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ABSTRACT 

 

CONSTRUCTION AND PERFORMANCE ANALYSIS OF LOCALLY ADAPTIVE 

BASE AND ENSEMBLE LEARNERS 

 

Faruk BULUT 

 

Department of Computer Engineering  

PhD Thesis 

 

Adviser: Assist. Prof. Dr. M. Fatih AMASYALI 

 

In this study, construction and performance analysis of locally adaptive base and 
ensemble learners have been proposed by using Meta and Ensemble Learning 
techniques. The characteristics and meta-features of the discretized sub regions in a 
dataset have been analyzed for the purpose of better learning performance. A detailed 
performance analysis of a local base learner over any type of dataset is firstly 
performed in order to understand the reasons of both failure and success in 
classification. Additionally, the discrete sub regions are learned by using the Mixture of 
Experts model to enhance the overall prediction accuracy. Furthermore, a localized 
lazy base learner using a dynamic parameter creator mechanism is established to gain 
better performance.  

Firstly, prediction of the performance of a local base learner (e.g., decision tree) is 
proposed by using Meta Learning methods. We have selected some datasets and some 
extracted geometrical complexity measures from the datasets so as to use in Meta 
Learning. The extracted features and the real accuracy rates of these classifiers have 
been accepted as attributes and class labels respectively, and they are placed into the 
Meta Learning dataset. With this training set, it becomes possible to predict the 
accuracy of a decision tree on upcoming datasets. Moreover, by using the new meta-
learning dataset, a feasible linear regression model has been built for the purpose of 
predicting the performance of a decision tree classifier. As a consequence, some 
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meaningful reasons have been determined why decision trees outperform or fail on 
any dataset. 

Secondly, a new approach in Mixture of Experts using hard clustering techniques is 
presented for accurate prediction and classification. Mixture of Experts, as one of the 
popular ensemble methods developed in recent years, is used to have higher 
prediction performance in classification and regression problems. In this technique, a 
dataset is divided into sub regions through a soft clustering procedure. An expert for 
each region is assigned and trained with the corresponding data points. The decisions 
of the experts are combined by a gate function in order to predict the class label of a 
query point. In contrast to the traditional Mixture of Experts method, in this study, a 
dataset is divided into regions by a hard clustering technique and the class prediction 
method is performed by four different types of proposed gate functions: cooperating, 
competitive, commensurative, and Borda count. In the experiments, better 
performances have been obtained with the proposed cooperating gate function due to 
its mechanism that gives different weights to the experts in the network. 

Finally, a locally adaptive parameter selection mechanism for nearest neighbor 
classifiers using clustering methods is suggested for more accuracy. The k Nearest 
Neighbors classification technique has a worldwide fame due to its simplicity, 
effectiveness and robustness. As a lazy learner, k Nearest Neighbors used in numerous 
fields is a versatile algorithm. In this classifier, the k parameter is generally chosen by 
the user and the optimal k value is found by experiments. The chosen constant k value 
is used during the whole classification phase. The same k value used for each test 
sample during the validation step might decrease the overall prediction performance. 
The optimal k value for each test data point should vary in order to have more 
accurate predictions. In this study, a dynamic k value selection method for each 
instance is proposed. This improved classification method employs a simple clustering 
procedure. In the experiments, more accurate results have been found. The reasons of 
success have also been understood and presented. 

Key words: Meta-complexities, mixture of experts, ensemble and meta learning 
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ÖZET 

 

VERİ UZAYININ BÖLGESEL ÖZELLİKLERİNİ KULLANAN TEKİL VE KOLEKTİF 

ÖĞRENİCİ TASARIMLARI VE PERFORMANS ANALİZLERİ 

 

Faruk BULUT 

 

Bilgisayar Mühendisliği Anabilim Dalı 

Doktora Tezi 

 

Tez Danışmanı: Yrd. Doç. Dr. M. Fatih AMASYALI 

 

Kolektif ve Meta Öğrenme yöntemlerini temel alan çalışmamızda var olan temel 
öğrenicilerin yanı sıra, yeni temel öğreniciler de kullanılarak sınıflandırıcılarda 
performans analizi ve artırımı üzerine teorik ve pratik çalışmalar yapılmıştır. Bir veri 
setinde bulunan ayrık alt bölümlerin karakteristik ve meta özellikleri daha iyi bir 
öğrenme başarısı için analiz edilmiştir. Öncelikle bir Karar Ağacı sınıflandırıcısının 
performans analizi detaylı bir şekilde yapılmış ve sınıflandırma başarısının ya da 
başarısızlığının nedenleri veri setindeki lokal özelliklere bakılarak araştırılmıştır. Ayrıca, 
veri setinin ayrık alt bölümleri, Uzman Karışımlarında öne sürülen yeni bir yaklaşım ile 
ele alınmış ve toplam sınıflandırma başarısı artırılmıştır. Son olarak örnek tabanlı bir 
öğrenicinin performansı, veri setinin lokal özelliklerine bağlı olarak dinamik parametre 
seçimi yapan bir mekanizma güçlendirilmiştir.  

İlk olarak, Karar Ağaçlarında performans tahmininin Meta Öğrenme yöntemleri yardımı 
ile yapılması üzerine bir çalışma gerçekleştirilmiştir. Geometrik karmaşıklık ölçütleri, iki 
sınıflı veri setlerinden elde edilerek Meta Öğrenmede kullanılmıştır. Çıkarılan bu 
ölçütlerin her biri Meta öğrenme veri setinde öznitelik olarak belirlenmiştir. Ayrıca her 
bir veri seti üzerindeki karar ağaçlarının elde edilen performansı ise Meta öğrenme 
setine sınıf etiketi olarak atanmıştır. Bu sayede oluşturulan eğitim seti ile karar 
ağaçlarının başarısı regresyon teknikleriyle tahmin edilebilmiştir. Ayrıca bu eğitim seti 
ile performans analizi yapabilen geçerli ve anlamlı bir lineer regresyon modeli 
çıkarılabilmiştir. Sonuç olarak karar ağaçlarının bir veri seti üzerinde neden başarılı ya 
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da başarısız olduğu anlaşılabilmiştir.  Yapılan testlerde tahmin yönteminin az düzeyde 
hata yaptığı gözlemlenmiştir.  

Daha sonra, kolektif öğrenme yöntemlerinden biri olan Uzman Karışımlarında yeni bir 
yaklaşımın katı kümeleme yöntemiyle sunulması üzerine bir çalışma yapılmıştır. Uzman 
karışımları, öğrenme ve sınıflandırma başarısını artırmak için kullanılan yöntemlerden 
biridir. Bu yöntemde veri seti yumuşak kümeleme ile bölümlere ayrılarak her bir bölüm 
için ayrı bir uzman atanır ve o bölümdeki örneklerle eğitilir. Geçiş fonksiyonu ile de 
uzmanların kararları birleştirilerek sınıflandırma işlemi yapılır.  Herhangi bir 
sınıflandırıcı uzman olabileceği gibi yüksek performans, hız ve şeffaflıklarından ötürü 
karar ağaçlarının literatürde tavsiye edildiği görülmektedir. Bu çalışmada ise veri seti, 
bilinenin aksine yumuşak kümeleme yerine katı kümeleme yöntemiyle alt veri setlerine 
bölünmüş ve her bir alt veri seti için ayrı bir karar ağacı inşa edilmiştir. Geliştirilen dört 
farklı geçiş fonksiyonu modeli ile uzmanların kararları birleştirilmiştir. Bunlar işbirlikçi, 
yarışmacı, orantılı ve Borda sayımıdır.  Deneysel çalışmalarda işbirlikçi yöntemin sahip 
olduğu mekanizmadan ötürü diğerlerine göre daha yüksek başarı gösterdiği 
gözlemlenmiştir. İşbirlikçi geçiş fonksiyonun tasarlanmasında test noktasına uzakta 
bulunan uzmanların etkisinin daha az; yakında olanların etkisinin ise daha fazla olması 
gerektiği düşüncesinden yola çıkılarak Shepard metodundan yararlanılmış ve ortak 
komite kararı bulunmuştur.  

Son olarak örnek tabanlı sınıflandırıcılar için adaptif ve dinamik parametre seçiminin 
denetimsiz öğrenme teknikleri yardımıyla bulunması üzerine teorik ve pratik bir 
çalışma yapılmıştır. Örnek tabanlı sınıflandırıcılar basitliği, uygulanabilirliği ve 
şeffaflığından ötürü yaygın bir kullanıma sahiptir. k en yakın komşuluk sınıflandırıcısı bu 
alanda en çok tercih edilen algoritmalardan biridir. k en yakın komşuluk 
sınıflandırıcısında performans, k parametresi ile doğrudan ilişkilidir. En uygun k 
parametresi, kullanıcı tarafından genellikle deneme-yanılma yöntemiyle seçilir. 
Bununla birlikte, bir veri setinde çapraz geçerleme işlemi süresince her bir test örneği 
için aynı k parametresinin kullanılması genel sınıflandırma başarısını olumsuz 
etkilemektedir. Her bir test örneği için en uygun k değerinin seçilmesi daha başarılı 
sonuçlar elde edilmesini sağlayabilmektedir. Çalışmamızda her bir test örneği için en 
uygun k parametresini kümeleme yöntemiyle bulan ve bu sayede genel sınıflandırma 
başarısını artıran bir yöntem üzerinde çalışılmış ve başarılı sonuçlar elde edilmiştir. 

Anahtar Kelimeler: Meta-karmaşıklıklar, uzman karışımları, kolektif ve meta öğrenme 
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CHAPTER 1 

1. INTRODUCTION 

 Literature Review 1.1

Our research is based on Meta Learning and Ensemble methods which have been 

proposed for more accurate classification, prediction and regression in Machine 

Learning, Pattern Recognition and Data Mining disciplines. In this study, we have 

analyzed the characteristical aspects and meta-features of the discretized sub regions 

in a dataset in order to acquire better learning performance. This literature survey in 

this research is categorized into three groups. The first one is about the analysis of 

local meta-features affecting the performance of a learner. The second one is about 

the learning sub regions with mixture of experts. Finally the last one is about a locally 

adaptive base learner classifier.  

1.1.1 Survey on performance prediction of a learner 

In the field of machine learning, it is impossible to know wholly which classifier 

outperforms or fails on a dataset. In the last decades, a new approach called “Meta 

Learning” has been recently proposed that performs automatic recommendation of 

classification algorithms based on data set characteristics and classifier selection 

mechanisms [1], [2], [3].  

Decision Tree (DT) method, as a common classifier, is selected in order to estimate its 

performance by using Meta Learning. Meta Learning is accepted as learning to learn 

activity. In this method, examining the characteristical aspects of a dataset makes the 

classifier selection procedure easy [4]. Meta Learning, as a Machine Learning 

technique, automatically improves the learning method by using the experiences [5]. 
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Meta Learning aims automatic learning that becomes flexible in solving different kinds 

of learning problems in order to improve the performance and the accuracy rate [6]. 

Meta Learning can be applicable to any field such as classification, regression and 

optimization. In this area there are many studies [7], [8], [9], and [10] regarding the 

techniques of selecting algorithm and parameter for Meta Learning. Previous Meta 

Learning studies [11] substantially involve meta-classification problems. Amasyalı and 

Ersoy [12] have made a detailed research that divides the Meta Learning activity into 

categories. According to the technical report study, different types of used meta-

features are categorized into these classes: statistical, informational and theoretical 

features, subsampling landmarks features, and DT features. About 300 meta-features 

are aggregated into their study and used in Meta Regression model. 

1.1.2 Survey on learning sub regions with Mixture of Experts 

Mixture of Experts (MoE) is an extension of radial basis functions and introduced by 

Jacobs at el [13]. MoE locally decomposes a dataset into less complex sub-regions for 

better prediction performance. 

In the last decades, several approaches have been proposed [14], [15]. Jacobs has 

proposed a model, named as “Hierarchical Mixture of Experts” [16]. Yuksel et el [17] 

and Masoudnia et el [18] and recently has made a thorough research, regarding the 

studies in Mixture of Experts. In their papers, comprehensive survey of the Mixture of 

Experts is provided by discussing the fundamental models for regression and 

classification processes. The improvements on the Mixture of Experts model using the 

mixtures of Gaussian process experts are also presented. Alternative localized MoE 

training and variational learning methods are detailed. Additionally, finding the 

optimum number of experts, different classification models, statistical properties of 

Mixture of Experts and several empirical applications in regression and classification 

are listed in their surveys. 

1.1.3 Survey on locally adaptive base learners 

There are two main empirical evaluation approaches about setting the appropriate k 

value for a k-NN learner on a particular dataset. The K fold cross validation process is 
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the first simplest choice. Using some kind of validation process for different k values, 

the best one that gives the highest accuracy might be selected. The widely used 

second approach is the bootstrapping technique. It uses sampling with replacement to 

form the training set [9]. The optimal k value is determined via bootstrap method. 

Both approaches give approximately the same results. Although there are some 

suggestions [19] about setting the k value to the square root of the number of all 

training patterns, it is theoretically an upper bound value that limits these kinds of 

evaluations. 

Ozger and Amasyalı [20] proposed an approach assigning the appropriate k value for a 

particular dataset by means of Meta Learning method. In their study, 16 meta-features 

are extracted from each of 200 datasets. The k-NN algorithms with different k values 

are computed with these datasets. In the construction of Meta training dataset, the k 

value giving the highest accuracy becomes the output and the extracted meta-features 

are accepted as attributes. It nearly becomes possible to predict the k value for a 

specific dataset by means of this new Meta training dataset. However, the biggest 

barrier in front of the study is the assignment of the same k value to the whole 

datasets. Moreover, the highest accuracy for more than half of the datasets is 

computed where the k parameter is 1. For that reason, regression becomes difficult.  

In another research [21], some non-parametric k Nearest Neighbors where the general 

k for a dataset is automatically determined by geometric relationships is proposed. 

Classification is done by means of the centroids which globally represent the classes. 

Increasing the k Nearest Neighbors performance is obtained by the estimation of the 

optimal k parameter or making the k Nearest Neighbors algorithm adaptive to data by 

means of determining local decision boundaries. 

Ghosh [22] and Guo et al. [23] have proposed some techniques finding a globally 

adaptive k value for a dataset. On the other hand, in another research [22], Ghosh has 

presented a locally adaptive nearest neighbor classification technique, where the value 

of k is automatically selected depending on the distribution of competing classes in the 

vicinity of the test point to be classified. The distribution of the nearest samples has a 

great importance in this technique.  
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 Aims of the Thesis 1.2

A collection of observations in a dataset might have some inner complex parts. Each 

part in the same dataset might be statistically different from the others in various 

aspects. Hence, this type of a dataset needs to be decomposed into less complex sub 

regions. For this purpose, each sub region which has some individual and different 

specifications from others should be accepted as a unique dataset. In this thesis, we 

have aimed to analyze elaborately the characteristics and meta-features of a dataset 

by proposing some novel mechanisms that handle the regions of the dataset 

separately so that the overall learning performance will be boosted.  

 Hypothesis 1.3

For the purpose of accurate classification performance, we assume that it is apparently 

better to analyze the hidden aspects of the sub regions in a dataset, and to build a 

fitted mechanism that handles these regions separately by assigning localized experts. 

In order to prove the hypothesis, three different studies have been done. Firstly, a 

detailed performance analysis of a base learner (e.g., a decision tree) over any type of 

dataset was performed in order to understand the reasons of failure and success. 

Secondly, these discretized sub regions might be learned by using the Mixture of 

Experts model in order to enhance the overall prediction accuracy. Thirdly, a localized 

base learner using a dynamic parameter creator mechanism can be established to gain 

better performance. These hypotheses might be clarified with the supports of the 

detailed information given below. 

Rough external specifications of a dataset such as number of samples, number of 

attributes and number of class labels are accepted as insufficient meta-attributes in 

the Meta Learning procedure. These types of specifications indicate only the density of 

the dataset and give little information about the data set. There are some other 

features such as statistical and informational theoretical features, subsampling 

landmarks features [24], and DT features defined in the study. Apart from these 

measures, there is a detailed and effective study where there is an emphasis on 

geometrical characteristics as a class distribution [58]. Labeled classes in a dataset can 

be separated or interleaved, data can be linearly separable, or regions can overlap. In 
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this study, these kinds of measures and some others are assumed to affect the 

performance of the learner.  

Additionally, some types of clustering methods like EM (Expectation and Maximization) 

[73] and DBSCAN [25] cannot handle all types of datasets. These soft (fuzzy) and 

distribution based types of clustering algorithms is a big barrier in front of some 

learning activities such as Mixture of Experts. In the traditional form of this technique, 

a dataset is divided into sub regions by a soft clustering method. In contrast to the soft 

clustering, a hard clustering method is proposed here and different gate functions are 

built in the process of combining the decisions of experts. Each object certainly 

belongs to only one cluster in hard clustering. This proposed method makes Mixture of 

Experts computationally possible for any type of dataset.  

As a popular lazy learning technique, the k Nearest Neighbors classifies the test sample 

with a particular class by the majority voting of the k closest training samples. This 

memory based classification algorithm is used with a constant k value defined by the 

user’s preference. It is generally difficult to determine the best k value. In the literature 

it is commonly recommended to assign the best k value for a dataset by carrying out 

some experiments. A constant k value for each test instance may results low accuracy 

rates. A dynamic k value for each test instance might augment the prediction 

performance.   



6 

 

CHAPTER 2 

2. BACKGROUND 

This introductory chapter provides the background and context for the following 

chapters and defines some crucial information. The chapter begins with a brief review 

of machine learning, which is the general context for the study described in this thesis. 

Common architecture of ensemble methods and Meta Learning procedures are 

concisely presented. Then, performance measuring criterions and paired T-Test 

method are described in a brief manner.  

 What is learning 2.1

As a scientific discipline, Machine learning has strong ties to Artificial Intelligence (AI). 

It deals with the theoretic, algorithmic and applicative sides of learning from data 

samples. Learning from data samples means that to build a machine (computer) 

program that can learn to perform a task by observing samples. Typically, this software 

program which uses the training samples to construct a model can make reliable 

predictions and decisions [26].  

Machine learning discipline is typically classified into two broad categories: supervised 

learning and unsupervised learning. The Supervised type can be a classification or a 

regression problem. In classification, there is a set of predefined class labels of the 

samples in a dataset.  Labeling the query points are performed with the help of the 

dataset. In a regression problem, the outputs are real numbers. The unsupervised type 

is called clustering. Clustering is used to find hidden structure in the unlabeled dataset. 

Since the samples given to the learner are unlabeled, there is no learning error or 

reward signal to evaluate the current solution. 
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Decision tree learning, association rule learning, artificial neural network (ANN) [27], 

inductive logic programming, support vector machines (SVM), clustering, 

reinforcement learning are common types in Machine Learning discipline.  

 Ensemble Learning 2.2

Ensemble methods can be also called as collective learning, committee-based learning, 

multiple classifier systems and classifier combination. As it is seen in Figure 2.1, there 

is a common architecture of ensemble learning methods. There is k number of base 

individual learners in the network. The  ( ) function determines the final decision of 

the learner network. This type of learning strategy aggregates the decisions of multiple 

learning algorithms in order to obtain better predictive performance than any of the 

base learners [28] [29].  

 

Figure 2.1 A common architecture of ensemble methods 

In contrast to ordinary base learner approaches which try to learn one hypothesis from 

training data, ensemble methods try to build a set of hypotheses and combine them 

for the purpose of better prediction. It is plain that ensemble methods are able to 

boost the performance of base learners. In this discipline, base learners are accepted 

as weak learners and ensemble ones are referred as strong learners. Base learners are 

generally decision tree, multi-layer perceptron or other kinds of machine learning 

algorithms [30]. Many of the ensemble methods use homogeneous base learners 

inside of their mechanism. However, there are also some ensemble methods which 

use multiple learning algorithms to produce heterogeneous learners [31]. 

There are some combining methods of the decisions produced by base learners. Lior 

Rokach [32] and Martin Sewell [33] have presented detailed researches on these 
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methods. Some of well-known basic methods in the research might be listed as simple 

uniform voting, distance weighted voting, Borda count, product, min, max, and 

stacking. In addition, Distribution Summation [34], Bayesian Combination [35], 

Dempster–Shafer [36], Naïve Bayes, Entropy Weighting [37], Density-based Weighting 

[38], Data Envelop Analysis Weighting Method [39], Logarithmic Opinion Pool [40], and 

Order Statistics [41], Stacking [42], Arbiter Trees [43], Combiner Trees [44], Grading 

[45] are meta-combining methods [46]. Also there are many types of ensemble 

methods such as Bootstrapping Aggregating (Bagging) [47], Bootstrapping Replicates 

(Boosting) [48], AdaBoost [49], Rotation Forest [50], Random forests [51], Stacked 

Generalization [52], Random Subspace Method (RSM) [53], Random Linear Oracle 

(RLO) [54], and Mixture of Experts [13].  

 Meta Learning 2.3

Meta Learning is a subfield of Machine Learning disciplinary. There is an automatic 

learning system in its mechanism derived from some empirical evaluations.  The main 

goal in this learning style is to use some meta-features of the datasets to provide an 

automatic and flexible learning system in solving different kinds of learning problems. 

Thus, the performance of existing learning algorithms might be improved.  

Meta-data actually might be external, statical, and some patterns of the datasets. 

Additionally, geometrical complexity measures and performance results might be 

added to the meta-data. Additionally, properties of the learning problem, performance 

measures, and patterns derived from datasets might be meta-data. These extracted 

features are placed into a new meta-data   set for further learning activities. By using 

these types of meta-data, it is possible to select, alter or combine different learning 

algorithms in order to effectively solve a given learning problem. Hence, this discipline 

is regarded as “a learning to learn” model [55].  

 Performance Measuring Criterions 2.4

In this study, some types of measurements are used to evaluate the performances of 

the classifiers. Both 5x2 and 10 Ford Cross Validation methods [56] are used for 

accuracy measurements. The definitions are as follows: 
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In K Fold cross validation, the original dataset is randomly divided into equal K parts 

(subsamples). In the first iteration (fold), the first part is retained as the validation part; 

the rest of the (K-1) parts are retained as training part. In the upcoming iterations, the 

cross-validation process is then repeated (K-1) times. Each subsample is used for both 

training and validation. At the end of the folds, the K results might then be averaged in 

order to give a single real value between [0, 1].  The K value is substantially set to 10 

[57]. When K is set to the number of samples in the dataset, it exactly becomes the 

Leave-One-Out cross-validation (LOOCV). 

Alternately, in 5x2 Fold cross validation, the dataset is randomly partitioned into two 

equal parts. In the first fold, the first and the second part is retained as evaluation and 

train parts respectively. In the same fold, the parts then are reversed. Totally 5 folds 

are repeated and the results statistically are averaged.  
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CHAPTER 3 

3. PERFORMANCE ANALYSIS OF A LOCAL BASE LEARNER 

In the machine learning discipline, it is not possible to know entirely which classifier 

outperforms or fails on a dataset. There is no single learning algorithm that performs 

better than others for all datasets. Normally, it is recommended to test a group of 

selected classifiers on a dataset and choose the best one. The “Meta Learning” 

approach has been recently suggested in the last decades to replace the test process 

choosing the best one in the algorithms list. In this field, there are some studies about 

automatic recommendation of classification algorithms based on data set 

characteristics and classifier selection mechanisms [1], [2], and [3]. These types of 

studies mainly focus on selecting the best classifier that gives the highest classification 

accuracy level. However, our study aims to predict the performance of a DT classifier 

and to present the reasons why and how DTs fail or outperform on a dataset. 

Decision and regression trees have an overwhelming fame in classification. As the 

Decision Trees (DTs) are fast in prediction and easy to use, it is usually preferred to the 

other classifiers without comparison. ID3, C4.5, C5.0 and CART are common DT types. 

Like the other classifier methods DTs are sensitive to datasets. A DT is a tree in which 

each branch node represents a choice between a number of alternatives, and each leaf 

node at the bottom represents a predefined class as a final decision. On the other 

hand, regression trees predict the numerical value of the new instances according to 

its model.  

DTs as a common classifier method have been selected in the study.  In order to 

estimate the performance of a DT before using it, we have used Meta Learning. Meta 

Learning is accepted as a “learning to learn” model. In this model, examining the 
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characteristics of a dataset makes the classifier selection procedure easy [4] and 

automatically improves the learning phase [5]. Meta Learning is aimed automatic 

learning that becomes flexible in solving different kinds of learning problems in order 

to improve the performance and the accuracy rate [6]. 

Meta Learning can be applicable to any field such as classification, regression and 

optimization. In this area there are many studies such as [7] [8], [9] and [10] about the 

techniques of selecting algorithm and parameter for Meta Learning. Previous Meta 

Learning studies generally involve meta-classification problems. Amasyali and Ersoy 

[12] have made a detailed research that divides the Meta Learning activity into 

categories. According to the technical report study, different types of used meta-

features are categorized into these classes: statistical, informational and theoretical 

features, subsampling landmarks features, and DT features. About 300 meta-features 

are aggregated into their study and used in Meta Regression model.  

This chapter has five main sections. First, it defines the problem and scope of the 

study. Then, the detailed definitions of the meta-complexity measures have been 

given. Next, there are some experimental results from the built dataset in the third 

section. In the fourth section, there are some techniques modeling the Meta Learning 

activity over the dataset. In the same section, the effects of each meta-feature on the 

performance level of the DTs are placed. In the last, section conclusion and future 

work are presented. 

 MEASURES OF DATA COMPLEXITY 3.1

Rough external specifications of a dataset such as number of samples, number of 

attributes and number of class labels are accepted as insufficient meta-features in the 

Meta Learning procedure. These types of specifications indicate only the density of the 

dataset and give little information about the data set. There are some other features 

such as statistical and informational theoretical features, subsampling landmarks 

features, and DT features defined in the study [12]. Apart from these measures, there 

is a detailed and effective study [58] emphasizing the geometrical characteristics of the 

class distribution.  
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The detailed version of fourteen geometrical measures has been described in the 

journal [58] and in the documentation [59]. Descriptions of the measures which have 

been as meta-features used in our study are as follows: 

3.1.1 Measures of Overlaps in the Feature Values from Different Classes (F1, F1v, 

F2, F3, F4) 

In this section, five types of discriminative power of the attributes in a dataset will be 

described below. These measures focus on the capacity of the attributes to separate 

samples of different classes in a future space. For each individual feature, the range 

and spread of the values of instances of different classes are examined. In addition, it 

is checked whether it is the discriminant power of a single attribute or a combination 

of them. In the collection, there are the following measures: the maximum Fisher’s 

discriminant ratio (F1), the overlap of the per-class bounding boxes (F2), and the 

maximum (individual) feature efficiency (F3). Additionally, there are some two extra 

measures based on the previous ones: the directional-vector maximum Fisher’s 

discriminant ratio (F1v), inspired by F1, and the collective feature efficiency (F4), 

inspired by F3. These extra meta-features are designed by [58] and [59]. 

 Fisher's discriminant ratio (F1) 3.1.1.1

As a worldwide measure, the Fisher's discriminant ratio examines the maximum 

discriminative power of each feature. F1 is calculated as: 

         
    (3.1) 

where   is the number of attributes.    is the discriminant ratio of each attribute and 

calculated as: 

  
(     )

 

  
    

  
(3.2) 

where          
    

  are respectively the means and variances of the two classes for an 

attribute. Actually,    and    are the medoids representing the attributes in the 

dataset.   is one feature dimension. For a multidimensional dataset, the 

maximum   over all the feature dimensions will be chosen and accepted as F1. A high 
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value of F1 shows that at least one of the attributes allows the separation of samples 

of different classes with partitions which are parallel to an axis of the feature space. 

 Directional-vector maximum fisher’s discriminant ratio (F1v) 3.1.1.2

F1v derives from F1. This measure is a complement of F1 with an oriented vector that 

is able to separate samples of different classes. It computes the two-class Fisher’s 

criterion that takes the following form [60]. 

 ( )  
[   (       )]
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   ∑  
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where    and     are the directional vector and the mean vector respectively. ∑   is the 

scatter matrix of patterns for class ci. And B is found by: 

  (       )  (       )
  (3.4) 

B is between class scatter matrix. The    is computed as 

   ∑  ̅̅ ̅̅ ̅   (3.5) 

where   is the difference between: 

        (3.6) 

Also  ∑  ̅̅ ̅̅ ̅ is computed as the pseudo inverse of ∑̅ [61], [62]. If this measure is high, 

that means there is a vector which can separate samples from different classes. 

 Volume of overlap region (F2) 3.1.1.3

This measure computes the overlap of the tails of distributions defined by the 

instances of each class. For each attributes in the dataset, F2 finds the ratio of the 

width of the overlap interval to the width of the entire interval. The interval, 

mentioned here, has instances of both classes. The measure returns the product of the 

ratios which have been calculated for each attribute. In other words, it is the overlap 

of the tails of the two class-conditional distributions. For each attribute, the maximum 

and the minimum values of each class, and then calculating the length of the overlap 

region normalized by the range of values spanned by both classes.  
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We multiply the ratio thus obtained from each feature dimension to obtain a measure 

of the volume of the overlap region (normalized by the size of the feature space). 

Formally, let the maximum and minimum values of each feature    in class 

   be     (     ) and    (     ), then the overlap measure F2 is calculated as 

   ∏
                 
                 

 

   

 
(3.7) 
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            (    (     )     (     ) ) (3.9) 

            (    (     )     (     ) ) (3.10) 

            (    (     )     (     ) ) (3.11) 

where   is the number of attributes,    is the ith feature,    and    are the class names, 

   (     ) and    (     ) are the maximum and the minimum values of the feature    

for class    respectively.  

F2 will be computed by the sum of all F2 values of each pair of classes. But in our 

study, there is no need for these calculations because the collection of used datasets 

has binary classification problems.  

The volume will be zero as long as there is at least one dimension and the classes do 

not overlap in this dimension.  

 Maximum feature efficiency (F3) 3.1.1.4

F3 describes how much each attribute contributes to the separation of the samples 

belonging to the both classes. F3 gives the value of the attribute which can 

discriminate the number of training samples.  

In a region of the dataset there may be some samples from both classes. This is called 

over-lapping region. For each attribute, it is considered that the over-lapping region 

and return the ratio of the number of instances that are not in this over-lapping region 

to the total number of samples. This ratio is accepted as the F3 measure. [63]. In this 

measure it is considered only separating hyperplanes perpendicular to the feature 
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axes. Because of this, if there is a linearly separable problem, F3 may be less than 1 if 

the hyperplane is oblique.  

 Collective feature efficiency (F4) 3.1.1.5

F4 is similar to F3. But F4 deals with the discriminative power of all the attributes. 

Because of this it is called collective feature efficiency. These steps below are followed 

to compute F4 [59]: 

1. Select the most discriminative attribute that can separate a major number of 

samples of one class. 

2. All the samples that can be discriminated are removed from the dataset.  

3. The following most discriminative attribute (regarding the remaining samples) 

is selected.  

4. If all the samples are not discriminated or all the attributes are not analyzed go 

to the first step. 

5. The proportion of samples that have been discriminated will be returned. 

Hence, the fraction of examples whose class could be correctly predicted gives us an 

idea. As mentioned above this is done by building separating hyperplanes that are 

parallel to one of the axis in dataset. 

In some aspects F4 measure is different from the F3 measure, maximum feature 

efficiency. It deals with only the number of samples discriminated by the most 

discriminative attribute. Nonetheless, F4 deals with the all attributes for collective 

discriminative power measure. Because of this, F4 provides more information. 

3.1.2 Measures of Class Separability (L1, L2, N1, N2, N3) 

In this section the shape of the class boundary will be inspected by five measures in 

order to estimate the complexity of separating samples of different classes. In other 

words, these measures in this section estimate to what extent the classes are 

separable. The estimation is done by inspecting the length and the linearity of the class 

boundary. The library presents the following complexity measures: the minimized sum 

of the error distance of a linear classifier (L1), the training error of a linear classifier 
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(L2), the fraction of points on the class boundary (N1), the ratio of average intra/inter 

class nearest neighbor distance (N2), and finally the leave-one-out error rate of the 

one-nearest neighbor classifier (N3). 

 The minimized sum of the error distance of a linear classifier (L1) 3.1.2.1

This measure can be applied only to two-class datasets. L1 evaluates to what extend 

the dataset is linearly separable. Zero value of L1 shows that the data belonging to a 

particular class is linearly separable. L1 value includes the sum of the differences 

between the prediction of a linear classifier and the actual class value.  

As linear classifier [59] a support vector machine (SVM) [64] with a linear kernel is 

used. This SVM is trained with the sequential minimal optimization (SMO) algorithm 

[65] to build the linear classifier. As it is known the SMO algorithm gives an efficient 

training method and the result is a linear classifier that separates the instances of two 

classes by means of a hyperplane. Because of this, this learner classifier has been 

selected. 

 The training error of a linear classifier (L2) 3.1.2.2

This measure also can be applied only to two-class datasets. In order to calculate L2 

value, firstly the linear classifier (L1) is established. The training error rate is calculated 

by this classifier.  

 The fraction of points on the class boundary (N1) 3.1.2.3

This measure of N1 gives an estimate of the length of the class boundary in the 

dataset. In order to evaluate this measure firstly a Minimum Spanning Tree (MST) 

should be established among all the observations. Each point is connected to the 

nearest one. Kuruskal or Prim algorithms can be applied for the purpose of MST 

calculation. After building the MST that connects nodes to each other with minimum 

cost, the N1 ratio is found as the number nodes of the spanning tree that are 

connected and belong to different classes over the total nodes in the data set.  
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Figure 3.1 A MST connecting all nodes, darker edges connect two different classes. 

N1 ratio concisely is calculated as number nodes that are adjacencies in the darker 

edges to the total nodes. In the figure above, N1 is equal to     .  

Low values of N1 shows that it may be easier for the classifier to define this class 

boundary. High values of N1 show that the majority of the points lay closely to the 

class boundary. Hence, it will be hard for the classifier to define the class boundary 

accurately. 

 The ratio of average intra/inter class nearest neighbor distance (N2) 3.1.2.4

This measure compares the within-class spread with the distances to the nearest 

neighbors of other classes. For each input instance   , we calculate the distance to its 

nearest neighbor within the class(         (   )) and the distance to its nearest 

neighbor of any other class (         (   )). Then, the result is the ratio of the sum 

of the intra-class distances to the sum of the inter-class distances for each input 

example, i.e., 

   
∑          (   )
  
   

∑          (   )
  
   

 
(3.12) 

where    is the number of examples in the data set. 

Low values of this measure suggest that the examples of the same class lay closely in 

the feature space. High values indicate that the examples of the same class are 

dispersed. 
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 The Leave-One-Out error rate of the 1-Nearest-Neighbor classifier (N3) 3.1.2.5

As it is known, in Leave-One-Out Cross Validation (LOOCV) an observation is taken out 

from the training data and used to have itself to be predicted by the remaining data. 

The prediction process is done with the 1NN classifier. This process is repeated for all 

the observations in the dataset for the purpose of calculating the mean square error 

(MSE) or the accuracy rate.  

Briefly N3 is the mean square error of 1NN classifier using LOOCV. N3 measure shows 

how close the examples of different classes are. Low value of N3 shows a wide gap in 

the boundaries of classes. Conversely, high value of N3 shows low gap.  

3.1.3 Measures of Geometry, Topology, and Density of Manifolds (L3, N4, T1, T2) 

In this section some measures described in the journals [66], [67], [68], [69] are the 

descriptors for the geometry of the manifolds spanned by each class. These measures 

indirectly characterize the class separability by assuming that a class is made from 

single and multiple manifolds that form the distribution of the class [59]. In other 

words, an indirect characterization of the class separability might be provided by these 

measures. The problem probably is composed of several manifolds spanned by each 

class in a dataset. The position, shape, and interconnectedness of these manifolds give 

some information on how well the classes are separated and on the density or 

population of each manifold. The collection offers the following measures: firstly the 

nonlinearity of a linear classifier (L3), secondly the nonlinearity of the one-nearest 

neighbor classifier (N4), then the fraction of maximum covering spheres (T1), and lastly 

the average number of points per dimension (T2) [70], [58]. 

 The nonlinearity of a linear classifier (L3) 3.1.3.1

This measure that can be implemented only for two-class data sets has proposed by 

[71] findings nonlinearity of a linear classifier. Given the training data set, the 

algorithm creates a new test set by linear interpolation with random coefficients 

between pairs of randomly selected instances of the same class. Then, the algorithm 

gives the test error rate of the support vector machine classifier trained with the 
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original dataset. The measure is very sensitive to the overlap on the convex hull of the 

classes and the smoothness of the classifier boundary [59]. 

 The nonlinearity of the 1-Nearest-Neighbor classifier (N4) 3.1.3.2

N4 creates a test set as proposed by the nonlinearity of a linear classifier (L3) and 

returns the error rate of the one-nearest-neighbors (1NN) classifier. 

 The fraction of maximum covering spheres (T1) 3.1.3.3

This measure has been proposed in the study [72]. T1 describes the shapes of class 

manifolds with the opinion of adherence subset as it is seen in figure below. In other 

words, an adherence subset is a sphere centered on a sample of the data set which is 

grown as much as possible before touching any samples from the other class. Thus, an 

adherence subset includes a set of samples from the same class and it cannot grow 

more without including samples out of the class. The measure considers only the 

biggest adherence subsets or spheres by removing all those that are included in 

others. Then, the measure gives the number of spheres normalized by the total 

number of points [59]. 

 

Figure 3.2 Retained adherence subsets for two classes near the boundary. 

 The average number of points per dimensions (T2) 3.1.3.4

As a rough indicator metric, this measure gives the density of the dataset. T2 indicates 

the ratio of the number of samples in the dataset to the number of the attributes. In 

other words, if the dataset is regarded as a matrix, F2 is calculated as the ratio lines to 

columns.  
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The list of the 14 geometrical characteristics describing meta-features are in the Table 

3.1 below. 

Table 3. 1 List of Used Measures as Meta-features  

No. Abbr. Description 

1 F1 Maximum Fisher’s discrimination ratio 

2 F1v Directional-vector Max. Fisher’s discriminant ratio 

3 F2 Volume of overlap region 

4 F3 Maximum (individual) feature efficiency 

5 F4 The collective feature efficiency 

6 L1 Minimized error by Linear Programming (LP) 

7 L2 Error rate of linear classifier by LP 

8 L3 Nonlinearity of classifier by LP 

9 N1 Fraction of points on boundary (Minimum Spanning Tree method) 

10 N2 Ratio of average intra/inter class NN distance 

11 N3 Leave One Out Error rate of 1NN classifier 

12 N4 Nonlinearity of 1NN classifier 

13 T1 Fraction of points with associated adherence subsets retained 

14 T2 Average number of points per dimensions 

 Computational Cost of the Complexity Measures 3.2

Computational time complexities of the complexity measures described above can be 

seen in Table 3.2.   is the number of input samples,    is the number of test samples 

(applicable only to the measures that generate an additional test set), c and a are the 

number of classes and attributes respectively. The time complexity of  

 (   ) is to build a SVM with linear kernel by means of the sequential minimal 

optimization (SMO) algorithm.  
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Table 3. 2 Computation costs of complexity measures 

No. Measures Labels Time Complexities 

1 F1  (   ) 

2 F1v  (      ) 

3 F2  (   ) 

4 F3  (     ) 

5 F4  (      ) 

6 L1  (   ) 

7 L2  (   ) 

8 L3  (          ) 

9 N1  (    ) 

10 N2  (    ) 

11 N3  (    ) 

12 N4  (             ) 

13 T1  (    ) 

14 T2  ( ) 

 EXPERIMENTAL STUDY 3.3

The procedure of our empirical study has the following steps: preparing datasets, 

extracting the meta-features from the datasets, computing the accuracy rates of the 

DTs, building a linear regression model according to the meta learning dataset, and 

finally predicting the accuracy rate of a new dataset according to the linear regression 

model. After computing the linear regression model, it becomes possible to 

understand how and why the meta-features defined in this article affect the accuracy 

of a DT. In other words, it will be available to explain in which circumstances DTs 

outperform or fail on a dataset. 

3.3.1 Preparation of Test Datasets 

The scope of our study covers 115 real-world two-class datasets taken from the UCI 

benchmark data repository [73]. We have selected only two-class problems as most of 

the meta-features defined above can be only applicable to two-class datasets. 42 of 

them are originally two-class datasets. 73 of them have been transformed into two-
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class datasets artificially from the UCI multi-class datasets. The transformation is done 

for the purpose of enriching the meta dataset.  

The conversion of a multi-class data set into a two-class dataset has been done by 

discriminating one of the classes against the others. For example, it can be produced m 

two-class datasets from a dataset in which there is m-class labels. We have selected 

few of the re-created datasets, because most of them are skewed datasets. The re-

created datasets are selected if two of the class distributions are similar in amount. 

There is an important point that should be taken into consideration, in a skewed two-

class dataset if one of the class distributions is about 95% of all, the accuracy rate will 

be 95% according to the Zero Rule, a random prediction method.  As the most 

important parameter of performance, the high accuracy rate which is close to 1.0 

misleads us to some useless inferences. In case of unequal distribution of classes in 

skewed datasets, the calculated meta-features will damage the learning activity.  

In the original type of UCI datasets, some instances have missing values; some of the 

values are nominal. Before using them we have done some changes in the Weka 

software platform without damaging their originalities. Missing values have been 

replaced; nominal values have been converted to numerical values and finally all the 

values are normalized. The file format of the datasets is KEEL [74] that is an extended 

form of the ARFF [75] format. Each dataset in our study has two forms as KEEL and 

ARFF. KEEL is used in both DCoL [59] and the MATLAB software, and ARFF is used in 

Weka.  

3.3.2 Preparation of Meta Dataset 

14 meta-features from the datasets have been extracted in order to use for Meta 

Learning. These 14 meta-features have been computed by means of the DCoL software 

which proposed in the document [59]. The DCoL written in C++ has been compiled and 

implemented in the Linux operating system. 14 computed meta-features are the 

attributes of the new meta-dataset. The outputs of the new dataset are the accuracy 

rates taken from the DT algorithm. The accuracies have been calculated by using CART 

algorithm in MATLAB by using 10 fold cross validation. We have applied Linear 

Regression to the meta-training set (shown at the Table-4) by using 10 fold cross 
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validation in Weka. The actual and the predicted accuracy rates by means of 10 fold 

cross validation have been computed. The rates differ from 0.5644 to 1.0 as they are 

seen in the Figure-3.3. All the computational results are placed in the Appendix-A at 

the end of the thesis.  

All the data in the meta-learning training datasets have been normalized as far as 

possible for comparability across problems. Thus, the ranges of values are taken to the 

interval between 0 and 1. Only the class labels have not been normalized because the 

accuracy rates should be remained original. 

 PREDICTION OF DT ACCURACY 3.4

Linear regression algorithm in Weka has been run on the meta dataset in order to find 

the contributions of meta-feature on the decision making activity. Different 

combinations of meta-features have been evaluated on the dataset and taken 

different results in the tables at the Appendix A. In the table, there are four kinds of 

outputs: the DT accuracy formula, the correlation coefficient score, the root mean 

squared error (RMSE), and the mean absolute error (MAE) [76]. In each line the 

outputs are calculated according to the given parameters. The Correlation coefficient 

metric can be used as a type of performance criteria here. Its value varies from -1 to 

+1. -1 indicates perfect negative correlation, 0 indicates no correlation, and +1 

indicates perfect positive correlation. Close value to 1 can be regarded as better 

prediction accuracy. Besides these criterions, the number of hyper parameters 

considerably plays a great role. Obviously less parameter is always better according to 

Occam’s razor [77].  

As a brief definition, the RMSE rates which is computed by the difference between the 

actual and the predicted values are shown in the Figure 3.3 as a green line. The mean 

absolute error is an average of the absolute errors. It is a quantity used to measure 

how close predictions are to the eventual outcomes. The RMSE and MAE formulas are 

given by 
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where N is the number of samples.    and    define the actual value and the estimated 

values of the     sample, respectively. Both RMSE and MAE measures are used 

together to diagnose the variation in the errors in a set of forecasts. RMSE is always 

larger or equal to MAE. If there is equality between them, it means all the errors are of 

the same magnitude. If there is greater difference, it means there is a greater variance 

in the individual errors. 

As the meta learning dataset is seen as a normal training dataset, some other 

algorithms have become applicable. 1NN, Multilayer Perceptron, REPTree and Bagging 

have been run over the dataset and taken the correlation coefficient results 0.8558, 

0.8332, 0.8647, and 0.9054 respectively. This means that this linear regression model 

gives the best classification performance of all. 

Table 3. 3 DT Accuracy Formula with different measures 
 

 Given Parameters DT Accuracy Formula 
Corr. 
Coef. 

MAE RMSE 

1 
F1, F1V, F2, F3, F4, 
L1, L2, L3, N1, N2, 
N3, N4, T1, T2 

                      
           
        

0.9207 0.0326 0.0472 

2 L2, N3, N1 
                      

         
0.9245 0.0305 0.0459 

3 L2                        0.7482 0.0699 0.0801 

4 N3                       0.8998 0.0319 0.0506 

  

As it is seen in Table 3.3, the linear regression formulas are computed according to the 

normalized dataset. In these formulas, the coefficient values for each attribute should 

be able to be compared about the rates of effects. By this normalization process the 

rates of effects in the regression formula can be discussed easily. Moreover the 
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coefficient values are used to retrieve plausible and rational information, regarding the 

reasons why and how DTs outperform or fail.  

Firstly, we have tested on the meta-learning dataset including the whole 14 attributes 

by using linear regression algorithm as it is seen in the first row in Table 3. 3. As the 

correlation coefficient value is 0.9207, the classification application is accepted as 

successful because the result is very close to 1.  Since the values of MAE and RMSE 

measures are very small, it can be said that there is a successful accuracy prediction of 

the DT classifiers on any dataset. In the linear regression formula, the constant value of 

0.9986 indicates that the accuracy level will decrease due to the variables having 

minus coefficients (F4, L2 and N3). At this point, N3 has a great reverse influence on 

prediction. The higher value it is, the lower accuracy we take. N3 is three times bigger 

than L2 on prediction. F3 and F4 have worthless effects because of their insignificant 

coefficients. 

Secondly, we have applied Correlation Feature Selection (Cfs) algorithm to the meta-

dataset by means of Weka. The implementation of Cfs has selected only 3 attributes 

(L2, N1, N3) as it is seen in the second row of the table. The linear regression model 

contains only two parameters, L2 and N3. Applying the cross validation procedure to 

the new 3 dimensional dataset by using linear regression method, the Correlation 

Coefficient value has slightly increased. On the other hand, the MAE and RMSE scores 

have slightly decreased. Thus, this step can be preferred because of less complexity 

and less computational time according to Occam’s razor. By using Correlation Feature 

Selection (Cfs) only two parameters (L2 and N3) are accepted as qualified in prediction. 

These two parameters give us two main ideas.  

1. Accurate performance prediction can be available.  

2. These two determinant factors affect the performance of a DT classifier on a 

dataset. 

Thirdly, in order to reduce three things, the computational time, the complexity and 

the number of parameters, we have tried to predict the DT accuracy with only one 

parameter. The results in the third row are calculated by using only L2 score. In this 
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step, the RMSE score increases and the correlation coefficient value decreases. These 

values indicate unsuccessful prediction. 

In the last step only the N3 criteria is used as a parameter. Better outcomes are taken 

than the previous step. As it is seen below, preferring to use uniquely N3 measure 

rather than using L2 gives better performance. Choosing merely the L2 parameter 

leads us to better accuracy prediction of a DT classifier.  

 

Figure 3.3 Actual and predicted DT accuracy rates with error rates 

Figure 3.3 shows the accuracy rates of the DT classifier on each of the datasets in order 

to give a notion about the work space. Notice that the accuracy rates have been sorted 

for analyzing the work space easily. These three lines in the figure are actual, predicted 

and error rates. In the x line there are sorted dataset IDs according to their actual 

accuracy rates. Here we have to emphasize that each of the sorted dataset according 

to their actual accuracy rates, is not related to the next and previous neighbors in the 

sequence. The predicted rates are taken from the linear regression model. As it is seen 

the predicted values are very similar to the actual ones. The ripples in the predicted 

and error lines indicate the RMSE error rates. The averages of RMSE and MAE rates are 

0.0326 and 0.0043 respectively. Because the error rates are tiny in amount, the 

performance of the system can be accepted as successful. 
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Figure 3.4 Visualized classifier errors between actual and predicted accuracies 

Using the linear regression model, classification errors taken from Weka are visualized 

in Figure 3.4. The size of the multiplication sign, × demonstrates the magnitude of the 

error rate for each item in the dataset. Most of the tiny × signs lying in the diagonal 

line indicate very few error rates. The big × signs spreading in outer side of the 

diagonal line are in minority.  

3.4.1 Analysis of the Results 

With the help of the previous step, the level of performance of a DT can be easily 

estimated by using the linear regression model. In the second line of Table-2, the 

formula basically indicates that two main factors, L2 and N3 are most significant on 

prediction. As described in this article, briefly N3 is the Leave One Out Error rate of 

1NN classifier and L2 is the Error rate of a linear classifier. N3 measure indicates how 

close the examples of different classes are.  

As the N3’s coefficient is approximately three times bigger than L2’s, N3 has highest 

effect on prediction. From the linear regression model it is understood that when the 

value of N3 increases, the value of accuracy marginally decreases. In contrast, when N3 

decreases accuracy increases.  This criterion depicts that the higher gap in the 

boundaries of classes. 
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Error 
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Actual Error 
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Figure 3.5 Accuracy rates according to L3 and N3  

Figure 3.5 is taken from the Weka software showing the performance of the linear 

regression model according to the axis L2 and N3. Circle colors range from blue to 

orange. The darker blue circles indicate the worst prediction accuracy which is close to 

0.56. The darker orange color indicates best prediction accuracy. This figure gives a 

simple idea, the lower value L2 and N3 are, the higher performance there is in the 

classification phase.   

Another factor for performance criteria is L2. The training error rate, L2 is calculated by 

a linear classifier that provides the information about what extent the training data is 

linearly separable. From the regression formula it is derived that when the value of L2 

increases, the value of accuracy slightly decreases and vice versa. It can be concisely 

said that if it is able to be built a linear classifier that bisects the class distributions with 

a less error rate, DTs gives better results in these circumstances.  

Another method for computing the prediction with less parameter is to use only N3 

criteria. Despite the fact that it does not give better prediction than the L2 and N3 

combination, N3 by itself gives a notion about the performance of DTs on the 

0.56                                                                                        1 
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particular dataset. Furthermore, since it is a single parameter, N3 can be considered as 

sufficient for performance prediction. 

As a result, the performance of a DT is explicitly related with these two criterions, error 

rates of both 1NN and linear classifiers.   

3.4.2 The Correlations of Meta-features  

In this section, the correlations among the meta-features are analyzed. The highly 

correlated meta-feature pairs guide the Meta Learning dynamics. The correlation 

coefficient of each meta-feature pairs has been calculated. The meta-feature pairs are 

considered as correlated if the correlation coefficient’s absolute values are bigger than 

0.8 [12]. The number of highly correlated meta-feature pairs is shown in bold at the 

Table 3. 4. 

The Correlation matrix in the Table-3.4 describes pair correlations among 14 meta-

features including accuracy levels. In the matrix the value in the cell (   ) is equal to 

the correlation coefficient between     and     features. The diagonal elements are the 

correlations of variables with themselves and they equal to 1. The half of the table is 

not given because the matrix is diagonally symmetric. 
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Table 3. 4 Correlation matrix of meta-features  

 F1 F1v F2 F3 F4 L1 L2 L3 N1 N2 N3 N4 T1 T2 
DT 

Acc 

F1 1 0.21 -0.11 0.40 0.24 -0.16 -0.42 -0.44 -0.44 -0.41 -0.44 -0.46 -0.23 -0.11 0.43 

F1v 
 

1 -0.10 0.07 0.14 -0.17 -0.26 -0.27 -0.22 -0.12 -0.22 -0.22 0.07 -0.04 0.23 

F2 
  

1 -0.41 -0.55 0.15 0.13 0 0.40 0.29 0.41 0.28 -0.11 0.04 -0.32 

F3 
   

1 0.78 -0.32 -0.42 -0.22 -0.65 -0.62 -0.65 -0.52 -0.32 -0.13 0.62 

F4 
    

1 -0.24 -0.31 -0.22 -0.57 -0.43 -0.60 -0.53 -0.09 -0.29 0.50 

L1 
     

1 0.40 -0.14 0.36 0.47 0.35 -0.04 0.15 0.01 -0.34 

L2 
      

1 0.59 0.70 0.49 0.69 0.53 0.15 -0.10 -0.76 

L3 
       

1 0.30 0.01 0.34 0.70 0.09 0.11 -0.38 

N1 
        

1 0.83 0.98 0.61 0.31 -0.12 -0.91 

N2 
         

1 0.82 0.34 0.47 -0.20 -0.76 

N3 
          

1 0.65 0.29 -0.09 -0.92 

N4 
           

1 0.12 0.23 -0.62 

T1 
            

1 -0.24 -0.28 

T2 
             

1 0.11 

DT 

Acc               
1 

 

The highly and positively correlated meta-feature pairs are (N1,N2), (N1,N3), (N2,N3). 

The highly and negatively correlated meta-feature pairs are (N1, DT Acc), (N3, DT Acc).  

As the measures N1, N2, and N3 are in the same scope used for the class separability, 

it is accepted as they affect from the same source.  

N1 and N3 have the reverse effect on accuracy because of their negative correlations, 

(N1,Acc) and (N3,Acc) are -0.91 and -0.92 respectively. When the values of N1 and N3 

decrease, the accuracy level increases and vice versa. Also in the DT accuracy formula, 

N3 has an overwhelming influence on prediction. In the correlation matrix table, it 

gives similar results. As described before, N3 is the Leave One Out Error rate of 1NN 

classifier, indicating how close the examples of different classes are. Low N3 value 

depicts wide gap in the boundaries of classes and vice versa. It means that to take high 

performance from a DT running over a dataset, the dataset should not include narrow 

class margins. 
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Again, N1 measure is the fraction of points on boundary (Minimum Spanning Tree 

method). It gives an estimate of the length of the class boundary in the dataset. Briefly, 

the case where the points from the same class are usually together positively and 

highly correlate the prediction performance. 

Additionally, N2 and L2 have a slight correlation (-0.76) with DT accuracy. The effect of 

N2 has been previously detected in the linear regression model. But L2 appears itself 

here. L2, as mentioned before, gives the information about what extent the training 

data is linearly separable. The existence of a linear separablity with the low error rate 

induces better prediction with DTs.  

 CONCLUTIONS AND FUTURE WORK 3.5

The accuracy rate of a DT classifier on a certain dataset may differ from the other 

datasets. In this study we have focused on the performance analysis of DTs. We have 

tried to guess the behavior of DT classifier on a dataset. Also we have tried to find out 

satisfactory answers to those questions why and how DTs outperform or fail on a 

dataset and what kind of features contribute to the performance of a DT. For this 

purpose, a collection of two-class datasets is used for our empirical study. 14 meta-

features have been derived from the collection. Only two features, the LOO Error rate 

of 1NN classifier and the Error rate of linear classifier, are highly influential on 

prediction activity. In other words, these two meta-features mainly affect the 

performance of DTs.  

After building the formula of linear regression model, we have tried to understand 

how and why the meta-features affect the accuracy of DT. We have taken sufficient 

and successful results such as a meaningful and feasible regression formula including 

meta-features. Thus, it becomes easy to predict the performance of a DT classifier. 

Briefly we have concluded our study in two main ideas: 

1. The higher the gap in the boundaries of classes is, the higher performance we 

take from DTs’ predictions. 

2. Building a linear classifier that bisects the class distributions with less error rate 

increases the performance of DT classifier in these circumstances. 
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In our study we have found out two main factors determining the performance of DTs. 

In this scope, firstly two classifiers for the factors have to be trained. These required 

classifiers are a kNN learner for N3 measure and a linear classifier for L2 measures. It is 

obvious that the cost of training both of the classifiers is not less than or equal to the 

DT’s. In this case it would be clearly better to train only a DT classifier rather than 

these two. Naturally one of the purposes of the Meta Learning Discipline is to reduce 

the complexities and computational times in supervised learning. To predict the 

performance of complex classifiers such as SVM and MLP [78] by using simple 

classifiers is accepted as a satisfactory way. But our study differs from this point; our 

intension is to unveil the reasons and to find out determinant factors why DTs exceed 

on a dataset by examining the geometrical and hidden characteristics of the dataset. 

Moreover, this study gives a simple idea whether or not a DT learner is applicable and 

suitable for a dataset.  

The accuracy rates of DTs in some re-created datasets are very close to 1 because of 

the unequal class distributions. The high accuracy rates become a great barrier in 

analyzing and evaluating the study. Few of the artificial datasets may be outlier or 

noise and have an effect on decreasing the performance. Removing them may increase 

the performance.  

Some other performance metrics can be used. Even though accuracy is a common 

criterion for the performance of a classifier, there are some other methods such as 

precision, recall, F1-Score, ROC (Receiver operating characteristic) space [79], and the 

Matthews Correlation Coefficient (MCC) [80] metric for binary class datasets. Since F1-

Score should be calculated for both of the classes, MCC plays a better role. Where the 

accuracy rate is close to 1 in the case of unequal distributions, MCC measure gives 

more realistic and reliable scores ranging from -1 to +1. In this context, MCC will be the 

best metric to analyze the classifier performance in further steps.  
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CHAPTER 4 

4. LEARNING SUB REGIONS WITH MIXTURE OF EXPERTS 

As an extension of radial basis functions, Mixture of Experts is firstly introduced by 

Jacobs at el [13]. In this learning system, the main purpose of MoE is to locally 

decompose a dataset into less complex regions by means of divide and conquer 

technique to obtain better prediction performance. Each sub region of the dataset is 

accepted as an individual unique dataset. An allocated expert (classifier) is specifically 

trained for its own region. The outputs of the experts are merged through a 

generalized linear rule called as a gating function. 

Mixture of experts is a voting technique where the votes are given by the experts. 

Figure 4.1 presents a graphical representation of the basic MoE architecture. The 

architecture consists of k base learners, namely experts. Each localized base learner 

becomes an expert of its own region. Each expert has their individual decision for the 

test point. But the gate function only selects the related experts to classify the query 

point. In other words, the class prediction for the test point is performed by the gate 

function that combines all the decisions of the related experts. In calculations of the 

final decision via the gate function, the experts have different weights according to 

their distances to the test points. The combiner system   also includes this gating 

system. The final output of the observation x, shortly   is a weighted average found by 

this formula: 

 ( )  ∑  ( )  

 

   

 (4.1) 



34 

where x is the observation (query point), k is the number of the experts and    is the 

weight of the expert   .  

In the traditional MoE model, the gate function activates only some experts which are 

related with the query point. The gate function assigns different weights to the 

experts. The gate mechanism outputs a set of scalar coefficients denoted by   . The 

outputs of the experts,   , are weighted by these gating outputs. 

 

Figure 4.1 The principles of MoE Method 

In the last decades, several theoretical developments, different approaches and some 

models have been proposed. Firstly to improve the traditional MoE model, Jacobs has 

proposed a model, named as “Hierarchical Mixture of Experts” [16]. Yuksel et el [17] 

and Masoudnia et el [18] and recently has made a detailed research about the studies 

in Mixture of Experts. In their papers, comprehensive survey of the MoE is provided by 

discussing the fundamental models for regression and classification processes. The 

improvements to the MoE model on the mixtures of Gaussian process experts are also 

presented. Alternative localized MoE training and variational learning methods are 

detailed. Additionally, finding the optimum number of experts, different classification 

models, statistical properties of MoE and several empirical applications in regression 

and classification are listed in their surveys.  
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A dataset might have complex parts and needs to be decomposed into less complex 

regions. Each region in the same dataset might be statistically different from the 

others in various aspects. These differences can be related with the number of 

samples, the number of classes, and the number of attributes. All of these features are 

the determinant factors describing the sparseness and denseness of a dataset. In 

addition, each part of a dataset might have individual and different specifications from 

others. The specifications can be data distribution type, structure, density of data, the 

number class labels, the separability of the class boundaries, and some other meta-

features. These facilities can decrease the overall accuracy rates thanks to the 

generalized model for the corresponding dataset. Furthermore, there might be some 

other geometrical meta-features [81] affecting the performance of the classifier. For 

this purpose, each sub region of the dataset might be accepted as a unique dataset. In 

order to boost the overall performance of a classifier on the same dataset, it will be 

better to build a mechanism that assigns a locally adaptive expert to each region. 

The performance of Mixture of Experts is strictly related with responses of the three 

particular questions.  

1. How to divide the dataset into sections? 

2. How to train the local experts? 

3. How to label a query point? 

As a response to the first question, Expectation Maximization (EM) algorithm is 

proposed in the literature [17] [82]. EM [83] is a soft (fuzzy) clustering method. Unlike 

many other clustering approximations, the regions have soft cluster boundaries 

meaning that instances might lie simultaneously in other clusters. Therefore the 

cluster boundaries possibly overlap since it is a statical clustering method where all 

instances may belong to all clusters with a given probability (e.g. a likelihood of 

belonging to the cluster). EM assigns each point to the most probable cluster. In 

statistics, the EM algorithm is an iterative method for finding maximum likelihood or 

maximum a posteriori (MAP) [84] estimates of parameters in statistical models. The 

EM iteration alternates between two main steps: expectation (E) and maximization 

(M). The (E) step generates a function for the expectation of the log-likelihood 
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evaluated using the current estimate for the parameters. The (M) step, calculates 

parameters maximizing the expected log-likelihood found on the (E) step. Then, these 

parameter-estimates are used to determine the distribution of the latent variables in 

the upcoming (E) step. 

To the second question, it is suggested to use an effective classifier fitted to the sub 

region. In many empirical applications, linear regression models are generally 

preferred as local experts although there are some other popular local experts such as 

MLPs and SVMs [17].  

Using a gate function integrating the decisions of the related experts with the test 

point is the third answer.  

In this study, it is proposed to use a hard and statical clustering method rather than a 

soft one in order to divide the dataset into regions. It has also been suggested to build 

four types of gate functions combining the predictions of the experts. Although it is 

proposed in the literature to choose any expert for any region, only decision tree (DT) 

classifiers are preferred throughout the experiments due to their performance, 

effectiveness, and clearness and their white-box structure. 

In this chapter of Mixture of Experts, there are five main sub-sections. In the first 

section, there are the descriptions of the proposed MoE method and the definitions of 

the fitted gate functions. In the second section, there are the experimental results. In 

the third section, there are complexity analyses of the algorithms. Finally there are 

some evaluations and future studies before the conclusion section. 

 METHODOLOGY 4.1

In this study, a hard clustering method is used in the procedure of dividing a complete 

dataset into disjoint subsets and different gate functions are built in the process of 

combining the decisions of experts. A dataset is divided into regions by a hard 

clustering method and a decision tree classifier is constructed for each region as an 

expert. In classical MoE approach, normally, a query point is classified by its 

corresponding experts.  
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In contrast to the soft clustering, each object certainly belongs to only one cluster in 

hard clustering. As one of the popular method, k-means clustering is a nonhierarchical 

method used for grouping a dataset. It groups data points using a “top-down” 

recursive approach with a predefined parameter, number of clusters.  This method is 

computationally possible for any type of dataset.  

Nonetheless, there are some types of popular and effective clustering methods such as 

EM [83], DBSCAN [85] and OPTICS [86]. Although these methods are very powerful and 

suitable in discretization of some types of datasets, they cannot handle all types of 

datasets. Density-based spatial clustering of applications with noise (DBSCAN) and 

OPTICS are density-based clustering algorithms. DBSCAN requires two parameters. The 

first one, ε (epsilon) is the maximum search radius. The second one is the minimum 

number of points required to form a dense region. Because of this, DBSCAN cannot 

guarantee to find a predefined number of clusters in the given dataset. In our 

empirical studies, this situation has made impossible to test the proposed MoE model.   

The cost function of k-means is as follows: Given a set of N points (x1, x2, … xn), k-

means clustering method partitions the observations into K (≤ n) clusters 

C = {c1, c2, …, ck} in order to minimize the within-cluster sum of squares (WCSS). The 

objective function is to find: 
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 (4.2) 

where    is the ith cluster center, in other words it is the mean value of points in the 

cluster Ci. Ci is the input data points within the corresponding cluster. ‖     ‖
  is the 

chosen distance measure between    and   . J is an indicator of the distance of 

the N data points from their respective cluster centers. 
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Figure 4.2 Proposed MoE method 

Figure 4.2 illustrates the proposed model of Mixture of Experts. The query point x is 

classified by the gate function assigning different weights to the k experts in the 

calculation. The proposed method basically runs as follows: 

1. Normalize all input patterns, divide the dataset into k sub regions (hard 

clusters) 

2. Assign an expert (DT) to each region and train it 

3. Ask the query point to the whole experts, compute each decision 

4. If needed, Compute the distance between the test point and the central point 

of the ith expert’s region as in the distance formula (4.3) below 

5. Combine the decisions of the experts by one of the four different types of gate 

function in order to classify the query point 

The distance formula (4.3) is as follows: 



39 

    (    )  (∑|  ( )    (  )|
 

 

   

)

 
 ⁄

 (4.3) 

where Ej is  the central point of jth expert’s region. The center of an expert’s region is 

the average of the all member samples in the region.   ( ) denotes the value of the ith 

attribute of instance x. The arbitrary instance x in the dataset is described by the 

attribute vector:  〈  ( )  ( )  ( )    ( )〉 where D is the number of dimensions 

(attributes). In this formula, if r is set to 1, it becomes Manhattan (Cityblock) distance; 

if it is set to 2, it is Euclidean; if it is set to more than 2, it turns into Minkowsky 

distance. In the limiting case of r reaching infinity, Chebyshev distance is obtained. As 

an alternate and versatile choice, Mahalanobis is another metric between a point and 

a distribution. Apart from the others, Mahalanobis puts emphasis to the distributions. 

In our design, Euclidean method is used to calculate the distance between the query 

point x and the representative central point Ej.  

4.1.1 Base Learner 

In MoE, the use of DTs is firstly introduced by Jordan and Jacobs [7]. There are recently 

many researches [17] on MoE and proposed new approaches and showed their 

differences. Using MoE with Radial Basis functions is firstly presented by Lei Xu [87]. It 

is known that DTs are used in Radial Basis Function Networks as a DT-RBF (Decision 

Tree based Radial Basis Function) since DTs ease the classification phase as a compact 

algorithm [88]. DTs have more advantages than the other learners since they are fast 

in prediction. Hence, DTs are preferred to use as experts of the regions [89], [90]. In 

this study, decision tree classifier is preferred as a base learner. DTs employ a top-

down recursive strategy for growing the trees. k DTs are established for k regions. 

4.1.2 Gating Functions 

The final prediction in the MoE ensemble method is given thorough the gate function. 

Therefore, the mechanism of the gate function plays an overwhelming role in the 

performance of the prediction. The experts can be combined using one of the 
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proposed combination rules. In these improved ensemble mechanisms, there are four 

types of gate functions distributing different weights to the local experts.  

The decision d of the     expert in the network might be defined as      with this   ( ) 

function:  

  ( )       [   ]                 (4.4) 

where K is the number of experts and C is the set of class labels,    is the decision of 

the ith expert. The decision      which is between [0, 1] is the probability of the 

corresponding class label. The probabilities of all the class labels for a test point are 

calculated by the expert   ( ) and the sum should be exactly 1:  

  ( )  ∑      

 

   

 (4.5) 

The probabilities of each class label are computed by all the experts in the network 

and placed in a K-by-C matrix for the usage of proposed algebraic combiners. These 

algebraic combiners are called as commensurative, Borda Count, competitive and 

cooperative gate functions. The combination methods accepted as generalized gating 

function models are listed as follows: 

 Commensurative Gate Function 4.1.2.1

In this style, all the experts have rights on the calculation and they have equal weights 

in the prediction. Simple majority (plurality) voting technique is applied. If there are K 

experts for a binary class problem, the ensemble decision will be the output of the 

⌊
 

 
  ⌋ experts which choose the same class. For multi class problems, the ensemble 

decision will be on the major class. 

  
 ( )  

 

 
∑    ( )

 

   

 (4.6) 

  
 ( ) is the ith expert giving the prediction on the class c. The commensurative based 

gate function chooses the class j that receives the largest total vote: 
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 ( )        
       

∑  
 
( )

 

   

 (4.7) 

where  ( ) is the final decision of the gate function. 

 Borda count based Gate Function 4.1.2.2

The Borda count is a simple and effective method in combining the rankings of the 

experts. This method for ranked lists combination can be considered as a generalized 

model like the other proposed models [91]. In the Borda count based system, basically, 

the number of points given to the experts for each ranking is determined by the 

number of experts standing in the MoE system. Thus, under the simplest form of this 

method, where there are N experts, an expert will receive N points for a first 

preference, N−1 points for a second preference, N−2 for a third, and so on, with a 

candidate receiving 1 point for being ranked last (or left unranked). The Borda count 

for class c might be computed as 

  ( )  ∑  
 ( )

 

   

 (4.8) 

where   
 ( ) is the ranking of the cth class provided by the ith expert and K is the 

number of experts. The final decision is given by selecting the class having the largest 

Borda count.  

 Competitive Gate Function 4.1.2.3

Only the winner expert in the network has the right to classify the query point x.  This 

strategy is also called winner-take-all. In this style, the test observation is not classified 

by the contribution of the all experts in the system. Only the closest expert the test 

point makes the classification. For every input vector, the competitive experts 

compete with each other to determine which one of them is the closest to the 

particular query point. The gate function sets      as the output of the winner 

expert and the all weights of the other competitive experts will be set 0.   , is the ith 

expert weight in the W vector. The competitive gate function might be defined as: 
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  ( )     
    (    )          

{  ( )} (4.9) 

where R is the any real numbers. The closest expert to the test sample is the winner 

one. We would like to emphasize an important thing here assigning a class label to a 

query point by the only nearest expert might be problematic when the point is very 

close to a decision boundary. In this case, decisions of all the nearest experts should 

contribute to the calculation for accurate predictions.   

 Cooperative (Collaborative) Gate Function 4.1.2.4

In this method, the classification is done by means of the gate function giving different 

weights to the experts and can be named as weighted majority voting or distance 

weighted voting. Apart from the previous gate function models, all the experts have 

some weights on the calculation according to their distances to the query point. This 

method gives greater weights to closer experts. This effective approach is adapted to 

our study in designing the gate function. The formula (4.10) that finds the class 

probability of the class label c by the K experts is as follows: 

  ( )  ∑      ( )

 

   

 (4.10) 

where    is the weight assigned to the ith classifier. 

The cooperative gate function gives greater weights to the closest experts by means of 

the Shepard’s method [92]. Shepard’s method is used in the design of gate function 

where closer experts to the test instance have higher effects and vice versa. It ought to 

be noticed that the closer experts according to their distances to the query point have 

higher effects, the further experts have lower effects in the calculation. Giving 

different weights to the experts by means of their inversely squared distance to the 

test point is done by this formula (4.11) below: 

   
 

     
  

 

     
 (    )

 (4.11) 
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where     is the weight of the ith expert. As a reference point,    is the centroid which 

represents the corresponding cluster (expert). There are some various types of weight 

methods such as   ⁄ ,    ⁄ , and    ⁄ . In contrast to the   ⁄  style, the    ⁄  style 

gives more weights to the closer experts and vice versa. In the experiments, the    ⁄  

style produces better performances. Corporative gate function might be written as: 

   
  

∑   
 
   

 
(4.12) 

where    is the weight of the ith expert. The total weight of the experts should be equal 

to 1 where k denotes both the number of the experts and the number of sub regions. 

  ∑    

 

   

 (4.13) 

The   function is used to find the class of the new entry x, where      . 

 ( )        
   

(     
 ( )) 

(4.14) 

The   function makes a calculation for each class and assigns the maximum argument 

as a class label. Here, C indicating the set of class labels is defined as {            }. 

The   
 ( ) function calculates the probability of each class according to the ith expert. 

The extended style of the  ( ) function is in the formula (4.15): 

 ( )        
   

(
∑      

 ( )
 

 

∑   
 
 

) (4.15) 

As it is seen, cooperative gate function gives different weights to the all experts.  

 EXPERIMENTAL RESULTS 4.2

In order to demonstrate the effectiveness and validity of the proposed methods, we 

have carried out some empirical studies which prove these proposed methods are 

comparably better than the former one. Experiments are performed on 36 UCI 

benchmark datasets [93] which represent a wide range of data characteristics, 

distributions and domains. In these real world datasets, missing values are replaced, 
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nominal values are converted to binary values and finally all the values are normalized 

to [0-1] range. 5x2 cross validation technique are used throughout the experiments on 

the MATLAB environment in order to investigate the performance of class probability 

estimation techniques. The iteration number for k-means is 100, for all the 

experiments. Paired T-Test metric enables to compare the overall performances of the 

gate functions statistically [94]. T-Test gives three types of results: win (if the first 

classifier is better), loss (worse) and tie (equal). All computational results of the 

empirical studies are placed in Table 4. 1. The accuracy comparisons between the four 

types of proposed gate functions and the classical DT classifier are seen in this table. 

We would like to remind again that the DT is built using the entire dataset.  

Table 4. 1 T-Test results of the whole gate functions 
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Cooperative Gate F. 17 11 8 14 15 7 9 12 13 11 23 12 

Competitive Gate F. 3 23 10 7 20 9 2 24 8 5 22 9 

Commensurative Gate F. 2 10 24 1 8 27 4 5 27 2 4 30 

Borda Count Gate F. 3 3 30 2 2 30 2 2 32 1 1 33 

 

In each experiment, the number of experts (sub regions) has set to 3, 5, 10, and 20 and 

the accuracy comparison test is done with the DT against four kinds of MoEs. The 

numbers of win, tie and loss are presented in the table. As it is seen, these 

experimental results indicate that the cooperative gate function outperforms the 

others significantly in these evaluations. When the number of local experts is set to 3, 

this new method gives better results in 17 UCI datasets against DT. 17 wins, 11 ties, 

and only 8 losses indicate a good performance. 

When the number of experts is set to 3, the all computational accuracy results 

between the DT and MoE are compared in Table 4. 2. In this table, the first three 

columns are the number of instances, attributes and the classes of each class 
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respectively. These external features describe the density or sparseness of the future 

space. In the next two columns, there are accuracy rates of DT and MoE with the 

cooperative gate function. In the last two columns, MoE and DT are compered.  
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Table 4. 2 Experimental results when the number of experts is 3 

 

External Features 
  

MoE - DT 

comparison 

Dataset Name 
# of 

inst. 

# of 

Att. 

# of 

cls. 

DT 

Acc. 

Cooperative 

G.F. Acc. 

% 

chang

e 

T-Test 

abalone 4153 19 10 0.2120 0.2203 3.92 win 

anneal 890 4 62 0.9883 0.9357 -5.32 loss 

audiology 169 5 69 0.8615 0.8166 -5.21 loss 

autos 202 5 71 0.6614 0.6198 -6.29 loss 

balance-scale 625 3 4 0.7799 0.7991 2.46 win 

breast-cancer 286 2 38 0.6692 0.7098 6.07 win 

breast-w 699 2 9 0.9465 0.9499 0.36 tie 

col10 2019 10 7 0.7575 0.7738 2.15 win 

colic 368 2 60 0.8092 0.8003 -1.10 tie 

credit-a 690 2 42 0.8197 0.8400 2.48 win 

credit-g 1000 2 59 0.6870 0.7011 2.05 win 

d159 7182 2 32 0.9698 0.9572 -1.30 tie 

diabetes 768 2 8 0.7036 0.7182 2.08 win 

glass 205 5 9 0.6527 0.6429 -1.50 tie 

heart-statlog 270 2 13 0.7415 0.7639 3.02 win 

hepatitis 155 2 19 0.7883 0.8115 2.94 win 

hypothyroid 3770 3 31 0.9943 0.9919 -0.24 tie 

ionosphere 351 2 33 0.8539 0.8001 -6.30 win 

iris 150 3 4 0.9333 0.9360 0.29 tie 

kr-vs-kp 3196 2 39 0.9901 0.9790 -1.12 tie 

labor 57 2 26 0.8596 0.8281 -3.66 loss 

letter 2000

0 

26 16 0.8234 0.8187 -0.57 tie 

lymph 142 2 37 0.7901 0.7775 -1.59 tie 

mushroom 8124 2 112 1.0000 0.9324 -6.76 loss 

primary-tumor 302 11 23 0.4225 0.4348 2.91 win 

ringnorm 7400 2 20 0.8842 0.9079 2.68 win 

segment 2310 7 18 0.9396 0.9566 1.81 win 

sick 3772 2 31 0.9824 0.9812 -0.12 tie 

sonar 208 2 60 0.6989 0.7175 2.66 win 

soybean 675 18 83 0.8824 0.8417 -4.61 loss 

splice 3190 3 287 0.9254 0.8159 -11.83 loss 

vehicle 846 4 18 0.6849 0.6787 -0.91 tie 

vote 435 2 16 0.9361 0.9549 2.01 win 

vowel 990 11 11 0.6773 0.6927 2.27 win 

waveform 5000 3 40 0.7364 0.7512 2.01 win 

zoo 84 4 16 0.9762 0.9333 -4.39 loss 
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Under the title of “% change” the values indicate the decrease or increase between 

MoE and DT in percentage. The values in the % change column show the percentage 

increase or decrease between the accuracy rates of Cooperative gate function and the 

accuracy rate of DT. The change in percentage is found by this formula: 

          
                             

       
     (4.16) 

 COMPLEXITY ANALYSIS 4.3

The general time complexity (cost) of a DT in big-O notation is as follows: 

 (      ) (4.17) 

where D and N are the number of dimensions (attributes) and instances in the data 

matrix respectively [90]. The complexity of the basic k-means method is also as: 

 (    ) (4.18) 

where I and k are the iteration numbers and the cluster (region) numbers respectively 

[12]. The MoE mechanism comprises k DTs for each region and one gate function. 

Thus, the cost of the MoE construction is the combination of three factors:  k-means, 

DTs, and gate function complexities:  

 (       
 

 
   
 

 
  ) (4.19) 

In this notation the first complexity part (    ) is for k-means. The latter part 

(  
 

 
   

 

 
) is the construction of k DTs where 

 

 
 can be considered as the number of 

elements in each sub region. The last negligible part ( ) is for the gate function which 

is almost the same for all types. The constant k parameter might be cancelled as it is a 

small integer in most of the applications. Because of this, the complexity of k DTs is not 

as big as it is expected. In addition, the iteration number I can also be negligible since it 

is a constant value throughout the experiments. If the values I and k are cancelled, the 

notation might be approximately summarized as: 
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 (      ) (4.20) 

Even though the cost of MoE construction is the same as DT’s, the computational time 

should be a little bigger.  

As another complexity measure of DT learners, the number of nodes in the tree is an 

important parameter. The number of nodes in the DT classifier and MoE classifier is 

listed in Table 4. 3. The total number of nodes of the experts in the MoE system is 

calculated when the number of expert is set to 5. As it is seen in the table, there is big 

similarity. This table proofs that the complexities of both models are similar to each 

other.  
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Table 4. 3 Number of nodes in the DTs and MoEs 

ID Dataset 
Number of 

Nodes in DT 
Number  of average nodes 

in MoE (k=5) 

1 abalone 1515 1502 

2 anneal 21 34 

3 audiology 37 42 

4 autos 51 58 

5 balance-scale 69 74 

6 breast-cancer 63 58 

7 breast-w 37 22 

8 col10 295 396 

9 colic 47 50 

10 credit-a 93 106 

11 credit-g 209 198 

12 d159 205 462 

13 diabetes 139 138 

14 glass 47 66 

15 heart-statlog 35 66 

16 hepatitis 19 30 

17 hypothyroid 23 78 

18 ionosphere 37 46 

19 iris 9 20 

20 kr-vs-kp 73 202 

21 labor 9 12 

22 letter 2413 2600 

23 lymph 21 28 

24 mushroom 27 48 

25 primary-tumor 81 70 

26 ringnorm 531 600 

27 segment 91 130 

28 sick 53 76 

29 sonar 35 44 

30 soybean 81 120 

31 splice 167 220 

32 vehicle 151 170 

33 vote 19 26 

34 vowel 191 240 

35 waveform 737 620 

36 zoo 7 10 



50 

 EVALUATION AND FUTURE STUDIES 4.4

In this study, the feature space is clustered into disjoint regions and a special classifier 

is established for those regions. An assigned gate function integrates the decisions of 

the classifiers. It has been seen that a locally adaptive models gives more accurate 

results as opposed to a generalized single model.  

In the DT learning, the data points are split into two parts according to the Information 

Gain (IG). Nevertheless, in clustering phase of this study, the data points are divided 

into sub regions according to the statical data distributions. This approach gives a great 

benefit when the dataset is linearly separable (e.g., balance-scale, heart-statlog and 

waveform). While this proposed method outperforms on some datasets, it also fails on 

few datasets due to some reasons. Basically the accuracy comparisons shown in Table 

4.1 and Table 4.2 are directly related with the suggested gate functions. The clustering 

method also considerably has a great role in the performance. The statistical type, the 

distributional style [95] and some related meta-features [81] of the dataset have a 

great importance on the clustering process. The discretized regions sometimes cannot 

be suitable for the proposed MoE model. In a future study, the appropriate types of 

datasets can be categorized.  

4.4.1 Clustering method 

In the beginning of the study, we have assumed that it was possible to compare the 

performances of two different clustering algorithms EM and k-means. Nevertheless, 

EM is not applicable to some datasets. Where k-means can be run over any datasets, 

EM can run only a few datasets. EM has produced some ill-conditioned situations on 

some real world UCI datasets. Ill-conditioned covariance occurs, when there is an error 

in fitting the Gaussian Mixture Model (GMM) [96]. Afterwards, optimization ends and 

an error appears during the implementation. In this situation, we have tried to fit a 

GMM again using regularization. Although we set a small positive scalar value to 

Regularization value (e.g. 0.01) in order to ensure that the estimated covariance 

matrices positive definite, the ill-conditioned covariance could not be disappeared.  

The MoE using EM is not applicable to any type of dataset. On the other hand, the k-

means method does not care the data distributions in the dataset. Therefore, this 
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scalability, flexibility and applicability of the k-means method provide a great privilege 

according to the GMM.  

4.4.2 Gate Functions 

Proposed gate functions perform the classification phase by giving some weights to the 

local experts. When the performances of the gate functions are ranked, Cooperative 

gate function model comparably gives the best results of all. Commensurative and 

Competitive ones are not as good as Cooperative one. On the other hand, the Borda 

count model is the worst one as shown in Table 4. 1.   

In the cooperative version, each expert has some contributions on the classification 

the test point. Especially the closer experts to the test point have bigger effects to the 

calculations due the Shepard method, namely the    ⁄  effect. Thus, the distance 

based model enables accurate prediction.  

The competitive model which uses only one expert has some drawbacks. For example, 

a point located closely to a decision boundary or a class boundary consults to the 

nearest expert where there might be some other experts nearby. This situation might 

cause misclassification by assigning a class label to the observation by the help of only 

the nearest expert.  In this case, the cooperative gate function solves this kind of 

problem by contributing the other experts. 

The Commensurative function assigns equal weights to each of the experts. Since the 

weights of the closer and the farthest experts are identical, misclassification usually 

happens. Hence, the overall performance of this version is not better than DT’s.  

The Borda count method normally is one of the useful and effective methods in some 

election and decision making processes. However, as a gating function, this method 

fails in this application. This method actually is a kind of commensurative version of 

gate function. Giving equal weights to the farthest experts makes the classification 

phase unsuccessful. As a further empirical study, Borda count method using Shepard’s 

technique might give more accurate results than the cooperative one.    
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4.4.3 k Dependency  

In this study, this improved system requires a k value defined by the user’s preference. 

It is mostly difficult to determine the best k value. In the literature it is commonly 

recommended to assign the best k value for a dataset by carrying out some 

experiments. The K fold cross validation process is the first simplest choice. Using some 

kind of validation process for different k values, the best one that gives the highest 

accuracy might be selected. The dependency of parameter is a common problem in 

every learning process. But there are some researches such as [95] and [97] that find 

the most suitable number of clusters (k parameter) for a dataset. Also in this paper 

[98], automatic number of cluster detection is improved using Kohonen's Self 

Organized Map (SOM) [99]. 

In the experiment, four types of gate functions with the different number of k values 

(3, 5, 10, and 20) are applied to the UCI datasets. If the big k value (# of experts) is 

chosen as a parameter, the execution time gets bigger. Additionally, dividing sparse 

datasets into clusters gets difficult. Therefore, increasing the k value towards to the 

number of samples in the dataset causes a situation like a distance weighted k-NN 

structure when the cooperative gate function is used.  

In the experiments, it can be said that assigning more k experts to the dense datasets 

and vice versa less k experts to the sparse datasets gives more accurate results. On the 

assumption the density of a dataset might be the frequencies of the data points in the 

feature space; we can use this formula (4.21) below that describes the denseness of a 

dataset [58]:  

        
 

   
 (4.21) 

where N, A and C are the number of data points, attributes and class labels 

respectively. In Table 4.4, increasing the number of experts in the dense dataset gives 

higher accuracy increments. However, in the sparse datasets as shown in Table 4.5, 

bigger number of experts gives lower accuracy decrements. The accuracy comparisons 

in both Table 4.4 and Table 4.5 are done between DT and MoE using cooperative gate 

function.  
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Table 4. 4 Accuracy in dense datasets 

 
% change in Acc. 

using Cooperative G.F. 

 

N A C Density k=3 k=5 k=10 k=20 

balance-scale 625 3 4 52.1 2.46 3.77 5.29 5.53 

breast-w 699 2 9 38.8 0.36 1.36 1.33 1.48 

iris 150 3 4 12.5 0.29 0.58 1.15 2.00 

ringnorm 7400 2 20 185 2.68 4.84 4.82 6.80 

waveform 5000 3 40 41.7 2.01 0.44 3.24 6.31 

 

In some UCI datasets shown in Table 4.4, increasing the number of experts gives more 

accuracy rates. This situation has some drawbacks. The first one is the high 

computational time. The second one, when the k parameter is chosen a huge number, 

sparse sub regions occurs where DT classifiers act like distance weighted k-NN 

classifiers. Namely, when the k value approaches to the number of samples, a model 

like    ⁄ -distance-weighted-kNN classifier occurs. On the other hand, as it is seen in 

Table 4.5, there is no need for the sparse dataset to use the proposed model. This MoE 

model decreases the accuracy rate. 

Table 4. 5 Accuracy in sparse datasets 

 
% change in Acc. 

using Cooperative G.F. 

 
N A C Density k=3 k=5 k=10 k=20 

audiology 169 5 69 0 -5.21 -13.46 -21.56 -40.11 

autos 202 5 71 0.2 -6.29 -11.68 -21.11 -30.84 

colic 368 2 60 0 -1.10 -0.53 -5.17 -9.53 

labor 57 2 76 0.5 -3.66 -11.42 -11.83 -9.38 

soybean 675 18 83 0.5 -4.61 -9.91 -15.92 -17.26 
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4.4.4 Future Studies 

As a future study, the performance comparison between the MoE with hard clustering 

and the MoE with soft clustering might be enabled by generating some artificial 

datasets. The produced synthetic datasets enables the discretization by any type of 

clustering algorithms such as EM, DBSCAN and k-means. Then, the performance 

comparison among k-means, EM and DBSCAN will show the performance differences 

of models.  

In the further steps, rather than DTs, other classifiers including generalized or linear 

regression models can be applied to the proposed method for the purpose of better 

performance.  

Besides, an automated system that finds the best k parameter fitting to a dataset 

might be established. Since the searching process of finding the best k value (the 

number of experts) is very time-consuming, it limits its use in many real-world 

applications.  In the recent years, several approaches depending on the data 

distribution types have also been suggested and studied in order to tackle these 

mentioned problems. 

After having the computational results, the reasons of the differences in the 

performance on some datasets are thought to be examined. Although the proposed 

MoE model with the cooperative gate function is very successful on some datasets, the 

reasons can be analyzed through the Meta Learning process. Some meta-features of 

the datasets such as the external features and geometrical complexity measures 

proposed by [81] might be used in this learning type.  

The extracted features and the T-Test results of the MoE system (            

         ) might be accepted as attributes and class labels respectively in a Meta 

Learning dataset. By using a regression model the T-Test result of a dataset with a 

certain k parameter can be predicted. Amasyali and Ersoy [100] have made a thorough 

research that divides the Meta Learning activity into categories. According to the 

technical report study, different types of used meta-features are categorized into 

these classes: statistical, informational and theoretical features, subsampling 
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landmarks features, and DT features. About 300 meta-features are aggregated into 

their study and used in Meta Regression model.  

In the cooperative version, the farther experts to the test point have smaller 

contributions to the calculations due the Shepard method, namely the    ⁄  effect. On 

the contrary, including the decisions of the farther experts to the gate function 

increases the execution time. Consequently, a mechanism can be established that only 

the nearest related experts among the test point can play a role in the calculation as a 

further study. 

 SUMMARY 4.5

In this theoretical and practical study, a dataset is divided into sub partitions by a hard 

clustering method. An expert for each sub region is assigned and trained with the 

points of the corresponding region. The decisions of the experts are merged by four 

types of gate functions: cooperating, competitive, commensurative, and Borda count. 

In the experiments, better performances have been obtained mostly on dense 

datasets with the proposed cooperating gate function due to its mechanism that gives 

different weights to all of the experts. Normally, MoE model is particularly useful when 

different types of experts are trained on different parts of the same feature space. 

Training a set of chosen experts and assigning the best ones to each division might be 

another expensive choice in the training phase. But in this study the same type of 

experts are chosen rather than heterogeneous ones throughout the experiments. It is 

also showed that the total classification performance might be increased with this 

suggested MoE approach using a cooperative gate function and homogeneous experts 

on hard clustered regions. In addition, this study enables the suggested MoE model to 

be applicable to any type of dataset unlike the other models like GMM. 

 AVAILABILITY 4.6

The implemented MATLAB codes of the proposed model with four types of gate 

functions (cooperating, competitive, commensurative, and Borda count), the overall 

experimental results in pure text files and Excel documents and related files can be 
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publicly downloaded from the URL address for examinations and further studies:  

https://www.ce.yildiz.edu.tr/personal/mfatih/file/5072/moe.rar 

 
 

 

  

https://www.ce.yildiz.edu.tr/personal/mfatih/file/5072/moe.rar
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CHAPTER 5 

5. A LOCALLY ADAPTIVE BASE LEARNER: ONE NEAREST CLUSTER 

Classifiers are arranged into two main categories, eager and lazy. In contrast to lazy 

methods (e.g., k-NN, PART and One-Rule) eager ones (e.g., Decision Trees, SVM and 

MLP) builds a generalized model from the training set. Basic lazy methods search the 

entire dataset for each test instance. k Nearest Neighbors (k-NN) classifier is one of the 

most preferred algorithm in this area. The k-NN assigns the class label which is most 

frequent among the k training samples nearest to the query point. In other words, the 

test sample is classified into a particular class by the majority voting of the k closest 

training samples. Because of this, the closest training examples have a considerable 

influence on the classification accuracy. This memory based classification algorithm is 

used with a constant k value defined by the user’s preference. It is generally difficult to 

determine the best k value. In the literature it is commonly recommended to assign 

the best k value for a dataset by carrying out some experiments [101]. A constant k 

value for each test instance may results low accuracy rates.  

This study aims to improve a sample based base learner by using unsupervised 

methods. Our research which differs from some proposed models is about a novel way 

of assigning a k value best fitting to each test instance to take better performance. The 

proposed research aims contributing a dynamic k parameter selector to the traditional 

k Nearest Neighbors algorithm. The proposed hybrid method combines supervised and 

unsupervised techniques. This study also aims to remove the side effects by proposing 

a novel method, dynamic k value selector for each test instance. To show the side 

effects of the constant k value, five evidences are presented below. 
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 The 1st evidence 5.1

As it is seen in Figure 5.1, in Figure 5.2, in Figure 5.3, and in Figure 5.4, there are 

accuracy rates of the k-NN classifiers with different k parameters on some UCI 

benchmark datasets [93]. All accuracy values are obtained using 10 fold cross 

validation throughout the experiments. The accuracy rates have been computed 

according to the constant k values ranging from 1 to 50 along the classification activity. 

Whereas the k parameter changes, the accuracy level obviously changes as well.  

As it is seen in Figure 5.1, increasing the k value decreases the classification 

performance of the datasets vovel, ionosphere, soyabean, and segment. Especially, the 

vovel dataset is very sensitive to the high k value.  

 

Figure 5.1 The negative effect of increasing k parameter 

On the other hand in Figure 5.2, high accuracy level is directly related with the high k 

value. As it is seen in the balance-scale, waveform, splice, and heart-statlog datasets, 

increasing the k value gives higher accuracy rate.  
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Figure 5.2 The positive effect of increasing k parameter 

Besides, In Figure 5.3, the datasets iris, hypothroid, kr-vs-kp, and sick are not sensitive 

to the k parameter. There are gradual changes in the performance.  There are only 

some slight changes on account of the k parameter. 

 

Figure 5.3 The effect of increasing k parameter 

 

Nevertheless, Figure 5.4 represents a different situation. There is not a linear relation 

between the k value and accuracy level. The k value sometimes has a positive 

correlation effect. But it sometimes has a negative correlation effect on colic, credit-a, 

and sonar datasets. 
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Figure 5.4 The effect of increasing k parameter 

In Figure 5.5, there is a summarization of the first evidence described in the figures 

above.  The k parameter has four types of effect on the accuracy level. These are no 

correlation (as it is seen in the sick dataset), positive correlation (as it is seen in the 

splice dataset), negative correlation (as it is seen in the ionosphere dataset), and finally 

changeable correlation (as it is seen in the audiology dataset). As a result, this figure 

depicts the classification and regression performance of the k-NN method may be very 

sensitive to the k parameter. 

 

Figure 5.5 Effects of the k parameter on k-NN performance 
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 The 2nd evidence 5.2

There is no unique k parameter that gives the highest cumulative accuracy rate and 

Table 5. 1 proves this. The table presents whether the different k values for randomly 

selected test points in the audiology dataset gives accurate classification or not. T and 

F represent the true and false predictions respectively. T indicates that the classifier 

predicts the test sample’s class correctly and vice versa. The italic real numbers under 

the T and F letters indicate the probability of the prediction in percentage. An object is 

classified by a majority vote of its k closest neighbors. For example, the class 

probabilities of the 33rd test point are almost 1. This point should be in the center of a 

spherical group of points from the same class. The 61st test point is correctly classified 

when the k is bigger than 2. The estimation of the 70th test point is unstable thanks to 

the different k values. It might be because the test point is near a decision boundary. 

This table apparently confirms that the classification performance is very sensitive to 

the precise value of k. 

Table 5. 1 Analysis of the k-values effecting performance 

 
k parameter for k-NN 

1 2 3 4 5 6 7 8 9 10 

33rd test point 
T 

1.0 
T 

1.0 
T 

1.0 
T 

1.0 
T 

1.0 
T 

1.0 
T 

1.0 
T 

1.0 
T 

0.88 
T 

0.9 

54th test point 
F 

1.0 
F 

0.5 
F 

0.66 
F 

0.75 
F 

0.80 
F 

0.83 
F 

0.85 
F 

0.75 
F 

0.66 
F 

0.60 

61st test point 
F 

1.0 
F 

0.5 
T 

1.0 
T 

0.75 
T 

0.6 
T 

0.83 
T 

0.71 
T 

0.75 
T 

0.88 
T 

0.9 

70th test point 
F 

1.0 
F 

1.0 
F 

1.0 
T 

0.75 
T 

0.6 
T 

0.66 
F 

0.71 
F 

0.62 
F 

0.67 
T 

0.6 

87th test point 
F 

1.0 
F 

1.0 
F 

0.66 
T 

0.75 
F 

0.6 
F 

0.66 
F 

0.71 
F 

0.75 
F 

0.78 
F 

0.7 

# of true prediction 1 1 2 4 3 3 2 2 2 3 

According to the table, when the k parameter is fixed to 1, only 1 class label of the test 

samples is truly predicted. If the k value is set to 4, 4 test points in total are accurately 

classified. Moreover, different k values suited for each test point increases the overall 
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accuracy as opposed to constant k values. The value of k for each test point should be 

small, big or in a specific interval for the purpose of higher accuracy. 

 The 3rd evidence 5.3

In Figure 5.8, Figure 5.7 and Figure 5.8 there are histogram plots of the zoo, breast-

cancer and hepatitis datasets respectively from the UCI repository. In these datasets, 

all the values are normalized to 0-1 range. All the distances between the origin and all 

points have been calculated. Then, the points are laid on one dimensional axis 

according to their distances to the origin to build the histogram plots. Namely, each 

histogram displays the frequencies of distances between the origin and all points in the 

space. Each histogram gives a notion about the data distribution among the origin. The 

histogram plots absolutely change if the test point is moved to another location of the 

space.  

 

Figure 5.6 Histogram of the zoo dataset 

Assuming a test point in the origin of the zoo dataset, as it is shown in the histogram 

plot above, the best k value should be set to 3 since there are three nearest points in 

the same orbit. These three points are considered together due to the same distance 

even though they are very far each other in their original space. Because of this, these 

three points are called in the same orbit.  
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Figure 5.7 Histogram of the breast-cancer dataset 

The best k value for a test point in the origin of the breast-cancer should be 

approximately 15 according to the histogram plots above. In the hepatitis dataset, the 

k value should be 1. These histograms prove that there should be a suitable k value for 

each test point due to the distribution of its nearest neighbors on one axis.  

 

Figure 5.8 Histogram of the hepatitis dataset 

There are three histogram plots of the same dataset labor in Figure 5.9, Figure 5.10 

and Figure 5.11. These figures show the number of points among the origin, the center 

and the upper rightmost point of the space respectively. The histogram plots of the 

test instances are different from each other although the space is the same. Instead of 

setting the k values for each test point to 1 in k-NN classifier, they should be 2, 3 and 1 
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respectively to have reliable and accurate results. In these plots, the numbers of 

nearest points to the origin, center, and the right upper most corner are circled for 

illustration. 

 

Figure 5.9 Histogram of the origin point in the labor dataset 

 

Figure 5.10 Histogram of the center point in the labor dataset 
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Figure 5.11 Histogram of the right upper most corner in the labor dataset 

On the contrary, the letter dataset has a different data distribution shown in the figure 

below. In this dense dataset, the best k parameter for the test point located in the 

origin might be found by experiments and cross validation procedures. In this case, 

handling the whole dataset is not a good choice, selecting some nearest samples to the 

test point and examining the distributions is better. Figure 5.13 and Figure 5.14 show 

the closest 100 and 20 data points respectively to the origin. According to Figure 5.14 

the best k value for the test point might be 1. 

 

Figure 5.12 Histogram of the letter dataset 
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Figure 5.13 Histogram of the nearest 100 points in the letter dataset 

 

Figure 5.14 Histogram of the nearest 20 points in the letter dataset 

 The 4th evidence 5.4

There are two different scenarios in two dimensional space illustrated in Figure 5.15. 

The scenarios in the (a) section demonstrate that there might be other samples whose 

distances are similar to the test point. In this case, setting the k value to 1 results in 

unreliable classification because of the random selection. Normally, the probability of 

having the same distance to the test point is very low. Conversely, a group of samples 

whose distances are similar to the test point might occur as it is seen in the (b) section. 

These points might also be very close to each other. To assign a value which is bigger 

than 1 to the k yields different results. Instead of this, setting the k value to the 

number of the samples in the nearest group produces more reliable classification.  
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(a)                                                                     (b) 

Figure 5.15 Classification example 

 The 5th evidence 5.5

Figure 5.16 shows the intervals of the best k values giving the highest accuracies for 

the datasets on the y axis. For example, k-NN gives the highest accuracies on the zoo 

dataset when the k value is between 1 and 9. In other words, the accuracy rates are 

similar between [1, 9]. The intervals are computed when the standard deviation of the 

accuracy rates is set to 0.01. 

 

Figure 5.16 The intervals of the best k values giving the highest accuracies for some 
datasets 

This figure shows that there is not a unique k value that gives the highest classification 

performance. Thus, the k value for some datasets might be laid in some intervals.  
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 k Dependency  5.6

The performance of the k-NN classifier is strictly related to the k value. k-NN with small 

k values are very sensitive to the noise data. In order to reduce the effect of noise, the 

k value can be slightly increased.  Nonetheless, if the k value exceeds its convenient 

level, it includes unnecessary points from other classes and results unreliable 

predictions. This signifies that high k value is prone to misclassification. Additionally, 

attaining better accuracy with adequately high value of k requires high computational 

cost, because of the complexity of NN searching. As it was mentioned above, there is 

no exact rule and proper method of k estimation. It depends on the features of the 

input space such as data distribution type, structure, density of data, the number class 

labels, the separability of the class boundaries, and some other meta-features. In 

different scenarios, the optimum k might change. The value of optimum k totally 

depends on the dataset. In addition, small, moderate or big k values generally yields 

different results. Hence, the k value may vary from dataset to dataset. The value of k is 

extremely training-dataset dependent. 

In addition, each section in the same dataset might be statistically different from the 

others in various aspects. These differences can be related with the number of 

samples, the number of classes, and the number of attributes. All of these features are 

the determinant factors describing the sparseness and denseness of the dataset. 

Additionally there might be some other geometrical meta-features [81] affecting the 

performance of the classifier. In order to boost the overall performance of a k-NN 

classifier, it will be better to build a mechanism that assigns a locally adaptive k 

parameter to each instance. 

 Drawbacks of k-NN 5.7

Lazy learners have expensive computational costs since they store all the training 

instances and do not build a generalized model. k-NN has two main drawbacks. The 

first one is the high estimation time because of the absence of a generalized model 

[102]. The second one is the k dependency which controls the volume of the 

neighborhood.  
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In recent years, researchers have done considerable studies on the various types of k-

NN classifier such as combining it with other techniques and using different distance 

metrics. Several approaches have also been suggested and studied in order to tackle 

these mentioned drawbacks. Jiang at al [103] presented three shortcomings of k-NN in 

their research: 

1. Type of the distance metric for measuring the difference or similarity between 

two samples.  

2. Artificially assigned neighborhood size as an input parameter. 

3. The class probability estimation with a simple voting technique.  

They propose some solutions and methods to these shortcomings and then have 

better performances in their experiments.  

In the latest surveys of k-NN method [102] and [104], advantages and disadvantages of 

the several versions of this method are examined. High memory requirement and 

computational complexity are presented as two main drawbacks of k-NN. In order to 

improve over memory limitations, training dataset are structured using some 

algorithms such as ball tree, kD-tree, nearest feature line (NFL) [105], tunable metric 

[106], principal axis search tree [107] and orthogonal search tree [108]. These methods 

simply decrease the computational time of NN algorithms. 

          

(a)                         (b) 

Figure 5.17 Illustrations on misclassification 

We have determined that two cases where k-NN classifier fails in the experiments. 

These two cases are illustrated in the Figure 5.17. Firstly, when the k value is high, k-

NN frequently fails while labeling the test samples which are closely located to the 

decision boundaries. Thus, the class boundaries will not be precise any more. In Figure 
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5a, the vertical line represents the class boundary between white and blue classes in 

the two dimensional dataset. The decision boundary is represented by the black 

dotted vertical line. The red query point, in which there is a plus sign, is very close to 

the decision boundary. It will be misclassified since the k value has been set to 5 as 

illustrated by the orange circle in the figure. Although the test point is in the region of 

blue dots, its class will be white because of the higher k value. k-NN fails here for that 

reason.  

In Figure 5.17 (b) showing the second case, there are different neighborhood shapes 

where the orange ellipses and circle comprise the adaptive 8 nearest points, (8NN). 

The shape varies with the location of the query instance thanks to the distribution of 

its nearest samples [109]. Using standard unweighted Euclidean distance metric causes 

misclassification in these elliptic regions. The amount of elongation/restriction decays 

as the query point moves further away from the elliptic regions where a decision 

boundary would lie. The elliptic illustrations require locally adapting a distance metric. 

There are some researches [109], [110] using adaptive and discrimination metrics in 

order to boost the performance of nearest neighbor classifiers in these two cases 

illustrated in Figure 5.17. 

Patterns of different classes sometimes overlap in some regions in the space. Instances 

of different classes can be very close to the decision boundaries. In these 

circumstances, k-NN includes some irrelevant instances to the calculation. Numerous 

researchers have proposed various adaptive and discrimination metrics [110] and 

[109] to improve the performance. Subsequently, the adaptive k-NN rule with the 

convenient distance measure might be used to overcome these hardships for further 

studies.  

As mentioned above it is explicitly proved that a new method should be built to find 

the best fitting k value for each test point so as to boost the prediction performance of 

the k-NN classifier. There are also some explanations of the reasons why k-NN fails on 

some datasets. The rest of this chapter has some more sub-sections. In next section, 

there are briefly described studies in the related surveys and researches. In the 

following section, there is a definition about the dynamic k parameter selection 

procedure and search techniques used in the instance based learning. Experimental 
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results are presented in the following section. Finally, future work is presented and our 

contributions are summarized. 

 RELATED STUDIES 5.8

There are two main empirical evaluation approaches about setting the appropriate k 

value for a particular dataset. The K fold cross validation process is the first simplest 

choice. Using some kind of validation process for different k values, the best one that 

gives the highest accuracy might be selected. The widely used second approach is the 

bootstrapping technique. It uses sampling with replacement to form the training set 

[111]. The optimal k value is determined via bootstrap method. Both approaches give 

approximately the same results. In spite of some suggestions [19] about setting the k 

value to the square root of the number of all training patterns, it is theoretically an 

upper bound value that cutbacks these kinds of evaluations. 

Ozger et al [20] proposed an approach assigning the appropriate k value for a 

particular dataset by means of Meta Learning method. In their study, 16 meta-features 

are extracted from each of 200 datasets. The k-NN algorithms with different k values 

are computed with these datasets. In the construction of Meta training dataset, the k 

value giving the highest accuracy becomes the label and the extracted meta-features 

are accepted as attributes. It predicts the best fitting k value by a regression model. 

Nonetheless, the biggest barrier in front of the study is the assignment of the same k 

value to the whole datasets. The highest accuracy for more than half of the datasets is 

computed where the k parameter is 1. For that reason, regression becomes difficult.  

In another research [21], some non-parametric k-NN where the general k for a dataset 

is automatically determined by geometric relationships is proposed. Classification is 

done through the centroids which globally represent the classes. Increasing the k-NN 

performance is obtained by the estimation of the optimal k parameter or making the k-

NN algorithm adaptive to data by means of determining local decision boundaries. 

Ghosh [70], and Guo et al. [23] have proposed some techniques that finds a globally 

adaptive k value for a dataset. On the other hand, in another research [22], Ghosh has 

presented a locally adaptive nearest neighbor classification technique, where the value 

of k is automatically selected depending on the distribution of competing classes in the 
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vicinity of the test point to be classified. The distribution of the nearest samples plays a 

great role in this technique.  

Our research which differs from these studies mentioned above is about a novel way 

of assigning a k value best fitting to each test instance to acquire better performance. 

The proposed research is aimed at contributing a dynamic k parameter selector to the 

traditional k-NN algorithm. The proposed hybrid method combines supervised and 

unsupervised techniques. 

 CLASSIFICATION WITH ONE NEAREST CLUSTER (1NC) 5.9

All the situations and scenarios mentioned in the beginning of this chapter section 

indicate that there should be a different and suitable k parameter for each test point in 

the k-NN classification activity. The proposed hybrid algorithm which gives more 

accurate results is detailed in this section. The steps of the algorithm, named as One 

Nearest Cluster (1NC), are as follows: 

1. Choose M, l (# of clusters), and I (# of iteration) parameters. 

2. Take M closest samples around the test sample. 

3. Lay these closest samples on one dimensional axis according to their distances 

to the test sample and normalize the distances between [0, 1]. Note that if the 

test point and the training one overlap in the space, the distance will be 0. If a 

training point is at the farthest location, its distance will be exactly 1 due to the 

normalization. 

4. Split the laid samples into l groups using a basic clustering method (k-means), 

5. Take all the samples in the closest cluster into the k-NN classifier and apply 

majority voting. 

These steps are repeated for each test case. As the k parameter is generally set to 

small integer numbers in k-NN, it is set to 1 in the k-NC method as well.  

Euclidean distance, as a most popular choice, is used to calculate the distance between 

two instances even though there are some other metrics that might be preferred. The 

general distance formula (5.1) between x and y is defined as follows: 
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where   ( ) denotes the value of the ith attribute of instance x. The arbitrary instance 

x in the dataset is described by the feature vector:  〈  ( )   ( )  ( )    ( )〉 

where D is the number of dimensions (attributes). In this formula (5.1), if r is set to 1, it 

becomes Manhattan (Cityblock) distance; if it is set to 2, it is Euclidean; if it is set to 

more than 2, it turns into Minkowsky distance. In the limiting case of r reaching 

infinity, Chebyshev distance is obtained. As an alternate and versatile choice, 

Mahalanobis is another metric between a point and a distribution. Apart from the 

others, Mahalanobis puts emphasis to the distributions.  

The function of k-NN learner (5.2) predicts the class of the query point    as: 
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where        denotes the k closest training samples to   , and  (   )    if     

and  (   )    otherwise. The  (  ) function handles the closest k points as a target 

function. C is the finite set of class labels defined as {            }. The       

function makes a calculation for each class and assigns the maximum argument to    

as the class label. 

k-NN, at the same time, can be used as a regression function as in the formula (5.3). 

Here, the   function calculates the mean value of the k nearest training samples in 

order to label the new query point   . 
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Dividing the M closest points into l clusters and contributing the nearest cluster to the 

calculation generate a dynamic structure. It is preferred to use the l abbreviation 

rather than k because it is the same in both k-means and k-NN. In each of the l clusters 

we can assume that there might be approximately     training points. The 



74 

relationship between the k parameter and the     pair can be defined as in this 

equation:  

  
 

  
 (5.4) 

The     combination provides a dynamic structure for each test case. The number of 

    training samples will be included in the prediction procedure. In Figure 5.18, there 

is a real illustration about     pairs from the experimental steps.     pair is     . 

There is a histogram of 15 nearest samples to a test point in the abalone dataset. The 

points in the histogram are divided into 3 clusters by means of a simple clustering 

method. In the 1NC technique, the closest 4 points in the nearest cluster will be used 

in the calculation of k-NN. In other words, the locally adapting k value for the current 

test point is set to 4.  

 

 Figure 5.18 The histogram of nearest points to a test point example 

5.9.1 Search Methods and Time Complexities 

As an instance and memory based classifier, the k-NN method searches the nearest k 

points in the entire dataset for each test point during test process. This operation 

remarkably increases the execution time. In our experiment two types of search 

methods are preferred and implemented to decrease the computational time. If the 

number of dimension of a dataset is bigger than 10, Exhaustive search method is 

recommended; if it is smaller than 10, kD-Tree (k Dimensional Tree) searcher is 

recommended [112], since the construction time of kD-Tree increases as the number 

of dimension increases. Types of these search methods do not affect the classification 

1st cluster 
2ndcluster 

3rd cluster 
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performance, they only has an influence on the execution time. In Exhaustive search 

style, a point is found without using any algorithms and data structures. This method 

uses simple sequential search. The time complexity to find k closest points is as 

follows: 

 (   ) (5.5) 

where D is the number of dimension; N is the number of points [113]. kD-Tree is one of 

the BSP (Binary Space Partitioning) methods. kD-Tree is a multi-dimensional version of 

BST (Binary Search Tree) data structure. The time complexity of finding the k closest 

points is  (      ) due to the binary split in each dimension.  

The complexity notation of k-means is as: 

 (    ) (5.6) 

where k and I are the numbers of clusters and iterations respectively [114]. 

The time complexity of the suggested method (1NC) is related to both the search and 

the clustering methods. Therefore, 1NC’s complexity is slightly bigger than k-NN’s 

because of the integration of searching, clustering and classification complexities. The 

overall complexity might be written as: 
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In this notation, the first part (      ) is for searching the whole dataset to find the 

M closest points with kD-Tree searcher; the second part ((
 

 
)  ) is for clustering; and 

the negligible third part (
 

 
) is for majority voting in k-NN. Since the number of 

dimension D is a constant and small integer number, it becomes an insignificant 

parameter. Therefore, it is sometimes not written in the notations. Finally, the 

notation can be summarized as: 
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) ) (5.8) 
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 EXPERIMENTAL RESULTS 5.10

Experiments are performed on 36 UCI benchmark datasets [93] which represent a 

wide range of data characteristics, distributions and domains. In these real world 

datasets, missing values are replaced, nominal values are converted to binary values 

and finally all the values are normalized. 10 fold cross validation technique are used 

throughout the experiments on the MATLAB environment in order to investigate the 

performance of class probability estimation techniques. Despite the default value of 

the iteration number for k-means which is set to 100, it is decreased to 10 since the 

chosen nearest points in the experiments (remember M=15) are very few. It has been 

tested that whether the iteration number 10 is enough or not. Similar results have 

been reached by both the iteration numbers 100 and 10. The k parameter in k-NN is 

set to 5 to illustrate and test our technique. All accuracy rates are computed. Paired T-

Test metric enables to compare the overall performances of the k-NN and 1NC 

classifiers statistically [115]. T-Test gives three types of results: win (if the first classifier 

is better), loss (worse) and tie (equal). All computational results are placed in Table 5.2. 

In Table 5.2, the first three columns are the number of instances, attributes and the 

classes of each class respectively. These external features describe the density and 

sparseness of the feature space. In the next three columns, best k-NN, 1NN and 5NN 

results are presented. The next column has One Nearest Cluster classifier results where 

  ⁄  combination is 15/3. This means the nearest 15 instances among the test point 

will be divided into 3 clusters. Accordingly there may be around 5 samples in each 

cluster. It means that the k value is set to the number of samples in the closest cluster. 

All samples in the nearest cluster will be computed in k-NN learning. 

The accuracy comparison between 1NC (  ⁄     ⁄ )and 5NN classifiers is done by 

T-Test and the results are seen in the “1NC-5NN comparison” column. In this 

comparison, there is up to %15 accuracy increment, 10 wins, 18 ties, and 8 losses. 

Additionally, 1NC and 1NN is compared in the last two columns: 12 wins, 20 ties, 4 

losses. In the beginning, it has not been expected that 1NC would be as good as 1NN. 

These experimental results point out that 1NC outperforms 1NN significantly in these 

evaluations. 
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Table 5.3 presents min, max, mean number of points in the nearest cluster to the test 

point in the cross validation step. In each experiment, the minimum number of points 

is always equal to 1. The maximum number of points is always smaller than 15. 

Standard deviation of the points in the closest cluster is also placed in the table in 

order to give a notion about the dynamic parameter selection system.  
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Table 5. 2 Comparison of the methods over 36 UCI datasets 

 
External 
Features 

Best k-NN 
results 

 

 

  
1NC-5NN 

comparison 
1NC-1NN 

comparison 

Dataset 
Name 

# of 
inst. 

# 
of 

Att. 

# 
of 

cls. 
k Acc. 

1NN 
Acc. 

5NN 
Acc. 

1NC 
M/l=15/3 

Acc. 

% 
incrs 

T-Test 
% 

incrs 
T-

Test 

abalone 4153 19 10 55 0.2682 0.2023 0.2301 0.2216 -3.66 loss 9.55 win 

anneal 890 4 62 1 0.9769 0.9769 0.9584 0.9699 1.20 tie -0.71 tie 

audiology 169 5 69 4 0.7053 0.6757 0.6852 0.6367 -7.08 loss -5.78 loss 

autos 202 5 71 1 0.6505 0.6505 0.5723 0.6188 8.13 win -4.87 loss 

balance-scl 625 3 4 100 0.8931 0.7894 0.8576 0.8579 0.04 tie 8.68 win 

breast-cncr 286 2 38 9 0.7308 0.6643 0.7098 0.7049 -0.69 tie 6.11 win 

breast-w 699 2 9 5 0.9671 0.9548 0.9671 0.9554 -1.21 tie 0.06 tie 

col10 2019 10 7 1 0.7241 0.7241 0.7072 0.7256 2.61 win 0.10 tie 

colic 368 2 60 74 0.8196 0.6957 0.7777 0.7245 -6.85 loss 4.13 win 

credit-a 690 2 42 38 0.8452 0.7901 0.8304 0.8055 -3.00 loss 1.95 tie 

credit-g 1000 2 59 14 0.7248 0.6824 0.7176 0.7022 -2.15 tie 2.90 win 

d159 7182 2 32 1 0.9453 0.9453 0.9404 0.9485 0.87 tie 0.37 tie 

diabetes 768 2 8 15 0.7466 0.6943 0.7286 0.7107 -2.47 tie 2.36 tie 

glass 205 5 9 1 0.6713 0.6713 0.6410 0.6722 4.87 win 0.13 tie 

heart-statlg 270 2 13 62 0.8356 0.7467 0.8052 0.7837 -2.67 tie 4.96 win 

hepatitis 155 2 19 5 0.8361 0.7948 0.8361 0.7884 -5.71 loss -0.81 tie 

hypothyroid 3770 3 31 5 0.9329 0.9125 0.9329 0.9306 -0.26 tie 1.98 tie 

ionosphere 351 2 33 1 0.8558 0.8558 0.8387 0.8638 2.99 win 0.46 tie 

iris 150 3 4 10 0.9693 0.9467 0.9613 0.9533 -0.83 tie 0.70 tie 

kr-vs-kp 3196 2 39 3 0.9008 0.8891 0.8923 0.9293 4.14 win 4.52 win 

labor 57 2 26 1 0.8732 0.8732 0.8421 0.8611 2.25 win -2.35 loss 

letter 20000 26 16 1 0.9441 0.9441 0.9343 0.9404 0.65 tie -0.36 tie 

lymph 142 2 37 12 0.8338 0.7592 0.7915 0.7958 0.53 tie 4.82 win 

mushroom 8124 2 112 1 1.0000 1.0000 0.9999 0.9999 0.00 tie -0.01 tie 

primary-tmr 302 11 23 18 0.4755 0.3874 0.4430 0.4159 -6.13 loss 7.36 win 

ringnorm 7400 2 20 2 0.7915 0.7257 0.6623 0.7361 11.15 win 1.44 win 

segment 2310 7 18 1 0.9580 0.9580 0.9443 0.9527 0.89 tie -0.55 tie 

sick 3772 2 31 5 0.9598 0.9569 0.9598 0.9563 -0.37 tie -0.07 tie 

sonar 208 2 60 1 0.8375 0.8375 0.7481 0.8212 9.77 win -1.95 tie 

soybean 675 18 83 1 0.8916 0.8916 0.8776 0.8830 0.61 tie -0.97 tie 

splice 3190 3 287 99 0.8413 0.7357 0.7285 0.7645 4.94 win 3.91 win 

vehicle 846 4 18 3 0.6839 0.6723 0.6825 0.6589 -3.46 loss -2.00 tie 

vote 435 2 16 3 0.9297 0.9228 0.9297 0.9218 -0.84 tie -0.10 tie 

vowel 990 11 11 1 0.9473 0.9473 0.7806 0.8972 14.93 win -5.29 loss 

waveform 5000 3 40 75 0.8492 0.7278 0.7875 0.7519 -4.52 loss 3.31 win 

zoo 84 4 16 1 0.9976 0.9976 0.9929 0.9857 -0.72 tie -1.30 tie 

MEAN     0.8281 0.7943 0.7970 0.8012     
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Table 5. 3 min, max, mean number of points in the nearest cluster and standard 
deviation. 

  

M/l = 15/3 

No Dataset Name 

Min # of 
points in 

the cluster 

Max # of 
points in the 

cluster 

# of Mean 
points in 

the cluster 

Standard 
Deviation 

1 abalone 1 10 3.288 1.796 

2 anneal 1 12 5.362 4.094 

3 audiology 1 9 2.781 2.08 

4 autos 1 10 7.347 4.697 

5 balance-scl 1 11 6.282 4.822 

6 breast-cncr 1 11 4.254 3.254 

7 breast-w 1 10 3.547 1.985 

8 col10 1 9 6.205 5.446 

9 colic 1 9 2.825 1.895 

10 credit-a 1 11 3.248 2.239 

11 credit-g 1 10 2.753 1.741 

12 d159 1 9 2.343 1.452 

13 diabetes 1 8 2.982 1.678 

14 glass 1 8 3.457 1.984 

15 heart-statlg 1 11 3.399 2.066 

16 hepatitis 1 11 3.457 2.463 

17 hypothyroid 1 12 3.789 2.355 

18 ionosphere 1 9 3.701 2.054 

19 iris 1 9 3.881 2.053 

20 kr-vs-kp 1 12 7.644 5.718 

21 labor 1 13 3.001 2.024 

22 letter 1 14 3.419 2.107 

23 lymph 1 12 3.366 2.105 

24 mushroom 1 9 3.987 1.654 

25 primary-tmr 1 10 7.265 5.387 

26 ringnorm 1 10 2.655 1.565 

27 segment 1 10 3.407 1.961 

28 sick 1 11 3.738 2.309 

29 sonar 1 7 2.913 1.599 

30 soybean 1 11 4.553 3.448 

31 splice 1 12 5.382 4.569 

32 vehicle 1 10 3.122 1.731 

33 vote 1 14 8.894 6.276 

34 vowel 1 8 2.633 1.498 

35 waveform 1 9 2.722 1.577 

36 zoo 1 8 2.875 1.661 

 AVARAGE 1 10.3 4.068 2.704 
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It is certain that an instance based classifier requiring two hyper parameters is not 

better than k-NN including only one parameter. 1NC might be considered as a classifier 

requiring only one parameter by means of some experiments. These experiments 

handle some different   ⁄  combinations such as 10/2, 15/3, 30/6, 50/10, 100/20, and 

200/40. The results of the divisions are almost equal to 5. This means k is almost 5 in k-

NN. Surprisingly, similar win-tie-loss results have been reached in different 

experiments as shown in Table 5. 4. These similar experimental outputs of the     

combinations provide us three consequences (inferences): 

1.     pairs should have smaller integer numbers since different M and l values 

give similar outputs as seen in Table 3. 

2. Small M and l values decrease the overall computational time. The 

computational cost of clustering remains negligible owing to the small M and l 

values. 

3. The     combination might be assumed as a unique hyper parameter of this 

method. If the l value is fixed, M value might be 4 or 5 times bigger than l 

(remember     ⁄ ). Consequently, a proximity between     and k 

parameters is established. 

 Table 5. 4 The effect of different    ⁄  pairs 

 

 

  ⁄  pairs 

 10/2 15/3 30/6 50/10 100/20 200/4 

T-
Te

st
 R

es
u

lt
s 

number of 
win 

7 10 8 7 8 8 

number of 
tie 

22 18 21 24 22 22 

number of 
loss 

7 8 7 5 6 6 

In most cases, small k parameters in k-NN give higher accuracy rates. In the 

experiment, 100 sorts of k-NN classifier (k value is consecutively set from 1 to 100 in 

ascending order) are applied to 36 UCI datasets. As shown in Figure 5.19, the highest 
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accuracy rates are computed in 14 datasets when k is equal to 1. It is particularly 

evident in the figure that small k values usually provide higher accuracy rates. 

 

Figure 5.19 Best k value of k-NN on the 36 UCI datasets 

 CONCLUSION 5.11

In this research, a novel solution for dealing with the shortcomings of k-NN has been 

suggested. A novel way of assigning a k value best fitting to each test instance to 

acquire better performance is developed. The proposed research contributes a 

dynamic k parameter selector to the traditional k Nearest Neighbors algorithm. 

A mechanism also is proposed with a strategy of combining lazy learning with an 

unsupervised learning method for two reasons. The first one is to eliminate the 

problems of the dependency on k without user’s intervention and the latter is to 

augment the classification performance. The improved method using a simple 

clustering technique finds the appropriate k value for each test sample. The value of k 

during the classification phase varies dynamically. The well-suited dynamic k value 

which is assigned to each test data supplements more flexibility to the classification 

methodology. Experimental results carried out on 36 real world datasets show that the 

proposed hybrid k-NN Model is a competitive method for classification. With a single 

parameter (   ), more successful prediction results are reached via experiments. 

Nevertheless, our supervised classification method has a little bit more time 

complexity since it contains an unsupervised method.  
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 AVAILABILITY 5.12

The implemented MATLAB codes of the proposed model, the overall experimental 

results in Excel documents and related files can be publicly downloaded from the URL 

address for examinations and further studies:  

https://www.ce.yildiz.edu.tr/personal/mfatih/file/4841/OneNC 

 

  

https://www.ce.yildiz.edu.tr/personal/mfatih/file/4841/OneNC
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CHAPTER 6 

RESULTS AND DISCUSSION 

In the essence of this thesis study, construction and performance analysis of locally 

adaptive base and ensemble learners have been proposed by using Meta and 

Ensemble Learning methods. The thesis stands on the three bases related with the 

characteristics and meta-features of the discretized sub regions in a dataset. The first 

one is the prediction and analysis of the decision tree classifier performance using 

Meta Learning methods by focusing on the local features of the sub regions in a 

dataset. The second one concerns a new approach in Mixture of Experts using hard 

clustering techniques in order to establish successful experts for the discrete sub 

partitions. Finally, the third one is about a locally adaptive parameter selection 

mechanism for memory based classifiers using clustering algorithms.  

Firstly, prediction of decision tree classifier performance is proposed by means of Meta 

Learning methods. We have tried to guess the performance and behavior of DT 

classifier on a dataset. Also, we have tried to find out why and how DTs outperform or 

fail on a dataset and what kind of features contribute to the performance of a DT. For 

this purpose, a collection of two-class datasets is used for our empirical study. 14 

meta-features have been derived from the collection. Only two features (the LOO Error 

rate of 1NN classifier and the Error rate of linear classifier) are highly influential on 

prediction activity. In other words, these two meta-features mainly affect the 

performance of DTs. After building the formula of linear regression model, we have 

tried to understand how and why the meta-features affect the accuracy of DT. We 

have taken sufficient and successful results such as a meaningful and feasible 

regression formula including meta-features. Thus, it becomes easy to predict the 

performance of a DT classifier. Briefly, this study has yielded two main ideas. First, the 



84 

higher the gap in the boundaries of classes is, the higher performance we get from 

DTs’ predictions. Second, building a linear classifier that bisects the class distributions 

with less error rate remarkably increases the performance of DT classifier. 

Secondly, a new approach in Mixture of Experts is presented for accurate prediction 

and classification. In contrast to the traditional Mixture of Experts method, in this 

theoretical and practical study, a dataset is divided into partitions by a hard clustering 

method and the class prediction method is performed by four different types of 

proposed gate functions: cooperating, competitive, commensurative, and Borda count. 

In the experiments, better performances have been obtained with the proposed 

cooperating gate function due to its mechanism that gives different weights to the 

experts in the network. Typically, MoE model is particularly advantageous when 

different types of experts are trained on different parts of the same space. Training a 

set of chosen experts and assigning the best ones to each region might be another 

expensive choice in the training phase. But in this study the same type of experts are 

chosen rather than heterogeneous ones throughout the experiments. It is also showed 

that the total classification performance might be increased with this suggested MoE 

approach using a cooperative gate function and homogeneous experts on hard 

clustered regions. In addition, this cognitive study enables the proposed MoE model to 

be applicable to any type of dataset unlike the other models like GMM. 

Thirdly, locally adaptive parameter selection mechanism for memory based classifiers 

is proposed with a strategy of combining lazy learning with an unsupervised learning 

method for two reasons. The first one is to eliminate the problems of the dependency 

on k without the user’s intervention and the second one is to increase the classification 

performance. The improved method using a simple clustering technique finds the 

appropriate k value for each test sample. The value of k during the classification phase 

varies dynamically. The well-suited dynamic k value which is assigned to each test data 

adds more flexibility to the classification methodology. More successful prediction 

results are reached in the experiments carried out on some real world datasets. The 

reasons of success have also been understood and presented.  

In conclusion, the characteristics and meta-features of the discrete sub regions in a 

training dataset have great importance in classification phase. It is both theoretically 
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and empirically proved that some individual and different local specifications affect the 

overall classification performance.  
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APPENDIX-A 

META LEARNING DATASET 

In the Table 7.1 below, there are external rough features describing a dataset. These 

features are the number of instances, the number of attributes, the number of c1 class 

labels, and the number of c2 class labels respectively.  

In the Table 7.2, for each dataset there are 14 meta-features described in Chapter 3.  

In the Table 7.3, the actual and predicted DT accuracy values are presented. The 

predicted accuracy levels are computed by the linear regression model.  The error 

rates show the differences between actual and predicted accuracies. 
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Table 7. 1 The external features of the datasets 

DATA SET 
Number of 
Instances 

Number of 
Attributes 

Number of c1 
class labels 

Number of c2 
class labels 

hillValley 606 100 301 305 

bank 300 11 162 138 

liver-disorders 345 6 145 200 

bupa 345 6 145 200 

cmc.2c2 1472 9 962 510 

liv 345 6 145 200 

cmc.2c2 1472 9 962 510 

bpa 345 6 145 200 

hab 306 3 225 81 

cmc.2c0 1472 9 843 629 

breast-cancer 286 38 201 85 

haberman 306 3 225 81 

credit-g 1000 59 700 300 

yea.2c0 1484 8 1021 463 

cylinder-bands 540 896 312 228 

sonar 208 60 97 111 

pim 768 8 500 268 

glass.2c1 204 9 129 75 

diabetes 768 8 500 268 

lung-cancer 32 56 9 23 

cmc.2c1 1472 9 1139 333 

cmc.2c1 1472 9 1139 333 

transfusion 748 4 570 178 

vehicle.2c1 845 18 628 217 

h-s 270 13 150 120 

abalone.2c6 4152 10 3463 689 

vehicle.2c0 845 18 633 212 

veh.2c0 846 18 634 212 

heart-statlog 270 13 150 120 

abalone.2c7 4152 10 3518 634 

gls.2c0 214 9 144 70 

glass.2c0 204 9 134 70 

colic 368 60 232 136 

hepatitis 155 19 32 123 

primary-tumor.2c0 301 23 217 84 

abalone.2c5 4152 10 3584 568 
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Table 7. 1 The external features of the datasets (continuous) 

column3C.2c0 309 6 249 60 

column3C.2c2 309 6 210 99 

lymph 142 37 81 61 

abalone.2c8 4152 10 3665 487 

waveform.2c0 4999 40 3308 1691 

wav40.2c0 5000 40 1692 3308 

wav21.2c0 5000 21 1657 3343 

mag 19020 10 12332 6688 

autos.2c1 201 71 134 67 

balance-scale.2c0 624 4 336 288 

autos.2c2 201 71 147 54 

bankruptcy 50 5 25 25 

waveform.2c2 4999 40 3344 1655 

bal.2c0 625 4 337 288 

waveform.2c1 4999 40 3346 1653 

credit-a 690 42 307 383 

abalone.2c4 4152 10 3761 391 

glass.2c2 204 9 187 17 

labor 57 26 20 37 

ionosphere 351 33 126 225 

col10.2c4 2018 7 1774 244 

ecoli.2c1 326 6 249 77 

audiology.2c3 168 69 120 48 

ringnorm 7400 20 3664 3736 

col10.2c5 2018 7 1704 314 

spambase 4601 57 1813 2788 

tic-tac-toe 958 27 332 626 

ecoli.2c3 326 6 291 35 

audiology.2c4 168 69 146 22 

balance-scale.2c1 624 4 576 48 

spa 4601 57 2788 1813 

monk 122 6 60 62 

thy.2c0 215 5 65 150 

ecoli.2c2 326 6 275 51 

vehicle.2c3 845 18 647 198 

wineCultivars.2c1 152 13 91 61 

wdbc 569 30 212 357 

ecoli.2c0 326 6 183 143 

wne.2c0 178 13 119 59 
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Table 7. 1 The external features of the datasets (continuous) 

wineCultivars.2c2 152 13 108 44 

wineCultivars.2c0 152 13 105 47 

vote 435 16 267 168 

win.2c0 178 13 119 59 

iris.2c1 149 4 99 50 

splice.2c2 3189 287 1535 1654 

authors.2c0 841 70 317 524 

vehicle.2c2 845 18 627 218 

iris.2c2 149 4 100 49 

tao 1888 2 944 944 

ozone 2536 72 2463 73 

zoo.2c2 83 16 70 13 

column3C.2c1 309 6 159 150 

audiology.2c0 168 69 112 56 

pageblocks.2c0 5472 10 559 4913 

pbc.2c0 5473 10 560 4913 

ecoli.2c4 326 6 306 20 

solar-flare_1 323 32 316 7 

d159 7182 32 3719 3463 

sick 3772 31 3541 231 

pageblocks.2c4 5472 10 5357 115 

pageblocks.2c1 5472 10 5143 329 

anneal.2c1 889 62 205 684 

kr-vs-kp 3196 39 1669 1527 

opt.2c0 5620 64 554 5066 

statlog-sgm.2c0 2310 19 1980 330 

seg.2c0 2310 19 1980 330 

col10.2c6 2018 7 1724 294 

zoo.2c0 83 16 42 41 

soybean.2c3 674 83 586 88 

pageblocks.2c3 5472 10 5385 87 

pen.2c0 10992 16 1143 9849 

pageblocks.2c2 5472 10 5444 28 

hypothyroid.2c0 3769 31 289 3480 

mushroom 8124 112 4208 3916 

badges 294 10 84 210 

badges2 294 10 84 210 

col10.2c0 2018 7 1415 603 

iris.2c0 149 4 99 50 

zoo.2c3 83 16 73 10 
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Table 7. 2 The normalized meta-features of the datasets 
 

DATA SET F1 F1v F2 F3 F4 L1 L2 L3 N1 N2 N3 N4 T1 T2 

hillValley 0.000 0.000 0.000 0.013 0.997 0.502 1.000 1.000 1.000 0.982 1.000 1.000 1.000 0.003 

bank 0.004 0.000 0.883 0.028 0.047 0.420 0.746 0.760 0.968 0.841 0.940 0.823 0.950 0.014 

liver-disorders 0.003 0.000 0.073 0.033 0.107 0.426 0.847 1.000 0.930 0.942 0.895 0.662 1.000 0.030 

bupa 0.003 0.000 0.073 0.033 0.107 0.426 0.847 1.000 0.930 0.942 0.895 0.681 1.000 0.030 

cmc.2c2 0.005 0.000 0.812 0.001 0.001 0.351 0.698 1.000 0.958 0.871 0.976 0.893 0.945 0.086 

liv 0.003 0.000 0.073 0.033 0.107 0.426 0.847 1.000 0.930 0.942 0.895 0.712 1.000 0.030 

cmc.2c2 0.005 0.000 0.812 0.001 0.001 0.351 0.698 1.000 0.958 0.871 0.976 0.867 0.945 0.086 

bpa 0.003 0.000 0.073 0.033 0.107 0.426 0.847 1.000 0.930 0.942 0.895 0.749 1.000 0.030 

hab 0.009 0.000 0.718 0.030 0.033 0.269 0.534 1.000 0.873 0.763 0.844 0.891 0.885 0.053 

cmc.2c0 0.006 0.000 0.750 0.002 0.002 0.400 0.718 0.802 0.946 0.910 0.990 0.865 0.920 0.086 

breast-cancer 0.014 0.001 0.000 0.014 0.021 0.317 0.474 0.894 0.773 0.879 0.840 0.467 1.000 0.004 

haberman 0.078 0.000 0.718 0.030 0.033 0.269 0.534 1.000 0.822 0.637 0.837 0.806 0.766 0.053 

credit-g 0.016 0.001 0.662 0.014 0.024 0.378 0.468 0.668 0.724 0.914 0.677 0.264 1.000 0.009 

yea.2c0 0.011 0.000 0.056 0.130 0.177 0.316 0.629 1.000 0.729 0.714 0.708 0.766 1.000 0.097 

cylinder-bands 0.006 0.021 0.000 0.060 0.996 0.275 0.389 0.252 0.690 0.837 0.469 0.009 1.000 0.000 

sonar 0.024 0.004 0.000 0.054 1.000 0.327 0.389 0.228 0.469 0.749 0.301 0.238 1.000 0.002 

pim 0.029 0.001 0.252 0.007 0.022 0.349 0.706 0.998 0.710 0.860 0.703 0.609 0.998 0.050 

glass.2c1 0.007 0.000 0.009 0.105 0.328 0.373 0.742 1.000 0.604 0.499 0.493 0.701 0.992 0.012 

diabetes 0.029 0.001 0.252 0.007 0.022 0.349 0.708 1.000 0.710 0.860 0.706 0.648 0.998 0.050 

lung-cancer 0.031 0.013 0.000 0.287 0.906 0.217 0.442 0.812 0.760 0.973 0.897 0.000 1.000 0.000 

cmc.2c1 0.012 0.000 0.727 0.068 0.069 0.230 0.456 1.000 0.731 0.686 0.749 0.814 0.935 0.086 

cmc.2c1 0.012 0.000 0.727 0.068 0.069 0.230 0.456 1.000 0.731 0.686 0.749 0.823 0.935 0.086 

transfusion 0.015 0.000 0.271 0.008 0.012 0.242 0.480 1.000 0.698 0.628 0.792 0.838 0.975 0.098 

vehicle.2c1 0.008 0.002 0.000 0.061 0.218 0.264 0.518 1.000 0.602 0.746 0.615 0.749 0.998 0.024 

h-s 0.039 0.002 0.196 0.015 0.093 0.270 0.315 0.238 0.594 0.672 0.584 0.341 1.000 0.011 

abalone.2c6 0.002 0.000 0.017 0.072 0.091 0.168 0.335 1.000 0.606 0.695 0.615 0.987 0.990 0.218 

vehicle.2c0 0.009 0.001 0.001 0.038 0.222 0.255 0.506 1.000 0.589 0.716 0.596 0.793 0.998 0.024 

veh.2c0 0.009 0.001 0.001 0.038 0.223 0.255 0.506 1.000 0.591 0.716 0.593 0.775 0.998 0.024 

heart-statlog 0.040 0.003 0.196 0.015 0.093 0.270 0.315 0.174 0.596 0.673 0.586 0.284 1.000 0.011 

abalone.2c7 0.008 0.000 0.044 0.068 0.078 0.155 0.308 1.000 0.555 0.639 0.565 0.980 0.952 0.218 

gls.2c0 0.033 0.000 0.000 0.296 0.486 0.340 0.659 1.000 0.521 0.402 0.435 0.382 0.985 0.012 

glass.2c0 0.030 0.001 0.000 0.265 0.422 0.356 0.692 1.000 0.525 0.413 0.457 0.424 0.992 0.012 

colic 0.068 0.003 0.187 0.039 0.098 0.295 0.274 0.280 0.737 0.873 0.770 0.122 1.000 0.003 
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Table 7. 2 The normalized meta-features of the datasets (continuous) 
 

hepatitis 0.039 0.003 0.000 0.239 0.565 0.229 0.405 1.000 0.463 0.635 0.450 0.255 1.000 0.004 

primary-tumor.2c0 0.031 0.003 1.000 0.000 0.000 0.271 0.335 0.564 0.598 0.645 0.517 0.373 1.000 0.007 

abalone.2c5 0.009 0.000 0.013 0.086 0.117 0.139 0.276 1.000 0.484 0.530 0.500 0.945 0.978 0.218 

column3C.2c0 0.059 0.002 0.001 0.492 0.686 0.205 0.391 1.000 0.393 0.457 0.340 0.402 0.978 0.027 

column3C.2c2 0.038 0.001 0.005 0.366 0.450 0.329 0.645 1.000 0.513 0.632 0.457 0.384 0.995 0.027 

lymph 0.051 0.006 0.000 0.051 0.113 0.242 0.200 0.134 0.564 0.830 0.423 0.070 1.000 0.002 

abalone.2c8 0.017 0.000 0.026 0.063 0.077 0.119 0.236 1.000 0.460 0.605 0.471 0.969 0.942 0.218 

waveform.2c0 0.060 0.002 0.015 0.152 0.211 0.507 0.288 0.160 0.442 0.927 0.469 0.140 1.000 0.065 

wav40.2c0 0.060 0.000 0.015 0.152 0.211 0.507 0.288 0.150 0.442 0.927 0.469 0.140 1.000 0.065 

wav21.2c0 0.060 0.000 0.036 0.126 0.183 0.517 0.284 0.174 0.385 0.809 0.407 0.238 1.000 0.125 

mag 0.029 0.005 0.081 0.006 0.018 0.363 0.429 0.472 0.474 0.647 0.450 0.513 1.000 1.000 

autos.2c1 0.040 0.005 0.000 0.193 1.000 0.283 0.452 0.622 0.460 0.446 0.273 0.227 0.983 0.001 

balance-scale.2c0 0.020 0.004 1.000 0.000 0.000 0.288 0.097 0.142 0.388 0.615 0.304 0.225 0.837 0.082 

autos.2c2 0.030 0.004 0.000 0.213 0.925 0.282 0.542 0.990 0.476 0.451 0.356 0.325 0.983 0.001 

bankruptcy 0.057 0.001 0.001 0.633 0.960 0.467 0.766 0.820 0.388 0.627 0.335 0.153 0.867 0.005 

waveform.2c2 0.072 0.002 0.001 0.245 0.383 0.675 0.216 0.078 0.374 0.868 0.397 0.087 1.000 0.065 

bal.2c0 0.020 0.000 1.000 0.000 0.000 0.289 0.097 0.188 0.297 0.617 0.330 0.183 0.837 0.082 

waveform.2c1 0.068 0.002 0.001 0.239 0.408 0.687 0.222 0.084 0.385 0.878 0.404 0.100 1.000 0.065 

credit-a 0.115 0.004 0.000 0.034 0.068 0.147 0.292 0.284 0.552 0.530 0.471 0.303 0.998 0.008 

abalone.2c4 0.045 0.001 0.002 0.122 0.203 0.096 0.190 1.000 0.319 0.346 0.342 0.830 0.988 0.218 

glass.2c2 0.018 0.001 0.000 0.465 0.824 0.085 0.167 1.000 0.278 0.343 0.282 0.686 0.992 0.012 

labor 0.069 0.010 0.000 0.218 0.964 0.175 0.252 0.322 0.289 0.539 0.256 0.079 1.000 0.001 

ionosphere 0.031 0.004 0.000 0.195 0.994 0.231 0.236 0.292 0.374 0.626 0.313 0.384 0.915 0.005 

col10.2c4 0.008 0.000 0.000 0.344 0.578 0.123 0.244 1.000 0.297 0.124 0.306 0.762 0.839 0.151 

ecoli.2c1 0.143 0.004 0.150 0.404 0.521 0.248 0.476 1.000 0.293 0.386 0.301 0.314 0.882 0.028 

audiology.2c3 0.102 0.019 0.000 0.486 0.970 0.238 0.192 0.410 0.559 0.641 0.414 0.247 1.000 0.001 

ringnorm 0.003 0.001 0.000 0.061 0.418 0.364 0.452 0.378 0.719 0.874 0.591 0.624 1.000 0.194 

col10.2c5 0.011 0.001 0.000 0.379 0.490 0.158 0.315 1.000 0.278 0.143 0.268 0.692 0.839 0.151 

spambase 0.011 0.001 0.000 0.105 0.430 0.344 0.673 0.900 0.374 0.426 0.299 0.402 0.967 0.042 

tic-tac-toe 0.014 0.034 1.000 0.000 0.000 0.227 0.236 0.438 0.838 1.000 0.780 0.400 1.000 0.018 

ecoli.2c3 0.081 0.003 0.049 0.563 0.767 0.120 0.216 1.000 0.237 0.240 0.256 0.395 0.914 0.028 

audiology.2c4 0.105 0.022 0.000 0.595 1.000 0.250 0.155 0.560 0.346 0.554 0.227 0.092 1.000 0.001 

balance-scale.2c1 0.000 0.000 1.000 0.000 0.000 0.078 0.155 1.000 0.366 0.648 0.376 0.910 0.814 0.082 

spa 0.018 0.006 0.000 0.093 0.383 0.391 0.794 1.000 0.250 0.340 0.196 0.238 0.977 0.042 

monk 0.031 0.002 1.000 0.000 0.000 0.327 0.351 0.248 0.656 0.752 0.514 0.334 0.932 0.010 
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Table 7. 2 The normalized meta-features of the datasets (continuous) 
 

thy.2c0 0.013 0.000 0.001 0.190 0.414 0.298 0.609 1.000 0.164 0.266 0.067 0.264 0.729 0.022 

ecoli.2c2 0.092 0.004 0.000 0.226 0.577 0.176 0.315 1.000 0.138 0.387 0.139 0.190 0.949 0.028 

vehicle.2c3 0.057 0.006 0.000 0.467 0.747 0.267 0.472 1.000 0.195 0.386 0.141 0.356 1.000 0.024 

wineCultivars.2c1 0.112 0.010 0.001 0.598 1.000 0.279 0.452 0.578 0.202 0.554 0.093 0.050 1.000 0.006 

wdbc 0.174 0.031 0.000 0.528 0.998 0.273 0.099 0.042 0.115 0.544 0.112 0.026 0.997 0.010 

ecoli.2c0 0.143 0.008 0.000 0.522 0.770 0.215 0.093 0.042 0.134 0.360 0.132 0.096 0.929 0.028 

wne.2c0 0.220 0.013 0.000 0.780 1.000 0.188 0.113 0.056 0.108 0.467 0.067 0.024 0.990 0.007 

wineCultivars.2c2 0.263 0.020 0.000 0.726 0.987 0.173 0.052 0.066 0.074 0.404 0.031 0.007 0.967 0.006 

wineCultivars.2c0 0.241 0.017 0.000 0.859 1.000 0.209 0.185 0.368 0.127 0.466 0.062 0.028 1.000 0.006 

vote 0.548 0.014 1.000 0.000 0.000 0.161 0.089 0.058 0.211 0.360 0.182 0.039 1.000 0.014 

win.2c0 0.220 0.013 0.000 0.780 1.000 0.188 0.113 0.078 0.108 0.467 0.067 0.044 0.990 0.007 

iris.2c1 0.035 0.001 0.035 0.576 0.893 0.342 0.677 1.000 0.163 0.155 0.112 0.367 0.822 0.019 

splice.2c2 0.077 0.007 0.000 0.001 0.004 0.724 0.081 0.044 0.723 0.849 0.593 0.001 1.000 0.006 

authors.2c0 0.096 0.011 0.000 0.230 0.998 0.209 0.004 0.000 0.018 0.784 0.010 0.000 1.000 0.006 

vehicle.2c2 0.019 0.007 0.003 0.232 0.696 0.267 0.520 1.000 0.148 0.519 0.093 0.362 0.997 0.024 

iris.2c2 0.203 0.004 0.007 0.773 0.919 0.314 0.583 0.920 0.140 0.104 0.112 0.037 0.699 0.019 

tao 0.071 0.000 0.479 0.367 0.362 0.299 0.329 0.230 0.124 0.094 0.103 0.356 0.000 0.496 

ozone 0.049 0.003 0.000 0.322 0.912 0.030 0.058 1.000 0.111 0.604 0.117 0.585 1.000 0.018 

zoo.2c2 0.247 0.202 0.000 0.701 0.687 0.039 0.000 0.000 0.096 0.073 0.029 0.013 1.000 0.002 

column3C.2c1 0.077 0.003 0.005 0.595 0.773 0.303 0.359 0.236 0.330 0.552 0.301 0.155 1.000 0.027 

audiology.2c0 0.188 0.026 0.000 0.535 0.988 0.186 0.036 0.030 0.473 0.598 0.342 0.046 1.000 0.001 

pageblocks.2c0 0.026 0.005 0.000 0.016 0.026 0.161 0.192 0.968 0.109 0.124 0.089 0.452 0.980 0.287 

pbc.2c0 0.026 0.008 0.000 0.016 0.026 0.162 0.192 0.972 0.109 0.124 0.089 0.472 0.980 0.288 

ecoli.2c4 0.167 0.009 0.004 0.598 0.991 0.079 0.123 1.000 0.054 0.184 0.050 0.087 0.822 0.028 

solar-flare_1 0.037 0.006 0.000 0.250 0.700 0.030 0.044 1.000 0.099 0.205 0.103 0.537 1.000 0.005 

d159 0.042 0.466 0.000 0.033 0.127 0.045 0.000 0.036 0.147 0.574 0.062 0.153 0.988 0.118 

sick 0.103 0.003 0.000 0.141 0.307 0.074 0.123 1.000 0.108 0.107 0.089 0.371 0.960 0.064 

pageblocks.2c4 0.085 0.006 0.000 0.287 0.319 0.024 0.042 1.000 0.044 0.059 0.043 0.557 0.711 0.287 

pageblocks.2c1 0.058 0.009 0.000 0.018 0.044 0.106 0.117 0.986 0.054 0.100 0.036 0.269 0.980 0.287 

anneal.2c1 0.074 0.019 0.000 0.077 0.857 0.139 0.165 0.232 0.061 0.103 0.014 0.234 0.982 0.007 

kr-vs-kp 0.027 0.004 0.000 0.187 0.433 0.390 0.125 0.160 0.443 0.709 0.371 0.297 1.000 0.043 

opt.2c0 0.242 0.000 0.000 0.481 0.865 0.847 0.004 0.006 0.000 0.376 0.000 0.009 0.985 0.046 

statlog-sgm.2c0 0.092 0.006 0.000 0.749 1.000 0.246 0.288 1.000 0.015 0.046 0.007 0.083 0.889 0.064 

seg.2c0 0.092 0.010 0.000 0.749 1.000 0.246 0.288 1.000 0.015 0.046 0.007 0.083 0.889 0.064 

col10.2c6 0.079 0.010 0.001 0.752 0.983 0.171 0.103 0.290 0.043 0.017 0.022 0.039 0.844 0.151 
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Table 7. 2 The normalized meta-features of the datasets (continuous) 
 

zoo.2c0 1.000 0.149 0.000 0.480 0.470 0.033 0.000 0.000 0.077 0.071 0.000 0.000 1.000 0.002 

soybean.2c3 0.286 0.095 0.000 0.752 0.988 0.240 0.000 0.000 0.013 0.370 0.007 0.002 1.000 0.004 

pageblocks.2c3 0.143 0.012 0.000 0.609 0.752 0.026 0.032 1.000 0.017 0.012 0.017 0.415 0.944 0.287 

pen.2c0 0.178 0.000 0.755 0.111 0.120 1.000 0.028 0.098 0.000 0.101 0.001 0.044 0.832 0.361 

pageblocks.2c2 0.105 0.063 0.000 0.994 1.000 0.016 0.010 1.000 0.005 0.000 0.005 0.321 0.636 0.287 

hypothyroid.2c0 0.035 0.003 0.000 0.927 0.926 0.089 0.155 1.000 0.200 0.210 0.191 0.605 0.973 0.064 

mushroom 0.169 1.000 0.000 0.271 0.997 0.180 0.002 0.004 0.004 0.364 0.000 0.004 1.000 0.038 

badges 0.017 0.001 0.071 1.000 0.980 0.000 0.000 0.000 0.022 0.004 0.000 0.000 0.502 0.015 

badges2 0.003 0.001 0.071 1.000 0.980 0.000 0.000 0.000 0.022 0.004 0.000 0.000 0.503 0.015 

col10.2c0 0.431 0.008 0.000 0.492 0.482 0.315 0.371 0.538 0.007 0.043 0.001 0.028 0.492 0.151 

iris.2c0 0.854 0.024 0.005 0.582 0.570 0.158 0.000 0.000 0.020 0.026 0.000 0.000 0.096 0.019 

zoo.2c3 0.846 0.170 0.000 0.811 0.904 0.097 0.000 0.000 0.038 0.064 0.000 0.026 1.000 0.002 
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Table 7. 3 The comparison between actual and predicted DT accuracies 

DATA SET 
Actual  

DT Accuracy 
Predicted 

DT Accuracy 
Error 

hillValley 0.564 0.546 -0.02 

bank 0.599 0.639 0.04 

liver-disorders 0.605 0.642 0.04 

bupa 0.619 0.639 0.02 

cmc.2c2 0.619 0.628 0.01 

liv 0.623 0.64 0.02 

cmc.2c2 0.625 0.624 0.00 

bpa 0.637 0.637 0.00 

hab 0.650 0.694 0.04 

cmc.2c0 0.650 0.622 -0.03 

breast-cancer 0.660 0.702 0.04 

haberman 0.667 0.696 0.03 

credit-g 0.684 0.749 0.07 

yea.2c0 0.692 0.72 0.03 

cylinder-bands 0.693 0.803 0.11 

sonar 0.695 0.7 0.00 

pim 0.695 0.863 0.17 

glass.2c1 0.706 0.771 0.07 

diabetes 0.711 0.709 0.00 

lung-cancer 0.713 0.653 -0.06 

cmc.2c1 0.717 0.728 0.01 

cmc.2c1 0.728 0.711 -0.02 

transfusion 0.728 0.721 -0.01 

vehicle.2c1 0.738 0.755 0.02 

h-s 0.739 0.79 0.05 

abalone.2c6 0.748 0.781 0.03 

vehicle.2c0 0.751 0.755 0.00 

veh.2c0 0.756 0.756 0.00 

heart-statlog 0.761 0.791 0.03 

abalone.2c7 0.765 0.799 0.03 

gls.2c0 0.769 0.795 0.03 

glass.2c0 0.778 0.789 0.01 

colic 0.791 0.734 -0.06 

hepatitis 0.794 0.828 0.04 

primary-tumor.2c0 0.799 0.813 0.01 

abalone.2c5 0.801 0.813 0.01 

column3C.2c0 0.803 0.786 -0.02 

column3C.2c2 0.803 0.858 0.06 
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Table 7. 3 The comparison between actual and predicted DT accuracies (continuous) 

lymph 0.809 0.864 0.06 

abalone.2c8 0.810 0.829 0.02 

waveform.2c0 0.810 0.835 0.03 

wav40.2c0 0.812 0.83 0.02 

wav21.2c0 0.813 0.849 0.04 

mag 0.817 0.813 0.00 

autos.2c1 0.819 0.853 0.03 

balance-scale.2c0 0.822 0.902 0.08 

autos.2c2 0.828 0.858 0.03 

bankruptcy 0.828 0.809 -0.02 

waveform.2c2 0.828 0.819 -0.01 

bal.2c0 0.831 0.893 0.06 

waveform.2c1 0.831 0.865 0.03 

credit-a 0.832 0.824 -0.01 

abalone.2c4 0.856 0.878 0.02 

glass.2c2 0.858 0.892 0.03 

labor 0.860 0.863 0.00 

ionosphere 0.871 0.834 -0.04 

col10.2c4 0.874 0.878 0.00 

ecoli.2c1 0.883 0.867 -0.02 

audiology.2c3 0.883 0.854 -0.03 

ringnorm 0.887 0.887 0.00 

col10.2c5 0.887 0.735 -0.15 

spambase 0.890 0.821 -0.07 

tic-tac-toe 0.892 0.727 -0.16 

ecoli.2c3 0.895 0.901 0.01 

audiology.2c4 0.895 0.921 0.03 

balance-scale.2c1 0.897 0.859 -0.04 

spa 0.904 0.839 -0.07 

monk 0.907 0.806 -0.10 

thy.2c0 0.912 0.908 0.00 

ecoli.2c2 0.914 0.914 0.00 

vehicle.2c3 0.915 0.9 -0.02 

wineCultivars.2c1 0.917 0.923 0.01 

wdbc 0.925 0.95 0.03 

ecoli.2c0 0.928 0.951 0.02 

wne.2c0 0.934 0.974 0.04 

wineCultivars.2c2 0.937 0.98 0.04 

wineCultivars.2c0 0.938 0.967 0.03 
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Table 7. 3 The comparison between actual and predicted DT accuracies (continuous) 
 

vote 0.941 0.934 -0.01 

win.2c0 0.942 0.974 0.03 

iris.2c1 0.942 0.889 -0.05 

splice.2c2 0.944 0.97 0.03 

authors.2c0 0.944 0.797 -0.15 

vehicle.2c2 0.945 0.897 -0.05 

iris.2c2 0.949 0.907 -0.04 

tao 0.949 0.93 -0.02 

ozone 0.952 0.938 -0.01 

zoo.2c2 0.954 1.011 0.06 

column3C.2c1 0.956 0.858 -0.10 

audiology.2c0 0.961 0.875 -0.09 

pageblocks.2c0 0.967 0.954 -0.01 

pbc.2c0 0.967 0.952 -0.02 

ecoli.2c4 0.969 0.967 0.00 

solar-flare_1 0.971 0.95 -0.02 

d159 0.971 0.982 0.01 

sick 0.983 0.985 0.00 

pageblocks.2c4 0.983 0.949 -0.03 

pageblocks.2c1 0.985 0.993 0.01 

anneal.2c1 0.986 0.947 -0.04 

kr-vs-kp 0.988 0.859 -0.13 

opt.2c0 0.989 0.991 0.00 

statlog-sgm.2c0 0.989 0.979 -0.01 

seg.2c0 0.990 0.965 -0.03 

col10.2c6 0.990 1.01 0.02 

zoo.2c0 0.990 0.987 0.00 

soybean.2c3 0.993 0.987 -0.01 

pageblocks.2c3 0.995 0.994 0.00 

pen.2c0 0.996 1.06 0.06 

pageblocks.2c2 0.996 1.02 0.02 

hypothyroid.2c0 0.997 0.938 -0.06 

mushroom 1.000 1.008 0.01 

badges 1.000 0.996 0.00 

badges2 1.000 0.962 -0.04 

col10.2c0 1.000 1.014 0.01 

iris.2c0 1.000 1.004 0.00 

zoo.2c3 1.000 1.001 0.00 
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