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CHAPTER 1

Introduction

It is estimated that up to 7000 unique dialects are spoken around the world [14].

Despite the fact that individuals speak distinctive dialects, they discover routes to com-

municate by either agreeing on the same dialect, or by utilizing a translator. This aligns

with the definition of “interoperability.” Broadly speaking, interoperability is a measure

of the degree to which diverse systems, organizations, and/or individuals are able to

work together to achieve a common goal [46]. The term was initially defined for infor-

mation technology or systems engineering services to allow for information exchange [2].

The concept of interoperability plays a pivotal role in our daily lives. Individuals, or-

ganizations and governments have a tendency to agree on standards to make products

more understandable and usable by diverse communities. For instance, the World Wide

Web(www) [101] is a large interoperable network of documents whose standards are de-

fined by the World Wide Web Consortium(W3C) [88].

1.1 Interoperability in Healthcare

Interoperability in healthcare is stated as the ability of health information systems

to work together within and across organizational boundaries in order to advance the

effective delivery of healthcare for individuals and communities [47]. In 2009 The Health

Information Technology for Economic and Clinical Health Act(HITECH) authorized in-

centive payments to clinicians and hospitals when they implement electronic health record
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(EHR) [45] systems to achieve Meaningful Use of healthcare data. [19]. Meaningful Use is

specified by the following 3 components [41]: (1) use of certified EHR, (2) use of certified

EHR technology for electronic exchange of health information and (3) use of certified

EHR technology to submit clinical quality measures. The components 2 and 3 require

interoperability between EHRs and that is where the Meaningful Use is delayed because

different EHRs do not talk to each other. According to a review [64] published in 2014,

only 10% of ambulatory practices and 30% of hospitals are participating in operational

health information exchange efforts. The lack of interoperability has a significant eco-

nomic impact on the healthcare industry. The West Health Institute(WHI) testified to

U.S. Congress, and released an estimate that system and device interoperability could

save over $30 billion a year in the U.S. healthcare system alone [44].

Achieving interoperability in healthcare is a significantly challenging process. The

current healthcare information technology (IT) environment breeds incredibly complex

data ecosystems. Clinical data exist in multiple layers and forms ranging from hetero-

geneous structured, semi-structured, and unstructured data captured in enterprise-wide

electronic medical record and billing systems, through a wide variety of departmental,

study, and lab-based registries and databases, to the massive quantities of device-specific

data generated by an ever increasing number of instruments used to evaluate, monitor,

and treat patients. In many cases pertinent patient records are collected in multiple sys-

tems, often supplied by competing manufacturers with diverse data formats. This causes

inefficiencies in data interoperability, as data retrieval from disparate data sources is time

consuming and costly. Also different formats of data create barriers in exchanging health

information, because physicians are not able to interpret the exchanged data if they are
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not well acquainted with the source data. The same holds true for the computer software

systems which may focus on different algorithmic purposes including but not limited to

mapping, translation, validation and search.

1.1.1 Standards vs. Translations

Interoperability can be accomplished by adopting standards and/or translations be-

tween different standards. There exist many different standards in healthcare, each is

developed to fulfill different purposes. In [22], the authors express the barriers in imple-

menting universal standards: complexity of the standards, diverse use cases and evolu-

tion of the standards. These hurdles cause the standardization efforts to take significant

amounts of time, and the systems relying on the standards also need to be updated along

with the standardization. Consequently a proficient route for translation between differ-

ent data models is more practical for information interoperability. Given the fact that it

is unrealistic to have one universal standard that fits all the use cases, is it conceivable to

implement standards in information translation? We think the answer is “yes.” Our work

is based on the technical side of healthcare information translation. We propose trans-

lation oriented methods, metrics, algorithms and frameworks that assist in healthcare

information interoperability.

1.1.2 RDF as a Common Healthcare Information Representation

Is it possible to depict the healthcare data entities having diverse formats in a single

flexible form? In this sense, RDF (Resource Description Framework) [57] gained notoriety

in recent years, because it is schemaless and is a commonly acknowledged framework

by the Semantic Web [17] community. It is also proposed as a universal healthcare
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information representation in [23]. RDF makes statements about resources in the form

of (subject, predicate, object) expressions, which are known as triples. In this work

we utilize RDF representation of healthcare data. Both instance data and data models

which are used to organize the instance data are represented in RDF. Healthcare data

in different systems are linked through the relations in RDF triples, ending up with an

extensive connected graph.

1.1.3 Summary Graph

An intermediate data structure, that describes the metadata or the summary of the

dataset, is often needed for faster computational processing of the graph representation of

healthcare data. The summary data structure comprises of the fundamental type classes

and their associations, with each type class representing the type of a collection of data

entities. Such a data structure is also represented in RDF that forms a summary graph.

The flexibility of RDF allows the metadata of the related data entities to be linked. In

this case, the summary graph is linked to the RDF representation of the dataset and

utilized for data interoperability. For instance, if a physician wants to retrieve the lab

records of a cohort [94], the entities that link to the lab type class are filtered, making use

of the type class associations. A summary graph also reduces the size of the input dataset

for various computer algorithms. For instance, an instance matching algorithm utilizes

the higher level type classes, and compares the instances only belonging to the same type

class. Also the associations of the type classes are leveraged for intelligent exploration of

graph representation of the healthcare dataset, such that a filtering algorithm retrieves

the data elements having a specific relation to a specific type class. In this work, we
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present an effective algorithm for generating a summary graph from an RDF dataset and

we test the algorithm on a healthcare dataset.

The relations between different type classes are represented as predicates in the sum-

mary graph. However since in this work, the summary graph is auto-generated, it is

error prone. The degree of confidence of type class relations in the summary graph needs

to be known by the physician or by the interpreter algorithm for more precise results.

For instance, in a cardiac surgery related data set, if an “Event” type class has relations

to “Vascular Procedure” and “Cardiac Valve Replacement” type classes, it makes more

sense for the interpreter to know how likely an instance in the “Event” class has a relation

to the “Vascular Procedure” or to the “Cardiac Valve Replacement” class. Therefore in

this work, the relations between the type classes are generated along with a degree of

confidence, which we call the stability measure. The stability measure is computed based

on the actual number of the data entities in the relations between the type classes in the

dataset.

1.1.4 Graph Node Similarity Metric

Summarizing RDF data requires grouping similar entities in the same type class. But

how should we characterize the similarity of healthcare data elements? When healthcare

data elements are represented in RDF, the similarity can be examined as graph node

similarity. Therefore, the challenge is to define the factors that affect the similarity of

a pair of RDF nodes. There have been numerous studies investigating the similarity

measures in various fields. Some studies concentrated on graph neighborhood-based

similarity measures as in [53, 59], while others focused on comparing instances based on

6



properties and roles [49, 90]. An RDF entity is described through its relations to other

entities and the collection of literals associated with it in the lexical form. The descriptors

are represented as predicates and literal nodes in RDF. In this work we introduce a graph

node pairs similarity metric, that utilizes the graph nodes’ descriptors, namely, common

predicates of the RDF nodes and common string literal words referenced by the nodes,

augmented with the node neighborhood similarity.

Each descriptor of a data entity may have a different impact in similarity calculation.

For instance in a dataset related to heart surgery, the word “cardiac” is less important

than the word “valve,” since “valve” describes more about the nature of the surgery while

“cardiac” is a more general term in the dataset. On the other hand the importance of

“valve” is not the same for all the entities, such that it is more important for a surgi-

cal procedure related data entity while it is less important in a cardiac valve anatomy

pathology related data entity. As a consequence; each descriptor has a different impor-

tance weight, and the weight differs per each data entity. So how should we identify

appropriate metrics for generating the descriptor weights in the RDF representation of

healthcare data entities? In this work we propose an importance weighting metric which

has a similar notion to the term frequency-inverse document frequency(tf-idf) [61, 80],

based on the frequency of the descriptor in the referenced data entity and in the corpus.

1.1.5 Instance Matching

Healthcare data exist in different systems with diverse data models. RDF represen-

tation of healthcare data contains both the instance data and the concepts belonging

to the data models of the instance data. Since different systems may have substantial
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amounts of redundancy, the RDF graph may have duplicate nodes both in data instances

level and data model concepts level. Therefore, an efficient instance matching technique

utilized for RDF graphs covers both de-duplication and data concepts matching. Once

detected, the redundant nodes can be merged, reducing the size of the input graph. Also

matching the data concepts belonging to separate data models assists in the information

translation process, because translation requires data models level mapping. The in-

stance matching technique needs to be automated due to the size of the healthcare data.

Nevertheless automated instance matching techniques are error prone. Consequently, a

technique that permits user interactions yields more precise results. In this work we

present a semi-automatic instance matching technique which is based on a graph node

similarity measure with the inputs from the users and utilized for the RDF representation

of healthcare data.

1.2 Dissertation Overview and Contributions

This dissertation makes the following contributions. First, we propose a system for

translation of healthcare instance data, based on structured mapping definitions and

using RDF as a common information representation to achieve semantic interoperability

between different data models. The main components of the framework are a metadata

repository that stores the data dictionary of the data sources, a user-friendly interface to

view and manage the metadata and the mappings between different data elements, and

a translation engine that translates the source RDF data with regards to the target data

model. The framework allows the domain experts to define mappings between different

data elements and utilizes the mappings to translate the data models from one format
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to another.

Second, we introduce a pairwise graph nodes similarity metric that utilizes the Jaccard

index with the common relations of the healthcare data entities and common string

literal words referenced by the healthcare data entities and augmented with data entity

neighbors similarity. The precision of the similarity metric is enhanced by incorporating

the auto-generated importance weights of the healthcare data entity relations and the

string literals referenced by the healthcare data entities in the RDF representation of the

dataset.

Third, we provide a novel machine learning algorithm that automatically generates

a summary graph structure from the RDF representation of healthcare dataset, and we

propose that the summary graph can further be utilized for interoperability purposes.

In the summary graph, similar entities are classified as the same type class, and the

relations between the type classes are created with regards to their members’ relations.

Furthermore, a degree of confidence measure is added for the relations between the type

classes in the summary graph.

Fourth, we present a suggestion based semi-automatic instance matching system and

we test it on the RDF representation of a healthcare dataset. The system utilizes the

graph node similarity metric introduced in our second contribution, and it presents sim-

ilar node pairs to the user for possible instance matching. Based on the user feedback, it

merges the matched nodes and suggests more matching pairs depending on the common

relations and neighbors of the already matched nodes. The process runs in iterations

until the similarity algorithm infers no new matching candidate pairs and there is no

more feedback from the user. We propose that the instance matching technique could be
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leveraged for mapping between separate healthcare data models, as the data model con-

cepts are also incorporated in RDF. Mappings contribute in the information translation

process, because translation requires data models level mapping.

The dissertation is organized as follows. Chapter 2 gives background information on

Semantic Web and existing work. Chapter 3 introduces a framework for translation of

healthcare instance data, based on structural mapping definitions and RDF representa-

tion of healthcare data. Chapter 4 introduces a pairwise graph node similarity metric and

its algorithm. Chapter 5 introduces an automatic summary graph structure generation

approach utilizing the similarity metric introduced in chapter 4. Chapter 6 introduces

RinsMatch, a suggestion-based instance matching system in RDF Graphs. We offer

concluding remarks in Chapter 7.

10



CHAPTER 2

Background and Related Work

This chapter provides background information regarding Semantic Web technologies

and prior work relevant to our work in healthcare data interoperability.

2.1 Data, Information and Knowledge

In [48] the author described data, information and knowledge as follows: data is the

facts and a description of the World, information is captured data and knowledge, and

knowledge is a personal map/model of the World. In this sense, when the facts are

captured in structured format they become information. The interconnection between

the data and information elements constitutes the knowledge.

In a clinical domain, data are the facts about the patients, diseases, results of received

care, etc. For instance, patient demographic information such as name, race and date of

birth is data. They are true whether this is recorded somewhere or not. Information is

the way that the data is captured in some format in order that people or machines can

understand and access it at different times. Therefore any sort of database is information

as long as it can be accessible and understood. For instance, when a nurse captures the

demographics data of a patient on a hospital visit they become information as they are

accessible by other people or machines. In this case the birthday record of a patient

is information but the actual birth date of the patient is data. The patient record

(information) could be transferred to other data sources or it could be modified. But
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modifying the patient information does not change the data (actual birth day of the

patient).

The knowledge is based on the data, information and other knowledge. A processing

engine bases its decisions from the knowledge that it has. The human processing engine,

the brain, stores the knowledge inter-connectedly and makes decisions based on its own

knowledge.

2.2 Semantic Web

“The Semantic Web is not a separate Web but an extension of the current

one, in which information is given well-defined meaning, better enabling com-

puters and people to work in cooperation. [17]”

– Tim Berners-Lee

Following the definition proposed by Tim Berners-Lee, Semantic Web [99] is not a

new Web but an extension of the current Web. The fundamental thought is to describe

the data on the Web with machine interpretable metadata in order that machines can

process the information available on the Web. Semantic Web technologies are heavily

influenced by Artificial Intelligence, by languages that developed from efforts to represent

documents in a universal way, and by the network protocols that the World Wide Web

is built upon.

Each object on Semantic Web is identified with an identifier called URI (Uniform

Resource Identifier) [16]. A uniform resource locator (URL) [89] is a subclass of URI

that identifies a Web page. URI and URL support only ASCII encoding. On the other

hand, IRI (International Resource Identifier) [31] is a generalization of the URI that fully
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supports international characters. In this regard, every absolute URI and URL is also

an IRI, however not every IRI is a URI.

Semantic Web does not only contain Web pages; in fact, the objects on Semantic Web

can be any type of resource such as Web pages, images, cities, people, events, etc. The

combination of identifiers that can refer to resources or concepts on distributed machines,

a universal way to retrieve data over a network, and the unambiguous interpretation of

content are the primary reasons why Semantic Web technologies address a variety of

problems associated with traditional databases: integration, translation, querying, and

interpretation.

2.2.1 Resource Description Framework (RDF)

Central to Semantic Web technologies is a general purpose language, the Resource

Description Framework (RDF) [57], for representing information in Semantic Web in a

way that the meaning (or semantics) is unambiguous to a machine or software process.

RDF describes resources through statements in the form of (subject, predicate, object)

expressions which are known as triples. Every triple describes an entity or a relationship

between two entities [31].

The subject in an RDF triple is either an Internationalized Resource Identifier(IRI)

or a blank node, the predicate is an IRI, and the object is either an IRI, a literal or

a blank node. The subjects and objects of triples in the RDF graph form RDF nodes.

Each RDF node that corresponds to a unique RDF entity is represented with a unique

IRI, and the values such as strings, numbers and dates are represented by literal nodes.

A literal node can consist of two or three elements: a lexical form, a datatype IRI and a

13



Figure 1: An example of RDF triples illustrating resources from diverse domains [87]

language tag. The language tag in a literal node is included if and only if the datatype

IRI of the literal node corresponds to rdf:langString [24]. A predicate in an RDF triple is

also called a property of the RDF subject node. A predicate can be one of two types: a

DatatypeProperty where the subject of the triple is an IRI and the object of the triple is

a literal, or an ObjectProperty where both the subject and object of the triple are IRIs.

Each object of a subject node is called a neighbor of that subject node.

Figure1 (copied from [87]) shows an example of RDF triples, illustrating the resources

from diverse domains and the way they are linked through named relations.

The flexibility of RDF data model enables data interchange, merging datasets with

different data models and evolution of the data models over time. The linked structure
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of RDF triples allows resources belonging to different datasets to be linked with a named

relation. The collection of triples with the linking structures constitutes a directed and

labeled graph, where the edges represent the named relations that have semantically

unambiguous meanings that can be utilized by the software algorithms for intelligent

exploration of the graph-structured data.

Definition (RDF Graph Data)

Let a directed labeled graph G(V, L,E) be the RDF data such that V is the finite set

of vertices; L denotes the finite set of edge labels; and E is the set of edges of the form

e = l(u, v), with u, v ∈ V, l ∈ L and e ∈ E . Note that an edge l(u, v) represents the

RDF triple (u, l, v).

2.2.2 RDF Schema

RDF is schemaless which means that the RDF data is not tied to a particular schema.

However, schemas for RDF can exist and the RDF resources represented in RDF can have

a structure given by the schema. As a matter of fact, the W3C specified RDF Schema

(RDFS) [24] standard to provide a data-modelling vocabulary for RDF resources is an

extension of the basic RDF vocabulary. RDF schema provides features to describe RDF

classes and properties; define hierarchies; constraint the values for the domain and range

of properties, etc.

2.2.3 Ontology

The meaning of ontology slightly differs in different contexts. In the context of Com-

puter Science, a frequently cited explanation of an ontology is given by Gruber [42]: “an
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ontology defines a set of representational primitives with which to model a domain of

knowledge or discourse. The representational primitives are typically classes (or sets),

attributes (or properties), and relationships (or relations among class members).” RDF

Schema(RDFS) is a formal language to define an ontology to be used for a specific do-

main.

A formal definition of ontology is given in [55] as a pair O = (S,A), where S is the

ontology signature which describes the vocabulary (the named terms) of an ontology,

and A is a set of ontological axioms (statements that say what is true in the domain)

specifying the interpretation of the vocabulary in some domain of discourse.

Web Ontology Language (OWL)

The Web Ontology Language (OWL) is another formal language for authoring on-

tologies. It extends RDFS with more complex features, enabling applications to process

the content of the information and facilitating greater data interoperability. OWL is

compatible with RDFS. In addition, it provides additional features like property char-

acteristics, property restrictions, ontology mapping(such as equivalence between classes,

properties and individuals) and complex class definitions [27].

2.2.4 Linked Data

As the Web has grown exponentially, it has not only become the universal platform of

interconnected documents but also the linked information space for data. Data published

in the Web have been traditionally in the forms of HTML tables, CSV or XML. Due to

the lack of expressivity of entity relations in HTML documents and the lack of explicit

semantics and relational structures in the published data, the actual semantics of data
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in the Web is currently being underutilized for cognitive computation purposes.

With continuing development of Semantic Web technologies, there has in recent years

been significant progress including explicit semantics with data in the Web as an ever-

growing number of organizations adopt Semantic Web technologies. Publishing data on

the Web in a standard model by using a standard methodology and interlinking the

data available on the Web using Semantic Web technologies provides a Web of data that

applications can access to and utilize through semantic queries.

The collection of inter-linked datasets on the Web is also referred to as Linked Data.

In [18] the authors defined Linked Data as the: “data published on the Web in such a

way that it is machine-readable, its meaning is explicitly defined, it is linked to other

external data sets, and can in turn be linked to from external data sets.” Historically,

the term “Linked Data” was used in 2006 by Tim Berners-Lee, the inventor of the World

Wide Web, who outlined the rules for publishing data on the Web to make the Web of

data a reality, as follows [15]:

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using the standards.

• Include links to other URIs, so that they can discover more things.

Consequently, in short amount of time many organizations started to publish open

data using the data standards of the World Wide Web Consortium. As of 2015, the

structured data available in the Semantic Web have been rapidly increasing with the
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contribution of Linked Open Data along with several other Semantic Web projects which

incorporate many datasets associated with different domains such as publications, life

sciences, media, social Web, geography, etc. For instance, DBpedia [9] and FreeBase

[21] made available the content of Wikipedia in RDF and incorporated links to other

open datasets, e.g., to GeoNames [3], a geographical database which covers over eight

million place names in RDF model. Concurrently, the number of Web pages published in

RDFa (Resource Description Framework in Attributes) [5], a W3C recommendation that

adds semantics to web page content by embedding a set of a attribute-level extensions,

and microformats [56], conventions for embedding semantic markup to identify specific

resources in web pages, has increased. The applications that consumes a dataset on the

Linked Open Data can exploit the extra knowledge available through links to the other

datasets. While publishing open data initiatives have made available thousands of general

purpose datasets and many domain-specific data sources in the Resource Description

Framework (RDF) data model, there is still a long way to go as Linked Open Data is

still a small portion of the information available on the Web.

2.3 Data Mapping

Data mapping [96] is the process of creating the linkages and relations between data

elements of distinct data models. Data mapping creates connections between different

data elements. The connectivity of the data elements increases data interoperability and

data reusability while reducing the redundancy. Also it is a key step for data integration

tasks such as data transformation, data lineage analysis, discovery of new data details

within connected data sources, consolidation of multiple data sources into a single data
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source, etc. Furthermore data mapping is needed for standardization of the data. For

instance, healthcare institutions often need to map their local data to an accepted medical

standard such as ICD-9 [40] or SNOMED CT [71] to be able to share their data with

other medical facilities. There are different techniques for data mapping.

In manual data mapping the mapping between different data elements is being done

manually by the users. The users can document the mapping in a variety of ways us-

ing hard programming codes, XSLT [28] transforms or by using graphical mapping tools

that automatically generate data transformation programs. There is a variety of graph-

ical tools for data mappings. Some tools work by drawing a line between different data

elements while others use some kind of string similarity algorithms to automatically con-

nect the source and destination. These kinds of graphical tools are common for ETL

(Extract-Transform-Load) [1] based applications. They create automatic data transfor-

mation programs in different languages such as SQL, XSLT, Java or C++ depending on

the application environment to support transforming data from one form to another.

A data-driven mapping technique uses heuristics and statistics to automatically dis-

cover mappings and transformations between different data sets by evaluating the ac-

tual data values in the data sources [96]. The discovered transformation logic could be

arithmetic, concatenations, case statements, etc. The main advantage of a data-driven

technique over the manual data mapping is that it reduces the human labor. But on the

other hand the results may not be as accurate as manual data mapping.

Synonyms-driven mapping relies on a metadata registry to auto map the data elements

based on data element names and their synonyms. The metadata registry contains the

synonyms of the data element names. For example auto connecting a data element

19



named “gender” to another data element named “sex” is possible if both these data

element names are listed as synonyms in the metadata registry. A synonyms-driven

mapping can generate matches between data schema elements but will not auto generate

the data transformation logic.

The Semantic Web technology is not in its mature phase yet. However its ambitious

vision aims to take the current state of the data mapping techniques to a more auto-

matic process based on Semantic Web languages such as Resource Description Framework

(RDF), the Web Ontology Language (OWL) [8], etc. The Semantic Web technology is

based on connected data elements. Ontology which is a part of the Semantic Web tech-

nology consists of mapped data concepts which are mapped to actual data elements in

RDF and give meaning to the data that can be leveraged for the mapping process. The

idea of “Linked Data” of Semantic Web builds on a standardized metadata publishing

mechanism which will accelerate the development of more automatic data mapping tools.

In essence, the task of linking is connecting semantically related concepts from multi-

ple data sources. Over the years, this problem has been studied by the research commu-

nity as the task of ontology matching, ontology alignment or more commonly ontology

mapping. Although these concepts are frequently used interchangeably, they have slight

differences. Mapping takes place after matching the related concepts first, and the align-

ment process refers to identifying semantically equivalent classes from the data. For our

purposes, we will be using the term ontology mapping as finding the matching concepts

and aligning them with other semantically relevant concepts and classes of concepts. The

matching concepts do not necessarily have to be identical or equivalent. They might also

be hierarchically related with subset or superset relations.
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Ontology mapping is an essential task in achieving semantic interoperability on the

Semantic Web. As the amount of publicly available heterogenic data on the Semantic

Web grows continually, the applications require using more and more ontologies every

day. Considering the scale and distribution of the Semantic Web resources, it is no

longer possible to maintain one ontology that covers the whole spectrum. Hence, many

ontologies are being created and used by many different applications.

In this context, ontology mapping can also be thought of as a semantic interoper-

ability layer which allows applications to query information across multiple resources.

Over the years, the ontology mapping problem has been researched by the many di-

verse communities for various reasons including data translation, ontology merging, data

integration, query answering, etc.

In [83], the problem of ontology mapping is described as: “given two ontologies O1 and

O2, mapping one ontology with another means that for each concept (node) in ontology

O1, try to find a corresponding concept (node), which has same or similar semantics,

in ontology O2 and vice versa.” In other words, the process of ontology mapping is

identifying the semantic relationships between two related concepts belonging to different

ontologies.

A mathematical definition of ontology mapping is given in [55] as morphism (a

structure-preserving map from one mathematical structure to another [97]) of ontologi-

cal signatures. Given two ontologies O1 = (S1, A1) and O2 = (S2, A2), a total ontology

mapping from O1 to O2 is a morphism function f : S1 → S2 of ontological signatures,

such that, A2 |= f(A1), i.e., all interpretations that satisfy O2 axioms also satisfy O1’s

translated axioms. In reality, a total mapping between two ontologies may not always
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Figure 2: Example Ontologies and their Mappings [37]

exists. Therefore, a weaker notion of ontology mapping is introduced as a partial ontol-

ogy mapping from O1 to O2 if there exists a sub-ontology O′1 = (S ′1, A
′
1), i.e., S ′1 ∈ S1

and A′1 ∈ A1, such that there is a total mapping from O′1 to O2.

Figure 2 (taken from [37]) illustrates a mapping between two given ontologies de-

scribing the domain of car retailing. A reasonable mapping between the two ontologies

is given by the dashed lines in the figure.

In the literature, there has been a lot of research done in the subject of ontology map-

ping in diverse communities from different perspectives. As a result, the terminology used

for defining the problem varied such as matching, alignment, merging, articulation, fu-

sion, integration, morphism, etc. Consequently, many tools and methods have developed

in the field. Some surveys on the current state-of-the-art have tried to categorize the

approaches and describe the terminologies [39] [55].
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In some other studies, the authors have addressed the problem in relation to ontol-

ogy design and integration i.e., [66, 69, 70]. However, they focus on heuristics to match

ontology elements and do not utilize the information in the data instance level. These

approaches do not use machine learning. Still others advocated implementing machine

learning techniques [20, 91, 102] in their frameworks for learning to combine matching

measures and selection strategies.

Moving forward a few years, we see a large number of related works under the topic

of Ontology Alignment [33, 35, 51, 52, 74, 75]. Some of them are focusing on mapping

using an upper ontology [33,51,52]. An upper ontology is a top-level ontology [100] that

describes very general concepts that are the same across all knowledge domains. Other

related works are concentrating on aligning ontologies based on set theory approaches

that utilize existing links on instances [74,75].

Parundekar, et al. [74, 75] proposed an approach for aligning ontologies in Linked

Open Data by discovering concept coverings and linkage using set theory ideas. They

consider the union of disjoint concepts for alignment process. Although our approach has

some commonalities, we don’t rely on existence of owl:sameAs links between instances

as it is the case in their approach. Another difference is that we use machine learning

algorithms for finding concepts and their hierarchy.

2.4 Data Translation

Data translation [93] is converting a set of data values from the data format of a source

data system into the data format of a destination data system. Data mapping from the

source data system to the destination data system is a key step for data translation. The
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programming code of the actual data translation program is based on the data mapping

between the source and destination data systems.

2.5 Entity Similarity

2.5.1 Jaccard Similarity Measure

The Jaccard similarity coefficient also known as the Jaccard index is a statistical

measure that is used for comparing similarity and diversity of sample sets, and it is

defined as the size of the intersection divided by the size of the union of the sample

sets [50]. According to the Jaccard index if A and B are subject nodes in a dataset, then

their similarity, J(A,B), is formulated as:

J(A,B) =
|A ∩B|
|A ∪B|

(1)

For instance, the Jaccard similarity measure of two sets can be illustrated in a simple
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example as follows. Given three sets A,B,C such that:

A = {apple, banana, orange},

B = {banana, orange, peach},

C = {peach, fig, cherry}

The Jaccard index J(set1, set2) between two sets, set1 and set2, is calculated as follows:

J(A,B) = 2/4 = 0.5,

J(A,C) = 0/6 = 0,

J(B,C) = 1/5 = 0.2

Therefore, A and B are the most similar sets while A and C are the least similar sets.

2.5.2 RoleSim Similarity Measure

RoleSim is a similarity metric for graph nodes based on the maximal matching of

neighborhood pairs and a simple iterative computational method.

Given a graph G = (V,E), RoleSim measures the similarity of each node pair in V

based on their neighborhood similarities with the intuition that “two nodes are similar

if they relate to similar objects” [54] :
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RoleSim(u, v)= (1− β) (2)

×maxM∈Mm(u,v)

∑
(x,y)∈M

RoleSim(x, y)

Nu +Nv − |M |

+β

RoleSim(u, v) denotes the similarity of the nodes u, v ∈ V. The definition of RoleSim

is recursive; i.e., RoleSim(x, y) is calculated the same way as RoleSim(u, v). N(u) and

N(v) denote their respective sets of neighborhoods and Nu and Nv denote their respective

degrees, i.e., Nu = |N(u)| and Nv = |N(v)|.

We define M to be a set of ordered pairs (x, y) where x ∈ N(u) and y ∈ N(v) such

that there does not exist (x′, y′) ∈ M , s.t. x = x′ or y = y′, and furthermore, M is

maximal in that no more ordered pairs may be added to M and keep the constraint

above. Mm(u, v) is the set of all such M ’s. Mm(u, v) is a set of sets.

As shown in the formula, the RoleSim(u, v) depends on their neighborhood similar-

ities. Instead of using the mean of neighborhood similarities, the maximal matching is

used. Figure 3 (taken from [54]) shows how the maximal matching works to calculate the

similarity measure between the nodes u and v. The nodes (x1, x2, x3) are the neighbors

of u and the nodes (y1, y2, y3, y4) are the neighbors of v. The cell values are the similar-

ities of each (x, y) pair. M is a maximal subset of N(u)×N(v) such that no element of

N(u) appears more than once as a first coordinate and no element of N(v) appears more

than once as a second coordinate of an ordered pair in M . Thus, |M | = min(Nu, Nv).

The maximal matching ensures that the total value of selected cells has the maximum
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Figure 3: RoleSim(u,v) based on similarity of their neighbors [54]

possible value. The maximal matching value, M(u, v), is calculated as

M(u, v) = maxM∈Mm(u,v)

∑
(x,y)∈M

RoleSim(x, y)

Max(Nu, Nv)
(3)

The parameter β is a decay (damping) factor [98], 0 < β < 1. It is similar to the one

used in [72], so that the influence of neighbors decreases with distance which dampens

the recursive effect. In [72], the value of β was originally set to 0.15. We provide more

details about how the value of β is chosen in section 5.7.

The input graph in RoleSim is not a labeled graph. This makes it hard to directly

apply the RoleSim measure in an RDF data set since the RDF triples contain labeled

edges. In our work we utilize the RoleSim measure in conjunction with the Jaccard index

to calculate the similarity of two graph nodes. The RoleSim(u, v) measure is used when

there may be multiple neighbors for a common property reached from the node pairs u

and v, where u and v are the nodes in the input RDF graph.
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2.6 Graph Summarization

A summary graph of an RDF data graph is the RDF graph such that each node in

the summary graph is a subset of the original graph nodes of the same type and each

property in the summary graph is a subset of the original graph nodes properties.

2.6.1 Definition (Summary Graph)

Let G = (V, L,E) be an RDF graph as defined in section 2.2.1. We define a summary

graph as G′ = (V ′, L′, E ′), such that V ′ contains equivalence classes of V . E ′ and L′ are,

respectively, the sets of edges and labels in the graph G′. As we will see, L′ ⊂ L, and the

elements of E ′ are defined by the elements in the equivalence classes in V ′ and the edges

in E.

2.6.2 Summary Graph Generation Methods

There exist several methods to obtain a summary graph: (1) A summary graph can

be obtained from the dataset ontology, if the dataset is already tied to an ontology. (2)

Another way to obtain the summary graph is to locate the type triples in the dataset and

to organize the type classes and relations accordingly, if the data set is published using a

standard vocabulary [36]. (3) Or the summary graph can be built automatically by infer-

ring the class types based on the similarity of the RDF nodes. Our graph summarization

approach is based on method 3 as explained in details in chapter 5.

The summary graph data structure has been used for various purposes in different

studies. For instance in [86] the authors utilized the summary graph for keyword search

on RDF graphs. However they assumed that there is already a summary graph data
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structure in place, which may not always be correct in real world datasets.

In [36] the authors used an index structure similar to a summary graph (called type

system in their study) to generate benchmark data from a real world dataset with com-

plete control over both the structuredness and the size of the generated data. In their

study, the level of structuredness of a dataset D with respect to a type T in the summary

graph is determined by how well the instance data in D conform to type T . In the study,

instead of assuming that there is already a summary graph in place they propose an algo-

rithm to auto generate the summary graph with the assumption that a standardized and

known vocabulary are used in the input RDF data set. Their summary graph generation

algorithm uses the following steps:

• Scan the input RDF dataset and look for the triples whose property is rdf:type [24],

extract t as the object of the triple.

• Then extract the subjects that has a type T .

• P (T ) = union of all the properties of the subjects above, where the type T refers

to a class in the summary graph and P (T ) is the union of all the properties used

in T .

In this sense, their summary graph generation algorithm aligns with the method 2, as

opposed to our work in which we infer the summary graph classes based on the similarity

of the RDF nodes.
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2.7 Healthcare Data Interoperability Initiatives

Healthcare information interoperability requires the necessary tools, an efficient roadmap

and a strong commitment from relevant communities. Many studies have been suggested

for this purpose. In this section we review the selected studies regarding healthcare data

interoperability.

The Yosemite Project [23] suggests an ambitious roadmap for healthcare information

interoperability on a global scale, by using RDF as a universal information representation

and creating a hub for crowd-sourcing translation rules. They provide general transla-

tion rules, metadata including source and target data models, translation rules language

(such as SPARQL/SPIN N3, Java, Python, etc.), dependencies, test data with valida-

tion, license, maintainer and usage metrics. They envision a translation hub that allows

downloading the translation rules as needed. Comparing to the Yosemite Project, our

work is more specifically focused on leveraging entity similarities for auto-classification,

generating mapping between entities and exploiting the structured mapping definitions

in healthcare information translation.

3M Health Information Systems [4] created a public use version of the 3M Health-

care Data Dictionary (HDD), a medical terminology server that has been in operational

use at the US Department of Defense (DoD) and other health care organizations. The

project is named as HDD Access [58]. It is an application that contains a controlled

medical vocabulary stored in a relational database with application programming inter-

face (API) runtime services that other applications can call. In this sense their work is

a standardization effort, as opposed to our work in which we concentrate on translation.
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In [65], the authors presented FURTHeR, a semantic framework intended to run

federated queries across disparate sources. The infrastructure incorporates a terminology

server, a metadata repository and translation services for translating the semantic queries

to run on disparate data sources. The infrastructure enables semantic interoperability

via semantic search. Our work does not utilize a standardized terminology server. In our

work, the information interoperability is achieved by translation of instance data with

structured mapping definitions.

SemanticDB is a semi-structured patient data repository system developed within

the Cleveland Clinic that leverages several advances in XML processing and Semantic

Web technology standards for the purpose of outcomes research [32]. The SemanticDB

patient data registry stores the current and historical data for a patient population which

is specifically selected for clinical research in cardiology domain. SemanticDB contains a

data production pipeline that translates the pertinent patient data to generate customized

views of the repository content for statistical analysis and reporting. The translation in

SemanticDB relies on the hard coded mapping definitions implemented in the transfor-

mation code, and in contrast to our work their mappings are not stored in structured

format. However, in our work we utilize the SemanticDB patient data registry as a test

dataset for testing various algorithms presented in this work.
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CHAPTER 3

Translation of Instance Data using RDF and Structured Mapping Definitions

In this chapter, we present a translation oriented framework for healthcare informa-

tion interoperability. The main ideas and sections explained in this chapter are part of a

published research study [12]. The idea behind the system is achieving semantic interop-

erability between diverse healthcare data models, by empowering translation of instance

data based on structured mapping definitions, and using RDF as a common information

representation. We have developed a framework that allows the domain experts to define

linkages between different data elements and utilizes the mappings to translate the data

models from one format to another.

The clinical data in a healthcare IT environment can be incredibly complex. The

data is generated in different systems through diverse work flows. Therefore, often the

related patient data is stored in multiple systems, supplied by different manufacturers

with diverse data formats. This not only causes inefficiencies for the physicians as data

retrieval from disparate data sources is time consuming, wasteful and costly, but also

creates barriers in exchanging health information. Users may not be able to understand

the exchanged data if they are not competent with the data format. The same holds true

for the machines to process the data for various algorithmic purposes including but not

limited to mapping, translation, validation, search, etc.

Interoperability can be achieved by adopting standards and translations between dif-

ferent standards. There exist many different standards in healthcare, each having its
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own uses and advantages. It is unrealistic to have one universal standard that fits all

the use cases since there are significant barriers in implementing universal standards, as

explained in [22]: complexity of the standards, diverse use cases and evolution of the

standards cause the standardization efforts to take significant amounts of time, and the

systems relying on the standards also need to be updated along with the standardization.

Therefore an efficient way of translation between different data models is needed. This

work focuses on the technical side of healthcare information translation.

Since each data model can be in a different format, adopting a common informa-

tion representation model is unavoidable for the translation. RDF (Resource Description

Framework) [57] gained popularity in recent years, since it is schemaless and is a com-

monly accepted information representation model by the Semantic Web community. RDF

is also proposed as a universal healthcare information representation in [23]. In our work,

we represent healthcare data in RDF model. Instance data along with its data model

is represented in RDF. And different datasets are linked through the predicates in RDF

triples which form an extensive and connected graph.

Translation requires mappings between the sets of data elements in the different data

models. In our work, we present a mapping schema to enable capturing the mappings be-

tween different data elements in structured and machine readable format. Capturing the

mappings between the data models in a machine readable format enables auto-generation

of the translation code up to some degree.
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3.1 Translation of Instance Data

Figure 4 illustrates the main components of the translation framework and their

interactions as proposed in this work. The red labels help show how the translation

components work together. The metadata for each data source (1) are captured and

saved in the metadata repository or database (2). Further, the data managers define the

linkages (mappings) between the data elements using a user-friendly interface, and these

linkages are also saved in the metadata repository (3). In preparation for a translation,

the defined mappings from the source data model to the target data model are retrieved

(4). The source instance data are represented or lifted to RDF model (5). Then the

translation engine uses the source RDF data, the target data model metadata, and the

mappings from the source data model to the target data model to translate the source

instance data into target data (6). The translation engine produces the results, and

these results are conveyed to the RDF representation of the target data model (7). More

details about the components are given in the following sections.

3.2 Metadata Repository

For each of the data sources, a data dictionary is captured and stored in a metadata

repository [95]. In our work a data dictionary incorporates data model details for classes,

concepts, concept values, and their associations to each other. For instance, the metadata

of a dataset in relational schema [34] includes tables, table fields, pre-defined possible field

values for the fields, as well as the relations between different metadata elements. And

when represented in the metadata repository, the tables are represented as classes, table

fields are represented as concepts and pre-defined possible field values are represented as
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Figure 4: Translation of instance data
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Figure 5: An example of data dictionary elements stored in the metadata server

concept values.

Figure 5 shows the structure of the main data dictionary elements stored in the

metadata server with sample data models, classes, concepts and value sets.

3.3 Mapping Schema

The metadata repository also includes a mapping schema. The goal is to enable

storing the mappings between different data models in a structured format. The mapping

schema is designed so that a target field can be mapped to from multiple candidate

source fields that belong to one or more candidate source data models with field-level
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Figure 6: A mapping example showing how selected data dictionary elements are mapped

priorities, and a value set translation from source values to target values, and a pre-

defined derivation (transformation) logic from source fields to the target field.

Figure 6 illustrates how the mappings are characterized between concepts. The figure

explicitly shows the mappings from the concepts of “Class 3” to the concepts of “Class

1” of figure 5. The concepts and classes shown in the figure belong to the example data

models defined in figure 5. As it seen in figure 6, the concept of “MRN” is mapped to from

the concept of “MedicalRecordNumber” and the concept of “hx smoke” is mapped to

from the concept of “CigSmoker.” The mapping to the concept of “FullName” involves a

derivation logic, as it is mapped to from 2 different concepts (“FirstName,” “LastName”)

and the translation engine needs to know the derivation logic. In this case the derivation

logic is a string concatenation method. The “Gender” concept is mapped to from the
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Figure 7: A figure showing the RDF representation of mapping between sample data
dictionary elements

“Sex” concept. However the pre-defined values for “Gender” concept and “Sex” concept

are different. Therefore the mappings additionally need to be defined on the concept

values level. As seen in the figure, the value “M” mapped to “Male” while the value “F”

is mapped to “Female.”

In this work, data dictionary and mappings between the data dictionary elements are

represented in RDF model. By doing this we are able create linkages between isolated

data models. Figure 7 depicts a visualization of an excerpt from the RDF graph, that
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includes the mappings between the “hx smoke” and “CigSmoker” concepts along with

the concepts’ data models details. The data dictionary elements shown in the figure

belong to the example data models defined in figure 5.

3.4 Mapping Interface

In a clinical domain, data concept knowledge and concept relations are known by

the data domain experts. But the data is stored in physical data sources which are

managed by the IT specialists. The IT specialists often do not know the meaning of

the data stored in the data sources. They refer to data on the underlying data source

schema level while the data domain experts or the end users refer to the data on data

concept level. For example a doctor performs a procedure for a patient to cure a specific

disease. The disease itself is a data concept. The doctor has the knowledge of the

disease concept. But he/she does not necessarily have the knowledge of the data schema

field where the disease concept is being stored. IT specialists have the knowledge of the

metadata details of the data schema field but they often do not know the actual meaning

of the data concept being stored in the data schema field. This causes a communication

gap between the domain experts and the IT specialists in defining the mappings between

different data concepts. Traditionally the mappings between different data concepts are

defined by the data managers. However the data managers rely on the IT specialists to

locate the data concepts in the physical data sources and create the linkages between

the concepts. Therefore in this work, a user-friendly interface is presented to be utilized

by the data managers. The interface allows viewing the data dictionaries, managing

the concept definitions and defining mappings between different data elements. It uses
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Figure 8: A screen shot of the mapping interface.

the metadata repository as the backend database. The mappings defined by the data

managers are stored back in the metadata repository within the mapping schema which

is a machine readable format. In addition, the interface also has a test module that lets

the data managers write and execute tests to validate their mappings.

Figure 8 shows a screen shot of the interface. In the figure the left side contains form

elements to select the target and source concepts while the right side contains the form

elements for identifying the value set conversion.

3.5 Translation Engine

The flexibility of RDF allows different schemata and models to be converted, repre-

sented and connected via RDF. In this work, the translation engine performs the trans-

lation on the RDF representation of the source data elements. The conversion from a

source data format to the RDF representation differs for each data model, i.e., a different

RDF data conversion routine is executed for each data format. The conversion from
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source instance data to the RDF representation happens on the fly during the transla-

tion process; only the specific source instance data, which is required by the mapping, is

converted.

The usage of a metadata repository provides valuable benefits in data interoperability.

Capturing the mapping knowledge in a structured format provides connectivity between

disparate data elements, and it enables an automatic generation of the information trans-

lation code to some extent. This leads to more transparency in the translation process;

e.g., in case of any data error it helps to track the source of the problem by checking the

documented data mappings.

Data value translation enables the translation of a concept term in one data code

system into an equivalent concept term in another data code system. The associations in

the documented value mappings are used to discover the concept term conversion. Also,

in many cases a single target data field is mapped to from more than one source data

field. In this case the translation engine needs to know the priority of the source fields

and/or a derivation logic to translate from multiple source fields. The priorities and the

derivation logic can be defined by the data managers using the mapping interface. The

translation engine is then able to generate the translation code by utilizing the defined

priorities and the derivation logic.

3.6 Conclusion

In this chapter we presented a translation oriented framework to achieve interoper-

ability between different healthcare data models. It alleviates the lack of interoperability

solutions based on translation of RDF representation of instance data and structured
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mapping definitions between the data concepts belonging to different data models. We

utilized a metadata repository to store the data dictionaries, which incorporate data

model details for classes, concepts, concept values, and their associations to each other.

We also introduced a user-friendly interface that permits the data managers to view and

manage the data dictionary elements and the mappings between them.

In this chapter we assumed that there is already a defined data dictionary in place for

each data source. This assumption is correct for some data sources, e.g., the data dictio-

nary of a relational database can be captured automatically using tools like SchemaSpy

[30]. However, capturing the data dictionary from a dataset that is already represented

in RDF model can be a challenging task due to the flexibility of the RDF data model

not imposing constraints on the schema. In chapter 4 we introduce a proficient pairwise

graph node similarity metric. Following with chapter 5 we present a summary graph

generation method based on the pairwise graph node similarities introduced in chapter 4

and we clarify how the summary graph can be exploited to capture the data dictionary

elements from RDF representation of the instance data.

Translation of instance data requires data models level mapping, which means the

data concepts belonging to the source and target data sources need to be mapped ac-

cordingly. The interface introduced in this chapter lets the data manager characterize the

mappings between healthcare data concepts belonging to different data models. However

manually defining the mappings requires significant amounts of time due to the size of

the healthcare data. In chapter 6, we introduce a semi-automatic instance matching

technique in RDF graphs that leverages the pairwise graph node similarities introduced

in chapter 4 and we describe how the instance matching technique introduced in chapter
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6 can be utilized for semi-automatically generating the mappings between different data

models.
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CHAPTER 4

Pairwise Nodes Similarity in RDF Graphs

In this chapter, we introduce an efficient algorithm to compute the similarity between

different healthcare data elements. The main ideas and sections explained in this chapter

are part of the published research studies [10,13]. Since we represent the healthcare data

in an RDF model, the computation of entity similarity is studied as a pairwise RDF

graph node similarity problem. Computation of entity similarity is essential for numerous

interoperability tasks. For instance, automatic classification algorithms group similar

entities together which requires an entity similarity metric. Also, instance matching

and concept mapping techniques utilize entity similarities to link the same or similar

real-world objects.

The algorithm is based on an efficient graph node similarity metric which is called

RNodeSim (RDF Node Similarity). An RDF entity is described through a set of predi-

cates, the collection of literal neighboring nodes that it references and the neighbor nodes

with which it interacts. We utilize the common descriptors within the Jaccard measure

context when calculating the similarity of an RDF node pair, along with the similarities

of their neighbors.

Each descriptor of an RDF node may have a different impact in the similarity calcula-

tion, in other words each descriptor has a different importance weight. Therefore in this

work, we present an importance weighting metric for the descriptors of the RDF nodes

and we enhance the similarity metric by incorporating the auto-generated importance
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weights of the descriptors. The algorithm runs in multiple iterations as the similarity

of the neighbor nodes is not known in advance. The iterations continue until the pair

similarity results converge.

4.1 Contributions and Outline

In this chapter, we investigate the problem of calculating entity similarity in RDF

graphs. Our approach is to use graph locality and neighborhood similarity within the

Jaccard measure context. We treat the properties of the entities as the dimensions when

measuring the similarity of two subject entities. Our main contributions:

• We provide a novel RDF node pair similarity metric that utilizes common descrip-

tors.

• We auto-generate the importance weight of each descriptor, and we apply the

weights in the pairwise similarity calculation.

• We add a string similarity measure when two graph nodes have literal type neigh-

bors.

• We enhance the RDF node pairs’ similarity by taking into account the similarity

of neighbors in the RDF graph.

The rest of the chapter is organized as follows. We define the input data graph.

Then, we discuss the proposed methods. The subsequent section presents our approach

for computation of entity similarity and the algorithm in detail. Finally, we review the

related work, and follow with our conclusion.
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4.2 Input Graph Data

The input data is an RDF graph G(V, L,E) as defined in section 2.2.1.

4.3 Methods

The intuition in our graph node pair similarity computation is that the nodes that

have similar edges to similar neighbors tend themselves to be similar nodes. To achieve

our goal, we define the similarity of two nodes in the original graph using a function

similar to the Jaccard index [50] in conjunction with RoleSim Similarity [54].

The Jaccard similarity measure can be applied to graph data to find the similarity

of the entities by considering the graph nodes as set names or labels and the predicates

between the nodes as set elements. However, it is clear that the Jaccard similarity only

considers the properties of the entities when determining the similarity of the entities;

it does not take into account the similarity of neighboring entities. By a neighbor of an

entity, we mean another entity which is “connected” by a property. In our work, given

an input RDF graph G(V, L,E), entity v is connected to entity u, i.e., v is a neighbor of

u, if there is a label l ∈ L such that l(u, v) ∈ E. In other words, objects are neighbors

of their subjects for a collection of RDF triples. Thus, an entity and its neighbor are

connected and related by a property.

Intuitively, when we are trying to decide how similar two entities are, it is, of course,

important to compare the properties of the two entities. However, the properties by

themselves tell only part of the story. More can be told by comparing the neighboring

entities which are related by similar properties. Thus, by utilizing the neighborhood

similarity, we may produce better results than by using only the Jaccard similarity.
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For this reason, we use the RoleSim similarity measure to determine the similarity of

the interacting references based on the way they interact with their neighborhood nodes.

In other words, two nodes or entities tend to have the same role when they interact with

equivalent sets of neighbors.

4.4 Computation of Entity Similarity

Our premise is that similar nodes tend to have similar properties and interact with

similar neighbor nodes, which are either IRIs or literals.

4.4.1 IRI Nodes Similarity

In this work, the subjects of the triples determine the sets in which we are interested.

We think of the subjects as being the names or labels for the sets. More exactly, the

subject of each triple determines a node of a new graph which is itself a set, and the

elements of each set are the predicates of the triples whose subject is the name or label

of the set. The objects of the triples, which may themselves be names or labels of

sets, determine the neighbors of the subject sets. Hence, we use the subject nodes in

the original graph to designate sets and their properties in the original graph are the

elements in these sets. We calculate the Jaccard similarity between two nodes u and v

by noting that |u ∩ v| is the number of properties that the subject nodes u and v have

in common while |u ∪ v| is the number of properties in the union of the subject nodes u

and v.

While the Jaccard index gives a good initial similarity between two nodes, it can

be improved since it does not take the importance of neighborhood similarities into

consideration. To improve our similarity calculations, the Jaccard similarity of the two
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nodes is augmented with the similarity of their neighbors. However, we do not compare

all neighbors to all neighbors. We compare neighbors selectively. Let’s assume we are

trying to determine the similarity of two nodes u and v. Further, we assume that s is

a neighbor of u, and t is a neighbor of v. We determine the similarity of s and t only

if there is a common property which connects u to s and also connects v to t. Then

we apply the RoleSim measure in conjunction with the Jaccard index to calculate the

similarity of two graph nodes augmented with similarities of their neighbors.

We note, however, that the input data for the generic version of the RoleSim measure

is not a labeled graph. We extend the RoleSim similarity to labeled graphs since RDF

triples contain labeled edges. In this work, the RoleSim(u, v) measure is used when there

may be multiple neighbors with a commonly labeled edge reached from the node pairs u

and v, where u and v are subject nodes in the input graph.

In the lists below, for 1 ≤ i ≤ |L|, li is a label for an edge, i.e., li ∈ L. When 1 ≤ h ≤ |L|

and if i and h are not equal, then li and lh are different labels, i.e., li and lh are different

properties. [xi] and [yi] are the sets of nodes which are related to u and v, respectively,
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by property li. [xi] and/or [yj] may for some properties lL be the empty set.

l1(u, [x1]), l2(u, [x2]), ...lj(u, [x|L|]) ∈ E

l1(v, [y1]), l2(v, [y2]), ...lj(v, [y|L|]) ∈ E.

For each lL ∈ L, then for each z ∈ [xi], li(u, z) ∈ E and for each w ∈ [yj], li(v, w) ∈ E.

V U
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Figure 9: Example Graph for Graph Equivalence matching

Then by using the Jaccard index in conjunction with the RoleSim measure on the common

properties, their similarity can be calculated as
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RNodeSim(u, v)k= (1− β)

× 1

|u ∪ v|
(4)

×(
∑

j∈(u∩v)

maxM∈Mmj(u,v)(

∑
(x,y)∈M

RNodeSim(x, y)k−1

N j
u +N j

v − |M |
))

+β

where k is the iteration number, such that, if k = 3 then RNodeSim(u, v)k denotes

to the similarity of the node pair (u, v) at the third iteration and RNodeSim(u, v)k−1

denotes to the similarity of the node pair (u, v) by the end of the second iteration. Also,

N j
(u) and N j

(v) denote their respective neighborhoods that are reached by a common edge.

x ∈ N j
(u) and y ∈ N j

(v), and N j
u and N j

v denote their respective degree connected by jth

common edge. Said differently, N j
(u) is the cardinality of [xj], and N j

(v) is the cardinality

of [yj].

We define M to be a set of ordered pairs (x, y) where x ∈ N j
(u) and y ∈ N j

(v) such

that there does not exist (x′, y′) ∈ M , s.t. x = x′ or y = y′, and furthermore, M is

maximal in that no more ordered pairs may be added to M and keep the constraint

above. Mmj(u, v) is the set of all such M ’s. Mmj(u, v) is a set of sets.

By a “maximal nonrepeating matching,” we mean that we form as many pairs as we

can from the elements in N j
(u) and N j

(v) with the restriction that no element in either N j
(u)

and N j
(v) may be used in more than one ordered pair.

50



4.4.2 Literal Node Similarity

As stated in the previous section, our IRI nodes similarity measure is based on calcu-

lating the similarity of entities by utilizing the predicates of the IRI nodes. Our premise

is that similar nodes tend to have similar properties and interact with similar neighbor

nodes, which are either IRIs or literals. Though it is challenging to infer the semantics

of literal nodes, an effective literal node similarity metric is needed for calculating the

similarity of pairs of IRI nodes when some of the neighbors of the IRI nodes are literal

nodes. We think that incorporating literals when computing the similarity of pairs can

be beneficial when identifying similar entities, particularly in datasets where the entities

are commonly described using literals. Thus, we want to take the similarity of literal

neighbor nodes into account when doing similarity calculations.

While incorporating literals in the computation of the similarity of IRI node pairs, we

are assuming that all the literals are in the same language, as the same literals may have

totally different meanings in different languages. Thus there is only one value for the

rdf:langString component of the literal nodes if present. In this work, we disregard the

third component of rdf:langString if present, which means we work only with the lexical

form and the data type URI component of a literal node. Both the lexical form and the

data type URI component clearly impact the similarity of a pair of literal nodes. Thus,

they indirectly impact the similarity of IRI nodes in the calculation of neighborhood

similarity, and their impacts need to be weighted. Since it is meaningless to calculate

the similarity of literal nodes when data types are different, we only give weight to the

data type factor when the two data types are equal. For the lexical form components
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of the literal nodes, we use a string similarity technique based on common words within

the two lexical forms along with their auto-generated importance weights. More details

about the importance weights will be given in the following section.

4.4.3 Descriptor Importance and Automatic Detection of Noise Labels

An IRI node is described through its predicates and the collection of literal neigh-

boring nodes in the lexical form. We call these the descriptors of the IRI nodes. The

similarity of two IRI nodes is calculated from their descriptor similarities including the

similarities of their neighbors. The accuracy of pairwise graph node similarity is often

impacted by the weight of a property associated with the graph nodes when the nodes

are object nodes, or with the weight of a string literal word referenced by the graph nodes

when the nodes are literal type. Each descriptor may have a different impact on an IRI

node. Identifying appropriate metrics for generating weights for the IRI descriptors to

be utilized in the pairwise graph nodes similarities is a formidable yet significant task.

In this chapter, we investigate the factors that can impact the weight of a descriptor.

We propose an approach for generating the importance weights of the IRI node descriptors

automatically. Our approach is based on two premises: (1) the weight of a descriptor may

differ for each IRI for which it is a descriptor and (2) the weight increases proportionally

by the number of times a descriptor appears in the reference IRI, but it is offset by the

frequency of the descriptor in the entire RDF dataset. It is a similar notion to the term

frequency-inverse document frequency (tf-idf) [61, 80], a commonly used technique in

information retrieval, indicating that some words may be important in some documents

but not as important in other documents. More exactly, the importance of a word in a
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document increases by its frequency in the document but its importance decreases by its

frequency in the corpus [76]. We apply the tf-idf concept to the properties and nodes in

RDF graphs to compute the weight of properties. Given an RDF graph G = (V, L,E)

as defined in section 2.2.1, tf-idf is calculated as follows:

tf − idf(p, u,G) = tf(p, u)× idf(p,G). (5)

where the term frequency (tf) [61] is related to the frequency of a proposition p with

respect to a graph subject node u. More exactly, when u ∈ V and p ∈ L, then

f(p, u) = |{v ∈ V : p(u, v) ∈ E}|. (6)

Equivalently, f(p, u) is the number of RDF triples with subject u and property p.

To define tf(p, u), it is helpful to have a notation for the set of all properties with

subject u. Thus, for u ∈ V , L(u) = {q ∈ L : ∃v ∈ V with q(u, v) ∈ E}. Then

tf(p, u) =
f(p, u)∑

q∈L(u) f(q, u)
. (7)

The inverse document frequency (idf) [80] represents the frequency of a property

usage across all graph nodes, and it is defined as

idf(p,G) = ln
|V |

|{u ∈ V : p ∈ L(u)}|
. (8)

We apply a similar approach to calculate the weight of word importance in literal

nodes, which can consist of a set of words. A value for a DatatypeProperty is a string
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literal. The weight of word importance depends upon the source subject node, the

frequency of the word within the triple collection for each subject node, and the frequency

of the word within the entire data set.

Detection of Noise Descriptors

We calculate the descriptor importance and assign weights depending on the degree

of distinctiveness of a descriptor describing an entity. With descriptor distinctiveness, we

mean the uniqueness of a descriptor in describing the key characteristics of an entity type.

For instance, if a descriptor is specific to an entity type, it is a distinguishing character

of the type from other types. When a descriptor exists in all entity types, its quality

of being distinctive is low. The noise descriptors tend to be common for a majority of

entities if not for all entities. For instance, in the LUBM [43] dataset described in section

5.7, the name property is a common property for all subject nodes in the dataset. Thus,

the name property is a noise descriptor.

By increasing importance weights of descriptors with a higher degree of distinctive-

ness, we reduce the importance of noise descriptors automatically. As a result, the noise

descriptors have significantly less impact on the overall similarity measures.

4.5 The Algorithm

Augmenting the neighborhood similarities adds extra complexity to the algorithm

because only immediate neighbors are known in advance. Immediate neighbors’ neighbors

or similarities depend on two-hop neighbors’ similarities; two-hop neighbors’ similarities

depend on three-hop neighbors’ similarities, and so on. Hence the algorithm has to run in

multiple iterations until the results converge. To perform these calculations, we propose
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an iterative algorithm which is similar to the PageRank algorithm [72]. At initiation, the

similarity of all node pairs is set to 1 if they share a common property and 0 otherwise.

Thus,

∀(u, v ∈ V ) :

(S(u, v) = 1)→ (|u ∩ v| > 0) and,

(S(u, v) = 0)→ (|u ∩ v| = 0)

The algorithm runs iteratively until the similarity measure for each pair converges. In

the worst case, this technique requires n2 passes if all of the nodes in the graph have a

common edge with every other node in the graph. In reality, this situation is very rare.

In fact, a node pair only has to be processed if the nodes share a common property.

Hence, the similarity computation of the algorithm runs in the n(logn)k time in average,

where k is a constant number of iterations. However, the overall cost remains n2 due to

the generation of common pairs and the similarity matrix of entities.

Below are the steps of the algorithm:

• Sort the triples according to their edge labels

• Process the sorted triples to extract the pairs of nodes which have at least one

common edge label

• Keep running the similarity metric above in a loop until the similarity measures

converge

The parameter β is a decay (damping) factor [98], 0 < β < 1. It is similar to the one
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Algorithm 1 SimMeasure(G(V, L,E), β,MaxIter)

∀pair(u, v) ∈ V (S(u, v)← 0)
H ← ∅
T ← Sort(E) by l, u, v s.t. l(u, v) ∈ E
for each distinct pair(u, v) from T do

if ∃(l1(u, x) and l2(v, y)) s.t. l1 = l2 then
S(u, v)← 1
P (u, v) ← (u, v, Lj, N j(u), N j(v)) where u, v ∈ V and Lj ∈ L is the list of

common labels between u and v
H ← H ∪ P (u, v)

end if
end for
Sprevious ← ∅
converged← 0
count← 0
while converged = 0 and count < MaxIter do

for each((u, v, Lj, N j(u), N j(v)) ∈ H) do
S(u, v) = RNodeSim(u, v)count

converged = IsConverged(S, Sprevious)
Sprevious ← S
count← count+ 1

end for
end while
return S,H
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used in [72] and [54] as explained in section 2.5.2. The usage of β decreases the influence

of neighbors with distance and dampens the recursive effect. We provide more details

about how the value of β is chosen in our evaluations described in section 5.7. Also,

l1(u, x) and l2(v, y) represent directed edge labels s.t. l1, l2 ∈ L, and l1 = l2, x ∈ N(u)

and y ∈ N(v).

For example, let’s consider the similarity of the sample graph with the nodes of two

universities in Figure 10. At the initial state, the similarity of the two nodes Kent State

and Case Western is 1. As we run through the iterations, the similarity values are

being updated and eventually converge to final values. Note that u is Kent State and v

is Case Western.

S(u, v)k =
1

|u ∪ v|
× (

|u∩v|∑
j=1

max(

∑
(x,y)∈Mm(u,v)

S(x, y)k−1

N j
u +N j

v − |Mmj(u, v)|
))

S(u, v)1 =
1

10
× (

1

1 + 1− 1
+

1

1 + 1− 1
+

1

1 + 1− 1

+
1

1 + 1− 1
+

1

2 + 1− 1
+

1

2 + 1− 1

+
1

1 + 2− 1
+

1

1 + 1− 1
+

1

1 + 1− 1
)

S(u, v)1 =
1

10
× (6 + 0.5 + 0.5 + 0.5) = 0.75

4.6 Related Work

There have been many studies investigating similarity measures in various contexts,

including but not limited to Social Networks, Recommendation Systems, Semantic Search,
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Figure 10: Sample graph demonstrating two nodes
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Ontology Mapping, and Record Linkage. Among many others, the Jaccard measure [50]

and Cosine Similarity [77] are notable measures for comparing the similarity of pair

objects.

Some studies explored neighborhood-based similarity measures such as Co-Citation

[79], SimRank [53], PageSim [59], MatchSim [60], SimRank++ [7], and PathSim [84].

Particularly, SimRank is well-known for calculating similarity in a structural context.

However, SimRank does not work well on objects with multiple connections. By taking

the mean of the edges, it sometime reduces the power of strong relations when it should

increase the similarity score, intuitively.

While most of the similarity calculations do not take the property weights into account

as in [53], there are some studies that try to calculate the property weights and apply

them in similarity calculations.

H-Match [26] tried to detect the property weights using the distinct value-based weight

generation, assigning higher weight to a property that references more distinct values.

However, a training set of instances may not always be available.

In [29] the authors suggest that properties with a maximum or an exact cardinal-

ity of one have a higher impact in instance matching, thus having a higher property

weight. This assumption does not work well in instance type discovery. For example, in

a university-related dataset a more specific property such as hasPresident should have

more impact in type discovery than a more general property hasName, even though

both of the properties have the cardinality of one. In this case, the assumption would

misleadingly assign the same weight to both of the properties.

On the other hand, [78] considers the ratio of the number of distinct values of a
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property to the number of instances in a dataset in addition to the number of distinct

values referenced by the property. However, they primarily focus on instance matching,

where property weights naturally yield precedence to properties that make the instances

more unique. Unlike the instance matching approach, we emphasize the properties that

would help describe the entity types more distinctively.

4.7 Conclusion

In this chapter, we introduced a proficient pairwise graph node similarity algorithm.

The algorithm utilizes a pairwise graph node similarity metric and runs in iterations.

We explained the descriptors of an RDF entity to be utilized in the similarity calcula-

tion. We also introduced an importance weighting metric for the descriptors of the RDF

nodes. Our pairwise graph node similarity metric incorporates the common descriptors

of an RDF node pair augmented with their auto-generated importance weights and their

neighbor node similarities.

The subsequent chapters make use of the pairwise graph node similarity concepts

explained in this chapter. Chapter 5 introduces a summary graph generation method

based on graph node similarities. Also, the semi-automatic instance matching technique

presented in chapter 6 utilizes the pairwise graph node similarities.
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CHAPTER 5

Building Summary Graphs of RDF Data in the Semantic Web

In this chapter, we introduce RSummarizer (RDF Summarizer), a summary graph

generation approach which utilizes the pairwise graph nodes similarity methods presented

in chapter 4. The main ideas and sections explained in this chapter are part of the

published research studies [10,13].

As we represent the healthcare data in an RDF model, processing an entire graph for

various algorithmic tasks can be costly in terms of time and resources due to the size of

RDF graphs. The summary graph structure demonstrating the inferred class types and

class relations can be beneficial for intelligent explorations of graph shaped data as it

helps understand underlying structure, and provides an intermediate index structure for

faster computational processing as the entire input data does not need to be completely

processed. Explicitly, the entity types in RDF triples provide invaluable information

for graph processing as they enable the graph processing algorithms to traverse the

hierarchical structure of the RDF graph. Unfortunately, many structured data sources

available in the Web today commonly suffer from (1) not containing the type triples due

to the flexibility of the RDF data model not imposing constraints on the schema, (2)

publishing data with non-standard vocabulary, which makes it problematic to locate the

type triples, and (3) defining the type information too generally to ensure that entity

types will have related sub-types. In the current chapter, we propose an algorithm for

61



discovering the types of entities in RDF data and for building a summary graph structure

for faster computational processing.

The summary data structure consists of the type classes, members of the type classes,

and the relations between the type classes. In our work the summary data structure is

also represented in an RDF model that forms a summary graph as defined in section 2.6.1.

A collection of RDF resources having the same type are a class which is represented as a

node type entity in the summary graph, and the relations between the class type entities

are represented as a predicate. However, auto-generation of a summary graph demands a

metric to evaluate the degree of accuracy of a type class relation in the summary graph.

Therefore we introduce a metric to measure the degree of confidence in the class relations,

which we call the stability measure.

In chapter 3, we introduced a data dictionary structure which includes the data

model details for classes, concepts, concept values, and their relations. We indicated

that such a data dictionary model may not always be available, especially for the linked

data represented in RDF model. In the current chapter, we describe the methods of

extracting the data dictionary structure from the summary graph. We also explain how

the summary graph can be exploited for various tasks, including filtering the entities by

type and type relations.

5.1 Contributions and Outline

In this study, we investigate the problem of discovering very similar entities that could

be classified as the same type so that multiple entities can be represented by one class

entity type. This has been traditionally studied as a clustering problem. In RDF data,
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we consider this problem a graph summarization problem as RDF can be expressed

as a graph. Also, we propose building a supplementary summary graph structure for

more efficient computation. In this work, we don’t rely on the existence of rdf:type or

owl:sameas. Our approach is based on the pairwise graph node similarity calculation

introduced in chapter 4 and obtaining the class structure and hierarchy from the data

itself.

Our main contributions:

• We provide a novel machine learning algorithm that automatically infers the type

semantics from the general RDF graph.

• We construct a summary graph structure based on pairwise similarity matrices of

entities that can enhance the performance of graph explorations.

• We generate the summary graph along with the classes and class relations with a

stability measure for each class relation.

The chapter is organized as follows. We discuss our approach and the algorithm in

detail. The subsequent section presents the class predicate stability metric. Then, we

present the results of the evaluations. Finally, we review the related work and follow this

with our conclusion.

5.2 Methods

Our graph summarization approach is based on method 3 of the summary graph

generation methods described in section 2.6.2, in which the summary graph is built

automatically by inferring the class types based on the similarity of the RDF nodes.
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We consider graph summarization as the discovery of the set of classes such that each

class in this set is the collection of the same or very similar entities. As the similarity

measurements between pairs of entities are calculated, the determining of the elements,

i.e., classes, in V ′ can be treated as a clustering problem with the aim being the combining

of the same or similar entities into the same class type.

The intuition that is new to our summarization graph work is that the nodes that

have similar edges to similar neighbors tend themselves to be similar nodes; thus, they

should be in the same class. To achieve our clustering goal, we define the similarity of

two nodes based on the entity similarity metric described in chapter 4.

5.3 The Algorithm

The pairwise graph similarity algorithm introduced in chapter 4 runs iteratively until

the similarity measure for each pair converges. At the end of the iteration, the nodes u

and v are put into the same class if their dissimilarity is less than a defined threshold

ε. The class creation algorithm generates the distinct classes based on the given epsilon

threshold.

5.4 Generation of the Classes and Properties

The summary graph for an RDF dataset is built automatically, and the constructed

summary graph is also represented in RDF in our approach. The IRI nodes that have

similarity higher than a defined threshold are considered to be of the same type, and they

are categorized in the same class in the summary graph. In our work, we do not classify

the literal nodes based on their similarity: instead, we add an additional type class to

the summary graph that incorporates all the literal nodes. A class relation between a
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Algorithm 2 CreateClasses(S,H)

Input: SimMatrix S, Pairs H
Output: Classes C
C ← ∅
for each((u, v, Lj, N j(u), N j(v)) ∈ H) do

if C(u) exists then
ci ← C(u)

else
ci ← {u}

end if
if 1− S(u, v) < ε then

if C(v) exists then
ci ← ci ∪ C(v)

else
ci ← ci ∪ {v}

end if
end if
C ← C ∪ ci

end for
return C

class c1 and a class c2 is generated as a predicate and represented as l(c1, c2) when there

is at least one relation l(u, v) such that u is an IRI and v is either an IRI or a literal node

in the dataset, G = (V,E, L), and u ∈ c1 and v ∈ c2 with both c1 and c2 being type

classes in the summary graph, G′ = (V ′, E ′, L′). Then we have l ∈ L′ and l(c1, c2) ∈ E ′.

5.5 Class Relation Stability Metric

Automatically generated summary graphs can be error prone. Therefore, a metric

to measure the degree of confidence of a relation between classes in the summary graph

would be beneficial. We call this metric Class Predicate Stability (CPS). The CPS is

similar to the stability concept introduced by Paige and Tarjan [73].

For a triple (c1, p, c2) in the summary graph G′ with c1 and c2 being type class IRI

nodes and p being a predicate between them, the CPS metric is calculated as the number

of the IRI nodes u in class c1 having a triple of the form (u, p, v) with u ∈ c1 and v ∈ c2
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divided by the total number of the IRI nodes in c1 in the summary graph. CPS(c1, p, c2)

is formulated as

CPS(c1, p, c2) =
|{u ∈ c1 : ∃v ∈ c2, p(u, v) ∈ E}|

|c1|
(9)

where |c1| is the number of IRI nodes in the class c1. Note that |c1| > 0. We define

full CPS as follows: for two classes c1 and c2 and the predicate p in the summary graph

either all the IRI nodes from c1 are connected with the predicate p to at least one IRI

node in c2 or none of the IRI nodes in c1 is connected with the predicate p to an IRI

node in c2. Thus, CPS(c1, p, c2) = 1 for a full CPS.

The CPS value for a triple (c1, p, c2) in the summary graph indicates how strongly

connected and how coarsely partitioned the type classes c1 and c2 are with the predicate

p. Thus, the average of all the CPS values in the summary graph is a measure of accuracy

for the generated summary graph. CPS(G′) is formulated as

CPS(G′) =

|E′|∑
i=1

CPS(c1i, pi, c2i)

|E ′|
(10)

where G′ = (V ′, E ′, L′) is the summary graph and pi(c1i, c2i) ∈ E ′, and thus |E ′| > 0.

Another advantage of calculating the CPS metric is that it can further be utilized

in semantic search algorithms. In traditional semantic search algorithms, the relations

between two different type classes are assumed to be tightly coupled [86]. In real sit-

uations this assumption may not always be true, especially if the summary graph is

auto-generated as in our study. We propose that the CPS metric can be used as an im-

pact factor between two type classes and utilized in the semantic search graph traversal
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for more accurate results.

5.6 Data Dictionary Extraction

In chapter 3, we introduced a translation-based healthcare information interoper-

ability framework that makes use of data dictionaries. Such a data dictionary can be

obtained from the data sources that have a well defined schema in place, e.g., a relational

database schema, XML schema, RDFS or OWL ontology. Nonetheless, extracting the

data dictionary from an RDF dataset is a challenging task if the RDF dataset is not

tied to an ontology. In this section, we explain how a summary graph can be utilized to

obtain the data dictionary elements from RDF representation of the instance data.

A data dictionary includes data model elements for classes, concepts, concept values,

and their relations. On the other hand, the summary graph incorporates the type classes,

members of the type classes, and the predicates between the type classes. Accordingly,

each type class in the summary graph becomes a class in the data dictionary and each

predicate of the type class becomes a concept of its associated class in the data dictionary.

The concepts extracted from the predicates that reference IRI nodes type classes in

the summary graph are called IRI concepts. A string data type is considered for the IRI

concepts. The concepts extracted from the predicates that reference to the literal node

type class in the summary graph are called literal concepts, and the collection of the

literal nodes that the original predicate reference to is called the concept’s literal nodes.

The actual data type of one of the concept’s literal nodes is considered for the literal

concept if all the concept’s literal nodes have the same data type, otherwise, a string

data type is considered for the literal concept.
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Value sets extraction is done for the literal concepts that have a string data type.

The values extracted from the concept’s literal nodes, those that are used more than a

defined threshold, constitute the concept’s value set.

5.7 Evaluation

In the evaluations, we assessed the effectiveness of the proposed approach on three

datasets: a subset of DBpedia [9]; a subset of SemanticDB [32], a Semantic Web content

repository for Clinical Research and Quality Reporting; and a subset of Lehigh University

Benchmark (LUBM) [43], a benchmark for OWL knowledge base systems.

The reason for selecting these three datasets was that they represent different aspects

of real-world semantic data. Thus, we tested the applicability of our approach in different

types of datasets. SemanticDB is a domain-specific semantic data repository in Health-

care. It provides structured type information for the entities, which we utilized as the

ground truth for automatic verification of the accuracy in the evaluations. Lehigh Uni-

versity Benchmark (LUBM) is a structured and well-known benchmark dataset, which

has type information available. However, the entities can have multiple types. Unlike

SemanticDB, LUBM data has hierarchical types. For instance, an entity can have both

Student type and Graduate Student type. Therefore, we performed a manual verifica-

tion process for the ground truth to ensure the accuracy of evaluations. Lastly, DBpedia

is a commonly used general purpose dataset, which is a central source in the Linked

Open Data Cloud [18]. Type information is not always present for entities in DBpedia.

Moreover, some entities have several types, including hierarchical types, which makes it
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problematic for automatic verification of accuracy results. Therefore, we manually veri-

fied the accuracy of the ground truth in the evaluations. Table 1 demonstrates a sample

of RDF triples from each dataset in the evaluations.

We ran the graph summarization algorithm in two stages. On the first stage, we

utilized the core pairwise IRI graph node similarity algorithm without taking the de-

scriptor importance and literal neighbor nodes similarity into account. On the second

stage, the IRI nodes similarity is enhanced by the improvements of taking the literal

neighbor similarity and the dynamic property weight assignment into account. The goal

for running the evaluations in two stages is to investigate the impact of different factors

on graph node similarity in real world datasets. We tested several parameters of the

algorithm, including the maximum iteration, beta factor, class dissimilarity threshold,

iteration convergence threshold, and the size of the dataset.

We also evaluated the performance of dynamic assignment of descriptor weights.

Table 5.7 shows a sample of dynamically assigned descriptor weights from each dataset.

As expected, the algorithm assigned higher weights to the properties with a higher degree

of distinctiveness describing the resource type. For instance, in the LUBM dataset, the

takesCourse property is more descriptive of the Student type than the name property,

which is a common property for all class types in the dataset. Thus, takesCourse was

assigned a weight of 44.1% as compared to the weight of 7.5% for name.

While the number of iterations depends on the dataset characteristics, we found that

the similarity measures typically converge quickly after a few iterations. The algorithm

stops the iteration once the rate of change in the similarity measures drops below the
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Table 1: A Sample of RDF Triples from Each Dataset

Dataset Subject Predicate Object

SemanticDB SurgeryProcedure:236 hasCardiacValveAnatomyPathologyData CardiacValveAnatomyPathologyData:70

SemanticDB SurgeryProcedure:236 hasCardiacValveRepairProcedureData CardiacValveRepairProcedureData:16

SemanticDB SurgeryProcedure:236 SurgeryProcedureClass “cardiac valve”

SemanticDB SurgeryProcedure:236 CardiacValveEtiology “other”

SemanticDB SurgeryProcedure:236 CardiacValveEtiology Event:184

SemanticDB SurgeryProcedure:236 belongsToEvent Event:184

SemanticDB SurgeryProcedure:236 SurgeryProcedureDescription “pulmonary valve repair”

SemanticDB SurgeryProcedure:236 CardiacValveStatus “native”

SemanticDB SurgeryProcedure:104 hasCardiacValveAnatomyPathologyData CardiacValveAnatomyPathologyData:35

SemanticDB SurgeryProcedure:104 SurgeryProcedureClass “cardiac valve”

SemanticDB SurgeryProcedure:104 CardiacValveEtiology “rheumatic”

SemanticDB SurgeryProcedure:104 belongsToEvent Event:81

SemanticDB SurgeryProcedure:104 SurgeryProcedureDescription “mitral valve repair”

SemanticDB SurgeryProcedure:104 CardiacValveStatus “native”

LUBM Student49 telephone “xxx-xxx-xxxx”

LUBM Student49 memberOf http://www.Department3.University0.edu

LUBM Student49 takesCourse Course32

LUBM Student49 name “UndergraduateStudent49”

LUBM Student49 emailAddress “Student49@Department3.University0.edu”

LUBM Student49 type UndergraduateStudent

LUBM Student10 telephone “xxx-xxx-xxxx”

LUBM Student10 memberOf http://www.Department3.University0.edu

LUBM Student10 takesCourse Course20

LUBM Student10 name “UndergraduateStudent10”

LUBM Student10 emailAddress “Student10@Department3.University0.edu”

LUBM Student10 type UndergraduateStudent

DBpedia Allen Ginsberg wikiPageUsesTemplate Template:Infobox writer

DBpedia Allen Ginsberg influenced John Lennon

DBpedia Allen Ginsberg occupation “Writer, poet”@en

DBpedia Allen Ginsberg influences Fyodor Dostoyevsky

DBpedia Allen Ginsberg deathPlace “New York City, United States”@en

DBpedia Allen Ginsberg deathDate “1997-04-05”

DBpedia Allen Ginsberg birthPlace “Newark, New Jersey, United States”@en

DBpedia Allen Ginsberg birthDate “1926-06-03”

DBpedia Allen Ginsberg deathPlace “New York City, United States”@en

DBpedia Albert Camus wikiPageUsesTemplate Template:Infobox philosopher

DBpedia Albert Camus influenced Orhan Pamuk

DBpedia Albert Camus influences Friedrich Nietzsche

DBpedia Albert Camus schoolTradition Absurdism

DBpedia Albert Camus deathPlace “Villeblevin, Yonne, Burgundy, France”@en

DBpedia Albert Camus deathDate “1960-01-04”

DBpedia Albert Camus birthPlace “Drean, El Taref, Algeria”@en

DBpedia Albert Camus birthDate “1913-11-07”
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Table 2: An Excerpt from Dynamically Assigned Weights of Descriptors

Dataset Node Pair Descriptor Type Descriptor Weight

LUBM (Student49,Student10) Property memberOf 14.7%

LUBM (Student49,Student10) Property takesCourse 44.1%

LUBM (Student49,Student10) Property emailAddress 14.0%

LUBM (Student49,Student10) Property type 5.7%

LUBM (Student49,Student10) Property name 7.5%

LUBM (Student49,Student10) Property telephone 14.0%

SemanticDB (Procedure:236,Procedure:104) Literal “cardiac” 13.6%

SemanticDB (Procedure:236,Procedure:104) Literal “native” 15.2%

SemanticDB (Procedure:236,Procedure:104) Literal “other” 14.3%

SemanticDB (Procedure:236,Procedure:104) Literal “pulmonary” 22.8%

SemanticDB (Procedure:236,Procedure:104) Literal “repair” 17.2%

SemanticDB (Procedure:236,Procedure:104) Literal “valve” 16.9%

DBpedia (Allen Ginsberg,Albert Camus) Property wikiPageUsesTemplate 2.2%

DBpedia (Allen Ginsberg,Albert Camus) Property influences 58.3%

DBpedia (Allen Ginsberg,Albert Camus) Property deathDate 2.2%

DBpedia (Allen Ginsberg,Albert Camus) Property birthDate 2.4%

DBpedia (Allen Ginsberg,Albert Camus) Property birthPlace 2.1%

DBpedia (Allen Ginsberg,Albert Camus) Property deathPlace 2.1%

DBpedia (Allen Ginsberg,Albert Camus) Property influenced 30.7%
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threshold, defined as the minimum value for the similarity iteration convergence, with-

out having to iterate until maximum iteration. Hence, the maximum iteration and the

convergence threshold values are kept relatively small as 10 and 0.001, respectively, in

our experiments.

We observed that a higher class dissimilarity threshold results in more coarse classes,

whereas the classes become more granular when the threshold is chosen smaller. The beta

factor and the class dissimilarity threshold can be tuned differently in various datasets.

Their optimum values depend on the characteristics of the datasets. In our evaluations,

we found that the original value of 0.15 for the beta factor as introduced in [72] works well

for our test datasets. For each dataset, we did not change the beta factor nor the class

dissimilarity threshold in the two evaluations: the core similarity algorithm and similarity

algorithm with the improvements. We found that a class dissimilarity threshold ranging

between 0.3 to 0.6 in combination with a beta factor of 0.15 appeared to work well in

our evaluations.

It is clear that the evaluations with the improvements of taking literal neighbor nodes

similarity and auto-generated descriptor weights into account in IRI nodes similarity cal-

culation generate a summary graph with better accuracy and stability, as demonstrated

in Table 3. We noticed that the literal similarity improves the class generation accuracy

in datasets that have frequently used terminology as in the case of SemanticDB and

LUBM. On the other hand, it may have an adverse effect in datasets with lengthy and

diverse vocabulary of literals, as in the example of DBpedia.

Figure 11 illustrates a small sample set of entities in the RDF graph from SemanticDB

and their corresponding class types in the summary graph. As demonstrated in Figure
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Table 3: Evaluation Results

Dataset Algorithm #Triples Class Threshold #Iterations Stability Accuracy

SemanticDB Core 6,450 0.5 4 61.0% 87.3%

SemanticDB Improvements 6,450 0.5 4 68.2% 94.1%

LUBM Core 6,484 0.3 3 67.8% 90.7%

LUBM Improvements 6,484 0.3 3 78.4% 98.6%

DBpedia Core 10,000 0.6 3 82.4% 92.8%

DBpedia Improvements 10,000 0.6 3 89.1% 92.2%

11, the classes C-E1 and C-E2 represent the entities that are patient event types. They

are classified in two different classes because when we compared them with the original

dataset, we observed that the entities in C-E1 are more specifically patient surgery-related

event types, while the entities in C-E2 are patient-encounter related event types. Also,

the classes E-SP1 and E-SP2 are surgical procedure types. More specifically, the entities

in E-SP1 are coronary artery and vascular related procedures, while the entities in E-

SP2 are cardiac valve related-procedures. The classes C-VP and C-CAG represent the

entities that are related to vascular procedures and coronary artery grafts, respectively.

We implemented a basic algorithm to name the classes based on the class member IRIs.

The classes C-E1, C-E2, C-SP1, C-SP2, C-VP and C-CAG are named as C-Event-1,

C-Event-2, C-SurgicalProcedure-1, C-SurgicalProcedure-2, C-VascularProcedure and C-

CoronaryArteryGraft, respectively.

The summary graph is generated along with the classes and the class relations with a

stability measure for each relation. Figure 12 shows an excerpt from the summary graph

representing the class relations from SemanticDB dataset. The percentage values besides

the predicates are the stability (CPS) measure.
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Figure 11: A figure consisting of different types of entities and elements belonging to the
class types.
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Figure 12: An excerpt from the generated summary graph.

5.8 Related Work

Clustering methods have been extensively studied, including KMeans [62], DBSCAN

[38], and OPTICS [6]. There is a variety of techniques for finding clusters within data,

and they are often successful in low-dimensional data. However, many of the existing

clustering methods fail in high-dimensional data.

In [73] the authors defined the stability concept to be used in a coarsest partitioning

problem. They utilized the stability concept on directed graphs. In our work, we leverage

the stability concept to be used in a summary graph which is an RDF model.
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5.9 Conclusion

In this chapter, we have focused on laying the foundations for graph summarization

problems in RDF graphs. We conducted preliminary experiments that demonstrated

significant results identifying the classes of entities. We introduced the Class Predicate

Stability metric, which allows evaluation of the degree of confidence of each class predicate

in the summary graph.

We note that the summary graph can further be utilized for automatic instance

matching algorithms in the healthcare domain. In chapter 6, we present an instance

matching technique in RDF graphs, and we clarify how the summary graph introduced

in the current chapter can be exploited for instance matching in RDF graphs.
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CHAPTER 6

RinsMatch: a suggestion-based instance matching system in RDF Graphs

In this chapter, we present RinsMatch (RDF Instance Match), a suggestion-based

instance matching tool for RDF graphs. The main ideas and sections explained in this

chapter are part of a published research study [11].

In chapter 3, we presented a method for the translation of data models from one

format to another. The approach defined a number of steps required to perform the

translation in section 3.1 to support heterogeneous data interoperability. In step 3 of the

approach, the mapping and the translation rules between various schemata are manually

defined a priori from a domain expert. However, the manual way of characterizing the

mappings may cause time-consuming and costly work in the process due to the size of the

healthcare data. The RDF instance matching system introduced in the current chapter

contains a semi-automatic instance matching framework to help experts find linkages

between different data elements.

RinsMatch utilizes a graph node similarity algorithm and returns to the user the sub-

ject node pairs that have similarities higher than a defined threshold. If the user approves

the matching of a node pair, the nodes are merged. Then more instance matching candi-

date pairs are generated and presented to the user based on the common predicates and

neighbors of the already matched nodes. RinsMatch then reruns the similarity algorithm

with the merged RDF node pairs. This process continues until there is no more feedback

from the user and the similarity algorithm suggests no new matching candidate pairs.
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Each time the similarity algorithm runs, it produces more accurate results assuming the

user provided accurate feedback. Merging the RDF nodes reduces the size of the input

data graph that the algorithm operates on, yielding less complexity each time.

6.1 Contribution and Outline

In this study, we investigate the problem of discovering the linkages between semanti-

cally related entities that could be classified as the same entity within and among different

data sources, so that multiple entities can be represented by one entity. In the literature,

this problem has been studied by the research community as the task of instance match-

ing or concept matching. In this context, we consider this problem an instance matching

of RDF entities, as we represent the healthcare data instances and data model details

in an RDF model. Our approach is semi-automatic: it utilizes the pairwise graph node

similarity computation introduced in chapter 4 for finding similar entities and the map-

ping interface introduced in section 3.4 for presenting the similar entities to the domain

experts.

Our main contributions:

• We present a suggestion-based semi-automatic instance matching system utilized

for the RDF representation of data that contributes in the information translation

process in the healthcare domain.

• We use neighborhood ideas to infer possible connections between the entities, such

that if two entities are matched, then other nodes with similar predicates and in

similar neighborhoods are considered.
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• We merge the matched entities and run the process in iterations, with each iteration

producing more accurate results and yielding less complexity.

The chapter is organized as follows. We discuss the application of instance matching

in an RDF representation of healthcare data elements. Subsequently, we review the

computation of entity similarity that is used for the matching. Then, we describe the

user interaction for semi-automatic instance matching process. The subsequent section

presents the results of the evaluations. Finally, we review the related work and follow

this with our conclusion.

6.2 Instance Matching in Healthcare Data

Healthcare data exist in heterogeneous data sources with different formats and data

models. In this work, we represent the data elements in RDF: i.e., the instance data,

the data dictionary elements that belong to the instance data, and the mapping between

them are represented in RDF. For the data sources that do not have a pre-defined data

dictionary in place, we exploit the summary graph to extract the data dictionary elements

as explained in section 5.6. We link the main data dictionary classes to the instance data

elements with the rdf:type [24] predicate. The RDF relations allow linking the data

elements from different systems, constituting an extensive and connected RDF graph.

In a healthcare data ecosystem, it is common to have redundant instances and con-

cepts between different data sources. Thus, the instance matching technique explained

in this chapter covers both de-duplication and data concepts matching. Merging the

redundant nodes helps to reduce the size of the dataset. Also, linking the concepts be-

tween diverse data models assists in the information translation process and semantic
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data interoperability of different systems.

6.3 RDF Entity Similarity for Instance Matching

In chapter 4, we proposed an algorithm for computation of pairwise graph node

similarity using graph locality, neighborhood similarity, and the Jaccard measure. The

predicates of the subject nodes are treated as the dimensions of the entities when mea-

suring the similarity of two subject entities. The direct similarities of the entities are

taken into account along with the similarities of the neighbors with which they interact.

The accuracy of the similarity metric is enhanced by incorporating the auto-generated

importance weights of the predicates and the string literals referenced by the subject

RDF entities. The algorithm runs in multiple iterations until the pair similarity results

converge. In the current study we use the proposed RDF entities similarity algorithm for

pairing entities which may be merged if approved by the user.

6.4 User Interaction

The size of data in healthcare seems to require the automation of instance matching

techniques. Nonetheless, fully automated techniques can be error prone. Therefore, a

semi-automated instance matching technique with user interactions yields more accurate

results. Since our goals include matching the instances belonging to the heterogeneous

data sources, RinsMatch, introduced in the current chapter, allows the user to provide

initial matches between the source and target graph elements. RinsMatch then runs the

entity similarity algorithm introduced in chapter 4. After the entity similarities converge,

it follows the steps below:
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• RinsMatch presents the subject node pairs that have similarities higher than a

defined threshold to the user for possible instance matching. The threshold is a

configurable parameter and may be determined by the user.

• If s1 and s2 are two subject nodes which have similarity higher than the threshold,

then we denote this pair by (s1,s2). If the user approves the matching of the subject

node pair (s1,s2), then RinsMatch merges the two subjects into a single subject

node which we denote by [s1,s2], and then all the predicates from both merged

subjects are retained by the newly created subject [s1,s2].

• It then checks the common neighbors and predicates of s1 and s2 and generates

more instance matching candidate pairs by pairing the predicates p1 and p2 to get

(p1,p2) if p1 and p2 are connected to a common object from both s1 and s2.

• It also pairs the object nodes (o1, o2) which are connected with a common predicate

from s1 and s2.

• RinsMatch then presents the generated matching candidate pairs to the user and

merges the pairs to get [p1,p2] and [o1,o2] if the user approves that they match.

• RinsMatch then reruns the RDF node similarity algorithm on the new RDF graph

formed by merging matching entities.

The steps above are repeated until there is no more feedback from the user and no

new matching pairs suggested by the matching algorithm.

Figure 13 shows an example of the instance matching and merging process. As shown

in the figure, based on the similarities found from the similarity iterations, at phase 1
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Figure 13: Instance matching process

RinsMatch suggests matching the subject nodes (v1, v5), and they are merged to get

[v1,v5] with the approval of the user. On phase 2, the algorithm checks the common

predicates of the new node [v1,v5]. Seeing that it connects to the neighbor nodes v4 and

v6 with the common predicate p3, RinsMatch merges the nodes v4 and v6 to get [v4,v6]

once the user approves. On phase 3, the common neighbors of the new node [v1,v5] are

checked. Seeing that [v1,v5] is connected to a common neighbor v2 with the predicates

p1 and p4, RinsMatch presents the pair (p1,p4) to the user, and they are merged upon

approval by the user to get [p1,p4]. At phase 4, the size of the graph is reduced from five

triples to three triples, a 40% reduction in size. The output graph of phase 3 is input

to phase 1, and the similarity iterations are repeated until the optimum similarities and

instance matching pairs are found.
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6.5 Evaluation

We conducted preliminary experiments based on a subset of DBpedia [9] and a sub-

set of SemanticDB [32], a Semantic Web content repository for Clinical Research and

Quality Reporting. For verification, we duplicated the original dataset and changed the

names of the nodes in the duplicated dataset by following a specific naming pattern. We

used the original dataset as the source, and the duplicated dataset as the target for the

instance matching process, and we leveraged the node naming pattern for verification.

To summarize our experiments: for the DBpedia, the source dataset had 90 triples with

60 distinct subject and predicate nodes. 100% of the nodes were matched to a target

graph node semi-automatically. The algorithm generated 20 instance matching candi-

dates with 85% accuracy. For SemanticDB, the source dataset had 2500 triples with 520

distinct subject and predicate nodes. 86% of the nodes were matched to a target graph

node semi-automatically. The algorithm generated 310 instance matching candidates

with 95% accuracy.

6.6 Related Work

In the literature, there has been much research in the subject of ontology mapping.

The terminology used for defining the problem has varied such as matching, alignment,

merging, articulation, fusion, integration, morphism, etc. Inherently, many tools and

methods have emerged in the field.

Many of these approaches are solely based on the use of string similarity mechanisms

for finding matching entities between two ontologies [81,82]. Approaches that have stud-

ied the ontology mapping problem from the schema matching perspective in the context
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of data integration have also been explored since schemata can be considered as ontologies

with restricted relation types. These include [63,67].

Some others have suggested asking the user for feedback, as in our work, to perform

the mapping generation interactively by providing proper visualization to support the

decision. We think this is a useful feature for generating high-quality links. However, in

this work we minimize the need for user feedback to reduce the load on the users.

Doan et al. [20] provided a system, GLUE, which employs learning techniques to

semi-automatically find mappings between two given ontologies. For each concept in one

ontology, their framework uses a multi-learning strategy to predict a similar concept in

the other using probabilistic definitions of several similarity measures. GLUE calculates a

joint probability distribution to measure the overlap between two input sets. The authors

offer two learners: a content learner and a name learner for learning information such as

the word frequencies, instance names and value formats. The content learner uses Naive

Bayesian learning, a text classification method, for the instance content whereas the name

learner uses the full name instead of its content. Then they combine the predictions of

the two learners and assign weights to them using a meta-learner. Additionally, they use

a technique, relaxation labelling, which gives labels to nodes of a graph, based on a set

of constraints. Similar to their system, we also propose a machine learning framework.

In contrast to them, we don’t employ active an learning technique, which relies on the

quality of the training dataset.

Jain et al. offered a framework called BLOOMS [51] and later an improved version

under BLOOMS+ [52]. They propose a metric to determine which classes to align be-

tween two ontologies and a technique for using contextual information to support the
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alignment process. However, they rely on existence of a human-generated upper ontol-

ogy and the concept categorization in the form of a tree structure. Our approach does

not rely on an upper ontology, as we think these assumptions are problematic since the

quality of the mapping strictly depends on the categorization of the concept by humans,

and any potential categorization issue in the upper ontology will have an impact on the

whole context.

As broadly considered, there has been some related work in the area of instance

matching and graph partitioning in the Semantic Web community. With a data parti-

tioning perspective, [85] proposed developing an index structure based on a bisimulation

technique. In this respect, some research studies have also investigated comparing in-

stances based on the properties and roles in the area of ontology instance matching but

they primarily focus on the ontology mapping [49,90] or ontology population [25] tasks.

On the other hand, [78] studies an automatic instance matching problem in RDF

graphs with the focus on property weights, where property weights yield precedence to

properties that make the instances more unique. The similarity metric utilized in this

work also employs auto-generated property weights, which is a similar notion to the term

frequency-inverse document frequency(tf-idf) [61, 80]. Our work is also different in the

sense that it is semi-automatic, allowing for user feedback.

A matching algorithm called similarity flooding (SF) is proposed in [68]. SF matches

two directed and labeled graphs to produce a multi-mapping of analogous nodes. For

the similarity computation, SF relies on the intuition that elements of two graphs are

similar when their adjacent elements are similar, exploiting the neighboring structure of

a concept map, the semantic meaning of the content of the graph node and the labels of
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the relations between the nodes. In SF, the similarity of the node pairs starts either with

a string similarity between the content of the nodes or with a similarity of 1. It then

propagates the initial similarity of any two nodes through the graphs. The algorithm

runs in multiple iterations until the similarity values are converged, or until a pre-defined

maximum number of iterations. SF also does not distinguish between a schema node and

the instance data node. Filters are utilized to select the best mappings. The mappings are

then manually reviewed. The accuracy of the algorithm is measured by the estimated

human labor savings obtained utilizing the algorithm for the matching tasks. In our

work, we make an assumption for similarity computation like that of SF, that the nodes

connected to similar neighbors with similar predicates are similar. We also run our

similarity algorithm in iterations, and we do not distinguish between the data model

elements and the instance data elements like in SF. However by the end of the iterations,

we suggest the similar node pairs to the user for matching, and we merge the triples of the

approved matched nodes. Consequently, we suggest matching of the nodes and predicates

based on the common predicates and neighbors of the already matched nodes, and we

rerun the similarity iterations. In this sense, our technique requires more user interactions

but the consequent similarity iterations produces more accurate results assuming the user

provides accurate feedback.

6.7 Conclusion

In this chapter, we have focused on instance matching in RDF graphs. We conducted

preliminary experiments that demonstrated significant results in matching similar graph

elements. Our instance matching technique is semi-automatic and does not distinguish
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between the instance data elements and the data model elements. The system makes

use of the similarity algorithm introduced in chapter 4, and it makes smart suggestions

to the user by utilizing the neighborhood concept to infer possible connections between

the graph entities for finding the linkages between different data elements. The linkages

found can further be utilized in the translation framework introduced in chapter 3 to

support healthcare data interoperability.
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CHAPTER 7

Conclusion

This dissertation has presented a semantic framework for healthcare information in-

teroperability. We discussed two main routes for healthcare information interoperability:

adapting standards and/or translation between different standards. Given the fact that

there are significant barriers in implementing standards in the healthcare domain and it

is unrealistic to have one universal standard that fits all the use cases, we suggested that a

route for translation between different data models is more practical, and it is conceivable

to implement standards in information translation. In this regard, we suggested utilizing

RDF to depict in a flexible form the healthcare data entities having diverse data models

and to perform the translation between the RDF representation of the data elements.

We then gave background information on the Semantic Web and its related con-

cepts regarding healthcare information interoperability. Then, we presented a framework

for translation of RDF representation of healthcare instance data, based on structured

mapping definitions between the data concepts belonging to different data models. The

framework includes a metadata repository, a user-friendly interface and a translation en-

gine. The metadata repository stores the data dictionaries, which include data model

details for classes, concepts, concept values, and their associations to each other. The

interface allows the data managers to view and manage the data dictionary elements

and the mappings between them. The mapping details are also stored in the metadata

repository in a mapping schema. The translation engine utilizes the data model details
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and the structured mapping definitions to translate the source RDF data with regards

to the target data model.

The defined translation framework includes a number of steps required to perform the

translation to support heterogeneous data interoperability. However, a manual approach

may be time-consuming and costly due to the size of the healthcare data. Therefore, we

introduced a pairwise graph node entity similarity metric and its algorithm in order to

be utilized for the automation of numerous interoperability tasks, e.g., auto classification

of a dataset and automatically discovering the mappings between different data models.

The graph node similarity metric utilizes the Jaccard index with the common relations of

the data entities and common string literal words referenced by the data entities and aug-

mented with data entity neighbors similarity. We also presented an importance weighting

metric for the properties and the string literals referenced from the RDF nodes, and the

auto-generated importance weights are used by the similarity metric. The similarity al-

gorithm utilizes the similarity metric and runs in iteratively until the node pair similarity

values converge.

The translation framework presented in this work makes use of data dictionaries.

A data dictionary may not always be available for some datasets, e.g., extracting the

data dictionary from an RDF dataset is a challenging task if the RDF dataset is not

tied to an ontology. Hence, we presented an automatic classification method, which

we call summary graph generation, based on the pairwise graph node similarities, and

we explained extracting the data dictionary elements from the auto-generated summary

graph. Similar entities are classified in the same type class, and the relations between the

type classes are created with regards to their members’ relations in the summary graph.
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The summary graph is beneficial for understanding the underlying structure of the graph

representation of the healthcare data, and provides an intermediate index structure for

faster computational processing as the entire input data does not need to be completely

processed. We also introduced the Class Predicate Stability metric, which measures the

degree of confidence of each class relation in the auto-generated summary graph.

The interface introduced in our translation framework lets the data manager define the

mappings between various schemata. Nonetheless, manually defining the mappings may

require significant amounts of time. Therefore, we presented a suggestion-based semi-

automatic instance matching system in RDF Graphs to help the data managers find

linkages between different data elements. The presented instance matching technique

does not distinguish between the instance data elements and the data model elements.

It makes use of the pairwise graph node similarities, and it makes smart suggestions to

the user by utilizing the common relations and neighbors to infer possible connections

between the graph entities for finding the linkages between different data elements. The

linkages are then stored in the metadata repository to further be utilized in the translation

framework.

The current work lays a promising foundation for future research. To further im-

prove the scalability, both the pairwise graph node similarity algorithm and the instance

matching algorithm introduced in this work are good candidates for parallel computa-

tion. One could investigate how the algorithms can be applied to a distributed processing

programming model such as Hadoop [92].

Looking further ahead, a translation-based healthcare information interoperability

framework suggests several interesting questions: What are the practical methods of
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converting datasets from their native formats to RDF model and vice versa, for various

kind of data formats? Can we query multiple databases to answer a question utilizing

the structured mapping definitions? In the current work, the mappings are stored in

the metadata repository within a mapping schema. Can we create a universal mapping

ontology that defines the mappings and translation rules between different data models

in the healthcare domain? How can we validate the results of a translation process?

These research questions build upon what this dissertation has established: achieving

information interoperability in healthcare domain is a formidable yet a significantly im-

portant task, and a translation based route for healthcare information interoperability is

conceivable.
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