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2.2.5 N = 1 Poincaré Supergravity with Cosmological Con-
stant in Three Dimensions . . . . . . . . . . . . . . . . . . 33

2.3 Classical Solutions of Supergravity Theories . . . . . . . . . . . . 38

2.4 Algebraic Classification of 3D Spacetimes . . . . . . . . . . . . . 41

2.4.1 Comparison of 3D and 4D . . . . . . . . . . . . . . . . . . 42

2.4.2 Petrov-Segre Classification in TMG . . . . . . . . . . . . 42

3 Massive N = 2 Supergravity Theories in Three Dimensions 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 3D N = 2 Superconformal Tensor Calculus . . . . . . . . . . . . 50

3.2.1 The Weyl and Compensating Multiplets . . . . . . . . . . 50

3.2.2 Combination of Local Supermultiplets . . . . . . . . . . . 54

3.2.3 Action Formulae . . . . . . . . . . . . . . . . . . . . . . . 58

5



3.3 N = (1, 1) Supergravity Models . . . . . . . . . . . . . . . . . . . 61

3.3.1 N = (1, 1) Cosmological Poincaré Supergravity . . . . . . 62
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1.1 Introduction

Among the four fundamental interactions that are known to exist in nature, it is
probably gravitation that seems the most puzzling to the theoretical physicist.
Our attempts at a theoretical understanding of gravitation began with Newton’s
inverse square law, which led to a successful description of the orbital motion
of planets in our solar system. With the confirmation of the existence of a new
planet predicted by Newton’s theory, which we now call Neptune, it became
the standard way to describe gravitational phenomena.

This remained the case until Einstein proposed a new theory of gravitation,
the general theory of relativity (GR), where gravitation is seen as a manifesta-
tion of the curvature of spacetime generated by matter. In addition to explain-
ing the well-known discrepancy in Mercury’s orbit, Einstein’s theory changed
our view of space, time, and matter radically with its remarkable predictions
such as the existence of black holes. However, when the theory was treated
within the framework of quantum field theory, which was successfully employed
for mathematically consistent formulations of the other three fundamental in-
teractions, it was realized that it was non-renormalizable and therefore would
lose its predictive power at high energies.

Presently, we have two different models that we use to describe our uni-
verse at the smallest and the largest scales. On the one hand, there is the
Standard Model of particle physics (SM) which, under certain assumptions,
explains the behavior of sub-atomic particles to an astonishingly high level of
accuracy. On the other, there is the Standard Model of Big Bang Cosmology
(ΛCDM), which utilizes GR at the cosmological scales with plenty of impressive
phenomenological successes: To name just a few, we can list the explanation of
the galactic rotation curves, the cosmic microwave background, and the accel-
erating expansion of our universe. Nevertheless, it is commonly believed that
some fundamental principles are still missing in this picture for various reasons.

The problem of non-renormalizability of GR prevents us from embedding
gravitation into the SM and having a complete description including all the fun-
damental interactions at the smallest possible scales. Furthermore, the ΛCDM
predicts the existence of dark matter and dark energy, which seems to be prob-
lematic in several aspects. No direct experimental evidence for dark matter
has been found yet, and this form of non-baryonic matter is not included in
the SM. While the value of the cosmological constant introduced to account for
the dark energy effects is predicted to be extremely small in the ΛCDM, the
SM prediction in the form of Casimir energy turns out to be many orders of
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magnitude higher.

Many different approaches have been followed with the hope of shedding
light on the issues we mentioned above. String theory, which has the virtue of
unifying all the fundamental interactions, and loop quantum gravity are the two
main attempts at the quantization of gravity. There also have been proposals
to modify the SM and GR. It is the modifications of GR that will play a central
role in the majority of discussions in this thesis. Therefore, we will present a
review of the main developments, successes and problems of this approach in
order to motivate further investigations.

A simple way to modify Einstein’s gravity is to add higher curvature terms
to the Einstein-Hilbert (EH) action. The resulting theory still possesses the
same gauge symmetries since it is defined through a Lorentz invariant action.
As an important result in terms of the issue of renormalizability of gravity, it
was shown by Stelle that a renormalizable gravity theory can be obtained by
adding higher curvature terms to the EH action. However, the resulting theory
is non-unitary, giving rise to negative norm states in the scattering matrix [1,2].
As can be seen from this classical example, even though adding higher curvature
terms can improve the renormalizability properties, there are serious restrictions
on the theories due to unitarity considerations. One technical note that will
be useful in our analysis later is that the tree-level unitarity is assured if the
theory has no ghosts (particles with negative kinetic energy) and no tachyons
(particles with m2 < 0 in flat space) in its particle spectrum. This is the natural
first step for constraining conceivable modified theories of gravity.

Considering the fluctuations of the metric around the flat space and taking
the weak field limit in GR yield the unique self-consistent theory of a massless
spin-2 particle, which we call a graviton, with the linearized diffeomorphisms
as its gauge symmetry. One can also start from this unique field theory and
consider all the possible higher order interaction terms respecting the gauge
symmetries of the theory. It is possible to show that this procedure yields GR
as the non-linear completion of the field theory of massless spin-2, revealing a
fundamental connection between the gauge invariance and the equivalence prin-
ciple [3–5]. From this field theory perspective, it seems natural then to consider
the case of massive spin-2 and its implications at the non-linear level. This
is the main idea of the Massive Gravity research program that has attracted
considerable attention recently [6, 7]. The introduction of a massive graviton
yields a Yukawa-type gravitational potential with a length scale determined by
the graviton mass, which might potentially help solve the phenomenological
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problems related to gravity on galactic and cosmological scales.
The classical theory of massive spin-2 particles was first constructed by Fierz

and Pauli [8]. A 4D massive spin-2 particle carries five local degrees of free-
dom which can be decomposed into helicity 0 (scalar), helicity ±1 (vector) and
helicity ±2 (tensor) modes. It was shown by van Dam, Veltman [9], and inde-
pendently by Zakharov [10] that it is not possible to recover the linearized GR,
in the massless limit of the Fierz-Pauli (FP) theory because of the additional
scalar mode. In the limit, one obtains a massless graviton from the tensor mode
and the vector mode decouples. However, the scalar mode remains coupled to
the trace of the energy-momentum tensor, resulting in discrepancies from the
massless spin-2 theory. For example, the effective potential energy between two
point sources in the massless limit of the FP theory is

U = −4

3

Gm1m2

r
, (1.1.1)

failing to recover the correct Newtonian potential because of the extra attraction
produced by the scalar mode. This is the famous van Dam-Veltman-Zakharov
(vDVZ) discontinuity.

A resolution of the vDVZ discontinuity was offered by Vainshtein, who
showed that higher order interactions in the massive spin-2 theory leads to
an effective screening of the scalar mode that confines the scalar fluctuations
within a region defined by the Vainshtein radius [11]. In the case of the FP
theory, the Vainshtein radius diverges and the effect of the scalar mode is seen
at arbitrarily large distances, which is nothing but an artifact of the linearized
theory that disappears, when the non-linear effects are taken into account.
Along with these developments, however, Boulware and Deser considered the
most general tensor theory of gravity as a non-linear completion of the FP
theory and proved that six local degrees of freedom propagate in such theories
where one extra scalar degree of freedom arising from the nonlinear effects is
always a ghost, known as the Boulware-Deser (BD) ghost [12]. Until recently,
the conclusion was that it is not possible to realize the idea of massive gravity
at the nonlinear level without this scalar ghost mode, and therefore, that it
was not possible to construct any phenomenological model in a mathematically
consistent way.

The first advance regarding the existence of the scalar ghost was achieved
through the work of de Rham, Gabadadze and Tolley, who analyzed the prob-
lem in the so-called decoupling limit which makes the dynamics of the scalar
mode and its coupling to the tensor mode more manifest. After introducing a
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generalization of the FP theory where the ghost mode can be removed up to
the fifth order in nonlinearities [13], they managed to obtain a nonlinear theory
of massive gravity which is free of the BD ghost to all orders [14]. The gen-
eralization of this result beyond the decoupling limit was achieved in a series
of papers by Hassan and Rosen: They first provided a systematic construction
of nonlinear massive gravity actions where the interaction term is formed out
of elementary symmetric polynomials of the square root matrix

√
g−1f , fµν

being the reference metric that is used to put the interactions into the required
form [15]. Later, they produced a proof of the removal of the scalar ghost in
nonlinear massive gravities to all orders and beyond the decoupling limit, by
making use of this construction [16]. Although the reference metric was taken
to be a Minkowski metric in this analysis, it was shown that the result holds
for a generic choice of reference metric [17]. Along with the invention of a bi-
metric massive gravity model with a dynamical reference metric [18], the idea
of massive gravity has again become an active field of research with potential
applications especially in cosmology (see reviews [6,7] for recent developments).

In this thesis, we will follow a different approach and study various gravita-
tional theories in three spacetime dimensions (3D) with different applications
in mind. The main idea will be that although the phenomelogical motivations
mentioned previously are lost, one can use 3D gravity theories as a theoretical
laboratory to improve our understanding of certain physical ideas in a relatively
simpler setup. In the next section, we will review the main developments that
motivate our study of gravitational theories in 3D.

1.2 Why Three Dimensions?

The first property of Einstein’s gravity in 3D that will be of interest to us is
its local triviality, which can be seen from the decomposition of the Riemann
tensor in terms of the Ricci tensor and the metric as

Rµνρσ = 2(gµ[ρRσ]ν − gν[ρRσ]µ)−Rgµ[ρgσ]ν . (1.2.1)

This decomposition is possible in 3D since the Riemann tensor and the Ricci
tensor have 1

12d(d−1) and d(d+1) independent components on a d-dimensional
spacetime and the two match for d = 3. One immediate consequence is that for
any Einstein space, Rµν = λgµν with constant λ, the curvature of the space-
time is directly determined by the local matter distribution and the constant
λ. Hence, there are no dynamical degrees of freedom that can be propagated
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through gravitational waves. The theory can also be formulated as a topological
gauge theory in the Chern-Simons form [19,20].

Despite being locally trivial, 3D Einstein gravity with a negative cosmo-
logical constant has been shown to admit a black hole solution, the Banados-
Teitelboim-Zanelli (BTZ) black hole [21]. The solution is locally indistinguish-
able from Anti-de Sitter (AdS) spacetime but possesses all the properties of a
black hole. It has a well-defined event horizon and it is characterized by only
its mass and angular momentum, which are manifested as global charges and
make it globally different than AdS spacetime.

Another very interesting property of 3D Einstein gravity with a negative
cosmological constant was revealed by Brown and Hanneaux. They showed
that the global charges corresponding to the asymptotic symmetries of the
theory yield a Poisson bracket algebra with a central extension. Under certain
boundary conditions, the resulting algebra turns out to be two copies of the
Virasoro algebra, which is the algebra satisfied by the generators of the local
conformal transformations on the Hilbert space of 2D Conformal Field Theories
(CFT) [22]. Hence, it demonstrates an intriguing relationship between the
dynamics of the classical graviton in 3D and the representations in the Hilbert
space of a 2D CFT, which is quantum mechanical. The holographic nature of
this result is very notable and it is now considered an early sign of the AdS/CFT
correspondence [23,24], which is based on the ideas introduced by ’t Hooft and
Susskind [25,26].

The holographic principle in its modern formulation suggests an exact equiv-
alence of a quantum gravity theory on the d-dimensional AdS spacetime and a
gauge theory defined on the (d-1)-dimensional conformal boundary of the AdS
spacetime. It is a weak/strong-type duality, which makes it possible to study
both theories in different regimes. Although the idea was made concrete as
the duality between type-IIB string theory on AdS5×S5 and the N = 4 super
Yang-Mills theory in the large-Nc limit, it is conjectured to hold for general
gravity theories on AdS spacetime. By studying a weakly coupled theory, one
can extract information about a strongly coupled theory that is conjectured to
be dual to it. This approach opens up a new door to a better understanding
of strongly coupled gauge theories, which has found many applications in very
different areas.

Since the algebra of local conformal transformations in 2D are infinitedimen-
sional, 2D CFTs are much easier to analyze compared to higher dimensional
cases. They also find an application in string theory where the excitations of the
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string are described by a 2D CFT from the world-sheet perspective. Therefore,
they are the most studied and best-known examples of field theories with con-
formal symmetry, which makes the study of holography in 3D gravity theories
particularly worthwhile. One example that should be specifically mentioned is
Strominger’s computation of the Bekenstein-Hawking entropy of the BTZ black
hole using the asymptotic growth of the number states of a 2D CFT [27]. This
result reflects the fact that the holographic principle can yield surprisingly use-
ful results even in the cases where the details of the dual boundary field theory
are not known. Without any direct reference to string theory or supersymme-
try, the assumption of a gravity theory on AdS3 with a 2D CFT dual provides
a microscopic explanation for the entropy of the BTZ black hole.

One other advantage of working in 3D is the possibility of constructing
theories with a massive spin-2 mode which are unitary. The first example of
such theories was obtained by adding a gravitational Chern-Simons term to
the Einstein-Hilbert action. The resulting theory, called Topologically Massive
Gravity (TMG), has third order field equations describing a single helicity +2
or -2 mode, depending on the sign of the Chern-Simons coupling [28,29]. This
is a natural result of the fact that the action is supplemented by a parity odd
term. In order to ensure the positivity of the energy of this mode, the Einstein-
Hilbert term must be used with the opposite sign, as compared to the usual
Einstein gravity, which is commonly called the “wrong sign” in the literature.

A theory of 3D massive gravity without parity violating terms was con-
structed by Bergshoeff, Hohm and Townsend [30, 31]. This theory, called New
Massive Gravity (NMG), is obtained by the addition of a certain combination
of curvature squared terms (K = R2

µν − 3
8R

2) to the Einstein-Hilbert term,
leading to fourth order field equations. The theory has two helicity ±2 massive
mode since it preserves parity. In addition to the massive mode, the theory
also has a massless mode as a result of its field equations being fourth order in
derivatives. Like its 4D analogues, the theory suffers from an Ostrogadski-type
instability, that is, kinetic terms for the massive and the massless modes carry
opposite signs in the action, and this implies that one of them is a ghost. Since
the massless mode does not propagate any degrees of freedom in 3D, one can
use the wrong sign for the Einstein-Hilbert term and ensure the unitarity of
the massive mode. This is a special feature that cannot be achieved in higher
dimensions.

Although both TMG and NMG can be made unitary on flat spacetime by
choosing the wrong sign for the Einstein-Hilbert term, there still appear some

15



problems when the theories are defined on AdS spacetime. The BTZ black
hole becomes a solution of these theories and the wrong sign of the massless
mode make the mass of the BTZ black hole, a global charge still dependent
on the massless mode, negative. Additionally, making the bulk theory unitary
yields a negative central charge for the boundary CFT, resulting in negative
norm states corresponding to the boundary graviton modes. The resolution of
the unitarity problem in the bulk is in direct conflict with the unitarity of the
boundary CFT.

In order to solve the bulk-boundary unitarity conflict in higher derivative
extensions of Einstein’s gravity in 3D, an extension of TMG, Minimal Massive
Gravity (MMG), was proposed [32]. The theory was obtained through a Chern-
Simons-like formulation where the Lagrangian density is formed by a dreibein,
a spin connection and additional auxiliary fields. The field equations can be
written by using the metric alone but it is not possible to obtain the field
equations from a Lorentz invariant action formed only by the metric. It is a
very special type of theory where the field equations are covariantly conserved
only on-shell. It was shown that there is a region at the parameter space of this
theory where both the bulk and the boundary theories are unitary.

The theory defined by the pure quadratic part of NMG exhibits interesting
properties. It was first shown in [33] to possess a single, massless propagating
mode. This result was also confirmed in [31], where the authors showed that
the linearized action of the theory reduces to the Maxwell action for a vector
field, which is on-shell equivalent to a massless scalar in 3D. Since the action
of the theory is formed by the scalar (K = R2

µν − 3
8R

2), it is referred to as
K-gravity. The study of exact solutions of K-gravity led to the first black hole
solutions in 3D gravity which are asymptotically locally flat, and which can
also be deformed to have a non-spherically symmetric horizons, leading to the
so-called “black flower” solutions [34].

A Born-Infeld type extension of NMG (BINMG) was also invented in [35]. It
is defined through an action that consists of the determinant of the cosmological
Einstein tensor. When expanded in the small curvature, it results in the NMG
at the quadratic order. Remarkably, it also yields deformations of NMG at the
cubic and the fourth order which are obtained by demanding the existence of
a holographic c-theorem [36,37].

For an extensive discussion of Einstein’s gravity in three dimensions, with
many details of classical and quantum aspects, we refer the interested readers
to the book [38].

16



1.3 Outline of This Thesis

In Chapter 2, some background material that is useful to understand the later
chapters is provided. This includes a review of the unitarity analysis of different
3D modified gravity models, a brief introduction to the conformal construction
of supergravity theories, the main aspects of classical supersymmetric solutions
of gravity theories, and the algebraic classification of 3D spacetimes.

In Chapter 3, we investigate the N = 2 supersymmetric extension of 3D
gravity theories with actions up to quadratic curvature invariants, which in-
cludes Einstein’s gravity, TMG, NMG, and K-gravity as special cases. The
N = 2 supersymmetry allows for two different off-shell formulations of super-
gravity, N = (1, 1) and N = (2, 0) formulations, which yield different physical
properties for theories with higher derivative terms. After presenting the con-
struction of all the supersymmetric invariants, we show that the unitarity on
the AdS background survives only in the N = (1, 1) case and the supersym-
metric vacuum does not provide any improvement regarding the non-unitarity
of the boundary CFT.

Chapter 4 is devoted to supersymmetric solutions of the N = (1, 1) NMG.
We show that, contrary to the N = 1 case, which supports only solutions with
a null Killing vector, the N = (1, 1) supersymmetry allows for solutions with
a timelike Killing vector, including different deformed AdS backgrounds and a
Lifshitz spacetime. Finally, the supersymmetry properties of some black hole
solutions of NMG are discussed.

In Chapter 5, we study the asymptotically locally flat black hole solutions
of K-gravity from a different perspective. By using the decomposition of the
field equations into two natural tensors, we classify all the possible conformally
flat solutions of the theory and provide new types of solutions. We also show
that the known solutions are still solutions of the Born-Infeld type and the
Chern-Simons type extensions of the theory. Furthermore, the modification of
the conserved charges and the thermodynamical quantities in these extensions
will be discussed.

In Chapter 6, we provide a summary and give some possible directions for
future research.
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Background Material
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In this chapter, our purpose is to set the stage for the following chapters. In
Section 2.1, we introduce the most studied modified gravity theories in 3D and
we review the unitarity analysis around flat spacetime background. Section 2.2
is an introduction to the method we employ to construct supergravity theories in
Chapter 3. In Section 2.3, some basic concepts regarding the classical solutions
of supergravity theories is presented, which is a preparation for Chapter 4.
Section 2.4 introduces the algebraic classification of 3D spacetimes which we
will make use of in Chapter 5.

2.1 3D Gravity Theories

2.1.1 Unitarity around Flat Spacetime

We will introduce various 3D gravity theories by reviewing the canonical anal-
ysis on flat spacetime since it gives an opportunity to summarize some of their
basic properties. This analysis was performed in [31,39] and we will mainly fol-
low the discussion and the notation of [39]. Let us consider the following most
general Lorentz invariant action with at most four derivatives of the metric,

I = IEH + ICS + Iα+β, (2.1.1)

with

IEH =
1

κ

∫
d3x
√
−g R,

ICS = − 1

2µ

∫
d3x
√
−gελµνΓρλσ

(
∂µΓσρν +

2

3
ΓσµβΓβνρ

)
Iα+β =

∫
d3x
√
−g

(
αR2 + βR2

µν

)
. (2.1.2)

The first term is the usual Einstein-Hilbert (EH) term giving rise to the Einstein
equations. The second term is the gravitational Chern-Simons (CS) term in
3D and the second term is a combination of quadratic curvature invariants
with arbitrary coefficients. We will investigate the fluctuations around the
Minkowski spacetime by expanding the metric as

gµν = ηµν + hµν , (2.1.3)

where ηµν is the metric of Minkowski spacetime. The fluctuation hµν is an
arbitrary symmetric tensor with 6 independent components in 3D. The action
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for hµν can be easily obtained by linearizing the corresponding field equations
and then integrating them as

IEH = − 1

2κ

∫
d3xhµν GµνL ,

ICS = − 1

2µ

∫
d3x εµαβ GανL ∂µhβν

Iα+β = −1

2

∫
d3xhµν

[
(2α+ β) (ηµν2− ∂µ∂ν)RL + β2GµνL

]
. (2.1.4)

The linearized Einstein and Ricci tensors, and curvature scalar are given as

GµνL = RµνL −
1

2
ηµνRL, RL = ∂α∂βh

αβ −2h,

RµνL =
1

2
(∂σ∂

µhνσ + ∂σ∂
νhµσ −2hµν − ∂µ∂νh) , h = ηµνhµν , (2.1.5)

where 2 = ∂µ∂
µ = −∂2

0 +∇2 and the indices are raised and lowered with the
Minkowski metric ηµν . As will be seen soon, it is useful to decompose hµν in
terms of the following six arbitrary functions of (t, ~x),

hij ≡
(
δij + ∂̂i∂̂j

)
φ− ∂̂i∂̂jχ+

(
εik∂̂k∂̂j + εjk∂̂k∂̂i

)
ξ,

h0i ≡ −εij∂jη + ∂iNL, h00 ≡ N, (2.1.6)

where ∂̂i ≡ ∂i/
√
−∇2. This will allow us to identify the auxiliary fields and the

dynamical fields easily. Since the linearized action is invariant under the gauge
transformations δζhµν = ∂µζν +∂νζµ, which are the linearized diffeomorphisms,
we should work with the gauge invariant quantities. As explained in [39], the
field φ is already gauge invariant and we have two more gauge invariant quan-
tities that can be formed out of the arbitrary functions introduced in (2.1.6)
as

q ≡ ∇2N − 2∇2ṄL + χ̈, ϕ ≡ ξ̇ −∇2η. (2.1.7)

Now, with the help of the set of gauge invariant quantities (φ, q, ϕ), it is
easy to identify the dynamical degrees of freedom and study the unitarity of
the theories defined in (2.1.2). In terms of these gauge invariant combinations,
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the linearized actions (2.1.1) become

IEH =
1

2κ

∫
d3x

(
φq + ϕ2

)
,

ICS =
1

2µ

∫
d3xϕ (q + 2φ) ,

Iα+β =
1

2

∫
d3x

[
(2α+ β) (q −2φ)2 + β

(
q2φ+

1

2
ϕ2ϕ

)]
. (2.1.8)

Elimination of the free fields from the first two actions show that the EH term
and the CS term do not propagate any degrees of freedom when they are alone.
The most natural extension is to consider the combination of the two, which
yields the Topologically Massive Gravity (TMG) which was introduced in [28,
29]. The resulting action, after the elimination of free fields, is

ITMG = − 1

2κ

∫
d3xφ2φ− µ2

κ2
φ, (2.1.9)

which shows that the action describes the propagation of a single massive mode
of helicity +2 or −2. For the unitarity, we should ensure the absence of ghosts
and tachyons (see Section 1.1 for definitions) and it yields

κ < 0, m2
g = −|µ|

κ
> 0, (2.1.10)

which is the origin of the “wrong sign” of the Einstein-Hilbert term mentioned
in the Introduction. Note that depending on the sign of the parity violating
Chern-Simons term, the theory describes only one of the possible helicity states

Another extension of Einstein’s theory with dynamical degrees of freedom
can be obtained by combining the Einstein-Hilbert term and the four-derivative
term in (2.1.1). For 2α + β 6= 0, it is possible to eliminate the field q and end
up with the action

I = Iφ + Iϕ,

Iφ =
1

2

∫
d3x

[
β (8α+ 3β)

4 (2α+ β)
(2φ)2 +

(4α+ β)

2κ (2α+ β)
φ2φ− 1

4κ2 (2α+ β)
φ2

]
,

Iϕ =
β

2

∫
d3x

(
ϕ2ϕ+

1

κβ
ϕ2

)
, (2.1.11)

from which one can immediately see that for the combination 8α + 3β = 0
the four-derivative term disappears and the theory, as expected from a parity
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invariant theory, describes the two helicity degrees of freedom of a massive spin-
2 field in 3D. The resulting theory, called New Massive Gravity [30,31], has the
following linearized action

INMG = Iφ + Iϕ,

Iφ = − 1

2κ

∫
d3x

(
φ2φ+

1

κβ
φ2

)
,

Iϕ =
β

2

∫
d3x

(
ϕ2ϕ+

1

κβ
ϕ2

)
. (2.1.12)

The conditions for the unitarity are

κ < 0, β > 0, m2
φ = m2

ϕ =
1

κβ
> 0. (2.1.13)

As we see, the wrong-sign for the EH term is required again.

When the most general combination of the terms given in (2.1.2) are consid-
ered, one sees that the combination 8α+ 3β = 0 is again forced to remove the
higher derivative term in the linearized action and one obtains the Generalized
Massive Gravity (GMG) with the following linearized action

IGMG =
β

2

∫
d3x

[
ϕ2ϕ−

(
m2
g +

1

µ2β2

)
ϕ2

]
+

2m2
g

βµ
ϕφ

+m2
g

(
φ2φ−m2

gφ
2
)
, (2.1.14)

with m2
g = 1

κβ and it can be diagonalized to obtain

IGMG =
β

2

∫
d3x

(
Ψ+2Ψ+ −m2

+Ψ2
+ + Ψ−2Ψ− −m2

−Ψ2
−
)
, (2.1.15)

where

m2
± = m2

g +
1

2µ2β2
± 1

µβ

√
m2
g +

1

4µ2β2
. (2.1.16)

Unitarity is ensured if

κ < 0, β > 0, m2
± > 0. (2.1.17)

Note that since the theory is now parity violating, the +2 and the −2 helicity
modes have different masses.
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The theory defined by only the quadratic curvature invariants given in
(2.1.2) with the choice 8α+ 3β = 0 has also interesting properties [33], some of
which will be studied in Chapter 4. Since its action is defined by the curvature
invariant K = R2

µν − 3
8R

2, we will refer to it as K-gravity. Its linearized action
is

IK =
β

2

∫
d3xϕ2ϕ, (2.1.18)

which describes the propagation of a massless excitation around flat spacetime
and it is unitary provided that β > 0.

2.1.2 Bulk-Boundary Unitarity Problem: NMG as an Example

We will present the unitarity properties of NMG on an AdS spacetime and
discuss the problems related to its CFT dual. We start with the following
action for NMG with a cosmological term (CNMG)

ICNMG =
1

κ

∫
d3x
√
−g
[
σR+

1

m2
K − 2λm2

]
, (2.1.19)

where

K = RµνR
µν − 3

8
R2, (2.1.20)

which corresponds to the choices

β =
1

κm2
, 8α+ 3β = 0 (2.1.21)

in the action (2.1.2) we considered before. The parameter σ = ±1 keeps track
of the sign of Newton’s constant and he cosmological term is introduced with
the dimensionless parameter λ. The analysis of the unitarity is more involved
on an AdS spacetime and it leads to richer possibilities as first shown in [31],
whose main results will be summarized now. The fluctuations around the AdS
spacetime is studied by expanding the metric as

gµν = ḡµν + hµν , (2.1.22)

where ḡµν is the metric of AdS3. As a maximally symmetric spacetime, it
satisfies

R̄µνρσ = Λ(ḡµρḡνσ − ḡµρḡνσ), (2.1.23)
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where the proportionality constant is determined by the AdS radius as Λ = − 1
`2

.
It is a solution of the CNMG defined by (2.1.19) if

Λ = −2m2
[
σ ±
√

1 + λ
]
. (2.1.24)

The theory describes the propagation of a massive graviton with the mass

m2
g = −σm2 +

Λ

2
, (2.1.25)

which reduces to the flat space result 2.1.13 in the limit ` → ∞ as expected.
The unitarity is achieved for the following choice of parameters:

• m2 > 0 σ = −1 Λ > −2m2 0 < λ < 3

• m2 < 0 σ = +1 Λ > 2m2 λ > 3.

The “right sign” for the EH term is allowed this time as long as the constraints
on the AdS radius and the cosmological parameter are satisfied.

As first shown in the case of EH theory [22], the gravitational theories with
an AdS3 vacuum admit an asymptotic symmetry group at the boundary which
consists of two copies of the Virasoro algebra, the symmetry algebra for 2D
CFT. The norm of the states corresponding to the boundary gravitons are
guaranteed to be positive if the central charge of the algebra is positive, which
is required for a well-defined boundary field theory. The central charge is also
related to the entropy of the BTZ black hole through the Cardy formula

S =
ABTZ
4G3

Ω, (2.1.26)

where the 3D Newton’s constant is related to our parameter by κ = 16πG3 and
ABTZ is the standard horizon area of the BTZ black hole. The dimensionless
parameter Ω is proportional to the central charge c as

Ω =
2G3

3`
c, (2.1.27)

which is equal to 1 for Einstein’s theory with a cosmological constant. There-
fore, the positivity of the central charge is also required for the positivity of the
entropy of BTZ black hole.
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For any parity preserving higher-derivative gravity theory, the central charge
c can be determined from the formula

c =
`

2G3
gµν

∂L
∂Rµν

, (2.1.28)

where L is the Lagrangian density without the prefactor 1
κ . It gives the following

value of the central charge for the CNMG theory defined by the Lagrangian
(2.1.19)

c =
3`

2G3

(
σ − Λ

2m2

)
=

3`

2G3

(
σ +

1

2m2`2

)
, (2.1.29)

which should be positive for the unitarity of the boundary CFT and the posi-
tivity of the entropy of the BTZ black hole.

For the first choice of the parameters (m2, σ = −1), the central charge is
positive for Λ < −2m2. However, it violates the condition for the unitarity
of the bulk theory. For the second choice (m2, σ = −1), the positivity of the
central charge together with the expression (2.1.24) yields

2 >
√

1 + λ, (2.1.30)

which is true for

0 < λ < 3, (2.1.31)

conflicting with the condition of the unitarity of the bulk theory. Therefore,
there is no choice of parameters for which both the bulk and the boundary
theory are unitary. Although we discussed the case of NMG here, this conflict
of bulk-boundary unitarity is a generic feature of modified gravity theories we
discussed in the previous subsection, which include TMG and GMG.

2.2 Conformal Construction of Supergravity Theo-
ries

In Chapter 3, we will present the supersymmetrization of higher curvature the-
ories defined by the action (2.1.2). Since the field equations are much more
complicated compared to Einstein’s theory, we will employ an off-shell formula-
tion where the algebra closes on the fields without imposing field equations. A
particularly effective method for obtaining off-shell supergravity theories is the
superconformal method, where one starts from a conformally extended version
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of the superalgebra that is desired to be imposed on the theory. In this section.
we will review this technique by following the textbook [40], where a detailed
account with many applications can be found.

2.2.1 Conformal Symmetry

We define a conformal transformation as a coordinate transformation which
changes the line element of Minkowski space ds2 = ηµνdx

µdxν only by a scale
factor. For an infinitesimal coordinate transformation x

′µ = xµ − ξµ in D-
dimensions, this implies the conformal Killing equation for the Minkowski met-
ric

Lξ ηµν = f(x)ηµν , (2.2.1)

where the Lie derivative of the Minkowski metric along the direction of ξ is
proportional to metric itself and the scale factor f(x) can be obtained from the
trace of the equation, yielding

∂µξν + ∂νξµ =
2

D
(∂ · ξ)ηµν , (2.2.2)

In 2D, this equation has infinitely many solutions giving rise to the Virasoro
algebra of string theory. For D > 2, the most general solution is given by

ξµ(x) = aµ + λµνxν + λDx
µ +

(
x2λµK − 2xµx · λK

)
, (2.2.3)

Note that if we require the invariance of the metric and set the scale factor
to zero, we only get the first two terms, which are the D translations aµ and
the D(D−1)

2 Lorentz transformations λµν of the Poincaré group. In addition to
these, we now have one scale transformation (dilatation) λD and the D special
conformal transformations λµK . A general infinitesimal conformal transforma-
tion can be written in terms of the transformation parameters and generators
as

δ(ε) = εATA = aµPµ +
1

2
λµνMµν + λDD + λµKKµ, (2.2.4)

where the effect of each generator can be explicitly read off from the coordinate
transformation (2.2.3). By computing the Lie bracket of the transformations,
one obtains the conformal algebra with the following non-vanishing commuta-
tors

[Mµν ,Mρσ] = 4η[µ[ρMσ]ν], [Pµ,Mνρ] = 2ηµ[νPρ],

[Kµ,Mνρ] = 2ηµ[νKρ], [Pµ,Kν ] = 2 (ηµνD +Mµν) ,

[D,Pµ] = Pµ, [D,Kµ] = −Kµ. (2.2.5)
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This is isometric to the SO(D, 2) algebra with the definition

M µ̂ν̂ =

 Mµν 1
2(Pµ −Kµ) 1

2(Pµ +Kµ)
−1

2(P ν −Kν) 0 −D
−1

2(P ν +Kν) D 0

 , (2.2.6)

where the incides are raised by the SO(D, 2) metric

η̂ = diag (−1, 1, . . . , 1,−1) (2.2.7)

2.2.2 Gauge Fields and Constraints

Our aim now is to realize the conformal symmetry as a set of transformations
acting on a set of fields which live on a dynamical spacetime. In order to
describe the dynamics of the spacetime, we introduce the vielbein through the
relation

gµν(x) = eaµ(x)ηabe
a
ν(x), (2.2.8)

where ηab is the metric ofD-dimensional Minkowski spacetime. Any x-dependent
matrix Λab(x) which preserves the metric defines a local Lorentz transforma-
tion.

In theories of gravity, we use local indices for transformation parameters and
generators and interpret the vielbein eaµ as the gauge field of local coordinate
transformations with the parameter ξa = eaµ ξ

µ. By gauging also the other
symmetries contained in the conformal group defined by (2.2.5), one obtains
the following transformation rules for the gauge fields.

δeaµ = −λabeµb − λDeaµ,

δωµ
ab = ∂µλ

ab + 2ωµc
[aλb]c − 4λ

[a
Ke

b]
µ ,

δbµ = ∂µλD + 2λaKeµa,

δfaµ = ∂µλ
a
K − λaKbµ + ωµ

abλKb − λabfµb + λDf
a
µ . (2.2.9)

Now, the generators (Pa,Mab, D,Ka) carry local indices (if possible) and they
correspond to local transformation parameters

(
ξa, λab, λD, λ

a
K

)
with corre-

sponding gauge fields
(
eaµ, ωµ

ab, bµ, f
a
µ

)
respectively. The Lorentz transforma-

tions easily follow from the index structure. For the dilatations, it is common
to refer to the scale factor of a field as its Weyl weight. For example, the gauge
fields we consider here have the Weyl weights (−1, 0, 0, 1).
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We want to end up with a gravity theory where the only independent field
is vielbein. Therefore, other gauge fields should be determined by imposing
constraints or gauge fixing. The gauge field of local Lorentz transformations in
Einstein’s theory, the spin connection ωµ

ab, is a composite field determined by
the vielbein eaµ. In order to achieve this, we will impose the following constraint
on the curvature of translations as

Rµν(P a) = 2
(
∂[µ + b[µ

)
eaν] + 2ω[µ

abeν]b = 0, (2.2.10)

whose solution is

ωµ
ab(e, b) = ωµ

ab(e) + 2e[a
µ e

b]νbν ,

ωµ
ab(e) = 2eν[a∂[µeν]

b] − eν[aeb]σeµc ∂νe
c
σ. (2.2.11)

As we will discuss soon, the gauge field of dilatations bµ will be set to zero by
gauge fixing and our constraint (2.2.10) becomes the Cartan’s first structure
equation without torsion,

dea + ωab ∧ eb = T a = 0, (2.2.12)

which yields the spin connection of the Poincaré group ωµ
ab(e) given in (2.2.11).

For the gauge field of special conformal translations faµ , we impose the
following constraint on the curvature of local Lorentz transformations as

eνbRµν(Mab) = 0, (2.2.13)

where

Rµν(Mab) = Rµν
ab + 8f

[a
[µe

b]
ν],

Rµν
ab = 2∂[µων]

ab(e, b) + 2ω[µ
ac(e, b)ων]

b
c(e, b). (2.2.14)

Note that the Rµν
ab will become the curvature tensor of local Lorentz transfor-

mations in the Poincaré group after the gauge fixing (bµ = 0), which is given
by Cartan’s second structure equation as

Rab = dωab + ωac ∧ ωbc. (2.2.15)

The solution for the gauge field faµ is given by

2(D − 2)faµ = −Rµa +
1

2(D − 1)
eaµR, (2.2.16)
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with

Rµν = Rρµ(Mab)eρaeνb, R = Rµ
µ. (2.2.17)

Let us now consider the transformation of the gauge field bµ under the
special conformal transformation given by

δK(bµ) = 2λKµ, (2.2.18)

which is a shift defined at each spacetime point. This shift can be chosen such
that the value of the field vanishes everywhere. Therefore, we can gauge-fix the
special conformal transformations by imposing

bµ = 0. (2.2.19)

The transformation law of a gauge-fixed field gives a relation between the gauge-
fixed symmetry parameter and the parameters of the remaining symmetries,
which is called a decomposition law. Here, in the case of the field bµ, it takes
the form

λKµ = −1

2
∂µλD. (2.2.20)

2.2.3 Einstein’s Gravity from Local Conformal Group

We will now obtain Einstein’s theory by coupling the gauge multiplet of the
conformal symmetry to a scalar field φ which transforms under the dilatations
as

δφ = ωλDφ, (2.2.21)

where the Weyl weight ω is kept arbitrary for the time being.

For the construction of the action, we will need covariant quantities whose
transformation does not yield the derivative of the symmetry parameters. When
the gauge group includes the local translations, the covariant derivative of a field
is defined with a local index as follows

Daφ = εµa Dµφ,
Dµφ = (∂µ − δ(Bµ))φ,

=
(
∂µ −BA

µ TA
)
φ, (2.2.22)

where the translations are omitted in the sum over gauge group indices.
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According to our prescription (2.2.22), we can now compute the covariant
derivative of the field φ as

Daφ = eµa(∂µ − ωbµ)φ, (2.2.23)

whose transformation

δDaφ = (ω + 1)λDDaφ− λbaDbφ− 2ωλKaφ (2.2.24)

does not depend on the derivative of the transformation parameters which are
compensated by the gauge fields. This makes it very easy to compute such
quantities in practice. One can focus only on the terms with the gauge field eaµ
since all the other gauge fields are guaranteed to not appear in the final result.

From the transformation (2.2.24), we can find

DµDaφ = (∂µ − (ω + 1)bµ)Daφ+ ωµa
bDbφ+ 2ωfµaφ, (2.2.25)

from which we can construct the following scalar quantity

2Cφ = ηabDaDbφ = eµaDµDaφ. (2.2.26)

We will use this quantity to write down a kinetic term for the scalar field φ. Its
variation yields

δ2Cφ = (ω + 2)λD2Cφ+ (2D − 4ω + 4)λaKDaφ. (2.2.27)

In order to ensure its invariance under the special conformal transformations,
we choose

ω =
1

2
D − 1. (2.2.28)

Now a Weyl invariant quantity can be formed by using the determinant of the
vielbein e, which is required to have a Lorentz invariant volume element. The
quantity e φ2Cφ has the Weyl weight −D + 2ω + 2 = 0 and therefore suitable
for the construction of the invariant Lagrangian

I = −1

2

∫
dDx eφ2Cφ. (2.2.29)

Using the expression for the composite field faµ (2.2.16) and gauge fixing the
special conformal transformations (bµ = 0) yields

I =

∫
dDx e

(
1

2
gµν∂µφ∂νφ+

D − 2

8(D − 1)
Rφ2

)
(2.2.30)
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Finally, the gauge fixing of local dilatations

φ =

√
8(D − 1)

(D − 2)κ
(2.2.31)

gives the EH action in D dimensions

I =
1

κ

∫
dDx eR. (2.2.32)

In summary, we realized the local conformal group with two independent
fields eaµ and bµ and two dependent fields ωµ

ab and faµ which are determined
the constraints (2.2.10-2.2.13). Then, a conformally invariant action was con-
structed by introducing a scalar field φ. After gauge fixing the special conformal
transformations and dilatations, we obtained an action which is invariant under
the local Poincaré group, which is the EH action.

One might worry that the scalar kinetic term in (2.2.30) appears with the
wrong sign and it is unphysical. Indeed, this is a general feature of conformal
methods where the additional fields are conformally coupled to gravity. In order
to see why this is not a problem, one can start from the EH action (2.2.32) and
perform the field redefinition

gµν → φ
4

D−2 gµν . (2.2.33)

The result is the Weyl invariant action (up to a multiplicative constant) given
in (2.2.30). Therefore, it still describes only the dynamics of the spin-2 field
and the physically important sign is that of the Ricci scalar, which is already
correctly chosen.

2.2.4 Supergravity Theories from Superconformal Groups

Having obtained Einstein’s gravity from the local conformal group, we can
outline our main strategy for the construction of supergravity theories as a
natural supersymmetric generalization. We will start from a superconformal
algebra which includes the conformal algebra SO(D, 2) as a subalgebra. The
generators of a superconformal algebra can be considered as matrix elements
defined on a vector space and they take the following generic form(

conformal algebra Q,S
Q, S R-symmetry

)
, (2.2.34)
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Q and S represent the fermionic generators of the algebra. R-symmetry gen-
erators are the bosonic generators with the characteristic property that they
commute with the rest of the bosonic generators but not with the fermionic gen-
erators. We will construct actions invariant under the local conformal group
by coupling the superconformal gauge multiplet (Weyl multiplet) to a matter
multiplet. After gauge-fixing the redundant symmetries, we will find actions
invariant under the generators of the form(

Poincaré algebra Q
Q R-symmetry

)
, (2.2.35)

which will be the supersymmetric invariants that we will use to construct the
desired supergravity theories.

2.2.5 N = 1 Poincaré Supergravity with Cosmological Constant
in Three Dimensions

We now present the construction of Poincaré supergravity with cosmological
constant in 3D by using the superconformal method [41–43], which is a simple
but very useful example to understand our strategy to construct massive super-
gravity theories in Chapter 3. The N = 1 Weyl multiplet in three dimensions
consists of the fields

(eµ
a, ψµ, bµ, ωµ

ab, fµ
a, φµ) , (2.2.36)

where eµ
a is the dreibein, ψµ is the gauge field of Q-supersymmetry (gravitino)

represented by a vector-spinor, bµ is the dilatation gauge field, ωµ
ab is the spin

connection, fµ
a is the gauge field of special conformal transformations and φµ

is the gauge field of S-supersymmetry represented by a vector-spinor.1 The
corresponding transformation parameters are

(ξa, ε,Λ,ΛD,Λ
ab,ΛaK , η) . (2.2.37)

Similar to the bosonic case, we want to end up with the independent fields
(eµ

a, ψµ, bµ), where the gravitino is included as the gauge field of the super-
symmetry. Therefore, we express the gauge fields ωµ

ab, φµ, fµ
a in terms of the

independent fields by imposing the constraints

R̂aµν(P ) = 0 , eνbR̂µν
ab(M) = 0 , γνR̂µν(Q) = 0 , (2.2.38)

1Two-component Majarona spinors are used.
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where the supercovariant curvatures associated with translations, Lorentz ro-
tations and Q-supersymmetry are defined as

R̂µν
a(P ) = 2(∂[µ + b[µ) eν]

a + 2ω[µ
abeν]b −

1

2
(ψ̄[µγ

aψν] + h.c.) ,

R̂µν
ab(M) = 2∂[µων]

ab + 2ω[µ
ac ων]c

b + 8f[µ
[aeν]

b] − 1

2
ψ̄µγ

abφν −
1

2
φ̄µγ

abψν

R̂µv(Q) = 2∂[µψν] +
1

2
ω[µ

abγab ψν] + b[µψν] − 2 γ[µφν] . (2.2.39)

The solutions in terms of the independent fields are given by

ωµ
ab = 2eν[a∂[µeν]

b] − eν[aeb]σeµc ∂νeσ
c + 2eµ

[abb] +
1

2
ψ̄µγ

[aψb]

+
1

2
ψ̄[aγb]ψµ +

1

2
ψ̄[aγµψ

b] ,

φµ = −γaR̂′µa(Q) +
1

4
γµγ

abR̂
′
ab(Q) ,

faµ = −1

2
R̂′µ

a(M) +
1

8
eµ
aR̂
′
(M) , (2.2.40)

where we introduced the prime notation in the curvatures which mean that
the field which is solved through the constraint equation is excluded from the
associated curvature expression. The transformation rules for the independent
fields are given by

δeµ
a = −Λab eµ

b − ΛDeµ
a + φ12ε̄ γaψµ ,

δψµ = −1

4
Λabγabψµ −

1

2
ΛDψµ +Dµε− γµη ,

δbµ = ∂µΛD + 2ΛKµ +
1

2
ε̄ φµ −

1

2
η̄ ψµ , (2.2.41)

which defines the 3D N = 1 Weyl multiplet with 2 + 2 (bosonic + fermionic)
off-shell degrees of freedom.

We also need a scalar multiplet which will be coupled to the Weyl multiplet
and give rise to a supersymmetric invariant after gauge fixing. It consists of a
real physical scalar A, a Majarona fermion χ and an auxiliary scalar F with
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2 + 2 degrees of freedom. The fields transform as

δA =
1

2
ε̄χ+ ωΛDA ,

δχ = /DAε− 1

2
Fε+ 2ωAη +

(
ω +

1

2

)
ΛDχ ,

δF = −ε̄ /Dχ+ 2

(
ω − 1

2

)
η̄χ+ (ω + 1) ΛDF , (2.2.42)

where the supercovariant derivatives are given by

DµA = (∂µ − ωbµ)A− 1

2
ψ̄µχ

Dµχ =

(
∂µ − (ω +

1

2
)bµ

)
χ− /DAψµ +

1

2
Fψµ − 2ωAφµ (2.2.43)

Properties of the Weyl and the scalar multiplet are summurized in Table 2.1
The action for a scalar multiplet with components (A,χ, F ) which is invariant
under the superconformal group is given by

S =

∫
dDx e

(
F − ψ̄µγµχ− Zψ̄µγµνψν

)
, (2.2.44)

For the invariance under the dilatations, the highest weight component F should
have the Weyl weight 3.

multiplet field type off-shell D

Weyl eµ
a dreibein 2 1

ψµ gravitino 2 1
2

Scalar A scalar 1 ω

χ spinor 2 ω + 1
2

F scalar 1 ω + 1

Table 2.1
This table summarizes some properties of the basic multiplets of the 3D superconformal
tensor calculus. The fourth and fifth columns indicate the number of off-shell degrees of

freedom represented by the fields and the dilatation weights respectively.

In order to construct Poincaré supergravity, we will form such a scalar mul-
tiplet out of two scalar multiplets by employing the so called multiplication
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rule. One can start with two scalar multiplets (Ai, χi, Fi), i = 1, 2 and obtain a
multiplet whose lowest component having Weyl weight ω = ω1 + ω2 as follows

A = A1A2,

χ = A1χ2 +A2χ1,

F = A1F2 +A2F1 + χ̄1χ2. (2.2.45)

Starting from a scalar multiplet (φ, λ, S) with Weyl weight of 1
2 , it is easy

to show that the fields
(
S,−2/Dλ, 42Cφ

)
form a multiplet with Weyl weight

3
2 . It is called the kinetic multiplet corresponding to the multiplet (φ, λ, S)
since it contains the kinetic terms of the fields in the first multiplet. Their
multiplication gives a multiplet with the desired properties so the result can be
used in our action formula (2.2.44), which yields

S =

∫
dDx e

(
4φ2Cφ+ S2 − 2λ̄ /Dλ+ 2φψ̃µγ

µ /Dλ

−Sψ̄µγµλ− φSψ̄µγµνψν
)
. (2.2.46)

In order to obtain Poincaré supergravity theory, we gauge fix the extra
transformations by imposing

φ = 1, λ = 0, bµ = 0. (2.2.47)

The first one fixes dilatation, the second fixes the S-supersymmetry and the
last one fixes the special conformal transformations. As a result, we obtain the
following decomposition rules

ΛD = 0,

ΛKµ =
1

2
η̄ψµ −

1

2
ε̄φµ,

η =
1

2
Sε. (2.2.48)

Using the gauge fixing conditions (2.2.47) in the action (2.2.46) gives the
final result for the action of Poincare supergravity

SEH =

∫
dDx e

(
R− 2S2 − ψ̄µγµνρDνψρ

)
(2.2.49)

up to a multiplicative constant.
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With the help of the decomposition rules (2.2.48), one can show that this
action is invariant under the following supersymmetry transformations

δeaµ =
1

2
ε̄γaψµ,

δψµ = Dµε−
1

2
Sγµε,

δS =
1

4
ε̄γµνψµν −

1

4
Sε̄γµψµ , (2.2.50)

where

Dµε =

(
∂µ +

1

4
ωabµ γab

)
ε, ψµν = 2D[µψν] (2.2.51)

The Lagrangian for a supersymmetric cosmological constant can be found by
multiplying four copies of the scalar multiplet (φ, λ, S). The resulting multiplet
has the following components (φ4, 4φ3λ, 4φ3S+6φ2λ̃λ). Using this multiplet in
the action formula (2.2.44), imposing the gauge fixing conditions (2.2.47), and
multiplying the action by 1

2 gives

SC =

∫
dDx e

(
S − 1

2
ψ̃µγ

µνψν

)
(2.2.52)

We can now construct the action of off-shell Poincaré supergravity with cos-
mological constant by combining the two supersymmetric invariants given in
(2.2.49-2.2.52)

SEH+C =
1

κ

∫
dDx e

(
R− 2S2 − ψ̄µγµνρDνψρ

)
+4M

(
S − 1

2
ψ̄µγ

µνψν

)
(2.2.53)

where we introduced the dimensionfull parameter M to have correct units. The
field equation for the auxiliary fields S gives

S = M (2.2.54)

and therefore it can be eliminated from the theory, which gives rises to the
action for on-shell AdS supergravity

SEH+C =
1

κ

∫
dDx e

(
R+ 2M2 − ψ̄µγµνρDνψρ − 2Mψ̄µγ

µνψν
)

(2.2.55)
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which is invariant under the on-shell transformation rules

δeaµ =
1

2
ε̄γaψµ,

δψµ = Dµε−
1

2
Mγµε , (2.2.56)

where the AdS radius L is defined by

M2 =
1

L2
. (2.2.57)

In the case of higher derivative gravity theories, the field equations are more
complicated and therefore it is practically very difficult to obtain the on-shell
closure of the superalgebra. With the use of auxiliary fields, the closure can
be achieved off-shell with one important difference. In general, the auxiliary
fields in the supermultiplet cannot be eliminated from the theory and they
become physical fields which propagate dynamical degrees of freedom. We will
see examples of this in Chapter 3.

2.3 Classical Solutions of Supergravity Theories

This section is devoted to general concepts regarding the supersymmetric so-
lutions of supergravity theories which will be the subject of Chapter 4. Most
of the discussion is based on the explanations given in the textbook [40]. We
can start by considering a purely bosonic theory to understand the main logic.
In the case of Einstein’s theory, for example, one has an action which is in-
variant under general coordinate transformations with arbitrary infinitesimal
parameters ξµ(x). The simplest classical solution is the Minkowski spacetime
with metric gµν = ηµν . The solution is invariant only for the Killing vectors
of Minkowski spacetime which determine the isometry group of the spacetime.
For (d+1)-dimensional Minkowski spacetime, it is the Poincaré group ISO(1, d)

generated by (d+1)(d+2)
2 linearly independent Killing vectors. d(d−1)

2 of them de-
scribe SO(1, d) rotations and (d + 1) of them are translations. One can study
the fluctuations around this classical background and the dynamics of these
fluctuations is covariant under the isometry group. The linearized Einstein’s
theory on a Minkowski background is probably the best known example in this
regard.

In the case of supergravity theories, the action is invariant under local su-
persymmetry transformations parametrized by arbitrary spinor functions ε(x).
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In general, one is interested in classical solutions that can be considered as back-
grounds so that fluctuations around it can be studied quantum mechanically.
Similar to the bosonic case, the possible solutions are not invariant under all
the symmetries of the action but they preserve a subset of local supersymme-
tries that also form a superalgebra. For a solution that preserves some of the
supersymmetries, the supersymmetry variations of fields should vanish. They
take the following generic form

δB(x) = ε̄(x)f1(B(x))F (x) +O(F 3) = 0,

δF (x) = f2(B(x))ε(x) +O(F 2) = 0, (2.3.1)

where B(x) and F (x) represent the bosonic and fermionic fields in the the-
ory respectively. The functions f1(B(x)) and f2(B(x)) contain γ-matrices and
spacetime derivatives. The first equation is automatically satisfied since the
fermions vanish in the classical limit. Therefore, it is only the second equation
which provides a nontrivial constraint through the term linear in fermions as

δF (x)|linear = f2(B(x))ε(x) = 0, (2.3.2)

which is a first-order differential equation for the transformation parameter ε(x).
For a theory with N supercharges, one can find n linearly independent solution
to this equation (n 6 N), which are called Killing spinors. It is said that
the solution preserves a fraction n

N of supersymmetries. Requiring to preserve
some of the supersymmetries restricts the configurations of the bosonic fields
such that it greatly simplifies the solution of the field equations.

Investigation of the Killing spinor equation which arises from the transfor-
mation of the gravitino gives a nontrivial condition for the existence of the
Killing spinor. The gravitino field generically transform under supersymmetry
as

δψµ = D̂µε = Dµε+ · · · = 0 , (2.3.3)

which is the standard Lorentz covariant derivative of the transformation pa-
rameter ε(x) modified by extra terms depending on the properties of the super-
multiplet under consideration. Since it should vanish for a Killing spinor, the
following commutator should also vanish

[D̂µ, D̂ν ]ε =

(
1

4
Rµν

abγab + · · ·
)
ε (2.3.4)

which includes a term with the standard Lorentz curvature and possible modi-
fications. This condition is called the integrability condition for Killing spinors
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since it is a necessary condition for the Killing spinor equation (2.3.3) to be
satisfied. For the case of a Minkowski spacetime, it becomes trivial since there
is no extra term added to the Lorentz curvature term and the curvature tensor
vanishes. However, in general, it provides a strong constraint on the curved
spacetimes which can support supersymmetry.

In the analysis of Killing spinors, the bosonic field configurations are con-
strained by the fermionic transformation rules, giving rise to certain differential
and algebraic relations between the components of the bosonic fields in the the-
ory. Since the fermionic fields are set to zero, one has equations that are linear
in ε(x) and no fermionic bilinears or higher order fermionic terms appear in
the Killing spinor equations. Therefore, there is nothing which can distinguish
whether the Killing spinors are commuting or non-commuting throughout the
analysis. One can just assume commuting spinors and work with them to find
the Killing spinors, which determines the number of preserved supersymmetries,
and to find the relations satisfied by the bosonic fields.

One can make use of this nice feature to relate the Killing spinors to the
Killing vectors of the spacetime which supports the supersymmetric solutions.
Since the anti-commutator of supersymmetries closes on spacetime translations,
such a relation is hardly surprising and it is indeed the translational Killing
vectors of the spacetime which can be obtained from the Killing spinors. Let
us consider the case of 3D N = 1 supergravity that we introduced in the
previous section as an example. The Killing spinor equation that follows from
the supersymmetry transformation of the gravitino, which is given in (2.2.50),
as

δψµ = Dµε−
1

2
Sγµε = 0 . (2.3.5)

Assuming commuting spinors, it is easy to show that the vector Kµ which is
defined by

Kµ = ε̄γµε , (2.3.6)

is a Killing vector which satisfies

∇(µKν) = 0. (2.3.7)

Note that the vector Kµ vanishes identically for non-commuting spinors. The
norm of this Killing vector can be computed with the help of Fierz identities as

KµKµ = −(ε̄ε)2 = 0 . (2.3.8)
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This implies that the spacetimes which supports N = 1 supersymmetry in 3D
can only have null translational Killing vectors, which is a severe restriction on
the possible supersymmetric solutions. In Chapter 4, we will see that increasing
the number of supercharges will lead to the possibility of time-like translational
Killing vectors, yielding a richer set of possibilities.

A similar structure to the Killing spinor analysis also appears in the ap-
proach of Bogomol’nyi, Prasad and Sommerfield (BPS) to the magnetic monopole
solutions where the components of the bosonic fields are constrained by first or-
der differential equations. It is for this reason that the supersymmetric solutions
are also sometimes referred to as BPS solutions in the literature.

In the case of extended supersymmetry, the subalgebra formed by the resid-
ual supersymmetries allows a central extension in the closure of the anticom-
mutator of the supersymmetry generators. Choosing the physical states of the
theory as the eigenstates of the central charges, it is possible to show that there
is a bound on the mass of the physical states given as

M ≥ |Z| , (2.3.9)

which is called the BPS bound. For supersymmetric black hole solutions, the
central charge can be expressed in terms of global charges in the theory such
as electric/magnetic charges and the solutions saturate the BPS bound, i.e.
M = |Z|, which correspond to the extremal black hole solutions. This will play
an important role in our discussion of supersymmetric black holes in Chapter
4.

2.4 Algebraic Classification of 3D Spacetimes

In this section, we discuss the algebraic classification of 3D spacetimes which
we will make use of in Chapter 5. We mainly follow the discussion given in [44]
(see [45] for a very detailed treatment of exact solutions and their classifica-
tions.) Although several different classification schemes are possible, the al-
gebraic classification is very useful to understand how solutions appear in the
context of higher derivative gravity theories and to look for new type of so-
lutions. The main idea is to consider certain curvature tensors, which we call
T ab, as linear mappings between vectors. The eigenvalue equation for the linear
map T ab

T abV
b = λV a, (2.4.1)
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where λ’s are the eigenvalues with the corresponding eigenvectors V a, provides a
way to classify spacetimes which is based on the eigenvalues and their (algebraic
and geometric) multiplicities.

2.4.1 Comparison of 3D and 4D

In 4D, the Riemann tensor has 20 independent components which can be con-
sidered as the 10 independent components of the Weyl tensor Cµνρσ, the 9
independent components of the traceless Ricci tensor R̃µν = Rµν − 1

4gµνR and
1 component of the Ricci scalar R, which yields two distinct independent alge-
braic classifications of curvature: the Petrov and the Segre classifications.

In the Petrov classification, the 10 real components of the Weyl tensor is
written as a traceless and symmetric 3×3 complex matrix Cab, which is a linear
map between complex 3-vectors. Since the Weyl tensor vanishes in 3D, there is
no direct way to apply this classification scheme in 3D. However, the fact that
the Weyl tensor vanishes for conformally flat spacetimes provides an analogy.
This role of Weyl tensor in 4D is played by the Cotton tensor Cab in 3D. The
Petrov classification in 3D is based on the algebraic classification of the Cotton
tensor Cab, considered as a linear map between real 3-vectors [46–50].

The Segre classification is an algebraic classification based on the traceless
Ricci tensor R̃ab = Rab− 1

Dδ
a
bR, (D = 3, 4) which defines a linear map between

real D-vectors. In 3D, it has been studied in [47,48,50,51].

2.4.2 Petrov-Segre Classification in TMG

For the case of TMG that we introduced in Section 2.1, a special feature arises.
In order to see that, we start by writing its action as

I =
1

κ

∫
d3x
√
−g
[
R− 2Λ +

1

2µ
ελµνΓρλσ

(
∂µΓσρν +

2

3
ΓσµτΓτ νρ

)]
, (2.4.2)

where Λ is the cosmological constant and µ is the mass parameter. The fields
equations are

Gµν + Λgµν +
1

µ
Cµν = 0, (2.4.3)

where Cµν is the Cotton tensor (symmetric and traceless) defined by

Cµν = εµ
αβ∇αSβν , (2.4.4)
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with the Schouten tensor Sµν given by

Sµν = Rµν −
1

4
gµνR. (2.4.5)

Taking the trace of field equations (2.4.3) gives R = 6Λ, which allows one to
write the field equations in the following form

R̃µν +
1

µ
Cµν = 0, (2.4.6)

where R̃µν = Rµν − 1
3gµνR is the traceless Ricci tensor as we defined before.

Therefore, for the solutions of TMG, the traceless Ricci tensor and the Cotton
tensor differ only by a proportionality constant and the Petrov and the Segre
classifications coincide. We will refer to it as the Petrov-Segre classification.
Since the Cotton tensor includes the derivative of the Ricci tensor, the Segre
classification, which is based on the traceless Ricci tensor, is more fundamen-
tal. Therefore, we will first use the Segre classification and then specify the
corresponding Petrov type of the spacetime under consideration by using the
equivalence of the two.

For the Petrov-Segre classification of 3D spacetimes, which is summarized
in Table 2.2, we need to introduce a null frame (`a,ma, na) where `, n are null
vectors and m is a unit spacelike vector. They have vanishing inner products
except

`ana = −1, mama = 1, (2.4.7)

which makes it possible to write down the flat metric ηab as

ηab = −`anb − na`b +mamb. (2.4.8)

We also need the unit timelike vector t and the unit spacelike vector z
defined as

ta =
`a + na√

2
, za =

`a − na√
2

. (2.4.9)

The remaining ingredients are two real functions α(x), β(x) and two real pa-
rameters λ = ±1, τ = ±1.

As mentioned before, the algebraic type of a spacetime is determined by the
eigenvalues and their algebraic/geometric multiplicities. One way to encode
this information is to find the Jordan normal form of the matrix R̃ab. By a
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Petrov Segre Canonical R̃ab Scalar Invariants

O [(11, 1)] 0 I = J = 0

N [(12)] λ`a`b I = J = 0

Dt [(11), 1] α(ηab + 3tatb) I3 = 6J2 6= 0

Ds [1(1,1)] α(ηab − 3mamb) I3 = 6J2 6= 0

III [3] 2τ`(amb) I = J = 0

II [12] α(ηab − 3mamb) + λ`a`b I3 = 6J2 6= 0

IR [11, 1] α(ηab − 3mamb)− β(`a`b + nanb) I3 > 6J2

IC [1zz̄] α(ηab − 3mamb)− β(`a`b − nanb) I3 < 6J2

Table 2.2
Petrov-Segre Classification for TMG and the corresponding canonical form the the traceless

Ricci tensor R̃ab

similarity transformation, which preserves the eigenvalue structure, any square
matrix can be put into the Jordan normal form:

M =

J1
. . .

Jp

 ,

which is block diagonal. Each Jordan block Ji is λi times an identity matrix
and 1’s on the superdiagonal as

Ji =


λi 1

λi
. . .
. . . 1

λi

 .

In the Segre classification, the numbers 1, 2, 3 give the size of Jordan blocks.
The round brackets are used to indicate that the Jordan blocks in the brackets
correspond to the same eigenvalue. A comma is to used to distinguish between
the spacelike and the timelike eigenvectors, where the sizes of the Jordan blocks
corresponding to the spacelike eigenvectors are written before the comma. This
also reflects itself in the Petrov classification such that there are two distinct
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type D spacetimes: the one-dimensional eigenspace is spacelike for type Ds

spacetimes and timelike for type Dt spacetimes. Since the matrix R̃ab is not
symmetric in general, it can have complex eigenvalues, which leads to a split
in the Petrov classification again: type IR spacetimes have three real distinct
eigenvalues and type IC spacetimes have one real and two complex conjugate
eigenvalues. They are denoted as [11, 1] and [1zz̄] in the Segre notation respec-
tively. Instead of computing the eigenvectors, one can also make use of the fact
that each Jordan normal form has a distinct minimal polynomial (see [44] for
details).

However, we will use another method to identify the Petrov-Segre type of
a spacetime, which is based on the fact that determining the eigenvalues and
their algebraic multiplicities is equivalent to computing the following scalar
invariants

I = R̃abR̃
b
a = tr(R̃2), J = R̃abR̃

b
cR̃

c
a = tr(R̃3). (2.4.10)

As can be seen from the Table 2.2, certain types of spacetimes have the same
value for these scalar invariants. In such cases, one can check the canonical
form of the traceless Ricci tensor to complete the classification.

Note that the Petrov and the Segre classifications are equivalent for TMG
because its field equations relates the Cotton tensor to the traceless Ricci tensor
with a proportionality constant. Therefore, the equivalence is not true for a
generic higher curvature 3D gravity theory. For some cases, the solutions of
TMG are also solutions of some other gravity theory (see [52–55] for examples
in NMG and its Born-Infeld type extension) and the terminology of the Petrov-
Segre classification remains exact. In chapter 5, we will study the solutions of
K-gravity which are not in general solutions of TMG but we will stick to this
terminology although the equivalence does not hold any more. What is meant
should be clear from Table 2.2.
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Chapter 3

Massive N = 2 Supergravity
Theories in Three Dimensions
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3.1 Introduction

As we briefly explained in Chapter 1, the fact that Einstein’s gravity has no local
dynamics in 3D leads to a search for modified theories of gravity with dynami-
cal degrees of freedom which are expected to reveal richer physical properties.
Although there is a wide class of theories which have the property of tree-level
unitarity, they also suffer from the so called bulk-boundary unitarity problem,
which we reviewed for the case of NMG in Section 2.1. It is possible that the
supersymmetric vacua in any of these theories might behave better than the
purely bosonic versions and even provide a solution to this problem. It is also
known that, although claimed to be renormalizable first [56], NMG was shown
to be nonrenormalizable [57]. For the the supersymmetric extension of the
theory, it is natural to expect an improvement in this regard. Off-shell super-
gravity invariants up to and including four derivatives are known for N = (1, 0)
supergravity in 3D [58]. Some of their properties, such as their supersymmetric
vacua and spectrum about AdS3 vacuum, have been studied [58–60]. However,
no improvement in the bulk-boundary issue has been achieved.

Our aim in this chapter is to construct higher derivative supergravity invari-
ants with N = 2 supersymmetry and to look for their ghost free combinations.
We will focus our attention to supergravity theories which admit anti-de Sit-
ter space as a vacuum solution. The underlying supersymmetry algebra is
OSp(p, q), whose bosonic part is given by O(2, 2)⊕ SO(p)× SO(q) [20,61,62].
This leads to two distinct off-shell N = 2 supergravities namely, N = (1, 1)
and N = (2, 0) supergravities. The conformal N = 2 supergravity, and the
two-derivative invariants were considered in [63–66]. Off-shell matter-coupled
suprgravity theories were investigated in the superspace framework in [67–70].
The on-shell construction and the matter couplings of the three dimensional
N = 2 supergravity were studied in [71–73]. Here we shall provide all the four
derivative off-shell invariants of the 3D, N = 2 supergravity. The method
we shall employ is the superconformal tensor calculus, which was introduced
in Section 2.2. The N = (1, 1) and N = (2, 0) supergravities arise from the
coupling of the Weyl multiplet to a compensating scalar or vector multiplet,
respectively, followed by fixing some of the conformal symmetries. In the case
of N = (2, 0) supersymmetry, we shall employ a map between the Yang-Mills
and the supergravity multiplet to construct the supersymmetric completion of
the Ricci-squared term.

Taking into account the new invariants we construct here, we end up with
a seven parameter action with N = (1, 1) supersymmetry and a six parameter
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action with N = (2, 0) supersymmetry. We find that the former admits a four
parameter subfamily which admits an AdS vacuum solution around which the
spectrum of small fluctuations is ghost-free. In the latter case, however, we
find that such a scenario is not possible. This turns out to be due to the fact
that a particular type of dimension four invariant that exists for the N = (1, 1)
model does not seem to exist for the N = (2, 0) model. The existence of the
supersymmetric cosmological extension of the (2, 0) supergravity, which does
not exist in the parent N = 1 new minimal supergravity in 4D, is not sufficient
for the existence of a ghost-free supersymmetric AdS3 vacuum.

This chapter is organized as follows. In Section 3.2, we give a brief introduc-
tion to the superconformal formalism, and introduce the Weyl multiplet, the
scalar and the vector multiplet of the D = 3, N = 2 theory in the context of
conformal supergravity. We then provide a multiplication rule for scalar mul-
tiplets, and construct composite scalar and vector multiplets. Subsequently,
we proceed to construct various superconformal actions for these matter mul-
tiplets. In Section 3.3, we consider the scalar multiplet actions constructed in
section 3.2 and gauge fix the superconformal symmetries to obtain N = (1, 1)
cosmological Poincaré supergravity theory as well as the supersymmetric com-
pletion of the R2

µν , R
2 and the off-diagonal (RSn+h.c), where S is the auxiliary

scalar of the N = (1, 1) Poincaré multiplet. We then present the N = (1, 1)
generalized massive supergravity, and analyze the bosonic spectrum around a
maximally supersymmetric AdS3 vacuum. In Section 3.4, we repeat the same
analysis for the vector multiplet, and construct the N = (2, 0) cosmological
Poincaré supergravity and the supersymmetric R2 and off-diagonal RD invari-
ants, where D is the auxiliary scalar of the N = (2, 0) Poincaré multiplet. In
this section, we observe that certain fields in the N = (2, 0) Poincaré multi-
plet transform in the same manner as the fields of a Yang-Mills multiplet with
G = SO(2, 1). Using this correspondence, we construct the supersymmetric
R2
µν invariant. Subsequently, we discuss the ghost-free N = (2, 0) general-

ized massive gravity theory, and analyze the spectrum around a maximally
supersymmetric Minkowski background. In Section 3.5, we give conclusion and
discussions. Finally, the details of the complex spinor conventions and Fierz
identities are given in an appendix. The material presented in this chapter is
based on [74].
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3.2 3D N = 2 Superconformal Tensor Calculus

In this section we shall describe the Weyl multiplet based on the superconformal
algebra OSp(4|2) in three dimensions. We will then present the off-shell scalar
and vector multiples which will be used in the subsequent sections as compen-
sators. The rules for combining these multiplets to obtain new (composite)
multiplets and action formula will follow. The action formula will be used in
the following sections together with the composite multiplet formula to obtain
several off-shell supergravity invariants. Finally, we shall also record for com-
pleteness the Chern-Simons invariant which does not require any compensating
multiplet coupling since it is superconformal invariant by itself [63].

3.2.1 The Weyl and Compensating Multiplets

Weyl multiplet. The N = 2 Weyl multiplet in three dimensions is based on
the conformal superalgebra OSp(4|2) and consists of the fields

(eµ
a, ψµ, Vµ, bµ, ωµ

ab, fµ
a, φµ) , (3.2.1)

where eµ
a is the Dreibein, ψµ is the gravitino represented by a Dirac vector-

spinor, Vµ is the U(1) R-symmetry gauge field, bµ is the dilatation gauge field,
ωµ

ab is the spin connection, fµ
a is the conformal boost gauge field and φµ is the

special supersymmetry gauge field represented by a Dirac vector-spinor. The
corresponding gauge parameters are

(ξa, ε,Λ,ΛD,Λ
ab,ΛaK , η) . (3.2.2)

The gauge fields ωµ
ab, φµ, fµ

a can be expressed in terms of the remaining fields
by imposing the constraints [63]

R̂aµν(P ) = 0 , R̂µν
ab(M) = 0 , R̂µν(Q) = 0 , (3.2.3)

where the supercovariant curvatures associated with translations, Lorentz ro-
tations and supersymmetry are defined as

R̂µν
a(P ) = 2(∂[µ + b[µ) eν]

a + 2ω[µ
abeν]b −

1

2
(ψ̄[µγ

aψν] + h.c.) ,

R̂µν
ab(M) = 2∂[µων]

ab + 2ω[µ
ac ων]c

b + 8f[µ
[aeν]

b] − 1

2
ψ̄µγ

abφν −
1

2
φ̄µγ

abψν + h.c

R̂µv(Q) = 2∂[µψν] +
1

2
ω[µ

abγab ψν] + b[µψν] − 2 γ[µφν] − 2iV[µψν] . (3.2.4)
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These constraints together with the Bianchi identity for R̂µν(P ) imply that the

curvature associated with dilatation also vanishes, viz. R̂µν(D) = 0. Solving
the constraints (3.2.3) gives

ωµ
ab = 2eν[a∂[µeν]

b] − eν[aeb]σeµc ∂νeσ
c + 2eµ

[abb] +
1

2
ψ̄µγ

[aψb]

+
1

2
ψ̄[aγb]ψµ +

1

2
ψ̄[aγµψ

b] ,

φµ = −γaR̂′µa(Q) +
1

4
γµγ

abR̂
′
ab(Q) ,

faµ = −1

2
R̂′µ

a(M) +
1

8
eµ
aR̂
′
(M) , (3.2.5)

where the prime in the curvatures used in (3.2.5) means that the term includ-
ing the field we are solving for is excluded. The transformation rules for the
independent fields are given by

δeµ
a = −Λab eµ

b − ΛDeµ
a +

1

2
ε̄ γaψµ + h.c. ,

δψµ = −1

4
Λabγabψµ −

1

2
ΛDψµ +Dµε− γµη + iΛψµ ,

δbµ = ∂µΛD + 2ΛKµ +
1

2
ε̄ φµ −

1

2
η̄ ψµ + h.c ,

δVµ = ∂µΛ +
1

2
iε̄ φµ +

1

2
iη̄ ψµ + h.c. , (3.2.6)

where

Dµε =
(
∂µ +

1

2
bµ +

1

4
ωµ

abγab − iVµ

)
ε . (3.2.7)

Finally, we give the transformation rule for φµ for later convenience

δφµ = · · ·+ iγνF̂µνε−
1

4
iγµγ · F̂µνε , (3.2.8)

where we have displayed the supercovariant terms and the ellipses refer to the
remaining terms implied by the OSp(4|2) algebra, and F̂µν is given by

F̂µν = 2∂[µVν] − iψ̄[µφν] − iφ̄[µψν] . (3.2.9)

Scalar multiplet. The off-shell N = 2 scalar multiplet with 4+4 degrees
of freedom consists of a physical complex scalar A, a Dirac fermion χ and an
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auxiliary complex scalar F with the following transformation rules 1

δA =
1

2
ε̄χ+ wΛDA− iwΛA ,

δχ = /DAε− 1

2
F (Bε)∗ + 2wAη + (w +

1

2
)ΛDχ+ i(−w + 1)Λχ ,

δF = −ε̃ /Dχ+ 2(w − 1

2
)η̃ χ+ (w + 1)ΛDF + i(−w + 2)ΛF , (3.2.10)

where the supercovariant derivatives are given by

DµA = (∂µ − w bµ + iwVµ)A− 1

2
ψ̄µχ ,

Dµχ = (∂µ − (w + 1
2)bµ +

1

4
ωµ

ab γab + i(w − 1)Vµ)χ− /DAψµ

+
1

2
F(Bψµ)∗ − 2wAφµ . (3.2.11)

Note that the lowest component has Weyl weight w and U(1)R weight −w.
Another multiplet with its lowest component having Weyl weight w and U(1)R
weight w can be obtained by charge conjugation

δA∗ =
1

2
ε̃ (Bχ)∗ + wΛDA

∗ + iwΛA∗ ,

δ (Bχ)∗ = /DA∗ (Bε)∗ − 1

2
F ∗ε+ 2wA∗ (Bη)∗ + (w +

1

2
)ΛD (Bχ)∗

+i (w − 1) Λ (Bχ)∗ ,

δF∗ = −ε̄ /D (Bχ)∗ + 2(w − 1

2
)η̄(Bχ)∗ + (w + 1)ΛDF∗

+i(w − 2)ΛF∗ , (3.2.12)

where the supercovariant derivatives are

DµA∗ = (∂µ − wbµ − iwVµ)A∗ − 1

2
ψ̃µ(Bχ)∗ ,

Dµ(Bχ)∗ =

(
∂µ − (w +

1

2
)bµ +

1

4
ωµ

abγab − i(w − 1)Vµ

)
(Bχ)∗

−/DA∗(Bψµ)∗ +
1

2
F∗ψµ − 2wA∗(Bφµ)∗ ,

DµP ∗ = (∂µ −
1

2
bµ − (w − 2)iVµ)P ∗ + ψ̄µ /D(Bχ)∗

−2(w − 1

2
)φ̄µ(Bχ)∗ . (3.2.13)

1See Appendix 3.A for the definition of η̃ and the constant matrix B.
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Multiplet Field Type Off-shell w q

Weyl eµ
a dreibein 2 -1 0

ψµ gravitino 4 −1
2 1

Vµ U(1)R gauge field 2 0 0

Scalar A complex scalar 2 wA −wA
χ Dirac spinor 4 wA + 1

2 −wA + 1

F complex auxiliary 2 wA + 1 −wA + 2

Vector ρ real scalar 1 1 0

Cµ gauge field 2 0 0

λ Dirac spinor 4 3
2 1

D real auxiliary 1 2 0

Table 3.1
Properties of the 3D,N = 2 Weyl and compensating multiplets where (w, q) label the

dilatation weight and the U(1)R charge, respectively.

Vector multiplet. The off-shell vector N = 2 vector multiplet with 4 + 4
degrees of freedom consists of a gauge field Cµ, a scalar ρ, a spinor λ and an
auxiliary scalar D. Their transformation rules are given by

δCµ =
1

2
ε̄ γµλ−

1

4
i ρ ε̄ ψµ + h.c. ,

δρ = (iε̄ λ+ h.c.) + ΛDρ ,

δλ = −1

4
γµνĜµν ε+

1

2
iDε− 1

4
i/Dρ ε− 1

2
iρ η + iΛλ+

3

2
ΛDλ ,

δD = (−1

2
iε̄ /Dλ+

1

2
iη̄λ+ h.c.) + 2ΛDD , (3.2.14)
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Components w q

(ξ, ϕ,M) 5
2 −5

2

(Z,Ω, F ) 2 -2

(φ, ζ, S) 1
2 −1

2

(σ, ψ,N) 0 0

(Φ,Ψ, P ) −1
2

1
2

Table 3.2
Compensating scalar multiplets with (w, q) denoting the Weyl weight and U(1)R charge of

the lowest component scalar field.

where

Dµρ = (∂µ − bµ) ρ+
(
−iψ̄µλ+ h.c.

)
,

Dµλ = (∂µ −
3

2
bµ +

1

4
ωµ

abγab − iVµ)λ+
1

4
γρσĜρσ ψµ

−1

2
iDψµ +

1

4
i/Dρψµ +

1

2
iρ φµ ,

Ĝµν = 2∂[µCν] + (−ψ̄[µγν]λ+
1

2
iρ ψ̄µψν + h.c.) . (3.2.15)

As we shall discuss in subsection 3.4.3, the nonabelian versions of (3.2.14) and
(3.2.15) can be obtained by taking the fields of the vector multiplet in the
adjoint representation of a Lie group G, and imposing the closure of the algebra
accordingly.

3.2.2 Combination of Local Supermultiplets

To provide a supersymmetric completion of Poincaré supergravity and of the
higher dimensional invariants, we need to produce multiplets with different
weights. We give now general rules to do so and we introduce all composite
multiplets that will be needed to construct invariant actions.

Scalar Multiplets. We will construct composite scalar multiplets using the
multiplication rules for scalar multiplets. One can start with two scalar multi-
plets (Ai, χi, Fi), i = 1, 2 and obtain a multiplet whose lowest component which
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has Weyl weight w = w1 + w2 and U(1)R weight q = q1 + q2 as follows

A = A1A2 ,

χ = A1χ2 +A2χ1,

F = A1F2 +A2F1 + χ̃1χ2 . (3.2.16)

It is also possible to use the inverse of the multiplication rule (3.2.16) to obtain
a multiplet with Weyl weight w = w1 − w2 and U(1)R weight q = q1 − q2

A = A1A
−1
2 ,

χ = A−1
2 χ1 −A1A

−2
2 χ2 ,

F = A−1
2 F1 −A1A

−2
2 F2 −A−2

2 χ̃2χ1 +A1A
−3
2 χ̃2χ2 . (3.2.17)

Given the scalar multiplet (see table 3.1),

Σ = (φ, ζ, S) , (3.2.18)

the associated inverse multiplet has the components

Σ−1 ≡ (Φ,Ψ, P ) =
(
φ−1 , −φ−2ζ, −φ−2S + φ−3ζ̃ζ

)
. (3.2.19)

as can be seen by considering the multiplication of the unit multiplet (A1, χ1, F1) =
(1, 0, 0), which has weights (ω, c) = (0, 0), with the multiplet (A2, χ2, F2) = Σ,
by means of the formula (3.2.17).

Next, we note that a scalar multiplet (φ, ζ, S) with weights (w, q) = (1
2 ,−

1
2)

has the corresponding kinetic multiplet with weights (w, q) = (3
2 ,−

3
2) given by

K =
(
S∗,−2/D(Bζ)∗, 42Cφ∗

)
, (3.2.20)

where

2Cφ∗ =

(
∂a − 3

2
ba − i

2
V a

)
Daφ∗ + ωa

abDbφ∗ + faaφ
∗

+
1

2
φ̃aγ

a(Bζ)∗ − 1

2
ψ̃aDa(Bζ)∗ . (3.2.21)

Using the above multiplets as building blocks and using the product formula
(3.2.16) we can construct a number of multiplets which will be useful in building
actions. To begin with, we consider the four-fold product of Σ obtaining

Σ4 : (Z,Ω, F ) =
(
φ4, 4φ3ζ, 4φ3S + 6φ2ζ̃ζ

)
. (3.2.22)
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Note that Z has weights (w, q) = (2,−2) and will be useful to construct a cos-
mological constant invariant. Another multiplet with the same weights (2,−2)
is

Σ×K : Z ′ = φS∗ ,

Ω′ = ζS∗ − 2φ/D(Bζ) ,

F ′ = 4φ2Cφ∗ + |S|2 − 2ζ̃ /D(Bζ)∗ . (3.2.23)

We will use this multiplet to construct the Einstein-Hilbert action. A composite
neutral multiplet with (w, q) = (0, 0) can be obtained as follows

K × Σ−3 :

σ = φ−1S∗ ,

ψ = −2φ−3 /D (Bζ)∗ − 3φ−4S∗ζ ,

N = 4φ−32Cφ− 3φ−4 |S|2 + 6φ−4ζ̃ /D (Bζ)∗

+6φ−5S∗λ̃ζ , (3.2.24)

which can be used to produce new scalar multiplets without changing the
weights of the original multiplets. Examples are:

(σ, ψ,N)n × (Z,Ω, F ) :

Z(n) = σnZ ,

Ω(n) = nσn−1Zψ + σnΩ ,

F (n) = σnF + nσn−1ZN + n(n− 1)σn−2Zψ̃ψ

+nσn−1ψ̃Ω . (3.2.25)

(σ, ψ,N)×Σ : (φ′, ζ ′, S′) =
(
σφ , σζ + φψ , σS + φN + ζ̃ψ

)
. (3.2.26)

Finally, we construct the multiplet (ξ, ϕ,M), with weights (5
2 ,−

5
2), in terms of

the components of the multiplet (Φ,Ψ, P ) as follows

ξ = 2cP ∗ ,

ϕ = −22c /D(BΨ)∗ − 2iγνDµF̂µν(Bλ)∗ + 2iγνF̂µνDν(Bλ)∗

+iγµν /DF̂µν(Bλ)∗ + 5
2 iγµνF̂µν /D(Bλ)∗ ,

M = 42c2cΦ∗ − 8iDaF̂abDbΦ∗ − 2F̂abF̂
abΦ∗ + fermions , (3.2.27)

where we have omitted the complicated fermionic expressions in the composite
formula for M as we shall be interested in the bosonic part of an action formula
for which this multiplet will be used. With this multiplet we will produce a
Ricci tensor squared invariant.
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Vector Multiplets. For the construction of the n vector multiplet action, we
first introduce a real function CIJ(ρ), which is a function of the vector multiplet
scalars ρI , and the n vector multiplets are labeled by I, J, . . . = 1, 2, . . . , n. The
lowest component of a vector multiplet can then be composed as

ρI = CIJD
J + CIJK λ̄

JλK . (3.2.28)

The label I is fixed, and it differs from the indices that are being summed over.
We also define

CIJK =
∂CIJ
∂ρK

, CIJKL =
∂2CIJ
∂ρK ∂ρL

, CIJKLM =
∂3CIJ

∂ρK ∂ρL ∂ρM
.(3.2.29)

In order to ensure that ρI is the scalar of a superconformal vector multiplet,
we impose that the conformal weight of CIJ is ω(CIJ) = −1, and following
constraints are satisfied

CIJK = CI(JK) , CIJK ρ
K = −CIJ . (3.2.30)

Furthermore, additional constraints are needed to ensure that λI , DI and ĜµνI
are also the elements of a superconformal vector multiplet

CIJKL ρ
L = −2CIJK , CIJKLM ρM = −3CIJKL . (3.2.31)

Applying a sequence of Q- and S-transformations, we find the components of
the composite vector multiplet as

ρI = CIJ D
J + CIJK λ̄

JλK ,

λI =
1

2
CIJK D

JλK − 1

2
CIJ /DλJ −

1

4
iCIJK γ

µνĜJµνλ
K

−1

4
CIJK /DρJλK + CIJKL λ

Lλ̄JλK

DI =
1

2
CIJK D

JDK + 1
4 CIJ 2CρJ − 1

4
CIJK Ĝ

J
µν Ĝ

µνK

+
1

8
CIJK DµρJDµρK −

1

2
CIJK λ̄

J /DλK +
1

2
CIJK DµλJγµλK ,

−1

2
iCIJKL λ̄

LγµνĜJµνλ
K + CIJKLD

J λ̄KλL + CIJKLM λ̄JλK λ̄LλM ,

ĜµνI = 1
2Dσ

(
ελµν CIJ Ĝ

σλJ
)

+ 2iD[µ

(
CIJK λ̄

Jγν]λ
K
)

−1

4
CIJ ρ

J F̂µν , (3.2.32)
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where the superconformal d’Alambertian for ρI is given by

2CρI =
(
∂a − 2ba + ωb

ba
)
DaρI + 2faaρ

I

+
(
−iψ̄aDaλI + iφ̄aγ

aλI + h.c.
)
. (3.2.33)

Note that ĜµνI satisfies the Bianchi identity due to the constraints (3.2.30).
The composition formula (3.2.32) can be truncated to a map between two

vector multiplets by choosing C21 = ρ−1, in which case one obtains, for the
bosonic fields,

ρ′ = ρ−1D − ρ−2λ̄λ ,

D′ = −1

2
ρ−2D2 +

1

4
ρ−12Cρ+

1

4
ρ−2Ĝµν Ĝ

µν − 1

8
ρ−2DµρDµρ

Ĝ′µν =
1

2
Dσ
(
ελµνρ

−1Ĝσλ
)
− 1

4
F̂µν , (3.2.34)

where 1 labels the multiplet (ρ, Cµ, λ,D), and 2 labels the multiplet (ρ′, C ′µ, λ
′, D′).

Another composite multiplet is obtained by choosing C31 = −ρ−2ρ′ and C32 =
ρ−1 in the composition formula (3.2.32). The bosonic components of the com-
posite multiplet (ρ′′, λ′′, C ′′µ, D

′′), labeled by 3, can then be written as

ρ′′ = −ρ−2ρ′D + ρ−1D′ ,

D′′ = ρ−3ρ′D2 − ρ−2DD′ − 1

4
ρ−2ρ′2Cρ+

1

4
ρ−12Cρ′

−1

2
ρ−3ρ′Ĝµν Ĝ

µν +
1

2
ρ−2Ĝ′µνĜ

µν +
1

4
ρ−3ρ′DµρDµρ

−1

4
ρ−2Dµρ′Dµρ ,

Ĝ′′µν =
1

2
ελµνDσ

(
−ρ−2ρ′Ĝσλ + ρ−1Ĝ′σλ

)
. (3.2.35)

3.2.3 Action Formulae

In this section, we collect the action formulae for scalar and vector multiplets
that we shall use in the subsequent sections when constructing supergravity
models. The construction of the supergravity invariants require coupling the
Weyl multiplet to at least one compensating multiplet. We, therefore, consider
two classes of supersymmetric invariants in accordance with the compensating
multiplet under consideration. Finally, we also present the superconformal com-
pletion of the Chern-Simons action [63], which does not require a compensating
multiplet.
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Scalar Multiplet Actions. We start with the action for a scalar multiplet
(Z,Ω, F )

e−1LF = Re
(
F − ψ̃µγµΩ− Zψ̃µγµνψν

)
, (3.2.36)

which is invariant under dilatations and U(1)R transformations since the highest
component field F has weight (w, q) = (3, 0).

The composite multiplet given in (3.2.25) can be used in the action formula
(3.2.36) to produce

e−1LF (n) = Re
(
σnF + nσn−1ZN + n(n− 1)σn−2Zψ̃ ψ + nσn−1ψ̃Ω

−nσn−1Z ψ̃µγ
µψ − σnψ̃µγµ Ω− σnZ ψ̃µγµνψν

)
, (3.2.37)

which we shall use below to obtain an action providing a supersymmetric com-
pletion of RSn.

Next, we use the components of the composite scalar multiplet multiplet
(3.2.23) in the action formula (3.2.36) which yields the following action that will
be used to construct the supersymmetric completions of the Einstein-Hilbert
term as well as the R2 term

e−1LK = 4φ2Cφ∗ + |S|2 − 2 ζ̃ /D (Bζ)∗ + 2φ ψ̃µγ
µ /D (Bζ)∗

−S∗ψ̃µγµζ − φS∗ψ̃µγµνψν . (3.2.38)

We next consider the scalar multiplets (ξ, ϕ,M) and (Φ,Ψ, P ). Using the mul-
tiplication rule (3.2.16), the action describing the coupling of these multiplets
is given by

e−1LξΦ = Re
(
ξP + ΦM + Ψ̃ϕ− Φ ψ̃µγ

µϕ− ξψ̃µγµΨ

−Φ ξ ψ̃µγ
µνψν

)
. (3.2.39)

Using the composite expressions (3.2.27), the bosonic part of the action that
gives rise to the R2

µν invariant is given by

e−1LΦ = Re
(

4Φ 2C2CΦ∗ + P2CP ∗ − 8iΦDaF̂abDbΦ∗

−2F̂ab F̂
abΦΦ∗

)
. (3.2.40)
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Vector Multiplet Actions. Supersymmetric Lagrangians for vector multi-
plet can be constructed starting from an action formula which describes the
coupling of two vector multiplets as follows

e−1LDD′ = ρD′ + ρ′D + 2
(
λ̄λ′ + h.c.

)
− 2εµνρCµ∂νC

′
ρ

−1

2
i
(
ρ ψ̄µγ

µλ′ + ρ′ψ̄µγ
µλ+ h.c.

)
−1

8

(
ρρ′ψ̄µγ

µνψν + h.c.
)
. (3.2.41)

As a special case, one can set the primed and the un-primed multiplet equal to
each other, obtaining [69]

e−1LD = 2ρD − εµνρCµGνρ + 4λ̄ λ− i
(
ρ ψ̄µγ

µλ+ h.c.
)

−1

4
(ρ2ψ̄µγ

µνψν + h.c) . (3.2.42)

Using the composite multiplets (3.2.34) in this action formula, we also obtain
the conformal vector multiplet action

e−1LV =
1

4
2Cρ+

1

2
ρ−1D2 − 1

8
ρ−1∂µρ ∂

µρ− 1

4
ρ−1Gµν G

µν

+
1

2
εµνρCµ ∂νVρ , (3.2.43)

up to fermionic terms.
Considering the coupling of a primed and double-primed multiplets in ac-

cordance with the action formula (3.2.41), and employing the composite ex-
pressions (3.2.35) result in an action that will be used in the construction of a
supersymmetric completion of the R2 term,

e−1LV V ′ = ρ−3(ρ′)2D2 − 2ρ−2ρ′DD′ + ρ−1(D′)2 + 1
4ρ
−1ρ′2cρ′

−1

4
ρ−2ρ′22cρ+

1

4
ρ−3ρ′2DµρDµρ−

1

4
ρ′ρ−2Dµρ′Dµρ

−1

2
ρ−3(ρ′)2Ĝµν Ĝ

µν + ρ′ρ−2Ĝ′µν Ĝ
µν

−1

2
ρ−1Ĝ′µν Ĝ

′µν , (3.2.44)

where we have given only the terms that contributes to the bosonic part of
the action. More generally, we obtain the most general 2−derivative vector

60



multiplet coupling, by using the action formula (3.2.41), as

e−1LVI =
1

4
CIJ ρ

I2cρJ +
1

8
CIJK ρ

IDµρJDµρK −
1

2
CIJ Ĝ

I
µνĜ

µνJ

−1

4
CIJK ρ

IĜJµνĜ
µνK + CIJ D

IDJ +
1

2
CIJK ρ

IDJDK

+
1

4
CIJ ρ

JεµνρCIµ Fνρ . (3.2.45)

Note that the index I is fixed to represent a certain multiplet by construction
due to (3.2.32), and summing over I indices correspond to summing different
off-shell invariants.

Finally, there also exists an action that constitutes the superconformal com-
pletion of the Lorentz Chern-Simons term. It is given by [63]

LCS = −1

4
εµνρ

[
Rµν

ab(ω)ωρab +
2

3
ωµ

ab ωνb
c ωρca

]
+ εµνρFµνVρ

−R̄µ γνγµRν (3.2.46)

where the Hodge dual of the gravitino curvature is defined by

Rµ = εµνρ(Dν(ω)− iVν)ψρ . (3.2.47)

The supersymmetric Chern-Simons action is invariant under the Weyl multiplet
transformation rules (3.2.6). Therefore, it can be used for both N = (1, 1) and
N = (2, 0) supergravities.

3.3 N = (1, 1) Supergravity Models

The off-shell N = (1, 1) Poincaré supergravity and the supersymmetric com-
pletion of the cosmological term are already given in the literature, and they
are also referred to as Type I minimal supergravity or three dimensional old
minimal supergravity [63–65, 67]. Here we shall derive them from the super-
conformal tensor calculus point of view, which will also serve to establish our
notation and conventions. Using the superconformal tensor calculus we shall
construct three new invariants, namely the supersymmetric completion of the
R2 and R2

µν terms and of (RS2 + h.c.), where S is the complex auxiliary field.
The last invariant is key to the construction of a ghost-free massive supergravity
theory with N = (1, 1) supersymmetry.
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3.3.1 N = (1, 1) Cosmological Poincaré Supergravity

The off-shell Poincaré supergravity action is readily obtained from the action
formula (3.2.38) by fixing the dilatation, conformal boost and special super-
symmetry transformation, by imposing

φ = 1 , ζ = 0 , bµ = 0 . (3.3.1)

The first one fixes the dilatation and U(1)R transformation, the second fixes the
S-supersymmetry and the last one fixes the special conformal transformations.
Maintaining these gauge conditions imply that

ΛD = iΛ = 0 ,

ΛKµ =
1

4
η̄ ψµ −

1

4
ε̄ φµ + h.c. ,

η = −1

2
iγνVνε+

1

2
S (Bε)∗ . (3.3.2)

These decomposition laws imply the super supersymmetry transformation rules

δeµ
a =

1

2
ε̄γaψµ + h.c.,

δψµ = Dµ(ω) ε− 1

2
iVν γ

νγµ ε−
1

2
Sγµ (Bε)∗ ,

δVµ =
1

8
iε̄ γνργµ (ψνρ − iVσγ

σγν ψρ − Sγν (Bψρ)
∗) + h.c.,

δS = −1

4
ε̃ γµν (ψµν − iVσ γ

σγµψν − Sγµ (Bψν)∗) , (3.3.3)

where

Dµ(ω)ε = (∂µ +
1

4
ωµ

ab γab)ε , ψµν = 2D[µ(ω)ψν] . (3.3.4)

Using the gauge fixing conditions (3.3.1) in the action (3.2.38) gives the action
of Poincaré supergravity

e−1LEH = R+ 2V 2 − 2 |S|2 −
(
ψ̄µ γ

µνρDν(ω)ψρ + h.c.
)
. (3.3.5)

where V 2 := VµV
µ. Next, we construct the supersymmetric cosmological term

by using the multiplet (Z,Ω, F ) given in Eq. (3.2.22) in the action formula
(3.2.36), imposing the gauge fixing conditions (3.3.1), and multiplying the ac-
tion by 1/2. We obtain

e−1LC = S − 1

4
ψ̃µ γ

µν ψν + h.c. (3.3.6)
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3.3.2 N = (1, 1) Higher Dimensional Invariants

We begin with the construction of the R2 invariant. To this end, we employ the
composite scalar multiplet Σ′ from (3.2.26) in the action formula (3.2.38). In
the resulting action we use the composite neutral multiplet from (3.2.24). Sub-
sequently we fix the extra gauge symmetries as in (3.3.1). These are straight-
forward manipulations which give the full R2 invariant whose bosonic part is
given by

e−1LR2 = R2 + 16 |S|4 + 4(V 2)2 + 6R |S|2 + 4RV 2 + 12 |S|2 V 2

−16∂µS ∂
µS∗ − 8iV µS∗

←→
∂µS + 16 (∇µV µ)2 , (3.3.7)

where S∗
←→
∂µS = S∗∂µS − S∂µS∗.

To construct the supersymmetric R2
µν invariant, we employ the action for-

mula (3.2.40). Substituting for the components of the multiplet (Φ,Ψ, P ) given
in (3.2.19), and imposing gauge-fixing conditions (3.3.1), lead to the following
supersymmetric completion of the Ricci tensor squared

e−1LR2
µν+R2 = RµνR

µν − 23

64
R2 − 1

32R |S|
2 −RµνV µV ν +

5

16
RV 2 +

1

16
(V 2)2

−25

16
V 2 |S|2 − 1

4
∂µ S∂

µS∗ − 5

8
iV µS∗

←→
∂µS +

1

4
(∇µV µ)2

−FµνFµν , (3.3.8)

where we have exhibited the bosonic part of the Lagrangian. The R2 dependent
part can be removed by adding 23

64LR2 to this Lagrangian, obtaining

e−1LR2
µν

= RµνR
µν −RµνV µV ν +

7

4
RV 2 +

17

8
R |S|2 +

23

4
|S|4 − FµνFµν

+6 (∇µV µ)2 +
3

2
(V 2)2 + 11

4 V
2 |S|2 − 6∂µS∂

µS∗

−7

2
iV µS∗

←→
∂µS . (3.3.9)

Next, we construct the supersymmetric completion of the RSn term. To
this end, we employ the action formula (3.2.37), in which we substitute for
the components of the multiplets (σ, ψ,N) and (Z ′,Ω′, F ′) which are given
in (3.2.24) and (3.2.23), respectively. Imposing the gauge fixing conditions
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(3.3.1) in the resulting Lagrangian, and dividing by an overall constant factor
of −(n+ 1), we obtain

e−1L(n) =
1

2

[
R+

2(3n− 1)

n+ 1
|S|2 + 2V 2 − 4i∇µV µ

]
Sn + h.c. , (3.3.10)

where we have given the bosonic part of the result. Note that the n = 0 case
agrees with the Poincaré supergravity action (3.3.5) which we obtained by an
alternative procedure.

3.3.3 N = (1, 1) Generalized Massive Supergravity

We now consider a combination of the invariants up to dimension four, namely,

I =
1

κ2

∫
d3x
[1

2
MLC + σLEH +

1

µ
LCS +

1

ν
LRS

+
1

m2
LR2

µν
+ c1LR2 + c2LRS2

]
, (3.3.11)

where (σ,M, µ, ν,m2, c1, c2) are arbitrary real constants. Defining

S = A+ iB , (3.3.12)

where A and B are real scalar fields, the N = (1, 0) supersymmetric truncation
is achieved by setting Vµ = 0 and B = 0. In that case generalized massive
gravity (GMG) model is defined by setting

ν =∞ , c1 = − 3

8m2
, c2 =

1

8m2
. (3.3.13)

With these choices of the coupling constants the model expanded around a su-
persymmetric AdS3 vacuum propagates only helicity ± 2 and ± 3/2 states with
AdS energies that respect perturbative unitarity. We shall define the N = (1, 1)
supersymmetric version of the GMG model by choosing the coupling constants
as in (3.3.13), since the quadratic action obtained by expanding around the su-
persymmetric AdS3 vacuum contains the N = (1, 0) sector as an independent
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subsector. In this case the complete Lagrangian becomes

e−1LGMG = σ(R+ 2V 2 − 2|S|2) +MA

− 1

4µ

[
εµνρ

(
Rµν

ab ωρab +
2

3
ωµ

ab ωνb
c ωρca

)
− 8εµνρVµ∂νVρ

]
+

1

m2

[
RµνR

µν − 3

8
R2 −RµνV µV ν − FµνFµν +

1

4
R(V 2 −B2)

+
1

6
|S|2(A2 − 4B2)− 1

2V
2(3A2 + 4B2)

−2V µB∂µA
]
. (3.3.14)

Remarkably, all terms proportional to |∂S|2, RA2, (∇µV µ)2 and (VµV
µ)2 have

cancelled. The cancellation of the |∂S|2 and RA2 require c1 and c2 to have the
values given in (3.3.13), and it is crucial for having a ghost-free propagation of
massive modes, as we shall see below.

Notwithstanding that the fields A and B do not propagate, their elimination
yields highly nonlinear interactions, including those which take the form of an
infinite power series in the Ricci curvature scalar R. In that sense, the notion
of a supersymmetric GMG model is extended here, compared to the case of
the N = (1, 0) supersymmetric version where the single auxiliary field, a real
scalar, can be eliminated from the action by means of its algebraic equation
of motion, yielding the standard bosonic GMG action. Nonetheless, in both
cases the action contains the combination (RµνR

µν − 3
8R

2), and if we take
this feature to be the defining one for an extended definition of super GMG
models, it is clear that such an extension is not unique. In the models under
consideration, there is no need for eliminating the auxiliary fields, even when
they are non-propagating, unless their field equations are algebraic ones.

Turning to the model with parameters chosen as in (3.3.13), we shall focus
on a maximally supersymmetric AdS vacuum and determine the spectrum of
fluctuations around it. In view of the results of [75], the following background
is maximally supersymmetric

R̄µν = − 2

`2
ḡµν , Ā = −1

`
, V̄µ = 0 , B̄ = 0 , (3.3.15)

where ḡµν is the AdS3 metric, and ` is the AdS3 radius which must obey the
equation

4σ + `M +
2

3`2m2
= 0 . (3.3.16)
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Let us define the fluctuation fields around this vacuum as

gµν = ḡµν

(
1 +

1

3
h

)
+Hµν , ḡµνHµν = 0 ,

A = Ā+ a , B = B̄ + b , Vµ = V̄µ + vµ , (3.3.17)

and choose the gauge condition

∇̄µHµν = 0 . (3.3.18)

The linearized field equations then take the form

[D(1)D(−1)D(η+)D(η−)H]µν = − 1

3`2

(
∇̄µ∇̄ν −

1

3
ḡµν2̄

)
h ,

Ω

m2

(
`22̄− 3

)
h = 0 ,

Ω

m2
a = 0 ,

Ω

m2
b = 0 ,

Ω

m2
[D(η+)D(η−)v]µ = 0 , (3.3.19)

where

η± = Ω−1

(
−`m

2

2µ
±

√
`2m4

4µ2
− Ω

)
, Ω ≡ σ `2m2 − 1

2 , (3.3.20)

and D(η) is a first-order linear differential operator, parametrized by a dimen-
sionless constant η, that acts on a rank-s ≥ 1 totally symmetric, traceless and
divergence-free tensor as follows[
D(η)ϕ(s)

]
µ1···µs

= [D(η)]µ1

ρ ϕ
(s)
ρµ2···µs , [D (η)]µ

ν = `−1 δνµ+
η√
|ḡ|

εµ
τν∇̄τ .

(3.3.21)
The equations for Hµν and h agree precisely with those arising in the N = (1, 0)
GMG model [58, 59] whose spectrum was studied in detail in [60], extending
earlier results of [76] for the bosonic model. For “non-critical” values of the
couplings summarized by the condition

m−2Ω(η+ − η−)(|η+| − 1)(|η−| − 1) 6= 0. (3.3.22)

These equations describe the UIRs of SO(2, 2) with lowest weight (E0, s). `
−1E0

is the lowest energy, and s is the helicity, where their values given by

(E0, s) : (2, 2) , (2,−2) ,

(
1 +

1

|η+|
,

2η+

|η+|

)
,

(
1 +

1

|η−|
,

2η−
|η−|

)
.

(3.3.23)
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The new degrees of freedom arising here are furnished by the field vµ. From Eq.
(3.3.19) it follows that the propagating modes have the representation content

(E0, s) :

(
1 +

1

|η+|
,
η+

|η+|

)
,

(
1 +

1

|η−|
,
η−
|η−|

)
. (3.3.24)

Together with the spin-2 modes displayed in (3.3.23), these form the bosonic
content of a massive spin-2 supermultiplet of N = (2, 0) supersymmetry in
three dimensions. The structure of this multiplet is similar to the one studied
in detail in [77]. The critical versions the N = (2, 0) GMG model arise if the
following condition is satisfied

m−2Ω(η+ − η−)(|η+| − 1)(|η−| − 1) = 0 . (3.3.25)

We shall not examine these points here but we note that the spin-2 sector at
critical point has been analyzed in considerable detail in [58]. As for the spin-1
sector, it follows a pattern similar to the one discussed in great detail in [77], in
the context of a parent supergravity theory whose off-shell degrees of freedom
coincide with those of N = (2, 0) supergravity in three dimensions upon a circle
reduction.

3.4 N = (2, 0) Supergravity Models

This section is devoted to the construction ofN = (2, 0) supergravity invariants.
The Poincaré supergravity and its cosmological extension has already been
given in [67, 68], and it is also referred to as Type II minimal supergravity.
In this section, we first introduce our gauge fixing choices, and construct the
Poincaré supergravity and the supersymmetric cosmological constant based on
the conformal vector multiplet actions discussed in section 3.2. We then proceed
to the four-derivative invariants and construct the supersymmetric R2 invariant
by the same method. Finally, establishing an analogy between the non-abelian
vector multiplet and the Poincaré multiplet, we construct the R2

µν invariant, and
discuss the ghost-free maximally supersymmetric vacuum of the four-derivative
extended theory.

3.4.1 N = (2, 0) Cosmological Poincaré Supergravity

The off-shell Poincaré supergravity is obtained from the action formula (3.2.43)
and by gauge fixing the superconformal transformations by imposing the fol-
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lowing gauge conditions

ρ = 1, λ = 0, bµ = 0 , (3.4.1)

where the first choice fixes dilatations, the second one fixes the S-supersymmetry
and the third fixes the special conformal symmetry. These gauge choices are
maintained provided that

ΛD = 0 ,

ΛKµ = −1

4
ε̄ φµ +

1

4
η̄ ψµ + h.c. ,

η =
1

2
iγ · Ĝ ε+Dε . (3.4.2)

We thus end up with the new minimal Poincaré multiplet consisting of a dreibein
eaµ, a gravitino ψµ, a U(1)R symmetry gauge field Vµ, a vector gauge field Cµ
and an auxiliary scalar D. The resulting local supersymmetry transformation
rules are given as

δeµ
a =

1

2
ε̄ γa ψµ + h.c.,

δψµ =

(
∂µ +

1

4
ωµ

ab γab − iVµ

)
ε− 1

2
i γµγ · Ĝε− γµDε,

δCµ = −1

4
i ε̄ ψµ + h.c.,

δVµ = −1

2
iε̄ γνψ̂µν +

1

8
iε̄ γµγ · ψ̂ −

1

2
ε̄ γ · Ĝ ψµ + iDε̄ψµ + h.c.,

δD = − 1

16
ε̄ γ · ψ̂ + h.c., (3.4.3)

where the U(1)R covariant gravitino field strength is given by

ψ̂µν = 2

(
∂[µ +

1

4
ω[µ|

ab γab − iV[µ

)
ψν] − iγ[µγ · Ĝψν] − 2Dγ[µψν] . (3.4.4)

Substituting the gauge fixing conditions (3.4.1) into the Lagrangian (3.2.43),
and rescaling with a factor of −16, we obtain the following Poincaré supergrav-
ity Lagrangian

e−1LEH = R− 2G2 − 8D2 − 8εµνρCµ ∂νVρ , (3.4.5)
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where we have defined

Gµ := εµνρG
νρ , G2 := GµG

µ . (3.4.6)

Consequently, Gµ is a covariantly conserved tensor ∇µGµ = 0. A supersymmet-
ric cosmological constant can be added to the Poincaré supergravity Lagrangian
(3.4.5), which can be obtained from the action formula (3.2.42), and imposing
the gauge fixing choices (3.4.1). We then obtain

e−1LC = 2D − εµνρCµGνρ −
(

1

8
ψ̄µ γ

µν ψν + h.c.

)
. (3.4.7)

3.4.2 N = (2, 0) RD and R2 Invariants

For the construction of the RD invariant, we consider the vector multiplet
action (3.2.42) for the primed vector multiplet (ρ′, C ′µ, λ

′, D′). Using the com-
posite expressions given in (3.2.34) and fixing the redundant superconformal
symmetries by using the gauge fixing choices (3.4.1), gives the supersymmetric
completion of the RD action

e−1LRD = RD+ 8D3− 2Gµν (Fµν +∇µGν + 2DGµν) +
1

2
εµνρ Vµ Fνρ , (3.4.8)

where we have rescaled the Lagrangian with an overall factor of −8. Note that
although the RD invariant and the Lorentz-Chern-Simons invariant (3.2.46)
have the same conformal εµνρVµFνρ term, the RD invariant is not conformally
invariant as can be understood from the existence of the Ricci scalar. Such
non-conformal invariants are studied in detail in the context of Chern-Simons
contact terms in three dimensions [78–80].

Next, we construct the supersymmetric completion of R2. Using the com-
position formula (3.2.34) and employing the gauge fixing choices (3.4.1) in the
action formula (3.2.44), we obtain

e−1LR2 = (R+24D2+2G2)2−8
(
Fµν + 2∇[µGν] + 4DGµν

)2
+64D2D . (3.4.9)

3.4.3 N = (2, 0) R2
µν Invariant

The supersymmetric completion of the Ricci tensor-squared term is most conve-
niently obtained by establishing a map between the Yang-Mills and supergravity
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multiplets. To do so, we begin by gauge fixing the nonabelian version of the
transformation rules (3.2.14) in accordance with (3.4.1), obtaining

δCIµ =
1

2
ε̄ γµλ

I − 1

4
iρI ε̄ ψµ + h.c. ,

δρI = iε̄λI + h.c. ,

δλI = −1

4
γµνĜIµνε+

1

2
iDIε− 1

4
i /̂DρIε− 1

2
iρIDε+

1

4
ρIγ · Ĝε ,

δDI =
(
− 1

2
iε̄ /̂DλI +

1

2
iDε̄λI − 1

4
ε̄ γ · ĜλI

+
1

4
g ε̄ fJK

I ρJλK
)

+ h.c. . (3.4.10)

where

D̂µρ
I = ∂µρ

I +
(
−iψ̄µ λ

I + h.c.
)

+ g fJK
I CJµ ρ

K ,

D̂µλ
I = (∂µ +

1

4
ωµ

ab γab − iVµ)λI +
1

4
γρσĜIρσ ψµ −

1

2
iDIψµ +

1

4
i /̂DρIψµ

+
1

2
iρIDψµ −

1

4
ρIγ · Ĝψµ + g fJK

ICJµ λ
K ,

ĜIµν = 2∂[µC
I
ν] −

(
ψ̄[µγν]λ

I − i

2
ρI ψ̄µ ψν + h.c.

)
+g fJK

I CJµ C
K
ν . (3.4.11)

We will next show that the following set of fields

(Ωµ
−ab , Ĝab , ψ̂ab , F̂ ab(V+, ω,Ω

−)) (3.4.12)

transform as a Yang-Mills multiplet (CIµ , ρ
I , λI , DI), where the ab index pair

plays the role of Yang-Mills index. The definitions of the torsionful spin con-
nection Ωµ

−ab, the gravitino field strength ψ̂ab, and the modified U(1)R gauge
field are given by

Ωµ
ab± = ωµ

ab ± 2εµ
abD , (3.4.13)

ψ̂ab = 2∇[a(ω,Ω
+, V )ψb] − iγ[aγ · Ĝψb] , (3.4.14)

Va+ = Va +
1

2
εa
bcĜbc , (3.4.15)

where in the definition of ψ̂ab, the connection ω rotates the Lorentz vector index
while the connection Ω+ rotates the Lorentz spinor index.
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First, we calculate the transformation rules for ωµ
ab, D and Ĝab

δωµ
ab = −1

4
ε̄ γµψ̂ab +

1

2
ε̄ γ[aψ̂b]µ +Dε̄ γab ψµ

−iε̄ ψµĜ
ab + h.c. , (3.4.16)

δD = − 1

16
ε̄ γ · ψ̂ + h.c. , (3.4.17)

δĜab = −1

4
iε̄ ψ̂ab + h.c. . (3.4.18)

From the first two equations, we observe that

δΩµ
−ab = −1

2
ε̄ γµψ̂

ab − iε̄ ψµĜ
ab + h.c. . (3.4.19)

Next, we compute the transformation rule for the gravitino curvature

δψ̂ab =
1

4
γcd R̂abcd(Ω

+)ε− iF̂ab(V )ε− 2i∇[a(ω)Ĝb]cγ
cε

−i∇[a(ω) Ĝcdεb]cd + 2iD Ĝabε− Ĝabγ · Ĝε

+iĜγab γ · Ĝε , (3.4.20)

where R̂abcd(Ω
+) represents a torsionful supercovariant Riemann tensor. Using

the definition of V+ given in (3.4.15), the Bianchi identity ∇[aĜbc] = 0 and

R̂abcd(Ω
+) = R̂cdab(Ω

−), we rewrite the transformation rule for the gravitino
curvature as

δψ̂ab =
1

4
γcd R̂cdab(Ω

−)ε− iF̂ab(V+)ε+ i /∇(Ω−)Ĝab ε

−Ĝab γ · Ĝε , (3.4.21)

where in ∇µ(Ω−)Ĝab, the connection Ω− rotates both a and b indices. Finally,

defining F̂ab(V+, ω,Ω
−) where ω rotates the Lorentz vector index b, whereas the

connection Ω− rotates the index c in the covariant derivative acting on Ĝbc, we
have

δψ̂ab =
1

4
γcd R̂cdab(Ω

−)ε− iF̂ab(V+, ω,Ω
−)ε+ i /∇(Ω−)Ĝab ε

−Ĝab γ · Ĝ ε+ 2iDGab ε . (3.4.22)
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Finally, we consider the transformation rule for F̂ab(V+, ω,Ω
−)

δF̂ab(V+, ω,Ω
−) =

1

4
iε̄ /∇(ω,Ω−)ψ̂ab −

1

4
iDε̄ ψ̂ab +

1

8
ε̄ γ · Ĝ ψ̂ab

−iε̄ Ĝc[aψ̂b]
c + h.c. , (3.4.23)

where in ∇c(ω,Ω−)ψ̂ab the connection ω acts on the spinor index, whereas Ω−

acts on both a and b indices.
Comparing the transformation rules (3.4.18), (3.4.19), (3.4.22) and (3.4.23)

with those of the nonabelian vector multiplet, we find the following correspon-
dence

Ωµ
−ab ↔ CIµ , 4Ĝab ↔ ρI , −ψ̂ab ↔ λI , 2F̂ ab(V+, ω,Ω

−)↔ DI .(3.4.24)

With these results, we now turn to the supersymmetric completion of the
Ricci squared term. To this end, we first construct the following Lagrangian

e−1LYM =
1

4

(
GIµν − ρIGµν

)(
GµνI − ρIGµν

)
−1

2
(DI − ρID)2 +

1

8
Dµρ

IDµρI , (3.4.25)

describing the bosonic sector of a Yang-Mills multiplet coupling to supergravity.
This is obtained by generalizing the superconformal invariant action (3.2.44)
and then fixing gauges according to (3.4.1). It is now straightforward to use the
map (3.4.24) which gives the bosonic part of the supersymmetric completion of
the Riemann squared action

e−1LRiem2 =
1

4

(
Rµνab(Ω

−)− 4GabGµν

)(
Rµνab(Ω−)− 4GabGµν

)
−2
(
Fab(V+, ω,Ω

−)− 2DGab

)(
F ab(V+, ω,Ω

−)− 2DGab
)

+2∇µ(Ω−)Gab∇µ(Ω−)Gab . (3.4.26)

Finally, expanding the torsion terms and using the definition of the three-
dimensional Riemann tensor

Rµνab = εµνρ εabc

(
Rρc − 1

2
eρcR

)
, (3.4.27)

we obtain the supersymmetric completion of the Ricci squared action

e−1LR2
µν

= Rµν R
µν − 1

4
R2 + 4RD2 +RG2 − 2Rµν G

µGν + 48D4 + 8D2D

+8D2G2 + (G2)2 − 2(Fµν +∇[µGν])
2

− (∇µGν + 4DGµν)2 , (3.4.28)
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where we recall that Gµ := εµνρG
νρ. If desired, a term proportional to LR2

from (3.4.9) can be added to this result to obtain the invariant in which the
only curvature squared term is that of the Ricci tensor.

We conclude this subsection with some comments on the existence of an
off-shell RD2 invariant. Considering the vector multiplet action (3.2.45) and
the composite formulae (3.2.34) and (3.2.35), we find the following choices for
CIJ to obtain a supersymmetric completion for the RD2 term:

1. The supersymmetric completion of the RD2 term can be obtained by su-
persymmetrizing the 2c(ρ−3D2) term. In order to do so, we can consider
two vector multiplets: (ρ, Cµ, λ,D) labeled by 1, and (ρ′′, C ′′µ, λ

′′, D′′) la-
beled by 3, and set C13 = ρ−1. Making this choice, we find that all the
terms in the Lagrangian (3.2.45) cancel each other out, thus, not giving
rise to an RD2 invariant.

2. Alternatively, one can consider the supersymmetric completion of ρ−2D22cρ
which gives rise to an RD2 term after gauge fixing. Such a model can be
obtained by considering two vector multiplets: (ρ, Cµ, λ,D) labeled by 1,
and (ρ′, C ′µ, λ

′, D′) labeled by 2, and set C22 = ρ−1. Making this choice,
however, we find that the resulting action is the R2 action given in (3.4.9).

3. Another alternative is the supersymmetric completion of ρ−2D2c(ρ−1D).
This construction also corresponds to the choice C22 = ρ−1, and coincides
with the R2 action given in (3.4.9)

In view of these arguments, it is not clear to us how the supersymmetric comple-
tion of RD2 as an off-shell invariant independent of the R2 and R2

µν invariants
can be obtained within the tensor calculus framework presented in section 3.2.

3.4.4 N = (2, 0) Generalized Massive Supergravity

We now consider a combination of the invariants up to dimension four, namely,

I =
1

κ2

∫
d3x

[
MLC + σLEH +

1

µ
LCS +

1

ν
LRD

+
1

m2
LR2

µν
+ cLR2

]
, (3.4.29)

where (σ,M, µ, ν,m2, c) are arbitrary real constants. This action is invariant
under the off-shell supersymmetry transformation rules given in (3.4.3). If we
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consider the defining feature of a super GMG model to be that it contains the
term RµνR

µν − 3
8R

2, such an extension is clearly not not unique, as discussed
earlier. Focusing on maximally supersymmetric backgrounds and ghost free
fluctuations around it, we begin by noting that the metric for such backgrounds
is AdS or Minkowski. In the former case, D must be non-vanishing, and this
is problematic for ghost-freedom due the presence of the RD2 term in the
action. Such a term is akin to the RA2 term in the N = (1, 1) model which
we are able to eliminate. In the case of a Minkowski background, the presence
of the RD2 term is harmless. Thus, to obtain a maximally supersymmetric
Minkowski background, we are led to consider the model with the following
choice of parameters

M = 0 , ν =∞ , c = − 1

8m2
. (3.4.30)

In this case, the total Lagrangian becomes

e−1LGMG = σ (R− 2GµG
µ − 8D2 − 4GµVµ)

− 1

4µ
εµνρ

[
Rµν

ab ωρab + 2
3ωµ

ab ωνb
c ωρca − 8Vµ∂νVρ

]
+

1

m2

[
RµνR

µν − 3

8
R2 − 2RD2 −Rµν GµGν +

1

2
RG2

−24D4 +
1

2
(G2)2 − 4D2G2 − FµνFµν

+8DGµν (Fµν +∇µGν)
]
. (3.4.31)

For the maximally supersymmetric background, the fields (D,Vµ, Cµ) are van-
ishing. Therefore, the analysis of the linearized fluctuations for spin-2 modes
around this background is the same as that of standard GMG model, amount-
ing to the purely gravitational part of the action above. Thus, we know that
the system describes two massive helicity ±2 modes with masses [81]

m2
± = −σm2 +

m4

2µ2

[
1±

√
1− 4σµ2

m2

]
. (3.4.32)

Ghosts are absent for m2 > 0 and σ ≤ 0 [30, 59, 81]. Next, we note that the
linearized fluctuation of the field D vanishes. Denoting the linearized vector
fluctuations of (Vµ, Cµ) by the same symbols and choosing the Lorentz gauges
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∂µV
µ = 0 and ∂µC

µ = 0, one finds that their linearized field equations are
given as

1

m2
2V µ − 1

µ
εµνρ ∂νVρ + σGµ = 0 , Fµν + 2∂[µGν] = 0 . (3.4.33)

A simple manipulation of these equations gives[
(2 + σm2)δρµ δ

σ
ν −

σm2

µ
ε[µ

ρσ∂ν]

](
Fρσ
Gρσ

)
= 0 . (3.4.34)

Diagonalizing the mass matrix one finds that the masses for V µ and Cµ are
given by the formula (3.4.32). Thus, we have found the bosonic sector of two
massive spin-2 multiplets of N = (2, 0) supersymmetry.

3.5 Conclusions

In this chapter, we have completed the construction of all off-shell Poincaré
supergravity invariants up to mass dimension four and with N = (1, 1) and
N = (2, 0) supersymmetry. We have utilized superconformal tensor calculus
except for the supersymmetric completion of the Ricci tensor squared invariant
with N = (2, 0) supersymmetry, where we have employed a map between the
Yang-Mills multiplet and the Poincaré multiplet. The resulting Lagrangians
with N = (1, 1) and N = (2, 0) supersymmetry contain seven and six free pa-
rameters respectively, each of which corresponds to separate off-shell invariants.
We have determined the relation between the parameters so that the spectrum
of fluctuations about a maximally symmetric vacuum solution is ghost-free. For
ghost-free fluctuations about anAdS3 vacuum, a certain type of off-diagonal in-
variants with mass dimension four, namely RS2 for N = (1, 1) supersymmetry
and RD2 for N = (2, 0) supersymmetry, without curvature squared terms in
their supersymmetric completion, play a crucial role. We have constructed the
former, but surprisingly we have found that the latter does not seem to exist.
Consequently, the N = (2, 0) model does not seem to have a supersymmetric
AdS vacuum with ghost-free spectrum, even though it does admit a supersym-
metric Minkowski vacuum that gives a ghost-free massive spin-2 multiplet.

Since N = (1, 1) generalized massive gravity admits a maximally supersym-
metric AdS3 vacuum, one should expect a holographically dual superconformal
field theory. Here, we do not attempt to calculate the central charge as in the
original argument of Brown-Henneaux [22], but consider the bosonic truncation
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of the N = (1, 1) generalized massive gravity (3.3.14) as in [58,59]. For parity-
preserving theories with higher derivative extensions, the left and right central
charges are given by [82,83]

cL = cR =
`

2G3
gµν

∂(e−1L)

∂Rµν
. (3.5.1)

Parity-violating terms result in a difference in the left and right central charges.
Given the Lagrangian (3.3.11) with parameter choices (3.3.13), the only parity
violating contribution comes from the Lorentz Chern-Simons term and it is
given by ± 3

2G3µ
.Therefore, the central charges read

cL,R =
3`

2G3

(
σ +

1

2m2`2
± 1

µ`

)
. (3.5.2)

Note that this result precisely matches with the three dimensional N = (1, 0)
model [59] since the vacuum expectation values for the R-symmetry gauge field
Vµ and the imaginary part of the auxiliary scalar S vanish, as can be seen in
Eq. (3.3.15). Therefore, increasing the number of supercharges from N = 1 to
N = 2 do not seem to provide a solution to the bulk-boundary problem.
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Appendix

3.A Complex Spinor Conventions

We use the metric signature is (−,+,+). The gamma matrices satisfy the
Clifford algebra, i.e.

{
γa, γb

}
= 2ηab, and the identities

(γµ)† = γ0γµγ0, (γµ)T = −CγµC−1, (γµ)∗ = BγµB−1 , (3.A.1)

where C is the charge conjugation matrix and B is a unitary matrix with
properties

CC† = 1 , CC∗ = −1 , CT = −C . (3.A.2)

C = iBγ0 , BB† = 1 , BB∗ = 1, BT = B . (3.A.3)

For Dirac spinors, there are two different definitions of the conjugate which are
given by [65]

ε̄ = iε†γ0, ε̃ = (Bε)∗ . (3.A.4)

For Majorana spinors, we impose the reality condition ε∗ = Bε. The Majorana
conjugation ε̄ = εTC is equivalent to Dirac conjugation ε̄ = iε†γ0.

In order to obtain the flipping rules for bilinears formed by Dirac spinors,
it is useful to decompose a Dirac spinor into two Majorana spinors as εD =
εM1 + iεM2. As a result, we have

(BεD)∗ = εM1 − iεM2,

ε̄D = ε̄M1 − iε̄M2,

ε̃D = ε̄M1 + iε̄M2, (3.A.5)

from which one obtains

ε̄1Γ (Bε2)∗ = α ε̄2Γ (Bε1)∗ , ε̃1Γε2 = α ε̃2Γε1 , (3.A.6)
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where Γ is any element of the Clifford algebra and α is the corresponding
numerical factor in the Majorana flipping relations. Using the decomposition,
one also gets

ε̃1Γ (Bε2)∗ = α ε̄2Γε1 . (3.A.7)

Note that this time we get a different type of bilinear, which becomes an im-
portant issue in the closure of the algebra on the scalar multiplet. Namely, a
QQ commutation leads to a translation parameter

ξµ3 =
1

2
ε̃2γ

µ (Bε1)∗ − 1

2
ε̃1γ

µ (Bε2)∗ , (3.A.8)

which can be shown to be identical to the usual translation parameter

ξµ3 =
1

2
ε̄2γ

µε1 −
1

2
ε̄1γ

µε2 , (3.A.9)

by using Eq. (3.A.7).
The charge conjugation of a spinor is defined by λC = B−1λ∗ = (Bλ)∗ and

the complex conjugation of bilinears is given by

(χ̄Γλ)∗ ≡ (χ̄Γλ)C = χCΓCλC = χ̃ΓC (Bλ)∗ , (3.A.10)

(χ̃Γλ)∗ ≡ (χ̃Γλ)C = χ̃CΓCλC = χ̄ΓC (Bλ)∗ , (3.A.11)

where the charge conjugation of matrices determined by (Γ1Γ2)C = ΓC1 ΓC2 and
γCµ = γµ.

3.B Fierz Identities

Elements of the Clifford algebra in 3D are
{

ΓA = 1, γµ
}

with the orthogonal-
ity relation Tr

(
ΓAΓB

)
= 2 δAB. Therefore, any 2-dimensional matrix can be

expanded in the basis
{

ΓA
}

as M = 1
2

∑
A Tr (MΓA) ΓA. As a result, the Fierz

identity in 3D is given by

χ̄1 χ2 ε = −1

2
(χ̄1 ε χ2 + χ̄1 γ

aε γaχ2) , (3.B.1)

from which one obtains

χ̄1 γ
aχ2 γaε = −χ̄1 χ2 ε− 2χ̄1ε χ2 , (3.B.2)

χ̄1 γ
abχ2 γabε = 2χ̄1 χ2 ε+ 4χ̄1 ε χ2 . (3.B.3)
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Whenever flipping relations are applicable, one can also obtain additional iden-
tities by antisymmetrizing (3.B.2)–(3.B.3) with respect to 1←→ 2

χ̃1 γ
aχ2 γaε = −χ̃1 ε χ2 + χ̃2 ε χ1 , (3.B.4)

χ̃1 γ
abχ2 γabε = 2χ̃1 ε χ2 − 2χ̃2 ε χ1 . (3.B.5)

These identities are also true for bilinears of the type ε̄1Γ (Bε2)∗. Using (3.B.4)
in (3.B.1) we also obtain

χ̃1 χ2 ε = −χ̃1 ε χ2 − χ̃2 ε χ1 . (3.B.6)
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Chapter 4

Supersymmetric Backgrounds
and Black Holes in N = (1, 1)
Cosmological New Massive
Supergravity
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4.1 Introduction

In this chapter, using an off-shell Killing spinor analysis, we perform a system-
atic investigation of the supersymmetric background and black hole solutions of
the N = (1, 1) Cosmological New Massive Gravity model that we constructed
in the previous chapter. By applying the ideas which were discussed in Section
2.3, we classify the supersymmetric solutions with respect to the norm of the
translational Killing vector of the spacetime that supports at least some of the
supersymmetries. The solutions with a null Killing vector are the same solu-
tions that one finds in the N = 1 model but we also find new solutions with a
time-like Killing vector that are absent in the N = 1 case. An example of such
a solution is a Lifshitz spacetime. We also consider the supersymmetry proper-
ties of the so-called rotating hairy BTZ black holes and logarithmic black holes
in an AdS3 background. Furthermore, we study the possibility of the existence
of supersymmetric Lifshitz black hole solution under certain assumptions. The
material presented in this chapter is based on [84].

Supergravity in 3D has a long history. Especially in its realization with
minimal, N = 1, supersymmetry the theory has been established a long time
ago both in on-shell and off-shell formulations as well as in the superconformal
framework [42,43,85–87]. Despite of all the achievements in the supersymmetric
constructions of the theory, the three-dimensional Poincaré (super)gravity by
itself is of not much physical interest as the field equations of the theory imply
that the spacetime curvature is zero, hence no physical degrees of freedom
propagate.

TMG, which is obtained by supplementing the Poincaré theory with a
parity-breaking Lorentz-Chern-Simons term, leads to a non-trivial dynamics
of the gravitational field describing a helicity +2 or −2 state [28]. The N = 1
supersymmetric completion of TMG was constructed in [88,89], and the super-
symmetric background and black hole solutions of this supersymmetric theory
were studied in [90]. Similar to TMG, the parity even NMG theory also provides
dynamics to the three-dimensional gravity theory corresponding in this case to
two states of helicity +2 and −2 [30]. As we discussed in Section 2.3, the super-
symmetric background configurations of both N = 1 TMG and N = 1 NMG
are severely restricted due to the spinor structure of the N = 1 supersymmetry,
which allows only planar-wave type solutions with a null Killing vector as well
as maximally supersymmetric AdS3 and Minkowski backgrounds [58,59].

In the previous chapter, we have formulated all four-derivative extension of
the three-dimensional N = (1, 1) off-shell cosmological Poincaré supergravity
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theory. For a discussion of this construction (and more) from a superspace point
of view, see [91]. Extending theN = 1 theory with more supersymmetry cannot
affect the dynamics of the Poincaré supergravity theory. It merely extends the
size of the N = 1 Poincaré multiplet, consisting of a Dreibein eµ

a, a gravitino
ψµ and a scalar A with an additional gravitino, an auxiliary vector Vµ and a
pseudo-scalar B (see Section 4.2 for details). As we will show in this chapter,
the merit of the N = (1, 1) theory is that the spinors of the theory are Dirac
instead of Majorana spinors, which allows a larger variety of supersymmetric
background solutions than in the N = 1 case [67,75,92].

The main aim of this chapter is to study the supersymmetric backgrounds
as well as black hole solutions of the N = (1, 1) cosmological NMG, or shortly
N = (1, 1) CNMG, theory using the off-shell Killing spinor analysis. The power
of the off-shell analysis is reflected by the fact that, once the conditions on the
possible field configurations are obtained by using the off-shell supersymmetry
transformation rules, one can use them to study the solutions of any model
which respects the same set of transformation rules. This might include higher
derivative corrections and/or matter couplings.

We begin our study in Section 4.2 with a brief review of N = (1, 1) CNMG
and its off-shell transformation rules. As a typical property of off-shell super-
gravity theories, the auxiliary fields of the theory start to propagate 1 when
the Poincaré supergravity is extended with higher-order curvature terms. As-
suming that the supersymmetric theory admits at least one Killing spinor, we
present the Killing spinor equation and its integrability condition. We then re-
view the implications of the existence of an off-shell Killing spinor as presented
in [75]. The existence of such a spinor imposes numerous algebraic as well as
differential identities on the metric, the vector Vµ and the scalars A and B of
the theory. These identities are the backbone of our analysis that we present
in the remainder of the chapter. The Killing spinor equation in particular im-
plies that the background solutions can be put into two categories depending
on whether the Killing vector that is formed out of the Killing spinors is null
or timelike.

In Section 4.3, we investigate the solutions that admit a null Killing vector.
In this case, the analysis for finding supersymmetric solutions simply reduces
to the one corresponding to the N = 1 theory [59] as the vector Vµ and the
pseudo-scalar B are set to zero due to the algebraic and differential constraints,

1There are exceptional cases where the auxiliary fields do not propagate such as in N = 1
CNMG [59].
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which are consequences of the existence of a Killing spinor. The solution are,
therefore, of the pp-wave type, like in the N = 1 case.

In the timelike case, which we present in Section 4.4, the supersymmetric
solutions are categorized according to the values of the components Va of the
vector in a flat basis. We find that the N = (1, 1) CNMG theory allows all
solutions ofN = (1, 1) TMG [75] with shifted parameters. Furthermore, we find
additional AdS2 × R and Lifshitz solutions. These extra solutions are possible
because of the fact that in N = (1, 1) TMG, the vector equation gives rise to a
second order algebraic equation for the components Va, whereas in the case of
N = (1, 1) CNMG, the resulting equation is cubic, allowing more solutions.

In Section 4.5, we investigate the supersymmetric black holes with AdS3

and Lifshitz backgrounds. We first show that the rotating hairy BTZ black hole
of [93], which is a generalization of the well-known BTZ black hole [21] obtained
by introducing a gravitational hair parameter, and the logarithmic black hole
of [94] are solutions of the N = (1, 1) CNMG theory for the extremal cases
(see Section 2.3 for a brief explanation of the extremal solutions in the context
of supersymmetric theories). This is also true for the rotating BTZ black hole
which can be obtained by setting the hair parameter b to zero. Given the Lifshitz
solution, we then analyze whether we can find an extremal Lifshitz black hole.
As the theory is ungauged, one can hope to saturate the BPS bound with the
massive vector hair Vµ. As opposed to the pseudo-supersymmetry analysis of
the Einstein-Weyl theory in four dimensional N = 1 supergravity [95], this is
not the case in N = (1, 1) CNMG. Furthermore, we will show that a simple
rotating black hole ansatz does not satisfy the Killing spinor equation and the
field equations of the theory simultaneously.

Finally, in Section 4.6, we present our conclusions and discuss further direc-
tions.

4.2 N = (1, 1) Cosmological New Massive Supergrav-
ity

The field content of the N = (1, 1) supergravity theory consists of the dreibein
eµ
a, the gravitino ψµ, a complex scalar S, and a vector Vµ. The model we shall

study is a particular combination of supersymmetric invariants up to dimension
four that leads to a model that, when expanded around a supersymmetric AdS3

vacuum, propagates only helicity ± 2 and ± 3/2 states with energies defined on
an AdS spacetime that respect perturbative unitarity. This model is called
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cosmological New Massive Gravity (CNMG). Here we focus on the bosonic
part of the supersymmetric CNMG Lagrangian which is given by

e−1LCNMG = σ(R+ 2V 2 − 2|S|2) + 4MA

+
1

m2

[
RµνR

µν − 3

8
R2 −RµνV µV ν − FµνFµν +

1

4
R(V 2 −B2)

+
1

6
|S|2(A2 − 4B2)− 1

2
V 2(3A2 + 4B2)

−2V µB∂µA
]
, (4.2.1)

where (σ,M,m2) are arbitrary real constants and we have defined S = A+ iB.
The action corresponding to this Lagrangian is invariant under the following
off-shell supersymmetry transformation rules 2

δeµ
a =

1

2
ε̄γaψµ + h.c. ,

δψµ = Dµ(ω̂) ε− 1

2
iVν γ

νγµ ε−
1

2
Sγµε

? ,

δVµ =
1

8
iε̄ γνργµ

(
ψνρ − iVσγ

σγν ψρ − Sγνψ?ρ
)

+ h.c. ,

δS = −1

4
ε̃ γµν (ψµν − iVσ γ

σγµψν − Sγµψ?ν) , (4.2.2)

where ε̃ = ε? , ω̂ is the super-covariant spin-connection and

Dµ(ω̂)ε = (∂µ +
1

4
ω̂µ

ab γab)ε , ψµν = 2D[µ(ω̂)ψν] . (4.2.3)

The transformation rules (4.2.2) are off-shell as the algebra closes on these fields
without imposing the field equations corresponding to the Lagrangian (4.2.1).

In order to determine the supersymmetric backgrounds allowed by a model
with the transformation rules (4.2.2), one considers the Killing spinor equation

Dµε = ∂µε+
1

4
ω̂µ

ab γabε−
1

2
iVν γ

νγµ ε−
1

2
Sγµε

? = 0 . (4.2.4)

2In this paper, we follow the conventions of [75], with the only difference being that the S
we are using here is replaced by S → −Z.
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Any Killing spinor ε satisfying this equation must also satisfy the integrability
condition

[Dµ,Dν ]ε =
1

4

(
Rµν

ρσ + 2δρµδ
σ
ν (A2 +B2) + 2δρµδ

σ
νV

2 − 4iδσ[ν∇µ]V
ρ

−4δσ[νVµ]V
ρ
)
γρσε− δσ[ν

(
∂µ]A+BVµ]

)
γσε
∗

−iδσ[ν

(
∂µ]B −AVµ]

)
γσε
∗ − 1

2
iFµνε

+iεµνρV
ρ(A+ iB)ε∗ = 0 . (4.2.5)

Considering the field equations for A,B, Vµ and gµν ,

0 = 4M − 4σA+
1

m2

[
2

3
A3 −B2A− 3V 2A+ 2 (∇ · V )B + 2V µ∂µB

]
,

0 = 4σB +
1

m2

[
1

2
RB +A2B +

8

3
B3 + 4V 2B + 2V µ∂µA

]
,

0 = 4σVµ −
1

m2

[
2RµνV

ν + 4∇νFµν + Vµ

(
3A2 + 4B2 − R

2

)
+ 2B∂µA

]
,

0 = σ
(
Rµν + 2VµVν −

1

2
gµν [R+ 2V 2 − 2(A2 +B2)]

)
− 2gµνMA

+
1

m2

[
2Rµν −

1

4
∇µ∇νR+

9

4
RRµν − 4RρµRνρ − 2Fµ

ρFνρ

+
1

4
RVµVν − 2Rρ(µVν)Vρ −

1

2
2(VµVν) +∇ρ∇(µ(Vν)V

ρ)

+
1

4
Rµν(V 2 −B2)− 1

4
∇µ∇ν(V 2 −B2)− 1

2
VµVν(3A2 + 4B2)

−2BV(µ∂ν)A−
1

2
gµν

(13

8
R2 +

1

2
2R− 3R2

ρσ −RρσV ρV σ

+∇ρ∇σ(V ρV σ)− F 2
ρσ +

1

4
R(V 2 −B2)− 1

2
2(V 2 −B2)

+
1

6
(A2 +B2)(A2 − 4B2)− 1

2
V 2(3A2 + 4B2)− 2BV ρ∂ρA

)]
, (4.2.6)

it can be seen that for cosmological Poincaré supergravity, i.e. m → ∞, A,B
and Vµ can be eliminated algebraically. In this case, the integrability condition
(4.2.5) reduces to (

Rµν
ρσ + 2δρµδ

σ
νM

2
)
γρσε = 0 , (4.2.7)
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which implies that the maximally supersymmetric background is either Minkowski
with M = 0, or AdS3 with radius 1/M2. More solutions, with less supersym-
metry, can be obtained by imposing projection conditions on ε. Note that even
with the higher derivative contributions, the maximally supersymmetric solu-
tion is still given by the same background solution with a shifted value of the
cosmological constant. The reason for this is that the expectation value of A
receives a contribution from the higher derivative corrections whereas B and Vµ
do not and, therefore, can still be set to zero.

In the case of cosmological Poincaré supergravity, the auxiliary fields can be
eliminated from the theory, resulting in an on-shell supergravity theory with the
field content (eµ

a, ψµ). However, with the higher derivative contributions added,
the massive vector and the real scalars become dynamical and hence cannot be
solved algebraically. These ‘auxiliary’ fields play a crucial role in determining
the supersymmetric backgrounds allowed by the CNMG Lagrangian (4.2.1).

Now that we have clarified the maximally supersymmetric backgrounds, let
us proceed to the case where we have at least one unbroken supersymmetry.
In order to do so, we will briefly review the implications of an off-shell Killing
spinor following the discussion of [75]. From the symmetries of the gamma
matrices, one finds the following identities for a commuting Killing spinor ε

ε̄ε? = ε̃ε = 0 . (4.2.8)

Thus, non-vanishing spinor bilinears can be defined as follows

ε̄ε = −ε̃ε? ≡ if, ε̄γµε = ε̃γµε
? ≡ Kµ , ε̄γµε

? ≡ Lµ = Sµ + iTµ, (4.2.9)

where f is a real function and Kµ (Lµ) is a real (complex) vector. Using the
Fierz identities for commuting spinors, one can show that

KµK
µ = −f2 , Kµγ

µε = ifε . (4.2.10)

The first equation implies that the vector is either null or timelike. Using the
Killing spinor equation (4.2.4) one finds that

∇(µKν) = 0 , (4.2.11)

showing that Kµ is a Killing vector. Finally, we may derive the following
differential identities following from the Killing spinor equation (4.2.4)

∂[µKν] = εµνρ

(
− fV ρ − 1

2
(SLρ + S?(L?)ρ)

)
, (4.2.12)

∂µf = −εµνρV νKρ − 1

2
i
(
SLµ − S?L?µ

)
. (4.2.13)
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We refer to [75] for readers interested in the derivation of these Killing spinor
identities and of other implications of the existence of a Killing spinor.

4.3 The Null Killing Vector

We first consider the case that the function f introduced in Eq. (4.2.9) is zero
everywhere, i.e. f = 0. This implies that Kµ is a null Killing vector. The case
that f 6= 0 will be discussed in the next section. In our conventions, a Majorana
spinor field has all real components. This being said, the first spinor bilinear
equation in (4.2.9) leads to a Dirac spinor ε that is proportional to a real spinor
ε0 up to a phase factor characterized by an angle θ [75],

ε = e−i
θ
2 ε0 . (4.3.1)

The above equation implies that Lµ = eiθKµ. Taking this into account, the
differential equation (4.2.12) reads

∂[µKν] = −Re(Seiθ) εµνρ Kρ . (4.3.2)

Contracting this equation with Kµ we find that

Kµ∇µKν = 0 . (4.3.3)

The same equation also implies that K∧dK = 0, i.e. K is hypersurface orthog-
onal. Thus, there exist functions u and P of the three-dimensional spacetime
coordinates such that

Kµ dx
µ = Pdu . (4.3.4)

Eq. (4.3.3) implies that K is tangent to affinely parameterized geodesics in the
surface of constant P . One can, then, choose coordinates (u, v, x) such that v
is an affine parameter along these geodesics, i.e.

Kµ ∂µ =
∂

∂v
. (4.3.5)

By virtue of our choice for Kµ the metric components further simplify to

guv = P (u, x), gvv = gxv = 0 , (4.3.6)
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where P = P (u, x) since we demand the null direction to be along the v direc-
tion. All these choices yield a metric of the following generic form

ds2 = hij(x, u) dxi dxj + 2P (x, u) du dv , (4.3.7)

where xi = (x, u). Without loss of generality, this metric can be cast in the
following form by a coordinate transformation [59,90]

ds2 = dx2 + 2P (x, u) du dv +Q(x, u) du2 , (4.3.8)

with
√
|g| = P . With these results in hand, the auxiliary fields of the theory

should satisfy the following constraints [75]

Vµ = −1

2
∂µ θ(x, u) ,

Seiθ + S?e−iθ = ∂x logP (x, u) . (4.3.9)

In the next subsection we will investigate the solutions of CNMG under the
assumption that f = 0.

4.3.1 The General Solution

To find the general solution with f = 0 we set S to be a constant, to be precise
we set A = −1

l and B = 0. Using (4.2.13) we obtain

εµνρ V
νKρ = −1

l
Kµ sin θ(u, x) . (4.3.10)

The u component of this equation reads

1

l
Ku sin θ(u, x) = P (u, x)Vx , (4.3.11)

where we have used that εxuv = 1. Provided that the function P (u, x) is
nowhere vanishing, it is straightforward to integrate the first (vector) equation
in (4.3.9) and obtain

θ(u, x) = arctan
( 2 c(u) e−2x/l

1− c2(u) e−4x/l

)
, (4.3.12)

for arbitrary c(u). From the second (scalar) equation in (4.3.9) we deduce that

−2

l
cos θ(u, x) = ∂x logP (u, x) , (4.3.13)
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which, upon using Eq. (4.3.12), yields

P (x, u) = P (u)[ e2x/l + e−2x/lc2(u)] , (4.3.14)

where P (u) is an arbitrary function of u. We may set P (u) to unity without loss
of generality [59]. Using Eqs. (4.3.13) and (4.3.14) in the vector field equation
(4.3.12), we deduce that c(u) = 0 and θ(u, x) = nπ. In order to fix n we use
the trace of the gravity equation and find that θ(u, x) = π.

We thus find that the metric (4.3.8) takes the following final form

ds2 = dx2 + 2 e2x/l du dv +Q(x, u) du2 . (4.3.15)

This is the general form of a pp-wave metric. Taking the limit l → ∞ gives
rise to the pp-wave in a Minkowski background. Setting l = 1 and substituting
A = −1, B = 0, Vx = Vu = Vv = 0 into the metric field equation, we find that
Q(x, u) satisfies the following differential equation

(2 + 4σm2)Q′ − (9 + 2σm2)Q′′ + 8Q′′′ − 2Q′′′′ = 0 , (4.3.16)

where the prime denotes a derivative with respect to x. The most general
solution of this differential equation is given by

Q(x, u) = e(1−
√

1
2−σm

2)xC1(u) + e(1+

√
1
2−σm

2)xC2(u)

+e2xC3(u) + C4(u) , (4.3.17)

where the functions Ci(u) , i = 1, · · · , 4, are arbitrary functions of u. We note
that this expression for Q(x, u) matches with that of [58,96]. It differs, however,
with the expression given in [59]. This is due to the fact that the off-diagonal
coupling of gravity to the scalar A was included in the supersymmetric New
Massive Gravity model studied in [59], whereas such a term is absent in our
case, see Eq. (4.2.1).

The solution for Q(x, u) given in (4.3.17) has a redundancy [90]. To make
this redundancy manifest we consider the following coordinate transformation

x = x̃− 1
2 log a′ , u = a(ũ) , v = ṽ − 1

4e
−2x̃ a

′′

a′
+ b(ũ) , (4.3.18)

where a(ũ) and b(ũ) are arbitrary functions of ũ and the prime denotes a deriva-
tive with respect to ũ. By choosing the function a(ũ) and b(ũ) such that the
differential equations(a′′

a′

)′
− 1

2

(a′′
a′

)2
− 2(a′)2 C̃4(ũ) = 0 , b′ +

1

2
a′ C̃3(ũ) = 0 , (4.3.19)
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are satisfied the functions C̃3 and C̃4 can be set to zero. This implies that,
without loss of generality, we may set C3 = C4 = 0. In addition to this, we get

C̃1(ũ) = C1(a(ũ)) [a′(ũ)]
1
2 (3+

√
1
2−σm

2) ,

C̃2(ũ) = C2(a(ũ)) [a′(ũ)]
1
2 (3−

√
1
2−σm

2) . (4.3.20)

There are two special values of parameters which must be handled sepa-
rately. These are the cases σm2 = ±1

2 . The reason for this is that for the
σm2 = 1

2 case the function C1 degenerates with C2 whereas for the σm2 = −1
2

case the function C1 degenerates with C4 while the function C2 degenerates
with C3. Therefore, we solve the field equation (4.3.16) for these special cases,
and display the solutions Q(x, u) for these special values of the parameters
explicitly:

σm2 =
1

2
: Q(x, u) = exD1(u) + x exD2(u) + e2xD3(u) +D4(u) ,

σm2 = −1

2
: Q(x, u) = x e2xD1(u) + xD2(u) + e2xD3(u)

+D4(u) . (4.3.21)

Here Di(u) , i = 1, . . . , 4, are arbitrary functions of u. Setting D3 = D4 = 0,
we are led to the following cases:

σm2 6= ±1

2
: ds2 = dx2 + 2 e2x du dv

+
(
e

(1−
√

1
2
−σm2)x

D1(u) + e(1+

√
1
2−σm

2)xD2(u)
)
du2 ,

σm2 =
1

2
: ds2 = dx2 + 2 e2x du dv +

(
exD1(u) + x exD2(u)

)
du2 ,

σm2 = −1

2
: ds2 = dx2 + 2 e2x du dv

+
(
x e2xD1(u) + xD2(u)

)
du2 . (4.3.22)

These pp-wave solutions coincide with the solutions of N = 1 CNMG [58].
Having found the most general solutions for the null case, we will continue in
the next subsection with determining the amount of supersymmetry that these
solutions preserve by working out the Killing spinor equation (4.2.4).
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4.3.2 Killing Spinor Analysis

In order to construct the Killing spinors for the pp-wave metric (4.3.15) we
introduce the following orthonormal frame [90]

e0 = e
2x
l −β dv, e1 = eβdu+ e

2x
l −β dv, e2 = dx , (4.3.23)

where Q(u, x) = e2β(u,x). It follows that the components of the spin-connection
are given by

ω01 = −β̇ du−
(
β′ − 1

l

)
dx ,

ω02 = −
(
β′ − 1

l

)
eβ du− 1

l
e

2x
l −β dv ,

ω12 = β′ eβ du+
1

l
e

2x
l −β dv , (4.3.24)

where

β̇ ≡ ∂β

∂u
, β′ ≡ ∂β

∂x
. (4.3.25)

For the null case, the Killing spinor equation (4.2.4) then reads

0 = dε+
1

4
ωab γ

abε+
1

2l
γa e

a ε? . (4.3.26)

We make the following choice of the γ matrices

γ0 = iσ2 , γ1 = σ1 , γ2 = σ3 , (4.3.27)

where σi’s are the standard Pauli matrices. With this choice the Killing spinor
equation reads

0 = dε +
1

2

(
β̇ σ3 ε− eββ′(σ1 + iσ2) ε+

1

l
eβσ1 (ε+ ε?)

)
du

− 1

2l
e

2x
l −β (σ1 + iσ2) (ε− ε?) dv

+
1

2

(
β′σ3 ε−

1

l
σ3 (ε− ε?)

)
dx . (4.3.28)

Decomposing a Dirac spinor into two Majorana spinors as ε = ξ + iζ, i.e.

ε =

(
ξ1 + iζ1

ξ2 + iζ2

)
, (4.3.29)
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we find the following equations for the components

0 = dξ1 +
1

2
β̇ ξ1 du− eβ(β′ − 1

l
) ξ2 du+

1

2
ξ1 β

′ dx ,

0 = dξ2 +
1

l
eβ ξ1 du−

1

2
β̇ ξ2 du−

1

2
β′ ξ2 dx ,

0 = dζ1 +
1

2
β̇ ζ1 du− eβ β′ ζ2 du−

2

l
e

2x
l −β ζ2 dv +

1

2
(β′ − 2

l
) ζ1 dx ,

0 = dζ2 −
1

2
β̇ ζ2 du−

1

2
(β′ − 2

l
) ζ2 dx . (4.3.30)

The first two equations are uniquely solved by ξ1 = ξ2 = 0. For the last two
equations, the solution for a generic function β(u, x) is given by

ζ1 = e−
1
2β+

x
l , ζ2 = 0 . (4.3.31)

There is an additional solution for the special case that β = x. It is given by

ζ1 = (u+ 2v)e
1
2
x , ζ2 = e−

1
2
x . (4.3.32)

This solution corresponds to the first case given in Eq. (4.3.22) with D1(u) = 0
and D2(u) = 1. There is, however, a problem with this solution. One must
choose σm2 = −1

2 for this solution and this conflicts with the condition im-
posed on this pp-wave solution when we classified the different solutions in the
previous subsection, which is given in Eq. (4.3.22). Therefore, we conclude
that the pp-wave Killing spinor equation is uniquely solved by

ξ1 = ξ2 = ζ2 = 0 , ζ1 = e−
1
2β+

x
l . (4.3.33)

This implies that the pp-wave solutions all preserve 1/4 of the supersymmetries.
Note that in the Minkowski limit l→∞, the equations for ξ and ζ degenerate.
Thus, the number of Killing spinors are the same for both AdS and Minkowski
pp-wave solutions.

We conclude this section by noting that when D1 = D2 = 0, the metric
reduces to

ds2 = dx2 + 2e2x/l du dv = dx2 + e2x/l (−dt2 + dφ2) , (4.3.34)

which is the AdS3 metric in a Poincaré patch. In this case, we have

e0 = ex/l dt , e1 = ex/l dφ , e2 = dx , (4.3.35)
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which implies that

ω02 = −1

l
ex/l dt , ω12 =

1

l
ex/l dφ . (4.3.36)

The Killing spinor equation then turns into

0 = dε− 1

2l
ex/l
(
σ1ε− iσ2ε

?
)
dt− 1

2l
ex/l
(

iσ2ε− σ1ε
?
)
dφ

+
1

2l
σ3 ε

?dx . (4.3.37)

Decomposing the Dirac spinor into two Majorana spinors as ε = ξ + iζ, see
Eq. (4.3.29), the Killing spinor equation gives rise to the following equations

0 = dξ1 +
1

2l
ξ1dx ,

0 = dξ2 −
1

l
ex/l ξ1dt+

1

l
ex/l ξ1dφ− 1

2l ξ2dx ,

0 = dζ1 −
1

l
ex/l ζ2 dt−

1

l
ex/l ζ2 dφ−

1

2l
ζ1dx ,

0 = dζ2 +
1

2l
ζ2 dx . (4.3.38)

Making use of the fact that the ξ and ζ equations are decoupled from each
other, we find the following four independent solutions:

1. ξ1 = 0, ξ2 = e
x
2l , ζ1 = ζ2 = 0,

2. ξ1 = e−
x
2l , ξ2 = 1

l e
x
2l (t− φ), ζ1 = ζ2 = 0,

3. ξ1 = ξ2 = 0, ζ1 = e
x
2l , ζ2 = 0,

4. ξ1 = ξ2 = 0, ζ1 = 1
l e

x
2l (t+ φ), ζ2 = e−

x
2l ,

Therefore, the AdS3 solution has a supersymmetry enhancement with four
Killing spinors.
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4.4 The Timelike Killing Vector

In this section, we shall consider the case that f 6= 0 and hence that K is a
timelike Killing vector field. Introducing a coordinate t such that Kµ∂µ = ∂t,
the metric can be written as [75]

ds2 = −e2ϕ(x,y) (dt+Bα(x, y) dxα)2 + e2λ(x,y)(dx2 + dy2) , (4.4.1)

where λ(x, y) and ϕ(x, y) are arbitrary functions and Bα (α = x, y) is a vector
with two components. The Dreibein corresponding to this metric is naturally
written as

et0 = f−1 , eti = −f2Wi , eα0 = 0 , eαi = e−λδαi , (4.4.2)

where we have defined f ≡ eϕ and Wα = e2ϕ−λBα. We write µ = (t, α) for the
curved indices and a = (0, i) for the flat ones, respectively. We also require that
all functions occurring in the metric (4.4.2) are independent of the coordinate
t. Taking all these things into account, the components of the spin connection
ωabc in the flat basis read as follows,

ω00i = −e−λ f−1∂if ,

ω0ij = −ωij0 = f e−2λ ∂[i

(
Wj]e

σf−2
)
,

ωijk = 2e−λ δi[j∂k]λ . (4.4.3)

Following [75], it can be shown that the existence of a timelike Killing spinor
leads to the following relations between the auxiliary fields Vµ, S and the metric
functions

V0 =
1

2
εij ωij0 , (4.4.4)

V1 − iV2 = ie−λ ∂z (ϕ− λ+ ic) , (4.4.5)

S = ie−λ−ic ∂z (ϕ+ λ− ic) , (4.4.6)

εij∂iBj = −2V0 e
2λ−ϕ , (4.4.7)

where c(x, y) is an arbitrary time-independent real function and z = x + iy
denotes a complex coordinate.

At this stage we have paved the way for constructing supersymmetric back-
ground solutions by exploiting the Killing spinor identities. Making an ansatz
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for the vector field Vµ we can now solve eqs. (4.4.4)–(4.4.7) and determine the
metric functions λ and ϕ. Following the same logic in [75], we now look for
solutions for with the following field configuration as

S = Λ , Va = const , V2 = 0 , c = 0 . (4.4.8)

With these choices, the non-vanishing components of the spin connection given
in Eq. (4.4.3) in a flat basis read as follows

ω002 = −(Λ + V1) , ω112 = Λ− V1 ,

ω120 = ω201 = − ω012 = V0 . (4.4.9)

Note that, by setting V2 = c = 0, we can solve for λ and ϕ using eqs. (4.4.5) and
(4.4.6) and their integrability conditions. Furthermore, By can be set to zero
by a gauge choice. As a result, we obtain the following differential equations
for the functions ϕ, λ and Bx

e−λ∂yϕ = V1 + Λ, (4.4.10)

e−λ∂yλ = Λ− V1, (4.4.11)

∂yBx = 2V0 e
2λ−ϕ, (4.4.12)

with ∂xϕ = ∂xλ = 0.
It is worth emphasizing that so far we have not used the equations of motion,

we have only considered the constraints that follow from supersymmetry. The
solutions of Eqs. (4.4.10)–(4.4.12) will bifurcate depending on the value of the
vector component V1. In the next subsection we will classify the supersymmetric
solutions of the CNMG Lagrangian (4.2.1) with respect to the value of this
vector field component by imposing the field equations.

4.4.1 Classification of Supersymmetric Background Solutions

In this subsection, we first integrate the differential equations (4.4.10)–(4.4.12)
depending on the different values of the vector field components Va, which
yields the metric functions λ and ϕ. Next, we impose the field equations and
determine the couplings. The results for the different cases are given in three
subsubsections. For the convenience of the reader, we have summarized all
supersymmetric background solutions allowed by the theory (4.2.1) in Table
4.1.
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V 2 V0 V1 Equation Solve STMG?

Round AdS3 0 0 0 4.4.15 3

AdS2 × R > 0 0 Λ 4.4.18 7

Null-Warped AdS3 0 ±Λ Λ 4.4.21 3

Spacelike Squashed AdS3 > 0 < Λ Λ 4.4.25 3

Timelike Streched AdS3 < 0 > Λ Λ 4.4.27 3

AdS3 pp-wave 0 V0 εV0 4.4.34 3

Lifshitz > 0 0 6= 0 and 6= Λ 4.4.39 7

Table 4.1
Classification of supersymmetric background solutions of the N = (1, 1) CNMG. The

solutions are classified with respect to the values of the components of the auxiliary vector
Va, and compared with the solutions of the N = (1, 1) TMG (STMG).

The case V1 = 0

We start with the simplest case, i.e. V1 = 0. The supersymmetry constraint
equations (4.4.10)–(4.4.12) yield

λ = − log(−Λy), ϕ = log(− 1

Λy
), Bx = −2V0

Λ
log(−Λy). (4.4.13)

The vector equation (4.2.6) then implies V0 = 0 for Λ 6= 0. Finally, from the
scalar equation we fix M to be

M = − Λ3

6m2
+ Λσ. (4.4.14)

Thus, the metric becomes

ds2 =
l2

y2
(−dt2 + dx2 + dy2) , (4.4.15)

which describes the round AdS3 spacetime with l = − 1
Λ , see Table 4.1.

The case V1 = Λ 6= 0

For V1 = Λ, we obtain

λ = 0, ϕ = 2Λy, Bx = −V0

Λ
e−2Λy . (4.4.16)

The vector and the scalar field equation lead to the following subclasses A, B
and C which we describe below.
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A. V0 = 0, Λ = −2

√
m2σ

7
, M =

7Λ3

12m2
+ Λσ

With this choice of parameters the metric reads

ds2 = −e4Λydt2 + dx2 + dy2 . (4.4.17)

After a simple coordinate transformation y =
log r

2Λ
, x =

x′

2Λ
the metric is

brought into the following form

ds2 =
l2

4
(−r2dt2 +

dr2

r2
+ dx2) , (4.4.18)

which is AdS2 × R. This background also appeared in the bosonic version of
NMG, although given in different coordinates [31,97].

B. V0 = ±Λ, Λ = −
√
−2m2σ

7
, M = − Λ3

6m2
+ Λσ

This choice of parameters leads to the metric

ds2 = −e4Λydt2 ± 2e2Λydtdx+ dy2 . (4.4.19)

Performing a coordinate transformation

y = l log u, t = lx−, x = ± lx
+

2
, (4.4.20)

the metric (4.4.19) can be put into the more familiar form [98]

ds2 = l2

[
du2 + dx+dx−

u2
−
(
dx−

u2

)2
]
, (4.4.21)

which is a null warped AdS3.

C. V0 = ±
√

7Λ2 − 4m2σ

21
, M = − Λ3

3m2
+

8Λσ

7

Using these values for the parameters and fixing the value of V0 we deduce from
the vector equation that

ds2 =
V 2

Λ2

(
dx+

V0Λ

V 2
e2Λy dt

)2
− Λ2

V 2
e4Λy dt2 + dy2 . (4.4.22)
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After making a coordinate transformation
V0Λ

V 2
e2Λy =

1

z
, the metric reads

ds2 =
V 2

Λ2

(
dx+

dt

z

)2
− 1

z2

V 2

Λ2

dt2

ν2
+

dy2

4Λ2z2
, (4.4.23)

where ν2 = 1− V 2

Λ2 < 1.
This is not yet the end of the story for this subclass: provided that V 2 > 0,

which implies 7Λ2 + 2m2σ > 0, we have 1 > ν2 > 0. By making a coordinate
transformation

x =
x′ν

2V
, t =

t′ν

2V
, (4.4.24)

the metric (4.4.22) can be cast into the following form

ds2 =
l2

4

[−dt2 + dz2

z2
+ ν2

(
dx+

dt

z

)2]
, (4.4.25)

which is the metric of spacelike squashed AdS3 with squashing parameter
ν2.

For V 2 < 0, i.e. 7Λ2 + 2m2σ < 0, we perform a coordinate transformation

x =
x′

2

√
−ν2

V 2
, t =

t′

2

√
−ν2

V 2
, (4.4.26)

after which the metric (4.4.22) can be written in the following form

ds2 =
l2

4

[dt2 + dz2

z2
− ν2

(
dx+

dt

z

)2]
, (4.4.27)

where ν2 > 1. The metric (4.4.27) is one of the incarnations of a timelike
stretched AdS3 background.

The case V1 6= Λ and V1 6= 0

This class of solutions has V1 6= Λ and V1 6= 0. The calculation of the metric
functions follows the computations performed in the previous subsubsections
with the additional definitions

σ = − log(z), ϕ = log(zα), Bx = −V0

V1
z−(1+α), (4.4.28)

where

z ≡ (V1 − Λ)y, α ≡ V1 + Λ

V1 − Λ
. (4.4.29)
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Using the components of the vector equation, we find

V0(V 2
0 − V 2

1 )(V1 − Λ) = 0 . (4.4.30)

From Eq. (4.4.30) it is straightforward to see that this subclass has two different
branches, i.e. V0 = 0 and V1 = εV0 with ε2 = 1. We will discuss these two
branches as separate cases A and B below.

A. V1 = εV0 , ε = ±1 , V0 = −εΛ±
√

Λ2 − 2m2σ

2

With this choice of parameters the vector equation gives rise to

2V 2
0 + 4εV0 + Λ2 + 2m2σ = 0 . (4.4.31)

The parameter M can be solved by using the field equation for A as follows,

M =
−Λ3

6m2
+ Λσ . (4.4.32)

Plugging in the metric functions, we obtain the following expression for the
metric

ds2 = −z2α(−dt+ 2εz−1−αdx)dt+
1

(V1 − Λ)2

dz2

z2
.

Performing the coordinate transformation [75]

z = u
(Λ−V1)

Λ , t = lx− , x =
εlx+

2
, (4.4.33)

this metric can be written as follows

ds2 = l2

[
du2 + dx+dx−

u2
− u2(

Λ−V1
Λ

)

(
dx−

u2

)2
]
. (4.4.34)

This is the metric of a AdS3 pp-wave. Note that the limit V1 → Λ is well
defined and gives rise to the minus null warped AdS3 metric of Eq. (4.4.21), as
expected.
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B. V0 = 0, V1 =
α+ 1

α− 1
, M =

Λ(9V 2
1 −2Λ2)

12m2 + Λσ

The final spacetime we consider appears for V0 = 0. Rather than solving the

vector equation for V1 as we did in the previous cases, we set V1 =
α+ 1

α− 1
using

Eq. (4.4.29). The field equations further imply that

(1− 14α− 7α2)Λ2 + 4m2(−1 + α)2σ = 0, (4.4.35)

whose solution is given by

Λ = −

√
4m2σ(α− 1)2

(1− 14α− 7α2)
. (4.4.36)

Here, we would like to restrict our attention to α < 0, as α will be minus
the Lifshitz exponent, thus giving rise to spacetimes with a positive Lifshitz
exponent

(1) α <
1

7
(−7− 2

√
14) then m2σ > 0,

(2)
1

7
(−7− 2

√
14) < α < 0 then m2σ < 0.

Provided that the vector field components are chosen as discussed, we obtain
the Lifshitz metric

ds2 = l2L

[
− y2αdt2 +

1

y2
(dx2 + dy2)

]
, (4.4.37)

where lL is the Lifshitz radius which is defined by

l2L =
1

(V1 − Λ)2
. (4.4.38)

We have redefined t as t → (V1 − Λ)2α+2t. Note that in the limit V1 → 0 one
obtains the round AdS3 metric given in Eq. (4.4.15). Taking y = 1

r gives the
metric in the standard form

ds2 = l2L

(
− r−2αdt2 + r2dx2 +

1

r2
dr2
)
, (4.4.39)
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where l2L and V1 are given in terms of α and Λ as 3

l2L =
(α− 1

2Λ

)2
. (4.4.40)

As shown in [75], all the supersymmetric backgrounds that we have found
in this section except the AdS3 metric preserve 1/4 of the supersymmetries.

4.5 Supersymmetric Black Holes

In this section, we discuss the supersymmetry aspects of black hole solutions of
CNMG in a AdS3 or Lifshitz background. The existence of a Killing spinor is
highly restricted due to the global requirement that the angular coordinate φ
should be periodic. As shown in [75], the spacelike squashed AdS3 solution can
be interpreted as an extremal black hole upon making a coordinate transfor-
mation. Therefore, in this section we will discuss three specific cases of black
hole solutions. We start our discussion in subsection 4.5.1 with a generaliza-
tion of the BTZ black hole, and show that the periodicity condition implies the
extremality of the black hole. In the next subsection we investigate the ‘loga-
rithmic’ black hole given in [94], and show that, the logarithmic black hole is
also supersymmetric. Finally, in a third subsection we investigate the possible
black holes in a Lifshitz background.

4.5.1 The Rotating Hairy BTZ Black Hole and its Killing Spinors

The CNMG Lagrangian (4.2.1) admits the following rotating black hole solution
[93]

ds2 = −N2F 2dt2 +
dr2

F 2
+ r2

(
dφ+Nφdt

)2
, (4.5.1)

where N , Nφ and F are functions of the radial coordinate r, given by

N2 =

[
1 +

b

4H

(
1− Ξ

1
2

)]2

,

Nφ = − J
2Mr2

(M− bH) , (4.5.2)

F 2 =
H2

r2

[
H2 +

b

2

(
1 + Ξ

1
2

)
H +

b2

16

(
1− Ξ

1
2

)2
−M Ξ

1
2

]
,

3Note that the standard Lifshitz exponent z in the literature is given by z = −α.
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and

H =

[
r2 − 1

2
M
(

1− Ξ
1
2

)
− b2

16

(
1− Ξ

1
2

)2
] 1

2

. (4.5.3)

Here, we have set the AdS3 radius l = 1, Ξ := 1 − J 2/M2, and the rotation
parameter J /M is bounded in terms of the AdS radius according to

− 1 ≤ J /M≤ 1 . (4.5.4)

The parameter b is the gravitational hair, and for b = 0 one recovers the BTZ
black hole [21]. Since we impose the global requirement that φ should be
periodic, i.e. 0 ≤ φ ≤ 2π, the vacuum of the BTZ black hole with gravitational
hair, defined by M = J = b = 0, admits only two Killing spinors. In order
to see that, we consider the Killing spinor (4.3.38). Since the equations for ξ1

and ζ2 enforce exponential solutions for ξ1 and ζ2, we cannot find a solution for
ξ2 and ζ1 that is periodic in φ. Therefore, finding a periodic solution requires
setting ξ1 = ζ2 = 0. This implies that only two of the solutions of equations
(4.3.38) are valid.

Introducing the following orthonormal frame for the metric

e0 = NFdt , e1 = rdφ+ rNφdt , e2 = F−1dr , (4.5.5)

the spin-connection components are given by

ω01 =
1

2

rNφ′

FN
dr , ω02 =

(
−FNF ′ + r2NφNφ′

2N
− F 2N ′

)
dt+

r2Nφ′

2N
dφ ,

ω12 =
1

2
F (2Nφ + rNφ′)dt+ Fdφ , (4.5.6)

and hence the Killing spinor equation reads

0 = dε +
1

2

(
− rNφ′

2FN
σ3ε+

1

F
σ3ε

?
)
dr +

1

2

(r2Nφ′

2N
σ1ε− iFσ2ε+ rσ1ε

?
)
dφ

+
1

2

[(
− FNF ′ + r2NφNφ′

2N
− F 2N ′

)
σ1ε− i

(
FNφ +

1

2
rFN ′

)
σ2ε

+iNFσ2ε
? + rNφσ1ε

?

]
dt . (4.5.7)
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Decomposing the Dirac spinor into two Majorana spinors like in Eq. (4.3.29),
we obtain the following equations

0 = dξ1 +
1

4N

(
Nφ [2N(r − F ) + r2Nφ′]

−FN(−2N + 2rF ′ + rNφ′ + 2FN ′)
)
ξ2 dt

+
1

4N

(
2N(r − F ) + r2Nφ′

)
ξ2 dφ+

1

4FN

(
2N − rNφ′

)
ξ1 dr ,

0 = dξ2 +
1

4N

(
Nφ [2N(r + F ) + r2Nφ′]

+FN(−2N − 2rF ′ + rNφ′ − 2FN ′)
)
ξ1 dt

+
1

4N

(
2N(r + F ) + r2Nφ′

)
ξ1 dφ+

1

4FN

(
− 2N + rNφ′

)
ξ2 dr ,

0 = dζ1 +
1

4N

(
Nφ [−2N(r + F ) + r2Nφ′]

−FN(2N + 2rF ′ + rNφ′ + 2FN ′)
)
ζ2 dt

+
1

4N

(
− 2N(r + F ) + r2Nφ′

)
ζ2 dφ−

1

4FN

(
2N + rNφ′

)
ζ1 dr ,

0 = dζ2 +
1

4N

(
Nφ [−2N(r − F ) + r2Nφ′]

+FN(2N − 2rF ′ + rNφ′ − 2FN ′)
)
ζ1 dt

+
1

4N

(
− 2N(r − F ) + r2Nφ′

)
ζ1 dφ

+
1

4FN

(
2N + rNφ′

)
ζ2 dr . (4.5.8)

From these equations it follows that for the generic case not all the dφ com-
ponents can be set to zero, which is the requirement for finding a periodic
Killing spinor. Therefore, we turn our attention to the extremal solutions with
M = |J |. For this case we find the following Killing spinors that are periodic
in φ

(1) M = −J

ξ1 = ζ1 = ζ2 = 0 , ξ2 =
b+
√
−b2 + 8J + 16r2

√
r

, (4.5.9)
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(2) M = J

ξ1 = ξ2 = ζ2 = 0 , ζ1 =
b+
√
−b2 − 8J + 16r2

√
r

. (4.5.10)

Note that for zero hair, i.e. b→ 0, one re-obtains the Killing spinors for a BTZ
black hole.

4.5.2 The ‘Logarithmic’ Black Hole

The supersymmetric CNMG Lagrangian (4.2.1) also admits the following so-
called ‘logarithmic’ black hole solution [94]

ds2 = − 4ρ2

l2f2(ρ)
dt2 + f2(ρ)

(
dφ− ε

q l ln[ ρρ0
]

f2(ρ)
dt
)2

+
l2

4ρ2
dρ2 , (4.5.11)

where q ≤ 0 and 0 < φ < 2π. The function f2(ρ) is defined by

f2(ρ) = 2ρ+ q l2 ln[
ρ

ρ0
] , (4.5.12)

and the parameter ε = ±1 determines the direction of the rotation since

M = 2q , J = 2 ε lq . (4.5.13)

Setting q = 0 and making the coordinate transformation ρ = r2/2 we obtain
an AdS3 background with φ being periodic. This implies that the background
of the ‘logarithmic’ black hole preserves only half of the supersymmetries like
in the case of the rotating hairy BTZ black hole in the previous subsection.

We now determine the explicit expressions for the Killing spinors. Intro-
ducing the following orthonormal frame for the metric

e0 =
2ρ

lf(ρ)
dt , e1 = f(ρ) dφ−

lq ε ln[ ρρ0
]

f(ρ)
dt , e2 =

l

2ρ
dρ , (4.5.14)

we find the following expressions for the spin-connection components

ω01 = − l2q ε

4ρ2f(ρ)

[
f(ρ)− 2ρ f ′(ρ) ln[

ρ

ρ0
]
]
dρ , ω12 = − q ε

f(ρ)
dt+

2ρ f ′(ρ)

l
dφ ,

ω02 = − 1

2l2 ρ f2(ρ)

(
f(ρ)

[
8ρ2 − l4q2 ln[

ρ

ρ0
]
]

+ 2ρf ′(ρ)
[
− 4ρ2 + l4q2 ln[

ρ

ρ0
]
])
dt

−lq ε
(f(ρ)

2ρ
+ ln[

ρ

ρ0
] f ′(ρ)

)
dφ . (4.5.15)
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Using these expressions in the Killing spinor equation (4.2.4), we find that the
Killing spinors of the logarithmic black hole are given by

i. ε = 1

ξ1 = ξ2 = ζ2 = 0 , ζ1 =

√
ρ

ρ0

( 1

2r + l2q ln[ ρρ0
]

)1/4
, (4.5.16)

ii. ε = −1

ξ1 = ζ1 = ζ2 = 0 , ξ2 =

√
ρ

ρ0

( 1

2r + l2q ln[ ρρ0
]

)1/4
. (4.5.17)

This result may be somewhat surprising considering the expectation that
the only existing supersymmetric black hole in an AdS3 background is an ex-
tremal BTZ black hole [58]. However, unlinke the rotating BTZ black hole, the
”logarithmic” black hole does not have a non-extremal limit J 6= M . Thus,
one cannot recover a static, non-supersymmetric black hole from the J → 0
limit of the ”logarithmic” black hole. Therefore, this particular case evades the
argument presented in [58].4

4.5.3 Searching For a Supersymmetric Lifshitz Black Hole

In this section, we briefly present our attempts to find a supersymmetric Lifshitz
black hole. Following [95], we first try to saturate the BPS bound using the
vector field Vµ, since it can, in principle, contribute as a massive vector hair.
In order to do so, we consider the following metric ansatz

ds2 = l2L

(
− adt2 + r2dx2 +

1

f
dr2
)
, (4.5.18)

where the functions a and f depend on the coordinate r only. With this Ansatz
for the metric, one can show that the Killing spinor equation imposes the fol-
lowing constraint on these functions

a′
√
f

a
+

2
√
f

r
+ 2(α− 1) = 0 . (4.5.19)

4We thank Paul Townsend for a clarifying discussion on this exceptional case.
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Having obtained this constraint, we next turn to the vector equation (4.2.6).
Using the metric ansatz (4.5.18), the V0 and V2 components of the vector equa-
tion are automatically satisfied, while the V1 component reads

0 = (1 + α)
[
r2fa′ + 2a2

(
− 8f + r[2r(−1 + 5α+ α2) + 5f ′]

)
−ra

(
ra′f ′ + 2f(−5a′ + ra′′)

)]
. (4.5.20)

Imposing the Killing spinor constraint (4.5.19) to simplify the vector equation,
we obtain

−7r
√
f(α− 1)− 11f + r

(
r(7α− 2) + 3f ′

)
= 0 . (4.5.21)

As we wish to find a solution for f which has a double root at r = r0, which is a
necessary condition for an extremal black hole, we need to be able to eliminate
the f terms in the vector equation. Using the fact that the Killing spinor
constraint (4.5.19) can be cast into the following form

√
f(1− α) = −1

2

(a′
a

+
2

r

)
f , (4.5.22)

the vector equation can be written as

7

2
r
(a′
a
− 8

7r

)
f + r

(
r(7α− 2) + 3f ′

)
= 0 , (4.5.23)

which has the following solution

a = r8/7 , f = r2 − r2
0 . (4.5.24)

However, using this equation in the Killing spinor constraint (4.5.19), we find
that r0 = 0. A further check with the metric equation also imposes r0 =
0. Therefore, although the Killing spinor equation allows the existence of a
supersymmetric black hole, we find that the vector and metric equations are
incompatible with that possibility.

Alternatively, one may try to start with a rotating Lifshitz black hole using
the following metric ansatz

ds2 = l2L

[
−r−2αF (r)dt2 +

(
rdx+ r−αG(r)dt

)2
+

1

r2F (r)
dr2

]
, (4.5.25)
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where F (r) and G(r) are arbitrary functions that depend on the coordinate r
only. In this case the Killing spinor equation constrains the function F (r) to
be of the form

F (r) = 1 + ar−2+2α , (4.5.26)

where a is a constant. Furthermore, the vector equation constraints the function
G(r) by the following differential equation

21r4G′2 − 42r3(α+ 1)GG′ + 21r2(1 + α)2G2 + 4ar2α(6α− 11) = 0 .(4.5.27)

Using the solutions of this differential equation, along with the expression
(4.5.26) in the gravity equation, we find that it takes us back to the Lifshitz
background, not allowing a rotating black hole solution.

The result of this subsection is somewhat expected, considering the fact
that for the only rotating Lifshitz solution known to us [99], the couplings are
determined by using a stationary Lifshitz spacetime which has a rotation term.
This is not allowed by the given matter configuration of the N = (1, 1) CNMG
theory.

Finally, we would like to comment that as our attempts to find a super-
symmetric Lifshitz black hole has failed with the parity-even theory under our
consideration (4.2.1), one may consider to modify the CNMG by adding a
parity violating Lorentz-Chern-Simons term, which gives rise to the so-called
N = (1, 1) Generalized Massive Gravity (GMG). In that case, we found that
the vector equation is modified in such a way that the Lifshitz background is
no longer a solution with the field configuration given in (4.4.8).

4.6 Conclusions

Using the off-shell Killing spinor analysis, we have investigated the supersym-
metric backgrounds of the N = (1, 1) CNMG model given by the Lagrangian
(4.2.1). The background solutions are classified according to the norm of the
Killing vector constructed out of Killing spinors. There are two cases only.
First of all, when the Killing vector is null, the N = (1, 1) analysis reduces
to that of the N = 1 CNMG model, since the null choice forces the auxiliary
massive vector Vµ and the auxiliary pseudo-scalar B to vanish. Therefore, the
solution is of the pp-wave type which preserves 1/4 of the supersymmetries. In
the AdS3 limit, there is a supersymmetry enhancement, and the AdS3 solution
is maximally supersymmetric.
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As a second case, we investigated the case that the Killing vector is taken to
be timelike. In particular, we did consider a special class of solutions in which
the pseudo-scalar B vanishes. In that case all the supersymmetric solutions
can be classified in terms of the components Va of the massive vector in the
flat basis. A subclass of these solutions, with different parameters, are also
solutions of the supersymmetric TMG model, see Table 4.1. In addition to
these solutions, we found that the N = (1, 1) CNMG model possesses Lifshitz
and AdS2 × R solutions. All these background solutions preserve 1/4 of the
supersymmetries.

Next, we investigated three cases of black hole solutions in an AdS3 or Lif-
shitz background. In the case of AdS3, we studied the rotating hairy BTZ black
hole and the logarithmic black hole. We found that in general the rotating hairy
BTZ black hole is not supersymmetric due to the fact that the periodicity con-
dition on the φ coordinate and the periodic Killing spinors only arise when the
black hole is extremal. In the case of the logarithmic black hole, we found that
only the extremal black hole solution exists, which is supersymmetric by its
own nature. Finally, we analyzed the conditions for the existence of a super-
symmetric Lifshitz black hole, and showed that it does not exist given the field
configuration of the N = (1, 1) CNMG model.
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Chapter 5

Asymptotically Locally Flat
Black Holes in 2 + 1
Dimensions
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5.1 Introduction

Black holes in 3D with AdS and deformed AdS asymptotics have been known for
a long time, the BTZ black hole [21] being the most famous example. However,
it was recently realized that K-gravity, which we introduced Section 2.1, allows
a wide class of interesting black hole solutions which are asymptotically locally
flat. In this chapter, we study different types of such solutions including black
flower solutions (asymptotically flat black holes with deformed horizons), static
black holes, rotating black holes and the dynamical black flowers (black holes
with radiative gravitons ) K-gravity. We show how they appear in K-gravity and
we show that they are also solutions to the infinite order extended version of the
NMG, that is the Born-Infeld extension of NMG with the EH term deleted. The
same metrics also solve the topologically extended versions of these theories,
with modified conserved charges and thermodynamical quantities, such as the
Wald entropy. Besides these solutions we find new conformally flat radiating
type solutions to these extended gravity models. We show that these metrics do
not arise in Einstein’s gravity coupled to physical perfect fluids. The material
in this chapter is based on [100].

Our main tool will be the recent observation [101, 102] that the field equa-
tions of K-gravity split into two natural parts as Kµν = Jµν + Hµν , whose
explicit forms will be given below. The H-tensor is the 3 dimensional version of
the Bach tensor that vanishes for conformally flat (and conformally Einstein)
geometries. On the other hand the J-tensor does not have any derivatives of
the curvature and appeares as an interesting, bulk and boundary unitary de-
formation of topologically massive gravity (TMG) [29] to the minimal massive
gravity (MMG) [32]. All the types of black flower solution will appear as a
conformally flat solution (Hµν = 0), that also has vanishing J-tensor. This
realization and dissection of the K-gravity’s equations are crucial to upgrade
the solution to other extended theories of gravity, such as the Born-Infeld ex-
tension of NMG, without the Einstein term ( which we shall call BIK-gravity)
and their Chern-Simons modified versions. We will be able to show that there
are in fact 3 types of such solutions and no more: Type-D solutions to which
the black flower, static and rotating metrics belong, Type-II solutions of which
the dynamical black flower solution is an example and Type-N solutions.
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5.2 Black Holes in Purely quadratic theory: K-gravity

Black hole solutions were already found in [34, 103, 104] partly inspired from
earlier solutions [105–107] but as stated above, we shall make the appearance
of the solution more transparent to be able to upgrade it to other extended
theories, classify the solutions and show that there are no other possible classes
under the given conditions. The action of K-gravity is given by

I =
1

16πG

∫
d3x
√
−g K, K ≡ RµνRµν −

3

8
R2, (5.2.1)

where the 3D Newton’s constant G has dimensions of mass which makes the
theory power-counting super-renormalizable. The theory has a massless ghost-
free graviton about its unique maximally symmetric, flat vacuum. The source-
free field equations (Kµν = 0) read

0 = 2�Rµν −
1

2
∇µ∇νR−

1

2
gµν�R+ 4RµρνσR

ρσ − gµνRρσRρσ

−3

2
RRµν +

3

8
gµνR

2. (5.2.2)

They look somewhat cumbersome but as observed in [101], these field equations
split into two natural pieces

Kµν = Jµν +Hµν = 0, (5.2.3)

where the J and H-tensors are defined as

Jµν ≡ 1

2
ηµρσηνταSρτSσα, Hµν ≡

1

2
ηµ

αβ∇αCβν +
1

2
ην

αβ∇αCβµ, (5.2.4)

with ηντη being the completely antisymmetric tensor,

Sµν = Rµν −
1

4
gµνR (5.2.5)

the Schouten tensor and

Cµν = ηµ
αβ∇αSβν (5.2.6)

the Cotton tensor. Observe that Hµν is traceless and so the trace of the field
equations yield

K = gµνKµν = gµνJµν . (5.2.7)
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As for the covariant divergence of these tensors one has:

∇µHµν = −∇µJµν = ηναβSασCβ
σ. (5.2.8)

As we shall see, this compact form of writing the equations is not merely about
aesthetics, but it will help us understand the solution better since we know
which parts of the equations vanish on their own.

It is clear from the above discussion that all the solutions of K-gravity
satisfy the on-shell vanishing of K- (and so the action)

RµνR
µν =

3

8
R2, (5.2.9)

which can be recast as

I1 ≡ R̃νµR̃µν =
1

24
R2, (5.2.10)

where R̃µν is the traceless Ricci tensor and I1 is a curvature invariant which we
shall use to perform the Segre classification (see Section 2.4 for details) of the
solutions along with the Ricci scalar R and a third curvature invariant

I2 ≡ R̃νµR̃ρνR̃µρ . (5.2.11)

Now consider all the solutions of the theory withHµν = 0, which implies Jµν = 0
as well yielding

Jµν = −R̃µρR̃ρν +
1

3
gµνI1 +

1

12
RR̃µν = 0, (5.2.12)

where we wrote the explicit form of this tensor and used the fact that its trace
must vanish. At this stage the solutions bifurcate into two main classes: R 6= 0
and R = 0. Let us consider these cases separately as they will lead to spaces of
different types.

5.2.1 The R 6= 0 case

For this case the traceless Ricci tensor can be expressed using Eq. (5.2.12) as

R̃µν =
12

R

(
R̃µρR̃

ρ
ν −

1

3
gµνI1

)
. (5.2.13)

Multiplying this with R̃µν , one finds that the two curvature invariants are re-
lated by

I1 =
12

R
I2, I2 =

R3

288
, I3

1 = 6I2
2 . (5.2.14)
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Hence according to the Segre classification, all such solutions are either type-
D (metrics for localized objects) or type-II (metrics for localized objects with
gravitational radiation). Of course, this analysis does not yet tell us that there
are solutions to the theory. We must search for them explicitly. The best way
to start with is a circularly symmetric ansatz:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dφ2, (5.2.15)

Computing Hµν = 0, one finds that the metric function satisfies

f(r) = br − µ+ cr2, (5.2.16)

which yields the most general spherically symmetric and conformally flat metric.
Inserting this solution to the remaining piece of the equations, Jµν = 0 equation,
one finds that c = 0 is required. Hence the following, conformally flat, static
and asymptotically locally flat metric

ds2 = −(br − µ)dt2 +
dr2

br − µ
+ r2dφ2, (5.2.17)

is a solution of K-gravity with two constants b and µ. It is a static, asymptot-
ically flat black hole as discussed in [34,103,105] with a circular Schwarzschild
horizon at

rs =
µ

b
, (5.2.18)

as long as µ > 0 and b > 0. One can easily see that its traceless Ricci tensor is
of Type-Ds given by

R̃µν = −R
12

(
gµν − 3ξµξν

)
, (5.2.19)

where the scalar curvature and the vector ξµ are given as

R = −2b

r
, ξµ = −rδφµ, (5.2.20)

with ξµξ
µ = 1. The fact that ξµ is a space-like vector (hence the subscript s in

Ds) is important as we shall note below. Note also that the scalar curvature R
and the invariants I1, I2 blow up at the singularity r = 0, hidden safely inside
the Schwarzschild horizon rs. Going to the Euclidean version, near the event
horizon one finds that the Hawking temperature of the black hole is

T =
b

4π
. (5.2.21)
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Hence the dimensional parameter b is related to the mass of the black hole while
the dimensionless parameter µ is a gravitational hair [34].

Other solutions can be generated from the above static black hole. After
the transformation

u = t− r∗, dr∗ =
dr

br − µ
, (5.2.22)

described in [34], the static metric becomes

ds2 = −(br − µ)du2 − 2dudr + r2dφ2. (5.2.23)

With this form of the metric, one can introduce a deformation [h(u, φ)] along
the spacelike Killing vector ∂φ as follows

ds2 = −(br − µ)du2 − 2dudr + (r − h(u, φ))2dφ2. (5.2.24)

Inserting this ansatz into Hµν = 0, one finds that the following linear equation
must be satisfied1

∂u(∂u +
b

2
)h = 0. (5.2.25)

The solution of this equation is given by

h(u, φ) = A(φ) +B(φ)e−
b
2
u, (5.2.26)

where A(φ) and B(φ) are arbitrary periodic functions of the angular coordinate
φ. As a simple example of a black flower solution, see Figure 5.1. For this
solution one has Jµν = 0 automatically and the equations of K-gravity are
solved. Let us rewrite the metric in terms of the original coordinates to get a
better picture of its nature. This leads to the following expression

ds2 = −(br − µ)dt2 +
dr2

br − µ
+
(
r − h(t, r, φ)

)2
dφ2, (5.2.27)

where
h(t, r, φ) = A(φ) +B(φ)e−

b
2
t(br − µ)1/2. (5.2.28)

This solution is again Type-Ds or Type-II with the spacelike vector given by

ξµ =
(
h(t, r, φ)− r

)
δφµ. (5.2.29)

1Note that one can actually take a more general metric such as ds2 = −g(r)du2− 2dudr+
(r − h(u, φ))2dφ2 and find solutions to the Hµν = 0 equation, but, it turns out that unless
g(r) = br − µ, one does not have Jµν = 0.
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Figure 5.1
A picture of the black flower solution for the specific choice of dimensionless function

A(φ) = cos(8φ) + 1.5 .

When B(φ)=0, the time dependence drops out and one has a static, circularly
nonsymmetric black hole (black flower) which is Type-Ds. But when B(φ) 6= 0,
then the spacetime is dynamical and the black flower is formed only at t→∞
for b > 0. One can interpret it either as a black hole radiating gravitons or as
in-falling self-gravitating gravitons forming a black flower in the far future.

The full metric is given by

gµν = gSµν + ξµξν , (5.2.30)

where gSµν refers to the static circularly symmetric solution. This form suggests
that one can write it in a double Kerr-Schild way as

gµν = ηµν + f(r)λµλν + ξµξν , (5.2.31)

with ηµν the flat metric in the u, r, φ coordinates and

f(r) = br − µ, λµ = δuµ. (5.2.32)

While formally, this is correct, since the ξ-vector is not null, it is not possible
to employ this form to linearize field equations as done in [108].
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For completeness we note that in the u, r, φ coordinates one has

ξµ =
(
h(u, φ)− r

)
δφµ, (5.2.33)

which has vanishing divergence ∇µξµ = 0, but ξµ is not a Killing vector. Let
us note that for both static asymptotically flat black hole and the black flower,
as well as the dynamical black flower, the Einstein tensor reads

Gµν = −R
4

(
gµν − ξµξν

)
. (5.2.34)

Defining the right-hand side as the energy-momentum tensor Tµν one has

Tµν = −R
4

(
gµν − ξµξν

)
, (5.2.35)

and one might wonder if these solutions appear in Einstein’s gravity coupled to
perfect fluid [109,110] with the pressure (P ) and mass density (ρ) given by

P = −R
4
, ρ =

R

2
. (5.2.36)

While formally this is a strong energy condition-violating fluid, since the fluid
velocity ξµ is spacelike these solutions do not exist in Einstein’s theory coupled
to perfect fluids. Before we move on to the other case, let us note that for the
black flower solution, the scalar curvature is given by

R = − 2b

r − h(u, φ)
. (5.2.37)

In Figure 5.1, we have depicted an example of a simple black flower [B(φ) = 0.]
One must be careful though in the interpretation: from (5.2.37), it is clear that
the scalar curvature is singular for the values of the radial coordinate r = A(φ)
and hence one must restrict to r > A(φ). On the other hand, it is also clear
from (5.2.27) that the event horizon is at

rs =
b

µ
. (5.2.38)

If the singularity is pushed to the origin of the coordinates, then the horizon
takes a noncircular shape. Another way to see is to look at the induced metric
at the horizon

gφφ = (rs −A(φ))2 (5.2.39)

as suggested in [34].
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5.2.2 The R = 0 case

For this case one has
1

3
gµνI1 = R̃µρR̃

ρ
ν . (5.2.40)

Multiplying this with R̃µν , one arrives at

I2 = 0. (5.2.41)

Furthermore, from Eq. (5.2.10), one finds that

I1 = 0. (5.2.42)

Hence, according to the Segre classification, all such solutions are Type-Ns with
vanishing curvature invariants

Rµν = ξµξν , (5.2.43)

where ξµ is a null vector. A new example of this type of solutions is given by

ds2 = F 2(t, x, y)(−dt2 + dx2 + dy2), (5.2.44)

where
F 2(t, x, y) = (at+ bx+ cy)q, b = ±

√
a2 + c2, (5.2.45)

where q is an arbitrary real number.

5.3 The Born-Infeld extension of K-Gravity

Let us consider the Born-Infeld extension of K-gravity given by the action
[35,37,111]

I = − γ2

4πG

∫
d3x

[√
−det

(
gµν +

σ

γ
Gµν

)
− (1− σ

4γ
R)
√
−g
]
, (5.3.1)

where γ is the BI parameter with [γ] = mass2. This parameter is needed to be
able to define a BI extension of gravity. It controls the scale where the higher
derivative terms significantly change the structure of the theory. At the lowest
order in the curvature expansion, this BI action reproduces that of K-gravity
and γ plays no role. But in general there are two scales: the 3D Planck scale
Mp = 16πG and

√
γ. Of course one expects the latter to be several orders
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of magnitude smaller than the former. The theory has a unique maximally
symmetric vacuum, that is the flat spacetime, and a massless unitary graviton
about the vacuum. To find field equations of (5.3.1), we define a new tensor as

Mµν = gµν +
σ

γ
Gµν . (5.3.2)

Using this definition, (5.3.1) can be written as

I = − γ2

4πG

∫
d3x

[√
−M − (1− σ

4γ
R)
√
−g
]
. (5.3.3)

Let us focus on the variation of the first part of the action;

IM =

∫
d3x
√
−M

δIM =
1

2

∫
d3x
√
−M

∑
µ,ν

(M−1)µν δMµν

=
1

2

∫
d3x
√
−g
(√

M

g

∑
µ,ν

(M−1)µν δMµν

)
=

1

2

∫
d3x
√
−g BµνδMµν ,

(5.3.4)

where the B tensor is defined by

Bµν =

√
M

g
(M−1)µν , (5.3.5)

and (M−1)µν are the elements of the inverse of the matrix Mµν . Using this
form of the variation is particularly useful for the finding field equations, which
are given by

−Bµν + gµν +
σ

γ

(
−∇α∇(µBν )

α +
1

2
(∇α∇βBαβ −�B)gµν

+
1

2
�Bµν +

1

2
BµνR+

1

2
∇µ∇νB −

1

2
BRµν +

1

2
Gµν

)
= 0,

(5.3.6)

where B = gµνB
µν . We refer to [112] for a similar form of these equations.

The metrics (5.2.17) and (5.2.27) solve the BIK equations without a change of
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the metric functions. Let us rewrite the Born-Infeld extension of K-gravity as
follows

IBIK = − γ2

4πG

∫
d3x
√
−g
(
F (R,S1, S2) +

σ

4γ
R

)
, (5.3.7)

with

F (R,S1, S2) =

√
1− σ

2γ
(R+

σ

γ
S1 −

1

12γ2
S2)− 1,

S1 = R2
αβ −

R2

2
, S2 = 8RαβRασR

σ
β − 6RR2

αβ +R3.

(5.3.8)

We shall need these expressions in the computation of the entropy and the mass
of the black holes.

5.3.1 Some useful formulas for the calculation of entropy and
mass

What we present here is common knowledge, hence we do not go into details
but just quote the final results. We will calculate the geometrical entropy using
the Wald formula where the black hole entropy is computed to be the Noether
charge on the horizon [113–115]. There exists a simplified form of this formula
given by [82,116,117]

S = −2π

∫
dφ
√
gφφ

∂L
∂Rµν

εµ
αενα. (5.3.9)

Here, the binormal ενβ is defined through the time-like killing vector χµ =
(−1, 0,−Ω), with Ω = − gtφ

gφφ
being the angular velocity of the event horizon.

One has the relation

εµν =
1

κ
∇µχν , (5.3.10)

where κ is the surface gravity defined as

κ =

√
−1

2
∇µχν∇µχν . (5.3.11)

In the presence of the Chern-Simons term which we will define below in
(5.3.18), the black hole entropy is given in [118,119]

S =
2π

µCS

∫
dxσΓνµσε

µ
ν . (5.3.12)
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Using the first law of thermodynamics, we also compute the mass of the static
and rotating asymptotically locally flat black holes. It is an interesting prop-
erty of these solutions that the angular velocity of the horizon Ω vanishes and
the first law becomes TdS = dM . As a result, there is no way to compute
the angular momentum with the help of the first law. For K-gravity, it was
computed in [34]; however the angular momentum for the BIK theory remains
to be computed by a direct method.

To compute the entropy and the mass of black holes in BIK gravity, we need
the following expression

∂F

∂Rµν
=

−σ
4γ(F + 1)

(
[1− σ

γ
R+

1

2γ2
(R2

ρσ −
1

2
R2)]gµν

+
2

γ
(σ +

1

2γ
R)Rµν − 2

γ2
RµρR

ρ
ν

)
. (5.3.13)

For the static black hole (5.2.17) and the black flower solution (5.2.27), one
finds through the above methods that

S =
πb

4G
, M =

b2

32G
, (5.3.14)

which are exactly the same values found for the K-gravity [34]. K- gravity has
a rotating solution [93,105] given as

ds2 = −NFdu2 − 2N1/2dudr + (r2 + r2
0)(dφ+Nφdu)2, (5.3.15)

with

F = br − µ, N =
(8r + a2b)2

64(r2 + r2
0)
,

Nφ = −a
2

( br − µ
r2 + r2

0

)
, r2

0 =
a2

4

(
µ+

a2b2

16

)
. (5.3.16)

In [104], this solution is obtained by taking the flat-space limit of NMG and
a contracted conformal field theory with the BMS3 symmetries is proposed as
a dual description of K-gravity. This is a type-Ds metric with the following
properties

R̃µν = −R
12

(
gµν − 3ξµξν

)
,

ξµ =

{
0,−1

2
a

√
1

r2
0 + r2

,−a
2b

8
− r

}
, ξµξ

µ = 1. (5.3.17)
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With this form of the Ricci tensor, one can show that the rotating metric,
remarkably, also solves the BIK field equations which are a lot more complicated
field equations. The calculation of the entropy and the mass also yields the same
result as the static and the black flower cases (5.3.14).

5.3.2 Topologically extended K-gravity and BIK gravity

The Lagrangian density of topologically extended K-gravity is given by [29]

L =
√
−g

{
1

16πG
(RµνR

µν − 3

8
R2)

+
1

2µCS
ηµναΓβµσ

(
∂νΓσαβ +

2

3
ΓσνλΓλαβ

)}
, (5.3.18)

Let us calculate the mass and entropy of the static and rotating black holes.

1. The theory has an asymptotically flat black hole solution. Using the static
and asymptotically locally flat metric (5.2.17), one obtains

S =
πb

4G
, M =

b2

32G
. (5.3.19)

2. The theory has a rotating black hole solution. Using the rotating asymp-
totically locally flat metric (5.3.15), one obtains

S = πb
( 1

4G
+

2πa

µCS

)
, M = b2

( 1

32G
+

3πa

4µCS

)
. (5.3.20)

The Lagrangian density of topologically extended BIK gravity is given by

L =
√
−g

{
− γ2

4πG

(
F (R,K, S) +

σ

4γ
R

)

+
1

2µCS
ηµναΓβµσ

(
∂νΓσαβ +

2

3
ΓσνλΓλαβ

)}
, (5.3.21)

has the same entropy and mass expressions for these solutions. Hence the
Chern-Simons term does its job and changes the thermodynamics and conserved
charges of the rotating solution. Note that , for a particular choice of the Chern-
Simons parameter µCS , the mass or the entropy of the black hole vanishes.
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5.4 Conclusion

In this chapter, we have studied the recently found asymptotically flat black
holes (static ones, rotating ones, the black flower solution) and the dynamical
space-times of the purely quadratic part of the three dimensional new massive
gravity. After identifying their types, according to the traceless Ricci tensor, we
were able to upgrade these solutions to the Born-Infeld extension of the same
theory which in principle has an infinite powers of curvature. As expected, the
static black hole, rotating black hole and the black flower are type-D, albeit
with a spacelike vector, hence they do not appear as solutions to Einstein’s
theory coupled to perfect“physical fluids”. The dynamical black flower solution
is of type-II, representing the appearance of a static black hole in the far future.
It either forms due to the infalling gravitons or outgoing gravitons from a black
hole. We also gave some new type-N solutions.
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Chapter 6

Summary and Outlook
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In this thesis, we have investigated a wide variety of 3D gravity theories
from different perspectives, which include their supersymmetric completion in
addition to background and black hole solutions. Our starting point was the
fact that 3D Einstein gravity does not propagate any local degrees of freedom.
In order to introduce local dynamics, theories defined by Lagrangians with
higher curvature terms were considered.

In 3D, it is possible to avoid Ostragadski type instabilities, which gener-
ally appear in higher derivative gravity theories, and obtain theories that still
preserve unitarity. In Chapter 2, considering Lagrangians with at most four
derivatives of the metric, we reviewed those theories that are unitary around
flat spacetime. These theories are also unitary around an AdS spacetime for
a certain range in parameter space. However, they are expected to be holo-
graphically dual to a boundary CFT, and the boundary CFT turns out to be
non-unitary for the range of parameters that make bulk gravity theory unitary.
We introduced this bulk-boundary unitarity conflict by taking NMG as an ex-
ample. The main tools and concepts used in the subsequent chapters are also
explained in this chapter. The superconformal method for constructing super-
gravity theories, which is particularly useful in the higher derivative theories, is
explained in detail. Aspects of supersymmetric solutions, which are important
for the purpose of this thesis, are recapitulated. In the end, the algebraic clas-
sification of 3D spacetimes is discussed with a particular emphasis on higher
derivative theories.

In Chapter 3, the N = 2 supersymmetric extension of 3D higher deriva-
tive gravity theories up to four derivatives of the metric is constructed mainly
by using the superconformal method. Studying the two possibilities for the
off-shell closure of the algebra, N = (1, 1) and N = (2, 0) supersymmetries,
we find that only the first one allows for a ghost free AdS vacuum. Assuming
the formula derived for the case of pure gravity theories still holds, we show
that the bulk-boundary unitarity problem is not solved by supersymmetry. It
is still useful to check the validity of the formula for the central charge for
matter-coupled gravity theories, which still leaves some hope for a solution to
the problem. It might be the case that the non-minimal couplings between
graviton and matter fields lead to a different expression for the central charge.
The general class of off-shell supergravities constructed in this chapter leads to
a number of interesting possibilities for future work. One can perform a sys-
tematic study of supersymmetric solutions, where a special case is the subject
of Chapter 4. Although we constructed vector multiplet actions by using an
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arbitrary function of vector multiplet scalars, as given in equation (3.2.45), we
did not consider such constructions for the scalar multiplet. It would be inter-
esting to consider the coupling of an arbitrary number of scalar multiplets and
vector multiplets, since that would enable us to construct a much larger class
of supergravity Lagrangians [120]. The composite expression we derived for
both scalar and vector multiplets can also be used to construct matter-coupled
higher derivative supergravity models. Three dimensional matter coupled the-
ories such as these have attracted considerable attention in the context of rigid
supersymmetric theories on three-manifolds [80, 121]. One important possibil-
ity arises from the fact that the R-symmetry remains as a local symmetry in
the N = (2, 0) theory. One can use this setup to obtain an Einstein-Maxwell
theory where the R-symmetry is dynamically gauged, which should admit new
types of supersymmetric solutions.

In Chapter 4, supersymmetric solutions of the N = (1, 1) NMG with cosmo-
logical constant were studied by employing the off-shell Killing spinor analysis,
which was previously performed to study the solutions for the case of TMG.
The analysis is still valid in our case since the bosonic field configurations are
constrained only by supersymmetry without any reference to field equations.
Contrary to the N = 1 extension of the theory, where only spacetimes with
a null Killing vectors are allowed, it is possible to obtain supersymmetric so-
lutions with a time-like Killing vector. Various possible background solutions
are extensively studied here and a comparison with the case of TMG is made.
Embedding of some black hole solutions of NMG into a supersymmetric setup
is also investigated. There are numerous directions one can consider for future
study. An intriguing problem is to find a supersymmetric Lifshitz black hole.
Although our trials with the current model have failed, it is natural to consider
different approaches. For instance, one could saturate the BPS bound with a
U(1) charge. This can be achieved by coupling the N = (1, 1) CNMG model
to an off-shell vector multiplet and repeat the analysis performed in this chap-
ter. It is also worth mentioning that the same procedure can be applied to the
N = (2, 0) CNMG model. This model has a different field content consisting of
two auxiliary vectors and a real scalar as well as the graviton and the gravitino.
Given that the N = (2, 0) theory with matter couplings has new supersym-
metric solutions [62], we expect that the N = (2, 0) CNMG model will exhibit
different supersymmetric solutions. Therefore, it would be interesting to see
what the consequences of the different field content are for the supersymmetric
solutions of the model.
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In Chapter 5, we studied the solutions of K-gravity based on the observation
that the field equations can be split into two parts one of which is the 3D
Bach tensor that vanishes for conformally Einstein spaces and one of which
is purely algebraic in the powers of the curvature. With this approach, the
conformally Einstein solutions of the theory can be classified easily. We show
that solutions of only three algebraic types are possible: Type-D, Type-II and
Type-N . Since these solutions are conformally flat, we extend them trivially to
be the solutions to the Chern-Simons modified version of the theory. It is also
shown that solutions survive in the Born-Infeld type modification. For these
different possibilities, physical properties of the black hole solutions, conserved
charges and entropy, are presented. In future work, an exhaustive reach for all
solutions with nontrivial 3D Bach tensor (namely, Hµν 6= 0) could be done in
the K-gravity and the BIK gravity along the lines NMG and other extended
3D theories [52–54,110,122].

All the work that has been presented in this thesis is based on one central
theme: Imagining a lower dimensional universe makes Einstein’s theory trivial
from many perspectives, but it also creates a whole new playground for ideas
to modify it, which are not possible otherwise. Modifications that we have
considered yield, among many other things, different theoretical possibilities
for achieving gravitational dynamics, a richer structure of black hole physics,
along with the opportunity to study the holographic principle in a more general
setup. One might argue that this should be enough to pursue such a research
program. However, it seems that all these attempts always bring some new
interesting features at a price. They can also be seen as just different ways to
understand how unique Einstein’s theory is. It is, of course, up to the reader
to decide.
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Samenvatting

Van de vier fundamentele interacties waarvan we het bestaan in de natuur af
weten, is het waarschijnlijk zwaartekracht die het meest verwarrend is voor
theoretisch natuurkundigen. Onze eerste poging tot een theoretisch begrip van
zwaartekracht begon met Newton’s inverse kwadraat-wet, deze leidde tot een
succesvolle beschrijving van de banen van de planeten in ons zonnestelsel. Met
de bevestiging van het bestaan van een nieuwe planeet die voorspelt werd door
Newton’s theorie, die we nu Neptunus noemen, werd Newton’s theorie de stan-
daard manier om zwaartekrachtfenomenen te beschrijven.

Dit bleef het geval tot dat Einstein een nieuwe zwaartekrachttheorie voorstel-
de, de algemene relativiteitstheorie (ART), hier wordt zwaartekracht gezien als
een manifestatie van de door materie gegenereerde buiging van ruimtetijd. In
toevoeging tot het verschaffen van een verklaring voor de afwijking van de
baan van Mercurius, veranderde Einstein’s theorie op radicale wijze de manier
waarop we ruimte, tijd en materie beschouwen door middel van opmerkzame
voorspellingen zoals het bestaan van zwarte gaten. Echter wanneer deze the-
orie werd behandeld binnen het raamwerk van kwantum veldentheorie, wat
succesvol werd toegepast om een wiskundig consistente beschrijving te geven
voor de drie andere fundamentele interacties, realiseerde men dat deze niet
renormaliseerbaar is en daardoor zijn voorspellingskracht zou verliezen bij hoge
energie.

Op het huidige moment bezitten wij twee verschillende modellen om ons uni-
versum te beschrijven op respectievelijk de kleinste en grootste schaal. Aan de
ene kant hebben wij het standaard model van de deeltjesfysica (SM) die, onder
bepaalde omstandigheden, het gedrag verklaart van sub-atomische deeltjes tot
een verbazingwekkend hoge nauwkeurigheid. Aan de andere kant beschikken
we over het standaard model van de oerknal kosmologie (ΛCDM), die gebruik
maakt van ART op kosmologische schaal en een scala aan fenomenologische
successen met zich meebrengt. Om een paar te noemen: de verklaring van ster-
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renstelsel rotatiekrommen, de kosmische achtergrondstraling en de versnelde
uitbreiding van ons universum. Desalniettemin, wordt gebruikelijk aangenomen
dat voor verscheidene redenen een aantal fundamentele principes nog steeds aan
dit beeld ontbreken.

Het probleem van niet-renomaliseerbaarheid verhindert ons om ART in het
standaard model te verwerken en daarmee een volledige beschrijving te ver-
wezenlijken van alle fundamentele interacties op de kleinst mogelijke schaal.
Daarnaast, het ΛCDM model voorspelt het bestaan van donkere materie en
donkere energie, waarvan beide problematische aspecten bezitten. Op het
moment is er nog geen experimenteel bewijs voor donkere materie, en deze
vorm van niet-baryonische materie is niet in het standaard model verwezenlijkt.
Tegelijkertijd is de waarde van de kosmologische constante, gëıntroduceerd om
rekening te houden met donkere energie effecten, erg klein binnen het ΛCDM
model. De standaard model-voorspelling daarentegen stelt dat de Casimir en-
ergie vele ordes van grote hoger zou moeten liggen.

Een verscheidenheid aan aanpakken zijn gevolgd met de hoop om licht te
werpen op deze eerdergenoemde problemen. Snaartheorie, wiens voordeel is dat
het alle fundamentele interacties unificeert, en loop-kwantumzwaartekracht zijn
de voornaamste kandidaten voor de kwantisatie van zwaartekracht. Daarnaast
bestaan er voorstellen om zowel het standaard model alswel ART aan te passen.
Het is de aanpassing van ART die een centrale rol zal spelen in het grootste
deel van de discussie in deze these.

Een simpele manier om Einstein’s zwaartekracht aan te passen is om hogere
krommingstermen toe te voegen aan de Einstein-Hilbert actie. De resulterende
theorie bezit nog steeds dezelfde ijksymmetriën aangezien het gedefinieerd is
door middel van een Lorentz invariante actie.

Een belangrijk resultaat gerelateerd aan het renormalisatie probleem van
zwaartekracht is, zoals aangetoond door Stelle, dat een renormaliseerbare zwaart-
ekracht theorie verkregen kan worden door hogere krommingstermen toe te
voegen aan de Einstein-Hilbert actie. Echter, de resulterende theorie in niet
unitair en schend daardoor behoud van waarschijnlijkheid. Zoals dit klassieke
voorbeeld aantoont, ondanks dat hogere krommingstermen de renormaliseer-
baarheid eigenschappen van een theorie kunnen verbeteren, bestaan er zware
restricties waaraan een theorie moet voldoen om unitariteit in acht te nemen.

Door de fluctuaties van de metriek om vlakke ruimte te beschouwen en het
zwakke veld limiet van ART te nemen verkrijgen we de unieke zelf-consistente
theorie van een massaloos spin-2 deeltje, wat we het graviton noemen. Als
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startpunt had men ook deze unieke veldentheorie kunnen nemen en alle mogeli-
jke hogere krommingstermen beschouwen die de ijksymmetriën van de theorie
handhaven. Het is mogelijk om aan te tonen dat deze procedure ART oplevert
als de niet-lineaire vollediging van de veldentheorie van het massaloze spin-2
veld, dit onthult een fundamentele connectie tussen de ijkinvariantie en het
equivalentie principe. Vanuit dit veldentheorie perspectief lijkt het natuurlijk
om het geval van een massief spin-2 veld en zijn implicaties te beschouwen op
niet-lineair niveau. Dit is het achterliggende idee van het ’Massive Gravity’
onderzoeksprogramma wat veel aandacht heeft getrokken de laatste tijd. De
introductie van een massief graviton leidt tot een Yukawa-type zwaartekracht-
potentiaal, een op lange afstand exponentieel afstervende potentiaal met een
lengte schaal bepaald door de graviton massa, deze kan mogelijk helpen met
het oplossen van fenomenologische problemen geassocieerd met zwaartekracht
op galactische en kosmologische schaal.

In deze these bestuderen we verscheidene zwaartekracht theoriën in 3 ruimte-
tijd dimensies met verschillende toepassingen in gedachten. Het hoofdidee is dat
ondanks dat de eerder genoemde fenomenologische motivaties verloren raken,
men 3D zwaartekracht theoriën kan beschouwen als een theoretisch laborato-
rium om ons begrip van bepaalde fysische ideeën te verbeteren in een relatieve
simpelere opstelling.

Een belangrijke eigenschap van Einstein’s zwaartekracht in 3D is zijn lokale
trivialiteit. Voor elke 3D Einstein ruimte is kromming van ruimtetijd direct
vastgesteld door de lokale materiedistributie. Hierdoor bestaan er geen dy-
namische vrijheidsgraden die door zwaartekrachtgolven kunnen propageren.

Ondanks zijn lokale trivialiteit is aangetoond dat 3D Einstein zwaartekracht
met negatieve kosmologische constante zwarte gat-oplossingen toestaat, het
Banados-Teitelboim-Zanelli (BTZ) zwarte gat. De oplossing is lokaal niet on-
derscheidbaar van Anti-de Sitter (AdS) ruimtetijd maar beschikt over alle eigen-
schappen van een zwart gat. Het beschikt over een goed gedefinieerde horizon
en wordt uitsluitend gekarakteriseerd door zijn massa en hoekmoment, dit zijn
globale ladingen die de ruimte onderscheid van AdS ruimtetijd.

Een andere interessante eigenschap van 3D Einstein zwaartekracht met een
negatieve kosmologische constante werd onthuld door Brown en Henneaux. Zij
hebben aangetoond dat de globale ladingen die overeen komen met de asymp-
totische symmetriën van de theorie een Poisson algebra opleveren met een cen-
trale extensie. Onder bepaalde randvoorwaarden blijkt de resulterende alge-
bra overeen te komen met twee kopieën van de Virasoro algebra, dit is de
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algebra waar de generatoren van de lokale hoekgetrouwe transformaties op de
Hilbertruimte van 2D hoekgetrouwe veldentheorie (CFT). hierdoor wordt een
intrigerende relatie tussen de dynamica van het klassieke graviton in 3D en the
representaties van de Hilbert ruimte van een 2D CFT, die inherent kwantum
mechanisch is. De holografische natuur van dit resultaat is opmerkelijk, en nu
wordt het beschouwd als een voorteken van de AdS/CFT correspondentie, die
is gebaseerd op ideeën gëıntroduceerd door ’t Hooft en Susskind.

Het holografisch principe in de moderne formulatie suggereert een exacte
equivalentie van een kwantum zwaartekracht theorie op de d-dimensionale AdS
ruimtetijd en een ijktheorie gedefinieerd op de (d-1)-dimensionale hoekgetrouwe
rand van de AdS ruimtetijd. Het is een zwak/sterk-type dualiteit, wat het mo-
gelijk maakt om beide theorieën te bestuderen in verschillende regimes. On-
danks dat het idee concreet gemaakt werd als de dualiteit tussen type-IIB snaren
theorie op AdS5×S5 en deN = 4 super Yang-Mills theorie in de grote Nc limiet,
wordt vermoed dat de dualiteit standhoud voor algemene zwaartekracht theo-
rieën op AdS ruimtetijd. Door het bestuderen van een zwak gekoppelde theorie
kan men informatie extraheren over de vermoedelijk duale sterk gekoppelde the-
orie. Deze aanpak opent de deur naar het beter begrijpen van sterk gekoppelde
ijktheorieën, waar veel toepassingen voor zijn in verschillende gebieden.

Omdat de algebra van lokale hoekgetrouwe transformaties in 2D oneindig
dimensionaal is, zijn 2D CFTs veel gemakkelijker om te analyseren dan hoger
dimensionale gevallen. Ze worden ook toegepast in snaren theorie waar de exci-
taties van de snaar worden beschreven door een 2D CFT vanuit het wereldlaken
perspectief. Daarom zijn ze de meest bestudeerde en best bekende voorbeeld
van velden theorieën met hoekgetrouwe symmetrieën, waardoor het bestud-
eren van holografie in 3D zwaartekracht theorieën in het bijzonder de moeite
waard maakt. Een voorbeeld dat in het bijzonder genoemd zou moeten worden
is Stromingers berekening van de Bekenstein-Hawking entropie van het BTZ
zwarte gat door middel van staten in de 2D CFT. Dit resultaat reflecteert het
feit dat het holografische principe tot verrassende resultaten kan leiden, zelfs in
het geval waar de details van de duale velden theorie op de rand niet bekend
zijn. Zonder enige directe referentie aan snaren theorie of supersymmetrie, de
aanname van een zwaartekracht theorie op AdS met een duale 2D CFT levert
een microscopische verklaring voor de entropie van een BTZ zwart gat.

Een ander voordeel van het werken in 3D is de mogeljkheid om theorieën te
construeren met een massief spin-2 deeltje wat unitair is. Het eerste voorbeeld
van zo een theorie werd verkregen door een zwaartekracht Chern-Simons term
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toe te voegen aan de Einstein-Hilbert actie. De resulterende theorie, genoemd
Topologische Massieve Zwaartekracht (TMZ), heeft derde orde veld vergelijkin-
gen die de enkele +2 of -2 heliciteit staten beschrijven, afhankelijk van het teken
van de Chern-Simons koppeling.

Een andere unitaire theorie van 3D massieve zwaartekracht die niet pariteit
schendende termen heeft was geconstrueerd door Bergshoeff, Hohm en Townsend.
Deze theorie, Nieuwe Massieve Zwaartekracht (NMZ) genoemd, wordt verkre-
gen door een zekere combinatie van gekwadrateerde kromming termen toe te
voegen (K = R2

µν − 3
8R

2) aan de Einstein-Hilbert term, wat leidt tot vierde
orde veld vergelijkingen. De theorie heeft twee heliciteit ±2 massieve staten
omdat het pariteit behoudt.

Ondanks dat TMZ en NMZ allebei unitair gemaakt kunnen worden op
vlakke ruimtetijd, zijn er nog enkele problemen als dit gedaan wordt op AdS
ruimtetijd. Het BTZ zwarte gat wordt een oplossing van deze theorieën, en
de parameters die voor unitariteit zorgen, maken de massa van het zwarte gat
negatief. Ook zorgt het unitair maken van de bulk theorie ervoor dat de cen-
trale lading van de rand CFT negatief wordt, wat de unitariteit van de rand
theorie verpest. Unitariteit van de bulk is in direct conflict met unitariteit op
de rand.

De theorie die bepaald wordt puur door het kwadratische gedeelte van NMZ
laat interessante eigenschappen zien. Als eerst werd aangetoond dat het een
enkele, massaloze propagerende staat heeft. Omdat de actie van de theorie is
gevormd door een scalar (K = R2

µν − 3
8R

2), wordt eraan gerefereerd als K-
zwaartekracht. De studie naar exacte oplossingen van K-zwaartekracht leidde
tot de eerste zwarte gat oplossingen in 3D zwaartekracht die asymptotisch lokaal
vlak zijn, en die ook gedeformeerd kunnen worden tot het hebben van een niet
sferisch symmetrische horizon, de zogenoemde ”zwarte bloem” oplossingen.

In dit proefschrift werden deze 3D gemodificeerde zwaartekracht theorieën
vanuit verschillende perspectieven bestudeerd, inclusief hun supersymmetrische
theorie in toevoeging tot achtergrond en zwarte gat oplossingen.

In hoofdstuk twee wordt achtergrond materiaal behandeld dat nuttig is om
de latere hoofdstukken te begrijpen. Inclusief een herhaling van de unitariteit
analyse van de verschillende 3D gemodificeerde zwaartekracht modellen, een
korte introductie tot hoekgetrouwe constructies van superzwaartekracht theo-
rieën, het voornaamste aspect an klassieke suppersymmetrische oplossingen van
zwaartekracht theorieën en de algebräısche classificatie van 3D ruimtetijden.

In hoofdstuk drie onderzoeken we de N = 2 supersymmetrische extensies
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van 3D zwaartekracht theorieën met acties die tot op kwadratische orde krom-
ming invariant zijn, inclusief Einstein zwaartekracht, en TMZ, NMZ en K-
zwaartekracht als bijzondere gevallen. De N = 2 supersymmetrie laat twee
verschillende formulaties toe van superzwaartekracht, N = (1, 1) en N = (2, 0)
toe, die niet op de massaschil zitten en die verschillende fysische eigenschappen
hebben voor theorieën met hogere afgeleide termen. Na het presenteren van de
constructie van alle supersymmetrische invarianten laten we zien dat unitariteit
op de AdS achtergrond alleen overleeft in het N = (1, 1) geval en het super-
symmetrische vacuum geeft geen verbetering ten opzichte van het niet unitair
zijn van de rand CFT.

Hoofdstuk vier is gewijd aan supersymmetrische oplossingen van de N =
(1, 1) NMZ. We laten zien dat, in tegenstelling tot het N = 1 geval, wat
alleen oplossingen heeft met een nul Killing vector, N = (1, 1) supersymmetrie
oplossingen toelaat met een Killing vector in de tijdrichting, inclusief verschil-
lende gedeformeerde AdS achtergronden en een Lifshitz ruimtetijd. Uiteindelijk
worden de supersymmetrische eigenschappen van enkele zwarte gat oplossingen
van NMZ bediscussieerd.

In hoofdstuk vijf bestuderen we de asymptotisch vlakke zwarte gat oplossin-
gen van K-zwaartekracht vanuit een ander perspectief. Door het gebruik van
een decompositie van de veld vergelijkingen in twee natuurlijke tensoren, clas-
sificeren we alle mogelijke oplossingen van de theorie en geven we nieuwe types
van oplossingen. We laten ook zien dat de bekende oplossingen nog steeds
oplossingen zijn van het Born-Infeld type en de Chern-Simons type extensies
van de theorie. Voorts worden de modificaties van de behouden lading en de
thermodynamische eigenschappen bediscussieerd.

In hoofdstuk zes geven we een samenvatting en geven we mogelijke richtin-
gen aan voor toekomstig onderzoek.
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