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ABSTRACT 

 

CLINICAL DATA ANALYSIS FOR 

PREDICTION OF URINARY INCONTINENCE 

 

by 

 

Suzan Arslanturk 

 

Advisor: Mohammad-Reza Siadat, Ph.D. 

It is common for clinical data in survey trials to be incomplete and inconsistent 

for several reasons. One objective of this study is to identify and eliminate inconsistent 

data as an important data mining preprocessing step. We define three types of incomplete 

data: missing data due to skip pattern (SPMD), undetermined missing data (UMD) and 

genuine missing data (GMD). Identifying the type of missing data is another important 

objective as all missing data types cannot be treated the same. This goal cannot be 

achieved manually on large data of complex surveys since each subject should be 

processed individually. Experiments are conducted on a longitudinal questionnaire 

(MESA). MESA dataset was collected between 1983-1990 to create a set of questions 

that can reliably predict future Urinary Incontinence (UI). The analyses are accomplished 

in a mathematical framework by exploiting graph theoretic structure inherent in the 

questionnaire. An undirected graph is built using mutually inconsistent responses as well 

as its complement. The responses not in the largest maximal clique of complement graph 

are considered inconsistent. Further, all potential paths in questionnaire’s graph are 

considered, based on responses of subjects, to identify each type of incomplete data. 

Once SPMD is determined, MESA data is stratified to divide the data into stratums with 
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potentially different UI risk factors. Rough set imputation is applied, on the GMD portion 

of the incomplete data. ReliefF attribute selection technique and logistic regression is 

used to determine the potential predictive factors with their corresponding prediction 

probabilities forming the continence index on the preprocessed MESA data. The 

incomplete data analysis results show 15.4% GMD, 9.8% SPMD, 12.9% UMD and 

0.021% inconsistent data. Proposed preprocessing methods are prerequisites for any data 

mining of clinical survey data. The predictive index can be applied for immediate 

screening and for predicting future urinary incontinence in older woman of comparable 

demographics. 
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                                                         CHAPTER ONE 

 

INTRODUCTION 

 

 

 

                                                  1.1. Urinary Incontinence 

Urinary incontinence (UI) is a condition in which involuntary urine leakage is 

demonstrable. UI is commonly seen on older women 60 years and older and has 

tremendous social and economic costs. It is one of the chronic health conditions that have 

the greatest effect on a woman’s health related quality of life. One in three adult women 

in the United States suffers from UI. Estimates vary, but in general twice as many women 

suffer from UI than men. One meta-analysis reported ranges of UI prevalence from 4.5% 

to 44% (mean 23.5%) in women and 4.6% to 24% (mean 14.5%) in men. 

UI is not just a medical problem; it also has adverse social and psychological 

effects on sufferers and their families by contributing to social isolation and depression. 

UI also leads to dependency and is a significant factor in nursing home admissions. The 

economic burden on individuals, families and communities is considerable. Since average 

life expectancy is increasing and population estimates project that the percentage of 

women over 65 years old will continue to grow through 2030, the negative implications 

of UI are likely to increase. 

There are three types of urinary incontinence: stress, urge and mixed 

incontinence. Stress incontinence is due essentially to insufficient strength of the pelvic 

floor muscles to prevent the passage of urine. It can be caused by coughing, sneezing or 
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movements that put pressure into bladder. Urge incontinence is involuntary loss of urine 

occurring from no apparent reason while suddenly feeling the need or urge to urinate. 

This may occur because of damage to nerves of the bladder, the nervous system, or 

muscles themselves. Mixed incontinence, on the other hand, is a combination of both 

stress incontinence and urge incontinence. Incontinence varies in degree of severity from 

several drops to complete bladder emptying.  It may occur daily, or many times a day, or 

only occasionally, perhaps once a month. It may be fairly predictable (low grade stress 

incontinence) or totally unpredictable (urge incontinence).     

A scientifically developed and tested predictive UI index would help identify 

women who are most likely to develop UI and permit widespread prevention or early 

treatment. Already identified risk factors include aging, onset during pregnancy tract 

symptoms, parity, higher body mass index, and functional and cognitive impairment. 

However, those risk factors were extracted to predict post prostatectomy continence in 

men after catheter removal by evaluating clinical parameters. This was the only study 

reported in the literature.  

Studies with prospective or longitudinal designs are required to establish the 

temporal ordering between risk factors and the onset of UI. Furthermore, longitudinal 

study is needed to determine the role of natural history or medical interventions or factors 

in inducing UI remission. 

 

                                                      1.2. MESA Dataset 

The Medical Epidemiological and Social Aspects of Aging (MESA) 

epidemiology study was conducted with National Institutes of Aging (NIA) funding from 
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1983-1990. This longitudinal population based study consisted of three detailed 

household interviews at 1-2 year intervals. The baseline of Medical, Epidemiological and 

Social Aspects of Aging (MESA) collected in 1983, is a questionnaire containing 825 

questions and 1956 respondents, of which the majority, 1154 are female. The female are 

seniors age 60 years and older. (1,099 subjects age 60-69 years, 589 age 70-79 years, and 

268 age 80 and up; 59% women; 91% white). The respondents were interviewed for 

approximately two hours at home at baseline (1983-1984 interviews) and then re-

interviewed at 1-2 year intervals. Re-interview response rates were 69% and 72% in those 

subjects that were still living. The respondents are interviewed on a variety of health 

related questions that may play a role in the prevalence of urinary incontinence (UI). 

Although, the survey focused on the epidemiology of UI, many other attributes were also 

assessed including medical history, mobility, cognitive function, current health, and 

quality of life.  

One challenge of MESA data is that, it has a considerable amount of incomplete 

data (37.1%). The incomplete data rates for the first, second and third follow-up are, 

65.1%, 43.5%, 64.1%, respectively. There is also, noise and multi-colinearity in the 

dataset, in which the percentages are unknown at this point.  

 

1.3. Problem Statement 

The first step is to preprocess MESA by identifying each type of incomplete data 

and treating them separately.  Next, determining the risk factors that play an active role in 

the prevalence of UI and generating a predictive index that helps to more readily identify 

women who are most likely to develop UI are the major steps of this study.  
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                                                          1.4 Related Work  

A common challenge of analyzing clinical survey data is to deal with incomplete and 

inconsistent data. A variety of methods have been developed to enable such analysis of 

survey data to deal with incomplete data (also referred as missing values) such as 

imputation, partial deletion, interpolation (Junninen et al. 2004) and maximum likelihood 

estimation (Beale et al. 1975). Imputation is the most commonly used among the above 

methods (Heijden et al. 2006; Zhang et al. 2006; Penny et al. 2006). Besides these 

techniques, an important approach to deal with missing data is to distinguish between 

different types of missing values so that each group can be treated differently. Another 

important challenge is to determine and eliminate the inconsistent data, which is 

considered as noise. Once the inconsistencies are eliminated and the incomplete data are 

distinguished into subcategories the data is prepared for further analysis with better 

representation and quality. 

We define the types of inconsistent and incomplete data here starting with the 

definition of inconsistent data. The answer to a branching question determines which 

alternative set of following questions to be presented to a respondent. When more than 

one alternative set of questions are answered, it causes inconsistent data. Therefore, 

inconsistent data occur when subjects do not follow the questionnaire instructions by 

answering questions that they were not supposed to answer (i.e. questions that they were 

supposed to skip). Answers given by a non-smoker to an exclusive set of questions that 

are specific to smoker respondents are an example of inconsistent data. 
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Data can be incomplete for several reasons: A question can be left unanswered 

because it is not applicable to a subject. For example, a non-smoking respondent is not 

supposed to answer a question about the ‘number of cigarettes smoked per day’ since the 

questionnaire instructs such a person to skip this question. We refer to this type of 

missing data that cause data incompleteness as missing data caused by skip patterns 

(SPMD).  Most data analysts handle SPMDs by recoding the data. If we have a y/n 

question on smoking and a subsequent question of number of cigarettes smoked per day 

for smokers, recoding would consist of imputing zero for non-smokers in the latter item. 

The approach described in this study alleviates the labor of manually detecting and 

recoding each SPMD.  A question that is applicable to a subject can be left unanswered 

out of negligence, discomfort or other reasons. We refer to this type of missing data as 

genuine missing data (GMD). If a branching question is not answered along with any of 

the alternative set of following questions it causes undetermined missing data (UMD). 

For example, leaving female surgery related questions as well as all the alternative 

questions entirely unanswered along with their branching question that asks whether the 

person had a female surgery causes UMD. 

As mentioned before, one common approach to resolve incomplete data is to use 

imputation techniques. There have been several imputation techniques in the literature for 

filling the missing information in a dataset. One way is to ignore all the entries that have 

missing values and only focus on a subset of the data with known entries. Another way is 

to replace the missing entries with a statistical model, usually distributional assumptions 

such as multinomial normal distribution or iterated linear regression. However, the 
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critical assumption here is that, there is a linear relationship among the variables. Even if 

there is a non-linear relationship, a different model can still be modelled, but the main 

point here is to decide what type of a model to choose. A badly chosen model can even 

show worse results than the ignorance strategy. The basic idea in imputation should be to 

estimate the missing values by minimizing a loss function.  

Penny et al. has studied three different imputation methods to confront missing 

data in a trauma injury dataset (Penny et al. 2006). The data is collected at a UK hospital 

and the injury severity related measure that is associated with patient death is missing for 

12% of the patients. Three different imputation methods (hot-deck imputation, predictive 

model based imputation and propensity score imputation) are used. The imputed datasets 

are classified by artificial neural network and logistic regression. Results show that the 

complete case analysis (no imputation) shows slightly more accurate results (0.89) than 

the imputation methods (hot-deck imputation: 0.86, predictive model based imputation: 

0.86, propensity score imputation: 0.85). This paper has used different imputation 

techniques to compare the effectiveness of the imputation methods with complete case 

analysis. However, they did not consider different types of incomplete data (UMD, 

SPMD, GMD) in their analysis. 

Another possible solution to impute the incomplete data is to automatically trace 

the generated graph for each subject and impute the incomplete data of a particular 

subject with values of another subject whose pattern shows the highest similarity with 

that subject’s pattern (similarity based imputation). In similarity based imputation, a 

similarity model between subjects with incomplete data (missing data) is generated, 
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constructing a similarity matrix of subjects and the nearest undifferentiated subject sets of 

each subject to impute the missing data iteratively. This approach will improve the 

prediction performance on small sample sizes.  

Imputation methods based on rough set theory have been proposed in the 

literature and shown to be effective. In rough set theory, data is stored in an information 

table. Let 𝐼 = (𝑈, 𝐴) be an information system, where 𝑈 be a set of objects and 𝐴 be a 

non-empty set of attributes such that 𝑎: 𝑈 → 𝑉𝑎. With any 𝑃 ⊆ 𝐴 there is an equivalence 

relation 𝐼𝑁𝐷(𝑃):  𝐼𝑁𝐷(𝑃) = {(𝑥, 𝑦) ∈ 𝑈2|∀𝑎 ∈ 𝑃, 𝑎(𝑥) = 𝑎(𝑦)}. Let 𝑋 ⊆ 𝑈 represent 

the attribute subset 𝑃; and an arbitrary set of objects comprising 𝑋, and we wish to 

express this subset of objects using the equivalence classes induced by attribute subset 𝑃. 

Since 𝑋 cannot be expressed exactly (because there may cases when some objects will be 

included and/or excluded) the lower bounds 𝑃𝑋 = {𝑥|[𝑥]𝑃 ⊆ 𝑋} and upper bounds. 

𝑃𝑋 = {𝑥|[𝑥]𝑃 ∩ 𝑋 ≠ ∅} of 𝑋 need to be defined. 

Hu et al. have used a rough set theory based approach in order to impute the 

missing data. The data is represented in a “condition”  “decision” format where the 

“condition” are the attributes and the “decision” is the class label (Hu et al. 2014). They 

proposed an approach where the table is rearranged in such a way where the attribute 

with the missing values always becomes the decision attribute, and decision rules can be 

deducted from the attributes excluding the object with the missing attribute. Then the 

decision rules deducted can be used to replace the missing values. They have introduced 

the concept of roughness of rearrangement. The roughness of rearrangement on concept 

𝑌 can be defined as the following:  𝛽(𝒯𝑌) =
|𝐴(𝑌)−𝐴(𝑌)|

𝐴(𝑌)
 . Once the roughness of 
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rearrangements are all calculated and sorted in the descending order they end up with a 

list of attributes 𝑎𝑘1
….𝑎𝑘𝑛

. The roughness of an attribute determines the relationship 

between the attributes and the decision. If the relationship is strong, the decision rules 

derived from the rough set theory can be used to determine the value of the missing 

items; otherwise the missing values can be imputed by using other approaches. Optimal 

logical flow indicates the logical relationships among the attributes in an information 

table under a group of selected concepts. The last attribute in the ordered list, 𝑎𝑘𝑛
, which 

yields the smallest roughness value, is the optimal logic attribute, i.e. the attribute with 

the strongest attribute decision relation. If the optimal logic attribute’s roughness is less 

than a predetermined threshold value, then decision rules can be derived and the missing 

values can be imputed based on the decision rules. Otherwise, any other traditional 

method can be used. 

 Erden et al. have used rough set theory in order to calculate the accuracy of the 

imputation and to determine decision rules in a real life data from the US government 

website including the traffic accidents that took place in the USA in 2011 according to 

their occurrence reason in order to discover useful knowledge from the dataset (Erden et 

al. 2014). The dataset contains a collection of data about people involved in car accidents 

with fatalities, the final injuries, and alcohol/drugs tests. The decision parameter is 

chosen to be the fatalities in the accidents. The condition variable, fatalities, is discretized 

taking either “1” or “2” as “1” denoting 1 person and “2” denoting 2 or more people.  The 

Expectation Maximization algorithm is used to impute the data. The lower and upper 

approximations for decision variables 𝑑 = 1 and 𝑑 = 2 are calculated. The accuracy, 𝛼, 
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of the approximations are calculated (𝛼(𝑑, 𝑚) =  𝐴(𝑋) 𝐴(𝑋)⁄ , 𝑤ℎ𝑒𝑟𝑒 𝑚 = 1 𝑜𝑟 2) after 

imputation. We have also used a rough set based approach in order to impute the 

incomplete data in our dataset. However, the imputation is not applied on the entire set of 

incomplete data, but only on the GMDs in order to minimize the misinformation 

imputation may lead.  

Heijden et al. used a clinical data of 398 subjects that have missing values to 

evaluate different imputation techniques (missing indicator method, single imputation of 

unconditional and conditional mean, and multiple imputations). Their aim is to diagnose 

the presence or absence of pulmonary embolism (Heijden et al. 2006). By using 

multivariable logistic regression analysis, a diagnostic prediction model is trained. 

Finally, the area under the ROC curve for complete case analysis, missing-indicator 

method, single imputation of unconditional and conditional mean, and multiple 

imputations are 0.794, 0.813, 0.775, 0.792, and 0.787, respectively. In conclusion, the 

risk factors obtained from the data based on the complete case analysis were more biased 

than imputation techniques studied in this paper. Single imputation methods perform well 

because of the low overall number of missing values.  

 Zhang et al. has studied a clustering based imputation technique for data 

preprocessing (Zhang 2006). The dataset is first divided into clusters excluding the 

instances with missing values. Each instance with missing values is then assigned to the 

most similar cluster. The missing values are then replaced with values generated using 

kernel based methods: Deterministic Imputation (DI) and Random Imputation (SI). 

Simulation data is used to evaluate the effectiveness of the strategy under missing rates of 
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5%, 10% and 40%. The results show that in most cases filling the missing values by the 

proposed clustering strategy lead to lower error rate than without using it in a clustering 

task. The SI shows better results than DI when the dataset is divided into clusters. The 

missing data in this paper is MCAR. That is, if the probability of a missing observation 

does not depend on its measurement or on other observed or unobserved measurements 

then the observation is MCAR (Little and Rubin 1987). Note that there is no clear 

mapping between the two sets of definitions MCAR, MAR, NMAR, and GMD, UMD, 

SPMD. In the former the definitions are based on dependencies on observed or 

unobserved measurements. While in latter the definitions are based on the structure of 

questionnaire and in particular branching questions. This fundamental difference in the 

bases on which such definitions is formed prevents a clear mapping of one set to the 

other. 

Zhong has experimented with health related individual level survey data that has 

incompleteness (Zhong 2009). The missing variables are imputed by concentration 

indices. Concentration indices quantify the degree of inequality across the distribution of 

a variable. Missing values on health variables are unlikely to be always MCAR. A 

possible solution to correct the introduced bias due to the concentration indices is 

proposed. The imputation results are discussed when the data is MCAR, MAR or NMAR. 

A case study and a simulation study are used. In addition to the type of missing data, the 

imputation technique being utilized determines the effectiveness of the procedure. 

Therefore, choosing the proper imputation technique based on the data and missing data 

models can result in an unbiased treatment of NMAR, MAR, MCAR. In our study, on the 
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other hand, SPMD missing data type is not supposed to be imputed based on the 

instructions of the questionnaire. Hence, performing any imputation on SPMDs will 

introduce misinformation. In the case of UMD, the mutually exclusive paths of questions 

are unanswered along with the branching question itself. So, it is ambiguous which 

alternative set of questions (branch) is supposed to be answered by the respondent 

(GMD) and which set(s) is (are) supposed to be skipped (SPMD). Therefore, imputing all 

UMD questions results in imputing their corresponding SPMDs as well. However, if one 

can determine which alternative set of questions (branch) in a UMD is supposed to be 

answered (GMD) and which one(s) are supposed to be skipped (SPMD), then the SPMD 

portion should not be imputed. However, the GMD missing data type and GMD branch 

of UMD can be treated where an analyst may identify the type of missing data, whether 

MCAR, MAR or NMAR, to determine a statistically valid imputation technique. 

Yuanyuan et al. have used a nearest neighbor imputation in wireless sensor 

networks (Yuanyuan 2014). Ambler et al. investigated a number of methods for imputing 

missing data to evaluate their effect on risk model estimation and the reliability of the 

predictions. A large national cardiac surgery database is used in this study (Ambler 2007). 

Jerez et al.(Jerez 2010) have evaluated the performance of several statistical and machine 

learning imputation methods to predict the recurrence in a real breast cancer dataset. The 

imputation techniques studied are mean, hot-deck and multiple imputation, and machine 

learning techniques, e.g., multi-layer perceptron (MLP), self-organization maps (SOM) 

and k-nearest neighbor (KNN). The imputation methods based on machine learning 

algorithms outperformed imputation statistical methods in the prediction of patient 
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outcome. Ouzienko et al. has proposed an imputation technique on longitudinal social 

surveys. The experiments are constructed on synthetic and real life datasets with 20% to 

60% of nodes missing (Ouzienko 2014). As mentioned before, SPMD type missing data 

are not supposed to be imputed. This important notion is not of a major concern in any of 

these studies. 

Dillman et al. on the other hand, has considered SPMD, GMD and inconsistent 

data, but not UMD. They studied the skip pattern compliance in three test forms. They 

defined two terms: loop error and gap error. The loop error is defined as questions that 

were not skipped by the respondent when they were supposed to, and the gap error is 

defined as questions that were skipped by the respondent when they were not supposed 

to. The loop error corresponds to our inconsistent data and the gap error corresponds to 

our GMD.  This study shows that there is some likelihood that getting perfect compliance 

that reduces loop error may increase the likelihood of making gap errors. Three test forms 

(Census Form, Arrow Form and Right Box Form) are tested and compared in terms of 

their error rates. The three test forms only vary with regard to how the skip pattern 

instructions are provided. The loop error rates for three test forms are 11.4%, 4.3%, 5.2% 

and the gap error rates for three test forms are 0.8%, 1.8% and 1.6%, respectively 

(Dillman et al. 1999). This work is one of the very few studies about skip patterns in the 

literature. Unlike our study, they focus on human factor analysis in order to make it easy 

for people to understand how to design a questionnaire with skip patterns such that it 

lowers the rate of error. However, they do not perform any analysis on determining the 

skip patterns. 
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Fagan and Greenberg’s interesting report has inspired and given us the basis on 

which we have built a comprehensive mathematical framework with all required 

definitions, lemmas and theorems as well as their proofs (Fagan and Greenberg 1988). 

They focus on skip pattern analysis on questionnaires using graph theory. The missing 

values are grouped into undetermined data, skip patterns and missing data, which 

correspond to UMD, SPMD and GMD, respectively, in our study. Their report has not 

provided an accurate account on how to determine GMD, UMD and SPMD as it 

considers the questions (vertices of the questionnaire graph) and not the answers (edges 

of the graph). They have not applied their proposed method on real data nor have they 

proposed any algorithm to implement it. As a result, they have not performed complexity 

analysis and they have not validated their method using simulated data. 

The UMD’s or GMD’s determined from data do not provide valuable information 

for the analyses without any imputation. On the other hand, the SPMD’s can be used for 

data stratification.  It is important to stratify the data into stratums which will provide the 

opportunity to evaluate each stratum separately. 

In clinical survey data, it is common for subjects to have their own unique set of 

answers to the questionnaire. However, the subjects can be grouped into populations 

based on common answers to specific questions. It is important to divide the dataset into 

sub-populations based on these questions that have common answers for each population. 

This will help us to investigate heterogeneous results, or to answer specific questions 

about particular patient groups and to see whether and how risk factors vary across sub 

populations. This approach leads us to extract maximum amount of information from the 
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data and gives the clinicians the possibility to apply different treatments for different 

groups of people. It is important based on what questions to divide (stratify) the 

population into groups, which we will refer as the stratifying factors throughout this 

study. This part of the study proposes a method that shows how to stratify a population 

based on a simulated study and a longitudinal clinical survey data. Here, we use the 

branching questions to stratify the population. The idea is to find the significant 

branching questions that divide the population into well represented groups.  

There have been several studies in sub group analyses. Su et al. have focused on a 

comparative study where two or more treatments are compared and how the treatment 

effect varies across subgroups induced by covariates. Treatment effect can be defined as 

the amount of change in a condition or symptom because of receiving a treatment 

compared to not receiving the treatment. They have considered a binary treatment effect 

(0 or 1), a continuous output and a number of covariates where the components are of 

mixed types (categorical and continuous).  They have used a tree-structured subgroup 

analyses algorithm since; the tree algorithm is a well-known tool for determining the 

interactions between the treatment and the covariates. Their goal in subgroup analysis is 

to find out whether there exist subgroups of individuals in which the treatment shows 

heterogeneous effects, and if so, how the treatment effect varies across them. By 

recursively partitioning the data into two subgroups that show the greatest heterogeneity 

in the treatment effect, they were able to optimize the subgroup analyses. They have used 

simulated studies to validate their approach. Also, they have used the Current Population 

Survey (CPS) database conducted by the U.S Census Bureau for the Bureau of Labor and 
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Statistics, in 2004. The CPS is a survey data of 60.000 households. The investigators 

were interested in specific subgroups of the working population where the pay gap 

between sexes is dominant. The questions in the survey were related to some 

demographic characteristics of the respondents, the employment status, hours worked and 

the income earned from their work. There were different covariates in the data such as 

gender, age, education, race, citizenship, tax status, etc. The results show that for most of 

the subgroups that constitute the majority of the population, women are paid significantly 

less than men. Also, the wage disparity between men and women varies with the 

industry, occupation and age. In our study, on the other hand, instead of recursively 

partitioning the data into sub populations, we are using the branching questions leading 

the skip patterns to occur as our stratifying factor.  

Subgroup analyses are a highly subjective process since the subgroups themselves 

as well as the number of subgroups are determined by the investigator beforehand 

(Assmann et al. 2000). It is important to determine which specific subgroup to use in the 

experiment. The incorrect selection of the subgroups may cause unreliable results. 

Therefore, significance testing is a common approach in subgroup analyses. That is, 

testing the numerous plausible possibilities to see which subgroup performs better. 

However, this approach cannot be considered as an efficient way of splitting the data. We 

are utilizing the wisdom of experts embedded in the data through the questionnaire 

design processes when selecting the branching questions as stratifying factors. 

There have been several studies on determining variables that are for 

understanding the underlying phenomena of interest. It is important to reduce the 
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dimension of original data prior to any modeling. Different attribute selection techniques 

have been used in order to reduce the dimensionality and the computational complexity 

(Azhagusundari et al.). The attributes that are significant can be extracted, ranked and 

weights can be assigned to each attribute to compare the significance. Decision trees 

based on information gain techniques have been widely used in order to perform feature 

selection. Decision trees divide the population into subgroups recursively until the leaf 

nodes represents the class labels. However, in this study none of these techniques are 

used to determine the significant branching questions. The feature selection techniques 

cannot be directly used in order to determine the significant branching questions, since 

the class labels of individual subjects are irrelevant. Instead high support and confidence 

for prospective extracted rules from each stratum is of interest. That is, a population with 

mixed class labels in a stratum would be favorable as long as it lends itself to rules with 

high confidence factor and support. For instance, smoking could be a significant 

branching question if the rules applied to smokers are different than those applied to non-

smokers. However, there could be populations with mixed class labels in smokers and 

non-smokers groups.  

Risk stratification in clinical data is used to divide patients into different acuity 

levels and to determine a person's risk for suffering a particular condition and the need 

for preventive intervention. Haas et al. have used several risk stratification techniques to 

evaluate the performance in predicting healthcare utilization. They have studied 83 

patients empanelled in 2009 and 2010 in a primary care practice. 7 different risk 

stratification techniques were used: Adjusted Clinical Groups (ACGs), Hierarchical 
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Condition Categories (HCCs), Elder Risk Assessment, Chronic Co morbidity Count, 

Charlson Co morbidity Index, and Minnesota Health Care Home Tiering and a 

combination of Minnesota Tiering and ERA. To predict the healthcare utilization and 

cost, historical data (data from 2009) have been used by a logistic regression model using 

demographic characteristics and diagnosis such as emergency department visits, 

hospitalizations, 30 day readmissions. The results show that ACG model outperforms the 

other risk stratification methods. They have studied data stratification based on the acuity 

of each patient and generated different results for each stratum. However, in our study the 

stratifying factor is unknown beforehand and needs to be determined from the existing 

branching questions by using statistical methods. We have used the contingency tables to 

divide the population based on branching questions. The Fisher’s Exact Test is used in 

order to compare the significance of the selected branching questions.   

Once the data is preprocessed, a predictive index can be constructed by starting 

with the detection of important attributes (risk factors). Attribute selection is a machine 

learning method that selects an optimal subset of attributes by eliminating the ones which 

contain less predictive information. Reducing the dimensionality of an attribute space 

improves the performance by diminishing the curse of dimensionality effect. Attribute 

selection also gains advantage from efficiency in terms of storage and computational 

costs. Also, the execution time spent for both training and testing phases will decrease.  

 The attribute selection methods are categorized into three different forms: filter, 

wrapper or embedded (Molina 2002). It is important to evaluate the existing methods and 

figure out which one performs better in certain situations. Some algorithms perform well 
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on correlated data while others can handle noise or missing values depending on the 

nature of the data.  

In filtering methods, attribute selection is a preprocessing step independent of the 

induction algorithm. Information gain algorithm determines the importance of each 

attribute by evaluating the uncertainty reduction, while ReliefF is sampling an instance 

and evaluating the difference between its nearest neighbors from both the same and the 

opposite class. Relevance scores are assigned to each attribute. Correlation based feature 

selection methods eliminate one of the less important attribute that correlates with 

another attribute (Hall 1998). In embedded methods, inducer has its own attribute 

selection algorithm embedded such as J48, a widely used decision tree algorithm. The 

occurrence of an attribute in a tree provides information about the importance of that 

particular attribute. Information gain and entropy reduction methods can be applied to 

each candidate attribute of the decision tree node to evaluate the importance of each 

attribute (Sugumaran 2006). There have been several studies on attribute selection 

methods. Hall and Holmes (Hall 1998) use the UCI dataset, a real world data set, which 

contains different data types such as categorical, continuous and multivariate. Six 

attribute selection methods are compared in terms of classification accuracy, reduction 

rate and speed. Molina et al., (Molina 2002) use a simulation based randomly created 

binary and nominal valued dataset. Different types of syntactic functions are applied to 

the dataset to generate the class labels. Since it is a fully controlled case, varying number 

of relevant, irrelevant and redundant attributes are placed in the dataset. However, the 

simulated dataset doesn’t lend itself to real longitudinal dataset of clinical trials and the 
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functions used in this study do not care about any particular attribute when deciding 

about the resultant, which does not fit to what we usually see in real world biomedical 

datasets.  

Rule extraction is a machine learning method that selects formal rules from a set 

of observations. Given a set of training examples where the class labels are known, the 

aim is to find out the classification rules that will help to predict the new instances. 

Agrawal et al. introduced association rules for discovering the relations between variables 

in large databases. Rule extraction gains advantage from efficiency in terms of 

computational costs and after extracting the proper rules from the dataset the time spent 

for classification of the new instances decrease.  

The different rule extraction methods used in this study are Apriori, PART, Prism 

and Jrip. There have been several studies on rule induction methods. Pires and Branco 

use a simulation based dataset to compare the results of two multinomial classification 

rules in terms of their performances. One of those classification rules is the Bayesian 

approach while the other one is the likelihood measures.  

In this research, on the other hand, several attribute selection and rule extraction 

algorithms are applied to a simulation based dataset with longitudinal trials in order to 

compare the performances of the algorithms in terms of different noise levels and 

different incomplete data levels and combination of both. Multicollinearity is added to 

the dataset to evaluate the most robust algorithms when dependencies between attributes 

are in question. Same attribute selection and rule extraction techniques are also applied to 
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the combination of the longitudinal datasets. A simulation dataset is chosen since full 

control over the dataset is achieved.  

Besides determining the most robust attribute selection and rule extraction 

algorithm, this experiment also helps us to determine up to what percentage of 

incomplete data, noise and multicollinearity can be handled. 

Logistic regression is one of the most commonly used predictive modeling 

techniques. Wang et al. have used multilinear sparse logistic regression in order to predict 

the risk on clinical data (Wang 2014). We have used logistic regression in order to 

determine the potential predictive factors and to determine the predictive probability of 

each factor. The effectiveness of the potential predictive factors is determined by odd 

ratios and the predictive index performance is determined based on wald scores and 

confidence intervals.  
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CHAPTER TWO 

 

METHOD - DATA PRE-PROCESSING 

 

 

 

                                 2.1 Analysis of Incomplete and Inconsistent Data  

The next step of the proposed method is to further preprocess the incomplete and 

inconsistent data by converting the entire questionnaire into a directed acyclic 

graph 𝐺(𝑁, 𝐴) where, each question is represented by a vertex, 𝑣 ∈ 𝑁, and each answer is 

represented by an edge 𝑎 ∈ 𝐴. The questionnaires are usually designed so they can be 

directly converted to an acyclic graph. That is, each question is answered at most once. If 

this rule is not followed, one should be able to devise an acyclic equivalent of a cyclic 

graph. Therefore, in this study we assume a questionnaire with a corresponding acyclic 

graph.  

There can be vertices with more than one child (branching questions) in 𝐺. The 

children of such vertices are mutually exclusive in the sense that the respondent should 

answer only one of them to insure only one path is visited. This corresponds to the case 

where the questionnaire instructs the respondent to skip some questions. The unvisited 

vertices based on the questionnaire’s instruction (i.e., vertices out of the path) cause skip 

pattern missing data (SPMD). Refusing or neglecting to visit (answer) a vertex on a path, 

when it is not supposed to, causes genuine missing data (GMD). Refusing or neglecting 

to visit any of the alternative paths going through a branching vertex along with the 

branching vertex itself causes undetermined missing data (UMD). This type of missing 
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data is called undetermined because there is no way to determine whether they are GMD 

or SPMD. When more than one child of a branching vertex is visited, it causes 

inconsistent data. All the answers causing data inconsistency have to be removed (leaving 

just one valid path) as if they were never visited. Once the answers causing data 

inconsistency are removed, the incompleteness caused by the removal can be considered 

as SPMD. 

Figure 2.1 shows a subgraph generated from questions 𝑣17 through 𝑣26 in MESA. 

The answers (edges) are labeled as 𝑎𝑘. For example, 𝑎12 in Figure 2.1 represents the first 

set of answers to 𝑣22 that leads the respondent to 𝑣23, and  𝑎11 represents the second set 

of answers to 𝑣22 that leads the respondent to 𝑣24. Unlike this example, there could be 

more than two possible set of answers to a question as well as only one set. The latter 

means regardless of the answer to such a question, the respondent will always be led to 

only one following question. In this case, leaving a question unanswered causes GMD. 

The former means, the respondent will select one answer out of two or more possible set 

of answers.  For 𝑣22, one option is to answer ‘𝑎12’ and continue with 𝑣23. The alternative 

option is to answer ‘𝑎11’, skip 𝑣23 and continue with 𝑣24. Missing value caused by 

skipping 𝑣23 is referred to as SPMD. If none of the three vertices (𝑣22, 𝑣23 and 𝑣24) is 

answered the type of the missing values corresponding to these vertices cannot be 

determined (UMD). If a subject, on the other hand, answers both questions 𝑣25𝑎 and 

𝑣25𝑏, those two answers become mutually inconsistent and one of the alternative answers 

has to be removed from that subject’s answer set.  
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Figure 2.1- Subgraph of MESA with labeled responses 
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The answer set for each subject generates a different path on the graph. Thus the 

answer set that are incomplete or inconsistent are subject dependent. Therefore, 

incomplete and inconsistent data have to be extracted specific to each subject. Manual 

methods may show less than desired reliability especially when dealing with large 

amounts of data. This entails an automated method to be devised.  

In this part of the study, we focus solely on the female population of the MESA 

baseline survey (HH1). There are 1154 women in MESA aged 60 and older. First, the 

inconsistent data are extracted from the dataset in order to minimize the noise. Then, our 

objective is to distinguish the incomplete data into GMD, SPMD and UMD. Table 2.1. 

shows the definitions of the basic terms being used throughout this study.  

 

 

Table 2.1- Definition of basic terms 

𝑸 Set of Consistent Questions Answered 

𝑄∗ Set of Questions Answered 

𝑅∗ Set of Responses of a Subject 

𝑹 Set of Consistent Responses of a Subject 

𝑷𝑃𝑖  An augmented set of answers 

∪ 𝑃𝑃𝑖 Actual Path 

𝑰 Inconsistent Data Vertices 

𝑺 SPMD Vertices 

𝑵 All Vertices  

𝑴 GMD Vertices 

𝑼 UMD Vertices 

𝑳𝑷 Linear Path 
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The first step of the analysis is to determine the inconsistent answers. After the 

inconsistent answers are detected and removed from the dataset, the remaining data will 

be consistent.  The SPMD, the GMD and UMD analyses are performed on the consistent 

dataset.  

 

2.1.1 Inconsistent Data Analysis  

In this section, we present the mathematical framework of the method that 

determines inconsistent answers. We define two functions that return the corresponding 

questions of a given answer set where one returns the previous question,  𝑃𝑏: 𝐴 →  𝑁 , 

and the other returns the next question 𝑃𝑎 ∶  𝐴 →  𝑁. 𝑃𝑎({𝑎𝑘}) returns the question that 

follows the answer 𝑎𝑘. 𝑃𝑏({𝑎𝑘}) returns the question corresponding to answer 𝑎𝑘. One 

can observe the following: 

𝑃𝑎({𝑎𝑘}) = {𝑣𝑗} and 𝑃𝑎
−1({𝑣𝑗}) = {𝑎𝑘} where 𝑎𝑘 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐴. 

𝑃𝑏({𝑎𝑘}) = {𝑣𝑖} and 𝑃𝑏
−1({𝑣𝑖}) = {𝑎𝑘} where 𝑎𝑘 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐴. 

Example I: Let’s consider 𝑅𝑠
∗ =  {𝑎2, 𝑎5, 𝑎4, 𝑎6, 𝑎8, 𝑎9, 𝑎10, 𝑎15, 𝑎17, 𝑎19} as the set of 

responses of 𝑠th
 subject to the sub-questionnaire in Figure 2.1. 

𝑄𝑠
∗ = {𝑣17, 𝑣17𝑏 , 𝑣17𝑐, 𝑣17𝑑, 𝑣19, 𝑣20, 𝑣21, 𝑣24, 𝑣25, 𝑣25𝑎} contains the corresponding 

vertices of each edge in 𝑅𝑠
∗ , i.e.,  𝑄𝑠

∗ = 𝑃𝑏(𝑅𝑠
∗).  

Answering a questionnaire by a subject is equivalent to visiting the vertices of a linear 

path, 𝐿𝑃𝑖, in the questionnaire’s corresponding graph. We can formally define a linear 

path as follows. 
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Definition I: A linear path, 𝐿𝑃𝑖, is defined as a set of vertices that includes the root and 

the terminal vertices of the graph, 𝐺. Further, for any vertex, 𝑣𝑘 in 𝐿𝑃𝑖, there exists one 

and only one vertex, 𝑣𝑗  such that (𝑣𝑘, 𝑣𝑗) is in 𝐴, except for the terminal vertex. 

We define 𝐿𝑃  as the set of all such sets shown below. 

𝐿𝑃 =  ⋃ 𝐿𝑃𝑖

𝑖

 

An example of a linear path can be 

𝐿𝑃1 = {𝑣17, 𝑣17𝑐, 𝑣17𝑑 , 𝑣18, 𝑣19, 𝑣20, 𝑣21, 𝑣22, 𝑣23, 𝑣23𝑎 , 𝑣25, 𝑣25𝑎, 𝑣26} as can be 

constructed from Figure 2.1.  

Definition II:  

𝑃𝑃𝑠𝑖
= {𝑎𝑗| 𝑎𝑗 ∈ 𝐴, 𝑎𝑗 ∈ 𝑃𝑏

−1(𝐿𝑃𝑞), ∃ 𝑎𝑚 ∈ 𝑅𝑠
∗ 𝑠. 𝑡. 𝑎𝑚 ∈ 𝑃𝑏

−1(𝐿𝑃𝑞) 𝑎𝑛𝑑 ∄ 𝐿𝑃𝑟 𝑠. 𝑡. 𝑅𝑠
∗ ∩

𝑃𝑏
−1(𝐿𝑃𝑞)   ⊂ 𝑅𝑠

∗ ∩ 𝑃𝑏
−1(𝐿𝑃𝑟)}  

The i-th potential path for subject 𝑠, 𝑃𝑃𝑠𝑖
, is defined as a set of edges that connect the 

vertices of the j-th linear path, i.e., 𝑃𝑏
−1(𝐿𝑃𝑗). Also, each 𝑃𝑃𝑠𝑖

 should include all the 

answers in 𝑅𝑠
  (set of consistent answers). Note that there are usually more than just one 

potential path for each subject. 

In order to explain the last condition in Definition II  ∄ 𝐿𝑃𝑟  𝑠. 𝑡. 𝑅𝑠
∗ ∩

𝑃𝑏
−1(𝐿𝑃𝑞)   ⊂ 𝑅𝑠

∗ ∩ 𝑃𝑏
−1(𝐿𝑃𝑟), let’s consider a subgraph consisting of only 𝑣22 to 𝑣25 in 

Example I with following answer set: 𝑅𝑠
∗ = {𝑎13, 𝑎15}. One may imagine that there are 

two potential paths: 𝑃𝑃𝑠1
= {𝑎12, 𝑎13, 𝑎15} and 𝑃𝑃𝑠2

= {𝑎11, 𝑎15}. However, since 𝑅𝑠
∗ ∩

𝑃𝑏
−1(𝐿𝑃2) ⊂ 𝑅𝑠

∗ ∩ 𝑃𝑏
−1(𝐿𝑃1), where 𝐿𝑃1 = {𝑣22, 𝑣23, 𝑣24, 𝑣25} and 𝐿𝑃2 = {𝑣22, 𝑣24, 𝑣25} 

Definition II does not allow 𝑃𝑃𝑠2
. This is important because later in this section when the 
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inconsistent answers are formally defined based on potential paths, it does not consider 

𝑎13 and 𝑎15 inconsistent, which is intuitively the case. 

Observation I: A linear path is subject independent, whereas a potential path is subject 

dependent. 

An acyclic questionnaire graph 𝐺, can contain areas with multiple sub-linear paths 

(MSLP) and areas with a single sub-linear path (SSLP). MSLP, 𝐵(𝑁𝐵, 𝐴𝐵), can be defined 

as a connected subgraph where 

𝑁𝐵 = {𝑣𝑖|𝑣𝑖 ∈ (𝑃𝑏(𝐴 − ⋂ 𝑃𝑏
−1(𝐿𝑃𝑗)𝑗 ) ∪ 𝑃𝑎(𝐴 − ⋂ 𝑃𝑏

−1(𝐿𝑃𝑗)𝑗 ))  
 

}. 

If there is 𝑣𝑖 ∈ 𝑁𝐵 𝑠. 𝑡. 𝑣𝑖 ∈ ⋂ 𝐿𝑃𝑘 𝑎𝑛𝑑 𝑘 𝑣𝑖 ≠ 𝑣𝐵𝐼 , 𝑣𝑖 ≠ 𝑣𝐵𝑇 where 𝑣𝐵𝐼 is the initial 

vertex of subgraph 𝐵 and 𝑣𝐵𝑇 is the terminal vertex of subgraph 𝐵 then 𝐵(𝑁𝐵, 𝐴𝐵) should 

be decomposed into sub MSLP’s. An example of such situation is the following:  

Example II: Figure 2.1 shows a connected subgraph 𝐵′ 

where 𝑁𝐵
′ = {𝑣23, 𝑣23𝑎 , 𝑣24, 𝑣25, 𝑣25𝑎 , 𝑣25𝑏 , 𝑣26}. The initial vertex of 𝑁𝐵

′  is 𝑣23 (𝑣𝐵𝐼′ =

{𝑣23}) and the terminal vertex of 𝑁𝐵
′  is 𝑣26 (𝑣𝐵𝑇′ = {𝑣26}). Since 

⋂ 𝐿𝑃𝑘 =𝑘 {𝑣23, 𝑣25,𝑣26} and 𝑣25 ∈ 𝑁𝐵
′  and 𝑣25 ≠ 𝑣𝐵𝐼′ and 𝑣25 ≠ 𝑣𝐵𝑇′, 𝐵′ should be 

decomposed.  

To decompose such MSLP’s, we define 𝑁𝐵𝑗
: 𝑁𝐵𝑗

= (⋃ 𝐿𝑃𝑖𝑖 |
𝑣𝑗−1 

𝑣𝑗
) where 𝑣𝑗  ∈

(⋂ 𝐿𝑃𝑖𝑖 |
𝑣𝐵𝐼 
𝑣𝐵𝑇

) and 𝑣0 is 𝑣𝐵𝐼. Note that (𝐿𝑃𝑖|
𝑣𝑘

𝑣𝑙
) refers to all linear paths starting from 𝑣𝑘 

and ending at 𝑣𝑙 in 𝐺.  Hence, the decomposition of 𝐵’ in Example II returns two 
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connected subgraphs 𝐵1 and 𝐵2 where 𝑁𝐵1
= (⋃ 𝐿𝑃𝑖𝑖 |

𝑣23 
𝑣25

) = {𝑣23, 𝑣23𝑎 , 𝑣24, 𝑣25} and 

𝑁𝐵2
= (⋃ 𝐿𝑃𝑖𝑖 |

𝑣25 
𝑣26

) = {𝑣25, 𝑣25𝑎 , 𝑣25𝑏 , 𝑣26}. 

The edge set , 𝐴𝐵 , of a MSLP, 𝐵(𝑁𝐵, 𝐴𝐵), can easily be defined as, 𝐴𝐵𝑖
= 𝑃𝑏

−1(𝑁𝐵𝑖
) ∩

𝑃𝑎
−1(𝑁𝐵𝑖

). SSLP, 𝐿(𝑁𝐿 , 𝐴𝐿), is a connected subgraph where 𝑁𝐿 ⊆  𝑃𝑏(∩ 𝑃𝑏
−1(𝐿𝑃𝑖)) ∪

𝑃𝑎(∩ 𝑃𝑏
−1(𝐿𝑃𝑖)) and 𝐴𝐿 ⊆ ∩ 𝑃𝑏

−1(𝐿𝑃𝑖).  

The inconsistent data occurs when more than one alternative path of a branching 

question is visited. For example, subject 𝑠 has answered both 𝑎5 and 𝑎6 (See 𝑅𝑠
∗). 

However, there is no linear path (𝐿𝑃𝑖) that contains both of these answers (𝑎5 and 𝑎6) as 

can be seen in Figure 2.1. We refer to those as mutually inconsistent responses. Similarly, 

according to subject 𝑠’s responses, the following set of answer pairs are mutually 

inconsistent: (𝑎2, 𝑎5), (𝑎4, 𝑎5) and (𝑎6, 𝑎5). However, those responses ({𝑎2, 𝑎5, 𝑎4, 𝑎6}) 

are not mutually inconsistent with any other edge in the response set 

({𝑎8, 𝑎9, 𝑎10, 𝑎15, 𝑎17, 𝑎19}), since a linear path (𝐿𝑃𝑖) can be generated from any of those 

edges to the remaining edges in the response set. At this point, we formally define 

mutually inconsistent answers. 

Definition III: 𝑎𝑖 is inconsistent with 𝑎𝑗 iff 𝑎𝑖 ≠ 𝑎𝑗 and 𝑎𝑖, 𝑎𝑗 ∈ 𝐴𝐵𝑛
 and 𝑎𝑖 or 𝑎𝑗 ∉

(𝑃𝑃𝑠𝑞
∩ 𝑃𝑃𝑠𝑟

)  where 𝑎𝑖 ∈ 𝑃𝑃𝑠𝑞
, 𝑎𝑗 ∈ 𝑃𝑃𝑠𝑟

 and 𝑃𝑃𝑠𝑞
≠ 𝑃𝑃𝑠𝑟

. 

Two different responses (𝑎𝑖 ≠ 𝑎𝑗) of a subject are mutually inconsistent with each other 

when they are on exclusive paths of the same multiple sub linear paths (MSLP).  

Let’s consider two scenarios: 𝑅𝑠
∗ = {𝑎1, 𝑎3, 𝑎19, 𝑎20}.  
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Clearly, 𝑎1 and 𝑎3 are consistent with each other. However, one can construct two 

potential paths as follows: 𝑃𝑃𝑠1
= {𝑎1, 𝑎3, 𝑎5, 𝑎7, 𝑎8, 𝑎9, 𝑎10, … , 𝑎17, 𝑎19} and 𝑃𝑃𝑠2

=

{𝑎1, 𝑎3, 𝑎5, 𝑎7, 𝑎8, 𝑎9, 𝑎10, … , 𝑎18, 𝑎20}. In this example, 𝑎1 ≠ 𝑎3, 𝑎1 and 𝑎3 ∈ 𝐴𝐵𝑛
, 

𝑎1 ∈ 𝑃𝑃𝑠1
, 𝑎3 ∈ 𝑃𝑃𝑠2

, 𝑃𝑃𝑠1
≠ 𝑃𝑃𝑠2

. Therefore, without condition 𝑎𝑖 or 𝑎𝑗 ∉

(𝑃𝑃𝑠𝑖
∩ 𝑃𝑃𝑠𝑗

), 𝑎1 would be inconsistent with 𝑎3, which is not intuitively true. The 

second scenario: 𝑅𝑠
∗ = {𝑎11, 𝑎13, 𝑎15}. Obviously, 𝑎13 and 𝑎15 are consistent answers. 

However, one can construct two potential paths as follows: 

𝑃𝑃𝑠1
= {… , 𝑎10, 𝑎11, 𝑎15, 𝑎18, 𝑎20} and 𝑃𝑃𝑠2

= {… , 𝑎10, 𝑎12, 𝑎13, 𝑎15, 𝑎18, 𝑎20}. In this 

example, 𝑎13 ≠ 𝑎15, 𝑎13 and 𝑎15 ∈ 𝐴𝐵𝑛
, 𝑎15 ∈ 𝑃𝑃𝑠1

, 𝑎13 ∈ 𝑃𝑃𝑠2
, 𝑃𝑃𝑠1

≠ 𝑃𝑃𝑠2
. 

Therefore, without condition 𝑎𝑖 or 𝑎𝑗 ∉ (𝑃𝑃𝑠𝑖
∩ 𝑃𝑃𝑠𝑗

), 𝑎13 would be inconsistent with 

𝑎15, which is not intuitively true. Condition 𝑎𝑖 or 𝑎𝑗 ∉ (𝑃𝑃𝑠𝑖
∩ 𝑃𝑃𝑠𝑗

) resolves both of 

these counterintuitive situations explained in the above two scenarios.  

Once the mutually inconsistent edges are detected, a failed edit graph (FEG) and 

its complement is generated to find a minimal deletion set (MDS). FEG,  𝐹(𝑁, 𝐴), is 

generated by creating a vertex for each inconsistent answer and then joining each pair of 

mutually inconsistent vertices with an edge. Figure 2.2 shows a FEG for the given 

example above.  

Definition IV: A failed edit graph (FEG) is an undirected graph 𝐹 (𝑁𝐹 
, 𝐴𝐹 

) s.t. 𝑁𝐹 
 ⊆

  (𝐴 − ⋂ 𝑃𝑏
−1(𝐿𝑃𝑙)𝑙 )  where for any 𝑎𝑖, 𝑎𝑗 ∈ 𝐴𝐵𝑛 

 𝑎𝑛𝑑 𝑎𝑖 , 𝑎𝑗  ∈  𝑁𝐹 
, (𝑎𝑖, 𝑎𝑗) ∈
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𝐴𝐹 
 iff  ∃𝑃𝑃𝑠𝑘

 𝑠. 𝑡 𝑎𝑖 ∈ 𝑃𝑃𝑠𝑘
 𝑎𝑛𝑑 𝑎𝑗 ∉ 𝑃𝑃𝑠𝑘

 and 𝑎𝑖 or 𝑎𝑗 ∉ (𝑃𝑃𝑠𝑖
∩ 𝑃𝑃𝑠𝑗

) where 𝑎𝑖 ∈

𝑃𝑃𝑠𝑖
, 𝑎𝑗 ∈ 𝑃𝑃𝑠𝑗

 and 𝑃𝑃𝑠𝑖
≠ 𝑃𝑃𝑠𝑗

 for subject 𝑠. 

Observation II: A different FEG is generated for each MSLP with inconsistent 

responses.   

MDS is the minimum number of vertices that need to be removed from the answer set in 

order to generate a consistent answer set.  If 𝑎2, 𝑎4 or 𝑎6 is removed from the dataset, 

FEG will still be connected. However, if 𝑎5 is removed, the FEG becomes disconnected, 

which means there are no inconsistencies. Hence, 𝑎5 should be removed from the 

response set. 

The new response set will be referred to by 𝑅𝑠 where the absence of the asterisk 

denotes the fact that this response set is consistent: 

 

 

a4a5
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Figure 2.2- Failed Edit Graph 
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 (𝑅𝑠  =  {𝑎2, 𝑎4, 𝑎6, 𝑎8, 𝑎9, 𝑎10, 𝑎15, 𝑎17, 𝑎19}). The corresponding vertices for 

𝑅𝑠 will be: 𝑄𝑠  =  {𝑣17, 𝑣17𝑐 , 𝑣17𝑑 , 𝑣19, 𝑣20, 𝑣21, 𝑣24, 𝑣25, 𝑣25𝑎}. Since 𝑎5 is removed 

from 𝑅𝑠
∗

, 𝑣17𝑏 which is the corresponding vertex (question) of 𝑎5 also needs to be 

removed from 𝑄𝑠
∗. However, the FEG is not always as simple as it is in the given 

example, which means finding MDS could become fairly complex. Therefore, a method 

is generated by Fagan and Greenberg to find MDS (Fagan et al. 1988). 

The method for detecting the MDS is the following: Given a FEG, 𝐹, the vertex 

set in 𝐹, i.e., 𝑁 and a largest maximal clique 𝐶𝑀 in the complement of the FEG, 𝐹𝑐, the 

minimal deletion set is 𝑁 − 𝐶𝑀. Note that a clique is an undirected graph such that every 

two vertices are connected by an edge. 

The complement of 𝐹 is 𝐹𝑐(𝑁𝐹, 𝐴𝐹
𝑐 ) which consists of a set of connected graphs 

(cliques) each of which are denoted by 𝐶(𝑁𝑐, 𝐴𝑐) where 𝑁𝑐  ⊆  𝑁𝐹, 𝐴𝑐  ⊆  𝐴𝐹
𝑐  and 𝐹𝐶 =

⋃ 𝐶𝑖𝑖 . The vertices on each clique are answers in a linear path, whereas, the vertices on 

two different cliques are not on the same linear path. We define 𝐶𝑀(𝑁𝑐
𝑀 , 𝐴𝑐

𝑀) as the 

clique with a vertices set, 𝐴𝑐
𝑀, of maximum cardinality (largest maximal clique). Now 

consider the same example given in Figure 2.2. The complement of the graph is shown in 

Figure 2.3, where the largest maximal clique is 𝐶𝑠
𝑀. The set 𝑁 − 𝐶𝑠

𝑀returns {{𝑎5}}, which 

is the minimal deletion set. 
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Figure 2.3-Minimal Deletion Set  

 

 

Lemma I: 𝐶 is complete. 

Proof: Let’s assume 𝐶 is not complete. It means ∃ 𝑎𝑖, 𝑎𝑗 ∈ 𝑁𝑐𝑠
, for the s-th subject, such 

that (𝑎𝑖, 𝑎𝑗)  ∉  𝐴𝑐𝑠
, which means (𝑎𝑖, 𝑎𝑗) ∈ 𝐴𝐹𝑠

 for subject 𝑠 (Since the cliques are 

generated based on the complement of the FEG). However, from the definition of 𝐶 we 

know that  𝑎𝑖, 𝑎𝑗 ∈ 𝑃𝑏
−1(𝐿𝑃𝑘) and therefore (𝑎𝑖 , 𝑎𝑗)  ∉  𝐴𝐹𝑠

, which is a contradiction and 

our assumption that 𝐶 is not complete is not true. 

Lemma II:  Inconsistencies only happen in a MSLP. 

Proof: One has to show two things to prove this. 1) It is possible to have inconsistencies 

in MSLP, and 2) it is impossible to have inconsistencies in SSLP. We prove (1) by 

constructing an answer set, 𝑅𝑠
∗, where ∃𝑎𝑖, 𝑎𝑗 ∈ 𝑅𝑠

∗ s.t. 𝑎𝑖 ∈ 𝑃𝑏
−1(𝐿𝑃𝑘) and 𝑎𝑗 ∈ 𝑃𝑏

−1(𝐿𝑃𝑙) 

and 𝐿𝑃𝑘 ≠ 𝐿𝑃𝑙 and 𝑎𝑖, 𝑎𝑗 ∈ 𝐴𝐵𝑛
 and 𝑅𝑠

∗ ⋂ 𝑃𝑏
−1(𝐿𝑃𝑙)𝑙 ⊄ 𝑅𝑠

∗ ⋂ 𝑃𝑏
−1(𝐿𝑃𝑘)𝑘  

 
. Based on 
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Definition II 𝑎𝑖 ∈ 𝑃𝑃𝑠𝑖
 and 𝑎𝑗 ∈ 𝑃𝑃𝑠𝑗

 where 𝑃𝑃𝑠𝑖
≠ 𝑃𝑃𝑠𝑗

. Definition III constitutes 

inconsistency between 𝑎𝑖 and 𝑎𝑗. Proof of (2) can be directly derived from Definition III, 

where inconsistencies are only defined for responses in MSLP (𝑎𝑖, 𝑎𝑗 ∈ 𝐴𝐵𝑛
), which 

means responses in SSLP (𝑎𝑖, 𝑎𝑗 ∈ 𝐴𝐿) cannot be inconsistent with each other. This 

proves Lemma II and further the latter leads to Observation II. 

Note that, lack of inconsistency in only part of an MSLP does not guarantee 

consistency. Therefore in order to identify inconsistency an MSLP is supposed to be 

investigated in its entirety. 

Observation III: There can be no inconsistencies in SSLP. 

Lemma III: There can be no inconsistencies between two MSLP’s. 

Proof: This can be directly derived from Definition III, where inconsistencies only occur 

within a MSLP (𝑎𝑖, 𝑎𝑗 ∈ 𝐴𝐵𝑘
). Since 𝑎𝑖 ∈ 𝐴𝐵𝑚

 and 𝑎𝑗 ∈ 𝐴𝐵𝑛
 and 𝐴𝐵𝑚

≠ 𝐴𝐵𝑛
 in two 

different MSLP’s 𝑎𝑖 and 𝑎𝑗 cannot be inconsistent. 

Theorem I: The set of all inconsistent answers for subject, 𝑠, 𝐼𝑠 can be computed by the 

following equation. (𝑁𝐹𝑠𝑛
 denotes the vertices of the 𝑛 − 𝑡ℎ failed edit graph for subject 

𝑠.) 

𝐼𝑠 = ⋃( 𝑁𝐹𝑠𝑛
– 𝑁𝑐𝑠𝑛

𝑀 )

𝑛

 

Proof: To show this, we need to prove two statements: 1) ∀𝑎𝑖 ∈ 𝐼, ∃𝑎𝑗 ∈ 𝑅𝑠
∗ − 𝐼 s.t. 𝑎𝑖 

and 𝑎𝑗 are inconsistent, and 2) there is no inconsistency within 𝑅𝑠
∗ − 𝐼. We show the first 

statement (1) using contradiction. Assume the subject only has one failed edit graph (𝑛 = 1).  

Suppose 𝑎𝑖 ∈ 𝑁𝑐𝑠  
where 𝑁𝑐𝑠 

 ⊆ 𝑁𝐹𝑠 
. Since ∃𝑁𝑐𝑠

𝑀  ⊂ 𝑁𝐹𝑠 
 and  𝑁𝑐𝑠

𝑀 ∩ 𝑁𝑐𝑠 
=  ∅, ∄𝑎𝑗 ∈
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 𝑁𝑐𝑠
𝑀 𝑠. 𝑡. (𝑎𝑖, 𝑎𝑗) ∈  𝐴𝑐𝑠

𝑀 , which means 𝑎𝑖 is not connected to any vertex in 𝑁𝑐𝑠
𝑀. Therefore, 

𝑎𝑖 is inconsistent with all answers (vertices) in 𝐶𝑠 
𝑀, which means that ∃𝑎𝑗 ∈  𝑁𝐹𝑠 

⊆ 𝑅𝑠
∗ −

𝐼 s.t. 𝑎𝑖 and 𝑎𝑗 are inconsistent.  The second statement (2) can be shown as follows: We 

know that 𝑅𝑠
∗ − 𝐼 =   𝑁𝑐𝑠 

𝑀  ∪ (𝑅𝑠
∗  ∩ (⋂ 𝑃𝑏

−1(𝐿𝑃𝑘)𝑘 )). If 𝑎𝑖, 𝑎𝑗 ∈  𝑁𝑐𝑠 

𝑀 ⟹ (𝑎𝑖, 𝑎𝑗)  ∈  𝐴𝑐𝑠 

𝑀 , 

which means 𝐶𝑠 
𝑀 is complete as proved in Lemma 1. Therefore, there is no inconsistency 

within 𝑁𝑐𝑠 

𝑀 . Also, from Lemma II; we know that answers on the same linear path cannot 

be inconsistent. Therefore, there is no inconsistency within  (𝑅𝑠
∗  ∩ (⋂ 𝑃𝑏

−1(𝐿𝑃𝑘)𝑘 )) . 

Finally, we have to show that answers in (𝑅𝑠
∗  ∩ (⋂ 𝑃𝑏

−1(𝐿𝑃𝑘)𝑘 )) and  𝑁𝑐𝑠 

𝑀   are mutually 

consistent.  Assume, ∃𝑎𝑖, 𝑎𝑗 , 𝑎𝑖 ∈ 𝑁𝑐𝑠 

𝑀 , 𝑎𝑗 ∈ (𝑅𝑠
∗  ∩ (⋂ 𝑃𝑏

−1(𝐿𝑃𝑘)𝑘 )) s.t. 𝑎𝑖  is inconsistent 

with 𝑎𝑗. This implies that ∄ 𝑃𝑃𝑠𝑖
 s.t. 𝑎𝑖, 𝑎𝑗  ∈ 𝑃𝑃𝑠𝑖

. However, one can construct a 𝑃𝑃𝑠𝑖
 

that includes all 𝑁𝑐𝑠 

𝑀  and (𝑅𝑠
∗  ∩ (⋂ 𝑃𝑏

−1(𝐿𝑃𝑘)𝑘 )), which contradicts with the implication 

of the assumption. Therefore, the answers in (𝑅𝑠
∗  ∩ (⋂ 𝑃𝑏

−1(𝐿𝑃𝑘)𝑘 )) and  𝑁𝑐𝑠 

𝑀   are 

mutually consistent. 

Theorem II: 𝑅𝑠
∗ − 𝐼 provides one and only one possible path iff ∃𝑎𝑖 ∈ 𝑅𝑠

∗ s.t. 𝑎𝑖 ∈ 𝐴𝐵𝑛
 

the edge set of a MSLP.  

Proof:  First, we should prove that there is a potential path using 𝑅𝑠
∗ − 𝐼 (1). Then, we 

have to show the uniqueness of this path (2).  

(1) Since ∃𝑎𝑖 ∈ 𝑅𝑠
∗, according to Definition II, ∃𝑃𝑃𝑠𝑖

.  

(2) 𝑎𝑖 and 𝑎𝑗 cannot be in  𝐴𝐿, because of Lemma II. Let us consider 𝑎𝑖, 𝑎𝑗 in 𝑁𝑐𝑠 

𝑀 . If 

𝑎𝑖, 𝑎𝑗 ∈ 𝑁𝑐𝑠 

𝑀  they cannot represent two different 𝑃𝑃𝑠𝑘
’s, that is in contradiction 
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with 𝑃𝑃𝑠𝑖
≠ 𝑃𝑃𝑠𝑗

. If 𝑎𝑖 ∈ 𝑁𝑐𝑠 

𝑀  and 𝑎𝑗 ∈ 𝑁𝐶𝑠 
≠ 𝑁𝑐𝑠 

𝑀  then 𝑎𝑗 ∉ 𝑅𝑠
∗ − 𝐼 which means 

𝑃𝑃𝑠𝑗
 cannot exist.  

 

2.1.2. Incomplete Data Analysis 

In this section, we introduce a method to detect incomplete data (SPMD, GMD 

and UMD). The first step of the analysis is to determine the potential paths for each 

response set. Example I shows that the potential paths for 

𝑅𝑠  =  {𝑎2, 𝑎4, 𝑎6, 𝑎8, 𝑎9, 𝑎10, 𝑎15, 𝑎17, 𝑎19} are the following:  

𝑃𝑃𝑠1
=  {𝑎2, 𝑎4, 𝑎6, 𝑎7, 𝑎8, 𝑎9, 𝑎10, 𝑎11, 𝑎15, 𝑎17, 𝑎19} 

𝑃𝑃𝑠2
 =  {𝑎2, 𝑎4, 𝑎6, 𝑎7, 𝑎8, 𝑎9, 𝑎10, 𝑎12, 𝑎13, 𝑎15, 𝑎17, 𝑎19} 

The determined potential paths can then be used in the analysis of SPMD, GMD and 

UMD. 

 

2.1.2.1. SPMD Analysis. The first step of the analysis is the detection of SPMD. 

SPMD can only occur within MSLP’s. When an edge is not an element of any potential 

path, it will be a SPMD referred to by 𝑆. SPMD can be formally defined as;  

Definition V: 𝑎𝑘 ∈ 𝐴 is in SPMD if ∄𝑃𝑃𝑠𝑖
 s.t.  𝑎𝑘 ∈ 𝑃𝑃𝑠𝑖

 

Therefore, SPMD can be estimated by the following equation:  

𝑆𝑠 = 𝐴 − ⋃ 𝑃𝑃𝑠𝑖

𝑖

 

Hence; Example I shows that 𝑆𝑠 =  {𝑎1, 𝑎3, 𝑎5, 𝑎14, 𝑎16, 𝑎18, 𝑎20}. 
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2.1.2.2.GMD Analysis. The next step of incomplete data analysis is to determine 

the GMD referred to by 𝑀. If an edge is an element of a potential path, but not a member 

of the consistent answer set , 𝑅𝑠, it can be either a UMD or a GMD. If this condition is 

met (𝑎𝑚 ∈ 𝑃𝑃𝑠𝑖
 for any i, and 𝑎𝑚 ∉ 𝑅𝑠)  within an SSLP (𝑎𝑚 ∈ 𝐴𝐿), we can refer to this 

edge as a GMD. Otherwise, if 𝑎𝑚 ∈ 𝐴𝐵, we can refer to 𝑎𝑚 as a GMD only if there exists 

at least one edge , 𝑎𝑘, in the same 𝑃𝑃𝑖  within the MSLP that ensures 𝑎𝑘 ∈ 𝑅𝑠. 

GMD (𝑀) can be formally defined as; 

Definition VI: 𝑀 =  {𝑎𝑚 | ∀𝑖, 𝑎𝑚 ∈  ⋂ 𝑃𝑃𝑠𝑖𝑖   and  𝑎𝑚  ∉   𝑅𝑠 } 

Hence, GMD (𝑀) can be calculated by the following formula: 

𝑀𝑠  = ⋂ 𝑃𝑃𝑠𝑖
− 𝑅𝑠

𝑖

 

Example I shows that 𝑀𝑠  = {𝑎7} for the 𝑠th
 subject. 

Observation IV: 𝑀𝑠  = ⋂ 𝑃𝑃𝑠𝑖
− 𝑅𝑠𝑖 ≠ 𝑃𝑏

−1 (⋂ (𝑃𝑏(𝑃𝑃𝑠𝑖
))𝑖   −    𝑄𝑠) 

This observation can be shown by a counter example shown below: 

The potential paths for the response set 𝑅𝑠 are; 

 𝑃𝑃𝑠1
 =  {𝑎2, 𝑎4, 𝑎6, 𝑎7, 𝑎8, 𝑎9, 𝑎10, 𝑎11, 𝑎15, 𝑎17, 𝑎19}  

 𝑃𝑃𝑠2
 =  {𝑎2, 𝑎4, 𝑎6, 𝑎7, 𝑎8, 𝑎9, 𝑎10, 𝑎12, 𝑎13, 𝑎15, 𝑎17, 𝑎19}. The intersection of all 

potential paths is ⋂ 𝑃𝑃𝑠𝑖𝑖 = {𝑎2, 𝑎4, 𝑎6, 𝑎7, 𝑎8, 𝑎9, 𝑎10, 𝑎15, 𝑎17, 𝑎19}. Therefore, the left 

hand side of the equation becomes ⋂ 𝑃𝑃𝑠𝑖
− 𝑅𝑠𝑖 = {𝑎7}. The right hand side of the 

equation first converts the edges within the potential paths to their corresponding 

vertices:  



 

37 

 

𝑃𝑏(𝑃𝑃𝑠1
)  = 𝑣17, 𝑣17𝑐, 𝑣17𝑑, 𝑣18, 𝑣19, 𝑣20, 𝑣21, 𝑣22, 𝑣24, 𝑣25, 𝑣25𝑎} and 𝑃𝑏(𝑃𝑃𝑠2

) =

{𝑣17, 𝑣17𝑐, 𝑣17𝑑, 𝑣18, 𝑣19, 𝑣20, 𝑣21, 𝑣22, 𝑣24, 𝑣25, 𝑣25𝑎}. The intersection of those sets 

becomes ⋂ 𝑃𝑏(𝑃𝑃𝑠𝑖
)𝑖 ={𝑣17, 𝑣17𝑐 , 𝑣17𝑑 , 𝑣18, 𝑣19, 𝑣20, 𝑣21, 𝑣22, 𝑣24, 𝑣25, 𝑣25𝑎}. Therefore, 

the set of genuine missing questions of the 𝑠th
 subject is ⋂ 𝑃𝑏(𝑃𝑃𝑠𝑖

)𝑖 − 𝑄𝑠= {𝑣18, 𝑣22}. 

The corresponding edges of the genuine missing questions are 

𝑃𝑏
−1 (⋂ (𝑃𝑏(𝑃𝑃𝑠𝑖

))𝑖   −  𝑄𝑠)={𝑎7, 𝑎12, 𝑎11}. The left hand side of the equation is not 

equal to the right hand side ({𝑎7} ≠ {𝑎7, 𝑎12, 𝑎11}). Therefore, ⋂ 𝑃𝑃𝑠𝑖
− 𝑅𝑠𝑖 ≠

𝑃𝑏
−1 (⋂ (𝑃𝑏(𝑃𝑃𝑠𝑖

))𝑖 − 𝑄𝑠). 

 

2.1.2.3.UMD Analysis. The last step of our incomplete data analysis is to 

determine the UMD (𝑈). UMD occurs when none of the questions are responded within a 

MSLP (𝐴𝐵 ≠ ∅). In this case, due to the lack of responses in 𝐴𝐵, it is impossible to entitle 

an edge as GMD or SPMD. For such edges, the status is not determined. UMD (𝑈) can 

be estimated by the following formula: 

𝑈𝑠 = ⋃ 𝑃𝑃𝑠𝑖
− ⋂ 𝑃𝑃𝑠𝑖

𝑖𝑖

 

Clearly, UMD can also be estimated by;  𝑈𝑠 = 𝐴 − 𝑅𝑠 − 𝑀𝑠 − 𝑆𝑠 

Hence 𝑈𝑠 = {𝑎11, 𝑎12, 𝑎13}. 

Observation V: SPMD and UMD edges can occur within a MSLP; however GMD edges 

can occur both within both MSLP and SSLPs.   



 

38 

 

The same method (detection of SPMD, UMD, GMD and inconsistent data analysis) 

is applied over the entire MESA data starting from the first attribute as the initial vertex 

and the 825
th

 attribute as the terminal vertex. 

 

                                                       2.2. Implementation 

In this section the implementation of inconsistent and incomplete data are discussed.  

 

2.2.1. Implementation of Inconsistent Data Analysis  

In this section, we present a technique for detecting inconsistent data. According 

to Lemma I, all the subgraphs in the complement of the failed edit graph are complete 

and therefore they are already maximal cliques. Therefore, the number of vertices of each 

maximal clique should be counted and the one with the maximum number of vertices 

should be determined (i.e. largest maximal clique), which has a polynomial time 

complexity. Once the largest maximal clique is determined, the vertices that are not 

components of the largest maximal clique are removed from 𝑅𝑠
∗ (𝑅𝑠

∗ − 𝑁𝐶𝑠

𝑀), in order to 

prevent inconsistencies.  

It is expected that the number of questions being asked in a questionnaire to be 

very limited, since the questionnaires are designed for human. Even in the case when the 

input data is large and complex, the largest maximal clique detection algorithm is only 

applied on areas that contain multiple sub-linear paths (MSLP) with mutually 

inconsistent edges (not on the entire graph, 𝐺, since inconsistencies can only occur on 

MSLP portions). Therefore, extending this work to other datasets would not cause poor 

run times or inefficient memory usage. 
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2.2.2. Implementation of Incomplete Data Analysis  

In this section, we present an implementation for detecting the potential paths for 

each subject. Once the potential paths are detected, the GMD, SPMD and UMD vertices 

can be calculated by the formulas defined in the previous section. The first step is to 

create two different matrices that represent the MESA graph (Node Matrix (𝑀1), and 

Edge Immediate Successor Matrix (𝑀2)). Note that, these matrices are subject-

independent. 

The Node Matrix shown in Table 2.2 , (𝑀1), corresponds to a portion of the graph 

in Figure 2.1 (from 𝑣17 to 𝑣20). 𝑀1 is generated by the following function. 

𝑀1(𝑖, 𝑗) = {
𝑎𝑚 𝑖𝑓 ∃ 𝑎𝑚 ∈ 𝐴 𝑠. 𝑡.  𝑎𝑚 = (𝑣𝑖 , 𝑣𝑗)

1 𝑖𝑓 𝑖 = 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

The Edge Immediate Successor Matrix (𝑀2) shown in Table 2.3 is generated by the 

following function. 

𝑀2(𝑖, 𝑗) = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒 𝑜𝑓 𝑎𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑛𝑜𝑑𝑒 𝑜𝑓𝑎𝑗 

1 𝑖 = 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Once the matrices are generated, Algorithm 1 is designed to find the linear and 

potential paths. After the linear and potential paths are determined, the formulas 

explained in the Method Section can be used to determine the GMD, UMD and SPMDs.  

Algorithm 1-Implementation for Determining Linear and Potential Paths 

/*The algorithm begins with an "initial" vertex, 𝑣𝑖𝑛𝑖𝑡. It then iteratively transitions from 

the current vertex to an adjacent, 𝑃𝑎(𝑃𝑏
−1(𝑣𝑖𝑛𝑖𝑡)), until it can no longer find an 
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unexplored vertex to transition to from its current location. The algorithm is executed 

𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑖𝑛𝑖𝑡) times.*/ 

Define global 𝑘 = 1, 𝑡 = 0   //𝑘 and 𝑡 are arbitrary indices. 

𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑣𝑖𝑛𝑖𝑡      //𝑣𝑖𝑛𝑖𝑡 is the initial vertex and 𝐿𝑃 is a linear path  

Define FindLinearPath(𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝐿𝑃)     

{ 

For all 𝑃𝑏
−1(𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡) incident to 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

 If 𝑃𝑏
−1(𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡) is unexplored then  

𝐿𝑃𝑘 =  𝐿𝑃𝑘  ∪  𝑃𝑎(𝑃𝑏
−1(𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡))  

FindLinearPath(𝑃𝑎(𝑃𝑏
−1(𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡)), 𝐿𝑃𝑘) 

Increment 𝑘 

 End If  

End for 

} 

/*Below for each linear path, a condition is checked to see whether that linear path’s 

corresponding edges, the consistent response set 𝑅𝑠 is a subset of  𝑃𝑏
−1(𝐿𝑃𝑖). Each 

𝑃𝑏
−1(𝐿𝑃𝑖) satisfying this condition is assigned to a potential path. */ 

Define FindPotentialPath(𝑅𝑠, 𝐿𝑃)     

{ 

For 𝑖 = 1: 𝑘 − 1     

If 𝑅𝑠 is a subset of 𝑃𝑏
−1(𝐿𝑃𝑖) then  

   𝑃𝑃𝑠𝑡
 =  𝑃𝑏

−1(𝐿𝑃𝑖) 
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     Increment 𝑡 

 End If 

End For  

} 

We analyze this algorithm for its worst case time complexity starting with 

FindLinearPath function. The worst case happens when each vertex is connected to as 

many other vertices as possible. This entails 𝑛 − 1 vertices (and the same number of 

edges) for the first vertex and 𝑛 − 2 vertices for the second vertex and so on. The total 

number of recursive calls to this function would therefore be 𝑊(𝑛) =  (𝑛 − 1) + (𝑛 −

2) + ⋯ + 1 = 𝑛(𝑛 − 1)/2 ∈ Θ(𝑛2). The second function, FindPotentialPath, requires 

each element in 𝑅𝑠 to be compared with elements in 𝑃𝑏
−1(𝐿𝑃𝑖). This should be performed 

for each linear path. An upper bound for the worst case complexity for the latter function 

would be for a case when 𝐶𝑎𝑟𝑑(𝑅𝑠), 𝐶𝑎𝑟𝑑(𝑃𝑏
−1(𝐿𝑃𝑖)) and #(𝐿𝑃𝑖) are at their maximum 

value, which is 𝐶𝑎𝑟𝑑(𝐴). The notations 𝐶𝑎𝑟𝑑(𝐴) and #(𝐿𝑃𝑖) are the cardinality of the 

set 𝐴 (set of edges in 𝐺) and the number of linear paths, respectively. As mentioned this 

is an upper bound for the worst case complexity as #(𝐿𝑃𝑖) cannot be more than half of 

𝐶𝑎𝑟𝑑(𝐴) since there should always be one initial and one terminal vertices in a 

questionnaire’s graph. Moreover, when 𝐶𝑎𝑟𝑑(𝑃𝑏
−1(𝐿𝑃𝑖)) is at its maximum value, 

#(𝐿𝑃𝑖) is one. Note that the largest value of 𝐶𝑎𝑟𝑑(𝐴) in terms of 𝑛, 𝐶𝑎𝑟𝑑(𝑁), is in the 

order of 𝑛2. Therefore, the upper bound would be 𝑂(𝑛6). We can conclude that the upper 

bound of the worst case time complexity of the entire algorithm is (𝑛6), which is a 

polynomial complexity. 
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Table 2.2-Node matrix (𝑀1) 

 𝑣17 𝑣17𝑎 𝑣17𝑏 𝑣17𝑐 𝑣17𝑑 𝑣18 𝑣19 𝑣20 … 

𝑣17 1 𝑎1 0 𝑎2 0 0 0 0  

𝑣17𝑎 0 1 𝑎3 0 0 0 0 0  

𝑣17𝑏 0 0 1 0 0 𝑎5 0 0  

𝑣17𝑐 0 0 0 1 𝑎4 0 0 0  

𝑣17𝑑 0 0 0 0 1 𝑎6 0 0  

𝑣18 0 0 0 0 0 1 𝑎7 0  

𝑣19 0 0 0 0 0 0 1 𝑎8  

𝑣20 0 0 0 0 0 0 0 1  

…          
 

 

Table 2.3-Edge Immediate successor matrix (𝑀2) 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12 … 

𝑎1 1 0 1 0 0 0 0 0 0 0 0 0  

𝑎2 0 1 0 1 0 0 0 0 0 0 0 0  

𝑎3 0 0 1 0 1 0 0 0 0 0 0 0  

𝑎4 0 0 0 1 0 1 0 0 0 0 0 0  

𝑎5 0 0 0 0 1 0 1 0 0 0 0 0  

𝑎6 0 0 0 0 0 1 1 0 0 0 0 0  

𝑎7 0 0 0 0 0 0 1 1 0 0 0 0  

𝑎8 0 0 0 0 0 0 0 1 1 0 0 0  

𝑎9 0 0 0 0 0 0 0 0 1 1 0 0  

𝑎10 0 0 0 0 0 0 0 0 0 1 1 1  

𝑎11 0 0 0 0 0 0 0 0 0 0 1 0  

𝑎12 0 0 0 0 0 0 0 0 0 0 0 1  

…              
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                                                     2.3. Stratification 

Fisher’s Exact Test is a statistical significance test used in the analysis of 

contingency tables. It is used for all sample sizes. The significance of the deviation from 

a null hypothesis can be calculated exactly. Therefore, it is not necessary to rely on an 

approximation that becomes exact in the limit as the sample size grows to infinity. The 

Fisher’s Exact Test is used to determine if there are nonrandom associations between the 

two variables.  

As mentioned before, the dataset is divided into sub populations 

(𝐵𝑟𝑎𝑛𝑐ℎ1, 𝐵𝑟𝑎𝑛𝑐ℎ2) based on each branching question.  Even though, this method can 

be applied on each question, we limit the number of tests we are using by the branching 

questions for the following reason: when dividing the population into subgroups, the split 

is induced by a threshold which is determined by the expert knowledge for each 

branching question. However, for each non-branching question determining a threshold 

for each type of answer (categorical, binary, numeric) may lead to incorrect 

classifications.  

Table 2.4 shows a contingency table where the p values are calculated by the 

following formula:  

𝑃 =
( (𝒂+𝒃

𝒂 ) (𝒄+𝒅
𝒄 ))

 

( 𝒏
𝒂+𝒄)

 = 
(𝑎+𝑏)!(𝑐+𝑑)!(𝑎+𝑐)!(𝑏+𝑑)!

𝑎!𝑏!𝑐!𝑑!𝑛!
  

Here, 𝑅1, 𝑅2, 𝑎𝑛𝑑 𝑅3 are associations rules extracted from datasets 𝐵𝑟𝑎𝑛𝑐ℎ1 or 

𝐵𝑟𝑎𝑛𝑐ℎ2.  The values 𝑎, 𝑏, 𝑐 and 𝑑 are the number of subjects that support/contradict the 

extracted rules in those two datasets. A different contingency table needs to be generated 

for each branching question.  
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Table 2.4 – Contingency Table for Stratification 

  𝑩𝒓𝒂𝒏𝒄𝒉𝟏 𝑩𝒓𝒂𝒏𝒄𝒉𝟐 Row Total 

𝑹𝟏  # of subjects that support 𝑅1 a b a+b 

# of subjects that contradict 𝑅1 

 

c d c+d 

 Column Total  

 

a+c b+d a+b+c+d 

𝑹𝟐 # of subjects that support 𝑅2    

# of subjects that contradict 𝑅2    

     

… …    

…    

𝑹𝒏 # of subjects that support 𝑅𝑛    

# of subjects that contradict 𝑅𝑛    

     

 

 

 

2.3.1. Simulation  

The simulation is created by generating two independent binary datasets. The first 

dataset D1 and the second dataset D2 both contain 1000 subjects where 𝑆1 =

{𝑆11, 𝑆21, 𝑆31, … , 𝑆1000 1}  is the subject set of 𝐷1 and 𝑆2 = {𝑆12, 𝑆22, 𝑆32, … , 𝑆1000 2} is the 

subject set of 𝐷2 and 15 common attributes (𝐴 = {𝐴1, 𝐴2, 𝐴3, … , 𝐴15}). Three different 

rules are embedded to each dataset. The rules are generated in the sense that none of the 

rules contradict with another rule. There is no attribute being used in more than one rule. 

The class labels contain both the classes from the baseline and the first follow up.  ‘𝐶 − 𝐼’  

is an example of a response indicating that the subject was continent in the baseline and 

became incontinent in the first follow-up. The rules that are embedded to D1 are as 

follows: 

𝑅11 = 𝐴1 = 0 & 𝐴3 = 1 ⇒ 𝐼 − 𝐶 

𝑅21 = 𝐴5 = 0 & 𝐴7 = 1 ⇒ 𝐶 − 𝐼 
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𝑅31 = 𝐴10 = 1 & 𝐴12 = 1 ⇒ 𝐶 − 𝐼  

The rules that are embedded to D2 are as follows:  

𝑅12 = 𝐴2 = 0 & 𝐴11 = 0 ⇒ 𝐶 − 𝐼 

𝑅22 = 𝐴4 = 1 & 𝐴9 = 0 ⇒ 𝐶 − 𝐼 

𝑅32 = 𝐴6 = 0 & 𝐴8 = 1 ⇒ 𝐼 − 𝐶 

The two datasets are then combined. The combination (𝐷1 + 𝐷2), have 2000 

subjects 𝑆𝐷1+𝐷2
= {𝑆11, 𝑆21, 𝑆31, … , 𝑆1000 1, 𝑆12, 𝑆22, 𝑆32, … , 𝑆1000 2} and 15 

attributes (𝐴 = {𝐴1, 𝐴2, 𝐴3, … , 𝐴15}). Three attributes are then added to the combined 

dataset. Those attributes each represent a branching question having binary values. First 

branching question 𝐵𝑄1, takes value ‘0’ for each subject existing in 𝐷1 and value ‘1’ for 

each subject existing in 𝐷2. The second and third branching questions, 𝐵𝑄2 and 𝐵𝑄3 take 

random binary values.  

The combined dataset is then separated into two subsets based on the values of 

each branching question. The subset for 𝐵𝑄1 taking value ‘0’ is 𝐷𝐵𝑄1
0 and the subset for 

𝐵𝑄1 taking value ‘1’ is  𝐷𝐵𝑄1
1, similarly the subsets for 𝐵𝑄2 are 𝐷𝐵𝑄2

0  and 𝐷𝐵𝑄2
1 and the 

subsets for 𝐵𝑄3 are 𝐷𝐵𝑄3
0  and 𝐷𝐵𝑄3

1. Figure 2.4 shows an example of the combined 

dataset with branching questions that are separated.  

The association rule mining algorithm, Apriori, is used to extract the rules of each 

subset, since it was proofed to outperform other rule extraction techniques. (Arslanturk 

et. al.). This is explained in detail in Section 3.3. Apriori is an association rule that 

iteratively reduces the minimum support until it finds the required number of rules with 

the given minimum confidence (W. Cohen). 
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Once the rules are extracted for each subset, a contingency table is created for 

each branching question. A contingency table is a matrix format that displays the 

frequency distribution of the variables. The rows of the contingency table denote the rules 

associated with that branching question. The columns are the subsets. For example, 

for 𝐵𝑄2, the rows of the contingency table are the rules extracted from subset 𝑫𝑩𝑸𝟐
𝟎   and 

𝑫𝑩𝑸𝟐
𝟏, respectively. The columns are the datasets 𝑫𝑩𝑸𝟐

𝟎  and 𝑫𝑩𝑸𝟐
𝟏. The contingency table 

is created to display the relative frequencies, i.e. the support/no support of each rule for 

each subset.  

Once the contingency table is created, the p-values are calculated using the 

Fisher’s Exact Test explained in the Methods Section. Based on the p-values that are 

calculated, we can determine the branching questions that are statistically significant.  

A branching question is a good stratifying factor when it is statistically 

significant, since different rules (hence different risk factors and predictive factors) are 

extracted from its sub populations. Therefore, those two sub populations cannot be 

treated the same. If data is not stratified into sub populations when the branching question 

is determined to be significant, one may skip some important risk factors and predictive 

factors. 

 

                                      2.4. Imputation Using Rough Set Theory 

In rough set theory, data is stored in an information table. Let 𝐼 = (𝑈, 𝐴) be an 

information system, where 𝑈 be a set of objects and 𝐴 be a non-empty set of attributes 

such that 𝑎: 𝑈 → 𝑉𝑎. 𝑉𝑎 be the set of values attribute 𝑎 may take. The information table 

assigns a value 𝑎(𝑥) from  𝑉𝑎 to each attribute 𝑎 and object 𝑥 in the universe 𝑈.  



 

48 

 

With any 𝑃 ⊆ 𝐴 there is an equivalence relation 𝐼𝑁𝐷(𝑃):  𝐼𝑁𝐷(𝑃) =

{(𝑥, 𝑦) ∈ 𝑈2|∀𝑎 ∈ 𝑃, 𝑎(𝑥) = 𝑎(𝑦)}. The objects that are the elements of an equivalence 

class are indistinguishable. Let 𝑋 ⊆ 𝑈 represent the attribute subset 𝑃; and an arbitrary 

set of objects comprising 𝑋, and we wish the express this subset of objects using the 

equivalence classes induced by attribute subset 𝑃. Since 𝑋 cannot be expressed exactly 

(because there may cases when some objects will be included and/or excluded due to the 

indistinguishable relations) the lower bounds 𝑃𝑋 = {𝑥|[𝑥]𝑃 ⊆ 𝑋} and upper bounds 𝑃𝑋 =

{𝑥|[𝑥]𝑃 ∩ 𝑋 ≠ ∅} of X can be defined. In other words, either all the objects being part of 

the equivalence class need to be included if at least one of them is an object comprising 𝑋 

(upper bound), or all of the objects being part of the equivalence class need to be 

excluded (lower bound).  

As you may recall, the GMDs were determined in Section 2.1.2. They are the only 

incomplete data type that is imputed in this study. The first step of imputation starts with 

dichotomizing the MESA data. 0 denotes a subject towards continence and 1 denotes a 

subject towards incontinence. The equivalence classes are determined from the 

dichotomized data. The subjects containing one or more GMD are assigned to the 

appropriate equivalence classes, if any. Note that one subject with one or more GMD can 

be assigned to more than one equivalence class. The algorithm implemented below 

(Algorithm 2) imputes the GMD by presenting a list of possible values, based on the 

observed data within the same equivalence class(es).  The hypothesis here is that in most 

finite databases, a case similar to the missing data case could have been observed before.   
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Algorithm 2.  Rough set based missing data imputation algorithm 

Input:   Incomplete data set 𝛬 with 𝑎 attributes and 𝑖 instances.  

All these instances should belong to a decision 𝐷. 

Output:  Imputed dataset. 

Assumption:  𝐷 and some attributes are always known. 

For all 𝒊 do → Partition the input space according to 𝐷 End 

For each attribute do → 

The family of equivalent classes 𝜀(𝑎) containing each object 𝑜𝑖 for all input attributes is 

computed. 

IF 𝑖 has the same attribute values with 𝑎𝑗 everywhere except for the missing value, 

replace the missing value, 𝑎𝑚𝑖𝑠𝑠𝑖𝑛𝑔, with the value 𝑣𝑗 , from 𝑎𝑗, where 𝑗 is an index to 

another instance within the same equivalence class. 

IF more than one 𝑣𝑗  values are suitable for the estimation, postpone the replacement for 

later when it will be clear which value is appropriate. 

End 

 

2.4.1 Imputation Validation 

In MESA, 44% of the subjects (instances) contain at least one missing attribute. 

In order to validate the imputation technique, all the subjects containing at least one 

missing value are excluded from the dataset forming a subset of MESA without any 

missing values (referred to as 𝐷𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒). Next, the values of several attributes are 

randomly removed from 𝐷𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 in order to build a new dataset that has 44% of the 
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subjects containing at least one missing value (44% is specifically chosen in order to 

reflect the actual case). This dataset is referred to as 𝐷𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛.  

The rough set imputation is applied on the  𝐷𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 data. All the instances are 

partitioned into equivalence classes in the  𝐷𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 data. The missing attribute 

, 𝑎𝑚𝑖𝑠𝑠𝑖𝑛𝑔 , of instance 𝑖 is imputed with the value 𝑣𝑗 , from 𝑎𝑗, where 𝑗 is an index to 

another instance (within the same equivalence class) that has the same attribute values 

with 𝑎𝑗 everywhere except for the missing value. This process is repeated for each 

instance with missing attributes. If there exist more than one 𝑣𝑗  value suitable for the 

missing attribute, the imputation process is postponed until only one value is appropriate. 

Note that, this method does not guarantee each missing attribute to be imputed. Some 

attributes may still remain missing at the end of imputation.  

As mentioned above, the missing attributes are imputed when there exists at least 

one instance identical to the missing data case except for the missing attribute itself. In 

order to compare the performance of rough set imputation, we have extended this process 

to imputing the missing case only when there exists at least a predetermined number of 

identical instances to the instance with the missing case.   The imputed values are then 

compared with the actual values in the 𝐷𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 data. This process is repeated several 

times, by selecting a different random set of attributes to remove each time. After the 

removed attributes are imputed and the imputed values are compared with the actuals, the 

average imputation accuracy is then reported. 
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CHAPTER THREE 

 

METHOD - PREDICTIVE INDEX ESTIMATION 

 

 

 

                               3.1. Comparison of Attribute Selection Methods  

Attribute selection techniques can be divided into three different categories: filter, 

wrapper and embedded methods. In filtering methods, the attribute selection method 

takes place before any learning algorithm. The undesirable attributes are filtered out 

before the classification step. All the training data is used in filtering methods (Hall 

2003). In embedded methods, the learning algorithm has its own attribute selection 

algorithm embedded in it (Molina 2002). J48 decision tree classification algorithm is a 

common example of an embedded method. In wrapper mode, on the other hand, the 

attribute selection algorithm uses the learning algorithm as a sub-routine (John 1994).  

Five different attribute selection methods are applied to the MESA dataset. 

Wrapper methods which are Correlation based feature selection and ReliefF, a filtering 

method, information gain and an embedded method J48 decision tree based attribute 

selection are applied to the dataset and the results are compared in terms of sensitivity 

and specificities.  

Correlation based feature selection. Correlation based feature selection evaluates 

the dependencies between attributes and eliminate the ones which are correlated to each 

other. The irrelevant and redundant data has to be removed. After the attribute selection, 
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the remaining data has to be highly correlated with the class and uncorrelated with each 

other.  

 As equation 1 (Ghiselli, 1964) formalizes:  

 𝑀𝑒𝑟𝑖𝑡𝑠𝑘
 =  

𝑘𝑟𝑐𝑓

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓

  

  The attribute subset 𝑆 contains 𝑘 different attributes where 𝑟𝑐𝑓 is the attribute to 

class correlation and 𝑟𝑓𝑓 is the attribute to attribute correlation. In order to have a good 

attribute selection algorithm the merit has to be maximized. Symmetrical uncertainty can 

be evaluated as follows where 𝐻(𝑋) and 𝐻(𝑌) are marginal entropies.  

 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 2.0𝑥 [
𝑔𝑎𝑖𝑛

𝐻(𝑌)+𝐻(𝑋)
] 

Consistency based feature selection. The consistency of the class is evaluated by 

first figuring out all different combinations of the attributes. For each different 

combination the consistency is calculated by differentiating the number of occurrences of 

a particular attribute from the cardinality of the majority class (Hall 1998).  

Information gain. The uncertainty of the class is evaluated with and without the 

attribute observation (Hall 1998).  

 𝐻(𝐶𝑙𝑎𝑠𝑠)  =  − ∑ 𝑝(𝑐) log 𝑝(𝑐)𝑐 ∈𝐶  

𝐻(𝐶𝑙𝑎𝑠𝑠|𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)  =  − ∑ 𝑝(𝑎) ∑ 𝑝(𝑐|𝑎) log 𝑝(𝑐|𝑎)

𝑐𝜖𝐶𝑎𝜖𝐴

   

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐶𝑙𝑎𝑠𝑠, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) = 𝐻(𝐶𝑙𝑎𝑠𝑠) − 𝐻(𝐶𝑙𝑎𝑠𝑠|𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) 

ReliefF. ReliefF algorithm assigns a relevancy score to all the attributes in 

descending order. The algorithm selects an instance in each iteration and finds the nearest 
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neighbor (by Euclidean distance) from the same and opposite class. The algorithm starts 

with a p-long weight vector (𝑊) of zeros. The closest same-class instance is called 'near-

hit', and the closest different-class instance is called 'near-miss'. The weight vector is 

updated in each iteration as shown in the following formula:  

𝑊𝑖 = 𝑊𝑖−1 − (𝑥𝑖 − 𝑛𝑒𝑎𝑟𝐻𝑖𝑡𝑖)2 + (𝑥𝑖 − 𝑛𝑒𝑎𝑟𝑀𝑖𝑠𝑠𝑖)
2 

Therefore, the weight of a given feature decreases if it differs from that feature in 

nearby instances of the same class more than nearby instances of the other class, and 

increases in the reverse case. After m iterations, each element of the weight vector is 

divided by m which will give the relevance vector. The algorithm can handle noise if the 

neighbor number, k, is increased.  

J48 decision tree based attribute selection. J48 decision tree is a classification 

method that can also be used for attribute selection. Each node of a tree involves an 

attribute and the occurrence of each attribute provides information about the importance 

of that particular attribute (Sugumaran 2006). The importance of each attribute can be 

evaluated by applying the information gain formula to each node of the tree. 

 

                                 3.2. Selection of Potential Predictive Factors  

The construction of urinary incontinence predictive index is based on subjects 

who were classified as continent at the baseline. The idea behind the construction of 

predictive index is to model what combination of factors makes a continent subject 

change from a continent condition to an incontinent condition. 91 subjects are classified 

as incontinent in the first follow up (HH2) out of 424 subjects in the baseline (HH1). As 

mentioned before, the factors are all dichotomized where 0 denoting a subject towards 
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continent and 1 denoting a subject towards incontinent. A logistic regression model is 

used where the independent variables are the factors of baseline and the dependent 

variable is the class label (outcome) of HH2. The same factors from HH1, along with the 

outcome from HH4 are then used to determine the p-values and odd ratios. The reason of 

this attempt is to see if the same factors are still significant when a different outcome 

(response variable) is used. 

Relieff attribute selection technique is also used to see whether the potential 

predictive factors extracted are similar with the regression method. Relieff assigns a 

weight to each attribute and orders the risk factors in descending order. The attributes are 

selected with the highest weight until a predetermined threshold value.  

Interaction effects represent the combined effects of variables on the criterion or 

dependent measure. An interaction occurs when the magnitude of the effect of one 

independent variable (𝑋) on a dependent variable (𝑌) varies as a function of a second 

independent variable (𝑍).  Adding an interaction term to a model drastically changes the 

interpretation of all of the coefficients. In this study, 2-way interactions of the regression 

model are determined. The new p-values of the potential predictive factors along with the 

most significant 2-way interaction factors for HH1HH2 data (the baseline factors and the 

first follow-up response) are determined. 

Once the potential predictive factors are extracted from the Relieff attribute 

selection technique and the logistic regression method, the data containing only the 

predictive factors along with the class labels are used for association rules generation. 

The class labels contain both the class from the baseline and the first follow up. The four 
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different class labels are denoted by, ‘C-C’, ’C-I’, ’I-C’, ’I-I’ where ‘C-I’ showing the 

subject being continent in the baseline and incontinent in the first follow-up.  The 

dimensionality is than further reduced by removing the subjects that have the following 

class labels, ‘I-I’, ‘I-C’. The reason of removing those class labels is that, we are only 

interested in the subjects that became incontinent over time and the ones that remain 

continent. 

 

3.3. Comparison of Rule Extraction Methods 

 Rule extraction techniques can be categorized into several different categories. In 

this research we will focus on the association rule learning and classification rules. Four 

different rule extraction methods are studied. Apriori an association rule and PART, 

Prism and Jrip the classification rules are examined and the results are compared in terms 

of sensitivity and specificities. 

Apriori is an association rule available on the data mining tool Weka (Waikato 

Environment for Knowledge Analysis) that iteratively reduces the minimum support until 

it finds the required number of rules with the given minimum confidence. PART 

algorithm uses a divide-and-conquer approach and builds a decision tree. The “best” leafs 

of the tree become part of the rules. For the Jrip, a rule learner is implemented to 

construct the classification rules. Prism can only deal with nominal attributes. It doesn't 

do any pruning. Prism algorithm cannot deal with missing values. Predictive Apriori and 

Tertius were also two rule extraction methods available in Weka. But those two methods 

were not as effective in terms of the run times compared to others. This may cause 

inefficient results since MESA data has a high dimensional attribute space.  
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3.3.1. Simulation  

10 different simulation datasets are created each containing 20 attributes and 1500 

subjects. In order to gain full control over the dataset the values in the dataset are formed 

to create rules (Agraval 1994). The last column of the dataset specifies the resultants i.e. 

the class labels. Resultant is defined as continence, expressed as 0, or incontinence, 

expressed as 1, of the subject. Resultant values are stored in the column space of the 

matrix.  

Subjects are defined as an individual and are represented in the row space of the 

matrix. The number of subjects is a function of the number of rules and the partition size 

for each rule. For example with ten rules and two hundred subject partition size there 

would be two thousand subjects represented in the matrix, with subjects one to two 

hundred being in the first partition, subjects two hundred and one to four hundred in the 

second, etc.  

The rules that are embedded to the simulation data are as follows:  

(𝐴1 = 0) 𝐴𝑁𝐷(𝐴4 = 0) ⇒ 𝑌 = 0 

(𝐴2 = 0) 𝐴𝑁𝐷(𝐴8 = 1) ⇒ 𝑌 = 1 

(𝐴10 = 0) 𝐴𝑁𝐷(𝐴15 = 1) ⇒ 𝑌 = 0 

(𝐴6 = 1) 𝐴𝑁𝐷(𝐴13 = 1) ⇒ 𝑌 = 0 

(𝐴9 = 0) 𝐴𝑁𝐷(𝐴14 = 1) ⇒ 𝑌 = 1  

Having defined the base dataset, it is now possible to manipulate the dataset for 

further methodology testing. There are two types of modifications that can be performed 

to the data set for this testing. First is the inclusion of noise to the data set. The second 
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type of modification is to incorporate missing values. The expected results of the attribute 

selection algorithms are the attributes that are the entities of the rules embedded to the 

datasets.  

A simulation dataset is used to allow maximum flexibility in creating and 

manipulating the data sets. The simulation allows for one base dataset to be processed 

with multiple noise levels, multiple incomplete data levels and a mixture of both noise 

and incomplete data. The advantage of this methodology allows the researcher to 

understand the impact of varying levels of these factors on attribute selection or any other 

metric of interest. Further, we can determine up to what percentage of incomplete data 

and noise levels a given data mining tool can handle. This is extremely important when 

one needs to use the tool on a real application. The current version of the matrix creation 

algorithm was intentionally restricted to binary data only. This was chosen primarily to 

validate the attribute selection methods that were the driving force behind creating this 

simulated data. With the methodology described above, modifications to alternative data 

types, such as categorical and/or continuous, will be possible.  

The simulation shows up to what percentage of incomplete data, noise and 

multicollinearity can be handled by the attribute selection and rule extraction methods. If 

the level of incomplete data is more than the percentage that can be handled, further 

preprocessing is required.  

 

                                            3.4. Estimating the Predictive Index 

A scientifically developed and tested predictive UI index would help to identify 

women who are most likely to develop UI and permit widespread prevention or early 
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treatment.  Therefore a method is generated that calculates the probability of a new 

patient being incontinent in the future.   

The HH1HH2 data is prepared for association rule mining. Apriori algorithm 

explained in Section 3.3 is used to determine the predictive index. However, the 

confidence and support of each rule were less than desired for this method. Also, not all 

combinations of the attribute values are listed, therefore; we cannot determine the status 

of a patient having a combination that was not listed in any of the rules.  Since, the results 

of Apriori algorithm are not reliable and also limited to the listed rules; we listed the risk 

factors with all different combination of values they can take. This experiment will return 

all the rules that are available. For each rule the support is calculated, that is, the number 

of subjects that satisfy the rule. The probability can then simply be calculated by dividing 

the number of subjects that satisfy the antecedent of the rule by the number of subjects 

that satisfies the entire rule. This way when a new subject comes into the clinic, the 

probability of that subject going towards incontinence can be calculated by comparing 

her/his rules with the model and reporting that rule’s probability measure.  

 

3.4.1. Reliability of the Rules  

Once each combination of the rules are determined, it is important whether or not 

these rules can be referred as reliable. For a small sample size, there may be very few or 

even no subjects that satisfy the rule. For example if there is a rule that is only satisfied 

by one subject, and contradicts with no subjects, the confidence of that rule will be 100%. 

An example of this rule can be the following: A10T1='(0.75-inf)' A12T1='(0.75-      inf)' 

A3T1='(-inf-0.25]' A4T1='(0.75-inf)' support:1 ==> class=C-I support:1. The antecedent 
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of this rule is supported by 1 subject, and the rule including the consequent is supported 

by 1 subject. However, it will be a misleading assumption to conclude that there is a 

100% probability that a new subject satisfying this rule will go towards incontinence over 

time. Therefore, it is important to determine a support threshold. The margin of errors is 

used to determine a support threshold for each rule. The rules that have less support than 

the threshold are considered as unreliable.  

In a confidence interval, the range of values above and below the sample statistic 

is called the margin of error. If  𝑛𝑝𝑞 >  5, then the normal approximation can be used to 

develop a confidence interval for a binomial variable. The formula is the following: 

|𝑝 − 𝑝̂| ≤ 𝑍𝛼
2 ⁄

√
𝑝0(1 − 𝑝0)

𝑛
 

𝑝0 is the probability calculated from the rule by dividing the number of the 

number of subjects that satisfy the entire rule by the number of subjects that satisfies the 

antecedent of the rule. 𝑛 is the number of subjects that support the rule. |𝑝 − 𝑝̂| is the 

margin of error. The following are critical values for common levels of confidence.  

A 90% level of confidence has α = 0.10 and critical value of zα/2 = 1.64. 

A 95% level of confidence has α = 0.05 and critical value of zα/2 = 1.96. 

A 99% level of confidence has α = 0.01 and critical value of zα/2 = 2.58. 

A 99.5% level of confidence has α = 0.005 and critical value of zα/2 = 2.81. 
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3.4.2. Model Based Approach  

This section deals with the construction of a predictive index for urinary 

incontinence based on predicted probabilities of all possible combinations of the selected 

predictive factors. Between the two regression models, with and without interaction 

terms, the one with higher performance will be used for the next steps. The selected 

predictive factors, and if needed their 2-way interaction terms, from the baseline are 

regressed against the class label of the follow-up.  This is achieved by constructing 

contrasts and their corresponding 95% confidence intervals for probabilities of 

incontinence.  
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CHAPTER FOUR 

 

RESULTS AND DISCUSSION 

 

 

 

4.1. Incomplete and Inconsistent Data Analysis Results 

The first step of MESA preprocessing is to categorize the missing values into 

GMD, UMD and SPMD. Table 4.1 shows the number of subjects in the MESA baseline. 

Table 4.2 shows the number of cells that were incomplete before the experiment, along 

with their percentages. Once the experiments are conducted over the entire MESA 

dataset, 200 responses are determined to be mutually inconsistent, 15.4% of the responses 

are GMD, 12.9% of the responses are UMD, and 9.8% of the responses are SPMD.  Table 

4.3 shows the results after the incomplete data analysis. 

The summation of the percentages of GMD, UMD and SPMD for the female 

population shown in Table 4.3 must be equal the total percentage of incomplete data 

(37.1%). Since inconsistent data is not a type of incomplete data, the percentage of 

inconsistent data (0.021%) is not included in the summation.  

Table 4.4 shows the percentage of data with the range of GMD/UMD and 

SPMD's. We know from our previous experiments that our methods can handle up to 

12% of missing values and 15% of noise (Arslanturk et al. 2011). When the percentage of 

missing values and/or noise exceeds this threshold, the method shows less than desired 

reliability. Therefore, the dimensionality of the data is further reduced by removing the 

attributes and subjects that contain more than 15% of GMD and/or UMD. The attributes 
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and subjects that contain more than 15% of SPMD are not removed, since those will later 

be used for stratification.   The size of the reduced dataset has 773 attributes and 1059 

subjects.  

Note that, the skip patterns cover 9.8% of the missing values. It is important to 

distinguish them from the GMD’s. The branching questions which lead the skip patterns 

to occur can now be used for data stratification. This approach will help us to analyze 

each population with different characteristics separately.  

 

                                                4.2. Stratification Results  

The stratification results of the simulated data and MESA data are explained in this 

section.  

 

4.2.1. Simulation Results of Stratification 

Table 4.5 shows the simulation results of the stratification with 0% noise. The first 

three rules (𝑅1, 𝑅2, 𝑅3) belong to the dataset that contains the subjects that have 𝐵𝑄1
1 =

0, which can be denoted by 𝐷𝐵𝑄1
1, and the last three rules (𝑅4, 𝑅5, 𝑅6) belong to the 

dataset that contains the subjects that have 𝐵𝑄1
2 = 1, which can be denoted by 𝐷𝐵𝑄1

2 .  

Since the first branching question, 𝐵𝑄1, was designed to separate 𝐷1 and 𝐷2, it is 

expected to extract the same rules listed in Section 2.3.1 for the subsets, 𝐷𝐵𝑄1
1 and 𝐷𝐵𝑄1

2. 

The rules extracted from 𝐷𝐵𝑄1
1 are the same as the rules extracted from 𝐷1, and the rules 

extracted from 𝐷𝐵𝑄1
2 are the same as the rules extracted from 𝐷2. Note that, the support of 

the first three rules (𝑅1, 𝑅2, 𝑅3) of dataset 𝐷𝐵𝑄1
1 , is much higher than the support of the 

first three rules (𝑅1, 𝑅2, 𝑅3) of dataset 𝐷𝐵𝑄1
2 and the non-support of the first three  
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Table 4.1- The size of HH1 

 

 # of Subjects # of Attributes 

HH1 1956 826 

HH1 Female 1154 

HH1 Male 802 
 

 

Table 4.2- Missing Data in HH1, gender specified 

Missing Data # of Cells Percentages 

HH1 751132 46.4% 

HH1 Female 353637 37.1% 

HH1 Male 321637 48.5% 
 

 

 Table 4.3- GMD, UMD, SPMD and Inconsistent Data for Female 

HH1 Female #of Cells Percentages 

GMD 157278 15.4% 

UMD 114384 12.9% 

SPMD 81975 9.8% 

Inconsistent 200 0.021% 
 

 

Table 4.4- Average number of missing values per attribute and subject 

Avg. Missing Data By Attribute By Subject 

GMD  UMD  0-15 93.5% 91.7% 

GMD  UMD>15 6.4% 8.2% 

SPMD 0-15 65.4% 0.33% 

SPMD >15 34.5% 99.6% 
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rules (𝑅1, 𝑅2, 𝑅3) of dataset 𝐷𝐵𝑄1
1 is equal to 0. The reason of the non-support being 0 is 

that, the rules were generated without any conflict. Likewise, for the second branch, 

𝐵𝑄1
2 ,  we expect to see a lower support and a higher non-support compared to 𝐵𝑄1

1, for 

the first three rules. Notice that, for the last three rules the support of 𝐵𝑄1
2  is higher than 

𝐵𝑄1
1 and the non-support of 𝐵𝑄1

2  is lower than 𝐵𝑄1
1, since the last three rules were 

extracted from 𝐷2. 

The p-values are calculated and the results show that, for each rule, the 

association between the rules and two populations are considered to be extremely 

statistically significant. Therefore, we can define, 𝐵𝑄1,  as a significant branching 

question. That means, the two populations, 𝐵𝑄1
1 and 𝐵𝑄1

2 has different association rules 

hence; they have to be analyzed separately.  

Table 4.6, 4.7, and 4.8 show the same experiment with 10%, 20% and 30% noise, 

respectively. Note that, even if there is 30% noise in the data, the p-values are still 

considered to be statistically significant. However, the comparison of the p-values with 

different noise levels also show that, the less the noise there is in the data, the smaller the 

p-value becomes.  

Table 4.9 shows the contingency table for the second branching question, 𝐵𝑄2. As 

mentioned in the Methods section, the binary values of the second branching question 

were assigned randomly, and based on the binary values 𝐵𝑄2 have, 𝐷1 + 𝐷2 dataset was 

separated into 𝐷𝐵𝑄2
0 and 𝐷𝐵𝑄2

1.  
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Table 4.5- Optimal Branching (OB) p-values for 0% Noise 

Association Rules  Noise: 0% 𝐷𝐵𝑄1
0 𝐷𝐵𝑄1

1 Row 

T. 

p-value 

A1T1='(-inf -0.25]' A3T1='(0.75-inf)' 200 

==> class=I-C 200 

Support 200 17 217 3.224e
 -46 

No Support 0 61 61 

Column 

Total 

200 78 556 

 

A5T1='(-inf-0.25]' A7T1='(0.75-inf)' 200 

==> class=C-I 

Support 200 31 231 3.730e
-25 

No Support 0 34 34 

Column 

Total 

200 65 530 

 

A10T1='(0.75-inf)' A12T1='(0.75-inf)' 200 

==> class=C-I 200 

Support 200 33 233 7.54e
-30 

No Support  0 43 43 

Column 

Total 

200 76 552 

 

A2T1='(-inf-0.25]' A11T1='(-inf-0.25]' 200 

==> class=C-I 200 

Support 26 200 226 4.92e
-29 

No Support 38 0 38 

Column 

Total 

64 200 528 

 

A4T1='(0.75-inf)' A9T1='(-inf-0.25]' 200 

==> class=C-I 200 

Support 28 200 228 1.30e
-29 

No Support  40 0 40 

Column 

Total 

68 200 536 

 

A6T1='(-inf-0.25]' A8T1='(0.75-inf)' 200 

==> class=I-C 200 

Support 10 200 210 2.74e
-37 

No Support  40 0 40 

Column 

Total 

50 200 500 
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Table 4.6- Optimal Branching (OB) p-values for 10% Noise 

Association Rules Noise: 

10% 

𝐷𝐵𝑄1
0 𝐷𝐵𝑄1

1 Row 

T. 

p-value 

A10T1='(0.75-inf)' A12T1='(0.75-inf)' 137 

==> class=C-I 129 

Support 129 16 145 3.02e
-17 

NoSupport 8 33 41 

Column 

Total 

137 49 372 

 

A5T1='(-inf-0.25]' A7T1='(0.75-inf)' 146 

==> class=C-I 

Support 135 24 159 3.94e
-14 

NoSupport 11 34 45 

Column 

Total 

146 58 408 

 

A1T1='(-inf-0.25]' A3T1='(0.75-inf)' 143 

==> class=I-C 129 

Support 129 7 136 1.57e
-33 

NoSupport  14 67 81 

Column 

Total 

143 74 434 

 

A4T1='(0.75-inf)' A9T1='(-inf-0.25]' 150 

==> class=C-I 140 

Support 26 140 166 2.70e
-15 

NoSupport 36 10 46 

Column 

Total 

62 150 424 

 

A6T1='(-inf-0.25]' A8T1='(0.75-inf)' 147 

==> class=I-C 135 

Support 12 135 147 5.12e
-23 

NoSupport  45 12 57 

Column 

Total 

57 147 408 

 

A2T1='(-inf-0.25]' A11T1='(-inf-0.25]' 155 

==> class=C-I 141 

Support 18 141 159  

NoSupport  35 14 49 

Column 

Total 

53 155 416 
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Table 4.7- Optimal Branching (OB) p-values for 20% Noise 

Association Rules Noise: 

20% 

𝐷𝐵𝑄1
0 𝐷𝐵𝑄1

1 Row 

T. 

p-value 

A5T1='(-inf-0.25]' 169 ==> class=C-I 126 Support 126 54 180 4.47e
-9 

No Support 43 78 121 

Column 

Total 

169 132 602 

 

A5T1='(-inf-0.25]' A7T1='(0.75-inf)' 173 

==> class=C-I 128 

Support 128 59 187 3.80e
-9 

No Support 45 84 129 

Column 

Total 

173 143 632 

 

A5T1='(-inf-0.25]' A7T1='(0.75-inf)'  173 

==> class=C-I 124 

Support 124 54 178 4.93e
-7 

No Support  49 73 122 

Column 

Total 

173 127 600 

 

A2T1='(-inf-0.25]' A11T1='(-inf-0.25]' 149 

==> class=C-I 114 

Support 46 114 160 3.06e
-9 

No Support 68 35 103 

Column 

Total 

114 149 526 

 

A4T1='(0.75-inf)' A9T1='(-inf-0.25]' 151 

==> class=C-I 115 

Support 42 115 157 4.96e
-15 

No Support  96 36 132 

Column 

Total 

138 151 578 

 

A11T1='(-inf-0.25]' 161 ==> class=C-I 122 Support 43 122 165 1.36e
-13 

No Support  83 39 122 

Column 

Total 

126 161 574 
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Table 4.8- Optimal Branching (OB) p-values for 30% Noise 

Association Rules Noise:30% 𝐷𝐵𝑄1
0 𝐷𝐵𝑄1

1 Row T p-value 

A12T1='(0.75-inf)' 263 ==> class=C-I 150 Support 150 105 255 0.0018 

No Support 113 139 252 

Column 

Total 

263 244 1014 

 

A10T1='(0.75-inf)' A12T1='(0.75-inf)' 257 

==> class=C-I 143 

Support 143 90 233 7.24e
-005 

No Support  114 149 263 

Column 

Total 

257 239 992 

 

A4T1='(0.75-inf)' 249 ==> class=C-I 145 Support 96 145 241 4.69e
-005 

No Support 146 104 250 

Column 

Total 

242 249 982 

 

A9T1='(-inf-0.25]' 269 ==> class=C-I 152 Support 81 152 233 7.62e
-005 

No Support  131 117 248 

Column  

Total 

212 269 962 

 

 

Since the 𝐵𝑄2 values are assigned randomly, once separated, 𝐷𝐵𝑄2
0 and 𝐷𝐵𝑄2

1 

datasets each may contain subjects from both 𝐷1 and 𝐷2. Therefore, the rule extraction 

technique will extract rules belonging to both 𝐷1 and 𝐷2. The rules embedded to 𝐷1 can 

lead conflicts, for subjects belonging to 𝐷2, and vice versa. These conflicts will effect the 

support of each rule, and may also corrupt the rules.  

Therefore, Table 4.9 shows that the association between the rules and two 

populations are considered to be not statistically significant.  Table 4.10 shows the results 

with 10% noise where the p-value shows an increase. Therefore, 𝐵𝑄2 is not being 

considered as a significant branching question.  
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Table 4.9- Bad Branching (BB) p-values for 0% Noise 

Association Rules  Noise: 0% 𝐷𝐵𝑄2
0 𝐷𝐵𝑄2

1 Row 

T. 

p-value 

 

A4T1='(0.75-inf)' A9T1='(-inf-0.25]' 136 

==> class=C-I 117 

Support 117 111 128 0.7326 

No Support 19 21 40 

Column T. 136 132 436 

 

 

A2T1='(-inf-0.25]' A11T1='(-inf-0.25]' 

132 ==> class=C-I 112 

Support 112 114 226 0.8610 

No Support 20 18 38 

Column 

Total 

132 132 528 

 

 

A5T1='(-inf-0.25]' A7T1='(0.75-inf)' 124 

==> class=C-I 107 

Support 124 107 231 0.7160 

No Support  17 17 34 

Column 

Total 

141 124 530 

 

 

A10T1='(0.75-inf)' A12T1='(0.75-inf)' 123 

==> class=C-I 109 

Support 124 109 233 0.0962 

No Support 29 14 43 

Column 

Total 

153 123 552 

 

 

Table 4.10- Bad Branching (BB) p-values for 10% Noise 

Association Rules  Noise: 10% 𝐷𝐵𝑄2
0 𝐷𝐵𝑄2

1 Row T. p-value 

 

A4T1='(0.75-inf)' A9T1='(-inf-0.25]' 152 

==> class=C-I 109 

Support 109 109 218 0.3932 

No Support 43 54 97 

Column 

Total 

152 163 630 

 

 

A10T1='(0.75-inf)' A12T1='(0.75-inf)' 

158 ==> class=C-I 108 

Support 108 87 315 0.4590 

No Support 50 49 99 

Column 

Total 

158 136 708 

 

 

A4T1='(0.75-inf)' 156 ==> class=C-I 106 

Support 106 97 203 0.4721 

No Support  50 55 105 

Column 

Total 

156 152 616 

 

 

A5T1='(-inf-0.25]' A7T1='(0.75-inf)' 159 

==> class=C-I 110 

Support 96 110 206 0.3361 

No Support 55 49 104 

Column 

Total 

151 159 620 

 

 

A2T1='(-inf-0.25]' A11T1='(-inf-0.25]' 

152 ==> class=C-I 102 

Support 104 102 206 1.0000 

No Support  52 50 102 

Column T. 156 152 616 
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As a result, 𝐵𝑄1 was defined as a factor that perfectly splits the dataset into two 

populations with different characteristics, 𝐵𝑄2 and 𝐵𝑄3 were defined as factors that 

randomly split the population into two groups. Our simulation results showed that 𝐵𝑄1 is 

a significant factor, whereas 𝐵𝑄2 and 𝐵𝑄3 are not. Hence, this simulation shows that the 

Fisher’s Exact Test can be used to determine the significant branching questions.  

 

4.2.2. MESA Results of Stratification 

The same experiment is applied on the MESA dataset. The branching questions 

that are extracted from the MESA data are listed in Table 4.11. 

We have split the data into two subsets based on the following branching 

questions: v29, v92, v171, v180, v193, v418, v737 and v745. For most of these factors 

except v180 and v737, there were not enough subjects for a rule to be generated. 

Therefore, a contingency table could not be generated. Table 4.12 shows the contingency 

table for the subjects that have undergone female surgery and the ones that have not. The 

p-values show that the association between the rules and the data is not considered to be 

statistically significant. Therefore, female surgery cannot be considered as a significant 

branching question.  

Table 4.13 shows the contingency table for the smokers and non-smokers. Here, 

the association between the rules and the data is considered to be statistically significant 

for the rules whose p-values are underlined. Therefore, smoking more than 100 cigarettes 

in the entire life is considered to be a significant branching question.  
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Table 4.11- List of Branching Questions 

Label Branching Questions 

v32 Are you married, widowed, divorced, separated, or have you never married? 

v41 Do you sneeze often, sometimes, rarely or never? 

v53 Do you usually need to use a wheelchair, cane, crutches or walker to help you 

get around? 

v59 Do you have any health problems which make it difficult for you to leave your 

home and go visiting, shopping, or to the doctor’s? 

v87 Have you ever been told by a doctor that you had high blood pressure? 

v90 Have you ever been told by a doctor that you had a hernia in the groin or 

stomach area?  

v92 Have you ever had a stroke or cerebral brain hemorrhage?  

v95 Have you ever been told by a doctor that you occasionally have had transient 

ischemic attacks or poor blood flow to the brain, where you seem to lose track of 

things that are happening around you for up to a few minutes?  

v97 Have you ever had problems with any paralysis? 

v107 Have you ever had a heart attack? 

v111 Has any doctor ever told you that you have or have had arthritis or rheumatism? 

v125 Have you had any other disease of the nerves or muscles? 

v128 Have you ever been told by a doctor that you had cancer of any kind? 

v133 Have you lost any inches in height as you have gotten older? 

v135 In the last 12 months how many times have you become so dizzy that you 

fainted or nearly fainted? 

v138 Have you broken any bones in the last 12 months? 

v171 How many pregnancies have you had? 

v180 Have you ever had female surgery such as on your ovaries, vagina, fallopian 

tubes, uterus, rectum, or urethra?  

v193 Are you currently taking any female hormones?  

v207 Have you ever had any other operations on your bladder, kidneys, or any other 

organs in your pelvic area or area normally covered by underpants or 

undershorts?  

v219 Do you usually need help in getting into the bathroom or on or off of the toilet? 

v220 Do you use any aids like a grab bar, or special toilet or anything else to help you 

with using the toilet in your home?  

v224 Do you have your regular schedule that you usually use to get you to the toilet to 

urinate, for example every hour or so?  

v415 Have you ever had or have you been told by a doctor that you had any kidney or 

bladder problems we haven’t talked about already?  

v418 Do you usually drink any liquids of any kind before you go to bed at night?  

v422 Did your mother of father have a urine loss condition as an adult?  

v458 Do you have any health problems that require medical attention that you have 

not been able to get treated? 
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Table 4.11- List of Branching Questions- Continued 

 

 

Label Branching Questions 

v496 As you know some people experience memory problems as they get older. How 

about your memory? Has it become worse within the last five years?  

v540 Have you ever had to stay in a nursing home overnight or longer because of a 

health problem you had?  

v543 Have you ever had to stay in a mental health facility overnight or longer, because 

of a mental or emotional problem that you had?  

v725 Do you usually take one or more naps during the day?  

v737 Have you smoked at least 100 cigarettes in your entire life?  

v745 Do you drink wine, beer, or liquor?  

v776 Is this the same occupation that you had for most of your life?  

 

 

4.2.2.1 Analysis of the Stratums. The extracted rules of the significant branching 

questions can be used for prediction. For example when a new patient comes into the 

clinic who meets the following rule v69='(-inf-0.5]' v80='(-inf-0.5]' v124='(-inf-0.5]' 

v152='(-inf-0.5]' v230='(-inf-0.5]' 50 ==> class=C-C 37    conf:(0.74), the patient will 

remain continent with 74%  of probability.   

Next, the risk factors of different stratums (smokers/non-smokers for our case) are 

determined separately. Relieff attribute selection is used to determine the important 

attributes of each population, since our previous studies have shown that Relieff 

outperformed other attribute selection techniques on the analysis of MESA dataset 

(Arslanturk et al.). The extracted attributes are defined as the risk factors. Table 4.14 

shows the risk factors for smokers and non-smokers. 
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Table 4.12- Contingency Table of Female Surgery 

Female Surgery- Association Rules   𝐷𝐹𝑆 𝐷𝑁𝐹𝑆 Row 

T.  

p-value 

1. v124='(-inf-0.5]' v152='(-inf-0.5]' 

v178='(-inf-0.5]' v195='(-inf-0.5]' v230='(-

inf-0.5]' v231='(-inf-0.5]' 78 ==> class=C-

C 49    conf:(0.63) 

 

Support 49 38 87 0.4988 

No Support 29 29 58 

Column T. 78 67 145 

2. v120='All' v124='(-inf-0.5]' v152='(-inf-

0.5]' v178='(-inf-0.5]' v195='(-inf-0.5]' 

v230='(-inf-0.5]' v231='(-inf-0.5]' 78 ==> 

class=C-C 49    conf:(0.63) 

 

Support 49 38 87 0.4988 

No Support 29 29 58 

Column T. 78 67 145 

3. v121='All' v124='(-inf-0.5]' v152='(-inf-

0.5]' v178='(-inf-0.5]' v195='(-inf-0.5]' 

v230='(-inf-0.5]' v231='(-inf-0.5]' 78 ==> 

class=C-C 49    conf:(0.63) 

Support 49 38 87 0.4988 

No Support 29 29 58 

Column T. 78 67 145 

1. v107='(-inf-0.5]' v125='(-inf-0.5]' 

v199='(-inf-0.5]' v432='(-inf-0.5]' 67 ==> 

class=C-I 43    conf:(0.64) 

 

Support 32 43 75 0.1135 

No Support 33 24 57 

Column T. 65 67 132 

2. v78='(-inf-0.5]' v107='(-inf-0.5]' 

v125='(-inf-0.5]' v199='(-inf-0.5]' v432='(-

inf-0.5]' 67 ==> class=C-I 43    conf:(0.64) 

Support 30 

 

43 73 0.0782 

No Support 32 24 56 

Column T. 62 67 129 

3. v107='(-inf-0.5]' v120='All' v125='(-inf-

0.5]' v199='(-inf-0.5]' v432='(-inf-0.5]' 67 

==> class=C-I 43    conf:(0.64) 

Support 32 43 75 0.1135 

No Support 33 24 57 

Column T. 65 67 132 

 

 

 

 

 

 

conf:(0.63)
conf:(0.63)
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Table 4.13- Contingency Table of Smoking 

Smoke-  Association Rules   𝐷𝑆 𝐷𝑁𝑆 Row 

T.  

p-value 

1. v69='(-inf-0.5]' v80='(-inf-0.5]' 

v124='(-inf-0.5]' v152='(-inf-0.5]' 

v230='(-inf-0.5]' 50 ==> class=C-C 37    

conf:(0.74) 

 

 Support 37 41 78 0.0064 

No Support 13 42 55 

Column T. 50 83 133 

2. v69='(-inf-0.5]' v78='(-inf-0.5]' v80='(-

inf-0.5]' v124='(-inf-0.5]' v152='(-inf-

0.5]' v230='(-inf-0.5]' 50 ==> class=C-C 

37    conf:(0.74) 

 

 Support 37 41 78 0.0064 

No Support 13 42 55 

Column T. 50 83 133 

3. v69='(-inf-0.5]' v79='(-inf-0.5]' v80='(-

inf-0.5]' v124='(-inf-0.5]' v152='(-inf-

0.5]' v230='(-inf-0.5]' 50 ==> class=C-C 

37    conf:(0.74) 

 Support 37 41 78 0.0064 

No Support 13 42 55 

Column T. 50 83 133 

1. v78='(-inf-0.5]' v107='(-inf-0.5]' 

v138='(-inf-0.5]' v432='(-inf-0.5]' 98 ==> 

class=C-I 58    conf:(0.59) 

 

 Support 24 58 82 0.1241 

No Support 29 40 69 

Column T. 53 98 151 

2. v28='(-inf-0.5]' v78='(-inf-0.5]' v79='(-

inf-0.5]' v138='(-inf-0.5]' v432='(-inf-

0.5]' 98 ==> class=C-I 58    conf:(0.59) 

 Support 24 58 82 0.0461 

No Support 34 40 74 

Column T. 58 98 156 

3. v78='(-inf-0.5]' v107='(-inf-0.5]' 

v120='All' v138='(-inf-0.5]' v432='(-inf-

0.5]' 98 ==> class=C-I 58    conf:(0.59) 

 Support 24 58 82 0.1241 

No Support 29 40 69 

Column T. 53 98 151 

 

 

 

 

 

 



 

75 

 

Table 4.14- Risk Factors of Stratums 

R
IS

K
 F

A
C

T
O

R
S

 
SMOKERS  NON-SMOKERS 

v211- Getting yourself wet v68- Being proud of yourself  

v128- Having Cancer v128- Having Cancer 

v229- Difficulties going to the  

bathroom on time v719- Having an active hobby 

v89- Being Diabetes v180- Undergone Female Surgery 

v69- Feeling lonely v74- Things are going your way? 

 

 

                                                4.3. Imputation Results  

The simulation results of imputation are explained in this section.  

 

4.3.1. Simulation Results  

The rough set imputation is applied on the simulated data with 44% of embedded 

missing values. The missing values are imputed when there exists at least 1 2,3,4 and 7, 

(Threshold 1, Threshold 2, Threshold 3, Threshold 4, and Threshold 7, respectively) 

identical instances to the instance with the missing case except for the missing attribute 

itself. Table 4.15 shows the accuracies of the imputation process with all different 

thresholds. The first column (Correct) shows the percentage of accurately imputed values 

while the second column (Incorrect) shows the inaccurately imputed values. At the end of 

the imputation process, the percentages of attributes that remain missing are shown in the 

third column (Not imputed). Therefore, one can see that, when the number of identical 

instances necessary to perform imputation increases (i.e., when the threshold increases), 
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inaccurately imputed values decrease. At the same time, more missing values will remain 

to be missing at the end of the imputation process.   

The 7% of incorrectly imputed values of the validation data is corrected 

(Threshold 1- Errors Corrected in Table 4.16). The wald score of this data (imputed data 

with errors corrected) is then compared both with the Threshold 1 (imputed data with 7% 

of error rate) data and the non-imputed data. The results in Table 4.16 show that the 

imputed data with the corrected errors outperformed the two other datasets.  

Also, a predictive index is constructed, based on the predicted probabilities of all 

possible combinations of the potential predictive factors (This is explained in detail in 

Section 4.7). This is achieved by constructing contrasts and their 95% confidence 

intervals for probabilities of incontinence. For each possible combination 

(2𝑛 combinations where 𝑛 is the number of potential predictive factors identified) the 

difference between the upper and lower bounds of the confidence intervals are identified. 

The average difference of the 𝑛 combinations is then calculated and referred as 

the 𝐶𝐼𝐷𝑖𝑓𝑓.  

 

 

Table 4.15- The average imputation results for different threshold levels for several runs 

 Correct Incorrect Not Imputed 

Threshold 1 36% 7% 56% 

Threshold 2 25% 5% 70% 

Threshold 3 22% 3% 74% 

Threshold 4 21% 3% 75% 

Threshold 7 11% 2% 88% 
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Table 4.16- Testing Global Null Hypothesis 

 Test Chi-Square Pr > ChiSq 

Threshold 1-Errors Corrected Wald  29.3546 0.0003 

Threshold 1-Errors Retained Wald 28.6637  0.0004 

Non-imputed Data Wald 23.4406 0.0028 

 

 

𝐶𝐼𝐷𝑖𝑓𝑓  =  
∑ (𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑𝑖  –  𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑𝑖)𝑛

𝑖=1

𝑛
 

The results of the three different datasets, Table A.1, Table A.2 and Table A.3 (Non-

Imputed Data, Threshold 1- Errors Retained and Threshold 1-Errors Corrected,) are then 

compared based on their 𝐶𝐼𝐷𝑖𝑓𝑓 values. Note that, a tighter confidence interval is 

preferred. The results show that, the improvement of correcting the 7% of errors with 

respect to retaining them is 0.009834, whereas the improvement of imputing the data 

with respect to no imputation is 0.02855.  

These results show that, although the rough set imputation causes 7% the data to be 

incorrectly imputed, the improvement of imputation with respect to leaving the data as it 

is (i.e. no imputation) is higher. Therefore, in order to generate a more reliable predictive 

index, imputation needs to be preferred.  

 

                                                 4.4. Attribute Selection Results 

In this experiment we have applied five different attribute selection algorithms to 

the simulation dataset and the results are compared when noise, incomplete data and 

multicollinearity are added to the data. The first set of experiments was designed to 
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evaluate the following attribute selection methods to see which one handles additive 

noise better: J48, ReliefF, information gain, Consistency based feature selection and 

Correlation based feature selection.  

In order to refer to an attribute selection algorithm as robust, it has to both have a 

high sensitivity and a high specificity. Figure 4.1 shows that J48 algorithm performs well 

in terms of sensitivity but there is a huge decrease in the specificity curve (Figure 4.2) 

which makes the algorithm less desirable than the others when there is noise.  

Without any noise, Information gain and ReliefF algorithms both perform well. 

Consistency based attribute evaluation has a low specificity and J48 decision tree 

classification algorithm has a low sensitivity. The results do not change in Cfs, 

Information Gain and ReliefF algorithms when the noise level is 2%, 5%, 10%, 15%, 

respectively. In spite, in J48 decision tree the specificity decreases and the sensitivity 

increases rapidly when the noise level increase. The sensitivity of Consistency based 

feature selection was 11% higher than the average sensitivity of other methods. However, 

its specificity was 37% lower than that of the average. It is important to note that, the 

method that maximizes both the sensitivity and specificity is of interest. The best method, 

when both sensitivity and specificity are considered, is information gain. This method 

outperformed the average performance of the other methods by 1% and 20.5% when we 

considered its sensitivity and specificity, respectively. Consistency based subset 

evaluation and J48 algorithms cannot handle noise.  
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Figure 4.1- Sensitivities of Attribute Selection Methods with Noise Levels 

 

 

 

Figure 4.2- Specificities of Attribute Selection Methods with Noise Levels  
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When multicollinearity is embedded into the dataset without any noise and 

missing values, the Correlation based feature selection method outperformed other 

methods.  

The next set of experiments is designed to evaluate the attribute selection methods 

to see which one handles missing values better. Figure  4.3 and Figure 4.4 show the 

results of different missing value levels. In this case, when considering sensitivity and 

specificity, ReliefF and information gain are proved to perform better compared to the 

other methods of our study by 7.2% and 12.4%, respectively. Despite, the Consistency 

based feature selection and J48 algorithms cannot handle missing values effectively.  

In summary, ReliefF and information gain are the best in all three situations 

(noise, missing value, multicollinearity) when both sensitivity and specificity measures 

are considered.  

It is also important to note that, the reliability of these methods decrease when 

there is more than 15% of noise or 12% of missing values. Therefore, 15% of noise and 

12% of missing values have to be defined as thresholds and data that has more than 15% 

of noise or 12% of missing values need to be further pre-processed.  

 

                                           4.5. Potential Predictive Factors  

The UI risk factors are extracted as body mass index (bmi), sneezing frequency, 

urine loss problems started after deliveries, trouble getting to the bathroom on time, 

frequency of wetting/soiling, shutting off the flow of urine in the middle of stream by 

using muscles and memory problems.  
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Figure 4.3- Sensitivities of Attribute Selection Methods with Missing Value Levels  

 

 

 

Figure 4.4- Specificities of Attribute Selection Methods with Missing Value Levels  
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The results of the logistic regression consisting eight most promising factors for 

prediction are given in Table 4.17 along with their corresponding p-values and odd ratios. 

The significant factors from the regression method and the Relieff algorithm were 

identical except a new factor (F6) which wasn’t extracted as significant from the 

regression method. The analysis has shown that the factor (F6) is promising for both the 

datasets constructed having HH2 and HH4 as outcome variables (and HH1 as baseline 

input factors). Therefore, it is added to the list of potential predictive factors. 

Table 4.18 shows that not all of the eight risk factors identified from HH1HH2 are 

performing well when we regressed the third follow up response on the same eight 

baseline factors. F3, F4, F5 and F6 remain to be significant.  

However, when the outliers are removed from the dataset, all eight factors are 

determined as significant both for the HH1HH2 (predictors from HH1 and response from 

HH2) and HH1HH4 (predictors from HH1 and response from HH4) datasets.  A case is 

described as an outlier if all or at least one half of the binary factors are 0 but the outcome 

is 1, or the other way round. Table 4.19 shows the results of the p-values for HH1HH2 

and HH1HH4 datasets with the removed outliers.  

Table 4.20 shows the p-values of HH1HH2 with 2-way interactions of some 

factors. Possibility of future incontinence and sneezing frequency, memory problems and 

bmi are the most significant interactions based on their p-values. Once the most 

significant interactions are determined from HH1HH2 data, HH1HH4 dataset is used to 

validate the results. The table shows that the same factors are still significant on 

HH1HH4 data.  
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Table 4.17- Baseline Factors and First Follow-up Outcome (HH1HH2) 

Factor Description P-value OR 

95% C.I 

F1 Body Mass Index (BMI) <=24; >24 0.1698 (0.827,2.944) 

F2 Do you sneeze often, rarely or never?  0.0274 (1.088,4.152) 

F3 Any urine loss problems that started after 

deliveries: Yes;No  

0.0423 (1.05,15.313) 

F4 Trouble getting to the bathroom on time: Yes;No 0.0769 (0.916,5.539) 

F5 Frequency of wetting/soiling yourself day/night: 

Never; 1/week; 1 or 2/week; >3/week  

0.0064 (1.573,16.021) 

F6* When you are urinating into a toilet, can you shut 

off the flow of urine in the middle of your stream 

by using your muscles if you want to?  

0.0419 (1.031,5.049) 

F7 As you know people experience memory problems 

as they get older. What about remembering 

names?  

0.0672 (0.958,3.552) 

F8 Possibility of future incontinence  0.0224 (1.112,4.014) 

*:Factor Extracted From Relieff Algorithm 

 

 

Table 4.18- Baseline Factors and Third Follow-up Outcome (HH1HH4) 

Factor Description P-value OR 

95% C.I 

F1 Body Mass Index (BMI) <=24; >24 0.6109 (0.668,1.987) 

F2 Do you sneeze often, rarely or never?  0.6269 (0.527,2.894) 

F3 Any urine loss problems that started after 

deliveries: Yes;No  

0.0042 (2.097,51.848) 

F4 Trouble getting to the bathroom on time: Yes;No 0.0116 (1.328,9.495) 

F5 Frequency of wetting/soiling yourself day/night: 

Never; 1/week; 1 or 2/week; >3/week  

0.0336 (1.112,13.915) 

F6* When you are urinating into a toilet, can you shut 

off the flow of urine in the middle of your stream 

by using your muscles if you want to?  

0.0478 (1.007,4.639) 

F7 As you know people experience memory 

problems as they get older. What about 

remembering names?  

0.2564 (0.792,2.401) 

F8 Possibility of future incontinence  0.1516 (0.858,2.69) 

*:Factor Extracted From Relieff Algorithm  
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Table 4.19- Baseline Factors- First and Third Follow-up Outcome Outliers Removed 

Factor Description P-value 

HH1HH2 

P-value 

HH1HH4 

F1 Body Mass Index (BMI) <=24; >24 0.0330 0.0028 

F2 Do you sneeze often, rarely or never?  0.0058 0.0249 

F3 Any urine loss problems that started after 

deliveries: Yes;No  

0.0234 0.0076 

F4 Trouble getting to the bathroom on time: Yes;No 0.0354 0.0109 

F5 Frequency of wetting/soiling yourself day/night: 

Never; 1/week; 1 or 2/week; >3/week  

0.0021 0.0086 

F6* When you are urinating into a toilet, can you shut 

off the flow of urine in the middle of your stream 

by using your muscles if you want to?  

0.0149 0.0032 

F7 As you know people experience memory 

problems as they get older. What about 

remembering names?  

0.0204 0.0093 

F8 Possibility of future incontinence  0.0062 0.0077 

 

 

Table 4.20- Regression Results with 2-way Interactions 

Factor Description P-value 

HH1HH2 

P-value 

HH1HH4 

F1 Body Mass Index (BMI) <=24; >24 0.0132 0.0008 

F2 Do you sneeze often, rarely or never?  0.0065 0.0130 

F3 Any urine loss problems that started after 

deliveries: Yes;No  

0.0311 0.0086 

F4 Trouble getting to the bathroom on time: Yes;No 0.0429 0.0130 

F5 Frequency of wetting/soiling yourself day/night: 

Never; 1/week; 1 or 2/week; >3/week  

0.0008 0.0071 

F6* When you are urinating into a toilet, can you shut 

off the flow of urine in the middle of your stream 

by using your muscles if you want to?  

0.0069 0.0013 

F7 As you know people experience memory 

problems as they get older. What about 

remembering names?  

0.0073 0.0020 

F8 Possibility of future incontinence  0.0015 0.0109 

F8*F2 Future Incontinence * Sneezing 0.0042 0.0892 

F7*F1 Memory Problems * BMI 0.0245 0.0282 
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Table 4.21 shows the comparison between the Wald scores of HH1 and HH4 

datasets with and without the interactions. The results show that both HH1 and HH4 with 

the retained outliers outperformed the linear model. When the outliers are removed from 

the data, the linear model outperforms the model with interactions.  

 

                                                  4.6. Rule Extraction Results 

In our experiment, we have also applied four different rule extraction methods to 

the simulation dataset and the results are compared when noise, incomplete data and 

multicollinearity are added to the data.  

The first set of experiments was designed to evaluate the following rule extraction 

methods to see which one handles additive noise better: Apriori, JRip, PART and Prism. Table 

4.22 and Table 4.23 show the results of those rule extraction methods when there are 5, 8 and 

10% noise. Apriori algorithm outperforms the other rule extraction methods if the noise level is 5 

or 10%. But if the noise level is beyond 10% Apriori algorithm lose its effectiveness. 

 

 

Table 4.21- Comparison of Wald Scores with/without Interactions 

  With Interaction Without Interaction 

  Chi-Square Pr > ChiSq Chi-Square Pr > ChiSq 

HH1 with outliers Wald 34.89 0.0001 33.00 <.0001 

HH1 without outliers Wald 37.05 <.0001 40.50 <.0001 

HH4 with outliers Wald 29.17 0.0012 28.79 .0003 

HH4 without outliers Wald 42.15 <.0001 44.94 <.0001 



 

86 

 

 

Table 4.22- Sensitivity of Rule Extraction Methods at Several Noise Levels 

 0% 5% 8% 10% 

Apriori 100 ± 0 100 ± 0 32 ± 10 0 ± 0 

PART  55 ± 10 0 ± 0 0 ± 0 0 ± 0 

Prism 90 ± 20 0 ± 0 0 ± 0 0 ± 0 

JRip 40 ± 0 32 ± 10 36 ± 8 40 ± 0 

 

 

Table 4.23- Specificity of Rule Extraction Methods at Several Noise Levels 

 0% 5% 8% 10% 

Apriori 100 ± 0 100 ± 0 96 ± 2 90 ± 0 

PART  75 ± 10 28 ± 3 0 ± 0 0 ± 0 

Prism 98 ± 5 3 ± 10 0 ± 0 0 ± 0 

JRip 100 ± 0 96 ± 0 96 ± 1 96 ± 0 

 

 

Table 4.24- Sensitivity of Rule Extraction Methods at Missing Value Levels 

 0% 5% 8% 10% 

Apriori 100 ± 0 100 ± 0 50 ± 17 0 ± 0 

PART  55 ± 10 58 ± 26 48 ± 27 26 ± 20 

Prism 90 ± 20 N/A N/A N/A 

JRip 40 ± 0 40 ± 0 40 ± 0 40 ± 0 

 

 

Table 4.25- Specificity of Rule Extraction Methods at Missing Value Levels 

 0% 5% 8% 10% 

Apriori 100 ± 0 100 ± 0 100 ± 17 100 ± 0 

PART  75 ± 10 81 ± 5 79 ± 6 80 ± 5 

Prism 98 ± 5 N/A N/A N/A 

JRip 100 ± 0 99 ± 2 97 ± 2 96 ± 2 
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At that point the sensitivity and specificities of JRip is better than any other rule 

extraction method.  

Table 4.24 and Table 4.25 show the results of the rule extraction methods when 

there are 5, 8 and 10% missing values. Apriori algorithm outperforms other rule 

extraction methods when there are 5 and 8% missing values. When the missing values 

exceeded 8% the reliability of Apriori decreases and PART gives better results.  

 

4.7. Prediction Results 

 

4.7.1. Constructed Predictive Index  

In this section the most promising risk factors both for the first (HH2) and for the 

third follow up (HH4) outcome are extracted. A table is generated (Table 4.26) that 

determines the support and confidence for each combination of values the factors can 

take. The support threshold is calculated based on the margins of error formula. Note 

that, we are interested in the subjects that have become incontinent over time (C-I). 

However, the limited number of subjects that belong to the class ‘C-I’ prevent the 

technique from returning a support value that is greater than the support threshold as can 

be seen in Table 4.26 under the assumption of 90% confidence and 10% error rate. Table 

4.26 shows that only 15% of the rules (10 out of 64) are having a support threshold that is 

less than or equal to the support of the rule. However, eight of those rules have a 

confidence of 0. One has 9% and the other one has 60%.  
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Table 4.26- All Possible Decision Rules For Five Promising Factors 

F2 F3 F6 F4 F5 HH12 Antecedent Support Confidence Support  

Threshold 

Reliable 

(Y/N) 

0 0 0 0 0 C-C 278 167 60.0719424 64.51156151 Y 

0 0 0 0 1 C-C 7 3 42.8571429 65.8677551 N 

0 0 0 1 0 C-C 20 12 60 64.5504 N 

0 0 0 1 1 C-C 8 3 37.5 63.0375 N 

0 0 1 0 0 C-C 48 23 47.9166667 67.12326389 N 

0 0 1 0 1 C-C 0 0 #DIV/0! #DIV/0! NA 

0 0 1 1 0 C-C 6 2 33.3333333 59.76888889 N 

0 0 1 1 1 C-C 1 0 0 0 Y 

0 1 0 0 0 C-C 8 5 62.5 63.0375 N 

0 1 0 0 1 C-C 0 0 #DIV/0! #DIV/0! NA 

0 1 0 1 0 C-C 0 0 #DIV/0! #DIV/0! NA 

0 1 0 1 1 C-C 0 0 #DIV/0! #DIV/0! NA 

0 1 1 0 0 C-C 3 1 33.3333333 59.76888889 N 

0 1 1 0 1 C-C 0 0 #DIV/0! #DIV/0! NA 

0 1 1 1 0 C-C 0 0 #DIV/0! #DIV/0! NA 

0 1 1 1 1 C-C 0 0 #DIV/0! #DIV/0! NA 

1 0 0 0 0 C-C 26 11 42.3076923 65.64852071 N 

1 0 0 0 1 C-C 4 0 0 0 Y 

1 0 0 1 0 C-C 0 0 #DIV/0! #DIV/0! NA 

1 0 0 1 1 C-C 1 1 100 0 NA 

1 0 1 0 0 C-C 4 2 50 67.24 NA 

1 0 1 0 1 C-C 1 0 0 0 Y 

1 0 1 1 0 C-C 0 0 #DIV/0! #DIV/0! NA 

1 0 1 1 1 C-C 2 0 0 0 Y 

1 1 0 0 0 C-C 1 0 0 0 Y 

1 1 0 0 1 C-C 0 0 #DIV/0! #DIV/0! NA 

1 1 0 1 0 C-C 0 0 #DIV/0! #DIV/0! NA 

1 1 0 1 1 C-C 0 0 #DIV/0! #DIV/0! NA 

1 1 1 0 0 C-C 0 0 #DIV/0! #DIV/0! NA 

1 1 1 0 1 C-C 0 0 #DIV/0! #DIV/0! NA 

1 1 1 1 0 C-C 0 0 #DIV/0! #DIV/0! NA 

1 1 1 1 1 C-C 0 0 #DIV/0! #DIV/0! NA 

0 0 0 0 0 C-I 278 26 9.35251799 22.80195021 Y 

0 0 0 0 1 C-I 7 4 57.1428571 65.8677551 N 

0 0 0 1 0 C-I 20 7 35 61.1884 N 

0 0 0 1 1 C-I 8 2 25 50.43 N 
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Table 4.26- All Possible Decision Rules For Five Promising Factors- Continued 

 

F2 F3 F6 F4 F5 HH12 Antecedent Support Confidence Support  

Threshold 

Reliable 

(Y/N) 

0 0 1 0 0 C-I 48 11 22.9166667 47.51159722 N 

0 0 1 0 1 C-I 0 0 #DIV/0! #DIV/0! NA 

0 0 1 1 0 C-I 6 2 33.3333333 59.76888889 N 

0 0 1 1 1 C-I 1 0 0 0 Y 

0 1 0 0 0 C-I 8 3 37.5 63.0375 N 

0 1 0 0 1 C-I 0 0 #DIV/0! #DIV/0! NA 

0 1 0 1 0 C-I 0 0 #DIV/0! #DIV/0! NA 

0 1 0 1 1 C-I 0 0 #DIV/0! #DIV/0! NA 

0 1 1 0 0 C-I 3 1 33.3333333 59.76888889 N 

0 1 1 0 1 C-I 0 0 #DIV/0! #DIV/0! NA 

0 1 1 1 0 C-I 0 0 #DIV/0! #DIV/0! NA 

0 1 1 1 1 C-I 0 0 #DIV/0! #DIV/0! NA 

1 0 0 0 0 C-I 26 4 15.3846154 35.01254438 N 

1 0 0 0 1 C-I 4 1 25 50.43 N 

1 0 0 1 0 C-I 0 0 #DIV/0! #DIV/0! NA 

1 0 0 1 1 C-I 1 0 0 0 Y 

1 0 1 0 0 C-I 4 2 50 67.24 N 

1 0 1 0 1 C-I 1 1 100 0 N 

1 0 1 1 0 C-I 0 0 #DIV/0! #DIV/0! NA 

1 0 1 1 1 C-I 2 1 50 67.24 N 

1 1 0 0 0 C-I 1 1 100 0 Y 

1 1 0 0 1 C-I 0 0 #DIV/0! #DIV/0! NA 

1 1 0 1 0 C-I 0 0 #DIV/0! #DIV/0! NA 

1 1 0 1 1 C-I 0 0 #DIV/0! #DIV/0! NA 

1 1 1 0 0 C-I 0 0 #DIV/0! #DIV/0! NA 

1 1 1 0 1 C-I 0 0 #DIV/0! #DIV/0! NA 

1 1 1 1 0 C-I 0 0 #DIV/0! #DIV/0! NA 

1 1 1 1 1 C-I 0 0 #DIV/0! #DIV/0! NA 
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This shows us that the only reliable rule is the following:  

IF v41 =0 & v178 = 0 & v215 = 0 & v229 = 0 & v230 =0 THEN HH12 = C-C  

This table is generated based on only five potential predictive factors.  

 

4.7.1.1. MESA Data Predictive Index. The MESA Data is imputed and the 

outliers are removed in the data preprocessing section. The predictive index is determined 

based on the imputed data. Table 4.27 shows all the potential risk factors along with their 

odd ratios and confidence limits of the imputed data.  

The predicted confidence interval for incontinence for a case with any of the 256 

combinations of predictive factors, based on reduced HH1HH2 data set is listed in Table 

A.4 (non-imputed data) and A.5 (imputed data). For instance, a case classified as having 

a combination of factors F7 and F8 denoted as F78 is coded as 00000011. This case has a 

predicted probability of 58-77% as shown in Table A.5  (where 58% is the lower limit 

and 77% is the upper limit) of developing incontinence in the next year. 

 

 

Table 4.27- Odd Ratio Estimates of Potential Predictive Factors of the Imputed Dataset 

Odds Ratio Estimates 

Effect Point Estimate 95% Wald 

Confidence Limits 

F3 4.355 1.096 17.299 

F4 2.694 1.139 6.373 

F5 5.256 1.500 18.411 

F6 2.456 1.134 5.319 

F7 2.113 1.099 4.065 

F8 2.408 1.283 4.519 

F1 2.202 1.163 4.168 

F2 2.008 1.057 3.813 
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CHAPTER FIVE 

 

SUMMARY AND CONCLUSIONS 

We have successfully proposed, implemented and validated an automated method 

for differentiating between different types of missing values and determining inconsistent 

data. An automated method is particularly important when dealing with large data of 

complex surveys since each subject should be processed individually. Incomplete data 

analyses are important because different types of incomplete data (SPMD, UMD, and 

GMD) cannot be treated the same, e.g. SPMD should not be treated by imputation 

techniques. Determining and eliminating the inconsistent data, on the other hand, 

partially eliminates noise. 

The proposed method was validated using a simulation study. It was applied on 

MESA data as a preprocessing step to prepare the data for further analysis with better 

representation and quality. In this step, the baseline of this longitudinal survey data 

(MESA) was analyzed focusing solely on the female population. Proposed method is a 

preprocessing prerequisite for any data mining of clinical survey data. 

The method can be applied on any questionnaire which would be convertible to a 

directed acyclic graph (DAG). The method scales well to high dimensional data as the 

time complexity is polynomial for the proposed algorithms. Future work include: a) 

partially estimating noise or respondents’ reliability score using inconsistent data, and b) 

automating the conversion of the questionnaire to its corresponding directed acyclic 

graph. 
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Once SPMD missing data is determined, the data is stratified based on the most 

significant branching questions. This stratification process leads us to determine the 

different risk factors of each stratum and shows the diverse outcomes on different 

populations. We achieve two goals by taking advantage of incomplete data in the 

stratification process: (1) we utilize the wisdom of experts embedded in the data through 

the questionnaire design processes; (2) We treat a number of null answers without any 

estimation or imputation technique, preventing any unavoidable misinformation 

introduced by such methods.  

The GMD portion of the data is then imputed using the rough set theory. A 

simulated data is used to validate the results. One possible future work of this approach is 

to decompose the mutually exclusive paths of UMD into GMD and SPMD, and using the 

rough set imputation on the GMD portion of UMD as well. 

We have presented a comparison between different attribute selection and rule 

extraction techniques. The results show that, there is no single attribute selection or rule 

extraction technique that gives the best results. The advantage of each technique differs in 

different situations. The results of the attribute selection and rule extraction techniques 

show that, both are only reliable up to a certain percent of noise and incomplete data 

level. 

The most promising potential predictive factors of the imputed data are then 

determined using logistic regression based on the original baseline and first follow-up 

data sets. The results are validated based on the original baseline and third follow-up 

data. Then a predictive index for urinary incontinence is constructed based on the 
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predictive probabilities of all possible combinations of the predictive factors. The 

predictive index can be applied for immediate screening and for predicting future urinary 

incontinence in older woman of comparable demographics. 
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APPENDIX A 

PREDICTIVE INDEX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

95 

 

Table A.1- Predictive Index of Non-Imputed Simulation Data 

Contrast Estimation and Testing Results by Row 

Contrast Estimate Standard 

Error 

Confidence Limits Wald Chi-

Square 

Pr > 

ChiSq 

0 0.5 0 . . . . 

F8 0.63 0.0532 0.5213 0.727 5.4446 0.0196 

F7 0.5961 0.0583 0.4788 0.7034 2.5871 0.1077 

F78 0.7154 0.0663 0.5703 0.8264 8.0038 0.0047 

F6 0.6296 0.0598 0.507 0.7374 4.2834 0.0385 

F68 0.7432 0.0663 0.5944 0.8511 9.3651 0.0022 

F67 0.7149 0.0725 0.5553 0.8344 6.6753 0.0098 

F678 0.8103 0.0647 0.6518 0.9069 11.9028 0.0006 

F5 0.7386 0.0948 0.5191 0.8809 4.4751 0.0344 

F58 0.8279 0.0795 0.6173 0.9349 7.9353 0.0048 

F57 0.8065 0.0876 0.5812 0.9261 6.4717 0.011 

F578 0.8765 0.0667 0.6794 0.9596 10.0986 0.0015 

F56 0.8276 0.0816 0.6101 0.9364 7.5236 0.0061 

F568 0.891 0.0614 0.703 0.9658 11.0381 0.0009 

F567 0.8763 0.0689 0.671 0.9609 9.5004 0.0021 

F5678 0.9235 0.0486 0.7584 0.9789 13.1427 0.0003 

F4 0.5837 0.0766 0.4305 0.7223 1.1492 0.2837 

F48 0.7048 0.0807 0.5275 0.8362 5.0341 0.0249 

F47 0.6742 0.0877 0.486 0.8191 3.3131 0.0687 

F478 0.7789 0.0782 0.5913 0.8956 7.6942 0.0055 

F46 0.7044 0.0868 0.5129 0.8435 4.3432 0.0372 

F468 0.8023 0.0757 0.6144 0.9118 8.6217 0.0033 

F467 0.7786 0.0838 0.5756 0.9011 6.6932 0.0097 

F4678 0.8569 0.0655 0.6775 0.9447 11.2124 0.0008 

F45 0.7984 0.0853 0.5835 0.918 6.7392 0.0094 

F458 0.8709 0.0665 0.679 0.9556 10.406 0.0013 

F457 0.8539 0.0745 0.6445 0.9496 8.7388 0.0031 
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F4578 0.9087 0.0538 0.7361 0.9726 12.5359 0.0004 

F456 0.8707 0.069 0.6693 0.9572 9.6745 0.0019 

F4568 0.9198 0.0494 0.7554 0.977 13.289 0.0003 

F4567 0.9085 0.056 0.7262 0.9738 11.6144 0.0007 

F45678 0.9442 0.038 0.8043 0.9858 15.3462 <.0001 

F3 0.5218 0.1304 0.2815 0.7524 0.0279 0.8674 

F38 0.6501 0.1228 0.3922 0.8426 1.318 0.251 

F37 0.6169 0.1362 0.3422 0.8329 0.6828 0.4086 

F378 0.7328 0.1152 0.464 0.8968 2.9412 0.0863 

F36 0.6497 0.1266 0.3839 0.8466 1.2322 0.267 

F368 0.7595 0.105 0.5058 0.9069 4.0009 0.0455 

F367 0.7324 0.1194 0.4533 0.9003 2.7306 0.0984 

F3678 0.8233 0.0906 0.579 0.9404 6.1106 0.0134 

F35 0.7551 0.133 0.4296 0.9266 2.4508 0.1175 

F358 0.84 0.1 0.5499 0.9575 4.9704 0.0258 

F357 0.8198 0.1136 0.5018 0.9536 3.8786 0.0489 

F3578 0.8857 0.0799 0.6225 0.9733 6.7251 0.0095 

F356 0.8397 0.102 0.5427 0.9585 4.7787 0.0288 

F3568 0.8992 0.071 0.6579 0.9764 7.8149 0.0052 

F3567 0.8855 0.0818 0.6139 0.9741 6.4259 0.0112 

F35678 0.9294 0.0543 0.7221 0.9852 9.6938 0.0018 

F34 0.6047 0.1505 0.3081 0.8402 0.4558 0.4996 

F348 0.7226 0.1289 0.4248 0.9019 2.2163 0.1366 

F347 0.693 0.1439 0.3749 0.8947 1.4498 0.2286 

F3478 0.7936 0.1123 0.5007 0.9365 3.8583 0.0495 

F346 0.7222 0.1333 0.4142 0.9053 2.0682 0.1504 

F3468 0.8158 0.1021 0.539 0.9437 4.7972 0.0285 

F3467 0.7932 0.1165 0.4881 0.9392 3.5823 0.0584 

F34678 0.8673 0.083 0.6138 0.9641 6.772 0.0093 

F345 0.8121 0.1163 0.4924 0.9506 3.6859 0.0549 

F3458 0.8804 0.0827 0.6124 0.9717 6.4646 0.011 

F3457 0.8645 0.095 0.5655 0.969 5.2215 0.0223 
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F34578 0.9157 0.064 0.6812 0.9822 8.2685 0.004 

F3456 0.8802 0.0848 0.603 0.9726 6.1492 0.0131 

F34568 0.926 0.0567 0.7119 0.9844 9.3237 0.0023 

F34567 0.9155 0.0659 0.6713 0.9829 7.8307 0.0051 

F345678 0.9486 0.0425 0.77 0.9903 11.2031 0.0008 

F2 0.6226 0.0571 0.5061 0.7264 4.243 0.0394 

F28 0.7375 0.0667 0.5884 0.8466 8.9853 0.0027 

F27 0.7088 0.0647 0.5684 0.8181 8.0546 0.0045 

F278 0.8056 0.0613 0.658 0.8993 13.1766 0.0003 

F26 0.7371 0.0664 0.5887 0.8459 9.0388 0.0026 

F268 0.8268 0.0608 0.6751 0.9164 13.5658 0.0002 

F267 0.8053 0.0626 0.6543 0.9004 12.662 0.0004 

F2678 0.8757 0.0507 0.7386 0.9461 17.5394 <.0001 

F25 0.8233 0.0778 0.6204 0.93 8.2858 0.004 

F258 0.8881 0.0599 0.7088 0.9628 11.8047 0.0006 

F257 0.873 0.0647 0.6866 0.9557 10.9192 0.001 

F2578 0.9213 0.0466 0.7685 0.9764 14.6377 0.0001 

F256 0.8879 0.0601 0.7079 0.9628 11.7366 0.0006 

F2568 0.931 0.0429 0.7848 0.9803 15.1994 <.0001 

F2567 0.9212 0.0472 0.7659 0.9766 14.3247 0.0002 

F25678 0.9522 0.0321 0.8331 0.9876 17.9647 <.0001 

F24 0.6981 0.0842 0.5138 0.835 4.4007 0.0359 

F248 0.7975 0.0755 0.6118 0.9078 8.6015 0.0034 

F247 0.7734 0.0785 0.5865 0.8914 7.5117 0.0061 

F2478 0.8532 0.0632 0.6836 0.9399 12.154 0.0005 

F246 0.7972 0.077 0.6071 0.909 8.2605 0.0041 

F2468 0.87 0.0607 0.7003 0.9504 12.5321 0.0004 

F2467 0.8529 0.0652 0.6768 0.9414 11.4396 0.0007 

F24678 0.9081 0.0478 0.763 0.9681 16.0288 <.0001 

F245 0.8672 0.0659 0.6804 0.9525 10.7636 0.001 

F2458 0.9175 0.0481 0.762 0.9748 14.3702 0.0002 

F2457 0.906 0.0527 0.7412 0.9701 13.3876 0.0003 
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F24578 0.9426 0.0365 0.8139 0.984 17.184 <.0001 

F2456 0.9174 0.0488 0.7586 0.9751 13.9691 0.0002 

F24568 0.9498 0.0335 0.8266 0.9868 17.4799 <.0001 

F24567 0.9425 0.0373 0.8096 0.9844 16.5125 <.0001 

F245678 0.9654 0.0247 0.8673 0.9917 20.198 <.0001 

F23 0.6428 0.1315 0.3693 0.8469 1.0521 0.305 

F238 0.754 0.1104 0.4885 0.9077 3.5439 0.0598 

F237 0.7265 0.1206 0.4471 0.8971 2.5922 0.1074 

F2378 0.8189 0.0925 0.5711 0.9389 5.8498 0.0156 

F236 0.7536 0.111 0.4866 0.908 3.4969 0.0615 

F2368 0.8389 0.084 0.6065 0.9462 7.0551 0.0079 

F2367 0.8186 0.0939 0.5666 0.9397 5.6823 0.0171 

F23678 0.8849 0.0663 0.6821 0.965 9.813 0.0017 

F235 0.8356 0.1026 0.5404 0.9565 4.7395 0.0295 

F2358 0.8965 0.072 0.6544 0.9754 7.7444 0.0054 

F2357 0.8824 0.0813 0.6179 0.9721 6.6233 0.0101 

F23578 0.9274 0.0544 0.724 0.9842 9.9489 0.0016 

F2356 0.8963 0.0725 0.6522 0.9755 7.6535 0.0057 

F23568 0.9364 0.0482 0.7509 0.9863 11.0519 0.0009 

F23567 0.9273 0.055 0.7205 0.9844 9.7397 0.0018 

F235678 0.956 0.0354 0.8068 0.9912 13.3926 0.0003 

F234 0.7162 0.1368 0.4029 0.9042 1.8915 0.169 

F2348 0.8112 0.1058 0.5258 0.9434 4.4497 0.0349 

F2347 0.7883 0.1173 0.4842 0.9366 3.496 0.0615 

F23478 0.8638 0.0844 0.6085 0.9628 6.6284 0.01 

F2346 0.8109 0.1074 0.5207 0.9442 4.3201 0.0377 

F23468 0.8796 0.0763 0.6404 0.9677 7.627 0.0057 

F23467 0.8635 0.0862 0.6016 0.9637 6.3676 0.0116 

F234678 0.9151 0.058 0.7137 0.979 10.1329 0.0015 

F2345 0.877 0.0852 0.6027 0.971 6.1882 0.0129 

F23458 0.9239 0.0574 0.7103 0.9836 9.3563 0.0022 

F23457 0.9132 0.0654 0.6763 0.9815 8.1401 0.0043 
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F234578 0.9471 0.0424 0.7728 0.9895 11.5885 0.0007 

F23456 0.9237 0.0582 0.706 0.9839 9.1286 0.0025 

F234568 0.9538 0.0376 0.795 0.991 12.5981 0.0004 

F234567 0.947 0.0432 0.7679 0.9898 11.2215 0.0008 

F2345678 0.9682 0.0272 0.8432 0.9942 14.9198 0.0001 

F1 0.5635 0.0556 0.4533 0.6678 1.2784 0.2582 

F18 0.6874 0.0686 0.5405 0.8043 6.0967 0.0135 

F17 0.6558 0.0774 0.4931 0.7886 3.5344 0.0601 

F178 0.7644 0.0729 0.5948 0.8776 8.4556 0.0036 

F16 0.6869 0.0721 0.5322 0.8089 5.495 0.0191 

F168 0.7889 0.0679 0.6271 0.8925 10.4671 0.0012 

F167 0.764 0.0768 0.5843 0.8818 7.6127 0.0058 

F1678 0.8465 0.0624 0.6827 0.9339 12.6471 0.0004 

F15 0.7848 0.0963 0.5438 0.9177 5.1445 0.0233 

F158 0.8613 0.075 0.6447 0.9551 8.4628 0.0036 

F157 0.8433 0.0843 0.6064 0.9495 6.9539 0.0084 

F1578 0.9016 0.0609 0.7047 0.9724 10.4087 0.0013 

F156 0.8611 0.0763 0.6396 0.9559 8.1718 0.0043 

F1568 0.9135 0.0547 0.7311 0.9762 11.5993 0.0007 

F1567 0.9014 0.0623 0.6983 0.9731 9.9654 0.0016 

F15678 0.9397 0.0424 0.7826 0.9854 13.4949 0.0002 

F14 0.6441 0.0916 0.4527 0.7984 2.2059 0.1375 

F148 0.7551 0.0846 0.557 0.8832 6.0518 0.0139 

F147 0.7276 0.0946 0.5118 0.8719 4.238 0.0395 

F1478 0.8198 0.0772 0.6203 0.9268 8.4036 0.0037 

F146 0.7547 0.0887 0.5461 0.8872 5.5025 0.019 

F1468 0.8397 0.0715 0.6491 0.9369 9.7203 0.0018 

F1467 0.8195 0.081 0.6081 0.93 7.6264 0.0058 

F14678 0.8855 0.0599 0.7086 0.9609 12.0102 0.0005 

F145 0.8364 0.0838 0.6064 0.9444 7.1055 0.0077 

F1458 0.897 0.0615 0.7028 0.9698 10.5852 0.0011 

F1457 0.883 0.07 0.6669 0.966 8.9113 0.0028 
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F14578 0.9278 0.0484 0.7573 0.9815 12.5002 0.0004 

F1456 0.8968 0.0631 0.6954 0.9707 10.0513 0.0015 

F14568 0.9367 0.0434 0.779 0.9842 13.5533 0.0002 

F14567 0.9277 0.0498 0.7496 0.9821 11.8106 0.0006 

F145678 0.9562 0.0329 0.824 0.9903 15.406 <.0001 

F13 0.5848 0.1353 0.3209 0.8077 0.3781 0.5386 

F138 0.7058 0.1188 0.4387 0.8805 2.3385 0.1262 

F137 0.6752 0.1348 0.3839 0.874 1.4177 0.2338 

F1378 0.7798 0.1073 0.51 0.9233 4.0968 0.043 

F136 0.7054 0.1216 0.4319 0.8829 2.2244 0.1358 

F1368 0.803 0.0952 0.5562 0.9299 5.4511 0.0196 

F1367 0.7794 0.1104 0.5009 0.9256 3.8644 0.0493 

F13678 0.8575 0.0799 0.6255 0.9559 7.5338 0.0061 

F135 0.7992 0.1231 0.4696 0.9471 3.2446 0.0717 

F1358 0.8714 0.0884 0.5907 0.9695 5.8802 0.0153 

F1357 0.8545 0.1018 0.5413 0.9669 4.6741 0.0306 

F13578 0.9091 0.0692 0.6597 0.981 7.5665 0.0059 

F1356 0.8712 0.0898 0.5849 0.9701 5.7052 0.0169 

F13568 0.9201 0.0605 0.6963 0.983 8.8082 0.003 

F13567 0.9089 0.0705 0.6528 0.9815 7.2962 0.0069 

F135678 0.9444 0.0457 0.7551 0.9894 10.5802 0.0011 

F134 0.6639 0.1486 0.3488 0.8793 1.0452 0.3066 

F1348 0.7708 0.1197 0.4713 0.927 3.2051 0.0734 

F1347 0.7445 0.1361 0.4176 0.9222 2.2351 0.1349 

F13478 0.8323 0.101 0.5459 0.9535 4.9044 0.0268 

F1346 0.7705 0.123 0.462 0.9292 3.0313 0.0817 

F13468 0.8511 0.0898 0.5876 0.9582 6.0482 0.0139 

F13467 0.832 0.1041 0.5349 0.9552 4.6131 0.0317 

F134678 0.894 0.0715 0.6578 0.9737 7.9883 0.0047 

F1345 0.848 0.1048 0.5313 0.9649 4.469 0.0345 

F13458 0.9048 0.0718 0.6496 0.9799 7.2929 0.0069 

F13457 0.8917 0.0834 0.6025 0.9781 5.9621 0.0146 
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F134578 0.9334 0.0547 0.7141 0.9875 8.9996 0.0027 

F13456 0.9046 0.0733 0.6419 0.9805 7.0052 0.0081 

F134568 0.9417 0.0478 0.7454 0.9889 10.1959 0.0014 

F134567 0.9333 0.056 0.7059 0.9879 8.6061 0.0034 

F1345678 0.9597 0.0354 0.7979 0.9931 11.9538 0.0005 

F12 0.6805 0.073 0.5244 0.8044 5.0639 0.0244 

F128 0.7839 0.0701 0.6171 0.8908 9.6926 0.0019 

F127 0.7586 0.0733 0.5893 0.8731 8.1926 0.0042 

F1278 0.8426 0.0614 0.6837 0.9298 13.1519 0.0003 

F126 0.7835 0.0693 0.619 0.8896 9.9056 0.0016 

F1268 0.8604 0.0574 0.7073 0.9402 14.4876 0.0001 

F1267 0.8423 0.0618 0.682 0.9301 12.9543 0.0003 

F12678 0.9009 0.0467 0.7655 0.962 17.8243 <.0001 

F125 0.8575 0.0746 0.645 0.9522 8.6311 0.0033 

F1258 0.9111 0.0543 0.7336 0.9744 12.0477 0.0005 

F1257 0.8988 0.0601 0.7089 0.97 10.944 0.0009 

F12578 0.938 0.0415 0.7891 0.9839 14.5349 0.0001 

F1256 0.9109 0.0543 0.7337 0.9743 12.071 0.0005 

F12568 0.9457 0.0373 0.8076 0.9863 15.4925 <.0001 

F12567 0.9378 0.0417 0.7876 0.984 14.3633 0.0002 

F125678 0.9625 0.0276 0.8512 0.9914 17.938 <.0001 

F124 0.7491 0.0887 0.5421 0.8827 5.3718 0.0205 

F1248 0.8356 0.0727 0.6431 0.9348 9.4394 0.0021 

F1247 0.815 0.0786 0.6134 0.9244 8.0977 0.0044 

F12478 0.8824 0.0591 0.7107 0.9582 12.5156 0.0004 

F1246 0.8354 0.0735 0.6404 0.9353 9.241 0.0024 

F12468 0.8963 0.0547 0.7318 0.9647 13.4504 0.0002 

F12467 0.8822 0.0603 0.706 0.9589 12.0362 0.0005 

F124678 0.9273 0.0423 0.7888 0.9775 16.5073 <.0001 

F1245 0.894 0.0617 0.7019 0.968 10.7312 0.0011 

F12458 0.9349 0.043 0.7825 0.9829 14.2282 0.0002 

F12457 0.9256 0.0481 0.7599 0.98 13.0295 0.0003 
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F124578 0.9549 0.0322 0.8304 0.9892 16.6887 <.0001 

F12456 0.9348 0.0434 0.7803 0.983 13.9864 0.0002 

F124568 0.9606 0.0289 0.845 0.9909 17.446 <.0001 

F124567 0.9549 0.0326 0.8274 0.9894 16.2365 <.0001 

F1245678 0.973 0.0211 0.8816 0.9943 19.8443 <.0001 

F123 0.6991 0.1277 0.4142 0.8842 1.9293 0.1648 

F1238 0.7983 0.1009 0.5367 0.9311 4.8154 0.0282 

F1237 0.7742 0.1128 0.4919 0.9239 3.6477 0.0561 

F12378 0.8538 0.0825 0.6154 0.9552 7.138 0.0075 

F1236 0.7979 0.1011 0.536 0.931 4.7962 0.0285 

F12368 0.8705 0.0731 0.6535 0.96 8.6349 0.0033 

F12367 0.8535 0.0833 0.6123 0.9555 7.0036 0.0081 

F123678 0.9085 0.0568 0.7224 0.9743 11.2915 0.0008 

F1235 0.8678 0.0912 0.5803 0.9689 5.6058 0.0179 

F12358 0.9179 0.0619 0.691 0.9824 8.6464 0.0033 

F12357 0.9064 0.0707 0.6541 0.9802 7.4212 0.0064 

F123578 0.9428 0.0461 0.755 0.9888 10.7239 0.0011 

F12356 0.9177 0.0621 0.6898 0.9824 8.5941 0.0034 

F123568 0.95 0.0404 0.7822 0.9901 12.0039 0.0005 

F123567 0.9427 0.0465 0.7525 0.9889 10.5655 0.0012 

F1235678 0.9656 0.0294 0.8318 0.9937 14.1845 0.0002 

F1234 0.7651 0.1274 0.4482 0.9289 2.7768 0.0956 

F12348 0.8473 0.0938 0.5725 0.9583 5.5832 0.0181 

F12347 0.8278 0.1059 0.5285 0.9537 4.4679 0.0345 

F123478 0.8912 0.0733 0.6506 0.973 7.7445 0.0054 

F12346 0.847 0.0948 0.5688 0.9587 5.4669 0.0194 

F123468 0.9041 0.065 0.6844 0.9762 8.9563 0.0028 

F123467 0.8909 0.0745 0.6452 0.9735 7.5078 0.0061 

F1234678 0.9329 0.0488 0.7508 0.9847 11.3722 0.0007 

F12345 0.902 0.0743 0.6393 0.9795 6.9757 0.0083 

F123458 0.94 0.0488 0.7422 0.9884 10.1291 0.0015 

F123457 0.9314 0.0561 0.7084 0.987 8.8252 0.003 



 

103 

 

F1234578 0.9586 0.0357 0.7989 0.9926 12.2099 0.0005 

F123456 0.9399 0.0492 0.7391 0.9886 9.9484 0.0016 

F1234568 0.9638 0.0313 0.8212 0.9936 13.3926 0.0003 

F1234567 0.9585 0.0362 0.7951 0.9928 11.9082 0.0006 

F12345678 0.9752 0.0225 0.8637 0.9959 15.542 <.0001 
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Table A.2- Predictive Index of Imputed-Errors Retained Simulation Data 

Contrast Estimation and Testing Results by Row 

Contrast Estimate Standard 

Error 

Confidence Limits Wald Chi-

Square 

Pr > 

ChiSq 

0 0.5 0 . . . . 

F8 0.6047 0.0488 0.5062 0.6954 4.3294 0.0375 

F7 0.602 0.051 0.4992 0.6965 3.7846 0.0517 

F78 0.6982 0.0596 0.5706 0.8011 8.7909 0.003 

F6 0.6517 0.0537 0.5407 0.7483 7.0228 0.008 

F68 0.7411 0.0602 0.6075 0.8411 11.2337 0.0008 

F67 0.7389 0.0601 0.6059 0.839 11.1653 0.0008 

F678 0.8124 0.0555 0.6796 0.8983 16.201 <.0001 

F5 0.7386 0.0828 0.5494 0.8675 5.8654 0.0154 

F58 0.8121 0.0744 0.6243 0.9183 9.0069 0.0027 

F57 0.8104 0.0757 0.6194 0.9182 8.6934 0.0032 

F578 0.8673 0.0619 0.6948 0.9494 12.1688 0.0005 

F56 0.8409 0.0668 0.6652 0.9336 11.1204 0.0009 

F568 0.8899 0.054 0.7329 0.9597 14.3675 0.0002 

F567 0.8888 0.0545 0.7308 0.9593 14.2232 0.0002 

F5678 0.9244 0.0414 0.7928 0.9751 17.8283 <.0001 

F4 0.5707 0.0713 0.4291 0.7015 0.9569 0.328 

F48 0.6703 0.0809 0.4981 0.8064 3.7606 0.0525 

F47 0.6678 0.0793 0.4994 0.8021 3.8142 0.0508 

F478 0.7546 0.0764 0.5781 0.8735 7.4143 0.0065 

F46 0.7132 0.0778 0.5412 0.8398 5.7322 0.0167 

F468 0.7918 0.0728 0.6156 0.9004 9.1598 0.0025 

F467 0.79 0.0711 0.6188 0.8971 9.5475 0.002 

F4678 0.8519 0.0601 0.6934 0.9361 13.4895 0.0002 

F45 0.7897 0.075 0.6079 0.901 8.59 0.0034 

F458 0.8517 0.065 0.6767 0.9403 11.52 0.0007 

F457 0.8503 0.065 0.6762 0.9392 11.5785 0.0007 

F4578 0.8968 0.052 0.743 0.9631 14.8331 0.0001 
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F456 0.8754 0.057 0.716 0.9514 13.8975 0.0002 

F4568 0.9149 0.0451 0.7754 0.971 16.7928 <.0001 

F4567 0.914 0.0449 0.7763 0.9702 17.1314 <.0001 

F45678 0.9421 0.0337 0.8289 0.982 20.3858 <.0001 

F3 0.5522 0.1285 0.3082 0.7735 0.1629 0.6865 

F38 0.6536 0.1218 0.3967 0.8441 1.3931 0.2379 

F37 0.651 0.1278 0.3826 0.8489 1.2294 0.2675 

F378 0.7405 0.1102 0.4813 0.8977 3.3461 0.0674 

F36 0.6977 0.1154 0.4413 0.8708 2.3375 0.1263 

F368 0.7792 0.0972 0.5384 0.9144 4.9832 0.0256 

F367 0.7773 0.1011 0.5263 0.9164 4.5791 0.0324 

F3678 0.8423 0.0791 0.6244 0.9449 7.9175 0.0049 

F35 0.777 0.1171 0.481 0.9291 3.4138 0.0647 

F358 0.842 0.0929 0.5755 0.9545 5.7387 0.0166 

F357 0.8405 0.0963 0.5631 0.9557 5.3512 0.0207 

F3578 0.8897 0.0722 0.6561 0.9715 8.055 0.0045 

F356 0.867 0.0811 0.6214 0.9628 7.0983 0.0077 

F3568 0.9089 0.0602 0.7061 0.9764 10.0279 0.0015 

F3567 0.9079 0.062 0.6972 0.9769 9.5098 0.002 

F35678 0.9378 0.0443 0.7731 0.9852 12.7817 0.0004 

F34 0.6211 0.1434 0.3318 0.844 0.658 0.4173 

F348 0.7149 0.1286 0.4213 0.8962 2.1229 0.1451 

F347 0.7126 0.132 0.4121 0.8977 1.9843 0.1589 

F3478 0.7914 0.109 0.5099 0.9326 4.0812 0.0434 

F346 0.7541 0.118 0.4685 0.9143 3.1034 0.0781 

F3468 0.8243 0.0952 0.5639 0.9445 5.5264 0.0187 

F3467 0.8227 0.0973 0.5566 0.9449 5.2937 0.0214 

F34678 0.8765 0.0739 0.6507 0.9643 8.2484 0.0041 

F345 0.8224 0.1025 0.5391 0.9483 4.7654 0.029 

F3458 0.8763 0.0791 0.6291 0.9673 7.2044 0.0073 

F3457 0.8751 0.0811 0.6206 0.9678 6.879 0.0087 

F34578 0.9146 0.0596 0.7058 0.9795 9.6487 0.0019 
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F3456 0.8965 0.0679 0.6736 0.9733 8.6982 0.0032 

F34568 0.9298 0.0495 0.7497 0.9832 11.5977 0.0007 

F34567 0.9291 0.0506 0.7442 0.9833 11.2284 0.0008 

F345678 0.9525 0.0357 0.8103 0.9895 14.4386 0.0001 

F2 0.6023 0.0528 0.4958 0.6999 3.5493 0.0596 

F28 0.6985 0.0649 0.5587 0.8091 7.4279 0.0064 

F27 0.6961 0.0623 0.5625 0.8032 7.9105 0.0049 

F278 0.778 0.0614 0.6358 0.8755 12.4392 0.0004 

F26 0.7392 0.0609 0.604 0.8404 10.866 0.001 

F268 0.8125 0.0584 0.6715 0.9019 14.6192 0.0001 

F267 0.8108 0.0561 0.6766 0.8978 15.8136 <.0001 

F2678 0.8677 0.0479 0.7431 0.937 20.2864 <.0001 

F25 0.8106 0.0712 0.633 0.9139 9.8355 0.0017 

F258 0.8675 0.0601 0.7013 0.948 12.9034 0.0003 

F257 0.8662 0.0599 0.7017 0.9468 13.0782 0.0003 

F2578 0.9083 0.047 0.7661 0.9677 16.5055 <.0001 

F256 0.889 0.0518 0.741 0.9573 15.6966 <.0001 

F2568 0.9245 0.0404 0.7975 0.9744 18.7251 <.0001 

F2567 0.9237 0.0401 0.7989 0.9736 19.2403 <.0001 

F25678 0.9488 0.0298 0.8478 0.984 22.6708 <.0001 

F24 0.6681 0.0815 0.4949 0.8053 3.6269 0.0569 

F248 0.7549 0.0804 0.5677 0.8783 6.693 0.0097 

F247 0.7528 0.077 0.575 0.8727 7.2382 0.0071 

F2478 0.8233 0.068 0.6508 0.9209 10.8387 0.001 

F246 0.7902 0.0724 0.6155 0.8986 9.2291 0.0024 

F2468 0.8521 0.0624 0.6857 0.9383 12.4967 0.0004 

F2467 0.8507 0.0599 0.6932 0.9349 13.5963 0.0002 

F24678 0.8971 0.048 0.7587 0.9602 17.323 <.0001 

F245 0.8505 0.0619 0.6868 0.9365 12.7724 0.0004 

F2458 0.8969 0.0509 0.7474 0.9624 15.4552 <.0001 

F2457 0.8959 0.0499 0.7509 0.9609 16.1714 <.0001 

F24578 0.9294 0.0386 0.8061 0.9766 19.2119 <.0001 
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F2456 0.9141 0.0431 0.7838 0.969 18.5366 <.0001 

F24568 0.9421 0.0331 0.832 0.9817 21.1078 <.0001 

F24567 0.9415 0.0325 0.8353 0.9808 22.2301 <.0001 

F245678 0.961 0.0239 0.8757 0.9885 25.191 <.0001 

F23 0.6513 0.1282 0.3819 0.8496 1.2252 0.2683 

F238 0.7407 0.1124 0.4757 0.9 3.2166 0.0729 

F237 0.7386 0.1155 0.4665 0.9013 3.0132 0.0826 

F2378 0.8121 0.0935 0.5654 0.9349 5.7114 0.0169 

F236 0.7775 0.1013 0.5257 0.9168 4.5617 0.0327 

F2368 0.8424 0.0805 0.6195 0.9461 7.6348 0.0057 

F2367 0.8409 0.0823 0.6129 0.9464 7.3272 0.0068 

F23678 0.8899 0.0617 0.7019 0.9652 11.0238 0.0009 

F235 0.8407 0.0935 0.5732 0.954 5.6751 0.0172 

F2358 0.8898 0.071 0.6615 0.9709 8.3272 0.0039 

F2357 0.8887 0.0727 0.6539 0.9712 7.984 0.0047 

F23578 0.9243 0.0528 0.7355 0.9817 10.99 0.0009 

F2356 0.908 0.0603 0.7056 0.976 10.0515 0.0015 

F23568 0.9379 0.0435 0.7773 0.9849 13.1927 0.0003 

F23567 0.9372 0.0444 0.7727 0.985 12.8168 0.0003 

F235678 0.9581 0.0311 0.8334 0.9905 16.3028 <.0001 

F234 0.7129 0.1329 0.4101 0.8986 1.9607 0.1614 

F2348 0.7916 0.1111 0.5037 0.9343 3.9279 0.0475 

F2347 0.7897 0.1125 0.4988 0.9341 3.8133 0.0508 

F23478 0.8517 0.0878 0.5951 0.9574 6.3175 0.012 

F2346 0.8229 0.0979 0.5548 0.9454 5.2343 0.0221 

F23468 0.8766 0.0752 0.6454 0.9652 7.9604 0.0048 

F23467 0.8754 0.0759 0.6425 0.9649 7.8566 0.0051 

F234678 0.9149 0.0556 0.7263 0.9775 11.0731 0.0009 

F2345 0.8752 0.0792 0.6287 0.9667 7.2145 0.0072 

F23458 0.9147 0.0589 0.7096 0.9792 9.8837 0.0017 

F23457 0.9139 0.0598 0.7054 0.9792 9.6696 0.0019 

F234578 0.942 0.0428 0.7775 0.9869 12.6549 0.0004 
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F23456 0.9292 0.0494 0.7506 0.9828 11.7436 0.0006 

F234568 0.9526 0.0353 0.8131 0.9893 14.7744 0.0001 

F234567 0.952 0.0357 0.8109 0.9892 14.6135 0.0001 

F2345678 0.9681 0.0249 0.8623 0.9933 17.9596 <.0001 

F1 0.5702 0.0505 0.4698 0.6652 1.8844 0.1698 

F18 0.6699 0.0629 0.5375 0.7799 6.1925 0.0128 

F17 0.6674 0.0687 0.5224 0.7864 5.0614 0.0245 

F178 0.7543 0.0662 0.604 0.8607 9.8738 0.0017 

F16 0.7128 0.0628 0.5764 0.8191 8.7903 0.003 

F168 0.7915 0.0602 0.6499 0.8859 13.3521 0.0003 

F167 0.7897 0.0629 0.6413 0.8875 12.217 0.0005 

F1678 0.8517 0.0529 0.7164 0.9289 17.3987 <.0001 

F15 0.7894 0.0842 0.5814 0.91 6.8044 0.0091 

F158 0.8515 0.0701 0.6592 0.9444 9.9255 0.0016 

F157 0.8501 0.0725 0.6503 0.9453 9.3059 0.0023 

F1578 0.8966 0.0562 0.7256 0.966 12.7053 0.0004 

F156 0.8752 0.0616 0.6991 0.9549 11.9408 0.0005 

F1568 0.9147 0.0474 0.7653 0.9725 15.2493 <.0001 

F1567 0.9139 0.0486 0.76 0.9726 14.6591 0.0001 

F15678 0.942 0.0356 0.8189 0.9831 18.2707 <.0001 

F14 0.6381 0.0854 0.4607 0.7845 2.3525 0.1251 

F148 0.7295 0.0844 0.5385 0.8618 5.3862 0.0203 

F147 0.7273 0.086 0.5326 0.8619 5.1134 0.0237 

F1478 0.8032 0.0754 0.6158 0.9122 8.6974 0.0032 

F146 0.7674 0.0784 0.5826 0.8864 7.3949 0.0065 

F1468 0.8346 0.0676 0.6592 0.9294 10.9396 0.0009 

F1467 0.8331 0.0681 0.6565 0.9288 10.7702 0.001 

F14678 0.8842 0.0542 0.7302 0.9556 14.7632 0.0001 

F145 0.8328 0.0745 0.6358 0.9343 9.0091 0.0027 

F1458 0.884 0.0602 0.7069 0.9601 11.9735 0.0005 

F1457 0.8829 0.0613 0.7023 0.9601 11.6148 0.0007 

F14578 0.9202 0.0466 0.7688 0.9756 14.8489 0.0001 
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F1456 0.9031 0.0519 0.7446 0.9675 14.1702 0.0002 

F14568 0.9345 0.0392 0.8024 0.9804 17.1934 <.0001 

F14567 0.9338 0.0397 0.8002 0.9803 16.978 <.0001 

F145678 0.9557 0.0289 0.8501 0.988 20.3047 <.0001 

F13 0.6207 0.1294 0.3578 0.8277 0.8027 0.3703 

F138 0.7145 0.115 0.4531 0.8832 2.6461 0.1038 

F137 0.7122 0.1224 0.4343 0.8886 2.3032 0.1291 

F1378 0.7911 0.1 0.5365 0.9253 4.8467 0.0277 

F136 0.7538 0.1061 0.4995 0.9038 3.8284 0.0504 

F1368 0.824 0.085 0.5974 0.9366 6.9327 0.0085 

F1367 0.8224 0.0897 0.5815 0.9392 6.2262 0.0126 

F13678 0.8763 0.0675 0.6766 0.96 9.8986 0.0017 

F135 0.8222 0.1053 0.5298 0.9499 4.5176 0.0335 

F1358 0.8761 0.0803 0.624 0.9679 6.9937 0.0082 

F1357 0.8749 0.0839 0.6091 0.9691 6.445 0.0111 

F13578 0.9145 0.061 0.6988 0.9801 9.2348 0.0024 

F1356 0.8964 0.0691 0.6681 0.9738 8.4126 0.0037 

F13568 0.9297 0.0499 0.7478 0.9833 11.4529 0.0007 

F13567 0.929 0.0518 0.7372 0.9839 10.7139 0.0011 

F135678 0.9524 0.0362 0.8068 0.9897 14.0456 0.0002 

F134 0.685 0.1387 0.3816 0.8846 1.4611 0.2268 

F1348 0.7689 0.1174 0.4767 0.924 3.3083 0.0689 

F1347 0.7669 0.122 0.4634 0.9261 3.045 0.081 

F13478 0.8342 0.096 0.5633 0.9515 5.4133 0.02 

F1346 0.8027 0.1053 0.5249 0.9374 4.4524 0.0349 

F13468 0.8616 0.0815 0.62 0.9596 7.163 0.0074 

F13467 0.8602 0.0842 0.6093 0.9605 6.7303 0.0095 

F134678 0.904 0.0619 0.6996 0.9744 9.8949 0.0017 

F1345 0.86 0.0905 0.5847 0.9641 5.8318 0.0157 

F13458 0.9038 0.0674 0.6729 0.9772 8.3533 0.0038 

F13457 0.9029 0.0697 0.662 0.9778 7.8735 0.005 

F134578 0.9343 0.0499 0.7431 0.9859 10.6742 0.0011 
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F13456 0.92 0.0572 0.7148 0.9814 9.8741 0.0017 

F134568 0.9462 0.0407 0.7856 0.9883 12.8331 0.0003 

F134567 0.9456 0.042 0.7785 0.9885 12.2502 0.0005 

F1345678 0.9638 0.0291 0.8384 0.9927 15.4787 <.0001 

F12 0.6677 0.0663 0.5281 0.783 5.4608 0.0194 

F128 0.7545 0.0674 0.601 0.8625 9.523 0.002 

F127 0.7525 0.0686 0.5962 0.8622 9.1079 0.0025 

F1278 0.823 0.0604 0.6735 0.9129 13.7312 0.0002 

F126 0.7899 0.0612 0.6459 0.8857 12.876 0.0003 

F1268 0.8519 0.0536 0.7145 0.9297 16.9783 <.0001 

F1267 0.8505 0.0537 0.713 0.9287 16.9244 <.0001 

F12678 0.8969 0.0429 0.7778 0.9558 21.7026 <.0001 

F125 0.8502 0.0681 0.6657 0.9418 10.5519 0.0012 

F1258 0.8967 0.0541 0.7343 0.9646 13.6936 0.0002 

F1257 0.8957 0.0549 0.7306 0.9645 13.3724 0.0003 

F12578 0.9293 0.0413 0.7933 0.9782 16.8218 <.0001 

F1256 0.914 0.046 0.7714 0.971 16.3113 <.0001 

F12568 0.942 0.0345 0.825 0.9825 19.5027 <.0001 

F12567 0.9414 0.0348 0.8235 0.9823 19.3676 <.0001 

F125678 0.9609 0.0251 0.8688 0.9892 22.9125 <.0001 

F124 0.7276 0.0853 0.5346 0.8613 5.2067 0.0225 

F1248 0.8034 0.0768 0.6118 0.9137 8.3888 0.0038 

F1247 0.8016 0.0763 0.6122 0.9118 8.4804 0.0036 

F12478 0.8607 0.0627 0.6891 0.9452 12.1183 0.0005 

F1246 0.8333 0.0676 0.6582 0.9284 10.9366 0.0009 

F12468 0.8843 0.0549 0.7274 0.9563 14.3506 0.0002 

F12467 0.8832 0.0543 0.7293 0.955 14.7707 0.0001 

F124678 0.9204 0.0416 0.7919 0.9723 18.6275 <.0001 

F1245 0.883 0.0582 0.7145 0.9579 12.8757 0.0003 

F12458 0.9203 0.0452 0.7751 0.9748 15.7367 <.0001 

F12457 0.9194 0.0454 0.7746 0.9743 15.7987 <.0001 

F124578 0.9458 0.0336 0.8282 0.9844 18.9635 <.0001 
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F12456 0.9339 0.038 0.8088 0.9792 18.5397 <.0001 

F124568 0.9557 0.0281 0.8544 0.9876 21.3654 <.0001 

F124567 0.9553 0.0281 0.8549 0.9873 21.6997 <.0001 

F1245678 0.9703 0.0201 0.8925 0.9923 24.8694 <.0001 

F123 0.7125 0.121 0.4377 0.8875 2.3599 0.1245 

F1238 0.7913 0.1004 0.5351 0.9258 4.8024 0.0284 

F1237 0.7894 0.1047 0.5218 0.928 4.4028 0.0359 

F12378 0.8515 0.081 0.6203 0.9527 7.4314 0.0064 

F1236 0.8226 0.0887 0.5849 0.9385 6.3715 0.0116 

F12368 0.8764 0.0677 0.6756 0.9602 9.8179 0.0017 

F12367 0.8752 0.0702 0.6657 0.9611 9.1933 0.0024 

F123678 0.9147 0.051 0.7487 0.9748 13.1757 0.0003 

F1235 0.875 0.081 0.6213 0.9676 6.9091 0.0086 

F12358 0.9146 0.0595 0.7062 0.9795 9.6747 0.0019 

F12357 0.9137 0.0615 0.6964 0.98 9.1412 0.0025 

F123578 0.9419 0.0436 0.7726 0.9872 12.2087 0.0005 

F12356 0.9291 0.0501 0.747 0.9831 11.4497 0.0007 

F123568 0.9525 0.0354 0.8122 0.9893 14.6873 0.0001 

F123567 0.952 0.0364 0.8061 0.9895 14.0474 0.0002 

F1235678 0.9681 0.0252 0.8602 0.9933 17.5868 <.0001 

F1234 0.7671 0.1214 0.4651 0.9258 3.0767 0.0794 

F12348 0.8344 0.0967 0.5609 0.9521 5.3348 0.0209 

F12347 0.8329 0.0992 0.5522 0.9527 5.0821 0.0242 

F123478 0.884 0.0746 0.6469 0.9694 7.7995 0.0052 

F12346 0.8604 0.0838 0.611 0.9603 6.7978 0.0091 

F123468 0.9041 0.0623 0.6977 0.9747 9.7624 0.0018 

F123467 0.9031 0.0636 0.6918 0.9748 9.4407 0.0021 

F1234678 0.9345 0.0454 0.7692 0.9839 12.8381 0.0003 

F12345 0.903 0.0677 0.672 0.9769 8.344 0.0039 

F123458 0.9344 0.0489 0.7487 0.9855 11.0743 0.0009 

F123457 0.9337 0.0501 0.7423 0.9857 10.6698 0.0011 

F1234578 0.9556 0.0352 0.8089 0.991 13.6745 0.0002 
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F123456 0.9457 0.0408 0.786 0.988 12.9476 0.0003 

F1234568 0.9638 0.0286 0.8423 0.9925 16.0353 <.0001 

F1234567 0.9634 0.0292 0.8387 0.9926 15.6109 <.0001 

F12345678 0.9758 0.0201 0.8842 0.9953 18.979 <.0001 
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Table A.3- Predictive Index of Imputed-Errors Corrected Simulation Data 

Contrast Estimation and Testing Results by Row 

Contrast Estimate 
Standard 

Error 
Confidence Limits 

Wald Chi-

Square 

Pr > 

ChiSq 

0 0.5 0 . . . . 

F8 0.6208 0.048 0.5233 0.7093 5.8494 0.0156 

F7 0.6109 0.0506 0.5085 0.7043 4.4962 0.034 

F78 0.7199 0.058 0.594 0.8186 10.7869 0.001 

F6 0.648 0.0552 0.534 0.7473 6.3689 0.0116 

F68 0.7509 0.0596 0.6175 0.8491 11.992 0.0005 

F67 0.743 0.0601 0.6092 0.8427 11.3565 0.0008 

F678 0.8255 0.0535 0.6955 0.9074 17.5026 <.0001 

F5 0.7325 0.0785 0.5552 0.8573 6.3161 0.012 

F58 0.8176 0.0702 0.6406 0.9185 10.1653 0.0014 

F57 0.8113 0.0723 0.6301 0.9156 9.5316 0.002 

F578 0.8756 0.0576 0.714 0.952 13.6121 0.0002 

F56 0.8345 0.067 0.6609 0.9288 11.1279 0.0009 

F568 0.8919 0.0526 0.7392 0.9601 14.9789 0.0001 

F567 0.8878 0.0539 0.7326 0.9581 14.6008 0.0001 

F5678 0.9284 0.0394 0.8022 0.9764 18.6868 <.0001 

F4 0.5824 0.0697 0.443 0.7098 1.3481 0.2456 

F48 0.6954 0.0759 0.5308 0.8217 5.3115 0.0212 

F47 0.6865 0.0755 0.524 0.8133 4.9871 0.0255 

F478 0.7819 0.0693 0.6178 0.8883 9.8662 0.0017 

F46 0.7197 0.0772 0.5482 0.8446 6.0796 0.0137 

F468 0.8078 0.0684 0.6394 0.9088 10.631 0.0011 

F467 0.8013 0.0681 0.6356 0.9031 10.6323 0.0011 

F4678 0.8684 0.0544 0.7221 0.9437 15.7359 <.0001 

F45 0.7925 0.0714 0.6199 0.8994 9.5294 0.002 

F458 0.8621 0.0599 0.6996 0.9438 13.2349 0.0003 

F457 0.8571 0.0608 0.6937 0.9407 13.0027 0.0003 

F4578 0.9075 0.0466 0.7679 0.9668 16.9399 <.0001 

F456 0.8755 0.0565 0.718 0.951 14.1616 0.0002 

F4568 0.9201 0.0426 0.7872 0.9728 17.7937 <.0001 

F4567 0.9169 0.0432 0.7839 0.9711 17.8899 <.0001 

F45678 0.9476 0.0308 0.8427 0.9839 21.7558 <.0001 

F3 0.5327 0.1236 0.3011 0.7511 0.0696 0.7919 

F38 0.6511 0.1184 0.4019 0.8382 1.4333 0.2312 
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F37 0.6415 0.1256 0.3803 0.8392 1.136 0.2865 

F378 0.7455 0.1071 0.492 0.8986 3.6222 0.057 

F36 0.6773 0.1156 0.4266 0.8555 1.9632 0.1612 

F368 0.7745 0.0967 0.5373 0.9104 4.9719 0.0258 

F367 0.7672 0.1021 0.5179 0.91 4.3474 0.0371 

F3678 0.8436 0.078 0.6288 0.945 8.1312 0.0044 

F35 0.7574 0.1181 0.4697 0.9167 3.1373 0.0765 

F358 0.8363 0.0926 0.5759 0.9506 5.8198 0.0158 

F357 0.8305 0.0977 0.557 0.9503 5.242 0.022 

F3578 0.8892 0.0712 0.6607 0.9706 8.3078 0.0039 

F356 0.8518 0.0858 0.6025 0.9561 6.6126 0.0101 

F3568 0.9039 0.0619 0.6994 0.9744 9.8895 0.0017 

F3567 0.9002 0.0652 0.6851 0.974 9.1859 0.0024 

F35678 0.9366 0.0448 0.7712 0.9848 12.7593 0.0004 

F34 0.6139 0.1395 0.334 0.8345 0.6206 0.4308 

F348 0.7224 0.123 0.4389 0.8965 2.4327 0.1188 

F347 0.714 0.1282 0.4218 0.8952 2.1241 0.145 

F3478 0.8034 0.1023 0.5345 0.9357 4.7244 0.0297 

F346 0.7454 0.1179 0.4643 0.9082 2.992 0.0837 

F3468 0.8274 0.0922 0.5749 0.9444 5.8927 0.0152 

F3467 0.8213 0.0961 0.5602 0.9431 5.4285 0.0198 

F34678 0.8827 0.0699 0.6672 0.9658 8.9426 0.0028 

F345 0.8132 0.1029 0.5359 0.9426 4.7182 0.0298 

F3458 0.877 0.0769 0.6382 0.9664 7.6003 0.0058 

F3457 0.8724 0.0805 0.6235 0.9658 7.0597 0.0079 

F34578 0.918 0.0568 0.7187 0.98 10.2684 0.0014 

F3456 0.8891 0.0707 0.663 0.9703 8.433 0.0037 

F34568 0.9292 0.0494 0.7507 0.9828 11.7494 0.0006 

F34567 0.9264 0.0517 0.7403 0.9823 11.1759 0.0008 

F345678 0.9537 0.0348 0.8149 0.9897 14.7631 0.0001 

F2 0.6073 0.053 0.5 0.705 3.8435 0.0499 

F28 0.7168 0.0636 0.5779 0.8239 8.7743 0.0031 

F27 0.7082 0.0619 0.5744 0.8137 8.7626 0.0031 

F278 0.7989 0.0589 0.6595 0.8907 14.1582 0.0002 

F26 0.74 0.0616 0.6031 0.8421 10.6703 0.0011 

F268 0.8233 0.0569 0.6841 0.9093 15.4895 <.0001 

F267 0.8172 0.0556 0.6831 0.9026 16.1998 <.0001 

F2678 0.8797 0.0454 0.7592 0.9444 21.4607 <.0001 
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F25 0.8089 0.0673 0.6432 0.9086 10.9722 0.0009 

F258 0.8739 0.056 0.7192 0.9494 14.5333 0.0001 

F257 0.8692 0.0565 0.7149 0.9463 14.5033 0.0001 

F2578 0.9158 0.043 0.7847 0.9701 18.3042 <.0001 

F256 0.8863 0.0513 0.7419 0.9548 16.2822 <.0001 

F2568 0.9273 0.0386 0.8058 0.9752 19.7355 <.0001 

F2567 0.9245 0.039 0.8037 0.9734 20.1034 <.0001 

F25678 0.9525 0.0278 0.8573 0.9852 23.806 <.0001 

F24 0.6832 0.0799 0.5113 0.8164 4.338 0.0373 

F248 0.7793 0.0749 0.6005 0.8924 8.3879 0.0038 

F247 0.772 0.0731 0.6001 0.8842 8.6327 0.0033 

F2478 0.8472 0.061 0.6878 0.9331 13.23 0.0003 

F246 0.7988 0.071 0.6256 0.9042 9.7515 0.0018 

F2468 0.8667 0.0578 0.7093 0.9454 14.0146 0.0002 

F2467 0.8618 0.0567 0.7103 0.9406 14.7792 0.0001 

F24678 0.9107 0.0428 0.7842 0.9663 19.4495 <.0001 

F245 0.8552 0.0584 0.701 0.937 14.1928 0.0002 

F2458 0.9063 0.0461 0.7693 0.9656 17.4511 <.0001 

F2457 0.9026 0.0461 0.7682 0.9629 17.9955 <.0001 

F24578 0.9382 0.034 0.8278 0.9796 21.4947 <.0001 

F2456 0.9158 0.042 0.7889 0.9694 19.169 <.0001 

F24568 0.9468 0.0307 0.8436 0.9833 22.3272 <.0001 

F24567 0.9447 0.0307 0.8435 0.9818 23.2743 <.0001 

F245678 0.9655 0.0215 0.8876 0.99 26.6637 <.0001 

F23 0.638 0.1253 0.3783 0.8362 1.0907 0.2963 

F238 0.7426 0.1093 0.4848 0.8984 3.4357 0.0638 

F237 0.7345 0.1139 0.4683 0.8969 3.0359 0.0814 

F2378 0.8192 0.09 0.5792 0.9371 6.1788 0.0129 

F236 0.7644 0.1023 0.516 0.9081 4.2958 0.0382 

F2368 0.8416 0.0796 0.6225 0.9448 7.8269 0.0051 

F2367 0.8359 0.0828 0.6093 0.9433 7.268 0.007 

F23678 0.8929 0.06 0.7089 0.9662 11.4089 0.0007 

F235 0.8284 0.0944 0.5678 0.9466 5.6223 0.0177 

F2358 0.8877 0.07 0.6664 0.969 8.6799 0.0032 

F2357 0.8834 0.0732 0.6531 0.9683 8.1266 0.0044 

F23578 0.9254 0.0513 0.743 0.9816 11.4863 0.0007 

F2356 0.8989 0.0633 0.6942 0.9721 9.8434 0.0017 

F23568 0.9357 0.0441 0.7756 0.9839 13.3297 0.0003 
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F23567 0.9331 0.046 0.7667 0.9834 12.7635 0.0004 

F235678 0.958 0.0309 0.8347 0.9904 16.504 <.0001 

F234 0.7109 0.1299 0.4161 0.8945 2.0275 0.1545 

F2348 0.801 0.1053 0.5245 0.9362 4.4461 0.035 

F2347 0.7942 0.1086 0.512 0.9342 4.1304 0.0421 

F23478 0.8634 0.0813 0.6209 0.9606 7.1634 0.0074 

F2346 0.819 0.0975 0.5549 0.9426 5.2673 0.0217 

F23468 0.8811 0.0719 0.6587 0.966 8.5117 0.0035 

F23467 0.8766 0.0742 0.6493 0.9646 8.1676 0.0043 

F234678 0.9208 0.0518 0.7429 0.9791 11.9221 0.0006 

F2345 0.8707 0.0789 0.6303 0.9637 7.4063 0.0065 

F23458 0.9168 0.0564 0.7211 0.9792 10.5255 0.0012 

F23457 0.9136 0.0586 0.7117 0.9784 10.0956 0.0015 

F234578 0.9454 0.0401 0.7907 0.9875 13.4843 0.0002 

F23456 0.9253 0.0508 0.7458 0.9813 11.7191 0.0006 

F234568 0.953 0.0346 0.8167 0.9893 15.1434 <.0001 

F234567 0.9511 0.0359 0.8108 0.9888 14.7852 0.0001 

F2345678 0.9696 0.0238 0.8678 0.9936 18.4482 <.0001 

F1 0.5826 0.0505 0.4816 0.6771 2.5746 0.1086 

F18 0.6955 0.0615 0.5638 0.8015 8.0862 0.0045 

F17 0.6866 0.0663 0.545 0.8003 6.4838 0.0109 

F178 0.782 0.0619 0.6377 0.8796 12.3615 0.0004 

F16 0.7198 0.0622 0.584 0.8246 9.3692 0.0022 

F168 0.8079 0.0576 0.6702 0.897 14.9779 0.0001 

F167 0.8013 0.06 0.6582 0.8942 13.6756 0.0002 

F1678 0.8685 0.0486 0.7416 0.9382 19.7073 <.0001 

F15 0.7926 0.0798 0.5962 0.9082 7.6317 0.0057 

F158 0.8622 0.0646 0.6829 0.9478 11.3578 0.0008 

F157 0.8571 0.0676 0.6704 0.9465 10.5432 0.0012 

F1578 0.9076 0.0504 0.7516 0.9696 14.4666 0.0001 

F156 0.8756 0.06 0.705 0.9539 12.5448 0.0004 

F1568 0.9201 0.0444 0.7789 0.9741 16.3463 <.0001 

F1567 0.917 0.0462 0.7709 0.9732 15.6851 <.0001 

F15678 0.9476 0.0324 0.8343 0.9848 19.6901 <.0001 

F14 0.6606 0.084 0.4829 0.8023 3.1597 0.0755 

F148 0.7611 0.0785 0.5776 0.8813 7.2083 0.0073 

F147 0.7535 0.0805 0.5665 0.8773 6.6402 0.01 

F1478 0.8334 0.0665 0.6616 0.9275 11.2854 0.0008 
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F146 0.7818 0.0759 0.5997 0.8955 8.2298 0.0041 

F1468 0.8544 0.0616 0.6896 0.9394 12.7582 0.0004 

F1467 0.8491 0.0629 0.6825 0.9364 12.3844 0.0004 

F14678 0.9021 0.0471 0.7641 0.9632 17.3482 <.0001 

F145 0.842 0.0702 0.6546 0.9375 10.0579 0.0015 

F1458 0.8972 0.0541 0.7345 0.9649 13.6595 0.0002 

F1457 0.8933 0.0559 0.7264 0.9635 13.1514 0.0003 

F14578 0.932 0.0403 0.7976 0.9794 16.9507 <.0001 

F1456 0.9075 0.0498 0.7542 0.9691 14.817 0.0001 

F14568 0.9414 0.0357 0.8188 0.9828 18.4177 <.0001 

F14567 0.9391 0.0367 0.814 0.9819 18.1435 <.0001 

F145678 0.9619 0.0253 0.8673 0.9898 21.9487 <.0001 

F13 0.614 0.1267 0.3582 0.8193 0.7546 0.385 

F138 0.7225 0.1117 0.4664 0.8858 2.9521 0.0858 

F137 0.7141 0.1197 0.4418 0.8874 2.4372 0.1185 

F1378 0.8035 0.0953 0.5561 0.9303 5.4439 0.0196 

F136 0.7455 0.1061 0.4948 0.8975 3.6963 0.0545 

F1368 0.8274 0.0831 0.6052 0.9375 7.257 0.0071 

F1367 0.8214 0.0888 0.5842 0.9377 6.3597 0.0117 

F13678 0.8827 0.0645 0.6895 0.9623 10.5021 0.0012 

F135 0.8133 0.1056 0.5271 0.9445 4.4763 0.0344 

F1358 0.877 0.0784 0.632 0.9673 7.3132 0.0068 

F1357 0.8724 0.0832 0.6123 0.9673 6.6111 0.0101 

F13578 0.918 0.0583 0.7107 0.9808 9.7429 0.0018 

F1356 0.8891 0.0715 0.6592 0.9708 8.2311 0.0041 

F13568 0.9292 0.0497 0.7489 0.983 11.591 0.0007 

F13567 0.9264 0.0527 0.7346 0.9828 10.7397 0.001 

F135678 0.9537 0.0353 0.8115 0.99 14.3374 0.0002 

F134 0.6893 0.1356 0.3909 0.8847 1.5853 0.208 

F1348 0.7841 0.111 0.5011 0.9293 3.8687 0.0492 

F1347 0.777 0.1168 0.4816 0.9289 3.4262 0.0642 

F13478 0.8508 0.0879 0.5947 0.9568 6.3168 0.012 

F1346 0.8034 0.104 0.5293 0.9369 4.5725 0.0325 

F13468 0.8699 0.0771 0.6376 0.9621 7.7823 0.0053 

F13467 0.8651 0.0811 0.6217 0.9616 7.1572 0.0075 

F134678 0.913 0.0567 0.7217 0.977 10.8576 0.001 

F1345 0.8587 0.0895 0.5886 0.9627 5.9788 0.0145 

F13458 0.9087 0.0639 0.6874 0.9783 8.8977 0.0029 
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F13457 0.9051 0.0674 0.6721 0.978 8.262 0.004 

F134578 0.9398 0.046 0.7606 0.9871 11.4427 0.0007 

F13456 0.918 0.058 0.7121 0.9806 9.8324 0.0017 

F134568 0.9482 0.0394 0.7918 0.9888 13.1469 0.0003 

F134567 0.9461 0.0414 0.7814 0.9885 12.4502 0.0004 

F1345678 0.9664 0.0273 0.8472 0.9933 15.9898 <.0001 

F12 0.6833 0.066 0.5427 0.7969 6.3568 0.0117 

F128 0.7794 0.0647 0.6281 0.8807 11.2421 0.0008 

F127 0.7721 0.0658 0.6194 0.8758 10.643 0.0011 

F1278 0.8472 0.0556 0.7051 0.9279 15.9212 <.0001 

F126 0.7989 0.06 0.6564 0.892 13.63 0.0002 

F1268 0.8667 0.0503 0.7347 0.9385 18.4806 <.0001 

F1267 0.8618 0.0508 0.73 0.935 18.4207 <.0001 

F12678 0.9108 0.0388 0.8003 0.963 23.6964 <.0001 

F125 0.8553 0.0637 0.6829 0.9419 11.9016 0.0006 

F1258 0.9063 0.049 0.7574 0.9677 15.466 <.0001 

F1257 0.9027 0.0504 0.7508 0.9662 15.0713 0.0001 

F12578 0.9382 0.0363 0.8164 0.9811 18.8372 <.0001 

F1256 0.9158 0.0441 0.7798 0.9709 17.3826 <.0001 

F12568 0.9468 0.0317 0.8382 0.9839 20.8867 <.0001 

F12567 0.9447 0.0325 0.8345 0.983 20.796 <.0001 

F125678 0.9655 0.0224 0.8821 0.9905 24.5235 <.0001 

F124 0.7506 0.0826 0.5589 0.8773 6.2288 0.0126 

F1248 0.8313 0.0699 0.6498 0.929 10.247 0.0014 

F1247 0.8253 0.0703 0.6451 0.9247 10.1521 0.0014 

F12478 0.8855 0.0543 0.7304 0.9567 14.6015 0.0001 

F1246 0.8471 0.0644 0.6765 0.9362 11.8624 0.0006 

F12468 0.9007 0.0491 0.7555 0.9638 16.1071 <.0001 

F12467 0.8969 0.0494 0.7533 0.9612 16.407 <.0001 

F124678 0.9344 0.0355 0.8206 0.9779 21.0106 <.0001 

F1245 0.8918 0.054 0.7337 0.961 14.2285 0.0002 

F12458 0.931 0.0399 0.7999 0.9785 17.58 <.0001 

F12457 0.9283 0.0406 0.7964 0.9772 17.5959 <.0001 

F124578 0.9549 0.0286 0.8522 0.9873 21.1459 <.0001 

F12456 0.9382 0.0358 0.8191 0.9807 19.4167 <.0001 

F124568 0.9613 0.0251 0.8688 0.9894 22.6878 <.0001 

F124567 0.9597 0.0255 0.8672 0.9886 23.0447 <.0001 

F1245678 0.975 0.0173 0.9063 0.9937 26.524 <.0001 



 

119 

 

F123 0.711 0.1188 0.4421 0.8842 2.425 0.1194 

F1238 0.8011 0.0964 0.5516 0.9295 5.2998 0.0213 

F1237 0.7943 0.1017 0.5328 0.929 4.7136 0.0299 

F12378 0.8634 0.076 0.6413 0.9572 8.1908 0.0042 

F1236 0.8191 0.0883 0.5846 0.9358 6.417 0.0113 

F12368 0.8811 0.0653 0.6859 0.9618 10.3163 0.0013 

F12367 0.8767 0.0687 0.6716 0.9611 9.5186 0.002 

F123678 0.9209 0.048 0.762 0.9769 13.8955 0.0002 

F1235 0.8707 0.0805 0.6236 0.9648 7.1062 0.0077 

F12358 0.9168 0.0572 0.7169 0.9796 10.2293 0.0014 

F12357 0.9136 0.0602 0.7032 0.9793 9.5502 0.002 

F123578 0.9454 0.041 0.7852 0.9879 12.9154 0.0003 

F12356 0.9254 0.0512 0.7436 0.9815 11.5372 0.0007 

F123568 0.9531 0.0347 0.816 0.9894 15.0525 0.0001 

F123567 0.9511 0.0365 0.8071 0.9891 14.3231 0.0002 

F1235678 0.9696 0.024 0.8658 0.9937 18.0502 <.0001 

F1234 0.7743 0.1177 0.4781 0.9278 3.3494 0.0672 

F12348 0.8489 0.0899 0.5874 0.9568 6.0718 0.0137 

F12347 0.8434 0.0936 0.573 0.9558 5.6395 0.0176 

F123478 0.8981 0.0669 0.6776 0.9737 8.8517 0.0029 

F12346 0.8633 0.0818 0.6187 0.9609 7.0646 0.0079 

F123468 0.9118 0.0579 0.7159 0.977 10.5138 0.0012 

F123467 0.9084 0.0603 0.7055 0.9762 10.0188 0.0015 

F1234678 0.942 0.0409 0.7894 0.986 13.8878 0.0002 

F12345 0.9038 0.0661 0.6794 0.9766 8.6923 0.0032 

F123458 0.939 0.0456 0.7638 0.9865 11.7959 0.0006 

F123457 0.9365 0.0477 0.7538 0.9861 11.2537 0.0008 

F1234578 0.9602 0.0318 0.8249 0.992 14.5815 0.0001 

F123456 0.9454 0.0407 0.787 0.9878 13.0956 0.0003 

F1234568 0.9659 0.0271 0.8494 0.993 16.4912 <.0001 

F1234567 0.9645 0.0283 0.8433 0.9928 15.9788 <.0001 

F12345678 0.978 0.0185 0.8922 0.9958 19.5793 <.0001 
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Table A.4- Predictive Index of Non-Imputed MESA Data 

Contrast Estimation and Testing Results by Row 

Contrast Estimate Standard 

Error 

Confidence Limits Wald Chi-

Square 

Pr > 

ChiSq 

0 0.5 0 . . . . 

F8 0.6193 0.0419 0.5344 0.6974 7.4874 0.0062 

F7 0.6065 0.0445 0.5168 0.6896 5.3799 0.0204 

F78 0.7148 0.0526 0.602 0.806 12.706 0.0004 

F6 0.6294 0.0508 0.5258 0.7224 5.9239 0.0149 

F68 0.7342 0.0539 0.6166 0.826 13.5457 0.0002 

F67 0.7236 0.0559 0.6022 0.8191 11.8594 0.0006 

F678 0.8098 0.0504 0.6916 0.8899 19.61 <.0001 

F5 0.7248 0.0628 0.587 0.83 9.4715 0.0021 

F58 0.8108 0.057 0.674 0.8987 15.3244 <.0001 

F57 0.8024 0.0613 0.6556 0.8965 13.1413 0.0003 

F578 0.8685 0.0496 0.7382 0.9393 18.8936 <.0001 

F56 0.8173 0.0597 0.6714 0.9074 14.035 0.0002 

F568 0.8792 0.0471 0.7533 0.9455 20.0663 <.0001 

F567 0.8734 0.0502 0.739 0.9438 18.0786 <.0001 

F5678 0.9181 0.037 0.8103 0.9672 24.0795 <.0001 

F4 0.6242 0.0566 0.5087 0.7272 4.4249 0.0354 

F48 0.7299 0.062 0.5933 0.8335 9.9903 0.0016 

F47 0.7191 0.0606 0.5872 0.8217 9.8232 0.0017 

F478 0.8064 0.0565 0.6721 0.8943 15.5662 <.0001 

F46 0.7383 0.063 0.5982 0.8425 10.1079 0.0015 

F468 0.8211 0.0558 0.6855 0.9062 16.0805 <.0001 

F467 0.8131 0.0557 0.6796 0.8992 16.1067 <.0001 

F4678 0.8761 0.045 0.7582 0.941 22.2306 <.0001 

F45 0.814 0.0534 0.6869 0.8972 17.5509 <.0001 

F458 0.8768 0.0448 0.7593 0.9414 22.3516 <.0001 

F457 0.8709 0.0466 0.7497 0.9382 21.2466 <.0001 

F4578 0.9165 0.0359 0.814 0.9649 26.1082 <.0001 

F456 0.8814 0.0451 0.7615 0.9454 21.6417 <.0001 

F4568 0.9236 0.0339 0.8249 0.9688 26.8502 <.0001 

F4567 0.9197 0.0353 0.8176 0.967 25.9463 <.0001 

F45678 0.9491 0.0253 0.8696 0.9811 31.1451 <.0001 

F3 0.6956 0.0772 0.5279 0.8236 5.1372 0.0234 

F38 0.788 0.0696 0.6216 0.8937 9.9367 0.0016 

F37 0.7788 0.073 0.6055 0.8899 8.8264 0.003 
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F378 0.8514 0.0594 0.6954 0.9349 13.8364 0.0002 

F36 0.7951 0.0703 0.6248 0.9005 9.8652 0.0017 

F368 0.8632 0.0559 0.7139 0.9411 15.1436 <.0001 

F367 0.8568 0.0587 0.7007 0.9386 13.9719 0.0002 

F3678 0.9068 0.0437 0.7795 0.964 19.3977 <.0001 

F35 0.8575 0.0612 0.6928 0.9414 12.8489 0.0003 

F358 0.9073 0.046 0.7703 0.9662 17.4212 <.0001 

F357 0.9027 0.0491 0.756 0.9652 15.855 <.0001 

F3578 0.9378 0.035 0.8229 0.98 20.4005 <.0001 

F356 0.9109 0.0458 0.772 0.9686 17.0066 <.0001 

F3568 0.9433 0.0322 0.8362 0.9819 21.7676 <.0001 

F3567 0.9403 0.0344 0.8257 0.9813 20.2245 <.0001 

F35678 0.9624 0.0235 0.8778 0.9892 24.9766 <.0001 

F34 0.7915 0.0754 0.6079 0.9029 8.5227 0.0035 

F348 0.8606 0.061 0.6951 0.9436 12.8256 0.0003 

F347 0.854 0.0626 0.6861 0.94 12.3638 0.0004 

F3478 0.9049 0.0473 0.7642 0.9654 16.8033 <.0001 

F346 0.8657 0.0596 0.7023 0.9463 13.2 0.0003 

F3468 0.9129 0.0443 0.7788 0.969 17.8179 <.0001 

F3467 0.9086 0.0457 0.7717 0.9669 17.4206 <.0001 

F34678 0.9417 0.0324 0.8353 0.981 22.149 <.0001 

F345 0.9091 0.0448 0.7757 0.9666 18.0644 <.0001 

F3458 0.9421 0.0323 0.836 0.9811 22.1879 <.0001 

F3457 0.9391 0.034 0.8279 0.9801 21.2122 <.0001 

F34578 0.9616 0.0236 0.8773 0.9888 25.3233 <.0001 

F3456 0.9444 0.0316 0.8394 0.9822 22.1983 <.0001 

F34568 0.9651 0.0217 0.8864 0.9899 26.4944 <.0001 

F34567 0.9632 0.0229 0.8808 0.9893 25.5937 <.0001 

F345678 0.977 0.0154 0.9173 0.9939 29.8834 <.0001 

F2 0.6302 0.045 0.5385 0.7134 7.6086 0.0058 

F28 0.7348 0.0538 0.6172 0.8265 13.6043 0.0002 

F27 0.7242 0.0535 0.6084 0.8162 12.9848 0.0003 

F278 0.8103 0.0512 0.6898 0.8914 19.0041 <.0001 

F26 0.7432 0.055 0.622 0.8358 13.6001 0.0002 

F268 0.8248 0.0499 0.7052 0.9026 20.1078 <.0001 

F267 0.8169 0.0504 0.6975 0.8962 19.7105 <.0001 

F2678 0.8789 0.0412 0.7726 0.9394 26.211 <.0001 

F25 0.8178 0.0553 0.6845 0.9028 16.3938 <.0001 

F258 0.8795 0.0455 0.759 0.9442 21.4692 <.0001 
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F257 0.8737 0.0478 0.7475 0.9417 19.945 <.0001 

F2578 0.9184 0.0363 0.8134 0.9667 25.018 <.0001 

F256 0.884 0.0455 0.7617 0.9479 20.9693 <.0001 

F2568 0.9254 0.0339 0.8258 0.9701 26.3488 <.0001 

F2567 0.9216 0.0356 0.8173 0.9686 25.0098 <.0001 

F25678 0.9503 0.0253 0.87 0.982 30.3684 <.0001 

F24 0.739 0.0611 0.6033 0.8405 10.7794 0.001 

F248 0.8216 0.0565 0.6838 0.9074 15.6939 <.0001 

F247 0.8135 0.0551 0.6817 0.8989 16.4546 <.0001 

F2478 0.8765 0.0459 0.7554 0.9422 21.3214 <.0001 

F246 0.8278 0.0546 0.694 0.9107 16.773 <.0001 

F2468 0.8866 0.0441 0.768 0.9487 21.9869 <.0001 

F2467 0.8811 0.0437 0.7658 0.9438 23.004 <.0001 

F24678 0.9234 0.0332 0.8278 0.968 28.1859 <.0001 

F245 0.8818 0.0427 0.7698 0.9433 24.0953 <.0001 

F2458 0.9238 0.0332 0.8277 0.9684 27.9091 <.0001 

F2457 0.92 0.0341 0.8226 0.9661 27.7908 <.0001 

F24578 0.9492 0.0251 0.8709 0.9811 31.7279 <.0001 

F2456 0.9268 0.0324 0.8325 0.9699 28.3178 <.0001 

F24568 0.9537 0.0234 0.8795 0.9831 32.6288 <.0001 

F24567 0.9513 0.0241 0.8757 0.9819 32.6342 <.0001 

F245678 0.9695 0.0168 0.9124 0.9898 36.9586 <.0001 

F23 0.7956 0.0667 0.6353 0.8969 10.9729 0.0009 

F238 0.8636 0.0548 0.7179 0.9403 15.7464 <.0001 

F237 0.8572 0.0567 0.7076 0.937 14.9542 0.0001 

F2378 0.9071 0.0432 0.7814 0.9638 19.7545 <.0001 

F236 0.8687 0.0535 0.725 0.9432 16.2048 <.0001 

F2368 0.9149 0.0401 0.7967 0.9672 21.2595 <.0001 

F2367 0.9107 0.0417 0.7888 0.9653 20.5356 <.0001 

F23678 0.9431 0.0298 0.8482 0.9801 25.6202 <.0001 

F235 0.9112 0.0434 0.782 0.967 18.8583 <.0001 

F2358 0.9434 0.0312 0.8411 0.9813 23.104 <.0001 

F2357 0.9405 0.0331 0.8323 0.9805 21.819 <.0001 

F23578 0.9626 0.0229 0.8808 0.9889 26.044 <.0001 

F2356 0.9457 0.0305 0.8447 0.9824 23.152 <.0001 

F23568 0.9659 0.021 0.8905 0.99 27.5825 <.0001 

F23567 0.9641 0.0222 0.8844 0.9895 26.3692 <.0001 

F235678 0.9776 0.0149 0.92 0.994 30.7834 <.0001 

F234 0.8661 0.0579 0.7086 0.9451 13.9895 0.0002 
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F2348 0.9132 0.0439 0.7805 0.9689 18.0884 <.0001 

F2347 0.9088 0.0448 0.7755 0.9664 18.0812 <.0001 

F23478 0.9419 0.0324 0.8358 0.981 22.2033 <.0001 

F2346 0.9166 0.042 0.7892 0.9699 19.0308 <.0001 

F23468 0.947 0.0299 0.8473 0.9829 23.3414 <.0001 

F23467 0.9442 0.0307 0.8435 0.9815 23.4701 <.0001 

F234678 0.965 0.0213 0.8893 0.9895 27.8018 <.0001 

F2345 0.9446 0.0303 0.8457 0.9815 24.0007 <.0001 

F23458 0.9652 0.0212 0.8892 0.9897 27.6211 <.0001 

F23457 0.9633 0.0222 0.8847 0.989 27.1174 <.0001 

F234578 0.9771 0.0151 0.9189 0.9938 30.7464 <.0001 

F23456 0.9666 0.0204 0.8932 0.9901 28.2268 <.0001 

F234568 0.9792 0.0139 0.9254 0.9944 32.0423 <.0001 

F234567 0.9781 0.0145 0.9223 0.9941 31.6301 <.0001 

F2345678 0.9864 0.00965 0.9465 0.9966 35.4426 <.0001 

F1 0.5946 0.0433 0.5077 0.676 4.5454 0.033 

F18 0.7047 0.0538 0.5897 0.7984 11.3081 0.0008 

F17 0.6933 0.0563 0.5736 0.7916 9.4892 0.0021 

F178 0.7862 0.0544 0.661 0.874 16.1823 <.0001 

F16 0.7136 0.057 0.5906 0.8115 10.7187 0.0011 

F168 0.8021 0.0526 0.6793 0.8858 17.8695 <.0001 

F167 0.7934 0.0547 0.6662 0.8808 16.2347 <.0001 

F1678 0.862 0.0451 0.7483 0.9292 23.3985 <.0001 

F15 0.7944 0.0648 0.6398 0.8937 11.6185 0.0007 

F158 0.8627 0.0529 0.7237 0.9378 16.9504 <.0001 

F157 0.8562 0.0565 0.7078 0.9361 15.1137 0.0001 

F1578 0.9064 0.0426 0.7833 0.9629 20.3956 <.0001 

F156 0.8678 0.0534 0.7251 0.9423 16.3697 <.0001 

F1568 0.9143 0.0396 0.7985 0.9664 21.9385 <.0001 

F1567 0.91 0.0422 0.7865 0.9652 20.1635 <.0001 

F15678 0.9427 0.0298 0.8479 0.9798 25.7151 <.0001 

F14 0.7091 0.0641 0.5699 0.8176 8.2084 0.0042 

F148 0.7985 0.0603 0.6554 0.892 13.5176 0.0002 

F147 0.7897 0.0602 0.6486 0.8843 13.321 0.0003 

F1478 0.8593 0.0506 0.729 0.9328 18.695 <.0001 

F146 0.8054 0.0593 0.6636 0.8968 14.1132 0.0002 

F1468 0.8707 0.0483 0.7439 0.9398 19.7764 <.0001 

F1467 0.8645 0.0488 0.7381 0.9352 19.7685 <.0001 

F14678 0.9121 0.0371 0.8071 0.9626 25.4937 <.0001 



 

124 

 

F145 0.8652 0.0506 0.7327 0.9376 18.339 <.0001 

F1458 0.9126 0.039 0.8 0.9646 22.9606 <.0001 

F1457 0.9082 0.0407 0.7915 0.9627 21.9899 <.0001 

F14578 0.9415 0.0297 0.8485 0.9788 26.6084 <.0001 

F1456 0.916 0.0383 0.8041 0.9666 22.9818 <.0001 

F14568 0.9466 0.0275 0.8591 0.981 27.8633 <.0001 

F14567 0.9438 0.0288 0.8529 0.9799 27.0208 <.0001 

F145678 0.9647 0.0199 0.8966 0.9885 31.8924 <.0001 

F13 0.7702 0.0731 0.5987 0.8828 8.5773 0.0034 

F138 0.845 0.0606 0.6876 0.931 13.4378 0.0002 

F137 0.8378 0.0638 0.6731 0.9284 12.2431 0.0005 

F1378 0.8936 0.0488 0.7543 0.9583 17.1736 <.0001 

F136 0.8506 0.0599 0.6933 0.9348 13.6185 0.0002 

F1368 0.9025 0.0451 0.7722 0.962 18.845 <.0001 

F1367 0.8977 0.0475 0.7609 0.9603 17.6171 <.0001 

F13678 0.9345 0.034 0.8277 0.977 22.9005 <.0001 

F135 0.8983 0.0512 0.7464 0.9636 15.0943 0.0001 

F1358 0.9349 0.0368 0.8146 0.9791 19.4365 <.0001 

F1357 0.9315 0.0393 0.8027 0.9785 17.9573 <.0001 

F13578 0.9568 0.0271 0.8595 0.9877 22.2754 <.0001 

F1356 0.9375 0.0361 0.8177 0.9805 19.3263 <.0001 

F13568 0.9606 0.0247 0.8713 0.9887 23.86 <.0001 

F13567 0.9585 0.0264 0.8629 0.9884 22.3846 <.0001 

F135678 0.9741 0.0176 0.9052 0.9933 26.9052 <.0001 

F134 0.8478 0.0649 0.6753 0.9371 11.6745 0.0006 

F1348 0.9006 0.0495 0.7542 0.9639 15.9142 <.0001 

F1347 0.8956 0.0511 0.746 0.9616 15.4443 <.0001 

F13478 0.9331 0.037 0.8136 0.9781 19.7499 <.0001 

F1346 0.9044 0.0478 0.7621 0.9654 16.5529 <.0001 

F13468 0.939 0.0341 0.8272 0.9802 21.0569 <.0001 

F13467 0.9358 0.0354 0.8211 0.9789 20.6556 <.0001 

F134678 0.9595 0.0245 0.8733 0.9879 25.2162 <.0001 

F1345 0.9362 0.036 0.8182 0.9795 19.8607 <.0001 

F13458 0.9598 0.0251 0.8696 0.9884 23.7754 <.0001 

F13457 0.9576 0.0265 0.8629 0.9878 22.8575 <.0001 

F134578 0.9735 0.018 0.9037 0.9931 26.7619 <.0001 

F13456 0.9614 0.0243 0.8734 0.989 24.0925 <.0001 

F134568 0.9759 0.0164 0.9117 0.9937 28.1714 <.0001 

F134567 0.9746 0.0173 0.9072 0.9934 27.31 <.0001 
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F1345678 0.9842 0.0114 0.9363 0.9962 31.3826 <.0001 

F12 0.7143 0.0548 0.5963 0.8088 11.6438 0.0006 

F128 0.8026 0.0535 0.6771 0.8874 17.2403 <.0001 

F127 0.7939 0.0542 0.6682 0.8805 16.5985 <.0001 

F1278 0.8624 0.0462 0.7449 0.9308 22.2003 <.0001 

F126 0.8094 0.0525 0.6854 0.8922 18.0426 <.0001 

F1268 0.8735 0.0435 0.7614 0.9373 24.0664 <.0001 

F1267 0.8674 0.0444 0.7542 0.9331 23.6329 <.0001 

F12678 0.9141 0.0341 0.8196 0.9614 29.6423 <.0001 

F125 0.8682 0.051 0.7334 0.9403 17.9223 <.0001 

F1258 0.9146 0.0389 0.8015 0.966 22.6965 <.0001 

F1257 0.9103 0.0409 0.7916 0.9644 21.3709 <.0001 

F12578 0.9429 0.0295 0.8492 0.9797 26.1266 <.0001 

F1256 0.9179 0.0381 0.8059 0.9679 22.8149 <.0001 

F12568 0.9479 0.0272 0.861 0.9816 27.8377 <.0001 

F12567 0.9452 0.0286 0.8539 0.9807 26.6176 <.0001 

F125678 0.9656 0.0197 0.8977 0.989 31.6236 <.0001 

F124 0.8059 0.0588 0.6653 0.8967 14.342 0.0002 

F1248 0.871 0.0493 0.7408 0.941 18.9614 <.0001 

F1247 0.8649 0.049 0.7378 0.9357 19.5994 <.0001 

F12478 0.9124 0.0381 0.8036 0.9636 24.1785 <.0001 

F1246 0.8758 0.0469 0.7518 0.9426 20.5188 <.0001 

F12468 0.9198 0.0357 0.8162 0.9673 25.405 <.0001 

F12467 0.9158 0.0359 0.8137 0.9644 26.3097 <.0001 

F124678 0.9465 0.0261 0.8657 0.9798 31.1566 <.0001 

F1245 0.9162 0.0372 0.809 0.9658 24.4232 <.0001 

F12458 0.9468 0.0273 0.8603 0.9809 28.2911 <.0001 

F12457 0.944 0.0282 0.8557 0.9796 28.0611 <.0001 

F124578 0.9648 0.0199 0.8969 0.9886 31.9622 <.0001 

F12456 0.9489 0.0262 0.8655 0.9817 29.1899 <.0001 

F124568 0.968 0.0183 0.9048 0.9897 33.35 <.0001 

F124567 0.9663 0.019 0.9015 0.989 33.2464 <.0001 

F1245678 0.979 0.0129 0.9315 0.9938 37.406 <.0001 

F123 0.851 0.0579 0.7001 0.9332 14.5641 0.0001 

F1238 0.9028 0.0447 0.7739 0.9618 19.1516 <.0001 

F1237 0.898 0.0465 0.7649 0.9597 18.3479 <.0001 

F12378 0.9347 0.0339 0.8281 0.977 22.9344 <.0001 

F1236 0.9066 0.0431 0.7818 0.9633 19.9823 <.0001 

F12368 0.9404 0.031 0.842 0.979 24.824 <.0001 
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F12367 0.9373 0.0324 0.8355 0.9778 24.091 <.0001 

F123678 0.9605 0.0225 0.8838 0.9873 28.9357 <.0001 

F1235 0.9377 0.0347 0.8243 0.9797 20.7998 <.0001 

F12358 0.9607 0.0242 0.8743 0.9885 24.8281 <.0001 

F12357 0.9587 0.0256 0.8672 0.988 23.6256 <.0001 

F123578 0.9742 0.0174 0.9069 0.9932 27.6366 <.0001 

F12356 0.9623 0.0234 0.8782 0.9891 25.1988 <.0001 

F123568 0.9765 0.0158 0.9153 0.9938 29.4027 <.0001 

F123567 0.9752 0.0167 0.9104 0.9935 28.2495 <.0001 

F1235678 0.9846 0.0111 0.9387 0.9963 32.439 <.0001 

F1234 0.9047 0.0469 0.7658 0.965 17.1412 <.0001 

F12348 0.9391 0.0341 0.8275 0.9803 21.0726 <.0001 

F12347 0.936 0.035 0.823 0.9787 21.0611 <.0001 

F123478 0.9597 0.0245 0.8729 0.988 24.9957 <.0001 

F12346 0.9416 0.0324 0.8357 0.9808 22.3255 <.0001 

F123468 0.9633 0.0225 0.883 0.9891 26.4473 <.0001 

F123467 0.9613 0.0232 0.8798 0.9883 26.5694 <.0001 

F1234678 0.9758 0.0157 0.9161 0.9934 30.6933 <.0001 

F12345 0.9615 0.0236 0.8774 0.9887 25.4458 <.0001 

F123458 0.976 0.0161 0.9133 0.9937 28.9229 <.0001 

F123457 0.9747 0.0169 0.9096 0.9933 28.4232 <.0001 

F1234578 0.9843 0.0113 0.9371 0.9962 31.9038 <.0001 

F123456 0.977 0.0154 0.917 0.9939 29.8042 <.0001 

F1234568 0.9857 0.0103 0.9427 0.9966 33.4472 <.0001 

F1234567 0.9849 0.0108 0.9402 0.9963 33.028 <.0001 

F12345678 0.9907 0.00711 0.9592 0.9979 36.668 <.0001 

 

 

 

 

 

 

 

 

 



 

127 

 

Table A.5- Predictive Index of Imputed MESA Data 

Contrast Estimation and Testing Results by Row 

Contrast Estimate 
Standard 

Error 
Confidence Limits 

Wald Chi-

Square 

Pr > 

ChiSq 

0 0.5 0 . . . . 

F8 0.6081 0.0383 0.5311 0.6801 7.479 0.0062 

F7 0.5925 0.0403 0.5117 0.6685 5.0246 0.025 

F78 0.6928 0.0489 0.5898 0.7797 12.5356 0.0004 

F6 0.6105 0.0469 0.5157 0.6975 5.1955 0.0226 

F68 0.7086 0.0514 0.5988 0.7985 12.7337 0.0004 

F67 0.695 0.0523 0.5842 0.787 11.1503 0.0008 

F678 0.7795 0.0495 0.6677 0.8615 19.1909 <.0001 

F5 0.6963 0.0676 0.5506 0.811 6.731 0.0095 

F58 0.7806 0.0628 0.6342 0.8795 11.9717 0.0005 

F57 0.7692 0.0654 0.6181 0.8728 10.6669 0.0011 

F578 0.838 0.0555 0.6988 0.9202 16.1454 <.0001 

F56 0.7823 0.0656 0.628 0.8843 11.0152 0.0009 

F568 0.8479 0.0544 0.7091 0.9273 16.578 <.0001 

F567 0.8393 0.0566 0.6964 0.9224 15.5106 <.0001 

F5678 0.8902 0.0443 0.7695 0.9516 21.3672 <.0001 

F4 0.6214 0.0517 0.5162 0.7163 5.0858 0.0241 

F48 0.718 0.0569 0.5949 0.8154 11.079 0.0009 

F47 0.7047 0.0565 0.5836 0.8024 10.2667 0.0014 

F478 0.7873 0.0538 0.6635 0.8742 16.5724 <.0001 

F46 0.7201 0.059 0.5917 0.8203 10.4101 0.0013 

F468 0.7996 0.054 0.6733 0.8854 16.8491 <.0001 

F467 0.789 0.054 0.6644 0.876 16.5311 <.0001 

F4678 0.853 0.0456 0.7399 0.9221 23.3658 <.0001 

F45 0.79 0.0565 0.6588 0.88 15.1545 <.0001 

F458 0.8538 0.0488 0.7307 0.9263 20.3598 <.0001 

F457 0.8454 0.0501 0.7207 0.9206 19.6444 <.0001 

F4578 0.8946 0.0404 0.7858 0.9515 24.9714 <.0001 

F456 0.855 0.0497 0.7288 0.9283 19.59 <.0001 

F4568 0.9015 0.0392 0.7938 0.956 25.1165 <.0001 

F4567 0.8955 0.0403 0.7864 0.9523 24.8272 <.0001 

F45678 0.9301 0.0305 0.8415 0.9709 30.5174 <.0001 

F3 0.676 0.0771 0.5115 0.8062 4.3697 0.0366 

F38 0.764 0.071 0.5994 0.8751 8.8976 0.0029 
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F37 0.7521 0.0748 0.5801 0.8695 7.6477 0.0057 

F378 0.8248 0.0632 0.6663 0.9173 12.5326 0.0004 

F36 0.7658 0.0729 0.5959 0.8788 8.5023 0.0035 

F368 0.8354 0.0605 0.6817 0.9232 13.6127 0.0002 

F367 0.8262 0.0636 0.6661 0.9189 12.3742 0.0004 

F3678 0.8806 0.0498 0.7447 0.9491 17.8109 <.0001 

F35 0.8271 0.0697 0.6478 0.9256 10.3004 0.0013 

F358 0.8813 0.0549 0.7262 0.9541 14.5797 0.0001 

F357 0.8743 0.0582 0.7111 0.9516 13.3954 0.0003 

F3578 0.9152 0.0437 0.7814 0.9702 17.8123 <.0001 

F356 0.8823 0.0556 0.7242 0.9554 14.1638 0.0002 

F3568 0.9208 0.0413 0.7929 0.9725 18.7212 <.0001 

F3567 0.916 0.0438 0.7814 0.9708 17.6346 <.0001 

F35678 0.9442 0.0315 0.8397 0.982 22.3531 <.0001 

F34 0.774 0.0755 0.5951 0.8887 8.1316 0.0044 

F348 0.8416 0.0629 0.6783 0.9305 12.541 0.0004 

F347 0.8327 0.0655 0.6645 0.926 11.6538 0.0006 

F3478 0.8854 0.0514 0.7412 0.9542 16.3071 <.0001 

F346 0.843 0.063 0.6787 0.9317 12.4779 0.0004 

F3468 0.8928 0.0488 0.7541 0.9577 17.2974 <.0001 

F3467 0.8864 0.0509 0.7436 0.9545 16.5455 <.0001 

F34678 0.9237 0.0378 0.8088 0.9719 21.6169 <.0001 

F345 0.887 0.0517 0.7408 0.9557 15.9804 <.0001 

F3458 0.9241 0.0389 0.8041 0.9731 20.274 <.0001 

F3457 0.9194 0.041 0.7942 0.9712 19.362 <.0001 

F34578 0.9466 0.0298 0.8479 0.9825 23.7474 <.0001 

F3456 0.9248 0.0389 0.8043 0.9736 20.1263 <.0001 

F34568 0.9502 0.0281 0.8563 0.9839 24.6465 <.0001 

F34567 0.9471 0.0296 0.8492 0.9827 23.9318 <.0001 

F345678 0.9652 0.0209 0.8914 0.9895 28.5702 <.0001 

F2 0.5862 0.0397 0.5069 0.6613 4.5336 0.0332 

F28 0.6874 0.0511 0.5798 0.7779 10.9838 0.0009 

F27 0.6732 0.0512 0.5661 0.7648 9.624 0.0019 

F278 0.7617 0.0523 0.645 0.849 16.2472 <.0001 

F26 0.6895 0.0539 0.5756 0.7843 10.0522 0.0015 

F268 0.7751 0.0524 0.6565 0.8613 16.9324 <.0001 

F267 0.7635 0.0526 0.6459 0.8511 16.1799 <.0001 

F2678 0.8336 0.0462 0.7227 0.9059 23.3728 <.0001 
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F25 0.7646 0.0648 0.6159 0.8681 10.7019 0.0011 

F258 0.8344 0.0563 0.6941 0.918 15.7738 <.0001 

F257 0.8252 0.0582 0.6816 0.9124 14.7917 0.0001 

F2578 0.8799 0.047 0.7538 0.946 20.0146 <.0001 

F256 0.8358 0.0572 0.6923 0.9201 15.256 <.0001 

F2568 0.8876 0.0454 0.764 0.9507 20.6237 <.0001 

F2567 0.881 0.047 0.7546 0.9469 19.9413 <.0001 

F25678 0.9199 0.0356 0.8166 0.9673 25.5121 <.0001 

F24 0.6993 0.0572 0.5771 0.7985 9.6245 0.0019 

F248 0.783 0.056 0.6542 0.8731 15.1751 <.0001 

F247 0.7717 0.0554 0.646 0.8623 14.9867 0.0001 

F2478 0.8399 0.049 0.7198 0.9146 20.7102 <.0001 

F246 0.7847 0.0558 0.656 0.8744 15.3228 <.0001 

F2468 0.8497 0.0479 0.7304 0.9219 21.2868 <.0001 

F2467 0.8412 0.0478 0.7242 0.9145 21.6784 <.0001 

F24678 0.8915 0.0386 0.7899 0.9473 27.8722 <.0001 

F245 0.8421 0.0502 0.718 0.9178 19.69 <.0001 

F2458 0.8922 0.0412 0.7814 0.9504 24.3685 <.0001 

F2457 0.8857 0.0421 0.7743 0.946 24.2409 <.0001 

F24578 0.9232 0.0327 0.8295 0.9674 29.032 <.0001 

F2456 0.8931 0.041 0.7825 0.951 24.3898 <.0001 

F24568 0.9284 0.0314 0.8371 0.9703 29.4283 <.0001 

F24567 0.9239 0.0322 0.832 0.9675 29.7474 <.0001 

F245678 0.9496 0.0238 0.8768 0.9804 34.9032 <.0001 

F23 0.7473 0.072 0.5835 0.8619 8.0877 0.0045 

F238 0.821 0.0624 0.6661 0.9134 12.8548 0.0003 

F237 0.8113 0.0653 0.6506 0.9084 11.6758 0.0006 

F2378 0.8696 0.0528 0.7282 0.9432 16.6336 <.0001 

F236 0.8225 0.0627 0.6664 0.9149 12.759 0.0004 

F2368 0.8779 0.0499 0.7427 0.9471 17.9451 <.0001 

F2367 0.8707 0.0522 0.7307 0.9436 16.909 <.0001 

F23678 0.9127 0.0396 0.7979 0.9651 22.3083 <.0001 

F235 0.8714 0.0571 0.7139 0.9485 14.087 0.0002 

F2358 0.9132 0.0435 0.7819 0.9686 18.3554 <.0001 

F2357 0.9079 0.046 0.7703 0.9666 17.3023 <.0001 

F23578 0.9386 0.0338 0.829 0.9797 21.6643 <.0001 

F2356 0.914 0.0435 0.7822 0.9692 18.2282 <.0001 

F23568 0.9428 0.0317 0.839 0.9812 22.7397 <.0001 
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F23567 0.9392 0.0334 0.8305 0.9799 21.8447 <.0001 

F235678 0.9599 0.0237 0.8772 0.9877 26.4756 <.0001 

F234 0.8291 0.0644 0.6656 0.9221 12.0646 0.0005 

F2348 0.8828 0.0514 0.7398 0.9522 16.5131 <.0001 

F2347 0.8758 0.0534 0.7293 0.9486 15.8285 <.0001 

F23478 0.9163 0.0406 0.795 0.9686 20.431 <.0001 

F2346 0.8838 0.0508 0.7427 0.9525 16.8428 <.0001 

F23468 0.9219 0.0382 0.8066 0.9709 21.6204 <.0001 

F23467 0.9171 0.0397 0.7989 0.9685 21.1649 <.0001 

F234678 0.9449 0.0289 0.8522 0.9808 26.1175 <.0001 

F2345 0.9175 0.0405 0.7957 0.9695 20.2372 <.0001 

F23458 0.9452 0.0299 0.8477 0.9817 24.3467 <.0001 

F23457 0.9418 0.0314 0.8406 0.9802 23.6998 <.0001 

F234578 0.9617 0.0225 0.8836 0.9881 27.8834 <.0001 

F23456 0.9458 0.0295 0.8494 0.9818 24.6278 <.0001 

F234568 0.9644 0.0211 0.8906 0.989 28.9558 <.0001 

F234567 0.962 0.0221 0.8856 0.9881 28.556 <.0001 

F2345678 0.9752 0.0155 0.9182 0.9928 32.9761 <.0001 

F1 0.5974 0.0392 0.5189 0.6712 5.8734 0.0154 

F18 0.6972 0.0494 0.5928 0.7845 12.7203 0.0004 

F17 0.6833 0.0515 0.5751 0.7747 10.4465 0.0012 

F178 0.77 0.0513 0.6549 0.8552 17.4048 <.0001 

F16 0.6993 0.0508 0.5915 0.7888 12.1898 0.0005 

F168 0.783 0.0492 0.6716 0.8643 19.6185 <.0001 

F167 0.7717 0.0506 0.6581 0.8559 17.9661 <.0001 

F1678 0.8399 0.044 0.7341 0.9088 25.6208 <.0001 

F15 0.7728 0.0672 0.6164 0.8781 10.2341 0.0014 

F158 0.8407 0.057 0.6963 0.924 15.2856 <.0001 

F157 0.8318 0.0597 0.6817 0.9195 14.0191 0.0002 

F1578 0.8847 0.0474 0.7553 0.9502 19.2269 <.0001 

F156 0.8421 0.0573 0.6961 0.9254 15.0787 0.0001 

F1568 0.8922 0.0449 0.7682 0.9538 20.5068 <.0001 

F1567 0.8857 0.047 0.7572 0.9506 19.4454 <.0001 

F15678 0.9232 0.0352 0.8196 0.9695 25.0716 <.0001 

F14 0.7089 0.0588 0.5822 0.8097 9.7686 0.0018 

F148 0.7907 0.0559 0.6609 0.8799 15.4949 <.0001 

F147 0.7798 0.0566 0.6498 0.8711 14.7048 0.0001 

F1478 0.846 0.0489 0.7248 0.9197 20.616 <.0001 
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F146 0.7924 0.055 0.6647 0.8802 16.0702 <.0001 

F1468 0.8555 0.0466 0.7389 0.9253 22.2897 <.0001 

F1467 0.8473 0.0472 0.7306 0.919 22.024 <.0001 

F14678 0.8959 0.0376 0.7961 0.95 28.4784 <.0001 

F145 0.8481 0.0525 0.7151 0.9255 17.7753 <.0001 

F1458 0.8965 0.0421 0.7807 0.9547 22.6533 <.0001 

F1457 0.8903 0.0436 0.7717 0.9512 21.9545 <.0001 

F14578 0.9264 0.0333 0.8287 0.9704 26.938 <.0001 

F1456 0.8974 0.0416 0.783 0.955 23.0293 <.0001 

F14568 0.9314 0.0314 0.8384 0.9726 28.2258 <.0001 

F14567 0.9271 0.0325 0.832 0.9703 27.9134 <.0001 

F145678 0.9518 0.0237 0.8775 0.9819 33.244 <.0001 

F13 0.7559 0.0726 0.5889 0.87 8.262 0.004 

F138 0.8277 0.0619 0.6724 0.9183 13.0841 0.0003 

F137 0.8182 0.0655 0.655 0.9143 11.6648 0.0006 

F1378 0.8748 0.0522 0.7331 0.9467 16.6574 <.0001 

F136 0.8291 0.0616 0.6743 0.9192 13.2028 0.0003 

F1368 0.8828 0.0485 0.7502 0.9497 18.5272 <.0001 

F1367 0.8758 0.0513 0.7368 0.9468 17.157 <.0001 

F13678 0.9163 0.0386 0.8034 0.967 22.6694 <.0001 

F135 0.8765 0.0579 0.7132 0.953 13.4156 0.0002 

F1358 0.9168 0.0436 0.7824 0.9712 17.634 <.0001 

F1357 0.9117 0.0464 0.7695 0.9696 16.436 <.0001 

F13578 0.9412 0.0337 0.8292 0.9814 20.7497 <.0001 

F1356 0.9175 0.0433 0.7836 0.9716 17.6926 <.0001 

F13568 0.9452 0.0313 0.8407 0.9826 22.1988 <.0001 

F13567 0.9418 0.0332 0.8314 0.9815 21.0925 <.0001 

F135678 0.9617 0.0234 0.8784 0.9887 25.7154 <.0001 

F134 0.8356 0.0649 0.668 0.9277 11.8263 0.0006 

F1348 0.8875 0.0511 0.7431 0.9556 16.2797 <.0001 

F1347 0.8808 0.0536 0.731 0.9526 15.3583 <.0001 

F13478 0.9198 0.0403 0.7973 0.9709 19.9655 <.0001 

F1346 0.8884 0.0502 0.747 0.9555 16.7893 <.0001 

F13468 0.9251 0.0374 0.8107 0.9727 21.6303 <.0001 

F13467 0.9205 0.0392 0.8019 0.9707 20.8655 <.0001 

F134678 0.9473 0.0284 0.8551 0.982 25.8775 <.0001 

F1345 0.921 0.0412 0.7934 0.9725 18.8094 <.0001 

F13458 0.9476 0.03 0.8468 0.9834 22.93 <.0001 
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F13457 0.9442 0.0317 0.8387 0.9822 22.0445 <.0001 

F134578 0.9633 0.0225 0.8827 0.9892 26.2405 <.0001 

F13456 0.9481 0.0296 0.8491 0.9834 23.3794 <.0001 

F134568 0.9659 0.0209 0.8909 0.9899 27.7385 <.0001 

F134567 0.9637 0.0221 0.8852 0.9892 27.0366 <.0001 

F1345678 0.9763 0.0153 0.9183 0.9934 31.4904 <.0001 

F12 0.6777 0.0518 0.5691 0.7699 9.8161 0.0017 

F128 0.7654 0.0534 0.6456 0.8538 15.8293 <.0001 

F127 0.7535 0.0544 0.6324 0.8445 14.5268 0.0001 

F1278 0.8259 0.0492 0.708 0.9027 20.6874 <.0001 

F126 0.7672 0.0523 0.6498 0.854 16.5636 <.0001 

F1268 0.8364 0.0465 0.7244 0.9086 23.0996 <.0001 

F1267 0.8273 0.0473 0.7146 0.9016 22.3893 <.0001 

F12678 0.8814 0.0389 0.782 0.939 29.1236 <.0001 

F125 0.8282 0.0598 0.6789 0.9166 13.9871 0.0002 

F1258 0.8821 0.0483 0.7507 0.9489 18.7989 <.0001 

F1257 0.8751 0.0504 0.7396 0.9453 17.8584 <.0001 

F12578 0.9158 0.0386 0.8032 0.9666 22.7871 <.0001 

F1256 0.8831 0.0477 0.7532 0.9492 19.1229 <.0001 

F12568 0.9214 0.0362 0.8149 0.969 24.2652 <.0001 

F12567 0.9165 0.0377 0.8068 0.9665 23.5984 <.0001 

F125678 0.9446 0.0276 0.8583 0.9796 28.8909 <.0001 

F124 0.7753 0.0577 0.6432 0.8685 13.9726 0.0002 

F1248 0.8426 0.0508 0.7165 0.919 19.1964 <.0001 

F1247 0.8338 0.0513 0.7083 0.912 18.9854 <.0001 

F12478 0.8861 0.042 0.775 0.9462 24.3427 <.0001 

F1246 0.8439 0.0489 0.7231 0.918 20.645 <.0001 

F12468 0.8935 0.0395 0.7882 0.9498 26.2751 <.0001 

F12467 0.8872 0.04 0.7824 0.945 26.6924 <.0001 

F124678 0.9242 0.0307 0.8377 0.9665 32.4797 <.0001 

F1245 0.8878 0.0441 0.7687 0.9496 21.8555 <.0001 

F12458 0.9247 0.0341 0.8248 0.9697 26.3058 <.0001 

F12457 0.92 0.0352 0.8183 0.9671 26.0885 <.0001 

F124578 0.9469 0.0262 0.8654 0.9802 30.6336 <.0001 

F12456 0.9254 0.0332 0.8285 0.9695 27.4008 <.0001 

F124568 0.9506 0.0245 0.8738 0.9816 32.1476 <.0001 

F124567 0.9474 0.0253 0.8694 0.9799 32.3682 <.0001 

F1245678 0.9655 0.0182 0.9056 0.9879 37.2192 <.0001 
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F123 0.8144 0.064 0.6569 0.9095 12.2124 0.0005 

F1238 0.8719 0.052 0.7322 0.9443 16.9826 <.0001 

F1237 0.8645 0.0547 0.7186 0.9409 15.7438 <.0001 

F12378 0.9082 0.0421 0.7863 0.9638 20.6237 <.0001 

F1236 0.873 0.0509 0.7364 0.9442 17.6109 <.0001 

F12368 0.9143 0.0389 0.8014 0.9658 22.7811 <.0001 

F12367 0.9091 0.0409 0.7914 0.9634 21.7047 <.0001 

F123678 0.9394 0.03 0.8465 0.9776 27.012 <.0001 

F1235 0.9096 0.0459 0.7711 0.9678 17.1116 <.0001 

F12358 0.9398 0.0337 0.8291 0.9805 21.242 <.0001 

F12357 0.936 0.0358 0.8195 0.9792 20.205 <.0001 

F123578 0.9578 0.0255 0.868 0.9874 24.4084 <.0001 

F12356 0.9403 0.0332 0.8316 0.9805 21.6776 <.0001 

F123568 0.9607 0.0236 0.8776 0.9882 26.0614 <.0001 

F123567 0.9582 0.025 0.8708 0.9873 25.172 <.0001 

F1235678 0.9726 0.0174 0.9077 0.9923 29.6485 <.0001 

F1234 0.8781 0.0532 0.7311 0.9502 15.7881 <.0001 

F12348 0.9178 0.0406 0.7957 0.9698 20.1395 <.0001 

F12347 0.9128 0.0424 0.7867 0.9674 19.459 <.0001 

F123478 0.942 0.0311 0.8416 0.9803 23.9185 <.0001 

F12346 0.9186 0.0394 0.8008 0.9694 21.1647 <.0001 

F123468 0.946 0.0288 0.8531 0.9814 25.835 <.0001 

F123467 0.9425 0.0301 0.8468 0.9799 25.3998 <.0001 

F1234678 0.9622 0.0214 0.8892 0.9878 30.1964 <.0001 

F12345 0.9429 0.0316 0.8393 0.9812 22.8169 <.0001 

F123458 0.9624 0.0227 0.8822 0.9887 26.7389 <.0001 

F123457 0.96 0.0239 0.8764 0.9878 26.1093 <.0001 

F1234578 0.9738 0.0168 0.9109 0.9927 30.0972 <.0001 

F123456 0.9628 0.0222 0.885 0.9886 27.6623 <.0001 

F1234568 0.9757 0.0155 0.9175 0.9931 31.8006 <.0001 

F1234567 0.9741 0.0163 0.9136 0.9926 31.4057 <.0001 

F12345678 0.9832 0.0113 0.9388 0.9955 35.623 <.0001 
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