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Abstract

The present work covers several topics including the rare decay B → Xsγγ as well as
the study of flavor phenomenology of several other observables. After briefly presenting
the methodology used to treat the inclusive rare B-decays, first we study the next-to-
leading-logarithmic (NLL) QCD contribution of the electro-magnetic dipole operator O7

to the double radiative rare process B̄ → Xsγγ. In this analysis, we supply the first
analytical NLL QCD calculation to the decay width of the double-radiative inclusive
decay B̄ → Xsγγ and find that the numerical impact of the NLL corrections are rather
large.

The second study goes beyond the SM. In this work, we point out that a two-Higgs
doublet model (2HDM) of type III is capable of explaining the combined 3.4σ discrep-
ancy between the Standard Model predictions for the branching ratios B → Dτν and
B → D∗τν and the recent measurements for these observables by BABAR collaboration
without fine-tuning. Furthermore, we show that it is also possible to put the theoretical
prediction for B → τν into an agreement with the 2012 measurements reported by the
BABAR and BELLE collaborations.

The last part is devoted to an extensive analysis of the flavor observables in a 2HDM
with generic Yukawa structure (of type-III). In this work, in the light of the recent ex-
perimental data, we work out all relevant flavor observables and constrain the model
both from tree-level processes and from loop observables. Beside this, we give upper
limits on the branching ratios of the lepton flavor-violating neutral B meson decays
(Bs,d → µe, Bs,d → τe and Bs,d → τµ) and correlate the radiative lepton decays (τ → µγ,
τ → eγ and µ→ eγ) to the corresponding neutral current lepton decays (τ− → µ−µ+µ−,
τ− → e−µ+µ− and µ− → e−e+e−), which is of interest to experimentalists working at
the LHC and super-B factories.

v





”Procrastination is the thief of time”
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Introduction

The 21st century has opened an exiting era for particle physicists by the tentative discovery
of the Higgs particle1 at the CMS [1] and ATLAS [2] experiments in 2012. LHC, the world
largest and highest energy particle accelerator, is built in a circular tunnel of circumference
of 27 km and at a depth ranging from 50 to 175 meters underground and it lies in the Swiss
and French border on the outskirts of Geneva [3]. In this great collider, the proton beams
are accelerated to reach about 0.999999991 of the speed of light (c) and make a head-on
collision in a total collision energy of 14 TeV, the highest energy scales attained ever. By
doing so LHC aims to test the Standard Model (SM) of particle physics, which is believed to
be the theory of the electro-magnetic, weak and strong interactions. In fact, since its birth in
the early 1970s the SM of particle physics has been quite powerful in describing the nature
around us by showing excellent agreement with the experimental data. On the other side,
there are numerous observed phenomena that the SM is not able to explain. For example,
the SM predicts massless neutrinos. However, the recent observation of neutrino oscillations
indicates that neutrinos do have mass [4, 5]. Another issue is the difficulty for SM in trying
to explain the matter–anti-matter asymmetry of the Universe. The Sakharov’s three criteria
[6]: baryon number violation, C and CP violation and departure from thermal equilibrium,
which explain why the today’s Universe is matter dominated, cannot be accounted within the
context of SM [7]. Moreover, the hierarchy problem2 is an example of further problems from
which the SM suffers. Therefore, it is widely believed that the SM in its todays form is not the
ultimate theory but more like a low-energy-effctive theory (which is powerful up to TeV scales
only) of a more fundamental theory and thus it has to be modified in its high energy sector
to feed these deficiencies. Enormous work has been devoted by physicists to look for physics
beyond SM (SUSY, 2HDMs, extra-dimensions etc.) in order to provide natural explanations
to the problems of SM. In this regard, LHC also aims (hopes) to find some “new-physics“
(NP) particles.

Beside the direct search for NP at particle accelerators, there is an alternative place
where possible NP can exhibit itself indirectly via contributions to well measurable low energy
processes. In this perspective, when both the theoretical predictions and the experimental
results are precise enough, it is possible to draw constraints on the range of any NP model.

In this context, the inclusive rare B-meson decays gives important information on the
indirect search for NP at scales of several hundred GeV as well as they are unique for over-
constraining the CKM elements. In the SM all these processes proceed through loop diagrams
and thus are relatively suppressed3. In the extensions of the SM the contributions stemming
from the diagrams with “new” particles in the loops can be comparable or even larger than
the contribution from the SM. Thus getting experimental information on rare decays puts
strong constraints on the extensions of the SM or can even lead to a disagreement with
the SM predictions, providing evidence for “new physics”. To make a rigorous comparison
between experiment and theory, precise SM calculations for the (differential) decay rates are
mandatory. While the branching ratios for B̄ → Xsγ [9] and B̄ → Xsℓ

+ℓ− are known today
even to next-to-next-to-leading logarithmic (NNLL) precision (for reviews, see [10, 11]), other

1The Higgs field is assumed to be responsible for giving mass to all elementary particles.
2The hierarchy problem means the large difference between the strengths of the weak force and gravity i.e.

it asks why the gravity is 1032 times weaker than the weak nuclear force [8].
3In the SM, flavor-changing-neutral-current (FCNC) transitions are forbidden at tree-level by definition.



branching ratios, like the one for B̄ → Xsγγ, has been calculated roughly 10 years ago to
leading logarithmic (LL) precision in the SM by several groups [12, 13, 14, 15] and only
recently a first step towards next-to-leading-logarithmic (NLL) precision was presented by us
in [16]. In contrast to B̄ → Xsγ, the current-current operator O2 has a non-vanishing matrix
element for b → sγγ at order α0

s precision, leading to an interesting interference pattern
with the contributions associated with the electromagnetic dipole operator O7 already at LL
precision. As a consequence, potential NP should be clearly visible not only in the total
branching ratio, but also in the differential distributions. As the process B̄ → Xsγγ is
expected to be measured at the planned Super B-factories in Japan and Italy, it is necessary
to calculate the differential distributions to NLL precision in the SM, in order to fully exploit
its potential concerning new physics.

On the other side, having the precise SM calculations at hand and confronting them with
experimental data, one is able to check for any possible deviations between SM predictions
and the experiment which might give a sign for a physics beyond the SM. Assuming the
existence of new physics, such deviations between the SM and experimental data allow to put
constraints on the particular NP model under consideration. As an example of such models
are the two-Higgs-doublet-models (2HDMs). The 2HDMs [17] have been under intensive in-
vestigation for a long time (see for example Ref. [18] for an introduction or Ref. [19] for a
recent review article). There are several reasons for this great interest in 2HDMs: Firstly,
2HDMs are very simple extensions of the SM obtained by just adding an additional scalar
SU(2)L doublet to the SM particle content. This limits the number of new degrees of freedom
and makes the model rather predictive. Secondly, motivation for 2HDMs comes from axion
models [20] because a possible CP-violating term in the QCD Lagrangian can be rotated
away [21] if the Lagrangian has a global U(1) symmetry which is only possible if there are
two Higgs doublets. Also the generation of the baryon asymmetry of the Universe motivates
the introduction of a second Higgs doublet because in this way the amount of CP violation
can be large enough to accommodate for this asymmetry. Finally, probably the best moti-
vation for studying 2HDMs is the Minimal Supersymmetric Standard Model (MSSM) where
supersymmetry enforces the introduction of a second Higgs doublet [22] due to the holomor-
phic superpotential. Furthermore, the 2HDM of type III is also the effective theory obtained
by integrating out all super-partners of the SM-like particles from MSSM. 2HDMs are not
only interesting for direct searches for additional Higgs bosons at colliders. In addition to
these high energy searches at the LHC also low-energy precision flavor observables provide
a complementary window to physics beyond the SM, i.e. to the 2HDMs. In this respect,
FCNC processes, e.g. neutral meson decays to muon pairs (Bs(d) → µ+µ−, D → µ+µ− and
KL → µ+µ−) are especially interesting because they are very sensitive to flavor changing
neutral Higgs couplings. However, also charged current processes like tauonic B-meson de-
cays are affected by the charged Higgs boson and b → sγ provides currently the best lower
limit on the charged Higgs mass in the 2HDM of type II. Recently, tauonic B decays received
special attention because the BABAR collaboration performed an analysis of the semileptonic
B decays B → Dτν and B → D∗τν reporting a discrepancy of 2.0 σ and 2.7σ from the SM
expectation, respectively. The measurements of both decays exceed the SM predictions, and
combining them gives a 3.4σ deviation from the SM [23, 24] expectation, which constitutes
first evidence for new physics in semileptonic B decays to tau leptons. This evidence for the
violation of lepton flavor universality is further supported by the measurement of B → τν by
BABAR [25, 26] and BELLE [27, 28] which exceeds the SM prediction by 1.6σ using Vub from
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the global fit [29]. Assuming that these deviations from the SM are not statistical fluctuations
or underestimated theoretical or systematic uncertainties, it is interesting to ask which model
of new physics can explain the measured values. Since, a 2HDM of type II cannot explain
B → τν , B → Dτν and B → D∗τν simultaneously [23], one must look at 2HDMs with more
general Yukawa structures. Also 2HDMs of type III with Minimal Flavor Violation (MFV)
[30] cannot explain these deviations from the SM. These points motivated us to perform a
complete analysis of flavor-violation in 2HDMs of type III. For this purpose we took into
account all relevant constraints from FCNC processes (both from tree-level contributions and
from loop-induced effects) and considered afterwards the possible effects in charged current
processes.

Organization of the thesis

This thesis is split into several independent pieces as follows:

• Part I: In part-I we give a brief overview of the Standard Model and two-Higgs-doublet-
models (2HDMs) and discuss the theoretical framework used to perform perturbative
precision calculations in inclusive rare B meson decays.

• Part II: Here we present in detail our results in analytical form for the calculation
of the NLL QCD contribution of the electromagnetic dipole operator to B̄ → Xsγγ.
In this part, we dealt with numerous loop and d-dimensional phase-space integrals for
which the calculation was made possible using the calculation techniques discussed in
part I. We published our corresponding results in Phys. Rev. D85 (2012) 014020
(arXiv:1110.1251 [hep-ph]).

• Part III: ”The B̄ → Xsγγ decay:
NLL QCD contribution of the Electromagnetic Dipole operator O7”; C12-05-21 Confer-
ence proceedings, hep-ph/1207.2397.
Presented at Flavor Physics and CP Violation (FPCP 2012), Hefei, China, May 21-25,
2012.

For completeness, we also include our contribution to the proceedings of the interna-
tional conference ”Flavor Physics and CP Violation (FPCP 2012), Hefei, China, May
21-25, 2012” where I have presented our results on the NLL QCD contribution of the
electromagnetic dipole operator to B̄ → Xsγγ.

• Part IV: This part is devoted to the study of charged current processes B → Dτν,
B → D∗τν and B → τν in a two Higgs doublet model of type III. Working, for simplicity,
with an MSSM like Higgs potential (which reduces the number of free parameters of
the model) we showed that a 2HDM of type III, which allows for FCNC interactions
at the tree level, with flavor violation in the up sector can account for the deviations
of B → D∗τν and B → τν from the SM predictions simultaneously without causing
conflict with other observables. Furthermore, it is also possible to bring B → τν
prediction into an agreement with experiment in a type-III 2HDM. We published our
corresponding results in Phys. Rev. D86 (2012) 054014 (arXiv:1206.2634 [hep-ph]).

• Part V: This last piece of the thesis deals with an extensive analysis of the flavor
observables in a general 2HDM (of type III). Scanning all relevant flavor observables,



we provided stringent constraints on the parameter-space of the model. Furthermore,
using the constraints we obtained, we gave upper bounds on the branching ratios of
the lepton flavor-violating neutral B meson decays (Bs,d → µe, Bs,d → τe and Bs,d →
τµ) and correlated the radiative lepton decays (τ → µγ, τ → eγ and µ → eγ) to
the corresponding neutral current lepton decays (τ− → µ−µ+µ−, τ− → e−µ+µ− and
µ− → e−e+e−). We published our corresponding results in Phys. Rev. D87 (2013)
094031 (arXiv:1303.5877 [hep-ph]).

In addition, I recently started a related calculation. Considering the decay channels of the
heavy Higgses (A0,H0 → t̄c) predicted by the 2HDM of type III together with the top quark
decay (t → h0c) to the light SM like Higgs, a detailed analysis of the decay rates for these
transitions in the type-III 2HDM is planned but not part of this thesis. This work is important
in the sense of testing the type-III 2HDM at the LHC.
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1 The Standard Model 9

1 The Standard Model

To the best of our knowledge, there exist four fundamental forces in nature: electro-magnetic,
weak, strong and gravitational forces. The SM of particle physics is believed to be the theory
of the first three forces, while it fails to incorporate gravity. All the matter in the universe
is found to be made of a few basic building blocks called fundamental particles, governed
by four fundamental forces as shown in Fig. 1. The recent cosmological observations by the
Planck satellite [1] further showed that we only know about 4.9% of our universe while we
do not currently know much about the rest, which is consisting of the so called dark matter
(26.8%) and dark energy (68.3%).

Figure 1: The basic ingredients of reality.

Developed in the late 1960s and early 1970s [2, 3, 4, 5, 6, 7], the SM has been powerful in
explaining almost all experimental results and accurately predicted a wide range of phenom-
ena. As an example, in Table 1 we illustrate the precision test of Quantum Electro Dynamics
(QED) through the quite successful determination of αem. In course of time and through
excessive experiments, the SM has become established as a well-tested theory in physics.
The great success of unifying the weak and electromagnetic forces into a single theory called
electroweak theory rewarded Abdus Salam, Sheldon Glashow and Steven Weinberg the no-
bel prize in physics in 1979. Beside, the prediction of the asymptotic freedom1 property of
Quantum-Choromo-Dynmamics (QCD) in the early 1970s was another big achievement of the
SM and rewarded David Politzer, Frank Wilczek and David Gross the nobel prize in physics
in 2004. The experimental confirmations of these predictions together with the discoveries
of the bottom quark in 1977, the W and Z in 1983, the top quark in 1995, the tau neutrino
in 2000 and the recent tentative discovery of the Higgs particle in 2012 at CMS and ATLAS
experiments has brought SM a great confidence and success.

Despite its enormous predictive power, the SM still stays to be inadequate to explain some
observed phenomena, which brings physicists to think that the SM is not complete and it
should be extended in its high energy sector. Some of the deficiencies of the SM can be
summarized as follows:

1Asymptotic freedom in QCD means that at sufficiently high energies, the coupling strength of quarks,
confined within hadrons, gets weaker to allow them move almost freely.
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QED experiments α−1
em

Low-energy QED

Electron (g − 2) 137.035 992 35 (73)

Muon (g − 2) 137.035 5 (11)

Muonium hyperfine splitting 137.035 994 (18)

Lamb shift 137.036 8 (7)

Hydrogen hyperfine splitting 137.036 0 (3)

23S1 − 13S1 splitting in positronium 137.034 (16)

1S0 positronium decay rate 137.00 (6)

3S1 positronium decay rate 136.971 (6)

Neutron compton wavelength 137.036 010 1 (54)

High-energy QED

σ (e+e− → e+e−e+e−) 136.5 (2.7)

σ (e+e− → e+e−µ+µ−) 139.9 (1.2)

Condensed matter

Quantum Hall effect 137.035 997 9 (32)

AC Josephson effect 137.035 977 0 (77)

Table 1: Table quoted from Ref. [8] showing the values of αem obtained from various precision
QED experiments. The shown values of αem are obtained by the fit of the experimental
measurement to the corresponding theory side where αem appears as a parameter. These
precision tests of the fine structure constant constitutes an evidence for QED to be a strongly
tested and enormously successful theory.

• The SM predicts massless neutrinos, while the the recent observation of neutrino oscil-
lations indicates that neutrinos do have mass.

• How can gravity be incorporated in the SM (super-gravity theories, string theory)?

• The SM is not capable of explaining the observed matter-anti matter asymmetry of the
universe. The Sakharovs three criteria cannot be accounted for within the context of
SM.

• Why is the gravity 1032 times weaker than the weak nuclear force (hierarchy problem)?

• There is no natural explanation why the θQCD parameter has to be small in the SM
(strong-CP problem).

• What is the reason for the electroweak sector of SM to be chiral (absence of right-handed
W couplings in the SM)?
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Generations SU(3)c SU(2)L U(1)Y U(1)Q

1 2 3 Rep. T2 T 3
2 Rep. Y Q

(

u
d

)

L

(

c
s

)

L

(

t
b

)

L

3
1/2
1/2

1/2
−1/2

2
1/6
1/6

2/3
−1/3

uR

dR

cR
sR

tR
bR

3
0
0

0
0

1
2/3

−1/3
2/3

−1/3

(

νe
e

)

L

(

νµ
µ

)

L

(

ντ
τ

)

L

1
1/2
1/2

1/2
−1/2

2
−1/2
−1/2

0
−1

eR µR τR 1 0 0 1 −1 −1

Table 2: Quark and lepton families of the SM and their transformation properties under the
gauge groups described.

In this chapter, we do not intend to give a thorough discussion of the SM, for which there
are many text books, notes or papers discussing it in detail. Instead, we will rather put our
focus on the particle content and parameters of the SM, the generation of masses via Higgs
mechanism as well as discuss Cabibbo-Kabayashi-Maskawa (CKM) matrix by mentioning the
present status of its entries. In the following considerations, we benefit from [9, 10, 11, 12].

1.1 Overview

As mentioned before, the SM of particle physics incorporates the strong, weak and electro-
magnetic interactions. In the group theory language, it is based on the gauge group

GSM = SU(3)c ⊗ SU(2)L ⊗ U(1)Y . (1)

where SU(3)c and SU(2)L ⊗U(1)Y stand for the strong and the unified electro-weak sectors,
respectively.

The SM includes 12 elementary fermions: 6-quarks and 6 leptons appearing in 3 families, 5
elementary bosons: 4 gauge bosons (γ, g,W±, Z)–the so called force carriers, and the Higgs.
Quarks carry color charges and form composite colorless states like baryons (qqq) or mesons
(qq̄), which belong to the larger set called hadrons. The quantum numbers (spin, charge,
color-charge, etc) which a particle carries determine the transformation properties of that
particle under the gauge transformations. In Eq. (1), SU(3)c only affects the particles having
color-charges (index c), SU(2)L acts only on the left handed fields while it leaves the right
handed ones unchanged and lastly the U(1)Y transformation operates on the fermion fields
according to their hypercharge quantum number Y .

In the SM there are 18 independent parameters2, which are not fixed by the model but only
determined experimentally. They are called the free parameters of the model and read:

• 3 couplings g, g′, gs (or alternatively e, sin θw, gs)

• 4 CKM parameters (3 angles and 1 phase)

2Actually, strictly speaking θQCD is a free parameter of QCD too, and so is sometimes considered to be the
nineteenth free parameter of the Standard Model.
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Boson SU(3)c Rep. SU(2)L Rep. Y Q Role

Bµ 1 1 - - U(1)Y gauge boson

Wµ 1 3 - - SU(2)L gauge bosons

Ga
µ 8 1 0 0 SU(3)c gauge bosons

φ =

(

φ+

φ0

)

L

1 2
1/2
1/2

1
0

Generation of masses

Table 3: Bosonic fields of the SM, their roles and the transformation properties under the
gauge groups described.

• 2 boson masses mZ and mH (the W± mass can be expressed in terms of mZ and θw)

• 6 quark masses : mu,md,ms,mc,mb,mt

• 3 lepton masses : me,mµ,mτ (no neutrino masses).

Table 2 and Table 3 presents a summary of the fermionic and bosonic content of the SM,
their corresponding quantum numbers together with the representation of the gauge group
they belong to.

1.2 Mass generation via Higgs mechanism

In physics, symmetries play a crucial role. According to Noether’s theorem, for every continu-
ous symmetry realized in a system there correspond a conserved quantity. For example, time
translation invariance of a system leads to conservation of energy, a global U(1) symmetry
of QED ensures the conservation of the electric charge (continuity equation), a local gauge
invariance guarantees the gauge bosons of QED (photon) and QCD (gluon) to be massless
and Lorenz invariance brings along the requirement that the speed of light should be a con-
stant, which is essential in special theory of relativity, etc. Beside these, the condition of
renormalizability is crucial as it makes a model more predictive. Writing down by hand mass
terms in the Lagrangian for the gauge bosons (or fermions) would explicitly break gauge sym-
metry, which is not desirable for the reasons discussed above. Hence, in 1967 Weinberg [3]
and Salam proposed to generate such mass terms via spontaneous symmetry breaking (SSB)3

by introducing a complex scalar SU(2)L Higgs doublet

Φ(x) =

(
φ+(x)
φ0(x)

)

, (2)

with the renormalizable Lagrangian

LΦ = (∂µΦ)
† (∂µΦ)− V (Φ),

V (Φ) = −µ2Φ†Φ+ λ
(

Φ†Φ
)2
,

(3)

3In fact, SSB is not restricted to gauge symmetries. It can be considered as a subtle way to break a
symmetry by still requiring that the Lagrangian remains invariant under the symmetry transformation while
the ground state of the system is not invariant i.e. not a singlet under the symmetry transformations.
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where λ > 0 (such that the potential is bounded from below) and µ is a real parameter
(µ2 > 0). In order to keep the local gauge invariance of the Lagrangian intact, one replaces
the derivative ∂µ by a covariant derivative of the form

∂µ −→ Dµ = ∂µ + igT a
2W

a
µ + ig′Y Bµ . (4)

The corresponding potential develops a minimum when Φ†Φ = µ2

2λ (see Fig. 2) which leads to
a constant field configuration of the form

Φ~δ
= eiδ

iT i
2

(
0
v

)

, (5)

where v = µ/
√
2λ (∼ 174GeV). Since these are infinitely many ground state configurations,

one of them has to be chosen spontaneously.

Figure 2: Shape of the scalar potential V (Φ) for the choices µ2 < 0 (left) and µ2 > 0 (right).

There is an infinite number of ground states each with the same lowest energy, i.e. we have
a degenerate vacuum. The symmetry breaking occurs in the choice made for the value of ~δ
which represents the ”true” vacuum. For a fixed vector ~δ e.g. ~δ = 0, Eq. (5) is not invariant
under SU(2)L transformations, which spontaneously break the symmetry. For convenience
let us work in unitary gauge4 and choose the Higgs doublet to have the form (~δ = 0)

Φ(x) =

(
0

χ(x)

)

, such that 〈0|Φ(x)|0〉 =
(

0
v

)

. (6)

It is trivial to see that this is not invariant under gauge transformations while invariant under
QED gauge group U(1)Q transformations:

eiα(x)Q
(

0
v

)

=

(
0
v

)

=⇒ Q|0〉 = 0 , (7)

where the generator of U(1)Q group is given by Q = T 3
2 + Y . This means that the original

SU(2)L⊗U(1)Y symmetry of the Lagrangian is not completely broken after the choice of the
”true” vacuum but breaks down to U(1)Q and hence this shows that SM incorporates QED.

4In this gauge the unphysical Goldstone bosons fields are set to zero. Namely, they reappear as the
longitudinal degrees of freedom of the massive gauge bosons.
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To see how to get mass terms for the gauge bosons, let us expand Φ(x) around its vacuum
expectation value as (in unitary gauge)

Φ(x) = Φ0 +Φ′(x) =

(

0

v + H(x)√
2

)

with Φ0 =

(
0
v

)

. (8)

The field H above corresponds to the physical Higgs field and has zero vacuum expectation
value.

Expressing the Lagrangian in Eq. (3) in terms of the physical gauge fields

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
, Zµ =

1
√

g2 + g′2

(
gW 3

µ − g′Bµ

)
,

Aµ =
1

√

g2 + g′2

(
g′W 3

µ + gBµ

)
(9)

gives

DµΦ =

(

∂µ +
ig

2

(
W 3

µ

√
2W−

µ√
2W+

µ −W 3
µ

)

+
ig′

2
Bµ

)(

0

v + H√
2

)

, (10)

such that

LΦ =
1

2
(∂µH)2 − µ2H2 +

g2v2

2
W−

µ W
µ+ +

g2v2

4 cos2 θw
ZµZ

µ + 0 � AµA
µ

+ interaction terms , (11)

from which we can immediately read the boson masses to be

mW =
gv√
2
, mZ =

gv√
2 cos θw

mH =
√
2µ = 2v

√
λ e = g sin θw and mW/mZ = cos θw , (12)

where θw is the weak mixing angle. As can be seen, we do not have a mass term for the
photon field Aµ, which in fact has to be so in order to respect the U(1)Q gauge symmetry of
QED.

Lastly, we turn to the mass generation of the fermion fields. For this aim, we consider
a renormalizable and gauge invariant Yukawa Lagrangian involving Higgs-fermion-fermion
couplings in the following form

LYukawa = −yeēRΦ†
(
νe
e

)

L

− ydd̄RΦ
†
(
u
d

)

L

− yuūR
(
ǫTΦ⋆

)†
(
u
d

)

L

+ h.c. , (13)

where Φ⋆ has a hypercharge quantum number of−1/2 and the matrix ǫ = −2iT 2
2 =

(
0 −1
1 0

)

is constructed such that ǫTΦ⋆ transforms in the same way as Φ which keeps the SU(2)L sym-
metry intact. The factors ye, yd, and yu describe the Yukawa couplings in the one-family
model, which can be taken to be real and positive. Plugging the Higgs doublet in Eq. (8) into
Eq. (13) and considering only the Φ0 part gives

LΦ0

Yukawa = −yev ēe− ydv d̄d− yuv ūu , (14)
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and thus the fermion mass terms read

mu = yu v , md = yd v , me = ye v . (15)

Considering further the physical Higgs H(x) couplings in the Lagrangian gives similar terms
as well, which implies that the coupling of the SM Higgs to massive fermions is proportional
to their masses.

1.3 The CKM quark mixing matrix

Promoting the spontaneous symmetry breaking mechanism to all three generations works
just the same way as we saw in the previous section but with the difference that the mass
terms are now 3 × 3 matrices which are not diagonal in flavor space. Diagonalizing these
terms will require the fields to be rotated which in turn will render certain interaction terms
non-diagonal.

The Yukawa Lagrangian involving all three generations can be written as

LSM
Yukawa =− (ē, µ̄, τ̄)R Y

ℓ











Φ†
(
νe
e

)

L

Φ†
(
νµ
µ

)

L

Φ†
(
ντ
τ

)

L











−
(
d̄, s̄, b̄

)

R
Y d











Φ†
(
u
d

)

L

Φ†
(
c
s

)

L

Φ†
(
t
b

)

L











− (ū, c̄, t̄)R Y
u











(
ǫTΦ⋆

)†
(
u
d

)

L
(
ǫTΦ⋆

)†
(
c
s

)

L
(
ǫTΦ⋆

)†
(
t
b

)

L











+ h.c.

(16)

Here, the Yukawa couplings Y ℓ, Y u and Y d are now arbitrary complex 3×3 matrices in flavor
space. Plugging the Higgs doublet in (8) into Eq. (16) and considering only the Φ0 part gives

L
SM
mass = − (ē, µ̄, τ̄)RMl





e
µ
τ





L

−
(
d̄, s̄, b̄

)

R
Md





d
s
b





L

−(ū, c̄, t̄)RMu





u
c
t





L

+h.c. , (17)

from which the 3× 3 mass matrices are extracted to be

Ml = v Y ℓ, Mu = v Y u, Md = v Y d. (18)

We need to diagonalize these mass matrices in order to arrive at the physical masses measured
at experiments, which can be achieved by a bi-unitary transformation of the form U †MV =
Mdiag., with U and V themselves being unitary such that all entries inMdiag. are non-negative
and real. The wave function rotations, which absorbs the diagonalization matrices, necessary
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to arrive at the physical basis (primed) are defined as




e
µ
τ





L

=Vl





e′

µ′

τ ′





L

,





e
µ
τ





R

= Ul





e′

µ′

τ ′





R

,





u
c
t





L

=Vu





u′

c′

t′





L

,





u
c
t





R

= Uu





u′

c′

t′





R

, (19)





d
s
b





L

=Vd





d′

s′

b′





L

,





d
s
b





R

= Ud





d′

s′

b′





R

.

For what concern the Lagrangian, expressing the flavor eigenstates in terms of the mass
eigenstates we see that the kinetic terms stay the same except for the exchange of the unprimed
fields with the primed ones since the unitary rotation matrices cancel each other. A similar
situation is also valid for the couplings of the photon or the Z boson to fermions which leads
the neutral currents to stay diagonal i.e. flavor-changing neutral currents (FCNC) to be absent
at the tree level in SM. For massless neutrinos, as we do not have a mass matrix that needs
to be diagonalized, there is the freedom to rotate the neutrino fields with Vl as in (19) such
that in the W± couplings involving the lepton fields we do not see rotation matrices. On the
other side, considering the charged current interaction with quarks, we see that these rotation
matrices form products which leads to the unitary Cabbibo-Kobayashi-Maskawa quark mixing
matrix

VCKM = V †
uVd =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (20)

The appearance of this matrix in the charged quark currents has an important consequence:
In contrast to the flavor eigenstate basis, the flavor changes can now also cross generations.

As VCKM is a unitary 3× 3 matrix we expect that it has nine real parameters. However, five
of them can be rotated away by suitable phase transformations on the fields that leave the
rest of the Lagrangian invariant and thus only four of these, namely three angles and one
phase, remain physical5.

A standard parametrization for the CKM-matrix was introduced in [15] and is obtained as a
product of three rotation matrices, characterized by the three Euler angles θ12, θ13 and θ23,
and an overall phase δ 6:

VCKM =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12s23s13e

iδ −c12s23 − c12s23s13e
iδ c23c13



 , (21)

with cij = cos θij and sij = sin θij. The advantage of this parametrization is that the mixing
angles are directly related to whether two generations mix, i.e. if a given mixing angle vanishes,
there is no mixing between the corresponding generations.

5In the case of N generations, one would have (N − 1)2 physical parameters which are N (N − 1) /2 Euler
angles and (N − 1) (N − 2) /2 complex phases.

6This phase is the central source for all of the CP violation occurring in the SM.
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Another popular parametrization was proposed by Wolfenstein in [16] with four parameters
A,λ, ρ and η. It uses λ = |Vus| ≈ 0.22 as an expansion parameter by which each matrix
element is expanded. Phenomenology tells us that c13 and c23 are O(1). Making further the
following definitions (A ∼ O(1))

s23 = Aλ2 = λ

∣
∣
∣
∣

Vcb
Vus

∣
∣
∣
∣
,

s12 = λ ,

s13e
iδ = Aλ3(ρ+ iη) = V ⋆

ub ,

(22)

the Wolfenstein parametrization of the VCKM takes the form

VCKM =






1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1




+O

(
λ4
)
, (23)

which ensures ρ̄+ iη̄ = − (VudV
⋆
ub) / (VcdV

⋆
cb) for

ρ+ iη =
(ρ̄+ iη̄)

√
1−A2λ4√

1− λ2 [1−A2λ4 (ρ̄+ iη̄)]
.

It can be seen that the entries get smaller as moving away from the diagonal which implies that
the W -coupling is stronger in the diagonal while gets suppressed as the flavors are apart from
each other. The unitarity of the CKM matrix (VCKMV

†
CKM = V †

CKMVCKM = I3×3) generates
several useful orthogonality and orthonormality relations. The most commonly used unitarity
triangle arises from the relation

VudV
⋆
ub + VcdV

⋆
cb + VtdV

⋆
tb = 0 , (24)

by dividing each side by VcdV
⋆
cb. This results in the three unitarity angles as

α = arg

(

− VtdV
⋆
tb

VudV
⋆
ub

)

, β = arg

(

−VcdV
⋆
cb

VtdV
⋆
tb

)

,

γ = arg

(

−VudV
⋆
ub

VcdV
⋆
cb

)

, (25)

which are physical and can be independently constrained from B meson decays.

The current best fit to the CKM parameters according to CKM-fitter group read [17]

A = 0.802+0.048
−0.025 , λ = 0.2254+0.0013

−0.0027 ,

η̄ = 0.343+0.043
−0.037 , ρ̄ = 0.140+0.059

−0.049 ,

α =
(
90.5+9.6

−7.7

)◦
, β =

(
21.7+2.4

−1.9

)◦
,

γ =
(
67.7+7.6

−9.1

)◦
, (26)

leading to

VCKM ≈





0.97 0.23 0.0014 − i0.0032
−0.23 0.97 0.04

0.008 − i0.003 −0.040 − i0.001 1



 . (27)
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Finally, we would like to conclude this chapter by giving the present SM constraints on the
CKM parameters based on a global fit result7 as illustrated in Fig. 3.

γ

γ

α
α

dm∆
Kε

Kε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2

excluded at C
L > 0.95

α

βγ

ρ
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-0.5
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0.5

1.0

1.5
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Summer 12

CKM
f i t t e r

Figure 3: Plot taken from Ref. [17] showing the updated SM constraints (the regions com-
patible with experiment are superimposed on each other at 95% CL) on the ρ̄− η̄ plane from
various measurements and the global fit result.

2 Two-Higss-doublet models

The two-Higgs-doublet-models (2HDMs) are simple extension of the SM with a limited number
of additional free parameters. As we have seen in Eq. (13) of Sec. 1, in the SM one uses the
same scalar doublet Φ to couple the right-handed up- and down-type quarks to the left-
handed fermion doublets. This is done using the fact that the combination ǫTΦ⋆ transforms
in the same way as Φ, which keeps the SU(2)L symmetry intact, and that the scalar doublets
coupling to right-handed up- and down-type quarks have opposite hypercharge quantum
numbers [19].

In 2HDMs, one introduces a second complex SU(2) Higgs doublet and obtains five physical
Higgs particles. Assuming a CP conserving Higgs potential one gets: two neutral CP -even
Higgses H0, h0, a neutral CP -odd Higgs A0 and two charged Higgses H±.

7Global fit implies using all available measurements and imposing the SM constraints. The analogous fit
results on the CKM parameters can also be seen from the online update of UTfit group [18].
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Depending on the couplings of the Higgs doublets to the quarks, different versions of the
2HDM were named [20]. A type-I model describe the coupling of both up and down-type
quarks to the same doublet (Hu), whereas the other doublet (Hd) does not couple to any
quark. In a type-II model, one doublet (Hd) couples only to down type quarks whereas the
second one (Hu) only couples to up type quarks, and in a type-III 2HDM both scalar doublets
are assumed to couple to both type of quarks. Beside that, there are several other versions
of 2HDMs such as lepton-specific, flipped, inert or Aligned [21] models etc. For a thorough
discussion of 2HDMs, we refer the reader to see e.g. a recent comprehensive review by [22] or
[23].

The early history concerning the formulation of 2HDMs can be summarized as follows [24]:

• The first formulation of a 2HDM comes by T. D. Lee in 1973 [25] with the motivation to
find extra sources of CP violation. He uses the fact that in a model with two doublets
the vacuum could break the CP symmetry spontaneously [22].

• S.L. Glashow and S. Weinberg in 1977 [26] put forward the idea of natural flavor con-
servation stating that the tree-level flavor-changing-neutral Higgs interactions can be
avoided if fermions of a given quantum number couple to at most one of the Higgs
doublets.

• N.G. Deshpande and E. Ma in 1978 [27] showed that in order to keep the U(1)em
symmetry intact, the parameters of the Higgs potential should lie in an appropriate
region of parameter space.

• H.E. Haber, G.L. Kane and T. Sterling in 1979 [28] invented the 2HDM of type-I in
which one Higgs doublet couples to up and down-type quarks at the same time, while
the other Higgs doublet does not couple to the quarks at all.

• J.F. Donoghue and L. F. Li in 1979 invented the 2HDM of type-II [29] in which one
Higgs doublet couples to down-type quarks and the other Higgs doublet couples to
up-type quarks.

• L.J. Hall and M.B. Wise in 1981 invented the type-I and type-II terminology [30].

• T.P. Cheng and M. Sher in 1987 [31] founded the first realistic type-III 2HDM in which
all possible Higgs-fermion couplings are allowed.

Among these types, the 2HDM of type-II is the most studied one since it shares many features
with the Higgs sector of the super-symmetric models (like MSSM) [22]. Hence, in the following
considerations we would like to focus on the type-II model by examining its Higgs sector and
the Yukawa structure8.

The gauge invariant and renormalizable (allowing at most quartic couplings of the Higgs
fields) scalar potential of a 2HDM (motivated by the corresponding MSSM Higgs potential)

8The more general type-III 2HDM will be discussed first briefly in Part IV and later in more detail in Part
V of this thesis.
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can be written as9 [32]:

V (Hu,Hd) = m2
Hd

|Hd|2 +m2
Hu

|Hu|2 +
λ1
2

(

H†
dHu

)(

H†
uHd

)

+
λ2
8

(

|Hu|2 − |Hd|2
)2

+
(

b
(
ǫTH⋆

d

)†
Hu + h.c.

)

, (28)

where the Higgs doublets read

Hd =




H1

d

H2
d



 =




H̃0

d

H−
d



 ,

Hu =




H1

u

H2
u



 =




H+

u

H̃0
u



 .

(29)

Minimizing this potential yields 〈Hu〉 =
(

0
vu

)

and 〈Hd〉 =
(
vd
0

)

with vu = sinβv, vd =

cos βv such that tan β = vu/vd is the ratio of these vev’s. After expanding around these
minima the Higgs doublets take the form:

Hd =




H1

d

H2
d



 =




vd +H0

d

H−
d



 with H0
d = ρd + iηd ,

Hu =




H1

u

H2
u



 =




H+

u

vu +H0
u



 with H0
u = ρu + iηu .

(30)

After SSB, plugging the doublets given in Eq. (30) into Eq. (28) gives

V = m2
Hd

[
(vd + ρd + iηd) (vd + ρd − iηd) +H+

d H
−
d

]

+ m2
Hu

[
(vu + ρu + iηu) (vu + ρu − iηu) +H+

u H
−
u

]

+
λ1
2

[(
(vd + ρd − iηd)H

+
u + (vu + ρu + iηu)H

+
d

) (
(vd + ρd + iηd)H

−
u + (vu + ρu − iηu)H

−
d

)]

+
λ2
8

[
H+

u H
−
u −H+

d H
−
d + (vu + ρu + iηu) (vu + ρu − iηu)− (vd + ρd + iηd) (vd + ρd − iηd)

]2

+ b
[
H+

u H
−
d +H−

u H
+
d − (vu + ρu + iηu) (vd + ρd + iηd)− (vu + ρu − iηu) (vd + ρd − iηd)

]
.

(31)

At this stage, setting to zero the derivatives of the potential in Eq. (31) with respect to the
real parts of the neutral up and down components as ∂V /∂ρu = ∂V /∂ρd = 0 allows us to

9This choice of the potential assumes a discrete Z2 symmetry (with Hu → −Hu and all other SM fields
are unaffected) which eliminates quartic terms odd in either of the doublets [22] such that it avoids dangerous
CP violation due to the potential itself, while leaving a b-term (dimension-two term) to break this symmetry
softly. The b-term is known as soft-supersymmetry breaking scale. Moreover, with appropriate requirements
on the parameters involved (such as vu,d > 0 etc.), this potential induce a correct SSB leaving U(1)em intact
as desired [32].
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relate some of the parameters in the potential to the vev’s (vu,d) in the following way10

m2
Hu

= b
vd
vu

+
λ2
4

(
v2d − v2u

)
, m2

Hd
= b

vu
vd

+
λ2
4

(
v2u − v2d

)
. (32)

Working out explicitly all quadratic terms together with the mixing terms of the fields in
Eq. (31) define the corresponding mass matrices in the following way:

LHiggs
mass = LH±

u ,H±

d
mass + Lρu,ρd

mass + Lηu,ηd
mass , (33)

where the individual pieces read:

LH±
u ,H±

d
mass = −

(

b+
λ1v

2

4
sin (2β)

)
(
H−

u ,H
−
d

)
(
cot β 1
1 tan β

)(
H+

u

H+
d

)

,

Lρu,ρd
mass = − (ρu , ρd)

(

b cot β + λ2v2

2 sin2 β −b− λ2v2

4 sin (2β)

−b− λ2v2

4 sin (2β) b tan β + λ2v2

2 cos2 β

)

︸ ︷︷ ︸

Mρu,ρd

(
ρu
ρd

)

,

Lηu,ηd
mass = − (ηu , ηd)

(

b cot β b

b b tan β

)(
ηu
ηd

)

. (34)

As can be seen, these mass matrices squared are symmetric and real valued. Thus, it is
possible to diagonalize them by orthogonal 2× 2 matrices (OT = O−1), which corresponds to
perform field transformations of the form:

(
H1

u

H2⋆
d

)

=

(
H+

u

H+
d

)

=

(
cos β − sin β
sin β cos β

)(
H+

G+

)

,

(
ρu
ρd

)

=
1√
2

(
cosα sinα
− sinα cosα

)(
h0

H0

)

,

(
ηu
ηd

)

=
1√
2

(
cos β − sin β
sin β cos β

)(
A0

G0

)

. (35)

These transformations project the old fields (H±
u,(d)

, ρu,d, ηu,d) onto the physical (H
±, h0,H0, A0)

and un-physical Goldstone boson (G±, G0) mass eigenstates in the following way:

H0
u = ρu + iηu =

1√
2

(
H0 sinα+ h0 cosα+ iA0 cos β − i sin βG0

)
,

H0
d = ρd + iηd =

1√
2

(
H0 cosα− h0 sinα+ iA0 sinβ + i cos βG0

)
,

H1
u = H+

u = cos β H+ − sin βG+ ,

H2
d = H−

d = sin β H− + cos βG− , (36)

where α is the mixing angle necessary to diagonalize the neutral CP-even Higgs mass matrix
(see e.g. [33]) and β is the rotation angle11 doing the same job for the corresponding charged

10At the minimum, all the components of the doublets are set to zero as H±
u = H±

d = ρu,d = ηu,d = 0.
11Since vu,d > 0, β can be chosen to lie in the range β ∈ [0, π/2].
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scalars and of the CP -odd Higgses. These angles are important phenomenologically since
they define the interactions of various Higgses with fermions and gauge bosons [22].

Diagonalization of the mass matrices given in Eq. (34) results in the following mass terms for
the physical and the Goldstone boson fields12:

m2
H± =

2b

sin 2β
+
λ1v

2

2
, m2

G± = 0, m2
A0 =

2b

sin 2β
, m2

G0 = 0 ,

m2
H0,h0 =

1

2

(

m2
A0 +

λ2v
2

2
±
√
(
m2

A0 − λ2v2/2
)2

+ 2λ2v2m2
A0 sin

2 2β

)

. (37)

Next, the gauge boson masses simply follow from the Higgs kinetic terms

Lkinetic = (DµHu)
† (DµHu) + (DµHd)

† (DµHd) , (38)

with Dµ and Hu,d being defined as in Eq. (10) and Eq. (30), respectively. Working out
explicitly the quadratic terms in the gauge fields, we find

m2
W =

g2(v2u + v2d)

2
, m2

Z =
(g2 + g′2)(v2u + v2d)

2
, m2

γ = 0 , (39)

where v2u+v
2
d plays the role of v

2 in the SM and is therefore fixed at v2u+v
2
d = v2 ≈ (174GeV)2.

Furthermore, using the orthogonal matrix given in the second line of Eq. (35) and setting to
zero the non-diagonal entries of the matrix product

(
cosα sinα
− sinα cosα

)T

Mρu,ρd

(
cosα sinα
− sinα cosα

)

, (40)

allows us to relate the angles α and β as

tan (2α) = − 2Mρu,ρd
12

Mρu,ρd
11 −Mρu,ρd

22

. (41)

With little bit algebra this yields

tan (2α) =
2m2

A0 + λ2v
2

2m2
A0 − λ2v2

tan (2β) . (42)

This equation has a unique solution for α, if α is restricted to be in the range α ∈ [−π/2, 0].
Using the SUSY conditions λ1 = g2 and λ2 = g2 + g′2 (see e.g. [23] for the corresponding
discussion), Eq. (42) can further be expressed as

tan (2α) =
m2

A0 +m2
Z

m2
A0 −m2

Z

tan (2β) =
m2

H0 +m2
h0

m2
A0 −m2

Z

tan (2β) . (43)

Having derived all these relations above, we can now look at some useful limit of them. In
the phenomenologically interesting limit of large tan β and v2 = v2u + v2d ≪ m2

A0 , it is easy to

12Being directly proportional to the soft SUSY breaking scale b, the masses of H±, A0 and H0 are a priori
assumed to be large compared to the SM like Higgs h0 mass.
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see from Eq. (37) that all the heavy Higgs masses become equal (mH0 ≈ mH± ≈ mA0 ≡ mH)
and additionally the following useful relation between the angles α and β exist13

cotα ≃ − tan β ,

when choosing α to be in the range α ∈ [−π/2, 0].
As a result, under these assumptions, the degrees of freedom of the model reduce drastically
and thus the type-II 2HDM would only have two free parameters to be fixed via experiment:
tan β and mH .

As a next step, let us discuss the Yukawa Lagrangian of the type II model. Following the no-
tations used in Ref. [34] the Lagrangian governing the Yukawa interactions, in the electroweak
basis, reads

LY = Q̄a
f L

[

Y d ew
fi ǫbaH

b⋆
d

]

di R + Q̄a
f L

[

Y u ew
fi ǫabH

b⋆
u

]

ui R + h.c. . (44)

Here a, b denote SU(2)L - indices, ǫab is again the two-dimensional antisymmetric tensor with
ǫ12 = −1. Writing Eq. (44) down explicitly in component form and after performing the
wave-function rotations necessary to arrive at the physical basis with diagonal quark mass
matrices, the Yukawa Lagrangian takes the form:

LY = − d̄f L

[(
mdi

vd
δfi

)

H0⋆
d

]

di R − ūf L

[(
mui

vu
δfi

)

H0⋆
u

]

ui R

+ ūf LV
CKM
fi

(
mdi

vd

)

H+
d di R + d̄f LV

⋆CKM
if

(
mui

vu

)

H−
u ui R + h.c. . (45)

Here, mqi are the physical running quark masses, H±
q and H0

q are the components of the
Higgs doublets as given in Eq. (30). These Higgs fields can be replaced by the corresponding
mass eigenstates using Eq. (36). As can be seen, there is no flavor-changing-neutral Higgs
interactions at the tree-level in 2HDM of type II so it is a model which respect natural flavor
conservation.

In part IV and part V of this thesis, we will analyze the flavor phenomenology of the type-III
2HDM. We will see that the type II model discussed above will not be competent to explain
some recent experimental data and thus one has to work with more general models. In the
2HDM of type III, in addition to the number of free parameters of the type II model, we
will have extra free parameters, the so called non-holomorphic couplings ǫfij, which generates

FCNC transitions at the tree-level14 .

Before closing this chapter, we would like to make a final remark concerning the choice of the
Higgs potential. In fact most phenomenological studies of 2HDMs makes several simplifying
assumptions. In order for distinguishing between scalar and pesudoscalar particles, it is usu-
ally assumed that the Higgs sector respect CP symmetry (a CP -conserving Higgs potential)
[22] as we also did in writing the Higgs potential in Eq. (28). Moreover, a non-vanishing b
term in Eq. (28) would allow a finite FCNC at one-loop level indicating FCNCs to be small15

[35].

13For large values of tan β this relation implies; sin β → 1, cos β → 0, sinα → 0 and cosα → 1.
14There is a straightforward correlation between the type-II and type-III models. The results obtained in a

type III model are more general and one can simply translate these results to the results of type II model by
setting all ǫfij textures (see Part V for the corresponding discussion) to zero.

15FCNCs can be avoided if the same Higgs multiplet is used to couple all fermions sharing the same quantum
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3 Effective field theory approach

In physics, an effective field theory is described as the theory that contains the appropriate
degrees of freedom to describe physical phenomena occurring at a chosen energy scale, while
ignores the degrees of freedom at higher energies (or, equivalently, shorter distances). If we
want to examine a specific physical system within the great features of the surrounding nature,
we need to isolate some parts of the system from the others. By doing so, we would get a
description adapted to that particular system without trying to learn everything related to
it. The basic idea for doing that is to specify the relevant parameters which are assumed to
be adequate to describe the physics at the chosen energy scale [37].

W (q)

cb

ū

d

cb

d

ū

Oeff.

Figure 4: Left: Quark level b → cdū transition in the full SM. Right: b→ cdū transition in
the effective theory framework governed by local effective operators.

Applied to Feynman diagrams this approach means to identify the light and the heavy particles
in a given diagram and to study the dynamics of the diagram after integrating out the heavy
scales, which is formally performed within the concept of operator product expansion (OPE)
introduced by Wilson in 1969 [38]. This way the heavy scales are treated as frozen-static
sources and the physics describing them is absorbed in the so called Wilson coefficients (short
range) while the low energy effects are hidden inside effective operators (long ranges). To
illustrate the construction of such an effective theory let us take the simple tree-level b→ cdū
transition depicted in the left frame of Fig. 4. The SM amplitude for this transition is

ASM = −i
(−ig2√

2

)2

VcbV
∗
ud

gµν − qµqν

m2
W

q2 −m2
W

(
d̄γµLu

)
(c̄γνLb) , (46)

where q refers to the momentum transfer through the W . Since q ∼ O(mb) ≪ mW , it is
possible to expand the W -propagator in q2/m2

W as

gµν − qµqν

m2
W

q2 −m2
W

= − gµν

m2
W

+O
(
q2

m4
W

)

, (47)

numbers (thus capable of mixing) [22]. According to Paschos-Glashow-Weinberg theorem (see [22] and refer-
ences therein), ”a necessary and sufficient condition for controlling the presence of FCNC at the tree-level is
that all fermions of a given charge and helicity transforms according to the same irreducible representation of
SU(2), correspond to the same eigenvalue of T 3

2 and that a basis exist in which they receive their contributions
in the mass matrix from a single source”. In the 2HDMs, this can be achieved by imposing discrete (like Z2

symmetry) or continues symmetries (like Peccei-Quinn symmetry [36]).
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Plugging Eq. (47) into Eq. (46) gives rise to series of local operators of ascending mass
dimension

ASM =
−ig22
2

VcbV
∗
ud

[
1

m2
W

(
d̄γµLu

)
(c̄γµLb)

︸ ︷︷ ︸

dim-6 operator

+
1

m4
W

(...........)
︸ ︷︷ ︸

dim-8 operator

+ . . .

]

. (48)

The operators with mass dimension higher than 6 are suppressed by appropriate inverse
powers of m2

W . For example a dimension-8 operator would have a suppression factor of
m2

b/m
2
W relative to a dimension-6 one. Hence, neglecting the higher dimensional operators in

Eq. (48) allows us to construct an effective amplitude of the form

Aeff =
−ig22
2

VcbV
∗
ud

1

m2
W

(
d̄γµLu

)
(c̄γµLb) , (49)

which is equivalent to throw away the O
(
q2/m4

W

)
terms in the full SM side in Eq. (47). As

we have seen, integrating out the W in the SM resulted in a local four fermion interaction
operator on the effective theory side (pictorially shown in the right frame of Fig. 4).

In the next subsection, we will briefly illustrate how to do matching for the electromagnetic-
dipole operator O7, which is the most important operator throughout this work, by taking
into account the b→ sγ decay at the lowest order in QCD, i.e., α0

s. Therefore, before closing
this section let us give the effective Hamiltonian Heff governing the b→ sγ (b→ sg, b→ sγγ)
decay(s)16. After integrating out the heavy particles in the SM we have

Heff =
4GF√

2

[
2∑

i=1

Ci(µ) (λcOc
i (µ) + λuOu

i (µ))− λt

8∑

i=3

Ci(µ)Oi(µ)

]

, (50)

where λq = VqbV
⋆
qs and the set of dimension-6 operators read [41]:

O1 = (s̄LγµT
acL) (c̄Lγ

µTabL) , O2 = (s̄LγµcL) (c̄Lγ
µbL) ,

O3 = (s̄LγµbL)
∑

q(q̄γ
µq) , O4 = (s̄LγµT

abL)
∑

q(q̄γ
µTaq) ,

O5 = (s̄LγµγνγρbL)
∑

q(q̄γ
µγνγρq) , O6 = (s̄LγµγνγρT

abL)
∑

q(q̄γ
µγνγρTaq) ,

O7 = e
16π2 (s̄σ

µν [m̄bR+ m̄sL] b)Fµν , O8 = gs
16π2 (s̄σ

µν [m̄bR+ m̄sL]T
ab)Ga

µν .

(51)

The symbols T a (a = 1, 8) denote the SU(3) color generators; gs and e, the strong and
electromagnetic coupling constants. In Eq. (51), m̄q are the running quark masses in the
MS-scheme at the renormalization scale µ. When the aim is to compute the decay rates (but
not the CP violation effects), concerning the decays b → sγ, b → sγγ and b → sg, one can
make use of the hierarchy VubV

∗
us ≪ VtbV

∗
ts to further simplify Eq. (50).

3.1 Matching procedure

The idea of doing matching lies in the calculation of the transition amplitude of corresponding
process both in the full and in the effective theory and then extracting the corresponding
Wilson coefficients after confronting both results. For this aim, let us consider the quark-level
b→ sγ decay at the lowest order in QCD and try to extract in the effective theory the Wilson

16For a detailed discussion of the derivation of the Hamiltonian for these transitions see e.g. [39, 40].
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coefficient C7 associated with the electro-magnetic dipole operator O7 (see e.g. [42] for a
two-loop matching of the dipole operators; matching procedures of other operators such as
the chromo-magnetic dipole operator O8 or current-current operators O1,2 can be found e.g.
in [9, 10, 11, 43, 44]). For a detailed discussion of this procedure and the extraction of all
Wilson coefficients we refer to [39, 40].

In lowest order of QCD, the relevant diagram17 for b → sγ is given by Fig. 5 with t and
c-quarks circulating in the loop. The diagram with an internal u-quark circulating in the loop
is proportional to λu = VubV

⋆
us which is much smaller in magnitude than the corresponding

top and charm loop contributions and thus can be safely neglected. Therefore, there remain
two cases to consider: i-) the graphs with internal top–loop and ii) the ones with internal
charm–loop.

b(pb) t, c
s(ps)

γ(q)

W−(k)

b(pb)
c

s(ps)

γ(q)

W−(k)

Figure 5: Diagrams contributing to b → sγ in the full theory according to HME. The bold
lines describe the sub-graphs which should be expanded in their external momenta and masses.
In the right frame, the loop-momentum k flowing through the W -line should be treated as an
external momentum and thus an expansion of the W propagator in k should be considered.

Let us tackle the former case first. In this case, since all internal scales (mt, mW ) are heavy
and the external momenta (pb, ps) are of O(mb), one can naively Taylor expand the occurring
propagators in the light scales pb, ps, mb and ms. For the top-quark propagator involving pb
this would simply imply to make the following geometric expansion

1

(k + pb)2 −m2
t

=
1

k2 −m2
t

∑

n≥0

(

−p
2
b + 2kpb
k2 −m2

t

)n

, (52)

and same expansion holds for the propagators involving ps. The top-loop diagram, where the
photon is emitted from the internal top quark, alone turns out to develop a 1/ε singularity.
However, combined with the other three diagrams where the photon is emitted from the W ,
b or s-quark18, the total top-loop amplitude At

total gives a finite result.

Now, we turn to the calculation of the diagrams where an internal c quark is propagating in
the loop. According to the heavy-mass-expansion (HME) rules defined in [45, 46], there are
two types of (sub)diagrams that we should calculate in this case. The first one is the full

17We work in the unitary gauge such that we do not have additional non-physical Higgs interactions.
18In fact, gauge invariance already determines the structure of the result. To make the job simpler, it can

be adequate just to calculate the sum of two diagrams where γ is emitted from the internal top and from
W , which are the only ones contributing to ǫ.pb structure while the remaining two-diagrams contribute to /ǫ
structure. Eventually, matching the ǫ.pb structures in the full and the effective theory enable us to fix C7.
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diagram where the corresponding propagators are again expanded in a naive way in the light
external momenta and masses (pb, ps, mb, mc and ms). In addition, due to the light mass of
the c-quark compared to mt, we need to consider a second type of diagram (subdiagram) as
shown in the right frame of Fig. 5. In this case, the momentum of the W is considered as an
external one and thus the W propagator should also be expanded in the loop momentum k
as

1

k2 −m2
W

= − 1

m2
W

[

1 +
k2

m2
W

+O
(

1

m4
W

)]

. (53)

However, performing the relevant algebra the calculations show that for an on-shell photon
(q2 = 0) the contribution shown in the right frame of Fig. 5 vanishes and one only gets a
contribution from the naively expanded full diagrams with an internal c-quark circulating in
the loop (left frame of Fig. 5).

Therefore, summing up all the non-vanishing contributions from the top and charm-loop
amplitudes we arrive at the following finite result for the complete SM amplitude19 in the
leading order of QCD

Afull = i
4GF λt√

2

e

16π2
x

24

[−8x3 + 3x2 + 12x− 7 + (18x2 − 12x)ln(x)

(x− 1)4

]

︸ ︷︷ ︸

(54)

× ū(ps)2
[
R(/ǫ(q)(m2

b +m2
s)− 2mb pb.ǫ(q)) + L (2mbms/ǫ(q)− 2ms pb.ǫ(q))

]
u(pb) ,

where x is given by x = m2
t/m

2
W .

Having completed the calculation on the full theory side, now we can turn to effective theory
framework and identify all the operators involved in the transition b → sγ. At the leading
order in αs, the contributions from the operators O1 and O3 −O6 vanish as their correspond-
ing Wilson coefficients are zero. Due to another reason, the contribution of O2 identically
vanishes20. Moreover, a possible contribution from O8 to b → sγ can only come through
higher-order QCD corrections and so it is not relevant for our case. As a result, on the ef-
fective theory side we are solely left with the contribution of O7 to the matrix element of
b→ sγ. Decomposing the σµνF

µν structure involved in O7 in terms of the commutator
[

/ǫ, /q
]

and making use of the Dirac equation we arrive at the following amplitude on the effective
theory side

Aeff =
4iGF λt√

2
C7〈sγ|O7|b〉 =

4iGFC7 λt√
2

e

16π2
(55)

× ū(ps)2
[
R(/ǫ(q)(m2

b +m2
s)− 2mb pb.ǫ(q)) + L (2mbms/ǫ(q)− 2ms pb.ǫ(q))

]
u(pb) .

Hence, requiring that the amplitudes both in the full and effective theory are equal completes
our matching procedure and fixes the Wilson coefficient C7 to be

C7 =
x

24

[−8x3 + 3x2 + 12x− 7 + (18x2 − 12x)ln(x)

(x− 1)4

]

. (56)

19In order to arrive at this result, we exploited the unitarity of the CKM matrix to write |VcbV
⋆
cs| ≃ −|VtbV

⋆
ts|.

20Up to a constant factor, the O2 contribution to b → sγ on the effective theory side corresponds to the
calculation of the diagram in the right frame of Fig. 5 by integrating out the W .
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At this stage, a final remark concerning the scale dependence of the Wilson coefficients is
worth mentioning. For arbitrary orderm in αs the Wilson coefficients obtained from matching
posses a structure of the form:

Cm(µ) = c(0)m

[

αs(µ) ln

(
µ

mW

)]m

+ c(1)m αs(µ)

[

αs(µ) ln

(
µ

mW

)]m−1

+ c(2)m αs(µ)
2

[

αs(µ) ln

(
µ

mW

)]m−2

+ . . . + c(m)
m αs(µ)

m , (57)

where µ is the renormalization scale and cnm are some constant factors. Hence, it turns
out that the Wilson coefficients obtained after a matching calculation forces us to choose
the scale µ = µW ≈ mW in order to respect the perturbation theory. On the other side,
the matrix elements of the effective operators depend on the external momenta and the
small mass scales and thus they posses a dependence proportional to ln (µ/mb) which on
contrary requires the scale to be µ = µb ≈ mb. This situation at the first glance seem to be
puzzling. However, the remedy for this puzzle is provided by the so-called renormalization
group equation (RGE) technique by which the Wilson coefficients are evolved from the high
(matching scale) down to the low scale. At the leading-order, RGE does the job of summing
all the terms of the form [αs(µb) ln (µb/mW )]m, at the next-to-leading order it sums the terms
αs(µb) [αs(µb) ln (µb/mW )]m−1 and it goes in this way for higher orders such that the large
logarithms are under control. A thorough discussion of RGE procedure and its applications
can be found e.g. in [39, 47].

4 Calculation techniques

In elementary particle physics, while performing perturbative calculations one deals with
solving loop-integrals. A particular Feynman diagram creates its own Feynman integrals21

and depending on the complexity of the integrand computations of such integrals might
become quite cumbersome. Especially, when computing multi-loop Feynman diagram(s) for
a particular process with several kinematical variables, where the number of scalar integrals
can be hundreds or more, it might turn out to be that the traditional techniques of using
Feynman parametrization or Mellin-Barnes representations might not be fully competent to
obtain analytic results. In order to handle them, the optimal strategy is first to derive some
recurrence relations between the particular set of Feynman integrals using integration by
parts (IBP) relations leading to master integrals (MI) which then can be tackled making
use of differential equation technique. In Part II of this thesis, we encountered numerous
challenging loop and phase-space integrals which we computed by applying the techniques
mentioned above together with other known methods. In the following sections we discuss
these methods briefly and illustrate how to use them by giving basic examples.

4.1 Integration by parts relations

The particular loop integrals which we encountered in Part II through the loop-diagrams
under consideration are tackled using integration-by-parts22 (IBPs) identities [49, 50]. The

21Here, Feynman integral is meant to refer to integrals over loop momenta and not a path integral.
22The meaning of IBP identities in this case is different than the usual meaning known from integral calculus.

In the case of Feynman integrals, it means only that the integral of a total divergence is zero, which means
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Figure 6: Steps to be followed to obtain the MIs of a particular loop diagram.

large set of complicated scalar loop integrals featuring the the same propagators of different
powers are reduced to the so-called master integrals 23 (MIs). Another alternative way for
computing loop-integrals is exploiting the fact that any scalar integral is invariant under
Lorenz transformations [51]. This method, however, is not effective when considering multi-
loop integrals.

The central idea of IBP identities is based on setting to zero any loop integrals of a total
divergence within dimensional regularization. By doing so, one can correlate the Feynman
integrals of some propagators to others which have the same structure of propagators, but
raised to different powers. This procedure continues until one express a given Feynman
integral as a linear combination of some master integrals with much simplified structure.
However, when the number and complexity of the loop-integrals gets high, it becomes quite
hard to obtain such relations manually. Instead, one makes use of some computer algorithms
which does this job systematically. The Laporta algorithm [52], described by Laporta in
2000, is such an algorithm which is used to express complicated Feynman integrals as linear
combinations of simpler MIs using IBPs identities. There are some implementations of this
identities in a computer algebra system e.g. the MAPLE implementation AIR [53] and the
MATHEMATICA implementation called FIRE [54]. In Part II of this thesis, we checked the
correctness of our results by making use of both implementations. The strategy for obtaining
the MIs out of a particular loop-diagram is sketched in Fig. 6.

To illustrate how to make use of IBP relations let us employ a simple example by considering
the one-loop scalar self energy diagram shown in Fig. 7 [48]. Fig. 7 with appropriate ”insertions
of dots” in the loop lines, gives rise to class of two-point Feynman integrals with scalar
propagators of the following form

F (ν1, ν2) =

∫
ddl

(2π)d
1

(l2 −m2
1)

ν1
[
(l − p)2 −m2

2

]ν2

︸ ︷︷ ︸

χ(ν1,ν2)

. (58)

Let us assume for simplicity m2 ≪ m1 = m such that we neglect the mass of the lighter line.

that one neglects the surface terms. Thus, though it is commonly accepted in this way in physics, the name
can be misleading [48].

23MIs refer to the integrals of a simplified structure typically with low powers of propagators. Within a
given family (topology) of integrals, MIs are those which cannot be reduced any further.
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p

ℓ− p

ℓ

p

Figure 7: Scalar one-loop self energy diagram.

Setting to zero the dimensionally regularized integrals of the form

∫
ddl

(2π)d
∂

∂lµ
[ηµχ(ν1, ν2)] = 0 ,

with η = ℓ, p 24, one arrives at the following two IBP identities:

(d− ν2 − 2ν1)F (ν1, ν2) + ν2(p
2 −m2)F (ν1, ν2 + 1)

−2m2ν1F (ν1 + 1, ν2)− ν2F (ν1 − 1, ν2 + 1) = 0 , (59)

(ν2 − ν1)F (ν1, ν2) + ν2(p
2 −m2)F (ν1, ν2 + 1)− ν1(p

2 +m2)F (ν1 + 1, ν2)

−ν2F (ν1 − 1, ν2 + 1) + ν1F (ν1 + 1, ν2 − 1) = 0 . (60)

In the relations above the space-time dimension d arises due to the derivative acting on η = l
and the invariant quantities m2 and p2 originate after expressing the possible scalar products
in terms of the two propagators. Note that alternative adjustment of Eq. (59) and Eq. (60)
allows to obtain further relations among integrals with propagators of arbitrary powers of ν1
and ν2. Subtracting Eq. (60) from Eq. (59) gives

(d− ν1 − 2ν2)F (ν1, ν2) + ν1(p
2 −m2)F (ν1 + 1, ν2)− ν1F (ν1 + 1, ν2 − 1) = 0 . (61)

For the particular choice of ν1, ν2 = 1, which is corresponding to the Feynman integral
originating from Fig. 7 without extra dots, Eq. (61) gives (d = 4− 2ǫ)

F (2, 1) =
1

m2 − p2
[(1− 2ǫ)F (1, 1) − F (2, 0)] . (62)

The integrals with ν2 ≤ 0 are simpler objects and can be computed directly in terms of the
Γ-functions. In fact, setting ν1 = 1, ν2 = 0 in Eq. (59) helps us to express F (2, 0) in terms of
the simpler integral F (1, 0) as25

F (2, 0) =
1− ǫ

m2
F (1, 0) , (63)

24For more general situations involving e.g. L–loops and N–external legs, one has N + L− 1 choices for ηµ

which yield (N + L− 1)L possible identities [11].
25In writing Eq. (63), we made use of the fact that within dimensional regularization any integral F (ν1, ν2)

(for m2 = 0) with ν1 ≤ 0 will vanish since it will correspond to a massless tadpole.
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which further simplifies Eq. (62) to give

F (2, 1) =
1

m2 − p2

[

(1− 2ǫ)F (1, 1) − 1− ǫ

m2
F (1, 0)

]

. (64)

As a result, we see that following this way it is possible to express any integral of a given
structure as a linear combination of some master integrals and in our particular example the
only-non vanishing MIs are F (1, 1) and F (1, 0) appearing on the RHS of Eq. (64).

4.2 Method of differential equations

The differential equations (DE) technique to evaluate MIs by making use of IBP relations was
first proposed in [55] and later developed in [56]. The idea of this method uses the fact that
taking some derivative of a particular MI with respect to its scales (invariants of the kine-
matics, masses) will generate a linear combination of integrals of the same family but with
different powers νi of the denominators. As a next step, the resulting new integrals can be
decomposed to MIs applying IBP identities. Repeating this procedure to some or all master
integrals then generates a system of linear first-order differential equations satisfied by these
MIs which can be evaluated by using convenient boundary conditions (see e.g. Ref. [48] for
more detail). In some cases it can be more difficult to solve the DEs rather than computing
the given MI directly, nevertheless the DEs give useful information about the analytic features
or the asymptotic behavior of the integral [11]. Solving DEs requires fixing the integration
constants which can be achieved by computing the integral for particular limit of its kinemat-
ical scales (which is often much easier than solving the original integral directly) and then
confronting this result with the one obtained from DEs for the same limit.

To describe the basic recipes of this technique let us again follow our favorite example from
the previous subsection and try to compute the MI F (1, 1) in Eq. (64). Taking the derivative
of F (1, 1) with respect to m2 = t̂ gives nothing but F (2, 1) which we already know how to
relate it to the MIs through Eq. (64). Doing so, we arrive at the following differential equation
for F (1, 1)

dF (1, 1)

dt̂
=

1

t̂− p2

[

(1− 2ǫ)F (1, 1) − 1− ǫ

t̂
F (1, 0)

]

, (65)

where F (1, 0) is a simple one-scale master integral which can easily be evaluated in terms of
Γ-functions to give

F (1, 0) = − i

(4π)d/2
Γ

(

1− d

2

)

(t̂)d/2−1 .

Defining F (1, 1) = i
(4π)d/2

(t̂)−ǫ y(t̂) we obtain

y′ − t̂(1− ǫ)− ǫp2

(t̂− p2)t̂
y = − Γ(ǫ)

t̂− p2
, (66)

which is a first-order linear inhomogeneous DE for y, the right hand side being the inho-
mogeneity, and can be solved by the variation of constant technique. The corresponding
homogenous solution of Eq. (66) (i.e., with zero at the right hand side) reads

yhom(t̂) = C (t̂− p2)1−2ǫ(t̂)ǫ . (67)
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Then, varying the constant C to be dependent on t̂ as C → Cp(t̂) we assume a particular
solution of the form ypart(t̂) = Cp(t̂) (t̂− p2)1−2ǫ(t̂)ǫ. Plugging this to the full DE in Eq. (66)
generates a linear DE for Cp(t̂) as

Cp(t̂)
′ = −t̂−ǫ(t̂− p2)−2+2ǫ Γ(ǫ) , (68)

and for which the solution reads

Cp(t̂) = −Γ(ǫ)

∫ t̂

0
dx

x−ǫ

(x− p2)2−2ǫ
. (69)

Combining the homogenous and particular solutions we arrive at the general solution for
F (1, 1) to be

F (1, 1) =
i

(4π)d/2
(t̂− p2)1−2ǫ

[

−Γ(ǫ)

∫ t̂

0
dx

x−ǫ

(x− p2)2−2ǫ
+ C

]

, (70)

where C is the integration constant which can be fixed by evaluating the integral in the limit
t̂ → 0. In this asymptotic limit it is easier to calculate the behavior of F (1, 1) and equating
this result with Eq. (70) for t̂ → 0 (notice that the first term vanishes) fixes the constant C
to be

C =
Γ(ǫ)Γ(1− ǫ)2

Γ(2− 2ǫ)(−p2)1−ǫ
.

Thus, we conclude that the solution for the integral F (1, 1) is26

F (1, 1) =
i

(4π)d/2
(t̂− p2)1−2ǫ

[

−Γ(ǫ)

∫ t̂

0
dx

x−ǫ

(x− p2)2−2ǫ
+

Γ(ǫ)Γ(1 − ǫ)2

Γ(2− 2ǫ)(−p2)1−ǫ

]

. (71)

Notice that in this particular example we solved the DE in an exact way with respect to
ǫ, however depending on the complexity of the DEs, solutions order by order in ǫ can be
preferable. In some cases an integral is evaluated as an expansion in a certain parameter, in
such a case one has to be aware of the fact that this parameter can also be present in the
denominator of the master integrals’ coefficients. For example, if there is a factor of 1/ǫ in
front of a master integral, this would tell us to evaluate this integral up to O(ǫ) in order to
obtain the correct finite piece.

Remark on computational tools: In this thesis, most of the calculations (mainly
the ones in Part II) are performed using the program MATHEMATICA [57]. In the intermediate
steps of the calculations two custom software packages are employed. In order to tackle
the complicated Dirac algebra the MATHEMATICA package Fermions.m [43], originally written
by Patric Liniger, is used. At another stage, the reduction to master integrals was made
possible using the MAPLE implementation AIR [53] by C. Anastasiou and A. Lazopoulos and
the MATHEMATICA implementation FIRE [54] by A. V. Smirnov. Lastly, all Feynman diagrams
are generated using the Java program Jaxodraw written by D. Binosi and L. Theussl [58].

26Note that in order to maintain the correct dimensionality of the result when going from 4 to d space-time
dimensions one has to introduce a renormalization scale. For example in the so-called MS scheme, this would
simply correspond multiplying the result in Eq. (71) by a factor µ̄2ǫ = µ2ǫ(eγE/4π)ǫ.
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Abstract

We calculate the set of O(αs) corrections to the double differential decay width
dΓ77/(ds1 ds2) for the process B̄ → Xsγγ originating from diagrams involving the elec-
tromagnetic dipole operator O7. The kinematical variables s1 and s2 are defined as
si = (pb − qi)

2/m2
b, where pb, q1, q2 are the momenta of b-quark and two photons. While

the (renormalized) virtual corrections are worked exactly for a certain range of s1 and
s2, we retain in the gluon bremsstrahlung process only the leading power w.r.t. the
(normalized) hadronic mass s3 = (pb − q1 − q2)

2/m2
b in the underlying triple differential

decay width dΓ77/(ds1ds2ds3). The double differential decay width, based on this ap-
proximation is free of infrared- and collinear singularities when combining virtual- and
bremsstrahlung corrections. The corresponding results are obtained analytically. When
retaining all powers in s3, the sum of virtual- and bremstrahlung corrections contains
uncanceled 1/ǫ singularities (which are due to collinear photon emission from the s-quark)
and other concepts, which go beyond perturbation theory, like parton fragmentation func-
tions of a quark or a gluon into a photon, are needed which is beyond the scope of our
paper.

1 Introduction

Inclusive rare B-meson decays are known to be a unique source of indirect information about
physics at scales of several hundred GeV. In the Standard Model (SM) all these processes
proceed through loop diagrams and thus are relatively suppressed. In the extensions of the
SM the contributions stemming from the diagrams with “new” particles in the loops can be
comparable or even larger than the contribution from the SM. Thus getting experimental
information on rare decays puts strong constraints on the extensions of the SM or can even
lead to a disagreement with the SM predictions, providing evidence for some “new physics”.

To make a rigorous comparison between experiment and theory, precise SM calculations
for the (differential) decay rates are mandatory. While the branching ratios for B̄ → Xsγ
[1] and B̄ → Xsℓ

+ℓ− are known today even to next-to-next-to-leading logarithmic (NNLL)
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precision (for reviews, see [2, 3]), other branching ratios, like the one for B̄ → Xsγγ discussed
in this paper, are only known to leading logarithmic (LL) precision in the SM [4, 5, 6, 7]. In
contrast to B̄ → Xsγ, the current-current operator O2 has a non-vanishing matrix element
for b→ sγγ at order α0

s precision, leading to an interesting interference pattern with the con-
tributions associated with the electromagnetic dipole operator O7 already at LL precision. As
a consequence, potential new physics should be clearly visible not only in the total branching
ratio, but also in the differential distributions.

As the process B̄ → Xsγγ is expected to be measured at the planned Super B-factories in
Japan and Italy, it is necessary to calculate the differential distributions to NLL precision in
the SM, in order to fully exploit its potential concerning new physics. The starting point of
our calculation is the effective Hamiltonian, obtained by integrating out the heavy particles
in the SM, leading to

Heff = −4GF√
2
V ⋆
tsVtb

8∑

i=1

Ci(µ)Oi(µ) , (1)

where we use the operator basis introduced in [8]:

O1 = (s̄LγµT
acL) (c̄Lγ

µTabL) , O2 = (s̄LγµcL) (c̄Lγ
µbL) ,

O3 = (s̄LγµbL)
∑

q(q̄γ
µq) , O4 = (s̄LγµT

abL)
∑

q(q̄γ
µTaq) ,

O5 = (s̄LγµγνγρbL)
∑

q(q̄γ
µγνγρq) , O6 = (s̄LγµγνγρT

abL)
∑

q(q̄γ
µγνγρTaq) ,

O7 = e
16π2 m̄b(µ) (s̄Lσ

µνbR)Fµν , O8 = gs
16π2 m̄b(µ) (s̄Lσ

µνT abR)G
a
µν .

(2)

The symbols T a (a = 1, 8) denote the SU(3) color generators; gs and e, the strong and
electromagnetic coupling constants. In eq. (2), m̄b(µ) is the running b-quark mass in the
MS-scheme at the renormalization scale µ. As we are not interested in CP-violation effects in
the present paper, we made use of the approximation VubV

∗
us ≪ VtbV

∗
ts when writing eq. (1).

Furthermore, we also put ms = 0.

While the Wilson coefficients Ci(µ) appearing in eq. (1) are known to sufficient precision
at the low scale µ ∼ mb since a long time (see e.g. the reviews [2, 3] and references therein), the
matrix elements 〈sγγ|Oi|b〉 and 〈sγγ g|Oi|b〉, which in a NLL calculation are needed to order
g2s and gs, respectively, are not known yet. To calculate the (Oi,Oj)-interference contributions
for the differential distributions at order αs is in many respects of similar complexity as the
calculation of the photon energy spectrum in B̄ → Xsγ at order α2

s needed for the NNLL
computation. There, the individual interference contributions, which all involve extensive
calculations, were published in separate papers, sometimes even by two independent groups
(see e.g. [9] and [10]). It therefore cannot be expected that the NLL results for the differential
distributions related to B̄ → Xsγγ are given in a single paper. As a first step in this NLL
enterprise, we derive in the present paper the O(αs) corrections to the (O7,O7)-interference
contribution to the double differential decay width dΓ/(ds1ds2) at the partonic level. The
variables s1 and s2 are defined as si = (pb−qi)2/m2

b , where pb and qi denote the four-momenta
of the b-quark and the two photons, respectively.

At order αs there are contributions to dΓ77/(ds1ds2) with three particles (s-quark and
two photons) and four particles (s-quark, two photons and a gluon) in the final state. These
contributions correspond to specific cuts of the b-quarks self-energy at order α2×αs, involving
twice the operator O7. As there are additional cuts, which contain for example only one
photon, our observable cannot be obtained using the optical theorem, i.e., by taking the
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absorptive part of the b-quark self-energy at three-loop. We therefore calculate the mentioned
contributions with three and four particles in the final state individually.

As discussed in section 2, we work out the QCD corrections to the double differential
decay width in the kinematical range

0 < s1 < 1 ; 0 < s2 < 1− s1 .

Concerning the virtual corrections, all singularities (after ultra-violet renormalization) are
due to soft gluon exchanges and/or collinear gluon exchanges involving the s-quark. Con-
cerning the bremsstrahlung corrections (restricted to the same range of s1 and s2), there are
in addition kinematical situations where collinear photons are emitted from the s-quark.
The corresponding singularities are not canceled when combined with the virtual corrections,
as discussed in detail in section 4. We found, however, that there are no singularities associ-
ated with collinear photon emission in the double differential decay width when only retaining
the leading power w.r.t to the (normalized) hadronic mass s3 = (pb − q1 − q2)

2/m2
b in the

underlying triple differential distribution dΓ77/(ds1ds2ds3). Our results of this paper are ob-
tained within this “approximation”. When going beyond, other concepts which go beyond
perturbation theory, like parton fragmentation functions of a quark or a gluon into a photon,
are needed [11].

Before moving to the detailed organization of our paper, we should mention that the
inclusive double radiative process B̄ → Xsγγ has also been explored in several extensions of
the SM [5, 7, 12]. Also the corresponding exclusive modes, Bs → γγ and B → Kγγ, have been
examined before, both in the SM [6, 13, 14, 15, 16, 17, 18, 19, 20, 21] and in its extensions
[12, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30]. We should add that the long-distance resonant
effects were also discussed in the literature (see e.g. [6] and the references therein). Finally,
the effects of photon emission from the spectator quark in the B-meson were discussed in
[13, 17, 31].

The remainder of this paper is organized as follows. In section 2 we work out the double
differential distribution dΓ77/(ds1ds2) in leading order, i.e., without taking into account QCD
corrections to the matrix element 〈sγγ|O7|b〉. We retain, however, terms up to order ǫ1, with
ǫ being the dimensional regulator (d = 4 − 2ǫ). Section 3 is devoted to the calculation of
the virtual corrections of order αs to the double differential decay width. In section 4 the
corresponding gluon bremsstrahlung corrections to the double differential width are worked
out in the approximation where only the leading power w.r.t. the (normalized) hadronic mass
s3 is retained at the level of the triple differential decay width dΓ77/(ds1ds2ds3). In section 5
virtual- and bremsstrahlung corrections are combined and the result for the double differential
decay width, which is free of infrared- and collinear singularities, is given in analytic form.
In section 6 we illustrate the numerical impact of the NLL corrections and in section 7 we
present the technical details of our calculations. The paper ends with a short summary in
section 8.

2 Leading order result

In this section we discuss the double differential decay width dΓ77/(ds1ds2) at lowest order
in QCD, i.e. α0

s. The dimensionless variables s1 and s2 are defined everywhere in this paper
as

s1 =
(pb − q1)

2

m2
b

; s2 =
(pb − q2)

2

m2
b

. (3)
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At lowest order the double differential decay width is based on the diagrams shown in Fig. 1.
The variables s1 and s2 form a complete set of kinematically independent variables for the
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Figure 1: On the first line the diagrams defining the tree-level amplitude for b→ sγγ associ-
ated with O7 are shown. The four-momenta of the b-quark, the s-quarks and the two photons
are denoted by pb, ps, q1 and q2, respectively. On the second line the contribution to the
decay width corresponding to the interference of first and second diagram is shown.

three-body decay b→ sγγ. Their kinematical range is as follows:

0 ≤ s1 ≤ 1 ; 0 ≤ s2 ≤ 1− s1 .

The energies E1 and E2 in the rest-frame of the b-quark of the two photons are related to s1
and s2 in a simple way: si = 1− 2Ei/mb. As the energies Ei of the photons have to be away
from zero in order to be observed, the values of s1 and s2 can be considered to be smaller
than one. By additionally requiring s1 and s2 to be larger than zero, we exclude collinear
photon emission from the s-quark, because 2psq1 = (ps + q1)

2 = (pb − q2)
2 = s2m

2
b > 0 and

2psq2 = (ps + q2)
2 = (pb − q1)

2 = s1m
2
b > 0. It is also easy to implement a lower cut on the

invariant mass squared s of the of the two photons by observing that s = (q1+q2)
2 = 1−s1−s2.

To parametrize all the mentioned conditions in terms of one parameter c (with c > 0), one
can proceed as suggested in [5]:

s1 ≥ c , s2 ≥ c , 1− s1 − s2 ≥ c . (4)

Applying such cuts, the relevant phase-space region in the (s1, s2)-plane is shown by the
shaded area in Fig. 2. Our aim in this paper is to work out the double differential decay
width in this restricted area of the s1 and the s2 variable also when discussing the gluon
bremsstrahlung corrections1. In this restricted region of the phase-space, the tree-level am-
plitude is free of infrared- and collinear singularities. To exhibit the singularity structure of
the virtual corrections discussed in the next section in a transparent way, it is useful to give
the leading-order spectrum in d = 4− 2ǫ dimensions. We obtain

dΓ
(0,d)
77

ds1 ds2
=
α2 m̄2

b(µ)m
3
b |C7,eff (µ)|2G2

F |VtbV ∗
ts|2Q2

d

1024π5

(
µ

mb

)4ǫ

r (5)

1In this case, the normalized invariant mass squared s of the two photons reads s = 1− s1 − s2 + s3, where
s3 is the normalized hadronic mass squared. The condition 1 − s1 − s2 ≥ c then still eliminates two-photon
configurations with small invariant mass.
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Figure 2: The relevant phase-space region for (s1, s2) used in this paper is shown by the
shaded area.

with

r =
[r0 + ǫ(r1 + r2 + r3 + r4)] (1− s1 − s2)

(1− s1)
2 s1 (1− s2)

2 s2
. (6)

In r we retained terms of order ǫ1, while discarding terms of higher order. The individual
pieces r0, . . . , r4 read

r0 = −48s32s
3
1 + 96s22s

3
1 − 56s2s

3
1 + 8s31 + 96s32s

2
1 − 192s22s

2
1 + 112s2s

2
1 − 56s32s1 +

112s22s1 − 96s2s1 + 8s1 + 8s32 + 8s2

r1 = −16s22s
3
1 + 16s2s

3
1 − 16s32s

2
1 + 48s22s

2
1 − 32s2s

2
1 + 16s21 + 16s32s1 −

32s22s1 − 16s2s1 + 16s22

r2 =
(
48s32s

3
1 − 96s22s

3
1 + 56s2s

3
1 − 8s31 − 96s32s

2
1 + 192s22s

2
1−

112s2s
2
1 + 56s32s1 − 112s22s1 + 96s2s1 − 8s1 − 8s32 − 8s2

)
log (s1)

r3 = r2(s1 ↔ s2)

r4 =
[
48s32s

3
1 − 96s22s

3
1 + 56s2s

3
1 − 8s31 − 96s32s

2
1 + 192s22s

2
1 − 112s2s

2
1 + 56s32s1−

112s22s1 + 96s2s1 − 8s1 − 8s32 − 8s2
]
log (1− s1 − s2)

In eq. (5) the symbols m̄b(µ) and mb denote the mass of the b-quark in the MS-scheme and
in the on-shell scheme, respectively.

In d = 4 dimensions, the leading-order spectrum (in our restricted phase-space) is obtained
by simply putting ǫ to zero, obtaining

dΓ
(0)
77

ds1 ds2
=
α2 m̄2

b(µ)m
3
b |C7,eff (µ)|2G2

F |VtbV ∗
ts|2Q2

d

1024π5
(1− s1 − s2)

(1− s1)2s1(1− s2)2s2
r0 . (7)
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3 Virtual corrections

We now turn to the calculation of the virtual QCD corrections, i.e. to the contributions of
order αs with three particles in the final state. The diagrams defining the (unrenormalized)
virtual corrections at the amplitude level are shown on the first four lines of Fig. 3. As
the diagrams with a self-energy insertion on the external b- and s-quark legs are taken into
account in the renormalization process, these diagrams are not shown in Fig. 3. In order to
get the (unrenormalized) virtual corrections dΓbare

77 /(ds1ds2) of order αs to the decay width,
we have to work out the interference of the diagrams on the first four lines in Fig. 3 with the
leading order diagrams in Fig. 1. One of these interference contributions is shown on the last
line in Fig. 3. To illustrate the calculational procedure for getting the virtual corrections to
the decay width, we describe in section 7.1 the relevant steps for the particular interference
shown in Fig. 3.
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Figure 3: On the first four lines the diagrams defining the one-loop amplitude for b → sγγ
associated with O7 are shown. Diagrams with self-energy insertions on the external quark-
legs are not shown. On the last line the contribution to the decay width corresponding to
the interference of the first diagram on the second line with the second (tree-level) diagram
in Fig. 1 is shown.

In addition, we have to work out the counterterm contributions to the decay width. They
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can be split into two parts, according to

dΓct
77

ds1ds2
=
dΓ

ct,(A)
77

ds1ds2
+
dΓ

ct,(B)
77

ds1ds2
. (8)

Part (A) involves the LSZ factors
√

ZOS
2b and

√

ZOS
2s for the b- and s-quark field, as well as

the self-renormalization constant ZMS
77 of the operator O7 and ZMS

mb
renormalizing the factor

m̄b(µ) present in the operator O7. The explicit results for these Z-factors are given to relevant
precision in Appendix C. For part (A) we get

dΓ
ct,(A)
77

ds1ds2
=
[

δZOS
2b + δZOS

2s + 2 δZMS
mb

+ 2 δZMS
77

] dΓ
(0,d)
77

ds1ds2
, (9)

where dΓ
(0,d)
77 /(ds1ds2) is the leading order double differential decay width in d-dimensions,

as given in eq. (5).
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Figure 4: Counterterm diagrams with a δmb insertion, see text.

The counterterms defining part (B) are due to the insertion of −iδmbb̄b in the internal
b-quark line in the leading order diagrams as indicated in Fig. 4, where

δmb = (ZOS
mb

− 1)mb .

More precisely, Part (B) consists of the interference of the diagrams in Fig. 4 with the leading
order diagrams in Fig. 1.

By adding dΓbare
77 /(ds1ds2) and dΓct

77/(ds1ds2), we get the result for the renormalized

virtual corrections to the spectrum, dΓ
(1),virt
77 /(ds1 ds2). It is useful to decompose this result

into two pieces,

dΓ
(1),virt
77

ds1 ds2
=
dΓ

(1,a),virt
77

ds1 ds2
+
dΓ

(1,b),virt
77

ds1 ds2
. (10)

The infrared- and collinear singularities are completely contained in dΓ
(1,a),virt
77 /(ds1 ds2). Ex-

plicitly, we obtain

dΓ
(1,a),virt
77

ds1 ds2
=
αs

4π
CF

(

− 2

ǫ2
+

4 log(s1 + s2)− 5

ǫ

) (
µ

mb

)2ǫ dΓ
(0,d)
77

ds1 ds2
(11)

where dΓ
(0,d)
77 /(ds1 ds2) is understood to be taken exactly as given in eqs. (5) and (6), i.e., by

including the terms of order ǫ1 in r. From the explicit expression dΓ
(1,a),virt
77 /(ds1 ds2) we see

that the singularity structure consists of a simple singular factor multiplying the corresponding
tree-level decay width in d-dimensions. We stress that singularities (represented by 1/ǫ2 and
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1/ǫ poles) are entirely due to soft- and/or collinear gluon exchange. The infrared finite piece

dΓ
(1,b),virt
77 /(ds1 ds2) can be written as

dΓ
(1,b),virt
77

ds1 ds2
=
α2 m̄2

b(µ)m
3
b |C7,eff (µ)|2G2

F |VtbV ∗
ts|2Q2

d

1024π5
×

αs

4π
CF

(

−4 r0 (1− s1 − s2)

(1− s1)2 s1 (1− s2)2 s2
log

µ

mb
+

∑20
i=1 vi

3 (1− s1)3 s1 (1− s2)3 s2

)

(12)

where the individual quantites v1, . . . , v20 are relegated to Appendix A.

4 Bremsstrahlung corrections

We now turn to the calculation of the bremsstrahlung QCD corrections, i.e. to the contribu-
tions of order αs with four particles in the final state. Before going into details, we mention
that the kinematical range of the variables s1 and s2 defined in eq. (3) is given in this case
by 0 ≤ s1 ≤ 1 ; 0 ≤ s2 ≤ 1. Nevertheless, we consider in this paper only the range which is
also accessible to the three-body decay b → sγγ, i.e., 0 ≤ s1 ≤ 1 ; 0 ≤ s2 ≤ 1 − s1 or, more
precisely, by its restricted version specified in eq. (4).

The diagrams defining the bremsstrahlung corrections at the amplitude level are shown in
the first line of Fig. 5. The amplitude squared, needed to get the (double differential) decay
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Figure 5: On the first line the diagrams defining the gluon-bremsstrahlung corrections to b→
sγγ are shown at the amplitude level. The crosses in the graphs stand for the possible emission
places of the gluon. On the second line the contribution to the decay width corresponding to
the interference of diagram 1 with diagram 6 is illustrated.

width, can be written as a sum of interferences of the different diagrams on the first line in Fig.
5. One such interference is shown on the second line of the same figure. The four particle final
state is described by five independent kinematical variables. In a first attempt we worked out
the decay width by keeping s1 and s2 differential and integrating over the three remaining
variables. Proceeding in this way, we found that the infrared- and collinear singularities in
the bremsstrahlung spectrum do not cancel when adding the virtual corrections. The sum
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still contains 1/ǫ-poles, but no 1/ǫ2-poles. While, as already mentioned in section 3, the only
source of the singularities in the virtual corrections in our restricted range of s1 and s2 are
due to soft gluon-emission and/or collinear emission of gluons from the s-quark, we found
after analyzing the bremsstrahlung kinematics more carefully that there are situations where
one of the photons can become collinear with the s-quark. This is the reason why there
is no cancellation of singularities when combining virtual- and bremsstrahlung corrections.
Realizing that for (formally) zero hadronic mass of the (s, g)-system collinear photon emission
is kinematically impossible, led us to the idea that we should first look at the triple differential
decay width dΓ77/(ds1ds2ds3), where s3 = (ps + pg)

2/m2
b is the normalized hadronic mass

squared. Our conjecture was that the double differential decay width, based on the triple
differential decay width in which only the leading power terms w.r.t. s3 are retained, should
lead to a finite result when combined with the virtual corrections.

We therefore worked out the leading power of this quantity w.r.t s3, denoting it by
dΓleading power

77 /(ds1ds2ds3). The leading power, which is of order 1/s3 (modified by epsilon-
tic dimensional regulators), is supposed to be a good approximation for low values of the

hadronic mass. An approximation to the double-differential decay width dΓ
(1),brems
77 /(ds1ds2)

due to gluon bremsstrahlung corrections is then obtained by integrating
dΓleading power

77 /(ds1ds2ds3) over s3, which runs in the range s3 ∈ [0, s1 ·s2]. The approximation
is obviously accurate for small values of s1 · s2. As s1 · s2 is at most 1/4, the approximation is
expected not to be bad in the full region of s1 and s2 considered in this paper. The technical
details of the calculation of the leading power w.r.t. s3 in the triple differential decay width
are illustrated in section 7.2 for the interference of diagram 1 with diagram 6, as shown in
the second line of Fig. 5.

Indeed, we find that the infrared- and collinear singularities cancel when combining the

approximated version of dΓ
(1),brems
77 /(ds1ds2) with the virtual corrections dΓ

(1),virt
77 /(ds1ds2).

When going beyond this approximation other concepts, which go beyond perturbation
theory, like parton fragmentation functions of a quark or a gluon into a photon, are needed
[11]. We do not enter this issue in this paper.

The result of combined virtual- and bremsstrahlung corrections is explicitly presented in
the next section.

5 Final result for the decay width at order αs

The complete order αs correction to the double differential decay width dΓ77/(ds1 ds2) is
obtained by adding the renormalized virtual corrections from section 3 and the bremsstrahlung
corrections discussed in section 4. Explicitly we get

dΓ
(1)
77

ds1 ds2
=
α2 m̄2

b(µ)m
3
b |C7,eff (µ)|2G2

F |VtbV ∗
ts|2Q2

d

1024π5
×

αs

4π
CF

[ −4 r0 (1− s1 − s2)

(1− s1)2 s1 (1− s2)2 s2
log

µ

mb
+ f

]

, (13)

where f is decomposed as

f =
(1− s1 − s2) (f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 + f15 + f16 + f17)

3 (1− s1)
3 s1 (1− s2)

3 s2

+
f10 + f11 + f12 + f13 + f14

3 (1− s1)
3 s1 (1− s2)

3 s2
(14)
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The individual quantities f1, . . . , f17 read

f1 = −16π2s32s
5
1 − 16π2s52s

3
1 + 48π2s22s

5
1 + 48π2s52s

2
1 − 48π2s2s

5
1 − 48π2s52s1 +

16π2s51 + 16π2s52 − 168s31 − 168s32 +
(
1104 + 160π2

)
s42s

4
1 +

(
−3360 − 400π2

)
s32s

4
1 +

(
3432 + 304π2

)
s22s

4
1 +

(
−1296 − 64π2

)
s2s

4
1 +

(
120 − 16π2

)
s41 +

(
−3360 − 400π2

)
s42s

3
1 +

(
10416 + 1152π2

)
s32s

3
1 +

(
−10872 − 1056π2

)
s22s

3
1 +

(
3984 + 368π2

)
s2s

3
1 +

(
3432 + 304π2

)
s42s

2
1 +

(
−10872 − 1056π2

)
s32s

2
1 +

(
12096 + 1088π2

)
s22s

2
1 +

(
−4872 − 448π2

)
s2s

2
1 +

(
216 + 16π2

)
s21 +

(
−1296 − 64π2

)
s42s1 +

(
3984 + 368π2

)
s32s1 +

(
−4872 − 448π2

)
s22s1 +

(
2352 + 224π2

)
s2s1 +

(
−168 − 16π2

)
s1 +

(
120− 16π2

)
s42 +

(
216 + 16π2

)
s22 +

(
−168− 16π2

)
s2

f2 = 48s2 (1− s1) (1− s2)
2
(
6s2s

3
1 − 6s31 − 11s2s

2
1 + 15s21 + 3s2s1 − 9s1 + 2

)
×

log (1− s1)

f3 = 24 (1− s1) (1− s2)
(
30s32s

3
1 − 64s22s

3
1 + 41s2s

3
1 − 7s31 − 60s32s

2
1 + 128s22s

2
1−

82s2s
2
1 + 37s32s1 − 78s22s1 + 76s2s1 − 7s1 − 7s32 − 7s2

)
log (s1)

f4 = −48 (1− s1) (1− s2)
(
s22s

4
1 − s2s

4
1 − 5s32s

3
1 + 9s22s

3
1 − 5s2s

3
1 + s31 + 9s32s

2
1−

20s22s
2
1 + 13s2s

2
1 − 5s32s1 + 12s22s1 − 12s2s1 + s1 + s32 + s2

)
log2 (s1)

f7 = 96 (1− s1) (1− s2)
(
6s32s

3
1 − 12s22s

3
1 + 7s2s

3
1 − s31 − 12s32s

2
1 + 24s22s

2
1−

14s2s
2
1 + 7s32s1 − 14s22s1 + 12s2s1 − s1 − s32 − s2

)
log (s1) log (s2)

f9 = −96 (1− s1) (1− s2)
(
6s32s

3
1 − 12s22s

3
1 + 7s2s

3
1 − s31 − 12s32s

2
1 + 24s22s

2
1−

14s2s
2
1 + 7s32s1 − 14s22s1 + 12s2s1 − s1 − s32 − s2

)
log (s1 + s2)

f10 = 96 (1− s1) (1− s2)
2
(
s2s

5
1 − s51 + 2s22s

4
1 − 5s2s

4
1 + 3s41 + s32s

3
1 − 5s22s

3
1+

8s2s
3
1 − 2s31 − s32s

2
1 + 4s22s

2
1 − 4s2s

2
1 + s21 − 4s22s1 + 3s2s1 − s1−

s22 + s2
)
log (1− s1) log (s1 + s2)

f11 = −96 (1− s1) (1− s2)
(
s22s

5
1 − s2s

5
1 − 10s32s

4
1 + 19s22s

4
1 − 11s2s

4
1 + 2s41−

11s42s
3
1 + 53s32s

3
1 − 77s22s

3
1 + 41s2s

3
1 − 2s31 + 21s42s

2
1 − 76s32s

2
1 + 94s22s

2
1−

49s2s
2
1 + 2s21 − 11s42s1 + 38s32s1 − 46s22s1 + 25s2s1 − 2s1 + s42 − s32+

s22 − s2
)
log (s1) log (s1 + s2)

f14 = 48 (1− s1) (1− s2)
(
s22s

5
1 − s2s

5
1 − 21s32s

4
1 + 40s22s

4
1 − 22s2s

4
1 + 3s41−

21s42s
3
1 + 106s32s

3
1 − 153s22s

3
1 + 79s2s

3
1 − 3s31 + s52s

2
1 + 40s42s

2
1 − 153s32s

2
1+

188s22s
2
1 − 95s2s

2
1 + 3s21 − s52s1 − 22s42s1 + 79s32s1 − 95s22s1 + 50s2s1−

3s1 + 3s42 − 3s32 + 3s22 − 3s2
)
log2 (s1 + s2)
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f15 = 96s1 (1− s2)
2
(
s2s

4
1 − s41 + s22s

3
1 − 4s2s

3
1 + 3s31 − 5s22s

2
1 + 8s2s

2
1 − 2s21+

7s22s1 − 11s2s1 + s1 − 2s22 + 5s2 − 1
)
Li2 (s1)

f16 = 96 (1− s1) (1− s2)
(
s22s

4
1 − 2s2s

4
1 + s41 + 8s32s

3
1 − 17s22s

3
1 + 12s2s

3
1−

3s31 + s42s
2
1 − 17s32s

2
1 + 32s22s

2
1 − 20s2s

2
1 − 2s42s1 + 12s32s1 − 20s22s1+

20s2s1 − 2s1 + s42 − 3s32 − 2s2
)
Li2 (1− s1 − s2)

f5 = f2(s1 ↔ s2) f6 = f3(s1 ↔ s2) f8 = f4(s1 ↔ s2)

f12 = f10(s1 ↔ s2) f13 = f11(s1 ↔ s2) f17 = f15(s1 ↔ s2)

The order αs correction dΓ
(1)
77 /(ds1ds2) in Eq. (13) to the double differential decay width for

b→ Xsγγ is the main result of our paper.

6 Some numerical illustrations

In the previous sections we calculated the virtual- and bremsstrahlung QCD corrections which
were the missing ingredient in order to obtain the (O7,O7) contribution to the double differ-
ential decay width for B̄ → Xsγγ at NLL precision. The Wilson coefficient C7,eff (µ) at the
low scale (µ ∼ mb) which is needed up to order αs, i.e.,

C7,eff (µ) = C0
7,eff (µ) +

αs(µ)

4π
C1
7,eff (µ) (15)

is known for a long time (see ref. [8] and references therein). Numerical values for the input
parameters and for this Wilson coefficient at various values for the scale µ, together with
the numerical values of αs(µ), are given in Table 4 and Table 5, respectively. The NLL

Parameter Value

mb 4.8 GeV

mt 175 GeV

mW 80.4 GeV

mZ 91.19 GeV

GF 1.16637 × 10−5 GeV−2

VtbV
∗
ts 0.04

α−1 137

αs(MZ) 0.119

Table 4: Values of the relevant input parameters

prediction reads

dΓ77

ds1ds2
=

dΓ
(0)
77

ds1ds2
+

dΓ
(1)
77

ds1ds2
(16)

where the first- and second term of the r.h.s. are given in eqs. (7) and (13), respectively.
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αs(µ) C0
7,eff (µ) C1

7,eff (µ)

µ = mW 0.1213 −0.1957 −2.3835

µ = 2mb 0.1818 −0.2796 −0.1788

µ = mb 0.2175 −0.3142 0.4728

µ = mb/2 0.2714 −0.3556 1.0794

Table 5: αs(µ) and the Wilson coefficient C7,eff (µ) at different values of the scale µ

To illustrate our results, we first rewrite the MS mass m̄b(µ) in eq. (16) in terms of the
pole mass mb, using the one-loop relation

m̄b(µ) = mb

[

1− αs(µ)

4π

(

8 log
µ

mb
+

16

3

)]

.

We then insert C7,eff (µ) in the expanded form (15) and expand the resulting expression for
dΓ77/(ds1ds2) w.r.t. αs, discarding terms of order α2

s. This defines the NLL result. The
corresponding LL result is obtained by also discarding the order α1

s term. In Fig. 6 the LL-
and the NLL- result is shown by the short-dashed- and the solid line, respectively.

In our procedure the NLL corrections have three sources: (a) αs corrections to the Wilson
coefficient C7,eff (µ), (b) expressing m̄b(µ) in terms of the pole mass mb and (c) virtual- and
real- order αs corrections to the matrix elements. To illustrate the effect of source (c), which
is worked out for the first time in this paper, we show in Fig. 6 (by the long-dashed line) the
(partial) NLL result in which source (c) is switched off. We conclude that the effect (c) is
roughly of equal importance as the combined effects of (a) and (b).

For completeness we show in this figure (by the dash-dotted line) also the result when
QCD is completely switched off, which amounts to put µ = mW in the LL result.

From Fig. 6 we see that the NLL results are substantially smaller (typically by 50% or
slightly more) than those at LL precision, which is also the case when choosing other values
for s2.

In the numerical discussion above, we have systematically converted the running b-quark
mass m̄b(µ) in terms of the pole mass mb. As perturbative expansions often behave better
when expressed in terms of the running mass, we also studied the results obtained when
systematically converting mb in terms of m̄b(µ). After doing also this version, we observe the
following: Generally speaking, NLL corrections are not small for both cases, when taking into
account the full range of µ, i.e., mb/2 < µ < 2mb. More precisely, in the MS version they are
large for µ = mb/2 and smaller for larger values of µ, while in the pole mass version they are
large for all values of µ.

We stress that the numerically important contributions involving the operator O2 are not
discussed in our paper. Therefore, the issue concerning the reduction of the µ dependence
at NLL precision cannot be addressed at this level. Our main point in this section was to
illustrate that the NLL corrections to the process B̄ → Xsγγ are expected to be rather large.
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Figure 6: Double differential decay width dΓ77/(ds1ds2) as a function of s1 for s2 fixed
at s2 = 0.2. The dash-dotted, the short-dashed and the solid line shows the result when
neglecting QCD-effects, the LL result and the NLL result, respectively. The long-dashed
line represents the (partial) NLL result in which the virtual- and bremsstrahlung corrections
worked out in this paper are switched off (see text for more details). In the frames 1), 2) and
3) the renormalization scale is chosen to be µ = mb/2, µ = mb and µ = 2mb, respectively.

7 Technical details about our calculations

We first describe the general setup of our calculations and then discuss in the subsections 7.1
and 7.2 the calculation of the virtual- and the bremsstrahlung corrections for the interference
diagrams shown in the last lines of Fig. 3 and Fig. 5, respectively.

The starting point is the general expression for the total decay width of the massive b quark
with momentum pb decaying into 3 ≤ n ≤ 4 massless final-state particles with momenta ki,

Γ1→n =
1

2mb

(
n∏

i=1

∫
dd−1ki

(2π)d−12Ei

)

(2π)d δ(d)

(

pb −
n∑

i=1

ki

)

|Mn|2
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=
1

2mb
(2π)n

(
n−1∏

i=1

∫
ddki
(2π)d

δ(k2i ) θ(k
0
i )

)

× δ





(

pb −
n−1∑

i=1

ki

)2


 θ

(

p0b −
n−1∑

i=1

k0i

)

|Mn|2 , (17)

where the squared Feynman amplitude |Mn|2 is always understood to be summed over final
spin-, polarization- and color states, and averaged over the spin directions and colors of the
decaying b quark. It also includes a factor of 1/2 for the two identical particles in the final
state, i.e. the photons. Furthermore, d = 4 − 2ǫ denotes the space-time dimension that we
use to regulate the ultraviolet, infrared and collinear singularities.

The double differential decay rate dΓ77/(ds1ds2) is obtained from eq. (17) by mul-
tiplying the integrand on the r.h.s. with the delta functions δ

(
s1 − (pb − q1)

2/m2
b

)
and

δ
(
s2 − (pb − q2)

2/m2
b

)
[32], where pb and q1, q2 denote the four momenta of the b quark

and the photons, respectively. For the bremsstrahlung corrections, as mentioned in sec-
tion 4, we need to consider also the triple differential decay width dΓ77/(ds1ds2ds3), where
s3 = (pb − q1 − q2)

2/m2
b is the normalized hadronic mass squared. The triple differential

decay width is obtained by multiplying the integrand with the additional delta-function
δ
(
s3 − (pb − q1 − q2)

2/m2
b

)
. Finally, the delta functions just mentioned and all of the delta

functions present in eq. (17) can be rewritten as differences of propagators as follows [33, 34],

δ
(
q2 −m2

)
=

1

2πi

(
1

q2 −m2 − i0
− 1

q2 −m2 + i0

)

. (18)

In this step the phase-space integrations are converted into loop integrations (which can
be combined with possible loop integrations already present in |Mn|2). By subsequently
doing tensor reductions, the (differential) decay width can be written as a linear combination
of scalar integrals. The systematic Laporta algorithm [35], based on integration-by-part
techniques first proposed in [36, 37], can then be applied to reduce the scalar integrals to
a small number of simpler integrals, usually referred to as the master integrals (MIs). For
this reduction we used the AIR and FIRE implementations [38, 39] of the Laporta algorithm.
After the reduction process, it usually happens that some MIs contain propagators which were
introduced via (18) with zero or negative power. In this case the ±i0 prescription becomes
irrelevant and as a consequence these MIs are zero. In the remaining MIs we convert the
propagators introduced via (18) back to delta-functions. Thus, we are left with phase-space
MIs (which can contain loop integrations as well). The final task is then to calculate these
MIs, i.e. to perform possible loop integrations together with the phase-space integrations.

Very often we had to deal with MIs which we were not able to evaluate by direct inte-
gration of their integral representation in terms of Feynman parameters and/or phase-space
parameters. A powerful tool to be used in these cases is the differential equation method
[33, 34, 40, 41]. The goal of this method is to employ the output of the reduction procedure
for a given topology to build differential equations which are satisfied by the MIs of that
topology. In our case, we consider differential equations w.r.t. s1 and s2 and also w.r.t. s3
for case of bremsstrahlung corrections. With these methods we were able to obtain analytic
expressions for all master integrals appearing in the calculation of the various diagrams.
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7.1 Details about the calculation of virtual corrections

To illustrate our methods for the virtual corrections, we take as an example the interference
diagram shown on the last line of Figure 3. In this case we have five MIs. Four of them can
be solved by means of direct integration on Feynman parameters. To calculate the last one
(called P1111), we solve the differential equations w.r.t. s1 and s2 and get the solution which
we denote as Q1111. At this level Q1111 contains integration constants (which are not fixed
by the differential equations). To get the integration constants, we proceed in the following
way. Using Feynman parametrization for the loop integral, we write the MI P1111 as

P1111 = s−ǫ
1 s−ǫ

2 (1− s1 − s2)
−ǫ

∫ 1

0
g0(s1, s2, ǫ, u, v, y) du dv dy , (19)

where u, v and y are Feynman parameters (all of them running from 0 to 1). The factor
s−ǫ
1 s−ǫ

2 (1 − s1 − s2)
−ǫ is coming from the phase-space (see eq. (23) in Appendix B.1). One

then can put s2 = 0 in g0(s1, s2, ǫ, u, v, y) and integrate on the Feynman parameters, which
defines the new function

g1(s1, ǫ) =

∫ 1

0
g0(s1, 0, ǫ, u, v, y) du dv dy . (20)

We managed to work out the leading term of the expansion of g1(s1, ǫ) on s1 around zero,
which is proportional to s−2

1 . From this, we immediately get the leading term of the expansion
of P1111 on s2 and s1 (which is proportional to s02/s

2
1). Comparing the result of this calculation

with the corresponding expansion of the solution Q1111 of the differential equations, we could
determine all integration constants.

7.2 Details about the calculation of bremsstrahlung corrections

To illustrate our methods for the bremsstrahlung corrections, we take as an example the
interference diagram shown on the last line of Figure 5. In this case we obtain three MIs,
denoted by P00, P10 and P11. Writing the diagram as a linear combination of the MIs, we
see that the leading power (w.r.t. s3) of all three coefficients (in front of the MIs) is of the
order 1/s3. Keeping in mind that we are taking into account only terms proportional to the
leading power in s3 at the level of the triple differential decay width (as extensively discussed
in section 4), it is sufficient to work out the MIs to zero-th power in s3, including the epsilontic
regulator, i.e., s0−nǫ

3 (in our case only n = 1 and n = 2 occur).

The simplest MI, P00, which corresponds to the pure phase-space (see eq. (25) in Appendix
B.2), can be easily solved by means of direct integration. For P10 the solution of the differential
equation w.r.t. s3 can be represented in the limit s3 → 0 in the form

P10 = a1(s1, s2, ǫ) s
−ǫ
3 + a2(s1, s2, ǫ) s

−2ǫ
3 , (21)

where the function a1(s1, s2, ǫ) is fully determined. To find the function a2(s1, s2, ǫ), we use
differential equations w.r.t. s1 and s2. In this way, we could find a2(s1, s2, ǫ) up to integration
constants. To determine these constants, we managed to calculate the MI for specific values
of s1, s2 and s3 → 0. In the same way we also calculated the MI P11.
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8 Summary

In the present work we calculated the set of the O(αs) corrections to the decay process
B̄ → Xsγγ originating from diagrams involving the electromagnetic dipole operator O7. To
perform this calculation it is necessary to work out diagrams with three particles (s-quark and
two photons) and four particles (s-quark, two photons and a gluon) in the final state. From the
technical point of view, the calculation was made possible by the use of the Laporta Algorithm
to identify the needed Master Integrals and by applying the differential equation method to
solve the Master Integrals. When calculating the bremsstrahlung corrections, we take into
account only terms proportional to the leading power of the hadronic mass. We find that the
infrared and collinear singularities cancel when combining the above mentioned approximated
version of bremsstrahlung corrections with the virtual corrections. The numerical impact of
the NLL corrections is not small: for dΓ77/(ds1 ds2) the NLL results are approximately 50%
smaller than those at LL precision.
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A Explicit results for the functions vi defining the virtual cor-

rections

The functions vi appearing in eq. (12) read

v1 = (1− s1 − s2)
(
−16π2s32s

5
1 − 16π2s52s

3
1 + 48π2s22s

5
1 + 48π2s52s

2
1 − 48π2s2s

5
1−

48π2s52s1 + 16π2s51 + 16π2s52 +
(
2112 − 104π2

)
s42s

4
1 +

(
392π2 − 6384

)
s32s

4
1+

(
6672 − 532π2

)
s22s

4
1 +

(
288π2 − 2736

)
s2s

4
1 +

(
336− 60π2

)
s41+

(
392π2 − 6384

)
s42s

3
1 +

(
19584 − 1224π2

)
s32s

3
1 +

(
1452π2 − 20784

)
s22s

3
1+

(
7872 − 600π2

)
s2s

3
1 +

(
44π2 − 288

)
s31 +

(
6672 − 532π2

)
s42s

2
1+

(
1452π2 − 20784

)
s32s

2
1 +

(
23904 − 1728π2

)
s22s

2
1 +

(
740π2 − 10128

)
s2s

2
1+

(
336− 28π2

)
s21 +

(
288π2 − 2736

)
s42s1 +

(
7872 − 600π2

)
s32s1+

(
740π2 − 10128

)
s22s1 +

(
5376 − 392π2

)
s2s1 +

(
28π2 − 384

)
s1+

(
336− 60π2

)
s42 +

(
44π2 − 288

)
s32 +

(
336− 28π2

)
s22 +

(
28π2 − 384

)
s2
)

v2 = −96 (1− s1) (1− s2) (1− s1 − s2)
(
3s32s

3
1 − 4s22s

3
1 + s2s

3
1 − 5s32s

2
1 + 7s22s

2
1−

2s2s
2
1 − s21 + 2s32s1 − 3s22s1 + 3s2s1 − s22

)
log (s1)

v3 = −24 (1− s1) (1− s2) (1− s1 − s2)
(
2s22s

4
1 − 2s2s

4
1 − 4s32s

3
1 + 6s22s

3
1−

3s2s
3
1 + s31 + 6s32s

2
1 − 16s22s

2
1 + 12s2s

2
1 − 3s32s1 + 10s22s1 − 12s2s1+

s1 + s32 + s2
)
log2 (s1)

v4 = 48 (1− s1) (1− s2) (1− s1 − s2)
(
6s32s

3
1 − 12s22s

3
1 + 7s2s

3
1 − s31 − 12s32s

2
1+

24s22s
2
1 − 14s2s

2
1 + 7s32s1 − 14s22s1 + 12s2s1 − s1 − s32 − s2

)
log (s1) log (s2)

v5 = 48 (1− s1) (1− s2) (1− s1 − s2)
(
6s32s

3
1 − 12s22s

3
1 + 7s2s

3
1 − s31 − 12s32s

2
1+

24s22s
2
1 − 14s2s

2
1 + 7s32s1 − 14s22s1 + 12s2s1 − s1 − s32 − s2

)
log (s1)×

log (1− s1 − s2)

v6 = −96 (1− s1)
2 (1− s2)

2s2
(
s41 + 2s2s

3
1 − 2s31 + s22s

2
1 − 4s2s

2
1 + s21 − 2s22s1+

3s2s1 − 2s1 + s22 + 1
)
log (s1) log (s1 + s2)

v7 = 48 (1− s1) (s2 − 1) 2s2 (1− s1 − s2)
(
6s2s

3
1 − 6s31 − 11s2s

2
1 + 15s21+

3s2s1 − 9s1 + 2) log (1− s1)

v8 = 96 (1− s1) (s2 − 1) 2
(
s2s

5
1 − s51 + 2s22s

4
1 − 5s2s

4
1 + 3s41 + s32s

3
1 − 5s22s

3
1+

8s2s
3
1 − 2s31 − s32s

2
1 + 4s22s

2
1 − 4s2s

2
1 + s21 − 4s22s1 + 3s2s1 − s1 − s22 + s2

)
×

log (1− s1) log (s1 + s2)
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v9 = 48 (1− s1) (1− s2)
(
s22s

5
1 − s2s

5
1 − 9s32s

4
1 + 16s22s

4
1 − 8s2s

4
1 + s41 − 9s42s

3
1+

46s32s
3
1 − 67s22s

3
1 + 35s2s

3
1 − s31 + s52s

2
1 + 16s42s

2
1 − 67s32s

2
1 + 84s22s

2
1−

43s2s
2
1 + s21 − s52s1 − 8s42s1 + 35s32s1 − 43s22s1 + 22s2s1 − s1 + s42 − s32+

s22 − s2
)
log2 (s1 + s2)

v10 = −96 (1− s1) (1− s2) (1− s1 − s2)
(
s22s

3
1 − s2s

3
1 + s32s

2
1 − 3s22s

2
1 + 2s2s

2
1−

s21 − s32s1 + 2s22s1 + s2s1 − s22
)
log (1− s1 − s2)

v11 = 24 (1− s1) (1− s2) (1− s1 − s2)
(
6s32s

3
1 − 12s22s

3
1 + 7s2s

3
1 − s31 − 12s32s

2
1+

24s22s
2
1 − 14s2s

2
1 + 7s32s1 − 14s22s1 + 12s2s1 − s1 − s32 − s2

)
×

log2 (1− s1 − s2)

v12 = 96s1 (1− s2)
2 (1− s1 − s2)

(
s2s

4
1 − s41 + s22s

3
1 − 4s2s

3
1 + 3s31 − 5s22s

2
1+

8s2s
2
1 − 2s21 + 7s22s1 − 11s2s1 + s1 − 2s22 + 5s2 − 1

)
Li2 (s1)

v13 = 96 (1− s1) (1− s2) (1− s1 − s2)
(
s22s

4
1 − 2s2s

4
1 + s41 + 8s32s

3
1 − 17s22s

3
1+

12s2s
3
1 − 3s31 + s42s

2
1 − 17s32s

2
1 + 32s22s

2
1 − 20s2s

2
1 − 2s42s1 + 12s32s1−

20s22s1 + 20s2s1 − 2s1 + s42 − 3s32 − 2s2
)
Li2 (1− s1 − s2)

v14 = v2(s1 ↔ s2) v15 = v3(s1 ↔ s2) v16 = v5(s1 ↔ s2)

v17 = v6(s1 ↔ s2) v18 = v7(s1 ↔ s2) v19 = v8(s1 ↔ s2) v20 = v12(s1 ↔ s2)

B Relevant phase-space formulas

B.1 Double differential phase-space for the 3-particle final state

The kinematical variables s1 and s2 are defined as

s1 =
(pb − q1)

2

m2
b

; s2 =
(pb − q2)

2

m2
b

, (22)

where pb and qi denote the four-momenta of the b-quark and the photons, respectively. The
kinematics of the process b → sγγ is fully described by s1 and s2. The formula for double
differential decay width is therefore free of additional phase-space integration variables. It
reads

dΓ1→3

ds1 ds2
=

1

4

(4π)−3+2ǫ

Γ[2− 2ǫ]
m1−4ǫ

b s−ǫ
1 s−ǫ

2 (1− s1 − s2)
−ǫ |M3|2 . (23)

The variables s1 and s2 vary in the range

0 ≤ s1 ≤ 1 ; 0 ≤ s2 ≤ 1− s1 .
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B.2 Triple differential phase-space for the 4-particle final state

The kinematical variables s1, s2 and s3 are defined as

s1 =
(pb − q1)

2

m2
b

; s2 =
(pb − q2)

2

m2
b

; s3 =
(ps + k)2

m2
b

(24)

where pb, ps, k and qi denote the four-momenta of the b-quark, the s-quark, the gluon and the
photons, respectively. The kinematics is fully described in terms of five phase-space variables
x1, x2, x3, x4 and x5 as given explicitly in eqs. (3.6), (3.9) and (3.10) in ref. [42]. By
identifying k1, k2, k3 and k4 given there with the four-momenta of the two photons, the s-
quark and the gluon, respectively, we easily derive from the information in [42] the formula
for the triple differential decay width. We remind the reader that in this paper we consider
only the range in s1 and s2 with

0 ≤ s1 ≤ 1 ; 0 ≤ s2 ≤ 1− s1 ,

which is also accessible to the three-body decay b→ sγγ. For this case we obtain

dΓ1→4

ds1 ds2 ds3
=

(4π)−6+3ǫ 2−4ǫ Γ[1− ǫ]

(1− 2ǫ) Γ2[1− 2ǫ]
m3−6ǫ

b s−ǫ
3 (s1s2 − s3)

−ǫ (1− s1 − s2 + s3)
−ǫ ×

∫

dx4 dx5 [x4 (1− x4)]
−ǫ [x5 (1− x5)]

−1/2−ǫ |M4|2 , (25)

where x1, x2 and x3 (appearing in |M4|2) are understood to be expressed in terms of s1, s2
and s3 according to

x1 = s1 ; x2 =
s3
s1

; x3 =
s1s2 − s3

(1− s1) (s1 − s3)
. (26)

x4 and x5 vary between zero and one, while s3 ∈ [0, s1 s2].

C Renormalization constants

In this appendix, we collect the explicit expressions of the renormalization constants needed
for the ultraviolet renormalization in our calculation (see section 3).
The operator O7, as well as the b-quark mass contained in this operator are renormalized in
the MS scheme [43]:

ZMS
77 = 1 +

4CF

ǫ

αs(µ)

4π
+O(α2

s) ; ZMS
mb

= 1− 3CF

ǫ

αs(µ)

4π
+O(α2

s) . (27)

All the remaining fields and parameters are renormalized in the on-shell scheme. The on-shell
renormalization constant for the b-quark mass is given by

ZOS
mb

= 1− CF Γ(ǫ) eγǫ
3− 2ǫ

1− 2ǫ

(
µ

mb

)2ǫ αs(µ)

4π
+O(α2

s) . (28)

while the renormalization constants for the s- and b-quark fields are

ZOS
2s = 1 +O(α2

s) ,

ZOS
2b = 1−CF Γ(ǫ) eγǫ

3− 2ǫ

1− 2ǫ

(
µ

mb

)2ǫ αs(µ)

4π
+O(α2

s) . (29)

The various quantities δZ appearing in section 3 are defined to be δZ = Z − 1.
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Abstract

We calculate the set of O(αs) corrections to the double differential decay width
dΓ77/(ds1 ds2) for the process B̄ → Xsγγ originating from diagrams involving the elec-
tromagnetic dipole operator O7. The kinematical variables s1 and s2 are defined as
si = (pb − qi)

2/m2
b, where pb, q1, q2 are the momenta of b-quark and two photons. While

the (renormalized) virtual corrections are worked out exactly for a certain range of s1
and s2, we retain in the gluon bremsstrahlung process only the leading power w.r.t. the
(normalized) hadronic mass s3 = (pb − q1 − q2)

2/m2
b in the underlying triple differential

decay width dΓ77/(ds1ds2ds3). The double differential decay width, based on this ap-
proximation, is free of infrared- and collinear singularities when combining virtual- and
bremsstrahlung corrections. The corresponding results are obtained analytically. When
retaining all powers in s3, the sum of virtual- and bremstrahlung corrections contains
uncanceled 1/ǫ singularities (which are due to collinear photon emission from the s-quark)
and other concepts, which go beyond perturbation theory, like parton fragmentation func-
tions of a quark or a gluon into a photon, are needed which is beyond the scope of our
paper.

1 Introduction

Inclusive rare B-meson decays are known to be a unique source of indirect information about
physics at scales of several hundred GeV. In the Standard Model (SM) all these processes
proceed through loop diagrams and thus are relatively suppressed. In the extensions of the
SM the contributions stemming from the diagrams with “new” particles in the loops can be
comparable or even larger than the contribution from the SM. Thus getting experimental
information on rare decays puts strong constraints on the extensions of the SM or can even
lead to a disagreement with the SM predictions, providing evidence for some “new physics”.

To make a rigorous comparison between experiment and theory, precise SM calculations for
the (differential) decay rates are mandatory. While the branching ratios for B̄ → Xsγ [1] and
B̄ → Xsℓ

+ℓ− are known today even to next-to-next-to-leading logarithmic (NNLL) precision
(for reviews, see [2, 3]), other branching ratios, like the one for B̄ → Xsγγ discussed in these
proceedings, has been calculated before to leading logarithmic (LL) precision in the SM by
several groups [4, 5, 6, 7] and only recently a first step towards next-to-leading-logarithmic
(NLL) precision was presented by us in [8]. In contrast to B̄ → Xsγ, the current-current
operator O2 has a non-vanishing matrix element for b→ sγγ at order α0

s precision, leading to
an interesting interference pattern with the contributions associated with the electromagnetic
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dipole operator O7 already at LL precision. As a consequence, potential new physics should
be clearly visible not only in the total branching ratio, but also in the differential distributions.

As the process B̄ → Xsγγ is expected to be measured at the planned Super B-factories in
Japan and Italy, it is necessary to calculate the differential distributions to NLL precision in
the SM, in order to fully exploit its potential concerning new physics. The starting point of
our calculation is the effective Hamiltonian, obtained by integrating out the heavy particles
in the SM, leading to

Heff = −4GF√
2
V ⋆
tsVtb

8∑

i=1

Ci(µ)Oi(µ) , (1)

where we use the operator basis introduced in [9]:

O1 = (s̄LγµT
acL) (c̄Lγ

µTabL) , O2 = (s̄LγµcL) (c̄Lγ
µbL) ,

O3 = (s̄LγµbL)
∑

q(q̄γ
µq) , O4 = (s̄LγµT

abL)
∑

q(q̄γ
µTaq) ,

O5 = (s̄LγµγνγρbL)
∑

q(q̄γ
µγνγρq) , O6 = (s̄LγµγνγρT

abL)
∑

q(q̄γ
µγνγρTaq) ,

O7 = e
16π2 m̄b(µ) (s̄Lσ

µνbR)Fµν , O8 = gs
16π2 m̄b(µ) (s̄Lσ

µνT abR)G
a
µν .

(2)

The symbols T a (a = 1, 8) denote the SU(3) color generators; gs and e, the strong and
electromagnetic coupling constants. In eq. (2), m̄b(µ) is the running b-quark mass in the
MS-scheme at the renormalization scale µ. As we are not interested in CP-violation effects
in the present paper, we made use of the hierarchy VubV

∗
us ≪ VtbV

∗
ts when writing eq. (1).

Furthermore, we also put ms = 0.

While the Wilson coefficients Ci(µ) appearing in eq. (1) are known to sufficient precision
at the low scale µ ∼ mb since a long time (see e.g. the reviews [2, 3] and references therein), the
matrix elements 〈sγγ|Oi|b〉 and 〈sγγ g|Oi|b〉, which in a NLL calculation are needed to order
g2s and gs, respectively, are not known yet. To calculate the (Oi,Oj)-interference contributions
to the differential distributions at order αs is in many respects of similar complexity as the
calculation of the photon energy spectrum in B̄ → Xsγ at order α2

s needed for the NNLL
computation. As a first step in this NLL enterprise, we derived in our paper [8], the O(αs)
corrections to the (O7,O7)-interference contribution to the double differential decay width
dΓ/(ds1ds2) at the partonic level. The variables s1 and s2 are defined as si = (pb − qi)

2/m2
b ,

where pb and qi denote the four-momenta of the b-quark and the two photons, respectively.

At order αs there are contributions to dΓ77/(ds1ds2) with three particles (s-quark and
two photons) and four particles (s-quark, two photons and a gluon) in the final state. These
contributions correspond to specific cuts of the b-quarks self-energy at order α2×αs, involving
twice the operator O7. As there are additional cuts, which contain for example only one
photon, our observable cannot be obtained using the optical theorem, i.e., by taking the
absorptive part of the b-quark self-energy at three-loop. We therefore calculate the mentioned
contributions with three and four particles in the final state individually.

We work out the QCD corrections to the double differential decay width in the kinematical
range

0 < s1 < 1 ; 0 < s2 < 1− s1 .

Concerning the virtual corrections, all singularities (after ultra-violet renormalization)
are due to soft gluon exchanges and/or collinear gluon exchanges involving the s-quark.
Concerning the bremsstrahlung corrections (restricted to the same range of s1 and s2), there



3 Some numerical illustrations 65

are in addition kinematical situations where collinear photons are emitted from the s-
quark. The corresponding singularities are not canceled when combined with the virtual
corrections. We found, however, that there are no singularities associated with collinear
photon emission in the double differential decay width when only retaining the leading power
w.r.t to the (normalized) hadronic mass s3 = (pb − q1 − q2)

2/m2
b in the underlying triple

differential distribution dΓ77/(ds1ds2ds3). Our results of our paper are obtained within this
“approximation”. When going beyond, other concepts which go beyond perturbation theory,
like parton fragmentation functions of a quark or a gluon into a photon, are needed [10].

2 Leading Order and Final results for the decay width

In d = 4 dimensions, the leading-order spectrum (in our restricted phase-space) is given by

dΓ
(0)
77

ds1 ds2
=
α2 m̄2

b(µ)m
3
b |C7,eff (µ)|2G2

F |VtbV ∗
ts|2Q2

d

1024π5
(1− s1 − s2)

(1− s1)2s1(1− s2)2s2
r0 . (3)

where

r0 = −48s32s
3
1 + 96s22s

3
1 − 56s2s

3
1 + 8s31 + 96s32s

2
1 − 192s22s

2
1 + 112s2s

2
1 − 56s32s1 +

112s22s1 − 96s2s1 + 8s1 + 8s32 + 8s2

The complete order αs correction to the double differential decay width dΓ77/(ds1 ds2) is
obtained by adding the renormalized virtual corrections and the bremsstrahlung corrections.
Explicitly we obtain

dΓ
(1)
77

ds1 ds2
=

α2 m̄2
b(µ)m

3
b |C7,eff (µ)|2G2

F |VtbV ∗
ts|2Q2

d

1024π5
(4)

×αs

4π
CF

[ −4 r0 (1− s1 − s2)

(1− s1)2 s1 (1− s2)2 s2
log

µ

mb
+ f

]

,

where f can be found explicitly in [8].

The order αs correction dΓ
(1)
77 /(ds1ds2) in Eq. (4) to the double differential decay width

for b→ Xsγγ was the main result of our paper [8].

3 Some numerical illustrations

In our procedure the NLL corrections have three sources: (a) αs corrections to the Wilson
coefficient C7,eff (µ), (b) expressing m̄b(µ) in terms of the pole mass mb and (c) virtual- and
real- order αs corrections to the matrix elements. To illustrate the effect of source (c), which
is worked out for the first time in our paper [8], we show in Fig. 1 (by the long-dashed line)
the (partial) NLL result in which source (c) is switched off. We conclude that the effect (c)
is roughly of equal importance as the combined effects of (a) and (b).

For completeness we show in this figure (by the dotted line) also the result when QCD is
completely switched off, which amounts to put µ = mW in the LL result.

From Fig. 1 we see that the NLL results are substantially smaller (typically by 50% or
slightly more) than those at LL precision, which is also the case when choosing other values
for s2.
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In the numerical discussion above, we have systematically converted the running b-quark
mass m̄b(µ) in terms of the pole mass mb. As perturbative expansions often behave better
when expressed in terms of the running mass, we also studied the results obtained when
systematically converting mb in terms of m̄b(µ). After doing also this version, we observe the
following: Generally speaking, NLL corrections are not small for both cases, when taking into
account the full range of µ, i.e., mb/2 < µ < 2mb. More precisely, in the MS version they are
large for µ = mb/2 and smaller for larger values of µ, while in the pole mass version they are
large for all values of µ.

We stress that the numerically important contributions involving the operator O2 are not
discussed in our paper. Therefore, the issue concerning the reduction of the µ dependence at
NLL precision cannot be addressed at this level. Finally, the relevant input parameters that
we used in our analysis together with the values of the Wilson coefficient C7 and the strong
coupling αs at different values of the scale µ are listed in Table 6.

Parameter Value

mb(pole) 4.8 GeV

mt(pole) 175 GeV

MW 80.4 GeV

MZ 91.19 GeV

GF 1.16637 × 10−5 GeV−2

VtbV
∗
ts 0.04

α−1 137

αs(MZ) 0.119

αs(µ) C0
7,eff (µ) C1

7,eff (µ)

µ = MW 0.1213 −0.1957 −2.3835

µ = 2mb 0.1818 −0.2796 −0.1788

µ = mb 0.2175 −0.3142 0.4728

µ = mb/2 0.2714 −0.3556 1.0794

Table 6: Left: Relevant input parameters. Right: αs(µ) and the Wilson coefficient C7,eff (µ)
at different values of the scale µ.

4 Concluding remarks

In the present work we calculated the set of the O(αs) corrections to the decay process
B̄ → Xsγγ originating from diagrams involving O7. To perform this calculation, it is neces-
sary to work out diagrams with three particles (s-quark and two photons) and four particles
(s-quark, two photons and a gluon) in the final state. From the technical point of view, the cal-
culation was made possible by the use of the Laporta Algorithm to identify the needed master
integrals and by applying the differential equation method to solve the master integrals. When
calculating the bremsstrahlung corrections, we take into account only terms proportional to
the leading power of the hadronic mass. We find that the infrared and collinear singularities
cancel when combining the above mentioned approximated version of bremsstrahlung correc-
tions with the virtual corrections. The numerical impact of the NLL corrections is large: for
dΓ77/(ds1 ds2) the NLL result is approximately 50% smaller than the LL prediction.
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Figure 1: Frames 1)-3): Double differential decay width dΓ77/(ds1ds2) as a function of s1
for s2 fixed at s2 = 0.2. The dotted(black), the short-dashed(red) and the solid line(blue)
shows the result when neglecting QCD-effects, the LL and the NLL result, respectively.
The long-dashed line(purple) represents the (partial) NLL result in which the virtual- and
bremsstrahlung corrections worked out in our paper [8] are switched off. In the frames 1), 2)
and 3) the renormalization scale is chosen to be µ = mb/2, µ = mb and µ = 2mb, respectively.
Down right: The relevant phase-space region for s1 and s2.

References

[1] M. Misiak, H. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, et al., Phys.Rev.Lett. 98,
022002 (2007), hep-ph/0609232.

[2] T. Hurth and M. Nakao, Ann.Rev.Nucl.Part.Sci. 60, 645 (2010), 1005.1224.

[3] A. J. Buras (2011), 1102.5650.

[4] H. Simma and D. Wyler, Nucl.Phys. B344, 283 (1990).

[5] L. Reina, G. Ricciardi, and A. Soni, Phys.Lett. B396, 231 (1997), hep-ph/9612387.

[6] L. Reina, G. Ricciardi, and A. Soni, Phys.Rev. D56, 5805 (1997), hep-ph/9706253.

[7] J.-j. Cao, Z.-j. Xiao, and G.-r. Lu, Phys.Rev. D64, 014012 (2001), hep-ph/0103154.

[8] H. Asatrian, C. Greub, A. Kokulu, and A. Yeghiazaryan, Phys.Rev. D85, 014020 (2012),
1110.1251.

hep-ph/0609232
1005.1224
1102.5650
hep-ph/9612387
hep-ph/9706253
hep-ph/0103154
1110.1251


68 Part III: The B̄ → Xsγγ decay:
NLL QCD contribution of the Electromagnetic Dipole operator O7

[9] K. G. Chetyrkin, M. Misiak, and M. Munz, Phys.Lett. B400, 206 (1997),
hep-ph/9612313.

[10] A. Kapustin, Z. Ligeti, and H. D. Politzer, Phys.Lett. B357, 653 (1995),
hep-ph/9507248.

hep-ph/9612313
hep-ph/9507248


Part IV

Explaining B → Dτν, B → D∗τν
and B → τν in a two Higgs doublet

model III

published in

Phys. Rev. D86 (2012) 054014
(arXiv:1206.2634 [hep-ph])





Explaining B → Dτν , B → D∗τν and B → τν in a two Higgs doublet
model of type III

Andreas Crivellin, Christoph Greub and Ahmet Kokulu
Albert Einstein Center for Fundamental Physics,

Institute for Theoretical Physics,
University of Bern,

CH-3012 Bern, Switzerland

Abstract

Recently, the BABAR Collaboration reported first evidence for new physics in B →
Dτν and B → D∗τν . Combining both processes, the significance is 3.4 σ. This result
cannot be explained in a two Higgs doublet model of type II. Furthermore, the CKMfitter
Group finds a 2.9 σ discrepancy between the Standard Model prediction for Br[B → τν]
(using Vub from a global fit to the unitary triangle) and the measurements of the B
factories. Altogether, these measurements are strong indications for physics beyond the
Standard Model in B-meson decays to taus.

We show that in a two Higgs doublet model of type III it is possible to simultaneously
explain B → Dτν and B → D∗τν using a single free parameter ǫu32. Also, Br[B →
τν] can be brought into agreement with experiment using ǫu31. Furthermore, for Higgs
(A0, H0, H±) masses around 500 GeV, as preferred by recent CMS results, all bounds
from FCNC processes are satisfied and B → Dτν , B → D∗τν and B → τν can be
explained without a significant degree of fine tuning.

1 Introduction

In addition to the direct searches for new physics (performed at very high energies) at the
LHC, low-energy precision flavour observables provide a complementary window to physics
beyond the Standard Model (SM). Tauonic B-meson decays are an excellent probe of new
physics: they test lepton flavor universality satisfied in the Standard Model (SM) and are
sensitive to new particles which couple proportionally to the mass of the involved particles
(e.g. Higgs bosons) due to the heavy τ lepton involved. The single decay modes still suffer
from large hadronic uncertainties related to the form factors and from the uncertainties of
the CKM elements. However, in normalizing the τ decay mode to the corresponding decay
with light leptons in the final state, these uncertainties are reduced and the sensitivity to new
physics is significantly improved.

Recently, the BABAR Collaboration performed an analysis of the semileptonic B decays
B → Dτν and B → D∗τν using the full available data set [1]. They find for the ratios

R(D(∗)) = B(B → D(∗)τν)/B(B → D(∗)ℓν) , (1)

the following results:

R(D) = 0.440 ± 0.058 ± 0.042 , (2)

R(D∗) = 0.332 ± 0.024 ± 0.018 . (3)
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Here the first error is statistical and the second one is systematic. Comparing these measure-
ments to the SM predictions

RSM(D) = 0.297 ± 0.017 , (4)

RSM(D∗) = 0.252 ± 0.003 , (5)

we see that there is a discrepancy of 2.2σ for R(D) and 2.7σ for R(D∗) . For these theory
predictions we again used the updated results of [1], which rely on the calculations of Refs. [2,
3] based on the previous results of Refs. [4, 5, 6, 7, 8]. Both processes exceed the SM
prediction, and combining them gives a 3.4σ deviation from the SM [1], which constitutes
the first evidence for new physics in semileptonic B decays to tau leptons.

This evidence for new physics in B-meson decays to taus is further supported by the
measurement of B → τν by BABAR [9] and BELLE [10]. Averaging both measurements,
one obtains the branching ratio [11]

B[B → τν] = (1.67 ± 0.3) × 10−4 . (6)

This also disagrees with the SM prediction by 2.9σ [12] or 2.5σ [13], using the global fit of
the CKM matrix performed by CKMfitter or UTfit, respectively.

Thus, combining R(D) , R(D∗) and B → τν , we have rather solid evidence for violation
of lepton flavor universality. Assuming that these deviations from the SM are not statistical
fluctuations or underestimated theoretical or systematic errors, it is interesting to ask which
model of new physics can explain the measured values. Since these processes are all tree-
level decays in the SM, it is difficult to explain these deviations with a model of new physics
(NP), since one in general also needs a tree-level exchange of a new particle in order to get
sizable effects. This then generates the difficulty to explain the absence of NP effects in other
observables.

A widely studied possibility is the introduction of a charged scalar particle which couples
proportionally to the masses of the fermions involved in the interaction: a charged Higgs
boson. Such a charged Higgs boson is introduced in the MSSM or in general in any two Higgs
doublet model (2HDM), and affects B → τν [14, 15], B → Dτν and B → D∗τν [16, 17, 18].
This is a reasonable model: because the Higgs couples only significantly to the tau, it can
explain the absence of NP effects in B decays to light leptons and gives rise to lepton flavor
universality violation.

In a 2HDM of type II (like the MSSM1), one Higgs doublet couples to down quarks
and charged leptons, while the other one gives masses to the up quarks. Then the only free
additional parameters are tan β = vu/vd (the ratio of the two vacuum expectation values) and
the charged Higgs mass mH± (the heavy CP even Higgs mass mH0 and the CP odd Higgs
mass mA0 can be expressed in terms of the charged Higgs mass and differ only by electroweak
corrections). In this setup the charged Higgs contribution to B → τν interferes necessarily
destructively with the SM [14]. Thus, an enhancement of B[B → τν] is only possible if the
absolute value of the charged Higgs contribution is bigger than two times the SM one, which
is in conflict with B → Dτν . Furthermore, a 2HDM of type II cannot explain R(D) and
R(D∗) simultaneously [1].

Another possibility to explain B → τν is the introduction of a right-handed W -coupling
[19] or new physics in B mixing [20] (meaning that the actual value of Vub is bigger than

1At the loop-level non-holomorphic couplings are induced, but for constructive interference they have to
exceed the tree-level Yukawa coupling, which is very difficult.
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Figure 1: Left and middle: Allowed 1σ regions from R(D) (blue) and R(D∗) (yellow), adding
the experimental uncertainty and theoretical uncertainty linear. Left: Constraints in the
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the one extracted from the global fit). Anyway, neither possibilities can help to explain the
deviation from the SM in R(D) and R(D∗) .

Thus, we need another model to explain R(D) and R(D∗) . Our choice in this article is a
2HDM of type III (where both Higgs doublets couple to up quarks and down quarks as well)
with MSSM-like Higgs potential. Since a 2HDM of type III with minimal flavor violation
(MFV) can only explain B → τν in some fine-tuned regions of parameter space [21] and
cannot explain R(D) and R(D∗) simultaneously, we consider a more generic flavor structure
with flavor violation in the up sector. As we will see, this model is capable to explain B → τν ,
R(D) and R(D∗) without fine tuning.

2 Effective Field Theory

Since the NP we are interested in must be far above the scale of the B meson, we can integrate
out the heavy degrees of freedom (including the SMW boson). The SM contribution and the
NP contribution are then contained within the effective Hamiltonian

Heff = Cqb
SMO

qb
SM + Cqb

R O
qb
R + Cqb

L O
qb
L , (7)

with (for massless neutrinos)

Oqb
SM = q̄γµPLb τ̄γµPLντ ,

Oqb
R = q̄PRb τ̄PLντ ,

Oqb
L = q̄PLb τ̄PLντ .

(8)

In Eq. (7) and Eq. (8) q = u for B → τν and q = c for B → Dτν and B → D∗τν . The SM

Wilson coefficient is given by Cqb
SM = 4GF Vqb/

√
2. The corresponding Wilson coefficients Cqb

R
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b

u, c

H±

τ

ν
ǫu

31,32

Figure 2: Feynman diagram with a charged Higgs contributing to B → τν and B → D(∗)τν.
The dot represents the flavor-violating interaction containing the 2HDM of type III parameters
ǫu31 and ǫu32, which affect B → τν and B → D(∗)τν, respectively.

and Cqb
L (given at the B meson scale), which parametrize the effect of NP, affect our three

physical observables in the following way [3, 15, 22]:

R(D) = RSM(D)

(

1 + 1.5ℜ
[
Ccb
R + Ccb

L

Ccb
SM

]

+ 1.0

∣
∣
∣
∣

Ccb
R + Ccb

L

Ccb
SM

∣
∣
∣
∣

2
)

, (9)

R(D∗) = RSM(D∗)

(

1 + 0.12ℜ
[
Ccb
R − Ccb

L

Ccb
SM

]

+ 0.05

∣
∣
∣
∣

Ccb
R − Ccb

L

Ccb
SM

∣
∣
∣
∣

2
)

, (10)

B[B → τν] =
G2

F |Vub|2
8π

m2
τf

2
BmB

(

1− m2
τ

m2
B

)2

τB ×
∣
∣
∣
∣
1 +

m2
B

mbmτ

(Cub
R − Cub

L )

Cub
SM

∣
∣
∣
∣

2

. (11)

Let us consider firstB → Dτν andB → D∗τν , where the ratiosR(D) andR(D∗) are affected
by the two Wilson coefficients Ccb

R and Ccb
L . For our analysis we add the experimental errors in

quadrature and the theoretical uncertainty linear on top of this. From the left plot in Fig. 1,
we see that both R(D) and R(D∗) can be brought into agreement with the experimental
values within the 1σ error by Ccb

L only. Note that Ccb
R is not capable of achieving this

without a simultaneous contribution from Ccb
L . Since (neglecting small mass ratios) only Ccb

R

is generated in a 2HDM of type II or in a 2HDM of type III with MFV [23] (neglecting small
quark mass ratios), these models cannot explain R(D) and R(D∗) simultaneously. This is
still true if we allow for complex values of Ccb

R , as we can see from the middle plot in Fig. 1.
Note that the Wilson coefficients in the plots are given at the scale mb.

On the other hand, B → τν can be explained either with Cub
R or with Cub

L (or with a
combination of both of them). However, as we will see in the next section, in the context of
the 2HDM of type III, Cub

L is the more natural choice.

3 Two Higgs doublet model of type III

The SM contains only one scalar isospin doublet, the Higgs doublet. After electroweak symme-
try breaking, this gives masses to up quarks, down quarks and charged leptons. The charged
component of this doublet becomes the longitudinal component of the W boson, and thus we
have only one physical neutral Higgs particle. In a 2HDM we introduce a second Higgs dou-
blet and obtain four additional physical Higgs particles (in the case of a CP conserving Higgs
potential): the neutral CP-even Higgs H, a neutral CP-odd Higgs A and the two charged
Higgses H±.
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Two Higgs doublet models have been studied for many years with focus on the type II
models [17, 24, 25] or type III models with MFV [21, 23, 26], and on alignment [27, 28] or
natural flavour conservation [26, 29]. As outlined in the introduction, these models cannot
explain R(D) and R(D∗) simultaneously [1] (and for B → τν fine tuning is needed); we
will study a 2HDM of type III with generic flavour-structure [30], but for simplicity, with
MSSM-like Higgs potential 2.

In the 2HDM of type III, we have the Yukawa Lagrangian (see for example [32] for details):

Leff
Y = Q̄a

f L

[

Y d
fiǫabH

b⋆
d − ǫdfiH

a
u

]

di R (12)

− Q̄a
f L

[

Y u
fiǫabH

b⋆
u + ǫufiH

a
d

]

ui R + H.c. ,

where ǫab is the totally antisymmetric tensor, and ǫqij parametrizes the non-holomorphic correc-
tions which couple up (down) quarks to the down (up) type Higgs doublet. After electroweak
symmetry breaking, this Lagrangian gives rise to the following Feynman-rule:

i
(

ΓH± LR eff
ufdi

PR + ΓH± RL eff
ufdi

PL

)

, (13)

with

ΓH± LR eff
ufdi

=

3∑

j=1

sin β Vfj

(
mdi

vd
δji − ǫdji tan β

)

, (14)

ΓH± RL eff
ufdi

=

3∑

j=1

cos β

(
muf

vu
δjf − ǫu⋆jf tan β

)

Vji .

Thus, the Wilson coefficients Cqb
L and Cqb

R at the matching scale are given by

Cqb
R(L) =

−1

M2
H±

Γ
LR(RL),H±

qb

mτ

v
tan β , (15)

with the vacuum expectation value v ≈ 174GeV. Here we assumed that the Peccei-Quinn
breaking for leptons is negligible, which means that the lepton-Higgs coupling are like in the
2HDM of type II. Note that for large Higgs masses and large values tan(β), the CP-odd and
the heavy CP-even Higgs mass approach the charged one.

3.1 Experimental constraints

First, note that all flavor-changing elements ǫdij are stringently constrained from FCNC pro-
cesses in the down sector because of tree-level neutral Higgs exchange. Thus, they cannot have
any significant impact on the decays we are interested in, and therefore we are left with ǫd33.

Concerning the elements ǫuij we see that only ǫ
u
31 (ǫ

u
32) significantly effects B → τν (R(D) and

R(D∗) ) without any CKM suppression. Furthermore, since flavor-changing top-to-up (or
charm) transitions are not measured with sufficient accuracy, we can only constrain these
elements from charged Higgs-induced FCNCs in the down sector. However, since in this case
an up (charm) quark always propagates inside the loop, the contribution is suppressed by the

2Flavor-observables in type III models have been considered before [31], but with focus on the flavor-
changing elements in the down sector.
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Figure 3: Left: Allowed regions in the complex ǫu32-plane from R(D) (blue) and
R(D∗) (yellow) for tan β = 50 and mH = 500 GeV. Middle: Allowed regions in the com-
plex ǫu31-plane from B → τν . Right: Allowed regions in the tan β–ǫu31 plane from B → τν for
real values of ǫu31 and mH = 400 GeV (green), mH = 800 GeV (orange). The scaling of the
allowed region for ǫu32 with tan β and mH is the same as for ǫu31. ǫ

u
32 and ǫu31 are given at the

matching scale mH .

small Yukawa couplings of the up-down-Higgs (charm-strange-Higgs) vertex involved in the
corresponding diagrams. Thus, the constraints from FCNC processes are weak, and ǫu32,31 can
be sizable.

Of course, the lower bounds on the charged Higgs mass for a 2HDM of type II from b→ sγ
of 300 GeV [33] must still be respected by our model, and also the results from direct searches
at the LHC [34] are in principle unchanged. Note that the recent CMS results even welcome
a heavy Higgs (H0, A0,H±) mass around 500 GeV.

3.2 B → Dτν and B → D∗τν

ǫd33 contributes to Ccb
R , and thus (as we see from Fig. 1) cannot simultaneously explain

R(D) and R(D∗) . Thus, we are left with ǫu32, which contributes to B → Dτν and B →
D∗τν via the Feynman diagram shown in Fig. 2. In Fig. 3 we see the allowed region in
the complex ǫu32-plane, which gives the correct values for R(D) and R(D∗) within the 1σ
uncertainties for tan β = 50 and MH = 500 GeV.

3.3 B → τν

In principle, B → τν can be explained either by using ǫd33 (as in 2HDMs with MFV) or by
ǫu31, or by a combination of both (see right plot in Fig. 1). However, ǫd33 alone cannot explain
the deviation from the SM without fine tuning, while ǫu31 is capable of doing this. We see this
from the right plot in Fig. 3, keeping in mind that ǫd33 generates Cub

R , while ǫu31 generates Cub
L .

3.4 The quark mass matrix and fine tuning

The naturalness criterion of ’t Hooft states that the smallness of a quantity is only natural if a
symmetry is gained in the limit in which this quantity is zero. This means, on the other hand,
that large accidental cancellations, which are not enforced by a symmetry, are unnatural and
thus not desirable. Let us apply this reasoning to the quark masses and CKM elements in
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the 2HDM. The quark mass matrices in the 2HDM of type III are given by

m
d(u)
ij = vd(u)Y

d(u)
ij + vu(d)ǫ

d(u)
ij . (16)

Diagonalizing these quark mass matrices gives the physical quark masses and the CKMmatrix.
Using ’t Hooft’s naturalness criterion we can demand the absence of fine-tuned cancellations
between vdY

d
ij (vuY

u
ij ) and vuǫ

d
ij (vdǫ

u
ij). Thus, we require that the contributions of vuǫ

d
ij and

vdǫ
u
ij to the quark masses and CKM matrix not exceed the physical measured quantities:

|vu(d)ǫd(u)ij | ≤ |Vij | max
[

mdi(ui),mdj(uj)

]

. (17)

From Fig. 3, we see that ’t Hooft’s naturalness criterion is satisfied if R(D) , R(D∗) and
B → τν are explained using ǫu32 and ǫu31, respectively. However, if B → τν is explained
using ǫd33, ’t Hooft’s naturalness criterion is violated either because the SM contribution to
B → τν is overcompensated or because

∣
∣vuǫ

d
33

∣
∣ > mb.

4 Conclusions

The decays B → τν , B → Dτν and B → D∗τν are an excellent probe of physics beyond the
SM (complementary to the direct searches at the LHC), since they are sensitive to lepton flavor
universality violating new physics, e.g., Higgs bosons. The BABAR Collaboration recently
reported an excess both in B → Dτν and B → D∗τν compared to the SM predictions [1].
This evidence for new physics cannot be explained with a 2HDM of type II. Therefore, we
proposed a 2HDM of type III with MSSM-like Higgs potential and flavor-violation in the
up sector in order to explain these deviations from the SM. In fact, our model can account
for the deviation of R(D) and R(D∗) from the SM predictions simultaneously and also bring
B → τν into agreement with experiment. This is even possible without significant fine tuning.
Furthermore, all experimental constraints from other processes can be satisfied, and recent
CMS results [34] even welcome a mass around 500 GeV for the non-SM-like Higgs bosons of
a 2HDM. In order to test the model, we propose to search for A0,H0 → t+ c at the LHC.
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Abstract

In this article, we perform an extensive study of flavor observables in a two-Higgs-
doublet model (2HDM) with generic Yukawa structure (of type III). This model is inter-
esting not only because it is the decoupling limit of the Minimal Supersymmetric Standard
Model (MSSM) but also because of its rich flavor phenomenology which also allows for
sizable effects not only in FCNC processes but also in tauonic B decays. We examine the
possible effects in flavor physics and constrain the model both from tree-level processes and
from loop-observables. The free parameters of the model are the heavy Higgs mass, tanβ
(the ratio of vacuum expectation values) and the ”non-holomorphic” Yukawa couplings

ǫfij (f = u, d, ℓ). In our analysis we constrain the elements ǫfij in various ways: In a first

step we give order of magnitude constraints on ǫfij from ’t Hooft’s naturalness criterion,

finding that all ǫfij must be rather small unless the third generation is involved. In a sec-
ond step, we constrain the Yukawa structure of the type-III 2HDM from tree-level FCNC
processes (Bs,d → µ+µ−, KL → µ+µ−, D̄0 → µ+µ−, ∆F = 2 processes, τ− → µ−µ+µ−,
τ− → e−µ+µ− and µ− → e−e+e−) and observe that all flavor off-diagonal elements
of these couplings, except ǫu32,31 and ǫu23,13 must be very small in order to satisfy the
current experimental bounds. In a third step, we consider Higgs mediated loop contribu-
tions to FCNC processes (b → s(d)γ, Bs,d mixing, K−Kmixing and µ → eγ) finding
that also ǫu13 and ǫu23 must be very small, while the bounds on ǫu31 and ǫu32 are especially
weak. Furthermore, considering the constraints from electric dipole moments (EDMs)

we obtain constrains on some parameters ǫu,ℓij . Taking into account the constraints from
FCNC processes we study the size of possible effects in the tauonic B decays (B → τν ,
B → Dτν and B → D∗τν ) as well as in D(s) → τν, D(s) → µν, K(π) → eν, K(π) → µν
and τ → K(π)ν which are all sensitive to tree-level charged Higgs exchange. Interestingly,
the unconstrained ǫu32,31 are just the elements which directly enter the branching ratios
for B → τν , B → Dτν and B → D∗τν . We show that they can explain the deviations
from the SM predictions in these processes without fine tuning. Furthermore, B → τν ,
B → Dτν and B → D∗τν can even be explained simultaneously. Finally, we give up-
per limits on the branching ratios of the lepton flavor-violating neutral B meson decays
(Bs,d → µe, Bs,d → τe and Bs,d → τµ) and correlate the radiative lepton decays (τ → µγ,
τ → eγ and µ→ eγ) to the corresponding neutral current lepton decays (τ− → µ−µ+µ−,
τ− → e−µ+µ− and µ− → e−e+e−). A detailed appendix contains all relevant information
for the considered processes for general scalar-fermion-fermion couplings.
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1 Introduction

Two-Higgs-doublet models (2HDMs) [1] have been under intensive investigation for a long
time (see for example Ref. [2] for an introduction or Ref. [3] for a recent review article).
There are several reasons for this great interest in 2HDMs: Firstly, 2HDMs are very simple
extensions of the Standard Model (SM) obtained by just adding an additional scalar SU(2)L
doublet to the SM particle content. This limits the number of new degrees of freedom and
makes the model rather predictive. Secondly, motivation for 2HDMs comes from axion models
[4] because a possible CP-violating term in the QCD Lagrangian can be rotated away [5] if the
Lagrangian has a global U(1) symmetry which is only possible if there are two Higgs doublets.
Also the generation of the baryon asymmetry of the Universe motivates the introduction of a
second Higgs doublet because in this way the amount of CP violation can be large enough to
accommodate for this asymmetry, while the CP violation in the SM is too small [6]. Finally,
probably the best motivation for studying 2HDMs is the Minimal Supersymmetric Standard
Model (MSSM) where supersymmetry enforces the introduction of a second Higgs doublet
[7] due to the holomorphic superpotential. Furthermore, the 2HDM of type III is also the
effective theory obtained by integrating out all super-partners of the SM-like particles (the
SM fermion, the gauge boson and the Higgs particles of the 2HDM) from MSSM.

2HDMs are not only interesting for direct searches for additional Higgs bosons at collid-
ers. In addition to these high energy searches at the LHC also low-energy precision flavor
observables provide a complementary window to physics beyond the SM, i.e. to the 2HDMs.
In this respect, FCNC processes, e.g. neutral meson decays to muon pairs (Bs(d) → µ+µ−,
D → µ+µ− and KL → µ+µ−) are especially interesting because they are very sensitive to
flavor changing neutral Higgs couplings. However, also charged current processes like tauonic
B-meson decays are affected by the charged Higgs boson and b → sγ provides currently the
best lower limit on the charged Higgs mass in the 2HDM of type II.

Recently, tauonic B decays received special attention because the BABAR collaboration
performed an analysis of the semileptonic B decays B → Dτν and B → D∗τν reporting a
discrepancy of 2.0σ and 2.7σ from the SM expectation, respectively. The measurements of
both decays exceed the SM predictions, and combining them gives a 3.4σ deviation from the
SM [8, 9] expectation, which constitutes first evidence for new physics in semileptonic B decays
to tau leptons. This evidence for the violation of lepton flavor universality is further supported
by the measurement of B → τν by BABAR [10, 11] and BELLE [12, 13] which exceeds the SM
prediction by 1.6σ using Vub from the global fit [14]. Assuming that these deviations from the
SM are not statistical fluctuations or underestimated theoretical or systematic uncertainties,
it is interesting to ask which model of new physics can explain the measured values. Since,
a 2HDM of type II cannot explain B → τν , B → Dτν and B → D∗τν simultaneously [8],
one must look at 2HDMs with more general Yukawa structures. Also 2HDMs of type III
with Minimal Flavor Violation (MFV) [15] cannot explain these deviations from the SM but
a 2HDM of type III (where both Higgs doublets couple to up quarks and down quarks as
well) with flavor-violation in the up sector, is capable of explaining B → τν , B → Dτν and
B → D∗τν without fine tuning [16].

These points motivate us to perform a complete analysis of flavor-violation in 2HDMs
of type III in this article. For this purpose we take into account all relevant constraints
from FCNC processes (both from tree-level contributions and from loop-induced effects) and
consider afterwards the possible effects in charged current processes.
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This article is structured as follows: In Sec. 2, we review the Yukawa Lagrangian of the
2HDM of type III. In Sec. 3 we give a general overview on the constraints on 2HDMs and
update the bounds on the 2HDM of type II. The following sections discuss in detail the
constraints on the 2HDM of type III parameter space from ’t Hooft’s naturalness argument
(Sec. 4), from tree-level FCNC processes (Sec. 5) and from loop-induced charged and neutral
Higgs mediated contributions to the flavor observables (Sec. 6). Sec. 7 studies the possible
effects in charged current decays (B → τν , B → Dτν , B → D∗τν , D(s) → τν, D(s) → µν,
K(π) → eν, K(π) → µν, τ → K(π)ν) and Sec. 8 is denoted to the study of the upper
limits on the branching ratios Bs,d → τµ, Bs,d → τe, Bs,d → µe and the correlations among
τ− → µ−µ+µ−, τ− → e−µ+µ−, µ− → e−e+e− and τ → µγ, τ → eγ, µ → eγ. Finally, we
conclude. A detailed appendix contains some of the input parameters used in our analysis,
general expressions for some branching ratios as well as all the relevant Wilson coefficients
for b→ s(d)γ, ∆F = 2 processes, leptonic neutral meson decays (∆F = 1), LFV transitions,
EDMs, anamolous magnetic moment (AMM) of muon and (semi-) leptonic charged meson
decays for general charged and/or neutral scalar-fermion-fermion couplings.

2 Setup

The SM contains only one scalar weak-isospin doublet, the Higgs doublet. After electroweak
symmetry breaking its vacuum expectation value (”vev”) gives masses to up quarks, down
quarks and charged leptons. The charged (CP-odd neutral) component of this doublet be-
comes the longitudinal component of the W (Z) boson, and thus we have only one physical
CP-even neutral Higgs particle in the SM. In a 2HDM we introduce a second Higgs doublet
and obtain four additional physical Higgs particles (in the case of a CP conserving Higgs
potential): the neutral heavy CP-even Higgs H0, a neutral CP-odd Higgs A0 and the two
charged Higgses H±.

As outlined in the introduction we consider a 2HDM with generic Yukawa structure
(2HDM of type III). One motivation is that a 2HDM with natural flavor-conservation (like
type I or type II) cannot explain B → Dτν , B → D∗τν and B → τν simultaneously, while
the type III model is capable of doing this [16]. Beside this, our calculations in the 2HDM
III are the most general ones in the sense that they can be applied to models with specific
flavor-structures like 2HDMs with MFV[15, 17, 18]. In this sense also our bounds are model
independent, because they apply to any 2HDM with specific Yukawa structures as well (in
the absence of large cancellations which are unlikely). Finally the type-III 2HDM is the de-
coupling limit of the MSSM and the calculated bounds can be translated to limits on the
MSSM parameter space.

The fact that the 2HDM III is the decoupling limit of the MSSM also motivates us to
choose for definiteness a MSSM like Higgs potential 1 which automatically avoids dangerous
CP violation. The matching of the MSSM on the 2HDM Yukawa sector has been considered
in detail. For the MSSM with MFV it was calculated in Ref. [19, 20, 21, 22, 23, 24] and for
the MSSM with generic flavor structure in Ref. [25] (neglecting the effects of the A-terms)
and in Ref. [26] (including the A-terms). Even the next-to-leading order corrections were

1If we would require that the Higgs potential possesses a Z2 symmetry the results would be very similar
(for v ≪ mH). The heavy Higgs masses squared would still differ by terms of the order of v2 and only
Higgs self-couplings would be different, but they do not enter the flavor-processes at the loop-level under
consideration.
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calculated for the flavor-conserving case in [27] and for the flavor-changing one in the general
MSSM in Ref. [28]. Also the one-loop corrections to the Higgs potential have been considered
[29, 30, 31, 32, 33, 34, 35, 36, 37], but their effects on flavor-observables were found to be
small [38].

Following the notation of Ref. [26, 28, 39] we have the following Yukawa Lagrangian in
the 2HDM of type III starting in an electroweak basis:

LY = Q̄a
f L

[

Y d ew
fi ǫbaH

b⋆
d − ǫd ewfi Ha

u

]

di R + Q̄a
f L

[

Y u ew
fi ǫabH

b⋆
u − ǫu ew

fi Ha
d

]

ui R + h.c. .

(1)
Here a, b denote SU(2)L - indices, ǫab is the two-dimensional antisymmetric tensor with ǫ12 =
−1 and the Higgs doublets are defined as :

Hd =




H1

d

H2
d



 =




H0

d

H−
d



 with 〈Hd〉 =




vd

0



 ,

Hu =




H1

u

H2
u



 =




H+

u

H0
u



 with 〈Hu〉 =




0

vu



 .

(2)

Apart from the holomorphic Yukawa-couplings Y u ew
fi and Y d ew

fi , we included the non-holomorphic

couplings ǫq ewfi (q = u, d) as well.

As a next step we decompose the SU(2) doublets into their components and switch to a
basis in which the holomorphic Yukawa couplings are diagonal:

LY = −d̄f L

[

Y diδfiH
0⋆
d + ǫ̃dfiH

0
u

]

di R − ūf L

[

Y uiδfiH
0⋆
u + ǫ̃ufiH

0
d

]

ui R

+ūf LVfj

[

Y diδji − cot βǫ̃dji

]

H2⋆
d di R

+d̄f LV
⋆
jf

[

Y uiδji − tan βǫ̃uji

]

H1⋆
u ui R + h.c. .

(3)

where, tan β = vu/vd is the ratio of the vacuum expectation values vu and vd acquired by
Hu and Hd, respectively. We perform this intermediate step, because this is the basis which
corresponds to the super-CKM basis of the MSSM and the couplings ǫ̃dij can be directly

related to loop-induced non-holomorphic Higgs coupling. The wave-function rotations U q L,R
fi

necessary to arrive at the physical basis with diagonal quark mass matrices are defined by

U q L⋆
jf mq

jkU
q R
ki = mqiδfi . (4)

They modify the Yukawa Lagrangian as follows:

LY = − d̄f L

[(
mdi

vd
δfi − ǫdfi tan β

)

H1⋆
d + ǫdfiH

2
u

]

di R

− ūf L

[(
mui

vu
δfi − ǫufi cot β

)

H2⋆
u + ǫufiH

1
d

]

ui R

+ ūf LVfj

[
mdi

vd
δji − (cot β + tan β) ǫdji

]

H2⋆
d di R

+ d̄f LV
⋆
jf

[
mui

vu
δji − (tan β + cot β) ǫuji

]

H1⋆
u uiR + h.c. . (5)
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Here, mqi are the physical running quark masses, H1
q and H2

q are the components of the Higgs
doublets, and

Vfi = UuL∗
jf UdL

ji , (6)

is the CKM matrix. The Higgs doublets Hu and Hd project onto the physical mass eigenstates
H0 (heavy CP-even Higgs), h0 (light CP-even Higgs), A0 (CP-odd Higgs) and H± in the
following way:

H0
u =

1√
2

(
H0 sinα+ h0 cosα+ iA0 cosβ

)
,

H0
d =

1√
2

(
H0 cosα− h0 sinα+ iA0 sinβ

)
,

H1
u = cos β H+ ,

H2
d = sin β H− , (7)

where, α is the mixing angle necessary to diagonalize the neutral CP-even Higgs mass matrix

(see e.g. [40]) 2. Since we assume a MSSM-like Higgs potential3 we have

tan β =
vu
vd
,

tan 2α = tan 2β
m2

A0 +M2
Z

m2
A0 −M2

Z

,

m2
H± = m2

A0 +M2
W , m2

H0 = m2
A0 +M2

Z −m2
h0 ,

(8)

with
−π
2

< α < 0 and 0 < β <
π

2
.

This means that in the phenomenologically interesting and viable limit of large values of
tan β and v ≪ mA0 we have to a good approximation4:

tan β ≈ − cotα ,
mH0 ≈ mH± ≈ mA0 ≡ mH .

(9)

Without the non-holomorphic corrections ǫqij, the rotation matrices U q L,R
fi would simulta-

neously diagonalize the mass terms and the neutral Higgs couplings in Eq. (5). However, in
the presence of non-holomorphic corrections, this is no longer the case and flavor changing
neutral Higgs couplings are present in the basis in which the physical quark mass matrices
are diagonal.

The Yukawa Lagrangian in Eq. (5) leads to the following Feynman rules5 for Higgs-quark-
quark couplings

i
(

ΓLRH
qfqi

PR + ΓRLH
qfqi

PL

)

(10)

2Note that we defined α as common in the MSSM. In the 2HDM also a convention with a doubled range
for α is used.

3MSSM-like Higgs potential implies that in the large tan β limit and for v ≪ mH the charged Higgs mass
mH± , the heavy CP even Higgs mass mH0 and the CP odd Higgs mass mA0 are equal.

4For the SM-like Higgs boson h0 we use mh0 ≈ 125 GeV in our numerical analysis.
5Hermiticity of the Lagrangian implies the relation ΓRLH

qf qi
= ΓLRH ⋆

qiqf
.
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with

Γ
LRH0

k
ufui = xku

(
mui

vu
δfi − ǫufi cot β

)

+ xk⋆d ǫ
u
fi ,

Γ
LRH0

k
dfdi

= xkd

(
mdi

vd
δfi − ǫdfi tan β

)

+ xk⋆u ǫ
d
fi ,

ΓLRH±

ufdi
=

3∑

j=1

sin β Vfj

(
mdi

vd
δji − ǫdji tan β

)

,

ΓLRH±

dfui
=

3∑

j=1

cos β V ⋆
jf

(
mui

vu
δji − ǫuji tan β

)

. (11)

Similarly, for the lepton case, the non-vanishing effective Higgs vertices are

Γ
LRH0

k
ℓf ℓi

= xkd

(
mℓi

vd
δfi − ǫℓfi tan β

)

+ xk⋆u ǫ
ℓ
fi ,

ΓLRH±

νf ℓi
=

3∑

j=1
sin β V PMNS

fj

(
mℓi

vd
δji − ǫℓji tan β

)

.

(12)

Here, H0
k = (H0, h0, A0) and the coefficients xkq are given by

xku =

(

− 1√
2
sinα, − 1√

2
cosα,

i√
2
cos β

)

,

xkd =

(

− 1√
2
cosα,

1√
2
sinα,

i√
2
sin β

)

.

(13)

This means that flavor-violation (beyond the one already present in the 2HDM of type II)

is entirely governed by the couplings ǫq,ℓij . If one wants to make the connection to the MSSM,

the parameters ǫq,ℓij will depend only on SUSY breaking parameters and tan β.

3 Constraints on the 2HDM parameter space– general discus-

sion and overview

In this section we give an overview on flavor observables sensitive to charged Higgs contribu-
tions. We review the constraints on the 2HDM of type II and discuss to which extent these
bounds will hold in the 2HDM of type III. A detailed analysis of flavor constraints on the
type-III 2HDM parameter space will be given in the following sections.

The most common version of 2HDMs, concerning its Yukawa sector, is the 2HDM of type
II which respects natural flavor conservation [41] by requiring that one Higgs doublet couples
only to up-quarks while the other one gives masses to down-type quarks and charged leptons
(like the MSSM at tree-level). Flavor-observables in 2HDMs of type II have been studied
in detail [42, 43, 44]. In the type II model there are no tree-level flavor-changing neutral
currents and all flavor violation is induced by the CKM matrix entering the charged Higgs
vertex. In this way the constraints from FCNC processes can be partially avoided. This is
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true for ∆F = 2 processes where the charged Higgs contribution is small, for KL → µ+µ−,
D0 → µ+µ− (due to the tiny Higgs couplings to light quarks) and all flavor observables in
the lepton sector. However, the FCNC processes b → sγ (also to less extent b → dγ) and
Bs → µ+µ− are sensitive the charged Higgs contributions. In addition, direct searches at the
LHC and charged current processes restrict the type-II 2HDM parameter space.

Among the FCNC processes, the constraints from b → sγ are most stringent due to the
necessarily constructive interference with the SM contribution [45, 46, 47, 48]. The most
recent lower bound on the charged Higgs mass obtained in Ref. [49] is mH± ≥ 360GeV which
includes NNLO QCD corrections and is rather independent of tan β. In the type-III 2HDM
this lower bound on the charged Higgs mass can be weakened due to destructive interference
with contributions involving ǫqij . Also in Bs → µ+µ− (and Bd → µ+µ−) a sizable loop-induced
effect is possible in the 2HDM II, but the constrains are still not very stringent even if the new
LHCb measurement are used. The reason for this is that, taking into account the constraints
from b→ sγ on the charged Higgs mass, the branching ratio for Bs → µ+µ− in the 2HDM II
is even below the SM expectation for larger values of tan β [50, 51, 52] due to the destructive
interference between the charged Higgs and the SM contribution.

Regarding charged current processes, tauonic B decays are currently most sensitive to
charged Higgs effects. Here, the charged-Higgs contribution in the type-II 2HDM to B →
τν interferes destructively with the SM contribution [53, 54]. The same is true for B →
D∗τν [55] and B → Dτν [42, 56, 57]. As outlined in the introduction this leads to the fact that
the 2HDM II cannot explain B → τν , B → Dτν and B → D∗τν simultaneously [8]. Other
charged current observables sensitive to charged Higgses areD(s) → µν, D(s) → τν [58, 59, 60],
τ → K(π)ν and K → µν/π → µν [61] (see [44] for a global analysis).

Fig. 1 shows our updated constraints on the 2HDM II parameters space from b → sγ,
B → τν , B → Dτν , B → D∗τν , Bs → µ+µ− and K → µν/π → µν. We see that
in order to get agreement within 2σ between the theory prediction and the measurement of
B → D∗τν , large values of tan β and light Higgs masses would be required which is in conflict
with all other processes under consideration.

Concerning direct searches the bounds on the charged Higgs mass are rather weak due to
the large background from W events. The search for neutral Higgs bosons is easier and the
CMS bounds6 on mA0 from A0 → τ+τ− are shown in Fig. 2. These bounds were obtained
in the MSSM, but since the MSSM corrections to A0 → τ+τ− are rather small and since we
consider a MSSM-like Higgs potential, these bounds also hold in the 2HDM III as long as the
Peccei-Quinn symmetry breaking in the lepton sector is small 7.

Going beyond the simple Yukawa structure of the 2HDM of type II, also 2HDMs of
type III with MFV [15, 17, 18], alignment [64, 65] or natural flavor conservation [17, 41]
have been analyzed in detail. However, flavor-observables in type III models with generic
flavor-structure have received much less attention. Ref. [66] considered the possible effects
of the flavor-diagonal terms and Ref. [67] considers leptonic observables. As outlined in the
introduction, 2HDMs of type II (or type III with MFV) cannot explain B → Dτν and
B → D∗τν simultaneously [8] (and for B → τν fine tuning is needed [18]).

In the following sections we will study in detail the flavor-observables in the 2HDM with
generic flavor-structure [68], but for definiteness, with MSSM-like Higgs potential. For this

6Note that we did not use the bounds from unpublished CMS update of the A0 → τ+τ− analysis.
7For a global analysis of electroweak precision constraints see for example Ref. [62].
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Figure 1: Updated constraints on the 2HDM of type II parameter space. The regions com-
patible with experiment are shown (the regions are superimposed on each other): b → sγ
(yellow), B → Dτν (green), B → τν (red), Bs → µ+µ− (orange), K → µν/π → µν (blue)
and B → D∗τν (black). Note that no region in parameter space is compatible with all pro-
cesses. Explaining B → D∗τν would require very small Higgs masses and large values of
tan β which is not compatible with the other observables. To obtain this plot, we added the
theoretical uncertainty linear on the top of the 2σ experimental error.
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Figure 2: Plot from the CMS collaboration taken from Ref. [63]: Exclusion limts in the mA0–
tan β plane from A0 → τ+τ−. The analysis was done in the MSSM, but since we consider
a 2HDM with MSSM-like Higgs potential and the MSSM corrections to the A0ττ vertex are
small, we can apply this bound to our model. However, a large value of ǫℓ33 in the 2HDM of
type III could affect the conclusions. Note that in the limit v ≪ mH all heavy Higgs masses
(mH0 ,mA0 and mH±) are approximately equal.
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purpose, all processes described above are relevant. In addition, ∆F = 2 processes, lepton
flavor violating observables (LFV), EDMs, τ → K(π)ν/K(π) → µν and K → µ(e)ν/π →
µ(e)ν will turn out to give information on the flavor structure of the 2HDM of type III.
Furthermore, we will investigate to which extent contributions to Bs,d → τµ, Bs,d → τe,
Bs,d → µe and muon anomalous magnetic moment are possible.

4 Constraints from ’t Hooft’s naturalness criterion

The naturalness criterion of ’t Hooft states that the smallness of a quantity is only natural if a
symmetry is gained in the limit in which this quantity is zero. This means on the other hand
that large accidental cancellations, which are not enforced by a symmetry, are unnatural and
thus not desirable. Let us apply this reasoning to the fermion mass matrices in the 2HDM. We
recall from the last section the expressions for the fermion mass matrices in the electroweak
basis:

md
ij = vdY

d ew
ij + vuǫ

d ew
ij ,

mu
ij = vuY

u ew
ij + vdǫ

u ew
ij ,

mℓ
ij = vdY

ℓ ew
ij + vuǫ

ℓ ew
ij .

(14)

Diagonalizing these fermion mass matrices gives the physical fermion masses and the
CKM matrix. Using ’t Hooft’s naturalness criterion we can demand the absence of fine-
tuned cancellations between vdY

d,ℓ
ij (vuY

u
ij ) and vuǫ

d,ℓ
ij (vdǫ

u
ij). Thus, we require that the

contributions of vuǫ
d,ℓ
ij and vdǫ

u
ij to the fermion masses and CKM matrix do not exceed the

physical measured quantities.

In first order of a perturbative diagonalization of the fermion mass matrices, the diagonal
elements mf

ii give rise to the fermion masses, while (in our conventions) the elements mf
ij

with i < j (i > j) affect the left-handed (right-handed) rotations necessary to diagonalize
the fermion mass matrices. The left-handed rotations of the quark fields are linked to the
CKM matrix and can therefore be constrained by demanding that the physical CKM matrix
is generated without a significant degree of fine-tuning. However, the right-handed rotations
of the quarks are not known and the mixing angles of the PMNS matrix are big so that for
these two cases we can only demand that the fermion masses are generated without too large
accidental cancellations. Note, that in Eq. (14) the elements ǫf ew

ij enter, while the elements

ǫfij which we want to constrain from flavor observables are given in the physical basis with

diagonal fermion masses. This means that in order to constrain ǫfij from ’t Hooft’s naturalness
criterion we have to assume in addition that no accidental cancellation occur by switching
between the electroweak basis and the physical basis. In conclusion this leads to the following
upper bounds

∣
∣
∣vu(d)ǫ

d(u)
ij

∣
∣
∣ ≤

∣
∣
∣V CKM

ij

∣
∣
∣×max

[

mdi(ui),mdj(uj)

]

for i < j ,
∣
∣
∣vu(d)ǫ

d(u)
ij

∣
∣
∣ ≤ max

[

mdi(ui),mdj(uj)

]

for i ≥ j ,
∣
∣
∣vuǫ

ℓ
ij

∣
∣
∣ ≤ max

[
mℓi ,mℓj

]
.

(15)
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In the large tan β limit, inserting the quark masses mq(µ) at the Higgs scale (which we

choose here to be µHiggs = 500GeV), we can immediately read off the upper bounds on ǫu,d,ℓij

from Eq. (15):

∣
∣
∣ǫdij

∣
∣
∣ ≤






1.3× 10−4 5.8× 10−5 5.1× 10−5

2.6× 10−4 2.6× 10−4 5.9× 10−4

1.4× 10−2 1.4× 10−2 1.4× 10−2






ij

,

∣
∣
∣ǫuij

∣
∣
∣ ≤ (tan β/50)






3.4× 10−4 3.2× 10−2 1.6× 10−1

1.4× 10−1 1.4× 10−1 1.9

− − −






ij

,

∣
∣
∣ǫℓij

∣
∣
∣ ≤






2.9× 10−6 6.1× 10−4 1.0× 10−2

6.1× 10−4 6.1× 10−4 1.0× 10−2

1.0× 10−2 1.0× 10−2 1.0× 10−2






ij

.

(16)

Of course, these constraints are not strict bounds in the sense that they must be respected
in any viable model. Anyway, big violation of naturalness is not desirable and Eq. (16) gives

us a first glance on the possible structure of the elements ǫfij . As we will see later, it is possible
to explain B → τν , B → Dτν and B → D∗τν using ǫu31,32 without violating Eq. (16), while

if one wants to explain B → τν with ǫd33 ’t Hooft’s naturalness criterion is violated.

5 Constraints from tree-level neutral-current processes

The flavor off-diagonal elements ǫfij (with i 6= j) give rise to flavor-changing neutral currents
(FCNCs) already at the tree-level. Comparing the Higgs contributions to the loop-suppressed
SM contributions, large effects are in principle possible. However, all experimental results are
in very good agreement with SM predictions, which put extremely stringent constraints on
the non-holomorphic terms ǫfij .

In this section we consider three different kinds of processes:

• Muonic decays of neutral mesons (Bs,d → µ+µ−, KL → µ+µ− and D̄0 → µ+µ−).

• ∆F = 2 processes (D−D , K−K , Bs−Bs and Bd−Bd mixing).

• Flavor changing lepton decays (τ− → µ−µ+µ−, τ− → e−µ+µ− and µ− → e−e+e−).

As we will see in detail in Sec. 5.1, the leptonic neutral meson decays Bs,d → µ+µ−,
KL → µ+µ− and D̄0 → µ+µ− put constraints on the elements ǫdij (with i 6= j) and ǫu12,21
already if one of these elements is non-zero, while Bd−Bd , Bs−Bs , K−K and D−Dmixing
only provide constraints on the products ǫdijǫ

d⋆
ji and ǫu12ǫ

u⋆
21 (Sec. 5.2). This means that the

constraints on ∆F = 2 processes can be avoided if one element of the product ǫqijǫ
q⋆
ji is zero,

while the constraints from the leptonic neutral meson decays can only be avoided if the Peccei
Quinn symmetry breaking for the leptons is large such that ǫℓ22 ≈ mµ/vu is possible.

In Sec. 5.3 we will consider the flavor changing lepton decays τ− → µ−µ+µ−, τ− →
e−µ+µ− and µ− → e−e+e− which constrain the off-diagonal elements ǫℓ23,32, ǫ

ℓ
13,31 and ǫℓ12,21,

respectively.
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Figure 3: Feynman diagram showing the neutral Higgs contribution to Bs,d → µ+µ−, KL →
µ+µ− and D̄0 → µ+µ−.

5.1 Leptonic neutral meson decays: Bs,d → µ+µ−, KL → µ+µ− and D̄0
→

µ+µ−

Muonic decays of neutral mesons (Bs → µ+µ−, Bd → µ+µ−, KL → µ+µ− and D̄0 → µ+µ−)
are strongly suppressed in the SM for three reasons: they are loop-induced, helicity suppressed
and they involve small CKM elements. Therefore, their branching ratios (in the SM) are very
small and in fact only KL → µ+µ− and recently also Bs → µ+µ− [69] have been measured,
while for the other decays only upper limits on the branching ratios exist (see Table 7).
We do not consider decays to electrons (which are even stronger helicity suppressed) nor
Bd,s → τ+τ− (where the tau leptons are difficult to reconstruct) because the experimental
limits are even weaker. The study of meson decays to lepton flavor-violating final states is
postponed to Sec. 8.

Process Experimental value SM prediction

B [Bs → µ+µ−] 3.2+1.5
−1.2 × 10−9 [69] (3.23 ± 0.27) × 10−9 [70]

B [Bd → µ+µ−] ≤ 9.4× 10−10 (95% CL) [69] (1.07 ± 0.10) × 10−10 [70]

B [KL → µ+µ−]short ≤ 2.5 × 10−9 [71] ≈ 0.9× 10−9 [71]

B
[
D0 → µ+µ−

]
≤ 1.4× 10−7 (90% CL) [72] –

Table 7: Experimental values and SM predictions for the branching ratios of neutral meson
decays to muon pairs. For KL → µ+µ− we only give the upper limit on the computable short
distance contribution [71] extracted from the experimental value (6.84 ± 0.11) × 10−9 (90%
CL) [72]. The SM prediction for D0 → µ+µ− cannot be reliably calculated due to hadronic
uncertainties.

We see from Fig. 3 that the off-diagonal elements of ǫd13,31, ǫ
d
23,32, ǫ

d
12,21 and ǫu12,21 directly

give rise to tree-level neutral Higgs contributions to Bd → µ+µ−, Bs → µ+µ−, KL → µ+µ−

and D̄0 → µ+µ−, respectively.

In principle, the constraints from these processes could be weakened, or even avoided, if
ǫℓ22 ≈ mℓ2/vu. Anyway, in this section we will assume that the Peccei Quinn breaking for the
leptons is small and neglect the effect of ǫℓ22 in our numerical analysis for setting limits on ǫqij.
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5.1.1 Bs,d → µ+µ−

For definiteness, consider the decay of a neutral Bs

(
b̄s
)
meson (the corresponding decay of a

Bd meson follow trivially by replacing s with d and 2 with 1) to a muon pair. The effective
Hamiltonian governing this transition is8

HBs→µ+µ−

eff = −G
2
FM

2
W

π2

[

Cbs
AO

bs
A + Cbs

S O
bs
S + Cbs

P O
bs
P + C ′bs

A O′bs
A + C ′bs

S O′bs
S + C ′bs

P O′bs
P

]

+ h.c. ,

(17)
where the operators are defined as

Obs
A =

(
b̄γµPLs

)
(µ̄γµγ5µ) ,

Obs
S =

(
b̄PLs

)
(µ̄µ) ,

Obs
P =

(
b̄PLs

)
(µ̄γ5µ) ,

(18)

and the primed operators are obtained replacing PL with PR. The corresponding expression
for the branching ratio in terms of the Wilson coefficients reads

B [Bs → µ+µ−] =
G4

FM
4
W

8π5

√

1− 4
m2

µ

M2
Bs

MBs f
2
Bs
m2

µ τBs

×





∣
∣
∣
∣
∣

M2
Bs

(
Cbs
P −C ′bs

P

)

2 (mb +ms)mµ
− (Cbs

A − C ′bs
A )

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

M2
Bs

(Cbs
S − C ′bs

S )

2 (mb +ms)mµ

∣
∣
∣
∣
∣

2

×
(

1− 4
m2

µ

m2
Bs

)

 .

(19)
Concerning the running of the Wilson coefficients due to the strong interaction, the operators
Obs

A and O′bs
A correspond to conserved vector currents with vanishing anomalous dimensions.

This means that their Wilson coefficients are scale independent. The scalar and pseudo-scalar
Wilson coefficients Cbs

S and Cbs
P (C ′bs

S and C ′bs
P ) have the same anomalous dimension as quark

masses in the SM which means that their scale dependence is given by:

C
(′)bs
S,P (µlow) =

mq(µlow)

mq(µhigh)
C

(′)bs
S,P (µhigh) , (20)

where mq is the running quark mass with the appropriate number of active flavors. In the
SM, CA is the only non-vanishing Wilson coefficient

Cbs
A = −V ⋆

tbVtsY

(
m2

t

M2
W

)

− V ⋆
cbVcsY

(
m2

c

M2
W

)

, (21)

where, the function Y is defined as Y = ηY Y0 such that the NLO QCD effects are included
in ηY = 1.0113 [70] and the one loop Inami-Lim function Y0 reads [73]

Y0(x) =
x

8

[
4− x

1− x
+

3x

(1− x)2
ln(x)

]

. (22)

The complete Wilson coefficients for general quark-quark-scalar couplings are given in the
appendix. In the 2HDM of type III, in the case of large tan β and v ≪ mH , the terms

8The complete expression for the Hamiltonian and the branching ratio including lepton flavor-violating final
states is given in the appendix.
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involving ǫqij simplify to

Cbs
S = Cbs

P = − π2

G2
FM

2
W

1

2m2
H

mℓ2 − vuǫ
ℓ
22

v
ǫd⋆23 tan

2 β ,

C ′bs
S = −C ′bs

P = − π2

G2
FM

2
W

1

2m2
H

mℓ2 − vuǫ
ℓ
22

v
ǫd32 tan

2 β .

(23)

To these Wilson coefficients the well known loop-induced type II 2HDM contributions9

Cbs
S = Cbs

P = −mb V
⋆
tbVts
2

mµ

2M2
W

tan2 β
log
(
m2

H/m
2
t

)

m2
H/m

2
t − 1

, (24)

have to be added as well [52]. Note that since we give the Wilson coefficients at the matching
scale, also mb and mt must be evaluated at this scale.

We can now constrain the elements ǫd23,32 and ǫd13,31 by demanding that the experimental
bounds are satisfied within two standard deviations for Bs → µ+µ− or equivalently at the
95% CL concerning Bd → µ+µ−. The results for the constraints on ǫd23 and ǫd32 (ǫd13 and ǫd31)
from Bs → µ+µ− (Bd → µ+µ−) are shown in Fig. 4 (Fig. 5).

All constraints on ǫd13,31 and ǫd23,32 are very stringent; of the order of 10−5. Both an
enhancement or a suppression of B [Bd,s → µ+µ−] compared to the SM prediction is possible.
While in the 2HDM II the minimal value for B [Bd,s → µ+µ−] is half the SM prediction, in the
2HDM III also a bigger suppression of Bd,s → µ+µ− is possible if ǫd13,23 6= 0. In principle, the

constraints on ǫd23 (ǫd13) from Bs(d) → µ+µ− are not independent of ǫd32 (ǫd31). Anyway, in the
next section it will turn out that the constraints from ∆F = 2 processes are more stringent if
both ǫd32 and ǫd23 are different from zero (the same conclusions hold for ǫd31,13, ǫ

d
21,12 and ǫu21,12).

Bs → µ+µ− and Bd → µ+µ− can also be used to constrain the leptonic parameter ǫℓ22.
We will discuss the corresponding subject in Sec.6.

5.1.2 KL → µ+µ−

Concerning KL → µ+µ−, the branching ratio and the Wilson coefficients can be obtained by
a simple replacement of indices from Eq. (19), Eq. (21) and Eq. (23). Due to the presence of
large non-perturbative QCD effects, we require that the 2HDM III contribution together with
the short distance piece of the SM contribution does not exceed the upper limit on the short
distance contribution to the branching ratio calculated in Ref. [71]. The resulting constraints
on ǫd12,21 are shown in Fig. 6. They are found to be extremely stringent (of the order of 10−6).

5.1.3 D̄0
→ µ+µ−

The analogous expressions for the branching ratio for D̄0 → µ+µ− (D̄0(c̄u)) follow by a
straightforward replacement of indices in Eq. (19) but the Wilson coefficients in the type-III

9Since we want to put constraints on the elements ǫd13,23 we assume that the loop-induced 2HDM II contri-
bution is not changed by elements ǫui3 or ǫd33.
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Figure 4: Allowed regions in the complex ǫd23,32–plane from Bs → µ+µ− for tan β = 30,
tan β = 50 and mH = 700 GeV (yellow), mH = 500 GeV (red) and mH = 300 GeV (blue).
Note that the allowed regions for ǫd32–plane are not full circles because in this case a suppression
of B [Bs → µ+µ−] below the experimental lower bound is possible.

2HDM for D̄0 → µ+µ− have a different dependence on tan β:

Ccu
S = −Ccu

P =
π2

G2
FM

2
W

1

2m2
H

mℓ2 − vuǫ
ℓ
22

v
ǫu⋆12 tan β ,

C ′cu
S = C ′cu

P =
π2

G2
FM

2
W

1

2m2
H

mℓ2 − vuǫ
ℓ
22

v
ǫu21 tan β .

(25)

Differently than for Bd,s → µ+µ− the SM contribution cannot be calculated due to non-
perturbative effects and the 2HDM II contribution is numerically irrelevant. Since we do
not know the SM contribution, we require that the 2HDM III contribution alone does not
generate more than the experimental upper limit on this branching ratio.

It is then easy to express the constraints on ǫu12,21 in terms of the parameters mH and
tan β:

∣
∣ǫu12,21

∣
∣ ≤ 3.0× 10−2 (mH/500GeV)2

tan β/50
. (26)

The resulting bounds on ǫu12,21 (setting one of these elements to zero) are shown in Fig. 7.
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Figure 5: Allowed regions in the complex ǫd13,31–plane from Bd → µ+µ− for tan β = 30,
tan β = 50 and mH = 700 GeV(yellow), mH = 500 GeV(red) and mH = 300 GeV(blue).

5.2 Tree-level contributions to ∆F = 2 processes

In the presence of non-zero elements ǫqij neutral Higgs mediated contributions to neutral meson

mixing (Bd,s–Bd,s, K–K and D–D mixing) arise (see Fig. 8). In these processes, the 2HDM
contribution vanishes if the U(1)PQ symmetry is conserved. This has the consequence that the
leading tan β-enhanced tree-level contribution to the ∆F = 2 processes (shown in Fig. 8) is
only non-vanishing if ǫqij and ǫ

q
ji are simultaneously different from zero (in the approximation

mA0 = mH0 and cot β = 0). Making use of the effective Hamiltonian defined in Eq. (84) of
the appendix we get the following contributions to Bs–Bs mixing (the expressions for Bd–Bd

and K–K mixing again follow by a simple replacement of indices):

C4 = −ǫ
d
23ǫ

d⋆
32

m2
H

tan2 β . (27)

All other Wilson coefficients are sub-leading in tan β. For D mixing, again only C4 is non-zero
and given by

C4 = −ǫ
u
12ǫ

u⋆
21

m2
H

. (28)

After performing the renormalization group evolution [74, 75, 76, 77, 78] (here we used
µH = 500 GeV at the high scale) it turns out that the dominant contribution to the hadronic
matrix elements stems from O4. Inserting the bag factors [79, 80] and decay constants from
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Figure 6: Allowed regions in the complex ǫd12,21-plane from KL → µ+µ− for tan β = 30,
tan β = 50 and mH = 700 GeV(yellow), mH = 500 GeV(red) and mH = 300 GeV(blue).

lattice QCD (see Table. 10.9), we get for the 2HDM of type III contribution

〈
B0

d

∣
∣C4O4

∣
∣B̄0

d

〉
≈ 0.26 C4GeV3,

〈
B0

s

∣
∣C4O4

∣
∣B̄0

s

〉
≈ 0.37 C4GeV3,

〈
K0
∣
∣C4O4

∣
∣K̄0

〉
≈ 0.30 C4 GeV3,

〈
D0
∣
∣C4O4

∣
∣D̄0

〉
≈ 0.18 C4 GeV3,

(29)

where, we used the normalization of the meson states as defined for example in [77]. In
Eq. (29) the Wilson coefficients within the matrix elements are at the corresponding meson
scale while C4 on the right-handed side is given at the matching scale mH . For computing
the constraints on ǫd13ǫ

d⋆
31, ǫ

d
23ǫ

d⋆
32 and ǫd12ǫ

d⋆
21 we use the online update of the analysis of the

UTfit collaboration [81]10. For this purpose we define

CBqe
2iϕBq = 1 +

〈
B0

q

∣
∣HNP

eff

∣
∣B̄0

q

〉

〈
B0

q

∣
∣HSM

eff

∣
∣B̄0

q

〉 , (30)

10See also the online update of the CKMfitter group for an analogous analysis [14].
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Figure 8: Feynman diagram contributing to Bd,s–Bd,s, K–K and D–D mixing.

for Bd−Bd and Bs−Bsmixing and

CǫK = 1 +
Im
[〈
K0
∣
∣HNP

eff

∣
∣K̄0

〉]

Im
[

〈K0|HSM
eff

∣
∣K̄0

〉] ,

C∆MK
= 1 +

Re
[〈
K0
∣
∣HNP

eff

∣
∣K̄0

〉]

Re
[

〈K0|HSM
eff

∣
∣K̄0

〉] ,

(31)

for K−Kmixing. Using for the matrix elements of the SM Hamiltonian11 [82]

〈
B0

d

∣
∣H∆F=2

SM

∣
∣B̄0

d

〉
≈ (1.08 + 1.25i)× 10−13 GeV ,

〈
B0

s

∣
∣H∆F=2

SM

∣
∣B̄0

s

〉
≈ (59− 2.2i) × 10−13 GeV ,

〈
K0
∣
∣H∆F=2

SM

∣
∣K̄0

〉
≈ (115 + 1.16i) × 10−17 GeV ,

(32)

11To obtain a value consistent with the NP analysis of the UTfit collaboration, we also used their input for
computing the matrix elements of the SM ∆F = 2 Hamiltonian in Eq. (32).
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we can directly read off the bounds on C4 and thus on ǫd12ǫ
d⋆
21, ǫ

d
13ǫ

d⋆
31 and ǫd23ǫ

d⋆
32:

−2.0× 10−10 ≤ Re
[

ǫd23ǫ
d⋆
32

]( tan β/50

mH/500GeV

)2

≤ 6.0× 10−10 , (33)

−3.0× 10−10 ≤ Im
[

ǫd23ǫ
d⋆
32

] ( tan β/50

mH/500GeV

)2

≤ 7.0× 10−10 , (34)

−3.0× 10−11 ≤ Re
[

ǫd13ǫ
d⋆
31

]( tan β/50

mH/500GeV

)2

≤ 1.5× 10−11 , (35)

−1.5× 10−11 ≤ Im
[

ǫd13ǫ
d⋆
31

]( tan β/50

mH/500GeV

)2

≤ 2.5× 10−11 , (36)

−1.0× 10−12 ≤ Re
[

ǫd12ǫ
d⋆
21

]( tan β/50

mH/500GeV

)2

≤ 3.0× 10−13 , (37)

−4.0× 10−15 ≤ Im
[

ǫd12ǫ
d⋆
21

]( tan β/50

mH/500GeV

)2

≤ 2.5× 10−15 . (38)

We see that if ǫdij is of the same order as ǫdji these bound are even more stringent than the
ones from Bd,s → µ+µ− and KL → µ+µ− computed in the last subsection.

For D−Dmixing, the SM predictions is not known due to very large hadronic uncertainties.
In order to constrain the NP effects we demand the absence of fine tuning, which means that
the NP contribution, which are calculable short distance contributions, should not exceed the
measured values. Concerning the 2HDM III contribution, there is no tan β enhancement and
taking into account the recent analysis of UTfit collaboration [83] we arrive at the following
constraints (for mH = 500 GeV):

|ǫu12ǫu⋆21 | < 2.0× 10−8 . (39)

Note that although these bounds look more stringent than the corresponding ∆F = 1 con-
straints, they scale differently with tan β and also involve products of pairs of ǫuij . Therefore,
contrary to the ∆F = 1 case, in principle all of these limits can be evaded for one of the
couplings by suppressing the other one. Fig. 9 and Fig. 10 show the allowed regions for these
parameters obtained from neutral Higgs contribution to Bd,s–Bd,s, K–K and D–D mixing
(see the Feynman diagram in Fig. 8).

5.3 Lepton-flavor-violating decays: τ−
→ µ−µ+µ−, τ−

→ e−µ+µ−

and µ → e−e+e−

In this section, we investigate the constraints that τ− → µ−µ+µ−, τ− → e−µ+µ− and
µ→ e−e+e− place on the flavor changing couplings ǫℓ32,23, ǫ

ℓ
31,13 and ǫℓ21,12, respectively.

For these decays, the experimental upper limits [84, 85] are

B [τ− → µ−µ+µ−] ≤ 2.1 × 10−8 ,

B [τ− → e−µ+µ−] ≤ 2.7× 10−8 ,

B [µ− → e−e+e−] ≤ 1.0× 10−12 ,

(40)
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Figure 9: Allowed regions in the complex ǫdij-plane from Bd,s-Bd,s mixing for tan β = 50 and
mH = 700 GeV (yellow), mH = 500 GeV (red) and mH = 300 GeV (blue).
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at 90% CL. Let us consider the processes τ− → µ−µ+µ− and τ− → e−µ+µ− which are shown
in Fig. 11. The expressions for the branching-ratio for τ− → e−µ+µ− can be written as

B
[
τ− → e−µ+µ−

]
=

m5
τ

12(8π)3Γτ

tan4β

m4
H

∣
∣
∣

(mµ

v
− εℓ22

)∣
∣
∣

2
(∣
∣
∣εℓ31

∣
∣
∣

2
+
∣
∣
∣εℓ13

∣
∣
∣

2
)

(41)

where, Γτ is the total decay width of the τ -lepton. The branching ratios for τ− → e−e+e−

and µ− → e−e+e− can be obtained by an obvious replacement of masses, indices and total
decays widths. Note that the full expression for general scalar couplings given in Eq. (116)
of the appendix is different for τ− → e−µ+µ− than for τ− → µ−µ+µ− and only approaches
a common expression in the limit of large tan β and large Higgs masses.

Comparing the type-III 2HDM expression with experiment we obtain the following con-
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Figure 11: Feynman diagrams contributing to τ− → µ−µ+µ− and τ− → e−µ+µ− via neutral
Higgs exchange. Note that for τ− → µ−µ+µ− (or µ → e−e+e−) two distinct diagrams exist
which come with a relative minus sign due to the exchange of the two fermion lines.
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Figure 12: Allowed regions for the absolute value of ǫℓ13,31, ǫ
ℓ
23,32 and ǫℓ12,21 for tan β = 30

(yellow), tan β = 40 (red) and tan β = 50 (blue) from τ− → e−µ+µ−, τ− → µ−µ+µ− and
µ− → e−e+e−, respectively. In each plot only one of the elements ǫℓif or ǫℓfi is assumed to be
different from zero.

straints on ǫℓfi (assuming ǫℓjj = 0)

∣
∣ǫℓ12
∣
∣2 +

∣
∣ǫℓ21
∣
∣2 ≤

(
2.3× 10−3

)2
(
mH/500GeV

tan β/50

)4 B [µ− → e−e+e−]

1.0× 10−12
,

∣
∣ǫℓ13
∣
∣2 +

∣
∣ǫℓ31
∣
∣2 ≤

(
4.2× 10−3

)2
(
mH/500GeV

tan β/50

)4 B [τ− → e−µ+µ−]

2.7× 10−8
,

∣
∣ǫℓ23
∣
∣2 +

∣
∣ǫℓ32
∣
∣2 ≤

(
3.7× 10−3

)2
(
mH/500GeV

tan β/50

)4 B [τ− → µ−µ+µ−]

2.1× 10−8
.

(42)

These constraints are also illustrated in Fig. 12 for the experimental limits given in Eq. (40).

6 Loop-contributions to FCNC processes

We observed in the previous section that all elements ǫdij, ǫ
ℓ
ij (with i 6= j) and ǫu12,21 must be

extremely small due to the constraints from tree-level neutral Higgs contributions to FCNC
processes. Furthermore, the constraints on ǫqij and ǫqji get even more stringent if both of
them are non-zero at the same time due to the bounds from ∆F = 2 processes. Nevertheless,
the elements ǫu13,23 and ǫu31,32 are still unconstrained because we have no data from neutral

current top decays. In addition, also the flavor-conserving elements ǫfii are not constrained
from neutral Higgs contributions to FCNC processes.
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Figure 13: Allowed regions in the complex ǫuij-plane from Bs mixing for tan β = 50 and
mH = 700GeV (yellow), mH = 500GeV (red) and mH = 300GeV (blue).

In this section, we study the constraints from Higgs mediated loop contributions to FCNC
observables. First, in Sec. 6.1 we consider the ∆F = 2 processes, Bs–Bs, Bd–Bd and K−
Kmixing and then examine the constraints on ǫu13,23 and ǫu31,32 from b→ s(d)γ. Also ǫu22 (ǫu33)
can be constrained from these processes due to the relative tan β enhancement compared
to mc (mt) in the quark-quark-Higgs vertices. In this analysis, we neglect the effects of
the elements ǫdij, which means that we assume the absence of large accidental cancellations
between different contributions.

Also ∆F = 0 processes (electric dipole moments) place relevant constraints on the type-III
2HDM parameter space, as we will see in Sec 6.6.

6.1 Bs−Bs , Bd−Bd and K−K mixing

For the charged Higgs contributions to ∆F = 2 processes we calculated the complete set of
Wilson Coefficients in a general Rξ-gauge. The result is given, together with our conventions
for the Hamiltonian, in the appendix. For the QCD evolution we used the NLO running of
the Wilson coefficients of Ref. [74, 75].

For computing the allowed regions in parameter space we used the same procedure as
explained in the last section. The results are shown in Fig. 13, 14 and 15 and can be sum-
marized as follows: Bs–Bs (Bd–Bd) mixing gives constraints on ǫu23 (ǫu13) which are of the
order of 10−1 (10−2) for our typical values of tan β and mH . In addition, Bd–Bd mixing also
constrains ǫu23 to a similar extent as Bs–Bs mixing. The constraints on ǫu33, ǫ

u
32 and ǫu31 are all

very weak (of order one). Also Kaon mixing gives comparable bounds on Abs [ǫu23] and the
bounds on Abs [ǫu22] are of the order 10−1.

6.2 Radiative B meson decays: b → sγ and b → dγ

The radiative B decay b→ sγ (b→ dγ) imposes stringent constraints on the element ǫu23 (ǫu13)
while also in this case the constraints on ǫu32 (ǫu31) are very weak due to the light charm (up)
quark involved (see left diagram in Fig. 16). For these processes both a neutral and a charged
Higgs contribution occur. Since the flavor off-diagonal elements ǫd13,23 and ǫd31,32 are already
stringently constrained from tree-level decays we neglect the neutral Higgs contribution here.
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Figure 14: Allowed regions in the complex ǫuij-plane from Bd mixing for tan β = 50 and
mH = 700GeV (yellow), mH = 500GeV (red) and mH = 300GeV (blue).
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Figure 15: Allowed regions in the complex ǫuij-plane from K−Kmixing for tan β = 50 and
mH = 700GeV (yellow), mH = 500GeV (red) and mH = 300GeV (blue). The constraints
are practically independent of tan β.

We give the explicit results for the Higgs contributions to the Wilson coefficients governing
b→ s(d)γ in the appendix.

For B → Xsγ, we obtain the constraints on the 2HDM of type III parameters ǫuij by using
B [B → Xsγ] from Ref. [86] (BABAR) and Ref. [87, 88] (BELLE). Combined and extrapolated
to a photon energy cut of 1.6 GeV, the HFAG value is [89]

B [B → Xsγ]|expEγ>1.6GeV = (3.43 ± 0.21 ± 0.07) × 10−4 . (43)

In order to estimate the possible size of NP we use the NNLO SM calculation of Ref. [48]
(again for a photon energy cut of 1.6 GeV)

B [B → Xsγ]
SM = (3.15 ± 0.23) × 10−4 , (44)

and calculate the ratio

Rb→sγ
exp =

B [B → Xsγ]|exp

B [B → Xsγ]|SM
. (45)
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Figure 16: Left: Feynman diagram contributing to b → sγ via a charm-loop containing ǫu⋆32 .
The contribution is suppressed, since the small charm mass enters either form the propaga-
tor or from the charged Higgs coupling to the charm and strange quark. Right: Feynman
diagram showing a neutral Higgs box contribution to D−Dmixing arising if ǫu31 and ǫu32 are
simultaneously different from zero.
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Figure 17: Allowed regions for ǫuij from B → Xs(d)γ, obtained by adding the 2σ experimental
error and theoretical uncertainty linear for tan β = 50 and mH = 700GeV (yellow), mH =
500GeV (red) and mH = 300GeV (blue).

This leads to a certain range for Rb→sγ
exp . Now, we require that in our leading-order calculation

the ratio

Rb→sγ
theory =

B [B → Xsγ]|2HDM

B [B → Xsγ]|SM
(46)

lies within this range. In this way, we obtain the constraints on our model parameters ǫuij as
illustrated in Fig. 17 and Fig. 18.

The analysis for b → dγ is performed in an analogous way. In addition we use here the
fact that most of the hadronic uncertainities cancel in the CP-averaged branching ratio for
B → Xdγ [90, 91]. The current experimental value of the BABAR collaboration [92, 93] for
the CP averaged branching ratio reads

B [B → Xdγ]|expEγ>1.6GeV = (1.41 ± 0.57) × 10−5 . (47)

Here we take into account a conservative estimate of the uncertainty coming from the extrapo-
lation in the photon energy cut [94]. For the theory prediction we use the NLL SM predictions
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Figure 18: Allowed regions for ǫuij from B → Xs(d)γ, obtained by adding the 2σ experimental
error and theoretical uncertainty linear for tan β = 30 and mH = 700GeV (yellow), mH =
500GeV (red) and mH = 300GeV (blue).

of the CP-averaged branching ratio B(B → Xdγ)|Eγ>1.6GeV of Ref. [95, 96], which was recently
updated in Ref. [94] and reads

B [B → Xdγ]|SMEγ>1.6GeV = (1.54+0.26
−0.31)× 10−5 . (48)

After defining the ratios Rb→dγ
exp and Rb→dγ

theory we continue as in the case of B [B → Xsγ] in order
to constrain ǫu13.

As can be seen from Fig.17 and Fig. 18, the constraints that B → Xs(d)γ enforces on
ǫu23(13) are stronger than the ones from Bs(d) mixing. Even ǫu33 can be restricted to a rather
small range.

While in the 2HDM of type II b → sγ enforces a lower limit on the charged Higgs mass
of 360 GeV [49] this constraint can get weakened in the 2HDM of type III: The off-diagonal
element ǫu23 can lead to a destructive interference with the SM (depending on its phase) and
thus reduce the 2HDM contribution. Lighter charged Higgs masses are also constrained from
b→ dγ but also this constraint can be avoided by ǫu13.

6.3 Neutral Higgs box contributions to D−Dmixing

Nearly all the loop-induced neutral Higgs contributions to FCNC processes can be neglected
because the elements involved are already stringently constrained from tree-level processes.
However, there is one exception: since the constraints on ǫu31,32 are particularly weak (because

of the light charm or up quark entering the loop) this can give a sizable effect in D−Dmixing
via a neutral Higgs box12 (see Fig. 16). As we will use ǫu31 and ǫu32 in Sec. 7 for explaining
the mentioned deviations from the SM prediction in B → τν , B → Dτν and B → D∗τν it
is interesting to ask if all processes can be explained simultaneously without violating D−
Dmixing. In principle also charged Higgs contributions to D−Dmixing arise but we find that
they are very small compared to the H0

k contributions. The explicit expression for the Wilson
coefficients can be found in the appendix.

12In principle, one can also get contribution to D̄0 → µ+µ− through H0
k box and penguin contributions if

the elements ǫu32 and ǫu31 are simultaneously non-zero. However, we observe that they are negligible.
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Figure 19: Allowed region in the complex ǫu32ǫ
u⋆
31–plane obtained from neutral Higgs box

contributions to D−Dmixing for tan β = 50 and mH = 700GeV (yellow), mH = 500GeV
(red) and mH = 300GeV (blue).

Fig. 19 shows the allowed regions in the complex ǫu32ǫ
u⋆
31–plane. The constraints are again

obtained by using the recent UTfit [83] analysis for the D–D system.

6.4 Radiative lepton decays : µ → eγ, τ → eγ and τ → µγ

The bounds on ǫℓ13,31 and ǫℓ23,32 from the radiative lepton decays τ → eγ and τ → µγ (using
the experimental values given in Table 8) turn out to be significantly weaker than the ones
from τ− → µ−µ+µ− and τ− → e−µ+µ−. Concerning µ → eγ we expect constraints which
are at least comparable to the ones from µ− → e−e+e− since µ → eγ does not involve the
small electron Yukawa coupling entering µ− → e−e+e−. In fact, using the new MEG results
[97] the constraints from µ → eγ turn out to be stronger than the ones from µ− → e−e+e−

(see Fig. 20). Note that the constraints from µ− → e−e+e− can be avoided if vuǫ
ℓ
11 ≈ me

while the leading contribution to µ→ eγ vanishes for vuǫ
ℓ
22 ≈ mµ.

Process Experimental bounds

B [τ → µγ] ≤ 4.5× 10−8 [98, 99]

B [τ → eγ] ≤ 1.1× 10−7 [98]

B [µ→ eγ] ≤ 5.7× 10−13 [97]

Table 8: Experimental upper limits on the branching ratios of lepton-flavor violating decays.

In principle, for µ → eγ a simplified expression for the branching ratio in the large tan β
limit and v ≪ mH could also be given. However, due to the large logarithm with a relative
big prefactor (last term of Eq. (96)) this is only a good approximation for very heavy Higgses
and we therefore use the full expression in our numerical analysis.
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Figure 20: Allowed region for ǫℓ12 (left plot) and ǫℓ21 (right plot) from µ→ eγ for tan β = 30
(yellow), tan β = 40 (red) and tan β = 50 (blue).

We will return to the radiative lepton decays in Sec. 8 and correlate them to the decays
τ− → µ−µ+µ−, τ− → e−µ+µ− and µ− → e−e+e−.

6.5 Bs → µ+µ−

Setting ǫqij = 0 only the loop induced charged Higgs contribution to Bs → µ+µ− (and Bd →
µ+µ−) exist. This contribution (see Eq. (24)) gets altered in the presence of non-zero elements
ǫℓij, e.g. ǫ

ℓ
22. In the large tan β limit, the loop induced result in Eq. (24) is modified to

Cbs
S = Cbs

P = −mb V
⋆
tbVts
2

mµ − vuǫ
ℓ
22

2M2
W

tan2 β
log
(
m2

H/m
2
t

)

m2
H/m

2
t − 1

. (49)

The resulting constraints on ǫℓ22 from Bs → µ+µ− are shown in Fig. 21 and the ones from

Bd → µ+µ− are found to be weaker.

6.6 Electric dipole moments and anomalous magnetic moments

6.6.1 Charged leptons

The same diagrams which contribute to the radiative lepton decays for ℓi 6= ℓf also affect
the electric dipole moments and the anomalous magnetic moments of leptons for ℓi = ℓf (see
Fig. 22). For this reason we use the same conventions as in Eq. (93) and express the EDMs of

leptons in terms of the coefficients c
ℓf ℓi
L,R of the magnetic dipole operators O

ℓf ℓi
L,R in the following

way (using that for flavor conserving transitions cℓiℓiL = cℓiℓi⋆R )

dℓi = 2mℓi Im
[

cℓiℓiR

]

. (50)

In SM there is no contribution to the EDMs of leptons at the one-loop level. This is also
true in the 2HDM of type II, because the Wilson coefficients are purely real since the phases
of the PMNS matrix drop out in the charged Higgs contributions after summing over the
massless neutrinos. However, in a 2HDM of type III, one can have neutral Higgs mediated
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Figure 22: Left: Feynman diagram contributing to EDMs (for i = f) or LFV decays (for
i 6= f) involving a neutral-Higgs boson. Right: Feynman diagram contributing to EDMs (for
i = f) or LFV decays (for i 6= f) involving a charged-Higgs boson.

contributions to EDMs. Note that there is no charged Higgs contribution to the charged
lepton EDMs also in the 2HDM of type III because the Wilson coefficients are purely real
in this case. Comparing the expression for the EDMs in the 2HDM of type III with the
experimental upper bounds on de, dµ and dτ (see Table 9), one can constrain the parameters
ǫℓij (or combination of them) if they are complex.

We observe that while de enforces strong constraints on the products Im
[
ǫℓ13ǫ

ℓ
31

]
and

Im
[
ǫℓ12ǫ

ℓ
21

]
(see Fig. 23), dµ and dτ are not capable of placing good constraints on our model

parameters.

Similarly, following the conventions in Eq. (93), the anomalous magnetic moments (AMMs)
can be written in terms of cℓiℓiR as (e > 0)

aℓi = −
4m2

ℓi

e
Re
[

cℓiℓiR

]

. (51)

The discrepancy between experiment and the SM prediction for the muon magnetic moment
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EDMs |de| |dµ| dτ |dn|

Bounds (e cm) 10.5 × 10−28 [100] 1.9× 10−19 [101] ∈ [−2.5, 0.8]× 10−17 [102] 2.9× 10−26 [103]

Table 9: Experimental (upper) bounds on electric dipole moments.
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Figure 23: Allowed regions in the Im
[
ǫℓ13ǫ

ℓ
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]
-mH and Im

[
ǫℓ12ǫ

ℓ
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]
-mH planes from neutral

Higgs contribution to de for tan β = 50 (blue), tan β = 40 (red) and tan β = 30 (yellow). The
constraints on Im

[
ǫℓ11
]
are not sizable.

aµ = (g − 2)/2 is [104, 105, 106, 107, 108]

∆aµ = aexpµ − aSMµ ≈ (3± 1)× 10−9 . (52)

In the 2HDM of type II, the sum of the neutral and charged Higgs mediated diagrams gives
the following contribution to aµ (for tan β = 50 and mH = 500 GeV):

a2HDMII
µ ≈ 2.7 × 10−13 , (53)

which is interfering constructively with the SM. Anyway, it can be seen that the effect is
orders of magnitude smaller than the actual sensitivity and it even gets smaller for higher
Higgs masses.

Concerning the 2HDM of type III the discrepancy between experiment and the SM pre-
diction given in Eq. (52) could be explained but only with severe fine-tuning. One would
need to allow for very large values of ǫℓ22 which would not only violate ’t Hooft’s naturalness
criterion but also enhance Bs → µ+µ− by orders of magnitude above the experimental limit.
If one would try to explain the anomaly using ǫℓ23 and ǫℓ32 (ǫℓ12 and ǫℓ21) one would violate the
bounds from τ− → µ−µ+µ− (µ− → e−e+e− or µ→ eγ) as illustrated in Fig. 24.

In conclusion, neither a type-II nor a type-III 2HDM can give a sizable effect in aµ and
both models are not capable of explaining the deviation from the SM.
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ℓ
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6.6.2 Electric dipole moment of the neutron

The neutron electric dipole moment dn can also provide constraints on the parameters ǫqij. In
the SM, there is no contribution to dn at the 1-loop level since the coefficients are real. This
is also true in the type-II 2HDM.

Using the theory estimate of Ref. [109], which is based on the QCD sum-rules calculations
of Refs. [110, 111, 112, 113], the neutron EDM can be written as

dn = (1± 0.5)
[
1.4(dd − 0.25du) + 1.1e(dgd + 0.5dgu)

]
, (54)

where, du (dd) is the EDM of the up (down) quark and dgu(d) define the corresponding chro-
moelectric dipole moments which stem from the chromomagnetic dipole operator

O
qfqi
R(L) = mqi q̄fσ

µνT aPR(L)qiG
a
µν . (55)

Similar to EDMs, the (chromo) electric dipole moments of quarks are given as

d(g)qi = 2mqi Im
[

cqiqiR,(g)

]

. (56)

Using the upper limit on dn (see Table 9) we can constrain some of ǫuij (for ǫdij = 0) as shown
in Fig. 25 and 26. These constraints are obtained for the conservative case of assuming a
prefactor of 0.5 in Eq. (54). The explicit expressions for cqiqiR,(g) stemming from neutral and

charged Higgs contributions to d
(g)
qi are relegated to the appendix. Note that for the neutron

EDM we did not include QCD corrections.

7 Tree-level charged current processes

In this section we study the constraints from processes which are mediated in the SM by a tree-
level W exchange and which receive additional contributions from charged Higgs exchange in
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Figure 25: Allowed regions in the Im
[
ǫu11,22

]
–mH planes from the electric dipole moment of

the neutron for tan β = 50 (blue), tan β = 40 (red) and tan β = 30 (yellow). We observe that
dn can not provide good constraints on the real parts of ǫu11,22.

2HDMs. We study purely leptonic meson decays, semileptonic meson decays and tau lepton
decays. Concerning B meson decays we consider B → τν, B → Dτν and B → D∗τν which
are, as outlined in the introduction, very interesting in the light of the observed deviation
from the SM. We consider in addition D(s) → τν, D(s) → µν, K(π) → eν, K(π) → µν and
τ → K(π)ν and look for violation of lepton flavor universality via K(π) → eν/K(π) → µν
and τ → K(π)ν/K(π) → µν. Even though no deviations from the SM have been observed in
these channels, they put relevant constraints on the parameter space of the type-III 2HDM.

For purely leptonic decays of a psudoscalar meson M (and also tau decays to mesons) to
a lepton ℓj and a neutrino ν (which is not detected) the SM prediction is given by

BSM [M → ℓjν] =
mM

8π
G2

Fm
2
ℓjτMf

2
M

∣
∣Vufdi

∣
∣2

(

1−
m2

ℓj

m2
M

)2
(

1 + δ
Mℓj
EM

)

, (57)

where δ
Mℓj
EM stands for channel dependent electromagnetic corrections (see Table 10), mM is

the mass of the meson involved and muf
(mdi) refers to the mass of its constituent up (down)

type quark. The expression for τ → Mν differers by the exchange of the meson masses (life
time) with the tau masses (life time) and by a factor of 1/2 stemming from spin averaging.

NP via scalar operators can be included very easily:

BNP = BSM

∣
∣
∣
∣
∣
1 +

m2
M(

muf
+mdi

)
mℓj

C
ufdi ,ℓj
R − C

ufdi ,ℓj
L

C
ufdi ,ℓj
SM

∣
∣
∣
∣
∣

2

(58)

with
C

ufdi ,ℓj
SM = 4GFVufdi/

√
2 . (59)

All quantities in Eq. (58) are understood to be at the meson scale mM . Like for Bs →
µ+µ−, the SM Wilson coefficient is renormalization scale independent and the scalar Wilson
coefficients evolve in the same way as the quark masses.
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Figure 26: Allowed regions in the complex ǫu21,31–planes from dn for tan β = 50 and mH =
700 GeV (yellow), mH = 500 GeV (red) and mH = 300 GeV (blue). We see that the absolute
value of ǫu31 can only be large if it is aligned to Vub, i.e. Arg[Vub] = Arg[ǫu31]± π which is very
important when we consider later B → τν.

In the 2HDM III the Wilson coefficients C
ufdi ,ℓj
L and C

ufdi ,ℓj
R are given by (neglecting

terms which are not tan β enhanced)

C
ufdi ,ℓj
R = −tan2β

m2
H±



Vfi
mdi

v
−

3∑

j=1

Vfjǫ
d
ji





(

mℓj

v
−

3∑

k=1

ǫℓ⋆kj

)

,

C
ufdi ,ℓj
L =

tan β

m2
H±

3∑

j=1

Vjiǫ
⋆u
jf

(

mℓj

v
−

3∑

k=1

ǫℓ⋆kj

)

.

(60)

Note that C
ufdi ,ℓj
L is only proportional to one power of tan β while C

ufdi ,ℓj
R is proportional

to tan2 β. The Hamiltonian governing M → ℓjν (τ → Mν) and the Wilson coefficients for
general scalar interactions are given in the appendix. It is important to keep in mind that,
since we are dealing with lepton flavour-violating terms, we must sum over the neutrinos in
the final state because the neutrino is not detected. Note that we did not include the PMNS
matrix in both C

ufdi ,ℓj
SM and C

ufdi ,ℓj
L,R for simplifying the expressions, since it cancels in the

final expression after summing over the neutrinos.

For semileptonic meson decays B → Dτν and B → D∗τν , which have a three-body
final state, both the SM prediction and the inclusion of NP is more complicated, as will be
discussed in subsection 7.1.1.

7.1 Tauonic charged B meson decays: B → τν , B → Dτν and B →

D∗τν

As discussed in the introduction the BABAR collaboration performed an analysis of the
semileptonic B decays B → Dτν and B → D∗τν using the full available data set [8, 9]. They
find for the ratios

R(D(∗)) = B(B → D(∗)τν)/B(B → D(∗)ℓν) , (61)
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Ratio Experimental value SM prediction δ
Mℓj
EM

B [K → eν] /B [K → µν] (2.488 ± 0.013) × 10−5 (2.472 ± 0.001) × 10−5 −0.0378 ± 0.0004 [61]

B [K → µν] /B [π → µν] (63.55 ± 0.11) × 10−2 (63.48 ± 1.37) × 10−2 −0.0070 ± 0.0018 [114]

B [K → eν] /B [π → eν] (1.285 ± 0.008) × 10−1 (1.270 ± 0.027) × 10−1 −0.0070 ± 0.0018 [114]

B [π → eν] /B [π → µν] (1.230 ± 0.004) × 10−4 1.234 × 10−4 −3.85% [115]

B [τ → Kν] /B [τ → πν] (6.46 ± 0.10) × 10−2 (6.56 ± 0.16) × 10−2 0.0003 ± 0.0044 [116]

B [τ → πν] /B [π → µν] (10.83 ± 0.06) × 10−2 10.87 × 10−2 +1.2% [115]

B [τ → Kν] /B [K → µν] (1.102 ± 0.016) × 10−2 1.11× 10−2 +2.0% [115]

Table 10: Experimental values, SM predictions and electromagnetic corrections (in the SM) for
the ratios of charged current processes. The experimental values are obtained by adding the
errors of the individual branching ratios given in Ref. [72] in quadrature. The SM predictions

include the uncertainties from δ
Mℓj
EM and (if involved) as well as the uncertainties due to CKM

factors and decay constants. As always, we add the theory error linear to the experimental
ones.

(with ℓ = e, µ) the following results:

R(D) = 0.440 ± 0.058 ± 0.042 , (62)

R(D∗) = 0.332 ± 0.024 ± 0.018 . (63)

Here the first error is statistical and the second one is systematic. Comparing these measure-
ments to the SM predictions

RSM(D) = 0.297 ± 0.017 , (64)

RSM(D∗) = 0.252 ± 0.003 , (65)

we see that there is a discrepancy of 2.0σ for R(D) and 2.7 σ for R(D∗) . For the theory
predictions we used the updated results of [8], which rely on the calculations of Refs. [55, 117]
based on the results of Refs. [118, 119, 120, 121, 122]. The measurements of both ratios R(D)
and R(D∗) exceed the SM prediction, and combining them gives a 3.4σ deviation from the
SM [8, 9] expectation.

This evidence for the violation of lepton flavour universality in B → Dτν andB → D∗τν is
further supported by the measurement of B → τν by BABAR [10, 11] and BELLE [12].
Until recently, all measurements of B → τν (the hadronic tag and the leptonic tag both from
BABAR and BELLE) were significantly above the SM prediction. However, the latest BELLE
result for the hadronic tag [13] of B[B → τν] = (0.72+0.27

−0.25 ± 0.11)× 10−4 is in agreement with
the SM prediction [14]:

BSM[B → τν] = (0.796+0.088
−0.087)× 10−4 . (66)
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Figure 27: Feynman diagram showing a charged Higgs contributing to B → τν and B →
D(∗)τν involving the flavour changing parameters ǫu31 and ǫu32 which affect B → τν and
B → D(∗)τν, respectively.

Averaging all measurements, one obtains the branching ratio

Bexp[B → τν] = (1.15 ± 0.23) × 10−4 . (67)

which now disagrees with the SM prediction by 1.6σ using Vub from the global fit [14].

Combining R(D) , R(D∗) and B → τν , we have evidence for violation of lepton flavor
universality. Assuming that these deviations from the SM are not statistical fluctuations or
underestimated theoretical or systematic uncertainties, it is interesting to ask which model of
new physics can explain the measured values [16, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132].

7.1.1 B → Dτν and B → D∗τν

Let us first consider the semileptonic decays B → Dτν and B → D∗τν . Here the Wilson
coefficients Cqb ,τ

R and Cqb ,τ
L affect B → Dτν and B → D∗τν in the following way [54, 55, 133]:

R(D) = RSM(D)



1 + 1.5ℜ
[

Ccb ,τ
R + Ccb ,τ

L

Ccb ,τ
SM

]

+ 1.0

∣
∣
∣
∣
∣

Ccb ,τ
R + Ccb ,τ

L

Ccb ,τ
SM

∣
∣
∣
∣
∣

2


 , (68)

R(D∗) = RSM (D∗)



1 + 0.12ℜ
[

Ccb ,τ
R − Ccb ,τ

L

Ccb ,τ
SM

]

+ 0.05

∣
∣
∣
∣
∣

Ccb ,τ
R − Ccb ,τ

L

Ccb ,τ
SM

∣
∣
∣
∣
∣

2


 . (69)

For our analysis we add the experimental errors in quadrature and the theoretical uncertainty
linear on top of this. There are also efficiency corrections to R(D) due to the BABAR
detector [8] which are important in the case of large contributions from the scalar Wilson

coefficients Ccb ,τ
R,L (i.e. if one wants to explain R(D) with destructive interference with the SM

contribution). As shown in Ref. [123], these corrections can be effectively taken into account

by multiplying the quadratic term in Ccb ,τ
R,L of Eq. (68) by an approximate factor of 1.5 (not

included in Eq. (68)).

Since ǫd33 contributes to C
cb ,τ
R (the same Wilson coefficient generated in the type-II 2HDM)

it cannot simultaneously explain R(D) and R(D∗) . Therefore, we are left with ǫu32, which
contributes to B → Dτν and B → D∗τν as shown in Fig. 27. In the left frame of Fig. 28 we
see the allowed region in the complex ǫu32-plane, which gives the correct values for R(D) and
R(D∗) within the 1σ uncertainties for tan β = 50 and mH = 500 GeV, and the middle and
the right frames correspond to the allowed regions on ǫu31 from B → τν .
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Figure 28: Left: Allowed regions in the complex ǫu32–plane from R(D) (blue) and
R(D∗) (yellow) for tan β = 50 and mH = 500 GeV. Middle: Allowed regions in the com-
plex ǫu31–plane combining the constraints from B → τν (1 σ (yellow) and 2 σ (blue)) and
neutron EDM (green) for tan β = 50 and mH = 500 GeV. Right: Allowed regions in the
mH–ǫu31 plane from B → τν for real values of ǫu31 and tan β = 50 (green), tan β = 30 (orange).

Process Experimental value (bound) SM prediction

B [Ds → τν] (5.43 ± 0.31) × 10−2
(
5.36+0.54

−0.50

)
× 10−2

B [Ds → µν] (5.90 ± 0.33) × 10−3
(
5.50+0.55

−0.52

)
× 10−3

B [D → τν] ≤ 1.2 × 10−3 (1.10 ± 0.06) × 10−3

B [D → µν] (3.82 ± 0.33) × 10−4
(
4.15+0.22

−0.21

)
× 10−4

Table 11: Experimental values (upper bounds) and SM predictions for D(s) → τν and D(s) →
µν processes. The SM prediction for Ds → µν mode takes into account the EM correction
effects of +1.0% [134, 135, 140].

7.1.2 B → τν

In principle, B → τν can be explained either by using ǫd33 (as in 2HDMs with MFV) or by
ǫu31 (or by a combination of both of them). However, ǫd33 alone cannot explain the deviation
from the SM without fine tuning, while ǫu31 is capable of doing this [16].

B → τν can also be used to constrain ǫℓ13, ǫ
ℓ
23 and ǫℓ33 as illustrated in Fig. 29. In order to

obtain these constraints, we assumed that all other relevant elements (ǫd33 and ǫu31) are zero.

7.2 D(s) → τν and D(s) → µν

Previously, there were some indications for NP in Ds → τν [134, 135, 136]. However, using
the new experimental values for B [Ds → τν] (see Table 11) and the improved lattice determi-
nation for the decay constant fDs [137, 138] we find agreement between the SM predictions
and experiment. Nevertheless, it is interesting to consider the constraints on the 2HDM of
type III parameter space. Charged Higgs contributions to D(s) → τν and D(s) → µν have
been investigated in Ref. [58, 59, 60, 139].
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Figure 29: Left: Allowed regions in the mH–ǫℓi3 plane from B → τν for real values of ǫℓi3
and tan β = 30 (yellow), tan β = 40 (red), tan β = 50 (blue). Right: Allowed regions in the
complex ǫℓ13, ǫ

ℓ
23 and ǫℓ33–planes from B → τν for mH = 700 GeV (yellow), mH = 500 GeV

(red) and mH = 300 GeV (blue).

The most important constraints on the 2HDM of type III parameter space are the ones
on ǫu22 (shown in Fig. 30). D(s) → τν and D(s) → µν constrains Re [ǫu22] while the constraints
on Im [ǫu22] are very weak. In principle, also the ratio D(s) → τν/D(s) → µν could be
used for constraining deviations from lepton flavor universality, but the constraints from
K(π) → eν/K(π) → µν and τ → K(π)ν/K(π) → µν turn out to be stronger.

7.3 K → µν/π → µν and K → eν/π → eν

The ratio RKℓ2,πℓ2
= B [K → ℓν] /B [π → ℓν] (ℓ = e, µ) is useful for constraining ǫd22, ǫ

ℓ
i1 and

ǫℓi2 because the ratio of the decay constants fK/fπ is known more precisely than the single
decay constants [61].

For obtaining the experimental values we add the errors of the individual branching ratios
in quadrature and the SM values take into account the electromagnetic correction. The
corresponding values are given in Table. 10. The errors are due to the combined uncertainties
in fK/fπ, the CKM elements and the EM corrections. We obtained the value for Vus from
K → πℓν (which is much less sensitive to charged Higgs contributions than K → µν/π → µν)
and Vud by exploiting CKM unitarity.

Fig. 32 illustrates the allowed regions for ǫd22 by combining the constraints from K →
µν/π → µν and K → eν/π → eν. Like in D(s) → τν and D(s) → µν the constraints are on

the real part of ǫd22 while the constraints on the imaginary part are very weak. Concerning
ǫℓi1 and ǫℓi2 the constraints from K(π) → eν/K(π) → µν will turn out to be more stringent

but the latter ones can be avoided in the limit
mℓi
mℓj

=
ǫℓii
ǫℓjj

(see Fig. 31 and Fig. 33).

7.4 τ → Kν/τ → πν

The τ is the only lepton which is heavy enough to decay into hadrons. The ratio B [τ → Kν]/
B [τ → πν] can be considered for putting constraints on ǫu21, ǫ

d
12 and ǫℓi3.
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Figure 30: Left: Allowed region in the mH–ǫu22–plane (for real values of ǫu22) obtained by
combining the constraints from D → µν and Ds → µν for tan β = 30 (yellow), tan β = 40
(red) and tan β = 50 (blue). While the upper bound on ǫu22 comes from Ds → µν, D → µν
is more constraining for negative values of ǫu22. The bounds on the imaginary part of ǫu22 are
very weak. The constraints from Ds → τν turn out to be comparable (but a bit weaker) while
the ones from D → τν are weak.

The experimental and theoretical values for this ratio are given in Table. 10. We observe
that the constraints from D̄0 → µ+µ− and D−Dmixing on ǫu21 and KL → µ+µ− on ǫd12
are too stringent so that no sizable effects stemming from these elements are possible. Also
concerning ǫℓi3, as we will see in the following sections, the constraints from τ → πν/π → µν

will be stronger but again the latter ones can be avoided in the MFV limit
mℓi
mℓj

=
ǫℓii
ǫℓjj

(see

Fig. 32).

7.5 Tests for lepton flavour universality: K(π) → eν/K(π) → µν and
τ → K(π)ν/K(π) → µν

Kℓ2 (K → ℓν) decays (ℓ = e, µ) are helicity suppressed in the SM and suffers from large
theoretical uncertainties due to the decay constants. However, considering the ratio RKℓ2

=
B [K → eν] /B [K → µν] the dependence on decay constants drops out.

In the 2HDM of type II the charged Higgs contributions to K(π) → eν/K(π) → µν and
τ → K(π)ν/K(π) → µν drop out. This is also true in the 2HDM of type III (for ǫℓij = 0 with

i 6= j) as long as the MFV-like relation ǫℓ22/mµ=ǫ
ℓ
11/me is not violated.

7.5.1 K → eν/K → µν and π → eν/π → µν

K → eν/K → µν is a very precise test of lepton flavor universality [141] (see table. 10).
Including NP entering via scalar operators modifies this ratio according to Eq. (58).

We find strong constraints on ǫℓi2 (which affect the coupling to the muon) and the con-
straints on ǫℓi1 (where the coupling of the electron is involved) are even more stringent. Like
for D(s) → τν and D(s) → µν the constraints are much better for the real part of ǫℓij than
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Figure 31: Allowed regions in the mH–ǫℓi1,i2–plane from K → µν/π → µν and K → eν/π →
eν for real values of ǫℓi1,i2 and tan β = 30 (yellow), tan β = 40 (red) and tan β = 50 (blue). The
constraints are weaker than the ones from K(π) → eν/K(π) → µν and τ → K(π)ν/K(π) →
µν but cannot be avoided assuming the MFV limit (

mℓi
mℓj

=
ǫℓii
ǫℓjj

).

the imaginary part. Note that these constraints are obtained assuming that only one element
ǫℓij is non-zero. In the case ǫℓ22/mµ=ǫ

ℓ
11/me where lepton flavor universality is restored no

constraints can be obtained.

Alternatively, the ratio π → eν/π → µν can test lepton flavor universality. We find that
the constraints from π → eν/π → µν are comparable with the ones from K → eν/K → µν.
Our results are illustrated in Fig. 33.

7.5.2 τ → Kν/K → µν and τ → πν/π → µν

The ratios τ → Kν/K → µν and τ → πν/π → µν are very similar to K(π) → eν/K(π) → µν:
all dependencies on decay constants and CKM elements drop out and they are only sensitive
to NP which violates lepton-flavour universality. The corresponding experimental and the
theoretical values for these ratios are given in Table. 10.

We find that the constraints on ǫℓi3 from τ → πν/π → µν are stronger than the ones from
τ → Kν/K → µν and they are shown in Fig. 34.

8 Upper limits and correlation for LFV processes

In Sec. 5 we found that the neutral current lepton decays τ− → µ−µ+µ− and τ− → e−µ+µ−

give more stringent bounds on the elements ǫℓ32,23 and ǫℓ31,13 than the radiative decays τ → µγ
and τ → eγ. Also the LFV neutral meson decays Bs,d → τµ, Bs,d → τe, Bs,d → µe
cannot be arbitrarily large in the type-III 2HDM due to the constraints from Bs,d → µ+µ−

and τ− → µ−µ+µ−, τ− → e−µ+µ−, µ− → e−e+e− (assuming again the absence of large
cancellations)13 .

13see e.g. Ref. [142, 143, 144] for an analysis of NP in Bs,d → τµ.
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Figure 32: Left: Allowed regions in the mH–ǫℓi3–plane from τ → Kν/τ → πν. Right: Allowed
regions in the mH–ǫd22–plane obtained by combining the constraints from K → µν/π → µν
and K → eν/π → eν for real values of ǫd22. In both plots tan β = 30 (yellow), tan β = 40
(red) and tan β = 50 (blue).

Therefore, in this section we study the upper limits on Bs,d → τµ, Bs,d → τe, Bs,d → µe
and the correlation among τ− → µ−µ+µ−, τ− → e−µ+µ−, µ− → e−e+e− and τ → µγ,
τ → eγ, µ→ eγ in the type-III 2HDM.

8.1 Neutral meson decays: Bs,d → τµ, Bs,d → τe and Bs,d → µe

In the SM (with massless neutrinos) the branching ratios for these decays vanish. Also in
the 2HDM of type II these decays are not possible (even beyond tree-level). In the type-III
2HDM, these decay modes are generated in the presence of flavor-violating terms ǫℓij and

there exists even a tree-level neutral Higgs contribution to Bs → ℓ+i ℓ
−
j (Bd → ℓ+i ℓ

−
j ) if also

ǫd23,32 6= 0 (ǫd13,31 6= 0).

Observables B(Bs → µe) B(Bd → µe) B(Bd → τµ) B(Bd → τe)

Upper bounds 2.0× 10−7 [145] 6.4 × 10−8 [145] 2.2× 10−5 [146] 2.8 × 10−5 [146]

Table 12: Upper limits (90 % CL) on the branching ratios of the lepton flavor-violating B
meson decays.

In the large tan β limit, v ≪ mH and neglecting the smaller lepton mass, the corresponding
expressions for these branching ratios take the simple form

B
[

Bq → ℓ+i ℓ
−
j

]

≈ N q
ij

(
tan β/50

mH/500GeV

)4

2
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2 ∣
∣ǫdq3
∣
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∣
∣
∣ǫℓij

∣
∣
∣

2 ∣
∣ǫd3q
∣
∣2
]

, (70)
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Figure 33: Allowed regions in the mH–ǫℓij–plane obtained by combining the constraints from

K → eν/K → µν and π → eν/π → µν for real values of ǫℓij and tan β = 30 (yellow),

tan β = 40 (red) and tan β = 50 (blue). The constraints on ǫℓi1 (affecting the electron coupling)
are more stringent than the constraints on ǫℓi2 (which affect the muon coupling).

with q = d, s, N q
ji = N q

ij and

N s
21 ≈ 2.1 × 107

fBs

0.229GeV
,

Nd
21 ≈ 1.6 × 107

fBd

0.196GeV
,

N s
31,32 ≈ 1.7 × 107

fBs

0.229GeV
,

Nd
31,32 ≈ 1.2 × 107

fBd

0.196GeV
.

(71)

Note that the expressions for the branching ratios are not symmetric in ǫℓij and ǫℓji. Since

experimentally both Bq → ℓ+i ℓ
−
j and Bq → ℓ−i ℓ

+
j are combined we compute the average

B [Bq → ℓiℓj] =
(

B
[

Bq → ℓ+i ℓ
−
j

]

+ B
[

Bq → ℓ+j ℓ
−
i

])

/2 .

In order to obtain the upper limits we insert the biggest allowed values for Abs
[

ǫd,ℓij

]

.

For ǫd23,32 (ǫd13,31) we use the biggest allowed absolute value compatible with the bounds from

Bs → µ+µ− (Bd → µ+µ−). As we can see from Fig. 4 (Fig. 5) the absolute value for ǫd32
(ǫd31) can be bigger than ǫd23 (ǫd13). For the leptonic parameters ǫℓ13,31 and ǫℓ23,32 we use the
constraints obtained from τ− → µ−µ+µ−, τ− → e−µ+µ− (see Sec. 5.3)

∣
∣
∣ǫℓ31,13

∣
∣
∣ ≤ 4.2× 10−3

(
mH/500GeV

tan β/50

)2

,

∣
∣
∣ǫℓ32,23

∣
∣
∣ ≤ 3.7× 10−3

(
mH/500GeV

tan β/50

)2

, (72)
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Figure 34: Allowed regions in the mH–ǫℓi3–plane from τ → πν/π → µν for real values of ǫℓi3
and tan β = 30 (yellow), tan β = 40 (red), tan β = 50 (blue). The bounds on the imaginary
parts are very weak.

while for ǫℓ12,21 we use the combined constraints from µ− → e−e+e− and from µ → eγ (see
Sec. 6.4).

Our results are shown in Fig. 35 (see Table 12 for the current experimental limits). We
see that for bigger Higgs masses larger values for the branching ratios are possible.

8.2 Radiative lepton decays: τ → µγ, τ → eγ and µ → eγ.

In Sec. 5.3 and Sec. 6.4 we found that the radiative lepton decays τ → µγ and τ → eγ give
less stringent bounds on the parameters ǫℓ23,32 and ǫℓ13,31 than the processes τ− → µ−µ+µ−

and τ− → e−µ+µ− while the constraints on ǫℓ12,21 from µ → eγ are stronger than the ones
from µ− → e−e+e−.

There are however interesting correlations between these decays in the type-III 2HDM. In
the large tan β limit and for v ≪ mH we obtain the following relation

B [ℓi → ℓfγ]

B
[

ℓ−i → ℓ−f ℓ
+
j ℓ

−
j

] =
αem

24π

∣
∣mℓi/v − ǫℓii

∣
∣
2

∣
∣
∣mℓj/v − ǫℓjj

∣
∣
∣

2

(∣
∣
∣ǫℓif

∣
∣
∣

2
+ 4

∣
∣
∣ǫℓfi

∣
∣
∣

2
)

(∣
∣
∣ǫℓif

∣
∣
∣

2
+
∣
∣
∣ǫℓfi

∣
∣
∣

2
) . (73)

As already noted in Sec. 6.4, we stress that this formula is only a good approximation for very
heavy Higgs due to the large logarithmic term in the expression for ℓi → ℓfγ (see Eq. (96)).
Therefore, the relation in Eq. (73) gets modified for lighter Higgs masses as shown in Fig. 36.
We see that, as expected, for very large Higgs masses the ratios approach
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Figure 35: Upper limits on the branching ratios of the lepton flavor violating B meson decays
as a function of mH for tan β = 30 (yellow), tan β = 40 (red) and tan β = 50 (blue).

B [ℓi → ℓfγ]

B
[

ℓ−i → ℓ−f ℓ
+
j ℓ

−
j

] =
αem

24π

m2
ℓi

m2
ℓj

for ǫℓif 6= 0 ,

B [ℓi → ℓfγ]

B
[

ℓ−i → ℓ−f ℓ
+
j ℓ

−
j

] =
αem

6π

m2
ℓi

m2
ℓj

for ǫℓfi 6= 0 ,

(74)

where, we assumed that ǫℓjj/ǫ
ℓ
ii = mℓj/mℓi and that only one flavor changing element ǫℓfi, ǫ

ℓ
if

is different from zero.
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Figure 36: Left: B[µ→eγ]
B[µ−→e−e+e−]

as a function of mH assuming that only ǫℓ12 (red) or ǫℓ21 (blue)

is different from zero for tan β = 50. Right: B[τ→µγ]
B[τ−→µ−µ+µ−]

as a function of mH assuming that

only ǫℓ23 (red) or ǫℓ32 (blue) is different from zero for tan β = 50.
For scenarios in which both ǫℓ23 and ǫ

ℓ
32 (ǫ

ℓ
12 and ǫ

ℓ
21) are different from zero the 2HDM of type

III predicts the ratio B[τ→µγ]
B[τ−→µ−µ+µ−]

(
B[µ→eγ]

B[µ−→e−e+e−]

)

to be within the yellow region. These

ratios are to a good approximation independent of tan β for tan β & 20. The behavior of
B[τ→eγ]

B[τ−→e−µ+µ−]
(not shown here) is very similar to the case of 3 → 2 transitions.

9 Conclusions

In this article we studied in detail the flavor phenomenology of a 2HDM with general Yukawa
couplings. Motivated by the fact that the 2HDM of type III is the decoupling limit of the
MSSM we assumed a MSSM-like Higgs potential. In our analysis we proceeded in several
steps:

1. We gave order of magnitude constraints on the parameters ǫq,ℓij from ’t Hooft’s natu-
ralness criterion and found that all couplings except ǫui3,3i and ǫu21,22 should be much
smaller than one.

2. Considering tree-level FCNC processes we constrained the elements ǫdij (i 6= j) and ǫu12,21
from neutral meson decays to muons and from ∆F = 2 processes, finding that they are
tiny for the values of mH and tan β under investigation (assuming ǫℓij = 0). In the

lepton sector the absolute values of all flavor off-diagonal elements ǫℓij were constrained
from τ− → µ−µ+µ−, τ− → e−µ+µ− and µ− → e−e+e− to be very small.

3. After having found that the off-diagonal elements ǫdij must be very small due to con-
straints from tree-level contributions to FCNC processes we considered charged Higgs
contributions to K−K , Bs−Bs , Bd−Bd mixing and b→ s(d)γ arising at the one-loop
level. In these contributions the so far unconstrained elements ǫui3,3i (and also ǫu22) enter

for the first time and we found that, setting ǫdij = 0 (with i 6= j), ǫu13,23 should be rather
small. Furthermore, the electric dipole moment of the neutron and of the charged lep-
tons constrain ǫu11, ǫ

u
22, ǫ

u
21, ǫ

u
31 and ǫℓij, respectively. Respecting all other constraints,

no sizable effect in aµ is possible.

4. Keeping in mind the constraints from the previous steps, we considered the possible
effects in charged current processes. Here we found that tests for lepton flavor univer-
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Observable Results

Neutral meson decays to muons

Bs → µ+µ−
∣
∣ǫd32
∣
∣ ≤ 3.0× 10−5,

∣
∣ǫd23
∣
∣ ≤ 1.9× 10−5,

∣
∣ǫℓ22
∣
∣ ≤ 2.0× 10−3

Bd → µ+µ−
∣
∣ǫd31
∣
∣ ≤ 1.1× 10−5,

∣
∣ǫd13
∣
∣ ≤ 9.4× 10−6

KL → µ+µ−
∣
∣ǫd21
∣
∣ ≤ 1.6× 10−6,

∣
∣ǫd12
∣
∣ ≤ 1.6× 10−6

D̄0 → µ+µ− |ǫu21| ≤ 3.0× 10−2, |ǫu12| ≤ 3.0× 10−2

∆F = 2 processes

Bs−Bs mixing
∣
∣ǫd23ǫ

d⋆
32

∣
∣ ≤ 9.2× 10−10, |ǫu23| ≤ 0.18, |ǫu32| ≤ 1.7, |ǫu33| ≤ 0.7

Bd−Bdmixing
∣
∣ǫd13ǫ

d⋆
31

∣
∣ ≤ 3.9× 10−11, |ǫu23| ≤ 0.2, |ǫu13| ≤ 0.04, |ǫu31| ≤ 1.9

K−Kmixing
∣
∣ǫd12ǫ

d⋆
21

∣
∣ ≤ 1.0× 10−12, |ǫu22| ≤ 0.25, |ǫu23| ≤ 0.14

D−Dmixing |ǫu12ǫu⋆21 | ≤ 2.0× 10−8, |ǫu32ǫu⋆31 | ≤ 0.02

Radiative B decays

b → sγ |ǫu23| ≤ 0.024, |ǫu33| ≤ 0.55

b → dγ |ǫu13| ≤ 7.0× 10−3

Radiative lepton decays

µ → eγ
∣
∣ǫℓ12
∣
∣ ≤ 1.7× 10−4,

∣
∣ǫℓ21
∣
∣ ≤ 2.2× 10−4, 55 ≤ B[µ→eγ]

B[µ−→e−e+e−]
≤ 86

τ → eγ 0.19 ≤ B[τ→eγ]
B[τ−→e−µ+µ−]

≤ 0.35

τ → µγ 0.19 ≤ B[τ→µγ]
B[τ−→µ−µ+µ−]

≤ 0.35

Neural current lepton decays

µ− → e−e+e−
∣
∣ǫℓ12,21

∣
∣ ≤ 2.3× 10−3

τ− → e−µ+µ−
∣
∣ǫℓ13,31

∣
∣ ≤ 4.2× 10−3

τ− → µ−µ+µ−
∣
∣ǫℓ23,32

∣
∣ ≤ 3.7× 10−3

Table 13: Results obtained in the type-III 2HDM from various processes for tan β = 50 and
mH = 500 GeV.

sality constrain the differences ǫℓii/mℓi − ǫℓjj/mℓj . Most importantly, the unconstrained

elements ǫu31 and ǫu32 enter the processes B → τν and B → D(∗)τν directly (without
CKM suppression) and can remove the tension between experiment and theory predic-
tion observed in the SM simultaneously.

5. Finally we gave upper limits on the lepton flavor violating neutral B meson decays in
the 2HDM of type III and correlated the radiative lepton decays to τ− → µ−µ+µ−,
τ− → e−µ+µ− and µ− → e−e+e−.

In Table 13 and 14 we list all processes which have been under consideration and quote
the constraints placed on the parameters ǫq,ℓij for our benchmark point mH = 500 GeV and
tan β = 50.

In summary, combining the constraints from Table 13 and 14 the following bounds on the
absolute values of the parameters ǫqij and ǫℓij (for our benchmark point with mH = 500 GeV
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Observable Results

Charged current processes

B → τν 2.7× 10−3 ≤ |ǫu31| ≤ 2.0× 10−2,
∣
∣ǫℓi3
∣
∣ ≤ 6.0× 10−2

B → Dτν & B → D⋆τν 0.43 ≤ |ǫu32| ≤ 0.74

Ds → τν & D(s) → µν |Re [ǫu22]| ≤ 0.2

D → τν –

K → µ(e)ν/π → µ(e)ν
∣
∣Re

[
ǫd22
]∣
∣ ≤ 1.0× 10−3

K(π) → eν/K(π) → µν
∣
∣Re

[
ǫℓi1
]∣
∣ ≤ 2.0× 10−6,

∣
∣Re

[
ǫℓi2
]∣
∣ ≤ 5.0× 10−4

τ → K(π)ν/K(π) → µν −4.0× 10−2 ≤ Re
[
ǫℓi3
]
≤ 2.0× 10−2

τ → Kν/τ → πν
∣
∣ǫℓi3
∣
∣ ≤ 0.14

EDMs and anomalous magnetic moments

de
∣
∣Im

[
ǫℓ12ǫ

ℓ
21

]∣
∣ ≤ 2.5× 10−8,

∣
∣Im

[
ǫℓ13ǫ

ℓ
31

]∣
∣ ≤ 2.5× 10−9

dµ –

dτ –

dn |Im [ǫu11]| ≤ 2.2× 10−2, |Im [ǫu22]| ≤ 1.1× 10−1, Arg[ǫu31] = Arg[Vub]± π

aµ Deviation from the SM cannot be explained

LVF B meson decays

Bs → τµ B [Bs → τµ] ≤ 2.0× 10−7

Bs → µe B [Bs → µe] ≤ 9.2× 10−10

Bs → τe B [Bs → τe] ≤ 2.8× 10−7

Bd → τµ B [Bd → τµ] ≤ 2.1× 10−8

Bd → µe B [Bd → µe] ≤ 9.2× 10−11

Bd → τe B [Bd → τe] ≤ 2.8× 10−8

Table 14: Results obtained in the type-III 2HDM from various processes for tan β = 50 and
mH = 500 GeV.

and tan β = 50) are obtained:

∣
∣
∣ǫuij

∣
∣
∣ ≤









3.4× 10−4 3.0× 10−2 7.0 × 10−3

3.0× 10−2 1.4× 10−1 2.4 × 10−2

2.0× 10−2 7.4× 10−1 5.5 × 10−1









ij

∣
∣
∣ǫdij

∣
∣
∣ ≤









1.3× 10−4 1.6× 10−6 9.4 × 10−6

1.6× 10−6 2.6× 10−4 2.0 × 10−5

1.1× 10−5 3.0× 10−5 1.4 × 10−2









ij

∣
∣
∣ǫℓij

∣
∣
∣ ≤









2.9× 10−6 1.7× 10−4 4.2 × 10−3

2.2× 10−4 6.1× 10−4 3.7 × 10−3

4.2× 10−3 3.7× 10−3 1.0 × 10−2









ij

(75)
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These bounds hold in the absence of large cancellations between different contributions. Note
that in Eq. (75) we applied the naturalness bounds in case they were stronger than the
experimental limits.

It is interesting that B → τν , B → Dτν and B → D∗τν can be explained simultane-
ously in the 2HDM of type III without violating bounds from other observables and without
significant fine-tuning. It remains to be seen if these tensions with the SM remain when
updated experimental results and improved theory predictions will be available in the future.
In order to further test the model and constrain the parameters ǫu32 (ǫu31) we propose to study
H0, A0 → t̄c (H0, A0 → t̄u) at the LHC.
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10 Appendix

In this appendix, we collect the Wilson coefficients (to the relevant precision at the matching
scale) which are needed for the calculation of b → s(d)γ, ∆F = 2 processes (i.e. neutral
meson mixing), leptonic neutral meson decays (∆F = 1 processes), B → τν , B → Dτν ,
B → D∗τν , D(s) → ℓνℓ, K(π) → ℓνℓ, τ → K(π)ν, LFV radiative lepton transitions, EDMs of
charged leptons and neutron, as well as the AMM of the muon. In addition, we give general
expressions for some branching ratios, the explicit form of the loop functions entering our
results and summarize the input parameters used in our analysis in tabular form.

10.1 Loop functions

We give the explicit form of the loop functions entering our results. In the limit of vanishing
external momentum the one and two-point Passarino Veltman functions [147] are defined as

A0

(
m2
)
=

16π2

i
µ4−d

∫ ddk

(2π)d
1

(k2 −m2)
,

B0

(
m2

1,m
2
2

)
=

16π2

i
µ4−d

∫ ddk

(2π)d
1

(
k2 −m2

1

) (
k2 −m2

2

) ,

(76)

where µ is the renormalization scale.

The loop functions C0 (three-point) and D0 (four-point) are defined in analogy to B0, but
with three and four propagators, respectively. Evaluating these loop functions yields (with
d = 4− 2ε)

A0

(
m2
)
= m2

[

1 +
1

ε
− γE + ln (4π) + ln

(
µ2

m2

)]

+O (ε) ,

B0

(
m2

1,m
2
2

)
= 1 +

1

ε
− γE + ln (4π) +

m2
1 ln

(
µ2

m2
1

)

−m2
2 ln

(
µ2

m2
2

)

m2
1 −m2

2

+O (ε) ,

(77)

C0

(
m2

1,m
2
2,m

2
3

)
=

B0

(
m2

1,m
2
2

)
−B0

(
m2

1,m
2
3

)

m2
2 −m2

3

=

m2
1m

2
2 ln

(
m2

1

m2
2

)

+m2
3m

2
2 ln

(
m2

2

m2
3

)

+m2
3m

2
1 ln

(
m2

3

m2
1

)

(
m2

1 −m2
2

) (
m2

3 −m2
1

) (
m2

2 −m2
3

) ,

D0

(
m2

1,m
2
2,m

2
3,m

2
4

)
=

C0

(
m2

1,m
2
2,m

2
3

)
− C0

(
m2

1,m
2
2,m

2
4

)

m2
3 −m2

4

.

(78)

Here, the one and the two-point loop functions A0, B0 are UV-divergent and ε is the UV-
regulator.

At various places also the functions C2 and D2 appear, which have, compared to C0 and
D0, an additional factor k2 in the numerator of the integrand. These functions read

C2

(
m2

1,m
2
2,m

2
3

)
= B0

(
m2

1,m
2
2

)
+m2

3C0

(
m2

1,m
2
2,m

2
3

)
,

D2

(
m2

1,m
2
2,m

2
3,m

2
4

)
= C0

(
m2

1,m
2
2,m

2
3

)
+m2

4D0

(
m2

1,m
2
2,m

2
3,m

2
4

)
. (79)
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10.2 Radiative b → s(d)γ decays

Concering new physics contributions to b → s(d)γ, we work in leading logarithmic (LL)
precision in this paper. As mentioned before, we use these processes to constrain certain
elements ǫuij. For this purpose, we put the ǫ

d
ij−couplings (which are already constrained to be

very small) to zero. When also neglecting the mass of the strange quark and further neglecting
operators with mass dimension higher than six, we obtain the same effective Hamiltonian as
in the SM, reading for b→ sγ (see e.g. Ref. [47]).

Hb→sγ
eff = −4GF√

2
VtbV

⋆
ts

∑

i

CiOi . (80)

For b → dγ the CKM structure is slightly more complicated (see e.g. Ref. [95]). In our
approximation only the Wilson coefficients C7 and C8 of the operators

O7 =
e

16π2
mbs̄σ

µνPRbFµν ; O8 =
gs

16π2
mbs̄σ

µνT aPRbG
a
µν (81)

get new physics contributions. They are induced through charged Higgs bosons propagating
in the loop (neutral Higgs boson exchange leads to power suppressed contributions which
we neglect). For b → sγ the new physics contributions read (with yj = m2

uj
/m2

H+ and
λt = Vtb V

⋆
ts)

CNP
7 =

v2

λt

1

mb

3∑

j=1

ΓRLH±⋆
ujd2 ΓLRH±

ujd3

C0
7,XY (yj)

muj

+
v2

λt

3∑

j=1

ΓRLH±⋆
ujd2 ΓRLH±

ujd3

C0
7,Y Y (yj)

m2
uj

, (82)

CNP
8 =

v2

λt

1

mb

3∑

j=1

ΓRLH±⋆
ujd2

ΓLRH±

ujd3

C0
8,XY (yj)

muj

+
v2

λt

3∑

j=1

ΓRLH±⋆
ujd2 ΓRLH±

ujd3

C0
8,Y Y (yj)

m2
uj

,

while for b → dγ the label d2 and λt = Vtb V
⋆
ts have to be replaced by d1 and λt = Vtb V

⋆
td,

respectively. The functions C0
7,XY , C

0
7,Y Y , C

0
8,XY and C0

8,Y Y were introduced in Ref. [47];
their explicit form reads

C0
7,XY (yj) =

yj
12

[

−5y2j + 8yj − 3 + (6yj − 4) ln yj

(yj − 1)3

]

,

C0
8,XY (yj) =

yj
4

[

−y2j + 4yj − 3− 2 ln yj

(yj − 1)3

]

,

C0
7,Y Y (yj) =

yj
72

[

−8y3j + 3y2j + 12yj − 7 + (18y2j − 12yj) ln yj

(yj − 1)4

]

,

C0
8,Y Y (yj) =

yj
24

[

−y3j + 6y2j − 3yj − 2− 6yj ln yj

(yj − 1)4

]

. (83)
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In Eq. (82) we retained the contributions from internal up- and charm-quarks, although these
contributions are subleading.

10.3 Wilson coefficients for ∆F = 2 processes

The extended Higgs sector of our 2HDM of type-III also leads to extra contributions to
∆F = 2 processes (Bs, Bd, Kaon and D mixing) which can be matched onto the effective
Hamiltonian

H∆F=2
eff =

5∑

j=1

Cj Oj +
3∑

j=1

C ′
j O

′
j + h.c. , (84)

where the operators read in the case of Bs mixing

O1 = (s̄αγ
µPLbα) (s̄βγ

µPLbβ) , O2 = (s̄αPLbα) (s̄βPLbβ) ,

O3 = (s̄αPLbβ) (s̄βPLbα) , O4 = (s̄αPLbα) (s̄βPRbβ) ,

O5 = (s̄αPLbβ) (s̄βPRbα) .

(85)

α and β are color indices and the primed operators can be obtained from O1,2,3 by interchang-
ing L and R. Similarly, the corresponding operator bases for Bd, Kaon and D mixing follow
from Eq. (85) through simple adjustment of the indices.

In the following subsections we present the contributions to these Wilson coefficients
arising from: 1.) one-loop box diagrams with charged Higgs boson exchange; 2.) tree-level
contributions induced by neutral Higgs boson exchange; 3.) box diagrams involving neutral
Higgs bosons, relevant in the case of D mixing.

10.3.1 Charged Higgs box contributions

For definiteness, let us consider Bs mixing. The corresponding Wilson coefficients for Bd and
Kaon mixing follow by a simple adjustment of the indices. We have performed our calculation
in a general Rξ gauge. The non-vanishing Wilson coefficients from pure charged Higgs boxes
are given by

C1 =
−1

128π2

3∑

j,k=1

ΓRL H±⋆
ujd2

ΓRL H±

ujd3
ΓRL H±⋆
ukd2

ΓRL H±

ukd3
D2

(

m2
uj
,m2

uk
,m2

H± ,m
2
H±

)

,

C2 =
−1

32π2

3∑

j,k=1

mujmuk
ΓLR H±⋆
ujd2

ΓRL H±

ujd3
ΓLR H±⋆
ukd2

ΓRL H±

ukd3
D0

(

m2
uj
,m2

uk
,m2

H± ,m
2
H±

)

,

C4 =
−1

16π2

3∑

j,k=1

mujmuk
ΓLR H±⋆
ujd2

ΓRL H±

ujd3
ΓRL H±⋆
ukd2

ΓLR H±

ukd3
D0

(

m2
uj
,m2

uk
,m2

H± ,m
2
H±

)

,

C5 =
1

32π2

3∑

j,k=1

ΓLR H±⋆
ujd2

ΓLR H±

ujd3
ΓRL H±⋆
ukd2

ΓRL H±

ukd3
D2

(

m2
uj
,m2

uk
,m2

H± ,m
2
H±

)

.

(86)
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The sum of the charged Higgs−W± and charged Higgs−Goldstone-boson boxes is given by

C1 =
g22

32π2

3∑

j,k=1

(

mujmuk
V ⋆
j2Vk3Γ

RLH±

ujd3
ΓRLH±⋆
ukd2

×
4M2

WD0

(

M2
W ,m

2
H± ,m

2
uj
,m2

uk

)

−D2

(

M2
W ,m

2
H± ,m

2
uj
,m2

uk

)

4M2
W





C4 =
1

16π2
g22
2

3∑

j,k=1

(

Vj3V
⋆
k2Γ

LRH±⋆
ujd2

ΓLRH±

ukd3

×
C2

(

ξM2
W ,m

2
H+ ,m

2
uj

)

− C2

(

m2
H+ ,m

2
uj
,m2

uk

)

+m2
uk
C0

(
ξM2

W ,m
2
H± ,m

2
uk

)

M2
W





(87)

We stress here, that we want to use Bs mixing only to constrain certain ǫuij−couplings, because

the ǫdij−quantities are already contrained to be very small. We therefore only took systemati-
cally into account those contributions to the Wilson coefficients which stay different from zero
in the limit ǫdij → 0. At first sight, the Wilson coefficient C4 seems to be gauge dependent.
However, when using the unitarity of the CKM matrix (entering the expression for C4 both,
explicitly and implicitly through the Γ−quantities), we find that the ξ−dependent terms are
always proportional to an element ǫdij , which we put to zero in our analysis. Also note that
our result agrees with the one of Ref. [148]. The only difference is that we neglected gauge de-
pendent terms corresponding to higher dimensional operators. The Wilson coefficients of the
primed operators can be obtained by interchanging L and R in the corresponding unprimed
ones.

10.3.2 Tree-level H0
k contribution

The Wilson coefficients from neutral Higgs mediated tree-level contributions to Bs mixing
read:

C
H0

k
2 =

3∑

k=1

−1

2m2
H0

k

(Γ
LRH0

k⋆

d3d2
)2 (88)

C
′H0

k
2 =

3∑

k=1

−1

2m2
H0

k

(Γ
LRH0

k
d2d3

)2

C
H0

k
4 =

3∑

k=1

−1

m2
H0

k

Γ
LRH0

k
d2d3

Γ
LRH0

k⋆

d3d2

The corresponding coefficients for Bd, Kaon and D mixing follow by a careful adjustment of
the indices.

Note that in the limit of large tan β and mA ≫ v, C
H0

k
2 and C

′H0
k

2 vanish and we only get

a contribution to C
H0

k
4 .
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10.3.3 Neutral Higgs box contribution to D mixing

The Wilson coefficients resulting from the neutral Higgs box contribution to D mixing are
given as

C1 =
−1

128π2

3∑

j1,j2=1

3∑

k1,k2=1

Γ
LR H0

k1
⋆

u2uj1
Γ
LR H0

k2
u1uj1

Γ
LR H0

k2
⋆

u2uj2
Γ
LR H0

k1
u1uj2

D2

(

m2
uj1
,m2

uj2
,m2

H0
k1

,m2
H0

k2

)

,

C2 =
−1

32π2

3∑

j1,j2=1

3∑

k1,k2=1

muj1
muj2

Γ
LR H0

k1
⋆

uj1
u1 Γ

LR H0
k2

⋆
u2uj1

Γ
LR H0

k1
⋆

uj2
u1 Γ

LR H0
k2

⋆
u2uj2

× D0

(

m2
uj1
,m2

uj2
,m2

H0
k1

,m2
H0

k2

)

,

C3 = 0 ,

C4 =
−1

16π2

3∑

j1,j2=1

3∑

k1,k2=1

muj1
muj2

Γ
LR H0

k1
⋆

uj1
u1 Γ

LR H0
k2

⋆
u2uj1

Γ
LR H0

k2
uj2

u2 Γ
LR H0

k1
u1uj2

× D0

(

m2
uj1
,m2

uj2
,m2

H0
k1

,m2
H0

k2

)

, (89)

C5 =
−1

128π2

3∑

j1,j2=1

3∑

k1,k2=1

Γ
LR H0

k1
⋆

uj1
u1 Γ

LR H0
k2

uj1
u2 Γ

LR H0
k1

u1uj2
Γ
LR H0

k2
⋆

u2uj2
D2

(

m2
uj1
,m2

uj2
,m2

H0
k1

,m2
H0

k2

)

.

The indices j1, j2 describe the internal up-type quarks while k1, k2 stand for neutral Higgs
indices (H0, h0, A0). Moreover, the primed Wilson coefficients can be obtained from above
by the replacement L↔ R in the couplings.

10.4 Semileptonic and leptonic meson decays and tau decays: B → (D(∗))τν,
D(s) → ℓνℓ, K(π) → ℓνℓ and τ → K(π)ν processes

These processes are governed by the effective Hamiltonian

Heff = C
ufdi,ℓj
SM O

ufdi,ℓj
SM + C

ufdi,ℓj
L O

ufdi,ℓj
L + C

ufdi,ℓj
R O

ufdi,ℓj
R + h.c. , (90)

with the operators defined as

O
ufdi,ℓj
SM = ūfγµPLdi ℓ̄jγµPLν ,

O
ufdi,ℓj
R = ūfPRdi ℓ̄jPLν ,

O
ufdi,ℓj
L = ūfPLdi ℓ̄jPLν .

(91)

Here, for tauonic B meson decays ℓj = τ , di = b and uf = u (uf = c) for B → τν (B →
Dτν and B → D∗τν ). For Ds → ℓjν (D → ℓjν), uf = c and di = s (d), for τ → K(π)ν,
ℓj = τ , uf = u and di = s (d) and for K(π) → ℓjν we have ℓj = µ, e, uf = u and di = s (d).
The Wilson coefficients in 2HDM of type III at the matching scale read

C
ufdi,ℓj
SM =

4GF√
2
Vufdi ,

C
ufdi,ℓj
R =

−1

m2
H±

ΓLRH±

ufdi
ΓLRH±⋆
νℓj

,

C
ufdi,ℓj
L =

−1

m2
H±

ΓRLH±

ufdi
ΓLRH±⋆
νℓj

.

(92)
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10.5 Lepton flavour violation (LFV): ℓi → ℓfγ processes

The radiative lepton decays ℓi → ℓfγ (ℓ = e, µ or τ) are induced by one-loop penguin diagrams
with internal neutral or charged Higgs bosons. The result for the one-loop decay amplitude
can be written as a tree-level matrix element of the effective Hamiltonian

Heff = c
ℓf ℓi
R O

ℓf ℓi
R + c

ℓf ℓi
L O

ℓf ℓi
L , (93)

where c
ℓf ℓi
R and c

ℓf ℓi
L are the effective Wilson coefficients of the magnetic dipole operators

O
ℓf ℓi
R(L) = mℓi ℓ̄fσµνPR(L)ℓiF

µν . (94)

With these conventions, the branching ratio for the radiative lepton decays ℓi → ℓfγ reads

B [ℓi → ℓfγ] =
m5

ℓi

4π Γℓi

(

|cℓf ℓiR |2 + |cℓf ℓiL |2
)

. (95)

The neutral Higgs (H0
k = H0, h0, A0) penguin contribution to c

ℓf ℓi
R is given by

c
ℓf ℓi
RH0

k
=

3∑

k,j=1

−e
192π2m2

H0
k

[

Γ
LRH0

k
ℓf ℓj

Γ
LRH0

k⋆
ℓiℓj

+
mℓf

mℓi

Γ
LRH0

k⋆
ℓjℓf

Γ
LRH0

k
ℓjℓi

−
mℓj

mℓi

Γ
LRH0

k
ℓf ℓj

Γ
LRH0

k
ℓjℓi

(

9 + 6 ln

(
m2

ℓj

m2
H0

k

))]

,

(96)

and c
ℓf ℓi
L can be obtained from c

ℓf ℓi
R by interchanging L and R. Similarly, for the charged

Higgs penguin contributions we find

c
ℓf ℓi
L H± =

e

384π2m2
H±

3∑

j=1
ΓLRH±

νjℓi
ΓLRH±⋆
νjℓf

,

c
ℓf ℓi
R H± =

mℓf

mℓi

e

384π2m2
H±

3∑

j=1
ΓLRH±

νjℓi
ΓLRH±⋆
νjℓf

.

(97)

10.6 Wilson coefficients for EDMs and the anomalous magnetic moment
of the muon

10.6.1 Wilson coefficients for EDMs of charged leptons and the anomalous mag-
netic moment of the muon

As in the case of the LFV processes discussed in the previous section, we again have both
neutral and charged Higgs penguin contributions to the flavor conserving radiative transitions
ℓi → ℓiγ. The corresponding effective Hamiltonian is obtained from Eq. (93) and Eq. (94) by
identifying ℓf with ℓi. The contribution to the effective Wilson coefficients related to neutral
Higgs bosons (propagating in the loop) reads

cℓiℓiR H0
k

=
3∑

k,j=1

−e
192π2m2

H0
k

[

Γ
LRH0

k⋆

ℓiℓj
Γ
LRH0

k
ℓiℓj

+ Γ
LRH0

k⋆

ℓjℓi
Γ
LRH0

k
ℓjℓi

(98)

−
mℓj

mℓi

Γ
LRH0

k
ℓiℓj

Γ
LRH0

k
ℓjℓi

(

9 + 6 ln

(
m2

ℓj

m2
H0

k

))]

,

cℓiℓiL H0
k

= cℓiℓi⋆R H0
k
, (99)
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while the charged Higgs penguin contribution leads to the (real) coefficients

cℓiℓiL H± = cℓiℓiR H± =
e

384π2m2
H±

3∑

j=1
ΓLRH±

νjℓi
ΓLRH±⋆
νjℓi

. (100)

10.6.2 Wilson coefficients for neutron EDM

In this section we consider the transitions d→ dγ(g) and u→ uγ(g) (denoted by d
(g)
d and d

(g)
u )

which are the building blocks for the electric dipole moment dn of the neutron. As we are only
interested in a rough estimate of dn, we do not include QCD corrections to these building
blocks. In this approximation the latter can be described by the effective Hamiltonian

Hdd,uu
eff = cddR md d̄σµνPRdF

µν + cddL md d̄σµνPLdF
µν +

cddR,gmd d̄σµνPRT
adGa,µν + cddL,gmd d̄σµνPLT

adGa,µν + (d→ u) . (101)

The effective Wilson coefficients cdd,uuR,L and cdd,uuR,L,g again receive neutral and charged Higgs

contributions. The neutral contributions of the Wilson coefficients (involved in d
(g)
d ) read

c
dd,H0

k
R =

3∑

k,j=1

eQd

192π2m2
H0

k

[

Γ
LRH0

k⋆

ddj
Γ
LRH0

k
ddj

+ Γ
LRH0

k⋆

djd
Γ
LRH0

k
djd

(102)

−
mdj

md
Γ
LRH0

k
ddj

Γ
LRH0

k
djd

(

9 + 6 ln

(
m2

dj

m2
H0

k

))]

,

c
dd,H0

k
R,g =

3∑

k,j=1

gs
192π2m2

H0
k

[

Γ
LRH0

k⋆
ddj

Γ
LRH0

k
ddj

+ Γ
LRH0

k⋆
djd

Γ
LRH0

k
djd

(103)

−
mdj

md
Γ
LRH0

k
ddj

Γ
LRH0

k
djd

(

9 + 6 ln

(
m2

dj

m2
H0

k

))]

,

and c
dd,H0

k

L,(g) = c
dd,H0

k ⋆

R,(g) . The charged Higgs penguin contributions to the Wilson coefficients

(involved in d
(g)
d ) read

cdd,H
±

R =
3∑

j=1

−e
16π2m2

uj

[

ΓLRH±⋆
duj

ΓLRH±

duj
C0
7,Y Y

(

m2
uj

m2
H+

)

+ ΓLRH±⋆
ujd

ΓLRH±

ujd
C0
7,Y Y

(

m2
uj

m2
H+

)

+ΓLRH±

duj
ΓLRH±

ujd

muj

md
C0
7,XY

(

m2
uj

m2
H+

)]

, (104)

cdd,H
±

R,g =

3∑

j=1

−gs
16π2m2

uj

[

ΓLRH±⋆
duj

ΓLRH±

duj
C0
8,Y Y

(

m2
uj

m2
H+

)

+ ΓLRH±⋆
ujd ΓLRH±

ujd C0
8,Y Y

(

m2
uj

m2
H+

)

+ΓLRH±

duj
ΓLRH±

ujd

muj

md
C0
8,XY

(

m2
uj

m2
H+

)]

, (105)
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and cdd,H
±

L,(g) = cdd,H
± ⋆

R,(g) .

The analogous expressions for c
uu,H±,H0

k

R,(g) , which are involved in the expressions of d
(g)
u are

given as

c
uu,H0

k
R =

3∑

j,k=1

−eQu

16π2m2
uj

[

Γ
LRH0

k⋆
uuj Γ

LRH0
k

uuj C0
8,Y Y

(

m2
uj

m2
H0

k

)

+ Γ
LRH0

k⋆
uju Γ

LRH0
k

uju C0
8,Y Y

(

m2
uj

m2
H0

k

)

+Γ
LRH0

k
uuj Γ

LRH0
k

uju
muj

mu
C0
8,XY

(

m2
uj

m2
H0

k

)]

, (106)

c
uu,H0

k
R,g =

3∑

j,k=1

−gs
16π2m2

uj

[

Γ
LRH0

k⋆
uuj Γ

LRH0
k

uuj C0
8,Y Y

(

m2
uj

m2
H0

k

)

+ Γ
LRH0

k⋆
uju Γ

LRH0
k

uju C0
8,Y Y

(

m2
uj

m2
H0

k

)

+Γ
LRH0

k
uuj Γ

LRH0
k

uju
muj

mu
C0
8,XY

(

m2
uj

m2
H0

k

)]

, (107)

cuu,H
±

R =
3∑

j=1

−e
1152π2m2

H+

[

5ΓLRH±⋆
udj ΓLRH±

udj + 5ΓLRH±⋆
dju ΓLRH±

dju

−ΓLRH±

udj ΓLRH±

dju

mdj

mu
12 ln

(
m2

dj

m2
H+

)]

, (108)

cuu,H
±

R,g =
3∑

j=1

gs
192π2m2

H+

[

ΓLRH±⋆
udj

ΓLRH±

udj
+ ΓLRH±⋆

dju
ΓLRH±

dju

−ΓLRH±

udj ΓLRH±

dju

mdj

mu

(

9 + 6 ln

(
m2

dj

m2
H+

))]

. (109)

Again, we have c
uu,H0

k

L,(g) = c
uu,H0

k ⋆

R,(g) and cuu,H
±

L,(g) = cuu,H
± ⋆

R,(g) . The loop functions C0
7,8,XY,Y Y (yj)

are given in Eq. (83).

10.7 Leptonic decays of neutral mesons

The effective Hamiltonian Heff which includes the full set of operators for the general decays
PS(q̄fqi) → ℓ+Aℓ

−
B (PS refers to the pseudo-scalar meson) reads

H∆F=1
eff = −G2

FM2
W

π2

[
C

qfqi
V O

qfqi
V + C

qfqi
A O

qfqi
A + C

qfqi
S O

qfqi
S + C

qfqi
P O

qfqi
P + primed

]
+ h.c.

(110)
where the operators (together with their primed counterparts) are defined as

Oqfqi
V = (q̄fγµPLqi) (ℓ̄Bγ

µℓA) , Oqfqi
A = (q̄fγµPLqi) (ℓ̄Bγ

µγ5ℓA) ,

O
′qfqi
V = (q̄fγµPRqi) (ℓ̄Bγ

µℓA) , O
′qfqi
A = (q̄fγµPRqi) (ℓ̄Bγ

µγ5ℓA) ,

Oqfqi
S = (q̄fPLqi) (ℓ̄BℓA) , Oqfqi

P = (q̄fPLqi) (ℓ̄Bγ5ℓA) ,

O
′qfqi
S = (q̄fPRqi) (ℓ̄BℓA) , O

′qfqi
P = (q̄fPRqi) (ℓ̄Bγ5ℓA) .

(111)
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Making use of the hadronic matrix elements

〈0|q̄fγµγ5qi|PS〉 = ifPS p
µ
PS , (112)

〈0|q̄fγ5qi|PS〉 = −ifPS
M2

PS

(mqf +mqi)
,

one obtains the branching ratio

B
[
PS(q̄fqi) → ℓ+Aℓ

−
B

]
=
G4

FM
4
W

32π5
f
(
x2A, x

2
B

)
MPS f

2
PS (mlA +mlB )

2 τPS

×
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

∣
∣
∣
∣
∣
∣

M2
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(

C
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P − C

′qfqi
P

)

(
mqf +mqi

)
(mlA +mlB )

−
(

C
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A −C

′qf qi
A

)

∣
∣
∣
∣
∣
∣

2

×
[
1− (xA − xB)

2
]

+

∣
∣
∣
∣
∣
∣

M2
PS

(

C
qfqi
S − C

′qfqi
S

)

(mqf +mqi)(mlA +mlB )
+

(mlA −mlB )

(mlA +mlB )

(

C
qfqi
V − C

′qf qi
V

)

∣
∣
∣
∣
∣
∣

2

×
[
1− (xA + xB)

2
]







,

(113)
where the function f(xi, xj) and the ratio xi are defined as [149]

f(xi, xj) =
√

1− 2(xi + xj) + (xi − xj)2 , xi =
mℓi

MPS
.

10.7.1 Wilson coefficients

• Tree level neutral Higgs contributions to PS(q̄fqi) → ℓ+Aℓ
−
B in the 2HDM of type III

The non-vanishing Wilson coefficients of the operators in Eq. (110) induced through
tree-level neutral Higgs (H0

k = H0, h0, A0) exchange read
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• Loop-induced charged Higgs contributions to Bs → µ+µ− in the 2HDM of type II

As mentioned earlier, we also include in our analysis the 2HDM of type II loop-induced
charged Higgs contributions to Bs → µ+µ− from Ref. [52]:

Cbs
S = Cbs

P = −mb V
∗
tbVts
2

mµ

2M2
W

tan2 β
log
(
m2

H/m
2
t

)

m2
H/m

2
t − 1

, (115)

where mb and mt are understood to be running masses evaluated at the matching scale.
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10.8 Flavour-changing lepton decays

The general expressions for the branching ratios of τ− → e−µ+µ− and τ− → µ−µ+µ− have
the form

B [τ− → e−µ+µ−] =
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Note that the (not explicitly denoted) sum over the Higgses must be performed before taking
the various absolute values in Eq. (116).

10.9 Input parameters

In this section we list our input parameters in tabular form.

Parameter Value (GeV)

mu(2 GeV) 0.00219 ± 0.00015 [150]

md(2 GeV) 0.00467 ± 0.00020 [150]

ms(2 GeV) 0.095 ± 0.006 [150]

mc(mc) 1.28 ± 0.04 [151]

mb(mb) 4.243 ± 0.043 [89]

mt(mt) 165.80 ± 0.54 ± 0.72 [14]

Parameter Value

MW 80.40 GeV

MZ 91.19 GeV

αs(MZ) 0.119

GF 1.16637 × 10−5 GeV−2

αem
−1 137

v 174.10 GeV

Table 15: Left: Input values for the quark masses used in our article. In the numerical
analysis, we used the NNLO expressions in αs for the running (see for example Ref. [152])
in order to obtain the quark-mass values at higher scales. Right: Electroweak parameters
and the strong coupling constant used in our analysis. Concerning the running of αs we used
NNLO expressions (given for example in Ref. [72]).
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Parameter Value

fBs/fB 1.221 ± 0.010 ± 0.033 [14]

fD 218.9 ± 11.3 MeV [138]

fDs 249± 2± 5 MeV [14]

fDs/fD 1.188 ± 0.025 [138]

fK 156.3 ± 0.3± 1.9 MeV [14]

fK/fπ 1.193 ± 0.005 [150]

Meson massses Values (GeV)

mB±(B0) 5.279

mBs 5.367

mD±(D0) 1.870 (1.865)

mDs 1.969

mK±(K0) 0.494 (0.498)

mπ±(π0) 0.140 (0.135)

Table 16: Left: Values for decay constants of Ref. [14] obtained by averaging the lattice results
of Ref. [138, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165]. Right: Meson
masses according to the particle data group (see online update of Ref. [72]).
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