solid-state batteries or
emerging lithium-ion variants. This limitation underscores the need for validation across
diverse battery types to enhance the model's broader applicability. Additionally, the model’s
reliance on experimental data does not fully account for the complexities of real-world EV
usage, such as variable driving patterns, fluctuating environmental conditions, and user
behaviors. Incorporating real-world field data would improve the robustness and reliability

of predictions.

Moreover, the study lacks integration with physics-based models, which provide
insights into the electrochemical mechanisms of battery aging. A hybrid approach combining
machine learning and physics-informed modeling could offer greater interpretability and
more accurate predictions. Another significant gap is the absence of uncertainty
quantification, which is essential for addressing the variability in manufacturing processes,
measurement noise, and data sparsity. Implementing methods to quantify prediction
uncertainties could enhance the reliability of the model, especially in safety-critical

applications.

The computational intensity of DNNs also poses a challenge for real-time deployment
in battery management systems (BMS), necessitating research into optimizing model
architectures for efficient inference without compromising accuracy. Additionally, the study

does not address how the model adapts to long-term changes in battery behavior due to aging
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or evolving battery technologies. Developing scalable, adaptive models capable of learning
from new operational data would be crucial for maintaining prediction accuracy over time.
Furthermore, the lack of explainability in DNN models, often perceived as "black boxes,"
can hinder their industrial adoption. Incorporating explainable Al (XAI) techniques would
enhance transparency and foster trust in the model’s predictions. Lastly, the study does not
explore the economic or environmental implications of deploying the proposed model for
predictive maintenance in EVs. A comprehensive evaluation of cost savings and
environmental benefits, such as reduced battery waste and extended battery life, could
provide valuable insights into the practical impact of the model. Addressing these research
gaps would not only advance the current state of EV battery health prediction but also pave
the way for more reliable, interpretable, and scalable solutions in battery management

systems.
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CHAPTER 3

IMPORTANCE OF STATE OF HEALTH (SOH) IN
LIBs

One crucial LiB parameter is the SoH. It gauges the battery's general state in relation
to its starting capacity. The safety, effectiveness, and dependability of batteries in a variety
of applications are ensured by an understanding of and adherence to SoH. SoH is especially
important for portable electronics, renewable energy systems, and EVs. This parameter
guides maintenance strategies and performance optimization by offering insights into battery
aging. The percentage of a battery's performance and capacity is represented by SoH. It
makes a comparison between the current state and the one in which it was manufactured. An
80% SoH battery retains 80% of its initial capacity. For the purpose of determining

performance degradation and replacement planning, SoH is essential.

The measurement of SoH involves multiple methods. Electrochemical Impedance
Spectroscopy (EIS) is widely used. It assesses impedance growth, which indicates aging.
Thermal measurements track heat generation, another sign of deterioration. Voltage and
current trends are also monitored. Researchers introduced a machine learning model. This
model accurately estimated SoH using real-time sensor data [1]. Accurate SoH assessment
ensures optimal battery utilization. It minimizes risks such as unexpected failures and
capacity loss. Without monitoring SoH, users may face operational inefficiencies or safety
issues. Battery Management Systems (BMS) rely heavily on SoH data. SoH informs decisions about

charging, discharging, and fault prevention. A well-calibrated BMS can extend battery life by

managing stress factors.

Researchers emphasized the importance of SoH for fault detection. Their system used
SoH data to identify overcharging risks. This approach prevented overheating and capacity
fade [2]. Adaptive charging protocols also utilize SoH. Studies demonstrated pulse charging
techniques. These techniques adjusted charging rates based on SoH levels [3]. This reduced
lithium plating and enhanced cycle stability. Furthermore, SoH helps balance cells in battery

packs. Imbalanced cells degrade faster, reducing overall performance. SoH monitoring
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ensures uniform degradation. This increases the pack’s lifespan and safety. SoH is essential for
predicting the RUL of batteries. RUL estimation combines historical data and real-time monitoring.
Accurate RUL predictions prevent unexpected failures and improve maintenance scheduling.
Researchers proposed a hybrid model integrating SoH data. Their model predicted RUL with
90% accuracy [1]. This approach combined electrochemical simulations and machine
learning. By incorporating SoH trends, the model identified degradation mechanisms.
Experimental validation highlighted its effectiveness for EV battery packs [2]. RUL
predictions are particularly beneficial for industrial applications. They ensure uninterrupted
operations and reduce downtime. SoH serves as a foundation for reliable and precise RUL

forecasts.

For EVs, SoH is a vital parameter for performance and safety. It influences range
estimation, charging strategies, and safety protocols. Degraded SoH leads to reduced driving
range and slower charging rates. Studies analyzed SoH’s impact on EV performance. Their
findings showed a direct correlation between SoH and energy efficiency [3]. Batteries with
70% SoH exhibited a 30% reduction in range. This underscores the need for accurate SoH
tracking. Moreover, SoH affects resale value. Buyers of used EVs consider SoH a key factor.
High SoH values increase marketability and reliability. Regular SoH assessments build
consumer trust and confidence. Despite its importance, SoH estimation faces challenges.
Variability in operating conditions complicates assessments. Extreme temperatures accelerate aging,
skewing SoH predictions. Researchers proposed temperature-adjusted algorithms to address this [2].
Their models accounted for thermal effects, improving accuracy. Data availability is another issue.
High-quality datasets are necessary for machine learning models. Studies highlighted the lack
of standardized data formats [3]. Collaborative efforts can bridge this gap, enabling better
SoH predictions.

Selecting the correct parameters for SoH measurement is vital for accuracy and
reliability. Different parameters provide insights into various aspects of battery health. The
key parameters include capacity retention, internal resistance, and coulombic efficiency.
These parameters correlate directly with the performance and aging of the battery. Capacity

retention is a primary indicator of SoH, representing the battery’s ability to store charge
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compared to its original capacity. Internal resistance measurements highlight the impedance
growth, which indicates aging. High internal resistance leads to power loss and inefficient
energy delivery. Coulombic efficiency assesses the ratio of charge delivered to charge
accepted during cycles, revealing energy loss through side reactions. External factors like
temperature, charge-discharge rates, and voltage fluctuations also influence these parameters.
Accurate measurement requires advanced techniques and consistent monitoring conditions.
For example, EIS effectively measures internal resistance and provides a detailed view of
degradation mechanisms. However, its implementation is complex and requires specialized

equipment.

Incorporating multiple parameters into SoH assessment models improves prediction
accuracy. A balanced approach ensures comprehensive insights, enabling effective battery
management strategies. Without the correct parameters, SoH evaluations may lead to
misleading conclusions, impacting overall performance and safety. Several methods are
employed to measure the (SoH) of LiB. These methods vary in complexity, accuracy, and
applicability. Each technique has its advantages and disadvantages, making the choice of
method application-dependent. EIS is a highly accurate method for measuring SoH. It
analyzes the impedance of a battery over a range of frequencies. This provides insights into
internal resistance, electrolyte degradation, and SEI layer growth. The primary advantage of
EIS is its ability to detect early signs of degradation. However, it requires expensive

equipment and skilled operation, making it less suitable for on-field applications.

An easy way to gauge SoH is through capacity retention. The current capacity of the
battery is compared to its initial capacity. This is an easy method that doesn't require
complicated equipment. It takes a while, though, because it requires complete charge-
discharge cycles, which might not be possible for real-time monitoring. Measurements of
internal resistance offer fast and accurate indicators of SoH. Degradation of battery
components is indicated by an increase in internal resistance. This approach works well for
real-time monitoring and is less intrusive. It might, however, miss some degradation
mechanisms, producing assessments that are insufficient. Machine learning (ML) models

have been introduced recently for SoH prediction. Large datasets of historical and current
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battery data are analyzed by these models. High accuracy and adaptability to changing
conditions are offered by ML models. However, their reliability depends on the quality and
quantity of training data. Developing these models requires significant computational

resources and expertise.

SoC and SoH are interconnected parameters essential for comprehensive battery
management. While SoC measures the current energy level, SoH assesses the battery’s
overall condition. Accurate SoC estimation depends on reliable SoH data. For instance,
degraded batteries exhibit inaccurate SoC readings due to reduced capacity and increased
resistance. Combining SoC and SoH assessments enhances predictive capabilities. SoC
provides short-term insights into energy availability, while SoH predicts long-term
performance and degradation trends. Integrated models improve fault detection, optimize
charging strategies, and extend battery lifespan. For example, adaptive charging protocols
use SoC and SoH data to adjust current and voltage dynamically, minimizing stress on the
battery. Advanced battery management systems (BMS) leverage both SoC and SoH for real-
time monitoring and decision-making. Machine learning algorithms effectively integrate
these parameters, enabling precise predictions and proactive management. However, the

integration process is complex, requiring robust algorithms and extensive datasets.

Each method for measuring SoH has its strengths and limitations, influencing its
applicability. Electrochemical Impedance Spectroscopy (EIS) offers high accuracy and
detailed insights into aging mechanisms, making it ideal for laboratory analysis. However, it
requires expensive equipment and skilled operation, limiting its use in field applications.
Capacity retention measurement is straightforward and effective for benchmarking battery
health, but it is time-intensive as it involves full charge-discharge cycles, which are
impractical for continuous monitoring. Internal resistance measurement provides rapid and
reliable indicators of degradation, suitable for real-time applications. However, it may not
capture all the nuanced aspects of battery aging, leading to incomplete assessments. Machine
learning models bring a new dimension to SoH evaluation by leveraging vast datasets to
deliver high accuracy and adaptability. These models can process diverse operational data

but are dependent on data quality and computational resources, making them challenging to
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implement without extensive preparation. Understanding the advantages and disadvantages
of each method is essential for selecting the most appropriate approach for specific

applications.
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CHAPTER 4

LI-ION BATTERY AGING AND DEGRADATION
4.1 AGEING OF BATTERIES

Battery ageing occurs when the performance of batteries steadily declines over time
due to a reduction in genuine volume or an upsurge in sequence confrontation [11]. At the
beginning of a battery’s lifecycle, its chemical components are in a high-energy state,
intended to facilitate the conversion between chemical and electrical energy, as described by
[1]. However, several side reactions can occur within the battery, prejudiced by aspects such
as (SOC), C-rate and temperature. These side responses irreversibly drive the system towards
a more constant, lower-energy state, leading to outcomes such as electrolyte degradation,

reduction of lively material at the anode or cathode, and a damage of cyclable lithium [174].

Figure 4.1 shows how lithium-ion batteries age at the anode, cathode, and current
collectors. As the carbon anode ages, copper dissolution and dendrite formation can cause
loss of internal short circuits and capacity. Graphite exfoliation and solvent co-intercalation
damage the anode structure. Internal resistance increases as the Solid Electrolyte Interphase
(SEI) coating forms and grows. Particle cracking and mechanical Stress can weaken the
anode’s structure, reducing performance. Cracking and contact loss weaken copper current
collectors’ current conductivity. Lithium plating and dendrite formation can pierce the
separator, causing short circuits and safety hazards. Cathode issues are similar. Dendrite
formation and transition metal dissolution degrade cathode stability and performance.
Cathode structure disorder affects lithium-ion reversibility. Particle cracking and cathodic
surface film formation cause capacity fade and internal resistance. Corrosion and contact loss
in the aluminium current collector and cathode binder reduce electrical conductivity and

mechanical stability [181].
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Figure 4.1. Different aging mechanisms [181]

4.2 ORIGIN OF AGEING OF BATTERIES

Battery ageing divided into couple of components: calendar aging and cycle aging
[47]. Separately, term delineates the modifications induced by various applications of the
battery. Consequently, calendar aging pertains to the phenomena and repercussions
associated with battery storage. Conversely, cycle aging pertains to the effects of battery

usage durations referred to as cycles (including both charging and discharging).

4.2.1 AGEING OF CALENDAR LIFE SPAN

Calendar ageing denotes to the irreparable loss of storing volume in batteries, also
termed battery storage degradation [48, 49]. The rate of self-discharge can vary considerably
based on storage conditions, which can either accelerate or decelerate battery ageing effects
[50]. Extensive experimental studies have demonstrated the influence of storing conditions
on battery ageing. For instance, the study by [51] tested sixty cells, another research by [52]
analyzed three hundred cells, and [53] examined cells under varying end-of-charge voltages
and temperature conditions. Both calendar ageing and self-discharge are highly dependent
on storage temperature [54]. Elevated temperatures can intensify secondary reactions, such

as corrosion, and increase lithium loss, ultimately contributing to capacity fade [51, 52, 55].
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Various capacity fade phenomena in LiB have been defined by [173] and are illustrated in

Figure 4.2 below.
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Figure 4.2.Capacity Fade phenomenon in LiB [173]

Lower temperatures reduce these phenomena, minimize material loss, and affect
battery chemistry [56]. Another critical variable in calendar ageing studies is the storage
(SOC) [57]. Cells can exhibit varying ageing behaviors even when stored at the same
temperature but under different SOC levels. Higher SOC levels accelerate battery
degradation [36]. Since SOC indicates the ratio of ions present on the electrodes, elevated
SOC results in significant potential imbalance at the electrode/electrolyte interface,
promoting earlier chemical reactions. However, limited research specifically isolates SOC as
an independent factor in calendar ageing, separate from temperature effects. Both variables—
SOC and temperature—impact capacity and resistance in a non-linear manner over time.
Research findings by [58, 59] suggest that high SOC has a more substantial limiting effect
than elevated temperature. Despite these insights, the combined impact of SOC and
temperature on calendar ageing remains partially understood. Both factors directly contribute
to battery calendar ageing, and the observed size fade and confrontation increase are non-
linear over time, highlighting a complex interaction between ageing behavior and temporal

factors.
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4.2.2 CYCLE AGEING

Battery charging and discharging cause cycle ageing. This depends on battery level,
utilization mode, temperature, and current requests. Many factors affect this type of aging.
First, all aspects previously described aftect calendar ageing and are included in cycle ageing
studies because ageing phenomena occur regardless of battery use. Exothermic reactions are
common in used batteries [60, 61], and high temperatures can accelerate battery ageing.
However, very low temperatures must be considered [59]. Studies show ambient temperature
affects batteries, but none do so directly. This concept is still unclear. Except for these
variables, battery utilization mode determines cycling ageing. Literature frequently
references the ASOC, which represents charge variation during a cycle. The battery's

discharge (charge) is largely determined by this [35, 62].

In their study [51], researchers examined Lithium-ion cells under similar
temperatures and initial SOC but with varying ASOC levels. The results revealed that higher
ASOC leads to significant battery power loss, regardless of other influencing factors. Further
experiments corroborated these findings [63]. This phenomenon is primarily attributed to
positive electrode degradation and the formation of the SEI layer caused by extensive
discharge or charge cycles. Charging and discharging voltages also play a serious role in
Lithium-ion battery ageing and operational efficiency. Elevated charging voltages accelerate
the ageing process [64]. As demonstrated by Asakura et al. [65], even a 0.1V increase in
charging voltage can reduce battery lifespan by half, with the End of Life (EOL) defined at
70% of the preliminary size. Additionally, impedance rise due to discharge voltage
significantly impacts battery ageing [66, 42]. Lastly, current peaks are another contributing
factor, as a substantial current peak can deliver excessive energy to the battery, potentially

accelerating ageing.
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4.3 AGEING ESTIMATION
4.3.1 SOH ESTIMATION

Several indicators or metrics have been developed to enumerate the health status of a
battery to assess ageing. One of the most commonly employed indicators in the literature is

the SOH, which is typically defined by [71, 72]:

Nominal Capacity at t

SOH (t) =

Initial Capacity

SOH of a battery is a critical stricture implemented to assess its performance, capacity,
and overall condition compared to its original state. Mathematically, SOH is naturally
articulated as the ratio of the current capacity Ccyyrrene to the nominal capacity Cpominais

represented by the equation:

SOH=CSeurrent 4 100%.

nominal

Over time, battery capacity degrades with repeated charge and discharge cycles, often

modeled as

Ccurrent=Cnominal X (1 - k. \/ﬁ

where N represents the quantity of cycles, and k is a capacity fade coefficient.
Temperature also significantly impacts battery health, and this relationship can be described

using the Arrhenius equation:
E
Kr=A.e—
T ¢ KT’

where higher temperatures typically accelerate aging. Similarly, the Depth of Discharge
(DoD) affects battery lifespan, as higher DoD values reduce the number of effective cycles,

modeled by

a.DoDb’
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where a and b are empirical constants. Furthermore, battery degradation results from both

cycle aging and calendar aging, expressed collectively as,
SoH =1 — (kcycle N + Kcgiender - t)

where t denotes time in years. A more comprehensive representation combines multiple
factors, including cycle count, temperature, depth of discharge, and aging, into a single

equation:

SoH = Ccurrent X e_(kcycle N+ Kcatender -t+ kpop+ k¢ -T.

Mathematical models enable engineers and researchers to predict battery health, enhance
performance, and design improved energy storage systems by considering the intricate
interactions of these influencing factors. Alternative definitions of SOH often rely on the End
of Life (EOL) criterion [73], which essentially reflects the proportion of the battery's residual
volume. This measure serves as an indicator of capacity fade [74, 75]. Since the term "ageing"
lacks a precise definition, other metrics such as State of Function [73] and RUL [76] have
been introduced. These metrics are primarily derived from the battery's size state,
overlooking certain aspects of ageing, particularly resistance. However, resistance growth
plays a significant role, especially in high-power applications, where its impact becomes

more pronounced.

4.3.2 SOC ESTIMATION

The SoC defines the battery capacity available for withdrawal, preventing over-
discharge or over-charge and reducing ageing effects. Many researchers are studying SoC
estimation. Various methods have been suggested by [183]. Classifying methods is
challenging as many approaches involve combining multiple methods and using various
heuristic or deterministic mathematical methods. The review reveals a typical mixture OCV
and CC methods [183]. These combinations often involve initial and online SoC estimation
improvements due to inaccuracies in individual methods. For instance, a study by [183]

utilized the OCV method, a full charge detector/dynamic load observer, and the CC method
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with REKF as the key function. Combinations make it challenging to classify each approach
by method.

Direct SoC approximation techniques use mathematical equations or relationships to
evaluate and estimate current battery characteristics, such as voltage, current, and
temperature. In the industry, CC has become the accepted technique for estimating SoC [39].
Because of its superior accuracy in short-term calculations, the current method of choice for
SoC valuation is the ampere-hour balancing method, or CC method. SoC is defined by the
CC method as [183]:

tot+t
Lo

1
SoC(t) = SoC(t,) + - [ I, (dt) x 100%

n

where Ipat is the charging/discharging current, Cn is the nominal capacity, and SoC(t0)
is the initial SoC. The charge and discharge current time integral as well as the initial SoC
value must be known in order to calculate CC. If unknown, it is typically assumed. This
approach is reliant on the early SoC value and cannot completely eliminate growing error.
All estimates would be impacted by an incorrect initial SoC value, which would result in
errors all along the estimation process. Despite being widely used recently, CC is typically
used to estimate SoC in conjunction with other methods rather than as a stand-alone

instrument. Certain publications, like, only compute SoC using the CC method [183].

The OCV method is widely employed, relying on the description of the OCV curve,
typically represented either through a polynomial function or a look-up table. This method
generally adopts one of two approaches: a straight OCV curve inversion method, which is
feasible when the application allows steady-state voltage measurements of the cell, or a cell
model-based approach [42]. By performing voltage measurements to estimate the SoC of the

cell, the relationship can be defined as:

soC = [ '(ocv)

The OCV method involves continuously measuring the cell’s voltage and determining

the SoC from a predefined table. However, in practical applications, this method encounters
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challenges, such as the need for high-resolution sensors to evaluate voltage exactly and
allowing enough time for the system to reach equilibrium. While the OCV method is precise,
it necessitates rest periods to estimate the SoC, making it unsuitable for real-time monitoring.
Furthermore, the relationship between OCV and SoC can differ amongst cells, which could
result in substantial errors. Notwithstanding these drawbacks, the OCV approach is
frequently used in conjunction with noise filtering and adaptive techniques to calibrate the
Constant Current (CC) method [40]. OCV is often employed to improve other techniques.
For example, in [183], the OCV-SoC relationship is characterized by applying an
intermittent discharging method, which computes the interior confrontation of the model
battery and estimates SoC using an extended Kalman observer and an Equivalent Circuit
Model (ECM). Cell ECM parameters are also determined by this method [46, 47].
Additionally, to investigate the hysteresis phenomenon, the OCV curve is incorporated into
a circuit model in [48-50], which reveals a discrepancy in the equilibrium OCV during

battery charge and discharge cycles.

4.4 AGING MECHANISMS OF LIB
4.4.1 DECOMPOSITION MECHANISMS

Rechargeable LiB are widely employed in mobile communications and moveable
devices due to their numerous rewards, including immense volumetric energy (VE) and
gravimetric energy (GE) densities and a low self-discharge rate. These batteries are also
considered a leading choice for power sources in (hybrid) EVs and stationary energy storing
systems. In applications where long-lasting performance is crucial, understanding the long-
term cycling and storage behavior of LiB converts increasingly important. However, like all
energy storage technologies, LiB undergo aging processes that progressively degrade their
performance over time. Unfortunately, LiB are multifaceted systems, and their aging
processes are even more intricate. The loss of volume and energy degradation arise not from
a single cause but from multiple interacting processes. Furthermore, many of these processes
occur simultaneously on similar timescales, making it challenging to fully understand the

underlying aging mechanisms [169].
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4.4.2 AGEING OF CARBONACEOUS ANODES

Graphite, particularly in its use as an anode material, is crucial in LiB, making
graphite-based cells the most studied in terms of anode aging. Recently, substitute anode
materials, such as lithium loading metals and alloys, have achieved attention. However, the
majority of research has concentrated on vigorous materials and associated challenges (e.g.,
nanostructured materials, volume change control), with limited focus on aging effects [4—6].
The existing literature presents a challenging scenario for analysis, as individually lithium-
ion cell system has a unique chemistry, and numerous aging properties are prejudiced by
various cell components, such as the active material, electrode design, electrolyte
composition, and impurities. Most studies tend to focus on complete cells without isolating

the impacts on the anode or cathode.

During storage, aging effects such as self-discharge and an increase in impedance can
influence both the calendar life and cycle life of the battery. When in use, aging effects like
mechanical damage and lithium metal plating can also take place [8]. To monitor storage-
related aging, electrochemical parameters for instance capacity loss, impedance rise,
potential changes, SOC, and SOH can be assessed [9]. Anode materials, such as graphite
show discharge plateaus, where the electrode potential remains relatively unchanged with
varying charge states [10-12]. Cycling enables the measurement of capacity fade, impedance
increase, power fade, and overpotentials, all of which influence the charge and discharge

curves.

Many researchers attribute anode ageing to variations at the electrode/electrolyte line
Figure 4.3 below caused by anode reactions with the electrolyte [15]. LiB anodes operate at
voltages outside the electrolyte components’ electrochemical stability window. Thus,
reductive electrolyte decomposition and irreversible lithium-ion consumption occur when the
electrode is charged at the electrode/electrolyte interface. Decomposition products form
“protective layers” on the electrode. This process is most common in the first cycle of
cycling. Based on their functions, graphite layers can be divided into two types.
Intercalation/deintercalation transports lithium ions into/from graphite structures at prismatic

surfaces and basal plane defects. Solid electrolyte interphase (SEI) protective layers are
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needed [16]. SEI layers are unique because they are penetrable to lithium cations but

impermeable to other electrolytes and electrons [169].
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Figure 4.3.Changes in anode/electrolyte interface [169]

It has been discovered that there are notable differences in the configuration of the
SEI and non-SEI layers [ 17]. These variations in composition and function suggest that aging
processes may differ between the non-SEI and SEI layers. The SEI can penetrate the
electrode's holes and possibly even reach the separator's pores over time, reducing the
electrode's usable active surface area. Numerous investigations have found a correlation
between the cell's power fade and an increase in electrode impedance [22—32]. The expansion
of the SEI and changes to its composition and structure are the main causes of this increase
in resistance. In summary, although the majority of SEI formation occurs during the initial
charge/discharge cycles, SEI conversion, stabilization, and growth occur during the

subsequent cycles.
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The gradual reduction in the amount of charge that a lithium-ion battery can hold over
several cycles of charging and discharging is known as capacity fade. The deterioration of
the electrode materials and damage to active lithium ions are the primary causes of this
reduction. The formation of the SEI on the anode during the initial charging cycles is a major
factor in capacity fade [4, 5]. Chemical reactions between the electrolyte and the anode
surface give rise to the SEI layer. Lithium ions are consumed by the SEI as it grows, even
though it serves as a barrier to stop additional reactions. As a result, over time, there is less
available active lithium for intercalation and deintercalation, which lowers battery capacity
[6, 7]. The growth of the SEI is accelerated by influences such as high temperatures, elevated
charging currents, and extended cycling, which all contribute to faster electrolyte

decomposition reactions [8].

The mechanical degradation of electrode materials also causes capacity fade. For
instance, lithium intercalation and deintercalation during cycling expand and contract the
anode and cathode. This mechanical Stress causes cracking, pulverization, and electrical
contact loss, reducing battery charge storage [9]. Cathode materials with high energy
densities are prone to structural instability and phase transitions, which cause capacity fade
[9]. The impact of SEI thermal behaviour on cell properties, such as power fades, impedance
rise, and safety, should be discussed [37-39]. As mentioned, elevated temperatures upsurge
the kinetics of lithium insertion/removal from the host lattice. Many believe SEI morphology
and arrangement change at high temperatures [40—48]. The cell may catch fire or explode if
thermal runaway occurs. Several groups have studied electrode or cell behaviour at high

temperatures using DSC and ARC [49-52].

Exothermic side reactions in lithiated carbon lead to self-heating, particularly at
temperatures around 80 °C, as observed in different electrolytes through Accelerating Rate
Calorimetry (ARC) tests. The temperature at which these reactions begin varies depending
on the electrolyte salt, with LiBF4-based electrolytes starting around 60 °C [53].
Electrochemical cycling studies indicate that Li/graphite half-cells show capacity loss even
at temperatures below 60 °C [54]. High temperatures accelerate the degradation of the Solid
Electrolyte Interphase (SEI), causing it to either distort or dissolve. On the other hand, the
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dissolved products might precipitate again, or the damaged SEI might reform. Under high
temperatures, more stable inorganic compounds such as lithium salts (such as carbonate and
fluoride) can be formed from metastable organic components of the SEI, such as lithium alkyl
carbonates [51, 53]. Although the growth of these inorganic SEI products may lessen the
ionic conductivity of the lithium SEI, they are more stable and less prone to be pierced by

solvent molecules.

Aging effects are usually negligible in the majority of active materials. Depending on
the material, volume changes in graphite during the insertion and removal of lithium ions
usually stay below 10% and have a negligible effect on reversibility. But structural
alterations, like crystal phase shifts, can cause mechanical stress on defects and carbon-
carbon bonds during lithium insertion, which can result in cracking or other types of
structural damage. Cell aging is generally not significantly affected by redox reactions
involving the exchange of lithium ions and interactions with surface groups at the surface of
the active material. However, exfoliation and particle cracking can result from processes like
solvent co-intercalation, electrolyte reduction, and gas evolution within the graphite, which
seriously deteriorate the electrode [12]. These processes have the most significant impact on

the active material, thereby accelerating the aging of the cell.

Cell impedance in composite electrodes rises due to mechanical or electrical contact
loss, which accelerates aging. Changes in the active anode material's volume may cause this
kind of contact loss, which could cause the composite electrode to mechanically disintegrate.
Loss of contact between the carbon particles, the binder, and the current collector may result
from this disintegration. As previously discussed in relation to SEI effects on electrode
porosity, these volume changes also have an impact on the electrode's porosity, which is
important for optimal anode performance because it facilitates electrolyte penetration. The
internal pressure of the cell also needs to be taken into account. Commonly used as binders
in composite electrodes, fluorine-containing copolymers and polymers react with the charged
anode to form LiF, which deteriorates the mechanical properties of the electrode over time.

Moreover, corrosion of the current collector, which can occur due to electrolyte reactions or
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when the anode potential exceeds that of Li/Li+, can result in both electronic and mechanical

contact loss between the current collector and other electrode components.

Table 4.1

Lithium-ion anode ageing—causes, effects, and influences [169]

Origin Consequence Results in  Mitigated by  Exacerbated by
o Additives for
Electrolyte Loss of lithium, Dlmlm.Shed stable SEI, Elevated .
. capacity, temperatures, High
degradation (SEI Increased Slower
growth) impedance Decreased progression state of charge
POl over time (50C)
Stable SEI
Solvent co- :
. . Loss of active through
intercalation, gas . Reduced A .
: material and . additives, Overcharging
evolution, and . capacity
. g lithium Carbon pre-
particle cracking
treatment
Reduced surface Increased T owendlirer Stable SEI Elevated
area from SEI impedance b pu ¢ through temperatures, High
growth p P additives SOC
Changes in Application of
porosity due to Increased Reduced external High cycling rates,
volume changes impedance power pressure, Stable High SOC
and SEI growth SEI additives
Loss of contact . .
between active Loss of active Lower External ng}.l cycling rate,
. . . . pressure High depth of
material particles material capacity I .
) . application discharge (DOD)
during cycling
Binder s Decreased ~ Using suitable Elevated :
. Loss of lithium . . . temperatures, High
degradation capacity  binder materials 3OC
Increased Pre-treatment of
Corrosion of the  overpotentials, Reduced Overdischarge, Low
. the current
current collector Higher power SOC
. collector
impedance
Uneven cu@ent Amphﬁes other Accelerated  Uniform cell  High cycling rates,
and potential asing agin structure Poor cell balancin
distribution mechanisms £ing &
Metallic lithium ~ Loss of lithium  Diminished ~ “2TOVIE | o temperatures,
. . potential . s
plating and and electrolyte capacity, window High cycling rates,
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Origin Consequence Results in ~ Mitigated by  Exacerbated by

electrolyte Reduced Geometric
breakdown power misalignment

4.4.3 AGEING OF LITHIUM METAL OXIDE CATHODES

The longevity, cycling characteristics, and performance of lithium-ion batteries are
all significantly influenced by the cathode materials used. Lithium manganese oxide
(LiMn204) and lithium nickel-cobalt mixed oxide (Li(Ni,Co)O2) have been extensively
studied as potential cathode material substitutes for LiCoO2. These materials are appealing
options for high-energy and high-power batteries because they have benefits like reduced
costs, improved availability, and improved performance. Even with the advancements,
research is still being done to determine what causes capacity degradation and how to prevent
it. Recent research has examined the aging processes of lithium batteries, with an emphasis
on the effects on cathode materials [1-3,8,78]. The battery's overall lifespan is shortened by
the aging of the active material and the degradation of electrode components, including
binders, conducting agents, current collector corrosion, oxidation of electrolyte components,
and surface film formation. Because of their interdependence, these processes cannot be
viewed in isolation. These degradation mechanisms heavily depend on the specific

composition of the electrodes as well as the storage and cycling conditions of the battery.

Changes in the surface film, dissolution reactions, chemical breakdown, and
structural changes during cycling can all lead to capacity fading in the positive active
material. The positive active materials deteriorate according to the charging and cycling
conditions, just like the negative carbon electrode. The electrochemical reaction of these

materials involves the insertion of lithium ions into the metal oxide structure.
LiMeO, = LiMeO, + (1 —x)Lit+ (1 —x) e”

Changes in the molar volume of the materials brought about by the insertion and
removal of lithium ions have the potential to induce mechanical stress and strain in the oxide
particles and, as a result, the electrode. Additionally, this process might cause phase

transitions that distort the crystal lattice and raise mechanical stress even more. The aging
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mechanisms connected to lithium-ion cathode materials, as discovered in earlier research, are
depicted in figures 4.3 and 4.4 below. The homogeneous solid solution series is terminated
by LiNiO2 and LiCoO2, which crystallize in the a-NaFeO2 structure. In this structure, nickel

and cobalt are both in their trivalent states and retain a low-spin configuration.
3+ . N3+
(Co”" ty36e,0; Ni*" ty,6e41).

Pure stoichiometric LiNiO2 is exceedingly challenging to produce [80,81]. It results
from a structural disorder reaction in which divalent nickel ions replace lithium ions at their
respective locations. Concurrently, the nickel sites undergo a reduction of trivalent nickel
ions to the divalent state to achieve a balance in charge. The reaction of complete disorder

can be expressed as:

X
LiNiO, 2 {Liy_y Ni(ID*/, INi(III)1_, } O5_, + */5 Li,0 + 202
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Figure 4.4. Overview on basic ageing mechanisms of cathode materials [169]

As the mixed oxide's cobalt content rises, the lithium-nandel-disorder diminishes and
the layered structure is stabilized [82]. Pure lithium nickel oxide goes through a number of

reversible phase transitions during electrochemical lithiation/delithiation [83-92]. Large
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anisotropic volume jumps and a rapid capacity decrease are caused by the monoclinic phase
domain M1 transition and the delighted phase H3 formation, as shown in figure 4.5 below.
Phase transitions from monoclinic to hexagonal can be avoided with 20 moles of cobalt.
Dopants of magnesium and aluminum stabilize the layers. Volume changes in lithium nickel
cobalt oxide are lessened [93] when doped with magnesium [96,97] or aluminum [94,95].
Lithium nickel cobalt oxides doped with Al or Mg thus have longer cycle lives [98—100].
Doped Li (Ni, Co)O2 with optimized compositions is stable in the discharged state even at
higher temperatures and has a good cycle life if the end-of-charge voltage is controlled and

overcharge is avoided.
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Figure 4.5. Cause and effect of ageing mechanisms of cathode materials [169].
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Lithium nickel cobalt oxides dissolve well in practical electrolytes. LixCoO2
dissolves and deposits cobalt on the anode when charged above 4.2 V versus Li/Li+
[101,102]. Lithium-ion battery anode materials have been extensively studied for surface—
electrolyte interactions and SEI formation [14,103]. Increased carbon anode interfacial
impedance causes high-energy battery capacity fading, according to Broussely et al. [8]. High
power batteries' lithium nickel cobalt oxide cathodes increased interfacial impedance,
causing power loss [20,22,28,29,32,38,41,42,45,46,72,104—116]. This increase is accelerated
by higher temperatures and positive end-of-charge voltages of 4.2 V versus Li/Li+. Surface
films are formed by LiPF6 decomposition and electrolyte oxidation, as reported in literature.
Lithium nickel cobalt oxide can also supply oxygen for these oxidation reactions through a
subsurface layer of a lithium/oxygen deficient oxide phase of the rock-salt structure
[104,117]. The mechanisms of charged lithium nickel cobalt oxide surface film formation are
summarized in figure 4.6 below. Surface impedance rises as a result of the low lithium-ion
conductivity of the lithium nickel cobalt oxide with a rock-salt structure. Furthermore,

gaseous species are frequently released along with surface electrolyte reactions [120].
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Figure 4.6. Mechanisms of surface alteration of lithium nickel cobalt oxide electrodes in

LiPFo6-based electrolytes [169]

101



4.4.4 DEGRADATION CAUSES

New cells degrade quickly in the first few cycles due to the solid electrolyte interface
layer on the negative electrode. After a few cycles, formation cycles stop when all surfaces
are coated in decomposition products. Cell performance is stable and capacity loss is absent
in subsequent cycles. Prepassivation or prelithiation is needed to maximize active material
capacity without sacrificing cyclable lithium [1]. Calendar aging is battery capacity loss from
self-discharge during storage. This phenomenon is heavily influenced by cell SOC and
storage temperature. [1], [2]. Overcharge/overdischarge occurs when the cell exceeds the
manufacturer's voltage. Overcharge deposits metallic lithium on the negative electrode
surface when graphite lithium solubility exceeds [1], [3]. Deintercalating a lot of lithium from
the positive electrode may cause a structural collapse evident from figure 4.7 below.
Furthermore, overdischarge can dissolve positive current collector (copper) [1]. Regular
battery use is likely the main cause of lithium-ion cell degradation. Lithium insertion and
extraction during cell charge and discharge stress the active material particles, causing crack
propagation. Indeed, active material is micrometer-sized particles. Due to lithium
insertion/extraction, crack propagation creates new free surfaces for electrolyte
decomposition, lithium-ion consumption, and cell degradation. Electrical load intensity

increases damage rate by stressing the active material. [1], [4].
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Different temperatures affect cell performance. The main effect is to accelerate SEI,
electrolyte, and binder decomposition [1, 5, 6]. Temperature accelerates battery cycling-
induced capacity loss [7, 4]. Extreme heat generation can cause thermal deformation in active
material [8]. Temperature also accelerates calendar aging [1], [2]. Finally, extreme heat
generation causes thermal run-away, which can cause fires and explosions depicted in figure
4.8 below. Few studies examined how external mechanical stress affects battery performance.
Many studies examined the effects of cell penetration or indentation to describe how the cell
reacts to this type of load, which could result from accidents or system failure. Initially, the
cell loses power and energy. After the internal structure collapses, cell voltage and power
drop dramatically as temperature rises [9], [10]. The depletion of cyclable lithium during
storage is regarded as the primary cause of irreversible capacity loss across all storage
conditions. Notably, [172] in their study indicated that during storage at 60 °C, another
significant degradation process was identified evident from figure 3.6: the inaccessibility of
graphite. The degradation of graphite electrodes has been quantitatively assessed through
nondestructive analyses utilizing dVgyr/dQ curves. The deposition of iron on the graphite
electrode has been experimentally validated through X-ray photoelectron spectroscopy
(XPS) and inductively coupled plasma (ICP) analysis. The rising inaccessibility of graphite
is attributed to the dissolution of Fe from the cathode, followed by its deposition onto the

anode.

60°C 20°C
oF SEI Electrolytd [ SEI Electrolytd]
XX X ]

EEEW%?E ~
S

-4V / dQ

Capacity

103



Figure 4.8. Temperature based ageing of Lithium Li-ion Batteries [172]

Therefore, LiB are critical to electric vehicles (EVs). EV batteries experience unique aging
mechanisms. Their usage differs from standard consumer applications. In EVs, batteries undergo
rapid charge-discharge cycles. These cycles lead to significant capacity and power fade [16, 18].
Thermal management in EV batteries is vital. Poor thermal control accelerates capacity fade.
High charging speeds, common in EVs, also stress battery components [20, 21]. Battery
aging reduces the range and efficiency of EVs [22]. Environmental exposure plays a role in
EV battery degradation. Factors like humidity and vibrations affect performance.
Deterioration is also linked to electrode material fatigue [167]. Newer designs focus on

improving cycling stability [167, 168].

4.5 FACTORS AFFECTING the HEALTH OF SOH and SOC

Given the growing use of large-capacity lithium batteries in electric vehicles, the most
recent study has emphasized the significance of ongoing monitoring of lithium batteries to
ensure their safe and dependable operation. LiB SOH indicates how long it can hold a charge.
By monitoring variables like operating voltage, charge and discharge currents, and thermal
management, BMS is crucial for maximizing battery efficiency. Lithium-ion batteries (LiBs)
are praised for their high energy density, uniform voltage, and low self-discharge rate;
however, misuse can lead to serious risks like combustion or explosions. As such,
determining the SOH of lithium batteries accurately is essential to preserving system safety
and stability. For battery systems to operate dependably, SOH monitoring is necessary. The
SOH is affected by various factors and is contingent upon the battery’s ageing process,
making accurate estimation and prediction difficult. Despite the numerous methods proposed
for diagnosing and forecasting the SOH in lithium batteries, further detailed discourse on

effectively characterizing SOH remains necessary.

The Battery SOH denotes a particular stage in its lifespan and represents the battery’s
present performance relative to its optimal condition. Unlike terminal voltage, SOH cannot
be directly quantified, complicating its application in longevity evaluations. The battery's
usage history has a major impact on the estimation of SOH, and external factors that affect

the ageing process include temperature, current rates (C-rates), and the battery's operational
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range. Different aging trajectories are caused by these factors. Furthermore, variations in the
battery's ageing characteristics can be caused by minor manufacturing defects, which further
complicates accurate monitoring. Scholars generally employ metrics like capacity or
impedance to evaluate the current energy or power capacity that a battery is capable of
producing. Some focus on mechanisms of ageing, such as the amount of cyclable lithium
ions [181] or the time it takes for lithium ions to diffuse into the solid phase in the positive
electrode [176]. SOH is an estimate that is produced by analyzing a series of measurements
using specific criteria. The battery’s ageing state can be assessed through quantitative or
qualitative evaluation. The principal objectives of SOH monitoring are to guarantee the safe
and dependable functioning of battery systems, enhance battery management, and provide

early alerts.

The Battery SOH denotes a particular stage in its lifespan and represents the battery’s
present performance relative to its optimal condition. Unlike terminal voltage, SOH cannot
be directly quantified, complicating its application in longevity evaluations. The estimation
of SOH is significantly affected by the battery’s usage history, with external factors including
current rates (C-rates), temperature, and the operational range of the battery substantially
influencing the ageing process. These factors lead to diverse ageing trajectories. Moreover,
even slight manufacturing defects can result in variations in the battery’s ageing
characteristics, thereby complicating the precise monitoring. Researchers typically utilize
parameters such as capacity or impedance to assess the energy or power capacity that a
battery can presently deliver. Some concentrate on ageing mechanisms, including the
quantity of cyclable lithium ions [181] or the solid-phase diffusion duration of lithium ions
in the positive electrode [176]. Essentially, SOH is an estimation derived from a sequence of
measurements analyzed according to particular criteria. The battery’s ageing state can be
assessed through quantitative or qualitative evaluation. The principal objectives of SOH
monitoring are to guarantee the safe and dependable functioning of battery systems, enhance

battery management, and provide early alerts.

Both internally and externally, the difficulties in estimating the SOH and RUL have

been investigated. Data-driven methods for lifetime prediction and SOH estimation were the
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subject of a review by [142]. The differences between battery operations in EV and
photovoltaic (PV) systems were examined in [67], with particular attention paid to SOH
estimation techniques designed for PV applications based on signal types. Furthermore, [12]
examined the reasons behind LiB aging and presented a novel SOH prediction method
classification scheme, weighing the benefits and drawbacks of each. LiB, which are
frequently used in energy storage, depend on two essential metrics: SoC and (SoH) for
performance evaluation. SoH assesses the overall state and degree of degradation, while SoC
shows the amount of charge left in relation to the battery's capacity. Accurate estimation of
these parameters is crucial for ensuring safe and efficient battery operation. Several factors,
including environmental conditions, operational settings, and material properties, influence

both SoC and SoH.

4.5.1 KEY FACTORS AFFECTING THE HEALTH OF SOC

Temperature significantly influences lithium-ion battery performance. High
temperatures accelerate chemical reactions within the battery. These reactions increase
internal resistance and alter voltage profiles. Consequently, temperature variations distort
SoC estimation [4, 5]. Low temperatures slow lithium-ion transport through electrodes. This
leads to incomplete charging and discharging cycles. Temperature-induced capacity fade also
affects SoC accuracy [6]. Advanced thermal management systems help mitigate temperature
impacts on SoC [7]. Charge and discharge rates directly affect SoC. High current rates lead
to significant voltage drops. This makes voltage-based SoC estimation less reliable [8, 9].
Rapid charging or discharging causes lithium plating on the anode. This alters the battery’s
voltage response and impacts SoC estimation accuracy. Low-rate cycling is less likely to

cause such distortions [10].

Depth of discharge refers to how deeply a battery is discharged. High DoD cycles
strain the battery’s electrodes. This leads to voltage hysteresis, affecting SoC estimation [11].
Shallow DoD cycles result in smaller voltage swings. These are easier to track during SoC
estimation. Optimizing DoD can improve both SoC accuracy and battery lifespan [12]. Self-
discharge refers to the battery losing charge when idle. This phenomenon is more pronounced

at high temperatures [13]. Self-discharge alters the open-circuit voltage (OCV). Since OCV
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is used in SoC estimation, self-discharge reduces accuracy. Advanced battery management
systems (BMS) account for self-discharge effects [14]. Aging alters battery capacity and
internal resistance. These changes distort the voltage-capacity relationship. Consequently,
aged batteries show inaccurate SoC estimates [15]. Advanced SoC algorithms compensate

for aging effects. These use adaptive models to track degradation trends [16, 17].

4.5.2 KEY FACTORS AFFECTING STATE OF HEALTH (SOH)

Battery usage patterns significantly affect SoH. Frequent deep discharge cycles
accelerate degradation. Shallow cycling reduces stress on electrodes and improves SoH [18].
Cycle life depends on charge-discharge rates and cycling depth. Rapid cycling causes higher
internal resistance. This leads to capacity fade, impacting SoH estimation [19, 20].
Temperature extremes greatly influence SoH. High temperatures degrade electrolyte and
electrode materials. This accelerates the growth of the Solid Electrolyte Interphase (SEI)
layer [21]. Low temperatures reduce lithium-ion mobility. This results in lithium plating,
which damages anode surfaces. Both scenarios reduce battery lifespan and SoH [22]. As
batteries age, internal resistance increases. This resistance rise reduces energy output

efficiency. It also increases heat generation during charging and discharging [23].

Internal resistance growth is caused by SEI layer thickening and material fatigue.
Advanced SoH models incorporate resistance changes for accurate estimation [24].
Degradation of active materials affects battery performance. Cathode materials are prone to
phase transitions and structural instability [9]. Anode materials experience cracking and
lithium plating over time. Both processes reduce the battery’s ability to store and deliver
energy. Material degradation is a primary factor in SoH estimation [10]. Electrochemical
aging involves side reactions within the battery. These reactions consume active lithium and
electrolyte components [25]. SEI layer formation is a key aging mechanism. Over time, it
thickens and reduces lithium-ion transport. This leads to capacity fade, affecting SoH
estimation [26]. Lithium-ion intercalation causes volumetric expansion and contraction.
Repeated cycling introduces mechanical stress on electrodes [27]. Mechanical stress leads to
particle cracking and electrode delamination. These reduce electrical contact, impairing SoH.

Advanced cell designs minimize mechanical stress impacts [28].
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4.6 METHODS OF IMPROVING THE LIFE-SPAN OF THE BATTERY

The table 3.2 depicted the deficiencies in Lithium Li-ion batteries highlighted by
[178], the study determined lists lithium-ion battery (LIB) issues and suggests solutions.
Replace carbonaceous anodes (negative electrodes) with advanced alloy anodes for high
coulombic efficiency, power capability, reduced irreversible capacity loss, and cost-
effectiveness to improve energy storage efficiency. Solid electrolyte interphase (SEI) growth
during the initial cycle and ongoing cycling reduces coulombic efficiency at the negative
electrode—electrolyte interface. Interface stabilization with coatings, functional binders, and
electrolyte additives can reduce this. New cathode materials with high efficiency and low-
capacity loss can improve the positive electrode (lithiated transition metal oxide or

phosphate)'s low specific capacity and charging voltage.

High voltage operation at the positive electrode—electrolyte interface lowers
coulombic efficiency, increases cell impedance, and shortens cycle life. These issues can be
addressed with better coatings, binders, and electrolytes. Conductive particles and lithium
dendrites can penetrate separators, causing short circuits. Ion flux, salt diffusion, and fluid
flow can be maintained and structural strength improved with advanced separator coatings.
Finally, metal collectors are necessary for conductivity and thermal performance but cost
more and reduce energy efficiency due to their thickness. Optimizing perforated or expanded
metal collectors, which work in other battery systems, could solve this problem. These
targeted solutions emphasize material innovation and interface engineering to improve

lithium-ion battery performance, efficiency, and lifespan.
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Table 4.2

Deficiencies in Lithium Li-ion Batteries highlighted by [178]

Location of Deficiency

Deficiencies Possible Remedies

Carbonaceous Anode
(Negative Electrode)

Negative Electrode—
Electrolyte Interface

Positive Electrode (Lithiated
Transition Metal Oxide or
Phosphate)

Positive Electrode—

Electrolyte Interface

Separator

Metal Collectors

Use advanced alloy anodes with
high efficiency, power, and low
capacity loss.

Low-capacity density (Ah
1)
Low coulombic efficiency Apply protective  coatings,
binders, and electrolyte
due to SEI growth .
additives.

Low specific capacity (Ah Use new cathode materials with
kg™') and limited charge high efficiency and capacity
voltage retention.

Reduced efficiency at Improve cathode coatings,
higher voltages, increased binders, and additives to prevent
impedance degradation.

Penetration by conductive Enhance separator coatings for
particles  or  lithium better strength and dendrite

dendrites resistance.

Solid metal foils increase Use perforated or expanded
costs and reduce metal collectors for Dbetter
efficiency optimization.

The development of long-lasting battery materials and designs has been a key focus,

with increasing attention given to battery lifespan management as it helps reduce costs and

environmental impact, supporting sustainable development. Numerous studies have explored

various battery materials to enhance the cycling stability of active materials for longer-lasting

batteries. For instance, cycling tests in half-cells demonstrated the potential of hierarchically

structured Li4Ti5O12 anodes,

ultrafast charging conditions.

with nano and microstructures, to achieve long life under

Furthermore, battery designs have been shown to extend

lifespan as well. Research on synchronized lithium and LiB included the use of a thin lithium

reservoir electrode, which minimizes lithium and capacity loss during formation, thereby

prolonging battery life. Additionally, an asymmetric temperature modulation battery utilizing

Ni foil for self-heating has been developed to maintain a stable lifetime even during fast

charging.

109



The figure 4.9 highlights crucial parameters for electrode performance highlighted by
[178], essential for optimizing energy storage systems. In part (a), key parameters include
coulombic efficiency, cell voltage, conductivity, specific capacity, gravimetric and
volumetric energy density, toxicity and safety issues, capacity retention, and power density.
These factors collectively determine the efficiency, stability, and overall functionality of
electrodes in energy storage applications. Part (b) illustrates energy level alignment in a liquid
electrolyte system with solid electrodes. It shows the Highest Occupied Molecular Orbital
(HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) levels of the electrolyte, along
with the energy gap (Eg) and open-circuit voltage (eVoc), which influence charge transfer
efficiency and energy output. Part (c) depicts energy level alignment in a solid electrolyte
system with liquid or gaseous reactants. It highlights the conduction band (C.B.), valence
band (V.B.), HOMO, and LUMO levels, showing their roles in electron and ion transport.
Both diagrams emphasize the importance of proper energy level alignment for efficient

energy storage performance and long-term stability.
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Figure 4.9. (a) Performance parameters of electrodes, (b) Liquid electrolyte with solid

electrodes, . (c) Solid electrolyte with liquid or gaseous reactants [178]
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Improving electrode materials is highly effective for extending battery life. These
materials degrade structurally over time due to cycling. This degradation reduces capacity
and causes mechanical failures. Recent studies have focused on nanostructured materials for
stability enhancement. The study by [7] investigated silicon nanocomposites for anodes.
Their findings showed these designs accommodated volume changes without cracking. This
approach improved cycle life by 20%. Similarly, [51] explored cathode doping with
aluminum or magnesium. These doped cathodes exhibited reduced phase transitions,
improving durability. This innovation was particularly effective in high-temperature
environments. Protective coatings have been introduced to minimize unwanted reactions.
[34] reviewed techniques such as atomic layer deposition (ALD). These coatings acted as
barriers to prevent electrolyte decomposition. Batteries with such coatings showed a 30%
reduction in capacity fade. Combining nanostructures, doping strategies, and coatings
significantly enhances durability. These methods not only extend lifespan but also improve

safety. Future research should focus on scaling these techniques commercially.

The electrolyte facilitates lithium-ion movement between the electrodes. Over time,
electrolyte degradation produces side products like SEI. This reduces active lithium ions and
diminishes capacity. A research by [64] studied additives like fluoroethylene carbonate (FEC)
in electrolytes. Their results indicated enhanced thermal stability and reduced decomposition.
Batteries using FEC showed a 15% improvement in cycle life. High-concentration
electrolytes reduce solvent decomposition. [ 126] found these electrolytes suppressed dendrite
formation. This improvement was most beneficial in fast-charging scenarios. Solid-state
electrolytes eliminate risks of leakage and flammability. [26] highlighted sulfide-based solid
electrolytes with superior stability. These batteries retained over 80% capacity after 1,000
cycles. Optimizing electrolytes, through additives or solid-state formulations, mitigates

degradation. Future research should address cost and scalability challenges.

Battery management differs from material and design improvements by controlling
the operation of the battery without altering its structure or components to extend its lifespan.
Key stress factors, including temperature, current rates, lower and upper cutoff voltages, SoC,

and depth of discharge (DoD), are taken into account in lifespan management to evaluate
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battery durability and develop effective usage strategies. High temperatures during cycling
accelerate degradation reactions, such as active material loss and SEI film growth, leading to
capacity fade. High current rates increase diffusion stress and cause electrode particle
cracking, resulting in battery degradation, especially at moderate temperatures. Battery
management typically focuses on controlling temperature and current rates to optimize
performance. Additionally, cycling tests must factor in the voltage range, which involves a
combination of cutoff voltage, SoC, and DoD. Figure 4.10 below provides an overview of a

typical Battery Management System (BMS).
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Figure 4.10. Overview of the functions of a typical BMS [181].

A study conducted by [143] investigated the aging mechanisms of Li(Ni, Mn, Co)O2
cathode batteries cycled through five different (SoC) ranges with a 20% Depth of Discharge
(DoD). It was concluded that lithium inventory loss is the main contributor to battery
degradation. Following the research by [177] proposed that cycling within moderate SoC
ranges using blends of cathode materials like LiNi0.5C00.2Mn0.302 (NCM) and
LiNi0.9C00.05A10.0502 (NCA), paired with graphite anodes, results in reduced capacity
loss and improved performance compared to cycling at extreme SoC ranges. This approach
helps mitigate the likelihood of nonlinear capacity fade. Additionally, Aiken et al. introduced
a low-voltage cycling method for pouch cells using LiNi0.5Mn0.3C00.202 cathodes, which
showed that cycling at voltages of 3.65 V and 3.80 V (roughly corresponding to 0%-30% and
0%-60% SoC) yields better capacity retention compared to cycling at 4.2 V. The study
indicated that passivation of the negative electrode is likely the cause of capacity fade at

lower voltages, while the positive electrode remains largely unaffected.

The studies referenced emphasize the importance of avoiding extreme voltages to
minimize the degradation of cathode materials at high voltages, ultimately helping to prolong
the battery's lifespan. By preventing the electrochemical activation of the Li0.75S1 phase in
the anode, shifting the cycling voltage window from 2.65-4.2 'V (0%—-100% SoC) to 3.1-4.2
V (10%—-100% SoC) improves the longevity of commercial 18650 cells. However, using a
narrower voltage window at the beginning of the battery's life reduces cell efficiency, which
conflicts with the goal of achieving high energy density for longer driving ranges in electric
devices. Despite these considerations, research on battery usage and lifespan remains limited.
Bharathraj et al. introduced a dynamic charging protocol simulation aimed at extending
battery cycle life. This protocol gradually increases the charge cutoff voltage to the
manufacturer's recommended maximum, balancing between the extractable per-cycle

capacity and the degradation that leads to capacity fade.

Moreover, when LiBs are utilized and stored within the parameters prescribed by
manufacturers, the probability of malfunction is approximately 1 in 40 million [9,15].

Nonetheless, incidents of accidents resulting from LiB igniting or detonating in entirely
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distinct devices have been documented, as shown in Table 3.3. Table 3.3 illustrates that
accidents have transpired across a diverse range of devices employing LIBs, including small
consumer products, electric vehicles, and aircraft. The causes of accidents include
overheating, short circuits, overcharging, self-heating, and mechanical damage. The
aforementioned incidents, along with numerous others, prompted modifications to the
regulations governing the transport and storage of LIBs. The International Civil Aviation
Organization (ICAO) has prohibited the transport of LiB as cargo on passenger aircraft,
stipulating that these batteries must not be charged beyond 30% when transported by air. In
order to ensure greater security of LiBs, there are two possibilities: Improving stability
through modification of chemistry and/or structure, by adding internal safety devices [9],

[16], [17].

Table 4.3
Some LIB fire and explosion accidents [179]

No Date Accidents Accident Causes
1 March  Two iPod Nano music players caught fire Overheating of Lithium-ion
2010  inJapan Batteries (LIBs)

Acer recalled 2,700 laptop batteries,

2 26 April similar to recalls by other companies in Overheajclng and potential fire
2010 hazards in LIBs
2006
11 April . o . . Short circuit leading to
3 2011 EV taxi fire incident in Hangzhou, China electrolyte combustion
4 Oct-Nov Fires in six Tesla Model S EV cars Battery sh'ort. .01rcu1t due to
2013 crash, self-ignition
5 Jan 2013 & Three fire incidents of Boeing 747 in Internal short circuit in LIBs
2014 Boston, Takamatsu, and Tokyo and BMS failure

EV bus fire during charging in Shenzhen, Battery overcharge due to BMS

6 April 2015 i malfunction

7 31 May LIB storage explosion in Jiangsu, China Fully charged LIBs potentially

2016 leading to self-ignition
8 16 May Panasonic recalled over 270,000 LIBs Risk of overheating and fire in
2017 LIBs
9 2 Julv 2018 Energy storage system fire and explosion LIB fire spread to over 3,500
y in Korea (4 MW/12 MWh) LIBs
10 29 July  Electric scooter fire and explosion during Likely caused by overcharging

2018  charging in China
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No Date Accidents Accident Causes

11 18 g)()c i[c;ber EV car fire in Austria LIB ignited after vehicle crash

Two methods have been used to modify the cathode. The first involves a coating that
enhances cathode thermal stability. Li [18] improved the discharge capacity and cycle
stability of the LiNi1/3Co1/3Mn1/302 battery by applying a TiO2 coating to the cathode,
without affecting the grid. In addition to the MnSi04 coating in LCO batteries, the Co3(PO4)
coating in LiNi0.93C00.07 O2 demonstrated improved thermal stability and tolerance to
overcharging [19]. Cathode modification can also be done structurally by inserting specific
metals into the structure. Cell ventilation design is one solution. In prismatic batteries, the
charging opening acts as ventilation "windows" to release internal pressure. The positive
terminal cover was designed with small ventilation "windows" to accommodate the 18650
battery [23], as shown in Figure 4. In both cases, the ventilation "window" is a fragile cap

that breaks at critical pressure.

4.7 LITHIUM LI-ION BATTERY MODELS

The condition-based maintenance (CBM) plan for the system needs to take battery
prognostic health management (PHM) into account. As a preventive measure, the CBM plan
makes sure that maintenance tasks are only carried out when absolutely necessary. Evaluate
the health status of a system’s components or the entire system to determine its need [11].
Diagnostics and prognostics are CBM’s main tasks. A system is remaining useful life (RUL)
is the time until failure [12]. Maintenance should be done while the system is running to
prevent failure to prevent negative consequences. These maintenance tasks require early
planning and preparation [13]. CBM should be integrated into system operations, particularly
for critical systems [179]. Battery aging diagnostic algorithms are designed to assess the
current state of battery aging, while battery aging prognostic algorithms aim to forecast the
remaining lifespan of the batteries until they reach their end of life (EOL), as shown in Figure
4.11. Based on the prediction focus, prognostic methods can be classified into future aging

trajectory prediction [181] and Remaining Useful Life (RUL) point prediction [50].
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Figure 4.11. Illustration of battery aging diagnostics and prognostics [181]

4.7.1 DIAGNOSTIC MODELS FOR LITHIUM LI-ION BATTERIES

The first type of battery aging model of interest are diagnostic models. Battery
diagnostic models are built to estimate cell health using some measurable quantities of the
cell. Batteries degrade over time due to the main electrochemical reactions and several
complex and interacting side reactions during charging and discharging. Accurate and
reliable ageing diagnostics are necessary for battery system safety and efficiency. Estimating
SoH for battery ageing is common [181]. Diagnostics is the process of locating errors and
determining a portion of the system's current state of health, or SoH [179]. Diagnostic models
focus on identifying the current state and health of LiB. These models detect issues such as
capacity fade, internal resistance changes, and thermal imbalances. Several approaches and

methodologies are employed for diagnostics.

The Battery (SOH) indicates a specific phase of the battery's life and shows how well
the battery is performing right now in comparison to when it was in ideal condition. The
inability to quantify (SOH), in contrast to terminal voltage, makes it more difficult to use in
longevity assessments. The battery's usage history has a major impact on the estimation of
(SOH), and external factors such as temperature, current rates (C-rates), and the battery's
operational range have a significant impact on the aging process. Different aging trajectories
are caused by these factors. Furthermore, even minute manufacturing flaws can cause

differences in the battery's aging characteristics, making accurate SoH monitoring more
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difficult. Scholars generally employ metrics like capacity or impedance to evaluate the
current energy or power capacity that a battery is capable of producing. Some focus on aging
mechanisms, such as the amount of cyclable lithium ions [181] or the time it takes for lithium
ions to diffuse into the solid phase in the positive electrode [176]. SOH is essentially an
estimate that is obtained by analyzing a series of measurements based on specific criteria. It
is possible to evaluate the battery's aging state quantitatively or qualitatively. The main goals
of SOH monitoring are to improve battery management, ensure the safe and dependable

operation of battery systems, and provide early warnings.

As covered in [181], recent reviews demonstrate the advancements made in battery
capacity estimation by both industry and academia. These techniques can be broadly divided
into three groups: data-driven, model-based, and empirical. A mathematical relationship is
established between cell capacity and common degradation indicators such as Ah counting,
equivalent cycle number, or time by the empirical model, which is based on extensive
laboratory cycling data. But because it was developed in controlled laboratory settings, this
model has trouble being applied correctly to real-world situations where batteries must
contend with dynamic and fluctuating operating conditions. However, by updating internal
parameters based on real-time measurements, model-based approaches improve performance
for particular applications and are therefore more flexible than empirical models, albeit with
potentially limited generalizability. These methods often integrate sophisticated filtering
techniques, such as the Kalman filter and particle filter, to monitor the voltage versus capacity
curve (V-Q curve), update model parameters, and predict future degradation, thereby offering

a more reliable assessment of battery health.

The battery model is employed to assess the current capacity. Filtering methods attain
satisfactory accuracy; however, they are constrained in their capacity to disseminate
information among cells. The absence of shared information among cells restricts the
applicability of filtering methods to extensive datasets, rendering these methods increasingly
less advantageous as contemporary datasets expand [182]. Most model-based methods use
ECM models. ECMs used only electric circuitry powers. Simple implementation makes them

appealing for battery aging diagnostics. Electric vehicle batteries may degrade over time due
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to harsh operating conditions. Model accuracy may decline without regular RPT tests [55].
The porous electrode and liquid-concentrated solution theory describes the battery's internals
[68], [69]. The original EM is coupled with SEI [70], [71], lithium plating [26], and particle
cracking [72] to model aging. Computationally intensive models and parameterization

difficulties make them unsuitable for online applications [73].

Unlike building an aging model from scratch, data-driven methods use measured
battery signals to capture aging state without considering mechanisms. Recent digitalization
and new technologies like digital twins and battery intelligent management systems have
sparked interest in data-driven methods for battery diagnostics [39], [74], [75]. Several
methods, including feature-based ML algorithms and end-to-end deep learning, have been
proposed to estimate battery capacity [51-67]. Designers manually select relevant features to
determine aging states from measured raw data or estimated BMS states using domain
knowledge in feature-based methods [76], [77]. Common characteristics are derived from

measured voltage, current, temperature, or time.

The study by [169] employed EIS to identify capacity fade mechanisms in LiB. Their
findings revealed a correlation between impedance growth and electrolyte decomposition.
This technique has been particularly effective for detecting early signs of capacity
degradation and power fade. Accurate SoC estimation is critical for monitoring battery
performance. Diagnostic models utilize algorithms such as the Extended Kalman Filter
(EKF) and particle filtering. The research by [176] demonstrated a data-driven SoC
estimation model using machine learning. Their approach achieved high accuracy, reducing
estimation errors to less than 5%. Fault detection systems identify anomalies such as thermal
runaway, overcharging, and short circuits. Following the study by [162] proposed an
advanced FDI system integrating real-time sensor data and predictive analytics. This system
effectively isolated faults, improving battery safety and operational reliability. Thermal
diagnostics evaluate heat generation and dissipation within batteries. Thermal imaging
techniques detect localized hotspots, indicating potential failures. Another study by [178]
highlighted the importance of thermal diagnostics for preventing thermal runaway incidents.

Their study recommended advanced cooling systems to mitigate thermal risks.
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4.7.2 PROGNOSTIC MODELS FOR LITHIUM LI-ION BATTERIES

For lithium-ion battery systems to operate dependably, a mechanism for tracking and
determining the battery's state of health (SoH) and remaining useful life (RUL) is essential.
This method provides helpful information to predict when the battery needs to be replaced or
taken out. Unlike diagnostic models, which predict a battery's life cycle, prognostic models
evaluate a battery's health in the future and often predict how many cycles or how long it will
take the battery to reach a capacity threshold [182]. This type of assessment is part of a system
called prognostic and health management (PHM). PHM continuously assesses SoH and RUL
to ensure that LiB operate reliably and safely. Prognostics is the prediction of a battery's time
to failure. Researchers from a variety of fields have made significant contributions to the
PHM of LiB. For instance, a study by [3] presented a prognostic method based on physics

that takes into consideration several simultaneous degradation mechanisms.

Similar to diagnostic models, predictive models rely on a variety of input data,
including voltage, current, temperature, time, charge/discharge voltage relaxation, voltage
pulses, acceleration and deceleration, ultrasound, and pressure data streams [182]. The
outputs of predictive models typically include a capacity trajectory, the RUL expressed in
cycles or time, and the anticipated battery lifetime. To evaluate the SoH of lithium-ion
batteries (LiB), for instance, [162] combined data from Gaussian distribution with the least
squares support vector machine regression technique. [172] estimated SoH and RUL and
evaluated battery degradation using the Rao-Blackwellization particle filter. In a different
work, [173] developed a model-free approach that uses the Kalman filter and ANN to
enhance the health management of lithium batteries (LiB). PHM for LiB has also used other
filtering techniques, such as particle filtering [7] and the unscented particle filter [8]. The
Gauss—Hermite particle filter (GHPF) methodology for state-of-charge estimation was
recently presented by [179]. It reduces the number of sampling particles and streamlines the

algorithm while improving estimation precision.

There are two primary stages to the prognostic process. The first stage is centered on
evaluating the state of health, or SoH, which is also referred to as degradation detection or

severity detection in the literature and is a component of diagnostics. Throughout this stage,
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pattern recognition is frequently accomplished using methods like classification or clustering.
The purpose of the second phase is to forecast the degradation trend and calculate the RUL
in order to predict the failure time. Typically, trend projection, tracking strategies, or time
series analysis are used in this phase. The first phase is the focus of many academic studies
on prognostics [14]. Model-based or data-driven models can be used to predict battery life.
Both approaches rely on historical cell data, but their methodologies differ. Model-based
prognostic models update and extrapolate predefined degradation models, such as physics-
based models that simulate internal degradation mechanisms, to predict future capacity,
resistance, and overall cell health. In contrast, empirical capacity fade models use explicit
mathematical functions and stochastic process models to track and predict capacity

degradation.

Equivalent circuit models and physics-based degradation models estimate cell health
by combining cell data and physics. Model parameters must be extrapolated to forecast cell
health. It is difficult to determine the trajectory for each parameter in physics-based models
without disrupting cells midway through cycle aging experiments or employing costly
measurement tools such as EIS. These models have not yet been widely used or studied.
Using an empirical capacity fade model to demonstrate a cell's capacity trajectory is simpler.
Empirical capacity fade models incorporate explicit and two exponential terms, a power-law
function, a linear function, and a hybrid exponential-linear function.Empirical model-based
approaches, like others, rely on online cell capacity measurements to estimate/update model
parameters. Recursive Bayesian filtering is a popular method for parameter estimation. Many
Kalman filter variants and generic particle filters are widely used Bayesian filters.
Probabilistic predictions are a significant advantage of these filtering methods. In contrast to
model-based approaches, data-driven battery prognostics employ machine learning to

determine the relationship between input features and capacity or lifetime.

Data-driven prognostic models are typically trained in three ways: 1) feature-to-
capacity mapping; 2) feature-to-life mapping; and 3) capacity time-series forecasting. Direct
mapping methods build models based on strong correlations between input features (V, I, T,

t, Q, EIS, etc.) and cell capacity/lifetime. With enough data and strong input-output
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correlations, data-driven models can accurately predict new cell capacity or lifetime under
previously untested conditions. Popular models for estimating direct mapping capacity
include support vector machines (Klass et al.), relevance vector machines, and neural
networks.A Gaussian Process (GP) can be used for capacity estimation through data-driven
direct mapping. GP regression models were used as regressors alongside other models. Time
series forecasting approaches, on the other hand, use machine learning models such as
support vector machines, relevance vector machines combined with empirical capacity fade
models, GP regression models without trend functions, and recurrent neural networks to
predict a cell's capacity trajectory and RUL.Data-driven lifetime prediction models have

recently received attention due to their novel input feature engineering techniques.

Coulombic efficiency, or the ratio of charge to discharge capacity, assesses cell
performance. A value of 1.000 represents perfect cyclic efficiency. Measure cell coulombic
efficiency with greater precision than 0.01% to quantify cell-to-cell differences in the rate of
undesirable side reactions that cause capacity fade and identify cells with longer lifespans.
Jeff's team published a paper comparing long-term cycling data (> 750 cycles) with predicted
lifetimes from short-term (< 500 hours) high-precision coulombic inefficiency measurements
using coulometry equipment. For the first time, this study demonstrated that early cycling
measurements can predict long-term cell aging performance. Table 3.5 summarizes the
information on the differences and advantages of each model. [179] has highlighted various

aspects of data-driven and physics-based model in his study as given below in table 3.4.\
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Table 4.4

Difference between data-driven and physics-based models for diagnostics and prognostics

[179].

Aspect Models based on data-driven [15] Models based on Physics [16,17]

L . Both i thematical f 1
Historical operational data as well as Ot precise mathemarical fotmuas

Based on .. o and a physical comprehension of the
empirical lifetime data.
system are represented.
Real-world complex physical system increased accuracy because it is
Advantages behavior is not necessary. based on real or almost real physical
systems.
Models are simpler to use and more ~ The model can be evaluated more
practical in practical situations. realistically because it depicts a real
system.
: : Highly complex and computationall
Requires a large dataset to build an ey plex and compu y
Drawbacks intensive, requiring significant
accurate model.
resources.
Does not directly represent the actual  Limitations in modeling complex
system, requiring extra effort to systems with non-measurable
interpret system behavior. variables.

The data repository of the NASA Ames Prognostics Center of Excellence (PCoE)
provided the lithium-ion battery dataset used in this study [18]. Commercial 1850-sized
rechargeable lithium-ion batteries were tested under controlled circumstances as part of the
NASA prognostics testbed [ 19]. At room temperature, charge, discharge, and impedance tests
were performed to collect experimental data. In the charging phase, the voltage was held
constant until the current dropped to 20 pA, and a current of 1.5 A was applied until the
voltage reached 4.2 V. Batteries with the numbers 05, 06, 07, and 18 were put through
discharge tests with a current of 2 A. The voltage was dropped to 2.7V, 2.5V, 2.2V, and back
to 2.5 V. Impedance was measured using Electrochemical Impedance Spectroscopy (EIS),
with frequency adjustments spanning from 0.1 Hz to 5 kHz. Batteries were aged more quickly
by using multi-cycle charge and discharge tests. The physics-based model presented in [20]
can be used to represent the aging behavior of these batteries. The batteries' testing came to

an end when their capacity dropped by 30% and they satisfied the end-of-life requirements.
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The battery under test is shown schematically in Figure 3.12, along with important
specifications including Warburg impedance (RW), electrolyte resistance (RE), charge transfer
resistance (RCT), and double-layer capacitance (CDL). Interestingly, during the battery aging
process, the parameters RW and CDL exhibited negligible variation, obviating the need for additional
analysis [21]. This schematic diagram sheds light on the structural elements of the battery and
emphasizes their roles in its overall behavior. The main dataset for training and analysis is the
characteristic profile of battery No. 05. Furthermore, battery No. 05's current and voltage profiles
during charging and discharging cycles are depicted in Figure 4.12, providing a thorough
understanding of its performance under test conditions. To help with understanding the internal
structure of the tested battery, Figure 4.12 also presents a schematic representation of the battery with
parameters like RW, RE, RCT, and CDL displayed. RW and CDL were not included in the analysis
because they showed very little change as they aged [21]. The training dataset is built upon the
combination of battery No. 05's characteristic performance profile and schematic diagram. The
battery's current and voltage behavior during the charging and discharging cycles is captured in Figure

4.12, offering crucial information for further analysis.
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Figure 4.12. The schematic diagram of the tested battery [21]

To evaluate its prognostics, the battery's SoH must be defined. Battery data
prognostics often rely on identifying the battery's SoH. Understanding the definition of SoH
is crucial, as it is, along with RUL, the primary prediction attribute in the proposed data-

driven model.

4.8 THE ROLE OF BMS IN FAULT DIAGNOSIS

The core function of the BMS is to mitigate the risks associated with operating a LiB
pack, ensuring both the safety of the battery and its users. Hazardous conditions typically

arise from faults, and the safety functions of the BMS aim to reduce both the likelihood and
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severity of these faults. Standard components such as sensors, contactors, and insulation are
integrated into the battery system to maintain safety [13]. These sensors continuously monitor
operational limits for voltage, current, and temperature, providing real-time data to ensure
the battery's performance stays within safe parameters [41]. However, as BMS hardware and
software become more complex, battery faults evolve and become harder to detect, which
may render basic safety measures insufficient [42,43]. This makes fault diagnostic algorithms
crucial to BMS operations. These algorithms are designed to promptly detect faults and
activate appropriate control measures to protect both the battery and its users. Figure 4.13

below illustrates the mechanism of fault diagnosis within the BMS.
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Figure 4.13.4 schematic of fault diagnosis in the BMS [180]

BMS is crucial for fault diagnosis as it contains all diagnostic subsystems and
algorithms [180]. It oversees the battery system via sensors and state estimation, employing
modeling or data analysis to identify any irregularities during the operation of the battery
system [13]. The presence of numerous internal and external faults complicates the efficient

execution of this task. Diverse fault diagnostic methods must operate concurrently to
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accurately identify and isolate a particular fault, thereby facilitating the appropriate control
action. Nonetheless, the fault diagnostic algorithms within the BMS are constrained by
limited computational resources and time. Due to the extensive number of cells in certain
battery systems, fault diagnostic algorithms must exhibit minimal computational demand
while ensuring accuracy and reliability [44]. Recent years have witnessed significant efforts
in the research and development of effective fault diagnostic methodologies for LiB, which
will be addressed in the subsequent section. Fault diagnosis is a critical function within the
BMS. Fault diagnosis encompasses fault detection, isolation, and estimation. Numerous fault
diagnostic methodologies exist across diverse industries. In Li-ion battery applications, faults
may be internal and interconnected; therefore, many conventional methods from other
domains are inappropriate. Fault diagnostic methods for Li-ion batteries are classified into

two categories: model-based and non-model-based [9].
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CHAPTER §

EXPERIMENTAL SETUP AND PREDICTED
RESULTS

5.1 INTRODUCTION

The study employed detailed experimental data for a 26650-battery cell capturing
critical parameters related to the battery’s performance under various operational conditions.
The key variables include terminal voltage (V) and terminal current (A), which reflect the
battery's electrical behavior during operation. The dataset also records the temperature (°C)
to monitor thermal performance and the charge current (A) and charge voltage (A) during
charging processes. The capacity (Ah) measures the battery's storage capability, while the
cycle tracks the operational cycles. Additionally, the dataset included two essential metrics:
(SoC), indicating the battery's current charge level as a percentage, and (SoH), which
measures the battery's overall health, typically starting near 100% for a new cell. This
comprehensive dataset enabled the analysis of trends and relationships between these
variables. For instance, it can be used to investigate how SoC and SoH evolve over cycles or
how factors such as temperature and current influence battery performance. The rich
information in the dataset makes it ideal for validating experimental results, exploring

correlations, identifying clusters or outliers, and comparing outcomes with predictive models.

5.2 RESULTS OF THE STUDY
5.2.1 CYCLE VS TERMINAL VOLTAGE

Figure 5.1 below illustrates the relationship between terminal voltage and cycle count,
providing several key insights into battery performance. Initially, the terminal voltage
experiences a sharp drop, stabilizing quickly around 3.0 V. This stabilization reflects the
battery's ability to maintain consistent voltage during operation. Over the majority of the
cycles, the voltage remains steady, indicating stable performance with minor fluctuations due
to normal operational variations. Periodic voltage drops are observed, potentially linked to
discharge cycles or temporary anomalies in operation. The maximum terminal voltage

reaches slightly above 3.0 V during stable periods, while the minimum voltage, observed
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during the initial drop, is approximately 2.0 V. Outliers in the graph highlight deviations that
may warrant further investigation into specific operational conditions. Overall, the figure
depicts the battery's ability to sustain voltage stability across several hundred cycles,

demonstrating reliable long-term performance despite occasional fluctuations and drops.

Terminal Voltage vs. Cycle
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Figure 5.1.Relationship between Terminal Voltage and Cycle

5.2.2 CYCLE VS TERMINAL CURRENT

Figure 5.2 below depicts the relationship between terminal current and cycle count.
Terminal current oscillates between positive and negative values, indicating charge and
discharge cycles. Positive current values, peaking at 1 A, represent charging events. Negative
current values, reaching approximately -1 A, represent discharging cycles. Anomalies are
observed with drops below -2 A, likely indicating abnormal operational conditions. The
current stabilizes after initial fluctuations, maintaining consistent oscillations. This behavior
reflects standard battery cycling with controlled charge-discharge alternations. Early cycles

show slightly uneven patterns, suggesting initialization effects. The stability in most cycles
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signifies reliable current regulation over time. Key statistics include a peak positive current
of 1 A and a minimum current below -2 A. These extremes may indicate outliers requiring
further investigation. Overall, the graph highlights the battery's ability to handle consistent
current during long-term cycling. Occasional deviations suggest operational interruptions or

extreme conditions affecting current flow.

Terminal Current vs. Cycle
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Figure 5.2.Relationship between Terminal Current and Cycle

5.2.3 CYCLE VS CHARGE VOLTAGE

Figure 5.3 below demonstrates the relationship between charge voltage and cycle.
Charge voltage remains stable around 3.5 V for most cycles. Initial cycles show consistent
voltage with minor variations. Occasional dips below 3.0 V indicate brief irregularities. These
dips may be caused by operational interruptions or anomalies. The voltage stability reflects
consistent charging behavior across cycles. The maximum charge voltage observed is
approximately 3.65 V. The minimum charge voltage drops below 2.0 V during certain cycles.

This behavior highlights effective charge regulation during normal operations. Outliers,
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represented by sharp drops, warrant further investigation. Key statistics include a peak charge
voltage of 3.65 V and dips below 3.0 V. Overall, the graph demonstrates reliable voltage

stability across long-term battery cycling. Occasional deviations could indicate external

factors affecting the charging process.
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Figure 5.3.Relationship between Charge Voltage and Cycle

5.2.4 CYCLE VS CHARGE CURRENT

Figure 5.4 below depicts the relationship between charge current and cycle. Charge
current primarily stabilizes around 2.0 A after initial cycles. The early cycles exhibit
fluctuations, starting near 1.0 A. Occasional dips below 1.5 A are observed in some cycles.
These irregularities may indicate operational interruptions or transient effects. The maximum

charge current reaches approximately 2.0 A during stable periods. The minimum charge
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current during early cycles is around 1.0 A. The consistent current across most cycles
highlights reliable charging performance. Outliers, represented by brief drops, could reflect
anomalies in the charging process. Overall, the graph demonstrates the cell's ability to
maintain consistent charging currents over prolonged cycling. The few deviations suggest
temporary disturbances or system adjustments during early cycles. Key statistics include a
peak charge current of 2.0 A and a minimum of 1.0 A. These patterns confirm stable and

predictable charging behavior across cycles.
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Figure 5.4.Relationship between Charge Current and Cycle

5.2.5 CYCLE VS CAPACITY

Figure 5.5 below illustrates the relationship between battery capacity and cycle count.

Capacity exhibits a gradual decline as the cycle count increases. The initial capacity starts
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around 2.25 Ah, representing the battery’s full potential. Over time, a stepwise decrease in
capacity is observed. This decrease reflects the natural degradation of the battery during
repeated charge-discharge cycles. By the final cycles, capacity falls below 2.175 Ah,
indicating significant wear. The steady downward trend confirms capacity fading, a common
phenomenon in battery aging. The graph shows no sudden drops, indicating consistent and
predictable degradation. Key statistics include an initial capacity of approximately 2.25 Ah
and a minimum capacity below 2.175 Ah. Each step in the graph represents measurable wear,
likely due to electrode degradation or material aging. The predictable capacity loss highlights
the cell’s long-term stability despite aging effects. Overall, the graph demonstrates the

battery’s durability and gradual decline in energy storage capabilities over extended cycling.

Capacity vs. Cycle

2.250

2.225

Capacity (Ah)

2.200

2.175

0 100 200 300
Cycle

Figure 5.5.Relationship between Capacity and Cycle
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5.2.6 CYCLE VS STATE OF HEALTH (SOH)

Figure 5.6 below showed the relationship between the SoH and cycle count, showing
a gradual decline. The SoH starts near 100% at the initial cycles, representing optimal battery
health. Over time, the SoH decreases stepwise, indicating predictable capacity degradation.
The consistent downward trend reflects the natural aging process of the battery during
operation. By the final cycles, the SoH drops to approximately 96%, confirming long-term
wear and reduced capacity. The absence of abrupt drops indicates stable degradation without
sudden failures or anomalies. Key statistics include an initial SoH of 100% and a final SoH
of around 96%, with measurable steps between cycles. Each step in the graph likely
represents specific capacity losses due to cycling stress. This pattern highlights the battery’s
durability and resistance to irregular degradation over extended usage. Overall, the graph
demonstrates gradual and predictable health loss, aligning with typical aging characteristics

of batteries subjected to repeated cycling.
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State of Health (SoH) vs. Cycle
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Figure 5.6.Relationship between State of Health and Cycle

5.2.7 STATE OF HEALTH (SOH) VS CHARGE VOLTAGE

Figure 5.7 below depicted the relationship between the SoH and charge voltage,
showing SoH values ranging from 96% to 100% as the charge voltage varies between 2.0 V
and 3.5 V. At lower charge voltages around 2.0 V, the SoH stabilizes near 96%, indicating a
degraded health state. As the charge voltage increases linearly toward 3.5 V, the SoH rises
correspondingly to nearly 100%, representing optimal health. This trend reveals a strong
positive correlation between charge voltage and battery health, with higher voltages aligning
with better SoH. Key statistics include a minimum charge voltage of 2.0 V, a maximum of
3.5V, and a SoH decline from 100% to 96% at lower voltages. The sharp transitions at

extreme voltage ranges suggest the need for precise charge voltage management. Overall, the
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graph highlights the critical role of maintaining higher charge voltages to sustain optimal
SoH and ensure consistent battery performance over operational cycles. SoH can be

calculated with charge voltage using the following mathematical equation.
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Figure 5.7.Relationship between Charge Voltage and SOH

5.2.8 STATE OF HEALTH (SOH) VS CHARGE CURRENT

Figure 5.8 below provides the relationship between the SoH and charge current,
showing a linear increase in SoH as the charge current rises from 1.0 A to 2.0 A. At lower

charge currents around 1.0 A, the SoH stabilizes near 96%, indicating a degraded battery
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state. As the charge current increases toward 2.0 A, the SoH improves, reaching close to
100%, representing optimal battery health. This positive correlation suggests that higher
charge currents contribute to better maintenance of SoH, likely due to more effective charging
processes. Key statistics include a minimum charge current of 1.0 A and a maximum of 2.0
A, with SoH ranging from 96% to 100% across the current range. The linear trend emphasizes
the importance of maintaining appropriate charge currents to support long-term battery
health. Overall, the graph highlights the beneficial effects of controlled higher charge currents

in sustaining consistent and reliable battery performance.
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Figure 5.8.Relationship between Charge Current and SOH
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5.2.9 STATE OF HEALTH (SOH) VS CAPACITY

Figure 5.9 below demonstrate the relationship between the SoH and capacity,
showing a strong linear correlation. As the capacity increases from 2.175 Ah to 2.250 Ah, the
SoH also rises from 96% to 100%. This positive trend indicates that higher battery capacity
corresponds to better health, reflecting the natural degradation of both parameters over time.
Key statistics include a minimum capacity of 2.175 Ah at 96% SoH and a maximum capacity
of 2.250 Ah at 100% SoH. The linear relationship highlights how capacity acts as a direct
indicator of battery health, with reductions in capacity signaling aging and wear. The
consistent slope suggests predictable and steady degradation, with no abrupt drops or
irregularities. This trend demonstrates the battery's durability in maintaining a gradual and
stable loss of health and capacity over cycles. Monitoring capacity is crucial for assessing the
overall state of the battery and predicting its remaining useful life. Overall, the graph
emphasizes the importance of maintaining capacity to sustain a high SoH, underlining the
interconnectedness of these metrics in evaluating battery performance and longevity. SoH

can be calculated with charge voltage using the following mathematical equation.

Cactual

SoH = X 100

nominal
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SoH vs. Capacity
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Figure 5.9.Relationship between Capacity and SOH

5.2.10 STATE OF HEALTH (SOH) VS TEMPERATURE

Figure 5.10 below illustrates the relationship between SoH and Temperature (°C).
This visualization implies that no clear or meaningful relationship between temperature and
SoH can be inferred due to the limited or fixed range of temperature in the dataset. The
concentration of data points around a single temperature may indicate either a controlled
experimental setup, where temperature was deliberately held constant, or a limitation in data
collection, where a broader range of temperatures was not captured. This restricted variability
prevents the analysis from exploring potential trends or interactions between temperature and
SoH, which could otherwise be important for understanding the relationship. As such, while

some patterns in SoH can be observed within the narrow temperature range, these findings
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are limited in scope and do not allow for generalizations across a wider range of temperatures.
To draw more robust conclusions, future studies should aim to include a more diverse and
representative range of temperature values to assess whether temperature plays a significant
role in influencing SoH. SoH can be calculated with temperature using the following

mathematical equation.

—Ea
Closs X eRT |t
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Figure 5.10.Relationship between Temperature and SOH

5.2.11 STATE OF CHARGE (SOC) VS TERMINAL VOLTAGE

Figure 5.11 below depicts the relationship between the SoC and terminal voltage,

showing a steep linear rise. At terminal voltages below approximately 2.5 V, the SoC remains
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at 0%, indicating a discharged state. Once the terminal voltage exceeds 2.5 V, the SoC
increases rapidly, reaching 100% near 3.0 V. This trend highlights a strong and direct
correlation between terminal voltage and the battery’s SoC. Key statistics include a minimum
SoC of 0% below 2.5 V and a maximum SoC of 100% at or above 3.0 V. The sharp slope in
the graph indicates that the SoC is highly sensitive to changes in terminal voltage within this
range. This relationship reflects the charging behavior of the battery, where voltage increases
significantly during the transition from a low to a high charge state. Overall, the graph
emphasizes the importance of monitoring terminal voltage as a reliable indicator of the
battery’s charge level, particularly in applications requiring precise SoC estimation. This
steep linear trend further underscores the efficiency of voltage-based SoC monitoring
methods for battery management systems. SoC can be calculated with terminal voltage using
the following mathematical equation.

Vt_ Vm

SoC = x 100

Vmax F Vmin
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SoC vs. Terminal Voltage
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Figure 5.11.Relationship between Terminal Voltage and SOC

5.2.12 STATE OF CHARGE (SOC) VS CHARGE VOLTAGE

Figure 5.12 depict the relationship between the SoC and charge voltage, showing a
strong linear correlation. At lower charge voltages around 2.0 V, the SoC is near 0%,
indicating a discharged state. As the charge voltage increases, the SoC rises proportionally,
reaching 100% at approximately 3.5 V. The linearity of the graph indicates that the SoC is
directly influenced by the charge voltage, reflecting the battery's charging behavior. Key
statistics include a minimum SoC of 0% at 2.0 V and a maximum SoC of 100% at 3.5 V, with
no significant anomalies or deviations. The steep slope emphasizes the sensitivity of SoC to
changes in charge voltage, particularly during the transition from a discharged to a fully

charged state. This trend underscores the reliability of charge voltage as an accurate indicator
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of SoC, making it a crucial parameter for battery management systems to monitor and control.
Overall, the graph highlights the predictable and efficient charging characteristics of the
battery. SoC can be calculated with terminal current using the following mathematical

equation.

Vcharge - Vmin

SoC = X 100
Vmax - Vmin
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Figure 5.12.Relationship between Charge Current and SOC
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5.2.13 STATE OF CHARGE (SOC) VS CHARGE CURRENT

Figure 5.13 below illustrates the relationship between the SoC and charge current,
showing an inverse linear correlation. At higher charge currents around 2.0 A, the SoC drops
to 0%, indicating a discharged state. Conversely, at lower charge currents near 1.0 A, the SoC
reaches 100%, reflecting a fully charged battery. This negative linear relationship indicates
that higher currents correspond to lower SoC values, likely due to increased discharge rates
or incomplete charging cycles. Key statistics include a maximum SoC of 100% at 1.0 A and
a minimum SoC of 0% at 2.0 A, with no anomalies or deviations from the trend. The steep
negative slope emphasizes the sensitivity of SoC to variations in charge current, with higher
currents accelerating the discharge process. This relationship underscores the importance of
optimizing charge current to maintain a balanced and efficient charging process. Overall, the
graph highlights the critical role of current regulation in sustaining battery performance and
ensuring accurate SoC estimation for effective battery management. SoC can be calculated

with terminal current using the following mathematical equation.

I At
SoC, = SoC,_{ + —2arge

Cnominal
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Figure 5.13.Relationship between Charge Current and SOC

5.2.14 STATE OF CHARGE (SOC) VS TEMPERATURE

Figure 5.14 below depicts the relationship between the SoC and temperature, showing
a narrow vertical distribution. The temperature remains fixed around 25°C, while the SoC
spans its full range from 0% to 100%. This suggests that temperature has minimal variability
and does not significantly influence SoC within this narrow range. Key statistics include a
temperature range of approximately 24.95°C to 25.025°C and a complete SoC range from
0% to 100%. The lack of variation in temperature indicates that the battery was likely
operated under controlled thermal conditions. While the graph highlights consistent
temperature during charging and discharging, it limits the ability to analyze broader

temperature effects on SoC. This trend underscores the importance of maintaining stable
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thermal conditions for reliable battery operation. However, further analysis over a wider
temperature range would be needed to understand how temperature impacts the SoC in more

diverse scenarios.
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Figure 5.14.Relationship between Temperature and SOC

5.3 ALGORITHM EXPLAINING AND SOH PREDICTION RESULTS
5.3.1 DNN (Deep Neural Network)

For a number of applications, such as energy storage systems, electric vehicles, and
battery management systems, accurate battery SoH prediction is essential. The creation and
assessment of a DNN model intended to forecast battery SoH based on historical data are

described in this paper. A thorough methodology was used for the study, which included data
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preprocessing, model design, training, assessment, and result analysis. Features including
voltage, current, temperature, and cycle count were included in the dataset used for this
investigation. The preprocessing stages comprised cleaning the data, identifying and
eliminating outliers with statistical techniques like the interquartile range (IQR), and impute
missing values with KNN imputation. Feature engineering was also performed, creating
time-based features (e.g., time since the last charge or discharge cycle) and derived features
such as the rate of SoH change and current derivatives. Finally, the data was normalized using
min-max scaling to ensure all features contributed equally to the model training process.

A feedforward neural network with numerous densely connected hidden layers made
up the DNN model architecture. Preprocessed data was fed into the input layer, and fully
connected neurons with ReLU activation, batch normalization to stabilize training, and
dropout layers to avoid overfitting were all part of the hidden layers. The SoH was predicted
by a single neuron in the output layer. The performance was assessed using the Mean Squared
Error (MSE) loss function, and the Adam optimizer was used for training. The training
parameters comprised of 32 batches, 1000 epochs, and 0.000001 as the initial learning rate.
Callbacks were introduced to prevent overfitting and dynamically modify the learning rate

during training, such as EarlyStopping and ReduceLROnPIlateau.

The model's working was measured using metrics such as Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and R-squared. Initial results revealed
significant underestimation, with predicted SoH values consistently lying below the actual
values. High MAE and RMSE values indicated large prediction errors, and a negative R-
squared value suggested that the model performed worse than simply predicting the mean of
the target variable. To address these issues, several improvements were made, including
reducing the learning rate for better training stability, increasing model depth to capture
complex patterns, raising the dropout rate to prevent overfitting, and applying L2

regularization to improve generalization.

Despite these improvements, the model exhibited stagnation in subsequent iterations,
predicting constant values, which pointed to underfitting and an inability to capture the

dynamics of battery degradation. Future work involves conducting a more detailed analysis
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of the data to identify biases, inconsistencies, or missing values. Additionally, exploring
advanced feature engineering, alternative data normalization techniques, and different model
architectures like CNNs, RNNs, and LSTM networks could improve performance. Attention
mechanisms may also uplift the model’s capability to focus on relevant parts of the input

sequence.

Hyperparameter optimization, using methods like grid search, random search, or
Bayesian optimization, could further improve learning rates, dropout rates, and other
parameters. Ensemble methods such as bagging or boosting may also be considered to
combine predictions from multiple models for better performance. In conclusion, while the
initial results of the DNN model were not satisfactory, various strategies, including data
preprocessing, model adjustments, and hyperparameter optimization, were explored to
improve its performance. Upcoming investigation is essential to examine the impact of these
strategies and explore additional approaches to improve the model's correctness and strength

for battery SoH prediction. MAE is selected as the loss function, defined as:

Where:

e Vi isthe true value.

e Yiis the predicted value.

o N is the total number of data points.
Strengths:

e MAE is more robust to outliers because it does not square the errors, giving equal

weight to all errors.
« Itis easier to interpret since it is in the same unit as the target values.

Weaknesses:
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e MAE does not penalize larger errors as heavily as MSE, which could be a

disadvantage if large errors need to be prioritized.

o Optimization of MAE can be more challenging since it is not differentiable at every

point.

MAE directly measures prediction accuracy without squaring errors, making it robust to
outliers. The utility of MAE in regression tasks is supported by studies in [7]. The Adam
optimizer is employed due to its adaptive learning rate properties and superior performance

on noisy gradients. Adam updates parameters as follows:

where m t\hat{m} tm~t and v t\hat{v} tv~t are bias-corrected approximations of the first

and second moments of the gradient.
o Parameters:
o PB1=0.9\beta 1=0.981=0.9 for momentum.
o P2=0.999\beta 2 = 0.999$2=0.999 for variance scaling.
o e=10—-8\epsilon = 10"{-8}e=10—8 for numerical stability.

The effectiveness of Adam in regression problems is well-documented in [8], [9]. The model
achieves an MAE of 0.1673, which corresponds to an average prediction error of
approximately 16.73%. This low value underscores the model's capability to make accurate
predictions. MAE's application to regression tasks is further validated in [7]. RMSE is

defined as:
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An RMSE of 0.2024 reflects the model's sensitivity to larger errors. Its slightly higher value

compared to MAE highlights occasional deviations, as discussed in [10]. R2 measures the

proportion of variance explained by the model:

The DNN achieves R2=0.9695R"2 = 0.9695R2=0.9695, capturing 96.95% of the variance in
SoH. This result signifies high predictive power, as supported by metrics analysis in [11].

The training process involves fitting the DNN model to the preprocessed data and evaluating

its performance on unseen validation data. Here's a breakdown of the code and its

functionalities:

1. Model Fitting (model.fit())

o model .fit(x=X_train, y=Y_train, batch_size=25, epochs=130): This line

initiates the training process.

x=X_train: The preprocessed training data features are provided as
input (X_train).

y=Y _train: The corresponding SoH labels for the training data are

provided as target variables (Y_train).

batch_size=25: The training data is fed to the model in batches of 25
samples at a time. This helps to improve memory efficiency and

potentially speed up training.

epochs=130: The model is trained for a total of 130 epochs. An epoch

represents one complete pass through the entire training dataset.

2. Model Evaluation (model.evaluate())
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o After training, the model's performance is evaluated on the validation data

(X val, Y_val).

= loss = model.evaluate(X_val, Y_val): This line calculates the loss

(MSE in this case) on the validation set.

= The resulting loss value (loss) is printed to the console, indicating how

well the model generalizes to unseen data.
5.3.1.1 Visualization and Error Analysis
1. Actual vs. Predicted SoH Plot (Matplotlib)

o The code utilizes Matplotlib to create a visualization comparing the actual
SoH values (Y _val) with the DNN's predicted SoH values (dnn_pred).

o The plot allows for visual inspection of the model's performance and

identification of potential biases or patterns in the errors.
2. Error Metrics Calculation
o Several error metrics are calculated to quantify the model's performance:
= Mean Absolute Error (MAE)
= Root Mean Squared Error (RMSE)
= R-squared (R?)

o The calculated values for MAE, RMSE, and R2 are printed to the console,

providing numerical insights into the model's accuracy.
3. Absolute Error vs. Cycle Number Plot

o This plot visualizes the absolute error (difference between actual and

predicted SoH) for each data point in the validation set.

o Analyzing this plot can reveal trends or patterns in the errors, potentially

suggesting areas for improvement in the model or data preprocessing.
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4. Additional Plots (Optional)

o The commented-out code demonstrates the creation of additional plots using

potentially user-defined functions:

= plot_actual_soh(Y_val): This function might plot the actual SoH

values over time or against another relevant variable.

= plot_predicted_soh(predicted_soh): This function might plot the

predicted SoH values over time or against another relevant variable.

= plot_both(Y_val, predicted soh): This function might create a

combined plot showing both actual and predicted SoH values.
5.3.1.2 Training Considerations

o Hyperparameter Tuning: Hyperparameters such as batch size, epochs, and learning
rate are set during the training process. Techniques such as grid search or random
search can be used to find optimal values for these parameters, which can have a

significant impact on the model's performance..

« Early Stopping: To avoid overfitting, the training process can be stopped early. This
is done by an EarlyStopping callback [5]. It monitors the validation error and stops

training if the error is not getting better for a given epoch.

e Learning Rate Scheduling: Using a ReduceLROnPIlateau callback [6], the learning
rate can be dynamically adjusted during training. The learning rate is reduced by a
factor if the validation loss does not improve for a given number of epochs. It allows

the model to explore the solution space better.

Figure 5.15 below presents a comparison between the actual and predicted SoH values
using a DNN. The blue line represents the actual SoH, which follows a stepwise declining
pattern, while the orange dashed line indicates the predicted SoH, which aligns closely with
the actual values but appears smoother. The predicted curve effectively captures the overall

trend of the actual SoH, demonstrating the DNN model's ability to generalize and accurately
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model the degradation behavior. However, slight deviations amid the actual and predicted
values are visible in certain regions, suggesting areas where the model's predictions could be
refined. The smoother transitions in the predicted curve, compared to the stepwise nature of
the actual SoH, may indicate over-smoothing by the DNN, potentially masking abrupt
changes in SoH. Despite this, the model shows strong prediction performance, with minor
errors that could be addressed through improvements such as enhancing feature selection,
refining the training process, or exploring alternative architectures better suited for capturing
abrupt changes. Overall, the figure highlights the DNN's capability in estimating SoH with

high accuracy, while also pointing to opportunities for further optimization.
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Figure 5.15.Actual vs Predicted SoH using DNN

Figure 5.16 below illustrates the AE between actual and predicted values over the
cycle number when using a DNN. The absolute error curves are plotted for multiple instances
or datasets, showing variation in the error trends over the cycles. Initially, the absolute error
is relatively high for most cases, likely due to the model adapting to the early phases of the
data. However, as the cycle number increases (up to approximately 200 cycles), the error
significantly decreases, indicating that the DNN improves in prediction accuracy during this

phase. Beyond the 200-cycle mark, the error trends vary among different instances. Some
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curves exhibit a gradual increase in error, while others remain relatively stable or show

sudden spikes in later cycles (e.g., around 500-700 cycles). These variations could stem from

different operational conditions, data distributions, or the inability of the DNN to generalize

effectively for certain scenarios. The presence of error spikes at later cycles may also point

to abrupt changes or anomalies in the data that the model struggles to predict accurately.

Overall, the figure highlights the DNN's capacity to achieve low error during the intermediate

cycles but also reveals challenges in maintaining consistent accuracy during the later stages.

Further analysis of these errors could involve investigating the underlying data

characteristics, refining the DNN architecture, or exploring ensemble methods to reduce

prediction inconsistencies.

Absolute Error

Absolute Error vs. Cycle Number

T T
0 100 200 300 400
Cycle Number

Figure 5.16.Absolute Error vs Cycle Number using DNN

Figure 5.17 depicts the actual SoH versus the sample number in a stepwise format,

representing the degradation of SoH over time or usage. The SoH starts at approximately

100% and steadily declines as the sample number rises. The decline occurs in discrete steps,

indicating distinct phases or events contributing to the health degradation of the system. The

stepwise pattern suggests that the SoH does not degrade continuously but instead exhibits
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discrete drops, likely corresponding to significant changes in operational conditions, usage
cycles, or aging factors. This behavior is typical in applications like battery health
monitoring, where degradation often occurs in phases due to chemical or physical changes
within the system. The figure highlights the gradual reduction in SoH with increasing sample
number, emphasizing the importance of predictive models to accurately capture these
transitions for better system health management. It also serves as a benchmark for evaluating
prediction models, as any prediction curve would need to align with this stepwise trend to be
considered accurate.
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Figure 5.17.Actual SoH vs Sample using DNN

The performance metrics of the DNN model indicate its strong capability in
predicting the SoH. MAE of 0.1281 highlights the model's ability to consistently produce
predictions close to the actual values, showcasing its robustness in minimizing average

errors. Similarly, the RMSE of 0.1808, which is slightly higher due to its sensitivity to larger
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errors, suggests that the model effectively handles significant deviations, as these are not a
major concern. The R-squared (R?) value of 0.9756 confirms that the model clarifies
approximately 97.56% of the variance in the actual SoH data, demonstrating excellent
predictive power and the ability to accurately model the underlying trends. Additionally, the
low validation loss of 0.0327 specifies that the model generalizes well to unseen data,
reinforcing its reliability and stability for real-world applications. These results collectively
reflect a well-trained and highly effective DNN model with minimal errors and strong
generalization, making it a reliable tool for SoH prediction. Minor improvements could still
be explored to further optimize performance and maintain its accuracy across diverse

datasets. The values:

MAE: 0.1281

RMSE: 0.1808

R-squared: 0.9756

Validation Loss: 0.03269345313310623

5.3.2 LSTM

This report thoroughly analyzes the design, implementation, and evaluation of a
LSTM model developed for time series prediction. The model employs a layered
architecture, integrating dropout, batch normalization, and early stopping mechanisms to
enhance both performance and generalization. This document delves into the model's
architecture, training process, strengths, weaknesses, and recommendations for further
improvements. The suggested LSTM model is a multi-layered, sequential deep learning
model. An LSTM layer with 128 units that uses a tanh activation function and the argument
return_sequences=True makes up the input layer. The model can extract a substantial amount
of information from the input data thanks to the 128 units, and the tanh activation adds non-
linearity, which helps the model identify intricate patterns in the time series. To ensure that
the output of this layer is a sequence and that the LSTM layer that follows can process

sequential information efficiently, the return_sequences=True argument is used.
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Several parts that cooperate to process the data are part of the hidden layers. In order
to lower the possibility of overfitting, the first hidden layer includes a dropout layer with a
rate of 0.2 that randomly deactivates 20% of the units during training. This enhances the
model's capacity for generalization by preventing it from depending unduly on any one
neuron. Next comes a batch normalization layer that speeds up convergence and increases
training stability by normalizing the activations from the previous layer. More complex
temporal dependencies are captured by processing the sequential information extracted by
the first layer using a second LSTM layer consisting of 64 units and a tanh activation
function. Batch normalization layers and additional dropout layers with a rate of 0.2 are
added.

Further dense layers improve the model's capacity to identify intricate patterns in the
data. Non-linearity is introduced by a fully connected layer with 64 units and ReLU
activation, which is followed by a second dropout layer and a batch normalization layer.
There is also a fully connected layer with 32 units and ReL U activation, along with batch
normalization and dropout layers. The model can learn abstract representations and improve
its comprehension of the time series thanks to these thick layers. The output layer, which
generates the time series' final predicted value, is made up of a dense layer with a single unit

and no activation function.

With a learning rate of 0.0005, the Adam optimizer is used in the training process.
Adam is a strong and effective optimizer that computes adaptive learning rates for every
parameter, making it a good fit for deep learning models. Mean Squared Error (MSE), a loss
function that measures the discrepancy between expected and actual values and penalizes
larger errors more severely, is the one that is used. By making this decision, the model
guarantees that precise predictions come first. Callbacks are another aspect of training that
improves performance. In order to prevent overfitting, the EarlyStopping callback tracks
validation loss and stops training if no improvement is seen for 20 consecutive epochs. In
order to allow for model fine-tuning during later training stages, the ReduceLROnPlateau
callback dynamically lowers the learning rate by a factor of 0.5 every 5 epochs without

improving validation loss.
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The model's regularization methods and tiered architecture are its main advantages.
The model can recognize long-term patterns and relationships because it can capture complex
temporal dependencies in time series data thanks to the employment of multiple LSTM
layers. Although batch normalization stabilizes training and speeds up convergence by
normalizing activations, dropout layers prevent overfitting by minimizing reliance on
particular neurons. Overfitting is avoided and effective convergence is ensured by the
adaptive training procedure, which also includes early stopping and learning rate reduction.
The model is robust and appropriate for time series forecasting because of these design

decisions.

But there are also shortcomings and room for development in the model. First, the
number of units in each layer, the learning rate, the dropout rate, and the number of epochs
are among the hyperparameter choices that have a significant impact on its performance.
Using techniques like grid search, random search, or Bayesian optimization to find the best
configurations, systematic hyperparameter optimization can be used to address this
sensitivity. Second, the caliber of the input data and the preprocessing stages have a major
impact on how effective the model is. Performance can be greatly improved by ensuring
appropriate data scaling (e.g., standardization or normalization) and by using feature
engineering strategies, such as domain knowledge-based features or automated feature
selection. Third, deep LSTM model training can be computationally costly, particularly when
dealing with sizable datasets. To mitigate these computational difficulties, methods like
gradient clipping and the use of hardware accelerators (such as GPUs or TPUSs) can
contribute. Finally, overfitting is still a problem even with regularization techniques,
especially when dealing with large and complicated datasets. This problem can be solved by
expanding the quantity of training data, investigating more sophisticated regularization
techniques (such as weight decay or L1/L2 regularization), or testing out different

architectures like stacked or bidirectional LSTMs.

In conclusion, the presented LSTM model provides a robust foundation for time series
forecasting, effectively capturing temporal dependencies and demonstrating strong

generalization capabilities. However, its performance can be further enhanced through
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systematic hyperparameter tuning, thorough data preprocessing, and the exploration of
advanced techniques. Future research could focus on incorporating attention mechanisms to
enable the model to focus on the most relevant parts of the input sequence. Additionally,
developing more efficient training algorithms and evaluating the model’s performance across
a broader range of time series datasets would provide valuable insights and further enhance
its capabilities. These advancements would solidify the LSTM model as a powerful tool for

time series analysis and forecasting.

Figure 5.18 illustrates the comparison between the actual and predicted (SoH) using
a (LSTM) model. The blue line represents the actual SoH, which exhibits a stepwise decline,
while the yellow dashed line represents the LSTM's predictions, closely following the actual
values with smooth transitions. The LSTM prediction curve demonstrates excellent
alignment with the actual SoH, capturing both the overall trend and finer details of the
degradation pattern. The figure highlights the LSTM model's ability to effectively handle
sequential data and predict SoH with high accuracy. The smoother nature of the LSTM
predictions, compared to the stepwise actual SoH, indicates the model's tendency to
interpolate between discrete steps, which is typical for time-series models like LSTMSs. This
smoothing effect, while beneficial for understanding the general trend, might mask abrupt
changes in SoH that are critical in certain applications. Overall, the LSTM model performs
well in modeling the SoH degradation behavior, as evidenced by its close agreement with the
actual values. Its ability to predict with such accuracy underscores its suitability for time-
series tasks like SoH prediction. Further refinements, such as adjusting hyperparameters or
incorporating techniques to better capture stepwise changes, could enhance its performance
and utility in practical scenarios.
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Figure 5.18.Actual vs Predicted SoH using LSTM

Figure 5.19 presents the absolute error between the actual and predicted (SoH) across
the cycle number using an LSTM model. Each curve represents the error trend for different
instances or datasets, illustrating the model's performance over varying operational
conditions or cycles. In the early cycle numbers (up to approximately 100 cycles), the
absolute error is relatively high, reflecting the model's initial adaptation to the dataset. As the
cycle number progresses (around 100-300 cycles), the error decreases significantly,
demonstrating improved accuracy and stability in predictions during this phase. This
reduction highlights the LSTM model's ability to capture the underlying degradation trends
effectively after an initial adjustment period. Beyond 300 cycles, the behavior of the error
varies among instances. Some curves show stable low errors, indicating consistent
performance, while others exhibit increasing trends or sudden spikes, particularly after 500
cycles. This variability may point to specific challenges in certain datasets, such as
anomalies, outliers, or abrupt changes in SoH that the LSTM struggles to predict accurately.
The spike patterns may also reflect the model's limitations in generalizing to long-term
degradation trends or unmodeled dynamics. Overall, Figure 4.24 emphasizes the LSTM
model's strength in maintaining low error for a substantial portion of the cycles while
highlighting areas for improvement in handling later cycles with complex patterns. Further
fine-tuning, enhanced feature engineering, or hybrid modeling approaches could address

these challenges and improve the model's consistency across all cycles.
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Figure 5.19.Absolute Error vs Cycle Number using LSTM

Figure 5.20 depicts the actual (SoH) versus the sample number, showcasing the
degradation pattern of the SoH over time or usage. The blue line follows a stepwise declining
trend, indicating distinct phases of degradation. The SoH begins near 100% and gradually
decreases as the sample number increases, with each step corresponding to a significant event
or operational threshold causing a drop in health. The stepwise nature of the plot emphasizes
that the SoH does not degrade continuously but instead exhibits discrete declines, likely due
to specific operational conditions, aging factors, or external stressors. This pattern aligns with
typical behavior in systems like batteries, where SoH degradation occurs in phases due to
changes in chemical or mechanical properties. This figure serves as a reference for evaluating
the performance of prediction models like the LSTM. To achieve high accuracy, models must
effectively capture these stepwise transitions. Any prediction that fails to align with this
discrete degradation pattern would suggest areas for improvement in the model's ability to
generalize. The figure also highlights the importance of designing predictive algorithms
capable of handling abrupt changes in health metrics to ensure reliable performance over

extended periods.
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Figure 5.20.Actual SoH vs Sample using LSTM

The LSTM model's performance metrics demonstrate how well it can predict the SoH
with a high degree of accuracy. The average absolute difference between the expected and
actual SoH values is indicated by the Mean Absolute Error (MAE), which is 0.1293. This
low mean absolute error (MAE) indicates that the LSTM model reliably generates accurate
predictions with low average error. The LSTM can effectively handle the sequential nature
of the data, as evidenced by the competitive MAE, which is marginally higher than that of
the DNN model. The model's accuracy is further bolstered by the Root Mean Square Error
(RMSE), which stands for the standard deviation of prediction errors and is 0.1680. The
RMSE, which is marginally greater than the MAE, indicates how well the model can
accommodate both minor and major deviations, as it penalizes larger errors more heavily.

The relatively small difference between RMSE and MAE indicates consistent performance
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with limited extreme errors. This demonstrates that the LSTM is reliable across the dataset,

effectively minimizing prediction errors in both magnitude and frequency.

The R-squared (R?2) value of 0.9790 highlights the model's capability to explain 97.9%
of the variability in the actual SoH data. This high R? score underscores the LSTM's
effectiveness in capturing the underlying trends and dependencies in the data, making it
particularly well-suited for time-series predictions. Compared to the DNN model, the slightly
higher R? demonstrates the LSTM's advantage in modeling sequential patterns and temporal
relationships. The validation loss of 0.0282 indicates the model’s strong generalization to
unseen data. The lower validation loss compared to the DNN reinforces the reliability of the
LSTM in maintaining accuracy during validation and suggests minimal overfitting. This
highlights the robustness of the LSTM and its ability to deliver consistent performance across

different datasets, making it a suitable choice for SoH prediction tasks.

In summary, the LSTM model exhibits excellent performance, as reflected in the low MAE
and RMSE, high R2, and minimal validation loss. These results demonstrate the model's
ability to predict SoH with precision and consistency, leveraging its strength in capturing
sequential and temporal dependencies in the data. While the metrics are already strong,
further refinements, such as hyperparameter optimization or the inclusion of additional
relevant features, could further enhance the model's performance. Overall, the LSTM proves

to be a reliable and accurate approach for SoH prediction.
LSTM Values (to be explained):

MAE: 0.1293

RMSE: 0.1680

R-squared: 0.9790

Validation Loss: 0.02821664698421955

5.3.3 CNN

In a number of fields, such as economics, meteorology, and finance, time series

forecasting is crucial for making decisions because it allows forecasting future values based
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on historical data. Traditionally employed in image processing, convolutional neural
networks (CNNs) have demonstrated considerable promise in time series forecasting through
their ability to capture local patterns and dependencies in sequential data. This study
examines a CNN model that was created especially for time series forecasting, offering a
thorough analysis of its construction, training methodology, and possible areas for
development. The first step in the data preprocessing phase is reshaping, which involves
changing the input data to include a channel dimension and conform to the Conv2D layer's
specifications. This step makes sure that the usually one-dimensional time series data is
compatible with the height, width, and channels of the three-dimensional data structure that
Conv2D expects. Furthermore, the concat _sequence function is utilized for sequence
concatenation, linking input sequences with their respective labels to make sure the model
can efficiently learn to forecast future values based on past data. This function is essential to

getting the data ready for model training, even though the code for it is not given.

The model architecture starts with an input layer that has the input shape specified, a
Conv2D layer with 64 filters, a kernel size of (3, 1), and ReLU activation. The convolutional
filters can scan the input sequence with a window of three time steps and one feature thanks
to the kernel size of (3, 1), which helps them identify local patterns and dependencies. By
introducing non-linearity, the ReLU activation enables the model to discover intricate
relationships within the time series data. After that, the architecture splits into two hidden
layer configurations. A MaxPooling2D layer, which downsamples the feature maps by taking
the maximum value within a 2x1 window, is included in the first option (commented out).
The output is then transformed into a one-dimensional vector for the next fully connected
layer by the Flatten layer, which comes after this. Using GlobalAveragePooling2D, the
second and active option determines the average value of each feature map over all spatial
dimensions. By taking this approach, the model becomes more straightforward, with fewer

parameters, and the network is encouraged to learn more broadly applicable features.

The model can learn complex non-linear relationships thanks to the fully connected Dense
layer with 64 units and ReLU activation included in the hidden layers. The output layer,

which consists of a single neuron Dense layer, is intended to forecast the time series' target
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value. The Adam optimizer, which is well-liked for deep learning due to its effectiveness and
versatility, is used in the training process. When compared to more conventional techniques
like stochastic gradient descent, Adam's method of computing individual learning rates for
each parameter frequently results in faster convergence and better performance. Mean
Squared Error (MSE), a measure of the average squared difference between predicted and
actual values, is the loss function used. This loss function is particularly suitable for
regression tasks as it penalizes larger prediction errors more heavily, encouraging the model

to focus on accurate predictions.

The CNN model exhibits a number of advantages. It can efficiently identify local patterns
and dependencies in time series data by automatically extracting pertinent features from raw
data, which increases predictive accuracy. The convolutional filters are intended to recognize
recurrent patterns and trends so that the model can produce accurate predictions.
Additionally, by concentrating on discriminative features and lowering the number of
parameters, the application of global average pooling improves generalization and simplifies
the model. Additionally, this aids in reducing overfitting, a common issue with deep learning
models. But there are also some obvious flaws in the model and room for development. First,
the model's capacity to identify long-term dependencies in the time series may be hampered
by the use of small kernel sizes, such as (3, 1). Larger kernel sizes, more convolutional layers,
or the use of dilated convolutions—which increase the receptive field without adding more
parameters—could all be used to address this. Second, the number of filters, kernel size,
learning rate, and pooling strategies are among the hyperparameters that have a significant
impact on the model's performance. Finding the best configurations may be aided by a
methodical hyperparameter search employing techniques like grid search, random search, or
Bayesian optimization. Third, the caliber of the preprocessing and input data have a major
impact on the model's efficacy. Feature engineering, normalization, and standardization are
a few techniques that can improve the model's capacity to learn from the data. To enhance
performance, automated feature selection and feature engineering based on domain
knowledge could be investigated. Lastly, overfitting is still a possible problem, particularly
for small or complicated datasets. Regularization strategies that help lessen this problem

include L2 regularization and dropout regularization. The generalization ability of the model
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can also be improved by expanding the quantity of training data by using data augmentation

techniques like applying random time shifts or adding noise.

In conclusion, the CNN model provides a strong foundation for time series
forecasting, demonstrating its ability to capture local patterns and dependencies in sequential
data. However, its performance can be further improved through careful architectural design,
hyperparameter tuning, and enhanced data preprocessing. Figure 4.26 illustrates a
comparison between the actual and predicted (SoH) using this CNN model. The blue line
represents the actual SoH, characterized by a stepwise degradation pattern, while the dashed
purple line indicates the predicted SoH values. The predictions closely align with the actual
values, effectively capturing the overall degradation trend. Minor discrepancies are observed
during abrupt SoH transitions, where the predicted values slightly deviate from the actual
stepwise drops. This suggests that while the CNN is adept at modeling gradual trends,
additional refinements, such as fine-tuning the architecture or incorporating additional input
features, could help improve its ability to handle sharp transitions. Overall, the analysis
underscores the CNN model's potential for accurate SoH prediction and time series
forecasting in general. Further optimizations, such as dilated convolutions, advanced
regularization techniques, and data augmentation, can help address existing challenges and

enhance its performance for practical applications.

A Convolutional Neural Network (CNN) is used to compare the actual and predicted
(SoH), as shown in Figure 5.21. The dashed purple line shows the SoH predictions produced
by the CNN model, while the blue line shows the actual SoH, which is distinguished by a
stepwise degradation pattern. The estimated SoH agrees well with the measured values,
indicating a high degree of accuracy in capturing the general degradation trend. A
comprehensive response to the SoH transitions is shown by the CNN prediction curve, which
also shows minor variations near the steps themselves. This implies that the CNN, perhaps
as a result of its potent feature extraction capabilities, successfully captures the complex
patterns present in the dataset. Nonetheless, there are a few small differences that can be seen,
especially during sudden changes in the state of hydrogen (SoH), where the expected values

differ slightly from the actual stepwise drops. This suggests that even though CNN is good
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at simulating languid trends, it might need to be improved in order to properly capture abrupt
changes in SoH. All things considered, the figure shows how accurately the CNN can predict
SoH, closely tracking the real values with very few deviations. The model's performance
demonstrates that it is appropriate for tasks that involve the extraction of features and pattern
recognition, especially for datasets that have spatially structured relationships. Additional
optimization could help lower the minor deviations and improve the CNN's capacity to
handle abrupt transitions. Examples of this would be fine-tuning the CNN architecture or
adding more input features. This analysis highlights the great potential of CNN for practical

applications in accurately predicting SoH.
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Figure 5.21.Actual vs Predicted SoH using CNN

The absolute error over the cycle number between the predicted and actual (SoH)
values when utilizing a Convolutional Neural Network (CNN) is shown in Figure 5.22. The
error trend for various datasets or instances is represented by each colored curve, which
illustrates the model's performance under various circumstances and cycle stages. The
absolute error is typically higher in the early cycles (up to about 100 cycles), which represents
the model's early adaptation stage. As the cycles progress (around 100-300 cycles), the

absolute error decreases significantly, indicating that the CNN has effectively learned and
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stabilized its predictions during this intermediate phase. This reduction highlights the model's

ability to accurately capture the overall degradation pattern once it has adjusted to the data.

Beyond 300 cycles, the error trends start to diverge among different instances. Some
curves show a gradual increase in error, while others remain relatively stable or display
sudden fluctuations, particularly after 500 cycles. These fluctuations could indicate
challenges faced by the CNN in capturing abrupt changes or complexities in the data during
later stages of degradation. The varying behavior across instances suggests that while the
CNN performs well on average, its generalization capability may vary depending on the
specific characteristics of the dataset or operational conditions. Overall, Figure 4.26
demonstrates the CNN model's ability to maintain low absolute errors for a significant portion
of the cycles, particularly in the middle range. However, the increasing errors and variability
in later cycles indicate opportunities for further optimization. Refining the CNN architecture,
exploring hybrid models, or incorporating additional features could help mitigate these

inconsistencies and enhance its predictive performance across all cycle stages.

Absolute Error vs. Cycle Number
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Figure 5.22.Absolute Error vs Cycle Number
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The Convolutional Neural Network (CNN) model's performance metrics show areas
that need improvement while also reflecting a moderate level of predictive accuracy for the
(SoH). The CNN appears to have difficulty maintaining consistent accuracy, as evidenced by
the Mean Absolute Error (MAE) of 0.2717, which shows that the average deviation between
predicted and actual SoH values is relatively higher when compared to models such as LSTM
and DNN. The presence of sporadic significant prediction errors is further highlighted by the
Root Mean Square Error (RMSE) of 0.3265, which is higher than the MAE because RMSE
penalizes larger deviations more severely. The R-squared (R?) value of 0.8976 indicates that
89.76% of the variability in the real data is explained by the model. This shows some
reasonable predictive power, but it is substantially less than the R2 obtained by other models,
indicating that the CNN is not able to fully capture the underlying patterns in sequential data
such as SoH. Furthermore, compared to LSTM and DNN models, the validation loss of
0.1066 indicates poorer generalization performance, which could be the result of overfitting

or trouble adjusting to new data.

The higher error metrics and lower R? indicate that the CNN, while capable of
extracting features effectively, may not be the most suitable choice for capturing the temporal
dependencies and abrupt transitions characteristic of SoH data. To improve its performance,
enhancements such as integrating recurrent components like LSTM or GRU layers into the
architecture could help better model sequential patterns. Furthermore, adding relevant
features that capture temporal or abrupt changes, optimizing hyperparameters, and applying
regularization techniques could enhance the CNN’s predictive accuracy and generalization
capabilities. Overall, while the CNN provides reasonable predictions, its performance falls
short of models specifically designed for sequential tasks, underscoring the need for

optimization or alternative approaches for improved SoH prediction.
MAE: 0.2717

RMSE: 0.3265

R-squared: 0.8976

Validation Loss: 0.1065741106867790
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5.3.4 RNN

Time series forecasting, which involves predicting future values based on historical
observations, is a fundamental task across various domains such as finance, meteorology,
and economics. Precise forecasting is crucial for resource allocation, risk management, and
decision-making. Time series forecasting has long been done using conventional statistical
techniques like Autoregressive Integrated Moving Average (ARIMA) models. However,
these techniques are not well suited for highly dynamic or non-stationary time series, and
they frequently fail to capture complex non-linear relationships. Because deep learning
models can represent sequential dependencies, Recurrent Neural Networks (RNNS) in
particular have gained popularity for time series forecasting in recent years. Since (LSTM)
networks can learn long-term dependencies in sequential data, they have shown to be
particularly effective among RNN architectures. This is because they can overcome problems
like vanishing and exploding gradients, which frequently cause problems for traditional
RNNs. An LSTM model intended for time series forecasting is examined in this paper,
focusing on its architecture, training process, strengths, weaknesses, and areas for

improvement.

The data preprocessing phase begins with reshaping, where input data is transformed
to include an additional dimension for the channel, aligning it with the expectations of the
LSTM layer. LSTM models typically require three-dimensional input data, structured as time
steps, features, and samples. This stage makes sure that the input data format satisfies the
specifications needed by the LSTM in order to process sequential data efficiently. The model
architecture consists of several layers that have been thoughtfully planned. The input layer
consists of return_sequences=True, a tanh activation function, and the first LSTM layer with
128 units. By using a complex gating mechanism that includes forget, input, and output gates,
the LSTM units allow the model to selectively remember or forget data from previous time
steps. By virtue of this feature, the LSTM is able to effectively overcome the limitations of
conventional RNNs by capturing long-term dependencies in the time series.
Return_sequences=True guarantees that this layer produces a sequence, enabling sequential

data to be processed further by LSTM layers that come after it. A second LSTM layer with
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64 units and tanh activation is one of the hidden layers. To prevent overfitting, a series of
dropout layers with a rate of 0.2 come next. In order to improve gradient flow, stabilize
training, and normalize activations—all of which accelerate convergence—batch
normalization layers are added. ReL.U activation is used in fully connected (dense) layers
with 64 and 32 units to introduce non-linearity and allow the model to learn intricate
relationships within the data. In order to preserve stability and regularization, layers of batch
normalization and dropout are added after each dense layer. The output layer generates the
time series' final predicted value and is a dense layer with a single unit and no activation

function.

The Adam optimizer, a powerful adaptive learning rate optimization algorithm that
combines the benefits of AdaGrad and RMSprop, is used in the training process. As an
alternative to more conventional optimization techniques like stochastic gradient descent,
Adam allows for faster convergence and better performance. The average squared difference
between the expected and actual values is measured by the Mean Squared Error (MSE) loss
function, which penalizes larger errors more severely. Because of this, MSE is especially
well suited for regression tasks such as time series forecasting. Callbacks add even more
value to the training process. By preventing overfitting and enhancing generalization, early
stopping prevents validation loss and stops training if there is no improvement for 20
consecutive epochs. Additionally, the ReduceLROnNPIlateau callback reduces the learning rate
by a factor of 0.5 every five epochs without validation loss improvement, promoting

convergence during the later stages of training.

The LSTM model exhibits a number of advantages. To begin with, it is very good at
capturing temporal dependencies, which is a crucial prerequisite for forecasting time series.
The architecture is specifically made to learn long-term dependencies from sequential data,
which makes it possible for the model to recognize intricate temporal relationships and
patterns. Second, the model becomes more resilient across various datasets by utilizing
regularization strategies like batch normalization and dropout to reduce overfitting and
enhance generalization. Third, the adaptive training process, with early stopping and learning

rate adjustments, ensures efficient convergence while avoiding overfitting.
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However, the model also has certain weaknesses and areas for improvement. One of
the primary challenges is the computational cost associated with training deep LSTM
models, particularly when working with large datasets. This can be resolved by using
hardware accelerators like GPUs or TPUs to speed up the training process and by using more
effective training strategies like gradient clipping. Even though vanishing and exploding
gradient problems are addressed by LSTMs, deep architectures may still encounter these
issues. These difficulties might be lessened by employing strategies like gradient clipping or
investigating different gating mechanisms like Gated Recurrent Units (GRUS).
Hyperparameters including the number of units in each layer, the learning rate, the dropout
rate, and the number of epochs can also affect how well the model performs. Using
techniques like grid search, random search, or Bayesian optimization, a methodical
hyperparameter search could assist in finding the ideal configurations to further improve

performance.

In conclusion, the presented LSTM model offers a robust foundation for time series
forecasting, effectively capturing long-term dependencies and demonstrating strong
generalization capabilities. However, its performance can be further refined through careful
hyperparameter tuning, exploring advanced architectures such as stacked or bidirectional
LSTMs, and addressing computational challenges associated with training deep RNNs.
These enhancements will ensure that the model remains a powerful and reliable tool for time

series analysis and forecasting across diverse applications.

Figure 5.23 illustrates the comparison between the actual and predicted SoH using a
RNN. The blue line represents the actual SoH, characterized by a stepwise decline, while the
red dashed line depicts the RNN’s predicted values. The RNN captures the overall trend of
SoH degradation, closely following the general pattern of the actual data. However, some
deviations can be observed, particularly in the transitional regions where the actual SoH
exhibits abrupt drops. The RNN predictions appear smoother than the actual stepwise SoH,
which is a typical characteristic of RNNs as they learn sequential dependencies and may
produce interpolated predictions. While this smoothing helps capture general trends, it

sometimes fails to accurately model the discrete steps or sharp transitions present in the actual
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SoH. For instance, in the earlier samples and near 200—400 samples, the predicted values
slightly deviate from the actual steps, indicating potential challenges for the RNN in handling

abrupt changes.

Despite these minor discrepancies, the RNN shows strong performance in following the
overall trajectory of SoH degradation, particularly during gradual transitions. However, its
inability to fully align with the stepwise nature of the actual SoH suggests that additional
refinement may be needed. Techniques such as adding more layers, incorporating attention
mechanisms, or using hybrid models that combine RNNs with other architectures (e.g.,
CNNs) could improve the model’s ability to capture discrete transitions more accurately. In
summary, the RNN effectively models the sequential behavior of SoH and captures long-
term trends with reasonable accuracy. However, its tendency to smooth over sharp transitions
highlights an area for improvement. While the RNN is a good candidate for time-series
prediction, further optimization is necessary to enhance its performance, particularly in
capturing the stepwise nature of SoH degradation. Overall, the model demonstrates strong

potential with room for refinement.
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Figure 5.23.Actual vs Predicted SoH using RNN

Figure 5.24 illustrates the absolute error between the actual and predicted (SoH)
across the cycle numbers using a Recurrent Neural Network (RNN). Each colored curve
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represents the error trend for a specific instance or dataset, highlighting the model's
performance under varying conditions and across different stages of the SoH degradation. In
the initial cycles (0-100), the absolute error is relatively high across most instances, reflecting
the RNN's adjustment phase as it learns the sequential relationships in the data. Between 100
and 300 cycles, the error decreases significantly for most cases, indicating improved accuracy
as the RNN stabilizes and better captures the underlying patterns in SoH degradation. This
phase demonstrates the model's ability to adapt and provide accurate predictions once the
sequential dependencies are learned.

Beyond 300 cycles, the error trends become more variable. Some instances maintain
relatively low error values, while others exhibit a gradual increase or even sharp spikes in
error, particularly after 500 cycles. These spikes suggest that the RNN struggles to generalize
effectively during the later stages of degradation, likely due to increased complexity in the
SoH behavior or abrupt transitions that are harder for the model to predict. The variability
across different instances indicates that the model's performance is sensitive to specific
characteristics of the datasets or operational conditions.

Overall, Figure 5.28 demonstrates the RNN's capability to achieve low errors during
intermediate cycles while revealing challenges in maintaining consistent accuracy during
later cycles. The increasing error in some instances highlights the need for further
refinements, such as incorporating attention mechanisms, optimizing hyperparameters, or
combining the RNN with other architectures like CNNs to better capture complex patterns.
Despite these limitations, the RNN shows strong potential for modeling sequential data, with

room for improvements to enhance its performance across all cycle stages.
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Figure 5.24.Absolute Error vs Cycle Number using RNN

The performance metrics for the Recurrent Neural Network (RNN) demonstrate its
strong predictive capabilities for the SoH. MAE of 0.1295 shows that the average change
between the predicted and actual SoH values is minimal, reflecting the model's accuracy in
making precise predictions. RMSE of 0.1681, slightly higher than the MAE, confirms that
the RNN effectively minimizes large errors while maintaining consistent performance across
the dataset. The small difference between the MAE and RMSE suggests that the model
handles outlier errors well and provides stable predictions. The R-squared (R?) value of
0.9789 indicates that the RNN explains approximately 97.89% of the variability in the actual
SoH, showcasing its ability to capture underlying trends and patterns in sequential data. This
high R2 value is comparable to the performance of the LSTM, highlighting the RNN’s
strength in modeling time-series data. Furthermore, the validation loss of 0.0283 is low,
emphasizing the model's ability to generalize effectively to unseen data with minimal
overfitting. Overall, the RNN performs exceptionally well in predicting SoH, capturing

temporal dependencies accurately and providing robust results. To further enhance its
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performance, techniques such as incorporating attention mechanisms or hybrid architectures

could be explored to address more complex patterns or abrupt changes in the SoH data.
MAE: 0.1295

RMSE: 0.1681

R-squared: 0.9789

Validation Loss: 0.028267744928598404

5.4 The Best Algorithm amongst the above all?

Among the evaluated models—DNN, LSTM, RNN, and CNN—the LSTM emerges as the
best algorithm for predicting the SoH evident from table 5.1. The LSTM demonstrates
superior performance across key metrics, achieving the lowest MAE of 0.1293, comparable
to the RNN and slightly better than the DNN, while significantly outperforming the CNN. It
also achieves the lowest RMSE of 0.1680, indicating its robustness in handling both small
and large prediction errors. The LSTM further excels in explaining the variability in the actual
SoH data, as reflected by the highest R-squared (R?) value of 0.9790, slightly outperforming
the RNN and DNN, and considerably surpassing the CNN. Moreover, the LSTM has the
lowest validation loss of 0.0282, showcasing its ability to generalize effectively to unseen
data without overfitting. While the RNN performs closely to the LSTM, the latter's slight
edge in key metrics, along with its inherent suitability for modeling sequential and temporal
data, makes it the best choice. The DNN also performs well but lacks the sequential modeling
capability of the LSTM, and the CNN falls short due to its higher errors and lower R. Overall,

the LSTM stands out as the most accurate, reliable, and robust algorithm for SoH prediction.
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Table 5.1

Summarizing the Algorithms

Metric DNN LSTM RNN CNN
MAE 0.1281 0.1293 0.1295 0.2717
RMSE 0.1808 0.1680 0.1681 0.3265
R-squared (R?) 0.9756 0.9790 0.9789 0.8976
Validation Loss 0.0327 0.0282 0.0283 0.1066
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CHAPTER 6

CONCLUSION and RECOMMENDATIONS
6.1 CONCLUSION OF THE STUDY

LiBs are at the forefront of modern energy solutions, supporting advancements across
consumer electronics, EVs, and renewable energy systems. The study began with a focus on
the critical importance of understanding, optimizing, and predicting the behavior and health
of LiBs, particularly in the context of electric vehicles using machine learning approach. The
rapid technological adoption has necessitated comprehensive research to enhance
performance, prolong life, and ensure sustainability. Initially, the study provides a
comprehensive analysis of battery performance, focusing on the relationships between key parameters
such as terminal voltage, current, charge voltage, charge current, capacity, State of Health (SoH),
State of Charge (SoC), and temperature over multiple cycles. The results highlight the battery's ability
to maintain consistent performance under controlled conditions while identifying predictable

degradation patterns indicative of long-term wear.

The terminal voltage stabilized around 3.0 V after an initial drop, reflecting the
battery's capability to sustain stable voltage during operation. Maximum and minimum
terminal voltages were recorded slightly above 3.0 V and approximately 2.0 V, respectively.
Similarly, the terminal current alternated between 1 A during charging and -1 A during
discharging, with extreme dips below -2 A indicating potential operational anomalies. These
trends confirm reliable battery behavior across cycles with occasional deviations due to
transient effects. Charge voltage remained stable around 3.5 V, with peaks reaching 3.65 V
and occasional dips below 2.0 V. Charge current also stabilized at 2.0 A after initial
fluctuations, with minimum values of 1.0 A observed during early cycles. These findings
underscore consistent and reliable charging behavior, with minor irregularities attributable to
transient conditions. The battery's ability to maintain stable voltage and current during

charge-discharge cycles is indicative of robust performance.

Battery capacity exhibited a gradual decline from an initial value of 2.25 Ah to below

2.175 Ah, reflecting predictable aging during repeated cycling. Similarly, SoH decreased
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stepwise from 100% to 96%, highlighting natural degradation patterns. These steady
downward trends demonstrate the battery's durability and its capacity to sustain performance
over extended use, with no abrupt failures or anomalies detected. The relationship between
SoH and terminal voltage showed minimal direct impact of health degradation on voltage
stability, as terminal voltage clustered consistently around 3.0 V. However, terminal current
varied between -2 A and 1 A, with negative currents correlating with discharging events and
positive currents with charging phases. This emphasizes the importance of current regulation
in preserving battery health over time. Similarly, SoH demonstrated a positive linear
correlation with charge voltage and current, with higher values of both parameters aligning

with optimal SoH near 100%.

A strong linear relationship was observed between SoH and capacity, where capacity
reductions were directly tied to aging effects. As capacity decreased from 2.250 Ah to 2.175
Ah, SoH correspondingly declined from 100% to 96%. This correlation underscores the
significance of monitoring capacity as a key indicator of battery health and remaining useful
life. SoC demonstrated robust relationships with terminal voltage, current, and capacity.
Terminal voltage above 2.5 V marked rapid SoC increases, while currents transitioning from
-2 Ato 1 A indicated complete charge-discharge cycles. SoC fluctuated consistently between
0% and 100% within the capacity range of 2.175 Ah to 2.250 Ah, reinforcing the battery's
efficiency in energy cycling. However, the temperature remained fixed around 25°C, limiting
the analysis of its broader influence on battery performance. While stable thermal conditions
were maintained, future studies should explore a wider temperature range to understand its

impact on SoH and SoC dynamics.

Secondly, the comparative analysis of the Deep Neural Network (DNN), Long Short-Term
Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN) for
State of Health (SoH) prediction reveals distinct strengths and weaknesses of each model. Among
these, the LSTM model emerges as the most effective algorithm, owing to its ability to handle
sequential and temporal data with high precision. With a Mean Absolute Error (MAE) of 0.1293, the
LSTM demonstrates a low average deviation between actual and predicted SoH values. This value is
marginally better than the RNN (0.1295) and comparable to the DNN (0.1281), while significantly
outperforming the CNN, which had an MAE of 0.2717. The LSTM's ability to maintain a low MAE
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highlights its robustness in minimizing prediction errors consistently. The Root Mean Squared
Error (RMSE) metric further underscores the LSTM’s performance, with an RMSE of
0.1680—Ilower than both the RNN (0.1681) and DNN (0.1808). The CNN, in comparison,
recorded a much higher RMSE of 0.3265, indicating its susceptibility to larger prediction
errors. The slight edge of the LSTM over the RNN in both MAE and RMSE illustrates its
superior capability in modeling the complexities of battery degradation patterns, while the

significant margin over the CNN emphasizes the LSTM’s suitability for this task.

In terms of explanatory power, the LSTM achieved the highest R-squared (R?) value
0f 0.9790, capturing 97.9% of the variance in the actual SoH data. This is slightly better than
the RNN (0.9789) and DNN (0.9756) and far exceeds the CNN's R? of 0.8976. The superior
R? value signifies that the LSTM not only predicts accurately but also aligns closely with the
underlying trends and patterns in the data. Additionally, the validation loss of the LSTM
(0.0282) is the lowest among all models, further confirming its ability to generalize
effectively to unseen data without overfitting. This performance contrasts with the CNN,
which had the highest validation loss of 0.1066, indicating poorer generalization capabilities.
While the DNN and RNN models exhibit strong performance, they fall slightly short of the
LSTM in terms of overall predictive accuracy and robustness. The DNN, for instance, lacks
the inherent sequential modeling capability that allows the LSTM to excel in capturing long-
term dependencies and abrupt transitions. The CNN, though effective at identifying local
patterns, struggles with sequential dependencies and exhibits higher errors and lower

explanatory power.

6.2 IMPLICATIONS OF THE STUDY

The findings of this study have significant implications for the design, management,
and optimization of battery systems across various applications. The analysis provides
critical insights into the relationships between key parameters such as terminal voltage,
current, capacity, State of Charge (SoC), and State of Health (SoH), enabling stakeholders to
make informed decisions about battery operation and longevity. One of the most important
implications is the predictive capacity of SoH and capacity as indicators of battery

degradation. The linear relationship observed between these parameters highlights their
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utility in developing algorithms for monitoring and forecasting battery health. Such
algorithms can support proactive maintenance strategies, reducing the risk of sudden failures
and extending battery life. For industries reliant on energy storage systems, such as electric
vehicles and renewable energy, this study emphasizes the importance of integrating advanced

health-monitoring systems into battery management software.

The stable performance observed in terminal voltage and charge-discharge currents
underscores the potential for efficient energy management in applications requiring sustained
operation over long cycles. The results suggest that batteries can maintain predictable
performance under controlled conditions, making them suitable for critical applications
where reliability is paramount. However, the occasional anomalies and deviations identified
in current and voltage trends highlight the need for robust anomaly detection systems to
ensure operational safety and consistency. These systems could use machine learning or

statistical methods to detect irregularities in real-time, enabling immediate corrective actions.

Another key implication of the study is the role of environmental and operational
conditions in influencing battery performance. While temperature effects were minimal due
to controlled experimental settings, the study suggests that future investigations should
explore broader temperature ranges. Temperature variability could have significant impacts
on capacity, SoH, and SoC, particularly in real-world applications where environmental
conditions are less stable. Insights from such research could inform thermal management

solutions to optimize battery performance under diverse conditions.

The findings also have implications for energy efficiency and sustainability. The
predictable degradation patterns in SoH and capacity provide a foundation for developing
recycling and repurposing strategies for batteries nearing the end of their useful life.
Understanding the rates and nature of degradation enables stakeholders to identify
opportunities for second-life applications, such as repurposing batteries for stationary energy
storage. This contributes to a circular economy, reducing waste and supporting environmental
sustainability. In addition, the study highlights the importance of maintaining optimal charge-
discharge conditions to prolong battery life. The positive correlation between higher charge

currents, voltages, and improved SoH underscores the need for precise control mechanisms
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in battery charging systems. Manufacturers and developers can use these insights to refine
their charging protocols, ensuring that batteries operate within parameters that maximize

performance and longevity.

6.3 DISCUSSION

This study investigated battery performance metrics, including terminal voltage,
current, capacity, State of Charge (SoC), and State of Health (SoH), to assess degradation
trends and identify key factors influencing battery health. The findings align with or differ
from several prior studies on battery aging, management, and prediction methodologies. The
observed gradual capacity and SoH degradation trends align with the findings in [1], [2], and
[11], which emphasized predictable degradation patterns in lithium-ion batteries due to
electrode wear and electrolyte decomposition. These trends also resonate with [66], which
documented capacity fade as a result of cycling stress. The strong linear relationships
between SoH and capacity, and SoH and charge voltage, are consistent with [8], which

highlighted the utility of such correlations for predictive maintenance.

The study's findings regarding temperature's limited impact within a controlled range
align with [176], which noted that thermal effects become significant only under broader
temperature variations. Similarly, the stability of terminal voltage despite SoH decline
corroborates the conclusions in [6], which identified voltage stability as a key indicator of
consistent battery performance. The study's emphasis on advanced data-driven prediction
models for SoH, such as those based on deep learning techniques, is consistent with the works
in [3] and [79], which advocated for leveraging machine learning to enhance battery
management. The adoption of Long Short-Term Memory (LSTM) networks for time-series
predictions aligns with [14] and [127], which demonstrated the effectiveness of LSTMs in

capturing temporal dependencies in battery data.

The minimal impact of temperature observed in this study diverges from the findings
in [167] and [168], which reported significant temperature-induced degradation under
broader environmental conditions. This discrepancy highlights the need for future studies
encompassing more diverse temperature ranges to fully understand thermal effects on battery

health. The study's performance metrics for Convolutional Neural Networks (CNNs) were
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less robust compared to LSTMs, which contrasts with findings in [89] and [93], which

documented high predictive accuracy for CNNs in state-of-health estimation tasks. This

variance could be attributed to differences in data preprocessing, feature selection, or CNN

architecture design. While the study observed anomalies in current trends during charge-

discharge cycles, it did not delve deeply into the causes. In contrast, [163] identified free

radicals and other chemical interactions as potential contributors to such deviations. Further

chemical analysis could provide insights into these discrepancies.

6.4 RECOMMENDATIONS

1.

The study observed a strong linear correlation between SoH and capacity as well as
SoH and charge voltage, indicating these parameters are reliable indicators of battery
health. Therefore, it is recommended to develop SoH estimation algorithms that
prioritize these parameters for predictive modeling. Integrate them into BMS to
enhance real-time monitoring accuracy.

Temperature impacts on SoH were negligible within the narrow temperature range
examined in this study. Therefore, it is recommendation to expand research to include
a broader range of operating temperatures, and develop temperature-specific models
to address battery performance variability under diverse environmental conditions.
The LSTM model outperformed other algorithms with the lowest MAE, RMSE, and
validation loss, demonstrating its superior ability to capture sequential dependencies
and temporal relationships in battery data. Therefore, it is recommended to implement
LSTM-based models as the primary predictive tool in BMS for applications requiring
high temporal accuracy, such as electric vehicles and renewable energy storage.

The study noted current anomalies during charge-discharge cycles, which may
indicate operational disturbances or system stress. Therefore, it is recommended to
conduct further investigations into the chemical and operational factors driving these
anomalies and design anomaly detection mechanisms for early intervention in real-
world applications.

The predictable degradation patterns observed in SoH and capacity support long-term

health monitoring strategies. Therefore, it is recommended to establish long-term
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health monitoring frameworks that leverage these predictable trends to optimize
battery usage and extend lifespan, particularly in mission-critical applications.

The CNN model demonstrated relatively poor performance compared to LSTM and
DNN models for SoH prediction, likely due to challenges in capturing temporal
dependencies. Therefore, it is recommended to refine CNN architectures by
incorporating temporal components such as hybrid CNN-LSTM models, enabling
them to capture both spatial and sequential patterns more effectively.

The consistency of SoC transitions highlights the stability of the charging process
across cycles. Therefore, it is recommended to develop charge optimization protocols
to maintain controlled charging currents and voltages, which can ensure consistent

SoC transitions and prevent premature battery degradation.
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import numpy as np

import pandas as pd

import tensorflow as tf

import matplotlib.pyplot as plt
import matplotlib.cm as cm

'pip install scikit-learn

from sklearn.metrics import mean absolute error, mean squared error,
r2 score

from keras.models import Sequential

from tensorflow.keras.optimizers import Adam

from keras.layers import ConvlD, Conv2D, MaxPoolinglD, MaxPooling2D,
Dense, Flatten, Activation, LSTM, BatchNormalization, SimpleRNN,
Dropout

# Functions for plotting
def plot both(Y val, predicted soh):
plt.figure ()
#plt.plot (Y val, label='Actual SOH')
plt.scatter (range (len(Y val)), Y val, label='Actual SOH')
#plt.plot (predicted soh, label='Predicted SOH')
plt.scatter (range (len(predicted soh)), predicted soh,
label="Predicted SOH')
plt.xlabel ('Sample')
plt.ylabel ('SOH")
plt.legend ()
plt.show ()

def plot actual soh(Y wval):
plt.figure ()
plt.plot (Y val, label="'Actual SOH')
plt.xlabel ('Sample"')
plt.ylabel ('SOH'")
plt.legend()
plt.title('Actual SOH'")
plt.show ()

def plot predicted soh(predicted soh):




.figure ()

.plot (predicted soh, label='Predicted SOH')
.xlabel ('Sample')

.ylabel ('SOH")

.legend ()

.title('Predicted SOH')

.show ()

#data = pd.read csv('/content/26650 Cell Data V7.csv')
data = pd.read_csv('/content/26650 Cell Data V7.csv')

# Drop rows with missing values
data = data.dropna ()

= data[['terminal voltage', 'terminal current',6 'temperature'
, 'charge current' , 'charge voltage' , 'capacity',
'cycle', 'SoC']].values
#Y = data['SoH'].values
Training data = datal[ (data['temperature'] == 25)]
Validating data = datal[datal['temperature'] == 25]

print (len(Training data))

# Split data into training and validation sets

## X train, X val, Y train, Y val = train test split(X, Y,
test size=0.2, random state=101)

X train = Training data[['terminal voltage',6 'terminal current'
'temperature' , 'charge current' , 'charge voltage' , 'capacity'
'cycle', 'SoC']].values

Y train = Training data['SoH'].values

X val = Validating data[['terminal voltage', 'terminal current'
'temperature' , 'charge current' , 'charge voltage' , 'capacity'
'cycle', 'SoC']].values

Y val = Validating data['SoH'].values

print (X train.shape)




# Create TensorFlow Datasets from the numpy arrays

train dataset = tf.data.Dataset.from tensor slices((X train,Y train))

test dataset = tf.data.Dataset.from tensor slices ((X val, Y val))

# Shuffle and Batch the Data

batch size = 32

train dataset =

train dataset.shuffle (buffer size=len (X train)) .batch (batch size)
test dataset = test dataset.batch (batch size)

FHEHFHHHFHHFH SRS
#####4 BUILD MODEL ####4#
FHEHFHHHF AR S

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, BatchNormalization, Dropout

model = Sequential ()

model.add (Dense (8, activation='relu', input dim=X train.shape[l]))
model .add (BatchNormalization())

model.add (Dense (64, activation='relu'))

model .add (BatchNormalization())

model.add (Dense (128, activation='relu'))

model.add (BatchNormalization () )

model.add (Dense (64, activation='relu')) # Added layer
model.add (BatchNormalization () )

model.add (Dense (32, activation='relu')) # Added layer
model .add (BatchNormalization())

model .add (Dropout (rate=0.2))

model.add (Dense (1))

model . summary ()

model.compile (optimizer=Adam(beta 1=0.9, beta 2=0.999, epsilon=1e-08),

loss="mean absolute error')

i




##### TRAIN MODEL #####
G o o i

model.fit (x=X train, y=Y train, batch size=25, epochs=130)

# Evaluate the model
loss = model.evaluate (X val, Y val)
print ("Validation Loss:", loss)

# Create a figure with specified size
plt.figure (figsize=(12, 6))

# Plot Actual SOH

plt.plot (Y val, label="'Actual SOH', color='blue',6 linewidth=2)
dnn pred = model.predict (X val)

predicted soh = dnn pred

# Plot DNN Prediction

plt.plot (dnn pred, label='DNN Prediction', color='orange',
linestyle='--"', marker='o', markersize=3)

# Customize plot
.xlabel ('Sample', fontsize=12)
.ylabel ('SoH', fontsize=12)
.title('Actual vs. Predicted SoH (DNN)', fontsize=14)
.legend (fontsize=10)
.grid(True, linestyle='--', alpha=0.5) # Lighter gridlines
.tight layout ()

# Show the plot
plt.show ()

# Calculate Error Metrics

mae = mean absolute error (Y val, predicted soh)

rmse = np.sqrt (mean squared error (Y val, predicted soh))
r2 = r2 score(Y val, predicted soh)

print (f"MAE: {mae:.4f}")

print (f"RMSE: {rmse:.4f}")

print (f"R-squared: {r2:.4f}")

# Calculate absolute error
absolute error = np.abs(Y val - predicted soh)

# Plot error vs. cycle number




.figure (figsize=(10, 5))

.plot (absolute error)

.xlabel ("Cycle Number")

.ylabel ("Absolute Error")

.title ("Absolute Error vs. Cycle Number")
.grid (True)

.show ()

# Plot output

plot actual soh(Y val)

plot predicted soh (predicted soh)
plot both (Y val, predicted soh)

def concat sequence (data, labels, window size=50) :

# Prepare the sequences
sequences = np.lib.stride tricks.as strided(
data,
shape=(data.shape[0] - window size + 1, window size,
data.shapel[l]),
strides=(data.strides[0], data.strides[0], data.strides[1])

sequence labels = labels[window size-1:]

return sequences, sequence labels

from keras.layers import GlobalAveragePooling2D

# Reshape input data for CNN (add one dimension for channel)

X train = X train.reshape (-1, X train.shape[l], 1) # remove extra
dimension

X val = X val.reshape (-1, X val.shape[l], 1) # remove extra dimension

print (X train.shape)
print (Y train.shape)
print (X val.shape)

seq train, seq label train = concat sequence (X train, Y train)




seq val, seq label val = concat sequence (X val, Y val)
# Define the CNN model

model = Sequential ([
Conv2D (64, kernel size=(3, 1), activation='relu',

input shape=(seq train.shape[l], seq train.shape[2], 1)), # Adjust

input shape
#MaxPooling2D (pool size=(2, 1)),
Flatten (),
Dense (64, activation='relu'),
Dense (1) # Output layer with 1 neuron for SOH prediction

model = Sequential ([
Conv2D (64, kernel size=(3, 1), activation='relu',
input shape=(seq train.shape[l], seq train.shape(2], 1)),
GlobalAveragePooling2D (),
Dense (64, activation='relu'),
Dense (1) # Output layer with 1 neuron for SOH prediction

# Compile the model
model.compile (optimizer="'adam', loss='mean squared error')

# Print model summary

model . summary ()

print (seq train.shape)
print (seqg label train.shape)

# Train the model
history = model.fit (seq train, seq label train,
validation data=(seq val, seqg label val), epochs=130, batch size=32)

# Evaluate the model
loss = model.evaluate (seq val, seq label val)
print ("Validation Loss:", loss)

# Predict SOH
predicted soh = model.predict (seq val)




print ("Predicted SOH:", predicted soh)
cnn_pred = predicted soh

# Create a figure with specified size
plt.figure (figsize=(15, 6))

# Plot Actual SOH
plt.plot (Y val, label="'Actual SOH', color='blue',6 linewidth=3)

# Plot CNN Prediction
plt.plot (cnn pred, label='CNN Prediction', color='purple',
linestyle="'--"', marker='.', markersize=2)

# Customize plot

plt.xlabel ('Sample', fontsize=14)

plt.ylabel ('SoH', fontsize=14)

plt.title('Actual vs. Predicted SoH (CNN)', fontsize=16)
plt.legend(fontsize=12, loc='upper right') # Place legend outside the
plot

plt.grid(True, linestyle='--', alpha=0.5) # Lighter gridlines
plt.tight layout ()

# Plot output

plot actual soh(seq label val)

plot predicted soh (predicted soh)

plot both (seqg label val,predicted soh)

# Calculate Error Metrics

mae = mean absolute error (seqg label val, predicted soh) # Use

seq label val instead of Y val

rmse = np.sqrt (mean squared error (seq label val, predicted soh)) # Use
seq label val instead of Y val

r2 = r2 score(seq label val, predicted soh) # Use seq label val
instead of Y val

print (f"MAE: {mae:.4f}")

print (f"RMSE: {rmse:.4f}")

print (f"R-squared: {r2:.4f}")

# Calculate absolute error
absolute error = np.abs(seq label val - predicted soh) # Use

seq label val instead of Y val

# Plot error vs. cycle number




.figure (figsize=(10, 5))

.plot (absolute error)

.xlabel ("Cycle Number")

.ylabel ("Absolute Error")

.title ("Absolute Error vs. Cycle Number")
.grid (True)

.show ()

# Plot output

plot actual soh(Y val)

plot predicted soh (predicted soh)
plot both (Y val, predicted soh)

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import SimpleRNN, BatchNormalization,
Dense, Dropout

from tensorflow.keras.callbacks import EarlyStopping,
ReducelROnPlateau

X train = X train.reshape (-1, X train.shape[l], 1) # Remove the extra

dimension

X val = X val.reshape (-1, X val.shape[l], 1)

# Define RNN model
model = Sequential ([
LSTM(128, activation='tanh', return sequences=True,
input shape=(X train.shape[l], X train.shape([2])),
Dropout (0.2),
BatchNormalization (),
LSTM (64, activation='tanh', return sequences=False),
Dropout (0.2),
BatchNormalization (),
Dense (64, activation='relu'),
Dropout (0.2),
BatchNormalization (),
Dense (32, activation='relu'),
Dropout (0.2),
BatchNormalization (),




Dense (1)
1)
# Compile the model
optimizer = tf.keras.optimizers.Adam(learning rate=0.0005)

model.compile (optimizer=optimizer, loss='mean squared error')

# Define callbacks

early stopping = EarlyStopping (monitor='val loss', patience=20,
restore best weights=True)

reduce lr = ReduceLROnPlateau (monitor='val loss', factor=0.5,
patience=5, min lr=le-6)

# Print model summary
model . summary ()

# Train the model
history = model.fit (X train, Y train, epochs=200, batch size=32,
validation data=(X val, Y val),

callbacks=[early stopping, reduce 1r])

# Evaluate the model
loss = model.evaluate (X val, Y val)
print ("Validation Loss:", loss)

# Predict SOH for RNN model
rnn pred = predicted soh

# Create a figure with specified size
plt.figure (figsize=(15, 6))

# Plot Actual SOH
plt.plot (Y val, label="'Actual SOH', color='blue',K linewidth=3)

# Plot RNN Prediction

plt.plot (rnn pred, label='RNN Prediction', color='red', linestyle='--

, marker='.', markersize=2)

# Customize plot
plt.xlabel ('Sample', fontsize=14)




plt.ylabel ('SoH', fontsize=14)

plt.title('Actual vs. Predicted SoH (RNN)', fontsize=16)

plt.legend (fontsize=12, loc='upper right') # Place legend outside the
plot

plt.grid(True, linestyle='--', alpha=0.5) # Lighter gridlines
plt.tight layout ()

# Predict SOH for RNN model
predicted soh rnn = model.predict (X val) # Predict using the RNN

model
rnn_pred = predicted soh rnn

(rest of your plotting code)

# Calculate Error Metrics using predicted soh rnn

mae = mean absolute error (Y val, predicted soh rnn)

rmse = np.sqrt (mean squared error (Y val, predicted soh rnn))
r2 = r2 score(Y val, predicted soh rnn)

print (f"MAE: {mae:.4f}")

print (f"RMSE: {rmse:.4f}")

print (f"R-squared: {r2:.4f}")

# Calculate absolute error using predicted soh rnn
absolute error = np.abs(Y val - predicted soh rnn)

# Plot error vs. cycle number
.figure (figsize=(10, 5))
.plot (absolute error)
.xlabel ("Cycle Number")
.ylabel ("Absolute Error")
.title ("Absolute Error vs. Cycle Number")
.grid(True)

.show ()

# Plot output

plot actual soh(Y val)

plot predicted soh(predicted soh)
plot both(Y val, predicted soh)




from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, BatchNormalization,
Dropout

from tensorflow.keras.callbacks import EarlyStopping,
ReducelROnPlateau

X train = X train.reshape (-1, X train.shape[l], 1)

X val X val.reshape (-1, X val.shape[l], 1)

model Sequential ([

LSTM (128, activation='tanh', return sequences=
input shape=(X train.shape[l], X train.shapel[2])),

Dropout (0.2),

BatchNormalization (),

LSTM (64, activation='tanh', return sequences=

Dropout (0.2),

BatchNormalization (),

Dense (64, activation='relu'),

Dropout (0.2),

BatchNormalization (),

Dense (32, activation='relu'),

Dropout (0.2),

BatchNormalization (),

Dense (1)

optimizer = tf.keras.optimizers.Adam(learning rate=0.0005)

model.compile (optimizer=optimizer, loss='mean squared error')

Dense,

early stopping = EarlyStopping (monitor='val loss', patience=20,

restore best weights= )




reduce lr = ReducelROnPlateau (monitor='val loss', factor=0.5,

patience=5, min lr=1le-6)

model . summary ()

history = model.fit (X train, Y train, epochs=200, batch size=32,
validation data=(X val, Y val),

callbacks=[EarlyStopping (monitor="'val loss',
patience=20, restore best weights= ), reduce 1r])

loss = model.evaluate (X val, Y val)
print ("Validation Loss:", loss)

plt.figure (figsize=(15, 6))

plt.plot (Y val, label='Actual SOH', color='blue', linewidth=3)
lstm pred = model.predict (X val)

plt.plot (lstm pred, label='LSTM Prediction', color='yellow',

linestyle="'--"', marker='.', markersize=2)

.xlabel ('Sample', fontsize=14)

.ylabel ('SoH', fontsize=14)

.title('Actual vs. Predicted SoH (LSTM)', fontsize=16)
.legend (fontsize=12, loc='upper right')

.grid( , linestyle='—--", alpha=0.5)
.tight layout ()

= mean absolute error(Y val, lstm pred)




rmse = np.sqrt (mean squared error (Y val, lstm pred))

= r2 score(Y val, lstm pred)
print (f"MAE: {mae:.4f}")
print (f"RMSE: {rmse:.4f}")
print (f"R-squared: {r2:.4f}")

absolute error = np.abs (Y val - lstm pred)

.figure (figsize=(10, 5))

.plot (absolute error)

.xlabel ("Cycle Number")

.ylabel ("Absolute Error")

.title ("Absolute Error vs. Cycle Number")
.grid( )

.show ()

plot actual soh(Y val)
plot predicted soh(lstm pred)
plot both(Y val, lstm pred)




For plotting All

import matplotlib .pyplot

plt.figure (figsize= (15,

plt.plot (Y val, label='Ac , color='blue', linewidth=2)

plt.plot (dnn pred, label='DNN Prediction', color='orange',

linestyle='-", marker='o', markersize=3)

plt.plot (cnn pred, label='CNN Prediction', color='green',6 linestyle='-
-', marker='s', markersize=3)

plt.plot (rnn pred, label='RNN Pr on', color='red', linestyle=':",
marker='""', markersize=3)

plt.plot (1stm pred, label='LSTM Prediction', color='purple',

linestyle='-."', marker='x', markersize=3)

plt.xlabel ('S
.ylabel ('

.legend ()
.grid( )

.tight layout ()

.show ()
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