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ABSTRACT

ENABLING LOCATION AWARE SMARTPHONE
APPLICATIONS VIA MOBILITY PROFILING

MAY 2010

MURAT ALI BAYIR

B.Sc., MIDDLE EAST TECHNICAL UNIVERSITY, ANKARA, TURKEY

M.Sc., MIDDLE EAST TECHNICAL UNIVERSITY, ANKARA, TURKEY

Ph.D., UNIVERSITY AT BUFFALO, THE STATE UNIVERSITY OF NEW

YORK

Directed by: Professor Murat Demirbas

Ubiquitous computing is weaving itself into the fabric of our age, creating unique

opportunities for accessing and sharing information regardless of time and location.

Recent development in hardware technology paved the way to small and portable

devices such as wireless sensors, PDAs, iPods, and leads to new generation of cell

phones with computing capabilities which are called as smartphones. These smart

devices enable location-aware applications as well as empower users to generate and

access multimedia content anywhere.

Mobility information of cell phone users plays an important role in a wide range of

smartphone applications, such as context-based search and advertising, early warning

systems, traffic planning, route prediction, and air pollution exposure risk estimation.
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However, the mobility information captured in the cell phone is low level data units

and can not benefit these applications directly. In this thesis, we investigate the

problem of enhancing smartphone applications by providing mobility information at

suitable abstraction level. In particular, we adress the following problems:

1. In order to provide high level model of human mobility, we design and implement

a complete framework, the Mobility Profiler, for discovering mobility profiles

from raw cell based connection data.

2. In order to enable smartphone applications requiring personalized mobility in-

formation, we propose TRACK ME: A web based centralized middleware for

building smartphone applications leveraging on top of location tracking and

mobility profile construction systems.

3. In order to utilize location tracking capability and ubiquitous nature of smart-

phones for social collaboration, we design and implement a location based

crowd-sourced sensing and collaboration system over Twitter.

4. For the developing regions and environment where connectivity occurs intermit-

tently, we apply our findings related to human mobility for improving routing

algorithms in Pocket Switched Networks (PSNs). Based on the regularity of

human mobility profiles and of intercontact events, we propose PRO routing;

mobility profile aware, decentralized, fast (low-delivery-latency) and efficient

(low-message-overhead) routing protocol for PSNs.
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CHAPTER 1

INTRODUCTION

Cell phones have been adopted faster than any other technology in human his-

tory [40], and as of 2010, the number of cell phone subscribers exceeds 4.5 billion,

which is twice as many as the number of PC users worldwide [3]. To capture a

slice of this lucrative market, Nokia, Google, Microsoft, and Apple have introduced

cell phone operating systems (Symbian, Android, Windows Mobile, OS X) and open

APIs for enabling application development on the cell phones. Recently, cell phones

have also attracted the attention of the networking and ubiquitous computing re-

search community due to their potential as sensor nodes for city-wide sensing appli-

cations [4, 29, 30, 66, 68, 71, 94].

Mobility path information of cell phone users play a central role in a wide range

of cell phone applications, such as context-based search and advertising, early warn-

ing systems [12, 83], traffic planning [53], route prediction [73, 74], and air pollution

exposure estimation [38]. Cell phones can log location information using GPS, service-

provider assisted faux GPS or simply by recording the connected cellular tower infor-

mation. However, since all these location logs are low level data units, it is difficult

for the cell phone applications to access meaningful information about the mobility

profiles of users directly. To make mobility data more readily accessible to cell phone

applications, higher level data abstractions are needed. In this thesis, we studied

the problem of enhancing smartphone applications by providing mobility information

at suitable abstraction level. We studied the following problems for providing suit-
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able mobility data for smartphone applications ranging from application layer to the

network layer:

• Mobility Profiler: A framework for discovering mobility profiles of cell phone

users

• TRACK ME: A web based middleware providing personalized mobility service

for smartphone applications

• Location based crowd-sourced sensing and collaboration system

• PRO: A profile-based routing protocol for pocket switched networks

1.1 Mobility Profiler

In this project, we focus on the problem of discovering spatiotemporal mobility

patterns and mobility profiles from cell phone based location logs. In order to cap-

ture the mobility behaviors of cell phone users at a level of abstraction suitable for

reasoning and analysis, we introduce formal definitions for the concepts of mobility

path (denoting a user’s travel from one end-location to another), mobility pattern (de-

noting a popular travel for the user supported by her mobility paths), and mobility

profile (providing a synopsis of a user’s mobility behavior by integrating the frequent

mobility patterns, contextual data, and time distribution data for the user).

Although human mobility has been studied in different contexts in previous works [62,

67, 75, 102, 113], those works were restricted to small scale environments such as build-

ing or a campus area and relied on WLAN technologies. In contrast, Mobility profiler

focuses on analyzing human mobility in city wide level by using cellular networks. We

validate the Mobility Profiler by using the “Reality Mining” data set 1 which is one of

1http://reality.media.mit.edu
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the largest publicly available datasets containing more than 350K hours of celltower

and Bluetooth connection data.

Our analysis in Mobility Profiler project yields important lessons for networking

researchers interested in testing large-scale ad-hoc routing protocols. As also identified

in a recent study [49], we find that users spend approximately 85% of their time in 3

to 5 favorite locations, e.g., home, work, shopping. However, we also discovered very

interesting phenomena for the distribution of the remaining 15% of the users’ time.

We identify a significant long tail in a user’s location-time distribution: Approximately

a total of 15% of cell phone user’s time is spent in locations that each appear with less

than 1% of total time. One implication of this finding is that, while simulating/testing

large-scale mobile ad-hoc protocols, it is not sufficient to simply take the top-k popular

locations. Doing so will discard about 15% of a user’s visited locations.

1.2 TRACK ME

In this project, we propose a middleware that provides a web based lightweight

personalized mobility service for smartphone applications. Web service paradigm [9] is

currently developing very quickly and these services provide functionality to different

applications in distributed and heterogeneous environments [79, 19]. The combination

of web service and smartphone technology [33, 118, 91] brings several opportunities

to end users for accessing information at anywhere at any time. These web services

also enable to develop useful client applications in the cell phone platforms.

Differing from previous web services for ubiquitous devices, TRACK ME provides

more personalized and lightweight mobility service for smartphone applications. Our

web service has a query interface which provides fast access to the mobility profiles of

subscribed users by client applications on cell phone side. We showed that our person-

alized mobility services support multiple applications such as location prediction and

air pollution exposure risk estimation. Here, we propose an online solution to location
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prediction problem where it is possible to predict future locations of smartphone user

instantly by using query interface of TRACK ME via http request. We illustrate that

this application is easily used for solving early warning problems in the real world

scenarios. For the air pollution exposure risk estimation, we have showed that it is

possible to obtain more accurate risk estimation by using our mobility service than

residential based approaches.

1.3 Location Based Crowd-Sourced Sensing

In this project, we focused on designing mobility aware collaborative crowd-

sourced sensing system for solving real life problems with wisdom-of-crowds affect.

We propose that Twitter [1] can provide an “open” publish-subscribe infrastructure

for sensors and smartphones and pave the way for ubiquitous crowd-sourced sensing

and collaboration applications. The open publish-subscribe system of Twitter implies

that various actors may integrate sensor data with location information differently.

In the core of our crowd-sourced system, we have a Twitter-bot (with an integrated

database system) that accepts location based questions, crowd-sources them to mobile

nodes with respect to their most recent location information, and aggregates the

answers to reply back to the querier. The system also includes a smartphone client

for automatically pushing sensor reading information to Twitter as well as location

information.

We showcase and evaluate the performance of our crowd-sourced sensing and

collaboration system on two case-studies. The first one is a location based crowd-

sourced weather radar, which help monitor fine-granularity weather conditions and act

as a ground-truth. Our second application is noise mapping of a region by aggregating

the automatic noise-sensing updates with location information from smartphones.

Apart from using instant location information from smartphone clients, we also

investigate the opportunity of using mobility profiling of registered smartphone clients
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for crowd-sourced sensing. In this aspect, we discuss the potential benefits of mobility

profiling in terms of client availability and continuous query assignment.

1.4 PRO: A Profile Based Routing for PSNs

For the developing regions and environment where connectivity occurs intermit-

tently, we propose a fast (low-delivery-latency) and efficient (low-message-overhead)

routing protocol for Pocket Switched Networks (PSNs), based on the regularity of

human mobility profiles and of intercontact events. PSNs [32, 55, 64, 97, 99] have

been formulated as a subfield of DTNs where each node represents a person with

a communication device. Several PSN routing protocols have been proposed re-

cently [22, 23, 57, 76]. These work assume some model on human mobility and

community-structure, and use this model for making routing decisions. Compared to

DTN protocols, PSN protocols make use of more information about the network, and

in return aim to find faster paths to the destination with low message overhead (by

involving a small number of selected nodes for message forwarding).

In a break from previous routing protocols, PRO Routing treats node encounters

as periodic patterns and exploit them to predict the times of future intercontacts. Our

profile-based estimation of intercontacts yields an accurate ranking of the potential

forwarding nodes as to their ability to deliver the message earlier to the destination.

Our protocol uses self-learning nodes, and does not require pre-tuning. The protocol

is completely decentralized and local to the nodes.

We validate the performance of our protocol with the “Reality Mining” dataset [42]

containing more than 350K hours of celltower connection and blue tooth connection

data. Our results show that PRO achieves similar success rate and latency (10% less

success and 10% more delay time) as the epidemic routing [114] with less than half the

communication cost of the epidemic routing. PRO also outperforms the Prophet [78]

and Bubble-rap [57] routing protocols (at least 20% less delay time and 25% more
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success) with less communication cost (at least 25% less communication than these

two protocols).

1.5 Outline of the Dissertation

The dissertation is organized as follows.

In Chapter 2, we present the related work for this dissertation. We discuss the re-

cent developments in ubiquitous computing, recent applications utilizing smartphones

as sensor nodes, mobile web services and related work for Pocket Switched Networks

in this section.

In order to discover mobility model for cell phone users in city wide level, we

present a complete framework in Chapter 3, the Mobility Profiler, for discovering

mobility profiles from raw cell based connection data. For enabling lightweight smart-

phone applications, we discuss TRACK ME framework in Chapter 4, a middleware

that provides a web based lightweight personalized mobility service for smartphone

applications on top of location tracking and mobility profile construction systems.

In Chapter 5, we propose crowd-sourced sensing and collaboration system over

Twitter in order to utilize location tracking capability and ubiquitous nature of smart-

phones for social collaboration. In Chapter 6, we propose PRO routing; mobility

profile aware, fast (low-delivery-latency) and efficient (low-message-overhead) adhoc

routing protocol for developing regions and environment where connectivity occurs

intermittently. Finally, we give concluding remarks in Chapter 7.
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CHAPTER 2

RELATED WORK

2.1 Cellphones as Sensor Node and Mobility Analysis

Researchers have started to investigate models and architecture for collecting data

from privately hold mobile sensors [14, 30, 71, 81, 90]. Karause et al. [71] propose

a model for community sensing that enables to share data from personal sensors

like cameras or cell phones. They have showed feasibility of their approaches on

a traffic monitoring case study. Hull et al. [30] designed CarTel systems that has

a GPS sensors and cameras on cars to monitor their movements and send this via

opportunistic message forwarding.

There are several recent works on the benefits of using cell phones as sensor nodes

for city-wide sensing applications [4, 29, 66, 68, 94]. Mobile Landscape project [101]

is one of the most comprehensive city wide application in which the celltower location

data is analyzed for visualization of population migration and traffic density. Another

work similar to Mobile Landscape project is carried by Context group from University

of Helsinki. They have provided the solution for clustering and route prediction

problem for mobile cell phone users by using cell based location data [7, 73, 74].

These works include the definition of user routes from cellular data; however, they do

not investigate modeling of mobility.

Cell based location data collected from cell phones was also used for mining hu-

man behaviors and social networks analysis [42, 85, 98]. These works include finding

social patterns in user’s daily activity, extracting relationship among individuals and

identifying socially important locations. Another interesting application of cell based
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location data is the opportunistic message forwarding [32, 35, 77, 115]. The op-

portunistic message forwarding is performed by analyzing similarity of individual’s

mobility behaviors with respect to locations they have visited frequently.

Human mobility has been a focus of interest by recent work in wireless networks

and ubiqitious computing research community. Musolesi et al. [89] present an ex-

tensive survey on mobility models. They divide general mobility models into two

categories called traces and synthetic models, the latter being more common due to

the difficulty in gathering publicly available traces. Garetto et al. [47], Hsu et al. [62]

and Lee et al. [75] propose models for human mobility in Wi-Fi environments. Rhee et

al. [102] analyzed human mobility by using GPS data and they proposed that human

mobility shows levy walk behaviour. Ghosh et al. [48] examines the human mobility

based on semantically related locations forming orbits at different hierarchies by us-

ing location data obtained from GPS. Nurmi et al. [93] proposed clustering methods

for finding important locations of cell phone users. Their approach uses cell based

location data and models the cell tower network as graph based on cell transitions.

A GPS based fine-grained we based mobility analysis systems was also studied in

the previous works [72, 122] but these works are also lack of proposing general profiles

and efficient query interfaces for processing them. In addition to that built-in GPS

technology brings several challenges in smartphone environment since these devices

has very poor localization performance in indoor environment and up to 5 meters

proximity of buildings. This challenge also results in unstable location tracking since

the cellphone may not read the location data for significant amount of time. This

type of bigger time gaps in location sampling makes mobility profiling very difficult.

Therefore these works [72, 122] analyze limited mobility behavior such as while

driving vehicles. The detailed discussion about problems with GPS technology on a

comprehensive real case study can be found in the Gaonkar et al. [46].

8



In the very recent work, Gonzalez et al. [49] analyzed the mobility patterns of 100K

mobile phone users by using cell based location data. Unlike the Levy walk nature of

human mobility [102], that study proves that human trajectories show a high degree

of temporal and spatial regularity. They showed that each cell phone user tends to

move between most important locations (namely top-k locations). Their findings are

also supported by our Mobility Profiler project since we show that an average 85%

of total time are observed in the top locations of the users and the most frequent

mobility patterns are the ones between these top locations.

Human mobility is also used for optimizing load balancing, resource consumption,

paging overhead and network planning in cellular networks. MarkouDiakis et al. [82]

proposes a hierarchical mobility model for optimizing network planning and handover

rate in celluar environments. Their hierarchical model analyzes human mobility in

three levels which are City Area, Area level and Street Unit levels. Zanoozi et al. [123]

analyzes human mobility inside the single cell for optimizing cell residence time. Liu

et al. [80] propose a mobility prediction model for optimizing cell handover residence

time. Their method employs Markov Model and Kalman Filter to predict when a

mobile node crosses cell boundaries. Bhattacharya et al. [21] utilized prediction model

to reduce paging overhead in celluar networks by limiting the number of possible cells

that user may enter. Akyildiz et al. [8] proposes a method for predicting future

location of mobile node by using moving direction, velocity, current position and

historical records. Their results showed that proposed model increase the performance

of network in terms of location tracking cost, delays, and call dropping/blocking

probabilities. Cayirci et al. [31] showed how mobility pattern of mobile can be used

to optimize location update in celluar networks.
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2.2 Web Services for Mobile Users

Web Service paradigm [9] is currently developing very quickly and several web ser-

vices are developed for providing functionality to different applications in distributed

and heterogeneous environments [19, 79]. The combination of web service and smart-

phone technology [33, 91, 118] brings several opportunities to end users for accessing

information at anywhere at any time.

Recent advances in technology bring ubiquitous devices and web services together

and researches started to investigate suitable interfaces for ubiquitous devices in order

to perform messaging and querying tasks over web servers. A similar work in this

perspective is given in [79] where declarative web service based query interface is

developed in order to execute user tasks in sensor-rich environment. Berger et al. [19]

proposes implementation of personal web services for mobile devices. In another

work, Tian et al. [112] analyses performance constraints of web services in limited

environments such as PDAs and smartphones. Location-aware mobile services [65]

also becomes more popular with the recent advances in these mobile devices.

2.3 Crowd-Sourced Sensing and Social Collaboration

Crowd-sourcing means distributing a query to several users in order to gather and

aggregate the results and exploit the wisdom-of-crowds effect. Examples of crowd-

sourcing may varied from weather/rainradar (with better precision and ground-truth

than meteorological weather radars) to polling for the best restaurant entree in town.

For developing countries of the world, crowdsourcing can utilize interesting in-

centives. Eagle [41] developed the txtagle system to crowdsource translation, tran-

scription and survey tasks to mobile phone users in Nigeria. With txteagle, users

earn mobile phone airtime or mobile money upon completing tasks that are sent to

them via text messages. Citizens’ interest in shaping their own city is also a strong

incentive. Brabham [24] proposes harnessing creative ideas for city planning from
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web users. Another platform, SeeClickFix1, creates a vital link for city inhabitants

to report the problems to the government.

Social collaboration applications [13, 86] are more sophisticated than crowd-sourcing

applications in that they require back-and-forth interaction in contrast to the asym-

metric one-shot interaction involved in crowd-sourcing. Examples of social collabo-

ration applications include pick-up soccer games, arranged ride-sharing, community-

organization events, support groups for addicts, and support groups for exercising

and weight-watching.

Recently, cultural institutions are developing platforms where users collaborate on

creating rich media for an art exhibit. In the m-Dvara project by Coppola et al [34]

visitors can record media and comment on the art pieces, and the new visitors can

surf internet to read comments and see which art pieces are most recommended.

Governments can greatly benefit from the synergistic effect of large scale collabo-

ration. In a test case in India, 5000 students from more than 100 Indian institutions

worked on e-Government projects to win a prize, and as the students competed for

the best applications, the government benefited from receiving applications for free

[105].

2.4 Integrating Sensors and Smartphones for Crowd-Sourcing

With the advances in MEMS technology in the previous decade, it has become

feasible to produce various types of sensors (such as magnetometers, accelerometers,

passive-infrared based proximity, acoustics, light, heat) inexpensively, in very small-

form factor, and in low-power usage. Moreover there has been nearly a decade of

research in wireless sensor networks (WSNs) and some real-world deployments of

WSNs have been successfully demonstrated [10, 11, 109, 117]. As such, WSNs offer

1http://seeclickfix.com/
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an untapped source of information about our physical world. However, WSNs have

not achieved the broad impact and visibility it deserves. Not only are we far away

from “a central nervous system for earth”, there is no significant market penetration

for WSNs yet.

Arguably the greatest barrier against wider adoption of WSNs is the difficulty in

locating sensors and subscribing to them. Twitter can provide an “open” publish-

subscribe infrastructure for sensors, as well as the search/discovery of sensors with

certain attributes. The popularity of Twitter have already resulted in the production

of inexpensive specialized devices for microblogging. TwitterPeek [2] is a good ex-

ample of this trend. TwitterPeek enables the user to tweet and follow Twitter from

anywhere (no WiFi necessary) using the cellular data network to connect to Twitter.

One can buy TwitterPeek for a low, one-time fee and get connectivity service for the

lifetime of the device –without any bills ever. The reason TwitterPeek is able to offer

a powerful device at a low price is because of the benefits of mass production.

Apart from Micro-blogging web sites such as Twitter, Smartphones are another

key vehicle for Crowd-sourcing. They provide significant advantages over traditional

wireless sensor nodes [87, 100]. Firstly, smartphones are mobile. Wherever a smart-

phone user goes, smartphone can take sensor readings (with built-in sensors for acous-

tic, image, video, accelerometer, tilt, magnetometer, and potentially with other in-

tegrated custom sensors). The dynamic geolocation feature of smartphones enables

these readings to be location and time-stamped. Thus, in contrast to WSN nodes that

are tied to static locations, and do not scale for coverage of large areas, smartphones

cover large areas due to their mobility.

Participatory sensing is the use of volunteering smartphones to collect data from

a large region. Although there has been significant work on participatory sens-

ing [29, 45, 88], using Twitter opens up novel improvements on this application do-

main. Twitter’s open publish-subscribe system enables others to use the gathered
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data in unanticipated ways and offer new services over them. Moreover Twitter’s

social network aspect enables new features to be added to participatory sensing.

For example, when one of the users have performed significant amount of participa-

tory sensing but her friend and competitor (Twitter enables using lists for follow-

ers/friends) have not done anything for that week, our system can send a reminder

message for that friend.

2.5 Routing in Pocket Switched Networks

Delay Tolerant Networks (DTNs), which are also known as intermittently con-

nected networks, or opportunistic, store-and-forward networks [15, 44, 60, 78, 104]

investigate routing techniques that would be of use in the above scenario. In DTNs,

nodes are free to move and no centralized network infrastructure exists to provide

communication among these mobile nodes. Instead, DTN routing protocols exploit

the capability of nodes to perform a peer-to-peer data exchange with other nodes

they encounter and strive to achieve data transfer even when the connectivity in the

network is intermittent.

Recently Pocket Switched Networks (PSNs) [32, 55, 64, 97, 99] have been formu-

lated as a subfield of DTNs where each node represents a person with a communi-

cation device. Here we categorize and present PSN routing protocols in three broad

categories:

Flooding-based protocols. In DTNs, replication of the original message is

an effective way to increase the probability of successful delivery to the destination.

Epidemic routing [114] is a representative example of these type of flooding-based

routing protocols. In epidemic routing, the messages in the network diffuse like viruses

by pairwise contacts between nodes: when two nodes encounter they exchange all of

their messages. A node is infected if it accepts a message from another node for

forwarding.
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The advantage of the epidemic routing is that it has low latency, and it determines

a lower limit for the latency of message delivery. On the other hand, too many copies

of the initial message increase the overhead drastically in terms of traffic congestion

and energy. Several versions of the epidemic routing protocol [52, 121] have been

proposed in order to limit the message overhead by imposing constraints such as time

limit, maximum hop count, forwarding probability or applying different back-infection

techniques to inform nodes about the successful delivery of the message.

Probabilistic model-based protocols. A second category of DTN routing

protocols is based on proactive assumptions about node mobility. Random way-point

model [63], reference point group mobility model [54], and entity based approaches [61,

110] are examples of this category. These protocols assume/impose a mobility model

a priori instead of constructing a model after studying real data.

A representative protocol in this category is Prophet routing [78]. The idea be-

hind Prophet is that the probability of message delivery can be calculated by using

transitive delivery probabilities. When node i meets node j, the delivery probabil-

ity of node i for j is updated as Pi,j(k + 1) = (1 − Pi,j(k)) ∗ P0 + Pi,j(k). Here,

P0 = 0.75 is the initial probability given as an input to the system. When node

i and j do not meet for m periods, the delivery probability is decreased exponen-

tially using an aging factor: Pi,j(k + m) = αm∗Pi,j(k). Prophet uses the transitive

delivery probability when making forwarding decisions. When node i and j meet, i

computes the delivery probability to z through j by using the formula: Pi,z(k + 1)

= (1 − Pi,z(k))∗Pi,j(k)∗Pj,z(k)∗β + Pi,z(k). Here β = 0.25 is a parameter denoting

the impact of transitivity. i forwards a message for destination z to j, if j has higher

delivery probability than i, which holds when Pi,z < Pj,z.

History and social network based protocols. This last category is the one

most suited for routing in PSNs. History based approaches [36, 39, 51, 78, 111] depend

on the previous observation data in order to predict future interactions. The idea is
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that if a mobile node has observed another mobile node frequently, the probability of

observing the same node is also high in the future. Social network based approaches

[23, 35, 57], on the other hand, use social network structure of humans in routing

decisions.

Bubble-rap [57] is a representative protocol in this category, as it considers the im-

portance of individuals in social networks for making forwarding decision. Bubble-rap

is based on two popularity ranking metrics, called global and local ranking. Global

ranking stands for the popularity of the individual in the whole social network cal-

culated as the average number of people the individual observed in recent time slices

(e.g., the last six hour time slice). Local ranking is the ranking of each individual

in its local community proportional to the average number of people observed in the

same community. Forwarding decisions in Bubble-rap are taken by considering these

two popularity metrics:

• When two nodes meet, if the sender node is in the same community with the

destination of the packet, Buble-rap checks for whether the encountered node

is also in the same community, if so the local rankings of sender and potential

forwarder are compared; if the encountered node wins, the packet is forwarded.

• If the sender is not in the same community with the destination of the packet,

Buble-rap forwards the packet to the encountered node if the encountered node

is in the same community with the destination of the packet or if the the global

ranking of the encountered node is bigger.

15



CHAPTER 3

MOBILITY PROFILER: A FRAMEWORK FOR
DISCOVERING MOBILITY PROFILES OF CELL PHONE

USERS

Mobility path information of cell phone users play a crucial role in a wide range of

cell phone applications, including context-based search and advertising, early warn-

ing systems, city-wide sensing applications such as air pollution exposure estimation

and traffic planning. However, there is a disconnect between the low level location

data logs available from the cell phones and the high level mobility path information

required to support these cell phone applications. In this paper, we present formal

definitions to capture the cell phone users’ mobility patterns and profiles, and pro-

vide a complete framework, Mobility Profiler, for discovering mobile cell phone

user profiles starting from cell based location data. We use real-world cell phone log

data (of over 350K hours of coverage) to demonstrate our framework and perform

experiments for discovering frequent mobility patterns and profiles. Our analysis of

mobility profiles of cell phone users expose a significant long tail in a user’s location-

time distribution: A total of 15% of a cell phone user’s time is spent on average in

locations that each appear with less than 1% of total time.

Outline of the chapter: The next section explains Reality Mining data set and

overview of mobility profiler architecture. Section 3.2 gives the details of mobility

profiler including definition of mobility path concept, mobility path construction,

mobility pattern discovery, mobility profiles. The experimental results on the data

set are presented in section 3.3.
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3.1 Preliminaries

3.1.1 Reality Mining Data Set

The dataset for our work is collected by the Reality Mining project group from

MIT Media Labs, that performed an experimental study involving 100 people for the

duration of 9 months. Each person is given a Nokia 6600 cell phone with a software

that continuously logs data about the location of the cell phone. Due to the lack of

GPS in the Nokia 6600, the location is recorded not in terms of an exact longitude-

latitude pair, but rather in terms of the cell tower currently connected. In order

to render the cell tower ids meaningful, the cell phone software prompts the user to

provide a tag when it encounters a new cell tower. This way, some cell tower locations

were able to be tagged semantically with a specific meaning for that user.

The logged data from all the cell phones total around 350K hours of monitoring

time and fit into a database of 1GB size. The necessary data for our mobility profiler

framework are stored in four tables. Figure 3.1 shows the database schema that

presents the relation between these tables. The Cellspan table stores the connectivity

information of a person to a cell tower. The Cell name table stores user-specific

semantic tags for cell towers. Cell tower and Person tables store all the cell tower and

cell phone user information. The name field in the Cell tower table denotes the cell

tower’s broadcasted real name (a numerical id). 

person 

PK oid 

 name 

password 

email 

 

cellspan 

PK oid 

 

 

FK1 

FK2 

starttime 

endtime 

person_oid 

celltower_oid 

 

celltower 

PK oid 

 name 

 

cellname 

PK oid 

 

FK1 

FK2 

name 

person_oid 

celltower_oid 

 

Figure 3.1: Mobility Profiler Database
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3.1.2 Overview of the Mobility Profiler Framework

Figure 3.2 illustrates the general architecture of our framework. We start with

the “path construction” to construct ordered set of cell tower ids that correspond to

a user’s travel from one end-location to another. Then, we apply “cell clustering” to

gather the oscillating cell towers in the same group and replace the cell towers with

their corresponding clusters so as to remove the oscillation problems on the paths.

After the cell clustering, we apply the “topology construction” using the paths of cell

clusters as input. The resultant topology information of clusters are employed for

eliminating the majority of the candidate path sequences to expedite the “pattern

discovery”.
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Figure 3.2: Mobility Profiler Framework

In the pattern discovery phase, we discover the frequent mobility patterns of

each user separately. This task is executed efficiently by employing the topology

information and a string matching support criteria (which we discuss later). In the

“post processing” phase, we generate cell phone user profiles from their personal

mobility patterns by adding the time-context information to the patterns and we

generate time distribution data by using paths of cell clusters.
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3.2 Mobility Profiler

In this section we present the five phases of the Mobility Profiler framework in

detail.

3.2.1 Path Construction Phase

Before we proceed to present the construction of the mobility paths for users, we

give some basic definitions.

The connectivity information (of a person to a cell tower) stored in the cell span

table is gathered as follows. When a cell tower switching occurs, the end time for

the previous cell tower is captured and a new record is created in the cell phone

that contains the start and end time for that previous cell tower. Simultaneously,

the start time for the new cell tower is recorded and is kept until the next cell tower

switching occurs. There may also be an unaccounted time-gap between two cell tower

switchings due to disconnection from all base stations or turning off the cell phone.

To account for these, we define two time intervals:

Definition (Cell Duration Time): Cell duration time is the difference between

end and start time for each cell span record L, that represents the connectivity infor-

mation to a particular cell tower. The cell duration time for each cell span record is

calculated as:

Lk
dur = Lk

end − Lk
start (3.1)

Here Lk
dur is the cell duration time for kth cell span record, Lk

end is the connection

end time and Lk
start time is the connection start time for that entry.

Definition (Cell Transition Time): Cell transition time is the difference be-

tween the end and start time of two contiguous cell span record belonging to the same
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subject in the Reality Mining study (i-th user). The cell transition time is calculated

as:

Lk
(i)tra = Lk+1

(i)start − Lk
(i)end (3.2)

Here Lk
tra is the kth cell transition time of the user, Lk

end is the connection end

time for the (k)th cell-span record for that user and Lk+1
start time is the connection start

time for (k + 1)th cell-span record for the same user.

Definition (Observed End-Location): An observed end-location record cor-

responds to a cell tower location Ck where the duration time Lk
dur is greater than

predefined threshold δduration (we explain determining threshold later):

Lk
dur > δduration (3.3)

To illustrate; consider a user arriving to her work place where she stays connected

to a cell tower for 5 hours. Then, the user leaves for home and a cell switching occurs.

Since Ldur = 5 hours is larger than δduration time (of say 10 minutes) the cell location

Ck is accepted as an end-location.

Definition (Hidden End-Location): A hidden end-location between two con-

secutive cell span record kth and (k + 1)th corresponds to a location Hk in which the

user stayed longer than a predefined upper bound δtransition:

Lk
(i)tra > δtransition (3.4)

This inequality states that a hidden location occurs when a significant amount of

time is elapsed during cell transition. To illustrate, consider a user that switches her

cell phone at a movie theater and then switches it back on at home after 3 hours.
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Since the transition time (3 hours) exceeds the threshold δtransition (say 10mins), we

say that the user has been in an unknown hidden end-location Hk for these time

intervals. The same case occurs when user is out of cell phone connectivity range for

a significant amount of time.

Note that the Cell span table does not store “related” cell-span records together.

The main idea of the mobility path is to group cell span records together to correspond

to users’ travel from one end-location to another. We define mobility path formally

as follows:

Table 3.1: An example cell span data set

oid p oid Tstart Tend Tdur Ttra cell id
1 1 0 4 4 −1 C1

2 1 6 9 3 2 C2

3 1 9 13 4 0 C3

4 1 15 23 8 2 C5

5 1 23 27 4 0 C3

6 1 27 30 3 0 C1

7 1 41 45 4 11 C2

8 1 49 50 1 4 C3

9 1 56 58 2 6 C1

10 1 58 61 3 0 C3

11 1 62 66 4 1 C4

Definition (Mobility path): A mobility path C = [C1, C2, C3, . . . , Cn] is an

ordered sequence of cell tower ids corresponding to the cells that a user visited during

her travel from one end-location to another. The mobility path must satisfy the

following two rules:

End Location Rule:

• ∀Ck ∈ C,Lk
dur > δduration ⇒ k = 1 or k = |C|

Transition Time Rule:

• ∀Ck, Ck+1 ∈ C ⇒ Lk+1
start − Lk

end < δtransition
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The first rule states that the observed end-locations can only be the first or last

locations of the mobility path. Since the paths can also be terminated due to a

hidden end-location, the dual of this rule is not true. This rule also implies that for

any location that is neither the first nor the last location, the duration time should

be smaller than or equal to the predefined maximum cell duration threshold δduration.

The intuition behind this rule is that if a cell phone user stays for a significant amount

of time in a cell area Ck, then Ck should be taken as an end-location and the current

path should be terminated.

The second rule states that the elapsed time for each cell tower transition within

the path should not be greater than a predefined threshold δtransition. Thus, a cell

phone user can not visit a hidden end-location within the path, otherwise the current

path is terminated. The intuition behind the second rule is that if a user stays a

significant amount of time outside cell phone connectivity, she may travel to locations

that are not captured. In that case, merging hidden locations with previous locations

increases the error and leads to noisy data in the paths.

One may argue that there is no need to use transition time threshold and hidden

end location concept, instead duration threshold between the starting times of con-

secutive cell span records is sufficient to detect end locations. However, there will be

boundary cases in which the sum of consecutive duration and transition time exceed

end time threshold, although none of them can not exceed threshold alone. We are

going to show example case study of this with the cell span records given in Table 3.1.

In this table Tstart and Tend correspond to start and end of connection times for cell

towers. Tduration and Ttransition times are calculated according to the definitions of cell

duration and cell transition times. The transition time of the first record is −1 since

we do not have any cell span record before that record. Here p oid corresponds to

user id of current record and oid is the unique id of each cell span record.
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Algorithm 1 Mobility Path Construction

1: Input: (L, δduration, δtransition )

2: L: // The set of input records sorted with respect to time

3: global variables: fSet, tSet // final and temp Path Set

4: Procedure CreateNewPath (p oid, cell, start, end) // p oid is the user id for current record

5: cellSeq := (cell, start, end)

6: tSet := tSet ∪ (p oid, cellSeq)

7: End Procedure

8: Procedure PathConstruction (L, δdur, δtra)

9: fSet := {}

10: tSet := {}

11: For Each Li of L

12: duri := endi − starti

13: If duri ≤ δdur Then

14: If ∃ pathk ∈ tSet and p oidk = p oidi Then

15: If (starti − endT ime(pathk)) ≤ δtra Then

16: pathk := (p oidk, cellSeqk ∪ (Ci, starti, endi))

17: Else

18: fSet := fSet ∪ pathk

19: tSet := tSet − pathk

20: CreateNewPath(p oidi, Ci, starti, endi)

21: End If

22: Else

23: CreateNewPath(p oidi, Ci, starti, endi)

24: End If

25: Else

26: If ∃ pathk ∈ fSet and p oidk = p oidi then

27: If (starti − endT ime(pathk)) ≤ δtra Then

28: pathk := (p oidk, cellSeqk ∪ (Ci, starti, endi))

29: fSet := fSet ∪ pathk

30: tSet := tSet − pathk

31: CreateNewPath(p oidi, Ci, starti, endi)

32: Else

33: fSet := fSet ∪ pathk

34: tSet := tSet − pathk

35: CreateNewPath(p oidi, Ci, starti, endi)

36: End If

37: Else

38: CreateNewPath(p oidi, Ci, starti, endi)

39: End If

40: End If

41: End For Each

42: End Procedure
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For the example case study, if we use δduration = 7, the current path after L7 is

stopped since L8
start − L7

start = 8 > δduration = 7. However, if we use both of the time

constraints and take δduration = δtransition = 7 , we do not need to end current path

after L7 since the following conditions are satisfied:

• L7
end − L7

start = 4 ≤ δduration

• L8
start − L7

end = 4 ≤ δtransition

• L8
end − L8

start = 1 ≤ δduration

We present the details of our method in Algorithm 1 and provide example run of

the algorithm on Table 3.1 with δduration = 7 and δtransition = 5. When processing

first record of Table 3.1, the algorithm creates an initial path containing only the first

cell tower, [C1]. The algorithm terminates the current path with the cellspan record

oid = 4, since there Tduration > δduration . Thus, the current path [C1, C2, C3, C5] is

written to the database.

Since the end-location [C5] is an observed end-location, the new path is initialized

as [C5]. The algorithm continues until cellspan record oid = 7, where Ttransition >

δtransition. The algorithm terminates the current path [C5, C3, C1] before appending

the current cell tower C2. Since the user enters a hidden location after cell C1, C2 is

not appended to the previous path and a new path [C2] is initialized. The algorithm

then continues to process cell-span records until all records are exhausted. When the

algorithm stops, the the mobility paths in Table 3.2 are generated:

Table 3.2: Reconstructed Path Set

PathId Path
1 [C1, C2, C3, C5]
2 [C5, C3, C1]
3 [C2, C3]
4 [C1, C3, C4]
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Mobility paths are low level structures of our framework, they are not used di-

rectly for any application purpose. However, mobility paths are processed by pattern

discovery algorithm in order to generate mobility patterns which are the core ele-

ments of mobility profiles. In the next section, we present removing oscillation effect

included mobility paths.

3.2.2 Removing The Oscillation Effect

3.2.2.1 Oscillating Pair Detection

A major problem with the cellular network connectivity data is that a cell phone

may dither between multiple cells even when the user is not mobile. A similar problem

was also addressed in the Wi-Fi networks referred as the ping-pong effect [75]. The

approach mentioned in [75] for solving ping-pong effect proactively asserts a simple

hexagonal tiling of the cells to restrict the oscillation patterns between at most three

immediate cell neighbor of a point. However, in cellular networks, the geometry can

not be constrained to hexagonal tilings (Figure 3.3). In addition, significant amount of

oscillations are caused by load balancing in metropolitan areas and involve arbitrary

number of neighboring cell towers. Therefore, we propose two-phase reactive approach

to solve this problem.

 

Figure 3.3: Locations of cell towers in Boston Area

25



In the first phase, we explore the oscillating cell tower pairs by examining repeated

patterns in the cellular connectivity data and generate oscillation graph of cell towers

by using oscillation relation. We define an oscillating cell pair as a pair of of cells

that have k mutual switches with each other in a mobility paths. For example, given

a mobility path P = [x, y, x, w, v, w, y] and minimum switching count k = 3, < x, y >

becomes the only oscillating pair. The first switch occurs from x at index = 1 to y

at index = 2, the second switch from y at index = 2 to x at index = 3, and finally,

the third switch occurs from x at index = 3 to y at index = 7. We do not force the

cell tower ids to be in consecutive positions since there may be several cell towers in

the limited area where the population is very dense and frequent switching occurs

due to load balancing purposes. In this case, the cell phone may oscillate between

more than two cell towers. Therefore, we allow existence of other cell towers between

consecutive switches. In addition to that, we do not allow observed or hidden end

locations within mobility paths (except first and last location) which may result in

significant time difference between two switches.

Using the pairs of oscillating pairs in given sequences, we define oscillation support

of cell tower pair < x, y > as the ratio of the number of sequences that the pairs

< x, y > is oscillated over the number of sequences that x and y occurs together.

(Here Si denotes ith mobility path in the path database)

s < x, y >=
|{Si|∀i < x, y >∈ Si∧ < x, y > is oscillated}|

|{Si|∀i < x, y >∈ Si}|
(3.5)

Oscillation support is a good candidate for weight at edges in the oscillation graph

as larger values corresponds to more likely oscillations and the value is normalized to

[0, 1] interval. The formal definition of oscillation graph is given below:
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Definition (Oscillation Graph): An oscillation graph G = (V,E) contains the

set V of cell towers as vertices and the set E as the set of weighted edges between

oscillated cell towers with their support as weights.

Algorithm 2 Weight Based Hierarchical Graph Clustering

1: Input: G: Oscillation Graph, δ: Quality Threshold

2: K : Maximum Size of the Cluster

3: Output: C : Set of Clusters

4: procedure clusterGraph (G,δ,K)

5: C := {}

6: While G 6= {}

7: e = bring lowest weight edge()

8: G.remove(e)

9: For Each disconnected part G′ of G

10: If G′.size() ≤ K and Q(G′) ≥ δ Then

11: C := C ∪ G′

12: G.remove(G′)

13: end If

14: end For Each

15: end While

The output of the first phase is the oscillation graph of cell tower pairs defined

above. In the second phase, we apply graph clustering algorithms on oscillation graph

in order to identify dense cell tower groups.

3.2.2.2 Cell Clustering

In this section, we introduce weight based hierarchical graph clustering approach

for finding dense cell tower groups in the oscillation graph. The optimal graph clus-

tering problem with respect to objective function is an NP-Hard problem, the reader

can find very detailed discussion about recent graph clustering methods in [25, 26, 59].

Our hierarchical method is greedy approach and it gradually removes the edges from

the initial graph by choosing edge with lowest weight at each iteration. After re-

moving edges, our method checks the quality of the disconnected components of the

graph by calculating quality metric which is defined as the ratio of sum of weights of
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edges inside the cluster over sum of weights of edges that goes outside from the same

cluster in the initial graph:

Q(C) =

∑

∀e∈Cin

w(e)

∑

∀e∈Cinter

w(e)
(3.6)

At any step, if the quality value of the any disconnected component is greater

than predefined threshold, corresponding component is removed from the current

graph and that component becomes separate cluster. The clustering process continues

recursively until all of the nodes are consumed. The pseudocode for hierarchical

graph clustering method is given in Algorithm 2. After generating final clusters, we

replace cell tower ids in the mobility paths with their corresponding cluster ids. By

this way, we obtain mobility paths of cell clusters instead of cell towers. Then, we

use location information (location tags) of cell towers to assign user specific location

name to each cluster. In addition to that, each cluster has global tags for representing

global mobility patterns. For the global tags we have used majority voting among all

users who assigned location name of any cell included in that particular cluster. The

important point here is that these tags are used for only visualization purposes and

they have no side effect on any process in the framework. Each cluster is assigned

unique cluster id and this id is used for identifying the clusters through the framework.

In the experimental results section, we give the detailed comparison of our clus-

tering methods with other clustering approaches. In the next section, we discuss the

topology construction from mobility paths including cell clusters.

3.2.3 Topology Construction

Topology construction is used to eliminate majority of candidate path sequences

during the pattern discovery phase. In general, pattern discovery problem is solved
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by an exponential time algorithm, which may take a significant amount of time to

execute. By employing the cell cluster neighborhood topology during pattern discov-

ery, the candidate sequences which can not possibly correspond to a path on the cell

cluster topology graph can be eliminated without calculating their supports.

Algorithm 3 Topology Construction

1: Input: S: The Set of all paths in terms of clusters

2: procedure createTopology (S)

3: TopologyMatrice[][] := null

4: For Each Si of S // S is whole set

5: for each (Ck and Ck+1) ∈ Si

6: If TopologyMatrix[Ck][Ck+1] = null Then

7: TopologyMatrix[Ck][Ck+1] = true

8: end If

9: end For Each

10: end For Each

11: end procedure

The pseudocode for the topology construction method is given in Algorithm 3.

Since we have user mobility paths as input, the cell cluster topology construction is

an easy process by one scan through these paths. In this process, an edge between

the cell cluster pairs Ck and Ck+1 is created if both of them exist in any path in

consecutive positions.

3.2.4 Pattern Discovery

In this phase, frequent mobility patterns are discovered from mobility paths. There

are several algorithms in the literature for the sequential pattern mining such as

GSP[108], SPADE[120] and PrefixSpan[96] etc. Although it is not the most recent or

the most efficient one in the literature, we use a modified version of the AprioriAll[6]

technique. This technique is suitable for our problem since we can make it very

efficient by pruning most of the candidate sequences generated at each iteration step of

the algorithm using the topological constraint mentioned above: for every subsequent
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pair of cell-clusters in a sequence, the former one must be neighbor to the latter one

in the cell-cluster topology graph.

Here we call the modified version of AprioriAll algorithm as Sequential Apriori

Algorithm. An important criteria in our domain is that a string matching constraint

should be satisfied between two sequences in order to have support relation. For

example, the sequence < 1, 2, 3 > does not support < 1, 3 > although 3 comes after 1

in both of them. However, sequence < 1, 3, 2 > supports < 1, 3 >. A path S supports

a pattern P if and only if P is a subsequence of S not violating the string matching

constraint. We call all the paths supporting a pattern as its support set.

Sequential Apriori Algorithm (Algorithm 4): In the beginning, each cell

cluster with sufficient support forms a length-1 supported pattern. Then, in the main

step, for each k value greater than 1 and up to the maximum reconstructed path

length, candidate patterns with length k+1 are constructed by using the supported

patterns (frequency of which is greater than the threshold) with length k and length

1 as follows:

• If the last cell cluster of the length-(k) pattern is incident to the cell cluster of

the length-1 pattern, then by appending length-(1) cell cluster, length-(k+1)

candidate pattern is generated.

• If the support of the length-(k+1) pattern is greater than the required sup-

port, it becomes a supported pattern. In addition, the new length-(k+1) pat-

tern becomes maximal, and the extended length-(k) pattern and the appended

length-(1) pattern become non-maximal.

• If the length-(k) pattern obtained from the new length-(k+1) pattern by drop-

ping its first element was marked as maximal in the previous iteration, it also

becomes non-maximal.

• At some k value, if no new supported pattern is constructed the iteration halts.
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Note that in the sequential Apriori algorithm, the patterns with length-k are

joined with the patterns with length-1 by considering the topology rule. This step

significantly eliminates many unnecessary candidate patterns before even calculating

their supports, and thus increases the performance drastically.

Algorithm 4 Sequential Apriori

1: input: Minimum support frequency: δ, Paths of clusters: S

2: Topology Matrix: Link, The Set of all Cell Clusters: C

3: output: Set of maximal frequent patterns: Max

4: procedure sequentialApriori (δ, S, Link, C)

5: L1 := {} // Set of frequent length-1 patterns

6: for i:=1 to |C| do

7: L1 := L1 U [Ci] | if Support([Ci],S) > δ

8: for k = 1 to N − 1 do

9: if Lk = {} Then

10: Halt

11: else

12: Lk+1 := {}

13: for each Ii ∈ Lk

14: for each Cj ∈ C

15: if Link[LastCluster(Ii), Cj ] = true

16: T := Ii • Cj // Append Cj to Ii

17: if Support(T, S) > δ Then

18: T.maximal := TRUE

19: Ii.maximal := FALSE // since extended

20: V := [T2, T3,. . . , T|T |] // drop first element

21: if V ∈ Lk Then

22: V.maximal := FALSE

23: Lk+1 := Lk+1 U {T}

24: end if

25: end if

26: end if

27: end for each

28: end for each

29: end if

30: end for

31: Max := {}

32: for k := 1 to N − 1 do

33: Max := Max U {S | S ∈ Lk and S.maximal = true }

34: end for

35: end procedure
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An auxiliary function Support(I:Pattern,S) determines whether a given pattern

has sufficient support from the given set of reconstructed user paths. Support of a

pattern I is defined as a ratio between the numbers of reconstructed paths supporting

the pattern I, the number of all mobility paths S generated in path construction

phase.

Support(I) =
|{Si|∀i I is substring of Si}|

|S| (3.7)

In order to make the Sequential Apriori algorithm more understandable, we give

an example execution over the constructed paths in the example in Table 3.2. Let

δ=0.25 be taken as minimum support for the Sequential Apriori algorithm. Then,

the execution of the sequential apriori technique will generate patterns with their

frequencies in four iterations as it is shown in Table 3.3.

Table 3.3: Patterns Generated at each Iteration

Step Patterns Frequencies

1
{< C1 >,< C2 >,< C3 >, {0.75, 0.50, 1.00, 0.25,

< C4 >,< C5 >} 0.50} ≥ 0.25

2

{< C1, C2 >,< C1, C3 >, {0.25, 0.25, 0.25, 0.25,
< C2, C3 >,< C3, C1 >, 0.25, 0.25, 0.25
< C3, C4 >,< C3, C5 >, 0.25} ≥ 0.25

< C5, C3 >}
{< C2, C1 >,< C3, C2 >, {0.0, 0.0, 0.0, 0.0}

< C4, C3 >} < 0.25

3

{< C1, C2, C3 >,< C1, C3, C4 >, {0.25, 0.25, 0.25, 0.25}
< C2, C3, C5 >,< C5, C3, C1 >} ≥ 0.25
{< C1, C3, C2 >,< C1, C3, C5 >,
< C2, C3, C1 >,< C2, C3, C4 >, {0.0, 0.0, 0.0, 0.0, 0.0
< C3, C1, C2 >,< C5, C3, C2 >, 0.0, 0.0, 0.0} < 0.25

< C5, C3, C4 >}

4
{< C1, C2, C3, C5 >} {0.25} ≥ 0.25
{< C1, C2, C3, C4 >, {0.0, 0.0} < 0.25
< C5, C3, C1, C2 >}
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In this table, the patterns in the lower row of each iteration are eliminated due

to their insufficient support. The maximal frequent patterns are shown in bold in

Table 3.3. Since at iteration 5, there are no remaining frequent patterns, the algorithm

stops.

3.2.5 Representing Mobility Profiles

Frequent mobility patterns containing only location information and lacking any

time-context information are inadequate for several applications, including route pre-

diction, early warning systems, and user clustering. Therefore, we add time-context

information to the frequent patterns and integrate them with end locations to obtain

mobility profiles. The definition of mobility profile is given below:

Definition (Mobility Profile): A mobility profile for a cell phone user includes

personal mobility patterns with contextual time data and distribution of spatiotem-

poral locations for that user. The time contextual data for mobility patterns are

specified in two dimensions:

• Days of Week: Each frequent pattern stores its distribution over days of week.

That means, the frequent pattern is tagged with the number of its instances

observed on each day of the week.

• Time Slices: Each frequent pattern stores its distribution over each time slices

given in the set {[12:00 a.m., 6:00 a.m.], [6:00 a.m., 12:00 p.m.], [12:00 p.m.,

6:00 p.m.], [6:00 p.m., 12:00 a.m.]}. That means, the frequent pattern is tagged

with the number of its instances started on each of these time slices.

Apart from the spatiotemporal mobility patterns, mobility profile of each user

contains time distribution data of all locations visited by current user. The time

distribution data is very important since it identifies the importance of each location

that is proportional to the time spend on them.
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3.3 Experimental Results

In this section, we will present our experimental results on MIT reality mining data

set containing 350K hours of cellspan data. For analyzing MIT Reality Mining data,

we have implemented Mobility Profiler Framework on Java Environment. The size

of the source code for the whole framework is around 4KLOC. Our implementation

contains separate module for each of the phases discussed above.

The rest of this section is given as follows: First, we give our results for determining

duration and transition threshold, that are used for constructing mobility paths. For

oscillation effect elimination, we give our analysis for finding minimum switch count

and cell clustering. For the pattern discovery phase, we present examples of interesting

patterns discovered from Reality Mining data and give a case study for representing

mobile cell phone user profile. We have also provide an interesting results related to

the average time distribution of the locations for all users. After that, we illustrate

the benefits of the mobility profiles on location prediction application. Finally, we

present other application areas of our framework.

3.3.1 Determining End Location Thresholds

As it is mentioned in section 3.2.1, path reconstruction process takes as input

L, δduration, δtransition. Therefore, we need to determine δduration and δtransition before

executing path construction process on cell span data L. These two threshold values

are determined by analyzing the ratio of cell span records and cell span transitions

that are smaller than predefined time values in experiment space.

Duration Time Analysis: In order to determine δduration threshold, we define

an experimental duration set {1, 5, 10, 15, 20, 25, 30} which contains 7 different

time values from 1 minute to 30 minutes. Then, we evaluated the ratio of cellspan

records the duration time of which are smaller than these 7 discrete values in our

experiment set. Our analysis is similar to cumulative mass function (CMF) analysis.
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Here, the CMF shows for each value K the probability that a record duration is

smaller than K. Therefore the cumulative function values on y axis (in +y direction)

always increases on +x axes direction. The result of duration time experiment is

given in Figure 3.4. In this figure, the point with the duration threshold 10min and

CMF = 0.94 means the duration time of 94% of all cell span records in the database

is smaller than 10 minutes. As it is easily seen from the graph that the value for all of

duration threshold between [10, infinity) lies between [0.94, 1.00). It is obvious that

there is no significant difference between any arbitrarily large threshold value >> 10

min (where user is static obviously) and 10 minutes in terms of CMF value. In fact,

the curve has a flat tangent after duration time = 10 min which has ratio value of

0.94. However, if we analyze the left part of duration threshold = 10 min. There is

a significant sharp switch between two points having duration of 10 minutes and 5

minutes which also correspond to the first sharp switch on the curve. There exists

approximately 10% difference between these points and 10min seems the ’knee’ point

of this graph. Therefore, we decided to accept the static time threshold as δduration=10

min.
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Figure 3.4: Duration Time Analysis

One can argue that there may be non-static locations in which cell phone user

stays more than 10 minutes. To illustrate, a user may wait 15 minute in bus stop
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which is an intermediate location during her trip from school to home. However, as it

is shown Figure 3.4, this type of behavior is observed rarely since all of the locations

whose duration is greater than 10 min has CMF value lies between [0.94, 1.00) interval.

Another argument is that why don’t we choose another threshold point bigger than

10 minutes. Here the key point is that if we choose another threshold bigger than 10

minutes (say that M minutes where M > 10), all of the points remains in the interval

[10,M ] has CMF values bigger than 0.94. Since the tangent of the line is very small in

this interval, CMF value of these points are closer to CMF values of arbitrarily large

M where the user can not be mobile. This observation states that accepting M as a

threshold accounts for wrong evaluation of majority of the points in interval [10,M ]

since the probability of static observation is more likely in this interval. However, this

argument is not valid for the points on the left of the 10 minutes since the tangent of

the line decreases sharply after 10 minutes in −x direction. Therefore, we accepted

that 10 minutes is a reasonable threshold for δduration time.
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Figure 3.5: Transition Time Analysis

Transition Time Analysis: For determining δtransition threshold, we define an

experimental transition time set with 13 different time values from 1 minute to 60

minutes. We do not take higher values than 60 minutes since it is reasonable to accept

the existence of hidden end locations if transition time is more than 60 minutes. In

36



order to find acceptable value for δtransition time, we use the same metric that is

mentioned above for analyzing δduration time. Unlike the analysis of δduration time,

there is still some visibility problem if we analyze the data without filtering the

regular handoffs that take 0 seconds. In reality mining data set nearly 99.2% of

consecutive cellspan records has regular handoff value that is 0 second that means

the cell phone handles 99.2% of celltower switches immediately. It is obvious that the

user can not be in any hidden end location in this time range. Therefore, we filter

regular handoff times for analyzing δtransition. The result of the second experiment is

given in Figure 3.5. In this graph, we notice that the tangent of line after threshold

time 10 minutes is greater than one in the Figure 3.4 for δduration time. However, we

notice that the tangent of the line is constant after 10 minutes threshold time until 60

minutes. In each neighbor point after 10 minutes, the increase in the cumulative mass

function stays around 2-3%. When we analyze the left part of transition threshold=10

min, we see a significantly sharp drop of about 10%. Thus, we accept 10 minutes as

a reasonable threshold for δtransition time. This is also a good choice as it relates to

the duration time threshold for determining end-locations.

3.3.2 Removing The Oscillation Effect

After determining δduration and δtransition values as 10 minutes, we executed the

path construction phase over 2.5M cell-span records resulting in approximately 120K

mobility paths. However, these paths included a significant amount of noise due to

cell tower oscillations which are not related with human mobility.

For solving the oscillation problem mentioned above, we cluster the cell towers by

using weight based clustering approach mentioned in Section 3.2. After that, each

cluster is named by using majority voting over the locations names of its cell towers.

As it is mentioned in Section 3.2, in the first phase of oscillation effect elimination,
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Figure 3.6: Switching Count Analysis

we construct the oscillation graph by finding oscillating cell tower pairs. In order to

determine oscillating cell tower pairs, we need minimum switching count.

In the first experiment related to cell clustering we have focused on determining

minimum switching count k. In this experiment, we count the number of oscillations

with respect to different switching counts from k = 2 to k = 10. The results of this

experiment is provided in Figure 3.6. As seen from Figure 3.6, the tangent of the

plot-line decreases as k becomes larger. In fact, when moving on the x axis from

infinity to zero, the biggest jump occurs when switching from point k = 3 to k = 2.

We believe that the number of oscillations due to natural user mobility (which should

be distinguished from cell tower oscillations) significantly contributes for k = 2. Thus,

in order to better distinguish between oscillations due to user mobility and cell tower

oscillations, we take the minimum switching threshold k = 3.

After determining minimum switching count as k = 3, we construct the oscillation

graph by finding oscillating cell tower pairs with their corresponding weights. Then,

we have compared our weight based hierarchical graph clustering approach with two

other approaches which are hierarchical approach using edge betweenness metric and

iterative clustering. The hierarchical approach using edge betweenness is same as

our weight based approach except the edge removal criteria. In this approach, we
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remove the edge having highest edge betweenness value [17] in each iteration. The

iterative approach is similar to K-Means algorithm, the similarity between cluster

and potential cluster member is calculated by taking the average weight between the

top-n neighbors inside the cluster. Clearly this approach is dependent to the order of

the nodes in the data set. Therefore, we run iterative approach 100 times with the

different orders for the data set and random top-n values between 1 and 10.
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In the first experiment, we compare the two hierarchical approaches which re-

move edges with respect to using their weights or edge betweenness metric. In this

comparison, we have used the maximum cluster size as 10 by examining the number

of base stations in close proximity in different urban areas of USA. We have also

experimented with the the minimum quality values which are varied on the x-axis in

Figure 3.7. In this figure, we observe that the weight based approach produce better

results than edge betweenness based approach. In another experiment (Figure 3.8),

we have estimated the average cluster quality for hierarchical approaches and opti-

mum value for iterative approach. Figure 3.8 shows that the weight based approach

is the best one among these three methods. In the last experiment (Figure 3.9) we

measure the average quality of the final clusters with respect to the cluster perfor-

mance metric which is defined as ratio of correctly interpreted pair of nodes in the

graph. This metric is calculated as the fraction of intra-cluster edges together with
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non-adjacent pairs of nodes in different clusters within the set of all pairs of nodes

[25]. Here the nominator is the sum of the two parts: all edges inside the cluster and

sum of all pairs of nodes which don’t have edges and assigned into different clusters.

The denominator is the all pair of nodes which is (n ∗ (n − 1))/2, where n is the

number of nodes in the graph. Clearly, this metric is different than previous ones

since it is independent from objective function which we try to optimize during the

clustering. Figure 3.9 explains that weight based approach is also best one among

these methods with respect to performance metric. For the rest of the experimental

results, we have used the weight based approach with maximum cluster size 10 and

minimum quality value as 10.0. By using this approach we have clustered the base

stations and replace the cluster ids in the mobility paths instead of base stations.
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3.3.3 Finding Maximal Mobility Patterns

We executed the pattern discovery phase for generating both global and personal

frequent patterns. For the global pattern discovery, we have used frequency support

δ = 0.001 which means that each pattern should exist in at least 120 path over 120K

total paths to be considered. Since our graph is sparse we discover the frequent

patterns very efficiently by using topological constraints. We also try to run the
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Sequential Apriori algorithm without any topological constraint. Here we have more

than 300 cell clusters and we scan all k subsets of these 300 cell clusters in the

database. However, it is not feasible to discover patterns in this way with lengths

more than k = 3 in our data set.

In the global pattern discovery case, since we deal with multiple users a same cell

tower with in a cluster can be named differently by each person. In addition, there

may be different cell towers having different names in the same cluster which makes

it difficult to give single name to each cluster. In this case, the name for each cell

cluster is determined by using majority voting over all cell names within the cluster.

Here unnamed cells don’t participate in voting and if there is not enough vote for any

cells to get the majority (more than 50% of names), we dpn’t give any name to that

cluster.

Table 3.4: Global Mobility Patterns

Pattern Name Support Length
<Home, Media Lab> 0.0267 2
<Media Lab, Home> 0.0267 2

<Home, MIT, Student center> 0.0096 3
<Student Center, MIT, Home> 0.0071 3

<Anils Sofa, Tang> 0.0061 2
<Whole foods, Erie and Brookline St, Harvard, MIT> 0.0038 4

An interesting subset of most frequent (inverse of support) global patterns are

provided in Table 3.4. Since the support of mobility paths is inversely correlated

with the path-length, the size of the most frequent paths are usually one or two hops

like in the Table 3.4. The idea is that if path P supports pattern M with length |M |

(means that M is a substring of P ), then any substring L of M with |L| < |M | is also

supported by P . Since all paths supports pattern M also supports its substrings, the

support of all subtrings of M is greater of equal than support of M which explains

the behavior in Figure 3.11.
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Unlike the support of patterns the overall distribution of path length shows more

deviation (Figure 3.10). As it is easily seen from the figure, more than 80% of the

patterns has hop count between 1 and 6. Apart from pattern length, we have also

measured the effect of support threshold on the average size of mobility patterns.

Figure 3.11 shows our results in logarithmic scale. It is easily seen form the results

that, the average size of mobility patterns increases when support threshold decreases

exponentially. For our global pattern discovery experiment with δ = 0.001, the

average pattern size is around 4.8 which means that average hop count for mobility

patterns is around 3.8.
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Unlike the global case, personal pattern discovery is more consistent since each

cell tower is tagged homogeneously by same person. For presenting personal patterns,

we choose the paths of single cell phone user as a case study. The number of paths for

selected cell phone users is around 2K. Therefore, we choose the frequency threshold

as δ = 0.005 which means that each pattern should exist in at least 10 mobility paths.

The top 5 five mobility patterns for our case study are given in Table 4.2.

3.3.4 Representing Cell Phone User Profiles

In this section we present our experimental results for mobility profiling on user

X (which denotes our case study user). The top five mobility patterns for our case
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study are plotted in Figure 3.12 and 3.13 on two different time domains (day of weeks

and time slices). We also analyzed spatiotemporal distribution of visited locations

for user X in Figure 3.14.

Table 3.5: Top-5 Mobility Patterns of user X

Id Pattern Name Support
1 <Home, Media Lab> 0.279
2 <Media Lab, Home> 0.265
3 <XXX CommonWealth, Media Lab> 0.133
4 <Home, Charles Hotel, Media Lab> 0.060
5 <Home, Brattle Theater, Harvard> 0.021

Figure 3.12 shows the distribution of all five patterns over weekdays and weekends.

The first four patterns are active on weekdays and last one is active on weekends.

Figure 3.13 explains that the peak time for the first, second, and fourth patterns are

afternoons whereas the peak time for the third and fifth patterns are evenings.
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Figure 3.13: Time Slice Analysis

As mentioned in section IV, the user profiles give significant information about

cell phone user behaviors. For example, on a Tuesday afternoon if user X is at cell

area tagged as ”XXX CommonWealth,”, with high probability she will go to cell area

tagged ”Media Lab” next. It is very clear that our mobility profiles have potential of
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producing more correct results for location prediction problem with their additional

time dimension.

We have also analyzed the spatiotemporal distribution of locations for the same

case study (user X) in Figure 3.14. Although it may first appear that there is no need

to construct mobility paths and perform clustering to extract these spatiotemporal

locations, mobility path construction is a very important step for generating an ac-

curate and noise-free time distribution chart, and we have used the mobility paths

for user X for constructing the time distribution chart. Mobility paths gather related

cell span connectivity records together, and makes it possible to determine and ana-

lyze the oscillations and clustering among the cell towers. Replacing cell towers with

corresponding clusters within these paths enables us to calculate the time elapsed on

each cluster location accurately for the time distribution chart.
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Figure 3.14: Time distribution for end locations for user X

Figure 3.14 shows that user X spends 67% of her overall time at home or work.

In fact, 79% of overall time elapsed at 8 different locations for user X. An even more

interesting phenomenon is found when we consider the distribution of the remaining

6% (others) for user X in Figure 3.14. These remaining 6% of user X’s time is spent

in locations that each appear less than 1% of time: there are 69 different locations
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for user X in that portion. In other words the spatiotemporal distribution for user

X shows a very heavy/long tail. We corroborated this finding in all users’ spatio

temporal distributions: approximately 15% of the users time is spent in a

large variety of locations that each appear less than 1% of total time.

We present a graph of the cumulative time ratio with respect to time distribution

in in Figure 3.15. In this figure a point A = (x = 1%, y = 15%) means that the

elapsed cumulative time reaches to 15% for the locations in each of which user spends

less than 1% of her total time. Since this graph is in logarithmic scale, it is possible

to see clearly that there is a 15% heavy tail after 1% time distribution ratio that

approximately 15% of the users time is spent in a large variety of locations that each

appear less than 1% of total time. Indeed, the cumulative time ratio approaches

zero only after two more logarithmic scales from that point. The average number

of locations that remain in the 15% heavy tail area is more than 800, whereas it is

around 12 for the first 85% portion.
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Figure 3.15: Over all dataset

 

0%

20%

40%

60%

80%

100%

100% 10% 1% 0.1% 0.01%

C
um

ul
at

iv
e 

T
im

e 
R

at
io

Time Distribution (Log Scale) 

Time Distribution vs Cumulative Time Ratio

Figure 3.16: Over the NYC area data

One may argue that the observed heavy tail phenomenon is the specific artifact

of data set itself since the majority of the dataset is collected in limited area (MIT

campus in Boston). In order to show validity of our findings, we have also analyze

the same phenomena on New York City part of the data set which corresponds to
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the 3% of the whole data set including more than 10K hours of cell span records.

We also observed the same heavy tail behavior in New York City part of the dataset.

Figure 3.16 explains that approximately 12% of the total time is spend in locations

less than 1% of the total time. Here, we determine 37 different observed locations

and on 33 of these locations users spend less than 1% of their total time.

One implication of this find is that, while simulating/testing large-scale mobile

ad-hoc protocols, it may not be sufficient to simply take the top-k popular locations

(even for large k). Doing so will discard about 15% of a user’s visited locations.

 

Figure 3.17: Time spend on end locations and top mobility paths for user X

3.3.5 Location Prediction

We also measure the impact of frequent mobility patterns, time slices and oscilla-

tion elimination on the success of location prediction application. Here our location

prediction method is based on frequent pattern matching and Bayesian estimation

over different time slices. For prediction purposes we generate all mobility patterns

of each user and use the confidence of the last elements in each frequent pattern:
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The confidence of location x with respect to pattern P is calculated as the ratio

of the support of the pattern P • x (here the • is the concatenation operator) over

the ratio of the support of the pattern P.

Our location prediction algorithm is very simple. For a given mobility history

window with length |w|, we seek for frequent patterns with length |w + 1| such that

the prefixes of these patterns with length |w| match with the current mobility window

w. Then, we collect the last elements (|w + 1|-th element) of matched patterns in

a candidate set including their confidence values. After that, we calculate the score

of each item in the candidate set by multiplying their confidence with their time

slice based probability. Time slice based probability is calculated as the number

of instances of item observed in specific time slices (such as morning, night) over

all instances. To illustrate, if there are 30 instances of pattern <CommonWealth,

Media Lab> and 10 of them are visited in time slice4. In this case the time slice

based probability of location ”Media Lab” with respect to current pattern and slice4

becomes 1/3. Then, if the confidence of ”Media Lab” is calculated as 1/4 for the

same pattern, the final score of ”Media Lab” becomes 1/12 in the candidate set.

After calculating the score of each element in the candidate set, these are sorted with

respect to the scores and top-m of elements in the prediction set are selected as final

prediction set (where m is the prediction size). During the location prediction if one

of the m locations in prediction set match with next location of current user, the

prediction method is counted as successful otherwise it is counted as unsuccessful.

For measuring the location prediction performance, we have used the same case

study (user X) from Reality Mining dataset and divided the mobility data of this

user into two sets. Half of the whole data set is used as training data for generating

mobility patterns and the remaining part is used for testing purposes. Here we use

maximum window size w = 5 since for w > 5 the prediction performance does not

increase significantly. Our prediction set size is also fixed to 2 since there is slight
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Figure 3.18: Location prediction for user X

improvement after increasing size of prediction set 1 by 1 after this point. Except

from different parameters, we experimented with two different input sets in order to

measure the impact of clustering on prediction performance:

• mobility paths including cell clusters

• mobility paths including cell towers (without any oscillation elimination)

Another parameter we focused on is the selection of time slices with different

lengths. Here, we choose 1000 random location visit in the test set and run the

prediction algorithm using different time slice lengths for the same test data. We also

repeat the same experiment with two different data sets mentioned above. Since our

average cluster size is around 3, the prediction set size for cell tower based method

is taken as 3 times of the clustered approach for fair comparison. The results of this

experiment are given in Figure 3.18. We observe that choosing time slices between 2

hours and 8 hours does not change the performance of the location prediction process

significantly. In fact this interval leads to maximum performance since choosing less

than 2 hours and more than 8 hours decreases the prediction performance. Here

we conclude that our 6 hours time slice length for mobility profiles is a reasonable
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selection since it falls in the maximum performance interval. Our another observation

is that using cell clusters over mobility paths significantly improves the prediction

performance (25%-30%) since it removes oscillation effects on mobility paths which

results in incorrect mobility behaviour even the user is not mobile.

3.3.6 Other Application Areas of Our Framework

We are currently using the Reality Mining data for an air pollution exposure

estimation application [38]. Estimating air pollutant exposure of individuals is not an

easy task since air pollution is usually highest in wide urban areas. Many air pollutant

concentrations, particularly those related to vehicular traffic, vary as much within

cities as they do between cities. The previous modeling approaches for estimating

air pollutant exposures of the individual use the residential address [5]. The main

problem with these methods is that they do not consider time activity data of the

individuals. As we have shown in our experiments it is not easy to generalize time

activity behavior of people due to large tail in the location distribution. By using

these methods it is infeasible to reach 100%, as these approaches capture only the

top-k locations, which make up only about 85% of total time.

Another potential application of our framework is for enriching the content of the

social networks web sites, such as facebook and myspace, with the mobility informa-

tion of users. These social networking sites may present the user with meeting oppor-

tunities to other users that have similar mobility profiles to theirs, or suggest places to

visit based on the locations recently visited by their mobility-profile-proximity peers.

Estimating better quotes by the car insurance companies can be another useful

application. The current cost estimation models for car insurance only takes residen-

tial information into consideration. However, cost of the insurance may significantly

vary if the users mobility information and time distribution data is known before

hand.
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Finally, enhancing the performance of peer to peer sharing programs on cell phones

with the aid of mobility information is an interesting problem to consider. One can

design a peer to peer server which indexes only the names of shared files over users

with respect to their location and the mobility information.
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CHAPTER 4

TRACK ME: A WEB BASED PERSONALIZED
MOBILITY SERVICE FOR SMARTPHONE

APPLICATIONS

Web Service paradigm [9] is currently developing very quickly and several web ser-

vices are developed for providing functionality to different applications in distributed

and heterogeneous environments [79, 19]. The combination of web service paradigm

and smartphone technology [33, 118, 91] brings several opportunities to end users for

accessing information at anywhere at any time. These ubiquitous web services enable

to develop useful applications in the cell phone platforms: Consider an example sce-

nario where Murphy is at South Manhattan and he wants to go to Italian restaurant

there. With his GPS enabled smartphone he sends a query to one of his favorite

restaurant list web site and gets list of closer restaurants to his location. Without

any extra information the current web service is able to get list of closer restaurants

by using the current location of the user.

Unlike the example scenario given above, another type of applications may require

more personalized mobility information about the user rather than their instant loca-

tion. Consider an example where Murphy leaves the home for his office and he wants

to use the same route on the highway as usual. However, there is a road construction

on Murphy’s way and his usual route can not be used. Since Murphy is registered

to the early remainder service, the service has already had an access to the mobility

profile of Murphy and it easily forecast that Murphy is going to his office when he

leaves at home in the morning during weekdays. Since this service also talks with

other services that provide information of city wide traffic events such as road con-
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struction, it sends early warning message to the Murphy’s smartphone that there is a

road construction on his usual route. The main difference of this personalized service

from previous one is that it requires detailed knowledge about mobility profiles of

cellphone users beyond the instant location.

In this work, we are motivated with similar applications to the previous example

that it is possible to develop more intelligent applications for smartphone users if more

detailed mobility information is used. In order to address this problem we propose

a complete framework which provides a lightweight personalized mobility service for

smartphone applications. Our framework also provides solution to location tracking,

processing and mobility profile generation as well as its lightweight mobility profile

service. We also show the benefits of our framework with two example applications:

location prediction and air pollution risk exposure estimation. Our mobility service

is yet very simple to solve these smartphone applications.

In the next section, we give an overview of our system architecture. Then, We

present the components of TRACK ME, including the data collection subsystem,

Mobility Profiler subsystem, query processing subsystem in more detail. Finally we

give our experimental results related to location prediction and air pollution risk

estimation applications.

4.1 System Architecture

In this section, we explain the general architecture of our web based framework

given in Figure 4.1. Here, the top right part of the figure represents client software

of TRACK ME which collects the low level location data in GPS or cellular data

format. For this work, we have only focused on cellular network case and imple-

mentation issues in GPS enabled environment is leaved as a future work. Here the

TRACK ME client forwards cellular location data including current timestamp and

user information to the location database at server side via http request. The data
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Figure 4.1: TRACK ME! Framework

stored in the location database contains only the most recent location information of

users and these data is exported to the distributed file system (DFS) weekly via File

System Export Module. After this periodic updates the existing data in the location

database is removed. By this way the location database is continue to handle only

limited amount of most recent location data.

The bottom layer of the Figure 4.1 represents the distributed file system where

we store the all location history of the smartphone users subscribed to the TRACK

ME service. In the current architecture we use the Hadoop Distributed File System

as our DFS. The location data stored in the DFS are processed by Mobility Profiler

in order to obtain high level mobility profiles of smartphone users. The details of

mobility profiler framework is given in our earlier work [16], here we give the brief

summary of the mobility profiler in Section 4.2. The only major difference in Mobility

Profiler framework is that we have implemented distributed version of the Mobility
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Profiler framework by using map/reduce paradigm [37]. As it is shown in Figure 4.1

the Mobility Profiler and File System Export modules are major parts of the offline

component. Like the File System Export, Mobility Profiler runs weekly and updates

the mobility profiles in the database cluster periodically. Mobility profiles include

frequent trips and significant locations of users and they are stored in the database

cluster. As it is seen in Figure 4.1, mobility profiles can only be updated by Mobility

Profiler module.

The Query Engine is one of the most important part of the TRACK ME Frame-

work. The engine provides an interface for third party web services for sending an

online queries over mobility profiles. The query engine system provides other appli-

cations to access mobility profiles via http request by using its own query format. All

of the application services access mobility profiles through the query engine interface.

Application services are another important part of the online component in TRACK

ME Framework. These services talk with application specific cell phone software in

real time. They can also integrate external data sources such as city wide air pollution

estimation values for their computation. The application service layers are separated

from query engine and end client software can not access mobility profiles without

any call through the query interface. The details of each component of our web based

architecture are explained in the following sections.

4.2 Components of TRACK ME Framework

In this section, we explain the details of the each component of the TRACK ME

Framework. Here, we will discuss each subsystem separately and give two example

application of our framework which are location prediction and air pollution exposure

risk estimation.
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4.2.1 TRACK ME Client

TRACK ME client is a software that runs on the cell phone platform. In the

cellular environment, this software continuously logs cell tower connectivity data.

Due to lack of GPS in the cellular environment, the location is not recorded in terms

of longitude latitude pair, but rather in terms of the cell tower currently connected.

In order to render the cell tower ids meaningful, the cellphone software prompts the

user to provide a tag when it encounters a cell tower id for the first time. By this

way, cell towers are tagged semantically with a specific meaning for that user. The

local location data stored in the cell phones are forwarded to location database at

server side periodically via opportunistic http requests.

Apart from the cellular environment, we have also tried collecting data in the GPS

enabled environment by using Nokia N97 smartphones. Although GPS technology

provide more granularity about human mobility, we faced with several challenges while

collecting location data via built-in GPS in smartphones. Even with the cellular

tower assisted GPS (AGPS) technology, these devices work very poorly in indoor

environment and up to 5-10 meters proximity of buildings. We tested that it is also

impossible to read longitude latitude pair with specialized car GPSs in the indoor

environment. Another important disadvantage of GPS technology is that using GPS

or AGPS in smartphone environment consume significant amount of battery. Even

with the intelligent collection schemes and these devices can work up to 6-7 hours.

The detailed discussion about problems with GPS technology on a comprehensive case

study can be found in the Gaonkar et al. [46]. Due to the limitations of GPS, we have

focused on tracking and processing with only cell based location data. Implementation

and design issues in the GPS enabled environment are left as a future work.
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4.2.2 Mobility Profiler

The Mobility Profile Subsystem is the major offline component of TRACK ME

framework. This subsystem contains different processes which converts low level

location data units to high level mobility profiles. To achieve this, Mobility Profiler

subsystem runs the following processes in the given order periodically:

• Mobility Path Construction

• Noise Elimination Over Mobility Paths

• Discovering Frequent Mobility Patterns

• Data Integration for Mobility Profiles

In our earlier work [16], we have discussed the details of the Mobility Profiler

framework. The main difference in this work is that we have used distributed ver-

sion of each phase over Hadoop Map/Reduce framework1. Here we will only give

brief summary of first two phases since they don’t require significant change in the

Map/Reduce implementation. Unlike the first two phases, ”Discovering Frequent

Mobility Patterns” phase is changed due to implementation of distributed support

count and ”Temporal Information Integration” phase is extended in order to support

different application services mentioned in this work.

Mobility Path Construction: In this phase, we construct mobility paths of

cell phone users which correspond to users’ travel from one location to another. Each

mobility path includes ordered list of cellular id (base station ids) in temporal domain.

The start end end locations of mobility paths are determined with respect to the static

location concept mentioned in [16].

Noise Elimination Over Mobility Paths: A major problem with the cellu-

lar network connectivity data is that a cellphone may dither between multiple cells

1http://hadoop.apache.org/
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even the user is not mobile. In order to solve this problem, we detect the oscillating

cell tower pairs and generate dense cluster of oscillating cell towers. After this pro-

cesses oscillating cell pairs are replaced with cluster ids in the corresponding mobility

paths [16].

Discovering Frequent Mobility Patterns: In this phase, we discover frequent

mobility patterns from mobility paths by using sequential pattern discovery methods.

There are several algorithms in the literature for the sequential pattern mining, such

as GSP [108], SPADE [120] and PrefixSpan [96] etc. Although it is not the most

recent or the most efficient one, we have used Sequential version of the AprioriAll [6]

technique over Map/Reduce framework.

Unlike the first two phases, distributed implementation of pattern discovery re-

quires major changes over the centralized version mentioned in [16, 18]. The Map/Reduce

version of Sequential Apriori All algorithm includes two different Map/Reduce jobs:

Candidate generation and support count. In the candidate generation, we generate

candidate length-k patterns by joining frequent length-(k− 1) patterns with frequent

length-(1) patterns by using cell topology. In order to join length-(k−1) pattern with

length-(1) topological constraint must be satisfied. Topological constraint means that

the last element of length-(k − 1) pattern must be adjacent to length-(1) pattern in

the cell topology. In other words the new length-k pattern must be a path in the

cell topology. We handle the cycle conditions in this phase in order to generate fi-

nite number of candidate patterns. Here we do not join length-(k − 1) pattern with

length-(1) if the length-(1) pattern already exist in length-(k−1) even the topological

constraint is satisfied. To illustrate; we don’t join length-3 pattern < 1, 2, 3 > with

length-1 pattern < 2 > to obtain < 1, 2, 3, 2 > since 2 already appears in < 1, 2, 3 >.

The candidate generation job is faster than support count since it reads and pro-

cesses frequent length-k patterns which is relatively much more smaller than mobility

paths file. The support count job is the main part of the pattern discovery phase.
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Figure 4.2: Support Count Phase of Sequential Apriori All over Map/Reduce Frame-
work

This job reads from both candidate patterns of length-k and mobility paths. After

that it counts the support of candidate patterns and determine frequent ones. The

details of support count job is given in Figure 4.2. If the mapper reads from candidate

patterns file it emits length-k pattern as key and flag ’P’ as value (< Patternx, P >

stands for < key, value > pair). In the session sequence file case, mapper finds all

length-k grams of sequence and emits these grams as key and boolean flag ’S’ corre-

sponds for sequence. To illustrate; for the sequence < 1, 2, 3 > the mapper emits two

< key, value > pairs which are < (1, 2), S > and < (2, 3), S >. By using same key

& same reducer paradigm of Map/Reduce all tuples belonging to the same keys are

collected at the same reducer. The reducer counts all sequences belonging to the same

key if the key has tuple < key, P > which means that key is one of the candidate

patterns. Since values are sorted in the list emitted towards reducer, < key, P >

tuple should come before other < key, S > pairs in the case of candidate patterns.

Therefore, first tuple is checked before reading whole list. At the end of the reducer

phase frequency of the candidate pattern is emitted if it is bigger than predefined
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frequency threshold. The Pattern specific properties such as temporal information,

confidence of items in patterns, elapsed time are also updated in this phase.

Data Integration for Mobility Profiles: In this phase we construct mobility

profiles of cell phone users by using frequent mobility patterns and static locations

obtained from mobility paths. In addition to that, we add temporal dimensions to

these two location units since they are not sufficient alone for several applications,

including route prediction, early warning systems, and user clustering. Also, mobility

behavior of users may show temporal variance and significant information can be

lost without these temporal dimensions. Therefore, we add time-context information

to the frequent patterns and static locations in order to represent the mobile user

profiles. The definition of mobility profile is given as follows:
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 User 

Information 

Name: Bob 

Age: 29 

Sex: Male 

Frequent Mobility Paths 

Mobility Path Support 

<Home, Furnas Hall> 0.35 

<Furnas Hall, Home> 0.30 

<Home, Downtown> 0.08 

 

Mobility Profile 

Static Locations 

Location Percentage 

Home 40% 

Furnas Hall 35% 

Student Union 7% 

Downtown 5% 

Tops Market 2% 

… … 

 

Figure 4.3: The Structure of Mobility Profile

Definition (Mobility Profile): A mobility profile for a cellphone user (Fig-

ure 4.3)includes frequent mobility patterns and static locations with their temporal

dimensions. The temporal dimensions for mobility patterns are listed below:

• Days of Week: Each frequent pattern stores its distribution over days of week.

That means, the frequent pattern is tagged with the number of its instances

observed on each day of the week.

• Time Slices: Each frequent pattern stores its distribution over each time slices

given in the set {[12:00 a.m., 6:00 a.m.], [6:00 a.m., 12:00 p.m.], [12:00 p.m.,
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6:00 p.m.], [6:00 p.m., 12:00 a.m.]}. That means, the frequent pattern is tagged

with the number of its instances started on each of these time slices.

• Elapsed Time: Each frequent pattern stores elapsed time for each item. The

elapsed time for location A in the pattern < A,B,C > is calculated by total time

spend at location A in each mobility paths support the pattern < A,B,C >.

Clearly elapsed time for length-1 pattern A gives the total elapsed time at lo-

cation A. However elapsed time value of location A in pattern < A,B,C >

is calculated by considering mobility paths including only < A,B,C > as sub-

string.

The only temporal dimension for static locations are elapsed time including per-

centage which is calculated as the ratio of total time spent on that particular location

over the total amount of time spent on all locations for corresponding user.

4.2.3 Query Engine

As it is mentioned in the Section 4.1 Query Engine is one of the most important

part of the TRACK ME framework. It provides rule based query definition and

execution interface to application services for accessing mobility profiles. Here, each

query is defined by Pattern Filter Rules (PFRs) and may include several PFRs in

nested and composite forms. The list of basic PFRs are given in Table 4.1.

In this table, the first rule add regular expression constraints over the mobility

patterns. This rule enables to search among the patterns which satisfy the given

expression. The second rule restricts the processing mobility profiles to only given set

of users. The third rule forces length constraint over mobility patterns. Fourth rule

is similar to third rule except using support value. TemporalSupport rule is different

than Support OF rule, this rule checks the support of mobility pattern that lies only

in the given time dimension. To illustrate TemporalSupport {< a, b >, night} cor-

responds to the support of < a, b > pattern that is calculated by mobility paths that
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Table 4.1: Basic Pattern Filter Rules

Id Rule

1 {Pattern} Match {Any | Number |None } OF {RegExp1, . . . , RegExpn}
2 {Pattern.User} Match {Any | Number |None } OF {User1, . . . , Usern}
3 Length OF {Pattern} (≥,≤, =) NUMBER

4 Support OF {Pattern} (≥,≤, =) FLOAT

5 TemporalSupport {Pattern, T imeDimension} (≥,≤, =) FLOAT

6 EstimatedT ime OF {Item} (≥,≤, =) FLOAT

7 AverageT ime OF {Item} (≥,≤, =) FLOAT

observed during the night time. The last two rules are related to specific locations in

the mobility patterns. EstimatedT imeOf rule forces constraints constraints on total

time spent on location specified by Item and AverageT imeOf rule forces constraints

over the average time spent on location Item.

Query engine provides rule based declarative query interface which allows other

applications to define complex queries including PRFs in nested forms with AND and

OR operators such as ((R1 AND R2) OR (R3 OR R4)). These queries are forwarded

to the query engine via http requests and the results are returned by query engine

in an XML format to the application service. Our query definition and execution

interface allows to get different information about users mobility:

• The most popular locations of cell phone users on specific time.

• The frequency of selected path by selected users at a given time.

• Population migration in terms of locations during specific time period.

In the next two section, we discuss implementation of two smartphone applications

which utilizes TRACK ME framework.
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4.2.4 Online Location Prediction Application

Location prediction is an important problem for several applications such as

context based advertising [53] and early warning systems [12, 83]. Previous ap-

proaches [74, 119] for location prediction consider route similarity of current mobility

history with route cluster or mobility rules obtained from frequent mobility paths.

Algorithm 5 Online Location Prediction Algorithm

1: Input: P : Set of all Patterns, m : Prediction Size

2: w : Current Mobility History

3: Output: F : Final Prediction Set

4: procedure PredictLocation (P ,m,w)

5: F := {}

6: CandidateSet := {}

7: QueryF ilter F lt = newQueryF ilter()

8: Flt.addRule(” Pattern Match {1} OF {w • (∗) } ”)

9: Flt.addRule(” AND ”)

10: Flt.addRule(” Length OF {Pattern} = (|w| + 1) ”)

11: Flt.addRule(” AND ”)

12: Flt.addRule(” Pattern.User Match {1} OF {w.user} ”)

13: M := QueryEngine.execute(P, F lt) //Return matched patterns

14: For Each pattern Mi of M

15: CandidateSet := CandidateSet ∪ Mi[|w| + 1]

16: End For Each

17: Sort(CandidateSet) //Sort with respect to confidence values

18: F := CandidateSet[0...(m − 1)] //Select top m Elements

19: End Procedure

In order to solve this problem, we have proposed a more robust location prediction

subsystem which uses frequent mobility patterns of the cell phone users over the query

engine interface as well as temporal information. The Mobility Profiler [16] includes

the pattern discovery process which calculates the support of each frequent pattern

and confidence of the each element exist in the frequent patterns. The support of

each pattern P is calculated as follows:

Support(P ) =
|{Si|∀ i P is substring of Si}|

|S| (4.1)
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In the Support formula the set S contains all mobility paths of the same user.

The confidence of location x with respect to pattern P is calculated as the ratio of

the support of the pattern P • x (here the • is the concatenation operator) over the

ratio of the support of the pattern P alone.

Conf(P, x) =
Support(P • x)

Support(P )
(4.2)

Here, we have stored the support of each frequent pattern in mobility database as

well as the confidence of their last element. For the location prediction we propose

an online algorithm that considers the last |w| locations of the current mobility path

(w). In addition to that location prediction application uses the mobility profile of

the corresponding user over the query engine interface. The idea is that, for a given

mobility history window with length |w|, we seek for the patterns in the mobility

profile with length |w + 1| such that the prefixes of these patterns with length |w|

match with the current mobility window w. After that, we collect the last elements

of matched patterns in a candidate set including their confidence values. According

to the size of prediction set m, the items in the candidate set are sorted with respect

to their confidence values and top-m elements of highest confident values are selected

as a final prediction set. Here we have used the query engine interface for selecting

the patterns that have prefix match with the current mobility window. The pseudo

code for an online location prediction algorithm is given in Algorithm 5.

4.2.5 Air Pollution Exposure Risk Estimation

In this section, we illustrate the benefits of our web based mobility service on

the air pollution risk estimation problem. Air Pollution Risk Estimation [38] is very

important problem since two million premature deaths annually and several respira-

tory diseases are attributable to air pollutants [28]. From the third world countries
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to the more developed countries, air pollution adversely impacts health across the

lifespan. Acute and chronic air pollutant exposures increase risks of cardiovascular

and respiratory diseases [27], exacerbate, and perhaps cause, asthma among children

[103], and increase risks of neonatal death, low birth weight, and preterm delivery

[103, 107].
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Estimating air pollutant exposure is not an easy task since air pollution is usually

highest in wide urban areas. Many air pollutant concentrations, particularly those

related to vehicular traffic, vary as much within cities as they do between cities.

The previous models for estimating individuals exposure to air pollutants use the

residential address [5]. The main problem with these methods is that they do not

consider temporal location distribution of individuals. As we have shown in our

previous work [16] it is not easy to generalize time activity behavior of people due to

large tail in the location distribution. Our findings implies that by using residental

based methods it is infeasible to reach 100% location coverage, as these approaches

capture only the top-k locations, which make up only about 80%-85% of total time. In

addition to the time distribution over different location, people show different patterns

in different days as illustrated in Figures 4.4- 4.5 and air pollution estimation values

may vary in different days (Figures 4.6- 4.7).

As an alternative to the residential based approaches, we propose to use the static

locations of smartphone users stored in their mobility profiles. In order to calculate
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air pollution exposure risk we integrate time distribution of static locations with data

obtained from PM2.5 and CO estimation sensor values. PM2.5 is a metric referred as

particulate matter (PM) or fine particles which is used to measure the amount of tiny

particles of solid or liquid suspended in the atmosphere. CO is an odorless and color-

less gas which binds to hemoglobin when entered the bloodstream through the lungs

and can result in serious health problems. The sensor data measurement of these two

important air pollution factors with location information are publicly available at no

cost from governmental web sites, such as Department of Environmental Conservation

website, U.S. Environmental Protection Agency and U.S. Census Bureau Geography

Division website. Since we know the location of each sensor, it is feasible to estimate

average pollutant exposures of individuals by calculating weighted average of their

spatiotemporal distribution of locations with respect to locations of sensors.

Let the locations of sensors be the set S = {S1, S2, . . . , Sn} which includes n

locations in terms of latitude and longitude pairs. Assume that we have the pollution

estimation values P = {P1, P2, . . . , Pn} for each pollution estimation location and we

have k static locations for the current user L = {L1, L2, . . . , Lk}. In order to calculate

the pollution on a single static location Lj of user, we define a weight of pollution

estimation value Pi over Lj.
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Wij =

1
|Si−Lj |

(

1
|S1−Lj |

+ 1
|S2−Lj |

+ ... + 1
|Sn−Lj |

) (4.3)

In the weight formula the absolute distance between two locations |Si − Lj| is

calculated by finding the euclidean distance between these two points (latitude and

longitude pairs) in two dimensional space. The weighted pollution value PWj at

location Lj is calculated as the weighed sum of all pollution values:

PWj = W1j ∗ P1 + W2j ∗ P2 + . . . + Wnj ∗ Pn (4.4)

If T = {T1, T2, . . . , Tk} is the set of ratios for elapsed time (calculated by using

elapsed time percentages in mobility profiles) that is spend each location such that:

∀ Ti ∈ T : Ti ∈ [0, 1] and T1 +T2 + . . .+Tk = 1, then, the average pollution estimation

PE for current user is calculated as:

PE = T1 ∗ PW1 + T2 ∗ PW2 + . . . + Tk ∗ PWk (4.5)

 

 

 Figure 4.8: Pollution Data Insertion

 

 

 Figure 4.9: Pollution Exposure Esti-
mation

For estimating air pollution exposure risk, we have implemented air pollution es-

timation service (as an example application service mentioned in Figure 4.1) which
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reads static locations of cell phone users through the query engine by requesting suit-

able queries. This subsystem also provides a user interface for inserting air pollution

estimation values and it integrates pollution values with location information to esti-

mate air pollution risk. Pollution estimation and pollution data insertion interface of

this subsystem are given in Figures 4.8-4.9. Since air pollution estimation subsystem

uses all of the static locations of smartphone users (not only common locations like

office or home), our system is capable of producing more accurate results for risk

estimation.

4.3 Experimental Results

In this section, we present our experimental results on MIT Reality Mining data

set [42] that has 350K hours of cellular connectivity data. The first subsection of

experimental results is dedicated to mobility profile discovery. In the second section,

we present our experimental results related to the scalability of the system. Next,

we discuss experimental results on location prediction. Finally, we conclude with

experimental results related to the air pollution exposure risk estimation.

4.3.1 Discovering Mobility Profiles

Path Construction: As we have mentioned in the previous sections, the first

process of the Mobility Profiler module is the Path Construction phase. For the Path

Construction, suitable values for δduration and δtransition need to be identified. These

two threshold values are determined by using cumulative mass function analyzing over

the number of cell durations and cell span transitions that are smaller than discrete

values in the experiment space. Here we skip the details of this analysis since they

are included in more detail in our earlier work [16]. The idea for determining these

values is that we explore the points in the temporal space that divided the space in

to two set namely ’mobile’ and ’static’. In this analysis we choose the points that
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Table 4.2: Mobility Patterns of case study user

Id Pattern Name Frequency
1 <Home, Media Lab> 0.279
2 <Media Lab, Home> 0.265
3 <XXX CommonWealth, Media Lab> 0.133
4 <Home, Charles Hotel, Media Lab> 0.060
5 <Media Lab, Charles Hotel, Home> 0.053

results in sharp change in the cumulative mass function (knee points). At the end of

our analysis we decided to take δduration=10 min. We have performed similar analysis

for δtransition time and we found that taking δtransition=10 min is a good choice due

to sharp change on this point. After determining δduration and δtransition values as

10 minutes, we executed the path construction phase over 2.5M cell-span records

resulting in approximately 120K mobility paths. At the end of the path construction,

we also execute noise elimination phase over mobility paths.

Mobility Pattern Discovery: In the pattern discovery phase, we generate the

frequent trips of cell phone users. In this phase, we have used frequency support as

δ = 0.01 which means that each pattern must be substring of one of the hundred

mobility paths of the corresponding user. For this section, we present an example

case study including analysis over the mobility data of single user from Reality Mining

Data (called user X). For our example case study user , the Top-5 frequent mobility

patterns are given in Table 4.2.

Figure 4.10 shows the distribution of these five patterns over weekdays and week-

ends. As seen, all of these patterns are active on weekdays with a balanced distribu-

tion over the 5 work days. The peak time for the first, second, and fourth patterns

are afternoons whereas the peak time for the third and fifth patterns are evenings

(Figure 4.11).

For the same user, we present a graph of the number of locations with respect to

coverage ratios in Figure 4.12. In this figure a point (1%, 15%) means that on average
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Figure 4.12: Time Distribution

15% of total time elapsed on the locations in which the user spend less than 1% of

total time. Since this graph is in logarithmic scale, it is possible to see clearly that

there is a 15% heavy tail after 1% minimum distribution ratio. Indeed, the coverage

ratio approaches zero only after two more logarithmic scales from that point. The

average number of locations that remain in the 15% heavy tail area is more than 800,

whereas it is around 12 for the remaining 85% portion.
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4.3.2 System Scalability

In this section, we give measure the scalability of TRACK ME framework in terms

of complexity of queries forwarded to the query engine and size of the location data

that is processed by the whole framework.
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Figure 4.13: RunTime for Query Engine

As mentioned in previous sections, the mobility profiles give significant informa-

tion about cellphone user behaviors. For example, on a Tuesday afternoon if user X

is at cell area tagged as ”XXX CommonWealth,”, with high probability she will go to

cell area tagged ”Media Lab” next. However, apart from processing mobility profile of

single user, one may design a complex queries that can run over multiple user profiles

with different constraints for each user. In order to show scalability of query engine

in this type of bulk queries we have implemented query generator which generate

syntactic queries including different PFRs for multiple users in a single query. After

that, we measure run time performance with respect to different number of PFRs

starting from 0.1K to 4K. The result of this experiment is given in the Figure 4.13.

In this figure, we repeat the experiment 100 times for each data point and take the

average time. It is easy shown that the run time performance of our query engine

scales very well with the number of basic rules in the queries. In fact the run time
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complexity of query engine increases parallel with the number of PFRs which enables

application services to run bulk queries over mobility profiles.
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Figure 4.14: Time vs Subject Count
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In our second analysis, we measure the run time performance of Mobility Profiler

module in terms of varying input size and number of users. In the first experiment,

we measure the run time performance of Mobility Profiler in a single machine with

respect to different subject counts in Reality Mining data. Since our dataset includes

location data of 100 subjects for 9 months we have tried 9 months data of 3 different

subject count {1, 10, 100} up to 100 (Figure 4.14). In the second experiment, we

measure the run time performance of only pattern discovery process since this phase

is the most costly part of the mobility profiler module (Figure 4.15). Since we do not

have large scale input data, we syntactically generate sequences representing mobility

paths with 4 different input sizes. In this experiment, we also compare the run time

performance of our real implementation with theoretical values that are obtained after

scaling first measurement value with respect to the input size (number of mobility

paths). As it is seen from both of figures (Figures 4.14-4.15) our mobility profiler

module scales linearly with respect to varying input size which implies that we can

process any size of data by increasing number of nodes in the Map/Reduce cluster.
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4.3.3 Online Location Prediction Application

For location prediction, we have divided the Reality Mining data set into two

groups. Half of the data set is used as training data for generating mobility profiles.

The other remaining part is used for testing prediction performance. Here, we have

measured the impact of current mobility window and prediction set size on the pre-

diction performance. The prediction performance is measured in terms of the ratio of

the number of correctly predicted locations. We assume that if the users next location

is included in the final prediction set, the current location is counted as successfully

predicted.

The result of the location prediction experiment is given in Figure 4.16. For this

experiment we have used the minimum support δ = 0.01 for generating frequent

patterns. Figure 4.16 shows that increasing the maximum window size up to 5 item

results in significant improvement in the performance of the location prediction pro-

cess. However, the location prediction performance can not be further augmented

after window size w ≥ 5 and in fact the limit for our prediction system for the large

window sizes becomes around 80%. We have also observed similar phenomena on

the effect of the prediction set size, for the large window size w ≥ 5, we observe

that increasing prediction set size after 2 does not leads to significant performance

improvement. We conclude that prediction size with 2 and 3 does not differ for the

large window sizes(w ≥ 5). Therefore, we decided to take maximum window size

parameter as 5 and prediction set as 2.

In another experiment we vary the matching criteria of the current mobility

window. In the original method we push exact prefix matching constraint while

searching the patterns in the mobility profile. To illustrate; for the mobility win-

dow w=< 1, 2, 3, 4 > we search only patterns starting with < 1, 2, 3, 4 >. In this

experiment we implement more flexible version of the location prediction algorithm

by using edit distance relation between strings (Figure 4.17). Here we compare our
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Figure 4.17: Prediction Performance

original method (max window size=5 and prediction set size=2) with its two differ-

ent versions with respect to edit distance. The result of this experiment is given in

Figure 4.17. In this figure, E-n represents the method that considers the patterns as

matched with the current mobility window if their edit distance is smaller than n. In

this experiment we see that there is a significant performance drop when increasing

edit distance from 1 to 2 (Figure 4.17). The reason is that significant part of the

frequent patterns in the mobility profiles has length less than 6 (Figure 4.18). The

ratio of frequent patterns with length greater than 6 locations accounts for less than

15% total patterns. If the length histogram (Figure 4.18) is analyzed carefuly, the av-

erage length of the patterns remains in [4, 5] interval. Therefore considering patterns

with edit distance 2 with any regular expression form result in significant amount

of information loss (changing more than 40% of the locations of the patterns in the

average). We conclude that using exact prefix mathing provides better performance

than prefix mathing based on other regular expression forms.

In addition to the prediction accuracy, we have measured the run time perfor-

mance of location prediction application in terms the time difference between request

time and response time. Since we don’t use collaborative filtering for location pre-

diction application, we only process mobility profiles of the corresponding users in
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the database which is around 10-15K. With our current architecture the location

prediction time always stays less than a second for the experiments given above.

4.3.4 Air Pollution Exposure Risk Estimation

In this section we compare the residential based approaches with our weighted

interpolation approach. For estimating air pollution exposure risk, we have used the

same case study user mentioned in the first section of the experimental results. The

distribution of top-5 locations of the same user in terms of the percentage of time

elapsed is given in Figure 4.19.
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Figure 4.19: Top-5 Location Distribution of case study user
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For this section we have also implemented an air pollution exposure risk estima-

tion service which reads the static locations of our case study user via query engine

interface. Our application service has also another interface enables to insert pol-

lution estimation points. Here we insert 3 pollution estimation point in the Boston

Area map by using realistic values given in national atlas web site 2.

 

 

 Figure 4.20: Residential based

 

 

 Figure 4.21: Profile based approach

For the residential based approaches we only consider the top-2 locations (’home’

and ’work’) of our case study user covering 68% total time of the current user. By

using our pollution estimation metod, we consider all of the static locations of user X

for calculating air pollution exposure risk. The locations, that our system processed,

contains significant amount of users activity which corresponds to the 97% of the total

time recorded in the system. The pollution estimation results of these two approaches

are given in Figures 4.20- 4.21 respectively. As it is seen from the figures, using

only home and work locations may show bigger deviations from the more confident

estimations which covers 97% of total time of the current user. Here, the air pollution

risk due to CO is low (Figure 4.20) when the top-2 locations are considered. However

the risk level becomes moderate (Figure 4.21) when all static locations are considered.

2http://www.nationalatlas.gov
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In addition, the difference for the CO level is nearly 50% which shows very high

deviation.
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Figure 4.22: Residential based vs Mobility Profile Based

In another experiment, we identify the reality mining subjects that have high lo-

cation coverage more than 80%. This means that in more than 80% of total time,

we can indetify the lattitude and longtitude of these subjects by using location tags

and google geocoding api 3. By using these subjects we compare the PM 2.5 pollu-

tion exposure estimates of residental based approach and our weighted interpolation

approach that uses mobility profiles. In this experiment, we also used real pollution

estimation values from EPA (http://www.epa.gov/) collected from four PM 2.5 pol-

lution reading sensors over Boston metropolitan area. The residential based approach

used in this experiment considers only ’home’ location of each users. For Mobility pro-

file based approach we replace the unknown locations (long,lat can not be resolved)

with the corresponding ’home’ location. The pollution estimation comparision of two

methods is given in Figure 4.22.

We observe that there is 6.6% deviation between these two models on the average

(Figure 4.22). Here 6.6% deviation is calculated by ratio of average deviation over

3http://code.google.com/apis/maps/documentation/
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average PM 2.5 pollution exposure with respect to residential based approach. In fact

a deviation for random model that assigns random lat,lon (in 10 mile radius of Boston

metropolitan area) for each location in mobility profile has deviation of 20.3% since

PM 2.5 values fluctuates in the interval [10,15]. This implies that 6.6% deviation is

not very small when compared with deviation of random scenario which corresponds

to large estimation error.
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CHAPTER 5

CROWD-SOURCED SENSING AND COLLABORATION
USING TWITTER

In this chapter, we present the design location based crowd-sourced sensing and

collaboration system over Twitter. Crowd-sourcing means distributing a query to

several users in order to gather and aggregate the results and exploit the wisdom-of-

crowds effect. Examples of crowd-sourcing may be a weather/rainradar (with better

precision and ground-truth than meteorological weather radars), and polling for the

best restaurant entree in town. Web offers a rich variety of successful crowd-sourcing

applications. Rent-a-coder 1 facilitates assigning programming tasks to freelance pro-

grammers, and with Open Mind 2 non-expert internet users collaborate to create

intelligent software. In this project we exploit the power of Smartphones and Mi-

croBlogging web sites in order to developed crowd-sourced sensing system.

Figure 5.1 illustrates the high level architecture of our location based crowd-

sourcing system. Twitter acts a middleware for publish/subsribe as well as search &

discovery. Our system is composed of three components namely Askweet, Sensweet

and Twitter clients. Sensweet is a smartphone application that publishes real-time

readings from the integrated-sensors to Twitter as well as location information. Askweet

is a program that listens to its Twitter account for questions and processes the ques-

tions and aggregates the replies it receives to these questions from Sensweet and the

1http://www.rentacoder.com/

2http://www.openmind.org/
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Figure 5.1: Crowd-sourcing System Architecture
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Twitter clients. We discuss the design of the Askweet and Sensweet components in

more detail below.

5.1 Askweet

Askweet accepts a question, and tries to answer the question using the data on

Twitter, potentially data published by Sensweets. If it is not possible to answer the

question with existing data and/or if the question requires interaction, Askweet finds

experts on Twitter (potentially using information retrieval techniques) and forwards

the question to these experts. After obtaining answers from the experts, it replies

the answers back to the asker. Askweet accepts a certain syntax from queries and

replies, but it can also be extended and generalized to adopt modern natural language

processing techniques.

The Askweet components of two case studies in this paper run on a dedicated

server, and keep all relevant data in a database to process questions and replies in a

coordinated manner. Due to the parallelizable nature of processing queries and replies

(a thread is assigned to each reply), it is easy to deploy Askweet on a cloud computing

platform for elastic scalability. Since Askweet accounts have been recently whitelisted

by Twitter and hourly request limits removed, it is possible to implement Askweet

over Hadoop Map/Reduce framework to handle millions of queries and replies daily.

5.2 Sensweet

A Sensweet application uses the smartphones’ ability to work in the background

without distracting the mobile user. Sensweet applications sense the surrounding

environment and send these data to the Twitter. While sending the data to Twitter,

the Sensweet client formats the data according to the bio-code it advertises in the

Biography section of its Twitter account. The main idea of using a bio-code is to
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allow worldwide users to search for the sensors they are looking for on-the-fly and

enjoy a plug-and-play sensor network without registering through dedicated sites.

Here we provide a standard for a bio-code for Twitter to encode the values pub-

lished by the sensor. To illustrate with an example, the Bio section of our noise-

sensing application reads as: |LO :?43.003,−78.787|N97 : NO|UTC − 5|UB : CSE : CSS|.

This bio-code consists of tuples separated with a vertical bar (|). In each tuple, de-

scriptive fields are separated with a colon (:). The values that are separated with

commas describe the phenomena the sensor(s) captures. The first tuple is always

the location parameter: longitude and latitude (obtained from the built-in GPSs or

entered manually). If the sensor is mobile (e.g., smartphone), a question mark will

precede the longitude value. Even for mobile sensors a default location is added to

give the queriers an idea of the region the sensor operates. The question mark hints

that a more accurate location is included in the tweets. The second tuple explains the

manufacturer of the sensor, product ID (if possible) and the sensor type(s) the sensor

provides. The third tuple is optional, and describes the time zone that the sensor

uses and can also include a timestamp. Although Twitter provides timestamping of

tweets, this extra timestamp becomes important in case when a sensor need to store

readings and send them later when it can connect to the Internet. The fourth tuple

involves identification of the company/project that deploys the sensor, and defines a

group id to locate other sensors that are part of that project.

Thus, the above bio-code is decoded as: Location is dynamic, but default location

is UB North Campus Bell hall, Nokia N97 is used to capture GPS and accelerometer

values in NY time zone for UB CSE Crowd-Sourced Sensing (CSS) Project.

5.3 Case Study: Crowd-Sourced Weather Radar

In this section we explain our crowd-sourced weather radar application. For the

sake of simplicity, we choose a topic where everybody in Twitter can be an expert:
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Figure 5.2: State transition diagram for Askweet component
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the current weather condition. Our application contains two sub-applications, one

of them obtains the current weather condition from users, and the other one obtains

guesses from the users about the next day’s weather condition.

Weather radar application has its own question and answer format. The question

messages sent by query owners are in the form of “?[Application Name] Loc:Location”

where application name is either Weather or WeatherGuess. For instance “?Weather

Loc:Buffalo,NY” might be a valid question for asking weather condition in Buf-

falo,NY. The forwarded query to the Twitter users is of the form: “How is the

weather there now? reply 0 for sunny, 1 for cloudy, 2 for rainy, and 3 for snowy” Our

weather radar application account can be visited at rainradar on Twitter. We display

the answers to our weather radar on a map at http://ubicomp.cse.buffalo.edu/

rainradar. The map is configurable to show results from previous days, and is also

zoomable to show fine-grain locations of the replies.

We have implemented only the Askweet component of the crowd-sourced system

since the Sensweet component can be any smartphone Twitter application. The

Askweet component of our weather radar application is written in Java Programming

language by using Twitter4J open source API library and total size of the source is

about 2KLOC. Askweet listens to the incoming messages to its Twitter account and

processes them with respect to their message types. The main function of Askweet

component is to get a question, process it and/or forward this query to the multiple

users who can answer it. After obtaining answers from Twitter users, Askweet sends

the reply to the original querier.

Our Askweet implementation is multithreaded for scalability, with each thread

implementing a specific functionality. When the Askweet application is launched

(Figure 5.2), it starts the poll thread that polls the Twitter account and gets the

messages. Then the thread detects whether the message is a question or answer.

Depending on the message type, it starts either a question handle thread or a process
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answer thread. Poll thread keeps on checking the account every minute continuously

to get the new messages addressed to itself.

Question handle thread receives the question from the poll thread and detects

if it is weather guess question or weather condition question. Depending on the

question type it starts either a weather condition application thread or a weather guess

application thread. Question handle thread also starts Twitter rate-limit checker

thread in order to ensure that Askweet stays within Twitter’s request limits. After

this step, the question handle thread is terminated.

Weather guess application and weather condition application threads have almost

the same functionality. Both of them get the question and parse the location from

question text and search through Twitter to find users for the specified location. Then

they send the question to the selected qualifying Twitter users. After that these

application threads are terminated. Both of the applications keep all the relevant

data in a database in order to observe the social collaboration and attendance. This

database also helps the program not to spam any Twitter user with multiple requests

within a week.

As we have a query count restriction on Twitter, we need a thread that checks

Twitter to see if the system can proceed to post questions and inform the query

owner about the received answers. If the system exceeds the rate limit, the thread

locks question asking permit and releases the lock if otherwise. Process answer thread

gets the answers from the poll thread and tweets the answer to Twitter. It also selects

five of the answers to forward to the original querier.

5.3.1 Experiment Results for Weather Radar

In this section, we present our experimental results for the weather radar appli-

cation. We performed three types of experiments using weather radar. In the first

one, we compare the user responses in different time slices of day for New York City
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(NYC). In the second, we compare user responses from three different cities: NYC,

Toronto and Montreal. In the last one, we analyze the correlation of answers from

our users with data from weather.com for one day (December 6, 2009).
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In the first experiment, we compare the user response behaviors in NYC at dif-

ferent time slices. We observed that the response times in the afternoon and in the

evening are better than those in the morning and at night (Figure 5.3). An interesting

phenomenon is that on the average 50% of the answers are received within the first

ten minutes (Figure 5.3). Figure 5.4 shows the user contribution to our experiments.

We observe that Twitter user contribution to the experiment is highest in the morning

which is nearly 20% (Figure 5.4); we get a response from 20% of the queried users.

For the other time slices, the contribution is around 15% (Figure 5.4). Figure 5.5

shows the user distribution with respect to Twitter client types. At night time, an
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overwhelming majority of people use mobile Twitter clients to send their responses

(Figure 5.5). Overall, mobile client users consistently dominate over desktop/laptop

users (Figure 5.5).
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In the second experiment, we compare the user responses from different cities.

We observe that users in NYC respond quicker than those in Toronto and Montreal,

which have almost the same response patterns (Figure 5.6). In Figure 4b, we compare

the participation ratio of the users in these three cities. We see that users in NYC

participate more than those in Toronto and Montreal (Figure 5.7). In all these three

cities, mobile Twitter client users dominate over desktop/laptop users and this ratio

is highest in NYC (Figure 5.8).

A screen shot of the weather radar map application for all cities is given in Fig-

ure 5.9.
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Rainy! Time : 2010-01-05 00:52:41

Figure 5.9: Screenshot of the Weather Radar Web Application

Table 5.1: Comparison of user responses with weather.com

City Match for Current Day Match for Next Day
New York City 89% 56%

Toronto 79% 29%
Montreal 88% 54%

In the final experiment, we analyze the correlation of answers from our users with

data from Weather.com. Since it is not practical to validate Twitter user responses

with various fine-grain spatial (latitude, longitude) and temporal dimensions, the

correlation is based on course-grain city wide level weather data for the entire day.

In the first column of Table 5.1, we list the correlation of user responses with the

data from weather.com for the current day (the weather.com data and user responses

are collected in the same day). If the weather.com reports “snowy” for the day, all

responses except “snowy” are counted as “unmatched”. If the weather.com reports a

fuzzy condition such as “partly cloudy”, all responses including “sunny” and “cloudy”

are counted as “matched”. In this experiment, we observe that for each city at least

79% of the answers match with the data from weather.com.

In the second column of Table 5.1, we list the correlation of user predictions for

the next day with the data from weather.com. Here we collect the predictions of

users in previous day (December 6) and find the correlations of those predictions
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with weather.com data collected on the next day (December 7). We observe that at

least 50% of the user predictions match with weather.com for New York City and

Montreal whereas it is 29% in Toronto.

5.4 Case Study: Smartphone Enabled Noise Map

In this application, we measure the noise level of the surrounding environment via

GPS enabled smartphones and provide a noise level querying service over Twitter.

Here, the noise corresponds to all sound frequencies in the environment. We describe

our implementations of the Askweet and Sensweet components for this application

below.

Askweet component. We implemented the Askweet component similar to that

of the weather radar application. The noise map application has its own query format

of “?Noise Loc:Location”. Any Twitter user can send a question to the Twitter

account of Askweet (twitter.com/askweet) in order to query the noise level of a

specific location. For example “?Noise Loc:Student Union, UB, Buffalo, NY” queries

for the noise level of the Student Union at the University at Buffalo.

When Askweet gets a new query, it automatically tries to resolve the location by

using Google’s Geocoding Service (http://code.google.com/apis/maps/documentation/).

After getting the latitude and longitude information from Google’s Geocoding Service,

Askweet searches previously known Sensweet clients in the database in proximity of

the specified location. If Askweet finds a local client, it returns the latest noise level

obtained from that client. If multiple Sensweet clients are found, the noise value with

the latest timestamp is returned to the querier.

Sensweet component. We implemented a Sensweet client for the Nokia N97

Smartphone series. For implementing the Sensweet client we used Carbide C++

version 2.0.2, Nokia N97 Symbian S60 SDK V1.0 and Qt Tower 4.5.2. The total size

of the source code for this Sensweet component is more than 1500 lines of code.
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The Sensweet client detects the noise level of the surrounding environment and

forwards this data to Twitter using our TweetML format mentioned in Section 5.2.

The specific TweetML format (|Loc|Noise : V al|Timestamp|) for Noise Map applica-

tion includes ordered values for location, sensor reading and timestamp. An example

sensor reading can be “Noise:H” denoting that the current noise reading is “High”.

Since Nokia N97 smartphones do not provide the noise level in decibel format, we

implemented our own noise sensor driver to map noise samples into three categories:

L as Low, M as Medium and H as High.

Our Sensweet client implements a timer for reading the GPS coordinates and

using the microphone to record a one second noise sample in “Windows WAV” file

format. Then, Sensweet client parses this WAV file to obtain the mean value for the

amplitude of signals in the sample. In order to map the current sample into one of

the noise categories {Low, Medium, High}, we used three normal distributions. For

a given mean value x of amplitudes obtained from a one second sample, we calculate

the following probability density function (pdf(x)) for each of the predefined three

normal distributions:

pdf(x) =
1√

2πσ2
exp(−(x − µ)2

2σ2
) (5.1)

The µ in the formula represents the mean of the corresponding distribution and

σ2 represents the variance. The assignment is based on the highest value. Since there

is no gain setting for the microphone of Nokia N97, our mapping is valid for any

Nokia N97 smartphone device. For the smartphones having adjustable microphone

gain, our mapping can be easily adapted by dividing signal values by the gain factor.

The state diagram of the Sensweet client for noise map application is given in

Figure5.10. When the phone is started the Sensweet application is also launched as

a background process and waits in the “idle” state. The GPS based location, noise

level, and current timestamp is logged to the flash memory when the sensor timer is
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Figure 5.10: State transition diagram for Sensweet client

fired. We also keep another timer for forwarding sensor readings to Twitter. When

the Internet timer is fired, main application reads the latest sensor readings from the

flash disk and tweets it (http://twitter.com/Sensweet).

5.4.1 Experiment Results for Smartphone Enabled Noise Map

Here we provide our experimental results for the noise map application.

In order to determine the normal distributions representing the “Low”, “Medium”,

and “High” categories for noise levels, we performed experiments in six different

locations with varying noise levels. In each location, we recorded more than 200 noise

samples with a duration of one second.

??@??A?@?B?@?BA?@?C?@?CA?@?D
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Figure 5.11: Low level noise
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Figure 5.12: Medium level noise

We assign the “Low” category to the samples that we obtained during the silence

in home and computer lab locations. The amplitude distribution for “Low” level

noise is given in Figure 5.11. Here the amplitude (absolute value of signal values)
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Figure 5.13: High level noise

of low level noise mostly fluctuates between [0,100], which also implies that signal

values mostly fluctuate between [-100,100] (Figure 5.14). For the “Medium” category

we collect samples from the Student Union at UB and various meeting rooms at

the CSE department where people talk to each other (noise mostly includes human

voice). The “High” category is collected in bars and clubs in Buffalo with loud

background music. The normal distribution of amplitudes for “Medium” and “High”

categories are given in Figure 5.12 and Figure 5.13. Representative samples for these

two categories are also given in Figure 5.15 and Figure 5.16 respectively.
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Figure 5.14: Low level sample
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Figure 5.15: Medium level sample

In another experiment, we measure the noise fluctuation of our case study user

for one weekend day over different time slices starting from Saturday 4.00 pm until

Sunday 8.00 am (Figure 5.17). By analyzing the temporal noise fluctuation, it can

be possible to predict some of the activities of the user during the day time. In
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Figure 5.16: High level sample

the afternoon period the noise level fluctuates between “Low” and “Medium” level.

During this time the user was at home and meeting with his friends. In the evening

period the ratio of “Low” level decreases and ratio of other two levels increase. In

this period, the user was having dinner with his/her friends in some place and going

to a bar/club after that. In the night period the noise level is mostly “High” and the

user was visiting a club. The noise level in the morning period is “Low” mostly since

the case user was sleeping at home.
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Figure 5.17: Daily noise fluctuation graph
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CHAPTER 6

PRO: A PROFILE-BASED ROUTING PROTOCOL FOR
POCKET SWITCHED NETWORKS

In this chapter, we propose a novel routing protocol, PRO, for profile-based routing

in pocket switched networks. Differing from previous routing protocols, PRO treats

node encounters as periodic patterns and uses them to predict the times of future

encounters. Exploiting the regularity of human mobility profiles, PRO achieves fast

(low-delivery-latency) and efficient (low-message-overhead) routing in intermittently

connected pocket switched networks. PRO is self-learning, completely decentralized,

and local to the nodes. Despite being simple, PRO forms a general framework, that

can be easily instantiated to solve searching and querying problems in smartphone

networks. We validate the performance of PRO with the “Reality Mining” dataset

containing 350K hours of celltower connectivity data, and compare its performance

with that of previous approaches.

Outline of the chapter: In the next section we present analytical results for

finding the optimum number of forwarding quota. Then, we present our PRO algo-

rithm for profile-based forwarding of messages. Finally, we evaluate the performance

of PRO and compare it with previous work on routing in PSNs over Reality Mining

dataset.

6.1 Analyzing the Impact of Forwarding Quota

6.1.1 Preliminaries

In this section, we explain basic mathematical models of information dissemination

in Mobile Networks. We discuss the derivation of the important parameters and
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give the fundamental functions for analyzing information dissemination in Mobile

Networks. After that, we will use these base functions for analyzing the impact

of sender quota on routing performance in the next subsection. The more detailed

discussion about mathematical model of information dissemination by using other

constraints except sender quota can be found in [121].

We start with the discussion of dissemination strategies with most expensive case

in terms of message overhead which is used in the traditional Epidemic Routing

[114]. In this schema every node sends message to the encountered node providing

that encountered node didn’t received the current message before. Here we provide

analysis for Epidemic Routing and its probabilistic version since we use the same idea

to analyze the impact of sender quota.

Let N be the size of population and I(t) be the number of mobile nodes (analogy

to infected nodes in the epidemic spread) carrying specific message. Let be the

pairwise meeting rating of two nodes in the system, which is proportional to speed

and transmission range of the nodes over limited area under random mobility model

which is exponentially distributed [20, 50]. Under these assumptions the rate for the

number of infected nodes can be written as:

I
′

(t) = β ∗ I(t) ∗ (N − I(t)) (6.1)

I(0) = 1 (6.2)

This equation tells that the infection rate is proportional to the infection condition

when one infected node from set of infected nodes (among I(t) elements at time t)

encountered with nodes from the set of susceptible nodes (among (N −I(t)) elements

at time t). Solving ordinary differential equation (6.1) with initial condition (6.2)

yields:
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I(t) =
N

1 + (N − 1)e−β N t
(6.3)

In [106], a cumulative distribution function is proposed as P (t)=Probability(TtripT ime

< t) for analyzing average packet delivery time E[TtripT ime]. It is also stated that for

the population size N , the change in the cumulative distribution function P (t) is

proportional to:

P
′

(t) = βI(t)[1 − p(t)] (6.4)

With initial condition P (0)=0, solving ordinary differential equation (6.4) yields

to

P (t) = 1 − N

N − 1 + eβ N t
(6.5)

From (6.5) the expected average packet delivery time in normalized form can be

calculated as:

E[TTripT ime] =

∞
∫

0

(1 − p(t))dt =
ln N

β(N − 1)
(6.6)

By using these equations (6.3) and (6.4), the expected number of packets delivered

E[TPacketCount], at the time of delivery to destination (excluding packet to destination)

is calculated (6.7) in [121].
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Table 6.1: Equations for Probabilistic Model

I(t) = N
1+(N−1)e−ρβNt

P (t) = 1 −
(

N
N−1+eρβNt

)
1

ρ

E[TTripT ime] =
[

ln N
β(N−1)

, ln N
βρ(N−1)

]

E[TPacketCount] = ρ(N−1)
ρ+1

E[TPacketCount] =

∞
∫

0

I(t)P ′(t)dt − 1 =
N − 1

2
(6.7)

In the more general case called Probabilistic forwarding [121], the message for-

warding is conditional even the receiver doesn’t have the current message. For the

simplicity, the approach in [121] assumed that messages are forwarded with respect

to constant probability ρ ∈ [0, 1]. In this scenario the probability factor affects the

change in the number of infected node as follows:

I
′

(t) = β ∗ ρ ∗ I(t) ∗ (N − I(t)) (6.8)

Under this modeling the following equations are obtained for probabilistic routing:

6.1.2 The Impact of Sender Quota on Routing Performance

Previous work on analyzing DTN routing protocols [20, 50, 106, 121] do not focus

on analysis of forwarding quota for the performance. In this section, we analyze

the forwarding quota, which we define as the maximum number of copies a node

can forward to other nodes for any message. In the following discussion, we denote

Forward-K as a routing strategy where each message can be forwarded at most K

times.
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We start with the analysis of the lower-bound for forwarding, namely Forward-1

strategy. Using this strategy, at any time t there exists only a single node in the

system that can deliver the message towards another node. In this case, the number

of infected nodes and infection rate becomes proportional to the pairwise meeting rate

β. For constant population size N , we derive the following expressions for infection

rate I(t)′ and cumulative distribution function P (t):

I(t) = βt and I
′

(t) = β (6.9)

P (t) =
βt

N
and P (t)

′

=
β

N
(6.10)

P (t) stands for the probability of a message to arrive to the destination node before

a given time t: TTripT ime < t. From (6.10) the expected average packet delivery time

in normalized form can be calculated as:

E[TTripT ime] =
1

(N/β)

N
β

∫

0

(1 − p(t))dt =
1

2
(6.11)

Since each node can forward at most one packet, the total number of hops traveled

by the packet gives the number of nodes that has the message at the time of delivery.

Assuming that each condition has equal probability, the E[TPacketCount] becomes:

E[TPacketCount] =
1

N
[1 + 2... + N − 1] =

N − 1

2
(6.12)

Before increasing the forwarding quota to K≥2, we first give the following defini-

tion.
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Definition (Saturated Node): At time t, a node is called saturated with respect

to message M if it has already forwarded K copies of the current message M .

Lemma 1: For K ≥ 2 in Forward-K strategies and with infinite population size

N , the ratio of saturated nodes in the infected set is always smaller than the ratio of

unsaturated nodes in the infected set.

Proof of Lemma 1: The proof is by contradiction. Let I = A + B be the

number of infected nodes where A is the number of saturated nodes and B is the

number of unsaturated nodes. We assume that A > B. We can model the infection

process as a directed graph (Figure 6.1). We know that each infected node has exactly

one incoming edge since a node cannot accept copy of same message second time.

 

 

 

 

 

 

 

 

Saturated Node 

Unsaturated Node 

Figure 6.1: Graph model of infection with K=2

Clearly there exists I−1 directed edge in this graph since the number of infected

node is I−1 excluding the initial node. The maximum value for A corresponds to the

condition that all infection edges should come from the edges in the set A. In this

case the following equality should be satisfied:

I = AK + 1 (6.13)
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From I=A + B, we get B as the following:

B = A(K − 1) + 1 (6.14)

B ≥ A + 1 (6.15)

Since K≥2, we get equation (6.15) which contradicts with the assumption B<A.

Next we give a stronger theorem which analyzes the impact of sender quota on

delivery time in terms of asymptotical functions.

Theorem 1 (*): For K≥2, The expected delivery time for Forward-K strategy is

Θ
(

ln N
β(N−1)

)

, and is asymptotically Θ(N/ ln(N)) times less than Forward-1 strategy.

Proof of Theorem 1: Since we already showed that the normalized expected

trip time of Forward-1 strategy is E[TTripT ime] = 1
2
, the remaining part of the proof

focuses on showing the expected delivery time for Forward-K strategies for K≥2 .

The expected trip time for the probabilistic routing in normalized form [121] is given

as:

E[TTripT ime] ∈
[

ln N

β(N − 1)
,

ln N

βρ(N − 1)

]

(6.16)

Lemma 1 shows that for K≥2, the number of unsaturated nodes in the system

is always greater than the number of saturated nodes. If we select a node randomly

among infected node set, the probability of selecting unsaturated node is proportional

to B
I

which is also proportional to message forwarding probability.

From (6.13) and (6.14) B
I

is equal to:

A(K − 1) + 1

AK + 1
(6.17)

For K≥2, the following inequality is always satisfied:
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ρ =
A(K − 1) + 1

AK + 1
>

1

2
(6.18)

If we replace the ρ in equation (6.16), we get the following range for expected trip

time in Forward-K schedule.

E[TTripT ime] ∈
[

ln N

β(N − 1)
,

2 ln N

β(N − 1)

]

(6.19)

From equation (6.19), clearly the expected delivery time for Forward-K strategy

becomes asymptotically on the order of Θ
(

ln N
β(N−1)

)

for K≥2. Obviously this order

is asymptotically Θ(N/ ln(N)) times smaller than complexity value for expected trip

time of Forward-1.

Theorem 1 shows that selecting forwarding quota K=2 is better than selecting

forwarding quota K=1 since it improves the latency asymptotically. Theorem 1 also

states that incrementing the quota to more than 2 does not improve the latency

asymptotically which leads to diminishing returns. In fact, our experimental results

also supports the results of Theorem 1.

6.2 PRO: Profile Based Routing for Pocket Switched Net-

works

6.2.1 Design Issues

We begin with a discussion of social networks to identify dynamics of human

behavior. Small world property [69, 70] is the most fundamental feature of the social

networks where the average distances between any two vertices of the network is

proportional to the logarithmic scale of the number of vertices. Recent works [58,

92, 95, 116] refined this model and showed that human networks can be modeled as
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community graphs given in Figure 6.3. In the community model, a network contains

densely connected group of vertices with only sparsely connected vertices between

the groups. The neighbor vertices that belong to the same community are called as

local neighbors (black edges in Figure 6.3) and vertices attached to the two sides of

edges between different communities are called as remote neighbors (gray edges in

Figure 6.3).

In a recent work [56], the regularity of inter-contact events in Bluetooth level is

analyzed. This works showed that inter-contact events between people that knows

each other (friend or in the same community) shows regularity in terms of meeting

duration and the number of meetings. In our previous work [17], we also discovered

that the mobility profiles of cell phone users including the spatio temporal mobility

patterns shows regularity in days of week and 6 hour length time slices domain. Here,

we will use the similar observation that people in the same community (students in

the same class, co-workers) are most likely to meet almost regularly in the same set

of locations.

PRO is distinguished by the way it employs the regularity of intercontact events

between nodes in the same community. Although this phenomenon is one of the

most important properties of human behavior, it has not been explored fully by

previous approaches. History based approaches [39, 51, 78, 111, 36] consider frequent

encounters in the near past to predict encounters in the near future. However, the

time interval between regular intercontacts does not need to be short, there may be

a regularity repeated with longer time intervals. As an example, for two people that

encounter in only in the mornings history based approaches still incorrectly produce

very high forwarding probability during afternoons. The same problem also occurs for

routing protocols [23, 35, 57] utilizing social network structure; the high popularity

of a node in the social network does not guarantee its high popularity at certain time

periods such as “mornings in the weekdays”.
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PRO also employs community structure of social networks for fast and light weight

routing. To this end, PRO selects the carrier nodes with the maximum information

dissemination gain when the current carrier node does not have any local information

about destination. The idea here is to cover maximum number of communities when

there is no available lead to the destination. But when there are some neighboring

nodes that are likely to be in the same community as the destination, PRO gives

priority to those nodes.

6.2.2 PRO Protocol

In this section we present PRO in two parts. In the first part, we explain internal

data structures stored in each node. In the second part we present the forwarding

algorithm.

6.2.2.1 Internal Data Structures

In PRO, each mobile node uses internal data structures to keep track of peri-

odic intercontact events with other nodes. Each node reflects intercontact events as

updates to observation scores that are stored in the local observation table.

 Day1 Day2 
T1   
..   
Tk [Nodex, 0.64] 

[Nodey, 0.73] 
… 
… 

 

Tk+1   
..   
..   
Tn   

 

 

 

Cell for (Day1, Tk) 

Figure 6.2: Structure of observation table

Local Observation Table: Each cell in the local observation table corresponds

to a periodic time slice in the “week” domain. The justification of this structure
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follows from [17] which analyzes the Reality Mining dataset. In our design, each

cell in the local observation table (Figure 6.2) stores observation rankings for other

nodes which were previously encountered at the time interval corresponding to that

cell. Inside each cell, we store a hash table which keeps observation rankings for

encountered nodes. Notice that we do not keep any information about non observed

nodes and we delete the data of previously observed node if it is not observed in the

most recent one month period. These two design decisions make our memory usage

very low.

Observation ranking is a metric that denotes the probability of observing a node

periodically at that time interval. The important point here is that the observation

ranking is highly dynamic, the effect of the most recent observations are higher than

the effect of the previous observations. For each encountered node X, we use the

following iterative functions for updating observation ranking in the corresponding

cell.

• Rank(x)n = (1−α) ∗ Rank(x)n−1 + α∗isObserved, where α ∈ (0, 1), isObserved

∈ {0, 1}

The observation score k step prior is reflected in the current score with the factor

(1−α)k which goes to zero when k is large, as α ∈ (0, 1). When a node is encountered,

the value kept in the hash-table of the corresponding cell is updated with respect to

ranking function by using isObserved= 1. At the end of each day (or the time interval

corresponding to each column), the non observed nodes for the current column (the

ones that already exist in the hash-table inside the cells) is updated with isObserved=

0.

6.2.2.2 Forwarding Algorithm

Forwarding algorithm is designed by using two important metrics: observation

score and information dissemination score.
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Observation Score: Observation score is the metric which is correlated with the

probability of observing the destination node in the near future. For a given node A,

the observation score of another node B is calculated as follows: If the current slice

is X and the slice that corresponds to maximum delay tolerance is X+K, then the

observation score of node A with respect to destination node B becomes:

• OS(B, d) = [1/1]Rank(B)x + [1/2]Rank(B)x+1 + . . . + [1/(K+1)]Rank(B)x+k

Clearly the closest time slice X has more effect on the observation score which

increases the probability of selecting nodes with earliest delivery times to the desti-

nation.

 

Figure 6.3: Community structure in human networks

Information Dissemination Score: Information dissemination score measures

whether the encountered node is a good candidate for distributing the packet to other

nodes. This metric contributes significantly when no information about destination

is available (neither current nor encountered nodes have high observation scores). In

this case, PRO tries to forward the packet to other communities by using gray links

(inter community links) in Figure 6.3.

In PRO, we use a distributed approach based on the concept of Ego networks

[84]; only local topological information of nodes are used for calculating information
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dissemination score. The idea behind the information dissemination score is that if

the potential receiver node observes different set of nodes than the node set of the

current node, then that receiver node has higher probability of observing nodes in

different communities in the near future. We calculate the information dissemination

score between current node A and receiver node B as follows:

• IDS(A,B) = [1/1]Diffx + [1/2]Diffx+1 + . . . +

[1/(1 + k)]Diffx+k

In this expression, we use Diffx as the number of nodes that the receiver node

observes differently from the current node in the current time interval x (which is the

size of the set |B \ A| for time slice x).

Forwarding: For the forwarding process, observation and information dissemi-

nation scores are calculated for all of the nodes in the communication range. During

the forwarding process, PRO gives priority to the observation score since the nodes

that observe the destination regularly are more suitable candidates for forwarding

directly to the destination.

This is also another proactive decision in our system similar to the selection of

(Forwarding Quota = 2) and does not depend on training of the algorithm over the

Reality Mining data. The justification of giving priority to the observed nodes is

discussed in more detail in Section 6.3.2. Our another key observation is that the

probability of encountering infected node increases as the depth of the infection tree

increases (Figure 6.1). Here the depth corresponds to the hop count starting from

source node (root in the infection tree). By analyzing the hop count of the current

copy of the original packet, the current node has an estimate about the number

of infected nodes carrying copy of the current packet. The reader may think the

depth of the infection tree in Figure 6.1 as hop count. Therefore, as hop count

increases we decrease the transmission probability due to information dissemination
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score by adjusting the Nobs Thr (threshold for non observed nodes). The details of

the forwarding algorithm is given below:

• PRO routing first checks for direct delivery. If the current node detects desti-

nation node of the packet, the current node transmits the packet immediately

without checking any criteria.

• The second priority is given to observed nodes. If the current node is not in the

communication range of the destination node, PRO routing checks observation

score criteria for forwarding: the receiver node should have higher observation

score than the current node for destination of current packet.

• If there is no candidate relay node with sufficient observation score, PRO checks

for the information dissemination score of the nodes in the communication

range. If the current node encounters a candidate node with information dis-

semination score greater than the internal threshold (Nobs Thr) stored in the

current node, then the packet is forwarded to that candidate node. The thresh-

old for the information dissemination score, Nobs Thr, is calculated by using

a list of information dissemination scores of previously encountered nodes as

discussed in Section 6.3.2.3. If there are no suitable nodes in the communi-

cation range, the message is kept until a new node with suitable conditions is

encountered or until time out occurs.

In addition to these two criteria PRO restricts the number of copies that can

be forwarded for each message. Forwarding Quota represents the maximum num-

ber of copies that can be forwarded for a message by single node. Quota Obs and

Quota Nobs are for restricting the number of copies that can be forwarded using

observation and information dissemination scores correspondingly. As explained in

theoretical analysis section (Section 6.1) we use Forwarding Quota = 2.

The pseudo code for the forwarding algorithm of PRO is given in Algorithm 6.
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Algorithm 6 Forwarding Algorithm of PRO

1: // Direct Delivery To Destination
2: ForEach encountered nodei do
3: If nodei = p.dest and p.finalized = false Then
4: If p /∈ nodei Then
5: Forward p to nodei

6: p.finalized = true
7: End For
8: // Give Priority to Observed Nodes
9: ForEach encountered nodei do

10: If (p.obs + p.nobs) < Forwarding Quota Then
11: tScore = calcObsScore(p.destination, nodei)
12: If tScore > p.Score and

p.obs < Quota Obs and p /∈ nodei Then
13: Forward p to nodei

14: p.obs + +
15: End For
16: // NonObserved Carrier Nodes
17: ForEach encountered nodei do
18: If (p.obs + p.nobs) < Forwarding Quota Then
19: disScore = calcDisScore(this, nodei)
20: If disScore > Nobs Thr and

p.nobs < Quota Nobs and p /∈ nodei Then
21: Forward p to nodei

22: p.nobs + +
23: End For

6.3 Experimental Results

We start with an explanation of our dataset and experimental setup in Section

6.3.1. Section 6.3.2 presents an evaluation of design parameters for PRO. The aim

of this section is evaluating our proactive assumption and theoretical analysis about

forwarding quota. Here we do not train the system with respect to Reality Mining

dataset. We compare PRO with three well-known DTN protocols in Section 6.3.3

and Section 6.3.4. In Section 6.3.5, we measure the impact of the availability of

Internet connection on routing performance. In Section 6.3.6, we present our results

on smartphone queries. Finally, in Section 6.3.7, we analyze the impact of location

prediction on routing performance.
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6.3.1 The Dataset and Experimental Setup

For our experimental evaluation we use the Reality Mining dataset [42] from MIT

Media Labs. This dataset was generated by an experiment involving 100 people for

the duration of 9 months, where each person is given a Nokia 6600 cellphone. Reality

Mining data contains both cellular connectivity and fine granularity peer to peer

Bluetooth connection data which makes it very suitable to use as evaluation batch

for various routing protocols. We choose the Reality Mining dataset because it is one

of the biggest publicly available set and because it is already compared with several

other datasets in various aspects such as cellular connectivity duration [99], Bluetooth

connection durations [32], social networks [58] and human mobility [56]. These work

showed that the observed phenomenons in the Reality Mining dataset is not a specific

artifact of the experiment itself and the dataset is a representative sample of general

human mobility and social interaction events.
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Figure 6.4: Participant analysis

While the experimental data is collected for the duration of 9 months period, the

majority of the users did not participate in the experiments for the whole period. So

we selected most crowded 3 months time interval in terms of participant count. Even

these most crowded time periods the average participant count is around 65%(Fig-

ure 6.4) which becomes upper bound for the success of the routing protocols. In
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addition to that the set of people in remainning 35% are not same at each day and

this set is very irregular.

We next explain how we determine the duration of time slices to be used in the

local observation tables of the PRO protocol. Recall that the idea of time slice length

is that each consecutive time slice should be long enough to capture change in the

surrounding set of nodes (nodes in communication range). The idea is that if the

“observed person set” in two consecutive time interval are very similar, then there

is not enough change in the set of neighboring nodes and we can combine these two

time slices in to one.

In order to capture this change concept, we use vector similarity over the set of

nodes observed in two consecutive time intervals. Let A be the set of nodes observed

in time interval Tk and B be the set of nodes observed in the consecutive time interval

Tk+1. First, we find C = A ∪ B. Then, for each element in C, we generate observation

vectors with length |C| for both A and B. While generating observation vectors, ∀

nodei ∈ C and nodei ∈ corresponding set (A or B), the i-th component of observation

vector for corresponding set becomes 1. If nodei /∈ corresponding set (A or B) then

i-th component of observation vector becomes 0. Finally, we calculate the cosine

similarity between these two observation vectors as a similarity metric between two

consecutive time slices.

In our experiments, we tried 6 different time slice lengths between 30 minutes and

300 minutes. We left out time slice lengths less than 30 minutes and more than 5

hours. When using time slices that are less than 30 minutes, the cosine similarity

between two consecutive time interval becomes zero due to the insufficient length of

time interval (and not due to changes in social network dynamics). Also more than

300 minutes is too big because we cannot fit two such slices between 9.00 am and

7.00 pm when people are most active.
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The results of these experiments are given in Figure 6.5. For each person, we

calculate the average consecutive time slice similarity for 6 different time slice lengths,

and then we choose the time slices with minimum similarity for the corresponding

person. To illustrate; 60 minute is the time slice which has minimum similarity value

for more than 30 people (which is nearly 1/3 of the whole population). After this

analysis we have fixed the value of the time slice length to 60 minutes for all mobile

nodes in the experiment.

It may seem that increasing the time slice length should also increase the dissim-

ilarity between two consecutive time slices since any node included within K minutes

interval should also be included in L, K < L, minutes time intervals. However, while

calculating similarity of two sets A and B, the relative magnitude of A ∩ B over

A ∪ B is also important, since similar dimensions can dominate dissimilar dimen-

sions during the computation. To illustrate: the angle between two vectors A=(1, 1)

and B=(1, 0) is larger than the angle between A=(1, 1, 1, 0, 0) and B=(1, 1, 1, 1, 1)

although the number of different dimensions in the latter case is bigger than that of

the former.

For comparing routing protocols for DTNs, we implemented a basic MANET

simulator which can be fed with location information of individuals [17] with cell

connectivity data as well as Bluetooth connectivity data. We then implemented
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routing protocols mentioned in Section 3 as plug-ins over this simulator. All of the

components of our evaluation framework are developed in Java and consist of more

than 7K lines of code. In each simulation day we generate 100 original message

from random source to random destination among all users. For all experiments the

following concepts and metrics are used:

• Successful delivery: At least one copy of the original packet arrives to the

destination before Time To Live (TTL) expires.

• Unsuccessful delivery: Failure of the successful delivery. No copy is delivered

to the destination before TTL expires. where there is no copy delivered to the

destination before timeout.

• Success of the protocol: The ratio of the number of successfully delivered

original packets over the number of all original packets.

• Communication cost: The number of copies that is generated through the

network per each original packet.

• End to end delay: The difference between timestamp of the original packet

(assigned when it is generated) and the timestamp of first successful delivery.

6.3.2 Experiments on PRO

We present our experimental analysis of PRO in three subsections: analysis of

maximum forwarding quota, analysis of routing strategies for spending forwarding

quota, and finally reducing the communication overhead.

6.3.2.1 Determining The Number of Maximum Forwarding Quota

Here, we compare the performance of PRO with varying forwarding quotas. We

focus on determining the optimal maximum forwarding quota which corresponds to

Forwarding Quota = Quota Obs + Quota Nobs value. Due to the space limitations
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we skip analytical justification of Forwarding Quota = 2, and give only empirical

support for this in Figure 6.6. For this figure the line labeled with circle data points

(Max-Obs), we fix Quota Nobs to 1 and vary Quota Obs from 0 to 10 copies. In the

same figure, the line with the triangle data points (Max-Nobs) we fix Quota Obs=1

and vary Quota Nobs from 0 to 10 copies. The Figure 6.6 shows that there is a

significant tipping at point Forwarding Quota = 2. We observe similar behavior at

Forwarding Quota = 2 in the cost and delay analysis. Since these results support our

theoretical analysis in Section 6.1, we decided to use Forwarding Quota = 2 in PRO.

 

 

 

 

0,35

0,4

0,45

0,5

0,55

0 1 2 5 10

S
uc

ce
ss

MAX Sender Quota

Success vs MAX Sender Quota

Max-Obs

Max-Nobs

Figure 6.6: Analyzing forward quota in terms of success

6.3.2.2 How To Spend the Forwarding Quota

Here, we present experimental results about how to divide Forwarding Quota

among Quota Obs and Quota Nobs. We investigate the following four combinations:

• The first combination (2-Nobs) dictates PRO to use the entire forwarding

quota on nonobserved nodes. In other words we use (0, 2) for (Quota Obs,

Quota Nobs).

• The second combination corresponds to PRO as we described in Section 6.2.

This is a flexible approach that gives priority to observed nodes (when available)

over nonobserved nodes.
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• The third combination (1-Obs-1-Nobs) constraints PRO to use strictly (1, 1) for

(Quota Obs, Quota Nobs).

• The fourth combination (2-Obs) is the dual of the first combination.

The results of these experiments are given in Figures 6.7-6.9. We observe that

the second combination outperforms the others in terms of success, overhead, and

end to end delay. The important result here is that there may be some states in the

network where there are no observed nodes (especially in the beginning stages of the

routing), and in this case using information dissemination score (nonobserved nodes)

contributes significantly for the routing performance by disseminating messages to

the diverse communities quickly. In later stages observed nodes takes on a more

important role in direct delivery of message to the destination. In the remaining of

the paper, we use PRO with this second combination as our base protocol. 
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Figure 6.8: Cost comparison

6.3.2.3 Reducing Communucation Overhead

We observe that the probability of delivery increases with the hop count. Thus,

to reduce the communication overhead, we reduce the probability of forwarding to
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Figure 6.9: Delay comparison

nonobserved nodes (forwarding due to information dissemination scores) as the hop-

count increases. 1 We investigate three mechanisms for PRO to this end:

5-Hop: Here, the message transmissions due to information dissemination score

are entirely stopped after 5-hops.

Probabilistic Reduction: The probability of transmission due to information

dissemination score is reduced to 1/k at the k−th hop.

List Based Reduction: In this case, each mobile node maintains a sorted list

of information dissemination scores of previously encountered nodes. At hop k, a

message is transmitted only if the candidate forwarder node has higher information

dissemination score than the average of the top 1/k portion of the sender node’s

list. Note that as k increases the sender nodes becomes more selective in forwarding

candidate nonobserved nodes.

We compare these three scenarios with the original PRO that use no transmis-

sion reduction (Figures 6.10-6.12). Here we observe that list based approach and

probabilistic reduction decreases communication overhead significantly (nearly 30%).

Among the three cases, list based approach gives the best results in terms of both end

to end delay and overhead with similar success rates as the original version. There-

1We do not cut back transmissions to observed nodes since their probability delivery is higher.

114



fore we use list based version of PRO as our base protocol and compare it with other

protocols in the next section.
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Figure 6.12: Delay comparison

6.3.3 Comparison with Other Routing Methods

In this section, we compare PRO with three popular MANET protocols: Epidemic

routing, Bubble-rap and Prophet routing. The details of these routing protocols are

discussed in Chapter 2. For the Bubble-rap, we use a single community case, because

using optimal k-community with distributed community detection requires testing

and pre-knowledge of k [58], which conflict with our requirement that all of the

routing algorithms should be self contained, suitable for practical deployment and

independent from dataset. For PRO, the time slice length is the only information
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that we use as precomputed. However, as we explained in previous sections, our

dataset is good representative of human behavior, our time slice length selection still

remains practically independent from dataset. For Prophet [78], we use the delivery

prediction function mentioned in Chapter 2. Each of these protocols employ passive

back-infection: If a forwarder node encounters another node which contains the status

of current message as delivered, then the forwarder node also changes the status of

the current message as delivered and delete its copy after TTL.
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For all protocols, except from success experiments including cumulative distribu-

tion analysis for various TTL values on x-axis (Figure 6.13), we use a timeout of 5

hours: when this timeout value is elapsed, the corresponding message is deleted from

the current node. The results of comparison experiments on cell based location data

are given in Figures 6.13-6.18. For the success comparison, we provide two figures
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including cumulative success distribution and average success. Figures 6.13-6.14 show

that the success of PRO is closer to epidemic routing than other methods. When the

average success is examined, the average success of PRO is found to be 25% better

than that of Bubble-rap and Prophet. The success of PRO is around 47% whereas

that of Bubble-rap and Prophet are under 38%. When we analyze the cumulative

distribution of arrived messages with respect to arrival time (Figure 6.15), we also

see that PRO outperforms Bubble-rap and Prophet. The difference is even bigger

in intermediate points such as 30 min where PRO is relatively 30%-35% better than

Bubble-rap and Prophet.
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We also measure the communication costs and the average number of hops needed

for delivery to the destination. Similar to our analysis above we provide cumula-

tive distribution and average views for these results in Figures 6.16-6.18. These
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figures show that the communication cost of PRO is 20% better than Bubble-rap and

Prophet. In addition to that the delay performance of PRO is very close to Epidemic

routing while its communication overhead is at least 2 times better lower Epidemic

routing.

6.3.4 Experiments on Bluetooth dataset

We provide three graphs for the experiments on Bluetooth connection data (Fig-

ures 6.19-6.21). Our first observation is that the success performance of all methods

are 30%-35% lower compared to celluar data experiments since there is less connec-

tion opportunity. While we treated two nodes as connected if they are in the same

cell in the previous experiments, two nodes are only connected if there is a peer to

peer short range Bluetooth communucation between them in Bluetooth experiments.
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Our second observation is that PRO achieves same relative performance (com-

pared to Epidemic routing, Bubble-rap and Prophet) in Bluetooth data set with that

of cellular connectivity dataset. The average success of PRO is 20%-25% better than

Prophet and Buble-rap while achieving significantly less communucation overhead

than Epidemic routing. The reason is that while Bluetooth data set has less con-

nection opportunity than the celluar dataset, it still inherently possesses regularity

human mobility behaviour. Since PRO exploits this regularity, it manages to maintain

same relative performance againts other protocols.

6.3.5 The Impact of Internet Connection on Routing Performance

The new generation smartphones are equipped with 802.11 connection capability

which enables them to connect to Internet without using data plans from telephone

service providers. The idea of uploading data from sensors or smartphones to the

Internet by opportunistic connection is a popular one [43, 30]. Here, we use the

same facility to enhance our system by adding 802.11 capacity to mobile nodes and

Internet access points to particular locations. We assumed so far that two nodes can

communicate with each other when they are in the same location. In the Internet

enabled scenario of our experiments, we locate access points at random locations and

enable mobile nodes to communicate with each other via Internet. This way, we

provide a logical connection between two nodes even they are in different locations,

provided that both locations have access points.

We measure the impact of Internet connection availability on routing performance

by trying different densities of Internet access points. To this end, we first found the

dominating celltower locations where the significant amount of simulation time (more

than 99%) is elapsed. As a result of our dominating set analysis, we found nearly 240

(K=MAX) such locations. We then placed access points to random subset of these

celltowers in the simulation.
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In our simulations we try 3 setups. In the first one we select K = 10 random

locations, in the second one we select K = 50 random locations, and in the last one

we enable all of the locations with Internet connection. When we analyze the success

of the Internet enabled version in Figures 6.22-6.23, we see that the success of message

delivery goes to maximum 65% (30% improvement with respect to original version)

which is also the theoretical upper bound for any protocol. The remaining 35% gap

is due to the fact that the destination node cannot be reachable at any time as given

in participant analysis graph (Figure 6.4). If we look at the cumulative distribution

graph for end to end delay, we can see that more than half of the messages are

transmitted in less than one minute by K=MAX scenario (Figure 6.24). The average

delay for K=MAX scenario is around 7 minutes which is much better than the original

version of PRO protocol (more than 30 minutes).
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The improvement in Internet enabled scenario is also observed in the communi-

cation cost. As seen from Figures 6.25-6.26, the communication cost of K=MAX is

less than half of the original version (without Internet connection). We also observe

significant improvements in the hop count. On average a single packet arrives to

destination in 1.5 hops in K=MAX scenario, whereas each packet needs 2.5 hops in

the original version of PRO(Figure 6.27). 
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Our results in Figures 6.22-6.27 also show that even for the relatively small K=50

case (that is, with Internet connectivity at 20% of locations) significant improvements

are observed over the performance of the original version of PRO.

6.3.6 Experiments on Smartphone Queries

In this section, we present our experimental results related to the smartphone

“point queries” we mentioned in the Introduction. In order to update PRO to handle
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point queries we modify the observation to also store visited locations (cellular id) in

addition to the observed nodes. The observation score and information dissemination

scores with respect to the location ids are calculated without any changes to those

calculated for node ids (see Section III).

The point queries are pushed to the network by random nodes asking for random

locations. The query forwarding phase for a point query is carried out in the same

manner as routing to a node id; the only difference in this case the is the node id

corresponds to the id of the location point that point query wants to sample. When

a node receives a query packet which asks for an information related to its current

location or near future location, the node replies to the query immediately if it is

already on query location, or later when it enters the query location. The reply is

rerouted back to the id of the node that initiated the query using PRO.
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For this section, we only compare PRO with epidemic routing since Buble-rap

and Prophet are not easily generalizable to support smartphone querying applications.

Figures 6.28-6.30 show that the success and delay performance of PRO is considerably

close to epidemic routing (10% more delay on the average, 8% less success). Yet, the

communication overhead of PRO is at least 2.5 time better than Epidemic routing.

In fact, the average communication cost per query is around 40 messages for PRO

whereas this value is more than 100 messages for epidemic routing.

6.3.7 Analyzing the Impact of Location Prediction on Routing Perfor-

mance

In this section, we analyze the impact of location prediction on routing perfor-

mance. For this reason we compare PRO routing with three different routing algo-

rithm that employs location prediction and most recent location of destination node.

In the simulations, we assume that there is a central repository that can communi-

cate with each node. In this scenario, each node can send query to central repository

related to current and possible future locations of destination node.

The first routing algorithm that we compare PRO is named ’PRO+loc’. This

version includes PRO and location prediction based routing. It includes two different

observation tables for encountered nodes and visited locations mentioned in point

query section. When two nodes encountered, ’PRO+loc’ checks for conditions of

PRO routing. If conditions of PRO are not satisfied (observed and non observed node

conditions), then it query central repository for current and potential next locations

of destination node. Central repository returns current location and potential future

locations of destination node by utilizing location prediction algorithm mentioned in

Section 4.2.4. Then, observed and nonobserved criteria mentioned in Section 6.3.6

are checked for locations in the set returned by central repository. If one them is

satisfied packet is forwarded to encountered node.

123



 

 

 

 

 

 

 

 

 

 

 

 

20

25

30

35

40

45

50

55

30 120 180 240 300

S
u
c
c
e
s
s

TTL (min)

Success vs TTL

Epidemic

PRO

PRO+Loc

Loc-Only

Fresh

Figure 6.31: Cumulative success

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

Epidemic PRO PRO+Loc Loc-Only Fresh

A
v
e
ra
g
e
 C
o
m
m
u
n
u
c
a
ti
o
n
 C
o
s
t

Methods vs Average Communuction Cost

Figure 6.32: Average cost

The second version of compared protocols is named ’Loc-only’ that includes same

location prediction system with ’PRO-loc’. This version does not include the PRO

routing and it only contain observation table for visited locations. The third routing

algorithm is called ’Fresh’. This algorithm query only the current location of destina-

tion node to the central repository. Once it gets the current location, location based

version of PRO routing mentioned in Section 6.3.6 is applied for current location.

The result of experiments on reality mining data for cumulative success and av-

erage cost are given in Figures 6.31-6.32. We observe that ’Fresh’ has the lowest

performance in terms of success. In fact the performance of ’Fresh’ does not increase

significantly after 2 hours. When ’PRO-loc’ and ’Loc-only’ is analyzed, their success

performance is much better than ’Fresh’ and even ’PRO-loc’ is closer to epidemic

routing. However, Figure 6.32 shows that the cost of location prediction based rout-

ing algorithms (’PRO-loc’ and ’Loc-Only’) is significantly higher than PRO routing.

On the other hand, PRO routing has a quite good success performance when com-

pared to Epidemic routing. It is also much more efficient than Epidemic and location

prediction based methods in terms of communucation cost.
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CHAPTER 7

CONCLUSION

In this thesis, we studied the problem of enhancing smartphone applications by

providing mobility information at suitable abstraction level. We studied different

problems for providing suitable mobility data for smartphone applications ranging

from application layer to the network layer.

In the Mobility Profiler project, we have proposed a complete framework for dis-

covering mobility profiles of cell phone users. We have defined the mobility path

concept for cellular environments and introduced a novel path construction method.

We have also proposed a cell clustering method that provides robustness against noise

due to tower oscillations and improper handoffs containing time delays. Our analysis

on Reality Mining data yields also new model for human mobility. We found the

significant amount of human mobility (around 85%) shows spatial and temporal reg-

ularity. This implies that people spend most of their time in top-k locations and visit

these locations regularly. We also discovered a long tail for human mobility behavior:

approximately 15% of a person’s time is spent in a large variety of locations each of

which takes less than 1% time.

In the TRACK ME project, we proposed a web based middleware for smartphone

applications with personalized mobility service on top location tracking and mobility

profile construction systems. We have also proposed Query Engine which provides

rule based query definition and execution interface to the application services for

accessing mobility profiles of smartphone users. We illustrated the benefits of our

system in two smartphone applications: location prediction and air pollution exposure
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risk estimation. We showed that mobility profile aided air pollution risk estimation

produce better results than residential based approaches since residential approaches

only consider top-k locations which covers limited portion (up to 80% - 85%) of

total time for smartphone users. Our another contribution is that TRACK ME

provides suitable interface for developing effective online location prediction. In the

experimental results, we showed that under the suitable parameters the success of

our location prediction system can increase up to 80%.

In Chapter 5, we presented a location based crowd-sourcing system architecture

over Twitter, and demonstrated this system with two case studies: weather radar and

noise mapping. Our experiments with crowd-sourcing on Twitter are promising. Even

without an incentive structure, Twitter users volunteer to participate in our crowd-

sourcing experiments (with around 15% reply rates) and the latency of the replies

are low (50% replies arrive in 30 minutes and 80% replies arrive in 2 hours). An-

other promising finding is that a majority of replies were tweeted from smartphones.

Our experiments suggest that Twitter provides a suitable open publish-subscribe in-

frastructure for tasking/utilizing sensors and smartphones and can pave the way for

location based crowd-sourced sensing and social collaboration applications.

For the developing regions and environment where connectivity occurs intermit-

tently, we presented a novel routing protocol, PRO, for profile-based routing in PSNs.

Differing from previous routing protocols, PRO treats node encounters as periodic

patterns and uses them to predict the times of future encounters. Exploiting the

regularity of human mobility profiles, PRO achieves fast (low-delivery-latency) and

efficient (low-message-overhead) routing in intermittently connected PSNs. Our ex-

periment results using the Reality Mining dataset show that PRO achieves similar

success rate and latency (10% less success and 10% more delay time) as the epidemic

routing with less than half the communication cost of the epidemic routing. PRO also

outperforms the Prophet and Bubble-rap routing protocols (at least 20% less delay
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time and 25% more success) with less communication cost (at least 25% less commu-

nication than these two protocols). Despite being simple, PRO constitutes a general

framework, that can be easily instantiated to solve searching and querying problems

in smartphone networks. We also instantiated PRO to solve the smartphone ”point

queries” as mentioned in Chapter 6.

7.1 Future Directions

One future direction is investigating the opportunity of improving location based

crowd-sourced system with more personalized mobility profile information. This in-

formation has potential benefit on improving client availability and continues query

assignment. Queries to sparse regions of the map may lead to longer response delays

and worse service availability due to poor client availability. By using the mobil-

ity profiles, we can query nodes which we expect to arrive in the region of interest.

Our system provides tunable parameters to control the extent of our search in both

temporal and spatial dimensions.

Continuous queries can be another improvement over our location based crowd-

sourced sensing system. Since these queries are repeatedly pushed over same regions,

we can determine smartphone clients that visit region of interest regularly. By this

way, we can proactively assign smartphone clients to continuous queries and these

clients route back answers to continuous queries when they enter region of interest.

A good application of continuous queries can be traffic monitoring applications over

fixed region.

Another future direction of is extending mobility profiles with richer information

such as personal interaction patterns (from Bluetooth enabled phones), and activity

monitoring data. These enriched mobility profiles becomes very suitable information

source for analyzing similarity in social networks for entity-entity level similarity.
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For entity-entity level similarity, we are going to investigate how the individuals

having suspicious behaviors are correlated with each other. To illustrate; given a

potential criminal what can be other persons in his/her personal network that shows

similar behavior and act as a collaborator of former. Another application can be

finding suspicious profiles and calculating probability of being potential criminals

belonging one of predefined profile groups.

Another application of entity-entity level similarity is the social collaboration ap-

plications. With their enriched hardware capability with different sensors, smart-

phones provide a great opportunity for different social collaboration applications such

as arranged ride-sharing, community-organization events, support groups for addicts,

and support groups for exercising and weight-watching. We propose that under suit-

able similarity models, mobility profiles can be used to discover a group of people

visiting same locations with similar mobility behaviors. We claim that if this similar-

ity information is enriched with other social information such as personal interests,

then it will be much more easy to implement these social collaboration applications.
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