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ABSTRACT

Phonetic segment classification is the process of recognizing and categorizing speech
sounds (phonemes) from audio or articulation data. This task forms the basis of many
speech and language processing applications such as speech recognition, language
learning, and clinical speech therapy. This thesis explores novel multimodal approaches
based on deep learning that combine mmWave radar, ultrasound tongue imaging (UTI),
and voice modalities to achieve robust, practical, and privacy-sensitive phonetic seg-
ment classification.

Traditional audio-based methods, such as Gaussian Mixture Model-Hidden Markov
Model (GMM-HMM), Deep Neural Network—Hidden Markov Model (DNN-HMM),
often yield unreliability in noisy environments and may be insufficient to distinguish
phonemes with similar spectral properties. On the other hand, UTI-based approaches
provide detailed articulatory information but have limitations in terms of hardware costs
and practicality. On the other hand, mmWave radar stands out as a promising alternative
that can capture detailed articulatory dynamics in a contactless manner.

In this context, the thesis first introduces a multimodal neural network architecture
called MMNet. This architecture is designed to create a common embedding space by
taking advantage of the complementary features of audio and UTI modalities. Experi-
mental findings show that this combination leads to significant improvements in classi-
fication accuracy and effectively removes ambiguities specific to individual modalities.

Additionally, the architecture named M1 can perform inference using only audio data,
thus eliminating the need for UTI, making it easy to use in applications such as speech
therapy. Experimental data shows that this approach performs at a level comparable to
systems that use both voice and UTIL.

In the next phase of the thesis, another multimodal framework named USRadioAl is
presented, which combines UTI and voice data with mmWave radar in the training
process, but relies only on radar data in inference. This model is able to maintain
similar performance to multimodal systems despite working with only radar data, by
using techniques such as cross-modal information distillation and embedding space
alignment. USRadioAl uses radar’s ability to capture articulatory information without
contact, reducing both hardware complexity and system load during the inference phase,
while maintaining high accuracy rates.

Comprehensive experiments conducted on newly compiled datasets named GTUCon-
sonants and GTUSAudioRadioConsonants demonstrate the effectiveness of the devel-
oped multimodal methods. The results show that MMNet provides the highest overall
classification performance by effectively using all available modalities, while USRa-
dioAl, despite its simplified inference structure, performs very close to multimodal
approaches thanks to optimization techniques.

The findings highlight the potential of multimodal learning in speech and language
processing, and suggest that mmWave radar can play an important role as a privacy-
preserving, accessible, and user-friendly modality in areas such as clinical speech ther-
apy and interactive applications.

Keywords: Phonetic Segment Classification, Multimodal Learning, mmWave Radar,
Ultrasound Tongue Imaging (UTI), Deep Learning, Speech Processing
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OZET

Fonetik segment siniflandirmasi, ses ya da artikiilasyon verilerinden konusma
seslerini(fonemleri) tanima ve kategorize etme siirecidir. Bu gorev, konusma tanima,
dil 6gren-imi ve klinik konugsma terapisi gibi pek ¢ok konusma ve dil isleme
uygulamasinin temelini olusturur. Bu tez, saglam, pratik ve gizlilige duyarli bir
fonetik segment siiflandirmasi elde etmek amaciyla mmWave radari, ultrason dil
gorlntiileme (UTI) ve ses modalitelerini birlestiren, derin 6grenmeye dayali yeni ¢ok
modlu yaklagimlar aragtirmaktadir.

Geleneksel ses tabanli yontemler, giiriiltiilii ortamlarda giivenilirligini yitirir ve spek-
tral olarak benzer fonemleri ayirt etmekte yetersiz kalabilir. UTI tabanli sistemler ise
ayrintili artikiilasyon bilgisi sunmalarina ragmen, yiliksek donanim maliyetleri ve kul-
lanic1 konforu agisindan c¢esitli sinirlamalar tasir. Bu noktada mmWave radar,
temassiz bi¢imde ayrintili artikiilasyon dinamiklerini yakalayabilen, umut verici bir
alternatif olarak one ¢ikmaktadir.

Bu dogrultuda tezde ilk olarak, MMNet adli ¢ok modlu bir sinir agi mimarisi
sunulmak-tadir. Bu mimari, ses ve UTI modalitelerinin tamamlayic1 6zelliklerinden
yararlanarak ortak bir yerlestirme (embedding) alani olusturmak iizere tasarlanmstir.
Deneysel bul-gular, bu entegrasyonun smiflandirma dogrulugunu o6nemli Olglide
artirdigini ve tekil modalitelere 6zgii belirsizlikleri etkili bicimde ortadan kaldirdigini
gostermektedir. Ayrica, M1 adli mimari yalnizca ses verilerini kullanarak ¢ikarim
yapabilmekte; boylece UTI kullanimina olan ihtiyaci ortadan kaldirmakta ve
konugma terapisi gibi uygula-malarda pratikligi artirmaktadir. Deneysel sonuglar, bu
yaklasimm hem ses hem de UTI kullanan sistemlerle karsilagtirilabilir diizeyde
performans sundugunu gostermek-tedir.

Tezin sonraki agamasinda ise, egitim siirecinde UTI ve ses verilerini mmWave radar
ile birlestiren; ancak ¢ikarim agamasinda yalnizca radar verisine dayanan USRadioAl
adli alternatif bir cok modlu cergeve tanitilmaktadir. Capraz-modal bilgi damitma ve
gomme alani hizalamasi gibi teknikleri kullanan bu model, yalnizca radar verisiyle
caligmasmma ragmen ¢ok modlu sistemlerle benzer dogruluk seviyelerini
siirdiirebilmek-tedir. USRadioAl ¢ergevesi, radarin eklemsel bilgileri temassiz
sekilde yakalama yetenegin-den faydalanarak, c¢ikarim sirasinda donanim
karmagikligini ve sistem yiikiinii azaltirken yliksek performans sergilemektedir.

Yeni olusturulan GTUConsonants ve GTUSAudioRadioConsonants veri kiimeleri iiz-
erinde gerceklestirilen kapsamli deneyler, gelistirilen ¢ok modlu yontemlerin etkin-
ligini ortaya koymaktadir. Sonuglar, MMNet’in mevcut tiim modaliteleri verimli
bicimde kullanarak en yiiksek genel siniflandirma dogrulugunu sagladigini;
USRadioAl'nin ise sadelestirilmis ¢ikarim yapisina ragmen, belirli optimizasyon
teknikleriyle ¢ok modlu yaklasimlara olduk¢a yakin performans elde ettigini
gostermektedir.

Bu bulgular, konusma ve dil isleme alaninda ¢ok modlu 6grenmenin 6nemini vurgu-
larken, mmWave radarin klinik konusma terapisi ve etkilesimli uygulamalarda
gizliligi koruyan, erisilebilir ve kullanici dostu bir modalite olarak 6nemli bir
potansiyele sahip oldugunu ortaya koymaktadir.

Anahtar Kelimeler: Fonetik Segment Siniflandirmasi, Cok Modlu (")grenme,
mmWave Radar, Ultrason Dil Gériintiilleme (UTI), Derin Ogrenme, Konusma
Isleme
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1. INTRODUCTION

1.1. Overview

A fundamental means of human communication, speech helps to transmit complex
knowledge by means of coherent articulation, acoustics, and cognitive mechanisms.
Recent developments in sensor technology and artificial intelligence are driving speech
and language processing outside of traditional audio-based approaches forward. Mod-
ern systems are more equipped than only transcription of speech or sound generation to
understand and replicate the physical mechanics underpinning speech production. Par-
ticularly in fields such education, healthcare, and assistive communication technology,

these developments provide fresh opportunities [2—4].

This growing ambition has given rise to a new class of research questions: How can
we capture the hidden dynamics of speech production in a way that is accurate, inter-
pretable, and non-invasive? How can rich but complex multimodal data be distilled into
practical systems suitable for real-world use? How thus can we balance the simplicity

needed for general usability with the technical complexity of multimodal learning?

This thesis is at the center of this inquiry. Using next-generation sensing technologies,
the study looks at how actual speech creation may be sensed, modeled, and turned into
strong, meaningful representations. Grounding this conversation, the next part explores

the fundamental ideas behind this work.

1.2. Motivation

The utilization of speech and language technologies, from voice assistants to language
learning tools, have grown indispensable in contemporary human-computer interaction
[5]. Models that not only attain high performance but also robust, interpretable, privacy-
conscious, and deployable in real-world situations are increasingly sought for as these

systems becoming more ubiquitous [6, 7].

The modeling of the physically produced speech to comprehend articulatory informa-
tion, such as how the tongue, lips, and jaw coordinate to form speech sounds in addition

to recognize acoustic patterns is one of the foundational challenges in this field [8, 9].



This level of modeling has implications in a wide range of domains:

Education, for helping language learners and children master articulation [10].

Healthcare, for supporting speech therapy and assessment [11, 12].

Accessibility, by enabling non-invasive communication aids [13]

* Human-computer interaction, through richer and more reliable voice-based in-

terfaces [14]

Thanks to innovations in multimodal data collection, the physical articulatory move-
ments that constitute speech can now be recorded along with traditional audio [15-19].
These technologies provides speech production to be represented in more detail, lead-
ing better results in applications such as phoneme recognition, speech generation, and

articulation feedback [1, 20].

As multimodal systems require multiple sensors, which can be costly, intrusive, and dif-
ficult to integrate into practical environments [21], one of the major challenges in real-
world applications is the deployment of these systems. In contrast, unimodal systems—
particularly those based solely on audio, radio, or visual data acquisition—are easier
to integrate into consumer devices and offer a more viable alternative for real-world

applications [22].

To address this trade-off between richness of representation and deployment feasibil-
ity, this thesis adopts an indirect cross-modal knowledge distillation approach by using
an embedding space [23]. We train deep learning models using data from multiple
complementary sources—generated by microphone, radar, and ultrasound devices—to
learn detailed articulatory representations (Fig. 1.1), and then transfer this knowledge
via the embedding space to models that operate using a single input source at inference
time. This strategy enables the system to benefit from the depth and structure provided
by richer training data, while remaining practical, efficient, and privacy-conscious in
real-world deployment—qualities essential for building next-generation speech and lan-

guage processing tools.

The basic assumption of the thesis is that detailed articulation information can be col-
lected during the training process and this information may then be converted into

lightweight models that are used in real-world scenarios. In support of this approach,



the next section summarizes imaging techniques that are commonly used to capture the

dynamics of the speech production process.

Aurlia
AUdIO

Figure 1.1: Schematic representation of audio-based, mmWave radar-based, and

ultrasound-based speech sensing pipelines integrated with deep learning
models.

1.3. Speech Production Imaging Techniques

The main ways to spread knowledge and build social ties are speech communications.
This complicated process consists in the speaker producing speech sounds and their
interpretation by the listener. Tongue movement is an essential component of speech
production; it is vital for articulation but stays outside observable in nature [8]. Differ-
ent imaging approaches are employed to capture the tongue’s form as articulatory data
[24], so analyzing and modeling articulation inside the vocal tract. Multiple imaging
modalities have been used in recent years to investigate speech production including,
electromagnetic mid-sagittal articulography (EMA) [25], magnetic resonance imaging

(MRI) [9, 26-29], and ultrasound [30, 31].

EMA allows exact tracking of articulatory movements by means of sensor placement



on anatomical features including the lips, jaw, and tongue [32]. EMA data allows one
to investigate the kinematics of the vocal tract in both healthy people and Parkinson’s
disease [33]. It measures tongue and articulator motions directly, however it has limits
including small datasets, possible speech alterations due of its invasive character, and
reliance on discrete measurement sites that do not fully capture the tongue shape [34,

35].

Furthermore, MRI can help to provide high-resolution images of vocal tract anatomy
during speech. MRI also finds uses in research on second language acquisition and
speech production [36]. It facilitates the analysis of structural attributes in conjunction
with articulation dynamics and acoustics. Not only the tongue but also the articulators
such as labial, jaw, velar, pharyngeal, and laryngeal information provide dynamic in-
formation with temporal resolution with Real-time MRI (rtMRI) [18, 37]. However, its
supine recording orientation is inappropriate for spontaneous speech, and concurrent
audio recordings frequently exhibit inferior quality. Moreover, the practical limitations

of MRI restrict the dataset sizes in speech processing related research [38].

Ultrasound imaging is based on the measurement of the time it takes for sound waves
emitted by a transducer to travel through tissues and reflect back from anatomical struc-
tures [40—42]. Different imaging modes exist to interpret these reflections and con-
struct a visual representation of the underlying anatomy. Figure 1.2 (top-left) shows
a single ultrasound wave emitted by a transducer directed toward the tongue. Figure
1.2 (middle-left) represents the A-mode (amplitude mode), where the amplitudes of
the reflected signals at time tt are plotted, yielding a one-dimensional waveform. In
contrast, Figure 1.2 (bottom-left) illustrates the B-mode (brightness mode), in which
echo amplitudes are mapped as varying pixel brightness levels. By collecting multiple
such reflections from different beams, a two-dimensional (2D) grayscale image is con-
structed, as shown in Figure 1.2 (right-middle). This study employs B-mode ultrasound

imaging to capture and analyze tongue movement.

Ultrasound tongue imaging (UTT), thanks to its ability to provide real-time, high-resolution,
and quick 2D imaging, is a useful method for observing the tongue’s motions dur-
ing speech communication. It also provides non-invasive and a risk-free imaging of

the articulators during normal and abnormal speech production [43]. Clinical popula-
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Figure 1.2: Ultrasound imaging modes and the process of ultrasound image acquisition
to visualize the vocal tract [39].

tions highly benefit from UTI’s visual feedback for speech sound problems assessment
and remediation [44]. A number of areas have found uses for the method, such as
the diagnosis of obstructive sleep apnea [45, 46] and the assessment of tongue move-
ments in cerebral palsy patients [47]. There has been consistent advancement towards
three-dimensional (3D) imaging using ultrasound, which has been a widely used tool
in speech production research [48—50]. Platforms for 3D visualization of tongue mo-
tion have been developed [51, 52], and researchers have introduced methods to assess
tongue shapes and positions using ultrasound imaging. The effectiveness of UTI in ana-
lyzing tongue structure and function has been extensively demonstrated in both clinical

and scientific settings [53].

1.4. UTI in Speech and Language Processing

UTI is commonly used in clinical settings to capture real-time sagittal or coronal views

of the movement of the tongue during speech or swallowing. The transducer is placed



submandibularly behind the chin. It is common practice to use a headset or fixed mount
to hold the transducer steady during imaging and then use specialised software to visu-
alise and analyse the ultrasound data [54]. UTI uses conventional medical ultrasound
to visualize the surface of the tongue during speech production. This is a noninvasive,

clinically safe and progressively affordable technique to visualize the vocal tract [55].

The utilisation of UTI devices in speech therapy research has increased in recent years,
due to the enhancement of image quality and accuracy resulting from technological ad-
vancements. The decline in costs has led to a greater prevalence of portable ultrasound
devices, and the interpretation of ultrasonography data has become more accessible.
In addition, the development of various analysis software programs has further con-

tributed to the growth in the use of UTI devices [31, 56].

Research suggests that UTI as a visual biofeedback technology can improve articula-
tory accuracy in people with acquired apraxia, post-glossectomy speech deficits and
children with residual articulation difficulties [11, 57, 58]. Studies have investigated
whether ultrasound feedback of the tongue helps some children with childhood apraxia
of speech (CAS) to develop more accurate and reliable speech motor plans [59, 60].
The use of UTI feedback, speech therapy delivered in numerous weekly sessions and
motor-based speech therapy with intensive schedules have also been found to outper-

form traditional less frequent service delivery [61, 62].

Therapists may employ the data obtained from these devices to aid the individual in
accurately positioning the tongue. The client receives assistance in producing the cor-
rect speech sounds and improving their linguistic abilities. These feedback devices
enhance the acquisition and practice of precise articulation during treatment by com-
bining auditory input with visual indicators of tongue position [63]. Consequently, the
comprehensive imaging of the vocal tract facilitates the evaluation of compliance with

the methodologies utilized in speech therapy [64].

However, there are a few issues that still restrict the usefulness of conventional UTI,
notwithstanding its significance in comprehending, identifying, and enhancing speech
production and therapy. Ultrasound is impractical because it requires a continuous ul-
trasound probe under the chin, it is still expensive for home use, image quality depends

on speaker characteristics such as age and psychology, and synchronization of sound



and image is costly. A need has arisen for a more practical approach to diagnosis,

treatment and therapy applications in speech and language disorders.

Moreover, visual feedback alone may not be always enough for quick and accurate in-
terpretation of ultrasound exposures when performing complicated tongue movements
[65]. In other words, it is still quite difficult for the UTI to interpret the rapid and com-
plex movements of the tongue and for the therapy to become permanent with visual
feedback and for the tongue movements that will provide correct articulation to become
automatic for individuals. Also, concerns about image quality and restrictions, inter-
display alternatives, and limited data availability are just a few of the many choices
for automated Ultrasound tongue parameters [63]. Due to these challenges, leverag-
ing tongue imaging effectively and accurately in practical scenarios may require an

alternative representation or intermediate modeling approach.

1.5. MmWave Radar-based Human Voice Sensing

Millimeter-wave (mmWave) radar has recently emerged as a novel modality for non-
contact speech sensing and analysis. Operating in the 30-300 GHz range, mmWave
radar captures electromagnetic reflections modulated by the physiological movements
of the articulators—particularly the throat, lips, and vocal folds—during speech. With-
out wearable or contact-based devices [66—68], this sensing mechanism enables robust

voice acquisition even under noisy or non-line-of-sight situations.

By using Frequency Modulated Continuous Wave (FMCW) method, mmWave radars
sense micro-motions produced by articular dynamics and vocal cord vibrations [69, 70].
These systems offer advantages in terms of resolution, stealth, and robustness against

acoustic interference, noise, or spoofing attacks [71, 72].

Radar-based systems utilize the ability of radiofrequency signals to capture subtle artic-
ulatory and vocal tract movements during speech production [73]. Earlier approaches,
relied on fixed radar antennas attached directly to the face using adhesive methods,
often suffered from session-to-session variability and user discomfort [74]. Address-
ing these limitations, recent research has focused on developing wearable solutions
that improve both usability and measurement stability [75]. Specifically, an important

step forward in the development of user-friendly and repeatable speech interface sys-



tems has been the incorporation of radar sensors into lightweight, adjustable headsets.
These radar-based designs seek to merge the non-invasiveness and portability needed
for daily applications, taking inspiration from other biosignal-based speech systems
that use techniques like electromyography, magnetic sensing, or ultrasound imaging
[76]. The evolution of such systems reflects a broader trend toward silent, privacy-
preserving, and contactless speech technologies that can be adapted to a variety of use
cases, such as assistive communication, discreet interaction, and speech disorder reha-

bilitation.

Additionally, during therapy sessions, real-time mmWave feedback allows therapists to
observe facial and vocal dynamics and provide immediate corrections. Unlike audio-
based systems, which struggle to separate overlapping voices in interactive settings,
mmWave radar only captures data from the participant when directed at them, natu-
rally isolating their input during dialogue. This method provides objective, quantitative
tracking of therapy progress without requiring any physical attachments to the partic-
ipant. The portability of mmWave radar systems also makes them viable for home
use, increasing the frequency and accessibility of therapy, and enhancing participant

outcomes.

Tasks such as speech enhancement, speaker identification, and silent speech recognition
can be performed using the analysis of the reflected signals characterized by changes
in amplitude, phase, or frequency. This enables to perform applications in healthcare,
human-computer interaction, and security [77, 78]. The feasibility of using mmWave
radar has been demonstrated in speech signal detection, enhancement, and classifica-
tion [68, 70, 77]. These studies suggests that the potential of radar-based technology in

healthcare, especially in clinics for diagnosis, treatment and therapy open to explore.

1.6. Main Contributions of the Thesis

The studies and experimental setups developed in this thesis are organized into three
main parts. The first part presents the preliminary work and foundational setups used
to collect synchronized data from UTI, audio, and mmWave radar. This stage focuses

on building the multimodal infrastructure required for articulatory speech analysis.

The second part investigates a joint embedding space constructed from UTI and au-



dio data. Using this space, audio-only models are trained to benefit from articulatory
supervision during training, enabling more robust and interpretable representations of

speech sounds while maintaining practicality at inference time.

The third part extends this approach by incorporating mmWave radar into the joint
embedding space, resulting in a comprehensive multimodal framework based on UTI,
audio, and radar. This setup enables the development of radar-only systems that in-
herit articulatory knowledge from richer modalities, offering a privacy-preserving and

contactless alternative for speech processing applications.

Together, these sections build toward the thesis objective of creating accurate, deploy-

able, and privacy-conscious speech processing models using cross-modal supervision.

This thesis provides five key contributions to the field of multimodal speech processing

and human voice sensing:

* Proposes a novel framework, that combines mmWave radar, UTI, and audio for

speech analysis.

* Demonstrates that mmWave radar can non-invasively capture articulatory and
vocal fold motion, offering a privacy-preserving alternative to traditional sensing

methods.

* Develops a unified phonetic embedding space that enables radar- or audio-only

inference by leveraging supervision from multimodal data during training.

* Introduces seven complementary methods (M1-M4, RadioUS, RadioAudio, US-
RadioAl) that exploit the embedding space through different strategies to en-

hance speech representation learning.

* Incorporates temporal modeling of articulator dynamics, leading to more consis-
tent and accurate phonetic detection compared to conventional frame-based UTI

approaches.



2. PRELIMINARY WORK

This chapter presents the preliminary studies conducted to establish the foundations and
technical infrastructure for multimodal speech and human sensing using mmWave radar
technology. It begins by outlining the theoretical basis and recent developments in mul-
timodal deep learning, particularly in the domains of healthcare and speech processing.
Following this, the chapter details a series of experimental setups and signal processing
methods used to evaluate the viability of radar-based sensing. This includes both human
motion capture and phonetic articulation experiments, with a focus on micro-Doppler
analysis and spectrogram generation. Additionally, a real-time radar configuration and
data acquisition framework is introduced, enabling synchronized multimodal data col-
lection and processing. The results presented in this chapter form the experimental

backbone for the multimodal Al system proposed in subsequent chapters.

2.1. Multimodal Foundations

In artificial intelligence (Al), multimodal learning becomes ever more important. This
method underlines the need of combining many sensing sources that underpin human
perception and cognitive decision-making processes: vision, language, and sound. Whereas
conventional single-modal systems are constrained by their limited perceptual cover-
age, multimodal systems seek to make use of complementary and redundant informa-
tion across many senses. In this regard, innovative work by [79, 80] clarifies in great
detail the ideas of representation, alignment, fusion, and joint learning that form the
technical basis of multimodal learning, and also highlights basic computational diffi-

culties such the difference between modalities and interaction dynamics.

Multimodal deep learning has emerged that the focus fields of the researchers have
been expanded to include many modalities and application domains, such as healthcare
[81, 82]. This scenario shows the growing relevance of multimodal solutions, partic-
ularly in fields where sophisticated and multi-source data are somewhat widespread
[83, 84] increases awareness by exposing the cognitive similarities of multimodal Al
with human multisensory learning processes by analyzing how modalities contribute

differently to reasoning, emotional involvement, and metacognitive processes.
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Still, this development in capacity introduces complication as well. Especially in high-

risk sectors like healthcare, where explainability is essential to developing trust [85],

the interpretability of multimodal deep neural networks remains a major problem. Real-

world applications such as image captioning, video annotation systems [86] , and speech

based systems where acoustic representations are augmented with visual or articulatory

data [87, 88] already demonstrate the potential of multimodal integration. As a result,

the ability of multimodal Al to combine vision, speech, and reasoning into coherent

and context-sensitive systems represents a significant step in the development of more

adaptive, reliable, and human-centered Al (Table 2.1 and Table 2.2).

Table 2.1:

ing deep learning techniques

Detailed modality-wise comparison of multimodal studies with correspond-

Domain |Citation Modalities |DL. Tech-Key Contribu-Main Challenge
Used niques tion Addressed
Used or
Mentioned
Tariq et al(Radiology |TransformerEnhanced diag-Data incomplete-
(2025) [89] [+ EHR based nostic accuracy|ness,  semantic
fusion, by  integrating|alignment,  de-
Healthcarg CNNs imaging with [ployment in
clinical history |clinical work-
flows
Schouten et|Radiology |Attention- |Highlighting clin-Semantic  align-
al.  (2024)+ EHR based ical and system|ment, inter-
[90] multi- deployment gaps|pretability,
modal in multimodal ra- interoperability
fusion diology Al

11
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Table 2.1 (continued)

Domain |Citation Modalities DL Tech-Key Contribu{Main Challenge
Used niques tion Addressed
Used
Milosevic et| MRI+ CT +CNN + Cardiovascular |Modality-specific
al.  (2024)|Echo Feature- disease classi-{constraints, clin-|
[91] level fication with|ical  variability,
Fusion cross-modality |low  real-world
fusion adoption
Acosta et al|Clinical Knowledge [Broader  health|Standardization
(2022) [92] |text + lab|Graph, Self-{ monitoring of  unstructured
data attention |and  contextual|data, interoper-
networks |decision support |ability
Li et al|Clinical Multi- Survey of fusion|Cross-source inte-|
(2023) [93] |text +modal techniques in|gration and com-
imaging embedding |biomedical pro-plexity
learning, |cess acceleration
Transform-
ers
Chen et al/Multimodal|Situation- |Integration of | Pipeline complex-
(2024) [94] |architec- |aware DL |multimodal ity, context mod-
tures models pipelines in ambi- eling
ent intelligence
Jiang et al|Audio + Cross- Distillation  of|Cross-modal
(2021) [88] |Text modal linguistic  priors|representation
knowledge |into speech-based|mismatch
distillation |models
(BERT to
Speech
Trans-
former)
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Table 2.2: Multimodal DL approaches in speech and mmWave applications.

Domain |Citation Modalities DL Tech-Key Contribu{Main Challenge
Used niques tion Addressed
Used
Xiaoyu Audio +H Self- Compact ~ ASR|Transfer ef-
(2021) [95] |Text supervised |models using | fectiveness,
distillation |large pretrained task-specific
acoustic-text tuning
models
Morency Audio + Multimodal |[Robust ~ speech|Missing modali-
and Bal-|Video fusion recognition  un-ties at inference
trusaitis via Trans-der noise and
(2017) [86] former/RNNocclusion
Yu et aljAudio  +Teacher- |Cross-modal Synchronization,
(2021) [96] |Video Student fusion for video|cross-modality
Speech Fusion classification fusion
(AV-TS)
Hori et al|Audio +Joint Scene-aware dia- Multi-turn coordi-
(2019) [97] |Video Student-  |log systems nation, modality
Teacher dropout
Learning
Gholami et{Audio + Ul{Latent Learning latent|Generalization
al.  (2024)|trasound |Feature articulatory  rep-across speech
[87] Distillation |resentations for|domains
compact, robust
speech models
Kerpicci et|Audio + Ul Multitask | Multi- Efficient knowl-
al.  (2022)(trasound |KD  with|representation edge transfer
[98] layer loss |distillation in

multi-task setup

13
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Table 2.2 (continued)

Domain |Citation Modalities DL Tech-Key Contribu{Main Challenge
Used niques tion Addressed
Used
Yoon et al|Audio + Ul{Dynamic |TutorNet: frame-Frame-level atten-|
(2021) [99] |trasound  |weighting, |wise informative|tion mismatch
Hybrid KD |feature emphasis
Chebotar Audio + Ul{Soft target|Single  student|Reducing model
and Waters|trasound |distillation [from ensemble|complexity while
(2016) [100] RNNs preserving perfor-
mance
Xu and Chen mmWave +CNN + RF|Through-wall Training/inference
(2024) [101] |Audio signal en-and privacy- mismatch
hancement |preserving voice
sensing
mmWave Ozturk et al, mmWave +AV fusion|Enhancing noisy|Radar-audio cali-
(2023) [70] |Audio transformer |speech via radar-bration, segmen-
guided filtering |tation
Wang et almmWave + SpectrogramWord detection|Voice activity de-
(2022) [22] |Audio Clustering |via micro-doppler|tection, occlusion
+ RF Sens-
ing
Aytutuldu et{mmWave +Joint em-Audio-only infer- Sensor alignment,
al.  (2024)|Ultrasound |bedding ence for phonetic|modality transfer
[1] network recognition
(CNN +
LSTM)

14
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Table 2.2 (continued)

Domain |Citation Modalities DL Tech-Key Contribu{Main Challenge
Used niques tion Addressed
Used
Zhou et al/mmWave +Multi-view |Robust 3D ob- View dispar-|
(2023) [102] | Vision Fusion ject detection | ity, temporal
with Trans-and gesture|synchronization
former/- understanding
PointNet
Wei et aljmmWave H{YOLO  +Object detection|Modality im-
(2022) [103] |Vision mmWave |[in adverse envi-balance, false
fusion ronments fusion
Patel  and mmWave -+ BeamformerScene under- Latency, in-
Heath (2024)|Comms DNN, Fu-standing and|ference under
[104] sion MLP |user tracking via|mobility
Comm-Radar
fusion
Jain et al/mmWave +Context- |CommRad: Effi{Fusion latency,
(2024) [105] |Comms aware cient channel esti4{RF synchroniza-
adaptive  |mation with radar|tion
DL
Wu et al/mmWave +Diffusion [Scene semantics|High-quality
(2024) [106] |Comms Model for|extraction from|perception from
Radar radar sparse data

2.2. Multimodal Applications in Healthcare

Healthcare is a multimodal domain, where clinicians routinely combine radiological im-

ages, laboratory values, clinical notes, and patient histories to make informed decisions

intuitively. Multimodal AT aims to replicate this integrative process by combining data

across modalities to enhance diagnostic accuracy, contextual understanding, and clin-

ical utility. Foundational surveys highlight the field’s potential, with [82] noting that
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multimodal deep learning is particularly suited to complex biomedical data landscapes

where no single modality suffices.

Radiological images, laboratory data, clinical reports, and patient histories are fre-
quently integrated by medical experts in healthcare to guide decision-making processes.
The ability of multimodal Al to support this integrative process is enhanced by the fact
that data fusion across modalities increases diagnostic accuracy, contextual understand-
ing, and clinical value. Asnoted by [82], multimodal deep learning is particularly suited

to complex biomedical data environments where a single modality is insufficient.

It has been demonstrated that combining multiple modalities such as imaging with struc-
tured or unstructured clinical data enhance the overall performance of the system [2].
The Al-driven process is similar to what human experts perform intuitively, advanc-
ing with the integration of image and text data such as psychology, radiology reports.
Some studies demonstrated that current Al systems may under-perform when they are
lack of integrating image data with EHRs or radiology reports [89]. This fusion im-
proves diagnostic relevance, especially in ambiguous or subtle cases. Similarly, multi-
modal models achieve a consistent performance improvement—averaging over 6 AUC
points—across a wide range of clinical tasks [90], yet emphasize that data incomplete-

ness, misalignment, and cross-departmental silos pose major barriers to deployment.

Furthermore, [91] highlighted that although real-world usage remains limited for ultra-
sound and biomarkers, the combination of inputs such as MRI, computed-tomography
(CT), and echo-cardiography demonstrated promising results in cardiovascular diagnos-
tics. The recent study stated that multimodal Al provides an enhancement for broader

monitoring and predictive capabilities in terms of personalized medicine [92].

Despite these advances, practical integration of multimodal Al into clinical workflows
remains a significant challenge. Issues such as heterogeneous data formats, lack of in-
terpretability, and insufficient standardization must be addressed before such systems
can be safely and widely adopted in medical practice [93, 94]. These limitations under-
score the need for models that are not only accurate but also adaptable, interpretable,

and aligned with real-world clinical constraints.
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2.3. Multimodal Applications in Speech Processing

In speech processing, multimodal learning has become a potent paradigm allowing sys-
tems to combine several information sources—audio, visual, articulatory, and linguistic
data—such that their resilience, efficiency, and generalizing capacity are raised. Partic-
ularly in noisy or data-limited surroundings, when single-modal solutions fall short in
offering enough dependability, this paradigm is rather important. Using complimentary
information across modalities and frequently mutually reinforcing signals, multimodal

systems can better replicate the way people see and interpret speech.

Knowledge distillation has lately become a crucial method enhancing the application
of multimodal learning, particularly in situations when only some modalities may be
applied in the inference phase. Modern methods see distillation not only as a model
compression strategy but also as a basic way of intermodal representation transfer, in
which case resource-limited learner models can transfer rich information from high-

capacity or multimodal tutor models.

Recent studies reveal a remarkable result: knowledge distillation is more effective
when it includes the latent representations in intermediate layers in addition to the
final outputs. In particular, temporal and spectral connections, moving intermediate
activations, allow learner models to acquire rich representations, including structural
and hierarchical aspects of speech. In speech development applications, this method
has proven to be very successful, allowing compact learner models with significantly
fewer parameters to produce results close to the performance of the tutor model [87].
Distillations of self-supervised speech representation learning models such as wav2vec
2.0 or HuBERT to smaller architectures have achieved model reduction ratios of up to

75% while nearly maintaining performance on downstream tasks [98].

Multimodal distillation, which goes beyond model compression, also has the potential
to increase robustness in sequential tasks. For example, in cascade systems combin-
ing automatic speech recognition (ASR) and machine translation, distilling knowledge
from teacher models trained on clean text to student models working on noisy ASR
outputs has been shown to reduce the negative effects of transcription errors and con-
sequently improve translation quality [107]. Such robustness is critical in real-world

applications where upstream errors in modular systems are often carried over to the
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next stages.

In addition, multimodal distillation enables cross-domain knowledge transfer, where
knowledge acquired in one modality or domain drives the learning process in a different
domain. For example, transferring syntactic and semantic information from a BERT
language model to a speech converter model has been shown to significantly improve
intent classification performance. This highlights the importance of utilizing text-based

linguistic information in spoken language understanding systems [88].

To enable efficient and usable automatic speech recognition (ASR) systems, many
studies have investigated task-oriented knowledge distillation strategies. Among these
strategies, the use of specialized loss functions to preserve full output distributions in
transformer-based ASR models stands out [95]. Such methods allow compact learning
models to preserve not only the performance accuracy but also the structural properties

of large-scale self-supervised tutor models.

From a broader perspective, the flexibility of cross-architecture knowledge distillation
processes is increased by frameworks such as TutorNet, which provide guidance at
both the representation level and the softmax output level, and dynamically weight
frames according to the attention distributions of tutor models. This approach allows
learning models to focus more effectively on the most informative parts of the data [99].
Early work has shown that transferring knowledge from RNN-based ensemble models
to a single model can significantly reduce complexity while maintaining performance

[100].

2.4. Multimodal Sensing with mmWave Radar

Because of its unique characteristics—robustness against obstacles, great sensitivity
in micro vibration detection, and robustness under strong light or sound conditions—
multimodal sensing employing millimeter wave (mmWave) radar has attracted increas-
ing attention recently. Effective integration of mmWave radar with other sensing modal-
ities offers a strong platform that may greatly extend environmental and human per-
ception in sectors including healthcare, automotive systems, and communications, as

reported in [17].

As shown in multi-user beamforming applications whereby radar and auxiliary sensor
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inputs improve channel and beam area estimation [104], deep learning-based sensor
fusion methods have great potential in obtaining structured and meaningful representa-
tions from multimodal data. By use of vocal cord vibrations and lip movements, it has
been verified that mmWave radar may be employed as a sensor capable of capturing
both speech and visual inputs. This functionality helps the radar to give dependable
and strong performance even behind walls or in non-line-of-sight environments [101].
Both DiffRadar [106] which uses diffusion-based probabilistic models to produce high-
quality semantic scene representations using radar data and CommRad [105], which
combines radar detection capabilities with wireless communications to establish highly
efficient and directionally adaptive links in obstructed mobile environments, clearly

show the detection flexibility of radar.

Advances in distributed sensing, radar-camera fusion, and autonomous driving further
exemplify the integration of radar with vision and other modalities for dense, robust 3D
object understanding [102, 103]. These efforts collectively demonstrate that mmWave
radar is not merely a substitute for other sensors but a potent contributor to multimodal
systems, capable of enhancing perception when harmonized with vision, audio, or con-
textual priors. Ultimately, this line of work exemplifies the transformative potential of
multimodal integration, where the fusion of complementary signals yields richer, more

adaptable, and human-aligned machine perception.

2.5. Human Sensing using mmWave Radar

In this section, we will describe an automated human sensing system using raw mmWave
radar signals which is the first mmWave-based system we developed in this study. Ba-
sically, the system observes human in a room occupancy via mmWave radar for indoor
counting (we used TI Instruments IWR1843BOOST in our experiments) and collects
data for action recognition . The proposed system senses on-site objects by analyzing
raw mmWave radar data. The system analyzes raw mmWave radar data to detect ob-
jects and determine whether they exhibit displacement (distance) or motion (velocity).
The system also analyzes human actions to categorize them in a supervised way to learn

common human functional movements.
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2.5.1. Introduction

Recent advancements in mmWave radar technology have underscored the efficacy of
radar sensors as a complementary modality to visual perception-based methods. The
compact structure and advanced imaging capabilities of radar sensors have been demon-
strated to be effective solutions, particularly in low-visibility environments and in-
clement weather conditions. Due to a significant reduction in the size of mmWave
radar hardware, radar technology is becoming a powerful sensing platform that im-
proves upon other methods such as cameras and LiDAR. Unlike cameras, radar is re-
sistant to bad weather conditions and is capable of object detection while maintaining

individual privacy [108, 109].

Nevertheless, numerous studies have overlooked the sophisticated functionalities of
imaging radars, opting for overly simplistic approaches that represent radar data with
a single detection point for moving objects [110, 111]. Radars offer significant advan-
tages in distinguishing the speed and micro-level movements of targets thanks to their
innate sensitivity to phase shifts. This feature, known as micro-Doppler motion, serves
as a distinctive signature for identifying specific objects or types of motion due to its
ability to extract precise motion features from phase shifts. The fact that each target has
its own unique micro-motion pattern is important because it demonstrates that this in-
formation can be integrated into existing target classification and recognition methods

and provide valuable contributions [112, 113].

In the realm of radar sensing, the mechanical vibration and rotation of structures within
a target can introduce frequency modulation to the returned signals [114, 115]. This
phenomenon results in the creation of sidebands around the center frequency of the
target’s body Doppler frequency . The modulation induced by vibration and rotation,
producing lower and higher frequencies relative to the Doppler frequency;, is referred to
as micro-Doppler. Given that each form of movement is unique in terms of the rotation
and vibration of various parts of objects, micro-Doppler serves as a distinctive feature

for the classification of different signals [116].

This chapter presents the research conducted to deepen the understanding of mmWave
radar technology through the analysis of radar-based motion and velocity representa-

tions. Additionally, speech analysis experiments were carried out on the mmWave
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radar sensor using those techniques. To identify the optimal operating parameters for
speech-related tasks under different configurations, several calibrations of the radar
sensor were performed. An experimental setup was established for data collection,
revealing the need for careful tuning of numerous data acquisition and processing pa-
rameters. The details of the studies conducted throughout this process are outlined in

the following sections.

2.5.2. Methods

2.5.2.1. Basic Principles of FMCW Radar

Particularly those using FMCW methods, MmWave radar systems provide a strong ba-
sis for motion sensing, range estimate, and velocity analysis. These systems broadcast
frequency-modulated signals called chirps, then examine their reflections to define the

spatial and dynamic characteristics of objects in the radar field.

A chirp is a single-frequency tone with linear over-time frequency rise. As shown in
Fig. 2.1, a frequency synthesizer (1) generates the chirp which is then sent via the trans-
mit (TX) antenna (2). Reflecting off a target, the signal is picked at the receive (RX)
antenna (3) and combined with the original broadcast chirp to generate an intermediary
frequency (IF) signal (4). The IF signal records the frequency variances between the
sent and received chirps. The time delay brought forth by the range of the target deter-
mines this discrepancy. Target range may be estimated by first converting this signal
into the frequency domain using a Fast Fourier Transform (FFT) applied along the fast
time (analog-to- digital converter) sampling dimension. This technique is called the
Range-FFT. As Fig. 2.2 shows, the frequency spectrum’s peak locations exactly coin-
cide with object range (5). Two chirps sent with a specified time gap can be used to
determine the velocity of the object by means of phase changes between related reflec-

tions. The Doppler effect lets this happen.

The basic unit of radar data capturing is a succession of chirps forming a frame. The
range resolution of each chirp—defined as the rate of change in frequency over time—
determines the system’s slope. While Fig. 2.3b shows the structure of a radar frame,

wherein many chirps are sent consecutively, separated by specified intervals, Fig. 2.3a
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Figure 2.1: Overview of real-time processing.

>

frequency

v

range

Figure 2.2: Range-frequency peaks.

shows the temporal features of a normal chirp.

Signal Processing Pipeline: The processing of mmWave radar data involves multiple

steps:

* Chirp and Frame Structuring: Each frame consists of multiple chirps separated

by a constant interval.
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Figure 2.3: FMCW radar signal structure: (a) A typical chirp showing frequency
sweep over time, (b) A frame composed of multiple chirps with inter-frame
timing.

* Range-FFT: Performed on each chirp to extract range information.

* Doppler-FFT (2D-FFT): Applied across chirps within a frame to resolve velocity.
This process is particularly useful for detecting multiple objects at the same range

but with different speeds.

* Micro-Doppler Analysis: By focusing on specific range bins and aggregating
phase data over time, fine-grained movement patterns (micro-Doppler signatures)

can be extracted.

The position and velocity of the object directly affect the IF signal phase and frequency;
a little movement (e.g., 1 mm) in front of the radar causes a phase change of 180°.
Sub-millimeter displacement detection is made possible by the IF signal’s changing
frequency in direct line with distance travelled. These concepts allow mmWave radars
to offer complete motion analysis even in difficult environments with many moving

objects.
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2.5.2.2. Range-Doppler and Micro-Doppler Analysis

Because of its low visibility, small size, and ability to detect target velocity and micro-
Doppler components with great precision, MmWave radars have notable benefits over
other technologies [117, 118]. These characteristics help the radar to run consistently
even in congested and complicated metropolitan surroundings. In addition, its small
size and power-efficient structure make it portable and suitable for use in long-term

applications [119, 120].

Range-Doppler is a radar analysis method used to measure both the distance and speed
of an object (Fig. 2.4). This method calculates the distance of the object to the radar
and the speed of its movement based on the data obtained as a result of the interaction
of the radar signals with the target. This technique, which is generally preferred for
tracking moving objects, reveals the general dynamics of the object. Micro-Doppler
analysis, on the other hand, is more suitable for studying the internal structure of the

target or its structural characteristics, such as vibrations. [121, 122].

Range
Doppler
Map

Range FFT| | _j Doppler

FFT

Radar raw data

Velocity
[

[,

Chirp index

[R—

Range Range

Figure 2.4: Data processing chain: Obtaining distance and velocity for each sequenced
radar frame [108].

Using at least two chirps with a 7, spacing, the velocity can be determined by con-

sidering total chirp time. Although having different phases, the range-FFTs matching

each chirp will show peaks at the same places. The observed phase difference omega

matches the motion of an item v7,.. w = % which may be rearranged to get the ve-
dw

locity (v) as v = 2%-. Therefore, the estimate of the object’s velocity is made possible

by using the phase difference recorded across two successive chirps.
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2.5.2.3. Pilot Setup for Human Sensing

Table 2.3: mmWave Radar IWR1843BOOST Configuration Parameters with Typical

Values

Parameter Units Typical Value / Range |Description

Start Frequency GHz 76 — 81 Starting frequency of the chirp; de-|
termines radar band (e.g., 77 GHz).

Frequency Range GHz 4 Total bandwidth across the chirp
(e.g., 77-81 GHz).

Bandwidth MHz 250 — 4000 Larger bandwidth gives finer range
resolution.

Slope MHz/us 20 - 80 Chirp slope; higher slope improves
range resolution but increases ADC
requirements.

Idle Time s 5-100 Time between chirps; affects frame
timing.

ADC Start Time /s 2-10 Delay after chirp starts before sam-|
pling begins.

Ramp End Time us 50 —200 Duration of chirp including fre-|
quency ramp.

Sampling Rate (Fs) Msps 5-25 ADC sampling frequency.

Samples per Chirp - 128 - 1024 Number of ADC samples per chirp.

Number of Chirps per Frame |- 32-128 Defines the number of chirps in one
radar frame.

Number of Transmit Antennas |- 1-3 Impacts angle estimation resolu-|
tion.

Number of Receive Antennas |- 1-4 Used for angle of arrival estimation.

Transmit Power dBm 10-15 Power level of the transmitted sig-|
nal.

Transmit Gain dB 0-50 Amplifies the outgoing signal.

Receive Gain dB 0-30 Amplifies the incoming signal.

Maximum Detection Range |m 2-100+ Depends on chirp design, gain, and
object reflectivity.

Range Resolution m 0.04-0.3 Determined by bandwidth: AR =
55

Maximum Velocity m/s or km/h|10 — 300 km/h Limited by PRI and number of]
chirps.

Velocity Resolution m/s or km/h|0.1 — 5 km/h Av = m

Frame Duration ms 10— 100 Duration of a full radar frame.

mmWave Radar Configurations: We visited calibration of the sensor to find the op-
timal parameters of the radar for sensing tasks in a series of configurations. These con-
figurations have been chosen to reflect human sensing tasks such as human counting
and human action recognition. We observed that numerous parameters related to data

collection and processing required careful adjustment to ensure optimal performance.
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To initiate this process, we began with a straightforward configuration in which par-
ticipants produced various speech scenarios. This approach enabled us to identify op-
timal calibration parameters and facilitated effective visualization of the raw data. In
addition, we conducted simplified tests involving inanimate objects moving along pre-
dictable, periodic trajectories. After finalizing the data collection parameters, we pro-
ceeded to gather speech-related sound analysis data and evaluated the performance of
raw data processing algorithms. We have configured the radar as its samples rate (ksps)
10000, frequency slope (MHz/pus) 29,982, with 2 TX antennas and 3 RX antennas, 10
frames, 200ms periodicity, 128 number of chirp loops, and 128 ADC samples. Ta-
ble 2.2 summarizes the key configuration parameters of mmWave radar systems along

with their typical values used in short-range sensing applications.

MicroDoppler Ranges Accumulated

Velocity (mis)
[

(b) Micro-Doppler signature of repeti-
tive side-stepping. Distinct bursts
appear symmetrically around zero
velocity due to lateral leg move-
ments.

(a) Radar setup and subject performing
repetitive side-stepping while main-
taining original position.

Figure 2.5: Radar-based analysis of repetitive side-stepping motion. In this movement
pattern, the subject remains in place while rhythmically stepping side-to-
side.

Experiments with mmWave Radar

Micro-Doppler signatures keep distinct and recognizable patterns in both single and
multiple person scenarios, as demonstrated by Fig. 2.5 and Fig. 2.6. The Doppler sig-
nals from one or two people walking side by side to the radar stay at a low frequency but
show different energy traces. In Fig. 2.5, likewise, symmetric bursts centered at zero ve-
locity are produced by repeated lateral motion of a single individual. Especially, these

micro-Doppler patterns are stable across several kinds of motion and repeated trials,
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Algorithm 1: 2D Micro-Doppler Spectrogram Generation
1: Input: ADC data cube (F,C, A, S) where F' = frames, C' = chirps, A = antennas,

S = samples
2: Output: 2D micro-Doppler image (T, V') where T’ = time, V' = velocity bins

3: for each frame i = 1 to I" do

»

Perform range FFT along samples (S) with Blackman window

b4

Output shape: (C, A, R) where R = range bins

a

Perform Doppler FFT across chirps with Hamming window and clutter removal

~

Result: detection matrix D; € RV*%

*®

Apply FFT shift on velocity axis

b

Store D; into micro-Doppler cube M, :, 1]
10: end for
11: Compute average over range: Maplt,v] = £ > M[t, v,7]

12: Save or visualize Msp as a 2D image (time x velocity)

iy )

O
EDRBA

) 14545

(a) [lustration: Single-Multiple person (b) Micro-Doppler of a S1ng1e/Mult1ple
walking parallel to the radar. person moving perpendicularly.

Figure 2.6: Movement parallel to the sensor (One and Two People). In both cases
— (top) single person and (bottom) two people — the individuals walk
parallel to the radar’s position.

which helps to identify persons and activities precisely. Whether the motion involves
one or more persons, the persistence of these unique micro-Doppler signatures empha-
sizes the possibilities of radar for human activity detection in practical, multi-person
surroundings. Algorithm 1 provide the exact methods for producing 2D micro-Doppler

representations.

We first set up to observe basic harmonic motion in raw radar data. We used a lightweight
pen fastened to the end of an extended flexible support, like a long thin rod. Fig. 2.7a-b
show the simple harmonic motion of a hanging pen where the radar records symmet-

ric, smooth micro-Doppler patterns centered on zero velocity. Figures 2.7c-d show a
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human traveling back and forth along the radar’s line of sight, producing alternating
positive and negative Doppler changes as they approach and retreat. Fig. 2.7e-f shows
a person regularly conducting a sit-to-stand action, which produces less symmetric but
nonetheless periodic Doppler signatures because of vertical body movement. Fig. 2.7g-
h shows two people traveling in different directions—one toward the radar and the
other away—producing overlapping but distinctively micro-Doppler patterns with op-
posite frequency changes. These illustrations show how, depending on their individual

micro-Doppler properties, radar can identify and separate distinct human and object

movements.
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Figure 2.7: Radar-based observation of different types of human and object motion
and their corresponding micro-Doppler signatures. (a—b) Simple harmonic
motion of a suspended pen observed by the radar. (c—d) A person moving
back and forth along the radar’s line of sight. (e—f) A subject performing
repeated sit-to-stand actions. (g—h) Two individuals walking in opposite
directions — one approaching and the other receding from the radar.
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Figure 2.8: Overview of the proposed system comprising three phases: data collec-
tion using synchronized UTI, audio, and mmWave radar; embedding space
learning with multimodal supervision; and application using radar-only in-
put for downstream tasks such as speech recognition.

2.6. A Multimodal System for Speech Analysis

In this section, we will describe our multimodal speech sensing and analysis system us-
ing raw mmWave radar signals which ifs mmWave-based system we developed in this
study. Basically, the system observes generated signals in front of mmWave radar for
phoneme recognition (we used TI Instruments IWR1843BOOST in our experiments).
The proposed system captures both articulatory movements and vocal cord vibrations

by analyzing raw mmWave radar, UTI and audio.

2.6.1. The Overall Structure

The overall structure of the proposed system is shown in Fig. 2.8. The system consists

of 3 phases; training, embedding space learning, and application phases. In the data
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collection phase, we synchronized multiple sources to collect data. During the embed-
ding space learning, the data-driven system trained the collected data, and optimized an
embedding space. The radar-only model then utilizes this embedded representation for

inference, enabling robust and privacy-preserving predictions using a single modality.

2.6.2. Tongue Contour Extraction as a Foundational Study

The increase in computer hardware, the production of multi-core, powerful graphics
cards and their widespread use have significantly increased the speed of computing with
computers. As a result of these developments, deep neural networks, which have been
known for a long time but cannot be used in practice due to the high cost of computation
and the lack of computers to do this, have become popular. To establish a foundation
for later experiments, we first investigated the effectiveness of various deep learning
models on the task of tongue contour segmentation from real-time ultrasound data. The
qualitative performance of the implemented architectures on ultrasound tongue contour
segmentation is illustrated in Fig. 2.9, where the proposed model exhibits more accurate

and consistent predictions compared to sDeepLab, BowNet, and sU-Net.

sDeepLab is a streamlined adaptation of the DeepLab v3+ architecture, which leverages
atrous (dilated) convolutions to increase the receptive field without reducing spatial res-
olution. In our implementation, we removed the dependency on large-scale pre-trained
models (e.g., ImageNet) and instead optimized the model for grayscale ultrasound in-
puts. BowNet is a custom dilated convolutional network developed specifically for
ultrasound tongue contour extraction. Inspired by prior work on peripheral vision and
multi-scale context aggregation, BowNet employs a bow-shaped architecture using suc-
cessive layers of dilated convolutions. This design helps capture both local edge struc-
tures and broader anatomical context. Our experiments confirmed BowNet’s strength
in balancing accuracy and inference speed, particularly under noisy imaging conditions.
However, the model occasionally generated artifacts near the tongue root, likely due to

echo patterns and shadows misinterpreted as salient features [123].

sUNet is a simplified U-Net variant tailored for efficient training on our modest-sized
ultrasound dataset. Unlike standard U-Net implementations, sUNet uses fewer encoder-

decoder levels and reduced filter depth to allow faster convergence and lower compu-
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tational demands. This architecture proved to be robust across multiple subjects and
conditions, making it an effective baseline model. Its skip connections preserved spatial
information well, but it occasionally failed to separate close-proximity tongue contours

from overlapping structures in the jaw or palate [124].

Original Annotated sDeepLab BowNet sU-Net Ours
| | E [ enh| || |
— :\-:- & ~— e ———r
e : - - ST ~—— ~—
\/‘ % -~ —-/ ‘-—’ —/ ‘/
e " i -~ —_—
TN s e = B N

Figure 2.9: From left to right: original ultrasound image, manually annotated ground
truth, and predictions from sDeepLab, BowNet, sU-Net, and our proposed
pretrained U-Net based model. While sDeepLab struggles with noise and
incomplete contours, BowNet and sU-Net show moderate accuracy. The
proposed method demonstrates superior delineation quality, closely match-
ing the ground truth across various subjects and imaging conditions.
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2.6.3. Pilot Setup for mmWave Speech Sensing

We set up a radar-camera synchronized data-collecting system by using Texas Instru-
ments’ mmWave Studio platform. The customized Lua scripts controlled the radar’s set-
tings and automated the acquisition process, including hardware triggering and start/stop
instructions. The development of a Python-based multi-threaded video recording mod-
ule allowed real-time visual alignment. This module ensures that the timing of RGB
video frames matches up with radar data, allowing for precise matching of human ac-
tions seen on camera and micro-Doppler signatures. This setup provides a solid foun-
dation for combining different types of data and using machine learning, allowing for

easy testing of various movements and environmental factors.

Figure 2.10: The setup for synchronized radar and camera acquisition. The illustration
shows a subject positioned in front of a radar and camera system, while
a spectrogram is generated in parallel. It emulates a real-time sensing en-
vironment using mmWave Studio, custom Lua scripts, and Python-based
multi-threaded video capture.

The initial speech sensing investigations employing micro-Doppler signatures demon-

strated limited classification performance. The spectrograms derived from radar data
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exhibited an absence of discernible, replicable patterns across multiple spoken utter-
ances. Speech, in contrast to physical activities such as walking or waving, generates
delicate and fine-grained motions, which are challenging to consistently record using
micro-Doppler, particularly at low signal-to-noise ratios and in the absence of exact
alignment. The resulting generated spectrograms lacked discernible temporal or spec-
tral structure, hindering the capacity to distinguish phonemes or words. While some
studies have demonstrated the feasibility of using micro-Doppler data for speech recog-
nition [ 78], our results demonstrate that, in this configuration, micro-Doppler signatures
alone are inadequate for accurate speech classification (Fig.2.11). These
findings underscore the necessity of incorporating diverse representations or

modifying the experimental design to enhance discriminative capacity.
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Figure 2.11: Range-accumulated micro-Doppler spectrograms for different speech
recordings: the left plot corresponds to the vowel /a/ and the right to
the vowel /e/. Each spectrogram shows a 2-second radar capture dur-
ing speech articulation. The velocity patterns are weak and not clearly
distinguishable between the two vowels, supporting the observation that
micro-Doppler alone does not provide sufficient discriminatory informa-
tion for isolated vowel classification.

mmWave Radar Configurations

The mmWave radar setup was modified to enhance system performance and data col-
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lection quality. This modification entailed the customization of several pivotal factors,
including the number of transmitting and receiving antennas, the frequency slope, chirp
periodicity, and the sample rate. Through experimental analysis, it was determined
that minor alterations in these parameters can significantly influence downstream sig-
nal processing and data collection processes. As indicated in [70], each frame in our
configuration runs at a chirp repetition rate of 1 kHz with 256 ADC samples per chirp.
This arrangement computes the sampling rate F by F; = %, where N = 256 is the
number of samples per chirp and 7" = 0.001 seconds is the chirp duration, hence pro-
ducing a sampling rate of 256 kHz. This arrangement was found to be appropriate for

obtaining the fine motion dynamics required for our use.

A speaker device was positioned 50 cm in front of the mmWave radar and used to emit
a sweep sound ranging from 20 Hz to 20,000 Hz (Fig. 2.12). This setup enabled us to
evaluate the radar’s sensitivity to frequency-varying acoustic signals in air. The known
distance and controlled input allowed for consistent testing and spectrogram analysis

of the radar’s response to airborne sound waves.

Sweep Sound

AR

20.000 Hz

SPEAKER

Figure 2.12: Experimental setup illustrating the placement of the speaker device 50
cm in front of the mmWave radar, configured to emit sweep sounds from
20 Hz to 20,000 Hz, facilitating controlled evaluation of the radar’s sen-
sitivity to frequency-varying acoustic signals.

In the early phase of our experiments, the radar was configured with moderate values
across a range of parameters, including 2 transmit and 3 receive antennas, 10 frames,

128-256 chirp loops, and 128-256 ADC samples per chirp, with a periodicity between
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70-200 ms. However, this configuration proved suboptimal for high-resolution tem-
poral tracking, particularly in speech sensing applications. As a result, we revised the
settings to significantly improve temporal granularity and control. The updated con-
figuration reduced the system to a single transmitter and four receivers, increased the
number of frames to 5000 (can be changed by duration of data capture), and fixed both
the number of chirp loops and ADC samples at 10 and 256, respectively. Most notably,
the frame periodicity was reduced from a broad 70-200 ms range to a fixed 1 ms, al-
lowing for denser and more temporally precise sampling of micro-movements. This
revised setup enhanced the radar’s ability to capture fine-grained articulatory motion
required for our application, without altering the ADC sample rate (10 Msps) or the
frequency slope (29.982 MHz/ps).

oncatenated Spectrogram of mmWave Radar ADC Samples.
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(a) Acoustic baseline [125]. (b) Radar-based sweep sound.

Figure 2.13: (a) Spectrogram of speech recorded from [125]. Distinct harmonic struc-
tures are visible across time, enabling speaker device and throat discrim-
ination. (b) Spectrogram of mmWave radar ADC data captured during a
20-20,000 Hz sweep sound test. Harmonic curves reveal how frequency
sweeps are reflected and captured across time.

Fig. 2.13 compares spectrograms from different acoustic and radar-based settings. An
acoustic spectrogram of speech from [125], where voiced sounds produce well-structured
harmonic bands is shown in Fig. 2.13a. Inspired by this, we tested our radar system
using a controlled audio sweep from 20 Hz to 20 kHz. As seen in Fig. 2.13b, the radar-
captured ADC data reveals curved harmonic patterns in the time-frequency domain,
indicating that the radar is responsive to air-coupled audio signals under certain condi-
tions. Finally,these comparisons validate the feasibility of radar-based acoustic signal

sensing and guide future configurations for more speech-relevant experiments.
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While our work shares conceptual similarities with the MILLIEAR pipeline [126], our
spectrogram generation approach differs in execution. Instead of applying Range-FFT
and Doppler-FFT to isolate a specific vibrating range bin, we directly concatenate radar
frames along the time axis to form a continuous signal. This raw micro-Doppler signal,
accumulated across range bins, is then processed using Short-Time Fourier Transform
(STFT) to generate the time-frequency domain spectrogram. This approach simplifies
the pipeline and provides a global view of speech-induced motion over time. Although
less targeted than MILLIEAR’s range-selective method, our method is effective for
general speech activity sensing and aligns well with the constraints of real-time data

acquisition and low-complexity processing [125].

Concatenated Spectrogram of mmave Radar ADC Samples Concatenated Spectrogram of mmWave Radar ADC Samples

(a) Human speech with varying radar distances: too close (left), fur-
ther (right)
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(b) Radar-based speech recording with speaker device results in high
frequencies.

Figure 2.14: Radar-based speech data collection setups with human and speaker de-
vice.

Fig. 2.14 illustrates two radar-based speech sensing setups. In Fig. 2.14a, a speaker
repeats the phrase “Adana Mersin Adana Mersin Adana” over five seconds while an

mmWave radar captures motion dynamics. Variations in distance between the speaker
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and the radar affect the resulting spectrogram. In Fig. 2.14b, a speaker device plays
a 15-second common speech sourced from YouTube, recorded using a 1 ms chirp in-
terval, resulting in 15,000 frames. These frames are concatenated to generate the final

spectrogram.

2.6.3.1. Experiments with mmWave Radar

Ultrasuite Repository Captured by mmWave Radar

In the preliminary process, we focused on capturing articulatory patterns of selected
consonants—/k/, /p/, /r/, and /s/—based on their place and manner of articulation. These
consonants were chosen to represent diverse articulatory mechanisms, including bil-
abial (/p/), alveolar (/s/, /r/), velar (/k/), and retroflex (/r/), as well as fricative sounds
(/s/). The total number of training and testing samples collected across all modalities

is summarized in Table 2.3.

To ensure consistency and reproducibility in the radar reflections, a loudspeaker setup
(Fig. 2.12) was used to play pre-recorded consonant utterances. The utterances were
sourced from the UltraSuite repository, which provides high-quality audio recordings
aligned with articulatory targets. These ‘.wav*‘ files were played through the speaker

in a controlled environment while the radar captured the resulting signal reflections.

Table 2.4: Distribution of training and testing data across modalities for selected con-

sonants.
Consonants Number of Train Data| Number of Test Data
(Articulation-based) (All Modalities) (All Modalities)
/k/ 619 166
p/ 1278 343
It/ 1199 329
/s/ 583 164

The concatenated spectrograms of ADC samples acquired from the mmWave radar for

various speech utterances played over a speaker demonstrated in Fig. 2.15. The spectro-
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grams in the bottom row show more consistent and periodic spectrum activity, implying
maybe stronger radar reflections from louder or more ordered sound segments. The top
spectrograms, on the other hand, show somewhat less and more scattered patterns that
indicate smaller articulatory motions. These time-frequency representations are essen-
tial input elements for deep learning-based classification tasks as they allow the study

of speech-sensing micro-movements recorded by the radar.

100

w6

300

Figure 2.15: Concatenated spectrograms illustrating radar reflections from various
speech utterances.

In this study, mmWave radar spectrograms were initially produced by subjecting voice
recordings to a process of signal transmission through a speaker, followed by the ac-
quisition of reflected signals over a designated 2-second interval. To enhance signal
clarity and ensure adequate representation of radar reflections, each recording incor-
porated numerous repetitions of the same consonant sound. However, this approach
gave rise to a potential challenge for deep learning models: the presence of recurrent
patterns within a constrained time frame could lead to temporal overfitting. The poten-
tial outcome of this process is the development of models that are capable of linking
specific attributes of each phoneme with predetermined locations within the spectro-
gram, as opposed to the more nuanced and complex process of learning the underlying

articulatory traits of each individual letter. To address this challenge, we employed a
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data augmentation approach by dividing the continuous two-second spectrograms into
smaller, repeat-aware segments, which were then matched with individual utterances.
The enhanced precision in labeling, attributable to this segmentation, along with the
reduction in temporal bias, enabled the model to attain greater generalizability across

a spectrum of speaker contexts and temporal patterns.

Table 2.5: Performance comparison of three models in terms of precision, recall, F1-
score, and support across consonant classes and overall. Overall Accura-
cies: Model 1: 92%, Model 2: 89%, Model 3: 77%

Model | Metric |/k-g/|/p-b-v-f/| /v/ |/t-d-z-s/

Precision|0.76| 0.98 [0.98| 1.00

Recall [1.00/ 093 |1.00| 0.77
Model 1
F1-Score|0.86| 0.95 [0.99| 0.87

Support | 166 | 343 [329| 164

Precision| 1.00| 1.00 |0.92| 0.69
Recall [0.84| 0.79 |1.00| 1.00
Model 2
F1-Score|0.91| 0.88 [0.96| 0.82

Support | 166 | 343 [329| 164

Precision|0.96| 1.00 [0.58| 0.90

Recall [0.98| 0.34 [1.00| 0.85
Model 3
F1-Score|0.97| 0.50 [0.74| 0.88

Support | 166 | 343 [329| 164

As illustrated in Table 2.4, the performance of three models trained on various modality
combinations (radar, ultrasound, and audio) is shown for consonant classification. The
model that combines all three modalities (Model 1) achieved the best overall accuracy
of 92%, as indicated by its exceptionally good F1-scores across all consonant groups.
Model 2, which utilizes radar and ultrasonic data exclusively, exhibited an overall accu-
racy of 89%, demonstrating competitive performance, though with slightly diminished
recall for the /p-b-v-f/ group. Conversely, Model 3, designed exclusively on radar

data, exhibited a substantial decline in performance, with an overall accuracy of 77%.
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The findings underscore the necessity of multimodal information for enhancing catego-
rization accuracy, particularly in cases where speech are acoustically and articulatory

comparable.

40 ~ Consonants 40 Consonants
~ k-g k-g
%2 = L X 13

&
"W « pob-v—f 20 (] e p—b-v-f
0 "ﬂ \.- r e x
50 :,‘*’-‘“’ t-d-z-s 0 X7 todmz=s
, ,\% I+ = 3:' g,g sx«ﬁ
ﬁ

-20

—-40 fe=s)
—-40
—-40 -30 =20 =10 O 10 20 30 —-40 —-20 20
(a) (b)
60
10 m Consonants 40 oo . Consonants
20 k-9 - K . k-g
. « p-b-v—f 2¢ e p—b-v—f
. e %__ o
- o r : . r
20 * t-d-z-s —20 w * t-d-z-s
—-40 g
-60 w —40
—-40 —-20 (0] 20 —-20 0 20 40
(©) (d)

Figure 2.16: t-SNE visualizations under different modality configurations during in-
ference.

Fig. 2.16 presents t-SNE visualizations of the learned embeddings from a model trained
on all three modalities—UTI, mmWave radar, and audio—under four different infer-
ence conditions. Fig. 2.16a shows the embedding space when noise is added to all data

sources, reflecting a baseline for separation under degraded input.

In Fig. 2.16b, the model operates solely on mmWave radar data, with other modalities
replaced by noise. Although the embedding structure remains partially separable, the
absence of UTI and audio leads to overlapping clusters, highlighting the importance of
multimodal inputs. Fig. 2.16c includes radar and UTI data (audio replaced by noise),
yielding improved class separation compared to radar-only, confirming that UTI data
contributes significantly to articulatory representation. Finally, Fig. 2.16d shows the
embedding when all modalities are available at inference, producing the most distinct
and well-separated clusters. These results demonstrate the complementary nature of the
modalities and the robustness of the learned representation even when some modalities

are missing during inference.

41



2.7. Conclusion

This chapter explored the use of the mmWave radar for human and speech sensing,
presenting a detailed overview of its operational principles, signal processing pipeline,
experimental setups, and integration with multimodal systems. The main findings and

takeaways can be summarized as follows:

* mmWave radar systems offer robust and privacy-preserving alternatives to camera-
based sensing, particularly effective in capturing motion and velocity through

micro-Doppler analysis.

* We demonstrated the radar’s ability to detect and differentiate various human ac-
tions, including harmonic motion, walking patterns, and sit-to-stand transitions,

using both 2D and 3D micro-Doppler representations.

+ Initial speech sensing experiments revealed the limitations of micro-Doppler-
based radar for isolated vowel and consonant classification due to the subtlety

of articulatory movements and low signal-to-noise conditions.

* To address this, we concatenated raw radar frames along the time axis to form a
continuous micro-Doppler signal and applied STFT to generate speech-relevant
spectrograms. This approach provided a global view of motion over time and

improved the representation of articulatory events.

» We also employed a speaker device to play articulatory diverse consonants from
the UltraSuite repository, enabling clean and repeatable radar captures for phoneme-

level analysis.

» Segmenting the 2-second spectrograms into utterance-aligned chunks helped re-
duce temporal overfitting and improved generalization in machine learning mod-

els.

* Multimodal learning—combining radar, ultrasound, and audio data—Ied to sig-
nificantly higher classification performance compared to radar-only models, as

validated by F1-scores and t-SNE visualizations.

In conclusion, mmWave radar shows great promise for speech-related sensing tasks
when integrated within a multimodal framework. The methods presented in this chapter—

based on speaker-emitted signals—Ilay a strong foundation for subsequent experiments
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using radar data directly captured from human speech. The next chapter extends this
work by analyzing naturally produced speech and further investigating the radar’s ca-

pacity for capturing fine-grained articulatory dynamics in real-world scenarios.
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3. TOWARDS ROBUST PHONETIC SEGMENT CLAS-
SIFICATION VIA ARTICULATORY AND AUDIO
MODALITIES

3.1. Introduction

The classification of phonetic segments underlies many applications in speech and lan-
guage processing (SLP), such as automatic speech recognition (ASR), pronunciation
modeling, and articulation analysis. Additionally, advancements in speech recognition
are intrinsically linked to accurate consonant classification, as the precise identification
of phonetic segments is crucial for developing effective speech recognition systems and
therapeutic interventions. Research supports that the phonetic placement method has
been effective in enhancing articulation skills, specifically for bilabial consonants in

children with physical disabilities [127] and individuals with Down syndrome[ 128].

Although traditional approaches are largely based on audio signals, these methods face
several limitations due to factors such as inter-speaker differences, environmental noise,
and articulatory ambiguities [129—131]. The phonetic segment classification based
solely on audio may fail to distinguish spectrally similar but articulatory different seg-
ments, especially when segments vary depending on context or when the differences

are subtle.

To address these challenges, articulation data provided by UTI has been introduced as
a complementary modality to speech processing. UTI offers the visualization of the
tongue shape during the production of each phoneme in a non-invasive and real-time
manner (Figure 3.1). This technique stands out for its ability to capture fine-grained ar-
ticulation information that is usually difficult to extract from audio signals alone, and is
therefore an important tool for understanding both individual and inter-individual vari-
ations [132]. Thanks to advances in ultrasound technology, UTI systems are becoming
more portable, more affordable, and more amenable to integration with machine learn-

ing models for phonetic analysis [31, 56].

Despite its advantages, UTI is has a couple of limitations. First, the setup requires pre-

cise probe placement under the chin, which reduces its feasibility for unsupervised or
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Transducer

Figure 3.1: Final placement of the tongue shapes can be represented by phonemes [1].

remote use. Second, interpreting UTI images is inherently challenging due to tongue
movement complexity, image quality fluctuations, and the absence of visible informa-
tion about other articulators such as the lips or glottis [65]. These constraints introduce

ambiguity in classification when ultrasound images alone are used.

(a) /k/: cat” (b) /t/: ”time”  (¢)/d/: ”dog”  (d) /z/: “zebra”  (e)/s/: sun”

Figure 3.2: Sample phonetics segments of ultrasound tongue (top) and visible spec-
trum (bottom) imaging [1].

Therefore, the viability of ultrasound and the accuracy of audio-only applications have

both come under scrutiny. For example, speech segments that differ primarily in vocal
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fold vibration—such as the voiceless /s/ and its voiced counterpart /z/—produce simi-
lar tongue shapes in ultrasound frames, making them nearly indistinguishable in UTI
images alone (Fig. 3.2d and Fig. 3.2¢). Yet, these segments are easily separable in the
acoustic domain due to the presence or absence of voicing cues. Similarly, some vow-
els, such as /i/ and /y/, are similar in terms of tongue shape but differ in lip rounding.
However, since standard UTI systems cannot display such lip movements, they may
lead to misclassifications unless supported by auido features. Such examples clearly
demonstrate the need for a multimodal approach that can capture both articulatory and

audio features of speech.

In light of these concerns, this chapter introduces a novel framework (MMNET) that
uses both ultrasound tongue images and audio during the training phase to create a
shared embedding space to address these issues. This embedding space integrates ar-
ticulatory patterns with spectral and temporal features of speech, enabling more robust

phonetic classification.

At inference time, we proposed several methods methods (M 1-M4) operate using only
audio input. However, the influence of articulatory information—Ilearned during training—
remains embedded in the model’s representations. Our design (M 1) allows to maintain
high classification performance in realistic, audio-only environments, while benefiting

from the structured articulatory grounding that UTI provides during training.

M1 offers several key advantages. Firstly, it enhances the classification performance
that is vulnerable to acoustic noise and speaker variability through the utilization of
joint representation learning. Second, it mitigates ambiguities arising from unimodal
imaging or audio inputs by enabling cross-modal supervision [133]. Finally, it enables
practical deployment in low-resource or real-time settings where articulatory imaging
is unavailable, making it suitable for broader applications in speech modeling and as-

sistive technologies.

3.2. Methods

We propose a shared embedding space and classification methods based solely on au-
dio data in order to address the phonetic segment classification problem. The proposed

approach consists of three main stages: data collection, learning the multimodal em-
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bedding space, and classification based only on audio.

In the first stage, a multimodal dataset (GTUConsonants) was compiled by collecting
both audio and simultaneous UTI data from the speakers. The data collection process
was carefully designed to obtain high-quality and synchronized recordings and was
supported by reading materials covering various phonetic contents. This stage plays
a critical role in the generalizability of the model by being planned to include both

individual and inter-individual articulatory variations.

In the second stage, MMNet, a multimodal neural network architecture trained on the
task of classifying phonetic segments, learns the common embedding space. This em-
bedding space is defined by the vector representations extracted from the last hidden
layer of the model (just before the classification layer). Thus, these vectors learned
from audio and UTI data provide a meaningful and discriminative representation for
classification, carrying both articulatory and audio information together. Since this
representation space is optimized to directly increase the classification performance, it

allows the model to focus on the discriminative information.

In the last stage, this embedding space is estimated using only audio data and phonetic
segment classification is performed on this representation. Thus, while the models
(M1-M4) are enabled to benefit from rich articulatory information such as UTI in the
training process, a more practical and portable system that can work only with audio
data is obtained in the application phase. This approach allows both to increase the
classification accuracy and to improve the usability in real-world speech technology

applications.

3.2.1. Datasets

3.2.1.1. GTUConsonants

To have a data-driven model for phonetic segment classification, we compiled a suffi-
cient and balanced dataset dataset by using [134]. For this purpose, the data collection

process was carried out within the scope of the dataset we named GTUConsonants .

During the data collection process, participants were selected from Turkish-origin adults

'A sample recording of our dataset: https://youtu.be/golisLoMSxY?si=TpmKGr1Gs9vu3YQR
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between the ages of 20 and 40, and were sampled to reflect phonetic diversity as much
as possible. Participants were asked to read full sentences in a manner close to the nat-
ural flow of speech, and during these readings, both audio data and synchronized UTI
recordings were taken. The obtained dataset includes recordings of three participants
vocalizing six different consonants, which also determines the number of classes in the

target classification task (Table 3.1).

The International Phonetic Alphabet (IPA) [135] chart is internationally recognized and
standardized for phonetic notation. It was created by the International Phonetic Associa-
tion as a way to represent the sounds of spoken language. The IPA provides a consistent
system to transcribe the phonetic sounds of any language, allowing linguists, language
learners, and professionals in related fields to accurately describe the sounds they hear
and produce. The phonetic segments for this study are selected based on IPA standards.
We ensured cross-lingual generalization by choosing phonetic segments based on IPA

standards, which provides consistency and accuracy across different languages.

Table 3.2 presents a summary of the GTUConsonants dataset developed for phonetic
segment classification in Turkish. The dataset comprises 67 video clips, totaling over
one hour of synchronized UTI and audio recordings, captured at 25 frames per second
with a resolution of 640x480 pixels. UTI image clips recorded in parallel with the
audio data were also included in the analysis process. These images were rescaled
from their original 640 x 480 resolution to 96 x 96 size in order to keep the model size
at a manageable level and optimize the training time. During this process, care was

taken to preserve the meaningful articulatory information in the ultrasound images.

On the other hand, the processing of audio data was carried out by following a workflow
based on spectrogram extraction over labeled segment intervals. Each audio segment
was obtained from audio files with a sampling rate of 48 kHz, matching millisecond-
level timestamps. In order to analyze the frequency content of the segments over time,
the Short Time Fourier Transform (STFT) was applied. This transformation was calcu-
lated using a window size of 1024 samples and a shift length of 512 samples, providing
50% overlap. The resulting spectrograms were represented in a form that visualizes
the intensity of the signal in decibels, with logarithmic scaling applied to the frequency
axis. This approach provides a strong basis for audio-based classification by capturing

detailed frequency information over a given time period [136].
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Table 3.1: The number of ultrasound frames of train and test sets on GTUConsonants
for different phonetics and subjects.

Subject 1 | Subject 2 | Subject 3

Consonant
Train | Test| Train | Test| Train| Test

1t/ 642 | 198 | 609 |324| 522 |312

/k/ 531 [336| 813 |258| 756 |246

/z/ 438 |213| 459 | 186 | 462 | 156

/d/ 522 |120| 660 |306| 885 |387

/g/ 387 | 159 459 |180| 411 |123

/s/ 546 |172| 687 |279| 648 |245

3.2.1.2. UltraSuite Repository

To assess model performance more precisely and to examine general validity, the Ul-
trax Typically Developing (UXTD) dataset was incorporated into the analysis as an
additional data source. UXTD is a subset of the UltraSuite database, featuring rich
annotations including speaker variability, word-level transcriptions, and detailed pho-
netic content. This dataset has been labeled by expert language therapists within the
scope of speech therapy applications and is a widely used and reliable source in the

literature [63, 137, 138].

One of the most successful results in the literature was carried out by Ribeiro et al. on
the dataset [63]. In order to classify the speech sounds, four different classes can be

organized based on the places of articulation (place of articulation).

The defined classes are grouped according to their articulation features as follows: The
first class includes sounds with bilabial and labiodental articulations such as /p, b, v, f/.
The second class includes dental, alveolar and post-alveolar sounds such as /th, d, t, z,
s, sh/. The third class represents phonemes produced in the velar region, such as /k, g/.
Finally, the fourth class consists of the alveolar approximant sound represented by the
/t/ sound alone. This four-class structure allows the evaluation of models capable of
articulatory-based generalization. The total number of ultrasound frames used for each

class within the scope of the study is presented in Table 3.3.
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Table 3.2: GTUConsonants Dataset Summary.

Video Properties

Longest video duration 00:01:14 sec

Shortest video duration 00:00:18 sec

Number of video clips
Total video duration
Frame rate

Frame resolution

67
01:05:15 sec
25 frame/sec

640 x 480

Phonetic Position Labels

w_in
w_fin
med_in

med_fin

Word initial
Word finish
Word middle, syllable initial
Word middle, syllable finish

Sample Annotated Segment

File
Segment
Consonant
Position
Start time (s)
End time (s)

Duration (s)

esra_coronal zl1
Z W_in

z

w_in

3.170

3.245

0.074

Table 3.3: Total number of ultrasound frames.

Consonants|US frames count
/k-g/ 3,255
/p-b-v-f/ 8,952
/t-d-z-s/ 6,945
It/ 9,551
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3.2.2. MMNet: Audio and UTI Joint Embedding Space

Our multimodal architecture, MMNet, plays a major role in this framework. It consists
of two separate sub-networks (SubNetl and SubNet2) as shown in Fig. 4.4a. One of
these sub-networks uses spectral sound waves (Fig. 4.4b), the other uses ultrasound im-
ages (Fig. 4.4c). Both networks reproduce embedding vectors specific to their modality
and add these vectors to the phonetic embedding memory. In the last layer, the MMNet,
which combines these two different representations, creates a common embedding vec-
tor with a total dimension of 96 and performs productions based on this representation.
These sub-architectures serve as the basic components of the systems to be created later

and provide the direction that will improve the model as a whole.

Each of the sub-architectures is built using 2D Convolutional Neural Network (CNN)
and Bi-directional Long Short-Term Memory (BiLSTM) layers as the basic building
blocks to efficiently capture temporal and spatial information. Time-distributed layers
are also integrated into the architecture to support the structure in which sequential
images (image sequences that progress in time) are processed through CNN layers. This
structure ensures that the spatial features at each time step are preserved and transferred

to the temporal enhancement.

Our multimodal architecture combines structures running on audio-only or UTI-only
data by integrating both types of input - a spectrogram image and a simultaneous UTI
frame sequence - into a single network. This combination makes it possible to synthe-

sise the augmentative common representation offered by each modality.

To improve the performance of the MMNET, various training systems such as hyper-
parameter variation, on-the-fly augmentation, dropout and early stopping have been
prepared. In addition, the joint use of multiple UTI frames allows segments to be
obtained based not only on the data received at one time, but also on the totality of
continuous articulatory movements over time. In this way, our models show satisfac-
tory performance in key feature metrics such as accuracy, flexibility (recall), specificity

(specificity) and precision (precision).
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(a) MMNet: Overview of the multimodal network architec-
ture that generates a final 96-dimensional embedding by
concatenating the output vectors from SubNetl and Sub-
Net2.
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Figure 3.3: The sub-components of the phonetics embedding space [1].
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3.2.3. Phonetics Embedding-based Classification

The embedding vectors obtained from the last hidden layer of MMNet (Fig. 4.4a) are
based on multimodal (audio + UTI) data during training, but allow inference to be made
only with audio data during the test phase. This architectural feature offers a great
advantage in terms of real-world applications of speech technologies. Since the use of
imaging systems such as UTI is costly, has limited portability and requires expertise,
the development of systems that work only with audio data both increases accessibility

and makes them practical for use in applications such as speech therapy.

Based on this motivation, the four different architectural structures we propose (M1—
M4) are designed to eliminate the need for additional hardware while increasing the
accuracy of systems based only on acoustic data. These structures are important steps
in a research line that aims to make phonetic segment classification more accessible,

economical and faster.

3.2.3.1. M1:Embedding Extraction by Similarity

This method implicitly uses the audio (&’ € R32) and UTI (@' € R%*) embedding vector
pairs obtained in the training phase to create a system that works only with audio data in
the inference phase. In the inference phase of the model, the acoustic embedding vector
a produced by SubNetl for the test sample is compared with all the audio embedding
vectors (a@'’s) in the training set. This comparison is based on the cosine similarity

between the vectors, and the @), vector closest to the test sample is selected.

Since each vector @ is paired with a corresponding UTI embedding «’' during the train-
ing process, the vector ) corresponding to the nearest a), is easily accessible. This
vector is treated as a real UTI input during the inference process of the model and is
used as input for the phonetic classification. This approach offers the possibility of
indirectly maintaining UTI-based classification performance even when the UTI data

is not actually present at test time.

In addition, to make the UTI representations more robust and generalizable, the match-
ing with the audio data is enhanced by adding artificial Gaussian noise to the UTI data

during the training process. All these steps are detailed in Algorithm 2, which summa-
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Algorithm 2: M1 Test Phase
Data: @', «’ as training audio and UTI data embedding.

Result: < ¢; class label >

foreach d in test space produced by SubNetl do
Find the most similar acoustic embedding vector @), using cosine similarity:

=g —
dj, = arg max {cos(&k) = &} (3.1

A 1l Nl

Retrieve the corresponding UTI embedding ), ;

Use ), as test-time input for further phonetics classification ;

Run SubNet3 with [@ u} ] concatenated ;

rizes the algorithmic structure of our proposed method. This algorithm systematically
demonstrates how articulatory knowledge can be used indirectly by using only audio

data at test time.

3.2.3.2. M2:Embedding Extraction by Encoders

This approach aims to estimate articulatory information indirectly by creating an em-
bedding space based solely on audio data. The model is based on an encoder-decoder
architecture. Thanks to this structure, the audio-based representation space is learned
by mapping it to the articulatory, UTI, embedding space during training. This map-
ping allows the system to approximate articulatory representations during the test phase

(Fig. 3.4) using only audio data.

Phonetic

Classes

:> SubNet3

NCODER
ECODER

Figure 3.4: During the test phase, the M2 architecture takes the input vector a and
generates an output vector «, which is then concatenated with @ and passed
through SubNet3 for final processing [1].
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The encoder part of the model consists of three Conv2D layers that process spectral
sound data, and each layer is followed by a 2x2 dimensional max-pooling operation
to reduce the size of the feature maps. This structure allows abstract but meaningful
representations to be extracted from the input data. The decoder part has three Conv2D
layers in a symmetrical manner, and each layer is followed by a 2x2 dimensional up-
sampling operation. In this way, the acoustic information compressed by the encoder
is projected back into the articulatory space. The output layer is a Conv2D layer with a
3%3 dimensional filter and a sigmoid activation function, which allows the reconstruc-

tion of the UTI embedding vectors.

In the test phase, only acoustic embedding vectors @ are used, and the decoder trans-
forms these acoustic representations into vectors corresponding to the articulatory space
[@; @]. The combined vectors, which are the output of this decoder, are then used as in-
puts by SubNet3 for classification purposes. Thus, although the system only uses audio
data at inference, it may allow improving phonetic classification accuracy by producing
embedding vectors that are similar to the articulatory representations. This structure al-
lows the effective reconstruction of articulatory representations learned from acoustic

signals without the direct need for UTI data.

3.2.3.3. M3:Embedding Extraction by Auto-Encoders

In this architecture, instead of using the embedding vectors obtained from SubNet3, the
raw audio and the UTI data are fed directly into the system. The model is based on two
separate autoencoder structures that process both acoustic and articulatory modalities
simultaneously. These autoencoders learn their own modality-specific representations
(latent embedding), which are then combined and transferred to the final classification

layer (Fig. 3.5).

A key feature of the model is its end-to-end training architecture. The entire system—
from input layers to the final classifier—is optimized using a unified loss function,
ensuring seamless information flow across modalities and consistent parameter updates
throughout the network. This integrated training strategy allows the direct observation

of how features extracted from both data types influence overall system performance.
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Figure 3.5: The M3 architecture employs three distinct input configurations during
training: (a;, u;, ¢;), (a;, None, ¢;), and (None, u;, ¢;), where a and u rep-
resent audio and UTI data, respectively, and c denotes the corresponding
class label [1].

Encoder-decoder architectures trained separately for each modality extract low-dimensional
but meaningful representations of the data. These latent representations (latent embed-
dings) are fed into the classifier network as a combined vector. This combination pro-
cess aims to provide a richer representation by exploiting the complementary structure
of audio and articulatory information. This structure is expected to enhance classifica-
tion accuracy, particularly in cases where phonetic segment distinctions are subtle or

ambiguous.

The model allows in the test phase to have more robust and stable architectures com-
pared to structures using only acoustic data or only UTI data. This lead us to processing
the two modalities together provides a superior generalization and classification capac-
ity compared to single modalities. In addition, the end-to-end joint training of the sys-
tem enabled overlapping features between the modalities to be learned and effectively

transferred to the classifier.
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3.2.3.4. M4: UTI-Free Inference via Noise-Augmented Training

This model employs an architecture that directly utilizes multiple data modalities—
specifically audio and UTI—as inputs, rather than relying on precomputed embedding
vectors. To support this approach, a special dataset has been created containing simul-
taneously collected audio and UTI data. This dataset is fed directly into the model
during the training process, allowing it to process both audio and image-based samples

together (Fig. 3.6).

Dataset

Inference
with Model
. ‘)) Audio -
Training N
Image
A\ 4
Classification

Figure 3.6: Training with both audio—UTI and audio—noise pairs enables robust infer-
ence using only audio and noise images, reducing dependency on UTI data.

However, as UTI images are often not available during the inference phase, the appli-
cability of this model in the real world remains limited. To address this issue, only real
UTI data are used in part of the training data, while the remaining part is presented
with random noise images along with audio data. Thus, the model is trained with both
complete modality pairs (audio + UTI) and incomplete modality conditions (audio +
noise), which increases the model’s ability to classify with audio alone and to learn

relationships between UTI and audio.

This strategy allows the generalizability and robustness of the model to noise. It ensures

that the model maintains its performance, especially in the absence of real data, and
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provides more flexible solutions for field use.

In the inference, the model is configured to run only with audio data and accompany-
ing noise images. The use of these images, which do not contain structural information,
removes the reliance on real UTI data and makes the technology more accessible in the
field. Especially in environments where ultrasound imaging systems are expensive, dif-

ficult to utilize, or inapplicable, this model allows the reasonably robust architectures.

3.3. Experimental Results and Analysis

This section presents the architectural designs of the proposed models—ResNet50, Sub-
Netl, SubNet2, and MMNet—along with their intermediate evaluation results, thereby
providing a detailed overview of how each model contributes to phonetic segment clas-
sification within the proposed system. In addition to the implemented architectures,
comparative analyses are made with the basic approaches that are widely used in the
literature. These comparisons facilitate a comprehensive evaluation of the system’s
overall success level, its flexibility across different data modalities, and the distribu-

tion of the application.

3.3.1. Baseline Models

ResNet50: This architecture is notable for its strong performance in image classifica-
tion tasks [139]. One of the most prominent innovations of the ResNet architecture is
the use of residual connections, which facilitate the network to directly learn a series of
transformations that map the input to the target output. These connections structure the
learning process at each layer by adding a “difference” function directly to the input.
Thus, instead of learning the target output directly, the network learns to model the dif-
ference between the input and the output. This approach provides an effective solution
to the vanishing gradient problem, one of the main problems that make it difficult to

train deep networks.

We trained this architecture using just a single UTI input and is regarded as one of the
baseline models. It aims to classify phonetic segments using spatial patterns marked
from ultrasound images. This structure provides an important starting point in terms of

the limitations of systems based solely on visual data and potential evaluation.
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SubNet2: While the ResNet50 model utilizes a single static UTI frame to perform
phonetic classification, the SubNet2 model (Fig. 4.4c) adopts a temporal approach by
incorporating multiple consecutive UTI frames. This design enables the model to learn
dynamic articulatory representations by capturing tongue movement over time, rather

than relying solely on static spatial information.

SubNetl: This model (Fig. 4.4b) is designed to operate exclusively on audio data, rely-
ing on spectral representations of speech signals to perform phonetic classification. Un-
like models such as ResNet50 and SubNet2, which utilize articulatory information from
UTI images, SubNetl extracts phonetic cues solely from the acoustic modality. This
approach leverages the rich temporal and frequency-based patterns present in speech
signals, allowing the model to capture distinctions that are rooted in spectral variation.
It is particularly well-suited for phoneme pairs that, while articulatorily similar, exhibit
contrasting acoustic properties—such as the difference between plosives and fricatives.
In such cases, SubNetl processes the dynamic structure of the sound wave to derive

class-relevant features purely from the audio stream.
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Figure 3.7: The confusion matrices (top) and 2D t-SNE projections (bottom) of conso-
nant embeddings from ResNet50, SubNetl, SubNet2, and MMNET mod-
els on the GTUConsonants test data [1].
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3.3.1.1. The Analysis of the Baseline Models

The ResNet50 model, which has been trained exclusively on UTI data and works with
single-frame images, has been shown to successfully perform the classification task
between phonetic segments that are visually distinct in terms of articulatory represen-
tation. This is particularly evident in the case of phoneme pairs such as /t/ and /z/ or /d/
and /s/, which exhibit clear differences in terms of tongue position and shape in UTI
images. The model demonstrates an acceptable level of accuracy, enabling it to suc-
cessfully distinguish between classes (Fig. 3.7a). This finding indicates that the spatial
variations evident in the articulation region of the tongue in UTI images are conducive

to the classification learning of a CNN-based structure.

However, the efficacy of the model is constrained to instances where the visual contrast
between classes is substantial. This is particularly evident in the case of phoneme pairs
such as /d/ and /t/, or /s/ and /z/, where the model’s ability to discriminate between the
sounds is significantly diminished due to the similarity of their articulatory structures
in UTI images. The visual patterns of these phonemes are largely overlapping in UTI
images due to the fact that they are produced in the same articulatory region (e.g., alve-
olar) and with similar language form. Consequently, a UTI representation based on a

single frame may prove inadequate in capturing these subtle variations.

For instance, the ResNet50 model exhibits a capacity to accurately classify only 118 out
of 232 instances of the /s/ phoneme, while the SubNet2 model demonstrates a superior
performance with 131 accurate classifications within the same phoneme category (Fig.
3.7a and Fig. 3.7c) . For the /s/ vs. /z/ pair, ResNet50 shows substantial confusion:
out of 232 /s/ instances, only 118 are correctly classified, while 113 are misclassified
as /z/. Similarly, 16 /z/ instances are misclassified as /s/, indicating limited boundary
resolution between the two classes. In contrast, SubNet2 improves correct /s/ classifi-
cation to 131 and eliminates confusions between /z/ and /s/ entirely (0 instances), while

reducing /s/ to /z/ confusion to 101.

A similar trend is observed in the /t/ vs. /d/ pair. ResNet50 correctly classifies 159 /t/
instances and 197 /d/ instances, but 58 /d/ samples are incorrectly labeled as /t/ — a
significant overlap. SubNet2 improves correct /t/ classification to 190 and /d/ to 194,

while slightly increasing /d/—/t/ misclassifications to 61. Although the confusion re-
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mains notable, the overall classification performance improves, suggesting that tongue
motion captured across multiple frames helps refine predictions for stop consonants

with closely overlapping articulatory gestures.

For the /k/ vs. /g/, ResNet50 achieves only 36 correct classifications for /g/, while 47 /g/
samples are confused with /k/, showing that the model struggles to separate these velars.
SubNet2, however, raises correct /g/ classifications to 77 and reduces /g/—/k/ misclas-
sifications to 36. The correct classification for /k/ remains consistent (344) in both mod-
els, confirming that temporal features particularly help disambiguate voiced/unvoiced

pairs that share articulation zones but differ subtly in timing and movement.

On the positive side, the SubNet]l model, based on audio data alone, shows remarkable
performance in distinguishing certain phonetic classes. This is particularly evident in
cases of phoneme pairs that are articulatory similar but possess distinctive acoustic fea-
tures, such as /s/ and /z/, or /t/ and /d/ (Fig. 3.2). In such instances, the SubNet1 model
demonstrates a higher level of classification accuracy in comparison to models such as
ResNet50 and SubNet2, which employ solely UTI data (Fig. 3.7a - Fig. 3.7c). These re-
sults demonstrate that the spectral-based acoustic representation possesses significant
discriminatory potential for specific phonetic classes and that the model can effectively
learn these distinctions. This is particularly evident in phoneme pairs exhibiting con-
trasting acoustic structures, such as plosives with discontinuous plosives and fricatives
with continuous plosives. In such cases, the model demonstrates an effective capacity

to discern the dynamic structure embedded within the sound waves.

However, it should be noted that the efficacy of this model varies across different pho-
netic classes. The SubNetl model, for instance, demonstrates limited efficacy in differ-
entiating sounds such as /k/ and /t/. This is attributable to the strikingly similar patterns
in the spectrogram images of these two phonemes (Figs. 3.2a and 3.2b). The similarity
in high frequency components and short-term energy densities of these sounds leads
to a substantial reduction in acoustic signal-based discrimination. This similarity hin-
ders the model’s capacity to discern discriminative features, consequently leading to a

decline in classification accuracy.

To facilitate the visualization of our intermediate results, the classification vectors ob-

tained in the final layer of each classification architecture were projected into a 2D
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space using the t-Distributed Stochastic Neighbor Embedding t-SNE method (Fig. 3.7
(bottom)). These offer a qualitative insight into the extent to which the model differen-

tiates between classes in the embedding space.

These results are considered as a qualitative complementary evidence to the confusion
matrices presented in Fig. 3.7 (top); supports the effects of methodological differences
between using UTI-only data (Fig. 3.7a), audio data-only (Fig. 3.7b), multi-frame ul-
trasound images (Fig. 3.7¢) and multimodal data (Fig. 3.7d).

3.3.2. Multimodal (MMNET) vs. Audio-only (M1-M4) models

As illustrated in Table 3.4, the accuracy outcomes of our proposed neural network
architectures are summarized, along with the data modalities utilized in consonant clas-
sification experiments conducted on the GTUConsonants dataset. Among the architec-
tural variations ranging from M1 to M4, only the M1 model demonstrated an accuracy
increase of approximately 5% compared to the SubNet2 model using UTI data in both
training and testing stages. This finding underscores the significance of multimodality

integration for enhancing classification performance (Fig. 3.8).
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Figure 3.8: Confusion matrices of the proposed architectures (M1-M4) on the test
dataset. The M1 model demonstrates the most effective phonetic segment
classification among all.

To support the experimental findings, two-dimensional visualizations were performed
with the t-SNE method to qualitatively examine the embedding spaces (Fig. 3.9). These
reveal the proximity relationships in the embedding space of the samples obtained with
only sound-based methods on the GTUConsonants dataset. The embeddings of the M1

model displays a distinctive clustering behaviour among phonetic pairs with articula-
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Figure 3.9: 2D visualizations of consonant embeddings generated by t-distributed
stochastic neighbor embedding (t-SNE) for the proposed M1 and M2 mod-
els on the GTUConsonants dataset.

Table 3.4: Accuracy and modality configurations for consonant classification using the
proposed architectures.

Training Test
Test Accuracy, Model
UTI|Audio |UTI|Audio

0.67 SubNetl + +
0.69 ResNet50| + +

0.69 M2 + + +
0.72 M4 + + +
0.75 M3 + + +
0.77 SubNet2 | + +

0.81 Ml + + +
0.91 MMNet | + + + +

tory similarities, such as /d/—/t/ and /k/—/g/. This behaviour reflects the model’s capacity
to distinguish between such classes, thereby establishing its representation. We
assessed model performance using paired t-tests and 95% bootstrap confidence
intervals over five runs. MMNET (88.40%) and M1 (81.45%) showed statistically
significant gains over all other models (p < 0.05). MMNET also significantly
outperformed M1. Results confirm the robustness and superiority of the proposed
multimodal architecture on the GTUConsonants dataset. However, further
investigation is required to determine the generalization capabilities of the pro-posed

methods on different datasets.
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3.3.3. Performance on UltraSuite Repository

The present experiment was conducted with the objective of comparing the results
of the system with those of other successful methods as documented in the literature.
The most successful study similar to our work, as cited in reference [63], utilities four

classes based on different places of articulation.

A series of tests were conducted under a speaker-independent scenario using the UTDX
dataset in the UltraSuite Repository to evaluate the generalizability of the models and
their suitability for real-world conditions. This experimental configuration enables the
analysis of the model’s performance on unfamiliar speakers, with the assurance that
the speakers utilized in the test phase are distinct from those presented to the model
during the training process. Consequently, the evaluation process aimed not only to
detect signs of rote memorization, but also to assess the model’s ability to generalize

phonetic representations effectively across unseen speakers.

Table 3.5: UltraSuite Repository classification test results.

Model Accuracy
Independent Cnn-Raw [2] 0.59
SubNet2 (ours) 0.63

Independent with Speaker Mean [2]| 0.67

Adapted Cnn-Raw [2] 0.72

Adapted with Speaker Mean [2] | 0.71

MMNet (ours) 0.78

M1 (ours) 0.85

The findings obtained from this study are summarized in Table 3.5 for direct compari-
son with similar studies in the literature. In order to analyze the behavior of the model
in more detail, the confusion matrices related to the classification performance are pre-
sented in Fig. 3.10, and the 2D representations of the embedding spaces learned by the

model are presented in Fig. 3.11. These visual elements constitute an important refer-
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ence point, especially in terms of qualitatively evaluating the capacity of the model to

produce distinctive representations between different phonetic classes.

58 14 28

400
400
481 LS 300
17 200 200
100
a N
(a) MMNet (b) M1

Figure 3.10: Confusion matrices from testing the MMNet (a) and M1 (b) architectures
in a multimodal setting.

In our evaluation of various models based on accuracy, the SubNet2 model achieves a
score of 0.63, while MMNet surpasses it with an impressive accuracy of 0.78. Particu-

larly noteworthy is the M1 model, demonstrating the accuracy at 0.85.

The findings obtained from our study indicate a potential for reducing the dependency
on ultrasound tongue imaging data in the testing phase. The visualization of the classi-
fication vectors obtained in the last layer of each classification architecture by reducing
them to 2D space with the t-SNE method is shown in Fig. 3.11. This visual representa-
tion clearly reveals that the embedding space of the M1 model in particular has a high

segregation ability and a regular clustering structure.

When having comparison between Table 3.4 and Table 3.5 shows that as the diversity
in the test dataset increases, M1 performs better. However, M1 is dependent on the
training dataset and requires similarity comparison during inference. This suggests that
it may be heavily reliant on the training dataset and perhaps not suitable for handling

larger scale data due to the time cost of comparing similarities.

To address the concerning points, we present Fig. 3.12 , which shows the accuracy

of two models, MMNET and M1, as a function of the number of subjects in training.
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Figure 3.11: The findings provide supporting evidence for the effectiveness of the
M1 and M2 methods on the GTUConsonants dataset. Among them, M1
demonstrates the highest accuracy, which is further illustrated through
the 2D t-SNE visualization of consonant embeddings.

While we utilized the same set of test data, we used different subsets of subjects during
training. The plot demonstrates that the accuracy of both MMNET and M1 increases

with the number of subjects in training.

MMNET starts with an accuracy of around 0.30 (actually indicates randomness) when
training on 5 subjects, reaching its peak accuracy of about 0.85 at 25 subjects. After
this, it slightly fluctuates but remains relatively stable around 0.80. M1 starts with a
lower accuracy of around 0.10 (actually indicates randomness) at 5 subjects, and then
steadily increases, and by 25 subjects, it reaches 0.80, maintaining stability around this
value with slight improvements, eventually reaching 0.85. As the number of subjects
increases beyond 25, M1 slightly outperforms MMNET, reaching a higher accuracy of
0.85 compared to MMNET’s 0.79. Our experiments showed that both models show
a performance plateau starting from 25 subjects, indicating that additional subjects do

not significantly improve accuracy beyond this point (Fig. 2).
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Figure 3.12: Test results of M1 and MMNET models trained by different number of
subjects.

Additionally, while M1 currently relies on direct similarity comparisons during infer-
ence, we acknowledge the potential challenges posed by scalability with larger datasets.
We understand the need for optimizations, such as using efficient data structures for em-
beddings and employing advanced vector search algorithms like FAISS [140] or ScaNN
[141]. These approaches could enable us to conduct similarity comparisons on datasets
of billions of records, addressing these challenges effectively. These optimizations
could reduce the time complexity of the similarity search, making M1 computational

tractable for handling larger scale data without compromising performance.

3.3.4. Computational Efficiency and Real-time Feasibility

A thorough investigation was carried out to evaluate the runtime performance of the sug-
gested models under reasonable and practical situations; this is reported in Table 3.6.
Raw audio input entered via a recording interface starts the assessment process. The
step of audio segmentation comes next, in which the continuous audio stream is split
into smaller, reasonable sections. After that, every segment is turned into a spectro-
gram, providing the signal’s time-frequency domain picture. Following their projec-

tion into the audio embedding space, these spectrograms are stored as fixed-size vector
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representations.

Table 3.6: Training and Inference Characteristics.

Training | Audio Only Inference [Trainable
Model Time Time Parameted’LOPs
(per epoch) (per sample) Size

SubNetl |21 seconds 103 milliseconds 655,140 9.9 x 10°
SubNet2 |28 seconds |- 810,532 |2.8 x 109
MMNET |44 seconds |- 1,267,108(3.3 x 10'°
Ml 47 seconds [133 milliseconds - -

M2 8 seconds [193 milliseconds 5,315,904|1 x 107
M3 14 seconds |71 milliseconds 156,324 |2.8 x 107
M4 53 seconds |141 milliseconds 1,267,108/3.3 x 10'°

Important processing components such embedding search—which matches the recov-
ered embeddings with entries in a reference database—and audio-to—UTI embedding
transformation—which uses cross-modal information to improve retrieval precision—
are included in later phases of the pipeline. These sequential processes are fundamental
elements in assessing the feasibility and efficiency of model deployment in real-world

situations as each of them adds to the whole computing cost.

Executed on a machine fitted with an RTX 490 GPU and a 6-core Intel Xeon CPU, the
M1 architecture—which combines all six stages of the pipeline—achieves a throughput
of 7.5 frames per second (fps). Particularly in high-performance hardware settings, the
pipeline might theoretically be further enhanced with multi-threaded implementation

and parallel processing improvements, hence enabling real-time applications.

Distinct performance trade-offs revealed by a comparison of many model architectures
concerning training time, inference time, and computational complexity guide their
fit for distinct application environments. Especially highlighting its fit for latency-
sensitive real-time applications, the M3 model has minimal floating point operation

(FLOP) needs and fast inference capability. Although more computationally intensive,
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the M2 and M4 models produce superior classification accuracy, hence they are better

suitable for applications requiring fine-grained phonetic distinction.

There exists a notably harmonious trade-off between the SubNetl and M3 models. Pre-
senting a well-rounded performance profile, SubNet1 offers a reasonable training time
of 21 seconds per epoch and an inference time of 103 milliseconds per sample. By con-
trast, M3 gets a shorter training time of 14 seconds per epoch and the quickest inference
time of 71 milliseconds per sample. Fascinatingly, the M2 model runs with 10,624,320
FLOPs and shows the smallest training time of 8 seconds each epoch although incurs a
greater inference time of 193 milliseconds per sample. These properties imply that M2
is especially useful in situations when quick model training comes first over inference

efficiency.

Additionally, we accept that the real-time application can be implemented as a pipelined
multi-threaded application to achieve better running time performance. Fig. 3.13 shows
how the pipelined model can be implemented for the real time application. Depending
on the system characteristics, we theoretically achieve around 20 fps, excluding the

overhead of synchronization and pipelining.
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3.3.5. Key Findings and Insights

It has been suggested that multimodal models may demonstrate superior performance in
comparison to single-modal models, due to their capacity to integrate and utilize a vari-
ety of data types, thereby facilitating a more comprehensive representation of complex
tasks [66, 142]. This performance advantage becomes even more evident in scenarios
where interaction between modalities is decisive [143]. Our experiments have shown
that superior results are achieved on the GTUConsonants dataset, especially with the

joint use of the MMNet architecture (Table 3.4).

Furthermore, Fig. 3.2 shows that some phonetics appear visually similar in UTI data,
but have spectrally distinguishable features. The multimodal MMNet architecture we
developed combines the various modalities under the same roof by processing the audio
and UTI data together to capture these differences. This integration has the potential

to enhance performance in tasks such as phonetic segment classification (Fig. 3.7).

The findings appear to align with the growing body of literature highlighting the merits
of multimodal models. It is also worth noting that our models trained and tested on
audio data alone also yielded significant results. In particular, the findings reveal that
the M1 model yielded similar results to MMNet in terms of accuracy (see Table 3.4),
and outperformed MMNet on some datasets (see Table 3.5). These results suggest
that our audio-only modelling approach is effective and could be a strong alternative

in practical applications where only audio data is available.

It seems that the integration of multiple data streams allows multimodal models to iden-
tify correlations and patterns that unimodal approaches may not capture, which could
produce more robust and generalizable results [144]. The M1 model appears to demon-
strate a superior performance in comparison to current methods that utilize solely UTI
data, a phenomenon that may be attributed to the inherent advantages of multimodal-
ity phonetic embedding spaces. Furthermore, while existing high-level models mostly
focus on spatial data, they suggest important lines of research for future studies, such
as using all frames corresponding to a phoneme and adopting iterative architectures to
capture temporal dynamics. These models underscore the significance of integrating
audio data in applications such as speech therapy, emphasizing that the combination

of ultrasound and audio data can offer complementary insights. The M1 model, which
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uses joint embedding spaces for both audio and UTI data and is trained with a spa-
tiotemporal approach, is an example of this approach and shows how the integration of

dynamic temporal information with multimodal data leads to higher performance.

Another important finding reveals the spatiotemporal improvements provided by our
models. When the accuracy and t-SNE results are evaluated together, it appears that
the SubNet2 architecture designed to process multi-frame UTI data exhibits superior
performance compared to both ResNet (Fig. 3.7, Table 3.4) and the Independent CNN
Raw method in [63] (Table 3.5).

The M1 method achieved approximately 15% higher accuracy during testing compared
to the SubNetl model that uses only spectral sound waves. It is interesting to note that
both models work with only audio data in the testing phase, but the M1 model uses the
joint placement space obtained from audio and UTI data in the training phase, which

seems to provide a significant advantage over SubNetl (Table 3.4).

However, upon the testing of the models on different datasets, a number of discrepan-
cies in performance were observed between MMNet and M1. MMNet demonstrated
higher performance on the GTUConsonants dataset, which comprised only three par-
ticipants (Fig. 3.7 d, Fig. 3.8a, and Table 3.4). Conversely, the phonetic embedding
space of the M1 model exhibited high robustness on a larger and more diverse dataset
consisting of 58 speakers (Fig. 3.10, Table 3.5).Although the M1 and SubNet2 models
produced similar outcomes on GTUConsonants, a significant performance difference
favoring M1 was seen on the UDTX dataset (Fig. 3.11, Table 3.5). Nevertheless, ow-
ing to the modest sample size of the GTUConsonants dataset, these outcomes should
be regarded with caution. Nevertheless, the consistent results obtained from the UDTX

data set support the generalizability and reliability of the M1 model (Fig. 3.12).

3.4. Conclusion

This study demonstrates the potential of deep neural networks to play a transformative
role in speech therapy, particularly through the fusion of audio and UTI data. The pro-
posed systems offer a substantial reduction in workload by automating the intensive
and time-consuming manual analysis processes frequently encountered by speech ther-

apists. This is due to the deep learning architectures that can process both spatial and
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temporal information. The development of spatiotemporal models of this kind paves
the way for intelligent assistant systems that will support human experts in clinical

settings.

A comparative analysis of the various sub-architectures proposed has revealed that the
highest classification accuracy was achieved in the architecture where spectral repre-
sentations of audio and ultrasound tongue imaging data were used in combination. This
finding was further reinforced by the creation of a dataset. The dataset comprised UTI
images and audio data collected from three volunteer speakers, covering six different
phonetic classes. The meticulous and balanced nature of the data collection process

enabled the models to learn more robust and generalizable representations.

Furthermore, the analysis of the embedding vectors extracted from the models has
yielded two notable insights. Firstly, it has provided a comprehensive understanding
of the internal structure of the models. Secondly, it has demonstrated the potential to
reduce the need for ultrasound imaging. This transformation renders the system more
accessible and cost-effective, signifying an important stride towards its practical imple-

mentation as a tool for speech therapists, particularly in clinical settings.

One of the primary contributions of our research is the formulation of a model archi-
tecture that is constructed using the placement areas of models trained on audio and
UTI data and operates solely with audio input during inference. The efficacy of this
model has been demonstrated by its superior classification performance in comparison
to conventional models based solely on ultrasound data or audio alone. This superiority
is evident in both accuracy and inter-class separation metrics. Consequently, we advo-
cate the utilization of this audio-only model, particularly for remote speech therapy
applications. The system’s reliance on microphone-based hardware not only reduces

installation costs but also enhances the user experience.

The lightweight structure of the proposed model (with a small number of model pa-
rameters) and the minimization of video processing load reveal its applicability not
only to clinical applications but also to interactive platforms such as real-time in-game
feedback systems. The study demonstrates the practical potential of multimodal signal
processing methods in both health and technology fields and provides a solid founda-

tion for future research.
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4. RADAR-DRIVEN PHONETIC SEGMENT CLAS-
SIFICATION

4.1. Introduction

Phonetic segment classification is widely regarded as a foundational problem in the
domains of speech therapy and linguistics. This process entails the allocation of each
phonetic segment to a predefined classes based on audio or imaging-derived data [63].
Traditional unimodal approaches — methods based solely on audio or articulatory data
— have yielded effective results in many SLP applications [145-147]. Nevertheless,
audio-based models are limited in their ability to discriminate acoustically similar phonemes
and are also less robust to noise. Currently, the use of articulatory data, such as UTI,
significantly enhances classification accuracy by providing additional and important

insights into the complexities of speech production [1].

Despite their advantages, UTI-based approaches face several practical limitations [148,
149]. These limitations include high hardware costs, the need for specialized equip-
ment, and physical discomfort that reduces user comfort during long-term use [65]. As
a solution to such challenges, multimodal methods that combine articulatory data with

acoustic information have become a focus of research [150].

Specifically, multimodal systems that integrate UTI data or video-based lip movement
analysis with audio aim to improve phonetic classification performance with their abil-
ity to represent both internal and external articulatory processes [151, 152]. While
UTI is a valuable modality, especially in terms of its ability to provide detailed inter-
nal articulatory dynamics, [153, 154], the practical limitations outlined above limit its
broad applicability [155]. Similarly, although video-based lip movement analysis is
effective in tracking external articulators, its inability to provide information about in-
ternal speech dynamics is a fundamental limitation that prevents holistic and accurate

modeling of speech production.

In recent years, mmWave radar has emerged as a promising approach in the field of SLP.
This new generation technology enables the acquisition of both acoustic and articula-

tory data in a contactless manner [66, 68, 125]. This technology offers the opportunity
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to track the movements of structural elements that play a role in speech production,
such as the jaw, lips, teeth, tongue and vocal cords, without requiring any physical con-
tact and while preserving user privacy. Despite the obvious benefits of mmWave radar
for phonetic segment classification, a systematic and comprehensive investigation has

yet to be conducted.

Although speech signals contain phonetically critical information, they may not be pre-
ferred in situations where privacy and security are at the forefront; they may be affected
by environmental noise or may not be suitable for use. In such cases, mmWave radar
emerges as a compelling alternative. Given their sensitivity to vocal cord vibrations,
both speech spectrograms and radar can record speech patterns. But by showing precise
joint motions beyond acoustic signals [156], radar offers complimentary information.
The spectrograms produced from the radar (left) and the microphone (right) show com-
parable temporal and frequency patterns, as shown in Figure 4.1, thereby indicating
the potential of radar as a non-invasive and privacy-preserving technique to speech

processing.

Figure 4.1: Radar-captured (left) and microphone-captured (right) spectrograms for
the phrase ”Adana Mersin Adana Mersin.” Both reveal similar speech pat-
terns, with radar also capturing subtle articulatory movements beyond the
audio signal.

In order to improve the performance, robustness, and practical application of phonetic
segment classification, a multimodal learning framework is provided in this chapter
integrating mmWave radar, UTi, and audio data. USRadioAl uses the strengths of every

modality during the training process. The proposed method, USRadioAl, capitalizes
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on the strengths of each modality during the training process. However, it is configured
to operate solely with mmWave radar data in the inference phase, thereby eliminating
the requirement for UTI or audio input by the model. To achieve this objective, a
joint embedding space is constructed that can capture articulatory and acoustic features

together, thus enhancing the model’s ability to generalize phonetic representations.

4.2. Methods

4.2.1. Data Collection

Hardware: As shown in Figure 4.2, a data acquisition setup was created to collect
multimodal data for training, validation and evaluation of the USRadioAl system. Syn-
chronized audio data was collected using a Shure Beta S8 A microphone at a sampling
rate of 48 kHz; UTI data was collected using [134]; and radar data was collected us-
ing a Texas Instruments (TT) IWR1843 mmWave radar. The radar was configured to
operate at a bandwidth of 3,89 GHz and a sampling rate of 25,600 Hz. For synchro-
nization purposes, the ultrasound device operated continuously throughout the session
(approximately 2 minutes) in sync with the audio. The mmWave radar was triggered
separately with a ping tone played at the beginning of each recording to provide off-line
synchronisation with a known signal. A ping tone was played at the beginning of each

recording to alert the narrator and align the ultrasound device with the radar recording.

A video showing this process can be viewed in the sample dataset provided in the sup-
plementary material '. It should be noted that the experiments were conducted in a real

speech therapy room that is actively used for clinical purposes.

The processing pipeline begins by converting raw mmWave radar ADC data into spec-
trograms. Once the data is loaded into the system, missing samples are filled in and
the signals are structured into frames, followed by alignment using the DCA1000 pro-
cessing method. After averaging across antenna-channels, the signal is flattened and
processed using the STFT, resulting in a decibel-scale spectrogram that allows time-

frequency analysis.

"For a sample view of our dataset: CollectionSetup.mp4.
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Figure 4.2: Data collection setup.

Improved settings in the radar system help to guarantee high-resolution signal collect-
ing. The ADC is set to catch signals promptly by having a 10,000 ksps sampling rate.
The system uses four RX antennas for spatial variation and improved signal processing
and one TX antenna. The 200-frame, one chirp cycle arrangement ensures continu-
ity and uniformity in data collection. Each chirp comprises 256 ADC samples that
establish the resolution of the resultant signal patterns. Moreover, the 10-millisecond
cyclic repeat ensures a consistent and continuous radar data stream, facilitating real-

time speech and articulation processing.

Our audio data processing pipeline is centered on producing spectrograms from seg-
mented audio intervals. A spectrogram was generated from a 48kHz audio segment
according to the specified durations in milliseconds. The STFT was executed with a
window size of 1024 samples and a hop length of 512 samples, resulting in a 50% over-
lap. The spectrogram employed logarithmic scaling on the frequency axis, illustrating
signal strength in decibels relative to the maximum magnitude. The UTI clips have
been reduced from their original dimensions of 640 x 480 to 96 x 96 to save model

size and training duration

Real-Time Radar Configuration and Data Acquisition Pipeline: To enable real-
time signal analysis and multimodal data collection, we implemented a Python-based
radar driver for automated configuration and streaming using the Texas Instruments
IWR1843BOOST radar and DCA1000EVM data capture board. This setup allows

for low-latency data acquisition, repeatable experiment control, and live visualization
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support — crucial for deploying radar-based sensing systems in practical settings.

The radar configuration and data acquisition pipeline consist of three primary stages:
(1) radar configuration over UART, (2) FPGA setup using UDP-based command trans-

mission, and (3) real-time data streaming over a high-speed UDP listener interface.

Step 1: Radar Configuration via UART: Using a configuration file (e.g., IWR1843.cfg),
radar parameters are transmitted via UART through a wrapper class called Serial Config.
This module communicates over the COM port (in our case, COM4) at 115200 baud,
issuing stop/start/reset commands as well as sending the full radar chirp configuration

string-by-string to initialize the sensor.

Listing 4.1: Serial configuration using Python

radar = SerialConfig("ConnectRadar", "COM4", 115200)
radar.StopRadar ()
radar.SendConfig("../config/IWR1843.cfg")

radar.StartRadar ()

Step 2: FPGA Configuration over UDP: The DCA1000EVM must be initialized
and configured separately from the radar sensor to stream raw ADC samples. This is
achieved using UDP socket programming. Each configuration command is constructed
using low-level hexadecimal packets, consisting of specific command codes (e.g., con-
nect, configure FPGA, set packet parameters, and start recording). Commands are sent
from the host PC (e.g., 192.168.33.30:4096) to the FPGA address (192.168.33.180:4096),

and acknowledgments are parsed for validation.

Listing 4.2: Sending FPGA command packets
for c¢cmd in ['9', 'E', '3', 'B', '5']:
sockConfig.sendto(send_cmd(cmd), FPGA_address_cfg)
response, _ = sockConfig.recvfrom(2048)

print (f"Sentcommand{cmd},response:{response.hex()}")

Step 3: Real-Time UDP Data Listener: After successful radar and FPGA initializa-
tion, the radar streams raw binary ADC data to a designated UDP port. A custom
listener class UdpListener is launched asynchronously using Python’s threading and
queue modules. The binary data are parsed into fixed-length frames based on the fol-

lowing configuration:

77



L]

ADC samples per chirp: 64

Chirps per frame: 32

TX antennas: 1

RX antennas: 4
The resulting frame size is calculated as:

Frame Length = ADC X Chirps X TX x RX X 2 = 64 x 32 x 1 x4 x 2 = 16384 Bytes

Listing 4.3: Launching the UDP listener

BinData = Queue ()
udp_listener = UdpListener ("Listener", BinData, frame_length,

('192.168.33.30"', 4098), 2097152)

udp_listener.start ()

Step 4: Real-Time Data Check: To ensure functionality, the main thread monitors
whether the BinData queue receives any data within a timeout period. If data is suc-

cessfully received, the radar is confirmed to be operational.

Listing 4.4: Data verification

timeout = time.time() + 10
while time.time() < timeout:
if not BinData.empty():
data = BinData.get ()
print (f"Received {len(data)} data,points from ,radar!")

break

This real-time configuration and streaming pipeline provides:

Automated and reproducible radar setup using software-defined configuration.

Low-latency data acquisition suitable for live monitoring and Al inference.

Modular expansion capability, allowing synchronized recording with cameras or

microphones.

Parameter flexibility for testing different radar sensing setups.

This implementation served as the backbone of our data acquisition protocol in both
human motion sensing and speech classification experiments, enabling rapid iteration

and accurate alignment across sensing modalities.
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Real-Time Radar Configuration and Data Collection Framework: To support real-
time multimodal sensing and facilitate continuous experimentation, a complete radar
configuration and data collection framework was developed using Python. This system
enables automated control and streaming of raw ADC data from the Texas Instruments
IWR1843BOOST radar and the DCAI000EVM FPGA data capture board. The ar-
chitecture is modular, supporting seamless integration with GUI-based visualization,

signal processing modules, and machine learning pipelines.
The framework is composed of several coordinated components:

* Radar Configuration Module: Implements a serial interface to load ‘.cfg‘ pro-
files and initialize the radar system (e.g., number of chirps, sampling rate, fre-

quency slope, etc.).

* FPGA Command Handler: Sends low-level UDP commands to the DCA 1000

FPGA to configure packet structure and initiate recording sessions.

* UDP Listener Thread: A dedicated thread captures the streamed binary data
packets over UDP and segments them into fixed-size frames based on radar con-

figuration parameters.

* Data Processing Thread: This thread consumes raw frames, reshapes the sig-
nal structure, and performs spectrogram transformations using STFT operations.

The processed spectrograms are then fed to downstream queues.

* Graphical Interface: A PyQt-based interface allows real-time visualization of

spectrogram outputs and provides basic start/stop control over the radar pipeline.

The system is designed to support multiple experimental setups. Configuration pa-
rameters, such as ADC sample count, number of chirps per frame, and antenna con-
figurations, can be flexibly updated depending on the sensing task. Threading and
queue-based design ensures that data streaming, processing, and display are decou-
pled, allowing for robust operation even in high-throughput settings. This framework
was used extensively in both human activity and speech-related experiments. The pro-
cessed spectrograms were saved to disk in real time and labeled using a pseudo-model
or user input for downstream model training. Data collection sessions are automatically
timestamped and structured into subject-specific directories, improving traceability and

dataset management.
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The GUI provides dynamic rendering of raw mmWave signal images with adaptive
colormaps and fixed viewports, allowing researchers to inspect radar returns in real
time and evaluate signal integrity during live capture. This real-time framework was
critical to the multimodal system described in this study, enabling synchronized, high-
resolution radar capture and facilitating the training of data-driven models. It forms the
backbone for future extensions into live speech recognition and interactive radar-based

applications.

Participants: To enable a radar-based implementation of phonetic segment classifi-
cation, a sufficiently large and balanced dataset was compiled. Accordingly, the data
collection process was conducted under the framework of the GTUSAudioRadioCon-
sonants dataset !. For phonetic readings, we enlist the help of six people who are all
native speakers. Our sample of native speakers includes two females and four males,
with ages ranging from twenty-five to forty-five. Without any speaking issues, all indi-
viduals have typical speech ability. We trained the model using data from five speakers
and then tested it on data from a sixth speaker that was not used during training in order

to examine how well the model generalized.

The chosen phonetic segments for this investigation were selected in line with IPA crite-
ria; following this criterion has been demonstrated to ensure consistency and accuracy
across languages. Two,400 utterances in all were generated, with four distinct phonetic
consonants—shown by /d/, /g/, /k/, /t/ in the International Phonetic Alphabet). An audi-
tory signal (a ping sound) was emitted for each data collection, prompting the subject to
articulate the sentence immediately following the cessation of the sound. Participants
were situated roughly 50 cm from the radio equipment for data collection. They articu-
lated each syllable at a moderate level while limiting extraneous movement to maintain

data integrity.

4.2.2. Radar-Driven Embedding Space and Classification

In this study, we introduce the USRadioAl, a radar-based multimodal approach de-
veloped for phonetic segment classification and utilizing a common embedding space.

The proposed deep neural network architecture MMNet combines the mmWave radar,

"For a sample recording from our dataset: CollectionSetup.mp4
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CollectionSetup.mp4

audio data, and UTI modalities (Fig. 4.3).

The MMNet model necessitates the concurrent operation of components such as a
mmWave radar sensor, a microphone, and a UTI device employed for feature extrac-
tion. The integration of these components guarantees that features derived from various

data sources are effectively aligned inside a unified embedding space.
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Figure 4.3: System overview of a multimodal speech processing framework combin-
ing mmWave radar, audio, and UTIL.

The development of neural network architectures has enabled the creation of robust and
generalizable phonetic segment classification systems, with each architecture designed
to extract meaningful representations from different perception modalities. Structural
details of these architectures are presented in Fig. 4.4, where the two main architectures

represent the main structures contributing to the embedding space.

The architecture, (Fig. 4.4a), first extracts visual features with CNN, and then integrates
the spatio-temporal features by modelling the sequential dependencies with Time Dis-
tributed layers and BiLSTM networks. This architecture processes UTI data to gen-
erate a 64-dimensional embedding vector representing joint movements. The second
architecture, Fig. 4.4b, employs stacked CNN layers to learn spectro-temporal patterns
by processing mmWave radar (upper path) and acoustic signal (lower path) data, and

generates a 32-dimensional embedding vector for each input.

In the training phase, a shared embedding space is created that can capture common
representations among radar, audio, and UTI data. This embedding space integrates

the unique features of each modality, thereby enabling the model to learn cross-modal
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(a) This network employs dense layers to produce a 64-dimensional
embedding from the UTI data.
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(b) A 32-dimensional embedding is generated for mmWave and acoustic
sensing.

Figure 4.4: The phonetics embedding space (MMNet) with its sub-architectures.

relationships. However, in the inference phase, the system only extracts embeddings
from the radar data and performs classification through a special subnetwork that can

independently process mmWave detection.

The USRadioAl aims to estimate the missing audio and UTI representations by com-
paring the radar embeddings extracted during training with the vectors in the common
embedding space created during training. The selection of closest matches is achieved
by calculating the cosine similarity between radar outputs and previously stored em-
bedding vectors [1]. These most similar embedding vectors provide estimated audio
and UTI representations corresponding to the missing modalities (Fig. 4.5). These rep-

resentations are then integrated into the feature extraction process by combining them
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USRadioAl

Embedding Vector

Figure 4.5: USRadioAl infers missing audio and UTI embeddings by matching radar
features to training data via cosine similarity, enabling radar-only phonetic
classification.

with real-time radar inputs. This process improves the classification performance of

the model and increases the robustness of the system under different conditions.
4.3. Experimental Results and Analysis

4.3.1. UTI-only Classification

After the data collection process was completed, we first examined the phonetic seg-
ment classification using only UTI data. It is important to check whether some phonemes,
such as /k/ and /g/ or /t/ and /d/, which are difficult to distinguish in UTI images because

they have similar articulatory patterns, can be distinguished from each other.

80

150 60

100 40

199 50 20

d-t g-k d ‘ 0

(a) Binary classification (velar vs. alve- (b) Four-class classification. UTI

olar). UTI distinguishes broader ar- shows inconsistent performance
ticulatory categories more reliably. due to articulatory similarity.

Figure 4.6: Confusion matrices for phoneme classification using UTI data.
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The initial stage of the four-class classification task (/k/, /g/, /t/, /d/) produced incon-
sistent outcomes (Fig. 4.6(a)), indicating that UTI-based models, as previously noted
[1], struggle to differentiate between voiced and unvoiced phoneme pairs. Transform-
ing the task into a binary classification (velar versus alveolar) led to a notable increase
in performance (Fig. 4.6(b)). While it is useful for differentiating more general artic-
ulatory types, UTI data may be insufficient for phoneme classification. Emphasizing
the need of multimodal approaches using additional information sources, including au-
dio or radar data, this experimental investigation highlights the limitations of phoneme

recognition limited to UTI alone.

4.3.2. Unimodal vs. Multimodal Classification

Emphasizing the benefits of our phonetic segment classification approach over current

techniques, this part offers model implementations and performance comparisons.

The classification findings show different benefits of only audio and only radar phoneme
recognition. Since both /k/ and /t/ have no vocal cord vibrations while articulation
(voiceless), it difficult to identify their articulatory motions using mmWave radar (Fig.
4.7(a). But since mmWave captures articulatory variations that UTI finds difficult, it

does better in differentiating /k/ and /g/ that have very similar tongue shapes.

k
(a) Radar (b) Audio

Figure 4.7: Comparison of phoneme classification using (a) mmWave radar and (b)
audio.

Conversely, The Audio model outperforms the Radar model for /k/ and /t/ classifica-
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tion as it recognizes aspiration and high-frequency bursts, hence separating voiceless
phonemes. Figures 4.7(b). But since radar monitors articulatory motion more precisely

than audio, it detects voiced phonemes like /d/ and /g/, which often confounds audio

because of their comparable spectral characteristics.

80 80

60 60
40 40

20 20

(a) MMnet (b) UsRadioAl (¢) AudioUS (d) RadarUS

Figure 4.8: Comparison of phoneme classification performance across proposed archi-
tectures. The MMnet model demonstrates superior accuracy on the test set,
outperforming other multimodal configurations.

Impact of integrating UTI with audio: The inclusion of UTI alongside audio signif-
icantly influences phoneme classification outcomes, offering both enhancements and
new complexities (Fig. 4.7b vs. Fig. 4.8¢c). A notable improvement is observed in
the classification of /t/ and /k/, where the integration of UTI reduces misclassification
errors—Ilikely due to its capacity to capture tongue movement more effectively, which

complements audio limitations.

Conversely, the addition of UTI introduces increased confusion between /k/ and /g/, as
UTTI struggles to differentiate these phonemes given their similar dorsal articulatory pat-
terns. While audio alone better distinguished /k/ and /g/, the fusion with UTI appears
to blur this distinction. These results suggest that multimodal fusion can strengthen
phoneme discrimination in some cases, yet also introduce new sources of ambiguity,
underscoring the importance of thoughtful modality selection and feature-level integra-

tion in multimodal systems.

Impact of integration UTI with radar: Integrating UTI with radar data yields a no-
table enhancement in phoneme classification performance, with an approximate 5% in-
crease in accuracy—most evident in the improved discrimination of /k/ and /t/, which
radar alone struggled to distinguish (Table 4.1). This improvement suggests that UTI ef-
fectively captures articulatory dynamics, particularly tongue movements, thus mitigat-

ing radar’s limitations in detecting voiceless phonemes. The integration of UTI reduces
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Table 4.1: Accuracy and modalities for phoneme classification with our proposed ar-

chitectures.
Training Inference
Test Accuracy| Model
UTI|Audio|mmWave| UTI| Audio mmWave

0.33 UsS + +

0.57 Radar + +
0.58 Audio + +

0.60 RadioAudio + + + +
0.62 RadioUS | + + + +
0.67 AudioUS | + + + +

0.71 USRadioAI| + + + +
0.76 MMnet + + + + + +

confusion between /d/ and /g/, which were frequently misclassified in the radar-only

model, indicating that articulatory information contributes positively to the classifica-

tion of voiced phonemes as well (Fig. 4.7(a) vs. Fig. 4.8(d)).

Nonetheless, the incorporation of UTI also introduces new challenges, such as increased

misclassification of /d/ with other segments. These findings underscore the importance

of careful modality fusion, as the benefits of enhanced articulatory resolution must be

balanced against the risk of introducing modality-specific noise or ambiguity.
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Figure 4.9:
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We used t-SNE to project the final classification layer’s output vectors into

2D space for visualization. MMnet (top) and USRadioAl (bottom).

86



Comparing MMNet and USRadioAl: Accuracy vs. Practicality MMNet achieves
the highest classification accuracy at 76%, leveraging the full combination of UTI, au-
dio, and radar during both training and inference (Table 4.1, Fig. 4.9). However, this
performance gain comes at the cost of increased complexity, as it requires the simul-
taneous operation of multiple sensing devices, limiting its practicality for real-world
deployment. In contrast, USRadioAl is trained with all three modalities but operates
solely on radar data at inference. Despite this simplification, it attains a competitive
accuracy of 71%, representing a substantial improvement over the radar-only baseline,
which achieves just 57%. This highlights the effectiveness of multimodal training in
enhancing performance, even when inference relies on a single modality. While US-
RadioAl falls slightly short of MMNet in terms of accuracy, its operational simplicity,
reduced hardware requirements, and cost-efficiency make it a highly viable solution for
real-world scenarios, balancing performance with deployability. Table 4.2 summarizes

the per-class F1-scores across selected models, highlighting USRadioAl gains.

Table 4.2: F1-scores for each model.

Model | /d/ | /g/ | Ik/ | It/

Audio-only [0.39]0.62]0.58|0.68
Radar-only [0.79]0.58(0.58|0.14
USRadioAI|0.84]0.76|0.62|0.63

MMNet (0.74]0.70{0.75{0.88

4.3.3. Key Findings and Insights

This study investigates phonetic segment classification through a multimodal frame-
work that fuses mmWave radar, UTI, and audio modalities. By analyzing confusion
matrices and t-SNE visualizations, we extract critical insights about modality-specific
contributions, the robustness of multimodal learning, and practical implications for real-

world deployment.
Each modality reveals distinct strengths and weaknesses in phoneme classification:

* The radar-only model performs well for voiced phonemes like /d/ and /g/ but
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struggles with voiceless ones, especially /t/, which is misclassified as /d/ in 14
instances. This supports earlier findings that radar sensors are more sensitive to

articulatory motion and voicing cues than to aspiration bursts [157].

* The audio-only model excels at classifying voiceless stop consonants due to their
acoustic bursts, but shows 39 instances of /d/ being confused with /g/, likely due
to spectral similarities—echoing classic results from speech acoustics literature

[158].

* The UTI-only (4-class) classifier struggles with /k/ vs. /g/ due to their shared
dorsal articulation; 63 samples of /k/ are misclassified as /g/, confirming earlier

observations that tongue shape alone is insufficient for voicing contrast [1].
Multimodal integration substantially improves classification performance:

» The MMNet model achieves the highest overall accuracy with clean diagonal
structure and minimal cross-phoneme confusion. Its embedding visualization
shows clear separation among classes, validating the effectiveness of multimodal

learning.

» USRadioAl improves upon the radar-only model by leveraging multimodal train-
ing but operates with radar-only input. It achieves 71% accuracy, outperforming
radar-only by 14%. The corresponding t-SNE plot reveals structured but over-
lapping clusters, demonstrating how shared embeddings encode multimodal in-

formation.

* AudioUS improves /t/ and /k/ classification compared to audio-only, but intro-
duces confusion between /k/ and /g/. This demonstrates that combining modali-
ties can amplify beneficial cues but also propagate conflicting signals if not inte-

grated carefully.

» RadarUS shows a 5% increase in accuracy over radar-only, especially for /t/ and
/d/, indicating that UTI complements radar in resolving tongue-placement ambi-

guities.

» The UTI-based binary classifier achieves 90%+ accuracy when classifying broad
articulatory categories (velar vs. alveolar). However, its four-class performance

drops significantly, emphasizing UTI’s limitations in resolving fine phonemic
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contrasts—particularly voiced/voiceless pairs, consistent with Badin et al. [159].

4.4. Conclusion

While the proposed system has demonstrated encouraging results in the context of radar-
assisted phonetic segment classification, it is evident that the system’s accuracy, gener-
alizability, and robustness can be further enhanced, particularly under diverse speech
conditions, speaker variations, and environmental factors. While the current structure
demonstrates competitive performance in classification tasks, the implementation of
more advanced models and learning strategies is necessary to adapt to the diversity

that can be encountered in real-world scenarios.

Furthermore, the incorporation of the system with radar-based gamification compo-
nents holds considerable promise in enhancing interaction and enriching the user ex-
perience in speech therapy applications. The integration of radar-based gamification
components has the potential to enhance the system’s interactivity, engagement, and
accessibility, particularly in therapeutic processes involving children and individuals
with special needs. The contactless and privacy-protecting nature of the radar offers

additional advantages in this context.

Subsequent studies will prioritize the enhancement of multimodal training methodolo-
gies, the exploration of data synthesis and augmentation techniques, and the restruc-
turing of the system, particularly for real-time speech analysis, with the objective of
further extending the boundaries of the proposed system. However, the development
of applications that maximize the practical benefits of radar-based speech processing
technology is critical to increasing the impact of the system in both clinical and daily

use arcas.
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S. CONCLUSIONS

In this thesis, the problem of phonetic segment classification addressed via deep learning-
based multimodal approaches by combining mmWave radar, ultrasound tongue imag-
ing (UTI) and audio data. This multimodal strategy aimed to capture both acoustic
and articulatory features, enhancing the model’s ability to differentiate subtle phonetic
variations. This research addresses the limitations of audio-only systems, such as sen-
sitivity to noise and inability to distinguish similar phonemes, as well as the practical

challenges of UTI-based systems, such as high cost and user discomfort.

In this context, the architecture of MMNet, a multimodal neural network designed to
take advantage of the complementary aspects of audio and UTI data proposed firstly.
The experimental results showed that this integration significantly increases the classifi-
cation accuracy and reduces the uncertainties encountered in single-mode systems. By
combining temporal and spatial articulatory patterns, MMNet demonstrated improved

phoneme boundary resolution and reduced confusion among visually similar segments.

The M1 framework was introduced next, which can perform inference with audio data
only. This structure revealed how multimodal training can guide single-mode inference
processes. Experimental findings showed that the performance of M1 is comparable
to approaches that use audio and UTI together, emphasizing its ease of use, especially
in applications such as clinical speech therapy. This approach also serves as a prac-
tical example of knowledge distillation in multimodal systems, where richer training

supervision improves a lightweight inference model.

Considering the practical limitations of fully multimodal systems, the USRadioAl has
been developped as an architecture that uses radar, UTI, and audio data during the
training phase, but only works with mmWave radar data during inference. By us-
ing cross-modal information distillation and joint embedding space techniques, US-
RadioAl achieved similar accuracy to fully multimodal systems while significantly
reducing the implementation complexity. This design also brings strong advantages
in terms of privacy, as mmWave signals do not capture identifiable audio or visual

features, making the system highly suitable for sensitive or crowded environments.

Extensive experiments on newly created GTUConsonants and GTUSAudioRadioCon-
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sonants datasets have shown that the proposed methods are strong in terms of robust-
ness and generalizability. The results showed that multimodal training and embedding
space alignment achieve high accuracy despite modality constraints during inference
phase, and offer significant advantages in terms of system cost and user experience.
The effectiveness of these approaches across datasets collected under varying condi-
tions also underscores their potential for transferability to unseen speakers and acoustic

settings.

In conclusion, this thesis demonstrated the importance of integrating mmWave radar
with other modalities in speech processing, and provides robust, practical, and privacy-
aware solutions. The proposed methods have promising application potential in many
areas such as clinical speech therapy, remote diagnosis, assistive technologies and
human-computer interaction, and provide a solid ground for future research. Alto-
gether, this work contributes not only a set of practical architectures but also a frame-
work for future multimodal learning systems that aim to balance performance, usability,

and privacy in real-world speech applications.

As potential directions for future work, real-time deployment on embedded platforms
such as NVIDIA Jetson or other mobile Al hardware could be explored to bring the
system closer to in-field or wearable use cases. Another extension involves applying
the proposed architectures to speaker-dependent or pathological speech datasets, which
would validate their effectiveness in more diverse and clinically relevant conditions.
Additionally, exploring alternative modality fusion strategies, such as attention-based
or transformer-driven architectures, could further improve model interpretability and
performance. The robustness of mmWave radar sensing can also be evaluated under
varying environmental conditions, such as clothing interference or device movement, to
assess its practical reliability. Lastly, the framework may be expanded for paralinguistic
tasks such as emotion recognition, prosody estimation, or speech fluency monitoring,

where articulatory features could provide valuable complementary cues.
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