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Ingolf Krüger. Feature Location Using Data Mining on Existing Test-Cases. In the 19th

Working Conference on Reverse Engineering, pages 155-164, Kingston, Ontario, Canada,

2012. IEEE.” The dissertation author was the primary investigator and author of this

paper.

Chapter 4, in full, is a reprint of the material as it appears in: “Celal Ziftci and

Ingolf Krueger. Tracing Requirements to Tests With High Precision and Recall. In

Proceedings of the 26th International Conference on Automated Software Engineering,

pages 472-475, Lawrence, Kansas, USA, November 2011. IEEE.” The dissertation author

was the primary investigator and author of this paper.

Chapter 5, in full, is a reprint of the material as it appears in: “Celal Ziftci and
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ABSTRACT OF THE DISSERTATION

Mining Test Cases To Improve Software Maintenance
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Software development comprises of several phases, including but not limited to

requirements gathering, design, development, verification & validation, and maintenance.

Software development processes are frameworks that impose structure on building a

software system, using one or more of the phases above, and they are broadly classified

as plan-driven and agile. Plan-driven processes (e.g. the Waterfall Model) follow a rigid

structure on the order of phases from requirements gathering towards maintenance, in the

order given above. They put emphasis on documentation, repeatability and stability of

the phases. On the other hand, agile processes (e.g. Test Driven Development) follow an
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iterative and incremental approach, where the phases can be repeated while the scope of

the system is expanded on each iteration. Agile processes put more emphasis on system

artifacts (source code and tests) than documentation, which makes them more suitable

for the work in this dissertation.

Although software systems can be built following different development processes

described above, maintenance is the dominating cost during the lifetime of a system,

with 70%-90% of the total cost. During maintenance, the dominating activity is program

comprehension, i.e. understanding requirements and their relation with the system

artifacts such as source code and tests. Therefore, obtaining as much information about

requirements as possible is a major concern during maintenance.

A common activity during the verification & validation phase of development is

testing. It is reported that, in a typical software project, approximately 50% of the total

development time is expended on testing. With the advent of agile processes, this number

is even higher. During testing, test results are typically used in a binary fashion, i.e. to

see if they pass or fail. However, tests contain more information about requirements that

is useful to stakeholders during maintenance.

In this dissertation, we develop novel techniques to understand what is captured

in tests and exploit this information to provide a better understanding on the relationships

between requirements, and their relationship with tests. We provide a holistic approach

to using tests as a useful source of information on requirements and we develop an

end-to-end automated process to benefit from the testing phase during the development

and maintenance of a system.
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Chapter 1

Introduction

Software development comprises of several phases from the gathering of require-

ments to the deployment of the final product. Requirements analysis and definition phase

typically consists of establishing the system’s services, constraints and goals through

consultation with the system’s users. Requirements are then typically defined in detail

and recorded to serve as a specification of the system [133]. In the system design phase,

an overall architecture is established, and the fundamental system abstractions and their

relationships are described [133]. In the development phase, the design of the system is

realized as a set of programs [133] so that the system provides the services as identified

in the requirements gathering phase. In the verification & validation phase, the system

produced during the development phase is checked to make sure it satisfies and conforms

to the requirements. Finally, in the maintenance phase, any and all changes that need to

be made on the developed system are performed. The reasons for maintenance include:

changing requirements and updating the system according to the updated requirements,

adding new requirements, fixing bugs, and refactoring the system to improve its internal

structure.

A software development process (also known as software development lifecycle)

is a set of activities and the corresponding results which produce a software system [133].

Software development processes are frameworks that impose structure on developing
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software systems. They propose going through several phases in succession or iteratively

until the system to be developed is completed. Although each process is different in

the outline it follows, all processes typically share several or all phases described above,

albeit possibly in varying forms.

1.1 Software Development Processes

Software development processes are broadly categorized as plan-driven and agile

[29]. These two categories of processes have different characteristics, and advantages

and disadvantages.

Plan-driven processes are considered as the traditional way of building a system,

where the development typically moves through the phases of requirements gathering,

designing, building, verification & validation, deployment and maintenance. The Wa-

terfall Model [127] is a well-known member of this family of processes. In this model,

the process moves through the steps in one direction from gathering the requirements

to the finished system, and puts emphasis on documentation and review at each step to

allow verification of the activities performed (see Figure 1.1). The movement between

stages is only allowed once a phase is completed and reviewed to confirm that it is

indeed complete. Another plan-driven process is Model Driven Development (MDD)

[11]. In this model, as shown in Figure 1.2, requirements are gathered, converted into a

formal specification, and the software system along with its tests is then automatically or

semi-automatically generated from the formal requirements specification through several

formal transformations. Similar to the Waterfall Model, the system development typically

moves in one direction. If requirements change, system development is continued by

going to the first step. The advantage of the plan-driven processes is that they provide

predictability, repeatability and stability throughout the development of the system. Since

documentation is important in these processes, the stakeholders know where to look for
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Figure 1.1. Steps in the Waterfall Model [127], adapted from [127]. The development
moves from one phase to the other in one direction. If requirements change, the process
starts from the beginning.

information. The disadvantages of these processes stem from their rigid structure on

moving between the phases. The response to changing requirements is slow, since the

phases must typically be followed through from the beginning. In addition, documenting

all activities in each step can take a considerable effort, and put constraints on the speed

of development [29].

Due to the disadvantages of the plan-driven processes, agile processes were pro-

Figure 1.2. Steps in Model Driven Development [11]. The development moves from
one phase to the other in one direction. If requirements change, the process starts
from the beginning. Different from the Waterfall Model [127], the system code and
tests are automatically or semi-automatically generated from the formal requirements
specification.
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Figure 1.3. A sample user story in Behavior Driven Development [114]. A story can have
multiple test scenarios that describe the expected inputs, actions and system behavior.
Scenarios are defined using ’Given’ to describe the expected starting conditions and/or
system state, ’When’ to describe an action and/or input, and ’Then’ to describe the
expected output or system state.

posed on the other end of the spectrum. Agile processes still perform the typical software

lifecycle phases such as requirements gathering, design, development, verification &

validation, deployment and maintenance. However, these steps are realized in short itera-

tive cycles incrementally, and they actively involve stakeholders to put forth and verify

requirements. They put emphasis on user stories and system artifacts to realize those

stories, such as the system implementation and test cases. Examples of these processes

are Test Driven Development (TDD) [76, 23, 89] and, an evolution of TDD, Behavior

Driven Development (BDD)[114]. In these processes, first, test cases are implemented to

capture requirements in the form of user stories (see Figure 1.3 for a sample user story

captured in BDD). Then, the system is implemented to make sure the test cases pass

and realize these user stories. The overall flow of agile processes is shown in Figure

1.4). The development continues incrementally, where at each iteration new user stories
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Figure 1.4. Steps in Test Driven Development [76, 23, 89]. Requirements are gathered
via user stories first. Then tests are implemented to capture them. Afterwards, the
production system is implemented until all tests pass. Once an iteration is complete, the
system is expanded with new user stories in upcoming iterations until the whole system
is developed.
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are realized in the system, until the final system is developed. The advantage of these

processes is that they are very responsive to changing requirements, and they provide par-

tially or completely working systems in increments. In these processes, the incrementally

built system itself serves as the documentation, which can be considered a disadvantage

given that the process relies on the tacit knowledge embedded in the development team

and system in response to rapidly changing requirements [29]. Some of the work in this

dissertation (Chapters 4 and 6) is more applicable to agile processes due to the difference

in the emphasis they put on the system implementation and test-cases. This is discussed

in more detail in Section 2.2.4.

There are many software development processes that are a hybrid of these two

approaches lying in different points of the spectrum between plan-driven and agile

processes. An example hybrid process is the Spiral Model [31], where the development

follows a plan-driven model, but in multiple iterations (see Figure 1.5). In each iteration,

the scope of the project is expanded after reducing the risks for the next iteration, and the

steps in the plan-driven model are repeated. Examples of other development processes are

the Code-and-Fix model [108], Evolutionary Development [133, 108] and the V-Model

[116, 56] which lie in the spectrum between plan-driven and agile processes.

Even though the software development process followed in a project might

vary, the maintenance phase is typically a common and critical step for all processes.

Maintenance includes any and all changes that need to be made on the developed

system. The reasons for maintenance include: changing requirements and updating

the system according to the updated requirements, adding new requirements, fixing

bugs, and refactoring the system to improve its internal structure. The importance of

the maintenance phase lies in its inevitability once the system is deployed and used by

the stakeholders, since they will typically encounter bugs in the system or request for

modifications on the system.
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Figure 1.5. Phases of the Spiral Model, courtesy of Boehm [31]. The development
moves from one phase to the other as in the Waterfall Model [127]. Iterations provide
increments that expand the scope of the system while reducing risk.
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1.2 Software Maintenance: the Most Costly Activity in
the Software Development Lifecycle

In the lifecycle of a software system, maintenance is the process of modifying a

software system or component after delivery to correct faults, improve performance or

other attributes, or adapt to a changed environment [77].

According to the National Institute of Standards and Technology (NIST), software

errors cost the United States (US) economy $59.5 billion dollars annually [139]. Based

on a research study published by the University of Cambridge, this number is $312 billion

dollars globally [90]. Software maintenance is the software development phase where

these errors are fixed by developers.

Contrary to common belief, research suggests that software maintenance is

the dominating cost in the lifecycle of a software system, with 70% —90% of the

total cost [96], which Seacord et al. [132] named “legacy crisis”. Many factors affect

the maintenance cost, including: misunderstood requirements, bugs introduced during

development, insufficient testing, changing requirements, new requirements to be added

to the system, and the time period the software product is in use.

The dominating activity in software maintenance is program understanding, with

up to 60% of all cost of maintenance [43, 64]. Program understanding is the act of

identifying different aspects of the system in relation to the existing, changing and new

requirements. Before a maintenance task is performed, developers typically need to

understand what the requirement is, and what part of the system needs to be changed.

The changes to the system might include, and are not limited to: changing the design,

the codebase, the test cases and the documentation. Therefore, software maintenance is

strongly dependent on understanding requirements well.



9

1.3 Understanding Requirements is Important

Typically, requirements in a system change over time (update, deletion or addition

of requirements). Therefore stakeholders constantly work on requirements, not only in

the requirements gathering phase, but also during maintenance. The cost of changing

a requirement increases dramatically over the lifecycle of a system [96, 30, 64]. While

it is relatively cheap to correct errors due to misunderstood requirements in the earlier

phases, it becomes prohibitively expensive towards the final stages of the lifecycle of the

system. Therefore, understanding the requirements and obtaining as much information

as possible about them becomes a major concern during maintenance.

Since maintenance usually comprises of a change in the requirements, it is critical

for stakeholders to understand requirements before making any changes to the system,

and using the knowledge about requirements on making critical decisions about the other

steps of system development. This includes understanding important points such as:

• Change impact analysis: Determining which parts of the system would be impacted

due to changes in requirements [22, 69, 121].

• Program comprehension: Understanding the relations between requirements (such

as dependency) to help comprehension of the overall system [80, 117, 124, 153].

• Consistency checking: Determining if changes to the system have created unnoticed

and unintended contradictions between requirements [33, 60, 91].

• Testing the system: Understanding requirements to identify the correct parts of the

system to generate or reference appropriate test data, and to check if tests properly

cover all requirements [22, 69, 144].

• Progress tracking: Monitoring the progress of the development of the system and

the testing efforts [22, 69, 88, 121].
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• Effort planning: Checking if development and testing efforts are invested correctly

to align with the importance of requirements [36, 131, 136, 143].

To perform these activities quickly, either a developer that knows the system,

or good documentation about the requirements and their relationships with the other

artifacts (codebase, test cases, design documents) are needed. Even in the existence of

good developers, it is typically beneficial to have requirements relationships documented

and a linkage between requirements and other software artifacts, because developers

typically work on different parts of the system at different times, and they might forget

the knowledge acquired in a certain part of the system in the future [101, 102]. Therefore,

if this type of information is not readily available in a system, it would be beneficial to

mine this information from existing artifacts, such as tests.

1.4 Software Testing and Using Tests to Improve Main-
tenance

During the verification & validation phase, it is common to test different parts

of the system to demonstrate the correctness with respect to requirements. Testing is

an important part of the software development lifecycle, has many benefits for the final

product, and is employed by many, if not all, software development teams. Based on

empirical studies, in many systems, the amount of test code produced is comparable

to the code produced for the system itself, ranging from 50 percent less to 50 percent

more [107, 149]. Furthermore, based on a study conducted by NIST, more than a third of

software errors in the US (corresponding to $22 billion annually) can be eliminated with

an improved testing infrastructure [139], which demonstrates the importance of testing

and the investment on testing infrastructure in the software development lifecycle.

There are different types of testing, with the most common ones including:
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• Unit testing: Testing a specific component, usually at the function level. These

tests are typically implemented by the developers as they develop the system’s

components.

• Integration testing: Testing the interfaces and interactions of multiple components.

These types of tests typically start with the interaction of a small number of

components and expand to test the interaction of multiple components.

• System testing: Testing a completely integrated system to verify that it meets the

requirements.

• Acceptance testing: Testing performed by the customers of the system to confirm

it meets the requirements put forth by them.

Having many tests increases the effort spent on testing, and its cost in the devel-

opment process. As Myers [111] points out, in 1979, in a typical programming project,

approximately 50% of the total development time and more than 50% of the total cost of

a system is expended for the testing phase. These numbers can be even higher for agile

processes that put emphasis on tests, such as TDD [23, 89, 76].

Many software development teams use test results to determine if requirements

are met. They run the tests and check the results to see if they pass or fail. However,

tests contain more information that may be useful to stakeholders. Developers implement

test cases to make sure a requirement, or the interaction of multiple requirements is met.

Therefore, tests can be used as good sources of information about requirements and how

they are linked to the artifacts (such as source code) in the system developed.

In this dissertation, we develop ways to understand what is captured in tests and

exploit this information to better understand the relationships between requirements

themselves and their relationship with tests. We form a convection cycle between
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Figure 1.6. Convection cycle between requirements and tests.

requirements and tests (see Figure 1.6), so that stakeholders can benefit from tests during

software maintenance activities from the requirements perspective, and maintenance

related activities about requirements (such as the ones listed in the previous section), and

do this in shorter time frames to reduce the overall maintenance cost of the system.

The work in this dissertation applies to all of these different types of testing on a

high level. Specifically, the work in Chapters 4 and 6 can be considered to closely apply to

unit, system and acceptance tests, since these types of tests verify the behavioral aspects

of the system. The work in the other chapters apply to all types of testing described

above.

In the next section, we discuss existing work on this topic, explain their limitations

and describe where the work in this dissertation falls into.

1.5 Limitations of Previous Work

To form the convection cycle in Figure 1.6, existing techniques in the literature

can be used. Figure 1.7 provides a high-level summary of these techniques, and where
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Figure 1.7. High level summary of the existing techniques to form a convection cycle
between requirements and tests. * signs indicate where the work in this dissertation falls.

this dissertation stands compared to these techniques.

There are software development processes and tools that allow manually recording

requirements, their relationships and the relationships between requirements and tests

[6, 9, 12] (see 1 in Figure 1.7). In these systems, as shown in Figure 1.8, each requirement

is typically given a unique identifier, and metadata can be stored for each requirement.

Metadata can include the relationships between requirements and other artifacts (such

as tests) [15, 150]. It is reported in the literature that these techniques are useful and

successful, especially when they are customized for the organization using them [16,

17, 22, 54]. However, recording requirements related information this way is regarded

as a hindrance [21] and reported to be error-prone and labor-intensive, and it typically

requires disciplined developers [34, 69, 99]. Therefore, there are many systems built

without using such techniques and tools to manage requirements. Furthermore, following

such practices can be prohibitively expensive for legacy systems if they have not used
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Figure 1.8. Recording relationships between requirements themselves and with tests
manually.

these tools from the beginning.

Alternatively, some systems are built using a Model Driven Development ap-

proach [11], where semi-formal or formal models of requirements are created [48,

57, 70, 154, 112, 82, 38], and the artifacts (such as the source code and tests) are

generated from these models fully or partially after formal model transformations

[15, 150, 45, 46, 52, 142, 115] (see 2 in Figure 1.7). In such systems, as shown in

Figure 1.9, the relationships between requirements can be recorded in/between the mod-

els themselves during the modeling phase. Such relationships can then be kept intact

during model transformations, since the models are the basis of the developed system, and

the meta information about requirements can be carried over as new models and artifacts

are generated from the requirements models [15, 150]. Furthermore, if tests are also

automatically generated at the end of a series of model transformations, linkages between

requirements and tests can be maintained and used during maintenance [65]. Since the

relationships between requirements and tests are automatically obtained in MDD, not
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Figure 1.9. Getting relationships between requirements themselves and with tests auto-
matically or semi-automatically using MDD [11].

much effort is required from stakeholders. However, many software projects do not

follow an MDD approach. One reason for this is because not all project teams want to

use a formal notation to describe requirements. Also, the abstractions required by MDD

may not suit the needs of some systems. Furthermore, legacy systems developed without

using models will not have these information neither. For such projects, other means

are needed to retrieve and record the relationships between requirements themselves and

with tests.

For systems that do not have requirements relationships information (with either
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Figure 1.10. Mining relationships between requirements themselves and with tests by
mining them from the existing tests.

of the techniques discussed above), for legacy systems and for systems built without

following an MDD process, requirements relationships and their relationships with tests

can be mined from tests if the system already has a test suite. One could understand

requirements and tests, and link them together as shown in Figure 1.10. This would

help exploit the information in legacy systems with existing tests, new systems built

without modeling the requirements and without using test generation, by forming a

convection cycle between requirements and tests. In this dissertation, we propose finding

the relationships between requirements, and their relationship with tests for such systems.

These techniques are classified as 3 in Figure 1.7.

Further breaking down the family of techniques in 3 in Figure 1.7, techniques

exist to understand the relationships between requirements, and their relationship with

tests.
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First, there exist techniques to find relationships between requirements (see 3.1

in Figure 1.7). The first family of techniques use dynamic analysis, i.e. they run the

system and examine its behavior while it is executed. These techniques target Object

Oriented (OO) systems, where data in the system is encapsulated as objects [130, 95].

They exercise requirements on the existing system, and track the objects flowing through

different parts of the system as they are being exercised. After further analysis of these

objects, they determine relationships between requirements. These techniques only

target Object Oriented systems since they follow object references flowing through the

system, and they are highly sensitive to the system implementation and may suffer due

to low coverage, a common problem with dynamic analysis methods where only the

parts of the system that are exercised can be examined, while the other parts might

also contain useful information. The second family of recent effective approaches find

requirements relationships by executing them on the system, and analyzing the execution

traces (e.g. method/class names) gathered while they execute [60, 117]. These techniques

are not limited to object oriented systems, unlike the previous ones. However, they find

only a small subset of requirements relationships, they are very sensitive to the way

requirements are executed on the system, and they may also suffer from low coverage.

These techniques are further discussed in detail in Chapter 6.

Then, there are recent effective techniques to link requirements with tests [18, 100,

104, 75, 98, 105] (see 3.2 in Figure 1.7). They rely on the analysis of textual information

between the descriptions of requirements and the test code using Information Retrieval

(IR) techniques. They exploit the similarity of the domain terms used in describing

requirements and the terms used in test code, in comments and names. Even though there

are recent techniques to improve their effectiveness [156, 109], these techniques achieve

low accuracy overall due to the noise involved in natural language processing. These

techniques are further discussed in detail in Chapter 4.



18

In this dissertation, we build upon existing techniques in the literature (specifically

from the field of ’feature location’) as the foundation of the work we propose. Building

upon these techniques, we first improve the existing techniques (described above) to

achieve better accuracy. Then we build upon them to find requirements relationships,

and form a convection cycle between requirements and tests to aid software maintenance

tasks. The work in this dissertation falls in 3 in Figure 1.7.

1.6 Main Contributions and Dissertation Outline

As discussed in the previous sections, maintenance is the most costly activity in

the software lifecycle. Maintenance usually deals with changing or new requirements.

Therefore it is vital for developers to understand requirements, their relationships with

each other, and how they are linked to different system artifacts before they perform

a maintenance task. In this dissertation, we use test cases as a valuable source of

information on requirements to aid maintenance tasks.

Figure 1.11 shows an outline of this dissertation. The numbers in Figure 1.11

correspond to the chapter numbers that discuss the original work done on each task in

detail.

The initial step is to find linkages between requirements and source code, i.e.

where requirements are implemented in the source code, called requirements trac-

ing/feature location in source code. In this work, discussed in Chapter 3, we improve an

existing technique to make feature location a repeatable and end-to-end process in the

software development lifecycle by making use of existing tests of the system.

Next, we use these source code linkages to identify linkages between requirements

and test cases, i.e. which test cases exercise which requirements, called requirements

tracing in tests. The technique we propose, discussed in Chapter 4, improves upon

existing techniques by increasing the accuracy of obtaining the traces and increasing the
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Figure 1.11. Outline of the dissertation. Numbers in each box are the chapter numbers
where each work is explained in detail.
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coverage of the found links.

The work in these two chapters is the foundation work that enables the rest of the

chapters to form the convection cycle between requirements and tests. Once the linkages

between requirements and test cases are available, we can gather the implicit information

about requirements that exist in the test cases to aid maintenance.

In Chapter 5, we answer the question: What requirement(s) is a test case imple-

mented for? This work builds upon existing techniques in the literature to enhance the

semantics of requirements tracing links, so that stakeholders can quickly identify the

actual requirement(s) tests are targeting to test.

In Chapter 6, we propose a new technique to mine relationships between require-

ments from tests automatically. These relationships allow stakeholders on determining

requirements level change impact and consistency checking.

Finally, in Chapter 7, we propose a new requirements level view on the testing

phase of the development of a system. We answer the question: How well does the

test suite of a system cover its requirements? Answering this question helps different

stakeholders, especially managers and developers on progress tracking of the testing

efforts.



Chapter 2

Running Example and Background

In this chapter, we provide a running example on which to demonstrate the

techniques used and proposed. We also introduce some terms that are commonly used

throughout this dissertation and show examples to some of the terms on the running

example.

In this dissertation, software system, software product, system and product are

used interchangeably and they refer to a software system that is built to provide a service

to its stakeholders along with all the artifacts that are typically associated with such

systems, such as requirements specifications, design and architecture documents, source

code, configuration files, test code, system documentation and user documentation.

2.1 Running Example

Throughout this dissertation, we use an example system to demonstrate concepts

and show sample output on it for the techniques discussed. This example is the simplified

version of a software system used in the CSE 70 Software Engineering class, offered in

the Winter 2010 quarter at the University of California, San Diego (UCSD) by Professor

Ingolf Krüger. Note that we also use the actual Chat System taught in UCSD as a case

study to evaluate our techniques throughout the dissertation. The running example we

use is only a simplified version of it.

21
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In this system, students implement different portions of an end-to-end Chat

System including the server and the client, so that they can send chat messages to each

other over a network.

2.2 Background

In this section, we introduce some terms used throughout this dissertation, and

provide samples on our running example.

2.2.1 Program Analysis Techniques

Once a software system is partially or completely developed, it can be analyzed

automatically, called program analysis. Program analysis has many benefits including

correctness, optimization, verification and performance measuring [113]. Program

analysis techniques are broadly categorized as static analysis and dynamic analysis.

Definition 2.2.1 (Static Analysis). Static analysis is the process of evaluating a system

or component based on its form, structure, content, or documentation [77].

Definition 2.2.2 (Dynamic Analysis). Dynamic analysis is the process of evaluating a

system or component based on its behavior during execution [77].

Static analysis is used to analyze the system artifacts such as source code statically,

i.e. without executing the system. Since the system is not executed, the analysis is on

the structure and content of the system. An example to static analysis is to investigate

the text in the comments of the source code to see if the terms used in comments and

variable names correspond to the terms used in the initial documentation of the system.

On the other hand, for dynamic analysis, the system is executed to gather infor-

mation while some test input is exercised, and the gathered information is later analyzed.

An example to dynamic analysis is to obtain code coverage [110], where the system is
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monitored while tests are executing to understand which lines of the source code are

executed by the tests.

Some chapters of this dissertation (Chapters 3, 4, 6) use dynamic analysis, while

the rest uses static analysis (Chapters 5, 7).

Another categorization of program analysis techniques is based on the focus of

the analysis technique: data flow analysis or control flow analysis.

Definition 2.2.3 (Data Flow Analysis). Data Flow Analysis analyzes the sequence in

which data transfer, use and transformation are performed during the execution of a

computer program [77].

Definition 2.2.4 (Control Flow Analysis). Control Flow Analysis analyzes the sequence

in which operations are performed during the execution of a computer program [77].

Data flow analysis focuses on the flow of data, such as the variables passed to

functions or objects (in OO systems) passed around the program. On the other hand,

control flow focuses on the sequence of calls in the program, such as which function

is called by which function in the program. In this dissertation, the chapters that use

dynamic analysis (Chapters 3, 4, 6) use control flow analysis.

2.2.2 Requirements

Software development typically starts with a discussion on what the system

should provide to its stakeholders, i.e. its requirements.

Definition 2.2.5 (Software Requirement). The IEEE Standard Glossary of Software

Engineering Terminology [77] defines a software requirement as: (1) a condition or

capability needed by a user to solve a problem or achieve an objective, (2) a condition or

capability that must be met or possessed by a system or system component to satisfy a
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contract, standard, specification or other formally imposed documents, (3) a documented

representation of a condition or capability as in (1) or (2).

Intuitively, requirements are what a system needs to provide to its stakeholders,

i.e. what the customer of a software system expects to be delivered at the end of

development. As described by Brooks, “the hardest single part of building a software

system is deciding precisely what to build. No other part of the conceptual work is

as difficult as establishing the detailed technical requirements...No other part of the

work so cripples the resulting system if done wrong. No other part is as difficult to

rectify later.” [35] Therefore, requirements play an important role in all stages of the

lifecycle of the system development. For managers, requirements provide a general

overview on what needs to be developed and provided to customers, as well as a way

to measure development progress. For designers, requirements define the specification

and constraints on the behavior and qualities of the system. For developers, they define

the acceptable system behavior as well as other non-behavioral qualities of the system

(such as reliability, security and performance). For testers, they define a basis to verify

and validate the system built. Requirements can even be used for marketing to highlight

the system’s important properties [63].

Requirements are typically documented in requirements specification documents.

Definition 2.2.6 (Requirements Specification Document). Requirements specification

document is a document that specifies the requirements for a system or component [126].

In the requirements specification document, requirements are typically listed with

a unique name or identifier, and a description. There are different ways to create and

maintain a requirements specification document. While tools such as DOORS [6] and

RequisitePro [6] can be used, it is also common to use web pages or text documents for

this purpose. Table 2.1 is the sample requirements specification document for our running
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Table 2.1. Requirements specification document for our running example Chat System.
Each requirement is assigned a unique identifier, a name and a description.

ID Requirement Name Requirement Description
1 connect Users should connect to the server before they start

doing anything else. Connect operation connects to the
backend server and gets a listing of all users currently
connected.

2 sign-on After they connect, users should sign on to the backend
server with their credentials. The backend server will
return a success or failure message to the client upon
attempt to sign on.

3 send-message Once they sign on to the backend server, users can
send messages to each other. Messages should have a
timestamp so that they can be ordered by the backend
server.

4 sign-off Once users are done using the system, they can sign
out of the backend server. This will end their session,
and free up resources in the backend server. Only users
that have signed on successfully can sign off.

example. Each requirement has a unique identifier, a name and a textual description.

Requirements are further classified into two general categories depending on

whether they are behavioral or qualitative: functional and non-functional requirements.

Definition 2.2.7 (Functional Requirement). A functional requirement is a requirement

that specifies a function that a system or system component must be able to perform [77].

Definition 2.2.8 (Non-Functional Requirement). A non-functional requirement is a

qualitative property of the system [50, 86, 79, 67] that restricts the types of solutions one

might consider [126].

The functional requirements capture the nature of the interaction between the

component and its environment [126]. They are the behaviorial services the system

provides to stakeholders, i.e. what the system should do. Non-functional requirements

describe the quality attributes of the system, such as security, fault-tolerance, scalability,
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Table 2.2. Features and scenarios for each feature for the Chat System

Feature Name Scenario
connect On the GUI, click “Connect to server”.
sign-on Enter your credentials in the provided input boxes and click

“Sign on”.
send-message On the GUI, double click on a friend’s name, type some text

in the message box that opens and click “Send”.
sign-off On the GUI, click “Sign off”.

maintainability, and testability. Therefore, they describe how the system should be.

The requirements in Table 2.1 are all functional requirements. And if we were to

have a requirement that reads: “Backend server should be scalable to support a thousand

users simultaneously”, this would be classified as a non-functional requirement. Some

parts of this dissertation focus only on functional requirements, while other parts apply

to both types of requirements. Either way is explicitly specified in the relevant context.

2.2.3 Features

Once the requirements of the system are gathered, the system is developed

according to those requirements. The realization of requirements in the system are

features.

Definition 2.2.9 (Feature). Features are defined as behaviors of the system observable

by users during their interaction with the system [62].

Functional requirements of a system are realized by features. This means that

features are defined in systems where development already took place (at least partially),

and behavior that corresponds to requirements exist in partial or complete form. Features

can be triggered by the users of the system [61]. For instance, once the Chat System

is implemented, it will have the features listed in Table 2.2 that correspond to the

requirements listed in Table 2.1. Figure 2.1 shows an overview of the relationship
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between requirements and features as they are described here. In our Chat System

example, features that exist in the system map one-to-one to the requirements of the

system, while there are also non-functional requirements of the system, which are not

captured by the features as we define them here.

Since features exist in the system when it is partially or completely implemented,

there must be a way to activate/trigger them. This is where scenarios are used.

Definition 2.2.10 (Scenario). A scenario is a sequence of steps, which a stakeholder

has to perform on a software system in order to exercise a feature of interest [55]. A

scenario defines the context in which a feature is studied, for example the sequence of

the developer’s actions with the program [119].



28

Fi
gu

re
2.

1.
T

he
re

la
tio

ns
hi

p
be

tw
ee

n
re

qu
ir

em
en

ts
an

d
fe

at
ur

es
.I

n
ou

rC
ha

tS
ys

te
m

ex
am

pl
e,

fe
at

ur
es

th
at

ex
is

ti
n

th
e

sy
st

em
m

ap
on

e-
to

-o
ne

to
th

e
re

qu
ir

em
en

ts
of

th
e

sy
st

em
,w

hi
le

th
er

e
ar

e
al

so
no

n-
fu

nc
tio

na
lr

eq
ui

re
m

en
ts

of
th

e
sy

st
em

,w
hi

ch
ar

e
no

t
ca

pt
ur

ed
by

th
e

fe
at

ur
es

as
w

e
de

fin
e

th
em

he
re

.



29

Figure 2.2. Sample execution unit for Java [68]. The initial number is the call depth,
while the rest is a concatenation of the class name and the method name, along with the
location of the method in the source code.

Intuitively, a scenario for a feature is a sequence of actions that trigger the feature

on the system. In our Chat System, if there is a graphical user interface (GUI) provided,

scenarios can be described for all features as in Table 2.2. There are other ways to create

scenarios. Scenarios can be programs implemented using application programming

interfaces (APIs). They can also be test cases from the system’s test suite (unit test,

system test), or providing any other executable specification that might represent a

requirement, such as a formal test specification maintained by tools like FIT [8].

As scenarios are executed on the system, stakeholders can gather information on

the locations in source code that were exercised by using instrumentation. Instrumentation

is a technique where the running software system is monitored while it is running to

gather information on what locations of the system are being executed. The next two

definitions describe these locations.

Definition 2.2.11 (Execution Unit). An execution unit is a source code entity of de-

sired granularity. Examples are statements, blocks, methods/functions, classes/files and

packages.

Execution units typically contain the exact location of the executed portion of

the source code, such as file name and line number, as shown in Figure 2.2. Execution

units are collected while scenarios or tests are executing on the system, i.e. during

dynamic analysis. In this dissertation, we used the combination of classes and methods

as execution units. However, the granularity can be changed to have higher or lower

resolution, to accommodate different programming languages and project properties. For

a sample execution unit, see Figure 2.2.
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When a scenario is executed on a running system, there will be many execution

units triggered in the system. The collection of these execution units is called an execution

trace.

Definition 2.2.12 (Execution Trace). An execution trace for a scenario is the (possibly

ordered) list of execution units observed while the scenario is executed on the system.

Execution traces are typically collected for dynamic analysis, and they can be

collected in different ways, such as using a profiler, through instrumentation, or using

AspectJ [5] for Java [68]. For a sample execution trace, see Figure 2.3, which shows the

execution trace for the send-message feature from the Chat System. In this execution

trace, the initial numbers show the call depth of the execution unit, i.e. it encodes the

caller-callee relationship between the execution units. As an example, a depth of 0

indicates that the program started executing the first execution unit, and that in turn calls

other execution units (methods from other classes in our case). Therefore, the called

execution units have depth greater than 0.

2.2.4 Requirements and Features: Connecting the Dots

In Sections 2.2.2 and 2.2.3, we made the distinction between requirements and

features, where requirements describe what the system should do or how it should

be, while features exist in the system and they are the realization of the functional

requirements. As shown in Figure 2.1, to precisely identify which requirement is related

to which feature, one needs to have a mapping between the two. This mapping is typically

implicit knowledge for the stakeholders developing the system, since they go through

what is described in requirements and build the system to provide features for those

requirements. However, other than this implicit knowledge, we may not have an explicit

representation between the two.
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Figure 2.3. Sample execution trace of the send-message feature of the Chat System.
The caller - callee relationships are reflected in the execution trace with tabs.
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Furthermore, as Wiegers describes, “a feature is a set of logically related func-

tional requirements that provides a capability to the user and enables the satisfaction

of a business objective” [147]. Based on this description, a requirement and a feature

may or may not have a one-to-one relationship where a single feature maps to a single

requirement. In our Chat System example, they map to each other one-to-one (as shown

in Figure 2.1). However, this will not be the case for all systems.

The mapping between requirements and features typically surfaces differently in

the different software development processes, mostly due to the emphasis the processes

put on the different parts of the system, as discussed in Section 1.1. For plan-driven

processes, since requirements are largely determined in the beginning stages of the

development lifecycle, the relationship between requirements and features may not be

one-to-one. For agile processes, however, the requirements are typically encoded as

user stories, for which features are implemented as the system is developed. As an

example, in TDD, first tests are implemented to represent user stories, which encode

requirements (as shown in Figure1.3). Then, features corresponding to these requirements

are implemented in the system. Therefore, in agile systems, the relationship between

requirements and features can be considered to be closer to one-to-one. Several chapters

in this dissertation (Chapters 4 and 6) describe work on the premise that requirements and

features have an almost one-to-one relationship. Therefore, the work in those chapters

are expected to be more applicable to agile processes.

Although the scope of the work in this dissertation is partially limited to agile

processes, it can be expanded to apply to plan-driven processes too. For this, the

techniques discussed across this dissertation can be complemented with an additional

step that lets stakeholders provide the mapping between requirements and features (albeit

it is a one-to-many relationship). Overall, the techniques discussed can be extended to use

this mapping to take in the proper inputs and provide the proper outputs for requirements
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and features separately. This is left as a benefit considered within the scope of future

outlook provided by this dissertation.

2.2.5 Requirements Tracing

Since software development is driven by requirements, the developed system

artifacts will have linkages back to the requirements. Requirements Tracing aims to find

those linkages.

Definition 2.2.13 (Requirements Tracing). Requirements Tracing or Requirements

Traceability (RT) is defined as the ability to describe and follow the life of a requirement,

in both a forward and backward direction [18], by defining and maintaining relationships

to related development artifacts [100], such as software architecture documents, design

models, source code, test cases and configuration files.

For stakeholders of a system, RT provides many benefits such as prioritizing

requirements, estimating change impact on code, proving system adequacy, validating,

testing and understanding the system, and finding reusable elements [69, 137]. Recent

studies also demonstrate quantitative evidence on the benefits of requirements tracing

[101, 102], where it was determined that developers heavily relied on requirements

tracing when it is available, requirements tracing has a great impact on the quality and

performance of the developers’ task of investigating source code, and developers were

able to adopt requirements tracing quickly without much training.

Requirements impact the whole development phase, and during the development

phase, stakeholders produce traces in the artifacts produced in the system that can be

linked back to requirements. These traces are called requirements traces.

Definition 2.2.14 (Requirements Trace). The IEEE Standard Glossary defines a trace as

a relationship between two or more products of the development process [77]. Intuitively,
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Table 2.3. Sample Requirements Traceability Matrix for tests of the Chat System

connect sign-on send-message sign-off

t1: testConnect X
t2: testConnectAndSignOn X X
t3: testSendMessage X X X
t4: testSignOff X X X

requirements traces are linkages between the requirements and other artifacts of a software

system, such as source code, test cases and documentation.

Based on this definition, there can be requirements traces between requirements

and source code, requirements and test cases, and similarly between requirements and

any other types of artifacts of the system.

There are many ways to represent requirements traces, such as matrices [49, 145],

databases [78], hypertext links [16], graphs [118] and formal methods [42]. In this

dissertation, we frequently make use of a Requirements Traceability Matrix (RTM).

Definition 2.2.15 (Requirements Traceability Matrix). Requirements Traceability Ma-

trix is a matrix that shows the traces between requirements and a type of system artifact.

In the RTM, columns typically contain requirements and rows contain another

artifact, such as tests or source code components. The contents of the matrix shows the

traces between the two. As an example, Table 2.3 shows the RTM between the tests

and the requirements for our Chat System. The rows of the table are the test cases in

the test suite, the columns are the requirements of the Chat System, and the ticks are

the requirements traces between the two. Here, the requirements traces show which test

cases test which requirements in the system.

2.2.6 Feature Location

As discussed in Section 1.2, to perform maintenance, developers typically identify

the parts of source code that are related to a specific feature. This identification process
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is performed using feature location [148].

Definition 2.2.16 (Feature Location). Feature location is the activity of identifying an

initial location in the source code that implements functionality in a software system

[26, 120].

With feature location, developers typically identify specific constructs in source

code, such as classes or methods, that are highly relevant to a feature and use them

as starting points for further investigation and program understanding to perform a

maintenance task.

As discussed in Section 2.2.3, features are the realization of functional require-

ments of a system. Therefore, the feature location field has a close relationship with

requirements tracing [60]. As discussed in Section 2.2.4, if requirements and features

have a relationship that is close to one-to-one, such as in agile processes, the acts of

requirements tracing and feature location have a very high overlap, especially on the

source code level. In this dissertation, we exploit this overlap in several chapters.

2.3 Case Studies

Throughout this dissertation, we use case studies to evaluate the effectiveness of

the techniques we propose by performing experiments. Most of these case studies are

real systems used in production. Therefore, this dissertation is closely related to the field

of empirical software engineering.

The properties of the case studies we use are listed in Table 2.4. We picked

these case studies such that they are from different domains and can be representative of

different types of software systems in production.
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Figure 2.4. The overall flow of our activities to analyze our case studies.

The first case study, the Chat System, is used in teaching a class. Therefore, it

has some ideal properties such as very good and thorough documentation, well defined

requirements, a comprehensive test suite, test cases that map well to requirements and

good documentation on which test cases are implemented to test which requirements.

During the evaluation of our techniques, we expect to obtain better results on this case

study compared to the other case studies. We picked the other case studies from open

source projects. These are all active projects maintained by the open source community,

and they are commonly used in production in many software systems. Some of these

projects had good documentation, while others didn’t. Due to these properties, we

expected that they could demonstrate how well our techniques worked for systems with

such different properties. Furthermore, we expected to find out how well the competing

techniques worked on such different case studies, and how they were affected from

their different characteristics. For instance, in Chapter 4, competing techniques use the

documentation of the projects. We assess the effects of relying on documentation vs.

using our approach (a dynamic analysis technique).

Finally, all of these systems are all implemented in Java [68], and they have test

suites that run with JUnit [10]. Having a test-suite is a precondition for some of our

techniques, so these case studies are very suitable for the work in this dissertation.

Figure 2.4 demonstrates the overall flow of our activities to analyze these systems.

The upcoming sections discuss these steps in more detail.



38

2.3.1 Finding Requirements

Finding requirements/features in the case studies is the crucial first step in all

of our case studies. The requirements in the Chat System were already documented

with requirements specification documents in text form. We gathered the requirements

in Apache Pool [3], Apache Log4j [2] and Apache Commons CLI [1] through their

web pages, javadocs, and comments manually. At the end of this step, a requirements

specification document similar to the one shown in Table 2.1 is obtained for each case

study.

Note that it may not be possible to find all requirements in a software system

through its documentation or source code. Therefore, we can only claim that we have

performed our analysis on parts of the software in the case studies.

2.3.2 Creating Scenarios

Whenever we needed to perform dynamic analysis on our case studies (Chapters

4 and 6), scenarios are needed to trigger requirements on the system. For the Chat System

we created scenarios manually. We brought up the chat server, and performed actions

such as ”connect” and ”sign-on” using the existing graphical user interface of the system.

For Apache Pool [3], Apache Log4j [2] and Apache Commons CLI [1], we created

scenarios as executable tests themselves using special markers, called annotations, in

Java [68] (e.g. @Scenario(requirement=””)). The tests obtained for these case studies

are similar to the sample shown in Figure 3.6.

2.3.3 Collecting Execution Traces

Whenever we needed to perform dynamic analysis on our case studies (Chapters

4 and 6), we needed to gather execution traces of scenarios and tests while they are

executed on the system. We collected the execution traces using AspectJ [5]. Note that
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AspectJ is not a profiler, but it can be used for this purpose by weaving method entries

and printing their names.

At the end of this step, outputs similar to the one shown in Figure 2.3 are obtained

for each scenario.

2.4 Commonly Used Evaluation Metrics

In this section, we introduce metrics that are commonly used throughout this

dissertation to evaluate the performance of several techniques.

2.4.1 Precision, Recall, F-Measure

Commonly used metrics to measure the quality of Information Retrieval tech-

niques are precision, recall, and their combination f-measure. As shown in Figure 2.5, in

such problems, the main target is to successfully find the true members of a set, i.e. the

relevant set. A suggested technique will typically offer a set of items to belong to that

relevant set, i.e. the retrieved set. The metrics precision, recall and f-measure indicate

the success of the used technique from different perspectives. A simple example that

demonstrates what these metrics correspond to is search engines, such as Google. When

a user types in a query, the search engine retrieves a list of results that it considers related

to the query. In this context, the relevant set is the list of links to all web pages that are

relevant to the user’s query. The retrieved set is the list of links that the search engine

returns to the user.

There are three different possibilities of a member in relation to the relevant and

retrieved sets. First, there may be false positives: instances that are retrieved by the

retrieval technique, even though they are not in the relevant set. These belong to the set

retrieved \ relevant.

Second, there are true positives: relevant instances that are retrieved correctly.
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Figure 2.5. Sets describing precision, recall and f-measure.

These belong to the set retrieved∩ relevant.

Finally, there are false negatives: relevant instances that were not identified

successfully by the retrieval technique. These belong to the set relevant \ retrieved.

Precision measures the accuracy of the retrieved links:

precision =
|relevant ∩ retrieved|

|retrieved|
(2.1)

On our search engine example, precision corresponds to the quality of the retrieved links,

i.e. how many of them were actually relevant to the user’s query.

Recall measures the completeness of the relevant links compared to the retrieved

ones:

recall =
|relevant ∩ retrieved|

|relevant|
(2.2)

On our search engine example, recall corresponds to how many of the relevant links the

search engine was able to find correctly.

For retrieval problems, either one or both of these metrics can be important. When

they are both important, another metric is used to combine them into a single metric:

f-measure. Precision and recall can be combined with different weights, but when they
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are combined with equal weights, f-measure is defined as:

f -measure = 2× precision× recall
precision+ recall

(2.3)

In the rest of this dissertation, we make use of these metrics in several chapters to

assess the success of techniques on retrieving artifacts such as requirements trace links.

2.5 Classification of the Work In This Dissertation

In the first two chapters, up to this point, we discussed different dimensions of

software engineering and analysis, including:

• Plan-driven and agile software development processes,

• Static analysis and dynamic analysis,

• Data flow and control flow analysis,

• Functional and non-functional requirements.

To make the comprehension of the work in this dissertation easier, Table 2.5 provides an

overview of the classification of our work in the dimensions above.
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Chapter 3

Feature Location Using Data Mining
on Existing Test Cases

In this chapter, we present a novel technique that improves upon existing tech-

niques to locate features in source code.

3.1 Introduction

Maintenance is one of the most costly and time consuming tasks in the lifecycle

of a software system [96]. To perform maintenance, developers typically identify the

parts of source code that are related to a specific requirement, i.e. feature location.

With feature location, developers identify specific constructs in source code, such as

classes or methods, and use them as starting points for further investigation and program

understanding to serve a maintenance task. As an example, for our Chat System, source

code location suggestions are presented for each feature in Figure 3.1. This is a listing of

the highly relevant source code locations for each feature, ranked from the most relevant

to the least. If a table similar to the one in Figure 3.1 is provided to a developer, she can

perform maintenance tasks faster [101, 102]. She can start investigating the source code

from the most relevant locations for a feature, and continue investigating the other parts

of the source code using the structural relationships (e.g. code locations that call the most

43
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Figure 3.1. Source code location suggestions for each feature in the Chat System.
Feature location suggestions are ranked from more to less relevant. A developer can
start investigating the implementation of a feature starting from these feature location
suggestions.

relevant locations presented in Figure 3.1).

Feature location techniques can be classified based on different dimensions.

Table 3.1 provides a categorization of the existing work in the literature based on two

dimensions: type of analysis and interaction with user.

The first dimension is what type of analysis a technique performs: static analysis,

dynamic analysis or a combination of the two. Static analysis based techniques analyze

Table 3.1. Classification of related work on feature location based on two dimensions.

Automated Interactive
Static Analysis Robillard[123] Biggerstaff [26]

Robillard and Murphy [125]
Wilde and Scully [148]

Dynamic analysis Zhao et al. [155] Antoniol and Gueheneuc [19]
Wong et al. [152]

Eisenbarth et al. [61]
Hybrid Poshyvanyk et al. [119] Liu et al. [97]

Edwards et al. [59]
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the static artifacts of the system (e.g. source code and configuration files) [26, 125, 123].

They typically exploit the structural relationships between the entities in source code (such

as classes and methods) to identify more important entities. Then, when a developer needs

to find locations for a specific feature, they suggest locations based on how important the

entities in source code are, and how related they are with the requested feature based on

textual cues (e.g. similarity in terms and naming conventions).

These techniques are known to be less effective [152] compared to dynamic

analysis techniques, because they typically deal with a very large portion of the source

code with a large amount of utility code, i.e. more noise. We refer the reader to [106] for

a more detailed discussion of static analysis based approaches.

Dynamic analysis based techniques [148, 62, 19, 59, 152] exercise the system

and collect information to later analyze and locate features. These approaches typically

run the system, trigger features on it via scenarios, and collect information on which

execution units were exercised while a feature was triggered.

There are also techniques that combine both static and dynamic analysis [61,

119, 97] to use information from multiple sources and provide better feature location

suggestions to stakeholders.

Another dimension of feature location techniques is whether they are interactive

or automated. Interactive techniques [125, 61, 39] require a feedback loop, where the

user incrementally obtains more information about the location of a feature by interacting

with the tool. Automated techniques [148, 155, 152], however, take in an initial input

and perform automated or semi-automated analysis.

Our work is based on dynamic analysis and it is an automated technique. In the

next section, we discuss dynamic analysis and hybrid (both dynamic and static analysis)

techniques in more detail.
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3.2 Related Work

On a high level, dynamic analysis based techniques use scenarios to trigger fea-

tures of the system, gather execution traces while features are running, and later analyze

those traces to suggest feature locations. Below, we describe how these techniques

typically operate. Figure 3.2 shows a simple code snippet that can calculate the area of an

isosceles triangle, an equilateral triangle or a rectangle based on the ’type’ attribute of the

given input. This system is invoked via a graphical user interface where the user selects

the type of shape, inputs the attributes of the shape (e.g. width and height of a rectangle)

and presses a button to get the answer from the system. When a developer needs to locate

code that is highly relevant to ’calculating the area of an isosceles triangle’, she creates

three scenarios:

1. A scenario that will trigger calculating the area of an isosceles triangle. This is a

positive scenario, where the feature of interest is invoked, denoted by t1.

2. A scenario that will trigger calculating the area of an equilateral triangle. This is a

negative scenario, where a feature that we are not interested in is invoked, denoted

by t2.

3. A scenario that will trigger calculating the area of a rectangle. This is again a

negative scenario, denoted by t3.

Figure 3.3 shows, step by step, how the lines in the given code snippet are marked

with the lines triggered when each scenario is executed. Step (a) shows the original code

snippet from Figure 3.2. In step (b), after t1 is executed, the set of triggered lines is:

Lt1 = {1,3,4,6,10,13,25}
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Figure 3.2. A simple code snippet that can calculate the area of an isosceles triangle, an
equilateral triangle or a rectangle (example from Wong et al. [152]).
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Figure 3.3. The lines triggered by each scenario: (a) The original code snippet shown in
Figure 3.2 (from Wong et al. [152]), (b) The lines triggered when scenario t1 is executed,
(b) The lines triggered when scenario t2 is executed, (d) The lines triggered when scenario
t3 is executed.
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Since this is a positive scenario, these lines are likely related to the feature we are

interested in. In step (c), t2 is executed and the set of lines triggered by this scenario is:

Lt2 = {1,3,4,6,14,15,25}

Finally in step (d), executing t3, the set of triggered lines is:

Lt3 = {1,18,22,23,25}

Since t1 is the only positive scenario, and t2 and t3 are negative scenarios, the lines that

were triggered by t2 and t3 are pruned from the set of lines triggered by t1:

Lt1 \ (Lt2 ∪Lt3) = {1,3,4,6,10,13,25}\{1,3,4,6,14,18,15,22,23,25}

= {10,13}

In the end, a developer can start with the lines 10 and 13 in Figure 3.2 as locations

in source code that are highly related to the feature of finding the area of an isosceles

triangle.

Based on this description of how dynamic analysis based techniques typically

operate, we review the existing literature below.

Software Reconnaissance [148] is the pioneering work on feature location. It

uses a set of scenarios that execute a feature, and a set of scenarios that do not (negative

scenarios) as described above. It then uses set-difference: execution units for a feature

observed in the positive scenario are pruned by those observed in negative scenarios.

Remaining execution units are the ones that are highly relevant to the feature.

Wong et al. [152] extended [148] with execution slices, which can use and suggest

more types of execution units, such as branches and variables. Furthermore, they find out
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the distribution of the implementation of a feature onto different components in source

code (such as classes and packages), as well as how much each component participates

in the implementation of each feature.

Antoniol and Gueheneuc [19] also extended [148] with statistical hypothesis

testing, based on events that are observed in execution traces, knowledge-based filtering,

and multi-threading support.

Eisenbarth’s interactive technique [61] uses formal concept analysis, a mathemat-

ically sound technique to analyze binary relations, to assess the relationships between

execution units and features. This technique provides information about unique execution

units for each feature, which ones are shared and which ones are of interest to the imple-

mentation of a feature. In this regard, it provides both similar results as [152] and also

additional information on relationships between features. This technique combines static

and dynamic analysis to increase coverage of the dynamic information obtained, and it

is interactive, i.e. it relies on the user to guide the analysis process and to investigate

different types of relationships suggested by Eisenbarth’s tool to locate code specific to

each feature.

Poshyvanyk et al. [119] combined static and dynamic analysis to perform feature

location. Instead of performing binary set operations as in [61], they use probabilistic

ranking on the execution units observed in the execution traces of each feature. If a

certain execution unit is observed in all scenarios for a feature, they propose that there

is a high probability that this execution unit is highly relevant to the feature. They also

use information retrieval to index textual information in the source code to help rank the

relevant execution units discovered with dynamic analysis.

Liu et al. [97] introduced an interactive approach combining static and dynamic

analysis. Their approach is similar to [119] in that they use dynamic analysis to find

relevant locations for features first. Then, they ask users to perform queries relevant to
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the feature they are interested in to rank the locations found via dynamic analysis.

Edwards et al. [59] addressed feature location on distributed systems. Distributed

systems typically consist of multiple machines and they run continuously (they can’t be

stopped and started to gather execution traces for each feature), so it is hard to apply the

previously discussed approaches to precisely know the start/stop times of when a feature

is invoked. Furthermore, even though the start and stop times are known, synchronizing

time across the distributed systems precisely is also difficult. Some distributed systems

are event driven, which makes it harder to get the exact sequence of operations across

the different runs of the same scenario. All these make distributed systems harder to

apply the feature location techniques discussed above. Edwards et al. [59] tackle these

problems by asking developers to mark start and end events of the execution of a scenario

manually every time the scenario is executed. The scenarios are executed several times to

remove noise (due to the asynchronous nature of distributed systems). Causality analysis

is used to reorder events to deal with asynchrony. Finally, instead of using a set difference

approach for positive and negative scenarios, they use component relevance indexes, a

metric that tells how likely a component is related to the feature.

A different family of approaches builds on the feature location techniques de-

scribed above to analyze the features themselves. These do not aim to solve the feature

location problem, but rather use those techniques to process different properties of the

features. Since they build on feature location techniques, we include them here for

completeness. These techniques analyze feature relationships [60, 130], evolution of

features across versions of software [71] and identifying canonical features of a system

[85].
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3.3 Limitations of Existing Techniques

In this section, we define the limitations of existing techniques, using our Chat

System example described in Section 2.1.

Before we start the discussion, we first define feature dependencies, an impor-

tant property between features that plays a key role in the success of feature location

techniques.

Definition 3.3.1 (Feature Dependency). A feature f is said to be dependent on another

feature f ′, if f cannot be executed unless f ′ is executed first.

In our Chat System, a user cannot send a message unless she signs on to the

server first. So send-message is said to depend on sign-on.

The input to feature location techniques that use dynamic analysis is typically the

set of scenarios and their execution traces, which contain execution units.

Table 2.2 lists features and scenarios in our Chat System example, which are

exercised manually on the system through a GUI while the system is being profiled.

First, as discussed in the previous section, dynamic analysis techniques depend

on running scenarios for each feature. In our Chat System, the scenarios are executed

manually using a GUI provided with the system. This puts a great burden on developers,

especially if they need to perform feature location repeatedly, which is expected since the

system can change due to bug fixes or new feature requests. Furthermore, if these actions

are performed on the GUI manually as in our example, the collected execution traces will

contain execution units that are valid at the time these scenarios are executed. If the code

is refactored (e.g. names of classes/methods are changed), the execution traces will no

longer be valid, and scenarios will need to be executed again. This is cumbersome for

developers, therefore it is vital to automate this process.
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Figure 3.4. Automation of feature scenarios. Scenarios in Table 2.2 are automated as
small programs.
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To automate this, one can implement small programs as scenarios for each feature,

instead of manually executing the scenarios on the system. This is demonstrated in Figure

3.4. Each scenario contains code to exercise the respective feature annotated with the

annotation @Scenario (this is meta-information on the program and is not executed). A

user will need to implement these small programs to be used as scenarios, a cumbersome,

labor-intensive and error prone process. Furthermore, this is not a simple task for

especially new developers who joined a team recently. Some techniques require negative

scenarios, which puts even more burden on users. Once implemented, the scenarios can

be executed by a tool and their execution traces can be collected automatically. Note,

however, that if the user is using an interactive technique (one that needs feedback from

the user as it processes the execution traces), then the process of locating features will

not be fully automated even though scenarios are captured as programs as in Figure 3.4.

Finally, some scenarios need to execute features other than the targeted feature

due to feature dependencies. For instance, in Figure 3.4, the program for send-message

needs to also execute connect and sign-on because it depends on both features. Almost

all techniques in the literature require that scenarios are as simple as possible and invoke a

specific feature and no others. This is required to avoid noise in the analysis of execution

traces and provide relevant feature locations for each feature. Therefore, a user will

need to preprocess the execution traces of these scenarios, most likely manually, to clean

them up before applying a feature location technique. This is, again, a cumbersome,

labor-intensive and error-prone process. These assumptions are common to almost all

dynamic analysis based methods in the literature.

3.4 Contribution

Although recent techniques are known to work well, as discussed in the previous

section, we observe that they have shortcomings on the assumptions they make. First, the
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requirement to have distinct scenarios for each feature puts a great burden on developers.

Even though developers can potentially use existing test cases as starting points and

distill them into scenarios for features, this is still a manual task that is not repeatable

reliably every time feature location needs to be performed. This is especially a bigger

issue for users that are not very familiar with the system. Furthermore, negative scenarios

are typically needed for some of the existing techniques, which puts more burden on

users.

Second, if a process that automates the execution of the scenarios is not provided,

it is very hard to keep consistent information to perform feature location reliably as

software evolves. If execution traces are collected while scenarios are executed manually

(e.g. on a graphical user interface of the system), feature location will not be repeatable

as software is updated (e.g. code is refactored such that classes/methods are renamed),

unless they are executed again on the updated system. Therefore, it is vital to have an

automated process to execute scenarios without user intervention.

Finally, dependencies between features require users to do extra cleanup before

execution traces can be used as input to tools. Many techniques assume that a given

part of the execution trace will be related to only a specific feature and no others. In

the presence of dependencies between two features, the dependent feature’s execution

trace will inherently contain all of the depended feature’s execution trace. Therefore,

users will typically need to clean up the execution traces for such dependent features

to get good feature location results. This is a cumbersome and error prone process for

users. Furthermore, dependencies between features also make it hard (and sometimes

impossible) to create scenarios for the dependent feature, since the scenario for the

dependent feature should ideally only trigger that feature and no others.

To the best of our knowledge, the work of Eisenbarth et al. [61] is the only one

where use of scenarios that exercise multiple features is suggested and discussed. To



56

find feature locations specific to a feature, they look for execution units that only appear

in the scenarios executed for a feature and nowhere else. This is a result of the nature

of formal concept analysis (discussed later in this dissertation), since it makes binary

decisions about the relationships between an execution unit and a feature. In the presence

of dependencies between features, this technique may not find any feature locations

specific to a feature at all, and require users to provide scenarios that exercise only that

specific feature, i.e. require the manual cleanup discussed in the beginning of this section.

Furthermore, this technique is interactive, i.e. it requires feedback from users during

operation where users need to analyze a lattice produced by this technique to identify the

feature location suggestions [97].

In this chapter, we bridge the shortcomings of the existing techniques discussed

above by considering the feature location problem as a data mining problem. Given a

set of test cases (in the existing test suite of the system) labeled with the features they

exercise, we automatically find relevant feature locations in source code using association

rule learning [13]. Our work makes the following contributions:

• We present a new way to find source code locations uniquely related to a feature,

where users simply label some existing test cases from the system’s existing test

suite. A test case can exercise multiple features, and a feature may be tested in

multiple test cases (a many-to-many relationship).

• We present a metric to guide users on the labelings they provide. If a feature cannot

be located in a sufficiently reliable way, users are notified so that they can provide

more labelings for that feature. This prevents users from labeling test cases blindly,

without information on whether they provided enough input or not.

• We provide tool support to automate the entire process so that feature location can

be performed reliably and repeatedly in the presence of feature dependencies even
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Figure 3.5. Overview of FLMINER, with inputs, its process and outputs. The inputs are
the test-cases labeled with the features they execute. The outputs are the highly relevant
feature location suggestions and feedback on the quality of the suggestions.

though software is updated.

3.5 FLMINER: Feature Location Miner

In this section, we describe our technique in detail. Figure 3.5 shows an overview

of our technique with inputs and outputs. We implemented a tool for this process:

FLMINER —Feature Location Miner. FLMINER takes in execution traces of test cases,

uses association rule learning [13] to suggest highly relevant feature locations uniquely

related to each feature, and finally outputs the found feature locations and some metrics

on the quality of the found results as well as guidance for the user to provide more labeled

test cases for higher quality results. We discuss each step in detail in the rest of this

section.
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Figure 3.6. Sample input to FLMINER for the Chat System.

3.5.1 Input to FLMINER

The input to FLMINER (Step 1 in Figure 3.5) is a set of test cases labeled with

the features they execute. These are used as the scenarios for features. Figure 3.6 shows

a sample input to FLMINER for our Chat System example. These test cases are executed,

and execution traces are collected for each test case (Step 2 in Figure 3.5).

Compared to the sample scenarios in Figure 3.4, there are some important differ-

ences in the scenarios in Figure 3.6. First, the scenarios in Figure 3.4 are either created

manually, or distilled from existing test cases in order to have as little noise as possible.

Even though there are freely available tools for profiling and execution trace collection,

users may still need to do manual cleanup on the execution traces due to dependencies,

as discussed in the previous section.

Unlike the existing techniques, for FLMINER, users label existing test cases in
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the test suite of the system with the features they execute, as in Figure 3.6. If they exist,

we make use of the available execution traces collected by continuous integration tools

after the execution of these scenarios. If not, we provide users with an AspectJ [5] aspect

to output dynamic profiling information. Users do not need to do cleanup after providing

information on which features are executed by which test cases.

Note that, as shown in Figure 3.6, scenarios can have multiple features specified

in their labels. The execution traces collected by running such scenarios will contain a

mixed collection of execution units, since the labels neither provide information on the

order of execution of the features nor they provide information on which execution unit

was executed due to which feature. This yields to, what we call, fuzziness.

Definition 3.5.1 (Fuzziness). As noted in [60], locating features, with the input in Figure

3.6, using existing techniques is a harder problem, because we do not have information on

the order of the features executed in the test cases. Furthermore, when the test cases are

executed and execution traces are collected, we do not know which part of the execution

trace belongs to which feature. Therefore, there is inherent ambiguity in the information

used by FLMINER. We call this ambiguity fuzziness.

3.5.2 Association Rule Learning and Confidence

Once the execution traces are collected, FLMINER uses a data mining algorithm,

namely association rule learning [13], to find highly relevant locations for each feature

(Step 3 in Figure 3.5). Association rule learning [13] is a popular method in data mining

used to discover interesting relations between variables in a database.

Formally, association rule learning works on a set:

I = {i1, i2, i3, · · · , in} (3.1)
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of n binary attributes, called items; and a set:

D = {t1, t2, t3, · · · , tm} (3.2)

of m transactions, called the database. Each transaction in D contains a subset of the

items in I.

A rule is defined as an implication X ⇒ Y , where X ,Y ⊆ I and X ∩Y = /0. Intuitively, a

rule corresponds to an implication of positive correlation between two items.

We demonstrate these concepts on the Chat System. Assume that we execute the

test cases shown in Figure 3.6 and obtain information on which methods are executed

in each test case, as shown in Table 3.2. For our example, the items are the union of

all methods observed in the execution traces and the features; and the transactions are

the test cases. In the table, a 1 denotes the existence of a method or feature in a test

case. As an example, for the test testConnectAndSignOn, the execution trace contains

the methods m1, m2, m3 and m4; and, as labeled by the user in Figure 3.6, the features

connect and sign-on are executed by the test case.
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In association rule learning, many different measures of interest and significance

are defined [13]. In this chapter, we use confidence, since it captures the semantics of

what our technique wants to achieve. Confidence is defined in terms of the support of a

set of items:

support(X) =
# transactions with all items in X

# total transactions
(3.3)

As an example, in Table 3.2:

support(m3) =
3
4
= 0.75

support(sign-on) =
3
4
= 0.75

support(m3∪sign-on) =
3
4
= 0.75

Intuitively, support is the amount of information we have available for the given set of

items, based on the transactions we have available. Next, the confidence of a rule is

defined as:

conf (X ⇒ Y ) =
support(X ∪Y )

support(X)
(3.4)

As an example, in Table 3.2:

conf (m3⇒ sign-on) =
support(m3∪sign-on)

support(m3)
=

0.75
0.75

= 1

Intuitively, confidence is the extent of correlation between m3 and sign-on, i.e. the

likelihood that sign-on was executed as part of a test case given m3 was observed in the

execution trace of the test case.

For a method m to be considered as a highly relevant location for a feature f,

the confidence conf (m⇒ f) should be high, since this would imply a strong correlation
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between m and f. The confidence values for the rules between methods and features as

described above is used, in part, by FLMINER to rank each method in deciding whether it

is a highly relevant location for a feature or not. In our case studies, we set the minimum

confidence to 0.5 based on our investigations on the outputs of our case studies, as it gave

us the best results. For a more in depth analysis of association rule learning, we refer the

reader to [13].

3.5.3 Divergence: Detecting Edge Cases

If we only use confidence to suggest locations for features, an edge case for our

technique is a single test case that executes all features. In such a case, all confidence

values of the form conf (m⇒ f) would turn out as 1. Obviously, this information is not

helpful in choosing the highly relevant locations for features; because the confidence

values turned out to be equal due to insufficient information input to FLMINER. In

fact, as the input to FLMINER has more fuzziness (more labels on a single test case),

the confidence values found by FLMINER are expected to be less reliable. Based on

this observation, we present a new measure to perform an internal quality check on the

confidence values found and counteract this edge case.

Consider a feature f and the set M of all methods such that:

M(f) = {m | conf (m⇒ f)> 0} (3.5)

We consider the confidence values of all of the methods in M(f) as a probability distribu-

tion Pf:

Pf(m) =
conf (m⇒ f)

∑m′∈M(f) conf (m′⇒ f)
(3.6)

and find out how much this distribution is different than a uniform distribution. If the

distance is small, as was the case for the worst-case scenario described above (the distance
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is 0 for that case, because all methods have confidence 1, and therefore Pf is a uniform

distribution), then the confidence values are not very reliable. We call this distance

divergence, and use KL-divergence [87], a well-known measure to calculate the distance

between two probability distributions, to calculate it:

div(f) = ∑
m∈M(f)

Pf(m) ln
Pf(m)

U(m)
(3.7)

where Pf is the probability distribution constructed using the confidence values of methods

in M(f) as described above, and U is the discrete uniform distribution of the same size

as Pf. Note that, the divergence value is the same for all methods in M(f) for a given

feature f. It can be considered as an indicator of the quality of the feature locations for f

found by FLMINER, and how much FLMINER considers them to be of high quality.

3.5.4 Affinity: Combining Confidence and Divergence

Finally, we combine confidence and divergence to obtain a single metric to be

used to detect highly relevant feature locations. Given a method m and a feature f:

affinity(m,f) = 2× conf (m,f)×div(f)
conf (m,f)+div(f)

(3.8)

Affinity combines confidence and divergence with equal weights, i.e. both confidence and

divergence are equally important in determining whether a method is a highly relevant

location for a feature. These weights can be adjusted based on project properties, to give

more weight to either confidence or divergence after investigating the typical values they

take for a project.
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3.5.5 Outputs: Feature Locations, Affinity and User Guidance

Once affinities are determined for each (method, feature) pair, we rank the

methods for a feature from high affinity to low affinity, and provide users with a list

of the most highly relevant locations for each feature. FLMINER will also output the

divergence values for each feature. In this problem, only providing more labeled input

may not yield better results. Some choices of labeled test cases will sample features

more evenly and provide better results. To help users on choosing test cases to label,

FLMINER guides users to provide more labeled test cases for those features with low

divergence. This way, the affinity values of methods can be increased for those features

and the user can be presented with locations that are considered to be of higher quality,

i.e. more relevant to a feature. When users follow FLMINER’s suggestions, FLMINER

yields higher quality results. The user will then know whether or not to label more test

cases, and if so, for which feature (instead of blindly labeling test cases without any

information on the quality of the results presented).

For our Chat System example, Table 3.3 lists the affinity values calculated for

each method, and the divergence values for each feature. The divergence values highlight

important information. For connect, divergence is 0, because the confidence values

for all methods are equal for connect. So, FLMINER outputs that the given input was

insufficient to find good feature locations for connect. Therefore, the user needs to

provide more input for connect in order to provide better results. Furthermore, the

divergence value for sign-on is lower than those for send-message and sign-off.

Therefore, if the user prefers to provide more labeled test cases as input, sign-on would

also be a good candidate.

Affinity values present to the user which locations in source code are the highly

relevant ones for each feature. For send-message, m5 is ranked highest (it has the
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Table 3.3. Divergence values for each feature and affinity values for each (method,
feature) pair. Highlighted cells (in bold and blue color) show which methods would be
chosen as feature markers for each feature.

connect sign-on send-message sign-off

divergence 0 0.0086 0.1783 0.1783
affinity connect sign-on send-message sign-off

m1 0 0.0169 0.2081 0.2081
m2 0 0.0169 0.2081 0.2081
m3 0 0.0170 0.2323 0.2323
m4 0 0.0170 0.2323 0.2323
m5 0 0.0170 0.3026 0
m6 0 0.0170 0 0.3026

highest affinity), because it is only observed in the test case testSendMessage where

send-message is present, while it does not exist in the other execution traces of the

features connect and sign-on, which are also executed by testSendMessage. The di-

vergence of send-message and sign-off are higher than that of connect and sign-on,

because they have more distinguishing information available, i.e. connect and sign-on

are executed in almost all test cases, while send-message and sign-off have been

specifically executed in certain test cases. Therefore FLMINER presents them as better

feature location suggestions.

3.6 Evaluation

To evaluate the effectiveness of FLMINER, we analyze it both theoretically and

practically.

3.6.1 Baseline for Comparison: the Base Case

For comparison, we consider the same input that the existing techniques assume:

a distinct scenario per feature. In such a case, the input would look like the one shown in

Figure 3.4, where there is a separate scenario for each feature.
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Furthermore, since most of the existing techniques assume that execution traces

will be cleaned up so that each execution trace belongs to a single feature, we perform

this operation too, i.e. we handle feature dependencies. We call this case the base case.

Note that the base case is a very good input for a feature location technique since the

execution trace for each scenario contains execution units for a single feature, which is

known deterministically (the execution traces will also naturally contain utility methods

and other unrelated methods for a feature, which is expected by all feature location

techniques).

In the base case, the results found by FLMINER are identical to the well-known

technique by Poshyvanyk [119]. In [119], conditional probabilities are used to calculate

the probability of a certain method to be a relevant location for a feature (it combines

this with static analysis as well, but we compare our method with its dynamic analysis

part). The confidence measure we use as part of affinity also represents conditional

probabilities. Divergence is the same for all methods for a feature, so it doesn’t affect the

feature location suggestions when used to calculate affinity for the base case. Therefore,

FLMINER’s analysis and results are equivalent to [119] when presented with the base

case as input.

Measuring Success

We use the base case, i.e. the results of [119], as a baseline for our comparisons

in the evaluation we perform. If FLMINER can achieve performance close to the base

case when it is used on non-base case inputs, then we suggest that FLMINER will benefit

users, since it allows simply labeling existing test cases and provides users guidance on

which feature to provide more test cases for, while freeing developers off the burdens

discussed in Section 3.3.

Below, we evaluate FLMINER for two cases: the ideal case and the practical case.
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3.6.2 Ideal Case

Since FLMINER considers the feature location problem as a data mining one, it

is expected that given ’enough’ labeled inputs, it should be able to yield the same results

as for the base case. How many labeled inputs can be considered as ’enough’ depends on

the nature of the input, i.e. the degree of fuzziness.

In the base case, there is no fuzziness: each scenario’s execution trace contains

execution units for one feature. As scenarios execute more features than 1, fuzziness

increases. An example fuzzy input is shown in Figure 3.6, where some test cases execute

multiple features.

Based on Figure 3.6, consider the case where the input is uniform in the number

of features each test case executes: every test case in the input executes k features, where

1≤ k ≤ n and n is the number of features. In such a case, an ideal input to FLMINER

would be
(n

k

)
examples, where the labels of the test cases are an enumeration of all of the k

combinations of the n features. As an example, for n = 3 features: {f1,f2,f3} and k = 2,

the ideal input to FLMINER would be three test cases, labeled with: (f1,f2), (f1,f3) and

(f2,f3). If such an ’ideal’ input is provided to FLMINER, we show below that FLMINER

can find the same feature locations as the base case in spite of the fuzziness.

Our analysis starts with the confidence value of a method m for the feature f in

the base case. Assume that, in the base case:

confbase(m⇒ f) =
1

1+ x
(3.9)

This means method m was observed in f’s execution trace and possibly some other

features’ as well (denoted by x, where 0≤ x≤ n−1). To calculate confideal(m⇒ f), we
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find the following:

confideal(m⇒ f) =
# execution traces m and f are observed together

# execution traces m is observed

The number of execution traces m and f are observed together is:

(
n−1
k−1

)

since there are
(n

k

)
total execution traces, and we need to choose f as one of the features,

and choose the rest k−1 from among the remaining n−1 features in the base case.

Number of execution traces m is observed is:

(
n
k

)
−
(

n− x−1
k

)

Note that m is observed in x+1 execution traces in the base case. To find the subsets it

exists in the ideal case, we subtract the number of those execution traces where m isn’t

observed at all from the total number of subsets of size k:

(
n
k

)
−
(

n− (x+1)
k

)
=

(
n
k

)
−
(

n− x−1
k

)

Therefore, for the ideal fuzzy input to FLMINER, the confidence will be:

confideal(m⇒ f) =

(n−1
k−1

)(n
k

)
−
(n−x−1

k

) (3.10)

To analyze how the confidence values compare between the base and the ideal

cases, we compare the ratio of the two confidence values as x changes. Since 0≤ x≤ n−1,
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we analyze what happens as x converges to the boundary values.

lim
x→0

confideal(m⇒ f)

confbase(m⇒ f)
= lim

x→0

(n−1
k−1)

(n
k)−(

n−x−1
k )

1
1+x

= lim
x→0

(n−1
k−1)

(n
k)−(

n−1
k )

1
1

= lim
x→0

(n−1
k−1

)(n
k

)
−
(n−1

k

)
= lim

x→0

(n−1
k−1

)(n−1
k−1

)
= 1
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lim
x→n−1

confideal(m⇒ f)

confbase(m⇒ f)
= lim

x→n−1

(n−1
k−1)

(n
k)−(

n−x−1
k )

1
1+x

= lim
x→n−1

(n−1
k−1)

(n
k)−(

n−(n−1)−1
k )

1
1+(n−1)

= lim
x→n−1

(n−1
k−1)

(n
k)−(

0
k)

1
n

= lim
x→n−1

(n−1
k−1)

(n
k)−0

1
n

= lim
x→n−1

(n−1
k−1

)(n
k

) ×n

= lim
x→n−1

(n−1)!
(n−1−k+1)!×(k−1)!

n!
(n−k)!×k!

×n

= lim
x→n−1

n× (n−1)!× (n− k)!× k!
(n− k)!× (k−1)!×n!

= lim
x→n−1

n!× (n− k)!× k!
n!× (n− k)!× (k−1)!

= k

To summarize:

lim
x→0

confideal(m⇒ f)

confbase(m⇒ f)
= 1 (3.11)

lim
x→n−1

confideal(m⇒ f)

confbase(m⇒ f)
= k (3.12)

Therefore, the confidence values found in the ideal case will be a multiple (k) of the confi-

dence values found in the base case for all methods m. When we calculate affinity(m,f),

we make use of div(f) as well. Since divergence is calculated internally for each feature

and is a linear transformation, it will not change the rankings found in the ideal case
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(the affinity values) based on confidence values for the methods. As a result, in the ideal

case, the methods will be ranked in the same order as they were ranked in the base case,

and therefore FLMINER will find the same methods for each feature as relevant feature

locations even in the presence of fuzziness.

Using the base and ideal case analysis above, we also analyze the result of

changing the fuzziness, i.e. different values of k (noting that 1≤ k ≤ n):

lim
k→1

confideal(m⇒ f) = lim
k→1

(n−1
k−1

)(n
k

)
−
(n−x−1

k

)
=

(n−1
1−1

)(n
1

)
−
(n−x−1

1

)
=

1
n− (n− x−1)

=
1

x+1

lim
k→n

confideal(m⇒ f) = lim
k→n

(n−1
k−1

)(n
k

)
−
(n−x−1

k

)
=

(n−1
n−1

)(n
n

)
−
(n−x−1

n

)
=

1

1−
(n−x−1

n

)
= 1 (since 0≤ x≤ n−1)

To summarize:

lim
k→1

confideal(m⇒ f) =
1

1+ x
(3.13)

lim
k→n

confideal(m⇒ f) = 1 (3.14)
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Table 3.4. Information about case studies used to evaluate FLMINER

Case Study # Features
UCSD Chat System 16

Apache Pool [3] 16
Apache Commons CLI [1] 11

Based on these, as fuzziness decreases (k→ 1), the confidence for a method found in

the ideal case approaches the confidence found in the base case. As fuzziness increases

(k→ n), the confidence of the methods approaches 1, regardless of their values in the

base case. Therefore, as expected, having higher fuzziness makes it harder for FLMINER

to suggest highly relevant feature locations.

This concludes our analysis that, given the ideal number of labeled test cases,

FLMINER yields the same feature location results under fuzziness as the base case.

Unfortunately, for a certain k, it would be impractical to expect users to label
(n

k

)
test

cases. This could be a very large number of test cases to label, and there may not even

be that many test cases in the test suite of the system. Therefore, the ideal case is not

practical, but it is useful in showing the foundations of our technique.

In the next section, we evaluate FLMINER in a practical setting that can be

realistically used by users.

3.6.3 Practical Case

In the practical case, we assess how many labeled test cases we can practically

ask for from the users. Unlike the ideal case, it is not possible to mathematically calculate

how FLMINER would behave since there is a wide range of possible inputs. Therefore,

we performed regression experiments on three of our case studies: the UCSD Chat

System, Apache Pool [3] and Apache Commons CLI [1]. Table 3.4 shows the relevant

information for each case study used in our experiments.

First, the base case expects n test cases for n features. Since FLMINER is trying
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to solve a more complex problem, i.e. it does not expect one scenario per feature, it is

expected that it will need more test cases than n. An educated guess is that each feature

should be observed at least twice to deal with fuzziness. Therefore, we tested to see how

FLMINER would perform if 2n test cases are provided for n features.

Furthermore, as discussed in Section 3.5.5, if the users follow the guidance

provided by FLMINER for each feature (through divergence), they would be expected to

provide test cases labeled with those features pointed out by FLMINER. This is expected

to keep the needed number of test cases to a minimum by guiding users to provide input

where it is most needed for higher quality results, hence less work for users. Since users

are expected to follow this guidance for high quality results, we used inputs that conform

to this guidance in our experiments.

Experiment Setup

To perform experiments, we first identified features for each case study through

their documentation. Next, we created scenarios conforming to the base case, i.e. a

distinct scenario for each feature (including the cleanup needed due to feature dependen-

cies). Then we executed the scenarios and collected execution traces for each feature

using AspectJ [5].

Next, we generated random inputs of different labelings using the execution traces

for features obtained above: some with one feature, some with two and so forth, up to

six (we did not go beyond six because the maximum number of features in a test case

across all case studies was five). As an example, to simulate a test case with two features,

we simply combined the execution traces of two features from the base case and labeled

the union with the two features. Note that, regardless of how the random input has been

generated, the total number of test cases is fixed to 2n in each case study.

We generated the random inputs in two steps. First, we enumerated all possible
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labeling counts that add up to 2n, such that there is at least one sample scenario for each

feature.

As an example, if a case study had three features (i.e. n = 3), we enumerated all

solutions to the following linear equation:

x1 + x2 + x3 = 6

Here, for a given solution to this equation, x1 corresponds to the number of test cases

where there is a single feature, x2 with two features, and x3 with three features. By

enumerating all solutions, we ensure that there was no skew on how we sample the

random space while we generate the random inputs. The possible enumerations solving

the linear equation above are:

x1 + x2 + x3 = 6
1 + 1 + 4 = 6
1 + 2 + 3 = 6
1 + 3 + 2 = 6
1 + 4 + 1 = 6
2 + 1 + 3 = 6
2 + 2 + 2 = 6
2 + 3 + 1 = 6
3 + 1 + 2 = 6
3 + 2 + 1 = 6
4 + 1 + 1 = 6

Then, for each given solution to the linear equation, we randomly chose features

to assign to test cases, such that each feature is used at least once. We repeat this process

100 times so that for a single solution to the linear equation, there are 100 random inputs



76

to be used in our experiments. As an example, for the first enumeration shown above:

x1 + x2 + x3 = 6

1+1+4 = 6

we generate 100 random inputs such that there is 1 test case with a single feature, 1

test case with two features and 4 test cases with three features. Also note that, the

randomly generated labelings are filtered to actually make sense, where each feature is

represented in at least one execution trace. This is possible, since there are n features,

and 2n randomly generated execution traces.

Evaluation Criteria

To evaluate FLMINER’s performance on the random inputs, first, we describe

what a ’highly relevant’ feature location is. Based on the existing literature, these

locations are typically uniquely related to a feature. Therefore, observing a highly

relevant feature location in an execution trace implies that the scenario of that execution

trace executed that feature.

Based on this observation, given the highest ranked feature location l suggested

by FLMINER for a feature f, and the execution trace of a test case t, FLMINER is said

to guess that t executed f if the execution trace of t contains l. If l is indeed a highly

relevant feature location for f, then FLMINER’s guess is correct.

For each case study, we manually created a baseline to assess how well guesses

of FLMINER are, by looking at each test case and finding out which features it actually

executes.

Finally, we compared how well FLMINER’s guesses were compared to the
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baseline, using the accuracy metric f-measure [141] introduced in Section 2.4.1. In this

experiment, the relevant set is the set of trace links between features and test cases,

while the retrieved set is the set of trace links found by using the highly relevant feature

locations found by FLMINER. Given a guess g made by FLMINER, g is either correct, a

false-positive (FLMINER guessed that a test case executed a feature, but it was wrong),

or a false-negative (FLMINER missed the fact that a test case executed a feature).

Furthermore, we also performed the same experiments with base case inputs to

FLMINER for each case study and reported the f-measure values for the base case. As

discussed in Section 3.6.1, the base case for FLMINER is equivalent to Poshyvanyk’s

method [119]. Therefore, we provide a comparison of FLMINER’s performance on fuzzy

inputs with that of [119] on base case inputs.

Evaluation Results

Figure 3.7 shows the results of our experiments, where we use 2n test cases for

n features as input to FLMINER. In the graphs, the line at the top for each case-study

shows the f-measure obtained in the base case, which is equivalent to what would be

obtained using the method in [119]. The scattered points show the f-measure values

obtained by FLMINER on the random experiments. Linear fit for the scattered points

are also shown, with information on the average f-measure value obtained by FLMINER

for each case-study. As shown, FLMINER does not perform as good on fuzzy inputs as

the base case. This is expected, since the fuzzy inputs are more complex than the base

case. However, on average, FLMINER performs 83% —97% as good as the base case,

i.e. Poshyvanyk’s method [119]. Furthermore, as discussed in Section 3.3, FLMINER

does not require creating any scenarios and the preparation required on the execution

traces (due to dependencies), unlike the existing feature location methods. It only needs

some labeled test cases from the existing test suite of the system.
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Table 3.5 shows the results of the same experiment when the number of labeled

test cases is increased from 2n (as in Figure 3.7) to 3n. When more labeled test cases are

provided, FLMINER is expected to perform better because it has more information to

learn from. As expected, using 3n examples increases the performance of FLMINER for

all case-studies.
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Table 3.5. Average f-measure based on the number of labeled test cases provided as
input for each case study in the evaluation of FLMINER.

Case Study
Average f-measure

Number of Test Cases Provided
2n 3n

UCSD Chat System 91.67% 94.11%
Apache Pool [3] 80.80% 85.20%

Apache Commons CLI [1] 70.55% 77.05%

3.7 Discussion

In this section, we discuss the advantages and disadvantages of our technique.

FLMINER lifts the assumption of feature location techniques that each scenario

should execute a single feature. We use existing test cases of the system instead of

asking users to create scenarios. This decreases the burden on developers due to scenario

creation and the cleanup needed due to feature dependencies.

In the evaluation section, we show that FLMINER can achieve results on fuzzy

inputs close to one of the well-known existing techniques [119] on the base case.

FLMINER also provides guidance to users whether any more labeled test cases

can be used to increase the quality of the results. FLMINER does not require too many

test cases as input: we show that it performs well when it is given about 2n labeled test

cases where there are n features, given that the developers follow the guidance provided

by FLMINER. Furthermore, if more labeled examples are provided, its success improves

further (see Table 3.5).

Our technique is independent of the programming language used in the system.

The only requirement is the existence of a profiler. We implemented FLMINER for

Java [68], however it can easily be extended to work for any language. Our technique

uses test cases of the system. Therefore, it is not applicable to systems without test

cases. However, it is common for production systems to have test cases available [107].
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Therefore, FLMINER can be adopted in many production systems.

Another advantage of our method is that the test cases can be executed without

manual intervention from users. This makes the task of locating features repeatable, and

our process can be integrated into continuous integration tools for complete automation.

This way, users don’t need to carry out any actions: feature location suggestions will

be ready every time continuous integration runs the test cases and feeds the input to

FLMINER.

Similar to existing techniques in the literature, our technique only supports

functional requirements. Pruning utility methods is commonly used in existing techniques

to improve feature location performance. In FLMINER, we allow users to do this through

the use of regular expressions.

Finally, our technique builds upon dynamic analysis and the use of scenarios

(test cases). So it carries the same limitations as existing techniques about coverage, i.e.

capturing different ways of executing a feature across the system. This can be mitigated

by integrating a technique to improve coverage as described in the next chapter (discussed

in Table 4.3) into FLMINER.

3.7.1 Threats to Validity

In this section, we discuss the issues that might have affected the results of our

case studies presented in Section 3.6.3, and therefore may limit the interpretations and

generalizations of our results.

First, we cannot claim that our case studies represent the full extent of production

systems. We chose our case studies from different domains to mitigate this risk, and two

of them are commonly used production software. This risk can be further mitigated if we

experiment with more case studies from more domains.

Second, we are not domain experts of the software used in our case studies.
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Therefore, we cannot claim that we found all features in each system, and that the

scenarios we created are the best ones to capture them. Therefore, depending on the

chosen features and scenarios, the results may differ.

Third, in our approach, as the number of features increases, the effort necessary

to label test cases as training data also increases. Our approach needs to be evaluated on

larger systems with higher number of features to assess how well it scales.

Finally, we created the baseline for the experiments in Section 3.6.3 manually.

To mitigate risk, we had two different developers perform this task and compare their

results. However, mistakes might still have happened.

3.8 Conclusion

In this chapter, we presented a dynamic analysis based feature location technique

and a tool, FLMINER, that uses data mining on existing test cases of a system to suggest

highly relevant feature locations uniquely related to features. Similar to existing dynamic

analysis based feature location techniques, FLMINER makes use of scenarios. However,

it has the following improvements over the existing techniques:

1. it doesn’t require users to create scenarios, users can simply tag existing test cases

with the features they execute

2. it doesn’t require a distinct scenario for each feature, test cases can execute multiple

features and a feature can be executed in multiple test cases

3. it doesn’t require users to perform cleanup on the execution traces of scenarios due

to feature dependencies.

FLMINER provides users guidance on the quality of the suggested feature loca-

tions and whether the results can be improved if more labeled test cases are provided for
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a feature. Furthermore, it provides an end-to-end automated process to locate features

from the execution of test cases automatically to outputting feature location suggestions.

On fuzzy inputs, where a scenario can execute multiple features and a feature

might be executed by multiple scenarios, our technique yields results, on average, within

83% —97% of the results provided by a well-known successful technique [119] on base

case inputs (a distinct scenario for each feature).

Based on experiments on three case studies, 2n labeled test cases yield the results

described above, where there are n features. Furthermore, more labeled examples yield

better results.

The work in this chapter, in full, is a reprint of the material as it appears in: “Celal

Ziftci and Ingolf Krüger. Feature Location Using Data Mining on Existing Test-Cases. In

the 19th Working Conference on Reverse Engineering, pages 155-164, Kingston, Ontario,

Canada, 2012. IEEE.” The dissertation author was the primary investigator and author of

this paper.

3.9 Future Work

As future work, FLMINER can be complemented with static analysis to yield

better results, as in [61, 119, 97]. It can also be improved to work for non-functional

requirements. Currently, we evaluate FLMINER against [119] by combining execution

traces of scenarios for each feature. As future work, FLMINER should be evaluated on

the whole test-suite of each case study. As part of this experiment, it is important to

assess how fast it converges and stops for asking for more labeled test cases. Finally, the

interaction of developers and FLMINER should be assessed on a user study to investigate

the usefulness of FLMINER s guidance on labeling test cases as input.



Chapter 4

Tracing Requirements to Tests with
High Precision and Recall

In this chapter, we focus on tracing requirements in tests. We build upon the fea-

ture location techniques introduced in Chapter 3 to find highly relevant feature locations

for requirements. Then we use those locations to find requirements traces in test cases.

4.1 Introduction

Testing is an important part of the software development lifecycle, has many

benefits for the final product, and is employed by many, if not all, software development

teams. Empirical evidence suggests that, in many software systems, the amount of test

code ranges between 0.5 to 1.5 times the amount of code produced for the system itself

[107, 149]. This ratio increases further for some systems, such as critical systems or

systems that follow the Test Driven Development process [74].

Having many tests increases the effort spent on testing, its cost in the development

process, and the importance of tracing requirements in tests. Requirements traces in tests

demonstrate the customers which requirements are tested to achieve reasonable quality

[135]. For product developers, testers and managers, they show which requirements are

covered by which test cases. For new developers joining a team or customers using the

84
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software, they provide a summary of the test cases to examine as usage examples and to

help understand the software. For a testing lead, they help prioritize testing efforts [69].

These testing and software quality related activities are possible only if require-

ments traces are accurate, complete and up to date. There is tool support, such as DOORS

[6], to record, manage and retrieve trace information manually. However, acquiring and

maintaining accurate traces manually is an error-prone, time consuming, and labor-

intensive process that requires disciplined developers [69, 34, 99]. Furthermore, the

risk that RT links get out of date as software evolves is high due to this manual effort.

Therefore, for both legacy and new systems, it is important and convenient to establish,

maintain and retrieve requirements traceability links using an automated process.

Overall, tracing requirements in tests can be summarized as shown in Figure

4.1, where the aim is to start from a description of requirements and get to a set of

requirements trace links in tests (an RTM in our case).
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4.2 Related Work

In this chapter, we use precision and recall (discussed in Section 2.4.1) to assess

the quality of requirements tracing techniques. In this context, as shown in Figure 4.2, the

relevant set is the set of requirements traces (the ticks) in the RTM between requirements

and tests. The retrieved set is the set of requirements traces suggested by a technique.

Precision, then, is the correctness of the requirements traces suggested by the technique,

while recall is the completeness of the actual requirements traces with respect to the

suggested traces by the technique.

For RT purposes, it is important to obtain recall values close to 100%, because this

represents finding all traceability links [156]. However, it is also important to obtain high

precision in high recall ranges, since this corresponds to low number of false positives,

and fewer trace links to be analyzed by humans manually to verify correctness [98, 156].

Different approaches emerged to automatically retrieve trace links to different

types of artifacts, such as source code, tests, and design documents. We provide an

overview of these approaches relevant to our work in Figure 4.3 and discuss each in more

detail in the rest of this section.

A significant body of research on tracing requirements to source code already

exists. There are approaches that use the documentation of requirements and source

code of the system to perform IR and find traceability links [18, 100, 75, 98, 106]

(see 2 in Figure 4.3). These approaches assume that same or similar terms are used

in the documentation and the source code. They perform textual indexing on both

documentation and source code and compare the terms in each index to find similarities.

These approaches aim to find all traceability links, i.e. to obtain high recall. The

advantage of these approaches is that, since they work with text, they can find traceability

links not only in source code but also in other types of text-based artifacts (see 1 in
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Figure 4.2. Precision and recall in the context of tracing requirements in tests. The
relevant set is the set of requirements traces (the ticks) in the RTM between requirements
and tests. The retrieved set is the set of requirements traces suggested by a technique.
Precision, then, is the correctness of the requirements traces suggested by the technique,
while recall is the completeness of the actual requirements traces with respect to the
suggested traces by the technique.
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Figure 4.3. Classification of related work for FORTA.
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Figure 4.3). The disadvantage of these approaches is that they need documentation

for requirements, and proper naming conventions and comments in source code, i.e.

well-documented software, to yield accurate results. Typically, they suffer from low

precision (many false positives) on high recall values [98, 156].

A different family of approaches to tracing requirements in source code uses

executable use-cases, called scenarios, to represent requirements [60, 148, 152, 151, 61],

with some additionally using static source code analysis [19, 39] (see 3 in Figure 4.3).

A scenario can be a test case, manual execution of the requirement on the software by

a person, or any other specification that represents a requirement and can be converted

into an executable form. These approaches propose executing these scenarios, gathering

program execution traces as they run and analyzing the execution traces with different

techniques (reconnaissance [148], execution slicing [152], formal concept analysis [61],

probabilistic ranking [119], footprint graph [60] and many more) to find out where

requirements are implemented in the source code, hence finding traceability links.

Some of these source code traceability approaches target finding several highly

relevant requirements traces in source code but not finding all traces (high precision in

top traces with low recall overall) [148, 152, 119] (see 4 in Figure 4.3). These highly

relevant traces serve as starting points for developers to investigate the code-base further

to gain an understanding of the requirement. These approaches achieve good precision in

the requirements traces they retrieve, however they obtain low recall overall.

The rest of these source code traceability approaches target finding all trace links

[60, 61] (see 5 in Figure 4.3). Similar to the other scenario based approaches, they assume

using a single scenario per requirement.

Overall, one of the advantages of these scenario based source code traceability

approaches is that they do not require any documentation; they only use executable

scenarios. They also provide good accuracy, given that they analyze the requirements
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on a running system with accurate specifications of requirements via scenarios [60].

However, unlike the IR methods, these approaches only apply to source code traceability.

Furthermore, these approaches require executable scenarios specific to each requirement,

which may not exist readily in some systems. Also, these approaches can only retrieve

trace links for functional requirements of the system unless they are supported with

manual effort during the analysis [60]. Finally, these approaches can only gather trace

links on those parts of the system that are exercised by the scenarios, which may result

in missing some of the trace links. Given that these approaches assume representing

each requirement with a single scenario, some trace links are inevitably missed for some

requirements.

There are approaches for RT in source code that combine IR methods with usage

of scenarios and static analysis [19, 20], and increase the accuracy of the methods

described above. To increase the precision of the IR approaches at high recall values,

one study used term-based enhancement methods [156] and reported that although some

improvements can be achieved, the results vary based on project properties such as

documentation characteristics and domain specific vocabulary. Another study used static

source code analysis for the same purpose, and reported minor improvements on top of

the IR methods [109].

The focus of this chapter is retrieving traceability links in test code (see 6 in

Figure 4.3) to overcome the challenges of the IR approaches [18, 100, 75, 98, 106] (see

1 in Figure 4.3) by building upon source code traceability methods. Even though some

studies using the IR methods report that they observed slightly better test traceability

than source code traceability [98], these approaches still suffer from low precision in

high recall values as discussed above.

Our method builds on the use of scenarios to find the location of several highly

relevant trace links for functional requirements in source code [119], and then uses them
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to find requirements traces in tests. Unlike existing source code traceability techniques

[60, 61], our approach allows using multiple scenarios for a single requirement, which

yields higher recall. Compared to IR-based test-traceability approaches, our method uses

a more accurate description of requirements, which results in accurate traces in source

code, which in turn results in more accurate traces in tests, i.e. high precision.

4.3 Contribution

In this chapter, we use features to automatically create traceability links be-

tween requirements and test cases (including any type of executable tests such as unit,

acceptance, system and integration tests). Our work makes the following contributions:

• A new method to find traceability links between functional requirements and any

type of executable tests, building on the existing requirements to source traceability

approaches. Our method improves upon precision/recall values obtainable by

existing IR approaches, because it uses a more accurate, executable description of

requirements. In our case studies, we observed precision/recall values higher than

90%, whereas the IR techniques obtain lower values.

• A method for increasing recall in obtaining requirements traces in tests by sup-

porting multiple ways of triggering a requirement, where existing techniques that

assume a single way of triggering a requirement obtain lower recall.

• An automated process and tool, FORTA, to create traceability links between re-

quirements and tests as a by-product of automated software development processes,

such as TDD and continuous integration. Unlike the existing IR approaches, the

traceability links stay up to date, because the requirements are represented using

executable specifications.
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4.4 FORTA: Tracing Requirements to Tests Via Fea-
tures

Figure 4.4 summarizes the inputs, flow and outputs of our approach and tool. We

outline the steps here, and each step is explained in detail in the following sub-sections.

In our approach, the first step is identifying the features (Step 1 in Figure 4.4).

This is typically done using the documentation of the system or talking to the stakeholders

(details in Section 4.4.1).

Second, we create scenarios to exercise each feature (details in Section 4.4.1). As

each scenario is executed, our tool gathers execution traces using a profiler or a similar

technology. Execution traces contain execution units, such as class and method names

(Step 2 in Figure 4.4).

Third, we use the execution traces for a scenario, and find execution units that

distinguish features from each other, i.e. execution units that exist in that feature but

no others (Step 3 in Figure 4.4). We name these distinguishing execution units feature

markers (details in Section 4.4.2).

Next, we execute the tests of the system and again record their execution traces

(Step 4 in Figure 4.4). These traces contain the same type of information with the

execution traces collected earlier for scenarios.

Then, in the execution traces of the tests, we find the feature markers for each

feature (Step 5 in Figure 4.4). This is a contribution of our method and reveals which

test cases exercised which features (details in Section 4.4.3). This way, we find the

traceability links between requirements and test cases and capture them in the form of a

Requirements Traceability Matrix (Step 6 in Figure 4.4).

FORTA —Feature Oriented Requirements Traceability Analysis —is our tool that

implements this process. The rest of this section explains the steps in Figure 4.4 in more
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Figure 4.4. Inputs, outputs and flow of FORTA. The inputs are execution traces of
scenarios and tests, while the output is the Requirements Traceability Matrix between
requirements and tests. The steps with a * indicate a novel contribution of our approach,
while steps with a + indicate that we use existing research and make a contribution
additionally.
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detail.

4.4.1 Features and Scenarios

To invoke a feature, one needs to trigger it by using scenarios. In our case,

we performed the scenarios described in 2.2 for our Chat System using the provided

graphical user interface.

Finding features is mostly a manual task, unless they are already specified in

a requirements specification document. Preparing scenarios for features is similarly

mostly manual, unless feature descriptions are accompanied with directly or indirectly

executable scenarios as in tools like FIT [8]. These correspond to Step 1 in Figure 4.4.

4.4.2 Feature Markers

Once we have the scenarios for features from Step 1, we execute them on the

system and collect execution traces for each feature using a profiler (Step 2 in Figure 4.4).

These execution traces contain which execution units were executed while the scenarios

were running (there can be multiple scenarios for a feature). The choice of execution

units depends on two things: the programming language and the level of abstraction

needed. Execution units can be procedure names along with file names each procedure

is in for procedural languages; they can be class and method names for object oriented

languages; and they can be namespaces and function names for functional languages. To

obtain higher level information, the execution units can be chosen at a higher level, such

as package name or namespace only.

Once we collect the execution traces for each feature, we find execution units

that are specific to each feature (Step 3 in Figure 4.4). There is existing research to

find specific locations in source code to investigate first to gain an understanding of a

feature [148, 152, 61, 119]. These techniques are good at finding execution units that are
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specifically related to a feature, providing good starting points for further investigation.

We use one of these techniques known to perform well [119], to find distinguishing

execution units among features which we call feature markers. As an example, consider

the following features and the methods observed in their execution traces in the Chat

System example:

connect : (m1,m2,m3)

sign-on : (m3,m4)

send-message : (m1,m3,m5)

sign-off : (m3,m6)

To represent connect, we choose m2 because that is the only method observed

in its execution trace and no others. Similarly, we choose m4 for sign-on, m5 for

send-message and m6 for sign-off.

Obviously, we may not be able to find such distinguishing methods for every

feature. So instead of finding the feature markers for each feature in a binary fashion as

described above, we use probabilistic ranking as done in [119]. For the same example,

the ranking is given as:

connect : (m1 : 0.5,m2 : 1.0,m3 : 0.25)

sign-on : (m3 : 0.25,m4 : 1.0)

send-message : (m1 : 0.5,m30.25,m5 : 1.0)

sign-off : (m3 : 0.25,m6 : 1.0)

Since m3 is observed in all four features, its ranking is 1
4 . All rankings for all

observed methods are calculated similarly, and then they are ranked for each feature.
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After this ranking, a constant number is used to pick some of the methods to be feature

markers for each feature using their probabilistic rankings. For our Chat System example,

if we choose the constant to be 1, the feature markers would be:

connect : [m2]

sign-on : [m4]

send-message : [m5]

sign-off : [m6]

Note that, as done in [61], we also experimented with using formal concept analysis

[28, 66] to choose the feature markers and we observed similar results.

Our approach takes existing research [61, 119] further by using multiple scenarios

for a single feature, using scenarios separately to find feature markers for each of them,

and then combining all markers to represent a single feature. This way, even though a

feature might have multiple scenarios (i.e. different ways of being triggered), we get at

least one execution unit for each scenario in the feature markers, and do not miss trace

links due to competing scenarios for the same feature.

4.4.3 Tracing Features to Test Cases

This step is a contribution of our approach. To be able to collect traceability links

in tests, we execute the test cases and collect execution traces while they are running

using a profiler (Step 4 in Figure 4.4). The collected execution traces contain the same

type of execution units described in the previous subsection for scenarios.

Given the feature markers for each feature, we look for the execution units in the

feature markers inside the execution traces of each test (Step 5 in Figure 4.4). For an

example, consider the feature marker for connect and the execution trace for the test
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testConnect:

connect : [m2]

testConnect : (m2,m4,m7,m13,m146)

Since testConnect’s trace contains one of the feature markers of connect, we say that

testConnect exercises connect, hence there is a traceability link between them. Doing

this for each feature and test, we get an RTM as shown in Table 2.3 (Step 6 in Figure

4.4).

4.4.4 Tool Support

We provide automated tool support for our approach, which can be integrated

into automated software processes such as continuous build and TDD. In a continuous

build setup, our approach can be run as a task similar to running tests, packaging and

providing code coverage. The input to our system are execution traces for each feature

and execution traces for tests. Given these, our tool outputs a report with the RTM and

the rankings of each feature for each test to show the real intent of the test.

Automated test cases are typically marked with special identifiers (such as @Test

for JUnit [10] in Java [68]). We propose using automated tests as feature scenarios as

well with an identifier (@Scenario(requirement=””) in Java [68]). This way, continuous

build systems can run the tests and scenarios, collect execution traces for both, and then

feed them into FORTA automatically.

4.5 Evaluation

To assess the validity of our approach, we used all four case studies described in

Section 2.3.
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Table 4.1. FORTA case study properties.

Case Study # Features # Test Cases
Chat System 16 20

Apache Pool [3] 16 77
Apache Log4j [2] 10 69

Apache Commons CLI [1] 11 181

For comparison, we implemented two well-known, recent IR techniques used to

trace requirements to tests: “Term Frequency Inverse Document Frequency” (TF-IDF)

[81], and “Latent Semantic Indexing” (LSI) [51]. As input, they take the documentation

for a requirement, and find terms in this document. They also take the source code of

a test as text and find terms in it, too. Then they match the terms in the requirements

document and in the test document to see how closely they match (based on the frequency

of each term in each document) using a similarity metric, such as cosine-similarity [138].

Doing the same operation for each requirement and test, they find traceability links and

the traceability matrix.

As the indicator of success, we used precision and recall (introduced in Section

2.4.1) for each method. Obtaining high recall means finding most of the trace links,

while obtaining a higher precision value in high recall ranges means finding highly

relevant links correctly, hence providing better traceability in tests. The rest of this

section explains how we prepared the case studies as inputs for TF-IDF, LSI and FORTA.

4.5.1 Input to FORTA

As input to FORTA, we identified requirements for each case study (Step 1 in

Figure 4.4), created scenarios for each case study (Step 2 in Figure 4.4), and finally

gathered execution traces for scenarios and test cases (Steps 2 and 5 in Figure 4.4

respectively) as described in Section 2.3. The relevant statistics for each case study are

listed in Table 4.1.
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4.5.2 Inputs to TF-IDF and LSI

To compare our approach, we implemented TF-IDF and LSI. These approaches

require requirements documentations. We gathered them from their manuals and javadocs

manually.

They also need the source code of the tests in text form, so we implemented a

program to parse their test code using the Eclipse Java abstract syntax tree parser [7],

remove the stop words (common English words like “a”, “the”, “should”), remove Java

specific keywords (“public”, “static”, “final”), separate terms in Java camel-case notation

(e.g. “setDocumentParser” into “document” and “parser”), and finally index the terms

using Apache Lucene [4]. We then fed the results as input to these techniques as raw text.

These operations were all performed programmatically, and running times are reported

later in the results section.

4.5.3 Results for Requirements Traceability Links

Table 4.2 summarizes the results we obtained with each method. It contains

the best precision/recall values obtained at high recall ranges. Since the first priority in

traceability is retrieving all links [156], we considered recall values higher than 90%, and

included in the results the best precision we could get for the recall range 90% —100%.

We also included some characteristics for each methodology, such as runtime of each

technique.

4.6 Discussion

Table 4.2 summarizes the case study results for FORTA, TF-IDF and LSI. We

compare our results with those provided by Lormans and Van Deursen [98], where they

provide precision/recall results using LSI. First, using LSI, we obtained precision/recall

results similar to the ones reported by Lormans and Van Deursen [98]. Furthermore,
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Table 4.2. Requirements traceability results.

Case Study Metric TF-IDF LSI FORTA
Precision 23% 27% 99%

Recall 99% 93% 99%

Chat System
TSP (seconds) 0.017 0.017 0.876
TSA (seconds) 1.009 1.023 0.687

SET (MB) — — 8.5
STC (MB) 0.376 0.376 —
Precision 20% 20% 96%

Recall 92% 100% 98%

Apache Pool [3]
TSP (seconds) 0.023 0.023 1.110
TSA (seconds) 1.333 1.445 0.595

SET (MB) — — 12.6
STC (MB) 1.14 1.14 —
Precision 18% 22% 91%

Recall 100% 100% 100%

Apache
Log4j [2]

TSP (seconds) 0.022 0.022 0.770
TSA (seconds) 1.190 1.237 0.470

SET (MB) — — 10.65
STC (MB) 0.780 0.780 —
Precision 32% 35% 99%

Recall 99% 95% 92%

Apache
Commons CLI [1]

TSP (seconds) 0.047 0.047 1.178
TSA (seconds) 2.045 4.510 0.221

SET (MB) — — 2.22
STC (MB) 0.728 0.728 —

TSP Time spent on preparation (in seconds)
TSA Time spent on analysis (in seconds)
SET Size of execution trace (in megabytes)
STC Size of test code (in megabytes)

Table 4.3. Scenario creation methodologies compared on Apache Commons CLI [1].

Precision Recall
Single scenario per requirement (as in [60, 61, 119]) 99% 72%
Multiple scenarios per requirement —scenario execu-
tion units combined (on the techniques described in
[60, 119])

95% 81%

Multiple scenarios per requirement —scenarios sepa-
rately analyzed (FORTA)

99% 92%
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our case studies confirm that LSI performs better than TF-IDF [81], since LSI can

additionally match synonymous terms (different terms with the same meaning) and

distinguish polysomic terms (same terms meaning different things). Furthermore, when

run on the same case studies, our approach achieves higher precision on high recall levels.

This is because it uses a more accurate, executable description of requirements, compared

to the text similarity approach of the IR methods.

Table 4.3 provides a comparison of different ways to create scenarios for require-

ments. For this comparison, we chose Apache Commons CLI [1], because it had several

requirements where there were multiple ways of triggering the requirement, hence a good

candidate to demonstrate the importance of allowing multiple scenarios per requirement

to obtain higher recall. The first row represents how existing methods operate where

there is a single scenario for each requirement. This yields good precision, however recall

is low because some trace links are missed. The second row represents having multiple

scenarios for a requirement by combining the execution units of all scenarios into the

same execution trace as if they were a single scenario (utilizing existing approaches to

support multiple scenarios). In this approach, recall is higher because execution units

from different scenarios are captured. However, since they are combined into a single

execution trace, the execution units from different scenarios compete with each other to

be chosen as feature markers, which results in slightly lower precision. Finally, the last

row represents the approach FORTA supports, where multiple scenarios per requirement

are allowed and each of them is used separately to choose feature markers first, and

then combined altogether to represent the requirement. FORTA obtains both the same

precision as the single scenario case and also the highest recall because it successfully

captures different ways of triggering a requirement.

We focus on RT in tests, while the IR approaches target retrieval of RT links on a

wide spectrum of artifacts such as source code, test cases and configuration files. Due
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to this focus, our approach uses a technique that is suited to tests only and yields better

results on test trace links compared to the IR techniques. RT in tests is an important

problem and finding trace links with high precision and recall automatically has many

benefits. Our approach requires some extra effort in the preparation of the scenarios

initially; however, we observed that this effort was negligible because compared to test

cases, the scenarios were short (2-5 lines). As an extra benefit, when created as test cases

themselves, our scenarios stay up to date as software evolves, which greatly offsets the

initial investment in creating them.

An advantage of our technique is that it does not require any documentation or

the source code of the software. The only requirements are having executable scenarios

as well as executable test cases. This proves useful for producers of commercial-off-

the-shelf (COTS) software and their customers, where test cases can be provided as

executables to the customers, and customers can execute their own scenarios and generate

the RT matrix themselves for acceptance [44].

Another advantage of our approach is that, unlike existing research [60, 61, 119],

it allows multiple scenarios for a single requirement. This helped us increase the recall

rates, especially in Apache Commons CLI [1], because it had several requirements with

multiple ways of being triggered.

Our approach is agnostic to the programming language used in the system, and

it can be configured to work on different levels of abstraction. The only requirement is

the existence of a profiler that can gather execution traces, and the execution units to

be of the same type for both tests and scenarios. We implemented our tool to work for

Java [68], but it can be easily extended to work for any language with a profiler available

(such as C, C++, .Net, python, perl).

Our approach only applies to functional requirements currently, which is a lim-

itation. However, existing approaches like IR can be used to complement it to detect
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non-functional requirements (robustness, security, fault-tolerance), which we leave as

future work.

A valuable lesson that we learned is that our technique can provide better results

if, depending on the system, programming-language-specific cases are handled through

some customization (e.g. polymorphism in object oriented languages). As an example,

consider the class GenericObjectPool and the class it extends, BaseObjectPool , in

Apache Pool [3]. We prepared scenarios using the BaseObjectPool class, so the exe-

cution units in the scenarios contained class and method names from BaseObjectPool .

However, in the execution traces of the tests in GenericObjectPool , all traces con-

tained GenericObjectPool as the class name, which caused us to miss some of the

matches between scenarios’ and test cases’ traces. For this reason, we opted to use

only the method names during the comparison of the execution units for this library and

Apache Log4j [2]. This limitation can be overcome by complementing our approach with

static analysis to find out class hierarchies and match the execution units more flexibly.

Another technique that can increase the accuracy of our approach is filtering

out the utility execution units in the execution traces, such as utility classes or methods.

In FORTA, this is partly achieved already if there are a reasonable number of features.

Since we use probabilistic ranking of execution units in the feature traces, the commonly

observed execution units receive a lower probability in feature marker selection. How-

ever, existing utility class/method detection techniques in the literature [73] can further

complement our approach, especially when there are a small number of features. This

provides more accurate feature marker selection, hence more accurate traceability links.

An important step in the scenario based methods [60, 148, 152, 151, 61, 119]

is the selection of scenarios that represent the requirements. If incorrect or inaccurate

scenarios are chosen, traceability results are adversely affected. Since we build upon

these techniques, our method also carries the same risk. However, FORTA provides a
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summary of the chosen feature markers and this risk can be minimized by investigating

the feature markers and updating the chosen scenarios accordingly.

We also observed that setup and tear-down that takes place in the execution of

scenarios can sometimes degrade the performance of the selection of feature markers.

This is a common problem in scenario-based methods [60, 148, 152, 151, 61, 119], and

solved by adding two extra features to the analysis for setup and tear-down. This way, the

common execution traces for them will naturally be downgraded during feature marker

selection for the other features.

Another big advantage of our approach is that, scenarios can be provided as

test cases. When the source code of the system is refactored or changed, developers

typically fix tests to keep them passing after the changes. Since scenarios are also test

cases, developers will fix them too and scenarios will always stay up to date. While this

demands some developer effort, having up-to-date requirements trace links offsets the

investment. For the IR approaches, however, documentation and comments in the code

may get out of date as software evolves. This results in outdated requirements traces.

4.6.1 Threats to Validity

In this section we discuss some of the issues that might have affected the results

of our case studies and may limit the generalizations and interpretations of the results.

First, we cannot claim that the case studies we used represent the full extent of

production software systems used in practice. Apache Pool [3], Apache Log4j [2] and

Apache Commons CLI [1] are commonly used open source production software, while

the Chat System is software used in a class at UCSD. We chose our case studies from

different domains to mitigate this threat, which can be further reduced if more software

systems of varying size from more domains are experimented with.

Second, we are not domain experts of the software used in the case studies, so
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we cannot claim that we found all requirements and our scenarios are the best ones to

capture them. Thus, depending on the chosen requirements and scenarios, the results

may differ. Similarly, in our case studies, some tests were exercising requirements that

we were not able to identify, so we did not use those tests in our analysis. Due to time

constraints, we decided to use only those requirements we were able to identify, instead

of going back and adding more requirements after analyzing the case study results.

Third, we prepared the ground truth for both traceability results and test intent

results in our case studies manually. To mitigate risk, two different developers performed

these tasks and the results were confirmed by comparing their responses. However, it is

still possible that mistakes have happened.

Finally, Apache Log4j [2] had a large number of test cases, and we could not

prepare the complete ground truth for it due to time constraints. So we used a randomly

chosen subset of the test cases. To mitigate this factor, we chose those tests from different

classes and packages in the test suite.

4.7 Conclusion

Requirements traceability is an important and active research area that aims to link

requirements to different software artifacts, such as source code, test cases, and design

models. Traceability has many benefits including prioritizing requirements, estimating

software change impact, proving system adequacy, validation, testing and understanding

the system, and finding reusable elements in the system [69, 137].

This chapter focuses on the RT problem in tests. Testing is an important step in

the software development lifecycle to improve the quality of the final product. Empirical

evidence shows that in many systems, the amount of testing code produced is comparable

to the amount of source code of the system [149, 107]. Hence, finding traceability links

in tests has gained ever more importance. Test-traceability has many benefits including
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monitoring of testing accuracy and completeness with respect to requirements [135],

understanding the system by looking at existing test cases as exemplars and prioritization

of testing efforts [69].

In this chapter, we draw upon existing research to use features, observable units

of behavior of a system that can be triggered by a user [61], to represent functional

requirements of a system. Building on existing research [60, 61, 119], we trace features

in source code using scenarios, executable actions that trigger features. We take these

approaches further by using multiple scenarios for a single feature, treating each of

them separately to find feature markers, and then combining all markers to represent a

feature. This way, we do not miss trace links for features that have multiple ways of

being triggered, hence increase the obtained recall values along with precision.

Once RT links in source code are gathered using scenarios, they are used to find

traceability links in tests. This produces the RT links (as a requirements traceability

matrix) in tests. Our approach is specifically tailored to solve the RT problem in tests,

and achieves better precision/recall than the currently known approaches [18, 100, 75,

98, 106].

Our approach has many benefits: it does not require the existence of the source

code or documentation of the system, it works for different programming languages and

on different levels of abstraction preferred, and it is fully automated with no need for

human intervention during the analysis. The only requirement is to have a profiler for the

system to be analyzed.

Finally, we propose an automated process and tool support, FORTA, to create the

traceability links between requirements and tests as a by-product of automated software

development processes, such as TDD and continuous integration. In our approach,

scenarios are also implemented as executable tests, which will be updated by developers

as the code-base of the system evolves. Although this requires some effort from the
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developers, unlike the IR approaches, the traceability links do not get out of date due to

code and requirement changes.

Our tool, FORTA, works for Java [68] currently, however it can be easily extended

to work for any language that has a profiler available.

The work in this chapter, in full, is a reprint of the material as it appears in:

“Celal Ziftci and Ingolf Krueger. Tracing Requirements to Tests With High Precision

and Recall. In Proceedings of the 26th International Conference on Automated Software

Engineering, pages 472-475, Lawrence, Kansas, USA, November 2011. IEEE.” The

dissertation author was the primary investigator and author of this paper.

4.8 Future Work

Given accurate and complete RT links, many further research possibilities exist.

One is finding outdated documentation automatically, comparing the RTMs produced by

FORTA and the IR approaches. Another area is to use the RT links to provide prioritization

of the analysis of failing tests for a developer/tester.



Chapter 5

Test Intents: Enhancing the Semantics
of Requirements Traceability Links in
Test Cases

In this chapter, we focus on requirements traceability in tests, and build on existing

techniques on finding requirements traces in test cases (introduced in Chapter 4) to find

test intents, i.e. which requirements test cases aim to test. Test intents further enhance

the requirements traceability links by showing which links are the intended targets of a

test case and provide richer information for stakeholders.

5.1 Introduction

As discussed in Section 2.2.5, requirements traces in tests demonstrate to the

customers which requirements are tested to achieve reasonable quality [135]. For product

developers, testers and managers, they show which requirements are covered by which

test cases. For new developers joining a team, or customers of the software, they provide

an overview of which test cases to examine for comprehension of the system. For a

testing lead, they help prioritize testing efforts [69].

These testing and software quality related activities are possible only if require-

ments traces are accurate, complete and up to date. As discussed in the previous chapter

109
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(Chapter 4), there are existing techniques for requirements tracing in test cases that

address the problem of finding such accurate and complete traces [18, 100, 74, 98, 106].

Our work builds upon these existing techniques on finding requirements traces in

tests, and enhances the found trace links by highlighting the intended requirements a test

case was implemented to test. This makes the tasks mentioned above easier to perform

for stakeholders and increases the benefits of having traceability links for test cases.

5.2 Background

As discussed in Section 2.2.15, requirements traces are typically visualized using

a traceability matrix where rows and columns represent two different sets of artifacts.

The RTM for our Chat System is given in Table 2.3.

This table is useful, in that, it shows which test cases exercise which requirements,

hence are related to which requirements. However, given this information, it is not very

obvious what a test is really aiming to test [94].

Consider the following example for the Chat System in Table 5.1: the test

testSendMessage intends to test the send-message requirement (as described in its

name). However, connect and sign-on to the server are required before send-message

can be performed. For this reason, testSendMessage exercises them, too. Hence, the

RTM will contain links between this test and all three requirements. This is certainly

valuable information; however it would be more useful for humans if the real aim of the

test, called test intent (send-message in this case), is revealed.

We propose that developers typically implement test cases to test that a require-

ment (or the interaction of multiple requirements) is satisfied. Hence, in a test case,

they would typically not exercise requirements that are not necessarily contributing to

the requirement to be tested since that would make the test case less readable, it would

cause parts of the test case to be redundant and it would actually mean doing more
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Table 5.1. Sample Requirements Traceability Matrix for Tests of the Chat System
(duplicate of Table 2.3 for convenience).

connect sign-on send-message sign-off

t1: testConnect X
t2: testConnectAndSignOn X X
t3: testSendMessage X X X
t4: testSignOff X X X

Table 5.2. Sample Requirements Traceability Matrix for tests enhanced to show test
intents for the Chat System.

connect sign-on send-message sign-off

t1: testConnect XX
t2: testConnectAndSignOn X XX
t3: testSendMessage X X XX
t4: testSignOff X X XX

work than required to test that specific requirement. In the example above, a developer

would not necessarily exercise connect in testSendMessage unless it was required or

it contributed to the test case in some way. This observation is the main motivation behind

finding test intents. We also propose to take the next step and think that the RTM (or a fil-

tered version of it) should include only the test intents, because conceptually that is what

developers are interested in in the RTM. In the example above, since testSendMessage

aims to test send-message, it would be beneficial for a developer to see that as the most

important traceability link in the RTM.

As examples, Tables 5.2 and 5.3 show enhanced versions of the RTM for test

Table 5.3. Sample Requirements Traceability Matrix for tests enhanced to rank require-
ments according to likelihood to be test Intents for the Chat System.

connect sign-on send-message sign-off

t1: testConnect (1)
t2: testConnectAndSignOn (2) (1)
t3: testSendMessage (3) (2) (1)
t4: testSignOff (3) (2) (1)
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cases. In Table 5.2, the RTM is provided such that the proposed intents are marked with

double ticks and in blue color. In Table 5.3, even more information is provided, where

the requirements are ranked according to their likelihood of being the intent of the test

case: (1) means that the requirement is the highest likely intent of the test case, while

larger numbers mean the test is less likely to be directly targeting to test a requirement.

The representation shown in Table 5.3 can be especially useful when test cases test the

interaction of multiple requirements. These enhanced representations of the RTM provide

richer information to stakeholders that might be useful for maintenance tasks described

in Section 5.1.

5.3 Contribution

In this chapter, we use the traceability links between requirements and test cases

as input, and find test intents. Our work makes the following contributions:

• A method for identifying which requirement a test case is specifically targeting to

cover/test (i.e. its intent).

• An automated tool to find test intents, given trace links between requirements and

test cases.

5.4 Finding Test Intents

Figure 5.1 shows the input, process and output of our technique. Our technique

assumes the existence of trace links between requirements and test cases. To obtain

these, one of the existing techniques in the literature can be used [18, 100, 75, 98, 106].

Although the trace links can be provided in any format, for the sake of simplicity, we

assume an RTM is given since it is a very common representation for trace links (the

input in Figure 5.1).
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Figure 5.1. The steps in finding test intents.

We propose finding test intents by applying formal concept analysis (FCA)

[28, 66] to the RTM (the middle step in Figure 5.1). We propose using FCA because it

can provide a ranking of exercised requirements for each test case from more specific

to less specific (i.e. it can rank attributes of a binary relation with respect to objects).

We propose that requirements more specific to a test case are more likely to be the

intent of a test case than the less specific requirements. With this reasoning, in our Chat

System example in Table 5.1, we expect send-message to be ranked as more specific for

testSendMessage than connect and sign-on, because it is likely that there are other

test cases implemented to test connect and sign-on, hence these requirements will be

considered less specific for testSendMessage. Therefore, send-message would be

more likely to be the intent for testSendMessage (as shown in Table 5.3).

FCA may not work very well if the system has many test cases that test the same

requirement, because it would be hard to rank the requirements from more to less specific

since there would not be enough data to make the distinction between those similar test

cases in the concept lattice. However, if this is not the case, then FCA would be expected

to perform well. The following subsections provide an overview of FCA and how we use

it to find test intents.
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5.4.1 Formal Concept Analysis

FCA is an automated and principled way of deriving an ontology from a set of

objects and their attributes (properties). The foundations of FCA were laid by Birkhoff

[28] and the term “formal concept analysis” was coined by Wille [66], who explored its

mathematical foundations.

FCA works on a relation I ⊆ O×A between a set of objects O and a set of

attributes A. The tuple C = (O,A, I) is called a formal context. Table 5.1 shows a

sample formal context for objects:

{testConnect,testConnectAndSignOn,testSendMessage,testSignOff}

and attributes:

{connect,sign-on,send-message,sign-off}

For a set of objects O⊆ O′, the set of common attributes attr(O′) is defined as:

attr(O′) = {a ∈ A | (o,a) ∈ I, ∀ o ∈ O′} (5.1)

For a set of attributes A′ ⊆ A, the set of common objects ob j(A′) is defined as:

ob j(A′) = {o ∈ O | (o,a) ∈ I, ∀ a ∈ A′} (5.2)

A tuple c = (O1,A1) is called a concept if and only if A1 = attr(O1) and O1 = ob j(A1),

i.e. all objects in O1 share all attributes in A1 and no other objects with all attributes in

A1 exist. Table 5.4 shows all concepts that exist in the formal context shown in Table 5.1.

As an example, c2 = ({t2,t3,t4},{connect,sign-on}) is a concept since the tests t2, t3,
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Table 5.4. Concepts in the formal context for the Chat System RTM given in Table 5.1

Concept (objects, attributes)
c1 ({t1,t2,t3,t4},{connect})
c2 ({t2,t3,t4},{connect,sign-on})
c3 ({t4},{connect,sign-on,sign-off})
c4 ({t3},{connect,sign-on,send-message})
c5 ( /0,{connect,sign-on,send-message,sign-off})

and t4 all exercise connect and sign-on, and they are the only tests that exercise both

connect and sign-on.

The set of all concepts of a given formal context forms a partial order with the

ordering operator ≤:

c1 ≤ c2↔ O1 ⊆ O2 & A2 ⊆ A1 (5.3)

where:

c1 = (O1,A1)

c2 = (O2,A2)

For c1 ≤ c2, we call c1 a sub-concept of c2, and c2 a super-concept of c1.

The set of all concepts L for a formal context and the partial ordering ≤ form

a complete lattice, called a concept lattice. The most general concept is called the

top element, and the most special concept the bottom element. Figure 5.2 shows the

concept lattice for the formal context in Table 5.4. The top element in the lattice is:

c1 = ({t1,t2,t3,t4},{connect})

since it is the most general one (i.e. it contains all of the objects). The bottom element in

the lattice is:

c5 = ( /0,{connect,sign-on, send-message,sign-off})
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Figure 5.2. Concept lattice for the formal context shown in Table 5.4.

since it is the most special concept (i.e. it requires all attributes).

For a more in depth analysis of the mathematical foundations of FCA, we refer

the reader to [28].

5.4.2 Finding Test Intents Using FCA

To find test intents, as demonstrated in the previous subsection, we use the test

cases as objects, and requirements as attributes of a formal context in FCA (see Table 5.4

and Figure 5.2). For each test case, we find the most specific concept(s) in the concept

lattice, and walk up until the top element. The attributes observed during this traversal

operation provide us the ranking of requirements from most specific to least specific for

a given test.

As an example, consider the test t3: testSendMessage in Table 5.1. The most

specific concept for t3 in the lattice (in Figure 5.2) is:

c4 = ({t3},{connect,sign-on,send-message}).
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Walking up the lattice towards the top element, starting from c4,

c2 = ({t2,t3,t4},{connect,sign-on})

and

c1 = ({t1,t2,t3,t4},{connect})

are its super-concepts in traversal order. During each step of the traversal, we find the

attributes that exist in the sub-concept and do not exist in the super-concept. We take

these attributes as more specific for the given test case. As an example, send-message is

the only attribute that exists in c4 but not in c2. The attribute send-message is therefore

most specific for t3, and sign-on and connect are less specific in the given order. Hence

the requirements are ranked, from higher to lower, as send-message, sign-on, and

connect, as shown in Table 5.3 for testSendMessage.

Note that, it is possible that there are multiple concepts that can be considered

as most specific for a test case. In such a case, we traverse the concepts starting from

the lowest level towards the top element. If two concepts are on the same level in the

lattice, we assign no preference between them in terms of ranking (we assume they rank

the same).

Furthermore, if two attributes appear to be most specific for a test at the same

time, i.e. if there are at least two attributes that are different between a concept and its

parent during traversal, we again assume those attributes rank the same for the given test

case.

5.4.3 Tool Support

We provide tool support for our approach, which can be integrated into automated

software processes such as continuous build and TDD. Given the RTM, our tool outputs

the enhanced RTMs that show the real intent of each test, as shown in Tables 5.2 and 5.3.
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Table 5.5. Case study properties to evaluate finding test intents.

Case Study # Requirements # Test Cases
Chat System 16 20

Apache Pool [3] 16 77
Apache Log4j [2] 10 69

Apache Commons CLI [1] 11 181

5.5 Evaluation

To assess the validity of our approach, we used all of our case studies described

in Section 2.3. We found the requirements for each case study as described in Section

2.3. Table 5.5 lists the statistics of the case studies relevant to our evaluation. The rest of

this section explains how we prepared the input for our technique.

5.5.1 Finding the Baseline for Test Intents

We prepared a baseline for each case study to assess the quality of our technique.

We manually investigated each test case in the test suite, and recorded the test intent for

each.

We asked two different developers to get themselves familiar with each case study

and find the test intents of each test case independently. We then compared their findings

to form the baselines. Whenever they had disagreement on the intent of a test case, we

excluded that test from our baseline. Whenever both developers had the same findings

for a test case, we included that test case in our baseline. Table 5.6 presents how many

test cases we used in the baseline and summarizes the results of the intent mining process

for each case study.

In our tool, we used a parameter T that specifies how many of the suggested

requirement names a human would be willing to look at to find out about the real intent

of a test. As an example from our Chat System, consider a test t1 with a clear intention
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Table 5.6. Test intent mining results.

Case Study # Tests in Baseline
% Intents Correctly Identified

T = 1 T = 2 T = 3
Chat System 15 93% 100% 100%

Apache Pool [3] 44 33% 60% 79%
Apache Log4j [2] 34 62% 91% 100%

Apache Commons CLI [1] 117 50% 81% 97%

of testing the sign-off requirement, while also exercising connect and sign-on. We

observed that our ranking tool suggests the following ranking sorted from higher to lower

priority: {sign-on,sign-off,connect}. In this case, if T = 1, this corresponds to a

human only willing to look at the top suggestions. Hence, our tool will have missed

the intent because it provides sign-on as the highest ranked requirement, whereas

sign-off is the real intent of the test. However, if the human were willing to look at the

top two suggestions, i.e. T = 2, then our tool would be considered to have made a correct

suggestion since sign-off is among the top two suggestions returned by our tool.

5.6 Discussion

Table 5.6 summarizes the test intent results our technique produces. Given these

results, we can correctly identify the real intent of a test case with a high accuracy within

two to three suggestions for each test case. This greatly reduces the amount of analysis a

human would need to do on the source code of a test to understand what it aims to test.

We discuss advantages and limitations of our approach in the rest of this section.

An advantage of our technique is that it does not require any documentation or

the source code of the software. The only requirement is to have the trace links between

requirements and test cases. These links can be obtained by existing techniques in the

literature [18, 100, 75, 98, 106]. Since we build upon these existing techniques, the

success of our method depends on the success of these methods. For our method, it may
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be beneficial to combine the use of multiple techniques that find requirements traces so

that likelihood of errors in the found trace links is lower, and our technique yields better

results.

On mining the intent of test cases, using FCA may not work well if many test

cases are implemented to test very similar requirements. In such a scenario, FCA may

not be able to find specific requirements for each test. The lower success rate in Apache

Pool [3] can be attributed to this fact. However if this is not the case (as in the other case

studies), then FCA is expected to perform well, because test cases are typically linked to

specific requirements, and they explicitly target that requirement, and do not exercise the

other requirements unless they have to (unless there is a dependency of a requirement to

another one).

Our approach is agnostic to the programming language used in the system. As

long as the traceability links are provided, it can work for any system.

Our approach applies to both functional and non-functional requirements, as long

as they are contained in the traceability links provided in the input RTM.

5.6.1 Threats to Validity

In this section we discuss some of the issues that might have affected the results

of our case studies and may limit the generalizations and interpretations of the results.

First, we cannot claim that the case studies we used represent the full extent of

production software systems used in practice. Apache Pool [3], Apache Log4j [2] and

Apache Commons CLI [1] are commonly used open source production software, while

the Chat System is software used in a class at UCSD. We chose our case studies from

different domains to mitigate this threat, which can be further reduced if more software

systems of varying size from more domains are experimented with.

Second, we are not domain experts of the software used in the case studies,
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so we cannot claim that we found all requirements. Thus, depending on the chosen

requirements, the results may differ.

Third, we prepared the baselines in our case studies manually. To mitigate

risk, two different developers performed these tasks and the results were confirmed by

comparing their responses. However, it is still possible that mistakes have happened.

5.7 Related Work

Our work builds upon existing techniques on requirements traceability in test

cases, since it assumes the existence of the RTM for test cases. Related work on this

topic has already been discussed in Section 4.2.

5.8 Conclusion

Requirements traceability is an important and active research area that aims to link

requirements to different software artifacts, such as source code, test cases, and design

models. Traceability has many benefits including prioritizing requirements, estimating

software change impact, proving system adequacy, validation, testing and understanding

the system, and finding reusable elements in the system [69, 137].

This chapter focuses on the RT problem in tests. Testing is an important step in

the software development lifecycle to improve the quality of the final product. Empirical

evidence shows that in many systems, the amount of testing code produced is comparable

to the amount of source code of the system [149, 107]. Hence, finding traceability links

in tests has gained ever more importance. Test-traceability has many benefits including

monitoring of testing accuracy and completeness with respect to requirements [135],

understanding the system by looking at existing test cases as exemplars and prioritization

of testing efforts [69].



122

In this chapter, we propose that providing an enhanced RTM is beneficial for

stakeholders and propose a novel method for identifying which requirement a test case is

specifically targeting to cover/test. Our approach mines the intent of such tests from a

given set of requirements trace links on test cases by ranking the requirements a test case

is exercising and providing humans with an easily identifiable ranked suggestion list of

requirements for each test case. We propose to take the next step and think that the RTM

(or a variant of the RTM) should include only the test intents, because conceptually that

is what developers are interested in in the RTM.

Finally, we provide tool support to find test intents as a by-product of automated

software development processes, such as TDD and continuous integration.

The work in this chapter, in full, is a reprint of the material as it appears in:

“Celal Ziftci and Ingolf Krüger. Test Intents: Enhancing the Semantics of Requirements

Traceability Links in Test Cases. In Proceedings of the 28th ACM Symposium On

Applied Computing, pages 1272-1277, Coimbra, Portugal, 2013. ACM.” The dissertation

author was the primary investigator and author of this paper.

5.9 Future Work

In test cases that test the interaction of multiple requirements, if such interactions

can first be detected, our technique can be improved to provide better rankings.

Given accurate and complete test intents, many further research possibilities

exist: using the test intents to provide prioritization of the analysis of failing tests; and

minimization of test suites based on test intents.



Chapter 6

Automatically Mining Requirements
Relationships From Test Cases

Requirements relationships express conceptual dependencies, constraints and

associations among the requirements of a software system [122]. Examples of these

relationships are dependencies, a requirement needed by another one; and hint-relations, a

requirement being frequently used in conjunction with another requirement [122, 47, 36]

(hence, when used, it hints at the other requirement).

In this chapter, we propose a new technique to automatically mine requirements

relationships from existing test cases using features. This technique builds on the work

in Chapter 4, and it works under the assumed relationships between requirements and

features described in Section 2.2.4.

6.1 Introduction

Requirements relationships represent different types of associations between

requirements [122]. Two common types of such associations are dependency and hint-

relation [122, 47].

Definition 6.1.1 (Requirement Dependency). A requirement dependency is a tuple (r1,

r2) such that r2 depends on r1 if and only if r1 must be exercised before r2 for r2 to

123
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Figure 6.1. Dependencies between requirements of the Chat System.

behave correctly.

An example from our Chat System is the dependency relationship between

requirements connect, sign-on, send-message and sign-off (shown in Figure 6.1):

send-message requires sign-on, and sign-on requires connect, because to sign on

and create a session, one needs to first connect to the server; and to send a message to

another chat client, one needs to first sign on successfully. Similarly, sign-off depends

on sign-on and connect.

Definition 6.1.2 (Requirement Hint-Relation). A requirement hint-relation is a tuple

(r1, r2) such that r1 and r2 are in a hint-relation if and only if (r1, r2) is not a requirement

dependency, and r1 and r2 are typically used together.

Using hint-relations, understanding a requirement potentially helps understanding

the other, and it becomes easier to estimate the impact of change in one requirement on

the other requirements.
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Figure 6.2. Hint-relations between some of the requirements of Apache Pool [3].

As an example, consider Apache Pool [3] (one of the case studies we used). This

is a library that provides resource pooling, where a limited number of resources exist and

the customers of the pool can check-out and check-in objects as they need them. It is

typically used to pool resources that are expensive to create and destroy (such as database

connections), to avoid the overhead associated with those lifecycle activities. Figure 6.2

shows hint-relations between some of the requirements of this library. Pool provides a

maximum size to limit the number of resources (max-size requirement). One can decide

on what happens when the pool is full and a consumer asks to check-out a resource, the

action-on-full requirement, (such as block the consumer call, or throw an exception).

Similarly, if “block the consumer’s call” is the action chosen, then the pool provides a

way to specify for how long to block the call (timeout-on-block requirement). These

requirements are not strictly dependent on each other, i.e. setting one does not necessarily

require setting the others (since there are defaults for each of them). However, they

are closely related to each other, and when a developer tries to understand one of them,

knowing that these requirements are related can help him during comprehension, since

it is expected that the implementation of these requirements are related to and possibly

interleaved with each other.
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Identification of requirements relationships in a system’s domain is important

in several aspects. During the design and maintenance of a system, understanding

requirements in isolation is typically not enough, since requirements interact with or

depend on each other, and making a change on one requirement may have impact on

other requirements [27, 33, 91, 36, 124].

During the design phase, requirements relationships help ensure that the system

will behave correctly by exposing potential conflicts between requirements to designers

[60]. During maintenance, they help developers determine if a change on the system will

create conflicts that didn’t exist before [60, 33, 91]. In all stages of the software lifecycle,

they help developers comprehend a requirement along with its dependencies and the other

requirements it typically interacts with before a maintenance task is performed [153, 80,

117, 124]. Finally, during all stages of the software lifecycle, they help customers see an

overview of requirements, support design and architecture decisions about the evolution

of the software system and prioritize development efforts [143, 136, 131, 36].

Requirements relationships are typically modeled during the requirements anal-

ysis stage. Similar to other software artifacts, such as source code, test cases and

documentation, the system’s requirements relationships model evolves during mainte-

nance of and updates to the system. The benefits of the knowledge about requirements

relationships, described above, are possible only if the requirements relationships model

is accurate and up-to-date. Requirements relationship models can be manually maintained

as software evolves. However, it is labor-intensive, time-consuming and error-prone to

acquire and maintain such software artifacts. Furthermore, without disciplined develop-

ers, the model gets out-of-date over time during maintenance [69, 99, 34]. Therefore,

retrieving and maintaining the relationships model via an automated process is important

and convenient.

In this chapter, we propose to automatically reverse engineer requirements re-
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lationships using existing test cases, such as unit tests, integration tests, acceptance

tests and system tests. Since the effort spent on testing and its cost in the development

process is substantial [107, 149, 74], we propose using this investment to reverse engineer

requirements relationships from the test cases automatically.

6.2 Related Work

Previous research exists on automatically finding requirements relationships.

There are approaches that use scenarios to exercise requirements on the actual system

[130, 95]. These approaches execute the scenarios of the requirements on the system.

While scenarios are executed, they track object instantiations [130] and object aliasing

[95], i.e. how objects are passed in the system between components (classes, methods)

using a profiler (or a similar technology). These approaches propose that if an object that

is created during the execution of a requirement is used in another requirement during its

execution, then there is a direct dependency of the latter requirement on the former. These

methods are successful in finding requirements dependencies. However, they have some

shortcomings. First, since they track objects, they only work for systems implemented

in object oriented languages; not for other types of languages such as functional or

procedural languages. Second, they are sensitive to the implementation of the system

since they rely on the flow of objects. They may report non-existing dependencies and

hint-relations due to sharing of non-critical utility objects in the system, and they may

miss some relationships since not all relationships require sharing or flow of objects in

the system.

A different family of approaches to automatically retrieve requirements relation-

ships also uses scenarios to represent requirements. Similar to the previous ones, they

execute the scenarios and collect execution traces as they execute [60, 117]. Unlike

the previous methods, they trace the components executed, such as class and method
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names. They propose that if the components observed in the execution of a requirement

are a subset of the components observed in another requirement, the latter requirement

is said to have a dependency on the former one. An advantage of these approaches

is that they not only work on object oriented systems, but also other types of systems,

because they don’t use object instantiation and flow to determine dependency. One of

the disadvantages of these approaches is that observing the same components may not

be sufficient to conclude the existence of a dependency. If the common methods for the

first requirement are executed in a different order than the second one, this may point

to a different requirement. Therefore, these approaches can be misguided, since they

only analyze the existence of the components, not their order. Another disadvantage of

these approaches is that they only detect dependencies; they cannot detect hint-relations

between requirements.

A common disadvantage to both of these approaches is in the way they use

scenarios. They require executable scenarios for each requirement, which, in some

systems, do not readily exist. Furthermore, unless they are supported with manual effort

(as in [60]), these approaches can retrieve trace links only for functional requirements of

the system. Finally, these approaches might miss some of the trace links, because they

only gather trace links on those parts of the system that are exercised by the scenarios.

These approaches assume representing each requirement with a single scenario. However,

some requirements might be triggered in multiple ways. As an example, consider the

Chat System: users are provided a graphical user interface, a command-line client and

programmatic access to the server. These approaches will need to choose only one

of these as a scenario. Therefore, it is inevitable to miss some trace links for some

requirements. This shortcoming can be gapped using our approach as described in

Section 4.4. In this approach, a single requirement can be represented with the use of

multiple scenarios, which avoids missing some requirements trace links.
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Another disadvantage of these approaches is that they are very sensitive to the

selection of scenarios. As an example, consider two of the Chat System’s requirements:

connect and sign-on. As explained earlier, sign-on depends on connect. During

the selection of scenarios, the scenario for sign-on should encapsulate the actions for

connect, too. Otherwise, neither the objects nor the components executed during its

execution will contain the objects or components for connect. Therefore, the described ap-

proaches will fail to detect the dependency. We propose that this makes these approaches

very sensitive to the selection of scenarios.

The method that we propose in this chapter builds on existing dynamic analysis

based requirements tracing methods to automatically find requirements relationships. We

already discussed the relevant body of research on requirements tracing and dynamic

analysis in Section 4.2.

6.3 Contribution

In this chapter, similar to the recent methods described in Section 6.1, we use sce-

narios to trigger features, extract feature markers (execution units that can represent each

feature), observe the feature markers in test cases as they execute, and find requirements

relationships automatically. Our work makes the following contributions:

• A new method to find dependencies and hint-relations between requirements. Our

method performs as good as or better than existing techniques on our case studies.

• A new method to find dependencies and hint-relations between requirements that

is broader in applicability. Unlike existing methods, our method is not sensitive

to the selection of scenarios used to exercise requirements. Furthermore, unlike

existing methods, our method is not limited to object oriented systems; it works

for all systems with a profiler available.
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• An automated process and tool support to reverse engineer requirements relation-

ships from a software system’s test cases as a by-product of automated software

development processes, such as TDD and continuous integration.

6.4 REQRELEX: Mining Requirements Relationships
from Test Cases

The work in this chapter partially builds upon previous work on tracing require-

ments in test cases described in Section 4.4.
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Figure 6.3 summarizes the inputs, flow and outputs of our approach. We imple-

mented a tool, REQRELEX —Requirements Relationship Extractor , to automate this

process. The first five steps in Figure 6.3 are identical to the steps detailed in Figure 4.4.

Steps after those are specific to the work described in this chapter. The rest of this section

explains those steps specific to the work in this chapter in more detail.

6.4.1 Mining Requirements Relationships

Once we find out which test cases execute which features (as described in Sections

4.4.1, 4.4.2, 4.4.3), we investigate the order in which features are observed in each test

case (Step 6 in Figure 6.3).

Based on this, we propose the following:

• If a feature fp is often observed before another feature fq, we deduce that it is

highly likely that fq depends on fp.

• If two features fp and fq are often executed in the same test case (but in possibly

different orders in different test cases), we deduce that it is highly likely that fp and

fq have a hint-relation, i.e. they do not depend on each other, but they are typically

used together.

As an example, consider the feature markers for connect and sign-on, and the execution

trace for the test testConnectAndSignOn:

connect : [m2]

sign-on : [m4]

testConnectAndSignOn : (m2,m4,m8,m16,m46)

We observe that in testConnectAndSignOn, connect is executed before sign-on
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(because m2 comes before m4). If this is observed in many other test cases, we propose

that sign-on likely depends on connect. Similarly, if two features are observed in many

test cases, but in different orders (i.e. in some, one of them precedes the other, while in

others the reverse happens), we propose that they likely have a hint-relation. In summary,

to find such relationships between requirements, we analyze the execution traces of all

test cases and look for statistically significant correlations between features observed

together in test cases (Step 6 in Figure 6.3).

For readers with a background in data mining, the technique we use here is a

modified version of the Apriori Method[14] used to perform frequent item set mining[13]

where we only count item sets of size two and we also take into consideration the order

of items to be mined.

6.4.2 Minimizing the Number of Requirements Dependencies

Once this analysis is performed on the execution traces of test cases, there will

likely be many requirements dependencies discovered due to the transitive nature of

dependence. As an example, consider the requirements from our Chat System: connect,

sign-on, send-message. As described earlier, send-message depends on sign-on,

which depends on connect. In such a dependence relationship, it is not necessary

to explicitly document that send-message depends on connect, since that is already

implied due to transitivity. In our analysis of the test cases, there will be many such

dependencies discovered explicitly (due to the nature of the analysis performed in Section

6.4.1). Unless such implicit transitive relationships are discarded, there will be an

overwhelming amount of information for stakeholders to consume. For this reason, we

build a graph on the requirements dependencies we discover, and we apply transitive

graph reduction to discard the implicit dependencies (Step 7 in Figure 6.3). This provides

a much clearer picture of the dependencies for developers (see Figure 6.4 for an example
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Figure 6.4. Sample results on minimizing the number of dependencies found in the Chat
System via transitive reduction. This graph is a reduced version of the one shown in
Figure 6.1.

of how the dependencies in Figure 6.1 look like after reduction).

This reduction is not performed for hint-relations, since hint-relation is not

transitive like dependence.

6.4.3 Tool Support

For our approach, we provide automated tool support that can be integrated into

automated software processes (such as continuous build and TDD). As an example, our

tool can be run as a task similar to running test cases and providing code coverage in

a continuous build system. Execution traces for each feature and execution traces for

tests are the inputs to our system. Given these inputs, our tool outputs the requirements

relationships. For an example, see Figure 6.4 where a portion of the automatically

retrieved requirements dependencies are output by REQRELEX for the Chat System.
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Table 6.1. REQRELEX case study properties.

Case Study # Total
Relationships # Dependencies # Hint-Relations

Chat System 28 26 2
Apache Pool [3] 9 3 6

Apache Commons CLI [1] 21 3 18

6.5 Evaluation

To assess the validity of our approach, we used three of our case studies discussed

in Section 2.3: the UCSD Chat System, Apache Pool [3], and Apache Commons CLI [1].

Table 6.1 summarizes the statistics relevant to requirements relationships for each project.

To find the baseline for our evaluation, we asked two developers to find the dependencies

and hint-relations for each case study, and compared their responses. When there was a

conflict, we left out that relationship from our baseline.

To compare our results, we implemented two recent techniques for automatic

detection of requirements relationships: object flow analysis of Salah and Mancoridis

[130] and Lienhard et al. [95] (which we call Salah’s approach in the rest of this chapter),

and scenario analysis of Egyed [60] (which we call Egyed’s approach in the rest of

this chapter). Salah’s approach [130, 95] tracks the flow of objects as scenarios are

executed and proposes that: if a feature uses objects created by another feature, there is

a dependency between them; if two features share usage of some objects, they have a

hint-relation. Egyed’s approach [60] analyzes the scenarios themselves: if the scenario

of a feature contains all components of another feature, then the former depends on the

latter.

The next two sections explain the input preparations of the case studies for

REQRELEX, Salah’s approach [130, 95] and Egyed’s approach [60].
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6.5.1 Input to REQRELEX

As input to REQRELEX, we identified requirements for each case study (Step 1

in Figure 6.3), created scenarios for each case study (Step 1 in Figure 6.3), and finally

gathered execution traces for scenarios and test cases (Steps 2 and 4 in Figure 4.4

respectively) as described in Section 2.3.

6.5.2 Inputs to Other Approaches

For Salah’s approach [130, 95], we tracked objects when they are instantiated

and then used elsewhere using their location in the heap. This ensures that we follow

both the flow of objects [130] and any aliasing effects [95].

For Egyed’s approach [60], we used the same scenarios and their execution traces

that we prepared as input to REQRELEX.

6.5.3 Evaluation Criteria

We use precision, recall and the f-measure introduced in Section 2.4.1 as the

metrics to measure the success of each technique. In the context of finding requirements

relationships, the “relevant” relationships are the actual ones, i.e. the ones that we try

to find. “Retrieved” relationships are what an approach suggests. Precision and recall

correspond, respectively, to accuracy and completeness of the retrieved requirements re-

lationships compared to the relevant relationships. On finding requirements relationships,

it is important to obtain a high f-measure, because that implies finding both a low number

of false positives and a low number of false negatives.

6.6 Discussion

Table 6.2 summarizes the case study results for all approaches: Salah’s approach

[130, 95], Egyed’s approach [60] and REQRELEX. We provide precision, recall and
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f-measure values for each approach on the respective types of requirements relationships

they support. For REQRELEX and Salah’s approach, we provide results for both require-

ments dependencies and hint-relations as well as a combination of the two (combined).

For Egyed’s approach, we only provide requirements dependency results, since it only

provides dependency relationships for requirements. During our comparisons, we use

the f-measure since it incorporates both precision and recall with equal weight.
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Table 6.2 contains the results of two different experiments we performed: In

the first experiment (the first three rows for each case study), the inputs are prepared in

conformance to what each technique expects as described in Section 6.4. In the second

experiment (rows four and five for each case study, where each technique is marked with

a *), the input is modified to demonstrate a shortcoming of the existing techniques on

scenario selection. Each experiment is discussed in detail below.

As discussed in the related work section, Salah’s approach [130, 95] might

produce false positives since object sharing or flow does not always imply that there are

relationships between requirements (but rather in their implementations). It may also

result in false negatives, since requirements relationships may exist in systems even in

the absence of object interactions. These are observed in our case studies (since precision

and recall are not equal to 100%). Egyed’s approach [60] should not have false positives

if scenarios are properly selected (hence 100% recall). However, it can produce false

positives, since it only investigates the existence of components in execution traces, not

the order in which they are executed in scenarios. These are also observed in our case

studies.

Below, we provide a discussion of how REQRELEX compares with Salah’s

[130, 95] and Egyed’s [60] approaches in the first experiment (first three rows for each

case study).

First, we compare our results with Salah’s approach [130, 95] (rows 1 and 3 in

Table 6.2 for each case study). We provide combined metrics that show how successful

each approach is on finding a relationship between requirements without distinction

on whether it is a dependency or a hint-relation. Based on the results of the case

studies, REQRELEX performs better overall on finding the relationships before they are

categorized as dependency or hint-relation on all case studies.

On finding hint-relations, REQRELEX performs very close or better on the case
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studies that have higher number of hint-relations (Apache Pool [3] with 6, and Commons

CLI [1] with 18), while it performs worse on the Chat System which has only 2 hint-

relations. Upon investigation, we observed that REQRELEX categorizes those two

hint-relations as dependencies because the features in both are stylistically used in a fixed

order by the developers in test cases. Overall, however, REQRELEX achieves comparable

or better results compared to Salah’s approach [130, 95] since it provides very close

or better results on those case studies with a higher number of hint-relations. Overall,

however, none of the approaches performs well on detecting hint-relations (compared to

dependencies).

On finding dependencies (first three rows for each case study in Table 6.2), Salah’s

approach [130, 95] performs worse on our case studies compared to both Egyed’s ap-

proach [60] and REQRELEX. Egyed’s approach [60] and REQRELEX perform very

similarly on all case studies with small differences in their f-measures. Overall, RE-

QRELEX achieves comparable or better results compared to Egyed’s approach [60], the

state-of-the-art, in our case studies.

Next, we provide the results of another experiment (rows four and five for each

case study in Table 6.2) we performed on the same case studies to show that REQRELEX

is resistant to the selection of scenarios, unlike Egyed’s approach [60] (we do not

provide results for Salah’s approach [130, 95] here, because there is no way to perform

the experiment without fundamentally changing Salah’s algorithm since it depends on

object flow). Scenario selection and gathering the execution traces of scenarios are

very important steps that determine the success of dynamic analysis techniques. Since

scenarios are typically created by developers manually, the process is open to mistakes.

Therefore, it would be very beneficial for developers to use a technique that is somewhat

resistant to such mistakes. In our experiment, we purposefully modified the collection

of the execution traces in our scenarios for each requirement so that dependencies are
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not explicit right in the execution traces. As an example, consider the two requirements

connect and sign-on from the Chat System: sign-on has a dependency to connect.

Therefore, when the components of the scenarios for these requirements are collected,

the execution traces for sign-on should contain all components in the execution traces

of connect. However, when developers create scenarios for requirements and collect

execution traces of each scenario, they may only include the parts relevant to sign-on

in its execution traces (purposefully or by mistake) and leave out the ones relating

to connect. This is actually what is expected of developers during feature location

as discussed in Section 4.2, which is the opposite of the expectation from them to

find dependencies. For Egyed’s approach [60] to find the dependencies properly, all

execution traces should be collected as described above (i.e. dependent requirements

should explicitly contain the execution traces of their dependencies). For REQRELEX,

however, this is not a necessity, because it doesn’t analyze the collected execution

traces of scenarios to mine requirements dependencies. Instead, it uses those to find

feature markers, and uses the test cases to mine the dependencies. Since REQRELEX

uses probabilistic ranking on choosing feature markers, we argue that it will likely still

choose good components to represent each feature, and be very resistant to such mistakes

on scenario selection. Rows 4 and 5 in Table 6.2 for each case study show the same

experiments run again to find requirements relationships. As the case study results

suggest, REQRELEX obtains almost the same results, while Egyed’s approach [60] fails

to find any of the dependencies in this new experiment, as expected.

Finally, Table 6.3 summarizes the applicability of each approach with pros and

cons. Salah’s approach [130, 95] only works on object oriented systems since it relies

on object flow and aliasing. On the other hand, Egyed’s approach [60] and REQRELEX

work for all systems with a profiler available. Egyed’s approach [60] is very sensitive to

the selection of scenarios, while REQRELEX is resistant to it. And finally, REQRELEX
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Table 6.3. Comparison of the methods compared with REQLRELEX

Salah [130, 95] Egyed [60] REQRELEX
Requires scenarios Yes Yes Yes
Works on object-
oriented systems Yes Yes Yes

Works on systems that are
not object oriented No Yes Yes

Resistant to
scenario selection — No Yes

Works in the absence
of test cases Yes Yes No

depends on the existence of test cases, while the other approaches do not.

In the rest of this section, we discuss advantages and limitations of our approach.

Our approach is independent from the programming language with which the

system is built, unlike Salah’s approach [130, 95] which only works for object oriented

systems. The only requirement of our approach is that it uses a profiler to gather

execution traces, and the components in the execution trace are of the same type for

tests and scenarios. Our tool currently works for Java [68], but it is easily extensible to

work for any other language (such as object oriented, functional, procedural) for which a

profiler is available (such as C, C++, python, perl, Smalltalk).

An advantage of our approach is that, even though it finds dependencies and

hint-relations currently, it can easily be extended to find other types of relationships that

can be deduced from test cases. We argue that test cases are a rich source of information

that contain implicit knowledge about requirements relationships (such as dependencies

and hint-relations as shown in this chapter). Therefore, they can be used for mining other

types of requirements relationships.

Another big advantage of our approach is that, scenarios can be provided as

test cases themselves. When the source code of the system is refactored or changed,

developers fix tests to keep them passing after the changes. Since scenarios are also test
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cases, developers will fix them too and scenarios will always stay up to date. Although this

demands some effort from developers, the automatically mined requirements relationships

will stay up to date as software evolves.

Another advantage of our approach is that it is resistant to the selection of

scenarios. Scenario selection typically determines the success of dynamic analysis

techniques, so it is beneficial for developers to use a method that is resistant to the

selection of scenarios. This decreases the burden on developers by tolerating some

mistakes.

Dependence on test cases might be listed as a disadvantage of our approach.

However, although there may be some systems without test cases, we argue that it is

commonplace for many production systems to have test cases to ensure correct behavior

[107, 149]. Therefore we argue that our technique can still be successfully used for many

production systems.

One limitation of our approach is how it uses test cases to find dependencies: If the

developers of a test suite have a certain style such that they always exercise a requirement

before another, even though there is no dependency between them, REQRELEX may

wrongly deduce that there is a dependency. In fact, this was the reason that REQRELEX

did not obtain 100% precision on the Chat System case study. This vulnerability can be

fixed by using mutations to change the order of the exercised requirements in the test

cases automatically, and checking if dependencies found are actual dependencies. We

leave this as future work.

Another limitation of our approach is on finding requirements relationships

overall. If the test suite does not contain test cases that exhibit the conceptual relationships

(i.e. missing test cases), REQRELEX will miss them (hence the recall numbers are not

100% in our case studies). Similarly, the success of our approach is limited by the quality

and properties of the test cases in the test suite. This is exhibited by the differences in the
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results across different case studies. These can be partially mitigated by complementing

REQRELEX with one of the existing techniques [60, 130, 95].

Another limitation of our approach is that it only applies to functional require-

ments currently. Our approach can be complemented with manual effort, as done in [60],

to detect relationships for non-functional requirements (robustness, security), which we

leave as future work.

Finally, our approach builds upon scenario based dynamic analysis techniques

[119]. Therefore, it exhibits the same limitations for these techniques described in the

related work section, such as missing coverage. This can be mitigated using multiple

scenarios for each requirement as described in Section 4.4. to increase the coverage of

dynamic analysis.

6.6.1 Threats to Validity

In this section, we discuss any issues that might have potentially affected our

case study results and therefore may limit the interpretations and generalizations of our

results.

The first threat is the number and type of the case studies we used and the extent

they represent software systems used in practice. The Chat System is software used in

a class at UCSD, and Apache Pool [3] and Apache Commons CLI [1] are open-source

software commonly used in production. We picked our case studies from different

domains to mitigate this threat. This threat can be reduced even further if more software

systems of varying size from more domains are used for further experiments.

Another threat is the selection of functional requirements and scenarios to obtain

execution traces for REQRELEX. We are not domain experts of the software used in

the case studies. Therefore, we cannot claim that we found all requirements and our

scenarios capture them best. Thus, depending on the chosen requirements and scenarios,
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the results may differ.

Another threat is the preparation of the ground truth for requirements relationships

in our case studies, which we performed manually. To mitigate risk, two different

developers performed these tasks and the results are confirmed comparing their responses.

However, it is still possible that mistakes have happened.

6.7 Conclusion

Requirements relationships describe different conceptual dependencies, con-

straints and associations between the requirements of a system [122].

Determining requirements relationships in a system is important on performing

different tasks in the different lifecycle stages of the development of the system. During

design and maintenance, requirements relationships help on determining possible require-

ments conflicts [60], and determining whether making a change on a requirement may

have an impact on other requirements [27, 33, 91, 36, 124]. During maintenance, they

help developers on program comprehension before a requirement is modified to help them

understand the implications and investigate the related requirements that may help during

the maintenance activity [153, 80, 117, 36]. During all stages, they help stakeholders see

an overview of requirements to help with design and architecture maintenance decisions

[143, 136, 131, 36].

The benefits of the identification of requirements relationships, described above,

are possible only if the relationships are kept accurate and up-to-date. Acquiring and

maintaining the relationships manually is error prone and time consuming [69, 99, 34].

Therefore it would be very beneficial to retrieve and maintain them automatically.

In this chapter, we propose retrieving and maintaining two types of requirements

relationships automatically using existing test cases: dependencies and hint-relations. A

requirement is dependent on another if it requires that requirement to be exercised before
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itself to behave properly. There is a hint-relation between two requirements if they tend

to be used together, but are not necessarily dependent on each other.

Testing is an important part of many software development processes, and a

considerable amount of test code is produced in production systems based on empirical

studies [107, 149]. We propose making use of this investment to automatically mine

requirements relationships from existing test cases.

In this chapter, we build upon existing literature [60, 61, 119] to trace features in

source code via scenarios. Once the features are traced in source code, we use highly

relevant traces in the source code to find which test cases exercise which features. Finally,

after identifying which test cases exercise which features, we perform statistical analysis

to find relationships between requirements. We propose that if a requirement is always

observed before another one, then there is a dependency of the latter requirement to the

former. Similarly, if two requirements are observed in different orders in different test

cases, but tend to be observed together many times, we then propose that they have a

hint-relation.

Our approach achieves as good as or better precision, recall and f-measure values

on the case studies we performed compared to the currently known approaches on finding

requirements dependencies and hint-relations [60, 130, 95].

Our approach has many benefits: unlike existing methods [130, 95], it works for

both object oriented systems and for any other type of systems with a profiler available.

It is also resistant to the selection of scenarios, unlike existing techniques [60]. It is

also fully automated with no need for human intervention during its analysis. The only

requirements, similar to existing research [60, 130, 95], are to have a profiler available

for the system to be analyzed and the creation of scenarios that represent requirements.

Finally, we propose an automated process and tool support, REQRELEX, to

automatically find requirements relationships as a by-product of automated software
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development processes such as continuous integration and Test-Driven-Development.

The work in this chapter, in full, is currently being prepared for submission for

publication of the material. The dissertation author was the primary investigator and

author of this material.

6.8 Future Work

If the test suite was developed stylistically to always exercise two requirements

that do not depend on each other in the same order, our technique can be misguided

and detect such requirements pairs to have a dependency. This can be mitigated by

using controlled mutations to check if an automatically mined dependency is indeed a

dependency or not.

Our technique currently only finds two types of relationships. It can be extended

to make use of test cases to find more types of requirements relationships.



Chapter 7

Requirements Testing Progress: How
Well Does the Test Suite of a System
Cover Its Requirements?

In this chapter, we build upon the work described in Chapter 5 to find intents of test

cases, and propose a new view that shows the progress of testing from the requirements

perspective.

7.1 Introduction

Requirements Engineering extends across all steps in the development process,

since requirements often change and new requirements come in. It is critical to identify

and elicit requirements as early as possible in the software development lifecycle to

minimize costs [30].

Once requirements are determined, the system is built in accordance with and to

fulfill them. It is common practice to prioritize requirements, which typically drives the

development and testing efforts [25, 140].

As development continues (or once it is completed), another important step of

the software development lifecycle is testing. Testing uncovers bugs, demonstrates

that the product works as expected and assures customers that the system conforms to

148
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requirements. Based on the prioritization of requirements, it is natural to consider that

features for those requirements deemed more important (as an example, features that are

expected to be used more by the stakeholders) should be tested more than those deemed

less important.

It is reported that the testing effort incurs approximately 40% —80% of the

total development cost of the system [72]. If the testing phase is not monitored, more

important features may be tested insufficiently; while testers may invest more time on

less important features. This has a direct impact on the quality of the system. Therefore,

it is critical to prioritize testing efforts according to the prioritization of the requirements

[25, 140].

There are metrics that help monitor the progress of the testing phase, such as

code coverage [110] and MC/DC (modified condition/decision) coverage [128]. These

metrics demonstrate which parts of the system still remain to be executed by test cases,

and how far off the testing phase is to completion from a source code perspective (i.e.

to execution of all statements or decision paths in the source code). Although these are

useful metrics, they provide information only on the source code level. They do not yield

any information on the testing progress from a “requirements” perspective.

As motivation for our work, Figure 7.1 shows the number of test cases imple-

mented by the developers for each requirement in Apache Pool [3]. Each bar in this

chart corresponds to a requirement, and the height of the bar shows how many tests were

implemented for a requirement. Given the information for Apache Pool [3], one reason

for the difference in the number of tests for different requirements might be the priority of

requirements. As an example, borrow-object and return-object have the most test

cases, and inspecting the documentation of Apache Pool [3], these are the most important

requirements. Therefore, developers might have implemented the most number of tests

for these two requirements. On the other hand, with this reasoning, the requirements
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Figure 7.1. The number of test cases implemented by the developers for each requirement
in Apache Pool [3]. Each bar in the chart corresponds to a requirement, and the height of
the bar shows how many tests were implemented for a requirement.

towards the left of the chart seem to be the ones that are not as important as the ones

towards the right. Therefore, the number of tests implemented for them is less.

However, investigating the number of bugs reported for Apache Pool [3], as

shown in Figure 7.2, it turns out that some of the requirements that had less number of

tests had more bugs reported about them. Importantly, the requirements borrow-object

and return-object had a high number of bugs reported, which conforms to our initial

reasoning that they were important requirements. Therefore, users of this library made

heavy use of these requirements and they found bugs related to them. Furthermore, some

of the requirements that had less number of tests have many reported bugs too. We
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Figure 7.2. The number of bugs reported for each requirement in Apache Pool [3]. Each
bar in the chart corresponds to a requirement, and the height of the bar shows how many
bugs were reported for a requirement.
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consider this as a sign that users of this library made heavy use of those requirements,

and they found bugs for these requirements. Given that these requirements also had

less tests, we consider this to be a natural outcome. Our work in this chapter provides a

requirements level view over the testing phase to uncover the amount of testing performed

for each requirement.

In this chapter, we propose a new view to demonstrate the testing progress on the

requirements level. With this view, priorities of requirements can be associated with the

effort put in testing each requirement. Based on this, stakeholders can understand which

requirements were tested insufficiently, and allocate testing resources accordingly. We

propose to answer the following questions with this view:

• What is the test suite focused on? Does it adequately test all requirements? How

far off is the test suite from an ideal position with respect to testing all requirements

adequately?

• If some requirements are more important than others, is the testing team investing

the respective amount of effort for each requirement?

7.2 Contribution

To answer these questions, we make use of the RTM between requirements and

test cases to estimate which requirement each test case targets to test (described in

Chapter 5), and then use a weighted estimation algorithm to find the testing progress

view, a view that shows the coverage of test cases over requirements. Our work makes

the following contributions:

• A new view that shows the test suite’s coverage of the requirements.
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• A new method to automatically reverse engineer test suite coverage for require-

ments from existing test cases.

• A method to validate the proposed view.

• A tool to automate this process.

7.3 Related Work

For the purposes of the work in this chapter, we use the RTM between require-

ments and test cases, as exemplified in Table 2.3. In this RTM, rows are test cases,

columns are requirements, and the ticks represent that a test case executes a requirement.

Our work in this chapter assumes that a high quality RTM exists for test cases.

This can be obtained from the project if it is already maintained manually or via some tools

by the stakeholders. In the case that it does not exist at all, one of the existing requirements

traceability techniques in the literature [100, 60, 98] can be used to automatically reverse

engineer it. These techniques trace requirements in test cases, i.e. they find which test

cases execute which requirements. The work we describe in Chapter 4 is an example of

these techniques.

Even though the literature on this subject is covered in detail in Section 4.2, we

briefly review related literature here for completeness. In [100, 98], description of the

requirements (as plain text) and the code of the test cases (again as plain text) are used.

They assume that the documentation and code contain same or similar terms, and this

can be exploited to find closeness between the requirement documentation and the test

case. Given the description of a requirement and the test case code, i.e. two documents

including plain text, terms are extracted from both using lexical analysis. Then the terms

in both are compared to find how similar the two documents are. They propose that, if

there are many similar terms in the two documents, the test case is said to execute the
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requirement. Applying this for all requirements and test cases, an RTM as shown in Table

2.3 is obtained that shows which test cases execute which requirements. An advantage of

these techniques is that since they rely on textual similarity, they can find requirements

traces not only in test cases, but also in other software artifacts such as source code

and architecture documents. Another advantage is that these techniques work for both

functional and non-functional requirements. However, since these techniques rely on text

similarity, they may have low accuracy (many false positives). This is due to the fact that

naming conventions and documentation in software projects tend to get out of date as

software evolves. Therefore, relying on textual similarity yields less accurate results over

time. Another disadvantage of these techniques is that, requirements documentation may

not have been existent at all, so it may be difficult to apply these techniques in the first

place.

Another technique that works on finding requirements traces in test cases is

described in Chapter 4. It uses scenarios, actions that trigger requirements, to execute

functional requirements on the system. As scenarios execute, they profile the system

to gather execution traces that contain information about the executed components (e.g.

class and method names for object oriented systems). Then they find specific components

that can represent each requirement, i.e. components that are observed in one requirement

but no others. Once these specific components are found for each requirement, test cases

are executed and profiled similar to scenarios. If the execution trace of a test case contains

the specific component chosen for a requirement, that test case is said to execute that

requirement. Performing this on all requirements and test cases, they find an RTM as

shown in Table 2.3. These approaches require creating scenarios for requirements, which

means extra work for developers. However, they yield more accurate results compared

to the previous family of approaches, since they use a more accurate representation of

requirements: an executable one compared to a textual description. These approaches
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do not require any documentation for requirements. A disadvantage of these approaches

is that they only work for functional requirements. These approaches perform dynamic

analysis, so they may miss the tracing links on the parts of the system that are not

executed by the scenarios.

Once the RTM is captured from the project, or by using one of the techniques

in the literature as described above [100, 98], our technique can automatically reverse

engineer the testing progress from existing test cases.

Although not directly related to our work, there has been extensive research on

finding testing progress of a software system from different perspectives.

An S-curve [83] is used to monitor the progress of the execution of a test plan. As

discussed in the introduction section, it works with the premise that there is a test plan,

and it shows how close the testing efforts are to the actual test plan, along with how many

of the implemented tests pass and fail, and whether there is a delay in the testing efforts.

This can be used in the existence of a test plan produced before starting the testing phase.

However, this cannot be used in projects without a test plan.

Many other metrics exist to monitor the success of the testing efforts: defect

arrivals over time, defect backlog over time, test confidence, test efficiency [58], code

coverage [110], MC/DC coverage [128] and many more. Weyuker [146] analyzed some

of these metrics to discuss their adequacy to determine whether or not sufficient testing

has been performed. These metrics monitor the testing efforts from a success standpoint,

i.e. how much they help increasing the quality of the software built. While these are

all effective software testing metrics, they do not provide progress information from a

requirements perspective.

Although unrelated to this work, there is existing literature on extracting require-

ments level views for different aspects of a system. In [151], requirements are associated

with their overall scattering across source code components. In [85], a similarity metric
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is proposed to demonstrate how similar requirements are based on the closeness of their

implementations. These are not directly related to our work, but we list them here since

they also provide requirements level views on different aspects of software systems.

7.4 REQTESTPRO: Requirements Level View for
Testing Progress

REQTESTPRO —Requirements Level View for Testing Progress —is our tool that

automates the process of obtaining testing progress views from existing test cases on the

requirements level. Figure 7.3 summarizes the inputs, steps and outputs of REQTESTPRO.

The inputs are the RTM and numeric priorities for each requirement. Based

on the RTM, we first calculate a weighted-RTM where more weight is assigned to a

requirement in a test case if the test case targets to test that requirement.

Once all requirements are weighed for all test cases, we sum the total weight for

a requirement across all test cases, and divide it to the priority of the requirement. This

yields a “progress score” on how well that requirement has been covered by the test suite.

Finally, we display the progress scores for each requirement in an easy to under-

stand format.

In the rest of this section, we discuss each step in detail.

7.4.1 Step 1: Inputs —RTM and Requirement Priorities

As discussed in the earlier sections, our technique works under the assumption

that an RTM between requirements and test cases exists, or one can be obtained using

one of the techniques in the literature [100, 98].

We also take, as input, priorities for each requirement. These are simply numbers

that denote the importance of requirements with respect to each other. A higher number

means a more important requirement. To assign importance to requirements, existing



157

Figure 7.3. Inputs, steps and outputs of REQTESTPRO. The inputs are the RTM and
requirement priorities. The output is the testing progress view over requirements.
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Table 7.1. Priorities assigned to each requirement in the Chat System. A higher number
corresponds to a higher priority, i.e. a more important requirement.

Requirement Priority
connect 1.0
sign-on 1.0

send-message 1.0
sign-off 0.5

Table 7.2. Sample Requirements Traceability Matrix for the tests of the Chat System
(duplicate of Table 2.3 for convenience).

connect sign-on send-message sign-off

t1: testConnect X
t2: testConnectAndSignOn X X
t3: testSendMessage X X X
t4: testSignOff X X X

techniques in the literature can be used [40, 84, 129, 24]. For our running example, the

priorities we assigned for each requirement are shown in Table 7.1. A higher number

corresponds to a higher priority, i.e. a more important requirement.

7.4.2 Step 2: Find Weighted-RTM

Given an RTM, we make the following observation: test cases are typically

implemented to test and confirm that requirements work as expected. For this reason, a

test case t would be expected to execute a requirement r if it’s testing r, and would not

execute any other requirements unless they are required to be executed to be able to test

the behavior of r. Otherwise, a test case would contain redundant code, would be less

readable, and developers would need to invest more time on implementing the test case.

As an example, consider the Chat System: one of the tests for the Chat System is

testSendMessage (see Table 7.2). As its name suggests, it is implemented to test the

behavior of the requirement send-message. Based on the RTM (see Table 7.2), however,

it also executes the requirements connect and sign-on. This is because those two
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requirements need to be executed first to be able to test send-message (send-message

depends on sign-on, sign-on depends on connect). Furthermore, testSendMessage

does not execute sign-off, because it does not need to, to test send-message.

Based on this observation, we propose that in the test testSendMessage, since

the real target is send-message, testSendMessage should be considered a test case that

has more weight on testing send-message, and less weight on sign-on and connect

(still non-zero weights though since it still executes them). This step builds upon our

previous work on finding test intents described in Chapter 5 (finding the requirement that

a test case is aiming to test). However, the idea here is not to find a single requirement

for a test case as discussed in Chapter 5, but rather to assign weights to each requirement

executed by a test case.

We proceed in two steps:

1. Rank all requirements for a test case based on how likely each requirement is to be

the target;

2. Assign higher weights to more likely requirements, and lower weights to the less

likely ones.

For the ranking, we use Formal Concept Analysis [66], similar to what we have done in

Sections 5.4.1 and 5.4.2.

To assign weights, we use test cases as objects and requirements as attributes of a

formal context (see Tables 7.2 and 7.3). Then we find the concept lattice out of the formal

context, as shown in Figure 7.4. Finally, we perform a bottom-up traversal of the lattice

for each test case to rank the requirements. As an example, consider testSendMessage

again. If we perform a bottom-up traversal for it, the order in which we iterate the

attributes would be: send-message, sign-on, connect.

We would expect that FCA will perform well on ranking the requirements in the
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Table 7.3. Concepts in the formal context for the Chat System RTM given in Table 7.2

Concept (objects, attributes)
c1 ({t1,t2,t3,t4},{connect})
c2 ({t2,t3,t4},{connect,sign-on})
c3 ({t4},{connect,sign-on,sign-off})
c4 ({t3},{connect,sign-on,send-message})
c5 ( /0,{connect,sign-on,send-message,sign-off})

Figure 7.4. Concept lattice for the formal context shown in Table 7.3.
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Table 7.4. Weighted-RTM for the RTM given in Table 7.2 (geometric sequence base =
10)

connect sign-on send-message sign-off

t1: testConnect 1.00
t2: testConnectAndSignOn 0.09 0.91
t3: testSendMessage 0.01 0.09 0.90
t4: testSignOff 0.01 0.09 0.90

presence of a decent quality test suite. However, if the quality of the test suite is low, then

FCA will not perform as good, because it will be more likely to make mistakes during

ranking.

Once the ranking is performed, we assign weights to each requirement exe-

cuted by a test case. Considering our Chat System example, the requirements exe-

cuted by testSendMessage were ranked, from more important to less important, as:

send-message, sign-on, connect. Assuming that we use a geometric sequence (with

the geometric sequence base as 10, and the total sum of the sequence to be equal to 1) to

assign weights to requirements, the weights assigned would be:

connect : 0.01

sign-on : 0.09

send-message : 0.90

We perform a similar weighting for all test cases and requirements, and we call the

resulting RTM that has weights assigned a weighted-RTM. Table 7.4 shows the weighted-

RTM for the RTM shown in Table 7.2 (the base of the geometric sequence is 10).

7.4.3 Step 3: Calculating Progress for Each Requirement

Once we have the weighted-RTM, we calculate a progress score for each re-

quirement. This score shows how far off the testing of the requirement is, based on its
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Table 7.5. Notation used to calculate the progress scores in REQTESTPRO.

Symbol Description
m total number of requirements
n total number of test cases
r j the jth requirement
p j the priority (importance) of r j
ti the ith test case

R = {r j | 1≤ j ≤ m} the set of all requirements
wi j the weight assigned to r j in ti
Pj progress score for r j

priority.

For a system that has m requirements and n test cases, consider the notation in

Table 7.5. The progress score for a requirement is calculated by finding the total weights

assigned to that requirement across all test cases, and dividing the total to the priority of

the requirement. Formally, progress for a requirement (Pj) is defined as follows:

Pj =
I

n× p j
×

n

∑
i=1

wi j (∀ j : r j ∈ R) (7.1)

where:

I =
m

∑
j=1

p j

Pj represents the progress of the testing of requirement j compared to the other require-

ments. As an example, consider the priorities assigned to the requirements for the Chat

System shown in Table 7.1. In our example Chat System, I = 4. And:

Pconnect =
4

4×1
× (1.00+0.09+0.01+0.01) = 1.11
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Similarly, the progress score for each requirement would be:

P = [Pconnect,Psign-on,Psend-message,Psign-off]

= [1.11,1.09,0.90,1.80]

These scores summarize the test suite with the following reasoning:

• There is 1 test for each requirement (as observed in the names of the tests). There-

fore, the resulting progress scores should be close to 1 for those requirements with

a priority value of 1, and higher for those with a priority value less than 1.

• Even though each requirement has 1 test case, requirements executed more times

than others are assigned a slightly higher weight. As an example, connect is

executed in all test cases, so it has the highest score; while send-message and

sign-off were executed the least, hence have the lowest scores.

• The progress score of sign-off is higher than the others, because it was assigned

a lower priority, yet it has the same number of tests for it as the other requirements.

7.4.4 Step 4: Output

As discussed in the previous subsection, the output of REQTESTPRO is an m-

dimensional vector that shows the progress score for each requirement. For the Chat

System, the output would be:

P = [1.11,1.09,0.90,1.80]

For easier comprehension, we visualize this as a bar chart. The chart shows the respective

progress for each requirement compared to the expected baseline. Figure 7.5 shows such

a sample output for our Chat System example.
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Figure 7.5. Testing Progress visualized as a bar chart.

Here, the progress of each requirement is charted along with the baseline. Ideally,

all requirements should have a progress score equal to the baseline. Those that are

above have been tested more than needed, while those that are under have been tested

insufficiently.

7.5 Evaluation

In this section, we evaluate the usefulness of the proposed testing progress view

on case studies. We also discuss how to choose the parameters of our technique to yield

good results.

7.5.1 Case Studies

To evaluate our approach, we used three of our case studies discussed in Section

2.3: UCSD Chat System, Apache Pool [3] and Apache Commons CLI [1].
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Table 7.6. Properties of the case studies used in the evaluation of REQTESTPRO.

Case Study # Requirements # Test Cases
UCSD Chat System 16 20

Apache Pool [3] 16 77
Apache Commons CLI [1] 11 181

Table 7.6 lists statistics for each case study relevant to our evaluation. For all

of the case studies, we identified the requirements manually from their documentation,

source code and comments as discussed in Section 2.3. Similarly, we manually identified

which of the test cases in their test suites are implemented to test those requirements.

7.5.2 Evaluation Criteria

There exist metrics such as code coverage [110] and MC/DC coverage [128]

to monitor the progress of testing on the source code level. However, we propose a

metric to measure testing progress on the requirements level. Therefore, we evaluated

our approach by comparing the progress scores found by REQTESTPRO to the progress

scores obtained using ground truth that we prepared for each case study manually.

We prepared the ground truths for our case studies by manually inspecting the test

cases and identifying which requirements they test. When a test case tests the interaction

of two or more requirements, we listed them all and assigned equal weights to all of

them.

To evaluate our approach, we compare the progress score vector found by RE-

QTESTPRO with the progress score vector found on the ground truth for each case study

manually. We prepared the ground truths for our case studies by manually inspecting

the test cases and identifying which requirements they test. When a test case tests the

interaction of two or more requirements, we listed them all and assigned equal weights
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to all of them. As an example, the ground truth for the running example is:

Ptruth = [1,1,1,2]

since there is a single test case for each requirement (as one can observe looking at

test names). To evaluate our approach, we compare the progress score vector found by

REQTESTPRO with the progress score vector manually found on the ground truth for

each case study.

7.5.3 Evaluation Results

For evaluation purposes, we needed to devise a distance function between two

m-dimensional progress score vectors that would geometrically make sense.

A commonly used similarity metric is cosine similarity [138]. Given two vectors

i and j of the same size:

similarity(i, j) = cos(θ) =
i · j

||i||× || j||
(7.2)

where θ is the angle between the given vectors, and ||i|| is the L2 norm of the vector (i.e.

its length). Based on cosine similarity, angular distance is defined as:

angular–distance(i, j) = 1− cos−1(similarity(i, j))
π

(7.3)

Note that angular distance is a proper distance metric [92]. In our case, using angular

distance as the distance function makes sense, because progress scores represent the

progress score magnitudes in each direction in the m-dimensional space, and angular

distance measures how different the two vectors are in their angular direction. If two

vectors are roughly in the same direction, the test progress scores are close and their
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Table 7.7. Percentage distances of progress scores between those found by REQTESTPRO

and the ground truth*

Case Study % Distance to Ground Truth
UCSD Chat System 8.94%

Apache Pool [3] 26.32%
Apache Commons CLI [1] 25.73%
* all requirements are assumed to have the same priority, and

base of the geometric sequence is 10

angular distance is small.

In the rest of this chapter, when we use distance, we mean the angular distance

between what REQTESTPRO finds and the ground truth.

Table 7.7 shows the results of REQTESTPRO on the case studies, where all

requirements are assumed to have equal priority, and a geometric sequence with base 10

is used. The values shown are the angular distances of the testing progress scores found

by REQTESTPRO and the ground truth. The results suggest that REQTESTPRO finds

results within 8.94% —26.32% of ground truth.

Below are listed important points to be considered during our evaluation:

During our experiments, we use geometric sequences to assign weights to require-

ments for each test case (as discussed in Section 7.4.3). Whether using different bases

impacts the results, and why should be justified.

The distance function used for evaluation should geometrically make sense, and

ideally be independent of requirement priorities. This would make the results listed in

Table 7.7 independent of priorities used in the experiment.

Below, we ask evaluation questions (EQ) related to these and answer them.



168

EQ 1: Is the chosen distance function independent of priorities (importance)
assigned to requirements?

Having a distance function that is independent of assigned priorities would be

ideal. This would make sure the results of our experiments can be trusted even under

changes to priorities we assigned to requirements during our experiments. Angular

distance, however, does not have this property. Although geometrically it is intuitive

to find the distances in our experiments using it, it is dependent on the priorities. We

also considered other commonly used distance functions, such as Euclidean distance

[53], Mahalanobis distance [103], and Chebyshev distance [37]. However, none of these

distance functions were independent of priorities neither. Furthermore, they did not have

a bounded range (see EQ 2). Therefore, we opted to use angular distance, even though it

is dependent on priorities. However, to mitigate this factor, we asked another evaluation

question later on (see EQ 3) and performed experiments to answer it. There are other

candidate distance functions to be considered, which we leave as future work.

EQ 2: Does the distance function have a pre-defined upper and lower bound?

It is important to perceive the distance between the testing progress scores of a

case study and its ground truth (such as % difference). If the distance is not bounded,

then there is no way to analyze what a found distance value means compared to the

baseline. Angular distance does have a range: [0,π].

EQ 3: How dependent is the distance function on the requirements priorities?
Does it exhibit intolerable variations based on differing priorities?

Since the answer to EQ 1 is no, we wanted to test whether the distances found

using angular distance showed much variation under different priorities. We do this

by regression, i.e. experiments performed with random priorities many times. If the

variation between the distances is small within a case study (compared to the average
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Table 7.8. Minimum, maximum and average percentage distances of progress scores
between those found by REQTESTPRO and the ground truth in 100.000 regression runs.

Case Study Minimum
% Distance

Maximum
% Distance

Average
% Distance

UCSD Chat System 2.47% 24.77% 8.89%
Apache Pool [3] 10.45% 37.25% 24.77%

Apache Commons CLI [1] 11.28% 32.15% 23.81%

and the ones reported in Table 7.7), we can propose that the results we present in this

chapter can be relied upon.

For each case study, we performed 100.000 runs of the experiment with priorities

randomly chosen from 1 to 5. This is based on the prioritization scheme suggested

in RFC 2119 [32] and IEEE Std. 830-1998 [41], and in line with reported common

usage in practice [134, 93] (note that, REQTESTPRO supports any other types of priority

assignments as long as the priorities can be denoted as numbers).

Table 7.8 shows the minimum and maximum percent distances of what RE-

QTESTPRO finds and the ground truth at the end of 100.000 runs. The results suggest

that REQTESTPRO is within 27.18% —37.25% of the ground truth in the worst case, and

within 8.89% —24.77% on average. Furthermore, results for each case study suggest

that even though angular distance is dependent on requirements priorities, the range of

distances between what REQTESTPRO finds and the ground truths vary by 26.8% at the

most (in Apache Pool [3]), considering the difference between minimum and maximum

distances. Therefore, we propose that angular distance can be used as a distance function

for our purposes tolerably.

EQ 4: How much difference does the use of geometric sequences with different
bases make on assigning weights to requirements?

When the base of a geometric sequence is larger, the difference between two

consecutive weight assignments will be higher. Using a larger geometric base vs. a
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lower one would make a difference for those case studies where ranking works better.

As discussed in section 7.4.2, finding a good weighted-RTM depends on how well FCA

works on a case study. Therefore, it depends on the characteristics of the test suite.

Overall, if FCA works well for a case-study, using a higher geometric base would

result in a lower distance to ground truth; because this means assigning very high weights

to those requirements found by FCA to be more specific to a test case. This, in turn,

brings the automatically found weighted-RTM closer to the actual weighted-RTM (the

ground truth); hence the distance decreases. In summary, using a high geometric base

would improve results for a case study on which FCA performs well.

On the other hand, if FCA does not perform well on a case study, using a high

geometric base would reinforce the performance of FCA on the weights assigned in the

weighted-RTM. This, in turn, would drift the weighted-RTM found by REQTESTPRO

away from the ground truth; hence the distances would be expected to be higher for

higher geometric bases; while lower geometric bases would distribute the error margin

of FCA across found weights, and keep the weighted-RTM found as close as possible

to the ground truth. Therefore, the distance would be expected to be less. In summary,

using a high geometric base would worsen results for a case study on which FCA does

not perform well.

To confirm the idea proposed above, we investigated the case study results using

equal priorities for each requirement (reported in Table 7.8), with varying geometric

bases on assigning weights. Table 7.9 lists the results of the experiment reported in Table

7.7 with the same parameters, except with different geometric bases (in Table 7.7, the

base is fixed as 10).

The results in Table 7.9 confirm the hypothesis discussed above. First, based on

Table 7.7, REQTESTPRO performs better on the Chat System, while it performs worse

on Apache Pool [3] and Apache Commons CLI [1]. And conforming to the hypothesis
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Table 7.9. Percentage distances of progress scores between those found by REQTESTPRO

and the ground truth under varying geometric bases∗.

% Distance to Ground Truth
Geometric

Base
UCSD Chat

System Apache Pool [3] Apache
Commons CLI [1]

2 21.61% 24.56% 20.80%
3 15.57% 25.26% 22.10%
4 12.62% 25.60% 23.17%
5 11.06% 25.82% 23.93%
6 10.18% 25.98% 24.50%
7 9.65% 26.10% 24.92%
8 9.31% 26.19% 25.25%
9 9.09% 26.26% 25.51%

10 8.94% 26.32% 25.73%
. . . . . . . . . . . .
20 8.54% 26.62% 26.74%

* all requirements are assumed to have the same priority

discussed above, higher geometric bases yield better results for the Chat System, while

lower geometric bases yield better results for Apache Pool [3] and Apache Commons

CLI [1].

Overall, however, we propose using 10 as the geometric base considering that

the results for Apache Pool [3] and Apache Commons CLI [1] are not much worse than

using 2; while for the Chat System (where FCA performs well), the difference is more

subtle.

Finally, it is worth noting what happens if the geometric base is further increased.

Using geometric base as 20, the distances are: 8.54% for the Chat System, 26.62% for

Apache Pool [3], and 26.74% for Apache Commons CLI [1]. This demonstrates that the

results converge very quickly for further increasing base values. This is expected since

the weights distributed using geometric sequences change very slightly once the base is

larger than a certain threshold.
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7.6 Discussion

In this chapter, we proposed a technique that takes in the RTM between require-

ments and test cases as input, and automatically finds testing progress views in two

steps:

• Automatically rank requirements for each test case, and assign weights to each

requirement based on whether a requirement is the main target of a test case. This

yields the weighted-RTM.

• Use the weighted-RTM to automatically find testing progress over requirements

according to the respective importance of requirements.

In the evaluation section, we compared the testing progress results found by

REQTESTPRO using the angular distance as the distance function. The evaluation

questions discussed and justified the use and choice of the parameters and the distance

function used in evaluation.

Based on our case study results, our proposed view is useful to estimate the

testing progress over requirements, and it can be useful in production systems. With this

view, stakeholders can see:

• what the test suite is focused on from a requirements perspective.

• if the test suite adequately tests all requirements.

• how far off the test suite is from an ideal position with respect to testing all

requirements adequately.

To further motivate the usefulness of the testing progress view, Figure 7.6 shows

the testing progress of Apache Pool that REQTESTPRO outputs along with the num-

ber of bugs reported for each requirement in Apache Pool [3]. To obtain the testing
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Figure 7.6. The testing progress of Apache Pool that REQTESTPRO outputs along with
the number of bugs reported for each requirement in Apache Pool [3]. Many requirements
that are considered to have inadequate testing by REQTESTPRO (the ones under the line
at the top chart) have a higher number of bugs reported.
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progress view for Apache Pool [3], we consulted a domain expert to assign priorities

to requirements, based on which the progress view is obtained. Based on this figure,

many requirements that are considered to have inadequate testing by REQTESTPRO

(evict, min-idle, invalidate-object, eviction-in-background, max-active,

when-exhausted) have a higher number of bugs reported. Considering this output, we

propose that the testing progress view can be a useful measure of where the testing efforts

should have been invested. This way, the number of bugs for those requirements could

be reduced.

In the rest of this section, we discuss advantages and disadvantages of our ap-

proach.

REQTESTPRO provides a requirements level view of the testing progress, unlike

source code level metrics. This empowers stakeholders on making prioritization decisions

as the testing phase continues, and provides a high level view over the testing efforts.

Our approach assumes the existence of an RTM between requirements and test

cases. Such an RTM might already exist in some systems. Otherwise, it can be obtained

by using one of the techniques that exist in the literature [100, 98].

REQTESTPRO works for both functional and non-functional requirements, as

long as both types of requirements exist in the RTM.

REQTESTPRO is independent of the programming language the system is built

on. The only requirement is the existence of the RTM on test cases.

REQTESTPRO supports assigning different priorities for requirements. This

allows having a testing progress view that can support maintenance, management and

prioritization decisions on the testing phase.

REQTESTPRO depends on the existence of a test suite. It can only be used for

those projects that have test cases already. However, since its aim is to provide a testing

progress view, this is expected.
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The performance of our approach is dependent on the quality of the test suite. As

our case study results suggest, it yields good results on software with a high quality test

suite (the Chat System case study). It also provides results within a limited error margin

for other systems. As the results of the Apache Pool [3] and Apache Commons CLI [1]

suggest, even though their test suites are not as good a fit for our approach as the chat

system, REQTESTPRO still provides a testing progress view that has limited deviation,

and would be useful to stakeholders.

A factor that impacts the performance of REQTESTPRO, other than the quality

of the test suite, is the properties of the requirements of the system. Based on our inves-

tigations on why the Chat System results are better than the other two case studies, we

observed that the Chat System requirements mostly have dependencies between each

other. Therefore, its test cases execute requirements only if they are required (our initial

observation based on which we proposed to use FCA). On such a case study, FCA per-

forms well. However, there are test cases that test the interaction of requirements (which

are not dependent on each other) in the other case studies. Ideally, when the interaction

of requirements is tested, they should be assigned equal weights in the weighted-RTM.

However, FCA ranks requirements and assigns decreasing weights to them from more

specific to less specific. This results in mis-weighing some requirements in the weighted-

RTM. Therefore, the found testing progress can get worse than expected. This issue can

be mitigated by using the approach discussed in Chapter 5 and existing techniques in

the literature [60, 130, 95] to explicitly find dependencies between requirements, and

use this information during the assignments of weights in the weighted-RTM (instead of

geometric sequences across the board for all requirements). We leave this as future work.
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7.6.1 Threats to Validity

In this section, we discuss any issues that might have potentially affected our

case study results and therefore may limit the interpretations and generalizations of our

results.

First, we cannot claim that the case studies we used represent the full extent of

production systems in practice. We chose the case studies from different domains to

mitigate this threat. It can be further reduced if more case studies from different domains

are experimented with.

Second, since we are not domain experts of software in our case studies, we

cannot claim that we identified all requirements for each of them. Furthermore, we

cannot claim that the ground truths we prepared are completely correct. We asked two

developers to independently perform these tasks and confirmed the results. However,

mistakes might still have happened.

Finally, we cannot claim that the distance function we use in the evaluation

section is the best one. We analyzed its properties and mitigated any threats it poses for

the reliability of our results in the evaluation section. However, experimenting with other

distance functions to confirm our results would further decrease this risk, which we leave

as future work.

7.7 Conclusion

Requirements Engineering (RE) is an important step in the software development

lifecycle. Requirements are typically prioritized in RE stage, which drives development

and testing efforts.

Testing is another important step in the software development lifecycle. Many,

if not all, software teams perform testing to make sure the system conforms to the
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requirements, and behaves as expected. However, testing is a costly activity [149] that

can consume 40% —80% of the total budget of the software development effort [72].

Unless the testing phase is monitored, testers may test high priority requirements

insufficiently, and less important ones more than required. This directly impacts the

quality of the system. Therefore, it is critical to prioritize testing efforts according to the

prioritization of the requirements [25, 140].

In this chapter, we propose a new view that shows the test suite’s coverage of

the requirements. We propose that, using this view, stakeholders can monitor the testing

phase to make sure requirements are tested in accordance to their priorities.

Our tool REQTESTPRO automatically reverse engineers test suite coverage for

requirements from existing test cases. We also provide a method to evaluate the ef-

fectiveness of our proposed view, and discuss that the evaluation criteria is sound and

reliable. We asses our technique on three case studies: a Chat System, Apache Pool [3]

and Apache Commons CLI [1]. On these case studies, REQTESTPRO obtains results

within 75.23% —91.11% close to the baseline results on average, using the evaluation

method we propose.

Finally, we provide tool support that completely automates this process.

The work in this chapter, in full, is a reprint of the material as it appears in: “Celal

Ziftci and Ingolf Krüger. Getting More From Requirements Traceability: Requirements

Testing Progress. In Traceability in Emerging Forms of Software Engineering, pages

12-18, San Francisco, California, USA, 2013. IEEE.” The dissertation author was the

primary investigator and author of this paper.

7.8 Future Work

As explained in the discussion section, REQTESTPRO can perform better if re-

quirements dependencies and interactions are found and used on calculating the weighted-
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RTM.

Another research area is to assign importance to test cases automatically and use

that information during the calculation of the weighted-RTM. Currently, we assume all

test cases are equally important. However, it may be the case that some test cases have

higher importance in a test suite: they might demonstrate critical behavior, or they might

be testing an important use case. Using such information would improve the testing

progress metric.

Another research direction is providing testing progress views for requirements

grouped into higher levels. This is especially important for systems where the require-

ments don’t map to features on-to-one. In such systems, multiple features might map to a

single requirement. If grouping is supported in REQTESTPRO, the testing progress view

would provide more value for such systems. Requirements may be ordered in a hierarchy

where each lists more detailed requirements. The testing progress metric proposed in this

work can be accommodated to encapsulate requirements into groups and provide testing

progress for different levels in the hierarchy.

A field that might benefit REQTESTPRO is ’code clone detection’, where the

target is finding locations in code where a piece of source code was copied and pasted,

hence duplicated. If code cloning is detected in a certain part of the source code, the

coverage view generated by REQTESTPRO can make use of this information to adjust

the coverage of the requirement tested.

Another important area of further improvement on REQTESTPRO would be to

use more information on the ’contents’ of each test case. REQTESTPRO currently does

not consider the following information:

• How many times does a test exercise a feature? This may be important when a test

case exercises a feature in many different ways, such as in a loop.
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• Does a test exercise a requirement exhaustively? As an example, a test might be

testing a feature to make sure the boundary cases are exhausted.

Adding these information would make REQTESTPRO more effective in determining the

testing progress.



Chapter 8

Conclusion and Future Outlook

In this chapter, we conclude the work in this dissertation and propose future work

that opens up the avenue for future research in this field.

8.1 Conclusion

This dissertation focused on mining test cases to aid software maintenance tasks.

We form a convection cycle between requirements and tests to help stakeholders under-

stand relationships between requirements, and their relationships with tests.

We first built upon feature location techniques in the literature to relax some of

the assumptions of the existing techniques. Our results suggest that feature location can

be performed as a repeatable act and can be performed using the existing tests of the

system.

Then, we used our feature location technique to find traceability links between

requirements and test cases. Our results suggest that, using feature location, the accuracy

of traceability improves compared to existing methods.

The work in these chapters formed the foundation of the rest of the results in

this dissertation. Building upon our traceability approach, we first demonstrated a new

technique to enhance the semantics of requirements trace links via test intents. Our

results suggest that our technique can provide test intents to stakeholders successfully.

180
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Then we proposed a new technique to mine different types of relationships

between requirements. Our results suggest that our approach can yield comparable or

better results than state of the art.

Finally, we proposed a new requirements level view over the testing phase to

show where the testing efforts are invested, and whether this is in line with the importance

of requirements.

In this dissertation, as shown in Figure 8.1, we provided a holistic approach

to using tests as a useful source of information on requirements and we developed an

end-to-end automated process to benefit from the testing phase during the development

and maintenance of a system. By forming a convection cycle between requirements and

tests, we proposed novel ways to aid software maintenance.

It is important to note that, although we propose an end-to-end process where

each chapter discussed work that built on the work in other chapters as shown in Figure

1.11, the work in each chapter in this dissertation can be used stand-alone, given the

proper inputs are obtained using suitable techniques (including the ones described in this

dissertation). As an example, although the input to the technique described in Chapter 4

can be obtained using our technique described in Chapter 3, it can also be obtained using

other techniques in the literature. This makes the work in each chapter stand on its own,

and be useful for stakeholders even though they don’t use our process end-to-end.

Finally, although the scope of the work in this dissertation is partially limited

to agile processes to take advantage of the one-to-one mapping between requirements

and features, it can be expanded to apply to plan-driven processes too. For this, the

techniques discussed across this dissertation can be complemented with an additional step

that lets stakeholders provide the mapping between requirements and features (albeit it is

a one-to-many relationship). Overall, the techniques discussed can be extended to use this

mapping to take in the proper inputs and provide the proper outputs for requirements and
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features separately. The research on obtaining such a mapping between requirements and

features, and extending the techniques in this dissertation to use such a mapping are left

as benefits considered within the scope of future outlook provided by this dissertation.



183

Fi
gu

re
8.

1.
O

ve
rv

ie
w

of
th

e
co

nt
ri

bu
tio

n
of

th
is

di
ss

er
ta

tio
n.

W
e

pr
ov

id
ed

a
ho

lis
tic

ap
pr

oa
ch

to
us

in
g

te
st

s
as

a
us

ef
ul

so
ur

ce
of

in
fo

rm
at

io
n

on
re

qu
ire

m
en

ts
an

d
w

e
de

ve
lo

pe
d

an
en

d-
to

-e
nd

pr
oc

es
s

to
be

ne
fit

fr
om

th
e

te
st

in
g

ph
as

e
du

rin
g

th
e

de
ve

lo
pm

en
ta

nd
m

ai
nt

en
an

ce
of

a
sy

st
em

.



184

8.2 Future Outlook

In each of the previous chapters, we discussed several short-term future work

related to different aspects of the work in this dissertation. These work were concerned

more about specific technical details and improvements to the respective work in each

chapter. Below, we propose longer-term research directions that build on the work in this

dissertation.

8.2.1 Mapping Requirements and Features

As discussed in Section 2.2.4, some of the work in this dissertation (Chapters 4, 6

and 6) described techniques that build on the assumption that requirements and features

map one-to-one in a software system. As discussed in Section 2.2.4, this mapping may

not be one-to-one for some systems, especially those that follow a plan driven process.

The work in those chapters can be extended for plan driven processes too. The research in

this direction needs to address the gap in mapping requirements and features concretely,

e.g. through the use of an intermediate technique that links requirements and features.

Once such a mapping is provided, the techniques described in this dissertation can use

the links between requirements and features to develop similar outputs already provided

here for agile processes.

A related improvement on extending the work in this dissertation is on the ability

to group requirements/features. Many of the techniques in the literature and in this

dissertation consider the requirements/features on the same level. However, the ability

to group them is important in providing a top-down approach to software development

and comprehension for stakeholders. Such grouping can be a step in addressing the

mapping of requirements to features, since typically requirements and features have a

many-to-many relationship, i.e. a requirement may be implemented via multiple features
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and there may be multiple requirements implemented by a single feature. Grouping

would allow addressing these relationships.

This is an important area of research, because there are many systems built using

plan driven processes.

8.2.2 Addressing Non-Functional Requirements

Much work in the research literature and several chapters of this dissertation

(Chapters 3, 4, and 6, through the use of features) focuses only on functional require-

ments. However, addressing the same concerns on non-functional requirements is a very

important research area, since non-functional requirements play a critical role on the

quality attributes of a software system. Some of the work in this dissertation can be

improved to encompass non-functional requirements along with the functional ones by

combining existing work and the techniques described here, and further improving the

success of the techniques that work on non-functional requirements.

8.2.3 Considering the Valuation of Tests

Many of the chapters in this dissertation make use of tests as input (e.g. Chapter 7).

The techniques provided currently assume that tests have equal importance with respect

to what they are implemented to test. However, this may not hold for all systems, some

tests may be considered more important because they demonstrate a critical behavior

or property of the system. An important research direction is to integrate such different

valuations of tests into the techniques in this dissertation. This can be achieved by using

existing research in the field of “test suite minimization”, where a set of ’important’

tests are selected to represent the whole collection of tests of a system based on some

definition of being important.
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8.2.4 Integration Into Production Development Environments

This dissertation provided a vision on using the techniques provided here as an

end-to-end process as part of the software development lifecycle. All of the techniques

proposed here output artifacts similar to the existing ones used in production systems

nowadays, such as test coverage and automated documentation. Using the techniques

provided here in real life production systems would not only demonstrate the adoption

speed, but also pave the way for new research directions based on feedback and needs of

the practitioners.
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