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OZET

DALGA DONUSUMU ENTEGRELI DERIN

_ OGRENME KULLANILARAK
ONGORULEMEYEN OLAYLARI iCEREN

ELEKTRIK TUKETIMI TAHMINI
Hisham Alnour Adam HAMZA

Elektrik Miihendisligi Anabilim Dali
Yiiksek Lisans Tezi

Danigsman: Do¢. Dr. Ali AJDER
Es-Damigman: Dr. Ogr. Uyesi Ramazan AYAZ

Zaman serisi verilerinin tahmini, 6zellikle 6ngoriilemeyen olaylarin varliginda,
ekonomi, saglik ve enerji gibi bircok alanda biiyiik bir zorluk teskil etmektedir.
Bu tezde, elektrik talebini tahmin etmek icin dalgacik entegrasyonlu hibrit bir
derin 6grenme modeli sunulmugstur. Bu model, LSTM aglarm ve XGBoost
algoritmasini birlestirmektedir. Calismada, ani ve yikici olaylarin enerji talep
desenleri tizerindeki etkilerini incelemek amaciyla COVID-19 pandemisi bir vaka
calismasi olarak kullanilmistir. Onerilen yaklagim, zaman serisi verilerini farkli
frekans bilesenlerine ayirmak i¢in Ayrik Dalgacik Doniisiimii DWT kullanmakta ve
modelin hem kisa vadeli hem de uzun vadeli egilimlere kars1 daha duyarl olmasim
saglamaktadir. Bu giiclii hibrit model, sirali verilerden zamansal bagimliliklar
ogrenen bir LSTM bileseni ile artik hatalar diizelten ikinci bir XGBoost bilesenini

bir araya getirmektedir.

Aragtirmada kullanilan veri seti, IEEE Dataport’tan alinmis olup, Mart 2017 ile
Kasim 2020 tarihleri arasindaki saatlik elektrik tiiketim verileri ve meteorolojik
degiskenleri icermektedir. Bu veri araligi, COVID-19 o6ncesi ve sonrast donemleri
kapsamaktadir. Deneysel sonuglar, bu hibrit LSTM-XGBoost modelinin yalnizca
LSTM modellerine kiyasla daha iyi bir performans sergiledigini ortaya koymustur.
Modelin basarim olciitleri sirasiyla MAE 19.875,15; RMSE 26.595,62; MAPE

Xii



1,78% ve WI 0,98 olarak hesaplanmistir. Model, COVID-19 pandemisi gibi ani
degisimlere kars1 dayanmiklilik gostermekte ve giiniin farkli saatlerinde degisen
performans sergilemekte olup, sabah ve 6gleden sonraki tahminlerde daha yiiksek

dogruluk elde edilmistir.

Dalgacik ayristirmasinin hibrit derin 6grenmeyle entegrasyonu, dalgali ve belirsiz
ortamlar i¢in Olceklenebilir bir cergeve sunmaktadir. Bu calismanin sinirhiliklart
arasinda tatil verilerinin eksikligi ve potansiyel arz kaynakli kesintiler yer almakta
olup, gelecekteki calismalar i¢in ger¢ek zamanli veri entegrasyonu ve uyarlanabilir

yeniden egitme yontemlerinin kullanilmas1 onerilmektedir.

Anahtar Kelimeler: Ayrik dalgacik doniisiimii, elektrik tiiketimi, hibrit
LSTM-XGBoost, zaman serisi tahmini, dngoriilemeyen olaylar, dalgacik destekli

tahmin.

YILDIZ TEKNIK UNIVERSITESI
FEN BILIMLERI ENSTITUSU
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ABSTRACT

Forecasting of Electricity Consumption with
Unpredictable Events using Wavelet-Integrated Deep
Learning

Hisham Alnour Adam HAMZA

Department of of Electrical Engineering

Master of Science Thesis

Supervisor: Assoc. Prof. Dr. Ali AIDER
Co-supervisor: Assist. Prof. Dr. Ramazan AYAZ

Forecasting time series data, particularly in the presence of unpredictable events,
is a major challenge in various fields, i ncluding e conomics, h ealth, a nd energy.
In this thesis, a novel approach is presented to predict electricity demand using a
wavelet-integrated hybrid deep learning model, which combines LSTM networks
and XGBoost. This study uses the COVID-19 pandemic as a case study to explore
the effect of sudden disruptive events on the patterns of energy demand. The
suggested approach utilizes DWT to break up time series data down to several
frequencies, allowing the model to be more sensitive towards both short-term and
long-term trends. This is a strong hybrid model as it combines an LSTM element
that learns the temporal dependencies from sequential data and a second XGBoost

element that corrects the residual errors.

The dataset utilized in the research is taken from IEEE Dataport, which consists of
hourly electricity consumption data and meteorological variables from March 2017
to November 2020, thus covering pre- and post-COVID-19 periods. Experimental
results showed that this hybrid LSTM-XGBoost model has better performance than
LSTM models used alone, with a MAE of 19,875.15, RMSE of 26,595.62, MAPE
of 1.78%, and a WI of 0.98. The model exhibits strength in handling abrupt changes,
such as those induced by the COVID-19 pandemic, and shows varying performance
across various times of day, with morning and afternoon forecasts being more

accurate.
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The integration of wavelet decomposition with hybrid deep learning offers a
scalable framework suitable for volatile environments. Limitations of this research,
such as the absence of holiday data and potential supply-side disruptions, are
discussed, alongside recommendations for future work, including the incorporation

of real-time data and adaptive retraining methodologies.

Keywords: Discrete wavelet transform, electricity consumption, hybrid
LSTM-XGBoost, time series prediction, unpredictable events, wavelet- enhanced

forecasting.

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
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GIRIS

1.1 Literatiir Ozeti

Elektrik tiiketimi tahmini, enerji yonetiminde hem ekonomik hem de operasyonel
zorluklarin istesinden gelmede hayati bir rol oynamaktadir. Dogru tahminler,
elektrik sirketlerinin bilingli kararlar almasina, arz stratejilerini optimize etmesine
ve endiistriyel ve ticari enerji tedariginde karsilagilan operasyonel zorluklar ile
maliyetlere iligkin riskleri en aza indirmesine olanak tanir. Ozellikle talebin zirve
yaptig1 donemlerde arz ve talep dengesinin saglanmasi, sistem giivenilirliginin

korunmasi agisindan kritik 6neme sahiptir [[1-4]].

ARIMA ve SARIMA gibi geleneksel istatistiksel yontemler, dogrusal desenleri ve
mevsimselligi etkili bicimde modelleyebilme yetenekleri nedeniyle zaman serisi
tahmini icin yaygin olarak kullanilmistir. ARIMA, sinirh veriyle satiglar1 tahmin
etmede etkili oldugunu kanitlamis ve diger geleneksel modellere kiyasla onemli
dogruluk artiglar1 saglamistir [5]. Benzer sekilde SARIMA, elektrik tiiketim
verilerindeki mevsimsel egilimleri analiz etmekte bagsarilidir ve periyodik desenler
hakkinda degerli bilgiler saglar [6]. Ancak bu modeller, dogrusal olmayan desenler
ve Ongoriilemeyen olaylarla bag etmekte zorlanir ve bu durum, degisken kosullara
uyumlarini simirlar.  Ayrica, parametre ayarlamasi i¢in uzman bilgisine bagimh
olmalar1, pratikte zorluklara neden olmaktadir [7]. Bu calismada, s6z konusu
kisitlamalar, COVID-19 pandemisi gibi olaylarin yarattig1 diizensiz dalgalanmalari

yonetebilen gelismis modellere duyulan ihtiyaci vurgulamaktadir.

SVM, RF ve XGBoost gibi makine 0grenimi teknikleri, ozellikle karmagik ve
giirtiltiilii veri kiimelerinde zaman serisi tahmini i¢in giiclii araclar olarak ortaya
cikmigtir. Rastgele Ormanlar, kisa zaman serilerinde gecikmeli degiskenlerden
faydalanarak hava durumu tahmini ve lojistik gibi uygulamalarda iistiin performans
gostermistir [8], [9]]. Ozellik tabanli iliskileri modellemedeki verimliligiyle taninan
XGBoost, hibrit yapilarda tahmin dogrulugunu artirmaktadir [10]. Bu modeller,

elektrik fiyatlandirmasi1 gibi ani degisimlerin veya smurli verilerin s6z konusu



oldugu senaryolarda iistiin performans sergiler; dinamik 6zellik 6lceklendirmesiyle
desteklenen hibrit yaklasimlar yiiksek hassasiyeti korur [11]. Bu calisma, hibrit
LSTM-XGBoost modelinde XGBoost’un artik hata diizeltme yeteneklerinden
faydalanarak, ongoriilemeyen olaylar i¢in tahmin dogrulugunu artirmaktadir.

Zaman serisi tahmininde RNN, LSTM aglart ve GRU gibi derin 6grenme
yontemleri, karmagik zamansal bagimliliklar1 yakalayarak biiyiik bir devrim
yaratmistir. Bu modeller, finans ve enerji gibi cesitli alanlarda dogrusal olmayan
ve giriiltiilii verileri islerken geleneksel yontemlere kiyasla iistiin performans
sergilemektedir [12], [13]. Ozellikle LSTM aglar1, uzun siireli dizi bilgilerini
koruyabilme yetenekleri sayesinde elektrik yiik tahmini i¢in son derece etkilidir.
LSTM’nin, XGBoost gibi tekniklerle birlestirildigi hibrit mimariler, hem zamansal
hem de oOzellik tabanli desenleri ele alarak performansi daha da artirmaktadir
[14]. Bu arastirma, COVID-19 pandemisi sirasinda gozlemlenen ongoriilemeyen
olaylarla basa ¢ikmak amaciyla, LSTM nin dizi tahmin yeteneklerini dalgacik

ayristirmastyla entegre etmektedir.

Kisa vadeli elektrik tiiketimi tahmini, enerji yonetimi ve sebeke istikrari icin
hayati 6neme sahiptir. Son yillarda, tahmin dogrulugunu artirmak amaciyla hibrit
modeller ve derin 6grenme yontemleri kullanilmaktadir. mevsimsel degisimleri
ele almak i¢cin GRU ve Prophet modellerini birlestirmis, [15] ise ¢ok boyutlu
hanehalk: tiiketim verileri iizerinde LSTM aglarim kullanmistir.  [16], cevresel
degiskenleri iceren hibrit bir RNN-LSTM modeli 6nererek kisa vadeli tahmin
dogrulugunu artirmistir. Transformer aglar1 da RNN’nin sinirlamalarim1 asarak
giin oncesi tahminlerde basarili sonuglar vermistir [17]. Bu gelismeler, bu
calismanin normal kosullar altindaki kisa vadeli tahmin dogrulugunu saglamaya
odaklanan yaklasimiyla oOrtiismekte olup, Ongoriilemeyen durumlart dalgacik

tabanli tekniklerle ele alarak kapsamini genigletmektedir.

COVID-19 pandemisi gibi anormal olaylar sirasinda tahmin yapmak, tiiketim
desenlerindeki ani degisimler nedeniyle olduk¢a zordur. Geleneksel modeller bu
tiir degisimlere genellikle uyum saglayamaz ve bu da dogrulugun azalmasina neden
olur [[18]], [19]]. Yenilenebilir enerji kaynaklarinin entegrasyonu ise tahminleri daha
da karmagik hale getiren ek degiskenlikler olusturur [20], [21]. Bu arastirma,
dalgacik ayristirmasini kullanarak hibrit LSTM-XGBoost modelini ani degisimlere
kars1 hassas hale getirerek bu sorunlar1 ele almaktadir. Bdylece pandemi gibi
ongoriilemeyen olaylar sirasinda giiglii bir performans saglanmaktadir.  Bu
uyarlanabilirlik, de8isken kosullar altinda giivenilir enerji yonetimi igin kritik

Ooneme sahiptir.



DWT, zaman serilerini ¢oklu frekans bilesenlerine ayirmak ic¢in kullanilan temel
bir aractir ve ¢ok ¢Oziiniirliklii analiz yapilmasina olanak tanir. DWT, duragan
olmayan verilerle ozellikle basarilidir; kisa vadeli dalgalanmalarla uzun vadeli
egilimleri ayn1 anda yakalayabilmek icin farkli olceklerde ozellikler ¢ikarir. Bu
calismada, DWT elektrik tiiketim verilerini yaklagik ve detay katsayilarina ayirarak,

modelin anormallikleri tespit etme yetenegini artirmaktadir.

Dalgacik doniisiimleri, 6zellikle karmasik veri kiimeleri i¢cin zaman-frekans bilgisi
saglayarak tahmin dogrulugunu artirir. [22], [23]], dalgacik doniisiimlerinin elektrik
ve finansal tahminlerdeki etkinligini vurgulamaktadir. Bu arastirmada, DWT, hibrit
modelin COVID-19 pandemisi gibi ongoriilemeyen olaylara karg1 duyarliligim
artirmakta ve modelin sik sik yeniden egitilmesine gerek kalmadan uzun donemli
dogru tahminler yapilmasini saglamaktadir. Bu yaklasim, dalgacik doniistimlerinin
diizensiz dalgalanmalar1 yakalama konusundaki basarisini ortaya koyan onceki

caligmalarla uyumludur.

LSTM’nin, XGBoost veya Rastgele Ormanlar gibi tekniklerle birlestirildigi hibrit
modeller, elektrik tiikketimi tahmininde dogrulugu 6nemli dl¢iide artirmigtir. [24],
Rastgele Ormanlar ile ¢ift yonlii LSTM’yi entegre ederek kisa vadeli tahminlerde
tekil modellere kiyasla {iistiin performans elde etmistir. [25] ise, ilk XGBoost
tahminlerini LSTM ile iyilestirerek dogrusal olmayan desenler icin dogrulugu
artirmigtir.  Bu ¢alismada Onerilen hibrit LSTM-XGBoost modeli, LSTM nin
zamansal 0grenme yeteneklerini ve XGBoost’un hata diizeltme giiciinii bir araya

getirerek ongoriilemeyen olaylara karsi saglam bir performans sunmaktadir.

Spektral ayristirma teknikleri, dalgacik doniisiimleri gibi yontemler aracilifiyla,
hibrit modellerin dalgali verilerle basa ¢ikma yeteneklerini artirmaktadir.[26], ¢cok
degiskenli tahmin performansini artirmak amaciyla Transformer yapilariyla birlikte
spektral kiimeleme yontemini kullanmigtir. Bu calismada ise, dalgacik tabanl
ozellikler LSTM-XGBoost modeline entegre edilerek farkli zaman o6lgeklerinin
analiz edilmesi saglanmig ve COVID-19 pandemisi gibi olaylar sirasinda hem kisa
hem de uzun vadeli tahmin ufuklar1 icin modelin uyarlanabilirligi gelistirilmistir.
Bu entegrasyon, karmagik zamansal dinamiklerin yakalanmasi agisindan kritik bir

rol oynamaktadir.

Bu calisma, COVID-19 gibi Ongoriilemeyen olaylari hedef alan, LSTM ve
XGBoost’u birlestiren dalgacik-entegreli bir hibrit model Onererek literatiire
katkida bulunmaktadir. Dalgacik ayristirma, frekans bilesenlerini izole ederek
modelin hem mevsimsel degisimlere hem de anormal dalgalanmalara karsi

duyarhilifim artirir. Bu hibrit yaklasim, geleneksel modellerin sinirlamalarini etkili



bir sekilde asarken, LSTM’nin zamansal 68renme yetenekleri ve XGBoost’un
ozellik 6grenme giiciinden faydalamir. Ortaya ¢ikan model, 6zellikle dogrusal
olmayan desenler ve ongoriilemeyen degisimlerin s6z konusu oldugu senaryolarda
giiclii tahmin dogrulugu sergilemektedir.  Ayrica, dalgacik tabanli 6zellikler,
modelin farkli tahmin ufuklarina uyarlanabilirligini artirmakta ve modern enerji
sebekeleri icin yanit verebilir tahmin modellerinin gelistirilmesine degerli katkilar
saglamaktadir [27-30].

1.2 Tezin Amaci

Bu tezin amaci, ongoriilemeyen olaylarin varliginda elektrik tiikketim tahmininin
dogrulugunu ve saglamligini artirmak i¢in dalga doniisiimiiyle gelistirilmis bir
hibrit LSTM-XGBoost modeli gelistirmek ve degerlendirmektir. Model, Ayrik
Dalga Doniistimii’nii kullanarak zaman serisi verilerini ¢oklu frekans bilesenlerine
ayirarak kisa vadeli dalgalanmalar1 ve uzun vadeli egilimleri yakalamay1 hedefler.
LSTM nin sirali1 6grenme yeteneklerini ve XGBoost’un kalan hata diizeltme giiciinii
birlestirerek, ozellikle COVID-19 pandemisi gibi diizensiz ve anormal tiiketim
kaliplarini iceren senaryolarda tahmin dogrulugunu artirmay1 amaclar. Arastirma,
IEEE Dataport’tan alinan ve COVID-19 pandemisinden etkilenen gercek diinya
elektrik tiiketim verilerini kullanarak modelin performansini degerlendirir ve bunu
tek basina LSTM modelleriyle kargilastirarak etkinligini gosterir. Bu metodolojinin
bagarili uygulamasi, akilli sebeke yOnetimi, siirdiiriilebilir enerji planlamasi ve

ongoriilemeyen kesintilere kars1 gii¢ sistemlerinin dayanikliligin artirabilir.

1.3 Hipotez

Bu tez, asagidaki hipotezi test etmeyi amaclamaktadir, Dalga doniisiimiiyle
geligtirilmig hibrit LSTM-XGBoost modeli, ongoriilemeyen olaylarin (6rnegin,
COVID-19 pandemisi) neden oldugu diizensiz elektrik tiiketim kaliplarini tahmin
etmede, tek basina LSTM modellerine kiyasla daha yiiksek dogruluk ve saglamlik
saglayacaktir. Bu hipotez, dalga doniisiimiiniin ¢ok c¢oziiniirliiklii analizinin,
LSTM’nin zamansal bagimlhiliklar1 68renme yetenegiyle ve XGBoost’un 6zellik
tabanli hata diizeltme kapasitesiyle birlestiginde, karmasik ve degisken zaman
serisi verilerini daha etkili bir sekilde modelleyecegi varsayimina dayanmaktadir.
Modelin performansi, MAE, RMSE, MAPE ve WI gibi metrikler kullanilarak

degerlendirilecektir.
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METODOLOJI

2.1 Veri Toplama ve On isleme

Bu aragtirmada kullanmilan veri seti, IEEE Dataport’tan [31]] alinmigtir ve Mart
2017°den Kasim 2020’ye kadar isimsiz bir bolgenin saatlik elektrik tiiketim
verilerini icermektedir. Bu donem, hem pandemi Oncesi tiikketim kaliplarini hem
de COVID-19 pandemisi nedeniyle yasanan aksamalari kapsadig: icin ozellikle
onemlidir ve beklenmedik olaylarin enerji talebi iizerindeki etkisini modellemek

icin giiclii bir vaka ¢alismasi sunar.

Veri seti, 31.912 saatlik gozlem igerir ve elektrik tiiketimini etkiledigi bilinen birkag
meteorolojik degiskeni kapsar, drnegin:

* Sicaklik

* Nem

* Bulut ortiisii

* Basing

* Riizgar bilesenleri (yatay ve dikey)

Ayrica, elektrik talebinin dongiisel dogasini yakalamak i¢in zamansal degiskenler

eklenmistir, bunlar:

e Aylar
* Haftanin giinleri

o Saatler

Bu zamansal ozellikler, elektrik tiiketim kaliplarindaki dogal periyodikligi

modellemek i¢in ¢ok énemlidir.



2.1.1 Eksik Degerler ve Aykir1 Degerlerin Islenmesi

Veri setinin giivenilirligini ve biitiinliigiinii saglamak icin eksik degerler ve
aykir1 degerleri ele almak amaciyla 6n isleme adimlar1 uygulanmistir. Ozellikle
meteorolojik degiskenlerdeki eksik degerler, istatistiksel ve makine 6grenimi
tabanli tekniklerin bir kombinasyonu kullanilarak doldurulmugtur. Bu yontemler,
gecmis verilerle olan korelasyonlardan yararlanarak eksik girigleri tahmin etmis ve

veri setinde siirekliligi korumustur.

Verilerdeki aykirt degerler, modelin performansini ¢arpitmalarini  dnlemek
icin tespit edilmis ve diizeltilmistir. Kaynak makalede belirli aykir1 de8er
diizeltme yontemleri detaylandirilmamis olsa da, winsorizasyon veya istatistiksel
esiklere dayali kaldirma gibi standart uygulamalarin muhtemelen kullanildig:

diisiiniilmektedir.

2.2 Yontem ve Modelleme

2.2.1 Zaman Serisi Analizinde Dalgacik Doniisiimleri

Dalgacik doniisiimleri, zamanla degisen desenler sergileyen elektrik tiiketimi gibi
duragan olmayan zaman serilerini analiz etmek icin ¢ok yonlii bir aractir. Fourier
doniistimlerinin zaman ¢oziiniirliigii eksikliginin aksine, dalgacik doniistimleri
coklu ¢oziiniirliik analizi saglar, boylece hem zaman hem de frekans bilesenlerini
eszamanl olarak yakalayabilir. Bu 6zellik, karmagik ve zamana bagh yapilar iceren

verilerin daha etkili sekilde analiz edilmesine olanak tanir.

2.2.2 Ayrik Dalgacik Doniisiim Teorisi

DWT, ayrik zamanli sinyaller {izerinde yaygin olarak kullanilan ve hesaplama
acisindan verimli bir dalgacik doniisiim c¢esididir. DWT, bir sinyali, Daubechies
dalgacig1 gibi bir dalgacik temeli kullanarak yaklasik (diisiik frekansl) ve detay
(yiiksek frekansl) katsayilara ayirir [32]. Bu siirec, egilimleri yakalamak ig¢in
alcak geciren filtreleme ve dalgalanmalar1 yakalamak icin yiiksek geciren filtreleme
adimlarinin yinelemeli olarak uygulanmasi ve ardindan asagi 6rnekleme islemini
icerir. Boylece sinyal, ¢coklu dlgeklerde farkli frekans bilesenlerine ayrilarak analiz

edilebilir hale gelir.

Matematiksel olarak, DWT bir z(t) sinyalini su sekilde temsil eder:

w(t) = > Ajti(t) (2.1)



Burada 1), (t), dalgacik fonksiyonlarini; A ise j 6lceginde ve k konumunda
elde edilen katsayilar1 ifade etmektedir [33|]. Bu ¢ok seviyeli ayrigtirma islemi,
kisa vadeli dalgalanmalar1 ve uzun vadeli egilimleri birbirinden ayirarak, DWT’yi

karmagik zaman serilerinin on iglenmesi i¢in ideal bir yontem haline getirmektedir.

2.3 Zaman serisi tahmin teknikleri

2.3.1 Geleneksel istatistiksel yontemler (ARIMA, SARIMA)

Zaman serisi tahmini, enerji yOnetimi, finans, ekonomi ve meteoroloji gibi
bircok alanda hayati bir rol oynamaktadir. Zaman serisi tahmini i¢in kullanilan
klasik istatistiksel yaklasimlar arasinda, ARIMA ve onun mevsimsel uzantisi
olan Mevsimsel ARIMA SARIMA, dogrusal zaman serilerini modellemedeki
yorumlanabilirlii ve etkinli§i nedeniyle yaygin olarak benimsenmistir. Box ve
Jenkins tarafindan tanitilan ARIMA modeli [34]], ARMA cercevesini genisletir ve
duragan olmayan zaman serilerini analiz etmek iizere tasarlanmigtir. Klasik ARMA
modeli zaman serisinin duragan oldugunu varsayarken, ARIMA bu verileri 6nce
duragan hale getirerek modelleyebilir. Bu genellikle, egilimlerin ve mevsimselligin
sonlu fark alma yontemiyle giderilmesiyle gerceklestirilir [35]. Duragan bir zaman
serisi hem sinyal hem de giiriiltii bilesenlerini icerirr ARIMA modeli, Once
giiriiltiiden ayrilan sinyal bilesenini modellemeye odaklanir ve ardindan gelecekteki
zaman noktalar1 i¢in tahminler iretir [36]. Adindan da anlagilacagi gibi, iig

bilesenin birlesiminden olusur [37/]]:

* AR: Otoregresyon. Bir gozlem ile dnceki gozlemler arasindaki bagimlilik

iligkisini kullanan regresyon modeli (model parametresi p).

e I: Entegrasyon. Zaman icindeki farkli gozlemler arasindaki farklarin
hesaplanmasi (model parametresi d), zaman serisini duragan hale getirmeyi

amaclar.

* MA: Hareketli Ortalama. Zaman gecikmeli gozlemler iizerine uygulanan
hareketli ortalama modeliyle olusturulan hata terimleri ile gozlemler

arasindaki olas1 bagimlilig1 dikkate alan yaklagim (model parametresi q).

p dereceli AR modeli, AR(p), asagidaki gibi dogrusal bir siire¢ olarak yazilabilir:

p
T=ct )y bt e (22)
=1



burada x; statik degiskeni, c sabit terim, ¢; zaman gecikmesi adimlarindaki
(1,2,...,p) otokorelasyon katsayilari ve ¢; sifir ortalamali ve o2 varyansl Gauss

beyaz giiriiltii serisinin 6rnekleridir.

q dereceli basit bir hareketli ortalama modeli, MA(q), su sekilde verilebilir:
q
re=pt Y O (2.3)
=0

burada mu genellikle 0 olan z; nin beklenen degeri, ¢; ise zaman serisinin stokastik
teriminin mevcut ve gecmis degerlerine uygulanan agirliklardir ve 6, = 1’dir. &,

sifir ortalamali ve o2 varyansh Gauss beyaz giiriiltii serisi olarak kabul edilir.

Bu iki model, yani otoregresyon ve hareketli ortalama modellerinin birlesimi ile

(p, @) sinifinda ARMA modeli olusturulur:

P q
Ty =cC+ Z QiTi—i + & + Z Oics—s 2.4)
=1 i=0
burada ¢; # 0, 6; # 0, 0 > (.parametreleri sirasiyla AR ve MA modellerinin
derecelerini temsil eder.

Genel ARIMA modeli, zaman serisinin duraganligini garanti eden entegrasyon
terimini de icerecek sekilde ARIMA(p, d, q) olarak yazilir [37] ve su sekilde ifade

edilir:

p q
det =c+ Z gzﬁivdxt_i + Z 91‘6,5_7; (25)
i=1 =0

burada V¢, d derecesinde bir fark operatoriidiir ve z; zaman serisinin duragan

olmama 06zelligini ortadan kaldirmay1 amaclar [38]].

ARIMA mevsimsiz veriler i¢in uygunken, SARIMA (Mevsimsel ARIMA) modeli
ARIMA’y1 mevsimselligi igerecek sekilde genisletir. SARIMA modeli su sekilde

gosterilir:

SARIMA (p,d, q)(P, D, Q)s (2.6)

Matematiksel formu ise soyledir:



O(B*)¢(B)(1 - B)'(1 — B*)"y, = ©(B*)0(B)e, 2.7)
Burada:

* s mevsimsel periyodun uzunlugudur,

O(B%) =1—®,B°—---— &pB*F mevsimsel AR (otoregresif) operatoriidiir,

O(B%) = 1+ ©,B° + -+ + 0o B*? mevsimsel MA (hareketli ortalama)

operatoriidiir,

(1 — B*)P mevsimsel fark alma operatoriidiir.

SARIMA modelleri hem trendi hem de mevsimselligi yakalayabilir ve bu nedenle
aylik satiglar veya elektrik talebi gibi gii¢lii mevsimsel bilesenlere sahip tahmin
gorevleri icin olduk¢a uygundur. [39] SARIMA’nin gercek diinya mevsimsel zaman

serisi uygulamalarindaki dayanikliligin1 vurgulamaktadir.

Ornegin, [40] Ispanya’daki elektrik fiyatlarin1 tahmin etmek icin SARIMA’y1
uygulamig ve modelin giinliik ve haftalik elektrik fiyati dongiiselligini dogru
sekilde yakaladigini bulmustur. Benzer sekilde, [41] SARIMA’nin endiistriyel
talep tahminlerinde mevsimsel verilerle calisirken ARIMA’dan daha iyi performans

gosterdigini ortaya koymustur.

2.3.2 Destek Vektor Makineleri

SVM esas olarak siiflandirma gorevlerinde kullanilan denetimli bir makine
O0grenmesi algoritmasidir; ancak regresyon ve zaman serisi tahmini gibi alanlarda
da kullanilabilir. SVM, vektor uzayinda iki sinifi ayiran en uygun hiperdiizlemi
belirlemek i¢in dogrusal bir model olusturur. Bu en uygun hiperdiizlem, her sinifa
ait en yakin veri noktalar ile hiperdiizlem arasindaki mesafe olan marjin maksimize
edilmesiyle belirlenir. Bu en yakin veri noktalarina “destek vektorleri” denir [42].
-1 ve +1 olarak etiketlenmis iki sinif, d boyutlu bir uzayda tanimlandiginda, bu

siiflart ayiran hiperdiizlem su denklemle ifade edilebilir:

@-F+b=0 (2.8)

Negatif (-1) ve pozitif (+1) orneklerdeki Z; Oriintiisii (pattern) su sekilde formiile
edilebilir:



w-r+b< —1 (2.9)
W-T+b>+1 (2.10)

En biiyiik marj degeri ﬁ’i bulmak ic¢in kuadratik programlama kullanilir ve bu,

asagidaki ifadeyi minimize ederek gerceklestirilir:

1
min 7 (W) = 5|yu7\|2 (2.11)
Lagrange carpanlar1 kullanilarak, kuadratik programlamanin asal (primal) formu

asagidaki denklemle ikili (dual) forma doniistiiriilebilir:

l
1
L, b, @) = S |[]* = Y _ o (4 (7 - @ +b) — 1) (2.12)
=1

2.3.3 Rastgele Ormanlar

Breiman tarafindan gelistirilen RF, birden fazla karar agaci olusturarak ve
bunlarin tahminlerini birlestirerek dogruluk ve saglamligi artirmayi amaglayan
topluluk (ensemble) makine 6grenme yontemidir [43]].RF algoritmasinin tek adimli
zaman serisi tahmini icin uygulanmasi oldukg¢a basittir ve standart regresyon
gorevlerindeki yontemle benzerlik gosterir. Egitilmis RF modelinin 6grendigi
fonksiyon g, giris dizisi x1, ..., x, kullanilarak x,,.’in tahmininde kullanilir. %
adet gecikmeli degisken (lagged variable) kullanildiginda, t = n 4 1 anindaki z,,
tahmini su sekilde ifade edilebilir:

xr =91, ., x-x), t=k+1,...,n+1 (2.13)

Fonksiyon g kapali formda degildir ancak, boyutu n — £ olan bir e8itim veri kiimesi
kullanilarak Rastgele Orman algoritmasi ile 6grenilebilir. Her bir e8itim 6rneginde
hedef (bagiml) degisken x; olup, buradat = k£ + 1,...,n + 1, ve giris (bagimsiz)
degiskenler z;_1,..., 7, gecikmeli degerlerinden olusur. Gecikmeli degisken
sayis1 k arttik¢a, egitim veri kiimesinin boyutu olan n — k buna karsilik azalir. Bu

egitim.
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2.3.4 Uzun Kisa Siireli Bellek Aglar1

Yillar i¢inde, RNN egitimindeki zorluklar1 agsmaya yonelik gesitli girisimlerde
bulunulmusgtur. Bu zorluklar, Hochreiter ve Schmidhuber tarafindan 1997 yilinda
onerilen LSTM aglariyla biiyiik 6l¢iide giderilmistir. LSTM aglari, yinelemeli sinir
ag1 yapisindan tiiretilmig bir model varyasyonudur. Bu aglar, geleneksel RNN’lerin
biiytik giris bosluklari karsisinda ilgili bilgiyi koruyamamasi nedeniyle 6grenmekte

zorlandig1 uzun vadeli bagimliliklarin 6grenilmesinde 6nemli bir rol oynamaktadir
[44].

LSTM’ler, geleneksel RNN’lerde yaygin olarak goriilen “kaybolan gradyan”
problemini azaltmak icin tasarlanmistir. LSTM, ileri beslemeli (feedforward)
sinir aglar1 temelinde geri besleme baglantilarina sahip bir yinelemeli sinir agi
yapisidir ve bilgi arasindaki uzun vadeli bagimliliklar1 6grenme yetisine sahiptir.
En biiyiik avantajlarindan biri, yalnizca tekil veri noktalarini degil, tiim veri yapisini
isleyebilmesidir. Bu 6zelligi sayesinde makine cevirisi, konugsma tanima gibi yeni

teknolojilerde yaygin bir sekilde kullanilmaktadir [45].

[Ik ortaya ciktiginda giris-cikig-hiicre yapisim iceren LSTM’ler, zamanla
gelistirilmis ve daha yetkin hale getirilmistir. Giiniimiizdeki LSTM yapis1 genel
hatlariyla hiicreler, giris-cikislar ve unutulacak bilgilere iligkin kapilardan (gates)
olugsmaktadir. Bu yapinin i¢indeki "hafizalar", hiicreler olarak adlandirilmaktadir.
LSTM hiicre yapisina yeni bilgi durumlart eklenebilir, mevcut hiicrelerden bilgi
cikarilabilir ve bu siire¢ kapilar araciligiyla koordine edilir. Kapilar, hiicreye bilgi
giris ve ¢ikisini saglar. Hiicreler, onceki bilgileri ve mevcut durumda islenecek yeni

girdileri bir arada tutar.

Olah’a [46] gore, LSTM ler bir zincir yapisi seklinde tasarlanmistir; ancak bu zincir
icinde bulunan yinelemeli modiiliin yapist klasik RNN’lerden farklidir. Standart
bir yinelemeli sinir ag1 gibi tek bir noral ag katmani yerine, birbirleriyle 6zel bir

etkilesim yontemine sahip dort katmandan olusur.

LSTM agi, hiicreler olarak adlandirilan hafiza bloklarindan olusur. Hiicre durumu
ve gizli durum (hidden state), bir sonraki hiicreye aktarilir. Hiicre durumu, verilerin
esasen degismeden ileriye dogru akmasina olanak tanityan ana akis veri zinciridir.
Ancak baz1 dogrusal doniisiimler meydana gelebilir. Hiicre durumuna veri eklemek
veya veriyi cikarmak gibi islemler, sigmoid kapilar1 araciligiyla yapilabilir. Bir
kap1, farkli agirliklara sahip bir katman veya bir dizi matris islemiyle benzer
sekilde calisir. LSTM’ler, uzun vadeli bagimlilik sorununu 6nlemek i¢in hafizalama

stirecini kontrol eden kapilardan olusur.
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Sekil 2.1 Temel Uzun Kisa Siireli Bellek (LSTM) Birimi

Bir LSTM ag1 olusturmanin iki asamasi vardir: birincisi, gerekli olmayan ve
hiicreden c¢ikarilacak bilgilerin belirlenmesidir. Verilerin tanimlanip dislanmasi
stireci, son LSTM biriminin (h; — 1) t-1 zamanindaki ¢iktisin1 ve mevcut girdiyi
(X;) t zamaninda alarak belirleyen sigmoid fonksiyonu ile yapilir. Ayrica, sigmoid
fonksiyonu eski ¢iktinin hangi kisminin silinecegini de belirler. Bu kapiya unutma
kapisi (forget gate veya f;) denir; burada f;, hiicre durumu (C; — 1) i¢indeki her bir
degere karsilik gelen O ile 1 arasinda degisen degerlere sahip bir vektordiir.

ft = O'(Wf . [ht—lyxt] + bf), (214)

Burada o, sigmoid fonksiyonunu, W} ve b ise unutma kapisinin agirhk matrisleri
ve Onyargisini (bias) ifade etmektedir. Bir sonraki adim, yeni giris (X;) bilgisini
hiicre durumunda saklamak ve giincellemektir. Bu adim iki boliimden olusur:
sigmoid katmani ve tanh katmani. Ilk olarak, sigmoid katmami yeni bilginin
giincellenip giincellenmeyecegine (0 veya 1) karar verir, ikinci olarak ise tanh

fonksiyonu, gecen degerlere (-1 ile 1 arasinda) 6nem diizeylerine gore agirlik verir.

iy = o(W; - (1, 2] + bi), (2.15)

Cy, = tanh(We - [hy_1, 2] + be), (2.16)
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Cy=fi - Coioq + 1y - C’u (2.17)

Burada, C;_; ve Cy, srastyla t — 1 ve ¢t zamanlarindaki hiicre durumlarini ifade
ederken, W ve b, hiicre durumunun agirlik matrisleri ve 6nyargisini (bias) temsil
etmektedir. N, yeni hiicreyi ifade eder. Son adimda, c¢ikti degerleri (h;) cikis
hiicre durumuna (O;) dayanir, ancak filtrelenmis bir versiyon olarak. Ilk olarak,
bir sigmoid katmani, hiicre durumunun hangi boliimlerinin ¢ikisa ulagsacagina karar
verir. Ardindan, sigmoid kapisinin ¢iktisi (O;), hiicre durumundan (C}) elde edilen
yeni degerlerle, tanh katmanindan gegirilerek carpilir ve -1 ile 1 arasinda bir deger

bulunur.

or = o(Wy - [hy—1, 2] + bs), (2.18)

ht = tanh(Ct), (219)

Burada, W, ve b,, sirastyla ¢ikis kapisinin agirlik matrisleri ve dnyargisini (bias)
ifade etmektedir [47]).

2.3.5 XGBoost

XGBoost, ifadesinin kisaltmasidir. Bu, 0zellikle veri arastirmacilari tarafindan
pek cok veri yarismasinda ve makine 6grenimi yarigmalarinda kullanilan,
diger yontemlere kiyasla daha {istiin performans gosteren bir makine 6grenimi
yontemidir.  XGBoost, smiflandirma ve regresyon alanlarinda uygulanabilir
olup, bir¢ok pratik durumda dogrulugu kanitlanmistir [48]. XGBoost, 2016
yilinda Tianqi Chen ve Carlos Guestrin tarafindan gradyan artirma tekniginin
gelistirilmesiyle tanitilmigtir. Gradyan artirma tekniginde analiz, kayip
fonksiyonunun birinci tiirevi ile yapilirken, XGBoost tekniginde kayip fonksiyonu
Taylor serisi genislemesiyle iyilestirilmistir. XGBoost algoritmasindaki tahmin
fonksiyonu, Denklem 2.20°de gosterildigi sekilde olusturulmustur.

L(®) = Ui,y + YA (2.20)

I1k terim, kay1p fonksiyonunu temsil eder ve hedef sinifi (y;) ile tahmin edilen sinifi
(1);) arasindaki farki 6l¢er. Ikinci terim, modelin karmasikligin1 kontrol ederek asir1
ogrenmeyi (overfitting) énlemek amaciyla kullanilan bir ceza terimidir. Bu ceza

terimi, Denklem 2.8’de gosterilmistir.
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1
Qf) =~T + §Allw||2 (2.21)

Bu ifadede, 7' agactaki dal sayisini, w her dalin performans skorunu ve -y ile
A diizenleme parametrelerini temsil eder. Tahmin fonksiyonunu optimize etmek
icin iteratif bir yaklagim benimsenir ve bu iterasyon, adim ¢ Denklem 2.9’a kadar
devam eder. Optimizasyon siirecini hizlandirmak i¢in, tahmin fonksiyonuna ikinci

dereceden bir Taylor serisi genislemesi uygulanabilir.

LO =371 (537 + fla)) +Q(F) (222)
1=1

XGBoost modelinin sematik ag¢iklamasi Sekil 2.2°de verilmistir.

Input dataset X

1% tree {X, ©,}

Node spittting

2 (X, Ox)

Sekil 2.2 XGBoost Algoritma Yapisi

2.3.6 Tekrarlayan Sinir Aglar

RNN, zamansal bilgiyi koruma yetenekleri sayesinde ardisik verileri modellemede
ozellikle uygun olan bir yapay sinir ag1 smifidir [49]. RNN’ler, 6nceki zaman
adimlarinin bellegi olarak islev goren gizli bir durumu koruyarak ardigik verileri
islemek iizere tasarlanmustir. Ileri beslemeli sinir aglarinin aksine, RNN’ler zaman
adimlar1 boyunca bilginin kalicili§im1 saglayan dongiiler igerir [SO]. Bir RNN’in
temel yapisi, bir girig katmani, bir tekrarlayan gizli katman ve bir ¢ikig katmanindan
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olusur. Her bir zaman adiminda ¢, ag bir girdi z; alir, gizli durumunu A, olarak

giinceller ve bir ¢ikt1 y, iretir. Gizli durum asagidaki denklemlerle giincellenir:

he = o(Wyh_1 + Wz, + by), (2.23)

Yy = Wyht + by, (224)

Burada W), gizli durum i¢in agirhk matrisi, W, giris agirhk matrisi, W, ¢ikis
agirhk matrisi, b, ve b, ise bias terimleridir; o ise aktivasyon fonksiyonudur
(genellikle tanh veya sigmoid kullanilir). Bu 6zyineli yapi, RNN’lerin zaman
serisi verilerindeki zamansal iligkileri modellemesine olanak tanir [S1f]. Ancak,
standart RNN’ler uzun vadeli bagimliliklar1 68renme yeteneklerini kisitlayan
"azalan gradyan" (vanishing gradient) problemiyle karsi karsiyadir [52]. Bu
sinirlama, bilgi akisini diizenlemek ve gradyan sorunlarini hafifletmek amaciyla
gecit (gate) mekanizmalarn iceren GRU [53] ve LSTM [54] gibi gelismis

mimarilerin gelistirilmesine yol agcmistir.

Bu yontem, zaman serileri, ses, metin gibi sirali verilerdeki bagimliliklari
modellemek i¢in tasarlanmigtir. Sirali veriler, ayn1 agirliklar kullanilarak tekrar
tekrar iglenir  RNN modelinin mimari yapist Sekil 2.3’te verilmistir [S5].
Sekil incelendiginde, sonucun, bir sonraki adimda kullanilacak olan giris verisini

besledigi acik¢a ortaya konmustur. Diger bir deyisle, hy ve X; kullanilarak h; i¢in

T Y

—> B > B

C?D
Do d

Sekil 2.3 Ozyinelemeli Sinir A§1 Mimarisi Yapisi

giris Xy elde edilir. Sonraki adimlar ayn1 sekilde devam eder.

®
& -

2.3.7 Kapih Tekrarlayan Birimler

GRU, LSTM’nin giris ve unutma kapilarini bir giincelleme kapis1 altinda birlestirir
ve buna ek olarak bir sifirlama kapisi ekler [56]. Ayrica, LSTM’deki hiicre ve

gizli durum vektorlerini tek bir vektor altinda birlestirir. Sonug olarak, standart
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LSTM’den daha az karmagik modeller olusturur ve cesitli konularda LSTM’den
daha iyi dogruluk saglayabilir.

Denklemler (2.11-2.15)’te, h; € R? hiicrenin gizli durumunu, z; € R™ hiicrenin
girdisini gosterir ve m girisin boyutunu ifade eder. 2z, € R hiicrenin ¢iktisidur.
Wo, W, W, € R4 sirastyla giris, ¢ikis, unutma kapilari ve hiicre durumu ile
iliskili agirhklan gosterir. V,,, V., Vi, € R¥™™ ve b;, b,, by, b. € R? mevcut girigle
iligkili agirliklart ve sapma (bias) vektorlerini ifade eder. iy, 0;, f; € R? sirasiyla
giris, ¢ikis ve unutma kapisi vektorleridir. o, [0, 1] arahiginda ¢ikt1 veren sigmoid
fonksiyonu, tanh ise [—1, 1] aralifinda ¢ikt1 veren hiperbolik tanjant fonksiyonudur.

® eleman bazinda carpimi (Hadamard ¢arpimi olarak da bilinir) ifade eder.

Denklemler (2.11-2.15)’te, uy, r; € R? sirastyla giincelleme ve sifirlama kapilarini

[57) temsil eder. h; € R aday gizli durum, b, € R? ise mevcut gizli durumdur.

U = O'(Wu . ht—l + Vu - T+ bu) (225)
Tt = O'(Wr . ht—l —+ ‘/; - Tt —+ bT) (226)
hy = tanh(Wy, - 74 - hy_y + Vi, - 24 + bp) (2.27)
ht =u © ilt + (1 — ’LLt) ® ht—l (228)
Zr = ht (229)

Zt

4
ht-1 / ~ S foan \ > hy

- -

Xt

Sekil 2.4 Kapili Ozyinelemeli Sinir Ag1 Yapist
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2.3.8 LSTM-XGBoost Hibrit Modeline Genel Bakis

Bu calismada kullanilan veri seti, IEEE Dataport web sitesinde mevcuttur
ve meteorolojik verilerin yam1 sira COVID-19 doneminde ismi verilmeyen
bir bolgenin elektrik tiiketimindeki Ongoriillemeyen degisiklikleri icermektedir
[58]. Onerilen hibrit model, sirasiyla ardistk 6grenme icin LSTM ve hata
diizeltme i¢in XGBoost olmak iizere iki ana bilesenden olusmaktadir. Bu
sekilde, COVID-19 oncesi diizenli desenler ve pandemi sirasinda ortaya ¢ikan
diizensiz “Ongoriilemeyen olaylar” iceren veri setindeki yiik tiikketimini modellemek
amaclanmistir. Meteorolojik verilere ek olarak ayrik DWT egitim verilerine dahil
edilmesi, zaman serilerinin ¢ok ¢oziiniirliiklii analizine olanak tanimakta ve verideki
ongoriilemeyen dalgalanmalarin ele alinmasinda kritik olan hem yiiksek hem de

diisiik frekans bilesenlerinin yakalanmasini saglamaktadir.

2.3.9 Oznitelik Cikarm icin Ayrik Dalgacik Déniisiimii

x(t) orijinal zaman serisini temsil etsin. Ayrik Dalgacik Doniistimii (DWT), x(t)’yi
birden fazla frekans bandina ayirarak hem zaman hem de frekans alaninda bir temsil
sunar. DWT su sekilde ifade edilebilir:

N
2(t) =Y Ajptu(t) (2.30)
k=1 g

Burada,1; () dalgacik temel fonksiyonlarmni, A; ise yaklasik katsayilari (diisiik
frekans bilegsenleri) temsil eder; j ve k swrasiyla olgek (scale) ve kaydirma
(translation) parametreleridir. Bu calismada, dbN kullanilarak seviye 5’e kadar
dalgacik ayristirmasi uygulanmustir ve bu islem sonucunda hem yaklagik A; hem
de detay D; katsayilar1 elde edilmistir. Yaklagik katsayilar, zaman serisindeki
diizgiin, uzun vadeli eg8ilimleri yakalarken; detay katsayilari, ani dalgalanmalari
ve "Ongoriilemeyen olaylar" gibi potansiyel anormallikleri yakalar. Seviye 5’teki

dalgacik ayristirmasi su sekilde 6zetlenebilir:
ZE(t) :A5+D5+D4+D3+D2+D1 (231)
Bu katsayilar daha sonra LSTM-XGBoost hibrit modeli i¢in girig Oznitelikleri

olarak kullanilir.

2.3.10 Dizi Tahmini icin LSTM

LSTM, hiicre durumlar1 ve kap1 mekanizmalar: sayesinde uzun vadeli bagimliliklar

ogrenebilen bir RNN mimarisidir. LSTM modelini yoneten temel denklemler
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asagidaki gibidir:

Unutma kapis1 (Forget gate):

fr=0Wy - [hi—1, x4 + by), (2.32)

Giris kapist (Input gate):
iy = o(W; - [h—1, 2] + by), (2.33)
Cy = tanh(We - [hy_1, 2] + be), (2.34)

Hiicre durumu giincelleme (Cell state update):

Co=f-Ciq+iy-Cy, (2.35)

Cikis kapis1 (Output gate):
or = oWy - [hi—1, 2] + b,), (2.36)
hy = tanh(Cy), (2.37)

Burada, W, , W; , W, swrastyla unutma, giris ve ¢ikis kapilar i¢in agirlik
matrisleridir.c sigmoid aktivasyon fonksiyonu, tanh ise hiperbolik tanjant
fonksiyonudur. h; gizli durumu, C} ise zaman ¢’teki hiicre durumunu temsil eder.
LSTM modeli, orijinal zaman serisinden ve dalgacik 6zniteliklerinden iiretilen
dizileri giris olarak alr. Xygpy € RT*? giris dizisi olsun, burada T zaman
adim ve d oznitelik (dalgacik oznitelikleri dahil) bulunur ve y € RT hedef yiik
degerlerini temsil eder. LSTM, asagidaki gibi tanimlanan ortalama kare hata (MSE)

fonksiyonunu minimize etmek iizere egitilir:

N
1 .
MSE;stm = N E (yi - yi)2 (2.33)
i=1

Burada, y; gercek yiik degerlerini ve j; LSTM modelinden elde edilen tahmin edilen

yiik degerlerini temsil eder.

2.3.11 XGBoost ile Artik Hata Diizeltmesi
LSTM tahminleri elde edildikten sonra, artik hatalar r; su sekilde hesaplanir:
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TE=Yi — Yi (2.39)

Burada, y, gercek yiik degeri ve ¢, zaman t’teki LSTM tahminini temsil eder. Bu
artik hatalar r;, LSTM’nin yakalayamadig1 veri kismini temsil eder; bu genellikle
ongoriilemeyen olaylar ve kisa vadeli dalgalanmalarla iliskilidir. XGBoost, bu artik
hatalar1 modellemek ve diizeltmek icin kullanilir. XGBoost, artik hatalara uyan
zayif ogrenicileri (karar agaclari) sirasiyla ekleyerek calisir. XGBoost i¢in hedef

fonksiyon, artik kayb1 (residual loss) minimize etmek olup, su sekilde ifade edilir:

N

L(r) =Y Ui + > Qfe) (2.40)

=1 k

Burada, [(r;,7;) artiklar i¢in kayip fonksiyonunu (kare hata) temsil eder, w(f%)
modelin karmasikligin1 cezalayan diizenleme terimini, f; ise ansambldeki kinci
karar agacimi temsil eder. XGBoost’un parametreleri, Ornegin ‘max_depth’
(maksimum derinlik), ‘learning_rate’ (6grenme orani) ve ‘n_estimators’ (karar
agaci sayisi), modelin performansini daha da artirmak i¢in RandomizedSearchCV

kullanilarak optimize edilir.

2.3.12 Hibrit LSTM-XGBoost Tahmini
Hibrit modelden elde edilen nihai tahmin ¥ ¢;y,q;, LSTM tahminleri g, ile XGBoost

diizeltmeleri 7, nin birlestirilmesiyle elde edilir:

gl = g, + 7y (2.41)

2.3.13 Model Degerlendirmesi

Tahmin modellerinin performansini degerlendirmek i¢in, tahmin edilen degerlerle
gercek degerler arasindaki farki nicelendiren saglam istatistiksel dogruluk
Olciitlerinin kullanilmasi gereklidir. Zaman serisi tahmininde en yaygin kullanilan
Olciitler arasinda MAE, RMSE, MAPE ve WI yer almaktadir. Bu gostergeler,
tahmin hatalarinin biiyiikliigli, yonii ve oransalligi hakkinda tamamlayic1 bilgiler

sunar.

Hibrit model, asagidaki metrikler kullanilarak degerlendirilir:

19



2.3.13.1 Ortalama Kare Hata (MSE)

1 ~final\ 2
MSE = & > (4 = ™) (2.42)

2.3.13.2 Kok Ortalama Kare Hatas1 (RMSE)

RMSE, tahmin edilen degerlerle gercek degerler arasindaki farklarin karesinin

ortalamasinin karekokiinii hesaplar.

N
1
RMSE = , | — . — gjfinal)2 2.43
N;(y g (2.43)

2.3.13.3 Ortalama Mutlak Hata (MAE)

MAE, bir tahmin kiimesindeki hatalarin ortalama biiyiikliigiinii, yonlerini dikkate
almadan Olger. Gergek ve tahmin edilen degerler arasindaki mutlak farklarin

ortalamasidir.
1 N
MAE = — ; — ¢final 2.44
7 ; lyi — g (2.44)

2.3.13.4 Ortalama Mutlak Yiizde Hatas1 (MAPE )

MAPE, tahmin modellerinin dogrulugunu degerlendirmek i¢in yaygin olarak
kullanilan bir olciittiir. Hatalar1 yilizde cinsinden ifade etti8i icin, farkli olgekler

ve veri setleri arasinda anlasilmasi sezgisel ve kolaydir.

~final
—Y; }

100% o= |y
MAPE = 2.4
v Zl (2.45)

|yi|

Tablo 2.1 MAPE degerine gore tahmin dogrulugu yorumlari

MAPE Yorum

< 10 | Yiiksek dogrulukta tahmin
10 — 20 Iyi tahmin
20 — 50 Makul tahmin

> 50 Diisiik dogrulukta tahmin
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2.3.13.5 Willmott Indeksi (WI)

WI, ya da bilinen adiyla Willmott'un Uyum Indeksi, model tahminlerinin
gozlemlenen verilerle olan dogrulugunu degerlendirmek amaciyla C.J. Willmott
tarafindan gelistirilen istatistiksel bir Ol¢iittiir [59]. Enerji tiikketimi tahminleri,
hava durumu tahminleri ve ¢evresel modelleme gibi 6ngorii calismalart kapsaminda

yaygin olarak kullanilir.

Zij\:ol@i - yi)2

WE=1— ——
2 i (|9: — mean(y)| + [y — mean(y)])?

(2.46)

Yorumlama

e W1 = 1: Tahmin edilen ve gézlemlenen degerler arasinda miitkemmel uyum
* WI = 0: Hi¢bir uyum yok (model miimkiin olan en kotii durumdadir)

* WI < 0: Model, yalnizca gézlemlenen degerlerin ortalamasini kullanmaktan
daha kotiidiir

Burada y; gergek degerleri, ¢! tahmin edilen degerleri ve N ise toplam veri
sayisim1 temsil etmektedir. MSE, RMSE ve MAE’nin daha diisiik degerleri,
hem diizenli desenleri hem de Ongorillemeyen olaylar1 yakalamada model

performansinin daha iyi oldugunu gosterir.

DWT, LSTM ve XGBoost birlesimi, 6ngdriilemeyen olaylar igeren veri setlerinin
etkili bir sekilde islenmesini saglar. DWT nin ¢ok ¢6ziintirliiklii analizi, LSTM nin
sekans 6grenme kabiliyeti ve XGBoost’un artik hata diizeltmesi bir araya gelerek,
degisken zaman serisi verilerinde yiik degerlerini dogru bir sekilde tahmin edebilen

saglam bir model ortaya koyar.
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3

ANALIZ SONUCLARI

3.1 Standart Derin Ogrenme Mimarileri ile Karsilastirma

Bu ¢alismada kullanilan veriler, ortalama elektrik tiiketimi 1.1 GW olan bir bolgeye
aittir [[60]. Bu deneyde, en iyi performansi gésteren LSTM modeli, 1 haftalik
tahminler icin dogrulama RMSE olarak 0.0891 degerine ulagirken, GRU modeli
daha ytiksek bir RMSE olan 0.1098 vermistir.

Sekil 3.1, Mart 2020’de COVID-19 pandemisinin neden oldugu bozulmay1
gostermektedir.

x10°% Load Profile
T

| 1 1 1 1 1 1
08
Jan 2017 Jul 2017 Jan 2018 Jul 2018 Jan 2019 Jul 2019 Jan 2020 Jul 2020 Jan 2021

Sekil 3.1 COVID-19’un elektrik tiiketimi iizerindeki etkisi.

Bu deneyde, LSTM ve GRU icin farkli yapilar ve hiperparametreler kullanilarak
derin 6grenme modellerinin performanslart karsilagtirilmigtir.  Tiim bu modeller
icin yapilandirilmasi gereken hiperparametre sayisi, geleneksel makine 6grenme
tekniklerine gore daha fazladir. Bu nedenle, bu parametrelerin uygun sekilde
ayarlanmasi karmagik bir istir, dnemli bir uzmanlik gerektirir ve ¢ogu zaman

sezgiye dayanir. Derin 6grenme mimarileri, en iyi performanslari bulmak i¢in
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MATLAB Deney Yoneticisi Araci ile yapilandirilmisti.  Modellerin daha az
hata veren optimum hiperparametrelerini bulmak i¢in grid search (kafes arama)
kullanilmigtir.  Bu, hiperparametrelerin en uygun degerlerini hesaplamak icin

kullanilan bir ayarlama teknigidir.

Katman sayisi, gizli birim sayis1 ve 6grenme orani i¢in birkag¢ olasilifi denedim.
Tablo 3.1 ve Tablo 3.2, yaygin olarak kullanilan degerler i¢in sectigim varyasyonlari

gostermektedir.

Tablo 3.1 Model parametreleri ve degerleri

Model | Parametreler Degerleri
LSTM | Katman derinligi 1,3
- - Gizli birim sayist | 50, 100, 200
GRU | Katman derinligi 1,3
- Gizli birim sayis1 | 50, 100, 200

Adam (uyarlamali moment tahmininden tiiretilmis) optimizasyon algoritmasi
secilmistir.  Bu algoritma, bir¢cok derin 6grenme problemi i¢in saglam olan
uyarlamali stokastik bir optimizasyon yontemi uygular.  Adam, parametre
giincellemelerine moment terimi ekler. Parametre gradyanlarinin ve bunlarin

karelerinin eleman bazli hareketli ortalamasini tutar.

Tablo 3.2 Model egitim parametreleri

Modeller Parametreler
Optimizasyon yontemi Adam
Mini Y1gin Boyutu 128
Baslangig Ogrenme Oram | 0.001, 0.05, 0.01
Veri Karigtirma Bir kez

Tablo 3.3 ve 3.4, sirastyla LSTM ve GRU mimarileri icin farkli parametrelerle elde

edilen en iyi sonuclarin daha ayrintili bir goriiniimiinii sunmaktadir.

Tablo 3.3 LSTM mimarileri i¢in elde edilen en iyi sonuglar

e | Gosen | ot ST Bt i | pogrutama
Siire .o RMSE RMSE
ligi sayisi orani
3 5dk 13 sn 1 100 0.01 0.1877 0.0891
1 3dk1 sn 1 50 0.01 0.1843 0.0958
5 11 dk 30 sn 3 200 0.01 0.1742 0.0991
7 2 dk 34 sn 1 50 0.05 0.2479 0.1048

Tablo 3.3 ve 3.4’de, LSTM ve GRU modellerinin benzer davranis sergiledigi

ve dogrulama veri kiimesinde yakin sonuglar verdigi goriilmektedir. 1 haftalik

23



Tablo 3.4 GRU mimarileri i¢in elde edilen en iyi sonuglar

Deneme Gegen Bselrzll\l/f lﬁ;fll:l Bb?gf:illlfég Egitim | Dogrulama
Siire .e. RMSE RMSE
ligi sayisli orani
3 2 dk 34 sn 1 100 0.01 0.1958 0.0891
17 6 dk 13 sn 1 200 0.01 0.184 0.1103
9 dk 47 sn 3 100 0.01 0.2091 0.1145
1 1 dk 22 sn 1 50 0.01 0.1944 0.1195

tahmin i¢cin LSTM ve GRU modelleri sirastyla 0.0891 ve 0.1098 dogrulama RMSE
degerlerine ulasmistir. Tahmin dogruluguna ek olarak, derin 6grenme mimarilerinin
degerlendirildigi ikinci yon, hesaplama verimliligidir. Sekil 3.2, tim mimariler i¢in

egitim siiresi sonuglariin dagilimim karsilagtirmaktadir.

3000 -

2500

c)
N
o
S
S

I

1
B

a
o
o
T
1

LSTM GRU
Models

Sekil 3.2 Egitim siiresi sonuclarinin dagilimi

Dogrulama RMSE’sinde benzer sonuclar olmasina ragmen [61]], GRU modelleri
LSTM’e gore daha az karmasik bir mimariye sahip olduklarindan hesaplama
stireleri daha kisadir. Bir zaman serisinde bir sonraki adimi tahmin etmenin bir
yontemi yalnizca giris verilerini kullanmaktir [62]. Bu yontemde, gercek degerler
veri kaynagindan toplanir ve sonraki zaman adimlar: icin tahmin yapilirken girig

olarak kullanilir. Bagka bir deyisle, ¢ anindaki bir zaman serisinin degeri, 1’den ¢ —1
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’e kadar toplanan verilerden tahmin edilir. £ + 1 anindaki degeri tahmin etmek i¢in,
once ¢t anindaki gercek deger kaydedilir ve ardindan bir sonraki tahmin i¢in girig
olarak kullanilir. Ozellikle giin ici piyasalarda gercek degerlere ulagilabildiginden,
bu yontem kisa vadeli tahminlerde modellerin performanslarini karsilastirmak i¢in
kullanilmigtir. En iy1 performans gosteren LSTM ve GRU modellerinin 1 haftalik

tahminleri Sekil 3.3’de gosterilmistir.

13 x10°

Observed
195 | 1 Predicted with LSTM
; ) . Predicted with GRU

-

i .

(9]
T

1.1 F

Load (kW)

1.05 +

095 rF

09 | | 1 | | | 1 |
0 20 40 60 80 100 120 140 160 180

Time (hour)

Sekil 3.3 Egitim siiresi sonug¢larinin dagilimi

3.2 Genel Model Performansi

Bu calismada, ani ekonomik degisimler, dogal afetler veya pandemiler gibi
tahmin edilemeyen gelismelerin zaman serisi tahminleri i¢in nasil bilyiik zorluklar
yarattigim1 acikladim. Bu sorunlan tartismak icin, COVID-19’un enerji talebi
tizerindeki etkisini, tahmin dogrulugunu artirmak icin Onerdigim dalgacik ile
giiclendirilmis hibrit LSTM-XGBoost modelinin bir vaka calismasi olarak
kullaniyorum. Analizimde, Sekil 3.4’deki haftalik hareketli ortalama ile saatlik
yiik verilerini inceledim ve saatlik verilerin yiiksek degiskenlik gosterdigini, ancak
haftalik hareketli ortalamanin trendi yumusatarak mevsimsel etkileri daha goriiniir
hale getirdigini fark ettim. Ayrica, y1l boyunca talep degisimlerinin, enerji tiiketimi

tizerindeki sogutma ve 1sitma sistemlerinin etkisini yansittigini gdzlemledim.
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Sekil 3.4 Zaman icinde saatlik yiik ve haftalik hareketli ortalama egilimleri.

Calismada kullanilan 6zellikler arasindaki korelasyon Sekil 3.5°de gosterilmektedir.
Sekilde, kirmizi renkler pozitif korelasyonu, mavi renkler negatif korelasyonu
gosterirken, renk yogunlugu korelasyonun giiciinii belirtmektedir.  Ozellikle,
elektrik tiiketimi ile sicaklik arasinda anlamli bir pozitif korelasyon (+0.56)
gozlemlenmigtir. Bu, sicaklik arttikga gii¢ talebinin arttig1 anlamina gelir, bu da
enerji kullaniminin artti1, 6rnegin sicak giinlerde klima kullaniminin yayginlastigi
durumlar i¢in 6nemlidir. Ayrica, riizgar1 yalnizca riizgar yonii ve hizint veri
setinde saglanan sekilde okumak yerine yatay (u) ve dikey (v) bilesenlerine ayirarak
daha anlaml bir analiz yapilabilir. Riizgar bilesenleri yiik ile anlamli bir sekilde

iligkilendirilmemekle birlikte, yine de modelin ifade giiciinii artirabilir.

Sekil 3.6, modelin bir akis diyagramim gostermektedir. Veri seti IEEE Dataport’tan
alinmigtir [58].  Veri setinin donemi Mart 2017°den Kasim 2020’ye kadar
uzanmakta olup, COVID-19 pandemisinin Oncesini ve baglangi¢ etkisi agsamasini
kapsamaktadir ve saatlik elektrik tiiketimi verileri, giinlilk ve hafta ici/hafta
sonu desenlerini gostermektedir. Egitim veri setinde 31.912 saatlik gozlem
bulunmaktadir ve meteorolojik degiskenler, sicaklik, nem, bulut ortiisii, basing ve
riizgar bilesenleri gibi ozelliklerdir. Ham verilerde eksik degerler kontrol edilerek,
elektrik talebi tahminleri i¢in oldukga ilgili olan aylar, haftanin giinleri ve saatler

veri setine 6zellik olarak eklenmistir.

Bu calismada, eksik degerleri istatistiksel ve makine 6grenimi tabanli tahmin
teknikleriyle ele alarak veri biitiinliigiinii saglamak i¢in adimlar attim. Eksik
meteorolojik degiskenleri, bunlarin gecmis Ozelliklerle olan korelasyonlarini
kullanarak tahmin ettim. Bu 0n isleme sonrasinda, veriyi cesitli frekans

bilesenlerine ayirmak i¢in dalgacik doniisiimiinii uyguladim. Bu yaklasim, veriyi
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Sekil 3.5 Modelde kullanilan 6zelliklerin korelasyon matrisi.
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farkl1 zaman o6lgeklerinde bilesenlere ayirmami saglayarak, hem trendleri hem de

ayrintili desenleri etkili bir sekilde 6grenmeyi kolaylastirdi.

Ayrica, dalgacik katsayilarini farkli frekanslar arasinda hizalamak i¢in dogrusal
enterpolasyon kullandim ve bdylece veri setinin tutarlilifini sagladim. Bu 6n
isleme adimlari, 6zellikle COVID-19 gibi diizensiz dalgalanmalarla basa c¢ikarken
verinin saglam kalmasina yardimci oldu ve modelin zamansal bagimliliklar1 ve
ozellik tabanli iligkileri etkili bir sekilde yakalamasim sagladi. Ardindan, dalgacik
katsayilarini 6zellik setine dahil ederek, modelin ani ve tahmin edilemeyen olaylari,
COVID-19 gibi olaylar1 daha etkili bir sekilde tespit etme yetenegini artirdim.
Sekil 3.7’te goriildiigii gibi, dalgacik doniisiimiinii kullanarak enerji talebi verilerini
farkli frekans bilesenlerine ayirdim, bu da zaman serisindeki tahmin edilemeyen
olaylarin etkisini analiz etmenin ana adimidir ve ¢alismamin odak noktasidir. Veri
seti, bes detay seviyesi ve bir yakinsama seviyesi olarak ayrildi. Yakinsama
bileseni, uzun vadeli trendleri yansitirken, Detay 1 ve Detay 2 en yiiksek frekans
bilesenlerini yakalar, yiik verilerindeki giiriiltii ve hizli degisiklikleri iceren kisa
vadeli dalgalanmalar tespit eder. Bu yiiksek frekansli detaylar genellikle genel
egilimleri tahmin etmek i¢in kritik olmasa da, anormallikleri veya beklenmedik
zirveleri tespit etmek icin 6nemlidir. Ornegin, D1 en hizli degisimleri yakalar,
bunlar gecici giiriiltii ile iligkili olabilir, D2 ise biraz daha yavas, yiiksek frekansh
degisimleri yansitir. Detay 3, Detay 4 ve Detay 5 ise daha diisiik frekansl
bilesenlere karsilik gelir ve verilerdeki onemli dalgalanmalar1 vurgulayan orta
ve uzun vadeli degisimleri yakalar. Sekil 4’te agikca goriildiigii gibi, frekans
bilesenlerinin uzunluklart farklidir, bu yiizden uzunluklarini standartlagtirmak i¢in
enterpolasyon uyguladim ve bunlart modele entegre etmeden 6nce tutarli bir 6zellik

seti sagladim.

Zaman serisi verilerinin tahminini egitmek icin LSTM modelini kullandim. Dalga
doniisiimlii verilerle LSTM nin olaganiistii performans gosterecegini bekliyordum,
clinkii uzun vadeli bagimhiliklar1 yakalama giiciine sahiptir. Bu siirecte, modelin
hiperparametrelerini dikkatlice sectim ve ince ayar yaptim, katman sayist ve
O0grenme orani gibi parametreleri, en iyi performansi saglamak i¢in optimizasyon
teknikleri kullanarak Table 3.5°de belirtildigi sekilde belirledim.LSTM modelinin
ciktilarindan tahmin hatalarini (artiklar) hesapladim. Dogrulugu artirmak icin, bu
hatalar1 diizeltmek icin XGBoost modelini kullandim ve Table 4.6’de listelenen
cesitli parametre degerleriyle onu optimize ettim. XGBoost’u, LSTM’nin
hatalarindan 6grenmesi i¢in kullanarak tahmin dogrulugunu artirmay1 basardim. Bu

iki modelin birlesimi, daha gii¢lii ve etkili bir hibrit tahmin modeli olusturdu.

Modelin performansini degerlendirmek i¢in bir dogrulama siireci uyguladim.
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Sekil 3.7 Enerji yiik verisinin dalgacik ayristirmasi.

Tablo 3.5 LSTM Modeli Parametreleri

Parametre Deger
LSTM Katmanlari 1 veya 2 (ayar sonucu olarak)
Her LSTM Katmanindaki 50-200 (hiperparametre

Birim Sayis1

ayarlamasina gore)

Dropout Orani

0.2-0.5 (her LSTM katmam
icin ayarlanmisg)

Ogrenme Orani

0.01, 0.001 veya 0.0001
(ayar sonucu belirlenmis deger)

Regiilarizasyon (L2) 0.01-0.05 (her
LSTM katmani icin)
Maksimum Epok 50
Erken Durdurma Kriteri 5 epok sabirlilik
Y18in Boyutu 32, 64 veya 128 (ayar
(Batch Size) sonucuna bagl olarak)

Optimizasyon Algoritmasi

Adam

Ogrenme Orani
Zamanlayicisi

10 epoktan sonra iissel
azalma (exponential decay)
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Tablo 3.6 XGBoost Model Parametreleri

Parametre Deger
Maksimum Derinlik 3,4, 5 veya 6 (hiperparametre
ayarlamasina gore)
Ogrenme Orani 0.001, 0.01, 0.1 veya 0.2
(ayar sonucu belirlenmis deger)
Tahminleyici Sayisi 50, 100 veya 200 (ayar
sirasinda secilmistir)
Minimum Cocuk Agirligi 1,5 veya 10 (ayar
ile belirlenmistir)
Alt Ornekleme Orani 0.8 veya 1.0
Siitun Alt Ornekleme Orani 0.8 veya 1.0
(colsample bytree)
Capraz Dogrulama Kat Sayis1 3
Rastgele Arama 20
sonucuna bagh olarak)
Degerlendirme Metrigi Degerlendirme Metrigi
(Negative Mean Squared Error - MSE)

orani ve 0.0001 ©6grenme orani olarak belirledim.  XGBoost modeli icin
ise RandomizedSearchCV kullanarak en iyi yapilandirmayr belirledim; bu
yapilandirma, 6 maksimum derinlik, 1 minimum ¢ocuk agirlig1, 0.1 6grenme orani

ve 200 tahminci i¢eriyordu.

Optimizasyonu saglamak icin Keras Tuner kiitiiphanesinde RandomSearch
kullandim, LSTM modelini 5 denemede dogrulama kaybini en aza indirerek, her
denemede ii¢ yiiriitme yaparak tutarli sonuclar elde ettim. XGBoost i¢in ise
Scikit-Learn’iin RandomizedSearchCV’sini kullandim, hiperparametre alaninda 20
iterasyon ve 3 katmanli ¢apraz dogrulama ile verimli bir sekilde gezindim, hedef

olarak negatif ortalama kare hata (MSE) metrigini kullandim.

Bu optimizasyonlar, hibrit LSTM-XGBoost modelimin dogrulugunu biiyiik
Olciide artirdi, genelleme ve hesaplama verimliligi arasinda bir denge sagladi.
Optimizasyon tamamlandiginda, model gelecekteki tahminler i¢in hazir hale geldi.
Dalgacik doniisiimiiyle zenginlestirilmis bir veri seti iizerinde egitilen ve tahmin
hatalarin diizeltmek icin ince ayar yapilan modelim, dalgacik doniisiimiiniin, veriyi
farkli frekans bilegenlerine ayirarak tahmin edilemeyen olaylar1 etkili bir sekilde
yakaladigimi1 ve hibrit LSTM-XGBoost yaklagiminin genel tahmin performansini

onemli Olciide artirdigint gosterdi.
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3.3 Temel Modellerle Karsilastirmah Analiz

Veri seti, IEEE Dataport’tan alinan bir tahmin yarigsmasi i¢in, tam veri setiyle giinliik
tahminler icermekte olup, gercek degerler giinliik olarak aciklanarak bir sonraki
giiniin tahminleri i¢in yeniden egitim yapilmasini saglamaktadir. Calismamda,
yarigmanin kapsami icinde bir ay siiresince tahmin yapmak i¢in modeli egitmeyi
hedefledim. Hibrit LSTM-XGBoost modelimi degerlendirmek icin, tek bagina bir
LSTM modeli ve dalgacik bilesenleri olmayan bir LSTM modeli ile kargilagtirmali
bir ¢calisma yaptim. Sekil 3’te goriildiigii gibi, hibrit modelim, MAE, RMSE,

MAPE ve WI metrikleri ac¢isindan bu tek basina yontemleri siirekli olarak geride

birakmugtir.
Tablo 3.7 Farkli Modeller i¢in Hata Metikleri
Model MAE RMSE | MAPE | WI
LSTM-XGBoost Hibrit | 19875.15 | 26595.62 | 1.78 | 0.98
Sadece LSTM 43284.72 | 57403.58 | 3.86 | 0.94
Dalgacik Olmadan LSTM | 52681.58 | 67329.62 | 4.64 | 0.92

Buldugum sonuglar, hibrit yaklasimimun birlesik giiclii yonlerini vurgulamaktadir;
burada, LSTM’yi zamansal bagimliliklar1 etkili bir sekilde yakalamak icin,
XGBoost’u ise ozellik tabanli 6grenmeyi giiclendirmek i¢in kullandim. Ayrica,
hibrit modelim, yiik verilerindeki ani degisikliklerle basa ¢ikmada daha fazla uyum
sagladi ve gercek diinya tahmin uygulamalari i¢in degerini kanitladi. Kargilagtirmali

calisgmamin bir aylik tahmin sonuclari, Sekil 4.8 te gosterilmektedir.
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Sekil 3.8 Farkli modeller kullanilarak gercek ve tahmin edilen yiikiin (kW)
kargsilastirmas.
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3.4 Tahmin Edilemeyen Olaylar1 Ele Alma: COVID-19 Pan-
demisi Sirasindaki Performans

Sekil 3.9, hibrit LSTM-XGBoost modelimin {iistiin uyum yetenegini, ozellikle
COVID-19’un tetikledi8i elektrik tiiketimindeki yapisal degisikligi ele alirken
gosteriyor. COVID oncesi verilerle bolca egitim yapilmigs modeller, yalnizca
tarihi desenlere dayanan modeller dalgacik 6zellikli LSTM veya dalgacik olmadan
LSTM post-COVID tahminlerinde pozitif bir sapma gosterme egilimindedir,
titketimdeki keskin diisiis nedeniyle talebi asir1 tahmin ederler. Ancak, benim hibrit
yaklagimim bu sorunu, dalgaciklar1 ve XGBoost’u kullanarak dogrusal olmayan
iligkileri yakalayarak agmaktadir. LSTM-XGBoost modelim, enerji talebindeki
tahmin edilemeyen degisikliklere karsi dayanikliligini gostererek, gercek diinya

uygulamalari icin etkinligini pekistirmektedir.
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—50000 -

—100000 ~ ——

LSTM XGBoost (with Wavelet) LSTM (with Wavelet) LSTM (without Wavelet)

Sekil 3.9 Hibrit modelin ve en giincel modellerin hata dagilima.

Hibrit modelin performansi, Tablo 3.7’te gosterildigi gibi giiniin farkli zaman
dilimlerinde (Sabah, C)gle, Aksam ve Gece) analiz edilmistir. Bu sonuglar, modelin
dogrulugunun giiniin saatine baglh olarak nasil degistigini ortaya koymakta ve
farkli tiiketim kaliplar ile operasyonel zorluklari yansitmaktadir. Ayrica, saatlik
analiz, elektrik tiiketimi tahmininin zamansal boyutlarina dair i¢goriiler sunmakta

ve modelin bu degisimlere uyum saglama yetenegini gostermektedir.

Her ne kadar hibrit model, geleneksel hata metriklerine gore sabah saatlerinde genel

olarak iyi bir performans sergilese de, Willmott Indeksi’nin (WI) diisiik olmasi,
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modelin bu zaman dilimindeki tiiketim dinamiklerini diger saatlere kiyasla daha az
basariyla yakaladigini gostermektedir. Dahasi, sabah saatleri i¢in yalnmizca LSTM ve
Dalgacik (Wavelet) entegrasyonu olmayan LSTM modelleri sirasiyla 0.62 ve 0.73
WI degerlerine sahip olup, hibrit modele kiyasla bu donemdeki tiiketim desenlerini

yakalama konusunda énemli 6l¢iide daha kotii performans sergilemektedir.

Ayrica, aksam ve gece saatlerinde artan hata oranlari, bu donemler i¢in ek
ozelliklerin dahil edilmesi veya 0zel olarak egitilmis modellerin kullanilmasinin
dogrulugu artirabilecegini gostermektedir. Bu zamansal analiz, yalnizca modelin
giiclii ve zayif yonlerini ortaya koymakla kalmaz, ayni zamanda enerji yonetim
sistemlerinde tahmin dogrulugunu artirmak igin temel i¢goriiler sunar. Tahmin
modellerinin giinliik tiiketim desenleriyle uyumlu hale getirilmesi, daha giivenilir

ve hizli tepki veren enerji yonetim stratejilerine olanak saglayabilir.

Tablo 3.8 Yiik Tahmini Metrigi icin Giiniin Zamanina Gore Analiz

Giiniin Zamam MAE RMSE | MAPE | WI
Sabah 13744.774 | 18588.75 1.39 | 0.79
Ogleden Sonra | 14975.59 | 20090.96 1.34 | 0.99
Aksam 25554.87 | 3239596 | 2.13 | 0.95
Gece 25225.38 | 32103.31 2.28 | 0.90

3.5 Smirlamalar ve Gelecek Yonelimler

Onerilen hibrit LSTM-XGBoost modelinin cesaret verici sonuglarina ragmen,
bazi sinirlamalarin dikkate alinmasi gerekmektedir. Bayram giinlerindeki tiikketim
desenleri veri setine dahil edilmediginden, tahminlerin tatil giinlerine denk gelmesi
durumunda modelin dogrulugu etkilenebilir. Sebeke arizalar ve elektrik kesintileri
gibi arz tarafli aksakliklar dogrudan modellenmedigi icin tahmin dogrulugu
olumsuz etkilenebilir. Benzer sekilde, politika kaynakli enerji doniisiimii veya
biiyiik sanayilerdeki sistemsel degisim gibi nadir goriilen olaylar egitim verilerinde
yeterince temsil edilmemektedir ve bu durum modelin performansini etkileyebilir.
Ayrica, ekonomik durgunluklar veya diizenleyici degisiklikler gibi zamanla ortaya
cikan kademeli degisiklikler, dogrulugun korunabilmesi i¢cin modelin diizenli olarak
yeniden egitilmesini gerektirebilir. Gelecekte yapilacak arastirmalar, dis baglamsal
verilerin entegrasyonu, arz tarafina dair ger¢cek zamanl bilgilerin kullanimi ve
uyarlanabilir yeniden egitim siireclerinin gelistirilmesiyle modelin dayanikliligim

artirabilir.
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Bu calismada, ongoriilemeyen olaylarin etkisi altinda elektrik tiiketimini tahmin
etmenin zorluklarim inceledim ve COVID-19 pandemisi, énemli bir érnek olay
olarak kullanildi. Temel amag, enerji talebindeki ani ve diizensiz kesintilere uyum
saglayabilen saglam bir tahmin modeli gelistirmek ve degerlendirmekti. Bu amaci
bagarmak i¢cin, LSTM aglar1 ve XGBoost modelini birlestiren, dalgacik tabanh
hibrit bir model 6nerdim. Zaman serisi verilerini birden fazla frekans bilesenine
ayirmak icin DWT kullanarak, model hem kisa vadeli dalgalanmalar1 hem de uzun
vadeli egilimleri etkili bir sekilde yakaladi. Bu ¢ok ¢oziiniirliiklii yaklagim, modelin
pandeminin yol actig1 gibi anormal desenlere duyarlt hale gelmesinde 6nemli bir rol

oynadi.

Yontem, hem LSTM hem de XGBoost’un giiclii yonlerini tamamlayici bir sekilde
kullanarak calisi. LSTM bileseni, sirali verilerdeki zamansal bagimliliklari
modellemede basarili olurken, XGBoost, artik hatalar1 diizelterek tahminleri
iyilestirdi.  Deneysel sonuglar, hibrit modelin iistiin performansini gosterdi;
tek basmma LSTM ve dalgacik 6zellikleri olmadan LSTM ile kargilastirildiginda
daha diisiik hata metriklerine sahip oldu, MAE 19.875,15, RMSE 26.595,62,
MAPE 1,78 ve WI 0,98. Bu bulgular, modelin saglamligin1 ve ozellikle sabah
ve Ogleden sonra arasindaki giinliikk tahminler i¢cin degisken kosullar1 yonetme
yetenegini vurgulamaktadir. Bu calisma, belirsizlikler altinda tahmin dogrulugunu
artirmak icin derin 68renme, makine Ogrenmesi ve sinyal isleme tekniklerinin

birlestirilmesinin degerini gostererek enerji tahmini alanina katkida bulunmaktadir.

Bu aragtirma boyunca, zaman serisi tahmini ile ilgili onemli i¢goriiler kazandim,
ozellikle de 0zellik miihendisliginin duragan olmayan verileri ele almadaki kritik
roliinii 6grendim. Dalgacik ayristirmasi ile caligmak, diizensiz olaylara karsi
modelin duyarliligini artiran ¢ok ¢6ziiniirliiklii analiz giiciinii vurgulayan 6zellikle
odiillendirici bir deneyim oldu. Ancak ¢alisma, modelin daha da iyilestirilebilecegi
alanlar1 da ortaya koydu. Ornegin, modelin performansi giiniin farkl1 saatlerinde

farklilik gosterdi, aksam ve gece saatlerinde daha yiiksek hatalar gozlemlendi, bu
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da giinliik tiiketim desenlerinin tahmin dogrulugunu etkiledigini gosteriyor.

Vaadedici sonuclarina ragmen, bu calismanin dikkate alinmasi gereken bazi
sinirlamalart vardir.  Model, Mart 2017 ile Kasim 2020 arasindaki elektrik
tiketimini kapsayan belirli bir IEEE Dataport veri seti iizerinde egitilmis ve
test edilmigstir.  Bu veri seti COVID-19’un etkisini etkili bir sekilde yakalamis
olsa da, bagka bolgeler, donemler veya ongoriilemeyen olay tiirleri tizerindeki
genellenebilirligi heniiz test edilmemistir.  Ayrica, egitim setinde resmi tatil
verilerinin, arz tarafi kesintilerinin (6rnegin, sebeke arizalari) ve uzun vadeli
degisimlerin (6rnegin, ekonomik durgunluklar) eksikligi, modelin daha genis
baglamlarda uygulanabilirligini smirlayabilir. ~ Hibrit yaklasimin hesaplama
karmasiklig1, gercek zamanli uygulama icin de zorluklar olusturmakta olup, bunun

dinamik enerji yonetim sistemlerinde pratik kullanimini1 engelleyebilir.

Gelecekteki caligmalar, modelin saglamligini artirmak i¢in gercek zamanli verileri,

tatil desenlerini ve adaptif yeniden egitimi icerebilir.
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