Understanding and Improving the Performance
Consistency of Distributed Computing Systems

Mahmut Nezih Yigitbasi

Understanding and Improving the Performance
Consistency of Distributed Computing Systems

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op dinsdag 4 december 2012 .3 iz

doorMahmut Nezih Yigitbasi

Master of Science in Computer Engineering, Istanbul Texdininiversity, Turkey
geboren te Istanbul, Turkey.

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. D.H.J. Epema

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof.dr.ir. D.H.J. Epema Technische Universiteit Delfgmotor
Prof.dr. A. van Deursen Technische Universiteit Delft
Prof.dr.ir. H.J. Sips Technische Universiteit Delft

Dr.ir. A. losup Technische Universiteit Delft

Prof.dr. H.A.G. Wijshoff Universiteit Leiden

Dr.-Ing. Habil. Th. Kielmann Vrije Universiteit Amsterdam

Th. L. Willke, EngScD Intel Corporation, USA

Prof.dr. K.G. Langendoen Technische Universiteit Deéisarvelid

This work has been carried out in the ASCI graduate
school. ASCI dissertation series number 264.

) . .
N Wo This work has been done in the context of the Guar-
anteed Delivery in Grids (Guard-g) project, funded
by NWO.

‘ |nte|) Part of this work has been done in collaboration with

Intel Research Labs, USA.

Copyright(© 2012 by Mahmut Nezih Yigitbasi. All rights reserved. Natpaf the material protected by
this copyright notice may be reproduced or utilized in anyrf@r by any means, electronic or mechanical,
including photocopying, recording or by any informatiolrsige and retrieval system, without written
permission of the author. The author can be contacteezih.yigitbasi@gmail.com

ISBN: 978-94-6186-071-2

nezih.yigitbasi@gmail.com

To my wife, with love.

Acknowledgments

A PhD thesis is really not something that | could have writsddone. Along this long
journey, I have been supported and encouraged by numeropkept whom | am deeply
grateful.

First and foremost, it has been a great pleasure for me to witihkProf. Dick Epema
during my PhD. | am truly impressed by Dick’s wisdom, attentto details, and high-
quality work. | owe Dick many thanks for his support and enmegement for me to
do internships at Intel Research Labs, which have paved &ygtevmany opportunities.
Dick’s patience, insightful guidance, and encouragemamehmade this research possi-
ble, thank you Dick!

Alex, you have been a great mentor and a friend throughout my. Phave learned
and enjoyed a lot from our collaboration, and our collaorateally helped me improve
my research skills, thanks a lot!

| am grateful to Prof. Henk Sips for always being kind and wglto help. | would
also like to express my appreciation to the rest of my conemithembers for allocating
their valuable time to assess my thesis. Your insightful mamts have improved this
thesis a lot.

I would like to offer my special thanks to Intel Research L&rsproviding me with
the research opportunities as an intern. | have learned dulihg my internships at
Intel. 1 have enjoyed working with various smart people aeliiResearch Labs during
2010, 2011, and 2012. Thank you Babu Pillai and Lily Mummertdfeing great mentors
and opening up new opportunities for me. You were always Yeeyndly during my
internship. | also want to thank Ted Willke for being an egtdinary mentor during my
internships in 2011 and 2012. Ted, you have always been aapleague to work with.
You are the busiest people | know, and still you have allatgtair valuable time to serve
in my PhD committee, and | really appreciate that. | enjoyethlour technical and non-
technical discussions a lot. Especially our discussion¥ofiuted models” and “state
machines” were fantastic, thank you very much for everghin

| want to thank my Turkish friends, Ozan, Zeki, Zulkuf, andrigam, who helped me
enjoy my time at TUDelft. | enjoyed being a roommate with Of@anaround two years,
and | really enjoyed our collaboration. You have been a dreatd and you have always

been there whenever | needed help, thanks a lot! | also eshgyending time with Zulkuf
and Zeki, guys | wish you success with your careers. Finddnk you Gorkem for being
a great friend, | really enjoyed our chats on research,ipsliacademia, etc.

Sigi and Yong, thanks for being great roommates. It was daeatving you guys, |
wish you success in your PhDs, and | am sure you will do wonders

| also want to thank the members of the PDS group, you have thélgroup a great
place to work, thank you guys.

| am grateful for the assistance given by Paulo, Munire, aeglgn. You were always
kind and friendly, thank you! | also want to thank the seatetaof the PDS group for
making life easier for me.

Finally, | would like to thank my parents for their love, su\gp encouragement, and
patience. Moreover, | am indebted to my beloved wife. We Hmen through many ups
and downs during my PhD. Without her love and support, tresithwill not be possible.

Contents

1

Introduction 1
1.1 Whatisthe Research Problem? 3
1.2 Why s the Problem Challenging? 6
1.3 Research Contributions and ThesisOutline 8
Overprovisioning strategies for performance consistencin grids 11
2.1 Motivation 13
2.2 Overprovisioning Strategies e 13
2.3 SystemModel 14
231 SystemModel., 14
2.3.2 SchedulingModel 15
2.4 Experimental Setup 16
241 Workload 16
2.4.2 Methodology 17
2.4.3 Performance Metrics oo 18
2.5 ExperimentalResults, 19
2.5.1 Performance Evaluation 19
25.2 CostEvaluation 22
2.6 Dynamically Determining the Overprovisioning
Factor 23
2.7 RelatedWork 26
2.8 Summary ... e e 27
The performance of overload control in multi-cluster grids 29
3.1 Multi-Cluster GridModel 30
3.2 Overload Control Techniques 32
3.3 ExperimentalSetup 33
3.3.1 Multi-ClusterTestbed 34
3.32 Workloads 34
3.3.3 ThePerformanceMetrics 34

3.3.4 Parameters for the Overload Control Techniques 35
3.4 ExperimentalResults 36
3.4.1 SchedulingOverhead 37
3.4.2 Results for Single-Cluster Experiments 38
3.4.3 Results for Multi-Cluster Experiments 40
3.5 RelatedWork 45
3.6 Summary e 46
Incremental placement of interactive perception applicdons 47
4.1 Interactive Perception Applications 49
4.2 The HEFT Algorithm 51
4.3 Problem Formulation 51
4.3.1 The Initial Placement Problem 51
4.3.2 The Incremental Placement Problem 52
4.4 Incremental Placement Heuristics 53
4.5 ImplementationDetails 55
4.6 ExperimentalSetup 55
46.1 Workloads 55
4.6.2 PerformanceMetrics 87
46.3 Testbed 57
4.7 SimulationResults L 58
4.7.1 ApplicationLatency 58
4.7.2 Algorithm Scalability 65
4.8 ResultsinaRealSystem, 67
49 RelatedWork 68
4,10 SuMmMary o e e e e e 70
Performance evaluation of public clouds 71
5.1 Cloud Computing Services for Scientific Computing. 72
5.1.1 ScientificComputing, 73
5.1.2 Four Selected Clouds: Amazon EC2, GoGrid, Elastitsj@nd
MOSSO 73
5.2 Cloud Performance Evaluation 75
521 Method 75
5.2.2 ExperimentalSetup 76
523 Results 77
5.3 Clouds versus Other Scientific Computing Infrastriegur 85
531 Method 85
5.3.2 ExperimentalSetup 87

5.3.3 Results 88

54 Relatedwork 91
55 Summary 92
Performance variability of production cloud services 93
6.1 Production Cloud Services 94
6.1.1 AmazonWeb Services 95
6.1.2 Google AppEngine 95
6.2 Method 95
6.2.1 Performance Traces of Cloud Services 96
6.2.2 MethodofAnalysis 97
6.2.3 IsVariability Present?, 97
6.3 The Analysisofthe AWS Dataset. 99
6.3.1 Summary Statistics o L Q9
6.3.2 Amazon Elastic Compute Cloud (EC2) 929
6.3.3 Amazon Simple Storage Service (S3) 100
6.3.4 AmazonSimpleDB(SDB) 101
6.3.5 Amazon Simple Queue Service (SQS) 102
6.3.6 Amazon Flexible Payment Service (FPS) 103
6.3.7 Summary ofthe AWS Dataset 103
6.4 The Analysis of the Google App Engine Dataset 104
6.4.1 Summary Statistics 104
6.4.2 TheGoogle RunService 105
6.4.3 The Google Datastore Service 105
6.4.4 The Google Memcache Service. 106
6.4.5 The Google URL Fetch Service 107
6.4.6 Summary of the Google App Engine Dataset 108
6.5 The Impact of Variability on Large-Scale Applications. 108
6.5.1 ExperimentalSetup 108
6.5.2 Gridand PPE Job Execution 109
6.5.3 Selling Virtual Goods in Social Networks 111
6.5.4 Game Status Maintenance for Social Games 112
6.6 Relatedwork 113
6.7 SUMMANY e e e 114
Space-correlated failures in large-scale distributed stems 115
7.1 Background 116
7.1.1 Terminology 116
7.1.2 TheDatasets 117
7.2 ModelOverview e 118

7.2.1 Space-Correlated Failures 118

Vi

7.2.2 ModelComponents
7.2.3 MethodforModeling
7.3 Failure GroupWindow Size
7.4 AnalysisResults.
7.4.1 DetailledResults.
742 ResultsSummary
7.5 Relatedwork
7.6 Summary e

8 Time-correlated failures in large-scale distributed sytems

8.1 Method
8.1.1 FailureDatasets
812 Analysis.
8.1.3 Modeling,

8.2 Analysis of Autocorrelation
8.2.1 Failure Autocorrelationsinthe Traces
8.2.2 Discussion. e

8.3 Modeling the Peaks of Failures
8.3.1 PeakPeriodsModel
832 Resultso

8.4 RelatedWork,

8.5 Summary e

9 Conclusion and Future Work

9.1 cConclusions
9.2 Future Research Directions

Summary
Samenvatting

Curriculum Vitae

169

173

177

Chapter 1

Introduction

The history of distributed computing systems goes back teARET, which was created
in the late 1960s, and which is known as the predecessor dhtbet P15. The first
successful distributed application utilizing the ARPANEKifrastructure was the e-mail
application created by Ray Tomlinson in the early 1970.[With the growing interest
in distributed computing systems, the field of distributechputing became an important
branch of computer science in the late 1970s and 1980s. Bianethe field has attracted
significant attention from both academia and industry, aathawe seen many innovations
along the way, such as clusters, grids, and recently, clouds

Around the late 1970s, client workloads have started pgsthie limits of single ma-
chines with their increasing complexity and processingiregnents motivating the need
for serverclusters which comprise multiple machines that are connected byal lrea
network and provide a single system image to its uskg§][The first commercial cluster
was ARCnet, which was created by Datapoint in 19274]. However, cluster comput-
ing was not really adopted until DEC released its VAXclugiewvduct in 1984, which
was built from general purpose off-the-shelf hardware smdeneral purpose VAX/VMS
operating systemip6 214].

Later, in the mid 1990s, the tergnid was used to describe the technologies that enable
users to have access to a large amount of resources on-d¢&ignawith grid comput-
ing, resources from different administrative domains fifedeént countries are opened up
transparently to scientist8()], leading toe-sciencehat enables world-wide collaboration
among scientists for solving complex research problets8§ [94]. Various grid infras-
tructures have been deployed all around the world: the Baorid Infrastructure (EGI)
in Europe [1], the Distributed ASCI Supercomputer (DAS) in the Netheds 21], the
e-Science grid in the U.K2D4], the Grid’5000 grid in France3[], and the Open Science
Grid (OSG) [L59 and TeraGrid 20Q] in the United States, to name just a few.

Recently, cloud computinghas been emerging as a new distributed computing
paradigm where infrastructures, services, and platformaspeovided to the users on

demand. Clouds now enable everyone to have access to ant&hfamount of re-
sources with their credit cards. The common charactesisficlouds are the pay-per-use
billing model, the illusion of an infinite amount of resous¢celastic resource manage-
ment (grow/shrink resources on demand), and virtualizeduees §1]. Currently some
of the popular cloud computing vendors are Amazon with théastic Compute Cloud
(EC2) [12], Google with their App Engined8], Microsoft with their Azure cloud 19,
Rackspace][71], and GoGrid B7].

With the increasing and widespread adoption of distribatadputing systems in both
academia and industry, both scientific and business rageines motivate the users to de-
mand more from these systems in terms of their compute amagg@erformance. For
example, in the scientific domain the Large Hadron Collidéd@) generates roughly
15 PBlyear B8], and the high energy physics community has already bedimdeaith
petabytes of data produced as a result of their experim2@its$imilarly, the need to per-
form realistic simulations of complex systems also mo#igacientists to have access to
powerful resources; researchers have successfully siedigarthquakes on the Jaguar su-
percomputer of NCCS (National Center for Computationa¢éBces) $7], and the human
heart has been realistically simulated on the T2K Open $opagputer in Tokyo97]. The
industry is also pushing the limits of distributed compgtgystems—companies such as
Google and Facebook now serve hundreds of millions of ugetshd the world. More-
over, the decreasing cost of data acquisition and storap@déogies enable companies
to store massive amounts of data to drive their busineswatiom, and they have already
deployed very large-scale distributed infrastructureprticess thesbig data For ex-
ample, Google has reported processing 100TB of data perrda904 p1] and 20PB
of data per day in 2008p], which is a 200-fold increase in only four years. Similarly
Facebook has reported having roughly 30PB of data in oneef MapReduce clusters
as of 20111].

Furthermore, with this increasing adoption users now aéqmedd on distributed in-
frastructures for latency and throughput sensitive appibois, such as interactive per-
ception applications and MapReduce applications, whickentlae performance of these
systems more important than before. Besides, distribyts@s are also serving various
mission critical services, such as banking, air traffic cainhaval command and control
systems, and telecommunications. Therefore, users egpasistent performandeom
these systems, that is, they expect the system to provideilasievel of performancat
all times such as having an acceptable performance variability eaeer system over-
load and failures, or having a consistent processing Isitehtess than 200 ms for their
interactive applications while at the same time minimizihg number of latency spikes
(transient high variability in latency) for a crisp user exignce.

In this thesis, we provide an understanding of the performare consistency of
state-of-the-art distributed computing systems, and usig various resource manage-

ment and scheduling techniques we show how we can improve tiperformance con-
sistency in diverse distributed systems, such as clusters@ multi-cluster grids. We
particularly focus ordistributed computing systeras an important class of distributed
systems to make it explicit that we do not consider many aiyyaes of distributed sys-
tems, such as web server systems or distributed databasensysRather, we focus on
various important distributed computing systems such asi-eluster grids (Chapter2
and3), clusters (Chaptet), and clouds (Chaptetsand6). Therefore, in the rest of this
thesis we use the term distributed systems to refer to bligerd computing systems.

The rest of this chapter is organized as follows. Secfidnpresents the research
problem we address in this thesis. Then, Seclidhpresents the challenges that make
this problem non-trivial. Finally, Sectiof.3 concludes the chapter with our research
contributions and the outline of this thesis.

1.1 Whatis the Research Problem?

Users expect consistent performance from distributecesyst that is, a system is ex-
pected to deliver roughly the same level of performance lairabs—if an application
usually takes 10s to complete, it will be annoying when sames the same application
takes significantly more than that. Besides leading to uissatisfaction and confusion,
inconsistent performance can have various undesirabkecuences. First and foremost,
systems with high performance variability are inherenthpredictable, and therefore,
hard to manage and debug. Secondly, performance incamsystea serious obstacle to
productivity and efficiency. Because, high performanceatmlity results in less work
being done, lost compute cycles due to jobs being killed byrésource manager, which
may be due to hard limits on job runtimes such as the 15 mimateih DAS-4 [59], and
less effective scheduling decisiod®[). In addition, highly variable performance makes
it very difficult to reason about system behavior.

The consequences of inconsistent performance can be eversermus in production
systems for both the users and the service providers. Farsirs, in a system that uses
a pay-per-use billing model such as clouds, highly varigleldormance makes the costs
unpredictable, and makes it very difficult for the users toperly provision resources
for their workloads. Similarly, for the service providetsgh variability may cause sig-
nificant loss of revenue. For example, Amazon has reportadetren small (100 ms)
delays for web page generation will cause a significant (184p ¢h sales 137. Like-
wise, Google has reported that an extra 0.5s in the searehdamses a traffic drop of
around 20%137.

Before we can start to improve the performance consistehdystributed systems,
an understanding of the performance of these systems isioiatimportance, but un-
fortunately, even understanding the performance behav¥ithrese systems is non-trivial,

primarily because of system complexity. Although tradiabsystem engineers usually
decompose a system into its components and try to undertsteselcomponents to under-
stand the complete system, this bottom up approach faila s§&ems get more complex,
because they can behave in unexpected ways demé&rgent behavidrl49; emergent
behavior cannot be predicted with analysis at any levelithsimpler than the complete
system itself 70]. For example, it is not uncommon that systems fail badly nvim@ving
them from test to production environments as productiotesys may have significantly
different workload characteristics, which can uncovemeorcases. Similarly, systems
usually behave completely unpredictable or they may evashaunder overload. Another
example is the characteristics of failures in distributgstems. Failures in real distributed
systems have completely different characteristics thaat\Wwhve been assumed in tradi-
tional models; while failures were assumed independeiasd models they are actually
correlated in real systems as processes in a distributéeinsysve complex interactions
and dependencies between them.

In this thesis, we provide an understanding of the performame consistency
of state-of-the-art distributed systems, and we explore mource management and
scheduling techniques to improve the performance consigtey in these systemsk-or
this purpose, this thesis takes an empirical approach aplbres this problem across
diverse distributed systems, such as clusters, multiedggids, and clouds, and across
different types of workloads, such as bags-of-tasks (Boifdgractive perception ap-
plications, and scientific workloads. Besides, since faduare shown to be an important
source of significant performance inconsistericig 181, 65, 117, 33, 216, 22, 139, this
thesis also provides a fundamental understanding of &atharacteristics in distributed
systems, which is necessary to design systems that carateitige impact of failures on
performance consistency. In particular, we aim to addiesddllowing research ques-
tions in this thesis:

Can overprovisioning help to provide consistent performarme in multi-cluster
grids? We define overprovisioning as increasing the capacity ofsiesy by adding
more nodes (scaling out) to better handle the fluctuationthenworkload, and pro-
vide consistent performance to users. Overprovisionirgyldeen successfully used in
telecommunication system$g8 and modern data centers for performance and reliabil-
ity concerns 14, 24]. We investigate whether overprovisioning can also helprtavide
consistent performance in multi-cluster grids throughiséea simulations.

How can we improve the performance of multi-cluster grids urder overload?
When large applications are submitted concurrently tolgeiald-nodes, they can get over-
loaded leading to degraded performance and responsivearas®ventually noticeable
performance inconsistencies. Various overload containeues have been proposed in
the literature 113 48, 205, 185 primarily for web servers; among them, throttling, that
is, controlling the rate at which workloads are pushed thhotlne system, is a relatively

simple technique that can deliver good performance. Howése of these techniques
have been adapted for and investigated in the context ofi-cluliter grids. Therefore,
we address this question by exploring the performance abwsarstatic and dynamic
throttling-based overload control techniques, including adaptive throttling technique,
in multi-cluster grids using BoT workloads; BoTs are the diwent application type in
grids as they account for over 75% of all submitted tasks aad-esponsible for over
90% of the total CPU-time consumptiobd1].

How can we schedule interactive perception applications toninimize their la-
tency subject to migration cost constraints?Interactive perception applications (e.g.,
controlling a TV with gestures) are a relatively new classapplications structured as
data flow graphs. These applications usually comprise cterptensive computer vi-
sion and machine learning algorithms, many of which exlibarse-grained task and
data parallelism that can be exploited across multiple ma&sh To provide a responsive
user experience, interactive applications need to ensuomsistent end-to-end latency,
which is usually less than 100—-200 ms for each processedtdaig(i.e., video frame).
Moreover, it is also desirable for these applications tacedthe latency spikes as much
as possible; frequent migrations of the application coneptsican introduce such spikes,
which reduces the quality of the user experience. We addnessesearch question by
devising algorithms that caautomaticallyandincrementallyplace and schedule these
applications on a cluster of machines to minimize the latevitile keeping the migration
cost in bounds, and by evaluating these algorithms with bimtlulations and real system
experiments using two applications on the Open Cirrus éesfby].

Is the performance of clouds sufficient for scientific compung? Cloud comput-
ing holds great promise for the performance-hungry sdierdomputing community as
clouds can be a cheap alternative to supercomputers anidl&pet clusters, a more reli-
able platform than grids, and a much more scalable platfbem the largest of commodity
clusters. However, fundamental differences in the sysies) the performance demand,
and the job execution model between scientific computingieads and the initial target
workload of clouds raise the question of whether the peréoree of clouds is really suf-
ficient for scientific computing. We address this questiothvain in-depth performance
evaluation of four public clouds, GoGrid, ElasticHosts,$do, and Amazon EC2, which
is one of the largest commercial clouds currently in proigunct

How variable is the performance of production cloud servics, and what is the
impact of the performance variability on distributed appli cations? An important hur-
dle to cloud adoption is trusting that cloud services areeddpble, for example that their
performance is stable over long time periods. However,semproviders do not disclose
information regarding their infrastructures or how theglge, and these providers operate
their physical resources in time-shared mode, which mageaignificant performance
variability. We address this research question with a cemgmsive investigation of the

long-term performance variability of ten production clag&tvices provided by Amazon
Web Services and Google App Engine. We also explore throegglstic trace-based sim-
ulations the impact of the performance variability on thisge-scale applications. Our
study is the first long-term study on the variability of penf@nce as exhibited by popular
production cloud services of two popular cloud service ers, Amazon and Google.

What are the characteristics of failures in distributed sygems? Failures are an
important source of performance inconsistency in distatsystems. With this research
guestion we aim to provide a fundamental understandingiloiréacharacteristics in dis-
tributed systems. First and foremost, understandingriaitdnaracteristics can help to
design systems that can mitigate the impact of failures ofopeance consistency. For
example, using good failure models, system architects eaigd schedulers that predict
when a failure may occur and the number of machines that aiill &nd then use this
information to migrate workloads so that the performanceai@s unaffected. Moreover,
understanding failures is also crucial for developing asskeasing new fault tolerance
mechanisms. Many of the previous studies have assumedaihats are independent
and identically distributedq2, 234, 147]. Only a few studies]98 34, 103 199 have
so far investigated the bursty arrival and correlationsadfifes for distributed systems.
However, the findings in these studies are based on datatsalérom single systems—
until the recent creation of online repositories such atuFaiTrace Archive 123 and
Computer Failure Data Repositordd3, failure data for distributed systems were largely
inaccessible to the researchers in this area. To addressetdarch question we perform
a detailed investigation using various data sets in thauf@ilrace Archive, which are
collected from diverse large-scale distributed systeralsiding grids, P2P systems, DNS
servers, web servers, desktop grids, and HPC clusters. tQdy & one of the first fail-
ure studies at a very large scale; the data sets that we haderusur analysis comprise
more thanl00 K hosts and more thanV/ failure events, and span ovEs years of system
operation in total.

1.2 Why is the Problem Challenging?

We identify five main challenges that make our research proldifficult, which we
describe in turn.

1. Distributed systems are complex. Real-world distributed systems are asyn-
chronous and non-deterministic by nature, and they com@itarge number of
machines that have complex interactions between them ouenrliable network.
For example, Google has an estimated data center size ofchidv servers]22,
while Amazon EC2 and Microsoft data centers are estimatezbiwain around
half a million servers11] and tens or hundreds of thousands of serveig]| re-

spectively. Even research testbeds such as DAS3Bgnd DAS-4 B9 comprise
hundreds of servers. At such a scale, failures become a@eitwhich introduces
additional complexity to distributed systems. Given thiesand complexity, un-
derstanding and reasoning about system behavior, and wngrthe performance
consistency of these systems is non-trivial as compleg#ays$ to emergent behav-
ior, which is inherently unpredictabl&(]. Moreover, these systems are usually
very dynamic and heterogeneous, complicating the problesm further; resources
come and go due to failures and elasticity of the resourcebthese systems com-
prise multiple generations of hardware due to replacemkfatled machines and
due to infrastructure upgrades.

. Resources in a distributed system are shared by multiple usg. The shared na-
ture of distributed systems makes it non-trivial to prowidasistent performance to
the users. For example, in multi-cluster grids a large uaselshares the same com-
pute, storage, and network resources. Similarly, cloudessthost multiple virtual
machines to serve different users on the same physical maakhich complicates
the problem of providing consistent performance as usekivads may interact
in complicated and unpredictable ways. For example, asisetual machine can
easily saturate the network, degrading the network pedoa of other tenants on
the same physical machine.

. Distributed applications may have different requirements While some users
run batch workloads, such as BoTs and MapReduce applisatidher users may
run interactive perception applications on the same alustbe requirements of
these applications are significantly different; batch meakls usually have high
throughput requirements while interactive perceptionliappons have high data
rate and tight response time requirements. The diversépjptication requirements
makes it challenging to provide the required level of perfance consistency to
each application.

. Workloads processed by distributed systems are complexJsers execute work-
loads of complex structures such as parallel applicatiBo3s, workflows, inter-
active perception applications, and MapReduce applicatidhese workloads can
be very large relative to the system in terms of number of$askntime, and 1/0
requirementsq7], and they may have significantly different performanceures;
ments. This workload complexity makes it very difficult todemstand their execu-
tion and reason about their performance, and in the end, snkery difficult to
reduce the performance variability.

. Failures in distributed systems are the norm rather than theexception.Finally,
we already know that the scale and complexity of distribuiggstems make the

occurrence of failures the norm rather than the excep8825, and that failures
are a serious hurdle to providing consistent performafiéd, [L143 116 181] as
they cause noticeable variability and degradation in perémce.

1.3 Research Contributions and Thesis Outline

In this thesis we address the problem of understanding apdoiing the performance
consistency of distributed computing systems. To this emdaddress the research prob-
lems presented in Sectidnl We now present our research contributions and the outline
of this thesis.

Overprovisioning strategies for performance consistencyn grids (Chapter 2).
We investigate overprovisioning to provide consistenfgrenance to multi-cluster grid
users. Overprovisioning can be defined as increasing thersysapacity through adding
more nodes (scaling out), by a factor that we define as thgpowésioning factor, to bet-
ter handle the workload fluctuations, and provide consigierformance even under un-
expected user demands. Through simulations, we presealisticeevaluation of various
overprovisioning strategies with different overprovising factors and different schedul-
ing policies. We show that beyond a certain value for the mestisioning factor there is
only slight improvement in performance consistency witingficant additional costs. We
also show that by dynamically tuning the overprovisioniactdr, we can significantly (as
high as 67%) increase the number of BoTs that have a makespan & user specified
range, thus improving the performance consistency. Theeobwof this chapter is based
on our research published in CCGRID’122p] and GRID’10 p23.

The performance of overload control in multi-cluster grids (Chapter 3). We in-
vestigate the performance of throttling-based overloadrobtechniques in multi-cluster
grids, motivated by our DAS-3 multi-cluster grid, where mimg hundreds of tasks con-
currently leads to severe overloads and performance vitiyatiNotably, we show that
throttling leads to a decrease (in most cases) or at leagbitesarvation of the makespan
of bursty workloads, while significantly improving the esttne performance (95and
99" percentiles) for application tasks, which reduces theloadrof the cluster head-
nodes, and also leads to more consistent performance.tlayar, our adaptive throttling
technique improves the application performance by as ma@08&o while also improv-
ing the system responsiveness by up to 80%, when comparkdheitiand-tuned multi-
cluster system without throttling. The content of this deaps based on our research
published in GRID’11 224].

Incremental placement of interactive perception applicaions (Chapter 4). We
investigate the problem of incremental placement of parge@pplications, which are
structured as data flow graphs, on clusters of machines tomziethe makespan subject
to migration cost constraints. These applications redunth low latency and, if possi-

ble, no latency spikes at all, which reduce the quality ofuber experience. The vertices
of such applications are coarse-grained sequential psoaesteps called stages, and the
edges are connectors that reflect data dependencies bdtwestages. We propose four
incremental placement heuristics that cover a broad rahtyade-offs of computational
complexity, churn in the placement, and ultimate improvetme the latency. A broad
range of simulations with different perturbation scensrfperturbing a random stage,
perturbing a random processor, or adding a new stage irestartbe application graph)
show up to 50% performance improvement over the scheduleuttadjustment, that
is, we let the application run after a perturbation and doregtlace the stages to other
processors. Similarly, our experiments using two appbeeton the Open Cirrus testbed
demonstrate 18% (10%) and 36% (38%) improvements in medmaxi(num) latency
over the unadjusted schedule, respectively. In additiaskow that our heuristics can
approach the improvements achieved by completely rergnaistatic placement algo-
rithm, but with lower migration costs and churn. The contehthis chapter is based
on our joint work with the Intel Science and Technology Cerfite cloud computing,
previously published in ACM HPDC’112P8g and Open Cirrus Summit'112B5.

Performance evaluation of public clouds (Chapters). We investigate using various
well-known benchmarks, such as LMbenddf], Bonnie [37], CacheBenchl50, and
the HPC Challenge Benchmark (HPCQRBH, the performance of four public compute
clouds, including Amazon EC2. Notably, we find that the cotequerformance of the
tested clouds is low. In addition, we also perform a prelmmnassessment of the per-
formance consistency of these clouds, and we find that radtiegperformance variability
exists for some of the cloud resource types we have expl@edpreliminary assessment
only considers performance consistency over short pedbtiisie and with low-level op-
erations, such as floating point additions or memory reatd¥s;rthus motivating us to
explore the performance variability in depth in Chagerrinally, we compare the per-
formance and cost of clouds with those of scientific compugilbernatives, such as grids
and parallel production infrastructures. We find that, @lairrent cloud computing ser-
vices are insufficient for scientific computing at large ytheay still be a good alternative
for the scientists who need resources instantly and temifyorghe content of this chap-
ter is based on our research published in CCGRID22q], CloudComp’09 167, and
IEEE Transactions on Parallel and Distributed Systelfs][

Performance variability of production cloud services (Chater 6). We investigate
the performance variability of production cloud servicasng year-long traces that we
have collected from the CloudStatus websH#e These traces comprise performance data
for two popular cloud services: Amazon Web Services (AWS) @oogle App Engine
(GAE). Our analysis reveals that the performance of thestigated services exhibits on
the one hand yearly and daily patterns, and on the other hamodds of stable perfor-
mance. We also find that many of these services exhibit higlatian in the monthly

10

median values, which indicates large performance changagione. Moreover, we find

that the impact of the performance variability varies digantly across different types
of applications. For example, we demonstrate that the &ifi running applications on
GAE, which exhibits high performance variability and a #gvmonths period of low vari-

ability and improved performance, has a negligible impactrfinning grid and parallel

production workloads. On the other hand, we show that the @&&base service, which
exhibits a similar period of better performance as the GAthiig service, outperforms
the AWS database service for a social gaming applicatioe. cimtent of this chapter is
based on our research published in CCGRID'1Q9.

Space-correlated failures in large-scale distributed syems (Chapter 7). We de-
velop a statistical model for space-correlated failurest its, for failures that occur within
a short time frame across distinct components of the syssang fifteen data sets in the
Failure Trace Archive123. Our model considers three aspects of failure events, the
group arrival process, the group size, and the downtimeechlng the group of failures.
We find that the best models for these three aspects are nizaskd on the lognor-
mal distribution. Notably, we find that for seven out of théfeh traces we investigate,
a majority of the system downtime is caused by space-coectl@ilures. Thus, these
seven traces are better represented by our model than higamatl models, which as-
sume that the failures of the individual components of th&tesy are independent and
identically distributed. The content of this chapter isdzhen our research published in
Euro-Par'10 83].

Time-correlated failures in large-scale distributed sysems (Chapter8). We in-
vestigate the time-varying behavior of failures in largals distributed systems using
nineteen data sets in the Failure Trace Archii/23. We find that for most of the stud-
ied systems the failure rates are highly variable, and tiherés exhibit strong periodic
behavior and time correlations. In addition, to charazeethe peaks in the failure rate
we propose a model that considers four parameters: the pgakah, the failure inter-
arrival time during peaks, the time between peaks, and thedaduration during peaks.
Remarkably, we find that the peak failure periods explaineduy model are responsible
for on average over 50% and up to 95% of the system downtimgestigg that failure
peaks deserve special attention when designing faultatoialistributed systems. The
content of this chapter is based on our research publishe®RiD’10 [225.

Finally, Chapter 9 presents a summary of this thesis, presents the major och)
and describes several future research directions.

Chapter 2

Overprovisioning strategies for
performance consistency in grids

Users expect consistent performance from computer systevh&n some interaction
with an interactive application always finishes within 1@eat, they are annoyed when
suddenly the response time jumps to say 10 seconds. Likewism a certain Bag-of-
Tasks (BoT) submitted to a grid has a response time of 5 hdtles, the user will be
surprised when a BoT with twice as many tasks (of a similaetgp in the first BoT)
takes say 24 hours. However, preventing such situationgpemdding consistent per-
formance in grids is a difficult problem due to the specificrelteristics of grids like
the lack of support for advance reservations in many LocabRee Managers (LRMs),
highly variable workloads, dynamic availability and hegeneity of resources, and vari-
able background loads of local users. In this chapter westiy&te overprovisioning for
solving the performance inconsistency problem in grids.

Overprovisioning can be defined as increasing the capagity factor that we call the
overprovisioning factarof a system to better handle the fluctuations in the worklead
provide consistent performance even under unexpecteddaseands. Although over-
provisioning is a simple solution for consistent performaand it obviates the need for
complex algorithms, it is not cost effective and it may casyggtems to be underutilized
most of the time. Despite these disadvantages, overpoowigl has been successfully
used in telecommunication systeni$f and modern data centers for performance and
reliability concerns. Studies have shown that typical dagater utilization is no more
than 15-50% 14, 24], and telecommunication systems have roughly 3Q% (itilization
on average.

A large body of work on providing predictable performan66,[193 218, and Ser-

*This chapter is based on previous work published inBtEE/ACM International Conference on Grid
ComputingGrid'10) [223 and thelEEE/ACM International Symposium on Cluster, Cloud andi&om-
puting(CCGRID’10) [227.

12

1000

—_
o
o

Makespan [m]

_.
o

—

3

>

S

=

—

-

1\

[

0 50 100 150 200 250 300 350
Submission Number

Figure 2.1: Evidence of the performance inconsistency idisgrThe vertical axis has a
logarithmic scale.

vice Level AgreementslB0 124, 8] already exists. What is missing so far from this re-
search is a detailed realistic investigation of how we cdnea® consistent performance
in grids. In this chapter we fill this gap by performing a refidi investigation of both
static and dynamic overprovisioning strategies for adhgyerformance consistency in
grids. To this end, we propose several overprovisionirgjegies for multi-cluster grids,
and we classify these strategies as static or dynamic bawsetien the resources are pro-
visioned. Then, we assess the performance and the costsef $itrategies with realistic
simulations. In our simulations we model the DASES]| multi-cluster grid and we use
various synthetic workloads consisting of BoTs, which ¢itate the dominant applica-
tion type in grids 99, 101]. Moreover, our model includes the actual background Idad o
other users, which is one of the causes of performance irstensy. We also approach
the performance inconsistency problem from the user’speets/e, and we design and
evaluate a feedback-controlled system that exploits th&tielty of computing clouds to
give performance guarantees to grid users. Our systemmowespns a grid dynamically
using the user specified performance requirements and thsurezl system performance.

The rest of the chapter is organized as follows. Se@idpresents the motivation for
the performance consistency problem. Secfidhand Sectior2.3 describe the overpro-
visioning strategies and the system model that we evaloates chapter, respectively.
Section2.4 presents the experimental setup, and Se@idpresents the results of our
performance evaluation. Secti@6 describes the feedback-controlled system that dy-
namically determines the overprovisioning factor basetherspecified user performance
requirements. Finally, Sectich7 reviews the related work on overprovisioning in grids,
and Sectior2.8 summarizes the chapter.

13

2.1 Motivation

Grid users may observe highly variable performance whenghbmit similar workloads
at different times depending on the system state. From tBesupoint of view, any
variability in performance should only be caused by thein@pplications (due to modi-
fications of the applications or inputs) and not by the sysieby load due to other users.
Hence, inconsistent performance is usually undesirabtkitdeads to user dissatisfaction
and confusion.

Figure 2.1 shows evidence of the performance inconsistency in griashis exper-
iment, we submit the same BoT consisting of 128 tasks peradigtievery 15 minutes
to our multi-cluster grid DAS-3, which is usually underizgdd. The graph shows the
makespan in minutes for each submitted BoT. Since the syistemostly empty, we do
not observe high variability in makespan for the first 130msigsions. However, we ob-
serve a significant variability between the 130th and 14Qtnsssions, which is due to
the background load created by other users, causing soksedbihe BoTs to be signifi-
cantly delayed. The ratio of the maximum to the minimum mpkesn this experiment
is roughly 70! This result shows that even for a grid like DBSwhich is a research grid,
and hence usually underutilized, we may observe very stpemfprmance inconsisten-
cies.

It is a challenge to develop efficient solutions for provgliconsistent performance
in grids due to their high degree of heterogeneity and thedya nature of grid work-
loads. It is possible to address this problem at two levelthea(global) scheduler level,
and at the resource level which consists of the computingsiaa the grid. To solve
this problem at the scheduler level, we need to design apptemechanismse.g., ad-
mission control, and (schedulingdlicies In this chapter we take the latter approach and
focus on the resource level, and we investigate overpiavisg to solve this performance
inconsistency problem.

2.2 Overprovisioning Strategies

We define overprovisioning as increasing the capacity ofséesy to provide better, and
in particular, consistent performance even under varialoikloads and unexpected de-
mands. We define theverprovisioning factok as the ratio of the size of an overprovi-
sioned system to the size of the initial system. Overprowisig is a simple solution that
obviates the need for complex algorithms. However, theeeadso some disadvantages
of this solution. First, overprovisioning is of course ateimeffective solution. Second,
overprovisioning may cause the system to be underutiliresbgesources may stay idle
most of the time; however, the industry is used to low util@ain data centers where the
utilization is in the range 15-50%.4}, 24], and in telecommunication systems where the

14

average utilization is roughly 3094.8].

To overprovision grids we propose various strategies, aaalassify them as static
or dynamic based on when the resources are provisioned. Weaarize these strategies
below:

e Static Overprovisioning: The resources are provisioned statically at system de-

ployment time, hence before the workload arrives at theegystWe distinguish:

— Overprovision the Largest Cluster (Lar gest): Only the largest cluster
of the grid in terms of the number of processors is overproned in this
strategy.

— Overprovision All Clusters (Al 1): All of the clusters of the grid are over-
provisioned equally.

— Overprovision Number of Clusters (Nunber): The number of clusters of
the grid is overprovisioned. The number of processors téogep the newly
added clusters are determined according to the overpoonwsj factor.

e Dynamic Overprovisioning (Dynani c): Since fluctuations are common in grid
workloads, static resource provisioning may not alwaysptemal. Therefore, we
also consider a dynamic strategy where the resources aniredfieleased in an
on-demand fashion from a compute cloud. We use low and higth toresholds
specified by the system administrator for acquiring/retepsesources from/to the
cloud, which is also known aauto-scaling[12]. We continuously monitor the
system and determine the load of the system periodicallgrevthe period is also
specified by the administrator. If the load exceeds the Hgishold we acquire a
new resource, and if the load falls below the low thresholdelease a resource to
the cloud.

The number of processors to be deployed to a specific clustdetermined by the
overprovisioning factor. and the overprovisioning strategy. For example, assunteatha
grid hasN clusters where clustémhasC; processors, and that we use tie strategy for
overprovisioning. Assume also th@tis the size of the initial system, 0 = Zf\il C;.
We want the size of the overprovisioned systéim= «C, hence we set’/, the size of
the overprovisioned clustérasC! = xC;. Thus,C' = SN ! = 2N xC; = xC. For
the other strategies, the number of processors to deplotaim @ certain value of is
derived similarly.

2.3 System Model

2.3.1 System Model

In our simulations we model our multi-cluster grid DASS8] which is a research grid lo-
cated in the Netherlands. It comprises 272 dual-procesktid ®pteron compute nodes,

15

| Cluster | Nodes| Speed [GHZ]
Vrije University 85 2.4
U. of Amsterdam|| 41 2.2
Delft University 68 2.4
MultimediaN 46 2.4
Leiden University|| 32 2.6

Table 2.1: Properties of the DAS-3 clusters.

and it consists of five homogeneous clusters; although theegsors have different per-
formance across different clusters, they are identicahendame cluster. The cluster
properties are shown in Tabkel

We assume that there is a Global Resource Manager (GRM) sygtem interacting
with the LRMs which are responsible for managing the clustepurces. The jobs are
gueued in the GRM'’s queue upon their arrival, and then disyeat to the LRMs where
they walit for cluster resources. Once started, jobs runrgpdetion, so we do not consider
preemption or migration during execution.

When evaluating thBynamic strategy, we assume that there is overhead for acquir-
ing/releasing resources from/to the compute cloud. We Ipaviormed 20 successive
resource acquisition/release experiments in the Amazdhdigtid with theml.small
instance type to determine the resource acquisitionseleaerheads2pg. We found
that the minimum/maximum values for the resource acquisdéind release overheads are
69/126 seconds and 18/23 seconds, respectively. We ashatrtbe¢ acquisition/release
overhead for a single processor is uniformly distributettMeen these minimum and max-
imum values.

2.3.2 Scheduling Model

As the application type we use BoTs, which are the dominaplicgiion type in
grids [99]. To model the application execution time, we employ the SREPU bench-
marks [L99: the time it takes to finish a task is inversely proportiotwethe performance
of the processor it runs on. We consider the following BoTeslkthingpolicies which
differ by the system information they use:

e Static Scheduling: This policy does not use of any system information. Each BoT
is statically partitioned across the clusters where nurobisks sent to each cluster
is proportional to the size of the cluster.

e Dynamic Scheduling: This policy takes the current state of the system (e.g., the
load) into account when taking decisions. We consider twiawgs of dynamic
scheduling:

— Dynamic Per Task Scheduling:In this policy, a separate scheduling decision

16

Bag-of-Tasks Task
Inter-Arrival Time Size Average Runtime
W(4.25,7.86) | W(1.76,2.11) N(2.73,6.1)
Average 1246 s 6.1 7859.7 s

Table 2.2: The distributions and the values for their patansefor the BoT workload
model described inl[06. N(u,0?) and WQ\ k) stand for the Normal and Weibull distri-
butions, respectively.

is made for each task of each BoT, and the task is sent to teeechvith the
lowest load, where we define the load of a cluster as the @naaif used
processors.

— Dynamic Per BoT Scheduling:In this policy, a separate scheduling decision
is made for each BoT, and the whole BoT is sent to the leasetbatlister.

e Prediction-based SchedulingVe consider only one such policy:

— Earliest Completion Time (ECT): This policy uses historical data to pre-
dict the task runtimes. With this policy each task is subsditio the cluster
which is predicted to lead to the earliest completion timkeng into account
the clusters’ queues. To predict the runtime of a task, wethsaverage of
the runtimes of the previous two task¥, since this method is known to
perform well in multi-cluster grids193.

2.4 Experimental Setup

In this section we introduce our experimental setup. Fingt,describe the workload
that we use in our simulations. Then, we describe our metlbggiand the metrics for
assessing the performance and cost of the overprovisistiaiggies. In our simulations,
we model the DAS-3 multi-cluster grid (see Secti®3.1) using our event-based grid
simulator DGSim 10g. We extended DGSim with the scheduling policies described
Section2.3.2 and we made extensions for performing simulations with mate clouds.

2.4.1 Workload

We have performed experiments with BoT workloads that weegge using the realis-
tic BoT model described in10g. The values for the important workload attributes are
summarized in Tabl@.2 These parameters are determined after a base-two lagarith
transformation is applied to the empirical data. In additim [10€6 the authors assume
that the minimum BoT size is two, whereas we assume thatestiagks are also BoTs
with size one.

In our simulations we impose a background load together thighBoT workload in

17

Utilization [%]

100

80

60

Vrije University
U. of Amsterdam
Delft University
MultimediaN
Leiden University
Overall

O o x + b>

Vrije University
U. of Amsterdam
Delft University
MultimediaN

Leiden University

Overall

Average Load (%)

19

4
12
10
35
17

June 2008 July 2008

Figure 2.2: The overall utilization as well as the utilizatiin the individual clusters due

to the background load, which consists of the jobs submiti¢de DAS-3 system during
June 2008.

order to attain realistic scenarios. The background loatists of the jobs submitted
to DAS-3 during June 2008, and the corresponding workloacktis obtained from the
Grid Workloads Archive 104]. Figure2.2 shows the utilization of the background load.
During the simulations, the background tasks are submittéte LRMs of their original
execution sites.

For our experiments, we have generated ten workloads thdttlwe initial system
to 80% on average, which we think is representative for aesyshat will be overpro-
visioned. Each workload contains approximately 1650 Barg] 10K tasks, and the
duration of each trace is roughly between 1 day and 1 week.

2.4.2 Methodology

For assessing the static overprovisioning strategies, fissevaluate the system with the
aforementioned workloads, then we overprovision the sysiecording to the strategy
under consideration, and we use the same workload to assesspact of the over-
provisioning strategy. For thBynamic strategy, a criterion has to be defined which
determines when the system should acquire/release resdoom/to the compute cloud.
To this end, for the simulations with tH@ynamic strategy, where the BoT workload
imposes 80% load on the system, we use a high threshold of #@% kow threshold of
60% for deciding when to acquire and release additionaluress, respectively. When
using theDynamic strategy,< varies over time. Hence, in order to obtain comparable
results in our simulations with thBynamic strategy, we keep the average value<of

18

always in thet+ 10% range of the specified value. For example,fot 2.0, when ac-
quiring resources we do not exceed- 2.2, and when releasing resources we do not fall
belowx = 1.8.

Finally, to obtain comparable results we assume that clesadurces have the same
performance as the slowest grid cluster.

2.4.3 Performance Metrics

To evaluate the performance of the strategies, we use thegpak and the normalized
schedule length as performance metrics. The makespan (MSBoT is defined as the
difference between the earliest submission time of anysdbgks, and the latest comple-
tion time of any of its tasks. The Normalized Schedule LerfiytBL) of a BoT is defined
as the ratio of its makespan to the sum of the runtimes of gisstan a reference pro-
cessor. Lower NSL values are better, in particular, NSL esloelow 1 (which indicates
speedup) are desirable.

We also define and use two consistency metrics to assessediffstrategies. We
define consistency in two dimensions: across BoTs of diffiesezes, and across BoTs of
the same size. For assessing the consistency across Boiffeidrd sizes, we define

Cyqy= Irllfzx %,
whereN; (1V;) is the stochastic variable representing the NSL of BoTsaaf/s (/).
To assess the consistency across BoTs of the same size, we defi

Cs = max CoV (Ny),

whereC'oV (Ny) is the coefficient of variation aV,.. The system gets more consistent as
C, gets closer td, andC gets closer td). We also interpret a tighter range of the NSL
as a sign of better consistency.

To evaluate the accuracy of the task runtime predictionswising the ECT policy,
we use the accuracy, defined as20§.

Finally, when evaluating the cost of the strategies, wehs€PU-hoursmetric which
we define as the time in hours a processor is used. We beliavéhie metric is a fair
indicator of cost independent of the underlying details like billing model. When cal-
culating the CPU-hours, we round up the partial instanaghto one hour similar to the
Amazon EC2 on-demand instances pricing modé].[Although there are other costs
like administration and maintenance costs of the resouweseglect these costs, and
we only focus on the resource usage.

19

Overprovisioning K&Oljo k=15 k=20 k=25 k= 3.0
Strategy Cd | Os Cd | Cs Cd | Cs Cd | Cs Cd | Cs
All 29.59| 12.05| 15.13| 10.54| 4.72| 9.33| 2.64| 7.36 || 2.62| 5.38
Largest 29.59| 12.05| 16.88| 11.57| 3.67| 9.27| 2.63| 7.38 || 2.63| 5.58
Number 29.59| 12.05(17.71| 10.61| 3.75| 9.12| 2.70| 6.90 || 2.42| 5.67
Dynamic 29.59| 12.05|| 14.65| 10.27| 3.50| 8.64 | 2.42| 6.36 | 2.10| 4.60

Table 2.3: Summary of consistency values for all strategresfor different overprovi-
sioning factors£).

100

Static —— *_,‘“q%é__ﬁ T
go | Dynamic Per Task ----%---- t;%*’w/,aaﬂu
Dynamic Per BoT - PRES M/
80 r ECT By / F
70 f
— 60
X
ET 50 x '”":j:‘_/mnﬂ
g o
O 4 #
30 F.
20
10 95
100 1000 10000
0 =i
0.0001 0.001 0.01 0.1 1 10 100 1000
NSL

Figure 2.3: The Cumulative Distribution Function (CDF) detNormalized Schedule
Length (NSL) for the various scheduling policies. The honial axis has a logarithmic
scale.

2.5 Experimental Results

In this section, we present the evaluation of the perforragiSection2.5.1) and cost
(Section2.5.2 of the overprovisioning strategies.

2.5.1 Performance Evaluation

Impact of the scheduling policy on performanceFigure2.3shows the NSL distribution
for all policies when no overprovisioning is applied. Altigh the Dynamic Per Task and
the Dynamic Per BoT policies have similar performance, tyadbic Per Task policy
performs slightly better. The ECT policy has the worst perfance by far compared to
other policies. When using the ECT policy, the predictiooumacy is around 40%, which
is low since all tasks in a BoT arrive within a short time inty and hence the same
prediction error is made for all tasks. This low predictiataracy leads to scheduling
decisions that cause some BoTs to suffer high response wittethe ECT policy.

20

2421 1912 974 954 871 779 211 1963 1312 955 50 41 46 11

5 5
Quartiles 777" Quartiles A S I
4 Median 4 Median
Mean | o Mean | ©
D) n
=z 2 =z 2 |
0
1 % % H] i 1
0 1 1 1 T % Q g 0 1 1 1 1 @ Q é
1 2 4 8 16 32 64 1 2 4 8 16 32 64
BoT Size (Static) BoT Size (Dynamic Per Task)
5 2291 1782 87 634 122 121 o4 5 4838 3874 3007 2440 1214 910 480
Quartiles 7770 Quartjles 7777710
4 d 1 Median 4 Median
Mean o Mean o
n n
Z2 Z2
n
1 % % [b 1 I—-I
0 1 1 1 T % g u 0 1 1 T ¥ T H
1 2 4 8 16 32 64 1 2 4 8 16 32 64
BoT Size (Dynamic Per BoT) BoT Size (ECT)

Figure 2.4: The impact of the scheduling policy on Normali&shedule Length (NSL)
when using theAll strategy and: = 2.0. The mean, and for ECT the third quartile is
not always visible.

Figure 2.4 shows the impact of the scheduling policy on the NSL when wethe
All overprovisioning strategy andis 2.0. In this section, for the box-whisker plots,
the values at the top of the graphs are the maximum valueswausevhich are probably
outliers, so what we are really interested in are the meattiamesalues and the quartiles.
We observe that as the policy uses more recent system infiorm#he NSL improves
(lower interquartile range), hence the NSL of the Dynamic Resk and Dynamic Per
BoT policies is better than that of the other policies.

Since the Dynamic Per Task policy has the best performanca@uhe policies, we
use this policy in the rest of our evaluation.
Performance and consistency of the overprovisioning stragiesThe NSL distributions
for the static strategies are shown in Figdreand for theDynamic strategy it is shown
in the upper-right graph of Figur27 whenx is 2.0. Corresponding consistency metric
values are shown in column 3 of Tak?e3, where the first columns(= 1.0) shows
the consistency values for the initial system (NO). CledHg consistency obtained with
different strategies is much better than the initial systier@to increased system capacity.
We observe that thBynamic strategy provides better consistency compared to static
strategies (Tabl&.3) since this strategy is able to handle the spikes in the warkthat
the static strategies can not handle. The static stratégies similar performance, so
when overprovisioning a grid statically what really madtexrthe overprovisioning factor.

21

5093 4484 3422 2551 1025 980 785 1963 1312 955 50 41 46 11

5 5
Quartjles {17 Quartiles F S I
4 Median 4 Median
Mean = Mean =
D) D)
22 L 22 i
= — L a
1 E- 1
0 1 1 -I[I I T 1— 0 1 1 1 1 @ Q ﬁ
1 2 4 8 16 32 64 1 2 4 8 16 32 64
BoT Size (NO) BoT Size (All)
5 579 584 29 26 25 22 11 5 569 542 30 25 23 12 9
Quartiles 17770 Quartiles 17770
4 Median 4 Median
Mean = Mean =
D) D)
Z2 Z2
i i
1 1 ? E' i
0 1 1 1 1 % g @ 0 1 1 1 1 ? a E

1 2 4 8 16 32 64 1 2 4 8 16 32 64
BoT Size (Largest) BoT Size (Number)

Figure 2.5: The Normalized Schedule Length (NSL) distiiing for the static strategies
(x = 2.0). The third quartile is not visible for the initial sgsh (NO).

However, sincelNumber increases the number of clusters in the grid, hence incrgasi
the administration cost&ll andLargest are the viable candidates among the static
strategies.
Impact of the overprovisioning factor « on consistencyFigure2.6and Figure2.7 show
the effect ofx on consistency with thall strategy and th®ynamic strategy, respec-
tively. Corresponding consistency metric values are shiowiable2.3. As expected, we
observe significantimprovements in the overall consistenthe system with increasing
overprovisioning factors. The outliers that we observéwialler overprovisioning fac-
tors disappear with increasing overprovisioning factamsesthe overprovisioned system
can handle these spikes. In particular, going frore= 2.0 to 2.5 dramatically reduces
the outliers. Also, the outliers are much smaller for thaamic strategy than thall
strategy.

However, we observe minor improvements in consistencyiasreases beyond =
2.5: the overprovisioned system with= 2.5 can already handle the variability in the
workload Hence overprovisioning beyond a certain value ¢in our case fox = 2.5),
which we call thecritical value, incurs significant costs but does not improve consistency
significantly. Therefore, to maximize the benefit of ovexpsmning it is important to
determine the critical value of the overprovisioning facto

Finally, the consistency metrics converge to similar valasx approaches.0 (see
Table2.3). Although the system is overprovisioned significantly whe= 3.0, there is

22

1466 1302 1004 623 438 84 13 1963 1312 955 50 41

5 5
Quartiles .00 Quartiles .00
4 Medjan 4 Medjan
Mean o Mean o
[92] [92]
Z2 Z2 4
0 0
1 il 1
0 1 1 1 1 % : 0 1 1 1 1 @ g ﬁ

-

1 2 4 8 16 32 64 2 4 8 16 32 64
BoT Size (K= 1.5) BoT Size (K= 2.0)

12 9 8 16 25 19 11 10 9 8 5

5 5
Ruartiles .70 Duartiles ©.70000000
4 Medjan 4 Median C—1 -
Mean o Mean o
[92] [92]
1 - 1
0 1 1 1 % g @ 0 1 1 1 1 % g é

1 2 4 8 16 32 64 2 4 8 16 32 64
BoT Size (K= 2.5) BoT Size (K= 3.0)

-

Figure 2.6: The effect of the overprovisioning factoron the Normalized Schedule
Length (NSL) distribution with thé\ll strategy forx = 1.5 (upper left),x = 2.0 (upper
right), « = 2.5 (lower left) andx = 3.0 (lower right), respectively. Some of the mean
values are not visible for the = 1.5 case.

still some variability in the performance which is probablye to the variability inherent
in the workload.

2.5.2 Cost Evaluation

Due to the dynamic nature of grid workloads, static straggnay cause underutilization
and hence increase the costs. The on-demand resourceignowjsapproach used with
theDynamic strategy overcomes these problems. In this section we a&testlne cost of
the strategies for various overprovisioning factors toarsthnd how much we can gain in
terms of cost when using tli&ynamic strategy. We use the CPU-hours metric described
in Section2.4.3to assess the cost of the strategies.

Table2.4 shows the cost of thall andDynamic strategies for different overprovi-
sioning factors. In this table, we only report the resultsi@ All strategy since the cost
is the same for different static strategies for the samepogeisioning factor. Although
the cost increases proportionally with we do not observe proportional performance
improvement as we already show in Sectbb.l This situation is due to the under-
utilization of resources caused by static allocation. Whasimg theDynamic strategy,
there is a significant reduction, as high as 42%, in cost dime@esources are only ac-

23

5 923 812 663 395 197 54 9 5 745 624 513 242 5

Quartiles * Duartiles .00
4 Medjan = - 4

Mean o Mean o
(7.)3 (7.)3
Z2 : : Z2 b
1 O ? Mmoo fom 1 T 1 =
T TRed b TTeRf

1 2 4 8 16 32 64 1 2 4 8 16 32 64
BoT Size (K= 1.5) BoT Size (K= 2.0)
5 —s—1 5
Quartiles 7700000 Quartiles 17777000
4 Median —1 - 4 Median — -
Mean o Mean o
[92] [92]
Z2 Z2
1 . LT 1 -
0 I I 1 LIJ % $ 0 I I 1 ? $ T =
1 2 4 8 16 32 64 1 2 4 8 16 32 64
BoT Size (K= 2.5) BoT Size (K= 3.0)

Figure 2.7: The effect of the overprovisioning factoron the Normalized Schedule
Length (NSL) distribution with th®ynamic strategy forx = 1.5 (upper left),x = 2.0
(upper right),x = 2.5 (lower left) andx = 3.0 (lower right), respectively. Some of the
mean values are not visible for the= 1.5 case.

| = || Al | Dynamic | Reduction (%)|
1.5 || 56655 32446 42.7
2.0 || 75540 49427 34.5
2.5 || 94425 69572 26.3
3.0 || 113310 85484 24.5

Table 2.4: Cost of th@&ll andDynamic strategies in terms of CPU-hours.

quired on-demand, and they are not allowed to stay idle dsstétic overprovisioning.
As k increases, the number of idle resources in the cloud alseases, hence decreasing
the cost reduction. As a result, we conclude thatDlyeamic strategy provides better
consistency with lower costs compared to static strategies

2.6 Dynamically Determining the Overprovisioning
Factor

Up to this point, we evaluated the performance and cost idvaistrategies from thegys-
tem’s perspectivevith different overprovisioning factors and schedulingdigies. In par-

24

ticular, our goal was to improve trsystem'’s performance consistengye now approach
our problem from theiser’s perspectiyeand we answer the question of how can we dy-
namically determine the overprovisioning factor to givefpemance guarantees to users.
As our aim is to determine the overprovisioning factor andlole additional processors
dynamicallyto meetuser specified performance requiremeimghis section we only use
theDynamic strategy. Towards this end, we design a feedback-cordrsilstem which
exploits the elasticity of clouds to dynamically determintr specified performance re-
qguirements. Instead of a control-theoretical method, vllevioan approach inspired by
the controllers in the SEDA architectur2l?]. Although control theory provides a theo-
retical framework to analyze and design feedback-comttidlstems, the complexity and
non-linear nature of grids make it very difficult to createealistic model. In addition,
due to the dynamic nature of grids, the parameters of a dethieoretical model will
definitely change over time.

The controller uses various parameters shown in Talbeor its operation. The
Window parameter determines the number of BoTs that should be ebtedpbe-
fore the controller activation, hence, it determines howqtérently the controller
is activated and how fast it reacts to changes in the systerforpgance. The
TargetMakespan parameter determines the makespan target that the centhals
to meet, and th&keleaseThreshold parameter determines the makespan thresh-
old the controller uses to release cloud resources. The &itheocontroller is to
meet theTargetMakespan while at the same time avoid wasting resources when un-
needed using thReleaseThreshold . When specifying th@argetMakespan and
ReleaseThreshold parameters, we use the 90th percentile of the makespan. This
metric has two advantages compared to other metrics likatkeage or maximum: it
better characterizes the makespan distribution, and weelgeve that it reflects the user-
perceived performance of the system better. To determaeehsitivity of the controller
to the parameters of Tabkb5, we have performed various simulations with different pa-
rameter values except for théindow parameter, for which we use the value of ten BoTs.

In our architecture, the controller treats the system aaektidox, and it measures the
performance of the system at each activation using therildatgperformance data of the
most recently completed BoTs. At each activation, if the snead performance exceeds
theTargetMakespan value, the controller instructs the acquisition of a resedrom

Parameter Description
Window Number of BoTs completed before controller activation
TargetMakespan The target makespan
ReleaseThreshold The makespan threshold used to release cloud resources

Table 2.5: The controller parameters with their corresjpmndescriptions.

25

Overprovisioning Factor
Overprovisioning Factor

K ——
Average

K ——
Average

10000
20000
30000
40000
50000
70000
10000
20000
30000
40000
50000
70000

Simulation Time [m] Simulation Time [m]

..r\/h"\ s\,

Overprovisioning Factor

K ——
Average

10000
20000
30000
40000
50000
70000

Simulation Time [m]

Figure 2.8: Overprovisioning factor over time and the ageraverprovisioning factor for
the [ReleaseThreshold -TargetMakespan]values of [250m-300m] (left), [700m-
750m] (center), and [1000m-1250m] (right).

the cloud. Similarly, if the measured performance fallobetheReleaseThreshold
value, the controller instructs the release of a resourtkealoud. The provisioning of
resources are performed one by one, and we leave as futukeoaetermine the optimal
number of resources to provision simultaneously.

To evaluate our design, we simulate the DAS-3 grid and wehesBynamic Per Task
scheduling policy without any background load. For theseusations, to empirically
show that the controller stabilizes, we use an approximateé and a half month long
workload consisting of 32860 BoTs, and the average BoT npaleesor the workload in
the initial system (without the controller) is roughly 31&0nutes (m). In our simula-
tions we evaluate three different scenarios for loose agid performance requirements.
To this end, we use th&EleaseThreshold -TargetMakespan]values of [250m-
300m], [700m-750m], and [1000m-1250m] from tight to loosekaspan performance
requirements, respectively.

[Rel easeThr eshol d-Tar get Makespan] || w/o Controller | w Controller || Improvement
[250m-300m] 4732 26849 67%
[700m-750m] 5900 21870 48%
[L000mM-1250m] 6959 20219 40%

Table 2.6: Number of BoTs (out of 32860) that meet the spetgErformance require-
ments without (w/0) and with (w) the controller, and the tesg improvement (% of
32860) over the system without the controller.

26

Figure2.8 shows the overprovisioning factor over time for the différperformance
requirements. Initially, there are no resources used frentloud, hence = 1. The con-
troller uses fewer cloud resources as the performanceregants get looser, resulting in
lower overprovisioning factors compared to tight perfonoarequirements. In addition,
the average overprovisioning factor is smaller for loosdgsmance requirements. It is
also remarkable to note that when the performance requirenget tighter, there is only
a rather small increase in the overprovisioning factor.

Table 2.6 shows the number of BoTs that meet the specified performasupare-
ments (having a makespan less than TlaegetMakespan value) without and with
the controller, and the improvement (%) in the number of Bwiith the controller over
the system without the controller. There is a significantrowpment as high as 67%
when the performance requirements are tight. The impronegets smaller as the per-
formance requirements get looser, as expected, since skensyvithout the controller is
already able to meet such loose performance requirements.

2.7 Related Work

We classify the previous work into three categories wheesptimary focus is either
on predictable performance, Service Level Agreements {Sirfoverprovisioning. Al-
though an extensive body of research focused on these chsparblems, there is no
detailed investigation of how we can achieve consisterfopaance in grids. In4272,
we took the first step towards filling this gap and we evaluéttedoerformance of static
overprovisioning strategies. In this chapter we extendooevious work by evaluating the
performance and cost of both static and dynamic overpmwiisg strategies with realistic
simulations. We summarize the related work below.

Related work on predictable performanceVarious studies investigated advance reser-
vations [L91, 39, 156, 187] to provide the requested resources exactly when needs@;th
fore increasing the predictability of a system. We belidwat advance reservations can
also be used for providing consistent performance as theruwed resources are guar-
anteed to be available when needed (assuming no failures)oddowever, designing
scheduling policies that support advance reservationsteren to be difficult, and scal-
ability is known as a major challenge in this design procéék [

As another solution for providing predictable performgreeveral studies explored
prediction methods to predict various parameters like tierpntime and queue wait
time. These predictions have been successfully used fedsding and admission control
decisions in gridsg6, 193 21§

The primary focus of this body of work is on providipgedictableperformance with
advance reservations and predictions. In contrast, ouk Wauses mainly on providing
consistenperformance with overprovisioning.

27

Related work on SLAsLeff et al. [13(propose a dynamic offload infrastructure similar
to our feedback-controlled system to meet the SLAs in a comiadeyrid deployment.
This infrastructure hosts a resource pool comprising priggored servers that stay idle,
and to meet the specified performance requirements adalisenvers are acquired from
this pool. In contrast, we use on-demand resources from gutntloud instead of
keeping a pool of idle resources within our system, whictefsnitely a waste of capacity.
In this work, the authors perform experiments with web woakls while we use realistic
grid workloads to perform a more detailed investigatiomttizirs to investigate various
tight and loose performance requirements.

Kounev et al. 1 24] present an approach for QoS aware resource managemeidsn gr
using online performance models. The authors show that ¢getiated SLAs can be
satisfied with the proposed approach. Unlike this work weaysgprovisioning to meet
the negotiated performance requirements. Moreover, otk tangets multi-cluster grids
while their work targets service-based grids on which sewvare deployed and the work-
load consists of HTTP requests.

Menascé et al.144] present a resource allocation framework that finds thenogti
resource allocation to minimize the total cost and meet Heew@ion time specified by
the SLAs. The workload used in this work comprise applicstiwith dependent tasks
while in our work we use BoTs as the workload, and we use owgrgioning instead
of optimization methods to provide consistent performamdereover, compared to this
work our performance evaluation is more in depth with digeged workloads.

Finally, Al-Ali et al. [8] present a prototype QoS system for real-time grid applica-
tions. Similar to 24, this work targets service-based grids. In this work ththars
use advance reservations to meet the SLAs, in contrast ws fot providing consistent
performance with static and dynamic overprovisioning teghes.

Related work on overprovisioningIn [60], De Assuncao et al. explore six scheduling
policies to extend a cluster’s capacity with cloud resosirdée particular, they investigate
the performance and cost trade off with simulations, ang #gtew that request back-
filling and redirection provides a good balance between #mfopmance and the cost.
In this work authors focus on improving the performance oingle cluster using only
dynamic overprovisioning. However, we focus on providimgsistent performance in
multi-cluster grids using both static and dynamic oversimning strategies. In addition,
we also design and evaluate a feedback-controlled systedetesmine the amount of
resources to provisiomn] for specified performance requirements.

2.8 Summary

Providing consistent performance in grids is a difficulie@sh problem. In this chapter
we have investigated overprovisioning to solve this probland we have performed a

28

realistic evaluation of overprovisioning in multi-clustgrids. Although our main focus is
on grids, we believe that the main ideas are also applicaldther large-scale distributed
systems.

We have presented a realistic evaluation of various overgioning strategies with
different overprovisioning factors:} and scheduling policies. We found that beyond a
certain value for the overprovisioning factor (in our case= 2.5) there is only slight
improvement in consistency with significant additionaltso$n addition, thedynamic
strategy provides better consistency with lower costs @etbto static strategies. Fi-
nally, to dynamically determine the overprovisioning tadio give performance guaran-
tees to users, we have designed and evaluated a feedbacHeorsystem exploiting the
elasticity of clouds. Through various simulations for leand tight makespan perfor-
mance requirements, we have shown that our system provglaiGant improvements
over the initial system, as high as 67%, in the number of Btigs meet the specified
performance requirements.

Chapter 3

The performance of overload control in
multi-cluster grids *

Many scientists rely on the execution of applications ontiallister grids, that is, of
large-scale distributed systems comprised of heterogenelasters. Multi-cluster grids
such as the DAS-3 in the Netherlands, the EGEE grid in Eurapeé the Open Science
Grid in the US provide efficient execution infrastructures dpplications with a loosely
coupled structure, such as bags-of-tasks (BoTs) and warkflaVhen executing such
applications, the system may becomeerloadedthat is, the system resources shared by
running applications may become bottlenecks—the diskbattuster file systems may
become saturated, the grid communication protocols makldewn due to thousands of
concurrent submissions, etc. Since overloads can dedragetformance and even cause
systems to crash, many overload control techniques have destigned 113, 48, 205,
185; among themthrottling, that is, controlling the rate at which workloads are pushed
through the system, is a relatively simple technique thatdeliver good performance.
However, few of these techniques have been adapted for westigated in the context of
multi-cluster grids. In this chapter we present a dynamiotthng technique along with
an extensive performance evaluation of throttling-basestload control techniques for
multi-cluster grids.

The consequences of overload can be severe, such as intbeastogs at shared re-
sources, and decreased performance and responsiverding li@aunpredictable system
behavior and user dissatisfaction. In multi-cluster gogerloads can lead to task wait
times that are often in excess of several ho@8.[The situation is even worse in produc-
tion systems where overloads can cause significant lossehue to service providers.
For example, Amazon reported that even small (100 ms) déteyseb page generation
will cause a significant (1%) drop in salek3p]. Similarly, Google reports that an extra

*This chapter is based on previous work published inEteE/ACM International Conference on Grid
Computing(Grid'11) [224).

30

0.5s in search time causes a traffic drop of 20%.

In multi-cluster grids there are two primary causes of ael First, grid workloads
may be very bursty or even difficult to predict, at both shad séong time scalesiP3.
To illustrate this, Figure3.1 shows the number of tasks submitted to the DAS-3, the
SHARCNET, and the GRID3 multi-cluster grids, and to a mthittusand node produc-
tion MapReduce cluster of an online social networking comyp&econd, the applications
submitted to multi-cluster grids can be large relative gkistem in terms of number of
tasks, runtime, and I/O requiremenis].

The overload control problem has been studied extensivelsaveral techniques for
alleviating overloads, such as congestion and admissiatrald48], control theoretic
approachesZ12), scheduling 185, and overprovisioning405, have been proposed.
However, they have not been investigated in the context dfi+tiuster grids, which dif-
fer significantly from these other systems in both strucamd workload. Structurally,
multi-cluster grids are comprised of heterogeneous disististributed over a wide-area
network. The typical workload of a multi-cluster grid costsi of scientific applications
with BoT, workflow, and parallel HPC structur@d, 101. Among these application types,
BoTs are the dominant application type in grids, as they aatcfor over 75% of all sub-
mitted tasks and are responsible for over 90% of the total-GRe consumption]01].

In this chapter, we first adapt a dynamic throttling techei¢@ control overload in
multi-cluster grids under bursty workloads. Then, we itigege the performance of
three throttling techniques, including our technique,hweiktensive experiments using
diverse workloads in our DAS-3 multi-cluster grid. Our merhance evaluation leads to
two main observations. First, we find that throttling camsfigantly improve both appli-
cation performance and system responsiveness in mufieclgrids, even under bursty
workloads. Second, we find that, for multi-cluster gridss ttynamic throttling-based
overload control technique can replace the static (handety The latter result is partic-
ularly significant in multi-cluster grid settings, wherenlgatuning is slow and costly due
to the number of clusters, and difficult due to workload boests.

The rest of the chapter is organized as follows. Secidrpresents the multi-cluster
grid model used throughout this chapter. SecBdhdescribes the throttling-based over-
load control techniques that we evaluate in this chaptesti@e3.3 describes the exper-
imental setup, and then Secti8 presents our performance evaluation results. Finally,
Section3.5 reviews the related work on overload control in diverse cotepsystems,
and SectiorB.6 summarizes the chapter.

3.1 Multi-Cluster Grid Model

In this chapter we focus on multi-cluster grids comprisimgenogeneous clusters. Such
systems usually include a head-node for each cluster, whialcentral node that users

31

20000 4000

15000 3000

10000

5000 |
AR

0 " il A " 0
May 2007 Feb. 2008 Oct. 2008 Feb. 2006 Aug. 2006 Feb. 2007

2000

1000 I|.q | ||| \ | |l

Number of Submitted Tasks
Number of Submitted Tasks

(a) DAS-3 (b) SHARCNET

3000 «» 40000
X

@ 35000
|_

- 30000
£ . |

Z 25000
|

2000

520000 (fi
(9]

-5 15000
& 10000
5000

1000

Number of Submitted Tasks

Numb

0
Ma%/ 2004 Sep. 2005 Nov. 2006 2 Oct. 2009 6 Oct. 2009 10 Oct. 2009

(c) GRID3 (d) MapReduce Cluster

Figure 3.1: Number of tasks submitted to three multi-clusystems and a multi-thousand
node production MapReduce cluster within five minute irdésvAll systems have peri-
ods of burst submissions.

connect and which uses middleware to interact with the reghe system. The mid-
dleware operates in each cluster and is responsible for gimaméhe compute resources
(worker nodes). Tasks that are submitted to the middlewaréndially placed into the
middleware queue until there are enough resources to extuweittasks. After the sub-
mission, the middleware dispatches the tasks to the askigpaes and manages the task
execution. This model fits many production multi-clustestsyns, including the world-
wide LCG, Grid5000, TeraGrid, and our DAS-3 system. Our nhats® fits other multi-
cluster systems, and in particular the numerous deploystesys using Globus, which is
arguably the most used middlewag®], the Grid Engine, and PBS/Torque. Our model
does not exactly fit the systems based on loosely-integratmlrces, such as the sys-
tems based on Condor; however, while other configuratiomgpassible, many Condor
pools use in practice a single Negotiator, which effecyiyhys the role of the cluster
head-node in our model.

As an example, our DAS-3 system employs two primary compisnea runner
(application-level scheduler) deployed on a head-nodehwis responsible for a single

32

application submission, and &xecution serviceleployed on each head-node which is
responsible for interacting with the middleware and peniog protocol conversion be-
tween the middleware and the runners. These two componaytsemmunicate over the
local area network or the wide area network. In each of thstels, the head-node com-
municates with the worker nodes for task execution manageamsl with the distributed
file system for the file transfers.

3.2 Overload Control Techniques

In this section we describe the throttling-based overlaadrol techniques that we inves-
tigate in this chapter.

To detect overload we use the head-node CPU load and the tiligltion metrics
which we think are good indicators of overload based on oyeggnce with multi-
cluster grids and their workloads. For each metric we siéresholdand amaximum
value. During workload execution depending on the measuattks of these metrics
and the threshold and maximum values a cluster may be in oweoddtates, overloaded
or underloaded. An underloaded cluster transitions totied@aded state whezitherthe
head-node’s CPU load or the disk utilization exceeds itsimar value, or wherboth
metrics exceed their threshold values. Similarly, an @agted cluster transitions to the
underloaded state whemither of these metrics falls below its threshold value. After an
overload is detected, the throttling technique reacts ligreimg aconcurrency limitthe
maximum number of concurrently running tasks—for evenyiappon in the system. We
describe in the following our throttling-based overloaditrol techniques, in turn.

e Static throttling (St ati c): This technique uses a static concurrency limit for
throttling. With Static it is possible to underutilize the system with a low con-
currency limit, and overload the system with a high conawydimit. Thus, it is
crucial to determine the best concurrency limit for a patc system and work-
load withStatic . For our experiments we have manually tuned the concurrency
limit to the value that gives the best performance over mapgements, so in our
evaluation (Sectiof3.4) Static provides the best performance for our system and
workloads.

e Bang Bang Control BBC) [96]: With BBC the execution service notifies the run-
ner to stop submitting tasks when the head-node transitiotie overloaded state.
When a head-node transitions back to underloaded statex#woeition service no-
tifies the runner to resume its task submissiBBClets the runner to temporarily
overload a cluster, as too many tasks may be submitted wlarclister recov-
ers from overload and before the execution service can tatelcreact to the new
overload.

In heterogeneous multi-cluster gri@8Cmay perform poorly: it is possible that

33

all but the fastest cluster may get overloaded and only the$a cluster may be
underloaded. Such a situation causes the fastest clustecéove all the tasks
while the other clusters are recovering from their overtoedusing the queueing
times at the local resource manager to increase noticedblgolve this problem
we adapt the original BBC algorithm by introducing a maximewncurrency limit
(C_LIMIT _MAX for each cluster so that when the number of tasks that are run
ning concurrently in a cluster excee@d.IMIT _MAXthe cluster transitions to the
overloaded state.

e Adaptive throttling (Adapt i ve): To address the inflexibility dbtatic and the
problem of temporarily overloading the clustersBBC we propose an Additive
Increase Multiplicative Decrease (AIMD) based contrallext dynamically adjusts
the concurrency limit. It has been shown that AIMD-basedti@bns a provably
convergent control ruledP]. However, to design a controller that gives additional
guarantees control theory can also be uS&il |
Adaptive operates in each cluster independently. It uses the fallgwonstants
as inputs: the number of nodes in the clustéMNODES$ the threshold and max-
imum values for the CPU load and disk utilization, and threaeameters that are
explained in the followingd, g, andC _LIMIT _MAX. Adaptive tunes the con-
currency limit €_limit) as follows. Initially,c_limit is set toN.NODESPe-
riodically, Adaptive measures the head-node CPU load and the disk utilization,
and it checks whether the cluster is overloaded using thesponding threshold
and max values. If the cluster is overloadedjmit is decreased by being set
toa-c_limit ,with0 < a < 1. If the cluster is not overloaded, thenlimit
is increased by being set tolimit 4 5 - n_finished ,with0 < g < 1 being
used to gradually increaselimit to avoid overshooting anal finished tasks
have finished since the last control period. To prevent etaftom being severely
overloaded even temporarily,limit is not allowed to exceed the maximum con-
currency limitC_LIMIT _.MAX We describe in SectioB.3.4how we set the values
of these parameters in our experiments.

We have implemented the throttling techniques presentéisrsection as a part of
the runner and the execution service presented in Segtiotn Section3.4, we evaluate
the performance of these throttling techniques in our rallister grid described in the
next section.

3.3 Experimental Setup

In this section we first describe our multi-cluster grid DB$A which we evaluate the
performance of the throttling techniques presented in teeipus section. Then we de-
scribe the workloads that we use and the performance mé#tatsve report as a result of

34

Cluster|| # of Node CPU # of Cores
Nodes| Speed [GHz]| on the Head-Node

C1l 22 2.6 8
C2 29 2.2 8
C3 60 2.4 8

Table 3.1: The processing capability of our multi-clustedg

our evaluation in Sectio8.4.

3.3.1 Multi-Cluster Testbed

We perform our experiments on three clusters of our DAS-tbésk Table3.1shows the
processing capability of our testbed. Each cluster hasaratpdistributed file system and
on each cluster the Grid Engine (GE) middleware operatdseastal resource manager.
GE has been configured to run tasks on the nodes exclusinedpéice-shared mode). We
have deployed the execution service on each cluster’s hedd; and the runner has been
deployed on the head-node of the C3 cluster; executioncgeard runner are described
in Section3.1

3.3.2 Workloads

We evaluate our throttling techniques (Sect®B8) using BoTs, which are the dominant
application type in multi-cluster grids. We summarize iblE3.2 the characteristics of
the workloads used in our experiments. All tasks of a BoT atarstted to the system
at the same time, so our workloads represent the worst-caskad scenario. The W-
Base workload comprises 1,000 tasks, each with a runtimé eé6onds and performing
100 MB 1/O. To understand the impact of the workload charésties, we perform the
evaluation across three dimensions: starting from W-Bas@erease, in turn, the number
of tasks (W-Task), the task runtimes (W-Run), and the tadkréquirements (W-10) of
the BoT. Although each workload is homogeneous, togetheyr tover a wide range of
scenarios, from compute-intensive to communicationnsitee, and from small-scale to
large-scale applications. Their tasks have similar ruesrand 1/O requirements to the
tasks observed in real multi-cluster grid workloa#l§][

3.3.3 The Performance Metrics

In our evaluation we use several metrics that we categoszgystem or user metrics.
System metrics quantify the performance of the system coeuts while user metrics
guantify the performance perceived by the user.

35

Workload || Number of | Task Runtime Total I/0
Tasks [s] Per Task [MB]
W-Base 1,000 60 100
W-Task 5,000 60 100
W-Run 1,000 300 100
W-10 1,000 60 200

Table 3.2: Workloads used in our experiments.

e System Metrics:

— CPU Usage [%]: The fraction of time a process keeps the CPU busy as re-
ported by the Linuxop utility. We use this metric to assess the overhead of
our scheduler in SectioB.4.1

— CPU Load: The number of processes which are in the processor run queue o
waiting for 1/0. We report the average CPU load calculateer@mne minute
intervals as reported by the kernel. When the CPU load is tiighhead-nodes
cannot respond to connection requests, so we use this rnefyicantify the
system responsiveness. Itis better if this metric is closkd number of cores
of a head-node.

— Disk Utilization [%]: Fraction of time the disk is busy as reported by the
Linux iostat utility. We report the average utilization calculated ofiee
second intervals.

— Cluster Utilization [%]: Fraction of available nodes that are used.

e User Metrics:

— 1/O Service Time [ms]: The time it takes for the disk to serve an 1/O request.
We report the average service time calculated over five skicoarvals.

— Task Execution Time [s]: The time it takes for a task to complete its execu-
tion.

— Makespan [s] (of a BoT): The difference between the earliest time of sub-
mission of any of its tasks and the latest time of completicany of its tasks.

3.3.4 Parameters for the Overload Control Techniques

Table3.3summarizes the parameters for the throttling techniquerstiveir values that we
use in our experiments. Since the best values for these pges1depend on a particular
system and workload we have performed several experimedet¢rmine the best values
for our system.

We use a control period of 30s which is smaller than the shotésk in our work-
loads. Hence, the throttling techniques react fast enowni¢fiet changes in the monitored

36

Parameter Value(s)
Control Period 30s
CPU Load Threshold 7
Max. CPU Load 10
Disk Utilization Threshold 40%
Max. Disk Utilization 60%
« 0.5
I6] 0.5and 1.0
C_LIMIT _-MAX Number of nodes (see Taliel)

Table 3.3: The parameters for the overload control teclesgund their values used in our
experiments.

metrics. Since all cluster head-nodes are 8-core machiweesse a CPU load threshold
of 7 (corresponding roughly to 90% utilization) and a maximGPU load of 10 (letting
a head-node to be overloaded up to 125%). When our systenmpitygiime average disk
utilization is less than 20%. Therefore, for this metric vee 40% as the threshold and
60% as the maximum value.

For Adaptive the value of thex parameter should be set to provide a balance be-
tween the throughput and the speed of overload recovery. &/ & 0.5 in our exper-
iments. Small values af may degrade the throughput while largevalues may cause
the system to recover from overload slowly. Experimenté\hatger values, such as 0.7
and 0.8, did not lead to substantial differences in the ofeskperformance. For the
parameter we use a value of either 0.5 or 1.0. Unless othespiscified, we usé = 0.5
in our experiments. For small values @fthe throughput may degrade while for larger
5 values the runner may temporarily overload a cluster asahewrrency limit will be
increased quickly.

Finally, for the maximum concurrency limit paramete€ I(IMIT _MAX, with
Static we use 30 tasks which we found through several experimergerform well
for our system, and we set the value of this parameter to th&euof available nodes
on each cluster foBBCandAdaptive to prevent the tasks from getting queued in the
local resource managers.

3.4 Experimental Results

In this section we assess the performance of the throttéogriques described in Sec-
tion 3.2 and of the system without throttlingN0 Throttling). We first validate the
assumption that our system’s scheduling middleware is ratteneck (Sectio3.4.]).
Then, we perform two sets of experiments, one in a singldedasnd the other on three
heterogeneous clusters.

37

H1O _ 1
= 8 208
> 6 > 06
3 0l | 3
O 4 | ‘ | D04
D
2 2 | 2 0.2 HAH
(@) (@)
0 0
0.5h 1h 0.5h 1h
Time Time
(a) Runner. (b) Execution service.

Figure 3.2:Single-Cluster Experiments [W-Base] The CPU usage [%] of the runner
(left) and the execution service (right).

Base

5000 100 _Runtime . .
B
= 4000, _ 10 4 .
§ 3000; 2) 4
% LQL No Throttling +
< 2000; O Static O
= i BBC A
1000 Adaptive ©
0 200 400
No Static BBC Adaptive i)
Throttling Task Execution Time [s]
(a) The makespan. (b) The distribution of the task execu-

tion times.

Figure 3.3:Single-Cluster Experiments [W-Base] Application performance. CDF de-
notes cumulative distribution function.

3.4.1 Scheduling Overhead

We assess the overhead of the runner and the executionesaftéc tuning our system
to make sure that these components do not contribute tonsysterload. To this end,
we run the W-Base workload on a single cluster (C3) withoutgighrottling. Figure3.2
shows the CPU usage of the runner and the execution servigegdhis experiment.
The runner and the execution service maximum CPU usage Isbelelv 100%, with
the runner having a maximum CPU usage of 10% and the execssiotice having a
maximum CPU usage of 1%. This confirms that these components telatively low
overhead, and therefore they do not contribute to the systemioad in the experiments.

38

3100 " Quart] sg 60 — " Quartiles mm—
=i 80 Med|an 50+ Median —
c Mean . Mean
o o -
= 40
c 60 S & T
-
s o | = 30 §
240 0 %20 :
2 20 1
2] 10 ?
No Static BBC Adaptive No Static BBC Adaptive
Throttling Throttling

(@) The basic statistical properties (@ The basic statistical properties of the
the C3 utilization. CPU load of the C3 head-node.

Figure 3.4:Single-Cluster Experiments [W-Base] System load. Experiments in the C3
cluster.

3.4.2 Results for Single-Cluster Experiments

In this section we investigate the performance of the thingttechniques presented in
Section3.2with experiments on the C3 cluster using the W-Base workload

We analyze the application performance and show the resulisgure 3.3, We
observe that throttling improves the makespan over theesystithout throttling; the
improvement is 40% wittStatic , 20% with BBG and 18% withAdaptive (Fig-
ure 3.3(@)). The reason for the makespan improvements is thatpuittinrottling, the
cluster becomes fully utilized during the workload exeonti{see the values fdlo
Throttling in Figure 3.4(a)). So, the tasks running in parallel congest the shared
distributed file system and the intra-cluster network, WHeads to an increase in the
individual task runtimes and further to an increase in th&espan. With throttling,
fewer tasks run in parallel as the runner delays the task msimms taking into account
the concurrency limits, but the resulting delay is smaltemt the overheads of running
many tasks simultaneously. Throttling also helps indisidasks: the median task exe-
cution time is reduced by 70% witbtatic , 65% withAdaptive , and 40% witrBBC
overNo Throttling (Figure3.3(b)). Furthermore, with throttling the task execution
time distribution has a shorter tail than thathd Throttling ; at 95th percentile we
observe significant improvements: 75% wiitatic , 25% withBBG and 63% with
Adaptive (see Table.4). Although throttling introduces additional delay for iwidi-
ual tasks the resulting makespan is much better than withoottling. Makespan-wise
Static performing the best, witlBBCand Adaptive having similar performance.
Moreover, withStatic and Adaptive , the resulting task execution performance is
more consistent (has a shorter distribution tail) than euttthrottling.

We analyze the performance of the system and show the basgtistl properties of
the C3 cluster utilization in Figurg.4(a). We observe th&tatic andAdaptive re-

39

duce the median cluster utilization by 50% versus the systghout throttling. However,
similarly toNo Throttling , for BBCthe median and maximum cluster utilization are
100%, significantly higher than f@tatic andAdaptive ; for the latter, the lower uti-
lization is due to the fewer tasks running concurrently mslistem. Although the cluster
is lowly utilized with throttling, which may not be desireg Bystem administrators, the
resulting application performance is significantly beftegure3.3).

We assess the basic statistical properties of the CPU lo#tteof3 head-node and
show the results in Figurg.4(b)!. Throttling improves the median CPU load, hence the
system responsiveness, substantially: 70% ®idtic , 20% with BBC, and 68% with
Adaptive . Without throttling, the CPU load is constantly high with adian load of 35
causing the system to be unresponsive to user requests.Stiiic , the CPU load is
constantly low with a median load of 10. Among the technig8&Cperforms the worst
in terms of CPU load as the runner overloads the cluster tesmiposeveral times during
the workload execution. Nevertheless, it still perform#tddethanNo Throttling ,
with an improvement of 20% in median CPU loaddaptive performs similarly to
Static , and it performs significantly better th&BC With Static andAdaptive
throttling, the CPU load is much lower comparedNo Throttling . throttling also
improves the system responsiveness substantially.

We investigate the 1/0 performance and show the basic staliproperties of the
I/0O service time and the disk utilization in FiguBes. All techniques improve the me-
dian 1/0O service time oveNo Throttling . Static by 80%,Adaptive by 93%,
and BBCby 63% (Figure3.5a)). SinceBBClets the runner temporarily overload the
cluster, the maximum 1/O service time wiBBCis close to that oNo Throttling
Finally, the disk has a lower utilization with throttlingghNo Throttling ; the me-
dian disk utilization decreases by up to 70% witdaptive (Figure3.5b)). With No
Throttling andBBGC the I/O service time is highly variable, while witatic and
Adaptive the I/O service time has lower variability. We conclude thiataddition to
significant improvements in task execution performanamtting also improves the I/0
performance substantially.

The quality of the service offered by a system to its usersv/{&e Level Agreement,
SLA) is often quantified by the service performed on a largetfon of the work requests,
such as the5™" or the99*" percentiles of the task execution time; we call this quaartifi
the extreme performancef the system. We compare in Tal8e4 the 95" and the99"
percentiles of three performance metrics—task executiog, tCPU load, and 1/O service
time—with and without throttling; the row “Ideal Case” atidhally presents the metric
values for the system without overload. As expected, theloaded system has much
lower extreme performance than the ideal case. Howevemgihe techniques the use of
either of theStatic ,BBC andAdaptive techniques leads to significantimprovements

1As the C3 cluster's head-node has an 8-core CPU, it is béttez CPU load is close to 8.

40

100 517 402 486 346

Quartiles g‘: ' Quartiles
Median Median
Mean a Mean a

.|

0 |
No Static BBC Adaptive No Static BBC Adaptive
Throttling Throttling

—
o
o

0
o

I/O Service Time [ms]
(€]
o

Disk Utilization [%]

(a) The basic statistical properties of tfi The basic statistical properties of
I/O service times. the disk utilization.

Figure 3.5:Single-Cluster Experiments [W-Base] I/O performance. The values at the
top of graph (a) are the maximum values observed.

Task Execution CPU Load| I/O Service
Time [s] Time [ms]
95th 99th |95th 99th| 95th 99th
No Throttling| 346 443 37 38| 178 318
Static 89 109 14 17 | 124 262
BBC 262 309 35 361|214 354
Adaptive | 127 187 22 31| 147 256

| ldeal Case | 60 | 8 | 6 |

Table 3.4:Single-Cluster Experiments [W-Base] The 95th and the 99th percentiles for
the task execution time, CPU load, and I/O service time stri

in one or more of the metrics, especially the task execuiime and the I/O service
time. Thus, throttling is to be preferredio Throttling when extreme performance
guarantees are part of the SLA. Furthermd@8Cdelivers consistently worse extreme
performance than the other techniques; the differencesdeeiStatic andAdaptive
illustrate the time-performance trade-offs offered by marand automatic-and-dynamic
system tuning, respectively.

3.4.3 Results for Multi-Cluster Experiments

We now evaluate the performance of the throttling techrsqnea multi-cluster setting.
The three clusters we use (Secti®13) are heterogeneous in terms of size and network
bandwidth. We first perform experiments with our baselineklaad, W-Base, using all
the techniques. Then, we use, in turn, a workload with ircedanumber of tasks (W-
Task), task runtimes (W-Run), and task 1/O requirementd@Jy-we assess with these

41

Base

2000 100 Rl{ Ege .

1500 ¢ 75 i
1000 ¢ 50 No Throttling
Static
500 + 25 ¢ BBC
Adaptive
0 0

No Static BBC Adaptlve Adaptlve 0 200 400

Makespan [s]
CDF [%]

o > O+

Throttling (B=0.5) (B=1.0) Task Execution Time [s]
(a) The makespan. (b) The distribution of the task ex-
ecution time.

Figure 3.6:Multi-Cluster Experiments [W-Base]: Application performance.

60 \ \ \ \ \ 100 : :
Quartiles I = Quartile
50 Median C—1 = 80 u Mediak E
® 40 | é Méan = S Mean| =
o i)
A I T 60
& 20 - 5 40 A
10 [=] — % 20 § i
0 I 'Ei I 8 0 L L I L
No Static BBC Adaptive Adaptive No Static BBC Adaptive
Throttling (3=0.5) (B=1.0) Throttling

(a) The basic statistical properties of the CPU load)f The basic statistical properties of
the head-node. cluster utilization.

Figure 3.7:Multi-Cluster Experiments [W-Base]: System load for the C3 cluster.

workloads the performance of tBBBCandAdaptive techniques.

We analyze the application performance and show the resulBgure 3.6. As
more resources are used during this experiment, the makdspa is lower than for
the single-cluster experiments (compare FigBu&a) with Figure3.6(@)). Similarly to
the results obtained for single-cluster experiments,ttlmg noticeably improves the
application performance (Figu®6(a)). Static and BBCimprove the makespan by
13% and 8% oveNo Throttling , respectively.Adaptive with an average adap-
tation rate § = 0.5, see Section8.2 and 3.3.9 provides roughly the same makespan
asNo Throttling . However,Adaptive with 3 = 1.0 provides a makespan of
1,600 ms (similar tBBQ and improves the application performance by 10% dver
Throttling . All techniques improve significantly the application megrhance and the
extreme performance of the task execution (shorter digtab tail in Figure3.6(b)).

We investigate the performance of the system and show the $@sistical proper-

42

100 433 214 288 276 100

Quartiles g Quartiles g
Median Medign

Mean Mean

No Static BBC Adaptive No Static BBC Adaptive
Throttling Throttling

I/O Service Time [ms]
n
o
Disk Utilization [%]
(€3]
o

(a) The basic statistical properties (@) The basic statistical properties of the
the I/O service time. disk utilization

Figure 3.8:Multi-Cluster Experiments [W-Base]: I/O performance for the C3 cluster.
The values at the top of graph (a) are the maximum values wixger

ties of the cluster utilization of the C3 cluster and the CPR&dl of the C3 head-node
in Figure3.7. All techniques reduce the CPU load leading to better sysésponsive-
ness;Static by 33%, BBCby 40%, andAdaptive by 80% (Figure3.7(a)). This
improvement adds to the improvements observed for the agijuin performance (Fig-
ure 3.6). Compared withNo Throttling , Adaptive with § = 0.5 preserves the
application performance (Figuf6(a)) while using less resources (FiguB&(b)), and
improving the system responsiveness (Figdr&a)). Moreover, withs = 1.0, although
Adaptive vyields a better performance (FiguBet(a)), it leads to a 50% higher CPU
load over = 0.5 (Figure3.7(a)). Because witly = 1.0, Adaptive increases the con-
currency limit faster than witl¥ = 0.5, thus letting the runner overload the head-nodes.
Our results show that a trade-off between the applicatiofopaance and system respon-
siveness exists. As a consequence, while determining thessaf the parameters of the
throttling techniques, this trade-off should be taken exdoount.

We investigate the 1/0 performance and show the basic staliproperties of the
I/O service time and the disk utilization for the C3 clusterRigure 3.8, Throttling
also helps in reducing the 1/O service times: the median ¥@ise time is reduced by
62% with Static , 65% withBBG and 81% withAdaptive overNo Throttling
(Figure 3.8(a)). Finally, in terms of the disk utilizatioBBC performs similar toNo
Throttling while Adaptive performs slightly better decreasing the disk utilization
by 66%. Due to the heterogeneity of our testbed, althdaigic has a higher disk uti-
lization thanNo Throttling (Figure3.8(b)), it improves significantly the CPU load
(Figure3.7(a)) and the 1/O service time ovBlo Throttling (Figure3.8(a)).

From now on, we continue our evaluation with dynamic techegy because with
Static the concurrency limit has to be tuned for all clusters andkieads making
it an impractical solution, and we have already shown Addptive has comparable

43

Base
Runtime
20000 100 g gmma 100 T
o + jian C—
16000 — 75 | w80 | Meden
- i N ©
S 12000 = 50 560
a) r'" No Throttling +
o o |
é 8000 O o5 | BBC 2| O 40 &
s Adaptive © o H
4000 20
0 B L|'|
0 0 200 400 ¢ T
No BBC Adaptive ; ; i
Throging P Task Execution Time [s] N6 gBBC Adaptive

(a) (b) (c)

Figure 3.9:Multi-Cluster Experiments [W-Task] : Makespan (a), the distribution of the
task execution time (b), and the basic statistical propertif the CPU load of the C3
head-node (c).

performance witlStatic . We assess the performance of BCandAdaptive tech-
niques with the W-Task workload and show the results in FH§®. As W-Task contains
more tasks than W-Base, the overloads in all clusters are sewere. As a result, throt-
tling improves drastically the application performanéeaptive andBBCimprove the
makespan by 50% (Figur9(a)) while improving the median CPU load by 22% and
78% (Figure3.9(c)), respectively. The reasons for such a difference agartbreased
number of parallel I/0O operations, and the increased nuwite@multaneous inter-cluster
file transfers that put more load on the shared resources.p@ui to the other experi-
ments, with the W-Task workload the improvements in the iappbn performance and
the CPU load is higher resulting in a more responsive sysioreover, throttling also
improves the extreme performance of the task execution (iiggire 3.9(b)) leading to
better performance consistency than without throttling.

We evaluate the performance of tB8Cand Adaptive techniques with the W-
Run workload and show the results in FiguddQ Unlike the results for the W-Task
workload, withAdaptive the makespan is roughly the same as the makespan without
throttling (Figure3.1(@a)). AlthoughAdaptive andBBChave similar task execution
performance (Figur&.1(Qb)), the makespan is smaller wiBBCwith a 30% improve-
ment oveNo Throttling as tasks have higher wait times (throttling delay + queuing
delay) with Adaptive than withBBG leading to a higher makespan. Similar to the
results for the W-Task workloadydaptive improves the CPU load by 60% ovBio
Throttling leading to better system responsiveness BRBQE(Figure3.10c)). With
the W-Run workloadAdaptive leads to a similar makespan wiNo Throttling
while BBCresults in a better makespan but with a higher CPU load.

Using the W-10 workload we investigate the performance eBBCandAdaptive

44

Base
Runtime
5000 100 g 50 ‘ Quartités _‘
: Median =—
o 4000 _ 75 4 - 40 Mebn =
§ 3000 = S 30
2 LOL 50 a
< 2000 @) No Throttling+ 7 20
2 25 | BBCO O I
1000 | Adaptiveal 10 | 0
© 5200 400 o L
0 0 200 400 600 800 0
No BBC Adaptive i ; No BBC Adaptive
Throttling Task Execution Time [s] Throttiing

(a) (b) (c)

Figure 3.10:Multi-Cluster Experiments [W-Run] : Makespan (a), the distribution of
the task execution time (b), and the basic statistical ptagseof the CPU load of the C3
head-node (c).

Base
Runtime
3000 100 ?ﬂ,.(% 50 o
2500 — 75 1 a0l Mediagn C——1
w ° Mean =
= 2000 = g ﬁ
© L 50 . o 30
21500 8 No Throttling + 51
Q BBC & 20
§1000 25 Adaptive © % g &
500 oL % ‘ 10
0 0 200 400
No BBC Adaptive Task Execution Time [s] No BBCAdaptive
Throttling Throttling

(a) (b) (c)

Figure 3.11:Multi-Cluster Experiments [W-10] : Makespan (a), the distribution of the
task execution time (b), and the basic statistical propertif the CPU load of the C3
head-node (c).

technigues and present the results in FigBrél Both techniques lead to similar
makespan, with an improvement of 15% oy Throttling (Figure3.11(a)). Since
the workload is I/O intensive, the less powerful cluster)@as overloaded quickly, caus-
ing a large number of tasks to be submitted to faster clustiéindooth techniques yielding
a similar makespan. Similarly to the results of the W-Tast#t &tRun workloads, both
techniques improve the extreme performance of the taskuégedime (Figure3.11(b)).
Finally, both techniques result in similar CPU load due ®ltrge file transfers with this
workload (Figure3.11(c)). Nevertheless, the system responsiveness is impsaestan-
tially as both techniques reduce the CPU load by 55%.

45

3.5 Related Work

In this section we survey prior research exploring the feliy overload control tech-
niques: congestion control, admission control, schedulaverprovisioning, and throt-
tling.

Congestion Controlis a well-researched technique for network traffic engimegr
we refer to P13 for a survey of a wide range of TCP congestion control mersms.

Admission Control is a technique under which the amount of work accepted to-a sys
tem is policy controlled. Admission control has been usesleb servers to mitigate flash
crowds P17, and in e-commerce system#&] and multi-tier distributed system446
for overload control. Although effective, admission cahitan help stave off degrading
response times under overload but cannot prevent it coeiplet

Schedulinghas also been investigated as a solution to the overloadot@nbblem.
In [185 authors address the transient overload problem of weleseby using the short-
est remaining processing time scheduling policy. A simsliardy shows significant re-
sponse time improvements by favoring short connecti&gk [Although these studies
showed improvements to the response times under transieribad, they do not eval-
uate the policies under permanent overloads. Previousest{itff, 192 also show that
scheduling can prevent overload only to a certain extent.

Overprovisioning is a technique for handling workload fluctuations that maysea
temporary overloads at bottleneck resources. Overpaniisj can solve the overload
problem only to a certain exterit21], even when using overflow pools to handle transient
overload B2] or dynamic overprovisioningd05. Overprovisioning is difficult to employ
for highly variable workloads—at one extreme, a system ighaterprovisioned for the
peak load incurs high costs, at the other, a system ovepoosd for the mean load
cannot handle severe overloads.

Throttling is a technique under which the rate at which workloads arkeulithrough
the system is controlled depending on the system load. flingpthas been used in
diverse computer systems to control overload; it has beed usdistributed file sys-
tems [], resource management systems like Grid Engine and Cobé}rrietworks of
SIP servers96], and in cycle stealing systems for efficiently enforcingaerce limits on
I/0 subsystemsl[74].

Closest to our work are the studies in networks of SIP sef@#sin cycle stealing
systems 174, and in Condor DAGMang5]. Our study is different from9g6] since the
workload characteristics of multi-cluster grids are siigaintly different from multime-
dia workloads 101]. In contrast to 5], we perform a more extensive evaluation; we
investigate both static and adaptive throttling technsqwiere they only focus on static
throttling, and moreover, we evaluate these techniquesealamulti-cluster grid.

46

3.6 Summary

Due to highly demanding and bursty workloads, overloadsremé@table in multi-cluster
grids, leading to decreased system performance and regeoess. Further motivated
by our DAS multi-cluster grid, where running hundreds ofkt&soncurrently leads to
severe overloads, in this chapter we have investigateddtiermance of throttling-based
overload control techniques in multi-cluster grids.

Our results show strong evidence that throttling can be fogexffective overload con-
trol in multi-cluster grids. In general, we have shown thabttling leads to a decrease
(in most cases) or at least to a preservation of the makedpaursty workloads, while
significantly improving the extreme performan®s(and99*" percentiles) for applica-
tion tasks leading to more consistent performance and neglube overload of cluster
head-nodes. In particular, our adaptive technique im@dive application performance
by as much as 50% while also improving the system resporesgny up to 80%, when
compared with the tuned multi-cluster system without tiireg. Our results further in-
dicate that our adaptive throttling technique performsisirty to static throttling, which
is based on the manual tuning of our system that providesdsiedserved performance,
and better overall than the other adaptive throttling téplnminvestigated in this chapter.

Chapter 4

Incremental placement of interactive
perception applications’

Multimedia recording and playback capability has been lesigblished in the computer
industry, and has become commonplace with the availalufitpw-cost digital cameras
and recording hardware. Until recently, applications mgkise of audio and video data
have largely been limited to recording, compression, streg, and playback for human
consumption. Applications that can directly make use otwidtreams, for example as
a medium for sensing the environment, detecting activitiesas a mode of input from
human users, are now active areas of research and developteB4, 140, 196. In
particular, a new class ohteractive perception applicationthat uses video and other
high-data rate sensing for interactive gaming, naturalugesbased interfaces, and visu-
ally controlled robotic actuation is becoming increasynghportant.

Interactive perception applications pose some uniquéderiges to their effective im-
plementation in real systems. First, the data rates agedaidgth video streams are high,
making it challenging to process, store, and transmit tha wa&hout loss. This problem
is compounded by the ever-improving resolution and franesraf low-cost cameras.
Second, the state-of-the-art computer vision and macki@ing techniques employed
by interactive perception applications are often computenisive. For example, Scale
Invariant Feature Transform (SIFT) feature extractib®d, a commonly-used algorithm
for finding and describing features in an image, can take av@&cond to run for each
frame of a standard definition video on a modern processer,3 too slow to keep up
with the video stream. Furthermore, the computation loathe$e algorithms is highly
variable, and depends on scene content factors such asrbaolgclutter, motion in the
scene, and the number of people in view. Finally, these egpbins have tight response

*This chapter is based on previous work published in ABM International Symposium on High-
Performance Parallel and Distributed ComputifgPDC’11) [228 and thelnternational Open Cirrus
Summit 20112395.

48

time requirements. To provide a crisp, responsive userrexpee, interactive applica-
tions may need to ensure that the latency, from when sensamd@/e to when outputs
for actuation or updates of a display are generated, isduirith 100-200 ms for each data
item (i.e., video frame).

On the other hand, interactive perception applicationsideoample opportunities to
exploit parallelism. They are often structured as data flosmphs of processing stages,
which are amenable to various parallelization techniqueecent work 167] demon-
strates that it is possible to run such applications in araative setting by exploiting the
coarse-grained parallelism inherent to these applicatiand carefully distributing their
execution across multiple processors and machines. Thef pseallel resources can re-
duce the time to execute these algorithms, but additionadh@ads for data transfer and
coordination are introduced. The effectiveness of thiga@ggh hinges on careful alloca-
tion and scheduling of processing stages on different gsmre such that the latency for
the distributed data flow to process each item, includinggseing and data transfer time,
i.e., the makespan, is minimized. However, given the véiialn perception workloads,
it is difficult to determine a good placement of the procegsitages a priori.

In this chapter we devise algorithms amtomaticallyand incrementallyplace and
schedule stages of an application on a set of processingsnodeninimize latency
(makespan). Our system continuously monitors performaitiee running application
stages, and, as conditions change, adjusts the placementgbgting stages between
processing nodes. We develop and implement four heurigtatsperform incremental
placement to minimize latency while bounding migrationtc&8e demonstrate the ben-
efits of these heuristics through detailed simulations aedwion on a prototype system
using two real interactive perception applications. Irtipafar, with our experiments us-
ing these applications we show that the heuristics imprbeemedian latency by up to
36%.

The rest of the chapter is organized as follows. Sedfidnntroduces the two in-
teractive perception applications that we study in thigpthia Sectiort.2 describes the
Heterogeneous Earliest Finish Time (HEFT) scheduling isBaron which our incre-
mental heuristics are based. SectB presents the incremental placement problem,
and Sectiort.4 describes our incremental placement heuristics. Sedtdescribes the
implementation details of our system. Sectibfidescribes the experimental setup. Sec-
tion 4.7 and Sectior#.8 present our performance evaluation results with simutatand
with experiments on a real system, respectively. Finakgti®n4.9 reviews the related
work and Sectiod.10summarizes the chapter.

49

4.1 Interactive Perception Applications

We consider parallel interactive perception applicatistiactured as data flow graphs.
These applications usually comprise compute-intensiveptter vision and machine
learning algorithms, many of which exhibit coarse-graiteesk and data parallelism that
can be exploited across machines. The vertices of suchcafiphs are coarse-grained
sequential processing steps calitdgesand the edges are connectors which reflect data
dependencies between stages. The stages interact ornlglhconnectors, and share no
state otherwise. Source stages provide the input data tpiplecation, for example, as a
video stream from a camera consisting of a sequence of frahimessequence of frames
flows through and is transformed by multiple processingesaghich, for example, may
implement a computer vision algorithm to detect when the pedorms a particular ges-
ture. Finally, the processed data is consumed by sink stagesh then control some
actuator or display information to the user. The data flow eh@particularly well suited
for perception, computer vision, and multimedia procegsasks because it mirrors the
high-level structure of these applications, which tydica@pply a series of processing
steps to a stream of video or audio data. In this data flow modakturrency is explicit —
stages within an application can execute in parallel, caimstd only by data dependen-
cies and available processors.

We use an application-independent runtime systE#id][to distribute and execute ap-
plications in parallel on a compute cluster. The systemiges/mechanisms to migrate
stages and set tunable parameters, including the degresralfglism (e.g., number of
data-parallel operators). Migrating a stage includes ntakine necessary RPCs to ac-
tivate the stage on the remote node and transferring the state. Setting the tunable
parameters of an application enables changing the applicidelity by updating the al-
gorithm parameters, and changing the graph structure bygaew data parallel stage
instances. The system also monitors application perfoceaand provides interfaces for
extracting stage latency data. Our work extends this rumsigstem by adding automatic
initial placement of stages, as well as the ongoing increéatedjustment of placement
to maintain low application makespan as conditions change.

We study two applications in this paper. The first appliaatipose detection, is an
implementation of an algorithm for object instance rectigniand pose registration used
in robotics p4]. As shown in the data flow of Figuré.1(a), each image (frame from
a single camera) first passes through a proportional doaierscSIFT features are then
extracted from the image and matched against a set of pyioanstructed 3D models
for the objects of interest. The features for each objectilzea clustered by position
to separate distinct instances. A random sample conseR#UI$JAC) algorithm with a
non-linear optimization is used to recognize each instamckestimate its 6D pose. As
this application is intended for visual servoing of a robwh ait requires low processing

50

AR

. motiT
\\72g

Cluster joiner

RANSAC

(a) Pose detection. (b) Gesture-based TV control.

Figure 4.1: Data flow for our applications.

latency for each frame, with a goal of 50 ms.

The second application, TV control, provides an interfacedntrol a television via
gestures45. Each video frame is sent to two separate tasks, face d@mtesmdid motion
extraction, shown in Figuré.1(b). The latter accumulates frame pairs, and then extracts
SIFT-like features that encode motion in addition to appeee. These features, filtered
by the positions of detected faces, are aggregated overdowiof frames using a previ-
ously generated codebook to create a histogram of occ@feamuencies. The histogram
is treated as an input vector to a classifier trained for tiérobgestures. For this applica-
tion, low latency, on the order of 100 ms, for processing dearhe is needed to achieve a
responsive user interface. We note that in both of thesecgpioins, the processing times
of the vision algorithms are the primary contributors teetaty, though other sources,
such as network transfer overheads, are also non-neg@ligibl

51

4.2 The HEFT Algorithm

To dynamically and incrementally place perception appilices structured as data flow
graphs on compute nodes, we propose four heuristics whietthesHeterogeneous Ear-
liest Finish Time (HEFT) algorithm202 as a building block. HEFT is a well-studied
list scheduling heuristic for multiprocessor schedulihgmapplication task graph. It has
low complexity, is easy to implement, and performs well cangga with many heuristics
in the literature. We describe the steps of the algorithnuiin:t

e \ertex/Edge Weight Assignment: Initially, HEFT sets the computation costs of
stages and the communication costs of edges with mean vaogsuted over all
processors and data links in the system.

e Task Prioritization: Then, HEFT assigns each stagean upward rank value
rank,(v;), which is the length of the critical path from stageto the exit stage
includingv;’s computation cost. The stages are sorted by decreasimy ofdip-
ward rank, with ties broken randomly.

e Processor Selection:Finally, HEFT traverses the list of stages in decreasing or-
der of upward rank anglacesstagev; on processop, that minimizes the stage’s
Earliest Finish Time EFT(,p.), andschedulegach stage using an insertion-based
policy. With this policy a stage may be inserted in a slot af #thedule of the
processor between two already scheduled stages on thisgsadf the length of
the slot is long enough for the new stage.

The complexity of HEFT i) (ep) wheree is the number of edges in the graph and

is the number of processors. For dense graphs, sirce)(v?), the complexity of HEFT
is O(v?p), wherew is the number of vertices in the graph.

4.3 Problem Formulation

In this section we first describe the initial placement peof| and then we describe the
incremental placement problem which is the main focus &f $tudy.

4.3.1 The Initial Placement Problem

We represent an interactive perception application as a fitav graphG = (V, E),
comprising a set of processing stagés- {v, ..., v, } and a set of data dependencies
E = {e;;|v; requires data from;}. The application runs on a possibly heterogeneous
cluster withm processors:;,j = 1,...,m with capacities (number of cores),; =
1,...,m.

Stagev; has weightw; representing its execution time, and edgehas weightw;;
representing the latency of sending output data from stdgestage;. If stage: and

52

j are running on the same processor, wewset= 0. Each stage; has a processing
demand (number of cores). Let P = {p,; } be a placement whegg; = 1 if stagev; is
placed on processer; andp;; = 0 otherwise. Thenitial placement problenis to find
a placementP that minimizes the makespan (latency) of the applicatidsjes to the

capacity constrainty | p;;d; < ¢;,j =1,...,m.
=1

4.3.2 The Incremental Placement Problem

The performance of a running application can be affected greety of factors. For
example, the runtime of a stage may change due to a change inght data or the
values of tunable parameters, stages on a processor maylglevdue to the arrival of
background load, and data parallel instances of stages enagided or removed from the
application graph. These perturbations can affect latenough to warrant revising the
initial placement.

Re-placing stage involves migrating it from its current processbito another pro-
cessol with non-zero migration cost,;;;. Given an initial placemen®, theincremental
placement problens to find a placemen®”’ that minimizes the makespan of the applica-
tion subject to the migration cost constrajntm,,; < M, where M is the migration cost

bound, and the capacity constraiMsp;.d; < cx, k = 1, ..., m. The reason to bound the

migration cost is that the migratic;ﬁlof a stage can be nableday the user as a transient
increase in latency.

We now describe the requirements for an incremental plaseeigorithm for inter-

active perception applications which make this problem-tnwal:

e Stage execution times can vary due to changes in the inpa ith&t values of tun-
able parameters, or the arrival of background load. Stagetiand output data
amounts may also vary. The incremental placement algomtiust accept changes
to node and edge weights.

e The incremental placement algorithm will be executed reguia to revise the ex-
isting placement, therefore it should be efficient.

e When modifying an existing placement by migration, the @meental placement
algorithm must keep the disruption (churn) in the existifegpment within a given
migration cost bound.

e The degree of parallelism in an application graph can begdwhynamically by
setting tunable parameters (see Sectidl), which changes the number of stages
in the graph. The incremental placement algorithm must wéhlthese structural
changes.

e Stages may have constraints on where they can be placedxdropke, a stage may
require a specific resource (e.g., a camera), or mutual €xclife.g., due to non-

53

thread-safe libraries). The incremental placement algormust take into account
such constraints.

In the general case, assigning tasks to processors subjpottedence constraints
is known to be NP-complete3fl]. Therefore, either optimal enumerative search based
methods or approximate heuristics can be used. In praeimenerative techniques are
very expensive even for very small graphs on a few procesandsintractable for modest
systems (e.g. 25 stages on 10 processors). Thus, we talatdrealpproach and propose
four heuristics which we present in the next section forisgj¢the incremental placement
problem.

4.4 |Incremental Placement Heuristics

To perform incremental adjustment to placement, we haveldped four heuristics all
of which use HEFT as their primary building block. To this emeé modify the original
HEFT algorithm such that it can accept as input a partialgtant of stages. If a stage is
already placed, the algorithm does not do any placementribyschedules it. Therefore,
the runtime of HEFT for the case when there are already platzges will be less than
for the case when none of the stages are placed. We use thiseddtEFT algorithm to
build our incremental heuristics.

HEFT-MS (One Move/Swap): We define a move as the migration of a stage from its
current processor to another processor and we define a sveapaif of stages; ands;

as the migration of; to the processor that; is currently running on and vice versa. The
main characteristic of this greedy algorithm is that it tet@mminimize the migration cost
by limiting the number of migrations either to a single stagex pair of stages (swap).
This algorithm finds the best single move or the best singkgpswperation by searching
the whole search space of possible single moves and swampgle &noves are explored
before single swaps since the migration cost of a single maékely be less than that
of a single swap. At the end, the algorithm updates the cupktement by applying
the operation (either a single move or a single swap) withsthaller makespan. The
algorithm consists of two steps:y_one_moves andtry_one_swaps. So the complexity
of the algorithm is the maximum of the complexities of these steps. The complexity
of the try_one_moves step isO(vep?) for sparse graphs and(v3p?) for dense graphs.
Thetry_one_swaps has a complexity of)(v2ep) for sparse graphs ar@l(v*p) for dense
graphs. Therefore, the complexity of HEFT-MSJ$max (vep?, v%ep)) for sparse graphs
andO(max(v3p?, v'p)) for dense graphs.

HEFT-Iter: The goal of this algorithm is to improve the quality of the sdble
(makespan) as much as possible within the specified migratist bound. Therefore, this
algorithm may result in higher migration costs compared E-B-MS which is good at

54

minimizing the migration cost. This algorithm is an itevatgreedy algorithm which runs
HEFT-MS iteratively until the migration cost bound is exded or no further improve-
ment to the current schedule is possible. As a result, thsrghm may perform multiple
moves and swaps, compared to HEFT-MS which is limited to glsimove or swap.
Assuming that HEFT-Iter runs HEFT-M$ times, the complexity of this algorithm is
T-O(max(vep?, v?ep)) for sparse graphs afd O (max(v*p?, v*p)) for dense graphs. For
the worst case when the migration cost bound is infinite,((is), hence the complexity
of this algorithm isO(max(v?ep?, v3ep)) for sparse graphs and(max(v*p?, v°p)) for
dense graphs.

HEFT-Relax: The main goal of this greedy algorithm is to provide a lighitytx alter-
native to the other heuristics. At each iteration, eachestagexamined by relaxing its
placement and letting HEFT place and schedule the stagereldnation that produces
the smallest makespan is selected. If the resulting maratost is less than the mi-
gration cost bound and the resulting makespan improves thienomm makespan found
so far, then the placement of the relaxed stage is updatedth@nalgorithm proceeds
with the next iteration. The algorithm terminates if theatahigration cost exceeds the
given bound or if the minimum makespan found so far can notrpaved. In the worst
case when the migration cost bound is infinite, the algoritarminates after relaxing
all stages. Therefore, the complexity of the algorithnmig?ep) for sparse graphs and
O(v*p) for dense graphs.

HEFT-DRelax (Dual Relax): This algorithm is an iterative greedy algorithm similar to
HEFT-Relax. Until the migration cost bound is exceeded,amhestep HEFT-DRelax
finds the best pair of stages, stages that improve the minimakespan found so far if
relaxed, and relaxes the placement of each pair and lets HEEEE and schedule these
stages. If a feasible relaxation can be found, that is thédtreg migration cost is less than
the migration cost bound and the resulting makespan imprthe minimum makespan
found so far, then the placements of the relaxed stages a@edq) and the algorithm
proceeds with the next iteration. The algorithm terminatdke total migration cost
exceeds the given bound or if the minimum makespan foundrszafanot be improved.
In contrast to HEFT-Relax, this algorithm relaxes a pairtafies at each step. Therefore,
there is more room for the HEFT algorithm to improve the cotrrechedule while the
resulting migration cost of this algorithm may be higher. the worst case when the
migration cost bound is infinite, the algorithm terminatésrafinding for each stage the
best stage to relax in pair, therefore the complexity of tgerithm isO(v3ep) for sparse
graphs and)(v°p) for dense graphs.

55

4.5 Implementation Details

We implemented placement functionality as an extensioh@ystem described in Sec-
tion 4.1 A placement manager runs within a management processdahéigares and
launches applications. As such, the execution time of thegvhent algorithms is not
directly noticeable by the user.

The placement manager runs periodically, where the inteaaconfigurable param-
eter with a default of two seconds. During each iteratior, glacement manager first
retrieves performance data for each stage from the semnensng the application. This
data is logged by the underlying runtime system, and indudi®rmation such as stage
execution times and input and output data amounts. Thisslated to construct a model
of the running application. The placement manager then HEIT to determine if the
placement can be improved, and if so, whether the neceskanges fall within the mi-
gration bound. If not, it then runs HEFT-Iter.

The resulting changes are effected using the stage migratinztionality provided by
the underlying runtime system. Migrating a stage invola@wating a new instance of the
stage on its destination server, creating connections smiirces and sinks, synchronizing
the transfer of the connections and stage state to the néanges and teardown of the
old instance. Except for state transfer, which occurs betwsage executions, these
operations run in the background while stages continuedowd®. Thus, only the cost of
state transfer is manifest to the application.

Although the state transferred and cost is generally sraallimproved underlying
runtime system employing live state migration with trigggtchange propagation can hide
this latency as well. Implementing such a system is beyoadtope of this paper. In
both the hypothetical and actual systems, it is importamitamize churn, and mitigate
the extra resource consumption of the migrating stages.

4.6 Experimental Setup

In this section we first describe the workloads that we usaimeaperiments, and then
we describe the performance metrics that we report as a mdsalr experiments.

4.6.1 Workloads

We evaluate the incremental placement heuristics destiib&ection4.4 via simula-
tions and real experiments. For the experiments, we usepplkcations presented in
Sectiord. 1 For the simulations, we create a generic model for theskcagipns to do an
extensive performance evaluation with a diverse set of®gited workloads. To ensure
these are realistic, we first model the stage runtime, thedfizhe stage output and the

56

Pose detection TV Control
Model mean std-dev D A2 Model mean std-dev D A?
Stage Runtime [s] | LN(-5.55,2.52) 0.09 _ 2.25 0.09 50.35LN(-7.49,2.38) 0.009 0.16 0.07 24.54
Stage State Size [bytes] U(40.52,62.11) 51.31 6.23 0.27 1117|48(53.75,6.13) 53.75 6.13 0.15 78.05
Stage Output [bytes] |W(2.03E+5,0.26) 3.66E+6 26.85E+6 0.20 288|¥8(9353.5,0.19) 1.64E+6 30E+6 0.24 496.97

Table 4.1: Model Parameters The parameters for the best fitting distributions with
corresponding mean and standard deviation values,/amahd A? statistics that show
how well the model fits the empirical data with the KS and AD dpess of fit tests.
LN(y,02), U(a,b), N@,0%), and W@\, k) stand for the LogNormal, Uniform, Normal, and
Weibull distributions, respectively.

size of the stage state data (for modeling the migration) dostall stages of the pose
detection and the TV control applications (Sectibf). We use the maximum likelihood
estimation method to fit the well-known Log-normal, Par&tejbull, Beta, Gamma, Uni-
form, Normal, and Exponential distributions to empiricaltal collected while running
the applications. Tablé.1 shows the parameters for the best fitting distributionsy the
corresponding means and standard deviation valuesDaadd A? statistics that show
how well the model fits, as assessed with the Kolmogorov4smi(KS) and Anderson-
Darling (AD) tests with a significance level 6f05. SmallerD and A? values denote a
better fit. As the two models are similar, for simplicity, welp use the pose detection
model parameters in our simulations. Finally, to model akea on different processors,
we scale the stage runtime by the ratio of the processor chiek.

We then synthesize application graphs composed of a desivetber of the
realistically-modeled stages using a custom graph gemerdte start generating a ran-
dom graph with a single root stage and continue with the Wilig operations until the
graph has the specified number of stages:

¢ \ertical split operation adds a single child to a stage. A uniform random value is

generated in the range [0,1], and a stage is split vertidalthe generated value is
less than the vertical split probability parameter,

e Horizontal split operation adds several children to a stage, and a stage that is

a child of all these children stages. A uniform random vakigenerated in the

range [0,1], and a stage is split horizontally if the gerestatalue is less than the
horizontal split probability parametér, The number of children added is a uniform
random value in the range [f], where f is the maximum horizontal split fanout
parameter.

After vertical and horizontal split operations are perfetnthe stages without chil-
dren are terminated with a single exit stage. The reasonvhaste horizontal and vertical
split operations instead of well-known random graph motikésErdos-Rényi 76| is to
create subgraphs that model data parallel instances impgdéications well. In our per-
formance evaluation, we use random graphs comprising 2Q.@Dor 200 stages, with

57

25 instances of each size. Unless otherwise stated, we #s@.3 andh = 0.3, but we
also evaluate the impact of the parameteasmidh on the performance of the heuristics in
Sectiord.7.1 Finally, for the maximum horizontal split fanout paranrete use a value
of 5 which we think is representative of our real perception @ppibns. We note that our
synthetic workloads have stage characteristics closeoetbf the real applications, but
have generally much larger and more varied applicationtgraghich results in much
longer makespans than the two real applications.

4.6.2 Performance Metrics

We evaluate both the quality of the schedules calculatetideuristics and the runtime
of these heuristics. To this end, we use the following metric

e Runtime [ps/ms]: The time it takes for a heuristic to schedule a given appboat
graph.

e Makespan [ms]: Total time from the start of the root stage to the end of thé exi
stage of the graph for a single frame. Makespan is also chkdtedcy or schedule
length.

e Migration Cost[ms]: The time it takes to migrate a stage from its current progesso
to a new processor. The migration cost includes the time € Rnd the time it
takes to transfer the stage’s state to the new processor.

In our experiments, we report the averages for these peafiocenmetrics calculated over
all input graph instances.

4.6.3 Testbed

We run both the simulations and the real system experimentshe Open Cirrus
testbed 17]. For the simulations (Sectioh7), we use a machine with 8 GB main mem-
ory and with an Inté? Xeor® 8-core CPU running at 2.8 GHz. We simulate cluster
topologies having a specified number of processors eachansihgle core and with a
random clock frequency in the range [1.6-3.6] Ghz to modeltthterogeneity. In ad-
dition, to model the cluster that we use in the real systeneexgents, we simulate a
cluster where machines are connected with 1 Gbps Ethemet liFor the real system
experiments (Section.8), we use a cluster of 15 processing nodes in the Open Cirrus
testbed connected via a 1 Gbps Ethernet switch. Each notle tiuster has 8 GB main
memory and an Intél Xeorf® 8-core CPU running at 2.8 GHz. Note that we use physical
machines, not virtual machine instances that are typicelgd on Open Cirrus.

58

4.7 Simulation Results

In this section we investigate the performance of the inemal heuristics of Sectioh4

with simulations. First, we evaluate the makespans of sadeedoroduced by the in-
cremental heuristics using diverse workloads and undéerdiit perturbation scenarios.
Then, we evaluate the runtimes and scalability of the HEgorathm and our incremen-
tal heuristics. As we will see, the makespans obtained wittheuristics are very similar
to those obtained with plain HEFT, but the migration costaspymuch lower as desired,
which comes at the price of much longer runtimes of the hecsisompared to HEFT.

4.7.1 Application Latency

We first evaluate the quality of the schedules, in terms of@spén, the incremental
heuristics calculate. To this end, after the initial plaeeis done with HEFT, we eval-
uate the incremental placement heuristics in the threeiation scenarios described in
Sectiord.3.2 which we model in the following way:

e Perturb a random stage: We increase the runtime of a random stage by a random
factor which is uniformly distributed betweérand10. This uniform random factor
is observed in real perception applications where the matf stages may change
significantly during execution due to changes of the inpuada the values of
tunable parameters.

e Perturb a random processor: We perturb all stages on a random processor, and
we increase the execution time of all stages on that procéysa random factor
which is uniformly distributed betweehand10. This perturbation corresponds to
the introduction of background load on the processor.

e Add a new data parallel stage instance to the graphWe add a new data parallel
instance of a stage to an application during execution. Thange occurs as a
result of setting a tunable parameter.

To assess the quality of the schedules that the incremdgtaitams calculate, we
compare the makespan of these schedules withsalinemakespan, which we calculate
by rerunning the HEFT algorithm on the updated graph. Forsimulations we use
general random graphs created using the generator desaniBectior4.6.1which may
have significantly different sizes and structures thandludseal perception applications.
Therefore, our goal with the simulations is to assess thditgud the heuristics with
diverse abstract graphs rather than meeting the latenegibl@s stated in SectighL

Perturb a random stage: small-scale settings

Figure4.2shows the results of the simulations with relatively snsalide settings: graphs
having 20, 50 or 100 stages, and a cluster of 16 processoese Hne three horizontal

59

3000 — 9 5500 576
o 5000 [@
g 2500 ¢ g 4500 &
c < 4000 t
8 2000 B\ g B\\ PP
2 2 .. U SN 2, S 2, O @ 3500 e~ M e T a1 B
~ HEFT-MS —B ~ | HEFT-MS —B—
g 1500 r HEFT-lter —%— g 3000 HEFT-lter —>¢—
HEFT-Relax —6— 2500 | HEFT-Relax —&
HEFT-DRelax HEFT-DRelax
1000 ——— == : 2000 -—or——
50 100 200 300 400 500 o 50 100 200 300 400 500
Migration Cost Bound [ms] Migration Cost Bound [ms]
(a) 20 Stages (b) 50 Stages
8500 — 2100
8000 =<
g 7500 .
= 7000 ¢
q 6500 | » RS
& o000 b ===
©
S 5500 ¢ HEFT-lter —>%—
5000 HEFT-Relax —6—
HEFT-DRelax
4500 — : :

50 100 200 300 400 500 o
Migration Cost Bound [ms]

(c) 100 Stages

Figure 4.2: Makespan for the simulations with various graj#tes and 16 processors.
Horizontal lines: makespan without adjustment (top), wighunning HEFT (middle),
and the initial makespan (bottom). \ertical lines: migvatcosts of rerunning HEFT —
150 ms (a), 576 ms (b), and 2100 ms (c).

lines in the graph. The top line is the makespan without aadjest, that is, we let the
application run after a perturbation and do not re-placetages to other processors. The
middle line is the makespan obtained by rerunning the HEE®rédhm on the updated
graph (the baseline). Finally, the bottom horizontal li¢he initial makespan, which is
the makespan before perturbation.

For 20 stages (Figur.2 (a)), the incremental heuristics perform similarly; theye
verge to the baseline relatively fast when the migration boand is 100 ms. We observe
30% improvement with the incremental heuristics (doinguatipent) compared to the
case without adjustmenit is worth adjusting the scheduld-or this experiment, rerun-
ning HEFT has an average migration cost of 150 ms, and alistes converge to the
baseline solution with a migration cost of 100 ms, therefoaeing less migration (churn)
compared to rerunning HEFT.

For 50 stages (Figur¢.2 (b)), similar to the results with 20 stages, we observe 31%
improvement with adjustment over the case without adjgsie schedule. For this ex-

60

periment, none of the heuristics converge to the baselilgico, however all heuristics
are less than 1% off the baseline solution when migratioh lmesnd is 500 ms causing
less churn than rerunning HEFT, which has a cost of 576 ms. nVitie migration cost
bound is 100 ms, all heuristic are less than 2% off the baseaolution: incremental
heuristics provide roughly the baseline makespan withitsagmtly lower (80%) migra-

tion costs than rerunning HEFT. This result shows how wadliticremental heuristics
address the trade-off between the cost of migration andethdting makespan.

For 100 stages (Figur.2 (c)), although HEFT-Relax and HEFT-DRelax both con-
verge to the baseline solution, HEFT-DRelax performs siygbetter when the migration
cost bound is larger than 200 ms. HEFT-Iter performs shgltl3) better than HEFT-MS,
and they both do not converge to the baseline solution. Tasorewhy these heuristics
do not converge to the baseline solution is that all heggstake locally optimum de-
cisions, and they do not consider all permutations of mothesefore they may not be
able to find the global optimum solution. So, the resultingestules can be far from the
global optimum schedule. Nevertheless, HEFT-Iter and HEISTare slightly off the
baseline when the migration cost bound is infinite; by 1% a¥drspectively. Although
HEFT-Iter is slightly off the baseline when migration costind is infinite, it performs
the best for other migration cost bounds. For this expertintba average migration cost
for rerunning the HEFT algorithm is around 2100 ms. HEFTaReind HEFT-DRelax,
which converge to the baseline solution, have a migratiat 62014 ms and 2420 ms,
respectively. However, HEFT-Iter is only 1% off the baselsolution with a migration
cost of only 400 ms causing significantly less churn in theéesys

Perturb a random stage: large-scale settings

Figure4.3shows the results of the simulations with relatively lasgale settings; graphs
having 100 stages and for various cluster sizes. For 32 gsoce (Figurel.3(a)), incre-
mental heuristics perform similarly; all heuristics corgeto the baseline solution when
the migration cost bound is 200 ms. For this experiment,sdutjg the schedule improves
the makespan around 12% over the case without adjustmatheFmore, average migra-
tion cost of rerunning HEFT is 1803 ms while HEFT-MS is lesmtli% off the baseline
with only 80 ms of migration. Similarly, HEFT-Relax and HElPRelax converge to the
baseline solution with roughly 150 ms of migration, therefeignificantly reducing the
churn in the system. However, HEFT-Iter converges to thelb@assolution with 250 ms
of migration which is larger than the other heuristics. Téason is that, HEFT-Iter may
perform many migrations for very slight makespan improvetaéncreasing the result-
ing migration cost. For 64 processors (Figdt8 (b)), rerunning HEFT has a migration
cost of 2600 ms while HEFT-Relax and HEFT-DRelax provideshme makespan with
a migration cost of less than 600 ms. Similar to other expenits) it is worth adjusting

61

5500 1803 8000 2600
— __ 7500
@ Q) HEFT-MS —H—
E 5000 ¢ '&\ E, 7000 | HEFT-lter —>—
c c HEFT-Relax —&—
§ e e § 6500 | Q HEFT-DRelax
] HEFT-MS —H— @
S 4900 [HEFTHer —x— & 6000 .
= HEFT-Relax —6— = BEQQ [R R A e
HEFT-DRelax
4000 L 5000
50 100 200 300 400 500 oo 50 100 200 300 400 500 oo
Migration Cost Bound [ms] Migration Cost Bound [ms]
(a) 32 processors (b) 64 processors
8000 1420
7500 &

HEFT-MS —E—

£ 7000 HEFT-lter —%—
c A HEFT-Relax —6—
g 6500 HEFT-DRelax
@ 6000 |
S 5500
=
5000 | ot

4500

50 100 200 300 400 500 o
Migration Cost Bound [ms]

(c) 128 processors

Figure 4.3: Makespan for the simulations with 100 stagesvandus cluster sizes. Hori-
zontal lines: makespan without adjustment (top), withmerng HEFT (middle), and the
initial makespan (bottom). Vertical lines: migration cost rerunning HEFT — 1803 ms
(@), 2600 ms (b), and 1420 ms (c).

the schedule since adjustment improves the makespan a2@dadompared to the case
without adjusting the schedule. Although, HEFT-Iter igbtly off the baseline solu-
tion (1%) for infinite migration cost bound, it performs thes for other migration cost
bounds. Finally, for 128 processors (Figdr8(c)), none of the heuristics converge to the
baseline solution; all heuristics are less than 2% off theeldae. For this scenario, rerun-
ning HEFT has an average migration cost of 1420 ms while HE&Tand HEFT-MS are
less than 2% off the baseline solution with 130 ms and 60 msigfation, respectively.
We conclude that incremental heuristics significantly iayerthe makespan compared to
the case without adjusting the schedule while reducingeakelting churn noticeably.

Perturb a random stage: workload parameters

Figure 4.4 shows the results of the simulations with different comroation to com-
putation ratios (CCR). Communication to computation raiohe ratio of the average
communication cost of a graph to its average computation @okow CCR for a graph

62

4000 970 5500 857
Q HEFT-MS —H&—
— HEFT-lter —%— _ 5000 | € HEFT-MS —E—
» 3500 HEFT-Relax —6— [7) HEFT-lter —>%—
£ HEFT-DRelax E 4500 - HEFT-Relax —6—
% oy P -~ . o % HEFT-DRelax
o 3000 f [e B B o 4000 f
(7] (7]
£ £ 3500 |
© ©
S 2500 ¢ =
2000 oL 2500
50 100 200 300 400 500 o 50 100 200 300 400 500 o
Migration Cost Bound [ms] Migration Cost Bound [ms]
@ CCR=04 (b)) CCR=1.6
5500 580
__ 5000 HEFT-MS —&—
2 HEFT-lter —%—
= 4500 | HEFT-Relax —O—
§ 4000 ¢ HEFT-DRelax
£ 3500 L e—p—a o aola.
=
3000
2500

50 100 200 300 400 500 o
Migration Cost Bound [ms]

(c) CCR=24

Figure 4.4: Makespan for the simulations with 50 stages r82gssors, and various com-
munication to computation ratios (CCRs). Horizontal linesakespan without adjust-
ment (top), with rerunning HEFT (middle), and the initial kegpan (bottom). Vertical

lines: migration costs of rerunning HEFT — 570 ms (a), 857 Imsgnd 580 ms (c).

indicates that the application is compute intensive. Tdqgoer simulations with differ-
ent CCR values, we artificially scaled the communicatiorunesments of the stages for
which we use the statistical model that we describe in Seeti6. Heuristics perform
similar to other scenarios across difference CCR valugsstdg the schedule with the
incremental placement heuristics improves the makesp&1 %y, 42% and 31% for in-
creasing CCR values of 0.4, 1.6, and 2.4, respectively. thitiad, for all CCR values,
heuristics are less than 2% off the baseline when they doamerge to the baseline so-
lution. Moreover, HEFT-Iter is able to find schedules thatlass than 2% off the baseline
solution with significant improvements in churn, as much @7

Finally, Figured4.5shows the results of the simulations when using differenzbatal
and vertical split probabilities for generating the randgraphs (see Sectioh6.1). A
higher vertical split probability means less degree of liam and a smaller branching
factor for a graph. For highei values, since the degree of parallelism increases the

63

4500 490 4500 664

HEFT-MS —H—

— 4000 f HEFT-MS —FH— — 4000 " HEFT-lter —>%—

é o HEFT-lter —%— ﬁ o HEFT-Relax —&—

c 3500 | HEFT-Relax —O6— - 3500 | HEFT-DRelax

g B\HEFT-DReIax g

& 3000 | TN T - W - 8 3000 | Do

© ©

= 2500 = 2500

2000 2000

50 100 200 300 400 500 o 50 100 200 300 400 500 o
Migration Cost Bound [ms] Migration Cost Bound [ms]

@ov=01nh=07 (b) v=0.7,h = 0.1

Figure 4.5: Makespan for the simulations with 50 stages, 1@2gssors, and various
horizontal and vertical split probabilities. Horizontadds: makespan without adjustment
(top), with rerunning HEFT (middle), and the initial makagp(bottom). Vertical lines:
migration costs of rerunning HEFT — 490 ms (a) and 664 ms (b).

resulting makespan decreases. The initial makespan velussth scenarios are close
but not identical; the initial makespan for= 0.1 andh = 0.7 is 2499 ms, and for
v = 0.7 andh = 0.1 the initial makespan is 2513 ms. For= 0.7 andh = 0.1, adjusting
the schedule with the incremental placement heuristicsongs the makespan by 34%
and the improvement is 27% fer= 0.1 andh = 0.7. For higherh values, heuristics
perform similarly, and for loweh values HEFT-Iter and HEFT-DRelax perform slightly
better, and converge to the baseline solution eventualiewtEFT-MS and HEFT-Relax
are slightly off the baseline solution (1%). We concludet thithough different graph
structures have an impact on the convergence speed andgteedd parallelism of the
graph, the behavior of the heuristics are similar to theraghenarios that we investigate.

Perturb a random processor

Figure4.6(a) shows the makespan for the simulations with graphs efsizstages and a
cluster of 32 processors where a random processor is peduithe top horizontal line
shows the makespan without adapting the schedule. Sindaitia¢ makespan and the
makespan calculated with HEFT are very close, they are aweihg and shown as a sin-
gle horizontal line at the bottom. For this experiment, Hyets were affected on average
after the perturbation which in turn increases the makespte application significantly.
In addition, affecting the execution of many stages ina@sdlke chances of the heuristics
to perform better adaptation. Therefore, adapting thedidbeafter perturbation improves
the makespan noticeably, by roughly 50%, over the case wutitaaptation. We observe
that for small migration costs HEFT-Relax and HEFT-DRelakusons are close to the
case without adaptation. However, these two heuristicalalesto improve their solutions

64

681

6000 4610
E E
c 4000 | c o = = = B
g S 4600 | \ -
@ 3000 L ~ 4 T
© HEFT-MS —E— - © HEFT S @
= 2000 | HEFT-ter —X— = HEFT-lter ——
HE::E:BEe:aX —— HEFT-Relax —©—
1000 Lo wmeax T, 4590 _HEFT-DRelax R
50 100 200 300 400 500 o 50 100 200 300 400 500
Migration Cost Bound [ms] Migration Cost Bound [ms]
(a) Perturb a random processor (b) Add a data parallel stage instance to the
graph

Figure 4.6: Makespan for the simulations with 50 stages @pr8cessors where a ran-
dom processor is perturbed (a) and a data parallel instdracstage is added to the graph
(b). For the graph on the left, horizontal lines: makespahavit adjustment (top), and
the makespan with rerunning HEFT and the initial makespatidn). Rerunning HEFT
has a migration cost of 1197 ms (vertical line). For the graphhe right, the horizontal
line shows the makespan obtained with rerunning the HEFarihgn which has a mi-
gration cost of 681 ms (vertical line). The initial makesgdn55 ms) is not shown for
better visibility.

with increasing migration costs. Eventually, all heudstbut HEFT-MS converge to the
baseline solution while HEFT-MS is 46% off the baseline siflEFT-MS is not able to
adapt the schedule even with increasing migration costdsudther heuristics are able
to achieve the baseline performance with smaller migratimsts compared to the case
with rerunning the HEFT algorithm. In particular, for thigperiment rerunning HEFT
has a migration cost of 1197 ms, and HEFT-Iter achieves time ggerformance with a
migration cost of 689 ms reducing the churn in the system 8%.42

Add a data parallel stage instance to the graph

Figure4.6(b) shows the makespan for the simulations with graphs ef Szstages and
a cluster of 32 processors where a new data parallel instErgestage is added to the
graph during execution. For this scenario there is not awébeut adjustment since the
new data parallel instance must be placed and scheduledditicsm, we do not show the
initial makespan for better visibility since the initial kespan is 4755 ms. We show the
makespan calculated by rerunning HEFT as a horizontaltitiea graph. We observe that
the makespan that we obtain after rerunning the HEFT alguris less than the initial
makespan, as expected, since when a new data paralleldastba stage is added, the
same amount of data is processed by more stage instancdsnetiicces the latency. For

65

108 - 108 10°
Z 108 1 E1o® 2108
@ | 5 il i
£ 10 . - | ‘ £ 10t £ 10 —
€ | N N . | £ £ \ y
g 10° i I I g 10° 210 14
g1 | § 10? § 10° =
2 10 210 g 1o é
< J < Ny \ \] <
100 | i i \ | 100 i | | | 100 N y \ ¥ i
8 16 32 64 128 256 512 8 16 32 64 128 256 512 8 16 32 64 128 256 512
Number of Processors Number of Processors Number of Processors
(@) HEFT (b) HEFT-MS (c) HEFT-Iter
10° 108
g 10° £ 10°
20 Stages £ E
— o [}
50 Stages SRS £ 10* E 10 4
S 108 S 108 A i
100 Stages g 10 & 10) !
oo S 10 S 10? i
200 Stages i 5 5 \
2 10 2 10’
< i B
10° - 10° - o
8 16 32 64 128 256 512 8 16 32 64 128 256 512
Number of Processors Number of Processors
(d) HEFT-Relax (e) HEFT-DRelax

Figure 4.7: Average runtime of the HEFT algorithm and theeneental heuristics with
graphs and clusters of different sizes. The vertical axssehlagarithmic scale.

this scenario, rerunning HEFT has a migration cost of 681 masadl heuristics except
HEFT-MS converge to the baseline solution; HEFT-Iter witimegration cost of 185
ms and HEFT-DRelax and HEFT-Relax with a migration cost d &% reducing the
resulting churn in the system. When the migration cost baandfinite, HEFT-MS is
roughly 1% off the baseline solution with a migration cosbaofy 42 ms. In addition, for
this scenario HEFT-MS is not able to improve the scheduldasrtigration cost bound
increases which shows that for some scenarios HEFT-MS ssgdod as other heuristics
at adjusting the schedule while it is good at minimizing thara in the system.

4.7.2 Algorithm Scalability

Before evaluating the runtime of the heuristics, we firsfipgd and manually optimized
our code, then we used th@3 flag of theg++ compiler for further compiler optimiza-
tions. During this analysis we set the migration cost bounidfinity to characterize the
worst case performance of the heuristics.

Figure4.7(a) shows the runtime of the HEFT algorithm, which is in mggoonds,
and Figuret.7(b-e) show the runtimes of the incremental heuristics, tvaie in millisec-
onds. Note that even though HEFT may be much faster than tihenrental placement
heuristics, it may result in very much churn, that is, it magagly exceed the migration
cost bound.

The runtimes of all heuristics increase with the increasiag of the graphs and the
clusters, as expected. Since the graphs in our workloadpamses we expect the com-

66

plexity of HEFT to beO(ep) wheree is the number of edges andis the number of
processors. For graphs of the same size and for clusterdferfedit sizes, the runtime
of the HEFT algorithm increases roughly linearly with thamher of processors (Fig-
ure4.7(a)). For clusters of the same size and for graphs with @diffesizes, the runtime
of the HEFT algorithm increases roughly proportional torthenber of edges as the graph
size increases. Even for graphs having 200 stages and arabfi§12 processors, HEFT
has a runtime of less than 600 ms, which is evidence of howlisedicheduling heuristics
scale.

Among the incremental heuristics, HEFT-Relax is the leastutationally complex.
For 20 stages, the runtime is not visible until 32 processorse it is in the order of
microseconds. Even for graphs of size 200 and a cluster Wwi#ilpPocessors, the runtime
of HEFT-Relax is below 650 ms, making this heuristic an id=aldidate for large-scale
settings. Finally, for graphs of size 200 and a cluster lga%ih2 processors, the HEFT-
Relax runtime exceeds 1 s only slightly.

Compared to the other heuristics, HEFT-MS is less costly thaFT-Iter and HEFT-
DRelax, and more costly than HEFT-Relax for both small amgdayraphs and clusters
(Figure4.7(b)). For graphs having fewer than 100 stages, the HEFT-M8me is in the
order of hundreds of milliseconds (less than 750 ms) exaefhe case when the cluster
has 512 processors. For larger graphs and clusters havirgthren 64 processors, the
runtime of HEFT-MS is in the order of seconds.

For graphs having fewer than 100 stages and clusters hasivgy than 256 proces-
sors, the HEFT-Iter runtime is in the order of hundreds ofisgatonds (less than 950 ms),
however, increasing the scale further increases the rentausing it to be in the order
of seconds (Figuré.7(c)).

For graphs having fewer than 100 stages, HEFT-DRelax andTHEeF have similar
performance (Figurd.7(e)). However, for larger graphs and especially for largestrs,
with more than 128 processors, HEFT-DRelax is more costy tHEFT-Iter, and the
difference in cost increases as the cluster size increBseswse until the migration cost
bound is exceeded HEFT-DRelax relaxes a pair of stages s\HlEEFT run through all
processors tplace and schedulthese stages. However, HEFT-Iter when searching the
best swap operations, which dominates the runtime for @ latgnber of stages, calls
HEFT with stages already placed and HEFT ostheduleghose stages. For graphs
having more than 100 stages, both HEFT-Iter and HEFT-DRelay have significant
costs in the order of tens of seconds.

To conclude, HEFT-Relax has the best performance for botilsand large-scale
settings. For small-scale settings, all heuristics perfarell (with runtimes in the order
of at most hundreds of milliseconds). However, for largalssetting, that is, graphs
having more than 50 stages and clusters having more thanogégsors, all heuristics
may have runtimes in the order of seconds. It is importanbte that these runtimes are

67

100 100 P—
90 s 90 —
80 // e 80 S~
70 / 70
< 60 / X 60
L 50 : L 50 j
O 40 O 40 /
30 / 30
20 ; 20
10 / < with Adaptation 10 /
0). without Adaptation ------- 0 p)
0 100 200 300 400 500 600 0 20 40 60 80 100120 140 160 180 200
Makespan [ms] Migration Cost [ms]

Figure 4.8: Cumulative distribution function (CDF) of thekespan (left) and migration
cost (right) for the real system experiments with the posedai®n application. The
migration cost bound is 200 ms.

100 100
90 // 90 -
80 ¢ 80 r
70 / 70 /
g 60 / g 60 /
LDI_ 50 / LQL 50
O 40 / O 40
30 30
20 / 20 /
10 < with Adaptation 10 /
0 _J _ without Adaptation ------: 0 —
100 200 300 400 500 600 700 0 20 40 60 80 100
Makespan [ms] Migration Cost [ms]

Figure 4.9: Cumulative distribution function (CDF) of theakespan (left) and migra-
tion cost (right) for the real system experiments with the dantrol application. The
migration cost bound is 200 ms.

for the worst case when the migration cost bound is infinite.

4.8 Results in a Real System

In this section we evaluate incremental placement usingtse detection and the TV
control applications presented in Sectibid. We run two experiments for each applica-
tion. In the first, the placement is adapted as described a¢tidde4.5, and in the sec-
ond, the placement is static. Our setup measures and retbardger-frame) latency (or
makespan) as the time elapsed between the arrival of a new fridme and the comple-
tion of the final processing stage for that frame on a framéréayne basis. The applica-
tions run until all input frames have been processed, andrasudt of our experiments,
we report the distributions of the makespan with and withieectemental placement, and
the distribution of the migration cost.
Figure 4.8 shows the results of the experiments with the pose deteapplication

68

with a migration cost bound of 200 ms. The application wadigoned with 53 stages,
each with a demand of 1. For this experiment, as input to tipdicgtion we use a HD
(1280x720 pixels) video sequence comprising 3600 framdse video starts with an
empty scene which is slowly populated with many objects, thied the objects are re-
moved. Therefore, both the number of SIFT features and moaéthing operations
increase over time putting more load on the system. Thistidpta creates a scenario
where the stages, which have runtimes strictly dependintherstructure of the input
data, get perturbed as the complexity of the input changgsré4.8(left) shows that the
system without adaptation has a median (maximum) makesipab50(578) ms, while
with adaptation the median (maximum) latency is 211 (519)wisch is an 18% (10%)
improvement, thus noticeably improving the system’s respeness. For this experi-
ment, the median migration cost is 37 ms, which is 19% of thgration cost bound.

Figure4.9 shows the results of the experiments with the TV control igppbn with
a migration cost bound of 200 ms. The application was cordigjwith 32 stages, each
with a demand of 1. For this experiment, we evaluate the saemasio as the previous
experiment with an input video where a user performs speg#stures. However, com-
pared to the previous experiment the input video has lowealiity. Even with lower
input variability, the median (maximum) latency with adatpin is 239 (374) ms, while
without adaptation the median (maximum) latency is 374 &3&which is a 36% (38%)
improvement, thus improving the system responsivenessfis@ntly. For this experi-
ment, the median migration cost is 43 ms, which is 22% of thgration cost bound. We
conclude that adaptation is able to improve the makespaifisantly while causing little
churn in the system.

Using our incremental placement heuristics with two reatggtion applications we
have demonstrated significant improvements in median dgtby up to 36%, and the
application latencies are relatively close to the latengyear bound of 200 ms stated in
the Introduction. However, neither application achieves desired 50—-100 ms latency
specified. This may be remedied by using techniques sucméimiadaptation of stage
tunable parameters, increasing the degree of parallelising more powerful resources,
and scaling down the input frames, but these technique®arplementary to and outside
the scope of this paper.

4.9 Related Work

The problem of mapping task graphs to multiprocessors has baudied extensively
(see [L2§ for a survey). The problem is NP-complete even in the cageofprocessors
and non-uniform execution time84]. As the related efforts, particularly in the real-time
systems and multimedia processing communities, are toeraum to list, we consider
here only those that make assumptions most consistent withplication model and

69

execution environment: task precedence graphs with arpigxecution times and com-
munication costs, no task duplication, and a bounded nuwfidfatly connected, hetero-
geneous processors. Of these assumptions, heterogentkieymost restrictive.

Static task scheduling algorithms that satisfy these apsans fall into three cate-
gories: optimal approachetg2, guided random search based algorithms such as genetic
algorithms and simulated annealintf[7, 186, 189, 210, and heuristics. In our system,
task placement is run repeatedly over a dynamic task grapkffisient run times are
essential. For this reason, heuristics are the more pahejproach in our environment.

Clustering heuristicsq1] assign tasks to an unbounded set of clusters. Tasks be-
longing to the same cluster execute on the same procesamte@ are merged at each
iteration, often by decreasing amount of inter-task comigation. A final mapping step
assigns clusters to processors, and then orders the taslachrprocessor. A practical
issue with clustering algorithms is ensuring that the t@sgimapping satisfies machine
resource constraints.

List scheduling heuristic2p, 73,112, 178 188 207 maintain a list of tasks ordered
by a ranking function, or priority. Tasks are mapped to akdé processors in this order
according to a cost function, such as the earliest start tifriee task. As discussed in
Section4.2, HEFT [207 produces competitive schedules with low computationah-co
plexity.

Because task execution times and data amounts may not benkanpviori, and may
change over time, recent approaches adjust task assigaohgramically based on em-
pirical measurements. Kwok et alld9 use a semi-static method that creates a set of
assignments offline using a genetic algorithm, and thercseetween the pre-computed
assignments online based on observed performance. Indasskaduling138 179, an
initial schedule is generated for the task graph; as taskeplaie, their runtime informa-
tion is used to improve the schedule for the remaining taBk&s scheme is intended for
applications in which the tasks execute once, unlike in onirenment where the tasks
execute repeatedly over a stream of data.

Dynamic adjustment of task or workload placement with caststraints has been
studied in related problems. Aggarwal et d@l.jprovide a 1.5-approximation algorithm for
load rebalancing with a cost constraint for multiprocesstreduling without precedence
constraints. Chen et a44] propose an an algorithm that minimizes migration cost for
independent tasks in a computing grid subject to load cammgs. Their algorithm is a
local search with special strategies for finding low costiBohs. Tang et al. 97 propose
an algorithm that dynamically determines the number ofimsts of web applications to
run on a set of machines. Unlike multiprocessor scheduliitig precedence constraints,
the problem is formulated as a knapsack problem, with oivgsthat include maximizing
the demand satisfied and minimizing changes to the runnistgsy

70

4,10 Summary

To achieve low latency for interactive perception applaag, clusters of machines can
be used to exploit the inherent parallelism in these apjptina. In this chapter we have
addressed the problem of placing the stages of these afmtis@n clusters of machines.
In particular, we have tackled the incremental placemeolblpm of adjusting an initial
placement to minimize the makespan subject to migratiohcmsstraints.

We have proposed four heuristics for incremental placenentcover a broad range
of tradeoffs of computational complexity, churn in the gaent, and ultimate improve-
ment in makespan. HEFT-MS is good at minimizing the churr,nai as good as the
others at adjusting the schedule. Although HEFT-Iter andFHERelax are computa-
tionally complex, they perform well at improving the scheguwvith increasing migration
cost bounds they can significantly improve the makespan. THE#ax performs in be-
tween; itis computationally less complex, performs bdttan HEFT-MS at adjusting the
schedule, but produces more churn in the system.

Through simulations and real system experiments we hawerstiat it is worth ad-
justing the schedule using our incremental placement sesi A broad range of simula-
tions show up to 50% improvement in makespan, and experswattt two applications
on a real system demonstrate 18% (10%) and 36% (38%) imp&vsrim median (maxi-
mum) makespan, respectively. In addition, we have showtrotlvancremental heuristics
can approach the improvements achieved by completely margra static placement al-
gorithm, but with lower migration costs and churn in the shiiie.

Chapter 5

Performance evaluation of public
clouds’

Scientific computing requires an ever-increasing numbeesburces to deliver results
for ever-growing problem sizes in a reasonable time framehé last decade, while the
largest research projects were able to afford (access p@nswe supercomputers, many
projects were forced to opt for cheaper resources such amodity clusters and grids.
Cloud computing proposes an alternative in which resouacesno longer hosted by
the researchers’ computational facilities, but are ledisad big data centers only when
needed. Despite the existence of several cloud computfegrags by vendors such as
Amazon [L2] and GoGrid B7], the potential of clouds for scientific computing remains
largely unexplored. To address this issue, in this chapéeprgsent a performance anal-
ysis of cloud computing services for scientific computing.

The cloud computing paradigm holds great promise for théopmance-hungry sci-
entific computing community: Clouds can be a cheap altereati supercomputers and
specialized clusters, a much more reliable platform thasgand a much more scalable
platform than the largest of commodity clusters. Clouds al®mise to “scale by credit
card,” that is, to scale up instantly and temporarily witthia limitations imposed only by
the available financial resources, as opposed to the phyisitations of adding nodes
to clusters or even supercomputers and to the adminisrativden of overprovisioning
resources. However, clouds also raise important chalkeimgeany aspects of scientific
computing, including performance, which is the focus o tthapter.

There are three main differences between scientific comguibrkloads and the ini-
tial target workload of clouds: in required system size, enfprmance demand, and in
the job execution model. Size-wise, top scientific compmufiacilities comprise very

*This chapter is based on previous work published il EteE Transactions on Parallel and Distributed
System§$109, the International Conference on Cloud Computif@oudComp’09) 162, and thelnterna-
tional Workshop on Cloud Computiri@loud’09) [22§.

72

large systems, with the top ten entries in the Top500 Supgvaters List together total-
ing about one million cores as of 2009, while cloud compusegvices were designed
to replace the small-to-medium size enterprise data cenarformance-wise, scientific
workloads often require High Performance Computing (HPGJigh-Throughput Com-
puting (HTC) capabilities. The job execution model of stigmcomputing platforms is
based on the exclusive, space-shared usage of resourcesnttast, most clouds time-
share resources and use virtualization to abstract away fhe actual hardware, thus
increasing the concurrency of users but potentially lomgethe attainable performance.

These three main differences between scientific computioklaads and the tar-
get workloads of clouds raise an important research quest® the performance of
clouds sufficient for scientific computing@, in other wordsCan current clouds exe-
cute scientific workloads with similar performance (thatfar traditional performance
metrics [79]) and at lower cost?Though early attempts to characterize clouds and other
virtualized services existBl, 63, 163 208 211], this question remains largely unex-
plored. In this chapter, to answer this research questish fie evaluate with well-
known micro-benchmarks and application kernels the pevémce of four commercial
cloud computing services that can be used for scientific edimg, among which the
Amazon Elastic Compute Cloud (EC2), the largest commecaiaiputing cloud in pro-
duction. Then, we compare the performance of clouds withdhacientific computing
alternatives such as grids and parallel production infuatires. Our comparison uses
trace-based simulation and the empirical performancdtsestiour cloud performance
evaluation. We also perform a preliminary assessment ghén®rmance consistency of
these four public clouds. However, our assessment onlyiderssthe performance con-
sistency of repeated benchmark executions over shortggeabtime and with low-level
operations, such as floating point additions or memory vedtes, thus motivating us to
explore the performance variability in depth in the nextatea

The rest of this chapter is organized as follows. In Secldnwe give a general
introduction to the use of cloud computing services for rsifie computing, and select
four exemplary clouds for use in our investigation. ThenSkerction5.2 we evaluate
empirically the performance of four commercial clouds. bron5.3we compare the
performance of clouds and of other scientific computing mmments. Finally, we com-
pare our investigation with related work in Sectod, and we summarize the chapter in
Section5.5.

5.1 Cloud Computing Services for Scientific Computing

In this section we provide a background to analyzing thegoerénce of cloud comput-
ing services for scientific computing. We first describe th@mtharacteristics of the
common scientific computing workloads, based on previoukwn analyzing and mod-

73

eling of workload traces taken from PPIE3{] and grids P9, 104. Then, we introduce
the cloud computing services that can be used for scientficpaiting, and select four
commercial clouds whose performance we will evaluate eogily.

5.1.1 Scientific Computing

Job structure and sourcePPI workloads are dominated by parallel job34], while grid
workloads are dominated by small bags-of-tasks (BoTI8Y][and sometimes by small
workflows [201, 160 comprising mostly sequential tasks. Source-wise, it imemn for
PPI grid workloads to be dominated by a small number of users.

Bottleneck resourcesOverall, scientific computing workloads are highly heterog
neous, and can have either one of CPU, 1/0, memory, and rnlegothe bottleneck re-
source. Thus, in Sectidh2we investigate the performance of these individual resesirc

Job parallelism A large majority of the parallel jobs found in published P& nd
grid [104] traces have up to 128 processoit84, 99]. Moreover, the average scientific
cluster size was found to be around 32 nodEE] and to be stable over the past five
years [L0§. Thus, in Sectiorb.2 we look at the the performance of executing parallel
applications of up to 128 processors.

5.1.2 Four Selected Clouds: Amazon EC2, GoGrid, ElasticHos,
and Mosso

We identify three categories of cloud computing servic@29[15]: Infrastructure-as-
a-Service (laaS), that is, raw infrastructure and assetiatiddleware, Platform-as-a-
Service (PaaS), that is, APIs for developing applicationsan abstract platform, and
Software-as-a-Service (SaaS), that is, support for rgnsoftware services remotely.
Many clouds already exist, but not all provide virtualipati or even computing services.
The scientific community has not yet started to adopt Paa%a® Solutions, mainly to
avoid porting legacy applications and for lack of the neesigentific computing services,
respectively. Thus, in this study we are focusing only orSlaeoviders. We also focus
only on public clouds, that is, clouds that are not restdatgthin an enterprise; such
clouds can be used by our target audience, scientists.

Based on our recent survey of the cloud computing providesqg [we have selected
for this work four laaS clouds. The reason for this selectthreefold. First, not all
the clouds on the market are still accepting clients; Flexi& puts new customers on a
waiting list for over two weeks due to system overload. Segamt all the clouds on
the market are large enough to accommodate requests forlévan32 co-allocated re-
sources. Third, our selection already covers a wide ranggiafhtitative and qualitative
cloud characteristics, as summarized in Taldsand our cloud surveylp9, respec-

74

Cores RAM | Archi.| Disk| Cost

Name (ECUs)| [GB] | [bit] | [GB]| [$/h]
Amazon EC2
ml.small 1(1)| 17| 32 160 0.1

ml.large 2(4)| 75| 64 850| 0.4
m1l.xlarge 4(8)| 15.0| 64 |1,690 0.8
cl.medium| 2(5)| 17| 32 350| 0.2
cl.xlarge 8(20)| 7.0| 64 |1,690 0.8

GoGrid (GG)

GG.small 1 1.0 32 60| 0.19
GG.large 1 1.0| 64 60| 0.19
GG.xlarge 3 40| 64 240| 0.76
Elastic Hosts (EH)

EH.small 1 1.0| 32 30| £0.042
EH.large 1 40| 64 30| £0.09
Mosso

Mosso.smal 4 10| 64 40| 0.06
Mosso.large 4 40| 64 160 0.24

Table 5.1: The resource characteristics for the instaruestpffered by the four selected
clouds.

tively. We describe in the following Amazon EC2; the otheetty GoGrid (GG), Elasti-
cHosts (EH), and Mosso, are laaS clouds with provisioniifng, and availability and
performance guarantees similar to Amazon EC2’s.

The Amazon Elastic Computing Cloud (EC2)is an laaS cloud computing service
that opens Amazon’s large computing infrastructure to &srs. The service is elastic
in the sense that it enables the user to extend or shrinkfresstnucture by launching or
terminating new virtual machinemétance¥ The user can use any of tirestance types
currently available on offer, the characteristics and ob#te five instance types available
in June 2009 are summarized in Tabld. An ECU is the equivalent CPU power of a
1.0-1.2 GHz 2007 Opteron or Xeon processor. The theorgieak performance can be
computed for different instances from the ECU definition:. aGHz 2007 Opteron can
perform 4 flops per cycle at full pipeline, which means at ppakormance one ECU
equals 4.4 gigaflops per second (GFLOPS).

To create an infrastructure from EC2 resources, the useifgsethe instance type
and the VM image; the user can specify any VM image previotegdystered with Ama-
zon, including Amazon'’s or the user’s own. Once the VM imags been transparently
deployed on a physical machine (the resource statusisng), the instance is booted; at
the end of the boot process the resource status bedostaied The installed resource
can be used as a regular computing node immediately aftdrabing process has fin-
ished, via arssh connection. A maximum of 20 instances can be used conclytaynt
regular users by default; an application can be made toaserthis limit, but the process

75

involves an Amazon representative. Amazon EC2 abides by\ac8d_evel Agreement
(SLA) in which the user is compensated if the resources aravalable for acquisition
at least 99.95% of the time. The security of the Amazon sesvitas been investigated
elsewhere163.

5.2 Cloud Performance Evaluation

In this section we present an empirical performance evialuatf cloud computing ser-
vices. Toward this end, we run micro-benchmarks and apgpit&ernels typical for
scientific computing on cloud computing resources, and @amphenever possible the
obtained results to the theoretical peak performance attiégperformance of other sci-
entific computing systems.

5.2.1 Method

Our method stems from the traditional system benchmarl®agvedra and Smiti75
have shown that benchmarking the performance of variougsysomponents with a
wide variety of micro-benchmarks and application kernels provide a first order esti-
mate of that system’s performance. Similarly, in this smettive evaluate various com-
ponents of the four clouds introduced in Sectid.2 However, our method is not a
straightforward application of Saavedra and Smith’s meéthimstead, we add a cloud-
specific component, select several benchmarks for a corapsefe platform-independent
evaluation, and focus on metrics specific to large-scaleesys (such as efficiency and
variability).

Cloud-specific evaluationAn attractive promise of clouds is that they can always
provide resources on demand, without additional waitinget[15]. However, since the
load of other large-scale systems varies over time due tmssion patternsi34, 99
we want to investigate if large clouds can indeed bypasspttublem. To this end, one
or more instances of the same instance type are repeatepliyed and released during a
few minutes; the resource acquisition requests follow &$mi process with arrival rate
A= 1s"1.

Infrastructure-agnostic evaluation There currently is no single accepted benchmark
for scientific computing at large-scale. To address thigassve use several traditional
benchmark suites comprising micro-benchmarks and (st@rapplication kernels. We
further design two types of test workloads: Sl-run one orevsingle-process jobs on a
single instance (possibly with multiple cores), and MI—-eusingle multi-process job on
multiple instances. The SI workloads execute in turn onénefLtMbench[142, Bon-
nie [37], and CacheBenchi150 benchmark suites. The MI workloads execute [t#eC
Challenge Benchmark (HPCE).3€ scientific computing benchmark suite. The charac-

76

Type| Suite/Benchmark Resource Unit
Sl |LMbench/all 23 Many Many
Sl | Bonnie/all [L25 20| Disk MBps
Sl | CacheBench/all407] Memory| MBps
Ml |HPCC/HPL [L36 177 CPU | GFLOPS
Ml |HPCC/DGEMM [69] CPU | GFLOPS
Ml | HPCC/STREAM B9 Memory| GBps
MI | HPCC/RandomAcces9]| Network| MUPS
Ml |HPCCb.s(lat.,bw.) 3] | Comm. | us, GBps

Table 5.2: The benchmarks used for cloud performance evatuaB, FLOP, U, and PS
stand for bytes, floating point operations, updates, and¢earnd, respectively.

teristics of the used benchmarks and the mapping to the w&loads are summarized
in Table5.2, we refer to the benchmarks’ references for more details.

Performance metrics We use the performance metrics defined by the benchmarks
presented in Tablé.2 We also define and use t#PL efficiencyof a virtual cluster
based on the instance tygeas the ratio between the HPL benchmark performance of
the real cluster and the peak theoretical performance aha-sazedl-cluster, expressed
as a percentage. Job execution at large-scale often legasfaomance variability. To
address this problem, in this chapter we report not only vieesage performance, but also
the variability of the results.

5.2.2 Experimental Setup

We now describe the experimental setup in which we use thierpggince evaluation
method presented earlier.

Performance Analysis ToolWe have recentlyJ27] extended the GrenchMark(Q(
large-scale distributed testing framework with new feaswwvhich allow it to test cloud
computing infrastructures. The framework was already &bgenerate and submit both
real and synthetic workloads to grids, clusters, cloudd, @her large-scale distributed
environments. For this work, we have added to GrenchMarlahiiy to execute and
analyze the benchmarks described in the previous section.

Environment We perform our measurements on homogeneous virtual emagnts
built from virtual resources belonging to one of the insatypes described in Tabtel,
the used VM images are summarized in Tahi@ The experimental environments com-
prise from 1 to 128 cores. Except for the use of internal IPr@gkks, described below,
we have used in all our experiments the standard configmsapoovided by the cloud.
Due to our choice of benchmarks, our Single-Job results eareédily compared with
the benchmarking results made public for many other sdiemtbmputing systems, and
in particular by the HPCC efforg].

77

VM image OS, MPI Archi Benchmarks
EC2/ami-2bb6534PFC6 32bit Sl
EC2/ami-36ffla5f | FC6 64bit Sl
EC2/ami-3e83665[FC6, MPI 32bit Ml
EC2/ami-e813f681 FC6, MPI 64bit Ml
GGlserver RHEL 5.1, MPI| 32&64bit| SI&MI
EH/server Knoppix 5.3.1 | 32bit Sl

EH/serves Ubuntu 8.10 | 64bit Sl
Mosso/server Ubuntu 8.10 | 32&64bit| SI

Table 5.3: The VM images used in our experiments.

MPI library and network The VM images used for the HPCC benchmarks also have
a working pre-configured MPI based on tin@ich2-1.0.5 [219 implementation. For
the MI (parallel) experiments, the network selection carctiégcal for achieving good
results. Amazon EC2 and GoGrid, the two clouds for which weehaerformed M
experiments, use internal IP addresses (IPs), that is,Ph@dcessible only within the
cloud, to optimize the data transfers between closelytémtastances. (This also allows
the clouds to better shape the traffic and to reduce the nuaflbeternet-accessible IPs,
and in turn to reduce the cloud’s operational costs.) EC2Go@rid give strong incen-
tives to their customers to use internal IP addresses, irtlibanetwork traffic between
internal IPs is free, while the traffic to or from the Interhigs is not. We have used only
the internal IP addresses in our experiments with M| worettoa

Optimizations, tuning The benchmarks were compiled using GNU C/C++ 4.1 with
the-O3 -funroll-loops command-line arguments. We did not use any additional
architecture- or instance-dependent optimizations. ReHPL benchmark, the perfor-
mance results depend on two main factors: the the Basic Lisiggbra Subprogram
(BLAS) [68] library, and the problem size. We used in our experimenés @oto-
BLAS [89]library, which is one of the best portable solutions frealilable to scien-
tists. Searching for the problem size that can deliver peakopmance is an extensive
(and costly) process. Instead, we used a free analyticHlGpt find for each system the
problem sizes that can deliver results close to the peakipeaince; based on the tool ad-
vice we have used values from 13,000 to 110,000 for N, the(sizier) of the coefficient
matrix A [67, 136).

5.2.3 Results
Resource Acquisition and Release

We study two resource acquisition and release scenariossirigle instances, and for
multiple instances allocated at once.

78

200 883 881 685
[Quartiles —
H Median —3
180 1 Mean o]
r Outliers
160 |
140 |
r m
- 120 |
= : i
2 100 =
g [1
g obHOT 7
80 LIJ
o E - %ﬁ 10 |
60 oo
[J T & HL i
40 [T. E é
[e J e T
[[] " é_
20 T * i = P
i PR
O L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ts55E5E8% T55E8 T55ES8 55558
Ess5 s Ess5 & Ess5 s Ess5 &
- - %X 2 X - = %X 2 X - %X 2 X - = %X 2 X
EEEg-o EEgSo EEEio EEELG
o (8] [&] [&]
Total Time for VM Install Time for VM Boot Time for Total Time for
Res. Acquisition Res. Acquisition Res. Acquisition Res. Release

Figure 5.1: Resource acquisition and release overheadacfpriring single EC2 in-
stances. Lower values are better.

Single instanced/Ne first repeat 20 times for each instance type a resourcesaoou
followed by a release as soon as the resource status beaustedked (see Sectidhn1.2).
Figure5.1 shows the overheads associated with resource acquisittbretease in EC2.
The total resource acquisition tim&adfal) is the sum of thenstall andBoottimes. The
Releasdime is the time taken to release the resource back to EC& iafis released
the resource stops being charged by Amazon. dlher instances are surprisingly easy
to obtain; in contrast, thenl.* instances have for the resource acquisition time higher
expectation (63-90s compared to around 63s) and variafilitich larger boxes). With
the exception of the occasional outlier, both the \Bdot and Releasdimes are stable
and represent about a quarterfotal each. Tablé.4 presents basic statistics for single
resource allocation and release. OverAlnazon EC2 has one order of magnitude
lower single resource allocation and release durations tmGoGrid. From the EC2
resources, thenl.small andml.large instances have higher average allocation du-
ration, and exhibit outliers comparable to those encoedtésr GoGrid. The resource
acquisition time of GoGrid resources is highly variable here, GoGrid behaves simi-
larly to to grids P9] and unlike the promise of clouds.

Multiple instances We investigate next the performance of requesting the aitiun
of multiple resources (2,4,8,16, and 2Qthe same timea scenario common for creating
homogeneous virtual clusters. When resources are reguedbelk, we record acquisi-

79

120
L Quartiles ——

Median —3
Mean =
Outliers o

L TRHAD
?UTT

60

—_
— T

Duration [s]

oo —— | [—Feooe

—— oI+

ol i
| Ales, L.a="

|

2 4 8 16 20 2 4 8 16 20 2 4 8 16 20 2 4 8 16 20

Instance Count Instance Count Instance Count Instance Count
Total Time for VM Install Time for VM Boot Time for Total Time for
Res. Acquisition Res. Acquisition Res. Acquisition Res. Release

Figure 5.2: Single-instance resource acquisition andasel@verheads when acquiring
multiplecl.xlarge instances at the same time. Lower values are better.

tion and release times for each resource in the requestiagelya Figures.2 shows the
basic statistical properties of the times recordedcthxlarge instances. The expec-
tation and the variance are both higher for multiple inségrtban for a single instance.

Single-Machine Benchmarks

In this set of experiments we measure the raw performandeedPU, /O, and memory
hierarchy using the Single-Instance benchmarks listedeicti@n 5.2.1 We run each
benchmark 10 times and report the average results.

Compute performance We assess the computational performance of each instance
type using the entire LMbench suite. The performance of mat iat64 operations, and
of the float and double-precision float operations is degigtd-igure5.3 left and right,
respectively. The GOPS recorded for the floating point and double-prenigioat op-
erations is six to eight times lower than the theoretical mmasm of ECU (4.4 GOPS).
Also, the double-precision float performance of ttie * instances, arguably the most
important for scientific computing, is mixed: excellent dioh but poor multiplication
capabilities. Thus, as many scientific computing applicatiuse heavily both of these
operations, the user is faced with the difficult problem déstng between two wrong
choices. Finally, several double and float operations takgdr oncl.medium than on

80

Instance Res. Allocation | Res. Release
Type Min| Avg| Max|Min |Avg | Max
mZl.small 69| 82| 126/ 18| 21| 23
ml.large 50| 90| 883| 17| 20| 686
ml.xlarge | 57 64| 91| 17| 18| 25
cl.medium 60 65 72| 17| 20| 22
cl.xlarge | 49| 65| 90| 17| 18| 20
GG.large | 240{ 540 900| 180| 210| 240
GG.xlarge| 180 1,209 3,600/ 120| 192| 300

Table 5.4: Statistics for single resource allocationasée

10 1

0.8

0.6

0.4

0.2 1

Performance [GOPS]
Performance [GOPS]

S N 4 S
< mi.large mil.xlarge cL.medium clxlarge

ml.small ml.large ml.xlarge Instance Type

X
Instance Type FLOAT-add = FLOAT-bogo DOUBLE-mul =1
INT-bit ——= INT-add =—=a INT-mul e==3 INT64-bit mmmmm INT64-mul == FLOAT-mul &= DOUBLE-add sssss DOUBLE-bogo =—=

ml.small

10 1 = =

0.8

0.6

2
04 4 Fi-

0.2 1

K8 N
N < y
T § [-
N < < 98 NE =]
K & o Lk =
~ b L EH.small EH.large

EH.small EHlarge GG.small GGlarge GGuxlarge Mosso.small Mosso.large

Performance [GOPS]
Performance [GOPS]

GG.small GG.large GG.xlarge Mosso.small Mosso.large

Instance Type

Instance Type FLOAT-add —— FLOAT-bogo &=wa DOUBLE-mul &=
INT-bit == INT-add INT-mul INT64-bit wmm INT64-mul 5= FLOAT-mul X200 DOUBLE-add mmmsm DOUBLE-bogo £==1

fﬂ

Figure 5.3: LMbench resultsdp) for the EC2 instances, antdtton) for the other in-
stances. Each row depicts the performance of 32- and 6#tbijeér operations in giga-
operations per second (GOP®f{), and of floating operations with single and double
precision ight).

ml.small . For the otherinstanceBH.* andMosso. * instances have similar perfor-
mance for both integer and floating point operatioB&.* instances have the best float
and double-precision performance, and good performancateger operations, which
suggests the existence of better hardware support for tpesations on these instances.
I/O performance We assess in two steps the 1/0 performance of each instapee ty
with the Bonnie benchmarking suite. The first step is to deitee the smallest file size
that invalidates the memory-based I/O cache, by runnin@tmie suite for thirteen file
sizes in the range 1024 Kilo-binary byte (KiB) to 40 GiB. Tsults of this preliminary
step have been described in our previous wakl]; we only summarize them here. For
all instance types, a performance drop begins with the 180kt file and ends at 2GiB,
indicating a capacity of the memory-based disk cache of Bf®vice 2GiB). Thus, the
results obtained for the file sizes above 5GiB correspongodal I/O performance of the

81

Seq. Output Seq. Input | Rand,

Instance | Char| Block| ReWr| Char| Block | Input

Type [MBI/s] [MBI/s] [MBI/s] [MBI/s] [MBI/s] [Seek/s]
ml.small | 22.3| 60.2] 33.3| 25.9] 73.5| 744
ml.large | 50.9| 64.3] 24.4] 35.9] 63.2| 124.3
ml.xlarge | 57.0| 87.8| 33.3| 41.2| 74.5/387.9
cl.medium 49.1| 58.7| 32.8| 47.4| 74.9| 724
cl.xlarge | 64.8) 87.8] 30.0| 45.0f 74.5|373.9
GG.small | 11.4| 10.7] 9.2| 29.2| 40.24) 39.8
GG.large | 17.0| 17.5| 16.0] 34.1| 97.5| 29.0
GG.xlarge | 80.7| 136.9] 92.6|79.26| 369.15 157.5
EH.large 71 7.1, 7.1] 27.9] 35.7(177.9
Mosso.sm| 41.0| 102.7| 43.88] 32.1| 130.6| 122.6
Mosso.lg | 40.3| 115.1] 55.3] 41.3| 165.5| 176.7
‘02 Ext3 | 12.2| 38.7| 25.7| 12.7| 173.7 -
‘02 RAID5| 14.4| 14.3] 12.2] 13.5| 73.0 -
‘07 RAID5| 30.9] 40.6] 29.0] 41.9] 112.7/192.9

Table 5.5: The 1/O of clouds vs. 200235 and 2007 0] systems.

system; lower file sizes would be served by the system witm#bamation of memory and
disk operations. We analyze the I/O performance obtainefids sizes above 5GiB in the
second step; Tabk5summarizes the results. We find that the 1/0 performanceated

by Amazon EC2 (see Tabf1) corresponds to the achieved performance for random 1/0
operations (column 'Rand. Input’ in Tabfe5). The* .xlarge instance types have the
best 1/0 performance from all instance typ&er the sequential operations more typical
to scientific computing all Amazon EC2 instance types hageneral better performance
when compared with similar modern commodity systesush as the systems described
in the last three rows in Tabe5; EC2 may be using better hardware, which is affordable
due to economies of scalj].

Multi-Machine Benchmarks

In this set of experiments we measure the performance detiMey homogeneous clus-
ters formed with Amazon EC2 and GoGrid instances when rigthie Single-Job-Multi-
Machine benchmarks. For these tests we execute 5 times t@€ HBnchmark on ho-
mogeneous clusters of 1-16 (1-8) instances on EC2 (GoGnd) present the average
results.

HPL performance The performance achieved for the HPL benchmark on various
virtual clusters based on tiel.small andcl.xlarge instance types is depicted in
Figure5.4. For theml.small resources one node was able to achieve a performance of
1.96 GFLOPS, which is 44.54% from the peak performance éideerby Amazon. Then,

82

Peak GFLOPS GFLOPS
Name Perf.| GFLOPS /Unit 1$1
ml.small | 4.4 2.0 2.0 19.6
ml.large |17.6] 7.1 1.8 17.9
ml.xlarge | 35.2| 11.4 1.4 14.2
cl.medium 22.0 3.9 0.8 19.6
cl.xlarge |88.0/ 50.0 25 62.5
GG.large [12.0, 8.8 8.8 46.4
GG.xlarge| 36.0| 28.1 7.0 37.0

Table 5.6: HPL performance and cost comparison for varidid &nd GoGrid instance
types.

500 100

IS
]
3

75

w
8
3

50

N
S
S

Performance [GFLOPS]
Efficiency [%]

25 4

=
S
3

o]

1 2

)

8 16 1 2 8 16

4 4
Number of Nodes Number of Nodes
mlsmall C—3 cl.xlarge GG.1gig GG.4gig mm— mlsmal C—— clxlarge GG.1gig GG.4gig mm—

Figure 5.4: The HPL (LINPACK) performance of virtual clusteformed with EC2
ml.small ,EC2cl.xlarge ,GoGridlarge ,and GoGriklarge instancesinterms
of throughput left) and efficiency iight).

the performance increased to up to 27.8 GFLOPS for 16 nodeke the efficiency de-
creased slowly to 39.4%. The results for a singlexlarge instance are better: the
achieved 49.97 GFLOPS represent 56.78% from the advepisadperformance. How-
ever, while the performance scales when running up to 1@nists to 425.82 GFLOPS,
the efficiency decreases to only 30.24%. The HPL performérssefrom one to 16 in-
stances can therefore be expressed as 53.26% which restdther bad qualification for
HPC applications and their need for fast inter-node compatiin. We have obtained
similar results th&5G.large andGG.xlarge instances, as shown in Figused. For
GG.large instances, the efficiency decreases quicker than for EGanoss, down to
47.33% while achieving 45.44 GFLOPS on eight instances.J@elarge performed
even poorer in our tests. We further investigate the perdmige of the HPL benchmark
for different instance types; Tabfe6 summarizes the result$he efficiency resultgre-
sented in Figur&.4and Tables.6 place clouds below existing environments for scientific
computing, for which the achieved performance is 60-70%eftheoretical peak even
for demanding real applicationslp5 119 164].

HPCC performance To obtain the performance of virtual EC2 and GoGrid clusters
we run the HPCC benchmarks anit clusterscomprising a single instance, and b28-
core clustercomprising 16cl.xlarge instances. Tablé.7 summarizes the obtained

Cores oflPeak Perf. HPL HPL | DGEMM [STREAMRandomAccedisatencyBandwidth
Provider, System Capacity|[GFLOPSJGFLOPS] N [GFLOPS]| [GBps] [MUPs] [us] | [GBps]

EC2, 1 x ml.small 1 4.40 1.96, 13,312 2.62 3.49 11.60 - -
EC2, 1 x ml.large 2 17.60 7.15] 28,032 6.83 2.38 54.35 20.48 0.70
EC2, 1 x ml.xlarge 4 35.20 11.38 39,552 8.52 3.47 168.64 17.87 0.92
EC2, 1 x cl.medium 2 22.00 -1 13,312 11.85 3.84 46.73 13.92 2.07
EC2, 1 x cl.xlarge 8 88.00 51.58 27,392 44.05 15.65 249.66 14.19 1.49
EC2, 2 x cl.xlarge 16| 176.00 84.63 38,656 34.59 15.65 223.54 19.31 1.10
EC2, 4 x cl.xlarge 32| 352.00 138.08 54,784 27.74 15.77 280.38 25.38 1.10
EC2, 8 x cl.xlarge 64| 704.00 252.34 77,440 3.58 15.89 250.40 35.93 0.97
EC2, 16 x cl.xlarge 128 1,408.00 425.82109,568 0.23 16.38 207.06 45.20 0.75
EC2, 16 x ml.small 16 70.40 27.80 53,376 4.36 11.95 77.83 68.24 0.10
GoGrid, 1 x GG.large 1 12.00 8.805/ 10,240 10.01 2.88 17.91 - -
GoGrid, 4 x GG.large 4 48.00 24.97, 20,608 10.34) 20.17 278.80110.11 0.06
GoGrid, 8 x GG.large 8 96.00 45.439 29,184 10.65 20.17 351.68 131.13 0.07
GoGrid, 1 x GG.xlarge 3 36.00 28.144 20,608 10.820 45.71 293.30 16.96 0.97
GoGrid, 4 x GG.xlarge 12| 144.00 40.03 41,344 11.31 19.95 307.64 62.20 0.24
GoGrid, 8 x GG.xlarge 24| 288.00 48.68G6 58,496 18.00 20.17 524.33 55.54 1.33
HPCC-227, TopSpin/Cisgo 16| 102.40 55.23 81,920 4.88 2.95 10.25 6.81 0.66
HPCC-224, TopSpin/Cisgo 128 819.20 442.04 231,680 4.88 2.95 10.25 8.25 0.68
HPCC-286, Intel Endeavor 16| 179.20 153.25 60,000 10.50 5.18 87.61 1.23 1.96
HPCC-289, Intel Endeavor 128| 1,433.6Q 1,220.61170,000 10.56 5.17 448.31 2.78 3.47

Table 5.7: The HPCC performance for various platforms. HR@he system with the HPCC 10[3]. The machines HPCC-224
and HPCC-227, and HPCC-286 and HPCC-289 are of brand Tofg3pto and by Intel Endeavor, respectively. Smaller value
are better for the Latency column, and worse for the others.

€8

84

results and, for comparison, results published by HPCCdor fnodern and similarly-
sized HPC clusters]. For HPL, only the performance of tlid.xlarge is comparable
to that of an HPC system. However, for STREAM, and Randomsstiee performance
of the EC2 clusters is similar or better than the performaofcine HPC clusters. We
attribute this mixed behavior to the network charactarsstihe EC2 platform has much
higher latency, which has an important negative impact enpéerformance of the HPL
benchmark. In particular, this relatively low network perhance means that the ratio
between the theoretical peak performance and achieved dRarmance increases with
the number of instances, making the virtual EC2 clusterslpsoalable. Thus, for scien-
tific computing applications similar to HPL the virtual ECRisters can lead to an order
of magnitude lower performance for large system sizes (kfizds and higher). The
performance of the GoGrid clusters with the single coreainsgs is as expected, but we
observe scalability problems with the 3 c@6&.xlarge instances. In comparison with
previously reported results, the DGEMM performancendflarge (cl.medium)in-
stances is similar to that of Altix4700 (ICE)T7], and the memory bandwidth of Cray
X1 (2003) is several times faster than that of the fastestdcl@source currently avail-
able B9].

Performance Consistency

An important question related to clouddssthe performance consistenP?evious work
on virtualization has shown that many virtualization pags deliver the same perfor-
mance under identical tests for virtual machines runningnimsolated environmensf).
However, it is unclear if this holds for virtual machines nimg in a large-scale cloud
(shared) environment. Therefore, we now present a predimiassessment of the perfor-
mance consistency.

To get a better picture of the side effects caused by thergharith other users the
same physical resource, we have assessed the performaststency of different clouds
by running the LMBench (computation and OS) and CacheBehoh lpenchmarks mul-
tiple times on the same type of virtual resources.

Figure5.5shows the performance consistency for the LMBench bendhwmigin the
float (top) and double (bottom) operations. We observe titladagh the performance is
consistent for thenl.xlarge andMosso.large instances, there is noticeable perfor-
mance variability with th&G.xlarge andEH.small instances; performance variabil-
ity depends on the instances used, and probably to the maokdgjactivity on the virtual
machines.

Figure5.6 summarizes the results for the CacheBench suite for repy (toite (mid-
dle), and Rd-Mod-Wr (bottom) operations. Similarly to th®iBench benchmark, the
GG.large andEH.small types have important differences between the min, mean,

85

— IQR]
g Median C—1
o) 0.8 Mean il
o I
§ 0.6)
@ - = T - -
g 0.4
5 -
o 0.2 = -
L] - - - -
O L L L
div mul add bogo div mul add bogo div mul add bogo div. mul add bogo
m1.xlarge GG.xlarge EH.small Mosso.large
Float Operation
1
— IQR
g Median C—1
o) 0.8 Mean il
S
§ 0.6 T
g = = T T - =
S 0.4
J5
o 0.2
O L L
div. mu add bogo div. mul add bogo div. mul add bogo div. mul add bogo
m1.xlarge GG.xlarge EH.small Mosso.large

Double Operation

Figure 5.5: Performance consistency of cloud instancestyyth the LmBench bench-
mark with various float (top) and double (bottom) operatioh®@R denotes the inter-
quartile range.

and max performance even for medium working set sizes, ssdiy'dB. The best-
performer in terms of computatioGG.xlarge , is unstable; this makes cloud vendor
selection an even more difficult problem. The different lefegperformance consistency
we have observed across different benchmarks and differstaince types motivates us
to explore the performance variability of public clouds epth in the next chapter.

5.3 Clouds versus Other Scientific Computing Infras-
tructures

In this section we present a comparison between clouds dradt stientific computing
infrastructures.

5.3.1 Method

We use trace-based simulation to compare clouds with $iieeabmputing infrastruc-
tures. To this end, we first extract the performance chatatitss from long-term work-
load traces of scientific computing infrastructures; we ttadse infrastructuresource
environmentsThen, we compare these characteristics with those of a @wrecution.

86

16000 QR
@ 14000 Median C—
,_% Mean
g 12000
° 10000
2
S 8000
€ 6000
i= I T
EOLJ 4000 g 1 L SEE
8
2000 8 -
0 \\\\\\\\\\\\\\\ L L L L L
28 210215220225 28 210215220225 28 210215220225 28 210215220225
m1.xlarge GG.xlarge EH.small Mosso.large
Working Set [bytes]
25000
IQR 1
i Median C—1
‘% 20000 Mean ©
=
8 15000
C
: W w :
£ 10000 i 7 1 w
; ST
& 5000 7
g l I .
0 wwwwwwwwwwwwwww n n n n n
28 210215220225 28 210215220225 28 210215220225 28 210215220225
m1.xlarge GG.xlarge EH.small Mosso.large
Working Set [bytes]
45000 QR
‘@ 40000 Median C—1 |
@ 35000 Mean
2 30000
8 25000
o]
£ 20000] s
g 15000 - !
é‘_’ 10000 [.
5000 - i [.
O wwwwwwwwwwwwwww

L
28 210215220225 25 210215220225 28 210215220 225 28 21021522%2518
m1.xlarge GG.xlarge EH.small Mosso.large

Working Set [bytes]

Figure 5.6: Performance consistency of cloud instancestypign the CacheBench bench-
mark with read (top), write (middle), and Rd-Mod-Wr (bottpaperations. IQR denotes
the inter-quartile range.

System modelWe define two performance models of clouds, which differ by th
factor that jobs are slowed down. Theud with source-like performancdg a theoretical
cloud environment that comprises the same resources asuhsesenvironment. In this
cloud model, the runtimes of jobs executed in the cloud atelep those recorded in
the source environment’s workload traces (no slowdown)s Todel is akin to having
a grid being converted into a cloud of identical performanod thus it is useful for
assessing the theoretical performance of future and mormgrenelouds. However, as we
have shown in Sectioh.2, in real clouds performance is below the theoretical peadt, a
for parallel jobs the achieved efficiency is lower than thetiaved in grids. Thus, we
introduce the second model, thivuds with real performancen which the runtimes of
jobs executed in the cloud are extended by a factor, whichaldhe slowdown factor

87

derived from the empirical evaluation presented in Sechi@ The system equivalence

between clouds and source environments is assumed in thislpamd ensured in practice

by the complete system virtualizatiotd(employed by all the clouds investigated in this
chapter.

Job execution modelFor job execution we assume exclusive resource use: for each
job in the trace, the necessary resources are acquired freidud, then released after
the job has been executed. We relax this assumption in S¢cBa3

System workloadsTo compare the performance of clouds with other infrastmas,
we use the workload traces shown in Tabl8 where the ID of the trace indicates the
system from which it was taken; please s&@4 4] for more details about each trace.

Performance metrics We measure the performance of all environments using the
three traditional metrics/P]: wait time (WT) response time (Re;Tandbounded slow-
down (BSD)-the ratio between the job response time in the real vs. eugxely-used
environment, with a bound that eliminates the bias towahdstgobs. The BSD is ex-
pressed aB3SD = max(1l, ReT/ max(10, ReT' — WT')), where 10 is the bound that
eliminates the bias of jobs with runtime below 10 seconds.céfapute for each job the
three metrics and report for a complete workload the avevafiees for these metrics,
AWT, AReT, and ABSD, respectively.

Cost metricsWe report for the two cloud models the total cost of worklozelaeition,
defined as the number of instance-hours used to completieeajobs in the workload.
This value can be converted directly into the cost for exaguihe whole workload for
$/CPU-hour and similar pricing models, such as Amazon EC2’s

5.3.2 Experimental Setup

System setupWe use the DG simulator [LO§ to analyze the performance of cloud
environments. We have extended Di®@Swith the two cloud models, and used it to sim-
ulate the execution of real scientific computing workload€mud computing infrastruc-
tures. To model the slowdown of jobs when using clouds wigéh performance, we have
used different slowdown factors. Specifically, singlegassor jobs are slowed-down by
a factor of 7, which is the average performance ratio betwiearetical and achieved
performance analyzed in Sectiér2.3 and parallel jobs are slowed-down by a factor up
to 10 depending on the job size, due to the HPL performanceadation with job size
described in Sectioh.2.3

Workload setup We use as input workload the ten workload traces presentéd-in
ble 5.8 The traces Grid3 and LCG do not include the job waiting tinferimation; only
for these two traces we set the waiting time for all jobs tazerhich favors these two
grids in comparison with clouds. The wait time of jobs execdun the cloud (also their
AWT) is set to the resource acquisition and release timamddZrom real measurements

88

Trace ID, Trace System
Source (Trace ID | Time| Number of Size Load
in Archive) [mo.]| Jobs| Userq Sites| CPUs| [%]
Grid Workloads Archive04], 6 traces

1. DAS-2 (1) 18| 1.1M| 333 5| 0.4K| 15+
2. RAL (6) 12|0.2M| 208 1| 0.8K| 85+
3. GLOW (7) 3/0.2M 18 1| 1.6K| 60+
4. Grid3 (8) 18| 1.3M 19| 29| 3.5K -
5. SharcNet (10) 13| 1.1M| 412 10| 6.8K -
6. LCG (11) 1/0.2M| 216|200+|24.4K -
Parallel Workloads Archived], 4 traces

7. CTC SP2 (6) 11/0.1M| 679 1| 0.4K| 66
8. SDSC SP2 (9) 2410.1M| 437 1| 0.1K| 83
9. LANLO2K (10) 5/0.1M| 337 1| 2.0K| 64
10. SDSC DS (19) 13|0.1M| 460 1| 1.7K| 63

Table 5.8: The characteristics of the workload traces.

(see Sectio®.2.3.

Performance analysis tooldVe use the Grid Workloads Archive toolsJ4] to extract
the performance metrics from the workload traces of grids RRIs. We extend these
tools to also analyze cloud performance metrics such as cost

5.3.3 Results

Our experiments follow two main aspects: performance coispaof the workload exe-
cution in source environments (grids, PPIs, etc.) and inadpand the performance-cost-
security trade-off. We present the experimental resutteéeh main aspect, in turn.

Source environments (grids, PPIs, etc.) vs. clouds

We compare the execution in source environments (gridss,Rf¢.) and in clouds of
the ten workload traces described in Tabl8 Table5.9 summarizes the results of this
comparison, on which we comment below.

An order of magnitude better performance is needed for cloud to be useful for
daily scientific computing. The performance of the cloud with real performance model
is insufficient to make a strong case for clouds replacingsgand PPIs as a scientific
computing infrastructure. The response time of these dasidhigher than that of the
source environment by a factor of 4-10. In contrast, thearse time of the clouds with
source-like performance is much better, leading in genersignificant gains (up to 80%
faster average job response time) and at worst to 1% highdr @V traces of Grid3 and

89

Source env. (Grid/PPIl)] Cloud (real performance)|| Cloud (source performancg)

AWT | AReT |ABSD|[AReT [ABSD| Total Cost|| AReT | ABSD| Total Cost
Trace ID [s] [s] (10s) [s] (10s) | [CPU-h,M]|| 8] (10s) | [CPU-h,M]
DAS-2 432 802 11| 2,292] 2.39 2 450 2 1.19
RAL 13,214 27,807 68| 131,300 1 40| 18,837 1 6.39
GLOW 9,162/ 17,643 55|| 59,448 1 3|| 8,561 1 0.60
Grid3 -1 7,199 -|| 50,470 3 19|| 7,279 3 3.60
SharcNet ||31,017/ 61,682 242(219,212 1 73|131,711 1 11.34
LCG -1 9,011 -|| 63,158 1 3|| 9,091 1 0.62
CTC SP2 || 25,748 37,019 78| 75,706 1 2|/11,351 1 0.30
SDSC SP2 (/26,705 33,388 389|| 46,818 2 1|l 6,763 2 0.16
LANL O2K || 4,658 9,594 61| 37,786 2 1|l 5,016 2 0.26
SDSC DS ||32,271 33,807, 516| 57,065 2 2|| 6,790 2 0.25

Table 5.9: The results of the comparison between workloadwgion in source environ-
ments (grids, PPIs, etc.) and in clouds. The “-” sign denotessing data in the original
traces. For the two Cloud models AWT=80s (see text). The toist for the two Cloud
models is expressed in millions of CPU-hours.

LCG, which are assumed conservatively to always have zeitigéime'). We conclude
that if clouds would offer an order of magnitude higher perfance than the performance
observed in this study, they would form an attractive aliéue for scientific computing,
not considering costs.

Price-wise, clouds are reasonably cheap for scientific comfing, if the usage and
funding scenarios allow it (but usually they do not). Looking at costs, and assuming
the external operational costs in the cloud to be zero, otledmEC2-hours equate to
$100,000. Thus, to execute the total workload of RAL over year (12 months) would
cost $4,029,000 on Amazon EC2. Similarly, the total workdloh DAS-2 over one year
and a half (18 months) would cost $166,000 on Amazon EC2. Bethe sums are much
lower than the cost of these infrastructures, which incdudssource acquisition, oper-
ation, and maintenance. To better understand the meanitigesé sums, consider the
scenario (disadvantageous for the clouds) in which theraigystems would have been
sized to accommodate strictly the average system load, lendgeration and mainte-
nance costs would have been zero. Even in this scenario Asragon EC2 is cheaper.
We attribute this difference to the economy of scale disetigs a recent studylf]: the
price of the basic operations in a very large data center eaanborder of magnitude
lower than in a grid or data center of regular size. Howevespite the apparent cost
saving it is not clear that the transition to clouds wouldénbeen possible for either of
these grids. Under the current performance exhibited bydsdpthe use of EC2 would
have resulted in response times three to four times higlaar it the original system,
which would have been in conflict with the mission of RAL as adarction environment.

1Although we realize the Grid3 and LCG grids do not have zeritimgatime, we follow a conservative
approach in which we favor grids against clouds, as therlateethenewtechnology.

90

Relative Cost DAS-2| Grid3|LCG|| LANL O2K
5251 100 [%] || 30.2 | 11.5] 9.3 0.1

Table 5.10: Relative strategy performance: resource bidkation (S2) vs. resource
acquisition and release per job (S1). Only performanceiffces above 5% are shown.

A similar concern can be formulated for DAS-2. Moreover, DA% specifically tar-
geting research in computer science, and its community dvoat have been satisfied
to use commodity resources instead of a state-of-the-antogrment comprising among
others high-performance lambda networks; other new resaypes, such as GPUs and
Cell processors, are currently available in grids but nalauds. Looking at the funding
scenario, it is not clear if finance could have been securetiftual resources; one of
the main outcomes of the long-running EGEE project is thatae of a European Grid
infrastructure. Related concerns have been formulatesvalksre 5]

Clouds are now a viable alternative for short deadlinesA low and steady job wait
time leads to much lower (bounded) slow-down for any cloudlehowhen compared
to the source environment. The average bounded slowdowS[ABee Sectiob.3.])
observed in real grids and PPIs is for our traces betweend bwer 500, but below 3.5
and even 1.5 for the cloud models with low and with high ugitian. The meaning of
the ABSD metric is application-specific, and the actual AB&ue may seem to over-
emphasize the difference between grids and clouds. Howeepresence of high and
unpredictable wait times even for short jobs, captured bgrine high ABSD values, is
one of the major concerns in adopting shared infrastrustsweh as grids9p, 156. We
conclude that cloud is already a viable alternative forrsdie computing projects with
tight deadline and few short-running jobs remaining, if pneject has the needed funds.

Performance and Security vs. Cost

Currently, clouds lease resources but do not offer a resom@nagement service that
can use the leased resources. Thus, the cloud adopter manyséthe resource man-
agement middleware from grids and PPIs; for a review of griddleware we refer to
our recent work102. We have already introduced the basic concepts of clousures
management in Sectidh2.2 and explored the potential of a cloud resource management
strategy $trategy S}l for which resources are acquired and released for eachigaddm
job in Sections.3. This strategy has good security and resource setup fleyitmilit may
incur high time and cost overheads, as resources that ctldvase have been reused
are released as soon as the job completes. As an alternaéivieyestigate now the po-
tential of a cloud resource management strategy in whiaburess are allocated in bulk
for all users, and released only when there is no job left tadyged §trategy S To
compare these two cloud resource management strategiesewbe experimental setup

91

described in Sectiob.3.2 Table5.10 shows the obtained results. The maximum rel-
ative cost difference between the strategies is for thesesraround 30% (the DAS-2
trace); in three cases, around 10% of the total cost is to imedaGiven these cost dif-
ferencesye raise as a future research problem optimizing the apgibiceexecution as a
cost-performance-security trade-off

5.4 Related work

In this section we review related work from three areas: @$ouirtualization, and system
performance evaluation.

Clouds and Virtualization There has been a spur of research activity in assessing the
performance of virtualized resources, in cloud computingrenments ¢3, 163 208
157,17(and in general3, 52, 145 231, 194, 152, 23(. In contrast to this body of pre-
vious work, ours is different in scope: we perform extenshgasurements using general
purpose and high-performance computing benchmarks to amrgeveral clouds, and
we compare clouds with other environments based on reaitlemg scientific computing
traces. Our study is also much broader in size: we performignchapter an evaluation
using over 25 individual benchmarks on over 10 cloud insgagpes, which is an order
of magnitude larger than previous work (though size doesimaply add to quality).

Performance studies using general purpose benchmarkshewa that the overhead
incurred by virtualization can be below 5% for computati@f, [52] and below 15% for
networking R3, 145. Similarly, the performance loss due to virtualizatiom frarallel
I/O and web server I/0 has been shown to be below 3P84][and 10% 7, 14§, re-
spectively. In contrast to these, our work shows that viized resources obtained from
public clouds can have a much lower performance than theetieal peak.

Recently, much interest for the use of virtualization hasrnbghown by the HPC com-
munity, spurred by two seminal studiez3[l, 98] that find virtualization overhead to be
negligible for compute-intensive HPC kernels and applicet such as the NAS NPB
benchmarks; other studies have investigated virtuatingierformance for specific HPC
application domainsgb, 230, or for mixtures of Web and HPC workloads running on
virtualized (shared) resource®33. Our work differs significantly from these previous
approaches in target (clouds as black boxes vs. owned aribitable infrastructure)
and in size. For clouds, the study of performance and costaxfiging a scientific work-
flow, Montage, in cloudsd3] investigates cost-performance trade-offs between doud
and grids, but uses a single application on a single cloud,tha application itself is
remote from the mainstream HPC scientific community. Alszselto our work is the
seminal study of Amazon S363, which also includes a performance evaluation of file
transfers between Amazon EC2 and S3. Our work complemeiststidy by analyz-
ing the performance of Amazon EC2, the other major Amazonckervice; we also

92

test more clouds and use scientific workloads. Several ssnale performance studies of
Amazon EC2 have been recently conducted: the study of Ama@@performance using
the NPB benchmark suit2(g or selected HPC benchmarkad, the early comparative
study of Eucalyptus and EC2 performand®T], the study of file transfer performance
between Amazon EC2 and S&, etc. An early comparative study of the DawningCloud
and several operational model [l] extends the comparison method employed for Euca-
lyptus [157], but uses job emulation instead of job execution. Our parémce evaluation
results extend and complement these previous findings, i@ad gore insights into the
performance of EC2 and other clouds.

Other (Early) Performance Evaluation Much work has been put into the evaluation
of novel supercomputerd §5 69, 119 207, 177, 9] and non-traditional system81, 217,
100 99, 164 for scientific computing. We share much of the used methagiplwith
previous work; we see this as an advantage in that our remelteadily comparable with
existing results. The two main differences between this/laidorevious work and ours
are that we focus on a different platform (that is, clouds) #rat we target a broader
scientific computing community (e.g., also users of grids$ small clusters).

5.5 Summary

With the emergence of cloud computing as a paradigm in whoddngfic computing
can done exclusively on resources leased only when neededlfig data centers, e-
scientists are faced with a new platform option. Howevae,itfitial target workloads of
clouds does not match the characteristics of scientific caimg workloads. Thus, in this
chapter we seek to answer the research quesitime performance of clouds sufficient
for scientific computing@o this end, we have first performed an empirical performance
evaluation of four public computing clouds, including AmazEC?2, one of the largest
commercial clouds currently in production. Our main findimgre is that the compute
performance of the tested clouds is low. Last, we have coadptire performance and
cost of clouds with those of scientific computing alternagisuch as grids and parallel
production infrastructures. We have found that, while entrcloud computing services
are insufficient for scientific computing at large, they mal e a good solution for the
scientists who need resources instantly and temporarily.

Chapter 6

Performance variability of production
cloud services

Cloud computing is emerging as an alternative to tradificoeputing and software ser-
vices such as grid computing and online payment. With clardputing, resources and
software are no longer hosted and operated by the user, $tetith leased from large-
scale data centers and service specialists strictly whedete An important hurdle to
cloud adoption is trusting that the cloud services are deglele, for example that their
performance is stable over long time periods. However, ideyg do not disclose their
infrastructure characteristics or how they change, andabgeheir physical resources in
time-sharing mode; this situation may cause significarfiop@ance variability. To find
out if the performance variability of cloud services is sf@ant, in this chapter we present
the first long-term study on the variability of performanseexhibited by ten production
cloud services of two popular cloud service providers, Aomeand Google.

Ideally, clouds should provide services such as runningeagisen computation with
performance equivalent to that of dedicated environmeritis similar characteristics.
However, the performance characteristics of a cloud may weer time as a result of
changes that are not discussed with the users. Moreovéteunirrent data centers and
grids, clouds time-share their resources, and time-sh@atfbrms have been showhd]
since the 1990s to cause complex performance variabildyesan performance degrada-
tion.

Although it would be beneficial to both researchers and systesigners, there cur-
rently exists no investigation of performance variabifdycloud services. Understanding
this variability guides in many ways research and systengde&or example, it can help
in selecting the service provider, designing and tuningdakers 06, and detecting and
predicting failures234. Tens of clouds$5, 137] started to offer services in the past few

*This chapter is based on previous work published in#teE/ACM International Symposium on Clus-
ter, Cloud and Grid ComputinCCGRID’11) [109.

94

years; of these, Amazon Web Services (AWS) and Google Appnen@GAE) are two
popular production cloudslp]. A number of studiesg3, 163 208 157, 163 161, 15,
including our previous work161], investigate the performance of AWS, but none inves-
tigates the performance variability or even system avditalior a period of over two
months.

In this chapter, our goal is to perform a comprehensive iiyason of the long-term
variability of performance for production cloud servic@&sward this end, we first collect
performance traces corresponding to ten production clendces provided by Amazon
Web Services and Google App Engine, currently two of thedstrgommercial clouds.
Then we analyze the collected traces, revealing for eaclicednoth summary statistics
and the presence or absence of performance time pattemallyFive evaluate through
trace-based simulations the impact of the variability obse in the studied traces on
three large-scale applications that are executed todayagrba executed in the cloud
in the (near) future: executing scientific computing wodds on cloud resources, selling
virtual goods through cloud-based payment services, addting the virtual world status
of social games through cloud-based database services.

The rest of the chapter is structured as follows. In Sediidnwe present an overview
of the production cloud services that we investigate in thigpter. Then, in Sectiof.2
we describe the method of our performance variability asialyin Sectior6.3and Sec-
tion 6.4we present the results of our analysis for the AWS and GAEseétdarespectively.
Then, in Sectiorb.5we assess the impact of the variability of cloud servicegrarance
on large-scale applications using trace-based simukatiBmally, we compare our anal-
ysis with related work in Sectiof.6, and we summarize the chapter in Secton

6.1 Production Cloud Services

Cloud computing comprises both the offering of infrastametand software service$s,
95]. A cloud offering infrastructure services such as commyitiycles, storage space or
gueueing services acts as Infrastructure as a Service) (la®ud offering platform ser-
vices such as a runtime environment for compiled/integaletpplication code operating
on virtualized resources acts as Platform as a Service {PAdRird category of clouds,
Software as a Service (SaaS), incorporate the old idea widing applications to users,
over the Internet.

To accommodate this broad definition of clouds, in our modehecloud provides a
set ofservices and each service a set operations In our terminology, groduction
cloudis a cloud that operates on the market, that is, it has reabmess that use its ser-
vices. Tens of cloud providers have entered the market itattdive last years, including
Amazon Web Services (2006), ENKI (2003), Joyent (2004), $602006), RightScale
(2008), GoGrid (2008), Google App Engine (2008) and regevicrosoft Azure(2010).

95

From the clouds already in production, Amazon Web Services@oogle App Engine
are reported to have the largest number of clieb®]which we describe in turn.

6.1.1 Amazon Web Services

Amazon Web Services (AWS) is an laaS cloud comprising sesvatich as the Elastic
Compute Cloud (EC2, performing computing resource prowisig or web hosting op-
erations), Elastic Block Storage and its frontend Simpler&je Service (S3, storage),
Simple Queue Service (SQS, message queuing and synchionjz&imple DB (SDB,
database), and the Flexible Payments Service (FPS, mégnmgnts). As operation exam-
ples, the EC2 provides three main operations, for resowgeisition, resource release,
and resource status query.

Through its services EC2 and S3, AWS can rent infrastruateseurces; the EC2
offering comprises more than 10 types of virtual resouraestgnce typesand the S3
offering comprises 2 types of resources. Estimates basdteonumerical properties
of identifiers given to provided services indicate that AoraEC2 rents over 40,000
virtual resources per dayl72 173, which is two orders of magnitude more than its
competitors GoGrid and RightScal&7[3, and around the size of the largest scientific
grid in production.

6.1.2 Google App Engine

The Google App Engine (GAE) is an PaaS cloud comprising sesvsuch as Java and
Python Runtime Environments (Run, providing applicaticreacation operations), the
Datastore (database), Memcache (caching), and URL Feteh ¢nawling). Although
through the Run service users consume computing and stagsgerces from the under-
lying GAE infrastructure, GAE does not provide root accesthese resources, like the
AWS.

6.2 Method

To characterize the long-term performance variability lofud services we first build
meaningful datasets from performance traces taken fromyaton clouds, and then we
analyze these datasets and characterize the performanmeiei Nis.

Our method is built around the notion pérformance indicatorsWe call a perfor-
mance indicator the stochastic variable that describepehfiermance delivered by one
operation or by a typical sequence of operations over timeekample, the performance
indicators for Amazon include the response time of the nespacquisition operation of
the EC2 service.

96

20000 -

10000 -

Sample Count

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009

Date/Time

Figure 6.1: Number of monthly data samples.

6.2.1 Performance Traces of Cloud Services

Data SourceTo characterize AWS and GAE we first acquire data from theoperénce
database created by Hyperic's CloudStatus tegnJloudStatus provides real-time val-
ues and weekly averages of about thirty performance inolisér AWS and GAE. In par-
ticular, it provides performance indicators for five maimnvgees provided by AWS (EC2,
S3, SDB, SQS, and FPS) and for four main services providedAly (Run, Datastore,
Memcache, and URL Fetch). CloudStatus obtains values ow#nious performance
indicators by running performance probes periodicallyhvei sampling rate of under 2
minutes. The CloudStatus probes can be reimplementey easilhave repeated some
of the CloudStatus experiments in our previous wdrkl] 105, with similar results. We
conclude that using CloudStatus data reduces the cost aftody, but does not reduce
the applicability of the results.

Data Sanitation We have acquired data from CloudStatus through a sequeneelof
crawls (samples). The availability and robustness of oawlbng setup resulted in
253,174 useful samples, or 96.3% of the maximum number opkpossible for the
year. Figures.1shows the number of samples taken every month; during Febraril,
and September 2009 our crawling infrastructure did not mana obtain useful samples
repeatedly (indicated by the reduced height of the "Samplen€ bars). Mostly during
these month we have lost 9,626 samples due to missing ordrid&DN data; however,
we have obtained 76—96% of the maximum number of samplesgltirese three months.

97

6.2.2 Method of Analysis

For each of the traces we extract the performance indicatovghich we apply indepen-
dently an analysis method with three steps: find out if valitgbs present at all, find
out the main characteristics of the variability, and analyz detail the variability time
patterns. We explain each step in the following, in turn.

To find out if variability is present at all we select one moafidata from our traces
and plot the values of the performance indicator where a wadge of values may in-
dicate variability. The month selection should ensure thatselected month does not
correspond to a single calendar month (to catch some huotedsled system transi-
tions), is placed towards the end of the year 2009 (to be nalevant) but does not
overlap with December 2009 (to avoid catching Christmaesots).

To find out the characteristics of the variability we compsite basic statistics, the
five quartiles y—(),) including the median{-), the mean, and the standard deviation.
We also compute one derivative statistic, the Inter-QlegaRange (IQR, defined a3; —
(21). We thus characterize for each studied parameter itsitocétnean and median),
and its variability or scale (the standard deviation, th&®]@nd the range). Either a
relative difference between the mean and the median of dve@efcent, or a coefficient
of variation above 1.10 indicate high variability and pbssia hon-normal distribution
of values which impacts negatively the ability to enforcét gerformance guarantees.
Similarly, a ratio between the IQR and the median above Qieates that the bulk of the
performance observations have high variability, and a ragitween range and the IQR
above 4 indicates that the performance outliers are severe.

Finally, to analyze the variability over time we investigébr each performance indi-
cator the presence of yearly (month-of-year and week-afjyenonthly (day-of-month),
weekly (day-of-week and workday/weekend), and daily pagt€hour-of-day). To this
end, we first split for each time pattern investigated the glete dataset into subsets,
one for each category corresponding to the time patternekample, to investigate the
monthly time pattern we split the complete dataset into we/edubsets comprising the
performance value samples observed during a specific mdohén, we compute for each
subset the basic and derivative statistics performed tnecomplete dataset in the sec-
ond step, and plot them for visual inspection. Last, we a®athe results and the plots,
record the absence/presence of each investigated tinemaahd attempt to detect new
time patterns.

6.2.3 Is Variability Present?

An important assumption of this chapter is that the perfarceavariability of production
cloud services indeed exists. We follow in this section tist fitep of our analysis method
and verify this assumption.

98

160 1 1 1
EC2 Res. Acquisition (hourly avg) ——

140

120

60 1

40

el l' |

Delay [s]
-

20

26-09 03-10 10-10 17-10 24-10
2009 2009 2009 2009 2009

Date/Time
1000

1
api.facebook.com
~api.hi5.com
900 api.myspace.com
ebay.com
s3.amazonaws.com
800 api-3t.paypal.com

me Mﬁiw m

hourly avg
hourly avg
hourly avg
hourly avg
hourly avg

1
hourly avg;

700 ‘

600 p l

500““

&

400 4 MW“F‘ ’W.}: 4

300

URL Fetch [ms]

200 +

100

T T
26-09 03-10 10-10 17-10 24-10
2009 2009 2009 2009 2009

Date/Time

Figure 6.2: Performance variability for two selected cleedvices during the period Sep
26, 2009 to Oct 26, 2009: (top) for Amazon EC2, and (bottom{J¥oogle URL Fetch.

Towards this end, we present the results for the selectiatata from Sep 26 to Oct
26, 2009. For this month, we present here only the resultegponding to one sample
service from each of the Amazon and Google clouds. Figuehows the performance
variability exhibited by the Amazon EC2 service (top of thgufie, one performance indi-
cator) and by the Google URL Fetch service (bottom of the &gsix performance indica-
tors) during the selected month. For EC2, the range of vahdsates moderate-to-high
performance variability. For URL Fetch, the wide rangesha six indicators indicate
high variability for all URL Fetch operations, regardlesdiwe target URL. In addition,
the URL Fetch service targeting eBay web pages suffers fremaible decrease of per-
formance around Oct 17, 2009. We have also analyzed thdgdsuthe selected month
for all the other cloud services we investigate in this ceg@nd have experimented with
multiple one-month selections that follow the rules stdigaur analysis method; in all
cases we have obtained similar results (for brevity reasohshown). To conclude, the
effects observed in this section give strong evidence opthsence of performance vari-
ability in cloud services, and motivate an in-depth analgsithe performance variability
of both Amazon and Google cloud services.

99

Service | Min] Qi|Medianl Q3] Max| Mean SD
EC2 [s]

Deployment Latency 57.00] 73,59 75.70 78.50122.1G 76.62 5.17
S3 [MBps]

GETEUHIGH| 0.45 0.65 0.68/ 0.70] 0.78 0.68 0.30

GETUSHIGH| 8.60] 15.50 17.10 18.50, 25.90 16.93 2.39

PUT EUHIGH 1.00, 1.30] 1.40 1.40, 1.50, 1.38 0.10

PUT USHIGH| 4.09] 8.10f 8.40, 8.60] 9.10 8.26| 0.55
SDB [ms]
Query Response Time28.14) 31.76| 32.81] 33.77| 85.40 32.94 2.39

Update Latency297.54 342.52 361.97,376.95538.37,359.81 26.71
SQS [s]

LagTime[1.35 147 1.50] 1.79 6.62 1.81 0.82

FPS [ms]

Latency] 0.00] 48.97 53.89 76.06/386.43 63.0423.22

Table 6.1: Summary statistics for Amazon Web Services'sakervices.

6.3 The Analysis of the AWS Dataset

In this section, we present the analysis of the AWS datassth Bervice comprises sev-
eral operations, and for each operation, we investigatpeéhi®rmance indicators to un-
derstand the performance variability delivered by thesratpons.

6.3.1 Summary Statistics

In this section we follow the second step of our analysis we#nd analyze the summary
statistics for AWS; Tablé.1 summarizes the results. Although the EC2 deployment
latency has low IQR, it has a high range. We observe highegeraamd IQR for the
performance of S3 measured from small EC2 instances (sé®1$6c3.3 compared to
performance measured from large and extra large EC2 iretar®imilar to EC2, SDB
also has low IQR but a high range especially for the updateabpas. Finally, FPS
latency is highly variable which has implications for thephgations using this service
for payment operations as we present in Secsidn3

6.3.2 Amazon Elastic Compute Cloud (EC2)

CloudStatus.com reports the following performance inwictor the EC2 service:

1. Deployment Latency- The time it takes to start an m1l.small instance, from the
time startup is initiated to the time that the instance islale.

Figure 6.3 shows weekly statistical properties of the EC2 Resourceustiipn op-
eration. We observe higher IQR and range for deploymemdgtéom week 41 till the

100

120 F"Quantiles -
110 Median
100 | Mean o

90 s R

A Trol- TITT.0 Tl 1 T T%’
901 ettt e
60
50
40
30
20
10

{1

F—®
‘

{w}
o=
—{-—

A}

‘
LY
i
)
=]
%
|
(o]
I

Delay [s]

1 5 9 13 17 21 25 29 33 37 41 45 49 53
Time Reference (Week of 2009)

Figure 6.3: Amazon EC2: The weekly statistical propertiethe resource acquisition
operation. The box and whiskers show nijg-();-max.

end of the year compared to the remainder of the year prolzhl#yto increasing user
base of EC2. Steady performance for the deployment latenegpecially important for
applications which uses the EC2 for auto-scaling.

6.3.3 Amazon Simple Storage Service (S3)

CloudStatus.com reports the throughput of S3 where theigfimout is measured by issu-

ing S3 requests from US-based EC2 instances to S3 buckéis WS and Europe. "High

I/0” metrics reflect throughput for operations on Large antt&Large EC2 instances.
The following performance indicators are reported:

1. Get Throughput (bytes/second) Estimated rate at which an object in a bucket is
read (GET).

2. Put Throughput Per Second (bytes/second) Estimated rate at which an object
in a bucket is written (PUT).

Figure6.4 (top) depicts the hourly statistical properties of the S¥ise GET EU HI
operation. The range has a pronounced daily pattern, wéhieg and night hours (from
7PM to 2AM the next day) exhibiting much lower minimal tramsfates, and the work
day hours (from 8AM to 3PM) exhibiting much higher minimatisfer rates.

Figure6.4 (middle) shows the monthly statistical properties of thes&%ice GET EU
HI operation. The operation’s performance changes itepath August 2009: the last
five months of the year exhibit much lower IQR and range, amne Isggnificantly better
performance — the median throughput increases from 660 KBp$0 KBps.

101

800
700 EINE N €3 K INE IR SAE INE IR INE INE IAE INE INE IWE 3}
600 TrYTTITY - TTTT

300 Quantiles —1 .
200 et Median =
108 ' ' Mean <

01234567 8 91011121314151617181920212223

Time Reference [Hour/Day]

Throughput [KBps]
N
o
o

N
o
S
L
Bl
i
T
|
0

T+ w0 T

300 Quantiles ——1

200 | Median =

108 ' Mean ¢
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Time Reference [Month/Year]

Throughput [KBps]
N
o
o

2 3 ‘

2 BF — —— -
E fg B %%EDZETDED T B =
3 5 | : Median =
E Mean o
|_

0 i i
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Time Reference [Month/Year]

Figure 6.4: Amazon S3: The hourly statistical propertie&BfT EU HI operations (top),
and the monthly statistical properties of the GET EU HI opers (middle) and of GET
US HI operations (bottom).

Figure6.4 (bottom) shows the monthly statistical properties of the&¥ice GET US
HI operation. The operation exhibits pronounced yearlygoas, with the months Jan-
uary, September, and October 2009 having the lowest meamngadian) performance.
Figure6.4 (bottom) also shows that there exists a wide range of medarthty perfor-
mance values, from 13 to 19 MBps over the year.

6.3.4 Amazon Simple DB (SDB)

CloudStatus.com reports the following performance inaicafor the SDB service:

1. Query Response Time (ms) The time it takes to execute a GetAttributes operation
that returns 100 attributes.

2. Update Latency (ms)- The time it takes for the updates resulting from a PutAt-
tributes operation to be available to a subsequent Gebites operation.

102

550
500
450 == -
400 =
350 |-
300
250
200
150
100 Quantiles ——

50 Median
Mean o

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Time Reference [Month/Year]

O

Lol
il
In
u
ol
*l
L
|
i
\
i
\
i

Delay [ms]

Figure 6.5: Amazon SDB: The monthly statistical propertiethe update operation.

Figure6.5shows the monthly statistical properties of the SDB Updaeration. The
monthly median performance has a wide range, from 315 to 383There is a sudden
jump in range in June 2009; the range decreases steadilyJuom to December to the
nominal values observed in the first part of the year. Thisgsificant for applications
such as online gaming, in which values above the 99% periocepercentile are impor-
tant, as unhappy users may trigger massive customer dep#rough their social links
(friends and friends-of-friends).

6.3.5 Amazon Simple Queue Service (SQS)

CloudStatus.com reports the following performance inaicafor the SQS service:

1. Average Lag Time (s)- The time it takes for a posted message to become available
to be read. Lag time is monitored for multiple queues thatesexquests from inside
the cloud. The average is taken over the lag times measurezhéth monitored
queue.

Figure 6.6 depicts the weekly statistical properties of the SQS servithe service
exhibits long periods of stability (low IQR and range, sianimedian performance week
after week), for example weeks 5-9 and 26-53, but also peabligh performance vari-
ability, especially in weeks 2—4, 13-16, and 20-23. Thegoiriwvith high performance
variability are not always preceded by weeks of moderatabdity. The duration of a
period with high performance variability can be as short amngle week, for example
during week 18.

103

. Quantiles ——1
9 Variable Performance Median
. _— ~ Mean ¢
-— N
7 | | | | | |
I I = | I !
© 6 + is e i
% 5 T EE T | |Removed Data]
o M ﬂ -+ After This Point
*
o 4 7]
3 1 . h
RN IRt el @
e 1] L= Felbesr Uy
= = = = 4= = & L = 8= == ==
1
0

123456 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Time Reference (Week of 2009)

Figure 6.6: Amazon SQS: The weekly statistical properfidse statistics for the weeks
30-53 (not shown) are very similar to those for weeks 26—29.

6.3.6 Amazon Flexible Payment Service (FPS)

CloudStatus.com reports the following performance inicsafor the FPS service:

1. Response Time (s} The time it takes to execute a payment transaction. The re-
sponse time does not include the round trip time to the FP8cgenor the time
taken to setup pay tokens. Since Amazon reports the respiomséo the nearest
second, payments that complete in less than a second wiidoeded as zero.

Figure 6.7 depicts the monthly statistical properties of the FPS serviThere is a
sudden jump in the monthly median performance in Septemd@®,2rom about 50 to
about 80 ms; whereas the median is relatively constant®efud after the jump. We also
observe high variability in the maximum performance valagthe FPS service across
months.

6.3.7 Summary of the AWS Dataset

The performance results indicate that all Amazon servicesamalyzed in this section
exhibit one or more time patterns and/or periods of time wltlee service shows special
behavior, as summarized in Tale2 EC2 exhibits periods of special behavior for the
resource acquisition operation (Secti®:3.2. Both storage services of Amazon, SDB
and S3, present daily, yearly, and monthly patterns foeckfit operations (Sectidh3.4
and Sectior6.3.3. Finally, SQS and FPS show special behavior for specifie periods
(Section6.3.5and Sectior6.3.9.

104

400 -
Quantiles —— T
Median =
390 Mean o

300

250

200

Delay [s]
|
|

150

100 =T e

\
\
[
ng
I\
[
lkd
LT

50 o

[m 2]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Time Reference [Month/Year]

Figure 6.7: Amazon FPS: The monthly statistical properties

Perf. Yearly | Monthly|Weekly| Daily || Specia
Indicator|| (Month)| (Day) | (Day) |(Hour)|| Period
|Amazon AWS |
EC2 Y
S3 Y Y Y Y
SDB Y Y

SQS Y
FPS Y

Table 6.2: Presence of time patterns or special periods&AWS services. A cell value
of Y indicates the presence of a pattern or a special period.

6.4 The Analysis of the Google App Engine Dataset

In this section, we present the analysis of the Google Appriendataset. Each service
comprises several operations, and for each operation,westigate the performance in-
dicators in detail to understand the performance varighdklivered by these operations.

6.4.1 Summary Statistics

In this section we follow the second step of our analysis wetnd analyze the sum-
mary statistics for GAE; Tablé.3summarizes the results. The GAE Python runtime and
Datastore have high range and IQRs leading to highly vagipbtformance. However,
we observe relatively stable performance for the Memcaeheace.

105

[Service | Min| Q1[Median| Q3] Max| Mean| SD|
[Python Runtime [ms] 1.00]284.14 302.31/340.37/999.65314.95 76.39

Datastore [ms]
Create 1040 1280, 1420, 1710 5590, 1600, 600
Delete 1.00/344.40 384.22460.73999.86413.24102.90
Read 1.00/248.55 305.68 383.76999.27336.82118.20

Memcache [ms]

Get|45.97] 50.49 58.73 65.74/251.13 60.03| 11.44
Put|33.21) 44.21 50.86| 60.44{141.25 54.84] 13.54
Response 3.04) 4.69] 5.46| 7.04] 38.71 6.64] 3.39

URL Fetch [ms]
s3.amazonaws.com1.01/198.60 226.13245.83983.31214.21] 64.10
ebay.com 1.00/388.0Q 426.74460.03999.83412.57,108.31
api.facebook.com 1.00/172.95 189.39208.23998.22195.76 44.40
api.hi5.com71.31 95.81 102.58113.40478.75107.03 25.12
api.myspace.com67.33 90.85 93.36103.859515.88 97.90| 14.19
paypal.com 1.00/406.57 415.97431.69998.39421.76 35.00

Table 6.3: Summary statistics for Google App Engine’s clsevices.

6.4.2 The Google Run Service

CloudStatus.com reports the following performance inaickor the Run service:

1. Fibonacci (ms)- The time it takes to calculate the 27th Fibonacci numbehén t
Python Runtime Environment.

Figure6.8 (a) depicts the monthly statistical properties of the GAEhBy Runtime.
The last three months of the year exhibit stable performawith very low IQR and
narrow range, and with steady month-to-month median. &mtd the Amazon SDB
service (see Sectidh 3.4, the monthly median performance has a wide range, from 257
to 388 ms. Independently of the evolution of the median gl&ra sudden jump in range
in March 2009; the maximum response time (lowest perforrmpdecreases steadily up
to October, from which point the performance becomes steady

6.4.3 The Google Datastore Service

To measure create/delete/read times CloudStatus useple siet of data which we refer
to the combination of all these entities as a 'User GroupoudStatus.com reports the
following performance indicators for the Datastore sesvic

1. Create Time (s)- The time it takes for a transaction that creates a User Group

2. Read Time (ms)- The time it takes to find and read a User Group. Users are
randomly selected, and the user key is used to look up theamskprofile picture
records. Posts are found via a GQL (Google Query Languagestor query.

106

1100
1000
900
800
700
600
500
400
300
200
100

Delay [ms]

] il
Lot Heem

e

g
o=
|
[
|
[

Quantiles ——
Median

, Mean o

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Time Reference [Month/Year]

(a) Google Run

Delay [ms]

1100
1000
900
800
700
600
500
400
300
200
100

[mo]
|
—

(e]
ndl]
|
]

2 -
- HE e

el
I
—
l
T
(I

—

e
14!

Quantiles ——
Median

, Mean, o

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Time Reference [Month/Year]

(b) Google Datastore

Figure 6.8: The monthly statistical properties of runnimgagpplication in the Python
Runtime Environment with the Google Run service (a) and daal roperation for the
Google Datastore service (b).

3. Delete Time (ms)- The time it takes for a transaction that deletes a User Group

Figure 6.8 (b) depicts the monthly statistical properties of the GABd3tore ser-
vice read performance. The last four months of the year édtdible performance, with
very low IQR and relatively narrow range, and with steady theo-month median. In
addition we observe yearly patterns for the months Jandmough August. Similar to
Amazon S3 GET operations, the Datastore service exhibitghal®R with yearly pat-
terns (Sectior.3.3, and in contrast to S3, the Datastore service read opasagighibit
a higher range. Overall, the Update operation exhibits awieharly range of monthly
median values, from 315 to 383 ms.

6.4.4 The Google Memcache Service

CloudStatus.com reports the following performance inmicafor the Memcache service:

1. Get Time (ms)- The time it takes to get 1 MB of data from memcache.

2. Put Time (ms) - The time it takes to put 1 MB of data in memcache.

3. Response Time (ms} The round-trip time to request and receive 1 byte of data
from cache. This is analogous to Get Time, but for a smallanklof data.

Figure6.9(a) depicts the monthly statistical properties of the Mechesservice PUT
operation performance. The last three months of the yeabigxdtable performance,
with very low IQR and relatively narrow range, and with stgatbnth-to-month median.
The same trend can be observed for the Memcache GET operatioiguely for the

107

150 500 -
- Quantiles T—==3-
Median
_ Mean T |
120 400
g % T g 300
£ K3 E
AN EErIHINE S :
o} - —_ ®
a] 60 = Eiarres L J v o 200
B A =2l S =+ +
30 = e e 100 BB 6 oo a6 e e e e 8 5] [5]E
Quantiles —— T+t T T T T T T T T++T++T
Median
Mean <
0 M il P 0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 012345678 91011121314151617181920212223
Time Reference [Month/Year] Time Reference [Hour/Day]
(a) Google Memcache (b) Google URL Fetch

Figure 6.9: The monthly statistical properties of the PUEragion for the Google Mem-
cache service (a) and the hourly statistical propertieshHferGoogle URL Fetch service
(b) where the target web site is the Hi5 social network.

Perf. Yearly | Monthly| Weekly| Daily || Specia
Indicator || (Month)| (Day) | (Day) |(Hour)|| Period

| Google App Engine |

Run Y Y
Datastore Y Y
Memcachd

URL Fetch Y Y Y

Table 6.4: Presence of time patterns or special periodféGAE services. A cell value
of Y indicates the presence of a pattern or a special period.

Memcache PUT operation, the median performance per momtlamancreasing trend
over the first ten months of the year, with the response tinseedsing from 79 to 43 ms.

6.4.5 The Google URL Fetch Service

CloudStatus.com reports the response time (ms) which mradad by issuing web ser-
vice requests to several web sites: api.facebook.comhi&mom, api.myspace.com,
ebay.com, s3.amazonaws.com, and paypal.com.

Figure6.9 (b) depicts the hourly statistical properties of the URLdRetervice when
the target web site is the Hi5 social network. The ranges loiegfor the service response
times vary greatly over the day, with several peaks. We hégemwed a similar pattern
for other target web sites for which a URL Fetch request isads

108

| Section I Application | Used Service]|
Section6.5.2 Job execution GAE Run
Section6.5.3|| Selling virtual goods AWS FPS

Section6.5.4|| Game status managementAWS SDB
GAE Datastore

Table 6.5: Large-scale applications used to analyze thadtugf variability.

6.4.6 Summary of the Google App Engine Dataset

The performance results indicate that all GAE services wayard in this section ex-
hibit one or more time patterns and/or periods of time whieeeservice provides special
behavior, as summarized in TalBel The Python Runtime exhibits periods of special
behavior and daily patterns (Sectiémt.2. The Datastore service presents yearly pat-
terns and periods of time with special behavior (Seciogh3. The Memcache service
performance has also monthly patterns and time patterngeaia behavior for various
operations (Sectiol.4.4. Finally, the URL Fetch service presents weekly and daily
patterns, and also shows special behavior for specific tiemmgbs for different target
websites (Sectiof.4.5.

6.5 The Impact of Variability on Large-Scale Applica-
tions

In this section we assess the impact of the variability otidigervice performance on
large-scale applications using trace-based simulat®imge there currently exists no ac-
cepted traces or models of cloud workloads, we propose sosna which three realistic
applications would use specific cloud services. T&btesummarizes these applications
and the main cloud service that they use.

6.5.1 Experimental Setup

Input Data For each application, we use the real system traces deddritibe section
corresponding to the application (column "Section” in E®5), and the monthly perfor-
mance variability of the main service leveraged by the "diad” application (column
"Used Service” in Tablé.5).

Simulator We design for each application a simulator that considers fihe trace each

unit of information, that is, a job record for the Job Exeontscenario and the num-
ber of daily unique users for the other two scenarios, anelsass the performance for a
cloud with stable performance vs variable performance. daah application we select

109

one performance indicator, corresponding to the main ctmudice that the "cloudified”
application would use. In our simulations, the variabibifythis performance indicator,
which, given as input to the simulator, is the monthly perfance variability analyzed
earlier in this chapter. We define theference performancé,.; as the average of the
twelve monthly medians, and attribute this performancénéodloud with stable perfor-
mance. To ensure that results are representative, we rbinsgaalation 100 times and
report the average results.

Metrics We report the following metrics:

e Forthe Job Execution scenario, which simulates the exatoficompute-intensive
jobs from grid and parallel production environments (PRES first report two
traditional metrics for the grid and PPE communities: therage response time
(ART), the average bounded slowdowABSD) with a threshold of 10 sec-
onds [/9]; the ABSD threshold of 10 eliminates the bias of the avetagard jobs
with runtime below 10 seconds. We also report one cloudipeauetric, Cost,
which is the total cost for running the complete workloadyressed in millions of
consumed CPU-hours.

e For the other two scenarios, which do not have traditiondtic® we devise a per-
formance metric that aggregates two components, thevelpérformance and the
relative number of users. We design our metric so that theldowlues for the
relative performance are better. We defineAlggregate Performance Penaltyas
APR(t) = % X [Znﬁ whereP(t) is the performance at time P, is the refer-
ence performancé/(¢) is the number of users at timeandU,,,,. is the maximum
number of users over the course of the traég;) is a random value sampled from
the distribution corresponding to the current month at tintehe relative number of
users component is introduced because application pnevate interested in bad
performance only to the extent it affects their users; wihene are few users of the
application, this component ensures that tféR(¢) metric remains low for small
performance degradation. Thus, tA& R metric does not represent well applica-
tions for which good and stable performance is importantlairaes. However,
for such applications the impact of variability can be cotepustraightforwardly
from the monthly statistics of the cloud service; this isnatd excluding the user
component from thel P R metric.

6.5.2 Grid and PPE Job Execution

Scenarioln this scenario we analyze the execution of compute-imntensbs typical for
grids and PPEs on cloud resources.

110

Trace ID, Trace System
Source (Trace ID Number of Size Load
in Archive) Mo. | Jobs| Userg Site§ CPUs| [%]
Grid Workloads Archive104, 3 traces

1. RAL (6) 12/0.2M| 208 1| 0.8K| 85+
2. Grid3 (8) 18/1.3M| 19| 29| 3.5K -

3. SharcNet (10) 13|1.1M| 412| 10| 6.8K -

Parallel Workloads Archive4], 2 traces
4. CTCSP2(6)| 11/0.1M| 679 1| 430 66
5. SDSC SP2 (9) 24/0.1M| 437 128| 83

Y

Table 6.6: Job Execution (GAE Run Service): The charadiesisf the input workload
traces.

Cloud with
Stable Performancg| Variable Performance
ART [ABSD| Cost|| ART [ABSD| Cost

Trace ID [s] (10s) [s] (10s)
RAL 18,837 1.89| 6.39|[18,877| 1.90| 6.40
Grid3 7,279 4.02| 3.60|| 7,408 4.02| 3,64

SharcNet || 31,572 2.04|11.29(| 32,029 2.06(11.42
CTCSP2 ||11,355 1.45] 0.29|/11,390 1,47, 0.30
SDSC SP2 7,473 1.75] 0.15|| 7,537 1.75| 0.15

Table 6.7: Job Execution (GAE Run Service): Head-to-heatbpaance of workload
execution in clouds delivering steady and variable peréoroe. The "Cost” column
presents the total cost of the workload execution, expdeissenillions of CPU-hours.

Input Traces We use five long-term traces from real grids and PPEs as wamtkloTa-
ble 6.6 summarizes their characteristics, with the ID of each tradeating the system
from which the trace was taken; sééf, 4] for more details about each trace.

Variability We assume that the execution performance for the cloud wetdy perfor-
mance is equivalent to the performance of the grid from wiiehtrace was obtained.
We also assume that the GAE Run service can run the input eaxkland exhibits the
monthly variability evaluated in Sectidh4.2 Thus, we assume that the cloud with vari-
able performance introduces for each job a random slowdaetof derived from the real
performance distribution of the service for the month inebhihe job was submitted.

ResultsTable6.7summarizes the results for the job execution scenario. €Heqmnance
metrics ART, ABSD, and Cost differ by less than 2% betweerctbad with stable per-
formance and the cloud with variable performance. Thusnthé finding is that the
impact of service variability is low for this scenario.

111

»
N
IS

.
Amazon FPS (right vertical axis) s
users (left vertical axis) ——

©
o

- 3.60

v
o

r 3.00

N
o

- 2.40

o
o

o)
(=}

r 1.20

Millions of Daily Unique Users

Aggregate Performance Penalty

w
o

r 0.60

o
i

- 0.00

01-01 01-0201-03 01-04 01-05 01-06 01-07 01-08 01-09 01-10 01-11 01-12
2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009

Date/Time

Figure 6.10: Selling Virtual Goods in Social Networks (AroaZPS): Aggregate Perfor-
mance Penalty when using Amazon FPS as the micro-paymekeitdc(Data source for
the number of FaceBook usergtp://www.developeranalytics.com/)

6.5.3 Selling Virtual Goods in Social Networks

Scenario In this scenario we look at selling virtual goods by a compapgrating a
social network such as FaceBook, or by a third party assetiaith such a company. For
example, FaceBook facilitates selling virtual goods tigtoits own API, which in turn
could make use of Amazon’s FPS service for micro-payments.

Input Traces We assume that the number of payment operations dependslyingth
the number of daily unique users, and use as input tracesithber of daily unique users
present on FaceBook (Figuéel0).

Variability We assume that the cloud with variable performance exhibésmonthly
variability of Amazon FPS, as evaluated in Sectt8.6

ResultsThe main result is that our APR metric can be used to triggdrraativate the
decision of switching cloud providers. FiguselOshows the APR when using Amazon’s
FPS as the micro-payment backend of the virtual goods veridw significant perfor-
mance decrease of the FPS service during the last four montie year, combined
with the significant increase in the number of daily usersyedl captured by the APR
metric—it leads to APR values well above 1.0, to a maximum.8fi8 November 2009.
If the clients respond to high payment latency similarly thes consumers of Internet
newmedia 43, 53], that is, they become unsatisfied and quit, our APR metr& ¢gear
indicator for the virtual goods vendor that the cloud previdhould be changed.

112

~

Amazon SDB (right vertical axis) =
user:

7 , . n L
Google Datastore (right vertical axis) ‘s
s (left, vertical axis) —-— users

left vertical axis) . ——
A 150

W
AL

L)

L)

o

o

IS

IS

w

Aggregate Performance Penalty

w
e
3
o

n

~
4
@
S

Millions of Daily Unique Users

Millions of Daily Unique Users
Aggregate Performance Penalty

T
o
o
o

o
|

01-03 01-04 01-05 01-06 01-07 01-08 01-09 01-10 01-11 01-12 01-01 01-03 01-04 01-05 01-06 01-07 01-08 01-09 01-10 01-11 01-12 01-01
2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2010 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2010

Date/Time Date/Time

Figure 6.11: Game Status Maintenance for Social Games (Am&DB and Google
App Engine Datastore): Aggregate Performance Penalty wisamg Amazon SDB
as the database backend (left) and when using Google Appn&rgatastore as
the database backend (right). (Data source for the numbdfaah Town users:
http://www.developeranalytics.com/)

6.5.4 Game Status Maintenance for Social Games

Scenarioln this scenario we investigate the maintenance of gamesstat a large-scale
social game such as Farm Town or Mafia Wars which currently mallions of unique
users daily. In comparison with traditional massively nupldtyer online games such as
World of Warcraft and Runescape, which also gather millinsnique players daily, so-
cial games have very little player-to-player interactiergept for messaging, performed
externally to the game, for example through FaceBook cHaphrigence, maintaining the
game status for social gaming is based on simpler databasatmms, without the burden
of cross-updating information for concurrent players, ashave observed for Runescape
in our previous work I51]. Thus, this scenario allows us to compare a pair of cloud
database services, Amazon’'s SDB and Google’s Datastore.

Input Traces Similarly to the previous scenario, we assume that the nuoftugerations,
database accesses in this scenario, depends linearly annfiger of daily unique users.
We use as input trace the number of daily unique users for dne Fown social game
(Figure6.11).

Variability We assume, in turn, that the cloud with variable performagdsabits the
monthly variability of Amazon SDB (Sectio6.3.4 and of Google Datastore (Sec-
tion 6.4.3. The input traces span the period March 2009 to January;20WL6, we do
not have a direct match between the variability data, wharhesponds to only to months
in 2009, and the month January 2010 in the input traces. $imecBatastore operations
exhibit yearly patterns (Sectidh4.6, we use in simulation the variability data of January
2009 as the variability data for January 2010.

113

Results The main finding is that there is a big discrepancy betweerivteecloud ser-
vices, which would allow the application operator to sekbet most suitable provider.
Figures 6.11 depicts the APR for the application using the Amazon SDB pda
opeation (top) and for the application using the Google Etate Read operation (bot-
tom). During September 2009-January 2010, the bars degitte APR of Datastore are
well below the curve representing the number of users. Tdrigesponds to the perfor-
mance improvements (lower median) of the Datastore Reddrp&nce indicator in the
last part of 2009 (see also Figuse3(b)). In contrast, the APR values for SDB Update go
above the users curve. These visual clues indicate thathifapplication, Datastore is
superior to SDB over a long period of time. An inspection & &PR values confirms the
visual clues: the APR for the last five depicted months is atlol.00 (no performance
penalty) for Datastore and around 1.4 (40% more) for SDB.dpm®ication operator has
solid grounds for using the Datastore services for the aggtin studied in this scenario.

6.6 Related work

Much effort has been put recently in assessing the perfaceahvirtualized resources,
in cloud computing environment63, 163 208 157, 161, 72, 226, 64] and in general3,
52, 145 1417]. In contrast to this body of previous work, ours is differémscope: we
do not focus on the (average) performance values, but onvhgability and evolution
over time. In particular, our work is the first to characterthe long-term performance
variability of production cloud services.

Close to our work is the seminal study of Amazon $83, which also includes a 40
days evaluation of the service availability. Our work coerpénts this study by analyzing
the performance of eight other AWS and GAE services over & yee also focus on
different applications. Several small-scale performastadies of Amazon EC2 have been
recently conducted: the study of Amazon EC2 performanaegutsie NPB benchmark
suite R0§g, the early comparative study of Eucalyptus and EC2 perémee 57, the
study of performance and cost of executing a scientific wovkfh clouds B3], the study
of file transfer performance between Amazon EC2 and S3, aicr&3ults complement
these studies and give more insight into the (variabilijypafrformance of EC2 and other
cloud services.

Recent studies using general purpose benchmarks have satwirtualization over-
head can be below 5% for computatidt8] and below 15% for networking?[3, 145.
Similarly, the performance loss due to virtualization fargllel I/O and web server
I/O has been shown to be below 30%Z3P] and 10% B7], respectively. Our previous
work [161, 105 has shown that virtualized resources in public clouds careta much
lower performance than the theoretical peak, especialyéonputation and network-
intensive applications. In contrast to these studies, wesitigate in this chapter the per-

114

formance variability, and find several examples of perforcgaindicators whose monthly
median’s variation is above 50% over the course of the stiugigar. Thus, our current
study complements well the findings of our previous workt ihahe performance results
obtained for small virtualized platforms are optimistitiestions of the performance ob-
served in clouds.

6.7 Summary

Production cloud services may incur high performance bdiig due to the combined
and non-trivial effects of system size, workload varidpjlirtualization overheads, and
resource time-sharing. In this chapter we have set to ifyetite presence and extent
of this variability, and to understand its impact on largels cloud applications. Our
study is based on the year-long traces that we have colléc@dCloudStatus and which
comprise performance data for Amazon Web Services and @@qgb Engine services.
The two main achievements of our study are described in tlenimg.

First, we have analyzed the time-dependent characteristizibited by the traces, and
found that the performance of the investigated servicebdglon the one hand yearly and
daily patterns, and on the other hand periods of stable pedioce. We have also found
that many services exhibit high variation in the monthly medsalues, which indicates
large performance changes over time.

Second, we have found that the impact of the performancahiéity varies greatly
across application types. For example, we found that thecgeof running applications
on GAE, which exhibits high performance variability and settmonths period of low
variability and improved performance, has a negligible aetdor running grid and par-
allel production workloads. In contrast, we have found trat explained the reasons for
which the GAE database service, having exhibited a siméaog of better performance
as the GAE running service, outperforms the AWS databasgcedor a social gaming
application.

Chapter 7

Space-correlated failures in large-scale
distributed systems

Millions of people rely daily on the availability of distnitbed systems such as peer-to-
peer file-sharing networks, grids, and the Internet. Siheestale and complexity of
contemporary distributed systems make the occurrencelofda the rule rather than the
exception, many fault tolerant resource management tqabaihave been designed re-
cently 092, 30, 176. The deployment of these techniques and the design of n@s on
depend on understanding the characteristics of failuresahsystems. While many fail-
ure models have been proposed for various computer sysi€8sl[76, 183 99|, few of
these models consider the occurrence of failure burstsisnchapter we present a new
model that focuses on failure bursts, and validate it with failure traces collected from
a diverse set of distributed systems.

The foundational work on the failures of computer systedis 114, 198 91] has
already revealed that computer system failures occur aftearsts, that is, the occurrence
of a failure of a system component can trigger within a sheriqal a sequence of failures
in other components of the system. It turned out that theimof bursty system failures
is high in distributed systems; for example, in the VAXckrsb8% of all errors and
occurred in bursts and involved multiple machinggq, and in both the VAXcluster and
in Grid’5000 about 30% of all failures involve multiple manchs [L98, 103.

A bursty arrival breaks an important assumption made by moosefault tolerant
algorithms P2, 234, 147, that of independent and identical distribution of fadaramong
the components of the system. However, few studié§ [34, 103 investigate the bursty
arrival of failures for distributed systems. Even for thesadies, the findings are based
on data corresponding to a single system—until the recesation of online repositories
such as the Failure Trace ArchivEZ3 and the Computer Failure Data Repositol 3§,

*This chapter is based on previous work published irternational Euro-Par Conference on Parallel
ProcessindEuroPar'10) 83].

116

failure data for distributed systems were largely inadbésgo the researchers in this
area.

The occurrence of failure bursts often makes the avaitgldilehavior of different
system components to be correlated; thus, they are oftemreefto as component or
space-correlated failuresThe importance of space-correlated failures has beeratepe
edly noted: the availability of a distributed system may berestimated by an order of
magnitude when as few as 10% of the failures are correldi@g,[and a halving of the
work loss may be achieved when taking into account spaaelated failuresf34].

In this chapter we address both scarcity problems, of the dddraces, and of the
lack of a model for space-correlated failures. With thisigtwe make publicly and freely
available through the Failure Trace Archive six new tracestandard format. We further
propose a novel model for space-correlated failures basetgowing windows. Then, we
propose a fully automated method for identifying spaceetated failures. We validate
our model using real failure traces taken from fifteen digadsstributed systems, and
present for them the extracted model parameters.

The rest of the chapter is organized as follows. Sectidrintroduces the terminol-
ogy and the failure traces used in this chapter. Sedti@dpresents our model for space-
correlated failures. Sectioh3shows that space-correlated failures are indeed preseént an
significant in the failure traces of distributed systemsiolwvhis an important assumption
of this chapter. Sectior.4 presents the results of fitting common distributions to tine e
pirical distributions extracted from the failure tracescon7.5reviews the related work
on space-correlated failures in distributed systems, avadlyfj Section7.6 summarizes
the chapter.

7.1 Background

In this section we present the terminology and the datasets im this chapter.

7.1.1 Terminology

We follow throughout this chapter the basic concepts anaitiefns associated with sys-
tem dependability as summarized by Avizienis et &8][The basic threats to reliability
are failures, errors, and faults occurring in the systenfiailire (unavailability eventis
an event in which the system fails to operate according tspéifications. A failure is
observed as a deviation from the correct state of the systenerror is part of the sys-
tem state that may lead to a failure. Awailability events the end of the recovery of the
system from failure. As in our previous workZ3, we define arunavailability interval
(downtim@ as a continuous period of a service outage due to a failuoavésely, we
define aravailability intervalas a contiguous period of service availability.

117

System Type # of Nodeg Period Year # of Events
GRID'5000 Grid 1,288| 1.5 years 2005-2006 588,463
WEBSITES Web servers 129| 8 monthg 2001-2002 95,557
LDNS DNS servers 62,201 2 weeks| 2004 384,991
LRI Desktop Grid 237| 10days| 2005 1,792
DEuUG Desktop Grid 573| 9days 2005 33,060
SDSC Desktop Grid 207| 12 days| 2003 6,882
ucCB Desktop Grid 80| 11days| 1994 21,505
LANL SMP, HPC Clusters 4,750, 9years|1996-2005 43,325
MICROSOFT Desktop 51,663 35days| 1999 1,019,765
PLANETLAB P2P 200-400 1.5year|2004-2005 49,164
OVERNET P2P 3,000 2 weeks| 2003 68,892
NOTRE-DAME * Desktop Grid 700/ 6 monthg 2007 300,241
NOTRE-DAME 2 Desktop Grid 700|6 monthg 2007 268,202
SKYPE P2P 4,000 1 month| 2005 56,353
SETI Desktop Grid 226,208 1.5 years 2007-2009 202,546,160

! The host availability version of the d?rrRe-DAME trace.
2 The CPU availability version of the &irRe-DAME trace.

Table 7.1: Summary of fifteen datasets in the Failure Trachike.

7.1.2 The Datasets

The datasets used in this chapter are part of the Failure Bexhive (FTA) [L23. The
FTA is an online public repository of availability tracekésm from diverse parallel and
distributed systems.

The FTA makes available online failure traces in a commoiifiathformat. The
format records the occurrence time and duration of resdaiicges as an alternating time
series of availability and unavailability intervals. Eahailability or unavailability event
in a trace records the start and the end of the event, andsbaree that was affected by
the event. Depending on the trace, the resource affectduebgvient can be either a node
of a distributed system such as a node in a grid, or a compaiennode in a system
such as CPU or memory.

Prior to the work leading to this study, the FTA made avadaibl its standard for-
mat nine failure traces; as a result of our work, the FTA novk@saavailable fifteen
failure traces. Tabl&.1summarizes the characteristics of these fifteen traceshwine
use throughout this chapter. The traces originate fromesyswf different types (multi-
cluster grids, desktop grids, peer-to-peer systems, DNMSNgb servers) and sizes (from
hundreds to tens of thousands of resources), which makss thaces ideal for a study
among different systems. Furthermore, the traces coviststally relevant periods of
time, and many of the traces cover several months of systematipn. A more detailed
description of each trace is available on the FTA web sitig:(/fta.inria.fr).

http://fta.inria.fr

118

A A A

A A A T
n) n kool
) e} O B SO AT)
§e) o S| | I T
) =} o N
Z Z Z P = ”

| o EEEEY
—— Availability = Failure —— Availability = FFailure —— Availability = Failure

Figure 7.1: Generative processes for space-correlatkadai (left) moving windows;
(middle) time partitioning; (right) extending windows.

7.2 Model Overview

In this section we propose a novel model for failures ocagrim distributed systems. We
first introduce our notion of space-correlated failuresl tren build a model around it.

7.2.1 Space-Correlated Failures

We call space-correlated failurea group of failures that occur within a short time in-
terval; the seminal work of SiewioreK], 131], lyer [114, 19§, and Gray PO, 91] has
shown that for tightly coupled systems space-correlatédrés are likely to occur. Our
investigation of space-correlated failures is hamperethbyack of information present
in failure traces—none of the computer system failure sage know records failures
with sufficient detail to reconstruct groups of failures. Aopt instead an approach
that groups failures based on their start and finish timgssame identify three such ap-
proaches, moving windows, time partitioning, and extegawndows, which we describe
in turn.

Let 7S(-) be the function that returns the time stamp of an event, eftikire or
repair. LetO be the sequence of failure events ordered according toasicrg event time
stamp, that isQ = [E;|T'S(E;—1) < TS(E;),¥i > 1].

Moving Windows We consider the following iterative process that, startiogn O,
generates the space-correlated failures with time pammetAt each step in the process
we select as thgroup generatorF' the first event fromO unselected yet, and generate
the space-correlated failure by further selecting frorall eventsE occurring withinA
time units from7'S(F), that is,TS(E) < TS(F) + A. The process we employ ends
when all the events i) have been selected. The maximum number of generated space-
correlated failures ig0|, the number of events i@. The process uses a time window of
size A, where the window "moves” to the next unselected everd iat each step. Thus,
we call this process the generation of space-correlataddaithroughmoving windows
Figure7.1 (left) depicts the use of the moving windows for various eslofA.

119

TS(F) A
—
o d, d, Parallel downtime:
E— Avallablllty #ds N*(maX(TS(E,)) _ TS(F))
i } i N
=i Failure !
& Single-node downtime:
¢ > d,+d,+ds+d,

max(TS(E)) - TS(F)

p-time

Figure 7.2: Parallel and single-node job downtime for a darapace-correlated failure.

Time Partitioning This approach partitions time in windows of fixed sixe start-
ing either from a hypothetical time O or from the first eventin We call this process
generation of space-correlated failures throtigie partitioning

Extending Windows A group of failures in this approach is a maximal subsequence
of events such that each two consecutive events are at most¢ dtapart, i.e., for each
consecutive event& and F' in O, T'S(F) < T'S(E) + A. Thus,A is the size of the
window that extends the horizon for each new event addecktgribup; thus, we call this
second process generation of space-correlated failuresghextending windowsWe
have already used this process to model the failures oogumiGrid’5000 [L03.

The three generation processes, moving windows, timetipaitig, and extending
windows, can generate very different space-correlatdarés from the same input set of
eventsO (see Figurer.1). The following two considerations motivate our selectaira
single generation process from these three. First, timgtipaing may introduce arti-
ficial time boundaries between failure events belongingaiassecutive space-correlated
failures, because each space-correlated failure staatmalttiple of A. Thus, the groups
identified through time partitioning do not relate well tmgps naturally occurring in the
system, and may confuse the fault-tolerant mechanisms lgodthms based on them;
the moving and extending windows do not suffer from this pgpob Second, the ex-
tending windows process may generate infinitely-long sggaceelated failures: as the
extending window is considered between consecutive fslua failure can occur long
after its group generator (its first occurring failure). Shthe groups generated through
extending windows may reduce the efficiency of fault toleeamechanisms that react to
instantaneous bursts of failures. Thus, we select and ube iremainder of this chapter
the generative processes for space-correlated failuresgh moving windows.

7.2.2 Model Components

We now build our model around the notion of space-correléaéddres (groups) intro-
duced in the previous section. The model comprises thregoanants: the group inter-

120

arrival time, the group size, and the group downtime. We riles@ach of these three
components in turn.

Inter-Arrival Time This component characterizes the process governing thalaof
new space-correlated failures (including groups of size 1)

Size This component characterizes the number of failures ptesereach space-
correlated failure.

Downtime This component characterizes the downtime caused by eack-sprrelated
failure. When failures are considered independently atstd in groups, the down-
time is simply the duration of the unavailability corresporg to each failure event.
A group of failure may, however, affect users in ways thatetepon the user appli-
cation. We consider in this chapter two types of user apitina: parallel jobs and
single-node jobs. We define tparallel job downtimgD,,,.) of a failure group as
the product of the number of individual nodes affected byf#ilare events within
the group, and the time elapsed between the earliest faghwat and the latest
availability event corresponding to a failure within theogp. We further define
thesingle-node job downtim@)sy,) as the sum of the downtimes of each individual
failure within the failure group. Figuré&.2 depicts these two downtime notions.
The parallel job downtime gives an upper bound to the dowattaused by space-
correlated failures for parallel jobs that would run on afhyhe nodes affected by
failures. Similarly, the single-node job downtime chaegiztes the impact of a fail-
ure group on workloads dominated by single-node jobs, wisithe case for many
grid workloads 99.

7.2.3 Method for Modeling

Our method for modeling is based on analyzing in two stepsriatraces taken from real
distributed systems; we describe each step, in turn, inalt@fing.

The first step is to analyze for each trace the presence otsmacelated failures
comprising two or more failure events, for valuesffbetween 1 second and 10 min-
utes. Tolerating such groups of failures is important foeiactive and deadline-oriented
system users.

The second step follows the traditional modeling stepsdduifes in computer sys-
tems [L14, 183. We first characterize the properties of the empiricalrdbstions using
basic statistics such as the mean, the standard devidtemit and the max, etc. This al-
lows us to get a first glimpse of the type of probability distition that could characterize
the real data. We then try to find a good fit, that is, a well-kngrobability distribution
and the parameters that lead to the best fit between thabdi#dn and the empirical data.
When selecting the probability distributions, we look a ttegrees of freedom (number

121

of parameters) of that distribution; while a distributiottwmore degrees of freedom

may provide a better fit for the data, such a distribution cakerthe understanding of
the model more difficult, can increase the difficulty of matta¢ical analysis based on
the model, and may also lead to overfitting to the empirictdskets. Thus, we select five
probability distributions to fit to the empirical data: exgmtial, Weibull, Pareto, lognor-

mal, and gamma. The fitting of the probability distributid@ashe empirical datasets uses
the Maximum Likelihood Estimation (MLE) method (], which delivers good accuracy

for the large data samples specific to failure traces.

After finding the best fits for each candidate distributiompdness-of-fit tests are used
to assess the quality of the fitting for each distributiorg &mestablish the best fit. We
use for this purpose both the Kolmogorov-Smirnov (KS) aredAhderson-Darling (AD)
tests, which essentially assess how close the cumulastrxdition function (CDF) of the
probability distribution is to the CDF of the empirical daksor each candidate distribution
with the parameters found during the fitting process, we toate the hypothesis that
the empirical data are derived from it (the null-hypotheasfithe goodness-of-fit test).
Neither of the KS and AD tests can confirm the null-hypothdsig both are useful in
understanding the goodness-of-fit. For example, the KSstesides a test statistid),
which characterizes the maximal distance between the Cfreadmpirical distribution
of the input data and that of the fitted distribution.

7.3 Failure Group Window Size

An important assumption in this chapter is that space-taig@ failures are present and
significant in the failure traces of distributed systemsthils section we show that this

is indeed the case. Secti@n2.1the characteristics of the space-correlated failures are
dependent on the window siZe we investigate this dependency in this section.

The importance of a failure model derives from the fractibm@vntime caused by
the failures whose characteristics it explains, from thaltdowntime of the system. For
the model we have introduced in Sectib2we are interested in space-correlated failures
of at least two failures. As explained in Sectidr?.], the characteristics of the space-
correlated failures depend on the window sixel arge values for\ lead to more groups
of at least two failures, but reduce the usefulness of theeiniml predictive fault tol-
erance. Conversely, small values fxrlead to few groups of at least two failures, and
effectively convert our model into the model for individdallures we have investigated
elsewherel23.

We assess the effect &f on the number of and downtime caused by space-correlated
failures by varyingA from one second to one hour; the most interesting valueA fare
below a few minutes, useful for proactive fault toleranadteques. Figur&.3shows the
results for each of the fifteen datasets (see Seg¢tibr?). We distinguish in the figure the

122

30000 . ~100 5000 T T d - 100 120000 - - : - ~ 100
- @ No. of G

P No.of Groups— | g o No. of Groups— | & Q200000 Dc?wr?tim;O(Lljl/po)% <

= Downtime (%) S 3 el Downtime (%) 1< 5 | I

o = = =

o] 1€ oz E O |E

5 € G L S k] €

100000 13 S L 5 40000 13

= |8 2w 8 £, |8

O e e ey o(; e O gy

Window Size (s) Window Size (s) Window Size (s)
(a) GRID’5000 (b) WEBSITES (c) LDNS
80 - - - ~ 100 350 T T T T T T 100

B 18000 . . . - - - 100 -
L No. of Groups— | N ;

700) . — 0. of Groups— { a0of, 1
8.l Downtime (%) - | & g, Downtime (%) @ &..| No. of Groups — |
Emi 1o 3 o 7% 3 Downtime (%) by

g oo})

=) “= 8000 1E o
z P] z

= |5 = .

00 = om0 w0 me ‘3“"“3 5‘08 0 0 5 oo 1500 2000 2500 300Q 5000 00 o0 e e *3500

Window Size (s) Window Size (s) Window Size (s)
(d) LR (e) DEUG (f) SDSC

900 100 2400 ————————— 100 2400! - 100

8000 1 230001 e o 1 230001 1
& 7000 No. of Groups— { & aot L 18 @ 22009) e
] h < 21000l - 1< 2 : I
o™ Downtime (%) P No. of Groups— | 2 gl No. of Groups— | ©
o™ 1E Ol Downtime (%) {5 O ol Downtime (%) | -5
© 2000 g O 18000 1 g S 180001] g
o} 1 S 17000f 19 S 17000 1
2 18 2w la 25 18

1000| 7 O 150001 3 15000 q 0

O e m mgmg 0 e e w0 MO
Window Size (s) Window Size (s) 3500 Window Size (s) 3500
(g) UCB (h) LANL (i) LANL (INTERSECTION
850——————————— 100 6009 100 40000—— 100
o " No. of Groups— 1 = 240001 . e] seoool- No. of Grouns—
Qe Downtime (%)~ & Qe e g <ol P g
o r © 3 et No. of Groups— & 3 00008 Downtime (%) S

842 1 - 25000F B
o £ 5™ Downtime (%)~ 1€ &S| E
© 838 1€ N E B E
S vl 18 S 15 et 15
Zuf j8 g 1§ S 8

2r 7] 8000 4 O 5000 0
830 T am e me w0 me__ 6000—— i oo o, 0 —— o =

Window Size (s) 3500 0 Window Size (s) 3500 0 Window Size (s) 3500
(i) MICROSOFT (k) PLANETLAB (I) OVERNET
90— 200 16000 1100 30000100
ggou] o\o o 14000) No. O.f GFOUDV, <) 25000 N f G
S0 " No. of Groups— | S iz} Downtime (%)— | & 0. of Groups™ 7 &
<4 D . % £ < g o o Downtime (%)~ °
O ool owntime (%) = [0) = 0] £
— — L = o 15000 =
so0ol-
a =} 3
27007 = 4000 z 5000 D
650D 0 2000 e O Ol 0
0 S0 1000 1500 2000 2500 300035()() 0 3500 0 W ow e mw me ww gpng

Window Size (s)

(m) NOTRE-DAME

Window Size (s)

(n) NoTRE-DAME (CPU)

Window Size (s)

(0) XYPE

Figure 7.3: Number of groups and cumulated downtime for gsaf at least two failures.

first seven systems,’D’5000, WEBSITES LDNS, LRI, DEuG, SDSC, and UCB, for
which a significant fraction of the total system downtime asi®ed by space-correlated

123

| Platform |JGRID’5000| WEBSITES|LDNS|LRI|DEUG|SDSC|UCB]|
[Window Size[s]] 250 | 100 | 150 |100] 150 | 120 | 80 |

Table 7.2: Selected failure group window size for each sgyste

failures of size at least 2, wheh is equal to a few minutes. For similar valuesAf
the space-correlated failures do not cause most of thersydtevntime for the remain-
ing systems. We do not include in the distinguished systen&REISOFT, OVERNET,
NOTRE-DAME, and XYPE, since the dependence of the depicted curveg\dooks
more like an artifact of the data, due to the regular probingoales.

The seven distinguished traces have similar dependency. as A increases slowly,
the number of groups quickly decreases and the cumulatiwatitoe quickly increases.
Then, both slowly stabilize; this point, which occurs fotues of A of a few minutes, is
a good trade-off between small window size and large catiisglures into groups. We
extract for each of the seven selected traces the best @ostade-off, and round it to
the next multiple of 10 seconds; TalMe summarizes our findings.

7.4 Analysis Results

In the previous section we have selected seven systems i gface-correlated failures
are responsible for most of the system downtime. In this@ectve present the results
of fitting common distributions to the empirical distriboris extracted from the failure
traces of these seven traces selected. The space-calridtees are generated using
the moving windows method introduced in Sectibg, and the values o\ selected in
Section7.3.

The Failure Trace Archive already offers a toolbox (sE23 for details) for fitting
common distributions to empirical data. We have adapteddbks already present in
this toolbox for our model by extending the set of commonritigtions with the Pareto
distribution, by adding a data preprocessing step thatetgrgroups of failures for a
specific value ofA, and by improving the output of the tools with automated grag
and tabulation support. These additions are now publiciilavle as part of the FTA
toolbox code repository.

7.4.1 Detailed Results

We have fitted to the empirical distributions five common rabsitions, exponential,
Weibull, Pareto, lognormal, and gamma. We now present thatseobtained for each
model component, in turn.

Failure Group Inter-Arrival Time To understand the failure group inter-arrival time,
we consider for each failure group identified in the tracel(iding groups of size 1), the

124

| |GRID'5000|WEBSITES| LDNS | LRI | DEuc | SDSC | UCB |
Exp 0.53 0.15 0.18 0.86 1.22 0.47 0.51
WEIBULL || 0.440.79 | 0.161.21| 0.120.74| 0.46 0.63| 0.230.47| 0.130.57| 0.07 0.48
PARETO 0.420.29| 0.010.15| 0.36 0.08| 0.62 0.25| 0.84 0.09| 0.400.07| 0.51 0.03
LOGN -1.391.03| -2.170.76 -2.57 0.81 -1.46 1.28 -2.28 1.35 -2.63 0.86 -3.41 0.99
GAMMA 0.790.67 | 1.830.08| 0.710.25| 0.481.79| 0.284.33| 0.36 1.31| 0.26 2.00

Table 7.3:Failure Group Inter-Arrival Time: Best found parameters when fitting dis-
tributions to empirical data. Values in bold denote the fiest

| |GRID'5000 WEBsITES| LDNS | LRI | DEuc | SDSC | UCB |
Exp 17.09 2.55 13.44 5.74 10.96 5.19 4.47
WEIBULL || 12.820.71| 2.87 1.60| 15.12 2.29 5.76 1.01] 12.12 1.39 4.94 0.93 5.05 2.52
PARETO 0.686.75 | -0.06 2.68|-0.18 15.090.22 4.43|-0.03 11.26 0.22 3.70 -0.41 5.76
LOGN 1.881.25| 0.840.35| 2.520.41| 1.320.74 2.150.70| 1.190.70 1.41 0.42
GAMMA || 0.64 26.78| 5.330.48| 6.232.16|1.304.40 2.224.94|1.234.24 6.030.74

Table 7.4:Failure Group Size: Best found parameters when fitting distributions to em-
pirical data. Values in bold denote the best fit.

group generator (see Sectidr2.l). We then generate the empirical distribution from the
time series corresponding to the inter-arrival time betwa@nsecutive group generators.
Table7.3summarizes for each platform the parameters of the bestétrau for each of
the five common distribution we use in this chapter. Theselteseveal that the failure
group inter-arrival time is not well characterized by a hetail distribution as the p-
values for the Pareto are low. Moreover, we identify two gatees of platforms. The first
category, represented byr®’'5000, WEBSITES and LRI, is well-fitted by Log-Normal
distributions. The second category, represented by LDNSjd) SDSC, and UCB, is
not well-fitted by any of the common distributions we triedr these, the best-fits are
either the lognormal or the gamma distributions.

Failure Group Size To understand the failure group size, we generate the erapiri
distribution of the sizes of each group identified in the éréimcluding groups of size
1). Table7.4 summarizes for each platform the parameters of the bestthirsd for
each of the five common distribution we use in this chaptemil&rly to our findings for
the failure group inter-arrival time, the results for théuee group size reveal heavy-tail
distributions are not good fits. We find that the lognormal gathma distributions are
good fits for the empirical distributions.

Failure Group Duration The two last components of our model are the parallel- and
single-node downtime of the space-correlated failuresuriderstand these two compo-
nents, we generate for each the empirical data distributging the durations of each
group identified in the trace (including groups of size 1)eTesults of the fitting of the
parallel downtime component are presented in Taeand the results of the fitting of
the single-node downtime component are given in Tgbte Similarly to our previous

125

| [GRID'5000 | WEBSITES [LDNS] LRI [DEuc [SDSC | UCB |
Exp 3.33e6 21225.18 2.48e6 2.46e5 1.18e5 67183.25 4071.25
WEIBULL ||75972.13 0.2810658.82 0.632.430e6 0.96 1.051e5 0.48/61989.86 0.5435581.34 0.684131.60 1.03
PARETO || 3.10 2686.08 0.735493.500.16 2.071e61.71 24187.181.53 15901.440.54 20627.600.09 3711.35
LOGN 9.513.21 857136 | 1416115 1041245 | 10.032.02| 9.801.30 | 7.821.03
GAMMA || 0.14 2.362e6 0.46 46006.961.01 2.452e6 0.34 7.317e5| 0.40 2.950e5 0.49 1.384e51.16 3509.88

Table 7.5:Failure Group Duration, D,,..: Best found parameters when fitting distribu-

tions to empirical data. Values in bold denote the best fit.

| [GrRiD’5000 | WEBSITES | LDNS | LRI | DEuc | SDSC | ucB \
Exp 4.40e5 10363.55 4.17e5 1.63e5 29979.27 30139.69 1500.92
WEIBULL {[30951.59 0.386605.36 0.70 4.576e5 1.37 80091.30 0.5013239.84 0.5¥19008.04 0.691646.49 1.35
PARETO || 2.54 2215.71] 0.47 4258.00-0.11 4.576e51.61 20672.26 0.91 5832.360.41 12570.49-0.10 1645.39
LOGN 8.892.71 8.201.13 12.64 0.84 10.16 2.40 8.67 1.62 9.251.16 7.010.81
GAMMA || 0.18 2.418e60.59 17462.56 1.82 2.292e% 0.36 4.484e5|0.40 74867.950.59 51497.86 1.82 825.92

Table 7.6:Failure Group Duration, Ds: Best found parameters when fitting distribu-
tions to empirical data. Values in bold denote the best fit.

findings in this section, we find that heavy-tail distribu$csuch as Pareto do not fit well
the empirical distributions. In contrast, the lognormaitdbution is by far the best fit,
with only two systems (LDNS and LRI) being better represeériig the other distribu-
tions (the Gamma and Weibull distributions, respectively)

7.4.2 Results Summary

For all the components of our model and for all platforms,rtreest well-suited distribu-
tion is presented in Tablé.7. The main result is that Log-Normal distributions provide
good results for almost all parts of our model. Thus, we cadehmost of node-level
failures in the whole platform by groups of failures, eacbugr being characterized by its
size, its parallel downtime and its single-node downtime.

7.5 Related work

From the large body of work already dedicated to modelingaweglability of parallel
and distributed computer systems—sg8g 176 183 99 and the references within—,
relatively little attention has been given to space-catel errors and failure498 34,
103, despite their reported importance?] 174.

The main differences between this work and the previous workpace-correlated
errors and failures is summarized in TaBl&. Our study is the first to investigate the
problem in the broad context of distributed systems thrabghuse of a large number of
traces. Besides a broader scope, our study is the first togeemation process based on
a moving window, and to propose a method for the selectioheftoving window size.

126

\ I Groupsize | Group IAT | Do | Ds, |

GRID'5000|| LOGN(1.88,1.25) |[LoGN (-1.39,1.03 LoGN(9.51,3.21) LOGN (8.89,2.71)

WEBSITES || GAMMA (0.84,0.35)L0OGN (-2.17,0.76 LOGN (8.57,1.36) LoGN (8.20,1.13)
LDNS LOGN (2.52,0.41) |[LOGN (-2.57,0.81) LOGN (14.16,1.15) GAMMA (1.82,2.292e5)
LRI LOGN (1.32,0.77) |LOGN (-1.46,1.28) WEIBULL (1.051e5,0.48)WEIBULL (80091.30,0.5Q)
DEuG LOGN (2.15,0.70) |[LOGN (-2.28,1.35) LOGN (10.03,2.02) LOGN (8.67,1.62)
SDSC LoGN (1.10,0.70) [LoGN (-2.63,0.86 LOoGN (9.80,1.30) LOGN (9.25,1.16)
ucCB GAMMA (6.03,0.74)LOGN (-3.41,0.98 LOGN (7.82,1.03) LoGN(7.01,0.81)

Table 7.7: Best fitting distribution for all model compongrfor all systems.

System Typ8ystem Name Data Source Errors/ Setup Type
Study || (Number of Systems/Total Size [nodes]) (Length) Failures| Gen. Process (A [min])
[199 SCVAXcluster (1 sys./7) Sys.logs (10 mo.) | Errors || time partitioning | manual (5 min.
[34] NoWMicrosoft (1 sys.£~50,000) Msmts. (5 weeks) |Failures| instantaneous | manual (O min.
[103 Grid Grid’5000 (15 cl..2,500) Sys.logs (1.5 years) Failures| extending window auto (0.5-60)
This study|| VariousVarious (15 sys:#500,000) |Various (-6 mo. avg.) Failures| moving window | auto (0.02—60

Note: SC, NoW, Sys, Cl, Msmts, and Mo are acronyms for supepciter, network of workstations, system, cluster,
measurements, and months, respectively.

Table 7.8: Research on space-correlated availabilitystriduted systems.

7.6 Summary

In this chapter we have developed a model for space-caerefailures, that is, for failures
that occur within a short time frame across distinct compismef the system. For such
groups of failures, our model considers three aspects,rthggarrival process, the group
size, and the downtime caused by the group of failures. We fawnd that the best
models for these three aspects are mainly based on the faghdistribution.

We have validated this model using failure traces taken fdorarse distributed sys-
tems. Since the input data available in these traces, amdytonowledge, in any failure
traces available to scientists, do not contain informa#ibout the space correlation of
failures, we have developed a method based on moving winftmwgenerating space-
correlated failure groups from empirical data. Moreoves,hvave designed an automated
way to determine the window size, which is the unique paramwtour method, and we
have demonstrated its use on the same traces.

We have found that for seven out of the fifteen traces invatdyin this chapter, a
majority of the system downtime is caused by space-coaelailures. Thus, these seven
traces are better represented by our model than by traditoadels, which assume that
the failures of the individual components of the system adependent and identically
distributed. Finally, with this work we have contributed sew failure traces in standard
format to the Failure Trace Archive, which we hope can enagerther researchers to
use the archive and also to contribute to it with failure ésac

Chapter 8

Time-correlated failures in large-scale
distributed systems

Large-scale distributed systems have reached an unprdeddscale and complexity in
recent years. At this scale failures inevitably occur—rmeks fail, disks crash, packets
get lost, bits get flipped, software misbehaves, or systemstscrash due to misconfig-
uration and other human errors. Deadline-driven or missiatical services are part of
the typical workload for these infrastructures, which timeed to be available and reli-
able despite the presence of failures. Researchers amrsgissigners have already built
numerous fault-tolerance mechanisms that have been ptowsork under various as-
sumptions about the occurrence and duration of failuresveder, most previous work
focuses on failure models that assume the failures to becooedated, but this may not
be realistic for the failures occurring in large-scalerilistted systems. For example, such
systems may exhibit peak failure periods, during which #ilefe rate increases, affecting
in turn the performance of fault-tolerance solutions. Mwer, we have already shown in
Chapter7 that failures occur as burst, and we have presented a madaifst of failures
in large-scale distributed systems. In this chapter, westigate the time-varying behav-
ior of failures using nineteen traces obtained from sevarge-scale distributed systems
including grids, P2P systems, DNS servers, web serversjesitop grids.

Recent studies report that in production systems, failatesrcan be of over one thou-
sand failures per year, and depending on the root cause abthesponding problems,
the mean time to repair can range from hours to dag§][The increasing scale of the
deployed distributed systems causes the failure ratestease, which in turn can have
a significant impact on the performance and cost, such aadedresponse time234
and increased Total Cost of Operation (TCO) due to increadeunistration costs and
human resource needa7]. This problem also motivates the need for further research

*This chapter is based on previous work published inEteE/ACM International Conference on Grid
Computing(GRID’10) [2295.

128

failure characterization and modeling. Previous studlé&®,[158 155 176 220, 183
focused on characterizing failures in several differestributed systems. However, most
of these studies assume that failures occur independentlisegard the time correla-
tion of failures, despite the practical importance of thesgelations 147, 206, 18Q.
First of all, understanding if failures are time correlateas important implications for
proactive fault-tolerance solutions. Second, understanthe time-varying behavior of
failures and peaks observed in failure patterns is reqdineelvaluating design decisions.
For example, redundant submissions may all fail during laraipeak period, regardless
of the quality of the resubmission strategy. Third, undarding the temporal correla-
tions and exploiting them for smart checkpointing and salied decisions provides new
opportunities for enhancing conventional fault-tolenechanisms234, 111]. For ex-
ample, a simple scheduling policy could be to stop scheduéirge parallel jobs during
failure peaks. Finally, it is possible to devise adaptivatféolerance mechanisms that
adjust the policies based on the information related to pe&or example, an adaptive
fault-tolerance mechanism can migrate the computatioheabeginning of a predicted
peak.

In this chapter, to understand the time-varying behavidaitdres in large-scale dis-
tributed systems, we perform a detailed investigationgidizta sets from diverse large-
scale distributed systems including more thaa K hosts and .2 failure events span-
ning overl15 years of system operation in total. With this chapter we niakdollowing
contributions. First, we make four new failure traces ptlplavailable through the Fail-
ure Trace Archive. Secondly, we present a detailed evaluati the time correlation of
failure events observed in traces taken from nineteen (mtomh) distributed systems.
Finally, we propose a model for peaks observed in the faatie process.

The remaining part of this chapter is organized as followscti®n 8.1 introduces
the failure traces and the modeling methodology we use ® ¢hapter. SectioB.2
presents our analysis of autocorrelations in the failuenessobserved in these failure
traces. Then, SectioB.3 presents our model for the peaks observed in the failure rate
process. SectioB.4 reviews the related work on time-correlated failures igéascale
distributed systems, and finally, Secti®b summarizes the chapter.

8.1 Method

8.1.1 Failure Datasets

In this chapter we use and contribute to the data sets in tilar&alrace Archive

(FTA) [123. A general overview of the FTA has already been present&ation7.1.2
With the prior work, the FTA made fifteen failure traces aahblé in its standard for-

mat; as a result of our work, the FTA now makes available eeetfailure traces. Ta-

129

System Type Nodes| Period Year Events
GRID’5000 Grid 1,288 1.5 yearg2005-2006 588,463
COND-CAE Grid 686| 35days| 2006 7,899
COND-CS Grid 725| 35days| 2006 4,543
COND-GLOW Grid 715| 33days| 2006 1,001
TERAGRID Grid 1001/ 8 monthg 2006-2007 1,999
LRI Desktop Grid 237| 10 days| 2005 1,792
DEeuG Desktop Grid 573| 9days 2005 33,060

NoTRE-DAME ? | Desktop Grid 7006 monthg 2007 300,241
NoTRE-DAME | Desktop Grig 700|6 monthg 2007 | 268,202
MICROSOFT Desktop Grid 51,663 35days| 1999 (1,019,765

ucB Desktop Grid 80| 11 days| 1994 21,505
PLANETLAB P2P 200-400 1.5 year|2004-2005% 49,164
OVERNET P2P 3,000 2 weeks| 2003 68,892
SKYPE P2P 4,000 1 month| 2005 56,353
WEBSITES Web serversg 129|8 monthg2001-2002 95,557
LDNS DNS serverg 62,201 2 weeks| 2004 384,991
SDSC HPC Cluster 207| 12 days| 2003 6,882

LANL HPC Cluster; 4,750 9 years|1996-200% 43,325
PNNL HPC Clustenn 1,005 4 years|2003-2007 4,650

ICOND-* data sets denote the Condor data sets.
2The host availability version of the drrRe-DAME trace.
3The CPU availability version of the BirRE-DAME trace.

Table 8.1: Summary of nineteen data sets in the Failure edgve.

ble 8.1 summarizes the characteristics of these nineteen tratésh we use throughout
this chapter. The traces originate from systems of diffetgmes (multi-cluster grids,

desktop grids, peer-to-peer systems, DNS and web servetsjizes (from hundreds to
tens of thousands of resources), which makes these traea<ad a study among differ-

ent distributed systems. Furthermore, many of the tracesrseveral months of system
operation.

8.1.2 Analysis

In our analysis, we use the autocorrelation function (A@Hneasure the degree of cor-
relation of the failure time series data with itself at diéfiet time lags. The ACF takes
on values between -1 (high negative correlation) and 1 (pagitive correlation). In ad-
dition, the ACF reveals when the failures are random or péioFor random data the
correlation coefficients will be close to zero, and a pedadimponent in the ACF reveals
that the failure data is periodic or at least it has a periodimponent.

8.1.3 Modeling

In the modeling phase, we statistically model the peaksrebden the failure rate pro-
cess, i.e., the number of failure events per time unit. Tdad#hnis end we use the Maxi-

130

mum Likelihood Estimation (MLE) method.[J] for fitting the probability distributions to
the empirical data as it delivers good accuracy for the ldeda samples specific to failure
traces. After we determine the best fits for each candidatalalition for all data sets, we
perform the goodness-of-fit tests to assess the qualityeofitting for each distribution,
and to establish the best fit. As the goodness-of-fit testaysgeboth the Kolmogorov-
Smirnov (KS) and the Anderson-Darling (AD) tests, whichezgmlly assess how close
the cumulative distribution function (CDF) of the probatlyildistribution is to the CDF
of the empirical data. For each candidate distribution whih parameters found during
the fitting process, we formulate the hypothesis that theigcapdata are derived from
it (the null-hypothesis of the goodness-of-fit test). Neitthe KS or the AD tests can
confirm the null-hypothesis, but both are useful in undexditag the goodness-of-fit. For
example, the KS-test provides a test statistic,which characterizes the maximal dis-
tance between the CDF of the empirical distribution of thmuirdata and that of the fitted
distribution; distributions with a lowebD value across different failure traces are better.
Similarly, the tests return p-values which are used to eitject the null-hypothesis if the
p-value is smaller than or equal to the significance levetomfirm that the observation
is consistent with the null-hypothesis if the p-value isagee than the significance level.
Consistent with the standard method for computing p-vdlLgs 123, we average 1,000
p-values, each of which is computed by selecting 30 sampleomly from the data set,
to calculate the final p-value for the goodness-of-fit tests.

8.2 Analysis of Autocorrelation

In this section we present the autocorrelations in failusesg traces obtained from grids,
desktop grids, P2P systems, web servers, DNS servers andHS1€rs, respectively. We
consider the failure rate process, that is the number afriaiévents per time unit.

8.2.1 Failure Autocorrelations in the Traces

Our aim is to investigate whether the occurrence of failisegpetitive in our data sets.
Towards this end, we compute the autocorrelation of tharaiate for different time lags
including hours, weeks, and months. Fig&é& shows for several platforms the failure
rate at different time granularities, and the correspogdutocorrelation functions.

Many of the systems investigated in this chapter exhibargjrautocorrelation for
hourly and weekly lags. Figuresl1l(a) 8.1(b) 8.1(e) 8.1(f), and 8.1(g) show the
failure rates and autocorrelation functions for thRiIG5000, CONDOR (CAE), XYPE,
LDNS and LANL systems, respectively. Ther®'5000 data set is a one and a half
year long trace collected from an academic research gridceShis system is mostly
used for experimental purposes, and is large-scalK(processors) the failure rate is

131

200 1
12000 1
10000 o0sle 5 150 o8
3 ES 2
O 8000 . <
E o6l @R 3 0.6
z X > 8 w
& 6000 o] S50, g 100 =}
g = 04 e, E] 04
3 4000 @ fiN
B P, 50 ok
- - %zhx \ } ’ \ [j;)
14 7101316192225 28 31 34 37 40 43 46 49 52 0 o 20 0 B0 (] 200 400 600 800 400 600 800 1000
Weeks Lag (Weeks) Hours Lag (Hours)
'
(a) GRID’5000 (b) ConDOR(CAE)
1 400 15
L0 08 300 08
s g
< 2
5 30 06 = 06
a
Py S 2 200 S
14 < 3 <
Ex 0.4 5 04
2 3
T
- £ 100
10 [0.2 02
®o
z : oa L 114 bl L
ot n.L..Jv”.\L\m ﬂ.ulm wkaboballbd o a [,”Hm IRy RANCE R S NI
0 1000 2000 3000 4000 5000 6000 0 2000 4000 6000 8000 0 720 1440 2160 2880 3600 4320 0 1000 2000 3000 4000 5000
Hours Lag (Hours) Hours Lag (Hours)
500 17 800 1
0.8
. = 600
3 3
< < 06
o} 1
8 2 400 S
4 o <
El 5 04
2 2
w L= 200
0.2
200 400 600 0 200 200 600 800 0 48 96 144192 240 288 336 384 432 480 528 576 % 200 200 600
Hours Lag (Hours) Hours Lag (Hours)
120 140 500
100 120
3 3 £ 600
3 4 g
2 20 2
< < 100 £
g 2 g
4 2 2 400
S < 80 4
= 2 S
i i E
&£ sl 5
40 60 - 20
14 7 101316192225 28 31 34 37 40 43 46 49 52 T4 771013161922 25 28 31 34 37 40 43 46 49 52) 50 700 50

Weeks (2002)

Weeks (2004)

Months (1996-2005)

(g9) LANL (For 2002, 2004 and the whole trace)

o8t ©

08 o
% 0.6 oy
" 0.6 %%’%P%ao w %
o] %o, S
< e =<
04 s 0.4 ey
e, o
0.2 2y 0.2 s,
0 50) 20 a0 60

20 40
Lag (Weeks/2002)

Lag (Weeks/2004)

100 150

50
Lag (Months/1996-2005)

(h) LANL (For 2002, 2004 and the whole trace)

Figure 8.1: Failure rates at different time granularitiesdeveral platforms and the cor-
responding autocorrelation functions.

quite high. In addition, since most of the jobs are submittedugh the OAR resource
manager, hence without direct user interaction, the daitiepn is not clearly observable.

132

However, during the summer the failure rate decreases hwhéticates a correlation be-
tween the system load and the failure rate. Finally, as th&esysize increases over the
years, the failure rate does not increase significantlycvimdicates system stability. The
CoNDOR (CAE) data set is a one month long trace collected from a desitid using
the Condor cycle-stealing scheduler. As expected from ktdegrid, this trace exhibits
daily peaks in the failure rate, and hence in the autocdrogldunction. In contrast to
other desktop grids, the failure rate is lower. Thevy8E data set is a one month long
trace collected from a P2P system usedtb§00 clients. Clients may join or leave the
system, and clients that are not online are considered asiledzle in this trace. Similar
to desktop grids, there is high autocorrelation at smaktiags, and the daily and weekly
peaks are more pronounced. The LDNS data set is a two weelrkegcollected from
DNS servers. Unlike P2P systems and desktop grids, DNSrsasteenot exhibit strong
autocorrelation for short time lags with periodic behavibr addition, as the workload
intensity increases during the peak hours of the day, werebskat the failure rate also
increases. Finally, the LANL data set is a ten year long tcadiected from production
HPC clusters. The weekly failure rate is quite low compae@riD’5000. We do not
observe a clear yearly pattern; the failure rate increaseaglsummer 2002 while the
failure rate decreases during summer 2004. Since arduid nodes were added to the
LANL system between 2002 and 2003, the failure rate alseas®s correspondingly.

Last, a few systems exhibit weak autocorrelation in failbceurrence. Figur8.1(c)
and 8.1(d)show the failure rate and the corresponding autocorreldtiaction for the
TERAGRID and NOTRE-DAME systems. The ERAGRID data set is an eight month long
trace collected from an HPC cluster that is part of a grid. Weeove weak autocorrelation
at all time lags, which implies that the failure rates obsdraver time are independent.
In addition, there are no clear hourly or daily patterns,chifgives evidence of an erratic
occurrence of failures in this system. TheTNRE-DAME data set is a six month long
trace collected from a desktop grid. The failure events ia tlata set consist of the
availability/unavailability events of the hosts in thisssgm. Similar to other desktop
grids, we observe clear daily and weekly patterns. Howeterautocorrelation is low
compared to other desktop grids.

8.2.2 Discussion

As we have shown in the previous section, many systems éxtibng correlation from
small to moderate time lags, which indicates a high degrgeeafictability. In contrast,
a small number of systems NRE-DAME, PNNL, and TERAGRID) exhibit weak auto-
correlation; only for these systems, the failure rates nlegeover time are independent.
We have found that similar systems have similar time-vayyiaehavior, e.g., desktop
grids and P2P systems have daily and weekly periodic faates, and these systems

133

55000 22000
o
[} [}
[l [l
é 45000 r ‘;f, 16000 g
& 40000 | S 14000
s 5 12000
5 35000 iS5 5
38 & 10000 g
§ 30000 & E 8000
P4 B3 z 6000
25000 [& 4000 L5 8 8 R
20000 | ol L EETETL i
Mon Tue Wed Thu Fri Sat Sun 012345678 91011121314151617181920212223
Day of Week Hour of Day
(a) GrRID’5000
4200 1500
4000 1400
» ool »
o s o R oo 1<)
S %0 S 1300
T 3600 - s R T
£ o F 1200
S 3400 | R R I
5 3000 | 5 1000
= - = B g
2800 | S R 900 g % g E % % E
2600 B G 800 B 0
Mon Tue Wed Thu Fri Sat Sun 012345678 91011121314151617181920212223
Day of Week Hour of Day

(b) PLANETLAB

Figure 8.2: Daily and hourly failure rates forRB’'5000 and RANETLAB platforms.

exhibit strong temporal correlation at hourly time lags.ntgosystems (NTRE-DAME
and @NDOR (CAE)) have direct user interaction, which produces cledyand weekly
patterns in both system load and occurrence of failures-faihee rate increases during
work hours and days, and decreases during free days anéy®l(jthe summer).

Finally, not all systems exhibit a correlation between wbdurs and days, and the
failure rate. In the examples depicted in Fig8tg while GRID’5000 exhibits this cor-
relation, RANETLAB exhibit irregular/erratic hourly and daily failure behawi

Our results are consistent with previous studiegg] 42, 115 184 as in many traces
we observe strong autocorrelation at small time lags, aatlle observe correlation
between the intensity of the workload and failure rates.

8.3 Modeling the Peaks of Failures

In this section we present a model for the peaks observeckifailure rate process in
diverse large-scale distributed systems.

134

Failure Rate
Peak
Failure Event _ _ _

@ O @ o 6 O o

Failure Rate

3
»

Time

Figure 8.3: Parameters of the peak periods model. The ngnibbéne figure match the
(numbered) model parameters in the text.

8.3.1 Peak Periods Model

Our model of peak failure periods comprises four parametehown in Figur&.3 the
peak duration, the time between peaks (inter-peak time)intier-arrival time of failures
during peaks, and the duration of failures during peaks:

1. Peak Duration: The duration of peaks observed in a data set.

2. Time Between Peaks (inter-peak time) The time from the end of a previous peak
to the start of the next peak.

3. Inter-arrival Time of Failures During Peaks: The inter-arrival time of failure
events that occur during peaks.

4. Failure Duration During Peaks: The duration of failure events that start during
peaks. These failure events may last longer than a peak.

Our modeling process is based on analyzing the failure réadeen from real dis-
tributed systems in two steps which we describe in turn.

The first step is to identify for each trace the peaks of hotailure rates. Since
there is no rigorous mathematical definition of peaks in temees, to identify the peaks
we define a threshold value as+ ko, whereyp is the average and is the standard
deviation of the failure rate, anfdis a positive integer; a period with a failure rate above
the threshold is peak period We adopt this threshold to achieve a good balance between

135

System Avg. Peak|Avg. Failure Avg. Time Avg. Failure
Duration [s]| IAT During | Between Peaks [sPuration During

Peaks [s] Peaks [s]

GRID’'5000 5,047 13 55,101 20,984
CONDOR (CAE) 5,287 23 87,561 4,397
CONDOR (CS) 3,927 4 241,920 20,740
CONDOR (GLOW) 4,200 14 329,040 75,672

TERAGRID 3,680 35 526,500 368,903
LRI 4,080 78 58,371 31,931
DEUG 14,914 10 103,800 1,091

NOTRE-DAME 3,942 21 257,922 280,593
NOTRE-DAME (CPU) 7,520 33 47,075 22,091
MICROSOFT 7,200 0 75,315 90,116

ucB 21,272 23 77,040 332

PLANETLAB 4,810 264 47,124 166,913

OVERNET 3,600 1 14,400 382,225
SKYPE 4,254 11 112,971 26,402
WEBSITES 5,211 103 104,400 3476
LDNS 4,841 8 42,042 30,212
SDSC 4,984 26 84,900 6,114
LANL 4,122 653 94,968 21,193

Table 8.2: Average values for the model parameters.

capturing in the model extreme system behavior, and cheraicty with our model an
important part of the system failures (either number otf@é or downtime caused to the
system). A threshold excluding all but a few periods, forregée defining peak periods
as distributional outliers, may capture too few periods exlain only a small fraction
of the system failures. A more inclusive threshold wouldlléa the inclusion of more
failures, but the data may come from periods with very défgrcharacteristics, which is
contrary to the goal of building a model for peak failure pds.

In the second step we extract the model parameters from thesdis using the peaks
that we identified in the first step. Then we try to find a goodtfiat is, a well-known
probability distribution and the parameters that lead ®olibst fit between that distribu-
tion and the empirical data. When selecting the probaldigyributions, we consider the
degrees of freedom (number of parameters) of that distobutAlthough a distribution
with more degrees of freedom may provide a better fit for tha,dsuch a distribution
can result in a complex model, and hence it may be difficulin@lyze the model math-
ematically. In this study we use five probability distrilmris to fit to the empirical data:
exponential, Weibull, Pareto, lognormal, and gamma. Femtledeling process, we fol-
low the methodology described in Secti®ri.3

8.3.2 Results

After applying the modeling methodology presented in thevimus section and Sec-
tion 8.1.3 we now present the peak model that we derived from diverge Iscale dis-

136

tributed systems.

Table 8.2 shows the average values for all the model parameters fqiatfiorms.
The average peak duration varies across different syst@maseven for the same type
of systems. For example, UCB, IFROSOFTand DEuG are all desktop grids, but the
average peak duration widely varies among these platformsontrast, for the SDSC,
LANL, and PNNL platforms, which are HPC clusters, the averpgak duration values
are relatively close. The BuG and UCB platforms have small number of long peak
durations resulting in higher average peak durations coadpto the other platforms.
Finally, as there are two peaks of zero length (single daitatpio the OVERNET system,
the average peak duration is zero.

The average inter-arrival time during peaks is rather Iavexpected, as the failure
rates are higher during peaks compared to off-peak peribdsthe MCROSOFT plat-
form, as all failures arrive as burst during peaks, averagg-arrival time during peaks
is zero.

Similar to the average peak duration parameter, the average between peaks
parameter is also highly variable across different systerf®r some systems like
TERAGRID, this parameter is in the order of days, and for some systém©OVERNET
it is in the order of hours.

Similarly, the duration of failures during peaks highly iegreven across similar plat-
forms. For example, the difference between the averagaéailuration during peaks be-
tween the UCB and the MRoOsOFTplatforms, which are both desktop grids, is huge be-
cause the machines in the UCB platform leave the system fesstban the machines in
the MicrosoFTplatform. In addition, in some platforms like\@RNET and TERAGRID,
the average failure durations during peaks is in the ordelagé showing the impact of
space-correlated failures, that is multiple nodes faitiegrly simultaneously.

Using the AD and KS tests we next determine the best fittingidigions for each
model parameter and each system. Since we determine thg feolurre rates using fixed
time windows of one hour, the peak duration and the intekpieae are multiples of one
hour. In addition, as the peak duration parameter is mosttiieé range [4-5h], and for
several systems this parameter is mostlycausing the empirical distribution to have a
peak atlh, none of the distributions provide a good fit for the peak tiareparameter.
Therefore, for the peak duration model parameter, we omggart an empirical histogram
in Table8.3 We find that the peak duration for almost all platforms ass argh.

Table8.4 shows the best fitting distributions for the model paransef@rall data sets
investigated in this study. To generate synthetic yetstaliraces without using a single
system as a reference, we create dierage system modehich has the average char-
acteristics of all systems we investigate. We create theageesystem model as follows.
First, we determine theandidate distributionsor a model parameter with the distribu-
tions having the smallesb values for each system. Then, for each model parameter,

137

|Platform / Peak Duratioh 1 | 2h | 3h | 4h | B5h | 6h | >T7h |
GRID'5000 80.56% | 13.53% | 3.38%|1.33 % 0.24 % 0.12 %| 0.84%
CONDOR (CAE) 93.75% | 3.13% - - - - 3.12%
CONDOR (CS) 90.91% | 9.09 % - - - - -
CONDOR (GLOW) 83.33% | 16.67% - - - - -
TERAGRID 97.78% | 2.22% - - — — -
LRI 86.67% | 13.33% - - - - -
DEuUG 28.57% - 28.57%| - |14.29%| - [28.57%
NOTRE-DAME 90.48% | 9.52 % - - - - -
NOTRE-DAME (CPU) || 56.83% | 17.78% | 9.84 % |3.49 % 5.40 % 3.49 % 3.17
MICROSOFT 35.90% | 33.33% | 25.64%|5.13% — - -
uCB 9.09 % | 9.09 % - - - 9.09 %| 72.73%
PLANETLAB 80.17% |13.36 %| 3.71 % |1.27 % 0.53 % |0.53%| 0.43
OVERNET 100.00% - - - - - -
SKYPE 90.91% | 4.55% - 455% - - -
WEBSITES 76.74% | 13.95% | 5.23 % |2.33% 0.58 % | - 1.16
LDNS 75.86% | 13.79% | 10.34%| - - - -
SDSC 69.23% | 23.08% | 7.69%| -— - - -
LANL 88.35% | 9.24% | 2.06 %|0.25 % 0.06 %|0.03 % -
PNNL 85.99% | 10.35% | 1.75 % | 0.96 % 0.64 % |0.16 %| 0.16 %
| Avg H 74.79% \ 11.3% \ 5.16%\1.01 %\ 1.14%\ O.7%| 5.85%|

Table 8.3: Empirical distribution for the peak durationgraeter., denotes hours. Values
above 10% are depicted as bold.

we determine the best fitting distribution among the cardidigstributions that has the
lowest averageé value over all data sets. After we determine the best fittisggidution
for the average system model, each data set is fit indepdndettiis distribution to find
the set of best fit parameters. The parameters of the aveyatgrsmodel shown in the
"Avg.” row represent the average of this set of parameters.

For the IAT during peak durations, several platforms do rameha best fitting distri-
bution since for these platforms most of the failures dupegks occur as bursts hence
having inter-arrival times of zero. Similarly, for the tirbetween peaks parameter, some
platforms (like all CONDOR platforms, BuG, OVERNET and UCB platforms) do not
have best fitting distributions since these platforms haaeléquate number of samples
to generate a meaningful model. For the failure duratiowbeh peaks parameter, some
platforms do not have a best fitting distribution due to theireaof the data. For exam-
ple, for all CONDOR platforms the failure duration is a mplé of a monitoring interval
creating peaks in the empirical distribution at that maniitg interval. As a result, none
of the distributions we investigate provide a good fit.

In our model we find that the model parameters do not followairdailed distribu-
tion since the p-values for the Pareto distribution are V@my For the IAT during peaks
parameter, Weibull distribution provides a good fit for mafsthe platforms. For the time
between peaks parameter, we find that the platforms carr eihaodeled by the lognor-
mal distribution or the Weibull distribution. Similar to oprevious model123, which is

138

| System [IAT During Peakg| Time Between Pealis=ailure Duration During Peaks
GRID’5000 — (see text) LN(10.30,1.09) — (see text)
CONDOR (CAE) — (see text) — (see text) — (see text)
CONDOR (CS) — (see text) — (see text) — (see text)
CONDOR (GLOW) — (see text) — (see text) — (see text)
TERAGRID — (see text) LN(12.40,1.42) LN(10.27,1.90)
LRI LN(3.49,1.86) LN(10.51,0.98) — (see text)
DEUG W(9.83,0.95) — (see text) LN(5.46,1.29)
NOTRE-DAME — (see text) W(247065.52,0.92 LN(9.06,2.73)
NoOTRE-DAME (CPU) — (see text) W(44139.20,0.89) LN(7.19,1.35)
MICROSOFT — (see text) G(1.50,50065.81) W(55594.48,0.61)
ucB E(23.77) — (see text) LN(5.25,0.99)
PLANETLAB — (see text) LN(10.13,1.03) LN(8.47,2.50)
OVERNET — (see text) — (see text) — (see text)
SKYPE — (see text) W(123440.05,1.37 — (see text)
WEBSITES W(66.61,0.60) LN(10.77,1.25) — (see text)
LDNS W(8.97,0.98) LN(10.38,0.79) LN(9.09,1.63)
SDSC W(16.27,0.46) E(84900) LN(7.59,1.68)
LANL G(1.35,797.42)|| LN(10.63,1.16) LN(8.26,1.53)
PNNL — (see text) E(160237.32) — (see text)
| Avg | W(193.91,0.83)]] LN(10.89,1.08) | LN(8.09,1.59) |

Table 8.4: Peak model: The parameter values for the best fitting distributions ibr a
studied systems. E,W,LN, and G stand for exponential, Weilmgnormal, and gamma
distributions, respectively.

derived from both peak and off-peak periods, for the faillueation during peaks param-
eter, we find that the lognormal distribution provides a gboibr most of the platforms.
To conclude, for all the model parameters, we find that eitiefognormal or the Weibull
distributions provide a good fit for the average system model
Similar to the average system models built for other sys§dr8§, we cannot claim
that our average system model represents the failure bhaivan actual system. How-
ever, the main strength of the average system model is thegiriésents a common basis
for the traces from which it has been extracted. To genesdlieré traces for a specific
system, individual best fitting distributions and theirgaeters shown in Tab&4 may
be used instead of the average system.
Next, we compute the average failure duration/inter-atriime over each data set

and only during peaks (Table.5. We compare only the data sets used both in this
study and our previous stud¥23, where we modelled each data set individually without
isolating peaks. We observe that the average failure durgier data set can be twice as
long as the average duration during peaks. In addition, vieeage failure inter-arrival
time per data set is on average nine times the average failteearrival time during
peaks. This implies that the distribution per data set isi@antly different from the
distribution for peaks, and that fault detection mechasisnust be significantly faster
during peaks. Likewise, fault-tolerance mechanisms dupgaks must have considerably

139

System Avg. Failurel Avg. Failure|| Avg. Failure| Avg. Failure
Duration [h]| Duration [h]|| 1AT [s] IAT [s]
(Entire) (Peaks) (Entire) (Peaks)

GRID’'5000 7.41 5.83 160 13
NoOTRE-DAME (CPU) 4.25 6.14 119 33
MICROSOFT 16.49 25.03 6 0
PLANETLAB 49.61 46.36 1,880 264
OVERNET 11.98 106.17 17 1
SKYPE 14.30 7.33 91 11
WEBSITES 1.17 0.97 380 103
LDNS 8.61 8.39 12 8
LANL 5.88 5.89 13,874 653

Table 8.5: The average duration and average IAT of failuneshfe entire traces and for
the peaks.

lower overhead than during non-peak periods.

Finally, for variousk values we explore the fraction of downtime caused by faslure
that originate during peaks and the fraction of the numbéaitfres that originate during
peaks (Table3.6). Noticeably, we find that on average over 50% and up to 95%ef t
downtime of the systems we investigate are caused by thedaithat originate during
peaks. This result suggests that failure peaks deservéakp#ention when designing
fault-tolerant distributed systems.

8.4 Related Work

Much work has been dedicated to characterizing and modsyisigm failures]99, 158
155 176 220 183. While the correlation among failure events has receivéehéion
since the early 19904 99, previous studies focus mostly @pace-correlatedailures,
that is, on multiple nodes failing nearly simultaneousljithugh thetime correlation
of failure events deserve a detailed investigation dues@iactical importancelfd7,
206, 180, relatively little attention has been given to charaaerthe time correlation of
failures in distributed systems. Our work is the first to stigate the time correlation
between failure events across a broad spectrum of larde-desdributed systems. In
addition, we also propose a model for peaks observed in thedaate process derived
from several distributed systems.

Previous failure studieslp9, 158 155 176 220 used few data sets or even data
from a single system; their data also span relatively sheriogds of time. In contrast,
we perform a detailed investigation using data sets frorerde large-scale distributed
systems including more thaf0 K hosts and .2M failure events spanning ovés years
of system operation.

Closest to our work, Schroeder and Gibsd83 present an analysis using a large

140

System k=0.5 k=079 k=10 k=11 k=125 k=15 k=20
Time %] # Failures %) Time %) # Failures % Time %] # Failures %) Time % # Failures %) Time %] # Failures % Time %]|# Failures % Time % # Failures 9

GRID'5000 61.93 74.43 52.11 64.58 49.19 62.56 47.27 60.84 35.93 57.93 33.25 53.60 27.63 44,99
CONDOR (CAE) 63.03 90.91 62.93 90.52 62.93 90.52 62.73 89.88 62.73 89.88 62.57 89.13 62.10 87.08
CONDOR(CS) 80.09 89.56 80.04 88.63 80.04 88.63 80.04 88.63 80.04 88.63 80.04 88.63 80.04 88.63
CONDOR (GLOW) 39.53 70.51 39.37 69.70 39.37 69.70 39.37 69.70 39.37 69.70 39.37 69.70 37.28 67.47
TERAGRID 100 77.10 66.90 77.10 66.90 77.10 66.90 77.10 66.90 77.10 66.90 77.10 62.98 70.61
LRI 87.42 71.87 84.73 62.26 84.73 62.26 77.92 59.47 75.66 57.94 75.66 57.94 73.91 55.71
DEUG 47.31 83.61 26.07 66.46 25.07 63.03 25.07 63.03 22.28 57.76 20.94 53.31 16.83 41.11
NOTRE-DAME 62.62 73.06 58.53 69.72 53.40 69.09 45,19 67.70 45.12 67.19 43.69 64.47 41.79 62.61
NoOTRE-DAME (CPU)|| 73.77 56.92 63.85 43.56 57.92 40.15 56.19 37.93 47.61 33.32 41.88 26.21 28.76 14.99
MICROSOFT 52.16 40.26 37.44 25.10 35.54 23.41 32.20 20.08 28.78 16.81 23.76 12.80 15.35 6.73
UCB 100 100 97.70 97.78 95.31 96.10 95.31 96.10 93.19 94.18 86.75 87.62 54.48 57.88
PLANETLAB 50.55 54.70 38.07 41.81 38.07 41.81 30.02 32.34 30.02 32.34 26.69 24.86 24.02 20.27
OVERNET 68.69 12.90 65.97 7.44 65.97 7.44 65.97 7.44 65.97 7.44 65.97 7.44 65.97 7.44
SKYPE 32.87 36.01 12.06 18.93 7.65 14.93 6.14 13.81 4.32 12.05 3.29 10.74 3.29 10.74
WEBSITES 24.41 31.45 15.33 18.87 13.60 16.59 12.85 14.97 12.33 13.85 9.27 11.92 8.53 10.06
LDNS 38.21 38.80 13.74 13.85 10.14 10.41 7.80 8.28 5.07 5.61 3.25 3.57 2.06 2.45
SDSC 87.57 86.13 67.86 65.25 67.46 64.02 67.46 64.02 65.24 61.01 64.91 59.23 52.20 48.78
LANL 100 44.68 44.69 44.68 44.69 44.68 44.69 44.68 44.69 44.68 44.69 44.68 22.96 21.41
Avg. [65.01] 6293 [51.52] 53.67 | 49.88] 5235 | 47.95] 50.88 | 45.84] 49.30 | 44.04] 46.83 | 37.78] 39.94

Table 8.6: Fraction of downtime and fraction of the numbefadtires due to the failures that originate during peaks.

141

set of failure data obtained from a high performance compgugite. However, this study
lacks a time correlation analysis and focuses on well-kntailare characteristics like
MTTF and MTTR. Sahoo et all1[/§ analyze one year long failure data obtained from a
single cluster. Similar to the results of our analysis, thegort that there is strong corre-
lation with significant periodic behavior. Bhagwan et aB[present a characterization of
the availability of the @ ERNET P2P system. Their study and the study of Chu et [
show that the availability of P2P systems has diurnal pastelowever, neither of these
studies characterize the time correlations of failure &en

Traditional failure analysis studied?, 115 report strong correlation between the in-
tensity of the workload and failure rates. Our analysisdsifurther evidence supporting
the existence of this correlation—we observe more faildtgtng peak hours of the day
and during work days in most of the (interactive) traces.

8.5 Summary

Traditional failure models in distributed systems were\aat from small scale systems
and often under the assumption of independence betweernei&ilHowever, recent stud-
ies have shown evidence that there exist time patterns dredt bine-varying behavior
in the occurrence of failures. Thus, in this chapter we havestigated the time-varying
behavior of failures in large-scale distributed systems,\@e have proposed a model for
time-correlated failures in such systems.

First, we have assessed the presence of time-correlaladefi using traces from
nineteen (production) systems, including grids, P2P syst®NS servers, web servers,
and desktop grids. We have found for most of the studied systiat, the failure rates are
highly variable, and that the failures exhibit strong pdridehavior and time correlation.

Second, to characterize the periodic behavior of failuresthe peaks in failures, we
have proposed a peak model with four parameters: the peakiaturthe failure inter-
arrival time during peaks, the time between peaks, and thedaduration during peaks.
We found that the peak failure periods explained by our madelresponsible for on
average over 50% and up to 95% of the system downtime. We hswdaand that the
Weibull and the lognormal distributions provide good fits filee model parameters. We
have provided the best-fitting parameters for these digtabs which will be useful to
the community when designing and evaluating fault-toleeamechanisms in large-scale
distributed systems.

Last but not least, we have made four new traces availabiee fBondor traces and
one TeraGrid trace, in the Failure Trace Archive, which wpehwill encourage others to
use the archive and also to contribute to it with new traces.

Chapter 9

Conclusion and Future Work

During the past few decades distributed computing systewvesévolved from ARPANET
that comprises only a few machines to compute clouds thapdemhundreds of thou-
sands of machines all around the world. The significant acksaent in the capabilities
of distributed systems make them an important part of ouresgcin fact, millions of
people around the globe depend on distributed infrastrestsuch as the Internet and the
telecommunications networks for various services. Assudepend even more on dis-
tributed systems, it is inevitable that they also expectariom these infrastructures. It
is very important for the users that distributed systemsideconsistent performance,
thatis, the system provides a similar level of performanedl #mes. Itis the focus of this
thesis to understand and improve the performance consystdrdistributed computing
systems.

Towards this end, we have taken an empirical approach, afdweeexplored diverse
distributed systems, such as clusters, multi-clustersgiaaid clouds, and diverse work-
loads, such as Bags-of-tasks (BoTs), interactive peme@pplications, and scientific
workloads. In Chaptet of this thesis, we have shown various evidence why this prob-
lem is important and non-trivial. In Chapt&r we have explored overprovisioning as a
means to provide consistent performance in multi-clugiesgising realistic simulations.
Then in Chapte8, we have explored the performance of throttling-basedoadrcontrol
techniques in multi-cluster grids with experiments in o#t$33 research testbedd]. In
Chapter4, we have proposed four scheduling heuristics for intevagtierception appli-
cations to minimize their latency subject to migration aasistraints, and we have evalu-
ated these heuristics with two real perception applicatmnthe Open Cirrus testbebi].

In Chapter5, we have assessed the performance of four public computdg|&GoGrid,

ElasticHosts, Mosso, and Amazon EC2, which is one of theergommercial produc-
tion clouds, using scientific workloads, and we have perém@a preliminary analysis of
the performance consistency of these clouds. In Chaptere have analyzed the per-
formance variability of ten popular production cloud seesd provided by Amazon and

144

Google, and we have assessed the impact of this variabilithi@e large-scale applica-
tions. In Chaptef7, we have developed statistical models for failures thatioeathin

a short time frame across distinct components of a systeat¢sporrelated failures) by
considering the failure group arrival process, the groap,aand the downtime caused by
the group of failures using fifteen data sets from the Failueee Archive 123. Finally,

in Chapter8, we have investigated the time-varying behavior of fasuire large-scale
distributed systems using nineteen data sets from theredihace Archive 123, and we
have proposed a model for the peaks in the failure rate.

Overall, with this thesis we have provided evidence thapirormance provided by
state-of-the-art distributed systems is highly variabtej hence, is far from being consis-
tent. We further show that it is possible to improve the penfance consistency of dis-
tributed systems using scheduling and resource manageeosmiques that are tailored
for particular workloads and systems. Moreover, sincaifag are one of the primary
causes of high performance variabilityl[6, 181, 65, 117, 33, 216 22, 139, this thesis
also provides a fundamental understanding of failures paoddes strong evidence that
the fundamental assumption of various previous studies jshthat failures are indepen-
dent and identically distributed, is not correct, and hemeg lead to suboptimal system
designs.

In the rest of this chapter we first present the main conchssaf this thesis (Sec-
tion 9.1), and then we conclude the chapter with several future relsefirections (Sec-
tion 9.2).

9.1 Conclusions

Our work has led to seven major conclusions. The first six kesimans provide insights
into the performance of modern distributed systems whigeldist conclusion provides a
fundamental understanding of the behavior of failures aséhsystems. We present these
conclusions in turn.

1. As we have demonstrated with diverse workloads and sgster@hapters, 3,
and4, resource management and scheduling is the key to provigestent perfor-
mance in distributed computing systems.

2. Overprovisioning is a simple yet effective way to provmmsistent performance
in multi-cluster grids (Chapte).

3. Executing large loosely coupled applications, such gsodtasks, can overload
the head-nodes of multi-cluster grids, which results inagatble degradation in the
performance and responsiveness. Throttling the worklaéel ¢an help improve

145

both the raw performance and performance consistency fatypbworkloads. Be-
sides, dynamic throttling-based overload control techaigan replace the static
(hand-tuned) one, which is both slow and costly in multistéu grids due to the
number of clusters, and difficult to tune due to workload boess (Chaptes).

. With the incremental placement heuristics that we hasggded in Chapted it is
possible to provide consistent processing latency toactere perception applica-
tions while at the same time keeping the total cost of migretj which manifest
themselves as latency spikes, within a given bound. We havkelr shown that
using these heuristics it is possible to approach the imgmm@nts achieved by re-
running a static placement algorithm, but with less churthesystem.

. The performance of production cloud infrastructurescameently insufficient for
scientific computing at large, although these servicestdrgsod alternatives for
the users who need resources instantly and temporarilypt€it).

. The performance of popular production cloud servicesmma2on and Google have
highly variable performance, which may have noticeabledaatpn the performance
of distributed applications that depend on these serviceparticular, the perfor-
mance of the investigated services exhibits both yearlydailg patterns, and pe-
riods of relative stability. Moreover, the impact of thisrf@mance variability is
significantly different for different types of applicatieiChapte6).

. Traditional failure models for distributed systems, ethassume failure events are
independent and identically distributed, are not adedioatarge-scale distributed
systems, because failure events in these systems areatedrdloth in time and
space. So, system designers need to evaluate their desigas eorrelated fail-
ure events. In addition, a majority of the system downtimdigiributed systems
is caused by space-correlated failures and peak failuiedsersystem architects
should pay special attention to both space correlationailirés and failure peaks
when designing fault-tolerant distributed systems (Céigatand8).

9.2 Future Research Directions

Although significant research effort has been put into imprg the performance con-
sistency of distributed systems both in this thesis and énliterature, as a result of our
research we identify six interesting future research times, which we describe in turn.

1. In Chapter2 with our simulations with the controller that dynamicallyewprovi-

sions a multi-cluster grid, we have assumed for simplidiigt tthere is no back-
ground load in the system and that the system is homogenAmadural extension

146

to our evaluation would be to explore the impact of backgdoautivity and hetero-
geneity on the performance of our controller. In additi@sessing the performance
of the controller in a real deployment will definitely be irgsting, and it will pose
additional challenges to address.

In our performance evaluation of overload control tegbes in ChapteB we have
used workloads that comprise a single BoT. It will definitedyinteresting to extend
our evaluation to more complex workloads that compriseiplelBoTs of different
sizes. Moreover, another interesting future directiomisxplore the feasibility of
machine learning techniques to control overload in muitster grids as machine
learning has shown to be a promising approach for managmg@éhformance of
large-scale distributed systen®?].

In Chapte#t we consider the placement problem of interactive perce@pplica-
tions in isolation. However, in practice, we expect an dffecsystem to employ
adaptation of the application graph and its degree of gisth in conjunction with
incremental placement to best utilize the cluster resaurdderefore, we raise as
an important future work to explore how these two forms ofdd#on can interact
and be integrated into a runtime system for interactivegqgion applications.

In our performance evaluation of public clouds that weshyaesented in Chaptéy
we have assessed the network performance with our multhiimabenchmarks us-
ing up to 16 Amazon EC2 instances. It would definitely be ieséng to perform
a more comprehensive evaluation of the network performance larger scale.
Network performance is particularly important in virtwadd systems as it has al-
ready been shown that even when the network is lightly etiljzirtualization can
cause throughput instability and large latency variat{@@§]. In addition, Amazon
EC2 has recently released Cluster Compute and Cluster G&&hkces that provide
high-performance networking capabilities. Exploring gegformance of scientific
workloads on these instances would be an interesting futark.

In our analysis of the performance variability of popylasduction cloud services
in Chapter6, we have shown the existence of significant performancelditly.
However, we haven't addressed the question of how to rechisevariability or
how to reduce the impact of this variability on large-scaktributed applications,
which is a challenging problem on its own. In addition to tiraltenges we have
outlined in the Introduction, namely, the scale of systadhmscomplexity of systems
and workloads, the shared nature of systems, differenbpeénce requirements of
users, and failures, virtualization and the large scaldafcinfrastructures make
this problem even more challenging; modern data centersaummprise up to a
million servers 22 11, 110.

147

6. In Chapter§ and8, we have provided an analysis and modeling of space- and time
correlated failures in large-scale distributed systems. ilAportant contribution
would be exploring how these models can be used to reducenffet of failures on
performance variability. For example, our failure models be used in scheduling
and resource management decisions, such as migratingleepapplication when
we predict that a failure burst of a particular size is amiyi Similarly, exploring
smarter checkpointing algorithms that use these modeleettiqi failure events is
also an interesting future work as efficient checkpointim¢arge-scale distributed
systems is an active area of reseai@®) [L54.

149

Bibliography

[1]

(2]

[3]

[4]

Facebook, hadoop, and hive, 2009.http:/iwww.dbms2.com/2009/05/11/
facebook-hadoop-and-hive/

The Cloud Status Team . JSON report crawl, January 2008itp://www.
cloudstatus.com/ (consulted in 2009, now defunct).

The HPCC Team . HPCChallenge results, January 2009.irj€JnlAvailable: http://
icl.cs.utk.edu/hpcc/hpec_results.cgi

The Parallel Workloads Archive Team . The parallel wodds archive logs, Jan-
uary 2009. [Online]. Availablehttp:/Awww.cs.huji.ac.il/labs/parallel/
workload/logs.html

[5] Advanced Clustering Tech. . Linpack problem size anaty®ec 2008. [Online] Available:

http://www.advancedclustering.com/

[6] A. Adya, W. Bolosky, R. Chaiken, J. Douceur, J. Howelldah Lorch. Load management

[7]

[8]

[9]

[10]

[11]

in a large-scale decentralized file system. Technical R&Y@8R-TR-2004-60, Microsoft
Research, 2004.

G. Aggarwal, R. Motwani, and A. Zhu. The load rebalangomgblem. InProc. of the ACM
Symposium on Parallelism in Algorithms and Architectupssyes 258—265, 2003.

R. Al-Ali, K. Amin, G. von Laszewski, O. Rana, D. Walker, NHategan, and N. Zaluzec.
Analysis and provision of gos for distributed grid applioas. Journal of Grid Computing
2:163-182, 2004.

S. R. Alam, R. F. Barrett, M. Bast, M. R. Fahey, J. A. Kuelth, McCurdy, J. Rogers,
P. C. Roth, R. Sankaran, J. S. Vetter, P. H. Worley, and W. YarlyEevaluation of IBM
BlueGene/P. IProc. of Supercomputing (S(age 23, 2008.

J. Aldrich. R. A. Fisher and the making of maximum likedbd 1912-1922. Statistical
Science12(3):162-176, 1997.

Amazon data center size, 2014ttp://huanliu.wordpress.com/2012/03/
13/amazon-data-center-size/

http://www. dbms2. com/2009/05/11/facebook-hadoop-and-hive/
http://www. dbms2. com/2009/05/11/facebook-hadoop-and-hive/
http://www. cloudstatus. com/
http://www. cloudstatus. com/
http://icl. cs. utk. edu/hpcc/hpcc_results. cgi
http://icl. cs. utk. edu/hpcc/hpcc_results. cgi
http://www. cs. huji. ac. il/labs/parallel/workload/logs. html
http://www. cs. huji. ac. il/labs/parallel/workload/logs. html
http://www. advancedclustering. com/
http://huanliu. wordpress. com/2012/03/13/amazon-data-center-size/
http://huanliu. wordpress. com/2012/03/13/amazon-data-center-size/

150

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

Amazon Inc. . Amazon Elastic Compute Cloud (Amazon EC®&c 2008. [Online] Avail-
able: http://aws.amazon.com/ec2/

O. Andrew. Data networks are lightly utilized, and wstlay that way.Review of Network
Economics2:210-237, 1999.

A. Andrzejak, M. Arlitt, and J. Rolia. Bounding the raesae savings of utility comput-
ing models. Technical Report HPL-2002-339, HP, 200@p://www.hpl.hp.com/
techreports/2002/HPL-2002-339.html

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Kata, Konwinski, G. Lee, D. A.
Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above tloaids: A berkeley view of
cloud computing. Technical Report UCB/EECS-2009-28, EEBXgpartment, University
of California, Berkeley, Feb 2009.

R. H. Arpaci-Dusseau, A. C. Arpaci-Dusseau, A. VahdatT. Liu, T. E. Anderson, and
D. A. Patterson. The interaction of parallel and sequentiatkloads on a network of
workstations. IrProc. of the International Conference on Measurements andeéNing of

Computer Systems (SIGMETRICEges 267-278, 1995.

A. l. Avetisyan, R. Campbell, I. Gupta, M. T. Heath, SKo, G. R. Ganger, M. A. Kozuch,
D. O’Hallaron, M. Kunze, T. T. Kwan, K. Lai, M. Lyons, D. S. Mijicic, H. Y. Lee, Y. C.

Soh, N. K. Ming, J. Luke, and H. Namgoong. Open cirrus: A glatbaud computing

testbed.|IEEE Computer43(4):35-43, 2010.

A Avizienis, JC. Laprie, B. Randell, and C. E. LandweBasic concepts and taxonomy of
dependable and secure computifigEE Transactions on Dependable and Secure Comput-
ing, 1(1):11-33, 2004.

Windows azurehttp://www.windowsazure.com/en-us/

M. Babcock. XEN benchmarks. Tech. Rep. , Aug 2007. [fe]li Available:
mikebabcock.ca/linux/xen/

H. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, T. KielmahniMaassen, R. Nieuwpoort,
J. Romein, L. Renambot, T. Ruhl, R. Veldema, K. Verstoe@Ba&ggio, G. Ballintijn, I. Kuz,
G. Pierre, M. Steen, A. Tanenbaum, G. Doornbos, D. GermanSpbklder, E. Baerends,
S. Gisbergen, H. Afsermanesh, D. Albada, A. Belloum, D. Dalthdm, Z. Hendrikse,
B. Hertzberger, A. Hoekstra, K. Iskra, D. Kandhai, D. KoeJnka Linden, B. Overein-
der, P. Sloot, P. Spinnato, D. H. J. Epema, A. van GemundnRedoA. Radulescu, C. van
Reeuwijk, H. Sips, P. Knijnenburg, M. Lew, F. Sluiter, L. Wais, H. Blom, C. de Laat, and
A. Steen. The distributed asci supercomputer projst&EOPS Oper. Syst. Re84(4):76—
96, October 2000.

R. Baldoni, G. Lodi, G. Mariotta, L. Montanari, and M.Zzuto. Online black-box failure
prediction for mission critical distributed systems. Teicial report, MIDLAB 3/2012,
2012.

http://aws. amazon. com/ec2/
http://www. hpl. hp. com/techreports/2002/HPL-2002-339. html
http://www. hpl. hp. com/techreports/2002/HPL-2002-339. html
http://www. windowsazure. com/en-us/
mikebabcock. ca/linux/xen/

151

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. HarisHo, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. Bmoc. of the 19th ACM Symposium on
Operating Systems Principles (SOSPages 164-177, 2003.

[24] L. A.Barroso and U. Holzle. The case for energy-prajomal computinglEEE Computer
40:33-37, 2007.

[25] O. Beaumont, V. Boudet, and Y. Robert. The iso-levelestthing heuristic for hetero-
geneous processors. PRroc. of the Euromicro Workshop on Parallel, Distributeddan
Network-based Processingages 335-350, 2002.

[26] J. Becla and D. L. Wang. Lessons learned from managinetabygte. InProc. of the 2nd
Biennial Conference on Innovative Data Systems Reseat&R)>2005.

[27] The uc berkeley/stanford recovery-oriented computioc) project.http://roc.cs.
berkeley.edu/

[28] M. E. Bgin, B. Jones, J. Casey, E. Laure, F. Grey, C. Laprand R. Kubli. Com-
parative study: Grids and clouds, evolution or revolution?Egee-ii report, CERN,
June 2008. [Online] Available: https://edms.cern.ch/file/925013/3/
EGEE-Grid-Cloud.pdf

[29] R. Bhagwan, S. Savage, and G. M. Voelker. Understanauaglability. InProc. of the 2nd
International Workshop on Peer-to-Peer Systems (IPTP&)es 256-267, 2003.

[30] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. VoelR@tal recall: System support
for automated availability management. Pmoc. of the 1st conference on Symposium on
Networked Systems Design and Implementation (N®Bfes 337350, 2004.

[31] R. Biswas, M. J. Djomehri, R. Hood, H. Jin, C. C. Kiris,ca8. Saini. An application-based
performance characterization of the Columbia Superaludte Proc. of Supercomputing
(SC) page 26, 2005.

[32] P. Bodik. Automating Datacenter Operations Using Machine LearniRgD thesis, EECS
Department, University of California, Berkeley, Aug 2010.

[33] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Asrden. Fingerprinting the
datacenter: automated classification of performancescrigeProc. of the 5th European
conference on Computer systems (EuroSyeyes 111-124, 2010.

[34] W.J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Riedisy of a serverless distributed
file system deployed on an existing set of desktop PCBradu. of the International Confer-
ence on Measurements and Modeling of Computer Systems EJIRBIS) pages 34-43,
2000.

[35] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez)Jdannot, Y. Jégou, S. Lanteri,
J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, B. Que@e Richard, E. Talbi, and

http://roc. cs. berkeley. edu/
http://roc. cs. berkeley. edu/
https://edms. cern. ch/file/925013/3/EGEE-Grid-Cloud. pdf
https://edms. cern. ch/file/925013/3/EGEE-Grid-Cloud. pdf

152

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

I. Touche. Grid’5000: A large scale and highly reconfigueadsperimental grid testbebh-
ternational Journal of High Performance Computing Apptioas 20(4):481-494, Novem-
ber 2006.

M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and FHevivCheckpointing strategies for
parallel jobs. InProc. of the International Conference for High Performari@emputing,
Networking, Storage and Analysis (S@ages 33:1-33:11, 2011.

T. Bray. Bonnie, 1996. [Online] Available:http://www.textuality.com/
bonnie/ , Dec 2008.

G. Brumfiel. High-energy physics: Down the petabytehiwgy. Nature 469(7330):282—
283, January 2011.

C. Castillo, G. N. Rouskas, and K. Harfoush. Efficiersagrce management using advance
reservations for heterogeneous gridsPc. of the International Parallel and Distributed
Processing Symposium (IPDR$ages 1-12, 2008.

C. Castillo, G. N. Rouskas, and K. Harfoush. Resourcaltmxation for large-scale dis-
tributed environments. IRroc. of the International Symposium on High Performance Di
tributed Computing (HPDG)pages 131-140, 2009.

X. Castillo, S. R. McConnel, and D. P. Siewiorek. Detiwa and calibration of a transient
error reliability model.IEEE Transactions on Computei®1(7):658—671, 1982.

X. Castillo and D. P. Siewiorek. Workload, performanaad reliability of digital comput-
ing systems. IProc. of the International Symposium on Fault-Tolerant @atmg, pages
84-89, 1981.

K. T Chen, P. Huang, and C. L. Lei. Effect of network qtatn player departure behavior
in online gamesIEEE Transactions on Parallel and Distributed Syste2%5):593-606,
2009.

L. Chen, C. Wang, and F. C. M. Lau. Process reassignméhtreduced migration cost
in grid load rebalancing. I#roc. of the IEEE International Symposium on Parallel and
Distributed Processing (IPDPSpages 1-13, 2008.

M. Chen, L. Mummert, P. Pillai, A. Hauptmann, and R. Skikar. Controlling your tv
with gestures. IrProc. of the ACM International Conference on Multimediaohnfiation
Retrieval (ICMR) pages 405-408, 2010.

M. Chen, L. Mummert, P. Pillai, A. Hauptmann, and R. Swdtkar. Exploiting multi-level
parallelism for low-latency activity recognition in straang video. InProc. of the ACM
Multimedia Systems Conference (MMS$ZE)10.

L. Cherkasova and R. Gardner. Measuring CPU overheatl@oprocessing in the Xen
virtual machine monitor. IProc. of the USENIX Annual Technical Conference (ATC)
pages 387-390, 2005.

http://www. textuality. com/bonnie/
http://www. textuality. com/bonnie/

153

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

L. Cherkasova and P. Phaal. Session based admissitnolcdimechanism for improving
the performance of an overloaded web server. Technical iRefd_-98-119, HP, 1998.

D. M. Chiu and R. Jain. Analysis of the increase and desmealgorithms for conges-
tion avoidance in computer networkSomputer Networks and ISDN Systedi&(1):1-14,
1989.

J. Chu, K. Labonte, and B. N. Levine. Availability andcédity measurements of peer-
to-peer file systems. IRroc. of ITCom: Scalability and Traffic Control in IP Netwark
2002.

B. Cirou and E. Jeannot. Triplet: a clustering schedyplalgorithm for heterogeneous
systems. IrProc. of the IEEE International Conference on Parallel Ressing Workshops
(ICPP), pages 231-236, 2001.

B. Clark, T. Deshane, E. Dow, S. Evanchik, M. FinlaysdnHerne, and J. N. Matthews.
Xen and the art of repeated researchPtac. of the USENIX Annual Technical Conference
(ATC), pages 135-144, 2004.

M. Claypool and K. T. Claypool. Latency and player andn online gamesCommuni-
cations of the ACM49(11):40-45, 2006.

A. Collet, D. Berenson, S. Srinivasa, and D. Fergusorhje€ recognition and full pose
registration from a single image for robotic manipulatibnProc. of the IEEE International
Conference on Robotics and Automation (ICR#ges 3534-3541, 2009.

P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wengerkidav management in Condor.
In Workflows for e-Scieng@ages 357-375. Springer, 2007.

M. Crovella, R. Frangioso, and M. Harchol-Balter. Cention scheduling in web servers.
In Proc. of the 2nd conference on USENIX Symposium on Inteawin®logies and Sys-
tems (USITS)ages 22—-22, 1999.

Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. SmallRoten, G. Ely, D. K. Panda,
A. Chourasia, J. Levesque, S. M. Day, and P. Maechling. Bleatarthquake simulation
on petascale supercomputersPioc. of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Anal\&®) (pages 1-20, 2010.

The distributed asci supercomputertdtp://www.cs.vu.nl/das3/
The distributed asci supercomputertdtp://www.cs.vu.nl/das4/

M. D. de Assuncao, A. di Costanzo, and R. Buyya. Evahgathe cost-benefit of using
cloud computing to extend the capacity of clustersPtioc. of the International Symposium
on High Performance Distributed Computing (HPD@ages 141-150, 2009.

http://www. cs. vu. nl/das3/
http://www. cs. vu. nl/das4/

154

[61] J. Deanand S. Ghemawat. Mapreduce: simplified datapsitg on large clusters. Rroc.
of the 6th conference on Symposium on Operating SystemgrDasd Implementation
(OSDI), pages 10-10, 2004.

[62] J. Dean and S. Ghemawat. Mapreduce: simplified dateepsireg on large cluster€om-
munications of the ACIMb1(1):107-113, January 2008.

[63] E. Deelman, G. Singh, M. Livny, J. B. Berriman, and J. @od he cost of doing science
on the cloud: the Montage example. Rnoc. of Supercomputing (SC’Q9age 50, 2008.

[64] J. Dejun, G. Pierre, and CH. Chi. EC2 performance aimalgs resource provisioning of
service-oriented applications. Rroc. of the International Conference on Service-Oriented
Computing (ICSOC/ServiceWayppages 197-207, 2009.

[65] F.DinuandT. S. E. Ng. Understanding the effects andizapons of compute node related
failures in hadoop. IrProc. of the 21st international symposium on High-Perfanoea
Parallel and Distributed Computing (HPDCpages 187-198, 2012.

[66] M. Dobber, R. van der Mei, and G. Koole. A prediction netor job runtimes on shared
processors: Survey, statistical analysis and new aveReef®rmance Evaluatiqr64:755—
781, 2007.

[67] J. Dongarra, P. Luszczek, and A. Petitet. The linpaalcheark: past, present and future.
Concurrency and Computation: Practice and Experieridg9):803—820, 2003.

[68] J. Dongarra et al. . Basic linear algebra subprograrobnieal forum standard.High
Performance Applications and Supercomputih§(1):1-111, 2002.

[69] T.H. Dunigan, M. R. Fahey, J. B. White Ill, and P. H. Wgtl€&arly evaluation of the Cray
X1. In Proc. of Supercomputing (SG)age 18, 2003.

[70] G. B. Dyson. Darwin among the machines: The evolutiorglobal intelligence, 1998.
Perseus Books Group.

[71] European grid infrastructure, 2018ttp://www.egi.eu/

[72] Y. El-Khamra, H. Kim, S. Jha, and M. Parashar. Exploring performance fluctuations of
hpc workloads on clouds. IRroc. of the International Conference on Cloud Computing
Technology and Science (CloudCompages 383—387, 2010.

[73] H. EI-Rewini and T. G. Lewis. Scheduling parallel pragr tasks onto arbitrary target
machines.Journal of Parallel and Distributed Computing:138-153, June 1990.

[74] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. Ahoa for transparent admission
control and request scheduling in e-commerce web siteBrda. of the 13th international
Conference on World Wide Web (WW\Wages 276-286, 2004.

http://www. egi. eu/

155

[75] The history of email, 2012http://en.wikipedia.org/wiki/Distributed_
computing .

[76] P. Erdds and A. Rényi. On random grapRsiblicationes Mathematicaé:290—297, 1959.

[77] Callaghan et al. Scaling up workflow-based applicatiaglournal of Computer and System
Sciences76(6):428-446, 2010.

[78] C. Evangelinos and C. N. Hill. Cloud computing for p&ehkcientific hpc applications:
Feasibility of running coupled atmosphere-ocean climatedeis on amazons ec2. Roc.
of the Workshop on Cloud Computing and Its Applications (;Ages 1-6, 2008.

[79] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Cv@&le and P. Wong. Theory and
practice in parallel job scheduling. Froc. of the Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPR)olume 1291 of ecture Notes in Computer Scienpages
1-34. Springer, 1997.

[80] I. Foster and C. Kesselman, editoiihe Grid: Blueprint for a New Computing Infrastruc-
ture, chapter Computational Grids, pages 15-52. Morgan-Kaunfinduly 1998.

[81] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computimgl gyrid computing 360-degree
compared. InGrid Computing Environments Workshop (GCRages 1-10, 2008.

[82] A.Fox, S.D. Gribble, Y. Chawathe, E. A. Brewer, and Puger. Cluster-based scalable
network servicesSIGOPS Operating Systems Revigi5):78-91, 1997.

[83] M. Gallet, M. N. Yigitbasi, B. Javadi, D. Kondo, A. losuypnd D. H. J. Epema. A model
for space-correlated failures in large-scale distribuiggstems. IrProc. of the 16th Inter-
national Euro-Par Conference on Parallel Processing (ERag), pages 88—100, 2010.

[84] M. R. Garey and D. S. Johnsoi@omputers and Intractability: A Guide to the Theory of
NP-CompletenessV. H. Freeman and Company, New York, 1979.

[85] L. Gilbert, J. Tseng, R. Newman, S. Igbal, R. Pepper, €eblioglu, J. Hsieh, and M. Cob-
ban. Performance implications of virtualization and hyihgeading on high energy physics
applications in a grid environment. Froc. of the IEEE International Parallel and Dis-
tributed Processing Symposium (IPDP&)05.

[86] The metrics project, globus metrics. Technical Repott 4, Globus, 2007 .http://
incubator.globus.org/metrics/reports/2007-02.pdf

[87] GoGrid. GoGrid cloud-server hosting, Dec 2008. [Oe]idwvailable: http:/ivww.
gogrid.com

[88] Google Inc. . Google App Engine, Run your web applicagion Google’s infrastructure.,
Dec 2008. [Online] Availablehttp://code.google.com/appengine

http://en. wikipedia. org/wiki/Distributed_computing
http://en. wikipedia. org/wiki/Distributed_computing
http://incubator. globus. org/metrics/reports/2007-02. pdf
http://incubator. globus. org/metrics/reports/2007-02. pdf
http://www. gogrid. com
http://www. gogrid. com
http://code. google. com/appengine

156

[89] K. Goto and R. A. van de Geijn. Anatomy of high-perforrmnammatrix multiplication ACM
Transactions on Mathematical Softwa@(3):1-25, 2008.

[90] J. Gray. Why do computers stop and what can be done atout Proc. of the Symposium
on Reliability in Distributed Software and Database Systgrages 3—12, 1986.

[91] J. Gray. A census of tandem system availability betwE@8b and 1990. IHEEE Transac-
tions on Reliability volume 39, pages 409-418, October 1990.

[92] T. Heath, R. P. Martin, and T. D. Nguyen. Improving ckrsavailability using workstation
validation. InProc. of the International Conference on Measurements aonddéiing of
Computer Systems (SIGMETRICSges 217-227, 2002.

[93] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilburfyeedback Control of Computing
SystemsJohn Wiley & Sons, 2004.

[94] T. Hey and G. Fox. Special issue: Grids and web servioceg-science: EditorialsCon-
currency and Computation: Practice and Experienté(2-4):317-322, February 2005.

[95] D. Hilley. Cloud computing: A taxonomy of platform andfrastructure-level offerings.
Technical Report GIT-CERCS-09-13, Georgia Institute affifelogy, Dec 2008.

[96] V. Hilt and I. Widjaja. Controlling overload in netwaskof sip servers. IfProc. of IEEE
International Conference on Network Protocols (ICNpages 83-93, 2008.

[97] A. Hosoi, T. Washio, J. Okada, Y. Kadooka, K. Nakajimaddl. Hisada. A multi-scale
heart simulation on massively parallel computers. Phoc. of the ACM/IEEE Interna-
tional Conference for High Performance Computing, Netingk Storage and Analysis
(SC) pages 1-11, 2010.

[98] W. Huang, J. Liu, B. Abali, and D. K. Panda. A case for higrformance computing with
virtual machines. IrProc. of the 21st International Conference on SupercompguiCS)
pages 125-134, 2006.

[99] A. losup, C. Dumitrescu, D. H. J. Epema, H. Li, and L. Véoft How are real grids
used? The analysis of four grid traces and its implicatidn€?roc. of the 7th IEEE/ACM
International Conference on Grid Computing (GRJ[Pages 262—269, 2006.

[100] A. losup and D. H. J. Epema. GrenchMark: A framework &oalyzing, testing, and
comparing grids. IrProc. of the IEEE International Symposium on Cluster Cornmgugind
the Grid (CCGRID) pages 313-320, 2006.

[101] A.losup and D. H. J. Epema. Grid computing workloadag8of tasks, workflows, pilots,
and otherslEEE Internet Computingl5:19-26, 2011.

[102] A.losup, D.H.J. Epema, T. Tannenbaum, M. Farrelled,M. Livny. Inter-operating grids
through delegated matchmaking. Pnoc. of Supercomputing (SC’Qf)age 13, 2007.

157

[103] A.losup, M. Jan, O. O. Sonmez, and D. H. J. Epema. Onyharic resource availabil-
ity in grids. InProc. of the 8th IEEE/ACM International Conference on Gridn@puting
(GRID), pages 26-33, 2007.

[104] A. losup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wok, and D. H. J. Epema. The
Grid Workloads Archive Future Generation Computer Syster@4(7).672—686, 2008.

[105] A. losup, S. Ostermann, M. N. Yigitbasi, R. Prodan, &hfinger, and D. H. J. Epema.
Performance analysis of cloud computing services for ntasks scientific computing.
IEEE Transactions on Parallel and Distributed Syste@#%6):931-945, 2010.

[106] A.losup, O. O. Sonmez, S. Anoep, and D. H. J. Epema. Ehiepnance of bags-of-tasks
in large-scale distributed systems. Pmoc. of the 7th International Symposium on High
Performance Distributed Computing (HPD@gges 97-108, 2008.

[107] A. losup, O. O. Sonmez, S. Anoep, and D. H. J. Epema. Hnpnance of bags-of-
tasks in large-scale distributed systems.Pmc. of the International Symposium on High
Performance Distributed Computing (HPD@gges 97-108, 2008.

[108] A.losup, O. O. Sonmez, and D. H. J. Epema. DGSim: Comgayrid resource manage-
ment architectures through trace-based simulatioRrdc. of the European Conference on
Parallel Processing (Euro-PayMolume 5168 of.ecture Notes in Computer Scienpages
13-25. Springer, 2008.

[109] A. losup, M. N. Yigitbasi, and D. H. J. Epema. On the periance variability of produc-
tion cloud services. IfProc. of the 11th IEEE/ACM International Symposium on @ust
Computing and the Grid (CCGRIDpages 104-113, 2011.

[110] M. Isard. Autopilot: automatic data center managemeBIGOPS Oper. Syst. Rev.
41(2):60-67, April 2007.

[111] T. Z.lIslam, S. Bagchi, and R. Eigenmann. Falcon: assydor reliable checkpoint recovery
in shared grid environments. Froc. of Supercomputing (SQages 1-12, 2009.

[112] M. A. Iverson, FOzguner, and G. J. Follen. Parallelizing existing appiices in a dis-
tributed heterogeneous environmentPhoc. of the IEEE Heterogeneous Computing Work-
shop (HCW)pages 93-100, 1995.

[113] R. lyer, V. Tewari, and K. Kant. Overload control mentsns for web servers. Im
Workshop on Performance and QoS of Next Generation Netywoakes 225—-244, 2000.

[114] R.K.lyer, S. E. Butner, and E. J. McCluskey. A statigtifailure/load relationship: Results
of a multicomputer studylEEE Transactions on Computer31(7):697-706, 1982.

[115] R. K. lyer, D. J. Rossetti, and M. C. Hsueh. Measurenagigt modeling of computer reli-
ability as affected by system activitACM Transactions on Computer Systed(S8):214—
237, 1986.

158

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

S. P. Kavulya, K. Joshi, M. Hiltunen, S. Daniels, R. @anand P. Narasimhan. Draco: Sta-
tistical diagnosis of chronic problems in large distrilsugystems. IfProc. of the IEEE/IFIP
International Conference on Dependable Systems and NiesWDISN) 2012.

S. P. Kavulya, K. Joshi, Matti M. Hiltunen, S. DanieR, Gandhi, and P. Narasimhan.
Practical experiences with chronics discovery in larged@nmunications systems. In
Managing Large-scale Systems via the Analysis of Systers &g the Application of

Machine Learning Techniques (SLAMbages 7:1-7:8, 2011.

YS. Kee, H. Casanova, and A. A. Chien. Realistic madgind svnthesis of resources for
computational grids. IiProc. of Supercomputing (SGage 54, 2004.

D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. A pemnfoice comparison between the
Earth Simulator and other terascale systems on a chastittekiSC| workload. Concur-
rency and Computation: Practice and Experient(10):1219-1238, 2005.

T. Killalea. Meet the virtsQueue 6(1):14-18, 2008.

S. Kleban and S. Clearwater. Quelling queue stormsPrat. of the 12th International
Symposium on High Performance Distributed Computing (HRPp&ge 162, 2003.

Data Center Knowledge. Google uses about 900,000 esgrv 2011.
http://www.datacenterknowledge.com/archives/2011/08 01/
report-google-uses-about-900000-servers/

D. Kondo, B. Javadi, A. losup, and D. H. J. Epema. ThduraiTrace Archive: En-
abling comparative analysis of failures in diverse disti#ldl systems. IRroc. of the 10th
IEEE/ACM International Conference on Cluster, Cloud andd@Computing (CCGrid)
pages 1-10, 2010.

S. Kounev, R. Nou, and J. Torres. Autonomic gos-awassurce management in grid
computing using online performance models.Pioc. of the International Conference on
Performance Evaluation Methodologies and Topisges 1-10, 2007.

A. Kowalski. Bonnie - file system benchmarks. Tech. Re}efferson Lab, Oct 2002. [On-
line] Available: http://cc.jlab.org/docs/scicomp/benchmark/bonnie.
html .

N. P. Kronenberg, H. M. Levy, and W. D. Strecker. Vaxstlr: a closely-coupled distributed
system.ACM Transactions on Computer Systed®):130-146, May 1986.

Y. Kwok and I. Ahmad. Efficient scheduling of arbitratgsk graphs to multiprocessors
using a parallel genetic algorithndournal of Parallel and Distributed Computing7:58—
77,1997.

Y. Kwok and I. Ahmad. Static scheduling algorithms &locating directed task graphs to
multiprocessorsACM Computing Survey81(4):406—471, December 1999.

http://www. datacenterknowledge. com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www. datacenterknowledge. com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://cc. jlab. org/docs/scicomp/benchmark/bonnie. html
http://cc. jlab. org/docs/scicomp/benchmark/bonnie. html

159

[129] Y. Kwok, A. A. Maciejewski, H. J. Siegel, I. Ahmad, and &hafoor. A semi-static ap-
proach to mapping dynamic iterative tasks onto heterogeneomputing systemsgournal
of Parallel and Distributed Computing6:77-98, January 2006.

[130] A. Leff, J. T. Rayfield, and D. M. Dias. Service-levelragments and commercial grids.
IEEE Internet Computing/:44-50, 2003.

[131] T.Y. Lin and D. P. Siewiorek. Error log analysis: sssital modeling and heuristic trend
analysis. INEEE Transactions on Reliabilifywolume 39, pages 419-432, October 1990.

[132] G. Linden. Make data useful, 2006.http://home.blarg.net/ ~ glinden/
StanfordDataMining.2006-11-29.ppt

[133] D. G. Lowe. Distinctive image features from scaleanant keypointsinternational Jour-
nal of Computer Vision60(2):91-110, 2004.

[134] U. Lublin and D. G. Feitelson. Workload on parallel suppmputers: modeling charac-
teristics of rigid jobs.Journal of Parallel and Distributed Computing3(11):1105-1122,
2003.

[135] U. Lublin and D. G. Feitelson. The workload on parallepercomputers: modeling the
characteristics of rigid jobslournal of Parallel and Distributed Computing3(11):1105—
1122, 2003.

[136] P. Luszczek, D. H. Bailey, J. Dongarra, J. Kepner, RL&€as, R. Rabenseifner, and
D. Takahashi. S12 - The HPC Challenge (HPCC) benchmark. suite Proc. of Su-
percomputing (SCGpage 213, 2006.

[137] J. Maguire, J. Vance, and C. Harvey. 85 cloud computirendors shaping
the emerging cloud, Aug 2009. ITManagement Tech. Remanagement.
earthweb.com/features/article.php/12297$_$3835941% $2/
85-Cloud-Computing-Vendors-Shaping-the-Emerging-Clo ud.htm .

[138] M. Maheswaran and H. J. Siegel. A dynamic matching ameaduling algorithm for het-
erogeneous computing systemsPioc. of the IEEE Heterogeneous Computing Workshop
(HCW), pages 57—69, 1998.

[139] O. Malik. Parts of amazon web services suffer an oyta@@2. http://gigaom.com/
cloud/did-amazons-web-services-go-down

[140] P. Matikainen, P. Pillai, L. Mummert, R. SukthankandaM. Hebert. Prop-free pointing
detection in dynamic cluttered environmentsPhoc. of the IEEE Conference on Automatic
Face and Gesture RecognitioR011.

[141] J. Matthews, T. Garfinkel, C. Hoff, and J. Wheeler. ¥attmachine contracts for datacenter
and cloud computing environments. Broc. of the Workshop on Automated Control for
Datacenters and Clouds (ACDJages 25-30, 2009.

http://home. blarg. net/~glinden/StanfordDataMining. 2006-11-29. ppt
http://home. blarg. net/~glinden/StanfordDataMining. 2006-11-29. ppt
itmanagement. earthweb. com/features/article. php/12297$_$3835941$_$2/85-Cloud-Computing-Vendors-Shaping-the-Emerging-Cloud. htm
itmanagement. earthweb. com/features/article. php/12297$_$3835941$_$2/85-Cloud-Computing-Vendors-Shaping-the-Emerging-Cloud. htm
itmanagement. earthweb. com/features/article. php/12297$_$3835941$_$2/85-Cloud-Computing-Vendors-Shaping-the-Emerging-Cloud. htm
http://gigaom. com/cloud/did-amazons-web-services-go-down
http://gigaom. com/cloud/did-amazons-web-services-go-down

160

[142] L. McVoy and C. Staelin. LMbench - tools for performananalysis. [Online] Available:
http://iwww.bitmover.com/Imbench/ , Dec 2008.

[143] M. Mehech. The impact of failures on large distributgdrage systems. August 2007.

[144] D. Menascé and E. Casalicchio. A framework for reseuwallocation in grid computing.
In Proc. of the 12th International Symposium on Modeling, #sial and Simulation of
Computer and Telecommunications Systems (MASC@&a§gs 259-267, 2004.

[145] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiramaun, \&h Zwaenepoel. Diagnos-
ing performance overheads in the Xen virtual machine enuent. InProc. of the 1st
ACM/USENIX International Conference on Virtual Executiemvironments (VEE)pages
13-23, 2005.

[146] N.Mi, G. Casale, A. Riska, Q. Zhang, and E. Smirni. Autwelation-driven load control in
distributed systems. IRroc. of IEEE International Symposium on the Modeling, Asisl
and Simulation of Computer and Telecommunication SyststASCOTS)2009.

[147] J. W. Mickens and B. D. Noble. Exploiting availabiliprediction in distributed systems.
In Proc. of the 3rd conference on Networked Systems Designnaplémentation (NSDJ)
pages 6-6, 2006.

[148] U.F.Minhas, J. Yadav, A. Aboulnaga, and K. Salem. Basg systems on virtual machines:
How much do you lose? IRroc. of the 24th IEEE International Conference on Data
Engineering Workshop (ICDEWpages 3541, 2008.

[149] J. C. Mogul. Emergent (mis)behavior vs. complex safevsystems. IrProc. of the
SIGOPS/EuroSys European Conference on Computer Sysieges 293—-304, 2006.

[150] P. J. Mucci and K. S. London. Low level architecturabcdcterization benchmarks for
parallel computers. Technical Report UT-CS-98-394, U nessee, 1998.

[151] V. Nae, A. losup, S. Podlipnig, R. Prodan, D. H. J. Epearad T. Fahringer. Efficient
management of data center resources for massively mykiptanline games. IProc. of
Supercomputing (SCpage 10, 2008.

[152] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L.t&cdBroactive fault tolerance for
HPC with Xen virtualization. IrProc. of the 21st International Conference on Supercom-
puting (ICS) pages 23-32, 2007.

[153] H.B.Newman, M. H. Ellisman, and J. A. Orcutt. Dataeinsive e-science frontier research.
Commun. ACM46(11):68-77, November 2003.

[154] B. Nicolae and F. Cappello. Blobcr: efficient checkpeiestart for hpc applications on
iaas clouds using virtual disk image snapshot®roc. of the International Conference for
High Performance Computing, Networking, Storage and Asial{SC) pages 34:1-34:12,
2011.

http://www. bitmover. com/lmbench/

161

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

D. Nurmi, J. Brevik, and R. Wolski. Modeling machineadability in enterprise and wide-
area distributed computing environments.Pioc. of the European Conference on Parallel
Processing (Euro-Par)pages 432441, 2005.

D. Nurmi, R. Wolski, and J. Brevik. Varq: virtual advareservations for queues. In
Proc. of the 17th International Symposium on High PerforomDistributed Computing
(HPDC), pages 75—-86, 2008.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, Sor8an, L. Youseff, and D. Zagorod-
nov. The eucalyptus open-source cloud-computing systarRrdc. of the 9th IEEE/ACM
International Symposium on Cluster Computing and the GGG@GRID) pages 124-131,
2009.

D. Oppenheimer, A. Ganapathi, and D. A. Patterson. @thyternet services fail, and what
can be done about it? Froc. of the 4th USENIX Symposium on Internet Technologids a
Systems (USITSages 1-1, 2003.

The open science grid project (0sg), July 2007.

S. Ostermann, A. losup, R. Prodan, T. Fahringer, and.[J. Epema. On the characteristics
of grid workflows. InProc. of the CoreGRID Workshop on Integrated Research i Gri
Computing (CGIW)pages 431-442, 2008.

S. Ostermann, A. losup, M. N. Yigitbasi, R. Prodan, @hfnger, and D. H. J. Epema.
An early performance analysis of cloud computing serviaegsstientific computing. In
CloudCompvolume 34 ofLNICST, pages 115-31, 2009.

S. Ostermann, A. losup, M. N. Yigitbasi, R. Prodan, @&hfinger, and D. H. J. Epema. A
performance analysis of ec2 cloud computing services fensific computing. InProc. of
the 1st International Conference on Cloud Computing (Coichp) pages 115-131, 2009.

M. R. Palankar, A. lamnitchi, M. Ripeanu, and S. GarfinkAmazon S3 for science grids:
a viable solution? IrProc. of the International Workshop on Data-aware Disttiol
Computing (DADC)pages 55—-64, 2008.

F. Petrini, G. Fossum, J. Fernandez, A. L. VarbanebtKistler, and M. Perrone. Mul-
ticore surprises: Lessons learned from optimizing Sweephe Cell Broadband En-
gine. InProc. of the IEEE International Parallel and Distributed dtressing Symposium
(IPDPS) pages 1-10, 2007.

F. Petrini, D. J. Kerbyson, and S. Pakin. The case oftiesing supercomputer perfor-
mance: Achieving optimal performance on the 8,192 proecessbASCI Q. InProc. of
Supercomputing (SCpage 55, 2003.

G. F. Pfisterln Search of ClustersPrentice Hall, 1995.

162

[167] P. Pillai, L. Mummert, S. Schlosser, R. Sukthankad @n Helfrich. Slipstream: Scalable
low-latency interactive perception on streaming data.Ptoc. of the ACM International
Workshop on Network and Operating Systems Support fordDigitdio and Videppages
43-48, 2009.

[168] A. Pras, R. Van De Meent, and M. Mandjes. Qos in hybrithvoeks - an operator’s per-
spective. InProc. of the 13th International Workshop on Quality of SeevR2005.

[169] R. Prodan and S. Ostermann. A survey and taxonomy ddstriicture as a service and
web hosting cloud providers. Iroc. of the IEEE/ACM International Conference on Grid
Computing (GRID)pages 1-10, 2009.

[170] B. Quétier, V. Néri, and F. Cappello. Scalabilitynsparison of four host virtualization
tools. Journal of Grid Computing5(1):83—-98, 2007.

[171] The rackspace cloudhttp://www.rackspace.com/cloud/

[172] RightScale. = Amazon usage estimates, Aug 2009. [@hliAvailable: blog.
rightscale.com/2009/10/05/amazon-usage-estimates

[173] G. Rosen. Cloud usage analysis series, Aug 2009. m@nlAvailable: www.
jackofallclouds.com/category/analysis

[174] K. Ryu, J. Hollingsworth, and P. Keleher. Efficientwetk and i/o throttling for fine-grain
cycle stealing. IrProc. of Supercomputing (SGages 3-3, 2001.

[175] R. H. Saavedra and A. J. Smith. Analysis of benchmaatteristics and benchmark
performance predictionACM Transactions on Computer Systei¥(4):344-384, 1996.

[176] R. Sahoo, A. Sivasubramaniam, M. Squillante, and Yargh Failure data analysis of a
large-scale heterogeneous server environmererdn. of the International Conference on
Dependable Systems and Networks (Q®ldyes 772—, 2004.

[177] S. Saini, D. Talcott, D. C. Jespersen, M. J. Djomehri JH, and R. Biswas. Scientific
application-based performance comparison of SGI Altix3418M POWERS5+, and SGI
ICE 8200 supercomputers. Rroc. of Supercomputing (SQ)age 7, 2008.

[178] R. Sakellariou and H. Zhao. A hybrid heuristic for datpeduling on heterogeneous sys-
tems. InProc. of the Heterogeneous Computing Workshop (HGMIyme 2, page 111b,
2004.

[179] R. Sakellariou and H. Zhao. A low-cost reschedulinigydor efficient mapping of work-
flows on grid systemsScientific Programmingl2:253-262, December 2004.

[180] F. Salfner, M. Lenk, and M. Malek. A survey of onlineltae prediction methodsACM
Computing Surveysl2(3):1-42, 2010.

http://www. rackspace. com/cloud/
blog. rightscale. com/2009/10/05/amazon-usage-estimates
blog. rightscale. com/2009/10/05/amazon-usage-estimates
www. jackofallclouds. com/category/analysis
www. jackofallclouds. com/category/analysis

163

[181] R. R. Sambasivan and G. R. Ganger. Automated diagmiisut predictability is a recipe
for failure. InProc. of the 4th USENIX Workshop on Hot Topics in Cloud (Hot@), 2012.

[182] P. Scholz and E. Harbeck. Task assignment for diggtbcwomputing. InProc. of the
Advances in Parallel and Distributed Computing Conferemages 270-277, 1997.

[183] B. Schroeder and G. A. Gibson. A large-scale study idirkes in high-performance com-
puting systems. Ii®Proc. of the International Conference on Dependable Systamd Net-
works (DSN)pages 249-258, 2006.

[184] B. Schroeder and G. A. Gibson. Disk failures in the ngalld: what does an mittf of
1,000,000 hours mean to you? Pnoc. of the 5th USENIX conference on File and Storage
Technologies (FASTpage 1, 2007.

[185] B. Schroeder and M. Harchol-Balter. Web servers umderload: How scheduling can
help. ACM Transactions on Internet Technologié$l):20-52, 2006.

[186] P. Shroff, D. W. Watson, N. S. Flann, and R. F. Freund. n€bie simulated annealing
for scheduling data-dependent tasks in heterogeneousoements. IrnProc. of the IEEE
Heterogeneous Computing Workshop (HC@#éges 98-104, 1996.

[187] M. Siddiqui, A. Villazn, and T. Fahringer. Grid alloitan and reservation - grid capacity
planning with negotiation-based advance reservationgtnozed gos. IrProc. of Super-
computing (SG)page 103, 2006.

[188] G. C. Sihand E. A. Lee. Dynamic-level scheduling fordnegeneous processor networks.
In Proc. of the IEEE Symposium on Parallel and Distributed Rssing (IPDPS)pages
42-49, 1990.

[189] H. Singh and A. Youssef. Mapping and scheduling hegeneous task graphs using genetic
algorithms. InProc. of the IEEE Heterogeneous Computing Workshop (H@@&Hes 86—
97, 1996.

[190] D. Skinner and W. Kramer. Understanding the causesedbpmance variability in hpc
workloads. InProc. of the International Symposium on Workload Charazégion, 2005.

[191] W. Smith, I. Foster, and V. E. Taylor. Scheduling witvanced reservations. Froc. of
the IEEE International Parallel and Distributed ProcesgiSymposium (IPDPSpage 127,
2000.

[192] O. O. Sonmez, M. N. Yigitbasi, S. Abrishami, A. losupdeD. H. J. Epema. Performance
analysis of dynamic workflow scheduling in multiclusterdsri InProc. of the 19th ACM
International Symposium on High Performance Distributear@uting (HPDC)pages 49—
60, 2010.

[193] O. O. Sonmez, M. N. Yigitbasi, A. losup, and D. H. J. Epenirace-based evaluation of
job runtime and queue wait time predictions in grids Phoc. of International Symposium
on High Performance Distributed Computing (HPD@ages 111-120, 2009.

164

[194] N. Sotomayor, K. Keahey, and I. Foster. Overhead m&tt& model for virtual resource
management. IRroc. of the International Workshop on Virtualization Taology in Dis-
tributed Computing (VTDCpages 5-5, 2006.

[195] Spec cpu2006 benchmark. [Online]: http://www. speg/cpu2006/.

[196] A. Sridhar and A. Sowmya. Multiple camera, multiplesin tracking with pointing gesture
recognition in immersive environments. Aadvances in Visual Computingolume 5358 of
Lecture Notes in Computer Scienpages 508-519. Springer Berlin / Heidelberg, 2008.

[197] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. Alable application placement con-
troller for enterprise data centers. Pmoc. of the International World Wide Web Conference
(WWW) pages 331-340, 2007.

[198] D. Tang and R. K. lyer. Dependability measurement amdiefing of a multicomputer
system.IEEE Transactions on Computed2(1):62—75, 1993.

[199] D. Tang, R. K. lyer, and S. S. Subramani. Failure anslgad modeling of a vaxcluster
system. InProc. International Symposium on Fault-tolerant compgitipages 244 —-251,
1990.

[200] The nsf teragridhttp://www.teragrid.org

[201] D. Thain, J. Bent, A. C. Arpaci-Dusseau, R. H. ArpacisSeau, and M. Livny. Pipeline
and batch sharing in grid workloads. Rroc. of the International Symposium on High
Performance Distributed Computing (HPD@®gages 152-161, 2003.

[202] H. Topcuouglu, S. Hariri, and M. Wu. Performance-efifee and low-complexity task
scheduling for heterogeneous computinBEE Transactions on Parallel and Distributed
Systemsl3(3):260-274, 2002.

[203] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Backfillinging system-generated predictions
rather than user runtime estimatéSEE Transactions on Parallel and Distributed Systems
18:789-803, 2007.

[204] Uk e-science (grid) core programmehttp://www.escience-grid.org.uk/
index.htm

[205] B. Urgaonkar and P. Shenoy. Cataclysm: policing emg@verloads in internet applica-
tions. InProc. of the 14th International Conference on World Wide \¥ahWW) pages
740-749, 2005.

[206] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S$véldi. Analysis and implemen-
tation of software rejuvenation in cluster systemsPtoc. of the International Conference
on Measurements and Modeling of Computer Systems (SIGMES)RBges 62—71, 2001.

http://www. teragrid. org
http://www. escience-grid. org. uk/index. htm
http://www. escience-grid. org. uk/index. htm

165

[207] J. S. Vetter, S. R. Alam, T. H. Dunigan Jr., M. R. Fahey; FRoth, and P. H. Worley. Early
evaluation of the Cray XT3. IRroc. of the IEEE International Symposium on Parallel and
Distributed Processing (IPDPS2006.

[208] E. Walker. Benchmarking Amazon EC2 for HP Scientifim@mting. Login, 33(5):18-23,
Nov 2008.

[209] G. Wang and T. S. E. Ng. The impact of virtualization @ivork performance of amazon
ec2 data center. IRroc. of the 29th conference on Information communicatigh§O-
COM), pages 1163-1171, 2010.

[210] L. Wang, H. J. Siegel, V. R. Roychowdhury, and A. A. Mgeivski. Task matching and
scheduling in heterogeneous computing environments @sgenetic-algorithm-based ap-
proach.Journal of Parallel and Distributed Computing7:8—-22, November 1997.

[211] L. Wang, J. Zhan, W. Shi, Y. Liang, and L. Yuan. In clodd, mtc or htc service providers
benefit from the economies of scale?Hroc. of the 2nd Workshop on Many-Task Comput-
ing on Grids and Supercomputers (MTAG&)09.

[212] M. Welsh and D. Culler. Adaptive overload control fardy internet servers. IRroc. of
the 4th USENIX Symposium on Internet Technologies andrgy£t¢SITS)pages 26-28,
2003.

[213] J. Widmer, R. Denda, and M. Mauve. A survey on tcp-fillgrncongestion controllEEE
Network 15(3):28 —37, May 2001.

[214] Computer cluster, 2012. http://en.wikipedia.org/wiki/Computer_
cluster

[215] Distributed computing, 2012. http://www.nethistory.info/
Historyofthelnternet/email.html

[216] A. W. Williams, S. M. Pertet, and P. Narasimhan. TiassiBlack-box failure prediction
in distributed systems. IRroc. of the International Parallel and Distributed Procasg
Symposium (IPDPSpages 1-8, 2007.

[217] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbandsid K. A. Yelick. The potential of
the Cell processor for scientific computing. Pnoc. of the 3rd Conference on Computing
Frontiers (CF) pages 9-20, 2006.

[218] R.Wolski. Experiences with predicting resource perfance on-line in computational grid
settings. InPerformance Evaluation Reviewages 575-611, 2006.

[219] J. Worringen and K. Scholtyssik. MP-MPICH: User do@ntation & technical notes, Jun
2002.

http://en. wikipedia. org/wiki/Computer_cluster
http://en. wikipedia. org/wiki/Computer_cluster
http://www. nethistory. info/History of the Internet/email. html
http://www. nethistory. info/History of the Internet/email. html

166

[220] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked windows system field failure data
analysis. InProc. of the Pacific Rim International Symposium on Depeled@ommputing
(PRDC) pages 178-185, 1999.

[221] M. N. Yigitbasi, K. Datta, N. Jain, and T. Willke. Engrefficient scheduling of mapreduce
workloads on heterogeneous clustersPtac. of the 2nd International Workshop on Green
Computing Middlewarepages 1:1-1:6, 2011.

[222] M. N. Yigitbasi and D. H. J. Epema. Overdimensioning fonsistent performance in
grids. InProc. of the 10th IEEE/ACM International Symposium on @r€loud and Grid
Computing (CCGRID)pages 526-529, 2010.

[223] M. N. Yigitbasi and D. H. J. Epema. Static and dynamierpvovisioning strategies for
performance consistency in grids.Pnoc. of the 11th IEEE/ACM International Conference
on Grid Computing (GRID)pages 145-152, 2010.

[224] M. N. Yigitbasi and D. H. J. Epema. Performance evéadumeabf overload control in multi-
cluster grids. IrProc. of the 12th IEEE/ACM International Conference on GZioimputing
(GRID), pages 173-180, 2011.

[225] M. N. Yigitbasi, M. Gallet, D. Kondo, A. losup, and D. H. Epema. Analysis and mod-
eling of time-correlated failures in large-scale disttéul systems. IiProc. of the 11th
IEEE/ACM International Conference on Grid Computing (GRIpages 65-72, 2010.

[226] M. N. Yigitbasi, A. losup, D. H. J. Epema, and S. OstenmaC-meter: A framework for
performance analysis of computing clouds. Aroc. of the 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGR{iayes 472-477, 2009.

[227] M. N. Yigitbasi, A. losup, D. H. J. Epema, and S. OstenmaC-meter: A framework for
performance analysis of computing clouds.Pioc. of the 15th ASCI Conferenc2009.

[228] M. N. Yigitbasi, L. Mummert, P. Pillai, and D. H. J. Epam Incremental placement of
interactive perception applications. Rroc. of the 20th International Symposium on High
Performance Distributed Computing (HPD@®ages 123-134, 2011.

[229] L. Youseff, M. Butrico, and D. Da Silva. Towards a unifientology of cloud computing.
In Proc. of the Grid Computing Environments Workshop (G@&apes 1-10, 2008.

[230] L. Youseff, K. Seymour, H. You, J. Dongarra, and R. VWbIsThe impact of paravirtual-
ized memory hierarchy on linear algebra computational édsrand software. IiProc. of
the International Symposium on High Performance Disteou€Computing (HPDG)ages
141-152, 2008.

[231] L. Youseff, R. Wolski, B. C. Gorda, and C. Krintz. Parfwalization for HPC systems. In
Proc. of the Workshop on Xen in High-Performance Cluster @nd Computing volume
4331 ofLecture Notes in Computer Sciengages 474-486. Springer, 2006.

167

[232] W. Yu and J. S. Vetter. Xen-based HPC: A parallel I/Ospective. InProc. of the IEEE
International Symposium on Cluster Computing and the GGG@GRID) pages 154-161,
2008.

[233] J. Zhan, L. Wang, B. Tu, Y. Li, P. Wang, W. Zhou, and D. MefPhoenix cloud: Consoli-
dating different computing loads on shared cluster systantafge organization. [froc.
of the Workshop on Cloud Computing and Its Applications td?eJCCA) pages 7-11,
2008.

[234] Y. Zhang, M. Squillante, A. Sivasubramaniam, and Fhdga Performance implications of
failures in large-scale cluster scheduling.Rroc. of the 10th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPpages 233-252, 2004.

[235] Q. Zhu, M. N. Yigitbasi, and P. Pillai. Running intetae perception applications on
opencirrus. IrProc. of the 6th International Open Cirrus Sumnpiages 17-21, 2011.

169

Summary

During the past few decades, we have seen several majorations in the field of dis-
tributed computing systems, which have really resultedgnicant advances in the ca-
pabilities of such systems. Initially, around the late 19#e increasing complexity of
workloads resulted in the invention of clusters that cosgmultiple machines connected
over a local area network. Later, in the 1990s, grid compuiras invented to give users
access to a large amount of resources from different adtratii'e domains on-demand,
similar to the public utilities, and since then various grithve been deployed all around
the world. Recently, cloud computing has been emerging @&svdarge-scale distributed
computing paradigm where service providers rent theiastfuctures, services, and plat-
forms to their clients on-demand.

With the increasing adoption of distributed systems in laatidemia and industry, and
with the increasing computational and storage requiresnehtlistributed applications,
users inevitably demand more from these systems. Moreasers also depend on these
systems for latency and throughput sensitive applicatismsh as interactive perception
applications and MapReduce applications, which make tHenmeance of these systems
even more important. Therefore, for the users it is very irtgyd that distributed systems
provide consistent performance, that is, the system pes\acsimilar level of performance
at all times.

In this thesis we address the problem of understanding apibiring the performance
consistency of state-of-the-art distributed computingtems. Towards this end, we take
an empirical approach and we investigate various resouategement, scheduling, and
statistical modeling techniques with real system expemisié diverse distributed sys-
tems, such as clusters, multi-cluster grids, and cloudsgu&rious types of workloads,
such as Bags-of-tasks (BoTs), interactive perceptioniegtpns, and scientific work-
loads. In addition, as failures are known to be an importantce of significant per-
formance inconsistency, we also provide fundamental imisignto the characteristics of
failures in distributed systems, which is required to desigstems that can mitigate the
impact of failures on performance consistency.

In Chapterl of this thesis we present the performance consistency gmoib dis-
tributed computing systems, and we describe why this prebsechallenging in such

170

systems.

In Chapter2, we assess the benefit of overprovisioning on the perforenanaosis-
tency of BoTs in multi-cluster grids. Overprovisioning daa defined as increasing the
capacity, by a factor that we define as the overprovisioraatof, of a system to better
handle the fluctuations in the workload, and to provide iest performance even un-
der unexpected user demands. Through simulations witlstiealvorkload models we
explore various overprovisioning strategies with différeverprovisioning factors and
different scheduling policies. We find that beyond a certailue for the overprovision-
ing factor there is only slight improvement in performancagistency with significant
additional costs. We also find that by dynamically tuning ¢iverprovisioning factor,
we can significantly increase the number of BoTs that have kespan within a user
specified range, thus improving the performance consigtenc

In Chapter3, we evaluate the performance of throttling-based overtaadrol tech-
niques in multi-cluster grids motivated by our DAS-3 muhitster grid, where running
hundreds of tasks concurrently leads to overloads in theedinead-nodes. We find that
throttling results in a decrease (in most cases) or at Inaspreservation of the makespan
of bursty workloads while significantly improving the taghavior of the application per-
formance, which leads to better performance consistengdyeauces the overload of the
head-nodes. Our results also show that our adaptive tingptdchnique significantly im-
proves the application performance and the system resmress, when compared with
the hand-tuned multi-cluster system without throttling.

In Chapter4, we address the problem of incremental placement of inigeaper-
ception applications on clusters of machines to providespassive user experience.
These applications require both low latency and, if possitb latency spikes at all; fre-
guent migrations of the application components can intteduwch spikes, which reduces
the quality of the user experience. We design and evaluateificremental placement
heuristics that cover a broad range of trade-offs of contfmurtal complexity, churn in the
placement, and ultimate improvement in the latency. Thinasighulations and real sys-
tem experiments in the Open Cirrus testbed we find that it istwardjusting the schedule
using our heuristics after a perturbation to the systemewibrkload, and that our heuris-
tics can approach the improvements achieved by completaiyining a static placement
algorithm, but with significantly less churn.

In Chapter5, using various well-known benchmarks, such as LMbench,niggn
CacheBench, and the HPC Challenge Benchmark, we conduehprebensive perfor-
mance study with four public clouds, including Amazon ECBjah is one of the largest
production clouds. Notably, we find that the compute perforoe of the tested clouds is
low. Furthermore, we also perform a preliminary assessioiethie performance consis-
tency of these clouds, and we find that noticeable perform&adability is present for
some of the cloud resource types we have explored, whichvatet us to explore the

171

performance variability of clouds in depth in the next cleaptinally, we compare the
performance and cost of clouds with those of scientific caimgualternatives, such as
grids and parallel production infrastructures. Our resatiow that while current cloud
computing services are insufficient for scientific compgtat scale, they may still be a
good alternative for the scientists who need resourcearntigtand temporarily.

In Chapter6, we explore the performance variability of production doservices
using year-long traces that comprise performance datamvorpopular cloud services:
Amazon Web Services and Google App Engine. We find that thioqmeance of the
investigated cloud services exhibits on the one hand yearty daily patterns, and on
the other hand periods of stable performance. We also firtdihay of these services
exhibit high variation in the monthly median values, whicklicates large performance
variability over time. In addition, through trace-baseuatglations of different large-scale
distributed applications we find that the impact of the penfance variability varies sig-
nificantly across different application types.

In Chapter7, we develop a statistical model for space-correlated fegéluthat is, for
failures that occur within a short time period across ddfgrsystem components using
fifteen data sets in the Failure Trace Archive, which is annenpublic repository of
availability traces taken from diverse parallel and dimtted systems. In our failure model
we consider three aspects of failure events: the groupahpiocess, the group size, and
the downtime caused by the group of failures. We find that digmdrmal distribution
provides a good fit for these parameters. Notably, we alsotfiatifor seven out of the
fifteen traces we investigate, space-correlated failuresaamajor cause of the system
downtime. Therefore, these seven traces are better repeesby our model than by
traditional models, which assume that the failures of thividual components of the
system are independent and identically distributed.

In Chapter8, we investigate the time-varying behavior of failure egemmt diverse
large-scale distributed systems using nineteen datars#is Failure Trace Archive. We
find that for most of the studied systems the failure rateshagkly variable, and that
failures exhibit strong periodic behavior and time cortielas. Moreover, to characterize
the peaks in the failure rate we develop a model that corsfder parameters: the peak
duration, the failure inter-arrival time during peaks, time between peaks, and the fail-
ure duration during peaks. We find that the peak failure plsrexplained by our model
are responsible for a significant portion of the system donet suggesting that failure
peaks deserve special attention when designing faultataiedistributed systems. We
believe that our failure models can be used for predictiveedaling and resource man-
agement decisions, which can help to mitigate the impactiafres on the performance
variability in distributed systems.

Finally, in Chapte®, we present the conclusions of this thesis and we furthesepite
several interesting future research directions. Withowsiworkloads and distributed

172

computing systems we show empirically how we can improveprformance consis-

tency of such systems. Moreover, this thesis also providaa@amental understanding
of the characteristics of failures in distributed systemsich is required to design sys-
tems that can mitigate the impact of failures on performamwesistency. A particularly

important extension to our work is to investigate how we caprove the performance

consistency of commercial cloud computing infrastructul®e believe that our research
presented in this thesis has already taken initial stedssrdirection.

173

Samenvatting

Gedurende de afgelopen decennia zijn er verscheidene igraieaties geweest op het
gebied van gedistribueerde systemen die gezorgd hebberegadbelangrijke vooruit-
gang in de mogelijkheden van dergelijke systemen. De toendmcomplexiteit van de
werklasten resulteerde in de late jaren zeventig van dgeaeuw in het ontstaan van
clustersvan computers die via een locaal netwerk met elkaar verbon@deen. Later,

in de jaren negentig, wengrid computingontwikkeld om gebruikers op afroep toegang
te geven tot een grote hoeveelheédourceggespreid over verschillende administratieve
domeinen, net zoals nutsvoorzieningen, en sindsdienzijelegrids over de hele wereld
in gebruik genomen. Recent csoud computingppgekomen als een nieuw paradigma
voor gedistribueerde verwerking op grote schaal waariratdeigaders hun infrastructuur,
diensten en platforms aan klanten op afroep verhuren.

Met het toenemende gebruik van gedistribueerde systenmawial universiteiten als
in de industrie, en met de toenemende vereisten wat beslefinkracht en opslagca-
paciteit van gedistribueerde applicaties, stellen gébrsisteeds hogere eisen aan deze
systemen. Bovendien hebben gebruikers deze systemen dakvamr applicaties die
een snelle respons of een grote doorstroming vereisers apglicaties die interactieve
waarneming doen eMapReduceapplicaties, hetgeen de prestaties van deze systemen
alleen maar nog belangrijker maakt. Daarom is het voor glednsierg belangrijk dat
gedistribueerde systemen consistente prestaties biedenyil zeggen, dat ze te allen
tijde een vergelijkbaar niveau van prestaties bieden.

In dit proefschrift behandelen we het probleem van het jgrien verbeteren van de
consistentie van de prestaties van de huidige gedistnbaemmputersystemen. Daar-
voor gebruiken we een empirische benadering en onderzogkeverscheidene tech-
nieken vooresource managemerschedulingen statistisch modelleren met behulp van
experimenten in echte systemen zoealssters multi-cluster grids en clouds Daarbij
gebruiken we verschillende typen werklasten, zdzdg)s-of-Task¢BoTs), applicaties
voor interactieve waarneming, en wetenschappelijke egiplis. Omdat storingen een
belangrijke bron van inconsistentie in prestaties vormvenschaffen we bovendien fun-
damentele inzichten in de karakteristieken van storinggedistribueerde systemen, het-
geen nodig is om systemen te ontwerpen waarin hun invloeceamadsistentie van de

174

prestaties wordt verzacht.

In Hoofdstuk1 van dit proefschrift formuleren we het probleem van de csiesitie
van de prestaties van gedistribueerde computersystemdeggen we uit waarom dit
probleem in deze systemen uitdagend is.

In Hoofdstuk2 gaan we het nut na van overvoorziening op de consistentiegiaties
van BoTs inmulti-cluster grids Overvoorziening kan worden gedefinieerd als het ver-
groten van de capaciteit, met een factor die we definieredealovervoorzieningsfactor,
van een systeem om beter de fluctuaties in de werklast aamteekuen om consis-
tente prestaties te bieden zelfs als de vraag van gebruwkeeywacht groot is. Door
middel van simulaties met realistische modellen voor dekiasten onderzoeken we
verscheidene strategieén voor overvoorziening met kélsede overvoorzieningsfac-
toren en verschillendscheduling policies Het blijkt dat boven een bepaalde waarde
van de overvoorzieningsfactor er slechts een kleine veringtin de consistentie van de
prestaties bereikt kan worden tegen hoge additionele koskevens blijkt dat we met
het dynamisch aanpassen van de overvoorzieningsfactaahtdl BoTs dat een verwer-
kingstijd binnen door de gebruiker gestelde grenzen haaftzienlijk kunnen verhogen,
hetgeen de prestatie-consistentie verbetert.

In Hoofdstuk3 evalueren we de prestaties van technieken voor het behesasale
overbelasting door middel van werkdoseringnalti-cluster gridszoals het Nederlandse
DAS-3 systeem, waarin het gelijktijdig draaien van honeerdpplicaties daead-nodes
van declustersoverbelast. Het blijkt dat werkdosering meestal resultieeen reduc-
tie of tenminste het gelijkblijven van de tijdsduur om piekie de werklast af te han-
delen, terwijl het de uitschieters in responstijd van aggtles sterk reduceert, hetgeen
leidt tot betere consistentie in de prestaties en reductiioverbelasting van deead-
nodes Onze resultaten laten ook zien dat adaptieve doseringstden de prestaties van
applicaties en de responsiviteit van systemen beduidemetezt in vergelijking met het
multi-clustersysteem zonder dosering dat met de hand is afgesteld.

In Hoofdstuk4 behandelen we het probleem van de incrementele plaatsmnapi-
caties voor interactieve waarnemingapstersvan machines om de gebruiker een snelle
respons te laten ervaren. Deze applicaties vereisen eéla srspons zonder uitschie-
ters; frequente migratie van de componenten van een apeliaannen zulke uitschie-
ters veroorzaken, hetgeen de kwaliteit van de ervaring eagethruiker vermindert. We
ontwerpen en beoordelen vier heuristieken voor increnenqtiaatsing die een breed
spectrum bestrijken van de afwegingen van algoritmischepbexiteit, frequentie van
verplaatsing van de componenten van applicaties, en dedeigke verbetering in de
respons. Door middel van simulaties en experimenten in IpenCCirrus testsysteem
blijkt dat het de moeite loont om de plaatsing van compomneas te passen met onze
heuristieken na een verstoring van het systeem of de werklagat onze heuristieken de
verbeteringen benaderen die kunnen worden bereikt do@mpmééuw uitvoeren van een

175

algoritme voor niet-dynamische plaatsing, maar met bedhddninder migraties.

In Hoofdstuk5 beschrijven we een uitgebreide studie van de prestatiesieampu-
blieke clouds inclusief Amazon EC2, dat €én van de grootste produttiedsis. Deze
studie is uitgevoerd met bekendenchmarkzoals LMbench, Bonnie, CacheBench, en
de HPC Challenge Benchmark. Het blijkt dat de prestatiesdeannderzochtelouds
met betrekking tot hun rekenkracht laag zijn. Bovendierbleebwe ook een initiéle be-
oordeling van de consistentie in de prestaties van derelsgedaan, en die blijkt soms
aanzienlijk te zijn. Dit leidde ons er toe om de variabitiieide prestaties dieper te on-
derzoeken in het volgende hoofdstuk. Ten slotte vergelijke de prestaties en kosten
van cloudsmet die van alternatieven voor wetenschappelijk rekenatszpids en pa-
rallelle computers. Onze resultaten laten zien dat teneijhuidigecloud-diensten voor
rekenwerk onvoldoende zijn voor grootschalig wetenschbjgprekenen, ze een goed
alternatief zijn voor onderzoekers die snel en tijdelijggang moeten hebben tot reken-
capaciteit.

In Hoofdstuk6 onderzoeken we de variabiliteit in de prestaties van pridehatouds
met behulp van jarenlangeacesmet gegevens over de prestaties van twee populaire
clouds Amazon Web Services en Google App Engine. Het blijkt dat dstaties van
de onderzochteloud-diensten jaarlijkse en dagelijkse patronen laten ziergrrdat er
ook perioden met stabiele prestaties zijn. Tevens blijktvé@l van deze diensten een
hoge variatie in de maandelijkse mediane waarden laten zetgeen duidt op een grote
variabiliteit in prestaties over de tijd. Bovendien latee door middel van ojraces
gebaseerde simulaties van verscheidene grootschaligargaeeerde applicaties zien dat
de invloed van de variabiliteit in prestaties sterk veriéglar applicatie-type.

In Hoofdstuk 7 ontwikkelen we een statistisch model voor ruimte-gecesele
storingen, dat wil zeggen, voor storingen die binnen kajdieint verschillende systeem-
componenten optreden. Hierbij gebruiken we vijftien dataamelingen uit dé&ailure
Trace Archiveeen openbaar archief met de beschikbaarheatesvan diverse parallelle
en gedistribueerde systemen. In ons model voor storingechbewen we drie aspecten:
het aankomstproces van groepen van storingen, de omvandevgelijke groepen, en
de tijdsduur dat een systeem buiten bedrijf is door een gvaepstoringen. Het blijkt
dat de lognormale verdeling deze parameters goed beschigffens blijkt dat in zeven
van de vijftientracesdie we onderzoeken, de ruimte-gecorreleerde storingenvan
de hoofdoorzaken zijn van het buiten bedrijf zijn van sysgtemDerhalve worden deze
zeventracesbeter door ons model verklaard dan door traditionele medelilie aan-
nemen dat de storingen in de individuele componenten vaersgn onafhankelijk en
identiek verdeeld zijn.

In Hoofdstuk8 onderzoeken we het tijdsafhankelijke gedrag van storimgelverse
grootschalige gedistribueerde systemen met behulp vaentieg dataverzamelingen in
deFailure Trace ArchiveHet blijkt dat in de meeste onderzochte systemen de freiguen

176

van storingen erg variabel is, en dat storingen een sterkgiek gedrag en tijdscorre-
laties vertonen. Bovendien ontwikkelen we een model om dkgpi in die frequentie te
karakteriseren dat vier parameters heeft: de tijdsduudie@pieken, de tussenaankomst-
tijden van de storingen gedurende de pieken, de tijdsdssetupieken, en de duur van
de storingen gedurende pieken. Het blijkt dat de perioderdedoogste frequentie van
storingen die door ons model worden verklaard, verantwelgkaijn voor een beduidend
deel van de uitval van het systeem, hetgeen aangeeft datkjggpioden in storingen spe-
ciale aandacht verdienen bij het ontwerp van foutbestengeglistribueerde systemen.
Ons model voor storingen kan worden gebruikt voor voorgpgin bij het nemen van
beslissingen voaschedulingenresource managemeain de invlioed van storingen op de
wisselvalligheid van de prestaties in gedistribueerdéesysn te verzachten.

Ten slotte presenteren we in Hoofdst@ilkle conclusies van dit proefschrift en for-
muleren we verscheidene interessante onderzoeksvragenvedvscheidene werklasten
en gedistribueerde systemen hebben we empirisch laterheenve de consistentie in
prestaties van zulke systemen kunnen verbeteren. Bowveheieft dit proefschrift ook
geleid tot een beter begrip van de karakteristieken vainggen in gedistribueerde sys-
temen, wat nodig is bij het ontwerp van systemen die de iavian storingen op de
consistentie van de prestaties kunnen afzwakken. Eereidtbg van ons werk die van
bijzonder belang is, is om te onderzoeken hoe we de consesiarprestaties van com-
merciélecloud-infrastructuren kunnen verbeteren. Het onderzoek daitiprdefschrift
wordt gepresenteerd heeft al de eerste stappen in diengotéizet.

177

About the author

Nezih Yigitbasi was born in Istanbul, Turkey, on Octobet484. He received a BSc and
an MSc degree in computer engineering both from Istanbutifieal University, Turkey,
in 2006 and 2008, respectively. He worked as a software epgin the telecommunica-
tions industry between 2006 and 2008, where he has developgrhssion for building
distributed systems. In September 2008, he joined the|Blaald Distributed Systems
Group of Delft University of Technology to pursue his PhD ey During summer
2010 he was an Intel/Carnegie Mellon University summeraegefellow in Pittsburgh,
PA, and he was a graduate technical intern at Intel Reseaioh, IHillsboro, OR during
summer 2011 and spring 2012. According to Google Scholanf d&3ecember 2012
Nezih YigitbasI’s work has attracted over 350 citatiorigwvan h-index of 8. In his spare
time, he enjoys reading, traveling, watching movies, arehdmg time with his family.

List of refereed publications

Journal papers

e A. losup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Faem and D. H. J.
Epema. Performance analysis of cloud computing servigeadny-tasks scientific
computing. IEEE Transactions on Parallel and Distributed Syste22(6):931—
945, 2010

Conference papers

e M. N. Yigitbasi, K. Datta, N. Jain, and T. Willke. Energy efBat scheduling of
mapreduce workloads on heterogeneous clusterBrda. of the 2nd International
Workshop on Green Computing Middlewgpages 1:1-1:6, 2011

e Q. Zhu, M. N. Yigitbasi, and P. Pillai. Running interactiverpeption applications
on opencirrus. IiProc. of the 6th International Open Cirrus Sumnpiages 17-21,
2011

178

M. N. Yigitbasi and D. H. J. Epema. Performance evaluatioowrload control
in multi-cluster grids. IrProc. of the 12th IEEE/ACM International Conference on
Grid Computing (GRID)pages 173-180, 2011

M. N. Yigitbasi, L. Mummert, P. Pillai, and D. H. J. Epema. temental placement
of interactive perception applications.Pmnoc. of the 20th International Symposium
on High Performance Distributed Computing (HPD@ages 123-134, 2011

A. losup, M. N. Yigitbasi, and D. H. J. Epema. On the perforoemariability of
production cloud services. Proc. of the 11th IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRIPgages 104-113, 2011

M. N. Yigitbasi and D. H. J. Epema. Static and dynamic overjgioning strategies
for performance consistency in grids. Pnoc. of the 11th IEEE/ACM International
Conference on Grid Computing (GRIages 145-152, 2010

M. N. Yigitbasi, M. Gallet, D. Kondo, A. losup, and D. H. J. BEpa. Analysis and
modeling of time-correlated failures in large-scale distted systems. IRroc. of
the 11th IEEE/ACM International Conference on Grid Compgt{GRID) pages
65-72, 2010

M. Gallet, M. N. Yigitbasi, B. Javadi, D. Kondo, A. losup, aiid H. J. Epema.
A model for space-correlated failures in large-scale itisted systems. IProc.

of the 16th International Euro-Par Conference on Paralleb&ssing (EuroPar)
pages 88-100, 2010

0. O. Sonmez, M. N. Yigitbasi, S. Abrishami, A. losup, and D.JHEpema. Per-
formance analysis of dynamic workflow scheduling in multster grids. InProc.
of the 19th ACM International Symposium on High Performabistributed Com-
puting (HPDC) pages 49-60, 2010

M. N. Yigitbasi and D. H. J. Epema. Overdimensioning for dstent performance
in grids. InProc. of the 10th IEEE/ACM International Symposium on Gr€tloud
and Grid Computing (CCGRIDpages 526-529, 2010

S. Ostermann, A. losup, M. N. Yigitbasi, R. Prodan, T. Fadem and D. H. J.
Epema. A performance analysis of ec2 cloud computing ses\ar scientific com-
puting. InProc. of the 1st International Conference on Cloud Compu{i@loud-
Comp) pages 115-131, 2009

0. O. Sonmez, M. N. Yigitbasi, A. losup, and D. H. J. Epema.c&rhased eval-
uation of job runtime and queue wait time predictions in gridh Proc. of Inter-

179

national Symposium on High Performance Distributed CommguiHPDC), pages
111-120, 2009

e M. N. Yigitbasi, A. losup, D. H. J. Epema, and S. Ostermannn@&er: A frame-
work for performance analysis of computing cloudsPhoc. of the 9th IEEE/ACM
International Symposium on Cluster Computing and the GBEGRID) pages
472-477, 2009

	1 Introduction
	1.1 What is the Research Problem?
	1.2 Why is the Problem Challenging?
	1.3 Research Contributions and Thesis Outline

	2 Overprovisioning strategies for performance consistency in grids
	2.1 Motivation
	2.2 Overprovisioning Strategies
	2.3 System Model
	2.3.1 System Model
	2.3.2 Scheduling Model

	2.4 Experimental Setup
	2.4.1 Workload
	2.4.2 Methodology
	2.4.3 Performance Metrics

	2.5 Experimental Results
	2.5.1 Performance Evaluation
	2.5.2 Cost Evaluation

	2.6 Dynamically Determining the Overprovisioning Factor
	2.7 Related Work
	2.8 Summary

	3 The performance of overload control in multi-cluster grids
	3.1 Multi-Cluster Grid Model
	3.2 Overload Control Techniques
	3.3 Experimental Setup
	3.3.1 Multi-Cluster Testbed
	3.3.2 Workloads
	3.3.3 The Performance Metrics
	3.3.4 Parameters for the Overload Control Techniques

	3.4 Experimental Results
	3.4.1 Scheduling Overhead
	3.4.2 Results for Single-Cluster Experiments
	3.4.3 Results for Multi-Cluster Experiments

	3.5 Related Work
	3.6 Summary

	4 Incremental placement of interactive perception applications
	4.1 Interactive Perception Applications
	4.2 The HEFT Algorithm
	4.3 Problem Formulation
	4.3.1 The Initial Placement Problem
	4.3.2 The Incremental Placement Problem

	4.4 Incremental Placement Heuristics
	4.5 Implementation Details
	4.6 Experimental Setup
	4.6.1 Workloads
	4.6.2 Performance Metrics
	4.6.3 Testbed

	4.7 Simulation Results
	4.7.1 Application Latency
	4.7.2 Algorithm Scalability

	4.8 Results in a Real System
	4.9 Related Work
	4.10 Summary

	5 Performance evaluation of public clouds
	5.1 Cloud Computing Services for Scientific Computing
	5.1.1 Scientific Computing
	5.1.2 Four Selected Clouds: Amazon EC2, GoGrid, ElasticHosts, and Mosso

	5.2 Cloud Performance Evaluation
	5.2.1 Method
	5.2.2 Experimental Setup
	5.2.3 Results

	5.3 Clouds versus Other Scientific Computing Infrastructures
	5.3.1 Method
	5.3.2 Experimental Setup
	5.3.3 Results

	5.4 Related work
	5.5 Summary

	6 Performance variability of production cloud services
	6.1 Production Cloud Services
	6.1.1 Amazon Web Services
	6.1.2 Google App Engine

	6.2 Method
	6.2.1 Performance Traces of Cloud Services
	6.2.2 Method of Analysis
	6.2.3 Is Variability Present?

	6.3 The Analysis of the AWS Dataset
	6.3.1 Summary Statistics
	6.3.2 Amazon Elastic Compute Cloud (EC2)
	6.3.3 Amazon Simple Storage Service (S3)
	6.3.4 Amazon Simple DB (SDB)
	6.3.5 Amazon Simple Queue Service (SQS)
	6.3.6 Amazon Flexible Payment Service (FPS)
	6.3.7 Summary of the AWS Dataset

	6.4 The Analysis of the Google App Engine Dataset
	6.4.1 Summary Statistics
	6.4.2 The Google Run Service
	6.4.3 The Google Datastore Service
	6.4.4 The Google Memcache Service
	6.4.5 The Google URL Fetch Service
	6.4.6 Summary of the Google App Engine Dataset

	6.5 The Impact of Variability on Large-Scale Applications
	6.5.1 Experimental Setup
	6.5.2 Grid and PPE Job Execution
	6.5.3 Selling Virtual Goods in Social Networks
	6.5.4 Game Status Maintenance for Social Games

	6.6 Related work
	6.7 Summary

	7 Space-correlated failures in large-scale distributed systems
	7.1 Background
	7.1.1 Terminology
	7.1.2 The Datasets

	7.2 Model Overview
	7.2.1 Space-Correlated Failures
	7.2.2 Model Components
	7.2.3 Method for Modeling

	7.3 Failure Group Window Size
	7.4 Analysis Results
	7.4.1 Detailed Results
	7.4.2 Results Summary

	7.5 Related work
	7.6 Summary

	8 Time-correlated failures in large-scale distributed systems
	8.1 Method
	8.1.1 Failure Datasets
	8.1.2 Analysis
	8.1.3 Modeling

	8.2 Analysis of Autocorrelation
	8.2.1 Failure Autocorrelations in the Traces
	8.2.2 Discussion

	8.3 Modeling the Peaks of Failures
	8.3.1 Peak Periods Model
	8.3.2 Results

	8.4 Related Work
	8.5 Summary

	9 Conclusion and Future Work
	9.1 Conclusions
	9.2 Future Research Directions

	Summary
	Samenvatting
	Curriculum Vitae

