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Chapter 1

Introduction

The history of distributed computing systems goes back to ARPANET, which was created
in the late 1960s, and which is known as the predecessor of theInternet [215]. The first
successful distributed application utilizing the ARPANETinfrastructure was the e-mail
application created by Ray Tomlinson in the early 1970s [75]. With the growing interest
in distributed computing systems, the field of distributed computing became an important
branch of computer science in the late 1970s and 1980s. Sincethen, the field has attracted
significant attention from both academia and industry, and we have seen many innovations
along the way, such as clusters, grids, and recently, clouds.

Around the late 1970s, client workloads have started pushing the limits of single ma-
chines with their increasing complexity and processing requirements motivating the need
for serverclusters, which comprise multiple machines that are connected by a local area
network and provide a single system image to its users [166]. The first commercial cluster
was ARCnet, which was created by Datapoint in 1977 [214]. However, cluster comput-
ing was not really adopted until DEC released its VAXclusterproduct in 1984, which
was built from general purpose off-the-shelf hardware and its general purpose VAX/VMS
operating system [126, 214].

Later, in the mid 1990s, the termgrid was used to describe the technologies that enable
users to have access to a large amount of resources on-demand[81]. With grid comput-
ing, resources from different administrative domains in different countries are opened up
transparently to scientists [80], leading toe-sciencethat enables world-wide collaboration
among scientists for solving complex research problems [153, 94]. Various grid infras-
tructures have been deployed all around the world: the European Grid Infrastructure (EGI)
in Europe [71], the Distributed ASCI Supercomputer (DAS) in the Netherlands [21], the
e-Science grid in the U.K. [204], the Grid’5000 grid in France [35], and the Open Science
Grid (OSG) [159] and TeraGrid [200] in the United States, to name just a few.

Recently, cloud computinghas been emerging as a new distributed computing
paradigm where infrastructures, services, and platforms are provided to the users on
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demand. Clouds now enable everyone to have access to an “infinite” amount of re-
sources with their credit cards. The common characteristics of clouds are the pay-per-use
billing model, the illusion of an infinite amount of resources, elastic resource manage-
ment (grow/shrink resources on demand), and virtualized resources [81]. Currently some
of the popular cloud computing vendors are Amazon with theirElastic Compute Cloud
(EC2) [12], Google with their App Engine [88], Microsoft with their Azure cloud [19],
Rackspace [171], and GoGrid [87].

With the increasing and widespread adoption of distributedcomputing systems in both
academia and industry, both scientific and business requirements motivate the users to de-
mand more from these systems in terms of their compute and storage performance. For
example, in the scientific domain the Large Hadron Collider (LHC) generates roughly
15 PB/year [38], and the high energy physics community has already been dealing with
petabytes of data produced as a result of their experiments [26]. Similarly, the need to per-
form realistic simulations of complex systems also motivates scientists to have access to
powerful resources; researchers have successfully simulated earthquakes on the Jaguar su-
percomputer of NCCS (National Center for Computational Sciences) [57], and the human
heart has been realistically simulated on the T2K Open Supercomputer in Tokyo [97]. The
industry is also pushing the limits of distributed computing systems—companies such as
Google and Facebook now serve hundreds of millions of users around the world. More-
over, the decreasing cost of data acquisition and storage technologies enable companies
to store massive amounts of data to drive their business innovation, and they have already
deployed very large-scale distributed infrastructures toprocess thesebig data. For ex-
ample, Google has reported processing 100TB of data per day in 2004 [61] and 20PB
of data per day in 2008 [62], which is a 200-fold increase in only four years. Similarly,
Facebook has reported having roughly 30PB of data in one of their MapReduce clusters
as of 2011 [1].

Furthermore, with this increasing adoption users now also depend on distributed in-
frastructures for latency and throughput sensitive applications, such as interactive per-
ception applications and MapReduce applications, which make the performance of these
systems more important than before. Besides, distributed systems are also serving various
mission critical services, such as banking, air traffic control, naval command and control
systems, and telecommunications. Therefore, users expectconsistent performancefrom
these systems, that is, they expect the system to provide a similar level of performanceat
all times, such as having an acceptable performance variability evenunder system over-
load and failures, or having a consistent processing latency of less than 200 ms for their
interactive applications while at the same time minimizingthe number of latency spikes
(transient high variability in latency) for a crisp user experience.

In this thesis, we provide an understanding of the performance consistency of
state-of-the-art distributed computing systems, and using various resource manage-
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ment and scheduling techniques we show how we can improve theperformance con-
sistency in diverse distributed systems, such as clusters and multi-cluster grids. We
particularly focus ondistributed computing systemsas an important class of distributed
systems to make it explicit that we do not consider many othertypes of distributed sys-
tems, such as web server systems or distributed database systems. Rather, we focus on
various important distributed computing systems such as multi-cluster grids (Chapters2
and3), clusters (Chapter4), and clouds (Chapters5 and6). Therefore, in the rest of this
thesis we use the term distributed systems to refer to distributed computing systems.

The rest of this chapter is organized as follows. Section1.1 presents the research
problem we address in this thesis. Then, Section1.2 presents the challenges that make
this problem non-trivial. Finally, Section1.3 concludes the chapter with our research
contributions and the outline of this thesis.

1.1 What is the Research Problem?

Users expect consistent performance from distributed systems, that is, a system is ex-
pected to deliver roughly the same level of performance at all times–if an application
usually takes 10s to complete, it will be annoying when sometimes the same application
takes significantly more than that. Besides leading to user dissatisfaction and confusion,
inconsistent performance can have various undesirable consequences. First and foremost,
systems with high performance variability are inherently unpredictable, and therefore,
hard to manage and debug. Secondly, performance inconsistency is a serious obstacle to
productivity and efficiency. Because, high performance variability results in less work
being done, lost compute cycles due to jobs being killed by the resource manager, which
may be due to hard limits on job runtimes such as the 15 minute limit in DAS-4 [59], and
less effective scheduling decisions [190]. In addition, highly variable performance makes
it very difficult to reason about system behavior.

The consequences of inconsistent performance can be even more serious in production
systems for both the users and the service providers. For theusers, in a system that uses
a pay-per-use billing model such as clouds, highly variableperformance makes the costs
unpredictable, and makes it very difficult for the users to properly provision resources
for their workloads. Similarly, for the service providers,high variability may cause sig-
nificant loss of revenue. For example, Amazon has reported that even small (100 ms)
delays for web page generation will cause a significant (1%) drop in sales [132]. Like-
wise, Google has reported that an extra 0.5s in the search time causes a traffic drop of
around 20% [132].

Before we can start to improve the performance consistency of distributed systems,
an understanding of the performance of these systems is of crucial importance, but un-
fortunately, even understanding the performance behaviorof these systems is non-trivial,
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primarily because of system complexity. Although traditional system engineers usually
decompose a system into its components and try to understandthese components to under-
stand the complete system, this bottom up approach fails when systems get more complex,
because they can behave in unexpected ways due toemergent behavior[149]; emergent
behavior cannot be predicted with analysis at any level thatis simpler than the complete
system itself [70]. For example, it is not uncommon that systems fail badly when moving
them from test to production environments as production systems may have significantly
different workload characteristics, which can uncover corner cases. Similarly, systems
usually behave completely unpredictable or they may even crash under overload. Another
example is the characteristics of failures in distributed systems. Failures in real distributed
systems have completely different characteristics than what have been assumed in tradi-
tional models; while failures were assumed independent in those models they are actually
correlated in real systems as processes in a distributed system have complex interactions
and dependencies between them.

In this thesis, we provide an understanding of the performance consistency
of state-of-the-art distributed systems, and we explore resource management and
scheduling techniques to improve the performance consistency in these systems.For
this purpose, this thesis takes an empirical approach and explores this problem across
diverse distributed systems, such as clusters, multi-cluster grids, and clouds, and across
different types of workloads, such as bags-of-tasks (BoTs), interactive perception ap-
plications, and scientific workloads. Besides, since failures are shown to be an important
source of significant performance inconsistency [116, 181, 65, 117, 33, 216, 22, 139], this
thesis also provides a fundamental understanding of failure characteristics in distributed
systems, which is necessary to design systems that can mitigate the impact of failures on
performance consistency. In particular, we aim to address the following research ques-
tions in this thesis:

Can overprovisioning help to provide consistent performance in multi-cluster
grids? We define overprovisioning as increasing the capacity of a system by adding
more nodes (scaling out) to better handle the fluctuations inthe workload, and pro-
vide consistent performance to users. Overprovisioning has been successfully used in
telecommunication systems [168] and modern data centers for performance and reliabil-
ity concerns [14, 24]. We investigate whether overprovisioning can also help toprovide
consistent performance in multi-cluster grids through realistic simulations.

How can we improve the performance of multi-cluster grids under overload?
When large applications are submitted concurrently to gridhead-nodes, they can get over-
loaded leading to degraded performance and responsiveness, and eventually noticeable
performance inconsistencies. Various overload control techniques have been proposed in
the literature [113, 48, 205, 185] primarily for web servers; among them, throttling, that
is, controlling the rate at which workloads are pushed through the system, is a relatively
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simple technique that can deliver good performance. However, few of these techniques
have been adapted for and investigated in the context of multi-cluster grids. Therefore,
we address this question by exploring the performance of various static and dynamic
throttling-based overload control techniques, includingour adaptive throttling technique,
in multi-cluster grids using BoT workloads; BoTs are the dominant application type in
grids as they account for over 75% of all submitted tasks and are responsible for over
90% of the total CPU-time consumption [101].

How can we schedule interactive perception applications tominimize their la-
tency subject to migration cost constraints?Interactive perception applications (e.g.,
controlling a TV with gestures) are a relatively new class ofapplications structured as
data flow graphs. These applications usually comprise compute-intensive computer vi-
sion and machine learning algorithms, many of which exhibitcoarse-grained task and
data parallelism that can be exploited across multiple machines. To provide a responsive
user experience, interactive applications need to ensure aconsistent end-to-end latency,
which is usually less than 100–200 ms for each processed dataitem (i.e., video frame).
Moreover, it is also desirable for these applications to reduce the latency spikes as much
as possible; frequent migrations of the application components can introduce such spikes,
which reduces the quality of the user experience. We addressthis research question by
devising algorithms that canautomaticallyand incrementallyplace and schedule these
applications on a cluster of machines to minimize the latency while keeping the migration
cost in bounds, and by evaluating these algorithms with bothsimulations and real system
experiments using two applications on the Open Cirrus testbed [17].

Is the performance of clouds sufficient for scientific computing? Cloud comput-
ing holds great promise for the performance-hungry scientific computing community as
clouds can be a cheap alternative to supercomputers and specialized clusters, a more reli-
able platform than grids, and a much more scalable platform than the largest of commodity
clusters. However, fundamental differences in the system size, the performance demand,
and the job execution model between scientific computing workloads and the initial target
workload of clouds raise the question of whether the performance of clouds is really suf-
ficient for scientific computing. We address this question with an in-depth performance
evaluation of four public clouds, GoGrid, ElasticHosts, Mosso, and Amazon EC2, which
is one of the largest commercial clouds currently in production.

How variable is the performance of production cloud services, and what is the
impact of the performance variability on distributed appli cations?An important hur-
dle to cloud adoption is trusting that cloud services are dependable, for example that their
performance is stable over long time periods. However, service providers do not disclose
information regarding their infrastructures or how they evolve, and these providers operate
their physical resources in time-shared mode, which may cause significant performance
variability. We address this research question with a comprehensive investigation of the
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long-term performance variability of ten production cloudservices provided by Amazon
Web Services and Google App Engine. We also explore through realistic trace-based sim-
ulations the impact of the performance variability on threelarge-scale applications. Our
study is the first long-term study on the variability of performance as exhibited by popular
production cloud services of two popular cloud service providers, Amazon and Google.

What are the characteristics of failures in distributed systems? Failures are an
important source of performance inconsistency in distributed systems. With this research
question we aim to provide a fundamental understanding of failure characteristics in dis-
tributed systems. First and foremost, understanding failure characteristics can help to
design systems that can mitigate the impact of failures on performance consistency. For
example, using good failure models, system architects can design schedulers that predict
when a failure may occur and the number of machines that will fail, and then use this
information to migrate workloads so that the performance remains unaffected. Moreover,
understanding failures is also crucial for developing and assessing new fault tolerance
mechanisms. Many of the previous studies have assumed that failures are independent
and identically distributed [92, 234, 147]. Only a few studies [198, 34, 103, 199] have
so far investigated the bursty arrival and correlations of failures for distributed systems.
However, the findings in these studies are based on data collected from single systems–
until the recent creation of online repositories such as Failure Trace Archive [123] and
Computer Failure Data Repository [183], failure data for distributed systems were largely
inaccessible to the researchers in this area. To address this research question we perform
a detailed investigation using various data sets in the Failure Trace Archive, which are
collected from diverse large-scale distributed systems including grids, P2P systems, DNS
servers, web servers, desktop grids, and HPC clusters. Our study is one of the first fail-
ure studies at a very large scale; the data sets that we have used in our analysis comprise
more than100K hosts and more than1M failure events, and span over15 years of system
operation in total.

1.2 Why is the Problem Challenging?

We identify five main challenges that make our research problem difficult, which we
describe in turn.

1. Distributed systems are complex. Real-world distributed systems are asyn-
chronous and non-deterministic by nature, and they comprise a large number of
machines that have complex interactions between them over an unreliable network.
For example, Google has an estimated data center size of around 1M servers [122],
while Amazon EC2 and Microsoft data centers are estimated tocontain around
half a million servers [11] and tens or hundreds of thousands of servers [110], re-
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spectively. Even research testbeds such as DAS-3 [58] and DAS-4 [59] comprise
hundreds of servers. At such a scale, failures become inevitable, which introduces
additional complexity to distributed systems. Given this size and complexity, un-
derstanding and reasoning about system behavior, and improving the performance
consistency of these systems is non-trivial as complexity leads to emergent behav-
ior, which is inherently unpredictable [70]. Moreover, these systems are usually
very dynamic and heterogeneous, complicating the problem even further; resources
come and go due to failures and elasticity of the resources, and these systems com-
prise multiple generations of hardware due to replacement of failed machines and
due to infrastructure upgrades.

2. Resources in a distributed system are shared by multiple users. The shared na-
ture of distributed systems makes it non-trivial to provideconsistent performance to
the users. For example, in multi-cluster grids a large user base shares the same com-
pute, storage, and network resources. Similarly, cloud servers host multiple virtual
machines to serve different users on the same physical machine, which complicates
the problem of providing consistent performance as user workloads may interact
in complicated and unpredictable ways. For example, a user’s virtual machine can
easily saturate the network, degrading the network performance of other tenants on
the same physical machine.

3. Distributed applications may have different requirements. While some users
run batch workloads, such as BoTs and MapReduce applications, other users may
run interactive perception applications on the same cluster. The requirements of
these applications are significantly different; batch workloads usually have high
throughput requirements while interactive perception applications have high data
rate and tight response time requirements. The diversity inapplication requirements
makes it challenging to provide the required level of performance consistency to
each application.

4. Workloads processed by distributed systems are complex.Users execute work-
loads of complex structures such as parallel applications,BoTs, workflows, inter-
active perception applications, and MapReduce applications. These workloads can
be very large relative to the system in terms of number of tasks, runtime, and I/O
requirements [77], and they may have significantly different performance require-
ments. This workload complexity makes it very difficult to understand their execu-
tion and reason about their performance, and in the end, makes it very difficult to
reduce the performance variability.

5. Failures in distributed systems are the norm rather than theexception.Finally,
we already know that the scale and complexity of distributedsystems make the
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occurrence of failures the norm rather than the exception [83, 225], and that failures
are a serious hurdle to providing consistent performance [234, 143, 116, 181] as
they cause noticeable variability and degradation in performance.

1.3 Research Contributions and Thesis Outline

In this thesis we address the problem of understanding and improving the performance
consistency of distributed computing systems. To this end,we address the research prob-
lems presented in Section1.1. We now present our research contributions and the outline
of this thesis.

Overprovisioning strategies for performance consistencyin grids (Chapter 2).
We investigate overprovisioning to provide consistent performance to multi-cluster grid
users. Overprovisioning can be defined as increasing the system capacity through adding
more nodes (scaling out), by a factor that we define as the overprovisioning factor, to bet-
ter handle the workload fluctuations, and provide consistent performance even under un-
expected user demands. Through simulations, we present a realistic evaluation of various
overprovisioning strategies with different overprovisioning factors and different schedul-
ing policies. We show that beyond a certain value for the overprovisioning factor there is
only slight improvement in performance consistency with significant additional costs. We
also show that by dynamically tuning the overprovisioning factor, we can significantly (as
high as 67%) increase the number of BoTs that have a makespan within a user specified
range, thus improving the performance consistency. The content of this chapter is based
on our research published in CCGRID’10 [222] and GRID’10 [223].

The performance of overload control in multi-cluster grids (Chapter 3). We in-
vestigate the performance of throttling-based overload control techniques in multi-cluster
grids, motivated by our DAS-3 multi-cluster grid, where running hundreds of tasks con-
currently leads to severe overloads and performance variability. Notably, we show that
throttling leads to a decrease (in most cases) or at least to apreservation of the makespan
of bursty workloads, while significantly improving the extreme performance (95th and
99th percentiles) for application tasks, which reduces the overload of the cluster head-
nodes, and also leads to more consistent performance. In particular, our adaptive throttling
technique improves the application performance by as much as 50% while also improv-
ing the system responsiveness by up to 80%, when compared with the hand-tuned multi-
cluster system without throttling. The content of this chapter is based on our research
published in GRID’11 [224].

Incremental placement of interactive perception applications (Chapter 4). We
investigate the problem of incremental placement of perception applications, which are
structured as data flow graphs, on clusters of machines to minimize the makespan subject
to migration cost constraints. These applications requireboth low latency and, if possi-
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ble, no latency spikes at all, which reduce the quality of theuser experience. The vertices
of such applications are coarse-grained sequential processing steps called stages, and the
edges are connectors that reflect data dependencies betweenthe stages. We propose four
incremental placement heuristics that cover a broad range of trade-offs of computational
complexity, churn in the placement, and ultimate improvement in the latency. A broad
range of simulations with different perturbation scenarios (perturbing a random stage,
perturbing a random processor, or adding a new stage instance to the application graph)
show up to 50% performance improvement over the schedule without adjustment, that
is, we let the application run after a perturbation and do notre-place the stages to other
processors. Similarly, our experiments using two applications on the Open Cirrus testbed
demonstrate 18% (10%) and 36% (38%) improvements in median (maximum) latency
over the unadjusted schedule, respectively. In addition, we show that our heuristics can
approach the improvements achieved by completely rerunning a static placement algo-
rithm, but with lower migration costs and churn. The contentof this chapter is based
on our joint work with the Intel Science and Technology Center for cloud computing,
previously published in ACM HPDC’11 [228] and Open Cirrus Summit’11 [235].

Performance evaluation of public clouds (Chapter5). We investigate using various
well-known benchmarks, such as LMbench [142], Bonnie [37], CacheBench [150], and
the HPC Challenge Benchmark (HPCC) [136], the performance of four public compute
clouds, including Amazon EC2. Notably, we find that the compute performance of the
tested clouds is low. In addition, we also perform a preliminary assessment of the per-
formance consistency of these clouds, and we find that noticeable performance variability
exists for some of the cloud resource types we have explored.Our preliminary assessment
only considers performance consistency over short periodsof time and with low-level op-
erations, such as floating point additions or memory read/writes, thus motivating us to
explore the performance variability in depth in Chapter6. Finally, we compare the per-
formance and cost of clouds with those of scientific computing alternatives, such as grids
and parallel production infrastructures. We find that, while current cloud computing ser-
vices are insufficient for scientific computing at large, they may still be a good alternative
for the scientists who need resources instantly and temporarily. The content of this chap-
ter is based on our research published in CCGRID’09 [226], CloudComp’09 [162], and
IEEE Transactions on Parallel and Distributed Systems [105].

Performance variability of production cloud services (Chapter 6). We investigate
the performance variability of production cloud services using year-long traces that we
have collected from the CloudStatus website [2]. These traces comprise performance data
for two popular cloud services: Amazon Web Services (AWS) and Google App Engine
(GAE). Our analysis reveals that the performance of the investigated services exhibits on
the one hand yearly and daily patterns, and on the other hand periods of stable perfor-
mance. We also find that many of these services exhibit high variation in the monthly
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median values, which indicates large performance changes over time. Moreover, we find
that the impact of the performance variability varies significantly across different types
of applications. For example, we demonstrate that the service of running applications on
GAE, which exhibits high performance variability and a three-months period of low vari-
ability and improved performance, has a negligible impact for running grid and parallel
production workloads. On the other hand, we show that the GAEdatabase service, which
exhibits a similar period of better performance as the GAE running service, outperforms
the AWS database service for a social gaming application. The content of this chapter is
based on our research published in CCGRID’11 [109].

Space-correlated failures in large-scale distributed systems (Chapter7). We de-
velop a statistical model for space-correlated failures, that is, for failures that occur within
a short time frame across distinct components of the system using fifteen data sets in the
Failure Trace Archive [123]. Our model considers three aspects of failure events, the
group arrival process, the group size, and the downtime caused by the group of failures.
We find that the best models for these three aspects are mainlybased on the lognor-
mal distribution. Notably, we find that for seven out of the fifteen traces we investigate,
a majority of the system downtime is caused by space-correlated failures. Thus, these
seven traces are better represented by our model than by traditional models, which as-
sume that the failures of the individual components of the system are independent and
identically distributed. The content of this chapter is based on our research published in
Euro-Par’10 [83].

Time-correlated failures in large-scale distributed systems (Chapter8). We in-
vestigate the time-varying behavior of failures in large-scale distributed systems using
nineteen data sets in the Failure Trace Archive [123]. We find that for most of the stud-
ied systems the failure rates are highly variable, and the failures exhibit strong periodic
behavior and time correlations. In addition, to characterize the peaks in the failure rate
we propose a model that considers four parameters: the peak duration, the failure inter-
arrival time during peaks, the time between peaks, and the failure duration during peaks.
Remarkably, we find that the peak failure periods explained by our model are responsible
for on average over 50% and up to 95% of the system downtime suggesting that failure
peaks deserve special attention when designing fault-tolerant distributed systems. The
content of this chapter is based on our research published inGRID’10 [225].

Finally, Chapter 9 presents a summary of this thesis, presents the major conclusions,
and describes several future research directions.



Chapter 2

Overprovisioning strategies for
performance consistency in grids∗

Users expect consistent performance from computer systems—when some interaction
with an interactive application always finishes within 1 second, they are annoyed when
suddenly the response time jumps to say 10 seconds. Likewise, when a certain Bag-of-
Tasks (BoT) submitted to a grid has a response time of 5 hours,then the user will be
surprised when a BoT with twice as many tasks (of a similar type as in the first BoT)
takes say 24 hours. However, preventing such situations andproviding consistent per-
formance in grids is a difficult problem due to the specific characteristics of grids like
the lack of support for advance reservations in many Local Resource Managers (LRMs),
highly variable workloads, dynamic availability and heterogeneity of resources, and vari-
able background loads of local users. In this chapter we investigate overprovisioning for
solving the performance inconsistency problem in grids.

Overprovisioning can be defined as increasing the capacity,by a factor that we call the
overprovisioning factor, of a system to better handle the fluctuations in the workload, and
provide consistent performance even under unexpected userdemands. Although over-
provisioning is a simple solution for consistent performance and it obviates the need for
complex algorithms, it is not cost effective and it may causesystems to be underutilized
most of the time. Despite these disadvantages, overprovisioning has been successfully
used in telecommunication systems [168] and modern data centers for performance and
reliability concerns. Studies have shown that typical datacenter utilization is no more
than 15-50% [14, 24], and telecommunication systems have roughly 30% [13] utilization
on average.

A large body of work on providing predictable performance [66, 193, 218], and Ser-

∗This chapter is based on previous work published in theIEEE/ACM International Conference on Grid
Computing(Grid’10) [223] and theIEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting(CCGRID’10) [222].
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Figure 2.1: Evidence of the performance inconsistency in grids. The vertical axis has a
logarithmic scale.

vice Level Agreements [130, 124, 8] already exists. What is missing so far from this re-
search is a detailed realistic investigation of how we can achieve consistent performance
in grids. In this chapter we fill this gap by performing a realistic investigation of both
static and dynamic overprovisioning strategies for achieving performance consistency in
grids. To this end, we propose several overprovisioning strategies for multi-cluster grids,
and we classify these strategies as static or dynamic based on when the resources are pro-
visioned. Then, we assess the performance and the cost of these strategies with realistic
simulations. In our simulations we model the DAS-3 [58] multi-cluster grid and we use
various synthetic workloads consisting of BoTs, which constitute the dominant applica-
tion type in grids [99, 101]. Moreover, our model includes the actual background load of
other users, which is one of the causes of performance inconsistency. We also approach
the performance inconsistency problem from the user’s perspective, and we design and
evaluate a feedback-controlled system that exploits the elasticity of computing clouds to
give performance guarantees to grid users. Our system overprovisions a grid dynamically
using the user specified performance requirements and the measured system performance.

The rest of the chapter is organized as follows. Section2.1presents the motivation for
the performance consistency problem. Section2.2and Section2.3describe the overpro-
visioning strategies and the system model that we evaluate in this chapter, respectively.
Section2.4 presents the experimental setup, and Section2.5 presents the results of our
performance evaluation. Section2.6 describes the feedback-controlled system that dy-
namically determines the overprovisioning factor based onthe specified user performance
requirements. Finally, Section2.7 reviews the related work on overprovisioning in grids,
and Section2.8summarizes the chapter.
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2.1 Motivation

Grid users may observe highly variable performance when they submit similar workloads
at different times depending on the system state. From the users’ point of view, any
variability in performance should only be caused by their own applications (due to modi-
fications of the applications or inputs) and not by the systemor by load due to other users.
Hence, inconsistent performance is usually undesirable, and it leads to user dissatisfaction
and confusion.

Figure2.1 shows evidence of the performance inconsistency in grids. In this exper-
iment, we submit the same BoT consisting of 128 tasks periodically every 15 minutes
to our multi-cluster grid DAS-3, which is usually underutilized. The graph shows the
makespan in minutes for each submitted BoT. Since the systemis mostly empty, we do
not observe high variability in makespan for the first 130 submissions. However, we ob-
serve a significant variability between the 130th and 140th submissions, which is due to
the background load created by other users, causing some tasks of the BoTs to be signifi-
cantly delayed. The ratio of the maximum to the minimum makespan in this experiment
is roughly 70! This result shows that even for a grid like DAS-3, which is a research grid,
and hence usually underutilized, we may observe very strongperformance inconsisten-
cies.

It is a challenge to develop efficient solutions for providing consistent performance
in grids due to their high degree of heterogeneity and the dynamic nature of grid work-
loads. It is possible to address this problem at two levels: at the (global) scheduler level,
and at the resource level which consists of the computing nodes in the grid. To solve
this problem at the scheduler level, we need to design appropriatemechanisms, e.g., ad-
mission control, and (scheduling)policies. In this chapter we take the latter approach and
focus on the resource level, and we investigate overprovisioning to solve this performance
inconsistency problem.

2.2 Overprovisioning Strategies

We define overprovisioning as increasing the capacity of a system to provide better, and
in particular, consistent performance even under variableworkloads and unexpected de-
mands. We define theoverprovisioning factorκ as the ratio of the size of an overprovi-
sioned system to the size of the initial system. Overprovisioning is a simple solution that
obviates the need for complex algorithms. However, there are also some disadvantages
of this solution. First, overprovisioning is of course a cost-ineffective solution. Second,
overprovisioning may cause the system to be underutilized since resources may stay idle
most of the time; however, the industry is used to low utilization in data centers where the
utilization is in the range 15-50% [14, 24], and in telecommunication systems where the
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average utilization is roughly 30% [13].
To overprovision grids we propose various strategies, and we classify them as static

or dynamic based on when the resources are provisioned. We summarize these strategies
below:

• Static Overprovisioning: The resources are provisioned statically at system de-
ployment time, hence before the workload arrives at the system. We distinguish:

– Overprovision the Largest Cluster (Largest): Only the largest cluster
of the grid in terms of the number of processors is overprovisioned in this
strategy.

– Overprovision All Clusters (All): All of the clusters of the grid are over-
provisioned equally.

– Overprovision Number of Clusters (Number): The number of clusters of
the grid is overprovisioned. The number of processors to deploy to the newly
added clusters are determined according to the overprovisioning factor.

• Dynamic Overprovisioning (Dynamic): Since fluctuations are common in grid
workloads, static resource provisioning may not always be optimal. Therefore, we
also consider a dynamic strategy where the resources are acquired/released in an
on-demand fashion from a compute cloud. We use low and high load thresholds
specified by the system administrator for acquiring/releasing resources from/to the
cloud, which is also known asauto-scaling[12]. We continuously monitor the
system and determine the load of the system periodically, where the period is also
specified by the administrator. If the load exceeds the high threshold we acquire a
new resource, and if the load falls below the low threshold werelease a resource to
the cloud.

The number of processors to be deployed to a specific cluster is determined by the
overprovisioning factorκ and the overprovisioning strategy. For example, assume that a
grid hasN clusters where clusteri hasCi processors, and that we use theAll strategy for
overprovisioning. Assume also thatC is the size of the initial system, soC =

∑N

i=1Ci.
We want the size of the overprovisioned systemC ′ = κC, hence we setC ′

i, the size of
the overprovisioned clusteri, asC ′

i = κCi. Thus,C ′ =
∑N

i=1C
′
i =

∑N

i=1 κCi = κC. For
the other strategies, the number of processors to deploy to attain a certain value ofκ is
derived similarly.

2.3 System Model

2.3.1 System Model

In our simulations we model our multi-cluster grid DAS-3 [58] which is a research grid lo-
cated in the Netherlands. It comprises 272 dual-processor AMD Opteron compute nodes,
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Cluster Nodes Speed [GHz]

Vrije University 85 2.4
U. of Amsterdam 41 2.2
Delft University 68 2.4
MultimediaN 46 2.4

Leiden University 32 2.6

Table 2.1: Properties of the DAS-3 clusters.

and it consists of five homogeneous clusters; although the processors have different per-
formance across different clusters, they are identical in the same cluster. The cluster
properties are shown in Table2.1.

We assume that there is a Global Resource Manager (GRM) in thesystem interacting
with the LRMs which are responsible for managing the clusterresources. The jobs are
queued in the GRM’s queue upon their arrival, and then dispatched to the LRMs where
they wait for cluster resources. Once started, jobs run to completion, so we do not consider
preemption or migration during execution.

When evaluating theDynamic strategy, we assume that there is overhead for acquir-
ing/releasing resources from/to the compute cloud. We haveperformed 20 successive
resource acquisition/release experiments in the Amazon EC2 cloud with them1.small

instance type to determine the resource acquisition/release overheads [226]. We found
that the minimum/maximum values for the resource acquisition and release overheads are
69/126 seconds and 18/23 seconds, respectively. We assume that the acquisition/release
overhead for a single processor is uniformly distributed between these minimum and max-
imum values.

2.3.2 Scheduling Model

As the application type we use BoTs, which are the dominant application type in
grids [99]. To model the application execution time, we employ the SPEC CPU bench-
marks [195]: the time it takes to finish a task is inversely proportionalto the performance
of the processor it runs on. We consider the following BoT schedulingpolicies, which
differ by the system information they use:

• Static Scheduling:This policy does not use of any system information. Each BoT
is statically partitioned across the clusters where numberof tasks sent to each cluster
is proportional to the size of the cluster.

• Dynamic Scheduling: This policy takes the current state of the system (e.g., the
load) into account when taking decisions. We consider two variants of dynamic
scheduling:

– Dynamic Per Task Scheduling:In this policy, a separate scheduling decision
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Bag-of-Tasks Task
Inter-Arrival Time Size Average Runtime

W(4.25,7.86) W(1.76,2.11) N(2.73,6.1)
Average 124.6 s 6.1 7859.7 s

Table 2.2: The distributions and the values for their parameters for the BoT workload
model described in [106]. N(µ,σ2) and W(λ,k) stand for the Normal and Weibull distri-
butions, respectively.

is made for each task of each BoT, and the task is sent to the cluster with the
lowest load, where we define the load of a cluster as the fraction of used
processors.

– Dynamic Per BoT Scheduling:In this policy, a separate scheduling decision
is made for each BoT, and the whole BoT is sent to the least loaded cluster.

• Prediction-based SchedulingWe consider only one such policy:
– Earliest Completion Time (ECT): This policy uses historical data to pre-

dict the task runtimes. With this policy each task is submitted to the cluster
which is predicted to lead to the earliest completion time taking into account
the clusters’ queues. To predict the runtime of a task, we usethe average of
the runtimes of the previous two tasks [203], since this method is known to
perform well in multi-cluster grids [193].

2.4 Experimental Setup

In this section we introduce our experimental setup. First,we describe the workload
that we use in our simulations. Then, we describe our methodology and the metrics for
assessing the performance and cost of the overprovisioningstrategies. In our simulations,
we model the DAS-3 multi-cluster grid (see Section2.3.1) using our event-based grid
simulator DGSim [108]. We extended DGSim with the scheduling policies describedin
Section2.3.2, and we made extensions for performing simulations with compute clouds.

2.4.1 Workload

We have performed experiments with BoT workloads that we generate using the realis-
tic BoT model described in [106]. The values for the important workload attributes are
summarized in Table2.2. These parameters are determined after a base-two logarithmic
transformation is applied to the empirical data. In addition, in [106] the authors assume
that the minimum BoT size is two, whereas we assume that single tasks are also BoTs
with size one.

In our simulations we impose a background load together withthe BoT workload in
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Figure 2.2: The overall utilization as well as the utilization in the individual clusters due
to the background load, which consists of the jobs submittedto the DAS-3 system during
June 2008.

order to attain realistic scenarios. The background load consists of the jobs submitted
to DAS-3 during June 2008, and the corresponding workload trace is obtained from the
Grid Workloads Archive [104]. Figure2.2shows the utilization of the background load.
During the simulations, the background tasks are submittedto the LRMs of their original
execution sites.

For our experiments, we have generated ten workloads that load the initial system
to 80% on average, which we think is representative for a system that will be overpro-
visioned. Each workload contains approximately 1650 BoTs,and 10K tasks, and the
duration of each trace is roughly between 1 day and 1 week.

2.4.2 Methodology

For assessing the static overprovisioning strategies, first, we evaluate the system with the
aforementioned workloads, then we overprovision the system according to the strategy
under consideration, and we use the same workload to assess the impact of the over-
provisioning strategy. For theDynamic strategy, a criterion has to be defined which
determines when the system should acquire/release resources from/to the compute cloud.
To this end, for the simulations with theDynamic strategy, where the BoT workload
imposes 80% load on the system, we use a high threshold of 70% and a low threshold of
60% for deciding when to acquire and release additional resources, respectively. When
using theDynamic strategy,κ varies over time. Hence, in order to obtain comparable
results in our simulations with theDynamic strategy, we keep the average value ofκ
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always in the± 10% range of the specified value. For example, forκ = 2.0, when ac-
quiring resources we do not exceedκ = 2.2, and when releasing resources we do not fall
belowκ = 1.8.

Finally, to obtain comparable results we assume that cloud resources have the same
performance as the slowest grid cluster.

2.4.3 Performance Metrics

To evaluate the performance of the strategies, we use the makespan and the normalized
schedule length as performance metrics. The makespan (MS) of a BoT is defined as the
difference between the earliest submission time of any of its tasks, and the latest comple-
tion time of any of its tasks. The Normalized Schedule Length(NSL) of a BoT is defined
as the ratio of its makespan to the sum of the runtimes of its tasks on a reference pro-
cessor. Lower NSL values are better, in particular, NSL values below 1 (which indicates
speedup) are desirable.

We also define and use two consistency metrics to assess different strategies. We
define consistency in two dimensions: across BoTs of different sizes, and across BoTs of
the same size. For assessing the consistency across BoTs of different sizes, we define

Cd = max
k,l

N̄k

N̄l

,

whereNk (Nl) is the stochastic variable representing the NSL of BoTs of sizek (l).
To assess the consistency across BoTs of the same size, we define

Cs = max
k

CoV (Nk),

whereCoV (Nk) is the coefficient of variation ofNk. The system gets more consistent as
Cd gets closer to1, andCs gets closer to0. We also interpret a tighter range of the NSL
as a sign of better consistency.

To evaluate the accuracy of the task runtime predictions when using the ECT policy,
we use the accuracy, defined as in [203].

Finally, when evaluating the cost of the strategies, we use theCPU-hoursmetric which
we define as the time in hours a processor is used. We believe that this metric is a fair
indicator of cost independent of the underlying details like the billing model. When cal-
culating the CPU-hours, we round up the partial instance-hours to one hour similar to the
Amazon EC2 on-demand instances pricing model [12]. Although there are other costs
like administration and maintenance costs of the resources, we neglect these costs, and
we only focus on the resource usage.
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Overprovisioning
κ = 1.0
(NO)

κ = 1.5 κ = 2.0 κ = 2.5 κ = 3.0

Strategy Cd Cs Cd Cs Cd Cs Cd Cs Cd Cs

All 29.59 12.05 15.13 10.54 4.72 9.33 2.64 7.36 2.62 5.38
Largest 29.59 12.05 16.88 11.57 3.67 9.27 2.63 7.38 2.63 5.58
Number 29.59 12.05 17.71 10.61 3.75 9.12 2.70 6.90 2.42 5.67

Dynamic 29.59 12.05 14.65 10.27 3.50 8.64 2.42 6.36 2.10 4.60

Table 2.3: Summary of consistency values for all strategiesand for different overprovi-
sioning factors (κ).
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Figure 2.3: The Cumulative Distribution Function (CDF) of the Normalized Schedule
Length (NSL) for the various scheduling policies. The horizontal axis has a logarithmic
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2.5 Experimental Results

In this section, we present the evaluation of the performance (Section2.5.1) and cost
(Section2.5.2) of the overprovisioning strategies.

2.5.1 Performance Evaluation

Impact of the scheduling policy on performanceFigure2.3shows the NSL distribution
for all policies when no overprovisioning is applied. Although the Dynamic Per Task and
the Dynamic Per BoT policies have similar performance, the Dynamic Per Task policy
performs slightly better. The ECT policy has the worst performance by far compared to
other policies. When using the ECT policy, the prediction accuracy is around 40%, which
is low since all tasks in a BoT arrive within a short time interval, and hence the same
prediction error is made for all tasks. This low prediction accuracy leads to scheduling
decisions that cause some BoTs to suffer high response timeswith the ECT policy.
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Figure 2.4: The impact of the scheduling policy on Normalized Schedule Length (NSL)
when using theAll strategy andκ = 2.0. The mean, and for ECT the third quartile is
not always visible.

Figure2.4 shows the impact of the scheduling policy on the NSL when we use the
All overprovisioning strategy andκ is 2.0. In this section, for the box-whisker plots,
the values at the top of the graphs are the maximum values observed, which are probably
outliers, so what we are really interested in are the mean/median values and the quartiles.
We observe that as the policy uses more recent system information, the NSL improves
(lower interquartile range), hence the NSL of the Dynamic Per Task and Dynamic Per
BoT policies is better than that of the other policies.

Since the Dynamic Per Task policy has the best performance among the policies, we
use this policy in the rest of our evaluation.
Performance and consistency of the overprovisioning strategiesThe NSL distributions
for the static strategies are shown in Figure2.5and for theDynamic strategy it is shown
in the upper-right graph of Figure2.7 whenκ is 2.0. Corresponding consistency metric
values are shown in column 3 of Table2.3, where the first column (κ = 1.0) shows
the consistency values for the initial system (NO). Clearly, the consistency obtained with
different strategies is much better than the initial systemdue to increased system capacity.
We observe that theDynamic strategy provides better consistency compared to static
strategies (Table2.3) since this strategy is able to handle the spikes in the workload that
the static strategies can not handle. The static strategieshave similar performance, so
when overprovisioning a grid statically what really matters is the overprovisioning factor.
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Figure 2.5: The Normalized Schedule Length (NSL) distributions for the static strategies
(κ = 2.0). The third quartile is not visible for the initial system (NO).

However, sinceNumber increases the number of clusters in the grid, hence increasing
the administration costs,All andLargest are the viable candidates among the static
strategies.
Impact of the overprovisioning factor κ on consistencyFigure2.6and Figure2.7show
the effect ofκ on consistency with theAll strategy and theDynamic strategy, respec-
tively. Corresponding consistency metric values are shownin Table2.3. As expected, we
observe significant improvements in the overall consistency of the system with increasing
overprovisioning factors. The outliers that we observe with smaller overprovisioning fac-
tors disappear with increasing overprovisioning factors since the overprovisioned system
can handle these spikes. In particular, going fromκ = 2.0 to 2.5 dramatically reduces
the outliers. Also, the outliers are much smaller for theDynamic strategy than theAll

strategy.
However, we observe minor improvements in consistency asκ increases beyondκ =

2.5: the overprovisioned system withκ = 2.5 can already handle the variability in the
workload. Hence overprovisioning beyond a certain value ofκ (in our case forκ = 2.5),
which we call thecritical value, incurs significant costs but does not improve consistency
significantly. Therefore, to maximize the benefit of overprovisioning it is important to
determine the critical value of the overprovisioning factor.

Finally, the consistency metrics converge to similar values asκ approaches3.0 (see
Table2.3). Although the system is overprovisioned significantly when κ = 3.0, there is
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Figure 2.6: The effect of the overprovisioning factorκ on the Normalized Schedule
Length (NSL) distribution with theAll strategy forκ = 1.5 (upper left),κ = 2.0 (upper
right), κ = 2.5 (lower left) andκ = 3.0 (lower right), respectively. Some of the mean
values are not visible for theκ = 1.5 case.

still some variability in the performance which is probablydue to the variability inherent
in the workload.

2.5.2 Cost Evaluation

Due to the dynamic nature of grid workloads, static strategies may cause underutilization
and hence increase the costs. The on-demand resource provisioning approach used with
theDynamic strategy overcomes these problems. In this section we evaluate the cost of
the strategies for various overprovisioning factors to understand how much we can gain in
terms of cost when using theDynamic strategy. We use the CPU-hours metric described
in Section2.4.3to assess the cost of the strategies.

Table2.4shows the cost of theAll andDynamic strategies for different overprovi-
sioning factors. In this table, we only report the results for theAll strategy since the cost
is the same for different static strategies for the same overprovisioning factor. Although
the cost increases proportionally withκ, we do not observe proportional performance
improvement as we already show in Section2.5.1. This situation is due to the under-
utilization of resources caused by static allocation. Whenusing theDynamic strategy,
there is a significant reduction, as high as 42%, in cost sincethe resources are only ac-
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Figure 2.7: The effect of the overprovisioning factorκ on the Normalized Schedule
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κ All Dynamic Reduction (%)

1.5 56655 32446 42.7
2.0 75540 49427 34.5
2.5 94425 69572 26.3
3.0 113310 85484 24.5

Table 2.4: Cost of theAll andDynamic strategies in terms of CPU-hours.

quired on-demand, and they are not allowed to stay idle as with static overprovisioning.
Asκ increases, the number of idle resources in the cloud also increases, hence decreasing
the cost reduction. As a result, we conclude that theDynamic strategy provides better
consistency with lower costs compared to static strategies.

2.6 Dynamically Determining the Overprovisioning
Factor

Up to this point, we evaluated the performance and cost of various strategies from thesys-
tem’s perspectivewith different overprovisioning factors and scheduling policies. In par-
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ticular, our goal was to improve thesystem’s performance consistency. We now approach
our problem from theuser’s perspective, and we answer the question of how can we dy-
namically determine the overprovisioning factor to give performance guarantees to users.
As our aim is to determine the overprovisioning factor and deploy additional processors
dynamicallyto meetuser specified performance requirements, in this section we only use
theDynamic strategy. Towards this end, we design a feedback-controlled system which
exploits the elasticity of clouds to dynamically determineκ for specified performance re-
quirements. Instead of a control-theoretical method, we follow an approach inspired by
the controllers in the SEDA architecture [212]. Although control theory provides a theo-
retical framework to analyze and design feedback-controlled systems, the complexity and
non-linear nature of grids make it very difficult to create a realistic model. In addition,
due to the dynamic nature of grids, the parameters of a control-theoretical model will
definitely change over time.

The controller uses various parameters shown in Table2.5 for its operation. The
Window parameter determines the number of BoTs that should be completed be-
fore the controller activation, hence, it determines how frequently the controller
is activated and how fast it reacts to changes in the system performance. The
TargetMakespan parameter determines the makespan target that the controller has
to meet, and theReleaseThreshold parameter determines the makespan thresh-
old the controller uses to release cloud resources. The aim of the controller is to
meet theTargetMakespan while at the same time avoid wasting resources when un-
needed using theReleaseThreshold . When specifying theTargetMakespan and
ReleaseThreshold parameters, we use the 90th percentile of the makespan. This
metric has two advantages compared to other metrics like theaverage or maximum: it
better characterizes the makespan distribution, and we also believe that it reflects the user-
perceived performance of the system better. To determine the sensitivity of the controller
to the parameters of Table2.5, we have performed various simulations with different pa-
rameter values except for theWindow parameter, for which we use the value of ten BoTs.

In our architecture, the controller treats the system as a black box, and it measures the
performance of the system at each activation using the historical performance data of the
most recently completed BoTs. At each activation, if the measured performance exceeds
theTargetMakespan value, the controller instructs the acquisition of a resource from

Parameter Description
Window Number of BoTs completed before controller activation

TargetMakespan The target makespan
ReleaseThreshold The makespan threshold used to release cloud resources

Table 2.5: The controller parameters with their corresponding descriptions.
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Figure 2.8: Overprovisioning factor over time and the average overprovisioning factor for
the [ReleaseThreshold -TargetMakespan ] values of [250m-300m] (left), [700m-
750m] (center), and [1000m-1250m] (right).

the cloud. Similarly, if the measured performance falls below theReleaseThreshold

value, the controller instructs the release of a resource tothe cloud. The provisioning of
resources are performed one by one, and we leave as future work to determine the optimal
number of resources to provision simultaneously.

To evaluate our design, we simulate the DAS-3 grid and we use the Dynamic Per Task
scheduling policy without any background load. For these simulations, to empirically
show that the controller stabilizes, we use an approximately one and a half month long
workload consisting of 32860 BoTs, and the average BoT makespan for the workload in
the initial system (without the controller) is roughly 3120minutes (m). In our simula-
tions we evaluate three different scenarios for loose and tight performance requirements.
To this end, we use the [ReleaseThreshold -TargetMakespan ] values of [250m-
300m], [700m-750m], and [1000m-1250m] from tight to loose makespan performance
requirements, respectively.

[ReleaseThreshold-TargetMakespan] w/o Controller w Controller Improvement
[250m-300m] 4732 26849 67%
[700m-750m] 5900 21870 48%

[1000m-1250m] 6959 20219 40%

Table 2.6: Number of BoTs (out of 32860) that meet the specified performance require-
ments without (w/o) and with (w) the controller, and the resulting improvement (% of
32860) over the system without the controller.
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Figure2.8shows the overprovisioning factor over time for the different performance
requirements. Initially, there are no resources used from the cloud, henceκ = 1. The con-
troller uses fewer cloud resources as the performance requirements get looser, resulting in
lower overprovisioning factors compared to tight performance requirements. In addition,
the average overprovisioning factor is smaller for loose performance requirements. It is
also remarkable to note that when the performance requirements get tighter, there is only
a rather small increase in the overprovisioning factor.

Table 2.6 shows the number of BoTs that meet the specified performance require-
ments (having a makespan less than theTargetMakespan value) without and with
the controller, and the improvement (%) in the number of BoTswith the controller over
the system without the controller. There is a significant improvement as high as 67%
when the performance requirements are tight. The improvement gets smaller as the per-
formance requirements get looser, as expected, since the system without the controller is
already able to meet such loose performance requirements.

2.7 Related Work

We classify the previous work into three categories where the primary focus is either
on predictable performance, Service Level Agreements (SLA) or overprovisioning. Al-
though an extensive body of research focused on these research problems, there is no
detailed investigation of how we can achieve consistent performance in grids. In [222],
we took the first step towards filling this gap and we evaluatedthe performance of static
overprovisioning strategies. In this chapter we extend ourprevious work by evaluating the
performance and cost of both static and dynamic overprovisioning strategies with realistic
simulations. We summarize the related work below.
Related work on predictable performanceVarious studies investigated advance reser-
vations [191, 39, 156, 187] to provide the requested resources exactly when needed, there-
fore increasing the predictability of a system. We believe that advance reservations can
also be used for providing consistent performance as the reserved resources are guar-
anteed to be available when needed (assuming no failures occur). However, designing
scheduling policies that support advance reservations areshown to be difficult, and scal-
ability is known as a major challenge in this design process [40].

As another solution for providing predictable performance, several studies explored
prediction methods to predict various parameters like the job runtime and queue wait
time. These predictions have been successfully used for scheduling and admission control
decisions in grids [66, 193, 218].

The primary focus of this body of work is on providingpredictableperformance with
advance reservations and predictions. In contrast, our work focuses mainly on providing
consistentperformance with overprovisioning.



27

Related work on SLAsLeff et al. [130] propose a dynamic offload infrastructure similar
to our feedback-controlled system to meet the SLAs in a commercial grid deployment.
This infrastructure hosts a resource pool comprising preconfigured servers that stay idle,
and to meet the specified performance requirements additional servers are acquired from
this pool. In contrast, we use on-demand resources from a compute cloud instead of
keeping a pool of idle resources within our system, which is definitely a waste of capacity.
In this work, the authors perform experiments with web workloads while we use realistic
grid workloads to perform a more detailed investigation than theirs to investigate various
tight and loose performance requirements.

Kounev et al. [124] present an approach for QoS aware resource management in grids
using online performance models. The authors show that the negotiated SLAs can be
satisfied with the proposed approach. Unlike this work we useoverprovisioning to meet
the negotiated performance requirements. Moreover, our work targets multi-cluster grids
while their work targets service-based grids on which services are deployed and the work-
load consists of HTTP requests.

Menascé et al. [144] present a resource allocation framework that finds the optimal
resource allocation to minimize the total cost and meet the execution time specified by
the SLAs. The workload used in this work comprise applications with dependent tasks
while in our work we use BoTs as the workload, and we use overprovisioning instead
of optimization methods to provide consistent performance. Moreover, compared to this
work our performance evaluation is more in depth with diverse grid workloads.

Finally, Al-Ali et al. [8] present a prototype QoS system for real-time grid applica-
tions. Similar to [124], this work targets service-based grids. In this work the authors
use advance reservations to meet the SLAs, in contrast we focus on providing consistent
performance with static and dynamic overprovisioning techniques.
Related work on overprovisioning In [60], De Assuncao et al. explore six scheduling
policies to extend a cluster’s capacity with cloud resources. In particular, they investigate
the performance and cost trade off with simulations, and they show that request back-
filling and redirection provides a good balance between the performance and the cost.
In this work authors focus on improving the performance of a single cluster using only
dynamic overprovisioning. However, we focus on providing consistent performance in
multi-cluster grids using both static and dynamic overprovisioning strategies. In addition,
we also design and evaluate a feedback-controlled system todetermine the amount of
resources to provision (κ) for specified performance requirements.

2.8 Summary

Providing consistent performance in grids is a difficult research problem. In this chapter
we have investigated overprovisioning to solve this problem, and we have performed a
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realistic evaluation of overprovisioning in multi-cluster grids. Although our main focus is
on grids, we believe that the main ideas are also applicable to other large-scale distributed
systems.

We have presented a realistic evaluation of various overprovisioning strategies with
different overprovisioning factors (κ) and scheduling policies. We found that beyond a
certain value for the overprovisioning factor (in our caseκ = 2.5) there is only slight
improvement in consistency with significant additional costs. In addition, theDynamic

strategy provides better consistency with lower costs compared to static strategies. Fi-
nally, to dynamically determine the overprovisioning factor to give performance guaran-
tees to users, we have designed and evaluated a feedback-controlled system exploiting the
elasticity of clouds. Through various simulations for loose and tight makespan perfor-
mance requirements, we have shown that our system provides significant improvements
over the initial system, as high as 67%, in the number of BoTs that meet the specified
performance requirements.



Chapter 3

The performance of overload control in
multi-cluster grids∗

Many scientists rely on the execution of applications on multi-cluster grids, that is, of
large-scale distributed systems comprised of heterogeneous clusters. Multi-cluster grids
such as the DAS-3 in the Netherlands, the EGEE grid in Europe,and the Open Science
Grid in the US provide efficient execution infrastructures for applications with a loosely
coupled structure, such as bags-of-tasks (BoTs) and workflows. When executing such
applications, the system may becomeoverloaded, that is, the system resources shared by
running applications may become bottlenecks—the disks of the cluster file systems may
become saturated, the grid communication protocols may break down due to thousands of
concurrent submissions, etc. Since overloads can degrade the performance and even cause
systems to crash, many overload control techniques have been designed [113, 48, 205,
185]; among them,throttling, that is, controlling the rate at which workloads are pushed
through the system, is a relatively simple technique that can deliver good performance.
However, few of these techniques have been adapted for and investigated in the context of
multi-cluster grids. In this chapter we present a dynamic throttling technique along with
an extensive performance evaluation of throttling-based overload control techniques for
multi-cluster grids.

The consequences of overload can be severe, such as increased backlogs at shared re-
sources, and decreased performance and responsiveness leading to unpredictable system
behavior and user dissatisfaction. In multi-cluster gridsoverloads can lead to task wait
times that are often in excess of several hours [99]. The situation is even worse in produc-
tion systems where overloads can cause significant loss of revenue to service providers.
For example, Amazon reported that even small (100 ms) delaysfor web page generation
will cause a significant (1%) drop in sales [132]. Similarly, Google reports that an extra

∗This chapter is based on previous work published in theIEEE/ACM International Conference on Grid
Computing(Grid’11) [224].
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0.5s in search time causes a traffic drop of 20% [132].
In multi-cluster grids there are two primary causes of overload. First, grid workloads

may be very bursty or even difficult to predict, at both short and long time scales [193].
To illustrate this, Figure3.1 shows the number of tasks submitted to the DAS-3, the
SHARCNET, and the GRID3 multi-cluster grids, and to a multi-thousand node produc-
tion MapReduce cluster of an online social networking company. Second, the applications
submitted to multi-cluster grids can be large relative to the system in terms of number of
tasks, runtime, and I/O requirements [77].

The overload control problem has been studied extensively and several techniques for
alleviating overloads, such as congestion and admission control [48], control theoretic
approaches [212], scheduling [185], and overprovisioning [205], have been proposed.
However, they have not been investigated in the context of multi-cluster grids, which dif-
fer significantly from these other systems in both structureand workload. Structurally,
multi-cluster grids are comprised of heterogeneous clusters distributed over a wide-area
network. The typical workload of a multi-cluster grid consists of scientific applications
with BoT, workflow, and parallel HPC structure [99, 101]. Among these application types,
BoTs are the dominant application type in grids, as they account for over 75% of all sub-
mitted tasks and are responsible for over 90% of the total CPU-time consumption [101].

In this chapter, we first adapt a dynamic throttling technique to control overload in
multi-cluster grids under bursty workloads. Then, we investigate the performance of
three throttling techniques, including our technique, with extensive experiments using
diverse workloads in our DAS-3 multi-cluster grid. Our performance evaluation leads to
two main observations. First, we find that throttling can significantly improve both appli-
cation performance and system responsiveness in multi-cluster grids, even under bursty
workloads. Second, we find that, for multi-cluster grids, the dynamic throttling-based
overload control technique can replace the static (hand-tuned). The latter result is partic-
ularly significant in multi-cluster grid settings, where hand-tuning is slow and costly due
to the number of clusters, and difficult due to workload burstiness.

The rest of the chapter is organized as follows. Section3.1presents the multi-cluster
grid model used throughout this chapter. Section3.2describes the throttling-based over-
load control techniques that we evaluate in this chapter. Section 3.3describes the exper-
imental setup, and then Section3.4presents our performance evaluation results. Finally,
Section3.5 reviews the related work on overload control in diverse computer systems,
and Section3.6summarizes the chapter.

3.1 Multi-Cluster Grid Model

In this chapter we focus on multi-cluster grids comprising heterogeneous clusters. Such
systems usually include a head-node for each cluster, whichis a central node that users
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(d) MapReduce Cluster

Figure 3.1: Number of tasks submitted to three multi-cluster systems and a multi-thousand
node production MapReduce cluster within five minute intervals. All systems have peri-
ods of burst submissions.

connect and which uses middleware to interact with the rest of the system. The mid-
dleware operates in each cluster and is responsible for managing the compute resources
(worker nodes). Tasks that are submitted to the middleware are initially placed into the
middleware queue until there are enough resources to execute the tasks. After the sub-
mission, the middleware dispatches the tasks to the assigned nodes and manages the task
execution. This model fits many production multi-cluster systems, including the world-
wide LCG, Grid5000, TeraGrid, and our DAS-3 system. Our model also fits other multi-
cluster systems, and in particular the numerous deployed systems using Globus, which is
arguably the most used middleware [86], the Grid Engine, and PBS/Torque. Our model
does not exactly fit the systems based on loosely-integratedresources, such as the sys-
tems based on Condor; however, while other configurations are possible, many Condor
pools use in practice a single Negotiator, which effectively plays the role of the cluster
head-node in our model.

As an example, our DAS-3 system employs two primary components: a runner
(application-level scheduler) deployed on a head-node which is responsible for a single
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application submission, and anexecution servicedeployed on each head-node which is
responsible for interacting with the middleware and performing protocol conversion be-
tween the middleware and the runners. These two components may communicate over the
local area network or the wide area network. In each of the clusters, the head-node com-
municates with the worker nodes for task execution management and with the distributed
file system for the file transfers.

3.2 Overload Control Techniques

In this section we describe the throttling-based overload control techniques that we inves-
tigate in this chapter.

To detect overload we use the head-node CPU load and the disk utilization metrics
which we think are good indicators of overload based on our experience with multi-
cluster grids and their workloads. For each metric we set athresholdand amaximum
value. During workload execution depending on the measuredvalues of these metrics
and the threshold and maximum values a cluster may be in one oftwo states, overloaded
or underloaded. An underloaded cluster transitions to the overloaded state wheneitherthe
head-node’s CPU load or the disk utilization exceeds its maximum value, or whenboth
metrics exceed their threshold values. Similarly, an overloaded cluster transitions to the
underloaded state wheneither of these metrics falls below its threshold value. After an
overload is detected, the throttling technique reacts by enforcing aconcurrency limit–the
maximum number of concurrently running tasks–for every application in the system. We
describe in the following our throttling-based overload control techniques, in turn.

• Static throttling ( Static): This technique uses a static concurrency limit for
throttling. With Static it is possible to underutilize the system with a low con-
currency limit, and overload the system with a high concurrency limit. Thus, it is
crucial to determine the best concurrency limit for a particular system and work-
load withStatic . For our experiments we have manually tuned the concurrency
limit to the value that gives the best performance over many experiments, so in our
evaluation (Section3.4) Static provides the best performance for our system and
workloads.

• Bang Bang Control (BBC) [96]: With BBC, the execution service notifies the run-
ner to stop submitting tasks when the head-node transitionsto the overloaded state.
When a head-node transitions back to underloaded state, theexecution service no-
tifies the runner to resume its task submission.BBClets the runner to temporarily
overload a cluster, as too many tasks may be submitted when that cluster recov-
ers from overload and before the execution service can detect and react to the new
overload.
In heterogeneous multi-cluster gridsBBCmay perform poorly: it is possible that



33

all but the fastest cluster may get overloaded and only the fastest cluster may be
underloaded. Such a situation causes the fastest cluster toreceive all the tasks
while the other clusters are recovering from their overloads causing the queueing
times at the local resource manager to increase noticeably.To solve this problem
we adapt the original BBC algorithm by introducing a maximumconcurrency limit
(C LIMIT MAX) for each cluster so that when the number of tasks that are run-
ning concurrently in a cluster exceedsC LIMIT MAXthe cluster transitions to the
overloaded state.

• Adaptive throttling ( Adaptive): To address the inflexibility ofStatic and the
problem of temporarily overloading the clusters ofBBC, we propose an Additive
Increase Multiplicative Decrease (AIMD) based controllerthat dynamically adjusts
the concurrency limit. It has been shown that AIMD-based control is a provably
convergent control rule [49]. However, to design a controller that gives additional
guarantees control theory can also be used [93].
Adaptive operates in each cluster independently. It uses the following constants
as inputs: the number of nodes in the cluster (N NODES), the threshold and max-
imum values for the CPU load and disk utilization, and three parameters that are
explained in the following (α, β, andC LIMIT MAX). Adaptive tunes the con-
currency limit (c limit ) as follows. Initially,c limit is set toN NODES. Pe-
riodically, Adaptive measures the head-node CPU load and the disk utilization,
and it checks whether the cluster is overloaded using the corresponding threshold
and max values. If the cluster is overloaded,c limit is decreased by being set
to α · c limit , with 0 < α < 1. If the cluster is not overloaded, thenc limit

is increased by being set toc limit + β · n finished , with 0 < β ≤ 1 being
used to gradually increasec limit to avoid overshooting andn finished tasks
have finished since the last control period. To prevent clusters from being severely
overloaded even temporarily,c limit is not allowed to exceed the maximum con-
currency limitC LIMIT MAX. We describe in Section3.3.4how we set the values
of these parameters in our experiments.

We have implemented the throttling techniques presented inthis section as a part of
the runner and the execution service presented in Section3.1. In Section3.4, we evaluate
the performance of these throttling techniques in our multi-cluster grid described in the
next section.

3.3 Experimental Setup

In this section we first describe our multi-cluster grid DAS-3 in which we evaluate the
performance of the throttling techniques presented in the previous section. Then we de-
scribe the workloads that we use and the performance metricsthat we report as a result of
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Cluster # of Node CPU # of Cores
Nodes Speed [GHz] on the Head-Node

C1 22 2.6 8
C2 29 2.2 8
C3 60 2.4 8

Table 3.1: The processing capability of our multi-cluster grid.

our evaluation in Section3.4.

3.3.1 Multi-Cluster Testbed

We perform our experiments on three clusters of our DAS-3 testbed. Table3.1shows the
processing capability of our testbed. Each cluster has a separate distributed file system and
on each cluster the Grid Engine (GE) middleware operates as the local resource manager.
GE has been configured to run tasks on the nodes exclusively (in space-shared mode). We
have deployed the execution service on each cluster’s head-node, and the runner has been
deployed on the head-node of the C3 cluster; execution service and runner are described
in Section3.1.

3.3.2 Workloads

We evaluate our throttling techniques (Section3.2) using BoTs, which are the dominant
application type in multi-cluster grids. We summarize in Table 3.2 the characteristics of
the workloads used in our experiments. All tasks of a BoT are submitted to the system
at the same time, so our workloads represent the worst-case overload scenario. The W-
Base workload comprises 1,000 tasks, each with a runtime of 60 seconds and performing
100 MB I/O. To understand the impact of the workload characteristics, we perform the
evaluation across three dimensions: starting from W-Base we increase, in turn, the number
of tasks (W-Task), the task runtimes (W-Run), and the task I/O requirements (W-IO) of
the BoT. Although each workload is homogeneous, together they cover a wide range of
scenarios, from compute-intensive to communication-intensive, and from small-scale to
large-scale applications. Their tasks have similar runtimes and I/O requirements to the
tasks observed in real multi-cluster grid workloads [99].

3.3.3 The Performance Metrics

In our evaluation we use several metrics that we categorize as system or user metrics.
System metrics quantify the performance of the system components while user metrics
quantify the performance perceived by the user.
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Workload Number of Task Runtime Total I/O
Tasks [s] Per Task [MB]

W-Base 1,000 60 100
W-Task 5,000 60 100
W-Run 1,000 300 100
W-IO 1,000 60 200

Table 3.2: Workloads used in our experiments.

• System Metrics:
– CPU Usage [%]: The fraction of time a process keeps the CPU busy as re-

ported by the Linuxtop utility. We use this metric to assess the overhead of
our scheduler in Section3.4.1.

– CPU Load: The number of processes which are in the processor run queue or
waiting for I/O. We report the average CPU load calculated over one minute
intervals as reported by the kernel. When the CPU load is high, the head-nodes
cannot respond to connection requests, so we use this metricto quantify the
system responsiveness. It is better if this metric is close to the number of cores
of a head-node.

– Disk Utilization [%]: Fraction of time the disk is busy as reported by the
Linux iostat utility. We report the average utilization calculated overfive
second intervals.

– Cluster Utilization [%]: Fraction of available nodes that are used.
• User Metrics:

– I/O Service Time [ms]: The time it takes for the disk to serve an I/O request.
We report the average service time calculated over five second intervals.

– Task Execution Time [s]: The time it takes for a task to complete its execu-
tion.

– Makespan [s] (of a BoT):The difference between the earliest time of sub-
mission of any of its tasks and the latest time of completion of any of its tasks.

3.3.4 Parameters for the Overload Control Techniques

Table3.3summarizes the parameters for the throttling techniques with their values that we
use in our experiments. Since the best values for these parameters depend on a particular
system and workload we have performed several experiments to determine the best values
for our system.

We use a control period of 30s which is smaller than the shortest task in our work-
loads. Hence, the throttling techniques react fast enough to the changes in the monitored
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Parameter Value(s)
Control Period 30 s

CPU Load Threshold 7
Max. CPU Load 10

Disk Utilization Threshold 40%
Max. Disk Utilization 60%

α 0.5
β 0.5 and 1.0

C LIMIT MAX Number of nodes (see Table3.1)

Table 3.3: The parameters for the overload control techniques and their values used in our
experiments.

metrics. Since all cluster head-nodes are 8-core machines,we use a CPU load threshold
of 7 (corresponding roughly to 90% utilization) and a maximum CPU load of 10 (letting
a head-node to be overloaded up to 125%). When our system is empty, the average disk
utilization is less than 20%. Therefore, for this metric we use 40% as the threshold and
60% as the maximum value.

For Adaptive the value of theα parameter should be set to provide a balance be-
tween the throughput and the speed of overload recovery. We useα = 0.5 in our exper-
iments. Small values ofα may degrade the throughput while largerα values may cause
the system to recover from overload slowly. Experiments with larger values, such as 0.7
and 0.8, did not lead to substantial differences in the observed performance. For theβ
parameter we use a value of either 0.5 or 1.0. Unless otherwise specified, we useβ = 0.5

in our experiments. For small values ofβ the throughput may degrade while for larger
β values the runner may temporarily overload a cluster as the concurrency limit will be
increased quickly.

Finally, for the maximum concurrency limit parameter (C LIMIT MAX), with
Static we use 30 tasks which we found through several experiments toperform well
for our system, and we set the value of this parameter to the number of available nodes
on each cluster forBBCandAdaptive to prevent the tasks from getting queued in the
local resource managers.

3.4 Experimental Results

In this section we assess the performance of the throttling techniques described in Sec-
tion 3.2 and of the system without throttling (No Throttling ). We first validate the
assumption that our system’s scheduling middleware is not abottleneck (Section3.4.1).
Then, we perform two sets of experiments, one in a single cluster and the other on three
heterogeneous clusters.
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Figure 3.2:Single-Cluster Experiments [W-Base]: The CPU usage [%] of the runner
(left) and the execution service (right).
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Figure 3.3:Single-Cluster Experiments [W-Base]: Application performance. CDF de-
notes cumulative distribution function.

3.4.1 Scheduling Overhead

We assess the overhead of the runner and the execution service after tuning our system
to make sure that these components do not contribute to system overload. To this end,
we run the W-Base workload on a single cluster (C3) without using throttling. Figure3.2
shows the CPU usage of the runner and the execution service during this experiment.
The runner and the execution service maximum CPU usage is well below 100%, with
the runner having a maximum CPU usage of 10% and the executionservice having a
maximum CPU usage of 1%. This confirms that these components have relatively low
overhead, and therefore they do not contribute to the systemoverload in the experiments.
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Figure 3.4:Single-Cluster Experiments [W-Base]: System load. Experiments in the C3
cluster.

3.4.2 Results for Single-Cluster Experiments

In this section we investigate the performance of the throttling techniques presented in
Section3.2with experiments on the C3 cluster using the W-Base workload.

We analyze the application performance and show the resultsin Figure 3.3. We
observe that throttling improves the makespan over the system without throttling; the
improvement is 40% withStatic , 20% with BBC, and 18% withAdaptive (Fig-
ure 3.3(a)). The reason for the makespan improvements is that, without throttling, the
cluster becomes fully utilized during the workload execution (see the values forNo

Throttling in Figure 3.4(a)). So, the tasks running in parallel congest the shared
distributed file system and the intra-cluster network, which leads to an increase in the
individual task runtimes and further to an increase in the makespan. With throttling,
fewer tasks run in parallel as the runner delays the task submissions taking into account
the concurrency limits, but the resulting delay is smaller than the overheads of running
many tasks simultaneously. Throttling also helps individual tasks: the median task exe-
cution time is reduced by 70% withStatic , 65% withAdaptive , and 40% withBBC

overNo Throttling (Figure3.3(b)). Furthermore, with throttling the task execution
time distribution has a shorter tail than that ofNo Throttling ; at 95th percentile we
observe significant improvements: 75% withStatic , 25% with BBC, and 63% with
Adaptive (see Table3.4). Although throttling introduces additional delay for individ-
ual tasks the resulting makespan is much better than withoutthrottling. Makespan-wise
Static performing the best, withBBCand Adaptive having similar performance.
Moreover, withStatic andAdaptive , the resulting task execution performance is
more consistent (has a shorter distribution tail) than without throttling.

We analyze the performance of the system and show the basic statistical properties of
the C3 cluster utilization in Figure3.4(a). We observe thatStatic andAdaptive re-
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duce the median cluster utilization by 50% versus the systemwithout throttling. However,
similarly toNo Throttling , for BBCthe median and maximum cluster utilization are
100%, significantly higher than forStatic andAdaptive ; for the latter, the lower uti-
lization is due to the fewer tasks running concurrently in the system. Although the cluster
is lowly utilized with throttling, which may not be desired by system administrators, the
resulting application performance is significantly better(Figure3.3).

We assess the basic statistical properties of the CPU load ofthe C3 head-node and
show the results in Figure3.4(b)1. Throttling improves the median CPU load, hence the
system responsiveness, substantially: 70% withStatic , 20% with BBC, and 68% with
Adaptive . Without throttling, the CPU load is constantly high with a median load of 35
causing the system to be unresponsive to user requests. WithStatic , the CPU load is
constantly low with a median load of 10. Among the techniques, BBCperforms the worst
in terms of CPU load as the runner overloads the cluster temporarily several times during
the workload execution. Nevertheless, it still performs better thanNo Throttling ,
with an improvement of 20% in median CPU load.Adaptive performs similarly to
Static , and it performs significantly better thanBBC. With Static andAdaptive

throttling, the CPU load is much lower compared toNo Throttling : throttling also
improves the system responsiveness substantially.

We investigate the I/O performance and show the basic statistical properties of the
I/O service time and the disk utilization in Figure3.5. All techniques improve the me-
dian I/O service time overNo Throttling : Static by 80%,Adaptive by 93%,
andBBCby 63% (Figure3.5(a)). SinceBBC lets the runner temporarily overload the
cluster, the maximum I/O service time withBBCis close to that ofNo Throttling .
Finally, the disk has a lower utilization with throttling thanNo Throttling ; the me-
dian disk utilization decreases by up to 70% withAdaptive (Figure3.5(b)). With No

Throttling andBBC, the I/O service time is highly variable, while withStatic and
Adaptive the I/O service time has lower variability. We conclude that, in addition to
significant improvements in task execution performance, throttling also improves the I/O
performance substantially.

The quality of the service offered by a system to its users (Service Level Agreement,
SLA) is often quantified by the service performed on a large fraction of the work requests,
such as the95th or the99th percentiles of the task execution time; we call this quantifier
theextreme performanceof the system. We compare in Table3.4 the95th and the99th

percentiles of three performance metrics–task execution time, CPU load, and I/O service
time–with and without throttling; the row “Ideal Case” additionally presents the metric
values for the system without overload. As expected, the overloaded system has much
lower extreme performance than the ideal case. However, among the techniques the use of
either of theStatic , BBC, andAdaptive techniques leads to significant improvements

1As the C3 cluster’s head-node has an 8-core CPU, it is better if the CPU load is close to 8.
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Figure 3.5:Single-Cluster Experiments [W-Base]: I/O performance. The values at the
top of graph (a) are the maximum values observed.

Task Execution CPU Load I/O Service
Time [s] Time [ms]

95th 99th 95th 99th 95th 99th
No Throttling 346 443 37 38 178 318

Static 89 109 14 17 124 262
BBC 262 309 35 36 214 354

Adaptive 127 187 22 31 147 256

Ideal Case 60 8 6

Table 3.4:Single-Cluster Experiments [W-Base]: The 95th and the 99th percentiles for
the task execution time, CPU load, and I/O service time metrics.

in one or more of the metrics, especially the task execution time and the I/O service
time. Thus, throttling is to be preferred toNo Throttling when extreme performance
guarantees are part of the SLA. Furthermore,BBCdelivers consistently worse extreme
performance than the other techniques; the differences betweenStatic andAdaptive

illustrate the time-performance trade-offs offered by manual and automatic-and-dynamic
system tuning, respectively.

3.4.3 Results for Multi-Cluster Experiments

We now evaluate the performance of the throttling techniques in a multi-cluster setting.
The three clusters we use (Section3.3) are heterogeneous in terms of size and network
bandwidth. We first perform experiments with our baseline workload, W-Base, using all
the techniques. Then, we use, in turn, a workload with increased number of tasks (W-
Task), task runtimes (W-Run), and task I/O requirements (W-IO); we assess with these
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Figure 3.6:Multi-Cluster Experiments [W-Base]: Application performance.
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Figure 3.7:Multi-Cluster Experiments [W-Base]: System load for the C3 cluster.

workloads the performance of theBBCandAdaptive techniques.
We analyze the application performance and show the resultsin Figure 3.6. As

more resources are used during this experiment, the makespan here is lower than for
the single-cluster experiments (compare Figure3.3(a) with Figure3.6(a)). Similarly to
the results obtained for single-cluster experiments, throttling noticeably improves the
application performance (Figure3.6(a)). Static andBBC improve the makespan by
13% and 8% overNo Throttling , respectively.Adaptive with an average adap-
tation rate (β = 0.5, see Sections3.2 and3.3.4) provides roughly the same makespan
as No Throttling . However,Adaptive with β = 1.0 provides a makespan of
1,600 ms (similar toBBC) and improves the application performance by 10% overNo

Throttling . All techniques improve significantly the application performance and the
extreme performance of the task execution (shorter distribution tail in Figure3.6(b)).

We investigate the performance of the system and show the basic statistical proper-
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Figure 3.8:Multi-Cluster Experiments [W-Base]: I/O performance for the C3 cluster.
The values at the top of graph (a) are the maximum values observed.

ties of the cluster utilization of the C3 cluster and the CPU load of the C3 head-node
in Figure3.7. All techniques reduce the CPU load leading to better systemresponsive-
ness;Static by 33%, BBCby 40%, andAdaptive by 80% (Figure3.7(a)). This
improvement adds to the improvements observed for the application performance (Fig-
ure 3.6). Compared withNo Throttling , Adaptive with β = 0.5 preserves the
application performance (Figure3.6(a)) while using less resources (Figure3.7(b)), and
improving the system responsiveness (Figure3.7(a)). Moreover, withβ = 1.0, although
Adaptive yields a better performance (Figure3.6(a)), it leads to a 50% higher CPU
load overβ = 0.5 (Figure3.7(a)). Because withβ = 1.0, Adaptive increases the con-
currency limit faster than withβ = 0.5, thus letting the runner overload the head-nodes.
Our results show that a trade-off between the application performance and system respon-
siveness exists. As a consequence, while determining the values of the parameters of the
throttling techniques, this trade-off should be taken intoaccount.

We investigate the I/O performance and show the basic statistical properties of the
I/O service time and the disk utilization for the C3 cluster in Figure3.8. Throttling
also helps in reducing the I/O service times: the median I/O service time is reduced by
62% withStatic , 65% withBBC, and 81% withAdaptive overNo Throttling

( Figure 3.8(a)). Finally, in terms of the disk utilizationBBCperforms similar toNo

Throttling while Adaptive performs slightly better decreasing the disk utilization
by 66%. Due to the heterogeneity of our testbed, althoughStatic has a higher disk uti-
lization thanNo Throttling (Figure3.8(b)), it improves significantly the CPU load
(Figure3.7(a)) and the I/O service time overNo Throttling (Figure3.8(a)).

From now on, we continue our evaluation with dynamic techniques, because with
Static the concurrency limit has to be tuned for all clusters and workloads making
it an impractical solution, and we have already shown thatAdaptive has comparable
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Figure 3.9:Multi-Cluster Experiments [W-Task] : Makespan (a), the distribution of the
task execution time (b), and the basic statistical properties of the CPU load of the C3
head-node (c).

performance withStatic . We assess the performance of theBBCandAdaptive tech-
niques with the W-Task workload and show the results in Figure3.9. As W-Task contains
more tasks than W-Base, the overloads in all clusters are more severe. As a result, throt-
tling improves drastically the application performance:Adaptive andBBCimprove the
makespan by 50% (Figure3.9(a)) while improving the median CPU load by 22% and
78% (Figure3.9(c)), respectively. The reasons for such a difference are the increased
number of parallel I/O operations, and the increased numberof simultaneous inter-cluster
file transfers that put more load on the shared resources. Compared to the other experi-
ments, with the W-Task workload the improvements in the application performance and
the CPU load is higher resulting in a more responsive system.Moreover, throttling also
improves the extreme performance of the task execution time(Figure3.9(b)) leading to
better performance consistency than without throttling.

We evaluate the performance of theBBCand Adaptive techniques with the W-
Run workload and show the results in Figure3.10. Unlike the results for the W-Task
workload, withAdaptive the makespan is roughly the same as the makespan without
throttling (Figure3.10(a)). AlthoughAdaptive andBBChave similar task execution
performance (Figure3.10(b)), the makespan is smaller withBBCwith a 30% improve-
ment overNo Throttling as tasks have higher wait times (throttling delay + queuing
delay) withAdaptive than withBBC, leading to a higher makespan. Similar to the
results for the W-Task workload,Adaptive improves the CPU load by 60% overNo

Throttling leading to better system responsiveness thanBBC(Figure3.10(c)). With
the W-Run workloadAdaptive leads to a similar makespan withNo Throttling

while BBCresults in a better makespan but with a higher CPU load.
Using the W-IO workload we investigate the performance of theBBCandAdaptive
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Figure 3.10:Multi-Cluster Experiments [W-Run] : Makespan (a), the distribution of
the task execution time (b), and the basic statistical properties of the CPU load of the C3
head-node (c).
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Figure 3.11:Multi-Cluster Experiments [W-IO] : Makespan (a), the distribution of the
task execution time (b), and the basic statistical properties of the CPU load of the C3
head-node (c).

techniques and present the results in Figure3.11. Both techniques lead to similar
makespan, with an improvement of 15% overNo Throttling (Figure3.11(a)). Since
the workload is I/O intensive, the less powerful cluster (C3) gets overloaded quickly, caus-
ing a large number of tasks to be submitted to faster clusterswith both techniques yielding
a similar makespan. Similarly to the results of the W-Task and W-Run workloads, both
techniques improve the extreme performance of the task execution time (Figure3.11(b)).
Finally, both techniques result in similar CPU load due to the large file transfers with this
workload (Figure3.11(c)). Nevertheless, the system responsiveness is improvedsubstan-
tially as both techniques reduce the CPU load by 55%.
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3.5 Related Work

In this section we survey prior research exploring the following overload control tech-
niques: congestion control, admission control, scheduling, overprovisioning, and throt-
tling.

Congestion Control is a well-researched technique for network traffic engineering;
we refer to [213] for a survey of a wide range of TCP congestion control mechanisms.

Admission Control is a technique under which the amount of work accepted to a sys-
tem is policy controlled. Admission control has been used inweb servers to mitigate flash
crowds [212], and in e-commerce systems [74] and multi-tier distributed systems [146]
for overload control. Although effective, admission control can help stave off degrading
response times under overload but cannot prevent it completely.

Schedulinghas also been investigated as a solution to the overload control problem.
In [185] authors address the transient overload problem of web servers by using the short-
est remaining processing time scheduling policy. A similarstudy shows significant re-
sponse time improvements by favoring short connections [56]. Although these studies
showed improvements to the response times under transient overload, they do not eval-
uate the policies under permanent overloads. Previous studies [74, 192] also show that
scheduling can prevent overload only to a certain extent.

Overprovisioning is a technique for handling workload fluctuations that may cause
temporary overloads at bottleneck resources. Overprovisioning can solve the overload
problem only to a certain extent [121], even when using overflow pools to handle transient
overload [82] or dynamic overprovisioning [205]. Overprovisioning is difficult to employ
for highly variable workloads—at one extreme, a system thatis overprovisioned for the
peak load incurs high costs, at the other, a system overprovisioned for the mean load
cannot handle severe overloads.

Throttling is a technique under which the rate at which workloads are pushed through
the system is controlled depending on the system load. Throttling has been used in
diverse computer systems to control overload; it has been used in distributed file sys-
tems [6], resource management systems like Grid Engine and Condor [55], networks of
SIP servers [96], and in cycle stealing systems for efficiently enforcing resource limits on
I/O subsystems [174].

Closest to our work are the studies in networks of SIP servers[96], in cycle stealing
systems [174], and in Condor DAGMan [55]. Our study is different from [96] since the
workload characteristics of multi-cluster grids are significantly different from multime-
dia workloads [101]. In contrast to [55], we perform a more extensive evaluation; we
investigate both static and adaptive throttling techniques where they only focus on static
throttling, and moreover, we evaluate these techniques in areal multi-cluster grid.
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3.6 Summary

Due to highly demanding and bursty workloads, overloads areinevitable in multi-cluster
grids, leading to decreased system performance and responsiveness. Further motivated
by our DAS multi-cluster grid, where running hundreds of tasks concurrently leads to
severe overloads, in this chapter we have investigated the performance of throttling-based
overload control techniques in multi-cluster grids.

Our results show strong evidence that throttling can be usedfor effective overload con-
trol in multi-cluster grids. In general, we have shown that throttling leads to a decrease
(in most cases) or at least to a preservation of the makespan of bursty workloads, while
significantly improving the extreme performance (95th and99th percentiles) for applica-
tion tasks leading to more consistent performance and reducing the overload of cluster
head-nodes. In particular, our adaptive technique improves the application performance
by as much as 50% while also improving the system responsiveness by up to 80%, when
compared with the tuned multi-cluster system without throttling. Our results further in-
dicate that our adaptive throttling technique performs similarly to static throttling, which
is based on the manual tuning of our system that provides the best observed performance,
and better overall than the other adaptive throttling technique investigated in this chapter.



Chapter 4

Incremental placement of interactive
perception applications∗

Multimedia recording and playback capability has been longestablished in the computer
industry, and has become commonplace with the availabilityof low-cost digital cameras
and recording hardware. Until recently, applications making use of audio and video data
have largely been limited to recording, compression, streaming, and playback for human
consumption. Applications that can directly make use of video streams, for example as
a medium for sensing the environment, detecting activities, or as a mode of input from
human users, are now active areas of research and development [46, 54, 140, 196]. In
particular, a new class ofinteractive perception applicationsthat uses video and other
high-data rate sensing for interactive gaming, natural gesture-based interfaces, and visu-
ally controlled robotic actuation is becoming increasingly important.

Interactive perception applications pose some unique challenges to their effective im-
plementation in real systems. First, the data rates associated with video streams are high,
making it challenging to process, store, and transmit the data without loss. This problem
is compounded by the ever-improving resolution and frame rates of low-cost cameras.
Second, the state-of-the-art computer vision and machine learning techniques employed
by interactive perception applications are often compute intensive. For example, Scale
Invariant Feature Transform (SIFT) feature extraction [133], a commonly-used algorithm
for finding and describing features in an image, can take overa second to run for each
frame of a standard definition video on a modern processor, over 30× too slow to keep up
with the video stream. Furthermore, the computation load ofthese algorithms is highly
variable, and depends on scene content factors such as background clutter, motion in the
scene, and the number of people in view. Finally, these applications have tight response

∗This chapter is based on previous work published in theACM International Symposium on High-
Performance Parallel and Distributed Computing(HPDC’11) [228] and theInternational Open Cirrus
Summit 2011[235].
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time requirements. To provide a crisp, responsive user experience, interactive applica-
tions may need to ensure that the latency, from when sensor data arrive to when outputs
for actuation or updates of a display are generated, is limited to 100–200 ms for each data
item (i.e., video frame).

On the other hand, interactive perception applications provide ample opportunities to
exploit parallelism. They are often structured as data flow graphs of processing stages,
which are amenable to various parallelization techniques.Recent work [167] demon-
strates that it is possible to run such applications in an interactive setting by exploiting the
coarse-grained parallelism inherent to these applications, and carefully distributing their
execution across multiple processors and machines. The useof parallel resources can re-
duce the time to execute these algorithms, but additional overheads for data transfer and
coordination are introduced. The effectiveness of this approach hinges on careful alloca-
tion and scheduling of processing stages on different processors such that the latency for
the distributed data flow to process each item, including processing and data transfer time,
i.e., the makespan, is minimized. However, given the variability in perception workloads,
it is difficult to determine a good placement of the processing stages a priori.

In this chapter we devise algorithms toautomaticallyand incrementallyplace and
schedule stages of an application on a set of processing nodes to minimize latency
(makespan). Our system continuously monitors performanceof the running application
stages, and, as conditions change, adjusts the placement bymigrating stages between
processing nodes. We develop and implement four heuristicsthat perform incremental
placement to minimize latency while bounding migration cost. We demonstrate the ben-
efits of these heuristics through detailed simulations and execution on a prototype system
using two real interactive perception applications. In particular, with our experiments us-
ing these applications we show that the heuristics improve the median latency by up to
36%.

The rest of the chapter is organized as follows. Section4.1 introduces the two in-
teractive perception applications that we study in this chapter. Section4.2 describes the
Heterogeneous Earliest Finish Time (HEFT) scheduling heuristic on which our incre-
mental heuristics are based. Section4.3 presents the incremental placement problem,
and Section4.4describes our incremental placement heuristics. Section4.5describes the
implementation details of our system. Section4.6describes the experimental setup. Sec-
tion 4.7and Section4.8present our performance evaluation results with simulations and
with experiments on a real system, respectively. Finally, Section4.9 reviews the related
work and Section4.10summarizes the chapter.
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4.1 Interactive Perception Applications

We consider parallel interactive perception applicationsstructured as data flow graphs.
These applications usually comprise compute-intensive computer vision and machine
learning algorithms, many of which exhibit coarse-grainedtask and data parallelism that
can be exploited across machines. The vertices of such applications are coarse-grained
sequential processing steps calledstages, and the edges are connectors which reflect data
dependencies between stages. The stages interact only through connectors, and share no
state otherwise. Source stages provide the input data to theapplication, for example, as a
video stream from a camera consisting of a sequence of frames. This sequence of frames
flows through and is transformed by multiple processing stages, which, for example, may
implement a computer vision algorithm to detect when the user performs a particular ges-
ture. Finally, the processed data is consumed by sink stages, which then control some
actuator or display information to the user. The data flow model is particularly well suited
for perception, computer vision, and multimedia processing tasks because it mirrors the
high-level structure of these applications, which typically apply a series of processing
steps to a stream of video or audio data. In this data flow model, concurrency is explicit –
stages within an application can execute in parallel, constrained only by data dependen-
cies and available processors.

We use an application-independent runtime system [167] to distribute and execute ap-
plications in parallel on a compute cluster. The system provides mechanisms to migrate
stages and set tunable parameters, including the degree of parallelism (e.g., number of
data-parallel operators). Migrating a stage includes making the necessary RPCs to ac-
tivate the stage on the remote node and transferring the stage state. Setting the tunable
parameters of an application enables changing the application fidelity by updating the al-
gorithm parameters, and changing the graph structure by adding new data parallel stage
instances. The system also monitors application performance, and provides interfaces for
extracting stage latency data. Our work extends this runtime system by adding automatic
initial placement of stages, as well as the ongoing incremental adjustment of placement
to maintain low application makespan as conditions change.

We study two applications in this paper. The first application, pose detection, is an
implementation of an algorithm for object instance recognition and pose registration used
in robotics [54]. As shown in the data flow of Figure4.1(a), each image (frame from
a single camera) first passes through a proportional down-scaler. SIFT features are then
extracted from the image and matched against a set of previously constructed 3D models
for the objects of interest. The features for each object arethen clustered by position
to separate distinct instances. A random sample consensus (RANSAC) algorithm with a
non-linear optimization is used to recognize each instanceand estimate its 6D pose. As
this application is intended for visual servoing of a robot arm, it requires low processing
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(a) Pose detection. (b) Gesture-based TV control.

Figure 4.1: Data flow for our applications.

latency for each frame, with a goal of 50 ms.
The second application, TV control, provides an interface to control a television via

gestures [45]. Each video frame is sent to two separate tasks, face detection and motion
extraction, shown in Figure4.1(b). The latter accumulates frame pairs, and then extracts
SIFT-like features that encode motion in addition to appearance. These features, filtered
by the positions of detected faces, are aggregated over a window of frames using a previ-
ously generated codebook to create a histogram of occurrence frequencies. The histogram
is treated as an input vector to a classifier trained for the control gestures. For this applica-
tion, low latency, on the order of 100 ms, for processing eachframe is needed to achieve a
responsive user interface. We note that in both of these applications, the processing times
of the vision algorithms are the primary contributors to latency, though other sources,
such as network transfer overheads, are also non-negligible.
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4.2 The HEFT Algorithm

To dynamically and incrementally place perception applications structured as data flow
graphs on compute nodes, we propose four heuristics which use the Heterogeneous Ear-
liest Finish Time (HEFT) algorithm [202] as a building block. HEFT is a well-studied
list scheduling heuristic for multiprocessor scheduling of an application task graph. It has
low complexity, is easy to implement, and performs well compared with many heuristics
in the literature. We describe the steps of the algorithm in turn:

• Vertex/Edge Weight Assignment: Initially, HEFT sets the computation costs of
stages and the communication costs of edges with mean valuescomputed over all
processors and data links in the system.

• Task Prioritization: Then, HEFT assigns each stagevi an upward rank value
ranku(vi), which is the length of the critical path from stagevi to the exit stage
includingvi’s computation cost. The stages are sorted by decreasing order of up-
ward rank, with ties broken randomly.

• Processor Selection:Finally, HEFT traverses the list of stages in decreasing or-
der of upward rank andplacesstagevi on processorpk that minimizes the stage’s
Earliest Finish Time EFT(vi,pk), andscheduleseach stage using an insertion-based
policy. With this policy a stage may be inserted in a slot of the schedule of the
processor between two already scheduled stages on this processor if the length of
the slot is long enough for the new stage.

The complexity of HEFT isO(ep) wheree is the number of edges in the graph andp

is the number of processors. For dense graphs, sincee = O(v2), the complexity of HEFT
isO(v2p), wherev is the number of vertices in the graph.

4.3 Problem Formulation

In this section we first describe the initial placement problem, and then we describe the
incremental placement problem which is the main focus of this study.

4.3.1 The Initial Placement Problem

We represent an interactive perception application as a data flow graphG = (V,E),
comprising a set of processing stagesV = {v1, ..., vn} and a set of data dependencies
E = {eij|vj requires data fromvi}. The application runs on a possibly heterogeneous
cluster withm processorsnj , j = 1, ..., m with capacities (number of cores)cj, j =

1, ..., m.
Stagevi has weightwi representing its execution time, and edgeeij has weightwij

representing the latency of sending output data from stagei to stagej. If stagei and
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j are running on the same processor, we setwij = 0. Each stagevi has a processing
demand (number of cores)di. LetP = {pij} be a placement wherepij = 1 if stagevi is
placed on processornj andpij = 0 otherwise. Theinitial placement problemis to find
a placementP that minimizes the makespan (latency) of the application subject to the

capacity constraints
n∑

i=1

pijdi < cj , j = 1, ..., m.

4.3.2 The Incremental Placement Problem

The performance of a running application can be affected by avariety of factors. For
example, the runtime of a stage may change due to a change in the input data or the
values of tunable parameters, stages on a processor may slowdown due to the arrival of
background load, and data parallel instances of stages may be added or removed from the
application graph. These perturbations can affect latencyenough to warrant revising the
initial placement.

Re-placing stagei involves migrating it from its current processork to another pro-
cessorl with non-zero migration costmikl. Given an initial placementP , theincremental
placement problemis to find a placementP ′ that minimizes the makespan of the applica-
tion subject to the migration cost constraint

∑
mikl < M , where M is the migration cost

bound, and the capacity constraints
n∑

i=1

pikdi < ck, k = 1, ..., m. The reason to bound the

migration cost is that the migration of a stage can be noticeable by the user as a transient
increase in latency.

We now describe the requirements for an incremental placement algorithm for inter-
active perception applications which make this problem non-trivial:

• Stage execution times can vary due to changes in the input data, the values of tun-
able parameters, or the arrival of background load. Stage input and output data
amounts may also vary. The incremental placement algorithmmust accept changes
to node and edge weights.

• The incremental placement algorithm will be executed repeatedly to revise the ex-
isting placement, therefore it should be efficient.

• When modifying an existing placement by migration, the incremental placement
algorithm must keep the disruption (churn) in the existing placement within a given
migration cost bound.

• The degree of parallelism in an application graph can be changed dynamically by
setting tunable parameters (see Section4.1), which changes the number of stages
in the graph. The incremental placement algorithm must dealwith these structural
changes.

• Stages may have constraints on where they can be placed. For example, a stage may
require a specific resource (e.g., a camera), or mutual exclusion (e.g., due to non-
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thread-safe libraries). The incremental placement algorithm must take into account
such constraints.

In the general case, assigning tasks to processors subject to precedence constraints
is known to be NP-complete [84]. Therefore, either optimal enumerative search based
methods or approximate heuristics can be used. In practice,enumerative techniques are
very expensive even for very small graphs on a few processors, and intractable for modest
systems (e.g. 25 stages on 10 processors). Thus, we take the latter approach and propose
four heuristics which we present in the next section for solving the incremental placement
problem.

4.4 Incremental Placement Heuristics

To perform incremental adjustment to placement, we have developed four heuristics all
of which use HEFT as their primary building block. To this end, we modify the original
HEFT algorithm such that it can accept as input a partial placement of stages. If a stage is
already placed, the algorithm does not do any placement but only schedules it. Therefore,
the runtime of HEFT for the case when there are already placedstages will be less than
for the case when none of the stages are placed. We use this modified HEFT algorithm to
build our incremental heuristics.

HEFT-MS (One Move/Swap): We define a move as the migration of a stage from its
current processor to another processor and we define a swap ofa pair of stagessi andsj
as the migration ofsi to the processor thatsj is currently running on and vice versa. The
main characteristic of this greedy algorithm is that it tends to minimize the migration cost
by limiting the number of migrations either to a single stageor a pair of stages (swap).
This algorithm finds the best single move or the best single swap operation by searching
the whole search space of possible single moves and swaps. Single moves are explored
before single swaps since the migration cost of a single movewill likely be less than that
of a single swap. At the end, the algorithm updates the current placement by applying
the operation (either a single move or a single swap) with thesmaller makespan. The
algorithm consists of two steps:try one moves andtry one swaps. So the complexity
of the algorithm is the maximum of the complexities of these two steps. The complexity
of the try one moves step isO(vep2) for sparse graphs andO(v3p2) for dense graphs.
Thetry one swaps has a complexity ofO(v2ep) for sparse graphs andO(v4p) for dense
graphs. Therefore, the complexity of HEFT-MS isO(max(vep2, v2ep)) for sparse graphs
andO(max(v3p2, v4p)) for dense graphs.

HEFT-Iter: The goal of this algorithm is to improve the quality of the schedule
(makespan) as much as possible within the specified migration cost bound. Therefore, this
algorithm may result in higher migration costs compared to HEFT-MS which is good at
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minimizing the migration cost. This algorithm is an iterative greedy algorithm which runs
HEFT-MS iteratively until the migration cost bound is exceeded or no further improve-
ment to the current schedule is possible. As a result, this algorithm may perform multiple
moves and swaps, compared to HEFT-MS which is limited to a single move or swap.
Assuming that HEFT-Iter runs HEFT-MST times, the complexity of this algorithm is
T ·O(max(vep2, v2ep)) for sparse graphs andT ·O(max(v3p2, v4p)) for dense graphs. For
the worst case when the migration cost bound is infinite, T isO(v), hence the complexity
of this algorithm isO(max(v2ep2, v3ep)) for sparse graphs andO(max(v4p2, v5p)) for
dense graphs.

HEFT-Relax: The main goal of this greedy algorithm is to provide a lightweight alter-
native to the other heuristics. At each iteration, each stage is examined by relaxing its
placement and letting HEFT place and schedule the stage. Therelaxation that produces
the smallest makespan is selected. If the resulting migration cost is less than the mi-
gration cost bound and the resulting makespan improves the minimum makespan found
so far, then the placement of the relaxed stage is updated, and the algorithm proceeds
with the next iteration. The algorithm terminates if the total migration cost exceeds the
given bound or if the minimum makespan found so far can not be improved. In the worst
case when the migration cost bound is infinite, the algorithmterminates after relaxing
all stages. Therefore, the complexity of the algorithm isO(v2ep) for sparse graphs and

O(v4p) for dense graphs.

HEFT-DRelax (Dual Relax): This algorithm is an iterative greedy algorithm similar to
HEFT-Relax. Until the migration cost bound is exceeded, at each step HEFT-DRelax
finds the best pair of stages, stages that improve the minimummakespan found so far if
relaxed, and relaxes the placement of each pair and lets HEFTplace and schedule these
stages. If a feasible relaxation can be found, that is the resulting migration cost is less than
the migration cost bound and the resulting makespan improves the minimum makespan
found so far, then the placements of the relaxed stages are updated, and the algorithm
proceeds with the next iteration. The algorithm terminatesif the total migration cost
exceeds the given bound or if the minimum makespan found so far can not be improved.
In contrast to HEFT-Relax, this algorithm relaxes a pair of stages at each step. Therefore,
there is more room for the HEFT algorithm to improve the current schedule while the
resulting migration cost of this algorithm may be higher. Inthe worst case when the
migration cost bound is infinite, the algorithm terminates after finding for each stage the
best stage to relax in pair, therefore the complexity of the algorithm isO(v3ep) for sparse
graphs andO(v5p) for dense graphs.
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4.5 Implementation Details

We implemented placement functionality as an extension of the system described in Sec-
tion 4.1. A placement manager runs within a management process that configures and
launches applications. As such, the execution time of the placement algorithms is not
directly noticeable by the user.

The placement manager runs periodically, where the interval is a configurable param-
eter with a default of two seconds. During each iteration, the placement manager first
retrieves performance data for each stage from the servers running the application. This
data is logged by the underlying runtime system, and includes information such as stage
execution times and input and output data amounts. This datais used to construct a model
of the running application. The placement manager then runsHEFT to determine if the
placement can be improved, and if so, whether the necessary changes fall within the mi-
gration bound. If not, it then runs HEFT-Iter.

The resulting changes are effected using the stage migration functionality provided by
the underlying runtime system. Migrating a stage involves activating a new instance of the
stage on its destination server, creating connections to its sources and sinks, synchronizing
the transfer of the connections and stage state to the new instance, and teardown of the
old instance. Except for state transfer, which occurs between stage executions, these
operations run in the background while stages continue to execute. Thus, only the cost of
state transfer is manifest to the application.

Although the state transferred and cost is generally small,an improved underlying
runtime system employing live state migration with triggered change propagation can hide
this latency as well. Implementing such a system is beyond the scope of this paper. In
both the hypothetical and actual systems, it is important tominimize churn, and mitigate
the extra resource consumption of the migrating stages.

4.6 Experimental Setup

In this section we first describe the workloads that we use in our experiments, and then
we describe the performance metrics that we report as a result of our experiments.

4.6.1 Workloads

We evaluate the incremental placement heuristics described in Section4.4 via simula-
tions and real experiments. For the experiments, we use the applications presented in
Section4.1. For the simulations, we create a generic model for these applications to do an
extensive performance evaluation with a diverse set of synthesized workloads. To ensure
these are realistic, we first model the stage runtime, the size of the stage output and the
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Pose detection TV Control
Model mean std-dev D A2 Model mean std-dev D A2

Stage Runtime [s] LN(-5.55,2.52) 0.09 2.25 0.09 50.35LN(-7.49,2.38) 0.009 0.16 0.07 24.54
Stage State Size [bytes] U(40.52,62.11) 51.31 6.23 0.27 1117.40N(53.75,6.13) 53.75 6.13 0.15 78.05
Stage Output [bytes] W(2.03E+5,0.26) 3.66E+6 26.85E+6 0.20 288.38W(9353.5,0.19) 1.64E+6 30E+6 0.24 496.97

Table 4.1: Model Parameters: The parameters for the best fitting distributions with
corresponding mean and standard deviation values, andD andA2 statistics that show
how well the model fits the empirical data with the KS and AD goodness of fit tests.
LN(µ,σ2), U(a,b), N(µ,σ2), and W(λ,k) stand for the LogNormal, Uniform, Normal, and
Weibull distributions, respectively.

size of the stage state data (for modeling the migration cost) for all stages of the pose
detection and the TV control applications (Section4.1). We use the maximum likelihood
estimation method to fit the well-known Log-normal, Pareto,Weibull, Beta, Gamma, Uni-
form, Normal, and Exponential distributions to empirical data collected while running
the applications. Table4.1 shows the parameters for the best fitting distributions, their
corresponding means and standard deviation values, andD andA2 statistics that show
how well the model fits, as assessed with the Kolmogorov-Smirnov (KS) and Anderson-
Darling (AD) tests with a significance level of0.05. SmallerD andA2 values denote a
better fit. As the two models are similar, for simplicity, we only use the pose detection
model parameters in our simulations. Finally, to model execution on different processors,
we scale the stage runtime by the ratio of the processor clockrates.

We then synthesize application graphs composed of a desirednumber of the
realistically-modeled stages using a custom graph generator. We start generating a ran-
dom graph with a single root stage and continue with the following operations until the
graph has the specified number of stages:

• Vertical split operation adds a single child to a stage. A uniform random value is
generated in the range [0,1], and a stage is split verticallyif the generated value is
less than the vertical split probability parameter,v.

• Horizontal split operation adds several children to a stage, and a stage that is
a child of all these children stages. A uniform random value is generated in the
range [0,1], and a stage is split horizontally if the generated value is less than the
horizontal split probability parameter,h. The number of children added is a uniform
random value in the range [1,f ], wheref is the maximum horizontal split fanout
parameter.

After vertical and horizontal split operations are performed, the stages without chil-
dren are terminated with a single exit stage. The reason thatwe use horizontal and vertical
split operations instead of well-known random graph modelslike Erdös-Rényi [76] is to
create subgraphs that model data parallel instances in realapplications well. In our per-
formance evaluation, we use random graphs comprising 20, 50, 100 or 200 stages, with
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25 instances of each size. Unless otherwise stated, we usev = 0.3 andh = 0.3, but we
also evaluate the impact of the parametersv andh on the performance of the heuristics in
Section4.7.1. Finally, for the maximum horizontal split fanout parameter we use a value
of 5 which we think is representative of our real perception applications. We note that our
synthetic workloads have stage characteristics close to those of the real applications, but
have generally much larger and more varied application graphs, which results in much
longer makespans than the two real applications.

4.6.2 Performance Metrics

We evaluate both the quality of the schedules calculated by the heuristics and the runtime
of these heuristics. To this end, we use the following metrics:

• Runtime [µs/ms]: The time it takes for a heuristic to schedule a given application
graph.

• Makespan [ms]: Total time from the start of the root stage to the end of the exit
stage of the graph for a single frame. Makespan is also calledlatency or schedule
length.

• Migration Cost [ms]: The time it takes to migrate a stage from its current processor
to a new processor. The migration cost includes the time for RPC and the time it
takes to transfer the stage’s state to the new processor.

In our experiments, we report the averages for these performance metrics calculated over
all input graph instances.

4.6.3 Testbed

We run both the simulations and the real system experiments on the Open Cirrus
testbed [17]. For the simulations (Section4.7), we use a machine with 8 GB main mem-
ory and with an IntelR© XeonR© 8-core CPU running at 2.8 GHz. We simulate cluster
topologies having a specified number of processors each witha single core and with a
random clock frequency in the range [1.6-3.6] Ghz to model the heterogeneity. In ad-
dition, to model the cluster that we use in the real system experiments, we simulate a
cluster where machines are connected with 1 Gbps Ethernet links. For the real system
experiments (Section4.8), we use a cluster of 15 processing nodes in the Open Cirrus
testbed connected via a 1 Gbps Ethernet switch. Each node in the cluster has 8 GB main
memory and an IntelR© XeonR© 8-core CPU running at 2.8 GHz. Note that we use physical
machines, not virtual machine instances that are typicallyused on Open Cirrus.
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4.7 Simulation Results

In this section we investigate the performance of the incremental heuristics of Section4.4
with simulations. First, we evaluate the makespans of schedules produced by the in-
cremental heuristics using diverse workloads and under different perturbation scenarios.
Then, we evaluate the runtimes and scalability of the HEFT algorithm and our incremen-
tal heuristics. As we will see, the makespans obtained with our heuristics are very similar
to those obtained with plain HEFT, but the migration cost is very much lower as desired,
which comes at the price of much longer runtimes of the heuristics compared to HEFT.

4.7.1 Application Latency

We first evaluate the quality of the schedules, in terms of makespan, the incremental
heuristics calculate. To this end, after the initial placement is done with HEFT, we eval-
uate the incremental placement heuristics in the three perturbation scenarios described in
Section4.3.2, which we model in the following way:

• Perturb a random stage:We increase the runtime of a random stage by a random
factor which is uniformly distributed between1 and10. This uniform random factor
is observed in real perception applications where the runtime of stages may change
significantly during execution due to changes of the input data or the values of
tunable parameters.

• Perturb a random processor: We perturb all stages on a random processor, and
we increase the execution time of all stages on that processor by a random factor
which is uniformly distributed between1 and10. This perturbation corresponds to
the introduction of background load on the processor.

• Add a new data parallel stage instance to the graph:We add a new data parallel
instance of a stage to an application during execution. Thischange occurs as a
result of setting a tunable parameter.

To assess the quality of the schedules that the incremental algorithms calculate, we
compare the makespan of these schedules with abaselinemakespan, which we calculate
by rerunning the HEFT algorithm on the updated graph. For oursimulations we use
general random graphs created using the generator described in Section4.6.1which may
have significantly different sizes and structures than those of real perception applications.
Therefore, our goal with the simulations is to assess the quality of the heuristics with
diverse abstract graphs rather than meeting the latency objectives stated in Section4.1.

Perturb a random stage: small-scale settings

Figure4.2shows the results of the simulations with relatively small-scale settings: graphs
having 20, 50 or 100 stages, and a cluster of 16 processors. There are three horizontal
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Figure 4.2: Makespan for the simulations with various graphsizes and 16 processors.
Horizontal lines: makespan without adjustment (top), withrerunning HEFT (middle),
and the initial makespan (bottom). Vertical lines: migration costs of rerunning HEFT –
150 ms (a), 576 ms (b), and 2100 ms (c).

lines in the graph. The top line is the makespan without adjustment, that is, we let the
application run after a perturbation and do not re-place thestages to other processors. The
middle line is the makespan obtained by rerunning the HEFT algorithm on the updated
graph (the baseline). Finally, the bottom horizontal line is the initial makespan, which is
the makespan before perturbation.

For 20 stages (Figure4.2(a)), the incremental heuristics perform similarly; they con-
verge to the baseline relatively fast when the migration cost bound is 100 ms. We observe
30% improvement with the incremental heuristics (doing adjustment) compared to the
case without adjustment:it is worth adjusting the schedule. For this experiment, rerun-
ning HEFT has an average migration cost of 150 ms, and all heuristics converge to the
baseline solution with a migration cost of 100 ms, therefore, having less migration (churn)
compared to rerunning HEFT.

For 50 stages (Figure4.2 (b)), similar to the results with 20 stages, we observe 31%
improvement with adjustment over the case without adjusting the schedule. For this ex-
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periment, none of the heuristics converge to the baseline solution, however all heuristics
are less than 1% off the baseline solution when migration cost bound is 500 ms causing
less churn than rerunning HEFT, which has a cost of 576 ms. When the migration cost
bound is 100 ms, all heuristic are less than 2% off the baseline solution: incremental
heuristics provide roughly the baseline makespan with significantly lower (80%) migra-
tion costs than rerunning HEFT. This result shows how well the incremental heuristics
address the trade-off between the cost of migration and the resulting makespan.

For 100 stages (Figure4.2 (c)), although HEFT-Relax and HEFT-DRelax both con-
verge to the baseline solution, HEFT-DRelax performs slightly better when the migration
cost bound is larger than 200 ms. HEFT-Iter performs slightly (%3) better than HEFT-MS,
and they both do not converge to the baseline solution. The reason why these heuristics
do not converge to the baseline solution is that all heuristics make locally optimum de-
cisions, and they do not consider all permutations of moves,therefore they may not be
able to find the global optimum solution. So, the resulting schedules can be far from the
global optimum schedule. Nevertheless, HEFT-Iter and HEFT-MS are slightly off the
baseline when the migration cost bound is infinite; by 1% and 4%, respectively. Although
HEFT-Iter is slightly off the baseline when migration cost bound is infinite, it performs
the best for other migration cost bounds. For this experiment, the average migration cost
for rerunning the HEFT algorithm is around 2100 ms. HEFT-Relax and HEFT-DRelax,
which converge to the baseline solution, have a migration cost of 2014 ms and 2420 ms,
respectively. However, HEFT-Iter is only 1% off the baseline solution with a migration
cost of only 400 ms causing significantly less churn in the system.

Perturb a random stage: large-scale settings

Figure4.3shows the results of the simulations with relatively large-scale settings; graphs
having 100 stages and for various cluster sizes. For 32 processors (Figure4.3 (a)), incre-
mental heuristics perform similarly; all heuristics converge to the baseline solution when
the migration cost bound is 200 ms. For this experiment, adjusting the schedule improves
the makespan around 12% over the case without adjustment. Furthermore, average migra-
tion cost of rerunning HEFT is 1803 ms while HEFT-MS is less than 1% off the baseline
with only 80 ms of migration. Similarly, HEFT-Relax and HEFT-DRelax converge to the
baseline solution with roughly 150 ms of migration, therefore significantly reducing the
churn in the system. However, HEFT-Iter converges to the baseline solution with 250 ms
of migration which is larger than the other heuristics. The reason is that, HEFT-Iter may
perform many migrations for very slight makespan improvements increasing the result-
ing migration cost. For 64 processors (Figure4.3 (b)), rerunning HEFT has a migration
cost of 2600 ms while HEFT-Relax and HEFT-DRelax provide thesame makespan with
a migration cost of less than 600 ms. Similar to other experiments, it is worth adjusting
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Figure 4.3: Makespan for the simulations with 100 stages andvarious cluster sizes. Hori-
zontal lines: makespan without adjustment (top), with rerunning HEFT (middle), and the
initial makespan (bottom). Vertical lines: migration costs of rerunning HEFT – 1803 ms
(a), 2600 ms (b), and 1420 ms (c).

the schedule since adjustment improves the makespan around25% compared to the case
without adjusting the schedule. Although, HEFT-Iter is slightly off the baseline solu-
tion (1%) for infinite migration cost bound, it performs the best for other migration cost
bounds. Finally, for 128 processors (Figure4.3(c)), none of the heuristics converge to the
baseline solution; all heuristics are less than 2% off the baseline. For this scenario, rerun-
ning HEFT has an average migration cost of 1420 ms while HEFT-Iter and HEFT-MS are
less than 2% off the baseline solution with 130 ms and 60 ms of migration, respectively.
We conclude that incremental heuristics significantly improve the makespan compared to
the case without adjusting the schedule while reducing the resulting churn noticeably.

Perturb a random stage: workload parameters

Figure 4.4 shows the results of the simulations with different communication to com-
putation ratios (CCR). Communication to computation ratiois the ratio of the average
communication cost of a graph to its average computation cost. A low CCR for a graph
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Figure 4.4: Makespan for the simulations with 50 stages, 32 processors, and various com-
munication to computation ratios (CCRs). Horizontal lines: makespan without adjust-
ment (top), with rerunning HEFT (middle), and the initial makespan (bottom). Vertical
lines: migration costs of rerunning HEFT – 570 ms (a), 857 ms (b), and 580 ms (c).

indicates that the application is compute intensive. To perform simulations with differ-
ent CCR values, we artificially scaled the communication requirements of the stages for
which we use the statistical model that we describe in Section 4.6. Heuristics perform
similar to other scenarios across difference CCR values; adjusting the schedule with the
incremental placement heuristics improves the makespan by21%, 42% and 31% for in-
creasing CCR values of 0.4, 1.6, and 2.4, respectively. In addition, for all CCR values,
heuristics are less than 2% off the baseline when they do not converge to the baseline so-
lution. Moreover, HEFT-Iter is able to find schedules that are less than 2% off the baseline
solution with significant improvements in churn, as much as 70%.

Finally, Figure4.5shows the results of the simulations when using different horizontal
and vertical split probabilities for generating the randomgraphs (see Section4.6.1). A
higher vertical split probability means less degree of parallelism and a smaller branching
factor for a graph. For higherh values, since the degree of parallelism increases the
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Figure 4.5: Makespan for the simulations with 50 stages, 32 processors, and various
horizontal and vertical split probabilities. Horizontal lines: makespan without adjustment
(top), with rerunning HEFT (middle), and the initial makespan (bottom). Vertical lines:
migration costs of rerunning HEFT – 490 ms (a) and 664 ms (b).

resulting makespan decreases. The initial makespan valuesin both scenarios are close
but not identical; the initial makespan forv = 0.1 andh = 0.7 is 2499 ms, and for
v = 0.7 andh = 0.1 the initial makespan is 2513 ms. Forv = 0.7 andh = 0.1, adjusting
the schedule with the incremental placement heuristics improves the makespan by 34%
and the improvement is 27% forv = 0.1 andh = 0.7. For higherh values, heuristics
perform similarly, and for lowerh values HEFT-Iter and HEFT-DRelax perform slightly
better, and converge to the baseline solution eventually while HEFT-MS and HEFT-Relax
are slightly off the baseline solution (1%). We conclude that although different graph
structures have an impact on the convergence speed and the degree of parallelism of the
graph, the behavior of the heuristics are similar to the other scenarios that we investigate.

Perturb a random processor

Figure4.6(a) shows the makespan for the simulations with graphs of size 50 stages and a
cluster of 32 processors where a random processor is perturbed. The top horizontal line
shows the makespan without adapting the schedule. Since theinitial makespan and the
makespan calculated with HEFT are very close, they are overlapping and shown as a sin-
gle horizontal line at the bottom. For this experiment, 11 stages were affected on average
after the perturbation which in turn increases the makespanof the application significantly.
In addition, affecting the execution of many stages increases the chances of the heuristics
to perform better adaptation. Therefore, adapting the schedule after perturbation improves
the makespan noticeably, by roughly 50%, over the case without adaptation. We observe
that for small migration costs HEFT-Relax and HEFT-DRelax solutions are close to the
case without adaptation. However, these two heuristics areable to improve their solutions
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Figure 4.6: Makespan for the simulations with 50 stages and 32 processors where a ran-
dom processor is perturbed (a) and a data parallel instance of a stage is added to the graph
(b). For the graph on the left, horizontal lines: makespan without adjustment (top), and
the makespan with rerunning HEFT and the initial makespan (bottom). Rerunning HEFT
has a migration cost of 1197 ms (vertical line). For the graphon the right, the horizontal
line shows the makespan obtained with rerunning the HEFT algorithm which has a mi-
gration cost of 681 ms (vertical line). The initial makespan(4755 ms) is not shown for
better visibility.

with increasing migration costs. Eventually, all heuristics but HEFT-MS converge to the
baseline solution while HEFT-MS is 46% off the baseline since HEFT-MS is not able to
adapt the schedule even with increasing migration cost bounds. Other heuristics are able
to achieve the baseline performance with smaller migrationcosts compared to the case
with rerunning the HEFT algorithm. In particular, for this experiment rerunning HEFT
has a migration cost of 1197 ms, and HEFT-Iter achieves the same performance with a
migration cost of 689 ms reducing the churn in the system by 42%.

Add a data parallel stage instance to the graph

Figure4.6(b) shows the makespan for the simulations with graphs of size 50 stages and
a cluster of 32 processors where a new data parallel instanceof a stage is added to the
graph during execution. For this scenario there is not a casewithout adjustment since the
new data parallel instance must be placed and scheduled. In addition, we do not show the
initial makespan for better visibility since the initial makespan is 4755 ms. We show the
makespan calculated by rerunning HEFT as a horizontal line in the graph. We observe that
the makespan that we obtain after rerunning the HEFT algorithm is less than the initial
makespan, as expected, since when a new data parallel instance of a stage is added, the
same amount of data is processed by more stage instances which reduces the latency. For
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Figure 4.7: Average runtime of the HEFT algorithm and the incremental heuristics with
graphs and clusters of different sizes. The vertical axis has a logarithmic scale.

this scenario, rerunning HEFT has a migration cost of 681 ms and all heuristics except
HEFT-MS converge to the baseline solution; HEFT-Iter with amigration cost of 185
ms and HEFT-DRelax and HEFT-Relax with a migration cost of 358 ms reducing the
resulting churn in the system. When the migration cost boundis infinite, HEFT-MS is
roughly 1% off the baseline solution with a migration cost ofonly 42 ms. In addition, for
this scenario HEFT-MS is not able to improve the schedule as the migration cost bound
increases which shows that for some scenarios HEFT-MS is notas good as other heuristics
at adjusting the schedule while it is good at minimizing the churn in the system.

4.7.2 Algorithm Scalability

Before evaluating the runtime of the heuristics, we first profiled and manually optimized
our code, then we used the-O3 flag of theg++ compiler for further compiler optimiza-
tions. During this analysis we set the migration cost bound to infinity to characterize the
worst case performance of the heuristics.

Figure4.7(a) shows the runtime of the HEFT algorithm, which is in microseconds,
and Figure4.7(b-e) show the runtimes of the incremental heuristics, which are in millisec-
onds. Note that even though HEFT may be much faster than the incremental placement
heuristics, it may result in very much churn, that is, it may greatly exceed the migration
cost bound.

The runtimes of all heuristics increase with the increasingsize of the graphs and the
clusters, as expected. Since the graphs in our workload are sparse, we expect the com-
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plexity of HEFT to beO(ep) wheree is the number of edges andp is the number of
processors. For graphs of the same size and for clusters of different sizes, the runtime
of the HEFT algorithm increases roughly linearly with the number of processors (Fig-
ure4.7(a)). For clusters of the same size and for graphs with different sizes, the runtime
of the HEFT algorithm increases roughly proportional to thenumber of edges as the graph
size increases. Even for graphs having 200 stages and a cluster of 512 processors, HEFT
has a runtime of less than 600 ms, which is evidence of how welllist scheduling heuristics
scale.

Among the incremental heuristics, HEFT-Relax is the least computationally complex.
For 20 stages, the runtime is not visible until 32 processorssince it is in the order of
microseconds. Even for graphs of size 200 and a cluster with 256 processors, the runtime
of HEFT-Relax is below 650 ms, making this heuristic an idealcandidate for large-scale
settings. Finally, for graphs of size 200 and a cluster having 512 processors, the HEFT-
Relax runtime exceeds 1 s only slightly.

Compared to the other heuristics, HEFT-MS is less costly than HEFT-Iter and HEFT-
DRelax, and more costly than HEFT-Relax for both small and large graphs and clusters
(Figure4.7(b)). For graphs having fewer than 100 stages, the HEFT-MS runtime is in the
order of hundreds of milliseconds (less than 750 ms) except for the case when the cluster
has 512 processors. For larger graphs and clusters having more than 64 processors, the
runtime of HEFT-MS is in the order of seconds.

For graphs having fewer than 100 stages and clusters having fewer than 256 proces-
sors, the HEFT-Iter runtime is in the order of hundreds of milliseconds (less than 950 ms),
however, increasing the scale further increases the runtime, causing it to be in the order
of seconds (Figure4.7(c)).

For graphs having fewer than 100 stages, HEFT-DRelax and HEFT-Iter have similar
performance (Figure4.7(e)). However, for larger graphs and especially for large clusters,
with more than 128 processors, HEFT-DRelax is more costly than HEFT-Iter, and the
difference in cost increases as the cluster size increases.Because until the migration cost
bound is exceeded HEFT-DRelax relaxes a pair of stages and lets HEFT run through all
processors toplace and schedulethese stages. However, HEFT-Iter when searching the
best swap operations, which dominates the runtime for a large number of stages, calls
HEFT with stages already placed and HEFT onlyschedulesthose stages. For graphs
having more than 100 stages, both HEFT-Iter and HEFT-DRelaxmay have significant
costs in the order of tens of seconds.

To conclude, HEFT-Relax has the best performance for both small- and large-scale
settings. For small-scale settings, all heuristics perform well (with runtimes in the order
of at most hundreds of milliseconds). However, for large-scale setting, that is, graphs
having more than 50 stages and clusters having more than 64 processors, all heuristics
may have runtimes in the order of seconds. It is important to note that these runtimes are
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Figure 4.8: Cumulative distribution function (CDF) of the makespan (left) and migration
cost (right) for the real system experiments with the pose detection application. The
migration cost bound is 200 ms.
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Figure 4.9: Cumulative distribution function (CDF) of the makespan (left) and migra-
tion cost (right) for the real system experiments with the TVcontrol application. The
migration cost bound is 200 ms.

for the worst case when the migration cost bound is infinite.

4.8 Results in a Real System

In this section we evaluate incremental placement using thepose detection and the TV
control applications presented in Section4.1. We run two experiments for each applica-
tion. In the first, the placement is adapted as described in Section 4.5, and in the sec-
ond, the placement is static. Our setup measures and recordsthe (per-frame) latency (or
makespan) as the time elapsed between the arrival of a new video frame and the comple-
tion of the final processing stage for that frame on a frame-by-frame basis. The applica-
tions run until all input frames have been processed, and as aresult of our experiments,
we report the distributions of the makespan with and withoutincremental placement, and
the distribution of the migration cost.

Figure4.8 shows the results of the experiments with the pose detectionapplication



68

with a migration cost bound of 200 ms. The application was configured with 53 stages,
each with a demand of 1. For this experiment, as input to the application we use a HD
(1280x720 pixels) video sequence comprising 3600 frames. The video starts with an
empty scene which is slowly populated with many objects, andthen the objects are re-
moved. Therefore, both the number of SIFT features and modelmatching operations
increase over time putting more load on the system. This input data creates a scenario
where the stages, which have runtimes strictly depending onthe structure of the input
data, get perturbed as the complexity of the input changes. Figure4.8(left) shows that the
system without adaptation has a median (maximum) makespan of 255 (578) ms, while
with adaptation the median (maximum) latency is 211 (519) ms, which is an 18% (10%)
improvement, thus noticeably improving the system’s responsiveness. For this experi-
ment, the median migration cost is 37 ms, which is 19% of the migration cost bound.

Figure4.9shows the results of the experiments with the TV control application with
a migration cost bound of 200 ms. The application was configured with 32 stages, each
with a demand of 1. For this experiment, we evaluate the same scenario as the previous
experiment with an input video where a user performs specificgestures. However, com-
pared to the previous experiment the input video has lower variability. Even with lower
input variability, the median (maximum) latency with adaptation is 239 (374) ms, while
without adaptation the median (maximum) latency is 374 (636) ms which is a 36% (38%)
improvement, thus improving the system responsiveness significantly. For this experi-
ment, the median migration cost is 43 ms, which is 22% of the migration cost bound. We
conclude that adaptation is able to improve the makespan significantly while causing little
churn in the system.

Using our incremental placement heuristics with two real perception applications we
have demonstrated significant improvements in median latency by up to 36%, and the
application latencies are relatively close to the latency upper bound of 200 ms stated in
the Introduction. However, neither application achieves the desired 50–100 ms latency
specified. This may be remedied by using techniques such as runtime adaptation of stage
tunable parameters, increasing the degree of parallelism,using more powerful resources,
and scaling down the input frames, but these techniques are complementary to and outside
the scope of this paper.

4.9 Related Work

The problem of mapping task graphs to multiprocessors has been studied extensively
(see [128] for a survey). The problem is NP-complete even in the case oftwo processors
and non-uniform execution times [84]. As the related efforts, particularly in the real-time
systems and multimedia processing communities, are too numerous to list, we consider
here only those that make assumptions most consistent with our application model and



69

execution environment: task precedence graphs with arbitrary execution times and com-
munication costs, no task duplication, and a bounded numberof fully connected, hetero-
geneous processors. Of these assumptions, heterogeneity is the most restrictive.

Static task scheduling algorithms that satisfy these assumptions fall into three cate-
gories: optimal approaches [182], guided random search based algorithms such as genetic
algorithms and simulated annealing [127, 186, 189, 210], and heuristics. In our system,
task placement is run repeatedly over a dynamic task graph, so efficient run times are
essential. For this reason, heuristics are the more practical approach in our environment.

Clustering heuristics [51] assign tasks to an unbounded set of clusters. Tasks be-
longing to the same cluster execute on the same processor. Clusters are merged at each
iteration, often by decreasing amount of inter-task communication. A final mapping step
assigns clusters to processors, and then orders the tasks oneach processor. A practical
issue with clustering algorithms is ensuring that the resulting mapping satisfies machine
resource constraints.

List scheduling heuristics [25, 73, 112, 178, 188, 202] maintain a list of tasks ordered
by a ranking function, or priority. Tasks are mapped to available processors in this order
according to a cost function, such as the earliest start timeof the task. As discussed in
Section4.2, HEFT [202] produces competitive schedules with low computational com-
plexity.

Because task execution times and data amounts may not be known a priori, and may
change over time, recent approaches adjust task assignments dynamically based on em-
pirical measurements. Kwok et al. [129] use a semi-static method that creates a set of
assignments offline using a genetic algorithm, and then selects between the pre-computed
assignments online based on observed performance. In task rescheduling [138, 179], an
initial schedule is generated for the task graph; as tasks complete, their runtime informa-
tion is used to improve the schedule for the remaining tasks.This scheme is intended for
applications in which the tasks execute once, unlike in our environment where the tasks
execute repeatedly over a stream of data.

Dynamic adjustment of task or workload placement with cost constraints has been
studied in related problems. Aggarwal et al. [7] provide a 1.5-approximation algorithm for
load rebalancing with a cost constraint for multiprocessorscheduling without precedence
constraints. Chen et al. [44] propose an an algorithm that minimizes migration cost for
independent tasks in a computing grid subject to load constraints. Their algorithm is a
local search with special strategies for finding low cost solutions. Tang et al. [197] propose
an algorithm that dynamically determines the number of instances of web applications to
run on a set of machines. Unlike multiprocessor scheduling with precedence constraints,
the problem is formulated as a knapsack problem, with objectives that include maximizing
the demand satisfied and minimizing changes to the running system.
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4.10 Summary

To achieve low latency for interactive perception applications, clusters of machines can
be used to exploit the inherent parallelism in these applications. In this chapter we have
addressed the problem of placing the stages of these applications on clusters of machines.
In particular, we have tackled the incremental placement problem of adjusting an initial
placement to minimize the makespan subject to migration cost constraints.

We have proposed four heuristics for incremental placementthat cover a broad range
of tradeoffs of computational complexity, churn in the placement, and ultimate improve-
ment in makespan. HEFT-MS is good at minimizing the churn, but not as good as the
others at adjusting the schedule. Although HEFT-Iter and HEFT-DRelax are computa-
tionally complex, they perform well at improving the schedule; with increasing migration
cost bounds they can significantly improve the makespan. HEFT-Relax performs in be-
tween; it is computationally less complex, performs betterthan HEFT-MS at adjusting the
schedule, but produces more churn in the system.

Through simulations and real system experiments we have shown that it is worth ad-
justing the schedule using our incremental placement heuristics. A broad range of simula-
tions show up to 50% improvement in makespan, and experiments with two applications
on a real system demonstrate 18% (10%) and 36% (38%) improvements in median (maxi-
mum) makespan, respectively. In addition, we have shown that our incremental heuristics
can approach the improvements achieved by completely rerunning a static placement al-
gorithm, but with lower migration costs and churn in the schedule.



Chapter 5

Performance evaluation of public
clouds∗

Scientific computing requires an ever-increasing number ofresources to deliver results
for ever-growing problem sizes in a reasonable time frame. In the last decade, while the
largest research projects were able to afford (access to) expensive supercomputers, many
projects were forced to opt for cheaper resources such as commodity clusters and grids.
Cloud computing proposes an alternative in which resourcesare no longer hosted by
the researchers’ computational facilities, but are leasedfrom big data centers only when
needed. Despite the existence of several cloud computing offerings by vendors such as
Amazon [12] and GoGrid [87], the potential of clouds for scientific computing remains
largely unexplored. To address this issue, in this chapter we present a performance anal-
ysis of cloud computing services for scientific computing.

The cloud computing paradigm holds great promise for the performance-hungry sci-
entific computing community: Clouds can be a cheap alternative to supercomputers and
specialized clusters, a much more reliable platform than grids, and a much more scalable
platform than the largest of commodity clusters. Clouds also promise to “scale by credit
card,” that is, to scale up instantly and temporarily withinthe limitations imposed only by
the available financial resources, as opposed to the physical limitations of adding nodes
to clusters or even supercomputers and to the administrative burden of overprovisioning
resources. However, clouds also raise important challenges in many aspects of scientific
computing, including performance, which is the focus of this chapter.

There are three main differences between scientific computing workloads and the ini-
tial target workload of clouds: in required system size, in performance demand, and in
the job execution model. Size-wise, top scientific computing facilities comprise very

∗This chapter is based on previous work published in theIEEE Transactions on Parallel and Distributed
Systems[105], the International Conference on Cloud Computing(CloudComp’09) [162], and theInterna-
tional Workshop on Cloud Computing(Cloud’09) [226].
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large systems, with the top ten entries in the Top500 Supercomputers List together total-
ing about one million cores as of 2009, while cloud computingservices were designed
to replace the small-to-medium size enterprise data centers. Performance-wise, scientific
workloads often require High Performance Computing (HPC) or High-Throughput Com-
puting (HTC) capabilities. The job execution model of scientific computing platforms is
based on the exclusive, space-shared usage of resources. Incontrast, most clouds time-
share resources and use virtualization to abstract away from the actual hardware, thus
increasing the concurrency of users but potentially lowering the attainable performance.

These three main differences between scientific computing workloads and the tar-
get workloads of clouds raise an important research question: Is the performance of
clouds sufficient for scientific computing?, or, in other words,Can current clouds exe-
cute scientific workloads with similar performance (that is, for traditional performance
metrics [79]) and at lower cost?Though early attempts to characterize clouds and other
virtualized services exist [231, 63, 163, 208, 211], this question remains largely unex-
plored. In this chapter, to answer this research question first we evaluate with well-
known micro-benchmarks and application kernels the performance of four commercial
cloud computing services that can be used for scientific computing, among which the
Amazon Elastic Compute Cloud (EC2), the largest commercialcomputing cloud in pro-
duction. Then, we compare the performance of clouds with that of scientific computing
alternatives such as grids and parallel production infrastructures. Our comparison uses
trace-based simulation and the empirical performance results of our cloud performance
evaluation. We also perform a preliminary assessment of theperformance consistency of
these four public clouds. However, our assessment only considers the performance con-
sistency of repeated benchmark executions over short periods of time and with low-level
operations, such as floating point additions or memory read/writes, thus motivating us to
explore the performance variability in depth in the next chapter.

The rest of this chapter is organized as follows. In Section5.1 we give a general
introduction to the use of cloud computing services for scientific computing, and select
four exemplary clouds for use in our investigation. Then, inSection5.2 we evaluate
empirically the performance of four commercial clouds. In Section5.3 we compare the
performance of clouds and of other scientific computing environments. Finally, we com-
pare our investigation with related work in Section5.4, and we summarize the chapter in
Section5.5.

5.1 Cloud Computing Services for Scientific Computing

In this section we provide a background to analyzing the performance of cloud comput-
ing services for scientific computing. We first describe the main characteristics of the
common scientific computing workloads, based on previous work on analyzing and mod-
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eling of workload traces taken from PPIs [134] and grids [99, 104]. Then, we introduce
the cloud computing services that can be used for scientific computing, and select four
commercial clouds whose performance we will evaluate empirically.

5.1.1 Scientific Computing

Job structure and sourcePPI workloads are dominated by parallel jobs [134], while grid
workloads are dominated by small bags-of-tasks (BoTs) [107] and sometimes by small
workflows [201, 160] comprising mostly sequential tasks. Source-wise, it is common for
PPI grid workloads to be dominated by a small number of users.

Bottleneck resourcesOverall, scientific computing workloads are highly heteroge-
neous, and can have either one of CPU, I/O, memory, and network as the bottleneck re-
source. Thus, in Section5.2we investigate the performance of these individual resources.

Job parallelism A large majority of the parallel jobs found in published PPI [4] and
grid [104] traces have up to 128 processors [134, 99]. Moreover, the average scientific
cluster size was found to be around 32 nodes [118] and to be stable over the past five
years [108]. Thus, in Section5.2 we look at the the performance of executing parallel
applications of up to 128 processors.

5.1.2 Four Selected Clouds: Amazon EC2, GoGrid, ElasticHosts,
and Mosso

We identify three categories of cloud computing services [229, 15]: Infrastructure-as-
a-Service (IaaS), that is, raw infrastructure and associated middleware, Platform-as-a-
Service (PaaS), that is, APIs for developing applications on an abstract platform, and
Software-as-a-Service (SaaS), that is, support for running software services remotely.
Many clouds already exist, but not all provide virtualization, or even computing services.
The scientific community has not yet started to adopt PaaS or SaaS solutions, mainly to
avoid porting legacy applications and for lack of the neededscientific computing services,
respectively. Thus, in this study we are focusing only on IaaS providers. We also focus
only on public clouds, that is, clouds that are not restricted within an enterprise; such
clouds can be used by our target audience, scientists.

Based on our recent survey of the cloud computing providers [169], we have selected
for this work four IaaS clouds. The reason for this selectionis threefold. First, not all
the clouds on the market are still accepting clients; FlexiScale puts new customers on a
waiting list for over two weeks due to system overload. Second, not all the clouds on
the market are large enough to accommodate requests for even16 or 32 co-allocated re-
sources. Third, our selection already covers a wide range ofquantitative and qualitative
cloud characteristics, as summarized in Tables5.1 and our cloud survey [169], respec-
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Cores RAM Archi. Disk Cost
Name (ECUs) [GB] [bit] [GB] [$/h]

Amazon EC2
m1.small 1 (1) 1.7 32 160 0.1
m1.large 2 (4) 7.5 64 850 0.4
m1.xlarge 4 (8) 15.0 64 1,690 0.8
c1.medium 2 (5) 1.7 32 350 0.2
c1.xlarge 8 (20) 7.0 64 1,690 0.8

GoGrid (GG)
GG.small 1 1.0 32 60 0.19
GG.large 1 1.0 64 60 0.19
GG.xlarge 3 4.0 64 240 0.76

Elastic Hosts (EH)
EH.small 1 1.0 32 30 £0.042
EH.large 1 4.0 64 30 £0.09

Mosso
Mosso.small 4 1.0 64 40 0.06
Mosso.large 4 4.0 64 160 0.24

Table 5.1: The resource characteristics for the instance types offered by the four selected
clouds.

tively. We describe in the following Amazon EC2; the other three, GoGrid (GG), Elasti-
cHosts (EH), and Mosso, are IaaS clouds with provisioning, billing, and availability and
performance guarantees similar to Amazon EC2’s.

TheAmazon Elastic Computing Cloud (EC2) is an IaaS cloud computing service
that opens Amazon’s large computing infrastructure to its users. The service is elastic
in the sense that it enables the user to extend or shrink its infrastructure by launching or
terminating new virtual machines (instances). The user can use any of theinstance types
currently available on offer, the characteristics and costof the five instance types available
in June 2009 are summarized in Table5.1. An ECU is the equivalent CPU power of a
1.0-1.2 GHz 2007 Opteron or Xeon processor. The theoreticalpeak performance can be
computed for different instances from the ECU definition: a 1.1 GHz 2007 Opteron can
perform 4 flops per cycle at full pipeline, which means at peakperformance one ECU
equals 4.4 gigaflops per second (GFLOPS).

To create an infrastructure from EC2 resources, the user specifies the instance type
and the VM image; the user can specify any VM image previouslyregistered with Ama-
zon, including Amazon’s or the user’s own. Once the VM image has been transparently
deployed on a physical machine (the resource status isrunning), the instance is booted; at
the end of the boot process the resource status becomesinstalled. The installed resource
can be used as a regular computing node immediately after thebooting process has fin-
ished, via anssh connection. A maximum of 20 instances can be used concurrently by
regular users by default; an application can be made to increase this limit, but the process
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involves an Amazon representative. Amazon EC2 abides by a Service Level Agreement
(SLA) in which the user is compensated if the resources are not available for acquisition
at least 99.95% of the time. The security of the Amazon services has been investigated
elsewhere [163].

5.2 Cloud Performance Evaluation

In this section we present an empirical performance evaluation of cloud computing ser-
vices. Toward this end, we run micro-benchmarks and application kernels typical for
scientific computing on cloud computing resources, and compare whenever possible the
obtained results to the theoretical peak performance and/or the performance of other sci-
entific computing systems.

5.2.1 Method

Our method stems from the traditional system benchmarking.Saavedra and Smith [175]
have shown that benchmarking the performance of various system components with a
wide variety of micro-benchmarks and application kernels can provide a first order esti-
mate of that system’s performance. Similarly, in this section we evaluate various com-
ponents of the four clouds introduced in Section5.1.2. However, our method is not a
straightforward application of Saavedra and Smith’s method. Instead, we add a cloud-
specific component, select several benchmarks for a comprehensive platform-independent
evaluation, and focus on metrics specific to large-scale systems (such as efficiency and
variability).

Cloud-specific evaluationAn attractive promise of clouds is that they can always
provide resources on demand, without additional waiting time [15]. However, since the
load of other large-scale systems varies over time due to submission patterns [134, 99]
we want to investigate if large clouds can indeed bypass thisproblem. To this end, one
or more instances of the same instance type are repeatedly acquired and released during a
few minutes; the resource acquisition requests follow a Poisson process with arrival rate
λ = 1s−1.

Infrastructure-agnostic evaluation There currently is no single accepted benchmark
for scientific computing at large-scale. To address this issue, we use several traditional
benchmark suites comprising micro-benchmarks and (scientific) application kernels. We
further design two types of test workloads: SI–run one or more single-process jobs on a
single instance (possibly with multiple cores), and MI–runa single multi-process job on
multiple instances. The SI workloads execute in turn one of the LMbench[142], Bon-
nie [37], andCacheBench[150] benchmark suites. The MI workloads execute theHPC
Challenge Benchmark (HPCC)[136] scientific computing benchmark suite. The charac-
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Type Suite/Benchmark Resource Unit
SI LMbench/all [23] Many Many
SI Bonnie/all [125, 20] Disk MBps
SI CacheBench/all [207] Memory MBps
MI HPCC/HPL [136, 177] CPU GFLOPS
MI HPCC/DGEMM [69] CPU GFLOPS
MI HPCC/STREAM [69] Memory GBps
MI HPCC/RandomAccess [9] Network MUPS
MI HPCC/beff (lat.,bw.) [31] Comm. µs, GBps

Table 5.2: The benchmarks used for cloud performance evaluation. B, FLOP, U, and PS
stand for bytes, floating point operations, updates, and persecond, respectively.

teristics of the used benchmarks and the mapping to the test workloads are summarized
in Table5.2; we refer to the benchmarks’ references for more details.

Performance metricsWe use the performance metrics defined by the benchmarks
presented in Table5.2. We also define and use theHPL efficiencyof a virtual cluster
based on the instance typeT as the ratio between the HPL benchmark performance of
the real cluster and the peak theoretical performance of a same-sizedT-cluster, expressed
as a percentage. Job execution at large-scale often leads toperformance variability. To
address this problem, in this chapter we report not only the average performance, but also
the variability of the results.

5.2.2 Experimental Setup

We now describe the experimental setup in which we use the performance evaluation
method presented earlier.

Performance Analysis ToolWe have recently [227] extended the GrenchMark [100]
large-scale distributed testing framework with new features which allow it to test cloud
computing infrastructures. The framework was already ableto generate and submit both
real and synthetic workloads to grids, clusters, clouds, and other large-scale distributed
environments. For this work, we have added to GrenchMark theability to execute and
analyze the benchmarks described in the previous section.

Environment We perform our measurements on homogeneous virtual environments
built from virtual resources belonging to one of the instance types described in Table5.1;
the used VM images are summarized in Table5.3. The experimental environments com-
prise from 1 to 128 cores. Except for the use of internal IP addresses, described below,
we have used in all our experiments the standard configurations provided by the cloud.
Due to our choice of benchmarks, our Single-Job results can be readily compared with
the benchmarking results made public for many other scientific computing systems, and
in particular by the HPCC effort [3].
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VM image OS, MPI Archi Benchmarks
EC2/ami-2bb65342FC6 32bit SI
EC2/ami-36ff1a5f FC6 64bit SI
EC2/ami-3e836657FC6, MPI 32bit MI
EC2/ami-e813f681 FC6, MPI 64bit MI
GG/server1 RHEL 5.1, MPI 32&64bit SI&MI
EH/server1 Knoppix 5.3.1 32bit SI
EH/server2 Ubuntu 8.10 64bit SI
Mosso/server1 Ubuntu 8.10 32&64bit SI

Table 5.3: The VM images used in our experiments.

MPI library and network The VM images used for the HPCC benchmarks also have
a working pre-configured MPI based on thempich2-1.0.5 [219] implementation. For
the MI (parallel) experiments, the network selection can becritical for achieving good
results. Amazon EC2 and GoGrid, the two clouds for which we have performed MI
experiments, use internal IP addresses (IPs), that is, the IPs accessible only within the
cloud, to optimize the data transfers between closely-located instances. (This also allows
the clouds to better shape the traffic and to reduce the numberof Internet-accessible IPs,
and in turn to reduce the cloud’s operational costs.) EC2 andGoGrid give strong incen-
tives to their customers to use internal IP addresses, in that the network traffic between
internal IPs is free, while the traffic to or from the InternetIPs is not. We have used only
the internal IP addresses in our experiments with MI workloads.

Optimizations, tuning The benchmarks were compiled using GNU C/C++ 4.1 with
the -O3 -funroll-loops command-line arguments. We did not use any additional
architecture- or instance-dependent optimizations. For the HPL benchmark, the perfor-
mance results depend on two main factors: the the Basic Linear Algebra Subprogram
(BLAS) [68] library, and the problem size. We used in our experiments the Goto-
BLAS [89]library, which is one of the best portable solutions freelyavailable to scien-
tists. Searching for the problem size that can deliver peak performance is an extensive
(and costly) process. Instead, we used a free analytical tool [5] to find for each system the
problem sizes that can deliver results close to the peak performance; based on the tool ad-
vice we have used values from 13,000 to 110,000 for N, the size(order) of the coefficient
matrix A [67, 136].

5.2.3 Results

Resource Acquisition and Release

We study two resource acquisition and release scenarios: for single instances, and for
multiple instances allocated at once.
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Figure 5.1: Resource acquisition and release overheads foracquiring single EC2 in-
stances. Lower values are better.

Single instancesWe first repeat 20 times for each instance type a resource acquisition
followed by a release as soon as the resource status becomes installed (see Section5.1.2).
Figure5.1shows the overheads associated with resource acquisition and release in EC2.
The total resource acquisition time (Total) is the sum of theInstall andBoot times. The
Releasetime is the time taken to release the resource back to EC2; after it is released
the resource stops being charged by Amazon. Thec1. * instances are surprisingly easy
to obtain; in contrast, them1. * instances have for the resource acquisition time higher
expectation (63-90s compared to around 63s) and variability (much larger boxes). With
the exception of the occasional outlier, both the VMBoot andReleasetimes are stable
and represent about a quarter ofTotal each. Table5.4 presents basic statistics for single
resource allocation and release. Overall,Amazon EC2 has one order of magnitude
lower single resource allocation and release durations than GoGrid. From the EC2
resources, them1.small andm1.large instances have higher average allocation du-
ration, and exhibit outliers comparable to those encountered for GoGrid.The resource
acquisition time of GoGrid resources is highly variable; here, GoGrid behaves simi-
larly to to grids [99] and unlike the promise of clouds.

Multiple instancesWe investigate next the performance of requesting the acquisition
of multiple resources (2,4,8,16, and 20)at the same time; a scenario common for creating
homogeneous virtual clusters. When resources are requested in bulk, we record acquisi-
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Figure 5.2: Single-instance resource acquisition and release overheads when acquiring
multiplec1.xlarge instances at the same time. Lower values are better.

tion and release times for each resource in the request, separately. Figure5.2 shows the
basic statistical properties of the times recorded forc1.xlarge instances. The expec-
tation and the variance are both higher for multiple instances than for a single instance.

Single-Machine Benchmarks

In this set of experiments we measure the raw performance of the CPU, I/O, and memory
hierarchy using the Single-Instance benchmarks listed in Section 5.2.1. We run each
benchmark 10 times and report the average results.

Compute performanceWe assess the computational performance of each instance
type using the entire LMbench suite. The performance of int and int64 operations, and
of the float and double-precision float operations is depicted in Figure5.3 left and right,
respectively.The GOPS recorded for the floating point and double-precision float op-
erations is six to eight times lower than the theoretical maximum of ECU (4.4 GOPS).
Also, the double-precision float performance of thec1. * instances, arguably the most
important for scientific computing, is mixed: excellent addition but poor multiplication
capabilities. Thus, as many scientific computing applications use heavily both of these
operations, the user is faced with the difficult problem of selecting between two wrong
choices. Finally, several double and float operations take longer onc1.medium than on
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Instance Res. Allocation Res. Release
Type Min Avg Max Min Avg Max
m1.small 69 82 126 18 21 23
m1.large 50 90 883 17 20 686
m1.xlarge 57 64 91 17 18 25
c1.medium 60 65 72 17 20 22
c1.xlarge 49 65 90 17 18 20
GG.large 240 540 900 180 210 240
GG.xlarge 180 1,209 3,600 120 192 300

Table 5.4: Statistics for single resource allocation/release.
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Figure 5.3: LMbench results (top) for the EC2 instances, and (bottom) for the other in-
stances. Each row depicts the performance of 32- and 64-bit integer operations in giga-
operations per second (GOPS) (left), and of floating operations with single and double
precision (right).

m1.small . For the other instances,EH. * andMosso. * instances have similar perfor-
mance for both integer and floating point operations.GG.* instances have the best float
and double-precision performance, and good performance for integer operations, which
suggests the existence of better hardware support for theseoperations on these instances.

I/O performance We assess in two steps the I/O performance of each instance type
with the Bonnie benchmarking suite. The first step is to determine the smallest file size
that invalidates the memory-based I/O cache, by running theBonnie suite for thirteen file
sizes in the range 1024 Kilo-binary byte (KiB) to 40 GiB. The results of this preliminary
step have been described in our previous work [161]; we only summarize them here. For
all instance types, a performance drop begins with the 100MiB test file and ends at 2GiB,
indicating a capacity of the memory-based disk cache of 4-5GiB (twice 2GiB). Thus, the
results obtained for the file sizes above 5GiB correspond to the real I/O performance of the
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Seq. Output Seq. Input Rand.
Instance Char Block ReWr Char Block Input

Type [MB/s] [MB/s] [MB/s] [MB/s] [MB/s] [Seek/s]

m1.small 22.3 60.2 33.3 25.9 73.5 74.4
m1.large 50.9 64.3 24.4 35.9 63.2 124.3
m1.xlarge 57.0 87.8 33.3 41.2 74.5 387.9
c1.medium 49.1 58.7 32.8 47.4 74.9 72.4
c1.xlarge 64.8 87.8 30.0 45.0 74.5 373.9
GG.small 11.4 10.7 9.2 29.2 40.24 39.8
GG.large 17.0 17.5 16.0 34.1 97.5 29.0
GG.xlarge 80.7 136.9 92.6 79.26 369.15 157.5
EH.large 7.1 7.1 7.1 27.9 35.7 177.9
Mosso.sm 41.0 102.7 43.88 32.1 130.6 122.6
Mosso.lg 40.3 115.1 55.3 41.3 165.5 176.7
’02 Ext3 12.2 38.7 25.7 12.7 173.7 -
’02 RAID5 14.4 14.3 12.2 13.5 73.0 -
’07 RAID5 30.9 40.6 29.0 41.9 112.7 192.9

Table 5.5: The I/O of clouds vs. 2002 [125] and 2007 [20] systems.

system; lower file sizes would be served by the system with a combination of memory and
disk operations. We analyze the I/O performance obtained for files sizes above 5GiB in the
second step; Table5.5summarizes the results. We find that the I/O performance indicated
by Amazon EC2 (see Table5.1) corresponds to the achieved performance for random I/O
operations (column ’Rand. Input’ in Table5.5). The* .xlarge instance types have the
best I/O performance from all instance types.For the sequential operations more typical
to scientific computing all Amazon EC2 instance types have ingeneral better performance
when compared with similar modern commodity systems, such as the systems described
in the last three rows in Table5.5; EC2 may be using better hardware, which is affordable
due to economies of scale [15].

Multi-Machine Benchmarks

In this set of experiments we measure the performance delivered by homogeneous clus-
ters formed with Amazon EC2 and GoGrid instances when running the Single-Job-Multi-
Machine benchmarks. For these tests we execute 5 times the HPCC benchmark on ho-
mogeneous clusters of 1–16 (1–8) instances on EC2 (GoGrid),and present the average
results.

HPL performance The performance achieved for the HPL benchmark on various
virtual clusters based on them1.small andc1.xlarge instance types is depicted in
Figure5.4. For them1.small resources one node was able to achieve a performance of
1.96 GFLOPS, which is 44.54% from the peak performance advertised by Amazon. Then,
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Peak GFLOPS GFLOPS
Name Perf. GFLOPS /Unit /$1
m1.small 4.4 2.0 2.0 19.6
m1.large 17.6 7.1 1.8 17.9
m1.xlarge 35.2 11.4 1.4 14.2
c1.medium 22.0 3.9 0.8 19.6
c1.xlarge 88.0 50.0 2.5 62.5
GG.large 12.0 8.8 8.8 46.4
GG.xlarge 36.0 28.1 7.0 37.0

Table 5.6: HPL performance and cost comparison for various EC2 and GoGrid instance
types.
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Figure 5.4: The HPL (LINPACK) performance of virtual clusters formed with EC2
m1.small , EC2c1.xlarge , GoGridlarge , and GoGridxlarge instances in terms
of throughput (left) and efficiency (right).

the performance increased to up to 27.8 GFLOPS for 16 nodes, while the efficiency de-
creased slowly to 39.4%. The results for a singlec1.xlarge instance are better: the
achieved 49.97 GFLOPS represent 56.78% from the advertisedpeak performance. How-
ever, while the performance scales when running up to 16 instances to 425.82 GFLOPS,
the efficiency decreases to only 30.24%. The HPL performanceloss from one to 16 in-
stances can therefore be expressed as 53.26% which results in rather bad qualification for
HPC applications and their need for fast inter-node communication. We have obtained
similar results theGG.large andGG.xlarge instances, as shown in Figure5.4. For
GG.large instances, the efficiency decreases quicker than for EC2 instances, down to
47.33% while achieving 45.44 GFLOPS on eight instances. TheGG.xlarge performed
even poorer in our tests. We further investigate the performance of the HPL benchmark
for different instance types; Table5.6 summarizes the results.The efficiency resultspre-
sented in Figure5.4and Table5.6place clouds below existing environments for scientific
computing, for which the achieved performance is 60-70% of the theoretical peak even
for demanding real applications [165, 119, 164] .

HPCC performance To obtain the performance of virtual EC2 and GoGrid clusters
we run the HPCC benchmarks onunit clusterscomprising a single instance, and on128-
core clusterscomprising 16c1.xlarge instances. Table5.7 summarizes the obtained
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Cores or Peak Perf. HPL HPL DGEMM STREAMRandomAccessLatencyBandwidth
Provider, System Capacity[GFLOPS][GFLOPS] N [GFLOPS] [GBps] [MUPs] [µs] [GBps]

EC2, 1 x m1.small 1 4.40 1.96 13,312 2.62 3.49 11.60 - -
EC2, 1 x m1.large 2 17.60 7.15 28,032 6.83 2.38 54.35 20.48 0.70
EC2, 1 x m1.xlarge 4 35.20 11.38 39,552 8.52 3.47 168.64 17.87 0.92
EC2, 1 x c1.medium 2 22.00 - 13,312 11.85 3.84 46.73 13.92 2.07
EC2, 1 x c1.xlarge 8 88.00 51.58 27,392 44.05 15.65 249.66 14.19 1.49
EC2, 2 x c1.xlarge 16 176.00 84.63 38,656 34.59 15.65 223.54 19.31 1.10
EC2, 4 x c1.xlarge 32 352.00 138.08 54,784 27.74 15.77 280.38 25.38 1.10
EC2, 8 x c1.xlarge 64 704.00 252.34 77,440 3.58 15.89 250.40 35.93 0.97
EC2, 16 x c1.xlarge 128 1,408.00 425.82 109,568 0.23 16.38 207.06 45.20 0.75
EC2, 16 x m1.small 16 70.40 27.80 53,376 4.36 11.95 77.83 68.24 0.10
GoGrid, 1 x GG.large 1 12.00 8.805 10,240 10.01 2.88 17.91 - -
GoGrid, 4 x GG.large 4 48.00 24.97 20,608 10.34 20.17 278.80 110.11 0.06
GoGrid, 8 x GG.large 8 96.00 45.436 29,184 10.65 20.17 351.68 131.13 0.07
GoGrid, 1 x GG.xlarge 3 36.00 28.144 20,608 10.82 45.71 293.30 16.96 0.97
GoGrid, 4 x GG.xlarge 12 144.00 40.03 41,344 11.31 19.95 307.64 62.20 0.24
GoGrid, 8 x GG.xlarge 24 288.00 48.686 58,496 18.00 20.17 524.33 55.54 1.33
HPCC-227, TopSpin/Cisco 16 102.40 55.23 81,920 4.88 2.95 10.25 6.81 0.66
HPCC-224, TopSpin/Cisco 128 819.20 442.04 231,680 4.88 2.95 10.25 8.25 0.68
HPCC-286, Intel Endeavor 16 179.20 153.25 60,000 10.50 5.18 87.61 1.23 1.96
HPCC-289, Intel Endeavor 128 1,433.60 1,220.61170,000 10.56 5.17 448.31 2.78 3.47

Table 5.7: The HPCC performance for various platforms. HPCC-x is the system with the HPCC IDx [3]. The machines HPCC-224
and HPCC-227, and HPCC-286 and HPCC-289 are of brand TopSpin/Cisco and by Intel Endeavor, respectively. Smaller values
are better for the Latency column, and worse for the others.
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results and, for comparison, results published by HPCC for four modern and similarly-
sized HPC clusters [3]. For HPL, only the performance of thec1.xlarge is comparable
to that of an HPC system. However, for STREAM, and RandomAccess the performance
of the EC2 clusters is similar or better than the performanceof the HPC clusters. We
attribute this mixed behavior to the network characteristics: the EC2 platform has much
higher latency, which has an important negative impact on the performance of the HPL
benchmark. In particular, this relatively low network performance means that the ratio
between the theoretical peak performance and achieved HPL performance increases with
the number of instances, making the virtual EC2 clusters poorly scalable. Thus, for scien-
tific computing applications similar to HPL the virtual EC2 clusters can lead to an order
of magnitude lower performance for large system sizes (1024cores and higher). The
performance of the GoGrid clusters with the single core instances is as expected, but we
observe scalability problems with the 3 coreGG.xlarge instances. In comparison with
previously reported results, the DGEMM performance ofm1.large (c1.medium ) in-
stances is similar to that of Altix4700 (ICE) [177], and the memory bandwidth of Cray
X1 (2003) is several times faster than that of the fastest cloud resource currently avail-
able [69].

Performance Consistency

An important question related to clouds isIs the performance consistent?Previous work
on virtualization has shown that many virtualization packages deliver the same perfor-
mance under identical tests for virtual machines running inan isolated environment [52].
However, it is unclear if this holds for virtual machines running in a large-scale cloud
(shared) environment. Therefore, we now present a preliminary assessment of the perfor-
mance consistency.

To get a better picture of the side effects caused by the sharing with other users the
same physical resource, we have assessed the performance consistency of different clouds
by running the LMBench (computation and OS) and CacheBench (I/O) benchmarks mul-
tiple times on the same type of virtual resources.

Figure5.5shows the performance consistency for the LMBench benchmark with the
float (top) and double (bottom) operations. We observe that although the performance is
consistent for them1.xlarge andMosso.large instances, there is noticeable perfor-
mance variability with theGG.xlarge andEH.small instances; performance variabil-
ity depends on the instances used, and probably to the background activity on the virtual
machines.

Figure5.6summarizes the results for the CacheBench suite for read (top), write (mid-
dle), and Rd-Mod-Wr (bottom) operations. Similarly to the LMBench benchmark, the
GG.large andEH.small types have important differences between the min, mean,
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Figure 5.5: Performance consistency of cloud instance types with the LmBench bench-
mark with various float (top) and double (bottom) operations. IQR denotes the inter-
quartile range.

and max performance even for medium working set sizes, such as 1010B. The best-
performer in terms of computation,GG.xlarge , is unstable; this makes cloud vendor
selection an even more difficult problem. The different level of performance consistency
we have observed across different benchmarks and differentinstance types motivates us
to explore the performance variability of public clouds in depth in the next chapter.

5.3 Clouds versus Other Scientific Computing Infras-
tructures

In this section we present a comparison between clouds and other scientific computing
infrastructures.

5.3.1 Method

We use trace-based simulation to compare clouds with scientific computing infrastruc-
tures. To this end, we first extract the performance characteristics from long-term work-
load traces of scientific computing infrastructures; we call these infrastructuressource
environments. Then, we compare these characteristics with those of a cloud execution.
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Figure 5.6: Performance consistency of cloud instance types with the CacheBench bench-
mark with read (top), write (middle), and Rd-Mod-Wr (bottom) operations. IQR denotes
the inter-quartile range.

System modelWe define two performance models of clouds, which differ by the
factor that jobs are slowed down. Thecloud with source-like performanceis a theoretical
cloud environment that comprises the same resources as the source environment. In this
cloud model, the runtimes of jobs executed in the cloud are equal to those recorded in
the source environment’s workload traces (no slowdown). This model is akin to having
a grid being converted into a cloud of identical performanceand thus it is useful for
assessing the theoretical performance of future and more mature clouds. However, as we
have shown in Section5.2, in real clouds performance is below the theoretical peak, and
for parallel jobs the achieved efficiency is lower than that achieved in grids. Thus, we
introduce the second model, theclouds with real performance, in which the runtimes of
jobs executed in the cloud are extended by a factor, which we call theslowdown factor,
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derived from the empirical evaluation presented in Section5.2. The system equivalence
between clouds and source environments is assumed in this model, and ensured in practice
by the complete system virtualization [120] employed by all the clouds investigated in this
chapter.

Job execution modelFor job execution we assume exclusive resource use: for each
job in the trace, the necessary resources are acquired from the cloud, then released after
the job has been executed. We relax this assumption in Section 5.3.3.

System workloadsTo compare the performance of clouds with other infrastructures,
we use the workload traces shown in Table5.8, where the ID of the trace indicates the
system from which it was taken; please see [104, 4] for more details about each trace.

Performance metrics We measure the performance of all environments using the
three traditional metrics [79]: wait time (WT), response time (ReT), andbounded slow-
down (BSD))–the ratio between the job response time in the real vs. an exclusively-used
environment, with a bound that eliminates the bias towards short jobs. The BSD is ex-
pressed asBSD = max(1, ReT/max(10, ReT − WT )), where 10 is the bound that
eliminates the bias of jobs with runtime below 10 seconds. Wecompute for each job the
three metrics and report for a complete workload the averagevalues for these metrics,
AWT, AReT, and ABSD, respectively.

Cost metricsWe report for the two cloud models the total cost of workload execution,
defined as the number of instance-hours used to complete all the jobs in the workload.
This value can be converted directly into the cost for executing the whole workload for
$/CPU-hour and similar pricing models, such as Amazon EC2’s.

5.3.2 Experimental Setup

System setupWe use the DGSIM simulator [108] to analyze the performance of cloud
environments. We have extended DGSIM with the two cloud models, and used it to sim-
ulate the execution of real scientific computing workloads on cloud computing infrastruc-
tures. To model the slowdown of jobs when using clouds with real performance, we have
used different slowdown factors. Specifically, single-processor jobs are slowed-down by
a factor of 7, which is the average performance ratio betweentheoretical and achieved
performance analyzed in Section5.2.3, and parallel jobs are slowed-down by a factor up
to 10 depending on the job size, due to the HPL performance degradation with job size
described in Section5.2.3.

Workload setup We use as input workload the ten workload traces presented inTa-
ble5.8. The traces Grid3 and LCG do not include the job waiting time information; only
for these two traces we set the waiting time for all jobs to zero, which favors these two
grids in comparison with clouds. The wait time of jobs executed in the cloud (also their
AWT) is set to the resource acquisition and release time obtained from real measurements
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Trace ID, Trace System
Source (Trace ID Time Number of Size Load
in Archive) [mo.] Jobs Users Sites CPUs [%]

Grid Workloads Archive [104], 6 traces
1. DAS-2 (1) 18 1.1M 333 5 0.4K 15+
2. RAL (6) 12 0.2M 208 1 0.8K 85+
3. GLOW (7) 3 0.2M 18 1 1.6K 60+
4. Grid3 (8) 18 1.3M 19 29 3.5K -
5. SharcNet (10) 13 1.1M 412 10 6.8K -
6. LCG (11) 1 0.2M 216 200+ 24.4K -

Parallel Workloads Archive [4], 4 traces
7. CTC SP2 (6) 11 0.1M 679 1 0.4K 66
8. SDSC SP2 (9) 24 0.1M 437 1 0.1K 83
9. LANLO2K (10) 5 0.1M 337 1 2.0K 64
10. SDSC DS (19) 13 0.1M 460 1 1.7K 63

Table 5.8: The characteristics of the workload traces.

(see Section5.2.3).
Performance analysis toolsWe use the Grid Workloads Archive tools [104] to extract

the performance metrics from the workload traces of grids and PPIs. We extend these
tools to also analyze cloud performance metrics such as cost.

5.3.3 Results

Our experiments follow two main aspects: performance comparison of the workload exe-
cution in source environments (grids, PPIs, etc.) and in clouds, and the performance-cost-
security trade-off. We present the experimental results for each main aspect, in turn.

Source environments (grids, PPIs, etc.) vs. clouds

We compare the execution in source environments (grids, PPIs, etc.) and in clouds of
the ten workload traces described in Table5.8. Table5.9 summarizes the results of this
comparison, on which we comment below.

An order of magnitude better performance is needed for clouds to be useful for
daily scientific computing. The performance of the cloud with real performance model
is insufficient to make a strong case for clouds replacing grids and PPIs as a scientific
computing infrastructure. The response time of these clouds is higher than that of the
source environment by a factor of 4-10. In contrast, the response time of the clouds with
source-like performance is much better, leading in generalto significant gains (up to 80%
faster average job response time) and at worst to 1% higher AWT (for traces of Grid3 and
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Source env. (Grid/PPI) Cloud (real performance) Cloud (source performance)
AWT AReT ABSD AReT ABSD Total Cost AReT ABSD Total Cost

Trace ID [s] [s] (10s) [s] (10s) [CPU-h,M] [s] (10s) [CPU-h,M]
DAS-2 432 802 11 2,292 2.39 2 450 2 1.19
RAL 13,214 27,807 68 131,300 1 40 18,837 1 6.39
GLOW 9,162 17,643 55 59,448 1 3 8,561 1 0.60
Grid3 - 7,199 - 50,470 3 19 7,279 3 3.60
SharcNet 31,017 61,682 242 219,212 1 73 31,711 1 11.34
LCG - 9,011 - 63,158 1 3 9,091 1 0.62
CTC SP2 25,748 37,019 78 75,706 1 2 11,351 1 0.30
SDSC SP2 26,705 33,388 389 46,818 2 1 6,763 2 0.16
LANL O2K 4,658 9,594 61 37,786 2 1 5,016 2 0.26
SDSC DS 32,271 33,807 516 57,065 2 2 6,790 2 0.25

Table 5.9: The results of the comparison between workload execution in source environ-
ments (grids, PPIs, etc.) and in clouds. The “-” sign denotesmissing data in the original
traces. For the two Cloud models AWT=80s (see text). The total cost for the two Cloud
models is expressed in millions of CPU-hours.

LCG, which are assumed conservatively to always have zero waiting time1). We conclude
that if clouds would offer an order of magnitude higher performance than the performance
observed in this study, they would form an attractive alternative for scientific computing,
not considering costs.

Price-wise, clouds are reasonably cheap for scientific computing, if the usage and
funding scenarios allow it (but usually they do not). Looking at costs, and assuming
the external operational costs in the cloud to be zero, one million EC2-hours equate to
$100,000. Thus, to execute the total workload of RAL over oneyear (12 months) would
cost $4,029,000 on Amazon EC2. Similarly, the total workload of DAS-2 over one year
and a half (18 months) would cost $166,000 on Amazon EC2. Boththese sums are much
lower than the cost of these infrastructures, which includes resource acquisition, oper-
ation, and maintenance. To better understand the meaning ofthese sums, consider the
scenario (disadvantageous for the clouds) in which the original systems would have been
sized to accommodate strictly the average system load, and the operation and mainte-
nance costs would have been zero. Even in this scenario usingAmazon EC2 is cheaper.
We attribute this difference to the economy of scale discussed in a recent study [15]: the
price of the basic operations in a very large data center can be an order of magnitude
lower than in a grid or data center of regular size. However, despite the apparent cost
saving it is not clear that the transition to clouds would have been possible for either of
these grids. Under the current performance exhibited by clouds, the use of EC2 would
have resulted in response times three to four times higher than in the original system,
which would have been in conflict with the mission of RAL as a production environment.

1Although we realize the Grid3 and LCG grids do not have zero waiting time, we follow a conservative
approach in which we favor grids against clouds, as the latter are thenewtechnology.



90

Relative Cost DAS-2 Grid3 LCG LANL O2K
|S2−S1|

S1 × 100 [%] 30.2 11.5 9.3 9.1

Table 5.10: Relative strategy performance: resource bulk allocation (S2) vs. resource
acquisition and release per job (S1). Only performance differences above 5% are shown.

A similar concern can be formulated for DAS-2. Moreover, DAS-2 is specifically tar-
geting research in computer science, and its community would not have been satisfied
to use commodity resources instead of a state-of-the-art environment comprising among
others high-performance lambda networks; other new resource types, such as GPUs and
Cell processors, are currently available in grids but not inclouds. Looking at the funding
scenario, it is not clear if finance could have been secured for virtual resources; one of
the main outcomes of the long-running EGEE project is the creation of a European Grid
infrastructure. Related concerns have been formulated elsewhere [15].

Clouds are now a viable alternative for short deadlines.A low and steady job wait
time leads to much lower (bounded) slow-down for any cloud model, when compared
to the source environment. The average bounded slowdown (ABSD, see Section5.3.1)
observed in real grids and PPIs is for our traces between 11 and over 500!, but below 3.5
and even 1.5 for the cloud models with low and with high utilization. The meaning of
the ABSD metric is application-specific, and the actual ABSDvalue may seem to over-
emphasize the difference between grids and clouds. However, the presence of high and
unpredictable wait times even for short jobs, captured hereby the high ABSD values, is
one of the major concerns in adopting shared infrastructures such as grids [99, 156]. We
conclude that cloud is already a viable alternative for scientific computing projects with
tight deadline and few short-running jobs remaining, if theproject has the needed funds.

Performance and Security vs. Cost

Currently, clouds lease resources but do not offer a resource management service that
can use the leased resources. Thus, the cloud adopter may useany of the resource man-
agement middleware from grids and PPIs; for a review of grid middleware we refer to
our recent work [102]. We have already introduced the basic concepts of cloud resource
management in Section5.2.2, and explored the potential of a cloud resource management
strategy (strategy S1) for which resources are acquired and released for each submitted
job in Section5.3. This strategy has good security and resource setup flexibility, but may
incur high time and cost overheads, as resources that could otherwise have been reused
are released as soon as the job completes. As an alternative,we investigate now the po-
tential of a cloud resource management strategy in which resources are allocated in bulk
for all users, and released only when there is no job left to beserved (strategy S2). To
compare these two cloud resource management strategies, weuse the experimental setup
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described in Section5.3.2; Table5.10 shows the obtained results. The maximum rel-
ative cost difference between the strategies is for these traces around 30% (the DAS-2
trace); in three cases, around 10% of the total cost is to be gained. Given these cost dif-
ferences,we raise as a future research problem optimizing the application execution as a
cost-performance-security trade-off.

5.4 Related work

In this section we review related work from three areas: clouds, virtualization, and system
performance evaluation.

Clouds and Virtualization There has been a spur of research activity in assessing the
performance of virtualized resources, in cloud computing environments [63, 163, 208,
157, 170] and in general [23, 52, 145, 231, 194, 152, 230]. In contrast to this body of pre-
vious work, ours is different in scope: we perform extensivemeasurements using general
purpose and high-performance computing benchmarks to compare several clouds, and
we compare clouds with other environments based on real long-term scientific computing
traces. Our study is also much broader in size: we perform in this chapter an evaluation
using over 25 individual benchmarks on over 10 cloud instance types, which is an order
of magnitude larger than previous work (though size does notsimply add to quality).

Performance studies using general purpose benchmarks haveshown that the overhead
incurred by virtualization can be below 5% for computation [23, 52] and below 15% for
networking [23, 145]. Similarly, the performance loss due to virtualization for parallel
I/O and web server I/O has been shown to be below 30% [232] and 10% [47, 148], re-
spectively. In contrast to these, our work shows that virtualized resources obtained from
public clouds can have a much lower performance than the theoretical peak.

Recently, much interest for the use of virtualization has been shown by the HPC com-
munity, spurred by two seminal studies [231, 98] that find virtualization overhead to be
negligible for compute-intensive HPC kernels and applications such as the NAS NPB
benchmarks; other studies have investigated virtualization performance for specific HPC
application domains [85, 230], or for mixtures of Web and HPC workloads running on
virtualized (shared) resources [233]. Our work differs significantly from these previous
approaches in target (clouds as black boxes vs. owned and controllable infrastructure)
and in size. For clouds, the study of performance and cost of executing a scientific work-
flow, Montage, in clouds [63] investigates cost-performance trade-offs between clouds
and grids, but uses a single application on a single cloud, and the application itself is
remote from the mainstream HPC scientific community. Also close to our work is the
seminal study of Amazon S3 [163], which also includes a performance evaluation of file
transfers between Amazon EC2 and S3. Our work complements this study by analyz-
ing the performance of Amazon EC2, the other major Amazon cloud service; we also
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test more clouds and use scientific workloads. Several small-scale performance studies of
Amazon EC2 have been recently conducted: the study of AmazonEC2 performance using
the NPB benchmark suite [208] or selected HPC benchmarks [78], the early comparative
study of Eucalyptus and EC2 performance [157], the study of file transfer performance
between Amazon EC2 and S3 [28], etc. An early comparative study of the DawningCloud
and several operational models [211] extends the comparison method employed for Euca-
lyptus [157], but uses job emulation instead of job execution. Our performance evaluation
results extend and complement these previous findings, and gives more insights into the
performance of EC2 and other clouds.

Other (Early) Performance Evaluation Much work has been put into the evaluation
of novel supercomputers [165, 69, 119, 207, 177, 9] and non-traditional systems [31, 217,
100, 99, 164] for scientific computing. We share much of the used methodology with
previous work; we see this as an advantage in that our resultsare readily comparable with
existing results. The two main differences between this body of previous work and ours
are that we focus on a different platform (that is, clouds) and that we target a broader
scientific computing community (e.g., also users of grids and small clusters).

5.5 Summary

With the emergence of cloud computing as a paradigm in which scientific computing
can done exclusively on resources leased only when needed from big data centers, e-
scientists are faced with a new platform option. However, the initial target workloads of
clouds does not match the characteristics of scientific computing workloads. Thus, in this
chapter we seek to answer the research questionIs the performance of clouds sufficient
for scientific computing?To this end, we have first performed an empirical performance
evaluation of four public computing clouds, including Amazon EC2, one of the largest
commercial clouds currently in production. Our main findinghere is that the compute
performance of the tested clouds is low. Last, we have compared the performance and
cost of clouds with those of scientific computing alternatives such as grids and parallel
production infrastructures. We have found that, while current cloud computing services
are insufficient for scientific computing at large, they may still be a good solution for the
scientists who need resources instantly and temporarily.



Chapter 6

Performance variability of production
cloud services∗

Cloud computing is emerging as an alternative to traditional computing and software ser-
vices such as grid computing and online payment. With cloud computing, resources and
software are no longer hosted and operated by the user, but instead leased from large-
scale data centers and service specialists strictly when needed. An important hurdle to
cloud adoption is trusting that the cloud services are dependable, for example that their
performance is stable over long time periods. However, providers do not disclose their
infrastructure characteristics or how they change, and operate their physical resources in
time-sharing mode; this situation may cause significant performance variability. To find
out if the performance variability of cloud services is significant, in this chapter we present
the first long-term study on the variability of performance as exhibited by ten production
cloud services of two popular cloud service providers, Amazon and Google.

Ideally, clouds should provide services such as running a user-given computation with
performance equivalent to that of dedicated environments with similar characteristics.
However, the performance characteristics of a cloud may vary over time as a result of
changes that are not discussed with the users. Moreover, unlike current data centers and
grids, clouds time-share their resources, and time-sharedplatforms have been shown [16]
since the 1990s to cause complex performance variability and even performance degrada-
tion.

Although it would be beneficial to both researchers and system designers, there cur-
rently exists no investigation of performance variabilityfor cloud services. Understanding
this variability guides in many ways research and system design. For example, it can help
in selecting the service provider, designing and tuning schedulers [106], and detecting and
predicting failures [234]. Tens of clouds [95, 137] started to offer services in the past few

∗This chapter is based on previous work published in theIEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing(CCGRID’11) [109].
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years; of these, Amazon Web Services (AWS) and Google App Engine (GAE) are two
popular production clouds [15]. A number of studies [63, 163, 208, 157, 163, 161, 15],
including our previous work [161], investigate the performance of AWS, but none inves-
tigates the performance variability or even system availability for a period of over two
months.

In this chapter, our goal is to perform a comprehensive investigation of the long-term
variability of performance for production cloud services.Toward this end, we first collect
performance traces corresponding to ten production cloud services provided by Amazon
Web Services and Google App Engine, currently two of the largest commercial clouds.
Then we analyze the collected traces, revealing for each service both summary statistics
and the presence or absence of performance time patterns. Finally, we evaluate through
trace-based simulations the impact of the variability observed in the studied traces on
three large-scale applications that are executed today or may be executed in the cloud
in the (near) future: executing scientific computing workloads on cloud resources, selling
virtual goods through cloud-based payment services, and updating the virtual world status
of social games through cloud-based database services.

The rest of the chapter is structured as follows. In Section6.1we present an overview
of the production cloud services that we investigate in thischapter. Then, in Section6.2
we describe the method of our performance variability analysis. In Section6.3and Sec-
tion6.4we present the results of our analysis for the AWS and GAE datasets, respectively.
Then, in Section6.5we assess the impact of the variability of cloud service performance
on large-scale applications using trace-based simulations. Finally, we compare our anal-
ysis with related work in Section6.6, and we summarize the chapter in Section6.7.

6.1 Production Cloud Services

Cloud computing comprises both the offering of infrastructure and software services [15,
95]. A cloud offering infrastructure services such as computing cycles, storage space or
queueing services acts as Infrastructure as a Service (IaaS). A cloud offering platform ser-
vices such as a runtime environment for compiled/interpreted application code operating
on virtualized resources acts as Platform as a Service (PaaS). A third category of clouds,
Software as a Service (SaaS), incorporate the old idea of providing applications to users,
over the Internet.

To accommodate this broad definition of clouds, in our model each cloud provides a
set ofservices, and each service a set ofoperations. In our terminology, aproduction
cloud is a cloud that operates on the market, that is, it has real customers that use its ser-
vices. Tens of cloud providers have entered the market in thelast five last years, including
Amazon Web Services (2006), ENKI (2003), Joyent (2004), Mosso (2006), RightScale
(2008), GoGrid (2008), Google App Engine (2008) and recently Microsoft Azure(2010).
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From the clouds already in production, Amazon Web Services and Google App Engine
are reported to have the largest number of clients [137] which we describe in turn.

6.1.1 Amazon Web Services

Amazon Web Services (AWS) is an IaaS cloud comprising services such as the Elastic
Compute Cloud (EC2, performing computing resource provisioning or web hosting op-
erations), Elastic Block Storage and its frontend Simple Storage Service (S3, storage),
Simple Queue Service (SQS, message queuing and synchronization), Simple DB (SDB,
database), and the Flexible Payments Service (FPS, micro-payments). As operation exam-
ples, the EC2 provides three main operations, for resource acquisition, resource release,
and resource status query.

Through its services EC2 and S3, AWS can rent infrastructureresources; the EC2
offering comprises more than 10 types of virtual resources (instance types) and the S3
offering comprises 2 types of resources. Estimates based onthe numerical properties
of identifiers given to provided services indicate that Amazon EC2 rents over 40,000
virtual resources per day [172, 173], which is two orders of magnitude more than its
competitors GoGrid and RightScale [173], and around the size of the largest scientific
grid in production.

6.1.2 Google App Engine

The Google App Engine (GAE) is an PaaS cloud comprising services such as Java and
Python Runtime Environments (Run, providing application execution operations), the
Datastore (database), Memcache (caching), and URL Fetch (web crawling). Although
through the Run service users consume computing and storageresources from the under-
lying GAE infrastructure, GAE does not provide root access to these resources, like the
AWS.

6.2 Method

To characterize the long-term performance variability of cloud services we first build
meaningful datasets from performance traces taken from production clouds, and then we
analyze these datasets and characterize the performance variability.

Our method is built around the notion ofperformance indicators. We call a perfor-
mance indicator the stochastic variable that describes theperformance delivered by one
operation or by a typical sequence of operations over time. For example, the performance
indicators for Amazon include the response time of the resource acquisition operation of
the EC2 service.
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Figure 6.1: Number of monthly data samples.

6.2.1 Performance Traces of Cloud Services

Data SourceTo characterize AWS and GAE we first acquire data from the performance
database created by Hyperic’s CloudStatus team [2]. CloudStatus provides real-time val-
ues and weekly averages of about thirty performance indicators for AWS and GAE. In par-
ticular, it provides performance indicators for five main services provided by AWS (EC2,
S3, SDB, SQS, and FPS) and for four main services provided by GAE (Run, Datastore,
Memcache, and URL Fetch). CloudStatus obtains values for the various performance
indicators by running performance probes periodically, with a sampling rate of under 2
minutes. The CloudStatus probes can be reimplemented easily; we have repeated some
of the CloudStatus experiments in our previous work [161, 105], with similar results. We
conclude that using CloudStatus data reduces the cost of ourstudy, but does not reduce
the applicability of the results.

Data Sanitation We have acquired data from CloudStatus through a sequence ofweb
crawls (samples). The availability and robustness of our crawling setup resulted in
253,174 useful samples, or 96.3% of the maximum number of samples possible for the
year. Figure6.1shows the number of samples taken every month; during February, April,
and September 2009 our crawling infrastructure did not manage to obtain useful samples
repeatedly (indicated by the reduced height of the ”Sample Count” bars). Mostly during
these month we have lost 9,626 samples due to missing or invalid JSON data; however,
we have obtained 76–96% of the maximum number of samples during these three months.
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6.2.2 Method of Analysis

For each of the traces we extract the performance indicators, to which we apply indepen-
dently an analysis method with three steps: find out if variability is present at all, find
out the main characteristics of the variability, and analyze in detail the variability time
patterns. We explain each step in the following, in turn.

To find out if variability is present at all we select one monthof data from our traces
and plot the values of the performance indicator where a widerange of values may in-
dicate variability. The month selection should ensure thatthe selected month does not
correspond to a single calendar month (to catch some human-scheduled system transi-
tions), is placed towards the end of the year 2009 (to be more relevant) but does not
overlap with December 2009 (to avoid catching Christmas effects).

To find out the characteristics of the variability we computesix basic statistics, the
five quartiles (Q0–Q4) including the median (Q2), the mean, and the standard deviation.
We also compute one derivative statistic, the Inter-Quartile Range (IQR, defined asQ3 −

Q1). We thus characterize for each studied parameter its location (mean and median),
and its variability or scale (the standard deviation, the IQR, and the range). Either a
relative difference between the mean and the median of over 10 percent, or a coefficient
of variation above 1.10 indicate high variability and possibly a non-normal distribution
of values which impacts negatively the ability to enforce soft performance guarantees.
Similarly, a ratio between the IQR and the median above 0.5 indicates that the bulk of the
performance observations have high variability, and a ratio between range and the IQR
above 4 indicates that the performance outliers are severe.

Finally, to analyze the variability over time we investigate for each performance indi-
cator the presence of yearly (month-of-year and week-of-year), monthly (day-of-month),
weekly (day-of-week and workday/weekend), and daily patterns (hour-of-day). To this
end, we first split for each time pattern investigated the complete dataset into subsets,
one for each category corresponding to the time pattern. Forexample, to investigate the
monthly time pattern we split the complete dataset into twelve subsets comprising the
performance value samples observed during a specific month.Then, we compute for each
subset the basic and derivative statistics performed over the complete dataset in the sec-
ond step, and plot them for visual inspection. Last, we analyze the results and the plots,
record the absence/presence of each investigated time pattern, and attempt to detect new
time patterns.

6.2.3 Is Variability Present?

An important assumption of this chapter is that the performance variability of production
cloud services indeed exists. We follow in this section the first step of our analysis method
and verify this assumption.
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Figure 6.2: Performance variability for two selected cloudservices during the period Sep
26, 2009 to Oct 26, 2009: (top) for Amazon EC2, and (bottom) for Google URL Fetch.

Towards this end, we present the results for the selection ofdata from Sep 26 to Oct
26, 2009. For this month, we present here only the results corresponding to one sample
service from each of the Amazon and Google clouds. Figure6.2shows the performance
variability exhibited by the Amazon EC2 service (top of the figure, one performance indi-
cator) and by the Google URL Fetch service (bottom of the figure, six performance indica-
tors) during the selected month. For EC2, the range of valuesindicates moderate-to-high
performance variability. For URL Fetch, the wide ranges of the six indicators indicate
high variability for all URL Fetch operations, regardless of the target URL. In addition,
the URL Fetch service targeting eBay web pages suffers from avisible decrease of per-
formance around Oct 17, 2009. We have also analyzed the results for the selected month
for all the other cloud services we investigate in this chapter, and have experimented with
multiple one-month selections that follow the rules statedby our analysis method; in all
cases we have obtained similar results (for brevity reasonsnot shown). To conclude, the
effects observed in this section give strong evidence of thepresence of performance vari-
ability in cloud services, and motivate an in-depth analysis of the performance variability
of both Amazon and Google cloud services.
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Service Min Q1 Median Q3 Max Mean SD
EC2 [s]
Deployment Latency 57.00 73.59 75.70 78.50 122.10 76.62 5.17

S3 [MBps]
GET EU HIGH 0.45 0.65 0.68 0.70 0.78 0.68 0.30
GET US HIGH 8.60 15.50 17.10 18.50 25.90 16.93 2.39
PUT EU HIGH 1.00 1.30 1.40 1.40 1.50 1.38 0.10
PUT US HIGH 4.09 8.10 8.40 8.60 9.10 8.26 0.55

SDB [ms]
Query Response Time28.14 31.76 32.81 33.77 85.40 32.94 2.39

Update Latency297.54 342.52 361.97 376.95 538.37 359.81 26.71

SQS [s]
Lag Time 1.35 1.47 1.50 1.79 6.62 1.81 0.82

FPS [ms]
Latency 0.00 48.97 53.88 76.06 386.43 63.04 23.22

Table 6.1: Summary statistics for Amazon Web Services’s cloud services.

6.3 The Analysis of the AWS Dataset

In this section, we present the analysis of the AWS dataset. Each service comprises sev-
eral operations, and for each operation, we investigate theperformance indicators to un-
derstand the performance variability delivered by these operations.

6.3.1 Summary Statistics

In this section we follow the second step of our analysis method and analyze the summary
statistics for AWS; Table6.1 summarizes the results. Although the EC2 deployment
latency has low IQR, it has a high range. We observe higher range and IQR for the
performance of S3 measured from small EC2 instances (see Section 6.3.3) compared to
performance measured from large and extra large EC2 instances. Similar to EC2, SDB
also has low IQR but a high range especially for the update operations. Finally, FPS
latency is highly variable which has implications for the applications using this service
for payment operations as we present in Section6.5.3.

6.3.2 Amazon Elastic Compute Cloud (EC2)

CloudStatus.com reports the following performance indicator for the EC2 service:

1. Deployment Latency - The time it takes to start an m1.small instance, from the
time startup is initiated to the time that the instance is available.

Figure6.3 shows weekly statistical properties of the EC2 Resource Acquisition op-
eration. We observe higher IQR and range for deployment latency from week 41 till the
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Figure 6.3: Amazon EC2: The weekly statistical properties of the resource acquisition
operation. The box and whiskers show min-Q1-Q3-max.

end of the year compared to the remainder of the year probablydue to increasing user
base of EC2. Steady performance for the deployment latency is especially important for
applications which uses the EC2 for auto-scaling.

6.3.3 Amazon Simple Storage Service (S3)

CloudStatus.com reports the throughput of S3 where the throughput is measured by issu-
ing S3 requests from US-based EC2 instances to S3 buckets in the US and Europe. ”High
I/O” metrics reflect throughput for operations on Large and Extra Large EC2 instances.

The following performance indicators are reported:

1. Get Throughput (bytes/second)- Estimated rate at which an object in a bucket is
read (GET).

2. Put Throughput Per Second (bytes/second)- Estimated rate at which an object
in a bucket is written (PUT).

Figure6.4(top) depicts the hourly statistical properties of the S3 service GET EU HI
operation. The range has a pronounced daily pattern, with evening and night hours (from
7PM to 2AM the next day) exhibiting much lower minimal transfer rates, and the work
day hours (from 8AM to 3PM) exhibiting much higher minimal transfer rates.

Figure6.4(middle) shows the monthly statistical properties of the S3service GET EU
HI operation. The operation’s performance changes its pattern in August 2009: the last
five months of the year exhibit much lower IQR and range, and have significantly better
performance – the median throughput increases from 660 KBpsto 710 KBps.
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Figure 6.4: Amazon S3: The hourly statistical properties ofGET EU HI operations (top),
and the monthly statistical properties of the GET EU HI operations (middle) and of GET
US HI operations (bottom).

Figure6.4(bottom) shows the monthly statistical properties of the S3service GET US
HI operation. The operation exhibits pronounced yearly patterns, with the months Jan-
uary, September, and October 2009 having the lowest mean (and median) performance.
Figure6.4 (bottom) also shows that there exists a wide range of median monthly perfor-
mance values, from 13 to 19 MBps over the year.

6.3.4 Amazon Simple DB (SDB)

CloudStatus.com reports the following performance indicators for the SDB service:

1. Query Response Time (ms)- The time it takes to execute a GetAttributes operation
that returns 100 attributes.

2. Update Latency (ms)- The time it takes for the updates resulting from a PutAt-
tributes operation to be available to a subsequent GetAttributes operation.
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Figure 6.5: Amazon SDB: The monthly statistical propertiesof the update operation.

Figure6.5shows the monthly statistical properties of the SDB Update operation. The
monthly median performance has a wide range, from 315 to 383 ms. There is a sudden
jump in range in June 2009; the range decreases steadily fromJune to December to the
nominal values observed in the first part of the year. This is significant for applications
such as online gaming, in which values above the 99% performance percentile are impor-
tant, as unhappy users may trigger massive customer departure through their social links
(friends and friends-of-friends).

6.3.5 Amazon Simple Queue Service (SQS)

CloudStatus.com reports the following performance indicators for the SQS service:

1. Average Lag Time (s)- The time it takes for a posted message to become available
to be read. Lag time is monitored for multiple queues that serve requests from inside
the cloud. The average is taken over the lag times measured for each monitored
queue.

Figure6.6 depicts the weekly statistical properties of the SQS service. The service
exhibits long periods of stability (low IQR and range, similar median performance week
after week), for example weeks 5–9 and 26–53, but also periods of high performance vari-
ability, especially in weeks 2–4, 13–16, and 20–23. The periods with high performance
variability are not always preceded by weeks of moderate variability. The duration of a
period with high performance variability can be as short as asingle week, for example
during week 18.
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Figure 6.6: Amazon SQS: The weekly statistical properties.The statistics for the weeks
30–53 (not shown) are very similar to those for weeks 26–29.

6.3.6 Amazon Flexible Payment Service (FPS)

CloudStatus.com reports the following performance indicators for the FPS service:

1. Response Time (s)- The time it takes to execute a payment transaction. The re-
sponse time does not include the round trip time to the FPS service nor the time
taken to setup pay tokens. Since Amazon reports the responsetime to the nearest
second, payments that complete in less than a second will be recorded as zero.

Figure6.7 depicts the monthly statistical properties of the FPS service. There is a
sudden jump in the monthly median performance in September 2009, from about 50 to
about 80 ms; whereas the median is relatively constant before and after the jump. We also
observe high variability in the maximum performance valuesof the FPS service across
months.

6.3.7 Summary of the AWS Dataset

The performance results indicate that all Amazon services we analyzed in this section
exhibit one or more time patterns and/or periods of time where the service shows special
behavior, as summarized in Table6.2. EC2 exhibits periods of special behavior for the
resource acquisition operation (Section6.3.2). Both storage services of Amazon, SDB
and S3, present daily, yearly, and monthly patterns for different operations (Section6.3.4
and Section6.3.3). Finally, SQS and FPS show special behavior for specific time periods
(Section6.3.5and Section6.3.6).
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Figure 6.7: Amazon FPS: The monthly statistical properties.

Perf. Yearly Monthly Weekly Daily Special
Indicator (Month) (Day) (Day) (Hour) Period

Amazon AWS

EC2 Y
S3 Y Y Y Y
SDB Y Y
SQS Y
FPS Y

Table 6.2: Presence of time patterns or special periods for the AWS services. A cell value
of Y indicates the presence of a pattern or a special period.

6.4 The Analysis of the Google App Engine Dataset

In this section, we present the analysis of the Google App Engine dataset. Each service
comprises several operations, and for each operation, we investigate the performance in-
dicators in detail to understand the performance variability delivered by these operations.

6.4.1 Summary Statistics

In this section we follow the second step of our analysis method and analyze the sum-
mary statistics for GAE; Table6.3summarizes the results. The GAE Python runtime and
Datastore have high range and IQRs leading to highly variable performance. However,
we observe relatively stable performance for the Memcache service.
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Service Min Q1 Median Q3 Max Mean SD

Python Runtime [ms] 1.00 284.14 302.31 340.37 999.65 314.95 76.39

Datastore [ms]
Create 1040 1280 1420 1710 5590 1600 600
Delete 1.00 344.40 384.22 460.73 999.86 413.24 102.90
Read 1.00 248.55 305.68 383.76 999.27 336.82 118.20

Memcache [ms]
Get 45.97 50.49 58.73 65.74 251.13 60.03 11.44
Put 33.21 44.21 50.86 60.44 141.25 54.84 13.54

Response 3.04 4.69 5.46 7.04 38.71 6.64 3.39

URL Fetch [ms]
s3.amazonaws.com1.01 198.60 226.13 245.83 983.31 214.21 64.10

ebay.com 1.00 388.00 426.74 460.03 999.83 412.57 108.31
api.facebook.com 1.00 172.95 189.39 208.23 998.22 195.76 44.40

api.hi5.com71.31 95.81 102.58 113.40 478.75 107.03 25.12
api.myspace.com67.33 90.85 93.36 103.85 515.88 97.90 14.19

paypal.com 1.00 406.57 415.97 431.69 998.39 421.76 35.00

Table 6.3: Summary statistics for Google App Engine’s cloudservices.

6.4.2 The Google Run Service

CloudStatus.com reports the following performance indicator for the Run service:

1. Fibonacci (ms)- The time it takes to calculate the 27th Fibonacci number in the
Python Runtime Environment.

Figure6.8 (a) depicts the monthly statistical properties of the GAE Python Runtime.
The last three months of the year exhibit stable performance, with very low IQR and
narrow range, and with steady month-to-month median. Similar to the Amazon SDB
service (see Section6.3.4), the monthly median performance has a wide range, from 257
to 388 ms. Independently of the evolution of the median, there is a sudden jump in range
in March 2009; the maximum response time (lowest performance) decreases steadily up
to October, from which point the performance becomes steady.

6.4.3 The Google Datastore Service

To measure create/delete/read times CloudStatus uses a simple set of data which we refer
to the combination of all these entities as a ’User Group’. CloudStatus.com reports the
following performance indicators for the Datastore service:

1. Create Time (s)- The time it takes for a transaction that creates a User Group.

2. Read Time (ms)- The time it takes to find and read a User Group. Users are
randomly selected, and the user key is used to look up the userand profile picture
records. Posts are found via a GQL (Google Query Language) ancestor query.
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(b) Google Datastore

Figure 6.8: The monthly statistical properties of running an application in the Python
Runtime Environment with the Google Run service (a) and the read operation for the
Google Datastore service (b).

3. Delete Time (ms)- The time it takes for a transaction that deletes a User Group.

Figure 6.8 (b) depicts the monthly statistical properties of the GAE Datastore ser-
vice read performance. The last four months of the year exhibit stable performance, with
very low IQR and relatively narrow range, and with steady month-to-month median. In
addition we observe yearly patterns for the months January through August. Similar to
Amazon S3 GET operations, the Datastore service exhibits a high IQR with yearly pat-
terns (Section6.3.3), and in contrast to S3, the Datastore service read operations exhibit
a higher range. Overall, the Update operation exhibits a wide yearly range of monthly
median values, from 315 to 383 ms.

6.4.4 The Google Memcache Service

CloudStatus.com reports the following performance indicators for the Memcache service:

1. Get Time (ms)- The time it takes to get 1 MB of data from memcache.

2. Put Time (ms) - The time it takes to put 1 MB of data in memcache.

3. Response Time (ms)- The round-trip time to request and receive 1 byte of data
from cache. This is analogous to Get Time, but for a smaller chunk of data.

Figure6.9(a) depicts the monthly statistical properties of the Memcache service PUT
operation performance. The last three months of the year exhibit stable performance,
with very low IQR and relatively narrow range, and with steady month-to-month median.
The same trend can be observed for the Memcache GET operation. Uniquely for the
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(b) Google URL Fetch

Figure 6.9: The monthly statistical properties of the PUT operation for the Google Mem-
cache service (a) and the hourly statistical properties forthe Google URL Fetch service
(b) where the target web site is the Hi5 social network.

Perf. Yearly Monthly Weekly Daily Special
Indicator (Month) (Day) (Day) (Hour) Period

Google App Engine

Run Y Y
Datastore Y Y
Memcache
URL Fetch Y Y Y

Table 6.4: Presence of time patterns or special periods for the GAE services. A cell value
of Y indicates the presence of a pattern or a special period.

Memcache PUT operation, the median performance per month has an increasing trend
over the first ten months of the year, with the response time decreasing from 79 to 43 ms.

6.4.5 The Google URL Fetch Service

CloudStatus.com reports the response time (ms) which is obtained by issuing web ser-
vice requests to several web sites: api.facebook.com, api.hi5.com, api.myspace.com,
ebay.com, s3.amazonaws.com, and paypal.com.

Figure6.9(b) depicts the hourly statistical properties of the URL Fetch service when
the target web site is the Hi5 social network. The ranges of values for the service response
times vary greatly over the day, with several peaks. We have observed a similar pattern
for other target web sites for which a URL Fetch request is issued.
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Section Application Used Service

Section6.5.2 Job execution GAE Run
Section6.5.3 Selling virtual goods AWS FPS
Section6.5.4 Game status managementAWS SDB

GAE Datastore

Table 6.5: Large-scale applications used to analyze the impact of variability.

6.4.6 Summary of the Google App Engine Dataset

The performance results indicate that all GAE services we analyzed in this section ex-
hibit one or more time patterns and/or periods of time where the service provides special
behavior, as summarized in Table6.4. The Python Runtime exhibits periods of special
behavior and daily patterns (Section6.4.2). The Datastore service presents yearly pat-
terns and periods of time with special behavior (Section6.4.3). The Memcache service
performance has also monthly patterns and time patterns of special behavior for various
operations (Section6.4.4). Finally, the URL Fetch service presents weekly and daily
patterns, and also shows special behavior for specific time periods for different target
websites (Section6.4.5).

6.5 The Impact of Variability on Large-Scale Applica-
tions

In this section we assess the impact of the variability of cloud service performance on
large-scale applications using trace-based simulations.Since there currently exists no ac-
cepted traces or models of cloud workloads, we propose scenarios in which three realistic
applications would use specific cloud services. Table6.5 summarizes these applications
and the main cloud service that they use.

6.5.1 Experimental Setup

Input Data For each application, we use the real system traces described in the section
corresponding to the application (column ”Section” in Table6.5), and the monthly perfor-
mance variability of the main service leveraged by the ”cloudified” application (column
”Used Service” in Table6.5).

Simulator We design for each application a simulator that considers from the trace each
unit of information, that is, a job record for the Job Execution scenario and the num-
ber of daily unique users for the other two scenarios, and assesses the performance for a
cloud with stable performance vs variable performance. Foreach application we select



109

one performance indicator, corresponding to the main cloudservice that the ”cloudified”
application would use. In our simulations, the variabilityof this performance indicator,
which, given as input to the simulator, is the monthly performance variability analyzed
earlier in this chapter. We define thereference performancePref as the average of the
twelve monthly medians, and attribute this performance to the cloud with stable perfor-
mance. To ensure that results are representative, we run each simulation 100 times and
report the average results.

Metrics We report the following metrics:

• For the Job Execution scenario, which simulates the execution of compute-intensive
jobs from grid and parallel production environments (PPEs), we first report two
traditional metrics for the grid and PPE communities: the average response time
(ART ), the average bounded slowdown (ABSD) with a threshold of 10 sec-
onds [79]; the ABSD threshold of 10 eliminates the bias of the averagetoward jobs
with runtime below 10 seconds. We also report one cloud-specific metric, Cost,
which is the total cost for running the complete workload, expressed in millions of
consumed CPU-hours.

• For the other two scenarios, which do not have traditional metrics, we devise a per-
formance metric that aggregates two components, the relative performance and the
relative number of users. We design our metric so that the lower values for the
relative performance are better. We define theAggregate Performance Penaltyas
APR(t) = P (t)

Pref
× U(t)

Umax
, whereP (t) is the performance at timet, Pref is the refer-

ence performance,U(t) is the number of users at timet, andUmax is the maximum
number of users over the course of the trace;P (t) is a random value sampled from
the distribution corresponding to the current month at timet. The relative number of
users component is introduced because application providers are interested in bad
performance only to the extent it affects their users; when there are few users of the
application, this component ensures that theAPR(t) metric remains low for small
performance degradation. Thus, theAPR metric does not represent well applica-
tions for which good and stable performance is important at all times. However,
for such applications the impact of variability can be computed straightforwardly
from the monthly statistics of the cloud service; this is akin to excluding the user
component from theAPR metric.

6.5.2 Grid and PPE Job Execution

ScenarioIn this scenario we analyze the execution of compute-intensive jobs typical for
grids and PPEs on cloud resources.
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Trace ID, Trace System
Source (Trace ID Number of Size Load
in Archive) Mo. Jobs Users Sites CPUs [%]

Grid Workloads Archive [104], 3 traces
1. RAL (6) 12 0.2M 208 1 0.8K 85+
2. Grid3 (8) 18 1.3M 19 29 3.5K -
3. SharcNet (10) 13 1.1M 412 10 6.8K -

Parallel Workloads Archive [4], 2 traces
4. CTC SP2 (6) 11 0.1M 679 1 430 66
5. SDSC SP2 (9) 24 0.1M 437 1 128 83

Table 6.6: Job Execution (GAE Run Service): The characteristics of the input workload
traces.

Cloud with
Stable Performance Variable Performance
ART ABSD Cost ART ABSD Cost

Trace ID [s] (10s) [s] (10s)
RAL 18,837 1.89 6.39 18,877 1.90 6.40
Grid3 7,279 4.02 3.60 7,408 4.02 3,64
SharcNet 31,572 2.04 11.29 32,029 2.06 11.42
CTC SP2 11,355 1.45 0.29 11,390 1,47 0.30
SDSC SP2 7,473 1.75 0.15 7,537 1.75 0.15

Table 6.7: Job Execution (GAE Run Service): Head-to-head performance of workload
execution in clouds delivering steady and variable performance. The ”Cost” column
presents the total cost of the workload execution, expressed in millions of CPU-hours.

Input Traces We use five long-term traces from real grids and PPEs as workloads; Ta-
ble 6.6 summarizes their characteristics, with the ID of each traceindicating the system
from which the trace was taken; see [104, 4] for more details about each trace.

Variability We assume that the execution performance for the cloud with steady perfor-
mance is equivalent to the performance of the grid from whichthe trace was obtained.
We also assume that the GAE Run service can run the input workload, and exhibits the
monthly variability evaluated in Section6.4.2. Thus, we assume that the cloud with vari-
able performance introduces for each job a random slowdown factor derived from the real
performance distribution of the service for the month in which the job was submitted.

ResultsTable6.7summarizes the results for the job execution scenario. The performance
metrics ART, ABSD, and Cost differ by less than 2% between thecloud with stable per-
formance and the cloud with variable performance. Thus, themain finding is that the
impact of service variability is low for this scenario.
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Figure 6.10: Selling Virtual Goods in Social Networks (Amazon FPS): Aggregate Perfor-
mance Penalty when using Amazon FPS as the micro-payment backend. (Data source for
the number of FaceBook users:http://www.developeranalytics.com/ )

6.5.3 Selling Virtual Goods in Social Networks

Scenario In this scenario we look at selling virtual goods by a companyoperating a
social network such as FaceBook, or by a third party associated with such a company. For
example, FaceBook facilitates selling virtual goods through its own API, which in turn
could make use of Amazon’s FPS service for micro-payments.

Input Traces We assume that the number of payment operations depends linearly with
the number of daily unique users, and use as input traces the number of daily unique users
present on FaceBook (Figure6.10).

Variability We assume that the cloud with variable performance exhibitsthe monthly
variability of Amazon FPS, as evaluated in Section6.3.6.

ResultsThe main result is that our APR metric can be used to trigger and motivate the
decision of switching cloud providers. Figure6.10shows the APR when using Amazon’s
FPS as the micro-payment backend of the virtual goods vendor. The significant perfor-
mance decrease of the FPS service during the last four monthsof the year, combined
with the significant increase in the number of daily users, iswell captured by the APR
metric–it leads to APR values well above 1.0, to a maximum of 3.9 in November 2009.
If the clients respond to high payment latency similarly to other consumers of Internet
newmedia [43, 53], that is, they become unsatisfied and quit, our APR metric isa clear
indicator for the virtual goods vendor that the cloud provider should be changed.
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Figure 6.11: Game Status Maintenance for Social Games (Amazon SDB and Google
App Engine Datastore): Aggregate Performance Penalty whenusing Amazon SDB
as the database backend (left) and when using Google App Engine Datastore as
the database backend (right). (Data source for the number ofFarm Town users:
http://www.developeranalytics.com/ )

6.5.4 Game Status Maintenance for Social Games

ScenarioIn this scenario we investigate the maintenance of game status for a large-scale
social game such as Farm Town or Mafia Wars which currently have millions of unique
users daily. In comparison with traditional massively multiplayer online games such as
World of Warcraft and Runescape, which also gather millionsof unique players daily, so-
cial games have very little player-to-player interaction (except for messaging, performed
externally to the game, for example through FaceBook channels). Hence, maintaining the
game status for social gaming is based on simpler database operations, without the burden
of cross-updating information for concurrent players, as we have observed for Runescape
in our previous work [151]. Thus, this scenario allows us to compare a pair of cloud
database services, Amazon’s SDB and Google’s Datastore.

Input Traces Similarly to the previous scenario, we assume that the number of operations,
database accesses in this scenario, depends linearly on thenumber of daily unique users.
We use as input trace the number of daily unique users for the Farm Town social game
(Figure6.11).

Variability We assume, in turn, that the cloud with variable performanceexhibits the
monthly variability of Amazon SDB (Section6.3.4) and of Google Datastore (Sec-
tion 6.4.3). The input traces span the period March 2009 to January 2010; thus, we do
not have a direct match between the variability data, which corresponds to only to months
in 2009, and the month January 2010 in the input traces. Sincethe Datastore operations
exhibit yearly patterns (Section6.4.6), we use in simulation the variability data of January
2009 as the variability data for January 2010.
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ResultsThe main finding is that there is a big discrepancy between thetwo cloud ser-
vices, which would allow the application operator to selectthe most suitable provider.
Figures 6.11 depicts the APR for the application using the Amazon SDB Update
opeation (top) and for the application using the Google Datastore Read operation (bot-
tom). During September 2009–January 2010, the bars depicting the APR of Datastore are
well below the curve representing the number of users. This corresponds to the perfor-
mance improvements (lower median) of the Datastore Read performance indicator in the
last part of 2009 (see also Figure6.8(b)). In contrast, the APR values for SDB Update go
above the users curve. These visual clues indicate that, forthis application, Datastore is
superior to SDB over a long period of time. An inspection of the APR values confirms the
visual clues: the APR for the last five depicted months is around 1.00 (no performance
penalty) for Datastore and around 1.4 (40% more) for SDB. Theapplication operator has
solid grounds for using the Datastore services for the application studied in this scenario.

6.6 Related work

Much effort has been put recently in assessing the performance of virtualized resources,
in cloud computing environments [63, 163, 208, 157, 161, 72, 226, 64] and in general [23,
52, 145, 141]. In contrast to this body of previous work, ours is different in scope: we
do not focus on the (average) performance values, but on their variability and evolution
over time. In particular, our work is the first to characterize the long-term performance
variability of production cloud services.

Close to our work is the seminal study of Amazon S3 [163], which also includes a 40
days evaluation of the service availability. Our work complements this study by analyzing
the performance of eight other AWS and GAE services over a year; we also focus on
different applications. Several small-scale performancestudies of Amazon EC2 have been
recently conducted: the study of Amazon EC2 performance using the NPB benchmark
suite [208], the early comparative study of Eucalyptus and EC2 performance [157], the
study of performance and cost of executing a scientific workflow in clouds [63], the study
of file transfer performance between Amazon EC2 and S3, etc. Our results complement
these studies and give more insight into the (variability of) performance of EC2 and other
cloud services.

Recent studies using general purpose benchmarks have shownthat virtualization over-
head can be below 5% for computation [23] and below 15% for networking [23, 145].
Similarly, the performance loss due to virtualization for parallel I/O and web server
I/O has been shown to be below 30% [232] and 10% [47], respectively. Our previous
work [161, 105] has shown that virtualized resources in public clouds can have a much
lower performance than the theoretical peak, especially for computation and network-
intensive applications. In contrast to these studies, we investigate in this chapter the per-
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formance variability, and find several examples of performance indicators whose monthly
median’s variation is above 50% over the course of the studied year. Thus, our current
study complements well the findings of our previous work, that is, the performance results
obtained for small virtualized platforms are optimistic estimations of the performance ob-
served in clouds.

6.7 Summary

Production cloud services may incur high performance variability, due to the combined
and non-trivial effects of system size, workload variability, virtualization overheads, and
resource time-sharing. In this chapter we have set to identify the presence and extent
of this variability, and to understand its impact on large-scale cloud applications. Our
study is based on the year-long traces that we have collectedfrom CloudStatus and which
comprise performance data for Amazon Web Services and Google App Engine services.
The two main achievements of our study are described in the following.

First, we have analyzed the time-dependent characteristics exhibited by the traces, and
found that the performance of the investigated services exhibits on the one hand yearly and
daily patterns, and on the other hand periods of stable performance. We have also found
that many services exhibit high variation in the monthly median values, which indicates
large performance changes over time.

Second, we have found that the impact of the performance variability varies greatly
across application types. For example, we found that the service of running applications
on GAE, which exhibits high performance variability and a three-months period of low
variability and improved performance, has a negligible impact for running grid and par-
allel production workloads. In contrast, we have found thatand explained the reasons for
which the GAE database service, having exhibited a similar period of better performance
as the GAE running service, outperforms the AWS database service for a social gaming
application.



Chapter 7

Space-correlated failures in large-scale
distributed systems∗

Millions of people rely daily on the availability of distributed systems such as peer-to-
peer file-sharing networks, grids, and the Internet. Since the scale and complexity of
contemporary distributed systems make the occurrence of failures the rule rather than the
exception, many fault tolerant resource management techniques have been designed re-
cently [92, 30, 176]. The deployment of these techniques and the design of new ones
depend on understanding the characteristics of failures inreal systems. While many fail-
ure models have been proposed for various computer systems [198, 176, 183, 99], few of
these models consider the occurrence of failure bursts. In this chapter we present a new
model that focuses on failure bursts, and validate it with real failure traces collected from
a diverse set of distributed systems.

The foundational work on the failures of computer systems [41, 114, 198, 91] has
already revealed that computer system failures occur oftenin bursts, that is, the occurrence
of a failure of a system component can trigger within a short period a sequence of failures
in other components of the system. It turned out that the fraction of bursty system failures
is high in distributed systems; for example, in the VAXcluster 58% of all errors and
occurred in bursts and involved multiple machines [198], and in both the VAXcluster and
in Grid’5000 about 30% of all failures involve multiple machines [198, 103].

A bursty arrival breaks an important assumption made by numerous fault tolerant
algorithms [92, 234, 147], that of independent and identical distribution of failures among
the components of the system. However, few studies [198, 34, 103] investigate the bursty
arrival of failures for distributed systems. Even for thesestudies, the findings are based
on data corresponding to a single system–until the recent creation of online repositories
such as the Failure Trace Archive [123] and the Computer Failure Data Repository [183],

∗This chapter is based on previous work published in theInternational Euro-Par Conference on Parallel
Processing(EuroPar’10) [83].
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failure data for distributed systems were largely inaccessible to the researchers in this
area.

The occurrence of failure bursts often makes the availability behavior of different
system components to be correlated; thus, they are often referred to as component or
space-correlated failures. The importance of space-correlated failures has been repeat-
edly noted: the availability of a distributed system may be overestimated by an order of
magnitude when as few as 10% of the failures are correlated [198], and a halving of the
work loss may be achieved when taking into account space-correlated failures [234].

In this chapter we address both scarcity problems, of the lack of traces, and of the
lack of a model for space-correlated failures. With this study we make publicly and freely
available through the Failure Trace Archive six new traces in standard format. We further
propose a novel model for space-correlated failures based on moving windows. Then, we
propose a fully automated method for identifying space-correlated failures. We validate
our model using real failure traces taken from fifteen diverse distributed systems, and
present for them the extracted model parameters.

The rest of the chapter is organized as follows. Section7.1 introduces the terminol-
ogy and the failure traces used in this chapter. Section7.2presents our model for space-
correlated failures. Section7.3shows that space-correlated failures are indeed present and
significant in the failure traces of distributed systems, which is an important assumption
of this chapter. Section7.4presents the results of fitting common distributions to the em-
pirical distributions extracted from the failure traces. Section7.5reviews the related work
on space-correlated failures in distributed systems, and finally, Section7.6 summarizes
the chapter.

7.1 Background

In this section we present the terminology and the datasets used in this chapter.

7.1.1 Terminology

We follow throughout this chapter the basic concepts and definitions associated with sys-
tem dependability as summarized by Avizienis et al. [18]. The basic threats to reliability
are failures, errors, and faults occurring in the system. Afailure (unavailability event) is
an event in which the system fails to operate according to itsspecifications. A failure is
observed as a deviation from the correct state of the system.An error is part of the sys-
tem state that may lead to a failure. Anavailability eventis the end of the recovery of the
system from failure. As in our previous work [123], we define anunavailability interval
(downtime) as a continuous period of a service outage due to a failure. Conversely, we
define anavailability intervalas a contiguous period of service availability.



117

System Type # of Nodes Period Year # of Events
GRID’5000 Grid 1,288 1.5 years 2005-2006 588,463
WEBSITES Web servers 129 8 months 2001-2002 95,557
LDNS DNS servers 62,201 2 weeks 2004 384,991
LRI Desktop Grid 237 10 days 2005 1,792
DEUG Desktop Grid 573 9 days 2005 33,060
SDSC Desktop Grid 207 12 days 2003 6,882
UCB Desktop Grid 80 11 days 1994 21,505
LANL SMP, HPC Clusters 4,750 9 years 1996-2005 43,325
M ICROSOFT Desktop 51,663 35 days 1999 1,019,765
PLANETLAB P2P 200-400 1.5 year 2004-2005 49,164
OVERNET P2P 3,000 2 weeks 2003 68,892
NOTRE-DAME 1 Desktop Grid 700 6 months 2007 300,241
NOTRE-DAME 2 Desktop Grid 700 6 months 2007 268,202
SKYPE P2P 4,000 1 month 2005 56,353
SETI Desktop Grid 226,208 1.5 years 2007-2009 202,546,160
1 The host availability version of the NOTRE-DAME trace.
2 The CPU availability version of the NOTRE-DAME trace.

Table 7.1: Summary of fifteen datasets in the Failure Trace Archive.

7.1.2 The Datasets

The datasets used in this chapter are part of the Failure Trace Archive (FTA) [123]. The
FTA is an online public repository of availability traces taken from diverse parallel and
distributed systems.

The FTA makes available online failure traces in a common, unified format. The
format records the occurrence time and duration of resourcefailures as an alternating time
series of availability and unavailability intervals. Eachavailability or unavailability event
in a trace records the start and the end of the event, and the resource that was affected by
the event. Depending on the trace, the resource affected by the event can be either a node
of a distributed system such as a node in a grid, or a componentof a node in a system
such as CPU or memory.

Prior to the work leading to this study, the FTA made available in its standard for-
mat nine failure traces; as a result of our work, the FTA now makes available fifteen
failure traces. Table7.1 summarizes the characteristics of these fifteen traces, which we
use throughout this chapter. The traces originate from systems of different types (multi-
cluster grids, desktop grids, peer-to-peer systems, DNS and Web servers) and sizes (from
hundreds to tens of thousands of resources), which makes these traces ideal for a study
among different systems. Furthermore, the traces cover statistically relevant periods of
time, and many of the traces cover several months of system operation. A more detailed
description of each trace is available on the FTA web site (http://fta.inria.fr ).

http://fta.inria.fr
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Figure 7.1: Generative processes for space-correlated failures: (left) moving windows;
(middle) time partitioning; (right) extending windows.

7.2 Model Overview

In this section we propose a novel model for failures occurring in distributed systems. We
first introduce our notion of space-correlated failures, and then build a model around it.

7.2.1 Space-Correlated Failures

We call space-correlated failuresa group of failures that occur within a short time in-
terval; the seminal work of Siewiorek [41, 131], Iyer [114, 198], and Gray [90, 91] has
shown that for tightly coupled systems space-correlated failures are likely to occur. Our
investigation of space-correlated failures is hampered bythe lack of information present
in failure traces—none of the computer system failure traces we know records failures
with sufficient detail to reconstruct groups of failures. Weadopt instead an approach
that groups failures based on their start and finish timestamps. We identify three such ap-
proaches, moving windows, time partitioning, and extending windows, which we describe
in turn.

Let TS(·) be the function that returns the time stamp of an event, either failure or
repair. LetO be the sequence of failure events ordered according to increasing event time
stamp, that is,O = [Ei|TS(Ei−1) ≤ TS(Ei), ∀i ≥ 1].

Moving Windows We consider the following iterative process that, startingfrom O,
generates the space-correlated failures with time parameter∆. At each step in the process
we select as thegroup generatorF the first event fromO unselected yet, and generate
the space-correlated failure by further selecting fromO all eventsE occurring within∆
time units fromTS(F ), that is,TS(E) ≤ TS(F ) + ∆. The process we employ ends
when all the events inO have been selected. The maximum number of generated space-
correlated failures is|O|, the number of events inO. The process uses a time window of
size∆, where the window ”moves” to the next unselected event inO at each step. Thus,
we call this process the generation of space-correlated failures throughmoving windows.
Figure7.1(left) depicts the use of the moving windows for various values of∆.
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Figure 7.2: Parallel and single-node job downtime for a sample space-correlated failure.

Time Partitioning This approach partitions time in windows of fixed size∆, start-
ing either from a hypothetical time 0 or from the first event inO. We call this process
generation of space-correlated failures throughtime partitioning.

Extending Windows A group of failures in this approach is a maximal subsequence
of events such that each two consecutive events are at most a time∆ apart, i.e., for each
consecutive eventsE andF in O, TS(F ) ≤ TS(E) + ∆. Thus,∆ is the size of the
window that extends the horizon for each new event added to the group; thus, we call this
second process generation of space-correlated failures throughextending windows. We
have already used this process to model the failures occurring in Grid’5000 [103].

The three generation processes, moving windows, time partitioning, and extending
windows, can generate very different space-correlated failures from the same input set of
eventsO (see Figure7.1). The following two considerations motivate our selectionof a
single generation process from these three. First, time partitioning may introduce arti-
ficial time boundaries between failure events belonging to consecutive space-correlated
failures, because each space-correlated failure starts ata multiple of∆. Thus, the groups
identified through time partitioning do not relate well to groups naturally occurring in the
system, and may confuse the fault-tolerant mechanisms and algorithms based on them;
the moving and extending windows do not suffer from this problem. Second, the ex-
tending windows process may generate infinitely-long space-correlated failures: as the
extending window is considered between consecutive failures, a failure can occur long
after its group generator (its first occurring failure). Thus, the groups generated through
extending windows may reduce the efficiency of fault tolerance mechanisms that react to
instantaneous bursts of failures. Thus, we select and use inthe remainder of this chapter
the generative processes for space-correlated failures through moving windows.

7.2.2 Model Components

We now build our model around the notion of space-correlatedfailures (groups) intro-
duced in the previous section. The model comprises three components: the group inter-



120

arrival time, the group size, and the group downtime. We describe each of these three
components in turn.

Inter-Arrival Time This component characterizes the process governing the arrival of
new space-correlated failures (including groups of size 1).

Size This component characterizes the number of failures present in each space-
correlated failure.

Downtime This component characterizes the downtime caused by each space-correlated
failure. When failures are considered independently instead of in groups, the down-
time is simply the duration of the unavailability corresponding to each failure event.
A group of failure may, however, affect users in ways that depend on the user appli-
cation. We consider in this chapter two types of user applications: parallel jobs and
single-node jobs. We define theparallel job downtime(DMax) of a failure group as
the product of the number of individual nodes affected by thefailure events within
the group, and the time elapsed between the earliest failureevent and the latest
availability event corresponding to a failure within the group. We further define
thesingle-node job downtime(DΣ) as the sum of the downtimes of each individual
failure within the failure group. Figure7.2 depicts these two downtime notions.
The parallel job downtime gives an upper bound to the downtime caused by space-
correlated failures for parallel jobs that would run on any of the nodes affected by
failures. Similarly, the single-node job downtime characterizes the impact of a fail-
ure group on workloads dominated by single-node jobs, whichis the case for many
grid workloads [99].

7.2.3 Method for Modeling

Our method for modeling is based on analyzing in two steps failure traces taken from real
distributed systems; we describe each step, in turn, in the following.

The first step is to analyze for each trace the presence of space-correlated failures
comprising two or more failure events, for values of∆ between 1 second and 10 min-
utes. Tolerating such groups of failures is important for interactive and deadline-oriented
system users.

The second step follows the traditional modeling steps for failures in computer sys-
tems [114, 183]. We first characterize the properties of the empirical distributions using
basic statistics such as the mean, the standard deviation, the min and the max, etc. This al-
lows us to get a first glimpse of the type of probability distribution that could characterize
the real data. We then try to find a good fit, that is, a well-known probability distribution
and the parameters that lead to the best fit between that distribution and the empirical data.
When selecting the probability distributions, we look at the degrees of freedom (number
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of parameters) of that distribution; while a distribution with more degrees of freedom
may provide a better fit for the data, such a distribution can make the understanding of
the model more difficult, can increase the difficulty of mathematical analysis based on
the model, and may also lead to overfitting to the empirical datasets. Thus, we select five
probability distributions to fit to the empirical data: exponential, Weibull, Pareto, lognor-
mal, and gamma. The fitting of the probability distributionsto the empirical datasets uses
the Maximum Likelihood Estimation (MLE) method [10], which delivers good accuracy
for the large data samples specific to failure traces.

After finding the best fits for each candidate distribution, goodness-of-fit tests are used
to assess the quality of the fitting for each distribution, and to establish the best fit. We
use for this purpose both the Kolmogorov-Smirnov (KS) and the Anderson-Darling (AD)
tests, which essentially assess how close the cumulative distribution function (CDF) of the
probability distribution is to the CDF of the empirical data. For each candidate distribution
with the parameters found during the fitting process, we formulate the hypothesis that
the empirical data are derived from it (the null-hypothesisof the goodness-of-fit test).
Neither of the KS and AD tests can confirm the null-hypothesis, but both are useful in
understanding the goodness-of-fit. For example, the KS-test provides a test statistic,D,
which characterizes the maximal distance between the CDF ofthe empirical distribution
of the input data and that of the fitted distribution.

7.3 Failure Group Window Size

An important assumption in this chapter is that space-correlated failures are present and
significant in the failure traces of distributed systems. Inthis section we show that this
is indeed the case. Section7.2.1the characteristics of the space-correlated failures are
dependent on the window size∆; we investigate this dependency in this section.

The importance of a failure model derives from the fraction of downtime caused by
the failures whose characteristics it explains, from the total downtime of the system. For
the model we have introduced in Section7.2we are interested in space-correlated failures
of at least two failures. As explained in Section7.2.1, the characteristics of the space-
correlated failures depend on the window size∆. Large values for∆ lead to more groups
of at least two failures, but reduce the usefulness of the model for predictive fault tol-
erance. Conversely, small values for∆ lead to few groups of at least two failures, and
effectively convert our model into the model for individualfailures we have investigated
elsewhere [123].

We assess the effect of∆ on the number of and downtime caused by space-correlated
failures by varying∆ from one second to one hour; the most interesting values for∆ are
below a few minutes, useful for proactive fault tolerance techniques. Figure7.3shows the
results for each of the fifteen datasets (see Section7.1.2). We distinguish in the figure the
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Figure 7.3: Number of groups and cumulated downtime for groups of at least two failures.

first seven systems, GRID’5000, WEBSITES, LDNS, LRI, DEUG, SDSC, and UCB, for
which a significant fraction of the total system downtime is caused by space-correlated
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Platform GRID’5000 WEBSITES LDNS LRI DEUG SDSC UCB

Window Size [s] 250 100 150 100 150 120 80

Table 7.2: Selected failure group window size for each system.

failures of size at least 2, when∆ is equal to a few minutes. For similar values of∆,
the space-correlated failures do not cause most of the system downtime for the remain-
ing systems. We do not include in the distinguished systems MICROSOFT, OVERNET,
NOTRE-DAME, and SKYPE, since the dependence of the depicted curves on∆ looks
more like an artifact of the data, due to the regular probing of nodes.

The seven distinguished traces have similar dependency on∆: as∆ increases slowly,
the number of groups quickly decreases and the cumulative downtime quickly increases.
Then, both slowly stabilize; this point, which occurs for values of∆ of a few minutes, is
a good trade-off between small window size and large captureof failures into groups. We
extract for each of the seven selected traces the best observed trade-off, and round it to
the next multiple of 10 seconds; Table7.2summarizes our findings.

7.4 Analysis Results

In the previous section we have selected seven systems for which space-correlated failures
are responsible for most of the system downtime. In this section, we present the results
of fitting common distributions to the empirical distributions extracted from the failure
traces of these seven traces selected. The space-correlated failures are generated using
the moving windows method introduced in Section7.2, and the values of∆ selected in
Section7.3.

The Failure Trace Archive already offers a toolbox (see [123] for details) for fitting
common distributions to empirical data. We have adapted thetools already present in
this toolbox for our model by extending the set of common distributions with the Pareto
distribution, by adding a data preprocessing step that extracts groups of failures for a
specific value of∆, and by improving the output of the tools with automated graphing
and tabulation support. These additions are now publicly available as part of the FTA
toolbox code repository.

7.4.1 Detailed Results

We have fitted to the empirical distributions five common distributions, exponential,
Weibull, Pareto, lognormal, and gamma. We now present the results obtained for each
model component, in turn.

Failure Group Inter-Arrival Time To understand the failure group inter-arrival time,
we consider for each failure group identified in the trace (including groups of size 1), the
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GRID’5000 WEBSITES LDNS LRI DEUG SDSC UCB

EXP 0.53 0.15 0.18 0.86 1.22 0.47 0.51
WEIBULL 0.44 0.79 0.16 1.21 0.12 0.74 0.46 0.63 0.23 0.47 0.13 0.57 0.07 0.48
PARETO 0.42 0.29 0.01 0.15 0.36 0.08 0.62 0.25 0.84 0.09 0.40 0.07 0.51 0.03
LOGN -1.39 1.03 -2.17 0.76 -2.57 0.81 -1.46 1.28 -2.28 1.35 -2.63 0.86 -3.41 0.98

GAMMA 0.79 0.67 1.83 0.08 0.71 0.25 0.48 1.79 0.28 4.33 0.36 1.31 0.26 2.00

Table 7.3:Failure Group Inter-Arrival Time: Best found parameters when fitting dis-
tributions to empirical data. Values in bold denote the bestfit.

GRID’5000 WEBSITES LDNS LRI DEUG SDSC UCB

EXP 17.09 2.55 13.44 5.74 10.96 5.19 4.47
WEIBULL 12.82 0.71 2.87 1.60 15.12 2.29 5.76 1.01 12.12 1.39 4.94 0.93 5.05 2.52
PARETO 0.68 6.75 -0.06 2.68 -0.18 15.09 0.22 4.43 -0.03 11.26 0.22 3.70 -0.41 5.76
LOGN 1.88 1.25 0.84 0.35 2.52 0.41 1.32 0.77 2.15 0.70 1.19 0.70 1.41 0.42

GAMMA 0.64 26.78 5.33 0.48 6.23 2.16 1.30 4.40 2.22 4.94 1.23 4.24 6.03 0.74

Table 7.4:Failure Group Size: Best found parameters when fitting distributions to em-
pirical data. Values in bold denote the best fit.

group generator (see Section7.2.1). We then generate the empirical distribution from the
time series corresponding to the inter-arrival time between consecutive group generators.
Table7.3summarizes for each platform the parameters of the best fit obtained for each of
the five common distribution we use in this chapter. These results reveal that the failure
group inter-arrival time is not well characterized by a heavy-tail distribution as the p-
values for the Pareto are low. Moreover, we identify two categories of platforms. The first
category, represented by GRID’5000, WEBSITES, and LRI, is well-fitted by Log-Normal
distributions. The second category, represented by LDNS, DEUG, SDSC, and UCB, is
not well-fitted by any of the common distributions we tried; for these, the best-fits are
either the lognormal or the gamma distributions.

Failure Group Size To understand the failure group size, we generate the empirical
distribution of the sizes of each group identified in the trace (including groups of size
1). Table7.4 summarizes for each platform the parameters of the best fit obtained for
each of the five common distribution we use in this chapter. Similarly to our findings for
the failure group inter-arrival time, the results for the failure group size reveal heavy-tail
distributions are not good fits. We find that the lognormal andgamma distributions are
good fits for the empirical distributions.

Failure Group Duration The two last components of our model are the parallel- and
single-node downtime of the space-correlated failures. Tounderstand these two compo-
nents, we generate for each the empirical data distributionusing the durations of each
group identified in the trace (including groups of size 1). The results of the fitting of the
parallel downtime component are presented in Table7.5, and the results of the fitting of
the single-node downtime component are given in Table7.6. Similarly to our previous
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GRID’5000 WEBSITES LDNS LRI DEUG SDSC UCB

EXP 3.33e6 21225.18 2.48e6 2.46e5 1.18e5 67183.25 4071.25
WEIBULL 75972.13 0.2810658.82 0.632.430e6 0.96 1.051e5 0.48 61989.86 0.5435581.34 0.634131.60 1.03
PARETO 3.10 2686.08 0.73 5493.50 0.16 2.071e6 1.71 24187.131.53 15901.440.54 20627.600.09 3711.35
LOGN 9.51 3.21 8.57 1.36 14.16 1.15 10.41 2.45 10.03 2.02 9.80 1.30 7.82 1.03

GAMMA 0.14 2.362e6 0.46 46006.961.01 2.452e6 0.34 7.317e5 0.40 2.950e5 0.49 1.384e5 1.16 3509.88

Table 7.5:Failure Group Duration, Dmax: Best found parameters when fitting distribu-
tions to empirical data. Values in bold denote the best fit.

GRID’5000 WEBSITES LDNS LRI DEUG SDSC UCB

EXP 4.40e5 10363.55 4.17e5 1.63e5 29979.27 30139.69 1500.92
WEIBULL 30951.59 0.33 6605.36 0.70 4.576e5 1.37 80091.30 0.5013239.84 0.5719008.04 0.691646.49 1.35
PARETO 2.54 2215.71 0.47 4258.00 -0.11 4.576e51.61 20672.26 0.91 5832.36 0.41 12570.49-0.10 1645.39
LOGN 8.89 2.71 8.20 1.13 12.64 0.84 10.16 2.40 8.67 1.62 9.25 1.16 7.01 0.81

GAMMA 0.18 2.418e6 0.59 17462.56 1.82 2.292e5 0.36 4.484e5 0.40 74867.950.59 51497.86 1.82 825.92

Table 7.6:Failure Group Duration, DΣ: Best found parameters when fitting distribu-
tions to empirical data. Values in bold denote the best fit.

findings in this section, we find that heavy-tail distributions such as Pareto do not fit well
the empirical distributions. In contrast, the lognormal distribution is by far the best fit,
with only two systems (LDNS and LRI) being better represented by the other distribu-
tions (the Gamma and Weibull distributions, respectively).

7.4.2 Results Summary

For all the components of our model and for all platforms, themost well-suited distribu-
tion is presented in Table7.7. The main result is that Log-Normal distributions provide
good results for almost all parts of our model. Thus, we can model most of node-level
failures in the whole platform by groups of failures, each group being characterized by its
size, its parallel downtime and its single-node downtime.

7.5 Related work

From the large body of work already dedicated to modeling theavailability of parallel
and distributed computer systems–see [198, 176, 183, 99] and the references within–,
relatively little attention has been given to space-correlated errors and failures [198, 34,
103], despite their reported importance [92, 176].

The main differences between this work and the previous workon space-correlated
errors and failures is summarized in Table7.8. Our study is the first to investigate the
problem in the broad context of distributed systems throughthe use of a large number of
traces. Besides a broader scope, our study is the first to use ageneration process based on
a moving window, and to propose a method for the selection of the moving window size.
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Group size Group IAT Dmax DΣ

GRID’5000 LOGN (1.88,1.25) LOGN (-1.39,1.03) LOGN (9.51,3.21) LOGN (8.89,2.71)
WEBSITES GAMMA (0.84,0.35)LOGN (-2.17,0.76) LOGN (8.57,1.36) LOGN (8.20,1.13)

LDNS LOGN (2.52,0.41) LOGN (-2.57,0.81) LOGN (14.16,1.15) GAMMA (1.82,2.292e5)
LRI LOGN (1.32,0.77) LOGN (-1.46,1.28)WEIBULL (1.051e5,0.48)WEIBULL (80091.30,0.50)

DEUG LOGN (2.15,0.70) LOGN (-2.28,1.35) LOGN (10.03,2.02) LOGN (8.67,1.62)
SDSC LOGN (1.10,0.70) LOGN (-2.63,0.86) LOGN (9.80,1.30) LOGN (9.25,1.16)
UCB GAMMA (6.03,0.74)LOGN (-3.41,0.98) LOGN (7.82,1.03) LOGN (7.01,0.81)

Table 7.7: Best fitting distribution for all model components, for all systems.

System TypeSystem Name Data Source Errors/ Setup Type
Study (Number of Systems/Total Size [nodes]) (Length) Failures Gen. Process (∆ [min])

[198] SCVAXcluster (1 sys./7) Sys.logs (10 mo.) Errors time partitioning manual (5 min.)
[34] NoWMicrosoft (1 sys./>50,000) Msmts. (5 weeks) Failures instantaneous manual (0 min.)
[103] Grid Grid’5000 (15 cl./>2,500) Sys.logs (1.5 years) Failures extending window auto (0.5–60)

This study VariousVarious (15 sys./>500,000) Various (>6 mo. avg.)Failures moving window auto (0.02–60)
Note: SC, NoW, Sys, Cl, Msmts, and Mo are acronyms for supercomputer, network of workstations, system, cluster,

measurements, and months, respectively.

Table 7.8: Research on space-correlated availability in distributed systems.

7.6 Summary

In this chapter we have developed a model for space-correlated failures, that is, for failures
that occur within a short time frame across distinct components of the system. For such
groups of failures, our model considers three aspects, the group arrival process, the group
size, and the downtime caused by the group of failures. We have found that the best
models for these three aspects are mainly based on the lognormal distribution.

We have validated this model using failure traces taken fromdiverse distributed sys-
tems. Since the input data available in these traces, and, toour knowledge, in any failure
traces available to scientists, do not contain informationabout the space correlation of
failures, we have developed a method based on moving windowsfor generating space-
correlated failure groups from empirical data. Moreover, we have designed an automated
way to determine the window size, which is the unique parameter of our method, and we
have demonstrated its use on the same traces.

We have found that for seven out of the fifteen traces investigated in this chapter, a
majority of the system downtime is caused by space-correlated failures. Thus, these seven
traces are better represented by our model than by traditional models, which assume that
the failures of the individual components of the system are independent and identically
distributed. Finally, with this work we have contributed six new failure traces in standard
format to the Failure Trace Archive, which we hope can encourage other researchers to
use the archive and also to contribute to it with failure traces.



Chapter 8

Time-correlated failures in large-scale
distributed systems∗

Large-scale distributed systems have reached an unprecedented scale and complexity in
recent years. At this scale failures inevitably occur—networks fail, disks crash, packets
get lost, bits get flipped, software misbehaves, or systems just crash due to misconfig-
uration and other human errors. Deadline-driven or mission-critical services are part of
the typical workload for these infrastructures, which thusneed to be available and reli-
able despite the presence of failures. Researchers and system designers have already built
numerous fault-tolerance mechanisms that have been provento work under various as-
sumptions about the occurrence and duration of failures. However, most previous work
focuses on failure models that assume the failures to be non-correlated, but this may not
be realistic for the failures occurring in large-scale distributed systems. For example, such
systems may exhibit peak failure periods, during which the failure rate increases, affecting
in turn the performance of fault-tolerance solutions. Moreover, we have already shown in
Chapter7 that failures occur as burst, and we have presented a model for burst of failures
in large-scale distributed systems. In this chapter, we investigate the time-varying behav-
ior of failures using nineteen traces obtained from severallarge-scale distributed systems
including grids, P2P systems, DNS servers, web servers, anddesktop grids.

Recent studies report that in production systems, failure rates can be of over one thou-
sand failures per year, and depending on the root cause of thecorresponding problems,
the mean time to repair can range from hours to days [183]. The increasing scale of the
deployed distributed systems causes the failure rates to increase, which in turn can have
a significant impact on the performance and cost, such as degraded response times [234]
and increased Total Cost of Operation (TCO) due to increasedadministration costs and
human resource needs [27]. This problem also motivates the need for further researchin

∗This chapter is based on previous work published in theIEEE/ACM International Conference on Grid
Computing(GRID’10) [225].
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failure characterization and modeling. Previous studies [199, 158, 155, 176, 220, 183]
focused on characterizing failures in several different distributed systems. However, most
of these studies assume that failures occur independently or disregard the time correla-
tion of failures, despite the practical importance of thesecorrelations [147, 206, 180].
First of all, understanding if failures are time correlatedhas important implications for
proactive fault-tolerance solutions. Second, understanding the time-varying behavior of
failures and peaks observed in failure patterns is requiredfor evaluating design decisions.
For example, redundant submissions may all fail during a failure peak period, regardless
of the quality of the resubmission strategy. Third, understanding the temporal correla-
tions and exploiting them for smart checkpointing and scheduling decisions provides new
opportunities for enhancing conventional fault-tolerance mechanisms [234, 111]. For ex-
ample, a simple scheduling policy could be to stop scheduling large parallel jobs during
failure peaks. Finally, it is possible to devise adaptive fault-tolerance mechanisms that
adjust the policies based on the information related to peaks. For example, an adaptive
fault-tolerance mechanism can migrate the computation at the beginning of a predicted
peak.

In this chapter, to understand the time-varying behavior offailures in large-scale dis-
tributed systems, we perform a detailed investigation using data sets from diverse large-
scale distributed systems including more than100K hosts and1.2M failure events span-
ning over15 years of system operation in total. With this chapter we makethe following
contributions. First, we make four new failure traces publicly available through the Fail-
ure Trace Archive. Secondly, we present a detailed evaluation of the time correlation of
failure events observed in traces taken from nineteen (production) distributed systems.
Finally, we propose a model for peaks observed in the failurerate process.

The remaining part of this chapter is organized as follows. Section8.1 introduces
the failure traces and the modeling methodology we use in this chapter. Section8.2
presents our analysis of autocorrelations in the failure events observed in these failure
traces. Then, Section8.3 presents our model for the peaks observed in the failure rate
process. Section8.4 reviews the related work on time-correlated failures in large-scale
distributed systems, and finally, Section8.5summarizes the chapter.

8.1 Method

8.1.1 Failure Datasets

In this chapter we use and contribute to the data sets in the Failure Trace Archive
(FTA) [123]. A general overview of the FTA has already been presented inSection7.1.2.

With the prior work, the FTA made fifteen failure traces available in its standard for-
mat; as a result of our work, the FTA now makes available nineteen failure traces. Ta-
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System Type Nodes Period Year Events
GRID’5000 Grid 1,288 1.5 years2005-2006 588,463
COND-CAE1 Grid 686 35 days 2006 7,899
COND-CS1 Grid 725 35 days 2006 4,543
COND-GLOW1 Grid 715 33 days 2006 1,001
TERAGRID Grid 1001 8 months2006-2007 1,999
LRI Desktop Grid 237 10 days 2005 1,792
DEUG Desktop Grid 573 9 days 2005 33,060
NOTRE-DAME 2 Desktop Grid 700 6 months 2007 300,241
NOTRE-DAME 3 Desktop Grid 700 6 months 2007 268,202
M ICROSOFT Desktop Grid 51,663 35 days 1999 1,019,765
UCB Desktop Grid 80 11 days 1994 21,505
PLANETLAB P2P 200-400 1.5 year 2004-2005 49,164
OVERNET P2P 3,000 2 weeks 2003 68,892
SKYPE P2P 4,000 1 month 2005 56,353
WEBSITES Web servers 129 8 months2001-2002 95,557
LDNS DNS servers 62,201 2 weeks 2004 384,991
SDSC HPC Cluster 207 12 days 2003 6,882
LANL HPC Cluster 4,750 9 years 1996-2005 43,325
PNNL HPC Cluster 1,005 4 years 2003-2007 4,650
1COND-* data sets denote the Condor data sets.
2The host availability version of the NOTRE-DAME trace.
3The CPU availability version of the NOTRE-DAME trace.

Table 8.1: Summary of nineteen data sets in the Failure TraceArchive.

ble 8.1summarizes the characteristics of these nineteen traces, which we use throughout
this chapter. The traces originate from systems of different types (multi-cluster grids,
desktop grids, peer-to-peer systems, DNS and web servers) and sizes (from hundreds to
tens of thousands of resources), which makes these traces ideal for a study among differ-
ent distributed systems. Furthermore, many of the traces cover several months of system
operation.

8.1.2 Analysis

In our analysis, we use the autocorrelation function (ACF) to measure the degree of cor-
relation of the failure time series data with itself at different time lags. The ACF takes
on values between -1 (high negative correlation) and 1 (highpositive correlation). In ad-
dition, the ACF reveals when the failures are random or periodic. For random data the
correlation coefficients will be close to zero, and a periodic component in the ACF reveals
that the failure data is periodic or at least it has a periodiccomponent.

8.1.3 Modeling

In the modeling phase, we statistically model the peaks observed in the failure rate pro-
cess, i.e., the number of failure events per time unit. Towards this end we use the Maxi-
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mum Likelihood Estimation (MLE) method [10] for fitting the probability distributions to
the empirical data as it delivers good accuracy for the largedata samples specific to failure
traces. After we determine the best fits for each candidate distribution for all data sets, we
perform the goodness-of-fit tests to assess the quality of the fitting for each distribution,
and to establish the best fit. As the goodness-of-fit tests, weuse both the Kolmogorov-
Smirnov (KS) and the Anderson-Darling (AD) tests, which essentially assess how close
the cumulative distribution function (CDF) of the probability distribution is to the CDF
of the empirical data. For each candidate distribution withthe parameters found during
the fitting process, we formulate the hypothesis that the empirical data are derived from
it (the null-hypothesis of the goodness-of-fit test). Neither the KS or the AD tests can
confirm the null-hypothesis, but both are useful in understanding the goodness-of-fit. For
example, the KS-test provides a test statistic,D, which characterizes the maximal dis-
tance between the CDF of the empirical distribution of the input data and that of the fitted
distribution; distributions with a lowerD value across different failure traces are better.
Similarly, the tests return p-values which are used to either reject the null-hypothesis if the
p-value is smaller than or equal to the significance level, orconfirm that the observation
is consistent with the null-hypothesis if the p-value is greater than the significance level.
Consistent with the standard method for computing p-values[155, 123], we average 1,000
p-values, each of which is computed by selecting 30 samples randomly from the data set,
to calculate the final p-value for the goodness-of-fit tests.

8.2 Analysis of Autocorrelation

In this section we present the autocorrelations in failuresusing traces obtained from grids,
desktop grids, P2P systems, web servers, DNS servers and HPCclusters, respectively. We
consider the failure rate process, that is the number of failure events per time unit.

8.2.1 Failure Autocorrelations in the Traces

Our aim is to investigate whether the occurrence of failuresis repetitive in our data sets.
Towards this end, we compute the autocorrelation of the failure rate for different time lags
including hours, weeks, and months. Figure8.1 shows for several platforms the failure
rate at different time granularities, and the corresponding autocorrelation functions.

Many of the systems investigated in this chapter exhibit strong autocorrelation for
hourly and weekly lags. Figures8.1(a), 8.1(b), 8.1(e), 8.1(f), and 8.1(g) show the
failure rates and autocorrelation functions for the GRID’5000, CONDOR (CAE), SKYPE,
LDNS and LANL systems, respectively. The GRID’5000 data set is a one and a half
year long trace collected from an academic research grid. Since this system is mostly
used for experimental purposes, and is large-scale (∼3K processors) the failure rate is
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(a) GRID’5000

0 200 400 600 800
0

50

100

150

200

F
a

il
u

re
s 

p
e

r 
h

o
u

r

Hours
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

Lag (Hours)

A
CF

(b) CONDOR (CAE)
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(c) TERAGRID
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(d) NOTRE-DAME
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(f) LDNS
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Figure 8.1: Failure rates at different time granularities for several platforms and the cor-
responding autocorrelation functions.

quite high. In addition, since most of the jobs are submittedthrough the OAR resource
manager, hence without direct user interaction, the daily pattern is not clearly observable.
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However, during the summer the failure rate decreases, which indicates a correlation be-
tween the system load and the failure rate. Finally, as the system size increases over the
years, the failure rate does not increase significantly, which indicates system stability. The
CONDOR (CAE) data set is a one month long trace collected from a desktop grid using
the Condor cycle-stealing scheduler. As expected from a desktop grid, this trace exhibits
daily peaks in the failure rate, and hence in the autocorrelation function. In contrast to
other desktop grids, the failure rate is lower. The SKYPE data set is a one month long
trace collected from a P2P system used by4, 000 clients. Clients may join or leave the
system, and clients that are not online are considered as unavailable in this trace. Similar
to desktop grids, there is high autocorrelation at small time lags, and the daily and weekly
peaks are more pronounced. The LDNS data set is a two week longtrace collected from
DNS servers. Unlike P2P systems and desktop grids, DNS servers do not exhibit strong
autocorrelation for short time lags with periodic behavior. In addition, as the workload
intensity increases during the peak hours of the day, we observe that the failure rate also
increases. Finally, the LANL data set is a ten year long tracecollected from production
HPC clusters. The weekly failure rate is quite low compared to GRID’5000. We do not
observe a clear yearly pattern; the failure rate increases during summer 2002 while the
failure rate decreases during summer 2004. Since around3, 000 nodes were added to the
LANL system between 2002 and 2003, the failure rate also increases correspondingly.

Last, a few systems exhibit weak autocorrelation in failureoccurrence. Figure8.1(c)
and 8.1(d)show the failure rate and the corresponding autocorrelation function for the
TERAGRID and NOTRE-DAME systems. The TERAGRID data set is an eight month long
trace collected from an HPC cluster that is part of a grid. We observe weak autocorrelation
at all time lags, which implies that the failure rates observed over time are independent.
In addition, there are no clear hourly or daily patterns, which gives evidence of an erratic
occurrence of failures in this system. The NOTRE-DAME data set is a six month long
trace collected from a desktop grid. The failure events in this data set consist of the
availability/unavailability events of the hosts in this system. Similar to other desktop
grids, we observe clear daily and weekly patterns. However,the autocorrelation is low
compared to other desktop grids.

8.2.2 Discussion

As we have shown in the previous section, many systems exhibit strong correlation from
small to moderate time lags, which indicates a high degree ofpredictability. In contrast,
a small number of systems (NOTRE-DAME, PNNL, and TERAGRID) exhibit weak auto-
correlation; only for these systems, the failure rates observed over time are independent.

We have found that similar systems have similar time-varying behavior, e.g., desktop
grids and P2P systems have daily and weekly periodic failurerates, and these systems
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Figure 8.2: Daily and hourly failure rates for GRID’5000 and PLANETLAB platforms.

exhibit strong temporal correlation at hourly time lags. Some systems (NOTRE-DAME

and CONDOR (CAE)) have direct user interaction, which produces clear daily and weekly
patterns in both system load and occurrence of failures—thefailure rate increases during
work hours and days, and decreases during free days and holidays (the summer).

Finally, not all systems exhibit a correlation between workhours and days, and the
failure rate. In the examples depicted in Figure8.2, while GRID’5000 exhibits this cor-
relation, PLANETLAB exhibit irregular/erratic hourly and daily failure behavior.

Our results are consistent with previous studies [176, 42, 115, 184] as in many traces
we observe strong autocorrelation at small time lags, and that we observe correlation
between the intensity of the workload and failure rates.

8.3 Modeling the Peaks of Failures

In this section we present a model for the peaks observed in the failure rate process in
diverse large-scale distributed systems.
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Figure 8.3: Parameters of the peak periods model. The numbers in the figure match the
(numbered) model parameters in the text.

8.3.1 Peak Periods Model

Our model of peak failure periods comprises four parametersas shown in Figure8.3: the
peak duration, the time between peaks (inter-peak time), the inter-arrival time of failures
during peaks, and the duration of failures during peaks:

1. Peak Duration: The duration of peaks observed in a data set.

2. Time Between Peaks (inter-peak time): The time from the end of a previous peak
to the start of the next peak.

3. Inter-arrival Time of Failures During Peaks : The inter-arrival time of failure
events that occur during peaks.

4. Failure Duration During Peaks: The duration of failure events that start during
peaks. These failure events may last longer than a peak.

Our modeling process is based on analyzing the failure traces taken from real dis-
tributed systems in two steps which we describe in turn.

The first step is to identify for each trace the peaks of hourlyfailure rates. Since
there is no rigorous mathematical definition of peaks in timeseries, to identify the peaks
we define a threshold value asµ + kσ, whereµ is the average andσ is the standard
deviation of the failure rate, andk is a positive integer; a period with a failure rate above
the threshold is apeak period. We adopt this threshold to achieve a good balance between



135

System Avg. Peak Avg. Failure Avg. Time Avg. Failure
Duration [s] IAT During Between Peaks [s]Duration During

Peaks [s] Peaks [s]

GRID’5000 5,047 13 55,101 20,984
CONDOR (CAE) 5,287 23 87,561 4,397
CONDOR (CS) 3,927 4 241,920 20,740

CONDOR (GLOW) 4,200 14 329,040 75,672
TERAGRID 3,680 35 526,500 368,903

LRI 4,080 78 58,371 31,931
DEUG 14,914 10 103,800 1,091

NOTRE-DAME 3,942 21 257,922 280,593
NOTRE-DAME (CPU) 7,520 33 47,075 22,091

M ICROSOFT 7,200 0 75,315 90,116
UCB 21,272 23 77,040 332

PLANETLAB 4,810 264 47,124 166,913
OVERNET 3,600 1 14,400 382,225

SKYPE 4,254 11 112,971 26,402
WEBSITES 5,211 103 104,400 3476

LDNS 4,841 8 42,042 30,212
SDSC 4,984 26 84,900 6,114
LANL 4,122 653 94,968 21,193

Table 8.2: Average values for the model parameters.

capturing in the model extreme system behavior, and characterizing with our model an
important part of the system failures (either number of failures or downtime caused to the
system). A threshold excluding all but a few periods, for example defining peak periods
as distributional outliers, may capture too few periods andexplain only a small fraction
of the system failures. A more inclusive threshold would lead to the inclusion of more
failures, but the data may come from periods with very different characteristics, which is
contrary to the goal of building a model for peak failure periods.

In the second step we extract the model parameters from the data sets using the peaks
that we identified in the first step. Then we try to find a good fit,that is, a well-known
probability distribution and the parameters that lead to the best fit between that distribu-
tion and the empirical data. When selecting the probabilitydistributions, we consider the
degrees of freedom (number of parameters) of that distribution. Although a distribution
with more degrees of freedom may provide a better fit for the data, such a distribution
can result in a complex model, and hence it may be difficult to analyze the model math-
ematically. In this study we use five probability distributions to fit to the empirical data:
exponential, Weibull, Pareto, lognormal, and gamma. For the modeling process, we fol-
low the methodology described in Section8.1.3.

8.3.2 Results

After applying the modeling methodology presented in the previous section and Sec-
tion 8.1.3, we now present the peak model that we derived from diverse large scale dis-
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tributed systems.
Table 8.2 shows the average values for all the model parameters for allplatforms.

The average peak duration varies across different systems,and even for the same type
of systems. For example, UCB, MICROSOFT and DEUG are all desktop grids, but the
average peak duration widely varies among these platforms.In contrast, for the SDSC,
LANL, and PNNL platforms, which are HPC clusters, the average peak duration values
are relatively close. The DEUG and UCB platforms have small number of long peak
durations resulting in higher average peak durations compared to the other platforms.
Finally, as there are two peaks of zero length (single data point) in the OVERNET system,
the average peak duration is zero.

The average inter-arrival time during peaks is rather low, as expected, as the failure
rates are higher during peaks compared to off-peak periods.For the MICROSOFT plat-
form, as all failures arrive as burst during peaks, average inter-arrival time during peaks
is zero.

Similar to the average peak duration parameter, the averagetime between peaks
parameter is also highly variable across different systems. For some systems like
TERAGRID, this parameter is in the order of days, and for some systems like OVERNET

it is in the order of hours.
Similarly, the duration of failures during peaks highly varies even across similar plat-

forms. For example, the difference between the average failure duration during peaks be-
tween the UCB and the MICROSOFTplatforms, which are both desktop grids, is huge be-
cause the machines in the UCB platform leave the system less often than the machines in
the MICROSOFTplatform. In addition, in some platforms like OVERNET and TERAGRID,
the average failure durations during peaks is in the order ofdays showing the impact of
space-correlated failures, that is multiple nodes failingnearly simultaneously.

Using the AD and KS tests we next determine the best fitting distributions for each
model parameter and each system. Since we determine the hourly failure rates using fixed
time windows of one hour, the peak duration and the inter-peak time are multiples of one
hour. In addition, as the peak duration parameter is mostly in the range [1h-5h], and for
several systems this parameter is mostly1h causing the empirical distribution to have a
peak at1h, none of the distributions provide a good fit for the peak duration parameter.
Therefore, for the peak duration model parameter, we only present an empirical histogram
in Table8.3. We find that the peak duration for almost all platforms are less than3h.

Table8.4shows the best fitting distributions for the model parameters for all data sets
investigated in this study. To generate synthetic yet realistic traces without using a single
system as a reference, we create theaverage system modelwhich has the average char-
acteristics of all systems we investigate. We create the average system model as follows.
First, we determine thecandidate distributionsfor a model parameter with the distribu-
tions having the smallestD values for each system. Then, for each model parameter,



137

Platform / Peak Duration 1h 2h 3h 4h 5h 6h ≥ 7h

GRID’5000 80.56% 13.53% 3.38 % 1.33 % 0.24 % 0.12 % 0.84%
CONDOR (CAE) 93.75% 3.13 % – – – – 3.12%
CONDOR (CS) 90.91% 9.09 % – – – – –

CONDOR (GLOW) 83.33% 16.67% – – – – –
TERAGRID 97.78% 2.22 % – – – – –

LRI 86.67% 13.33% – – – – –
DEUG 28.57% – 28.57% – 14.29% – 28.57%

NOTRE-DAME 90.48% 9.52 % – – – – –
NOTRE-DAME (CPU) 56.83% 17.78% 9.84 % 3.49 % 5.40 % 3.49 % 3.17

M ICROSOFT 35.90% 33.33% 25.64% 5.13 % – – –
UCB 9.09 % 9.09 % – – – 9.09 % 72.73%

PLANETLAB 80.17% 13.36 % 3.71 % 1.27 % 0.53 % 0.53 % 0.43
OVERNET 100.00% – – – – – –

SKYPE 90.91% 4.55 % – 4.55 % – – –
WEBSITES 76.74% 13.95% 5.23 % 2.33 % 0.58 % – 1.16

LDNS 75.86% 13.79% 10.34% – – – –
SDSC 69.23% 23.08% 7.69 % – – – –
LANL 88.35% 9.24 % 2.06 % 0.25 % 0.06 % 0.03 % –
PNNL 85.99% 10.35% 1.75 % 0.96 % 0.64 % 0.16 % 0.16 %

Avg 74.79% 11.3% 5.16 % 1.01 % 1.14 % 0.7 % 5.85 %

Table 8.3: Empirical distribution for the peak duration parameter.h denotes hours. Values
above 10% are depicted as bold.

we determine the best fitting distribution among the candidate distributions that has the
lowest averageD value over all data sets. After we determine the best fitting distribution
for the average system model, each data set is fit independently to this distribution to find
the set of best fit parameters. The parameters of the average system model shown in the
”Avg.” row represent the average of this set of parameters.

For the IAT during peak durations, several platforms do not have a best fitting distri-
bution since for these platforms most of the failures duringpeaks occur as bursts hence
having inter-arrival times of zero. Similarly, for the timebetween peaks parameter, some
platforms (like all CONDOR platforms, DEUG, OVERNET and UCB platforms) do not
have best fitting distributions since these platforms have inadequate number of samples
to generate a meaningful model. For the failure duration between peaks parameter, some
platforms do not have a best fitting distribution due to the nature of the data. For exam-
ple, for all CONDOR platforms the failure duration is a multiple of a monitoring interval
creating peaks in the empirical distribution at that monitoring interval. As a result, none
of the distributions we investigate provide a good fit.

In our model we find that the model parameters do not follow a heavy-tailed distribu-
tion since the p-values for the Pareto distribution are verylow. For the IAT during peaks
parameter, Weibull distribution provides a good fit for mostof the platforms. For the time
between peaks parameter, we find that the platforms can either be modeled by the lognor-
mal distribution or the Weibull distribution. Similar to our previous model [123], which is
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System IAT During Peaks Time Between PeaksFailure Duration During Peaks

GRID’5000 – (see text) LN(10.30,1.09) – (see text)
CONDOR (CAE) – (see text) – (see text) – (see text)
CONDOR (CS) – (see text) – (see text) – (see text)

CONDOR (GLOW) – (see text) – (see text) – (see text)
TERAGRID – (see text) LN(12.40,1.42) LN(10.27,1.90)

LRI LN(3.49,1.86) LN(10.51,0.98) – (see text)
DEUG W(9.83,0.95) – (see text) LN(5.46,1.29)

NOTRE-DAME – (see text) W(247065.52,0.92) LN(9.06,2.73)
NOTRE-DAME (CPU) – (see text) W(44139.20,0.89) LN(7.19,1.35)

M ICROSOFT – (see text) G(1.50,50065.81) W(55594.48,0.61)
UCB E(23.77) – (see text) LN(5.25,0.99)

PLANETLAB – (see text) LN(10.13,1.03) LN(8.47,2.50)
OVERNET – (see text) – (see text) – (see text)

SKYPE – (see text) W(123440.05,1.37) – (see text)
WEBSITES W(66.61,0.60) LN(10.77,1.25) – (see text)

LDNS W(8.97,0.98) LN(10.38,0.79) LN(9.09,1.63)
SDSC W(16.27,0.46) E(84900) LN(7.59,1.68)
LANL G(1.35,797.42) LN(10.63,1.16) LN(8.26,1.53)
PNNL – (see text) E(160237.32) – (see text)

Avg W(193.91,0.83) LN(10.89,1.08) LN(8.09,1.59)

Table 8.4: Peak model: The parameter values for the best fitting distributions for all
studied systems. E,W,LN, and G stand for exponential, Weibull, lognormal, and gamma
distributions, respectively.

derived from both peak and off-peak periods, for the failureduration during peaks param-
eter, we find that the lognormal distribution provides a goodfit for most of the platforms.
To conclude, for all the model parameters, we find that eitherthe lognormal or the Weibull
distributions provide a good fit for the average system model.

Similar to the average system models built for other systems[135], we cannot claim
that our average system model represents the failure behavior of an actual system. How-
ever, the main strength of the average system model is that itrepresents a common basis
for the traces from which it has been extracted. To generate failure traces for a specific
system, individual best fitting distributions and their parameters shown in Table8.4may
be used instead of the average system.

Next, we compute the average failure duration/inter-arrival time over each data set
and only during peaks (Table8.5). We compare only the data sets used both in this
study and our previous study [123], where we modelled each data set individually without
isolating peaks. We observe that the average failure duration per data set can be twice as
long as the average duration during peaks. In addition, the average failure inter-arrival
time per data set is on average nine times the average failureinter-arrival time during
peaks. This implies that the distribution per data set is significantly different from the
distribution for peaks, and that fault detection mechanisms must be significantly faster
during peaks. Likewise, fault-tolerance mechanisms during peaks must have considerably
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System Avg. Failure Avg. Failure Avg. Failure Avg. Failure
Duration [h] Duration [h] IAT [s] IAT [s]

(Entire) (Peaks) (Entire) (Peaks)

GRID’5000 7.41 5.83 160 13
NOTRE-DAME (CPU) 4.25 6.14 119 33

M ICROSOFT 16.49 25.03 6 0
PLANETLAB 49.61 46.36 1,880 264

OVERNET 11.98 106.17 17 1
SKYPE 14.30 7.33 91 11

WEBSITES 1.17 0.97 380 103
LDNS 8.61 8.39 12 8
LANL 5.88 5.89 13,874 653

Table 8.5: The average duration and average IAT of failures for the entire traces and for
the peaks.

lower overhead than during non-peak periods.
Finally, for variousk values we explore the fraction of downtime caused by failures

that originate during peaks and the fraction of the number offailures that originate during
peaks (Table8.6). Noticeably, we find that on average over 50% and up to 95% of the
downtime of the systems we investigate are caused by the failures that originate during
peaks. This result suggests that failure peaks deserve special attention when designing
fault-tolerant distributed systems.

8.4 Related Work

Much work has been dedicated to characterizing and modelingsystem failures [199, 158,
155, 176, 220, 183]. While the correlation among failure events has received attention
since the early 1990s [199], previous studies focus mostly onspace-correlatedfailures,
that is, on multiple nodes failing nearly simultaneously. Although thetime correlation
of failure events deserve a detailed investigation due to its practical importance [147,
206, 180], relatively little attention has been given to characterize the time correlation of
failures in distributed systems. Our work is the first to investigate the time correlation
between failure events across a broad spectrum of large-scale distributed systems. In
addition, we also propose a model for peaks observed in the failure rate process derived
from several distributed systems.

Previous failure studies [199, 158, 155, 176, 220] used few data sets or even data
from a single system; their data also span relatively short periods of time. In contrast,
we perform a detailed investigation using data sets from diverse large-scale distributed
systems including more than100K hosts and1.2M failure events spanning over15 years
of system operation.

Closest to our work, Schroeder and Gibson [183] present an analysis using a large
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0

System k = 0.5 k = 0.9 k = 1.0 k = 1.1 k = 1.25 k = 1.5 k = 2.0
Time % # Failures % Time % # Failures % Time % # Failures % Time % # Failures % Time % # Failures % Time % # Failures % Time % # Failures %

GRID’5000 61.93 74.43 52.11 64.58 49.19 62.56 47.27 60.84 35.93 57.93 33.25 53.60 27.63 44.99
CONDOR (CAE) 63.03 90.91 62.93 90.52 62.93 90.52 62.73 89.88 62.73 89.88 62.57 89.13 62.10 87.08
CONDOR (CS) 80.09 89.56 80.04 88.63 80.04 88.63 80.04 88.63 80.04 88.63 80.04 88.63 80.04 88.63

CONDOR (GLOW) 39.53 70.51 39.37 69.70 39.37 69.70 39.37 69.70 39.37 69.70 39.37 69.70 37.28 67.47
TERAGRID 100 77.10 66.90 77.10 66.90 77.10 66.90 77.10 66.90 77.10 66.90 77.10 62.98 70.61

LRI 87.42 71.87 84.73 62.26 84.73 62.26 77.92 59.47 75.66 57.94 75.66 57.94 73.91 55.71
DEUG 47.31 83.61 26.07 66.46 25.07 63.03 25.07 63.03 22.28 57.76 20.94 53.31 16.83 41.11

NOTRE-DAME 62.62 73.06 58.53 69.72 53.40 69.09 45.19 67.70 45.12 67.19 43.69 64.47 41.79 62.61
NOTRE-DAME (CPU) 73.77 56.92 63.85 43.56 57.92 40.15 56.19 37.93 47.61 33.32 41.88 26.21 28.76 14.99

M ICROSOFT 52.16 40.26 37.44 25.10 35.54 23.41 32.20 20.08 28.78 16.81 23.76 12.80 15.35 6.73
UCB 100 100 97.70 97.78 95.31 96.10 95.31 96.10 93.19 94.18 86.75 87.62 54.48 57.88

PLANETLAB 50.55 54.70 38.07 41.81 38.07 41.81 30.02 32.34 30.02 32.34 26.69 24.86 24.02 20.27
OVERNET 68.69 12.90 65.97 7.44 65.97 7.44 65.97 7.44 65.97 7.44 65.97 7.44 65.97 7.44

SKYPE 32.87 36.01 12.06 18.93 7.65 14.93 6.14 13.81 4.32 12.05 3.29 10.74 3.29 10.74
WEBSITES 24.41 31.45 15.33 18.87 13.60 16.59 12.85 14.97 12.33 13.85 9.27 11.92 8.53 10.06

LDNS 38.21 38.80 13.74 13.85 10.14 10.41 7.80 8.28 5.07 5.61 3.25 3.57 2.06 2.45
SDSC 87.57 86.13 67.86 65.25 67.46 64.02 67.46 64.02 65.24 61.01 64.91 59.23 52.20 48.78
LANL 100 44.68 44.69 44.68 44.69 44.68 44.69 44.68 44.69 44.68 44.69 44.68 22.96 21.41

Avg. 65.01 62.93 51.52 53.67 49.88 52.35 47.95 50.88 45.84 49.30 44.04 46.83 37.78 39.94

Table 8.6: Fraction of downtime and fraction of the number offailures due to the failures that originate during peaks.
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set of failure data obtained from a high performance computing site. However, this study
lacks a time correlation analysis and focuses on well-knownfailure characteristics like
MTTF and MTTR. Sahoo et al. [176] analyze one year long failure data obtained from a
single cluster. Similar to the results of our analysis, theyreport that there is strong corre-
lation with significant periodic behavior. Bhagwan et al. [29] present a characterization of
the availability of the OVERNET P2P system. Their study and the study of Chu et al. [50]
show that the availability of P2P systems has diurnal patterns. However, neither of these
studies characterize the time correlations of failure events.

Traditional failure analysis studies [42, 115] report strong correlation between the in-
tensity of the workload and failure rates. Our analysis brings further evidence supporting
the existence of this correlation–we observe more failuresduring peak hours of the day
and during work days in most of the (interactive) traces.

8.5 Summary

Traditional failure models in distributed systems were derived from small scale systems
and often under the assumption of independence between failures. However, recent stud-
ies have shown evidence that there exist time patterns and other time-varying behavior
in the occurrence of failures. Thus, in this chapter we have investigated the time-varying
behavior of failures in large-scale distributed systems, and we have proposed a model for
time-correlated failures in such systems.

First, we have assessed the presence of time-correlated failures, using traces from
nineteen (production) systems, including grids, P2P systems, DNS servers, web servers,
and desktop grids. We have found for most of the studied systems that, the failure rates are
highly variable, and that the failures exhibit strong periodic behavior and time correlation.

Second, to characterize the periodic behavior of failures and the peaks in failures, we
have proposed a peak model with four parameters: the peak duration, the failure inter-
arrival time during peaks, the time between peaks, and the failure duration during peaks.
We found that the peak failure periods explained by our modelare responsible for on
average over 50% and up to 95% of the system downtime. We have also found that the
Weibull and the lognormal distributions provide good fits for the model parameters. We
have provided the best-fitting parameters for these distributions which will be useful to
the community when designing and evaluating fault-tolerance mechanisms in large-scale
distributed systems.

Last but not least, we have made four new traces available, three Condor traces and
one TeraGrid trace, in the Failure Trace Archive, which we hope will encourage others to
use the archive and also to contribute to it with new traces.





Chapter 9

Conclusion and Future Work

During the past few decades distributed computing systems have evolved from ARPANET
that comprises only a few machines to compute clouds that comprise hundreds of thou-
sands of machines all around the world. The significant advancement in the capabilities
of distributed systems make them an important part of our society; in fact, millions of
people around the globe depend on distributed infrastructures such as the Internet and the
telecommunications networks for various services. As users depend even more on dis-
tributed systems, it is inevitable that they also expect more from these infrastructures. It
is very important for the users that distributed systems provide consistent performance,
that is, the system provides a similar level of performance at all times. It is the focus of this
thesis to understand and improve the performance consistency of distributed computing
systems.

Towards this end, we have taken an empirical approach, and wehave explored diverse
distributed systems, such as clusters, multi-cluster grids, and clouds, and diverse work-
loads, such as Bags-of-tasks (BoTs), interactive perception applications, and scientific
workloads. In Chapter1 of this thesis, we have shown various evidence why this prob-
lem is important and non-trivial. In Chapter2, we have explored overprovisioning as a
means to provide consistent performance in multi-cluster grids using realistic simulations.
Then in Chapter3, we have explored the performance of throttling-based overload control
techniques in multi-cluster grids with experiments in our DAS-3 research testbed [58]. In
Chapter4, we have proposed four scheduling heuristics for interactive perception appli-
cations to minimize their latency subject to migration costconstraints, and we have evalu-
ated these heuristics with two real perception applications on the Open Cirrus testbed [17].
In Chapter5, we have assessed the performance of four public compute clouds, GoGrid,
ElasticHosts, Mosso, and Amazon EC2, which is one of the largest commercial produc-
tion clouds, using scientific workloads, and we have performed a preliminary analysis of
the performance consistency of these clouds. In Chapter6, we have analyzed the per-
formance variability of ten popular production cloud services provided by Amazon and
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Google, and we have assessed the impact of this variability on three large-scale applica-
tions. In Chapter7, we have developed statistical models for failures that occur within
a short time frame across distinct components of a system (space-correlated failures) by
considering the failure group arrival process, the group size, and the downtime caused by
the group of failures using fifteen data sets from the FailureTrace Archive [123]. Finally,
in Chapter8, we have investigated the time-varying behavior of failures in large-scale
distributed systems using nineteen data sets from the Failure Trace Archive [123], and we
have proposed a model for the peaks in the failure rate.

Overall, with this thesis we have provided evidence that theperformance provided by
state-of-the-art distributed systems is highly variable,and hence, is far from being consis-
tent. We further show that it is possible to improve the performance consistency of dis-
tributed systems using scheduling and resource managementtechniques that are tailored
for particular workloads and systems. Moreover, since failures are one of the primary
causes of high performance variability [116, 181, 65, 117, 33, 216, 22, 139], this thesis
also provides a fundamental understanding of failures, andprovides strong evidence that
the fundamental assumption of various previous studies, that is, that failures are indepen-
dent and identically distributed, is not correct, and hencemay lead to suboptimal system
designs.

In the rest of this chapter we first present the main conclusions of this thesis (Sec-
tion 9.1), and then we conclude the chapter with several future research directions (Sec-
tion 9.2).

9.1 Conclusions

Our work has led to seven major conclusions. The first six conclusions provide insights
into the performance of modern distributed systems while the last conclusion provides a
fundamental understanding of the behavior of failures in these systems. We present these
conclusions in turn.

1. As we have demonstrated with diverse workloads and systems in Chapters2, 3,
and4, resource management and scheduling is the key to provide consistent perfor-
mance in distributed computing systems.

2. Overprovisioning is a simple yet effective way to provideconsistent performance
in multi-cluster grids (Chapter2).

3. Executing large loosely coupled applications, such as bags-of-tasks, can overload
the head-nodes of multi-cluster grids, which results in noticeable degradation in the
performance and responsiveness. Throttling the workload rate can help improve
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both the raw performance and performance consistency for bursty workloads. Be-
sides, dynamic throttling-based overload control technique can replace the static
(hand-tuned) one, which is both slow and costly in multi-cluster grids due to the
number of clusters, and difficult to tune due to workload burstiness (Chapter3).

4. With the incremental placement heuristics that we have designed in Chapter4 it is
possible to provide consistent processing latency to interactive perception applica-
tions while at the same time keeping the total cost of migrations, which manifest
themselves as latency spikes, within a given bound. We have further shown that
using these heuristics it is possible to approach the improvements achieved by re-
running a static placement algorithm, but with less churn inthe system.

5. The performance of production cloud infrastructures arecurrently insufficient for
scientific computing at large, although these services are still good alternatives for
the users who need resources instantly and temporarily (Chapter5).

6. The performance of popular production cloud services of Amazon and Google have
highly variable performance, which may have noticeable impact on the performance
of distributed applications that depend on these services.In particular, the perfor-
mance of the investigated services exhibits both yearly anddaily patterns, and pe-
riods of relative stability. Moreover, the impact of this performance variability is
significantly different for different types of applications (Chapter6).

7. Traditional failure models for distributed systems, which assume failure events are
independent and identically distributed, are not adequatefor large-scale distributed
systems, because failure events in these systems are correlated both in time and
space. So, system designers need to evaluate their designs under correlated fail-
ure events. In addition, a majority of the system downtime indistributed systems
is caused by space-correlated failures and peak failure periods; system architects
should pay special attention to both space correlations of failures and failure peaks
when designing fault-tolerant distributed systems (Chapters7 and8).

9.2 Future Research Directions

Although significant research effort has been put into improving the performance con-
sistency of distributed systems both in this thesis and in the literature, as a result of our
research we identify six interesting future research directions, which we describe in turn.

1. In Chapter2 with our simulations with the controller that dynamically overprovi-
sions a multi-cluster grid, we have assumed for simplicity that there is no back-
ground load in the system and that the system is homogeneous.A natural extension
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to our evaluation would be to explore the impact of background activity and hetero-
geneity on the performance of our controller. In addition, assessing the performance
of the controller in a real deployment will definitely be interesting, and it will pose
additional challenges to address.

2. In our performance evaluation of overload control techniques in Chapter3 we have
used workloads that comprise a single BoT. It will definitelybe interesting to extend
our evaluation to more complex workloads that comprise multiple BoTs of different
sizes. Moreover, another interesting future direction is to explore the feasibility of
machine learning techniques to control overload in multi-cluster grids as machine
learning has shown to be a promising approach for managing the performance of
large-scale distributed systems [32].

3. In Chapter4 we consider the placement problem of interactive perception applica-
tions in isolation. However, in practice, we expect an effective system to employ
adaptation of the application graph and its degree of parallelism in conjunction with
incremental placement to best utilize the cluster resources. Therefore, we raise as
an important future work to explore how these two forms of adaptation can interact
and be integrated into a runtime system for interactive perception applications.

4. In our performance evaluation of public clouds that we have presented in Chapter5,
we have assessed the network performance with our multi-machine benchmarks us-
ing up to 16 Amazon EC2 instances. It would definitely be interesting to perform
a more comprehensive evaluation of the network performanceat a larger scale.
Network performance is particularly important in virtualized systems as it has al-
ready been shown that even when the network is lightly utilized, virtualization can
cause throughput instability and large latency variations[209]. In addition, Amazon
EC2 has recently released Cluster Compute and Cluster GPU Instances that provide
high-performance networking capabilities. Exploring theperformance of scientific
workloads on these instances would be an interesting futurework.

5. In our analysis of the performance variability of popularproduction cloud services
in Chapter6, we have shown the existence of significant performance variability.
However, we haven’t addressed the question of how to reduce this variability or
how to reduce the impact of this variability on large-scale distributed applications,
which is a challenging problem on its own. In addition to the challenges we have
outlined in the Introduction, namely, the scale of systems,the complexity of systems
and workloads, the shared nature of systems, different performance requirements of
users, and failures, virtualization and the large scale of cloud infrastructures make
this problem even more challenging; modern data centers nowcomprise up to a
million servers [122, 11, 110].
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6. In Chapters7 and8, we have provided an analysis and modeling of space- and time-
correlated failures in large-scale distributed systems. An important contribution
would be exploring how these models can be used to reduce the impact of failures on
performance variability. For example, our failure models can be used in scheduling
and resource management decisions, such as migrating a parallel application when
we predict that a failure burst of a particular size is arriving. Similarly, exploring
smarter checkpointing algorithms that use these models to predict failure events is
also an interesting future work as efficient checkpointing in large-scale distributed
systems is an active area of research [36, 154].
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Summary

During the past few decades, we have seen several major innovations in the field of dis-
tributed computing systems, which have really resulted in significant advances in the ca-
pabilities of such systems. Initially, around the late 1970s the increasing complexity of
workloads resulted in the invention of clusters that comprise multiple machines connected
over a local area network. Later, in the 1990s, grid computing was invented to give users
access to a large amount of resources from different administrative domains on-demand,
similar to the public utilities, and since then various grids have been deployed all around
the world. Recently, cloud computing has been emerging as a new large-scale distributed
computing paradigm where service providers rent their infrastructures, services, and plat-
forms to their clients on-demand.

With the increasing adoption of distributed systems in bothacademia and industry, and
with the increasing computational and storage requirements of distributed applications,
users inevitably demand more from these systems. Moreover,users also depend on these
systems for latency and throughput sensitive applications, such as interactive perception
applications and MapReduce applications, which make the performance of these systems
even more important. Therefore, for the users it is very important that distributed systems
provide consistent performance, that is, the system provides a similar level of performance
at all times.

In this thesis we address the problem of understanding and improving the performance
consistency of state-of-the-art distributed computing systems. Towards this end, we take
an empirical approach and we investigate various resource management, scheduling, and
statistical modeling techniques with real system experiments in diverse distributed sys-
tems, such as clusters, multi-cluster grids, and clouds, using various types of workloads,
such as Bags-of-tasks (BoTs), interactive perception applications, and scientific work-
loads. In addition, as failures are known to be an important source of significant per-
formance inconsistency, we also provide fundamental insights into the characteristics of
failures in distributed systems, which is required to design systems that can mitigate the
impact of failures on performance consistency.

In Chapter1 of this thesis we present the performance consistency problem in dis-
tributed computing systems, and we describe why this problem is challenging in such
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systems.
In Chapter2, we assess the benefit of overprovisioning on the performance consis-

tency of BoTs in multi-cluster grids. Overprovisioning canbe defined as increasing the
capacity, by a factor that we define as the overprovisioning factor, of a system to better
handle the fluctuations in the workload, and to provide consistent performance even un-
der unexpected user demands. Through simulations with realistic workload models we
explore various overprovisioning strategies with different overprovisioning factors and
different scheduling policies. We find that beyond a certainvalue for the overprovision-
ing factor there is only slight improvement in performance consistency with significant
additional costs. We also find that by dynamically tuning theoverprovisioning factor,
we can significantly increase the number of BoTs that have a makespan within a user
specified range, thus improving the performance consistency.

In Chapter3, we evaluate the performance of throttling-based overloadcontrol tech-
niques in multi-cluster grids motivated by our DAS-3 multi-cluster grid, where running
hundreds of tasks concurrently leads to overloads in the cluster head-nodes. We find that
throttling results in a decrease (in most cases) or at least in a preservation of the makespan
of bursty workloads while significantly improving the tail behavior of the application per-
formance, which leads to better performance consistency and reduces the overload of the
head-nodes. Our results also show that our adaptive throttling technique significantly im-
proves the application performance and the system responsiveness, when compared with
the hand-tuned multi-cluster system without throttling.

In Chapter4, we address the problem of incremental placement of interactive per-
ception applications on clusters of machines to provide a responsive user experience.
These applications require both low latency and, if possible, no latency spikes at all; fre-
quent migrations of the application components can introduce such spikes, which reduces
the quality of the user experience. We design and evaluate four incremental placement
heuristics that cover a broad range of trade-offs of computational complexity, churn in the
placement, and ultimate improvement in the latency. Through simulations and real sys-
tem experiments in the Open Cirrus testbed we find that it is worth adjusting the schedule
using our heuristics after a perturbation to the system or the workload, and that our heuris-
tics can approach the improvements achieved by completely rerunning a static placement
algorithm, but with significantly less churn.

In Chapter5, using various well-known benchmarks, such as LMbench, Bonnie,
CacheBench, and the HPC Challenge Benchmark, we conduct a comprehensive perfor-
mance study with four public clouds, including Amazon EC2, which is one of the largest
production clouds. Notably, we find that the compute performance of the tested clouds is
low. Furthermore, we also perform a preliminary assessmentof the performance consis-
tency of these clouds, and we find that noticeable performance variability is present for
some of the cloud resource types we have explored, which motivates us to explore the
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performance variability of clouds in depth in the next chapter. Finally, we compare the
performance and cost of clouds with those of scientific computing alternatives, such as
grids and parallel production infrastructures. Our results show that while current cloud
computing services are insufficient for scientific computing at scale, they may still be a
good alternative for the scientists who need resources instantly and temporarily.

In Chapter6, we explore the performance variability of production cloud services
using year-long traces that comprise performance data for two popular cloud services:
Amazon Web Services and Google App Engine. We find that the performance of the
investigated cloud services exhibits on the one hand yearlyand daily patterns, and on
the other hand periods of stable performance. We also find that many of these services
exhibit high variation in the monthly median values, which indicates large performance
variability over time. In addition, through trace-based simulations of different large-scale
distributed applications we find that the impact of the performance variability varies sig-
nificantly across different application types.

In Chapter7, we develop a statistical model for space-correlated failures, that is, for
failures that occur within a short time period across different system components using
fifteen data sets in the Failure Trace Archive, which is an online public repository of
availability traces taken from diverse parallel and distributed systems. In our failure model
we consider three aspects of failure events: the group arrival process, the group size, and
the downtime caused by the group of failures. We find that the lognormal distribution
provides a good fit for these parameters. Notably, we also findthat for seven out of the
fifteen traces we investigate, space-correlated failures are a major cause of the system
downtime. Therefore, these seven traces are better represented by our model than by
traditional models, which assume that the failures of the individual components of the
system are independent and identically distributed.

In Chapter8, we investigate the time-varying behavior of failure events in diverse
large-scale distributed systems using nineteen data sets in the Failure Trace Archive. We
find that for most of the studied systems the failure rates arehighly variable, and that
failures exhibit strong periodic behavior and time correlations. Moreover, to characterize
the peaks in the failure rate we develop a model that considers four parameters: the peak
duration, the failure inter-arrival time during peaks, thetime between peaks, and the fail-
ure duration during peaks. We find that the peak failure periods explained by our model
are responsible for a significant portion of the system downtime, suggesting that failure
peaks deserve special attention when designing fault-tolerant distributed systems. We
believe that our failure models can be used for predictive scheduling and resource man-
agement decisions, which can help to mitigate the impact of failures on the performance
variability in distributed systems.

Finally, in Chapter9, we present the conclusions of this thesis and we further present
several interesting future research directions. With various workloads and distributed
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computing systems we show empirically how we can improve theperformance consis-
tency of such systems. Moreover, this thesis also provides afundamental understanding
of the characteristics of failures in distributed systems,which is required to design sys-
tems that can mitigate the impact of failures on performanceconsistency. A particularly
important extension to our work is to investigate how we can improve the performance
consistency of commercial cloud computing infrastructures. We believe that our research
presented in this thesis has already taken initial steps in this direction.
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Samenvatting

Gedurende de afgelopen decennia zijn er verscheidene groteinnovaties geweest op het
gebied van gedistribueerde systemen die gezorgd hebben voor een belangrijke vooruit-
gang in de mogelijkheden van dergelijke systemen. De toenemende complexiteit van de
werklasten resulteerde in de late jaren zeventig van de vorige eeuw in het ontstaan van
clustersvan computers die via een locaal netwerk met elkaar verbonden waren. Later,
in de jaren negentig, werdgrid computingontwikkeld om gebruikers op afroep toegang
te geven tot een grote hoeveelheidresourcesgespreid over verschillende administratieve
domeinen, net zoals nutsvoorzieningen, en sindsdien zijn er velegridsover de hele wereld
in gebruik genomen. Recent iscloud computingopgekomen als een nieuw paradigma
voor gedistribueerde verwerking op grote schaal waarin de aanbieders hun infrastructuur,
diensten en platforms aan klanten op afroep verhuren.

Met het toenemende gebruik van gedistribueerde systemen inzowel universiteiten als
in de industrie, en met de toenemende vereisten wat betreft rekenkracht en opslagca-
paciteit van gedistribueerde applicaties, stellen gebruikers steeds hogere eisen aan deze
systemen. Bovendien hebben gebruikers deze systemen ook nodig voor applicaties die
een snelle respons of een grote doorstroming vereisen, zoals applicaties die interactieve
waarneming doen enMapReduceapplicaties, hetgeen de prestaties van deze systemen
alleen maar nog belangrijker maakt. Daarom is het voor gebruikers erg belangrijk dat
gedistribueerde systemen consistente prestaties bieden,dat wil zeggen, dat ze te allen
tijde een vergelijkbaar niveau van prestaties bieden.

In dit proefschrift behandelen we het probleem van het begrijpen en verbeteren van de
consistentie van de prestaties van de huidige gedistribueerde computersystemen. Daar-
voor gebruiken we een empirische benadering en onderzoekenwe verscheidene tech-
nieken voorresource management, scheduling, en statistisch modelleren met behulp van
experimenten in echte systemen zoalsclusters, multi-cluster grids, en clouds. Daarbij
gebruiken we verschillende typen werklasten, zoalsBags-of-Tasks(BoTs), applicaties
voor interactieve waarneming, en wetenschappelijke applicaties. Omdat storingen een
belangrijke bron van inconsistentie in prestaties vormen,verschaffen we bovendien fun-
damentele inzichten in de karakteristieken van storingen in gedistribueerde systemen, het-
geen nodig is om systemen te ontwerpen waarin hun invloed op de consistentie van de
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prestaties wordt verzacht.
In Hoofdstuk1 van dit proefschrift formuleren we het probleem van de consistentie

van de prestaties van gedistribueerde computersystemen, en leggen we uit waarom dit
probleem in deze systemen uitdagend is.

In Hoofdstuk2 gaan we het nut na van overvoorziening op de consistentie in prestaties
van BoTs inmulti-cluster grids. Overvoorziening kan worden gedefinieerd als het ver-
groten van de capaciteit, met een factor die we definiëren als de overvoorzieningsfactor,
van een systeem om beter de fluctuaties in de werklast aan te kunnen, en om consis-
tente prestaties te bieden zelfs als de vraag van gebruikersonverwacht groot is. Door
middel van simulaties met realistische modellen voor de werklasten onderzoeken we
verscheidene strategieën voor overvoorziening met verschillende overvoorzieningsfac-
toren en verschillendescheduling policies. Het blijkt dat boven een bepaalde waarde
van de overvoorzieningsfactor er slechts een kleine verbetering in de consistentie van de
prestaties bereikt kan worden tegen hoge additionele kosten. Tevens blijkt dat we met
het dynamisch aanpassen van de overvoorzieningsfactor hetaantal BoTs dat een verwer-
kingstijd binnen door de gebruiker gestelde grenzen heeft,aanzienlijk kunnen verhogen,
hetgeen de prestatie-consistentie verbetert.

In Hoofdstuk3 evalueren we de prestaties van technieken voor het beheersen van de
overbelasting door middel van werkdosering inmulti-cluster gridszoals het Nederlandse
DAS-3 systeem, waarin het gelijktijdig draaien van honderden applicaties dehead-nodes
van declustersoverbelast. Het blijkt dat werkdosering meestal resulteert in een reduc-
tie of tenminste het gelijkblijven van de tijdsduur om pieken in de werklast af te han-
delen, terwijl het de uitschieters in responstijd van applicaties sterk reduceert, hetgeen
leidt tot betere consistentie in de prestaties en reductie in de overbelasting van dehead-
nodes. Onze resultaten laten ook zien dat adaptieve doseringstechnieken de prestaties van
applicaties en de responsiviteit van systemen beduidend verbetert in vergelijking met het
multi-clustersysteem zonder dosering dat met de hand is afgesteld.

In Hoofdstuk4 behandelen we het probleem van de incrementele plaatsing van appli-
caties voor interactieve waarneming opclustersvan machines om de gebruiker een snelle
respons te laten ervaren. Deze applicaties vereisen een snelle respons zonder uitschie-
ters; frequente migratie van de componenten van een applicatie kunnen zulke uitschie-
ters veroorzaken, hetgeen de kwaliteit van de ervaring van de gebruiker vermindert. We
ontwerpen en beoordelen vier heuristieken voor incrementele plaatsing die een breed
spectrum bestrijken van de afwegingen van algoritmische complexiteit, frequentie van
verplaatsing van de componenten van applicaties, en de uiteindelijke verbetering in de
respons. Door middel van simulaties en experimenten in het Open Cirrus testsysteem
blijkt dat het de moeite loont om de plaatsing van componenten aan te passen met onze
heuristieken na een verstoring van het systeem of de werklast, en dat onze heuristieken de
verbeteringen benaderen die kunnen worden bereikt door hetopnieuw uitvoeren van een
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algoritme voor niet-dynamische plaatsing, maar met beduidend minder migraties.
In Hoofdstuk5 beschrijven we een uitgebreide studie van de prestaties vanvier pu-

bliekeclouds, inclusief Amazon EC2, dat één van de grootste productie-cloudsis. Deze
studie is uitgevoerd met bekendebenchmarkszoals LMbench, Bonnie, CacheBench, en
de HPC Challenge Benchmark. Het blijkt dat de prestaties vande onderzochteclouds
met betrekking tot hun rekenkracht laag zijn. Bovendien hebben we ook een initiële be-
oordeling van de consistentie in de prestaties van dezecloudsgedaan, en die blijkt soms
aanzienlijk te zijn. Dit leidde ons er toe om de variabiliteit in de prestaties dieper te on-
derzoeken in het volgende hoofdstuk. Ten slotte vergelijken we de prestaties en kosten
van cloudsmet die van alternatieven voor wetenschappelijk rekenen zoals grids en pa-
rallelle computers. Onze resultaten laten zien dat terwijlde huidigecloud-diensten voor
rekenwerk onvoldoende zijn voor grootschalig wetenschappelijk rekenen, ze een goed
alternatief zijn voor onderzoekers die snel en tijdelijk toegang moeten hebben tot reken-
capaciteit.

In Hoofdstuk6 onderzoeken we de variabiliteit in de prestaties van productie-clouds
met behulp van jarenlangetracesmet gegevens over de prestaties van twee populaire
clouds: Amazon Web Services en Google App Engine. Het blijkt dat de prestaties van
de onderzochtecloud-diensten jaarlijkse en dagelijkse patronen laten zien, maar dat er
ook perioden met stabiele prestaties zijn. Tevens blijkt dat veel van deze diensten een
hoge variatie in de maandelijkse mediane waarden laten zien, hetgeen duidt op een grote
variabiliteit in prestaties over de tijd. Bovendien laten we door middel van optraces
gebaseerde simulaties van verscheidene grootschalige gedistribueerde applicaties zien dat
de invloed van de variabiliteit in prestaties sterk verschilt per applicatie-type.

In Hoofdstuk 7 ontwikkelen we een statistisch model voor ruimte-gecorreleerde
storingen, dat wil zeggen, voor storingen die binnen korte tijd in verschillende systeem-
componenten optreden. Hierbij gebruiken we vijftien dataverzamelingen uit deFailure
Trace Archive, een openbaar archief met de beschikbaarheids-tracesvan diverse parallelle
en gedistribueerde systemen. In ons model voor storingen beschouwen we drie aspecten:
het aankomstproces van groepen van storingen, de omvang vandergelijke groepen, en
de tijdsduur dat een systeem buiten bedrijf is door een groepvan storingen. Het blijkt
dat de lognormale verdeling deze parameters goed beschrijft. Tevens blijkt dat in zeven
van de vijftien tracesdie we onderzoeken, de ruimte-gecorreleerde storingen é´en van
de hoofdoorzaken zijn van het buiten bedrijf zijn van systemen. Derhalve worden deze
zeventracesbeter door ons model verklaard dan door traditionele modellen, die aan-
nemen dat de storingen in de individuele componenten van systemen onafhankelijk en
identiek verdeeld zijn.

In Hoofdstuk8 onderzoeken we het tijdsafhankelijke gedrag van storingenin diverse
grootschalige gedistribueerde systemen met behulp van negentien dataverzamelingen in
deFailure Trace Archive. Het blijkt dat in de meeste onderzochte systemen de frequentie
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van storingen erg variabel is, en dat storingen een sterk periodiek gedrag en tijdscorre-
laties vertonen. Bovendien ontwikkelen we een model om de pieken in die frequentie te
karakteriseren dat vier parameters heeft: de tijdsduur vandie pieken, de tussenaankomst-
tijden van de storingen gedurende de pieken, de tijdsduur tussen pieken, en de duur van
de storingen gedurende pieken. Het blijkt dat de perioden met de hoogste frequentie van
storingen die door ons model worden verklaard, verantwoordelijk zijn voor een beduidend
deel van de uitval van het systeem, hetgeen aangeeft dat de piekperioden in storingen spe-
ciale aandacht verdienen bij het ontwerp van foutbestendige gedistribueerde systemen.
Ons model voor storingen kan worden gebruikt voor voorspellingen bij het nemen van
beslissingen voorschedulingenresource managementom de invloed van storingen op de
wisselvalligheid van de prestaties in gedistribueerde systemen te verzachten.

Ten slotte presenteren we in Hoofdstuk9 de conclusies van dit proefschrift en for-
muleren we verscheidene interessante onderzoeksvragen. Met verscheidene werklasten
en gedistribueerde systemen hebben we empirisch laten zienhoe we de consistentie in
prestaties van zulke systemen kunnen verbeteren. Bovendien heeft dit proefschrift ook
geleid tot een beter begrip van de karakteristieken van storingen in gedistribueerde sys-
temen, wat nodig is bij het ontwerp van systemen die de invloed van storingen op de
consistentie van de prestaties kunnen afzwakken. Een uitbreiding van ons werk die van
bijzonder belang is, is om te onderzoeken hoe we de consistentie in prestaties van com-
merciëlecloud-infrastructuren kunnen verbeteren. Het onderzoek dat in dit proefschrift
wordt gepresenteerd heeft al de eerste stappen in die richting gezet.
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