
 
 

 
 
 
 

FLORIDA STATE UNIVERSITY 
 

COLLEGE OF EDUCATION 
 
 
 
 
 
 
 

USE OF ITEM PARCELING IN STRUCTURAL EQUATION 

MODELING WITH MISSING DATA 

 
 
 

By 
 

FATIH ORCAN 
 
 
 
 
 
 

A Dissertation submitted to the  
Department of Educational Psychology and Learning Systems 

in partial fulfillment of the  
requirements for the degree of  

Doctor of Philosophy 
 
 
 
 
 
 
 

Degree Awarded:  
Fall Semester, 2013 

 
 



ii 
 

Fatih Orcan defended this dissertation on November 1, 2013.  

The members of the supervisory committee were: 

 

 

        
       Yanyun Yang 
       Professor Directing Dissertation 
 
 
 
 

                                                            
Adrian Barbu 

       University Representative 
 
 
 
 
        
       Betsy Becker 
       Committee Member 
 
 
 
 
        
       Russell Almond 
       Committee Member 
 
 
 
 
 
 
 
 
 
 
The Graduate School has verified and approved the above-named committee members, and 
certifies that the dissertation has been approved in accordance with university requirements. 
 
    



iii 
 

ACKNOWLEDGMENT 

 

I would like to express my great appreciation to Dr. Yanyun Yang for her guidance and 

encouragement during my dissertation. She was patient and willing to give her time to guide me 

though this dissertation. I also would like to thank my dissertation committee members, Dr. 

Adrian Barbu, Dr. Betsy Becker, and Dr. Russell Almond for their valuable feedbacks on my 

dissertation. Finally, I would like to thank my family and friends for their support and praying 

throughout my study.



iv 
 

TABLE OF CONTENTS 

LIST OF FIGURES ...................................................................................................................... vii 

LIST OF TABLES ....................................................................................................................... viii 

ABSTRACT ................................................................................................................................... xi 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

CHAPTER 2: LITERATURE REVIEW ........................................................................................ 6 

Structural Equation Modeling ......................................................................................................... 6 

Confirmatory Factor Analysis ..................................................................................................... 6 

Full Structural Equation Models ................................................................................................. 9 

Null Hypothesis and Fit Indices ................................................................................................ 10 

Item Parceling ............................................................................................................................... 12 

Parceling Techniques for Unidimensional Measures ................................................................... 13 

Random Assignment ................................................................................................................. 14 

Factorial Algorithm (Item-to-Construct Balance) ..................................................................... 14 

Correlational Algorithm ............................................................................................................ 16 

Pros and Cons of Item Parceling ................................................................................................... 17 

Pros of Parceling ....................................................................................................................... 18 

Psychometric characteristics of parceling ............................................................................. 18 

Factor-solution and model-fit ................................................................................................ 19 

Cons of Parceling ...................................................................................................................... 20 



v 
 

Dimensionality....................................................................................................................... 20 

Parameter estimation bias. ..................................................................................................... 20 

Missing Data Mechanisms ............................................................................................................ 21 

Missing Completely at Random (MCAR) ................................................................................ 22 

Missing at Random (MAR) ....................................................................................................... 24 

Missing Not at Random (MNAR) ............................................................................................. 26 

Missing Data Techniques .............................................................................................................. 27 

Listwise (Case) Deletion ........................................................................................................... 28 

Pairwise Deletion ...................................................................................................................... 29 

Mean Imputation ....................................................................................................................... 30 

Regression Imputation ............................................................................................................... 31 

Full Information Maximum Likelihood .................................................................................... 35 

Expectation Maximization ........................................................................................................ 35 

Multiple Imputation ................................................................................................................... 36 

Purpose of This Study ................................................................................................................... 38 

CHAPTER 3: METHODS ............................................................................................................ 40 

Design Factors for Data Generation ............................................................................................. 41 

Data Generation Procedure ........................................................................................................... 42 

Data Analysis ................................................................................................................................ 44 

Assessment of the Models and the Parameters ............................................................................. 45 



vi 
 

CHAPTER 4: RESULTS .............................................................................................................. 47 

Convergence ................................................................................................................................. 47 

Rejection Rate based on Chi-square Test ..................................................................................... 48 

Fit Indices...................................................................................................................................... 53 

CFI ............................................................................................................................................. 53 

RMSEA ..................................................................................................................................... 61 

SRMR ........................................................................................................................................ 66 

Parameter Estimates and Standard Errors ..................................................................................... 67 

Point Estimates .......................................................................................................................... 72 

Standard Errors .......................................................................................................................... 73 

CHAPTER 5: DISCUSSIONS AND CONCLUSIONS ............................................................... 87 

Major Findings from Simulation Study ........................................................................................ 88 

Limitations and Future Research .................................................................................................. 94 

APPENDIX A: R-CODES FOR DATA GENERATION ............................................................ 96 

APPENDIX B: CORRELATION MATRIX AMONG THE FACTORS .................................... 99 

APPENDIX C: CREATING PARCELS IN R ........................................................................... 101 

APPENDIX D: BIAS OF PARAMETER ESTIMATES AND SE IN R ................................... 102 

REFERENCES ........................................................................................................................... 104 

BIOGRAPHICAL SKETCH ...................................................................................................... 109 

 

 



vii 
 

LIST OF FIGURES 
 
Figure 1: CFA with Two Factors .................................................................................................... 8 
 
Figure 2: The SR Model Used for the Data Generation ............................................................... 10 
 
Figure 3: Factorial Algorithm ....................................................................................................... 15 
 
Figure 4: Correlational Algorithm (Step 1) .................................................................................. 16 
 
Figure 5: Correlational Algorithm (Step 2) .................................................................................. 16 
 
Figure 6: Correlational Algorithm (Step 3) .................................................................................. 17 
 
Figure 7: Missing Completely at Random .................................................................................... 24 
 
Figure 8: Missing at Random ........................................................................................................ 25 
 
Figure 9: Missing Not at Random ................................................................................................. 27 
 
Figure 10: No Missing Values ...................................................................................................... 32 
 
Figure 11: Listwise and Pairwise Deletion ................................................................................... 33 
 
Figure 12: Mean Imputation ......................................................................................................... 33 
 
Figure 13: Regression Imputation ................................................................................................. 34 
 
Figure 14: Stochastic Regression Imputation ............................................................................... 34 
 
Figure 15: Correlations among the Factors ................................................................................... 99 

 
  



viii 
 

LIST OF TABLES 

Table 1: An Example of Creating Parcel Scores for Data with Missing Values ............................ 3 
 
Table 2: An Example of R-variable .............................................................................................. 23 
 
Table 3: Listwise Deletion ............................................................................................................ 29 
 
Table 4: Pairwise Deletion ............................................................................................................ 30 
 
Table 5: Factor Loadings in Data Generation Model ................................................................... 42 
 
Table 6: Criterion for Creating Missing Data ............................................................................... 44 
 
Table 7: Assignment of Items to Parcels ...................................................................................... 45 
 
Table 8: Frequency of Model Non-convergence for Each Condition for the First Set of Factor 
Loadings ........................................................................................................................................ 49 
 
Table 9: Frequency of Model Non-convergence for Each Condition for the Second Set of Factor 
Loadings ........................................................................................................................................ 50 
 
Table 10: Chi-square Rejection Rate (%) Based on Alpha Level of .05 for the First Set of Factor 
Loadings ........................................................................................................................................ 51 
 
Table 11: Chi-square Rejection Rate (%) Based on Alpha Level of .05 for the Second Set of 
Factor Loadings ............................................................................................................................ 52 
 
Table 12: Mean of CFIs for Each Condition for the First Set of Factor Loadings ....................... 56 
 
Table 13: Mean of CFIs for Each Condition for the Second Set of Factor Loadings ................... 57 
 
Table 14: Percentage (%) of Replications with CFI Smaller than .95 for Each Condition with the 
First Set of Factor Loadings .......................................................................................................... 58 
 
Table 15: Percentage (%) of Replications with CFI Smaller than .95 for Each Condition with the 
Second Set of Factor Loadings ..................................................................................................... 59 
 
Table 16: Partial Eta Squares Based on ANOVA ......................................................................... 60 
 
Table 17: Mean of RMSEA for Conditions with the First Set of Factor Loadings ...................... 62 
 
Table 18: Mean of RMSEA for Conditions with the Second Set of Factor Loadings .................. 63 
 



ix 
 

Table 19: Percentage (%) of Replications with RMSEA Larger than .06 for Each Condition with 
the First Set of Factor .................................................................................................................... 64 
 
Table 20: Percentage (%) of Replications with RMSEA Larger than .06 for Each Condition with 
the Second Set of Factor ............................................................................................................... 65 
 
Table 21: Mean of SRMR for Conditions with the First Set of Factor Loadings ......................... 68 
 
Table 22: Mean of SRMR for Conditions with the Second Set of Factor Loadings .................... 69 
 
Table 23: Percentage (%) of Replications with SRMR Larger than .08 for Each Condition with 
the First Set of Factor .................................................................................................................... 70 
 
Table 24: Percentage (%) of Replications with SRMR Larger than .08 for Each Condition with 
the Second Set of Factor ............................................................................................................... 71 
 
Table 25: Bias of the Direct Effect from F1 to F2 for Each Condition with the First Set of Factor 
Loadings ........................................................................................................................................ 74 
 
Table 26: Bias of the Direct Effect from F1 to F2 for Each Condition with the Second Set of 
Factor Loadings ............................................................................................................................ 75 
 
Table 27: Bias of the Direct Effect from F1 to F3 for Each Condition with the First Set of Factor 
Loadings ........................................................................................................................................ 76 
 
Table 28: Bias of the Direct Effect from F1 to F3 for Each Condition with the Second Set of 
Factor Loadings ............................................................................................................................ 77 
 
Table 29: Bias of the Covariance between Disturbances of F2 with F3 for Each Condition with 
the First Set of Factor Loadings .................................................................................................... 78 
 
Table 30: Bias of the Covariance between Disturbances of F2 with F3 for Each Condition with 
the Second Set of Factor Loadings ............................................................................................... 79 
 
Table 31: Bias of SE of the Direct Effect from F1 to F2 for Each Condition with First Set of 
Factor Loadings ............................................................................................................................ 81 
 
Table 32: Bias of SE of the Direct Effect from F1 to F2 for Each Condition with the Second Set 
of Factor Loadings ........................................................................................................................ 82 
 
Table 33: Bias of SE of the Direct Effect from F1 to F3 for Each Condition with the First Set of 
Factor Loadings ............................................................................................................................ 83 
 
Table 34: Bias of SE of the Direct Effect from F1 to F3 for Each Condition with the Second Set 
of Factor Loadings ........................................................................................................................ 84 
 



x 
 

Table 35: Bias of SE for the Covariance between Disturbances of F2 with F3 for Each Condition 
with the First Set of Factor Loadings ............................................................................................ 85 
 
Table 36: Bias of SE for the Covariance between Disturbances of F2 with F3 for Each Condition 
with the Second Set of Factor Loadings ....................................................................................... 86 

  
 

 

 

 

 

 



xi 
 

ABSTRACT 

 

Parceling is referred to as a procedure for computing sums or average scores across 

multiple items. Parcels instead of individual items are then used as indicators of latent factors in 

the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, 

& Hoyle, 2010). Item parceling may be applied to alleviate some problems in analysis with 

missing data (e.g., MCAR, MAR, and MNAR) and/or nonnormal data. No simulation study has 

been conducted to examine whether using parceling leads to better (at least not worse) results 

than individual items when there are missing values and nonnormality issues in the dataset. The 

purpose of this study is to investigate how item parceling behaves under various simulated 

conditions in structural equation modeling with missing and nonnormal distributed data. The 

design factors of the simulation study included sample size, missingness mechanism, percentage 

of missingness, degree of nonnormality for individual items, and magnitude of factor loadings. 

For each condition, 2000 datasets were generated. Each generated dataset was analyzed at both 

parcel and item levels using full information maximum likelihood estimation method. All 

analysis models were considered correctly specified. The results of the simulation showed that 

models based on parcels were less likely to be rejected than those based on individual items. 

Specifically, parcel analysis tended to result in smaller empirical alpha based on the chi-square 

test, greater CFI, and smaller RMSEA and SRMR. In addition, Parameter estimates from parcel 

level analysis performed equally well or slightly better than those from item level analysis in all 

conditions. In general, parcel level analysis yielded results as good as or better than those from 

item level analysis under any type of missing mechanisms, different degrees of nonnormality of 

data, and percentage of missingness. 
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CHAPTER 1 

INTRODUCTION 

 

Data missingness is an unavoidable issue in Structural Equation Modeling (SEM) for 

most social science studies (Allison, 2002; Davey, Savla, & Luo, 2005; Enders & Bandalos, 

2001). In the SEM literature, many missing data techniques have been proposed. Some of the 

techniques involve removing cases (e.g., Listwise Deletion [LD], Pairwise Deletion [PD]), some 

involve adding data (e.g., Mean Imputation, Similar Response Pattern Imputation [SRPI]), while 

others use only available information in the dataset (e.g., Full Information Maximum Likelihood 

[FIML]).  

All of the techniques listed above assume that data are missing randomly (i.e., missing at 

random or missing completely at random; more details later) (McKnight, McKnight, Sidani, & 

Figueredo, 2007). However, some techniques are better than the others in terms of yielding 

smaller parameter estimation bias or higher model convergence rates (Enders et al., 2001). 

Among these techniques, FIML could be considered as the best in general (Enders et al., 2001). 

However, FIML requires all assumptions underlying the maximum likelihood (ML) method. If 

any of the assumptions (e.g., multivariate normality) is not met, the results from ML may be 

biased, and the type I error rate for statistical testing may be inaccurate (e.g., chi-square test for 

evaluation of model-data fit may be inflated) (Enders, 2006). These conclusions are also 

applicable to FIML with missing data. For example, Enders (2001) found that FIML for data 

with missing values behaved similarly to ML (i.e., for a complete dataset) in terms of rejection 

rate and parameter estimation. Specifically, the rejection rate of the model-data fit test was 

inflated and standard errors of parameter estimates were negatively biased.  
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Parceling is one of the most commonly used modeling techniques in SEM. It uses the 

sum or average score of a subset of items instead of individual items as measured indicators for 

the latent factors in the analysis. Bandalos and Finney (2001) reviewed the literature on the use 

of item parceling in five journals published in 1989-1994. They found that about 20% of 

empirical studies (62 out of 317) used some kind of item parceling techniques. One of the most 

prominent advantages of using item parcels is that parcel scores tend to be more normally 

distributed compared to individual item scores (Bandalos, 2002; Little, Cunningham, Shahar, & 

Widaman, 2002; Matsunaga, 2008).  

Both missing data and nonnormality affect estimation procedures in SEM (e.g., 

Andreassen, Lorentzen, & Olsson, 2006; Finney & DiStefano, 2006). The presence of 

nonnormality could lead to more serious issues when missing values are observed in the dataset 

(Enders, 2001). Use of item parceling may not only obviate some difficulties in meeting 

normality assumptions (e.g., Bandalos, 2002; Carter, 2006; Little et al., 2002; Matsunaga, 2008), 

but may also overcome some effects of missingness in the data on the estimation procedure. 

Typically, parcel scores are computed as the sum or average across a subset of item scores. 

When missing data are present on one or more individual items, parcel scores can be computed 

as the average of a subset of available item scores. Consequently, no missing data appear in the 

dataset containing the parcel scores. To illustrate the procedure, assume that we have a dataset 

containing a set of items with sample size of 20. For simplicity, values from only four items are 

presented in Table 1. Two of the items, X1 and X2, have some missing values. If a Confirmatory 

Factor Analysis (CFA) model is conducted on this set of items, only 10 cases are available for 

analysis if listwise deletion is used. The CFA results will be affected by the presence of missing 

data, especially if the missing pattern is not at random (i.e., MNAR). However, if parcel level 
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data are used, it is expected that the impact of the missingness on the results be smaller (e.g., 

smaller parameter estimation bias, better model-data fit indices, etc.). For example, a parcel can 

be created by computing the mean across items X1 to X4. The parcel score is then the mean of 

the items X2, X3, and X4 for the 1st case and the mean of the items X1, X3, and X4 for the 6th 

case, etc. In other words, the parcel scores are based on all items without missing values within 

the parcel. As a result, no values are missing in the dataset when analyzing the assumed model. 

From one point of view, handling the missing data through parceling as demonstrated 

above is an imputation method (i.e., adding data for missing values). One of the well-known 

 

Table 1: An Example of Creating Parcel Scores for Data with Missing Values 

ID X1 X2 X3 X4 Parcel 
Non-

missing 
Parcel 

1 NA (3) 4 3 3 3.33 3.25 
2 2 4 3 2 2.75 2.75 
3 NA (1) 3 4 2 3.00 2.50 
4 3 1 2 2 2.00 2.00 
5 NA (1) 2 3 3 2.67 2.25 
6 0 NA (3) 1 1 0.67 1.25 
7 1 2 1 1 1.25 1.25 
8 2 2 2 2 2.00 2.00 
9 NA (2) NA (1) 2 2 2.00 1.75 

10 NA (1) 2 2 1 1.67 1.50 
11 3 0 2 3 2.00 2.00 
12 4 1 1 2 2.00 2.00 
13 1 2 1 0 1.00 1.00 
14 2 NA (3) 2 1 1.67 2.00 
15 NA (0) 2 1 2 1.67 1.25 
16 2 3 2 2 2.25 2.25 
17 3 1 1 3 2.00 2.00 
18 NA (4) 1 2 4 2.33 2.75 
19 1 1 4 1 1.75 1.75 
20 4 NA (4) 2 3 3.25 3.00 

Note. NA indicates missing value. Values in parentheses indicate values of the missed data.  
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imputation methods is mean imputation. Mean imputation method takes the average of variable 

(e.g., X1 in Table 1), and then imputes this average value for all the missing cases on the variable. 

For creating parcel scores when missing data are present, the idea is to replace missing values 

with the average value within the case (Schafer & Graham, 2002). For example, consider the 3rd 

case in Table 1. The value for X1 is missing and the average of all other items in case 3 is 

[(3+4+2)/3] =3. With the missing value replaced by 3 for X1, the average score for this case 

retains the same [(3+3+4+2)/4] =3. In other words, the parcel score is based on all available data 

for a particular case.   

Schafer and Graham (2002) raised an idea similar to item parceling when missing data 

are present but labeled it in an ambiguous manner. First, they suggested averaging scores across 

a subset of items when multiple items are available in measuring the same/similar construct (i.e., 

the same latent variable). “If a participant has missing values for one or more items, it seems 

more reasonable to average the items that remain rather than report a missing value for the entire 

scale” (p. 158). They suggested labeling this method as “case-by-case item deletion” and 

“ipsative mean imputation”. This method was “widespread, but its properties remained largely 

unstudied; it does not even have a well-recognized name” although “the method can be 

reasonably well behaved” (Schafer et al., 2002, p. 158). Some authors have applied this method 

in their empirical studies (e.g., Achenbach, Bernstein, & Dumenci, 2005; Signorella, & Cooper, 

2011; Yoder, Snell, & Tobias, 2012) without discussing its pros and cons (Schafer et al., 2002). 

To the best of my knowledge, no previous study has examined the effects of the use of item 

parceling on SEM analysis (e.g., parameter estimate, model-data fit) with nonnormally 

distributed incomplete data. The purpose of this study is to investigate how item parceling 

behaves in SEM analysis with missing data under a variety of simulation conditions. Because 
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parceling not only results in complete data for analysis but also tends to yield more normally 

distributed data, I expect that item parcels will yield results at least as good as those from item 

level data under all three missing data mechanisms (i.e., MCAR, MAR, and MNAR) with 

smaller parameter estimation bias or more accurate model rejection rates.  
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, principals and fundamentals of SEM are first briefly introduced. The use 

of item parceling techniques in SEM are then reviewed, followed by review of missing data 

mechanisms and data handling techniques. Last, purposes of the study and research questions are 

proposed. 

Structural Equation Modeling 

SEM techniques are frequently used when the focus of the study is to understand the 

inter-relationships among variables. SEM techniques are also called latent variable modeling 

techniques, which tend to involve multiple observed variables and latent variables. SEM 

techniques include a family of models such as Path Analysis, Confirmatory Factor Analysis 

(CFA), Full Structural Regression Model (SR model), Multiple-sample SEM, and Latent Growth 

Modeling. Structural equation models can be represented using diagrams to convey the 

hypothesized inter-relationships among variables. Below I briefly introduce the fundamental 

principles of SEM using CFA and SR models as examples because these two types of models are 

relevant to my study.   

Confirmatory Factor Analysis 

A CFA model is also called a measurement model. It is used to examine a priori 

relationships between latent factors and a set of measured indicators (or items). Researchers 

typically have hypotheses about the factor structure before conducting the analysis. Specifically, 

they posit a model with a number of latent factors and know which measured variable is an 
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indicator of which factor (Kline, 2010). A CFA model assesses whether the proposed 

relationships among the measured indicators and latent factors are supported by the data.  

To illustrate, a CFA model with two latent factors each measured by three items is shown 

in Figure 1. Latent variables in a CFA model are represented by circles or ovals, whereas the 

measured variables are represented by squares or rectangles. The directional line from a latent 

factor to an observed item indicates a directional relationship between them. The weight applied 

to the latent factor to obtain the observed item, called factor loading, indicates the strength of the 

relationship. Two-headed lines (or curves) indicate covariances between two variables or 

variances of variables. In this CFA model, some of the factor loadings are fixed at a constant (i.e., 

1) for identification purposes to assign a scale to each of the latent variables. This method is 

called Unit Loading Identification (ULI). In Figure 1, the loadings for Item 1 and Item 4 are 

fixed to 1. Consequently, the first factor and the second factor are assigned to a scale that is 

related to the scale of Item 1 and Item 4, respectively. For the same reason, all the directional 

effects from residuals to items are fixed to 1. Consequently, the observed scores for the three 

items (X1 to X3) measuring the first factor can be expressed as: 

ܺ1 ൌ 1 ∗ 1ܨ  ൅ ݁ଵ 

ܺ2 ൌ ଶ݃݊݅݀ܽ݋ܮ ∗ 1ܨ ൅ ݁ଶ 

ܺ3 ൌ ଷ݃݊݅݀ܽ݋ܮ ∗ 1ܨ ൅ ݁ଷ 

where F denotes factor score and e denotes residual. Although not shown, the three items 

measuring the second factor can be expressed in a similar format.   

A CFA model should be identified before conducting the analysis. “A model is identified 

if it is theoretically possible for the computer to derive a unique estimate of every model 

parameter” (Kline, 2010, p. 93).   
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Figure 1: CFA with Two Factors 

 

To meet this requirement, in addition to assigning a scale to each latent variable, a CFA model 

should have degrees of freedom (df) greater than or equal to zero. Model df is determined by the 

number of pieces of information minus the number of free parameters. The amount of 

information in a model is the number of unique elements in the variance-covariance matrix 

among the observed variables when mean structure is not considered. For example, the two-

factor CFA model given in Figure 1 has six observed variables. The number of unique elements 

in the covariance matrix among these six variables is 21 as computed by 6*(6+1)/2. 

The number of freely estimated parameters in the model is 13 consisting of: 

 Factor variances for factors: 2 

 Covariance between the two factors: 1 

 Variances of disturbances for each item: 6 
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 Factor loadings: 4 

The degrees of freedom for this model is thus 8 (= 21-13) and the model is theoretically 

identified. 

Full Structural Equation Models 

Full structural equation models are also known as structural regression (SR) models. A 

SR model is a model describing the relationships among several latent variables each with a 

measurement component. The model used for the simulation study, which is shown in Figure 2, 

is an example of SR model. In this model, the hypothesized relationships between the latent 

factors F1 and F2, and F1 and F3 are directional (i.e., F1→ F2; F1→ F3). The disturbances 

associated with F2 and F3 are correlated. In addition, each of the three latent factors is measured 

by a set of measured variables. That is, items X1 to X15 are measured indicators of F1, items 

X16-X18 are measured indicators of F2, and items X19-X21 are measured indicators of F3. 

The number of freely estimated parameters in this SR model is 45 consisting of: 

 Variance of F1: 1 

 Variance of disturbances of F2 and F3: 2 

 Covariance of disturbances: 1 

 Direct effect among the factors: 2 

 Factor loadings (one loading for each factor is fixed at 1): 18  

 Variance of measurement error for each item: 21 

The amount of information for the model is 231 (= 21*22/2). Therefore, degrees of freedom (df) 

for the model are 186 and the model is identified. 
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Figure 2: The SR Model Used for the Data Generation 

 

Null Hypothesis and Fit Indices 

The null hypothesis for statistical testing for the overall fit of a SEM is that the 

population covariance matrix among observed variables is identical to the reproduced covariance 

matrix derived from the model. The mathematical representation of the null is: 

Σ ൌ Σሺߠሻ 

where Σ represents the observed covariance matrix, Σሺߠሻ represents the reproduced covariance 

matrix, and  ߠ represents the model parameters. The chi-square ( ߯ଶሻ test is used to test this null 
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hypothesis. The smaller the chi-square is, the better the model-data fit is. However, it is well 

known that the  ߯ଶ test is a function of sample size.  Therefore, it is necessary to consider 

supplemental fit indices to assess the model-data fit. Numerous supplemental fit indices are 

available in the SEM literature but no single fit index works well for all type of models (Davey et 

al., 2005). Therefore, using multiple fit indices has been recommended to assess the model-data 

fit (Davey et al., 2005).   

The most commonly used fit indices can be categorized into two groups: incremental fit 

indices (a.k.a. comparative fit indices) and absolute fit indices. However, some of the indices can 

be categorized into multiple categories (Kline, 2010).  Incremental fit indices indicate the 

relative fit of the researcher’s model to a baseline model (Davey et al., 2005; Kline, 2010), 

including Comparative Fit Index (CFI; Bentler, 1990) and Tucker and Lewis Index (TLI; Tucker 

& Lewis, 1973). The larger the values for both CFI and TLI are, the better the fit is. The range of 

CFI is 0 to 1. However, values of TLI may go outside this range. Values of CFI and TLI greater 

than .95 indicate good fit (Hu & Bentler, 1999). Root Mean Square Error of Approximation 

(RMSEA; Steiger & Lind, 1980) and Standardized Root Mean Square Residual (SRMR; Bentler, 

1995) are two absolute fit indices. RMSEA smaller than .06 and SRMR smaller than .08 indicate 

good model-data fit (Hu & Bentler, 1999). 

In addition to the typical assumptions (e.g., multivariate normality assumption), 

complexity of models has a major effect on the estimation procedure in SEM. Model complexity 

increases as the number of parameters estimated in the model increases. A more complex model 

generally requires a larger sample size in order to reach stable parameter estimation. Some 

conventional rules about the ratio of sample size to the number of free parameters are available 

in the literature. For example, Kline (2010) indicated that ratios less than 10:1 need attention 
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especially for sample size smaller than 100. In practice, when a model involves a large number 

of measured indicators, applied researchers may use some item parceling techniques to reduce 

model complexity when the purpose of modeling is to investigate the relationships among latent 

factors, particularly when the sample size is relatively small. Next, I summarize item parceling 

techniques as well as their pros and cons. 

Item Parceling 

Item parceling has been often used in empirical SEM analyses since it was introduced by 

Cattell in 1956 (Bandalos, 2002; Kishton & Widaman, 1994; Little et al., 2002). Parceling is 

referred to as a procedure for computing sums or average scores across multiple items. The sum 

or average scores (called parcel scores) instead of the individual item scores are then used as 

indicators of latent factors in the SEM analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, 

Nay, & Hoyle, 2010). In addition to Bandalos et al. (2001) as I summarized in the previous 

chapter, Plummer (2000) reviewed three journals published from 1996 to 1999 and found that 

102 articles used confirmatory factor analysis (CFA) and 50 of them used some kind of parceling 

techniques in the analysis. 

Use of parcels is appealing because it reduces model complexity; that is, the number of 

indicators of a latent factor is reduced to a smaller number (Nasser & Takahashi, 2003). 

Researchers have argued that using parcels also help reach optimal reliability, avoid violation of 

normality assumptions (particularly when the individual items are measured with a limited 

number of response categories), reduce the requirements on sample sizes, reduce influences of 

individual items’ systematic errors on the model estimation, and help obtain better model-data fit 

(e.g., Little et al., 2002; Yang et al., 2010). However, researchers have also pointed out 
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disadvantages of using parcels. For example, it may blur the dimensionality of original measures 

and produce biased estimates of model parameters (Bandalos, 2002; Matsunaga, 2008).   

There have been discussions about whether parceling techniques should be used. 

Methodological and simulation studies have shown that parceling might not always lead to the 

correct model. “Parceling improves model fit regardless of whether the fitted model is correctly 

specified or not” (Matsunaga, 2008, p. 289). Since the late 1990s, a number of authors have 

investigated optimal techniques for creating parcels while minimizing the bias of parameter 

estimates and the distortion of dimensionality of measures. Little and his colleagues (Little et al., 

2002) stressed that researchers should understand the structure and dimensionality of the original 

measures before creating parcels. They also summarized various parceling techniques for both 

unidimensional and multidimensional measures. In this study, I focused only on unidimensional 

measures because parceling procedures for unidimensional structure are less complicated than 

those for multidimensional structures. In future studies, based on the results from the current 

work, multidimensional structures for parcel creation with missing data will be considered. For 

parceling techniques for multidimensional measures, see Matsunaga (2008) and Little et al. 

(2002). 

Parceling Techniques for Unidimensional Measures 

While it is controversial whether item parceling should or should not be used, there are 

some other discussions on use of parceling such as the types of the parceling techniques and 

number of items needed for a parcel. In this section several item parceling techniques for 

unidimensional measures are introduced including random assignment, factorial algorithm, and 

correlational algorithm. It is important for researchers to understand the structure of the items 

(Little et al., 2002). “If the dimensionality of a set of items is not known, the items could be 
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prescreened using an exploratory factor analysis algorithm that uses an iterative estimator with 

an oblique rotation [e.g., the analogous algorithm of the SEM measurement model]” (Little et al., 

2002, p. 165).  

Random Assignment 

This method is easy to understand and to apply in the real world by randomly assigning 

items to parcels. However, Matsunaga (2008) recommended that it would be better to have 

parcels with approximately equal communality and error variances. “If the items evince unequal 

variances because the scales, or metrics, differ across items, the resulting parcel would be biased 

in favor of the items with the larger variances” (Little et al., 2002, p. 165). Little and his 

colleagues have also recommended standardizing the item scores as a solution for this problem.  

Factorial Algorithm (Item-to-Construct Balance) 

 The factorial algorithm is another parceling method for unidimensional measures. 

This technique is also known as “single-factor” method (Landis, Beal, & Tesluk, 2000; 

Matsunaga, 2008). Different from the random assignment technique that assigns “item 

specific components” to parcels randomly (Matsunaga, 2008), the factorial algorithm 

technique decomposes “item specific components” and combines them within different 

parcels purposefully. For this technique, parcels are created based on the magnitude of 

the factor loadings. First, a factor analysis is executed. Parcels are then created with 

respect to the magnitude of the loadings. Figure 3 illustrates an example of the factorial 

algorithm adopted from Matsunaga (2008). Let’s assume that three parcels are created 

from twelve items. First, a factor analysis is conducted on these 12 items to obtain their 

loadings ordered from the largest to smallest as shown in Figure 3. The first parcel would 
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then consist of items 1, 6, 7 and 12. The second parcel has items 2, 5, 8 and 11. The rest 

of the items are assigned to the third parcel.  

In the above example, factor loadings are utilized to determine which items to be 

included in which parcel because only the covariance structure is of interest. When the SEM 

analysis involves a mean structure, balance on the means or intercepts should also be considered 

when creating parcels (Little et al., 2002): 

Under conditions in which the intercept information is also important, this 

procedure can be extended to include the intercepts by specifying a single 

construct model as mentioned previously, but request that the means, or intercepts, 

be estimated. In this case, one has to consider the relative balance between the 

discrimination parameter of the item (e.g., its loading) and its difficulty parameter 

(e.g., its intercept) in constructing balanced parcels (p. 166). 

 

Figure 3: Factorial Algorithm 
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Correlational Algorithm 

Another parceling method is correlational algorithm. In this method parcels are created 

based on the magnitude of correlations among the items. Starting from the highest correlation, 

items are assigned to the parcels, until all the parcels have been assigned once. Next, correlations 

for the remaining items with the parcels are calculated. Then, starting from the highest 

correlation, items are assigned to parcels based on the correlation between the items and the 

parcel. The same procedure is applied again until all the items are assigned into one parcel. 

Figures 4-6 illustrate this method.   

 

Figure 4: Correlational Algorithm (Step 1) 

 

 

 

Figure 5: Correlational Algorithm (Step 2) 
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Figure 6: Correlational Algorithm (Step 3) 

 

Pros and Cons of Item Parceling 

To parcel or not to parcel is still a controversial topic. There are some good reasons for 

using parcels, such as its helpfulness to reduce the number of indicators for latent variables and 

increase the likelihood to get closer to normally distributed indicators. For example, Sass and 

Smith (2006) clearly indicated that item parcels are usually preferred over individual items 

because the smaller the number of indicators is, the smaller the chance of encountering 

estimation error is, and the higher the chance of meeting the normality assumption is. 

Little et al. (2002) summarized two different philosophical perspectives on item parceling. 

The first was described as “conservative view”. For this philosophy, “parceling is akin to 

‘cheating’ because modeled data should be as close to the response of the individual as possible 

in order to avoid the potential imposition, or arbitrary manufacturing, of a false structure” (p. 

152). Therefore, using parcels alters the data structures. The second perspective of parceling was 

labeled as “liberal perspective.” Based on this view, measurement process is defined by the 

researcher; therefore, choosing to use parcels is a “matter of choice” and it is a part of the 

investigation. Next I summarize pros and cons of parceling in the literature. 
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Pros of Parceling 

Pros of parceling could be classified into two main classes: the first one is based on 

“psychometric characteristics of parceling” and the second one is related to “factor-solution and 

model-fit” issues (Little et al., 2002; Matsunaga, 2008). 

Psychometric characteristics of parceling. Matsunaga (2008) listed two psychometric 

advantages of parceling. The first one is that it increases the communality, increases the 

commonality to uniqueness ratio for each parcel, and reduces the random error. Because 

individual items usually do not cover all part of the construct but capture only restricted feature 

of a construct, by parceling more aspects of the construct would be covered (Matsunaga, 2008). 

From classical test theory perspective, the observed scores consist of true score, systematic error, 

and the random error (e.g., McDonald, 1999).  The mathematical representation is:  

௜ܺ ൌ  ܶ ൅ ௜ܵ ൅ ݁௜ 

where X is a score from an individual item i, T is the true score, S is the systematic error and e is 

the random error.  S represents idiosyncratic component that is specific, but unrelated to the 

construct (Matsunaga, 2008). If the individual items are used to measure a construct, both 

specific and random errors will cause a reduction on the communality. However, if aggregated 

items are used, “the random errors, ei, and the specific components, Si, would be drastically 

reduced because ei and Si are defined as uncorrelated sources of variance within an item and 

across all items in a domain; ei and Si components are also assumed to be uncorrelated” (Little et 

al., 2002, p. 156). In other words, when a large number of items are used, the estimation of a 

person’s true score would be more accurate (Little et al., 2002). 

The second psychometric advantage of parceling is that parceling increases the chance of 

approaching normality of the distribution of scores (Bandalos, 2002; Matsunaga, 2008; Meade & 
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Kroustalis, 2005; Little et al, 2002). “Parceling can normalize the distribution because, as far as 

the assembled items tap various aspects of the construct of interest, aggregating them into parcels 

may well distinguish individuals at subtly varying levels in regard to that construct” (Matsunaga, 

2008, p. 265).  

Factor-solution and model-fit. Using parcels increases the model fit (Nasser & 

Wisenbaker, 2003; Plummer, 2000). Also, it may decrease the item-specific biases and random 

error (Matsunaga, 2008). On the contrary, using a larger number of individual items tends to 

result in increase in the measurement error (Matsunaga, 2008). In addition, as number of 

indicator per construct is increased, the stability of the results of the model decreases (Little et al., 

2002).  “Thus, there is a dilemma: from a psychometric standpoint, the more items the better 

(Marsh, Hau, Balla, & Grayson, 1998); from a modeling perspective, however, more items 

means increasingly bad model fit, and hence, undesirable” (Matsunaga, 2008, p. 268). 

Little et al. (2002) perceived model-level issue from type I error point of view. When 

individual items are used, the number of “spurious correlation” is higher than when the parcels 

are used. They also pointed out that, using more items in item-based analysis may increase the 

possibility of sharing specific source of variance. In addition, item-based models are more 

unstable, causing larger standard errors of measurement. Moreover, as the number of indicators 

per factor increases, the model tends to be more complex (i.e., with more degrees of freedom). 

Little et al. (2002) argued that a just-identified model (with zero degrees of freedom) is better 

than an over identified model (with more degrees of freedom). “Depending on the number of 

items that have been measured to represent a construct, parcels can be used to effectively reduce 

the number of indicators to an optimal, just-identified level” (Little et al, 2002, p. 162). On the 
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other hand, an over-identified model is more complex, resulting in unstable solution, unless 

required sample size is increased (Matsunaga, 2008).  

Cons of Parceling 

Matsunaga (2008) listed two main critiques for use of parceling. One is related to 

dimensionality and the second is parameter estimation bias. 

Dimensionality. When the dimensionality of the items is not clear, parceling should not 

be used (Little et al., 2002). Dimensionality of a set of items should be known so that a proper 

parceling technique can be decided. It was even suggested that parceling could be used only for 

unidimensional item structure (Bagozzi, & Edwards, 1994; Bandalos et al., 2001). When items 

are multidimensional, parceling may blur the factor structure, rather than clarifying it (Bandalos, 

2002; Matsunaga, 2008). 

Parameter estimation bias. Research on item parceling yields conflict results in 

parameter estimation bias (Matsunaga, 2008). Some researchers demonstrated that using 

parceling increases the estimation bias (Hall, Snell, & Foust, 1999; Stephenson, & Holbert, 

2003). However, other researchers disagreed with this conclusion (Bandalos, 2002) and found 

totally opposite findings. For example, Matsunaga (2008) found that parceled data resulted in 

less bias path coefficients than item level data. He argued that “previous findings indicate that 

parceling is particularly useful when the given data are not optimal in light of the assumptions 

invoked for SEM such as multivariate normality and uncorrelated errors” (p. 276) and the reason 

the use of parceling resulted in more bias in some studies is that the researchers used extremely 

well condition which was unrealistic in most application studies. 
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So far, there is no clear conclusion about the usefulness of item parceling. It is still a 

controversial topic. However, the controversy also indicates that the potential of item parceling is 

still to be discovered. More research is needed to examine the issues regarding the use of item 

parceling. For example, item parceling technique may be used with missing data. “If a 

participant has missing values for one or more items, it seems more reasonable to average the 

items that remain rather than report a missing value for the entire scale” (Schafer et al., 2002, p. 

157).  For the three parceling techniques used for unidimensional measurement as I summarized 

above, Rogers and Schmitt (2004) suggested that none of them is better than the other in 

obtaining accurate parameter estimates. However, factorial algorithm technique has shown to be 

superior to others in terms of model-data fit (Rogers et al., 2004). Therefore, factorial algorithm 

was used in this study. In the next section, I summarized missing data mechanisms and 

techniques.  

Missing Data Mechanisms 

Missing data mechanisms were first proposed by Rubin (1976). Rubin explicitly defined 

missing mechanisms in a probabilistic manner (Enders 2010). “Missing data mechanisms 

describe relationships between measured variables and probability of missing data” (Enders, 

2010, p. 2). These probability-based mechanisms can also be considered as assumptions for 

missingness (Allison, 2002; Peugh & Enders, 2004). Broadly, the assumptions could be divided 

into two groups: ignorable and non-ignorable missing data (Chen & Astebro, 2003).  Although 

some other types of mechanisms have been discussed in the literature (e.g., “missing by 

definition of the subpopulation” [Acock, 2005]), most widely discussed missing mechanisms are 

missing completely at random (MCAR), missing at random (MAR), and missing not at random 

(MNAR), with the later mechanism indicating more relaxed or weaker assumption. In addition, 
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the first two mechanism (MCAR and MAR) are considered as ignorable whereas the last one 

(MNAR) as non-ignorable.  

Missing Completely at Random (MCAR)  

MCAR could be described as the mechanism that has the strongest assumption compared 

to the other two mechanisms. Assume that X (focal variable) is the variable that has some 

missing values. If the missingness is not related to the variable itself (X) or any other variables 

(Ys) in the dataset, missingness on the variable X is called MCAR. By definition, missingness on 

variable X is not related to any other variable in the dataset. However, this does not guarantee 

that X is not related to any other variables which are not included in the dataset. 

A dummy variable R can be created to indicate missingness for a particular variable. 

Whenever there is a missing value on the focal variable, R is coded as 0. Therefore, the variable 

R can be called as “missingness” variable (Schafer et al., 2002). Assume that we have the dataset 

shown in Table 2. X is the observed variable that does not have any missing values on it. Xmis is 

the variable with missing values.  Even though it is not specifically indicated in Table 2 (for 

simplicity), let’s assume that there are some other measured variables (Ys) in the dataset. Also, 

let’s assume that some other possible variables are not included in the dataset (Zs – un-measured 

variables). Therefore, the complete dataset, D, that consists of observed and missing data can be 

expressed as: 

ܦ ൌ ሺܺ௠௜௦, ௦ܻሻ. 

If a variable is missing completely at random (MCAR), the probability of the missingness is the 

same for the data with or without missing. That is, the probability of missingness does not 

depend on any variables in the dataset.  

ܲሺܴ|ܦሻ ൌ ܲሺܴ|ܺ௠௜௦, ܻሻ ൌ ܲሺܴሻ 
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Table 2: An Example of R-variable 

ID X Xmis R Y1-Yn 

1 3 NA 0 … 
2 2 2 1 … 
3 1 NA 0 … 
4 3 3 1 … 
5 1 NA 0 … 
6 0 0 1 … 
7 1 1 1 … 
8 2 2 1 … 
9 2 NA 0 … 
10 1 NA 0 … 
11 3 3 1 … 
12 4 4 1 … 
13 1 1 1 … 
14 2 2 1 … 
15 0 NA 0 … 
16 2 2 1 … 
17 3 3 1 … 
18 4 NA 0 … 
19 1 1 1 … 
20 4 4 1 … 

 

Schafer et al. (2002) and Enders (2010) depicted the idea of MCAR as shown in Figure 7, 

where X is the variable that has missing values, Y is other measured variables in the dataset (Y – 

auxiliary), R is a dummy variable for missingness on X, and Z is any possible un-measured 

auxiliary variables. The two headed arrows indicate existence of correlation. For example, the 

two-headed arrow between X and Y indicates possible correlation between the focal variable and 

any auxiliary variables, whereas, the two-headed arrow between R and Z indicates possible 

correlation between missingness and any other un-measured variables. For MCAR, there exists 

no direct or indirect effect between X and R. In other words, MCAR mechanism is not affected 

by the correlation between missingness and un-measured variables.  
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MCAR is the only mechanism that may be tested (Enders, 2010). Allison (2002) 

explained the testing procedure for MCAR. The first step is to create a dummy variable for the 

focal variable that shows ‘1’ for non-missing and ‘0’ for missing values. Then, test if the average 

values of the focal variable for 0-coded and 1-coded cases are significantly different from each 

other. Non-significant mean difference may indicate MCAR mechanism. However, even though 

the test indicates a non-significant mean difference, it does not necessarily mean that data are 

MCAR, deeper investigation is necessary to confirm data are MCAR (Allison, 2002) because 

subgroups with equal means can also be obtained under MNAR and MAR (Enders, 2011). 

Missing at Random (MAR) 

MAR requires a weaker assumption than MCAR (Allison, 2002). In MAR, missingness 

on the focal variable (X) is related to the other variables in the dataset but not to X. If any 

variable (Y) in the dataset is related to the missingness on X, the missingness on X is called MAR. 

The name of MAR is somewhat confusing. Although it is called missing “at random,” the 

probability of the missingness on X is related to other variable/s in the dataset; that is, there exists 

a “systematic relationship” between focal variable and other measured variables (Enders, 2010).  

 

 

Figure 7: Missing Completely at Random 
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Schafer at al. (2002) and Enders (2010) pictured MAR cases as shown in Figure 8.  MAR 

can be formulated as follow: 

ܲሺܴ|ܦሻ ൌ ܲሺܴ|ܺ௠௜௦, ܻሻ ൌ ܲሺܴ|ܻሻ. 

All the terms are the same as defined earlier. In words, if a variable is missing at random (MAR), 

the probability of the missingness is the same for the data with or without missing observation, 

controlling for some variables (Y) in dataset. As also shown in Figure 8, different from the 

MCAR case, MAR has a correlation between the missingness and a measured auxiliary variable 

as indicated by the two-headed arrow between Y and R. In addition, there may be a correlation 

between Y and Z, which is indicated by a dashed line in Figure 8. Enders (2010) and Schafer et al. 

(2002) did not place this dashed line in their works; however, having this dashed line is 

necessary since it is possible that there is a correlation between Y and R through Z. 

 

Figure 8: Missing at Random 

 

The problem with the MAR mechanism is that it is not possible to test it (Allison, 2002; 

Enders, 2010). We are never sure if the missingness only depends on the measured variables 

(e.g., Y) (Enders, 2010). “Because we do not know the values of the missing data, we cannot 

compare the values of those with and without missing data to see if they differ systematically on 

that variable” (Allison, 2002, p. 4). One way to satisfy the MAR assumption is to include 

auxiliary variables in the dataset that may potentially be related to the missingness on the focal 
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variable (Enders, 2010). If the cause of missingness is a measured variable, the MAR assumption 

is fulfilled (Enders, 2010). The strategy is called “inclusive analysis”. Inclusive analysis strategy 

suggests having as many auxiliary variables as possible. By including these auxiliary variables in 

the analyses, statistical power may be increased and non-response bias may be reduced.  In 

addition, including auxiliary variables may convert possible MNAR cases to be MAR (Enders, 

2010). Consequently, having auxiliary variables may possibly relieve the assumption of most of 

the missing data handling methods (i.e., maximum likelihood and multiple imputation) since 

missingness would be considered MAR with certain auxiliary variables. For example, assume 

that we have a dataset which contains scores from a test measuring individuals’ math and science 

abilities. A dummy variable is used to indicate if a student is attending after-school activities or 

not. The after-school program is assumingly specific for lower-level achieving students.  Also, 

let’s assume that the math scores for some of the students are missing. The missingness on the 

math scores might be considered as MAR if we think students’ math scores are missing for those 

who do not attend after-school activities. However, if we did not have the dummy variable to 

indicate if a student attended after-school activities in the dataset, the missingness on the math 

scores might be thought of as MNAR since the after-school program is only for lower-level 

students. Therefore, including the auxiliary variable (e.g., after-school activities) may turn 

MNAR into MAR. 

Missing Not at Random (MNAR) 

The missing mechanism is called MNAR if the missingness on a variable is related to the 

variable itself. Consider that X is the focal variable with missing values on it. When the data 

present MNAR, the probability of missingness on X depends on its value. For example, if all the 

values of X1 on Table 1 are missing for X1= 4, it can be concluded that X1 is MNAR. If values 
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on a variable are missing not at random (MNAR), the probability of the missingness is different 

for the cases with or without missing elements. The mathematical representation for MNAR is: 

ܲሺܴ|ܦሻ ൌ ܲሺܴ|ܺ௠௜௦, ܻሻ ൌ ܲሺܴ|ܺ௠௜௦ሻ 

The graphical representation of the missing mechanism for MNAR is demonstrated in Figure 9.  

In contrast to Figure 8, Figure 9 has one additional two-headed arrow between focal variable X 

and missingness R, indicating that the missingness is related to itself.  

 

Figure 9: Missing Not at Random 
 

Missing Data Techniques 

Data missingness is an issue frequently encountered in the experimental and 

observational studies in education and psychology. The reasons behind the missingness vary. 

Researchers might be aware of the reasons for missingness in some cases, but not in most cases. 

McKnight et al. (2007) classified the reasons for missingness into three categories: missingness 

caused by the participant, caused by the study design, and caused by both the participant and the 

study design.  If certain questions are offensive for some of the examinees, the examinees may 

decide to not answer the questions (McKnight et al., 2007). For example, a student who is 

participating in a survey may not want to answer a question related to his or her GPA score from 

previous year just because his or her GPA is low. If a question is too long to read, examinees 

may not read all questions thus leaving some questions un-answered. 
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 In literature, many methods have been proposed to handle missing data (Peugh & Enders, 

2004). These methods can be categorized into two broader groups: traditional (ad hoc) methods 

and modern methods. Traditional methods include listwise deletion, pairwise deletion, and mean 

imputation, whereas full information maximum likelihood, expectation maximization, and 

multiple imputation are considered as modern methods. Below I provided a brief review of each 

of these methods. 

Listwise (Case) Deletion 

Listwise deletion (LD) is the most commonly used method in the literature (Acock, 2005; 

Schafer et al., 2002).  For example, it is the default method in SPSS 20 (1993 – 2012) to handle 

missing data. LD removes all the cases as long as there is a missing value on any of the variables 

on these cases. That is, the dataset, after LD, will contain only cases with complete data on all 

variables. Consider that we have the dataset presented in Table 1. After LD is applied the dataset 

will be the one presented in Table 3, in which the same size decreased by ten. 

LD is a commonly used ad hoc method probably because it is easy to apply. However, it 

has disadvantages. The most obvious disadvantage is it reduces the sample size in the analysis, 

and so the power (Acock, 2005; Enders, 2006; McKnight, 2007; Peugh et al. 2004). The LD 

method assumes MCAR, which is the strictest assumption for the missing data mechanism 

(Carter, 2006; Enders, 2006). If the assumption of MCAR is not met, parameter estimates are 

usually biased (Enders, 2006, 2010; Peugh et al. 2004), inefficient (Chen et al., 2003), and Type 

II error may be increased (Acock, 2005). However, the power is not a concern for the LD method 

when the sample size is big enough and the data are missing completely at random (Acock, 

2005). 
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Table 3: Listwise Deletion 
ID X1 X2 X3 X4 
2 2 4 3 2 
4 3 1 2 2 
7 1 2 1 1 
8 2 2 2 2 
11 3 0 2 3 
12 1 1 1 2 
13 1 2 1 0 
16 2 3 2 2 
17 3 1 1 3 
19 1 1 4 1 

 

Pairwise Deletion 

Pairwise deletion (PD) method is also known as available case analysis (Allison, 2002). It 

is also one of the methods available in SPSS 20.  Instead of removing all the cases with missing 

values at once as in LD, PD removes the cases only for variables that are involved in the analysis. 

Take the dataset from the Table 1 as an example. If we are interested in computing the 

correlation between variables X1 and X3, the data used in the computation would look like those 

presented in Table 4. Although there are some missing values in X2, the analysis does not 

involve X2,  thus the cases with missing values on X2 but not on X1 and X3 (i.e., cases # 6, 14, 

and 20) are not excluded.  

PD is more powerful and more efficient (e.g., has smaller sampling variability) than LD 

(Allison, 2002; Enders, 2010), however, parameter estimates may still be biased when 

missingness is not MCAR (Allison, 2002; Enders, 2010). Another important issue with PD is 

that it uses different sub-sets of the data for different analyses (Enders, 2010; Peugh et al., 2004). 

For example, consider the dataset in Table 1 again. The sample size for computing the 

correlation between X1 and X3 is 13, whereas the sample size for computing the correlation  
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Table 4: Pairwise Deletion 
ID X1 X2 X3 X4 
2 2 4 3 2 
4 3 1 2 2 
6 0 NA (3) 1 1 
7 1 2 1 1 
8 2 2 2 2 
11 3 0 2 3 
12 1 1 1 2 
13 1 2 1 0 
14 2 NA (3) 2 1 
16 2 3 2 2 
17 3 1 1 3 
19 1 1 4 1 
20 0 NA (4) 2 3 

Note. NA indicates missing value. Values enclosed in parentheses indicate values of the missing data.  

 

between X2 and X3 is 16. Related to this, it is difficult to compute the model degrees of 

freedom1 with PD (Acock, 2002; Schafer et al., 2002). In addition, it is likely to have a singular 

(non-invertible) variance-covariance matrix (Enders, 2006; McKnight et al., 2007) as well as 

correlation out of the boundary of -1 to 1 (Schafer et al., 2002) with the PD method. Some 

approaches have been suggested to handle the sample size issue. One is to use the smallest 

sample size as if it is the actual sample size; however, that reduces the power (Acock, 2002). 

Another is to use the average of the sample sizes, “but this approach is likely to underestimate 

the standard error of some variables and overestimate the standard error for others” (Enders, 

2002, p. 41). 

Mean Imputation 

Mean imputation method is easy to implement. Any missing values are replaced by the 

average score based on all the available cases on the variable. The mean value of the variable is 

                                                 
1 In this case, the term “degrees of freedom” is not the same as the one defined in SEM. It is related to the sample 
size, for example, the df for correlation is n-1 where n is sample size. 
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accurate under the MCAR data (Schafer & Graham, 2002). However, mean imputation not only 

attenuates variances and covariance of the variables (Acock, 2002; Allison, 2002; Enders, 2006; 

McKnight et al. 2007), but also may change the underling distribution of the variable (Kline, 

2010). Using mean imputation, the parameter estimates will be biased “regardless of whether 

data are MCAR, MAR or MNAR” (Peugh et al., 2004, p. 529).  Allison (2002) recommended 

avoiding this method since it produces biased estimates in general.  

Regression Imputation 

Regression imputation (RI, a.k.a. conditional mean imputation) is another method that 

replaces each of the missing values with values based on regression analysis. Specifically, 

missing value on a variable is replaced by a predicted value that comes from a regression 

equation (Enders, 2010; Peugh et al., 2004). Assume that we have missing values only on X1 in 

Table 1. Since there are no missing values on X2, X3 and X4, they can be used as predictors to 

predict X1. Then, the equation for the regression would be 

ܺ1෢ ൌ ଴ܤ ൅ ଵܤ ∗ ܺ2 ൅ ଶܤ ∗ ܺ3 ൅ ଷܤ ∗ ܺ4. 

Based on all non-missing values of X2, X3 and X4, a predicted X1 value will be produced for 

each case and then replaced the missing values on X1.  

Even though RI uses more information than mean imputation (Kline, 2010), it 

underestimates the variance (Enders, 2006; Enders, 2010). Since the missing values are replaced 

by the values coming from regression equation, RI tends to overestimate correlations (between 

the dependent and independent variables) and R2 value; therefore, it is recommended not to use 

this method for covariance and correlation analysis (Enders, 2010; Schafer & Graham, 2002).  

To solve the problems, researchers recommended adding a random error component to each 

predicted value. This new method is called stochastic regression imputation (SRI) (Enders, 2010). 
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By adding the random error, the problem of having too high correlation and R2 is softened, and 

the attenuation for variance effect might be removed (Enders, 2010). Finally, even under MCAR, 

RI overestimates the correlation (Allison, 2002; McKnight et al., 2007), whereas SRI gives un-

biased parameter estimates under MAR. 

Figures 10-14 give an example for each of the methods discussed above under MNAR 

mechanism. Figure 10 represents the original dataset (i.e., no missing values) on two variables of 

X and Y. The sample size was 50. Twenty of cases at the lower values of Y were deleted to 

simulate the missing values under MNAR. Figure 11 shows the scatterplot for the data with 

missing values. It represents listwise deletion method (also pairwise deletion method for this 

instance because there are only two variables). Figure 12 shows the scatterplot for mean imputed 

dataset. In Figure 13, regression-imputed dataset example was depicted. Finally, an example of 

stochastic regression imputation was shown in Figure 14. 

 

Figure 10: No Missing Values 
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Figure 11: Listwise and Pairwise Deletion 

 

 

 

Figure 12: Mean Imputation 
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Figure 13: Regression Imputation 

 

 

Figure 14: Stochastic Regression Imputation 
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Full Information Maximum Likelihood 

Different from all the methods summarized above, full information maximum likelihood 

(FIML) neither imputes nor deletes any values from the dataset. Instead, FIML uses all the 

available information to estimate the parameters (Acock, 2002; Chen & Astebro; 2003). “Briefly, 

the FIML approach computes a casewise likelihood function using only those variables that are 

observed” for each case (Enders & Bandalos, 2001, p. 434). The likelihood for each of the cases 

is calculated and then the sum of them gives the likelihood of all available cases. The log-

likelihood function for each case is  

Logሺܮ௜ሻ ൌ ௜ܭ െ
1

2
log|∑௜| െ

1

2
ሺݔ௜ െ μ௜ሻ

ᇱ∑௜
ିଵሺݔ௜ െ μ௜ሻ. 

Log-likelihood for all available cases is  

ሻܮሺ݃݋ܮ ൌ  ∑ logሺܮ௜ሻ
ே
௜ୀଵ . 

The constant ܭ௜ depends on the number of non-missing data points, ݔ௜ is the observed value for 

case i, whereas  ߤ௜ is the mean vector and ∑௜ is the covariance matrix for the parameters (Enders 

et al., 2001). 

The multivariate normality assumption plays an essential role in FIML estimation under 

MAR (Allison, 2002; Chen et al., 2003; Enders, 2004). Researchers found that results of FIML 

showed unbiased parameter estimates under MCAR and MAR and were less biased and more 

efficient than both PD and LD even under MNAR (Enders & Bandalos, 2001). Moreover, FIML 

produces accurate model-data fits under normality assumptions (Enders, 2001). 

Expectation Maximization 

The expectation maximization (EM) method can also be considered an iterative ML 

method. That is because the “EM algorithm produces a maximum likelihood estimate of the 

covariance matrix” (Enders, 2006, p. 319). This method consists of two steps: expectation (E) 
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and maximization (M). Allison (2003) explained how the EM algorithm works for missing data. 

The first step is the expectation (E) step. In this step, a starting value for the covariance matrix is 

chosen. The expected values for the covariance matrix are then determined given the initial value. 

“The purpose of the E step is to estimate the missing values, and this is accomplished with 

regression imputation” (Peugh & Enders, 2004, p. 533). In the second step, maximization (M), 

the covariance matrix is updated with the values from the previous E-step, by using the current 

values of the parameters calculated by linear regression of focal variable on the other variables. 

“This is done separately for each pattern of missing data (e.g., each set of variables present and 

variables missing)” (Allison, 2003, p. 549). Then the estimated regression equation values of X 

for the missing values are imputed. Finally, we recalculate the values of the covariance matrix 

based on the full dataset.  If the convergence criterion does not meet after M-step, repeat the E 

and M steps until the convergence criteria meets. 

The EM algorithm assumes that the data are at least MAR (Allison, 2003; Enders, 2004). 

The EM algorithm produces similar parameter estimates to FIML, but the standard errors and 

model-data fits may not be accurate (Enders, 2004). It is because no single sample size gives 

correct (consistent) standard error for all the parameters (Allison, 2003).  

Multiple Imputation 

Multiple Imputation (MI) could be considered as equitant to doing single imputation 

multiple times. In MI, each of the missing values is replaced k times. McKnight et al. (2007) 

suggested replacing missing values between 3 or 10 times. Therefore, after MI is applied there 

would be 3 to 10 replicated full (with no-missing values) datasets.  Then, results of the analysis 

based on these k datasets are averaged for parameter estimates, and standard error (SE) is 
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calculated using an acceptable procedure. Allison (2002) provided this formula for SE 

calculation: 

ܵ. ሻߠሺ̅ܧ ൌ ඩ
1

݇
෍ ௠ݏ

ଶ

௞

௠ୀଵ

൅ ሺ1 ൅
1

݇
ሻሺ

1

݇ െ 1
ሻ ෍ሺߠ௠ െ ሻଶߠ̅

௞

௠ୀଵ

 

where k is number of replication, ̅ߠ symbolizes the mean of the parameter estimates,  ߠ௠ is 

parameter estimates from the mth replication, and Sm  is estimated standard error from the mth 

replication. 

With MI, the problem related to the uncertainty (“because conventional uncertainty 

measures ignore the fact the imputed values are only guesses” (Schafer & Graham, 2002, p. 161)) 

in single imputation is solved. Moreover, MI shares all properties of ML, but removes some of 

the disadvantages of it (Allison, 2002). The “multiple imputation, when used correctly, produces 

estimates that are consistent, asymptotically efficient, and asymptotically normal when the data 

are MAR” (Allison, 2002, p. 27). Since the raw data are available in the MI, any statistical 

method can be used (Patrician, 2002) while in the EM, the analysis is restricted to 

variance/covariance matrix. Despite of these advantages, the MI may cause confusion as “the 

great flexibility of the MI principle has allowed for a proliferation of different approaches and 

algorithms. This can lead to considerable uncertainty and confusion about how best to implement 

MI in any particular application” (Allison, 2003, p. 555).  Moreover, data generated by the MI 

(e.g., PROC MI) method are more normally distributed than the original data (Allison, 2003). 

Because nonnormality is one of the design factors in my study, the MI methods should not be 

used. Considering these factors, the FIML was adopted as an estimation method in this study. 

FIML is one of the well-studied estimation procedures and it is commonly used in empirical 
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studies in social sciences.  It also adequately handles missing data (Enders & Bandalos, 2001) 

and researchers could save a lot of time and energy by applying this estimation technique.  

Purpose of This Study 

There have been many studies focusing on the use of parceling techniques as well as 

missing data handling techniques in SEM. However, no study has examined the missing data 

problem with respect to item parceling, particularly when the observed data present 

nonnormality. Some researchers have been using item parceling to handle missing data without 

realizing it is item parceling (Schafer & Graham, 2002) but others have used these techniques to 

explicitly handle the missing data. For example, parceling techniques have been used to handle 

missing data in empirical studies in the area of pharmacology (e.g., Veldstra et al., 2011), 

psychology (e.g., Signorella, 2011), and social works (e.g., Fakunmoju, 2010). Schafer et al. 

(2002) referred to this method as “ipsative mean imputation” or “case-by-case item deletion” but 

did not connect the idea to item parceling. No simulation study has been conducted to examine if 

using parceling leads to better (or at least not worse) results than individual items when there are 

missing values and nonnormality issues in the dataset. The purpose of this simulation study is to 

investigate how item parceling behaves under various simulation conditions in structural 

equation modeling with missing and nonnormal distributed data in the context of full structural 

equation model.  

Based on the literature, I expect that:  

1. Results from analysis based on parcels perform better or equally well in terms of 

parameter estimation bias compared to item level analysis under any type of missing 

mechanisms. 
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2. The rejection rates of the chi-square test for model-data fit based on parcels are lower 

than those based on individual items, under any type of missing mechanisms. 

3. The percentage of missingness on variables may have less effect on the results (e.g., 

parameter estimation bias) for parceled level analysis compared to item level analysis 

under all missing mechanisms. 

4. Parcel level analysis encounter fewer problems in model convergence than item level 

analysis, particularly for data with nonnormal distribution and missing values.  

5. As the degree of data nonnormality increases, the superiority of parcel level analysis to 

the item level analysis is more obvious.  

6. As the sample size increases, the superiority of parcel level analyses to the item level 

analysis might be reduced under any type of missing mechanisms.  
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CHAPTER 3 

METHODS 

 

This chapter details data-design factors for the simulation study, as well as the data 

generation procedure. In addition, data analysis and assessment criteria for evaluating model 

results are provided.   

Data were generated based on a full structural equation model (i.e., SR model) as shown 

in Figure 2. The model consisted of three latent factors. The first factor, labeled as F1, was 

measured by 15 items; both the second factor and the third factor, F2 and F3, were measured by 

three items. Therefore, the total number of items in this model was 21. As shown in Figure 2, all 

factor loadings associated with F2 and F3 were fixed at .7. However, the loadings associated 

with F1 varied across items and were .15, .4, .6, or .8 (see details in the next section). I aimed to 

simulate a situation in which some items were highly loaded on the factor whereas others were 

not. The variance of uniqueness for each item was fixed as one minus the value of its squared 

loading. For example, the variance of the uniqueness for an item with a loading of .8 was .36 (i.e., 

1 - .82). The path coefficients from F1 to F2 and F1 to F3 were .4 and .6, respectively. The 

variance of F1 was 1. The variance of the disturbances associated with F2 and F3 were fixed 

at .84 and .64, respectively. The covariance between the disturbances of F2 and F3 was .5.  

A total of five design factors were considered for data generation as detailed in the next 

section: sample sizes, missing data patterns, percentage of missingness, levels of nonnormality of 

the item scores, and factor loadings. For each condition, 2000 data sets were generated. For each 

generated dataset, analysis was conducted based on both the parcel level and the item level. For 

analyses based on parceled data, parcel scores were calculated as the average across a subset of 
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the individual items (details later). Three parcels were created for the items associated with F1 

based on the factorial algorithm. The items associated with F2 and F3 (i.e., item16- item21) were 

not parceled. 

Design Factors for Data Generation 

Sample size. Three different sample sizes were considered: 100, 300, and 1000. These 

sample sizes were chosen to represent a range of small to large sample sizes in SEM analysis. 

Missing data pattern. Four missing patterns were used: Non-missing, MCAR, MAR, and 

MNAR.  

Percentage of missing data. Three levels of missingness were utilized: 10%, 20%, and 

40%. Previous studies have showed that percent of missingness had an effect on parameter 

estimates but almost no effect on convergence rate for models based on the individual items 

(Davey et al., 2005; Enders, 2001).  

Level of nonnormality. Three types of distribution for the item data were considered: (1) 

normal distribution; (2) moderate skewness and low kurtosis (Sk =1, and K=1.5); and (3) high 

skewness and high kurtosis (Sk =1.75, and K=3.75). Nonnormality was only applied to items 1 

through 15 with the same skewness and kurtosis across these 15 items. Items 16 through 21 were 

distributed normally in all generation conditions.  

Factor loadings. Two different sets of factor loadings were used. Table 5 presents the 

values of the loading for each item. The loadings were reasonably large in the first set of the 

loadings, while a few items had small loadings of .15 in the second set. I labeled arbitrarily the 

first set of loadings as “large” and the second set of loadings as “small” when reporting results in 

the next chapter.  
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Table 5: Factor Loadings in Data Generation Model 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15
Set 1 .4 .6 .8 .4 .6 .8 .4 .6 .8 .4 .6 .8 .4 .6 .8 
Set 2 .15 .6 .8 .15 .6 .8 .4 .6 .8 .4 .6 .8 .15 .6 .8 

 

A total of 180 conditions were used to generate the data obtained from the above five 

design factors. Among them, 162 were formed from the conditions with missing data (3 sample 

sizes x 3 missing patterns x 3 percentages of missingness x 3 types of distributions x 2 sets of 

factor loadings), and 18 were conditions with no missing data (3 sample sizes x 1 missing 

patterns [no missing data] x 1 percentages of missingness [0% missing] x 3 types of distributions 

x 2 sets of factor loadings). For data generated from each of the conditions, analyses were 

conducted at both item and parcel levels. All analysis models were correctly specified.   

Data Generation Procedure 

Data were generated in R (version 2.13.2) based on the model specified in Figure 2. An 

example of R code for the data generation is presented in Appendix A. First, the correlations 

among factors were obtained based on the model specification. Appendix B shows the details 

about how to obtain the correlation matrix among factors:  

Σ௙௔௖௧௢௥ ൌ ൥
1 . 4 . 6
. 4 1 . 74
. 6 . 74 1

൩. 

To generate multivariate normally distributed factor scores with the above inter-factor 

correlations, three random and un-correlated variables were first generated with a mean of zero 

and standard deviation of one. The uncorrelated random factor scores were then converted to 

multivariate data with the inter-factor correlations using the Cholesky decomposition method. 

Next, independent random error scores were generated for each item with mean of zero and 

standard deviation of one. Finally, the observed scores for each item were obtained as a weighted 
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linear combination of factor and error scores using the following formula (e.g., Bernstein & Teng, 

1989):  

௜ܺ௝ ൌ ௜ߣ ∗ ௝ܨ ൅ ቆට1 െ ௜ߣ
ଶቇ ∗  ௜௝ܧ

where ௜ܺ௝ is an observed score on item i for individual j, ܨ௝ is the factor score for person j,  ߣ௜ 

indicates the factor loading for the item i, and ܧ௜௝ indicates random error. 

The above procedure generated multivariate normally distributed data with predefined 

inter-item correlations. To generate nonnormal data, Fleishman’s power transformation method 

(Fleishman, 1978) was applied to normally distributed data to obtain new scores with the 

predefined skewness and kurtosis: 

ܺ௡௢௡ି௡௢௥௠௔௟ ൌ ܽ ൅ ܾ ∙ ܺ௡௢௥௠௔௟ ൅ ܿ ∙ ܺ௡௢௥௠௔௟
ଶ ൅ ݀ ∙ ܺ௡௢௥௠௔௟

ଷ  

where ܺ௡௢௥௠௔௟ is a normally distributed variable as generated previously. The coefficients “a”, 

“b”, “c”, and “d” are constants corresponding to a specific degree of skewness and kurtosis.  

After the complete data were generated, a certain criterion was applied to create missing 

data. Not all variables contained missing values; instead, only six items have missing values; X1, 

X2, X3, X6, X7, and X8.  To create data that are MCAR, randomly selected cases on the 

specified items were removed. To create data that are MAR, missingness was associated with 

some variables but not itself. Table 6 indicates how missingness on one variable was related to 

other variables. For example, missingness on X1 was related to the values of X4. That is, X4 

were sorted from smallest to largest, and then the cases with the lowest values of X4 (e.g., 10%) 

were assigned as missing on X1 with a probability of .9. The rest of the values (highest 90%) 

were assigned as missing with a probability of .1. Missingness on the variables X2 and X3 were 

conditioned on the values of X5 and X16, respectively. In the case of MNAR, missingness on 

variables was related to the variables themselves. Table 6 also indicates the missingness pattern 
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under MNAR. For example, missingness on X2 was related to values on X2. Values on X2 were 

sorted from largest to smallest such that missing values were assigned to larger values on X2 

with a probability of .9, and the rest were assigned with a probability of .1.  

Table 6: Criterion for Creating Missing Data 

 MCAR  MAR  MNAR 
Missingness References  References Sorting types  References Sorting types 

X1 Randomly  X4 Increasing  X1 Increasing 
X2 Randomly  X5 Increasing  X2 Decreasing 
X3 Randomly  X16 Increasing  X3 Increasing 
X6 Randomly  X11 Decreasing  X6 Increasing 
X7 Randomly  X12 Increasing  X7 Increasing 
X8 Randomly  X13 Increasing  X8 Increasing 

 

Data Analysis 

Mplus 6.1 (Muthén & Muthén, 1998-2008) was used for the data analyses using the 

FIML estimation method. For each dataset, two different models were considered; one was based 

on the item level and the other was based on the parcel level.  

As described above, data were generated at the item level. Parcel scores for items 

associated with F1were then calculated based on the factorial algorithm by averaging the 

available individual items within a particular subset. To implement the factorial algorithm 

procedure, a CFA model was conducted on items 1 to 15. The items were sorted based on the 

magnitudes of the loadings (labeled as 1st to 15th from the largest to smallest). Then, items were 

assigned to one of the three parcels. For example the first parcel will have the items with 

loadings ranked 1st, 6th, 12th, and 13th. See Table 7 for details. The items associated with F2 and 

F3 were not parceled. Appendix C shows the part of the R code that is relevant to this procedure. 

For both the item and the parcel level analyses including the CFA model used to obtain the rank 

of factor loadings, FIML estimation method was used. As described in the previous chapter, 
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FIML behaves similar to ML estimation method for data with no missing values (Enders, 2001). 

When missing data are present, FIML computes log likelihood for each case based on the 

available items and then the log likelihoods across all cases are summed to obtain the log 

likelihood for the sample. In other words, for analysis with missing data, no data imputation was 

executed. Note that for parcel level analysis, a particular parcel score for a case was missing only 

if the values of all items forming that parcel were missing. 

Table 7: Assignment of Items to Parcels 

 Parcel 1 Parcel 2 Parcel 3 

Items* 1st, 6th, 7th, 12th, 13th 2nd, 5th, 8th, 11th, 14th 3rd, 4th, 9th, 10th, 15th 
* Values indicate the order of factor loadings from the CFA model. 

Assessment of the Models and the Parameters 

For each condition, overall model-data fit was evaluated based on the chi-square test, CFI, 

RMSEA, and SRMR values. For the chi-square test, rejection rate based on the alpha level of .05 

was reported for each condition. Fit indices were compared to the values suggested by Hu and 

Bentler (1999). CFI values larger than .95, RMSEA and SRMR values smaller than .06 and .08 

were considered reasonable model fits, respectively (Hu & Bentler, 1999).  

For parameter estimates, I focused on two direct effects among factors, that is, from F1 to 

F2 and from F1 to F3, and the covariance between the disturbances of F2 and F3. Relative bias 

was computed for both point estimates and standard errors associated with parameter estimates 

using the formula  

Bias ൌ
θ෠ െ θ

θ
, 

where  ߠ෠ and ߠ indicate the mean of estimates and the population parameter, respectively. For 

standard errors, the population value was approximated by using the standard deviation of 

parameter estimates based on complete data for both the item level analysis and the parcel level 
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analysis. Few different rule-of-thumbs were suggested for parameter estimation bias. Muthén, 

Kaplan, and Hollis (1987) suggested using .10 (in absolute value) as the cutoff. Hoogland and 

Boomsma (1998) suggested biases smaller than .05 (in absolute value) for point estimates 

and .10 for standard errors be acceptable. I followed Hoogland and Boomsma’s criteria because 

it is more conservative.  

 In order to explore the effects of the five design factors (sample size, percentage of 

missingness, missing mechanisms, nonnormality of the data, and factor loadings) on model-data 

fit indices (i.e., CFI, RMSEA, and SRMR) and the parameter estimates from both parcel and 

item level analyses, a series of 5-way ANOVAs were conducted. ANOVA test has three 

assumptions: independency of error scores, normality of error scores, and homogeneity of error 

variances across groups. Because I randomly drew 2000 datasets for each condition, dependency 

of error scores is not a concern. Homogeneity of error variances was examined by using 

Levene’s test. Because the sample size across groups was the same (the sample size for the 

majority of the combined groups was 2000; the sample size ranged from 1995 to 1999 for other 

groups; see Table 8 and Table 9), Levene’s test is robust to the violation of homogeneity of error 

variances. In addition, the statistical testing for ANOVA is likely to be significant due to the 

large sample size involved in the analysis as that is in my study (Alhija & Wisenbaker, 2006). 

Therefore, partial eta squares were considered to evaluate the importance of each design factor. 

Eta square is the proportion of the variance in the outcome variable that is explained by a 

specific factor while controlling for other independent variables.  
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CHAPTER 4 

RESULTS 

 

As described in the previous chapter, 180 conditions were created by combining five 

factors for data generation: 2 sets of factor loadings (small vs. large); sample sizes (100, 300, and 

1000); missing data pattern (No missing, MCAR, MAR, and MNAR); percent of missingness 

(10%, 20%, and 40%); and distribution of items (normal distribution, nonnormal distribution 

with skewness of 1.0 and kurtosis of 1.5, and nonnormal distribution with skewness of 1.75 and 

kurtosis of 3.75). For each condition, 2000 datasets were generated. For each generated dataset, 

analysis was conducted at both parcel and item levels using full information likelihood 

estimation method. For parcel level analysis, a CFA model was conducted for the 15 items used 

to form parcels. Three parcels were then formed based on the ranking order of the factor loadings. 

In this chapter, I summarized the results of the analyses. Specifically, for each condition, model 

convergence, rejection rate based on the chi-square test, and fit indices were reported. Parameter 

estimates and their standard errors were examined by computing relative biases. ANOVAs were 

run to examine the main and interaction effects of the five design factors on model data-fit 

indices (e.g., CFI), parameter estimates (e.g., the direct effect from factor F1 to F2) and standard 

errors associated with parameter estimates. 

Convergence  

Frequencies of model non-convergences were reported in Table 8 for conditions with the first set 

of factor loadings and in Table 9 for conditions with the second set of factor loadings. Overall, 

only a few replications (or none) encountered model non-convergence. The frequencies did not 

differ across two sets of factor loadings. Specifically, all replications converged to a solution for 
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all conditions except for a few conditions associated with the sample size of 100 and 40% 

missing data when analyses were conducted based on the item level. The occurrence of non-

convergence did not seem to vary across missing data mechanisms and the degree of 

nonnormality of data. Parcel level analysis did not encounter any non-convergence issues. 

Replications with non-convergence problems were excluded from further analyses. 

Rejection Rate based on Chi-square Test 

Table 10 and Table 11 report the rejection rate based on chi-square test at the alpha level 

of .05 for conditions with the first set of factor loadings and the second set of factor loadings, 

respectively. Because the models were considered correctly specified, I expected the rejection 

rate (i.e., empirical alpha) to be around 5%. For alpha level of .05, the standard error of the alpha 

was around .01. Thus, the 95% of the confidence interval (CI) for the alpha was .04-.06.  The 

rejection rate was lower for analyses based on the parcel level than that based on the item level. 

In addition, the rejection rates from parcel level analysis were within the CI for majority of the 

conditions regardless of missing mechanisms and percentages of missingness, while rejection 

rates from the item level analysis fell outside of the CI when the sample size was less than 1000 

and when the data were nonnormally distributed. It can be observed from both tables that the 

empirical alpha tended to be larger (i.e., more likely to reject a correctly specified model) for 

analyses based on the item level compared to the analysis based on the parcel level. For example, 

for the conditions with normally distributed data, sample size of 100, and the percentage of 

missingness of 10%, the rejection rates were around 30% and around 7% for the item level 

analysis and parcel level analysis, respectively.  Overall, for both the item and the parcel level 

analyses the rejection rates based on complete data were slightly lower than those based on 

incomplete data but did not seem to vary across missing mechanisms.
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Table 8: Frequency of Model Non-convergence for Each Condition for the First Set of Factor Loadings 

  
Sample Size Level No Missing

 MCAR   MAR  MNAR 
   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item 0  0 0 1   0 0 4  0 0 1 
Parcel 0  0 0 0   0 0 0  0 0 0 

300 
Item 0  0 0 0   0 0 0  0 0 0 

Parcel 0  0 0 0   0 0 0  0 0 0 

1000 
Item 0  0 0 0   0 0 0  0 0 0 
Parcel 0  0 0 0   0 0 0  0 0 0 

Sk=1, K=1.5 

100 
Item 0  0 0 5   0 0 1  0 0 0 
Parcel 0  0 0 0   0 0 0  0 0 0 

300 
Item 0  0 0 0   0 0 0  0 0 0 
Parcel 0  0 0 0   0 0 0  0 0 0 

1000 
Item 0  0 0 0   0 0 0  0 0 0 
Parcel 0  0 0 0   0 0 0  0 0 0 

Sk=1.75, K=3.75 

100 
Item 0  0 0 5   0 0 2  0 0 1 

Parcel 0  0 0 0   0 0 0  0 0 0 

300 
Item 0  0 0 0   0 0 0  0 0 0 
Parcel 0  0 0 0   0 0 0  0 0 0 

1000 
Item 0  0 0 0   0 0 0  0 0 0 
Parcel 0  0 0 0   0 0 0  0 0 0 
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Table 9: Frequency of Model Non-convergence for Each Condition for the Second Set of Factor Loadings 

  
Sample Size Level No Missing 

 MCAR   MAR  MNAR 
   10% 20% 40%   10% 20% 40%  10% 20% 40% 

Sk=0, K=0 

100 
Item 0  0 0 2   0 0 2  0 0 1
Parcel 0  0 0 0   0 0 0  0 0 0

300 
Item 0  0 0 0   0 0 0  0 0 0

Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1, K=1.5 

100 
Item 0  0 0 1   0 0 1  0 0 2
Parcel 0  0 0 0   0 0 0  0 0 0

300 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1.75, K=3.75 

100 
Item 0  0 0 3   0 0 3  0 0 1

Parcel 0  0 0 0   0 0 0  0 0 0

300 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0
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Table 10: Chi-square Rejection Rate (%) Based on Alpha Level of .05 for the First Set of Factor Loadings 

Sample Size Level No Missing
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item 27 30 35 81 30 35 77 31 37 81
Parcel 8 7 7 7 7 7 7 7 7 7

300 
Item 11 11 11 14 10 11 13 11 11 12

Parcel 6 6 6 7 6 6 6 6 6 6

1000 
Item 5 6 6 6 5 6 7 6 6 7
Parcel 6 6 5 6 6 5 6 6 6 6

Sk=1, K=1.5 

100 
Item 48 52 56 89 51 51 84 52 52 87
Parcel 8 8 9 8 8 8 8 8 8 8

300 
Item 26 26 24 28 24 21 26 26 23 28
Parcel 5 5 5 6 5 6 5 5 6 5

1000 
Item 18 19 18 18 17 16 18 17 17 19
Parcel 6 5 5 6 5 6 6 5 6 5

Sk=1.75, K=3.75 

100 
Item 77 79 83 96 77 80 95 75 78 95

Parcel 7 7 7 7 6 7 6 6 7 7

300 
Item 60 60 61 65 59 59 60 55 56 62
Parcel 7 6 6 6 6 6 6 6 6 6

1000 
Item 57 56 56 57 54 53 51 51 53 57
Parcel 6 6 6 6 6 6 6 6 5 6
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Table 11: Chi-square Rejection Rate (%) Based on Alpha Level of .05 for the Second Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item 26  31 36 79   30 35 79  30 35 82
Parcel 8  7 8 8   7 8 8  8 8 9

300 
Item 10  10 11 13   11 10 13  10 11 13

Parcel 6  6 6 6   6 6 6  6 6 6

1000 
Item 6  6 6 7   6 6 7  6 7 7
Parcel 4  5 5 5   5 5 5  5 5 5

Sk=1, K=1.5 

100 
Item 43  48 53 89   47 51 85  47 52 86
Parcel 9  8 9 8   9 8 7  8 8 8

300 
Item 22  24 24 28   21 22 26  22 23 27
Parcel 6  6 6 6   5 6 5  5 6 6

1000 
Item 17  18 18 18   17 16 17  16 16 19
Parcel 5  5 6 5   5 6 6  6 5 5

Sk=1.75, K=3.75 

100 
Item 70  73 78 96   72 75 93  70 73 93

Parcel 8  8 8 8   8 8 8  8 8 8

300 
Item 47  47 49 53   45 46 48  44 45 51
Parcel 6  6 6 6   6 6 6  6 6 6

1000 
Item 45  44 46 46   44 43 43  40 41 46
Parcel 6  6 6 6   6 6 6  6 6 6
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When the sample size was 100 and the analysis was conducted based on the item level, the 

rejection rate tended to increase as the percentage of missingness increased; whereas when the 

sample size was greater than 100, the rejection rate was relatively stable across different 

percentage of missingness. In addition, for item level analysis, the empirical alpha in general 

tended to be smaller as the sample size increased and the data demonstrated normality. For 

example, when the analysis was conducted based on the item level with sample size of 100, and 

missingness of 10% for MCAR, the rejection rates were about 79%, 52% and 30% for highly 

skewed, moderately skewed, and normally distributed data, respectively. For the parcel level 

analysis, the rejection rates were stable across levels of percentage of missingness, sample sizes, 

the degree of nonnormality of the data, and the missing data mechanisms. Specifically, the 

rejection rates were in the range of 4% to 9% across all conditions. 

Fit Indices 

The mean of CFIs, RMSEAs, and SRMRs for each condition are reported in this section. 

For each condition, the percentage of models rejected based on the recommended cutoff was also 

reported. I adopted the recommended cutoffs of .95, .06, and .08 for CFI, RMSEA, and SRMR, 

respectively (Hu & Bentler, 1999). In addition, a 5-way ANOVA was conducted to examine the 

impact of the design factors on each fit index. 

CFI 

Table 12 and Table 13 present the mean of the CFI values by condition with the first set 

of factor loadings and the second set of factor loadings, respectively. The mean CFIs were 

almost identical across the two sets of factor loadings for the both item level analysis and the 

parcel level analysis. When the analysis was the based on item level, several findings were 

observed: First, the mean CFI decreased (indicating more likely to reject the model) as the 
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degree of nonnormality of the data increased when the sample size was 100.  For example under 

MCAR, the mean CFI was .97, .95, and .92 for data with normal distributions, moderate skewed 

distributions, and highly skewed distributions, respectively.  The pattern was similar across 

missing mechanisms and percentage of missingness. Second, the mean CFI tended to decrease 

with larger percentage of missingness when the sample size was 100. For example, under MAR, 

the mean CFI was .97, .96, and .89 for normally distributed data with 10%, 20% and 40% of 

missingness. Third, the mean CFI was higher than .97 for all conditions when sample size was 

300 or more. Fourth, the mean CFI was comparable across different missing mechanisms. When 

the analysis was conducted at the parcel level, the mean CFIs were higher than .99 across all 

conditions.  

Tables 14 and 15 report percentages of replications with CFI values smaller than .95 for 

each condition. Since the models were correctly specified, values smaller than .95 suggested that 

the model and the data did not fit reasonably well. Consistent with the results reported above, 

when the analysis was conducted at the item level, models were more likely to be rejected for 

smaller sample size (e.g., 23% for sample size of 100 under MCAR with 10% missing and 

normal distribution), larger percentages of missingness (e.g., 23%, 30%, and 80% as the 

percentage of missingness increased from 10% to 40%), and when data deviated from normality 

(e.g., 23%, 44%, and 82% under MCAR for sample size of 100 with 10% missing ). Missing 

mechanisms did not appear to impact the rejection rate.  When the analysis was conducted at the 

parcel level, the rejection rate based on CFI was less than 4% across all conditions and was 0% 

when sample size reached to 300, regardless of the degree of nonnormality, missing mechanism, 

and percentage of missingness.  
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 To further understand the impact of the missing mechanism, percentage of missingness, 

level of analysis (i.e., item level vs. parcel level), degree of nonnormality, and sample size on the 

model CFI, a 5-way ANOVA was conducted on sample CFIs. The column “CFI” in Table 16 

shows the eta squares for the main and the interaction effects for sample CFIs. The eta squares 

indicate the proportion of the variation in the outcome variable (i.e., CFI) that was explained by a 

specific variable, controlling for other variables in the model. Among all main and interaction 

effects, the largest eta square, .48, was due to sample size, which indicates that 48% of the 

variation in sample CFIs was explained by the sample size, holding all other factors constant. 

The next largest eta squares were due to the interaction between level of analysis and sample size 

(.36), main effect of level of analysis (.32), the interaction between percentage of missingness 

and sample size (.14), and the three-way interaction effect among level of analysis, percentage of 

missingness, and sample size (.14).  A small proportion of variation in sample CFIs was 

explained by percentage of missingness (.08), the degree of nonnormality (.07), the interaction 

between level of analysis and percentage of missingness (.08), between level of analysis and the 

degree of nonnormality (.06), the degree of nonnormality and sample size (.05), and the 3-way 

interaction among level of analysis, sample size and the degree of nonnormality (.04). All other 

effects had zero eta squares. Table 16 reports only two of the 3-way interaction effects and no 4-

way and 5-way interaction effects because the corresponding eta squares were all zero (not only 

for CFI, but also all other dependent variables I examined in this study). 
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Table 12: Mean of CFIs for Each Condition for the First Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item .97  .97 .96 .90 .97 .96 .90 .97 .96 .89
Parcel .99  .99 .99 .99 .99 .99 .99 .99 .99 .99

300 
Item .99  .99 .99 .99 .99 .99 .99 .99 .99 .99

Parcel 1.00  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 
Item 1.00  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Parcel 1.00  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sk=1, K=1.5 

100 
Item .96  .95 .95 .88 .95 .95 .88 .95 .94 .87
Parcel .99  .99 .99 .99 .99 .99 .99 .99 .99 .99

300 
Item .99  .99 .99 .99 .99 .99 .99 .99 .99 .99
Parcel 1.00  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 
Item 1.00  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Parcel 1.00  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sk=1.75, K=3.75 

100 
Item .92  .92 .91 .83 .92 .91 .84 .92 .91 .83

Parcel .99  .99 .99 .99 .99 .99 .99 .99 .99 .99

300 
Item .98  .98 .98 .97 .98 .98 .97 .98 .98 .97
Parcel 1.00  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 
Item .99  .99 .99 .99 .99 .99 .99 .99 .99 .99
Parcel 1.00  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: although not reported in the table, the standard error (SE) of the CFIs from the parcel level analysis was smaller than those from 
the item level analysis across all design factors. For example, under small sample size and MCAR, SE for CFIs was .025, .029 
and .038 for the item level analysis with normal, moderately skewed, and highly skewed distributions, respectively. However, the 
corresponding SE from parcel level analysis was .013, .015, and .015, respectively. In addition, the SE was larger as the percentages 
of missingness increased, sample size decreased, and missing mechanisms changed from MCAR to MNAR. 
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Table 13: Mean of CFIs for Each Condition for the Second Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40% 

Sk=0, K=0 

100 
Item .97 .97 .96 .90 .97 .96 .89 .96 .96 .89
Parcel .99 .99 .99 .99 .99 .99 .99 .99 .99 .99

300 
Item .99 .99 .99 .99 .99 .99 .99 .99 .99 .99

Parcel 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 
Item 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Parcel 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sk=1, K=1.5 

100 
Item .96 .95 .95 .88 .95 .95 .88 .95 .94 .87
Parcel .99 .99 .99 .99 .99 .99 .99 .99 .99 .99

300 
Item .99 .99 .99 .99 .99 .99 .99 .99 .99 .99
Parcel 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 
Item 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Parcel 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sk=1.75, K=3.75 

100 
Item .93 .92 .91 .83 .92 .91 .83 .92 .91 .83

Parcel .99 .99 .99 .99 .99 .99 .99 .99 .99 .99

300 
Item .98 .98 .98 .98 .98 .98 .98 .98 .98 .98
Parcel 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 
Item .99 .99 .99 .99 .99 .99 .99 .99 .99 .99
Parcel 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 14: Percentage (%) of Replications with CFI Smaller than .95 for Each Condition with the First Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item 18  23 30 80   24 32 78  28 36 83
Parcel 1  1 2 2   2 2 2  2 2 2

300 
Item 0  0 0 0   0 0 0  0 0 0

Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1, K=1.5 

100 
Item 38  44 54 90   45 52 86  47 55 89
Parcel 2  2 4 4   2 4 4  2 3 4

300 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1.75, K=3.75 

100 
Item 78  82 86 98   81 84 97  79 84 97

Parcel 3  3 3 3   3 3 3  3 3 3

300 
Item 1  2 3 7   2 3 6  2 4 9
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0
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Table 15: Percentage (%) of Replications with CFI Smaller than .95 for Each Condition with the Second Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item 20  26 33 80   27 34 81  29 38 84
Parcel 3  3 3 3   3 3 3  2 3 3

300 
Item 0  0 0 0   0 0 0  0 0 0

Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1, K=1.5 

100 
Item 37  45 52 90   45 52 86  47 55 89
Parcel 3  4 4 4   4 4 4  3 4 5

300 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1.75, K=3.75 

100 
Item 74  78 83 98   78 81 96  77 82 96

Parcel 4  4 4 6   5 5 5  5 5 5

300 
Item 1  2 2 5   1 2 4  2 3 7
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0
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Table 16: Partial Eta Squares Based on ANOVA 

 
CFI RMSEA SRMR L12 L13 L23 SE_L12 SE_L13 SE_L23 

Level  of Analysis* (L) .32 .08 .81 .00 .00 .00 .01 .02 .00 
Missing Mechanism (MM) .00 .00 .00 .00 .00 .00 .00 .00 .00 
Missing Percentage (MP) .08 .01 .23 .00 .00 .00 .00 .00 .00 
Normality (N) .07 .02 .07 .04 .07 .03 .00 .00 .03 
Sample Size (SS) .48 .38 .93 .00 .00 .00 .95 .96 .86 
L * MM .00 .00 .00 .00 .00 .00 .00 .00 .00 
L * MP .08 .01 .20 .00 .00 .00 .00 .00 .00 
L * N .06 .02 .03 .00 .00 .00 .00 .00 .00 
L * SS .36 .08 .54 .00 .00 .00 .00 .00 .00 
MM * MP .00 .00 .00 .00 .00 .00 .00 .00 .00 
MM * N .00 .00 .00 .00 .00 .00 .00 .00 .00 
MP * SS .00 .00 .00 .00 .00 .00 .00 .00 .00 
MP * N .00 .00 .00 .00 .00 .00 .00 .00 .00 
MP * SS .14 .02 .14 .00 .00 .00 .00 .00 .00 
N *SS .05 .00 .01 .00 .00 .00 .00 .00 .01 
L * MP * SS .14 .02 .13 .00 .00 .00 .00 .00 .00 
L * N * SS .04 .00 .01 .00 .00 .00 .00 .00 .00 
* A dummy variable indicating 0 for the parcel level analysis and 1 for the item level analysis. 
Note: L12 stands for the direct effect from factor F1 to F2, L13 is for the direct effect from F1 to F3, and L23 is for the covariance between disturbances of F2 
with F3, and SE stands for standard error. 
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RMSEA 

RMSEA values smaller than .06 indicate good model-data fit (Hu & Bentler, 1999). 

Table 17 and Table 18 summarize the mean of RMSEAs for conditions with the first set of factor 

loadings and the second set of factor loadings, respectively. With a few exceptions, the mean 

RMSEAs were smaller than .06 for all conditions. The exceptions were associated with sample 

size 100 and 40% missingness in the dataset when the analyses were conducted at the item level. 

For these conditions, the mean RMSEAs were in the range of .06 to .08.  Unexpectedly, the 

standard error of RMSEAs from the item level analysis was smaller than those from the parcel 

level analysis. The column “RMSEA” in Table 16 shows the ANOVA result for RMSEAs. 

Consistent with the findings based on the mean RMSEAs, the largest eta square was associated 

with the main effect of sample size (eta square of .38), followed by the main effect of the level of 

analysis (.08) and the interaction effect between level of analysis and sample size (.08). All other 

main effects or interaction effects had small eta squares (all ≤.02; many were zero).  

The percentages of replications with RMSEA larger than .06 were reported in Tables 19 

and 20. A value larger than .06 indicates that the model is rejected based on RMSEA. As can be 

seen from both tables, the rejection rates based on RMSEA were all zero for conditions with 

sample sizes of 300 and 1000. However, when the sample size was 100, the rejection rates were 

greater than zero for both item level analysis and parcel level analysis. The percentages increased 

as percentage of missingness increased for item level analysis under all missing mechanisms. 

The increment accelerated as percentages of missingness reached 40%. For example under 

MCAR, the rejection rate increased only by 2% for 20% missingness whereas the rejection rate 

reached 55% for 40% missing data  (see Table 20). In contrast, the percentages were stable for 

the parcel level analysis regardless of missing mechanisms and percentages of missingness.
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Table 17: Mean of RMSEA for Conditions with the First Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item .03  .03 .03 .06   .03 .03 .06  .03 .03 .06
Parcel .02  .02 .02 .02   .02 .02 .02  .02 .02 .02

300 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

1000 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Sk=1, K=1.5 

100 
Item .04  .04 .04 .06   .04 .04 .06  .04 .04 .06
Parcel .03  .03 .03 .03   .03 .03 .03  .03 .03 .03

300 
Item .02  .02 .02 .02   .02 .02 .02  .02 .02 .02
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

1000 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Sk=1.75, K=3.75 

100 
Item .05  .05 .05 .08   .05 .05 .07  .05 .05 .07

Parcel .02  .02 .02 .02   .02 .02 .02  .02 .02 .02

300 
Item .02  .03 .03 .03   .02 .02 .03  .02 .02 .03
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

1000 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
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Table 18: Mean of RMSEA for Conditions with the Second Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item .03  .03 .03 .06   .03 .03 .06  .03 .03 .06
Parcel .03  .03 .03 .03   .03 .03 .03  .03 .03 .03

300 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

1000 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Sk=1, K=1.5 

100 
Item .04  .04 .04 .06   .04 .04 .06  .04 .04 .06
Parcel .03  .03 .03 .03   .03 .03 .03  .03 .03 .03

300 
Item .02  .02 .02 .02   .01 .02 .02  .02 .02 .02
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

1000 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Sk=1.75, K=3.75 

100 
Item .05  .05 .05 .07   .05 .05 .07  .05 .05 .07

Parcel .03  .03 .03 .03   .03 .03 .03  .03 .03 .03

300 
Item .02  .02 .02 .02   .02 .02 .02  .02 .02 .02
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

1000 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
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Table 19: Percentage (%) of Replications with RMSEA Larger than .06 for Each Condition with the First Set of Factor 

Sample Size Level No Missing 
MCAR MAR MNAR 

10% 20% 40% 10% 20% 40% 10% 20% 40%

Sk=0, K=0 

100 
Item 2 3 3 52 3 4 51 3 4 55

Parcel 15 15 14 15 15 14 15 14 15 14

300 
Item 0 0 0 0 0 0 0 0 0 0

Parcel 0 0 0 0 0 0 0 0 0 0

1000 
Item 0 0 0 0 0 0 0 0 0 0

Parcel 0 0 0 0 0 0 0 0 0 0

Sk=1, K=1.5 

100 
Item 7 8 9 64 8 9 58 8 9 60

Parcel 16 17 16 17 17 16 16 17 16 17

300 
Item 0 0 0 0 0 0 0 0 0 0

Parcel 0 0 0 0 0 0 0 0 0 0

1000 
Item 0 0 0 0 0 0 0 0 0 0

Parcel 0 0 0 0 0 0 0 0 0 0

Sk=1.75, K=3.75 

100 
Item 28 33 35 83 29 32 75 26 30 76

Parcel 14 15 15 15 14 14 14 14 14 15

300 
Item 0 0 0 0 0 0 0 0 0 0

Parcel 0 0 0 0 0 0 0 0 0 0

1000 
Item 0 0 0 0 0 0 0 0 0 0

Parcel 0 0 0 0 0 0 0 0 0 0
 

 

 

 



65 
 

Table 20: Percentage (%) of Replications with RMSEA Larger than .06 for Each Condition with the Second Set of Factor 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item 2  2 4 55   3 4 51  2 4 52
Parcel 16  16 16 16   15 16 16  16 17 16

300 
Item 0  0 0 0   0 0 0  0 0 0

Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1, K=1.5 

100 
Item 5  7 9 65   7 9 59  7 9 61
Parcel 17  16 16 16   16 16 16  17 16 17

300 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1.75, K=3.75 

100 
Item 20  22 27 81   21 25 74  19 22 73

Parcel 16  15 16 16   16 16 16  16 16 16

300 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0
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The rejection rates for the parcel level analysis ranged between 14% and 17% for all missing 

percentages. Unexpectedly, the parcel level analysis under small sample size resulted in higher 

rejection rates compared to item level analysis when 10% or 20% of the data were missing with 

normally distributed or moderately skewed data. In contrast, when the percentage of missingness 

was 40%, the parcel level analysis resulted in smaller rejection rates in comparison to the item 

level analysis under any condition. 

SRMR 

A SRMR value smaller than .08 indicates good model-data fit (Hu & Bentler, 1999). The 

mean of SRMR values is reported in Table 21 for the conditions with the first set of factor 

loadings and Table 22 for the conditions with the second set of factor loadings. The values were 

almost identical across two sets of factor loadings under any condition. Consistent with the 

results based on RMSEA, the mean SRMRs were below the cutoff for most conditions. The 

mean of the SRMRs increased as percentages of missingness increased under item level analysis 

with small sample size. For example the mean SRMR values ranged between .06 and .07 for 10% 

of missingness; whereas they ranged between .09 and .10 for 40% of missingness, under all 

missing mechanisms. Compared to the item level analysis, the SE from the parcel level analysis 

was smaller for some conditions but larger for other conditions.  

Results from the ANOVA on SRMR values are shown in the column “SRMR” in Table 

16. Similar to CFI and RMSEA, the largest eta square was associated with the main effect of 

sample size, indicating that 93% of the variation in sample SRMRs was explained by sample size 

controlling for all other independent variables. The next largest eta squares were due to the main 

effect of level of analysis (eta square of .81), the interaction effect between level of analysis and 

sample size (.53), the main effect of percentage of missingness (.23), the interaction effect 
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between level of analysis and percentage of missingness (.20), the interaction effect between 

percentage of missingness and sample size (.14), and the 3-way interaction among level of 

analysis, percentage of missingness, and sample size. 

Percentages of replications with SRMR larger than .08 are reported in Tables 23 and 24 

for the first and the second sets of factor loadings. SRMR larger than .08 indicates that the model 

does not fit the data. As can be seen from these two tables, models based on parcel level data 

were never rejected for all of the conditions (i.e., 0% rejection rate). However, up to 99% of 

models were rejected when the analysis was conducted based on the item level when the sample 

size was small (i.e., 100). For these conditions, rejection rates increased as percentage of 

missingness increased. For example under MCAR, rejection rates were 0%, 1% and 71% for 

normally distributed data with 10%, 20% and 40% of missingness, respectively. Moreover, the 

rejection rates increased as the data deviated more from normality. For example, for 20% 

missingness under MCAR, the percentages of replications with SRMR larger than .08 were 1% 

for normally distributed data (i.e., Sk = 0), 4% for moderately skewed data (i.e., Sk= 1), and 26% 

for highly skewed data (i.e., Sk = 1.75). In addition, the rejection rate was the largest for the data 

under MNAR and the smallest for MCAR. For example rejection rates were 79%, 87% and 92% 

for MCAR, MAR, and MNAR, respectively (see Table 24). The rejection rate was zero for all 

conditions with sample sizes of 300 and 1000. 

Parameter Estimates and Standard Errors 

For parameter estimates and the associated standard errors, I focused on the parameters of 

the direct effects among the factors (i.e., F1→F2 and F1→F3) and the covariance between the 

disturbances associated with F2 and F3 (i.e., the structural part of the model).
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Table 21: Mean of SRMR for Conditions with the First Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item .06  .06 .07 .09   .06 .07 .09  .06 .07 .09
Parcel .04  .04 .04 .04   .04 .04 .04  .04 .04 .04

300 
Item .03  .04 .04 .04   .04 .04 .04  .04 .04 .04

Parcel .02  .02 .02 .02   .02 .02 .02  .02 .02 .02

1000 
Item .02  .02 .02 .02   .02 .02 .02  .02 .02 .02
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Sk=1, K=1.5 

100 
Item .06  .07 .07 .09   .07 .07 .09  .07 .07 .09
Parcel .04  .04 .04 .04   .04 .04 .04  .04 .04 .04

300 
Item .04  .04 .04 .04   .04 .04 .05  .04 .04 .05
Parcel .02  .02 .02 .02   .02 .02 .02  .02 .02 .02

1000 
Item .02  .02 .02 .02   .02 .02 .02  .02 .02 .02
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Sk=1.75, K=3.75 

100 
Item .07  .07 .08 .10   .07 .08 .10  .07 .08 .10

Parcel .04  .04 .04 .04   .04 .04 .04  .04 .04 .04

300 
Item .04  .04 .04 .05   .04 .04 .05  .04 .04 .05
Parcel .02  .02 .02 .02   .02 .02 .02  .02 .02 .02

1000 
Item .02  .02 .02 .03   .02 .02 .03  .02 .02 .03
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
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Table 22: Mean of SRMR for Conditions with the Second Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item .06  .06 .07 .09   .07 .07 .09  .07 .07 .09
Parcel .04  .04 .04 .04   .04 .04 .04  .04 .04 .04

300 
Item .04  .04 .04 .04   .04 .04 .04  .04 .04 .05

Parcel .02  .02 .02 .02   .02 .02 .02  .02 .02 .02

1000 
Item .02  .02 .02 .02   .02 .02 .02  .02 .02 .02
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Sk=1, K=1.5 

100 
Item .06  .07 .07 .09   .07 .07 .09  .07 .07 .09
Parcel .04  .04 .04 .04   .04 .04 .04  .04 .04 .04

300 
Item .04  .04 .04 .04   .04 .04 .05  .04 .04 .05
Parcel .02  .02 .02 .02   .02 .02 .02  .02 .02 .02

1000 
Item .02  .02 .02 .02   .02 .02 .02  .02 .02 .02
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Sk=1.75, K=3.75 

100 
Item .07  .07 .08 .10   .07 .08 .10  .07 .08 .10

Parcel .04  .04 .04 .04   .04 .04 .04  .04 .04 .04

300 
Item .04  .04 .04 .05   .04 .04 .05  .04 .04 .05
Parcel .02  .02 .02 .03   .02 .03 .03  .03 .03 .03

1000 
Item .02  .02 .02 .03   .02 .02 .03  .02 .02 .03
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
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Table 23: Percentage (%) of Replications with SRMR Larger than .08 for Each Condition with the First Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item 0  0 1 71   0 2 78  0 2 87
Parcel 0  0 0 0   0 0 0  0 0 0

300 
Item 0  0 0 0   0 0 0  0 0 0

Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1, K=1.5 

100 
Item 0  0 4 88   0 6 87  0 7 92
Parcel 0  0 0 0   0 0 0  0 0 0

300 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1.75, K=3.75 

100 
Item 2  8 26 98   6 25 95  7 29 98

Parcel 0  0 0 0   0 0 0  0 0 0

300 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0
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Table 24: Percentage (%) of Replications with SRMR Larger than .08 for Each Condition with the Second Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40% 

Sk=0, K=0 

100 
Item 0  0 2 79   1 3 87  0 4 92
Parcel 0  0 0 0   0 0 0  0 0 0

300 
Item 0  0 0 0   0 0 0  0 0 0

Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1, K=1.5 

100 
Item 0  1 5 88   1 5 87  1 7 92
Parcel 0  0 0 0   0 0 0  0 0 0

300 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

Sk=1.75, K=3.75 

100 
Item 2  7 29 99   7 29 98  8 30 99

Parcel 0  0 0 0   0 0 0  0 0 0

300 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

1000 
Item 0  0 0 0   0 0 0  0 0 0
Parcel 0  0 0 0   0 0 0  0 0 0

 



72 
 

These parameter estimates and their standard errors were assessed by computing the relative bias 

using the formula I provided in the previous chapter:  

Bias ൌ
θ෠ െ θ

θ
, 

where ߠ෠ is the mean of the estimates and ߠ is the population value. In the following sections, I 

report the relative bias of estimates and standard errors for each parameter as well as the 

ANOVA results for the biases.  

Point Estimates 

 Relative biases of the parameter estimates are reported in Tables 24 and 26 for F1→ F2, 

in Tables 27 and 28 for F1 → F3, and in Tables 29 and 30 for the covariance between the 

disturbances F2 and F3. The population values were .4, .6, and .5 for F1→F2, F1→F3, and the 

covariance between the two disturbances, respectively. 

First, similar findings were obtained across all three parameters in terms of bias. Second, 

the relative bias did not vary across two sets of factor loadings. Third, missing mechanisms, 

percentage of missingness, and sample size did not seem to influence the bias of the parameter 

estimates. Fourth, bias increased as the degree of the nonnormality of the data increased, 

regardless of sample size, missing mechanism, and percentages of missingness. Specifically, 

when the data were normally distributed (i.e., Sk = 0), there was no indication of bias under any 

conditions. As the nonnormality increased (i.e., skewness increased), estimates of the direct 

effects showed negative bias indicating that the obtained estimates tended to be too small. The 

relative biases were less than .05 for conditions with moderately nonnormal distribution but up 

to .13 for conditions with highly nonnormal distribution. Fifth, parcel level analysis yielded 

slightly smaller bias than the item level analysis under all conditions. For example, for the item 
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level analysis with 40% MNAR and highly skewed data (i.e., Sk = 1.75), the biases ranged from -

.11 to -.13 for F1 → F2, whereas the corresponding parcel level analysis resulted in biases 

between -.08 and -.09 (see Table 26). Overall, the absolute values of the biases were smaller 

than .05 for normal and moderately nonnormal data and greater than .05 for highly skewed data 

for both parcel level and item level analyses. Unlike the two direct effects, estimates of the 

covariance between the disturbances were mostly positively biased when the data were highly 

skewed, indicating the estimated parameter values on average were larger than the population 

values of the parameter. Last, when there was bias, item level analysis and parcel level analysis 

always resulted in bias in the same direction (i.e., either both positively biased or both negatively 

biased).  

Results from ANOVA were consistent with the above results. The eta squares were zero 

for all main and interaction effects with only one exception, that is, the main effect of data 

nonnormality (see the columns of “L12”, “L13”, and “L23” in Table 16). The eta squares for this 

main effect were .04 for the estimates of F1→F2, .07 for the estimates of F1→F3, and .03 for the 

estimates of covariance between the disturbances, indicating that 3% to 7% of variance in these 

parameter estimates was explained by the main effect of nonnormality, controlling for all other 

main and interaction effects.  

Standard Errors 

Relative biases of standard errors (SEs) for parameter estimates were reported in Tables 

31 to 36 for two direct effects (F1→ F2 and F1→ F3) and the covariance (F2 ↔ F3) for 

conditions with the first and the second sets of factor loadings. It has been suggested that relative 

bias of SEs smaller than .10 (in absolute value) are acceptable (Hoogland & Boomsma, 1998).  
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Table 25: Bias of the Direct Effect from F1 to F2 for Each Condition with the First Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00
Parcel .00  .00 .00 .00   .00 .00 .01  .01 .01 .00

300 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

1000 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00
Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

Sk=1, K=1.5 

100 
Item -.03  -.03 -.02 -.02   -.03 -.02 -.02  -.03 -.02 -.02
Parcel -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02

300 
Item -.02  -.02 -.01 -.01   -.02 -.01 -.01  -.02 -.01 -.02
Parcel -.02  -.02 -.01 -.01   -.02 -.01 -.01  -.02 -.01 -.01

1000 
Item -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.01  -.01 -.02 -.02   -.01 -.01 -.01  -.01 -.02 -.01

Sk=1.75, K=3.75 

100 
Item -.11  -.11 -.12 -.12   -.11 -.12 -.12  -.11 -.11 -.12

Parcel -.10  -.10 -.10 -.10   -.10 -.09 -.09  -.09 -.10 -.09

300 
Item -.11  -.11 -.11 -.11   -.11 -.11 -.11  -.11 -.11 -.11
Parcel -.09  -.09 -.09 -.09   -.09 -.09 -.09  -.09 -.09 -.09

1000 
Item -.11  -.11 -.11 -.11   -.11 -.11 -.11  -.10 -.11 -.11
Parcel -.09  -.09 -.09 -.09   -.09 -.09 -.09  -.09 -.09 -.08
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Table 26: Bias of the Direct Effect from F1 to F2 for Each Condition with the Second Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00
Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

300 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 -.01

Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

1000 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00
Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

Sk=1, K=1.5 

100 
Item -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02

300 
Item -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.02
Parcel -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01

1000 
Item -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.02  -.02 -.02 -.02   -.01 -.01 -.01  -.02 -.02 -.01

Sk=1.75, K=3.75 

100 
Item -.12  -.12 -.12 -.12   -.12 -.12 -.12  -.12 -.12 -.13

Parcel -.10  -.09 -.09 -.10   -.09 -.09 -.09  -.09 -.09 -.09

300 
Item -.12  -.12 -.12 -.12   -.12 -.12 -.12  -.11 -.12 -.12
Parcel -.10  -.10 -.10 -.09   -.09 -.09 -.10  -.09 -.09 -.09

1000 
Item -.11  -.11 -.11 -.11   -.11 -.11 -.11  -.10 -.11 -.11
Parcel -.09  -.09 -.09 -.09   -.08 -.08 -.09  -.08 -.08 -.08
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Table 27: Bias of the Direct Effect from F1 to F3 for Each Condition with the First Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item .00  .00 .00 -.01   .00 .00 .00  .00 .00 -.01
Parcel .00  .00 .00 -.01   .00 .00 .00  .00 .00 -.01

300 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

1000 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00
Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

Sk=1, K=1.5 

100 
Item -.02  -.02 -.03 -.03   -.02 -.03 -.03  -.02 -.03 -.04
Parcel -.02  -.02 -.03 -.03   -.01 -.03 -.03  -.02 -.03 -.03

300 
Item -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.02  -.02 -.01 -.01   -.02 -.01 -.01  -.02 -.01 -.01

1000 
Item -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01

Sk=1.75, K=3.75 

100 
Item -.12  -.12 -.12 -.12   -.12 -.12 -.12  -.12 -.12 -.13

Parcel -.10  -.10 -.10 -.10   -.10 -.10 -.10  -.10 -.10 -.09

300 
Item -.11  -.11 -.11 -.11   -.11 -.11 -.11  -.11 -.11 -.11
Parcel -.09  -.09 -.09 -.08   -.09 -.09 -.09  -.09 -.09 -.08

1000 
Item -.11  -.11 -.11 -.11   -.11 -.11 -.11  -.10 -.11 -.11
Parcel -.09  -.09 -.09 -.09   -.09 -.09 -.09  -.09 -.09 -.08
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Table 28: Bias of the Direct Effect from F1 to F3 for Each Condition with the Second Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01
Parcel -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01

300 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

1000 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00
Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

Sk=1, K=1.5 

100 
Item -.03  -.03 -.03 -.03   -.03 -.03 -.03  -.03 -.03 -.04
Parcel -.03  -.03 -.03 -.03   -.03 -.03 -.03  -.03 -.03 -.03

300 
Item -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01

1000 
Item -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01

Sk=1.75, K=3.75 

100 
Item -.11  -.11 -.11 -.12   -.11 -.12 -.12  -.11 -.11 -.12

Parcel -.09  -.09 -.09 -.09   -.09 -.09 -.09  -.09 -.09 -.09

300 
Item -.11  -.11 -.11 -.11   -.11 -.11 -.11  -.11 -.11 -.11
Parcel -.09  -.09 -.09 -.08   -.09 -.09 -.09  -.08 -.09 -.08

1000 
Item -.11  -.11 -.11 -.11   -.11 -.11 -.11  -.11 -.11 -.11
Parcel -.09  -.09 -.09 -.09   -.09 -.09 -.09  -.09 -.09 -.08
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Table 29: Bias of the Covariance between Disturbances of F2 with F3 for Each Condition with the First Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02

300 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

1000 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00
Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

Sk=1, K=1.5 

100 
Item -.01  -.01 -.02 -.02   -.01 -.02 -.02  -.01 -.02 -.01
Parcel -.01  -.01 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02

300 
Item .01  .00 .01 .01   .00 .01 .01  .00 .01 .01
Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

1000 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Sk=1.75, K=3.75 

100 
Item .07  .07 .08 .08   .07 .08 .08  .07 .07 .08

Parcel .06  .06 .06 .06   .06 .06 .05  .06 .06 .05

300 
Item .09  .09 .09 .09   .09 .09 .09  .08 .09 .09
Parcel .07  .07 .07 .07   .07 .07 .07  .07 .07 .07

1000 
Item .09  .09 .09 .09   .09 .09 .09  .09 .09 .10
Parcel .08  .07 .07 .07   .07 .07 .07  .07 .07 .07
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Table 30: Bias of the Covariance between Disturbances of F2 with F3 for Each Condition with the Second Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.02 -.02 -.02
Parcel -.01  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02

300 
Item -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01

Parcel -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01

1000 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .00
Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

Sk=1, K=1.5 

100 
Item -.02  -.02 -.02 -.01   -.02 -.02 -.02  -.02 -.02 -.01
Parcel -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02

300 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
Parcel .00  .00 .00 .00   .00 .00 .00  .00 .00 .00

1000 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
Parcel .01  .01 .01 .01   .01 .01 .01  .01 .01 .01

Sk=1.75, K=3.75 

100 
Item .08  .08 .08 .08   .08 .08 .08  .08 .08 .08

Parcel .06  .06 .06 .06   .05 .05 .05  .05 .05 .05

300 
Item .09  .09 .09 .09   .09 .09 .09  .08 .09 .09
Parcel .07  .07 .07 .07   .07 .07 .07  .07 .07 .07

1000 
Item .10  .10 .10 .10   .10 .10 .10  .09 .10 .10
Parcel .08  .08 .08 .08   .08 .08 .08  .08 .08 .08



80 
 

As can be observed from these tables, the absolute value of the relative bias was smaller than .05 

for all conditions, much smaller than the suggested cutoff of .10. This indicates that the estimates 

of standard errors were similar to those based on data with no missing values and across different 

missing mechanism and percentage of missingness (Recall that the population standard errors 

were approximated based on the complete data with given sample size and skewness/kurtosis). 

The patterns were similar for both item level analysis and parcel level analysis and across 

different sets of factor loadings.  

ANOVAs for the SEs of the parameter estimates were conducted to further understand 

the impact of the design factors (such as sample size and missing mechanisms) on standard 

errors estimates. Although not reported in the results tables, the estimated standard errors were 

smaller as sample size increased. As shown under columns “SE_L12”, “SE_L13”, and “SE_L23” 

in Table 16, for all three parameters (F1→ F2, F1→ F3, and F2 ↔ F3), the largest eta square 

was associated with sample size, with eta square of .95, .96, and 86, respectively. This means, for 

example, 95% of the variation in the SEs of estimates of the direct effect from factor F1 to F2 

was explained by sample size, controlling for all other main and interaction effects. For both 

direct effects, a very small portion of variance in the SEs was due to the main effect of level of 

analysis (eta square of .01 for F1→ F2 and .02 for F1→ F3). For the covariance between the two 

disturbances, a small portion of the variance of SEs was attributed to the distribution of variables 

(eta square of .03). All other main and the interaction effects were zero.
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Table 31: Bias of SE of the Direct Effect from F1 to F2 for Each Condition with First Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item .01  .01 .01 .02   .01 .01 .02  .01 .01 .02
Parcel .01  .02 .02 .03   .02 .02 .03  .02 .02 .03

300 
Item -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01

Parcel -.02  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01

1000 
Item .02  .02 .02 .03   .02 .02 .03  .02 .03 .03
Parcel .02  .02 .03 .03   .02 .03 .03  .02 .03 .03

Sk=1, K=1.5 

100 
Item .00  .00 .01 .01   .00 .01 .01  .00 .01 .02
Parcel .00  .00 .01 .01   .00 .01 .01  .00 .01 .01

300 
Item -.01  -.01 .00 .01   -.01 .00 .01  -.01 .01 .01
Parcel -.01  -.01 .01 .01   -.01 .01 .01  .00 .01 .01

1000 
Item .03  .03 .02 .03   .03 .02 .03  .03 .03 .03
Parcel .02  .03 .03 .04   .03 .03 .04  .03 .04 .04

Sk=1.75, K=3.75 

100 
Item -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 .00

Parcel -.02  -.02 -.02 -.01   -.02 -.01 -.01  -.02 -.01 -.01

300 
Item .00  .00 .00 .01   .00 .00 .01  .00 .01 .01
Parcel .00  .00 .00 .01   .00 .00 .01  .00 .01 .01

1000 
Item .03  .03 .04 .04   .03 .04 .04  .04 .04 .05
Parcel .03  .03 .04 .04   .03 .04 .04  .04 .04 .05
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Table 32: Bias of SE of the Direct Effect from F1 to F2 for Each Condition with the Second Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 .00
Parcel -.01  -.01 -.01 .00   -.01 .00 .00  -.01 .00 .00

300 
Item .00  .00 .00 .01   .00 .00 .01  .00 .01 .01

Parcel .00  .01 .01 .02   .01 .01 .02  .01 .01 .01

1000 
Item -.01  -.01 -.01 .00   -.01 -.01 .00  .00 .00 .00
Parcel -.01  .00 .00 .01   .00 .00 .01  .00 .00 .01

Sk=1, K=1.5 

100 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .02
Parcel .00  .00 .01 .01   .00 .01 .01  .01 .01 .01

300 
Item .00  .00 .00 .01   .00 .00 .01  .00 .01 .01
Parcel .00  .00 .01 .01   .00 .01 .01  .01 .01 .01

1000 
Item .02  .02 .02 .03   .02 .02 .03  .02 .03 .03
Parcel .02  .03 .03 .04   .03 .03 .04  .03 .04 .04

Sk=1.75, K=3.75 

100 
Item -.01  -.01 -.01 .00   -.01 -.01 .00  .00 .00 .00

Parcel -.02  -.02 -.01 .00   -.02 -.01 .00  -.01 -.01 .00

300 
Item .00  .01 .01 .01   .01 .01 .01  .01 .01 .02
Parcel .00  .00 .01 .02   .01 .01 .02  .01 .01 .02

1000 
Item .02  .02 .02 .03   .02 .02 .03  .02 .03 .03
Parcel .01  .02 .03 .03   .02 .03 .03  .03 .03 .04
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Table 33: Bias of SE of the Direct Effect from F1 to F3 for Each Condition with the First Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item -.02  -.02 -.02 -.01   -.02 -.02 -.01  -.02 -.01 -.01
Parcel -.02  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01

300 
Item -.01  -.01 .00 .00   -.01 .00 .00  .00 .00 .00

Parcel -.01  -.01 -.01 .00   -.01 -.01 .00  -.01 .00 .00

1000 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .01
Parcel .01  .01 .01 .02   .01 .01 .02  .01 .02 .02

Sk=1, K=1.5 

100 
Item -.03  -.03 -.03 -.02   -.03 -.03 -.02  -.03 -.02 -.02
Parcel -.03  -.03 -.02 -.02   -.03 -.02 -.02  -.03 -.02 -.02

300 
Item -.04  -.04 -.02 -.02   -.04 -.02 -.02  -.04 -.02 -.02
Parcel -.04  -.04 -.02 -.01   -.04 -.02 -.01  -.04 -.02 -.01

1000 
Item .01  .01 .00 .01   .01 .00 .01  .01 .00 .01
Parcel .01  .02 .01 .01   .02 .01 .01  .02 .01 .01

Sk=1.75, K=3.75 

100 
Item .02  .02 .03 .03   .02 .03 .03  .03 .03 .03

Parcel .02  .02 .02 .03   .02 .02 .03  .02 .03 .03

300 
Item .03  .03 .03 .04   .03 .03 .04  .03 .03 .04
Parcel .03  .04 .04 .05   .04 .04 .05  .04 .04 .05

1000 
Item .01  .01 .01 .02   .01 .01 .02  .01 .02 .02
Parcel .01  .01 .02 .02   .01 .02 .02  .02 .02 .03
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Table 34: Bias of SE of the Direct Effect from F1 to F3 for Each Condition with the Second Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item -.01  -.01 .00 .00   -.01 .00 .00  .00 .00 .00
Parcel -.01  -.01 -.01 .00   -.01 .00 .00  -.01 .00 .00

300 
Item .00  .00 .00 .00   .00 .00 .00  .00 .00 .01

Parcel -.01  .00 .00 .01   .00 .00 .01  .00 .00 .01

1000 
Item .00  .00 .00 .01   .00 .00 .01  .00 .01 .01
Parcel .00  .01 .01 .01   .01 .01 .01  .01 .01 .01

Sk=1, K=1.5 

100 
Item -.03  -.03 -.03 -.02   -.03 -.03 -.02  -.03 -.02 -.02
Parcel -.03  -.03 -.02 -.02   -.03 -.02 -.02  -.02 -.02 -.02

300 
Item -.03  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.03  -.02 -.02 -.01   -.02 -.02 -.01  -.02 -.02 -.01

1000 
Item .00  .00 .00 .01   .00 .00 .01  .00 .00 .01
Parcel .00  .00 .01 .01   .00 .01 .01  .01 .01 .01

Sk=1.75, K=3.75 

100 
Item .00  .01 .01 .01   .01 .01 .01  .01 .01 .01

Parcel .01  .01 .01 .02   .01 .02 .02  .01 .02 .03

300 
Item .02  .02 .02 .03   .02 .02 .03  .02 .03 .03
Parcel .01  .02 .02 .03   .02 .02 .03  .02 .02 .03

1000 
Item .01  .01 .01 .01   .01 .01 .02  .01 .01 .02
Parcel .01  .01 .02 .02   .01 .02 .02  .02 .02 .03
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Table 35: Bias of SE for the Covariance between Disturbances of F2 with F3 for Each Condition with the First Set of Factor Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.03  -.03 -.02 -.02   -.03 -.02 -.02  -.03 -.02 -.02

300 
Item .02  .02 .02 .02   .02 .02 .02  .02 .02 .03

Parcel .02  .02 .02 .03   .02 .02 .03  .02 .02 .03

1000 
Item -.02  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01
Parcel -.02  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 -.01

Sk=1, K=1.5 

100 
Item -.01  -.01 -.03 -.03   -.01 -.03 -.03  -.01 -.03 -.03
Parcel -.01  -.01 -.03 -.03   -.01 -.03 -.03  -.01 -.03 -.03

300 
Item -.03  -.02 -.01 .00   -.02 -.01 .00  -.02 .00 .00
Parcel -.03  -.03 .00 .00   -.03 .00 .00  -.03 .00 .00

1000 
Item .00  .00 -.02 -.02   .00 -.02 -.02  .00 -.02 -.02
Parcel .00  .00 -.02 -.02   .00 -.02 -.02  .01 -.02 -.02

Sk=1.75, K=3.75 

100 
Item -.03  -.03 -.03 -.03   -.03 -.03 -.03  -.03 -.03 -.02

Parcel -.03  -.03 -.03 -.03   -.03 -.03 -.03  -.03 -.03 -.03

300 
Item -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02

1000 
Item -.04  -.04 -.03 -.03   -.04 -.03 -.03  -.04 -.03 -.03
Parcel -.03  -.03 -.03 -.03   -.03 -.03 -.03  -.03 -.03 -.03
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Table 36: Bias of SE for the Covariance between Disturbances of F2 with F3 for Each Condition with the Second Set of Factor 
Loadings 

Sample Size Level No Missing 
 MCAR   MAR  MNAR 

   10% 20% 40%   10% 20% 40%  10% 20% 40%

Sk=0, K=0 

100 
Item -.01  -.01 -.01 -.01   -.01 -.01 -.01  -.01 -.01 .00
Parcel -.02  -.01 -.01 -.01   -.02 -.01 -.01  -.01 -.01 -.01

300 
Item -.04  -.03 -.03 -.03   -.03 -.03 -.03  -.03 -.03 -.03

Parcel -.04  -.04 -.03 -.03   -.04 -.03 -.03  -.04 -.03 -.03

1000 
Item .01  .01 .01 .01   .01 .01 .01  .01 .01 .02
Parcel .01  .02 .02 .02   .02 .02 .02  .02 .02 .02

Sk=1, K=1.5 

100 
Item -.04  -.03 -.03 -.03   -.03 -.03 -.03  -.03 -.03 -.03
Parcel -.04  -.03 -.03 -.03   -.03 -.03 -.03  -.03 -.03 -.03

300 
Item -.01  -.01 -.01 .00   -.01 -.01 .00  -.01 .00 .00
Parcel -.01  -.01 .00 .00   -.01 .00 .00  .00 .00 .00

1000 
Item -.02  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02
Parcel -.03  -.02 -.02 -.02   -.02 -.02 -.02  -.02 -.02 -.02

Sk=1.75, K=3.75 

100 
Item -.04  -.04 -.04 -.03   -.04 -.04 -.04  -.04 -.04 -.03

Parcel -.04  -.04 -.03 -.03   -.04 -.03 -.03  -.03 -.03 -.03

300 
Item -.01  -.01 -.01 .00   -.01 -.01 .00  -.01 .00 .00
Parcel .00  .01 .01 .01   .00 .01 .01  .01 .01 .01

1000 
Item -.01  -.01 -.01 .00   -.01 -.01 .00  -.01 .00 .00
Parcel -.01  -.01 .00 .00   -.01 .00 .00  -.01 .00 .00
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CHAPTER 5 

DISCUSSIONS AND CONCLUSIONS 

 

Researchers have been using item parceling techniques in their empirical data analysis, 

particularly when the analysis involves relatively small sample sizes. It has been shown that item 

parceling helps reduce model complexity, avoid violation of normality assumptions, and obtain 

better model-data fit, among other benefits (e.g., Little et al., 2002; Yang et al., 2010). It may 

also help obviate some difficulties in analysis when missing data are present. However, this 

procedure has not been well studied in the literature. In my dissertation, I investigated how item 

parceling techniques behave in SEM analysis with missing and nonnormally distributed data. I 

expected that analysis based on the parcel level would yield results at least as good as those from 

the item level analysis particularly in the presence of missing data and nonnormal distributions.  

A Monte Carlo simulation study was conducted using a full structural model (see Figure 2) by 

manipulating five design factors: (1) sample size, (2) missing data mechanisms, (3) percentage of 

missingness, (4) degrees of nonnormality of data, and (5) magnitude of factor loadings. In total, 

180 conditions were created to generate data. For each generated dataset, a SEM analysis was 

conducted based on both the item level and the parcel level. Full information maximum 

likelihood (FIML) estimation methods were applied in all model analyses because this method 

has been studied extensively in the SEM literature and has been considered the most appropriate 

for SEM analysis with missing data (e.g., Acock, 2002; Chen et al., 2003; Enders, 2006; Enders 

at al., 2001). Results from each of the 180 conditions were evaluated based on overall model-

data fit and parameter estimates. In this chapter, the key findings are summarized and discussed 
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in line with the research expectations I listed at the end of the chapter 2. Then, limitations of the 

study and directions for future research are given. 

Major Findings from Simulation Study 

I discuss below the major findings based on the five expectations I listed at the end of the 

chapter 2. 

First, I expected that the parcel level analysis would perform better or equally well in 

terms of parameter estimation bias compared to item level analysis under any type of missing 

mechanism. In the simulation study, I focused on three parameters: two direct effects (F1→F2 

and F1→F3) and the covariance between the disturbances of F2 and F3 (F2↔F3). I computed 

relative bias of parameter estimates and standard errors for all conditions, and then conducted 

ANOVAs to examine the impact of the five design factors on parameter estimates and standard 

errors. In general, the results are consistent with my expectations. The relative bias of the 

parameter estimates was similar for the parcel level analysis and for the item level analysis when 

the data were distributed normally or moderately nonnormally. When the data were highly 

skewed, the parcel level analysis yielded slightly smaller biases than item level analysis for all 

three parameters estimated in the models. The patterns were similar across missing mechanisms. 

The ANOVA results also supported this finding in that the eta square was .03-.07 for the 

main effect of nonnormality, but the eta square was zero for the main effects of missing 

mechanisms and level of analysis (see Table 16). Similar results were also found for the standard 

errors of parameter estimates; missing mechanisms and level of analysis did not impact the 

accuracy of the SE estimates (eta square values were less than .02). The results were also 

consistent with the existing literature (e.g., Matsunaga, 2008) showing that the item level 

analysis with FIML estimation showed biased parameter estimates with nonnormal data, but that 
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using item parceling mitigates some of the nonnormality effects even for data with missing 

values. In debating whether parceling techniques should or should not be used, one of the major 

concerns is that parceling may lead to biased estimates of parameter estimates (Hall et. al., 1999; 

Stephenson et. al., 2003). Using a factorial algorithm to create parcels, the results from my study 

showed that parceling did not yield greater bias in parameter estimates and standard errors than 

item level analysis, and under some conditions, parceling performed better. Because I considered 

only unidimensional scales for creating parcels, the conclusion may not generalize to 

multidimensional scales. 

Second, I expected the rejection rates of the chi-square test based on the parcel level 

analysis would be lower than those based on the item level analysis under any type of missing 

mechanisms. The results support my expectation. As can be summarized from Tables 10 to 11, 

the rejection rates based on the chi-square test for the parcel based models ranged from 5% to 8% 

but were much higher for the item level analysis (ranging from 5% to 96%).  The largest 

rejection rates were associated with the item level analysis for small sample size and highly 

skewed distributions. Analyses based on parceled data showed lower rejection rates because the 

model became much simpler when a subset of the items was grouped together. For the model 

based on items, the degrees of freedom are 186, but the degrees of freedom are reduced to 24 

when the 15 items associated with F1 are assigned to form 3 parcels. 

In addition, evaluation of fit indices (CFI, RMSEA, and SRMR) also led to similar 

conclusion that models were less likely to be rejected for the parcel level analysis than the item 

level analysis. The main effects of “level of analysis” were .32, .08, and .81 for CFIs, RMSEAs, 

and SRMRs, respectively.  However, I should note that the analysis models considered in this 

study are consistent with the data generation model. In other words, the analysis models are 
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correctly specified, thus the rejection rate based on chi-square test (or fit indices) should be the 

empirical type I error rate. If the models are misspecified, lower rejection rates based on parceled 

data indicate lack of power for detecting model misspecification, which would result in another 

serious issue in SEM analysis.  

Although I did not expect it, I found inconsistent results between the means of RMSEAs 

and the rejection rates based on RMSEA. For example, in Table 17, the mean of RMSEAs 

was .03 for the item level analysis and .02 for the parcel level analysis, when the sample size was 

100 and data were normally distributed with no missing value. Because a higher RMSEA 

indicates worse model-data fit, I would expect the rejection rate based on RMSEA would be 

higher for the item level analysis than for the parcel level analysis. However, the rejection rates 

were reversed with 2% and 15% for item level analysis and parcel level analysis, respectively. 

To further understand the performance of RMSEA, I examined the sampling distribution 

of the RMSEAs for these two conditions. The distributions of RMSEA were quite different 

between these two conditions. The majority of replications resulted in RMSEA values smaller 

than .04 in parcel level analysis but a small proportion of replications resulted in large RMSEAs. 

However, under item level analysis most of the RMSEA values were between .04 and .06. When 

using .06 as the cutoff, parcel level analysis yielded a higher rejection rate than item level 

analysis.  

In addition, I found that RMSEA was relatively stable across levels of analysis compared 

to CFI and SRMR. The eta square for the main effect of level of analysis was .08 for RMSEAs 

but much higher for CFIs and SRMRs (.32 and .81). The difference between parcel level analysis 

and item level analysis in the model rejection rate based on RMSEAs was smaller than those 

based on CFIs and SRMRs. This indicates that RMSEA and CFI/SRMR may perform differently 
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in the evaluation of model-data fit. We want fit indices to help us make the correct decision 

about the model specification (whether correctly specified or misspecified), no matter whether 

analysis is conducted based on the parcel level or item level. From this point of view, RMSEA 

may be more appropriate than CFI and SRMR when using parceled data. But further research is 

needed to understand the performance of RMSEAs in comparison to CFIs and SRMRs for 

parceled data, particularly when the model is misspecified. 

Third, I expected that the percentage of missingness on variables would have less effect 

on the results (both overall model-data fit and parameter estimates) for the parcel level analysis 

compared to the item level analysis under all missing mechanisms. Part of my research 

expectation is supported by the simulation study. When analysis was based on the item level, as 

the percentage of missingness increased, models demonstrated worse fit according to the chi-

square test, CFI, RMSEA, and SRMR. Compared to the increase in percentage of missingness 

from 10% to 20%, the model-data fit was substantially worse when the percentage increased 

from 20% to 40%. However, the performance of the chi-square test, CFI, RMSEA, and SRMR 

was very similar across different percentage of missingness in the data for parcel level analysis. 

This finding provides evidence favoring parcel analysis when missing data are present in an 

empirical study. 

Unexpectedly, this finding was not observed when examining parameter estimates and 

standard errors. The bias of parameter estimates and standard errors was similar across different 

percentages of missingness and was also similar to that from analysis based on complete data. 

The associated eta squares were all zero for the parameter estimates and standard errors, 

indicating that the estimates of the parameters (e.g., the direct effect from F1 to F2) did not vary 

across different percentages of missingness. This might be due to the percentages of missingness 
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considered in the study. The highest percentage of missingness considered in the study was 40%, 

but only six out of 21 variables had missing values on them. This constitutes a small proportion 

of missingness in the data as a whole. Further study may include higher proportions of 

missingness on larger numbers of variables.  

Four, I expected that the parcel level analysis would encounter fewer problems in model 

convergence than the item level, particularly for nonnormal data with missing values. As 

evidenced from Tables 8 and 9, this expectation is not supported. The model non-convergence 

rate was either zero or nearly zero for all conditions, regardless of sample size, percentage of 

missingness, the degree of nonnormality, and missing mechanism. This may due to the level of 

conditions for each design factor considered in the simulation study. Models may encounter 

convergence problems if the sample size is small, higher percentages of data are missing, and if 

the distribution deviates greatly from the normality. Further research may consider including 

these more extreme conditions in the study. Findings from the current study suggest that model 

non-convergence is not a concern in the choice of parcel vs. item level analysis as long as the 

data do not seriously deviate from normality and the percentage of missingness is not too large 

(considering only 6 out of 21 items have missing data). Information about the normality of the 

data and the percentage of missingness can be fairly easily obtained after data are collected.  

Fifth, I expected that as the degree of data nonnormality increase, the superiority of 

parcel level analysis to the item level analysis would be more obvious. The expectation is 

supported in terms of model-data fit. For the item level analysis, the model-data was fit better as 

the data approached to normality, holding other conditions constant. However for the parcel level 

analysis, model-data fit was equally well regardless of the degree of nonnormality. This is also 

evidenced by the ANOVAs where the eta square of the interaction effect between level of 
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analysis and the degree of nonnormality was not zero for CFIs (.06), RMSEAs (.02), and SRMR 

(.03). This finding is consistent with arguments made by several authors (Bandalos, 2002; Little 

et al., 2002; Matsunaga, 2008). That is, parcel scores tend to be more normally distributed 

compared to individual item scores, thus should be impacted less by the degree of nonnormality 

of the individual items.  

Last, I expected that as the sample size increased, the superiority of the parcel level 

analyses to the item level analysis would be reduced compared to item level analysis under any 

type of missing mechanism. This expectation is supported in terms of overall model-data fit. 

Parcel level analysis resulted in better model-data fit than item level analysis (as summarized 

previously). As sample size increased, the chi-square test, CFI, RMSEA, and SRMR suggested 

better fit for both parcel and item level analyses, holding other conditions constant. However, the 

superiority of parcel level analysis to item level analysis became less obvious as sample size 

increased (See Tables 10, 14, and 23). In other words, the impact of sample size in model-data fit 

was greater for item level analysis than for parcel level analysis. This is also evidenced by the 

ANOVAs where the interaction effect between sample size and level of analysis was not trivial 

for CFIs, RMSEAs and SRMRs (the eta squares were .36, .08, and .54 for CFIs, RMSEAs, and 

SRMRs, respectively). When the analysis was conducted based on the item level, the number of 

model parameters was 45, resulting in ratios of sample size to the number of model parameters 

of 2.2, 6.7, and 22.2 for sample size of 100, 300, and 1000, respectively. Model fit increased 

substantially as the ratio increased from small to medium. But little gain was obtained by 

increasing the sample size up to a certain level. This is also the reason that the increase in fit is 

less obvious in parcel level analysis.  
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Limitations and Future Research 

Based on the current simulation study, parcel level analysis yielded SEM results as good 

as or better than those from item level analysis under three types of missing mechanisms, across 

different degrees of nonnormality of data, and varying percentages of missingness. Similar to 

other simulation studies, one should be cautious when generalizing these conclusions to other 

situations. Below I list several major limitations in my study, some of which will direct my 

future research.  

First, all the generated data are continuous. However, in practice, data are often 

categorical. The results may be different for analysis of categorical variables. Full information 

maximum likelihood may not be appropriate for categorical variables. Future research can be 

conducted to consider categorical incomplete data with alternative estimation methods.  

Second, the analysis model was consistent with the data generation model. Misspecified 

models are not considered in this study. As I discussed previously, the performance of fit indices 

may be different and the superiority of parceling might not hold in detecting model 

misspecification in such cases. In the future, models with misspecification can be considered to 

investigate the performance of item parceling with missing data. 

Finally, only a limited number of levels were considered for each design factor, most 

particularly only one model was used to generate data. Based on the findings from the current 

study, it may be worth considering increasing the number of variables with missing values and/or 

the percentage of missingness. The ratio of the number of variables with missing values to the 

total number of variables was only .29 (= 6/21) in this study. The largest percentage of 

missingness was 40%. Therefore, at maximum, only 11% (= 29% * 40%) of the data were 

missing. Some other simulation studies have considered much higher percentage of missingness. 

For example, Davey et al. (2005) and Allison (2003) included conditions with 95% and 90% 
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missingness, respectively. Although having 95% or 90% of missing data is unlikely to encounter 

in an empirical study, including conditions with percentages of missingness higher than what I 

had in the simulation study is worth considering.  
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APPENDIX A 

R-CODES FOR DATA GENERATION 

Normally distributed data were generated in R. Then, normally distributed data transformed 
nonnormal data by Fleishman's method.  
 
rm(list=ls()) 
 
n.d<-2000        #Number of data set 
list_normal<-rep(0,n.d) 
list_non_normal<-rep(0,n.d) 
for(dd in 1:n.d){ 
ss<-100        #Sample Size 
 
library(Matrix) 
library(psych) 
 
C<-matrix(c(1,.4, .6, .4, 1,.74, .6, .74,1), ncol=3)   
 #Factor correlations 
U<-chol(C)        #Cholesky decomposition  
 
ran.f1<-rnorm(ss,0,1)       #random factor scores  
ran.f2<-rnorm(ss,0,1) 
ran.f3<-rnorm(ss,0,1) 
R<-as.matrix(cbind(ran.f1,ran.f2,ran.f3)) #Random un-correlated 

Factor scores for all 
factors 

corr.f<-R%*%U #Random Correlated 
factor scores for all 
factors 

 
rand.err.1<-rnorm(ss,0,1) 
rand.err.2<-rnorm(ss,0,1) 
rand.err.3<-rnorm(ss,0,1) 
rand.err.4<-rnorm(ss,0,1) 
 
n.f1<-15 #For F1 in the model, 

15 items 
l.f1<-c(rep(c(.4,.6,.8),5)) #Loadings of the first 

factor 
l.f1[1]<-l.f1[4]<-l.f1[13]<-.15 
x1<-matrix(0, ncol=n.f1, nrow=ss) 
 
for(i in c(1,3)){ 
e1<-rnorm(ss,0,1) 
for(j in 1:ss){ 
x1[j,i]<- l.f1[i] * corr.f[j,1] + cond[1]*rand.err.1[j]+(sqrt(1- l.f1[i]^2-
cond[1]^2))*e1[j] 
}} 
for(i in c(2,4)){ 
e1<-rnorm(ss,0,1) 
for(j in 1:ss){ 
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x1[j,i]<- l.f1[i] * corr.f[j,1] + cond[2]*rand.err.2[j]+(sqrt(1- l.f1[i]^2-
cond[2]^2))*e1[j] 
}} 
for(i in c(7,8)){ 
e1<-rnorm(ss,0,1) 
for(j in 1:ss){ 
x1[j,i]<- l.f1[i] * corr.f[j,1] + cond[3]*rand.err.3[j]+(sqrt(1- l.f1[i]^2-
cond[3]^2))*e1[j] 
}} 
for(i in c(9,10)){ 
e1<-rnorm(ss,0,1) 
for(j in 1:ss){ 
x1[j,i]<- l.f1[i] * corr.f[j,1] + cond[4]*rand.err.4[j]+(sqrt(1- l.f1[i]^2-
cond[4]^2))*e1[j] 
}} 
 
for(i in c(5,6,11,12,13,14,15)){ 
e1<-rnorm(ss,0,1) 
for(j in 1:ss){ 
x1[j,i]<- l.f1[i] * corr.f[j,1] + (sqrt(1- l.f1[i]^2))*e1[j] 
}} 
 
n.f2<-3         #For F2, 3 items  
l.f2<-c(rep(.7, n.f2)) 
x2<-matrix(0, ncol=n.f2, nrow=ss) 
for(i in 1:n.f2){ 
e2<-rnorm(ss,0,1) 
for(j in 1:ss){ 
x2[j,i]<- l.f2[i] * corr.f[j,2] + (sqrt(1- l.f2[i]^2))*e2[j] 
}} 
 
n.f3<-3         #For F3, 3 items 
l.f3<-c(rep(.7, n.f3)) 
x3<-matrix(0, ncol=n.f3, nrow=ss) 
for(i in 1:n.f3){ 
e3<-rnorm(ss,0,1) 
for(j in 1:ss){ 
x3[j,i]<- l.f3[i] * corr.f[j,3] + (sqrt(1- l.f3[i]^2))*e3[j] 
}} 
 
final.data.normal<-data.frame(cbind(x1,x2,x3)) #All 21 items 

together 
#These are still 
normal. 

name1<-paste("Raw Data/Normal.", dd, ".dat", sep="") 
name1_list<-paste("Normal.", dd, ".dat", sep="") 
list_normal[dd]<-name1_list 
 
 
# 
# Nonnormality (Fleishman's Table 1) 
# 
#  non_x1<-a+b*x1+c*x1^2+d*x1^3  The formula for nonnormality 
# 
#  sk=0 
#  k=0 
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# b=1 
# c=0 
# d=0 
# a=-c 
# 
#  sk=1.00 
#   k=1.5 
# 
# b<- .9530769 
# c<- .1631943 
# d<- .0065974 
# a<- -c 
# 
  sk=1.75 
  k=3.75 
 
 b=.9296605 
 c=.3994967 
 d=-.036467 
 a=-c 
# 
 
final.data<-final.data.normal 
for(i in 1:5){ #Nonnormality added on 

items 1-5. 
final.data[,i]<-a+b*final.data[,i]+c*final.data[,i]^2+d*final.data[,i]^3 
} 

for(i in 6:10){ #Nonnormality added on 
items7-10. 

final.data[,i]<-a+b*final.data[,i]+c*final.data[,i]^2+d*final.data[,i]^3 
} 
for(i in 11:15){ #Nonnormality added on 

items11-15. 
final.data[,i]<-a+b*final.data[,i]+c*final.data[,i]^2+d*final.data[,i]^3 
} 
name_file<-paste("sk=", sk, ", k=", k, "ss=", ss, sep="") 
dir.create(name_file)  
name2<-paste(name_file,"/Non_Normal.", dd, ".dat", sep="") 
name2_list<-paste("Non_Normal.", dd, ".dat", sep="") 
 
write.table(final.data, name2, sep="\t", quote=FALSE, col.names=FALSE, 
row.names=FALSE) 
list_non_normal[dd]<-name2_list 
} 
 
write.table(list_non_normal, paste(name_file,"/List_Non_Normal", ".dat", 
sep=""),quote=FALSE, col.names=FALSE, row.names=FALSE) 
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APPENDIX B 

CORRELATION MATRIX AMONG THE FACTORS 

 

Figure 15: Correlations among the Factors  

 

This appendix shows the calculation of the covariance matrix among the factors for the research 
model, which is shown in figure above. 

Formulas: 

ሻݔሺݎܽݒ (1 ൌ ݔሺܧ െ  ሻሻଶݔሺܧ
,ݔሺݒ݋ܿ (2 ሻݕ ൌ ݔሺܧ െ ݕሺܧ ሻሻݔሺܧ െ   ሻሻݕሺܧ

Given Information: 

1ሻܨሺݎܽݒ (1 ൌ 1 
ሺ݁2ሻ ݎܽݒ (2 ൌ 1 െ. 4ଶ ൌ .84 
ሺ݁3ሻ ݎܽݒ (3 ൌ 1 െ. 6ଶ ൌ .64 
,ሺ݁2ݒ݋ܿ (4 ݁3ሻ ൌ .5 
,ܨሺݒ݋ܿ (5 ݁ሻ ൌ 0 
2ܨ (6 ൌ 1ܨ4. ൅ ݁2 
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3ܨ (7 ൌ 1ܨ6. ൅ ݁3 

Covariance between factor 1 (F1) and factor 2 (F2): 

,1ܨሺݒ݋ܿ 2ሻܨ ൌ 1ܨሺܧ െ 1ሻሻܨሺܧ ∙ 2ܨሺܧ െ  2ሻ       (#1)ܨሺܧ

2ܨ൫ܧ െ 2ሻ൯ܨሺܧ ൌ .൫ܧ 1ܨ4 ൅ ݁2 െ 1ሻܨሺܨ4. െ  ሺ݁2ሻ൯ܧ

ൌ ܧ ቀ. 4൫1ܨ െ 1ሻ൯ܨሺܧ ൅ ݁2 െ ሺ݁2ሻቁܧ ൌ .4 ∙ 1ܨ൫ܧ െ 1ሻ൯ܨሺܧ ൅ ሺ݁2ܧ െ  ሺ݁2ሻሻ  (#2)ܧ

Bases on (#1) and (#2); 

,1ܨሺݒ݋ܿ 2ሻܨ ൌ 1ܨ൫ܧ െ 1ሻ൯ܨሺܧ ∙ ሾ.4 ∙ 1ܨ൫ܧ െ 1ሻ൯ܨሺܧ ൅ ሺ݁2ܧ െ  [ሺ݁2ሻሻܧ

ൌ 1ܨ൫ܧ 4. െ 1ሻ൯ܨሺܧ
ଶ
൅ 1ܨሺܧ െ 1ሻሻܨሺܧ ∙ ሺ݁2ܧ െ  ሺ݁2ሻሻܧ

ൌ .4 ∙ 1ሻܨሺݎܽݒ ൅ ,1ܨሺݒ݋ܿ ݁2ሻ ൌ .4 ∙ 1 ൅ 0 ൌ .4 

Thus, ܿݒ݋ሺ1ܨ, 2ሻܨ ൌ .4 

Fallowing the same logic, it is easy to say that ܿݒ݋ሺ1ܨ, 3ሻܨ ൌ .6. 

Covariance between factor 2 (F2) and factor 3 (F3): 

,2ܨሺݒ݋ܿ 3ሻܨ ൌ 2ܨ൫ܧ െ 2ሻ൯ܨሺܧ ∙ 3ܨ൫ܧ െ  3ሻ൯      (#3)ܨሺܧ

2ܨ൫ܧ െ 2ሻ൯ܨሺܧ ൌ .൫ܧ 1ܨ4 ൅ ݁2 െ 1ሻܨሺܨ4. െ  ሺ݁2ሻ൯     (#4)ܧ

3ܨ൫ܧ െ 3ሻ൯ܨሺܧ ൌ .൫ܧ 1ܨ6 ൅ ݁2 െ 1ሻܨሺܨ6. െ  ሺ݁2ሻ൯     (#5)ܧ

Bases on (#3), (#4) and (#5); 

,2ܨሺݒ݋ܿ 3ሻܨ  ൌ ൣ. 4 ∙ 1ܨ൫ܧ െ 1ሻ൯ܨሺܧ ൅ ൫݁2ܧ െ ሺ݁2ሻ൯൧ܧ                                                                       

∗ ൣ. 6 ∙ 1ܨ൫ܧ െ 1ሻ൯ܨሺܧ ൅ ൫݁3ܧ െ  ሺ݁3ሻ൯൧ܧ

ൌ 1ܨ൫ܧ 24. െ 1ሻ൯ܨሺܧ
ଶ
൅ 1ܨ൫ܧ െ 1ሻ൯ܨሺܧ ∙ ൫݁2ܧ െ  ሺ݁2ሻ൯ܧ

                                             ൅ܧ൫1ܨ െ 1ሻ൯ܨሺܧ ∙ ൫݁3ܧ െ ሺ݁3ሻ൯ܧ ൅ ൫݁2ܧ ൅ ൫݁3ܧሺ݁2ሻ൯ܧ ൅  ሺ݁3ሻ൯ܧ

ൌ 1ሻܨሺݎܽݒ 24. ൅ ,1ܨሺݒ݋ܿ ݁2ሻ ൅ ,1ܨሺݒ݋ܿ ݁3ሻ ൅ ,ሺ݁2ݒ݋ܿ ݁3ሻ 

ൌ 1ሻܨሺݎܽݒ24. ൅ 0 ൅ 0 ൅ ,ሺ݁2ݒ݋ܿ ݁3ሻ ൌ .24 ൅ .5 ൌ .74 

Thus, ܿݒ݋ሺ2ܨ, 3ሻܨ ൌ .74 
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APPENDIX C 

CREATING PARCELS IN R 

############################################################################# 
#Creating Parcels:  
#   parcel1 (mean of 1, 6, 7, 12 and 13) 
#   parcel2 (mean of 2, 5, 8, 11, and 14) 
#   parcel3 (mean of 3, 4, 9, 10, and 15) 
############################################################################# 
 
for( p in 1:ss){ 
parcel1[p] <-mean(c(data.miss[p,n.fl[1]], 
data.miss[p,n.fl[6]],data.miss[p,n.fl[7]],data.miss[p,n.fl[12]], 
     data.miss[p,n.fl[13]]),na.rm=TRUE) 
parcel2[p] <-mean(c(data.miss[p,n.fl[2]], 
data.miss[p,n.fl[5]],data.miss[p,n.fl[8]],data.miss[p,n.fl[11]], 
     data.miss[p,n.fl[14]]),na.rm=TRUE) 
parcel3[p] <-mean(c(data.miss[p,n.fl[3]], 
data.miss[p,n.fl[4]],data.miss[p,n.fl[9]],data.miss[p,n.fl[10]], 
     data.miss[p,n.fl[15]]),na.rm=TRUE) 
} 
data.parcel<-round(cbind(parcel1,parcel2, parcel3, data.cont[,16:21]), 4) 
 
############################################################################# 
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APPENDIX D 

BIAS OF PARAMETER ESTIMATES AND SE IN R 

##########################  Bias ############################### 
 
bias.1<-matrix(c(((data.1[,"L12"]-.4)/.4),((data.1[,"L13"]-
.6)/.6),((data.1[,"L23"]-.5)/.5)), ncol=3,byrow=FALSE) 
 colnames(bias.1)<-c("bias_12", "bias_13", "bias_23") 
bias.2<-matrix(c(((data.2[,"L12"]-.4)/.4),((data.2[,"L13"]-
.6)/.6),((data.2[,"L23"]-.5)/.5)), ncol=3,byrow=FALSE) 
 colnames(bias.2)<-c("bias_12", "bias_13", "bias_23") 
bias.3<-matrix(c(((data.3[,"L12"]-.4)/.4),((data.3[,"L13"]-
.6)/.6),((data.3[,"L23"]-.5)/.5)), ncol=3,byrow=FALSE) 
 colnames(bias.3)<-c("bias_12", "bias_13", "bias_23") 
bias.4<-matrix(c(((data.4[,"L12"]-.4)/.4),((data.4[,"L13"]-
.6)/.6),((data.4[,"L23"]-.5)/.5)), ncol=3,byrow=FALSE) 
 colnames(bias.4)<-c("bias_12", "bias_13", "bias_23") 
bias.5<-matrix(c(((data.5[,"L12"]-.4)/.4),((data.5[,"L13"]-
.6)/.6),((data.5[,"L23"]-.5)/.5)), ncol=3,byrow=FALSE) 
 colnames(bias.5)<-c("bias_12", "bias_13", "bias_23") 
bias.6<-matrix(c(((data.6[,"L12"]-.4)/.4),((data.6[,"L13"]-
.6)/.6),((data.6[,"L23"]-.5)/.5)), ncol=3,byrow=FALSE) 
 colnames(bias.6)<-c("bias_12", "bias_13", "bias_23") 
bias.7<-matrix(c(((data.7[,"L12"]-.4)/.4),((data.7[,"L13"]-
.6)/.6),((data.7[,"L23"]-.5)/.5)), ncol=3,byrow=FALSE) 
 colnames(bias.7)<-c("bias_12", "bias_13", "bias_23") 
bias.8<-matrix(c(((data.8[,"L12"]-.4)/.4),((data.8[,"L13"]-
.6)/.6),((data.8[,"L23"]-.5)/.5)), ncol=3,byrow=FALSE) 
 colnames(bias.8)<-c("bias_12", "bias_13", "bias_23") 
 
 
############################  SD ############################## 
 
sd1<-c(sd(data.1[,"L12"]), sd(data.1[,"L13"]), sd(data.1[,"L23"])) 
sd5<-c(sd(data.5[,"L12"]), sd(data.5[,"L13"]), sd(data.5[,"L23"])) 
 
 
#########################  Bias_SE  ###################### 
 
b.se.1<-matrix(c(((data.1[,"S_L12"]-sd1[1])/sd1[1]),((data.1[,"S_L13"]-
sd1[2])/sd1[2]),((data.1[,"S_L23"]-sd1[3])/sd1[3])), ncol=3,byrow=FALSE) 
b.se.2<-matrix(c(((data.2[,"S_L12"]-sd1[1])/sd1[1]),((data.2[,"S_L13"]-
sd1[2])/sd1[2]),((data.2[,"S_L23"]-sd1[3])/sd1[3])), ncol=3,byrow=FALSE) 
b.se.3<-matrix(c(((data.3[,"S_L12"]-sd1[1])/sd1[1]),((data.3[,"S_L13"]-
sd1[2])/sd1[2]),((data.3[,"S_L23"]-sd1[3])/sd1[3])), ncol=3,byrow=FALSE) 
b.se.4<-matrix(c(((data.4[,"S_L12"]-sd1[1])/sd1[1]),((data.4[,"S_L13"]-
sd1[2])/sd1[2]),((data.4[,"S_L23"]-sd1[3])/sd1[3])), ncol=3,byrow=FALSE) 
b.se.5<-matrix(c(((data.5[,"S_L12"]-sd5[1])/sd5[1]),((data.5[,"S_L13"]-
sd5[2])/sd5[2]),((data.5[,"S_L23"]-sd5[3])/sd5[3])), ncol=3,byrow=FALSE) 
b.se.6<-matrix(c(((data.6[,"S_L12"]-sd5[1])/sd5[1]),((data.6[,"S_L13"]-
sd5[2])/sd5[2]),((data.6[,"S_L23"]-sd5[3])/sd5[3])), ncol=3,byrow=FALSE) 
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b.se.7<-matrix(c(((data.7[,"S_L12"]-sd5[1])/sd5[1]),((data.7[,"S_L13"]-
sd5[2])/sd5[2]),((data.7[,"S_L23"]-sd5[3])/sd5[3])), ncol=3,byrow=FALSE) 
b.se.8<-matrix(c(((data.8[,"S_L12"]-sd5[1])/sd5[1]),((data.8[,"S_L13"]-
sd5[2])/sd5[2]),((data.8[,"S_L23"]-sd5[3])/sd5[3])), ncol=3,byrow=FALSE) 
 
 
 colnames(b.se.1)<-colnames(b.se.2)<-colnames(b.se.3)<-
colnames(b.se.4)<-c("B_SE_12", "B_SE_13", "B_SE_23") 
 colnames(b.se.5)<-colnames(b.se.6)<-colnames(b.se.7)<-
colnames(b.se.8)<-c("B_SE_12", "B_SE_13", "B_SE_23") 
 
############################################################################# 
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