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ABSTRACT
Phonetic segment classification is the process of recognizing and categorizing speech
sounds (phonemes) from audio or articulation data. This task forms the basis of many
speech and language processing applications such as speech recognition, language
learning, and clinical speech therapy. This thesis explores novel multimodal approaches
based on deep learning that combine mmWave radar, ultrasound tongue imaging (UTI),
and voice modalities to achieve robust, practical, and privacy-sensitive phonetic seg-
ment classification.
Traditional audio-based methods, such as Gaussian Mixture Model–Hidden Markov
Model (GMM-HMM), Deep Neural Network–Hidden Markov Model (DNN-HMM),
often yield unreliability in noisy environments and may be insufficient to distinguish
phonemes with similar spectral properties. On the other hand, UTI-based approaches
provide detailed articulatory information but have limitations in terms of hardware costs
and practicality. On the other hand, mmWave radar stands out as a promising alternative
that can capture detailed articulatory dynamics in a contactless manner.
In this context, the thesis first introduces a multimodal neural network architecture
called MMNet. This architecture is designed to create a common embedding space by
taking advantage of the complementary features of audio and UTI modalities. Experi-
mental findings show that this combination leads to significant improvements in classi-
fication accuracy and effectively removes ambiguities specific to individual modalities.
Additionally, the architecture named M1 can perform inference using only audio data,
thus eliminating the need for UTI, making it easy to use in applications such as speech
therapy. Experimental data shows that this approach performs at a level comparable to
systems that use both voice and UTI.
In the next phase of the thesis, another multimodal framework named USRadioAI is
presented, which combines UTI and voice data with mmWave radar in the training
process, but relies only on radar data in inference. This model is able to maintain
similar performance to multimodal systems despite working with only radar data, by
using techniques such as cross-modal information distillation and embedding space
alignment. USRadioAI uses radar’s ability to capture articulatory information without
contact, reducing both hardware complexity and system load during the inference phase,
while maintaining high accuracy rates.
Comprehensive experiments conducted on newly compiled datasets named GTUCon-
sonants and GTUSAudioRadioConsonants demonstrate the effectiveness of the devel-
oped multimodal methods. The results show that MMNet provides the highest overall
classification performance by effectively using all available modalities, while USRa-
dioAI, despite its simplified inference structure, performs very close to multimodal
approaches thanks to optimization techniques.
The findings highlight the potential of multimodal learning in speech and language
processing, and suggest that mmWave radar can play an important role as a privacy-
preserving, accessible, and user-friendly modality in areas such as clinical speech ther-
apy and interactive applications.

Keywords: Phonetic Segment Classification, Multimodal Learning, mmWave Radar,
Ultrasound Tongue Imaging (UTI), Deep Learning, Speech Processing
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ÖZET
Fonetik segment sınıflandırması, ses ya da artikülasyon verilerinden konuşma 
seslerini(fonemleri) tanıma ve kategorize etme sürecidir. Bu görev, konuşma tanıma, 
dil öğren-imi ve klinik konuşma terapisi gibi pek çok konuşma ve dil işleme 
uygulamasının temelini oluşturur. Bu tez, sağlam, pratik ve gizliliğe duyarlı bir 
fonetik segment sınıflandırması elde etmek amacıyla mmWave radarı, ultrason dil 
görüntüleme (UTI) ve ses modalitelerini birleştiren, derin öğrenmeye dayalı yeni çok 
modlu yaklaşımları araştırmaktadır.
Geleneksel ses tabanlı yöntemler, gürültülü ortamlarda güvenilirliğini yitirir ve spek-
tral olarak benzer fonemleri ayırt etmekte yetersiz kalabilir. UTI tabanlı sistemler ise 
ayrıntılı artikülasyon bilgisi sunmalarına rağmen, yüksek donanım maliyetleri ve kul-
lanıcı konforu açısından çeşitli sınırlamalar taşır. Bu noktada mmWave radar, 
temassız biçimde ayrıntılı artikülasyon dinamiklerini yakalayabilen, umut verici bir 
alternatif olarak öne çıkmaktadır.
Bu doğrultuda tezde ilk olarak, MMNet adlı çok modlu bir sinir ağı mimarisi 
sunulmak-tadır. Bu mimari, ses ve UTI modalitelerinin tamamlayıcı özelliklerinden 
yararlanarak ortak bir yerleştirme (embedding) alanı oluşturmak üzere tasarlanmıştır. 
Deneysel bul-gular, bu entegrasyonun sınıflandırma doğruluğunu önemli ölçüde 
artırdığını ve tekil modalitelere özgü belirsizlikleri etkili biçimde ortadan kaldırdığını 
göstermektedir. Ayrıca, M1 adlı mimari yalnızca ses verilerini kullanarak çıkarım 
yapabilmekte; böylece UTI kullanımına olan ihtiyacı ortadan kaldırmakta ve 
konuşma terapisi gibi uygula-malarda pratikliği artırmaktadır. Deneysel sonuçlar, bu 
yaklaşımın hem ses hem de UTI kullanan sistemlerle karşılaştırılabilir düzeyde 
performans sunduğunu göstermek-tedir.
Tezin sonraki aşamasında ise, eğitim sürecinde UTI ve ses verilerini mmWave radar 
ile birleştiren; ancak çıkarım aşamasında yalnızca radar verisine dayanan USRadioAI 
adlı alternatif bir çok modlu çerçeve tanıtılmaktadır. Çapraz-modal bilgi damıtma ve 
gömme alanı hizalaması gibi teknikleri kullanan bu model, yalnızca radar verisiyle 
çalışmasına rağmen çok modlu sistemlerle benzer doğruluk seviyelerini 
sürdürebilmek-tedir. USRadioAI çerçevesi, radarın eklemsel bilgileri temassız 
şekilde yakalama yeteneğin-den faydalanarak, çıkarım sırasında donanım 
karmaşıklığını ve sistem yükünü azaltırken yüksek performans sergilemektedir.
Yeni oluşturulan GTUConsonants ve GTUSAudioRadioConsonants veri kümeleri üz-
erinde gerçekleştirilen kapsamlı deneyler, geliştirilen çok modlu yöntemlerin etkin-
liğini ortaya koymaktadır. Sonuçlar, MMNet’in mevcut tüm modaliteleri verimli 
biçimde kullanarak en yüksek genel sınıflandırma doğruluğunu sağladığını; 
USRadioAI’nin ise sadeleştirilmiş çıkarım yapısına rağmen, belirli optimizasyon 
teknikleriyle çok modlu yaklaşımlara oldukça yakın performans elde ettiğini 
göstermektedir.
Bu bulgular, konuşma ve dil işleme alanında çok modlu öğrenmenin önemini vurgu-
larken, mmWave radarın klinik konuşma terapisi ve etkileşimli uygulamalarda 
gizliliği koruyan, erişilebilir ve kullanıcı dostu bir modalite olarak önemli bir 
potansiyele sahip olduğunu ortaya koymaktadır.

Anahtar Kelimeler: Fonetik Segment Sınıflandırması, Çok Modlu Öğrenme, 
mmWave Radar, Ultrason Dil Görüntüleme (UTI), Derin Öğrenme, Konuşma 
İşleme
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1. INTRODUCTION

1.1. Overview

A fundamental means of human communication, speech helps to transmit complex

knowledge by means of coherent articulation, acoustics, and cognitive mechanisms.

Recent developments in sensor technology and artificial intelligence are driving speech

and language processing outside of traditional audio-based approaches forward. Mod-

ern systems are more equipped than only transcription of speech or sound generation to

understand and replicate the physical mechanics underpinning speech production. Par-

ticularly in fields such education, healthcare, and assistive communication technology,

these developments provide fresh opportunities [2–4].

This growing ambition has given rise to a new class of research questions: How can

we capture the hidden dynamics of speech production in a way that is accurate, inter-

pretable, and non-invasive? How can rich but complex multimodal data be distilled into

practical systems suitable for real-world use? How thus can we balance the simplicity

needed for general usability with the technical complexity of multimodal learning?

This thesis is at the center of this inquiry. Using next-generation sensing technologies,

the study looks at how actual speech creation may be sensed, modeled, and turned into

strong, meaningful representations. Grounding this conversation, the next part explores

the fundamental ideas behind this work.

1.2. Motivation

The utilization of speech and language technologies, from voice assistants to language

learning tools, have grown indispensable in contemporary human-computer interaction

[5]. Models that not only attain high performance but also robust, interpretable, privacy-

conscious, and deployable in real-world situations are increasingly sought for as these

systems becoming more ubiquitous [6, 7].

The modeling of the physically produced speech to comprehend articulatory informa-

tion, such as how the tongue, lips, and jaw coordinate to form speech sounds in addition

to recognize acoustic patterns is one of the foundational challenges in this field [8, 9].
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This level of modeling has implications in a wide range of domains:

• Education, for helping language learners and children master articulation [10].

• Healthcare, for supporting speech therapy and assessment [11, 12].

• Accessibility, by enabling non-invasive communication aids [13]

• Human-computer interaction, through richer and more reliable voice-based in-

terfaces [14]

Thanks to innovations in multimodal data collection, the physical articulatory move-

ments that constitute speech can now be recorded along with traditional audio [15–19].

These technologies provides speech production to be represented in more detail, lead-

ing better results in applications such as phoneme recognition, speech generation, and

articulation feedback [1, 20].

As multimodal systems require multiple sensors, which can be costly, intrusive, and dif-

ficult to integrate into practical environments [21], one of the major challenges in real-

world applications is the deployment of these systems. In contrast, unimodal systems—

particularly those based solely on audio, radio, or visual data acquisition—are easier

to integrate into consumer devices and offer a more viable alternative for real-world

applications [22].

To address this trade-off between richness of representation and deployment feasibil-

ity, this thesis adopts an indirect cross-modal knowledge distillation approach by using

an embedding space [23]. We train deep learning models using data from multiple

complementary sources—generated by microphone, radar, and ultrasound devices—to

learn detailed articulatory representations (Fig. 1.1), and then transfer this knowledge

via the embedding space to models that operate using a single input source at inference

time. This strategy enables the system to benefit from the depth and structure provided

by richer training data, while remaining practical, efficient, and privacy-conscious in

real-world deployment—qualities essential for building next-generation speech and lan-

guage processing tools.

The basic assumption of the thesis is that detailed articulation information can be col-

lected during the training process and this information may then be converted into

lightweight models that are used in real-world scenarios. In support of this approach,
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the next section summarizes imaging techniques that are commonly used to capture the

dynamics of the speech production process.

Figure 1.1: Schematic representation of audio-based, mmWave radar-based, and
ultrasound-based speech sensing pipelines integrated with deep learning
models.

1.3. Speech Production Imaging Techniques

The main ways to spread knowledge and build social ties are speech communications.

This complicated process consists in the speaker producing speech sounds and their

interpretation by the listener. Tongue movement is an essential component of speech

production; it is vital for articulation but stays outside observable in nature [8]. Differ-

ent imaging approaches are employed to capture the tongue’s form as articulatory data

[24], so analyzing and modeling articulation inside the vocal tract. Multiple imaging

modalities have been used in recent years to investigate speech production including,

electromagnetic mid-sagittal articulography (EMA) [25], magnetic resonance imaging

(MRI) [9, 26–29], and ultrasound [30, 31].

EMA allows exact tracking of articulatory movements by means of sensor placement
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on anatomical features including the lips, jaw, and tongue [32]. EMA data allows one

to investigate the kinematics of the vocal tract in both healthy people and Parkinson’s

disease [33]. It measures tongue and articulator motions directly, however it has limits

including small datasets, possible speech alterations due of its invasive character, and

reliance on discrete measurement sites that do not fully capture the tongue shape [34,

35].

Furthermore, MRI can help to provide high-resolution images of vocal tract anatomy

during speech. MRI also finds uses in research on second language acquisition and

speech production [36]. It facilitates the analysis of structural attributes in conjunction

with articulation dynamics and acoustics. Not only the tongue but also the articulators

such as labial, jaw, velar, pharyngeal, and laryngeal information provide dynamic in-

formation with temporal resolution with Real-time MRI (rtMRI) [18, 37]. However, its

supine recording orientation is inappropriate for spontaneous speech, and concurrent

audio recordings frequently exhibit inferior quality. Moreover, the practical limitations

of MRI restrict the dataset sizes in speech processing related research [38].

Ultrasound imaging is based on the measurement of the time it takes for sound waves

emitted by a transducer to travel through tissues and reflect back from anatomical struc-

tures [40–42]. Different imaging modes exist to interpret these reflections and con-

struct a visual representation of the underlying anatomy. Figure 1.2 (top-left) shows

a single ultrasound wave emitted by a transducer directed toward the tongue. Figure

1.2 (middle-left) represents the A-mode (amplitude mode), where the amplitudes of

the reflected signals at time tt are plotted, yielding a one-dimensional waveform. In

contrast, Figure 1.2 (bottom-left) illustrates the B-mode (brightness mode), in which

echo amplitudes are mapped as varying pixel brightness levels. By collecting multiple

such reflections from different beams, a two-dimensional (2D) grayscale image is con-

structed, as shown in Figure 1.2 (right-middle). This study employs B-mode ultrasound

imaging to capture and analyze tongue movement.

Ultrasound tongue imaging (UTI), thanks to its ability to provide real-time, high-resolution,

and quick 2D imaging, is a useful method for observing the tongue’s motions dur-

ing speech communication. It also provides non-invasive and a risk-free imaging of

the articulators during normal and abnormal speech production [43]. Clinical popula-

4



Figure 1.2: Ultrasound imaging modes and the process of ultrasound image acquisition
to visualize the vocal tract [39].

tions highly benefit from UTI’s visual feedback for speech sound problems assessment

and remediation [44]. A number of areas have found uses for the method, such as

the diagnosis of obstructive sleep apnea [45, 46] and the assessment of tongue move-

ments in cerebral palsy patients [47]. There has been consistent advancement towards

three-dimensional (3D) imaging using ultrasound, which has been a widely used tool

in speech production research [48–50]. Platforms for 3D visualization of tongue mo-

tion have been developed [51, 52], and researchers have introduced methods to assess

tongue shapes and positions using ultrasound imaging. The effectiveness of UTI in ana-

lyzing tongue structure and function has been extensively demonstrated in both clinical

and scientific settings [53].

1.4. UTI in Speech and Language Processing

UTI is commonly used in clinical settings to capture real-time sagittal or coronal views

of the movement of the tongue during speech or swallowing. The transducer is placed
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submandibularly behind the chin. It is common practice to use a headset or fixed mount

to hold the transducer steady during imaging and then use specialised software to visu-

alise and analyse the ultrasound data [54]. UTI uses conventional medical ultrasound

to visualize the surface of the tongue during speech production. This is a noninvasive,

clinically safe and progressively affordable technique to visualize the vocal tract [55].

The utilisation of UTI devices in speech therapy research has increased in recent years,

due to the enhancement of image quality and accuracy resulting from technological ad-

vancements. The decline in costs has led to a greater prevalence of portable ultrasound

devices, and the interpretation of ultrasonography data has become more accessible.

In addition, the development of various analysis software programs has further con-

tributed to the growth in the use of UTI devices [31, 56].

Research suggests that UTI as a visual biofeedback technology can improve articula-

tory accuracy in people with acquired apraxia, post-glossectomy speech deficits and

children with residual articulation difficulties [11, 57, 58]. Studies have investigated

whether ultrasound feedback of the tongue helps some children with childhood apraxia

of speech (CAS) to develop more accurate and reliable speech motor plans [59, 60].

The use of UTI feedback, speech therapy delivered in numerous weekly sessions and

motor-based speech therapy with intensive schedules have also been found to outper-

form traditional less frequent service delivery [61, 62].

Therapists may employ the data obtained from these devices to aid the individual in

accurately positioning the tongue. The client receives assistance in producing the cor-

rect speech sounds and improving their linguistic abilities. These feedback devices

enhance the acquisition and practice of precise articulation during treatment by com-

bining auditory input with visual indicators of tongue position [63]. Consequently, the

comprehensive imaging of the vocal tract facilitates the evaluation of compliance with

the methodologies utilized in speech therapy [64].

However, there are a few issues that still restrict the usefulness of conventional UTI,

notwithstanding its significance in comprehending, identifying, and enhancing speech

production and therapy. Ultrasound is impractical because it requires a continuous ul-

trasound probe under the chin, it is still expensive for home use, image quality depends

on speaker characteristics such as age and psychology, and synchronization of sound
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and image is costly. A need has arisen for a more practical approach to diagnosis,

treatment and therapy applications in speech and language disorders.

Moreover, visual feedback alone may not be always enough for quick and accurate in-

terpretation of ultrasound exposures when performing complicated tongue movements

[65]. In other words, it is still quite difficult for the UTI to interpret the rapid and com-

plex movements of the tongue and for the therapy to become permanent with visual

feedback and for the tongue movements that will provide correct articulation to become

automatic for individuals. Also, concerns about image quality and restrictions, inter-

display alternatives, and limited data availability are just a few of the many choices

for automated Ultrasound tongue parameters [63]. Due to these challenges, leverag-

ing tongue imaging effectively and accurately in practical scenarios may require an

alternative representation or intermediate modeling approach.

1.5. MmWave Radar-based Human Voice Sensing

Millimeter-wave (mmWave) radar has recently emerged as a novel modality for non-

contact speech sensing and analysis. Operating in the 30–300 GHz range, mmWave

radar captures electromagnetic reflections modulated by the physiological movements

of the articulators—particularly the throat, lips, and vocal folds—during speech. With-

out wearable or contact-based devices [66–68], this sensing mechanism enables robust

voice acquisition even under noisy or non-line-of-sight situations.

By using Frequency Modulated Continuous Wave (FMCW) method, mmWave radars

sense micro-motions produced by articular dynamics and vocal cord vibrations [69, 70].

These systems offer advantages in terms of resolution, stealth, and robustness against

acoustic interference, noise, or spoofing attacks [71, 72].

Radar-based systems utilize the ability of radiofrequency signals to capture subtle artic-

ulatory and vocal tract movements during speech production [73]. Earlier approaches,

relied on fixed radar antennas attached directly to the face using adhesive methods,

often suffered from session-to-session variability and user discomfort [74]. Address-

ing these limitations, recent research has focused on developing wearable solutions

that improve both usability and measurement stability [75]. Specifically, an important

step forward in the development of user-friendly and repeatable speech interface sys-
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tems has been the incorporation of radar sensors into lightweight, adjustable headsets.

These radar-based designs seek to merge the non-invasiveness and portability needed

for daily applications, taking inspiration from other biosignal-based speech systems

that use techniques like electromyography, magnetic sensing, or ultrasound imaging

[76]. The evolution of such systems reflects a broader trend toward silent, privacy-

preserving, and contactless speech technologies that can be adapted to a variety of use

cases, such as assistive communication, discreet interaction, and speech disorder reha-

bilitation.

Additionally, during therapy sessions, real-time mmWave feedback allows therapists to

observe facial and vocal dynamics and provide immediate corrections. Unlike audio-

based systems, which struggle to separate overlapping voices in interactive settings,

mmWave radar only captures data from the participant when directed at them, natu-

rally isolating their input during dialogue. This method provides objective, quantitative

tracking of therapy progress without requiring any physical attachments to the partic-

ipant. The portability of mmWave radar systems also makes them viable for home

use, increasing the frequency and accessibility of therapy, and enhancing participant

outcomes.

Tasks such as speech enhancement, speaker identification, and silent speech recognition

can be performed using the analysis of the reflected signals characterized by changes

in amplitude, phase, or frequency. This enables to perform applications in healthcare,

human-computer interaction, and security [77, 78]. The feasibility of using mmWave

radar has been demonstrated in speech signal detection, enhancement, and classifica-

tion [68, 70, 77]. These studies suggests that the potential of radar-based technology in

healthcare, especially in clinics for diagnosis, treatment and therapy open to explore.

1.6. Main Contributions of the Thesis

The studies and experimental setups developed in this thesis are organized into three

main parts. The first part presents the preliminary work and foundational setups used

to collect synchronized data from UTI, audio, and mmWave radar. This stage focuses

on building the multimodal infrastructure required for articulatory speech analysis.

The second part investigates a joint embedding space constructed from UTI and au-
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dio data. Using this space, audio-only models are trained to benefit from articulatory

supervision during training, enabling more robust and interpretable representations of

speech sounds while maintaining practicality at inference time.

The third part extends this approach by incorporating mmWave radar into the joint

embedding space, resulting in a comprehensive multimodal framework based on UTI,

audio, and radar. This setup enables the development of radar-only systems that in-

herit articulatory knowledge from richer modalities, offering a privacy-preserving and

contactless alternative for speech processing applications.

Together, these sections build toward the thesis objective of creating accurate, deploy-

able, and privacy-conscious speech processing models using cross-modal supervision.

This thesis provides five key contributions to the field of multimodal speech processing

and human voice sensing:

• Proposes a novel framework, that combines mmWave radar, UTI, and audio for

speech analysis.

• Demonstrates that mmWave radar can non-invasively capture articulatory and

vocal fold motion, offering a privacy-preserving alternative to traditional sensing

methods.

• Develops a unified phonetic embedding space that enables radar- or audio-only

inference by leveraging supervision from multimodal data during training.

• Introduces seven complementary methods (M1–M4, RadioUS, RadioAudio, US-

RadioAI) that exploit the embedding space through different strategies to en-

hance speech representation learning.

• Incorporates temporal modeling of articulator dynamics, leading to more consis-

tent and accurate phonetic detection compared to conventional frame-based UTI

approaches.
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2. PRELIMINARY WORK

This chapter presents the preliminary studies conducted to establish the foundations and

technical infrastructure for multimodal speech and human sensing using mmWave radar

technology. It begins by outlining the theoretical basis and recent developments in mul-

timodal deep learning, particularly in the domains of healthcare and speech processing.

Following this, the chapter details a series of experimental setups and signal processing

methods used to evaluate the viability of radar-based sensing. This includes both human

motion capture and phonetic articulation experiments, with a focus on micro-Doppler

analysis and spectrogram generation. Additionally, a real-time radar configuration and

data acquisition framework is introduced, enabling synchronized multimodal data col-

lection and processing. The results presented in this chapter form the experimental

backbone for the multimodal AI system proposed in subsequent chapters.

2.1. Multimodal Foundations

In artificial intelligence (AI), multimodal learning becomes ever more important. This

method underlines the need of combining many sensing sources that underpin human

perception and cognitive decision-making processes: vision, language, and sound. Whereas

conventional single-modal systems are constrained by their limited perceptual cover-

age, multimodal systems seek to make use of complementary and redundant informa-

tion across many senses. In this regard, innovative work by [79, 80] clarifies in great

detail the ideas of representation, alignment, fusion, and joint learning that form the

technical basis of multimodal learning, and also highlights basic computational diffi-

culties such the difference between modalities and interaction dynamics.

Multimodal deep learning has emerged that the focus fields of the researchers have

been expanded to include many modalities and application domains, such as healthcare

[81, 82]. This scenario shows the growing relevance of multimodal solutions, partic-

ularly in fields where sophisticated and multi-source data are somewhat widespread

[83, 84] increases awareness by exposing the cognitive similarities of multimodal AI

with human multisensory learning processes by analyzing how modalities contribute

differently to reasoning, emotional involvement, and metacognitive processes.
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Still, this development in capacity introduces complication as well. Especially in high-

risk sectors like healthcare, where explainability is essential to developing trust [85], 

the interpretability of multimodal deep neural networks remains a major problem. Real-

world applications such as image captioning, video annotation systems [86] , and speech-

based systems where acoustic representations are augmented with visual or articulatory 

data [87, 88] already demonstrate the potential of multimodal integration. As a result, 

the ability of multimodal AI to combine vision, speech, and reasoning into coherent 

and context-sensitive systems represents a significant step in the development of more 

adaptive, reliable, and human-centered AI (Table 2.1 and Table 2.2).

Table 2.1: Detailed modality-wise comparison of multimodal studies with correspond-

Domain Citation Modalities

Used

DL Tech-

niques

Used or

Mentioned

Key Contribu-

tion

Main Challenge

Addressed

Healthcare

Tariq et al.

(2025) [89]

Radiology

+ EHR

Transformer-

based

fusion,

CNNs

Enhanced diag-

nostic accuracy

by integrating

imaging with

clinical history

Data incomplete-

ness, semantic

alignment, de-

ployment in

clinical work-

flows

Schouten et

al. (2024)

[90]

Radiology

+ EHR

Attention-

based

multi-

modal

fusion

Highlighting clin-

ical and system

deployment gaps

in multimodal ra-

diology AI

Semantic align-

ment, inter-

pretability,

interoperability

Continued on next page
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Table 2.1 (continued)

Domain Citation Modalities

Used

DL Tech-

niques

Used

Key Contribu-

tion

Main Challenge

Addressed

Milosevic et

al. (2024)

[91]

MRI + CT +

Echo

CNN +

Feature-

level

Fusion

Cardiovascular

disease classi-

fication with

cross-modality

fusion

Modality-specific

constraints, clin-

ical variability,

low real-world

adoption

Acosta et al.

(2022) [92]

Clinical

text + lab

data

Knowledge

Graph, Self-

attention

networks

Broader health

monitoring

and contextual

decision support

Standardization

of unstructured

data, interoper-

ability

Li et al.

(2023) [93]

Clinical

text +

imaging

Multi-

modal

embedding

learning,

Transform-

ers

Survey of fusion

techniques in

biomedical pro-

cess acceleration

Cross-source inte-

gration and com-

plexity

Chen et al.

(2024) [94]

Multimodal

architec-

tures

Situation-

aware DL

models

Integration of

multimodal

pipelines in ambi-

ent intelligence

Pipeline complex-

ity, context mod-

eling

Jiang et al.

(2021) [88]

Audio +

Text

Cross-

modal

knowledge

distillation

(BERT to

Speech

Trans-

former)

Distillation of

linguistic priors

into speech-based

models

Cross-modal

representation

mismatch
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Table 2.2: Multimodal DL approaches in speech and mmWave applications.  

Domain Citation Modalities

Used

DL Tech-

niques

Used

Key Contribu-

tion

Main Challenge

Addressed

Xiaoyu

(2021) [95]

Audio +

Text

Self-

supervised

distillation

Compact ASR

models using

large pretrained

acoustic-text

models

Transfer ef-

fectiveness,

task-specific

tuning

Morency

and Bal-

trušaitis

(2017) [86]

Audio +

Video

Multimodal

fusion

via Trans-

former/RNN

Robust speech

recognition un-

der noise and

occlusion

Missing modali-

ties at inference

Yu et al.

(2021) [96]

Audio +

Video

Teacher-

Student

Fusion

(AV-TS)

Cross-modal

fusion for video

classification

Synchronization,

cross-modality

fusion

Hori et al.

(2019) [97]

Audio +

Video

Joint

Student-

Teacher

Learning

Scene-aware dia-

log systems

Multi-turn coordi-

nation, modality

dropout

Gholami et

al. (2024)

[87]

Audio + Ul-

trasound

Latent

Feature

Distillation

Learning latent

articulatory rep-

resentations for

compact, robust

speech models

Generalization

across speech

domains

Kerpicci et

al. (2022)

[98]

Audio + Ul-

trasound

Multitask

KD with

layer loss

Multi-

representation

distillation in

multi-task setup

Efficient knowl-

edge transfer

Continued on next page
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Table 2.2 (continued)

Domain Citation Modalities

Used

DL Tech-

niques

Used

Key Contribu-

tion

Main Challenge

Addressed

Yoon et al.

(2021) [99]

Audio + Ul-

trasound

Dynamic

weighting,

Hybrid KD

TutorNet: frame-

wise informative

feature emphasis

Frame-level atten-

tion mismatch

Chebotar

and Waters

(2016) [100]

Audio + Ul-

trasound

Soft target

distillation

Single student

from ensemble

RNNs

Reducing model

complexity while

preserving perfor-

mance

mmWave

Xu and Chen

(2024) [101]

mmWave +

Audio

CNN + RF

signal en-

hancement

Through-wall

and privacy-

preserving voice

sensing

Training/inference

mismatch

Ozturk et al.

(2023) [70]

mmWave +

Audio

AV fusion

transformer

Enhancing noisy

speech via radar-

guided filtering

Radar-audio cali-

bration, segmen-

tation

Wang et al.

(2022) [22]

mmWave +

Audio

Spectrogram

Clustering

+ RF Sens-

ing

Word detection

via micro-doppler

Voice activity de-

tection, occlusion

Aytutuldu et

al. (2024)

[1]

mmWave +

Ultrasound

Joint em-

bedding

network

(CNN +

LSTM)

Audio-only infer-

ence for phonetic

recognition

Sensor alignment,

modality transfer

Continued on next page
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Table 2.2 (continued)

Domain Citation Modalities

Used

DL Tech-

niques

Used

Key Contribu-

tion

Main Challenge

Addressed

Zhou et al.

(2023) [102]

mmWave +

Vision

Multi-view

Fusion

with Trans-

former/-

PointNet

Robust 3D ob-

ject detection

and gesture

understanding

View dispar-

ity, temporal

synchronization

Wei et al.

(2022) [103]

mmWave +

Vision

YOLO +

mmWave

fusion

Object detection

in adverse envi-

ronments

Modality im-

balance, false

fusion

Patel and

Heath (2024)

[104]

mmWave +

Comms

Beamformer

DNN, Fu-

sion MLP

Scene under-

standing and

user tracking via

Comm-Radar

fusion

Latency, in-

ference under

mobility

Jain et al.

(2024) [105]

mmWave +

Comms

Context-

aware

adaptive

DL

CommRad: Effi-

cient channel esti-

mation with radar

Fusion latency,

RF synchroniza-

tion

Wu et al.

(2024) [106]

mmWave +

Comms

Diffusion

Model for

Radar

Scene semantics

extraction from

radar

High-quality

perception from

sparse data

2.2. Multimodal Applications in Healthcare

Healthcare is a multimodal domain, where clinicians routinely combine radiological im-

ages, laboratory values, clinical notes, and patient histories to make informed decisions

intuitively. Multimodal AI aims to replicate this integrative process by combining data

across modalities to enhance diagnostic accuracy, contextual understanding, and clin-

ical utility. Foundational surveys highlight the field’s potential, with [82] noting that
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multimodal deep learning is particularly suited to complex biomedical data landscapes

where no single modality suffices.

Radiological images, laboratory data, clinical reports, and patient histories are fre-

quently integrated by medical experts in healthcare to guide decision-making processes.

The ability of multimodal AI to support this integrative process is enhanced by the fact

that data fusion across modalities increases diagnostic accuracy, contextual understand-

ing, and clinical value. As noted by [82], multimodal deep learning is particularly suited

to complex biomedical data environments where a single modality is insufficient.

It has been demonstrated that combining multiple modalities such as imaging with struc-

tured or unstructured clinical data enhance the overall performance of the system [2].

The AI-driven process is similar to what human experts perform intuitively, advanc-

ing with the integration of image and text data such as psychology, radiology reports.

Some studies demonstrated that current AI systems may under-perform when they are

lack of integrating image data with EHRs or radiology reports [89]. This fusion im-

proves diagnostic relevance, especially in ambiguous or subtle cases. Similarly, multi-

modal models achieve a consistent performance improvement—averaging over 6 AUC

points—across a wide range of clinical tasks [90], yet emphasize that data incomplete-

ness, misalignment, and cross-departmental silos pose major barriers to deployment.

Furthermore, [91] highlighted that although real-world usage remains limited for ultra-

sound and biomarkers, the combination of inputs such as MRI, computed-tomography

(CT), and echo-cardiography demonstrated promising results in cardiovascular diagnos-

tics. The recent study stated that multimodal AI provides an enhancement for broader

monitoring and predictive capabilities in terms of personalized medicine [92].

Despite these advances, practical integration of multimodal AI into clinical workflows

remains a significant challenge. Issues such as heterogeneous data formats, lack of in-

terpretability, and insufficient standardization must be addressed before such systems

can be safely and widely adopted in medical practice [93, 94]. These limitations under-

score the need for models that are not only accurate but also adaptable, interpretable,

and aligned with real-world clinical constraints.
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2.3. Multimodal Applications in Speech Processing

In speech processing, multimodal learning has become a potent paradigm allowing sys-

tems to combine several information sources—audio, visual, articulatory, and linguistic

data—such that their resilience, efficiency, and generalizing capacity are raised. Partic-

ularly in noisy or data-limited surroundings, when single-modal solutions fall short in

offering enough dependability, this paradigm is rather important. Using complimentary

information across modalities and frequently mutually reinforcing signals, multimodal

systems can better replicate the way people see and interpret speech.

Knowledge distillation has lately become a crucial method enhancing the application

of multimodal learning, particularly in situations when only some modalities may be

applied in the inference phase. Modern methods see distillation not only as a model

compression strategy but also as a basic way of intermodal representation transfer, in

which case resource-limited learner models can transfer rich information from high-

capacity or multimodal tutor models.

Recent studies reveal a remarkable result: knowledge distillation is more effective

when it includes the latent representations in intermediate layers in addition to the

final outputs. In particular, temporal and spectral connections, moving intermediate

activations, allow learner models to acquire rich representations, including structural

and hierarchical aspects of speech. In speech development applications, this method

has proven to be very successful, allowing compact learner models with significantly

fewer parameters to produce results close to the performance of the tutor model [87].

Distillations of self-supervised speech representation learning models such as wav2vec

2.0 or HuBERT to smaller architectures have achieved model reduction ratios of up to

75% while nearly maintaining performance on downstream tasks [98].

Multimodal distillation, which goes beyond model compression, also has the potential

to increase robustness in sequential tasks. For example, in cascade systems combin-

ing automatic speech recognition (ASR) and machine translation, distilling knowledge

from teacher models trained on clean text to student models working on noisy ASR

outputs has been shown to reduce the negative effects of transcription errors and con-

sequently improve translation quality [107]. Such robustness is critical in real-world

applications where upstream errors in modular systems are often carried over to the
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next stages.

In addition, multimodal distillation enables cross-domain knowledge transfer, where

knowledge acquired in one modality or domain drives the learning process in a different

domain. For example, transferring syntactic and semantic information from a BERT

language model to a speech converter model has been shown to significantly improve

intent classification performance. This highlights the importance of utilizing text-based

linguistic information in spoken language understanding systems [88].

To enable efficient and usable automatic speech recognition (ASR) systems, many

studies have investigated task-oriented knowledge distillation strategies. Among these

strategies, the use of specialized loss functions to preserve full output distributions in

transformer-based ASR models stands out [95]. Such methods allow compact learning

models to preserve not only the performance accuracy but also the structural properties

of large-scale self-supervised tutor models.

From a broader perspective, the flexibility of cross-architecture knowledge distillation

processes is increased by frameworks such as TutorNet, which provide guidance at

both the representation level and the softmax output level, and dynamically weight

frames according to the attention distributions of tutor models. This approach allows

learning models to focus more effectively on the most informative parts of the data [99].

Early work has shown that transferring knowledge from RNN-based ensemble models

to a single model can significantly reduce complexity while maintaining performance

[100].

2.4. Multimodal Sensing with mmWave Radar

Because of its unique characteristics—robustness against obstacles, great sensitivity

in micro vibration detection, and robustness under strong light or sound conditions—

multimodal sensing employing millimeter wave (mmWave) radar has attracted increas-

ing attention recently. Effective integration of mmWave radar with other sensing modal-

ities offers a strong platform that may greatly extend environmental and human per-

ception in sectors including healthcare, automotive systems, and communications, as

reported in [17].

As shown in multi-user beamforming applications whereby radar and auxiliary sensor
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inputs improve channel and beam area estimation [104], deep learning-based sensor

fusion methods have great potential in obtaining structured and meaningful representa-

tions from multimodal data. By use of vocal cord vibrations and lip movements, it has

been verified that mmWave radar may be employed as a sensor capable of capturing

both speech and visual inputs. This functionality helps the radar to give dependable

and strong performance even behind walls or in non-line-of-sight environments [101].

Both DiffRadar [106] which uses diffusion-based probabilistic models to produce high-

quality semantic scene representations using radar data and CommRad [105], which

combines radar detection capabilities with wireless communications to establish highly

efficient and directionally adaptive links in obstructed mobile environments, clearly

show the detection flexibility of radar.

Advances in distributed sensing, radar-camera fusion, and autonomous driving further

exemplify the integration of radar with vision and other modalities for dense, robust 3D

object understanding [102, 103]. These efforts collectively demonstrate that mmWave

radar is not merely a substitute for other sensors but a potent contributor to multimodal

systems, capable of enhancing perception when harmonized with vision, audio, or con-

textual priors. Ultimately, this line of work exemplifies the transformative potential of

multimodal integration, where the fusion of complementary signals yields richer, more

adaptable, and human-aligned machine perception.

2.5. Human Sensing using mmWave Radar

In this section, we will describe an automated human sensing system using raw mmWave

radar signals which is the first mmWave-based system we developed in this study. Ba-

sically, the system observes human in a room occupancy via mmWave radar for indoor

counting (we used TI Instruments IWR1843BOOST in our experiments) and collects

data for action recognition . The proposed system senses on-site objects by analyzing

raw mmWave radar data. The system analyzes raw mmWave radar data to detect ob-

jects and determine whether they exhibit displacement (distance) or motion (velocity).

The system also analyzes human actions to categorize them in a supervised way to learn

common human functional movements.
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2.5.1. Introduction

Recent advancements in mmWave radar technology have underscored the efficacy of

radar sensors as a complementary modality to visual perception-based methods. The

compact structure and advanced imaging capabilities of radar sensors have been demon-

strated to be effective solutions, particularly in low-visibility environments and in-

clement weather conditions. Due to a significant reduction in the size of mmWave

radar hardware, radar technology is becoming a powerful sensing platform that im-

proves upon other methods such as cameras and LiDAR. Unlike cameras, radar is re-

sistant to bad weather conditions and is capable of object detection while maintaining

individual privacy [108, 109].

Nevertheless, numerous studies have overlooked the sophisticated functionalities of

imaging radars, opting for overly simplistic approaches that represent radar data with

a single detection point for moving objects [110, 111]. Radars offer significant advan-

tages in distinguishing the speed and micro-level movements of targets thanks to their

innate sensitivity to phase shifts. This feature, known as micro-Doppler motion, serves

as a distinctive signature for identifying specific objects or types of motion due to its

ability to extract precise motion features from phase shifts. The fact that each target has

its own unique micro-motion pattern is important because it demonstrates that this in-

formation can be integrated into existing target classification and recognition methods

and provide valuable contributions [112, 113].

In the realm of radar sensing, the mechanical vibration and rotation of structures within

a target can introduce frequency modulation to the returned signals [114, 115]. This

phenomenon results in the creation of sidebands around the center frequency of the

target’s body Doppler frequency . The modulation induced by vibration and rotation,

producing lower and higher frequencies relative to the Doppler frequency, is referred to

as micro-Doppler. Given that each form of movement is unique in terms of the rotation

and vibration of various parts of objects, micro-Doppler serves as a distinctive feature

for the classification of different signals [116].

This chapter presents the research conducted to deepen the understanding of mmWave

radar technology through the analysis of radar-based motion and velocity representa-

tions. Additionally, speech analysis experiments were carried out on the mmWave
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radar sensor using those techniques. To identify the optimal operating parameters for

speech-related tasks under different configurations, several calibrations of the radar

sensor were performed. An experimental setup was established for data collection,

revealing the need for careful tuning of numerous data acquisition and processing pa-

rameters. The details of the studies conducted throughout this process are outlined in

the following sections.

2.5.2. Methods

2.5.2.1. Basic Principles of FMCW Radar

Particularly those using FMCW methods, MmWave radar systems provide a strong ba-

sis for motion sensing, range estimate, and velocity analysis. These systems broadcast

frequency-modulated signals called chirps, then examine their reflections to define the

spatial and dynamic characteristics of objects in the radar field.

A chirp is a single-frequency tone with linear over-time frequency rise. As shown in

Fig. 2.1, a frequency synthesizer (1) generates the chirp which is then sent via the trans-

mit (TX) antenna (2). Reflecting off a target, the signal is picked at the receive (RX)

antenna (3) and combined with the original broadcast chirp to generate an intermediary

frequency (IF) signal (4). The IF signal records the frequency variances between the

sent and received chirps. The time delay brought forth by the range of the target deter-

mines this discrepancy. Target range may be estimated by first converting this signal

into the frequency domain using a Fast Fourier Transform (FFT) applied along the fast

time (analog-to- digital converter) sampling dimension. This technique is called the

Range-FFT. As Fig. 2.2 shows, the frequency spectrum’s peak locations exactly coin-

cide with object range (5). Two chirps sent with a specified time gap can be used to

determine the velocity of the object by means of phase changes between related reflec-

tions. The Doppler effect lets this happen.

The basic unit of radar data capturing is a succession of chirps forming a frame. The

range resolution of each chirp—defined as the rate of change in frequency over time—

determines the system’s slope. While Fig. 2.3b shows the structure of a radar frame,

wherein many chirps are sent consecutively, separated by specified intervals, Fig. 2.3a
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Figure 2.1: Overview of real-time processing.

Figure 2.2: Range-frequency peaks.

shows the temporal features of a normal chirp.

Signal Processing Pipeline: The processing of mmWave radar data involves multiple

steps:

• Chirp and Frame Structuring: Each frame consists of multiple chirps separated

by a constant interval.
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(a) Typical FMCW Chirp

(b) Typical Frame Structure

Figure 2.3: FMCW radar signal structure: (a) A typical chirp showing frequency
sweep over time, (b) A frame composed of multiple chirps with inter-frame
timing.

• Range-FFT: Performed on each chirp to extract range information.

• Doppler-FFT (2D-FFT): Applied across chirps within a frame to resolve velocity.

This process is particularly useful for detecting multiple objects at the same range

but with different speeds.

• Micro-Doppler Analysis: By focusing on specific range bins and aggregating

phase data over time, fine-grained movement patterns (micro-Doppler signatures)

can be extracted.

The position and velocity of the object directly affect the IF signal phase and frequency;

a little movement (e.g., 1 mm) in front of the radar causes a phase change of 180°.

Sub-millimeter displacement detection is made possible by the IF signal’s changing

frequency in direct line with distance travelled. These concepts allow mmWave radars

to offer complete motion analysis even in difficult environments with many moving

objects.
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2.5.2.2. Range-Doppler and Micro-Doppler Analysis

Because of its low visibility, small size, and ability to detect target velocity and micro-

Doppler components with great precision, MmWave radars have notable benefits over

other technologies [117, 118]. These characteristics help the radar to run consistently

even in congested and complicated metropolitan surroundings. In addition, its small

size and power-efficient structure make it portable and suitable for use in long-term

applications [119, 120].

Range-Doppler is a radar analysis method used to measure both the distance and speed

of an object (Fig. 2.4). This method calculates the distance of the object to the radar

and the speed of its movement based on the data obtained as a result of the interaction

of the radar signals with the target. This technique, which is generally preferred for

tracking moving objects, reveals the general dynamics of the object. Micro-Doppler

analysis, on the other hand, is more suitable for studying the internal structure of the

target or its structural characteristics, such as vibrations. [121, 122].

Figure 2.4: Data processing chain: Obtaining distance and velocity for each sequenced
radar frame [108].

Using at least two chirps with a Tc spacing, the velocity can be determined by con-

sidering total chirp time. Although having different phases, the range-FFTs matching

each chirp will show peaks at the same places. The observed phase difference omega

matches the motion of an item vTc. ω = 4πvTc

λ
which may be rearranged to get the ve-

locity (v) as v = λω
4πTc

. Therefore, the estimate of the object’s velocity is made possible

by using the phase difference recorded across two successive chirps.
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2.5.2.3. Pilot Setup for Human Sensing

Table 2.3: mmWave Radar IWR1843BOOST Configuration Parameters with Typical
Values

Parameter Units Typical Value / Range Description

Start Frequency GHz 76 – 81 Starting frequency of the chirp; de-

termines radar band (e.g., 77 GHz).

Frequency Range GHz 4 Total bandwidth across the chirp

(e.g., 77–81 GHz).

Bandwidth MHz 250 – 4000 Larger bandwidth gives finer range

resolution.

Slope MHz/µs 20 – 80 Chirp slope; higher slope improves

range resolution but increases ADC

requirements.

Idle Time µs 5 – 100 Time between chirps; affects frame

timing.

ADC Start Time µs 2 – 10 Delay after chirp starts before sam-

pling begins.

Ramp End Time µs 50 – 200 Duration of chirp including fre-

quency ramp.

Sampling Rate (Fs) Msps 5 – 25 ADC sampling frequency.

Samples per Chirp - 128 – 1024 Number of ADC samples per chirp.

Number of Chirps per Frame - 32 – 128 Defines the number of chirps in one

radar frame.

Number of Transmit Antennas - 1 – 3 Impacts angle estimation resolu-

tion.

Number of Receive Antennas - 1 – 4 Used for angle of arrival estimation.

Transmit Power dBm 10 – 15 Power level of the transmitted sig-

nal.

Transmit Gain dB 0 – 50 Amplifies the outgoing signal.

Receive Gain dB 0 – 30 Amplifies the incoming signal.

Maximum Detection Range m 2 – 100+ Depends on chirp design, gain, and

object reflectivity.

Range Resolution m 0.04 – 0.3 Determined by bandwidth: ∆R =

c
2B

.

Maximum Velocity m/s or km/h 10 – 300 km/h Limited by PRI and number of

chirps.

Velocity Resolution m/s or km/h 0.1 – 5 km/h ∆v = λ
2Tframe

.

Frame Duration ms 10 – 100 Duration of a full radar frame.

mmWave Radar Configurations: We visited calibration of the sensor to find the op-

timal parameters of the radar for sensing tasks in a series of configurations. These con-

figurations have been chosen to reflect human sensing tasks such as human counting 

and human action recognition. We observed that numerous parameters related to data 

collection and processing required careful adjustment to ensure optimal performance.
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To initiate this process, we began with a straightforward configuration in which par-

ticipants produced various speech scenarios. This approach enabled us to identify op-

timal calibration parameters and facilitated effective visualization of the raw data. In

addition, we conducted simplified tests involving inanimate objects moving along pre-

dictable, periodic trajectories. After finalizing the data collection parameters, we pro-

ceeded to gather speech-related sound analysis data and evaluated the performance of

raw data processing algorithms. We have configured the radar as its samples rate (ksps)

10000, frequency slope (MHz/µs) 29,982, with 2 TX antennas and 3 RX antennas, 10

frames, 200ms periodicity, 128 number of chirp loops, and 128 ADC samples. Ta-

ble 2.2 summarizes the key configuration parameters of mmWave radar systems along

with their typical values used in short-range sensing applications.

(a) Radar setup and subject performing
repetitive side-stepping while main-
taining original position.

(b) Micro-Doppler signature of repeti-
tive side-stepping. Distinct bursts
appear symmetrically around zero
velocity due to lateral leg move-
ments.

Figure 2.5: Radar-based analysis of repetitive side-stepping motion. In this movement
pattern, the subject remains in place while rhythmically stepping side-to-
side.

Experiments with mmWave Radar

Micro-Doppler signatures keep distinct and recognizable patterns in both single and

multiple person scenarios, as demonstrated by Fig. 2.5 and Fig. 2.6. The Doppler sig-

nals from one or two people walking side by side to the radar stay at a low frequency but

show different energy traces. In Fig. 2.5, likewise, symmetric bursts centered at zero ve-

locity are produced by repeated lateral motion of a single individual. Especially, these

micro-Doppler patterns are stable across several kinds of motion and repeated trials,
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Algorithm 1: 2D Micro-Doppler Spectrogram Generation
1: Input: ADC data cube (F,C,A, S) where F = frames, C = chirps, A = antennas,

S = samples

2: Output: 2D micro-Doppler image (T, V ) where T = time, V = velocity bins

3: for each frame i = 1 to F do

4: Perform range FFT along samples (S) with Blackman window

5: Output shape: (C,A,R) where R = range bins

6: Perform Doppler FFT across chirps with Hamming window and clutter removal

7: Result: detection matrix Di ∈ RV×R

8: Apply FFT shift on velocity axis

9: Store Di into micro-Doppler cube M [i, :, :]

10: end for

11: Compute average over range: M2D[t, v] =
1
R

∑
r M [t, v, r]

12: Save or visualize M2D as a 2D image (time × velocity)

(a) Illustration: Single-Multiple person
walking parallel to the radar.

(b) Micro-Doppler of a Single/Multiple
person moving perpendicularly.

Figure 2.6: Movement parallel to the sensor (One and Two People). In both cases
— (top) single person and (bottom) two people — the individuals walk
parallel to the radar’s position.

which helps to identify persons and activities precisely. Whether the motion involves

one or more persons, the persistence of these unique micro-Doppler signatures empha-

sizes the possibilities of radar for human activity detection in practical, multi-person

surroundings. Algorithm 1 provide the exact methods for producing 2D micro-Doppler

representations.

We first set up to observe basic harmonic motion in raw radar data. We used a lightweight

pen fastened to the end of an extended flexible support, like a long thin rod. Fig. 2.7a-b

show the simple harmonic motion of a hanging pen where the radar records symmet-

ric, smooth micro-Doppler patterns centered on zero velocity. Figures 2.7c-d show a
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human traveling back and forth along the radar’s line of sight, producing alternating

positive and negative Doppler changes as they approach and retreat. Fig. 2.7e-f shows

a person regularly conducting a sit-to-stand action, which produces less symmetric but

nonetheless periodic Doppler signatures because of vertical body movement. Fig. 2.7g-

h shows two people traveling in different directions—one toward the radar and the

other away—producing overlapping but distinctively micro-Doppler patterns with op-

posite frequency changes. These illustrations show how, depending on their individual

micro-Doppler properties, radar can identify and separate distinct human and object

movements.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.7: Radar-based observation of different types of human and object motion
and their corresponding micro-Doppler signatures. (a–b) Simple harmonic
motion of a suspended pen observed by the radar. (c–d) A person moving
back and forth along the radar’s line of sight. (e–f) A subject performing
repeated sit-to-stand actions. (g–h) Two individuals walking in opposite
directions — one approaching and the other receding from the radar.
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Figure 2.8: Overview of the proposed system comprising three phases: data collec-
tion using synchronized UTI, audio, and mmWave radar; embedding space
learning with multimodal supervision; and application using radar-only in-
put for downstream tasks such as speech recognition.

2.6. A Multimodal System for Speech Analysis

In this section, we will describe our multimodal speech sensing and analysis system us-

ing raw mmWave radar signals which ifs mmWave-based system we developed in this

study. Basically, the system observes generated signals in front of mmWave radar for

phoneme recognition (we used TI Instruments IWR1843BOOST in our experiments).

The proposed system captures both articulatory movements and vocal cord vibrations

by analyzing raw mmWave radar, UTI and audio.

2.6.1. The Overall Structure

The overall structure of the proposed system is shown in Fig. 2.8. The system consists

of 3 phases; training, embedding space learning, and application phases. In the data
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collection phase, we synchronized multiple sources to collect data. During the embed-

ding space learning, the data-driven system trained the collected data, and optimized an

embedding space. The radar-only model then utilizes this embedded representation for

inference, enabling robust and privacy-preserving predictions using a single modality.

2.6.2. Tongue Contour Extraction as a Foundational Study

The increase in computer hardware, the production of multi-core, powerful graphics

cards and their widespread use have significantly increased the speed of computing with

computers. As a result of these developments, deep neural networks, which have been

known for a long time but cannot be used in practice due to the high cost of computation

and the lack of computers to do this, have become popular. To establish a foundation

for later experiments, we first investigated the effectiveness of various deep learning

models on the task of tongue contour segmentation from real-time ultrasound data. The

qualitative performance of the implemented architectures on ultrasound tongue contour

segmentation is illustrated in Fig. 2.9, where the proposed model exhibits more accurate

and consistent predictions compared to sDeepLab, BowNet, and sU-Net.

sDeepLab is a streamlined adaptation of the DeepLab v3+ architecture, which leverages

atrous (dilated) convolutions to increase the receptive field without reducing spatial res-

olution. In our implementation, we removed the dependency on large-scale pre-trained

models (e.g., ImageNet) and instead optimized the model for grayscale ultrasound in-

puts. BowNet is a custom dilated convolutional network developed specifically for

ultrasound tongue contour extraction. Inspired by prior work on peripheral vision and

multi-scale context aggregation, BowNet employs a bow-shaped architecture using suc-

cessive layers of dilated convolutions. This design helps capture both local edge struc-

tures and broader anatomical context. Our experiments confirmed BowNet’s strength

in balancing accuracy and inference speed, particularly under noisy imaging conditions.

However, the model occasionally generated artifacts near the tongue root, likely due to

echo patterns and shadows misinterpreted as salient features [123].

sUNet is a simplified U-Net variant tailored for efficient training on our modest-sized

ultrasound dataset. Unlike standard U-Net implementations, sUNet uses fewer encoder-

decoder levels and reduced filter depth to allow faster convergence and lower compu-
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tational demands. This architecture proved to be robust across multiple subjects and

conditions, making it an effective baseline model. Its skip connections preserved spatial

information well, but it occasionally failed to separate close-proximity tongue contours

from overlapping structures in the jaw or palate [124].

Figure 2.9: From left to right: original ultrasound image, manually annotated ground
truth, and predictions from sDeepLab, BowNet, sU-Net, and our proposed
pretrained U-Net based model. While sDeepLab struggles with noise and
incomplete contours, BowNet and sU-Net show moderate accuracy. The
proposed method demonstrates superior delineation quality, closely match-
ing the ground truth across various subjects and imaging conditions.
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2.6.3. Pilot Setup for mmWave Speech Sensing

We set up a radar-camera synchronized data-collecting system by using Texas Instru-

ments’ mmWave Studio platform. The customized Lua scripts controlled the radar’s set-

tings and automated the acquisition process, including hardware triggering and start/stop

instructions. The development of a Python-based multi-threaded video recording mod-

ule allowed real-time visual alignment. This module ensures that the timing of RGB

video frames matches up with radar data, allowing for precise matching of human ac-

tions seen on camera and micro-Doppler signatures. This setup provides a solid foun-

dation for combining different types of data and using machine learning, allowing for

easy testing of various movements and environmental factors.

Figure 2.10: The setup for synchronized radar and camera acquisition. The illustration
shows a subject positioned in front of a radar and camera system, while
a spectrogram is generated in parallel. It emulates a real-time sensing en-
vironment using mmWave Studio, custom Lua scripts, and Python-based
multi-threaded video capture.

The initial speech sensing investigations employing micro-Doppler signatures demon-

strated limited classification performance. The spectrograms derived from radar data
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exhibited an absence of discernible, replicable patterns across multiple spoken utter-

ances. Speech, in contrast to physical activities such as walking or waving, generates 

delicate and fine-grained motions, which are challenging to consistently record using 

micro-Doppler, particularly at low signal-to-noise ratios and in the absence of exact 

alignment. The resulting generated spectrograms lacked discernible temporal or spec-

tral structure, hindering the capacity to distinguish phonemes or words. While some 

studies have demonstrated the feasibility of using micro-Doppler data for speech recog-

nition [78], our results demonstrate that, in this configuration, micro-Doppler signatures 

alone are inadequate for accurate speech classification (Fig. 2.11). These 

findings underscore the necessity of incorporating diverse representations or 

modifying the experimental design to enhance discriminative capacity.

Figure 2.11: Range-accumulated micro-Doppler spectrograms for different speech
recordings: the left plot corresponds to the vowel /a/ and the right to
the vowel /e/. Each spectrogram shows a 2-second radar capture dur-
ing speech articulation. The velocity patterns are weak and not clearly
distinguishable between the two vowels, supporting the observation that
micro-Doppler alone does not provide sufficient discriminatory informa-
tion for isolated vowel classification.

mmWave Radar Configurations

The mmWave radar setup was modified to enhance system performance and data col-
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lection quality. This modification entailed the customization of several pivotal factors,

including the number of transmitting and receiving antennas, the frequency slope, chirp

periodicity, and the sample rate. Through experimental analysis, it was determined

that minor alterations in these parameters can significantly influence downstream sig-

nal processing and data collection processes. As indicated in [70], each frame in our

configuration runs at a chirp repetition rate of 1 kHz with 256 ADC samples per chirp.

This arrangement computes the sampling rate Fs by Fs = N
T

, where N = 256 is the

number of samples per chirp and T = 0.001 seconds is the chirp duration, hence pro-

ducing a sampling rate of 256 kHz. This arrangement was found to be appropriate for

obtaining the fine motion dynamics required for our use.

A speaker device was positioned 50 cm in front of the mmWave radar and used to emit

a sweep sound ranging from 20 Hz to 20,000 Hz (Fig. 2.12). This setup enabled us to

evaluate the radar’s sensitivity to frequency-varying acoustic signals in air. The known

distance and controlled input allowed for consistent testing and spectrogram analysis

of the radar’s response to airborne sound waves.

Figure 2.12: Experimental setup illustrating the placement of the speaker device 50
cm in front of the mmWave radar, configured to emit sweep sounds from
20 Hz to 20,000 Hz, facilitating controlled evaluation of the radar’s sen-
sitivity to frequency-varying acoustic signals.

In the early phase of our experiments, the radar was configured with moderate values

across a range of parameters, including 2 transmit and 3 receive antennas, 10 frames,

128–256 chirp loops, and 128–256 ADC samples per chirp, with a periodicity between
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70–200 ms. However, this configuration proved suboptimal for high-resolution tem-

poral tracking, particularly in speech sensing applications. As a result, we revised the

settings to significantly improve temporal granularity and control. The updated con-

figuration reduced the system to a single transmitter and four receivers, increased the

number of frames to 5000 (can be changed by duration of data capture), and fixed both

the number of chirp loops and ADC samples at 10 and 256, respectively. Most notably,

the frame periodicity was reduced from a broad 70–200 ms range to a fixed 1 ms, al-

lowing for denser and more temporally precise sampling of micro-movements. This

revised setup enhanced the radar’s ability to capture fine-grained articulatory motion

required for our application, without altering the ADC sample rate (10 Msps) or the

frequency slope (29.982 MHz/µs).

(a) Acoustic baseline [125]. (b) Radar-based sweep sound.

Figure 2.13: (a) Spectrogram of speech recorded from [125]. Distinct harmonic struc-
tures are visible across time, enabling speaker device and throat discrim-
ination. (b) Spectrogram of mmWave radar ADC data captured during a
20–20,000 Hz sweep sound test. Harmonic curves reveal how frequency
sweeps are reflected and captured across time.

Fig. 2.13 compares spectrograms from different acoustic and radar-based settings. An

acoustic spectrogram of speech from [125], where voiced sounds produce well-structured

harmonic bands is shown in Fig. 2.13a. Inspired by this, we tested our radar system

using a controlled audio sweep from 20 Hz to 20 kHz. As seen in Fig. 2.13b, the radar-

captured ADC data reveals curved harmonic patterns in the time-frequency domain,

indicating that the radar is responsive to air-coupled audio signals under certain condi-

tions. Finally,these comparisons validate the feasibility of radar-based acoustic signal

sensing and guide future configurations for more speech-relevant experiments.
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While our work shares conceptual similarities with the MILLIEAR pipeline [126], our

spectrogram generation approach differs in execution. Instead of applying Range-FFT

and Doppler-FFT to isolate a specific vibrating range bin, we directly concatenate radar

frames along the time axis to form a continuous signal. This raw micro-Doppler signal,

accumulated across range bins, is then processed using Short-Time Fourier Transform

(STFT) to generate the time-frequency domain spectrogram. This approach simplifies

the pipeline and provides a global view of speech-induced motion over time. Although

less targeted than MILLIEAR’s range-selective method, our method is effective for

general speech activity sensing and aligns well with the constraints of real-time data

acquisition and low-complexity processing [125].

(a) Human speech with varying radar distances: too close (left), fur-
ther (right)

(b) Radar-based speech recording with speaker device results in high
frequencies.

Figure 2.14: Radar-based speech data collection setups with human and speaker de-
vice.

Fig. 2.14 illustrates two radar-based speech sensing setups. In Fig. 2.14a, a speaker

repeats the phrase “Adana Mersin Adana Mersin Adana” over five seconds while an

mmWave radar captures motion dynamics. Variations in distance between the speaker
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and the radar affect the resulting spectrogram. In Fig. 2.14b, a speaker device plays 

a 15-second common speech sourced from YouTube, recorded using a 1 ms chirp in-

terval, resulting in 15,000 frames. These frames are concatenated to generate the final 

spectrogram.

2.6.3.1. Experiments with mmWave Radar

Ultrasuite Repository Captured by mmWave Radar

In the preliminary process, we focused on capturing articulatory patterns of selected 

consonants—/k/, /p/, /r/, and /s/—based on their place and manner of articulation. These 

consonants were chosen to represent diverse articulatory mechanisms, including bil-

abial (/p/), alveolar (/s/, /r/), velar (/k/), and retroflex (/r/), as well as fricative sounds 

(/s/). The total number of training and testing samples collected across all modalities 

is summarized in Table 2.3.

To ensure consistency and reproducibility in the radar reflections, a loudspeaker setup 

(Fig. 2.12) was used to play pre-recorded consonant utterances. The utterances were 

sourced from the UltraSuite repository, which provides high-quality audio recordings 

aligned with articulatory targets. These ‘.wav‘ files were played through the speaker 

in a controlled environment while the radar captured the resulting signal reflections.

Table 2.4: Distribution of training and testing data across modalities for selected con-
sonants.

Consonants Number of Train Data Number of Test Data

(Articulation-based) (All Modalities) (All Modalities)

/k/ 619 166

/p/ 1278 343

/r/ 1199 329

/s/ 583 164

The concatenated spectrograms of ADC samples acquired from the mmWave radar for

various speech utterances played over a speaker demonstrated in Fig. 2.15. The spectro-
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grams in the bottom row show more consistent and periodic spectrum activity, implying

maybe stronger radar reflections from louder or more ordered sound segments. The top

spectrograms, on the other hand, show somewhat less and more scattered patterns that

indicate smaller articulatory motions. These time-frequency representations are essen-

tial input elements for deep learning-based classification tasks as they allow the study

of speech-sensing micro-movements recorded by the radar.

Figure 2.15: Concatenated spectrograms illustrating radar reflections from various
speech utterances.

In this study, mmWave radar spectrograms were initially produced by subjecting voice

recordings to a process of signal transmission through a speaker, followed by the ac-

quisition of reflected signals over a designated 2-second interval. To enhance signal

clarity and ensure adequate representation of radar reflections, each recording incor-

porated numerous repetitions of the same consonant sound. However, this approach

gave rise to a potential challenge for deep learning models: the presence of recurrent

patterns within a constrained time frame could lead to temporal overfitting. The poten-

tial outcome of this process is the development of models that are capable of linking

specific attributes of each phoneme with predetermined locations within the spectro-

gram, as opposed to the more nuanced and complex process of learning the underlying

articulatory traits of each individual letter. To address this challenge, we employed a
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data augmentation approach by dividing the continuous two-second spectrograms into 

smaller, repeat-aware segments, which were then matched with individual utterances. 

The enhanced precision in labeling, attributable to this segmentation, along with the 

reduction in temporal bias, enabled the model to attain greater generalizability across 

a spectrum of speaker contexts and temporal patterns.

Table 2.5: Performance comparison of three models in terms of precision, recall, F1-
score, and support across consonant classes and overall. Overall Accura-
cies: Model 1: 92%, Model 2: 89%, Model 3: 77%

Model Metric /k-g/ /p-b-v-f/ /r/ /t-d-z-s/

Model 1

Precision 0.76 0.98 0.98 1.00

Recall 1.00 0.93 1.00 0.77

F1-Score 0.86 0.95 0.99 0.87

Support 166 343 329 164

Model 2

Precision 1.00 1.00 0.92 0.69

Recall 0.84 0.79 1.00 1.00

F1-Score 0.91 0.88 0.96 0.82

Support 166 343 329 164

Model 3

Precision 0.96 1.00 0.58 0.90

Recall 0.98 0.34 1.00 0.85

F1-Score 0.97 0.50 0.74 0.88

Support 166 343 329 164

As illustrated in Table 2.4, the performance of three models trained on various modality

combinations (radar, ultrasound, and audio) is shown for consonant classification. The

model that combines all three modalities (Model 1) achieved the best overall accuracy

of 92%, as indicated by its exceptionally good F1-scores across all consonant groups.

Model 2, which utilizes radar and ultrasonic data exclusively, exhibited an overall accu-

racy of 89%, demonstrating competitive performance, though with slightly diminished

recall for the /p-b-v-f/ group. Conversely, Model 3, designed exclusively on radar

data, exhibited a substantial decline in performance, with an overall accuracy of 77%.
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The findings underscore the necessity of multimodal information for enhancing catego-

rization accuracy, particularly in cases where speech are acoustically and articulatory

comparable.

Figure 2.16: t-SNE visualizations under different modality configurations during in-
ference.

Fig. 2.16 presents t-SNE visualizations of the learned embeddings from a model trained

on all three modalities—UTI, mmWave radar, and audio—under four different infer-

ence conditions. Fig. 2.16a shows the embedding space when noise is added to all data

sources, reflecting a baseline for separation under degraded input.

In Fig. 2.16b, the model operates solely on mmWave radar data, with other modalities

replaced by noise. Although the embedding structure remains partially separable, the

absence of UTI and audio leads to overlapping clusters, highlighting the importance of

multimodal inputs. Fig. 2.16c includes radar and UTI data (audio replaced by noise),

yielding improved class separation compared to radar-only, confirming that UTI data

contributes significantly to articulatory representation. Finally, Fig. 2.16d shows the

embedding when all modalities are available at inference, producing the most distinct

and well-separated clusters. These results demonstrate the complementary nature of the

modalities and the robustness of the learned representation even when some modalities

are missing during inference.
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2.7. Conclusion

This chapter explored the use of the mmWave radar for human and speech sensing,

presenting a detailed overview of its operational principles, signal processing pipeline,

experimental setups, and integration with multimodal systems. The main findings and

takeaways can be summarized as follows:

• mmWave radar systems offer robust and privacy-preserving alternatives to camera-

based sensing, particularly effective in capturing motion and velocity through

micro-Doppler analysis.

• We demonstrated the radar’s ability to detect and differentiate various human ac-

tions, including harmonic motion, walking patterns, and sit-to-stand transitions,

using both 2D and 3D micro-Doppler representations.

• Initial speech sensing experiments revealed the limitations of micro-Doppler-

based radar for isolated vowel and consonant classification due to the subtlety

of articulatory movements and low signal-to-noise conditions.

• To address this, we concatenated raw radar frames along the time axis to form a

continuous micro-Doppler signal and applied STFT to generate speech-relevant

spectrograms. This approach provided a global view of motion over time and

improved the representation of articulatory events.

• We also employed a speaker device to play articulatory diverse consonants from

the UltraSuite repository, enabling clean and repeatable radar captures for phoneme-

level analysis.

• Segmenting the 2-second spectrograms into utterance-aligned chunks helped re-

duce temporal overfitting and improved generalization in machine learning mod-

els.

• Multimodal learning—combining radar, ultrasound, and audio data—led to sig-

nificantly higher classification performance compared to radar-only models, as

validated by F1-scores and t-SNE visualizations.

In conclusion, mmWave radar shows great promise for speech-related sensing tasks

when integrated within a multimodal framework. The methods presented in this chapter—

based on speaker-emitted signals—lay a strong foundation for subsequent experiments
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using radar data directly captured from human speech. The next chapter extends this

work by analyzing naturally produced speech and further investigating the radar’s ca-

pacity for capturing fine-grained articulatory dynamics in real-world scenarios.
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3. TOWARDS ROBUST PHONETIC SEGMENT CLAS-
SIFICATION VIA ARTICULATORY AND AUDIO
MODALITIES

3.1. Introduction

The classification of phonetic segments underlies many applications in speech and lan-

guage processing (SLP), such as automatic speech recognition (ASR), pronunciation

modeling, and articulation analysis. Additionally, advancements in speech recognition

are intrinsically linked to accurate consonant classification, as the precise identification

of phonetic segments is crucial for developing effective speech recognition systems and

therapeutic interventions. Research supports that the phonetic placement method has

been effective in enhancing articulation skills, specifically for bilabial consonants in

children with physical disabilities [127] and individuals with Down syndrome[128].

Although traditional approaches are largely based on audio signals, these methods face

several limitations due to factors such as inter-speaker differences, environmental noise,

and articulatory ambiguities [129–131]. The phonetic segment classification based

solely on audio may fail to distinguish spectrally similar but articulatory different seg-

ments, especially when segments vary depending on context or when the differences

are subtle.

To address these challenges, articulation data provided by UTI has been introduced as

a complementary modality to speech processing. UTI offers the visualization of the

tongue shape during the production of each phoneme in a non-invasive and real-time

manner (Figure 3.1). This technique stands out for its ability to capture fine-grained ar-

ticulation information that is usually difficult to extract from audio signals alone, and is

therefore an important tool for understanding both individual and inter-individual vari-

ations [132]. Thanks to advances in ultrasound technology, UTI systems are becoming

more portable, more affordable, and more amenable to integration with machine learn-

ing models for phonetic analysis [31, 56].

Despite its advantages, UTI is has a couple of limitations. First, the setup requires pre-

cise probe placement under the chin, which reduces its feasibility for unsupervised or
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Figure 3.1: Final placement of the tongue shapes can be represented by phonemes [1].

remote use. Second, interpreting UTI images is inherently challenging due to tongue

movement complexity, image quality fluctuations, and the absence of visible informa-

tion about other articulators such as the lips or glottis [65]. These constraints introduce

ambiguity in classification when ultrasound images alone are used.

(a) /k/: ”cat” (b) /t/: ”time” (c) /d/: ”dog” (d) /z/: ”zebra” (e) /s/: ”sun”

Figure 3.2: Sample phonetics segments of ultrasound tongue (top) and visible spec-
trum (bottom) imaging [1].

Therefore, the viability of ultrasound and the accuracy of audio-only applications have

both come under scrutiny. For example, speech segments that differ primarily in vocal
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fold vibration—such as the voiceless /s/ and its voiced counterpart /z/—produce simi-

lar tongue shapes in ultrasound frames, making them nearly indistinguishable in UTI

images alone (Fig. 3.2d and Fig. 3.2e). Yet, these segments are easily separable in the

acoustic domain due to the presence or absence of voicing cues. Similarly, some vow-

els, such as /i/ and /y/, are similar in terms of tongue shape but differ in lip rounding.

However, since standard UTI systems cannot display such lip movements, they may

lead to misclassifications unless supported by auido features. Such examples clearly

demonstrate the need for a multimodal approach that can capture both articulatory and

audio features of speech.

In light of these concerns, this chapter introduces a novel framework (MMNET) that

uses both ultrasound tongue images and audio during the training phase to create a

shared embedding space to address these issues. This embedding space integrates ar-

ticulatory patterns with spectral and temporal features of speech, enabling more robust

phonetic classification.

At inference time, we proposed several methods methods (M1-M4) operate using only

audio input. However, the influence of articulatory information—learned during training—

remains embedded in the model’s representations. Our design (M1) allows to maintain

high classification performance in realistic, audio-only environments, while benefiting

from the structured articulatory grounding that UTI provides during training.

M1 offers several key advantages. Firstly, it enhances the classification performance

that is vulnerable to acoustic noise and speaker variability through the utilization of

joint representation learning. Second, it mitigates ambiguities arising from unimodal

imaging or audio inputs by enabling cross-modal supervision [133]. Finally, it enables

practical deployment in low-resource or real-time settings where articulatory imaging

is unavailable, making it suitable for broader applications in speech modeling and as-

sistive technologies.

3.2. Methods

We propose a shared embedding space and classification methods based solely on au-

dio data in order to address the phonetic segment classification problem. The proposed

approach consists of three main stages: data collection, learning the multimodal em-
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bedding space, and classification based only on audio.

In the first stage, a multimodal dataset (GTUConsonants) was compiled by collecting

both audio and simultaneous UTI data from the speakers. The data collection process

was carefully designed to obtain high-quality and synchronized recordings and was

supported by reading materials covering various phonetic contents. This stage plays

a critical role in the generalizability of the model by being planned to include both

individual and inter-individual articulatory variations.

In the second stage, MMNet, a multimodal neural network architecture trained on the

task of classifying phonetic segments, learns the common embedding space. This em-

bedding space is defined by the vector representations extracted from the last hidden

layer of the model (just before the classification layer). Thus, these vectors learned

from audio and UTI data provide a meaningful and discriminative representation for

classification, carrying both articulatory and audio information together. Since this

representation space is optimized to directly increase the classification performance, it

allows the model to focus on the discriminative information.

In the last stage, this embedding space is estimated using only audio data and phonetic

segment classification is performed on this representation. Thus, while the models

(M1-M4) are enabled to benefit from rich articulatory information such as UTI in the

training process, a more practical and portable system that can work only with audio

data is obtained in the application phase. This approach allows both to increase the

classification accuracy and to improve the usability in real-world speech technology

applications.

3.2.1. Datasets

3.2.1.1. GTUConsonants

To have a data-driven model for phonetic segment classification, we compiled a suffi-

cient and balanced dataset dataset by using [134]. For this purpose, the data collection

process was carried out within the scope of the dataset we named GTUConsonants 1.

During the data collection process, participants were selected from Turkish-origin adults

1A sample recording of our dataset: https://youtu.be/golisLoMSxY?si=TpmKGr1Gs9vu3YQR
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between the ages of 20 and 40, and were sampled to reflect phonetic diversity as much

as possible. Participants were asked to read full sentences in a manner close to the nat-

ural flow of speech, and during these readings, both audio data and synchronized UTI

recordings were taken. The obtained dataset includes recordings of three participants

vocalizing six different consonants, which also determines the number of classes in the

target classification task (Table 3.1).

The International Phonetic Alphabet (IPA) [135] chart is internationally recognized and

standardized for phonetic notation. It was created by the International Phonetic Associa-

tion as a way to represent the sounds of spoken language. The IPA provides a consistent

system to transcribe the phonetic sounds of any language, allowing linguists, language

learners, and professionals in related fields to accurately describe the sounds they hear

and produce. The phonetic segments for this study are selected based on IPA standards.

We ensured cross-lingual generalization by choosing phonetic segments based on IPA

standards, which provides consistency and accuracy across different languages.

Table 3.2 presents a summary of the GTUConsonants dataset developed for phonetic

segment classification in Turkish. The dataset comprises 67 video clips, totaling over

one hour of synchronized UTI and audio recordings, captured at 25 frames per second

with a resolution of 640×480 pixels. UTI image clips recorded in parallel with the

audio data were also included in the analysis process. These images were rescaled

from their original 640× 480 resolution to 96× 96 size in order to keep the model size

at a manageable level and optimize the training time. During this process, care was

taken to preserve the meaningful articulatory information in the ultrasound images.

On the other hand, the processing of audio data was carried out by following a workflow

based on spectrogram extraction over labeled segment intervals. Each audio segment

was obtained from audio files with a sampling rate of 48 kHz, matching millisecond-

level timestamps. In order to analyze the frequency content of the segments over time,

the Short Time Fourier Transform (STFT) was applied. This transformation was calcu-

lated using a window size of 1024 samples and a shift length of 512 samples, providing

50% overlap. The resulting spectrograms were represented in a form that visualizes

the intensity of the signal in decibels, with logarithmic scaling applied to the frequency

axis. This approach provides a strong basis for audio-based classification by capturing

detailed frequency information over a given time period [136].
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Table 3.1: The number of ultrasound frames of train and test sets on GTUConsonants
for different phonetics and subjects.

Consonant
Subject 1 Subject 2 Subject 3

Train Test Train Test Train Test

/t/ 642 198 609 324 522 312

/k/ 531 336 813 258 756 246

/z/ 438 213 459 186 462 156

/d/ 522 120 660 306 885 387

/g/ 387 159 459 180 411 123

/s/ 546 172 687 279 648 245

3.2.1.2. UltraSuite Repository

To assess model performance more precisely and to examine general validity, the Ul-

trax Typically Developing (UXTD) dataset was incorporated into the analysis as an

additional data source. UXTD is a subset of the UltraSuite database, featuring rich

annotations including speaker variability, word-level transcriptions, and detailed pho-

netic content. This dataset has been labeled by expert language therapists within the

scope of speech therapy applications and is a widely used and reliable source in the

literature [63, 137, 138].

One of the most successful results in the literature was carried out by Ribeiro et al. on

the dataset [63]. In order to classify the speech sounds, four different classes can be

organized based on the places of articulation (place of articulation).

The defined classes are grouped according to their articulation features as follows: The

first class includes sounds with bilabial and labiodental articulations such as /p, b, v, f/.

The second class includes dental, alveolar and post-alveolar sounds such as /th, d, t, z,

s, sh/. The third class represents phonemes produced in the velar region, such as /k, g/.

Finally, the fourth class consists of the alveolar approximant sound represented by the

/r/ sound alone. This four-class structure allows the evaluation of models capable of

articulatory-based generalization. The total number of ultrasound frames used for each

class within the scope of the study is presented in Table 3.3.
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Table 3.2: GTUConsonants Dataset Summary.

Video Properties

Longest video duration 00:01:14 sec

Shortest video duration 00:00:18 sec

Number of video clips 67

Total video duration 01:05:15 sec

Frame rate 25 frame/sec

Frame resolution 640 × 480

Phonetic Position Labels

w_in Word initial

w_fin Word finish

med_in Word middle, syllable initial

med_fin Word middle, syllable finish

Sample Annotated Segment

File esra_coronal_z1

Segment z_w_in

Consonant z

Position w_in

Start time (s) 3.170

End time (s) 3.245

Duration (s) 0.074

Table 3.3: Total number of ultrasound frames.

Consonants US frames count

/k-g/ 3,255

/p-b-v-f/ 8,952

/t-d-z-s/ 6,945

/r/ 9,551
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3.2.2. MMNet: Audio and UTI Joint Embedding Space

Our multimodal architecture, MMNet, plays a major role in this framework. It consists

of two separate sub-networks (SubNet1 and SubNet2) as shown in Fig. 4.4a. One of

these sub-networks uses spectral sound waves (Fig. 4.4b), the other uses ultrasound im-

ages (Fig. 4.4c). Both networks reproduce embedding vectors specific to their modality

and add these vectors to the phonetic embedding memory. In the last layer, the MMNet,

which combines these two different representations, creates a common embedding vec-

tor with a total dimension of 96 and performs productions based on this representation.

These sub-architectures serve as the basic components of the systems to be created later

and provide the direction that will improve the model as a whole.

Each of the sub-architectures is built using 2D Convolutional Neural Network (CNN)

and Bi-directional Long Short-Term Memory (BiLSTM) layers as the basic building

blocks to efficiently capture temporal and spatial information. Time-distributed layers

are also integrated into the architecture to support the structure in which sequential

images (image sequences that progress in time) are processed through CNN layers. This

structure ensures that the spatial features at each time step are preserved and transferred

to the temporal enhancement.

Our multimodal architecture combines structures running on audio-only or UTI-only

data by integrating both types of input - a spectrogram image and a simultaneous UTI

frame sequence - into a single network. This combination makes it possible to synthe-

sise the augmentative common representation offered by each modality.

To improve the performance of the MMNET, various training systems such as hyper-

parameter variation, on-the-fly augmentation, dropout and early stopping have been

prepared. In addition, the joint use of multiple UTI frames allows segments to be

obtained based not only on the data received at one time, but also on the totality of

continuous articulatory movements over time. In this way, our models show satisfac-

tory performance in key feature metrics such as accuracy, flexibility (recall), specificity

(specificity) and precision (precision).
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(a) MMNet: Overview of the multimodal network architec-
ture that generates a final 96-dimensional embedding by
concatenating the output vectors from SubNet1 and Sub-
Net2.
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(b) SubNet1: Generates a 32-dimensional embedding from
spectral sound wave inputs.
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frame (n). The network ultimately produces a 64-
dimensional embedding from the input data, including
UTI.

Figure 3.3: The sub-components of the phonetics embedding space [1].
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3.2.3. Phonetics Embedding-based Classification

The embedding vectors obtained from the last hidden layer of MMNet (Fig. 4.4a) are

based on multimodal (audio + UTI) data during training, but allow inference to be made

only with audio data during the test phase. This architectural feature offers a great

advantage in terms of real-world applications of speech technologies. Since the use of

imaging systems such as UTI is costly, has limited portability and requires expertise,

the development of systems that work only with audio data both increases accessibility

and makes them practical for use in applications such as speech therapy.

Based on this motivation, the four different architectural structures we propose (M1–

M4) are designed to eliminate the need for additional hardware while increasing the

accuracy of systems based only on acoustic data. These structures are important steps

in a research line that aims to make phonetic segment classification more accessible,

economical and faster.

3.2.3.1. M1:Embedding Extraction by Similarity

This method implicitly uses the audio (⃗a′ ∈ R32) and UTI (u⃗′ ∈ R64) embedding vector

pairs obtained in the training phase to create a system that works only with audio data in

the inference phase. In the inference phase of the model, the acoustic embedding vector

a⃗ produced by SubNet1 for the test sample is compared with all the audio embedding

vectors (⃗a′’s) in the training set. This comparison is based on the cosine similarity

between the vectors, and the a⃗′k vector closest to the test sample is selected.

Since each vector a⃗′ is paired with a corresponding UTI embedding u⃗′ during the train-

ing process, the vector u⃗′
k corresponding to the nearest a⃗′k is easily accessible. This

vector is treated as a real UTI input during the inference process of the model and is

used as input for the phonetic classification. This approach offers the possibility of

indirectly maintaining UTI-based classification performance even when the UTI data

is not actually present at test time.

In addition, to make the UTI representations more robust and generalizable, the match-

ing with the audio data is enhanced by adding artificial Gaussian noise to the UTI data

during the training process. All these steps are detailed in Algorithm 2, which summa-
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Algorithm 2: M1 Test Phase
Data: a⃗′, u⃗′ as training audio and UTI data embedding.

Result: < ci class label >

foreach a⃗ in test space produced by SubNet1 do
Find the most similar acoustic embedding vector a⃗′k using cosine similarity:

a⃗′k = arg max
a⃗′k

{
cos(θk) =

a⃗ · a⃗′k
∥a⃗∥2 ∥a⃗′k∥2

}
(3.1)

Retrieve the corresponding UTI embedding u⃗′
k ;

Use u⃗′
k as test-time input for further phonetics classification ;

Run SubNet3 with [⃗a u⃗′
k] concatenated ;

rizes the algorithmic structure of our proposed method. This algorithm systematically 

demonstrates how articulatory knowledge can be used indirectly by using only audio 

data at test time.

3.2.3.2. M2:Embedding Extraction by Encoders

This approach aims to estimate articulatory information indirectly by creating an em-

bedding space based solely on audio data. The model is based on an encoder-decoder 

architecture. Thanks to this structure, the audio-based representation space is learned 

by mapping it to the articulatory, UTI, embedding space during training. This map-

ping allows the system to approximate articulatory representations during the test phase 

(Fig. 3.4) using only audio data.
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Figure 3.4: During the test phase, the M2 architecture takes the input vector a⃗ and
generates an output vector u⃗, which is then concatenated with a⃗ and passed
through SubNet3 for final processing [1].
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The encoder part of the model consists of three Conv2D layers that process spectral

sound data, and each layer is followed by a 2×2 dimensional max-pooling operation

to reduce the size of the feature maps. This structure allows abstract but meaningful

representations to be extracted from the input data. The decoder part has three Conv2D

layers in a symmetrical manner, and each layer is followed by a 2×2 dimensional up-

sampling operation. In this way, the acoustic information compressed by the encoder

is projected back into the articulatory space. The output layer is a Conv2D layer with a

3×3 dimensional filter and a sigmoid activation function, which allows the reconstruc-

tion of the UTI embedding vectors.

In the test phase, only acoustic embedding vectors a⃗ are used, and the decoder trans-

forms these acoustic representations into vectors corresponding to the articulatory space

[⃗a; u⃗]. The combined vectors, which are the output of this decoder, are then used as in-

puts by SubNet3 for classification purposes. Thus, although the system only uses audio

data at inference, it may allow improving phonetic classification accuracy by producing

embedding vectors that are similar to the articulatory representations. This structure al-

lows the effective reconstruction of articulatory representations learned from acoustic

signals without the direct need for UTI data.

3.2.3.3. M3:Embedding Extraction by Auto-Encoders

In this architecture, instead of using the embedding vectors obtained from SubNet3, the

raw audio and the UTI data are fed directly into the system. The model is based on two

separate autoencoder structures that process both acoustic and articulatory modalities

simultaneously. These autoencoders learn their own modality-specific representations

(latent embedding), which are then combined and transferred to the final classification

layer (Fig. 3.5).

A key feature of the model is its end-to-end training architecture. The entire system—

from input layers to the final classifier—is optimized using a unified loss function,

ensuring seamless information flow across modalities and consistent parameter updates

throughout the network. This integrated training strategy allows the direct observation

of how features extracted from both data types influence overall system performance.
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Figure 3.5: The M3 architecture employs three distinct input configurations during
training: (ai, ui, ci), (ai,None, ci), and (None, ui, ci), where a and u rep-
resent audio and UTI data, respectively, and c denotes the corresponding
class label [1].

Encoder-decoder architectures trained separately for each modality extract low-dimensional

but meaningful representations of the data. These latent representations (latent embed-

dings) are fed into the classifier network as a combined vector. This combination pro-

cess aims to provide a richer representation by exploiting the complementary structure

of audio and articulatory information. This structure is expected to enhance classifica-

tion accuracy, particularly in cases where phonetic segment distinctions are subtle or

ambiguous.

The model allows in the test phase to have more robust and stable architectures com-

pared to structures using only acoustic data or only UTI data. This lead us to processing

the two modalities together provides a superior generalization and classification capac-

ity compared to single modalities. In addition, the end-to-end joint training of the sys-

tem enabled overlapping features between the modalities to be learned and effectively

transferred to the classifier.
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3.2.3.4. M4: UTI-Free Inference via Noise-Augmented Training

This model employs an architecture that directly utilizes multiple data modalities—

specifically audio and UTI—as inputs, rather than relying on precomputed embedding

vectors. To support this approach, a special dataset has been created containing simul-

taneously collected audio and UTI data. This dataset is fed directly into the model

during the training process, allowing it to process both audio and image-based samples

together (Fig. 3.6).

Figure 3.6: Training with both audio–UTI and audio–noise pairs enables robust infer-
ence using only audio and noise images, reducing dependency on UTI data.

However, as UTI images are often not available during the inference phase, the appli-

cability of this model in the real world remains limited. To address this issue, only real

UTI data are used in part of the training data, while the remaining part is presented

with random noise images along with audio data. Thus, the model is trained with both

complete modality pairs (audio + UTI) and incomplete modality conditions (audio +

noise), which increases the model’s ability to classify with audio alone and to learn

relationships between UTI and audio.

This strategy allows the generalizability and robustness of the model to noise. It ensures

that the model maintains its performance, especially in the absence of real data, and
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provides more flexible solutions for field use.

In the inference, the model is configured to run only with audio data and accompany-

ing noise images. The use of these images, which do not contain structural information,

removes the reliance on real UTI data and makes the technology more accessible in the

field. Especially in environments where ultrasound imaging systems are expensive, dif-

ficult to utilize, or inapplicable, this model allows the reasonably robust architectures.

3.3. Experimental Results and Analysis

This section presents the architectural designs of the proposed models—ResNet50, Sub-

Net1, SubNet2, and MMNet—along with their intermediate evaluation results, thereby

providing a detailed overview of how each model contributes to phonetic segment clas-

sification within the proposed system. In addition to the implemented architectures,

comparative analyses are made with the basic approaches that are widely used in the

literature. These comparisons facilitate a comprehensive evaluation of the system’s

overall success level, its flexibility across different data modalities, and the distribu-

tion of the application.

3.3.1. Baseline Models

ResNet50: This architecture is notable for its strong performance in image classifica-

tion tasks [139]. One of the most prominent innovations of the ResNet architecture is

the use of residual connections, which facilitate the network to directly learn a series of

transformations that map the input to the target output. These connections structure the

learning process at each layer by adding a ”difference” function directly to the input.

Thus, instead of learning the target output directly, the network learns to model the dif-

ference between the input and the output. This approach provides an effective solution

to the vanishing gradient problem, one of the main problems that make it difficult to

train deep networks.

We trained this architecture using just a single UTI input and is regarded as one of the

baseline models. It aims to classify phonetic segments using spatial patterns marked

from ultrasound images. This structure provides an important starting point in terms of

the limitations of systems based solely on visual data and potential evaluation.
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SubNet2: While the ResNet50 model utilizes a single static UTI frame to perform

phonetic classification, the SubNet2 model (Fig. 4.4c) adopts a temporal approach by

incorporating multiple consecutive UTI frames. This design enables the model to learn

dynamic articulatory representations by capturing tongue movement over time, rather

than relying solely on static spatial information.

SubNet1: This model (Fig. 4.4b) is designed to operate exclusively on audio data, rely-

ing on spectral representations of speech signals to perform phonetic classification. Un-

like models such as ResNet50 and SubNet2, which utilize articulatory information from

UTI images, SubNet1 extracts phonetic cues solely from the acoustic modality. This

approach leverages the rich temporal and frequency-based patterns present in speech

signals, allowing the model to capture distinctions that are rooted in spectral variation.

It is particularly well-suited for phoneme pairs that, while articulatorily similar, exhibit

contrasting acoustic properties—such as the difference between plosives and fricatives.

In such cases, SubNet1 processes the dynamic structure of the sound wave to derive

class-relevant features purely from the audio stream.
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Figure 3.7: The confusion matrices (top) and 2D t-SNE projections (bottom) of conso-
nant embeddings from ResNet50, SubNet1, SubNet2, and MMNET mod-
els on the GTUConsonants test data [1].
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3.3.1.1. The Analysis of the Baseline Models

The ResNet50 model, which has been trained exclusively on UTI data and works with

single-frame images, has been shown to successfully perform the classification task

between phonetic segments that are visually distinct in terms of articulatory represen-

tation. This is particularly evident in the case of phoneme pairs such as /t/ and /z/ or /d/

and /s/, which exhibit clear differences in terms of tongue position and shape in UTI

images. The model demonstrates an acceptable level of accuracy, enabling it to suc-

cessfully distinguish between classes (Fig. 3.7a). This finding indicates that the spatial

variations evident in the articulation region of the tongue in UTI images are conducive

to the classification learning of a CNN-based structure.

However, the efficacy of the model is constrained to instances where the visual contrast

between classes is substantial. This is particularly evident in the case of phoneme pairs

such as /d/ and /t/, or /s/ and /z/, where the model’s ability to discriminate between the

sounds is significantly diminished due to the similarity of their articulatory structures

in UTI images. The visual patterns of these phonemes are largely overlapping in UTI

images due to the fact that they are produced in the same articulatory region (e.g., alve-

olar) and with similar language form. Consequently, a UTI representation based on a

single frame may prove inadequate in capturing these subtle variations.

For instance, the ResNet50 model exhibits a capacity to accurately classify only 118 out

of 232 instances of the /s/ phoneme, while the SubNet2 model demonstrates a superior

performance with 131 accurate classifications within the same phoneme category (Fig.

3.7a and Fig. 3.7c) . For the /s/ vs. /z/ pair, ResNet50 shows substantial confusion:

out of 232 /s/ instances, only 118 are correctly classified, while 113 are misclassified

as /z/. Similarly, 16 /z/ instances are misclassified as /s/, indicating limited boundary

resolution between the two classes. In contrast, SubNet2 improves correct /s/ classifi-

cation to 131 and eliminates confusions between /z/ and /s/ entirely (0 instances), while

reducing /s/ to /z/ confusion to 101.

A similar trend is observed in the /t/ vs. /d/ pair. ResNet50 correctly classifies 159 /t/

instances and 197 /d/ instances, but 58 /d/ samples are incorrectly labeled as /t/ — a

significant overlap. SubNet2 improves correct /t/ classification to 190 and /d/ to 194,

while slightly increasing /d/→/t/ misclassifications to 61. Although the confusion re-
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mains notable, the overall classification performance improves, suggesting that tongue

motion captured across multiple frames helps refine predictions for stop consonants

with closely overlapping articulatory gestures.

For the /k/ vs. /g/, ResNet50 achieves only 36 correct classifications for /g/, while 47 /g/

samples are confused with /k/, showing that the model struggles to separate these velars.

SubNet2, however, raises correct /g/ classifications to 77 and reduces /g/→/k/ misclas-

sifications to 36. The correct classification for /k/ remains consistent (344) in both mod-

els, confirming that temporal features particularly help disambiguate voiced/unvoiced

pairs that share articulation zones but differ subtly in timing and movement.

On the positive side, the SubNet1 model, based on audio data alone, shows remarkable

performance in distinguishing certain phonetic classes. This is particularly evident in

cases of phoneme pairs that are articulatory similar but possess distinctive acoustic fea-

tures, such as /s/ and /z/, or /t/ and /d/ (Fig. 3.2). In such instances, the SubNet1 model

demonstrates a higher level of classification accuracy in comparison to models such as

ResNet50 and SubNet2, which employ solely UTI data (Fig. 3.7a - Fig. 3.7c). These re-

sults demonstrate that the spectral-based acoustic representation possesses significant

discriminatory potential for specific phonetic classes and that the model can effectively

learn these distinctions. This is particularly evident in phoneme pairs exhibiting con-

trasting acoustic structures, such as plosives with discontinuous plosives and fricatives

with continuous plosives. In such cases, the model demonstrates an effective capacity

to discern the dynamic structure embedded within the sound waves.

However, it should be noted that the efficacy of this model varies across different pho-

netic classes. The SubNet1 model, for instance, demonstrates limited efficacy in differ-

entiating sounds such as /k/ and /t/. This is attributable to the strikingly similar patterns

in the spectrogram images of these two phonemes (Figs. 3.2a and 3.2b). The similarity

in high frequency components and short-term energy densities of these sounds leads

to a substantial reduction in acoustic signal-based discrimination. This similarity hin-

ders the model’s capacity to discern discriminative features, consequently leading to a

decline in classification accuracy.

To facilitate the visualization of our intermediate results, the classification vectors ob-

tained in the final layer of each classification architecture were projected into a 2D
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space using the t-Distributed Stochastic Neighbor Embedding t-SNE method (Fig. 3.7 

(bottom)). These offer a qualitative insight into the extent to which the model differen-

tiates between classes in the embedding space.

These results are considered as a qualitative complementary evidence to the confusion 

matrices presented in Fig. 3.7 (top); supports the effects of methodological differences 

between using UTI-only data (Fig. 3.7a), audio data-only (Fig. 3.7b), multi-frame ul-

trasound images (Fig. 3.7c) and multimodal data (Fig. 3.7d).

3.3.2. Multimodal (MMNET) vs. Audio-only (M1-M4) models

As illustrated in Table 3.4, the accuracy outcomes of our proposed neural network 

architectures are summarized, along with the data modalities utilized in consonant clas-

sification experiments conducted on the GTUConsonants dataset. Among the architec-

tural variations ranging from M1 to M4, only the M1 model demonstrated an accuracy 

increase of approximately 5% compared to the SubNet2 model using UTI data in both 

training and testing stages. This finding underscores the significance of multimodality 

integration for enhancing classification performance (Fig. 3.8).
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Figure 3.8: Confusion matrices of the proposed architectures (M1–M4) on the test
dataset. The M1 model demonstrates the most effective phonetic segment
classification among all.

To support the experimental findings, two-dimensional visualizations were performed

with the t-SNE method to qualitatively examine the embedding spaces (Fig. 3.9). These

reveal the proximity relationships in the embedding space of the samples obtained with

only sound-based methods on the GTUConsonants dataset. The embeddings of the M1

model displays a distinctive clustering behaviour among phonetic pairs with articula-
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(a) M1 method

Consonants
/d/
/g/
/k/
/s/
/t/
/z/

(b) M2 method

Figure 3.9: 2D visualizations of consonant embeddings generated by t-distributed
stochastic neighbor embedding (t-SNE) for the proposed M1 and M2 mod-
els on the GTUConsonants dataset.

Table 3.4: Accuracy and modality configurations for consonant classification using the
proposed architectures.

Test Accuracy Model
Training Test

UTI Audio UTI Audio

0.67 SubNet1 + +

0.69 ResNet50 + +

0.69 M2 + + +

0.72 M4 + + +

0.75 M3 + + +

0.77 SubNet2 + +

0.81 M1 + + +

0.91 MMNet + + + +

tory similarities, such as /d/–/t/ and /k/–/g/. This behaviour reflects the model’s capacity 

to distinguish between such classes, thereby establishing its representation. We 

assessed model performance using paired t-tests and 95% bootstrap confidence 

intervals over five runs. MMNET (88.40%) and M1 (81.45%) showed statistically 

significant gains over all other models (p < 0.05). MMNET also significantly 

outperformed M1. Results confirm the robustness and superiority of the proposed 

multimodal architecture on the GTUConsonants dataset. However, further 

investigation is required to determine the generalization capabilities of the pro-posed 

methods on different datasets. 
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3.3.3. Performance on UltraSuite Repository

The present experiment was conducted with the objective of comparing the results 

of the system with those of other successful methods as documented in the literature. 

The most successful study similar to our work, as cited in reference [63], utilities four 

classes based on different places of articulation.

A series of tests were conducted under a speaker-independent scenario using the UTDX 

dataset in the UltraSuite Repository to evaluate the generalizability of the models and 

their suitability for real-world conditions. This experimental configuration enables the 

analysis of the model’s performance on unfamiliar speakers, with the assurance that 

the speakers utilized in the test phase are distinct from those presented to the model 

during the training process. Consequently, the evaluation process aimed not only to 

detect signs of rote memorization, but also to assess the model’s ability to generalize 

phonetic representations effectively across unseen speakers.

Table 3.5: UltraSuite Repository classification test results.

Model Accuracy

Independent Cnn-Raw [2] 0.59

SubNet2 (ours) 0.63

Independent with Speaker Mean [2] 0.67

Adapted Cnn-Raw [2] 0.72

Adapted with Speaker Mean [2] 0.71

MMNet (ours) 0.78

M1 (ours) 0.85

The findings obtained from this study are summarized in Table 3.5 for direct compari-

son with similar studies in the literature. In order to analyze the behavior of the model

in more detail, the confusion matrices related to the classification performance are pre-

sented in Fig. 3.10, and the 2D representations of the embedding spaces learned by the

model are presented in Fig. 3.11. These visual elements constitute an important refer-
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ence point, especially in terms of qualitatively evaluating the capacity of the model to

produce distinctive representations between different phonetic classes.
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Figure 3.10: Confusion matrices from testing the MMNet (a) and M1 (b) architectures
in a multimodal setting.

In our evaluation of various models based on accuracy, the SubNet2 model achieves a

score of 0.63, while MMNet surpasses it with an impressive accuracy of 0.78. Particu-

larly noteworthy is the M1 model, demonstrating the accuracy at 0.85.

The findings obtained from our study indicate a potential for reducing the dependency

on ultrasound tongue imaging data in the testing phase. The visualization of the classi-

fication vectors obtained in the last layer of each classification architecture by reducing

them to 2D space with the t-SNE method is shown in Fig. 3.11. This visual representa-

tion clearly reveals that the embedding space of the M1 model in particular has a high

segregation ability and a regular clustering structure.

When having comparison between Table 3.4 and Table 3.5 shows that as the diversity

in the test dataset increases, M1 performs better. However, M1 is dependent on the

training dataset and requires similarity comparison during inference. This suggests that

it may be heavily reliant on the training dataset and perhaps not suitable for handling

larger scale data due to the time cost of comparing similarities.

To address the concerning points, we present Fig. 3.12 , which shows the accuracy

of two models, MMNET and M1, as a function of the number of subjects in training.
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Consonants
/k/-/g/
/p/-/b/-/v/-/f/
/r/
/t/-/d/-/z/-/s/

Figure 3.11: The findings provide supporting evidence for the effectiveness of the
M1 and M2 methods on the GTUConsonants dataset. Among them, M1
demonstrates the highest accuracy, which is further illustrated through
the 2D t-SNE visualization of consonant embeddings.

While we utilized the same set of test data, we used different subsets of subjects during

training. The plot demonstrates that the accuracy of both MMNET and M1 increases

with the number of subjects in training.

MMNET starts with an accuracy of around 0.30 (actually indicates randomness) when

training on 5 subjects, reaching its peak accuracy of about 0.85 at 25 subjects. After

this, it slightly fluctuates but remains relatively stable around 0.80. M1 starts with a

lower accuracy of around 0.10 (actually indicates randomness) at 5 subjects, and then

steadily increases, and by 25 subjects, it reaches 0.80, maintaining stability around this

value with slight improvements, eventually reaching 0.85. As the number of subjects

increases beyond 25, M1 slightly outperforms MMNET, reaching a higher accuracy of

0.85 compared to MMNET’s 0.79. Our experiments showed that both models show

a performance plateau starting from 25 subjects, indicating that additional subjects do

not significantly improve accuracy beyond this point (Fig. 2).
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Figure 3.12: Test results of M1 and MMNET models trained by different number of
subjects.

Additionally, while M1 currently relies on direct similarity comparisons during infer-

ence, we acknowledge the potential challenges posed by scalability with larger datasets.

We understand the need for optimizations, such as using efficient data structures for em-

beddings and employing advanced vector search algorithms like FAISS [140] or ScaNN

[141]. These approaches could enable us to conduct similarity comparisons on datasets

of billions of records, addressing these challenges effectively. These optimizations

could reduce the time complexity of the similarity search, making M1 computational

tractable for handling larger scale data without compromising performance.

3.3.4. Computational Efficiency and Real-time Feasibility

A thorough investigation was carried out to evaluate the runtime performance of the sug-

gested models under reasonable and practical situations; this is reported in Table 3.6.

Raw audio input entered via a recording interface starts the assessment process. The

step of audio segmentation comes next, in which the continuous audio stream is split

into smaller, reasonable sections. After that, every segment is turned into a spectro-

gram, providing the signal’s time-frequency domain picture. Following their projec-

tion into the audio embedding space, these spectrograms are stored as fixed-size vector
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representations.

Table 3.6: Training and Inference Characteristics.

Model

Training

Time

(per epoch)

Audio Only Inference

Time

(per sample)

Trainable

Parameter

Size

FLOPs

SubNet1 21 seconds 103 milliseconds 655,140 9.9× 109

SubNet2 28 seconds - 810,532 2.8× 1010

MMNET 44 seconds - 1,267,108 3.3× 1010

M1 47 seconds 133 milliseconds - -

M2 8 seconds 193 milliseconds 5,315,904 1× 107

M3 14 seconds 71 milliseconds 156,324 2.8× 107

M4 53 seconds 141 milliseconds 1,267,108 3.3× 1010

Important processing components such embedding search—which matches the recov-

ered embeddings with entries in a reference database—and audio-to–UTI embedding

transformation—which uses cross-modal information to improve retrieval precision—

are included in later phases of the pipeline. These sequential processes are fundamental

elements in assessing the feasibility and efficiency of model deployment in real-world

situations as each of them adds to the whole computing cost.

Executed on a machine fitted with an RTX 490 GPU and a 6-core Intel Xeon CPU, the

M1 architecture—which combines all six stages of the pipeline—achieves a throughput

of 7.5 frames per second (fps). Particularly in high-performance hardware settings, the

pipeline might theoretically be further enhanced with multi-threaded implementation

and parallel processing improvements, hence enabling real-time applications.

Distinct performance trade-offs revealed by a comparison of many model architectures

concerning training time, inference time, and computational complexity guide their

fit for distinct application environments. Especially highlighting its fit for latency-

sensitive real-time applications, the M3 model has minimal floating point operation

(FLOP) needs and fast inference capability. Although more computationally intensive,
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the M2 and M4 models produce superior classification accuracy, hence they are better

suitable for applications requiring fine-grained phonetic distinction.

There exists a notably harmonious trade-off between the SubNet1 and M3 models. Pre-

senting a well-rounded performance profile, SubNet1 offers a reasonable training time

of 21 seconds per epoch and an inference time of 103 milliseconds per sample. By con-

trast, M3 gets a shorter training time of 14 seconds per epoch and the quickest inference

time of 71 milliseconds per sample. Fascinatingly, the M2 model runs with 10,624,320

FLOPs and shows the smallest training time of 8 seconds each epoch although incurs a

greater inference time of 193 milliseconds per sample. These properties imply that M2

is especially useful in situations when quick model training comes first over inference

efficiency.

Additionally, we accept that the real-time application can be implemented as a pipelined

multi-threaded application to achieve better running time performance. Fig. 3.13 shows

how the pipelined model can be implemented for the real time application. Depending

on the system characteristics, we theoretically achieve around 20 fps, excluding the

overhead of synchronization and pipelining.

…Audio 
Recording

Audio 
Segmenting

Spectrogram 
Generation

Audio Embedding 
Space

Embedding Search

Audio UTI Embedding 
Space

Input

…
…

…
…

…

Time (in frame per seconds)

I1 I2 IN…

O1 O2 ON…

Figure 3.13: Overview of real-time processing.
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3.3.5. Key Findings and Insights

It has been suggested that multimodal models may demonstrate superior performance in

comparison to single-modal models, due to their capacity to integrate and utilize a vari-

ety of data types, thereby facilitating a more comprehensive representation of complex

tasks [66, 142]. This performance advantage becomes even more evident in scenarios

where interaction between modalities is decisive [143]. Our experiments have shown

that superior results are achieved on the GTUConsonants dataset, especially with the

joint use of the MMNet architecture (Table 3.4).

Furthermore, Fig. 3.2 shows that some phonetics appear visually similar in UTI data,

but have spectrally distinguishable features. The multimodal MMNet architecture we

developed combines the various modalities under the same roof by processing the audio

and UTI data together to capture these differences. This integration has the potential

to enhance performance in tasks such as phonetic segment classification (Fig. 3.7).

The findings appear to align with the growing body of literature highlighting the merits

of multimodal models. It is also worth noting that our models trained and tested on

audio data alone also yielded significant results. In particular, the findings reveal that

the M1 model yielded similar results to MMNet in terms of accuracy (see Table 3.4),

and outperformed MMNet on some datasets (see Table 3.5). These results suggest

that our audio-only modelling approach is effective and could be a strong alternative

in practical applications where only audio data is available.

It seems that the integration of multiple data streams allows multimodal models to iden-

tify correlations and patterns that unimodal approaches may not capture, which could

produce more robust and generalizable results [144]. The M1 model appears to demon-

strate a superior performance in comparison to current methods that utilize solely UTI

data, a phenomenon that may be attributed to the inherent advantages of multimodal-

ity phonetic embedding spaces. Furthermore, while existing high-level models mostly

focus on spatial data, they suggest important lines of research for future studies, such

as using all frames corresponding to a phoneme and adopting iterative architectures to

capture temporal dynamics. These models underscore the significance of integrating

audio data in applications such as speech therapy, emphasizing that the combination

of ultrasound and audio data can offer complementary insights. The M1 model, which
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uses joint embedding spaces for both audio and UTI data and is trained with a spa-

tiotemporal approach, is an example of this approach and shows how the integration of

dynamic temporal information with multimodal data leads to higher performance.

Another important finding reveals the spatiotemporal improvements provided by our

models. When the accuracy and t-SNE results are evaluated together, it appears that

the SubNet2 architecture designed to process multi-frame UTI data exhibits superior

performance compared to both ResNet (Fig. 3.7, Table 3.4) and the Independent CNN

Raw method in [63] (Table 3.5).

The M1 method achieved approximately 15% higher accuracy during testing compared

to the SubNet1 model that uses only spectral sound waves. It is interesting to note that

both models work with only audio data in the testing phase, but the M1 model uses the

joint placement space obtained from audio and UTI data in the training phase, which

seems to provide a significant advantage over SubNet1 (Table 3.4).

However, upon the testing of the models on different datasets, a number of discrepan-

cies in performance were observed between MMNet and M1. MMNet demonstrated

higher performance on the GTUConsonants dataset, which comprised only three par-

ticipants (Fig. 3.7 d, Fig. 3.8a, and Table 3.4). Conversely, the phonetic embedding

space of the M1 model exhibited high robustness on a larger and more diverse dataset

consisting of 58 speakers (Fig. 3.10, Table 3.5).Although the M1 and SubNet2 models

produced similar outcomes on GTUConsonants, a significant performance difference

favoring M1 was seen on the UDTX dataset (Fig. 3.11, Table 3.5). Nevertheless, ow-

ing to the modest sample size of the GTUConsonants dataset, these outcomes should

be regarded with caution. Nevertheless, the consistent results obtained from the UDTX

data set support the generalizability and reliability of the M1 model (Fig. 3.12).

3.4. Conclusion

This study demonstrates the potential of deep neural networks to play a transformative

role in speech therapy, particularly through the fusion of audio and UTI data. The pro-

posed systems offer a substantial reduction in workload by automating the intensive

and time-consuming manual analysis processes frequently encountered by speech ther-

apists. This is due to the deep learning architectures that can process both spatial and
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temporal information. The development of spatiotemporal models of this kind paves

the way for intelligent assistant systems that will support human experts in clinical

settings.

A comparative analysis of the various sub-architectures proposed has revealed that the

highest classification accuracy was achieved in the architecture where spectral repre-

sentations of audio and ultrasound tongue imaging data were used in combination. This

finding was further reinforced by the creation of a dataset. The dataset comprised UTI

images and audio data collected from three volunteer speakers, covering six different

phonetic classes. The meticulous and balanced nature of the data collection process

enabled the models to learn more robust and generalizable representations.

Furthermore, the analysis of the embedding vectors extracted from the models has

yielded two notable insights. Firstly, it has provided a comprehensive understanding

of the internal structure of the models. Secondly, it has demonstrated the potential to

reduce the need for ultrasound imaging. This transformation renders the system more

accessible and cost-effective, signifying an important stride towards its practical imple-

mentation as a tool for speech therapists, particularly in clinical settings.

One of the primary contributions of our research is the formulation of a model archi-

tecture that is constructed using the placement areas of models trained on audio and

UTI data and operates solely with audio input during inference. The efficacy of this

model has been demonstrated by its superior classification performance in comparison

to conventional models based solely on ultrasound data or audio alone. This superiority

is evident in both accuracy and inter-class separation metrics. Consequently, we advo-

cate the utilization of this audio-only model, particularly for remote speech therapy

applications. The system’s reliance on microphone-based hardware not only reduces

installation costs but also enhances the user experience.

The lightweight structure of the proposed model (with a small number of model pa-

rameters) and the minimization of video processing load reveal its applicability not

only to clinical applications but also to interactive platforms such as real-time in-game

feedback systems. The study demonstrates the practical potential of multimodal signal

processing methods in both health and technology fields and provides a solid founda-

tion for future research.
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4. RADAR-DRIVEN PHONETIC SEGMENT CLAS-
SIFICATION

4.1. Introduction

Phonetic segment classification is widely regarded as a foundational problem in the

domains of speech therapy and linguistics. This process entails the allocation of each

phonetic segment to a predefined classes based on audio or imaging-derived data [63].

Traditional unimodal approaches – methods based solely on audio or articulatory data

– have yielded effective results in many SLP applications [145–147]. Nevertheless,

audio-based models are limited in their ability to discriminate acoustically similar phonemes

and are also less robust to noise. Currently, the use of articulatory data, such as UTI,

significantly enhances classification accuracy by providing additional and important

insights into the complexities of speech production [1].

Despite their advantages, UTI-based approaches face several practical limitations [148,

149]. These limitations include high hardware costs, the need for specialized equip-

ment, and physical discomfort that reduces user comfort during long-term use [65]. As

a solution to such challenges, multimodal methods that combine articulatory data with

acoustic information have become a focus of research [150].

Specifically, multimodal systems that integrate UTI data or video-based lip movement

analysis with audio aim to improve phonetic classification performance with their abil-

ity to represent both internal and external articulatory processes [151, 152]. While

UTI is a valuable modality, especially in terms of its ability to provide detailed inter-

nal articulatory dynamics, [153, 154], the practical limitations outlined above limit its

broad applicability [155]. Similarly, although video-based lip movement analysis is

effective in tracking external articulators, its inability to provide information about in-

ternal speech dynamics is a fundamental limitation that prevents holistic and accurate

modeling of speech production.

In recent years, mmWave radar has emerged as a promising approach in the field of SLP.

This new generation technology enables the acquisition of both acoustic and articula-

tory data in a contactless manner [66, 68, 125]. This technology offers the opportunity
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to track the movements of structural elements that play a role in speech production,

such as the jaw, lips, teeth, tongue and vocal cords, without requiring any physical con-

tact and while preserving user privacy. Despite the obvious benefits of mmWave radar

for phonetic segment classification, a systematic and comprehensive investigation has

yet to be conducted.

Although speech signals contain phonetically critical information, they may not be pre-

ferred in situations where privacy and security are at the forefront; they may be affected

by environmental noise or may not be suitable for use. In such cases, mmWave radar

emerges as a compelling alternative. Given their sensitivity to vocal cord vibrations,

both speech spectrograms and radar can record speech patterns. But by showing precise

joint motions beyond acoustic signals [156], radar offers complimentary information.

The spectrograms produced from the radar (left) and the microphone (right) show com-

parable temporal and frequency patterns, as shown in Figure 4.1, thereby indicating

the potential of radar as a non-invasive and privacy-preserving technique to speech

processing.

Figure 4.1: Radar-captured (left) and microphone-captured (right) spectrograms for
the phrase ”Adana Mersin Adana Mersin.” Both reveal similar speech pat-
terns, with radar also capturing subtle articulatory movements beyond the
audio signal.

In order to improve the performance, robustness, and practical application of phonetic

segment classification, a multimodal learning framework is provided in this chapter

integrating mmWave radar, UTi, and audio data. USRadioAI uses the strengths of every

modality during the training process. The proposed method, USRadioAI, capitalizes
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on the strengths of each modality during the training process. However, it is configured

to operate solely with mmWave radar data in the inference phase, thereby eliminating

the requirement for UTI or audio input by the model. To achieve this objective, a

joint embedding space is constructed that can capture articulatory and acoustic features

together, thus enhancing the model’s ability to generalize phonetic representations.

4.2. Methods

4.2.1. Data Collection

Hardware: As shown in Figure 4.2, a data acquisition setup was created to collect

multimodal data for training, validation and evaluation of the USRadioAI system. Syn-

chronized audio data was collected using a Shure Beta 58A microphone at a sampling

rate of 48 kHz; UTI data was collected using [134]; and radar data was collected us-

ing a Texas Instruments (TI) IWR1843 mmWave radar. The radar was configured to

operate at a bandwidth of 3,89 GHz and a sampling rate of 25,600 Hz. For synchro-

nization purposes, the ultrasound device operated continuously throughout the session

(approximately 2 minutes) in sync with the audio. The mmWave radar was triggered

separately with a ping tone played at the beginning of each recording to provide off-line

synchronisation with a known signal. A ping tone was played at the beginning of each

recording to alert the narrator and align the ultrasound device with the radar recording.

A video showing this process can be viewed in the sample dataset provided in the sup-

plementary material 1. It should be noted that the experiments were conducted in a real

speech therapy room that is actively used for clinical purposes.

The processing pipeline begins by converting raw mmWave radar ADC data into spec-

trograms. Once the data is loaded into the system, missing samples are filled in and

the signals are structured into frames, followed by alignment using the DCA1000 pro-

cessing method. After averaging across antenna-channels, the signal is flattened and

processed using the STFT, resulting in a decibel-scale spectrogram that allows time-

frequency analysis.

1For a sample view of our dataset: CollectionSetup.mp4.
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Figure 4.2: Data collection setup.

Improved settings in the radar system help to guarantee high-resolution signal collect-

ing. The ADC is set to catch signals promptly by having a 10,000 ksps sampling rate.

The system uses four RX antennas for spatial variation and improved signal processing

and one TX antenna. The 200-frame, one chirp cycle arrangement ensures continu-

ity and uniformity in data collection. Each chirp comprises 256 ADC samples that

establish the resolution of the resultant signal patterns. Moreover, the 10-millisecond

cyclic repeat ensures a consistent and continuous radar data stream, facilitating real-

time speech and articulation processing.

Our audio data processing pipeline is centered on producing spectrograms from seg-

mented audio intervals. A spectrogram was generated from a 48kHz audio segment

according to the specified durations in milliseconds. The STFT was executed with a

window size of 1024 samples and a hop length of 512 samples, resulting in a 50% over-

lap. The spectrogram employed logarithmic scaling on the frequency axis, illustrating

signal strength in decibels relative to the maximum magnitude. The UTI clips have

been reduced from their original dimensions of 640 × 480 to 96 × 96 to save model

size and training duration

Real-Time Radar Configuration and Data Acquisition Pipeline: To enable real-

time signal analysis and multimodal data collection, we implemented a Python-based

radar driver for automated configuration and streaming using the Texas Instruments

IWR1843BOOST radar and DCA1000EVM data capture board. This setup allows

for low-latency data acquisition, repeatable experiment control, and live visualization
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support — crucial for deploying radar-based sensing systems in practical settings.

The radar configuration and data acquisition pipeline consist of three primary stages:

(1) radar configuration over UART, (2) FPGA setup using UDP-based command trans-

mission, and (3) real-time data streaming over a high-speed UDP listener interface.

Step 1: Radar Configuration via UART: Using a configuration file (e.g., IWR1843.cfg),

radar parameters are transmitted via UART through a wrapper class called SerialConfig.

This module communicates over the COM port (in our case, COM4) at 115200 baud,

issuing stop/start/reset commands as well as sending the full radar chirp configuration

string-by-string to initialize the sensor.

Listing 4.1: Serial configuration using Python

radar = SerialConfig("ConnectRadar", "COM4", 115200)

radar.StopRadar()

radar.SendConfig("../config/IWR1843.cfg")

radar.StartRadar()

Step 2: FPGA Configuration over UDP: The DCA1000EVM must be initialized

and configured separately from the radar sensor to stream raw ADC samples. This is

achieved using UDP socket programming. Each configuration command is constructed

using low-level hexadecimal packets, consisting of specific command codes (e.g., con-

nect, configure FPGA, set packet parameters, and start recording). Commands are sent

from the host PC (e.g., 192.168.33.30:4096) to the FPGA address (192.168.33.180:4096),

and acknowledgments are parsed for validation.

Listing 4.2: Sending FPGA command packets

for cmd in ['9', 'E', '3', 'B', '5']:

sockConfig.sendto(send_cmd(cmd), FPGA_address_cfg)

response , _ = sockConfig.recvfrom(2048)

print(f"Sentcommand{cmd},response:{response.hex()}")

Step 3: Real-Time UDP Data Listener: After successful radar and FPGA initializa-

tion, the radar streams raw binary ADC data to a designated UDP port. A custom

listener class UdpListener is launched asynchronously using Python’s threading and

queue modules. The binary data are parsed into fixed-length frames based on the fol-

lowing configuration:
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• ADC samples per chirp: 64

• Chirps per frame: 32

• TX antennas: 1

• RX antennas: 4

The resulting frame size is calculated as:

Frame Length = ADC×Chirps×TX×RX×2 = 64×32×1×4×2 = 16384 Bytes

Listing 4.3: Launching the UDP listener

BinData = Queue()

udp_listener = UdpListener("Listener", BinData , frame_length ,

('192.168.33.30', 4098), 2097152)

udp_listener.start()

Step 4: Real-Time Data Check: To ensure functionality, the main thread monitors

whether the BinData queue receives any data within a timeout period. If data is suc-

cessfully received, the radar is confirmed to be operational.

Listing 4.4: Data verification

timeout = time.time() + 10

while time.time() < timeout:

if not BinData.empty():

data = BinData.get()

print(f"Received␣{len(data)}␣data␣points␣from␣radar!")

break

This real-time configuration and streaming pipeline provides:

• Automated and reproducible radar setup using software-defined configuration.

• Low-latency data acquisition suitable for live monitoring and AI inference.

• Modular expansion capability, allowing synchronized recording with cameras or

microphones.

• Parameter flexibility for testing different radar sensing setups.

This implementation served as the backbone of our data acquisition protocol in both

human motion sensing and speech classification experiments, enabling rapid iteration

and accurate alignment across sensing modalities.
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Real-Time Radar Configuration and Data Collection Framework: To support real-

time multimodal sensing and facilitate continuous experimentation, a complete radar

configuration and data collection framework was developed using Python. This system

enables automated control and streaming of raw ADC data from the Texas Instruments

IWR1843BOOST radar and the DCA1000EVM FPGA data capture board. The ar-

chitecture is modular, supporting seamless integration with GUI-based visualization,

signal processing modules, and machine learning pipelines.

The framework is composed of several coordinated components:

• Radar Configuration Module: Implements a serial interface to load ‘.cfg‘ pro-

files and initialize the radar system (e.g., number of chirps, sampling rate, fre-

quency slope, etc.).

• FPGA Command Handler: Sends low-level UDP commands to the DCA1000

FPGA to configure packet structure and initiate recording sessions.

• UDP Listener Thread: A dedicated thread captures the streamed binary data

packets over UDP and segments them into fixed-size frames based on radar con-

figuration parameters.

• Data Processing Thread: This thread consumes raw frames, reshapes the sig-

nal structure, and performs spectrogram transformations using STFT operations.

The processed spectrograms are then fed to downstream queues.

• Graphical Interface: A PyQt-based interface allows real-time visualization of

spectrogram outputs and provides basic start/stop control over the radar pipeline.

The system is designed to support multiple experimental setups. Configuration pa-

rameters, such as ADC sample count, number of chirps per frame, and antenna con-

figurations, can be flexibly updated depending on the sensing task. Threading and

queue-based design ensures that data streaming, processing, and display are decou-

pled, allowing for robust operation even in high-throughput settings. This framework

was used extensively in both human activity and speech-related experiments. The pro-

cessed spectrograms were saved to disk in real time and labeled using a pseudo-model

or user input for downstream model training. Data collection sessions are automatically

timestamped and structured into subject-specific directories, improving traceability and

dataset management.
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The GUI provides dynamic rendering of raw mmWave signal images with adaptive

colormaps and fixed viewports, allowing researchers to inspect radar returns in real

time and evaluate signal integrity during live capture. This real-time framework was

critical to the multimodal system described in this study, enabling synchronized, high-

resolution radar capture and facilitating the training of data-driven models. It forms the

backbone for future extensions into live speech recognition and interactive radar-based

applications.

Participants: To enable a radar-based implementation of phonetic segment classifi-

cation, a sufficiently large and balanced dataset was compiled. Accordingly, the data

collection process was conducted under the framework of the GTUSAudioRadioCon-

sonants dataset 1. For phonetic readings, we enlist the help of six people who are all

native speakers. Our sample of native speakers includes two females and four males,

with ages ranging from twenty-five to forty-five. Without any speaking issues, all indi-

viduals have typical speech ability. We trained the model using data from five speakers

and then tested it on data from a sixth speaker that was not used during training in order

to examine how well the model generalized.

The chosen phonetic segments for this investigation were selected in line with IPA crite-

ria; following this criterion has been demonstrated to ensure consistency and accuracy

across languages. Two,400 utterances in all were generated, with four distinct phonetic

consonants—shown by /d/, /g/, /k/, /t/ in the International Phonetic Alphabet). An audi-

tory signal (a ping sound) was emitted for each data collection, prompting the subject to

articulate the sentence immediately following the cessation of the sound. Participants

were situated roughly 50 cm from the radio equipment for data collection. They articu-

lated each syllable at a moderate level while limiting extraneous movement to maintain

data integrity.

4.2.2. Radar-Driven Embedding Space and Classification

In this study, we introduce the USRadioAI, a radar-based multimodal approach de-

veloped for phonetic segment classification and utilizing a common embedding space.

The proposed deep neural network architecture MMNet combines the mmWave radar,

1For a sample recording from our dataset: CollectionSetup.mp4
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audio data, and UTI modalities (Fig. 4.3).

The MMNet model necessitates the concurrent operation of components such as a

mmWave radar sensor, a microphone, and a UTI device employed for feature extrac-

tion. The integration of these components guarantees that features derived from various

data sources are effectively aligned inside a unified embedding space.

Figure 4.3: System overview of a multimodal speech processing framework combin-
ing mmWave radar, audio, and UTI.

The development of neural network architectures has enabled the creation of robust and

generalizable phonetic segment classification systems, with each architecture designed

to extract meaningful representations from different perception modalities. Structural

details of these architectures are presented in Fig. 4.4, where the two main architectures

represent the main structures contributing to the embedding space.

The architecture, (Fig. 4.4a), first extracts visual features with CNN, and then integrates

the spatio-temporal features by modelling the sequential dependencies with Time Dis-

tributed layers and BiLSTM networks. This architecture processes UTI data to gen-

erate a 64-dimensional embedding vector representing joint movements. The second

architecture, Fig. 4.4b, employs stacked CNN layers to learn spectro-temporal patterns

by processing mmWave radar (upper path) and acoustic signal (lower path) data, and

generates a 32-dimensional embedding vector for each input.

In the training phase, a shared embedding space is created that can capture common

representations among radar, audio, and UTI data. This embedding space integrates

the unique features of each modality, thereby enabling the model to learn cross-modal
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(a) This network employs dense layers to produce a 64-dimensional
embedding from the UTI data.

(b) A 32-dimensional embedding is generated for mmWave and acoustic
sensing.

Figure 4.4: The phonetics embedding space (MMNet) with its sub-architectures.

relationships. However, in the inference phase, the system only extracts embeddings

from the radar data and performs classification through a special subnetwork that can

independently process mmWave detection.

The USRadioAI aims to estimate the missing audio and UTI representations by com-

paring the radar embeddings extracted during training with the vectors in the common

embedding space created during training. The selection of closest matches is achieved

by calculating the cosine similarity between radar outputs and previously stored em-

bedding vectors [1]. These most similar embedding vectors provide estimated audio

and UTI representations corresponding to the missing modalities (Fig. 4.5). These rep-

resentations are then integrated into the feature extraction process by combining them
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Figure 4.5: USRadioAI infers missing audio and UTI embeddings by matching radar
features to training data via cosine similarity, enabling radar-only phonetic
classification.

with real-time radar inputs. This process improves the classification performance of

the model and increases the robustness of the system under different conditions.

4.3. Experimental Results and Analysis

4.3.1. UTI-only Classification

After the data collection process was completed, we first examined the phonetic seg-

ment classification using only UTI data. It is important to check whether some phonemes,

such as /k/ and /g/ or /t/ and /d/, which are difficult to distinguish in UTI images because

they have similar articulatory patterns, can be distinguished from each other.

(a) Binary classification (velar vs. alve-
olar). UTI distinguishes broader ar-
ticulatory categories more reliably.

(b) Four-class classification. UTI
shows inconsistent performance
due to articulatory similarity.

Figure 4.6: Confusion matrices for phoneme classification using UTI data.
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The initial stage of the four-class classification task (/k/, /g/, /t/, /d/) produced incon-

sistent outcomes (Fig. 4.6(a)), indicating that UTI-based models, as previously noted

[1], struggle to differentiate between voiced and unvoiced phoneme pairs. Transform-

ing the task into a binary classification (velar versus alveolar) led to a notable increase

in performance (Fig. 4.6(b)). While it is useful for differentiating more general artic-

ulatory types, UTI data may be insufficient for phoneme classification. Emphasizing

the need of multimodal approaches using additional information sources, including au-

dio or radar data, this experimental investigation highlights the limitations of phoneme

recognition limited to UTI alone.

4.3.2. Unimodal vs. Multimodal Classification

Emphasizing the benefits of our phonetic segment classification approach over current

techniques, this part offers model implementations and performance comparisons.

The classification findings show different benefits of only audio and only radar phoneme

recognition. Since both /k/ and /t/ have no vocal cord vibrations while articulation

(voiceless), it difficult to identify their articulatory motions using mmWave radar (Fig.

4.7(a). But since mmWave captures articulatory variations that UTI finds difficult, it

does better in differentiating /k/ and /g/ that have very similar tongue shapes.

(a) Radar (b) Audio

Figure 4.7: Comparison of phoneme classification using (a) mmWave radar and (b)
audio.

Conversely, The Audio model outperforms the Radar model for /k/ and /t/ classifica-
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tion as it recognizes aspiration and high-frequency bursts, hence separating voiceless

phonemes. Figures 4.7(b). But since radar monitors articulatory motion more precisely

than audio, it detects voiced phonemes like /d/ and /g/, which often confounds audio

because of their comparable spectral characteristics.

(a) MMnet (b) UsRadioAI (c) AudioUS (d) RadarUS

Figure 4.8: Comparison of phoneme classification performance across proposed archi-
tectures. The MMnet model demonstrates superior accuracy on the test set,
outperforming other multimodal configurations.

Impact of integrating UTI with audio: The inclusion of UTI alongside audio signif-

icantly influences phoneme classification outcomes, offering both enhancements and

new complexities (Fig. 4.7b vs. Fig. 4.8c). A notable improvement is observed in

the classification of /t/ and /k/, where the integration of UTI reduces misclassification

errors—likely due to its capacity to capture tongue movement more effectively, which

complements audio limitations.

Conversely, the addition of UTI introduces increased confusion between /k/ and /g/, as

UTI struggles to differentiate these phonemes given their similar dorsal articulatory pat-

terns. While audio alone better distinguished /k/ and /g/, the fusion with UTI appears

to blur this distinction. These results suggest that multimodal fusion can strengthen

phoneme discrimination in some cases, yet also introduce new sources of ambiguity,

underscoring the importance of thoughtful modality selection and feature-level integra-

tion in multimodal systems.

Impact of integration UTI with radar: Integrating UTI with radar data yields a no-

table enhancement in phoneme classification performance, with an approximate 5% in-

crease in accuracy—most evident in the improved discrimination of /k/ and /t/, which

radar alone struggled to distinguish (Table 4.1). This improvement suggests that UTI ef-

fectively captures articulatory dynamics, particularly tongue movements, thus mitigat-

ing radar’s limitations in detecting voiceless phonemes. The integration of UTI reduces
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Table 4.1: Accuracy and modalities for phoneme classification with our proposed ar-
chitectures.

Test Accuracy Model
Training Inference

UTI Audio mmWave UTI Audio mmWave

0.33 US + +

0.57 Radar + +

0.58 Audio + +

0.60 RadioAudio + + + +

0.62 RadioUS + + + +

0.67 AudioUS + + + +

0.71 USRadioAI + + + +

0.76 MMnet + + + + + +

confusion between /d/ and /g/, which were frequently misclassified in the radar-only

model, indicating that articulatory information contributes positively to the classifica-

tion of voiced phonemes as well (Fig. 4.7(a) vs. Fig. 4.8(d)).

Nonetheless, the incorporation of UTI also introduces new challenges, such as increased

misclassification of /d/ with other segments. These findings underscore the importance

of careful modality fusion, as the benefits of enhanced articulatory resolution must be

balanced against the risk of introducing modality-specific noise or ambiguity.

Figure 4.9: We used t-SNE to project the final classification layer’s output vectors into
2D space for visualization. MMnet (top) and USRadioAI (bottom).
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Comparing MMNet and USRadioAI: Accuracy vs. Practicality MMNet achieves 

the highest classification accuracy at 76%, leveraging the full combination of UTI, au-

dio, and radar during both training and inference (Table 4.1, Fig. 4.9). However, this 

performance gain comes at the cost of increased complexity, as it requires the simul-

taneous operation of multiple sensing devices, limiting its practicality for real-world 

deployment. In contrast, USRadioAI is trained with all three modalities but operates 

solely on radar data at inference. Despite this simplification, it attains a competitive 

accuracy of 71%, representing a substantial improvement over the radar-only baseline, 

which achieves just 57%. This highlights the effectiveness of multimodal training in 

enhancing performance, even when inference relies on a single modality. While US-

RadioAI falls slightly short of MMNet in terms of accuracy, its operational simplicity, 

reduced hardware requirements, and cost-efficiency make it a highly viable solution for 

real-world scenarios, balancing performance with deployability. Table 4.2 summarizes 

the per-class F1-scores across selected models, highlighting USRadioAI gains.

Model /d/ /g/ /k/ /t/

Audio-only 0.39 0.62 0.58 0.68

Radar-only 0.79 0.58 0.58 0.14

USRadioAI 0.84 0.76 0.62 0.63

MMNet 0.74 0.70 0.75 0.88

4.3.3. Key Findings and Insights

This study investigates phonetic segment classification through a multimodal frame-

work that fuses mmWave radar, UTI, and audio modalities. By analyzing confusion

matrices and t-SNE visualizations, we extract critical insights about modality-specific

contributions, the robustness of multimodal learning, and practical implications for real-

world deployment.

Each modality reveals distinct strengths and weaknesses in phoneme classification:

• The radar-only model performs well for voiced phonemes like /d/ and /g/ but
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struggles with voiceless ones, especially /t/, which is misclassified as /d/ in 14

instances. This supports earlier findings that radar sensors are more sensitive to

articulatory motion and voicing cues than to aspiration bursts [157].

• The audio-only model excels at classifying voiceless stop consonants due to their

acoustic bursts, but shows 39 instances of /d/ being confused with /g/, likely due

to spectral similarities—echoing classic results from speech acoustics literature

[158].

• The UTI-only (4-class) classifier struggles with /k/ vs. /g/ due to their shared

dorsal articulation; 63 samples of /k/ are misclassified as /g/, confirming earlier

observations that tongue shape alone is insufficient for voicing contrast [1].

Multimodal integration substantially improves classification performance:

• The MMNet model achieves the highest overall accuracy with clean diagonal

structure and minimal cross-phoneme confusion. Its embedding visualization

shows clear separation among classes, validating the effectiveness of multimodal

learning.

• USRadioAI improves upon the radar-only model by leveraging multimodal train-

ing but operates with radar-only input. It achieves 71% accuracy, outperforming

radar-only by 14%. The corresponding t-SNE plot reveals structured but over-

lapping clusters, demonstrating how shared embeddings encode multimodal in-

formation.

• AudioUS improves /t/ and /k/ classification compared to audio-only, but intro-

duces confusion between /k/ and /g/. This demonstrates that combining modali-

ties can amplify beneficial cues but also propagate conflicting signals if not inte-

grated carefully.

• RadarUS shows a 5% increase in accuracy over radar-only, especially for /t/ and

/d/, indicating that UTI complements radar in resolving tongue-placement ambi-

guities.

• The UTI-based binary classifier achieves 90%+ accuracy when classifying broad

articulatory categories (velar vs. alveolar). However, its four-class performance

drops significantly, emphasizing UTI’s limitations in resolving fine phonemic
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contrasts—particularly voiced/voiceless pairs, consistent with Badin et al. [159].

4.4. Conclusion

While the proposed system has demonstrated encouraging results in the context of radar-

assisted phonetic segment classification, it is evident that the system’s accuracy, gener-

alizability, and robustness can be further enhanced, particularly under diverse speech

conditions, speaker variations, and environmental factors. While the current structure

demonstrates competitive performance in classification tasks, the implementation of

more advanced models and learning strategies is necessary to adapt to the diversity

that can be encountered in real-world scenarios.

Furthermore, the incorporation of the system with radar-based gamification compo-

nents holds considerable promise in enhancing interaction and enriching the user ex-

perience in speech therapy applications. The integration of radar-based gamification

components has the potential to enhance the system’s interactivity, engagement, and

accessibility, particularly in therapeutic processes involving children and individuals

with special needs. The contactless and privacy-protecting nature of the radar offers

additional advantages in this context.

Subsequent studies will prioritize the enhancement of multimodal training methodolo-

gies, the exploration of data synthesis and augmentation techniques, and the restruc-

turing of the system, particularly for real-time speech analysis, with the objective of

further extending the boundaries of the proposed system. However, the development

of applications that maximize the practical benefits of radar-based speech processing

technology is critical to increasing the impact of the system in both clinical and daily

use areas.
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5. CONCLUSIONS

In this thesis, the problem of phonetic segment classification addressed via deep learning-

based multimodal approaches by combining mmWave radar, ultrasound tongue imag-

ing (UTI) and audio data. This multimodal strategy aimed to capture both acoustic

and articulatory features, enhancing the model’s ability to differentiate subtle phonetic

variations. This research addresses the limitations of audio-only systems, such as sen-

sitivity to noise and inability to distinguish similar phonemes, as well as the practical

challenges of UTI-based systems, such as high cost and user discomfort.

In this context, the architecture of MMNet, a multimodal neural network designed to

take advantage of the complementary aspects of audio and UTI data proposed firstly.

The experimental results showed that this integration significantly increases the classifi-

cation accuracy and reduces the uncertainties encountered in single-mode systems. By

combining temporal and spatial articulatory patterns, MMNet demonstrated improved

phoneme boundary resolution and reduced confusion among visually similar segments.

The M1 framework was introduced next, which can perform inference with audio data

only. This structure revealed how multimodal training can guide single-mode inference

processes. Experimental findings showed that the performance of M1 is comparable

to approaches that use audio and UTI together, emphasizing its ease of use, especially

in applications such as clinical speech therapy. This approach also serves as a prac-

tical example of knowledge distillation in multimodal systems, where richer training

supervision improves a lightweight inference model.

Considering the practical limitations of fully multimodal systems, the USRadioAI has

been developped as an architecture that uses radar, UTI, and audio data during the

training phase, but only works with mmWave radar data during inference. By us-

ing cross-modal information distillation and joint embedding space techniques, US-

RadioAI achieved similar accuracy to fully multimodal systems while significantly

reducing the implementation complexity. This design also brings strong advantages

in terms of privacy, as mmWave signals do not capture identifiable audio or visual

features, making the system highly suitable for sensitive or crowded environments.

Extensive experiments on newly created GTUConsonants and GTUSAudioRadioCon-
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sonants datasets have shown that the proposed methods are strong in terms of robust-

ness and generalizability. The results showed that multimodal training and embedding

space alignment achieve high accuracy despite modality constraints during inference

phase, and offer significant advantages in terms of system cost and user experience.

The effectiveness of these approaches across datasets collected under varying condi-

tions also underscores their potential for transferability to unseen speakers and acoustic

settings.

In conclusion, this thesis demonstrated the importance of integrating mmWave radar

with other modalities in speech processing, and provides robust, practical, and privacy-

aware solutions. The proposed methods have promising application potential in many

areas such as clinical speech therapy, remote diagnosis, assistive technologies and

human-computer interaction, and provide a solid ground for future research. Alto-

gether, this work contributes not only a set of practical architectures but also a frame-

work for future multimodal learning systems that aim to balance performance, usability,

and privacy in real-world speech applications.

As potential directions for future work, real-time deployment on embedded platforms

such as NVIDIA Jetson or other mobile AI hardware could be explored to bring the

system closer to in-field or wearable use cases. Another extension involves applying

the proposed architectures to speaker-dependent or pathological speech datasets, which

would validate their effectiveness in more diverse and clinically relevant conditions.

Additionally, exploring alternative modality fusion strategies, such as attention-based

or transformer-driven architectures, could further improve model interpretability and

performance. The robustness of mmWave radar sensing can also be evaluated under

varying environmental conditions, such as clothing interference or device movement, to

assess its practical reliability. Lastly, the framework may be expanded for paralinguistic

tasks such as emotion recognition, prosody estimation, or speech fluency monitoring,

where articulatory features could provide valuable complementary cues.
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