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Abstract

The present work covers several topics including the rare decay B — Xy as well as
the study of flavor phenomenology of several other observables. After briefly presenting
the methodology used to treat the inclusive rare B-decays, first we study the next-to-
leading-logarithmic (NLL) QCD contribution of the electro-magnetic dipole operator Oy
to the double radiative rare process B — X yvy. In this analysis, we supply the first
analytical NLL QCD calculation to the decay width of the double-radiative inclusive
decay B — X, vy and find that the numerical impact of the NLL corrections are rather
large.

The second study goes beyond the SM. In this work, we point out that a two-Higgs
doublet model (2HDM) of type III is capable of explaining the combined 3.40 discrep-
ancy between the Standard Model predictions for the branching ratios B — D7r and
B — D*rv and the recent measurements for these observables by BABAR collaboration
without fine-tuning. Furthermore, we show that it is also possible to put the theoretical
prediction for B — 7v into an agreement with the 2012 measurements reported by the
BABAR and BELLE collaborations.

The last part is devoted to an extensive analysis of the flavor observables in a 2HDM
with generic Yukawa structure (of type-IIT). In this work, in the light of the recent ex-
perimental data, we work out all relevant flavor observables and constrain the model
both from tree-level processes and from loop observables. Beside this, we give upper
limits on the branching ratios of the lepton flavor-violating neutral B meson decays
(Bs,q — pe, Bs,q — Te and By g — Tu) and correlate the radiative lepton decays (7 — w7y,
7 — ey and p — ev) to the corresponding neutral current lepton decays (77 — p~ptp™,
77 — e ptpT and pT — e~ete™), which is of interest to experimentalists working at
the LHC and super-B factories.
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Introduction

The 21st century has opened an exiting era for particle physicists by the tentative discovery
of the Higgs particle! at the CMS [1] and ATLAS [2] experiments in 2012. LHC, the world
largest and highest energy particle accelerator, is built in a circular tunnel of circumference
of 27 km and at a depth ranging from 50 to 175 meters underground and it lies in the Swiss
and French border on the outskirts of Geneva [3]. In this great collider, the proton beams
are accelerated to reach about 0.999999991 of the speed of light (¢) and make a head-on
collision in a total collision energy of 14 TeV, the highest energy scales attained ever. By
doing so LHC aims to test the Standard Model (SM) of particle physics, which is believed to
be the theory of the electro-magnetic, weak and strong interactions. In fact, since its birth in
the early 1970s the SM of particle physics has been quite powerful in describing the nature
around us by showing excellent agreement with the experimental data. On the other side,
there are numerous observed phenomena that the SM is not able to explain. For example,
the SM predicts massless neutrinos. However, the recent observation of neutrino oscillations
indicates that neutrinos do have mass [4, 5]. Another issue is the difficulty for SM in trying
to explain the matter—anti-matter asymmetry of the Universe. The Sakharov’s three criteria
[6]: baryon number violation, C' and C'P violation and departure from thermal equilibrium,
which explain why the today’s Universe is matter dominated, cannot be accounted within the
context of SM [7]. Moreover, the hierarchy problem? is an example of further problems from
which the SM suffers. Therefore, it is widely believed that the SM in its todays form is not the
ultimate theory but more like a low-energy-effctive theory (which is powerful up to TeV scales
only) of a more fundamental theory and thus it has to be modified in its high energy sector
to feed these deficiencies. Enormous work has been devoted by physicists to look for physics
beyond SM (SUSY, 2HDMs, extra-dimensions etc.) in order to provide natural explanations
to the problems of SM. In this regard, LHC also aims (hopes) to find some “new-physics"
(NP) particles.

¢

Beside the direct search for NP at particle accelerators, there is an alternative place
where possible NP can exhibit itself indirectly via contributions to well measurable low energy
processes. In this perspective, when both the theoretical predictions and the experimental
results are precise enough, it is possible to draw constraints on the range of any NP model.

In this context, the inclusive rare B-meson decays gives important information on the
indirect search for NP at scales of several hundred GeV as well as they are unique for over-
constraining the CKM elements. In the SM all these processes proceed through loop diagrams
and thus are relatively suppressed®. In the extensions of the SM the contributions stemming
from the diagrams with “new” particles in the loops can be comparable or even larger than
the contribution from the SM. Thus getting experimental information on rare decays puts
strong constraints on the extensions of the SM or can even lead to a disagreement with
the SM predictions, providing evidence for “new physics”. To make a rigorous comparison
between experiment and theory, precise SM calculations for the (differential) decay rates are
mandatory. While the branching ratios for B — X,y [9] and B — X /T¢~ are known today
even to next-to-next-to-leading logarithmic (NNLL) precision (for reviews, see [10, 11]), other

!The Higgs field is assumed to be responsible for giving mass to all elementary particles.

2The hierarchy problem means the large difference between the strengths of the weak force and gravity i.e.
it asks why the gravity is 10%? times weaker than the weak nuclear force [8].

3In the SM, flavor-changing-neutral-current (FCNC) transitions are forbidden at tree-level by definition.



branching ratios, like the one for B — X,vv, has been calculated roughly 10 years ago to
leading logarithmic (LL) precision in the SM by several groups [12, 13, 14, 15] and only
recently a first step towards next-to-leading-logarithmic (NLL) precision was presented by us
in [16]. In contrast to B — Xv, the current-current operator Oy has a non-vanishing matrix
element for b — syy at order a? precision, leading to an interesting interference pattern
with the contributions associated with the electromagnetic dipole operator O7 already at LL
precision. As a consequence, potential NP should be clearly visible not only in the total
branching ratio, but also in the differential distributions. As the process B — X vy is
expected to be measured at the planned Super B-factories in Japan and Italy, it is necessary
to calculate the differential distributions to NLL precision in the SM, in order to fully exploit
its potential concerning new physics.

On the other side, having the precise SM calculations at hand and confronting them with
experimental data, one is able to check for any possible deviations between SM predictions
and the experiment which might give a sign for a physics beyond the SM. Assuming the
existence of new physics, such deviations between the SM and experimental data allow to put
constraints on the particular NP model under consideration. As an example of such models
are the two-Higgs-doublet-models (2HDMs). The 2HDMSs [17] have been under intensive in-
vestigation for a long time (see for example Ref. [18] for an introduction or Ref. [19] for a
recent review article). There are several reasons for this great interest in 2HDMs: Firstly,
2HDMs are very simple extensions of the SM obtained by just adding an additional scalar
SU(2)r, doublet to the SM particle content. This limits the number of new degrees of freedom
and makes the model rather predictive. Secondly, motivation for 2HDMs comes from axion
models [20] because a possible CP-violating term in the QCD Lagrangian can be rotated
away [21] if the Lagrangian has a global U(1) symmetry which is only possible if there are
two Higgs doublets. Also the generation of the baryon asymmetry of the Universe motivates
the introduction of a second Higgs doublet because in this way the amount of CP violation
can be large enough to accommodate for this asymmetry. Finally, probably the best moti-
vation for studying 2HDMs is the Minimal Supersymmetric Standard Model (MSSM) where
supersymmetry enforces the introduction of a second Higgs doublet [22] due to the holomor-
phic superpotential. Furthermore, the 2HDM of type III is also the effective theory obtained
by integrating out all super-partners of the SM-like particles from MSSM. 2HDMs are not
only interesting for direct searches for additional Higgs bosons at colliders. In addition to
these high energy searches at the LHC also low-energy precision flavor observables provide
a complementary window to physics beyond the SM, i.e. to the 2HDMs. In this respect,
FCNC processes, e.g. neutral meson decays to muon pairs (B — uwp~, D — pTp and
Kp — ptp~) are especially interesting because they are very sensitive to flavor changing
neutral Higgs couplings. However, also charged current processes like tauonic B-meson de-
cays are affected by the charged Higgs boson and b — sv provides currently the best lower
limit on the charged Higgs mass in the 2HDM of type II. Recently, tauonic B decays received
special attention because the BABAR collaboration performed an analysis of the semileptonic
B decays B — Dtv and B — D*7v reporting a discrepancy of 2.0 0 and 2.7 ¢ from the SM
expectation, respectively. The measurements of both decays exceed the SM predictions, and
combining them gives a 3.4 0 deviation from the SM [23, 24] expectation, which constitutes
first evidence for new physics in semileptonic B decays to tau leptons. This evidence for the
violation of lepton flavor universality is further supported by the measurement of B — 7v by
BABAR 25, 26] and BELLE [27, 28] which exceeds the SM prediction by 1.6 ¢ using V,,; from



the global fit [29]. Assuming that these deviations from the SM are not statistical fluctuations
or underestimated theoretical or systematic uncertainties, it is interesting to ask which model
of new physics can explain the measured values. Since, a 2HDM of type II cannot explain
B — tv, B — D7v and B — D*7rv simultaneously [23], one must look at 2HDMs with more
general Yukawa structures. Also 2HDMs of type III with Minimal Flavor Violation (MFV)
[30] cannot explain these deviations from the SM. These points motivated us to perform a
complete analysis of flavor-violation in 2HDMs of type III. For this purpose we took into
account all relevant constraints from FCNC processes (both from tree-level contributions and
from loop-induced effects) and considered afterwards the possible effects in charged current
processes.

Organization of the thesis

This thesis is split into several independent pieces as follows:

e Part I: In part-I we give a brief overview of the Standard Model and two-Higgs-doublet-
models (2HDMs) and discuss the theoretical framework used to perform perturbative
precision calculations in inclusive rare B meson decays.

e Part II: Here we present in detail our results in analytical form for the calculation
of the NLL QCD contribution of the electromagnetic dipole operator to B — X vv.
In this part, we dealt with numerous loop and d-dimensional phase-space integrals for
which the calculation was made possible using the calculation techniques discussed in
part I. We published our corresponding results in Phys. Rev. D85 (2012) 014020
(arXiv:1110.1251 [hep-ph]).

e Part III: "The B — X vy decay:
NLL QCD contribution of the Electromagnetic Dipole operator O7”; C12-05-21 Confer-
ence proceedings, hep-ph/1207.2397.
Presented at Flavor Physics and CP Violation (FPCP 2012), Hefei, China, May 21-25,
2012.

For completeness, we also include our contribution to the proceedings of the interna-
tional conference "Flavor Physics and CP Violation (FPCP 2012), Hefei, China, May
21-25, 2012” where I have presented our results on the NLL QCD contribution of the
electromagnetic dipole operator to B — X v7.

e Part IV: This part is devoted to the study of charged current processes B — Dtv,
B — D*rvand B — 7v in a two Higgs doublet model of type I1I. Working, for simplicity,
with an MSSM like Higgs potential (which reduces the number of free parameters of
the model) we showed that a 2HDM of type III, which allows for FCNC interactions
at the tree level, with flavor violation in the up sector can account for the deviations
of B — D*rv and B — 7v from the SM predictions simultaneously without causing
conflict with other observables. Furthermore, it is also possible to bring B — 7v
prediction into an agreement with experiment in a type-I11I 2HDM. We published our
corresponding results in Phys. Rev. D86 (2012) 054014 (arXiv:1206.2634 [hep-ph]).

e Part V: This last piece of the thesis deals with an extensive analysis of the flavor
observables in a general 2HDM (of type III). Scanning all relevant flavor observables,



we provided stringent constraints on the parameter-space of the model. Furthermore,
using the constraints we obtained, we gave upper bounds on the branching ratios of
the lepton flavor-violating neutral B meson decays (Bs 4 — pe, Bsq — T7e and Bs 4 —
Tp) and correlated the radiative lepton decays (7 — py, 7 — ey and p — ey) to
the corresponding neutral current lepton decays (77 — p~pu™p~, 7~ — e ptpu~ and
u~ — e ete). We published our corresponding results in Phys. Rev. D87 (2013)
094031 (arXiv:1303.5877 [hep-ph]).

In addition, I recently started a related calculation. Considering the decay channels of the
heavy Higgses (A% H® — tc) predicted by the 2HDM of type III together with the top quark
decay (t — h%c) to the light SM like Higgs, a detailed analysis of the decay rates for these
transitions in the type-1I11 2HDM is planned but not part of this thesis. This work is important
in the sense of testing the type-111 2HDM at the LHC.
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1 The Standard Model 9

1 The Standard Model

To the best of our knowledge, there exist four fundamental forces in nature: electro-magnetic,
weak, strong and gravitational forces. The SM of particle physics is believed to be the theory
of the first three forces, while it fails to incorporate gravity. All the matter in the universe
is found to be made of a few basic building blocks called fundamental particles, governed
by four fundamental forces as shown in Fig. 1. The recent cosmological observations by the
Planck satellite [1] further showed that we only know about 4.9% of our universe while we
do not currently know much about the rest, which is consisting of the so called dark matter
(26.8%) and dark energy (68.3%).

)

FORCE CARRIERS

DOWN STRANGE B

ELECTRON MLION TAU

Figure 1: The basic ingredients of reality.

Developed in the late 1960s and early 1970s [2, 3, 4, 5, 6, 7], the SM has been powerful in
explaining almost all experimental results and accurately predicted a wide range of phenom-
ena. As an example, in Table 1 we illustrate the precision test of Quantum Electro Dynamics
(QED) through the quite successful determination of qep,. In course of time and through
excessive experiments, the SM has become established as a well-tested theory in physics.
The great success of unifying the weak and electromagnetic forces into a single theory called
electroweak theory rewarded Abdus Salam, Sheldon Glashow and Steven Weinberg the no-
bel prize in physics in 1979. Beside, the prediction of the asymptotic freedom! property of
Quantum-Choromo-Dynmamics (QCD) in the early 1970s was another big achievement of the
SM and rewarded David Politzer, Frank Wilczek and David Gross the nobel prize in physics
in 2004. The experimental confirmations of these predictions together with the discoveries
of the bottom quark in 1977, the W and Z in 1983, the top quark in 1995, the tau neutrino
in 2000 and the recent tentative discovery of the Higgs particle in 2012 at CMS and ATLAS
experiments has brought SM a great confidence and success.

Despite its enormous predictive power, the SM still stays to be inadequate to explain some
observed phenomena, which brings physicists to think that the SM is not complete and it
should be extended in its high energy sector. Some of the deficiencies of the SM can be
summarized as follows:

! Asymptotic freedom in QCD means that at sufficiently high energies, the coupling strength of quarks,
confined within hadrons, gets weaker to allow them move almost freely.
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Table 1: Table quoted from Ref. [8] showing the values of a.p, obtained from various precision
The shown values of agy are obtained by the fit of the experimental
measurement to the corresponding theory side where ae, appears as a parameter. These
precision tests of the fine structure constant constitutes an evidence for QED to be a strongly

QED experiments.

QED experiments

—1
em

Low-energy QE

D

Electron (g — 2)

137.035 992 35 (73)

Muon (g — 2)

137.035 5 (11)

Muonium hyperfine splitting

137.035 994 (18)

Lamb shift

137.036 8 (7)

Hydrogen hyperfine splitting

137.036 0 (3)

236, — 135, splitting in positronium

137.034 (16)

1Sy positronium decay rate

137.00 (6)

38, positronium decay rate

136.971 (6)

Neutron compton wavelength

137.036 010 1 (54)

High-energy QED

o(ete” = eteete)

136.5 (2.7)

olete” = ete utu™)

139.9 (1.2)

Condensed matter

Quantum Hall effect

137.035 997 9 (32)

AC Josephson effect

137.035 977 0 (77)

tested and enormously successful theory.

lations indicates that neutrinos do have mass.

How can gravity be incorporated in the SM (super-gravity theories, string theory)?

The SM is not capable of explaining the observed matter-anti matter asymmetry of the
universe. The Sakharovs three criteria cannot be accounted for within the context of

SM.

Why is the gravity 1032 times weaker than the weak nuclear force (hierarchy problem)?

There is no natural explanation why the fgcp parameter has to be small in the SM
(strong-C'P problem).

What is the reason for the electroweak sector of SM to be chiral (absence of right-handed
W couplings in the SM)?

The SM predicts massless neutrinos, while the the recent observation of neutrino oscil-
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Generations SU(3)c SU(2)L U(l)y U(1)g

1 2 3 Rep. T> T23 Rep. Y Q
( u ) ( c ) ( t ) 3 1/2 1/2 9 1/6 2/3
a J, s ). b /), 1/2 —1/2 1/6 -1/3
UR CR tr 3 0 0 1 2/3 2/3
dr SR br 0 0 -1/3 -1/3

( Ve ) ( vy ) ( vr ) 1 1/2 1/2 9 -1/2 0
e ), ko) T )L 1/2 —1/2 —-1/2 -1
€R KR TR 1 0 0 1 -1 -1

Table 2: Quark and lepton families of the SM and their transformation properties under the
gauge groups described.

In this chapter, we do not intend to give a thorough discussion of the SM, for which there
are many text books, notes or papers discussing it in detail. Instead, we will rather put our
focus on the particle content and parameters of the SM, the generation of masses via Higgs
mechanism as well as discuss Cabibbo-Kabayashi-Maskawa (CKM) matrix by mentioning the
present status of its entries. In the following considerations, we benefit from [9, 10, 11, 12].

1.1 Overview

As mentioned before, the SM of particle physics incorporates the strong, weak and electro-
magnetic interactions. In the group theory language, it is based on the gauge group

Gsy = SUB3). @ SU2) L @U(1)y. (1)

where SU(3). and SU(2)r, ® U(1)y stand for the strong and the unified electro-weak sectors,
respectively.

The SM includes 12 elementary fermions: 6-quarks and 6 leptons appearing in 3 families, 5
elementary bosons: 4 gauge bosons (7, g, W*, Z)-the so called force carriers, and the Higgs.
Quarks carry color charges and form composite colorless states like baryons (gqq) or mesons
(¢q), which belong to the larger set called hadrons. The quantum numbers (spin, charge,
color-charge, etc) which a particle carries determine the transformation properties of that
particle under the gauge transformations. In Eq. (1), SU(3). only affects the particles having
color-charges (index c¢), SU(2)r, acts only on the left handed fields while it leaves the right
handed ones unchanged and lastly the U(1)y transformation operates on the fermion fields
according to their hypercharge quantum number Y.

In the SM there are 18 independent parameters?, which are not fixed by the model but only
determined experimentally. They are called the free parameters of the model and read:

e 3 couplings g,¢’, gs (or alternatively e, sin 6y, gs)

e 4 CKM parameters (3 angles and 1 phase)

2 Actually, strictly speaking fqcp is a free parameter of QCD too, and so is sometimes considered to be the
nineteenth free parameter of the Standard Model.
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Boson SU(3)c Rep. | SU(2)r Rep. Y Q Role
B, 1 1 - - U(1)y gauge boson
Wy 1 3 - - SU(2)r gauge bosons
Gy, 8 1 0 0 SU(3)c gauge bosons
(et 1/2 1 )
¢ = ( @0 : 1 2 1/2 0 Generation of masses

Table 3: Bosonic fields of the SM, their roles and the transformation properties under the
gauge groups described.

e 2 boson masses myz and my (the W+ mass can be expressed in terms of my and Ow)
e G quark masses : my, myg, Mg, Me, My, My

e 3 lepton masses : m.,m,, m, (no neutrino masses).

Table 2 and Table 3 presents a summary of the fermionic and bosonic content of the SM,
their corresponding quantum numbers together with the representation of the gauge group
they belong to.

1.2 Mass generation via Higgs mechanism

In physics, symmetries play a crucial role. According to Noether’s theorem, for every continu-
ous symmetry realized in a system there correspond a conserved quantity. For example, time
translation invariance of a system leads to conservation of energy, a global U(1) symmetry
of QED ensures the conservation of the electric charge (continuity equation), a local gauge
invariance guarantees the gauge bosons of QED (photon) and QCD (gluon) to be massless
and Lorenz invariance brings along the requirement that the speed of light should be a con-
stant, which is essential in special theory of relativity, etc. Beside these, the condition of
renormalizability is crucial as it makes a model more predictive. Writing down by hand mass
terms in the Lagrangian for the gauge bosons (or fermions) would explicitly break gauge sym-
metry, which is not desirable for the reasons discussed above. Hence, in 1967 Weinberg [3]
and Salam proposed to generate such mass terms via spontaneous symmetry breaking (SSB)3
by introducing a complex scalar SU(2);, Higgs doublet

_( ")
o) = () ) @)
with the renormalizable Lagrangian
Lo = (0,0)! (9"®) — V(®),

V(®) = —p20T® + (@@)2 , ®)

3In fact, SSB is not restricted to gauge symmetries. It can be considered as a subtle way to break a
symmetry by still requiring that the Lagrangian remains invariant under the symmetry transformation while
the ground state of the system is not invariant i.e. not a singlet under the symmetry transformations.
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where A > 0 (such that the potential is bounded from below) and p is a real parameter
(4% > 0). In order to keep the local gauge invariance of the Lagrangian intact, one replaces
the derivative d,, by a covariant derivative of the form

Oy — Dy = 0y +igTg W +ig'YB,, . (4)
The corresponding potential develops a minimum when ®f® = % (see Fig. 2) which leads to
a constant field configuration of the form

Oy = T ( 2 > : (5)

where v = p/v/2\ (~ 174 GeV). Since these are infinitely many ground state configurations,
one of them has to be chosen spontaneously.

V(o) V(¢)

Figure 2: Shape of the scalar potential V(@) for the choices u? < 0 (left) and p? > 0 (right).

There is an infinite number of ground states each with the same lowest energy, i.e. we have
a degenerate vacuum. The symmetry breaking occurs in the choice made for the value of 5
which represents the ”true” vacuum. For a fixed vector 5 e.g. 5= 0, Eq. (5) is not invariant
under SU(2);, transformations, which spontaneously break the symmetry. For convenience
let us work in unitary gauge? and choose the Higgs doublet to have the form (5 =0)

y@:<x%>, such that mymm:<g>. (6)

It is trivial to see that this is not invariant under gauge transformations while invariant under
QED gauge group U(1)g transformations:

gmw<0>:<0> = Ql0) =0, (7)

v v

where the generator of U(1)g group is given by @ = T3 + Y. This means that the original
SU(2)r, ®U(1)y symmetry of the Lagrangian is not completely broken after the choice of the
"true” vacuum but breaks down to U(1)g and hence this shows that SM incorporates QED.

4In this gauge the unphysical Goldstone bosons fields are set to zero. Namely, they reappear as the
longitudinal degrees of freedom of the massive gauge bosons.
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To see how to get mass terms for the gauge bosons, let us expand ®(z) around its vacuum
expectation value as (in unitary gauge)

@(m):¢o+q>/(;g): <U+OH\}E) ) with (1)0:<S> . (8)
2

The field H above corresponds to the physical Higgs field and has zero vacuum expectation
value.

Expressing the Lagrangian in Eq. (3) in terms of the physical gauge fields

1 1
Wit = —(Wlsiw?), Z,=—oos (W3—-¢B,),
I \/5( iz u) Iz 92+g’2( iz #)
1 3
gives
ig W3 2w g 0
D<1>:<6 +—< p §‘>+—B a |, (10)
" 2\ Vvewl o - 2 ")\ v+ 5
such that
1 2 o0 GV g*v?
E(I) — 5((3“}[) — K H +TWM WM++mZuZM+O-AuAM
+ interaction terms, (11)

from which we can immediately read the boson masses to be

v _

mwy = , m —_—
W V2 Z V2 cos by,
my = V2u =20V e =gsinfy and my/myz = cos by, (12)

where 0y, is the weak mixing angle. As can be seen, we do not have a mass term for the
photon field A,,, which in fact has to be so in order to respect the U(1)g gauge symmetry of
QED.

Lastly, we turn to the mass generation of the fermion fields. For this aim, we consider
a renormalizable and gauge invariant Yukawa Lagrangian involving Higgs-fermion-fermion
couplings in the following form

Lyukawa = _yeél'%q)Jr < Ve > - deR(I)T < Y ) — Yy UR (ET(I)*)T < p ) +h.c., (13)
¢ /L dj, dj,

1 0
is constructed such that ¢/ ®* transforms in the same way as ® which keeps the SU(2)r, sym-
metry intact. The factors y., yq, and y, describe the Yukawa couplings in the one-family
model, which can be taken to be real and positive. Plugging the Higgs doublet in Eq. (8) into
Eq. (13) and considering only the ®( part gives

. -1
where ®* has a hypercharge quantum number of —1/2 and the matrix e = —2iT% = < X >

$9
Yukawa

= —y.vée — yqudd — Y, v au, (14)



1 The Standard Model 15

and thus the fermion mass terms read
My =Yy U, Mg =YdV, Me=YeV. (15)

Considering further the physical Higgs H(x) couplings in the Lagrangian gives similar terms
as well, which implies that the coupling of the SM Higgs to massive fermions is proportional
to their masses.

1.3 The CKM quark mixing matrix

Promoting the spontaneous symmetry breaking mechanism to all three generations works
just the same way as we saw in the previous section but with the difference that the mass
terms are now 3 x 3 matrices which are not diagonal in flavor space. Diagonalizing these
terms will require the fields to be rotated which in turn will render certain interaction terms
non-diagonal.

The Yukawa Lagrangian involving all three generations can be written as

o), o

— Y 1%
Yukawa — (6’ Ly T)RY (I)Jr "

— (et Y| (70%) ( > + h.c.
oo (3)

Here, the Yukawa couplings Y*, Y* and Y¢ are now arbitrary complex 3 x 3 matrices in flavor
space. Plugging the Higgs doublet in (8) into Eq. (16) and considering only the ®( part gives

e u
L= —(EmT) g M | p | —(d5b),Ma| s | —(wet)gMy| ¢ | +he, (17)
T b t

L L L

from which the 3 x 3 mass matrices are extracted to be
M, =vY! M,=vY" M;=0vY% (18)

We need to diagonalize these mass matrices in order to arrive at the physical masses measured
at experiments, which can be achieved by a bi-unitary transformation of the form UTMV =
Mgiag., with U and V' themselves being unitary such that all entries in Mgj,g. are non-negative
and real. The wave function rotations, which absorbs the diagonalization matrices, necessary
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to arrive at the physical basis (primed) are defined as

e e e e
=Vi| v | . po) =0 A
T/ ™) T/ R ™ ) g
u o/ u o/
c =Vu| ¢ , c =U,| ¢ , (19)
/ /
t/y v/ t )R © /g
d d d d
s =Vy| ¢ , s =Uy| ¢
/ /
b ), v ), b ), v,

For what concern the Lagrangian, expressing the flavor eigenstates in terms of the mass
eigenstates we see that the kinetic terms stay the same except for the exchange of the unprimed
fields with the primed ones since the unitary rotation matrices cancel each other. A similar
situation is also valid for the couplings of the photon or the Z boson to fermions which leads
the neutral currents to stay diagonal i.e. flavor-changing neutral currents (FCNC) to be absent
at the tree level in SM. For massless neutrinos, as we do not have a mass matrix that needs
to be diagonalized, there is the freedom to rotate the neutrino fields with V; as in (19) such
that in the W couplings involving the lepton fields we do not see rotation matrices. On the
other side, considering the charged current interaction with quarks, we see that these rotation
matrices form products which leads to the unitary Cabbibo-Kobayashi-Maskawa quark mixing
matrix

Vud Vus Vub
Vekm =ViVy = | Ve Vs Vi |- (20)
Vie Vis Vi

The appearance of this matrix in the charged quark currents has an important consequence:
In contrast to the flavor eigenstate basis, the flavor changes can now also cross generations.

As Vg is a unitary 3 X 3 matrix we expect that it has nine real parameters. However, five
of them can be rotated away by suitable phase transformations on the fields that leave the
rest of the Lagrangian invariant and thus only four of these, namely three angles and one
phase, remain physical®.

A standard parametrization for the CKM-matrix was introduced in [15] and is obtained as a
product of three rotation matrices, characterized by the three Euler angles 012, 613 and 63,
and an overall phase § ©:

€12€13 512C13 s13e”"
_ i i
Vekm = | —s12c23 — c12523513€"  €12C23 — S12523513€" s93c13 |, (21)
i i
512823 — C12523513€"°  —C12523 — C12523513€"  C23C13

with ¢;; = cos0;; and s;; = sin §;;. The advantage of this parametrization is that the mixing
angles are directly related to whether two generations mix, i.e. if a given mixing angle vanishes,
there is no mixing between the corresponding generations.

®In the case of N generations, one would have (N — 1)? physical parameters which are N (N — 1) /2 Euler
angles and (N — 1) (N — 2) /2 complex phases.
5This phase is the central source for all of the C'P violation occurring in the SM.
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Another popular parametrization was proposed by Wolfenstein in [16] with four parameters
AN, p and 1. Tt uses A = |Vis| = 0.22 as an expansion parameter by which each matrix
element is expanded. Phenomenology tells us that c¢13 and co3 are O(1). Making further the
following definitions (A ~ O(1))

Ve
So3 = AN2 = A V_ub :

512 = )‘a (22)

s13 = AN (p+in) = V5,

the Wolfenstein parametrization of the Vogyr takes the form

2 .
14 A AN (p—in)
Vokm = - - AN? +0 (A, (23)
AN (1 —p—in) —AN? 1

which ensures p + in = — (VudVJb) / (Vchc’Z) for

i Pt VI X
P = T2 1 - a2\ (p+ )]

It can be seen that the entries get smaller as moving away from the diagonal which implies that
the W-coupling is stronger in the diagonal while gets suppressed as the flavors are apart from
each other. The unitarity of the CKM matrix (VCKMVCTKM = VCTKMVCKM = I3x3) generates
several useful orthogonality and orthonormality relations. The most commonly used unitarity
triangle arises from the relation

VuaVay + VeaVey + ViaVip = 0, (24)

by dividing each side by V.4V. This results in the three unitarity angles as

a = arg| — thv;}; B =ar —VCdVCZ
E\ Vv ) E\ T Vavy )
Vudv*b
— — w 25
v arg ( VchJ)) , (25)

which are physical and can be independently constrained from B meson decays.

The current best fit to the CKM parameters according to CKM-fitter group read [17]

A 0.80270055, A =0.2254100033
7= 03437005, p=0140"05],
a = (90.5%22)",  B=(21.71)"
v o= (6775 (26)
leading to
0.97 0.23 0.0014 — 0.0032
Veku ~ -0.23 0.97 0.04 : (27)

0.008 —40.003 —0.040 —¢0.001 1
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Finally, we would like to conclude this chapter by giving the present SM constraints on the
CKM parameters based on a global fit result” as illustrated in Fig. 3.

15 LI R L P\ L T T T UL
excluded area has CL > 0.95 ' é‘o
- Y ]
1.0 — —
0.5 [— —
I= 00 —
-0.5 — —
-1.0 - €k ]
- % Y : sol.w/cos 28<0 -
= Summer 12 ' (excl.atCL > 0.95) —
_15 i | I | | I I | ! I | ‘ I ‘ I | | I
-1.0 -0.5 0.0 0.5 1.0 15 2.0

p

Figure 3: Plot taken from Ref. [17] showing the updated SM constraints (the regions com-
patible with experiment are superimposed on each other at 95% CL) on the p — 7} plane from
various measurements and the global fit result.

2 Two-Higss-doublet models

The two-Higgs-doublet-models (2HDMs) are simple extension of the SM with a limited number
of additional free parameters. As we have seen in Eq. (13) of Sec. 1, in the SM one uses the
same scalar doublet ® to couple the right-handed up- and down-type quarks to the left-
handed fermion doublets. This is done using the fact that the combination €/ ®* transforms
in the same way as ®, which keeps the SU(2), symmetry intact, and that the scalar doublets
coupling to right-handed up- and down-type quarks have opposite hypercharge quantum
numbers [19].

In 2HDMs, one introduces a second complex SU(2) Higgs doublet and obtains five physical
Higgs particles. Assuming a C'P conserving Higgs potential one gets: two neutral C' P-even
Higgses HY h%, a neutral CP-odd Higgs A° and two charged Higgses H™.

"Global fit implies using all available measurements and imposing the SM constraints. The analogous fit
results on the CKM parameters can also be seen from the online update of UTfit group [18].
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Depending on the couplings of the Higgs doublets to the quarks, different versions of the
2HDM were named [20]. A type-I model describe the coupling of both up and down-type
quarks to the same doublet (H,), whereas the other doublet (H;) does not couple to any
quark. In a type-II model, one doublet (H;) couples only to down type quarks whereas the
second one (H,) only couples to up type quarks, and in a type-IIT 2HDM both scalar doublets
are assumed to couple to both type of quarks. Beside that, there are several other versions
of 2HDMs such as lepton-specific, flipped, inert or Aligned [21] models etc. For a thorough
discussion of 2HDMs, we refer the reader to see e.g. a recent comprehensive review by [22] or
[23].

The early history concerning the formulation of 2HDMs can be summarized as follows [24]:

e The first formulation of a 2HDM comes by T. D. Lee in 1973 [25] with the motivation to
find extra sources of C'P violation. He uses the fact that in a model with two doublets
the vacuum could break the C'P symmetry spontaneously [22].

e S.L. Glashow and S. Weinberg in 1977 [26] put forward the idea of natural flavor con-
servation stating that the tree-level flavor-changing-neutral Higgs interactions can be
avoided if fermions of a given quantum number couple to at most one of the Higgs
doublets.

e N.G. Deshpande and E. Ma in 1978 [27] showed that in order to keep the U(1)em
symmetry intact, the parameters of the Higgs potential should lie in an appropriate
region of parameter space.

e H.E. Haber, G.L. Kane and T. Sterling in 1979 [28] invented the 2HDM of type-I in
which one Higgs doublet couples to up and down-type quarks at the same time, while
the other Higgs doublet does not couple to the quarks at all.

e J.F. Donoghue and L. F. Li in 1979 invented the 2HDM of type-II [29] in which one
Higgs doublet couples to down-type quarks and the other Higgs doublet couples to
up-type quarks.

e L.J. Hall and M.B. Wise in 1981 invented the type-I and type-II terminology [30].

e T.P. Cheng and M. Sher in 1987 [31] founded the first realistic type-III 2HDM in which
all possible Higgs-fermion couplings are allowed.

Among these types, the 2HDM of type-II is the most studied one since it shares many features
with the Higgs sector of the super-symmetric models (like MSSM) [22]. Hence, in the following
considerations we would like to focus on the type-II model by examining its Higgs sector and
the Yukawa structure®.

The gauge invariant and renormalizable (allowing at most quartic couplings of the Higgs
fields) scalar potential of a 2HDM (motivated by the corresponding MSSM Higgs potential)

8The more general type-IIT 2HDM will be discussed first briefly in Part TV and later in more detail in Part
V of this thesis.
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can be written as® [32]:

A A 2
V(Hy Ha) = iy, [ oy, [P+ 50 (B, ) (B + 2 (10— | HaP)
+ (b("Hy) Hy e (28)
where the Higgs doublets read
H) HY
— d _ d
Hd - Hg - Hd_ )
(29)
o (m
C\lmz )\
u u

Minimizing this potential yields (H,) = < f > and (Hy) = ( %d > with v, = sin fv, vy =
u

cos fv such that tan 8 = v, /vg is the ratio of these vev’s. After expanding around these
minima the Higgs doublets take the form:

H! vg + HO
Hi=| 2| = """ 7| with H) = pg+ina,
Hj Hy
(30)
H: Hf
H, = v = v with HS = Py + 1My .
H? vy + HY

After SSB, plugging the doublets given in Eq. (30) into Eq. (28) gives

V= my, [(va+ pa+ing) (va+ pa—ing) + Hy Hy |
+ m%{u [(vu + pu + i0u) (Vu + pu — inu) + H H,, |

A
2
A2

[((va + pa = ina) Hy + (vu + pu+iu) Hy ) ((va + pa +ina) Hy + (vu + pu — inu) Hy )|

_ _ . : . 2
+ 2 [HfH, —HH; + (vu + pu+ inu) (vu + pu — i) — (va + pa + ina) (va + pa — ina)]

+ b[HIH; +H,Hf — (vy+ pu+ i) (va + pa + ina) — (vu + pu — inu) (va + pa — ina)] -

At this stage, setting to zero the derivatives of the potential in Eq. (31) with respect to the
real parts of the neutral up and down components as 9V /dp, = OV /Opq = 0 allows us to

9This choice of the potential assumes a discrete Z2 symmetry (with H, — —H, and all other SM fields
are unaffected) which eliminates quartic terms odd in either of the doublets [22] such that it avoids dangerous
CP violation due to the potential itself, while leaving a b-term (dimension-two term) to break this symmetry
softly. The b-term is known as soft-supersymmetry breaking scale. Moreover, with appropriate requirements

on the parameters involved (such as v,,q > 0 etc.), this potential induce a correct SSB leaving U(1)em intact
as desired [32].

(31)
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relate some of the parameters in the potential to the vev’s (v, q4) in the following way 10

A
(vﬁ - vi) , m%{d —pe 4 22 (v - vfl) . (32)

A
2 2
My, = b—+ —= v a

Uy 4

Working out explicitly all quadratic terms together with the mixing terms of the fields in
Eq. (31) define the corresponding mass matrices in the following way:

rHiggs _ ﬁHf’ d 4 LPwPd 4 LMuNd (33)

mass mass mass ?

where the individual pieces read:

Hi HY Av? _ o [cotp 1 HF
Liass ¢ = —(b—i— 1 sin(28) | (H, ,H]) 1 tang) it )

pupa ( ) bcot 8 + >‘22v2 sin?8  —b— )‘QU sin (23)
mass — — (PusPd
—b— )‘QTUQ sin (26) btanp + ’\2” cos ﬁ
Mpu,pd
beot 8 b n
Lrm = —(n,, “) 34
mass (77 77d) ( b btan ﬂ) <77d> ( )

As can be seen, these mass matrices squared are symmetric and real valued. Thus, it is
possible to diagonalize them by orthogonal 2 x 2 matrices (O7 = O~!), which corresponds to
perform field transformations of the form:

H,  (Hf\ [cosp —sinB\ (HT
<H§*> N (Hj> o <Sinﬁ cos f3 ) <G+> ’
pu) 1 cosa  sina Ko
pa) — V2 \—sina cosa)\H")’
n) 1 [cosp —sinB) [A°
<77d> N ﬁ (Sinﬂ cos f3 > <G0> : (35)

These transformations project the old fields (HjE (d) Pu.ds Nu.a) onto the physical (H=, h9, HY, A?)

and un-physical Goldstone boson (G*,G?) mass eigenstates in the following way:

1
HS = pu—|—z’77u:ﬁ(Hosina—|—hocosa+iAocosﬁ—isinﬁG0),

1
Hg = pd+ind:E(Hocosa—hosina—i—iAosinﬁ—{—icosﬁGo) ,
Hi = H; = cos BHT —sin G,
H; = Hj =sinfH +cospBG, (36)

where « is the mixing angle necessary to diagonalize the neutral CP-even Higgs mass matrix
(see e.g. [33]) and 3 is the rotation angle!! doing the same job for the corresponding charged

19At the minimum, all the components of the doublets are set to zero as HE = Hdi = pu,d = Mu,d = 0.
"Since vy,4 > 0, B can be chosen to lie in the range 8 € [0, 7/2].
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scalars and of the C'P-odd Higgses. These angles are important phenomenologically since
they define the interactions of various Higgses with fermions and gauge bosons [22].

Diagonalization of the mass matrices given in Eq. (34) results in the following mass terms for
the physical and the Goldstone boson fields'?:

2b A v? 2b
2 1 2 2 2
M= sin 23 9 0 Ma* AT Gy 28’ Mo ’
i = Ll +—A2”21\/ 20 = Aa02/2)% + 20902m2, sin? 2
M0 po 5 (Mo 5 (m?o — A2v?/2) 2v%m?, sin“ 23 | . (37)

Next, the gauge boson masses simply follow from the Higgs kinetic terms
Ekinetic = (DMHU)T (DMHU) + (D,qu)T (DMHd) ) (38)

with D, and H, 4 being defined as in Eq. (10) and Eq. (30), respectively. Working out

explicitly the quadratic terms in the gauge fields, we find

g (vi +v3)
2 )

(9> +97)(vs +v3)
m% = 2“ ©. ml=0, (39)

miy =

where vZ+v? plays the role of v? in the SM and is therefore fixed at v2+v3 = v? ~ (174 GeV)?2.

Furthermore, using the orthogonal matrix given in the second line of Eq. (35) and setting to
zero the non-diagonal entries of the matrix product

. T .
( COS (¥ 51110[) MPde < COS v SIDOZ> , (40)

—sina  cosa —sina  cos«

allows us to relate the angles a and 3 as

Pu>Pd
2MY5

tan (20) = ———— 57
M MG

(41)

With little bit algebra this yields

2m2, + Aov?
tan (20) = —2% "= tan (203) . 42
an (20) = 56— tan (26) (42)

This equation has a unique solution for «, if « is restricted to be in the range o € [—7/2,0].

Using the SUSY conditions A\; = g% and Ao = ¢ + ¢/* (see e.g. [23] for the corresponding
discussion), Eq. (42) can further be expressed as

2 2 2 2
mo +m Mo +m
A0 Z A0 Z

Having derived all these relations above, we can now look at some useful limit of them. In
the phenomenologically interesting limit of large tan 3 and v? = v2 + vfl < mio, it is easy to

12Being directly proportional to the soft SUSY breaking scale b, the masses of H¥, A° and H® are a priori
assumed to be large compared to the SM like Higgs h° mass.
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see from Eq. (37) that all the heavy Higgs masses become equal (mpgo &~ mg+ ~ m 0 = mpg)
and additionally the following useful relation between the angles a and 3 exist!'3

)

‘cotow: —tan

when choosing « to be in the range o € [—7/2,0].

As a result, under these assumptions, the degrees of freedom of the model reduce drastically
and thus the type-II 2HDM would only have two free parameters to be fixed via experiment:
tan 8 and my.

As a next step, let us discuss the Yukawa Lagrangian of the type II model. Following the no-
tations used in Ref. [34] the Lagrangian governing the Yukawa interactions, in the electroweak
basis, reads

Ly = _?L [YﬁewebaHé’*] dir+ Q?”L {Yfzgeweang*} uig + h.c. . (44)

Here a, b denote SU(2)y, - indices, €4 is again the two-dimensional antisymmetric tensor with
€12 = —1. Writing Eq. (44) down explicitly in component form and after performing the
wave-function rotations necessary to arrive at the physical basis with diagonal quark mass
matrices, the Yukawa Lagrangian takes the form:

- my. My
Ly = — de [( dl(Sﬁ) Hg*:| diR_ﬁfL |:< uZ(SfZ') Hg*] U; R
Vg Uy
my. - My
+ ap Vi <U—dz> H dig+dg V™M <U—u> Hyuip + he . (45)
d u

Here, my, are the physical running quark masses, H;t and H, (9 are the components of the
Higgs doublets as given in Eq. (30). These Higgs fields can be replaced by the corresponding
mass eigenstates using Eq. (36). As can be seen, there is no flavor-changing-neutral Higgs
interactions at the tree-level in 2HDM of type II so it is a model which respect natural flavor
conservation.

In part IV and part V of this thesis, we will analyze the flavor phenomenology of the type-I11
2HDM. We will see that the type II model discussed above will not be competent to explain
some recent experimental data and thus one has to work with more general models. In the
2HDM of type III, in addition to the number of free parameters of the type II model, we
will have extra free parameters, the so called non-holomorphic couplings e

... which generates
177
FCNC transitions at the tree-levell4.

Before closing this chapter, we would like to make a final remark concerning the choice of the
Higgs potential. In fact most phenomenological studies of 2HDMs makes several simplifying
assumptions. In order for distinguishing between scalar and pesudoscalar particles, it is usu-
ally assumed that the Higgs sector respect C'P symmetry (a C'P-conserving Higgs potential)
[22] as we also did in writing the Higgs potential in Eq. (28). Moreover, a non-vanishing b
term in Eq. (28) would allow a finite FCNC at one-loop level indicating FCNCs to be small'
[35].

13For large values of tan 3 this relation implies; sin 8 — 1, cos 8 — 0, sina — 0 and cos o — 1.

MThere is a straightforward correlation between the type-IT and type-IIT models. The results obtained in a
type III model are more general and one can simply translate these results to the results of type II model by
setting all e{j textures (see Part V for the corresponding discussion) to zero.

I5FCNCs can be avoided if the same Higgs multiplet is used to couple all fermions sharing the same quantum



24 Part I: Preliminaries

3 Effective field theory approach

In physics, an effective field theory is described as the theory that contains the appropriate
degrees of freedom to describe physical phenomena occurring at a chosen energy scale, while
ignores the degrees of freedom at higher energies (or, equivalently, shorter distances). If we
want to examine a specific physical system within the great features of the surrounding nature,
we need to isolate some parts of the system from the others. By doing so, we would get a
description adapted to that particular system without trying to learn everything related to
it. The basic idea for doing that is to specify the relevant parameters which are assumed to
be adequate to describe the physics at the chosen energy scale [37].

Figure 4: Left: Quark level b — cdu transition in the full SM. Right: b — cdu transition in
the effective theory framework governed by local effective operators.

Applied to Feynman diagrams this approach means to identify the light and the heavy particles
in a given diagram and to study the dynamics of the diagram after integrating out the heavy
scales, which is formally performed within the concept of operator product expansion (OPE)
introduced by Wilson in 1969 [38]. This way the heavy scales are treated as frozen-static
sources and the physics describing them is absorbed in the so called Wilson coefficients (short
range) while the low energy effects are hidden inside effective operators (long ranges). To
illustrate the construction of such an effective theory let us take the simple tree-level b — cdu
transition depicted in the left frame of Fig. 4. The SM amplitude for this transition is

v

. 2 uv _ qtq

[ —1ig2 , my 7 -

Asm = —i < ) VeVaa —5 = (dyuLlu) (e Lb), (46)
V2 ¢ —my -

where ¢ refers to the momentum transfer through the W. Since g ~ O(my) < myy, it is
possible to expand the W-propagator in ¢/ m%,v as

v
P :
Lo (), (a7
q — My myy My

numbers (thus capable of mixing) [22]. According to Paschos-Glashow-Weinberg theorem (see [22] and refer-
ences therein), ”a necessary and sufficient condition for controlling the presence of FCNC at the tree-level is
that all fermions of a given charge and helicity transforms according to the same irreducible representation of
SU(2), correspond to the same eigenvalue of T and that a basis exist in which they receive their contributions
in the mass matrix from a single source”. In the 2HDMSs, this can be achieved by imposing discrete (like Z2
symmetry) or continues symmetries (like Peccei-Quinn symmetry [36]).
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Plugging Eq. (47) into Eq. (46) gives rise to series of local operators of ascending mass
dimension

;2
—g L~ _ 1
Agum = 22vcb o — (dryLu) (cfy“Lb)+—m4 (T )+ | (48)
W dim-6 operator w dim-8 operator

The operators with mass dimension higher than 6 are suppressed by appropriate inverse
powers of m%,[, For example a dimension-8 operator would have a suppression factor of
mg / m%,v relative to a dimension-6 one. Hence, neglecting the higher dimensional operators in
Eq. (48) allows us to construct an effective amplitude of the form

—ig3 1 -
A = %Vcb i~ (dyuLu) (&4 Lb), (49)
My
which is equivalent to throw away the O (q2 / mév) terms in the full SM side in Eq. (47). As

we have seen, integrating out the W in the SM resulted in a local four fermion interaction
operator on the effective theory side (pictorially shown in the right frame of Fig. 4).

In the next subsection, we will briefly illustrate how to do matching for the electromagnetic-
dipole operator O7, which is the most important operator throughout this work, by taking
into account the b — s decay at the lowest order in QCD, i.e., a2. Therefore, before closing
this section let us give the effective Hamiltonian Heg governing the b — sy (b — sg, b — svy7)
decay(s)'6. After integrating out the heavy particles in the SM we have

2 8
Mgy = S8 |3 G0 0050 + MO - X Y GO | . (0

i=1 =3

where \; = ViV and the set of dimension-6 operators read [41]:

O1 = (SpwTcr) (€L Tabr) O = (Spyucr) (€Ly"br)

O3 = (5rvubr) -, (@ q), Oy = (57uTr) >, (7" Taq) (51)
Os = (S ebr) 2o,(@v* v vPa) . Os = (Sryun T L) 2,y v Taq) ,

O7 = 150z (50 [myR+msL]b) Fly, Os = 18 (50 [y R+ ms L] Tb) Gy, .

The symbols 7% (a = 1,8) denote the SU(3) color generators; gs and e, the strong and
electromagnetic coupling constants. In Eq. (51), m, are the running quark masses in the
MS-scheme at the renormalization scale . When the aim is to compute the decay rates (but
not the C'P violation effects), concerning the decays b — sy, b — syy and b — sg, one can
make use of the hierarchy V)V < Vi Vi to further simplify Eq. (50).

3.1 Matching procedure

The idea of doing matching lies in the calculation of the transition amplitude of corresponding
process both in the full and in the effective theory and then extracting the corresponding
Wilson coefficients after confronting both results. For this aim, let us consider the quark-level
b — sy decay at the lowest order in QCD and try to extract in the effective theory the Wilson

For a detailed discussion of the derivation of the Hamiltonian for these transitions see e.g. [39, 40].
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coefficient C7 associated with the electro-magnetic dipole operator O7 (see e.g. [42] for a
two-loop matching of the dipole operators; matching procedures of other operators such as
the chromo-magnetic dipole operator Og or current-current operators O > can be found e.g.
in [9, 10, 11, 43, 44]). For a detailed discussion of this procedure and the extraction of all
Wilson coefficients we refer to [39, 40].

In lowest order of QCD, the relevant diagram!? for b — sv is given by Fig. 5 with ¢ and
c-quarks circulating in the loop. The diagram with an internal u-quark circulating in the loop
is proportional to A, = V3V, which is much smaller in magnitude than the corresponding
top and charm loop contributions and thus can be safely neglected. Therefore, there remain
two cases to consider: i-) the graphs with internal top—loop and ii) the ones with internal
charm—loop.

Figure 5: Diagrams contributing to b — sv in the full theory according to HME. The bold
lines describe the sub-graphs which should be expanded in their external momenta and masses.
In the right frame, the loop-momentum k flowing through the W-line should be treated as an
external momentum and thus an expansion of the W propagator in k should be considered.

Let us tackle the former case first. In this case, since all internal scales (my, myy) are heavy
and the external momenta (py, ps) are of O(my), one can naively Taylor expand the occurring
propagators in the light scales py, ps, mp and mg. For the top-quark propagator involving py
this would simply imply to make the following geometric expansion

1 1 P2+ 2kpy\ "
_ _Pb T 2FDy 52
(k + pp)% — m? kQ—m%Z< k% —m? ’ (52)

n>0

and same expansion holds for the propagators involving ps. The top-loop diagram, where the
photon is emitted from the internal top quark, alone turns out to develop a 1/e singularity.
However, combined with the other three diagrams where the photon is emitted from the W,
b or s-quark'®, the total top-loop amplitude A’éotal gives a finite result.

Now, we turn to the calculation of the diagrams where an internal ¢ quark is propagating in
the loop. According to the heavy-mass-expansion (HME) rules defined in [45, 46], there are
two types of (sub)diagrams that we should calculate in this case. The first one is the full

1"We work in the unitary gauge such that we do not have additional non-physical Higgs interactions.

18In fact, gauge invariance already determines the structure of the result. To make the job simpler, it can
be adequate just to calculate the sum of two diagrams where v is emitted from the internal top and from
W, which are the only ones contributing to e.py structure while the remaining two-diagrams contribute to ¢
structure. Eventually, matching the e.p, structures in the full and the effective theory enable us to fix C7.
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diagram where the corresponding propagators are again expanded in a naive way in the light
external momenta and masses (pp, ps, My, Mme and my). In addition, due to the light mass of
the c-quark compared to my, we need to consider a second type of diagram (subdiagram) as
shown in the right frame of Fig. 5. In this case, the momentum of the W is considered as an
external one and thus the W propagator should also be expanded in the loop momentum k

as

1 1 k2 1

o[ E (L), 5
k — miy miy myy myy

However, performing the relevant algebra the calculations show that for an on-shell photon
(¢> = 0) the contribution shown in the right frame of Fig. 5 vanishes and one only gets a
contribution from the naively expanded full diagrams with an internal c-quark circulating in
the loop (left frame of Fig. 5).

Therefore, summing up all the non-vanishing contributions from the top and charm-loop
amplitudes we arrive at the following finite result for the complete SM amplitude'® in the
leading order of QCD

" AGp M e x [—8x3 +32% + 122 — 7+ (182% — 127)In(x)
_= 1 —
full V2 1672 24 (z— 1)

(54)

x u(ps)2 [R(¢(q)(mg +m2) — 2mypy.€(q)) + L (2mymsg(q) — 2ms pp-e(q))] u(py) ,
where z is given by z = m?/ m%,v

Having completed the calculation on the full theory side, now we can turn to effective theory
framework and identify all the operators involved in the transition b — s7y. At the leading
order in ay, the contributions from the operators O; and O3 — Og vanish as their correspond-
ing Wilson coefficients are zero. Due to another reason, the contribution of Oy identically
vanishes??. Moreover, a possible contribution from Og to b — sy can only come through
higher-order QCD corrections and so it is not relevant for our case. As a result, on the ef-
fective theory side we are solely left with the contribution of O7 to the matrix element of
b — s7v. Decomposing the o, F'* structure involved in Oz in terms of the commutator [;é, g]
and making use of the Dirac equation we arrive at the following amplitude on the effective
theory side

4iGF )\t 4iGFC7 )\t (&
V2 V2 o 1672

x u(ps)2 [R(¢(q)(mj +m2) — 2mypy.€(q)) + L (2myms¢(q) — 2ms pp.€(q))] u(py) -

A = Cr7(s7|O07|b) =

(55)

Hence, requiring that the amplitudes both in the full and effective theory are equal completes
our matching procedure and fixes the Wilson coefficient C7 to be

oz [—82% + 327 4+ 120 — 7+ (182% — 12z)In(x)
24 (z — 1)

7 (56)

19n order to arrive at this result, we exploited the unitarity of the CKM matrix to write |Ve, V| o~ —|Vis Vitl.
20Up to a constant factor, the O contribution to b — sy on the effective theory side corresponds to the
calculation of the diagram in the right frame of Fig. 5 by integrating out the W.
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At this stage, a final remark concerning the scale dependence of the Wilson coefficients is
worth mentioning. For arbitrary order m in as the Wilson coefficients obtained from matching
posses a structure of the form:

Cnlt) = e [“S“‘”n (Lﬂmﬂ%’as(u) [%(unn (L)]m

mw mw

+ a? a0 (ﬁ)]m ot o), (57)

where g is the renormalization scale and ¢!, are some constant factors. Hence, it turns
out that the Wilson coefficients obtained after a matching calculation forces us to choose
the scale u = puw =~ mpy in order to respect the perturbation theory. On the other side,
the matrix elements of the effective operators depend on the external momenta and the
small mass scales and thus they posses a dependence proportional to In (u/mp) which on
contrary requires the scale to be p = uy =~ my. This situation at the first glance seem to be
puzzling. However, the remedy for this puzzle is provided by the so-called remormalization
group equation (RGE) technique by which the Wilson coefficients are evolved from the high
(matching scale) down to the low scale. At the leading-order, RGE does the job of summing
all the terms of the form [as(up) In (pp/mw)]™, at the next-to-leading order it sums the terms
ovs () [ovs (i) In (1 /myy )™ ! and it goes in this way for higher orders such that the large
logarithms are under control. A thorough discussion of RGE procedure and its applications
can be found e.g. in [39, 47].

4 Calculation techniques

In elementary particle physics, while performing perturbative calculations one deals with
solving loop-integrals. A particular Feynman diagram creates its own Feynman integrals®!
and depending on the complexity of the integrand computations of such integrals might
become quite cumbersome. Especially, when computing multi-loop Feynman diagram(s) for
a particular process with several kinematical variables, where the number of scalar integrals
can be hundreds or more, it might turn out to be that the traditional techniques of using
Feynman parametrization or Mellin-Barnes representations might not be fully competent to
obtain analytic results. In order to handle them, the optimal strategy is first to derive some
recurrence relations between the particular set of Feynman integrals using integration by
parts (IBP) relations leading to master integrals (MI) which then can be tackled making
use of differential equation technique. In Part II of this thesis, we encountered numerous
challenging loop and phase-space integrals which we computed by applying the techniques
mentioned above together with other known methods. In the following sections we discuss
these methods briefly and illustrate how to use them by giving basic examples.

4.1 Integration by parts relations

The particular loop integrals which we encountered in Part II through the loop-diagrams
under consideration are tackled using integration-by-parts?? (IBPs) identities [49, 50]. The

21Here, Feynman integral is meant to refer to integrals over loop momenta and not a path integral.
22The meaning of IBP identities in this case is different than the usual meaning known from integral calculus.
In the case of Feynman integrals, it means only that the integral of a total divergence is zero, which means
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Figure 6: Steps to be followed to obtain the MIs of a particular loop diagram.

large set of complicated scalar loop integrals featuring the the same propagators of different
powers are reduced to the so-called master integrals > (Mls). Another alternative way for
computing loop-integrals is exploiting the fact that any scalar integral is invariant under
Lorenz transformations [51]. This method, however, is not effective when considering multi-
loop integrals.

The central idea of IBP identities is based on setting to zero any loop integrals of a total
divergence within dimensional regularization. By doing so, one can correlate the Feynman
integrals of some propagators to others which have the same structure of propagators, but
raised to different powers. This procedure continues until one express a given Feynman
integral as a linear combination of some master integrals with much simplified structure.
However, when the number and complexity of the loop-integrals gets high, it becomes quite
hard to obtain such relations manually. Instead, one makes use of some computer algorithms
which does this job systematically. The Laporta algorithm [52], described by Laporta in
2000, is such an algorithm which is used to express complicated Feynman integrals as linear
combinations of simpler MlIs using IBPs identities. There are some implementations of this
identities in a computer algebra system e.g. the MAPLE implementation AIR [53] and the
MATHEMATICA implementation called FIRE [54]. In Part II of this thesis, we checked the
correctness of our results by making use of both implementations. The strategy for obtaining
the MIs out of a particular loop-diagram is sketched in Fig. 6.

To illustrate how to make use of IBP relations let us employ a simple example by considering
the one-loop scalar self energy diagram shown in Fig. 7 [48]. Fig. 7 with appropriate ”insertions
of dots” in the loop lines, gives rise to class of two-point Feynman integrals with scalar
propagators of the following form

dl 1
Fen) = [ o e o .
x(v1,v2)

Let us assume for simplicity mo < m; = m such that we neglect the mass of the lighter line.

that one neglects the surface terms. Thus, though it is commonly accepted in this way in physics, the name
can be misleading [48].

ZMIs refer to the integrals of a simplified structure typically with low powers of propagators. Within a
given family (topology) of integrals, Mls are those which cannot be reduced any further.
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Figure 7: Scalar one-loop self energy diagram.

Setting to zero the dimensionally regularized integrals of the form

d
/ %a% (1, v2)] = 0,

with 7 = £,p ?*, one arrives at the following two IBP identities:

(d—vy —211)F(11,12) + Vg(p2 — mQ)F(Vl, vy +1)
—2m?u F(vy + 1,19) — o F(vy — 1L,us +1) =0, (59)

(vo —11)F(v1,12) + 1/2(]?2 — mQ)F(l/l, vo+1)— 1/1(p2 + mQ)F(l/l +1,19)
—VQF(Vl —1,1/2—|—1)—|—I/1F(1/1 + 1,0, —1) =0. (60)

In the relations above the space-time dimension d arises due to the derivative acting on n =1
and the invariant quantities m? and p? originate after expressing the possible scalar products
in terms of the two propagators. Note that alternative adjustment of Eq. (59) and Eq. (60)
allows to obtain further relations among integrals with propagators of arbitrary powers of 1
and vo. Subtracting Eq. (60) from Eq. (59) gives

(d—v1 —2u9)F(v1,19) + 1/1(p2 — mQ)F(ul +1,v) =1 F(ry + 1,1, — 1) =0. (61)

For the particular choice of v,v9 = 1, which is corresponding to the Feynman integral
originating from Fig. 7 without extra dots, Eq. (61) gives (d = 4 — 2¢)

1

s [(1-20F(11) - F2.0)]. (62)

F(2,1) =
The integrals with 5 < 0 are simpler objects and can be computed directly in terms of the
[-functions. In fact, setting v; = 1,9 = 0 in Eq. (59) helps us to express F(2,0) in terms of
the simpler integral F(1,0) as?®

1—¢

F(2,0) = —

F(1,0), (63)

24For more general situations involving e.g. L-loops and N-external legs, one has N + L — 1 choices for n*
which yield (N + L — 1)L possible identities [11].

#n writing Eq. (63), we made use of the fact that within dimensional regularization any integral F(v1, ve)
(for mo = 0) with 11 < 0 will vanish since it will correspond to a massless tadpole.
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which further simplifies Eq. (62) to give

1—¢

F(2,1) = -

% (1—2e)F(1,1) F(1,0)| . (64)

m? —p
As a result, we see that following this way it is possible to express any integral of a given
structure as a linear combination of some master integrals and in our particular example the

only-non vanishing MIs are F'(1,1) and F'(1,0) appearing on the RHS of Eq. (64).

4.2 Method of differential equations

The differential equations (DE) technique to evaluate MIs by making use of IBP relations was
first proposed in [55] and later developed in [56]. The idea of this method uses the fact that
taking some derivative of a particular MI with respect to its scales (invariants of the kine-
matics, masses) will generate a linear combination of integrals of the same family but with
different powers v; of the denominators. As a next step, the resulting new integrals can be
decomposed to Mls applying IBP identities. Repeating this procedure to some or all master
integrals then generates a system of linear first-order differential equations satisfied by these
MIs which can be evaluated by using convenient boundary conditions (see e.g. Ref. [48] for
more detail). In some cases it can be more difficult to solve the DEs rather than computing
the given MI directly, nevertheless the DEs give useful information about the analytic features
or the asymptotic behavior of the integral [11]. Solving DEs requires fixing the integration
constants which can be achieved by computing the integral for particular limit of its kinemat-
ical scales (which is often much easier than solving the original integral directly) and then
confronting this result with the one obtained from DEs for the same limit.

To describe the basic recipes of this technique let us again follow our favorite example from
the previous subsection and try to compute the MI F'(1,1) in Eq. (64). Taking the derivative
of F(1,1) with respect to m? = # gives nothing but F(2,1) which we already know how to
relate it to the MIs through Eq. (64). Doing so, we arrive at the following differential equation
for F(1,1)

dF(1,1) 1 1—ce¢

el s [(1_26)F(1,1)_ - F(l,O)], (65)

where F'(1,0) is a simple one-scale master integral which can easily be evaluated in terms of
I’-functions to give

F(1,0) = —Wr (1 — g) (B2t

Defining F(1,1) = W(f)_e y(t) we obtain

, td-g-—e®  T()

- ' i

Y (66)

which is a first-order linear inhomogeneous DE for y, the right hand side being the inho-
mogeneity, and can be solved by the variation of constant technique. The corresponding
homogenous solution of Eq. (66) (i.e., with zero at the right hand side) reads

A~

Yhom (£) = C (£ = p*) 172 (0)°. (67)



32  Part I: Preliminaries

Then, varying the constant C' to be dependent on ¢ as C' — Cp(f) we assume a particular
solution of the form ypart(t) = Cp(#) (t — p?)172¢()¢. Plugging this to the full DE in Eq. (66)
generates a linear DE for C),(f) as

Cp(t) = —17(t — p*) 21> T(e), (68)

and for which the solution reads

x—E

&
Cp(t) = —T'(e) /0 d:vi(x —
Combining the homogenous and particular solutions we arrive at the general solution for
F(1,1) to be

(69)

i —€

F(1,1):7d/2(£—p2)1*26 [—F(e)/o dac(x_xi%—C : (70)

(4m) PP
where C' is the integration constant which can be fixed by evaluating the integral in the limit
t — 0. In this asymptotic limit it is easier to calculate the behavior of F(1,1) and equating
this result with Eq. (70) for £ — 0 (notice that the first term vanishes) fixes the constant C
to be

L(e)L(1—e)?
I'(2 = 2¢)(=p?) =<

Thus, we conclude that the solution for the integral F(1,1) is?6

C =

7 - ¢ T € L(e)I'(1 —¢)?
F(1,1) = W (f—pH)'* [—F(f) /0 da (z — p?)2—2¢ + (2 (_)26()(_102))16 - (1)

Notice that in this particular example we solved the DE in an exact way with respect to
€, however depending on the complexity of the DEs, solutions order by order in € can be
preferable. In some cases an integral is evaluated as an expansion in a certain parameter, in
such a case one has to be aware of the fact that this parameter can also be present in the
denominator of the master integrals’ coefficients. For example, if there is a factor of 1/e in
front of a master integral, this would tell us to evaluate this integral up to O(e) in order to
obtain the correct finite piece.

Remark on computational tools: In this thesis, most of the calculations (mainly
the ones in Part II) are performed using the program MATHEMATICA [57]. In the intermediate
steps of the calculations two custom software packages are employed. In order to tackle
the complicated Dirac algebra the MATHEMATICA package Fermions.m [43], originally written
by Patric Liniger, is used. At another stage, the reduction to master integrals was made
possible using the MAPLE implementation AIR [53] by C. Anastasiou and A. Lazopoulos and
the MATHEMATICA implementation FIRE [54] by A. V. Smirnov. Lastly, all Feynman diagrams
are generated using the Java program Jaxodraw written by D. Binosi and L. Theussl [58].

Z6Note that in order to maintain the correct dimensionality of the result when going from 4 to d space-time
dimensions one has to introduce a renormalization scale. For example in the so-called M .S scheme, this would
simply correspond multiplying the result in Eq. (71) by a factor > = u?¢(e?® /4m)°.
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Abstract

We calculate the set of O(«;) corrections to the double differential decay width
dl'77/(dsy dsa) for the process B — X yv originating from diagrams involving the elec-
tromagnetic dipole operator O;. The kinematical variables s; and ss are defined as
s; = (py— gi)?/m?, where py, g1, g2 are the momenta of b-quark and two photons. While
the (renormalized) virtual corrections are worked exactly for a certain range of s; and
S92, we retain in the gluon bremsstrahlung process only the leading power w.r.t. the
(normalized) hadronic mass s3 = (pp, — q1 — g2)%/m} in the underlying triple differential
decay width dl'77/(ds1dsadss). The double differential decay width, based on this ap-
proximation is free of infrared- and collinear singularities when combining virtual- and
bremsstrahlung corrections. The corresponding results are obtained analytically. When
retaining all powers in s3, the sum of virtual- and bremstrahlung corrections contains
uncanceled 1/e singularities (which are due to collinear photon emission from the s-quark)
and other concepts, which go beyond perturbation theory, like parton fragmentation func-
tions of a quark or a gluon into a photon, are needed which is beyond the scope of our

paper.

1 Introduction

Inclusive rare B-meson decays are known to be a unique source of indirect information about
physics at scales of several hundred GeV. In the Standard Model (SM) all these processes
proceed through loop diagrams and thus are relatively suppressed. In the extensions of the
SM the contributions stemming from the diagrams with “new” particles in the loops can be
comparable or even larger than the contribution from the SM. Thus getting experimental
information on rare decays puts strong constraints on the extensions of the SM or can even
lead to a disagreement with the SM predictions, providing evidence for some “new physics”.

To make a rigorous comparison between experiment and theory, precise SM calculations
for the (differential) decay rates are mandatory. While the branching ratios for B — Xy
[1] and B — X/*¢~ are known today even to next-to-next-to-leading logarithmic (NNLL)
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precision (for reviews, see [2, 3]), other branching ratios, like the one for B — X,y discussed
in this paper, are only known to leading logarithmic (LL) precision in the SM [4, 5, 6, 7]. In
contrast to B — X,v, the current-current operator Oy has a non-vanishing matrix element
for b — sy at order a? precision, leading to an interesting interference pattern with the con-
tributions associated with the electromagnetic dipole operator O7 already at LL precision. As
a consequence, potential new physics should be clearly visible not only in the total branching
ratio, but also in the differential distributions.

As the process B — X7y is expected to be measured at the planned Super B-factories in
Japan and Italy, it is necessary to calculate the differential distributions to NLL precision in
the SM, in order to fully exploit its potential concerning new physics. The starting point of
our calculation is the effective Hamiltonian, obtained by integrating out the heavy particles
in the SM, leading to

8
Hepf = _4@75 VtZthZCz‘(M)Oi(M), (1)

i=1

where we use the operator basis introduced in [8]:

O1 = (5pyuT%cr) (epy"Tabr) Oy = (Spyucr) (ELy*br),

0: = (s17bu) E,#0). 01 = (517 T"b1) 5T, ®
Os = (St br) 200" "), O = (51771 0r) 224 (077" Taq)

Or = 5z mu(p) (5L0"bR) Fl O = &5 mp(p) (SLotTg) Gy, -

The symbols 7% (a = 1,8) denote the SU(3) color generators; gs and e, the strong and
electromagnetic coupling constants. In eq. (2), mp(u) is the running b-quark mass in the
MS-scheme at the renormalization scale j. As we are not interested in CP-violation effects in
the present paper, we made use of the approximation V,, V%, < Vi V5 when writing eq. (1).
Furthermore, we also put mg = 0.

While the Wilson coefficients C;(u) appearing in eq. (1) are known to sufficient precision
at the low scale i ~ my, since a long time (see e.g. the reviews [2, 3] and references therein), the
matrix elements (syv|0;|b) and (sy7v g|O;|b), which in a NLL calculation are needed to order
g2 and g, respectively, are not known yet. To calculate the (O;, Oj )-interference contributions
for the differential distributions at order a; is in many respects of similar complexity as the
calculation of the photon energy spectrum in B — Xy at order a2 needed for the NNLL
computation. There, the individual interference contributions, which all involve extensive
calculations, were published in separate papers, sometimes even by two independent groups
(see e.g. [9] and [10]). It therefore cannot be expected that the NLL results for the differential
distributions related to B — X,y are given in a single paper. As a first step in this NLL
enterprise, we derive in the present paper the O(ay) corrections to the (Or, Oy)-interference
contribution to the double differential decay width dI'/(dsidss) at the partonic level. The
variables s1 and s are defined as s; = (pb—qi)2 / mg, where p, and ¢; denote the four-momenta
of the b-quark and the two photons, respectively.

At order ay there are contributions to dI'77/(ds1dse) with three particles (s-quark and
two photons) and four particles (s-quark, two photons and a gluon) in the final state. These
contributions correspond to specific cuts of the b-quarks self-energy at order a x o, involving
twice the operator O7. As there are additional cuts, which contain for example only one
photon, our observable cannot be obtained using the optical theorem, i.e., by taking the



2 Leading order result 41

absorptive part of the b-quark self-energy at three-loop. We therefore calculate the mentioned
contributions with three and four particles in the final state individually.

As discussed in section 2, we work out the QCD corrections to the double differential
decay width in the kinematical range

0<s1 <1l 53 0<s9o<1l—357.

Concerning the virtual corrections, all singularities (after ultra-violet renormalization) are
due to soft gluon exchanges and/or collinear gluon exchanges involving the s-quark. Con-
cerning the bremsstrahlung corrections (restricted to the same range of s; and s9), there are
in addition kinematical situations where collinear photons are emitted from the s-quark.
The corresponding singularities are not canceled when combined with the virtual corrections,
as discussed in detail in section 4. We found, however, that there are no singularities associ-
ated with collinear photon emission in the double differential decay width when only retaining
the leading power w.r.t to the (normalized) hadronic mass s3 = (p, — q1 — ¢q2)?/m? in the
underlying triple differential distribution dI'77/(dsidsadss). Our results of this paper are ob-
tained within this “approximation”. When going beyond, other concepts which go beyond
perturbation theory, like parton fragmentation functions of a quark or a gluon into a photon,
are needed [11].

Before moving to the detailed organization of our paper, we should mention that the
inclusive double radiative process B — X, has also been explored in several extensions of
the SM [5, 7, 12]. Also the corresponding exclusive modes, Bs — vy and B — K~~, have been
examined before, both in the SM [6, 13, 14, 15, 16, 17, 18, 19, 20, 21] and in its extensions
[12, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30]. We should add that the long-distance resonant
effects were also discussed in the literature (see e.g. [6] and the references therein). Finally,
the effects of photon emission from the spectator quark in the B-meson were discussed in
[13, 17, 31].

The remainder of this paper is organized as follows. In section 2 we work out the double
differential distribution dI'77/(ds1ds2) in leading order, i.e., without taking into account QCD
corrections to the matrix element (sy7y|O7|b). We retain, however, terms up to order €', with
¢ being the dimensional regulator (d = 4 — 2¢). Section 3 is devoted to the calculation of
the virtual corrections of order a; to the double differential decay width. In section 4 the
corresponding gluon bremsstrahlung corrections to the double differential width are worked
out in the approximation where only the leading power w.r.t. the (normalized) hadronic mass
sg is retained at the level of the triple differential decay width dI'77/(ds1dsedss). In section 5
virtual- and bremsstrahlung corrections are combined and the result for the double differential
decay width, which is free of infrared- and collinear singularities, is given in analytic form.
In section 6 we illustrate the numerical impact of the NLL corrections and in section 7 we
present the technical details of our calculations. The paper ends with a short summary in
section 8.

2 Leading order result

In this section we discuss the double differential decay width dI'77/(ds1dss) at lowest order
in QCD, i.e. a’. The dimensionless variables s; and sy are defined everywhere in this paper
as
— 2 _ 2
(oo —q1)* . (Po — a2) . 3)

81:7 2 =
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At lowest order the double differential decay width is based on the diagrams shown in Fig. 1.
The variables s; and sy form a complete set of kinematically independent variables for the

b O, S S b

<E a,

Figure 1: On the first line the diagrams defining the tree-level amplitude for b — sy associ-
ated with O7 are shown. The four-momenta of the b-quark, the s-quarks and the two photons
are denoted by pp, ps, g1 and g9, respectively. On the second line the contribution to the
decay width corresponding to the interference of first and second diagram is shown.

three-body decay b — sv~v. Their kinematical range is as follows:
0<s1<1 ;3 0<s9<1—5;.

The energies F1 and FEs in the rest-frame of the b-quark of the two photons are related to s;
and sy in a simple way: s; = 1 — 2 E;/my;. As the energies E; of the photons have to be away
from zero in order to be observed, the values of s; and sy can be considered to be smaller
than one. By additionally requiring s; and sy to be larger than zero, we exclude collinear
photon emission from the s-quark, because 2psq1 = (ps + 1) = (pp — q2)* = samj > 0 and
205q2 = (ps + @) = (pp — q1)? = 51 mg > 0. It is also easy to implement a lower cut on the
invariant mass squared s of the of the two photons by observing that s = (q14¢2)? = 1—s1—s2.
To parametrize all the mentioned conditions in terms of one parameter ¢ (with ¢ > 0), one
can proceed as suggested in [5]:

s1>c, sy>c, l—s1—8>c. (4)

Applying such cuts, the relevant phase-space region in the (s1,sz2)-plane is shown by the
shaded area in Fig. 2. Our aim in this paper is to work out the double differential decay
width in this restricted area of the s; and the sy variable also when discussing the gluon
bremsstrahlung corrections'. In this restricted region of the phase-space, the tree-level am-
plitude is free of infrared- and collinear singularities. To exhibit the singularity structure of
the virtual corrections discussed in the next section in a transparent way, it is useful to give
the leading-order spectrum in d = 4 — 2¢ dimensions. We obtain

d _ 5 ‘
ar0 a2 m(u) md |Crag (1) G2 [V Vs 2 @3 <i> ,

dsidsy 1024 75 my (5)

'In this case, the normalized invariant mass squared s of the two photons reads s = 1 — s; — s2 + s3, where
s3 is the normalized hadronic mass squared. The condition 1 — s; — s2 > ¢ then still eliminates two-photon
configurations with small invariant mass.
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52

1 s

Figure 2: The relevant phase-space region for (si,s2) used in this paper is shown by the
shaded area.

with

[ro+e(ri+ra+r3+ 1] (1— 51— s9) (6)
(1—s1)* 51 (1= 52)% 50 .

In 7 we retained terms of order €', while discarding terms of higher order. The individual
pieces 7o, ...,r4 read

ro = —48s3 51 + 963251 565251 + 831 + 965231 1923231 + 1123251 — 565251 +
1125231 — 96s951 + 8s1 + 882 + 859

1 = —165353 + 165955 — 165557 4 485357 — 325957 + 1657 + 16555; —
323231 — 1659581 + 1632

Ty = (485231 965253 + 565955 — 857 — 965557 + 1925557 —
1123251 + 565251 — 1123251 + 965951 — 8s1 — 832 — 852) log (s1)

ry = T2(81H82)

Ty = [483231 9652 51 + 56325:1’ — 85{’ — 963%’5% + 1923%5% — 112525% + 563%’51—
1125231 + 965951 — 851 — 85% — 832} log (1 — 51 — s9)

In eq. (5) the symbols my (1) and my denote the mass of the b-quark in the MS-scheme and
in the on-shell scheme, respectively.

In d = 4 dimensions, the leading-order spectrum (in our restricted phase-space) is obtained
by simply putting e to zero, obtaining

drl)  a2m2(u)m} |Crepr ()2 G2 VR VA2 Q3 (1—s1 — s9)

. 7
dsq dss 1024 75 (1 —51)%s1(1 — s9)2s9 "0 (™)
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3 Virtual corrections

We now turn to the calculation of the virtual QCD corrections, i.e. to the contributions of
order ag with three particles in the final state. The diagrams defining the (unrenormalized)
virtual corrections at the amplitude level are shown on the first four lines of Fig. 3. As
the diagrams with a self-energy insertion on the external b- and s-quark legs are taken into
account in the renormalization process, these diagrams are not shown in Fig. 3. In order to
get the (unrenormalized) virtual corrections dI'?2/(dsidsz) of order ay to the decay width,
we have to work out the interference of the diagrams on the first four lines in Fig. 3 with the
leading order diagrams in Fig. 1. One of these interference contributions is shown on the last
line in Fig. 3. To illustrate the calculational procedure for getting the virtual corrections to
the decay width, we describe in section 7.1 the relevant steps for the particular interference
shown in Fig. 3.

b é o, O s b 0, © Q
qé q, q2§ q, q1§ ng q2§ qlg

q§ q

\ZE
LO
\ZE

i
o
N

1 2 2 1 1 2

Figure 3: On the first four lines the diagrams defining the one-loop amplitude for b — sy~
associated with O7 are shown. Diagrams with self-energy insertions on the external quark-
legs are not shown. On the last line the contribution to the decay width corresponding to
the interference of the first diagram on the second line with the second (tree-level) diagram
in Fig. 1 is shown.

In addition, we have to work out the counterterm contributions to the decay width. They
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can be split into two parts, according to

ars, ™ arg” 5
d81d82 N d81d82 dSldSQ '

Part (A) involves the LSZ factors /Z9° and |/ Z95 for the b- and s-quark field, as well as

the self-renormalization constant Z%is of the operator 07 and ZMTS renormalizing the factor
myp (1) present in the operator Q7. The explicit results for these Z-factors are given to relevant
precision in Appendix C. For part (A) we get

dr%’(A) 0s 0s MS MS drg(;’d)
— = |5z 0z 2807 2807, 9
d51d82 |: 2b + 2s + mp + 7 d51d82 ? ( )

where dfg(;’d) /(dsidss) is the leading order double differential decay width in d-dimensions,

as given in eq. (5).

b b, b©O s
om émb
a, L

:

Figure 4: Counterterm diagrams with a dm; insertion, see text.

q, a,

The counterterms defining part (B) are due to the insertion of —idmybb in the internal
b-quark line in the leading order diagrams as indicated in Fig. 4, where

Smp = (Z93 — 1) my,.

More precisely, Part (B) consists of the interference of the diagrams in Fig. 4 with the leading
order diagrams in Fig. 1.

By adding dT22*/(ds1dsy) and dI'$,/ (dsidsz), we get the result for the renormalized
virtual corrections to the spectrum, df%)’vm /(dsy dsg). It is useful to decompose this result
into two pieces,

(1),virt (La)virt (1,b),virt
dr77 vr _ dr77a vr dr77 vir

= 10
d81 dSQ d81 dSQ d81 dSQ ( )
The infrared- and collinear singularities are completely contained in df%’a)’virt /(ds1 dsg). Ex-
plicitly, we obtain
dl’%’a)’vm _as 2 N 4log(s1 +s2) =5 [ 2 dl“g(;’d) (1)
d81 dSQ N 47 r 62 € myg d81 dSQ

where dfg(;’d)/(dsl dss) is understood to be taken exactly as given in egs. (5) and (6), i.e., by
including the terms of order ¢! in r. From the explicit expression dI‘(717’a)’mrt /(dsy dsg) we see
that the singularity structure consists of a simple singular factor multiplying the corresponding

tree-level decay width in d-dimensions. We stress that singularities (represented by 1/e? and
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1/e poles) are entirely due to soft- and/or collinear gluon exchange. The infrared finite piece
dP%’b)’mrt/(dsl dsy) can be written as

1,b),vi - *
AUy o mi () mi |Creps (W) G Va V2 Q%

ds;dsy 1024 75
20
O o (zArol=sizse) 0 izt Y 12)
47 (1 —81)2 S1 (1—82)2 S9 my 3(1—81)3 S1 (1 —82)3 S9
where the individual quantites vy, ..., v9q are relegated to Appendix A.

4 Bremsstrahlung corrections

We now turn to the calculation of the bremsstrahlung QCD corrections, i.e. to the contribu-
tions of order ag with four particles in the final state. Before going into details, we mention
that the kinematical range of the variables s; and sy defined in eq. (3) is given in this case
by 0 < s; <1;0 < sy <1. Nevertheless, we consider in this paper only the range which is
also accessible to the three-body decay b — sy7v, i.e.,, 0 < s1 <1;0 < s9 <1— 57 or, more
precisely, by its restricted version specified in eq. (4).

The diagrams defining the bremsstrahlung corrections at the amplitude level are shown in
the first line of Fig. 5. The amplitude squared, needed to get the (double differential) decay

(®)

1 0, 2 3 4 9 10 11 O, 12

o) o) o,
b % S b % S p % S b s
a, a, q, a, q, q, a, q,

Figure 5: On the first line the diagrams defining the gluon-bremsstrahlung corrections to b —
sy are shown at the amplitude level. The crosses in the graphs stand for the possible emission
places of the gluon. On the second line the contribution to the decay width corresponding to
the interference of diagram 1 with diagram 6 is illustrated.

width, can be written as a sum of interferences of the different diagrams on the first line in Fig.
5. One such interference is shown on the second line of the same figure. The four particle final
state is described by five independent kinematical variables. In a first attempt we worked out
the decay width by keeping s; and so differential and integrating over the three remaining
variables. Proceeding in this way, we found that the infrared- and collinear singularities in
the bremsstrahlung spectrum do not cancel when adding the virtual corrections. The sum



5 Final result for the decay width at order cg 47

still contains 1/e-poles, but no 1/e?-poles. While, as already mentioned in section 3, the only
source of the singularities in the virtual corrections in our restricted range of s; and so are
due to soft gluon-emission and/or collinear emission of gluons from the s-quark, we found
after analyzing the bremsstrahlung kinematics more carefully that there are situations where
one of the photons can become collinear with the s-quark. This is the reason why there
is no cancellation of singularities when combining virtual- and bremsstrahlung corrections.
Realizing that for (formally) zero hadronic mass of the (s, g)-system collinear photon emission
is kinematically impossible, led us to the idea that we should first look at the triple differential
decay width dl'77/(dsidsadss), where s3 = (ps + pg)%/m3 is the normalized hadronic mass
squared. Our conjecture was that the double differential decay width, based on the triple
differential decay width in which only the leading power terms w.r.t. s3 are retained, should
lead to a finite result when combined with the virtual corrections.

We therefore worked out the leading power of this quantity w.r.t ss, denoting it by
dI’If;L dingpower /(751 dsydss). The leading power, which is of order 1/s3 (modified by epsilon-
tic dimensional regulators), is supposed to be a good approximation for low values of the
hadronic mass. An approximation to the double-differential decay width dl’%)’brems /(ds1ds2)
due to gluon bremsstrahlung corrections is then obtained by integrating
dI’I;?ding POWEY /(dsydsadss) over sz, which runs in the range s3 € [0, s - s2]. The approximation
is obviously accurate for small values of s; - s9. As s1 - s9 is at most 1/4, the approximation is
expected not to be bad in the full region of s; and s considered in this paper. The technical
details of the calculation of the leading power w.r.t. s3 in the triple differential decay width
are illustrated in section 7.2 for the interference of diagram 1 with diagram 6, as shown in
the second line of Fig. 5.

Indeed, we find that the infrared- and collinear singularities cancel when combining the
approximated version of dF%)’brems /(ds1dss) with the virtual corrections dF(717)’Um /(ds1ds3).

When going beyond this approximation other concepts, which go beyond perturbation
theory, like parton fragmentation functions of a quark or a gluon into a photon, are needed
[11]. We do not enter this issue in this paper.

The result of combined virtual- and bremsstrahlung corrections is explicitly presented in
the next section.

5 Final result for the decay width at order o

The complete order ay correction to the double differential decay width dI'77/(dsy dssa) is
obtained by adding the renormalized virtual corrections from section 3 and the bremsstrahlung
corrections discussed in section 4. Explicitly we get

1 _ *
dryy o2 mi(u)m} [Creps(w)* GH IV Vit Q3

d81 dSQ 10247‘(‘5
o —47rg (1 —s1 — s9) 1
—C log — 13
dr T F (1= 51)%s1 (1 — 52)% 80 °8 my R (13)

where f is decomposed as
fe (1—s1—s2)(fi+fot fa+ fat+ fs+ fo+ fr+ fs+ fo+ fis + fi6 + fi7)
3(1—81)381 (1—82)3 59
Jio+ fi1 + fi2 + fi3 + fua
3(1—81)381 (1—82)3 S9

(14)
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The individual quantities f1,..., fi7 read

fi

f2

fs

Ja

Iz

Jo

f10

fi1

f1a

—16772333? — 1672 3231 + 4872 3231 + 4872 3231 4872 3231 4872 3231 +
167757 + 16755 — 16857 — 16853 + (1104 + 1607?) s3s7 +

(—3360 — 4007) s3] + (3432 + 3047%) s3s1 + (—1296 — 6472) sos1 +
(120 — 1672) s7 + (—3360 — 4007°) s3s3 + (10416 + 11527?) s3sF +
(—10872 — 10567%) s3s7 + (3984 + 3687%) sos% + (3432 + 30477) s3s7 +
(—10872 — 10567%) s3s7 + (12096 + 10887%) s3s7 +

(—4872 — 4487%) sp57 + (216 + 167%) 57 + (—1296 — 6477) s3s1 +

(3984 + 3687%) s3s1 + (—4872 — 44877) s5s1 + (2352 + 22477) sps1 +
(=168 — 1672) s1 + (120 — 167?) 53 + (216 + 1672) s3 + (—168 — 1677) s

48s9 (1 —s1) (1 — 32) (63231 631 — 113231 + 1581 + 35987 — 951 + 2)
log (1 — s1)

24 (1 — s1) (1 — s2) (305357 — 645357 + 41s9sT — 7s} — 60s3s7 + 1285357 —
82323% + 373‘331 - 783231 + 768981 — 7s1 — 73‘3 - 732) log (s1)

—48 (1 —s1) (1 — s9) (s%si‘ 5957 — Dsass 4+ 9s3s5 — 53231 + 53 + 95357 —
203%3% + 13323% — 53‘331 + 123231 — 125981 + 51 + 32 + 32) log? (s1)

96 (1 —s1) (1 — s2) (68251 125353 + Tsgs5 — 55 — 125557 + 245357 —
14525% + 75%51 — 145251 + 128981 — 81 — sg’ — 52) log (s1) log (s2)

—96 (1 —s1) (1 —s2) (68281 125353 4 TsgsS — 53 — 125557 + 245357 —
14525% + 75%51 — 145251 + 128981 — 81 — s% — 52) log (s1 + s2)

96 (1 —s1) (1 — 52) % (987 — 87 + 25351 — bsas] + 3s] + sast — bsssi+
85957 — 255 — 5557 + 45357 — 4sgst + 57 — 4s3s) + 3595] — 51—
s5 + s2) log (1 — s1) log (51 + s2)

—96 (1 — s1) (1 — 52) (5357 — 8257 — 108357 + 195357 — 115287 + 257 —
115353 + 53s3s7 — TTs3s3 + 415957 — 255 + 215557 — 765557 + 945357 —
495952 + 257 — 115351 + 385551 — 465251 + 255051 — 251 + 59 — S5+
53— s2) log (s1) log (s1 + s2)

48 (1 — s1) (1 — s9) (s%s‘;’ — 5957 — 218357 + 403231 — 225957 + 357 —
215353 + 1065355 — 1533%3? + 795955 — 355 + 5557 + 405357 — 1535555+
1885251 — 955251 + 351 — 5251 — 225251 + 795251 — 955251 + 505251 —
351 + 355 — 355 + 352 — 3s2) log? (s1 + 2)



6 Some numerical illustrations 49

fis = 9651 (1 —s9)2 (52541l — 51 4 8255 — 45953 + 353 — 5s3s? + 8s957 — 255+

75%31 — 115981 + 51 — 25% + 559 — 1) Lig (s1)

fie = 96(1—s1) (1 — s9) (8357 — 25057 + s7 + 8shst — 17537 + 125957 —
33? + 3%3% — 173%’3% + 323%3% — 20323% — 23%31 + 123%31 — 203%31—1—

208951 — 281 + 53 — 355 — 289) Lia (1 — 51 — 82)

fs=fa(s1 ¢ s2)  fo=f3(s1¢>52)  fs= fa(s1 ¢ s2)
fi2 = fio(s1 +> s2) fiz = f11(s1 < s2) fir = fi5(s1 < s2)

The order oy correction df%)/ (ds1ds2) in Eq. (13) to the double differential decay width for
b — X477 is the main result of our paper.

6 Some numerical illustrations

In the previous sections we calculated the virtual- and bremsstrahlung QCD corrections which
were the missing ingredient in order to obtain the (O7, O7) contribution to the double differ-
ential decay width for B — Xy at NLL precision. The Wilson coefficient C7 .¢¢(u) at the
low scale (p ~ myp) which is needed up to order as, i.e.,

0 as(p)
Crerr(p) = C7 opp(p) + Z—W Crerr() (15)
is known for a long time (see ref. [8] and references therein). Numerical values for the input
parameters and for this Wilson coefficient at various values for the scale u, together with

the numerical values of ag(p), are given in Table 4 and Table 5, respectively. ~ The NLL

‘ Parameter ‘ Value ‘
my 4.8 GeV
my 175 GeV
mw 80.4 GeV
my 91.19 GeV
Gr 1.16637 x 107> GeV 2
Vi Vi 0.04
a! 137
as(Mz) 0.119

Table 4: Values of the relevant input parameters

prediction reads
dly;  dT\) . ary 16)
d81d82 N d81d82 d81d82

where the first- and second term of the r.h.s. are given in eqs. (7) and (13), respectively.
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‘ s (1) ‘ C%eff(ﬂ) ‘ C7leff(lu’) ‘

pw=mwy | 0.1213 | —0.1957 | —2.3835
w=2my | 0.1818 | —0.2796 | —0.1788
p=mp | 0.2175 | —0.3142 0.4728
w=mp/2 | 0.2714 | —0.3556 1.0794

Table 5: as(p) and the Wilson coefficient C7 ¢¢(u) at different values of the scale

To illustrate our results, we first rewrite the MS mass mp(p) in eq. (16) in terms of the
pole mass my, using the one-loop relation

(1) = my [1—%:) <8logmib+§>} .

We then insert C7cf¢(p) in the expanded form (15) and expand the resulting expression for
dU77/(ds1dss) w.r.t. ag, discarding terms of order a2. This defines the NLL result. The
corresponding LL result is obtained by also discarding the order a! term. In Fig. 6 the LL-
and the NLL- result is shown by the short-dashed- and the solid line, respectively.

In our procedure the NLL corrections have three sources: (a) a corrections to the Wilson
coefficient C7 c¢¢(1), (b) expressing my(p) in terms of the pole mass my, and (c) virtual- and
real- order ag corrections to the matrix elements. To illustrate the effect of source (c), which
is worked out for the first time in this paper, we show in Fig. 6 (by the long-dashed line) the
(partial) NLL result in which source (c) is switched off. We conclude that the effect (c) is
roughly of equal importance as the combined effects of (a) and (b).

For completeness we show in this figure (by the dash-dotted line) also the result when
QCD is completely switched off, which amounts to put g = my in the LL result.

From Fig. 6 we see that the NLL results are substantially smaller (typically by 50% or
slightly more) than those at LL precision, which is also the case when choosing other values
for ss.

In the numerical discussion above, we have systematically converted the running b-quark
mass my(p) in terms of the pole mass my. As perturbative expansions often behave better
when expressed in terms of the running mass, we also studied the results obtained when
systematically converting m;, in terms of my(p). After doing also this version, we observe the
following: Generally speaking, NLL corrections are not small for both cases, when taking into
account the full range of y, i.e., my/2 < 1 < 2my. More precisely, in the MS version they are
large for = my/2 and smaller for larger values of u, while in the pole mass version they are
large for all values of p.

We stress that the numerically important contributions involving the operator Oy are not
discussed in our paper. Therefore, the issue concerning the reduction of the p dependence
at NLL precision cannot be addressed at this level. Our main point in this section was to
illustrate that the NLL corrections to the process B — X,y are expected to be rather large.
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dr,,/(ds, ds,) x102 GeV
dr,,/(ds, ds,) x102 GeV

—_
—_

dr,,/(ds, ds,) x102 GeV

p—

Figure 6: Double differential decay width dI'77/(ds1dse) as a function of s; for sy fixed
at so = 0.2. The dash-dotted, the short-dashed and the solid line shows the result when
neglecting QCD-effects, the LL result and the NLL result, respectively. The long-dashed
line represents the (partial) NLL result in which the virtual- and bremsstrahlung corrections
worked out in this paper are switched off (see text for more details). In the frames 1), 2) and
3) the renormalization scale is chosen to be u = my/2, u = my and p = 2my, respectively.

7 Technical details about our calculations

We first describe the general setup of our calculations and then discuss in the subsections 7.1
and 7.2 the calculation of the virtual- and the bremsstrahlung corrections for the interference
diagrams shown in the last lines of Fig. 3 and Fig. 5, respectively.

The starting point is the general expression for the total decay width of the massive b quark
with momentum p; decaying into 3 < n < 4 massless final-state particles with momenta k;,

d?1k; =
| — (H/ o) 19E, ) (27)% 5@ <pb_2k:i> | M, |2

i=1
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1 . n—1
:2—mb(27r) <Zl;[1/

n—1 2 n—1
. (pb—zk@) e(pg—zk?) . an)
=1 =1

dj..
G ) e<k?>>

where the squared Feynman amplitude |M,|? is always understood to be summed over final
spin-, polarization- and color states, and averaged over the spin directions and colors of the
decaying b quark. It also includes a factor of 1/2 for the two identical particles in the final
state, i.e. the photons. Furthermore, d = 4 — 2¢ denotes the space-time dimension that we
use to regulate the ultraviolet, infrared and collinear singularities.

The double differential decay rate dI'77/(dsidsz) is obtained from eq. (17) by mul-
tiplying the integrand on the r.h.s. with the delta functions & (sy — (py — ¢1)?/m}) and
0 (52 — (pp — q2)2/mz) [32], where p, and ¢;, g2 denote the four momenta of the b quark
and the photons, respectively. For the bremsstrahlung corrections, as mentioned in sec-
tion 4, we need to consider also the triple differential decay width dI'77/(ds1dsadss), where
s3 = (pp — q1 — q2)* /m% is the normalized hadronic mass squared. The triple differential
decay width is obtained by multiplying the integrand with the additional delta-function
1) (33 —(pp —q1 — 2)%/ mg) Finally, the delta functions just mentioned and all of the delta
functions present in eq. (17) can be rewritten as differences of propagators as follows [33, 34],

1 1 1
6 (> —m?) = — — . 18
(¢° = m’) 2m'<q2—m2—z'0 q2—m2+z‘o> (18)

In this step the phase-space integrations are converted into loop integrations (which can
be combined with possible loop integrations already present in |M,|?). By subsequently
doing tensor reductions, the (differential) decay width can be written as a linear combination
of scalar integrals. The systematic Laporta algorithm [35], based on integration-by-part
techniques first proposed in [36, 37], can then be applied to reduce the scalar integrals to
a small number of simpler integrals, usually referred to as the master integrals (Mls). For
this reduction we used the AIR and FIRE implementations [38, 39] of the Laporta algorithm.
After the reduction process, it usually happens that some MIs contain propagators which were
introduced via (18) with zero or negative power. In this case the +i0 prescription becomes
irrelevant and as a consequence these Mls are zero. In the remaining MIs we convert the
propagators introduced via (18) back to delta-functions. Thus, we are left with phase-space
MIs (which can contain loop integrations as well). The final task is then to calculate these
MlIs, i.e. to perform possible loop integrations together with the phase-space integrations.

Very often we had to deal with MlIs which we were not able to evaluate by direct inte-
gration of their integral representation in terms of Feynman parameters and/or phase-space
parameters. A powerful tool to be used in these cases is the differential equation method
[33, 34, 40, 41]. The goal of this method is to employ the output of the reduction procedure
for a given topology to build differential equations which are satisfied by the MIs of that
topology. In our case, we consider differential equations w.r.t. s; and so and also w.r.t. s3
for case of bremsstrahlung corrections. With these methods we were able to obtain analytic
expressions for all master integrals appearing in the calculation of the various diagrams.
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7.1 Details about the calculation of virtual corrections

To illustrate our methods for the virtual corrections, we take as an example the interference
diagram shown on the last line of Figure 3. In this case we have five MIs. Four of them can
be solved by means of direct integration on Feynman parameters. To calculate the last one
(called Pj111), we solve the differential equations w.r.t. s; and sy and get the solution which
we denote as QQ1111. At this level Q1111 contains integration constants (which are not fixed
by the differential equations). To get the integration constants, we proceed in the following
way. Using Feynman parametrization for the loop integral, we write the MI P11 as

1
Pri11 =875 (1 — 51 — 82)_5/ 90(s1, 82, €, u,v,y) dudv dy, (19)
0

where u, v and y are Feynman parameters (all of them running from 0 to 1). The factor
5185 (1 — 51 — s2)~¢ is coming from the phase-space (see eq. (23) in Appendix B.1). One
then can put sy = 0 in go(s1, S2,€,u,v,y) and integrate on the Feynman parameters, which
defines the new function

1
a(s1,6) = / d0(s1,0, €, v, ) dudo dy . (20)
0

We managed to work out the leading term of the expansion of g;(s1,€) on s; around zero,
which is proportional to SIQ. From this, we immediately get the leading term of the expansion
of Pi111 on sg and s; (which is proportional to sg / s%) Comparing the result of this calculation
with the corresponding expansion of the solution Q1111 of the differential equations, we could
determine all integration constants.

7.2 Details about the calculation of bremsstrahlung corrections

To illustrate our methods for the bremsstrahlung corrections, we take as an example the
interference diagram shown on the last line of Figure 5. In this case we obtain three Mls,
denoted by Py, Pip and P;;. Writing the diagram as a linear combination of the MIs, we
see that the leading power (w.r.t. s3) of all three coefficients (in front of the MIs) is of the
order 1/s3. Keeping in mind that we are taking into account only terms proportional to the
leading power in s3 at the level of the triple differential decay width (as extensively discussed
in section 4), it is sufficient to work out the MIs to zero-th power in s3, including the epsilontic
regulator, i.e., s3 " (in our case only n = 1 and n = 2 occur).

The simplest MI, Py, which corresponds to the pure phase-space (see eq. (25) in Appendix
B.2), can be easily solved by means of direct integration. For Pjg the solution of the differential
equation w.r.t. s3 can be represented in the limit s3 — 0 in the form

Pig = ai(s1, 82,€) s3° + aa(s1, 52, €) 53¢, (21)

where the function aq(s, $2,¢€) is fully determined. To find the function as(s1, s2,€), we use
differential equations w.r.t. s; and s,. In this way, we could find as(s1, s2, €) up to integration
constants. To determine these constants, we managed to calculate the MI for specific values
of s1, s3 and s3 — 0. In the same way we also calculated the MI Pp;.
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8 Summary

In the present work we calculated the set of the O(as) corrections to the decay process
B — X,vyv originating from diagrams involving the electromagnetic dipole operator Q7. To
perform this calculation it is necessary to work out diagrams with three particles (s-quark and
two photons) and four particles (s-quark, two photons and a gluon) in the final state. From the
technical point of view, the calculation was made possible by the use of the Laporta Algorithm
to identify the needed Master Integrals and by applying the differential equation method to
solve the Master Integrals. When calculating the bremsstrahlung corrections, we take into
account only terms proportional to the leading power of the hadronic mass. We find that the
infrared and collinear singularities cancel when combining the above mentioned approximated
version of bremsstrahlung corrections with the virtual corrections. The numerical impact of
the NLL corrections is not small: for dI'77/(dsy dsy) the NLL results are approximately 50%
smaller than those at LL precision.
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A Explicit results for the functions v; defining the virtual cor-
rections

The functions v; appearing in eq. (12) read

vy = (1—s1—s9) (—167?25%5‘;’ — 16725555 4 487> 5251 + 48725557 — 48725957 —
4872551 + 1677 s] + 16775 + (2112 — 1047?) s3s] + (39272 — 6384) s3s7+
(6672 — 5327%) s%s‘f + (28877 — 2736) sas7 + (336 — 607%) i+

(39277 — 6384) s3 5231 + (19584 — 12247°) syt + (14527 — 20784) s3s7+
(7872 — 6007?) 5251 + (447 — 288) 57 + (6672 — 53277) s3s7+

(14527 — 20784) s3st + (23904 — 172877) s3s7 + (7407 — 10128) s9s57+
(336 — 2877) 51 (2887r — 2736) sys1 + (7872 — 60072) s3s1+

(7407* — 10128) s5s1 + (5376 — 3921%) sas1 + (2877 — 384) 51+

(

336 — 607%) s3 + (447% — 288) s + (336 — 2877) 55 + (2877 — 384) s9)

vy = —96(1 —s1)(1—s2) (1 —s1—s2) (38557 — 45357 + 5087 — Bsysi + Ts3s7—
25957 — 87 + 25351 — 35351 + 35281 — s3) log (s1)

vy = —24(1-— 51) (1 —s2) (1 — 81— 89) (25357 — 28057 — 4355 + 65357 —
35251 + 51 + 65251 165251 + 125251 — 35251 + 105251 — 125951+
s1 + 52 + 52) log? (s1)

vy = 48(1 —s1) (1 —s2) (1 — 51— 89) (63231 125253 + Ts9s5 — 53 — 125357+
245357 — 148957 + Ts3s) — 145351 + 12595) — 51 — 55 — s2) log (s1) log (s2)

v = 48(1—51) (1 —s2) (1 — 81— s9) (65357 — 125387 + Tsast — s7 — 125357+
243231 143231 + 73231 — 143231 4+ 128987 — 81 — s%’ — 32) log (s1) x
log (1 — 81 — 82)

v = —96(1—51)2(1— s9)2%s9 (31 + 28957 — 257 4 5357 — 4syst + 57 — 25551+
38987 — 281 + S% + 1) log (s1) log (s1 + s2)

vy = 48(1 —51) (s9—1)%s5 (1 — 51 — s9) (6525‘% — 655 — 115957 + 1557+
3s2s1 —9s1 + 2)log (1 — s1)

vg = 96(1—s1)(s2— 1) (323? — 57 4 25351 — Bsos] 4 3s] + 553 — 53231+
85953 — 255 — 5557 + 45357 — 45957 + 57 — 4sas) + 35951 — 51 — 53 + 52) X
log (1 — s1)log (s1 + s2)
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vg = 48(1—s1)(1— 82) (s%s? 5251 95251 + 165357 — 88281 + 57 — 95353+
465553 — 6753 81 + 358955 — 55 4 5557 + 165557 — 675557 + 845557 —
435957 + 57 — 5551 — 85351 + 355551 — 435551 + 225051 — 51 + 55 — S5+

5% — 82) log? (s1+ s2)

vl = —96(1—s1) (1 —s) (L —s1 — s9) (s5s7 — sas] + shs] — Bshs] + 25957 —

57 — 5351 + 25351 + Sp51 — 5%) log (1 — 51 — s2)

vir = 24(1—s1) (1 —s2) (1 — 51— s2) (65555 — 125357 + Tsost — s7 — 125357+
243%3% — 14323% + 73%31 — 143%31 + 128981 — 81 — sg — 82) X
log2 (1 — S1 — 82)

vig = 9651 (1 —s9)2 (1 — 81 — 9) (525‘11 5T+ 5353 — 4sgs3 + 353 — 5s3s?+
85251 281 + 78251 — 115981 + 51 — 282 + 559 — 1) Lis (s1)

viz = 96(1—s1)(1— 82) (1 — 51 — 52) (s%sl 25957 + 57 + 85553 — 175353+
128251 351 + 5251 1753 51 + 325251 205251 — 25251 + 125281—
205251 + 208951 — 281 + 52 — 352 — 252) Lig (1 — 81 — s2)

V14 = 1)2(81 — 82) V1 = ?)3(81 < 82) V1 = ?)5(81 < 82)
vi7 = v6(s1 ¢ S2) v1g = v7(s1 > S2) v19 = 718(81 < 82) v20 = v12(81 > S2)
B Relevant phase-space formulas

B.1 Double differential phase-space for the 3-particle final state

The kinematical variables s; and s9 are defined as

_ 2 _ 2
o — (po 2<J1) = (py 2(]2) 7 (22)
my my

where p, and ¢; denote the four-momenta of the b-quark and the photons, respectively. The
kinematics of the process b — sv+ is fully described by s; and so. The formula for double
differential decay width is therefore free of additional phase-space integration variables. It
reads
dly3 1 (4m) =32
d81 dSQ N 4 P[Q — 26] mb

5785 (1 — 81 — 89) "¢ |M3)?. (23)
The variables s; and s9 vary in the range

Ogslgl; OSSQSl—Sl.
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B.2 Triple differential phase-space for the 4-particle final state

The kinematical variables s1, so and s3 are defined as

2 2 2
Dy — q1 Db — G2 ps + k
S1 = ( D) ) 5 S92 = ( ) ) 5 53 = ( d D) ) (24)
m? m? m?

where py, ps, k and g; denote the four-momenta of the b-quark, the s-quark, the gluon and the
photons, respectively. The kinematics is fully described in terms of five phase-space variables
x1, T2, w3, v4 and x5 as given explicitly in egs. (3.6), (3.9) and (3.10) in ref. [42]. By
identifying k1, ko, ks and k4 given there with the four-momenta of the two photons, the s-
quark and the gluon, respectively, we easily derive from the information in [42] the formula
for the triple differential decay width. We remind the reader that in this paper we consider
only the range in s; and sy with

0§51§1; 0§82§1—81,
which is also accessible to the three-body decay b — svy7y. For this case we obtain

d81 dSQ ng N (1 — 26) P2[1 — 26] b

/ dug des (24 (1 — 24)]7 [25 (1 — 25)] Y27 | My |2, (25)

53 (5152 —53) (1 — 81 — 82+ 83) %

where z1, To and z3 (appearing in |My|?) are understood to be expressed in terms of s, so

and s3 according to
83 8182 — 83
T =815 T2=—; I3= .
S1 (1 —81) (81 —83)

x4 and x5 vary between zero and one, while s3 € [0, 1 s3]

(26)

C Renormalization constants

In this appendix, we collect the explicit expressions of the renormalization constants needed
for the ultraviolet renormalization in our calculation (see section 3).
The operator Oz, as well as the b-quark mass contained in this operator are renormalized in
the MS scheme [43]:

S 4CF () S

MS F Qs 2y . MS

Z77 :1+TZ—7T+O(CMS) N Zmb =1

All the remaining fields and parameters are renormalized in the on-shell scheme. The on-shell

. 3CF as(p)
€ 47

+0(a?). (27)

renormalization constant for the b-quark mass is given by

795 =1 CpT(e) % (ﬂ%)z O‘Z(:) +0(a?). (28)
while the renormalization constants for the s- and b-quark fields are
Z95 = 1+0(a?),
08 c3=2¢ (1 \* as(p) 2
Zyy = 1—-CpT(e)e” T o (%) i + O(a3). (29)

The various quantities 7 appearing in section 3 are defined to be 67 = Z — 1.
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Abstract

We calculate the set of O(as) corrections to the double differential decay width
dl'77/(dsy dsa) for the process B — X yv originating from diagrams involving the elec-
tromagnetic dipole operator O;. The kinematical variables s; and so are defined as
s; = (py — gi)?/mZ, where py, g1, g2 are the momenta of b-quark and two photons. While
the (renormalized) virtual corrections are worked out exactly for a certain range of $;
and so, we retain in the gluon bremsstrahlung process only the leading power w.r.t. the
(normalized) hadronic mass s3 = (pp — ¢1 — g2)?/m? in the underlying triple differential
decay width dI'77/(ds1dsadss). The double differential decay width, based on this ap-
proximation, is free of infrared- and collinear singularities when combining virtual- and
bremsstrahlung corrections. The corresponding results are obtained analytically. When
retaining all powers in s3, the sum of virtual- and bremstrahlung corrections contains
uncanceled 1/e singularities (which are due to collinear photon emission from the s-quark)
and other concepts, which go beyond perturbation theory, like parton fragmentation func-
tions of a quark or a gluon into a photon, are needed which is beyond the scope of our

paper.

1 Introduction

Inclusive rare B-meson decays are known to be a unique source of indirect information about
physics at scales of several hundred GeV. In the Standard Model (SM) all these processes
proceed through loop diagrams and thus are relatively suppressed. In the extensions of the
SM the contributions stemming from the diagrams with “new” particles in the loops can be
comparable or even larger than the contribution from the SM. Thus getting experimental
information on rare decays puts strong constraints on the extensions of the SM or can even
lead to a disagreement with the SM predictions, providing evidence for some “new physics”.

To make a rigorous comparison between experiment and theory, precise SM calculations for
the (differential) decay rates are mandatory. While the branching ratios for B — X [1] and
B — X *¢~ are known today even to next-to-next-to-leading logarithmic (NNLL) precision
(for reviews, see [2, 3]), other branching ratios, like the one for B — X,y discussed in these
proceedings, has been calculated before to leading logarithmic (LL) precision in the SM by
several groups [4, 5, 6, 7] and only recently a first step towards next-to-leading-logarithmic
(NLL) precision was presented by us in [8]. In contrast to B — X7, the current-current
operator O has a non-vanishing matrix element for b — sy at order o precision, leading to
an interesting interference pattern with the contributions associated with the electromagnetic
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dipole operator O7 already at LL precision. As a consequence, potential new physics should
be clearly visible not only in the total branching ratio, but also in the differential distributions.
As the process B — Xy is expected to be measured at the planned Super B-factories in
Japan and Italy, it is necessary to calculate the differential distributions to NLL precision in
the SM, in order to fully exploit its potential concerning new physics. The starting point of
our calculation is the effective Hamiltonian, obtained by integrating out the heavy particles
in the SM, leading to
8
Hepr = _4(:75 ViVie > Ci(p)Oi(p) (1)

i=1

where we use the operator basis introduced in [9]:

O1 = (SpyuTer) (epy*Tubr), Oy = (Sryucr) (CLytbr)

Os = (Spyubr) >-, (@), Oy = (507uTbr) 3_ (" Taq) @)
Os = (SLyumwpbr) 2@y vPa) . Os = (87,7, Tb1) 32, (qv* P Taq)

Or = 15z my(p) (50" bR) Flu Og = 1g= my(p) (50" TbR) G, -

The symbols T* (a = 1,8) denote the SU(3) color generators; g5 and e, the strong and
electromagnetic coupling constants. In eq. (2), mp(p) is the running b-quark mass in the
MS-scheme at the renormalization scale j. As we are not interested in CP-violation effects
in the present paper, we made use of the hierarchy V,;,V.*, < V3V when writing eq. (1).
Furthermore, we also put mg = 0.

While the Wilson coefficients C;(u) appearing in eq. (1) are known to sufficient precision
at the low scale 1 ~ my, since a long time (see e.g. the reviews [2, 3] and references therein), the
matrix elements (syy|O;|b) and (sy7y g|O;|b), which in a NLL calculation are needed to order
g2 and g, respectively, are not known yet. To calculate the (O;, O; )-interference contributions
to the differential distributions at order a; is in many respects of similar complexity as the
calculation of the photon energy spectrum in B — Xy at order a2 needed for the NNLL
computation. As a first step in this NLL enterprise, we derived in our paper [8], the O(as)
corrections to the (O7, Or)-interference contribution to the double differential decay width
dl'/(ds1ds2) at the partonic level. The variables s; and sy are defined as s; = (p, — ¢;)%/m?,
where p, and ¢; denote the four-momenta of the b-quark and the two photons, respectively.

At order «ay there are contributions to dI'77/(ds1dse) with three particles (s-quark and
two photons) and four particles (s-quark, two photons and a gluon) in the final state. These
contributions correspond to specific cuts of the b-quarks self-energy at order a? x a, involving
twice the operator O7. As there are additional cuts, which contain for example only one
photon, our observable cannot be obtained using the optical theorem, i.e., by taking the
absorptive part of the b-quark self-energy at three-loop. We therefore calculate the mentioned
contributions with three and four particles in the final state individually.

We work out the QCD corrections to the double differential decay width in the kinematical
range

0<s1 <1l 53 0<s9<1l—357.

Concerning the virtual corrections, all singularities (after ultra-violet renormalization)
are due to soft gluon exchanges and/or collinear gluon exchanges involving the s-quark.
Concerning the bremsstrahlung corrections (restricted to the same range of s; and s3), there
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are in addition kinematical situations where collinear photons are emitted from the s-
quark. The corresponding singularities are not canceled when combined with the virtual
corrections. We found, however, that there are no singularities associated with collinear
photon emission in the double differential decay width when only retaining the leading power
w.r.t to the (normalized) hadronic mass s3 = (p, — q1 — ¢2)?/mj in the underlying triple
differential distribution dI'77/(dsidsadss). Our results of our paper are obtained within this
“approximation”. When going beyond, other concepts which go beyond perturbation theory,
like parton fragmentation functions of a quark or a gluon into a photon, are needed [10].

2 Leading Order and Final results for the decay width

In d = 4 dimensions, the leading-order spectrum (in our restricted phase-space) is given by

drf)  a?m(u)m |Crepp ()2 GE [V Val? QF (11— 51— s3)
dsq dss 1024 75 (1 —51)%s1(1 — s9)%s9

To - (3)
where

ro = —48s3s3 + 965353 — 565255 + 855 4+ 965557 — 1925357 + 1128957 — 565551 +
1123%31 — 965951 + 851 + 83% + 859
The complete order as correction to the double differential decay width dI'77/(dsy dss2) is

obtained by adding the renormalized virtual corrections and the bremsstrahlung corrections.
Explicitly we obtain

1 - *
arly o miu) mi | Creps () G Vi Vsl @3 "
dsy dss 1024 75
Qs —4rg (1 —s1 — s9) L
=50 log ——
X47T E (1 —81)2 S1 (1 —82)2 S9 8 my +f ’

where f can be found explicitly in [8].

The order ay correction df%) /(ds1dsg) in Eq. (4) to the double differential decay width
for b — Xy was the main result of our paper [8].

3 Some numerical illustrations

In our procedure the NLL corrections have three sources: (a) ay corrections to the Wilson
coefficient C7cf¢(11), (b) expressing my(p) in terms of the pole mass my and (c) virtual- and
real- order as corrections to the matrix elements. To illustrate the effect of source (c¢), which
is worked out for the first time in our paper [8], we show in Fig. 1 (by the long-dashed line)
the (partial) NLL result in which source (c) is switched off. We conclude that the effect (c)
is roughly of equal importance as the combined effects of (a) and (b).

For completeness we show in this figure (by the dotted line) also the result when QCD is
completely switched off, which amounts to put g = my in the LL result.

From Fig. 1 we see that the NLL results are substantially smaller (typically by 50% or
slightly more) than those at LL precision, which is also the case when choosing other values
for so.
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In the numerical discussion above, we have systematically converted the running b-quark
mass my(p) in terms of the pole mass my. As perturbative expansions often behave better
when expressed in terms of the running mass, we also studied the results obtained when
systematically converting m;, in terms of my(p). After doing also this version, we observe the
following: Generally speaking, NLL corrections are not small for both cases, when taking into
account the full range of y, i.e., my/2 < 1 < 2my. More precisely, in the MS version they are
large for © = my/2 and smaller for larger values of i, while in the pole mass version they are
large for all values of pu.

We stress that the numerically important contributions involving the operator Oy are not
discussed in our paper. Therefore, the issue concerning the reduction of the p dependence at
NLL precision cannot be addressed at this level. Finally, the relevant input parameters that
we used in our analysis together with the values of the Wilson coefficient C7 and the strong
coupling as at different values of the scale p are listed in Table 6.

‘ Parameter ‘ Value ‘

myp,(pole) 4.8 GeV

me (pole) 175 GeV | | as(p) [ OF i () [ CF pp ()
My 80.4 GeV p=DMw | 01213 [ —0.1957 | —2.3835
My, 91.19 GeV pn=2my | 01818 | —0.2796 | —0.1788
Gr 1.16637 x 107> GeV 2 pw=my | 0.2175 | —0.3142 | 0.4728

Vi Vi 0.04 p=my/2 | 0.2714 | —0.3556 | 1.0794
a”! 137

ag(My) 0.119

Table 6: Left: Relevant input parameters. Right: a, () and the Wilson coefficient C7 ¢ ¢(11)
at different values of the scale pu.

4 Concluding remarks

In the present work we calculated the set of the O(ag) corrections to the decay process
B — X7 originating from diagrams involving O7. To perform this calculation, it is neces-
sary to work out diagrams with three particles (s-quark and two photons) and four particles
(s-quark, two photons and a gluon) in the final state. From the technical point of view, the cal-
culation was made possible by the use of the Laporta Algorithm to identify the needed master
integrals and by applying the differential equation method to solve the master integrals. When
calculating the bremsstrahlung corrections, we take into account only terms proportional to
the leading power of the hadronic mass. We find that the infrared and collinear singularities
cancel when combining the above mentioned approximated version of bremsstrahlung correc-
tions with the virtual corrections. The numerical impact of the NLL corrections is large: for
dl'77/(dsy ds2) the NLL result is approximately 50% smaller than the LL prediction.

Acknowledgments.— 1 wish to thank to the organizers of the conference FPCP 2012 for their
efforts to make it very pleasant. This work is partially supported by the Swiss National Foundation
and by the Helmholz Association through funds provided to the virtual institute “Spin and strong
QCD” (VH-VI-231).
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Figure 1: Frames 1)-3): Double differential decay width dI'77/(ds1ds2) as a function of sq
for sy fixed at so = 0.2. The dotted(black), the short-dashed(red) and the solid line(blue)
shows the result when neglecting QCD-effects, the LL and the NLL result, respectively.
The long-dashed line(purple) represents the (partial) NLL result in which the virtual- and
bremsstrahlung corrections worked out in our paper [8] are switched off. In the frames 1), 2)
and 3) the renormalization scale is chosen to be p = my/2, p = my and p = 2my,, respectively.
Down right: The relevant phase-space region for s; and ss.
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Abstract

Recently, the BABAR Collaboration reported first evidence for new physics in B —
Dty and B — D*rrv . Combining both processes, the significance is 3.4 0. This result
cannot be explained in a two Higgs doublet model of type II. Furthermore, the CKMfitter
Group finds a 2.9 ¢ discrepancy between the Standard Model prediction for Br[B — 7v/]
(using Vi, from a global fit to the unitary triangle) and the measurements of the B
factories. Altogether, these measurements are strong indications for physics beyond the
Standard Model in B-meson decays to taus.

We show that in a two Higgs doublet model of type III it is possible to simultaneously
explain B — D7tv and B — D*7v using a single free parameter €4,. Also, Br[B —
Tv] can be brought into agreement with experiment using €4,. Furthermore, for Higgs
(A°, H°, H*) masses around 500 GeV, as preferred by recent CMS results, all bounds
from FCNC processes are satisfied and B — D7tv , B — D*rv and B — 7v can be
explained without a significant degree of fine tuning.

1 Introduction

In addition to the direct searches for new physics (performed at very high energies) at the
LHC, low-energy precision flavour observables provide a complementary window to physics
beyond the Standard Model (SM). Tauonic B-meson decays are an excellent probe of new
physics: they test lepton flavor universality satisfied in the Standard Model (SM) and are
sensitive to new particles which couple proportionally to the mass of the involved particles
(e.g. Higgs bosons) due to the heavy 7 lepton involved. The single decay modes still suffer
from large hadronic uncertainties related to the form factors and from the uncertainties of
the CKM elements. However, in normalizing the 7 decay mode to the corresponding decay
with light leptons in the final state, these uncertainties are reduced and the sensitivity to new
physics is significantly improved.

Recently, the BABAR Collaboration performed an analysis of the semileptonic B decays
B — D1v and B — D*1v using the full available data set [1]. They find for the ratios

R(D™) = B(B — DY 7v)/B(B — DWiv), (1)
the following results:

R(D) = 0.440 + 0.058 + 0.042, (2)
R(D*) = 0.332+0.024 + 0.018.. (3)
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Here the first error is statistical and the second one is systematic. Comparing these measure-
ments to the SM predictions

Rsm(D) = 0.297 £ 0.017, (4)
Rsm(D*) = 0.252 4 0.003, (5)

we see that there is a discrepancy of 2.2¢ for R(D) and 2.7 ¢ for R(D*) . For these theory
predictions we again used the updated results of [1], which rely on the calculations of Refs. [2,
3] based on the previous results of Refs. [4, 5, 6, 7, 8]. Both processes exceed the SM
prediction, and combining them gives a 3.40 deviation from the SM [1], which constitutes
the first evidence for new physics in semileptonic B decays to tau leptons.

This evidence for new physics in B-meson decays to taus is further supported by the
measurement of B — 7v by BABAR [9] and BELLE [10]. Averaging both measurements,
one obtains the branching ratio [11]

B[B — mv] = (1.67£0.3) x 107*. (6)

This also disagrees with the SM prediction by 2.9 [12] or 2.50 [13], using the global fit of
the CKM matrix performed by CKMfitter or UTfit, respectively.

Thus, combining R(D) , R(D*) and B — Tv , we have rather solid evidence for violation
of lepton flavor universality. Assuming that these deviations from the SM are not statistical
fluctuations or underestimated theoretical or systematic errors, it is interesting to ask which
model of new physics can explain the measured values. Since these processes are all tree-
level decays in the SM, it is difficult to explain these deviations with a model of new physics
(NP), since one in general also needs a tree-level exchange of a new particle in order to get
sizable effects. This then generates the difficulty to explain the absence of NP effects in other
observables.

A widely studied possibility is the introduction of a charged scalar particle which couples
proportionally to the masses of the fermions involved in the interaction: a charged Higgs
boson. Such a charged Higgs boson is introduced in the MSSM or in general in any two Higgs
doublet model (2HDM), and affects B — v [14, 15], B — D7v and B — D*rv [16, 17, 18].
This is a reasonable model: because the Higgs couples only significantly to the tau, it can
explain the absence of NP effects in B decays to light leptons and gives rise to lepton flavor
universality violation.

In a 2HDM of type II (like the MSSM!), one Higgs doublet couples to down quarks
and charged leptons, while the other one gives masses to the up quarks. Then the only free
additional parameters are tan 8 = v, /vy (the ratio of the two vacuum expectation values) and
the charged Higgs mass my+ (the heavy CP even Higgs mass mgo and the CP odd Higgs
mass m 40 can be expressed in terms of the charged Higgs mass and differ only by electroweak
corrections). In this setup the charged Higgs contribution to B — 7v interferes necessarily
destructively with the SM [14]. Thus, an enhancement of B[B — 7v] is only possible if the
absolute value of the charged Higgs contribution is bigger than two times the SM one, which
is in conflict with B — D7v . Furthermore, a 2HDM of type II cannot explain R(D) and
R(D*) simultaneously [1].

Another possibility to explain B — 7v is the introduction of a right-handed W-coupling
[19] or new physics in B mixing [20] (meaning that the actual value of V,;, is bigger than

LAt the loop-level non-holomorphic couplings are induced, but for constructive interference they have to
exceed the tree-level Yukawa coupling, which is very difficult.
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Figure 1: Left and middle: Allowed 1o regions from R(D) (blue) and R(D*) (yellow), adding
the experimental uncertainty and theoretical uncertainty linear. Left: Constraints in the
O /CL—CP /CR, plane for real values of CP/CL; and CL/CK,. Middle: C¥ complex for
C¢=0. Right: Allowed 1o regions from B — 7v in the C¥/CY—C4¥ /C¥, plane for real
values of O/ C’é‘f\’/[ and C’}éb/ C’é‘f\)/[. All Wilson coefficients are understood to be at the scale
myp.

the one extracted from the global fit). Anyway, neither possibilities can help to explain the
deviation from the SM in R(D) and R(D*) .

Thus, we need another model to explain R(D) and R(D*) . Our choice in this article is a
2HDM of type III (where both Higgs doublets couple to up quarks and down quarks as well)
with MSSM-like Higgs potential. Since a 2HDM of type III with minimal flavor violation
(MFV) can only explain B — 7v in some fine-tuned regions of parameter space [21] and
cannot explain R(D) and R(D*) simultaneously, we consider a more generic flavor structure
with flavor violation in the up sector. As we will see, this model is capable to explain B — 7v |
R(D) and R(D*) without fine tuning.

2 Effective Field Theory
Since the NP we are interested in must be far above the scale of the B meson, we can integrate

out the heavy degrees of freedom (including the SM W boson). The SM contribution and the
NP contribution are then contained within the effective Hamiltonian

He = CEOR, + CROY + 0P (7)
with (for massless neutrinos)
Ogg/[ = ¢V, PLb 7y, Prv-,

O;]%b = qPrbTPrv,, (8)

0% = gPLb 7PL, .

In Eq. (7) and Eq. (8) ¢ = u for B — 7v and ¢ = ¢ for B — D7v and B — D*rv . The SM
Wilson coefficient is given by Cé]i/[ =4Gr Vy, /+/2. The corresponding Wilson coefficients C%b
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Figure 2: Feynman diagram with a charged Higgs contributing to B — 7v and B — D™ .
The dot represents the flavor-violating interaction containing the 2HDM of type 111 parameters
e3; and €5y, which affect B — v and B — D® 1y, respectively.

and C’gb (given at the B meson scale), which parametrize the effect of NP, affect our three
physical observables in the following way [3, 15, 22]:

2

) : (9)

ch + ch ch + ch
RCCb L :| +1.0 RCCb L
SM SM

R(D) = Rsm(D) (1 + 1.5% [

cb _ rveb cb _ rveb 2
R(D*) = Rsm(D") <1 +0.12R [C%ibcﬂ +0.05 ‘0307,)% ) ; (10)
SM SM

U U 2
m2B (CRb - CLb)

1+ =
mpmr Cgl])\/l

G2 |Vip|? 2\ 2
BB — 1v] = Mmzf%mg <1 — m—;) TR X (11)
m

81 B

Let us consider first B — D7v and B — D*7v , where the ratios R(D) and R(D*) are affected
by the two Wilson coefficients Cf;f’ and Cfb. For our analysis we add the experimental errors in
quadrature and the theoretical uncertainty linear on top of this. From the left plot in Fig. 1,
we see that both R(D) and R(D*) can be brought into agreement with the experimental
values within the 1o error by C’Eb only. Note that C]C%b is not capable of achieving this
without a simultaneous contribution from C. Since (neglecting small mass ratios) only C§
is generated in a 2HDM of type II or in a 2HDM of type III with MFV [23] (neglecting small
quark mass ratios), these models cannot explain R(D) and R(D*) simultaneously. This is
still true if we allow for complex values of Cf;f’, as we can see from the middle plot in Fig. 1.
Note that the Wilson coefficients in the plots are given at the scale mg,.

On the other hand, B — 7v can be explained either with C}%b or with C¥* (or with a
combination of both of them). However, as we will see in the next section, in the context of
the 2HDM of type 111, Cgb is the more natural choice.

3 Two Higgs doublet model of type III

The SM contains only one scalar isospin doublet, the Higgs doublet. After electroweak symme-
try breaking, this gives masses to up quarks, down quarks and charged leptons. The charged
component of this doublet becomes the longitudinal component of the W boson, and thus we
have only one physical neutral Higgs particle. In a 2HDM we introduce a second Higgs dou-
blet and obtain four additional physical Higgs particles (in the case of a CP conserving Higgs
potential): the neutral CP-even Higgs H, a neutral CP-odd Higgs A and the two charged
Higgses H™.
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Two Higgs doublet models have been studied for many years with focus on the type II
models [17, 24, 25] or type III models with MFV [21, 23, 26], and on alignment [27, 28] or
natural flavour conservation [26, 29]. As outlined in the introduction, these models cannot
explain R(D) and R(D*) simultaneously [1] (and for B — 7v fine tuning is needed); we
will study a 2HDM of type III with generic flavour-structure [30], but for simplicity, with
MSSM-like Higgs potential 2.

In the 2HDM of type III, we have the Yukawa Lagrangian (see for example [32] for details):

o = Q3 [Yﬁeabez* - G?iHS] dir (12)
— Q4p [YfiewHY + efiHg| uin + He.,

where €, is the totally antisymmetric tensor, and egj parametrizes the non-holomorphic correc-
tions which couple up (down) quarks to the down (up) type Higgs doublet. After electroweak
symmetry breaking, this Lagrangian gives rise to the following Feynman-rule:

i <F5;ﬂ;liLReﬂpR n Fiﬂ;iRL effPL> : (13)
with
+ 3 m
. d;
FqudiLReH = ZSlnﬁ ij (’U—dé‘]z — E?i tan 5) s (14)
j=1
+ 3 m
I’qudiRLeff = Z cos f3 <v—uf5jf — €j7 tan ﬁ) Vii .
=1 “

Thus, the Wilson coefficients C’gb and Clq%b at the matching scale are given by

-1 +m
@ LR(RL),H*+ Mt
CR(L) = Méi Fqb ” tan 3, (15)

with the vacuum expectation value v ~ 174GeV. Here we assumed that the Peccei-Quinn
breaking for leptons is negligible, which means that the lepton-Higgs coupling are like in the
2HDM of type II. Note that for large Higgs masses and large values tan(f3), the CP-odd and
the heavy CP-even Higgs mass approach the charged one.

3.1 Experimental constraints

First, note that all flavor-changing elements egj are stringently constrained from FCNC pro-
cesses in the down sector because of tree-level neutral Higgs exchange. Thus, they cannot have
any significant impact on the decays we are interested in, and therefore we are left with eg3.
Concerning the elements €}; we see that only €}, (€},) significantly effects B — 7v (R(D) and
R(D*) ) without any CKM suppression. Furthermore, since flavor-changing top-to-up (or
charm) transitions are not measured with sufficient accuracy, we can only constrain these
elements from charged Higgs-induced FCNCs in the down sector. However, since in this case

an up (charm) quark always propagates inside the loop, the contribution is suppressed by the

2Flavor-observables in type III models have been considered before [31], but with focus on the flavor-
changing elements in the down sector.
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Figure 3: Left: Allowed regions in the complex e§y-plane from R(D) (blue) and
R(D*) (yellow) for tan 8 = 50 and mpy = 500 GeV. Middle: Allowed regions in the com-
plex €4;-plane from B — 7v . Right: Allowed regions in the tan f—€4; plane from B — Tv for
real values of €4; and my = 400 GeV (green), mpy = 800 GeV (orange). The scaling of the
allowed region for €, with tan 8 and mpy is the same as for €f;. €4, and €3, are given at the
matching scale mp.

small Yukawa couplings of the up-down-Higgs (charm-strange-Higgs) vertex involved in the
corresponding diagrams. Thus, the constraints from FCNC processes are weak, and €59 31 Can
be sizable.

Of course, the lower bounds on the charged Higgs mass for a 2HDM of type II from b — sy
of 300 GeV [33] must still be respected by our model, and also the results from direct searches
at the LHC [34] are in principle unchanged. Note that the recent CMS results even welcome
a heavy Higgs (H°, A°, H*) mass around 500 GeV.

3.2 B — Drvand B — D*rv

eg3 contributes to C%, and thus (as we see from Fig. 1) cannot simultaneously explain

R(D) and R(D*). Thus, we are left with €},, which contributes to B — D7v and B —
D*rv via the Feynman diagram shown in Fig. 2. In Fig. 3 we see the allowed region in
the complex €4,-plane, which gives the correct values for R(D) and R(D*) within the 1o
uncertainties for tan 5 = 50 and My = 500 GeV.

3.3 B— 1V

In principle, B — 7v can be explained either by using eg3 (as in 2HDMs with MFV) or by
€4, or by a combination of both (see right plot in Fig. 1). However, egg alone cannot explain
the deviation from the SM without fine tuning, while €%, is capable of doing this. We see this
from the right plot in Fig. 3, keeping in mind that egg generates C%, while €5, generates C’gb.

3.4 The quark mass matrix and fine tuning

The naturalness criterion of 't Hooft states that the smallness of a quantity is only natural if a
symmetry is gained in the limit in which this quantity is zero. This means, on the other hand,
that large accidental cancellations, which are not enforced by a symmetry, are unnatural and
thus not desirable. Let us apply this reasoning to the quark masses and CKM elements in
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the 2HDM. The quark mass matrices in the 2HDM of type III are given by

d(u)
ij

d d
m = Ud(u)Yl-j(u) + Uu(d)eij(u) (16)
Diagonalizing these quark mass matrices gives the physical quark masses and the CKM matrix.
Using 't Hooft’s naturalness criterion we can demand the absence of fine-tuned cancellations
between deg (vuij‘) and vue% (vde%). Thus, we require that the contributions of vuegj and
vg€;; to the quark masses and CKM matrix not exceed the physical measured quantities:

d(u
|Uu(d)6ij( | < |Viy| max [mdi(ui),mdj(uj)] : (17)

From Fig. 3, we see that 't Hooft’s naturalness criterion is satisfied if R(D), R(D*) and
B — tv are explained using €, and €4, respectively. However, if B — 7v is explained
using €ds, 't Hooft’s naturalness criterion is violated either because the SM contribution to
B — Tv is overcompensated or because ‘vueg3| > my,.

4 Conclusions

The decays B — v, B — D7v and B — D*7v are an excellent probe of physics beyond the
SM (complementary to the direct searches at the LHC), since they are sensitive to lepton flavor
universality violating new physics, e.g., Higgs bosons. The BABAR Collaboration recently
reported an excess both in B — D7v and B — D*7v compared to the SM predictions [1].
This evidence for new physics cannot be explained with a 2HDM of type II. Therefore, we
proposed a 2HDM of type III with MSSM-like Higgs potential and flavor-violation in the
up sector in order to explain these deviations from the SM. In fact, our model can account
for the deviation of R(D) and R(D*) from the SM predictions simultaneously and also bring
B — 7v into agreement with experiment. This is even possible without significant fine tuning.
Furthermore, all experimental constraints from other processes can be satisfied, and recent
CMS results [34] even welcome a mass around 500 GeV for the non-SM-like Higgs bosons of
a 2HDM. In order to test the model, we propose to search for A°, H* — 7 + ¢ at the LHC.
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Abstract

In this article, we perform an extensive study of flavor observables in a two-Higgs-
doublet model (2HDM) with generic Yukawa structure (of type III). This model is inter-
esting not only because it is the decoupling limit of the Minimal Supersymmetric Standard
Model (MSSM) but also because of its rich flavor phenomenology which also allows for
sizable effects not only in FCNC processes but also in tauonic B decays. We examine the
possible effects in flavor physics and constrain the model both from tree-level processes and
from loop-observables. The free parameters of the model are the heavy Higgs mass, tan 3
(the ratio of vacuum expectation values) and the "non-holomorphic” Yukawa couplings

I f

i (f = u,d,?). In our analysis we constrain the elements €;; in various ways: In a first

step we give order of magnitude constraints on elfj from 't Hooft’s naturalness criterion,

€

finding that all efj must be rather small unless the third generation is involved. In a sec-
ond step, we constrain the Yukawa structure of the type-III 2HDM from tree-level FCNC
processes (Bs g — putpu=, K — ptp=, D° — putu=, AF = 2 processes, 7~ — p~putpu~,
77 — e putp~ and p= — e"eTe”) and observe that all flavor off-diagonal elements
of these couplings, except €3, 3; and €43 13 must be very small in order to satisfy the
current experimental bounds. In a third step, we consider Higgs mediated loop contribu-
tions to FCNC processes (b — s(d)y, Bsgq mixing, K — K mixing and p — ev) finding
that also €}s and ej; must be very small, while the bounds on €§; and €%, are especially
weak. Furthermore, considering the constraints from electric dipole moments (EDMs)
we obtain constrains on some parameters e?j’é. Taking into account the constraints from
FCNC processes we study the size of possible effects in the tauonic B decays (B — Tv
B — Dtvand B — D*1v ) as well as in Dy — Tv, Dg) — pv, K(m) — ev, K(7) — uv
and 7 — K (7)r which are all sensitive to tree-level charged Higgs exchange. Interestingly,
the unconstrained €3, 5, are just the elements which directly enter the branching ratios
for B— v, B — D7tv and B — D*rrv . We show that they can explain the deviations
from the SM predictions in these processes without fine tuning. Furthermore, B — 7v |
B — D7v and B — D*7r can even be explained simultaneously. Finally, we give up-
per limits on the branching ratios of the lepton flavor-violating neutral B meson decays
(Bs,q — pe, Bs,q — Te and By q — Tu) and correlate the radiative lepton decays (7 — py,
7 — ey and p — ev) to the corresponding neutral current lepton decays (77 — p~ptp™,
77 = e ptuT and pT — e~ ete). A detailed appendix contains all relevant information
for the considered processes for general scalar-fermion-fermion couplings.
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1 Introduction

Two-Higgs-doublet models (2HDMs) [1] have been under intensive investigation for a long
time (see for example Ref. [2] for an introduction or Ref. [3] for a recent review article).
There are several reasons for this great interest in 2HDMSs: Firstly, 2HDMs are very simple
extensions of the Standard Model (SM) obtained by just adding an additional scalar SU(2)z,
doublet to the SM particle content. This limits the number of new degrees of freedom and
makes the model rather predictive. Secondly, motivation for 2HDMs comes from axion models
[4] because a possible CP-violating term in the QCD Lagrangian can be rotated away [5] if the
Lagrangian has a global U(1) symmetry which is only possible if there are two Higgs doublets.
Also the generation of the baryon asymmetry of the Universe motivates the introduction of a
second Higgs doublet because in this way the amount of CP violation can be large enough to
accommodate for this asymmetry, while the CP violation in the SM is too small [6]. Finally,
probably the best motivation for studying 2HDMs is the Minimal Supersymmetric Standard
Model (MSSM) where supersymmetry enforces the introduction of a second Higgs doublet
[7] due to the holomorphic superpotential. Furthermore, the 2HDM of type III is also the
effective theory obtained by integrating out all super-partners of the SM-like particles (the
SM fermion, the gauge boson and the Higgs particles of the 2HDM) from MSSM.

2HDMs are not only interesting for direct searches for additional Higgs bosons at collid-
ers. In addition to these high energy searches at the LHC also low-energy precision flavor
observables provide a complementary window to physics beyond the SM, i.e. to the 2HDMs.
In this respect, FCNC processes, e.g. neutral meson decays to muon pairs (Bs(d) — T,
D — ptp~ and K — putp~) are especially interesting because they are very sensitive to
flavor changing neutral Higgs couplings. However, also charged current processes like tauonic
B-meson decays are affected by the charged Higgs boson and b — sy provides currently the
best lower limit on the charged Higgs mass in the 2HDM of type II.

Recently, tauonic B decays received special attention because the BABAR collaboration
performed an analysis of the semileptonic B decays B — D7v and B — D*rv reporting a
discrepancy of 2.00 and 2.7 ¢ from the SM expectation, respectively. The measurements of
both decays exceed the SM predictions, and combining them gives a 3.4 ¢ deviation from the
SM [8, 9] expectation, which constitutes first evidence for new physics in semileptonic B decays
to tau leptons. This evidence for the violation of lepton flavor universality is further supported
by the measurement of B — 7v by BABAR [10, 11] and BELLE [12, 13] which exceeds the SM
prediction by 1.6 o using V,;, from the global fit [14]. Assuming that these deviations from the
SM are not statistical fluctuations or underestimated theoretical or systematic uncertainties,
it is interesting to ask which model of new physics can explain the measured values. Since,
a 2HDM of type II cannot explain B — 7v , B — D7v and B — D*7v simultaneously [8],
one must look at 2HDMs with more general Yukawa structures. Also 2HDMs of type III
with Minimal Flavor Violation (MFV) [15] cannot explain these deviations from the SM but
a 2HDM of type III (where both Higgs doublets couple to up quarks and down quarks as
well) with flavor-violation in the up sector, is capable of explaining B — 7v , B — D7v and
B — D*rv without fine tuning [16].

These points motivate us to perform a complete analysis of flavor-violation in 2HDMs
of type III in this article. For this purpose we take into account all relevant constraints
from FCNC processes (both from tree-level contributions and from loop-induced effects) and
consider afterwards the possible effects in charged current processes.
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This article is structured as follows: In Sec. 2, we review the Yukawa Lagrangian of the
2HDM of type III. In Sec. 3 we give a general overview on the constraints on 2HDMs and
update the bounds on the 2HDM of type II. The following sections discuss in detail the
constraints on the 2HDM of type III parameter space from 't Hooft’s naturalness argument
(Sec. 4), from tree-level FCNC processes (Sec. 5) and from loop-induced charged and neutral
Higgs mediated contributions to the flavor observables (Sec. 6). Sec. 7 studies the possible
effects in charged current decays (B — v, B — Dtv, B = D*tv, D(g) — TV, D5 — pv,
K(r) — ev, K(r) — pv, 7 — K(m)v) and Sec. 8 is denoted to the study of the upper
limits on the branching ratios By g — Tp, Bsq — Te, Bsq — pe and the correlations among
T s puptuT, T e utuT, pm — e ete and T — py, T — ey, p — ey. Finally, we
conclude. A detailed appendix contains some of the input parameters used in our analysis,
general expressions for some branching ratios as well as all the relevant Wilson coefficients
for b — s(d)y, AF = 2 processes, leptonic neutral meson decays (AF = 1), LFV transitions,
EDMs, anamolous magnetic moment (AMM) of muon and (semi-) leptonic charged meson
decays for general charged and/or neutral scalar-fermion-fermion couplings.

2 Setup

The SM contains only one scalar weak-isospin doublet, the Higgs doublet. After electroweak
symmetry breaking its vacuum expectation value ("vev”) gives masses to up quarks, down
quarks and charged leptons. The charged (CP-odd neutral) component of this doublet be-
comes the longitudinal component of the W (Z) boson, and thus we have only one physical
CP-even neutral Higgs particle in the SM. In a 2HDM we introduce a second Higgs doublet
and obtain four additional physical Higgs particles (in the case of a CP conserving Higgs
potential): the neutral heavy CP-even Higgs H, a neutral CP-odd Higgs A and the two
charged Higgses H*.

As outlined in the introduction we consider a 2HDM with generic Yukawa structure
(2HDM of type III). One motivation is that a 2HDM with natural flavor-conservation (like
type I or type II) cannot explain B — D7v , B — D*rv and B — 7v simultaneously, while
the type IIT model is capable of doing this [16]. Beside this, our calculations in the 2HDM
IIT are the most general ones in the sense that they can be applied to models with specific
flavor-structures like 2HDMs with MFV[15, 17, 18]. In this sense also our bounds are model
independent, because they apply to any 2HDM with specific Yukawa structures as well (in
the absence of large cancellations which are unlikely). Finally the type-IIT 2HDM is the de-
coupling limit of the MSSM and the calculated bounds can be translated to limits on the
MSSM parameter space.

The fact that the 2HDM III is the decoupling limit of the MSSM also motivates us to
choose for definiteness a MSSM like Higgs potential ! which automatically avoids dangerous
CP violation. The matching of the MSSM on the 2HDM Yukawa sector has been considered
in detail. For the MSSM with MFV it was calculated in Ref. [19, 20, 21, 22, 23, 24] and for
the MSSM with generic flavor structure in Ref. [25] (neglecting the effects of the A-terms)
and in Ref. [26] (including the A-terms). Even the next-to-leading order corrections were

HIf we would require that the Higgs potential possesses a Z» symmetry the results would be very similar
(for v < mpg). The heavy Higgs masses squared would still differ by terms of the order of v* and only
Higgs self-couplings would be different, but they do not enter the flavor-processes at the loop-level under
consideration.
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calculated for the flavor-conserving case in [27] and for the flavor-changing one in the general
MSSM in Ref. [28]. Also the one-loop corrections to the Higgs potential have been considered
[29, 30, 31, 32, 33, 34, 35, 36, 37|, but their effects on flavor-observables were found to be
small [38].

Following the notation of Ref. [26, 28, 39] we have the following Yukawa Lagrangian in
the 2HDM of type III starting in an electroweak basis:

Ly = Q4 [Yiven Yy — e Hy| din+ Q4 |V e HY — €4 HE| wig + he. .
(1)

Here a, b denote SU(2)y, - indices, €4 is the two-dimensional antisymmetric tensor with €19 =
—1 and the Higgs doublets are defined as :

H} HY v
Hy=| 7| = 4 with (HY) = |,
H? H; 0 @
H! HF . 0
H, = = with (H,) =
H? HY Uy

Apart from the holomorphic Yukawa-couplings quiew and Yﬂiew, we included the non-holomorphic
couplings egcfw (¢ = u,d) as well.

As a next step we decompose the SU(2) doublets into their components and switch to a
basis in which the holomorphic Yukawa couplings are diagonal:

Ly = —JfL [Ydiéfng* + gjlgi HS] dip — Uufr [Yuiéfng* + g?i Haol] Ui R
+ur Lij [Ydi(ﬁjl. — cot ﬁgzll] Hg*dz’R (3)
+JfL ﬁ [Y“@ji — tan ﬁé}‘l] HYu;r+ hc. .

where, tan 8 = v, /vy is the ratio of the vacuum expectation values v, and vy acquired by
H, and Hg, respectively. We perform this intermediate step, because this is the basis which
corresponds to the super-CKM basis of the MSSM and the couplings Eglj can be directly

related to loop-induced non-holomorphic Higgs coupling. The wave-function rotations UJ?Z.L’R
necessary to arrive at the physical basis with diagonal quark mass matrices are defined by

L R
Ul mi UL = mg,dp; . (4)
They modify the Yukawa Lagrangian as follows:
_ 7 md, d Tk d 172
Ly = — de [<—5fz - efitanﬁ> H;" + EfiHu:| d; g
vg
_ My, u 2% u 1
— qu |:<—U 6]1'2 — efi COt,B) Hu + Efi Hd:| U; R
u
my,
+ uppVyj [—vdz 0ji — (cot 8+ tan ) 6?2] H02l* d; p
d

—_ m R
+ dp LV [U—u'dji — (tan 3 + cot 3) e;@] HYuip + he. . (5)
U
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Here, my, are the physical running quark masses, H, ql and H, q2 are the components of the Higgs
doublets, and

Vi = Ui UsE (6)
is the CKM matrix. The Higgs doublets H,, and H; project onto the physical mass eigenstates
HO (heavy CP-even Higgs), h (light CP-even Higgs), A (CP-odd Higgs) and HT in the
following way:

1
HY = — (Hsina+ h°cosa+ iA° cos 8)
1 )
1
HY = — (H%cosa — h’sina+iA%sin 8) ,
H& = cosBHT,
H? = singH™, (7)

where, « is the mixing angle necessary to diagonalize the neutral CP-even Higgs mass matrix

(see e.g. [40]) 2. Since we assume a MSSM-like Higgs potential® we have

tan 8 = @,
vd 2 2
mae + M
tan 2« = tan 203 % ) (8)
My — Mz

2 2 2 2 2 2 2
My =m0 + My, mio =m5e + Mz —my,,

with%w<a<Oand0<ﬂ<g.
This means that in the phenomenologically interesting and viable limit of large values of
tan 8 and v < m 40 we have to a good approximation®*:

tan 8 ~ — cot a, )
mpgo = Mg+ M0 =My .

Without the non-holomorphic corrections e?j, the rotation matrices U}IZ-L’R would simulta-
neously diagonalize the mass terms and the neutral Higgs couplings in Eq. (5). However, in
the presence of non-holomorphic corrections, this is no longer the case and flavor changing
neutral Higgs couplings are present in the basis in which the physical quark mass matrices
are diagonal.

The Yukawa Lagrangian in Eq. (5) leads to the following Feynman rules® for Higgs-quark-
quark couplings

i (TERH Py + TELH P ) (10)

2Note that we defined o as common in the MSSM. In the 2HDM also a convention with a doubled range
for « is used.

SMSSM-like Higgs potential implies that in the large tan 8 limit and for v < mp the charged Higgs mass
my+, the heavy CP even Higgs mass myo and the CP odd Higgs mass m 40 are equal.

4For the SM-like Higgs boson h® we use myo ~ 125 GeV in our numerical analysis.

SHermiticity of the Lagrangian implies the relation FquLqu = Fqu;fH*
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with

LR H? m
T © = ﬁ( S — Z-cotﬁ) —i—xﬁ*ezjl,

LRH? mgq,
Fdfdi ko= xlj < i O — e‘}ﬁanﬁ) —|—£Ek*€?-2,

+
F{jﬁf = Zsmﬂvfj < o L0ji — e;li tanﬂ) ,

Jj=1
3
+ Moy,
Fﬁﬁf{ = Zcosﬁ gy (U—u'(sji—e}@tanﬁ> . (11)
=1 “

Similarly, for the lepton case, the non-vanishing effective Higgs vertices are

LR HY my,
Fff&- k— :U’fl ( Of; — e?i tan ﬁ) +x k*effl,
fﬁHi Z smﬁ PMNS ( bi dji — e ; tan ﬁ>

Here, ng = (H% h°, A%) and the coefficients x’; are given by

( I 1 i ﬁ>

Ty = | ——=SIn®, ——=COS &, —= COS ,

" V2 V2 V2 (13)
. ( 1 I i 5)

ry; = ——=COS ¥y, —= SN &, —= Sl .
d V2 V2 V2

This means that flavor-violation (beyond the one already present in the 2HDM of type II)
is entirely governed by the couplings e . If one wants to make the connection to the MSSM,

the parameters e ¢ will depend only on SUSY breaking parameters and tan 3.

3 Constraints on the 2HDM parameter space— general discus-
sion and overview

In this section we give an overview on flavor observables sensitive to charged Higgs contribu-
tions. We review the constraints on the 2HDM of type II and discuss to which extent these
bounds will hold in the 2HDM of type III. A detailed analysis of flavor constraints on the
type-I111 2HDM parameter space will be given in the following sections.

The most common version of 2HDMs, concerning its Yukawa sector, is the 2HDM of type
IT which respects natural flavor conservation [41] by requiring that one Higgs doublet couples
only to up-quarks while the other one gives masses to down-type quarks and charged leptons
(like the MSSM at tree-level). Flavor-observables in 2HDMs of type II have been studied
in detail [42, 43, 44]. In the type II model there are no tree-level flavor-changing neutral
currents and all flavor violation is induced by the CKM matrix entering the charged Higgs
vertex. In this way the constraints from FCNC processes can be partially avoided. This is
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true for AF = 2 processes where the charged Higgs contribution is small, for K — u™u™,
DY — ppu~ (due to the tiny Higgs couplings to light quarks) and all flavor observables in
the lepton sector. However, the FCNC processes b — sy (also to less extent b — dry) and
By — pTp~ are sensitive the charged Higgs contributions. In addition, direct searches at the
LHC and charged current processes restrict the type-11 2HDM parameter space.

Among the FCNC processes, the constraints from b — sy are most stringent due to the
necessarily constructive interference with the SM contribution [45, 46, 47, 48]. The most
recent lower bound on the charged Higgs mass obtained in Ref. [49] is m g+ > 360 GeV which
includes NNLO QCD corrections and is rather independent of tan 8. In the type-1I11 2HDM
this lower bound on the charged Higgs mass can be weakened due to destructive interference
with contributions involving €. Alsoin Bs — p*u~ (and By — p* p™) a sizable loop-induced
effect is possible in the 2HDM II, but the constrains are still not very stringent even if the new
LHCb measurement are used. The reason for this is that, taking into account the constraints
from b — sy on the charged Higgs mass, the branching ratio for By — u™p~ in the 2HDM 11
is even below the SM expectation for larger values of tan 5 [50, 51, 52] due to the destructive
interference between the charged Higgs and the SM contribution.

Regarding charged current processes, tauonic B decays are currently most sensitive to
charged Higgs effects. Here, the charged-Higgs contribution in the type-II 2HDM to B —
Tv interferes destructively with the SM contribution [53, 54]. The same is true for B —
D*rv [55] and B — Drv [42, 56, 57]. As outlined in the introduction this leads to the fact that
the 2HDM II cannot explain B — tv , B — D7v and B — D*7v simultaneously [8]. Other
charged current observables sensitive to charged Higgses are D) — pv, Do) — TV [58, 59, 60],
T — K(m)v and K — pv/m — pv [61] (see [44] for a global analysis).

Fig. 1 shows our updated constraints on the 2HDM II parameters space from b — sv,
B— 71w ,B— Drv,B — D*rv , By = u"p~ and K — uv/m — uv. We see that
in order to get agreement within 20 between the theory prediction and the measurement of
B — D*r1v , large values of tan 5 and light Higgs masses would be required which is in conflict
with all other processes under consideration.

Concerning direct searches the bounds on the charged Higgs mass are rather weak due to
the large background from W events. The search for neutral Higgs bosons is easier and the
CMS bounds® on m 4o from A® — 777~ are shown in Fig. 2. These bounds were obtained
in the MSSM, but since the MSSM corrections to A — 777~ are rather small and since we
consider a MSSM-like Higgs potential, these bounds also hold in the 2HDM III as long as the
Peccei-Quinn symmetry breaking in the lepton sector is small .

Going beyond the simple Yukawa structure of the 2HDM of type II, also 2HDMs of
type III with MFV [15, 17, 18], alignment [64, 65] or natural flavor conservation [17, 41]
have been analyzed in detail. However, flavor-observables in type III models with generic
flavor-structure have received much less attention. Ref. [66] considered the possible effects
of the flavor-diagonal terms and Ref. [67] considers leptonic observables. As outlined in the
introduction, 2HDMs of type II (or type III with MFV) cannot explain B — D7v and
B — D*rv simultaneously [8] (and for B — 7v fine tuning is needed [18]).

In the following sections we will study in detail the flavor-observables in the 2HDM with
generic flavor-structure [68], but for definiteness, with MSSM-like Higgs potential. For this

5Note that we did not use the bounds from unpublished CMS update of the A® — 77~ analysis.
"For a global analysis of electroweak precision constraints see for example Ref. [62].
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Figure 1: Updated constraints on the 2HDM of type II parameter space. The regions com-
patible with experiment are shown (the regions are superimposed on each other): b — sy
(yellow), B — Dtv (green), B — 7v (red), Bs — putp~ (orange), K — pv/m — pv (blue)
and B — D*rv (black). Note that no region in parameter space is compatible with all pro-
cesses. Explaining B — D*rv would require very small Higgs masses and large values of
tan 8 which is not compatible with the other observables. To obtain this plot, we added the
theoretical uncertainty linear on the top of the 20 experimental error.
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Figure 2: Plot from the CMS collaboration taken from Ref. [63]: Exclusion limts in the m 40—
tan B plane from A° — 777, The analysis was done in the MSSM, but since we consider
a 2HDM with MSSM-like Higgs potential and the MSSM corrections to the AY7T vertex are
small, we can apply this bound to our model. However, a large value of e§3 in the 2HDM of
type III could affect the conclusions. Note that in the limit v <« mpy all heavy Higgs masses
(mgo,m4o and mp+) are approximately equal.
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purpose, all processes described above are relevant. In addition, AF = 2 processes, lepton
flavor violating observables (LFV), EDMs, 7 — K(m)v/K(w) — pv and K — ple)v/m —
p(e)v will turn out to give information on the flavor structure of the 2HDM of type III.
Furthermore, we will investigate to which extent contributions to Bsgq — 7u, Bsg — Te,
B, 4 — pe and muon anomalous magnetic moment are possible.

4 Constraints from ’t Hooft’s naturalness criterion

The naturalness criterion of 't Hooft states that the smallness of a quantity is only natural if a
symmetry is gained in the limit in which this quantity is zero. This means on the other hand
that large accidental cancellations, which are not enforced by a symmetry, are unnatural and
thus not desirable. Let us apply this reasoning to the fermion mass matrices in the 2HDM. We
recall from the last section the expressions for the fermion mass matrices in the electroweak
basis:

d __ dew dew

mg; = Ude‘j + Vu€g

i = VY vl (14)
0 _ ew lew

Diagonalizing these fermion mass matrices gives the physical fermion masses and the
CKM matrix. Using 't Hooft’s naturalness criterion we can demand the absence of fine-
tuned cancellations between deg’z (vuY;}) and vuegj’»g (va€j;). Thus, we require that the

% to the fermion masses and CKM matrix do not exceed the

o e
contributions of V€] and V€

physical measured quantities.

In first order of a perturbative diagonalization of the fermion mass matrices, the diagonal
elements mzfi give rise to the fermion masses, while (in our conventions) the elements mzfj
with @ < j (i > j) affect the left-handed (right-handed) rotations necessary to diagonalize
the fermion mass matrices. The left-handed rotations of the quark fields are linked to the
CKM matrix and can therefore be constrained by demanding that the physical CKM matrix
is generated without a significant degree of fine-tuning. However, the right-handed rotations
of the quarks are not known and the mixing angles of the PMNS matrix are big so that for
these two cases we can only demand that the fermion masses are generated without too large
accidental cancellations. Note, that in Eq. (14) the elements el-jew enter, while the elements
;
ij
diagonal fermion masses. This means that in order to constrain elfj from 't Hooft’s naturalness
criterion we have to assume in addition that no accidental cancellation occur by switching
between the electroweak basis and the physical basis. In conclusion this leads to the following

upper bounds

;. which we want to constrain from flavor observables are given in the physical basis with

d(u . .
Uu(d)fij( M < VZ?KM X max [mdi(ui),mdj(uj)} fori<j,
d(u . .
vu(d)ei]‘( ) < max {mdi(ui),mdj(uj)] fori > 7, (15)

vuefj < max [mgi,mgj] .
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In the large tan 8 limit, inserting the quark masses m, () at the Higgs scale (which we
choose here to be piHiggs = 500 GeV), we can immediately read off the upper bounds on bt

ij
from Eq. (15):

1.3x107% 58x10° 51x10°7°

el <[26x107% 26x107* 59x107*|
14x1072 14x1072 1.4x1072
34x107* 32x1072 16x10°"
ef;| < (tan8/50) | 1.4x 107" 1.4 x107* 1.9 , (16)
_ _ _ y
29%x107% 61x107* 1.0x 1072
ej|<61x107%  61x107*  1.0x 1072

1.0x1072 1.0x1072 1.0x10°2

Of course, these constraints are not strict bounds in the sense that they must be respected
in any viable model. Anyway, big violation of naturalness is not desirable and Eq. (16) gives
us a first glance on the possible structure of the elements ef; As we will see later, it is possible
to explain B — 7v, B — D7v and B — D*Tv using €3 3, without violating Eq. (16), while
if one wants to explain B — 7v with egg 't Hooft’s naturalness criterion is violated.

5 Constraints from tree-level neutral-current processes
The flavor off-diagonal elements elfj (with i # j) give rise to flavor-changing neutral currents
(FCNCs) already at the tree-level. Comparing the Higgs contributions to the loop-suppressed
SM contributions, large effects are in principle possible. However, all experimental results are
in very good agreement with SM predictions, which put extremely stringent constraints on

f
17"
In this section we consider three different kinds of processes:

the non-holomorphic terms e

e Muonic decays of neutral mesons (Bs g — ptpu~, K — ptp~ and D — ptu™).
e AF =2 processes (D—D, K—K , B;—Bsand B;— By mixing).
e Flavor changing lepton decays (77 — u~ptp~, 77 — e ptp~ and u= — e"ete).

As we will see in detail in Sec. 5.1, the leptonic neutral meson decays B4 — p'u,
K; — ptp~ and DY — putpu~ put constraints on the_elements_ efj (WitEi # 7) aEd €12.21
already if one of these elements is non-zero, while B;— By, Bs—Bs, K— K and D— D mixing
only provide constraints on the products eglje?; and €f5€yT (Sec. 5.2). This means that the
constraints on AF = 2 processes can be avoided if one element of the product egjeg: is zero,
while the constraints from the leptonic neutral meson decays can only be avoided if the Peccei
Quinn symmetry breaking for the leptons is large such that ¢4, ~ my /v, is possible.

In Sec. 5.3 we will consider the flavor changing lepton decays 7= — pu~ptpu~, 7= —
e ptp~ and p= — e"ete” which constrain the off-diagonal elements 653732, 6{3731 and 6{2721,
respectively.
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Figure 3: Feynman diagram showing the neutral Higgs contribution to Bs g — ptp~, Kz —
ptp~ and DO — ptpu—.

5.1 Leptonic neutral meson decays: By g — ptu~, K — ptpu~ and D° —
ptp~

Muonic decays of neutral mesons (By — putu~, By — putp~, K — ptp~ and D — ptp™)
are strongly suppressed in the SM for three reasons: they are loop-induced, helicity suppressed
and they involve small CKM elements. Therefore, their branching ratios (in the SM) are very
small and in fact only K7 — putu~ and recently also By — ptu~ [69] have been measured,
while for the other decays only upper limits on the branching ratios exist (see Table 7).
We do not consider decays to electrons (which are even stronger helicity suppressed) nor
Bgs — 7777 (where the tau leptons are difficult to reconstruct) because the experimental
limits are even weaker. The study of meson decays to lepton flavor-violating final states is
postponed to Sec. 8.

Process Experimental value SM prediction
BB, — ptu] 3.2715 % 1079 [69] (3.23 £0.27) x 107 [70]
B[Bg — ptu] < 9.4 x 10719 (95% CL) [69] | (1.07 & 0.10) x 10719 [70]
BKp = i) g <25 x107Y [71] ~ 0.9 x 1079 [71]
B[D° — ptu] < 1.4 x 1077 (90% CL) [72] -

Table 7: Experimental values and SM predictions for the branching ratios of neutral meson
decays to muon pairs. For K — p+u~ we only give the upper limit on the computable short
distance contribution [71] extracted from the experimental value (6.84 4 0.11) x 1079 (90%
CL) [72]. The SM prediction for D° — p*pu~ cannot be reliably calculated due to hadronic
uncertainties.

We see from Fig. 3 that the off-diagonal elements of 6%3731, eg3732, 6(112721 and €75 o; directly
give rise to tree-level neutral Higgs contributions to By — u*u~, By — utp~, Ki, — ptp~
and D° — ptpu~, respectively.

In principle, the constraints from these processes could be weakened, or even avoided, if
egz ~ my,/v,. Anyway, in this section we will assume that the Peccei Quinn breaking for the

leptons is small and neglect the effect of €5, in our numerical analysis for setting limits on e?j.
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5.1.1 Bsq— ptp~

For definiteness, consider the decay of a neutral B, (l_)s) meson (the corresponding decay of a
B, meson follow trivially by replacing s with d and 2 with 1) to a muon pair. The effective
Hamiltonian governing this transition is®
Bs—utpu~ GEMy T s o bs )b bs b 1bs b 1bs b 1bs y1b
g = T [CRO + C Ok + CEOE + CR Ol + CF 0¥ + OO | + he.,
(17)

where the operators are defined as

oY = (?’mPLs) (v ysm)
O = (l_?PLS) (fip) (18)
011738 = (bPLS) (ﬂ’)/5,u) )

and the primed operators are obtained replacing P, with Pr. The corresponding expression
for the branching ratio in terms of the Wilson coefficients reads

. Gh M m2
BB, = pwip] = =55 [1- M—gMBsfﬁsmiTBs

2

M3, (C - ) .

2 (mb + ms) my

M3 (C% — C¢*)

2 (mb + ms) my,

- (o)

2 2
m
X (1 — 4—5‘)
mBS
(19)

Concerning the running of the Wilson coefficients due to the strong interaction, the operators
Of’f and Ofgs correspond to conserved vector currents with vanishing anomalous dimensions.
This means that their Wilson coefficients are scale independent. The scalar and pseudo-scalar
Wilson coefficients C’gg and C% (C’g’S and C%%) have the same anomalous dimension as quark
masses in the SM which means that their scale dependence is given by:

OB (0 — Ma(Hiow)  ~(1)bs ) 20
s,p (Hiow) 4mq(ﬂhigh) s,p (Khigh) (20)

where m, is the running quark mass with the appropriate number of active flavors. In the
SM, C'4 is the only non-vanishing Wilson coefficient

m2 m2
Y = VivY <—t> VLY <—> | (21)
M3, M3,

where, the function Y is defined as Y = ny Y such that the NLO QCD effects are included
in 7y = 1.0113 [70] and the one loop Inami-Lim function Y reads [73]

:U[Zl—x 3z

Yo(z) =3 1—ﬂ:+(1—x)

3 5 ln(:ﬂ)] . (22)

The complete Wilson coefficients for general quark-quark-scalar couplings are given in the
appendix. In the 2HDM of type III, in the case of large tan 8 and v < mys, the terms

8The complete expression for the Hamiltonian and the branching ratio including lepton flavor-violating final
states is given in the appendix.
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involving egj simplify to

2 ‘
T 1 my, — vye€
Cbs — obs — _ 2 Ut22 dx o2 ,
PTG v ¢ ’ -
2
s 1 my, — vy€s
Cbs = —COf = — 2 ed, tan? 3.
G%M&V 2m?, v
To these Wilson coefficients the well known loop-induced type II 2HDM contributions®
ViV log (m?, /m?
Cbs _ Cbs _ _mb th"'ts ml; tan2 ﬁ g2( H2/ t) ’ (24)
2 2My, my/mi — 1

have to be added as well [52]. Note that since we give the Wilson coefficients at the matching
scale, also my and m; must be evaluated at this scale.

We can now constrain the elements eg3’32 and ecll3731 by demanding that the experimental
bounds are satisfied within two standard deviations for By — pu*pu~ or equivalently at the
95% CL concerning By — ppu~. The results for the constraints on ey and €4y (ef5 and €d;)
from Bs — ptp~ (Bg — ptp~) are shown in Fig. 4 (Fig. 5).

All constraints on 6%3731 and 6%3732 are very stringent; of the order of 107°. Both an
enhancement or a suppression of BBy — p'p~] compared to the SM prediction is possible.
While in the 2HDM II the minimal value for B [By s — p ] is half the SM prediction, in the
2HDM III also a bigger suppression of By s — ptu™ is possible if ecll3723 2 0. In principle, the
constraints on €45 (¢43) from By — pp~ are not independent of ¢4y (€4)). Anyway, in the
next section it will turn out that the constraints from AF = 2 processes are more stringent if
both €%, and €, are different from zero (the same conclusions hold for 6%1,13’ 6%712 and €f; 19)-

By — ptp~ and By — pTp~ can also be used to constrain the leptonic parameter 6%2.

We will discuss the corresponding subject in Sec.6.

5.1.2 Ky — ptp~

Concerning K7, — ptu~, the branching ratio and the Wilson coefficients can be obtained by
a simple replacement of indices from Eq. (19), Eq. (21) and Eq. (23). Due to the presence of
large non-perturbative QCD effects, we require that the 2HDM III contribution together with
the short distance piece of the SM contribution does not exceed the upper limit on the short
distance contribution to the branching ratio calculated in Ref. [71]. The resulting constraints
on 6‘112,21 are shown in Fig. 6. They are found to be extremely stringent (of the order of 1079).

51.3 D° — ptp~

The analogous expressions for the branching ratio for DY — putpu~ (D%@u)) follow by a
straightforward replacement of indices in Eq. (19) but the Wilson coefficients in the type-III

9Since we want to put constraints on the elements ecll3,23 we assume that the loop-induced 2HDM II contri-
bution is not changed by elements € or €25.
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Figure 4: Allowed regions in the complex 633’327p1ane from B, — ptp~ for tanB = 30,
tan 8 = 50 and my = 700 GeV (yellow), my = 500 GeV (red) and mpy = 300 GeV (blue).
Note that the allowed regions for egfplane are not full circles because in this case a suppression
of B[Bs — ptp~] below the experimental lower bound is possible.

2HDM for D — p+ = have a different dependence on tan /3:

2 l
T 1 my, — vue€
cu __ cu __ 2 U222 ux
g =-C¢ = CZ 2. a2 ef5tan 3,
Fiw H (25)
2 l
s 1 my, —vue€
Ilcu lcu 2 ut22
C§t =Cp" = GEALZ, 2m?, ” ey, tan (3.

Differently than for By, — ptp~ the SM contribution cannot be calculated due to non-
perturbative effects and the 2HDM II contribution is numerically irrelevant. Since we do
not know the SM contribution, we require that the 2HDM III contribution alone does not
generate more than the experimental upper limit on this branching ratio.

It is then easy to express the constraints on €jy 5 in terms of the parameters mpy and
tan (:
(/500 GeV)?

—2
‘61{2721‘ S 3.0 x 10 tan/@/50

(26)

The resulting bounds on €f 9 (setting one of these elements to zero) are shown in Fig. 7.
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Figure 5: Allowed regions in the complex e‘f37317p1ane from By — putp~ for tanf = 30,
tan f = 50 and my = 700 GeV (yellow), my = 500 GeV (red) and mpy = 300 GeV (blue).

5.2 Tree-level contributions to AF = 2 processes

In the presence of non-zero elements egj neutral Higgs mediated contributions to neutral meson
mixing (Bg s Bas, K-K and D-D mixing) arise (see Fig. 8). In these processes, the 2HDM
contribution vanishes if the U(1)pq symmetry is conserved. This has the consequence that the
leading tan S-enhanced tree-level contribution to the AF = 2 processes (shown in Fig. 8) is
only non-vanishing if egj and egi are simultaneously different from zero (in the approximation
m o = myo and cot 5 = 0). Making use of the effective Hamiltonian defined in Eq. (84) of
the appendix we get the following contributions to Bs—B, mixing (the expressions for By~ By
and KK mixing again follow by a simple replacement of indices):

6d Ed*
Cy = —LZ?’Q tan? 3. (27)
My

All other Wilson coefficients are sub-leading in tan 5. For D mixing, again only C} is non-zero
and given by

€U (U
04 _ 12 221 . (28)

My
After performing the renormalization group evolution [74, 75, 76, 77, 78] (here we used
pr = 500 GeV at the high scale) it turns out that the dominant contribution to the hadronic
matrix elements stems from Oy. Inserting the bag factors [79, 80] and decay constants from
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Figure 6: Allowed regions in the complex e‘fzm—plane from K, — ptp~ for tan B = 30,

tan 8 = 50 and my = 700 GeV (yellow), my = 500 GeV (red) and mpy = 300 GeV (blue).

lattice QCD (see Table. 10.9), we get for the 2HDM of type III contribution

<Bg‘ 0404 ‘Bg> ~ 0.26 C4 GeV3,

(BY| C404 | BY) = 0.37 Cy GeV?,
<KO{ 0404 ‘RO> ~ 0.30 C4 GeV3,
<DO| 0404 |DO> ~ 0.18 C4 GeV3,

(29)

where, we used the normalization of the meson states as defined for example in [77]. In
Eq. (29) the Wilson coefficients within the matrix elements are at the corresponding meson
scale while Cy on the right-handed side is given at the matching scale mpy. For computing

the constraints on ef5edt, ededs and edyeds we use the online update of the analysis of the
UTfit collaboration [81]'°. For this purpose we define

CquQilqu =1+

(By| Hefy |Bg)

(BY| 277 1B2)

19See also the online update of the CKMfitter group for an analogous analysis [14].

(30)
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Figure 8: Feynman diagram contributing to Bdﬁfﬁdﬁ, K-K and D-D mixing,.

for Byj— Bgand Bs— B, mixing and

I [(K°|HO | KO)]
T [(KO 15 |KO)|
Re [<K0| HIE |K0>}
Re [(KO| HEY |KO)]

C,

€K

Camyg =1+

for K — K mixing. Using for the matrix elements of the SM Hamiltonian!! [82]
(BY| HSE 72| BY) ~ (1.08 + 1.25i) x 10713 GeV,
(B HEET2|BY) ~ (59 — 2.2) x 10713 GeV, (32)
(KO HEL72| KDY ~ (115 + 1.16i) x 10717 GeV

1Ty obtain a value consistent with the NP analysis of the UTfit collaboration, we also used their input for
computing the matrix elements of the SM AF = 2 Hamiltonian in Eq. (32).
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we can directly read off the bounds on Cy and thus on efyedr, ef5edr and edseds:

—20%x1070 < Re :eg?,eg;: (%)2 < 6.0x 10710, (33)
“30x107% < Im :651363[;: <m;a/%g({2)ev>2 <7.0x 10710 (34)
“30x 1071 < Re :eglgeg{: (m;a/r;géz)evf <15x 1071, (35)
15x10710 < Im :e‘ligeg’f: <m:}%§0/2)e\/>2 <25x 1071, (36)
“1.0%x1072 < Re :eggeg{ <m;a/r;g g Z)e\/)Q <3.0x 10713, (37)
~40x10°% < Im :6‘11263;: (%)2 <25%x 10715, (38)

We see that if efj is of the same order as 6?1‘ these bound are even more stringent than the
ones from By — ptp™ and K;, — ptp~ computed in the last subsection.

For D—D mixing, the SM predictions is not known due to very large hadronic uncertainties.
In order to constrain the NP effects we demand the absence of fine tuning, which means that
the NP contribution, which are calculable short distance contributions, should not exceed the
measured values. Concerning the 2HDM III contribution, there is no tan 8 enhancement and
taking into account the recent analysis of UTfit collaboration [83] we arrive at the following
constraints (for my = 500 GeV):

|elyedr] < 2.0 x 1078, (39)

Note that although these bounds look more stringent than the corresponding AF' = 1 con-
straints, they scale differently with tan S and also involve products of pairs of €};. Therefore,
contrary to the AF = 1 case, in principle all of these limits can be evaded for one of the
couplings by suppressing the other one. Fig. 9 and Fig. 10 show the allowed regions for these
parameters obtained from neutral Higgs contribution to Bd&fﬁd,s, K-K and D-D mixing
(see the Feynman diagram in Fig. 8).

5.3 Lepton-flavor-violating decays: 7= — p~putp=, 7~ — e putp~
and p — e"ete”

In this section, we investigate the constraints that 7= — p~ptpu~, 7= — e puTp~ and
pu — e ete” place on the flavor changing couplings e§2,23, e§1713 and 651,12, respectively.
For these decays, the experimental upper limits [84, 85] are
Blr~ = p ptp] <21 x1078,
Blr~ — e putu™] <2.7x 1078, (40)

Blu~ —eete] <1.0x 10712,
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Figure 9: Allowed regions in the complex e --plane from By , Bd s mixing for tan 5 = 50 and
mpg = 700 GeV (yellow), mgy = 500 GeV (red) and myg = 300 GeV (blue).
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Figure 10: Allowed regions in the complex e},ed|—plane from K — K and D — D mixing for
tan 8 = 50 and mpy = 700 GeV (yellow), mpg = 500 GeV (red) and mgy = 300 GeV (blue).

at 90% CL. Let us consider the processes 7~ — p~pu"p~ and 7= — e~ p ™ which are shown
in Fig. 11. The expressions for the branching-ratio for 7= — e~ "~ can be written as

5

Bl = emwti] = 12(m73r tiiﬁ‘(_ - 822)‘2 ((55?1(2 - ‘8{3‘2> (41)

where, I'; is the total decay width of the 7-lepton. The branching ratios for 7= — e“eTe™
and 4~ — e“eTe” can be obtained by an obvious replacement of masses, indices and total
decays widths. Note that the full expression for general scalar couplings given in Eq. (116)
of the appendix is different for 7= — e~ p"p~ than for 7= — g~ p*p~ and only approaches
a common expression in the limit of large tan 5 and large Higgs masses.

Comparing the type-III 2HDM expression with experiment we obtain the following con-
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Figure 11: Feynman diagrams contributing to 7= — p~p*pu~™ and 7= — e~ pu~ via neutral
Higgs exchange. Note that for 7= — p~puTu~ (or p — e"ete™) two distinct diagrams exist
which come with a relative minus sign due to the exchange of the two fermion lines.
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Figure 12: Allowed regions for the absolute value of 6{3731, 6%3732 and 6{2721 for tan 3 = 30
(yellow), tan 3 = 40 (red) and tan 8 = 50 (blue) from 7= — e pTp~, 77 — p~pTp~ and
pu~ — e~ ete™, respectively. In each plot only one of the elements eff or eﬁci is assumed to be
different from zero.

; 4 ; ¢ _
straints on €y, (assuming €5 = 0)

2 2 a2 (mp/500GeV\? B[~ — e ete]

el + e < (2:8107) ( tan (/50 > 1.0 x 10-12 7~
2 2 a2 (my/500GeV\* BlrT = e putpu]

sl + fen” = (121079 ( tan 3/50 > 2.7 x 10-8 ’ (42)
2 2 a2 (mu/500GeV\* Blr~ — pmpt ]

sl + [ebaf” = (3.7 107%) ( tan 350 > 21x 108

These constraints are also illustrated in Fig. 12 for the experimental limits given in Eq. (40).

6 Loop-contributions to FCNC processes

We observed in the previous section that all elements eglj, efj (with i # j) and €y o) must be
extremely small due to the constraints from tree-level neutral Higgs contributions to FCNC
processes. Furthermore, the constraints on egj and eqi get even more stringent if both of
them are non-zero at the same time due to the bounds from AF = 2 processes. Nevertheless,
the elements €j5 o3 and €f; 55 are still unconstrained because we have no data from neutral
current top decays. In addition, also the flavor-conserving elements elfi are not constrained
from neutral Higgs contributions to FCNC processes.
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Figure 13: Allowed regions in the complex e;‘j—plane from B mixing for tan = 50 and
mpg = 700GeV (yellow), mpg = 500 GeV (red) and mpy = 300 GeV (blue).

In this section, we study the constraints from Higgs mediated loop contributions to FCNC
observables. First, in Sec. 6.1 we consider the AF = 2 processes, By Bs, By By and K —
K mixing and then examine the constraints on €}3 53 and €4 3, from b — s(d)y. Also €%, (e43)
can be constrained from these processes due to the relative tan 8 enhancement compared
to me (my) in the quark-quark-Higgs vertices. In this analysis, we neglect the effects of
the elements eglj, which means that we assume the absence of large accidental cancellations
between different contributions.

Also AF = 0 processes (electric dipole moments) place relevant constraints on the type-IIT
2HDM parameter space, as we will see in Sec 6.6.

6.1 B,—B,, Bj—Bgand K — K mixing

For the charged Higgs contributions to AF = 2 processes we calculated the complete set of
Wilson Coefficients in a general R¢-gauge. The result is given, together with our conventions
for the Hamiltonian, in the appendix. For the QCD evolution we used the NLO running of
the Wilson coefficients of Ref. [74, 75].

For computing the allowed regions in parameter space we used the same procedure as
explained in the last section. The results are shown in Fig. 13, 14 and 15 and can be sum-
marized as follows: Bs—Bjs (Bg—Bg) mixing gives constraints on € (e%) which are of the
order of 1071 (1072) for our typical values of tan 8 and my. In addition, By~ By mixing also
constrains €Y, to a similar extent as Bs—Bjs mixing. The constraints on €%, €% and €} are all
very weak (of order one). Also Kaon mixing gives comparable bounds on Abs [e}s] and the
bounds on Abs [e},] are of the order 1071,

6.2 Radiative B meson decays: b — sv and b — d~y

The radiative B decay b — sv (b — dvy) imposes stringent constraints on the element €4; (€f'3)
while also in this case the constraints on €4, (€4;) are very weak due to the light charm (up)
quark involved (see left diagram in Fig. 16). For these processes both a neutral and a charged
Higgs contribution occur. Since the flavor off-diagonal elements 6%3’23 and 6%1,32 are already
stringently constrained from tree-level decays we neglect the neutral Higgs contribution here.
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Figure 14: Allowed regions in the complex €;;-plane from By mixing for tan 3 = 50 and
mp = 700GeV (yellow), myg = 500 GeV (red) and mpy = 300 GeV (blue).
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Figure 15: Allowed regions in the complex equ—plane from K — K mixing for tan 8 = 50 and
mg = 700GeV (yellow), myg = 500 GeV (red) and my = 300 GeV (blue). The constraints
are practically independent of tan (.

We give the explicit results for the Higgs contributions to the Wilson coefficients governing
b — s(d)v in the appendix.

For B — X, we obtain the constraints on the 2HDM of type I1I parameters €ij by using
B[B — X¢v] from Ref. [86] (BABAR) and Ref. [87, 88] (BELLE). Combined and extrapolated
to a photon energy cut of 1.6 GeV, the HFAG value is [89]

BB = Xallparsaey = (3:43 £0.21 £0.07) x 1077, (43)

In order to estimate the possible size of NP we use the NNLO SM calculation of Ref. [48]
(again for a photon energy cut of 1.6 GeV)

B[B = X4"™ = (3.15 £ 0.23) x 107, (44)

and calculate the ratio exp
Rb_>57 _ B [B — XS’}/”

P B[B— X~PM

(45)
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Figure 16: Left: Feynman diagram contributing to b — sy via a charm-loop containing €53.
The contribution is suppressed, since the small charm mass enters either form the propaga-
tor or from the charged Higgs coupling to the charm and strange quark. Right: Feynman
diagram showing a neutral Higgs box contribution to D — D mixing arising if €5, and €4, are
simultaneously different from zero.
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Figure 17: Allowed regions for €;; from B — X(4)7, obtained by adding the 2o experimental
error and theoretical uncertainty linear for tan 8 = 50 and mpy = 700 GeV (yellow), my =
500 GeV (red) and mpy = 300 GeV (blue).

This leads to a certain range for Rl‘;;f)m. Now, we require that in our leading-order calculation

the ratio

bosy _ BB = Xl
theory B [B s XS'YHSM

(46)

u

ij as

lies within this range. In this way, we obtain the constraints on our model parameters e
illustrated in Fig. 17 and Fig. 18.

The analysis for b — d is performed in an analogous way. In addition we use here the
fact that most of the hadronic uncertainities cancel in the CP-averaged branching ratio for
B — Xgv 190, 91]. The current experimental value of the BABAR collaboration [92, 93] for
the CP averaged branching ratio reads

B[B = X5y gaey = (1AL £0.57) x 107°. (47)

Here we take into account a conservative estimate of the uncertainty coming from the extrapo-
lation in the photon energy cut [94]. For the theory prediction we use the NLL SM predictions
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Figure 18: Allowed regions for € from B — X(4)7, obtained by adding the 2 o experimental
error and theoretical uncertainty linear for tan 5 = 30 and mpy = 700 GeV (yellow), my =
500 GeV (red) and mpy = 300 GeV (blue).

of the CP-averaged branching ratio B(B — X47)|g,>1.6 cev of Ref. [95, 96], which was recently
updated in Ref. [94] and reads

SM , _
B[B = XaVllg s1.6Gev = (1.547930) x 107°. (48)

After defining the ratios Rgfpdw and Rf}zg;’y we continue as in the case of B[B — X,7] in order

to constrain €fs.

As can be seen from Fig.17 and Fig. 18, the constraints that B — X4y enforces on
6153(13) are stronger than the ones from By mixing. Even €33 can be restricted to a rather
small range.

While in the 2HDM of type II b — sy enforces a lower limit on the charged Higgs mass
of 360 GeV [49] this constraint can get weakened in the 2HDM of type III: The off-diagonal
element ek can lead to a destructive interference with the SM (depending on its phase) and
thus reduce the 2HDM contribution. Lighter charged Higgs masses are also constrained from
b — dvy but also this constraint can be avoided by €f;.

6.3 Neutral Higgs box contributions to D — D mixing

Nearly all the loop-induced neutral Higgs contributions to FCNC processes can be neglected
because the elements involved are already stringently constrained from tree-level processes.
However, there is one exception: since the constraints on €4, 5, are particularly weak (because
of the light charm or up quark entering the loop) this can give a sizable effect in D—D mixing
via a neutral Higgs box!? (see Fig. 16). As we will use €35, and €5, in Sec. 7 for explaining
the mentioned deviations from the SM prediction in B — 7v , B — D7v and B — D*1v it
is interesting to ask if all processes can be explained simultaneously without violating D —
D mixing. In principle also charged Higgs contributions to D—D mixing arise but we find that
they are very small compared to the H ,2 contributions. The explicit expression for the Wilson
coefficients can be found in the appendix.

21n principle, one can also get contribution to D° — p* ™ through HY box and penguin contributions if
the elements €3, and €3, are simultaneously non-zero. However, we observe that they are negligible.
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Figure 19:  Allowed _region in the complex €35€57-plane obtained from neutral Higgs box
contributions to D — D mixing for tan 8 = 50 and my = 700 GeV (yellow), my = 500 GeV
(red) and mpy = 300 GeV (blue).

Fig. 19 shows the allowed regions in the complex e3,e57—plane. The constraints are again

obtained by using the recent UTfit [83] analysis for the D—D system.

6.4 Radiative lepton decays : p — ey, 7 — ey and 7 — vy

The bounds on 6‘{3’31 and 653732 from the radiative lepton decays 7 — ey and 7 — py (using
the experimental values given in Table 8) turn out to be significantly weaker than the ones
from 7= — p~ptp” and 77 — e puTp~. Concerning p — ey we expect constraints which
are at least comparable to the ones from p~ — e“e'e™ since u — ey does not involve the
small electron Yukawa coupling entering =~ — e~ eTe™. In fact, using the new MEG results
[97] the constraints from p — ey turn out to be stronger than the ones from u~ — e“ete™
(see Fig. 20). Note that the constraints from p~ — e“ete™ can be avoided if vyef; =~ me
while the leading contribution to y — e vanishes for v,e5, ~ m,,.

‘ Process ‘ Experimental bounds ‘
Blr — uy] | < 4.5x107% [98, 99]
B[t — ev] < 1.1 x 1077 [98]
Bl — ey < 5.7 x 10713 [97]

Table 8: Experimental upper limits on the branching ratios of lepton-flavor violating decays.

In principle, for © — ey a simplified expression for the branching ratio in the large tan 3
limit and v < mpg could also be given. However, due to the large logarithm with a relative
big prefactor (last term of Eq. (96)) this is only a good approximation for very heavy Higgses
and we therefore use the full expression in our numerical analysis.
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Figure 20: Allowed region for ¢, (left plot) and €, (right plot) from p — ey for tan 3 = 30
(yellow), tan 8 = 40 (red) and tan 8 = 50 (blue).

We will return to the radiative lepton decays in Sec. 8 and correlate them to the decays
T =t T, T e putuT and T — eete.
6.5 B, — putp~

Setting egj = 0 only the loop induced charged Higgs contribution to Bs — putu~ (and By —
pt ™) exist. This contribution (see Eq. (24)) gets altered in the presence of non-zero elements
efj, e.g. €5y In the large tan 3 limit, the loop induced result in Eq. (24) is modified to

log (mj;/m7)
m%/mi—1 "

¢
_mp VigVis my, — vueoy

Cbs _ Cbs _
2 2M2,

tan’ 3 (49)

The resulting constraints on €, from By — pu*p~ are shown in Fig. 21 and the ones from

By — ptp~ are found to be weaker.

6.6 Electric dipole moments and anomalous magnetic moments
6.6.1 Charged leptons

The same diagrams which contribute to the radiative lepton decays for ¢; # £ also affect
the electric dipole moments and the anomalous magnetic moments of leptons for ¢; = £ (see
Fig. 22). For this reason we use the same conventions as in Eq. (93) and express the EDMs of

leptons in terms of the coefficients Cif% of the magnetic dipole operators O Lf Pé in the following

way (using that for flavor conserving transitions c%zi = c%gi*)
_ lil;
dy, = 2my, Im [cR ] . (50)

In SM there is no contribution to the EDMs of leptons at the one-loop level. This is also
true in the 2HDM of type II, because the Wilson coefficients are purely real since the phases
of the PMNS matrix drop out in the charged Higgs contributions after summing over the
massless neutrinos. However, in a 2HDM of type III, one can have neutral Higgs mediated
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Figure 21: Left: Allowed regions in the complex engplane from By, — ptpu~ for tan 8 = 50
and my = 700 GeV (yellow), myg = 500 GeV (red) and my = 300 GeV (blue). Right:
Allowed regions in the engmH plane from By — p™p~ for tan 3 = 30 (yellow), tan 3 = 40
(red), tan 8 = 50 (blue) and real values of €5,.

HY H*

Figure 22: Left: Feynman diagram contributing to EDMs (for ¢ = f) or LFV decays (for
i # f) involving a neutral-Higgs boson. Right: Feynman diagram contributing to EDMs (for
i = f) or LFV decays (for ¢ # f) involving a charged-Higgs boson.

contributions to EDMs. Note that there is no charged Higgs contribution to the charged
lepton EDMs also in the 2HDM of type III because the Wilson coefficients are purely real
in this case. Comparing the expression for the EDMs in the 2HDM of type III with the
experimental upper bounds on de, d,, and d, (see Table 9), one can constrain the parameters

efj (or combination of them) if they are complex.
We observe that while d. enforces strong constraints on the products Im [e{5€5;] and
Im [6{2651] (see Fig. 23), d,, and d, are not capable of placing good constraints on our model

parameters.

Similarly, following the conventions in Eq. (93), the anomalous magnetic moments (AMMs)

can be written in terms of C%Zi as (e > 0)

2
4dmj

ap, = ——Re [cgﬂ . (51)

‘ e

The discrepancy between experiment and the SM prediction for the muon magnetic moment
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| EpMs | \d.| | \d,| | d. | \d| |
| Bounds (eem) | 10.5 x 10> [100] | 1.9 x 107 [101] | € [-2.5, 0.8] x 1077 [102] | 2.0 x 107>° [103] |

Table 9: Experimental (upper) bounds on electric dipole moments.
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Figure 23: Allowed regions in the Im [e‘igegl]—m g and Im [6{2651]—mH planes from neutral
Higgs contribution to d. for tan = 50 (blue), tan 8 = 40 (red) and tan § = 30 (yellow). The
constraints on Im [e{; ] are not sizable.

a, = (g —2)/2 is [104, 105, 106, 107, 108]

Aagy = af™ —ai™ ~ (3+£1) x 1077, (52)
In the 2HDM of type II, the sum of the neutral and charged Higgs mediated diagrams gives
the following contribution to a,, (for tan 8 = 50 and my = 500 GeV):

2HDMII —13
a, ~2.7x107, (53)
which is interfering constructively with the SM. Anyway, it can be seen that the effect is
orders of magnitude smaller than the actual sensitivity and it even gets smaller for higher
Higgs masses.

Concerning the 2HDM of type III the discrepancy between experiment and the SM pre-
diction given in Eq. (52) could be explained but only with severe fine-tuning. One would
need to allow for very large values of €5, which would not only violate 't Hooft’s naturalness
criterion but also enhance By, — "~ by orders of magnitude above the experimental limit.
If one would try to explain the anomaly using €5 and €4, (€f, and €b;) one would violate the
bounds from 7= — p~utu” (W — e"eTe or p — ey) as illustrated in Fig. 24.

In conclusion, neither a type-II nor a type-III 2HDM can give a sizable effect in a, and
both models are not capable of explaining the deviation from the SM.
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Figure 24: Left: Allowed region in the e5;—€5, plane from Aa, for real values of €5, €5, and
tan 8 = 50, myg = 700 GeV (yellow), mpy = 500 GeV (red) and mpy = 300 GeV (blue).
Right: Allowed region in engm u plane from Aa, for real values of 652 and tan 5 = 50 (blue),
tan 5 = 40 (red) and tan § = 30 (yellow).

6.6.2 Electric dipole moment of the neutron

The neutron electric dipole moment d,, can also provide constraints on the parameters egj. In

the SM, there is no contribution to d,, at the 1-loop level since the coefficients are real. This
is also true in the type-II 2HDM.

Using the theory estimate of Ref. [109], which is based on the QCD sum-rules calculations
of Refs. [110, 111, 112, 113], the neutron EDM can be written as

dp = (1£0.5) [1.4(dg — 0.25d,,) + 1.1e(d) + 0.5d9)] , (54)

where, d,, (dg) is the EDM of the up (down) quark and di (@ define the corresponding chro-
moelectric dipole moments which stem from the chromomagnetic dipole operator

O;f((ﬁ) = mg,qrot" T Prryq:GY, - (55)
Similar to EDMs, the (chromo) electric dipole moments of quarks are given as

d((ﬁ) = 2mg, Im [c%?(ig)] . (56)
Using the upper limit on d,, (see Table 9) we can constrain some of ¢, (for egj = 0) as shown
in Fig. 25 and 26. These constraints are obtained for the conservative case of assuming a
prefactor of 0.5 in Eq. (54). The explicit expressions for c%q(ig) stemming from neutral and

charged Higgs contributions to d((lf ) are relegated to the appendix. Note that for the neutron

EDM we did not include QCD corrections.

7 Tree-level charged current processes

In this section we study the constraints from processes which are mediated in the SM by a tree-
level W exchange and which receive additional contributions from charged Higgs exchange in
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Figure 25: Allowed regions in the Im [6%1,22]4” u planes from the electric dipole moment of
the neutron for tan 5 = 50 (blue), tan 8 = 40 (red) and tan § = 30 (yellow). We observe that
dp, can not provide good constraints on the real parts of €f; 5.

2HDMs. We study purely leptonic meson decays, semileptonic meson decays and tau lepton
decays. Concerning B meson decays we consider B — v, B — D7v and B — D*rv which
are, as outlined in the introduction, very interesting in the light of the observed deviation
from the SM. We consider in addition D) — v, D) — pv, K(7) — ev, K(7) — pv and
7 — K(m)v and look for violation of lepton flavor universality via K(w) — ev/K(mw) — pv
and 7 — K (m)v/K(n) — pv. Even though no deviations from the SM have been observed in
these channels, they put relevant constraints on the parameter space of the type-I11 2HDM.

For purely leptonic decays of a psudoscalar meson M (and also tau decays to mesons) to
a lepton ¢; and a neutrino v (which is not detected) the SM prediction is given by

m2 2
2 4 Ml
(1 - > (14027 ) - (57)

MM ~2 2 2
BSM [M — gjy] = gGFijT]Wf]W‘Vdei
M

where 5}];[]5; stands for channel dependent electromagnetic corrections (see Table 10), m s is
the mass of the meson involved and m,,, (mg,) refers to the mass of its constituent up (down)
type quark. The expression for 7 — Mwv differers by the exchange of the meson masses (life

time) with the tau masses (life time) and by a factor of 1/2 stemming from spin averaging.

NP via scalar operators can be included very easily:

9 upd; 4 wpd; £ |2
my, C -C
Byp = Bsu |1+ A L (58)
(s +ma,) me, Coly
with ey
Cehy' ™ =4GpVi,a,/V2. (59)

All quantities in Eq. (58) are understood to be at the meson scale my;. Like for By —
pt ™, the SM Wilson coefficient is renormalization scale independent and the scalar Wilson
coeflicients evolve in the same way as the quark masses.
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Figure 26: Allowed regions in the complex € 3;-planes from d,, for tan 8 = 50 and mpy =
700 GeV (yellow), mpy = 500 GeV (red) and mpy = 300 GeV (blue). We see that the absolute
value of €4, can only be large if it is aligned to Vi, i.e. Arg[V,,] = Argle};] &7 which is very
important when we consider later B — Tv.

In the 2HDM III the Wilson coefficients sz 44 and C’;f 4l are given by (neglecting
terms which are not tan 8 enhanced)

upd; £; tan?/ Mg, e, & £x
Cr T T, ' v > ki)
H k=1
60
d ¢ tanﬁ 3 o
Ufdi X5 YA
-3y, ( zk;)-
k=1

Note that sz diti g only proportional to one power of tan § while Clzé,f Gk s proportional
to tan? 3. The Hamiltonian governing M — ljv (1 — Mv) and the Wilson coefficients for
general scalar interactions are given in the appendix. It is important to keep in mind that,
since we are dealing with lepton flavour-violating terms, we must sum over the neutrinos in
the final state because the neutrmo 1s not detected. Note that we did not include the PMNS
matrix in both Cuf 4 and Cuf 4 for simplifying the expressions, since it cancels in the
final expression after summing over the neutrinos.

For semileptonic meson decays B — D7v and B — D*rv , which have a three-body
final state, both the SM prediction and the inclusion of NP is more complicated, as will be
discussed in subsection 7.1.1.

7.1 Tauonic charged B meson decays: B —- 7v , B — D7tv and B —
D*Tv

As discussed in the introduction the BABAR collaboration performed an analysis of the
semileptonic B decays B — D7v and B — D*7v using the full available data set [8, 9]. They
find for the ratios

R(D™) = B(B — D™ 7v)/B(B — DWiv), (61)
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Ratio Experimental value SM prediction 51;]6;

B[K — ev] /BIK — pv] | (2.488£0.013) x 107° | (2.472£0.001) x 107> | —0.0378 £ 0.0004 [61]

BIK — uv] /B[r — wv] | (63.5540.11) x 1072 | (63.48 £1.37) x 1072 | —0.0070 4 0.0018 [114]

B[K — ev] /Blr —ev] | (1.28540.008) x 10~ | (1.270 £0.027) x 10~* | —0.0070 =+ 0.0018 [114]

Blr — ev] /Br — pr] | (1.230 +0.004) x 107* 1.234 x 1074 —3.85% [115]

B[r — Kv]/B[r — mv] | (6.46 £0.10) x 102 (6.56 + 0.16) x 1072 | 0.0003 + 0.0044 [116]

Br — nv]/B[r — uv] | (10.83 £0.06) x 1072 10.87 x 1072 +1.2% [115]

Blr — Kv]/B[K — pv] | (1.102 4 0.016) x 1072 1.11 x 1072 +2.0% [115]

Table 10: Experimental values, SM predictions and electromagnetic corrections (in the SM) for
the ratios of charged current processes. The experimental values are obtained by adding the
errors of the individual branching ratios given in Ref. [72] in quadrature. The SM predictions
include the uncertainties from 5%\? and (if involved) as well as the uncertainties due to CKM
factors and decay constants. As always, we add the theory error linear to the experimental
ones.

(with ¢ = e, ) the following results:

R(D) = 0.440 4 0.058 + 0.042, (62)
R(D*) = 0.332 + 0.024 + 0.018. (63)

Here the first error is statistical and the second one is systematic. Comparing these measure-
ments to the SM predictions

Rsm(D) = 0.297 £0.017, (64)
Rsm(D*) = 0.252 4 0.003, (65)

we see that there is a discrepancy of 2.0 for R(D) and 2.70 for R(D*). For the theory
predictions we used the updated results of [8], which rely on the calculations of Refs. [55, 117]
based on the results of Refs. [118, 119, 120, 121, 122]. The measurements of both ratios R(D)
and R(D*) exceed the SM prediction, and combining them gives a 3.4 0 deviation from the
SM [8, 9] expectation.

This evidence for the violation of lepton flavour universality in B — D7v and B — D*71v is
further supported by the measurement of B — 7v by BABAR [10, 11] and BELLE [12].
Until recently, all measurements of B — 7v (the hadronic tag and the leptonic tag both from
BABAR and BELLE) were significantly above the SM prediction. However, the latest BELLE
result for the hadronic tag [13] of B[B — 7v] = (0.7215-27 +0.11) x 10~ is in agreement with
the SM prediction [14]:

Bsm[B — mv] = (0.796T5:083) x 107 (66)
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Figure 27: Feynman diagram showing a charged Higgs contributing to B — 7v and B —
D™ 7y involving the flavour changing parameters e3; and €3, which affect B — 7v and
B — D® 7y, respectively.

Averaging all measurements, one obtains the branching ratio
BeuplB — Tv] = (1.15£0.23) x 1074, (67)
which now disagrees with the SM prediction by 1.6 0 using V,; from the global fit [14].

Combining R(D) , R(D*) and B — 7v , we have evidence for violation of lepton flavor
universality. Assuming that these deviations from the SM are not statistical fluctuations or
underestimated theoretical or systematic uncertainties, it is interesting to ask which model of
new physics can explain the measured values [16, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132).

71.1 B — D7v and B — D*Ttv

Let us first consider the semileptonic decays B — D7v and B — D*rv . Here the Wilson
coefficients C%" and C™*'" affect B — Drv and B — D*7v in the following way [54, 55, 133]:

2
ch,T + ch,T ch,T + ch,q—
R(D) =Rsm(D) [ 1+ 1.5% l% TR A O (68)
SM Csar
cb, zb,T ch,q— . Czb’T 2
R(D*) = Ren(D*) | 1+0.12R [ B L | 40,05 | 2— L (69)
SM SM

For our analysis we add the experimental errors in quadrature and the theoretical uncertainty
linear on top of this. There are also efficiency corrections to R(D) due to the BABAR
detector [8] which are important in the case of large contributions from the scalar Wilson
coefficients C;s’LT (i.e. if one wants to explain R(D) with destructive interference with the SM
contribution). As shown in Ref. [123], these corrections can be effectively taken into account
by multiplying the quadratic term in CEIT’LT of Eq. (68) by an approximate factor of 1.5 (not

included in Eq. (68)).

Since €45 contributes to C}C%b’T (the same Wilson coefficient generated in the type-11 2HDM)
it cannot simultaneously explain R(D) and R(D*) . Therefore, we are left with €Y,, which
contributes to B — D7v and B — D*7rv as shown in Fig. 27. In the left frame of Fig. 28 we
see the allowed region in the complex e},-plane, which gives the correct values for R(D) and
R(D*) within the 10 uncertainties for tan 5 = 50 and my = 500 GeV, and the middle and
the right frames correspond to the allowed regions on €%; from B — v .
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Figure 28: Left: Allowed regions in the complex e§y,—plane from R(D) (blue) and
R(D*) (yellow) for tan 8 = 50 and mpy = 500 GeV. Middle: Allowed regions in the com-
plex €§;—plane combining the constraints from B — 7v (1 o (yellow) and 2 o (blue)) and
neutron EDM (green) for tan 8 = 50 and mpy = 500 GeV. Right: Allowed regions in the
mp—€4; plane from B — 7v for real values of €, and tan 5 = 50 (green), tan 5 = 30 (orange).

Process Experimental value (bound) SM prediction
B[Ds — 0] (5.43 +0.31) x 102 (5.367025) x 1072
B[D, — uv (5.90 +0.33) x 1073 (5.5010:25) x 1073
B[D — 1v] <1.2x1073 (1.10 £ 0.06) x 1073
B[D — uv] (3.82+£0.33) x 1074 (4.157037) x 1074

Table 11: Experimental values (upper bounds) and SM predictions for Dy — v and D) —
v processes. The SM prediction for Dy — pv mode takes into account the EM correction
effects of +1.0% [134, 135, 140].

71.2 B — TtV

In principle, B — 7v can be explained either by using eg3 (as in 2HDMs with MFV) or by
€4, (or by a combination of both of them). However, 4, alone cannot explain the deviation
from the SM without fine tuning, while €, is capable of doing this [16].

B — 7v can also be used to constrain €{;, €3 and €43 as illustrated in Fig. 29. In order to
obtain these constraints, we assumed that all other relevant elements (€35 and €}) are zero.

7.2 D) — mv and Dy — pv

Previously, there were some indications for NP in Dy — 7v [134, 135, 136]. However, using
the new experimental values for B[Ds — 7v] (see Table 11) and the improved lattice determi-
nation for the decay constant fp, [137, 138] we find agreement between the SM predictions
and experiment. Nevertheless, it is interesting to consider the constraints on the 2HDM of
type III parameter space. Charged Higgs contributions to D) — 7v and D) — pv have
been investigated in Ref. [58, 59, 60, 139].
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Figure 29: Left: Allowed regions in the mpy—€; plane from B — 7v for real values of €y
and tan § = 30 (yellow), tan 8 = 40 (red), tan 5 = 50 (blue). Right: Allowed regions in the
complex e, €5: and e45-planes from B — 7v for my = 700 GeV (yellow), my = 500 GeV
(red) and mpy = 300 GeV (blue).

The most important constraints on the 2HDM of type III parameter space are the ones
on €4, (shown in Fig. 30). Dy — 7v and D(,) — pv constrains Re [e3,] while the constraints
on Im [efy] are very weak. In principle, also the ratio Dy — 7v/D() — pv could be
used for constraining deviations from lepton flavor universality, but the constraints from
K(r) —» ev/K(r) = pv and 7 — K(m)v/K(w) — pv turn out to be stronger.

73 K — pv/m — pv and K — ev/m — ev

The ratio Rk, r,, = B[K — ] /B[r — lv] ({ = e, p) is useful for constraining €4y, efl and
652 because the ratio of the decay constants fx/fr is known more precisely than the single
decay constants [61].

For obtaining the experimental values we add the errors of the individual branching ratios
in quadrature and the SM values take into account the electromagnetic correction. The
corresponding values are given in Table. 10. The errors are due to the combined uncertainties
in fx/fr, the CKM elements and the EM corrections. We obtained the value for V4 from
K — mlv (which is much less sensitive to charged Higgs contributions than K — uv/m — uv)
and V4 by exploiting CKM unitarity.

Fig. 32 illustrates the allowed regions for egz by combining the constraints from K —
pv/m — pv and K — ev/m — ev. Like in D(y) — 7v and D(,) — pv the constraints are on
the real part of €%, while the constraints on the imaginary part are very weak. Concerning

¢, and €%, the constraints from K(7) — ev/K(m) — pv will turn out to be more stringent
my

£
but the latter ones can be avoided in the limit _—- = Si (see Fig. 31 and Fig. 33).
4

J i

74 1T—> Kv/T — v

The 7 is the only lepton which is heavy enough to decay into hadrons. The ratio B[t — Kv|/
B [r — 7] can be considered for putting constraints on €%, €4, and €.



7 Tree-level charged current processes 119
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Figure 30: Left: Allowed region in the mp—ej,—plane (for real values of €4,) obtained by
combining the constraints from D — pur and Dy — pv for tan 8 = 30 (yellow), tan 8 = 40
(red) and tan 8 = 50 (blue). While the upper bound on €, comes from Ds — uv, D — uv
is more constraining for negative values of €y,. The bounds on the imaginary part of €3, are
very weak. The constraints from Dy — 7v turn out to be comparable (but a bit weaker) while
the ones from D — 7v are weak.

The experimental and theoretical values for this ratio are given in Table. 10. We observe
that the constraints from D° — p*u~ and D— Dmixing on €% and K; — ptp~ on €f,
are too stringent so that no sizable effects stemming from these elements are possible. Also

concerning Ef?’, as we will see in the following sections, the constraints from 7 — wv/m — uv

'
will be stronger but again the latter ones can be avoided in the MFV limit = i (see

my . €x
Fig. 32).

J JJj

7.5 Tests for lepton flavour universality: K(nw) — ev/K(w) — pv and
T — K(r)v/K(m) = pv

Ky (K — (lv) decays (¢ = e,pu) are helicity suppressed in the SM and suffers from large
theoretical uncertainties due to the decay constants. However, considering the ratio Rg,, =
B[K — ev] /B[K — pv] the dependence on decay constants drops out.

In the 2HDM of type II the charged Higgs contributions to K(mw) — ev/K(m) — pv and
T — K(m)v/K(m) — pv drop out. This is also true in the 2HDM of type III (for efj = 0 with
i # j) as long as the MFV-like relation €5, /m,=¢{, /m. is not violated.

751 K —ev/K — pv and ®# — ev/m — pv

K — ev/K — pv is a very precise test of lepton flavor universality [141] (see table. 10).
Including NP entering via scalar operators modifies this ratio according to Eq. (58).

We find strong constraints on 652 (which affect the coupling to the muon) and the con-
straints on efl (where the coupling of the electron is involved) are even more stringent. Like
for Dy — 7v and D, — pv the constraints are much better for the real part of efj than
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Figure 31: Allowed regions in the meefufplane from K — pv/m — pv and K — ev/m —

ev for real values of 651,1’2 and tan 8 = 30 (yellow), tan 8 = 40 (red) and tan 8 = 50 (blue). The
constraints are weaker than the ones from K (7)) — ev/K(w) — pv and 7 — K(m)v/K(mw) —

v but cannot be avoided assuming the MFV limit (s = Si),

¢ 53

the imaginary part. Note that these constraints are obtained assuming that only one element
efj is non-zero. In the case €5,/m,=¢%, /m. where lepton flavor universality is restored no
constraints can be obtained.

Alternatively, the ratio m — ev/m — pv can test lepton flavor universality. We find that
the constraints from m — ev/m — pv are comparable with the ones from K — ev/K — pv.

Our results are illustrated in Fig. 33.

752 7— Kv/K — pv and 7 — wv/m — pv

The ratios 7 — Kv/K — pv and 7 — 7v/m — pv are very similar to K (w) — ev/K(m) — pv:
all dependencies on decay constants and CKM elements drop out and they are only sensitive
to NP which violates lepton-flavour universality. The corresponding experimental and the
theoretical values for these ratios are given in Table. 10.

We find that the constraints on efg from T — mv/m — pv are stronger than the ones from
T — Kv/K — pv and they are shown in Fig. 34.

8 Upper limits and correlation for LFV processes

In Sec. 5 we found that the neutral current lepton decays 7= — p~p™p~ and 77 — e~
give more stringent bounds on the elements e§2723 and e§1713 than the radiative decays 7 — uy
and 7 — ey. Also the LFV neutral meson decays Bsqy — 7, Bsg — Te, Bgq — pe
cannot be arbitrarily large in the type-III 2HDM due to the constraints from By g — ptp~
and 77 — puoputuT, 7T — e putuT, pm — e ete” (assuming again the absence of large
cancellations)!3.

Bsee e.g. Ref. [142, 143, 144] for an analysis of NP in B, 4 — Tu.
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Figure 32: Left: Allowed regions in the meefz,’fplane from 7 — Kv/T — mv. Right: Allowed
regions in the mz ¢4 plane obtained by combining the constraints from K — uv/m — uv
and K — ev/m — ev for real values of €¢J,. In both plots tan 3 = 30 (yellow), tan 3 = 40
(red) and tan S = 50 (blue).

Therefore, in this section we study the upper limits on B, g — 7, Bsq — Te, Bs g — pe
and the correlation among 7= — pu ptuT, 7 — e putuT, pm — eete” and T — uy,
T — e, b — e in the type-11T 2HDM.

8.1 Neutral meson decays: B; 4 — T, B; g — T7e and B; 4 — pe

In the SM (with massless neutrinos) the branching ratios for these decays vanish. Also in

the 2HDM of type II these decays are not possible (even beyond tree-level). In the type-III

2HDM, these decay modes are generated in the presence of flavor-violating terms efj and

there exists even a tree-level neutral Higgs contribution to Bs — Kfﬁj_ (Bg — EZTWJ_) if also
€333 7 0 (ef5 31 # 0).

‘ Observables ‘ B(Bs — pe) ‘ B(Bg — pe) ‘ B(Bg — ) ‘ B(Bg — Te) ‘
| Upper bounds | 2.0 x 1077 [145] | 6.4 x 1078 [145] | 2.2 x 1077 [146] | 2.8 x 1075 [146] |

Table 12: Upper limits (90 % CL) on the branching ratios of the lepton flavor-violating B
meson decays.

In the large tan S limit, v < mp and neglecting the smaller lepton mass, the corresponding
expressions for these branching ratios take the simple form

2
el +

4
B [Bq — f;rfjf] ~ Niqj <M> 2 [‘egi efj

2
d 12
m /500 GeV 51 } ’ (70)
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Figure 33: Allowed regions in the m erf]-fplane obtained by combining the constraints from
K — ev/K — pv and m — ev/m — pv for real values of efj and tan 3 = 30 (yellow),

tan 3 = 40 (red) and tan 8 = 50 (blue). The constraints on ¢/, (affecting the electron coupling)

are more stringent than the constraints on ef2 (which affect the muon coupling).

with ¢ = d, s, N](-Ii = Niqj and

fB
NS ~ 21 x107—2B
21 * Y 0229GeV

N, ~ 1.6 x 107381 __
21 * 0196 Gev (71)

B
NE oo = 1.7 x 107 ——22
31,32 Y 0229GeV
fBy

N& .~ 1.2 x 107 .
31,32 * 0106 Gev

0

ij

experimentally both B, — ¢;¢> and B, — ¢; ¢ are combined we compute the average
q ] q ]

Note that the expressions for the branching ratios are not symmetric in €;; and eﬁi. Since

BIB, = tity) = (B|By— (47| +B B, — 747]) /2.

In order to obtain the upper limits we insert the biggest allowed values for Abs {e?f].
For 6%3732 (eﬁl3731) we use the biggest allowed absolute value compatible with the bounds from
Bs — ptp~ (By — ptp~). As we can see from Fig. 4 (Fig. 5) the absolute value for €4,
(¢4,) can be bigger than ey (¢¢3). For the leptonic parameters e§3731 and 653’32 we use the
constraints obtained from 7= — pu~putu~, 77 — et~ (see Sec. 5.3)

500 GeV \ 2
‘egl,l?)‘ < 42x107° (mH/—e> ;

tan 3/50

500 GeV 2
) 103 L 9
3.1 10 ( tan 3/50 ’ (72)

IN

0
‘632,23‘
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Figure 34: Allowed regions in the meefz,’fplane from 7 — wv/m — pv for real values of ef3
and tan 8 = 30 (yellow), tan 8 = 40 (red), tan 5 = 50 (blue). The bounds on the imaginary
parts are very weak.

while for 6‘{2’21 we use the combined constraints from u~ — e"ete™ and from u — ey (see
Sec. 6.4).

Our results are shown in Fig. 35 (see Table 12 for the current experimental limits). We
see that for bigger Higgs masses larger values for the branching ratios are possible.

8.2 Radiative lepton decays: 7 — uvy, 7 — ey and p — e~.

In Sec. 5.3 and Sec. 6.4 we found that the radiative lepton decays 7 — py and 7 — ey give
less stringent bounds on the parameters 653732 and 6‘{3’31 than the processes 77 — p putu~
and 7= — e~ ptp~ while the constraints on 6?2,21 from 1 — ey are stronger than the ones
from p= —e"etTe .

There are however interesting correlations between these decays in the type-11I1 2HDM. In
the large tan 8 limit and for v < mpy we obtain the following relation

2 2
¢ ¢
B[& —>ff’}/] O ‘mei/v_efi 2 (Eif +4‘Efi >
B~ rere|  %m e P (le 12 e B) (73)
] et 4T (1)

As already noted in Sec. 6.4, we stress that this formula is only a good approximation for very
heavy Higgs due to the large logarithmic term in the expression for ¢; — £;v (see Eq. (96)).
Therefore, the relation in Eq. (73) gets modified for lighter Higgs masses as shown in Fig. 36.
We see that, as expected, for very large Higgs masses the ratios approach
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Figure 35: Upper limits on the branching ratios of the lepton flavor violating B meson decays
as a function of my for tan 8 = 30 (yellow), tan 8 = 40 (red) and tan 5 = 50 (blue).

Zal

em 1,

2

B6; = 6607

%0

247 mZ_

em

for eff #0,
(74)

2

f 37

Bt = 6054 -
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where, we assumed that e§ j / efi = my; /my, and that only one flavor changing element efci, eff

is different from zero.
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Figure 36: Left: % as a function of my assuming that only €/, (red) or €5, (blue)

Blr—uy]
Blr=—p~ptp~]
only eb; (red) or €4, (blue) is different from zero for tan 3 = 50.

For scenarios in which both €53 and €4, (€{, and €b;) are different from zero the 2HDM of type
III predicts the ratio B[TFE;/L@V} ( B[M?[ifﬂe—}) to be within the yellow region. These
ratios are to a good approximation independent of tan 8 for tan 3 = 20. The behavior of

Blr—ey]
Blr——e ut

is different from zero for tan 8 = 50. Right: as a function of my assuming that

= (not shown here) is very similar to the case of 3 — 2 transitions.

9 Conclusions

In this article we studied in detail the flavor phenomenology of a 2HDM with general Yukawa
couplings. Motivated by the fact that the 2HDM of type III is the decoupling limit of the
MSSM we assumed a MSSM-like Higgs potential. In our analysis we proceeded in several
steps:

1. We gave order of magnitude constraints on the parameters egj’»é from ’t Hooft’s natu-
ralness criterion and found that all couplings except € 3; and €5 95 should be much
smaller than one.

2. Considering tree-level FCNC processes we constrained the elements eglj (i # j) and €fy
from neutral meson decays to muons and from AF = 2 processes, finding that they are
tiny for the values of my and tan 8 under investigation (assuming efj = 0). In the
lepton sector the absolute values of all flavor off-diagonal elements efj were constrained

from 77 — p ptpT, 7" — e putpu” and T — e eTe” to be very small.

3. After having found that the off-diagonal elements eglj must be very small due to con-
straints from tree-level contributions to FCNC processes we considered charged Higgs
contributions to K —K , B;— B, , Bj— By mixing and b — s(d)y arising at the one-loop
level. In these contributions the so far unconstrained elements €} 5; (and also €3,) enter
for the first time and we found that, setting eglj = 0 (with i # j), €{3 o3 should be rather
small. Furthermore, the electric dipole moment of the neutron and of the charged lep-

¢ respectively. Respecting all other constraints,

tons constrain €}, €5,, €5, €5; and €ij>

no sizable effect in a, is possible.

4. Keeping in mind the constraints from the previous steps, we considered the possible
effects in charged current processes. Here we found that tests for lepton flavor univer-
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Observable ‘ Results
Neutral meson decays to muons
B, — utu~ ledy| <3.0x 1077, |eds] <1.9%x 1077, |ef,| <2.0x 1072
By — ptp~ led)| < 1.1 %1077, |efy] <9.4 x 1076
Ky, — ptp |edi] < 1.6 x 107°, |ef,| < 1.6 x 1076
D — yutp~ led] < 3.0 x 1072 Je¥y| < 3.0 x 1072
AF = 2 processes
B, — B, mixing |edseds| < 9.2 x 10710, |edy] < 0.18, |ely| < 1.7, |els] < 0.7
B,— By mixing |edgedi]| < 3.9 x 1071, |ehy] < 0.2, |els] < 0.04, |y < 1.9
K — K mixing ledyedi| < 1.0 x 10712, |ey| < 0.25, |ely] < 0.14
D — D mixing letyedx] < 2.0 x 1078, |edyedr] < 0.02
Radiative B decays
b— sy e | < 0.024, |e%| < 0.55
b— dvy ety < 7.0 x 1073

Radiative lepton decays

[ — ey el < 175107, [efy | <22 x 107, 55 < 229l — < 86
T — ey 0.19 < =9 < 0.35
T =y 0.19 < % <0.35
Neural current lepton decays
po —eete” el | <23 %1073
T et |elg]| <4.2x 1073
T =t }653732} <3.7x1073

Table 13: Results obtained in the type-1I1 2HDM from various processes for tan § = 50 and
myg = 500 GeV.

sality constrain the differences efi /my, — eg j /myg,. Most importantly, the unconstrained
elements €5, and €3, enter the processes B — 7v and B — D® 7y directly (without
CKM suppression) and can remove the tension between experiment and theory predic-
tion observed in the SM simultaneously.

5. Finally we gave upper limits on the lepton flavor violating neutral B meson decays in
the 2HDM of type III and correlated the radiative lepton decays to 7= — pu~putu™,
T = e putpm and pT — e ete.

In Table 13 and 14 we list all processes which have been under consideration and quote
the constraints placed on the parameters egf for our benchmark point my = 500 GeV and
tan g = 50.

In summary, combining the constraints from Table 13 and 14 the following bounds on the
absolute values of the parameters egj and efj (for our benchmark point with myg = 500 GeV
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Observable Results
Charged current processes
B — 1y 2.7 x 1073 < |efy| < 2.0 x 1072, |ely| < 6.0 x 1072

B — Drv & B — D*rv

0.43 < |ef,| < 0.74

DS%TV&D(S)—},U,V

[Re [e5,]| <02

D — 1v

K — ule)v/m — ple)v

|Re [e4,]] < 1.0 x 1073

K(n) = ev/K(mw) — pv

|Re [¢f1]] < 2.0 x 1076, |Re [efy]| < 5.0x 1074

T — K(m)v/K(m) = v

—4.0 x 1072 < Re [¢f3] < 2.0 x 1072

T— Kv/T — v

|efs] < 0.14

EDMs and anomalous magnetic moments

de |Im [ef5€5, ]| < 2.5 x 1078, |Im [efgef; || < 2.5 x 107°

d, -

d, _

dy, ITm [€}4]] < 2.2 x 1072, [Im [e%]]| < 1.1 x 1071, Argle¥,] = Arg[Vip] £ 7

a, Deviation from the SM cannot be explained
LVF B meson decays

Bs = T B[Bs — ] < 2.0 x 1077

By — pe B[Bs — pe] < 9.2 x 10710

Bs — Te B[Bs — 1e] < 2.8 x 1077

Bg — T B[Bg — T <2.1 x 1078

By — pe B[Bg — pe] <9.2 x 107

By — Te B[Bg — 1e] <2.8x 1078

Table 14: Results obtained in the type-III 2HDM from various processes for tan 5 = 50 and

my = 500 GeV.

and tan § = 50) are obtained:

34x107* 3.0x107%2 7.0x1073

3.0x1072 14x107' 24 x107?

20x1072 74x107' 55x 107! y

1.3x107% 1.6x107% 94x10°6

1.6x107% 26x107* 20x107° (75)
1.1x107% 3.0x107° 1.4x10°2 y

29x1076 1.7x107% 42x10°3

22x107% 61x107% 3.7x1073

42x107% 37x107% 1.0 x 1072

ij
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These bounds hold in the absence of large cancellations between different contributions. Note
that in Eq. (75) we applied the naturalness bounds in case they were stronger than the
experimental limits.

It is interesting that B — 7v , B — D7v and B — D*7rv can be explained simultane-
ously in the 2HDM of type III without violating bounds from other observables and without
significant fine-tuning. It remains to be seen if these tensions with the SM remain when
updated experimental results and improved theory predictions will be available in the future.
In order to further test the model and constrain the parameters €, (e;) we propose to study
HO A° — te (H°, A — tu) at the LHC.
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10 Appendix

In this appendix, we collect the Wilson coefficients (to the relevant precision at the matching
scale) which are needed for the calculation of b — s(d)y, AF = 2 processes (i.e. neutral
meson mixing), leptonic neutral meson decays (AF = 1 processes), B — 7v , B — D1v |
B — D*tv, Dy — lvg, K(m) — lvy, 7 — K (m)v, LFV radiative lepton transitions, EDMs of
charged leptons and neutron, as well as the AMM of the muon. In addition, we give general
expressions for some branching ratios, the explicit form of the loop functions entering our
results and summarize the input parameters used in our analysis in tabular form.

10.1 Loop functions

We give the explicit form of the loop functions entering our results. In the limit of vanishing
external momentum the one and two-point Passarino Veltman functions [147] are defined as

1672 dk 1
AO (m2) = T,Uflid f d ]{?2 — m2) )
(76)
1672 A’k 1
B 2, 2\ : 4—d ,
o (mima) = =i T ) )

where p is the renormalization scale.

The loop functions Cy (three-point) and Dy (four-point) are defined in analogy to By, but
with three and four propagators, respectively. Evaluating these loop functions yields (with
d=4—2¢)

1 2
Ag (m?) = m? 1+g—'yE+ln(4ﬂ')+ln<%>] +0(¢e),

2 2
1 [ (77)
1 m? In (W) —m2In (W)
By (m?,m3) = 1—|———7E—|—ln(47r)+ Lo 5 22 1 0(e),
my —my

By (mi,m3) — Bo (mi, m3)

Co (m3,m3,m}) = o
m? mz 2
m1m2 In m—% + m3m2 In m3 + m3m1 In m_% (78)
- (m% m3) (m% —m?) (m3 —m3) ,
2 9y o
Dy (m%,mg,m3’m4) _ (ml,mQ,mng - Z(;(ml’mz,n%) |
3 4

Here, the one and the two-point loop functions Ag, By are UV-divergent and ¢ is the UV-
regulator.

At various places also the functions Cy and Dy appear, which have, compared to Cy and
Dy, an additional factor k? in the numerator of the integrand. These functions read

CQ (mim%am%) = BO (m%7m%) + m% CO (m%7m%7m§) ;

D2 (m%’m%’mgami) = CO (m%,m%,mg) + m421 DO (m%’m%amgami) . (79)
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10.2 Radiative b — s(d)vy decays

Concering new physics contributions to b — s(d)y, we work in leading logarithmic (LL)
precision in this paper. As mentioned before, we use these processes to constrain certain
elements €;;. For this purpose, we put the e ;—couplings (which are already constrained to be
very Small) to zero. When also neglecting the mass of the strange quark and further neglecting
operators with mass dimension higher than six, we obtain the same effective Hamiltonian as
in the SM, reading for b — sv (see e.g. Ref. [47]).

o AGr
Hle)?f 7= \/— V;fbvts Z CiO;. (80)

For b — dvy the CKM structure is slightly more complicated (see e.g. Ref. [95]). In our
approximation only the Wilson coefficients C7 and Cy of the operators
e _ Js
v . O
1672 e 87 16n2
get new physics contributions. They are induced through charged Higgs bosons propagating
in the loop (neutral Higgs boson exchange leads to power suppressed contributions which

we neglect). For b — sv the new physics contributions read (with y; = m%j /m%,+ and
At = Vip Vi§)

O7 =

(81)

2 3
CNP = v b RLH*% FLRHi C? xy (45)
! ey =1 My,
7j=1
0 .
+ Z FRLHi* LHi C7,YY(y]) (82)
ujdo mg )
uj
0 .
oNP RLHi* RHi C8,XY(yJ)
8 - )\ ujdg —_—
t mb My
2 3 0
+ v Z PRLH* I«RLHjE 08 vy (5)
At ui m2
J=1 Uj

while for b — dvy the label dy and A\; = Vj;, V5 have to be replaced by di and A\, = Vi V3,
respectively. The functions C% XV ngy, Cg yy and ngy were introduced in Ref. [47];
their explicit form reads

C?,Xy(yj) =

)

y; | 57 +8y; — 3+ (6y; —4)Iny,
12 (yj — 1)3

[ 2
yi | —yi+4y; —3—2Iny;
Cg,XY(yj) = ZJ ’ (y _ 1)3
J

)

0 N Y —895’ + 3y32 +12y; — 7+ (18y]2~ — 12yj) In y;
7yy(W5) = 79 (y, — 1)t )
j

0 N — 21
C8,YY(yJ) 24 (yj - 1)4

Yj _—y;’ +6yj2» —3y; — 2 — 6y; lnyj]
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In Eq. (82) we retained the contributions from internal up- and charm-quarks, although these
contributions are subleading.

10.3 Wilson coefficients for AF = 2 processes

The extended Higgs sector of our 2HDM of type-III also leads to extra contributions to
AF = 2 processes (Bs, By, Kaon and D mixing) which can be matched onto the effective
Hamiltonian

5 3
7_[?}5:2 _ Z C;0; + Z C; 03- + h.c., (84)
j=1 J=1

where the operators read in the case of By mixing

01 = (§a’y”PLba) (Eg’yHPng) , 02 = (§aPLba) (§5PL65) ,
O3 = (§aPLb5) (§5PLba) , Oy = (§aPLba) (§5PRb5) R (85)
Os = (§aPLb5) (§5PRba) .

a and 3 are color indices and the primed operators can be obtained from Oy 3 3 by interchang-
ing L and R. Similarly, the corresponding operator bases for By, Kaon and D mixing follow
from Eq. (85) through simple adjustment of the indices.

In the following subsections we present the contributions to these Wilson coefficients
arising from: 1.) one-loop box diagrams with charged Higgs boson exchange; 2.) tree-level
contributions induced by neutral Higgs boson exchange; 3.) box diagrams involving neutral
Higgs bosons, relevant in the case of D mixing.

10.3.1 Charged Higgs box contributions

For definiteness, let us consider Bg mixing. The corresponding Wilson coefficients for B; and
Kaon mixing follow by a simple adjustment of the indices. We have performed our calculation
in a general R¢ gauge. The non-vanishing Wilson coefficients from pure charged Higgs boxes
are given by

Ch =

3
RL HEx1RL H¥* wRL HExRL HE 2 2 2 2
kz Fujdg Fujdg ugda Fukdg D2 mUj’muk?mHi7mHi )

Cy =

MMy, M

LR HEY*«p"RL HE¥ LR H¥*«RL H* 2
J ukru]'dg Fu]'dg Fukdg Fukdg DO

2 2 2
muj,mukamH;tamH;t )

(86)

3
k=
Cy — & LR Hi*PRL H* RL Hi*PLR HiD 2 2 2 2
4= 1672 kz My Moy, ujda ujds ugds upds 0\ MMy My Mgt s Mg |
3
k=

LR H*xpnLR H¥+RL H*x"RL H* 2 2 2 2
Fujd2 *I‘ujd3 Fude *I‘ukd3 Do My My, M, Mips ) -
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The sum of the charged Higgs—W* and charged Higgs—Goldstone-boson boxes is given by

2 3
95 * RLH*TRL HE%
¢ = 3272 ij—1 MM VigVisTugag” Ty

2 2 2 2 2 2 2 2 2
4M;, Do <MW,mHi,muj,mUk> — Dy (MW,mHi,muj,mUk)

X
4MZ,

1 95 3 LRH**xpLRH* (&7)
— ) * *
Ca= 1672 2 jkzz1 (V]ngQF“JdQ Ditds
Oy (§M2 mgm2) — Oy <qum2m2> +m2 Co (EM2,,m?.,m?,)

x 2
MW

We stress here, that we want to use By mixing only to constrain certain €;;—couplings, because
the eglj—quantities are already contrained to be very small. We therefore only took systemati-
cally into account those contributions to the Wilson coefficients which stay different from zero
in the limit e‘iij — 0. At first sight, the Wilson coefficient Cy seems to be gauge dependent.
However, when using the unitarity of the CKM matrix (entering the expression for Cy both,
explicitly and implicitly through the I'—quantities), we find that the {—dependent terms are
always proportional to an element efj, which we put to zero in our analysis. Also note that
our result agrees with the one of Ref. [148]. The only difference is that we neglected gauge de-
pendent terms corresponding to higher dimensional operators. The Wilson coefficients of the
primed operators can be obtained by interchanging L and R in the corresponding unprimed
ones.

10.3.2 Tree-level H,g contribution

The Wilson coefficients from neutral Higgs mediated tree-level contributions to Bs mixing
read:

3
HO -1 LR H%%\
k — k
CQ - Z 2m2 (F dzda ) (88)
k=1 HY
3
o —1 (FLRH;;)Q
2 - 2m2 0 daods
k=1 Hy
HO LA LRHC _LRH%
C k _ F k k
4 - m2 0 dads dzd2
k=1 'H

The corresponding coefficients for By, Kaon and D mixing follow by a careful adjustment of
the indices.

. . Y HY .
Note that in the limit of large tan 8 and m4 > v, C, * and C; ¥ vanish and we only get

. . HY
a contribution to C} *.
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10.3.3 Neutral Higgs box contribution to D mixing

The Wilson coefficients resulting from the neutral Higgs box contribution to D mixing are
given as

-1 3 LR HY » LRH) _LRH} » LR H 9 9 9 9
C1 = 2 E : E : FUQUjl Fuluh Fu?“m Ful“m Dy m“h ’ mujQ Mg M ’
18 ot ke . "2
J1,J2=1 R1,k2=

—1 5 LRH L LRHO* LRHO* LRHO
C: = 3272 Z Z munmuyz Uy U1 F“Wn F“Jzul F“Wm
J1,52=1k1,k2=1
2 2 2
x D ,m m m
0 ( qu Ujo? Hgl, H182> )
C3 = 05

LRH *LRHY x LR H) LR H},
Cy = 1671' § g Moy, T”Lu]2 Uy U1 ruguj1 Fumug Fuluj2
J1:J2=1 k1,k2=1

2 2 2 2
X DO (mujl s Tfluj2 y mHO 7TnHo ) s (89)

LR H)) * LR HY _LRH) _LRH] * 2 2 2
Cs = 12871-2 z : § : Fun ul “31 u2 Fulujz FUQUJQ Dy qu My mHgl ’ mH22 ‘
J1.d2=1k1,k2=1

The indices j1, jo describe the internal up-type quarks while ki, ks stand for neutral Higgs
indices (H°, h°, A®). Moreover, the primed Wilson coefficients can be obtained from above
by the replacement L <+ R in the couplings.

10.4 Semileptonic and leptonic meson decays and tau decays: B — (D™)rv,
Dy — tv,, K(m) = fv, and 7 — K (7)v processes

These processes are governed by the effective Hamiltonian

Heff _ Cujcdl,é Oujcdl,ﬁj +Cde,,€ Oujcd,,ﬁj —{—Clgfdiljoyzfdilj +hee. (90)
with the operators defined as
d; 0 B _
ng\c/{ Y =upy,Prd; Uy, Py,
O;;fdi’ej = Z_LfPRdl' f_jPLIJ, (91)
Ozfdhej = Z_LfPLdZ' ZjPLV .

Here, for tauonic B meson decays ¢; = 7, d; = b and uy = u (uy = ¢) for B = 7v (B —
Drv and B — D*rv ). For Dy — Ljv (D — {jv), uy = ¢ and d; = s (d), for 7 — K(m)v,
lj=71,uf =vand d; =s (d) and for K(m) — {;v we have {; = p,e, uf = v and d; = s (d).
The Wilson coefficients in 2HDM of type III at the matching scale read

u fdz £ 4GF

Cq — Vi.d.
v2 e
updil; _ —1 L pmt SLRHE
Cr =5 Tya g™ 7 (92)
H=*
C“fdhzj _ -1 [RLH*® PLRH* %

L - 2 urd; vl
M+ f J
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10.5 Lepton flavour violation (LFV): ¢; — £4v processes

The radiative lepton decays ¢; — €4y (¢ = e, or 7) are induced by one-loop penguin diagrams
with internal neutral or charged Higgs bosons. The result for the one-loop decay amplitude
can be written as a tree-level matrix element of the effective Hamiltonian

.

Z i ~lsl; Ll i
Hepr=cp Op ' +¢/ 0/, (93)
where c% b and céf % are the effective Wilson coefficients of the magnetic dipole operators
Cpl; -
ORf(L) = mfinguVPR(L)giij . (94)
With these conventions, the branching ratio for the radiative lepton decays ¢; — £ reads
5
my, £5l; £5l;
Blti— 7] = 7= (1" P+ 1) - 95
6t = o (161 (95)
The neutral Higgs (ng = HY h% A%) penguin contribution to cf'% b s given by
it 3 —e LRH) LR Hx | Uy LR Hx L LRH]
RHO Pt 1927T2m2 Zféj Lil mf L5 Zf Lil;

¢ e (96)
My; \LRH? \LRH} 0
00 ’“Fez 9+ 61In 5 ,
my, mHO

and ch % can be obtained from cR * by interchanging L and R. Similarly, for the charged
Higgs penguin contributions we find
At L= € O LRH*LRH*x
°L H 384m2m H;t j=1 viti vily ’ o7)
At My € Z LRHi LRH*«
R H* 1/ Zf :

my, 384m2m?2, . =

10.6 Wilson coefficients for EDMs and the anomalous magnetic moment
of the muon

10.6.1 Wilson coefficients for EDMs of charged leptons and the anomalous mag-
netic moment of the muon

As in the case of the LFV processes discussed in the previous section, we again have both
neutral and charged Higgs penguin contributions to the flavor conserving radiative transitions
l; — £;y. The corresponding effective Hamiltonian is obtained from Eq. (93) and Eq. (94) by
identifying ¢; with £;. The contribution to the effective Wilson coefficients related to neutral
Higgs bosons (propagating in the loop) reads

3
0:0; —€ LRHY% LR HY? LRHY* LR HY
‘R 'my = ) 1927212 [Fu T AT T T " (98)
koi=1 HY
5J k
2
0 0 my.
- Jrj’;Hkrj’;H 946 [ —2 ,
mg mHg

0il; 0ilix
cr, ZH](; = cgp’ HO > (99)
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while the charged Higgs penguin contribution leads to the (real) coefficients

0i0; 0:4; LR Hi LR H*«

c =c = — 100)

L H* — ‘R pg= Z vil; (
38472 mHi j= vi

10.6.2 Wilson coefficients for neutron EDM

In this section we consider the transitions d — dy(g) and u — uy(g) (denoted by dilg ) and d¢ ))
which are the building blocks for the electric dipole moment d,, of the neutron. As we are only
interested in a rough estimate of d,, we do not include QCD corrections to these building
blocks. In this approximation the latter can be described by the effective Hamiltonian

HI = g doy, Prd F* -+ ¢ mg doy, Prd F*™ +
c%ffgmd do ., PRT*d G*" + CCLleg mq doy, PLT*d G + (d — u).  (101)

. . . dd,uu dd,uu . . .
The effective Wilson coefficients CRIL and CRT,q 8gain receive neutral and charged Higgs

contributions. The neutral contributions of the Wilson coefficients (involved in dég)) read
dd,H? 5 eQq LRH%* LR H? LRHY% LR H?
cr= ) 2,2 [Fdd Paa, " +Taqa " T (102)
— 19214m
k,j=1 Hy
2
0 my.
LRH PLRH 9+ 6In 2dj ’
mq m H,S
3
dd,HY Js LRHY LR H} LRHY% LR H}
CRg = Z 19272m2. [Pddj Laa, "+ Tqa " Taa (103)
kvjzl Hk:
2
Md; \LRH? _LRHY Mg,
Pl it R Y ,
dd,HY dd,HY * . . N . .
and cL( ) = Cp(g) The charged Higgs penguin contributions to the Wilson coefficients

(involved in dglg )) read

3 m2 m2
4. H* _ —¢ LRH*«LRH* ~0 u; LR Htx LR H* ~0 uj
g =) ———— T, Ta.,” Ciyy|—=—]+T4 Ly Ciyvy | =
—1 167T muj J J ’ m s m
]:

H+ H+

(104)

)

2
m
LR Hi LR aEMu; o uy
+F P C77XY P
my mi .

H+ H+

+ 3 —q + £ m2 e £ m;
dd,H s LR H*% LRH 0 LRH LRH 0 Uy
c = E — | I'g. ry; C. +TI, T, C,
Rg i—1 1672 m%j i 8YY m2 8YY | 2

2
LRHi LRHi u; My,
+L T m; C8 xy <—m2 J ) , (105)

H+
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and Cdd HE cdd,Hi*
L(9) R,(9)
The analogous expressions for ¢, (g) , which are involved in the expressions of d,)’ are
given as
3 2 2
wu,HY —eQy pLRHRLRHY o My, pLRHSRLRHY ~o muj
°r - Z 1672 m?2 u; uu; 8,YY + uju Uju 8YY
, T mz m? m2.,
7,k=1 J H H
2
LRHY LRH)Mu; My,
+luu; *Tuju " —Cg xy 5 , (106)
My M0

3 2 2
wu,HY —Js LR HYp LR HY 0 My, LR LR H} 0 My
“Rg Z 1672 maj ut ut 8YY | )2 + Luju uju 8YY | 2

jk=1 Hy) Hy)
2
LRHY LRH) My,
+Fuu] kru]u UJ Cg,XY ;J ) (107)
My Mo
3
Cl}t%u,Hi _ Z 1152_26 _ [5FLRHi FLRHi _|_5FLRHi*IwLRHi
m=m
-1
+ +m m?ﬁ
—ro gt —Lq2m [ —2 ], (108)
J My, Myt
+ 3 g +, + + +
wu, H s LRH LRH LRH * LR H
Co’ = i F —I—F T
Ry ; 19272 m?2,, L v du
2
ms
R L R P (109)
dju m 2
U H+

. HY wu, HO % uuH uuH *
Again, we have c: 7k = ¢ B and ¢
gaim, L.(9) R,(9) “L.(9) “R.(g)

are given in Eq. (83).

. The loop functions C?¢ vy (¥5)

10.7 Leptonic decays of neutral mesons

The effective Hamiltonian H.ry which includes the full set of operators for the general decays
PS(qpq;) — €405 (PS refers to the pseudo-scalar meson) reads

HAF 1 _ G M [CQszOqu1+CQfQ1OQsz+CQsz0QfQ1+CQfQ1OQsz+ prlmed] +hC

eff
(110)
where the operators (together with their primed counterparts) are defined as
OY" = (gryPra) Usy*ea), O™ = (GyPrai) (Le7"v5La) |
qfqz — (GuPra) (Fer"0a),  OF% = (g5, Pras) Ey"v5la) 111)
Oqfql = (q7Pragi) (pla), Oqfql = (qrPrai) (Iysla),
qfql = (¢rPrai) (Lpla), qfql = (4rPrai) (Lpysla) -
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Making use of the hadronic matrix elements
(Olgryuysail PS) = ifpsPpg (112)

M
Mg, + my;)

)

Olgrysa:| PS) = —ifPs(

one obtains the branching ratio

G4 M4
B[PS(qfq,) —>€ 2 ] 3o 5W

s (e i)

(m(If + qu’) (mlA + mlB)

(2%, 2%) Mps fpg (mu, +ml3) TPS
2

_ (Cif(h' B C:ff%’) « [1 (x4 — HCB)Q]

X

2

M]%S (CQsz _ C;QfQi> . ] e
. (M, — ) <C‘f1/fqz _ C‘ijl> x [1—(za+2zp)?] },
(me + in)(mlA + mlB) (mlA + mlB)
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(113)
where the function f(z;,2;) and the ratio x; are defined as [149]

fxiyzj) = \/1 =2z + )+ (@i —xj)?, = —Mpis .

10.7.1 Wilson coefficients

o Tree level neutral Higgs contributions to PS(qrq;) — Ejf; in the 2HDM of type II1

The non-vanishing Wilson coefficients of the operators in Eq. (110) induced through
tree-level neutral Higgs (H,g = HY K AY) exchange read

2
; T 1 LR HY RLHY\ RLHY?
cUs — <r E4T ) rRL A,
S QG%‘M‘%V k;§1 m?;[() Ll lla qfqi
k
Y% _ U i L (pLRHY L RLH{\ [RLH]
P 2G2 M2 m2 Ll ZBZA qrqi
Py (114)
2
! T 1 LRH? RL HY LRH?
CHr = ) (T + Ty ™) Ty
S 2 02 2 3% 2 q5q
2GL My, 1= M0 Bla Bla 74i
ol _ 2 3.1 [LRHY  RLHY\ [LRH]
P 2G%~M5V kzl m2 0 lpla ZBKA qa54qi
=1y
k

e Loop-induced charged Higgs contributions to By — upu~ in the 2HDM of type II

As mentioned earlier, we also include in our analysis the 2HDM of type II loop-induced
charged Higgs contributions to Bs — p*pu~ from Ref. [52]:

log (mj; /m?)
m2 /m? — 1

my VipVis My

cy = oY =- TV an’ , (115)

where my and m; are understood to be running masses evaluated at the matching scale.
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10.8 Flavour-changing lepton decays
The general expressions for the branching ratios of 7= — e~ p~ and 7= — p~pup~ have
the form

2 2

C 0 C 0
3 FfeRHk?*FLRH}C FeL:%Hk?*FLRH}C
Blr~ weptp]= T 5 s + 5 e
LRHY LRHY |? LRHY \LRHY |?
Pre *Dup " Ler *Dup "
2 2
mHO mHO
. k (116)
2 2
m5 1 FLRH,Q*PLRH,Q FLRH,Q*PLRH,Q
B [7_, R ,Ui,UJr,Uai] . T 29 T o +9 uT o
2 2
12(87)°T, 2 Mo Mo
pLRH LR} 2 pLRHY LRI} 2
+ T o + uT o
2 2
Mo Mo

Note that the (not explicitly denoted) sum over the Higgses must be performed before taking
the various absolute values in Eq. (116).

10.9 Input parameters

In this section we list our input parameters in tabular form.

‘ Parameter ‘ Value (GeV) ‘ ‘ Parameter ‘ Value
Tu(2 GeV) | 0.00219 =+ 0.00015 [150] My 80.40 GeV
a(2 GeV) | 0.00467 = 0.00020 |150] My, 91.19 GeV
Ts(2 GeV) | 0.095 £ 0.006 [150] s (Mz) 0.119
Te(1me) 1.28 £ 0.04 [151] Gr 1.16637 x 105 GeV 2
mp(mp) 4.243 +0.043 [89] Qem ! 137
(me) | 165.80 £ 0.54 £ 0.72 [14] v 174.10 GeV

Table 15: Left: Input values for the quark masses used in our article. In the numerical
analysis, we used the NNLO expressions in «; for the running (see for example Ref. [152])
in order to obtain the quark-mass values at higher scales. Right: Electroweak parameters
and the strong coupling constant used in our analysis. Concerning the running of «; we used
NNLO expressions (given for example in Ref. [72]).
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‘ Parameter ‘ Value ‘ Meson massses | Values (GeV) |
fo./f5 | 1.221 +0.010 £ 0.033 [14] Mgt (50, 5.279
o 218.9 £ 11.3 MeV [139] mp. 5.367
. 249 £ 2 £ 5 MeV [14] bt (Do) 1.870 (1.865)
o/ fo 1.188 £ 0.025 [138] mp, 1.969
e 156.3 £ 0.3 £ 1.9 MoV [14] Mt (00, 0.494 (0.498)
i/ 1.193 = 0.005 [150] Mt () 0.140 (0.135)

Table 16: Left: Values for decay constants of Ref. [14] obtained by averaging the lattice results
of Ref. [138, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165]. Right: Meson
masses according to the particle data group (see online update of Ref. [72]).
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