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Dr. Öğr. Üyesi Ramazan AYAZ
Yıldız Teknik Üniversitesi
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Yıldız Teknik Üniversitesi
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İmza
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dostluklarıyla bu süreci unutulmaz kıldıkları için derin bir teşekkür borçluyum.
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3 ANALİZ SONUÇLARI 22
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Zaman serisi verilerinin tahmini, özellikle öngörülemeyen olayların varlığında,
ekonomi, sağlık ve enerji gibi birçok alanda büyük bir zorluk teşkil etmektedir.
Bu tezde, elektrik talebini tahmin etmek için dalgacık entegrasyonlu hibrit bir
derin öğrenme modeli sunulmuştur. Bu model, LSTM ağlarını ve XGBoost
algoritmasını birleştirmektedir. Çalışmada, ani ve yıkıcı olayların enerji talep
desenleri üzerindeki etkilerini incelemek amacıyla COVID-19 pandemisi bir vaka
çalışması olarak kullanılmıştır. Önerilen yaklaşım, zaman serisi verilerini farklı
frekans bileşenlerine ayırmak için Ayrık Dalgacık Dönüşümü DWT kullanmakta ve
modelin hem kısa vadeli hem de uzun vadeli eğilimlere karşı daha duyarlı olmasını
sağlamaktadır. Bu güçlü hibrit model, sıralı verilerden zamansal bağımlılıkları
öğrenen bir LSTM bileşeni ile artık hataları düzelten ikinci bir XGBoost bileşenini
bir araya getirmektedir.

Araştırmada kullanılan veri seti, IEEE Dataport’tan alınmış olup, Mart 2017 ile
Kasım 2020 tarihleri arasındaki saatlik elektrik tüketim verileri ve meteorolojik
değişkenleri içermektedir. Bu veri aralığı, COVID-19 öncesi ve sonrası dönemleri
kapsamaktadır. Deneysel sonuçlar, bu hibrit LSTM-XGBoost modelinin yalnızca
LSTM modellerine kıyasla daha iyi bir performans sergilediğini ortaya koymuştur.
Modelin başarım ölçütleri sırasıyla MAE 19.875,15; RMSE 26.595,62; MAPE

xii



1,78% ve WI 0,98 olarak hesaplanmıştır. Model, COVID-19 pandemisi gibi ani
değişimlere karşı dayanıklılık göstermekte ve günün farklı saatlerinde değişen
performans sergilemekte olup, sabah ve öğleden sonraki tahminlerde daha yüksek
doğruluk elde edilmiştir.

Dalgacık ayrıştırmasının hibrit derin öğrenmeyle entegrasyonu, dalgalı ve belirsiz
ortamlar için ölçeklenebilir bir çerçeve sunmaktadır. Bu çalışmanın sınırlılıkları
arasında tatil verilerinin eksikliği ve potansiyel arz kaynaklı kesintiler yer almakta
olup, gelecekteki çalışmalar için gerçek zamanlı veri entegrasyonu ve uyarlanabilir
yeniden eğitme yöntemlerinin kullanılması önerilmektedir.

Anahtar Kelimeler: Ayrık dalgacık dönüşümü, elektrik tüketimi, hibrit
LSTM-XGBoost, zaman serisi tahmini, öngörülemeyen olaylar, dalgacık destekli
tahmin.

YILDIZ TEKNİK ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ
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Forecasting time series data, particularly in the presence of unpredictable events, 
is a major challenge in various fields, i ncluding e conomics, h ealth, a nd energy. 
In this thesis, a novel approach is presented to predict electricity demand using a 
wavelet-integrated hybrid deep learning model, which combines LSTM networks 
and XGBoost. This study uses the COVID-19 pandemic as a case study to explore 
the effect of sudden disruptive events on the patterns of energy demand. The 
suggested approach utilizes DWT to break up time series data down to several 
frequencies, allowing the model to be more sensitive towards both short-term and 
long-term trends. This is a strong hybrid model as it combines an LSTM element 
that learns the temporal dependencies from sequential data and a second XGBoost 
element that corrects the residual errors.

The dataset utilized in the research is taken from IEEE Dataport, which consists of 
hourly electricity consumption data and meteorological variables from March 2017 
to November 2020, thus covering pre- and post-COVID-19 periods. Experimental 
results showed that this hybrid LSTM-XGBoost model has better performance than 
LSTM models used alone, with a MAE of 19,875.15, RMSE of 26,595.62, MAPE 
of 1.78%, and a WI of 0.98. The model exhibits strength in handling abrupt changes, 
such as those induced by the COVID-19 pandemic, and shows varying performance 
across various times of day, with morning and afternoon forecasts being more 
accurate.
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The integration of wavelet decomposition with hybrid deep learning offers a
scalable framework suitable for volatile environments. Limitations of this research,
such as the absence of holiday data and potential supply-side disruptions, are
discussed, alongside recommendations for future work, including the incorporation
of real-time data and adaptive retraining methodologies.

Keywords: Discrete wavelet transform, electricity consumption, hybrid
LSTM-XGBoost, time series prediction, unpredictable events, wavelet- enhanced
forecasting.
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1
GİRİŞ

1.1 Literatür Özeti
Elektrik tüketimi tahmini, enerji yönetiminde hem ekonomik hem de operasyonel
zorlukların üstesinden gelmede hayati bir rol oynamaktadır. Doğru tahminler,
elektrik şirketlerinin bilinçli kararlar almasına, arz stratejilerini optimize etmesine
ve endüstriyel ve ticari enerji tedariğinde karşılaşılan operasyonel zorluklar ile
maliyetlere ilişkin riskleri en aza indirmesine olanak tanır. Özellikle talebin zirve
yaptığı dönemlerde arz ve talep dengesinin sağlanması, sistem güvenilirliğinin
korunması açısından kritik öneme sahiptir [1–4].

ARIMA ve SARIMA gibi geleneksel istatistiksel yöntemler, doğrusal desenleri ve
mevsimselliği etkili biçimde modelleyebilme yetenekleri nedeniyle zaman serisi
tahmini için yaygın olarak kullanılmıştır. ARIMA, sınırlı veriyle satışları tahmin
etmede etkili olduğunu kanıtlamış ve diğer geleneksel modellere kıyasla önemli
doğruluk artışları sağlamıştır [5]. Benzer şekilde SARIMA, elektrik tüketim
verilerindeki mevsimsel eğilimleri analiz etmekte başarılıdır ve periyodik desenler
hakkında değerli bilgiler sağlar [6]. Ancak bu modeller, doğrusal olmayan desenler
ve öngörülemeyen olaylarla baş etmekte zorlanır ve bu durum, değişken koşullara
uyumlarını sınırlar. Ayrıca, parametre ayarlaması için uzman bilgisine bağımlı
olmaları, pratikte zorluklara neden olmaktadır [7]. Bu çalışmada, söz konusu
kısıtlamalar, COVID-19 pandemisi gibi olayların yarattığı düzensiz dalgalanmaları
yönetebilen gelişmiş modellere duyulan ihtiyacı vurgulamaktadır.

SVM, RF ve XGBoost gibi makine öğrenimi teknikleri, özellikle karmaşık ve
gürültülü veri kümelerinde zaman serisi tahmini için güçlü araçlar olarak ortaya
çıkmıştır. Rastgele Ormanlar, kısa zaman serilerinde gecikmeli değişkenlerden
faydalanarak hava durumu tahmini ve lojistik gibi uygulamalarda üstün performans
göstermiştir [8], [9]. Özellik tabanlı ilişkileri modellemedeki verimliliğiyle tanınan
XGBoost, hibrit yapılarda tahmin doğruluğunu artırmaktadır [10]. Bu modeller,
elektrik fiyatlandırması gibi ani değişimlerin veya sınırlı verilerin söz konusu
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olduğu senaryolarda üstün performans sergiler; dinamik özellik ölçeklendirmesiyle
desteklenen hibrit yaklaşımlar yüksek hassasiyeti korur [11]. Bu çalışma, hibrit
LSTM-XGBoost modelinde XGBoost’un artık hata düzeltme yeteneklerinden
faydalanarak, öngörülemeyen olaylar için tahmin doğruluğunu artırmaktadır.

Zaman serisi tahmininde RNN, LSTM ağları ve GRU gibi derin öğrenme
yöntemleri, karmaşık zamansal bağımlılıkları yakalayarak büyük bir devrim
yaratmıştır. Bu modeller, finans ve enerji gibi çeşitli alanlarda doğrusal olmayan
ve gürültülü verileri işlerken geleneksel yöntemlere kıyasla üstün performans
sergilemektedir [12], [13]. Özellikle LSTM ağları, uzun süreli dizi bilgilerini
koruyabilme yetenekleri sayesinde elektrik yük tahmini için son derece etkilidir.
LSTM’nin, XGBoost gibi tekniklerle birleştirildiği hibrit mimariler, hem zamansal
hem de özellik tabanlı desenleri ele alarak performansı daha da artırmaktadır
[14]. Bu araştırma, COVID-19 pandemisi sırasında gözlemlenen öngörülemeyen
olaylarla başa çıkmak amacıyla, LSTM’nin dizi tahmin yeteneklerini dalgacık
ayrıştırmasıyla entegre etmektedir.

Kısa vadeli elektrik tüketimi tahmini, enerji yönetimi ve şebeke istikrarı için
hayati öneme sahiptir. Son yıllarda, tahmin doğruluğunu artırmak amacıyla hibrit
modeller ve derin öğrenme yöntemleri kullanılmaktadır. mevsimsel değişimleri
ele almak için GRU ve Prophet modellerini birleştirmiş, [15] ise çok boyutlu
hanehalkı tüketim verileri üzerinde LSTM ağlarını kullanmıştır. [16], çevresel
değişkenleri içeren hibrit bir RNN-LSTM modeli önererek kısa vadeli tahmin
doğruluğunu artırmıştır. Transformer ağları da RNN’nin sınırlamalarını aşarak
gün öncesi tahminlerde başarılı sonuçlar vermiştir [17]. Bu gelişmeler, bu
çalışmanın normal koşullar altındaki kısa vadeli tahmin doğruluğunu sağlamaya
odaklanan yaklaşımıyla örtüşmekte olup, öngörülemeyen durumları dalgacık
tabanlı tekniklerle ele alarak kapsamını genişletmektedir.

COVID-19 pandemisi gibi anormal olaylar sırasında tahmin yapmak, tüketim
desenlerindeki ani değişimler nedeniyle oldukça zordur. Geleneksel modeller bu
tür değişimlere genellikle uyum sağlayamaz ve bu da doğruluğun azalmasına neden
olur [18], [19]. Yenilenebilir enerji kaynaklarının entegrasyonu ise tahminleri daha
da karmaşık hale getiren ek değişkenlikler oluşturur [20], [21]. Bu araştırma,
dalgacık ayrıştırmasını kullanarak hibrit LSTM-XGBoost modelini ani değişimlere
karşı hassas hale getirerek bu sorunları ele almaktadır. Böylece pandemi gibi
öngörülemeyen olaylar sırasında güçlü bir performans sağlanmaktadır. Bu
uyarlanabilirlik, değişken koşullar altında güvenilir enerji yönetimi için kritik
öneme sahiptir.
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DWT, zaman serilerini çoklu frekans bileşenlerine ayırmak için kullanılan temel
bir araçtır ve çok çözünürlüklü analiz yapılmasına olanak tanır. DWT, durağan
olmayan verilerle özellikle başarılıdır; kısa vadeli dalgalanmalarla uzun vadeli
eğilimleri aynı anda yakalayabilmek için farklı ölçeklerde özellikler çıkarır. Bu
çalışmada, DWT elektrik tüketim verilerini yaklaşık ve detay katsayılarına ayırarak,
modelin anormallikleri tespit etme yeteneğini artırmaktadır.

Dalgacık dönüşümleri, özellikle karmaşık veri kümeleri için zaman-frekans bilgisi
sağlayarak tahmin doğruluğunu artırır. [22], [23], dalgacık dönüşümlerinin elektrik
ve finansal tahminlerdeki etkinliğini vurgulamaktadır. Bu araştırmada, DWT, hibrit
modelin COVID-19 pandemisi gibi öngörülemeyen olaylara karşı duyarlılığını
artırmakta ve modelin sık sık yeniden eğitilmesine gerek kalmadan uzun dönemli
doğru tahminler yapılmasını sağlamaktadır. Bu yaklaşım, dalgacık dönüşümlerinin
düzensiz dalgalanmaları yakalama konusundaki başarısını ortaya koyan önceki
çalışmalarla uyumludur.

LSTM’nin, XGBoost veya Rastgele Ormanlar gibi tekniklerle birleştirildiği hibrit
modeller, elektrik tüketimi tahmininde doğruluğu önemli ölçüde artırmıştır. [24],
Rastgele Ormanlar ile çift yönlü LSTM’yi entegre ederek kısa vadeli tahminlerde
tekil modellere kıyasla üstün performans elde etmiştir. [25] ise, ilk XGBoost
tahminlerini LSTM ile iyileştirerek doğrusal olmayan desenler için doğruluğu
artırmıştır. Bu çalışmada önerilen hibrit LSTM-XGBoost modeli, LSTM’nin
zamansal öğrenme yeteneklerini ve XGBoost’un hata düzeltme gücünü bir araya
getirerek öngörülemeyen olaylara karşı sağlam bir performans sunmaktadır.

Spektral ayrıştırma teknikleri, dalgacık dönüşümleri gibi yöntemler aracılığıyla,
hibrit modellerin dalgalı verilerle başa çıkma yeteneklerini artırmaktadır.[26], çok
değişkenli tahmin performansını artırmak amacıyla Transformer yapılarıyla birlikte
spektral kümeleme yöntemini kullanmıştır. Bu çalışmada ise, dalgacık tabanlı
özellikler LSTM-XGBoost modeline entegre edilerek farklı zaman ölçeklerinin
analiz edilmesi sağlanmış ve COVID-19 pandemisi gibi olaylar sırasında hem kısa
hem de uzun vadeli tahmin ufukları için modelin uyarlanabilirliği geliştirilmiştir.
Bu entegrasyon, karmaşık zamansal dinamiklerin yakalanması açısından kritik bir
rol oynamaktadır.

Bu çalışma, COVID-19 gibi öngörülemeyen olayları hedef alan, LSTM ve
XGBoost’u birleştiren dalgacık-entegreli bir hibrit model önererek literatüre
katkıda bulunmaktadır. Dalgacık ayrıştırma, frekans bileşenlerini izole ederek
modelin hem mevsimsel değişimlere hem de anormal dalgalanmalara karşı
duyarlılığını artırır. Bu hibrit yaklaşım, geleneksel modellerin sınırlamalarını etkili
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bir şekilde aşarken, LSTM’nin zamansal öğrenme yetenekleri ve XGBoost’un
özellik öğrenme gücünden faydalanır. Ortaya çıkan model, özellikle doğrusal
olmayan desenler ve öngörülemeyen değişimlerin söz konusu olduğu senaryolarda
güçlü tahmin doğruluğu sergilemektedir. Ayrıca, dalgacık tabanlı özellikler,
modelin farklı tahmin ufuklarına uyarlanabilirliğini artırmakta ve modern enerji
şebekeleri için yanıt verebilir tahmin modellerinin geliştirilmesine değerli katkılar
sağlamaktadır [27–30].

1.2 Tezin Amacı
Bu tezin amacı, öngörülemeyen olayların varlığında elektrik tüketim tahmininin
doğruluğunu ve sağlamlığını artırmak için dalga dönüşümüyle geliştirilmiş bir
hibrit LSTM-XGBoost modeli geliştirmek ve değerlendirmektir. Model, Ayrık
Dalga Dönüşümü’nü kullanarak zaman serisi verilerini çoklu frekans bileşenlerine
ayırarak kısa vadeli dalgalanmaları ve uzun vadeli eğilimleri yakalamayı hedefler.
LSTM’nin sıralı öğrenme yeteneklerini ve XGBoost’un kalan hata düzeltme gücünü
birleştirerek, özellikle COVID-19 pandemisi gibi düzensiz ve anormal tüketim
kalıplarını içeren senaryolarda tahmin doğruluğunu artırmayı amaçlar. Araştırma,
IEEE Dataport’tan alınan ve COVID-19 pandemisinden etkilenen gerçek dünya
elektrik tüketim verilerini kullanarak modelin performansını değerlendirir ve bunu
tek başına LSTM modelleriyle karşılaştırarak etkinliğini gösterir. Bu metodolojinin
başarılı uygulaması, akıllı şebeke yönetimi, sürdürülebilir enerji planlaması ve
öngörülemeyen kesintilere karşı güç sistemlerinin dayanıklılığını artırabilir.

1.3 Hipotez
Bu tez, aşağıdaki hipotezi test etmeyi amaçlamaktadır, Dalga dönüşümüyle
geliştirilmiş hibrit LSTM-XGBoost modeli, öngörülemeyen olayların (örneğin,
COVID-19 pandemisi) neden olduğu düzensiz elektrik tüketim kalıplarını tahmin
etmede, tek başına LSTM modellerine kıyasla daha yüksek doğruluk ve sağlamlık
sağlayacaktır. Bu hipotez, dalga dönüşümünün çok çözünürlüklü analizinin,
LSTM’nin zamansal bağımlılıkları öğrenme yeteneğiyle ve XGBoost’un özellik
tabanlı hata düzeltme kapasitesiyle birleştiğinde, karmaşık ve değişken zaman
serisi verilerini daha etkili bir şekilde modelleyeceği varsayımına dayanmaktadır.
Modelin performansı, MAE, RMSE, MAPE ve WI gibi metrikler kullanılarak
değerlendirilecektir.
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2
METODOLOJİ

2.1 Veri Toplama ve Ön İşleme
Bu araştırmada kullanılan veri seti, IEEE Dataport’tan [31] alınmıştır ve Mart
2017’den Kasım 2020’ye kadar isimsiz bir bölgenin saatlik elektrik tüketim
verilerini içermektedir. Bu dönem, hem pandemi öncesi tüketim kalıplarını hem
de COVID-19 pandemisi nedeniyle yaşanan aksamaları kapsadığı için özellikle
önemlidir ve beklenmedik olayların enerji talebi üzerindeki etkisini modellemek
için güçlü bir vaka çalışması sunar.

Veri seti, 31.912 saatlik gözlem içerir ve elektrik tüketimini etkilediği bilinen birkaç
meteorolojik değişkeni kapsar, örneğin:

• Sıcaklık

• Nem

• Bulut örtüsü

• Basınç

• Rüzgar bileşenleri (yatay ve dikey)

Ayrıca, elektrik talebinin döngüsel doğasını yakalamak için zamansal değişkenler
eklenmiştir, bunlar:

• Aylar

• Haftanın günleri

• Saatler

Bu zamansal özellikler, elektrik tüketim kalıplarındaki doğal periyodikliği
modellemek için çok önemlidir.
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2.1.1 Eksik Değerler ve Aykırı Değerlerin İşlenmesi

Veri setinin güvenilirliğini ve bütünlüğünü sağlamak için eksik değerler ve
aykırı değerleri ele almak amacıyla ön işleme adımları uygulanmıştır. Özellikle
meteorolojik değişkenlerdeki eksik değerler, istatistiksel ve makine öğrenimi
tabanlı tekniklerin bir kombinasyonu kullanılarak doldurulmuştur. Bu yöntemler,
geçmiş verilerle olan korelasyonlardan yararlanarak eksik girişleri tahmin etmiş ve
veri setinde sürekliliği korumuştur.

Verilerdeki aykırı değerler, modelin performansını çarpıtmalarını önlemek
için tespit edilmiş ve düzeltilmiştir. Kaynak makalede belirli aykırı değer
düzeltme yöntemleri detaylandırılmamış olsa da, winsorizasyon veya istatistiksel
eşiklere dayalı kaldırma gibi standart uygulamaların muhtemelen kullanıldığı
düşünülmektedir.

2.2 Yöntem ve Modelleme
2.2.1 Zaman Serisi Analizinde Dalgacık Dönüşümleri

Dalgacık dönüşümleri, zamanla değişen desenler sergileyen elektrik tüketimi gibi
durağan olmayan zaman serilerini analiz etmek için çok yönlü bir araçtır. Fourier
dönüşümlerinin zaman çözünürlüğü eksikliğinin aksine, dalgacık dönüşümleri
çoklu çözünürlük analizi sağlar, böylece hem zaman hem de frekans bileşenlerini
eşzamanlı olarak yakalayabilir. Bu özellik, karmaşık ve zamana bağlı yapılar içeren
verilerin daha etkili şekilde analiz edilmesine olanak tanır.

2.2.2 Ayrık Dalgacık Dönüşüm Teorisi

DWT, ayrık zamanlı sinyaller üzerinde yaygın olarak kullanılan ve hesaplama
açısından verimli bir dalgacık dönüşüm çeşididir. DWT, bir sinyali, Daubechies
dalgacığı gibi bir dalgacık temeli kullanarak yaklaşık (düşük frekanslı) ve detay
(yüksek frekanslı) katsayılara ayırır [32]. Bu süreç, eğilimleri yakalamak için
alçak geçiren filtreleme ve dalgalanmaları yakalamak için yüksek geçiren filtreleme
adımlarının yinelemeli olarak uygulanması ve ardından aşağı örnekleme işlemini
içerir. Böylece sinyal, çoklu ölçeklerde farklı frekans bileşenlerine ayrılarak analiz
edilebilir hale gelir.

Matematiksel olarak, DWT bir x(t) sinyalini şu şekilde temsil eder:

x(t) =
∑
j

∑
k

Aj,kψj,k(t) (2.1)
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Burada ψj,k(t), dalgacık fonksiyonlarını; Aj,k ise j ölçeğinde ve k konumunda
elde edilen katsayıları ifade etmektedir [33]. Bu çok seviyeli ayrıştırma işlemi,
kısa vadeli dalgalanmaları ve uzun vadeli eğilimleri birbirinden ayırarak, DWT’yi
karmaşık zaman serilerinin ön işlenmesi için ideal bir yöntem haline getirmektedir.

2.3 Zaman serisi tahmin teknikleri
2.3.1 Geleneksel istatistiksel yöntemler (ARIMA, SARIMA)

Zaman serisi tahmini, enerji yönetimi, finans, ekonomi ve meteoroloji gibi
birçok alanda hayati bir rol oynamaktadır. Zaman serisi tahmini için kullanılan
klasik istatistiksel yaklaşımlar arasında, ARIMA ve onun mevsimsel uzantısı
olan Mevsimsel ARIMA SARIMA, doğrusal zaman serilerini modellemedeki
yorumlanabilirliği ve etkinliği nedeniyle yaygın olarak benimsenmiştir. Box ve
Jenkins tarafından tanıtılan ARIMA modeli [34], ARMA çerçevesini genişletir ve
durağan olmayan zaman serilerini analiz etmek üzere tasarlanmıştır. Klasik ARMA
modeli zaman serisinin durağan olduğunu varsayarken, ARIMA bu verileri önce
durağan hale getirerek modelleyebilir. Bu genellikle, eğilimlerin ve mevsimselliğin
sonlu fark alma yöntemiyle giderilmesiyle gerçekleştirilir [35]. Durağan bir zaman
serisi hem sinyal hem de gürültü bileşenlerini içerir. ARIMA modeli, önce
gürültüden ayrılan sinyal bileşenini modellemeye odaklanır ve ardından gelecekteki
zaman noktaları için tahminler üretir [36]. Adından da anlaşılacağı gibi, üç
bileşenin birleşiminden oluşur [37]:

• AR: Otoregresyon. Bir gözlem ile önceki gözlemler arasındaki bağımlılık
ilişkisini kullanan regresyon modeli (model parametresi p).

• I: Entegrasyon. Zaman içindeki farklı gözlemler arasındaki farkların
hesaplanması (model parametresi d), zaman serisini durağan hale getirmeyi
amaçlar.

• MA: Hareketli Ortalama. Zaman gecikmeli gözlemler üzerine uygulanan
hareketli ortalama modeliyle oluşturulan hata terimleri ile gözlemler
arasındaki olası bağımlılığı dikkate alan yaklaşım (model parametresi q).

p dereceli AR modeli, AR(p), aşağıdaki gibi doğrusal bir süreç olarak yazılabilir:

xt = c+

p∑
i=1

ϕixt−i + εt (2.2)
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burada xt statik değişkeni, c sabit terim, ϕi zaman gecikmesi adımlarındaki
(1, 2, . . . , p) otokorelasyon katsayıları ve εt sıfır ortalamalı ve σ2 varyanslı Gauss
beyaz gürültü serisinin örnekleridir.

q dereceli basit bir hareketli ortalama modeli, MA(q), şu şekilde verilebilir:

xt = µ+

q∑
i=0

θiεt−i (2.3)

burada mu genellikle 0 olan xt’nin beklenen değeri, θi ise zaman serisinin stokastik
teriminin mevcut ve geçmiş değerlerine uygulanan ağırlıklardır ve θ0 = 1’dir. εt
sıfır ortalamalı ve σ2 varyanslı Gauss beyaz gürültü serisi olarak kabul edilir.

Bu iki model, yani otoregresyon ve hareketli ortalama modellerinin birleşimi ile
(p, q) sınıfında ARMA modeli oluşturulur:

xt = c+

p∑
i=1

ϕixt−i + εt +

q∑
i=0

θiεt−i (2.4)

burada ϕi ̸= 0, θi ̸= 0, σ2 > 0.parametreleri sırasıyla AR ve MA modellerinin
derecelerini temsil eder.

Genel ARIMA modeli, zaman serisinin durağanlığını garanti eden entegrasyon
terimini de içerecek şekilde ARIMA(p, d, q) olarak yazılır [37] ve şu şekilde ifade
edilir:

∇dxt = c+

p∑
i=1

ϕi∇dxt−i +

q∑
i=0

θiεt−i (2.5)

burada ∇d, d derecesinde bir fark operatörüdür ve xt zaman serisinin durağan
olmama özelliğini ortadan kaldırmayı amaçlar [38].

ARIMA mevsimsiz veriler için uygunken, SARIMA (Mevsimsel ARIMA) modeli
ARIMA’yı mevsimselliği içerecek şekilde genişletir. SARIMA modeli şu şekilde
gösterilir:

SARIMA(p, d, q)(P,D,Q)s (2.6)

Matematiksel formu ise şöyledir:
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Φ(Bs)ϕ(B)(1−B)d(1−Bs)Dyt = Θ(Bs)θ(B)εt (2.7)

Burada:

• s mevsimsel periyodun uzunluğudur,

• Φ(Bs) = 1−Φ1B
s−· · ·−ΦPB

sP mevsimsel AR (otoregresif) operatörüdür,

• Θ(Bs) = 1 + Θ1B
s + · · · + ΘQB

sQ mevsimsel MA (hareketli ortalama)
operatörüdür,

• (1−Bs)D mevsimsel fark alma operatörüdür.

SARIMA modelleri hem trendi hem de mevsimselliği yakalayabilir ve bu nedenle
aylık satışlar veya elektrik talebi gibi güçlü mevsimsel bileşenlere sahip tahmin
görevleri için oldukça uygundur. [39] SARIMA’nın gerçek dünya mevsimsel zaman
serisi uygulamalarındaki dayanıklılığını vurgulamaktadır.

Örneğin, [40] İspanya’daki elektrik fiyatlarını tahmin etmek için SARIMA’yı
uygulamış ve modelin günlük ve haftalık elektrik fiyatı döngüselliğini doğru
şekilde yakaladığını bulmuştur. Benzer şekilde, [41] SARIMA’nın endüstriyel
talep tahminlerinde mevsimsel verilerle çalışırken ARIMA’dan daha iyi performans
gösterdiğini ortaya koymuştur.

2.3.2 Destek Vektör Makineleri

SVM esas olarak sınıflandırma görevlerinde kullanılan denetimli bir makine
öğrenmesi algoritmasıdır; ancak regresyon ve zaman serisi tahmini gibi alanlarda
da kullanılabilir. SVM, vektör uzayında iki sınıfı ayıran en uygun hiperdüzlemi
belirlemek için doğrusal bir model oluşturur. Bu en uygun hiperdüzlem, her sınıfa
ait en yakın veri noktaları ile hiperdüzlem arasındaki mesafe olan marjın maksimize
edilmesiyle belirlenir. Bu en yakın veri noktalarına “destek vektörleri” denir [42].
-1 ve +1 olarak etiketlenmiş iki sınıf, d boyutlu bir uzayda tanımlandığında, bu
sınıfları ayıran hiperdüzlem şu denklemle ifade edilebilir:

w⃗ · x⃗+ b = 0 (2.8)

Negatif (-1) ve pozitif (+1) örneklerdeki x⃗i örüntüsü (pattern) şu şekilde formüle
edilebilir:
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w⃗ · x⃗+ b ≤ −1 (2.9)

w⃗ · x⃗+ b ≥ +1 (2.10)

En büyük marj değeri 1
|w⃗| ’i bulmak için kuadratik programlama kullanılır ve bu,

aşağıdaki ifadeyi minimize ederek gerçekleştirilir:

min
w⃗
τ(w⃗) =

1

2
∥w⃗∥2 (2.11)

Lagrange çarpanları kullanılarak, kuadratik programlamanın asal (primal) formu
aşağıdaki denklemle ikili (dual) forma dönüştürülebilir:

L(w⃗, b, α) =
1

2
∥w⃗∥2 −

l∑
i=1

αi (yi (x⃗i · w⃗ + b)− 1) (2.12)

2.3.3 Rastgele Ormanlar

Breiman tarafından geliştirilen RF, birden fazla karar ağacı oluşturarak ve
bunların tahminlerini birleştirerek doğruluk ve sağlamlığı artırmayı amaçlayan
topluluk (ensemble) makine öğrenme yöntemidir [43].RF algoritmasının tek adımlı
zaman serisi tahmini için uygulanması oldukça basittir ve standart regresyon
görevlerindeki yöntemle benzerlik gösterir. Eğitilmiş RF modelinin öğrendiği
fonksiyon g, giriş dizisi x1, . . . , xn kullanılarak xn+1’in tahmininde kullanılır. k

adet gecikmeli değişken (lagged variable) kullanıldığında, t = n+ 1 anındaki xn+1

tahmini şu şekilde ifade edilebilir:

xt = g(xt−1, . . . , xt−k), t = k + 1, . . . , n+ 1 (2.13)

Fonksiyon g kapalı formda değildir ancak, boyutu n−k olan bir eğitim veri kümesi
kullanılarak Rastgele Orman algoritması ile öğrenilebilir. Her bir eğitim örneğinde
hedef (bağımlı) değişken xt olup, burada t = k + 1, . . . , n + 1, ve giriş (bağımsız)
değişkenler xt−1, . . . , xt−k gecikmeli değerlerinden oluşur. Gecikmeli değişken
sayısı k arttıkça, eğitim veri kümesinin boyutu olan n − k buna karşılık azalır. Bu
eğitim.
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2.3.4 Uzun Kısa Süreli Bellek Ağları

Yıllar içinde, RNN eğitimindeki zorlukları aşmaya yönelik çeşitli girişimlerde
bulunulmuştur. Bu zorluklar, Hochreiter ve Schmidhuber tarafından 1997 yılında
önerilen LSTM ağlarıyla büyük ölçüde giderilmiştir. LSTM ağları, yinelemeli sinir
ağı yapısından türetilmiş bir model varyasyonudur. Bu ağlar, geleneksel RNN’lerin
büyük giriş boşlukları karşısında ilgili bilgiyi koruyamaması nedeniyle öğrenmekte
zorlandığı uzun vadeli bağımlılıkların öğrenilmesinde önemli bir rol oynamaktadır
[44].

LSTM’ler, geleneksel RNN’lerde yaygın olarak görülen “kaybolan gradyan”
problemini azaltmak için tasarlanmıştır. LSTM, ileri beslemeli (feedforward)
sinir ağları temelinde geri besleme bağlantılarına sahip bir yinelemeli sinir ağı
yapısıdır ve bilgi arasındaki uzun vadeli bağımlılıkları öğrenme yetisine sahiptir.
En büyük avantajlarından biri, yalnızca tekil veri noktalarını değil, tüm veri yapısını
işleyebilmesidir. Bu özelliği sayesinde makine çevirisi, konuşma tanıma gibi yeni
teknolojilerde yaygın bir şekilde kullanılmaktadır [45].

İlk ortaya çıktığında giriş-çıkış-hücre yapısını içeren LSTM’ler, zamanla
geliştirilmiş ve daha yetkin hale getirilmiştir. Günümüzdeki LSTM yapısı genel
hatlarıyla hücreler, giriş-çıkışlar ve unutulacak bilgilere ilişkin kapılardan (gates)
oluşmaktadır. Bu yapının içindeki "hafızalar", hücreler olarak adlandırılmaktadır.
LSTM hücre yapısına yeni bilgi durumları eklenebilir, mevcut hücrelerden bilgi
çıkarılabilir ve bu süreç kapılar aracılığıyla koordine edilir. Kapılar, hücreye bilgi
giriş ve çıkışını sağlar. Hücreler, önceki bilgileri ve mevcut durumda işlenecek yeni
girdileri bir arada tutar.

Olah’a [46] göre, LSTM’ler bir zincir yapısı şeklinde tasarlanmıştır; ancak bu zincir
içinde bulunan yinelemeli modülün yapısı klasik RNN’lerden farklıdır. Standart
bir yinelemeli sinir ağı gibi tek bir nöral ağ katmanı yerine, birbirleriyle özel bir
etkileşim yöntemine sahip dört katmandan oluşur.

LSTM ağı, hücreler olarak adlandırılan hafıza bloklarından oluşur. Hücre durumu
ve gizli durum (hidden state), bir sonraki hücreye aktarılır. Hücre durumu, verilerin
esasen değişmeden ileriye doğru akmasına olanak tanıyan ana akış veri zinciridir.
Ancak bazı doğrusal dönüşümler meydana gelebilir. Hücre durumuna veri eklemek
veya veriyi çıkarmak gibi işlemler, sigmoid kapıları aracılığıyla yapılabilir. Bir
kapı, farklı ağırlıklara sahip bir katman veya bir dizi matris işlemiyle benzer
şekilde çalışır. LSTM’ler, uzun vadeli bağımlılık sorununu önlemek için hafızalama
sürecini kontrol eden kapılardan oluşur.
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Şekil 2.1 Temel Uzun Kısa Süreli Bellek (LSTM) Birimi

Bir LSTM ağı oluşturmanın iki aşaması vardır: birincisi, gerekli olmayan ve
hücreden çıkarılacak bilgilerin belirlenmesidir. Verilerin tanımlanıp dışlanması
süreci, son LSTM biriminin (ht − 1) t-1 zamanındaki çıktısını ve mevcut girdiyi
(Xt) t zamanında alarak belirleyen sigmoid fonksiyonu ile yapılır. Ayrıca, sigmoid
fonksiyonu eski çıktının hangi kısmının silineceğini de belirler. Bu kapıya unutma
kapısı (forget gate veya ft) denir; burada ft, hücre durumu (Ct − 1) içindeki her bir
değere karşılık gelen 0 ile 1 arasında değişen değerlere sahip bir vektördür.

ft = σ(Wf · [ht−1, xt] + bf ), (2.14)

Burada σ, sigmoid fonksiyonunu, Wf ve bf ise unutma kapısının ağırlık matrisleri
ve önyargısını (bias) ifade etmektedir. Bir sonraki adım, yeni giriş (Xt) bilgisini
hücre durumunda saklamak ve güncellemektir. Bu adım iki bölümden oluşur:
sigmoid katmanı ve tanh katmanı. İlk olarak, sigmoid katmanı yeni bilginin
güncellenip güncellenmeyeceğine (0 veya 1) karar verir, ikinci olarak ise tanh
fonksiyonu, geçen değerlere (-1 ile 1 arasında) önem düzeylerine göre ağırlık verir.

it = σ(Wi · [ht−1, xt] + bi), (2.15)

C̃t = tanh(WC · [ht−1, xt] + bC), (2.16)
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Ct = ft · Ct−1 + it · C̃t, (2.17)

Burada, Ct−1 ve Ct, sırasıyla t − 1 ve t zamanlarındaki hücre durumlarını ifade
ederken, W ve b, hücre durumunun ağırlık matrisleri ve önyargısını (bias) temsil
etmektedir. Nt yeni hücreyi ifade eder. Son adımda, çıktı değerleri (ht) çıkış
hücre durumuna (Ot) dayanır, ancak filtrelenmiş bir versiyon olarak. İlk olarak,
bir sigmoid katmanı, hücre durumunun hangi bölümlerinin çıkışa ulaşacağına karar
verir. Ardından, sigmoid kapısının çıktısı (Ot), hücre durumundan (Ct) elde edilen
yeni değerlerle, tanh katmanından geçirilerek çarpılır ve -1 ile 1 arasında bir değer
bulunur.

ot = σ(Wo · [ht−1, xt] + bo), (2.18)

ht = tanh(Ct), (2.19)

Burada, Wo ve bo, sırasıyla çıkış kapısının ağırlık matrisleri ve önyargısını (bias)
ifade etmektedir [47].

2.3.5 XGBoost

XGBoost, ifadesinin kısaltmasıdır. Bu, özellikle veri araştırmacıları tarafından
pek çok veri yarışmasında ve makine öğrenimi yarışmalarında kullanılan,
diğer yöntemlere kıyasla daha üstün performans gösteren bir makine öğrenimi
yöntemidir. XGBoost, sınıflandırma ve regresyon alanlarında uygulanabilir
olup, birçok pratik durumda doğruluğu kanıtlanmıştır [48]. XGBoost, 2016
yılında Tianqi Chen ve Carlos Guestrin tarafından gradyan artırma tekniğinin
geliştirilmesiyle tanıtılmıştır. Gradyan artırma tekniğinde analiz, kayıp
fonksiyonunun birinci türevi ile yapılırken, XGBoost tekniğinde kayıp fonksiyonu
Taylor serisi genişlemesiyle iyileştirilmiştir. XGBoost algoritmasındaki tahmin
fonksiyonu, Denklem 2.20’de gösterildiği şekilde oluşturulmuştur.

L(Φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (2.20)

İlk terim, kayıp fonksiyonunu temsil eder ve hedef sınıfı (yi) ile tahmin edilen sınıfı
(ŷi) arasındaki farkı ölçer. İkinci terim, modelin karmaşıklığını kontrol ederek aşırı
öğrenmeyi (overfitting) önlemek amacıyla kullanılan bir ceza terimidir. Bu ceza
terimi, Denklem 2.8’de gösterilmiştir.
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Ω(f) = γT +
1

2
λ||w||2 (2.21)

Bu ifadede, T ağaçtaki dal sayısını, w her dalın performans skorunu ve γ ile
λ düzenleme parametrelerini temsil eder. Tahmin fonksiyonunu optimize etmek
için iteratif bir yaklaşım benimsenir ve bu iterasyon, adım t Denklem 2.9’a kadar
devam eder. Optimizasyon sürecini hızlandırmak için, tahmin fonksiyonuna ikinci
dereceden bir Taylor serisi genişlemesi uygulanabilir.

L(t) =
n∑

i=1

l
(
yi, ŷ

(t−1)
i + ft(xi)

)
+ Ω(ft) (2.22)

XGBoost modelinin şematik açıklaması Şekil 2.2’de verilmiştir.

Şekil 2.2 XGBoost Algoritma Yapısı

2.3.6 Tekrarlayan Sinir Ağları

RNN, zamansal bilgiyi koruma yetenekleri sayesinde ardışık verileri modellemede
özellikle uygun olan bir yapay sinir ağı sınıfıdır [49]. RNN’ler, önceki zaman
adımlarının belleği olarak işlev gören gizli bir durumu koruyarak ardışık verileri
işlemek üzere tasarlanmıştır. İleri beslemeli sinir ağlarının aksine, RNN’ler zaman
adımları boyunca bilginin kalıcılığını sağlayan döngüler içerir [50]. Bir RNN’in
temel yapısı, bir giriş katmanı, bir tekrarlayan gizli katman ve bir çıkış katmanından
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oluşur. Her bir zaman adımında t, ağ bir girdi xt alır, gizli durumunu ht olarak
günceller ve bir çıktı yt üretir. Gizli durum aşağıdaki denklemlerle güncellenir:

ht = σ(Whht−1 +Wxxt + bh), (2.23)

yt = Wyht + by, (2.24)

Burada Wh gizli durum için ağırlık matrisi, Wx giriş ağırlık matrisi, Wy çıkış
ağırlık matrisi, bh ve by ise bias terimleridir; σ ise aktivasyon fonksiyonudur
(genellikle tanh veya sigmoid kullanılır). Bu özyineli yapı, RNN’lerin zaman
serisi verilerindeki zamansal ilişkileri modellemesine olanak tanır [51]. Ancak,
standart RNN’ler uzun vadeli bağımlılıkları öğrenme yeteneklerini kısıtlayan
"azalan gradyan" (vanishing gradient) problemiyle karşı karşıyadır [52]. Bu
sınırlama, bilgi akışını düzenlemek ve gradyan sorunlarını hafifletmek amacıyla
geçit (gate) mekanizmaları içeren GRU [53] ve LSTM [54] gibi gelişmiş
mimarilerin geliştirilmesine yol açmıştır.

Bu yöntem, zaman serileri, ses, metin gibi sıralı verilerdeki bağımlılıkları
modellemek için tasarlanmıştır. Sıralı veriler, aynı ağırlıklar kullanılarak tekrar
tekrar işlenir. RNN modelinin mimari yapısı Şekil 2.3’te verilmiştir [55].
Şekil incelendiğinde, sonucun, bir sonraki adımda kullanılacak olan giriş verisini
beslediği açıkça ortaya konmuştur. Diğer bir deyişle, h0 ve X1 kullanılarak h1 için
giriş X0 elde edilir. Sonraki adımlar aynı şekilde devam eder.

Şekil 2.3 Özyinelemeli Sinir Ağı Mimarisi Yapısı

2.3.7 Kapılı Tekrarlayan Birimler

GRU, LSTM’nin giriş ve unutma kapılarını bir güncelleme kapısı altında birleştirir
ve buna ek olarak bir sıfırlama kapısı ekler [56]. Ayrıca, LSTM’deki hücre ve
gizli durum vektörlerini tek bir vektör altında birleştirir. Sonuç olarak, standart
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LSTM’den daha az karmaşık modeller oluşturur ve çeşitli konularda LSTM’den
daha iyi doğruluk sağlayabilir.

Denklemler (2.11–2.15)’te, ht ∈ Rd hücrenin gizli durumunu, xt ∈ Rm hücrenin
girdisini gösterir ve m girişin boyutunu ifade eder. zt ∈ Rd hücrenin çıktısıdır.
Wu,Wr,Wh ∈ Rd×d sırasıyla giriş, çıkış, unutma kapıları ve hücre durumu ile
ilişkili ağırlıkları gösterir. Vu, Vr, Vh ∈ Rd×m ve bi, bo, bf , bc ∈ Rd mevcut girişle
ilişkili ağırlıkları ve sapma (bias) vektörlerini ifade eder. it, ot, ft ∈ Rd sırasıyla
giriş, çıkış ve unutma kapısı vektörleridir. σ, [0, 1] aralığında çıktı veren sigmoid
fonksiyonu, tanh ise [−1, 1] aralığında çıktı veren hiperbolik tanjant fonksiyonudur.
⊙ eleman bazında çarpımı (Hadamard çarpımı olarak da bilinir) ifade eder.

Denklemler (2.11–2.15)’te, ut, rt ∈ Rd sırasıyla güncelleme ve sıfırlama kapılarını
[57] temsil eder. ĥt ∈ Rd aday gizli durum, ht ∈ Rd ise mevcut gizli durumdur.

ut = σ(Wu · ht−1 + Vu · xt + bu) (2.25)

rt = σ(Wr · ht−1 + Vr · xt + br) (2.26)

ĥt = tanh(Wh · rt · ht−1 + Vh · xt + bh) (2.27)

ht = ut ⊙ ĥt + (1− ut)⊙ ht−1 (2.28)

zt = ht (2.29)

Şekil 2.4 Kapılı Özyinelemeli Sinir Ağı Yapısı
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2.3.8 LSTM-XGBoost Hibrit Modeline Genel Bakış

Bu çalışmada kullanılan veri seti, IEEE Dataport web sitesinde mevcuttur
ve meteorolojik verilerin yanı sıra COVID-19 döneminde ismi verilmeyen
bir bölgenin elektrik tüketimindeki öngörülemeyen değişiklikleri içermektedir
[58]. Önerilen hibrit model, sırasıyla ardışık öğrenme için LSTM ve hata
düzeltme için XGBoost olmak üzere iki ana bileşenden oluşmaktadır. Bu
şekilde, COVID-19 öncesi düzenli desenler ve pandemi sırasında ortaya çıkan
düzensiz “öngörülemeyen olaylar” içeren veri setindeki yük tüketimini modellemek
amaçlanmıştır. Meteorolojik verilere ek olarak ayrık DWT eğitim verilerine dahil
edilmesi, zaman serilerinin çok çözünürlüklü analizine olanak tanımakta ve verideki
öngörülemeyen dalgalanmaların ele alınmasında kritik olan hem yüksek hem de
düşük frekans bileşenlerinin yakalanmasını sağlamaktadır.

2.3.9 Öznitelik Çıkarımı için Ayrık Dalgacık Dönüşümü

x(t) orijinal zaman serisini temsil etsin. Ayrık Dalgacık Dönüşümü (DWT), x(t)’yi
birden fazla frekans bandına ayırarak hem zaman hem de frekans alanında bir temsil
sunar. DWT şu şekilde ifade edilebilir:

x(t) =
N∑
k=1

∑
j

Aj,k ψj,k(t) (2.30)

Burada,ψj,k(t) dalgacık temel fonksiyonlarını, Aj,k ise yaklaşık katsayıları (düşük
frekans bileşenleri) temsil eder; j ve k sırasıyla ölçek (scale) ve kaydırma
(translation) parametreleridir. Bu çalışmada, dbN kullanılarak seviye 5’e kadar
dalgacık ayrıştırması uygulanmıştır ve bu işlem sonucunda hem yaklaşık Aj hem
de detay Dj katsayıları elde edilmiştir. Yaklaşık katsayılar, zaman serisindeki
düzgün, uzun vadeli eğilimleri yakalarken; detay katsayıları, ani dalgalanmaları
ve "öngörülemeyen olaylar" gibi potansiyel anormallikleri yakalar. Seviye 5’teki
dalgacık ayrıştırması şu şekilde özetlenebilir:

x(t) = A5 +D5 +D4 +D3 +D2 +D1 (2.31)

Bu katsayılar daha sonra LSTM-XGBoost hibrit modeli için giriş öznitelikleri
olarak kullanılır.

2.3.10 Dizi Tahmini için LSTM

LSTM, hücre durumları ve kapı mekanizmaları sayesinde uzun vadeli bağımlılıkları
öğrenebilen bir RNN mimarisidir. LSTM modelini yöneten temel denklemler
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aşağıdaki gibidir:

Unutma kapısı (Forget gate):

ft = σ(Wf · [ht−1, xt] + bf ), (2.32)

Giriş kapısı (Input gate):

it = σ(Wi · [ht−1, xt] + bi), (2.33)

C̃t = tanh(WC · [ht−1, xt] + bC), (2.34)

Hücre durumu güncelleme (Cell state update):

Ct = ft · Ct−1 + it · C̃t, (2.35)

Çıkış kapısı (Output gate):

ot = σ(Wo · [ht−1, xt] + bo), (2.36)

ht = tanh(Ct), (2.37)

Burada, Wf , Wi , Wo sırasıyla unutma, giriş ve çıkış kapıları için ağırlık
matrisleridir.σ sigmoid aktivasyon fonksiyonu, tanh ise hiperbolik tanjant
fonksiyonudur. ht gizli durumu, Ct ise zaman t’teki hücre durumunu temsil eder.
LSTM modeli, orijinal zaman serisinden ve dalgacık özniteliklerinden üretilen
dizileri giriş olarak alır. XLSTM ∈ RT×d giriş dizisi olsun, burada T zaman
adımı ve d öznitelik (dalgacık öznitelikleri dahil) bulunur ve y ∈ RT hedef yük
değerlerini temsil eder. LSTM, aşağıdaki gibi tanımlanan ortalama kare hata (MSE)
fonksiyonunu minimize etmek üzere eğitilir:

MSELSTM =
1

N

N∑
i=1

(yi − ŷi)
2 (2.38)

Burada, yi gerçek yük değerlerini ve ŷi LSTM modelinden elde edilen tahmin edilen
yük değerlerini temsil eder.

2.3.11 XGBoost ile Artık Hata Düzeltmesi

LSTM tahminleri elde edildikten sonra, artık hatalar rt şu şekilde hesaplanır:
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rt = yi − ŷi (2.39)

Burada, yt gerçek yük değeri ve ŷt zaman t’teki LSTM tahminini temsil eder. Bu
artık hatalar rt, LSTM’nin yakalayamadığı veri kısmını temsil eder; bu genellikle
öngörülemeyen olaylar ve kısa vadeli dalgalanmalarla ilişkilidir. XGBoost, bu artık
hataları modellemek ve düzeltmek için kullanılır. XGBoost, artık hatalara uyan
zayıf öğrenicileri (karar ağaçları) sırasıyla ekleyerek çalışır. XGBoost için hedef
fonksiyon, artık kaybı (residual loss) minimize etmek olup, şu şekilde ifade edilir:

L(r) =
N∑
i=1

l(ri, r̂i) +
∑
k

Ω(fk) (2.40)

Burada, l(ri, r̂i) artıklar için kayıp fonksiyonunu (kare hata) temsil eder, ω(fk)
modelin karmaşıklığını cezalayan düzenleme terimini, fk ise ansambldeki kinci
karar ağacını temsil eder. XGBoost’un parametreleri, örneğin ‘max_depth’
(maksimum derinlik), ‘learning_rate’ (öğrenme oranı) ve ‘n_estimators’ (karar
ağacı sayısı), modelin performansını daha da artırmak için RandomizedSearchCV
kullanılarak optimize edilir.

2.3.12 Hibrit LSTM-XGBoost Tahmini

Hibrit modelden elde edilen nihai tahmin ŷfinal, LSTM tahminleri ŷt ile XGBoost
düzeltmeleri r̂t’nin birleştirilmesiyle elde edilir:

ŷfinal = ŷt + r̂t (2.41)

2.3.13 Model Değerlendirmesi

Tahmin modellerinin performansını değerlendirmek için, tahmin edilen değerlerle
gerçek değerler arasındaki farkı nicelendiren sağlam istatistiksel doğruluk
ölçütlerinin kullanılması gereklidir. Zaman serisi tahmininde en yaygın kullanılan
ölçütler arasında MAE, RMSE, MAPE ve WI yer almaktadır. Bu göstergeler,
tahmin hatalarının büyüklüğü, yönü ve oransallığı hakkında tamamlayıcı bilgiler
sunar.

Hibrit model, aşağıdaki metrikler kullanılarak değerlendirilir:
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2.3.13.1 Ortalama Kare Hata (MSE)

MSE =
1

N

N∑
i=1

(yi − ŷfinal
i )2 (2.42)

2.3.13.2 Kök Ortalama Kare Hatası (RMSE)

RMSE, tahmin edilen değerlerle gerçek değerler arasındaki farkların karesinin
ortalamasının karekökünü hesaplar.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷfinal
i )2 (2.43)

2.3.13.3 Ortalama Mutlak Hata (MAE)

MAE, bir tahmin kümesindeki hataların ortalama büyüklüğünü, yönlerini dikkate
almadan ölçer. Gerçek ve tahmin edilen değerler arasındaki mutlak farkların
ortalamasıdır.

MAE =
1

N

N∑
i=1

|yi − ŷfinal
i | (2.44)

2.3.13.4 Ortalama Mutlak Yüzde Hatası (MAPE )

MAPE, tahmin modellerinin doğruluğunu değerlendirmek için yaygın olarak
kullanılan bir ölçüttür. Hataları yüzde cinsinden ifade ettiği için, farklı ölçekler
ve veri setleri arasında anlaşılması sezgisel ve kolaydır.

MAPE =
100%

N

N∑
i=1

∣∣yi − ŷfinal
i

∣∣
|yi|

(2.45)

Tablo 2.1 MAPE değerine göre tahmin doğruluğu yorumları

MAPE Yorum
< 10 Yüksek doğrulukta tahmin

10− 20 İyi tahmin
20− 50 Makul tahmin
> 50 Düşük doğrulukta tahmin
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2.3.13.5 Willmott İndeksi (WI)

WI, ya da bilinen adıyla Willmott’un Uyum İndeksi, model tahminlerinin
gözlemlenen verilerle olan doğruluğunu değerlendirmek amacıyla C.J. Willmott
tarafından geliştirilen istatistiksel bir ölçüttür [59]. Enerji tüketimi tahminleri,
hava durumu tahminleri ve çevresel modelleme gibi öngörü çalışmaları kapsamında
yaygın olarak kullanılır.

WI = 1−
∑N−1

i=0 (ŷi − yi)
2∑N−1

i=0 (|ŷi − mean(y)|+ |yi − mean(y)|)2
(2.46)

Yorumlama

• WI = 1: Tahmin edilen ve gözlemlenen değerler arasında mükemmel uyum

• WI = 0: Hiçbir uyum yok (model mümkün olan en kötü durumdadır)

• WI < 0: Model, yalnızca gözlemlenen değerlerin ortalamasını kullanmaktan
daha kötüdür

Burada yi gerçek değerleri, ŷfinal
i tahmin edilen değerleri ve N ise toplam veri

sayısını temsil etmektedir. MSE, RMSE ve MAE’nin daha düşük değerleri,
hem düzenli desenleri hem de öngörülemeyen olayları yakalamada model
performansının daha iyi olduğunu gösterir.

DWT, LSTM ve XGBoost birleşimi, öngörülemeyen olaylar içeren veri setlerinin
etkili bir şekilde işlenmesini sağlar. DWT’nin çok çözünürlüklü analizi, LSTM’nin
sekans öğrenme kabiliyeti ve XGBoost’un artık hata düzeltmesi bir araya gelerek,
değişken zaman serisi verilerinde yük değerlerini doğru bir şekilde tahmin edebilen
sağlam bir model ortaya koyar.
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3
ANALİZ SONUÇLARI

3.1 Standart Derin Öğrenme Mimarileri ile Karşılaştırma
Bu çalışmada kullanılan veriler, ortalama elektrik tüketimi 1.1 GW olan bir bölgeye
aittir [60]. Bu deneyde, en iyi performansı gösteren LSTM modeli, 1 haftalık
tahminler için doğrulama RMSE olarak 0.0891 değerine ulaşırken, GRU modeli
daha yüksek bir RMSE olan 0.1098 vermiştir.

Şekil 3.1, Mart 2020’de COVID-19 pandemisinin neden olduğu bozulmayı
göstermektedir.

Şekil 3.1 COVID-19’un elektrik tüketimi üzerindeki etkisi.

Bu deneyde, LSTM ve GRU için farklı yapılar ve hiperparametreler kullanılarak
derin öğrenme modellerinin performansları karşılaştırılmıştır. Tüm bu modeller
için yapılandırılması gereken hiperparametre sayısı, geleneksel makine öğrenme
tekniklerine göre daha fazladır. Bu nedenle, bu parametrelerin uygun şekilde
ayarlanması karmaşık bir iştir, önemli bir uzmanlık gerektirir ve çoğu zaman
sezgiye dayanır. Derin öğrenme mimarileri, en iyi performansları bulmak için
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MATLAB Deney Yöneticisi Aracı ile yapılandırılmıştır. Modellerin daha az
hata veren optimum hiperparametrelerini bulmak için grid search (kafes arama)
kullanılmıştır. Bu, hiperparametrelerin en uygun değerlerini hesaplamak için
kullanılan bir ayarlama tekniğidir.

Katman sayısı, gizli birim sayısı ve öğrenme oranı için birkaç olasılığı denedim.
Tablo 3.1 ve Tablo 3.2, yaygın olarak kullanılan değerler için seçtiğim varyasyonları
göstermektedir.

Tablo 3.1 Model parametreleri ve değerleri

Model Parametreler Değerleri
LSTM Katman derinliği 1, 3

- - - Gizli birim sayısı 50, 100, 200
GRU Katman derinliği 1, 3
- - - Gizli birim sayısı 50, 100, 200

Adam (uyarlamalı moment tahmininden türetilmiş) optimizasyon algoritması
seçilmiştir. Bu algoritma, birçok derin öğrenme problemi için sağlam olan
uyarlamalı stokastik bir optimizasyon yöntemi uygular. Adam, parametre
güncellemelerine moment terimi ekler. Parametre gradyanlarının ve bunların
karelerinin eleman bazlı hareketli ortalamasını tutar.

Tablo 3.2 Model eğitim parametreleri

Modeller Parametreler
Optimizasyon yöntemi Adam

Mini Yığın Boyutu 128
Başlangıç Öğrenme Oranı 0.001, 0.05, 0.01

Veri Karıştırma Bir kez

Tablo 3.3 ve 3.4, sırasıyla LSTM ve GRU mimarileri için farklı parametrelerle elde
edilen en iyi sonuçların daha ayrıntılı bir görünümünü sunmaktadır.

Tablo 3.3 LSTM mimarileri için elde edilen en iyi sonuçlar

Deneme Geçen
Süre

LSTM
Derin-

liği

Gizli
birim
sayısı

Başçlangıç
öğrenme

oranı

Eğitim
RMSE

Doğrulama
RMSE

3 5 dk 13 sn 1 100 0.01 0.1877 0.0891
1 3 dk 1 sn 1 50 0.01 0.1843 0.0958
5 11 dk 30 sn 3 200 0.01 0.1742 0.0991
7 2 dk 34 sn 1 50 0.05 0.2479 0.1048
...

...
...

...
...

...
...

Tablo 3.3 ve 3.4’de, LSTM ve GRU modellerinin benzer davranış sergilediği
ve doğrulama veri kümesinde yakın sonuçlar verdiği görülmektedir. 1 haftalık
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Tablo 3.4 GRU mimarileri için elde edilen en iyi sonuçlar

Deneme Geçen
Süre

LSTM
Derin-

liği

Gizli
birim
sayısı

Başçlangıç
öğrenme

oranı

Eğitim
RMSE

Doğrulama
RMSE

3 2 dk 34 sn 1 100 0.01 0.1958 0.0891
17 6 dk 13 sn 1 200 0.01 0.184 0.1103
4 9 dk 47 sn 3 100 0.01 0.2091 0.1145
1 1 dk 22 sn 1 50 0.01 0.1944 0.1195
...

...
...

...
...

...
...

tahmin için LSTM ve GRU modelleri sırasıyla 0.0891 ve 0.1098 doğrulama RMSE
değerlerine ulaşmıştır. Tahmin doğruluğuna ek olarak, derin öğrenme mimarilerinin
değerlendirildiği ikinci yön, hesaplama verimliliğidir. Şekil 3.2, tüm mimariler için
eğitim süresi sonuçlarının dağılımını karşılaştırmaktadır.

Şekil 3.2 Eğitim süresi sonuçlarının dağılımı

Doğrulama RMSE’sinde benzer sonuçlar olmasına rağmen [61], GRU modelleri
LSTM’e göre daha az karmaşık bir mimariye sahip olduklarından hesaplama
süreleri daha kısadır. Bir zaman serisinde bir sonraki adımı tahmin etmenin bir
yöntemi yalnızca giriş verilerini kullanmaktır [62]. Bu yöntemde, gerçek değerler
veri kaynağından toplanır ve sonraki zaman adımları için tahmin yapılırken giriş
olarak kullanılır. Başka bir deyişle, t anındaki bir zaman serisinin değeri, 1’den t−1
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’e kadar toplanan verilerden tahmin edilir. t+ 1 anındaki değeri tahmin etmek için,
önce t anındaki gerçek değer kaydedilir ve ardından bir sonraki tahmin için giriş
olarak kullanılır. Özellikle gün içi piyasalarda gerçek değerlere ulaşılabildiğinden,
bu yöntem kısa vadeli tahminlerde modellerin performanslarını karşılaştırmak için
kullanılmıştır. En iyi performans gösteren LSTM ve GRU modellerinin 1 haftalık
tahminleri Şekil 3.3’de gösterilmiştir.

Şekil 3.3 Eğitim süresi sonuçlarının dağılımı

3.2 Genel Model Performansı
Bu çalışmada, ani ekonomik değişimler, doğal afetler veya pandemiler gibi
tahmin edilemeyen gelişmelerin zaman serisi tahminleri için nasıl büyük zorluklar
yarattığını açıkladım. Bu sorunları tartışmak için, COVID-19’un enerji talebi
üzerindeki etkisini, tahmin doğruluğunu artırmak için önerdiğim dalgacık ile
güçlendirilmiş hibrit LSTM-XGBoost modelinin bir vaka çalışması olarak
kullanıyorum. Analizimde, Şekil 3.4’deki haftalık hareketli ortalama ile saatlik
yük verilerini inceledim ve saatlik verilerin yüksek değişkenlik gösterdiğini, ancak
haftalık hareketli ortalamanın trendi yumuşatarak mevsimsel etkileri daha görünür
hale getirdiğini fark ettim. Ayrıca, yıl boyunca talep değişimlerinin, enerji tüketimi
üzerindeki soğutma ve ısıtma sistemlerinin etkisini yansıttığını gözlemledim.
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Şekil 3.4 Zaman içinde saatlik yük ve haftalık hareketli ortalama eğilimleri.

Çalışmada kullanılan özellikler arasındaki korelasyon Şekil 3.5’de gösterilmektedir.
Şekilde, kırmızı renkler pozitif korelasyonu, mavi renkler negatif korelasyonu
gösterirken, renk yoğunluğu korelasyonun gücünü belirtmektedir. Özellikle,
elektrik tüketimi ile sıcaklık arasında anlamlı bir pozitif korelasyon (+0.56)
gözlemlenmiştir. Bu, sıcaklık arttıkça güç talebinin arttığı anlamına gelir, bu da
enerji kullanımının arttığı, örneğin sıcak günlerde klima kullanımının yaygınlaştığı
durumlar için önemlidir. Ayrıca, rüzgarı yalnızca rüzgar yönü ve hızını veri
setinde sağlanan şekilde okumak yerine yatay (u) ve dikey (v) bileşenlerine ayırarak
daha anlamlı bir analiz yapılabilir. Rüzgar bileşenleri yük ile anlamlı bir şekilde
ilişkilendirilmemekle birlikte, yine de modelin ifade gücünü artırabilir.

Şekil 3.6, modelin bir akış diyagramını göstermektedir. Veri seti IEEE Dataport’tan
alınmıştır [58]. Veri setinin dönemi Mart 2017’den Kasım 2020’ye kadar
uzanmakta olup, COVID-19 pandemisinin öncesini ve başlangıç etkisi aşamasını
kapsamaktadır ve saatlik elektrik tüketimi verileri, günlük ve hafta içi/hafta
sonu desenlerini göstermektedir. Eğitim veri setinde 31.912 saatlik gözlem
bulunmaktadır ve meteorolojik değişkenler, sıcaklık, nem, bulut örtüsü, basınç ve
rüzgar bileşenleri gibi özelliklerdir. Ham verilerde eksik değerler kontrol edilerek,
elektrik talebi tahminleri için oldukça ilgili olan aylar, haftanın günleri ve saatler
veri setine özellik olarak eklenmiştir.

Bu çalışmada, eksik değerleri istatistiksel ve makine öğrenimi tabanlı tahmin
teknikleriyle ele alarak veri bütünlüğünü sağlamak için adımlar attım. Eksik
meteorolojik değişkenleri, bunların geçmiş özelliklerle olan korelasyonlarını
kullanarak tahmin ettim. Bu ön işleme sonrasında, veriyi çeşitli frekans
bileşenlerine ayırmak için dalgacık dönüşümünü uyguladım. Bu yaklaşım, veriyi
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Şekil 3.5 Modelde kullanılan özelliklerin korelasyon matrisi.
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Şekil 3.6 Dalgacıklarla zenginleştirilmiş LSTM-XGBoost hibrit modelinin akış
şeması.
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farklı zaman ölçeklerinde bileşenlere ayırmamı sağlayarak, hem trendleri hem de
ayrıntılı desenleri etkili bir şekilde öğrenmeyi kolaylaştırdı.

Ayrıca, dalgacık katsayılarını farklı frekanslar arasında hizalamak için doğrusal
enterpolasyon kullandım ve böylece veri setinin tutarlılığını sağladım. Bu ön
işleme adımları, özellikle COVID-19 gibi düzensiz dalgalanmalarla başa çıkarken
verinin sağlam kalmasına yardımcı oldu ve modelin zamansal bağımlılıkları ve
özellik tabanlı ilişkileri etkili bir şekilde yakalamasını sağladı. Ardından, dalgacık
katsayılarını özellik setine dahil ederek, modelin ani ve tahmin edilemeyen olayları,
COVID-19 gibi olayları daha etkili bir şekilde tespit etme yeteneğini artırdım.
Şekil 3.7’te görüldüğü gibi, dalgacık dönüşümünü kullanarak enerji talebi verilerini
farklı frekans bileşenlerine ayırdım, bu da zaman serisindeki tahmin edilemeyen
olayların etkisini analiz etmenin ana adımıdır ve çalışmamın odak noktasıdır. Veri
seti, beş detay seviyesi ve bir yakınsama seviyesi olarak ayrıldı. Yakınsama
bileşeni, uzun vadeli trendleri yansıtırken, Detay 1 ve Detay 2 en yüksek frekans
bileşenlerini yakalar, yük verilerindeki gürültü ve hızlı değişiklikleri içeren kısa
vadeli dalgalanmaları tespit eder. Bu yüksek frekanslı detaylar genellikle genel
eğilimleri tahmin etmek için kritik olmasa da, anormallikleri veya beklenmedik
zirveleri tespit etmek için önemlidir. Örneğin, D1 en hızlı değişimleri yakalar,
bunlar geçici gürültü ile ilişkili olabilir, D2 ise biraz daha yavaş, yüksek frekanslı
değişimleri yansıtır. Detay 3, Detay 4 ve Detay 5 ise daha düşük frekanslı
bileşenlere karşılık gelir ve verilerdeki önemli dalgalanmaları vurgulayan orta
ve uzun vadeli değişimleri yakalar. Şekil 4’te açıkça görüldüğü gibi, frekans
bileşenlerinin uzunlukları farklıdır, bu yüzden uzunluklarını standartlaştırmak için
enterpolasyon uyguladım ve bunları modele entegre etmeden önce tutarlı bir özellik
seti sağladım.

Zaman serisi verilerinin tahminini eğitmek için LSTM modelini kullandım. Dalga
dönüşümlü verilerle LSTM’nin olağanüstü performans göstereceğini bekliyordum,
çünkü uzun vadeli bağımlılıkları yakalama gücüne sahiptir. Bu süreçte, modelin
hiperparametrelerini dikkatlice seçtim ve ince ayar yaptım, katman sayısı ve
öğrenme oranı gibi parametreleri, en iyi performansı sağlamak için optimizasyon
teknikleri kullanarak Table 3.5’de belirtildiği şekilde belirledim.LSTM modelinin
çıktılarından tahmin hatalarını (artıklar) hesapladım. Doğruluğu artırmak için, bu
hataları düzeltmek için XGBoost modelini kullandım ve Table 4.6’de listelenen
çeşitli parametre değerleriyle onu optimize ettim. XGBoost’u, LSTM’nin
hatalarından öğrenmesi için kullanarak tahmin doğruluğunu artırmayı başardım. Bu
iki modelin birleşimi, daha güçlü ve etkili bir hibrit tahmin modeli oluşturdu.

Modelin performansını değerlendirmek için bir doğrulama süreci uyguladım.
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Şekil 3.7 Enerji yük verisinin dalgacık ayrıştırması.

Tablo 3.5 LSTM Modeli Parametreleri

Parametre Değer
LSTM Katmanları 1 veya 2 (ayar sonucu olarak)

Her LSTM Katmanındaki 50-200 (hiperparametre
Birim Sayısı ayarlamasına göre)

Dropout Oranı 0.2-0.5 (her LSTM katmanı
için ayarlanmış)

Öğrenme Oranı 0.01, 0.001 veya 0.0001
(ayar sonucu belirlenmiş değer)

Regülarizasyon (L2) 0.01-0.05 (her
LSTM katmanı için)

Maksimum Epok 50
Erken Durdurma Kriteri 5 epok sabırlılık

Yığın Boyutu 32, 64 veya 128 (ayar
(Batch Size) sonucuna bağlı olarak)

Optimizasyon Algoritması Adam
Öğrenme Oranı 10 epoktan sonra üssel
Zamanlayıcısı azalma (exponential decay)

Doğrulama setindeki tahmin hatalarını inceleyerek bir durdurma kriteri
oluşturduğum ve doğrulama kaybını belirli bir eşiğe indirmek için iyileştirdiğim,
belirli sayıda yineleme içinde deney yaptım. Kriter karşılanmazsa, sonuçları
iyileştirmek için farklı hiperparametre değerlerini test ettim. Hiperparametreleri
ayarlamak, modelin tahmin doğruluğunu artırmada kritik öneme sahipti. LSTM
modeli için optimal ayarları 100 birim, 0.07 L2 düzenleyicisi, 0.3 dropout
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Tablo 3.6 XGBoost Model Parametreleri

Parametre Değer
Maksimum Derinlik 3, 4, 5 veya 6 (hiperparametre

ayarlamasına göre)
Öğrenme Oranı 0.001, 0.01, 0.1 veya 0.2

(ayar sonucu belirlenmiş değer)
Tahminleyici Sayısı 50, 100 veya 200 (ayar

sırasında seçilmiştir)
Minimum Çocuk Ağırlığı 1, 5 veya 10 (ayar

ile belirlenmiştir)
Alt Örnekleme Oranı 0.8 veya 1.0

Sütun Alt Örnekleme Oranı 0.8 veya 1.0
(colsample bytree)

Çapraz Doğrulama Kat Sayısı 3
Rastgele Arama 20

sonucuna bağlı olarak)
Değerlendirme Metriği Değerlendirme Metriği

(Negative Mean Squared Error - MSE)

oranı ve 0.0001 öğrenme oranı olarak belirledim. XGBoost modeli için
ise RandomizedSearchCV kullanarak en iyi yapılandırmayı belirledim; bu
yapılandırma, 6 maksimum derinlik, 1 minimum çocuk ağırlığı, 0.1 öğrenme oranı
ve 200 tahminci içeriyordu.

Optimizasyonu sağlamak için Keras Tuner kütüphanesinde RandomSearch
kullandım, LSTM modelini 5 denemede doğrulama kaybını en aza indirerek, her
denemede üç yürütme yaparak tutarlı sonuçlar elde ettim. XGBoost için ise
Scikit-Learn’ün RandomizedSearchCV’sini kullandım, hiperparametre alanında 20
iterasyon ve 3 katmanlı çapraz doğrulama ile verimli bir şekilde gezindim, hedef
olarak negatif ortalama kare hata (MSE) metriğini kullandım.

Bu optimizasyonlar, hibrit LSTM-XGBoost modelimin doğruluğunu büyük
ölçüde artırdı, genelleme ve hesaplama verimliliği arasında bir denge sağladı.
Optimizasyon tamamlandığında, model gelecekteki tahminler için hazır hale geldi.
Dalgacık dönüşümüyle zenginleştirilmiş bir veri seti üzerinde eğitilen ve tahmin
hatalarını düzeltmek için ince ayar yapılan modelim, dalgacık dönüşümünün, veriyi
farklı frekans bileşenlerine ayırarak tahmin edilemeyen olayları etkili bir şekilde
yakaladığını ve hibrit LSTM-XGBoost yaklaşımının genel tahmin performansını
önemli ölçüde artırdığını gösterdi.
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3.3 Temel Modellerle Karşılaştırmalı Analiz
Veri seti, IEEE Dataport’tan alınan bir tahmin yarışması için, tam veri setiyle günlük
tahminler içermekte olup, gerçek değerler günlük olarak açıklanarak bir sonraki
günün tahminleri için yeniden eğitim yapılmasını sağlamaktadır. Çalışmamda,
yarışmanın kapsamı içinde bir ay süresince tahmin yapmak için modeli eğitmeyi
hedefledim. Hibrit LSTM-XGBoost modelimi değerlendirmek için, tek başına bir
LSTM modeli ve dalgacık bileşenleri olmayan bir LSTM modeli ile karşılaştırmalı
bir çalışma yaptım. Şekil 3’te görüldüğü gibi, hibrit modelim, MAE, RMSE,
MAPE ve WI metrikleri açısından bu tek başına yöntemleri sürekli olarak geride
bırakmıştır.

Tablo 3.7 Farklı Modeller için Hata Metikleri

Model MAE RMSE MAPE WI
LSTM-XGBoost Hibrit 19875.15 26595.62 1.78 0.98

Sadece LSTM 43284.72 57403.58 3.86 0.94
Dalgacık Olmadan LSTM 52681.58 67329.62 4.64 0.92

Bulduğum sonuçlar, hibrit yaklaşımımın birleşik güçlü yönlerini vurgulamaktadır;
burada, LSTM’yi zamansal bağımlılıkları etkili bir şekilde yakalamak için,
XGBoost’u ise özellik tabanlı öğrenmeyi güçlendirmek için kullandım. Ayrıca,
hibrit modelim, yük verilerindeki ani değişikliklerle başa çıkmada daha fazla uyum
sağladı ve gerçek dünya tahmin uygulamaları için değerini kanıtladı. Karşılaştırmalı
çalışmamın bir aylık tahmin sonuçları, Şekil 4.8’te gösterilmektedir.

Şekil 3.8 Farklı modeller kullanılarak gerçek ve tahmin edilen yükün (kW)
karşılaştırması.
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3.4 Tahmin Edilemeyen Olayları Ele Alma: COVID-19 Pan-
demisi Sırasındaki Performans

Şekil 3.9, hibrit LSTM-XGBoost modelimin üstün uyum yeteneğini, özellikle
COVID-19’un tetiklediği elektrik tüketimindeki yapısal değişikliği ele alırken
gösteriyor. COVID öncesi verilerle bolca eğitim yapılmış modeller, yalnızca
tarihi desenlere dayanan modeller dalgacık özellikli LSTM veya dalgacık olmadan
LSTM post-COVID tahminlerinde pozitif bir sapma gösterme eğilimindedir,
tüketimdeki keskin düşüş nedeniyle talebi aşırı tahmin ederler. Ancak, benim hibrit
yaklaşımım bu sorunu, dalgacıkları ve XGBoost’u kullanarak doğrusal olmayan
ilişkileri yakalayarak aşmaktadır. LSTM-XGBoost modelim, enerji talebindeki
tahmin edilemeyen değişikliklere karşı dayanıklılığını göstererek, gerçek dünya
uygulamaları için etkinliğini pekiştirmektedir.

Şekil 3.9 Hibrit modelin ve en güncel modellerin hata dağılımı.

Hibrit modelin performansı, Tablo 3.7’te gösterildiği gibi günün farklı zaman
dilimlerinde (Sabah, Öğle, Akşam ve Gece) analiz edilmiştir. Bu sonuçlar, modelin
doğruluğunun günün saatine bağlı olarak nasıl değiştiğini ortaya koymakta ve
farklı tüketim kalıpları ile operasyonel zorlukları yansıtmaktadır. Ayrıca, saatlik
analiz, elektrik tüketimi tahmininin zamansal boyutlarına dair içgörüler sunmakta
ve modelin bu değişimlere uyum sağlama yeteneğini göstermektedir.

Her ne kadar hibrit model, geleneksel hata metriklerine göre sabah saatlerinde genel
olarak iyi bir performans sergilese de, Willmott İndeksi’nin (WI) düşük olması,
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modelin bu zaman dilimindeki tüketim dinamiklerini diğer saatlere kıyasla daha az
başarıyla yakaladığını göstermektedir. Dahası, sabah saatleri için yalnızca LSTM ve
Dalgacık (Wavelet) entegrasyonu olmayan LSTM modelleri sırasıyla 0.62 ve 0.73
WI değerlerine sahip olup, hibrit modele kıyasla bu dönemdeki tüketim desenlerini
yakalama konusunda önemli ölçüde daha kötü performans sergilemektedir.

Ayrıca, akşam ve gece saatlerinde artan hata oranları, bu dönemler için ek
özelliklerin dahil edilmesi veya özel olarak eğitilmiş modellerin kullanılmasının
doğruluğu artırabileceğini göstermektedir. Bu zamansal analiz, yalnızca modelin
güçlü ve zayıf yönlerini ortaya koymakla kalmaz, aynı zamanda enerji yönetim
sistemlerinde tahmin doğruluğunu artırmak için temel içgörüler sunar. Tahmin
modellerinin günlük tüketim desenleriyle uyumlu hale getirilmesi, daha güvenilir
ve hızlı tepki veren enerji yönetim stratejilerine olanak sağlayabilir.

Tablo 3.8 Yük Tahmini Metriği için Günün Zamanına Göre Analiz

Günün Zamanı MAE RMSE MAPE WI
Sabah 13744.74 18588.75 1.39 0.79

Öğleden Sonra 14975.59 20090.96 1.34 0.99
Akşam 25554.87 32395.96 2.13 0.95
Gece 25225.38 32103.31 2.28 0.90

3.5 Sınırlamalar ve Gelecek Yönelimler
Önerilen hibrit LSTM-XGBoost modelinin cesaret verici sonuçlarına rağmen,
bazı sınırlamaların dikkate alınması gerekmektedir. Bayram günlerindeki tüketim
desenleri veri setine dahil edilmediğinden, tahminlerin tatil günlerine denk gelmesi
durumunda modelin doğruluğu etkilenebilir. Şebeke arızaları ve elektrik kesintileri
gibi arz taraflı aksaklıklar doğrudan modellenmediği için tahmin doğruluğu
olumsuz etkilenebilir. Benzer şekilde, politika kaynaklı enerji dönüşümü veya
büyük sanayilerdeki sistemsel değişim gibi nadir görülen olaylar eğitim verilerinde
yeterince temsil edilmemektedir ve bu durum modelin performansını etkileyebilir.
Ayrıca, ekonomik durgunluklar veya düzenleyici değişiklikler gibi zamanla ortaya
çıkan kademeli değişiklikler, doğruluğun korunabilmesi için modelin düzenli olarak
yeniden eğitilmesini gerektirebilir. Gelecekte yapılacak araştırmalar, dış bağlamsal
verilerin entegrasyonu, arz tarafına dair gerçek zamanlı bilgilerin kullanımı ve
uyarlanabilir yeniden eğitim süreçlerinin geliştirilmesiyle modelin dayanıklılığını
artırabilir.

34



4
SONUÇ

Bu çalışmada, öngörülemeyen olayların etkisi altında elektrik tüketimini tahmin
etmenin zorluklarını inceledim ve COVID-19 pandemisi, önemli bir örnek olay
olarak kullanıldı. Temel amaç, enerji talebindeki ani ve düzensiz kesintilere uyum
sağlayabilen sağlam bir tahmin modeli geliştirmek ve değerlendirmekti. Bu amacı
başarmak için, LSTM ağları ve XGBoost modelini birleştiren, dalgacık tabanlı
hibrit bir model önerdim. Zaman serisi verilerini birden fazla frekans bileşenine
ayırmak için DWT kullanarak, model hem kısa vadeli dalgalanmaları hem de uzun
vadeli eğilimleri etkili bir şekilde yakaladı. Bu çok çözünürlüklü yaklaşım, modelin
pandeminin yol açtığı gibi anormal desenlere duyarlı hale gelmesinde önemli bir rol
oynadı.

Yöntem, hem LSTM hem de XGBoost’un güçlü yönlerini tamamlayıcı bir şekilde
kullanarak çalıştı. LSTM bileşeni, sıralı verilerdeki zamansal bağımlılıkları
modellemede başarılı olurken, XGBoost, artık hataları düzelterek tahminleri
iyileştirdi. Deneysel sonuçlar, hibrit modelin üstün performansını gösterdi;
tek başına LSTM ve dalgacık özellikleri olmadan LSTM ile karşılaştırıldığında
daha düşük hata metriklerine sahip oldu, MAE 19.875,15, RMSE 26.595,62,
MAPE 1,78 ve WI 0,98. Bu bulgular, modelin sağlamlığını ve özellikle sabah
ve öğleden sonra arasındaki günlük tahminler için değişken koşulları yönetme
yeteneğini vurgulamaktadır. Bu çalışma, belirsizlikler altında tahmin doğruluğunu
artırmak için derin öğrenme, makine öğrenmesi ve sinyal işleme tekniklerinin
birleştirilmesinin değerini göstererek enerji tahmini alanına katkıda bulunmaktadır.

Bu araştırma boyunca, zaman serisi tahmini ile ilgili önemli içgörüler kazandım,
özellikle de özellik mühendisliğinin durağan olmayan verileri ele almadaki kritik
rolünü öğrendim. Dalgacık ayrıştırması ile çalışmak, düzensiz olaylara karşı
modelin duyarlılığını artıran çok çözünürlüklü analiz gücünü vurgulayan özellikle
ödüllendirici bir deneyim oldu. Ancak çalışma, modelin daha da iyileştirilebileceği
alanları da ortaya koydu. Örneğin, modelin performansı günün farklı saatlerinde
farklılık gösterdi, akşam ve gece saatlerinde daha yüksek hatalar gözlemlendi, bu
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da günlük tüketim desenlerinin tahmin doğruluğunu etkilediğini gösteriyor.

Vaadedici sonuçlarına rağmen, bu çalışmanın dikkate alınması gereken bazı
sınırlamaları vardır. Model, Mart 2017 ile Kasım 2020 arasındaki elektrik
tüketimini kapsayan belirli bir IEEE Dataport veri seti üzerinde eğitilmiş ve
test edilmiştir. Bu veri seti COVID-19’un etkisini etkili bir şekilde yakalamış
olsa da, başka bölgeler, dönemler veya öngörülemeyen olay türleri üzerindeki
genellenebilirliği henüz test edilmemiştir. Ayrıca, eğitim setinde resmi tatil
verilerinin, arz tarafı kesintilerinin (örneğin, şebeke arızaları) ve uzun vadeli
değişimlerin (örneğin, ekonomik durgunluklar) eksikliği, modelin daha geniş
bağlamlarda uygulanabilirliğini sınırlayabilir. Hibrit yaklaşımın hesaplama
karmaşıklığı, gerçek zamanlı uygulama için de zorluklar oluşturmakta olup, bunun
dinamik enerji yönetim sistemlerinde pratik kullanımını engelleyebilir.

Gelecekteki çalışmalar, modelin sağlamlığını artırmak için gerçek zamanlı verileri,
tatil desenlerini ve adaptif yeniden eğitimi içerebilir.
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