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ABSTRACT

Classical control systems design uses fixed plant transfer functions yet engineers have
known for many years that there is often considerable uncertainty regarding the parame-
ters used in a transfer function representation. A major breakthrough on systems with un-
certain parameters was achieved by the Russian mathematician Kharitonov who extended
the Routh stability criterion to polynomials with an independent uncertainty structure
known as interval polynomials, that is where the polynomial coefficients may be assumed
to lie within a specific range rather than being fixed. Recently some important extensions,
such as the edge theorem and the generalized Kharitonov theorem to the polynomials with
more complex uncertainty structure, have been given. Motivated by these results, there
has been a substantial amount of research in the field of robust control dealing with the
analysis and design of systems containing parametric perturbations. This thesis presents
additional results in this direction and the work can be divided in to three main parts.

The first part deals with interval systems, which is the simplest form of uncertain
control systems. An extension of a new approach which is based on the Hermite-Biehler
theorem to the Lag/Lead controller structure for stabilizing a linear time-invariant plant is
given. The approach is then used for computing the parameters of controllers for relative
stabilization and interval plant stabilization. A user friendly software program, called
“Analysis of Interval Systems Toolkit” (AISTK), has been developed in the MATLAB
environment. The robust gain and phase margins and outer boundary of the Nyquist
envelope of an interval plant family are discussed using the generalized Hermite-Biehler
theorem. The gain crossover, phase crossover and the bandwidth frequencies of an interval
plant are formulated.

The second part of the thesis considers control systems with affine linear uncertainty.
An approach is given for plotting the Bode, Nyquist and Nichols envelopes of a transfer
function with such parametric uncertainty. A novel feature of the approach is the use of
the convex parpolygonal value set of a polynomial with affine linear uncertainty. Using
these frequency envelopes, classical control design techniques are used to design robust
control systems. Some results are developed on the determination of a robust small gain
theorem, robust performance, strict positive realness and absolute stability problem of

control systems with parametric as well as unstructured uncertainty.



The final part of the thesis studies the describing function analysis of nonlinear discrete
interval systems. Using the results regarding the Schur stability of interval polynomials,
a method is presented for investigating the stability of uncertain discrete systems with

separable nonlinearities.
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Chapter 1

INTRODUCTION

1.1 Introduction

1.2 What is Robust Control?
1.3 Parametric Theory

1.4 Outline of the Thesis

1.1 Introduction

Control theory within this century can be divided into four main periods: classical control,
optimal control, control of multivariable systems and robust control. The period 1930-1960
can be classified as the “Classical Control” period. Here famous pioneers, like Bode [28],
Nyquist [110] and Nichols [109], developed control design tools such as the Bode, Nyquist
and Nichols plots. The root locus design methods became important, after the root locus
technique was developed by Evans in 1948 [56]. Concepts such as gain and phase margins
were introduced and have been widely used for controller design as a measure of stability
margin. The results developed in this period have been successfully applied by practising
control engineers.

The next period started from the early 1960’s and can be called “Optimal Control”.
The state-space approach to optimal control and filtering theory was introduced in 1960 by
Kalman [82]. Concepts such as controllability, observability, optimal state estimation and

optimal state feedback were developed and introduced during this stage. These concepts



were based on state space matrix equations rather than frequency domain transfer func-
tions. Thus, these results shifted the emphasis in control engineering from the frequency
domain to the time domain.

In the third stage of control theory development, control engineers dealt with the design
of multivariable systems by frequency domain design methods. Extensions of the scalar
classical frequency response techniques for multi-input multi-output (MIMO) systems were
developed by Rosenbrock [114], MacFarlane [103] and Mayne [105].

The current fourth period from 1980 until today may be known as “Robust Control”,
which is one of the fastest growing and promising areas of research today. With robust
control, researchers have begun to deal with systems which have uncertainties. Thus, more

realistic and advantageous results have been developed.

1.2 What is Robust Control?

In modelling physical systems for control purposes, one normally needs to generate math-
ematical representations of the system. However, in general, it is difficult to obtain an
exact mathematical description of a physical process. Therefore, it is necessary to make
some simplifications in order to obtain a description of the system which is tractable. The
difference between an exact model and its simplified form is called a perturbation. The
requirement for a control design to be successful is that it must cope with any changes such
as parametric variations which may occur in a system. This ability of a control system is
known as robustness. Thus, robust control refers to the control of uncertain plants. The
problem is to design a fixed controller which guarantees acceptable performance in the
presence of uncertainty. Uncertainties in control systems can be broadly classified under
two categories. They are:

i) structured (or parametric) uncertainty, representing lack of precise knowledge of the
actual parameters. For example, the uncertain parameters can be the coefficients of a
transfer function of a system.

ii) unstructured (or nonparametric) uncertainty which represents unmodelled dynam-
ics, nonlinearities and error due to linearizations etc.. These types of uncertainties are
usually given as norm bounded perturbations.

The purpose of robust control is to apply the well known techniques used in linear con-



trol system theory to, and develop new techniques for the analysis and design of systems
with the uncertainties described above. In recent years there have been some important
developments in the field of robust control [32] such as use of singular values as a mea-
sure of gain in transformations (Doyle and Stein [55]), the factorial approach in controller
synthesis (Vidyasagar [132], Cailler and Desoer [31]), parametarization of stabilizing con-
trollers (Youla et al. [137, 138], Desoer et al. [51]), Hoo optimization (Zames [140], Zames
and Francis [141], Helton [68]), robust stabilization and sensitivity minimization (Kimura
[90], Vidyasagar and Kimura [133], Francis and Zames [60], Chang and Pearson [33]), com-
putational aspect of H, optimization (Delsarte et al. [50], Glover [66], Francis et al. [61])
and parametric theory-Kharitonov theorem and related approaches (Barmish [13], Acker-
mann [1], Bhattacharyya et al. [25], Djaferis [52]). One of the main reasons behind all
these developments taking place in recent years is the striking advances in micro-processor
design and computer technology. Among these topics, the takeoff point for this work is

the parametric theory.

1.3 Parametric Theory

The analysis and design of systems which are subjected to parametric perturbations was
largely ignored before the 1980’s. The reason was mainly due to the fact that there were
no theories which can be used for analysing or designing control systems with uncertain
parameters. Of course, there are some notable exceptions. For example, the Evans root
locus method [56], is an important tool for stability and robustness analysis for single
parameter perturbations. In the book by Siljak [117], the issue of robust stability for
systems with structured real parametric uncertainty is considered. For problems involving
robustness analysis with uncertain parameters entering multilinearly into transfer function
coefficients, a powerful tool is the mapping theorem given in the book by Zadeh and Desoer
[139]. The book by Horowitz [78] made some contributions to robust synthesis.

However, after the mid-1980’s, one can see a new explosion of research involving real
parametric uncertainty. The reason for this explosion of results in the field of parametric
theory is the seminal theorem of Kharitonov [88]. Kharitonov’s theorem was originally
published in 1978 in the Russian technical literature, however, it remained largely unknown

for several years partly due to the fact that Kharitonov’s original proof was complicated



and difficult to understand. However, since the introduction of this remarkable theorem to
the Western literature by Barmish [14], many papers have appeared providing new proofs
of this theorem [29, 35, 106, 47] which are easy to understand.

The Kharitonov theorem is an extension of the Routh stability criterion to interval
polynomials. An interval polynomial is a polynomial where each coefficient can vary in
a prescribed interval. The Kharitonov theorem states that an interval polynomial family,
which has an infinite number of members, is Hurwitz stable if and only if a finite small
subset of the family which consists of four polynomials known as Kharitonov polynomials
are Hurwitz stable. The most significant results following this theorem have been the
edge theorem of Bartlett et al. [21] and the generalized Kharitonov theorem of Chapellat
and Bhattacharyya [34]. The edge theorem considers a family of polynomials with affine
linear uncertainty structure which means that the coefficients are not independent as
in the case of interval polynomials. It proved that the whole family is stable if and
only if all the exposed edges of the polytopic family are stable. Furthermore, the edge
theorem is not restricted to Hurwitz stability and it can be applied to general stability
regions. The generalized Kharitonov theorem is an improved version of the edge theorem.
The advantage of the generalized Kharitonov theorem over the edge theorem is that the
number of edges which are required for stability are not dependent on the number of
uncertain parameters. Using these results, there have been many developments in the
field of parametric robust control. Some of these developments are summarized shortly as

follows:

1. Robust stability of uncertain polynomials (Argoun [3], Barmish [15], Soh [119],
Rantzer [113], Datta and Bhattacharyya [49], Shaw and Jayasuriya [116], Levkovich
et al. [101], Arhipov et al. [6], Hernandez et al. [69]);

2. Parametric stability margin computation (Chapellat et al. [40], Soh et al. [120],
Blanchini et al. [27], Mahon et al. [104], Ke [86]);

3. Frequency response computation of uncertain systems (Bailey and Hui [10], Bartlett
et al. [24], Hollot and Tempo [75], Keel and Bhattacharyya [87], Fu [62], Levkovich
and Zehep [102], Tan and Atherton [121, 122, 123)]);

4. Stabilization of systems with parametric uncertainty (Ghosh [65], Hollot and Yang



[76], Barmish et al. [16], Djaferis [54], Naimark and Zehep [108], Ho et al. [70], Tan
and Atherton [124, 125]);

5. Robust root locus (Barmish and Tempo [17], Chen et al. [41], Hwang et al. [79],
Hwang and Chen [80]);

6. Analysis of time delay sytems with parametric perturbations (Barmish and Shi [18],

Fu et al. [63], Tsypkin and Fu [131], Kogan and Leizarowitz [94]);

7. Robust Schur stability of interval polynomials (Bose et al. [30], Cieslek [44], Hollot
and Bartlett [77], Kraus et al. [93], Katbab and Jury [84]);

8. Describing function analysis of uncertain nonlinear systems (Fadali and Chachavalvoong

[57], Ferreres and Fromion [58], Impram and Munro [81], Tan and Atherton [126]);

9. Probabilistic robustness (Chen and Zhou [42, 43|, Lagoa et al. [97], Barmish et al.
[19]);

10. Critical direction theory (Latchman et al. [98, 99, 100]);

11. Multi-input/Multi-output(MIMO) uncertain systems (Santis and Vicino [115], Ye-
ung and Winnie [135], Kontogiannis and Munro [95, 96])

12. Absolute stability of parametrically uncertain systems (Dasgupta [48], Grujic and
Petkovski [67], Chapellat et al. [37, 38, 39], Tesi and Vicino [129], Dahleh et al. [46],
Foo and Soh [59], Mori et al. [107], Tan and Atherton [127, 128])

An extensive discussion about all the results introduced so far and some further results
can be found in the books [1, 13, 25, 52]. Despite all of these developments, the field of
parametric robust control is still an active research area. There are many open problems

which need to be answered.

1.4 Outline of the Thesis

This work aims to do further investigation and research on control systems with paramet-

ric uncertainty. Computation of stabilizing controller parameters using the generalized



Hermite-Biehler theorem, development of user friendly programs for the analysis of in-
terval systems, developments of methods for computing frequency responses of uncertain
systems, extensions of these methods to the different control problems such as the deter-
mination of the robust small gain theorem, robust performance, strict positive realness
and absolute stability problem of systems with parametric as well as unstructured pertur-
bations, and describing function analysis of uncertain systems are the main objectives of

this work. The research work is organized as follows:

Chapter 2: Kharitonov Theorem and Related Approaches

In this chapter a description of parametric uncertainty structure is first given. Then
some technical tools such as the value set concept, the zero exclusion principle, the seg-
ment lemma, the Kharitonov theorem and the edge theorem which play an important role
while analysing the robust stability of polynomials with parametric uncertainty are sum-
marized. Finally, the sixteen Kharitonov plants family and thirty-two systems which are
the two fundamental concepts behind many results developed in the field of parametric

robust control are introduced.

Chapter 3: Feedback Stabilization Using the Hermite Biehler Theorem

This chapter deals with the stabilization of control systems using a recently developed
new approach. The approach is based on a new result [71] generalizing the classical
Hermite-Biehler theorem to the case of not necessarily Hurwitz polynomials and considers
the stabilization of feedback systems using P, PI and PID controllers. In this chapter,
an extension of the results given in [72, 73, 74] to the Lag/Lead controller structure for
stabilizing a given transfer function is first given. The approach is then developed for PI,
Lag/Lead and PID controllers to achieve relative stabilization. Finally, the stabilization
of an interval plant family is discussed using the sixteen Kharitonov plants family and the

generalized Hermite-Biehler theorem.



Chapter 4: A Software Package Program for Analysis of Interval Systems

The chapter describes a software program called “Analysis of Interval Systems ToolKit
(AISTK)” which is a collection of algorithms developed in the MATLAB environment.
AISTK is a user friendly toolkit like control kit and deals with the analysis of uncertain
systems defined by an interval plant structure. In addition the procedures for construct-
ing various envelopes that contain the entire frequency responses of an interval system are
given. The outer boundary of the Nyquist envelope of an interval plant family is discussed
using the generalized Hermite-Biehler theorem. The formulation of gain crossover, phase
crossover and bandwidth frequencies of an interval plant are also given. The application

of a simple autotuning method to an interval plant is given by an example.

Chapter 5: Frequency Response of Systems with Affine Linear Uncertainy

In this chapter, effective procedures are proposed for computing the Bode, Nyquist and
Nichols envelopes of a transfer function with an affine linear uncertainty structure. The
procedures are based on the convex parpolygonal value set of a polytopic polynomial fam-
ily. Using this family of plots, classical control design techniques are used to design robust

control systems.

Chapter 6: Analysis of Control Systems with Mixed Perturbations

Extensions of results developed in the previous chapter to problems such as the deter-
mination of a robust small gain theorem, robust performance, strict positive realness and
the absolute stability problem of control system with parametric uncertainty is made.
Thus, the chapter studies control systems with parametric as well as unstructured un-
certainty. The unstructured uncertainty is modelled as norm bounded perturbations and
sector bounded nonlinear gains and the parametric uncertainty is represented by a trans-
fer function whose numerator and denominator polynomials are polynomials with affine

linear uncertainty.



Chapter 7: The Describing Function Analysis of Nonlinear Discrete Inter-

val Systems

The describing function analysis of discrete interval systems with separable nonlineari-
ties is studied. Some of the results developed in the area of parametric robust control
related to the stability of discrete interval polynomials are combined with the describing

function method to analyze the stability problem of discrete nonlinear interval systems.

Chapter 8: Conclusion

This chapter outlines the new contributions of the work presented in this thesis and makes

suggestions for future research.



Chapter 2

KHARITONOV’S THEOREM
AND RELATED APPROACHES

2.1 Introduction
2.2 The Issue of Uncertainty Structure
2.3 Some Essential Tools of Robust Control Under Parametric Uncertainty
2.3.1 Value Set Concept
2.3.2 Zero Exclusion Principle
2.3.3 Segment Lemma
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2.1 Introduction

The stability analysis of control systems is a very important issue and therefore has always
been a major concern of control engineers. Autonomous stability means that, in the
absence of external excitation, all signals in the system decay to zero. A control system
is stable if and only if all the roots of the characteristic equation of the system lie in the

left-half s plane. In classical control there are some powerful tools, which were developed



for a fixed nominal system, such as the Routh-Hurwitz criterion for continuous systems,
Jury’s test for discrete systems and the well known frequency domain plots (Nyquist, Bode
and Nichols plots) for stability analysis and controller design. However, as mentioned in
Chapter 1, in real physical systems, the parameter variations of the transfer functions
is an unavoidable fact. Thus, the fundamental problem in the study of control systems
with parametric uncertainty is to determine whether or not all the polynomials in a given
family of characteristic polynomials are Hurwitz stable. This property is known as robust
stability which is one of the main subjects of parametric robust control.

Parametric robust control has made tremendous strides related to the robust stability
analysis of parametrically uncertain systems since the publication of Kharitonov’s cele-
brated theorem [88]. The Kharitonov theorem simply stated that the robust stability of
an interval polynomial can be determined by testing the stability of just four polynomials
in the real coefficient case. With this surprising result the entire field of parametric robust
control came alive and researchers have addressed the following questions: To what extent
can the Kharitonov theorem on the uncertain structure be relaxed? How can it be used
for the analysis and design of control systems? The edge theorem of Bartlett et al. [21]
and the generalized Kharitonov theorem(GKT) of Chapellat and Bhattacharyya [34] are
the most significant results in this direction.

The organization of this chapter is as follows: Section 2.2 introduces the issue of uncer-
tainty structure. In Section 2.3 some fundamental concepts, namely the value set concept,
zero exclusion principle and segment lemma which are repeatedly used while analysing
robust stability of uncertain polynomials, are first given. Then, the famous Kharitonov
theorem and a major theorem developed during the post-Kharitonov era known as the
edge theorem are introduced. Application of the Kharitonov theorem to a control sys-
tem is considered in Section 2.4. In this section, the sixteen Kharitonov plant family and

thirty-two systems are given. The final section gives a summary of the chapter.

2.2 The Issue of Uncertainty Structure

No matter how accurately one tries to mathematically model an engineering system, the
model never describes exactly the system’s behaviour. Environmental changes as well as

component production tolerances affect the values of the system’s parameters. Therefore,
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it is more realistic to assume a model with uncertainties.

Consider the standard feedback system shown in Figure 2.1 with a fixed plant

G(s) = ]1\)[8 (2.1)
and a compensator
C(s) = gg (2.2)

The classical stability problem for this standard configuration leads to examination of the
closed loop polynomial N(s)N.(s)+ D(s)D.(s). In practice, however, as stated above the
physical parameters entering into the model of a control system may not be known exactly.
Typically, these physical parameters are known to vary in prescribed intervals, this leads
to a resulting closed-loop polynomial which includes perturbations associated with these
parameters. One can denote [20] these unknown parameters by a vector q = [q1, g2, ..., ¢4]”
which is restricted to a prescribed bounding hyper rectangle (uncertainty box) @ in R? as

Q = {a€R?: ¢;€[q;, Gl,i = 1,2, ....,q} (2.3)

where g; and g; are specified lower and upper bounds of the ith perturbation g;, respec-
tively. Such an uncertainty box is shown in Figure 2.2 for three unknown parameters.
Now, assume that the fixed transfer function of the configuration given in Figure 2.1 is an

uncertain transfer function of the form

Gs,q) = (2.4)

where N(s,q) and D(s,q) are uncertain polynomials. This means that each of these
polynomial coefficients are a function of q. In this case, the closed-loop characteristic
polynomial is

P(s,q) = N(s,q)Nc(s) + D(s,q)D.(s) (2.5)

which can be written in a more general form as

P(s,q) = ao(q) +ai(q)s + az(q)s” + ....... + an(q)s” (2.6)

11



whose coefficients depend on the uncertainty vector q. For the stability analysis of a
polynomial family of the form of Eq.(2.6), the type of coefficient function a;(q) plays an
important role. There are four classes of uncertain polynomials [13] depending on the

structure of the coefficient function a;(q) which are

1. Independent Uncertainty Structure(Interval Polynomials): An uncertain polynomial

is an interval polynomial if each a;(q) of Eq.(2.6) is dependent only on one parameter

such as ao(q) = qo, a1(q) = q1,..., an(q) = Gn-

2. Affine Linear Uncertainty Structure: The polynomial of Eq.(2.6) is said to have
an affine linear uncertainty structure if a;(q) is an affine linear function for i =
0,1,2,...,n; that is, a linear function plus a constant. For example, a;(q) = 3q; +
g2 + 8q3 + 2 is an affine linear function. These types of polynomials are also known

as polytopic polynomial families.

3. Multilinear Uncertainty Structure: An uncertain polynomial P(s,q) is said to have
a multilinear uncertainty structure if each of the coefficients a;(q) is a multilinear

function such as a;(q) = 3¢1¢2q3 + 2q2 — q3 + 10g2q3 + 3.

4. Polynomial Uncertainty Structure: If each of the coefficients function of a;(q) of the
polynomial of Eq.(2.6) is a multivariable polynomial in the components of q then
P(s,q) is said to have a polynomial uncertainty structure. For example, a;(q) =

2¢1q3 — 6q1q2 + g3 is a polynomial function.

Four different types of uncertainty structures for polynomials have been given. Let
Pindep.s Paffines Pmuititin. and Ppoy. denote the uncertain polynomials with independent,
affine linear, multilinear and polynomic uncertainty structures, respectively, then the hi-

erarchy can be stated as

Pindep.CPaffineCPmultilin.CPpoly. (27)

From this hierarchy it can be seen that the most simple uncertainty structure is the in-
dependent one. An effective result on the independent uncertainty structure is the well
known Kharitonov theorem. The next level of difficulty is the affine linear uncertainty

structure. For affine linear uncertainty, the edge theorem is a useful tool. The multilinear
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and polynomial uncertainty structures have higher levels of difficulty. There is no straight-
forward method to deal with these types of uncertainty structures. One possible way to
deal with these types of polynomials is to apply the so-called overbounding technique [13]
which enables one to convert a dependent uncertainty structure to an independent one.
However, this technique is a conservative technique. On the other hand, in the literature,
some results related to uncertain polynomials with multilinear and polynomial uncertainty

have been developed [13] using the mapping theorem [139].

RO EQ | & Y(9
+

Figure 2.1: A standard feedback system

74,0295

4, uncertainty box Q

Figure 2.2: An uncertainty box in parameter space for ¢ = 3 uncertain parameters
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2.3 Some Essential Tools of Robust Control Under Para-

metric Uncertainty

In this section, some technical tools which play an important role in the field of parametric
robust control are briefly mentioned. An understanding of these tools enables one to see

the logic behind the many developments in robust control theory.

2.3.1 Value Set Concept

This is an important concept which is widely used in robust control under parametric
uncertainty for checking the stability of uncertain systems, computing frequency responses
of uncertain systems etc.. For a fixed polynomial the image of the polynomial at a fixed
frequency is a point in the complex plane. However, for an uncertain polynomial the image
is a set of points. These sets are referred to as value sets. Simply, the value set of an
uncertain polynomial can be formulated as follows: Suppose that P(s,q) is an uncertain

polynomial defined by Eq.(2.6), at a fixed real frequency w* the value set is given by

P(ju, Q) = {P(jw",q) : q€Q} (2.8)

In the general case when the coefficients of P(s,q) are multilinear or polynomic, there is
no efficient analytical representation for the value set, and its construction may be quite
difficult. However, in some important cases such as polynomials with independent and
affine linear uncertainty, the shape of the value set can be described very simply [53, 130].

The power of the value set approach is derived from the fact that it is essentially a
two dimentional set in the complex plane whereas the uncertain parameter box belongs to
RY. Therefore, it is easier to deal with it computationally. The value set concept together
with the zero exclusion principle which is given in the next subsection is a powerful tool

for the stability analysis of uncertain polynomials.
Example 2.1

Consider

P(s,q) = s> + 85> +[5.5,6.5]s + 3 (2.9)

14



In order to obtain the value set of this uncertain polynomial family at each frequency, one

needs to find the real and imaginary part of P(s,q). Substituting s = jw
P(jw,q) = —jw® — 8w’ + j[5.5,6.5]w + 3 = —8w? + 3 + jw(—w? + [5.5,6.5])  (2.10)
Thus, the real and imaginary parts of P(s,q) can be written as
Re[P] = —8w? + 3 (2.11)

and

—w? + 5.5w<Im[P]< — w® + 6.5w (2.12)

From these equations the value sets of P(s,q) can be obtained. The value sets of P(s,q)

for 100 evenly spaced frequencies in the range 0<w<3 are shown in Figure 2.3.

Value Set

ot ‘H!{

Imaginary Axis
l
N
T

|
S
T

_10,

_12 | | | | | | | |
-70 -60 -50 -40 -30 -20 -10 0 10
Real Axis

Figure 2.3: Value sets of the polynomial of Eq.(2.9)
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2.3.2 Zero Exclusion Principle

Assume that the family of polynomials of Eq.(2.6) is of invariant degree (by invariant
degree we mean that all polynomials under consideration should have the same degree.
This means that the coefficient of the highest degree term should not vanish for any value
of the parameter), and contains at least one stable polynomial. Then, it is easy to show
using the boundary crossing theorem [36] that the entire family is stable if and only if the

value sets of P(s,q) do not include the origin for all real w which can be written as [13]

0£P(jw, Q) (2.13)

As mentioned before, the value set concept combined with the zero exclusion principle
constitutes a powerful tool to determine robust stability of uncertain polynomials. This
comes from the fact that, the inclusion or exclusion of the origin in the value set of an
uncertain polynomial can be checked using the boundary of the value set. Thus, when
the value sets of an uncertain polynomial are readily constructable, the analysis of such
a polynomial will also be easy. For example, one member of the uncertain polynomial
family given in Example 2.1 such as p(s)EP(s,q) = s> 4+ 852 4+ 5.55 + 3 is stable and from
Figure 2.3 since 0¢ P(jw, Q) for all real w, one can conclude that the family of polynomials

P(s,q) of Eq.(2.9) is robustly stable.

2.3.3 Segment Lemma

In this section, the problem of determining the stabilty of a line segment joining two fixed
polynomials which are called end point polynomials is studied. Suppose d1(s) and ds(s)

are polynomials of degree n then the segment of polynomials can be written as
d(s,A) = (1 = A)d1(s) + Ada2(s), A€[0,1] (2.14)

In general, the stability of end points does not guarantee that of the entire segment of

polynomials. For example, consider the segment joining the following two polynomials

01(s) = 3s* + 3% + 55> + 25+ 1
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and

a(s) = s + 53 + 552+ 25 4+ 5

it can be seen that although d1(s) and d2(s) are Hurwitz stable, the polynomial d(s, A) =
(1 —X)01(8) + Ad2(s) for A = 0.5 is not Hurwitz stable.

One possible way of determining the stability of a line segment is to conduct a sweep
of A, i.e. to test the stability of the polynomial starting from A = 0 and increasing its
value using a sufficiently small step until A = 1 is reached. This approach is, however,
time consuming and not exact. On the other hand, using the segment lemma, the stability
of a segment can be checked by using the end point polynomials as follows: Let d;(s) and
d2(s) be stable polynomials of degree n with leading coefficients of the same sign. Then
the line segment (1 — \)d1(s) + Ad2(s) is Hurwitz stable for all A€[0, 1] if and only if there
exists no real w > 0 such that all of the following three conditions which can be obtained

from Figure 2.4 are met [25]

3) 67(w)d3(w)<0 (2.15)

where (0f(w), 09 (w)) and (§5(w), 69(w)) are the even and odd parts of d;(s) and da(s), re-

spectively.

Example 2.2

Consider a line segment with the following end points
01(s) = s> +3s> +4.45 +1.25

and

Oo(s) = 2% + 4% + 5.4s + 2.25

It can be seen that 01 (s) and d2(s) are Hurwitz stable. The objective is to check the robust
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Figure 2.4: Geometric interpretation of segment lemma

stability of
5(s,0) = (1 = A)61(s) + Ada(s) = A+ 1)s> + (A +3)s2 + (A +4.4)s + (A + 1.25) (2.16)

where A€[0,1]. To apply the segment lemma it is necessary to find the positive real roots

of the polynomial
5% (w) 89 (w) — 05 (w)d? (w) = 2w* + 1.15w* — 3.15 = 0 (2.17)

There is one positive real root which is w = 1. However, for w = 1 it can be seen that
3 (w)05(w) = 3.06 > 0 and §¢(w)dg(w) = 11.56 > 0. Therefore, from the segment lemma,
one can say that the line segment of Eq.(2.16) is stable. Although frequency sweeping is
not necessary, the value sets of the segment are shown in Figure 2.5 which exclude the

origin as expected.
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Figure 2.5: Value sets of the segment of Eq.(2.16)

2.3.4 The Kharitonov Theorem

This section deals with a result proved in 1978 by V. L. Kharitonov regarding the Hurwitz
stability of a family of interval polynomials (each element of q enters into only one coef-
ficient of (2.6)) known as the Kharitonov theorem. The Kharitonov theorem proves that
the robust stability of an interval polynomial can be determined by testing the stability
of just four polynomials which can be easily obtained by using upper and lower values of
unknown parameters. The implication of this theorem goes far beyond the result embod-
ied in it and has provided the spark for the activities of a large body of researchers all
over the world. The Kharitonov theorem can be summarized as follows:

Consider a real interval polynomial of invariant degree n as
P(s,q) = qo + q15 + q25° + @35> + ... + gns"” (2.18)

where

Q:{Q%E[%E]J:Oalaa”} (2]‘9)
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The given interval polynomial P(s,q) is Hurwitz stable if and only if the following four

extreme polynomials (four Kharitonov polynomials) are Hurwitz stable:

pi(s)eP(s,q) = @+ﬂs+582+%33+%s4+ ..............
s)eP(s,q) = @+Es+582+@33+%s4+ ..............

epr

5 = @+ qs+ @ +BSS @S+,

(s)EP(s,q)
(s)EP(s,q)
(s)EP(s,q)
ps(s)EP(s,d) = @+ qis+ q25° + q35° + @s" + v (2.20)

The original proof of this theorem by Kharitonov is complicated. Meanwhile, much
simpler proofs can be found in [29, 35, 106, 47]. Generally using the value set concept
together with the zero exclusion principle, the logic behind the Kharitonov theorem can
be understood. It can be easily shown that the value set of the interval polynomial at a
fixed frequency is a rectangle (Kharitonov rectangle) whose sides are parallel to the real
and imaginary axes. Figure 2.6 shows the value set of the interval polynomial of Eq.(2.18)
at s = jw*. The four Kharitonov polynomials (pi(s), p2(s), p3(s) and ps(s)) at s = jw* as
shown in Figure 2.6 constitute the corners of the rectangle. From this rectangular value
set, the Kharitonov polynomials of Eq.(2.20) can be easily obtained using the maximum

and minimum values of the even and odd parts of P(s,q) as follows

even
min

s) + P2 (s)

min

— peven(g -I-POdd (S)

(s) (s)
p2(s) min (5) + Prige
pa(s) = Prid(s) + Poii(s)
pa(s) = Pt (s) + Pos(s) (2.21)

Since the sides of the rectangular value set are parallel to the real and imaginary axes, it
can be easily shown that the inclusion or the exclusion of the origin from this rectangular
value set can be checked by using corner points which correspond to the Kharitonov
polynomials.

For a general nth order interval polynomial, the Kharitonov theorem suggests test-
ing a set of four fixed polynomials. However, for polynomials of degree 5, 4 and 3, the

Kharitonov test can be simplified [2]. The corresponding Kharitonov polynomials are 3,
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Figure 2.6: Kharitonov rectangle

2 and 1 in number as against 4 in the general case.

Example 2.3

Consider the following interval polynomial

P(s,q) = s* +[4.95,5.02]s® + [4.9,7.1]s% + [2.5,9.5]s + [0.32,0.67]

The four Kharitonov polynomials are

Since these four Kharitonov polynomials are stable it can be concluded that the family
of polynomials given in Eq.(2.22) is Hurwitz stable. The movement of the Kharitonov

rectangles is shown in Figure 2.7.

st 4+ 5.028% +7.15% +2.55 +0.32
st +4.958% +7.15%2 +9.55 + 0.32
st +5.025% +4.95% + 2.55 + 0.67

s* +4.955% +4.95% + 9.55 + 0.67
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Figure 2.7: Movement of the Kharitonov rectangles

2.3.5 The Edge Theorem

Although the Kharitonov theorem gives an elegant solution to the stability problem of
interval polynomials, it suffers from two basic limitations. These are: 1) The coefficients
of the polynomials are assumed to vary independently. In other words no ¢; enters into
more than one coefficient. This is too restrictive for physical problems. In the general
case, an uncertain polynomial can be represented by Eq.(2.6) where the coefficients can
be affine linear, multilinear or polynomial functions. 2) Another important limitation is
that the Kharitonov theorem can only be applied to problems where the stability region
corresponds to the open left half plane. For example, the robust D stability (let D be a
region in the complex plane then a polynomial is said to be D stable if all its roots lie in
the region D) cannot be checked by using the Kharitonov theorem.

Considerable research effort has been devoted to remove these limitations [13]. The
most significant result in this direction is the one obtained by Bartlett et al. [21]. Their
result, known as the edge theorem, deals with the stability of uncertain polynomials of

the form of Eq.(2.6) with an affine linear uncertainty structure. As mentioned before, this
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type of polynomial is also known as a polytopic polynomial family. The edge theorem
states that the corresponding polytope of polynomials of Eq.(2.6) with an affine linear
uncertainty structure in the coefficient space has 27 vertices and (29 !(27 — 1)) edges
joining 29 vertices. Among these edges only the (¢297') exposed edges of the polytope
need to be checked to verify stability of the family of polynomials.

Since another version of the edge theorem shows that the root space of a polytopic
polynomial family can be obtained from the root set of the exposed edges, it is also useful

when one considers the general problem of robust D stability.

Example 2.4

Consider a polynomial family with affine linear uncertainty structure as
P(s,q) = q35° + (a1 + g2 + ¢3)s + 2q1 + @ (2.24)

where

Q= {q = [ql q2 Q3]T : qle[la 3]7 q26[47 6]7 Q3€[0'27 28]} (225)

It is quite clear that it is not possible to use the Kharitonov theorem for this uncertain
family. On the other hand, since the uncertainty structure is affine linear, the edge theorem
can be used successfully. Since there are three unknown parameters (¢ = 3), the corre-
sponding polytope of the family of Eq.(2.24) in the coefficient space has 23 = 8 vertices
and (3)2% = 12 exposed edges (see Figure 2.2).

The vertex polynomials can be easily obtained as follows

(5) = @s’+(@+atae)s+2a+ae
(5) = @s"+ (@ +a@+a)s+2qa+a¢
(s) = @324-(@-!-@4-@)3-!-2@-[-@
vi(s) = @S+ @ +R+@)s+2a+ 0
(5) = @+ (@ +R+B)s+20 +a
() = B+ T+ @+B)s+2T + ¢
(s) ( )

= B+ +B+B)S+20+ 6



vs(s) = B+ @+ R+B)s+ 2+ T (2.26)

Using these vertex polynomials, the exposed edges can be obtained. For example, the
vertex polynomials v (s) and vy(s) have the same structure except the parameter ¢ is its
lower value (g1) in v1(s) and its upper value (g7) in va(s). Thus, one of the exposed edges
is (1 — A)vi(s) + Ava(s). Similarly, the remaining 11 exposed edges can be constructed.
Once all the exposed edges are constructed then the stability can be determined using
the segment lemma (since each exposed edge is a line segment) or the value set concept
together with the zero exclusion principle (because the value sets at each frequency are
bounded by the images of the exposed edges). The value sets of the family are shown in

Figure 2.8 which exclude the origin. Therefore, the family is stable.
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Figure 2.8: Value sets of the polynomials of Eq.(2.24)

2.4 The Interval Plant Concept

In this section, the sixteen Kharitonov plant family and thirty-two systems obtained from

an interval plant are introduced. The sixteen Kharitonov plant family and the thirty-two
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systems are two fundamental theories behind many extreme point results developed in the
field of parametric robust control. A definition of this terminolgy (extreme point result) is
given in Barmish [20] as follows: An eztreme point result is a result which enables one to
infer that some desired property of a control system is robustly satisfied by checking the
satisfication of this property on a finite subset of extreme systems which may arise. For
example, is it possible to find the robust(minimum) gain and phase margin of a transfer
function with independent uncertainty structure from a subset of fixed transfer functions?
If so then one can say that an extreme point result holds. Of course, our intention in this
section is not to report all the extreme point results of a control system with parametric
uncertainty. An extensive research and discussion in this direction can be found in the
books [1, 13, 25, 52], survey papers [20, 45, 112, 118] and the references there in. However,
a brief introduction to these two important tools and a short discussion of some dominating

extreme point results related to these tools are given.

2.4.1 Sixteen Kharitonov Plant Family

An interval plant is one in which the parameters are not known exactly, but are assumed

to lie within specified intervals. More precisely, an interval plant can be formulated as

Gls,qr) = N(s,r)  rms™+rm1s™ 1+ . +1 (2.27)
YT D@ T s g s |

As usual, Q = {q: ¢i€[g;,G],i = 0,1,...,n} and R = {r : r;€[r;,75],i = 0,1,...,m} denote
the boxes bounding the uncertain parameters vectors q and r, respectively. Since the
numerator and the denominator polynomials N(s,r) and D(s,q) are interval polynomi-
als, from the Kharitonov theorem, one can obtain four Kharitonov polynomials for the

numerator as

= 7’_0+7“_13+582+Es3+r_434+ ..............
_ I 3 4
= rog+7T1s+728" +1r38” +rys .l
_ = 2 | =3 | o4
= To+ris+res” +738 +T48 + e

= To+ 718 +1ras? +1r38% + 728" o (2.28)
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and four Kharitonov polynomials for the denominator as

Di(s) = @+ﬁ8+%82+ﬁ33+q_484+ ..............
Dy(s) = @+ﬁs+%82+@33+q_484+ ..............
Ds(s) = @+ qs+@s®+30s° + s’ + e,
Dy(s) = @+ qs+qs®+q3s° +q@s® + e, (2.29)

By taking all combinations of the N;(s) and D;(s) for 4,5 = 1,2,3,4, the following sixteen

Kharitonov plant family can be obtained

(2.30)

where 7,5 = 1,2, 3,4. This family is important both from the analysis and synthesis points
of view. For example, the results given in [16, 26] known as the sixteen plants theorem
states that a unity feedback system with a first order controller C'(s) and an interval plant
of Eq.(2.27) is stable if C'(s)Gx(s) is stable. In Hollot and Tempo [75], it has been shown
that the outer boundary of the Nyquist envelope of a stable interval plant is covered by
the Nyquist plots of the sixteen Kharitonov plants. Thus, the worst case gain and phase

margins can be computed from this family as well.

2.4.2 Thirty-Two Systems

As we have seen in the previous sections, the Kharitonov theorem deals with the robust
stability problem of the polynomials which have an independent uncertainty structure. In
attempting to apply this theorem directly to a control system with a fixed controller and
an interval plant one meets a difficulty. This difficulty is mainly due to the fact that the
characteristic polynomial coefficients do not perturb independently. The edge theorem
can be used in this type of situation. However, the solution given by the edge theorem, in
general, requires one to carry out the checking of all exposed edges which are exponentially
dependent on the number of uncertain parameters. On the other hand a generalization of

the Kharitonov theorem was given in [34]. Generally, the generalized Kharitonov theorem
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deals with the robust stability problem of polynomials of the form

K(s) = Fi(s)Pi(s,a1) + Fa(s) Pa(s, q2) + - + Fin(8) Pra(s, am) (2.31)

where F (s), F5(8),..., Fi(s) are fixed polynomialsin s and P; (s, q1), P2(8,92),-.., P (8, Qm)
are interval polynomials. The details of this theorem can be found in the book by Bhat-
tacharya et al. [25] where Chapter 7 has been totally devoted to the generalized Kharitonov
theorem. Here, the thirty-two systems or Kharitonov’s thirty-two segments which are a
direct result of the generalized Kharitonov theorem are introduced.

Consider the interval plant family which is represented by Eq.(2.27) with the Kharitonov
polynomials Ny(s), Na(s), N3(s) and Ny(s) for the numerator and Di(s), D2(s), Ds(s)
and Dy(s) for the denominator. Then, the four Kharitonov segments for the numerator
are

(1 — )\)NZ(S) + )\Nj (S) (2.32)

and the four Kharitonov segments for the denominator are

(1 =X)D;(s) + ADj(s) (2.33)

where X € [0,1] and (4,7) € {(1,2),(1,3),(2,4),(3,4)}. Using the Kharitonov segments
and Kharitonov polynomials for the numerator and the denominator polynomials, the
following 32 subsets of the family can be obtained [25]

Ni(s) (L= A)N;(s) + ANg(s)

Gr(s) = (1 = X)Dj(s) + ADg(s) Di(s)

(2.34)

where A € [0,1], i = 1,2,3,4 and (5,k) € {(1,2),(1,3),(2,4),(3,4)}. From these thirty-
two systems, the Bode, Nyquist and Nichols envelopes of a control system with a fixed
controller and an interval plant can be constructed [87]. For stability of a control system
with a higher order controller and an interval plant, the stability of C(s)Gg(s) is necessary

and sufficient [34].
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2.5 Conclusion

In this chapter, attention has been focused on the problem of robust stability of polynomi-
als with parametric uncertainty. The points discussed in the chapter can be summarized

as follows:

1. Using the Kharitonov theorem, the stability of interval polynomials can be de-
termined by checking the stability of four Kharitonov polynomials. However, the
Kharitonov theorem is not applicable when the coefficient perturbations are not

independent.

2. The edge theorem covers problems of greater generality but it is computationally
expensive. It can be applied in cases where the polynomial coefficients are affine
linear in the parameters. Also, it is applicable to the different stability regions in

the complex plane.

3. The value set concept, zero exclusion principle and the segment lemma are three
important tools widely used in the field of parametric robust control while discussing

the robust stability of uncertain polynomials.

4. The sixteen Kharitonov plants family and the thirty-two systems are two impor-
tant developments for the analysis and design of control systems with parametric

uncertainty.
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Chapter 3

FEEDBACK STABILIZATION
USING THE HERMITE
BIEHLER THEOREM

3.1 Introduction

3.2 The Hermite-Biehler Theorem

3.3  Stabilization Using Lag/Lead Controller
3.4 Relative Stabilization

3.5 Interval Plant Stabilization

3.6 Conclusion

3.1 Introduction

Recently, a new approach to the feedback stabilization using P, PI and PID controllers
has been introduced in [72, 73, 74]. The approach is based on an appropriately generalized
version of the Hermite-Biehler theorem [71]. The power of this method over the classical
approaches such as the root locus technique, the Nyquist stability criterion and the Routh-
Hurwitz criterion is that the first two classical methods are graphical and do not provide an
analytical procedure to find all stabilizing values of the controller parameters. Although

the Routh-Hurwitz criterion gives an analytical procedure, one needs to solve a set of
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polynomial inequalities which may be nonlinear to obtain stabilizing controller parameters.
On the other hand, the stabilizing procedures based on the generalized Hermite-Biehler
theorem provide an analytical solution to the problem of calculating the set of all stabilizing
feedback gains for a given plant as well as providing a computational characterization of
all stabilizing parameters of PI and PID controllers.

In this chapter, the application of the new method proposed in [72, 73, 74] is given
for the Lag/Lead controller structure. Indeed, most of the controllers used in industry
today are PI, PID and Lag/Lead controllers. Therefore, it is significant to extend the
new approach to the Lag/Lead controller structure. Thereafter, the approach is further
developed for PI, Lag/Lead and PID controllers for relative stabilization. In addition,
the stabilization of uncertain systems defined by an interval plant is also discussed using
the sixteen Kharitonov plant family and the Hermite-Biehler theorem.

The chapter is organized as follows: In Section 3.2, the Hermite-Biehler theorem and its
generalized versions are given without proof which can be found in [74]. Stabilization of a
given transfer function using a Lag/Lead controller structure and the generalized Hermite-
Biehler theorem is given in Section 3.3. In Section 3.4, the approach is further developed
for relative stabilization. The stabilization of interval plants using the Kharitonov theorem

and the Hermite-Biehler theorem is considered in Section 3.5.

3.2 The Hermite-Biehler Theorem

In this section, the Hermite-Biehler theorem and some further results are summarized.
The details of all the results given here can be found in [74].

Let 0(s) = 0o + 018 + covevee. + 6,5" = 6c(s%) + 80,(5?) be a given real polynomial of
degree n where d.(s?) and d,(s?) are the even and odd parts of §(s). Then the classical
Hermite-Biehler theorem [36] can be stated as follows:

Theorem 3.1: Let wei,wWe2, ... and w1, w2, ... denote the positive real zeros of d,(—w?)
and d,(—w?). Then d6(s) is Hurwitz stable if and only if all the zeros of d.(—w?) and
5o(—w?) are real and distinct, &, and 6, ;| are of the same sign, and the positive real zeros

satisfy the following interlacing property

0 < wel <wol < Wea < Wepa < euenee (3.1)
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An equivalent analytical charcterisation of the Hermite-Biehler theorem is given by the

following lemma using the signum function

-1 ifz <0
sgn[z] =< 0  ifz =0 (3.2)
1 ifx>0

Lemma 3.1 [74]: Denote §(jw) = p(w) + jg(w) where p(w) = do(—w?) and q(w) =
wo(—w?). Let wey,wes, ... denote the non-negative real zeros of d,(—w?) and let wy1, w2, ...
denote the non-negative real zeros of J,(—w?), both arranged in ascending order of mag-
nitude. Then the following conditions are equivalent:

1) 0(s) is Hurwitz stable.

2) 0, and 0,1 have the same sign and

/

sgn[do]-{sgn[p(0)] — 2sgn[p(wo1)] + 2sgn[p(we2)] + ... + (—1)m*1.239n[p(wom—1)]
+(—=1)".sgn[p(c0)]}, for n =2m

sgn[do]-{sgn[p(0)] — 2sgn[p(wer)] + 2sgn[p(we2)] + ... + (1) .2sgn[p(Wom—1)]
+(=1)™.2sgn[p(wom)]}, for n=2m +1

(3.3)

3) 4, and 0,1 have the same sign and

sgnl5.)- {25gn(q(wer)] — 25gn[q(we2)] + 259nq(@es)] + e + (—1)™ 2590 q(@em 1)]
+(=1)""" 2sgnlg(wm)]}, for n =2m

sgn[0o].{2sgn[q(wer)] — 2sgn[g(wez)] + 2sgn[g(wes)] + ... + (—1)™ "' 2sgn[g(wem )]
| H(=D)™sgnlg(c0)]}, for n =2m +1

(3.4)
This lemma is not applicable to non-Hurwitz polynomials. In order to use the Hermite
Biehler theorem as a tool for solving the stabilization problem, it needs to be generalized

to the case of not necessarily Hurwitz polynomials. Define the normalized polynomial of
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d(jw) as [72].
3 (jw) = @) + jas = pr(w) + jgr(w) where f(w) = (1 +w?)™/? (3.5)

Such a normalization will make sure that d;(jw) intersects the real axis or the imaginary
axis as w—+oo and also preserve the finite frequencies at which d(s) intersects the real

and imaginary axes. Define also the signature of the polynomial §(s) by o(d(s)) and write
o(d(s)) =1—r (3.6)

where [ and r are the number of open left and right half plane zeros of §(s), respectively.
Theorem 3.2 [74]: Let §(s) be a given real polynomial of degree n with no jw axis roots
except for possibly one at the origin. Let 0 = wy < w1 < wa < v < Wm—1 be the real,
non-negative , distinct finite zeros of ¢7(w) with odd multiplicities. Define also wy, = oc.

Then

{sgn[ps(wo)] — 2sgn[ps(wi)] + 2sgn[pf(w2)] + ... + (—=1)" "' 2s8gn[pf(wim—1)]
(=)™ sgnlpy (wm)]}-(~ )™ L sgnla(o0)], if n is even

{sgnlps(wo)] — 2sgnlps(w1)] + 2sgn[ps(wa)] + -...
+(=1)" . 2sgn[py(wm—1)]}-(=1)"sgng(o0)], if n is odd

(3.7)
Theorem 3.3 [74]: Let d(s) be a given real polynomial of degree n with no roots on
the jw axis (the normalized plot 07(jw) does not pass through the origin). Let 0 < wy <
wa < e < wm—1 be the real, non-negative , distinct finite zeros of py(w) with odd

multiplicities. Also define w,, = co. Then

/

—{2sgnlgs(w1)] — 2sgnlgr(w2)] + ...
+(—=1)""2.2sgn[qf(wm—1)]}.(—1)™sgn[p(c0)], if nis even

—{2sgnlqs (w)] — 2sgnlgr(@2)] + . + (~1)™2.259n[q7 @y 1)]
+(=1)™ Lsgnlgp(wm)]}-(~ )™ sgnlp(o0)], if  is odd
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3.3 Stabilization Using Lag/Lead Controller

In this section, the generalization of the Hermite-Biehler theorem is used in order to find
the set of stabilizing values of the parameters of a Lag/Lead controller. Consider a unity
feedback control system with a plant G(s) = N(s)/D(s) and a controller C(s).

a) Let C(s) be a Lag/Lead controller of the form

S+«
C(s) = Ks—i—ﬁ (3.9)

By using the even and odd parts of N(s) and D(s), G(s) can be written as

N, (s? sN,(s?
Gls) = DBESQ; 1 SDOESQ; (3.10)

the characteristic equation of the system is

o(s, K, 0, 8) = 1+ C(5)G(5) = 0 = [KaNe(s?) + BDe(s%) + 5*(K No(5?) + Do(5%))]

+58[K No(s%) + KaN,(s%) + Do(s%) + D, (s?)] (3.11)
Substituting s = jw,

6(jwaKaa76) ZP(W,K,Ot,ﬁ) +jQ(W,K,Ot,6) =
[KaNe(—w”) + BDe(—w") = w? (K No(—w") + Do(—w"))]

+jw[K Ne(—w?) + KaN,(—w?) 4+ De(—w?) + Do(—w?)] (3.12)

From Eq.(3.12) since both p(w, K, a, 3) and ¢(w, K, ar, 3) depend on (K, a, 3) this makes
the application of lemma 3.1, theorem 3.2 or theorem 3.3 difficult. For example, in order
to use theorem 3.2, one needs to find the positive real roots of g(w, K,a,3) = 0 which
depend on three unknown parameters (since the normalization given in Eq.(3.5) does not
change the real roots of the even and odd parts and for clarity of presentation we will not
invoke it). To partially overcome this difficulty , the following procedure can be used [74].
Assume the greatest common divisor of N, (s2) and N,(s?) is e(s?), and define

N, (s?)

N = o

Ny(s%) =

(3.13)
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from Eq.(3.13)
N'(s) = N.(s®) + sN.(s?) (3.14)

and define
N*(s) = N'(—s) = N!(s?) — sN!(s%) (3.15)

N'(s) has no jw axis roots except possibly a single root at the origin. If one multiplies

d(s, K,a, B) by N*(s) then the signature function of the multiplication can be written as
o(d(s, K,a, B)N*(s)) = o(3(s, K, o, B)) + o(N*(s)) = 0(d(s, K, @, f)) — o(N'(s)) (3.16)
By multiplying the characteristic equation with N*(s), one gets

i(s,K,a,B)N*(s) =
[s(Do (%) No(s%) = De(s*) Ng(s%)) + Ka(Ne(s*)N{(s%) — 5° No(s%) Ny (5))
B(De(s*)Ny(s*) — s Do(5°) Ny (s))] + s[De(s*) Np(s%) — 5° Do(s*) Ny (s%)

+K (Ne(s)Ne(5?) = 8" No(5?)Ng (%)) + B(Do(s*)Ne(s”) — De(s*)No(s°))] (3.17)
and for s = jw, it can be seen that

Here, it is clear that one parameter of ¢(w, K, a, 3) was eliminated and g(w, K, 3), which is
not dependent on «, is obtained. Now, let the degree of §(s, K, «, ) be n then §(s, K, «, 3)
is Hurwitz stable if and only if o(§(jw, K, a,3)) = n. Thus, the given plant is Hurwitz
stable if and only if

a(d(s, K,a, B)N*(s)) =n+ca(N*(s)) =n —a(N'(s)) (3.19)

It is seen that for every fixed K value sweeping over (3 values and using theorem 3.2 or
lemma 3.1 (if N*(s) is Hurwitz stable) and Eq.(3.19) (or conversely for each fixed 5 value
sweeping over K values) the set of values of (K, «, 3) for the system to be Hurwitz stable

can be calculated. The range of 3 values for fixed K (or the range of K values for fixed
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() over which the sweeping needs to be done can be reduced by using the root locus idea
given in [74] (see Appendix A). For example, for a known K value if one writes g(w, K, 3)

as

f(w,K,B) =w(lU(w,K) + BV (w)) (3.20)

where (§ varies from —oo to +o0o then the real breakaway points on the root locus of

U(w, K) + BV (w) = 0 correspond to a real multiple root and must satisfy

U?(w, K) a '

The real breakaway points are the real zeros of Eq.(3.21). And the corresponding /3 values
can be found by using these zeros. Thus, the real root distribution of U(w, K)+(V (w) =0
with respect to the origin can be calculated.

b) The lead controller is often used with unit gain at d.c. This means K = /«a and

the transfer function can be written as

14T

Cl) =170

(3.22)

with T1 = 1/« and T2 = 1/8. Now, assume N'(s) which is defined in Eq.(3.14) has not

got any root on the jw axis and write the characteristic equation of the system

8(s,T1,T2) = [Ne(s?) 4+ De(s?) + s*(T1N,(s?) + T2D,(s%))]

+ 8[N,(5%) 4+ Dy(5%) + T1N,(5%) + T2D,(s?)] (3.23)
multiplying d(s,T'1,72) with N*(s) and substituting s = jw

6(jw, T1, T2)N*(jw) = p(w, T2) + jq(w, T1,T2) = [No(—w?)N.(—w?) + Do(—w?)
N} (—w?) = w*T2(D,(—w?) N (—=w?) — De(—w?) N} (—w?)) + w’ N, (—w?) (No(—w?)
+Do(—w?))] + jw[Do(—w?) N} (—w®) — De(—w®)Nj(—w?) + T1(N,(—w?) N (—w”)

+w? No(—w?) N (—=w?)) + T2(Do(—w?)N.(—w?) + w?Do(—w?)N! (=w?))] (3.24)

For every fixed T2, the zeros of p(w,T2) do not depend on T'1. Therefore by sweeping over

all T2 values and using theorem 3.3 or lemma 3.1 (if N*(s) is stable), all the stabilizing
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values of (T'1,72) can be calculated. From Eq.(3.24), if N*(s) is not Hurwitz stable, one
needs to use theorem 3.3. Since theorem 3.3 is not applicable to a polynomial which has
jw axis roots, in this case, it is necessary to assume that N'(s) or N*(s) must not have

any roots on the jw axis.

Example 3.1

Consider
N(s) s3 — 452 4+ 542
= = .2
G8) = Dle) = 5 4 857 + 325° + 4657 1 465 + 17 (3:25)

This plant is to be stabilized, if possible, using a Lag/Lead controller of the form

C(s) = zig (3.26)

where K is assumed to be equal to one. From Eq.(3.11), the following closed loop charac-

teristic equation is obtained

5(s,a, B) = s® + (8 + B)s° + (33 + 88)s" + (42 + 326 + «)s>

+(47 + 468 — 40) s> + (19 + 468 + o)s + 176 + 2 (3.27)

Using the Routh-Hurwitz criterion to determine the stabilizing values for o and [, one
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can see that the following inequalities must hold.

8+3>0
862 + 683 —a+222>0
2108% + 175682 4+ 123%a + 66513 + 1013a — o + 444 — 6468 > 0

(68526° + (111208 — 33600)8* + (670097 — 4933 — 482%) 3% + (1380558 — 214460 —
8320%)3? + (—2611461 + 13818 — 542002 + 4a?) 3 + 32a3 — 1471202 + 359520c—
3245472) > 0

(165535268 + (40973724 — 250704a) 37 + (4386511378 — 3139202 — 647082300) 30 +
(2523875448 — 77383802 — 57603 — 69801312a)3° + (7481585892 — 3822584820—
84571890 — 86760%)3* + (6781242090 — 886670883 — 51534270a% — 595830+
1200*) 33 + (—20150281620 + 5488749600 — 1725782040 — 3242220° + 175504) 32+
(—50509542114 + 5713694541 — 26672459702 — 144456603 + 102720* — 6a°)5—
480° + 313200 — 46890960 + 6005160002 + 6036845760 — 3689400896) > 0

\ 176 4+ 2a > 0

It is clear that, these inequalities are nonlinear and there is not a straightforward method
for their solution.
Now, to see how the generalized Hermite-Biehler theorem can be used to determine

the values of a and ( for them (s, a, ) of Eq.(3.27) is Hurwitz stable. From Eq.(3.15)
N*(s) = —s> — 45> — 5+ 2 (3.28)
and multiplying (s, a, 3) by N*(s), one gets

(5(jw,o¢,ﬁ)N* (]w) = p(waaaﬁ) +jQ(waﬁ) =

[—(12 4+ B)w® + (183 + 658 + a)w® + (183 — 24643 + 14a)w? — (75 — 226 — 17a)w?
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+4a + 348] + jw[—w® + (65 + 126)w® — (232 + 1808)w* + (39 + 918)w? + 38 4 754]

(3.29)

Since the signature of N*(s) is equal to 1 and the order of §(s, a, 3) is equal to 6, 6(s, c, 3)
is Hurwitz stable if and only if the signature of (s, a, ) N*(s) is equal to 7. From theorem
3.2 this implies that ¢(w, #) must have at least 4 positive real roots. Since ¢(w, ) has one

root at the origin,

G

= —wS+(654+120)wb — (2324+1803)w* + (39+918)w? 4+ 758+38 (3.30)
w

QS(wa

must have at least three positive real roots. From Eq.(3.21), the distribution of the positive

real roots of ¢s(w, 3) was calculated as

B€(—o0,—0.5067) : 2 positive real root

B€(—0.5067, 00) : 3 positive real root

Thus the only possible region for stabilization is S€(—0.5067,00). For a fixed value of
such as 3*€(—0.5067,00), from theorem 3.2, since (—1)™ lsgn[g(cc)] = 1, for stability

the following inequalities must hold

p(OﬂaﬂlB*) > 07 p(wlﬂaﬂlg*) < 07 p(LUQ,O{,,B*) > 07 p(w37a716*) <0 (331)

where wy, wy and ws are the positive real roots of ¢s(w,3*). For example, when g* =

0€(—0.5067, 00), the positive real roots of ¢5(w,0) are

w1 = 0.7416, wy = 1.8834 and ws = 7.8244

Using inequalities of Eq.(3.31), it was computed for §* = 0 and «€(0, 3.7890), 4(s, 5, @)
is Hurwitz stable. It was found that for all values of 8 within (—0.5067,00) there are
stabilizing values of . For example, all the stabilizing values of « and g for S€[—0.5, 200]

are shown in Figure 3.1.
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Figure 3.1: Stabilizing values of («, 5) for K =1

Example 3.2
Consider the C(s) and G(s) of a unity feedback system as

s+« 35+ 15
d G(s) =
s+ 0 and G(s) s34+3s2+3s+5

C(s)=K (3.32)
The characteristic equation is

8(s, Ky, ) = s*+(3+8)s> +(3+3K+30)s*+ (5+15K +3Ka+36)s+58+15Ka (3.33)

From Eq.(3.15)
N*(s)=5—3s (3.34)

and multiplying d(jw, K, a, ) by N*(jw), one gets

5(jw,K,a,ﬁ)N*(jw) :p(waKa aa/B) +jQ(CU,K, /6) = [(2 - ,3)(4)4 - (10 + 12/6 - 3KO4)LL)2

+256 4 75K a) + jw[—w! — (12 — 3K + 26)w? + 25 + 108 + 75K] (3.35)
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The signature of N*(s) is —1 and the order of §(s, K, «v, 3) is 4. Therefore, the (s, K, «, 3)
is Hurwitz stable if and only if the signature of §(s, K, o, 5)N*(s) is equal to 3. Thus,

from theorem 3.2,

q(w, K, B)
w

gs(w, K, B) = = —w?— (12 - 3K +28)w? + 25 + 108 + 75K (3.36)

must have at least 1 positive real root. For example, for K = 1, ¢5(w, K, ) has 1 positive
simple real root when 3 € (—10,00). Using theorem 3.2, for K = 1 and a value of
B € (—10,00), since (—1)™ 'sgn[q(oco, K, 3)] = 1, for stability the following inequalities

must be satisfied
258+ 5Ka >0, (2— ﬂ)o.)iL — (10 4+ 128 — 3Koz)u)% + 250+ 75 Ka <0

where w; is the positive real root of ¢s(w, K, 3). The stabilizing values of controller pa-
rameters for K = 1 and § € [1,200] are shown in Figure 3.2. Figure 3.3 shows all the

stabilizing values of the controller parameters when K € [1,10] and 3 € [1,200].

150
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B

Figure 3.2: Stabilizing values of («, 3) for K =1
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Figure 3.3: Stabilizing values of («, 8) for K€[1,10]

3.4 Relative stabilization

In this section, the stabilization of a given plant using the controllers defined as

_ Kys+ Kyp+ K;

3.37
i) = 2 (3.37
Ks+Kp+ Ka
C. = 3.38
p(s) = LR (3.39
24+ (2K K K K K;

s+ p
where p is a known constant and K, a, 8, Kp, K; and K; are unknown parameters is

studied. In order to explain the aim of defining these controller structures, consider a Pl

controller and a plant as

C(s) = ——, G(s)= (3.40)
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To find all values of K, and K; which put all closed loop poles to the left of s = p
(p = constant), with C(s) and G(s) for C(s) and G(s) with s = s + p, then

~ Kps+ Kpp + K;

C(s) = Ols + ) = =222 220 N(s + p)

D(s +p)

. Gs)=Gls+p) =

Now, if the characteristic equation, §(s) = 1 + C(s)G(s) = 0, is Hurwitz stable then one
can be sure that all the closed loop poles of the system are to the left of s = p. Also, it
is clear that C(s) is exactly equal to the structure of C(s). Similarly, it can be seen that
for a Lag/Lead controller of the form C(s) = K(s+ «)/(s+ ) the structure of Cy(s) and
for a PID controller the structure of Cs(s) can be obtained.

a) If the controller structure is in the form of C}(s) then the characteristic equation

can be written as

5(s, Ko i) = 14 C1(s)G(5) = 0 = [pDe(%) + (Kpp + Ki) Ne(%)+

§2(KpN,(5%) + Do(5))] + s[KpNe(s?) + (Kpp + Ki)No(s%) + De(5?) 4+ pD,o(s?)] (3.41)

By multiplying the characteristic equation with N*(s) which is defined in Eq.(3.15) and

putting s = jw, one gets

0(jw, Kp, Ki) N*(jw) = p(w, Kp, Ki) + ja(w, Kp) = [(Kpp + K;) (Ne(~w?)No(~w?)+
W?No(=w?) Ny (=w?) + pDe(~w?)N{(~w?) + * (De(~w?’) Ny (~w?) + pDo(—w*) Ny (~w?)
—Do(~w?)Ne(~w?)] + jw[Kp(Ne(—w?) Ne(=w?) + w? No(=w?) No(~w?)) + De(~w?)

Ne(=w?) + (Do(~w”)Ng(=w?) = De(~w”)No(~w?)) + w” Do(~w?) No(~w?)] (3.42)

It is clear that for every fixed K, value, the roots of ¢(w, K},) do not depend on K;. Thus,
sweeping over K, values and using Eq.(3.19) and the results of Section 3.3, the set of all
stabilizing (K, K;) values for which the given plant is Hurwitz stable can be calculated.
The range of K, values over which the sweeping needs to be done can be reduced by using
the root locus as explained in Section 3.3.

b) For Cs(s), the characteristic equation of the system can be written as

3(s, K, f) = 1+ Co(s)G(s) = 0= [(p+ B) De(s”) + K (p + @) Ne(s%) + 5° (Do (%)

42



+K Ny(5?)) + s[De(5%) + (p + B)Do(s%) + KN.(s%) + K(p + a)N,(s%)] (3.43)

Multiplying §(jw, K, , ) with N*(jw)

d(jw, K, a, B)N* (jw)=p(w, K, o, B) + jq(w, K, B)=[(p + B) (De(—wQ)Né(—wQ) + w?
Do(—w?)No(—w?)) + K (p + @) (Ne(—w?) Ny (—w?) 4+ w? Ny (—w?) Nj(—w?)) — w?(Do(—w?)
N (=w?) = De(=w?)Ny(—w?))] + jw[K (N, (—w?) N (—w?) + w? No(—w?) Ny (—=w?)) + (p + )

(Do(~w?)Ne(=w?) = De(=w?)No(=w?)) + De(~w?)No(=w?) + w? Do(~w?) No(—w?)] (3.44)

Here, g(w, K, ) depends on two parameters; namely, K and (3. Therefore, it has to be
assumed that one of the parameters K or 3 is known. Otherwise, it will be difficult to
apply the generalized Hermite-Biehler theorem. For example, say that K is known then
the range of 3 values over which sweeping needs to be done can be found by using the root
locus. Thus, for every fixed K sweeping over the values of 3 or for every fixed 8 sweeping
over the values of K and using the Hermite-Biehler theorem, all the stabilizing values of

(K, a, B) can be calculated.

c) Let the controller be Cs(s) then the characteristic equation of the system is

8(s,Kp, Kiy Kg) = 14 C3(5)G(3) = 0 = [pD(5%) + s*(Dy(s* + K4N.(s%) + (2K 4p
+Kp)No(s%)) + (p(Kap + Kp) + Ki)Ne(5%)] + 5[De(s%) + pDo(s”) + (2Kap + Kp)

Ne(5%) + (p(Kgp + Kp) + K;)No(s%) + s> K4 No(5%)] (3.45)
multiplying Eq.(3.45) with N*(s) and substituting s = jw

3(jw, Kp, Kiy Ka) N* (jw) =p(w, Kp, K;, Ka) + ja(w, Kp, Kg)=[pDe(—w?) N, (-w?)

+w (De(—w”) No(=w?) + pDo(—w”) No(—w?) — Do(~w®) No(—w?)) + Kg(—w? N, (—w?)
N (=w?) = W' No(=w?)No(=w?)) + (p(Kap + Kp) + Ki) (Ne(=0?) NJ(=0?) + w0’ No(—w?)
No(=w?))] + jw[De(=w?) N (=w?) + 0 Do(—w?) No(=w?) + p(Do(—w?) NJ(—w?)
—D(~w?)No(=w?)) + (2Kap + Kp)(Ne(—w?)NJ (—w?) + w? Ny (=w?) Ny (—w?))]

(3.46)
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It is seen that similar to Cy(s) the ¢(w, Kp, K4) depends on the parameters K, and K.
For a fixed value of K, or K,, sweeping over values of the nonfixed parameter all the

stabilizing values of (K, K;, K4), if there are any, can be determined.

Example 3.3

Consider a PID controller and a plant as

K 2+ K K; N 1
_ Kas™+ Kps + i and G(s) = (s) s+

Cls) s D(s) s +s2+s+1

(3.47)

The objective is to find the parameters of the given controller for relative stabilization.

At first, assume that p = 0. Then, the characteristic equation is
8(s, Kp, Kiy Kp) = s* + (1 + Kg)s* + (1 + K, + Kg)s*> + (1 + K, + K;)s + K;  (3.48)

From eq.(3.15)
N*(s)=1-3s (3.49)

multiplying the characteristic equation with N*(jw), one gets

5(jw7KpaKiaKd)N*(jw) :p(waKpaK’iaKd) +]q(w7Kp) =

[~ Kqw* — (Kq — K;)w? + K] + jw[-w* + K,w? + K, + 1] (3.50)

It can be seen that for every fixed K, the zeros of ¢(w, K,) do not depend on K; and
K. Thus, by sweeping over all real K, values, one can determine the set of all stabilizing
(Kp, K;, Kg) values. The range of K, values over which the sweeping needs to be done
can be reduced using the root locus. Since the signature of N*(s) is equal to —1 and the
order of d(s, K, K;, Kq) is equal to 4, from Eq.(3.19) d(s, K,, K;, K4) is Hurwitz stable if
and only if the signature of (s, K, K;, Kq)N*(s) is equal to 3. Since ¢(w, Kj) has one
root at the origin, in order to make the signature of 6(s, K, K;, K4)N*(s) equal to 3, from
theorem 3.2

w, Kp)

gs(w, Kp) = al = '+ Kpw? + K+ 1 (3.51)

w
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must have at least one positive real root. Using the root locus, the distribution of the

positive real roots of ¢s(w, K)) was calculated as

K,e(—1,00) : 1 positive real root

K,e(—o00,—1) : no positive real root

Thus, the only possible interval of K, for stabilization is K,€(—1,00). For example, for

K, = 18¢(—1, 00), from theorem 3.2, for stability the following inequality must hold

0< K; <19K, (3.52)

From this inequality it can be seen that for all K;€(0,00) there are stabilizing values for
K;. Taking an upper value for K, such as K;€(0,100], the set of all stabilizing values of
(K;, Kq) was computed and is shown in Figure 3.4.

Now, for the same K, = 18, let us find all the stabilizing values of K; and K; for

p = —0.3. Substituting s — 0.3 instead of s, one gets

~ Kys2 + (18 — 0.6K 09K, + K; — 5.4
Gi(s) = C(s — 0.3) = as”+ (18 = 0.6K4)s + 0.09K4 + K; — 5 (3.53)
s—0.3
and
G(s) = G(s — 0.3) = s 0.7 (3.54)

$34+0.152 4+ 0.67s + 0.763

The characteristic equation is

3(jw, Ka, Ki) = 14 C(jw)G (jw) = 0 = p(w, Ka, K;) + ja(w, Ky, K;) =
wt — (18.64 4 0.1K,)w? 4+ 0.063K, + 0.7K; — 4.0089

+jw(—(Kq — 0.2)w? + (7.762 — 0.33K, + K;)w) (3.55)
Multiplying 0 (jw, K4, K1) of Eq.(3.55) with N*(jw) = 0.7 — jw, it becomes

5(j(.4.), Kda K’L)N*(]w) = p(wa Kda Kl) + jQ(wa Kd) =
(0.9 — K)o — (5.328 + 04K — Ki)w? + 0.0441K 4 + 0.49K; — 2.80613)

+jw(—w" — (—18.78 + 0.6 K;)w? + 9.4129 — 0.294K ) (3.56)
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It can be seen that for Hurwitz stability of Eq.(3.56), the signature of Eq.(3.56) must be

equal to 3. This implies that

Q(wa Kd)

gs(w, Kq) = = —w! = (—18.78 + 0.6 Ky)w® + 9.4129 — 0.294K, (3.57)

must have at least one positive real root. It was found that
K €(—00,32) : 1 positive real root

K,€(32,00) : no positive real root

So, the only possible interval for stability is K €(—00,32). Sweeping over K, values within
this interval all stabilizing values of K; and K; which put the poles of the characteristic
equation to the left of p = —0.3 were computed and sketched in Figure 3.5. Figure 3.6

shows the stabilizing values for different p values.
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Figure 3.4: All the stabilizing values of (K4, K;) for K, = 18 and p =0
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Figure 3.5: All the stabilizing values of (Ky, K;) for p = —0.3 and K, = 18

Example 3.4

Consider a PID controller and a plant as

= — — 0. =
C(s) =K, + . 0.3s and G(s) P (1 05

) (3.58)

where G(s) is a simple Pade approximation for a plant with transfer function e=*/(s+5).
It is required to find all the values of (K, K;) which put the poles of the characteristic

equation of the system to the left of the line s = —1 4+ jw. Substituting s — 1 instead of

s, one gets
~ —0.352 + (K, +0.6)s —0.3 — K, + K; PN —0.5s+ 1.5
C(s)=C(s—1)= P P ! d G(s)=
(5)=Cls = 1) s—1 and G8) =55+ 255 + 2
(3.59)

The characteristic equation is

5(jw7vaKi) =1+ a(ju))é(]w) = p(u),Kp,Ki) +jq(waKpaKi) =

(1.25 — 2.5K,)w? — 2.45—1.5 K, +1.5K;+jw(—0.65w? + 0.55 + 2K, — 0.5K;) (3.60)
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Multiplying (jw, Kp, Ki) with N*(jw) = 3 + jw, it becomes

6(jwa Kpa Kl)N* (jw):p(wa Kpa Ki)+jQ(wa Kp) =
0.65w*—(4.3 + 0.5K,, — 0.5K;)w?~7.35—4.5 K, +4.5K;+jw(—(3.2-0.5 K} )w?— 0.8 + 4.5K),)

(3.61)

From

w, Kp)

qs(w, Kp) = al = —(3.2 — 0.5K,)w® — 0.8 + 45K, (3.62)

w
It can be easily seen that for K,€(0.1778,6.4) there is one positive real root of gs(w, Kp).
Thus, sweeping over the values of K} and using results given in previous sections, all the
values of K, and Kj; for which Eq.(3.60) is Hurwitz stable were computed and sketched in
Figure 3.7.
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3.5 Interval plant stabilization

There are some important results in the literature about stabilization of interval systems.
For example, in [65], it was shown that a constant gain controller stabilizes an interval
plant family if and only if it stabilizes a set of eight of the extreme plants. In [76], it
was shown that a first order controller stabilizes an interval plant if it stabilizes the set
of extreme plants. The best results regarding this subject were given in [16, 26] where
it was proved that a first order controller stabilizes an interval plant if and only if it
simultaneously stabilizes the sixteen Kharitonov plant family which was introduced in
Chapter 2. In this section, instead of using Routh tables, which were used in [16] in order
to characterize all the parameters of a first order controller which stabilize an interval
plant, the Hermite-Biehler theorem is used to find all the values of the parameters of a
first order controller for which the given interval plant is Hurwitz stable.

Define the set S(C(s)G(s)) which contains all the values of the parameters of the

controller C(s) which stabilize G(s), then the set of all the stabilizing values of parameters
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of a first order controller which stabilize the interval plant of Eq.(2.27) can be written as

S(C(s)G(s,q,r)) = S(C(s)GK(s)) = S(C(s)G11(8))NS(C(s)G12(8))N.....0S(C(s)G44(3))
(3.63)
where G i (s) represents the sixteen Kharitonov plant family which is given in Chapter 2

via Eq.(2.30). Now, let the controller be

C(s) =K (3.64)

By using the even and odd parts of the numerator and the denominator polynomials, the

sixteen Kharitonov plant family can be written as

Nie(SQ) + SNZ'O(SQ)

O = G = D () ¥ Dsolo?)

where i,7 =1,2,3,4 (3.65)
For the constant gain controller of Eq.(3.64), the characteristic equation of the system is

0ij (s, K) = [K Nie(5%) + Dje(s)] + s[K Nio(s%) + Djo(5?)] (3.66)
For s = jw, multiplying the characteristic equation with N;(s) gives

055 (jw, K)N} (jw) = pij(w, K) + jgij(w) = [Nfo(—w?) (K Nie(—w?) 4+ Dje(—w?))+
W N}, (=w?)(K Nip(—w?) + Djo(—w?))] + jw[Nj,(—w?) Djo(—w?) = Njp(—w?) Dje(—w?)]

(3.67)

Now, let the degree of d;;(s, K) be n then d;;(s, K) is Hurwitz stable if and only if

0(0;j(jw, K)) = n. Thus, the given interval system is Hurwitz stable if and only if
o(0ij(s, K)Nj (s)) = n+ o(Nj (s)) = n — o(Nj(s)) (3.68)

is satisfied for all 7,5 = 1,2, 3, 4.
From Eq.(3.67), for each Kharitonov plant, it is seen that using the positive real roots
of ¢;j(w) and applying theorem 3.2 or lemma 3.1, all the stabilizing values of K can be cal-

culated. Similarly, the related equations for PI and Lag/Lead controllers can be obtained.
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Example 3.5

Consider the interval plant given in [16]

[54, 74]s + [90, 166]

G = 3.69
(59 7) = 58 76757 + [50.4, 80852 + [30.1,33.915 7 [=0.1,0.1] (369)
The objective is to calculate all the parameters of a PI controller
K.
C(s) =K, + ?Z (3.70)

which stabilize G(s,q,r). To find if stabilizing gains K, and K; exist, one possible ap-
proach would be as follows: First, construct sixteen Routh tables (one for each Kharitonov
plant with controller C(s) of Eq.(3.70)). Then, from the positivity requirement of the first
column of these tables for stability, obtain sets of inequalities. Finally, compute the in-
tersection of these sets of inequalities. For example, consider the first Kharitonov plant

(1 =1and j = 1). From Eq.(2.30), one of the Kharitonov plants is

94s + 90

= = . ].
o) = Guls) = T 165 80,852 1 30,05 = 0.1 (38.71)

The characteristic equation is
011(5, Kp, Ki) = 1+ C(5)G11(s) = 5° + 4.65" 4+ 80.85% + a15? + ags + a3 (3.72)

where a1 = 30.1 + 54K),, a2 = —0.1+ 90K}, + 54K; and a3 = 90Kj;. In order to find all the
stabilizing values of (K, K;) by using the Routh table, one needs to solve the following

inequalities:

371.8 —a; >0, a3 >0, a1(371.68 — ay) — 4.6(4.6a3 —a3) >0

a1 (37168 - al)(4.6a2 - 03) - 46(46&2 - 03)2 - a3(37168 - 01)2 >0 (373)

It is clear that solving these inequalities will not be very easy. Now, applying the Hermite
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Biehler theorem, from Eq.(3.15),

90 — 54
Ni(s) = TS —5-3s (3.74)

Multiplying 411 (jw, Kp, K;) with Ny (jw), one gets

011 (jw, Kp, K;) N{ (jw) = p11(w, K;) + jqui1 (w, Kp) =

3w%—219.4w* —(150.8—162K;)w*+450 K;4jw(—8.8w*—(313.9— 162K, ) w?—0.5+450 K , )

Now, it is seen that ¢i;(w, Kp) is dependent only on K,. Since the signature of N{(jw)
is equal to —1 and the order of d1;(jw, K, K;) is equal to 5, d11(jw, K, K;) is Hurwitz
stable if and only if the signature of 011 (jw, Kp, K;) N7 (jw) is equal to 4. This implies that
q11(w, Kp) must have at least two positive real roots. Since g1 (w, K},) has one root at the

origin,

K
a5 (w, K,) = w = —8.8w" — (313.9 — 162K,)w? — 0.5 + 450K, (3.75)

must have at least one positive real root. Using the root locus, the distribution of the

positive real roots of ¢s(w, K},) was calculated as follows
K, € (0.0011,00) : 1 positive real root

K, € (=00,0.0011) : no real root

Thus, the only possible region for stabilization is K, € (0.0011,00). Using theorem 3.2,

for stability the following inequalities must be satisfied
p11(0, K;) = 450K; > 0, p1;(wi, K;) = 3w8 — 219.4w] — (150.8 — 162K;)w? + 450K; < 0

where wy is the positive real root of ¢s(w, Kp). Sweeping over the values of K, and using
theorem 3.2, the stabilizing values obtained of (K, K;) for G1i(s) are shown in Figure
3.8. Figure 3.9 shows the stability regions of the sixteen Kharitonov plants where the
intersection of these regions is shown by 'z’. From Eq.(3.63), the region "z’ was computed

and sketched in Figure 3.10.
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Figure 3.10: All the stabilizing values of (K, K;) for the interval plant

3.6 Conclusion

In this chapter, an extension of a new approach which is based on the Hermite-Biehler
theorem to the Lag/Lead controller structure for stabilizing a given plant has been given.
The approach was then further developed for PI, Lag/Lead and PID controllers for
relative stabilization. In addition, the stabilization of uncertain systems defined by an
interval plant structure was also discussed using the sixteen Kharitonov plant family.
Since the method is analytical and does not involve solving inequalities which may be

nonlinear, it is superior to the existing results.
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Chapter 4

A SOFTWARE PACKAGE
PROGRAM FOR ANALYSIS OF
INTERVAL SYSTEMS

4.1 Introduction
4.2 The Hermite-Biehler Theorem for Real and Complex Interval Polynomials
4.3  Frequency Response of Interval Systems
4.3.1 Minimum(Robust) Gain and Phase Margins and Nyquist Envelope
4.3.2 Bode Envelope
4.3.3 Gain Crossover, Phase Crossover and Bandwidth Frequencies of Interval Plants
4.3.4 Nichols Envelope
4.4 Maximum Allowable Perturbation Bounds of Parameters of a Linear System
4.5 AISTK-A Software Package for the Analysis of Interval Systems

4.6 Conclusion

4.1 Introduction

The striking advances in microprocessor design and computer technology have changed
the approach to control system design in such a way that computationally demanding
techniques no longer present a problem to the control engineer. This fact is obviously one

of the main reasons why there have been many developments in the field of robust control
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since the 1980s. The power of computers enables the control engineer to try ideas easily
and rapidly with the aid of specialized computer software. One of the effective software
programs, which is widely used in control theory, is known as MATLAB.

MATLARB, standing for MATrix LABoratory, is a high performance interactive soft-
ware package program. It provides numerical analysis, matrix calculations and graphical
facilities. MATLAB allows the user to solve numerical problems using some simple com-
mands rather than writing a program in a language such as Fortran, Basic or C. MATLAB
also has various toolboxes such as the control toolbox, Hs toolbox, u-toolbox, optimiza-
tion toolbox and so on. Toolboxes are comprehensive collections of MATLAB functions
(M-files) that extend the MATLAB environment in order to solve particular classes of
problems such as control problems. Probably the most important feature of MATLAB is
its easy extensibility which allows one to create different toolboxes.

In this chapter, a software package program, called Analysis of Interval Systems
ToolKit (AISTK), which has been developed in the MATLAB environment is described.
MATLAB has two toolboxes within the context of robust control systems which are the
H, toolbox and the p-toolbox. These toolboxes use the well known H,, technique and
the structured singular value to address the robustness problem, therefore, they are not
helpful for control systems with parametric uncertainty. On the other hand, AISTK is
a user friendly toolbox like the control kit and can be successfully used for analysis of
interval systems. Although our intention in this chapter is to introduce AISTK, some
theoretical results such as a discussion of robust gain and phase margins and the Nyquist
envelope of an interval plant using the generalized Hermite-Biehler theorem for interval
polynomials, formulation of gain crossover, phase crossover and bandwidth frequencies of
interval plants etc. are also given.

The chapter is organized as follows: In section 4.2, the generalized Hermite-Biehler
theorem for real and complex interval polynomials is given. Section 4.3 discusses the
frequency response of interval systems. In this section, using the generalized version of the
Hermite-Biehler theorem for interval polynomials, the robust gain and phase margins and
the outer boundary of the Nyquist envelope of an interval plant are discussed. The section
also gives procedures for computing the gain crossover, phase crossover and bandwidth

frequencies of an interval transfer function. The problem of finding the maximum allowable
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perturbation bounds of parameters of a linear system while preserving stability is discussed
in Section 4.4. The description of the software package program, AISTK, is given in Section

4.5. Some concluding remarks are given in the final section.

4.2 The Generalized Hermite-Biehler Theorem for Real and

Complex Interval Polynomials

In Chapter 3, the classical Hermite-Biehler theorem and its generalized form for controller
design were introduced. In this section, the generalized form of the Hermite-Biehler the-

orem for real and complex interval polynomials is given.

a) The Hermite-Biehler theorem for real interval polynomials [4]: Let the poly-
nomial

P(s,q) = qo + q15 + q28> + q35° + ceeven + gns"” (4.1)

be an nth order, real interval polynomial where the coefficients vary as ¢; € [¢;, G],7 =

2

0,1,2,...,n. Substituting s = jw and p = w*, one gets
P(p,q) = R(p) + jwQ(p) (4.2)

where

mazR(p) = G —qp+ qap’ — %,u?’ F o

minR(p) = qo — q@p +q_4u2 — Tl e

mazQ(p) = i — @b+ Gu” — qrpt + e

minQ() = q — Gl + @Gp° — U + e, (4.3)
Let the roots of mazR(x) = 0 and minR(u) = 0 be wmazrl, Wmazr2s.- - and wpine,
Wiminr2,------, Tespectively. Similarly, let the roots of mazQ(x) = 0 and minQ(p) = 0 be
Winazqly Wmazq2se--- and Wmingl, Wming2se---- , respectively. Then the stability of the in-

terval polynomials P(s,q) can be stated as follows: The real interval polynomial P(s,q)

of Eq.(4.1) is strictly robust Hurwitz if and only if the frequency bands [wminr1, Wmazril,
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[Winingls Wmazgl], [Wminr2s Wmazr2], [Wming2s Wmazq2]----- are simple, real, positive, interlac-
ing and do not overlap. A graphical illustration of this interlacing property is shown in

Figure 4.1.

maxR(H)

minR(H )

minQ(H )

Figure 4.1: Interlacing property of an interval polynomial

b) The Hermite-Biehler theorem for complex interval polynomials [85]: Let

the polynomial of Eq.(4.1) be a complex interval polynomial with

g =a;+73b;, 1=0,1,2, ... , N (4.4)

where

a; € @,a_i], b; € [bi,bi], 1=0,1,2,....... , N (4.5)

In this case, one can write P(s,q) as

P(jw,q) = U(w) + 5V (w) (4.6)

By using the intervals of the parameters, the four extreme polynomials for w > 0 can be

defined as
mazUT(w) = @ — bw — agw? + b3w® + oo,
minUt(w) = ag— biw — Gw?® + b3w® + e
mazV T (w) = by +a1w — bew? — azw® + oo
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minVT(w) = by +ajw —byw? —@w + o, (4.7

For the negative range of w, the four extreme polynomials are:

marU~ (w) = T — biw — agw? 4+ b3w® + e,
minU (w) = ag— biw — @w?® + b3w® + v,
marV (w) = b+ a1w — baw? — @w® + v,
minV~ (w) = by +aGw — baw® — azw® + v (4.8)

Similar to the case of polynomials with real coefficients, let the roots of mazU™(w) = 0
and minUT(w) = 0 be Wpazutis Dmazutas - and Wypinut1s Wminut 2y e and the
roots of mazV*'(w) = 0 and minV " (w) = 0 be Wyazvt1s Wmazyt2s--- - and W,inp+1s
Wininw+as------, Tespectively. The Hermite-Biehler theorem for this case is: The interval poly-
nomial P(s,q) with complex coefficients of Eqgs.(4.4-4.5) is strictly robust Hurwitz if and
only if the frequency bands [Wminu+1,Wmazut1)s [Wminvt1s Cmazet1ls [Wiminut2s Wmazu+2]s
[Wrninet2s Dmazpt2)---- are simple, real, interlacing and do not overlap and repeat the same

process for the negative range of frequency.

Example 4.1

Consider the interval polynomial
P(s,q) = [2,3]s° + [13, 15]s* +[22, 30]s> + [28, 32]s% + [15,20]s + [5, 8] (4.9)
From Eq.(4.3)
mazR(p) = 8 — 28 4+ 15p%; minR(p) = 5 — 32u + 137 (4.10)

and

mazQ () = 20 — 22p + 3u%; minQ(u) = 15 — 30u + 24> (4.11)

The roots of maxR(p) are: 0.352, 1.515; the roots of minR(u) are: 0.168, 2.294; the roots
of mazQ(p) are: 1.063, 6.270 and the roots of minR(u) are: 0.518, 14.482. Thus, it can
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be seen that the following interlacing condition is satisfied
[0.168,0.352] < [0.518,1.063] < [1.515,2.294] < [6.270, 14.482] (4.12)

Therefore, one can conclude that the given real interval polynomial is Hurwitz stable.

4.3 Frequency Response of Interval Systems

A frequency response of a physical system is an important fundamental subject in the field
of control engineering. In classical control, there are graphical methods such as the Nyquist
plot, Bode plot and Nichols chart for designing and analysing control systems. However,
these methods were developed for a fixed nominal plant. So, in general, these methods are
not applicable to interval systems. In this case, it is necessary to calculate the frequency
response of the entire family of the system in order to carry out analysis and design. Some
recent work in this direction can be found in [10, 11, 12, 22, 23, 24, 62, 83, 75, 87].

In this section, the procedures for constructing various envelopes that contain the

entire frequency responses of an interval system are discussed.

4.3.1 Minimum(Robust) Gain and Phase Margins and Nyquist Enve-
lope

As mentioned in Chapter 2, the subject of robust stability of control systems with pa-
rameter variations has been a focus of attention of researchers in recent years. However,
beyond stability, it is important to guarantee some measure of robust performance for
systems with parameter variations. In classical control theory, phase and gain margins
are two important frequency domain performance measures widely used for controller de-
sign. For systems with a nominal transfer function these margins are computed from the
Nyquist or Bode plots of the open loop transfer function. However, in the case of systems
with parametric uncertainties, the computation of the gain and phase margins becomes
much more complex. To overcome this complexity or difficulty, one needs to compute the
frequency response of uncertain systems, such as the Nyquist or Bode envelopes, or to
convert the problem to one of robust stability of uncertain polynomials.

The robust gain and phase margins of interval systems have been treated in Argoun
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and Bayoumi [5] and Hollot and Tempo [75]. In [5], the generalized Hermite-Biehler
theorem for real and complex interval polynomials is used for computing robust gain and
phase margins. In [75], it was shown that the outer boundary of the Nyquist envelope of
a stable interval plant is covered by the Nyquist plots of the sixteen Kharitonov plants
family. Here, the same problem is dealt with by using the generalized Hermite-Biehler
theorem.

Consider the configuration shown in Figure 4.2 where
G, = K.e? (4.13)

is the frequency-independent gain-phase compensator. Thus, the closed loop characteristic

equation of the system can be written as
1+ K. 7°G(s) =0 (4.14)

For ¢ = 0, the value of K. for which the Eq.(4.14) just becomes unstable gives the gain
margin. And for K, = 1, the value of ¢ for which the Eq.(4.14) just becomes unstable
gives the phase margin of the system.

Let the plant in Figure 4.2 be a stable nth order all pole interval system (for simplicity
an all pole interval system is considered). In this case, the characteristic equation of the

unity feedback system is

- - K
5(s) =1+ K.e7%°G(s,qeQ) =0 =1+ K,e ¢ 4.15
() ¢ (5,9€Q) ¢ 8"+ 18t 4 + qo (4.15)
Setting K. = 1, one gets
6(8) = 8"+ quo18" L+ gu_os" Z F e + qo + K(cos(¢) — jsin(¢)) (4.16)

where ¢; € [¢;,G),% = 0,1,2,...... ,n — 1. Substituting s = jw,

0(jw) = U(w)+5V (w) = qo+Kcos(p) — qow’ +quw — ... 45 (= Ksin(p) +qrw—qzw® +......)
(4.17)
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Thus, the four extreme polynomials for w > 0 are

mazU T (w) = G+ Kcos(¢p) — QwQ + @t — %6 F o
minU" (w) = qo+ Kcos(¢) — Bw? + %w‘l — G’ + e,
mazV*t(w) = —Ksin(¢) +qiw — gsw’ + Gw’ — ﬂuﬂ + o
minV ' (w) = —Ksin(p) +qw — Gw’ + gsw’ — Tw’ + e (4.18)

and for the negative range of w, the four extreme polynomials are

mazU~ (w) = G0+ Kcos(¢) — gow® + Gaw® — g6® + coovvveveenes
minU~ (w) = qo+ Kcos($) — pw® + qaw' — Gw® + e,
mazV ™ (w) = —Ksin(¢p)+qw — Bw’ + %uﬁ — W A .
minV ™ (w) = —Ksin(p)+ qrw — @w3 + Gw’ — ﬂuﬂ + o (4.19)

From the Eqgs.(4.18-4.19), it can be seen that mazU™ (w) = mazU (w), minU*(w) =
minU ~ (w), mazV T (w) = minV ~ (w) and minV ™ (w) = maxV ~ (w). Therefore, one needs
to consider only four equations, namely those for w > 0 or w < 0. Incrementing ¢ and
computing the roots of these equations, there will be four possibilities to get the robust

phase margin. These four possibilities are:

1. From the mazU™(w) and the maxV*(w). The related parameter set is

Sl = {%7%727%7@7%7%7 """" }

2. From the mazU™(w) and the minV*(w). The related parameter set is

‘92 = {%7 Q_laﬂaﬁa ﬁa 45,965 -------- }

3. From the minU™(w) and the mazV ™+ (w). The related parameter set is

4. From the minU™ (w) and the minV T (w). The related parameter set is
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Gils) = S
S+ +ust + @A+ @2+ qs+ @
Gols) = K _ _
S+ +ust + @ + @2+ qs+ @
Gals) = __" _
S 4 + @st + @33 + q2s + s + o
Gils) = — P " 3 2 et o (4.20)
L +q15° +q35° + q25° +q15s + qo

It is clear that the parameters in the sets (51,592,53 and S4) belong to the Kharitonov
plants. Thus, one can conclude that the robust phase margin of a stable nth order all
pole interval system is achieved at one of the Kharitonov plants. The calculation of the
minimum gain margin is similar to the calculation of the minimum phase margin with ¢
set equal to zero in Eq.(4.14).

By making some modification in Figure 4.2, it can be shown that the outer boundary
of the Nyquist envelope of a stable nth order all pole interval system comes from the
Nyquist plots of the Kharitonov plants of this system. If one multiplies the given interval
plant with a complex gain and then apply the procedure which is used for computing the
gain and phase margins, it can be proved that a point on the outer portion of the Nyquist
envelope belongs to a Kharitonov plant as follows:

Consider a point on the outer portion of the Nyquist envelope of a stable nth order all

pole interval system as
z=x+jy and arglz] = tanfl(g) (4.21)
T

this point can be written as

2 +y? =r? (4.22)

which represents a circle with radius r and centred at the origin. Now, replace the

frequency-independent gain-phase compensator (G, = K.e /%) with G, = %e*jd’. Then,
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the characteristic equation of the unity feedback system which is shown in Figure 4.2

becomes
1 _. 1 _. K
8(s) =1+ —e70G =1+ -7 =0 4.23
(5) + 7 (5,9) + rC et Gn-18" 1+ . + qo (4.23)
or
5(s) = 18" +1rqn_15"" "+ rgu_os" T2 + ... + rqo + Kcos(¢p) — jK sin(¢p) (4.24)
Substituting s = jw,
$(jw) =U(w) +jV(w) =
rqo + Kcos(¢p) — rgew? + rquw* — ... + j(—Ksin(¢) + rqiw — rgsw® + ......) (4.25)

Thus, the four extreme polynomials for w > 0 are

mazU " (w) = rq + Kcos(¢p) — rﬂwQ + rw’ — 7"%6 F o
minU" (w) = rqo+ Kcos(¢) — ripw? + rq_4w4 — rGew® 4 e
mazV ' (w) = —Ksin(¢p)+ rgiw — r@w?’ + rgsw’® — rﬂuﬂ + o
minV'(w) = —Ksin(¢) +rqw — rw’ + rgw’ — FEw’ + e, (4.26)

If one increases ¢ and calculates the roots of these equations, from the generalized Hermite-
Biehler theorem for real and complex interval polynomials it can be observed that the strict
robust stability conditions for interval polynomials will be violated at the point z = z + jy
which belongs to a Kharitonov plant. Therefore, one can say that the outer Nyquist en-
velope of a stable nth order all pole interval system is covered by the Nyquist plots of the

Kharitonov plants.

Example 4.2

Consider an interval system as

1.5

G =
(37 q, I') st 4+ [1.8, 2_2]83 + [3_6, 4_4]32 -+ [3_6, 4.4]3 + [0.9, 1-1]

(4.27)
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RO () EO ok el @ . e,
Figure 4.2: A unity feedback system
which has the following Kharitonov plants
1.5
aQ —
1(s) s* +2.25% + 4.452 + 3.65 + 0.9
1.5
G2s) = TR 1445 + 445 1 0.9
1.5
aQ —
) = a9 136 4 365 1 11
1.5
Gu(s) = (4.28)

st +1.8s3 +3.652+4.4s5+1.1

The minimum gain margin is 1.15 and is achieved at G4(s). The minimum phase margin
is 86.77 and is achieved at G1(s). The Nyquist plots of the Kharitonov plants and the

outer boundary of the Nyquist envelope are shown in Figures 4.3 and 4.4.

4.3.2 Bode envelope

The magnitude and phase extremums of the interval plant of Eq.(2.27) can be found as
a) For s = jw*, the maximum and the minimum magnitudes of G(jw*, q,r) occur on
one of the Kharitonov or on an edge plant (by edge plant we mean a plant which belongs
to the thirty-two systems of Eq.(2.34)).
b) The maximum and the minimum phases of G(s,q,r) at s = jw* are always gener-
ated by Kharitonov plants.

The maximum and minimum magnitudes of Eq.(2.27) at s = jw* can be written as

maz|N (jw*, r)]

maz|G(jw*,q,r)| = (4.29)

min|D(jw*, q)|
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Nyquist plots of Kharitonov plants
0.8 T T T

Imaginary
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o

0.5 1 1.5 2
Real

Figure 4.3: Nyquist plots of the four Kharitonov plants

and
. . min|N (jw*,r)|
min|G(jw*, q,r)| = _ (4.30)
GO 4N =D . )
Similarly, the maximum and minimum phases of G(jw*, q,r) are
mazarg|G(jw*, q,r)] = mazarg[N (jw*,r)] — minarg[D(jw*, q)] (4.31)
and
minarg|G(jw*, q,r)] = minarg[N (jw*,r)] — mazarg[D(jw*, q)] (4.32)

The value sets of the numerator, N(s,r), and the denominator, D(s,q), for s = jw* are
shown in Figure 4.5 where N1, No, N3, N4, D1, Do, D3 and D4 represent the Kharitonov
polynomials of the numerator and the denominator of G(s,q,r). Since the value sets are
rectangular, the maximum magnitude of N(jw*,r) and D(jw*,q) always occur at one of
the Kharitonov polynomials and the minimum magnitude of N (jw*,r) and D(jw*, q) occur

on a Kharitonov segment or on a Kharitonov polynomial. For the phase of G(s,q,r), it is
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Figure 4.4: Outer boundary of the Nyquist envelope

clear that the maximum and minimum arguments of N (jw*,r) and D(jw*, q) are achieved
at the corners of the value sets which correspond to the Kharitonov polynomials of the
numerator and the denominator.

Thus, as a result, one can say that the boundary of the Bode envelope can be calculated
from the Kharitonov or edge plants and the boundary of the phase envelope can be found

from the phases of the Kharitonov plants.

4.3.3 Gain Crossover, Phase Crossover and Bandwidth Frequencies of

Interval Systems

Several frequencies such as gain crossover, phase crossover and bandwidth frequencies are
used in control systems in order to calculate the gain and phase margins and to characterize
the speed of response of the system. The gain and phase crossover frequencies (w¢q and wep)
are defined as the frequencies at which the magnitude of the system is equal to unity (0db)
and the phase angle is equal to —180?, respectively. Two important frequency-domain

measures, gain and phase margins which are used as design criteria, are calculated at these
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Figure 4.5: Value sets of N(s,r) and D(s,q) at s = jw*

frequencies. Also, the bandwidth frequency, wy, is the frequency at which the magnitude
of the complementary sensitivity function of the system is equal to 0.707 (—3db). The
bandwidth frequency of the system indicates how fast or how well the system will track
an input signal.

In general, fixed systems except conditionally stable systems and some higher-order
systems with complicated numerator have one gain crossover and one phase crossover
frequency. Therefore, the calculation of these frequencies for a fixed system is straight-
forward. However, for interval systems, there are many gain crossover, phase crossover
and bandwidth frequencies due to the uncertain parameters. So, it is of value to find the
bounds of these frequencies for uncertain systems. These bounds may offer a convenient
means for designing interval control systems. With this motivation, the gain and the phase
crossover and the bandwidth frequencies of the interval plant of Eq.(2.27) are formulated

as follows:
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1) The relationship of the gain crossover frequencies of G(s,q,r) can be written as

MiNWeg < Wegt < Weg2 < evenens < Mazweg (4.33)

where minw., and mazrw,, are achieved at the Kharitonov or edge plants.

From Figure 4.6, the intersection points of the magnitude envelope of G(s,q,r) with
the 0db line give the gain crossover frequencies. Since both sides of the magnitude envelope
of G(s,q,r) comes from Kharitonov and edge plants, one can say that the minw., and
the mazw., belong to one of the Kharitonov or edge plants.

Remark 4.1: If the portion of the phase envelope between minw., and the mazw,,
is approximately linear and decreasing, the mazw.4 occurs on the Kharitonov plant which

gives the robust phase margin (pm,p)-

2) The range of phase crossover frequencies of G(s,q,r) is

MiNWep < Wepl < Wepz < v < Mazrwep (4.34)

where minw., and mazw,, are achieved at the Kharitonov plants.

From Figure 4.6, since both sides of the phase envelope of G(s,q,r) come from
Kharitonov plants, the minwy, and the mazw., belong to the Kharitonov plants and
the other phase crossover frequencies must lie between minw., and mazwcp.

Remark 4.2: If the portion of the magnitude envelope of G(s,q,r) between minwe,
and mazxw,p is approximately linear and decreasing then the Kharitonov plant which gives

the robust gain margin (gmm,) has minwe.

3) The relationship of the bandwidth frequencies of G(s,q,r) can be written as

minwy < wp; < wWpa < eeeeenenn. < mazrwy (4.35)

where minw, and mazwy are achieved at the Kharitonov or edge plants.
In order to prove this result, it is necessary to consider the complementary sensitivity

function of the system. The complementary sensitivity function of G(s, q,r) can be written
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as

T(s,q,r) = % (4.36)

It is known that the magnitude envelope of G(s,q,r) is bounded by Kharitonov and edge

plants. Now, the question is “can one say that the magnitude envelope of T'(s,q,r) is

covered by Kharitonov and edge plants of G(s,q,r)?”. For s = jw*, the value set of

G(s,q,r) is covered by Kharitonov and edge plants. If one shifts the value set of G(s,q,r)

along the horizontal(real) axis by 1, the value set of 1+ G (jw*, q, r) is obtained. Therefore,
min|G(jw*,q,1)]

in|T(jw* = 4.
mzn| (]w ,q,I’)| 1+max|G(]w*,q,r)| ( 37)

and
_ maz|G(jw', q,r)|
- 1 + min|G(jw*, q,r)|

maz|T(jw*,q,)| (4.38)

Thus, one can say that the magnitude envelope of T'(s, q,r) is bounded by the magnitude
envelope of the complementary sensitivity functions of the Kharitonov and edge plants of
G(s,q,r).

Now, from the magnitude envelope of T'(s,q,r), if one draws a line which is paral-
lel to the frequency axis at —3db, the line will intersect the magnitude envelope of the
complementary sensitivity functions. From the intersection points, one can calculate the
bandwidth frequencies. From Figure 4.7, since the magnitude envelope of T'(s,q,r) is
bounded by Kharitonov and edge plants of the system, then the minimum and the maxi-
mum bandwidth frequencies (minwy, and mazwy) of the system occur on the Kharitonov

and the edge plants.

4.3.4 Nichols Envelope

The boundary of a Nyquist template of an interval transfer function (by a Nyquist template
we mean the value set of G(s,q,r) at s = jw*) is contained in the boundary of Nyquist
template of its thirty-two systems. Thus, the Nichols envelope of an interval plant can be
constructed by using the thirty-two systems. The Nichols envelope can also be generated
approximately from the magnitude and phase envelopes of the family.

As a concluding remark, the Nyquist, Nichols and Bode envelopes of interval systems

can be computed using the thirty-two systems of the interval plant family.
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Figure 4.6: Magnitude and phase envelopes of an interval plant

4.4 Maximum Allowable Perturbation Bounds of Parame-

ters of a Linear System

One of the main problems in robustness of linear systems is to find the maximum allowable
perturbation bounds of parameters of a linear system while preserving stability. The
interest in this area has greatly increased since the publication of the Kharitonov theorem.
Although the stability of an interval system can be checked by Kharitonov’s test, there is
no direct indication as to what extent the bounds of parameters can be increased before
the system becomes unstable. Following the Kharitonov theorem, this problem has been
treated in [14, 136, 120, 40]. In this section, the method of [14] is used in order to prepare
an algorithm for computing the maximum allowable perturbation.

Consider a linear unity feedback system with the nominal transfer function as

N b 8™ + byy18™ " 4+ ..+ b,
G(s) = (5) _ bms™ + R e i [ (4.39)
D(s) ps™ + ap_15" L+ ... +ap
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db

Figure 4.7: Magnitude envelope of the complementary sensitivity function of an interval
plant

The closed loop characteristic equation of this nominal system can be written as

Z a;s’ + Z a; + b;) (4.40)

i=m+1

Assume that the nominal unity feedback system is Hurwitz stable. Given any allowable
variations in the coefficients € > 0, Eq.(4.39) can be written with an interval plant structure

asS
N m sl
G(s,q,r) = (8,5) _ Pm8" 4 fm 12 T o 0 (4.41)
D(s,q)  qnS"+ qn—18""" + ...+ qo

where

’I"iE[fi,Fi],’iZO,l,Z, ..... ,m, r; =b;—e€, T, =b;+¢€

¢ €19,,q), 1=0,1,2,...,n, ¢, =a; —€, §;=a; +¢ (4.42)

and the closed loop characteristic equation of the system of Eq.(4.41) is

7q7 Z QZS + Z qz + 7’1 (443)

i=m+1

Now, we seek the largest value of €, say €4, such that the interval system is Hur-

witz stable. If one writes the Kharitonov polynomials of the characteristic equation,
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Eq.(4.43),(assuming n = m + 1), one gets

01(s) = qus" + (Tazt + o))" + (@2 + T0=2)8" 2+ (quos + Tn3)s" > + .....
02(5) = qus" + (qno1 +T0=1)8""" + (@2 + Tn=2)s" 2 + (Gnzs + Tn=3)s" > + .....
03(s) = Tus" + (qno1 + Ta—1)8" "+ (Guo2 + Tn=2)s"" 2+ (o3 + Tn=3)s" * + ...
64(s) = Gus" + (ot + Taz)s" 1+ (G2 + Tn=2)8""2 + (qn_s + Tn3)s" > + ...

Thus, for any € > 0, if all these four Kharitonov polynomials of the perturbed system
are Hurwitz stable then stability of the perturbed system is guaranteed. If the maximum

perturbations of 01(s), d2(s), d3(s) and d4(s) are respectively €1, €, €3 and €4, then from
€maxr = min{el, €2, €3, E4} (445)

the maximum allowable perturbation can be determined.

Example 4.3

Let the feedforward transfer function of a unity feedback system be

bos? +bis+by 4 +6s+2
$3+ass?+ais+ay $3+5s2+25+6

G(s) = (4.46)

This nominal system is Hurwitz stable. Now, the question is “how much can one per-
turb the parameters (by, b1, bo, ag,a1,a2) while preserving stability?”. The output of the

algorithm for maximum perturbation is

€Emaz = 2.438

Thus, for this perturbation value, the following interval system

[1.562, 6.438]s% + [3.562, 8.438]s + [—0.4384, 4.438]
3+ [2.562,7.438]s2 + [—0.4384, 4.438]s + [3.562, 8.438]

G(s,q,r) = (4.47)

is Hurwitz stable.
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4.5 AISTK-A Software Package for the Analysis of Interval

Systems

MATLAB with its large collection of fast and efficient functions and various toolboxes,
such as the control systems toolbox, provides an ideal interactive environment for linear
control system analysis and design. Its graphical user interface (GUI) allows a user to
build up user friendly toolboxes. A graphical user interface is a user interface made up of
graphical objects such as buttons, menus, figures and so on. A GUI provides an interface
between an application and a user. When the user chooses an object from the GUI, it
is expected that a certain kind of action will take place. In addition a great majority of
the control community are familiar with MATLAB and its toolboxes. These reasons have
been chosen for the development of the Analysis of Interval Systems ToolKit (AISTK) in
MATLAB.

AISTK is a user friendly MATLAB based software package. It deals with analysis of
uncertain systems defined by an interval plant structure. Various functions (M-files) have
been developed in the MATLAB environment using the theory given in Chapter 2 and in
this chapter. The objective in developing AISTK was to gather these functions under a
toolkit and make them easily usable by students and other users.

When AISTK is run the window of Figure 4.8 appears on the screen where G(s,q,r)
is an interval plant and C(s) and H(s) are fixed controllers. Double clicking on G(s,q,r),
C(s) or H(s) opens up a window in which the user can enter the parameters of an interval
plant and controllers in MATLAB form. There are four pull down menus namely File,
Model, Analysis and Plot. The File menu allows for clearing the workspace and quitting
from the program. The controller type and model to be analysed can be selected from
the menu Model. The Analysis menu has many submenus which are shown in Figure 4.9.
Briefly, the features provided in the program enable the user to

— enter data through a very friendly graphical user interface (GUT);

— find the Kharitonov plants of G(s,q,r). From the Analysis menu, clicking on the
“Kharitonov Plant” button opens up the window of Figure 4.10 in which the user can see
the number of Kharitonov plants and the parameters of any selected Kharitonov plant can

be displayed by using “Show Parameters” button;
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¥] AISTK-Analysis of Interval Systems Toolkit

File Model Analysis Plot
R(s) E(s) Y(s)
2 () C(s) G(s,q,r) Delay
~ | B(s)

H(s)

Figure 4.8: The block diagram of AISTK

Analysis

Kharitonov Plants

Robust Gain and Phase Margins

Crossover and Bandwidth frequencies

Nyquist Plot |>

Bode Plot D Il Bode plots of Kharitonov plants
Nichols Plot D random Bode plots

Value Set [> boundary of Bode envelope
Stability >

Maximum Perturbation Bound

Figure 4.9: Analysis menu

— find the minimum gain and phase margins and the plants which yield each. When
the user clicks on the submenu “Robust Gain and Phase Margins” of Figure 4.9, the
window of Figure 4.11 is displayed where the robust gain and phase margins can be read;

— plot the robust versions of the Nyquist, Bode and Nichols diagrams;

— obtain the plots of the value set of the characteristic equation, numerator or de-
nominator of the system;

— compute the bounds of the gain crossover, phase crossover and bandwidth frequen-
cies;

— compute the maximum allowable perturbation bounds of parameters of a fixed
system;

— check the stability of the system and see if the interlacing property is satisfied.
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Kharitonov plants of G(s,q,r)

Number of Kharitonov plants: 16

if you want to display Kharitonov plants select
transfer function and click Show parameter but-
ton

G1(s) Show Parameters

Done

Figure 4.10: The Kharitonov plants window

Robust(minimum) Gain and Phase Margins

rgm(robust gain margin) 1.15
achieved at : G4(s)
rpm(robust phase margin) : 86.77
achieved at : G1(s)
Done

Figure 4.11: Gain and phase margins window
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Example 4.4

Consider an interval plant as

(2,3]s + [1,2]

QG = 4.48
(1) = 57 [3,6]s2 + [2,3]s + [1,2] (4.48)
and the controller as
s+3
= 4.4
Cls) 4s+ 7 (4.49)

The robust gain margin is infinity and the phase margin is equal to 85.39° which is achieved
at C(s)G(s)€C(s)G(s,q,r) = (252 +8546)/(4s* +3153 +50s2 +18s5+7). Figures 4.12 and
4.13 show the Nyquist and Nichols templates. The value set of the characteristic equation
at w = lrad/sec is shown in Figures 4.14. Figures 4.15 and 4.16 show random Bode plots

and the boundary of the Bode envelopes.

Nyquist Template
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Figure 4.12: Nyquist envelope
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Nichols Template
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Figure 4.13: Nichols envelope

Value Set of Characteristic equation
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Figure 4.14: Value set of the characteristic equation at w = 1rad/sec
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Figure 4.16: Boundary of the Bode envelope
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Example 4.5

In this example, the Astrom-Hagglund controller tuning method [7] is used in order to
find the parameters of a PID controller which gives a desired minimum phase margin for
an interval plant family. The Astrom-Hagglund controller tuning method is based on the
idea that a point on the Nyquist plot of a given transfer function can be moved to an
arbitrary point in the complex plane by choosing suitable controller parameters. Such an
appropriate point for tuning is the intersection of the Nyquist curve with the negative real
axis which is traditionally described as the critical point. However, for an interval plant
there are many Nyquist curves which cross the negative real axis or for a fixed frequency
there are many points in the Nyquist plane. Therefore, it is necessary to find the worst
case transfer function.

Consider an interval transfer function as

G(s,q,r) =
1
0.002,0.072]s* + [0.335, 0.405]s® + [1.295, 1.365]s2 + [1.965, 2.035]s + [0.965, 1.035]

(4.50)
The aim is to find the parameters of the PID controller of the form of

C(s) = Kp(1+sTy+ SLT) (4.51)

for which the phase margin of the system is at least ¢, = 45°.
From the toolbox, it was computed that the bound of phase crossover frequencies of
G(s,q,r) is
wep = [2.20,2.46] (4.52)

The minimum gain margin of the system is equal to 3.55 at the frequency w = 2.20 =
minwep. Using this frequency and the gain at this frequency, the following PID controller

was designed using the Astrom-Hagglund method

3.01252% + 5.55 + 2.51
Cls) = 2.193s

(4.53)

The minimum phase margin of the overall system is 45.22°. Figure 4.17 shows the closed

loop step responses of Gk (s) (Kharitonov plant family) and Figure 4.18 shows the closed
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Figure 4.17: Step responses of G (s)

loop step responses of C'(s)G k(s). The Nyquist envelopes of G(s,q,r) and C(s)G(s,q,r)

are shown in Figure 4.19.

4.6 Conclusion

This chapter has described an easy to use software program developed for the analysis
of interval systems. The program allows the user to compute the frequency responses,
check the stability, construct the value sets, find the Kharitonov plants and determine the
minimum gain and phase margins of control systems with an interval plant. The program
is a collection of algorithms developed in the MATLAB environment. The logic behind
the algorithms is based on the the results summarized in Chapter 2 and this chapter.
Although the package is developed to deal with interval systems, it can be successfully
used for the analysis of control systems with more complex uncertainty structure using
the so-called overbounding technique.

Some theoretical results have been also developed in this chapter. An alternative proof

of why the outer boundary of the Nyquist envelope of a stable interval plant is covered by
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Figure 4.19: Nyquist envelopes of G(s,q,r) and C(s)G(s,q,r)
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the Nyquist plots of the Kharitonov plants has been given. The bounds of phase crossover,
gain crossover and bandwidth frequencies of an interval plant has been formulated. An
application of the Astrom-Hagglund controller design method to an interval plant has been

given via an example.
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Chapter 5

FREQUENCY RESPONSE OF
SYSTEMS WITH AFFINE
LINEAR UNCERTAINTY

5.1
5.2
5.3

Introduction

Construction of 2¢-Convex Parpolygon

Magnitude and Phase Extremums of Polynomials with Affine Linear Uncertainty
5.3.1 Magnitude and Phase Extremums of P(s,q)

5.3.2 Magnitude and Phase Extremums of §(s)P(s,q)

5.4 Bode, Nyquist and Nichols Envelopes
5.5 Robust Gain and Phase Margins
5.6  Controller Synthesis Technique
5.7  Conclusion
5.1 Introduction

As mentioned in Chapter 4, several papers, motivated by the results obtained in the
parametric area, have studied the computation of the frequency response of control systems
under parametric uncertainty. It is also necessary to mention that a large part of the
literature in the field of robust parametric control has been devoted to the robust stability

analysis paradigm, rather than the robust performance paradigm. This is not because the
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robust performance problems of systems with parametric uncertainty have been solved,
but simply because the research has had little success in this field so far. The paper by
Keel and Bhattacharyya [87] addresses robust versions of the powerful graphical tools such
as the Nyquist plot, Bode plot, and the Nichols chart for uncertain systems defined by
an interval plant structure, where the numerator and denominator polynomial coefficients
change independently, and then the problem of controller design using extensions of a
classical approach. However, in practical feedback system analysis and design problems
the coefficients of the plant transfer function do not necessarily vary independently.

In this chapter, the numerator and the denominator polynomials of the transfer func-

tion of a given system are assumed to be a polynomial family of the form

P(s,q) = ap(q) + a1(q)s + ... + an(q)s” (5.1)

whose coefficients a;(q) depend linearly on q = [q1, g2, ..., g4]T and the uncertainty box is

Q:{q:qle[q'L?E]?i: ]‘727""7q} (5'2)

where ¢; and g; are specified lower and upper bounds of the ith perturbation g;, respec-

tively. In other words, the system’s transfer function is assumed to be

where q = [¢1, g2, ... ,qq)T€Q and v = [ry,rg, ...... ,r-]TER.

Using the method given in [116], where a simplification algorithm was given for testing
the stability of a polytopic polynomial family of the form of Eq.(5.1) by constructing its
2¢-convex parpolygons (for each s = jw, the 2¢-convex parpolygon is defined as the outer
edges of the image of the exposed edges ((277')q edges) of the Q-box), the amplitude and
phase extremums of Eq.(5.1) at s = jw* (w*€[0,00)) are obtained. The amplitude and
phase extremums of P(s,q) multiplied with a fixed polynomial, §(s), are also discussed.
Once the edges of a 2¢g-convex parpolygon are identified then the maximum magnitude
and phase extremums of P(s,q) at s = jw* can be calculated from the vertices of the

2q-convex parpolygon. For the minimum magnitude, instead of sweeping over the edges
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of the 2¢g-convex parpolygon, an exact equation is derived. Then, the procedures for
constructing the Bode, Nyquist and Nichols envelopes of a control system defined by
Eq.(5.3) are presented. Finally, using these envelopes, a controller design strategy is given.
The distinguishing feature of the results given in this chapter is the efficient procedure
introduced for constructing the 2¢g-convex parpolygon of P(s,q). Thus, the approach
presented in this chapter allows one to eliminate some exposed edges of N (s,r) and D(s, q)
which are not useful for constructing the Bode, Nyquist and Nichols envelopes.

The most closely related work to that of this chapter is that given in [25] and also
[10, 62, 22, 23]. The boundary results for Eq.(5.3) given in [25] are based on using all
the exposed edges of N(s,r) and D(s,q). In [10], the transfer function of the system was
assumed similar to Eq.(5.3) and an angle sweeping technique was proposed in order to com-
pute the Nichols template boundary. In [62, 22], it was assumed that the coefficients of the
numerator and the denominator polynomials of Eq.(5.3) were correlated with each other
and it was shown that the Nyquist envelope was contained in the set obtained by mapping
the exposed edges of the uncertainty box in the complex plane. Some improvements of the
results of [62] and [22] were given in [23] for computing the Bode and Nyquist envelopes
of uncertain systems. Since a more general uncertainty structure has been considered in
[62, 22, 23], the results of [62, 22, 23] are to date the best known results. However, the
exponential growth of the edges with respect to the number of uncertain parameters can
lead to serious computational difficulties. On the other hand, as is stated above, a novel
feature of the approach given in this chapter is the use of the 2¢-convex parpolygonal
value set. Therefore, if the given plant has the structure of Eq.(5.3) then the results of
this chapter can be more helpful than existing results for computing the Bode, Nyquist
and Nichols envelopes.

The outline of the chapter is as follows: In Section 5.2 the construction of the 2¢-convex
parpolygon is given. The magnitude and phase extremums of Eq.(5.1) are obtained in
Section 5.3 and the construction of the Bode, Nyquist and Nichols envelopes of a control
system with an uncertain transfer function of the form of Eq.(5.3) are discussed in Section
5.4. Section 5.5 deals with the computation of the robust gain and phase margins of
G(s,q,r). In Section 5.6, examples are given to illustrate the benefits of the method

presented. Section 5.7 gives concluding remarks.
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5.2 Construction of 2q-Convex Parpolygon

In Chapter 2, it was stated that the corresponding polytope of a family of polynomials of
Eq.(5.1) in the coefficient space has 29 vertices and (297 !)q exposed edges [13] and it can

be rewritten as

P(s,q) = fo(s) + fi(s)q1 + fa(s)g2 + f3(s)gz + ... + fy(s)aq, Q€EQ (5.4)

The 27 vertex polynomials of the polytope of P(s,q) can be written in the following

pattern

ci(s,a) = fo(s) + fi(s)q + fa(s)g2 + f3(s)g3 + - + fq(s)aq
c2(s,q) = fo(s) + fi(s)qr + fa(s)g2 + f3(s)g3 + - + fq(s)aq

c3(s,a) = fo(s) + fi(s)q + f2(s)@ + f3(s)g3 + - + fq(s)aq

c20(5,q) = fo(s) + f1(s)qr + f2(s)@2 + f3(s)@5 + . + fo(5)qg

The value set of Eq.(5.1) can be obtained by mapping the (297 1)q exposed edges in the
complex plane for each s = jw and the outer edges of the value set define a 2¢-convex
parpolygon. The (29 1)q edges in the complex plane can be divided into g groups where
each group has the same number of edges (277! edges) [116].  All edges in group i
(1 = 1,2,...,q) are parallel to each other with the same slope. Thus, knowing one edge
from each group is sufficient to construct the 2¢g-convex parpolygon. For example, let
e(c;, ¢j) denote the edge with end points ¢; and ¢; and for clarity of presentation consider
Figure 5.1a which is the image of the exposed edges of a polytope with ¢ = 3 parameters.
It can be easily shown that the edges e(c1, ¢2), e(cs, ¢q), e(cs, cg) and e(cr, cg) are parallel to
each other as shown in Figure 5.1a. Two of them which have the maximum and minimum
intersections with the imaginary axis identify two edges of a 2¢g-convex parpolygon as
shown in Figure 5.1. Similarly, the other edges needed for construction of the 2¢-convex
parpolygon can be identified. If there are vertical edges which have no intersection with the

imaginary axis, in this case from the maximum and the minimum intersections with the
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real axis, the two required edges can be found. A general formula [116] for the intersection

point of the edge line with the imaginary axis is

QN
I
ble
M=

(OrEi — OiEy)(qr — qk), k#i (5.6)

=
Il
—_

and with the real axis is

1 g ,
zh = 0 > (OiEy, — OvE;)(qr — qi), k#i (5.7)
b k=1
where ¢+ = 1,2, ...... ,q, qr takes either g or g depending on which edge it is associated

with and E; and O; are the even and odd parts of f;(s). Further information about the
value set of the uncertain polynomials and the construction of the 2¢-convex parpolygon
can be found in [13] and [116].

For different values of frequency, the edges of a 2¢-convex parpolygon may be different.
The following theorem is given in order to divide the frequency axis, w€[0, 00), into a finite
number of intervals where in each interval the edges of the 2¢-convex parpolygon remain
the same.

Theorem 5.1: The positive real roots of

divide the frequency axis into finite intervals where in each interval the 2q edges of the
(29=1)q exposed edges which constitute the outer boundary of the convex parpolygon
remain unchanged. The frequencies where the outer edges of the convex parpolygon may
change will be referred to as transition frequencies.

Proof: It is clear that when the frequency changes, the value of f;(jw), i = 0,1,2,....q
changes and this may lead to a change of the specific subset of (2971)q edges which
constitute the 2¢g-convex parpolygon. The transition frequency, where the image of an
edge of a )-box changes from the boundary into the interior and vice versa, occurs when
the phases of two of f;(jw), i =1,2,...,q are equal to each other [1]. Thus, at a transition
frequency

arg[fi(jw)] = arglfj(jw)], i,j = 1,2,...,q and i#] (5.9)
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or

tanl(gz[[]]:;]]) :tanl(gz[[g]]), i, =1,2,....q and i£j (5.10)
From Eq.(5.10), the following equation
Re[f;]Im][f;] — Rel[f;]Im[f;] =0 (5.11)

is obtained. O

Remark 5.1: This theorem is not new. Indeed, a similar result is given in [116]. However,
the proof given here is based on the condition which may lead to the change of the edges
of the 2¢g-convex parpolygon explained in the book by Ackermann [1, pp. 137]. Therefore,

it may be considered as an alternative proof.

Example 5.1
Consider

P(s,q) = 55" + qus® + (g2 + 43)5° + (@1 + 0.5¢2 + @3)s + 1 (5.12)

Q = {q: ¢1€[0.965,1.035], ¢2€[0.59,0.73], ¢3€[0.5, 0.65], ¢4 €[0.33, 0.41], g5 €[0.02,0.072] }
(5.13)
From theorem 5.1 it was computed that there was no transition frequency for P(s,q) of
Eq.(5.12). Thus, one single value of frequency within we(0, 00) is sufficient to identify the
edges of the 2¢-convex parpolygons of P(s,q). For example, writing Eq.(5.6) for i = 1

y' = w[(0.5 +w?) (g2 — g2) + (1 +w?) (g3 — @3) — w*(qs — qu) —w' (a5 — g5)]  (5.14)

and from this equation the maximum value of y' occurs for any value of w€(0,00) when
@ =@, @3 = @, 4 = q4, g5 = g5 and the minimum occurs for g2 = ¢2, @3 = g3,
44 = G, g5 = 5. So, the edges e(cr,cg) and e(cos,c06), (here, ¢z, cg, co5, ... are the
vertex polynomials of the polytope of P(s,q) which constitute the edges of a 2g-convex
parpolygon and they can be obtained by using Eq.(5.5)), are the two outer edges of the
convex parpolygon. Similarly, the other edges, e(ca2, c24), €(cg, c11), €(c18,¢22), €(c11,C15),
e(c1s, c26), e(cr, c15), e(cs, coq) and e(cg, co5), are found to constitute the boundary of the

2¢-convex parpolygons of P(s,q). Thus for all we(0, o), the set of the vertex polynomials

90



1s

Sp, = {0.02s* 4+ 0.335% + 1.385% 4 1.985 + 0.965,0.025* + 0.33s® 4 1.385% + 2.05s + 1.035,
0.072s* + 0.33s% + 1.385% + 2.05s + 1.035,0.072s* 4+ 0.33s> + 1.24s% + 1.98s + 1.035,
0.072s* + 0.33s> + 1.09s% + 1.83s + 1.035,0.072s* 4+ 0.415> + 1.09s> + 1.83s + 1.035,
0.072s* + 0.41s% + 1.09s% + 1.765 + 0.965, 0.02s* + 0.41s + 1.09s> + 1.76s + 0.965,

0.025" 4+ 0.415° 4 1.235% 4 1.83s + 0.965,0.025* + 0.41s° + 1.385” + 1.985 + 0.965} (5.15)
and the set of edge polynomials is

Spy = {0.025% +0.335% 4+ 1.3852 + (1.98 4 0.07X)s + (0.965 + 0.07)),
(0.02 4 0.052)\)s* 4 0.33s + 1.38s + 2.05s + 1.035,
0.072s" +0.33s3 + (1.24 + 0.14))s% + (1.98 + 0.07)\)s + 1.035,
0.072s* +0.335 + (1.09 + 0.15X)s% + (1.83 + 0.15))s + 1.035,
0.072s" + (0.33 4 0.08))s> + 1.09s% + 1.83s + 1.035,
0.072s% 4+ 0.415% + 1.095 + (1.76 + 0.07X)s + (0.965 + 0.07)),
(0.02 4+ 0.052)\)s* +0.415 + 1.09s% + 1.765 + 0.965,
0.02s% 4+ 0.415% 4 (1.09 + 0.14))s? + (1.76 + 0.07\)s 4 0.965,
0.02s" 4+ 0.415% 4 (1.23 + 0.15))s® + (1.83 + 0.15))s 4 0.965,

0.02s* + (0.33 + 0.08))s® + 1.385% + 1.98s + 0.965} (5.16)

Since the polynomial of Eq.(5.12) has ¢ = 5 uncertain parameters, the value set at each
frequency is contained in the image of 2¢ = 10 edges, which are given by Eq.(5.16).
Using these edge polynomials, the value set of P(s,q) can be constructed. The 2¢-convex

parpolygons of P(s,q) for we(0, 3] are shown in Figure 5.2

5.3 Magnitude and Phase Extremums of P(s,q) and §(s)P(s,q)

In this section, the magnitude and phase extremums of an uncertain polynomial family,
P(s,q) of Eq.(5.1), at s = jw* are first investigated. Then, the magnitude and phase

extremums of P(s,q) multiplied by a fixed polynomial, §(s), are obtained. These results
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Figure 5.2: 2¢-convex parpolygons for the polynomial of Eq.(5.12)

will be used in the next section in order to develop the robust versions of the frequency-
domain analysis and design tools such as the Nyquist, Bode and Nichols envelopes for the

transfer function of Eq.(5.3).

5.3.1 Magnitude and Phase Extremums of P(s, q)

Let the 2¢ vertices of the 2¢g-convex parpolygon of P(s,q) at s = jw* be vp1, vp2, Vp3, ...y
Up2q (see Figure 5.1b). Then,

Theorem 5.2: The maximum magnitude of P(s,q) at s = jw* is

maz|P(jw*,q)| = max(|vp1|, |Up2|a |Up3|a ey |Up2q|) (5.17)

and the phase extremums of P(jw*,q) are

minarg[P(jw*, q)] = min(arglvpi], arglvps], arglvps), ....., arglvpg])

mazarg[P(jw*,q)] = maz(arglvp], arglvps], arglvps), ....., arglvpg]) (5.18)
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Proof: The proof of this theorem follows in a straightforward manner from the geometric
structure of the value set of P(s,q) at s = jw*. Since the value set of P(jw*, q) is
contained in a 2¢g-convex parpolygon, the maximum distance from the origin to the point
which belongs to the parpolygon edges is achieved at a corner of the 2¢g-convex parpolygon
and the phase extremums will be on the vertices of the 2¢-convex parpolygon (see Figure
5.1b). O

To find the minimum magnitude, the following theorem is given,

Theorem 5.3: Define

|Upi| = mm(|”p1|a |UID2|7 |Up3|a e |Up2q|) (5.19)

where 1 = 1,2,3,...... ,2q. Considering Figure 5.3a let e(vp;, vp;) and e(vp;, vpy) be two
edges of the 2g-convex parpolygon which have the common vertex vp;. Let ¢p;, ¢p, and
¢py be the angles of vp;, vy, and vy, respectively. Draw the lines [y and /o which pass
through the points (vpg,vpi) and (vpy,vpi). Let ¢p, and ¢p, be the angles of the lines
hy and hs which are drawn from the origin and are perpendicular to the lines [y and s,
respectively. Assume also that the 2¢-convex parpolygon does not include the origin (if
the value set includes the origin for s = jw* then the minimum magnitude is equal to

zero). Then,

|Upz'| if ¢h1 g((ﬁpia ¢px)&¢h2 g((ﬁpya prz)
min|P(jw*, )| = { F= if ¢n, €(¢pi bpe) (5.20)

20722 if ¢, €(¢pya prz)

where

o1 = [(2lvpilp1)® = (fopsl> = [vpal* + D)2

02 = [(2|”pi|/02)2 - (|vpi|2 |U;Dy|2 + 02 2]1/2
p1 = [(Re[vps] — Re[vpi]) + (Im[vpg] — Im[vy]

p2 = [(Refvpy] — Refvyi])® + (Imfvgy] — Imluyi])*]'/? (5.21)

2]1/2

i)
2)
)
)
Proof: First of all, the minimum magnitude of P(s,q) at s = jw* should be achieved
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at the edges of a 2¢-convex parpolygon. If |vy;| = min(|vpi], [vp2l, -, [Vp2q]) at s = jw*,
geometrically the min|P(jw*,q)| must be on the edge e(vp;, vpy) or e(vpi, vpe). From the
figure, it is seen that ¢p, & (¢py, Ppi) so it is not possible that the edge, e(vp;, vpy), has a
point whose magnitude is smaller than |v,;|. However, since ¢y, €(¢;, ¢2), it is possible
that the edge, e(vp;, vpe), has a point whose magnitude is less than |v,| and it can be

calculated as

p1 = [(Re[vpg] — Re[vpi])2 + (Im[vpa] — Im[vpi])Q]l/Q (5.22)
opal® = (p1 — )% = |vpi]® — 72 (5.23)
From Eqgs.(5.22-5.23)

12 _ 91 _
2p1
[(2lvpilo1)? = (vpil® — vpal? + p1)%]72

2[(Relvps] — Re[vpi])? + (Imfvpg] — Imluy,])2]/2

min| P(jw*, q)| = h1 = [Joil* — 7°]

O (5.24)

The application of this theorem, however, may give some difficulties, since for each fre-
quency, one needs to find the lines [, l2, h; and hy and the phases ¢pi, pry Gpy, Pn1
and ¢po. Therefore, an equivalent result which is easily applied is given by the following
lemma.

Lemma 5.1: Define the segments
s1= (1= XN)vpi + Avpg, 2= (1 = N)vp; + Avpy (5.25)

where A\€[0, 1]. Take a value for \, say \*, which is very close to zero such as 0 < A*<10~6

and write

ki = (1= X)vpi + X vps, ko= (1 = X)vp + XNy, (5.26)

Then, the minimum magnitude of P(s,q) at s = jw* is

|opil i [ops| < [F1]&vpi| < k2]
min|P(jw*, Q)| = § 7= if [k < |vpi] (5.27)

20722 if|k2| < |’Upi|
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where o1, 02, p1 and py are given in Eq.(5.21) and |vp;| is defined by Eq.(5.19).
Proof: The proof of this lemma is similar to the proof of theorem 5.3. Here, instead
of using the lines [y and [» and corresponding perpendicular lines hy and hs, we can
calculate the minimum magnitude of P(jw*,q) by choosing the points k; and k2 on the
edges e(vp;, Upe) and e(vp;, vpy) and checking the magnitude of these points. Of course, the
points k1 and k2 must be very close to the point vp;. In other words, we have to assume
that , it is not possible to draw a perpendicular line to the edge e(v, k1) or e(vp;, k2) which
passes through the origin. Therefore, by taking the value of A\* very close to zero, this
assumption can be fulfilled. From Figure 5.3b, since |ki| < |vp;|, the minimum magnitude
is
min|P(jw*,q)| = h = [jo|* — 7212 = 7=

2m

Likewise, when |ka| < |vp;|, the related equation for the minimum magnitude can be de-

rived. O

Remark 5.2: For s = jw*, if |vpe| = |vpi| = min(|vpi], [vp2l, ..., [vp2e|) where i,z =
1,2,...,2q and i # =z, in this case, the minimum magnitude of P(jw*,q) will be on the
edge e(vpg, vpi) and its value is

o1 _ [(2lvpil)* — pi]'?

min|P(jw*, q)| = Ior 5 (5.28)

5.3.2 Magnitude and Phase Extremums of 4(s)P(s, q)

The magnitude and phase extremums of an uncertain polynomial P(s,q) multiplied with
a fixed polynomial §(s) = dg + 018 + .... + d,8" at s = jw* are given by the following
theorem:

Theorem 5.4: The magnitude and phase extremums of d(s)P(s,q) at s = jw* are

min|é(jw*) P(jw*, q)| = [6(jw")[min| P(jo", q)]

maz|d(jo") P(jw*, q)| = |0(jw’)|maz| P(jw*, q)] (5.29)
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minargld(jo*) P(jw*, @) = argld(je*)] + minarg[P(jw*, a)]

mazarg|é(jw”) P(jw*,q)] = arg[§(jw")] + mazarg[P(jw", q)] (5.30)
Proof: For s = jw*, 0(s) can be written as
§(jw*) = M(w*)e?") (5.31)

where M (w*) = (Re[6(jw*)>+Im[s(jw*)]?)"/? and 8(w*) = tan~"'[Im(6(jw*))/Re(5(jw*))].
Thus, geometrically, the effect of multiplying P(jw*,q) by §(jw*) = M(w*)e?’@") is to
rotate and scale the value set of P(s,q) at s = jw*, but not to distort its shape. There-
fore, the value set of §(jw*)P(jw*,q) is still a 2¢-convex parpolygon. So, from the results
obtained in Section 5.3.1, the magnitude and phase extremums of §(s)P(s,q) can be

computed using Eqs.(5.29-5.30). O

5.4 Bode, Nyquist and Nichols Envelopes

In this section, the construction of the Bode, Nyquist and Nichols envelopes of a given
uncertain transfer function of the form of Eq.(5.3) is discussed. Throughout this section,
it is assumed that 0ZD(s, q). If this assumption fails to hold one can exclude the values of
the frequencies which violate the assumption. Now, consider the transfer function given
in Eq.(5.3) and let v,1, vp2, Up3, ..., Vn2r and vgi, V42, Va3, ..., Va2 be the vertices of the 2r
and 2¢-convex parpolygons of N(s,r) and D(s,q) at s = jw*. Then define the sets Sy,
and Sy, which contain the vertices and the edges of the 2r-convex parpolygon of N(s,r)
at s = jw* as

SNV = {Unla Un2y «---- s 'Un2r} (532)

SNE:{enla €n2, .-y en?r} = {(1_>\)vn1 +)\vn2a (1_)\)Un2+>\vn3a ) (1_)\)1)7121" +)\'Un1}a AE[Oa ]-]
(5.33)

similarly define Sp,, and Sp, for the denominator as

SDV = {/Udla Vd2y -+ ) 'Uqu} (534)
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Spr = {edi;eaz, - ea2q} = {(1=A)vg1 +Avga, (1=N)vgo+Avgs, ..., (1=X)vgoq+Avgr }, A€[0, 1]
(5.35)

Then, the magnitude and phase extremums of G(s,q,r) at s = jw* can be found by the
following theorem

Theorem 5.5: The magnitude extremums of G(s,q,r) at s = jw* are

maz|N(jw*,r)| MLy, esy, |Vnil

maz|G(jw*, q,r)| = ———= = — (5.36)
min|D(jw*, q)| mznedeSDE|edj|
in| N (jw* MiNe,, cSy . |Cni
min|G(ju*,q,r)| = TNG D) e e g O (5.37)
maz|D(jw*, q)| ma$vdj€5DV|Udj|
and the phase extremums are
mazarglGliw",q,n)] = mazarglN(jw*, )] — minarg[D(jw*, Q)
= MaTaArgv,csy, [Uni] — MINGr guy e Sp,, [vgj] (5.38)
minarglG(jw*,q1)] = minarg[N(ju*,1)] — mazarg(D(jw", @)
= Minargy,csy, [Vni] — mazargy,es,, 4] (5.39)

where 1 =1,2,....,2r and j = 1, 2,....,2q.
Proof: The proof of this theorem follows immediately from the results of the previous
section. Since at each frequency, the value sets of N(s,r) and D(s,q) are contained in
2r and 2¢g-convex parpolygons, the magnitude and phase extremums of G(s,q,r) can be
found from the magnitude and phase extremums of the 2r and 2¢g-convex parpolygons.
O

For the computation of the Nyquist and Nichols envelopes of the transfer function of
Eq.(5.3), it has been shown in [25, pp. 362-363] that 0G(s,q,r)CGg(s) where 0 denotes
the boundary and

Gr(s) ={G(s,a) : a€Qp} (5.40)

where o = [q1,¢2, ..., qq, 71, T2, <...yy]T denotes the parameter vector and Qp denotes the

exposed edges of the uncertainty polytope Q = {« : ¢;€[q;, @), mi€[r;, 75,4 = 1,2,...,q,] =
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1,2,...,r}. However, it is clear that the uncertainty polytope, €, has (204t7)=1)(¢ + r)
exposed edges. By using the 2¢-convex parpolygonal value set of a polynomial family of
Eq.(5.1), the following theorem, which is not computationally expensive, is given
Theorem 5.6: At s = jw*,

0G(jw*,q,r)CGr(jw*) = gzv U?ZE
E 1%

(5.41)

where 0 denotes the boundary and Sy, , Sn,, Sp, and Sp,, are defined in Eqgs.(5.32-5.35).
Proof: Let A and B be the two complex plane polygons with vertex sets S4,, and Sp,,
and edge sets S4, and Sp,,, respectively. Then, from the complex plane geometry, the

following is known [25, pp. 335]:

o) (A 54

B SBp Sy

) (5.42)

Since the value set of the numerator N(s,r) and the denominator D(s,q) of Eq.(5.3) at

s = jw* are independent 2r and 2¢-convex parpolygons, we can write
SAV - SNv7 SBV - SDva SAE - SNE7 SBE — SDE

Thus,

SNVUSNE:GE(jw*) O (5.43)
Sp,  Sby

0G(jw",q,r)C

A more generalized version of theorem 5.6 which will be essential for the computation
of the robust gain and phase margins can be given under the assumption of no transition
frequency (a discussion on this assumption can be found in Chapter 6). Assume that
neither N(s,r) nor D(s,q) has any transition frequency. This assumption guarantees that
the identified edges for a single frequency which constitute the 2r and 2¢g-convex parpoly-
gons remain unchanged for all we(0,00). Thus an extremal subset which characterizes
the boundary of the Nyquist envelope for all frequencies can be obtained. This is given as
follows:

Theorem 5.7: Assume that neither N(s,r) nor D(s,q) has any transition frequency.
Then,

0G(jw,q,r)CCGp(jw) = ZZV U:ggE (5.44)
E A%
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where 0 denotes the boundary and Sy, , Sny, Sp, and Sp,, are defined in Eqgs.(5.32-5.35).

The results of Section 5.2 enable one to identify the edges which constitute a 2¢-convex
parpolygon of a polynomial family of Eq.(5.1). Therefore, the advantage of the results
presented is that it is not necessary to consider all the exposed edges and vertices of the
corresponding polytopes of the numerator and denominator polynomials. For example, in
order to find a Nyquist template of a transfer function of Eq.(5.3) with r =4 and ¢ = 5
uncertain parameters then using known results one needs to find the image of 9(2%) = 2304
edges, however, from theorem 5.6, one needs to find the image of only 160 edges.

The following procedure is given to compute the Bode, Nyquist and Nichols envelopes
of G(s,q,r)

1. Rewrite N(s,r) and D(s,q) in the form of Eq.(5.4).

2. Solve Eq.(5.8) both for N(s,r) and D(s,q) and find the transition frequencies of
N(s,r) and D(s,q).

3. Obtain the frequency intervals, within these intervals the edges of the 2r and

2¢-convex parpolygons of N(s,r) and D(s,q) remain unchanged, as

(Oawnl)a (wnlawTL?)a ey (wnela OO) fO’f’ N(S,I’)

(07 wdl)? (wdlawdQ)a ey (wdda OO) fOT‘ D(Sa q)

where wp1 < wWpa < ... < Wpet and Wy < wgo < ... < Wyea are the transition frequencies of
N(s,r) and D(s,q), respectively.

4. Choose an arbitrary value of frequency within each interval found in 3 and by using
Eqgs.(5.6-5.7), identify the 2r and 2¢-convex parpolygons edges and obtain the vertex and
edge sets (Sny, SNy, Sp, and Sp,) of the numerator and the denominator polynomials
for each interval.

5. For each s = jw, using the sets (S, , Sn,, Sp, and Sp,) found in 4 and the results

given in Section 5.3 and in this section, obtain the Bode, Nyquist and Nichols envelopes.
Remark 5.3: The results of this section can be extended to a system with a fixed con-

troller and a transfer function given by Eq.(5.3). From Section 5.3.2 it has been seen that

the value set of an uncertain polynomial of the form of Eq.(5.1) multiplied with a fixed
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polynomial at s = jw* is still a 2¢-convex parpolygon. Also, the procedures given above
can be used for computing the frequency response of the more general uncertainty structure
such as G(s,q€Q) = N(s,q)/D(s,q) (the numerator and the denominator coefficients are
correlated with each other) by defining new uncertainty boxes for the numerator and the

denominator polynomials. However, the result will be conservative.

5.5 Robust Gain and Phase Margins

As stated in Chapter 4, the gain and phase margins are two important frequency domain
specifications. This section deals with the calculation of the robust gain and phase margins
for systems with an uncertain transfer function of the form of Eq.(5.3) using the theory
presented in the previous sections.

Suppose that a closed loop system with an uncertain plant of the form of Eq.(5.3) is
stable then the robust gain margin is the largest value of the gain K greater than 1 for
which the stability of KG(s,q,r) is preserved and the robust phase margin is the largest
value of phase # for which the uncertain system with e 7G(s, q,r) is robustly stable.

Thus, the worst case gain margin K* and phase margin 6* can be stated as

K* = infG(s)GG(s,q,r)KGa 0" = infG(s)EG(s,q,r)oG (545)

where K¢ stands for gain margin of G(s) and 6 stands for phase margin of G(s).

Using the following theorem, the values of K* and 6* can be computed from the
extremal system, Gg(s) of Eq.(5.44).
Theorem 5.8: Suppose a unity feedback system with G (s, q,r) is stable and assume that
neither N (s,r) nor D(s,q) has any transition frequency (if there is transition frequency,

see Remark 5.4). Then, the robust gain and phase margins are

K* = Z'nfG(s)GGE(s)KG7 0* = infG(s)EG’E(s)gG (5.46)

where Gg(s) = (Sn, /Spy)U(Sn,/Spy) and Sw,, Sn,, Sp, and Sp, are defined in
Egs.(5.32-5.35).

Proof: Let A and B be the two complex plane polygons with vertex sets S4,, and Sp,,
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and edge sets S4, and Sp,, respectively. Then, from the complex plane geometry, the
following is known

O(A + B)C(Sa, + S5, )U(Sa, + Sp,) (5.47)

Now, for the calculation of the gain margin, one needs to find the maximum value of K
greater than 1 for which

A(s) = KN (s,r) + D(s,q) (5.48)

is Hurwitz stable. From theorem 5.1, it is clear that if there is no transition frequency
then the identified edges which constitute the 2r and 2¢-convex parpolygons for a single
frequency remain unchanged for all we(0, 00). The multiplication of a 2r-convex parpoly-
gon with a fixed K is still a 2r-convex parpolygon. Thus, for a fixed value of K, one can
write

SAV = KSNV, SBV = SDva SAE = KSNE7 SBE = SDE‘

and from Eq.(5.48), the following equation can be written
A(jw)CAE(jw) = (KSNE -l-SDV)U(KSNV +SDE) (5.49)

Therefore, the stability of Ag(s) implies the stability of A(s). For the phase margin calcu-
lation, the gain K of Eq.(5.48) will be a complex gain such as K = ™% = cos(#) — jsin(0)

and the same proof will be valid. O

Remark 5.4: For clarity of presentation, theorem 5.8 is given for the no transition fre-
quency case. If there is a transition frequency then the Nyquist envelope can be obtained
by using theorem 5.6. Thus, the result of theorem 5.8 can be reformulated for this case.

However, the Gg(s) of Eq.(5.44) may be different for different frequency intervals.

5.6 Controller Synthesis Technique

In this section, using the tools (Bode, Nyquist and Nichols envelopes) developed in the
previous section, classical controller design methods are used to design robust controllers
for systems with affine linear uncertainty. Classical controller design techniques are ba-

sically based on two approaches. One is the Root-locus approach and the other is the
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frequency-response approach. Here, the frequency-response approach is used in order to
design a controller which compensates a system of the form of Eq.(5.3). The design proce-
dure is given by the following two examples. The first example deals with a Lead controller
design. The objective of the second example is to design a robust PI controller for a given

uncertain system.

Example 5.2

Consider a feedback system with an uncertain transfer function

N(s,r) ri
G(s,q,1) = — 5.50
(5 a,) D(s,q)  qus® + (g2 +q3)s? + (q1 +0.5¢2 + q3)s + @1 (5.50)
where
R={r=[r]:m€[57} (5.51)

Q={a=[qg ¢ ¢ qu]": q€0.050.25],¢€[0.4,0.5], g3€[0.5,0.7], ¢4 €[0.09,0.11]} (5.52)
The objective is to design a Lead controller of the form

Ts+1

C(S) = CO{TS + 17

0<ax<l (5.53)

which guarantees that the system has a phase margin of at least ¢ = 45° and a gain
margin of not less than kK = 12db. It is desired that the bandwidth of the closed loop
system be equal to or greater than 0.5rad/sec.

Since N (s,r) = rq, the sets Sy, and Sy, are
Sny ={5,7} and Sy, = {5+ 2A} Ywe(0,00), A0, 1] (5.54)

Using theorem 1 it was computed that there is no transition frequency for D(s,q). Thus,
one single value of frequency within wée (0, 00) is sufficient to identify the edges of the 2¢-
convex parpolygons of D(s,q). The edges, e(cr, cg), e(cg, c10), e(cs, cs), e(co, c11), €(ca, cg),
e(c11,¢15), e(ce, c15) and e(er, ¢15), were found to constitute the boundary of the 2¢-convex

parpolygons of D(s,q). Thus for all we(0, 00), the vertex and edge sets of D(s,q) are

Sp, = {0.095* +0.95* +0.95s + 0.25,
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0.09s% 4 1.1s + 1.155 + 0.25,
0.09s% + 1.252 + 1.2s + 0.25,
0.09s% + 1.2s% + s + 0.05,
0.11s% + 1.2s2 + s + 0.05,
0.115% + s% + 0.8s5 4 0.05,
0.11s® +0.95% + 0.75s + 0.05,

0.115* + 0.95% + 0.95s + 0.25} (5.55)

and

Sp, = {0.095% 4 (0.9 4+ 0.2))s% 4 (0.95 + 0.2\)s + 0.25,
0.095% + (1.1 4 0.1)\)s? + (1.15 + 0.05))s + 0.25,
0.09s% + 1.252 + (1.2 — 0.2))s + 0.25 — 0.2),
(0.09 4 0.02X)s* + 1.25% 4 s 4 0.05,
0.11s% 4+ (1.2 — 0.2)\)s% + (1 — 0.2)\)s + 0.05,
0.11s® + (1 — 0.1\)s% + (0.8 — 0.05))s + 0.05,
0.115% + 0.95% + (0.75 + 0.2)\)s + 0.05 + 0.2\,

(0.11 — 0.02X)s> + 0.95% 4 0.95s 4 0.25} (5.56)

Using the result given in [25], it can be seen that the extremal system, Gg(s), has 80
systems with one unknown parameter A€[0, 1]. On the other hand, from theorem 5.6, it is
clear that there are 24 systems each of which has one unknown parameter namely A€[0, 1].
So, the computational gain for this example is about 70%. Figure 5.4 shows the Nyquist
template of G(s,q,r) at w = 2rad/sec by using the results of [25] and a Nyquist template
of G(s,q,r) at w = 2rad/sec obtained by using the results developed in this paper is
shown in Figure 5.5.

From the magnitude and phase envelopes of G(s, q,r), which are shown in Figure 5.6,

the gain margin of the uncompensated system is —1.21db and the phase margin is —2.5°.
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Figure 5.4: A Nyquist template at w

-0.8

2rad/sec

Figure 5.5: A Nyquist template at w
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Thus, it is necessary to adjust the phase of the open loop transfer function by an amount
Om = 45° — (—2.5°) = 47.5° (5.57)

At w = 2.64rad/sec., the minimum phase of G(s,q,r) is about —180°. Therefore, we need
a phase lead controller with a maximum phase value ¢, = 47.5° at w,, = 2.64rad/sec.

So, from
1 — singn,

=_ - m 5.58
1+ sindp, ( )

« and wm,

1
~Tva
one obtains o = 0.15 and 7' = 0.97. However, a phase lead compensator will shift the gain
crossover frequency to a higher frequency where the phase is less than at the original gain
crossover frequency. Therefore, in order to bring the Bode envelope of (0.97s+41)/(0.146s+
1)G(s,q,r) to 0db, at this frequency requires

20l0g10 K, = —9.5db (5.59)

giving K. = 0.34. Thus, the Lead controller

0.97s +1
— 034250 .
Cls) =034 (5.60)

is obtained.

The phase and gain margins of the compensated system were computed to be 47.7° and
13.5db, respectively. From the magnitude envelope of the closed loop transfer function of
the compensated system, it was found that the bandwidth of every system in the family lies
between 0.68rad/sec and 1.28rad/sec.. Therefore, the designed Lead controller satisfies
the design specification robustly. The Bode, Nyquist and Nichols envelopes of the uncom-

pensated and compensated systems are shown in Figures 5.6, 5.7 and 5.8, respectively.
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Example 5.3

Consider

N . 2
G(s.qr) = (s,r) _ ((157“1 +7r94+0 7“3)S3+ (r1+13) i (5.61)
D(s,a) (g1 +q1)s* + (g4 + a3+ q2)8° + (g2 + q1)s* + g3

where

R ={r=[ry ror3]" : r1€[0.4,0.8],72€[0.01,0.08],3€[0.2,0.6]} (5.62)

Q = {q = [ql q2 q3 Q4]T : q1€[0'47 08]7 QQ€[0-2, 06]7 Q3€[0-02, 008]7 Q4€[0'0017 0005]}
(5.63)
The aim is to design a PI controller of the form

. Kps—i—Ki
S

C(s) (5.64)

which guarantees that the entire family has a phase margin of at least ¢ = 45°.

From theorem 5.1 it was computed that there was no transition frequency for N(s,r).
Thus, one single value of frequency within we(0, 00) is sufficient to identify the edges of
the 2r-convex parpolygons of N(s,r). However, for D(s,q), it was found that there is

one transition frequency at lrad/sec. The edges of the 2r-convex parpolygons of N(s,r)
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for we(0,00) and the edges of the 2¢g-convex parpolygons of D(s,q) within we(0,1) and

w€(1l,00) are shown in Table 5.1.

Edges of 2r-convex Edges of 2¢g-convex Edges of 2¢-convex
parpolygon for we(0,00) | parpolygon for we(0,1) | parpolygon for we(1, 00)
e(ca, c3) e(cs, co) e(cr, co)
e(cs, ce) e(ci,ci2) e(cis, c16)
e(cs, cg) e(ce, cs) e(cr, c3)
e(ey,c3) e(cy, c11) e(c14, c16)
e(cs, cg) e(cg, C13) e(cio,c14)
e(e1,cs) e(cyq, cs) e(es, cr)
e(cs, c13) e(cz, ¢io)
e(c, c12) e(cr, c15)

Table 5.1: Identified edges which constitute the boundary of the 2r and 2¢-convex par-
polygons

Now

m = 45° + 5°(additional phase) = 50° (5.65)

and from

¢m = 50° = 180° + minarg[G(jwi,q,r)] (5.66)

the value of wy is 0.01203rad/sec. and the maximum magnitude of G(s,q,r) at s = jw;
is 77.8db. From
—20log10 K, = maz|G(jwi,q,r)|db = 77.8db (5.67)

K, = 1.29%x10~*. If one chooses the corner frequency K;/K, to be one decade below w;

then K; = (w1/10)K, = 1.55x 10" 7. Thus, the designed PI controller is

~ 1.29%107%s + 1.55x 10~
S

O(s) (5.68)

It was computed that the phase margin of the compensated system is greater than 56.7°.
Figures 5.9, 5.10 and 5.11 show the Bode, Nyquist and Nichols envelopes of the uncom-

pensated and compensated systems.
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5.7 Conclusion

A technique has been presented for plotting the frequency response of a transfer function
with affine linear uncertainty structure. The technique is based on a 2¢-convex parpolygo-
nal value set. Several new results have been derived for construction of the Bode, Nyquist,
and Nichols envelopes of control systems with uncertain parameters. These results have
been used to design compensators that provide a guaranteed level of performance, in the

sense of gain and phase margins, for systems with affine linear uncertainty.
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Chapter 6

ANALYSIS OF CONTROL
SYSTEMS WITH MIXED
PERTURBATIONS

6.1 Introduction

6.2 Assumption of No Transition Frequency
6.3 Small Gain Theorem

6.4 Robust Performance

6.5 SPR (Strict Positive Realness) Conditions
6.6 Absolute Stability Problems

6.7 Conclusion

6.1 Introduction

This chapter is an extension of the results contained in the previous chapter. It considers
control systems with parametric as well as unstructured uncertainty. It is known that in
most practical systems at least two types of uncertainties are present, namely unstructured
(or nonparametric) uncertainty which represents unmodeled dynamics, nonlinearities etc.,
and structured (or parametric) uncertainty, representing a lack of precise knowledge of

the actual parameters. The robust stability analysis of a control system in the presence
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of unstructured uncertainty is an important and well-developed subject in control theory.
The well-known absolute stability problem [134] which was formulated in the 1950s is an
important robustness problem regarding unstructured uncertainty. In this problem, a fixed
linear system is subjected to perturbations consisting of all possible nonlinear feedback
gains lying in a sector. A similar problem was studied in the 1980’s by modelling the
perturbations as H,, norm bounded perturbations of a fixed linear system. And in recent
years, as mentioned before, a substantial amount of research [13] concerning robustness
analysis of control systems affected by real parametric uncertainty has been done.

The aim of this chapter is to study the determination of the robust small gain theo-
rem, robust performance, strict positive realness and absolute stability problem of control
systems with parametric as well as unstructured uncertainty. Thus, the system under
investigation contains a mixed type uncertainty structure. Parametric uncertainty is
modelled by a transfer function whose numerator and denominator polynomials are of
the form of Eq.(5.1). The unstructured uncertainty is modelled as Ho, norm bounded
perturbations and perturbations consisting of a family of nonlinear sector bounded feed-
back gains. These problems for systems with parametric uncertainty are studied in
[37, 48, 38, 67, 129, 39, 46, 59, 107]. The main ideas of the approaches presented in
these references regarding these problems are based on the boundary results developed
for uncertain transfer functions by using the Kharitonov theorem [88], the generalized
Kharitonov theorem [34] and the edge theorem [21]. The majority of these results dealt
with uncertain systems defined by an interval plant structure. On the other hand, in this
chapter, it is assumed that the uncertain transfer function of the system is in the form of
Eq.(5.3). Under the assumption of no transition frequency and using the boundary results
developed in Chapter 5, which are based on the 2¢-convex parpolygonal value set of the
polynomial of the form of Eq.(5.1), the classical small gain theorem, robust performance,
strict positive realness and the absolute stability problem of a control system with an
uncertain transfer function of the form of Eq.(5.3) are formulated.

The chapter is organized as follows: In Section 6.2 a discussion on the assumption of no
transition frequency is given. In Section 6.3, the robust version of the small gain theorem
is derived. The robust performance of a feedback system with parametric uncertainty

is discussed in Section 6.4. In Section 6.5, the strict positive realness conditions of the
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transfer function of Eq.(5.3) are investigated. The problem of robust absolute stability
of systems with parametric uncertainty is discussed in Section 6.6. Section 6.7 gives

concluding remarks.

6.2 Assumption of No Transition Frequency

In this chapter, the results are presented under the assumption of no transition frequency.
Therefore, theorem 5.7 is mainly used in order to prove the results. A polynomial of the
form of Eq.(5.1) has no transition frequency, if Eq.(5.8) does not have any positive real
root. The assumption of no transition frequency does not mean that the results are not
helpful in the case of a transition frequency. The reason for making such an assumption is
to allow results to be presented in a clear and closed form. Therefore, the results given in
the next sections can be reformulated for the case of a transition frequency. The following

example is given to clarify the situation (assumption of no transition frequency).

Example 6.1
Consider
G(s.qr) = g(s,r) _ 7;332 + (27"1 +7ro+173)s + 2r1 + 1o (6.1)
(s,a)  @us® + @s® + (1 + @2 + q4)s + @1 + g3
where
R={r=[rirar3]" : r1€[L,3],m2€[4,6)],r3€[0.2,2.8]} (6.2)

Q = {q = [fh q2 q3 Q4]T : q1€[17 2]7 QQE[?% 5]7 q3€[0'257 15]7 q4€[0-47 14]} (63)

From theorem 5.1 it was computed that there was no transition frequency for N(s,r).
Thus, one single value of frequency within we(0,00) is sufficient to identify the edges of
the 2r-convex parpolygons of N(s,r). However, for D(s,q), it was found that there is
one transition frequency at lrad/sec. The edges of the 2r-convex parpolygons of N(s,r)
for we(0,00) and the edges of the 2¢g-convex parpolygons of D(s,q) within we(0,1) and
w€(1,00) are shown in Table 6.1. For frequency response computation, the result given
in theorem 5.6 is always superior to the boundary results of [25, pp.362-363]. For this
example, using the boundary result given in [25] it can be seen that the extremal system,

Gp(s), has 448 systems. On the other hand, the extremal system obtained by theorem
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Edges of 2r-convex Edges of 2¢g-convex Edges of 2¢-convex
parpolygon for we(0,00) | parpolygon for we(0,1) | parpolygon for we(1, o)
e(ey, o) e(c11,¢12) e(es, cq)
e(ca,cq) e(cs, cq) e(c13, c14)
e(e1,cs) e(c14, c16) e(cg, cs)
e(es, c7) e(c1,c3) e(cg,c11)
e(cyq, cg) e(c12, ¢16) e(cq,cs)
e(er, cs) e(c1,c5) e(cg, c13)
e(ce, c14) e(cs,c14)
6(63,611) 6(63,611)

Table 6.1: Identified edges which constitute the boundary of the 2r and 2¢-convex par-
polygons

5.6 contains 96 systems for each frequency. Therefore, the computational gain at each
frequency is about 78.5%. However, for other control problems such as the computation
of the maximum H., norm of the family or calculation of robust gain and phase margins,
the scenario is a little different. For example, in order to compute the maximum H,, norm
of the system given in Eq.(6.1), one needs to consider two extremal systems namely G g1(s)
and Gpa(s) for we(0,1) and we(l, 00), respectively. Since there is no transition frequency
for N(s,r), six exposed edges of N(s,r) are eliminated. For D(s,q), from Table 6.1, it
can be seen that the edges e(cg, c14) and e(cs, ¢11) remain unchanged for all frequencies.
Thus, 36 systems of G pa(s) are similar to the 36 systems of Gg1(s). So, it is necessary to
consider a total of 96 + 60 = 156 systems for calculating the maximum H,, norm of the
family and the computational gain reduces to 65%.

From this example, it is clear that extensions of the results of the present chapter to the
transfer function with ¢ransition frequency is obvious. There will always be a considerable
computational reduction as long as the number of the total extremal systems is not equal

to the extremal system given in [25].

6.3 Small Gain Theorem

This is a very useful theorem in robust stability studies. The small gain theorem can
be posed in any normed algebra, and it gives conditions under which a system of inter-

connected components is stable. Generally, the classical small gain theorem studies the
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— G(S)

\

AP

A

Figure 6.1: Closed loop system with Hs, norm bounded perturbation

|

G(sa.r)

\

AP

A

Figure 6.2: Closed loop system with mixed perturbations

robust stability of the closed-loop system of Figure 6.1 where G(s) is a stable linear time-
invariant system which is perturbed via feedback by a stable transfer function AP with
bounded H,, norm. It states that the configuration of Figure 6.1 remains stable for all

feedback perturbations AP satisfying ||AP||» < « if and only if

1
1Gllso<— (6.4)
«

In the following theorem this result is extended to the case where in addition to unstruc-
tured feedback perturbations, the G(s) of Figure 6.1 is subject to parameter perturbations
defined by Eq.(5.3).

Theorem 6.1 (small gain theorem for configuration of Figure 6.2): Given an un-
certain family G(s, q, r) of stable proper plants with no transition frequency, the closed loop
system of Figure 6.2 remains stable for all stable perturbations AP such that |AP||, <

if and only if
1

a<
MATGeap(s)|Glloo

(6.5)
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where Gg(s) is given by Eq.(5.44).
Proof: The proof of this theorem comes from theorem 5.7. From theorem 5.7, for all
frequencies, since dG(jw,q,r)CGE(jw), the maximum H,, norm over the parameter set
occurs over the subset Gg(s) of Eq.(5.44). O

Now, consider the control system block diagrams given in Figures 6.3 and 6.4 where

C'(s) is a stabilizing controller for the entire family. In order to determine the amount of

A

AP(s)

O G(sa) *)

A

C(s)

Figure 6.3: Closed loop system with additive perturbations

AP(s)

— G(san W)

Cs

Figure 6.4: Closed loop system with multiplicative perturbations

unstructured perturbations that can be tolerated by the additively perturbed uncertain
system shown in Figure 6.3, one needs to find the maximum of the H,, norm of the closed

loop transfer function

C(s)(1 4+ C(s)G(s))™" (6.6)

over all elements G(s)€G(s,q,r). In the case of the multiplicative perturbations shown in
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Figure 6.4, it is necessary to find the maximum of the H,, norm of the closed loop transfer

function

C(s)G(s)(1 + C(s)G(s)) ! (6.7)

for all elements G(s)€G(s,q,r).

The following theorem is given for computing the level of unstructured perturbations
that can be tolerated in both the additive and multiplicative cases shown in Figures 6.3
and 6.4, respectively.

Theorem 6.2 (small gain theorem for Figures 6.3 and 6.4): Let G(s,q,r) of
Figures 6.3 and 6.4 be a proper family of plants with no transition frequency and C(s) be
a stabilizing controller then the closed loop sytem in Figures 6.3 and 6.4 remains stable

for all stable perturbations AP satisfying |AP||» < « if and only if,

1
a< — for figure 6.3 (6.8)
supG(s)ecp(s)1C () (1 + C(s)G(3)) "l
and
1
a< for figure 6.4 (6.9)

T supG(s)ean(s)|C(s)G(s)(1 + C(s)G(s)) oo

where G(s) is defined by Eq.(5.44).

Proof: Let the polynomial P(s,q) of Eq.(5.1) be multiplied with a fixed polynomial
d(s) = 0o + 018 + .oo. + 0ps™. At s = jw*, the value set of P(jw*,q) is contained in a
2¢-convex parpolygon. For s = jw*, geometrically, the affect of multiplying P(jw*, q) by
d(jw*) is to rotate and scale the value set of P(s,q) at s = jw*, but not to distort its
shape. Therefore, the value set of §(jw*)P(jw*,q) is still a 2g-convex parpolygon (see
section 5.3.2). Thus,

A(C(jw)(1 + C(jw)G(jw,q,1)) ") CC(jw)(1 + Gp(jw)C(jw)) " (6.10)
From this equation

suPG(s)cci(s,q )| C (1) (1 + C(jw)G(jw)) ™ [=sup(s)cap(s) |Cw) (1 + Gr(jw)C(jw)) ™|
(6.11)
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Hence,

sUpG(s)ea(s,am) | C(10) 14+C (jw) G (jw) ™! oo =supa(s)cap(s)|C (1) (14+G 5 (jw) C(jw) ™' lso

(6.12)
5,0 [[C(1w)G(jw) (1 + C(jw)G (jw)) oo =
SUPG(s)eG (s ||C(JW)GE(]W)(1+GE(]w)C(]w))*1||oo for Eq.(6.9). O

Similarly, it can be shown that supg(s)ea

Example 6.2
Consider
N
G(s,q,r) = r) _ 5 mjrl (6.13)
D(s,q) (p+@)s*+(@+e+e@)s?+(@+e)s+a+e+ae
where
R={r=[r r]" :r€[1,2],7€[0.2,0.8]} (6.14)
Q=1{q=[q ¢ @) : q1€[4,5], 02€[0.5,1.2], g3€[0.5, 0.8]} (6.15)

Since N(s,r) is an interval polynomial, from the Kharitonov theorem the sets Sy, and

SN, Ywe(0, 00) are
Sny = {025 +1, 0.25 +2, 0.85 +2, 0.8s + 1} (6.16)
and
Snp = {025 1+ X, (0.2+0.6)0)s+2, 0.85+2— X, (0.8—0.60)s+1}  (6.17)

where A€[0,1]. Using theorem 5.1 it is easily shown that there is no transition frequency
for D(s,q). Thus, one single value of frequency within we(0,00) is sufficient to identify
the edges of the 2¢g-convex parpolygons of D(s,q). The edges, e(cy,¢2), e(ca, cq), €(cs, c7),
e(cq,c8), e(c1,c5) and e(er,cg), are found to constitute the boundary of the 2¢-convex
parpolygons of D(s,q). Thus for all we (0, 00), from Eqgs.(5.32-5.35) the vertex, Sp,,, and
the edge, Sp,, sets of D(s,q) can be written as

Sp, = {s®+5s®+4.55+5,
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% 4+ 652 + 5.55 + 6,

1.75% + 6.75> + 6.25 + 6.7,
25 + 752 +6.25 47,

25% + 652 + 5.25 + 6,

1.35% + 5.35% + 4.55 + 5.3} (6.18)

and

Spp = {24+ (54+A)s? + (4.5 + N)s +6 + )\,
(14+0.70)8% + (6 + 0.7\)s% + (5.5 + 0.7A)s + 6 4+ 0.7,
(1.7 4 0.30\)s + (6.7 4+ 0.3))s? + 6.25 + 6.7 + 0.3,
253 + (6 + N)s2 + (5.2 + N)s 4+ 6 4 A,
(1.3 +0.70)s> + (5.3 +0.70)s* + (4.5 + 0.7\)s + 5.3 + 0.7,

(1+0.30)s% + (5 +0.30)s2 + 4.55 + 5 + 0.3} (6.19)

Using these vertex and edge sets the maximum H, norm of the family can be computed
as 0.6782. Thus, from theorem 6.1, the entire family of systems remains stable under any

unstructured feedback perturbations of Hy, norm less than

1
= 0.6782

= 1.47

The Nyquist envelope of the extremal system, Gg(s), of G(s,q,r) is shown in Figure 6.5.
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Figure 6.5: Nyquist envelope of G(s,q,r) and H,, stability margin

6.4 Robust Performance

The error, output and control signal transfer functions from the input for the control

system block diagram shown in Figure 6.6 can be written as

T%(s) = (1+C(s)G(s,q,1))7"
TY(s) = C(s)G(s,q,r)(1 + C(s)G(s,q,1x)) "
T%(s) = C(s)(14C(s)G(s,q,r))~" (6.20)

In the H,, approach to robust control problems, system performance is measured by
the size of the Hy, norm of error, output and other transfer functions. The worst case
performance of the transfer functions given in Eq.(6.20) can be determined by the following
theorem

Theorem 6.3 (robust performance): The maximum value of the Hy, norms of 7¢(s),
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TY(s) and T%(s) are:

supG(s)ec(s,am (L +C(8)G () oo = sup(s)ean(s) |(1+G ()0 ()™ oo

sup(s)ea(s.an|C(8)G(5) (1 + C(5)G(5)) Moo = supa(s)cap(s)|C(s)G(s)(1+G(5)C(5)) ™l

suPG(s)cci(sanl|C(8) (1 + C(5)G(8) oo = supc(s)can(s)|C(s)(L+ G (s)C(5) oo

(6.21)

Proof: The proof of this theorem is similar to the proof of theorem 6.1. Therefore, it is

omitted.

+O ) G(sq)

Figure 6.6: A unity feedback system with parametric uncertainty

6.5 SPR (Strict Positive Realness) Conditions

Strictly positive real transfer functions are of importance in control theory. Such transfer
functions are stable and their Nyquist diagrams are in the first and fourth quadrants of
the complex plane. A definition of a strictly positive real transfer function is given as
Definition 6.1 [1, pp. 211]: A proper transfer function, G(s) = N(s)/D(s), is called
strictly positive real if

i) D(s) is Hurwitz and

ii) Re[G(jw)] > 0, Yw>0
In other words, a transfer function is strictly positive real if it is stable and its Nyquist
plot is completely contained in the right half complex plane. With this definition, one can
proceed to investigate the SPR property of the transfer function of the form of Eq.(5.3)
which is given by the following theorem
Theorem 6.4: Assume that neither N(s,r) nor D(s,q) has any transition frequency.
Let the vertex and edge sets of N(s,r) and D(s,q) be given by Eqs.(5.32-5.35). Then,

G(s,q,r) is a strictly positive real transfer function family if

122



a) Sp, has at least one stable member and the 2¢g-convex parpolygons of D(s,q) do
not include the origin for all frequencies.
b) For all frequencies

™

5 (6.22)

|67 G0, €S, [Vni] — argugesp,, [vail] <

where i =1,2,...,2r and j =1,2,...,2q.

Proof:

a) From definition 6.1, D(s,q) must be stable. The stability of D(s,q) can be checked
by using the zero exclusion principle and value set concept. The value set of D(s,q) at
s = jw” is contained in a 2¢-convex parpolygon. The assumption of no transition frequency
guarantees that the identified edges for a single frequency which constitute the edges of
a 2g-convex parpolygon remain unchanged. Thus, from the zero exclusion principle, for
stability of D(s,q), the edge set, Sp,, of D(s,q) must be stable. This implies that there
must be at least one stable member of Sp, and the 2¢g-convex parpolygonal value set of
D(s,q) will not include the origin.

b) The value set of the numerator N(s,r) and the denominator D(s,q) for a fixed s = jw*
are 2r and 2¢-convex parpolygons. The phase condition of G (s, q,r) to be strictly positive

real is
T

5 (6.23)

|arg|G(jw, q,1)]| = |arg[N (jw,r)] — arg[D(jw, q)]| <

This means that for each frequency both the 2r and 2¢g-convex parpolygonal value sets must
be included in a 7/2-sector, see Figure 6.7. This is guaranteed if the transfer functions
obtained by the vertex sets (Sy, and Sp, ) achieve this phase condition. Therefore, for

SPR of G(s,q,r), Eq.(6.23) can be written as

s
|argu,;esy,, [Vnil — argu,esp,, [vg]| < 5 O (6.24)

Example 6.3
Consider the uncertain transfer function given in Example 6.1. The edges which consti-

tute the boundary of the 2r and 2¢-convex parpolygons were given in Table 6.1. Here, the
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Figure 6.7: Convex parpolygons for » = 3 and ¢ = 4 uncertain parameters

objective is to check whether the transfer function of Eq.(6.1) is a strictly positive real
transfer function or not. Using Eqs.(5.32-5.35) and the identified edges given in Table 6.1,
the vertex and edge sets Sy, and Sy, for N(s,r) and Sp, and Sp, for D(s,q) can be
obtained. Since one member of Sp,, for example p(s)€Sp, = s° + 352 + 4.4s + 1.25, is
stable and the 2¢-convex parpolygons which are shown in Figure 6.8 exclude the origin,
one can conclude that Sp, and subsequently D(s,q) is stable. However, it was found that
there are transfer functions obtained from vertex sets of the numerator and denomina-
tor polynomials that violate the condition given in Eq.(6.22). For example, the absolute
value of the phase of G(s)€Sn, /Sp, = (0.25% 4+ 5.25 + 6)/(0.4s> + 3s% + 4.4s + 3.4) at
w = 10rad/sec is equal to 125.13° which is greater than 7/2. Therefore, one can say that
the uncertain family of Eq.(6.1) is not a strictly positive real family. The Nyquist envelope

of the family is shown in Figure 6.9.
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Figure 6.9: Nyquist envelope
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6.6 Absolute Stability Problems

Here, the robust versions of the classical absolute stability criteria for systems with para-
metric uncertainty defined by Eq.(5.3) are derived. The proofs of the theorems given below
can be done by using theorem 5.7 and the proofs given in previous sections. Therefore,
the proofs are omitted.

Theorem 6.5: (Lur’e Criterion) if G(s,q,r) of Figure 6.10 is a stable transfer function
with no transition frequency and the nonlinearity ¢ belongs to the sector [0, k;] then the

condition for absolute stability is

1
o + Re|Gg(jw)] >0, Yw>0 (6.25)
!

where G(s) is given by Eq.(5.44).

Theorem 6.6: (Popov Criterion) If G(s,q,r) of Figure 6.10 is a stable transfer function
with no transition frequency and ¢ is a time-invariant nonlinearity which belongs to the
sector [0,%,] then the condition for absolute stability is that there exists a real number 6
such that

ki + Re[(1 + 0jw)GRr(jw)] > 0, Yw>0 (6.26)
P

where Gg(s) is defined by Eq.(5.44).

For the circle criterion define a circle C' which is centered on the negative real axis at

the point (—(k1 + k2)/2k1k2,0) and cutting the negative real axis at —1/k; and —1/ks
where k1 > 0, ko > 0 and k1 < ky. Then,
Theorem 6.7: (Circle Criterion) If G(s,q,r) of Figure 6.10 is a stable transfer function
with no transition frequency and ¢ is a time-invariant nonlinearity which belongs to the
sector [k, ko] then the condition for absolute stability is that the Nyquist plots of Gg(s)
which are given by Eq.(5.44) stay outside of the circle C.

Remark 6.1: The results given above, can be extended to the systems of Figures 6.11

and 6.12. Tt can be easily shown that

9C (jw)G(jw,q,r)CC(jw)Gr(jw) (6.27)

126



for the system of Figure 6.11 and
90 (jw)G (jw, q,r)(1 + C(jw)G (jw, q,1) "' CC(jw)Gr(jw)(1 + C(jw)Gr(jw)) " (6.28)

for the system of Figure 6.12.

\/

G(sar)

Figure 6.10: A plant with nonlinear feedback perturbations

C(s) G(s,a.r)

Figure 6.11: A control system with nonlinear feedback perturbations

C(s) G(s,a.r)

Figure 6.12: A closed loop system with nonlinear feedback perturbations
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Example 6.4
Let the controller of Figure 6.11 be

1.2s4+1

Cls) = 0355571

(6.29)

and the plant be G(s,q,r) of Eq.(5.50). In example 5.2, the vertex and edge sets of the
numerator and denominator of G(s, q,r) were found and given by Eq.(5.54) and Eqgs.(5.55-
5.56), respectively. Thus, using these vertex and edge sets the Nyquist envelope and Popov
plots of C(s)G(s,q,r) can be obtained.

Using theorem 6.5 and Figure 6.13, the robust Lur’e gain was computed as k; = 1.5361.
From Figure 6.14, it was found that the robust Popov gain was k, = 5.026, and from Figure
6.15 that the radii of the smallest circles C, Co and C3 centered at (—0.5,0), (—1,0) and
(—1.25,0) and touching the envelope are equal to 0.196, 0.622 and 0.835, respectively.
Thus, the robust absolute stability sector for C; is [ki,ks] = [1.436,3.289], for Cy is
[k1, ko] = [0.617,2.645] and for Cj is [k1, ko] = [0.479, 2.409].

N
(MRS
=\ ‘\\\
‘ T
lir .{g\z\:

-4+

Imaginary

Figure 6.13: Lur’e criterion
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Figure 6.15: Circle criterion
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6.7 Conclusion

The robust stability of a control system subject to both unstructured uncertainty, modelled
as norm bounded H,, perturbations and sector bounded nonlinear feedback gains, and
parametric uncertainty, modelled as parameter variations in the coefficients of the plant
has been studied. A novel feature of the results given in this chapter is the use of the 2¢-
convex parpolygonal value set of a polynomial with affine linear uncertainty. The examples
given clearly show the benefit of the method presented for determination of the robust
small gain theorem, robust performance, SPR conditions and absolute stability problem

of control systems with mixed perturbations.
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Chapter 7

THE DESCRIBING FUNCTION
ANALYSIS OF NONLINEAR
DISCRETE INTERVAL
SYSTEMS

7.1 Introduction

7.2 Describing Function Analysis

7.3 Schur Stability of Discrete Interval Polynomials

7.4 Nonlinear Discrete Systems with Uncertain Parameters

7.5 Conclusion

7.1 Introduction

It is well-known that many physical systems are not linear, although they are often rep-
resented approximately by linear equations. The principle of superposition does not hold
for nonlinear systems with the result that the system response depends on the magnitude
and type of the input. For example, the response of a nonlinear system to step inputs of
different magnitudes may be completely different. Therefore, procedures for finding the

solutions of problems involving nonlinear systems, in general, are extremely complicated.
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Because of this mathematical difficulty attached to nonlinear systems, one often finds it
necessary to use equivalent linearization techniques and to solve the resulting linearized
problem. Linearization is the procedure in which a set of nonlinear differential equations
is approximated by a linear set. The Describing Function method is one of the popular
equivalent linearization methods for dealing with nonlinear control problems [8, 64, 91].

Describing Function (DF) based methods play a major part in the analysis of nonlinear
discrete and continuous systems. In particular, these methods are used for assessing the
system stability where instability is envisaged in the form of limit cycles. However, the
classical DF method was developed for fixed nominal systems and in general is inapplica-
ble when several uncertain parameters are present. In these situations, it is necessary to
develop DF based methods for nonlinear uncertain systems in order to carry out analysis.
The DF analysis of nonlinear continuous systems with parametric uncertainty was studied
in [58, 57, 81] by using the u-synthesis framework, the Kharitonov theorem and the map-
ping theorem [139]. However, for nonlinear discrete systems with parametric uncertainty,
there are not any results to date.

In this chapter, the extension of the results given in [57, 81] to nonlinear discrete
systems is given. Some of the now well developed results from the area of parametric
robust control are combined with the describing function method to analyze the stability
problem of uncertain discrete time systems with separable nonlinearities. The system
under investigation is shown in Figure 7.1a where both the linear and nonlinear elements
contain parametric uncertainties. The characteristic equation of such systems turns out to
be a discrete uncertain polynomial. Using the so-called overbounding method and results
given in the literature about the Schur stability of interval polynomials [30, 77, 44, 92, 93,
85, 111, 89], a method is proposed for the prediction of limit cycles.

The chapter is organized as follows: A review of the classical DF method is given in
Section 7.2. Section 7.3 investigates the robust Schur stability of interval polynomials. A
stability result for discrete interval plants with separable nonlinearity is derived in section

7.4. Section 7.5 gives some concluding remarks.
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Figure 7.1: a) Uncertain nonlinear discrete system b) Saturation nonlinearity

7.2 Describing Function Analysis

The DF method is an approximate procedure for investigating the existence of limit cycles
in control systems with separable nonlinearities. The details of this method can be found
in the books by Atherton [8, 9]. The basic idea is that a steady-state sinusoidal input into
a nonlinear element will produce an output that has components of the same frequency
as the input as well as the harmonics. Describing function analysis assumes that only the
fundamental component of the output is important. Thus, the DF of a nonlinear element
can be defined as the complex ratio of the fundamental component of the output to the
sinusoidal input.

Consider an input z(t) = Asin(wt) to the nonlinear element, the output can be ex-
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pressed in a Fourier series as follows:

y(t) = % + Z[ancos(nwt) + by sin(nwt)] (7.1)
n=1
where
1 2w
an = — ) y(t)cos(nwt)d(wt) (7.2)
and
1 27
by, = ey y(t)sin(nwt)d(wt) (7.3)

For an odd nonlinearity ag is zero. Using the fundamental component of y(), the nonlin-

earity is represented with the describing function as

b+ ja

N(4) = 25

(7.4)

Since Eq.(7.4) is a scalar quantity, any parametric uncertainty in the nonlinearity can
be easily represented by varying the describing function in an interval. Therefore, the
uncertain describing function can be denoted with N (A, p) where p is a vector of uncertain
parameters. Now, the characteristic equation of the uncertain system shown in Figure 7.1a
can be written as

1+ N(A,p)G(z,x,y) =0 (7.5)

where G(z,x,y) is an interval discrete plant. From Eq.(7.5), the following equation can

be obtained
1

N(Ap) (7.6)

G(Z,X,y) = -

Thus, the possible range of (A,w) values can be investigated by plotting G(e/“7T, x,y) and
—1/N(A,p) together. If an intersection exists, the system may have limit cycles in those
ranges of (A, w) determined by the intersection points. The stability of the system can be
assessed by applying the Nyquist criterion. In this case, the single (—1,0) critical point is
replaced by a locus of critical points, which are given by —1/N (A, p).

The advantage of the DF method is its simplicity and its easy usability with classical
control methods. However, its down side is that, since it is an approximate procedure,

it may give incorrect results. The accuracy of the DF method depends on two factors
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which are the distortion produced by the nonlinearity assuming a sinusoidal input and the
frequency characteristic of the linear element. In the presence of uncertainty, the results
of the DF method may deteriorate further. Thus, using the results developed in the field

of parametric robust control some reliable results can be obtained.

7.3 Schur Stability of Interval Polynomials

The problem of the stability of interval polynomials was solved in continuous time systems
by the Kharitonov theorem. To date, such a solution does not exist for discrete time

polynomials of the form

P(z,a) = Zaiz"*i (7.7)

where a;€[a;,@;],7 = 0,1,...,n and as usual a; and @; are specified lower and upper bounds
of the ith perturbation a;, respectively. For example, consider the following interval poly-

nomials
P(z,a) = 2 4+ [-1.3, —1]2% 4 [0.42,0.5]2% + [-0.16, —0.1]z + 0.0096 (7.8)
The four Kharitonov polynomials

= 24— 2340522 —0.162 + 0.0096
= 2 —1.3224+0.522 — 0.1z + 0.0096
= 24— 22104222 —0.162 + 0.0096

= 2" —1.32° +0.422% — 0.1z + 0.0096 (7.9)
are all Schur stable. However, the polynomial
p(2)EP(z,a) = z* — 1.282% + 0.422% — 0.1552 + 0.0096 (7.10)

is not Schur Stable. This shows that the stability of the Kharitonov polynomials does not
guarantee the Schur stability of the entire family. Furthermore, it is known that [25] even
the Schur stability of all the vertex polynomials of interval discrete polynomials does not

guarantee the stability of the entire family.
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One method for tackling the robust discrete-stability of the polynomials is based on

the bilinear transformation. If P(z,a) has all zeros |z| < 1, then

s+1
s—1’

Q(s,a) = (s — 1)"P( a) (7.11)

has all zeros in Re(s) < 0. However, the problem is that if the coefficients of P(z,a) lie in
rectangular boxes with sides parallel to the axes, this is not the case for the coefficients of
Q(s,a), nor conversely. So, the bilinear transformation distorts regions in the coefficient
space which makes the problem difficult. Another method is the edge theorem. As stated
in Chapter 2, the edge theorem is a very useful tool for robust D stability of uncertain
polynomials. In the case of discrete polynomials the region D is a unit circle in the complex
plane. Therefore, from the edge theorem, one can say that a discrete interval polynomial
is Schur stable if all the exposed edges of the family are Schur stable. However, since
the number of exposed edges is dependent exponentially on the number of the uncertain
parameters, this procedure is computationally expensive.

Kharitonov like results for monic low order (first, second and third order) discrete
interval polynomials were developed in [77, 44]. For higher orders and when all the co-
efficients of a given polynomial are subject to perturbation, the problem of robust Schur
stability was solved in [85] using a Kharitonov parameter box. The results given in [77]

are reviewed as follows:

Theorem 7.1 (Hollot and Bartlett [77]): Assume that all the a;’s of P(z,a) are con-
stant for 1 = 0,1,2,...,n/2L (by n/2L we mean next lower integer with respect to n/2).
Then the interval polynomial family P(z,a) is Schur stable if and only if all the corner

polynomials are Schur stable. These corner polynomials can be represented as

n/2L . n .
CH(z) = Z a;z""" + Z a;z"7 (7.12)
i=0 j=n/21+1

where a; = @; and a;€{a;,a;}.
With this theorem, one can consider the special case of interval polynomials whose
order n<3. For monic interval polynomials of order n = 1 and n = 2, the robust Schur

stability is equivalent to the robust Schur stability of Kharitonov polynomials. A monic
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third order discrete interval polynomial is robust Schur stable if all 23 = 8 extreme poly-
nomials are stable (instead of only four polynomials in Kharitonov’s test). However, when
all the (n + 1) coefficients of P(z,a) are subject to change, the robust Schur stability of
corner polynomials or Kharitonov polynomials are not sufficient for stability of all the
family. In this case Katbab and Jury [85] have used a Kharitonov parameter box in order
to determine robust Schur stability. This method is actually a simplification of the edge
theorem for discrete interval polynomials. The method is summarized as follows:
Consider two different boxes corresponding to the lower, P;(z), and upper, P,(z), parts

of a polynomial P(z,a) which is represented in Eq.(7.7) form as

n/2L . n .
P(z,a) = P(2) + Pu(2) = > ai2" '+ ) a2 (7.13)
i=0 j=n/2L+1

The upper box, P,(z), has K = 2n—n/2L corners. The upper part of the kth such corner

can be written as
n

CF(z2) = Z a; 2" (7.14)
j=n/21+41

where aje{%, a;} and k = 1,2,..., K. Also, the total number of all a;-edges of the lower
box, Pj(z), is h = n/2"~! for monic and h = (n’ 4+ 1)2" for non-monic polynomials, where
n' =n/21. The lower part of the eth such a;-edge, e = 1,2, ..., h, has the general form
n/2L .
Ef(z) = Y [(1 = X)ai + N (7.15)
i=0
where only one of the A;s, i = 0,1, ...,n/2L belongs to the interval [0, 1] and the others are
either 0 or 1. Thus, in order to check the stability of P(z,a), one needs to check H = K xh

edge polynomials. The Ath one is shown below:

n/2L n
EMz)=Ef+CF =Y [(1—N)ai + N@]" "+ Y a2 (7.16)
i=0 j=n/21+1

where h =1,2,.... H, k =1,2,..., K, e = 1,2, ..., h, and as mentioned before only one of
the \;’s, i = 1,2,...,n/2L belongs to the interval [0, 1] and the others are either 0 or 1.
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Example 7.1
Consider

P(z,a) = apz® + a12% + asz + a3 (7.17)

where a¢€[0.9,1.1], a1€[—0.35, —0.15], a2€[—0.85, —0.65] and a3€[0.08,0.28]. Since there
are four unknown parameters, from the edge theorem the corresponding polytope of the
family has 32 exposed edges. However, using the method of Katbab and Jury, it is possible
to reduce the number of edges which are necessary for the stability of the family by 50%
as follows:

The lower polynomial

Pi(z) = apz® + a1 2* (7.18)
has h = 4 edges as follows
El = [(1—Xag+ Aag)2® + a1z = [(1 — 1)0.9 + AL.1]2* — 0.352°
E} = [(1—Mao+ Aag)2® + a1z = [(1 — 1)0.9 + AL.1]z% — 0.152°

E} = ap?® +[(1 — Nar + \ai)z? = 0.92° + [—(1 — 1)0.35 — X0.15)2?

E} = @2® +[(1 — Nay +\ai]z? = 1.12° + [—(1 — 1)0.35 — X0.15]z*  (7.19)
and the upper polynomial
P,(z) = asz + a3 (7.20)
has K = 4 corners as follows:
C, = az+as=—085z+0.08
C: = ayz+a3=—0852+0.28

C} = @3z+a3=—0.652+0.08

C, = az+az=—0.652+0.28 (7.21)

Thus, for the stability of P(z,a), it is necessary to check the stability of H = K xh = 16

edge polynomials. These edge polynomials can be obtained from Eq.(7.16). For example,
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one of these edge polynomials is
E'=E} +C, =[(1 — Nag + \ag)z® + a12° + azz + ag (7.22)

Similarly, the other edges can be obtained. The value sets of these 16 edges are shown in
Figure 7.2. It can be tested that the four Kharitonov polynomials of the family are Schur
stable. However, since the value sets include the origin from the zero exclusion principle,

one can conclude that the discrete interval polynomial of Eq.(7.17) is not Schur stable.

2,

15

©
6]
T

imaginary
o
T

-0.51

Figure 7.2: Value sets of 16 edges

7.4 Nonlinear Discrete Systems with Uncertain Parameters

The describing function analysis of continuous systems with parametric uncertainty has
been studied in [57] and [81]. In [57], it was assumed that the linear part was an interval
plant of the form of Eq.(2.27) and the nonlinear element was represented by an uncertain
gain with lower and upper values. Then, it is easy to show that the characteristic equa-
tion of such a system is a polynomial with multilinear uncertainty structure unless the

numerator of the linear part is constant. By overbounding the coefficients of the character-
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istic equation and using the Kharitonov theorem, a stability result has been given in [57].
However, since the overbounding technique has been used in [57], the given results are
conservative. On the other hand, by using the mapping theorem and also assuming that
the linear part may have an affine linear uncertainty structure, some improved results in
this direction have been given by Impram and Munro [81]. The extension of these results
to the discrete nonlinear system is considered in this section. In particular, the aim of this
section is to study the stability of systems of Figure 7.1a.

Let the describing function of the nonlinear element which contains uncertain param-

eters be

N(A,p) = [pr,Pr] + j[pi, Pi] (7.23)

For a memoryless nonlinearity, the interval describing function is

N(A,p) = [pr,Dr] (7.24)

and let the discrete interval plant, G(z,x,y), of Figure 7.1a be given as

N(z,x)  Yrymiz""
D(z,y)  Yioyiz" "’

m<n (7.25)

where z;€[z;,7;] and y;€[y;, 7). Then the characteristic equation of the system can be

written as

m m—i
NG - 1+ B

i=0 yiznfi
n . m .
>y T2+ e Pr) Y [z T =0 (7.26)
=0 =0

It can be seen that the characteristic equation of the system has a multilinear uncertainty
structure. In order to apply the results summarized in the previous section, one needs
to obtain an independent uncertainty structure. To do this, the so-called overbounding
method which enables one to convert a dependent uncertainty structure to an independent

one is used. Thus, by overbounding the parameters, Eq.(7.26) can be written as

n—(m+1) ‘ n .
Z [&7 E]Znil + Z [&wif(nfm) + Yis Pri—(n—m) + E]zniz =0 (727)
1=0 i=n—m
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or writing Eq.(7.27) in the form of Eq.(7.7)

n—(m+1)

0(2) = > Wl T+ D [T (nem) T Yo PrTisemy T TR =) a2
=0 i=n—m =0
(7.28)
where
ai€lag @] = [y 7] for 0<i<n— (m+1)
and

aiE[%, a'_z] = [&xz—(n—m) + Yis Pr Ti—(n—m) +E] for n—m<i<n

Then, in the light of the results given in the previous section, the robust stability of the
nonlinear discrete interval systems of Figure 7.1a can be stated as follows:

i) If the closed loop characteristic equation of the system, d(z) of Eq.(7.28), is a monic
first or second order interval polynomial then the given system is robustly Schur stable if
and only if the following Kharitonov polynomials are robustly stable.

monic first order:

51(2) = Z+ﬂ

bo(z) = z4ar (7.29)

monic second order:

51(2) = Z2+aiz+as

ba(z) = Z24arz+ay

0(z) = Z2tazt+a
(2)

= Z4az+a; (7.30)

ii) If the characteristic equation is a monic third order one, the following 8 extreme

polynomials will be enough for robust stability of the system:

0(z) = 22+a12® +asz+as

02(2) = 22+a12’+az+az
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i3(z) = z3+ﬂ22+a_zz+a_3
01(2) = 2ra+aztas
05(2) = 22+az® +agz+tas
56(2) = 2*+arz’+az+a
67(2) = P +at+a@mz+as
0s(2) = 224 +agz+az (7.31)

iii) When all coefficients of §(z) of Eq.(7.28) are subject to perturbation then the ro-
bust Schur stability of H (H = K xh where K = 2" "/2L j = n/2”’~1 for monic and
h = (n' +1)2" for non-monic polynomials and n’ = n/21) edges guarantees the robust

stability of the system. The general form of such an edge is shown in Eq.(7.16).

Example 7.2

Consider the nonlinear system of Figure 7.1a with

0.1746z + 0.1529
22 + Y12 + Y2

G(z,x,y) = (7.32)

where y; €[—1.5746, —1.3746] and y2€[0.7,0.8] and let the nonlinear element have the sat-
uration characteristic, with ¢ and k as shown in Figure 7.1b. If A < a the describing

function is a constant k. For A > a, the describing function is

a 2

N(Ak) = %[arcsin(z) + (

a

1- 5]

2 (7.33)

For ke€[1,4], the describing function becomes N (A, k)€[0,4]. Then, the characteristic

equation of the system can be written as

0.17462 + 0.1529

1+ N(Ak)G =0=1+410,4 7.34
+ N4 K)G(zxy) 0 s, A roos Y

and from Eq.(7.34), the characteristic equation reduces to
§(2) = 2% +[~1.5746,—0.6757]z + [0.7,1.4116] = 0 (7.35)
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and the four Kharitonov polynomials are

= 22— 1.57462 + 0.7

(2)

62(2) = 22—0.67572+0.7
(2) = 22—1.57462 4+ 1.4116
(2)

= 22— 0.67572 4 1.4116 (7.36)

The roots of §3(z) and d4(z) are 0.7873150.8898 and 0.3378+71.1391 respectively, which
are not inside the unit circle. This shows that the nonlinear system is not robust Schur
stable. The frequency response of G(e/“T,x,y) and describing function —1/N (A, k) are
shown in Figure 7.3. It can be seen that the describing function plot intersects with the
Nyquist envelope of G(e/“T,x,y). Therefore, one can say that a limit cycle is likely to

occur.

0.5

~1/N(A k)

imaginary

Figure 7.3: Graphical prediction of limit cycle
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Example 7.3

Here, we consider the system of Figure 7.1a to have

0.1
Y022 +y12 + y2

G(z,x,y) = (7.37)

where y€[2.5,4], y1€[—0.1,0.25] and y2€[0.1,0.7] and again consider the saturation non-
linearity as in Example 7.2. The closed loop characteristic equation of the system is

0.1
[2.5,4]22 +[0.1,0.25]z + [0.1,0.7]

14+ N(A,k)G(z,x,y) =0=1+0,4] (7.38)

and it can be written as
8(2) = [2.5,4]2% 4+ [-0.1,0.25]z + [0.1, 1.1] (7.39)

which is a non-monic second order polynomial. Therefore, the robust Schur stability of

the Kharitonov polynomials alone will not be sufficient. From the results of Section 7.3,
8(z) = [2.5,4]2* (7.40)

which has the h = 1 edge as follows
El =[(1 — X\)2.5 +4)], A€o, 1] (7.41)

The upper box
du(z) = [-0.1,0.25]z + [0.1,1.1] (7.42)

has K = 4 corners as follows:

cl = —012+0.1
C? = —01z+1.1
C3 = 0.252+0.1

Cl = 025z+1.1 (7.43)

144



Thus, there are H = K xh = 4 edge polynomials to check the stability of §(z), which are

E'(\z) = E}+C!=(25+15))2%>—-0.1z+0.1
E*(\z) = E}+C?>=(25+15)\)2>—-0.1z+ 1.1
E}(\z) = El4C3=(25+15))2%40.252 +0.1
E*(\z) = El4+CY=(25+15))2%2 40252 +1.1

(7.44)

The stability of these four edge polynomials can be checked by using the zero exclusion
principle. The image set (value set) of E"(\,e/T), h = 1,2,3,4 is shown in Figure 7.4.
It can be seen that the image set excludes the origin (0ZE"(X,e/“T)), which shows that
the entire family is asymptotically stable. The Nyquist envelope of G(z,x,y) of Eq.(7.37)
and the describing function —1/N (A, k) are shown in Figure 7.5.

R\
2: N \\ / ////

Figure 7.4: Tmage set(value set) of E"(\,e/*T), h =1,2,3,4.
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Figure 7.5: Nyquist envelope and Describing function

7.5 Conclusion

In this chapter, the describing function analysis of nonlinear discrete systems with para-
metric uncertainty has been studied. It has been shown that the characteristic equation
of such systems with an interval plant and an uncertain describing function turns out to
be a polynomial with multilinear uncertainty structure. Using the so-called overbound-
ing procedure and combining the describing function method with some well established
results from the area of robust control under parametric uncertainty, a method has been
proposed for the prediction of limit cycles in uncertain discrete systems with separable
nonlinearities. Since the DF technique is an approximate procedure, it may give inaccu-
rate results. However, the results which are produced by the DF method can be relied

upon if the linear subsystem is sufficiently low pass and the DF approximation is valid.
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Chapter 8

CONCLUSIONS

8.1 New Contributions
8.2 Future Work

8.1 New Contributions

Several important control problems have been addressed in this thesis. The new contri-

butions of the thesis are summarized below:

1. Extension of the Ho et al. method [72] to a Lag/Lead controller structure for stabi-

lizing a given fixed plant;

2. Extension of the Ho et al. method to PI, Lag/Lead and PID controllers for relative

stabilization of a fixed plant;
3. Extension of the Ho et al. method to interval plant stabilization;

4. Development of an alternative approach, which is based on the generalized Hermite-
Biehler theorem, for computing the robust gain and phase margins and outer bound-

ary of the Nyquist envelope of an interval plant family;

5. Formulation of the gain crossover, phase crossover and bandwidth frequencies of an

interval plant;

6. Development of a user friendly software program to analyse interval systems;
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10.

11.

12.

13.

14.

15.

16.

17.

Application of a simple autotuning method to an interval plant via an example;

An alternative proof of the idea that the edges of the 2¢-convex parpolygon of P(s, q)

of Eq.(5.1) remain unchanged within some frequency intervals (Theorem 5.1);

It was shown that the maximum magnitude and the phase extremums of P(s,q) of
Eq.(5.1) and §(s)P(s,q), where §(s) is a fixed polynomial, at s = jw* can be found
from vertices of the 2¢-convex parpolygon. For computing the minimum magnitude,
an exact equation was derived (Theorem 5.1, Theorem 5.3, Lemma 5.1 and Theorem

5.4);

It has been shown that the magnitude extremums, the phase extremums and the
boundary of a Nyquist template of G(s,q,r) of Eq.(5.3) at s = jw* can be computed
from the vertex and edge sets of 2r and 2¢-convex parpolygons of the numerator and

denominator polynomials of G(s, q,r) (Theorem 5.5, Theorem 5.6 and Theorem 5.7);

A procedure has been given for computing the Bode, Nyquist and Nichols envelopes

of a transfer function with affine linear uncertainty;

It was shown that the robust gain and phase margins of G(s,q,r) of Eq.(5.3) can
be found from the vertex and edge sets of 2r and 2¢-convex parpolygons of the

numerator and denominator polynomials of G(s,q,r) (Theorem 5.8);

Extension of classical control design methods to systems with affine linear uncer-

tainty;

A robust version of the small gain theorem for a control system with G(s,q,r) of

Eq.(5.3) was derived (Theorem 6.1 and Theorem 6.2);

Robust performance of control systems with affine linear uncertainty was formulated

(Theorem6.3);

Strict positive realness conditions of a transfer function of the form of Eq.(5.3) have

been investigated (Theorem 6.4);

Robust versions of absolute stability criteria were derived (Theorem 6.6, Theorem

6.7 and Theorem 6.8);
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18. A method has been given to investigate the stability of nonlinear discrete interval

systems.

8.2 Future Work

There are several possibilities for future work which include:

1. Development of analogous results to those obtained in Chapter 3 for cone stabiliza-

tion and stabilization of uncertain systems with an affine linear uncertainty structure;

2. Extension of the program described in Chapter 4 to systems with affine linear uncer-
tainty and the addition of some algorithms to design robust controllers for uncertain

systems;

3. In Chapter 5, it was shown that the magnitude and phase extremums of P(s,q) of
Eq.(5.1) at s = jw* can be computed from the boundary of the 2¢-convex parpoly-
gon. It would be beneficial to obtain frequency intervals within which the polyno-
mials that give the magnitude and phase extremums remain unchanged. Thus, a
further reduction for computing the Bode envelope of G(s,q,r) of Eq.(5.3) will be

possible;

4. Using the boundary results developed in Chapter 5 to find the maximum time-delay,
Tmaz, Such that the stability of a feedback system with C'(s)G(s,q,r)e ™, where
C(s) is a fixed controller and G(s,q,r) is a transfer function of the form of Eq.(5.3),

is preserved for all 0<7 < Tpaz;

5. The critical direction theory proposed in [98] can be extended to a control system
with a transfer function of the form of Eq.(5.3). The critical direction method states
that, at any given frequency, there is only one direction of perturbations which is
important for stability analysis. The critical direction is defined by a vector with
origin at the nominal transfer function and pointing towards the point —1 + ;0.
Thus, at each frequency, the points on the Nyquist template which do not lie on
the critical vector can be ignored. This would be a helpful method for checking the
robust stability of control systems with affine linear uncertainty by combining this

theory with the boundary results developed in Chapter 5;
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6. The results given in Chapter 5 can be further developed to compute frequency re-
sponses of multilinear affine systems whose numerator and denominator polynomials

are multilinear affine polynomials such as

P(37q17q27 "'7q3) = Pl(S,(ll)PQ(S,QQ) te Pm(s,qm) (81)

where each Pi(s,q;),i = 1,2,...,m is a polynomial of the form of Eq.(5.1).

7. Development of similar results to those presented in Chapter 6 for multilinear affine

systems.

8. Extensions of the results given in Chapter 7 to nonlinear discrete systems with more

complex uncertainty structures.
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Appendix A

Using The Root Locus for

Narrowing the Sweeping Range

In Chapter 3, the generalized Hermite-Biehler theorem was used to find the controller
parameters which stabilize a given plant. It was seen that in order to apply the Hermite-
Biehler theorem successfully, it is necessary to find the positive real roots of the real
or imaginary part of the closed loop characteristic equation. However, the real and the
imaginary parts of the closed loop characteristic equation are dependent on the controller
parameters. Therefore, the following root locus idea which is given in [74] can be used for
narrowing the sweeping range.

“Consider the problem of determining the root locus of U(z)+kV (z) = 0, where U(x)
and V (z) are real and coprime polynomials and & varies from —oo to co. Then, one can
make the following observations:

1) The real breakaway points on the root locus of U(z) + kV (z) = 0 correspond to a

real multiple root and must, therefore, satisfy

Then one obtains

Ulw) g — V()95
U ()

The real breakaway points are the real zeros of the above equation.
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2) Let k1 < ko < ... < k, be the distinct, finite, values of k corresponding to the
real breakaway points z;,7 = 1,2,....,z on the root locus of U(z) + kV(z) = 0. Also
define ky = —oo and ky11 = oo. Then z;,i = 1,2,...,z are the multiple real roots of
U(z) + kV (z) = 0 and the corresponding k’s are the k;’s. Note that for k€(k;, kit1), the
real roots of U(z)+kV (z) = 0 are simple and the number of real roots of U(z)+kV (z) =0
is invariant.

3) if U(0) + kV(0)#0 for all k€(k;, kit1), then the distribution of the real roots of

=0

U(z) +EV(z) with respect to the origin is invariant over this range of k values.

Example A.1
Let

Ui)=(z+1)>*z-1)(z?—z+1)?2
and

V(z) = (z —2)%(z + 3)(z* + 22 + 2)
Then,

dV (x dU(z

U(z) @)y () L)
U?(x)

[—32'? — 42" + 4120 4 3827 — 8228 — 18827 4 7725 4 8225 — 26527

+2823 + 1602> — 362 — 8]/(z + 1)%(z — 1)*(2® — z +1)*

The breakaway points x; which are the real zeros of the above equation are: x1 = 2.96872,
xo = —1, x3 = 0.42142, 24 = 0.66720, z5 = —0.14008 and zg = —1 and the corresponding
finite k;’s (arranged in ascending order of magnitude) are: ky = —61.44924, ky = 0,
ks = 0.03689, ks = 0.03791, ks = 0.04279 and kg = 163.73847. Also, U(z) + kV(z) = 0
has a root at the origin when k& = k* = 0.04167.

Now, for k€(ki, kiv1) and k*¢&(ki, ki+1), the distribution of the real roots of U(x) +
kV (z) = 0 with respect to the origin is invariant. Thus, one can simply check an arbitrary
k€ (k;, kiv1) and determine the real root distribution of U(z) 4+ kV (z) = 0 with respect
to the origin, and this distribution is valid for all £ in that interval. In this example,

k*€(k4, ks), and so the the real root distribution of U(z) + kV (z) = 0 with respect to the
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origin may not be invariant over the entire interval (k4, k5). Therefore, one needs to split
the interval (k4, k5) into two subintervals (ky, k*), (k*, ks5), and then check the real root
distribution for each of these subintervals.

The real root distribution, with respect to the origin, of U(z) + kV(z) = 0 for k

belonging to the different intervals, is given below:

k€e(—o0, —61.44924) : 3 positive and 1 negative real roots

ke(—61.44924,0) : 1 positive and 1 negative real roots
K€(0,0.03689) : 1 positive and 1 negative real roots
k€(0.03689,0.03791) : 3 positive and 1 negative real roots
k€(0.03791,0.04167) : 1 positive and 1 negative real roots
k€(0.04167,0.04279) : 2 negative real roots
k€(0.04279,163.73847) : no real roots
k€(163.73847,00) : 2 negative real roots

This example shows how the root locus ideas can be used to determine the distribution
of the real zeros of U(z) + kV (z) = 0, with respect to the origin, as k varies from —oo to

00.”
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