
Automated Privacy

Verification of Voting Systems

Murat Moran

A thesis submitted to the

University of Surrey for the degree of

Doctor of Philosophy

University of Surrey

Faculty of Engineering and Physical Sciences

Department of Computing

2013 Murat Moran

Declaration

This thesis and the work to which it refers are the results of my own efforts. Any

ideas, data, images or text resulting from the work of others (whether published

or unpublished) are fully identified as such within the work and attributed to

their originator in the text, bibliography or in footnotes. This thesis has not

been submitted in whole or in part for any other academic degree or professional

qualification. I agree that the University has the right to submit my work to

the plagiarism detection service TurnitinUK for originality checks. Whether or

not drafts have been so-assessed, the University reserves the right to require an

electronic version of the final document (as submitted) for assessment as above.

Murat Moran

Dec 2013

i

Abstract

Voting systems aim to provide trustworthiness in elections; however, they have

always been a target of malicious behaviours due to difficulties in designing such

complex systems and the enormous value of controlling the election results, caus-

ing unfair election outcome, loss of personal privacy and trust in democracy. This

thesis aims to shed light on how voting systems, in particular, paper-based ones

can be evaluated so as to provide a better level of confidence in their trustwor-

thiness.

This thesis advances the evaluation of the paper-based voting systems using for-

mal methods with automated analysis. In analysis of security protocols, the for-

mal definitions of protocol requirements need to be constructed precisely. To this

end, a formal framework regarding the anonymity requirement has been given

and demonstrated to be appropriate for the analysis of voting systems. Simi-

larly, it has been demonstrated that the assumptions under which voting systems

are secure should be well-defined for a rigorous security analysis with the auto-

mated analysis of the ThreeBallot voting system. Moreover, a novel approach has

been proposed to analyse cryptographic voting systems under a passive attacker

model using the Prêt à Voter voting system as case study. Finally, an active

powerful attacker has been adapted into the analysis of voting systems, and an

automated formal analysis of vVote voting system has been conducted, which is

under development for use in Victorian Electoral Commission (VEC) elections,

Australia in 2014. With the analyses of voting systems performed in this thesis,

the formal approach developed here has been demonstrated to be successful in the

automated analysis of such complex systems using the process algebra, Commu-

nicating Sequential Processes (CSP), and the model checker, Failures-Divergence

Refinement (FDR).

iii

Acknowledgements

First, and foremost, I would like to thank my supervisors James Heather and

Steve Schneider. James has dedicated a considerable amount of time and en-

ergy to the supervision of my research. He has helped me to explore new ideas

by critically evaluating my work and giving practical advice on every problem

encountered. Steve has provided the fundamental skills of our discipline as well

as the inspiration and motivation via regular and irregular meetings. He never

made me feel that he was just my second supervisor and provided a good effort

in guidance of my research.

I appreciate the financial support provided by The Ministry of National Educa-

tion, Republic of Turkey.

I would like to thank David Williams for his priceless help in understanding the

modelling and analysis with CSP. I look forward to our future collaboration and

continued friendship. I must also thank the members of the Trustworthy Voting

Systems (TVS) at the University of Surrey, Chris Culnane, Zhe Xia (Joson), Sri-

ram Srinivasan, Stathis Stathakidis and Harshana Liyanage, the SeRTVS Project

in Luxembourg Peter Ryan, Hugo Jonker and Dalia Khader as well as Mark Ryan,

Sergiu Bursuc and Myrto Arapinis from University of Birmingham for their pre-

sentations and discussions over project meetings, which helped me understand

different ideas on formal methods and voting system analysis. In addition, I

would also like to thank the CryptoForma members, especially Eerke Boiten, for

funding me to attend those hugely beneficial meetings and workshops.

I owe a debt of gratitude to Peter Ryan and Helen Treharne, for their kindness

in agreeing to examine this thesis.

I am truly grateful to Stefan Stafrace for his great friendship as an endless source

of advice and for giving me motivational talks during my PhD, general chats on

anything, and for the numerous hours spent in the Five and Lime, and in Legion

and for all the laughter we had over a drink or nine. I would also like to thank

my friends Emrah, Fani, Kenan, Yigit and my cousin Emrah, it can truly be said

that they are never too far away. Maria-Eleni deserves particular consideration

v

vi Acknowledgements

for the unconditional and incomparable support, understanding and care shown

over the last two years.

I am also grateful to my mum and dad—Gültaze and Selman Moran—for their

enormous unconditional support on every decision I made and care even though

I am far away home; sisters Serpil and Semiha, and brother in law Erkan and

Yaşar, respectively, for their remote support taking many forms and with their

delicious food, which kept me going and finally my nieces and nephew, Ceren,

Cansu, Ceyda and Caner for their love and laughter over Skype and msn talks

and for giving me a good reason to go back home.

Contents

Declaration i

Abstract iii

Acknowledgements v

Contents vii

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Formal Methods . 3

1.2 Defining Desired Properties and Protocol Analysis 4

1.3 Contributions that address limitations of existing literature 5

1.4 Publications . 10

1.5 Outline . 10

2 Background 13

2.1 Cryptography . 13

2.2 Voting Systems . 20

2.3 Communicating Sequential Processes 25

2.4 Summary . 31

3 Modelling and Analysis of Security Protocols using CSP 33

3.1 Overview . 33

3.2 Dining Cryptographers . 34

3.3 Needham Schroeder Public-Key Protocol Analysis 40

4 Formal Anonymity Definition and Automated Verification 53

4.1 Overview . 53

4.2 Related Work . 54

4.3 Formal Definition of Anonymity . 56

vii

viii Contents

4.4 Modelling and Analysis of a Conventional Voting System 59

4.5 Analysis under Alternative Assumptions 67

4.6 Results and Discussion . 68

4.7 Summary . 69

5 Automated Analysis of the ThreeBallot Voting System 71

5.1 The ThreeBallot Voting System . 72

5.2 Modelling the ThreeBallot Voting System 75

5.3 Automated Anonymity Verification 81

5.4 Challenges Faced in the Modelling and Analysis 92

5.5 Summary . 94

6 Modelling and Analysis of a Cryptographic Voting System 95

6.1 The Prêt à Voter Voting System 95

6.2 Modelling Prêt à Voter . 100

6.3 Automated Anonymity Verification 111

6.4 Analysis under Alternative Assumptions 111

6.5 Conclusion . 113

6.6 Challenges Faced in the Modelling and Analysis 113

6.7 Summary . 114

7 Adapting the Dolev-Yao Intruder Model to Voting Systems 115

7.1 The vVote Voting System . 116

7.2 Modelling vVote and Active Intruder 121

7.3 Automated Anonymity Verification 140

7.4 Analysis under Alternative Assumptions 142

7.5 Secrecy Analysis using Lazy Spy 144

7.6 Discussion . 145

7.7 Challenges Faced in the Modelling and Analysis 147

7.8 Summary . 148

8 Conclusion and Future Work 151

8.1 Limitations . 152

8.2 Future Work . 154

A Sanity Checks 159

A.1 The Conventional Voting System Model 159

A.2 The ThreeBallot Voting System Model 160

A.3 The Prêt à Voter Voting System Model 162

A.4 The vVote Voting System Model 164

Bibliography 167

Contents ix

Notation 179

Glossary 182

List of Figures

2.1 An example mix network (mixnet) with three mixes and four inputs . 19

2.2 Randomised partial checking of a mixnet with two mixes and four inputs 20

3.1 Dining cryptographers protocol (adopted from [RSG+00]) 35

3.2 Connecting agents with renaming . 48

3.3 Lowe’s attack on seven-message version of NSPK: The right hand

side is the FDR output equivalent of the messages on the left hand

side. Moreover, the steps in bold, like α.3, represent the attack for a

three-message version of the NSPK protocol where there is no server,

T, involved. Finally, I(A) models impersonating Alice, hence, the

intruder can intercept the messages coming to Alice and send fake

messages as if Alice is sending them. 51

4.1 Message sequence chart of CVS . 61

5.1 A ThreeBallot multi-ballot, filled in as a vote for Alice 73

5.2 ThreeBallot CSP model communication channels (��� private chan-

nel) and note that the counter process is considered a part of the

bulletin board process. 77

5.3 Voting scenario 1 . 83

5.4 Reconstruction attack 1 . 83

5.5 Voting scenario 2 . 83

5.6 Reconstruction attack 2 . 83

5.7 Voting scenario 3 . 83

5.8 Reconstruction attack 3 . 84

5.9 Voting scenario 4 . 84

5.10 Reconstruction attack 4 . 85

5.11 A FourBallot multi-ballot form, filled in as a vote for Alice 85

5.12 Voting scenario 5: FourBallot . 86

5.13 Reconstruction attack 5 . 86

5.14 A ThreeBallot multi-ballot voted for Alice 86

5.15 A ThreeBallot multi-ballot voted for Bob 86

5.16 Voting scenario 6: All possible mini-ballots appear on the bulletin board 87

x

List of Figures xi

5.17 Reconstruction attack 6 . 87

5.18 A completion of a multi-ballot with a fully-filled s1, an empty s2, and

a singleton mini-ballot s3 . 88

5.19 A completion of a mini-ballot s1 that is not empty, fully-filled or a

singleton . 88

5.20 Voting scenario 7: no mini-ballot left blank 92

5.21 Reconstruction attack 7 . 92

6.1 Prêt à Voter ballot form . 96

6.2 Prêt à Voter voter interaction with the system 100

6.3 Prêt à Voter system model: the election process for a voter v, and

candidate c. 101

6.4 Prêt à Voter ballot model in CSP: a vote for c2 is expressed with the

index value 2. 102

7.1 vVote ballot form [Cul13] . 118

7.2 Message sequence chart of POD protocol 120

7.3 Message types used in the modelling 123

7.4 vVote system model . 128

7.5 The lazy spy intruder model . 139

List of Tables

2.1 Axioms . 14

2.2 Deduction rules capturing cryptographic message construction 14

2.3 Deduction rules covering cryptographic primitives (m is not necessar-

ily a message, it could be any fact. For instance, in K3., m can be a

hash of a message) . 15

2.4 Derived deduction rules involving cryptographic primitives 15

2.5 CSP notation . 27

5.1 Bubbles returned by Row(i) and Col(j) 76

5.2 Bubbles returned by nhdAll(i, j) . 76

5.3 Bubbles returned by adjR(i, j) . 76

5.4 Bubbles returned by adjC(i, j) . 76

5.5 The FDR verification times for the ThreeBallot versions. As the

required state space grows quickly with the number of voters and

candidates, it was not possible to produce results in some cases as

FDR cannot handle with such huge states. Those are denoted as “−”

in the table. 93

7.1 The intruder’s capabilities on different channels 126

7.2 Deduction rules capturing the properties of vVote voting system mes-

sages . 135

7.3 The FDR verification times for vVote. As the required state space

grows quickly with the number of voters and candidates, it was not

possible to produce results in some cases as FDR cannot handle with

such huge states. Those are denoted as “−” in the table. 148

xii

Chapter 1

Introduction

One of the main aims of voting systems is to provide trustworthiness in elections;

however, they have always been a target of malicious behaviours due to diffi-

culties in designing such complex systems and the enormous value of controlling

the election results. This thesis aims to shed light on how voting systems, in

particular paper-based ones, can be evaluated so as to provide a better level of

confidence in their trustworthiness.

In the early stages of democracy, the voting procedure took the form of a show-of-

hands, i.e., voters simply put forward their preference in public. However, as this

method allowed voters to be influenced by others, a new system based on ballot

papers was introduced in Australia for presidential elections in 1858 in which

voters voted in the private environment of a booth. This was the election to

introduce the concept of privacy and it caught on across the world’s democracies.

However, although voters obtained a better level of secrecy, this meant a shift

in verifiability of an election to establishing whether the contents of the ballot

box had been interfered with in any way. Subsequently, through mechanization

and most recently, computerization of elections voting systems have evolved with

(e.g., lever machines, punch cards, optical scans and Direct Recording by Elec-

tronics (DRE) machines). Nonetheless, from the literature, despite these new

technologies, it is apparent that there are problems with voting systems that

have yet to be resolved [DSS03, Sch04, Gum05, Goo08, Bla09].

In 2000, in the United States presidential elections, Al Gore, the Democrat candi-

date was given a negative vote count of −16, 022 votes in Florida, Volusia County

due to equipment failure and subsequently this controversial election was won

by the Republican, George W. Bush, with a narrow margin of just 537 votes.

Similarly, in the Florida 2004 presidential election, 58, 000 postal ballots went

missing [BBC04]. These are only two examples among many others of election

frauds or failures in the history of democracies. As a result of such problems,

1

2 Chapter 1. Introduction

a number of countries have either abandoned or suspended their e-voting sys-

tems (e.g., California and Florida states in USA in 2006, Netherlands in 2008,

Germany in 2009 and Ireland in 2009).

Many voting systems have been proposed over the last two decades, which aim

to ensure strict requirements so as to guarantee their trustworthiness [Cha81,

FOO92, Nef01, BG02, CRS05, Riv06, CEC+08, CCM08, Adi08]. The convention

in all except [Riv06] is to use cryptography to provide voter privacy, anonymity,

integrity and so forth. However, encryption does not always mean guaranteed

privacy in security protocols. For example, Lowe [Low95] demonstrates that the

Needham-Schroeder public-key protocol [NS78] is indeed insecure 17 years since

it was first proposed. In addition to concerns regarding security protocols, there

has been increasing concern that all employed voting systems need to be verified.

Recently, research has focused on the formal analysis of trustworthy voting sys-

tems [NAN05, DKR06, BHM08, DKR09, DKR10, SRKK10, Smy11]. However,

there is still a lack of mature methodology that can be used to provide a foun-

dation for automated verification of voting systems due to difficulties entailed

in modelling and analysis. These obstacles are inherited from the security pro-

tocols, whereby [RSG+00]: the security properties can be too highly subtle to

define precisely; describing the model in a hostile environment can be too com-

plex; defining any intruder’s ability is extremely challenging and the concurrency

involved in security protocols further complicates analytical endeavours. This

increased complexity has meant that hand proof verification of voting systems is

losing its effectiveness and hence, the need for automated protocol verification.

The substantive aim in this thesis is to investigate in current definitions of privacy-

related properties, in general, and to redefine them so as to facilitate formal

analysis of any voting system. Formally defining such properties is not straight-

forward as there can be various requirements for different scenarios. Regarding

this, [SS96] presents a formal definition in relation to the anonymity for security

protocols, which this researcher contends does not apply in the case of such voting

systems. In order to ensure a rigorous security protocol analysis, the first task is

to develop a framework and this is to be achieved by drawing upon the definitions

of privacy-related properties and the passive and active intruder models. This

framework will then be tested to find out how effective it is for identifying the

vulnerabilities of certain voting systems. That is, the goal is to establish the best

way to model and analyse validation of voting systems in terms of their trustwor-

thiness. Moreover, because voting systems differ in terms of their designs aimed

at providing privacy, the belief here is that the framework adapted is capable of

evaluating the effectiveness of these diverse systems in protecting such as privacy

and secrecy.

1.1. Formal Methods 3

1.1 Formal Methods

Voting systems can be construed similarly to security protocols, which involve

cryptographic primitives designs and protocols. In the literature, provable secu-

rity and formal methods are the two main techniques used for security protocol

analysis. The former takes the form of mathematical proof regarding a secu-

rity protocol, where the aim is to reduce the security of the modelled system to a

mathematically hard problem in the presence of an adversarial activity. However,

systems involving cryptographic protocols have become increasingly complex and

consequently such attacks do not only depend on flaws and weaknesses in the un-

derlying cryptographic algorithms. That is, provable security is not sufficient

to cover all possible nonintuitive intruder attacks [Mea03]. As a result, formal

methods, defined by Meadows [Mea03] as

“A combination of a mathematical or logical model of a system

and its requirements, together with an effective procedure for de-

termining whether a proof that a system satisfies these requirements

have been introduced by way of improvement on simple mathematical

approaches.”

Meadows also highlights these treatments’ usefulness in cryptographic protocol

analysis as they provide both a thorough analysis of the different paths that an

intruder can take as well as specifying precisely the environmental assumptions

that have been made. In this thesis, formal methods are deemed suitable for rig-

orous specification descriptions and modelling and analysis of the various voting

systems, in particular, because they have been used effectively for much security

protocol analysis since being proposed by Dolev and Yao [DY83].

These authors were the first to formalise a hostile environment in which a pro-

tocol can run concurrently, and the intruder can, for instance: overhear, modify,

block, replay or fake the messages on the communication channels. Since then

research has focused on model checking tools, such as Failures-Divergence Re-

finement (FDR) [GGH+]. Regarding this, Lowe implemented a formal analysis

of the Needham-Schroeder Public-Key (NSPK) protocol for the first time using

FDR and process algebra in the form of Communicating Sequential Processes

(CSP) [Low95]. The goal of this protocol was to set up mutual authentication

for two agents by a trusted server using public-key cryptography. However, Lowe

demonstrated that it is not secure when an honest agent commences a session

with an intruder. That is, he found that the subsequent attack is not related to

the cryptographic algorithm that the NSPK is based on, but to the protocol as

a whole and that consequently, if it were to be used with any other public-key

protocol would still be insecure. In other words, even when this cryptographic

4 Chapter 1. Introduction

algorithm is secure, the protocol relying on these primitives may not be so. Sim-

ilarly, voting systems based on either cryptographic or non-cryptographic prim-

itives may be vulnerable to any sorts of security attacks. As a result, the main

challenge is to maintain the security properties of voting systems intact in the

presence of malicious agents.

1.2 Defining Desired Properties and Proto-

col Analysis

Trustworthy voting systems can be required to provide a number of crucial prop-

erties such as: secrecy, anonymity, and verifiability. Hence, instead of saying

that a voting system protocol is secure, it is checked whether each of any de-

sired properties are satisfied or not. However, before this can be achieved it is

to assign precise formal definitions to these properties, which is this researcher’s

opinion need to be focused. Security properties are generally defined in terms of

reachability or indistinguishability. Regarding the former, the secrecy property

can be defined as being whether malicious agents or an intruder can reach cer-

tain data in a protocol run. This kind of analysis requires checking all possible

states of unauthorised access to see whether any lead to intruders or malicious

agents knowing data that should remain secret. Indistinguishability is the term

often used to investigate the anonymity property. Under this lens, the goal is to

check whether an intruder can ever distinguish events performed by the proto-

col agents and hence, such analysis is made through a comparison between two

protocol states.

A review of the existing literature reveals that research has focused on giving

precise formal definitions of the security properties of trustworthy voting sys-

tems [KR05, COPD06, DKR06, BHM08, DKR09, DKR10, Smy11] in several

paradigms, such as the applied pi calculus [FA02], a modular approach [HS04],

epistemic logic [GHPv05, BRS07, LJP10], and probabilistic and non-deterministic

approaches [CPP06, DPP07, BP05]. As the main challenge here is not only to

give precise definition requirements, but also to automate the analysis, CSP is

adopted owing to its maturity and suitability for automation with FDR. Ad-

ditionally, although some of the earlier works on security analysis of voting

systems have involved automating the analysis, formal language has not sup-

ported a mature full-automation in privacy analysis. Instead, a hand proof was

given [KR05, BHM08, DRS08] or a compiler was written and their soundness

needed to be proven [CS11, Smy11]—this author’s understanding of the sound-

ness is that when there is no error, there must be none (no false negatives)—or

an inefficient tool was adopted [CCK12].

1.3. Contributions that address limitations of existing literature 5

In process algebras, such as CSP, a protocol is modelled by a process, which may

also be a composition of other processes. Ideally, the overall process reflects the

same behaviour as protocol. Moreover, the agents in the protocol are also present

in the individual processes, for instance, the intruder process. When the model

is composed and the requirements are translated into CSP, then the protocol

can be analysed under the assumptions made about the intruder. If the model

checking against the specification fails, the model-checking tool produces counter-

examples, which means that the system does not satisfy the specification. In the

case that model checking is performed successfully, one can question about the

correctness of the system model. Such possible errors in designing the desired

behaviour of systems can be detected by further reasoning via various sanity

checks written as specifications. If the system model behaves correctly for all

possible cases, then one can be sure that the model is correct. However, it is not

an easy task to try all the possible cases, but a number of necessary sanity checks

can help in gaining confidence in the model.

1.3 Contributions that address limitations

of existing literature

A key objective in this thesis is to focus on automated formal analysis of crypto-

graphic and non-cryptographic voting systems. In particular, the contributions

made in the forthcoming chapters match the objectives of: providing concise def-

initions of requirements for voting systems so as to eliminate the vagueness in the

anonymity definitions in the existing literature, and hence to facilitate future au-

tomated analysis of such complex systems (Chapter 4); modelling and analysing a

non cryptographic voting system (Chapter 5) to show the validity of the adopted

approach, with particular emphasis on the importance of the assumptions when

designing voting systems; modelling and analysing a paper-based cryptographic

voting system (Chapter 6) to illustrate that the mechanised analysis of such sys-

tems can be conducted by the tool introduced in this work; and adapting a formal

framework of a more powerful intruder model into voting systems protocol anal-

ysis (Chapter 7) so as to avoid attacks on new systems before they are deployed.

In the remainder of the section the contributions of each of the empirical chapters

of this thesis (Chapter 4 to 7) are presented.

Chapter 4. Anonymity of voters lies at the heart of the democratic process,

for if the link between them and their vote is uncovered, then not only is the

secrecy breached but also the integrity of the election is threatened, because

votes could be bought, or voters coerced into supporting particular candidates.

Moreover, as rigorous protocol analysis requires a concise formal definition of the

6 Chapter 1. Introduction

properties, the anonymity property also needs to be clearly defined. However,

as pointed out above, formally defining such properties is not straightforward as

these can vary for different scenarios. Regarding this, there have been number of

research efforts towards formally defining the anonymity property in the context

of voting systems. However, little work has been undertaken aimed at providing

a foundation for the automated verification of such properties.

In the extant literature, Juels et al. [JCJ05] describe anonymity for elections in

terms of provable security. Other definitions of the desired properties of voting

systems have made use of formal methods, for instance, Delaune et al. [DKR06]

defined privacy properties in terms of adaptive simulation in the pi calculus.

These authors then discovered in [DKR09] that their previous work had unde-

sirable properties, and proposed redefinition based on observational equivalence,

but did not provide any means of automatic verification. Backes et al. [BHM08]

proposed a new formalization of coercion resistance for remote voting protocols in

terms of observational equivalence, which implies vote privacy; their verification

is automated, but some human effort is still required when transforming equiva-

lences in their definition into a pair of processes, which have the same structure

but differ only by terms. Chothia et al. [COPD06] presented a framework for

automatically checking anonymity using bisimilarity in the process algebraic lan-

guage μCRL [BFG+01], by analysing the voting scheme first given in [FOO92].

Their model, like that put forward for this research, uses a passive intruder;

however, their use of bisimilarity can produce false positives (that is, false at-

tacks), because it effectively allows the intruder to see not just what actions are

taken but where internal choices are resolved. Bisimilarity is more efficient for

checking [HHK95], but seems too strong a notion of process equivalence for this

application. More recently regarding the pi calculus, Delaune et al. [DRS08]

and Smyth [Smy11] attempted to verify the FOO voting system with the tool

ProVerif [Bla01]; however, the soundness of the transformation they used has yet

to be proven. However, Chadha et al. [CCK12] managed to verify the anonymity

of the FOO voting system using a prototype, Active Knowledge in Security Pro-

tocols (AKISS), which was written in the OCaml programming language and

implemented to check equivalences. Nevertheless, it turns out that this tool

needs to be improved in terms of efficiency, as accepted in these authors’ pa-

per. Perhaps even more importantly, they were unable to determine precisely

the termination of the saturation procedure, which is required for deciding trace

equivalences, only being able to conjecture what it was.

In Chapter 4, formal definitions of anonymity properties for voting protocols are

elicited using the process algebra CSP. To this end, first, a number of anonymity

definitions in the literature are investigated and those claiming to represent strong

and weak anonymity are tested in terms of their suitability for various voting

1.3. Contributions that address limitations of existing literature 7

systems. It emerges that the weak anonymity definition can be used to verify the

anonymity property of voting systems mechanically, but the strong form is not

appropriate. It is generally accepted that the conventional ballot voting system∗

in the vast majority of cases provides anonymity, if this system when tested

supports this perspective then it will provide validation for formal definitions of

this aspect derived for this research.

Chapter 5. Rivest’s ThreeBallot voting system is important because it aims to

provide security (voter anonymity and voter verifiability) without requiring cryp-

tography. Nevertheless, a valid vote consists of three individual ballots, making

the system very difficult to verify by hand proof methods and hence, an efficient

way of automatic analysis is highly desirable. Moreover, carefully and concisely

defined underlying assumptions are also necessary for a rigorous formal analy-

sis. Analysis of the ThreeBallot system is provided to demonstrate that concise

meaning of these assumptions is crucial when developing a voting system.

In the literature, the ThreeBallot voting system has been subject of analysis of

one sort or another many times since its publication [Str06b, Str06a, CEA07,

App07, dMPQ07, TPR07, CKW08, HSS09, KTV11]. Perhaps the earliest of this

was conducted by Strauss [Str06b, Str06a], who established the success proba-

bilities of attacks for various numbers of candidates and voters in multiple races.

That is, the various attacks against the system, in particular, reconstruction and

pattern request attacks were considered. The experiments were coded in Python,

using modelled elections with a number of races on a single multi-ballot form.

Clark et al. [CEA07] also investigated ThreeBallot, and elicited that its multi-

ballot form can reveal information that can compromise voter privacy. More-

over, a simulation-based analysis of this system was made by de Marneffe et al.

[dMPQ07] using the universally composable security framework [Can01]. They

found that ThreeBallot lacks an election fairness guarantee (by looking at some

receipts a real world adversary is able to obtain an estimation of the election out-

come). Additionally, a modified system protocol in which a voter chooses his/her

receipt before expressing her preference was proposed in [dMPQ07]. This proto-

col was shown to guarantee election fairness, at the cost of some noise in the final

tally, with the short ballot assumption (SBA)†, and an additional assumption

that most of the receipts are not known to the adversary. One drawback, how-

ever, is that the voter cannot express his/her preference on the mini-ballot that

she has chosen as her receipt, which makes voting more complicated. Statistical

∗The conventional (also called classical or traditional) voting system is the system where
the voter indicates her preferred candidate by marking a ballot form in a private environment
(booth) located in polling stations, and casts her vote by dropping the ballot paper into a ballot
box. After the election is closed, the cast votes are collected at a central place and tallied.

†The SBA states that the information content of a ballot should be low and this assumption
is further investigated in Chapter 5.

8 Chapter 1. Introduction

results about the relation between the number of candidates in an election and

the privacy level of this system were provided by Cichoń et al. [CKW08] as well

as a critique on the effectiveness of Strauss’ attacks. Cichoń et al. claimed that

it is impossible to reconstruct voters’ preferences in a single election run with

two candidates with a ‘reasonable number of voters’. However, the definition of

weak anonymity used in [CKW08] is much different from this researcher’s, given

in [MHS12]. That is, considering that an individual mini-ballot can be used to

construct two different multi-ballots cast for the same candidate, their definition

seems necessary, but not sufficient. That is, the observer would notice that one

of the voters is not able to vote for that candidate. A more theoretical work was

carried out by Henry et al. [HSS09], who focused on a two-candidate race, and

determined the secure ballot sizes under reconstruction and pattern requesting

attack conditions. Finally, Küsters et al. [KTV11] computationally analysed

the level of privacy offered by the ThreeBallot voting system and the proposed

system by de Marneffe et al. [dMPQ07], and concluded that the latter provides

better privacy than the original.

In Chapter 5, a CSP model of ThreeBallot is constructed and used to produce the

first automated formal analysis of its anonymity property using FDR. During this

process, it emerges that one of the crucial assumptions under which ThreeBal-

lot operates, the Short Ballot Assumption, is highly ambiguous in the literature.

Consequently, various plausible precise interpretations are put forward, but it is

discovered that in each case, the interpretation is either unrealistically strong or

else fails to ensure anonymity. Therefore, a version of the Short Ballot Assump-

tion in relation to ThreeBallot that is realistic but still provides a guarantee of

anonymity is adopted.

Chapter 6. The definition of anonymity for voting systems and the tool

used for model checking should be compatible with the automated analysis of

cryptography-based voting systems, which use such features as: symmetric, asym-

metric and homomorphic encryptions as well as digital signatures and mixnets.

In the literature, although automated formal analysis of Prêt à Voter does not

exist, this researcher is aware of a few full system threat analyses of it. For ex-

ample, Karlof et al. [KSW05] presented an analysis of Chaum’s scheme [Cha04],

on which the Prêt à Voter system is based. Their threat analysis mainly covered

those from DREs, talliers, and outside coercive parties as well as collusions be-

tween these. They identified a number of vulnerabilities, for instance, subliminal

channel attacks, denial of service and message reordering attacks and social en-

gineering attacks caused by unreliable, but honest participants, such as voters.

Another interesting work more specific to Prêt à Voter is that of Ryan and Pea-

cock [RP05, RP10]. They performed a system perspective analysis of Prêt à Voter

1.3. Contributions that address limitations of existing literature 9

by first investigating Karlof et al.’s observations and describing further vulnerabil-

ities and threats, for instance, the doll matching, side-channel and kleptographic

attacks as well as the undermining of public confidence. Finally, Jonker et al.

[JMP09] proposed a formal framework for quantifying voter-controlled privacy

and an analysis of Prêt à Voter was conducted in [Jon09] using this framework.

Although, this analysis did not cover a complete modelling of Prêt à Voter and

was not automated, they illustrated that their framework could be used to deter-

mine the privacy level of Prêt à Voter. Following that Jonker and Pang [JP11]

extended the framework in [JMP09] with the model of a bulletin board and by

capturing the coercion-resistance property, and they applied the extended frame-

work to the Prêt à Voter voting system to measure loss of privacy.

In Chapter 6, the ability of the chosen methodology of automated analysis of

cryptographic voting systems with a paper-based trustworthy voting system Prêt

à Voter [RS06] that aims to provide anonymity based on mixnets and cryptog-

raphy is investigated. Subsequently, the first-fully automated verification of this

voting system from an observer point of view is presented. Moreover, a number of

conspiracy theories, such as the election authority’s colluding with the intruder,

are examined to see if anonymity is preserved under such conditions.

Chapter 7. The more powerful the intruder, the better the security analysis

required, as they can act in an increasing number of different ways. Hence, a

natural next step is to model a more powerful intruder along the lines of a Dolev-

Yao one [DY83], who is in control of the network, and can mount active attacks.

This type of intruder not only observes a protocol run, but also interacts with the

protocol participants, overhears communication channels, intercepts and spoofs

any messages that he/she has learned or generated from any prior knowledge.

In the literature, there have been a number of attempts for automated anonymity

verification of voting systems, which have deployed the Dolev-Yao intruder model.

For example, Backes et al. [BHM08] analysed voting systems mechanically in

terms of verifiability properties. However, no automated analysis of anonymity

property was provided as the ProVerif employed was ineffectual for coping with

equivalences, and hence, a hand-proof was required. Similarly, Delaune et al.

[DRS08, DKR10] and also Smyth [Smy11] verified vote privacy of the FOO voting

system with an additional compiler (ProSwapper), but these lacked proof of its

soundness. Moreover, Chadha et al. [CCK12] managed to verify the anonymity

of the FOO voting system using a prototype, AKISS, which was written in the

OCaml programming language and implemented to check equivalences. However,

the tool adopted was inefficient, and an important part of the analysis, the ter-

mination of the saturation procedure as required for deciding trace equivalences,

was conjectured.

10 Chapter 1. Introduction

In Chapter 7, intruder capabilities are expanded with the adaptation of a full

Dolev-Yao [DY83] intruder model, which is then modified with additional as-

sumptions. For this purpose, the lazy spy (perfect spy) intruder model [RG97] in

relation to voting systems is drawn upon, as it is very efficient in terms of cutting

down unnecessary states as well as being flexible for usage with any other privacy

related properties. In order to demonstrate, the suitability of this intruder model

for evaluating voting systems, the vVote voting system, a promising real-world

e-voting system is, subsequently analysed. In this part of the investigation, the

secrecy and anonymity properties are covered as well as it being shown that a

generic voting system can be analysed effectively using lazy spy in CSP with the

FDR model checker.

1.4 Publications

Our contributions listed above were published in the following journal and con-

ference proceedings, upon which the thesis is partly based.

[MHS12]: Murat Moran, James Heather, and Steve Schneider. Verifying

anonymity in voting systems using CSP. Formal Aspects of Computing, pages

1–36, 2012

[MHS13]: Murat Moran, James Heather, and Steve A Schneider. Automated

anonymity verification of the ThreeBallot voting system. In IFM, pages 94–108,

June 2013

[MH13]: Murat Moran and James Heather. Automated analysis of voting sys-

tems with Dolev-Yao intruder model. In Automated Verification of Critical Sys-

tems AVOCS, September 2013

1.5 Outline

The rest of this thesis is organised as below.

Chapter 1 has introduced the thesis by identifying the gap in the literature,

thereby eliciting research problems on voting systems that need to be addressed.

Chapter 2 describes the necessary concepts for helping the reader to understand

basic concepts covered throughout the thesis. Firstly in this regard, cryptographic

primitives are introduced, on which some of the case study voting systems are

based, (e.g., public-key encryption, digital signatures and mixnets). Secondly,

election methods and the privacy properties of voting systems are investigated.

Next, four paper-based, supposedly, trustworthy non-cryptographic (the conven-

tional and the ThreeBallot voting systems), and cryptographic voting systems

1.5. Outline 11

(Prêt à Voter and vVote) are introduced. Finally, the syntax and semantics of

the process algebra, CSP, are explained.

In Chapter 3, an analysis for a problem called Dining Cryptographers is provided

in order to explain modelling in CSP and the anonymity concept in general. In

addition, the NSPK security protocol is drawn upon to provide a stronger intruder

model and analysed in terms of the secrecy property. The intruder model will be

used for analysis of the vVote voting system using CSP and FDR in Chapter 7.

A formal framework for the anonymity definition using CSP is described in Chap-

ter 4. Subsequently, using this definition, the conventional voting system is mod-

elled and analysed, followed by presentation of the initial results of the automated

privacy investigation into voting systems.

The suitability of the adopted framework is probed by modelling and auto-

matically analysing a paper-based non-cryptographic trustworthy voting system,

ThreeBallot, in a more efficient way than previously in Chapter 4. Additionally,

strong evidence is provided regarding the aforementioned ambiguity of the short-

ballot assumption and consequently, alternative definitions for this are provided

that are more efficient and realistic given its underpinning meaning.

In Chapter 6 the research framework is extended by formalising some of the

cryptographic primitives as well as presenting the first automated anonymity

analysis of Prêt à Voter. This analysis highlights the ability of this framework

in modelling and analysing cryptography-based voting systems. Moreover, there

is analysis of this particular system under alternative assumptions, including

misbehaving election authorities.

In Chapter 7 the Dolev-Yao [DY83] intruder model is adapted to voting systems

that can be automated using FDR and use this framework to model and analyse

the vVote voting system. Further, it is demonstrated that secrecy analysis of

voting systems is effective when using this adapted framework.

Finally, in Chapter 8 the contributions of this thesis are reviewed, the limitations

considered and suggestions for future research directions are put forward.

Note on experimental configuration. The experimental results regarding the ver-

ification times for the automated analysis of voting systems given in Chapter 5 6

and 7 were produced on a machine with Intel(R) Core(TM) i5 CPU 2.40GHz, and

1GB RAM. Additionally, FDR 2.94 academic version was used in all mechanical

analysis.

Note on CSP models of the voting systems analysed in this thesis. The CSP

models of the voting systems, from which the experimental results given in this

thesis were produced can be downloaded from the author’s personal webpage

http://muratmoran.wordpress.com/publications/ under the CSP codes ti-

12 Chapter 1. Introduction

tle. Additionally, they will be available on the departmental webpages

http://www2.surrey.ac.uk/computing/people/murat_moran/index.htm and

http://epubs.surrey.ac.uk/id/eprint/804928.

Chapter 2

Background

The aim of this chapter is to give enough detail for the reader to understand the

basic concepts used in the remainder of the thesis rather than presenting an ex-

haustive survey on voting systems. Firstly, a brief background on cryptography

used in the construction of voting systems provided and subsequently the deduc-

tions rules capturing the properties of cryptographic primitives based on [Sch96]

in Section 2.1 are spelt out. These rules will help in the understanding of the

basic ideas behind the modelling and analysis of security protocols using CSP

and FDR model checker as given in Chapter 3. Moreover, an overview of voting

systems, and their desired properties is presented in Section 2.2 as well as the

electoral methods. Finally, a CSP notation along with the abstraction methods

and semantics used in this thesis is provided in Section 2.3.

2.1 Cryptography

Cryptography is generally used as a medium to provide a secure communication

between principals over a hostile network. If the intruder is not bounded, he can

perform infinitely many attacks in order to break the cryptographic protocols’

goal (e.g., key distribution or authentication). As in [Low95], the attacks are not

necessarily based on the flaws in the cryptographic algorithm used, for they could

be down to the protocol itself.

Generally, in formal methods, a strong assumption is made regarding cryptogra-

phy that abstracts away the underlying cryptographic algorithm and its proper-

ties, i.e., its strengths and weaknesses. That is, the encryption and decryption

are treated as symbolic operators. For instance, an encrypted message with the

key (pk) can only be decrypted by the corresponding secret key (sk) holder.

Moreover, although the cryptographic algorithms are not unbreakable under the

assumption of an intruder with enough computing time and power, it is typically

13

14 Chapter 2. Background

assumed that the intruder is bounded by the computational power, and that the

probability of him breaking the cryptographic algorithm is negligible. Therefore,

the main focus here will be on the analysis of security protocols under secure

cryptographic algorithms, in the sense that no one except the corresponding key

holder is able to decrypt an encrypted message.

In Chapter 7, a structure is required that enables the intruder to deduce informa-

tion from what he sees and what he already knows. Such derivations regarding

cryptographic primitives are captured in terms of deduction rules by the entail-

ment relation � as described in [Sch96]. The relation is defined as the relation

between the set of messages that are known by, say the intruder, and those that

can be generated, �: P(MESSAGE) × MESSAGE. In other words, M � m

means that the message m can be deduced from the set M and the relation is

closed under the following axioms (Table 2.1) for an information system.

A1. if m ∈ M then M � m
A2. if M � m andM ⊆ M′ then M′ � m
A3. if M � mi for eachmi ∈ M′ andM′ � m then M � m

Table 2.1: Axioms

The cryptographic messages can also be structured so that they can be generated.

In Table 2.2 and throughout this thesis: symmetric encryption of a message m

with the symmetric key k is denoted as Ek(m); public key encryption with the

public key pk is shown as Epk(m); similarly, signing the message with the secret

key sk is Ssk(m).

M1. M � m ∧ M � k ⇒ Ek(m)
M2. M � m ∧ M � pk ⇒ Epk(m)
M3. M � m ∧ M � sk ⇒ Ssk(m)

Table 2.2: Deduction rules capturing cryptographic message construction

The properties of the encryption methods, symmetric-key and public-key cryptog-

raphy, and the signatures can be captured as in Table 2.3, where Dk(Ek(m)) mod-

els symmetric decryption, Dsk(Epk(m)) public key decryption, and Vpk(Ssk(m))

message extraction from a signature with the signing public key.

Table 2.4 illustrates some of the deduction rules regarding composable messages

by any agents (in the models in this thesis, it will be an intruder). In other words,

an agent can generate a fact or a message, if he knows a specific set of messages.

2.1. Cryptography 15

K1. Dk(Ek(m)) � m
K2. Dsk(Epk(m)) � m
K3. Vpk(Ssk(m)) � m

Table 2.3: Deduction rules covering cryptographic primitives (m is not necessarily
a message, it could be any fact. For instance, in K3., m can be a hash of a
message)

For instance, one possessing the encryption key k and message m can deduce,

Ek(m).

SYM-ENC. {k,m} � Ek(m) A1.M1.
SYM-DEC. {k,Ek(m)} � m A1.M1.K1.

ASYM-ENC. {pk,m} � Epk(m) A1.M2.
ASYM-DEC. {sk,Epk(m)} � m A1.M2.K2.

SIGN-SIG. {sk,m} � Ssk(m) A1.M3
SIGN-EXT. {pk, Ssk(m)} � m A1.M3.K3.

Table 2.4: Derived deduction rules involving cryptographic primitives

2.1.1 Symmetric key Encryption

Symmetric key encryption is the class of cryptographic algorithms that use the

same key for message encryption and ciphertext decryption (i.e., encryption and

decryption key is the same key). Hence, in order for two parties to communicate

securely, they need to share the same key. Such encryption is denoted here as

Ek(m), where k is the shared secret and m is a message. Thus, it is expected

that anyone possessing the shared key k can encrypt the message m, and decrypt

the ciphertext Ek(m), as defined by the derivations SYS-ENC and SYS-DEC in

Table 2.4.

In order to establish a secure communication with shared keys, it is assumed that

the shared key is only shared between legitimate agents, and no one else. Hence,

this requires their having a prior arrangement to agree on a shared key and this

issue is partially resolved by public-key cryptography.

16 Chapter 2. Background

2.1.2 Public-key Encryption

Public-key cryptography (also known as asymmetric key cryptography) was first

put forward by James H. Ellis, Clifford Cocks, and Malcolm Williamson at the

Government Communications Headquarters (GCHQ) in the UK in 1973, which

was kept secret. Later on, an asymmetric-key cryptosystem was designed by Diffie

and Hellman [DH76] in 1976. This cryptographic system, unlike symmetric key

cryptography, requires two different keys for encryption and decryption, a public

key pk and secret (private) key sk, respectively. Hence, each agent has a pair of

keys, (pk, sk), which are mathematically linked such that Dsk(Epk(m)) = m for a

message m. The previous issue in symmetric key cryptography, where the agents

need to share a key, is resolved in this system, as the public key of an agent,

say pka for agent a, is public and hence, anyone can encrypt a message m using

a’s public key, subsequently sending it to a, also in public. Moreover, although,

any potential intruder can see the encrypted message, he cannot decrypt it in a

reasonable amount of time, unless he possesses the secret key ska and therefore,

only the secret key holder can decrypt the message.

RSA

RSA [RSA78] is a ground breaking algorithm designed for public-key cryptogra-

phy by Rivest, Shamir and Adleman. It is based on the difficulty of factoring

large integers, which is computationally hard. In more detail, two distinct primes,

p and q, and an integer e are chosen such that 1 < e < φ(n) and gcd(e, φ(n)) = 1,

where φ is Euler’s totient function and φ(n) = (p− 1)(q− 1). The values n and e

will be publicly accessible. For each value that forms a corresponding secret key,

an integer d is chosen, such that e · d = 1 mod φ(n). Then, a message m can be

encrypted with the equality c = me(mod n) by anyone knowing the public values

n and e and consequently, the decryption of the ciphertext c can be performed

as cd = (me)d = me·d = m(mod n).

ElGamal

ElGamal [ElG84] is a non-deterministic public key algorithm and unlike the RSA,

the encryptions of the same plaintext always result in different ciphertexts due

to its probabilistic feature. The public and secret generation for each agent is

performed by firstly choosing large random prime numbers p and q, such that

p = 2q + 1 holds. Secondly, a generator g is chosen from the Gq subgroup of

Z
∗
p—ElGamal can be generalised to work in any finite cyclic group, such as, the

group of points on an elliptic curve over a finite field [MVO96]. Finally, a random

secret value x ∈ Z
∗
q is chosen. Thus, the triple (p, g, gx) will form the public-key,

and (p, g, x) the secret key of an agent. The subsequent encryption of a message,

m, can be calculated as (gr,mhr), where h = gx and r ∈ Z
∗
q is a random value.

2.1. Cryptography 17

Moreover, in order to decrypt the ciphertext and to obtainm, one should compute

(gr)−xmhr using the secret value x as (gr)−xm(gx)r = m.

Table 2.4, contains the two rules ASYM-ENC and ASYM-DEC, thereby captur-

ing the desired properties of public-key encryption systems in a symbolic way.

In addition, public-key cryptography also allows the message m encrypted under

the secret key to be extracted if it is re-encrypted under the corresponding secret

key, i.e., Epk(Dsk(m)) = m, which is useful for constructing digital signatures, as

discussed next.

2.1.3 Digital Signatures

The digital signature of a message provides a guarantee for its authenticity and

origin. A public key implementation of the digital signatures can also provide non-

repudiation, should a dispute arises about the signer of the message (the signer

of a message is not be able to successfully challenge the validity of the signature).

Although, a signature can be created differently depending on the algorithm

used, here it is considered that a signed message is created by encrypting the

hash of a message with the signer’s secret key sk and reversely, the signed fact

is extracted with the signer’s public-key pk. Hence, as Epk(Dsk(m)) = m, the

output of the verification will demonstrate whether the message was indeed signed

with the corresponding secret key sk, and whether it has been tampered with

or not. Signing a message and extraction of the message from a signed one are

captured in Table 2.4 with the derived deduction rules, SIGN-SIGN and SIGN-

EXT. According to these, an agent a can sign a message m with his secret key

ska, and anyone knowing a’s public key can verify m’s authenticity and origin

by checking whether Vpka(Sska(H(m))) = H(m) where H() is an agreed publicly

known hash function. In the modelling approach to digital signatures in this

thesis, the origin and the authenticity of a message, say Sska(m), is ensured via

the authenticated channels. That is, an agent is ready to accept any message in

the expected form, e.g., if the agent b is waiting for a signed message from the

agent a, as long as: the message is signed with ska, b believes that Sska(m) is

generated by a, and m is not tampered with.

2.1.4 Homomorphic Encryption

Homomorphic encryption is a property of cryptographic systems, which allows

for computations to be made on ciphertexts without revealing the secret. That

is, the encryption algorithm E() is homomorphic if given E(m1) and E(m2) one

can obtain E(m1 � m2) for some operation � and messages, m1 and m2. For

instance, ElGamal shows a multiplicative homomorphic property as: for given two

ciphertexts E(p,g,x)(m1) = (gr1 ,m1h
r1) and E(p,g,x)(m2) = (gr2 ,m2h

r2), where h =

18 Chapter 2. Background

gx and r1, r2 ∈ Z
∗
q and p and q are two large random prime numbers, one can show

that E(p,g,x)(m1)·E(p,g,x)(m2) = (gr1+r2 , (m1 ·m2)h
r1+r2)mod p = E(p,g,x)(m1 ·m2).

Here, the interest is in the homomorphic property because of its applicability

to voting systems in terms of providing vote privacy. That is, as every vote

is encrypted under the election public-key, authorities add all encrypted votes

together, and decrypt and tally the final results without knowing individual ones.

Prêt à Voter [RS06] and Civitas [CCM08] are among such voting systems.

2.1.5 Threshold Cryptosystem

A threshold technique allows for an initial secret key to be shared securely among

a specified number of agents. More specifically, a cryptosystem is (t, n) threshold,

if t or more agents recover the initial secret key sk by combining their individual

secret shares, whereas fewer than t are unable to do so. In electronic voting,

however, each threshold party produces a partial decryption of a secret using

their key share, and the combination of these partial decryptions form a full

decryption of the secret. For further reading on threshold cryptosystems, the

reader is referred to [Ped92].

2.1.6 Re-encryption

Re-encryption allows for a ciphertext of a message to be encrypted again without

needing the secret key x. That is, although the two ciphertexts encode the

same plaintext, they differ in terms of randomness, which results in separate

ciphertexts. In the case of the ElGamal public-key algorithm, if it is assumed

that (gr,mhr) is the ciphertext that encodes the message m with the random

value r, in order to re-encrypt the ciphertext, another value r′ ∈ Z
∗
q is chosen

at random. Hence, the re-encryption of the message m can be produced with

(grgr
′
,mhrhr

′
). To decrypt this value, the secret value x is applied as before to

produce ((gr+r′)−x,mhr+r′), which will be equal to m. In voting, re-encryption

is used to break the link between the voter and the ciphertext sent by her as they

look different after re-encryption. An advanced version of this technique is used

in the mixnets in order to anonymise the cast votes in an election.

2.1.7 Mixnets

Chaum [Cha81] designed mixnets for anonymous communications. The goal of

a mixnet is to shuffle its input list in such a way that no one can trace the

output list back, thus breaking the link between its inputs and outputs. This

is done either by decrypting each element of the input list, which requires the

mix possessing the corresponding secret key, or by re-encrypting them so that

the input and output lists all look different, but still encode the same messages.

2.1. Cryptography 19

A

B

C

D

C

D

A

B

B

A

C

D

C

A

B

D

MIX 1 MIX 2 MIX 3

Figure 2.1: An example mix network (mixnet) with three mixes and four inputs

The only entity knowing the link is the mix itself. However, because a dishonest

mix can reveal the anonymous links, a better approach involving multiple mixes

was suggested by Chaum. According to this, only a collusion of all mixes could

break the order of the elements in the input list. In Chaums’s decryption mixnet,

the inputs are the ciphertexts constructed as a layer for each mix server in the

network that needs to be decrypted with the mix server’s private key. Having

decrypted the layer corresponding to its own public key, the mix permutes the

list and forwards it to the next mix in the network. In the re-encryption type

of mixnets [PIK94], the inputs are the messages encrypted under an algorithm,

such as ElGamal [ElG84], which allows mix servers to re-encrypt them and after a

re-encryption, the mix server permutes the inputs, subsequently outputting them

to the next mix.

Figure 2.1 depicts a generic mixnet consisting of three mixes. The first takes a

list of messages in the order 〈A,B,C,D〉 as its input—the list in its application

to voting systems can be a list of encrypted candidate names, or onion values in

order to provide an anonymous channel on which the voters cast their votes, thus

hiding the link between the voters and their cast ballot forms. Subsequently, the

output of the first mix becomes the input for the second, and following that the

output of the second mix will be the input for the third. At the end of shuffling,

the last mix server outputs the mixed order of the list, 〈C,A,B,D〉 in Figure 2.1.

In order to ensure whether a mix in the network is honest, a method called

randomised partial checking (RPC) [JJR02] as illustrated in Figure 2.2 can be

performed, which requires that each mix reveals half of its links between the

elements in the input and output lists. Note that if a link to an element of the

input list has already been revealed for a mix, the link for that element in the

next mix should not be revealed. For instance, in Figure 2.2, the links for the

inputs B and D are revealed for RPC in the first mix server, however, in the

second mix, only the input and output links for A and C are revealed. Hence,

an audit on these published links can be performed to verify that the mix is,

indeed, honest, if the element has not been tampered with, without revealing the

20 Chapter 2. Background

B

D

C

D

A

B

C

A

MIX 1 MIX 2

Figure 2.2: Randomised partial checking of a mixnet with two mixes and four
inputs

input-output links of the mixnet. Moreover, if a mix acts dishonestly, the chance

of its being caught is 2−1.

2.1.8 Security Implications

Although re-encryption enables a ciphertext to be modified without the need of

a secret key and plaintext would appear to be a useful mechanism for anonymis-

ing mixnets, this can also lead to undesired severe consequences as it can also

be modified by the intruder in a meaningful way. This means that such cryp-

tographic systems that use re-encryption (indeed inherent in any homomorphic

cryptosystem), such as mixnets, are not secure under ciphertext indistinguisha-

bility under adaptive chosen ciphertext attack (IND-CCA2). However, they can

achieve a weaker notion of security, such as, indistinguishability under chosen

plaintext attack (IND-CPA).

2.2 Voting Systems

Under the traditional voting system, a trade-off is introduced between voter pri-

vacy and verifiability of the election. That is, as the ballot box keeps the link

between the voter and her∗ ballot secret, it provides voter anonymity. However,

the voter has no way of tracing his ballot or verifying whether it has been cast as

intended and tallied correctly at the end of the election. Hence, the integrity of

the election depends on the assumption of honest election officials (also called the

chain-of-custody). Moreover, the honesty and correctness of the election officials

are generally audited by the independent observers or the representatives from

each political party in the election race. The deployment of electronic devices,

∗Throughout the thesis, a voter will be referred to as female and an intruder as male. For
instance: the voter takes “her” receipt, and the intruder will try to figure out how a voter has
voted using “his” abilities.

2.2. Voting Systems 21

such as lever and DRE machines, aimed to assist the voters’ casting their votes,

introduced a new trust in hardware and/or software used in the machines as well

as in the election officials, as these are generally provided by private companies.

In order to provide verification of such hardware and software components in

voting systems, the voter-verified paper audit trail (VVPAT) was proposed by

Rebecca Mercuri in 1992 [Mer92], which is a way of verifying a ballot being cast

as intended by the voter that involves having a printer on the voting machine

that prints out a receipt of the vote. However, although VVPAT provides a cer-

tain level of verification, it is insufficient for verifying all of the chain-of-custody

points.

End-to-end (E2E) voting systems ensure that a voter is not only able to verify that

her ballot is recorded as intended, but also counted as cast (included in the final

tally). Moreover, anyone can verify that only eligible voters are allowed to cast

ballots and the final tally is correct. This is generally done by producing a receipt

for the voters, who can then check against the published receipts in a public

domain like the web bulletin board (WBB). However, a receipt should not leak

any information about how the voter has voted, as this could cause vote buying

and coercion attacks as described in Section 2.2.2. The following are examples

of paper-based E2E voting systems: non-cryptographic the ThreeBallot [Riv06],

and cryptographic Prêt à Voter [Rya05] and vVote [BCH+12a, BCH+12b] voting

systems. In this thesis, the focus is particularly on paper-based E2E in-person

voting systems.

In the rest of this section, first, the terminology of voting system participants is

introduced and then the desired properties of these systems provide the focus.

Finally, the different types of electoral methods are outlined.

2.2.1 Terminology

In this subsection, some of the concepts of the voting systems and elections

covered throughout this thesis are clearly explained so as to avoid ambiguity in

their interpretation.

Voter: an eligible and registered individual attending to an election in order to

express her preference.

Candidate: an individual running in an election process.

Vote: a representation of a voter’s preference.

Ballot: a medium for voters to cast their votes.

Election Authority: the individuals responsible for the conduct of elections,

e.g., preparing ballot forms and voter registration.

22 Chapter 2. Background

Electoral Officials: the individuals working during an election, who are respon-

sible for voter authentication, vote collection and tallying, such as polling station

workers.

Trusted Third Party (TTP): an independent and trusted organisation, which

can help with the verification of some parts of an election as and when needed,

for instance, auditing the correctness of the final tally and voting systems’ com-

ponents.

Intruder: a hostile individual deliberately trying to violate protocol objectives,

and in this thesis two types are considered according to their destructive capa-

bilities: passive and active intruders. More specifically, a passive intruder cannot

only observe all public information but also the private channels that can be

shared by dishonest agents. By contrast, an active one acts as described in

Dolev-Yao [DY83] and the details on the capabilities of such intruders are given

in Chapters 4 and 7.

Voting System Attacks

The followings are the attacks related to voting systems.

Vote-selling Attack: the voter being able to sell her vote, as she can prove to

the intruder how she has voted.

Italian Attack: the intruder being able to ask the voter to fill a ballot in an

uncommon way, so he can later check whether the unusual ballot appears on the

bulletin board.

Reconstruction Attack: the intruder being able to reconstruct a cast ballot

form with the information available. He may then find out how the voter has

voted.

Forced-abstention Attack: the voter being forced to abstain from voting.

Randomisation Attack: the voter being forced to cast a ballot form in a

random way.

Impersonating or Simulation Attack: the voter being forced to give her

credentials to a coercer, who can then vote instead of her.

2.2.2 Desired Properties of Voting Systems

The design of trustworthy voting systems is not a trivial challenge since they

depend heavily on a range of trust assumptions regarding such aspects as: the

electoral officials, the voters and the hardware and software used. That is, obvi-

ously, these elements can be exploited with the intention of modifying the elec-

2.2. Voting Systems 23

tion results or undermining their credibility by decreasing the voter’s trust in

the system. Consequently, in order to reduce the probability of elections being

compromised, increased transparency and better monitoring are desirable during

the electoral process. Thus, a trustworthy voting system can be considered as a

challenge to get the level of transparency needed to gain confidence in the system,

the degree of privacy that allows for the necessary freedom of choice to the voter

and election integrity, all at the same time. Next, some of the desirable properties

of voting systems are discussed in turn, i.e., privacy-related (anonymity, receipt-

freeness, and coercion-resistance), verifiability aspects (eligibility, individual and

universal) and integrity and fairness.

Anonymity

Anonymity of a voter means that the voting system should not reveal or give

any information about how a particular vote was cast, often referred to as vote-

privacy. For this to be the case, the identity of the voter associated with a ballot

paper must be hidden. In order to clarify the distinction between secrecy and

anonymity in voting systems, we can think of a situation where the intruder

happens to link the voter to her ballot form, violating the anonymity property,

but cannot interpret what her real vote is, preserving the secrecy of the vote.

Therefore, the intruder can reveal the secrecy of a vote (knowing for whom the

vote is), such as, by decrypting the encrypted vote, but still cannot link the vote to

the voter casting it, preserving the anonymity property. There exist a numerous

number of anonymity definitions, referring to it as either secrecy of a vote or

the link between the voter and her vote. This is a subject covered in detail in

Chapter 4 where the various definitions of anonymity in the literature are drawn

upon in order to derive a concise formal definition regarding this requirement.

Receipt-Freeness

Receipt-freeness [BT94] ensures that a voter does not possess any information

(e.g., receipt) that can be used by any third party to show how she has voted. A

violation of this requirement may end up the voter being encouraged to sell her

vote to a coercer (vote-selling attack). For instance, although the Prêt à Voter

voting system provides a receipt for the voters for verifiability purposes, it does

not illustrate how she has voted.

Coercion-Resistance

Essentially, coercion can be described as a voter being threatened or forced to

act according to the instructions she has been given by a coercer. The coercion

can be that the voter is forced to vote for a particular candidate, but it can

take various forms, such as, forced-abstention, randomisation, and impersonating

24 Chapter 2. Background

or simulation. The corollary of this, coercion-resistance [JCJ05], refers to the

coercer failing to have any evidence as to how a voter has voted, even if she has

interacted with him.

Individual, Universal and Eligibility Verifiability

Individual verifiability allows a voter to verify whether her vote has been cast-

as-intended and counted-as-cast at the end of the election.

By contrast, universal verifiability implies that any independent organisations,

party or charity are able to verify that the election result is correct at the final

tally, which is indeed the sum of all valid votes that are cast-as-intended.

Eligibility verifiability ensures that only eligible/legitimate voters can vote, and

that they should be allowed to vote only once. The concept is introduced

in [DKR10] as “anyone can check that each vote in the election outcome was

cast by a legitimate voter and there is at most one vote per voter”.

Integrity

Integrity (also called correctness or accuracy) ensures that the valid cast ballots

are counted correctly in the final tally.

Fairness

The term fairness, refers to the situation that no partial results are revealed

before the tallying phase, which otherwise would affect the voters’ preferences

during the election.

The attacks on voting systems listed in the previous subsection aim to break the

privacy related properties; anonymity, receipt-freeness and coercion-resistance,

which are mainly focused on this thesis. An attack may have impact on several

privacy requirements depending on the reason to the attack. For instance, vote-

selling may occur due to the voting system itself (violation of anonymity) or voter

receipts (violation of receipt-freeness) or a interaction with a powerful coercer

during vote casting (violation of coercion-resistance). Moreover, reconstruction

and Italian attacks violate receipt-freeness property of voting systems because

of the information leakage in voter receipts. Finally, the forced-abstention, ran-

domisation, and impersonating or simulation attacks require the coercer com-

municate with the intruder at any time during the election period violating

coercion-resistance property. However, because of the relation between privacy

properties—coercion-resistance implies receipt-freeness and receipt-freeness im-

plies anonymity (vote privacy) [DKR09]—if a voting system is protected against

the attacks targeting coercion-resistance, it should also be immune to the receipt-

freeness and anonymity attacks.

2.3. Communicating Sequential Processes 25

In this thesis, the focus will be mainly on privacy properties, anonymity, receipt-

freeness and coercion-resistance, and on the attacks against these voting system

requirements.

2.2.3 Electoral Methods

There are numerous electoral methods that are used in different countries and

on various occasions. They mostly vary according to the number of winners,

e.g., single and multiple-winner electoral methods. First-past-the-post (FPTP)

or plurality voting is probably the most common single-winner electoral method

and under this method, a candidate should receive more votes than any other in

order to win. Additionally, each voter is allowed to vote for only one candidate.

Generally, an FPTP ballot paper consists of a list of candidates and a marking

box for each, with the voter just marking one of the boxes that corresponds to

her preferred candidate. Although, this type of electoral method provides the

main focus in the rest of the thesis owing to its simplicity and also the fact that

it is overwhelmingly the most commonly used, the preferential voting procedure

is also given some attention.

Preferential or ranked voting allows voters to rank the candidates in terms of

their preferences. This method also varies according to tallying methods and the

number of runs in an election. For instance, the single transferable vote (STV) is

a preferential method, which permits “wasted” votes to contribute to the overall

result. That is, when a candidate reaches the quota declared by the election

authorities, he wins a seat, then the other votes for the winner are transferred to

other candidates depending on the preferences on those ballots as it is a multiple

winner electoral method. If no candidate exceeds the quota, the candidate with

the least votes is eliminated, and the ballots he has received are transferred to

other candidates. This process is repeated until a candidate wins a seat or the

number of seats left is equal to the number of the remaining candidates. In

the case of a single winner election, the STV becomes the alternative vote (AV)

or instant-runoff voting (IRV). The reader is referred to [RRE+05] for further

details about electoral methods.

2.3 Communicating Sequential Processes

CSP is a formal language designed to describe concurrent systems in terms of

components that interact by means of message passing. It belongs to the pro-

cess calculus family and was introduced by Hoare in 1978 [Hoa78]. Since then it

has been improved in terms of its ability to model concurrent systems as well as

analysing security protocols, in particular, regarding its effectiveness when the

model checking tool FDR [Low96, Ros97, RSG+00, Ros10] is employed. More-

26 Chapter 2. Background

over, CSP allows for systems to be modelled in terms of processes, which can

synchronise and interact with the environment. In addition, it provides several

semantic models to analyse the behaviour of processes and systems.

2.3.1 Syntax

Processes are defined in terms of a collection of events that they may perform and

for CSP the occurrence of an event should be regarded as an atomic action without

time. More specifically, a synchronised event can happen when all processes agree

on executing it, i.e., it happens when it is inevitable. The set of events that

are visible is called Σ, and the internal events are written as τ . Processes are

associated with an interface or alphabet, denoted αP . If no alphabet is explicitly

defined then it will be the set of events that the process can perform and the

simplest process is STOP , which fundamentally means doing nothing. SKIP

is another named process, which terminates immediately. However, it is not a

deadlock as in STOP , but a successful termination. In addition, RUN (A) is the

process that can always perform any member from the given set of events A ⊆ Σ

and the process, RUN is defined as RUN (A) =̂ �
x∈A x → RUN (A).

The CSP grammar is used for the processes, P , and Q, the set of events, A,

variable, x, channel, c, events, a and b, and data, v with data-type, T . The

elements of language used in this work are set out in Table 2.5 (See [Ros10, Sch99]

for a fuller account of the language).

Given a process P and an event a in Σ, the prefix process a → P is initially

willing to perform an event a. That is, it waits until the event, a, is performed

then behaves like the process P . For instance, the process, P1 =̂ a → b → STOP

will perform the events a and b, then it will terminate.

Events can also be structured into any number of parts. For example, an event

of the form c.v can represent a channel c passing value v. The set of values T

that can pass along c is the type of c, so the set of events associated with channel

c of type T is {c.v | v ∈ T}. This can also be written as {|c|}. If C is a set of

channels, then {|C|} =
⋃

c∈C{|c|}.

The input process c?x → P (x) is initially prepared to accept a value that will be

bound to the locally introduced variable x along channel c, and then behave as

P having received input x. The output process c!v → P outputs value v along

channel c. Throughout the thesis, structured events are used to describe events

in voting systems. For example vote.v.c can represent voter v casting a vote for

candidate c.

Recursive processes in CSP, are described by means of recursive definitions of the

form N =̂ P , where N is a process name that can appear in process P . N can also

2.3. Communicating Sequential Processes 27

P,Q :: = processes
STOP stop (deadlock)
SKIP successful termination
a → P prefixing
c?v → P (v) data input
c!v → P data output
P � Q external choice�

x∈AP (x) indexed external choice

P � Q nondeterministic choice

�
x∈AP (x) indexed nondeterministic choice

if b then P else Q conditional choice

b&P if b then P else STOP

P αP ‖αQ Q alphabetised parallel composition

‖
x∈A(P (x), αP (x)) indexed alphabetised parallel composition

P ‖
A

Q generalised or interface parallel

P ||| Q interleaving

|||
x∈AP (x) indexed interleaving

P \ A hiding

P [[R]] relational renaming

Table 2.5: CSP notation

take parameters, giving definitions of the form N(p) =̂ P (p). Thus, the process,

P2 =̂ a → b → P2, are recursively defined, alternating between the events, a and

b. Moreover, instead of defining a recursive process with one equation, mutual

recursion can be used for this purpose. For instance, the process definitions

P3 =̂ c?x → P4(x) and P4(x) =̂ d!x → P3 describe a process that repeatedly

inputs and then outputs a value.

2.3.2 Choice Operators

CSP offers choice operations for processes, which are called external and non-

deterministic choice operators denoted as � and �, respectively. The process

P � Q can act like P or Q depending on the choice of the initial event chosen by

the environment. For instance, for the process (a → P) � (b → Q), if the first

event chosen is a then the process will behave as the process P , after perform-

ing the event a. Similarly, if the first event chosen is the event b, subsequently

28 Chapter 2. Background

the process will act as the process Q. While the external choice operator leaves

the choice to its environment, in a nondeterministic process, the choice is made

internally. Thus, the process (a → P) � (b → Q) can act as either a → P or

b → Q and the environment has no control over which this is. Indexed versions

of external and nondeterministic choices allow for choices to be made among a

number of processes. In addition to these, there is also the traditional conditional

choice if-then-else.

2.3.3 Parallel Operators

Systems can be made up of a collection of processes that run in parallel and

that are synchronised in relation to the events that they agree to perform. For

instance, the alphabetised parallel P αP ‖αQ Q executes P and Q in parallel,

where they have to synchronise regarding those events that are in both of their

alphabets, but they can perform other events independently. Thus, they must

only agree on the events in the intersection αP ∩ αQ. P ‖ Q will be used as

shorthand for P αP ‖αQ Q in the remainder of this thesis. Additionally, the

events that need to be synchronised can be identified with the generalised or

interface parallel operator P ‖
A

Q, where all events in A must be synchronised,

but not the events outside A, which can be performed independently. These

parallel operators are associative and commutative, so any number of processes

in parallel can be combined, in any order, without ambiguity. Thus, P ‖ Q ‖ R

can be written as representing the parallel combination of three processes P , Q

and R.

Alternatively, the desire may be to run any two processes independently of each

other, i.e., they do not synchronise with any events, not even those that they

share and this behaviour can be implemented using the interleaving operator

written as “|||”, which also has an indexed form to describe the interleaving of

a family of processes. Finally, all parallel operators, including interleaving ones

are symmetric, associative and distributive over external and nondeterministic

choice.

2.3.4 Abstraction Methods

The abstraction methods that are frequently used in the analysis are: the hiding

abstraction method used as P \ A to make occurrences of events in A internal,

and hence invisible to an observer and the renaming method shown as P [[R]] for

a relation R, so that the occurrences of an event a are replaced by events b such

that aRb. An example for the hiding operator is that for a given set of events

2.3. Communicating Sequential Processes 29

A ∈ Σ with the following step law:

(a → P) \ A =

{
P \ A if a ∈ A,

a → (P \ A) if a /∈ A,

The latter method is used under the circumstance that an observer can see that an

event is happening, but is unable to detect which event it is. More specifically, in

renaming if R is a relation on the alphabet of process P , then P [[R]] behaves like

P except that it performs different events. Moreover, whenever P can perform

the event a, P [[R]] can perform each event from its relational image, R[{a}]. For
instance, given the process P =̂ a → a → STOP , and the relations aRb and aRc,

P [[R]] should be considered as:

P [[R]] =̂ (b → (b → STOP � c → STOP)) � (c → (b → STOP � c → STOP))

Some earlier accounts of CSP [Sch99] used a function or its inverse in place of the

relation R, to provide alphabet renaming and inverse renaming, but in this thesis

the more general approach using the relation as described in [Ros10] is employed.

A substitution-like notation is often used for describing relations. Regarding

this, P [[a/b]] means that the event or channel b is replaced by a in P , e.g., (b →
STOP)[[a/b]] =̂ a → STOP , and (b?x → STOP)[[a/b]] =̂ a?x → STOP . More

generally, multiple substitutions, including P [[a, b/b, a]] (a maps to b and b maps

to a), many-to-one renaming, P [[a, a/b, c]] (b and c both map to a) and one-to-

many renaming P [[b, c/a, a]] (a maps to both b and c) are allowed. In addition,

overload notation is used, with [[X/Y]] referring to the relation corresponding to

the renaming.

A useful result when composing renamings is that renaming via relation R fol-

lowed by renaming through R′ is equivalent to renaming through the relational

composition R ;R′.

Lemma 1. P [[R]][[R′]] =̂ P [[R ;R′]]

2.3.5 Traces and Other Semantic Models

CSP provides a wide range of semantic models, which help in the description

of a process behaviour. With respect to these, the traces model, T is employed

in this thesis, which refers to the finite sequences of events that a process can

perform as denoted by 〈a1, a2, . . . , an〉. The empty trace is denoted 〈〉, and the

concatenation of two traces as tr1 t̂r2. tr |̀ A is the projection of tr onto the set

A (i.e., the sequence of events in tr that are in A), and tr \ A is the projection of

tr onto Σ�A, i.e., the trace tr with events from A removed. Two traces tr1 and

tr2 are related by R, if they are also pointwise related, i.e., they are the same

length and the events at each position are related by R.

30 Chapter 2. Background

The set of all traces of the process P is written traces(P), which is a non-empty

set as every process has the empty trace, 〈〉, in its trace set. For instance, the

set of traces of the process, a → b → STOP , is {〈〉, 〈a〉, 〈a, b〉}. Some of the

definitions in terms of the traces model are as follows:

traces(STOP) = {〈〉}
traces(SKIP) = {〈〉, 〈�〉}
traces(a → P) = {〈〉} ∪ {〈a〉̂ s | s ∈ traces(P)}
traces(P � Q) = traces(P) ∪ traces(Q)

traces(P � Q) = traces(P) ∪ traces(Q)

traces(P \ X) = {s \ X | s ∈ traces(P)}
traces(P ‖ Q) = {s ∈ (αP ∪ αQ)∗ | s |̀ αP ∈ traces(P) ∧

s |̀ αQ ∈ traces(Q)}
traces(P [[R]]) = R[traces(P)]

Additionally, CSP offers the failures model, F , which provides more information

about what a process may refuse to perform. A failure is a pair (tr,X), where

tr ∈ traces(P) and X is the refusal set of the process P after the trace tr. A

refusal is a set of events that a process refuses to perform in a particular state.

Thus, the trace/refusal pair helps to distinguish two processes that have the same

traces, but differ in terms of what events they refuse to perform. For instance,

although the traces model cannot distinguish P � Q from P � Q, it is possible

with the failures model. To see this, suppose that P =̂ a → STOP � b → STOP

and Q =̂ a → STOP � b → STOP , under these process definitions, both

process traces refine each other as their set of traces are the same and equal

to {〈〉, 〈a〉, 〈b〉}. However, in terms of the failures model, the refusal sets of

these processes differ as the refusal set for P is {(〈〉, ∅), (〈a〉, {a, b}), (〈b〉, {a, b})}
and for Q is {(〈〉, {a}), (〈〉, {b}), (〈a〉, {a, b}), (〈b〉, {a, b})}. In more detail, the

difference between the refusal sets of these processes is the initial choice between

performing the event a or b. That is, with the external choice, P does not

refuse to perform any of a and b as the decision is made by the environment,

while Q can refuse to perform a or b. Further, the Failures/divergence model,

M, gives more information than the traces model regarding whether a process

ever reaches a state where it can diverge, in other words, the process continues

performing τ ’s forever and refuses all visible events. Generally, the failures model

is used to check liveness properties, in terms of whether the process or system

performs any good behaviour, whereas in the traces model the checking is for

the bad behaviour being performed by the process. In our analysis, a number of

compression functions have been used. More details about these operators can

be found in Section 5.4 and in Section 7.7.

2.4. Summary 31

2.3.6 Traces Refinement and Model Checking

Traces refinement is offered in CSP to compare behaviour of processes. Regarding

this, if every trace of Q is also a trace of P , then Q trace-refines P or P is refined

by Q, denoted P �T Q and this is used in this thesis. If P and Q refine each other

then they are trace equivalent as denoted P ≡T Q. It is deemed that the traces

model is sufficient for the purposes of this research aimed at verifying whether

the model of a system satisfies a certain specification, such as anonymity.

Failures-Divergence Refinement (FDR) [GGH+] is the model checking tool en-

gaged with for the analysis, which was designed by Formal Systems (Europe)

Ltd to check formal models created with the CSP formal language. This allows

for the automated checking of assertions of specifications SPEC and implemen-

tation (MODEL). That is, MODEL meets the specification SPEC if MODEL

is a refinement of SPEC. FDR checks the assertions automatically, and if the

refinement does not hold, then it produces the first 100 counter-examples of the

refinement, which are sequences of events that demonstrate the violation of the

specification. Although FDR is easily used to check refinements, it suffers from a

generic problem that all model checking tools suffer from: state space explosion.

With regards to this problem and for further details in CSP and FDR, the reader

is referred to [Ros97, Sch99, GGH+, Ros10].

Apart from FDR, there exist other model checking tools for CSP, such as;

ProB [LB03] and Process Analysis Toolset (PAT) [SLD09]. ProB is a tool set

that can be used as a model checker for CSP specifications besides other formal

languages. It supports analysis of CSP processes using both refinement checking

and linear temporal logic (LTL) model checking. The other model checking tool

for CSP is PAT. It can perform refinement checking, LTL model checking and

simulation of CSP processes. Because FDR is a mature model checking tool for

CSP specifications with a number of semantics available, and our departmental

experience with CSP and FDR model checker, they have been employed in all

our analysis throughout this thesis.

In summary, in this thesis CSP is used as the formal language to define the

anonymity requirement of voting system, and to model a number of voting sys-

tems as parallel compositions of individual processes. Additionally, FDR is em-

ployed to assist in verifying whether the models of the voting systems meet their

requirements (specifications).

2.4 Summary

In this chapter, the essential background to the cryptographic primitives, which

are drawn upon to carry out the investigation into voting systems in Chapter 6

32 Chapter 2. Background

and 7 have been described. Subsequently, an overview of the key voting systems,

their requirements and electoral methods was given. Additionally, the formal

language CSP was introduced with its notation and semantics, as well as the

model checking procedure and the tool FDR. In the next chapter abstractions

(deduction rules) of the cryptographic primitives are employed when modelling

and analysing security protocols using CSP and FDR. In particular, the use of the

CSP approach, as the key methodology employed in this research, is explained

and justified by drawing upon case studies provided in the existing literature.

Chapter 3

Modelling and Analysis of

Security Protocols using CSP

From the previous chapters, the necessity for automated formal analysis of

privacy-related requirements in voting systems has emerged with justification.

This chapter forms the foundation of this researcher’s approach to the modelling

and analysis of voting systems using CSP and FDR by presenting two protocol

methods found in the literature. Firstly in Section 3.2, by presenting a formal

analysis of the dining cryptographers protocol [Cha88], the aim is to demonstrate

how security protocols and their specifications may be modelled using CSP. The

modelling and analysis of this protocol given in [RSG+00] is considered in a hos-

tile environment from an observer’s point of view and this approach will be used

in the analysis of voting systems in Chapters 4 – 6. Additionally, the anonymity

definition (strong anonymity) as the security protocol specification given in this

chapter will be used in Chapter 4 in order to compare two different anonymity

definitions for voting systems. Following this, Lowe’s notorious attack [Low96] on

the Needham-Schroeder Public-Key (NSPK) protocol [NS78] shall be presented

in Section 3.3. This critical analysis of the NSPK will lead to the provision of an

active Dolev-Yao-like intruder model, namely lazy spy, which will then be tested

for its efficiency with regards to voting systems using CSP. Moreover, the analysis

of the secrecy property of the NSPK will help in defining that for voting systems

in Chapter 7.

3.1 Overview

A security protocol is designed to provide a certain goal comprising vari-

ous security-related properties, such as: secrecy, integrity, anonymity and so

forth [RSG+00]. In order to claim that a protocol is secure, it should be able

33

34 Chapter 3. Modelling and Analysis of Security Protocols using CSP

to meet all of its security-related objectives in a hostile environment where an

intruder is trying to break them. Ryan et al. [RSG+00] point out some of the

difficulties encountered when designing and analysing security protocols because:

the security properties can be too subtle to define precisely; describing the model

in a hostile environment can be too complex; defining any intruder’s ability is

extremely challenging and the concurrency involved further complicates any an-

alytical endeavours. Although the protocols themselves are easy to express, for

instance, the NSPK can be defined in three lines, they are too complex to eval-

uate using hand-proofs. Nevertheless, such protocols can be easily analysed by

model checking tools, such as FDR, as long as the security objective is defined

precisely, and the communication network between agents and the hostile en-

vironment are modelled efficiently. However, because model checking tools are

bounded by the number of participants due to the state space explosion prob-

lem, as explained in Chapter 2, they cannot achieve the security objectives of

the protocols for infinitely many agents, but they can effectively find the attacks

breaking the security objectives involving a small number of agents.

The following two protocol analyses in the rest of this chapter based on [RSG+00]

and [Ros97] illustrate how to overcome the aforementioned difficulties. First of

all, the focus is on a well-known security protocol, the dining cryptographers, and

involves explanation on how a number of anonymity notions can be captured by

modelling and analysis of this toy example under a passive intruder model. Such

an intruder model is easy to define as the intruder can only observe the public

channels. Following this, analysis of the NSPK protocol under an active intruder

model and the precise formalisations of its security objective, secrecy, are given.

This is of relevance because in this researcher’s opinion the characteristics of these

security protocols and using the CSP approach in their analysis are appropriate

for the analysis of voting systems. Finally, throughout the thesis the analysis is

conducted with the FDR model checker.

3.2 Dining Cryptographers

The dining cryptographers protocol was proposed by David Chaum [Cha88] and

illustrated that it was possible to send and receive anonymous messages uncondi-

tionally or cryptographically. Fundamentally, it involves a scenario where three

cryptographers are having dinner together in a restaurant, and each of them is

informed by their organisation whether or not he or she is paying the bill. How-

ever, the organisation cannot only choose one of cryptographers to pay the bill,

but can also opt to pay it itself and the aim is to allow them to find out whether

one of them is paying or not. Moreover, if one of the cryptographers is paying,

for some reason, they would like to keep his/her identity anonymous. How can

the participants ensure this is achieved?

3.2. Dining Cryptographers 35

The protocol works as follows. Each cryptographer tosses a coin, which is also

made visible to their right-hand neighbour and thus, each is able to see two coin

tosses. Once they examine the results of these tosses, they can either say agree

if they are the same or disagree if they are different. If a cryptographer is not

paying then he/she will always tell the truth about the comparison of tossing

results. However, the paying cryptographer will say the opposite. If the number

of disagrees are even then the organisation is paying, whereas if odd, then one of

the cryptographers is, but is able to remain anonymous.

CRYPT0

CRYPT2CRYPT1

MASTER

Coin0

Coin1

Coin2

out.0

out.2out.1

pays.0 notpays.0

pays.1

notpays.1

pays.2

notpays.2

look.0.0 look.0.2

look.2.2look.1.0

look.2.1look.1.1

Figure 3.1: Dining cryptographers protocol (adopted from [RSG+00])

As illustrated in Figure 3.1, the protocol can be modelled as a parallel compo-

sition of the cryptographers, coins, and master processes, with the lattermost

determining who is paying the bill (note that in the following CSP descriptions

of these processes are based on [SS96]). The events pays.i and notpays.i between

the cryptographers and the master are the instructions regarding the payment,

and the events look.i.j.x model the cryptographer i reading the value x from the

coin j. Lastly, the events of the form out.i model the declarations made by the

cryptographers.

36 Chapter 3. Modelling and Analysis of Security Protocols using CSP

In more detail, the process MASTER chooses either to pay himself, or one of the

cryptographers to pay non-deterministically and hence, the process definition for

the master is defined as follows, where C is the set of cryptographer identities:

MASTER =̂notpays.0 → notpays.1 → notpays.2 → STOP

�

�
i∈C

⎛⎜⎝ pays.i →
notpays.((i+ 1) mod 3) →
notpays.((i+ 2) mod 3) → STOP

⎞⎟⎠
Consequently, the process CRYPT () models the cryptographers. The cryptog-

rapher i is first given instructions regarding payment with the events pays.i and

notpays.i by the MASTER, then they compare two coins that they can see by

the channels look.i. If the coins are the same then the cryptographer performs an

out.i.agree event, or otherwise an out.i.disagree event. If the cryptographer pays

and the coins are the same then the cryptographer performs an out.i.disagree

event, else an out.i.agree event and hence, the process that models this behaviour

can be defined as:

CRYPT (i) =̂

⎛⎜⎜⎜⎝
notpays.i → look.i.i?x1 →
look.i.((i+ 1) mod 3)?x2 → STOP(

if (x1 = x2) then out.i.agree → STOP

else out.i.disagree → STOP

)
⎞⎟⎟⎟⎠

�⎛⎜⎜⎜⎝
pays.i → look.i.i?x1 →
look.i.((i+ 1) mod 3)?x2 → STOP(

if (x1 = x2) then out.i.disagree → STOP

else out.i.agree → STOP

)
⎞⎟⎟⎟⎠

Finally, the process that models each coin is defined in terms of a choice between

reading heads and reading tails.

COIN (i) =̂ Heads(i) � Tails(i)

Heads(i) =̂ look.i.i.heads → Heads(i)

� look.((i− 1) mod 3).i.heads → Heads(i)

Tails(i) =̂ look.i.i.tails → Tails(i)

� look.((i− 1) mod 3).i.tails → Tails(i)

In order to construct the model, the cryptographers are interleaved as they act

independently each other CRYPTS =̂ |||cCRYPT(c). For the same reason, the

coins are interleaved among themselves as COINS =̂ |||iCOIN(i). However, the

cryptographers and coins should synchronise on common events look, and this

3.2. Dining Cryptographers 37

composition should be run in parallel with the master process synchronising on

pays and notpays events when modelling the overall protocol, say MEAL.

MEAL =̂ ((CRYPTS ‖
{| look |}

COINS) ‖
{| pays |}∪{|notpays |}

MASTER)

The dining cryptographers model in CSP has now been modelled, however; the

anonymity property, which is to be checked against this protocol, needs to be

specified before the analysis can proceed and therefore in the next subsection

this issue is addressed.

3.2.1 Formal Specification of Anonymity

Schneider and Sidiropoulos [SS96] state that anonymity is a property of agents

rather than the messages carried on the channels, for the latter is concerned with

confidentiality. Moreover, these authors give an anonymity definition for security

protocols, which is termed here strong anonymity (this notion of anonymity will

be further discussed in Chapter 4). The definition is expressed by these authors

informally as “a message that could have been originated from one agent could

equally have been originated from any other” [SS96, p.5]. That is, if the message

x originated by the user i is considered in the form i.x, then it could equally have

been in the form j.x, where j is a user from the set of all users.

In the CSP approach to anonymity, agents’ actions in relation to events are of the

form channel.i.x, where the channel represents the type of event, i is the identity

of the agent and x is the content of the event. As anonymity is concerned with

the origin of such events, it refers to cases where an event channel.i.x cannot,

in some sense, be distinguished from channel.j.x, where i and j are two agents

within the group of USERS, and x is in the set Data. Hence, the set of all the

messages communicated on the channels covering all identities of the agents that

need to be hidden can be written as:

A = {| channel.i.x | i ∈ USERS, x ∈ Data |}

The intuition is that if an observer has access to only the content x of the message,

and the identity of the agent i is hidden from them, then the content could equally

have been generated by any of the agents.

Definition 1 (Strong Anonymity [SS96]). A process P is strongly anonymous

on the alphabet A ⊂ Σ if:

P [[x/y | x, y ∈ A]] ≡T P

38 Chapter 3. Modelling and Analysis of Security Protocols using CSP

The original definition in [SS96] expressed this definition using functional and

inverse functional renaming, as follows (now cast in relational notation):

P [[β/A]][[A/β]] ≡T P where β /∈ αP

[[β/A]] is used as shorthand for [[β/x | x ∈ A]], and [[A/β]] as shorthand for

[[x/β | x ∈ A]]. Moreover, [[A/A]] is used as shorthand for [[x/y | x, y ∈ A]]. The

definition given here is equivalent, since the composition of the relations [[β/A]]

and [[A/β]] is indeed [[A/A]]. P [[A/A]] ≡T P means that the two processes, P , and

the renamed process, P [[A/A]], are trace equivalent and so are indistinguishable

from the point of view of an observer who can see the traces of each of these

processes. The two corollaries are:

1. If the abstracted system P is anonymous on the sets A and A′, then P is

anonymous on A ∪A′, if A ∩A′ �= ∅.

2. If P is anonymous on the set A and A′ ⊆ A, then P is anonymous on the

set A′.

3.2.2 Analysis

Anonymity is often considered in presence of an observer. In the dining cryptog-

raphers example, the observer could be an outsider sitting at another table or

other cryptographers sitting at the same one and in the anonymity analysis for

this protocol only these two cases are considered (for more case analysis of this

protocol, the reader is referred to [SS96]).

Anonymity from an Outsider’s Point of View

The anonymity of the system MEAL from an observer’s point of view is provided

where he/she can only see the out events. Thus, the internal events like look will

be abstracted away, but not pays events, because they are needed for checking

anonymity between the cryptographers on the set A1 = {| pays |}. Regarding this,
according to the strong anonymity definition, it is necessary to check whether

the trace equivalence

MEAL[[A1/A1]] ≡T MEAL

holds. However, prior to this the look events need to be hidden as the observer

is not allowed to see a cryptographer looking at a coin yet and the best way to

model this is by using the hiding operator. Therefore, the assertion required for

the anonymity check is:

3.2. Dining Cryptographers 39

MEAL[[A1/A1]] \ {| look |} ≡T MEAL \ {| look |}

However, if the observer is allowed to see when a cryptographer is looking at

coins, but not the content or outcome of the tosses then renaming is the most

suitable abstraction method and under these circumstances the trace equivalence

required to check for anonymity of the system is:

MEAL[[look.i.j/look.i.j.x]][[A1/A1]] ≡T MEAL[[look.i.j/look.i.j.x]]

FDR confirms that anonymity is provided by the dining cryptographers protocol

model in both cases.

Anonymity Against Other Cryptographers

Anonymity against the other cryptographers is also provided by the protocol, be-

cause each is not able to distinguish the payer from other two. In more detail, the

observer, say cryptographer i, now possesses more information than the outsider

in the previous subsection, because he/she can see the look.i events. As a result,

the anonymity of the protocol needs to be checked for the set A2 below.

A2 = {| pays.((i+ 1) mod 3), pays.((i+ 2) mod 3) |}.

Following that, the set of sensitive information (the look events of the other

cryptographers):

S = {| look.((i+ 1) mod 3), look.((i+ 2) mod 3) |}

needs to be hidden from the cryptographer i and therefore, the assertion required

for anonymity in this case is the following.

MEAL[[A2/A2]] \ S ≡T MEAL \ S

However, in the case where cryptographer i is able to see other cryptographers

looking at coins but not the contents, the renaming operator is more appropriate,

as used previously. As a consequence, the following equivalence needs to be

checked for the anonymity of the protocol.

MEAL1 [[A2/A2]] ≡T MEAL1

where MEAL1 =̂ MEAL[[look.a.b/look.a.b.x | a ∈ C � i]].

FDR verifies that the dining cryptographers protocol satisfies the anonymity

requirements against the other cryptographers.

40 Chapter 3. Modelling and Analysis of Security Protocols using CSP

3.2.3 Summary

In this subsection it has been demonstrated how FDR and CSP can be used to

model a simple security protocol and to verify mechanically whether the protocol

satisfies the anonymity requirement. Moreover, the formal specification of strong

anonymity was presented as such a requirement and this on first consideration

might relevant to the analysis of voting systems (the differences are explored in

Chapter 4). The analysis has illustrated that the operators under CSP, such as

hiding and renaming, are useful for abstracting away sensitive information in

the presence of an observer or passive intruder. This kind of intruder model is

used in Chapters 4 - 6, when analysing the ThreeBallot and Prêt à Voter voting

systems with a different specification for anonymity.

In the next section, an active and stronger intruder model is described, which

is then used for analysing the effectiveness of the NSPK protocol in terms of its

secrecy property. Subsequently, this intruder model is used in Chapter 7 during

the evaluation of the vVote voting system.

3.3 Needham Schroeder Public-Key Proto-

col Analysis

The Needham Schroeder Public-Key (NSPK) protocol aims to provide mutual au-

thentication after a sequence of message exchanges between a number of agents.

More specifically, mutual authentication between the agents Alice and Bob en-

sures that if Alice thinks she has been communicating with Bob, then she should

indeed be communicating with him and the same applies for Bob as well, i.e.,

he should be sure that who he thinks he is talking to should indeed be Alice.

Additionally, the protocol aims to provide a secrecy property, which means the

contents of the communication between Alice and Bob should be kept solely to

them. That is, under the NSPK protocol, the secret is the nonce (an abbreviation

for “number used once”), which takes the form of a shared symmetric key, such

that no party other than the key holders are able to decipher messages encrypted

by using it.

In order to achieve its goals, the protocol uses public-key cryptography, whereby

each agent a and b, and the server s possess their own public and secret keys,

namely, (pka, ska), (pkb, skb) and (pks, sks), respectively. Additionally, the pro-

tocol uses nonces, i.e., used only once in a protocol run, denoted as na and nb

generated by the agents a and b, respectively. Moreover, the protocol agents can

be either an initiator to start a session or a responder for a request to establish

one. The following describes how the NSPK protocol works in steps.

3.3. Needham Schroeder Public-Key Protocol Analysis 41

m.1 a → s : a, b
m.2 s → a : Ssks(pkb, b)
m.3 a → b : Epkb(na, a)
m.4 b → s : b, a
m.5 s → b : Ssks(pka, a)
m.6 b → a : Epka(na, nb)
m.7 a → b : Epkb(nb)

In the protocol, it is assumed that agents do not necessarily know each other’s

public keys and hence, the steps where the agents communicate with the server

(m.1, m.2, m.4, m.5) in order to obtain each others’ public key can be omitted.

This is because the messages inm.1 andm.4 are in the clear, meaning the intruder

can see what is being sent and thus it is not important that the intruder knows

when the agent a is willing to communicate with b. Consequently, it can be

assumed that the agents already know each other’s public-keys, thus shrinking

the protocol steps down to three (m.3, m.6, m.7). In this three-message version

of the protocol, agent a sends his randomly chosen nonce na and his identity by

encrypting with agent b’s public key pkb. Therefore, as the only agent knowing

the secret key skb is b, if a receives na back from b, then a should be sure that she

is talking to b, because only b can decrypt and evaluate the ciphertext encrypted

under pkb. Subsequently, in step m.6, b sends not only the nonce na derived from

the ciphertext, but also a freshly generated random nonce, nb to a and so he can

authenticate the agent a by challenging her with the encryption Epka(na, nb). In

the final message, a encrypts nb with b’s public key and sends it to b. Hence, as

only agent a can decrypt the ciphertext, b is now sure that he is indeed talking to

a. Now that a and b share a secret, which should be only known by them, they

can use this key for further communication.

In order to analyse such a protocol as the NSPK in CSP, the behaviour of honest

agents, Alice Bob and the server Tom as well as the misbehaving agent, the

intruder, have to be modelled. Moreover, the intruder will have the ability to act

with other good agents with a fake identity, in the name of say Cameron, thus

functioning as a Dolev-Yao intruder [DY83]. The well-behaved agents will follow

the rules of the protocol properly, whereas the intruder will not. The modelling

and analysis of the NSPK in the following subsections will be based on [Ros97]

and [RSG+00].

3.3.1 Defining Reliable Agents

An agent can either initiate the protocol to establish a secure communication

with another agent or respond to a session request. The following process

Agents(a, na) describes the behaviour of the agent a with the nonce na. That

42 Chapter 3. Modelling and Analysis of Security Protocols using CSP

is, if the agent possesses a nonce then he chooses to be either an initiator or a

responder, but if no fresh nonce exists, then the process terminates.

Agent(a, 〈na〉) =̂
if 〈na〉 = 〈〉 then STOP else Initiator(a, na) � Responder(a, na)

An initiator aims to be in a secure authenticated session with a target agent.

Thus, initiator, a, chooses a target from the set of agents, A, except herself and

the server, T , with which to establish a session. Afterwards, she sends her identity

a and the target’s identity b to the server and following this, the initiator should

accept the public-key certificate of b sent from the trusted server. Having received

the public-key of the target b, the initiator challenges him with an encryption of

her freshly generated nonce na. The initiator now should be ready to accept

the correct message sent by the responder b along with a new nonce challenge

nb chosen from the set of nonces, N . Finally, having answered the challenge

with the message including nb, the initiator enters a session with the responder.

Note that the channel comm, on which honest agents communicate, has the form

agents.agents.messages, which specifies the origin of the message as well as its

destination.

Initiator(a, na) =̂

�
b∈A�{a,T}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

comm.a.T.〈a, b〉 →
comm.T.a.SskT (pkb, b) →
comm.a.b.Epkb(na, a) →

�
nb∈N

⎛⎜⎝ comm.b.a.Epka(na, nb) →
comm.a.b.Epkb(nb) →
Session(a, b, nb)

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

A responder has to accept any message initiating the protocol by other agents

except the server, but it must be in an agreed form. For instance, if he is waiting

a nonce, then the message should be a nonce, or if he is willing to accept a signed

message by the server, then the message should indeed need to be signed by

the server (any other messages that are not in an acceptable form are rejected).

The responder’s behaviour when he communicates with the initiator is the same,

except obviously they have opposite perspectives. Moreover, the responder com-

municates with the server to obtain the other agent’s public-key just like the

initiator and finally enters a state in which he is in a session with the initiator.

3.3. Needham Schroeder Public-Key Protocol Analysis 43

Responder(b, nb) =̂

�
a∈A�{b,T}
na∈N

⎛⎜⎜⎜⎜⎜⎜⎜⎝

comm.a.b.Epkb(na, a) →
comm.b.T.〈b, a〉 →
comm.T.b.SskT (pka, a) →
comm.b.a.Epka(na, nb) →
comm.a.b.Epkb(nb) →
Session(b, a, nb)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Once the NSPK protocol is completed, the initiator and responder are in an

authenticated session, and they can send secret messages to each other using

the second nonce as the symmetric encryption key, with these messages being

symbolically defined as (AtoB and BtoA).

Session(a, b, n) =̂

comm.a.b.Epkn(AtoB) → Session(a, b, n)

� comm.b.a.Epkn(BtoA) → Session(a, b, n)

� close → Agent(a, 〈n〉)

Similarly, the behaviour of the server, Tom, can be modelled in the protocol

(note that the server is not needed in the three-message version of the NSPK),

under the assumption that he is an honest party who both the initiator and the

responder trust. He is responsible for issuing public-key certificates, and when

asked for a particular agent’s public key, he obligingly sends the signed public-key

to the requesting agent.

Server(a, b, n) =̂

�
a∈A�{T}
b∈A�{a,T}

(
comm.a.T.〈a, b〉 →
comm.T.a.SskT (pkb, b) →

)

Finally, in order to model the hostile environment, the intruder process is mod-

elled in the next subsection.

3.3.2 Building the Intruder

The intruder can overhear the messages between the honest agents, being able to

intercept, block and/or send fake messages as well as interacting with the latter.

Moreover, he can also act as a legitimate agent and interact with the other honest

agents using his trustworthy credentials, such as identity, public-key pair, a fresh

nonce and a secret which he can send to the honest agents. However, he cannot

decrypt a ciphertext unless he possesses the appropriate secret key. Additionally,

he can extend his initial knowledge with the information learned by observing

44 Chapter 3. Modelling and Analysis of Security Protocols using CSP

communication channels either via overhearing or intercepting and subsequently

generate any message by using the facts in his knowledge base. He is also given

the power to deduce further knowledge from what he knows already under the

deduction rules.

The knowledge that such an intruder can build is huge, as he can always learn

new messages, and say those that he knows. However, this kind of modelling

requires him be ready to act for any single fact he possesses, but it is not an

efficient way to model such complex protocols, as the required state space is too

large to be handled by the model checker tools. In order to address this, the

lazy spy intruder model is a standard technique for security protocol analysis, in

which the intruder is called lazy as it avoids the eagerness of pre-computation of

unnecessary inferences [Ros10]. It is modelled in a way that the intruder should

know only the facts that he does not initially know, or that cannot be deduced

from his initial knowledge. Therefore, to this end, the intruder is modelled as

parallel composition of those facts that can be learned (learnable facts).

To allow the intruder to build messages a number of deduction rules need to

be defined. A deduction is a pair (X, f), where X is a finite set of facts and

f is the fact that can be generated providing that the intruder possesses all

the facts in X. Four of the deductions regarding the rules in Table 2.4 are as

follows: deductions1 captures the symmetric key encryption, deductions2 refers

to public-key encryption, deductions3 covers digital signatures, and deductions4
encapsulates sequences.

deductions1(X) = {({f, k},Ek(f)), ({Ek(f), k}, f) | Ek(f) ∈ X}
deductions2(X) = {({f, pk},Epk(f)), ({Epk(f), dual(pk)}, f) | Epk(f) ∈ X}
deductions3(X) = {({f, sk}, Ssk(f)), ({Ssk(f), dual(sk)}, f) | Ssk(f) ∈ X}
deductions4(X) = {({〈m〉}, nth(j, 〈m〉)),

({nth(i, 〈m〉) | i ∈ {0 . . .#〈m〉 − 1}}, 〈m〉)
| 〈m〉 ∈ X, j ∈ {0 . . .#〈m〉 − 1}}

Moreover, the finite set deductions(X) =
⋃

i deductionsi(X) is the set of all

possible deductions covering all the deduction rules.

As mentioned above, the intruder only needs to fake messages that are valid, i.e.,

the messages that really travel on the protocol channels between agents, which

makes it more efficient. Hence, in order for the intruder to understand the nature

of a message, its type also needs to be defined. For instance, the message that

is an encryption of a nonce can be described as being in the set message1, and

the justification of the message being heard can be defined with the set comm1

as shown below.

3.3. Needham Schroeder Public-Key Protocol Analysis 45

message1= {Epka(na) | a ∈ A, na ∈ N}
comm1 = {a.b.m | m ∈ message1, a ∈ A, b ∈ A, a �= b}

message2= {Epka(na, nb) | a ∈ A, na ∈ N , nb ∈ N}
comm2 = {a.b.m | m ∈ message2, a ∈ A, b ∈ A, a �= b}

message3= {Epka(nb, b) | a ∈ A, b ∈ A � {a}, nb ∈ N}
comm3 = {a.b.m | m ∈ message3, a ∈ A, b ∈ A, a �= b}

message4= {Ek(f) | f ∈ Secret}
comm4 = {a.b.m | m ∈ message4, a ∈ A, b ∈ A, a �= b}

message5= {SskT ((pka, a)) | a ∈ A}
comm5 = {a.b.m | m ∈ message5, a ∈ A, b ∈ A, a �= b}

message6= {〈a, b〉 | a ∈ A, b ∈ A � {a}}
comm6 = {a.b.m | m ∈ message6, a ∈ A, b ∈ A, a �= b}

The union of all such messages form the set of messages, M =
⋃

imessagei, and

the set comms =
⋃

i commi is used in the intruder process in order for him to

learn only the messages sent between the protocol participants. That is, these

messages are the ones that he can learn or wants to construct for faking, but

he can also construct messages in parts. In order to do so, the intruder needs a

way to identify the facts that are relevant to the messages, M and this is made

possible using the function called explode. This function can be applied to all

the previously defined message types as follows:

explode(Epk(m))= {Epk(m), pk, dual(pk)} ∪ explode(m)

explode(Ek(m)) = {Epk(m), k} ∪ explode(m)

explode(Ssk(m)) = {Ssk(m), sk, dual(sk)} ∪ explode(m)

explode(〈xs〉) = {〈xs〉} ∪
⋃
({explode(x) | x ∈ set(〈xs〉)})

explode(x) =x

where dual(pk) = sk and dual(sk) = pk. Thus, the function explode extracts the

set of all facts that are of relevance to the given message. Similarly, all facts can

be learned as:

AllFacts =
⋃
({explode(m) | m ∈ M})

and then by using the deductions() function all possible deductions being built.

AllDeductions = deductions(Allfacts)

46 Chapter 3. Modelling and Analysis of Security Protocols using CSP

In addition, the set of deductions and facts can be further cut down by omit-

ting facts that cannot be reachable given the initial knowledge by the following

procedure. Known, being the full initial knowledge closed with a function called

Close(IK), extracts all possible deductions by applying the deduction rules for

the set, IK, where the initial knowledge IK given to the intruder for the analysis

of the NSPK is the set of all public-keys, the secret key of Cameron, a fresh nonce

and a secret.

PossibleBasicKnowledge = Known ∪messages

KnowableFacts = Close(PossibleBasicKnowledge)

Learnablefacts = KnowableFacts �Known

After discarding all the deductions that are already known to the intruder and

the ones that cannot be reached by him, the deductions, D, can be defined as

follows:

D = {(X, f) | (X, f) ∈ AllDeductions,

f ∈ Learnablefacts,

f /∈ X,

X �Knowlablefacts = ∅}

The following process, Ignorantof , ensures that all facts in Learnablefacts have

state: the process can always learn a fact, but it can only say once the fact is

known. Moreover, the channel infer models the occurrence of inferences and an

inference on the deduction (X, f) can happen when all its assumptions X are

known, but f not.

Ignorantof (f) =̂f ∈ M& learn.f → Knows(f)

� infer?t ∈ {(X , f ′) | (X, f ′) ∈ D, f ′ = f} → Knows(f)

Knows(f) =̂f ∈ M& say.f → Knows(f)

� f ∈ M& learn.f → Knows(f)

� infer?t ∈ {(X , f ′) | (X, f ′) ∈ D, f ∈ X} → Knows(f)

� f ∈ Secret& intruderknows.f → Knows(f)

The set Secret in the last line consists of the secret messages that the in-

truder should not be able to know and in this case, they are defined as the

set {AtoB,BtoA}. Hence, when he gets to know an element of this set, the chan-

nel intruderknows flags this up signalling that the secret has been compromised.

The following AlphaL(f) defines the alphabet of each fact.

3.3. Needham Schroeder Public-Key Protocol Analysis 47

AlphaL(f) = {say.f, learn.f | f ∈ M}
∪{intruderknows .f | f ∈ Secret}
∪{infer .(X , f ′) | (X , f ′) ∈ D, f ′ = f }
∪{infer .(X , f ′) | (X , f ′) ∈ D, f ∈ X }

Consequently, the intruder process can be defined as a parallel composition of

facts, where the internal events infer are hidden.

Intruder =̂

chase((‖
f∈Learnablefacts

(Ignorant(f),AlphaL(f)))\{|infer |})

||| SayKnown

The process SayKnown defined below ensures that the proper messages that are

already known are learned and said, since the facts that are of relevance to the

initial knowledge IK are not included in the Learnablefacts and Deductions.

SayKnown =̂ say.f ∈ Known ∩M → SayKnown

� learn.f ∈ Known ∩M → SayKnown

chase is a special function that makes the analysis more efficient by avoiding

checking all possible states [Ros10], because it always follows τs (unstable states)

until no more τ is possible. Hence, some other possible ways are left to be explored

and the operator has the right to choose any path to follow. In addition, although

chase(P) changes the value of the process P sometimes, the behaviour of chase(P)

is equivalent to P whenever P is deterministic and in this analysis of the intruder

process this is always the case [Ros97]. In the following subsection, a description

is provided on how to connect together the reliable agents and the intruder.

3.3.3 Composition of the System

Having modelled the reliable agents, including the server, as well as the intruder,

the model that connects all these agents needs to be composed. That is, the

reliable agents and the intruder need to be modified in a way that the messages

are ready to be tampered with by the latter. To this end, the comm events, and

learn and say ones need to be connected to each other (see Figure 3.2). Hence,

for an agent a, the outgoing messages along the channel comm.a.b.m and learn.m

events of intruder are renamed to either a comm.a.b.m or take.a.b.m events, and

similarly inbound messages on the comm.b.a.m and say.m events are renamed

to either a comm.b.a.m or fake.b.a.m events. The reliable agents will not notice

the difference whether they communicate over the comm channels or the take

and fake channels and consequently, they have no way of knowing whether the

48 Chapter 3. Modelling and Analysis of Security Protocols using CSP

Agent
 a

comm.a.b.f

comm.b.a.f

take.a.b.f

comm.a.b.f

fake.b.a.f

comm.b.a.f

Intruder

say.f

learn.f

Figure 3.2: Connecting agents with renaming

intruder is communicating with them. The number of agents in such analysis

needs to be kept to a minimum, because of the earlier discussed state explosion

problem. Hence, in this model there exist two reliable honest agents Alice and

Bob trying to establish an authenticated communication via the server, Tom,

and an intruder who can act as Cameron trying to break the protocol objectives.

The roles for each agent can be predefined, such as, Alice being the initiator with

a nonce, nA, and Bob being the responder with the nonce nB. The following

processes model the renamed honest agents.

Alice =̂

Initiator(A, nA)

[[take.A.p, fake.p.A, comm/comm.A.p, comm.p.A, comm | p ∈ A � {A}]]

Bob =̂

Responder(B, nB)

[[take.B.p, fake.p.B, comm/comm.B.p, comm.p.B, comm | p ∈ A � {B}]]

Tom =̂

Server

[[take.T.p, fake.p.T, comm/comm.T.p, comm.p.T, comm | p ∈ A � {T}]]

As a result, the Network process below models the connected reliable agents

in such a way as to allow the intruder to perform manipulations on the comm

channels.

Network =̂

(Alice ‖
{| comm.A.B,

comm.B.A
|}
Bob) ‖

{| comm.T.p,
comm.p.T

| p∈{A,B} |}
Tom

3.3. Needham Schroeder Public-Key Protocol Analysis 49

Similarly, the intruder is renamed so that what he says can be said or learned

again. Moreover, he learns only the valid messages due to the second renaming

whereby all of them take the form p, p′.f , which indicates that they are from real

communications between the agents. Finally, what the intruder says becomes

fake.

rIntruder =̂

Intruder

[[say, learn/say, say]]

[[comm.p.p′.f, take.p.p′.f/learn.f, learn.f | p.p′.f ∈ comms]]

[[fake.p.p
′.f/say.f | p.p′.f ∈ comms, p �= p′]]

The NSPK protocol, the process System, is then defined in terms of the parallel

composition of Network and rIntruder that synchronise on comm, take and the

fake events.

System =̂ Network ‖
{| comm,take,fake |}

rIntruder

Having modelled the protocol, the secrecy specification for the analysis is defined

in the next subsection.

3.3.4 Formal Specification of Secrecy

Secrecy can be defined in a number of ways. For example, non-interference can

be used in situations where the intruder is interested in agents’ activity with-

out any observation on the communications among legitimate agents. In other

words, the view at the low level (not highly classified inputs and outputs) is

unable to tell whether or not high level activity with highly sensitive data has

occurred [RSG+00]. This sort of formalism of secrecy is too strict for the pur-

pose of our analysis in this thesis where the intruder needs to derive content

of any message transmitted over the network. Moreover, non-interference style

secrecy definition is known to have issues with the secrecy of an encrypted chan-

nel as the high-level plaintext influences the ciphertext visible to the low-level

user [RSG+00]. On the other hand, secrecy can be defined in a simpler and

more appropriate way as a safety property. Such characterization (also called as

reachability) considers the situation where the intruder reaches a certain state of

knowing a secret as a secrecy breach. The intruder with such formalization can

perform traffic analysis and deduce the facts about the protocol messages. In this

thesis, the formal definition of secrecy as a reachability property will be focused.

As stated previously, the secrecy property can be defined as safety property, i.e.,

nothing bad should happen and hence, the protocol should not leak any secret

50 Chapter 3. Modelling and Analysis of Security Protocols using CSP

information during a protocol run. In the NSPK protocol, the set Secret is

defined as {AtoB,BtoA}. Therefore, in order for the protocol to provide secrecy

for any messages, the intruder should not be appraised of these secrets by the

end of the protocol run (the secret is kept secret) and to achieve this there is an

extra channel called intruderknows. Although, this channel is not a part of the

actual protocol, it is useful for security analysis, since its occurrence means that

the intruder process is in a state where it knows the secret data, thus breaking

the secrecy of the sensitive information. For instance, if the secret AtoB has

been possessed by the intruder then Alice must be thinking that she is in an

authenticated communication with Bob, when she is actually interacting with

the intruder.

As explained in Section 2.3, safety properties are generally modelled using the

traces model in CSP and so is the secrecy property. The following trace refinement

checks whether the event intruderknows ever happens in a protocol run:

STOP �t System \ Σ � {| intruderknows |}

where Σ is the alphabet of the process System:

Σ = {| comm, take, fake, intruderknows |}

Model checking of this protocol with FDR provides a trace in which the intruder

performs an intruderknows event, meaning the protocol fails to keep the secrecy

of the messages AtoB or BtoA. The following counter-example in Figure 3.3 is a

confirmation of Lowe’s attack.

The attack is mounted with two parallel running protocol sessions, α and β. In

the protocol run α, the honest agent Alice wants to communicate with the corrupt

agent Cameron, whereas during session β, the intruder initiates the protocol for

a secure session with the other honest agent Bob, and makes him believe that

he is interacting with Alice by learning all the secrets from the session α and by

impersonating her.

In more detail, in step β.6, Bob responds the intruder’s nonce challenge by sending

the encrypted nA and nB under pkA. However, the intruder, at this stage, cannot

decrypt the message and retrieve the nonce nB and instead he sends it back to

Alice using her session with Cameron in step α.6. At the end of the α session

in step α.7, Alice responds to Cameron’s challenge by decrypting the message

EpkA(nA, nB) and sending nB to Cameron by encrypting it under his public key,

EpkC (nB). Because the intruder possesses Cameron’s secret key, he can then

obtain the nonce nB and answer Bob’s challenge by encrypting nB under Bob’s

public-key. Having completed the session β, Bob now thinks that he is in an

3.3. Needham Schroeder Public-Key Protocol Analysis 51

α.1 A → T : 〈A,C〉 comm.A.T

α.2 T → A : SskT (pkC , C) comm.T.A

α.3 A → C : EpkC (nA, A) take.A.C

β.1 I(A) → T : 〈A,B〉 fake.A.T

β.2 T → I(A) : SskT (pkB, B) take.T.A

β.3 I(A) → B : EpkB (nA, A) fake.A.B

β.4 B → T : 〈B,A〉 comm.B.T

β.5 T → B : SskT (pkA, A) comm.T.B

β.6 B → I(A) : EpkA(nA, nB) take.B.A

α.6 C → A : EpkA(nA, nB) fake.C.A

α.7 A → C : EpkC (nB) take.A.C

β.7 I(A) → B : EpkB (nB) fake.A.B

Figure 3.3: Lowe’s attack on seven-message version of NSPK: The right hand side
is the FDR output equivalent of the messages on the left hand side. Moreover,
the steps in bold, like α.3, represent the attack for a three-message version of
the NSPK protocol where there is no server, T, involved. Finally, I(A) models
impersonating Alice, hence, the intruder can intercept the messages coming to
Alice and send fake messages as if Alice is sending them.

authenticated session with Alice, when he is actually talking to the intruder.

Therefore, when Bob wants to send a secret BtoA to Alice, he will send it by

encrypting it with the nonce nB, EknB
(BtoA), which is the shared secret key. As

the intruder possesses nB and therefore can extract BtoA, there is a violation of

the secrecy property of the NSPK protocol.

Lowe [Low96] suggested a fix for this situation by adding the sender’s identity

in step 6 of the seven-message version of the NSPK. In the previous attack, it

was explained how the intruder is able to receive EpkA(nA, nB) from Bob in step

β.6 and replay it to Alice via Cameron in α.6. However, with Lowe’s fix he

is not able to perform the same actions, as there is the sender’s identity in the

message that he receives in step β.6, EpkA(nA, nB, B). Therefore, when he replays

this message to Alice, which includes Bob’s identity, she would notice that the

original sender of this message was not Cameron, but Bob, thereby being able to

avoid the attack.

3.3.5 Summary

This above section has introduced the Dolev-Yao intruder model for CSP, which

is active and stronger than the observer defined in the Dining Cryptographers

Problem covered in the previous section. Additionally, an efficient method for

implementing the intruder model (lazy spy) in CSP, which can also be checked

52 Chapter 3. Modelling and Analysis of Security Protocols using CSP

automatically using FDR, has been described. In terms of modelling crypto-

graphic protocols, the NSPK protocol was modelled and analysed with respect

to the secrecy property as is a common desired in relation to voting systems. In

Chapter 7 this intruder model is adapted for the analysis of cryptographic voting

systems, specifically vVote and although it is modified a lot for this purpose, the

main idea underpinning the analysis remains the same.

In the next chapter the anonymity requirement for voting systems is formally

defined, and subsequently applied to conventional voting system analysis under

the passive intruder model as categorised in Section 3.2, using the CSP language

and the FDR model checker.

Chapter 4

Formal Anonymity Definition

and Automated Verification

This chapter∗ presents a novel approach to defining a formal anonymity specifica-

tion as well as modelling and analysis of non-cryptographic voting systems using

CSP and FDR. To this end, a number of anonymity definitions in the literature

are investigated in Section 4.2 and subsequently the weak anonymity is formally

defined in Section 4.3 in CSP for automated verification. Moreover, the strong

and weak anonymity specifications are tested in terms of their suitability for vot-

ing systems with a referendum example using the abstraction methods introduced

in Section 3.2. Additionally, the conventional voting system (CVS) is modelled

and analysed with respect to these specifications in Section 4.4 and in Section 4.5

there is further analysis which considers the possibility of corrupt agents as de-

scribed in the previous chapter regarding dining cryptographers problem, where

sensitive data may be leaked to an intruder. Finally, in Section 4.6 a discussion

on the formal definitions of anonymity for voting systems is presented.

4.1 Overview

Anonymity of one’s vote lies at the heart of the democratic process, for if the link

between a voter and her vote is uncovered, then not only the secrecy but also

the integrity of the election is threatened, because votes may be bought, or the

voters may be coerced into supporting particular candidates. As rigorous proto-

col analysis requires a concise formal definition of the properties, the anonymity

property also needs to be clearly defined. However, as mentioned previously,

formally defining such properties is not straightforward as these can vary for dif-

∗This chapter is mainly based on the published work in the Formal Aspects of Computing
Journal [MHS12].

53

54 Chapter 4. Formal Anonymity Definition and Automated Verification

ferent scenarios. Regarding this, there have been a number of research efforts

towards formally defining the anonymity property in the context of voting sys-

tems. However, little work has been undertaken aimed at providing a foundation

for the automated verification of this property.

4.2 Related Work

First, drawing on the existing literature, several approaches to anonymity are

considered.

Pfitzmann et al. [PK00] define anonymity in a message sender-receiver setting,

where it is specified as the state of someone not being identifiable within a given

anonymity set of subjects (a set of all possible subjects who might cause an

action). In a voting context, this would mean that no specific vote is linkable to

any particular voter ID. In addition, an element from the anonymity set possesses

indistinguishability if it is indistinguishable from all other elements in the set. In

terms of voting, this would naturally mean the inability to distinguish a particular

vote from within a set of votes. Unobservability describes when an intruder cannot

observe that a particular event has occurred, for example, that a particular voter

has voted. Finally, the term pseudonymity describes the use of pseudonyms as

identifiers of subjects. For instance, ballot serial numbers can be considered as

pseudonyms that link voters to ballot papers and the latter to votes.

Fournet and Abadi [FA02] give a general privacy definition in the pi calculus

with respect to private authentication protocols. They define anonymity as the

case where “two process behaviours have the same interpretation on the model

as long as they are indistinguishable by observation in all contexts.” That is,

two user processes U1 and U2 are identical in any context from the environment’s

point of view; in what follows, this is defined as weak anonymity. Moreover, in

their description, an observational equivalence notion† is employed to formalise

properties. Mauw et al. [MVd04] define anonymity based on the work in [PK00]

described above in that a coercer should not be able to distinguish a user u from

another user u′ in the anonymity group of u. That is, for every behaviour of

the system that can be attributed to user u, there is another indistinguishable

system behaviour that can be attributed to u′. Shmatikov and Hughes [HS04]

give a specification framework for anonymity and privacy based upon a view

in which system behaviour is described as a set of functions and the desired

properties are defined with observational equivalence using a modular approach.

In their paper, several forms of anonymity in terms of a sender-receiver relation

†The observational equivalence notion in this context is the analogue of the trace equivalence
notion in CSP that are used in the definitions of anonymity in the next sections.

4.2. Related Work 55

are described and some of those definitions are adopted in this work as they are

deemed applicable to the voting scenario, as described next.

� Absolute voter anonymity : an attacker cannot tell anything about the

voter’s identity, as every voter is plausible for every observed vote. In

addition, in this model an attacker should not be able to link a pseudonym

(for example, a ballot serial number) with a sender ID (voter). It should

be noted that this strong form of anonymity corresponds to that discussed

in Chapter 3.

� Type-anonymity : an attacker may learn the type of voter. That is, in the

case of postal voting, if there are relatively few voters who have registered

and cast their votes by post, an attacker may in some cases be able to reduce

the number of possible voters for a particular vote to a proper subset of the

set of voters (either the set of postal voters or its complement).

� Session-level : an attacker may know the entire set of voters and their votes,

but is unable to link the latter to the former’s identities during an election (a

session in their definition). For instance, if an attacker is observing a polling

station where only one vote has been cast, and each polling station declares

their results separately, he may be able to deduce the voter’s identity.

� Unobservability : an attacker should not be able to identify that a particular

voter has cast a vote; that is, a voting act should be unobservable.

� Untraceability : an attacker or an observer should not be able to determine

whether two votes cast in different locations have been cast by the same

voter.

Taking a different approach, Juels et al. [JCJ05] describes anonymity as the

property of privacy, where the coercer or adversary cannot guess how a voter voted

better than an adversarial algorithm whose only access is the final tally. Although

Kremer and Ryan [KR05] and Delaune et al. [DKR06, DKR09] also consider the

issue of privacy, they adopt Fournet and Abadi’s general privacy definition [FA02]

in pi calculus for voting system protocols. Moreover, Delaune et al. use the term

“vote privacy” as a synonym for anonymity, and look for cases where nobody has

enough information to identify whether two voters swapped their votes. That

is, if an observer cannot tell whether two arbitrary honest voters swapped their

votes, then he cannot deduce information about how they cast them and some

of the applications of this notion of anonymity include [BHM08, DRS08, Smy11,

CCK12].

56 Chapter 4. Formal Anonymity Definition and Automated Verification

In the next section, the appropriateness of two formal anonymity definitions:

Schneider and Sidiropoulos’s [SS96] and Fournet and Abadi’s [FA02], are inves-

tigated, being denoted as strong and weak anonymity, respectively.

4.3 Formal Definition of Anonymity

This section discusses the applicability of the strong anonymity definition with

a referendum example using the abstraction methods introduced in Section 3.2.

Subsequently, both strong and weak anonymity are assessed in the context of

voting systems using CSP and FDR.

The strong anonymity definition has already been provided in Section 3.2.1

whereby a process P is said to be strongly anonymous on the alphabet A ⊂ Σ, if

P [[x/y | x, y ∈ A]] ≡T P , and it was shown that it is equal to P [[β/A]][[A/β]] ≡T P ,

where β /∈ αP . The first relation maps all the events on the alphabet A to a

single event β, and the second maps β to any event in A. Thus, if every event

of P from the alphabet, A, is renamed to the event, β (many-to-one renaming),

then whenever an event, a ∈ A, is possible for P to perform, P [[β/A]] can perform

its image β. Conversely, [[A/β]] is one-to-many renaming, which maps the event

β back to the alphabet A. Thus, when β is possible for the renamed process

P [[β/A]], any event in A is also possible for P [[β/A]][[A/β]].

With the following referendum example, the aim is to examine the strong

anonymity definition for voting systems as well as to demonstrate the appro-

priateness of abstraction methods in CSP and effectiveness of FDR in analysing

such protocols.

4.3.1 Referendum Example

The following example of a referendum‡ involves two possible voters v1 and v2,

with only one of them voting, either for or against it. However, the voter v1
always says yes (if he votes at all), and similarly the other voter v2 always says

no. As a result, the process modelling this behaviour is defined as the process

Ref by:

Ref =̂ vote.v1 → yes → STOP � vote.v2 → no → STOP

If the aim is to verify whether the process satisfies strong anonymity, it is nec-

essary to check the trace equivalence StrongSpecA(Ref) ≡T Ref for the set

A = {| vote.v1, vote.v2 |}, where
‡A referendum is a form of democracy, whereby the voters are asked to accept or reject a

particular proposal and hence, generally, the ballots consist of yes and no options.

4.3. Formal Definition of Anonymity 57

StrongSpecA(Ref)=̂ Ref[[A/A]]

=̂ vote.v1 → (yes → STOP � no → STOP)

� vote.v2 → (no → STOP � yes → STOP)

However, the trace equivalence above does not hold, because 〈vote.v1, no〉 is a

trace of StrongSpecA(Ref), but not of Ref. This has happened because the ‘no’

vote is sufficient to identify the voter. However, if the events in H = {| yes, no |}
are hidden from the observer, then the abstracted process Refabs1 is defined as:

Refabs1=̂ Ref \ H

=̂ vote.v1 → STOP � vote.v2 → STOP

Now, when the strong anonymity definition is applied to Refabs1 , the resulting

process StrongSpecA(Ref
abs1) has the same trace as Refabs1 , and the specification

is met.

Additionally, the observer can be limited so that he can see the occurrence of

events, but is unable to identify which the process is performing. For example,

imagine that the votes are cast in envelopes, by using the renaming operator on

the set H above, the sensitive data can be abstracted away. The new abstracted

process Refabs2 can be written as:

Refabs2 =̂ Ref[[envelope, envelope/yes, no]]

=̂ vote.v1 → envelope → STOP � vote.v2 → envelope → STOP

In order to verify whether Refabs2 provides anonymity, the trace equivalence

StrongSpecA(Ref
abs2) ≡T Refabs2

needs to be checked. As the equality holds for the set A = {| vote.v1, vote.v2 |},
this demonstrates that the abstracted process Refabs2 provides strong anonymity.

Another abstraction method that may be used is the masking, through which the

sensitive information carried by the events can be masked during the protocol

using all the same events as noise. For instance, the process Ref can be written

as the parallel composition of Ref with RUN (H), where H is the set of events to

be abstracted, namely yes and no events. Hence, the abstracted process Refabs3

as follows:

Refabs3 =̂ Ref ||| RUN (H)

can perform any event from the set H, and the observer cannot tell whether the

occurrence of such events is from Refabs3 or from RUN (H). Hence, the equality

58 Chapter 4. Formal Anonymity Definition and Automated Verification

StrongSpecA(Ref
abs3) ≡T Refabs3

holds, meaning that the process Refabs3 with the vulnerable events masked pro-

vides strong anonymity.

However, if it is assumed that both voters are participating in the referendum,

and each can vote for any candidate they want, but only once, the new referendum

process can be described as follows:

Refnew =̂vote.v1 → yes → vote.v2 → no → STOP

� vote.v1 → no → vote.v2 → yes → STOP

Subsequently, the new process with the sensitive information abstracted is:

Refabsnew =̂ Refnew \ H

Hence, the trace equivalence that needs to be checked is:

StrongSpecA(Ref
abs
new) ≡T Refabsnew

However, the trace equivalence above does not hold when checked using FDR,

because the counter-example produced by it, 〈vote.v1, vote.v1〉, shows that voter
v1 can vote twice, whereas Refnew does not let this trace happen. To sum up, the

strong anonymity definition, as discussed in Chapter 3, requires that any voter

is plausible for any vote and that she can vote multiple times. That is, once

the attacker has discovered that v1 cast a particular vote, he then knows that v1
did not cast any of the others. This is something that is true of voting systems

generally, but not true under strong anonymity. Therefore, this definition of

anonymity is not appropriate for those voting systems where a voter is allowed

to vote only once.

The anonymity definition given in [FA02], however, requires two voters swapping

their votes. That is, the occurrences of vote.v1 and vote.v2 events in the processes

need to be swapped, which solves the problem faced in the strong anonymity defi-

nition. However, the sensitive information yes and no still needs to be abstracted

away from the observer’s point of view by using one of the techniques described

previously. To this end, the anonymity definition due to Fournet and Abadi

(weak anonymity) can be described as the following.

Definition 2 (Weak Anonymity). The process P is weakly anonymous on a set

of channels C of type T if:

P [[c.x, d.x/d.x, c.x | x ∈ T]] ≡T P

for any c, d ∈ C

4.4. Modelling and Analysis of a Conventional Voting System 59

This states that the process has the same behaviours if any two channels from

C are swapped. That is, if c.x and d.x within P are consistently swapped for

all values of x, then the result is indistinguishable from the original protocol

behaviour from an observer’s point of view. The ability to swap them with-

out making any difference provides anonymity with respect to the channel that

has been used. Note that in the following [[c, d/d, c]] is written as shorthand for

[[c.x, d.x/d.x, c.x | x ∈ T]].

In the context of voting, suppose two honest voters va and vb cast their votes

for candidates cx and cy, modelled by the occurrence of events vote.va.cx and

vote.vb.cy. The weak anonymity definition for a voting system model, System, is

applied on the set of channels C = {| vote.vi | vi ∈ Voters |}, where any va, vb
values in the specification can be defined as:

WeakSpecC(System) =̂ System[[vote.va, vote.vb/vote.vb, vote.va]]

If the following refinement check holds, then the voting system provides

anonymity under this definition.

WeakSpecC(System) ≡T System

It follows that strong anonymity on A implies weak anonymity on channels con-

tained within A, as stated in the following lemma:

Lemma 2. If P is strongly anonymous on A and {|C|} ⊆ A, then P is weakly

anonymous on channels C.

Proof. Assume P is strongly anonymous. Then consider some arbitrary c, d ∈ C:

P [[c, d/d, c]] ≡T P [[A/A]][[c, d/d, c]] by strong anonymity on A

≡T P [[A/A]] since [[A/A]] ; [[c, d/d, c]] = [[A/A]]

≡T P by strong anonymity on A

4.4 Modelling and Analysis of a Conven-

tional Voting System

This section presents a formal modelling and analysis of the conventional voting

system (CVS) with respect to the anonymity requirement, a system that is still

under use in many countries, such as the UK. Under such a system, although the

voter is not able to audit her vote once it is cast, the CVS, in the vast majority of

60 Chapter 4. Formal Anonymity Definition and Automated Verification

cases, provides anonymity since the voters drop their anonymised ballots into a

ballot box, which shuffles the anonymous ballots further. Therefore, by checking

this voting system with the weak anonymity specification, further confidence can

be gained regarding the suitability of the formal definition of anonymity for voting

systems. Moreover, it will demonstrate the ability of CSP in modelling a simple

voting system and of FDR for automatically checking whether the CVS model

satisfies the anonymity requirements.

The model is described by means of the processes shown at the top of Figure 4.1.

That is, it is a parallel composition of these individual processes. Each process

has its own process definition and they are run in parallel, synchronising on the

common events in order to model the message flow between the agents of the

protocol. In the rest of this section, the process definitions will be given for each

agent, and the composition of the model presented. Following this, the ability

of the intruder will be described and, finally the CVS model will be analysed in

terms of the strong and weak anonymity definitions.

4.4.1 Modelling Assumptions

Although the modelling assumptions are emphasised where necessary when pre-

senting CSP process definitions of the voting system model, the CVS model is

based on the following assumptions.

� The model consists of a limited number of agents, which are assumed to

work honestly: a voter, election official, booth, ballot box and a counter

process. The message sequence chart of the communication between these

individual processes are shown in Figure 4.1. As there are multiple voters

in the model, each voter will follow this message sequence and each election

phase.

� The voters are also assumed to choose a candidate to vote for before the

registration phase because of the adaptation of the anonymity specification.

In more detail, once the voter has started taking part in the election by

registering to the election official, the voter cannot be replaced with another

voter—this is required by the anonymity specification, which is focused in

Section 4.3. Hence, if the voter is allowed to choose the candidate she would

like to vote for during the election process, this would cause false positives.

Therefore, choosing the candidate before the registration is an assumption

that should be made in order to eliminate false positives and also it is not

so unrealistic.

� Yet another assumption is made on the number of booths in a polling

station. In the model there exist only one booth which synchronises with

4.4. Modelling and Analysis of a Conventional Voting System 61

C,V, S
Official

C
Voter v Booth

bag = ∅
Box

Lc = 0

Counter

choose c ∈ C

registration phase

v

authenticate
v

s

voting phase

enter booth

mark
ballot s

leave booth

(s, c)

tallying phase

(s, c)

Lc := Lc ++

Lc
publish

Figure 4.1: Message sequence chart of CVS

the voters and does allow multiple voters to be in and casting a vote at

the same time. There could have been more than two booths. However,

having checked the system behaviours against the anonymity specification,

this assumption has no harm in the formal analysis of voting systems. This

is because the booth only allows the voters to mark their ballot forms in a

private environment. Thus, in a polling station with multiple booths voters

simply vote in separate booths, and queue to drop their envelopes into the

ballot box as usual.

4.4.2 Honest Participants

In the CVS, the correctness of the election results, the secrecy and the verifiability

of the votes depend on a chain-of-custody, whereby each step of the protocol is

verified by a trusted third party or election officials. Hence, it is first assumed that

62 Chapter 4. Formal Anonymity Definition and Automated Verification

each participant is honest and follows the protocol steps to ensure its objectives

are met, in particular, the voter anonymity. The honest agent processes of the

CVS model are modelled as follows.

Voter Process

A Voter from the set of voters chooses a candidate to vote for from the given

candidate list before going to the polling station and identifying herself to the

electoral official. To this end, the choosing action for the voter v is modelled with

the events choose.v.c, where c ∈ C. As the choice of candidate is made by the

voter, non-deterministic choice is the appropriate CSP operator, since the choice

is not under the control of the system. Afterwards, she receives a ballot form

with a serial number s on it on the channel collectform. In more detail, as the

ballot form is given by the authority to the voter, an external choice operator

is used to show that the voter accepts any ballot form given by the authority.

Subsequently, she goes into a booth, votes according to her preference on the

channel mark.v.s.c, modelling v votes for c on the ballot paper with the serial

number s. Finally, she leaves the booth, casts her vote by dropping the ballot

form in the ballot box, modelled as cast.v.s.c, and leaves the polling station.

Hence, the following process models the honest behaviour of a voter.

Voter(v) =̂

�
c∈C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

choose.v.c → openElection → auth.v →

�
s∈S

⎛⎜⎜⎜⎜⎜⎜⎜⎝

collectform.v.s →
enterBooth.v →
mark.v.s.c →
leaveBooth.v →
cast.v.s.c →
closeElection → STOP

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In the model, all the voters can be described as the interleaving of voter processes

for each as below.

Voters =̂ ‖v∈VVoter(v)

The alphabets of the processes are not explicitly stated here, but are taken to

be the set of all the events they can perform. For instance, the alphabet of the

process Voters is shown below. Likewise, the alphabets of the other processes

modelled include all the events that can be performed by these processes.

αVoters = {| openElection, auth, collectform, enterBooth, leaveBooth,

choose, mark, cast, closeElection|}

4.4. Modelling and Analysis of a Conventional Voting System 63

Election Official Process

An Election Official working in a polling station authenticates eligible voters by

their identification documents, and issues the ballot papers on which there are

arbitrary and unique serial numbers. In the model, a set of pre-existing serial

numbers are assigned to the voters by the election official, which is performed non-

deterministically as this official chooses them independently. Moreover, the same

serial number is never given twice, so two different voters cannot receive the same

one (the same ballot form) to vote with. The election official process also opens

and closes the election for a polling station and other processes synchronise with

this official on the openElection and closeElection channels, thereby maintaining

the different phases of the election.

Elecofficial =̂ openElection → Official(V,S)
Official(ids, serials) =̂

closeElection → STOP

�
�

v∈ids

⎛⎜⎝ auth.v →

�
s∈serials

(
collectform.v.s →
Official(ids � {v}, serials � {s})

) ⎞⎟⎠

Booth Process

A Booth is a private environment for the voters to cast their ballots without being

observed. Thus, in the model, the booth process allows one voter to go in to vote

and to leave before the next is allowed to enter.

Booth =̂ enterBooth?id → leaveBooth.id → Booth

Ballot Box Process

A Ballot Box is a box where all cast votes are collected under the control of the

election official. It is assumed that there is a private untappable channel between

a voter and a ballot box (or, in other words, the voter fills in the ballot paper and

casts the ballot unobserved). In this model, the ballot box accepts the ballots

from the voters and gathers them for collection. Hence, whenever a cast.v.s.c

occurs the process will store the tuple (s, c) in a set. Once the election is closed,

the box can be opened, and all the ballots can be withdrawn for the tallying, with

this event from the set bag being performed non-deterministically, this complies

with the anonymous behaviour of a ballot box. Finally, when there are no more

ballots left in the box, the process terminates.

64 Chapter 4. Formal Anonymity Definition and Automated Verification

Box =̂ openElection → Box1(∅)
Box1(bag) =̂ closeElection → Box2(bag)��

v∈V
s∈S
c∈C

(
cast.v.s.c → Box1(bag ∪ {(s, c)})

)

Box2(∅) =̂ empty → STOP

Box2(bag) =̂ �
(s,c)∈bag

withdraw.s.c → Box2(bag � {(s, c)})

Counter Process

A Counter is an election official who removes all cast ballots from the ballot

box and tallies them. The following process models the counter’s behaviour for

each candidate keeping a record of withdraw events for each candidate. When a

withdraw event happens, the counter checks for which candidate the particular

vote is, and subsequently increments the number of votes that he/she has received

so far by one. Once the ballot box is empty, meaning there is no ballot to be

counted, he announces the total number of votes that each candidate has received.

Counter(c, r) =̂�
s∈S

(
withdraw.s.c → Counter(c, r + 1)

)
� empty → total.c.r → done → STOP

Counters =̂ ‖c∈CCounter(c, 0)

The system for the conventional voting is defined as a parallel composition of all

of the above described five processes, as seen below, and the correctness of the

model is verified via a number of sanity checks, such as: “no voter is allowed to

vote after the election is closed” and “the correctness of final tally”. These sanity

checks increase the confidence in the behaviour of the model (see Appendix A.1).

SystemCVS =̂ Voters ‖ Elecofficial ‖ Booth ‖ Box ‖ Counter

Having modelled the CVS, in the next subsection, the passive attacker or ob-

server’s behaviour is defined.

4.4.3 The Passive Attacker

In this analysis, it is assumed there exists a passive attacker or an observer who

aims to break voter anonymity, and is capable of seeing all the public information

4.4. Modelling and Analysis of a Conventional Voting System 65

over the election protocol. That is, the intruder’s ability is restricted to the public

data, which needs to be specified carefully.

Firstly, as in the real traditional elections, under the model anyone knows when

the election is opening and closing, and what the final result is for each candidate

in the end. Additionally, a list of all voters who are eligible to vote is hung on

a public board in the polling station before the election and remains so during

it. Hence, it is assumed that the intruder can observe who takes part in an

election run as well as the voters going in and out of the voting booth. It is

further accepted that the intruder can also see the ballot forms withdrawn from

the ballot boxes and the tellers counting them.

However, the intruder cannot access any information that can link a voter to her

ballot form and/or to her chosen candidate. For instance, if the intruder sees the

ballot form on which a voter has cast her vote, then he can violate her anonymity

as he can also see the tallying of the votes at the end of the election. Hence,

the channel between the voter and the election official, where the ballot form is

given to the voter needs to be hidden, i.e., private channel. Obviously, the voter’s

marking her ballot form also needs to be concealed from the observer.

An initial description of the system that the observer can see is put forward as:

System′
CVS =̂ SystemCVS \ {|mark, collectform |}

This process models the conventional voting system that the intruder observes,

in which the mark and collectform events are hidden. However, a number of

other scenarios could be tried, like hiding the cast events completely, thus not

allowing the observer to see the voter casting her vote. By contrast, he could be

allowed to observe that the voter is casting a vote, but not for whom or what

serial numbers are used. In order to do this, cast events have to be renamed

to another event called envelope, which models the voter casting her vote in an

envelope rather than in public, thereby hiding the private data. Consequently,

the process Systemabs
CVS below models this behaviour of the CVS model.

Systemabs
CVS =̂ System′

CVS[[
envelope/cast.id.s.c]]

4.4.4 Strong Anonymity Analysis

As noted by Schneider and Sidiropoulos in [SS96], different definitions of

anonymity are required for different situations. For instance, in a voting system

where the anonymity of the voters’ identity is required, the strong anonymity

definition that was given previously is too powerful, because multiple votes are

allowed under this arrangement, which is not the case for all voting systems as

66 Chapter 4. Formal Anonymity Definition and Automated Verification

they only permit the casting of one ballot, even though there might be several

candidates voted for. To see this, the strong anonymity specification for the CVS

model can be defined as the following:

StrongSpecA(System
abs
CVS) =̂

Systemabs
CVS[[

dummy/choose.v.c1]][[choose.v.c1/dummy]]

The anonymity is checked for the set A = {| choose |}, hence if the strong

anonymity definition is applied to the CVS model, the choose events are re-

named to the event dummy /∈ A, and renamed back to the set A. Hence, in order

for the CVS model to provide strong anonymity, the following trace equivalence

should be satisfied.

StrongSpecA(System
abs
CVS) ≡T Systemabs

CVS

FDR produces the counter-example trace of 〈choose.v1.c1, choose.v1.c1〉, mean-

ing that the system does not satisfy this specification as the abstracted model

Systemabs
CVS does not allow the voter v1 to vote twice in an election run. As a

result, the CVS model does not provide the strong anonymity given in [SS96]

from the observer’s point of view.

The next subsection investigates the suitability of the weak anonymity definition

for voting systems.

4.4.5 Weak Anonymity Analysis

The weak anonymity definition formalised in Section 4.3 will be used in the

second analysis. This analysis of the CVS model is conducted by comparing two

situations: the first, in which the voters v1 and v2 vote any way they like; and the

second, in which the voters swap their votes. From the intruder’s point of view,

the processes Systemabs
CVS (the first situation) and WeakSpecA(System

abs
CVS) (the

second) should be indistinguishable. Hence, according to the weak anonymity

definition, the specification is defined by swapping two votes, (i.e., choose.v2.c

and choose.v1.c, where c ∈ C) using the renaming abstraction method as in the

following:

WeakSpecA(System
abs
CVS) =̂

Systemabs
CVS[[

choose.v1.c, choose.v2.c/choose.v2.c, choose.v1.c]]

In order for the CVS model to provide anonymity under the weak anonymity

definition, the following trace equivalence should hold:

4.5. Analysis under Alternative Assumptions 67

WeakSpecA(System
abs
CVS) ≡T Systemabs

CVS

FDR verifies that the equality holds meaning that the two systems are indistin-

guishable from the intruder’s point of view and therefore, the conventional voting

system model provides anonymity under this definition.

In the next section, the case of corrupt agents in the protocol who can share

their knowledge or observations with the intruder will be considered. Note that

the weak anonymity definition is to be used in the remainder of this thesis as the

valid anonymity definition for voting systems, i.e., when anonymity is mentioned,

the weak definition is being referred to.

4.5 Analysis under Alternative Assumptions

For the dining cryptographers problem, the anonymity of the protocol was pre-

viously checked in relation to two cases: from an outsider’s point of view and

with respect to other cryptographers. Similarly, the analysis of voting systems in

general and in the CVS model, specifically can be conducted under such assump-

tions. For instance, a corrupt election official may share their knowledge with

the intruder, thereby enlarging his power over sensitive data, which can subse-

quently be used to break the anonymity of voters. Under these circumstances,

the anonymity can be checked by focusing on election official and this can be

modelled in CSP using the abstraction methods: renaming and hiding.

A trusted election official possesses crucial information regarding which ballot

form was given to a particular voter and hence he has the power to break the

anonymous link between the voter, her ballot form and the chosen candidate.

Misbehaviour in this regard can be modelled by revealing the private channel be-

tween the voter and the election official and in order to do so, the event collectform

should not be hidden when defining the abstracted system model Systemabs
CVS.

Therefore, only the mark events will be abstracted away and this whole process

is as follows:

Systemabs
CVS =̂ (SystemCVS[[envelope/cast.id.s.c]]) \ {|mark |}

Following this, when the equivalence WeakSpecA(System
abs
CVS) ≡T Systemabs

CVS is

checked mechanically using FDR, it produces the following counter-example.

68 Chapter 4. Formal Anonymity Definition and Automated Verification

〈choose.v3.c3,
choose.v2.c1,

choose.v1.c3,

openElection,

auth.v1,

collectform.v1.s2,

auth.v3,

collectform.v3.s3,

auth.v2,

collectform.v2.s1,

envelop,

envelop,

envelop,

closeElection,

withdraw.s1.c1〉

The trace above identifies an attack against the anonymity of the voter v2. In

more detail, although the observer (electoral official in this case) cannot see the

votes, because they are cast in an envelope, he knows which serial number the

voter v2 was given by observing the event collectform.v2.s1. When the votes

begin to be counted, the corrupt official can also observe the occurrence of the

withdraw.s1.c1 event, which links the serial number s1 to the candidate c1. As

the serial number s1 was cast by the voter v2, the observer is now certain about

how v2 has cast her vote, thus violating v2’s anonymity.

4.6 Results and Discussion

The analysis has shown that the strong anonymity definition is too strong for

analysing this concept in voting systems, if voters are not allowed to cast multiple

ballots. That is, this specification requires an actor to perform different tasks

that cannot be linked together in any way, which is not the case in general

voting systems as only one such action, namely a ballot, can be cast and counted

per voter—although, some schemes allow voters to cast multiple ballots, such as,

JCJ [JCJ05] and Civitas [CCM08], only one of the votes is counted at the tallying

phase. Hence, the definition is not appropriate for these voting systems either. As

a consequence, the weak anonymity was investigated for its suitability to provide

a formal specification for voting systems, and it was verified that the CVS model

provides such anonymity. Moreover, the appropriateness of the formal language

CSP to model voting systems, and the capability of the FDR model checking tool

for automated analysis were demonstrated.

4.7. Summary 69

Additionally, some of the corner cases have been investigated. For instance, in

case of unanimity in an election run, whereby all the voters vote for the same

candidate, although it is clear how each voter voted, an observer still cannot

identify whether two voters have swapped their votes (because this is a null oper-

ation), and so the anonymity definition is still satisfied. Similarly, the definition

is still met in elections with an electorate consisting of a single voter, because

swapping votes is still applicable even though there is only one vote. Addition-

ally, in the case in which the electoral official can assign the same serial number

to two different voters, the weak anonymity is still satisfied by the CVS model.

Indeed, assigning one serial number to two different voters may introduce a bet-

ter anonymity. Similarly, it was also demonstrated that the CVS model satisfies

the weak anonymity definition even if there are no serial numbers on the ballot

forms.

Moreover, the weak anonymity definition covers voting systems in which the final

tally is published. However, although the strong anonymity definition is too strict

for most voting systems, it can still be used in systems that allow a voter to vote

multiple times in an election, or where only the winner is announced and not the

full tally. For instance, strong anonymity may be an appropriate definition for

television polls where votes are cast by sending an SMS to a particular number.

4.7 Summary

This chapter has investigated related work on formal anonymity definitions, in

particular, strong and weak anonymity for voting systems. Moreover, a model of

the conventional voting system has been used as a case study to validate these

definitions, and using the process algebra CSP and the FDR model checker,

it was demonstrated how to provide automated analysis of ballot-based non-

cryptographic voting systems with respect to the different anonymity definitions.

In addition, the importance of underlying assumptions in the formal analysis of

a protocol has been highlighted as well as the precise definitions of requirements

presented in terms of comparing what an intruder is capable of doing under differ-

ent definitions and assumptions. In the next chapter there is further investigation

into the assumptions under which certain protocols are claimed to provide voter

anonymity, such as Rivest’s ThreeBallot voting system.

Chapter 5

Automated Analysis of the

ThreeBallot Voting System

This chapter∗ demonstrates the applicability of the framework introduced in the

previous chapter, for automated anonymity analysis of non-cryptographic vot-

ing systems and emphasises the importance of security protocol assumptions.

To this end, Rivest’s non-cryptographic voting system ThreeBallot [Riv06] is

investigated. It is particularly interesting because it uses no cryptography, how-

ever, still aims to provide voter anonymity, integrity of the election, verifiabil-

ity and incoercibility. Moreover, although the ThreeBallot voting system has

been the subject of analysis of one sort or another many times since its publica-

tion [Str06b, Str06a, CEA07, App07, dMPQ07, TPR07, CKW08, HSS09, KTV11]

(see Section 1.3 for details), it has not yet been subjected to automated formal

verification.

In this chapter, a CSP model of ThreeBallot has been constructed and used

to produce the first automated formal analysis of its anonymity property using

FDR. Throughout the analysis, the anonymity definition given in Section 4.3

Definition 2, and the passive intruder model given in Chapter 4 will be con-

sidered. Additionally, various modified versions of ThreeBallot in the litera-

ture [KZ10, KTV11] are investigated and it is shown that they suffer from the

same attacks despite the improvements, such as Reconstruction Attacks. That

is, with the information available to the intruder on the bulletin board, he may

find out whether the voter has voted for a particular candidate just by match-

ing the mini-ballots on the bulletin board and the voter’s receipt to reconstruct

valid multi-ballots. Consequently, Rivest and Smith [RS07] proposed the short

ballot assumption (SBA), under which ThreeBallot is claimed to be secure. How-

∗This chapter is mainly based on the published work for the 10th International Conference
on integrated Formal Methods (iFM) [MHS13].

71

72 Chapter 5. Automated Analysis of the ThreeBallot Voting System

ever, during the analysis of this voting system, it emerges that the SBA is highly

ambiguous in the literature. Roughly speaking, this assumption states that the

information content of a ballot should be low. However, the phrasing of this

assumption in the description of ThreeBallot is vague and open to a number

of radically different interpretations. Consequently, various plausible precise in-

terpretations are discussed here, and it is discovered that in each case, the in-

terpretation was either unrealistically strong, or else failed to ensure anonymity.

Therefore, a version of the SBA in relation to ThreeBallot that is realistic but still

provides a guarantee of anonymity is adopted. Finally, because the approach to

the analysis of voting systems considered in this thesis is possibilistic rather than

probabilistic, two cases where the ThreeBallot voting system provides guaranteed

anonymity without the SBA are verified automatically.

This chapter is structured as follows. In the next section, an outline of Three-

Ballot is provided as well as there being discussion on the SBA. In Section 5.2,

ThreeBallot is modelled as a parallel composition of agents: voters, an authority,

the bulletin board and a counter process. In Section 5.3 the first automated anal-

ysis of the ThreeBallot voting system and its versions are presented. Furthermore

in that section, the analyses of the SBA interpretations are conducted manually

and subsequently a better formulation for this assumption is given. Next, the

ThreeBallot versions providing guaranteed anonymity without the SBA are veri-

fied using the model checker FDR. Finally, in Section 5.5 the chapter is concluded

with a summary of findings.

5.1 The ThreeBallot Voting System

In this section, the original ThreeBallot voting system [Riv06] is briefly introduced

as well as the short ballot assumption given by Rivest and Smith [RS07].

Voting in ThreeBallot proceeds as follows. Initially, the authenticated voter re-

ceives a multi-ballot from a poll worker, which consists of three mini-ballots (see

Figure 5.1). The mini-ballots are all identical except for the IDs or serial numbers,

located at the bottom, which are all unique and unrelated. In particular, there is

no way of determining what mini-ballot serial numbers go together to make up

a multi-ballot. The voter fills two bubbles in total for the chosen candidate, and

only one bubble for each other candidate. The completed multi-ballot is inserted

into a checker, which confirms that it has been correctly completed. Finally, the

voter chooses one of the mini-ballots, and receives a duplicate of it as her receipt.

She then separates the three mini-ballots, and casts them all individually into a

ballot box. At the end of the election day, the cast ballots are scanned to the

BB on which all mini-ballots are published along with a list of everyone who

voted. The voter may then verify that the mini-ballot for which she has a receipt

5.1. The ThreeBallot Voting System 73

Alice � Alice � Alice �
Bob � Bob � Bob �
Chris � Chris � Chris �
David � David � David �

56248 04578 31489

Figure 5.1: A ThreeBallot multi-ballot, filled in as a vote for Alice

appears unaltered on the BB; if it does not, she can appeal using her receipt as

evidence.

The number of votes for each candidate is counted as in the traditional voting

system. As each voter fills in exactly two bubbles for the chosen candidate and one

for the others, the number of voters can then be subtracted from each candidate’s

final tally to find the correct number of votes for each candidate, i.e., this identifies

those multi-ballots with two bubbles filled out. Subsequently, all the mini-ballots

are posted on the bulletin board so the final tally can be verified by anyone and

each voter can check whether their vote has been tampered with in any way,

using their duplicate as evidence.

ThreeBallot is claimed in [RS07] to be secure under the short ballot assumption

(SBA), which Rivest and Smith in [RS07, p.4] defined as:

“the ballot is short—there are many more voters in an election than

ways to fill out an individual ballot [...] It is reasonable to assume

under the SBA that each possible ballot is likely to be cast by several

voters.”

However, ambiguities arise from the terms “Individual ballot” (mini-ballots or

multi-ballots?) and “several voters” (how many?) employed by these authors.

Moreover, according to [CKW08] the SBA assumes that “the list of candidates

on a ballot is short enough in order to guarantee security” and in [dMPQ07] it

is stated that “the length of the ballots must be kept small (possibly by splitting

them into several parts)”. In summary, in the literature no precise meaning of

the SBA is to be found.

Because ThreeBallot is claimed to guarantee voter anonymity under the SBA,

its analysis is not possible without a clear and unambiguous reading of the as-

sumption. The three possible interpretations of this assumption, which will be

analysed later in this chapter, are provided next. Note that in each case the

intention is that the assumption will be guaranteed probabilistically; that is, the

number of voters, candidates, etc., will be sufficient to ensure that the assumption

is broken with only negligible probability. In what follows, serial numbers will be

74 Chapter 5. Automated Analysis of the ThreeBallot Voting System

ignored; that is, two mini-ballots will be considered the same if they contain the

same marks but different serial numbers.

Assumption 1 (SBA-multi). Every possible multi-ballot will be cast at least once.

The formulation of the SBA given in Assumption 1 requires that every possi-

ble way of completing a multi-ballot should be adopted by at least one voter.

For small numbers of candidates, this is plausible, but even moderate numbers,

though, the assumption quickly becomes less likely to hold.

Note that once a candidate has been chosen, there are then exactly three ways of

completing each row: for the chosen candidate’s row, one must choose a bubble

to leave empty, and for each other row, one must choose a bubble to fill. There

are thus c ·3c distinct multi-ballots, where c is the number of candidates standing

in the election. It is not feasible to calculate the number of voters required to

make this reasonable, because it depends on the probability distribution of multi-

ballots: voters do not cast multi-ballots randomly (one hopes). A full calculation

would require a realistic model of how voters cast their ballots. However, the

best case scenario is when voters cast their multi-ballots randomly and so by

assuming a uniform distribution, we can determine a lower bound on the number

of voters required. That is, with a uniform distribution the expected number

of voters needed to cover all possible multi-ballot patterns is: n ·
∑n

i=1
1
i where

n = c · 3c, is the number of possible multi-ballots. For five candidates, this comes

out at 9331 voters; for ten candidates, 8.1 million voters are needed and for fifteen

candidates, the number exceeds 4 billion.

For n possible multi-ballots, and a uniform distribution, the number of voters

required to ensure that the probability of covering every multi-ballot at least

once exceeds a given threshold can be calculated. However, since the security

of ThreeBallot relies on the SBA, there would need to be confidence that (the

correct interpretation of) it is satisfied by achieving an acceptable probability

level pertaining to the number of voters required. For n multi-ballots, and v

voters, the probability that the v voters will cover all of the n possibilities is:

1−
n−1∑
j=1

(−1)j+1

(
n

j

)(
n− j

n

)v

This summary is difficult to calculate precisely but easy to calculate approxi-

mately because the first few terms dominate for large v.

For five candidates, to reach 95% probability of full coverage, around 12,250 voters

are needed, whereas six candidates need around 50,000 voters and by the time

ten candidates are running, 9.6 million voters are required to give 95% confidence

that every multi-ballot turns up at least once. Note that these figures are rather

5.2. Modelling the ThreeBallot Voting System 75

conservative lower bounds: the distribution will not in fact be uniform, which

will lower the probability and in any case 95% confidence is perhaps insufficient

for a critical security assumption.

However, because these numbers are so high, they are considered to be unrealistic.

Therefore, as this version of the short ballot assumption is suitable only for a very

small number of candidates or an extremely large numbers of voters; it will not

be considered further in this paper.

Assumption 2 (SBA-mini). Every possible mini-ballot will be cast at least once.

Under Assumption 2, each mini-ballot is required to be cast at least once, rather

than each multi-ballot and clearly this is more likely to be satisfied than Assump-

tion 1. For c candidates, there are only 2c distinct mini-ballots, against c · 3c
distinct multi-ballots. For ten candidates, coverage of only 1024 mini-ballots is

needed, rather than nearly 600,000 multi-ballots. It will be shown later that this

interpretation of the SBA is insufficient to prevent attacks on ThreeBallot and

since it is not a worthwhile formulation of the assumption, it is not necessary to

calculate the likelihood that it will be satisfied.

Assumption 3 (SBA-mini-n). Every possible mini-ballot will be cast at least

n times (for some suitably chosen n).

A slightly stronger interpretation Assumption 3 requires each mini-ballot to turn

up at least a certain number of times and this, of course, needs more voters

than Assumption 2. However, it will be shown later that this formulation is also

insecure, regardless of the value of n.

5.2 Modelling the ThreeBallot Voting Sys-

tem

In this section, the CSP model of ThreeBallot is given by first defining data-types,

sets and the functions, and then describing each process individually. Subse-

quently, each is then run in parallel so as to reflect the behaviour of the voting

system.

In this modelling approach, the multi-ballot of the ThreeBallot voting system

is treated as a board with coordinates different to the CVS model. Here, a co-

ordinate (i, j) defines a bubble on a mini-ballot, which is to be filled in—although

the bubbles at the end of the each mini-ballot are allocated for serial numbers,

the separation between a bubble for a mark and the bubble for a serial number is

ensured in the process definitions. Thus, a multi-ballot consists of three columns

76 Chapter 5. Automated Analysis of the ThreeBallot Voting System

j

� � �
i � � �

� � �
56248 04578 31489

Table 5.1: Bubbles returned by
Row(i) and Col(j)

j

� � �
i � � �

� � �
56248 04578 31489

Table 5.2: Bubbles returned by
nhdAll(i, j)

j

� � �
i � � �

� � �
56248 04578 31489

Table 5.3: Bubbles returned by
adjR(i, j)

j

� � �
i � � �

� � �
56248 04578 31489

Table 5.4: Bubbles returned by
adjC(i, j)

each representing: a mini-ballot; as many rows as the number of candidates

racing in the election; and a single row at the end of the ballot allocated for

serial numbers. Hence, the size of the board is determined by these parameters:

the number of voters and the number of candidates. These parameters define

the sets of voters, candidates and serial numbers (there are three times as many

serial numbers as there are voters). Conventionally, the data-types for voters,

candidates and serial numbers are denoted v, c and s, respectively. Note that the

candidate order is predetermined numerically, i.e., the order of the candidate is

fixed as c1,c2, . . . , cn for all ballots.

In order to return a specific part of the board in a process description, several

functions are used in the model. In more detail, the function Row(i) returns

the ith row of a multi-ballot and Col(j) is the set of bubbles on the jth column

(Table 5.1). Likewise, some other functions are used to return the neighbouring

bubbles of a given coordinate, such as, the function nhdAll(i, j), which returns

all the neighbours of (i, j) in the current multi-ballot coordinates (Table 5.2).

Similarly, adjR(i, j) returns the coordinates adjacent to (i, j) in the same row

(Table 5.3), and adjC(i, j) returns the coordinates adjacent to (i, j) in the same

column (Table 5.4).

5.2.1 Modelling Assumptions

The assumptions made in the modelling of ThreeBallot are continuation of the

ones in Section 4.4.1. That is, there is a limited number of voters, all of which

5.2. Modelling the ThreeBallot Voting System 77

follow the protocol steps honestly and choose the candidates to vote for before

the registration phase. The rest of the assumptions regarding ThreeBallot is as

follows. The voter is not restricted in how she votes, but the filling of the ballot

form needs to be done efficiently in a left to right fashion (i.e., to limit the non-

determinism in the CSP). Therefore, this modelling assumption does not impact

on the analysis, but facilitates the mechanised verification by reducing the state

space (more details are given when describing the voter process in the following

subsection).

All cast multi-ballots are valid. That is, in the original ThreeBallot system there

exists a checker machine in the booth, which confirms that the multi-ballot in-

serted by the voter has been correctly completed. In modelling of ThreeBallot,

this behaviour is already modelled in the voter process—the voter never makes

a mistake when completing a multi-ballot, which are ensured by processes syn-

chronisation. This also means that we do not model incorrect voter behaviours

either by mistake or intentionally as in all voting system models analysed in this

thesis.

5.2.2 Honest Participants

In this subsection, the individual processes are defined and the channels that

connect these processes as well as the information carried on each are explained.

The ThreeBallot system model is formed by the parallel composition of the fol-

lowing processes (see Figure 5.2 illustrating the network for the ThreeBallot CSP

model).

VoterAuthority B.Board

receipt.id.serial.*

place.id.*

alloc.id.serial.*

auth.id

Figure 5.2: ThreeBallot CSP model communication channels (��� private chan-
nel) and note that the counter process is considered a part of the bulletin board
process.

Voter Process

The voter chooses the candidate that she wants to vote for before the election.

She then authenticates herself to the election authority, and collects her multi-

ballot on the alloc channel. In the booth, she fills out two bubbles for the chosen

candidate and one for the other candidates with the place events. Afterwards,

she gets her receipt by choosing one of the mini-ballots allocated to her on the

channel receipt, and leaves the booth before the election is closed.

78 Chapter 5. Automated Analysis of the ThreeBallot Voting System

The Voter() process performs place events in an efficient way, such that although

it allows any legitimate completed multi-ballot, it reduces the state space by

constraining the order in which bubbles are filled. That is, first a bubble from the

first or second column is chosen for the candidate the voter wants to vote for (the

set F1 under the second non-deterministic choice in the process definition below

determines what bubbles the voter can use first, where F1 = Row(x− 1) �Col(2))
and x is the chosen candidate’s id, such as 2 for the candidate c2, thus, the

value x − 1 determines the row of the chosen candidate. Following this, the

voter chooses another bubble for her chosen candidate in the same row, but in

a left to right fashion, e.g., first marking the bubble (0, 1), and then (0, 2), thus

eliminating the option of first marking (0, 2) and then (0, 1). This is illustrated by

the voter choosing a bubble from the set F2, where F2 = adjR(i, j). Afterwards,

the process performs a place event in a top to bottom manner for the other

candidates—again the way that the voters fill in the bubbles is restricted in order

to reduce the state space required for the analysis. All empty bubbles that can

be filled in by the voter in the next phase are transferred to the set Rest, where

Rest = nhdAll(i, j) � (Row(i) ∪ Row(n)) and n is the number of candidates, also

corresponds to the serial numbers row on a ballot form. Once the voter has

finished voting for the chosen candidate, she marks one bubble for the other

candidates, and the row belonging to the particular one is discarded from the set

(modelled as aset �Row(k) in the last line of the process definition). Finally, the

voter determines one of the serial numbers as her receipt. That is, the mini-ballot

with that serial number and the marked bubbles form her receipt.

Voter(v) =̂

�
c∈C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

choose.v.c → openElection → auth.v →
alloc.v?s1?(i1, j1) → alloc.v?s2?(i2, j2) → alloc.v?s3?(i3, j3) →
enterBooth.v →

�
(i4,j4)∈F1

⎛⎜⎝ place.v.(i4, j4) →

�
(i5,j5)∈F2

(
place.v.(i5, j5) →
Voter1(v,Rest, {s1, s2, s3},n− 1)

) ⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Voter1(v, aset, serials, 0) =̂

�
s∈serials

(
receipt.v.s?(i, j) → leaveBooth.v →
closeElection → STOP

)

Voter1(v, aset, serials, r) =̂

place.v?(k, l) →
Voter1(v, aset �Row(k), serials, r − 1)

5.2. Modelling the ThreeBallot Voting System 79

Thus the process representing all voters is described by the interleaving of the

voters as follows:

Voters =̂ ‖v∈VVoter(v)

Election Authority Process

The authority (electoral official) in the polling station is responsible for authen-

ticating voters on the channel auth and assigning the pre-printed multi-ballots

(three unique serial numbers from the set S) to the voters with the alloc events.

Moreover, the serial number allocations are performed non-deterministically and

it is ensured that the serial number allocated is never assigned to another mini-

ballot. Because the last line of a mini-ballot is allocated for serial numbers, each

is placed on the nth column, where n is the number of candidates on the board

(note that the row numbers range between 0 and n, thus ensuring that the serial

numbers are always allocated at the bottom of the ballot forms). Additionally,

the allocation occurs three times for each multi-ballot form, and once three are

allocated, the remaining serial numbers are carried forward to the next voter.

When the election is closed through the closeElection event, no more ballots

are allocated for any voter. Here we do not present the most efficient authority

model used in the analysis for simplicity. Section 5.4 provides details of the need

to define efficient model.

Authority =̂ openElection → Authority1(S)
Authority1(serials) =̂

auth?v → �
s∈serials

(
alloc.v.s.(n, 0) →
Authority2 (v , (n, 0), serials � {s})

)
Authority2(v, coord, ∅) =̂ closeElection → STOP

Authority2(v, (n, 2), serials) =̂ Authority1(setSerials)

Authority2(v, (n, i), serials) =̂

�
s∈serials

(
alloc.v.s.(n, i+ 1) → Authority2(v, (n, i+ 1), serials � {s})

)
The Bulletin Board Process

The process B Board operates as a bulletin board where the cast mini-ballots

are published. In detail, the votes are collected by this process as the voters cast

their mini-ballots and a record is kept of the serial numbers and the bubbles that

are filled in on that particular mini-ballot with the set bag. Once a serial number

is allocated to a coordinate (i, j) for any voter, the process traces the jth column,

whenever a place event happens on that column, because the event place.v.(i, j)

models a vote for the ith candidate on the candidate list. Subsequently, the

value i is then stored in the set bag. Additionally, the process is also ready to

80 Chapter 5. Automated Analysis of the ThreeBallot Voting System

give any of the mini-ballots as the voter’s receipt, with the serial number and

bubbles filled in, if requested by them. After the election, the cast mini-ballots

are published with the pub event. The whole process B Board is modelled as the

parallel composition of individual mini-ballot processes as follows.

Board(s) =̂ alloc?v.s?(i, j) → Board1(∅, s, (i, j))
Board1(bag, s, (i, j)) =̂�

(m,n)∈Col(j)

(
place.v.(m,n) → Board1(bag ∪ {m}, s, (i, j))

)
� receipt?v.s.bag → Board2(s, bag)� Board2(s, bag)

Board2(s, bag) =̂ closeElection → pub.s.bag → bagempty → STOP

B Board =̂ openElection → ‖s∈SBoard(s)

Counter Process

The last process is Counters, which works as an electoral official counting the

votes published on the bulletin board, keeping a record of place events for each

candidate by following each row of ballot forms. That is, when there exists a

mark on the ith row of a mini-ballot, it is counted as a vote for the candidate

ci+1. Moreover, when no more place events are happening, the number of total

votes for each candidate is published on the channel total.

Counter(cx, r) =̂�
v∈V
(i,j)∈Row(x−1)

(
place.v.(i, j) → Counter(cx, r + 1)

)
� bagempty → total.cx.r → STOP

Counters =̂ ‖c∈CCounter(c, 0)

System Process

The following parallel composition of the processes defined previously models the

behaviour of the ThreeBallot voting system.

System3B =̂ Voters ‖ Authority ‖ Booth ‖ B Board ‖ Counters

In the overall flow of the system process, as all voters are run in parallel and

synchronise on openElection and closeElection events with the election authority

pairwise. Thus, each voter performs an openElection event to begin her voting

process. Each voter must also perform a closeElection event after casting their

5.3. Automated Anonymity Verification 81

individual vote and leaving the polling station. Additionally, the WBB publishes

cast votes when all voters have finished vote casting and subsequently the election

closed. Finally, the counter process announces total vote for each candidate when

there is no ballot left to count in the ballot box.

A number of sanity checks are deployed in order to gain more confidence in the

correct behaviour of the CSP model of the ThreeBallot voting system and the

details can be found in Appendix A.2. In the following subsection, the passive

intruder model is defined for the analysis of the ThreeBallot CSP model.

5.2.3 The Passive Attacker

Although the passive intruder model defined in the previous chapter is a generic

framework, a few modifications need to be made for individual voting system

models, because the channels and data-types can be modelled differently for

each. Regarding this, the intruder model in this analysis is similar to the one

defined before, however, the vulnerable data on the channels needs to be hidden

according to the needs of the ThreeBallot voting system model. More specifically,

the intruder is able to see all the public channels, but not the private ones: alloc

and place. Hence, these private channels need to be hidden from the intruder,

forming the abstracted system process, Systemabs
3B below:

Systemabs
3B =̂ System3B \ {| alloc, place |}

Note that the intruder in this model analysis is able to see all receipt events,

i.e., he can see all the receipts taken by the voters in an election (this is a strong

assumption; however, it is safe in the sense that if the system is secure under this

assumption, it will also be secure for an adversary who sees only some receipts.).

In the following section the automated analysis of this voting system model is

presented.

5.3 Automated Anonymity Verification

The verification of this voting system is checked against the anonymity specifica-

tion defined in Section 4.3 Definition 2. To recall, when the two channels c.x and

d.x are swapped over for all values of x, if the resulting process is indistinguish-

able from the original one, P , from an observer’s point of view, then it provides

anonymity.

It is over channel choose that the voter determines a choice of candidate and

consequently, the channels that need to be swapped over are: choose.v1.cx and

82 Chapter 5. Automated Analysis of the ThreeBallot Voting System

choose.v2.cx for cx ∈ C. Consequently, the anonymity specification for the Three-

Ballot CSP model Systemabs
3B over the set A = {| choose |} can be described as:

SpecA(System
abs
3B) =̂

Systemabs
3B [[choose.v1.cx, choose.v2.cx/choose.v2.cx, choose.v1.cx]]

Following this, the anonymity requirement of this voting system model is verified

with the following trace equivalence.

SpecA(System
abs
3B) ≡T Systemabs

3B

5.3.1 Results with no SBA

In this subsection, some of the results produced by the automated anonymity

analysis of ThreeBallot without the SBA assumption are given.

Not unexpectedly, the previous trace equivalence does not hold for the ThreeBal-

lot voting system model, because there are situations in which a reconstruction

attack is possible. That is, a coercer who has seen the receipts for v1 and v2
can deduce that they voted respectively for c1 and c2, because there is no way

of constructing a complete set of valid multi-ballots in which the voters voted

other way around. The analysis shows that for the ThreeBallot voting system,

whether the election run provides anonymity entirely depends on how the voters

fill their multi-ballots, and also on which mini-ballots they choose as receipts.

The following counter-examples produced by FDR in different voting scenarios

give useful intuition about the situations in which anonymity is violated.

Examples of Privacy Violations of ThreeBallot

The FDR model checker returns several counter-examples which violate

anonymity and the following illustrated ones are the election runs from the ob-

server’s point of view. Note that the receipts shown in the following figures are

taken in sequence by the voters, i.e., the first receipt is taken by the voter v1,

and the second by v2, and so forth.

Example 1. The first counter-example is taken from a protocol run with two

voters, v1 and v2, and two candidates, c1 and c2. It shows that in a voting

scenario where the public information is displayed as in Figure 5.3 and v1 gets the

mini-ballot s2 as her receipt, and v2 chooses s3, the observer is able to reconstruct

the multi-ballots, thus violating their anonymity. This is because there is only one

possible way of forming valid multi-ballots with the public information shown in

Figure 5.4 and therefore, the observer is able to deduce who voted for whom in

5.3. Automated Anonymity Verification 83

this ThreeBallot election run. Although, the voters may have used different mini-

ballots to cast their votes, such as instead of s0, v1 may have used s5, this does

not affect the candidate that v1 has voted for.

Receipts Mini-ballots on BB

�
�
s2

�
�
s3

�
�
s0

�
�
s1

�
�
s4

�
�
s5

Figure 5.3: Voting scenario 1

choose.v1.c1 choose.v2.c2

�
�
s2

�
�
s1

�
�
s5

�
�
s3

�
�
s0

�
�
s4

Figure 5.4: Reconstruction attack 1

Example 2. Figure 5.5 involves a counter-example in a voting scenario with

two voters and three candidates. The counter-example trace shows that when the

voters v1 and v2 vote for c3 and c1, respectively, taking the mini-ballots with the

serial numbers s0 and s2 as their receipts, the observer can break their anonymity,

because the only way of constructing valid multi-ballots is illustrated in Figure 5.6.

In other words, there is no possible combination of these mini-ballots shown on

the BB such that the voter v1 can vote for the candidate c1 with the receipt s.0,

and v2 can vote for c3 with the receipt s.2.

Receipts Mini-ballots on BB

�
�
�
s0

�
�
�
s2

�
�
�
s1

�
�
�
s3

�
�
�
s4

�
�
�
s5

Figure 5.5: Voting scenario 2

choose.v1.c3 choose.v2.c1

�
�
�
s0

�
�
�
s1

�
�
�
s4

�
�
�
s2

�
�
�
s3

�
�
�
s5

Figure 5.6: Reconstruction attack 2

Example 3. The last counter-example involves an election with three voters and

two candidates, as depicted in Figure 5.7. When the voter v1 votes for c1, v2
votes for c2, and v3 votes for c1, with the receipts s1, s2 and s0, respectively, the

intruder is sure about the voter v1 not voting for c2, but for c1. Figure 5.8 shows

the only possible way of reconstructing the valid multi-ballots by comparing the

public mini-ballots and the receipts taken by the voters.

Receipts

�
�
s1

�
�
s2

�
�
s0

Mini-ballots on the BB

�
�
s3

�
�
s4

�
�
s5

�
�
s6

�
�
s7

�
�
s8

Figure 5.7: Voting scenario 3

84 Chapter 5. Automated Analysis of the ThreeBallot Voting System

choose.v1.c1

�
�
s1

�
�
s3

�
�
s4

choose.v2.c2

�
�
s2

�
�
s5

�
�
s6

choose.v3.c1

�
�
s0

�
�
s7

�
�
s8

Figure 5.8: Reconstruction attack 3

Previously Suggested Modifications to ThreeBallot

So far it has been shown with the previous counter-examples that the ThreeBallot

voting system does not provide anonymity. The following contains analysis of

some of the proposed modifications for ThreeBallot in the literature that are

claimed to be robust against such privacy attacks.

Taking Receipt Before Expressing Preference In this proposed modifi-

cation by [dMPQ07], the voter chooses her receipt just before expressing her

preference. That is, she fills one bubble for each candidate, and decides which

mini-ballot to copy as her receipt. Then, she fills out one extra bubble for the

chosen candidate, but not on the mini-ballot that was chosen as her receipt. It

is contended in [KTV11] that this new version of ThreeBallot provides a better

level of privacy than the primary scheme (probabilistic privacy). However, the

automated analysis of this modified protocol reveals that it is also vulnerable to

reconstruction attacks without the SBA being met. In particular, although it

might appear that a voter’s preference is not linked with her receipt as she has

chosen it beforehand, the vote expressed through all three mini-ballots on the

multi-ballot includes the one taken as a receipt.

Example 4. By way of an example regarding this weakness, Figure 5.9 illustrates

a voting scenario with this modified version of the ThreeBallot model involving

two voters and two candidates. The public data on the BB and the existence of

receipts mandate that the receipt s4 can only be combined with a fully-filled mini-

ballot and an empty one. Hence, the voter v1 holding the receipt s4 has definitely

voted for candidate c1, thus violating v1’s anonymity. Figure 5.10 shows a possible

composition of these public mini-ballots.

Receipts

�
�
s4

�
�
s3

Mini-ballots on the BB

�
�
s0

�
�
s1

�
�
s2

�
�
s5

Figure 5.9: Voting scenario 4

5.3. Automated Anonymity Verification 85

choose.v1.c1

�
�
s4

�
�
s1

�
�
s5

choose.v2.c2

�
�
s3

�
�
s0

�
�
s2

Figure 5.10: Reconstruction attack 4

FourBallot The FourBallot scheme was proposed by Kutylowski et al. [KZ10],

who claimed that it is immune to Strauss’ like attacks [Str06b, Str06a] (recon-

struction and pattern-matching (Italian) attacks†) under the SBA. In this scheme

a multi-ballot consists of four mini-ballots and a voter fills in exactly three bubbles

for the chosen candidate and two for the others (see Figure 5.11). The tallying

is also similar to the original system, with the only difference being that for the

FourBallot scheme two times the number of voters should be subtracted from the

total tally for each candidate. The following counter-example illustrates that the

Alice � Alice � Alice � Alice �
Bob � Bob � Bob � Bob �
Chris � Chris � Chris � Chris �
David � David � David � David �

56248 04578 31489 58201

Figure 5.11: A FourBallot multi-ballot form, filled in as a vote for Alice

proposed scheme without the SBA is vulnerable to reconstruction attacks for any

number of candidates as it can be generalised.

Example 5. In an election run with two voters and two candidates where the

public data on the BB is as in Figure 5.12, a reconstruction attack can be illus-

trated as in Figure 5.13. With the public information on the BB and the receipts

taken, the intruder violates the voters’ anonymity, because the receipts s0 and s3
can only be combined with a fully-filled (such as s1, s2) mini-ballot and an empty

one, like s4, hence, deducing that v1 has voted for c1 and v2 for c2.

In an election where the only voter who votes for c1 is v1, and all the others

vote for the candidate c2, the observer could deduce some information about the

vote for c1, if he keeps track of all the allocated mini-ballots to reconstruct valid

multi-ballots. This is simply because of the fact that if the only voter who votes

for Alice is v1 with the multi-ballot filled as in Figure 5.14, there is no anonymity

unless there is another voter, v2 who votes for Bob with the mini-ballots filled as

†The coercer asks the voter to fill the mini-ballots in an uncommon way (e.g., voting for the
candidate who has the least possible chance to win the election), so he can then check whether
the unusual mini-ballots appear on the bulletin board.

86 Chapter 5. Automated Analysis of the ThreeBallot Voting System

Receipts

�
�
s0

�
�
s3

Mini-ballots on the BB

�
�
s1

�
�
s2

�
�
s4

�
�
s5

�
�
s6

�
�
s7

Figure 5.12: Voting scenario 5: FourBallot

choose.v1.c1

�
�
s0

�
�
s1

�
�
s2

�
�
s4

choose.v2.c2

�
�
s3

�
�
s5

�
�
s6

�
�
s7

Figure 5.13: Reconstruction attack 5

in Figure 5.15. Therefore, no matter how many other voters vote for Bob, when

there is no such multi-ballot filled out as in Figure 5.15, there is no anonymity

for the voter v1.

Alice � Alice � Alice �
Bob � Bob � Bob �

56248 04578 31489

Figure 5.14: A ThreeBallot multi-ballot voted for Alice

Alice � Alice � Alice �
Bob � Bob � Bob �

78452 90732 13797

Figure 5.15: A ThreeBallot multi-ballot voted for Bob

Therefore, there is no absolute anonymity unless another voter exists who holds

the same pattern on their receipt, but has voted for another candidate. Neverthe-

less, no one can guarantee that such a ballot appears on the bulletin board. As

a result, although the proposed alternative schemes may provide a better level

of probabilistic privacy, they are, however, not powerful enough to guarantee

anonymity.

5.3.2 The Short Ballot Assumption

This section investigates the short ballot assumption by analysing the ThreeBallot

voting system under two of the three possible interpretations of the SBA that

were given earlier: Assumptions 2 and 3 (Recall that Assumption 1 seems to

5.3. Automated Anonymity Verification 87

be implausible unless there are only very few candidates.). In this section, the

analysis of ThreeBallot under the SBA versions is made manually except under

the SBA-mini because the SBA versions require too many voters to be involved

in an election run, which cannot be checked using model checking tools. First,

the ThreeBallot model under the SBA-mini is analysed mechanically using FDR,

and subsequently, analysis of the model under the SBA-mini-n is provided using

a hand-proof treatment. Finally, a better formulation the SBA-pro is presented.

Analysis under the SBA-mini

Suppose Assumption 2 is adopted, under which all possible mini-ballots are as-

sumed to appear on the bulletin board at least once at the end of the election.

The following counter-example shows that under such an assumption, the Three-

Ballot voting system model does not provide anonymity.

Example 6. Figure 5.16 is the voting scenario with three voters and three candi-

dates, holding the Assumption 2. That is, all possible mini-ballots appear on the

BB at least once. Under such assumption, however, the receipt s0 has two pos-

sible completion methods: it could be combined with s2 and s4 or s8 (as depicted

in Figure 5.17), or with s5 and s7, but in either case it represents a vote for the

third candidate.

Receipts

�
�
�
s0

�
�
�
s3

�
�
�
s1

Mini-ballots on the BB

�
�
�
s2

�
�
�
s4

�
�
�
s5

�
�
�
s6

�
�
�
s7

�
�
�
s8

Figure 5.16: Voting scenario 6: All possible mini-ballots appear on the bulletin
board

choose.v1.c3

�
�
�
s0

�
�
�
s2

�
�
�
s4

choose.v2.c2

�
�
�
s3

�
�
�
s5

�
�
�
s6

choose.v3.c1

�
�
�
s1

�
�
�
s7

�
�
�
s8

Figure 5.17: Reconstruction attack 6

88 Chapter 5. Automated Analysis of the ThreeBallot Voting System

Analysis under the SBA-mini-n

We now analyse the system under the Assumption 3, which ensures that every

possible mini-ballot will appear on the bulletin board at least n times for some

suitable value of n in the following lemma:

Lemma 3. The Assumption 3 is insufficient for ThreeBallot to provide

anonymity regardless of how many times every possible mini-ballot appears on

the BB.

Proof. The proof relies on a special construction of mini-ballots published on the

bulletin board using the following two observations.

Observation 1. A fully-filled mini-ballot can be combined only with an empty

mini-ballot and a singleton (a mini-ballot with only one bubble marked) as in

Figure 5.18.

�
�
�
s1

�
�
�
s2

�
�
�
s3

Figure 5.18: A completion of a multi-ballot with a fully-filled s1, an empty s2,
and a singleton mini-ballot s3

Observation 2. Any possible mini-ballot m that is not empty, fully-filled or a

singleton, can be turned into a completed multi-ballot that does not contain a

fully-filled mini-ballot or a singleton such as the mini-ballot s1 in Figure 5.19.

This can be done by combining it with another mini-ballot that is the complement

of m, but with one extra bubble and an empty mini-ballot, as in the following.

�
�
�
s1

�
�
�
s2

�
�
�
s3

Figure 5.19: A completion of a mini-ballot s1 that is not empty, fully-filled or a
singleton

A bulletin board that displays at least n copies of every possible mini-ballot can

be reached in the following way using these two observations above.

Each possible mini-ballot that is not empty, fully-filled or a singleton, like s1 in

Figure 5.19, can be turned into a multi-ballot as described in Observation 2, and

added to the BB. This gives at least n copies of everything except singletons and

5.3. Automated Anonymity Verification 89

fully-filled mini-ballots. Now each possible singleton should be combined with

a fully-filled mini-ballot and an empty mini-ballot as in Observation 1. Thus, n

copies of each such multi-ballot are added to the BB, meaning that every possible

mini-ballot now appears at least n times on the BB.

With such construction of the bulletin board, however, any voter taking a single-

ton as a receipt will have no anonymity, because the number of fully-filled mini-

ballots is the same as the number of singletons. That is, since each fully-filled

ballot must be combined with a singleton and a blank one from Observation 1, it

follows that the voter’s receipt must have been part of such a multi-ballot. How-

ever, in that case the mini-ballot reveals the candidate that the voter selected

and hence, no value of n is sufficient to guarantee anonymity in ThreeBallot.

SBA-pro: A better formulation

The possible interpretations of the SBA previously given are either not suffi-

cient or too unrealistic to provide anonymity and hence a much more plausible

definition, one that is demonstrably strong enough for ThreeBallot, is given next.

Assumption 4 (SBA-pro). Let M be the set of all mini-ballots cast during the

election, where R ⊂ M is the set of all receipts that are known to the adversary,

and vote is a partial function, such that vote(m1,m2,m3) = c whenever the three

mini-ballots m1, m2 and m3 together form a valid multi-ballot that represents a

vote for c. Additionally, for any two mini-ballots m1 and m2, m1 ∼ m2, if and

only if, they contain the same sequence of vote marks (i.e., m1 = m2, but the

serial numbers are different).

For every r ∈ R and every candidate c, there is a vote cast consisting of three

(unordered) mini-ballots, m1,m2,m3, such that:

1. r ∼ m1;

2. vote(m1,m2,m3) = c;

3. m2,m3 ∈ M \ R.

Informally, under this interpretation, for every receipt known to the adversary

there is an equivalent one used in a multi-ballot for each of the candidates in the

election.

Theorem 1. The assumption 4 is strong enough to prevent reconstruction attacks

in ThreeBallot.

Proof. The key to the proof is the observation that if m ∼ m′ then

vote(m,m2,m3) = vote(m′,m2,m3). This is clear from the fact that m and m′

90 Chapter 5. Automated Analysis of the ThreeBallot Voting System

differ only regarding their serial numbers, which are not relevant for determining

which candidate received the vote cast by a multi-ballot.

Suppose that r ∈ R, and the adversary wishes to determine which candidate

received the vote cast that included r, this not possible because r could be a vote

for any of them. By way of explanation, if r did in fact occur in a multi-ballot

along with m1 and m2, as a vote for c, for any other candidate c′, there was

a multi-ballot cast containing m3,m4,m5, such that vote(m3,m4,m5) = c′ and
r ∼ m3, and with m4 and m5 not known to the adversary. Consequently, this

means that the adversary cannot distinguish the following two possibilities:

1. a ballot of (r,m1,m2) for c, and a ballot of (m3,m4,m5) for c
′;

2. a ballot of (m3,m1,m2) for c, and a ballot of (r,m4,m5) for c
′.

In each case, the set of mini-ballots used by this partial reconstruction is the

same, so it cannot affect further reconstruction of the remaining mini-ballots.

In one case, r was used to vote for c, and in another, for c′ and since c′ was
arbitrarily chosen, it is concluded that r could equally have been used to vote for

any candidate.

To see the improved plausibility of this interpretation, suppose the adversary

has knowledge of r receipts in an election run with n candidates. The SBA-pro

requires at least n · r multi-ballots of the right type have been cast to protect

anonymity. By contrast, the SBA-multi requires at least n · 3n other appropriate

multi-ballots and as long as r is small, the SBA-pro is much less demanding

compared with the SBA-multi. For instance, in an election with 10 candidates,

the SBA-multi needs at least 590,490 multi-ballots and unless the adversary has

seen somewhere in the order of 59,000 receipts, the SBA-pro is much more likely

to be satisfied.

This efficiency argument is not absolute and to formalise it would require a full

voter model; that is, it would need a probability distribution for the multi-ballots

cast in an election. Producing such a model is probably unrealistic, since it would

be affected by the prevailing political landscape at the time of the election and

it is in any case outside the scope of this thesis.

5.3.3 Verified Privacy Cases

Apart from the SBA, several slight modifications for ThreeBallot have been pro-

posed to help the system provide absolute anonymity and by using FDR these

modified systems can automatically be verified against reconstruction attacks.

5.3. Automated Anonymity Verification 91

The first proposed modification allows the voters to exchange their receipts, and

the second mandates that voters must fill in at least one bubble in every column.

Floating or Exchanging Receipts

Rivest [Riv06] has suggested a possible improvement to the original ThreeBallot

scheme, with the idea of exchanging receipts in the polling station— the idea is

originally known as the Farnel protocol and it considers exchanging ballot forms

rather than receipts (see [ACW+06] for a full description of the idea in English).

Here, each voter puts her receipt in a box, and takes someone else’s and indeed,

this idea can be used in any paper-based election system. If voters are allowed

to take a random receipt from the box in the polling station, then this eliminates

reconstruction attacks as well as pattern-matching attacks, because the adversary

does not have any knowledge of any part of the voter’s ballot.

This is modelled in CSP, such that all cast mini-ballots are collected in the polling

station outside the booth and once the voters have finished casting votes, each

collects a mini-ballot from the box as their receipt before the election is closed,

i.e., the voters wait for each other casting their votes outside the booth and pick

a mini-ballot from a collection of them. Although the adversary may be able to

reconstruct valid multi-ballots, he cannot link them to the voters, as any of the

voters could have voted for any candidate, because they can get any mini-ballot as

their receipt providing that each candidate has received at least one vote. Hence,

the automated analysis here using FDR has confirmed prior research [Riv06] that

modified schemes, where voters are allowed to take any cast mini-ballots as their

receipts or exchange them, provide guaranteed anonymity.

No Single Mini-ballot Left Blank

In this version of ThreeBallot, the condition is that voters must fill out at least

one bubble on each mini-ballot. Under this modified model, it has been auto-

matically verified that this condition is sufficient to guarantee anonymity with

a two candidate election run in which case there are only two ways of filling a

mini-ballot, and thus only two different receipts that can be taken by voters.

In the modelling of such voter behaviour, the voter process is forced to place a

mark on all three columns with an extra line. Hence, as in the original process,

the voter places two marks for the chosen candidate, say on the coordinates (i, 1)

and (i, 2), with the extra line in the process, a place event, forced to happen on

the 3rd column and any of the rows apart from the ith, such as on the coordinate

(i + 1, 3). Following this, the voter fills in the multi-ballot form placing a mark

for all the other candidates as in the original voter process.

However, in an election where there are more than two candidates, although

92 Chapter 5. Automated Analysis of the ThreeBallot Voting System

intuitively the system provides better probabilistic anonymity than the original,

it cannot guarantee voter anonymity. The following illustrates a counter-example

produced by FDR:

Example 7. Figure 5.20 involves a counter-example in a voting scenario, where

no mini-ballot is left blank, with two voters and three candidates. The counter-

example demonstrates that when the voters v1 and v2 vote for c3 and c1, respec-

tively, taking the mini-ballots with the serial numbers s3 and s1 as their receipts,

the observer can break their anonymity, because the only way of constructing

valid multi-ballots is as illustrated in Figure 5.21. In more detail, the mini ballot

s1 cannot be combined with that of s5 and hence, according to the protocol, the

only combination for the receipt s3 to form a valid multi-ballot is s3, s0 and s5.

Therefore, the intruder can deduce how each voter has voted.

Receipts Mini-ballots on BB

�
�
�
s3

�
�
�
s1

�
�
�
s0

�
�
�
s2

�
�
�
s4

�
�
�
s5

Figure 5.20: Voting scenario 7: no
mini-ballot left blank

choose.v1.c3 choose.v2.c1

�
�
�
s3

�
�
�
s0

�
�
�
s5

�
�
�
s1

�
�
�
s2

�
�
�
s4

Figure 5.21: Reconstruction attack
7

5.4 Challenges Faced in the Modelling and

Analysis

This section presents the challenges faced during the modelling of ThreeBallot

and anonymity analysis of it. The ultimate challenge was to model the voting

system in a way that is efficient for automated verification because the number of

states of a CSP system can increase very quickly—especially for voting systems

as they are complex and consist of a number of parallel components. In order

to overcome this difficulty, the two methods, control processes and compression

functions, were used.

The control processes helped us to reduce the states of the individual processes

when the control process were applied. For instance, the voter process was re-

stricted in a way that a voter could mark her ballot in a left to right fashion when

filling bubbles for the chosen candidate and top to bottom when filling bubbles for

the other candidates. Similarly, the voters were made to authenticate themselves

in a descending order, i.e., first the voter vn, then vn−1 and so on. Moreover, there

were some limitations for the authority process too. For instance, the authority

process was forced to allocate serial numbers for each mini-ballot form in a left

5.4. Challenges Faced in the Modelling and Analysis 93

Original No mini-b empty All mini-b appear

States Time States Time States Time

2v 2c 239, 905 7.8s 56, 841 5.3s 240, 055 7.0s

2v 3c 4, 139, 347 1m41.8s 1, 435, 926 38.3s 4, 165, 428 1m40.1s

3v 2c − − 67, 409, 391 22m49.3s − −
3v 3c − − − − − −

Table 5.5: The FDR verification times for the ThreeBallot versions. As the
required state space grows quickly with the number of voters and candidates, it
was not possible to produce results in some cases as FDR cannot handle with
such huge states. Those are denoted as “−” in the table.

to right style with respect to the coordinates allocated for serial numbers, e.g.,

for 2 candidate race, first serial is allocated to (2, 0), then the second to (2, 1)

and the last one to (2, 2). This reduces state space dramatically. Likewise, the

occurrence of pub and total events could be performed in a descending order with

suitable control processes.

The other method is the compression functions. We found two compression

functions; sbisim() and diamond() useful to reduce the states to check the following

refinement for automated anonymity analysis of ThreeBallot.

sbdia(SpecA(System
abs
3B)) ≡T Systemabs

3B

where sbdia(P) = sbisim(diamond(P)).

sbisim and diamond are two compression functions that do not modify the seman-

tics of the processes when they are applied to them. The former one is the strong

bisimulation, which is an equivalence over labelled transition systems (LTS) (a

set of nodes and a relation for each event in some set). The latter, diamond, is

called diamond elimination. It is a function that removes all τ actions from an

LTS, produces an LTS with minimal acceptance and divergence information and

never increases the number of nodes (see [Ros97] for further reading for a variety

of compression functions that may be used in different CSP models).

Moreover, to give an idea to the reader about the verification times, see Table 5.5

(the results were produced using the efficient models). In the table, there are

verification times for three different versions of ThreeBallot: the original Three-

Ballot, a version of ThreeBallot in which voter fills in all mini-ballots of her

multi-ballot (leaving no empty mini-ballots), and another version in which all

possible mini-ballots appear on the bulletin board.

94 Chapter 5. Automated Analysis of the ThreeBallot Voting System

5.5 Summary

In this chapter, it has been demonstrated that the ThreeBallot voting system

is vulnerable to privacy-related attacks, especially reconstruction attacks, even

under some plausible interpretations of the short ballot assumption.

In the analysis, an abstracted CSP model of ThreeBallot has been used, which

is defined as the parallel composition of agents in the system, and the passive

intruder model defined in the previous chapter as pertaining to a person who can

see all the public channels, including what each voter takes as a receipt.

Throughout a number of examples for different voting scenarios it was demon-

strated that ThreeBallot does not provide anonymity under various formulations

of the short ballot assumption. However, given a reasonable and plausible inter-

pretation of this assumption, ThreeBallot is in fact protected from reconstruction

attacks. Moreover, previously suggested modifications to ThreeBallot, such as,

taking receipt before expressing her preference and FourBallot was shown that

they are not adequate to prevent from reconstruction attacks. Finally, two dif-

ferent versions of ThreeBallot were analysed automatically using FDR, namely,

exchanging receipts and no mini-ballot left blank.

Because of the state space problem, as mentioned in Chapter 2, a limited number

of agents were considered. In most cases, the restriction did not affect the analysis

of the systems and assumptions; however, as under the short ballot assumption

a large number of mini-ballots are required, it was not possible to demonstrate

automatic verification in such cases, but hand proofs were supplied where appro-

priate.

In the next chapter, the CSP approach to automated analysis of voting systems

will be extended and applied to a cryptographic voting system, Prêt à Voter,

thereby presenting the first automated formal analysis of this voting system.

Chapter 6

Modelling and Analysis of a

Cryptographic Voting System

This chapter∗ extends the framework introduced in Chapter 4 and used in the

non-cryptographic voting system analysis in Chapters 4 and 5 to cope with cryp-

tographic voting systems and aims to demonstrate how this framework can be

applied to the paper-based voter verifiable cryptographic voting system Prêt à

Voter. This is the first automated analysis of this promising voting system us-

ing a reasonably abstracted model of it. Similar to the previous analyses, first,

the behaviour of the honest participants is modelled and then the capabilities

and limitations of the passive attacker as given in Chapter 4 are once again de-

termined. Finally, automated formal analysis of this model of Prêt à Voter is

performed against the specification defined in Chapter 4.

The chapter is structured as follows. Firstly, in Section 6.1, the Prêt à Voter

voting system is introduced, covering the voting ceremony, system properties

and components. Secondly, in Section 6.2 the modelling and following that in

Section 6.3 automated analysis of Prêt à Voter as well as the CSP approach to

cryptographic voting systems are presented. Section 6.4 investigates the corrupt

agent scenarios in this voting protocol. Finally, Section 6.5 concludes the chapter

with a discussion and a summary of the findings.

6.1 The Prêt à Voter Voting System

Prêt à Voter is a paper-based, voter-verifiable cryptographic e-voting sys-

tem, introduced by Ryan [Rya04, Rya05] as an improvement on Chaum’s

scheme [Cha04]. Since then, it has been further improved and enhanced in

∗This chapter is mainly based on the published work [MHS12].

95

96 Chapter 6. Modelling and Analysis of a Cryptographic Voting System

many different ways [CRS05, RP05, RS06, Rya06, Hea07, Rya08, RBH+09, RP10,

XCH+10, BCH+12b]. In the modelling and analysis in CSP for this work the fo-

cus is on the re-encryption mixes version of Prêt à Voter, as proposed by Ryan

and Schneider [RS06]. Hereby, this version of Prêt à Voter will be abbreviated

as Prêt à Voter.

Figure 6.1 illustrates a simple Prêt à Voter ballot form cast for Alice in a single-

winner electoral method as in FPTP—although, Prêt à Voter can be used for

preferential voting systems, these are not covered here. In the left-hand column

of the ballot form is printed a random permutation of the candidate names and

an encrypted onion called registrar onion. It embeds the candidate order, so

that once it is scanned, the voting machine can decrypt the value and print the

candidate list on the ballot form on demand. Moreover, in the right-hand column

are the boxes in which the voter can mark her choice as well as a unique serial

number at the top and the cryptographic value at the bottom of this column. It

is called teller onion and embeds the candidate ordering on the left-hand side,

and is encrypted under the tellers’ public-key. This public-key is a threshold key

for an appropriate homomorphic encryption algorithm, such as ElGamal [ElG84]

or Paillier [Pai99]; the precise algorithm is not important for the purposes of this

thesis. Moreover, there is a perforation line between the two halves to facilitate

separating them. The following subsections present the voting ceremony for Prêt

à Voter in general and the re-encryption version in detail.

9X3ht

Bob

Alice X

Chris

i5yTf 2iP6d2

Figure 6.1: Prêt à Voter ballot form

Voting with Prêt à Voter

Voting with Prêt à Voter is (by design) quite similar to voting in the conventional

voting system. That is, an eligible voter goes to a polling station, authenticates

herself to the election official and takes a random ballot form in an envelope.

These ballot forms have been produced by the election authorities before the

election day and are kept sealed (Although there are forms of Prêt à Voter that

use on-demand printing, they are not considered here.). Once the voter goes into

the booth, she then marks her choice with a cross on the right-hand column, tears

the ballot form down the perforation line, and shreds the candidate list. Finally,

she scans her ballot and takes the right-hand column as her receipt. Later, all the

scanned right-hand sides will be published on a web bulletin board (WBB), and

6.1. The Prêt à Voter Voting System 97

she will be able to use her receipt to check that her vote has not been changed

or deleted. As the candidate name order in the left-hand column is random, the

right-hand column reveals nothing about her vote.

Ballot Generation: Prêt à Voter introduces a distributed ballot generation by

a number of election authorities or clerks using the ElGamal encryption system

and re-encryption mixes in order to eliminate single point failures.

For the distributed generation of ballots, several clerks are used jointly, with each

of them contributing to the construction of the cryptographic seeds, which form

the onions at the bottom of ballot forms. The registrar onion (on the bottom

left) can be decrypted by the voting machine in the polling station, however, the

teller onion (on the bottom right) can only be decrypted by a threshold of tellers,

because it is encrypted under a distributed secret-key among a number of tellers.

The distributed ballot generation is performed as follows.

Suppose that the ElGamal public key parameters (α, γ, p, q) are chosen and made

public according to the ElGamal protocol, where p and q are two large primes,

such that p = 2q + 1, and α and γ are generators of the cyclic group Zp. Addi-

tionally, a set of tellers generate the secret key xT ∈ Z
∗
q in a threshold fashion and

publish the public key (p, α, αxT) in order to generate the teller onion. Similarly,

another secret key xR ∈ Z
∗
q is chosen by the voting machine, and the public key

(p, α, αxR) is revealed. For convenience, the registrar’s public key is denoted as

βR = αxR and the tellers’ public key βT = αxT in the following.

Initially, clerk C0 (one of the l clerks) generates a batch of seeds r0i randomly

from a binomial distribution and a batch of pairs of onions by encrypting each

r0i with the public keys of registrars and tellers in the form γ−r0i . Thus, the pair

(EpkR(γ
−r0i),EpkT (γ

−r0i)) is the encryption of a randomly chosen r0i under the

corresponding public keys. In the case of ElGamal, the pair is expressed as:

(αxi
0
, βxi

0

R .γ−r0i), (αyi
0
, βyi

0

T .γ−r0i), where x0i , y
0
i are chosen from F∗

p

The next clerks will perform a combined re-encryption with freshly injected en-

tropy seed values, such that for each pair of the onion the same entropy is added

so as to ensure that these values still continue to match. Assume x, y are fresh

random values taken from F∗
p and r are random values independently generated

by the clerk Cj with a binomial distribution mean 0 and standard deviation σ.

Then the transformation for each onion pair in the batch is as follows.

98 Chapter 6. Modelling and Analysis of a Cryptographic Voting System

(αxi
j−1

, βxi
j−1

R .γ−rj−1
i) (αyi

j−1
, βyi

j−1

T .γ−rj−1
i)

� �

(αxi
j−1

.αxj
, βxi

j−1

R .βxi
j

R .γ−rj−1
i .γ−rji) (αyi

j−1
.αyj , βyi

j−1

R .β
yi

j

R .γ−rj−1
i .γ−rji)

� �

(αxi
j−1+xj

, βxi
j−1+xj

R .γ−(rj−1
i +rji)) (αyi

j−1+yj , βyi
j−1+yj

R .γ−(rj−1
i +rji))

� �

(αxi
j
, βxi

j

R .γ−rji) (αyi
j
, βyi

j

T .γ−rji)

, where

xji = xj−1
i + xji (mod q)

yji = yj−1
i + yji (mod q)

rji = rj−1
i + rji (mod q)

After having transformed each onion pair, clerk Cj performs a secret shuffle and

forwards the result to the next clerk Cj+1 and so forth. Thus, the final output

after l − 1 mixes (l is the number of clerks) is (αxi
l
, βxi

l

R .γ−rli) for the registrar

onion, and (αyi
l
, βyi

l

T .γ−rli) for the teller one. As the teller onion is encrypted

under the random seed values ri, the encrypted values can only be revealed when

all clerks collude. In the case of a ballot demand from a voter in the booth, these

values can be revealed by a threshold set of registrars or the onion encoding

candidate list can be decrypted by the voting machine using the corresponding

secret key. Once the seed values are revealed, the candidate order π can be

derived and the Prêt à Voter ballot form Figure 6.1 can be printed out in the

booth on demand.

Tallying: In the tabulation phase, the existence of the index value as well as the

onion may be used by the intruder to partition the mix and hence, the index values

need to be absorbed into the onion value [RS06]. Suppose, the candidate order is

determined by the cyclic shift rather than the full permutation π as previously,

and ri is the cyclic shift for the ith ballot and s is the index value. Now, the teller

onions in the form of (αyi , βyi
T .γ−ri) can be transformed into (αyi , βyi

T .γs.γ−ri)

after the election and before the tabulation phase. Subsequently, the new terms

are sent to a re-encryption mixnet, where the new terms are re-encrypted and

posted to the WBB in random order. Following this, a threshold set of decryption

tellers take these terms and decrypt them to extract the plaintext value in the

form γs−ri(mod p). The original vote is then computed as s− ri(mod n), where

n is the number of candidates.

Auditing: As Prêt à Voter is intended to be a transparent and trustworthy

voting system, auditing is an important counter-measure against incorrectly con-

6.1. The Prêt à Voter Voting System 99

structed ballots, incorrect recording of the votes and corrupt tellers. In order to

audit ballot construction, a two sided ballot form mechanism is adopted in [RS06],

which requires some modifications to generic Prêt à Voter ballot forms (see [RS06]

for further information). However, there are other ways of auditing ballot con-

struction, such as, using a single dummy vote or given the onion value, in which

case the tellers are expected to return the candidate list on that ballot form.

Moreover, in order to audit any malfunction or corruption by the mix tellers a

mechanism called randomised partial checking (RPC), as proposed in [JJR02],

can be performed. That is, the tellers reveal a randomly chosen half of their

input and output links in such a way that there is no complete route from input

to output, so that no ballot receipt can be traced, and the remaining links are

hidden. A modification of a single value has a 50% chance of being caught and

a corrupt teller therefore has only a 1
2n chance of getting away with modifying

n votes.

An Abstract Prêt à Voter System Structure

Figure 6.2 illustrates an election run with voter v and her interaction with the

voting system, which also shows the approach and abstraction level taken when

modelling Prêt à Voter. In detail, the protocol operates as follows:

� The authority in the voting system chooses a random value r from a seed

space, R, computes the candidate list permutation π, using a publicly

agreed function f , (so f(r) = π), and finally encrypts the random value

r using the tellers’ public key, EpkT (r), finally sending the data {π,EpkT (r)}
to the voter.

� The voter chooses a candidate c, marks the ballot form finding the corre-

sponding index value, i, and sends {i,EpkT (r)} to the WBB, discarding the

permutation, π.

� The election official signs the receipt {i,EpkT (r)} and sends it back to the

voter.

� The WBB first mixes the cast votes using re-encryption mixes and then

publishes {i,EpkT (r)}. The teller takes over the vote and reveals the random

value r using its secret key, skT , then it calculates π candidate permutation

as f(r) = π.

In the following subsection, a reasonably abstracted CSP model of Prêt à Voter

is presented.

100 Chapter 6. Modelling and Analysis of a Cryptographic Voting System

C, pkT
Voter v

C, (pkT , skT), R, v

System

{π,EpkT
(r)} - chooses r ∈ R

- computes π := f(r)
- calculates EpkT

(r)

{i,EpkT
(r)}- chooses c ∈ C

- finds c in π
- discards π

SskT
(i,EpkT

(r))
- signs {i,EpkT

(r)}

SskT
(i,EpkT

(r))

- mixes EpkT
(EpkT

(r))
- publishes {i,EpkT

(r)}
- decrypts DskT

(EpkT
(r))

- computes π := f(r)
- counts c

Figure 6.2: Prêt à Voter voter interaction with the system

6.2 Modelling Prêt à Voter

This section presents the CSP model of Prêt à Voter by first defining data-types,

sets and the functions used, and then describing each process as in Chapter 5.

Although, some of the processes are similar to the previous voting systems anal-

ysed for this research, each process behaves slightly differently depending on the

modelling approach. For instance, in the previous chapter, ThreeBallot was mod-

elled with the help of coordinates, however, in the Prêt à Voter modelling the

approach used will be that introduced in Chapter 4.

To begin with, Figure 6.3 illustrates the message sequences between the protocol

agents that form the Prêt à Voter voting system. In order to achieve the abstract

behaviour of the voting system shown in this figure, the individual processes need

to be modelled as follows:

In the following paragraphs, the functions, data-types and sets used to construct

the events and the processes are described. Similar to the framework used in

6.2. Modelling Prêt à Voter 101

C,V, S
Authority

C
Voter v Booth Machine

bag = ∅
WBB

bag = ∅
Mixnet

Lc = 0

Teller

choose c ∈ C

registration phase

v

authenticate
v

{l, s, 〈EpkT
(ca),EpkT

(cb)〉}

voting phase

enter booth

mark ballot s
i := find(c, l)

shred l

leave booth

{s, i, 〈EpkT
(ca),EpkT

(cb)〉}

SskT
(s, i, 〈EpkT

(ca),EpkT
(cb)〉)

{s, i, 〈EpkT
(ca),EpkT

(cb)〉}

nth(i, 〈EpkT
(ca),EpkT

(cb)〉)

tallying phase

{s, i, 〈EpkT
(ca),EpkT

(cb)〉}
publish

re-encrypt
EpkT

(EpkT
(c))

EpkT
(c)

decrypt
DskT

(EpkT
(c))

Lc := Lc ++

Lc
publish

Figure 6.3: Prêt à Voter system model: the election process for a voter v, and
candidate c.

102 Chapter 6. Modelling and Analysis of a Cryptographic Voting System

Section 3.3, encryption is considered as a formal symbolic operation. The en-

cryption function encrypt(pk,m) is the public-key encryption of the message m

under the public key pk, and it uses a constructor Encrypt.(f, f), which is de-

noted as Epk(f), where F is the set of facts and f ∈ F . In a similar manner, the

re-encryption is modelled as a null operation (i.e., encryption does not change),

so, reencrypt(pk,Epk(m)) = Epk(m) and therefore, the property of re-encryption

is abstracted away in this model. Additionally, the key pair formed by pkT and

skT is the teller’s encryption key pair and the public key is used to construct

the ballot forms by the authority during the election. It is also used in the

re-encryption phase by the mixnet. As the teller knows the secret key, he can

extract the re-encrypted shuffled values and the onion values, which embed the

actual vote, in the tallying phase. Moreover, in order to avoid state explosion

in the model checker, the number of agents is limited in the model, with only

two candidates, two voters and two serial numbers being used. For convenience,

the names of the sets are abbreviated as follows: candidates as C, voters as V,
serials as S. Some of the other sets that are useful in modelling messages as

data-types are:

candidates = {c1, c2}
voters = {v1, v2}
serials = {s1, s2}
keypairs = {(pkT , skT)}

A Prêt à Voter ballot form (Figure 6.4) consists of a LHS and a RHS. On the LHS,

there is a candidate list, and on the RHS, there is a serial number, a grid that

the voter places her mark in and an onion, representing the encrypted candidate

list. The set indices consists of natural numbers, such as {1, 2} here in order to

symbolise marking action by the voter. For instance, suppose that two candidates

are running in the election and the candidate list on the LHS is 〈c1, c2〉. When

the ballot form is given to the voter, the marking boxes are initially empty, so

they are modelled with the data-type emptylist. If she wants to vote for c1, she

chooses 1, whereas if her preference is for candidate c2, she fills in 2 and so on.

Note that the voter can mark a ballot form only for the chosen candidate.

s1
c1
c2 2

〈EpkT (c1),EpkT (c2)〉

Figure 6.4: Prêt à Voter ballot model in CSP: a vote for c2 is expressed with the
index value 2.

6.2. Modelling Prêt à Voter 103

The function lists() below produces the set of all possible candidate lists on a

ballot form taking the candidate list C as a parameter. Similarly, the set onions

covers all possible onion values, which embed the encrypted candidate lists under

the teller’s public key, pkT , and are located at the bottom right of a ballot form.

The sets of indices, lists and onions are abbreviated as I, L and O, respectively.

lists(C)= {〈c〉̂ a | c ∈ C, a ∈ lists(C � {c})}
onions = {〈EpkT (ci),EpkT (cj)〉 | ci, cj ∈ C}

Two special functions called find and nth as defined next are used to describe the

actions taken by the agents. The find function is used by the voter process to see

the corresponding grid for the candidate she has chosen. The function is defined

by means of the head and tail functions; the former returns the first element of a

non-empty sequence, the latter returns all but the first element of a non-empty

sequence, for instance; head(〈c1, c2, c3〉) = 〈c1〉 and tail(〈c1, c2, c3〉) = 〈c2, c3〉. The
function nth is also defined using head and tail to extract the nth element of a

sequence.

find(c, l)=

{
1 if c = head(l)

1 + find(c, tail(l)) if c �= head(l)

nth(i,m)=

{
head(m) if i = 1

nth(i− 1, tail(m)) if i �= 1

Subsequently, the message formats transmitted on the network can be modelled

using the sets, functions and data-types above as follows.

ballotforms = {〈l, 〈s, i, o〉〉 | l ← L,
s ← S,
i ← I,
o ← O}

castrhs = {〈s, i, o〉 | s ← S,
i ← I,
o ← O}

encryptions= {EpkT (c),EpkT (EpkT (c)) | c ← C}
atomicfacts = {f | f ← ∪{V, I}}

104 Chapter 6. Modelling and Analysis of a Cryptographic Voting System

6.2.1 Modelling Assumptions

The assumptions made in the modelling of CVS in Section 4.4.1 are also valid

in the modelling of Prêt à Voter in this section. In addition to those, a real

Prêt à Voter ballot form consists of a registrar and a teller onion. These are

encrypted values embedding security sensitive informations and assumed not to

be decrypted without the corresponding secret key. Additionally, the purpose of

the registrar onion is to audit for malfunctioning voting machines and such like,

it is not within the ambit of this thesis. Hence, in the modelling of Prêt à Voter,

the ballot form includes only the teller onion, but not the registrar one as in the

real system.

Additionally, the mixnet is treated as one single entity because the mixnet, which

consists of a number of mix tellers, is assumed to be honest in the original pro-

posal. Thus, in terms of modelling an honest mixnet there is no difference between

an honest mixnet having multiple mix tellers and a mixnet with only one mix

teller behaving honestly by shuffling all its inputs non-deterministically. Con-

sequently, the mechanism for the threshold decryption of the encrypted votes

cannot be used in the modelling of Prêt à Voter here as the onion values are

only encrypted once by the honest mixnet using its public key. Thus, a single de-

cryption teller knowing the corresponding public key can decrypt the encrypted

values. Therefore, the decryption tellers working in a threshold way in the real

system is not considered in the modelling of Prêt à Voter in this chapter. For the

assumptions regarding cryptographic primitives and CSP, see Chapter 2.

In the re-encryption version of Prêt à Voter, the ballots can be pre-printed or

can be printed on-demand in the booth machine. The former is considered here,

whereby the election authority creates the ballot forms using the teller’s public

key and forwards pre-printed ballot forms to the voters (in practice, the ballot

generation code is run on a diskless workstation, which generates the ballots,

prints them, and then shuts down, keeping no record of its actions. The candidate

lists are kept in only two places: printed on the ballot papers and on the WBB

encrypted under the threshold public key). However, the election authority in

this modelling behaves as an electoral official who creates ballot forms and issues

them to the voters directly. Moreover, information about the candidate list is

considered as flowing over a private channel, collectform, modelling an envelope,

which ensures the privacy of the ballot form. Furthermore, the candidate list

on the LHS is modelled here as a full permutation of candidates rather than

cyclic shift—there is no difference in the case of two candidates as the set of

permutations for these is the same as the set of cyclic shifts. However for the

number of candidates more than two cyclic shifts should be used in the model to

reflect the correct behaviour of the system. Using a cyclic shift, which is a subset

of the set of permuted candidate lists, decreases the cardinality of the set of all

6.2. Modelling Prêt à Voter 105

possible candidate lists, cutting down the required state space for the automated

verification.

In the next section, the honest participant processes are defined.

6.2.2 Honest Participants

In the following subsections the individual processes that comprise the Prêt à

Voter voting system model are expressed in CSP. Additionally, for each definition

the abstraction level will be clarified further by comparing the real system and

the CSP model of it.

Election Authority Process

The election authority first opens the election with the event openElection. Hav-

ing taken possession of the list of eligible voters, serial numbers to assign, and the

list of candidates, the authority authenticates the voters with their identification

upon request from them, and issues each with an empty ballot form, containing a

non-deterministically chosen serial number and a candidate list, over the channel

collectform. The authority can perform these actions for as long as there are

eligible voters and serial numbers to allocate. Finally, he closes the election with

the closeElection event.

Authority =̂ openElection → Authority1 (V,S,L)
Authority1 (ids, serials, lists) =̂

closeElection → STOP

�

�
v∈ids

⎛⎜⎜⎝
auth.v →

�
s∈serials
l∈lists

(
collectform.v .〈l , s, emptylist ,EpkT (l)〉 →
Authority1 (ids � {v}, serials � {s}, l)

) ⎞⎟⎟⎠
As in the conventional voting system model, the alphabet of each process is the

set of all events that a process may perform. Thus, the alphabet of Authority is

as below; the alphabets for the remaining processes in the system can be inferred

from the CSP definitions.

αAuthority = {|openElection, auth, collectform, closeElection|}

Voter Process

Having chosen a candidate to vote for, the voter authenticates herself and accepts

any ballot form given by the election authority. Then, she goes into the booth

to select a candidate on the channel mark, and after destroying the candidate

106 Chapter 6. Modelling and Analysis of a Cryptographic Voting System

list, she leaves the booth. Afterwards, she casts her vote under the supervision

of the election authority using the voting machine supplied. Having cast the

ballot form, the voter is provided with a receipt of her vote, which is the RHS of

the ballot form, including the serial number—in the real system, the receipt is

signed by the electoral official as a proof of casting the vote, hence, if the voter

cannot find a matching receipt on the WBB, she can appeal using the signed

receipt as her proof. However, in this modelling it is omitted as its purpose, i.e.,

verification, is not within the scope of this thesis. Once the voter gets her receipt

and leaves the polling station, voting finishes for her. The serial numbers on the

receipts are used by the voter for verifying whether her ballot appears on the

WBB unchanged.

Voter(v) =̂

�
c∈C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

choose.v.c → openElection → auth.v →

�
l∈L
s∈S
i:=find(c,l)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

collectform.v.〈l, s, emptylist,EpkT (l)〉 →
enterBooth.v →
mark.〈l, s, i,EpkT (l)〉 →
shredLHS .〈s, i ,EpkT (l)〉 →
leaveBooth.v →
cast.〈s, i,EpkT (l)〉 →
receipt.〈s, i,EpkT (l)〉 →
closeElection → STOP

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above process should be followed by all eligible voters and hence the voter

processes for each voter are put in parallel in order to model the behaviour of all

voters in an election run.

Voters =̂ ‖v∈VVoter(v)

Machine Process

The Machine process models the voting machine located in the polling station

outside the booth, which is a multi-function machine that can scan the votes and

print the receipts for the voters. That is, it synchronises on the event openElection

with the authority and the voters, then starts receiving the cast right-hand sides

of the ballot forms and printing out the receipts for the voters before the election

is closed. Because the machine accepts any RHS cast by the voters, the external

choice operator is used. When the process is combined with the other agents on

the channel receipt, it will send the copies of the receipts to the WBB.

6.2. Modelling Prêt à Voter 107

Machine =̂ openElection → Machine1
Machine1 =̂closeElection → STOP

��
r∈castrhs

(
cast.r → receipt.r → Machine1

)

Web Bulletin Board Process

The WBB stores and publishes all cast ballots for verification purposes as well

as requesting shuffling from the mixnet, which anonymises the cast votes.

The following process Wbb starts receiving the digital copies of the cast right-

hand sides returned by the Machine process on the channel receipt, once the

openElection event has occurred. It keeps track of the receipts in a set called

bag, which is initially an empty set. The WBB process can also request shuffling

for the votes by sending them, one by one, to the mixnet process on the channel

mixReq—in the Prêt à Voter voting system, the mix requests can also be sent as

a batch of votes rather than one by one. This does not affect the analysis here as

the votes are shuffled and output by the mixnet non-deterministically. However,

serial numbers are stripped off beforehand. Once the election is closed and all

votes have been sent for shuffling, the process publishes all cast votes kept in the

set bag. These consist of a serial number, an index indicating where the mark is

and an onion value, which is the encryption of the candidate list on the LHS of

the ballot form.

Wbb =̂ openElection → Wbb1 (∅)
Wbb1 (bag) =̂ closeElection → Wbb2 (bag)�

�
s∈S
i∈I
o∈O

⎛⎜⎝ receipt.〈s, i, o〉 →
mixReq.nth(i, o) →
Wbb1 (bag ∪ {〈s, i , o〉})

⎞⎟⎠

Wbb2 (∅) =̂ bagempty → STOP

Wbb2 (bag)=̂ �
r∈castrhs

pub.r → Wbb2 (bag � {r})

Mixnet Process

The Mix process behaves as a mixnet, which performs a mix for the digital copies

of the receipts. Although a number of mix tellers exist in the real system, only

a single honest mix server is considered. The following process below behaves

as a perfect mixnet, which anonymises the cast votes arbitrarily. In more detail,

as the cast votes arrive to the mixnet, one by one, the process keeps them in a

108 Chapter 6. Modelling and Analysis of a Cryptographic Voting System

set called Batch, which is initially empty. Before shuffling the votes, the process

Mix re-encrypts each encrypted vote with the teller’s public key, pkT , which does

not change the actual vote. When all the votes have been re-encrypted (no vote

left to mix as indicated by the event bagempty), the teller takes over the shuffled

votes non-deterministically and one by one.

In this model of the mixnet, it is assumed that the mix is honest and does not

reveal any information about the mapping from input to output. As having more

than one mixnet would not make any difference as a consequence of the non-

deterministic construction of the mixnet, one is enough to re-encrypt and shuffle

the votes here. In the process, the parameter i is used to create a bag-like set,

where the same data can be stored many times unlike normal sets.

Mix =̂ openElection → Mix 1 (0 , ∅)
Mix 1 (i ,Batch) =̂ closeElection → Mix 2 (Batch)�

�
c∈C

⎛⎜⎝ mixReq.EpkT (c) →
reencrypt.EpkT (EpkT (c)) →
Mix 1 (i + 1 ,Batch ∪ {(i ,EpkT (c))})

⎞⎟⎠
Mix 2 (∅) =̂ bagempty → STOP

Mix 2 (bag)=̂ �
(i,e)∈bag

mixOut.e → Mix 2 (bag � {(i , e)})

Decryption Teller Process

As remarked previously, the existence of a threshold set of decryption tellers is

present in the real system, however, here, only a single honest teller is considered

enough to model the CSP decryption of teller process as given below.

The Teller process takes over the shuffled re-encrypted onion values from the

mixnet, transferred on the channel mixOut. Because re-encryption and ballot

generation are performed under the teller’s public key pkT , he can decrypt each

of the encrypted cast votes, and tally the plaintext values according to the candi-

dates. Finally, the process announces the result for each candidate on the channel

total.

6.2. Modelling Prêt à Voter 109

Teller =̂ openElection → Teller1 (0 , 0)

Tel ler1 (m,n) =̂

�
c∈C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

mixOut.EpkT (c) →
decrypt.DskT (EpkT (c)) →
tally.c →⎛⎜⎝ if c = c1 then Teller1 (m + 1 ,n)

else

(
if c = c2 then

Teller1 (m,n + 1) else STOP

) ⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
�
bagempty → total.c1.m → total.c2.n → SKIP

System Process

The following process SystemPaV models the abstract behaviour of the Prêt à

Voter voting system. Similar to previous systems modelling, a number of sanity

checks are deployed in order to gain more confidence in the correct behaviour of

the CSP model of this voting system and the details regarding these are presented

in Appendix A.3.

SystemPaV =̂ Voters ‖ Authority ‖ Machine ‖ Booth ‖ Wbb ‖ Mix ‖ Teller

In the overall flow of the system process, all voters synchronise on openElection

and closeElection events with the election authority pairwise. Thus, each voter

performs an openElection event to begin her voting process. Each voter must also

perform a closeElection event after casting their individual vote and leaving the

polling station. Not only all voters synchronise on election opening and closing

with the authority, but also other system components, such as, the WBB and

mixnet processes. In addition, the decryption teller process announces the result

for each candidate once there is no ballot data left to decrypt and count.

The following subsection defines the intruder model for the analysis of this voting

system.

6.2.3 The Passive Attacker

The passive intruder framework defined in Chapter 4 will be deployed in this

analysis and similar to the previous analysis, the capabilities of the intruder need

to be specified. Regarding this, as usual, the intruder is able to observe any public

data. As mentioned in the Authority process, the authority or electoral official

should not get to know the candidate order on the Prêt à Voter ballot form that is

used by a particular voter because this could then be used to violate her privacy.

Note that the voter anonymity or vote privacy in Prêt à Voter depends on the

link between the candidate order and the receipt. Hence, no one should be able

110 Chapter 6. Modelling and Analysis of a Cryptographic Voting System

to know the corresponding candidate order for a specific receipt. Moreover, the

event mark, which models the voter marking her ballot form, also needs to be

unobservable. Therefore, the channels; collectform and mark, need to be private

and hence, any data on these channels should be hidden from the intruder. The

following reflects the system model with the private channels abstracted and the

rest of the channels in the model are public including the receipts taken away by

the voters.

System′
PaV =̂ SystemPaV \ {| collectform,mark |}

The previous assumptions made above are model-specific, i.e., depending on the

model, channels that need to be hidden may change. Moreover, the generic

assumptions that can be made for any cryptographic voting system are as fol-

lows. Firstly, it is assumed here that the public-key infrastructure is secure, and

the observer does not have enough computational power to break the key pairs.

As encryption and decryption are modelled symbolically, any cryptographic vul-

nerabilities and attacks are not considered. Similarly, two ciphertexts encoding

different plaintext should look the same to the intruder as long as he does not

possess the secret key that he can use to decrypt and compare them. In other

words, the encryptions on the channels need to be masked, so the intruder cannot

distinguish them. To this end, the special function maskFact() is deployed, which

converts all encrypted data to one single value, ciphertext, but leaves other data

unchanged. Note that in CSP a function can be defined as the following due to

its pattern matching property. Hence, the data item is tried in top to bottom

order, i.e., if it fails to match the pattern in the first function definition, then the

second is tried.

maskFact(EpkT (m))= ciphertext

maskFact(x) = x

Similarly, as the onions on the ballot forms are sequences of ciphertexts, mask()

is defined as follows:

mask(〈〉) = 〈〉
mask(〈x〉̂ xs)= 〈maskFact(x)〉̂ mask(xs)

As a result, the abstracted model of the Prêt à Voter voting system, Systemabs
PaV ,

can be defined as follows.

6.3. Automated Anonymity Verification 111

Systemabs
PaV =̂ System′

PaV [[shred.〈s, x,mask(o)〉/shred.〈s, x, o〉]]
[[cast.〈s, x,mask(o)〉/cast.〈s, x, o〉]]
[[receipt.〈s, x,mask(o)〉/receipt.〈s, x, o〉]]
[[pub.〈s, x,mask(o)〉/pub.〈s, x, o〉]]
[[mixReq.mask(enc)/mixReq.enc]]

[[mixOut.mask(enc)/mixOut.enc]]

[[reencrypt.mask(enc)/reencrypt.enc]]

It is further assumed that the computing devices are legitimate unless it is stated

that the device is corrupted. The assumptions relating to the channels collect-

form, mark are that the booth is private, and the envelope with the ballot form

inside that is given to the voter hides the candidate order from the intruder. The

following section presents the first automated anonymity analysis of Prêt à Voter.

6.3 Automated Anonymity Verification

This section checks whether the Prêt à Voter model with honest participants,

Systemabs
PaV , meets the anonymity requirement defined in Section 4.3 Definition 2

under the presence of the passive attacker model. Informally, according to the

definition, the normal system and the system in which two votes are swapped over

should be trace equivalent. The latter is the specification that needs to be defined

in order to check the system against it. As the voter decides which candidate

to vote with the choose event, these events need to be anonymised. Thus, the

specification for Systemabs
PaV, where A = {| choose |} is defined as follows:

SpecA(System
abs
PaV) =̂

Systemabs
PaV[[

choose.v1.cx, choose.v2.cx/choose.v2.cx, choose.v1.cx]]

Consequently, in order for the Prêt à Voter model to provide anonymity, the

following trace equivalence should hold.

SpecA(System
abs
PaV) ≡T Systemabs

PaV

FDR verifies that the trace equivalence holds, meaning that the intruder cannot

distinguish between these two systems and hence, the Prêt à Voter model provides

anonymity.

6.4 Analysis under Alternative Assumptions

In the previous section, Prêt à Voter was analysed with respect to a passive

attacker who can observe the public information on the channels that are available

112 Chapter 6. Modelling and Analysis of a Cryptographic Voting System

to him. This section investigates anonymity from the insider point of view, such

as that of a corrupt electoral official. The framework is flexible enough to model

such behaviours in cryptographic voting system models too with the renaming

and hiding operators.

In the case of a corrupt authority or electoral official, it is expected that the

private information held by them is no longer secret. That is, the private channel

collectform, on which all ballot information is transferred from the official to the

voter, is no longer private, and can be used to deduce how the voter has voted.

In order to verify whether the anonymity is broken in such a case, it is necessary

that collectform is not hidden any more. Hence, the new abstracted model from

authority’s point of view can be defined using the following process rather than

the process System′
PaV used before.

System′′
PaV =̂ SystemPaV \ {|mark |}

Consequently, the abstracted process Systemabs
PaV should be defined in terms of

System′′
PaV exactly the same way as described above and in order to verify

whether the requirement is held by this model the same trace equivalence needs

to be checked with this new abstracted model.

As expected, FDR produces a number of counter-example traces, meaning that

the trace equivalence does not hold. One of the traces is as follows:

〈choose.v1.c2,
choose.v2.c1,

openElection,

auth.v1,

collectform.v1 .〈〈c1 , c2 〉, s1 , emptylist , 〈EpkT (c1),EpkT (c2)〉〉,
enterBooth.v1,

shredLHS .〈s1 , 2 , 〈ciphertext , ciphertext〉〉〉

The trace illustrates that when the voter v1 votes for c2 casting the ballot form

with the candidate order 〈c1, c2〉, the intruder deduces for whom the voter v1 has

voted. This is because the first time that the intruder can see v1’s RHS on the

shredLHS channel, he can observe that the RHS of the ballot form has a mark for

the second candidate (shown as 2), which corresponds to the candidate c2 on the

candidate list he observed before. Therefore, the intruder, with the additional

information from the corrupt electoral official, can break the anonymity of the

voters in this modelling of Prêt à Voter.

A similar approach can be taken to model any corrupt agents on the system in

the sense that they follow the protocol, but leak information. For instance, the

6.5. Conclusion 113

intruder may be allowed to see one of the voter’s candidates list or the voter can

share what she knows with the intruder, which can be modelled by only hiding

v1’s private channels, but not v2. However, this would create a corner case,

where in an election there exists only one honest voter, which was discussed in

Section 4.6. Moreover, a corrupt mixnet may also be modelled and to do so, its

non-deterministic behaviour needs to be made deterministic. For instance, the

mixnet can output the re-encrypted votes in a first-in-first-out (FIFO) fashion or

last-in-first-out (LIFO). In such cases, the intruder would notice the difference

between the normal system and the system where two votes are swapped over,

because a sequence of mixnet output for one is not possible for the other. Such

scenarios can easily be modelled in CSP, and checked using FDR.

6.5 Conclusion

Although, the analysis in this chapter has been performed with a reasonably ab-

stracted model of Prêt à Voter, which does not cover some of its aspects, such as

a threshold set of tellers, registrar onion and so on, it has sufficed to show how

some of the cryptographic primitives in voting systems can be modelled using

the framework defined in Chapter 4. Moreover, this analysis further validates

the suitability of the anonymity definition given in Section 4.3 Definition 2. Ad-

ditionally, it was demonstrated that the passive attacker model is very flexible to

capturing any information leakage from the corrupt system participants.

6.6 Challenges Faced in the Modelling and

Analysis

This section presents the challenges faced during the modelling of Prêt à Voter

and anonymity analysis of it. The main issues was to come up with a model of

Prêt à Voter that behaves as close to the real system as possible and that could be

used for the automated verification. Thus, a number of abstractions were needed

in the model due to state explosion problem. For instance, a perfect mixnet

was modelled consists of only one mix server unlike the real system in which

the mixnet consists of at least 5 mix servers. These abstraction are explained in

detail in Section 6.2.1.

Another difficulty was to get rid of false-positives during the automated analysis.

For instance, when the encrypted messages are left as they are in the model,

the intruder can distinguish two different ciphertexts as if he possesses the corre-

sponding secret key. Thus, a masking function, maskFact(), was needed in order

to hide the differences between two ciphertexts. This function renames a number

114 Chapter 6. Modelling and Analysis of a Cryptographic Voting System

of events, which carry confidential information that should be hidden from the

observer (see Section 6.2.3 for further details about this masking function).

6.7 Summary

In this section, the paper-based voter verifiable cryptographic voting system Prêt

à Voter was modelled in CSP and its first automated analysis with respect to the

anonymity requirement was performed. It was shown that Prêt à Voter provides

anonymity under the assumption of honest behaviour of the participants in the

system. Furthermore, the model has also been investigated under different trust

assumptions, such as, the presence of a misbehaving electoral official and mixnet.

In both cases, it was verified that the abstract model of Prêt à Voter does not

provide anonymity. However, in the real system, these two assumptions are not

an issue. That is, for the former, as the election authority in this modelling of

Prêt à Voter is a combination of a diskless distributed ballot generation engine

and a poll worker, who does not see the candidate orders on the ballot forms, in

the real system, the secret information on ballot forms can only be leaked by the

envelopes, which do not leak by assumption. For the latter, assuming a corrupt

mixnet would be against the protocol design as it is a distributed process and

assumed not to be so.

In the next chapter, automated analysis of cryptographic voting systems under

an active and more powerful intruder than the passive attacker along the lines of

a Dolev-Yao intruder [DY83] as defined in Section 3.3 will be investigated.

Chapter 7

Adapting the Dolev-Yao

Intruder Model to Voting

Systems

This chapter∗ presents a novel intruder model for automated reasoning about

anonymity and secrecy properties of voting systems. It is much stronger than

the passive attacker used in the previous chapters as it behaves as a Dolev-

Yao intruder model [DY83]. This type of intruder not only observes a protocol

run, but also interacts with the protocol participants, overhears communication

channels, intercepts and spoofs any messages that he has learned or generated

from any prior knowledge. This approach is inspired by lazy spy [RG97], which

is designed for cryptographic protocol analysis and called “lazy” as it avoids the

eagerness of pre-computation of unnecessary inferences [Ros97]. The approach

has already been introduced in Chapter 3, however, in order to apply this intruder

model to voting systems, a few modifications are needed in relation to existing

channel types and the deductive system. For the former, we benefit from Creese et

al. [CGRZ03, CGH+05], who defined various channels for different threat models

in ubiquitous computing environments. For the latter, a large deductive system

is constructed regarding the messages transmitted on the voting system model

channels.

When describing the approach followed in this chapter, the vVote voting sys-

tem will be used, which is based on Prêt à Voter [Rya04, CRS05], and is un-

der development for use in Victorian Electoral Commission (VEC) elections in

2014 [BCH+12a, BCH+12b, Cul13] in Australia. The intended system will be

used in these elections, involving over three million voters, electing 88 legislative

∗This chapter is mainly based on the paper accepted by the 13th International Workshop
on Automated Verification of Critical Systems (AVOCS’13) [MH13].

115

116 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

assembly and 40 legislative council representatives, using a mixture of the alterna-

tive vote (AV), also called instant-runoff voting (IRV), and the single transferable

vote (STV). Most of the key features of Prêt à Voter are retained in the vVote

system. However, to adapt the system to such a complex election setup, a num-

ber of modifications have been necessary in the system design; for instance, the

inclusion of distributed ballot generation, an electronic ballot marker to assist

the voter in filling out the ballot, and print-on-demand ballots for voters who are

voting away from their registered polling station.

In terms of voting system requirements addressed during the analysis of the

vVote system, the anonymity definition given in Section 4.3 Definition 2, and

an adaptation of the secrecy definition used in the analysis of the NSPK in

Section 3.3.4 are covered.

The participants of the vVote voting system will be modelled in CSP as usual,

however, the processes will involve more cryptographic primitives than the previ-

ous chapter and the intruder model will be much more complex than the passive

attacker. That is, this chapter will involve analysis of a complex system that

requires much more state space than the previous analyses of voting systems

in this thesis. However, it will be demonstrated that the FDR model checker

and the CSP formal language are suitable methods for mechanically analysing

cryptographic voting systems.

The chapter is structured as follows. Section 7.1 presents an overview of the

vVote voting system. In Section 7.2, the vVote voting system is modelled in

CSP except for some parts of it, such as distributed key generation, and the lazy

spy intruder model is further extended for the analysis of voting systems with

additional data-types, channel types and deduction rules. Section 7.3 analyses the

system model regarding the formal specification of anonymity, whilst Section 7.4

investigates the analysis of the model under alternative assumptions, such as,

there being a corrupt election authority, who is preparing and distributing digital

ballots. In Section 7.5, a formal specification of secrecy is given for voting systems.

Section 7.6 presents a conclusion and discussion on the findings, with a chapter

summary being provided in Section 7.8.

7.1 The vVote Voting System

Over the last few decades many trustworthy voting systems have been proposed.

However, only a few have been deployed in large-scale real elections. Regard-

ing these, Scantegrity II [CCC+08] was the first E2E voting system deployed

in a binding governmental election on November 3, 2009 [CCC+10], involving a

relatively small electorate with 1728 voters. Additionally, Norway used an in-

ternet voting protocol [Gjø10] in the municipal elections in September 2011, in

7.1. The vVote Voting System 117

which more than 25,000 voters cast their votes using this protocol. Moreover,

STAR-Vote [BBK+12] is another voter verifiable DRE-style voting system, which

is going to be used in Travis County, Texas, the United States, involving over

450,000 registered voters.

The vVote voting system is an E2E paper-based electronic voting system based

on Prêt à Voter [Rya04, CRS05]. However, a number of modifications have been

made to the original Prêt à Voter system. The main difference is that an electronic

device is deployed in order to facilitate accommodating a candidate list with

over 30 candidates on the ballot forms. This also helps voters to indicate their

preferences among many other candidates. However, deploying these computers

requires further trust on them as they know about the voters’ choice at the time of

voting. Hence, a misbehaving device can violate voter anonymity or vote privacy

and as a result, for further confidence in the design of this promising real-world

voting system, formal verification is needed.

The vVote ballot form illustrated in Figure 7.1 is similar to a Prêt à Voter one.

On one side there is a randomly permuted candidate list and a QR code at the

bottom that records the permuted candidate order, on the other are marking

boxes, a unique serial number and another QR code, corresponding to the onion

that embeds the candidate order.

In the construction of onions, exponential and normal ElGamal public key algo-

rithms are used. For instance, for the legislative council election, a value in Gq

is chosen to represent each party name. Suppose the value is α, then the cor-

responding onion for this party is the ElGamal term Epk(α) = (gr, αhr), where

h = gx, r ∈ Z
∗
q is a random value and x ∈ Z

∗
q is a random secret value.

7.1.1 Ballot Generation

Ballot generation can be realised on the machine that prints the ballot form in

the booth or in a distributed fashion that is similar to that described in [Rya06,

RT10], i.e., a number of candidate list mixers shuffle the encrypted candidate

names for each vote, which ensures that the candidate ordering is random and

not generated by a single party. This eliminates single point failures. In the

distributed version, a list of encrypted ballots, including a serial number, the

onion encoding the candidate list, and the list of encrypted candidate names for

the printer with a proof of correspondence is produced. The printers’ (print-on-

demand (POD) client) candidate list is encrypted under a threshold key shared

across a set of candidate list key sharers, called the POD service. Hence, in order

for a printer to obtain the candidate list, it generates a blinding factor, encrypts

it under the POD service public key, and sends it to the POD service with a proof

of knowledge. Afterwards, having received the encrypted candidate list blinded

118 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

Figure 7.1: vVote ballot form [Cul13]

by itself, the printer removes the blinding factor, and prints the candidate list.

7.1.2 Election Phases

In the following paragraphs the election phases covering the voting ceremony and

the vVote system components are explained.

Pre-election The pre-election phase covers the preparation of election material

before the polling station opens. In this period, digital ballots are generated in a

distributed fashion that are encrypted under the POD service’s and the election

authority’s public key, before being committed to the public bulletin board. In

order to speed up decrypting of the votes, a lookup table of all possible voting

permutations is created. Additionally, mixnets are set up, and key generation is

performed in this phase.

Vote Casting This phase starts with polling stations opening and lasts until

the election is closed, with no further votes being allowed to be cast. The POD

7.1. The vVote Voting System 119

service allocates and transfers pre-prepared digital ballots to a print station in

the polling booth during the election. Having registered with the poll worker,

the voter or the former interacts with the POD service to get a ballot paper as

illustrated in Figure 7.1. The POD client will derive the permuted candidate list

on the ballot form when it is actually being printed in the polling station and the

ballot paper format in vVote is similar to the Prêt à Voter one. However, instead

of an onion for the encrypted candidate list, it has a QR barcode that consists of

a digitally signed serial number. Having scanned this barcode to the electronic

ballot marker (EBM), the voter can see and cast her ballot form in an electronic

environment. The EBM is a new front-end component that interacts with the

WBB to submit the vote and receive a digitally signed receipt for it, which is then

printed for the voter for verification purposes by a receipt printer in the booth.

The WBB commits, records and broadcasts the ballot data generated during

the election and also signs the serial numbers allocated by the ballot manager,

thereby ensuring their uniqueness. Once the voter has cast her vote and received

her receipt, she then leaves the polling station.

Post Election Post election is the phase where the cast votes are mixed by the

mixnets, decrypted and tallied by a set of key sharers, such that only a threshold

set of these sharers can perform decryption. The results are then announced by

the bulletin board.

7.1.3 vVote POD Service and Protocol

The POD service (also called candidate list key sharers) provides distribution of

digital ballots in a distributed manner to the polling stations in any district. As

the digital ballots are prepared and committed to the WBB before the election,

this service facilitates the print-on-demand ballot distribution in real time (The

details about the POD service and any other part of the vVote system can be

found in the software design technical report [Cul13]. Despite the fact that it is

still being updated in respect of design changes, it is considered to be a natural

stable description for use in the analysis in this chapter).

In the ballot generation procedure, the randomised candidate order of a ballot

is encrypted under the election public key pkEA and it is then transformed to

an encryption under the POD service’s public key pkPS without revealing the

underlying message, as described in [Jak99]. The same transformation technique

is also used in the POD protocol illustrated in Figure 7.2 to transform the en-

cryptions on the digital ballots into the designated POD client’s public key pkPC

and these transformed ciphertexts cannot be decrypted by anyone other than the

designated printer.

In more detail, when the voter authenticates in the polling station, the poll

120 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

worker requests a random nonce-like sessionID from the administrator machine.

Following this, the poll worker sends the sessionID to the POD service, where

it is signed and stored. Having received the signed sessionID, the poll worker

hands it to the voter in barcode form. Then, the voter scans the barcode to

the POD client, which signs the sessionID and submits it to the POD service.

Subsequently, the POD service signs the district and the sessionID and submits

them to the ballot manager. Following that, the ballot manager finds the next

available serial number for that district, assigns it to the submitted sessionID,

and notifies the WBB for this assignment by signing them using its secret key

skBM . The WBB then sends a confirmation of this assignment to the ballot

manager, which returns this to the POD service. Now, the transformation of the

public keys that encrypt the ballot form takes place from pkPS to pkPC . Finally,

the POD service signs the serial number and sends along with the transformed

ciphertexts to the POD client, which can then decrypt these and print the actual

ballot for the voter.

Voter Poll Worker POD Service POD Client Ballot Manager WBB

ID

SskT
(district, sessionID)

SskPS
(sessionID)

sessionID

SskPC
(sessionID)

SskPS
(district, sessionID)

SskBM
(SerialNo, sessionID)

SskW
(SerialNo, sessionID)

SskW
(SerialNo, sessionID)

SskPS
(SerialNo),EpkPC

(Candidates)

Candidates, SskPS
(SerialNo),EpkPC

(Candidates)

Figure 7.2: Message sequence chart of POD protocol

In this new system, the electronic ballot marker (EBM) is particularly interesting

as it forms the key distinctive characteristic of vVote, being the only device in

the system that knows how a particular voter has voted. That is, when the

voter transfers her actual ballot form to the EBM, the candidate list on her form

is also transferred to the EBM, while it is destroyed and kept secret in Prêt à

7.2. Modelling vVote and Active Intruder 121

Voter. One of the assumptions made in [BCH+12a, BCH+12b, Cul13] is that the

POD client, where physical ballot form is printed, and the EBM, are located in

a private environment, such as, a voting booth.

In the next section the vVote voting system is modelled in CSP as well as there

being description of the adaptation of the lazy spy intruder model for the analysis

of voting systems.

7.2 Modelling vVote and Active Intruder

Conventionally, security protocols consist of several agents sending messages to

each other on the medium they share or on direct communication channels. The

vVote voting system is modelled in terms of a number of agent processes that

run in parallel and these processes behave as the corresponding components of

the voting system.

In the following sections, the messages sent on the channels of the model are

defined. Secondly, the different kinds of channels that are needed for the analysis

are introduced along with the process definitions for each agent, which compose

the voting system model. Following this, the lazy spy intruder model acting as a

Dolev-Yao intruder is adapted to analyse such voting systems. Finally, the system

model and active intruder model are put together in order to reason about the

system as a whole later in the analysis section.

7.2.1 Data-types and Messages

As introduced in Chapter 3, cryptographic primitives, such as encryptions and

signatures, are modelled as symbolic objects like the agents, the public and secret

keys, the nonces and serial numbers. For instance, encryption: Epk(f), decryp-

tion: Dsk(f), signature: Ssk(f). Additionally, apart from these, the other mes-

sages, which can be a collection of these cryptographic primitives, are also mod-

elled as the data-types. In this respect, the message including a serial number and

an encrypted candidate list (called raw ballots here) is denoted as Raw(s,Epk(l)),

and a digital ballot message formed by a signed serial number and an encrypted

candidate list is modelled as DigB(Ssk(s),Epk(l)). Similarly, a ballot form con-

sisting of a candidate list, a serial number, and an index value, is B(l, s, Ind.i);

a message with a serial number and an index value forming the marking boxes

on the ballot form, called castrhs, which is demonstrated as RHS(s, Ind.i); and a

receipt is the signed castrhs denoted as R(Ssk(RHS(s, Ind.i))). Finally, a message

consisting of an index value and an encrypted candidate list is called a vote and

shown as V(Ind.i,Epk(l)). Figure 7.3 depicts how these messages are composed

in the model.

122 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

In order to compose these messages, the model consists of several finite sets of

facts, F , as listed below. The abbreviation W stands for the web bulletin board,

T is Tom, the poll worker, EA is the election authority, PS and PC are the POD

service and client, respectively, and BM is the ballot manager. For convenience,

names are abbreviated as follows: the set of candidates as C, voters as V, agents
as A, serial numbers as S, nonces as N , and public-keys and secret-keys as PK
and SK, respectively.

C = {Zoe, V ictor}
V = {Alice,Bob, James}
A =

⋃
(V, {Tom, authority, wbb, teller, podservice,

podclient, ballotmngr, ebm, printer})
S = {s1, s2, s3}
N = {na, nb, nc}
PK= {pkA | A ∈ {W,T,EA,PS, PC,BM}}
SK= {skA | A ∈ {W,T,EA,PS, PC,BM}}

The agents send various kinds of messages to each other, which need to be de-

fined in terms of data-types. The messages mentioned above and illustrated in

Figure 7.3 form the message set M. The names of the sets are indicative of what

messages they represent. However, to remove the ambiguity; castrhs represents

the cast ballots, L is the set of all possible candidate lists, and I is the set of in-

dices with how the voter is modelled to fill in the marking boxes for her preferred

candidate.

In the next section, the communication channels, on which these messages are

transmitted, are described.

7.2.2 Channel Types

As in the NSPK analysis in Section 3.3, the channels have the form A.A.M,

where A is the set of agents and M is the set of messages that agents may wish

to transmit over the channels and these are listed in Figure 7.3.

The framework introduced in Section 3.3 involves only (InS) Insecure channels,

i.e., the whole network is not secure, and hence, any message can be manipulated

in many ways by the intruder. The intruder can block, overhear and spoof

any message transmitted on the insecure communication channels between the

legitimate agents. This kind of communication channels are directly connected to

the intruder using the renaming operator in CSP. Hence, there is no restriction

in the intruder process about what he can or cannot perform on the insecure

communication channels. In order words, he can act as the Dolev-Yao intruder

model on such channels.

7.2. Modelling vVote and Active Intruder 123

signednonces = {Ssk(n) | sk ←SK,
n ←N}

signednonsers = {Ssk(s, n) | sk ←SK,
s ←S,
n ←N}

rawballots = {Raw(s,Epk(l)) | s ←S,
pk ←PK,
l ←L}

digitalballots = {DigB(Ssk(s),Epk(l)) | sk ←SK,
pk ←PK
s ←S,
l ←L}

indices = {Ind.i | i ← Int}
ballotforms = {B(l, s, Ind.i) | l ←L,

s ←S,
Ind.i←I,
a ←A}

castrhs = {RHS(s, Ind.i) | s ←S,
Ind.i←I}

receipts = {R(Ssk(RHS(s, Ind.i))) | s ←S,
Ind.i←I,
sk ←SK}

votes = {V(Ind.i,Epk(l)) | Ind.i←I,
pk ←PK,
l ←L}

atomicfacts = {f | f ←∪{V,N , I}}

Figure 7.3: Message types used in the modelling

Such an assumption is too strong for voting systems that require an environment

for the voters to be able to vote privately, such as a voting booth, at least if the

action of receiving a ballot form is modelled as a message. This is also the case for

most of the remote voting systems, where it is assumed that no one is watching

over the voters’ shoulder while she is casting her vote. Hence, this necessitates

the existence of private channels in the voting system model. To this end, the

agents in the model are enabled to communicate over a secure channel (S), called

scomm, on which the intruder has no power at all. The intruder cannot block,

overhear or spoof transmitted messages over the secure communication channels.

For instance, when the voter is given the ballot form by the poll worker, mes-

sages including the sensitive data regarding the candidate order, are transmitted

over scomm channels. If there was no private channels, the intruder would ob-

viously violate the voter’s privacy by overhearing communication channels on

which vulnerable data flows. In the modelling of such channels, different channel

124 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

names, like scomm, are used to distinguish the secure channels from others in

order to hide the crucial information from the Dolev-Yao intruder. As stated

previously, the intruder’s ability is modelled using the renaming operator in the

process definition of the intruder. This is to say that the intruder can perform

all his bad behaviour on the channels that are connected to his process definition

using renaming. Hence, the secure channel scomm is shared only between honest

agents, and not with the intruder. Therefore, as the intruder does not have any

connection with secure channels, he cannot block, overhear or spoof messages on

such channels.

From the observations made throughout the analysis in this thesis (it will be

explained further in Section 7.6), it is assumed that at least two eligible honest

voters are able to vote, and the cast votes are tallied at the end of the election.

Otherwise an attack regarding the voter’s privacy occurs in which the intruder

blocks all the communication channels except the one on which the target voter

communicates in order to cast her vote. Thus, the intruder would learn how the

voter has voted. Therefore, at least two honest voters should be able to cast their

votes without any blocking so that the intruder cannot deduce how each of them

has voted. This assumption requires that there exists a channel in the voting

system model such that the communications made by these two honest voters

with the other agents are No Spoofing and Blocking (NSB) channels modelled

as nsbcomm here, and they are combinations of two different channel types; No

Blocking (NB) and No Spoofing (NS) channels. On such channels the intruder

can overhear the communication, but cannot block its occurrence and spoof any

messages. Creese et al. [CGH+05] describe various kinds of channels for pervasive

computing environments. For instance, the No OverHearing channel c (NOHc) is

that which cannot be overheard, the No Blocking channel c (NBc) is the channel

that cannot be blocked and the No Spoofing channel c (NSc) is the channel

type that cannot be spoofed. The three NOHc , NBc and NSc form the secure

channels scomm in the modelling. The NB channels in CSP are modelled when

the intruder process is renamed to take/block messages from the channels on the

network.

Using CSP the set of messages that make sense to the protocol (they are from

real communications between agents), called comms, can be defined as the union

of sets of data objects for each message type. For instance, the following defines

the vote messages sent by one agent to another.

commVotes = {a.b.m | m ← votes, a ← A, b ← A, a �= b}

These are also useful when the intruder is afforded the ability to modify the mes-

sages on the insecure channels or not to block and fake certain data from specific

agents as it may be confusing as to whether the message is already known or

7.2. Modelling vVote and Active Intruder 125

has just been learned from the real communication that the intruder overhears.

This is used in modelling the intruder by defining the set of legitimate insecure

messages sent from one agent to another Ucomms, i.e., they are from real com-

munications of agents, which can be overheard, learned and said by the intruder.

This set on which the intruder can behave as the Dolev-Yao intruder in the anal-

ysis of vVote in Section 7.2.5 is defined as the following.

Ucomms =
⋃
({q.q′.f | q.q′.f ← comms, q ← {James}, q′ ← agents},
{q.q′.f | q.q′.f ← comms, q ← agents, q′ ← {James}})

The set defines real communication messages between the agent James and other

agents on the network, meaning that all messages that are sent by and to James

are transmitted on the insecure communication channels (InS). Similarly, insecure

NB messages Nbcomms from real communication can be defined so using such

sets and later used to determine what the intruder can overhear, spoof but not

block.

Although, the existence of NB channels solves one problem, which is the unwanted

privacy attack previously mentioned, there is another plausible attack where the

intruder does not block the messages on NB channels, but can later modify and

spoof the messages, i.e., the intruder cannot take/block, but he can still fake

messages overheard from the NB channels. Hence, if the intruder can modify

and spoof one of the messages sent from one of those honest two voters, he can

then deduce the other private message by looking at the election result as in the

previous attack. Therefore, there is a need for a channel that cannot be spoofed,

called No Spoofing (NS) channels. On NS channels, the intruder can overhear but

cannot block or spoof messages. This is exactly what we need in order to allow

two honest voters to cast their votes without any interruption and modification.

As such a channel is no blocking and spoofing channel, it will be called as No

spoofing and blocking (NSB) channel from now on, and in the CSP definitions of

the voting system and intruder model it will be expressed as nsbcomm.

As mentioned earlier, secure channels are combinations of NB, NS and NOH

channels. NOH channels are the channels that the intruder cannot overhear any

messages on. On such channels the intruder can block and spoof messages, but

cannot overhear the communication channel. The implementation of this channel

in CSP is similar to the others’—it is modelled by restricting what the intruder

can overhear with a defined set of network messages.

For the analysis of vVote later in this thesis, we need to define what information

flows over: secure channels scomm, insecure channels comm, and no spoofing

and blocking channels nsbcomm, because of the reasons explained previously.

This can be done in two ways: the first one is that all agents on the network

126 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

work on insecure communication channels (comm) in which case secure, and no

spoofing and blocking channels need to be defined. The second way is that all

agents communicate over a NSB channel (nsbcomm), and the secure and insecure

channels are defined accordingly. As we know what information should be shared

with the intruder, it is easier to define the insecure communications than defining

the others, meaning that the second way of defining channels is the one to follow

for the ease of modelling. This will also help to reduce the size of the required

state space for automated analysis. In terms of the deduction system that is

used in the model, following the second way does not have any impact on the

deductions that may be made by the intruder because the same set of information

is given to the intruder and the deduction system remains the same in each case.

Table 7.1 illustrates the intruder’s capabilities on different channels used in this

analysis.

Secure No OverHearing No Spoofing and Blocking Insecure

(S) (NOH) (NSB) (InS)

overhear X X � �
block X � X �
spoof X � X �

Table 7.1: The intruder’s capabilities on different channels

Finally, there exist a number of other channels that regulate the protocol run,

such as; openElection, closeElection, enterBooth, leaveBooth, bagempty and done.

However these will not be discussed any further.

7.2.3 Modelling Assumptions

Although the aim in the modelling of voting systems is to obtain a model that

reflects real system behaviour, there are a few assumptions that need to be made

in order to avoid state explosion, which also result in abstractions in some of

the features of the vVote voting system. For instance, although vVote supports

the AV and STV electoral methods, FPTP will be modelled due to its simplicity

in this analysis. Thus, possible privacy attacks to the system that may occur

in the AV and STV electoral methods are not considered here. Additionally,

in the original vVote system, ballot generation is made in a distributed fashion,

which allows verifiable generation of ballot forms by distributing the trust among

various entities. However, in the modelling of vVote, it is assumed that there

is one honest single entity, election authority, who generates the candidate lists

and digital ballot papers. This assumption can also be read as the entities that

are responsible for distributed generation of ballot forms are honest and work as

a single process. Similarly the web bulletin board (WBB) is a threshold-based

7.2. Modelling vVote and Active Intruder 127

service, which signs messages by co-operation. As in all threshold parties in the

voting system models in this thesis, the threshold parties in the vVote model are

treated as single entities too.

The vVote voting system uses a mixnet to shuffle the encrypted votes cast during

the election as in Prêt à Voter. Previously, in Section 6.2.2, a CSP model of

the mixnet has been given, which works as a perfect mixnet (no link between

its inputs and outputs due to its non-deterministic behaviour). However, here in

vVote modelling we omit this mixnet process as the WBB process already outputs

the encrypted messages non-deterministically to the decryption tellers. This can

also be thought as that the mixnet process is embedded in the WBB process,

removing the communication between a WBB process and a mixnet one. Thus,

there is no point of having two subsequent non-deterministic choices over the

same inputs in terms of efficient and effective modelling. Regarding the analysis

of this voting system model without a mixnet process, as the communication

channels between WBB and mixnet is no blocking link because of the reasons

given in Section 7.2.2 and the messages are encrypted under authorities public

key, there is not much that the intruder can do over these channels. Additionally,

everything that the intruder can perform over the channel from the mixnet to

the WBB can also be realised over the channel from the WBB to the decryption

tellers because the messages and channel types are of the same format.

The vVote voting system employs a district information for each voter in order

to allow them to vote in different constituencies. Because the modelling and

analysis of this voting system does not cover this aspect of voting, the district

information, used in the POD protocol, is omitted. Hence, with this abstraction,

the possible privacy-related attacks to the system that may emerge with if the

district information was used are not touched here.

Finally, the assumptions made in Section 5.2.1 regarding the voter behaviour

when choosing the candidate to vote for and the number of booths are also valid

for this modelling too. Similar to the assumption made on the number of booths,

it is assumed here that there exists only one poll worker, which opens a session

for each voter with a fresh nonce. This would not impact our analysis as in the

case of existence of multiple poll workers in a polling station, voters could only

authenticate themselves without awaiting each other with different poll workers.

However, if the cast votes were to be published on the BB one by one in the

model, then there might have been issues regarding this assumption. This is

because in the current model voters cast their vote in order and if the intruder

could see the cast votes published on the BB in the same order, then he could

violate voter anonymity.

The following subsection presents the honest participants’ CSP definitions.

128 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

7.2.4 Honest Participants

The vVote voting system model developed for this work is defined by the pro-

cesses illustrated at the top of Figure 7.4. All the processes are involved in the

protocol by sending, receiving messages on the synchronised channels and the

model behaves exactly as in Figure 7.4. Moreover, the model covers all phases

of the vVote, including the POD protocol. The following subsections present the

CSP descriptions of the individual protocol participants.

Poll Worker POD Service POD Client Authority Ballot Mngr WBB Voter EBM Printer Teller

ID

SskT (nonce)

SskPS
(nonce)

nonce

SskPC
(nonce)

SskPS
(nonce)

SskBM
(SerialNo, nonce)

SskW (SerialNo, nonce)

SskW (SerialNo, nonce)

SskW (SerialNo, nonce)

Raw(SerialNo,EpkEA
(CandList))

Raw(SerialNo,EpkPS
(CandList))

DigB(SskPS
(SerialNo),EpkPC

(CandList))

B(CandList, Ind.0, SskPS
(SerialNo))

B(CandList, Ind.0, SskPS
(SerialNo))

Ind.i

RHS(SskPS
(SerialNo), Ind.i)

R(SskW (RHS(SskPS
(SerialNo), Ind.i)))

R(SskW (RHS(SskPS
(SerialNo), Ind.i)))

V(Ind.i,EpkEA
(CandList))

ZOE.m, VICTOR.n

Figure 7.4: vVote system model

Voter Process

With the parameterised process Voter(v , c), the behaviour of a voter v ∈ V
voting for a chosen candidate c ∈ C is modelled. There exist two honest voters,

Alice and Bob, and a misbehaving one, James, who behaves honestly in the

model at first, but his secret will be shared with the intruder later on and whose

communications, even the private and NSB ones, are used by the intruder.

Having authenticated herself on the NSB channel with the poll worker, Tom, the

7.2. Modelling vVote and Active Intruder 129

voter receives a ballot form from the POD client with the candidate list printed

on it and scans her ballot data to the EBM on the secure channel, where she can

see her ballot in an electronic environment. After indicating her preference by

sending the index value (Ind.i) to the EBM that corresponds to the candidate she

wants to vote for—the index i is found by using the function find(c, l), which finds

the candidate c in the sequence of candidates l and is defined in Section 6.2—,

she then receives her signed receipt and leaves the polling station.

Voter(v , c) =̂

openElection → nsbcomm.v.Tom.v →

�
l∈L
s∈S

⎛⎜⎜⎜⎜⎜⎝
scomm.podclient.v.B(l, SskPS

(s), Ind.0) →
scomm.v.ebm.B(l, SskPS

(s), Ind.0) →

�
i:=find(c,l)

⎛⎜⎝ nsbcomm.v.ebm.Ind.i →
nsbcomm.printer.v.R(SskW (RHS(SskPS

(s), Ind.i))) →
closeElection → STOP

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎠
All eligible voters, Alice, Bob and James, follow this protocol, which is modelled

as the parallel running of all individual voter processes synchronising on open-

Election and closeElection pairwise with the election authority. That is, each

voter performs an openElection event to begin her voting process. Each voter

must also perform a closeElection event after casting their individual vote and

leaving the polling station.

Voters =̂ ‖v,cVoter(v, c)

Poll Worker Process

The poll worker, Tom, authenticates voters and starts a fresh session for each of

them by choosing a nonce n from the set of nonces N . He ensures that he always

authenticates a different voter, and commences a new session with a fresh nonce.

The poll worker is not involved in any private communication as he only sends

and receives signed nonces from and to the POD service and sends nonces to the

POD client.

Pollworker(V,N) =̂

closeElection → STOP

�

�
v∈V

⎛⎜⎜⎜⎜⎜⎝
nsbcomm.v.Tom.v →

�
n∈N

⎛⎜⎜⎜⎝
nsbcomm.Tom.podservice.SskT (n) →
nsbcomm.podservice.Tom.SskPS

(n) →
nsbcomm.Tom.podclient.n →
Pollworker(V � {v},N � {n})

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

130 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

Election Authority Process

Authority is the election authority process, which assigns a random candidate list

from the list L for a particular serial number that has been asked for along with

a nonce from the ballot manager. Following this, Authority submits two copies

of the raw ballot form: one is encrypted under the election authority’s public

key pkEA and sent to the WBB, the other is encrypted under the POD service

public key pkPS and sent to the POD service. Hence, the WBB and the POD

service keep the same candidate list associated for a particular serial number, but

encrypted under different keys.

Authority =̂ openElection → Authority1 (S,L)
Authority1 (∅,L) =̂ closeElection → STOP

Authority1 (S,L) =̂�

�
s∈S
n∈N

⎛⎜⎜⎜⎝
nsbcomm.ballotmngr.authority.SskBM

(s, n) →

�
l∈L

⎛⎜⎝ nsbcomm.authority.wbb.Raw(s,EpkEA
(l))

nsbcomm.authority.podservice.Raw(s,EpkPS
(l))

Authority1 (S � {s},L)

⎞⎟⎠
⎞⎟⎟⎟⎠

POD Service Process

Following a fresh session, the POD service (candidate list key sharers) receives

a serial number s from the ballot manager and the encrypted candidate list

EpkPS
(l) associated with s from the election authority, which is called a raw

ballot. Subsequently, the digital ballot form consisting of a signed serial number

and the encrypted candidate list is sent to the POD client after a transformation

made on the encrypted candidate list from the POD service’s public key pkPS to

POD client’s public key pkPC .

Podservice =̂

closeElection → STOP

�

�
n∈N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nsbcomm.Tom.podservice.SskT (n) →
nsbcomm.podservice.Tom.SskPS

(n) →
nsbcomm.podclient.podservice.SskPC

(n) →
nsbcomm.podservice.ballotmngr.SskPS

(n) →

�
s∈S

⎛⎜⎜⎜⎜⎜⎜⎜⎝

nsbcomm.ballotmngr.podservice.SskW (s, n) →

�
l∈L

⎛⎜⎜⎜⎜⎜⎝
nsbcomm.authority.podservice.

Raw(s,EpkPS
(l))

nsbcomm.podservice.podclient.

DigB(SskPS
(s),EpkPC

(l)) →
Podservice

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

7.2. Modelling vVote and Active Intruder 131

POD Client Process

The POD Client process is responsible for printing out the ballot form, which has

been received as a digital ballot from the POD service (note that this should not

be confused with the receipt printer). The candidate list on this digital ballot l

is encrypted under the POD client’s public key pkPC with empty marking boxes

denoted by Ind.0. Having extracted the candidate list, the POD client prints the

actual ballot form for the voter on the private channel.

Podclient =̂

closeElection → STOP

�

�
n∈N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

nsbcomm.Tom.podclient.n →
nsbcomm.podclient.podservice.SskPC

(n) →

�
s∈S
l∈L

⎛⎜⎜⎜⎝
nsbcomm.podservice.podclient.

DigB(SskPS
(s),EpkPC

(l)) →

�
v∈V

(
scomm.podclient.v.B(l, SskPS

(s), Ind.0) →
Podclient

)
⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Ballot Manager Process

The ballot manager apportions the serial numbers to each ballot form uniquely

and commits them to the WBB. Additionally, it also notifies the election author-

ity and the POD service about the serial number being used.

Ballotmanager =̂ openElection → Ballotmanager(S)
Ballotmanager(∅) =̂ closeElection → STOP

Ballotmanager(S) =̂
closeElection → STOP

�

�
n∈N

⎛⎜⎜⎜⎜⎜⎜⎜⎝

nsbcomm.podservice.ballotmngr.SskPS
(n) →

�
s∈S

⎛⎜⎜⎜⎜⎜⎝
nsbcomm.ballotmngr.wbb.SskBM

(s, n) →
nsbcomm.ballotmngr.authority.SskBM

(s, n) →
nsbcomm.wbb.ballotmngr.SskW (s, n) →
nsbcomm.ballotmngr.podservice.SskW (s, n) →
Ballotmanager(S � {s})

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The Electronic Ballot Marker (EBM)

The EBM is a device to help voters to mark their preferences. Having received

her ballot form from the POD client, the voter goes into the booth and scans her

ballot form to transfer the ballot information to the EBM on the secure channel

scomm. She then fills out the electronic ballot form on the screen by interacting

132 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

with the machine and choosing the index value Ind.i corresponding to her chosen

candidate. Although no one is supposed to be observing voter interaction with

the EBM, it is assumed here that the index value sent from voter to the EBM

can be observed by the intruder, as it will be observed anyway once she takes

her receipt from the receipt printer. Afterwards, the EBM sends the marking

boxes side of the ballot form, RHS(SskPS
(s), Ind.i), to the WBB, which can then

be checked by the voters.

EBM =̂closeElection → STOP

�
�
l∈L
s∈S
v∈V

⎛⎜⎝ scomm.v.ebm.B(l, SskPS
(s), Ind.0) →

�
i∈I

(
nsbcomm.v.ebm.Ind.i →
nsbcomm.ebm.wbb.RHS(SskPS

(s), Ind.i) → EBM

) ⎞⎟⎠

Receipt Printer Process

The receipt printer process behaves as a typical printer, i.e., it receives the receipt

r from the WBB, and prints it out for the voter v. Note that the POD client

and this printer process are two different printers located in different places in

the polling station.

Printer =̂closeElection → STOP

�
�

v∈V
r∈receipts

(
nsbcomm.wbb.printer.r →
nsbcomm.printer.v.r → Printer

)

The Web Bulletin Board Process

The WBB is a public bulletin board that broadcasts the committed data during

the election, such as submitted votes and signed serial numbers. Moreover, there

is nothing private about this process as everything is publicly verifiable. Having

received all the cast votes and sending the receipts for each voter, the WBB

transfers them in the form of V(Ind.i,EpkEA
(l)) to the decryption teller (election

key sharers) non-deterministically. Note that a mixnet, such as re-encryption

mixnet used in Prêt à Voter, shuffles the cast votes arbitrarily and here a separate

mixnet processes is not necessary as the WBB already outputs the cast votes

non-deterministically. Hence, it can be thought of there being a perfect mixnet

embedded in the WBB and this also helps in terms of the state space. Having

finished the tallying, the teller then sends the result for each candidate (Zoe and

Victor) to the WBB.

7.2. Modelling vVote and Active Intruder 133

WBB =̂ openElection → WBB1 (∅)
WBB1 (bag) =̂

closeElection → WBB2 (bag)�

�
n∈N
s∈S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nsbcomm.ballotmngr.wbb.SskBM
(s, n) →

nsbcomm.wbb.ballotmngr.SskW (s, n) →

�
l∈L

⎛⎜⎜⎜⎜⎜⎝
nsbcomm.authority.wbb.Raw(s,EpkEA

(l))

�
i∈I

⎛⎜⎜⎜⎝
nsbcomm.ebm.wbb.RHS(SskPS

(s), Ind.i) →
nsbcomm.wbb.printer.

SskW (RHS(SskPS
(s), Ind.i)) →

WBB1 (bag ∪ {V(Ind.i ,EpkEA
(l))})

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
WBB2 (∅) =̂ bagempty → nsbcomm.Zoe?t1 →

nsbcomm.Victor?t2 → done → STOP

WBB2 (bag) =̂ �
v∈votes

nsbcomm.wbb.teller .v → WBB2 (bag � {v})

Decryption Teller Process

The decryption teller process—it is a thresholded setup, called decryption key

sharers, but here this property is abstracted away and modelled as a single CSP

process—is responsible for decrypting the votes encrypted under the election

authority’s public key pkEA and tallying them for each candidate. The results

are then sent back to the WBB. What happens in the third line of the process is

that because the decryption teller possesses the shared secret key skEA (shared

in the real system), it can decrypt and extract the candidate list of the cast votes

as in l := DskEA
(EpkEA

(l)). The teller then identifies for whom the vote is by

checking the ith element of the list l. Accordingly, it increments the total vote

received by that particular candidate by one. Once there are no more votes to

tally, the teller announces the total votes for each candidate.

Teller =̂ openElection → Teller1 (0 , 0)

Tel ler1 (m,n) =̂

�
i∈I
l∈L

⎛⎜⎜⎜⎝
nsbcomm.wbb.teller.V(Ind.i,EpkEA

(l)) →⎛⎜⎝ ifnth(i,DskEA
(EpkEA

(l))) = Zoe then Teller1 (m + 1 ,n)

else

(
ifnth(i,DskEA

(EpkEA
(l))) = Victor then

Teller1 (m,n + 1) else STOP

) ⎞⎟⎠
⎞⎟⎟⎟⎠

�
bagempty → nsbcomm.Zoe.m → nsbcomm.Victor .n → SKIP

134 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

7.2.5 Adapting Lazy Spy

Lazy spy [Ros97] is an efficient intruder model as it avoids state explosion by

following only its findings (deductions through the messages he has seen or from

his initial knowledge). This intruder model provides active attacks against the

system by not only observing the communication channels, but also blocking

messages or generating and sending fake messages to any agents on the system.

The framework has already been introduced in Section 3.3 in detail. The frame-

work should be altered so it can work with the cryptographic voting systems.

In particular, the vVote voting system model is equipped with a number of vot-

ing system specific messages as well as the cryptographic ones (see Figure 7.3).

Hence, the existence of these messages requires further deduction rules that need

to be defined so that the intruder can act as he is supposed to regarding those

messages. Secondly, the initial knowledge of the intruder IK is also model spe-

cific, hence, it needs to be defined according to the voting system model and as

this set of knowledge is used to specify what the intruder knows and what he

can learn, it needs to be defined carefully. Lastly, because of the introduction of

various channel types in the analysis of voting systems, the intruder model needs

to be amended so that the private channels stay private and NSB channels are,

indeed, not blocked or spoofed by the intruder.

In order to allow the intruder to compose messages, there are a number of deduc-

tion rules. Recall that a deduction is a pair (X, f), where X is a finite set of facts

and f is the fact that can be generated, providing that the intruder possesses

X and these inferences are denoted as X � f . It should be ensured that the

intruder deals with a finite set of facts because FDR cannot handle with infinite

number of states. Thus, nesting of encryptions and sequences need to be avoided.

To do so, the set of data-types are limited to the types that are enough to build

protocol messages. Although, the intruder can generate “bad” facts (objects that

are not of the form real messages sent among protocol agents), these facts will

do him no good [RSG+00]. That is because the agents in the protocol can only

communicate with the messages that they understand—the messages need to be

in the same form as they are expected. Hence, the deduction rules with which

the intruder is able to build and decompose all protocol messages are adequate

for the analysis.

The deduction rules regarding this analysis D are the union of deductions de-

fined previously in Table 2.4, which are related to cryptographic primitives and

in Table 7.2 are specific to the vVote voting system. The new deduction rule

BALLOT-COMP enables ballot forms to be composed if the intruder possesses

the set {l, Ssk(s), Ind.i}, where l is the candidate list, s is serial number and Ind.i

is the index value, corresponding to the chosen candidate and conversely the

deduction rule BALLOT-DCMP helps the intruder to decompose ballot forms

7.2. Modelling vVote and Active Intruder 135

and obtain all the data on it. Similarly, the intruder can also work on any com-

position and decomposition of any other messages in the model. For instance,

RHS-COMP and RHS-DCMP are the deduction rules related to cast ballot forms,

consisting of an index value and a signed serial number {Ind.i, Ssk(s)}. VOTE-

COMP and VOTE-DCMP are the deduction rules related to the votes, in the

form of V(Ind.i,Epk(l)) (note that these do not contain a serial number). The

deduction rules regarding the digital ballots, consisting of a signed serial num-

ber and an encrypted candidate list, {Ssk(s),Epk(l)}, are DIG.BLT-COMP and

DIG.BLT-DCMP. Similarly, RAW.BLT-COMP and RAW.BLT-DCMP are the

two deduction rules that help the intruder compose and decompose the raw

ballots,{s,Epk(l)}, and IND-COMP and IND-DCMP are the index related de-

duction rules. Hence, with this set of deduction rules, D, the intruder is enabled

to deduce messages that are used to attack the protocol.

BALLOT-COMP. {l, Ssk(s), Ind.i} � B(l, Ssk(s), Ind.i)
BALLOT-DCMP. {B(l, Ssk(s), Ind.i)} � l, Ssk(s), Ind.i

RHS-COMP. {Ind.i, Ssk(s)} � RHS(Ind.i, Ssk(s))
RHS-DCMP. {RHS(Ssk(s), Ind.i)} � Ind.i, Ssk(s)

VOTE-COMP. {Ind.i,Epk(l)} � V(Ind.i,Epk(l))
VOTE-DCMP. {V(Ind.i,Epk(l))} � Ind.i,Epk(l)

DIG.BLT-COMP. {Ssk(s),Epk(l)} � DigB(Ssk(s),Epk(l))
DIG.BLT-DCMP. {DigB(Ssk(s),Epk(l))} � Ssk(s),Epk(l)

RAW.BLT-COMP. {s,Epk(l)} � Raw(s,Epk(l))
RAW.BLT-DCMP. {Raw(s,Epk(l))} � s,Epk(l)

IND-COMP. {i} � Ind.i
IND-DCMP. {Ind.i} � i

Table 7.2: Deduction rules capturing the properties of vVote voting system mes-
sages

As mentioned earlier, the set comms needs to be defined for all messages in the

model illustrated in Figure 7.3 so that the intruder can justify that a message

being heard is actually from a real communication between agents. As in the

protocol, no agent sends any message to himself, for such communications are

ensured to be omitted with a �= b below, which also implies that if an agent sends

a message to himself, it cannot be blocked or spoofed by the intruder.

136 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

comms = {a.b.m | m ← M, a ← A, b ← A, a �= b}

The messages in the model that make sense to the intruder are: comms, all the

messages from real communications, Nsbcomms, the set of messages that cannot

be blocked or spoofed by the intruder, and Ucomms, the set of insecure messages

that the intruder can act as in the Dolev-Yao intruder model [DY83].

As all honest participants communicate on the NSB channels, not including a

message type in the set Nsbcomms means that the intruder cannot even overhear

that kind of message. Hence, the messages in the form of a ballot are not included

in this set, as the intruder should not be able to observe any communication

involving a ballot form between honest participants (denoted as commBallots).

For example, a voter scanning her ballot form to the EBM should not be observed

by the intruder and this is how he is prevented from overhearing and blocking

the private channels.

Nsbcomms = comms � commBallots

The insecure messages that the intruder can overhear, block or use in any way

in the line of Dolev-Yao model, are defined with the set Ucomms as follows. It

should be noted that the set in the analysis of vVote covers all the messages that

are communicated by the dishonest voter James.

Ucomms =
⋃
({q.q′.f | q.q′.f ← comms, q ← {James}, q′ ← agents},
{q.q′.f | q.q′.f ← comms, q ← agents, q′ ← {James}})

The set Ucomms can be extended with any set of information. For instance, the

insecure communications in Ucomms do not yet include the receipts taken by the

voters during the election. Hence, the intruder cannot cannot block the voters’

taking their receipts as they are still on the no blocking channel. However, if

we add the set of receipts that can be taken away by any voters (denoted as

commReceipts) to the set Ucomms, then the intruder could also block the voters

taking their receipts because in such case receipt information would flow on the

insecure communication channels. However, it should be noted that the more

information is given to the intruder, the longer the automated verification takes

due to the increased number of deductions made by the intruder.

The intruder also needs a way to identify the facts that are relevant to the mes-

sages, M, and as in the NSPK analysis, those facts can be identified by using

the explode function defined in Section 3.3. However, the function needs to be

extended to all messages in the set of messages M as shown in AllFacts below.

AllFacts = {explode(m) | m ← M}

7.2. Modelling vVote and Active Intruder 137

The intruder’s possible deductions now can be found by applying all these facts

to the deductions function deductions(), which takes the message types as the

parameter and returns the possible deductions according to the deduction rules

displayed in Figure 7.2.

AllDeductions = deductions(Allfacts)

In order to reduce the cardinality of the set of possible deductions, the facts

that cannot be reachable by the intruder are omitted, which depends on his

initial knowledge IK. This knowledge covers the names of the candidates, voters

and any other agents, such as, the POD service, and the public keys that any

honest agent may know IK =
⋃
(A, C, {pka | a ← A}). Subsequently, if the

framework procedure as in Section 3.3 is followed, the learnable facts and then

the deductions, D, can be defined as follows:

PossibleBasicKnowledge = Known ∪M
KnowableFacts = Close(PossibleBasicKnowledge)

Learnablefacts = KnowableFacts �Known

D = {(X, f) | (X, f) ∈ AllDeductions,

f ∈ Learnablefacts,

f /∈ X,

X �Knowablefacts = ∅}

Now, the processes that form the intruder model can be defined. These processes

use the channel learn to learn a fact, and the say channel to say the fact to

the other agents. Moreover, the channel infer allows deductions between facts.

Thus, the process Ignorantof below ensures that all facts in Learnablefacts have

the state: the process can always learn a fact, but it can only say it once it is

known. The process is the same as used in the NSPK analysis except for the line

where it flags up when the intruder knows a secret (This will be discussed when

studying the secrecy specification in Section 7.5).

Ignorantof (f) =̂f ∈ M& learn.f → Knows(f)

� infer?t ∈ {(X , f ′) | (X, f ′) ∈ D, f ′ = f} → Knows(f)

Knows(f) =̂f ∈ M& say.f → Knows(f)

� f ∈ M& learn.f → Knows(f)

� infer?t ∈ {(X , f ′) | (X, f ′) ∈ D, f ∈ X} → Knows(f)

138 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

Consequently, the intruder process can be defined as a parallel composition of

facts, where AlphaL(f) defines the alphabet of each fact and the internal events

infer are hidden.

Intruder =̂

chase((‖
f∈Learnablefacts

(Ignorant(f),AlphaL(f)))\{|infer |})

||| SayKnown

The process SayKnown defined below ensures that the proper messages that are

already known are learned and said, since the facts that are of relevance to the

initial knowledge IK are not included in the Learnablefacts and AllDeductions.

SayKnown =̂ say.f ∈ Known ∩M → SayKnown

� learn.f ∈ Known ∩M → SayKnown

7.2.6 Putting the Network Together

Figure 7.5 illustrates how the intruder is connected to the dishonest voter James,

and the honest voter Alice, whereby Alice’s private channel scomm is kept private,

but her insecure NSB channels can be observed by the intruder, whereas all the

channels of James are under the control of the intruder. That is, the intruder

can overhear all insecure communications acting as a medium, but he can only

intercept and fake the messages in the form of insecure data Ucomms (it defines all

communications from and to James) as defined in the previous section. Moreover,

he has no power over the private channels of the honest voters.

The processes that construct the voting system model and the intruder model are

connected by using the renaming operator. That is, nsbcomm.a.b.m and learn

channels are renamed to a take channel, and the nsbcomm.b.a.m and say channels

are renamed to a fake channel from the agent a’s point of view. Similarly, the

intruder process is also renamed and the aim is to connect them as is done in

Figure 3.2. Hence, the intruder channel learn.m is mapped to the events of the

form take.a.b.m, and say.m is renamed to fake.a.b.m. To this end, a renaming

function for the process P and agent name p can be defined as follows:

r(P, p) =̂ P [[nsbcomm.p, take.p/nsbcomm.p, nsbcomm.p]]

[[nsbcomm.a.p, fake.a.p/nsbcomm.a.p, nsbcomm.a.p | a ∈ A]]
[[scomm.p, take.p/scomm.p, scomm.p]]

[[scomm.a.p, fake.a.p/scomm.a.p, scomm.a.p | a ∈ A]]

7.2. Modelling vVote and Active Intruder 139

take.j.a.f
nsbcom

m
.j.a.f

 scom
m
.j.a.ffake.a.j.fnsbcom

m
.a.j f

 scom
m
.a.j.f

scomm.f

say.f

nsbcomm.j.a.f
 scomm.j.a.fJames

nsbcomm.a.j.f
 scomm.a.j.f

nsbcomm.f

learn.f

fff.

Alice

ns
bc

om
m
.f

ns
bc

om
m
.f

nsbcomm.f

Intruder
say.f

Figure 7.5: The lazy spy intruder model

Hence, the renamed voter process for the voter v, for instance, can be defined as

follows. Note that, the private channel scomm is renamed to the take and fake

channels, because this models the malicious behaviour of a corrupt voter.

r(Voter(v, c), v) =̂

Voter(v, c)

[[nsbcomm.v, take.v/nsbcomm.v, nsbcomm.v]]

[[nsbcomm.a.v, fake.a.v/nsbcomm.a.v, nsbcomm.a.v | a ∈ A]]
[[scomm.v, take.v/scomm.v, scomm.v]]

[[scomm.a.v, fake.a.v/scomm.a.v, scomm.a.v | a ∈ A]]

Similarly, the other processes that construct the vVote voting system model are

renamed as in the above example. Consequently, the voting system model, Model ,

which is ready to be modified by the intruder, is defined as the parallel compo-

sition of all those renamed processes.

Model =̂

rVoters ‖ rPollworker ‖ rAuthority ‖ rEBM ‖ rPodservice ‖ rPrinter

‖ rBallotmanager ‖ rPodclient ‖ rWBB ‖ rTeller

The parallel composition (interface parallel) above is constructed in a way that

the processes only synchronise on the nsbcomm and scomm channels on which

140 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

they send messages to each other, leaving the insecure channels (take, fake)

vulnerable to be used by the intruder. The following shows how two processes

are put in an interface parallel and therefore, the above parallel composition of

Model should be constructed in this way.

Model =̂

rVoters ‖
X

rPollworker ‖ . . .

where

X = {|nsbcomm.v.Tom, nsbcomm.Tom.v,

scomm.v.Tom, scomm.Tom.v | v ← V |}

Similarly, the intruder process is prepared by renaming as below so that the

intruder can overhear the messages on the insecure NSB channels (Nsbcomms)

and act as the Dolev-Yao intruder on the insecure channels (Ucomms). For the

vVote analysis, these sets are defined in the previous section.

rIntruder =̂

Intruder

[[say, learn/say, say]]

[[nsbcomm.p.p′.f, take.q.q′.f/learn.f, learn.f |
p.p′.f ∈ Nsbcomms,

q.q′.f ∈ Ucomms,

p �= p′, q �= q′
]]

[[fake.p.p
′.f/say.f | p.p′.f ∈ Ucomms, p �= p′]]

The process SystemvVote is then defined in terms of the parallel composition of

Model and rIntruder, which synchronise on the channels they share.

SystemvVote =̂ Model ‖{
nsbcomm, take, fake

} rIntruder

Having modelled the system, it is ready to be automatically analysed under the

anonymity requirement in the next section.

7.3 Automated Anonymity Verification

In this section, the first fully-automated analysis of the vVote voting system is

presented under a Dolev-Yao intruder model and using the anonymity definition

given in Definition 2 as the specification. It requires that when the two chan-

nels c.x and d.x are swapped over for all values of x, if the resulting process is

7.3. Automated Anonymity Verification 141

indistinguishable from the original one, then the process provides anonymity. In

the previous section, the system where the honest agents of the voting system

model and the intruder interact has been modelled as the process SystemvVote .

In this system, the process rVoters is defined as the parallel composition of the

rVoter() processes for each of the voters: Alice, Bob and James. However, the

anonymity specification in this chapter is approached in a different way whereby

the two systems, which are expected to be indistinguishable, are defined as two

separate system behaviours without using the renaming operator. Hence, the

following processes, namely, rVoters1 and rVoters2 model the two different vot-

ers’ behaviour, which may result in two different system behaviours: on the one

hand Alice votes for Zoe, Bob votes for Victor and James can vote for either Zoe

or Victor, whereas on the other hand, Alice votes for Victor, Bob votes for Zoe

and again James can vote for any of them. The resulting two different system

behaviours are System ′
vVote and System ′′

vVote , respectively. Note that the misbe-

having voter, James, shares his knowledge with the intruder, thus his behaviour

is modelled with the renamed voter process rVoter(), which allows the intruder

to use his knowledge, whereas the honest voters Alice and Bob are modelled using

the honest voter model Voter(). However, the NSB channels can still be observed

by the intruder, meaning that the intruder acts passively on these channels.

rVoters1 =̂(Voter(Alice,Zoe) ||| Voter(Bob,Victor))
||| (rVoter(James,Zoe) � rVoter(James,Victor))

rVoters2 =̂(Voter(Alice,Victor) ||| Voter(Bob,Zoe))
||| (rVoter(James,Zoe) � rVoter(James,Victor))

The systems are modelled in such a way that the intruder can see everything

James does, including his private messages, whilst Bob and Alice can vote freely

without any interception/blocking or spoofing. That is, although the intruder

can still overhear the public channels and inference from those messages, Alice

and Bob vote under the private and NSB channel assumptions.

As in the Prêt à Voter analysis, the observational equivalence that is used for

the analysis necessitates masking of the encrypted values in order to avoid false

positive attacks, as the intruder can distinguish two ciphertexts, even if he does

not know the secret key—this was not a case in the NSPK [NS78] analysis as the

secrecy specification is different from the anonymity used in this analysis. To this

end, a masking function maskFact is deployed. The function renames all messages

encrypted under a public key, whose corresponding secret key is not known by

the voter, to a data ciphertext and if the secret key is in the intruder’s initial

knowledge, then he is allowed to differentiate two ciphertexts by not masking

them.

142 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

maskFact(Epk(m)) =

if dual(pk) ∈ IK then Epk(m) else ciphertext

The masking function mask(P) can also be defined for the processes, which masks

all encrypted facts of a given process, P , using the maskFact function for all the

data that appears in this process. (No keys are ever sent over the network, so

if the intruder does not know a secret key at the beginning, he will not learn it

later.)

mask(P) =̂

P [[achannel.a.a
′.DigB(Ssk(s),maskFact(Epk(l)))/achannel.a.a′.DigB(Ssk(s),Epk(l))]]

[[achannel.a.a
′.Raw(s,maskFact(Epk(l)))/achannel.a.a′.Raw(s,Epk(l))]]

[[achannel.a.a
′.V(Ind.i,maskFact(Epk(l)))/achannel.a.a′.V(Ind.i,Epk(l))]]

where achannel ∈ {nsbcomm, take, fake}, the serial number s ∈ S, the candidate
list l ∈ L and the index value i ∈ I.

After applying the masking function to both System ′
vVote and System ′′

vVote , they

are ready for the analysis under the anonymity specification. To this end, the

anonymity requirement of this voting system model is checked with the following

trace equivalence in which the private channels are hidden.

mask(System ′
vVote) \ {| scomm |} ≡T mask(System ′′

vVote) \ {| scomm |}

FDR verifies that the two systems refine each other, meaning that they are trace

equivalent and hence that the intruder cannot distinguish them. As a result, the

vVote voting system model provides anonymity under the Dolev-Yao intruder

model.

7.4 Analysis under Alternative Assumptions

In the previous section, the analysis was conducted under the assumption of hon-

est protocol participants except of the third voter James, and of the existence

of a Dolev-Yao intruder interacting with the participants. Although, the frame-

work used in the previous section provides a firm comprehensive foundation for

analysis of voting systems, it is also important to see whether the framework sup-

ports further extensions to those assumptions made previously, because one of

the important challenges in electronic voting systems may be to maintain require-

ments even under the assumption of the corrupt agents, for instance, misbehaving

participants. Such analyses are possible with slight modifications to the voting

system and the intruder models. The following paragraphs present two of these

analyses of the vVote under different assumptions.

7.4. Analysis under Alternative Assumptions 143

Corrupt POD Service The POD service is an important part of the print-

on-demand protocol. It receives raw ballot data including a serial number s

and candidate list encrypted under pkPS , and sends the digital ballot by signing

the serial number to the POD client. If the POD service is corrupt, which is

modelled as that the POD service’s secret is possessed by the intruder, the raw

ballot received by the POD service, say Raw(s3,EpkPS
(Sq.〈Zoe,Victor〉)), can be

captured and decrypted by the intruder. Hence, the intruder can extract the

candidate list Sq.〈Zoe,Victor〉 and deduce its association with the serial number

s3. Following this, when he observes that Alice’s receipt with the index value Ind.1

has the serial number s3 on it, he is then able to infer that Alice has voted for the

first candidate of the candidate list Sq.〈Zoe,Victor〉, which is Zoe. Therefore,

the intruder distinguishes the two systems as Alice cannot have voted for Victor.

This counter-example is produced by FDR automatically and illustrated by the

following partial trace.

〈. . .
nsbcomm.authority.wbb.Raw(s3, ciphertext),

nsbcomm.authority.podservice.Raw(s3,EpkPS
(Sq.〈Zoe,Victor〉)),

nsbcomm.podservice.podclient.DigB(SskPS
(s3), ciphertext),

enterBooth.Alice,

nsbcomm.Alice.ebm.Ind.1〉

It can be observed from the above trace that the intruder cannot decrypt the

ciphertext in the message sent from the authority to the WBB, as it is encrypted

under the authority’s public key pkEA, which is seen as ciphertext in the trace.

This scenario emphasises the importance of the single point failure in the protocol

security. In the real system, however, the POD service is thresholded, meaning

that all threshold parties, sign, encrypt or decrypt messages jointly, without any

party learning the ballot order. Therefore, the above would be a threat against

vVote, should all threshold parties collude.

Corrupt Authority A similar approach can be taken to model a corrupt elec-

tion authority, who leaks sensitive information that can be used by the intruder.

Since the authority is responsible for assigning random candidate lists to each

requested serial number from the ballot manager, the candidate list encrypted

under the authority’s public key will be revealed when he is corrupt. Therefore,

the intruder’s accurate deduction about the candidate lists would violate voter

anonymity by revealing the candidate list of a ballot form used by a particular

voter. The following trace produced by FDR demonstrates that when the au-

thority is compromised, which is modelled as the intruder knows his secret key

skEA, the intruder violates Alice’s anonymity by deducing how she has voted. In

144 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

more detail, the intruder can overhear the candidate order Sq.〈Zoe,Victor〉 on

Alice’s ballot form before she casts her vote. Once Alice indicates her preference

by the index value Ind.1, the chosen candidate, Zoe, is revealed to the intruder.

〈. . .
enterBooth.Alice

nsbcomm.authority.wbb.Raw(s1,EpkPS
(Sq.〈Zoe, V ictor〉)),

nsbcomm.authority.podservice.Raw(s1, ciphertext),

nsbcomm.podservice.podclient.DigB(SskPS
(s1), ciphertext),

nsbcomm.Alice.ebm.Ind.1〉

Although no one is supposed to be observing voter interaction with the EBM,

it is assumed here that the index value Ind.i sent from voter to the EBM can

be observed, as it will be observed anyway once she takes her receipt from the

receipt printer. Thus, the two counter-examples above were found by FDR when

the intruder could observe these index values. If the intruder was not allowed

to do so, the counter-examples would still appear once the voter has taken her

receipt in a protocol run. Moreover, the two counter-example traces above include

only nsbcomm events, which illustrates that the intruder does not need to block

or spoof messages on those channels and hence a passive observer possessing the

corresponding secret keys would also be able to attack the system.

There are numerous corruption scenarios one can think of and that can be mod-

elled and analysed using this framework. In particular, the two presented here

emphasise the importance of the case of a corrupt single entity, such as the elec-

tion authority and POD service, where the voters are at a high risk of losing their

anonymity. The vVote voting system has a solution to these problems, to some

extent, by having the ballot forms generated by the threshold election authori-

ties. However, if the other trusted entities, like the EBM, are acting dishonestly,

the system is vulnerable to various attacks. Additionally, it was observed that

a corrupt WBB does not reveal anything useful for the intruder to break the

anonymity requirement of the system, because the WBB is public anyway.

The next section investigates the modelling and analysis of the secrecy require-

ment for voting systems.

7.5 Secrecy Analysis using Lazy Spy

The lazy spy intruder model [RG97] was used to verify the authentication and

secrecy requirements of security protocols (the latter is also introduced in Sec-

tion 3.3.4). In the NSPK analysis in Chapter 3, a secret is defined as the terms

{AtoB,BtoA}, and the intruder model is defined so that when the intruder learns

7.6. Discussion 145

one of the secrets in a protocol run, the process flags it up using the channel

intruderknows. When this event occurs in a protocol run, the secret is not se-

cret any more. Previously, in the anonymity requirement analysis of vVote, this

event was omitted because such an event was not needed for the formal speci-

fication of this requirement. However, perhaps not for the paper-based voting

systems, where the voters are generally not required to use public key pairs to

encrypt their votes, but especially in remote voting systems, this specification

can be used to verify whether the voting systems maintain the secrecy of the

votes. That is, it can be verified whether the intruder ever gets to know a secret

originated by a particular voter or any other agent. Moreover, the secret data

can be defined more specifically for each voting system, such as, a candidate en-

crypted and cast by the voter as in the FOO scheme [FOO92], in which a voter

encrypts her vote, blinds the encrypted version and sends it to the registrar. To

this end, the highlighted expression below is added to the intruder model to flag

up the intruder’s knowledge about a secret f from the set of secrets Banned.

Ignorantof (f) =̂f ∈ M& learn.f → Knows(f)

� infer?t ∈ {(X , f ′) | (X, f ′) ∈ D, f ′ = f} → Knows(f)

Knows(f) =̂f ∈ M& say.f → Knows(f)

� f ∈ M& learn.f → Knows(f)

� infer?t ∈ {(X , f ′) | (X, f ′) ∈ D, f ∈ X} → Knows(f)

� f ∈ Banned & intruderknows.f → Knows(f)

Consequently, for the secrecy specification of a voting system, the following trace

refinement needs to be checked.

STOP �T System \ Σ � {| intruderknows |}

where Σ is the alphabet of the process System:

Σ = {|nsbcomm, take, fake, intruderknows |}

7.6 Discussion

In the beginning of the modelling of vVote and the intruder, a need for different

channel types was mentioned. Regarding this, the need came out when the model

was initially analysed under the full Dolev-Yao intruder model that can overhear,

intercept and spoof any messages on all channels other than the private channels.

From this initial analysis, the following counter-example was produced, which

146 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

shows that with such an intruder the vVote voting system is open to anonymity

attacks, which verifies the observation made in [KR05] about the FOO voting

system [FOO92].

〈. . .
scomm.podclient.Alice.B(Sq.〈Zoe, V ictor〉, SskPS

(s1), Ind.0),

comm.Alice.ebm.Ind.1,

scomm.podclient.Bob.B(Sq.〈Zoe, V ictor〉, SskPS
(s2), Ind.0),

comm.Bob.ebm.Ind.2,

closeElection,

comm.wbb.teller.V(Ind.2, ciphertext),

take.wbb.teller.V(Ind.1, ciphertext),

comm.teller.wbb.Zoe.0〉

What the intruder does here is to block or intercept with the channel take all

the other votes except Bob’s. In this case, Alice has voted for Zoe with the index

value Ind.1 and Bob has voted for Victor with Ind.2 on the private channels—the

candidate orders on the private channels scomm are hidden in the analysis and

they are revealed here just for illustration. Once the election is closed, tallying

starts and the votes are transferred from the WBB to the teller, the intruder

intercepts the vote with the index value Ind.1, and waits until Bob’s vote is

counted. Having seen that no one has voted for Zoe, the intruder then deduces

that Bob has voted for Victor. This is a genuine and generic attack—not only to

vVote, but it is applicable to any voting system. However, as it is not possible

in a real system that the intruder can block all votes but one, it was assumed in

the analysis that at least two honest votes are tallied at the end of the election.

This was modelled with the existence of NSB channels adapted from Creese et

al. [CGRZ03, CGH+05] and therefore, there exist at least two honest voters who

vote on the NSB channels nsbcomm. On the other hand, the intruder works fully

on James’ messages on the public and private channels as if he votes in public.

Having modified the system with the adaptation of insecure NSB channels, it was

verified that the vVote voting system provides anonymity. This, together with

the corrupt agent scenarios, demonstrated that the abstract models and formal

definitions of requirements are adequate for the automatic verification of voting

system protocols. Additionally, it was shown that the active intruder model used

in this chapter is much more powerful in terms of mounting various kinds of

attacks than the passive attacker model used in the previous analyses [MHS12,

MHS13], which can only observe the messages on the public channels.

7.7. Challenges Faced in the Modelling and Analysis 147

7.7 Challenges Faced in the Modelling and

Analysis

This section presents the challenges faced during the modelling of vVote and

automated verification of it. Similar issues in the previous voting system models

occur in this modelling gathering around the state explosion problem.

Recall that in Section 7.2.3 we abstracted away some of the system components,

such as; thresholded decryption teller, distributed ballot generation and mixnet

(see 7.2.3 for the detailed information about the abstracted components). The

framework adapted here is much more complex than the original lazy spy as we

have more deduction rules in our framework than lazy spy. Hence, even with this

abstracted model it requires the use of compression techniques in order it to be

checked by FDR. Hence, the compression function chase() was used as it is the

most beneficial part of the original lazy spy framework. However, although the

process P may have a number of paths of τs to follow to a final state, chase(P)

chooses one path to follow. Although, chase does not preserve the semantics of

nondeterminism in the processes, it does not, however, impact on the processes,

for example lazy spy [Ros97]. Hence, it is safe to use in the analysis of voting

systems. The operator was used in the Intruder process when the intruder learns

new facts with the event, infer. The τs that come up by hiding the occurrences

of infer events, and that are chased by the operator represent the facts learned

by the intruder.

Intruder =̂

chase((‖
f∈Learnablefacts

(Ignorant(f),AlphaL(f)))\{|infer |})

||| SayKnown

Additionally, as the states needed for analysis grow quickly, some of the system

behaviour can also be omitted, however, this would need an extra effort in order

not to lose possible system attacks. In the modelling of vVote here, the voter

always takes her receipt—the intruder never blocks the channel on which the

voter takes her receipt. However, if it is desired, then more power could be

given to the intruder in order him to block these channels by extending Ucomm

as demonstrated in Section 7.2.5. On the other hand, the impact of this for

FDR would be huge. After giving such power to the intruder, the number of

states that FDR needs to check increases from 16, 063, 214 to 42, 945, 122 million

states. Therefore, some of the system behaviour that would give no advantage

rather than postponing the verification may be restricted in order to get a small

number of state search.

148 Chapter 7. Adapting the Dolev-Yao Intruder Model to Voting Systems

Similar to the analysis of Prêt à Voter in the previous chapter, a masking function

was needed to be employed here too in order not to produce false-positives when

the intruder can distinguish encrypted ciphertexts.

Table 7.3 illustrates the verification times of the automated analysis of vVote vot-

ing system based on the efficient models. In the table, the restricted Dolev-Yao

(D-Y) is the intruder model that is restricted to only a subset (James’s communi-

cations) of all messages, whereby he can act as in the Dolev-Yao intruder model.

The restriction is modelled with the existence of private and NSB channels. Ad-

ditionally, the full D-Y model is where the intruder can act maliciously on all

channels (there does not exist any NSB channel), but the private ones—voters’

privacy is still maintained. However, the refinement does not hold, which neces-

sitates the NSB channels in the model (see Section 7.6 for a discussion about the

need for the NSB channels and a counter-example trace). The restricted and full

D-Y results cannot be compared with each other, as the verification times vary

depending on the voters’ being honest or dishonest, they give some idea about

how large a model FDR can handle before state explosion for each test.

Restricted D-Y Full D-Y

Refine States Time Refine States Time

3v 2c � 16, 063, 214 1h14m56s 2v 2c X 899, 494 1m45s

3v 3c − − − 2v 3c X 5, 040, 658 22m26s

4v 2c − − − 2v 4c − − −
4v 3c − − − 3v 2c − − −

Table 7.3: The FDR verification times for vVote. As the required state space
grows quickly with the number of voters and candidates, it was not possible to
produce results in some cases as FDR cannot handle with such huge states. Those
are denoted as “−” in the table.

7.8 Summary

In this chapter, a formal approach to modelling and analysis of cryptographic vot-

ing systems has been proposed. In addition to the previously defined anonymity

requirement, a CSP approach for formal specification of secrecy has been given in

terms of trace refinements. In order to validate the suitability of the framework,

the vVote voting system was analysed against the anonymity requirement. To do

so, in addition to the cryptographic deduction rules expressed in Section 3.3, an

extensive number of other such rules regarding voting systems have been defined.

These enable the intruder to learn and deduce further from his knowledge so as to

able to use it to break the protocol objectives. Moreover, special channel types,

7.8. Summary 149

private and NSB channels, have been introduced in order to reason about voting

systems under appropriate assumptions, as it has been observed that no voting

system model is anonymous under the full Dolev-Yao intruder model. Moreover,

as voting systems are too complex to model and analyse in full detail, some of

the properties of vVote, such as, distributed ballot generation with a thresholded

POD service, have been abstracted away by assuming that thresholded parties

work as a single honest agent.

The automated verification of these refinements has been conducted using the

FDR model checker. It was shown that even though the voting system models

are too complex resulting in a number of deduction rules being needed for rea-

soning about them, FDR together with lazy spy is adequate in the analysis of

such systems thanks to the latter’s efficient structure, thus avoiding unnecessary

inferences. It has also been seen that the framework used in this chapter is very

efficient in terms of cutting down the unnecessary states and quite flexible for

modelling any misbehaviour by corrupt agents, when analysing voting systems

under different assumptions, for instance, with a corrupt authority and a POD

service.

Chapter 8

Conclusion and Future Work

This chapter reviews the results that were achieved in this thesis, presents the

limitations of this work that have been identified and the future direction that it

might be useful to focus upon.

This thesis will help the evaluation of voting systems by defining some of the

security requirements and providing novel approaches to automatic analysis in

formal methods. In particular, having shown that for a rigorous security protocol

analysis, suitable and concise specifications of the requirements are needed, an

anonymity definition has been given that has been demonstrated to be appropri-

ate for the analysis of voting systems through analysing of this feature for four

cryptographic and non-cryptographic voting systems.

Throughout the analysis, it is has been shown that the underlying assumptions of

voting system designs play a crucial role when claiming that the scheme provides

certain desired properties. That is, an assumption made when designing a voting

system should be precisely defined so as to understand whether the system truly

provides what it is claimed. Moreover, a voting system may be secure under an

assumption, which is not realistically satisfied in practice, thus requiring an effi-

cient realistic assumption. In summary, the assumptions under which protocols

are secure should be: realistic and precisely defined. This conclusion has been

made clearer during the analysis of the ThreeBallot voting system. That is, it

was demonstrated that this system does not provide anonymity under various

formulations of the short ballot assumption. However, given a reasonable and

plausible interpretation of this assumption, the ThreeBallot is, in fact, protected

from reconstruction attacks.

Cryptographic voting systems, which are similar to security protocols for many

aspects, may contain flaws in their design, requiring rigorous formal analyses.

However, as such protocols are too complex for analysis at a full level of de-

151

152 Chapter 8. Conclusion and Future Work

tail with current methods, it is hard to provide a technique to analyse them.

Hence, the thesis has provided a novel approach to the formal analysis of crypto-

graphic voting systems using lazy spy [RG97], acting as the Dolev-Yao intruder

model [DY83], with a number of modifications to the model so as to capture

voting system properties. Moreover, the framework was also found to be flexi-

ble when analysing voting systems under alternative assumptions such as there

being a corrupt mixnet or election authority. Additionally, the framework pre-

sented here has been shown to be applicable for secrecy analysis in general, but

in particular for remote voting systems.

In the analyses throughout this thesis, the FDR model checker [GGH+] has been

used. It has been demonstrated that FDR, together with the lazy spy intruder

model or the passive attacker model, was efficient for automatically finding pos-

sible attacks on voting systems, for instance, the CVS, ThreeBallot, Prêt à Voter

and vVote voting systems, should they fail to meet the anonymity requirement.

8.1 Limitations

State space considerations meant that only relatively small models with a few

voters and candidates could be verified as shown in Tables 5.5 and 7.3. More-

over, although automated analysis has been shown to be a successful approach

as proved by finding counter-examples for a failure of the protocol requirement,

proving directly that the system meets the claimed properties would need an

infinite-state model. In order to generalise the verification to models of arbitrary

size, there are several techniques in the literature that can be employed, such as

structural and data-independent induction [Ros97, Laz99, Hea10, Ros10]. How-

ever, data-independence techniques do not easily apply to the models that have

been developed here as the established results require rather strict conditions,

which have not been satisfied in our models. It is not currently clear whether it

is possible to manipulate them into the appropriate form, but it seems unlikely.

For instance, using functions (such as card) on data-types and the replicated par-

allel operator is not allowed in the models so as to satisfy data-independence

technique, which are key features in our models presented in this thesis. More-

over, inequality tests are also forbidden in CSP models, and these are implicit in

determining a winner in our models. The most important limitation with these

techniques is regarding the specifications: there should be no hiding or renam-

ing operators used in the specification. However, the anonymity specifications

applied in this work are based on these operators. Similarly, the structural in-

duction technique also appears to be a promising approach, but there are a few

limitations with this technique too. For instance, it will be necessary to be cre-

ative so to find a finite-state description of the behaviour for use in the inductive

step [Ros10], and it is not clear that this is possible as larger models will have

8.1. Limitations 153

more states unless a way can be found of abstracting them away. That is, this

technique will not be applicable to any model that publishes a final tally, because

the addition of extra voters increases the number of possible results and hence

impedes clear finite description. On the other hand, a generalisation based

on the following opinions can be made, along the lines of work by Ryan et al.

[RSG+00]:

“Any attack on Anna and Bob that could ever arise through the

intruder using any number of third party identities could equally arise

if all of these were replaced in the trace by a single identity other than

Anna or Bob.”

Moreover, Roscoe [Ros97] observes that

“With the great majority of protocols it would not improve the

intruder’s prospects to have any more identities (Donald, Eve, etc.)

to play with. This is because any attack which involved more than

one of these identities acting would also work with them all being

Cameron.”

Similarly, Syverson et al. [SMC00] have established that the Dolev-Yao intruder

with multiple identities can be reduced to one.

In the case of the vVote analysis, for instance, there existed two honest voters and

a dishonest one James. Under the statements above, it therefore seems likely that

the existence of other dishonest voters, like James, in an election run, would not

change the analytical results achieved during the analysis of this voting system.

This is because the existence of more than one dishonest voter would not give

any further information to the intruder that could be used to attack the protocol

requirement.

It should be noted that although the CSP models were aimed at reflecting the

voting system protocols, it was not possible to model them completely and con-

sequently, some parts of the voting systems had to be abstracted away, such as: a

threshold set of agents, decryption key sharers and a complete mixnet. Nonethe-

less, they were sufficient to demonstrate the appropriateness of the framework in

automated verification of cryptographic and non-cryptographic voting systems.

Additionally, due to the abstracting away of cryptographic algorithms and as-

suming they work perfectly, the attacks that may be caused by them have not

been covered in the analyses of cryptographic voting systems in this thesis.

154 Chapter 8. Conclusion and Future Work

8.2 Future Work

There are several directions which can broaden research on the analysis of voting

system protocols. Firstly, the frameworks proposed in this thesis could also be

used to analyse such protocols against a number of other requirements, such as

fairness. Although, the term is used to describe different desirable properties,

what is meant here is that no partial results, which could affect voters’ prefer-

ences, are revealed before the tallying phase. This property is described in terms

of reachability and observational equivalence as a secrecy property and has been

used to analyse the voting system FOO [FOO92] in [KR05]. Hence, the frame-

work proposed in this thesis for the secrecy property can also be used to verify

voting systems regarding such properties that can be defined in terms of secrecy.

Additionally, other privacy-related voting system properties that are worth in-

vestigating are coercion-resistance and receipt-freeness. Heather and Schnei-

der [HS12] proposed a framework for automated verification of these properties.

It is stated that their framework does not seem possible for mechanised analysis

due to the structure of the refinement used in their coercion-resistance definition.

In more detail, each instruction that may be given to the voter by the coercer

needs to be defined as a CSP process so as to compose the set of all possible

instructions. However, it is not realistic or plausible to define all possible coercer

instructions as a CSP process because the coercer can misbehave in so many ways

that we may not foresee. Therefore, further research regarding these properties

(coercion-resistance and receipt-freeness) is a future direction worth pursuing.

An attempt to automate the analysis of these properties was conducted by

Backes et al. [BHM08] using the symbolic definitions of them by Delaune et

al. [DKR06]. However, it was not fully mechanised as some human effort was

needed when transforming each of the equivalences in the coercion-resistance def-

inition into a biprocess. This researcher’s intuition is that coercion-resistance can

be automatically checked by modelling the most important instructions given by

the intruder to the voters, such as randomisation, Italian and forced-abstention

attacks, and analysing voting systems against these attacks individually.

As mentioned in the limitations section, the Prêt à Voter and vVote voting system

models used in this thesis are not complete versions, because it was assumed that

certain parts of the systems work honestly and correctly, such as there being: a

distributed ballot generation, a threshold set of mixes and that the WBB works

in a distributed fashion. Hence, a logical next step would be automated analysis

of these complex mechanisms, in terms of such aspects as: robustness, correctness

and anonymity. Moreover, because of the abstraction level in the analyses in this

study, it was not possible to investigate some of the cryptographic primitives

that are used in voting systems especially in mixnets, such as, zero-knowledge

8.2. Future Work 155

proofs and homomorphic encryptions. Hence, the applicability of such primitives

in the adapted approach remains an open research question requiring further

investigation.

The four voting systems investigated in this thesis were all paper-based including

two cryptographic and two non-cryptographic. In order to extend the application

domain of the framework presented, some of the remote voting systems, such

as JCJ [JCJ05] and Pretty Good Democracy (PGD) [RT09] requiring different

kinds of trust assumptions, should be considered for analysing automatically.

Although voting remotely is more convenient than voting in polling station, there

exist issues in authentication between the voter and voting system server, and

trustworthiness of the integrity of the election results as well as voter anonymity

and secrecy of the vote. In terms of secrecy in remote voting systems, it can be

defined in many ways depending on the methods that are used in system design.

For instance, the secrecy of the vote in postal voting depends on the secrecy

of the conventional mail system. Moreover, in an internet-based remote voting

system where the voter uses her public key to encrypt her vote, the secrecy of

the vote depends on the secrecy of her secret key and the strength of the public

key algorithm. To sum up, for automated analysis of remote voting systems,

definitions of the requirements, such as, secrecy, may differ from the ones in

paper-based voting systems, and channel types that are different than the ones

used in this thesis may be required.

It has been observed that other process calculus tools and approaches, such as spi-

calculus [AG97] and the automated tool ProVerif [Bla01] as well as the process-

algebraic language μCRL and its toolset [BFG+01], have also been used in the

analysis of voting systems. Moreover regarding this, a comparison between these

tools has been occasionally asked for by the reviewers of the published papers and

hence, further endeavours to this end could be undertaken. Similarly, as the ap-

proach in the analyses in this research was possibilistic, deploying a probabilistic

framework in accordance with some of reviewers’ comments of work previously

submitted by this researcher could prove beneficial. For instance, in Chapter 5

when measuring the likelihood of the privacy assumptions’ being fulfilled in the

ThreeBallot voting system, a probabilistic approach might have been deployed,

such as in the line of [DPP07], in order to capture levels of privacy rather than

an absolute measure. However, ThreeBallot has already been subjected to such

treatment in [Str06a, Str06b].

Appendices

157

Appendix A

Sanity Checks

In model checking, one can question the correctness of the system model. Such

possible errors in designing the desired behaviour of systems can be detected by

further reasoning via various sanity checks written as specifications. If the system

model behaves correctly for all possible cases, then one can be sure that the model

is correct. However, it is not an easy task to try all the possible cases, instead,

a number of necessary sanity checks can help to gain confidence in the model.

The following sections present sanity checks performed for each voting system

modelled and analysed in this thesis. The CSPM codes for the CSP models and

the analysis of the voting systems involved are available on [Mor13]. Note that

they may differ slightly from the ones presented here in terms of the syntax used.

A.1 The Conventional Voting System Model

Before performing a formal analysis on the CVS model, it is wise to check that

the voting system preserves some desired properties, by means of appropriate

sanity checks (see Section 4.4 for the analysis of the model).

A.1.1 No one can vote after the election

The model should not allow a voter to vote after the election is closed. That

is, no cast event should be observed following a closeElection event. The sanity

specification and the assertion to be checked can be expressed as follows:

Sanity Spec1 =̂closeElection → Closed

�
�
v∈V
s∈S
c∈C

(
cast.v.s.c → Sanity Spec1

)

159

160 Appendix A. Sanity Checks

Closed =̂ closeElection → Closed

Sanity Spec1 �T SystemCVS \ Σ � {| closeElection, cast |}

A.1.2 The number of votes tallied corresponds to the

number of cast votes

The model can also be checked as to whether the number of votes tallied at the

end of the election run with the model corresponds to the number of votes cast

during the election. The specification Sanity Spec2 and the assertion for this test

can be defined as follows:

Sanity Spec2 =̂ Count(0)

Count(n) =̂

�
v∈V
s∈S
c∈C

(
cast.v.s.c → if n ≤ card(V) then Count(n+1) else STOP

)
�

�
i∈{0...card(V)}

(
total.c1.i → Count1 (n − i)

)

Count1 (s) =̂

�
j∈{0...card(V)}

⎛⎜⎜⎜⎝
total.c2.j → if s = j then total.c3.0 → SKIP else⎛⎝ if 0 ≤ s− j and s− j ≤ card(V) then

total.c3.(s− j) → STOP else STOP

⎞⎠
⎞⎟⎟⎟⎠

Note that the processes are restricted in order to avoid an infinite number of

states as FDR cannot handle this, such as, s − j ≤ card(V) above. It is not

necessary for the process itself, but useful for FDR.

Sanity Spec2 �T SystemCVS \ Σ � {| cast , total |}

As expected, the sanity checks are satisfied showing that the model does not

allow votes after the election is closed, and nor does it miscount the total number

of votes. There are other sanity checks that it is wise to perform on the model,

but for brevity just these two above are discussed here.

A.2 The ThreeBallot Voting System Model

The following sanity checks are used to gain more confidence in the correct be-

haviour of the ThreeBallot model analysed in Chapter 5.

A.2. The ThreeBallot Voting System Model 161

A.2.1 No one can be authenticated twice

It is ensured in the ThreeBallot model that a voter can be authenticated only

once to prevent multiple voting attacks. Thus, the specification for this check is

modelled as follows:

Auth(v) =̂ auth.v → STOP

Sanity Spec3=̂ |||v∈VAuth(v)

Hence, the assertion that needs to be checked is:

Sanity Spec3 �T System3B \ Σ � {| auth |}

A.2.2 No one can fill in a ballot form before being

authenticated

With the first sanity check of the ThreeBallot model, only the eligible voters can

vote and they can vote only once in an election. Because only the auth and the

place events are involved in this sanity test, all the other events can be hidden.

Thus, regarding this sanity check, the specification Sanity Spec4 can be written

as follows:

Check(v) =̂ auth.v → Authed(v)

Authed(v) =̂ �
(i,j)∈Coords

(
place.v.(i, j) → Authed(v)

)
�
auth.v → Authed(v)

Sanity Spec4 =̂ |||v∈VCheck(v)

and the refinement that needs to be held is:

Sanity Spec4 �T System3B \ Σ � {| auth, place |}

A.2.3 No one can vote after the election

For the sake of fairness and the correctness of the election results, all eligible

voters should be able to vote during the election — once the election is closed,

casting ballots should not be allowed. For this sanity check, all irrelevant events

can be hidden except the closeElection and place events. Thus, the aim is not to

let the System3B process allow any place events happening after a closeElection

event. In consequence, the specification Sanity Spec5 can be expressed as follows:

162 Appendix A. Sanity Checks

Sanity Spec5 =̂closeElection → Closed

�
�

v∈V
(i,j)∈Coords

(
place.v.(i, j) → Sanity Spec5

)
Closed =̂ closeElection → Closed

The following is the refinement check for this sanity test.

Sanity Spec5 �T System3B \ Σ � {| closeElection, place |}

A.2.4 The number of votes tallied corresponds to the

number of cast votes

It can be verified whether the model reflects the number of cast votes to the final

tally. Hence, if the total number of place events is the same as the number of

votes tallied for each candidate at the end of election (total number of votes is

announced with the total events), the specification is satisfied. Because only the

events place and total are dealt with, the rest of the events can be hidden. The

corresponding specification Sanity Spec6 can be defined as follows:

Sanity Spec6 =̂ Count(0)

Count(p) =̂ �
v∈V
(i,j)∈Coords

(
place.v.(i, j) → Count(p+ 1)

)
�

�
c∈C�{c1}

(
total.c → Count1(p− i)

)
Count1(j) =̂ total.c1.j → STOP

Therefore, the following refinement check needs to be held in order for the model

to satisfy this sanity test.

Sanity Spec6 �T System3B \ Σ � {| total , place, done |}

As expected, the sanity checks above were successfully satisfied by the ThreeBal-

lot CSP model.

A.3 The Prêt à Voter Voting System Model

The following four sanity checks provide more confidence that the behaviour of

Prêt à Votermodel is as expected, which is analysed in Chapter 6.

A.3. The Prêt à Voter Voting System Model 163

A.3.1 No one can be authenticated twice

The following is the specification for this sanity check, which ensures that no one

can be authenticated multiple times in the model.

Auth(v) =̂ auth.v → STOP

Sanity Spec7 =̂ |||v∈VAuth(v)

Hence the refinement below, in which the events in Σ other than the event auth

are hidden, should be satisfied by the Prêt à Voter voting system model. A

violation of the specification would mean that the model allows a voter to be

authenticated twice.

Sanity Spec7 �T SystemPaV \ Σ � {| auth |}

A.3.2 No one can fill in a ballot form before being

authenticated

This sanity is involved with the authentication and marking events auth and

mark, respectively, and hence the other events from Σ can be hidden. Addition-

ally, this specification is not concerned with how many times a voter can authen-

ticate herself to the election official. Thus, the specification process Sanity Spec8
can be modelled as:

Check(v) =̂ auth.v → Authed(v)

Authed(v) =̂ �
x∈markedforms

(
mark.v.x → Authed(v)

)
�(

auth.v → Authed(v)

)
Sanity Spec8 =̂ |||v∈VCheck(v)

The following refinement check ensures that the Prêt à Voter model allows only

authenticated voters to mark a ballot form.

Sanity Spec8 �T SystemPaV \ Σ � {| auth,mark |}

A.3.3 No one can vote after the election

The Prêt à Voter CSP model SystemPaV process should not allow a cast event

after a closeElection event. Hence, the following ensures that such a trace is not

possible in the model. Similarly, the events in Σ except for the closeElection and

cast events can be hidden.

164 Appendix A. Sanity Checks

Sanity Spec9 =̂closeElection → Closed

�
�

x∈markedRHSs

(
cast.x → Sanity Spec9

)
Closed =̂ closeElection → Closed

Hence, the following refinement needs to be checked for this sanity test.

Sanity Spec9 �T SystemPaV \ Σ � {| closeElection, cast |}

A.3.4 The number of votes tallied corresponds to the

number of cast votes

What is checked here is whether the total number of cast votes is the same as the

number of votes tallied at the end of the election. Because the events that are

involved in this sanity check are the cast and total events, the rest of the events

in Σ can be hidden. The specification Sanity Spec10 and the refinement check

can be defined as follows:

Sanity Spec10 =̂ Count(0)

Count(n) =̂ �
x∈markedRHSs

(
cast.x → Count(n+1)

)
�

�
i∈{0...card(V)}

(
total.c1.i → Count1 (n − i)

)
Count1 (j) =̂ total .c2 .j → STOP

The following refinement verifies whether the Prêt à Voter system model satisfies

this sanity test.

Sanity Spec10 �T SystemPaV \ Σ � {| cast , total |}

FDR confirms that all the sanity checks defined above are satisfied by the Prêt à

Voter voting system CSP model.

A.4 The vVote Voting System Model

The following four sanity checks provide more confidence that the behaviour of

vVote model is as expected and the analysis of this is carried out in Chapter 7.

A.4. The vVote Voting System Model 165

A.4.1 No one can be authenticated twice

The following is the specification for this sanity check, which ensures that no one

can be authenticated twice in the model.

Auth(v) =̂ nsbcomm.v.Tom.v → STOP

Sanity Spec11 =̂ |||v∈VAuth(v)

The events in Σ other than the events where the voters authenticate themselves

can be hidden and hence, the following refinement check should be satisfied by

the vVote voting system model. A violation of the specification would mean that

the model allows a voter to be authenticated twice.

Sanity Spec11 �T SystemvVote \ Σ � {|nsbcomm.v .Tom.v | v ∈ V |}

A.4.2 No one can fill in a ballot form before being

authenticated

As the authentication and marking events, nsbcomm.v.Tom.v and

nsbcomm.v.ebm.i, respectively, are involved in this sanity check, the other

events from Σ can be hidden. Additionally, this specification is not concerned

with how many times a voter can be authenticated and thus, the specification

process Sanity Spec12 can be written as:

Check(v) =̂ nsbcomm.v.Tom.v → Authed(v)

Authed(v) =̂�
i∈I

(
nsbcomm.v.ebm.i → Authed(v)

)
�(

nsbcomm.v.Tom.v → Authed(v)

)
Sanity Spec12 =̂ |||v∈VCheck(v)

The following refinement check ensures that the vVote model allows only authen-

ticated voters to send an index value, corresponding to the chosen candidate, to

the EBM.

Sanity Spec12 �T SystemvVote \ Σ �A

, where A = {|nsbcomm.v.Tom.v, nsbcomm.v.ebm | v ∈ V |}.

166 Appendix A. Sanity Checks

A.4.3 No one can vote after the election

The vVote CSP model, SystemvVote , should not allow a vote casting event, mod-

elled as nsbcomm.v.ebm.i after a closeElection event. Hence, the following en-

sures such a trace is not possible in the model.

Sanity Spec13 =̂closeElection → Closed

�
�
v∈V
i∈I

(
nsbcomm.v.ebm.i → Sanity Spec13

)
Closed =̂ closeElection → Closed

Hence, the following verifies whether the model satisfies this sanity test.

Sanity Spec13 �T SystemvVote \ Σ �A

, where A = {|nsbcomm.v.ebm, closeElection | v ∈ V |}.

A.4.4 The number of votes tallied corresponds to the

number of cast votes

What is checked here is whether the total number of casting events modelled

as nsbcomm.v.Ebm.i is the same as the number of votes tallied, which is the

sum of votes received by the candidates Zoe and Victor. Hence, the specification

Sanity Spec14 can be defined as follows:

Sanity Spec14 =̂ Count(0)

Count(n) =̂ �
v∈V
i∈I

(
nsbcomm.v.ebm.i → Count(n+1)

)
�

�
i∈{0...card(V)}

(
nsbcomm.teller.wbb.Zoe.i → Count1 (n − i)

)
Count1 (j) =̂ nsbcomm.teller .wbb.Victor .j → STOP

The following refinement verifies whether the vVote system model satisfies this

sanity check.

Sanity Spec14 �T SystemvVote \ Σ �A

, where A = {|nsbcomm.v.ebm, nsbcomm.teller.wbb | v ∈ V |}.

FDR confirms that all the sanity checks defined above are satisfied by the vVote

voting system CSP model.

Bibliography

[ACW+06] R. Araújo, R. Custódio, A. Wiesmaier, T. Takagi, and Technis-

che Universitat Darmstadt. An electronic scheme for the Farnel

paper-based voting protocol. In ACNS, 2006.

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In Proceedings of

the 17th USENIX Security Symposium, pages 335–348, 2008.

[AG97] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic

protocols: the spi calculus. In Proceedings of the 4th ACM Confer-

ence on Computer and Communications Security, CCS ’97, pages

36–47, New York, NY, USA, 1997. ACM.

[App07] Andrew W. Appel. How to defeat Rivest’s ThreeBallot voting sys-

tem. Unpublished, 2007.

[BBC04] BBC:website. Florida ballot papers go missing, October 2004. http:

//news.bbc.co.uk/1/hi/world/americas/3960679.stm.

[BBK+12] Josh Benaloh, Mike Byrne, Philip T. Kortum, Neal McBurnett,

Olivier Pereira, Philip B. Stark, and Dan S. Wallach. STAR-Vote:

A secure, transparent, auditable, and reliable voting system. CoRR,

abs/1211.1904, 2012.

[BCH+12a] Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter

Y. A. Ryan, Steve Schneider, Sriramkrishnan Srinivasan, Vanessa

Teague, Roland Wen, and Zhe Xia. A supervised verifiable voting

protocol for the Victorian Electoral Commission. In Electronic Vot-

ing, pages 81–94, 2012.

[BCH+12b] Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter

Y. A. Ryan, Steve Schneider, Sriramkrishnan Srinivasan, Vanessa

167

168 Bibliography

Teague, Roland Wen, and Zhe Xia. Using Prêt à Voter in Victoria

State elections. In EVT / WOTE, 2012.

[BFG+01] Stefan Blom, Wan Fokkink, Jan Friso Groote, Izak van Langevelde,

Bert Lisser, and Jaco van de Pol. μCRL: A toolset for analysing

algebraic specifications. In CAV, pages 250–254, 2001.

[BG02] Dan Boneh and Philippe Golle. Almost entirely correct mixing with

applications to voting. In Proceedings of the 9th ACM Conference

on Computer and Communications Security, CCS ’02, pages 68–77,

New York, NY, USA, 2002. ACM.

[BHM08] Michael Backes, Catalin Hritcu, and Matteo Maffei. Automated

verification of remote electronic voting protocols in the applied pi-

calculus. In CSF, pages 195–209, 2008.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based

on prolog rules. In CSFW, pages 82–96, 2001.

[Bla09] Matt Blaze. Is the e-voting honeymoon over?, March 2009. http:

//www.crypto.com/blog/vote_fraud_in_kentucky/.

[BP05] Mohit Bhargava and Catuscia Palamidessi. Probabilistic anonymity.

In Mart́ın Abadi and Luca de Alfaro, editors, CONCUR 2005 - Con-

currency Theory, volume 3653 of Lecture Notes in Computer Science,

pages 171–185. Springer Berlin / Heidelberg, 2005.

[BRS07] A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based mod-

elling of voting protocols. In TARK, pages 62–71, 2007.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elec-

tions (extended abstract). In STOC, pages 544–553, 1994.

[Can01] Ran Canetti. Universally composable security: a new paradigm for

cryptographic protocols. In Proc. 42nd IEEE Symp. Foundations of

Computer Science, pages 136–145, 2001.

[CCC+08] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex,

Stefan Popoveniuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen,

and Alan T. Sherman. Scantegrity II: End-to-end verifiability for

optical scan election systems using invisible ink confirmation codes.

In Proceedings of the Conference on Electronic Voting Technology,

pages 14:1–14:13, Berkeley, CA, USA, 2008. USENIX Association.

[CCC+10] Richard Carback, David Chaum, Jeremy Clark, John Conway, Alek-

sander Essex, Paul S. Herrnson, Travis Mayberry, Stefan Popove-

niuc, Ronald L. Rivest, Emily Shen, Alan T. Sherman, and Poorvi L.

Bibliography 169

Vora. Scantegrity II municipal election at Takoma Park: the first

E2E binding governmental election with ballot privacy. In Proceed-

ings of the 19th USENIX Conference on Security, USENIX Secu-

rity’10, pages 291–306, Berkeley, CA, USA, 2010. USENIX Associa-

tion.

[CCK12] Rohit Chadha, Stefan Ciobaca, and Steve Kremer. Automated ver-

ification of equivalence properties of cryptographic protocols. In

Helmut Seidl, editor, Programming Languages and Systems, volume

7211 of Lecture Notes in Computer Science, pages 108–127. Springer

Berlin Heidelberg, 2012.

[CCM08] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas:

Toward a secure voting system. In IEEE Symposium on Security and

Privacy, pages 354–368, 2008.

[CEA07] Jeremy Clark, Aleks Essex, and Carlisle Adams. On the security

of ballot receipts in E2E voting systems. In IAVoSS Workshop On

Trustworthy Elections (WOTE), july 2007.

[CEC+08] David Chaum, Aleksander Essex, Richard Carback, Jeremy Clark,

Stefan Popoveniuc, Alan T. Sherman, and Poorvi L. Vora. Scant-

egrity: End-to-end voter-verifiable optical-scan voting. IEEE Secu-

rity & Privacy, 6(3):40–46, 2008.

[CGH+05] Sadie Creese, Michael Goldsmith, Richard Harrison, Bill Roscoe,

Paul Whittaker, and Irfan Zakiuddin. Exploiting empirical engage-

ment in authentication protocol design. In Proceedings of the Sec-

ond International Conference on Security in Pervasive Computing,

SPC’05, pages 119–133, Berlin, Heidelberg, 2005. Springer-Verlag.

[CGRZ03] Sadie Creese, Michael Goldsmith, Bill Roscoe, and Irfan Zakiuddin.

The attacker in ubiquitous computing environments: Formalising

the threat model. In Formal Aspects of Security, 2003.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and

digital pseu-donyms. Communications of the ACM, 24:84–90, Febru-

ary 1981.

[Cha88] David Chaum. The dining cryptographers problem - unconditinal

sender and recipient untraceability. Journal of Cryptology, 1:65–75,

1988.

[Cha04] David Chaum. Secret-ballot receipts: True voter-verifiable elections.

IEEE Security & Privacy, 2(1):38–47, 2004.

170 Bibliography

[CKW08] Jacek Cichoń, Miroslaw Kutylowski, and Bogdan Weglorz. Short

ballot assumption and Threeballot voting protocol. In Proceedings

of the 34th Conference on Current Trends in Theory and Practice of

Computer Science, SOFSEM’08, pages 585–598, Berlin, Heidelberg,

2008. Springer-Verlag.

[COPD06] Tom Chothia, Simona Orzan, Jun Pang, and Mohammad Torabi

Dashti. A framework for automatically checking anonymity with

μCRL. In TGC, pages 301–318, 2006.

[CPP06] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash

Panangaden. Anonymity protocols as noisy channels. In Information

and Computation. Springer, 2006.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical

voter-verifiable election scheme. In ESORICS, pages 118–139, 2005.

[CS11] Veronique Cortier and Ben Smyth. Attacking and fixing helios: An

analysis of ballot secrecy. In Computer Security Foundations Sym-

posium (CSF), 2011 IEEE 24th, pages 297–311, 2011.

[Cul13] Chris Culnane. Software design for VEC vVote system. Technical

Report CS-13-01, University of Surrey, 2013.

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography. Infor-

mation Theory, IEEE Transactions on, 22(6):644–654, 1976.

[DKR06] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Coercion-

resistance and receipt-freeness in electronic voting. In CSFW, pages

28–42, 2006.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying

privacy-type properties of electronic voting protocols. Journal of

Computer Security, 17(4):435–487, December 2009.

[DKR10] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Towards trust-

worthy elections. In David Chaum, Markus Jakobsson, Ronald L.

Rivest, Peter A. Ryan, and Josh Benaloh, editors, Towards Trustwor-

thy Elections, chapter Verifying privacy-type properties of electronic

voting protocols: a taster, pages 289–309. Springer-Verlag, Berlin,

Heidelberg, 2010.

[dMPQ07] Olivier de Marneffe, Olivier Pereira, and Jean-Jacques Quisquater.

Simulation-based analysis of E2E voting systems. In Proceedings of

the 1st International Conference on E-voting and Identity, VOTE-

ID’07, pages 137–149, Berlin, Heidelberg, 2007. Springer-Verlag.

Bibliography 171

[DPP07] Yuxin Deng, Catuscia Palamidessi, and Jun Pang. Weak probabilis-

tic anonymity. Electronic Notes in Theoretical Computer Science,

180(1):55–76, June 2007.

[DRS08] Stéphanie Delaune, Mark Ryan, and Ben Smyth. Automatic ver-

ification of privacy properties in the applied pi calculus. In Yu-

cel Karabulut, John Mitchell, Peter Herrmann, and ChristianDams-

gaard Jensen, editors, Trust Management II, volume 263 of IFIP -

The International Federation for Information Processing, pages 263–

278. Springer US, 2008.

[DSS03] David L. Dill, Bruce Schneier, and Barbara Simons. Voting and

technology: who gets to count your vote? Communications of the

ACM, 46(8):29–31, August 2003.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key

protocols. IEEE Transactions on Information Theory, 29(2):198 –

208, mar 1983.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme

based on discrete logarithms. In CRYPTO, pages 10–18, 1984.

[FA02] Cédric Fournet and Mart́ın Abadi. Hiding names: Private authenti-

cation in the applied pi calculus. In ISSS, pages 317–338, 2002.

[FOO92] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting

scheme for large scale elections. In AUSCRYPT, pages 244–251,

1992.

[GGH+] Paul Gardiner, Michael Goldsmith, Jason Hulance, David Jack-

son, Bill Roscoe, Brian Scattergood, and Bryan Armstrong. FDR2

user manual. http://www.fsel.com/documentation/fdr2/html/

index.html.

[GHPv05] Flavio D. Garcia, Ichiro Hasuo, Wolter Pieters, and Peter van

Rossum. Provable anonymity. In Proceedings of the 2005 ACM

Workshop on Formal Methods in Security Engineering, FMSE ’05,

pages 63–72, New York, NY, USA, 2005. ACM.

[Gjø10] Kristian Gjøsteen. Analysis of an internet voting protocol. IACR

Cryptology ePrint Archive, 2010:380, 2010.

[Goo08] Dan Goodin. E-voting outfit confesses vote-dropping software

bug, August 2008. http://www.theregister.co.uk/2008/08/26/

decade_old_evoting_error/.

172 Bibliography

[Gum05] Andrew Gumbel. Steal this vote : dirty elections and the rotten

history of democracy in America. Nation Books, 2005.

[Hea07] James Heather. Implementing STV securely in Prêt à Voter. In

CSF, pages 157–169, 2007.

[Hea10] James Heather. Using rank functions to verify authentication proto-

cols. PhD thesis, Royal Holloway, University of London, 2010.

[HHK95] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing

simulations on finite and infinite graphs. In Proceedings of the 36th

Annual Symposium on Foundations of Computer Science, FOCS ’95,

pages 453–, Washington, DC, USA, 1995. IEEE Computer Society.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communica-

tions of the ACM, 21:666–677, August 1978.

[HS04] Dominic Hughes and Vitaly Shmatikov. Information hiding,

anonymity and privacy: a modular approach. Journal of Computer

Security, 12(1):3–36, 2004.

[HS12] James Heather and Steve Schneider. A formal framework for mod-

elling coercion resistance and receipt freeness. In FM, pages 217–231,

2012.

[HSS09] Kevin Henry, Douglas R. Stinson, and Jiayuan Sui. The effective-

ness of receipt-based attacks on ThreeBallot. IEEE Transactions on

Information Forensics and Security, 4(4):699–707, December 2009.

[Jak99] Markus Jakobsson. On quorum controlled asymmetric proxy re-

encryption. In Proceedings of the Second International Workshop

on Practice and Theory in Public Key Cryptography, 1999.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-

resistant electronic elections. In Proceedings of the 2005 ACM Work-

shop on Privacy in the Electronic Society, WPES ’05, pages 61–70,

New York, NY, USA, 2005. ACM.

[JJR02] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix

nets robust for electronic voting by randomized partial checking. In

USENIX Security Symposium, pages 339–353, 2002.

[JMP09] Hugo Jonker, Sjouke Mauw, and Jun Pang. A formal framework for

quantifying voter-controlled privacy. Journal of Algorithms, 64(2-

3):89 – 105, 2009.

Bibliography 173

[Jon09] Hugo L. Jonker. Security Matters: Privacy in Voting and Fairness in

Digital Exchange. PhD thesis, Eindhoven University of Technology

and University of Luxembourg, 2009.

[JP11] Hugo Jonker and Jun Pang. Bulletin boards in voting systems: Mod-

elling and measuring privacy. In ARES, pages 294–300, 2011.

[KR05] Steve Kremer and Mark Ryan. Analysis of an electronic voting pro-

tocol in the applied pi calculus. In ESOP, pages 186–200, 2005.

[KSW05] Chris Karlof, Naveen Sastry, and David Wagner. Cryptographic

voting protocols: a systems perspective. In Proceedings of the 14th

Conference on USENIX Security Symposium - Volume 14, SSYM’05,

pages 3–3, Berkeley, CA, USA, 2005. USENIX Association.

[KTV11] R. Küsters, T. Truderung, and A. Vogt. Verifiability, privacy, and

coercion-resistance: New insights from a case study. In Security and

Privacy (SP), 2011 IEEE Symposium on, pages 538 –553, May 2011.

[KZ10] Miroslaw Kutylowski and Filip Zagorski. Scratch, click & vote:

E2E voting over the internet. In David Chaum, Markus Jakobsson,

Ronald Rivest, Peter Ryan, Josh Benaloh, Miroslaw Kutylowski, and

Ben Adida, editors, Towards Trustworthy Elections, volume 6000 of

Lecture Notes in Computer Science, pages 343–356. Springer Berlin

/ Heidelberg, 2010.

[Laz99] Ranko S. Lazic. A Semantic Study of Data Independence with Appli-

cations to Model Checking. D. phil. thesis, Oxford University Com-

puting Laboratory, 1999.

[LB03] Michael Leuschel and Michael Butler. Prob: A model checker for b.

In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME

2003: Formal Methods, volume 2805 of Lecture Notes in Computer

Science, pages 855–874. Springer Berlin Heidelberg, 2003.

[LJP10] Barbara Lucie Langer, Hugo Jonker, and Wolter Pieters. Anonymity

and verifiability in voting: Understanding (un)linkability. In ICICS,

pages 296–310, 2010.

[Low95] Gavin Lowe. An attack on the Needham-Schroeder public-key au-

thentication protocol. Information Processing Letters, 56(3):131–

133, 1995.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-

key protocol using FDR. In Proceedings of the Second International

174 Bibliography

Workshop on Tools and Algorithms for Construction and Analysis

of Systems, pages 147–166, London, UK, 1996. Springer-Verlag.

[Mea03] Catherine Meadows. Formal methods for cryptographic protocol

analysis: emerging issues and trends. IEEE Journal on Selected

Areas in Communications, 21(1):44–54, 2003.

[Mer92] Rebecca T. Mercuri. Physical verifiability of computer systems. In

The Fifth International Computer Virus and Security Conference,

March 1992.

[MH13] Murat Moran and James Heather. Automated analysis of voting

systems with Dolev-Yao intruder model. In Automated Verification

of Critical Systems AVOCS, September 2013.

[MHS12] Murat Moran, James Heather, and Steve Schneider. Verifying

anonymity in voting systems using CSP. Formal Aspects of Com-

puting, pages 1–36, 2012.

[MHS13] Murat Moran, James Heather, and Steve A Schneider. Automated

anonymity verification of the ThreeBallot voting system. In IFM,

pages 94–108, June 2013.

[Mor13] Murat Moran. CSP codes for CVS, ThreeBallot, Prêt à Voter and

vVote voting systems, May 2013. http://muratmoran.wordpress.

com/publications/.

[MVd04] S. Mauw, J. Verschuren, and E. P. de Vink. A formalization of

anonymity and onion routing. In ESORICS, pages 109–124, 2004.

[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot.

Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton,

FL, USA, 1st edition, 1996.

[NAN05] Christoffer Rosenkilde Nielsen, Esben Heltoft Andersen, and

Hanne Riis Nielson. Static validation of a voting protocol. Elec-

tronic Notes in Theoretical Computer Science, 135(1):115–134, July

2005.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to

e-voting. In Proceedings of the 8th ACM Conference on Computer

and Communications Security, CCS ’01, pages 116–125, New York,

NY, USA, 2001. ACM.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption for

authentication in large networks of computers. Communications of

the ACM, 21(12):993–999, December 1978.

Bibliography 175

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree

residuosity classes. In EUROCRYPT, pages 223–238, 1999.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic se-

cure verifiable secret sharing. In Proceedings of the 11th Annual

International Cryptology Conference on Advances in Cryptology,

CRYPTO ’91, pages 129–140, London, UK, 1992. Springer-Verlag.

[PIK94] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient

anonymous channel and all/nothing election scheme. In Tor Helle-

seth, editor, Advances in Cryptology EUROCRYPT’93, volume 765

of Lecture Notes in Computer Science, pages 248–259. Springer

Berlin Heidelberg, 1994.

[PK00] Andreas Pfitzmann and Marit Köhntopp. Anonymity, unobservabil-

ity, and pseudonymity - a proposal for terminology. In Workshop on

Design Issues in Anonymity and Unobservability, pages 1–9, 2000.

[RBH+09] Peter Y. A. Ryan, David Bismark, James Heather, Steve A. Schnei-

der, and Zhe Xia. Prêt à Voter: a voter-verifiable voting system.

IEEE Transactions on Information Theory, 4(4):662–673, 2009.

[RG97] A.W. Roscoe and M.H. Goldsmith. The perfect ”spy” for model-

checking cryptoprotocols. In DIMACS workshop on the design and

formal verification of cryptographic protocols, 1997.

[Riv06] Ronald L. Rivest. The ThreeBallot voting sys-

tem, 2006. http://people.csail.mit.edu/rivest/

Rivest-TheThreeBallotVotingSystem.pdf.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice

Hall PTR, Upper Saddle River, NJ, USA, 1997.

[Ros10] A. W. Roscoe. Understanding Concurrent Systems. Springer-Verlag

New York, Inc., New York, NY, USA, 1st edition, 2010.

[RP05] Peter Y. A. Ryan and Thea Peacock. Prêt à Voter: a systems per-

spective. Technical report, Newcastle University, 2005.

[RP10] Peter Y. A. Ryan and Thea Peacock. A threat analysis of Prêt à

Voter. In David Chaum, Markus Jakobsson, Ronald Rivest, Pe-

ter Ryan, Josh Benaloh, Miroslaw Kutylowski, and Ben Adida, edi-

tors, Towards Trustworthy Elections, volume 6000 of Lecture Notes

in Computer Science, pages 200–215. Springer Berlin / Heidelberg,

2010.

176 Bibliography

[RRE+05] Andrew Reynolds, Ben Reilly, Andrew Ellis, Jose Antonio Cheibub,

Karen Cox, Dong Lisheng, Jorgen Elklit, Michael Gallagher, Allen

Hicken, Carlos Huneeus, Eugene Huskey, Stina Larserud, Vijay Pati-

dar, Nigel S. Roberts, Richard Vengroff, and Jeffrey A. Weldon. Elec-

toral system design: The new international IDEA handbook, 2005.

[RS06] Peter Y. A. Ryan and Steve A. Schneider. Prêt à Voter with re-

encryption mixes. In ESORICS, pages 313–326, 2006.

[RS07] Ronald L. Rivest and Warren D. Smith. Three voting protocols:

ThreeBallot, VAV, and Twin. In Proceedings of USENIX/ACCU-

RATE Electronic Voting Technology (EVT). Press, 2007.

[RSA78] Ronald L. Rivest, A. Shamir, and L. Adleman. A method for ob-

taining digital signatures and public-key cryptosystems. Communi-

cations of the ACM, 21(2):120–126, February 1978.

[RSG+00] Peter Y. A. Ryan, Steve A. Schneider, Michael H. Goldsmith, Gavin

Lowe, and A. W. Roscoe. The Modelling and Analysis of Security

Protocols : the CSP Approach. Addison-Wesley Professional, first

edition, 2000.

[RT09] Peter Y. A. Ryan and Vanessa Teague. Pretty good democracy. In

Security Protocols Workshop, pages 111–130, 2009.

[RT10] Kim Ramchen and Vanessa Teague. Parallel shuffling and its appli-

cation to Prêt à Voter. In EVT / WOTE, 2010.

[Rya04] Peter Y. A. Ryan. A variant of the Chaum voter-verifiable scheme.

Technical Report CS-TR-864, University of Newcastle upon Tyne,

2004.

[Rya05] Peter Y. A. Ryan. A variant of the Chaum voter-verifiable scheme.

In Proc. 2005 Workshop on Issues in the Theory of Security, pages

81–88, 2005.

[Rya06] Peter Y. A. Ryan. Putting the human back in voting protocols. In

Security Protocols Workshop, pages 20–25, 2006.

[Rya08] Peter Y. A. Ryan. Prêt à Voter with paillier encryption. Mathemat-

ical and Computer Modelling, 48(1):1646–1662, 2008.

[Sch96] Steve A Schneider. Security properties and CSP. In Security and

Privacy, 1996. Proceedings., 1996 IEEE Symposium on, pages 174–

187, 1996.

Bibliography 177

[Sch99] Steve A. Schneider. Concurrent and Real Time Systems: The CSP

Approach. JohnWiley & Sons, Inc., New York, NY, USA, 1st edition,

1999.

[Sch04] Bruce Schneier. The problem with electronic voting machines,

November 2004. http://www.schneier.com/blog/archives/

2004/11/the_problem_wit.html.

[SLD09] Jun Sun, Yang Liu, and JinSong Dong. Model checking csp revis-

ited: Introducing a process analysis toolkit. In Tiziana Margaria and

Bernhard Steffen, editors, Leveraging Applications of Formal Meth-

ods, Verification and Validation, volume 17 of Communications in

Computer and Information Science, pages 307–322. Springer Berlin

Heidelberg, 2009.

[SMC00] Paul Syverson, Catherine Meadows, and Iliano Cervesato. Dolev-

Yao is no better than Machiavelli. In First Workshop on Issues in

the Theory of Security - WITS’00, pages 87–92, 2000.

[Smy11] Ben Smyth. Formal verification of cryptographic protocols with auto-

mated reasoning. PhD thesis, School of Computer Science, University

of Birmingham, 2011.

[SRKK10] Ben Smyth, Mark Ryan, Steve Kremer, and Mounira Kourjieh.

Towards automatic analysis of election verifiability properties. In

ARSPA-WITS, pages 146–163, 2010.

[SS96] Steve A. Schneider and Abraham Sidiropoulos. CSP and anonymity.

In ESORICS, pages 198–218, 1996.

[Str06a] Charlie Strauss. A critical review of the triple ballot vot-

ing system, part2: Crack- ing the triple ballot encryp-

tion, 2006. http://www.cs.princeton.edu/~appel/voting/

Strauss-ThreeBallotCritique2v1.5.pdf.

[Str06b] Charlie Strauss. The trouble with triples: A criti-

cal review of the triple ballot (3ballot) scheme part1,

2006. http://www.cs.princeton.edu/~appel/voting/

Strauss-TroubleWithTriples.pdf.

[TPR07] Thomas Tjøstheim, Thea Peacock, and Peter Y. A. Ryan. A case

study in system-based analysis: The ThreeBallot voting system and

Prêt à Voter. In VoComp, 2007.

[XCH+10] Zhe Xia, Chris Culnane, James Heather, Hugo Jonker, Peter Y. A.

Ryan, Steve A. Schneider, and Sriramkrishnan Srinivasan. Versatile

178 Bibliography

Prêt à Voter: Handling multiple election methods with a unified

interface. In INDOCRYPT, pages 98–114, 2010.

Notation

Explanation of some notation, left this in as it might be useful.

A set of agents

C set of candidates

F set of facts

I set of indices

L set of candidate lists

M set of messages

N set of nonces

S set of serials

V set of voters

IK set of initial knowledge

PK set of all public keys

SK set of all secret keys

pk public key variable

sk secret key variable

k symmetric key variable

(pk, sk) public key pair variable

pka public key variable belonging to agent a

ska secret key variable belonging to agent a

f, fi fact variables

Sq.〈f1 . . . fn〉 sequence of facts

Epk(f) public key encryption

Dsk(f) public key decryption

Ek(f) symmetric encryption

Dk(f) symmetric decryption

Ssk(f) digital signature

H(f) cryptographic hash

a agent variable

v voter variable

c candidate variable

179

180 Notation

s serial number variable

l candidate list variable

m message variable

n nonce variable

i index variable

Ind.i vVote index

Raw(s,Epk(f)) vVote raw ballot

DigB(Ssk(s),Epk(l)) vVote digital ballot

B(l, s, Ind.i) vVote ballot form

RHS(s, Ind.i) vVote RHS of a ballot form

R(Ssk(RHS(s, Ind.i))) vVote receipt

V(Ind.i,Epk(l)) vVote vote

Acronyms

AKISS Active Knowledge in Security Protocols.

AV alternative vote.

CSP Communicating Sequential Processes.

CVS conventional voting system.

DRE Direct Recording by Electronics.

E2E end-to-end.

EBM electronic ballot marker.

FDR Failures-Divergence Refinement.

FPTP first-past-the-post.

IND-CCA2 indistinguishability under adaptive chosen ciphertext attack.

IND-CPA indistinguishability under chosen plaintext attack.

IRV instant-runoff voting.

LTL linear temporal logic.

LTS labelled transition systems.

NSPK Needham-Schroeder Public-Key.

PAT Process Analysis Toolset.

PGD Pretty Good Democracy.

181

182 Acronyms

POD print-on-demand.

RPC randomised partial checking.

SBA short ballot assumption.

STV single transferable vote.

TTP trusted third party.

VEC Victorian Electoral Commission.

VVPAT voter-verified paper audit trail.

WBB web bulletin board.

