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ABSTRACTClassical control systems design uses �xed plant transfer functions yet engineers haveknown for many years that there is often considerable uncertainty regarding the parame-ters used in a transfer function representation. A major breakthrough on systems with un-certain parameters was achieved by the Russian mathematician Kharitonov who extendedthe Routh stability criterion to polynomials with an independent uncertainty structureknown as interval polynomials, that is where the polynomial coe�cients may be assumedto lie within a speci�c range rather than being �xed. Recently some important extensions,such as the edge theorem and the generalized Kharitonov theorem to the polynomials withmore complex uncertainty structure, have been given. Motivated by these results, therehas been a substantial amount of research in the �eld of robust control dealing with theanalysis and design of systems containing parametric perturbations. This thesis presentsadditional results in this direction and the work can be divided in to three main parts.The �rst part deals with interval systems, which is the simplest form of uncertaincontrol systems. An extension of a new approach which is based on the Hermite-Biehlertheorem to the Lag=Lead controller structure for stabilizing a linear time-invariant plant isgiven. The approach is then used for computing the parameters of controllers for relativestabilization and interval plant stabilization. A user friendly software program, called\Analysis of Interval Systems Toolkit" (AISTK), has been developed in the MATLABenvironment. The robust gain and phase margins and outer boundary of the Nyquistenvelope of an interval plant family are discussed using the generalized Hermite-Biehlertheorem. The gain crossover, phase crossover and the bandwidth frequencies of an intervalplant are formulated.The second part of the thesis considers control systems with a�ne linear uncertainty.An approach is given for plotting the Bode, Nyquist and Nichols envelopes of a transferfunction with such parametric uncertainty. A novel feature of the approach is the use ofthe convex parpolygonal value set of a polynomial with a�ne linear uncertainty. Usingthese frequency envelopes, classical control design techniques are used to design robustcontrol systems. Some results are developed on the determination of a robust small gaintheorem, robust performance, strict positive realness and absolute stability problem ofcontrol systems with parametric as well as unstructured uncertainty.v



The �nal part of the thesis studies the describing function analysis of nonlinear discreteinterval systems. Using the results regarding the Schur stability of interval polynomials,a method is presented for investigating the stability of uncertain discrete systems withseparable nonlinearities.
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Chapter 1
INTRODUCTION
1.1 Introduction1.2 What is Robust Control?1.3 Parametric Theory1.4 Outline of the Thesis
1.1 IntroductionControl theory within this century can be divided into four main periods: classical control,optimal control, control of multivariable systems and robust control. The period 1930-1960can be classi�ed as the \Classical Control" period. Here famous pioneers, like Bode [28],Nyquist [110] and Nichols [109], developed control design tools such as the Bode, Nyquistand Nichols plots. The root locus design methods became important, after the root locustechnique was developed by Evans in 1948 [56]. Concepts such as gain and phase marginswere introduced and have been widely used for controller design as a measure of stabilitymargin. The results developed in this period have been successfully applied by practisingcontrol engineers.The next period started from the early 1960's and can be called \Optimal Control".The state-space approach to optimal control and �ltering theory was introduced in 1960 byKalman [82]. Concepts such as controllability, observability, optimal state estimation andoptimal state feedback were developed and introduced during this stage. These concepts1



were based on state space matrix equations rather than frequency domain transfer func-tions. Thus, these results shifted the emphasis in control engineering from the frequencydomain to the time domain.In the third stage of control theory development, control engineers dealt with the designof multivariable systems by frequency domain design methods. Extensions of the scalarclassical frequency response techniques for multi-input multi-output (MIMO) systems weredeveloped by Rosenbrock [114], MacFarlane [103] and Mayne [105].The current fourth period from 1980 until today may be known as \Robust Control",which is one of the fastest growing and promising areas of research today. With robustcontrol, researchers have begun to deal with systems which have uncertainties. Thus, morerealistic and advantageous results have been developed.1.2 What is Robust Control?In modelling physical systems for control purposes, one normally needs to generate math-ematical representations of the system. However, in general, it is di�cult to obtain anexact mathematical description of a physical process. Therefore, it is necessary to makesome simpli�cations in order to obtain a description of the system which is tractable. Thedi�erence between an exact model and its simpli�ed form is called a perturbation. Therequirement for a control design to be successful is that it must cope with any changes suchas parametric variations which may occur in a system. This ability of a control system isknown as robustness. Thus, robust control refers to the control of uncertain plants. Theproblem is to design a �xed controller which guarantees acceptable performance in thepresence of uncertainty. Uncertainties in control systems can be broadly classi�ed undertwo categories. They are:i) structured (or parametric) uncertainty, representing lack of precise knowledge of theactual parameters. For example, the uncertain parameters can be the coe�cients of atransfer function of a system.ii) unstructured (or nonparametric) uncertainty which represents unmodelled dynam-ics, nonlinearities and error due to linearizations etc.. These types of uncertainties areusually given as norm bounded perturbations.The purpose of robust control is to apply the well known techniques used in linear con-2



trol system theory to, and develop new techniques for the analysis and design of systemswith the uncertainties described above. In recent years there have been some importantdevelopments in the �eld of robust control [32] such as use of singular values as a mea-sure of gain in transformations (Doyle and Stein [55]), the factorial approach in controllersynthesis (Vidyasagar [132], Cailler and Desoer [31]), parametarization of stabilizing con-trollers (Youla et al. [137, 138], Desoer et al. [51]), H1 optimization (Zames [140], Zamesand Francis [141], Helton [68]), robust stabilization and sensitivity minimization (Kimura[90], Vidyasagar and Kimura [133], Francis and Zames [60], Chang and Pearson [33]), com-putational aspect of H1 optimization (Delsarte et al. [50], Glover [66], Francis et al. [61])and parametric theory-Kharitonov theorem and related approaches (Barmish [13], Acker-mann [1], Bhattacharyya et al. [25], Djaferis [52]). One of the main reasons behind allthese developments taking place in recent years is the striking advances in micro-processordesign and computer technology. Among these topics, the takeo� point for this work isthe parametric theory.1.3 Parametric TheoryThe analysis and design of systems which are subjected to parametric perturbations waslargely ignored before the 1980's. The reason was mainly due to the fact that there wereno theories which can be used for analysing or designing control systems with uncertainparameters. Of course, there are some notable exceptions. For example, the Evans rootlocus method [56], is an important tool for stability and robustness analysis for singleparameter perturbations. In the book by Siljak [117], the issue of robust stability forsystems with structured real parametric uncertainty is considered. For problems involvingrobustness analysis with uncertain parameters entering multilinearly into transfer functioncoe�cients, a powerful tool is the mapping theorem given in the book by Zadeh and Desoer[139]. The book by Horowitz [78] made some contributions to robust synthesis.However, after the mid-1980's, one can see a new explosion of research involving realparametric uncertainty. The reason for this explosion of results in the �eld of parametrictheory is the seminal theorem of Kharitonov [88]. Kharitonov's theorem was originallypublished in 1978 in the Russian technical literature, however, it remained largely unknownfor several years partly due to the fact that Kharitonov's original proof was complicated3



and di�cult to understand. However, since the introduction of this remarkable theorem tothe Western literature by Barmish [14], many papers have appeared providing new proofsof this theorem [29, 35, 106, 47] which are easy to understand.The Kharitonov theorem is an extension of the Routh stability criterion to intervalpolynomials. An interval polynomial is a polynomial where each coe�cient can vary ina prescribed interval. The Kharitonov theorem states that an interval polynomial family,which has an in�nite number of members, is Hurwitz stable if and only if a �nite smallsubset of the family which consists of four polynomials known as Kharitonov polynomialsare Hurwitz stable. The most signi�cant results following this theorem have been theedge theorem of Bartlett et al. [21] and the generalized Kharitonov theorem of Chapellatand Bhattacharyya [34]. The edge theorem considers a family of polynomials with a�nelinear uncertainty structure which means that the coe�cients are not independent asin the case of interval polynomials. It proved that the whole family is stable if andonly if all the exposed edges of the polytopic family are stable. Furthermore, the edgetheorem is not restricted to Hurwitz stability and it can be applied to general stabilityregions. The generalized Kharitonov theorem is an improved version of the edge theorem.The advantage of the generalized Kharitonov theorem over the edge theorem is that thenumber of edges which are required for stability are not dependent on the number ofuncertain parameters. Using these results, there have been many developments in the�eld of parametric robust control. Some of these developments are summarized shortly asfollows:1. Robust stability of uncertain polynomials (Argoun [3], Barmish [15], Soh [119],Rantzer [113], Datta and Bhattacharyya [49], Shaw and Jayasuriya [116], Levkovichet al. [101], Arhipov et al. [6], Hernandez et al. [69]);2. Parametric stability margin computation (Chapellat et al. [40], Soh et al. [120],Blanchini et al. [27], Mahon et al. [104], Ke [86]);3. Frequency response computation of uncertain systems (Bailey and Hui [10], Bartlettet al. [24], Hollot and Tempo [75], Keel and Bhattacharyya [87], Fu [62], Levkovichand Zehep [102], Tan and Atherton [121, 122, 123]);4. Stabilization of systems with parametric uncertainty (Ghosh [65], Hollot and Yang4



[76], Barmish et al. [16], Djaferis [54], Naimark and Zehep [108], Ho et al. [70], Tanand Atherton [124, 125]);5. Robust root locus (Barmish and Tempo [17], Chen et al. [41], Hwang et al. [79],Hwang and Chen [80]);6. Analysis of time delay sytems with parametric perturbations (Barmish and Shi [18],Fu et al. [63], Tsypkin and Fu [131], Kogan and Leizarowitz [94]);7. Robust Schur stability of interval polynomials (Bose et al. [30], Cieslek [44], Hollotand Bartlett [77], Kraus et al. [93], Katbab and Jury [84]);8. Describing function analysis of uncertain nonlinear systems (Fadali and Chachavalvoong[57], Ferreres and Fromion [58], Impram and Munro [81], Tan and Atherton [126]);9. Probabilistic robustness (Chen and Zhou [42, 43], Lagoa et al. [97], Barmish et al.[19]);10. Critical direction theory (Latchman et al. [98, 99, 100]);11. Multi-input/Multi-output(MIMO) uncertain systems (Santis and Vicino [115], Ye-ung and Winnie [135], Kontogiannis and Munro [95, 96])12. Absolute stability of parametrically uncertain systems (Dasgupta [48], Grujic andPetkovski [67], Chapellat et al. [37, 38, 39], Tesi and Vicino [129], Dahleh et al. [46],Foo and Soh [59], Mori et al. [107], Tan and Atherton [127, 128])An extensive discussion about all the results introduced so far and some further resultscan be found in the books [1, 13, 25, 52]. Despite all of these developments, the �eld ofparametric robust control is still an active research area. There are many open problemswhich need to be answered.1.4 Outline of the ThesisThis work aims to do further investigation and research on control systems with paramet-ric uncertainty. Computation of stabilizing controller parameters using the generalized
5



Hermite-Biehler theorem, development of user friendly programs for the analysis of in-terval systems, developments of methods for computing frequency responses of uncertainsystems, extensions of these methods to the di�erent control problems such as the deter-mination of the robust small gain theorem, robust performance, strict positive realnessand absolute stability problem of systems with parametric as well as unstructured pertur-bations, and describing function analysis of uncertain systems are the main objectives ofthis work. The research work is organized as follows:Chapter 2: Kharitonov Theorem and Related ApproachesIn this chapter a description of parametric uncertainty structure is �rst given. Thensome technical tools such as the value set concept, the zero exclusion principle, the seg-ment lemma, the Kharitonov theorem and the edge theorem which play an important rolewhile analysing the robust stability of polynomials with parametric uncertainty are sum-marized. Finally, the sixteen Kharitonov plants family and thirty-two systems which arethe two fundamental concepts behind many results developed in the �eld of parametricrobust control are introduced.Chapter 3: Feedback Stabilization Using the Hermite Biehler TheoremThis chapter deals with the stabilization of control systems using a recently developednew approach. The approach is based on a new result [71] generalizing the classicalHermite-Biehler theorem to the case of not necessarily Hurwitz polynomials and considersthe stabilization of feedback systems using P, PI and PID controllers. In this chapter,an extension of the results given in [72, 73, 74] to the Lag=Lead controller structure forstabilizing a given transfer function is �rst given. The approach is then developed for PI,Lag=Lead and PID controllers to achieve relative stabilization. Finally, the stabilizationof an interval plant family is discussed using the sixteen Kharitonov plants family and thegeneralized Hermite-Biehler theorem.
6



Chapter 4: A Software Package Program for Analysis of Interval SystemsThe chapter describes a software program called \Analysis of Interval Systems ToolKit(AISTK)" which is a collection of algorithms developed in the MATLAB environment.AISTK is a user friendly toolkit like control kit and deals with the analysis of uncertainsystems de�ned by an interval plant structure. In addition the procedures for construct-ing various envelopes that contain the entire frequency responses of an interval system aregiven. The outer boundary of the Nyquist envelope of an interval plant family is discussedusing the generalized Hermite-Biehler theorem. The formulation of gain crossover, phasecrossover and bandwidth frequencies of an interval plant are also given. The applicationof a simple autotuning method to an interval plant is given by an example.Chapter 5: Frequency Response of Systems with A�ne Linear UncertainyIn this chapter, e�ective procedures are proposed for computing the Bode, Nyquist andNichols envelopes of a transfer function with an a�ne linear uncertainty structure. Theprocedures are based on the convex parpolygonal value set of a polytopic polynomial fam-ily. Using this family of plots, classical control design techniques are used to design robustcontrol systems.Chapter 6: Analysis of Control Systems with Mixed PerturbationsExtensions of results developed in the previous chapter to problems such as the deter-mination of a robust small gain theorem, robust performance, strict positive realness andthe absolute stability problem of control system with parametric uncertainty is made.Thus, the chapter studies control systems with parametric as well as unstructured un-certainty. The unstructured uncertainty is modelled as norm bounded perturbations andsector bounded nonlinear gains and the parametric uncertainty is represented by a trans-fer function whose numerator and denominator polynomials are polynomials with a�nelinear uncertainty.
7



Chapter 7: The Describing Function Analysis of Nonlinear Discrete Inter-val SystemsThe describing function analysis of discrete interval systems with separable nonlineari-ties is studied. Some of the results developed in the area of parametric robust controlrelated to the stability of discrete interval polynomials are combined with the describingfunction method to analyze the stability problem of discrete nonlinear interval systems.Chapter 8: ConclusionThis chapter outlines the new contributions of the work presented in this thesis and makessuggestions for future research.
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Chapter 2
KHARITONOV'S THEOREMAND RELATED APPROACHES
2.1 Introduction2.2 The Issue of Uncertainty Structure2.3 Some Essential Tools of Robust Control Under Parametric Uncertainty2.3.1 Value Set Concept2.3.2 Zero Exclusion Principle2.3.3 Segment Lemma2.3.4 The Kharitonov Theorem2.3.5 The Edge Theorem2.4 The Interval Plant Concept2.4.1 Sixteen Kharitonov Plant Family2.4.2 Thirty-Two Systems2.5 Conclusion
2.1 IntroductionThe stability analysis of control systems is a very important issue and therefore has alwaysbeen a major concern of control engineers. Autonomous stability means that, in theabsence of external excitation, all signals in the system decay to zero. A control systemis stable if and only if all the roots of the characteristic equation of the system lie in theleft-half s plane. In classical control there are some powerful tools, which were developed9



for a �xed nominal system, such as the Routh-Hurwitz criterion for continuous systems,Jury's test for discrete systems and the well known frequency domain plots (Nyquist, Bodeand Nichols plots) for stability analysis and controller design. However, as mentioned inChapter 1, in real physical systems, the parameter variations of the transfer functionsis an unavoidable fact. Thus, the fundamental problem in the study of control systemswith parametric uncertainty is to determine whether or not all the polynomials in a givenfamily of characteristic polynomials are Hurwitz stable. This property is known as robuststability which is one of the main subjects of parametric robust control.Parametric robust control has made tremendous strides related to the robust stabilityanalysis of parametrically uncertain systems since the publication of Kharitonov's cele-brated theorem [88]. The Kharitonov theorem simply stated that the robust stability ofan interval polynomial can be determined by testing the stability of just four polynomialsin the real coe�cient case. With this surprising result the entire �eld of parametric robustcontrol came alive and researchers have addressed the following questions: To what extentcan the Kharitonov theorem on the uncertain structure be relaxed? How can it be usedfor the analysis and design of control systems? The edge theorem of Bartlett et al. [21]and the generalized Kharitonov theorem(GKT) of Chapellat and Bhattacharyya [34] arethe most signi�cant results in this direction.The organization of this chapter is as follows: Section 2.2 introduces the issue of uncer-tainty structure. In Section 2.3 some fundamental concepts, namely the value set concept,zero exclusion principle and segment lemma which are repeatedly used while analysingrobust stability of uncertain polynomials, are �rst given. Then, the famous Kharitonovtheorem and a major theorem developed during the post-Kharitonov era known as theedge theorem are introduced. Application of the Kharitonov theorem to a control sys-tem is considered in Section 2.4. In this section, the sixteen Kharitonov plant family andthirty-two systems are given. The �nal section gives a summary of the chapter.2.2 The Issue of Uncertainty StructureNo matter how accurately one tries to mathematically model an engineering system, themodel never describes exactly the system's behaviour. Environmental changes as well ascomponent production tolerances a�ect the values of the system's parameters. Therefore,10



it is more realistic to assume a model with uncertainties.Consider the standard feedback system shown in Figure 2.1 with a �xed plantG(s) = N(s)D(s) (2.1)and a compensator C(s) = Nc(s)Dc(s) (2.2)The classical stability problem for this standard con�guration leads to examination of theclosed loop polynomial N(s)Nc(s) +D(s)Dc(s). In practice, however, as stated above thephysical parameters entering into the model of a control system may not be known exactly.Typically, these physical parameters are known to vary in prescribed intervals, this leadsto a resulting closed-loop polynomial which includes perturbations associated with theseparameters. One can denote [20] these unknown parameters by a vector q = [q1; q2; :::; qq]Twhich is restricted to a prescribed bounding hyper rectangle (uncertainty box) Q in Rq asQ = fq2Rq : qi2[qi; qi]; i = 1; 2; ::::; qg (2.3)where qi and qi are speci�ed lower and upper bounds of the ith perturbation qi, respec-tively. Such an uncertainty box is shown in Figure 2.2 for three unknown parameters.Now, assume that the �xed transfer function of the con�guration given in Figure 2.1 is anuncertain transfer function of the formG(s;q) = N(s;q)D(s;q) (2.4)where N(s;q) and D(s;q) are uncertain polynomials. This means that each of thesepolynomial coe�cients are a function of q. In this case, the closed-loop characteristicpolynomial is P (s;q) = N(s;q)Nc(s) +D(s;q)Dc(s) (2.5)which can be written in a more general form asP (s;q) = a0(q) + a1(q)s+ a2(q)s2 + ::::::: + an(q)sn (2.6)
11



whose coe�cients depend on the uncertainty vector q. For the stability analysis of apolynomial family of the form of Eq.(2.6), the type of coe�cient function ai(q) plays animportant role. There are four classes of uncertain polynomials [13] depending on thestructure of the coe�cient function ai(q) which are1. Independent Uncertainty Structure(Interval Polynomials): An uncertain polynomialis an interval polynomial if each ai(q) of Eq.(2.6) is dependent only on one parametersuch as a0(q) = q0, a1(q) = q1,..., an(q) = qn.2. A�ne Linear Uncertainty Structure: The polynomial of Eq.(2.6) is said to havean a�ne linear uncertainty structure if ai(q) is an a�ne linear function for i =0; 1; 2; :::; n; that is, a linear function plus a constant. For example, ai(q) = 3q1 +q2 + 8q3 + 2 is an a�ne linear function. These types of polynomials are also knownas polytopic polynomial families.3. Multilinear Uncertainty Structure: An uncertain polynomial P (s;q) is said to havea multilinear uncertainty structure if each of the coe�cients ai(q) is a multilinearfunction such as ai(q) = 3q1q2q3 + 2q2 � q3 + 10q2q3 + 3.4. Polynomial Uncertainty Structure: If each of the coe�cients function of ai(q) of thepolynomial of Eq.(2.6) is a multivariable polynomial in the components of q thenP (s;q) is said to have a polynomial uncertainty structure. For example, ai(q) =2q1q3 � 6q1q2 + q23 is a polynomial function.Four di�erent types of uncertainty structures for polynomials have been given. LetPindep:, Paffine, Pmultilin: and Ppoly: denote the uncertain polynomials with independent,a�ne linear, multilinear and polynomic uncertainty structures, respectively, then the hi-erarchy can be stated as Pindep:�Paffine�Pmultilin:�Ppoly: (2.7)From this hierarchy it can be seen that the most simple uncertainty structure is the in-dependent one. An e�ective result on the independent uncertainty structure is the wellknown Kharitonov theorem. The next level of di�culty is the a�ne linear uncertaintystructure. For a�ne linear uncertainty, the edge theorem is a useful tool. The multilinear12



and polynomial uncertainty structures have higher levels of di�culty. There is no straight-forward method to deal with these types of uncertainty structures. One possible way todeal with these types of polynomials is to apply the so-called overbounding technique [13]which enables one to convert a dependent uncertainty structure to an independent one.However, this technique is a conservative technique. On the other hand, in the literature,some results related to uncertain polynomials with multilinear and polynomial uncertaintyhave been developed [13] using the mapping theorem [139].
R(s) E(s) Y(s)

C(s) G(s)

-
+
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2.3 Some Essential Tools of Robust Control Under Para-metric UncertaintyIn this section, some technical tools which play an important role in the �eld of parametricrobust control are brie
y mentioned. An understanding of these tools enables one to seethe logic behind the many developments in robust control theory.2.3.1 Value Set ConceptThis is an important concept which is widely used in robust control under parametricuncertainty for checking the stability of uncertain systems, computing frequency responsesof uncertain systems etc.. For a �xed polynomial the image of the polynomial at a �xedfrequency is a point in the complex plane. However, for an uncertain polynomial the imageis a set of points. These sets are referred to as value sets. Simply, the value set of anuncertain polynomial can be formulated as follows: Suppose that P (s;q) is an uncertainpolynomial de�ned by Eq.(2.6), at a �xed real frequency !� the value set is given byP (j!�; Q) = fP (j!�;q) : q2Qg (2.8)In the general case when the coe�cients of P (s;q) are multilinear or polynomic, there isno e�cient analytical representation for the value set, and its construction may be quitedi�cult. However, in some important cases such as polynomials with independent anda�ne linear uncertainty, the shape of the value set can be described very simply [53, 130].The power of the value set approach is derived from the fact that it is essentially atwo dimentional set in the complex plane whereas the uncertain parameter box belongs toRq. Therefore, it is easier to deal with it computationally. The value set concept togetherwith the zero exclusion principle which is given in the next subsection is a powerful toolfor the stability analysis of uncertain polynomials.Example 2.1Consider P (s;q) = s3 + 8s2 + [5:5; 6:5]s + 3 (2.9)
14



In order to obtain the value set of this uncertain polynomial family at each frequency, oneneeds to �nd the real and imaginary part of P (s;q). Substituting s = j!P (j!;q) = �j!3 � 8!2 + j[5:5; 6:5]! + 3 = �8!2 + 3 + j!(�!2 + [5:5; 6:5]) (2.10)Thus, the real and imaginary parts of P (s;q) can be written asRe[P ] = �8!2 + 3 (2.11)and �!3 + 5:5!�Im[P ]�� !3 + 6:5! (2.12)From these equations the value sets of P (s;q) can be obtained. The value sets of P (s;q)for 100 evenly spaced frequencies in the range 0�!�3 are shown in Figure 2.3.
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2.3.2 Zero Exclusion PrincipleAssume that the family of polynomials of Eq.(2.6) is of invariant degree (by invariantdegree we mean that all polynomials under consideration should have the same degree.This means that the coe�cient of the highest degree term should not vanish for any valueof the parameter), and contains at least one stable polynomial. Then, it is easy to showusing the boundary crossing theorem [36] that the entire family is stable if and only if thevalue sets of P (s;q) do not include the origin for all real ! which can be written as [13]062P (j!;Q) (2.13)As mentioned before, the value set concept combined with the zero exclusion principleconstitutes a powerful tool to determine robust stability of uncertain polynomials. Thiscomes from the fact that, the inclusion or exclusion of the origin in the value set of anuncertain polynomial can be checked using the boundary of the value set. Thus, whenthe value sets of an uncertain polynomial are readily constructable, the analysis of sucha polynomial will also be easy. For example, one member of the uncertain polynomialfamily given in Example 2.1 such as p(s)2P (s;q) = s3 +8s2 +5:5s+3 is stable and fromFigure 2.3 since 062P (j!;Q) for all real !, one can conclude that the family of polynomialsP (s;q) of Eq.(2.9) is robustly stable.2.3.3 Segment LemmaIn this section, the problem of determining the stabilty of a line segment joining two �xedpolynomials which are called end point polynomials is studied. Suppose �1(s) and �2(s)are polynomials of degree n then the segment of polynomials can be written as�(s; �) = (1� �)�1(s) + ��2(s); �2[0; 1] (2.14)In general, the stability of end points does not guarantee that of the entire segment ofpolynomials. For example, consider the segment joining the following two polynomials�1(s) = 3s4 + 3s3 + 5s2 + 2s+ 1
16



and �2(s) = s4 + s3 + 5s2 + 2s+ 5it can be seen that although �1(s) and �2(s) are Hurwitz stable, the polynomial �(s; �) =(1� �)�1(s) + ��2(s) for � = 0:5 is not Hurwitz stable.One possible way of determining the stability of a line segment is to conduct a sweepof �, i.e. to test the stability of the polynomial starting from � = 0 and increasing itsvalue using a su�ciently small step until � = 1 is reached. This approach is, however,time consuming and not exact. On the other hand, using the segment lemma, the stabilityof a segment can be checked by using the end point polynomials as follows: Let �1(s) and�2(s) be stable polynomials of degree n with leading coe�cients of the same sign. Thenthe line segment (1� �)�1(s) + ��2(s) is Hurwitz stable for all �2[0; 1] if and only if thereexists no real ! > 0 such that all of the following three conditions which can be obtainedfrom Figure 2.4 are met [25] 1) �e1(!)�o2(!)� �e2(!)�o1(!) = 02) �e1(!)�e2(!)�03) �o1(!)�o2(!)�0 (2.15)where (�e1(!); �o1(!)) and (�e2(!); �o2(!)) are the even and odd parts of �1(s) and �2(s), re-spectively.Example 2.2Consider a line segment with the following end points�1(s) = s3 + 3s2 + 4:4s+ 1:25and �2(s) = 2s3 + 4s2 + 5:4s+ 2:25It can be seen that �1(s) and �2(s) are Hurwitz stable. The objective is to check the robust
17
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Figure 2.4: Geometric interpretation of segment lemmastability of�(s; �) = (1� �)�1(s) + ��2(s) = (�+ 1)s3 + (�+ 3)s2 + (�+ 4:4)s + (�+ 1:25) (2.16)where �2[0; 1]. To apply the segment lemma it is necessary to �nd the positive real rootsof the polynomial �e1(!)�o2(!)� �e2(!)�o1(!) = 2!4 + 1:15!2 � 3:15 = 0 (2.17)There is one positive real root which is ! = 1. However, for ! = 1 it can be seen that�e1(!)�e2(!) = 3:06 > 0 and �o1(!)�o2(!) = 11:56 > 0. Therefore, from the segment lemma,one can say that the line segment of Eq.(2.16) is stable. Although frequency sweeping isnot necessary, the value sets of the segment are shown in Figure 2.5 which exclude theorigin as expected.
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Figure 2.5: Value sets of the segment of Eq.(2.16)2.3.4 The Kharitonov TheoremThis section deals with a result proved in 1978 by V. L. Kharitonov regarding the Hurwitzstability of a family of interval polynomials (each element of q enters into only one coef-�cient of (2.6)) known as the Kharitonov theorem. The Kharitonov theorem proves thatthe robust stability of an interval polynomial can be determined by testing the stabilityof just four polynomials which can be easily obtained by using upper and lower values ofunknown parameters. The implication of this theorem goes far beyond the result embod-ied in it and has provided the spark for the activities of a large body of researchers allover the world. The Kharitonov theorem can be summarized as follows:Consider a real interval polynomial of invariant degree n asP (s;q) = q0 + q1s+ q2s2 + q3s3 + ::::::+ qnsn (2.18)where Q = fq : qi2[qi; qi]; i = 0; 1; � � � ; ng (2.19)
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The given interval polynomial P (s;q) is Hurwitz stable if and only if the following fourextreme polynomials (four Kharitonov polynomials) are Hurwitz stable:p1(s)2P (s;q) = q0 + q1s+ q2s2 + q3s3 + q4s4 + ::::::::::::::p2(s)2P (s;q) = q0 + q1s+ q2s2 + q3s3 + q4s4 + ::::::::::::::p3(s)2P (s;q) = q0 + q1s+ q2s2 + q3s3 + q4s4 + ::::::::::::::p4(s)2P (s;q) = q0 + q1s+ q2s2 + q3s3 + q4s4 + :::::::::::::: (2.20)The original proof of this theorem by Kharitonov is complicated. Meanwhile, muchsimpler proofs can be found in [29, 35, 106, 47]. Generally using the value set concepttogether with the zero exclusion principle, the logic behind the Kharitonov theorem canbe understood. It can be easily shown that the value set of the interval polynomial at a�xed frequency is a rectangle (Kharitonov rectangle) whose sides are parallel to the realand imaginary axes. Figure 2.6 shows the value set of the interval polynomial of Eq.(2.18)at s = j!�. The four Kharitonov polynomials (p1(s), p2(s), p3(s) and p4(s)) at s = j!� asshown in Figure 2.6 constitute the corners of the rectangle. From this rectangular valueset, the Kharitonov polynomials of Eq.(2.20) can be easily obtained using the maximumand minimum values of the even and odd parts of P (s;q) as followsp1(s) = P evenmin (s) + P oddmin(s)p2(s) = P evenmin (s) + P oddmax(s)p3(s) = P evenmax (s) + P oddmin(s)p4(s) = P evenmax (s) + P oddmax(s) (2.21)Since the sides of the rectangular value set are parallel to the real and imaginary axes, itcan be easily shown that the inclusion or the exclusion of the origin from this rectangularvalue set can be checked by using corner points which correspond to the Kharitonovpolynomials.For a general nth order interval polynomial, the Kharitonov theorem suggests test-ing a set of four �xed polynomials. However, for polynomials of degree 5, 4 and 3, theKharitonov test can be simpli�ed [2]. The corresponding Kharitonov polynomials are 3,20
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Figure 2.6: Kharitonov rectangle2 and 1 in number as against 4 in the general case.Example 2.3Consider the following interval polynomialP (s;q) = s4 + [4:95; 5:02]s3 + [4:9; 7:1]s2 + [2:5; 9:5]s + [0:32; 0:67] (2.22)The four Kharitonov polynomials arep1(s) = s4 + 5:02s3 + 7:1s2 + 2:5s+ 0:32p2(s) = s4 + 4:95s3 + 7:1s2 + 9:5s+ 0:32p3(s) = s4 + 5:02s3 + 4:9s2 + 2:5s+ 0:67p4(s) = s4 + 4:95s3 + 4:9s2 + 9:5s+ 0:67 (2.23)Since these four Kharitonov polynomials are stable it can be concluded that the familyof polynomials given in Eq.(2.22) is Hurwitz stable. The movement of the Kharitonovrectangles is shown in Figure 2.7.
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Figure 2.7: Movement of the Kharitonov rectangles2.3.5 The Edge TheoremAlthough the Kharitonov theorem gives an elegant solution to the stability problem ofinterval polynomials, it su�ers from two basic limitations. These are: 1) The coe�cientsof the polynomials are assumed to vary independently. In other words no qi enters intomore than one coe�cient. This is too restrictive for physical problems. In the generalcase, an uncertain polynomial can be represented by Eq.(2.6) where the coe�cients canbe a�ne linear, multilinear or polynomial functions. 2) Another important limitation isthat the Kharitonov theorem can only be applied to problems where the stability regioncorresponds to the open left half plane. For example, the robust D stability (let D be aregion in the complex plane then a polynomial is said to be D stable if all its roots lie inthe region D) cannot be checked by using the Kharitonov theorem.Considerable research e�ort has been devoted to remove these limitations [13]. Themost signi�cant result in this direction is the one obtained by Bartlett et al. [21]. Theirresult, known as the edge theorem, deals with the stability of uncertain polynomials ofthe form of Eq.(2.6) with an a�ne linear uncertainty structure. As mentioned before, this22



type of polynomial is also known as a polytopic polynomial family. The edge theoremstates that the corresponding polytope of polynomials of Eq.(2.6) with an a�ne linearuncertainty structure in the coe�cient space has 2q vertices and (2q�1(2q � 1)) edgesjoining 2q vertices. Among these edges only the (q2q�1) exposed edges of the polytopeneed to be checked to verify stability of the family of polynomials.Since another version of the edge theorem shows that the root space of a polytopicpolynomial family can be obtained from the root set of the exposed edges, it is also usefulwhen one considers the general problem of robust D stability.Example 2.4Consider a polynomial family with a�ne linear uncertainty structure asP (s;q) = q3s2 + (q1 + q2 + q3)s+ 2q1 + q2 (2.24)where Q = fq = [q1 q2 q3]T : q12[1; 3]; q22[4; 6]; q32[0:2; 2:8]g (2.25)It is quite clear that it is not possible to use the Kharitonov theorem for this uncertainfamily. On the other hand, since the uncertainty structure is a�ne linear, the edge theoremcan be used successfully. Since there are three unknown parameters (q = 3), the corre-sponding polytope of the family of Eq.(2.24) in the coe�cient space has 23 = 8 verticesand (3)22 = 12 exposed edges (see Figure 2.2).The vertex polynomials can be easily obtained as followsv1(s) = q3s2 + (q1 + q2 + q3)s+ 2q1 + q2v2(s) = q3s2 + (q1 + q2 + q3)s+ 2q1 + q2v3(s) = q3s2 + (q1 + q2 + q3)s+ 2q1 + q2v4(s) = q3s2 + (q1 + q2 + q3)s+ 2q1 + q2v5(s) = q3s2 + (q1 + q2 + q3)s+ 2q1 + q2v6(s) = q3s2 + (q1 + q2 + q3)s+ 2q1 + q2v7(s) = q3s2 + (q1 + q2 + q3)s+ 2q1 + q2
23



v8(s) = q3s2 + (q1 + q2 + q3)s+ 2q1 + q2 (2.26)Using these vertex polynomials, the exposed edges can be obtained. For example, thevertex polynomials v1(s) and v2(s) have the same structure except the parameter q1 is itslower value (q1) in v1(s) and its upper value (q1) in v2(s). Thus, one of the exposed edgesis (1 � �)v1(s) + �v2(s). Similarly, the remaining 11 exposed edges can be constructed.Once all the exposed edges are constructed then the stability can be determined usingthe segment lemma (since each exposed edge is a line segment) or the value set concepttogether with the zero exclusion principle (because the value sets at each frequency arebounded by the images of the exposed edges). The value sets of the family are shown inFigure 2.8 which exclude the origin. Therefore, the family is stable.

−70 −60 −50 −40 −30 −20 −10 0 10 20
0

10

20

30

40

50

60

Real

Im
ag

in
ar

y

Figure 2.8: Value sets of the polynomials of Eq.(2.24)2.4 The Interval Plant ConceptIn this section, the sixteen Kharitonov plant family and thirty-two systems obtained froman interval plant are introduced. The sixteen Kharitonov plant family and the thirty-two24



systems are two fundamental theories behind many extreme point results developed in the�eld of parametric robust control. A de�nition of this terminolgy (extreme point result) isgiven in Barmish [20] as follows: An extreme point result is a result which enables one toinfer that some desired property of a control system is robustly satis�ed by checking thesatis�cation of this property on a �nite subset of extreme systems which may arise. Forexample, is it possible to �nd the robust(minimum) gain and phase margin of a transferfunction with independent uncertainty structure from a subset of �xed transfer functions?If so then one can say that an extreme point result holds. Of course, our intention in thissection is not to report all the extreme point results of a control system with parametricuncertainty. An extensive research and discussion in this direction can be found in thebooks [1, 13, 25, 52], survey papers [20, 45, 112, 118] and the references there in. However,a brief introduction to these two important tools and a short discussion of some dominatingextreme point results related to these tools are given.2.4.1 Sixteen Kharitonov Plant FamilyAn interval plant is one in which the parameters are not known exactly, but are assumedto lie within speci�ed intervals. More precisely, an interval plant can be formulated asG(s;q; r) = N(s; r)D(s;q) = rmsm + rm�1sm�1 + :::+ r0qnsn + qn�1sn�1 + :::+ q0 (2.27)As usual, Q = fq : qi2[qi; qi]; i = 0; 1; :::; ng and R = fr : ri2[ri; ri]; i = 0; 1; :::;mg denotethe boxes bounding the uncertain parameters vectors q and r, respectively. Since thenumerator and the denominator polynomials N(s; r) and D(s;q) are interval polynomi-als, from the Kharitonov theorem, one can obtain four Kharitonov polynomials for thenumerator as N1(s) = r0 + r1s+ r2s2 + r3s3 + r4s4 + ::::::::::::::N2(s) = r0 + r1s+ r2s2 + r3s3 + r4s4 + ::::::::::::::N3(s) = r0 + r1s+ r2s2 + r3s3 + r4s4 + ::::::::::::::N4(s) = r0 + r1s+ r2s2 + r3s3 + r4s4 + :::::::::::::: (2.28)
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and four Kharitonov polynomials for the denominator asD1(s) = q0 + q1s+ q2s2 + q3s3 + q4s4 + ::::::::::::::D2(s) = q0 + q1s+ q2s2 + q3s3 + q4s4 + ::::::::::::::D3(s) = q0 + q1s+ q2s2 + q3s3 + q4s4 + ::::::::::::::D4(s) = q0 + q1s+ q2s2 + q3s3 + q4s4 + :::::::::::::: (2.29)By taking all combinations of the Ni(s) and Di(s) for i; j = 1; 2; 3; 4, the following sixteenKharitonov plant family can be obtainedGK(s) = Gij(s) = Ni(s)Dj(s) (2.30)where i; j = 1; 2; 3; 4. This family is important both from the analysis and synthesis pointsof view. For example, the results given in [16, 26] known as the sixteen plants theoremstates that a unity feedback system with a �rst order controller C(s) and an interval plantof Eq.(2.27) is stable if C(s)GK(s) is stable. In Hollot and Tempo [75], it has been shownthat the outer boundary of the Nyquist envelope of a stable interval plant is covered bythe Nyquist plots of the sixteen Kharitonov plants. Thus, the worst case gain and phasemargins can be computed from this family as well.2.4.2 Thirty-Two SystemsAs we have seen in the previous sections, the Kharitonov theorem deals with the robuststability problem of the polynomials which have an independent uncertainty structure. Inattempting to apply this theorem directly to a control system with a �xed controller andan interval plant one meets a di�culty. This di�culty is mainly due to the fact that thecharacteristic polynomial coe�cients do not perturb independently. The edge theoremcan be used in this type of situation. However, the solution given by the edge theorem, ingeneral, requires one to carry out the checking of all exposed edges which are exponentiallydependent on the number of uncertain parameters. On the other hand a generalization ofthe Kharitonov theorem was given in [34]. Generally, the generalized Kharitonov theorem
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deals with the robust stability problem of polynomials of the formK(s) = F1(s)P1(s;q1) + F2(s)P2(s;q2) + :::+ Fm(s)Pm(s;qm) (2.31)where F1(s), F2(s),..., Fm(s) are �xed polynomials in s and P1(s;q1), P2(s;q2),..., Pm(s;qm)are interval polynomials. The details of this theorem can be found in the book by Bhat-tacharya et al. [25] where Chapter 7 has been totally devoted to the generalized Kharitonovtheorem. Here, the thirty-two systems or Kharitonov's thirty-two segments which are adirect result of the generalized Kharitonov theorem are introduced.Consider the interval plant family which is represented by Eq.(2.27) with the Kharitonovpolynomials N1(s), N2(s), N3(s) and N4(s) for the numerator and D1(s), D2(s), D3(s)and D4(s) for the denominator. Then, the four Kharitonov segments for the numeratorare (1� �)Ni(s) + �Nj(s) (2.32)and the four Kharitonov segments for the denominator are(1� �)Di(s) + �Dj(s) (2.33)where � 2 [0; 1] and (i; j) 2 f(1; 2); (1; 3); (2; 4); (3; 4)g. Using the Kharitonov segmentsand Kharitonov polynomials for the numerator and the denominator polynomials, thefollowing 32 subsets of the family can be obtained [25]GE(s) = Ni(s)(1� �)Dj(s) + �Dk(s)[(1� �)Nj(s) + �Nk(s)Di(s) (2.34)where � 2 [0; 1], i = 1; 2; 3; 4 and (j; k) 2 f(1; 2); (1; 3); (2; 4); (3; 4)g. From these thirty-two systems, the Bode, Nyquist and Nichols envelopes of a control system with a �xedcontroller and an interval plant can be constructed [87]. For stability of a control systemwith a higher order controller and an interval plant, the stability of C(s)GE(s) is necessaryand su�cient [34].
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2.5 ConclusionIn this chapter, attention has been focused on the problem of robust stability of polynomi-als with parametric uncertainty. The points discussed in the chapter can be summarizedas follows:1. Using the Kharitonov theorem, the stability of interval polynomials can be de-termined by checking the stability of four Kharitonov polynomials. However, theKharitonov theorem is not applicable when the coe�cient perturbations are notindependent.2. The edge theorem covers problems of greater generality but it is computationallyexpensive. It can be applied in cases where the polynomial coe�cients are a�nelinear in the parameters. Also, it is applicable to the di�erent stability regions inthe complex plane.3. The value set concept, zero exclusion principle and the segment lemma are threeimportant tools widely used in the �eld of parametric robust control while discussingthe robust stability of uncertain polynomials.4. The sixteen Kharitonov plants family and the thirty-two systems are two impor-tant developments for the analysis and design of control systems with parametricuncertainty.
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Chapter 3
FEEDBACK STABILIZATIONUSING THE HERMITEBIEHLER THEOREM
3.1 Introduction3.2 The Hermite-Biehler Theorem3.3 Stabilization Using Lag/Lead Controller3.4 Relative Stabilization3.5 Interval Plant Stabilization3.6 Conclusion
3.1 IntroductionRecently, a new approach to the feedback stabilization using P, PI and PID controllershas been introduced in [72, 73, 74]. The approach is based on an appropriately generalizedversion of the Hermite-Biehler theorem [71]. The power of this method over the classicalapproaches such as the root locus technique, the Nyquist stability criterion and the Routh-Hurwitz criterion is that the �rst two classical methods are graphical and do not provide ananalytical procedure to �nd all stabilizing values of the controller parameters. Althoughthe Routh-Hurwitz criterion gives an analytical procedure, one needs to solve a set of29



polynomial inequalities which may be nonlinear to obtain stabilizing controller parameters.On the other hand, the stabilizing procedures based on the generalized Hermite-Biehlertheorem provide an analytical solution to the problem of calculating the set of all stabilizingfeedback gains for a given plant as well as providing a computational characterization ofall stabilizing parameters of PI and PID controllers.In this chapter, the application of the new method proposed in [72, 73, 74] is givenfor the Lag=Lead controller structure. Indeed, most of the controllers used in industrytoday are PI, PID and Lag=Lead controllers. Therefore, it is signi�cant to extend thenew approach to the Lag=Lead controller structure. Thereafter, the approach is furtherdeveloped for PI, Lag=Lead and PID controllers for relative stabilization. In addition,the stabilization of uncertain systems de�ned by an interval plant is also discussed usingthe sixteen Kharitonov plant family and the Hermite-Biehler theorem.The chapter is organized as follows: In Section 3.2, the Hermite-Biehler theorem and itsgeneralized versions are given without proof which can be found in [74]. Stabilization of agiven transfer function using a Lag=Lead controller structure and the generalized Hermite-Biehler theorem is given in Section 3.3. In Section 3.4, the approach is further developedfor relative stabilization. The stabilization of interval plants using the Kharitonov theoremand the Hermite-Biehler theorem is considered in Section 3.5.3.2 The Hermite-Biehler TheoremIn this section, the Hermite-Biehler theorem and some further results are summarized.The details of all the results given here can be found in [74].Let �(s) = �0 + �1s + ::::::::: + �nsn = �e(s2) + s�o(s2) be a given real polynomial ofdegree n where �e(s2) and �o(s2) are the even and odd parts of �(s). Then the classicalHermite-Biehler theorem [36] can be stated as follows:Theorem 3.1: Let !e1; !e2; ::: and !o1; !o2; ::: denote the positive real zeros of �e(�!2)and �o(�!2). Then �(s) is Hurwitz stable if and only if all the zeros of �e(�!2) and�o(�!2) are real and distinct, �n and �n�1 are of the same sign, and the positive real zerossatisfy the following interlacing property0 < !e1 < !o1 < !e2 < !o2 < :::::: (3.1)30



An equivalent analytical charcterisation of the Hermite-Biehler theorem is given by thefollowing lemma using the signum functionsgn[x] = 8>>>><>>>>: �1 if x < 00 if x = 01 if x > 0 (3.2)Lemma 3.1 [74]: Denote �(j!) = p(!) + jq(!) where p(!) = �e(�!2) and q(!) =!�o(�!2). Let !e1; !e2; ::: denote the non-negative real zeros of �e(�!2) and let !o1; !o2; :::denote the non-negative real zeros of �o(�!2), both arranged in ascending order of mag-nitude. Then the following conditions are equivalent:1) �(s) is Hurwitz stable.2) �n and �n�1 have the same sign and
n = 8>>>>>>>>>>><>>>>>>>>>>>:

sgn[�o]:fsgn[p(0)] � 2sgn[p(!o1)] + 2sgn[p(!o2)] + ::::+ (�1)m�1:2sgn[p(!om�1)]+(�1)m:sgn[p(1)]g; for n = 2msgn[�o]:fsgn[p(0)] � 2sgn[p(!o1)] + 2sgn[p(!o2)] + ::::+ (�1)m�1:2sgn[p(!om�1)]+(�1)m:2sgn[p(!om)]g; for n = 2m+ 1 (3.3)3) �n and �n�1 have the same sign and
n=8>>>>>>>>>>><>>>>>>>>>>>:

sgn[�o]:f2sgn[q(!e1)]� 2sgn[q(!e2)] + 2sgn[q(!e3)] + ::::+ (�1)m�2:2sgn[q(!em�1)]+(�1)m�1:2sgn[q(!m)]g; for n = 2msgn[�o]:f2sgn[q(!e1)]� 2sgn[q(!e2)] + 2sgn[q(!e3)] + ::::+ (�1)m�1:2sgn[q(!em)]+(�1)m:sgn[q(1)]g; for n = 2m+ 1 (3.4)This lemma is not applicable to non-Hurwitz polynomials. In order to use the HermiteBiehler theorem as a tool for solving the stabilization problem, it needs to be generalizedto the case of not necessarily Hurwitz polynomials. De�ne the normalized polynomial of
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�(j!) as [72].�f (j!) = p(!)f(!) + j q(!)f(!) = pf (!) + jqf (!) where f(!) = (1 + !2)n=2 (3.5)Such a normalization will make sure that �f (j!) intersects the real axis or the imaginaryaxis as !!�1 and also preserve the �nite frequencies at which �(s) intersects the realand imaginary axes. De�ne also the signature of the polynomial �(s) by �(�(s)) and write�(�(s)) = l � r (3.6)where l and r are the number of open left and right half plane zeros of �(s), respectively.Theorem 3.2 [74]: Let �(s) be a given real polynomial of degree n with no j! axis rootsexcept for possibly one at the origin. Let 0 = !0 < !1 < !2 < ::::::: < !m�1 be the real,non-negative , distinct �nite zeros of qf (!) with odd multiplicities. De�ne also !m =1.Then
�(�) = 8>>>>>>>>>>><>>>>>>>>>>>:

fsgn[pf (!0)]� 2sgn[pf (!1)] + 2sgn[pf (!2)] + ::::+ (�1)m�1:2sgn[pf (!m�1)]+(�1)m:sgn[pf (!m)]g:(�1)m�1sgn[q(1)]; if n is evenfsgn[pf (!0)]� 2sgn[pf (!1)] + 2sgn[pf (!2)] + ::::+(�1)m�1:2sgn[pf (!m�1)]g:(�1)m�1sgn[q(1)]; if n is odd (3.7)Theorem 3.3 [74]: Let �(s) be a given real polynomial of degree n with no roots onthe j! axis (the normalized plot �f (j!) does not pass through the origin). Let 0 < !1 <!2 < ::::::: < !m�1 be the real, non-negative , distinct �nite zeros of pf (!) with oddmultiplicities. Also de�ne !m =1. Then
�(�) = 8>>>>>>>>>>><>>>>>>>>>>>:

�f2sgn[qf (!1)]� 2sgn[qf (!2)] + ::::+(�1)m�2:2sgn[qf (!m�1)]g:(�1)msgn[p(1)]; if n is even�f2sgn[qf (!1)]� 2sgn[qf (!2)] + ::::+ (�1)m�2:2sgn[qf (!m�1)]+(�1)m�1sgn[qf (!m)]g:(�1)msgn[p(1)]; if n is odd (3.8)
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3.3 Stabilization Using Lag/Lead ControllerIn this section, the generalization of the Hermite-Biehler theorem is used in order to �ndthe set of stabilizing values of the parameters of a Lag/Lead controller. Consider a unityfeedback control system with a plant G(s) = N(s)=D(s) and a controller C(s).a) Let C(s) be a Lag/Lead controller of the formC(s) = Ks+ �s+ � (3.9)By using the even and odd parts of N(s) and D(s), G(s) can be written asG(s) = Ne(s2) + sNo(s2)De(s2) + sDo(s2) (3.10)the characteristic equation of the system is�(s;K; �; �) = 1 + C(s)G(s) = 0 = [K�Ne(s2) + �De(s2) + s2(KNo(s2) +Do(s2))]+s[KNe(s2) +K�No(s2) +De(s2) + �Do(s2)] (3.11)Substituting s = j!,�(j!;K; �; �) = p(!;K;�; �) + jq(!;K;�; �) =[K�Ne(�!2) + �De(�!2)� !2(KNo(�!2) +Do(�!2))]+j![KNe(�!2) +K�No(�!2) +De(�!2) + �Do(�!2)] (3.12)From Eq.(3.12) since both p(!;K;�; �) and q(!;K;�; �) depend on (K;�; �) this makesthe application of lemma 3.1, theorem 3.2 or theorem 3.3 di�cult. For example, in orderto use theorem 3.2, one needs to �nd the positive real roots of q(!;K;�; �) = 0 whichdepend on three unknown parameters (since the normalization given in Eq.(3.5) does notchange the real roots of the even and odd parts and for clarity of presentation we will notinvoke it). To partially overcome this di�culty , the following procedure can be used [74].Assume the greatest common divisor of Ne(s2) and No(s2) is e(s2), and de�neN 0e(s2) = Ne(s2)e(s2) ; N 0o(s2) = No(s2)e(s2) (3.13)33



from Eq.(3.13) N 0(s) = N 0e(s2) + sN 0o(s2) (3.14)and de�ne N�(s) = N 0(�s) = N 0e(s2)� sN 0o(s2) (3.15)N 0(s) has no j! axis roots except possibly a single root at the origin. If one multiplies�(s;K; �; �) by N�(s) then the signature function of the multiplication can be written as�(�(s;K; �; �)N�(s)) = �(�(s;K; �; �)) + �(N�(s)) = �(�(s;K; �; �)) � �(N 0(s)) (3.16)By multiplying the characteristic equation with N�(s), one gets�(s;K; �; �)N�(s) =[s2(Do(s2)N 0e(s2)�De(s2)N 0o(s2)) +K�(Ne(s2)N 0e(s2)� s2No(s2)N 0o(s2))�(De(s2)N 0e(s2)� s2Do(s2)N 0o(s2))] + s[De(s2)N 0e(s2)� s2Do(s2)N 0o(s2)+K(Ne(s2)N 0e(s2)� s2No(s2)N 0o(s2)) + �(Do(s2)N 0e(s2)�De(s2)N 0o(s2))] (3.17)and for s = j!, it can be seen that�(j!;K; �; �)N�(j!) = p(!;K;�; �) + jq(!;K; �) (3.18)Here, it is clear that one parameter of q(!;K;�; �) was eliminated and q(!;K; �), which isnot dependent on �, is obtained. Now, let the degree of �(s;K; �; �) be n then �(s;K; �; �)is Hurwitz stable if and only if �(�(j!;K; �; �)) = n. Thus, the given plant is Hurwitzstable if and only if�(�(s;K; �; �)N�(s)) = n+ �(N�(s)) = n� �(N 0(s)) (3.19)It is seen that for every �xed K value sweeping over � values and using theorem 3.2 orlemma 3.1 (if N�(s) is Hurwitz stable) and Eq.(3.19) (or conversely for each �xed � valuesweeping over K values) the set of values of (K;�; �) for the system to be Hurwitz stablecan be calculated. The range of � values for �xed K (or the range of K values for �xed
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�) over which the sweeping needs to be done can be reduced by using the root locus ideagiven in [74] (see Appendix A). For example, for a known K value if one writes q(!;K; �)as q(!;K; �) = !(U(!;K) + �V (!)) (3.20)where � varies from �1 to +1 then the real breakaway points on the root locus ofU(!;K) + �V (!) = 0 correspond to a real multiple root and must satisfyU(!;K)dV (!)d! � V (!)dU(!;K)d!U2(!;K) = 0 (3.21)The real breakaway points are the real zeros of Eq.(3.21). And the corresponding � valuescan be found by using these zeros. Thus, the real root distribution of U(!;K)+�V (!) = 0with respect to the origin can be calculated.b) The lead controller is often used with unit gain at d.c. This means K = �=� andthe transfer function can be written asC(s) = 1 + sT11 + sT2 (3.22)with T1 = 1=� and T2 = 1=�. Now, assume N 0(s) which is de�ned in Eq.(3.14) has notgot any root on the j! axis and write the characteristic equation of the system�(s; T1; T2) = [Ne(s2) +De(s2) + s2(T1No(s2) + T2Do(s2))]+ s[No(s2) +Do(s2) + T1Ne(s2) + T2De(s2)] (3.23)multiplying �(s; T1; T2) with N�(s) and substituting s = j!�(j!; T1; T2)N�(j!) = p(!; T2) + jq(!; T1; T2) = [Ne(�!2)N 0e(�!2) +De(�!2)N 0e(�!2)� !2T2(Do(�!2)N 0e(�!2)�De(�!2)N 0o(�!2)) + !2N 0o(�!2)(No(�!2)+Do(�!2))] + j![Do(�!2)N 0e(�!2)�De(�!2)N 0o(�!2) + T1(Ne(�!2)N 0e(�!2)+!2No(�!2)N 0o(�!2)) + T2(De(�!2)N 0e(�!2) + !2Do(�!2)N 0o(�!2))] (3.24)For every �xed T2, the zeros of p(!; T2) do not depend on T1. Therefore by sweeping overall T2 values and using theorem 3.3 or lemma 3.1 (if N�(s) is stable), all the stabilizing35



values of (T1; T2) can be calculated. From Eq.(3.24), if N�(s) is not Hurwitz stable, oneneeds to use theorem 3.3. Since theorem 3.3 is not applicable to a polynomial which hasj! axis roots, in this case, it is necessary to assume that N 0(s) or N�(s) must not haveany roots on the j! axis.Example 3.1Consider G(s) = N(s)D(s) = s3 � 4s2 + s+ 2s5 + 8s4 + 32s3 + 46s2 + 46s+ 17 (3.25)This plant is to be stabilized, if possible, using a Lag=Lead controller of the formC(s) = s+ �s+ � (3.26)where K is assumed to be equal to one. From Eq.(3.11), the following closed loop charac-teristic equation is obtained�(s; �; �) = s6 + (8 + �)s5 + (33 + 8�)s4 + (42 + 32� + �)s3+(47 + 46� � 4�)s2 + (19 + 46� + �)s+ 17� + 2� (3.27)Using the Routh-Hurwitz criterion to determine the stabilizing values for � and �, one
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can see that the following inequalities must hold.8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8 + � > 08�2 + 68� � �+ 222 > 0210�3 + 175�2 + 12�2�+ 6651� + 101�� � �2 + 444� � 6468 > 0(6852�5 + (111208 � 336�)�4 + (670097 � 4933� � 48�2)�3 + (1380558 � 21446��832�2)�2 + (�2611461 + 13818� � 5420�2 + 4�3)� + 32�3 � 14712�2 + 359520��3245472) > 0(1655352�8 + (40973724 � 250704�)�7 + (4386511378 � 31392�2 � 6470823�)�6+(2523875448 � 773838�2 � 576�3 � 69801312�)�5 + (7481585892 � 382258482��8457189�2 � 8676�3)�4 + (6781242090 � 886670883� � 51534270�2 � 59583�3+120�4)�3 + (�20150281620 + 548874960� � 172578204�2 � 324222�3 + 1755�4)�2+(�50509542114 + 5713694541� � 266724597�2 � 1444566�3 + 10272�4 � 6�5)��48�5 + 31320�4 � 4689096�3 + 60051600�2 + 603684576� � 3689400896) > 017� + 2� > 0It is clear that, these inequalities are nonlinear and there is not a straightforward methodfor their solution.Now, to see how the generalized Hermite-Biehler theorem can be used to determinethe values of � and � for them �(s; �; �) of Eq.(3.27) is Hurwitz stable. From Eq.(3.15)N�(s) = �s3 � 4s2 � s+ 2 (3.28)and multiplying �(s; �; �) by N�(s), one gets�(j!; �; �)N�(j!) = p(!; �; �) + jq(!; �) =[�(12 + �)!8 + (183 + 65� + �)!6 + (�183� 246� + 14�)!4 � (75 � 22� � 17�)!2
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+4�+ 34�] + j![�!8 + (65 + 12�)!6 � (232 + 180�)!4 + (39 + 91�)!2 + 38 + 75�](3.29)Since the signature of N�(s) is equal to 1 and the order of �(s; �; �) is equal to 6, �(s; �; �)is Hurwitz stable if and only if the signature of �(s; �; �)N�(s) is equal to 7. From theorem3.2 this implies that q(!; �) must have at least 4 positive real roots. Since q(!; �) has oneroot at the origin,qs(!; �) = q(!; �)! = �!8+(65+12�)!6�(232+180�)!4+(39+91�)!2+75�+38 (3.30)must have at least three positive real roots. From Eq.(3.21), the distribution of the positivereal roots of qs(!; �) was calculated as�2(�1;�0:5067) : 2 positive real root�2(�0:5067;1) : 3 positive real rootThus the only possible region for stabilization is �2(�0:5067;1). For a �xed value of �such as ��2(�0:5067;1), from theorem 3.2, since (�1)m�1sqn[q(1)] = 1, for stabilitythe following inequalities must holdp(0; �; ��) > 0; p(!1; �; ��) < 0; p(!2; �; ��) > 0; p(!3; �; ��) < 0 (3.31)where !1, !2 and !3 are the positive real roots of qs(!; ��). For example, when �� =02(�0:5067;1), the positive real roots of qs(!; 0) are!1 = 0:7416; !2 = 1:8834 and !3 = 7:8244Using inequalities of Eq.(3.31), it was computed for �� = 0 and �2(0; 3:7890), �(s; �; �)is Hurwitz stable. It was found that for all values of � within (�0:5067;1) there arestabilizing values of �. For example, all the stabilizing values of � and � for �2[�0:5; 200]are shown in Figure 3.1.
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Figure 3.1: Stabilizing values of (�; �) for K = 1Example 3.2Consider the C(s) and G(s) of a unity feedback system asC(s) = Ks+ �s+ � and G(s) = 3s+ 15s3 + 3s2 + 3s+ 5 (3.32)The characteristic equation is�(s;K; �; �) = s4+(3+�)s3+(3+3K+3�)s2+(5+15K+3K�+3�)s+5�+15K� (3.33)From Eq.(3.15) N�(s) = 5� s (3.34)and multiplying �(j!;K; �; �) by N�(j!), one gets�(j!;K; �; �)N�(j!) = p(!;K;�; �) + jq(!;K; �) = [(2� �)!4 � (10 + 12� � 3K�)!2+25� + 75K�] + j![�!4 � (12� 3K + 2�)!2 + 25 + 10� + 75K] (3.35)
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The signature of N�(s) is �1 and the order of �(s;K; �; �) is 4. Therefore, the �(s;K; �; �)is Hurwitz stable if and only if the signature of �(s;K; �; �)N�(s) is equal to 3. Thus,from theorem 3.2,qs(!;K; �) = q(!;K; �)! = �!4 � (12� 3K + 2�)!2 + 25 + 10� + 75K (3.36)must have at least 1 positive real root. For example, for K = 1, qs(!;K; �) has 1 positivesimple real root when � 2 (�10;1). Using theorem 3.2, for K = 1 and a value of� 2 (�10;1), since (�1)m�1sgn[q(1;K; �)] = 1, for stability the following inequalitiesmust be satis�ed25� + 75K� > 0 ; (2� �)!41 � (10 + 12� � 3K�)!21 + 25� + 75K� < 0where !1 is the positive real root of qs(!;K; �). The stabilizing values of controller pa-rameters for K = 1 and � 2 [1; 200] are shown in Figure 3.2. Figure 3.3 shows all thestabilizing values of the controller parameters when K 2 [1; 10] and � 2 [1; 200].
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Figure 3.3: Stabilizing values of (�; �) for K2[1; 10]3.4 Relative stabilizationIn this section, the stabilization of a given plant using the controllers de�ned asC1(s) = Kps+Kp�+Kis+ � (3.37)C2(s) = Ks+K�+K�s+ �+ � (3.38)C3(s) = Kds2 + (2Kd�+Kp)s+ �(Kd�+Kp) +Kis+ � (3.39)where � is a known constant and K, �, �, Kp, Ki and Kd are unknown parameters isstudied. In order to explain the aim of de�ning these controller structures, consider a PIcontroller and a plant as C(s) = Kps+Kis ; G(s) = N(s)D(s) (3.40)41



To �nd all values of Kp and Ki which put all closed loop poles to the left of s = �(� = constant), with bC(s) and bG(s) for C(s) and G(s) with s = s+ �, thenbC(s) = C(s+ �) = Kps+Kp�+Kis+ � ; bG(s) = G(s+ �) = N(s+ �)D(s+ �)Now, if the characteristic equation, �(s) = 1 + bC(s) bG(s) = 0, is Hurwitz stable then onecan be sure that all the closed loop poles of the system are to the left of s = �. Also, itis clear that C1(s) is exactly equal to the structure of bC(s). Similarly, it can be seen thatfor a Lag=Lead controller of the form C(s) = K(s+�)=(s+�) the structure of C2(s) andfor a PID controller the structure of C3(s) can be obtained.a) If the controller structure is in the form of C1(s) then the characteristic equationcan be written as�(s;Kp;Ki) = 1 + C1(s)G(s) = 0 = [�De(s2) + (Kp�+Ki)Ne(s2)+s2(KpNo(s2) +Do(s2))] + s[KpNe(s2) + (Kp�+Ki)No(s2) +De(s2) + �Do(s2)] (3.41)By multiplying the characteristic equation with N�(s) which is de�ned in Eq.(3.15) andputting s = j!, one gets�(j!;Kp;Ki)N�(j!) = p(!;Kp;Ki) + jq(!;Kp) = [(Kp�+Ki)(Ne(�!2)N 0e(�!2)+!2No(�!2)N 0o(�!2) + �De(�!2)N 0e(�!2) + !2(De(�!2)N 0o(�!2) + �Do(�!2)N 0o(�!2)�Do(�!2)N 0e(�!2)] + j![Kp(Ne(�!2)N 0e(�!2) + !2No(�!2)N 0o(�!2)) +De(�!2)N 0e(�!2) + (Do(�!2)N 0e(�!2)�De(�!2)N 0o(�!2)) + !2Do(�!2)N 0o(�!2)] (3.42)It is clear that for every �xed Kp value, the roots of q(!;Kp) do not depend on Ki. Thus,sweeping over Kp values and using Eq.(3.19) and the results of Section 3.3, the set of allstabilizing (Kp;Ki) values for which the given plant is Hurwitz stable can be calculated.The range of Kp values over which the sweeping needs to be done can be reduced by usingthe root locus as explained in Section 3.3.b) For C2(s), the characteristic equation of the system can be written as�(s;K; �; �) = 1 + C2(s)G(s) = 0 = [(�+ �)De(s2) +K(�+ �)Ne(s2) + s2(Do(s2)42



+KNo(s2)) + s[De(s2) + (�+ �)Do(s2) +KNe(s2) +K(�+ �)No(s2)] (3.43)Multiplying �(j!;K; �; �) with N�(j!)�(j!;K; �; �)N�(j!)=p(!;K;�; �) + jq(!;K; �)=[(� + �)(De(�!2)N 0e(�!2) + !2Do(�!2)N 0o(�!2)) +K(�+ �)(Ne(�!2)N 0e(�!2) + !2No(�!2)N 0o(�!2))� !2(Do(�!2)N 0e(�!2)�De(�!2)N 0o(�!2))] + j![K(Ne(�!2)N 0e(�!2) + !2No(�!2)N 0o(�!2)) + (�+ �)(Do(�!2)N 0e(�!2)�De(�!2)N 0o(�!2)) +De(�!2)N 0e(�!2) + !2Do(�!2)N 0o(�!2)] (3.44)Here, q(!;K; �) depends on two parameters; namely, K and �. Therefore, it has to beassumed that one of the parameters K or � is known. Otherwise, it will be di�cult toapply the generalized Hermite-Biehler theorem. For example, say that K is known thenthe range of � values over which sweeping needs to be done can be found by using the rootlocus. Thus, for every �xed K sweeping over the values of � or for every �xed � sweepingover the values of K and using the Hermite-Biehler theorem, all the stabilizing values of(K;�; �) can be calculated.c) Let the controller be C3(s) then the characteristic equation of the system is�(s;Kp;Ki;Kd) = 1 + C3(s)G(s) = 0 = [�De(s2) + s2(Do(s2 +KdNe(s2) + (2Kd�+Kp)No(s2)) + (�(Kd�+Kp) +Ki)Ne(s2)] + s[De(s2) + �Do(s2) + (2Kd�+Kp)Ne(s2) + (�(Kd�+Kp) +Ki)No(s2) + s2KdNo(s2)] (3.45)multiplying Eq.(3.45) with N�(s) and substituting s = j!�(j!;Kp;Ki;Kd)N�(j!)=p(!;Kp;Ki;Kd) + jq(!;Kp;Kd)=[�De(�!2)N 0e(�!2)+!2(De(�!2)N 0o(�!2) + �Do(�!2)N 0o(�!2)�Do(�!2)N 0o(�!2)) +Kd(�!2Ne(�!2)N 0e(�!2)� !4No(�!2)N 0o(�!2)) + (�(Kd�+Kp) +Ki)(Ne(�!2)N 0e(�!2) + !2No(�!2)N 0o(�!2))] + j![De(�!2)N 0e(�!2) + !2Do(�!2)N 0o(�!2) + �(Do(�!2)N 0e(�!2)�De(�!2)N 0o(�!2)) + (2Kd�+Kp)(Ne(�!2)N 0e(�!2) + !2No(�!2)N 0o(�!2))] (3.46)
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It is seen that similar to C2(s) the q(!;Kp;Kd) depends on the parameters Kp and Kd.For a �xed value of Kp or Kd, sweeping over values of the non�xed parameter all thestabilizing values of (Kp;Ki;Kd), if there are any, can be determined.Example 3.3Consider a PID controller and a plant asC(s) = Kds2 +Kps+Kis and G(s) = N(s)D(s) = s+ 1s3 + s2 + s+ 1 (3.47)The objective is to �nd the parameters of the given controller for relative stabilization.At �rst, assume that � = 0. Then, the characteristic equation is�(s;Kp;Ki;Kp) = s4 + (1 +Kd)s3 + (1 +Kp +Kd)s2 + (1 +Kp +Ki)s+Ki (3.48)From eq.(3.15) N�(s) = 1� s (3.49)multiplying the characteristic equation with N�(j!), one gets�(j!;Kp;Ki;Kd)N�(j!) = p(!;Kp;Ki;Kd) + jq(!;Kp) =[�Kd!4 � (Kd �Ki)!2 +Ki] + j![�!4 +Kp!2 +Kp + 1] (3.50)It can be seen that for every �xed Kp, the zeros of q(!;Kp) do not depend on Ki andKd. Thus, by sweeping over all real Kp values, one can determine the set of all stabilizing(Kp;Ki;Kd) values. The range of Kp values over which the sweeping needs to be donecan be reduced using the root locus. Since the signature of N�(s) is equal to �1 and theorder of �(s;Kp;Ki;Kd) is equal to 4, from Eq.(3.19) �(s;Kp;Ki;Kd) is Hurwitz stable ifand only if the signature of �(s;Kp;Ki;Kd)N�(s) is equal to 3. Since q(!;Kp) has oneroot at the origin, in order to make the signature of �(s;Kp;Ki;Kd)N�(s) equal to 3, fromtheorem 3.2 qs(!;Kp) = q(!;Kp)! = �!4 +Kp!2 +Kp + 1 (3.51)
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must have at least one positive real root. Using the root locus, the distribution of thepositive real roots of qs(!;Kp) was calculated asKp2(�1;1) : 1 positive real rootKp2(�1;�1) : no positive real rootThus, the only possible interval of Kp for stabilization is Kp2(�1;1). For example, forKp = 182(�1;1), from theorem 3.2, for stability the following inequality must hold0 < Ki < 19Kd (3.52)From this inequality it can be seen that for all Kd2(0;1) there are stabilizing values forKi. Taking an upper value for Kd such as Kd2(0; 100], the set of all stabilizing values of(Ki;Kd) was computed and is shown in Figure 3.4.Now, for the same Kp = 18, let us �nd all the stabilizing values of Kd and Ki for� = �0:3. Substituting s� 0:3 instead of s, one getsbC(s) = C(s� 0:3) = Kds2 + (18� 0:6Kd)s+ 0:09Kd +Ki � 5:4s� 0:3 (3.53)and bG(s) = G(s� 0:3) = s+ 0:7s3 + 0:1s2 + 0:67s+ 0:763 (3.54)The characteristic equation is�(j!;Kd;Ki) = 1 + bC(j!) bG(j!) = 0 = p(!;Kd;Ki) + jq(!;Kd;Ki) =!4 � (18:64 + 0:1Kd)!2 + 0:063Kd + 0:7Ki � 4:0089+j!(�(Kd � 0:2)!2 + (7:762 � 0:33Kd +Ki)!) (3.55)Multiplying �(j!;Kd;Ki) of Eq.(3.55) with N�(j!) = 0:7� j!, it becomes�(j!;Kd;Ki)N�(j!) = p(!;Kd;Ki) + jq(!;Kd) =((0:9 �Kd)!4 � (5:328 + 0:4Kd �Ki)!2 + 0:0441Kd + 0:49Ki � 2:80613)+j!(�!4 � (�18:78 + 0:6Kd)!2 + 9:4129 � 0:294Kd) (3.56)45



It can be seen that for Hurwitz stability of Eq.(3.56), the signature of Eq.(3.56) must beequal to 3. This implies thatqs(!;Kd) = q(!;Kd)! = �!4 � (�18:78 + 0:6Kd)!2 + 9:4129 � 0:294Kd (3.57)must have at least one positive real root. It was found thatKd2(�1; 32) : 1 positive real rootKp2(32;1) : no positive real rootSo, the only possible interval for stability isKd2(�1; 32). Sweeping over Kd values withinthis interval all stabilizing values of Kd and Ki which put the poles of the characteristicequation to the left of � = �0:3 were computed and sketched in Figure 3.5. Figure 3.6shows the stabilizing values for di�erent � values.
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Figure 3.4: All the stabilizing values of (Kd;Ki) for Kp = 18 and � = 0
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Figure 3.5: All the stabilizing values of (Kd;Ki) for � = �0:3 and Kp = 18Example 3.4Consider a PID controller and a plant asC(s) = Kp + Kis � 0:3s and G(s) = 1s+ 5(1� 0:5s1 + 0:5s ) (3.58)where G(s) is a simple Pade approximation for a plant with transfer function e�s=(s+5).It is required to �nd all the values of (Kp;Ki) which put the poles of the characteristicequation of the system to the left of the line s = �1 + j!. Substituting s � 1 instead ofs, one getsbC(s)=C(s� 1)=�0:3s2 + (Kp + 0:6)s � 0:3�Kp +Kis� 1 and bG(s)= �0:5s+ 1:50:5s2 + 2:5s+ 2(3.59)The characteristic equation is�(j!;Kp;Ki) = 1 + bC(j!) bG(j!) = p(!;Kp;Ki) + jq(!;Kp;Ki) =(1:25 � 2:5Kp)!2 � 2:45�1:5Kp+1:5Ki+j!(�0:65!2 + 0:55 + 2Kp � 0:5Ki) (3.60)
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Figure 3.6: All the stabilizing values of (Kd;Ki) for � = 0;�0:1;�0:2;�0:3 and Kp = 18Multiplying �(j!;Kp;Ki) with N�(j!) = 3 + j!, it becomes�(j!;Kp;Ki)N�(j!)=p(!;Kp;Ki)+jq(!;Kp) =0:65!4�(4:3 + 0:5Kp � 0:5Ki)!2�7:35�4:5Kp+4:5Ki+j!(�(3:2�0:5Kp)!2� 0:8 + 4:5Kp)(3.61)From qs(!;Kp) = q(!;Kp)! = �(3:2� 0:5Kp)!2 � 0:8 + 4:5Kp (3.62)It can be easily seen that for Kp2(0:1778; 6:4) there is one positive real root of qs(!;Kp).Thus, sweeping over the values of Kp and using results given in previous sections, all thevalues of Kp and Ki for which Eq.(3.60) is Hurwitz stable were computed and sketched inFigure 3.7.
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Figure 3.7: All the stabilizing values of (Kp;Ki) for Kd = �0:33.5 Interval plant stabilizationThere are some important results in the literature about stabilization of interval systems.For example, in [65], it was shown that a constant gain controller stabilizes an intervalplant family if and only if it stabilizes a set of eight of the extreme plants. In [76], itwas shown that a �rst order controller stabilizes an interval plant if it stabilizes the setof extreme plants. The best results regarding this subject were given in [16, 26] whereit was proved that a �rst order controller stabilizes an interval plant if and only if itsimultaneously stabilizes the sixteen Kharitonov plant family which was introduced inChapter 2. In this section, instead of using Routh tables, which were used in [16] in orderto characterize all the parameters of a �rst order controller which stabilize an intervalplant, the Hermite-Biehler theorem is used to �nd all the values of the parameters of a�rst order controller for which the given interval plant is Hurwitz stable.De�ne the set S(C(s)G(s)) which contains all the values of the parameters of thecontroller C(s) which stabilize G(s), then the set of all the stabilizing values of parameters
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of a �rst order controller which stabilize the interval plant of Eq.(2.27) can be written asS(C(s)G(s;q; r)) = S(C(s)GK(s)) = S(C(s)G11(s))\S(C(s)G12(s))\::::::\S(C(s)G44(s))(3.63)where GK(s) represents the sixteen Kharitonov plant family which is given in Chapter 2via Eq.(2.30). Now, let the controller beC(s) = K (3.64)By using the even and odd parts of the numerator and the denominator polynomials, thesixteen Kharitonov plant family can be written asGK(s) = Gij(s) = Nie(s2) + sNio(s2)Dje(s2) + sDjo(s2) where i; j = 1; 2; 3; 4 (3.65)For the constant gain controller of Eq.(3.64), the characteristic equation of the system is�ij(s;K) = [KNie(s2) +Dje(s2)] + s[KNio(s2) +Djo(s2)] (3.66)For s = j!, multiplying the characteristic equation with N�i (s) gives�ij(j!;K)N�i (j!) = pij(!;K) + jqij(!) = [N 0ie(�!2)(KNie(�!2) +Dje(�!2))+!2N 0io(�!2)(KNio(�!2) +Djo(�!2))] + j![N 0ie(�!2)Djo(�!2)�N 0io(�!2)Dje(�!2)](3.67)Now, let the degree of �ij(s;K) be n then �ij(s;K) is Hurwitz stable if and only if�(�ij(j!;K)) = n. Thus, the given interval system is Hurwitz stable if and only if�(�ij(s;K)N�i (s)) = n+ �(N�i (s)) = n� �(N 0i(s)) (3.68)is satis�ed for all i; j = 1; 2; 3; 4.From Eq.(3.67), for each Kharitonov plant, it is seen that using the positive real rootsof qij(!) and applying theorem 3.2 or lemma 3.1, all the stabilizing values of K can be cal-culated. Similarly, the related equations for PI and Lag=Lead controllers can be obtained.50



Example 3.5Consider the interval plant given in [16]G(s;q; r) = [54; 74]s + [90; 166]s4 + [2:8; 4:6]s3 + [50:4; 80:8]s2 + [30:1; 33:9]s + [�0:1; 0:1] (3.69)The objective is to calculate all the parameters of a PI controllerC(s) = Kp + Kis (3.70)which stabilize G(s;q; r). To �nd if stabilizing gains Kp and Ki exist, one possible ap-proach would be as follows: First, construct sixteen Routh tables (one for each Kharitonovplant with controller C(s) of Eq.(3.70)). Then, from the positivity requirement of the �rstcolumn of these tables for stability, obtain sets of inequalities. Finally, compute the in-tersection of these sets of inequalities. For example, consider the �rst Kharitonov plant(i = 1 and j = 1). From Eq.(2.30), one of the Kharitonov plants isG(s) = G11(s) = 54s+ 90s4 + 4:6s3 + 80:8s2 + 30:1s� 0:1 (3.71)The characteristic equation is�11(s;Kp;Ki) = 1 + C(s)G11(s) = s5 + 4:6s4 + 80:8s3 + a1s2 + a2s+ a3 (3.72)where a1 = 30:1+ 54Kp; a2 = �0:1+ 90Kp+54Ki and a3 = 90Ki. In order to �nd all thestabilizing values of (Kp;Ki) by using the Routh table, one needs to solve the followinginequalities: 371:8 � a1 > 0 ; a3 > 0 ; a1(371:68 � a1)� 4:6(4:6a2 � a3) > 0a1(371:68 � a1)(4:6a2 � a3)� 4:6(4:6a2 � a3)2 � a3(371:68 � a1)2 > 0 (3.73)It is clear that solving these inequalities will not be very easy. Now, applying the Hermite
51



Biehler theorem, from Eq.(3.15),N�1 (s) = 90� 54s18 = 5� 3s (3.74)Multiplying �11(j!;Kp;Ki) with N�1 (j!), one gets�11(j!;Kp;Ki)N�1 (j!) = p11(!;Ki) + jq11(!;Kp) =3!6�219:4!4�(150:8�162Ki)!2+450Ki+j!(�8:8!4�(313:9�162Kp)!2�0:5+450Kp)Now, it is seen that q11(!;Kp) is dependent only on Kp. Since the signature of N�1 (j!)is equal to �1 and the order of �11(j!;Kp;Ki) is equal to 5, �11(j!;Kp;Ki) is Hurwitzstable if and only if the signature of �11(j!;Kp;Ki)N�1 (j!) is equal to 4. This implies thatq11(!;Kp) must have at least two positive real roots. Since q11(!;Kp) has one root at theorigin, qs(!;Kp) = q11(!;Kp)! = �8:8!4 � (313:9 � 162Kp)!2 � 0:5 + 450Kp (3.75)must have at least one positive real root. Using the root locus, the distribution of thepositive real roots of qs(!;Kp) was calculated as followsKp 2 (0:0011;1) : 1 positive real rootKp 2 (�1; 0:0011) : no real rootThus, the only possible region for stabilization is Kp 2 (0:0011;1). Using theorem 3.2,for stability the following inequalities must be satis�edp11(0;Ki) = 450Ki > 0; p11(!1;Ki) = 3!61 � 219:4!41 � (150:8 � 162Ki)!21 + 450Ki < 0where !1 is the positive real root of qs(!;Kp). Sweeping over the values of Kp and usingtheorem 3.2, the stabilizing values obtained of (Kp;Ki) for G11(s) are shown in Figure3.8. Figure 3.9 shows the stability regions of the sixteen Kharitonov plants where theintersection of these regions is shown by 'x'. From Eq.(3.63), the region 'x' was computedand sketched in Figure 3.10. 52
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Figure 3.8: All the stabilizing values of (Kp;Ki) for G11(s)
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Figure 3.10: All the stabilizing values of (Kp;Ki) for the interval plant3.6 ConclusionIn this chapter, an extension of a new approach which is based on the Hermite-Biehlertheorem to the Lag=Lead controller structure for stabilizing a given plant has been given.The approach was then further developed for PI, Lag=Lead and PID controllers forrelative stabilization. In addition, the stabilization of uncertain systems de�ned by aninterval plant structure was also discussed using the sixteen Kharitonov plant family.Since the method is analytical and does not involve solving inequalities which may benonlinear, it is superior to the existing results.
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Chapter 4
A SOFTWARE PACKAGEPROGRAM FOR ANALYSIS OFINTERVAL SYSTEMS
4.1 Introduction4.2 The Hermite-Biehler Theorem for Real and Complex Interval Polynomials4.3 Frequency Response of Interval Systems4.3.1 Minimum(Robust) Gain and Phase Margins and Nyquist Envelope4.3.2 Bode Envelope4.3.3 Gain Crossover, Phase Crossover and Bandwidth Frequencies of Interval Plants4.3.4 Nichols Envelope4.4 Maximum Allowable Perturbation Bounds of Parameters of a Linear System4.5 AISTK-A Software Package for the Analysis of Interval Systems4.6 Conclusion
4.1 IntroductionThe striking advances in microprocessor design and computer technology have changedthe approach to control system design in such a way that computationally demandingtechniques no longer present a problem to the control engineer. This fact is obviously oneof the main reasons why there have been many developments in the �eld of robust control55



since the 1980s. The power of computers enables the control engineer to try ideas easilyand rapidly with the aid of specialized computer software. One of the e�ective softwareprograms, which is widely used in control theory, is known as MATLAB.MATLAB, standing for MATrix LABoratory, is a high performance interactive soft-ware package program. It provides numerical analysis, matrix calculations and graphicalfacilities. MATLAB allows the user to solve numerical problems using some simple com-mands rather than writing a program in a language such as Fortran, Basic or C. MATLABalso has various toolboxes such as the control toolbox, H1 toolbox, �-toolbox, optimiza-tion toolbox and so on. Toolboxes are comprehensive collections of MATLAB functions(M-�les) that extend the MATLAB environment in order to solve particular classes ofproblems such as control problems. Probably the most important feature of MATLAB isits easy extensibility which allows one to create di�erent toolboxes.In this chapter, a software package program, called Analysis of Interval SystemsToolKit (AISTK), which has been developed in the MATLAB environment is described.MATLAB has two toolboxes within the context of robust control systems which are theH1 toolbox and the �-toolbox. These toolboxes use the well known H1 technique andthe structured singular value to address the robustness problem, therefore, they are nothelpful for control systems with parametric uncertainty. On the other hand, AISTK isa user friendly toolbox like the control kit and can be successfully used for analysis ofinterval systems. Although our intention in this chapter is to introduce AISTK, sometheoretical results such as a discussion of robust gain and phase margins and the Nyquistenvelope of an interval plant using the generalized Hermite-Biehler theorem for intervalpolynomials, formulation of gain crossover, phase crossover and bandwidth frequencies ofinterval plants etc. are also given.The chapter is organized as follows: In section 4.2, the generalized Hermite-Biehlertheorem for real and complex interval polynomials is given. Section 4.3 discusses thefrequency response of interval systems. In this section, using the generalized version of theHermite-Biehler theorem for interval polynomials, the robust gain and phase margins andthe outer boundary of the Nyquist envelope of an interval plant are discussed. The sectionalso gives procedures for computing the gain crossover, phase crossover and bandwidthfrequencies of an interval transfer function. The problem of �nding the maximum allowable56



perturbation bounds of parameters of a linear system while preserving stability is discussedin Section 4.4. The description of the software package program, AISTK, is given in Section4.5. Some concluding remarks are given in the �nal section.4.2 The Generalized Hermite-Biehler Theorem for Real andComplex Interval PolynomialsIn Chapter 3, the classical Hermite-Biehler theorem and its generalized form for controllerdesign were introduced. In this section, the generalized form of the Hermite-Biehler the-orem for real and complex interval polynomials is given.a) The Hermite-Biehler theorem for real interval polynomials [4]: Let the poly-nomial P (s;q) = q0 + q1s+ q2s2 + q3s3 + :::::::::::: + qnsn (4.1)be an nth order, real interval polynomial where the coe�cients vary as qi 2 [qi; qi]; i =0; 1; 2; :::; n. Substituting s = j! and � = !2, one getsP (�;q) = R(�) + j!Q(�) (4.2)where maxR(�) = q0 � q2�+ q4�2 � q6�3 + :::::::::::::::minR(�) = q0 � q2�+ q4�2 � q6�3 + :::::::::::::::maxQ(�) = q1 � q3�+ q5�2 � q7�3 + :::::::::::::::minQ(�) = q1 � q3�+ q5�2 � q7�3 + ::::::::::::::: (4.3)Let the roots of maxR(�) = 0 and minR(�) = 0 be !maxr1, !maxr2,...... and !minr1,!minr2,......, respectively. Similarly, let the roots of maxQ(�) = 0 and minQ(�) = 0 be!maxq1, !maxq2,...... and !minq1, !minq2,......, respectively. Then the stability of the in-terval polynomials P (s;q) can be stated as follows: The real interval polynomial P (s;q)of Eq.(4.1) is strictly robust Hurwitz if and only if the frequency bands [!minr1; !maxr1],57



[!minq1; !maxq1], [!minr2; !maxr2], [!minq2; !maxq2]...... are simple, real, positive, interlac-ing and do not overlap. A graphical illustration of this interlacing property is shown inFigure 4.1.
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Figure 4.1: Interlacing property of an interval polynomialb) The Hermite-Biehler theorem for complex interval polynomials [85]: Letthe polynomial of Eq.(4.1) be a complex interval polynomial withqi = ai + jbi; i = 0; 1; 2; ::::::::; n (4.4)where ai 2 [ai; ai]; bi 2 [bi; bi]; i = 0; 1; 2; :::::::; n (4.5)In this case, one can write P (s;q) asP (j!;q) = U(!) + jV (!) (4.6)By using the intervals of the parameters, the four extreme polynomials for ! � 0 can bede�ned as maxU+(!) = a0 � b1! � a2!2 + b3!3 + :::::::::::::::minU+(!) = a0 � b1! � a2!2 + b3!3 + :::::::::::::::maxV +(!) = b0 + a1! � b2!2 � a3!3 + :::::::::::::::58



minV +(!) = b0 + a1! � b2!2 � a3!3 + ::::::::::::::: (4.7)For the negative range of !, the four extreme polynomials are:maxU�(!) = a0 � b1! � a2!2 + b3!3 + :::::::::::::::minU�(!) = a0 � b1! � a2!2 + b3!3 + :::::::::::::::maxV �(!) = b0 + a1! � b2!2 � a3!3 + :::::::::::::::minV �(!) = b0 + a1! � b2!2 � a3!3 + ::::::::::::::: (4.8)Similar to the case of polynomials with real coe�cients, let the roots of maxU+(!) = 0and minU+(!) = 0 be !maxu+1, !maxu+2,...... and !minu+1, !minu+2,...... and theroots of maxV +(!) = 0 and minV +(!) = 0 be !maxv+1, !maxv+2,...... and !minv+1,!minv+2,......, respectively. The Hermite-Biehler theorem for this case is: The interval poly-nomial P (s;q) with complex coe�cients of Eqs.(4.4-4.5) is strictly robust Hurwitz if andonly if the frequency bands [!minu+1; !maxu+1], [!minv+1; !maxv+1], [!minu+2; !maxu+2],[!minv+2; !maxv+2]..... are simple, real, interlacing and do not overlap and repeat the sameprocess for the negative range of frequency.Example 4.1Consider the interval polynomialP (s;q) = [2; 3]s5 + [13; 15]s4 + [22; 30]s3 + [28; 32]s2 + [15; 20]s + [5; 8] (4.9)From Eq.(4.3) maxR(�) = 8� 28�+ 15�2; minR(�) = 5� 32�+ 13�2 (4.10)and maxQ(�) = 20� 22�+ 3�2; minQ(�) = 15� 30�+ 2�2 (4.11)The roots of maxR(�) are: 0:352, 1:515; the roots of minR(�) are: 0:168, 2:294; the rootsof maxQ(�) are: 1:063, 6:270 and the roots of minR(�) are: 0:518, 14:482. Thus, it can
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be seen that the following interlacing condition is satis�ed[0:168; 0:352] < [0:518; 1:063] < [1:515; 2:294] < [6:270; 14:482] (4.12)Therefore, one can conclude that the given real interval polynomial is Hurwitz stable.4.3 Frequency Response of Interval SystemsA frequency response of a physical system is an important fundamental subject in the �eldof control engineering. In classical control, there are graphical methods such as the Nyquistplot, Bode plot and Nichols chart for designing and analysing control systems. However,these methods were developed for a �xed nominal plant. So, in general, these methods arenot applicable to interval systems. In this case, it is necessary to calculate the frequencyresponse of the entire family of the system in order to carry out analysis and design. Somerecent work in this direction can be found in [10, 11, 12, 22, 23, 24, 62, 83, 75, 87].In this section, the procedures for constructing various envelopes that contain theentire frequency responses of an interval system are discussed.4.3.1 Minimum(Robust) Gain and Phase Margins and Nyquist Enve-lopeAs mentioned in Chapter 2, the subject of robust stability of control systems with pa-rameter variations has been a focus of attention of researchers in recent years. However,beyond stability, it is important to guarantee some measure of robust performance forsystems with parameter variations. In classical control theory, phase and gain marginsare two important frequency domain performance measures widely used for controller de-sign. For systems with a nominal transfer function these margins are computed from theNyquist or Bode plots of the open loop transfer function. However, in the case of systemswith parametric uncertainties, the computation of the gain and phase margins becomesmuch more complex. To overcome this complexity or di�culty, one needs to compute thefrequency response of uncertain systems, such as the Nyquist or Bode envelopes, or toconvert the problem to one of robust stability of uncertain polynomials.The robust gain and phase margins of interval systems have been treated in Argoun60



and Bayoumi [5] and Hollot and Tempo [75]. In [5], the generalized Hermite-Biehlertheorem for real and complex interval polynomials is used for computing robust gain andphase margins. In [75], it was shown that the outer boundary of the Nyquist envelope ofa stable interval plant is covered by the Nyquist plots of the sixteen Kharitonov plantsfamily. Here, the same problem is dealt with by using the generalized Hermite-Biehlertheorem.Consider the con�guration shown in Figure 4.2 whereGc = Kce�j� (4.13)is the frequency-independent gain-phase compensator. Thus, the closed loop characteristicequation of the system can be written as1 +Kce�j�G(s) = 0 (4.14)For � = 0, the value of Kc for which the Eq.(4.14) just becomes unstable gives the gainmargin. And for Kc = 1, the value of � for which the Eq.(4.14) just becomes unstablegives the phase margin of the system.Let the plant in Figure 4.2 be a stable nth order all pole interval system (for simplicityan all pole interval system is considered). In this case, the characteristic equation of theunity feedback system is�(s) = 1 +Kce�j�G(s;q2Q) = 0 = 1 +Kce�j� Ksn + qn�1sn�1 + :::::::: + q0 (4.15)Setting Kc = 1, one gets�(s) = sn + qn�1sn�1 + qn�2sn�2 + :::::::::: + q0 +K(cos(�) � jsin(�)) (4.16)where qi 2 [qi; qi]; i = 0; 1; 2; ::::::; n � 1. Substituting s = j!,�(j!) = U(!)+jV (!) = q0+Kcos(�)�q2!2+q4!4�::::::+j(�Ksin(�)+q1!�q3!3+::::::)(4.17)
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Thus, the four extreme polynomials for ! � 0 aremaxU+(!) = q0 +Kcos(�)� q2!2 + q4!4 � q66 + :::::::::::::::minU+(!) = q0 +Kcos(�)� q2!2 + q4!4 � q6!6 + :::::::::::::maxV +(!) = �Ksin(�) + q1! � q3!3 + q5!5 � q7!7 + ::::::::minV +(!) = �Ksin(�) + q1! � q3!3 + q5!5 � q7!7 + :::::::: (4.18)and for the negative range of !, the four extreme polynomials aremaxU�(!) = q0 +Kcos(�)� q2!2 + q4!4 � q66 + :::::::::::::::minU�(!) = q0 +Kcos(�)� q2!2 + q4!4 � q6!6 + :::::::::::::maxV �(!) = �Ksin(�) + q1! � q3!3 + q5!5 � q7!7 + ::::::::minV �(!) = �Ksin(�) + q1! � q3!3 + q5!5 � q7!7 + :::::::: (4.19)From the Eqs.(4.18-4.19), it can be seen that maxU+(!) = maxU�(!), minU+(!) =minU�(!), maxV +(!) = minV �(!) and minV +(!) = maxV �(!). Therefore, one needsto consider only four equations, namely those for ! � 0 or ! < 0. Incrementing � andcomputing the roots of these equations, there will be four possibilities to get the robustphase margin. These four possibilities are:1. From the maxU+(!) and the maxV +(!). The related parameter set isS1 := fq0; q1; q2; q3; q4; q5; q6; ::::::::g2. From the maxU+(!) and the minV +(!). The related parameter set isS2 := fq0; q1; q2; q3; q4; q5; q6; ::::::::g3. From the minU+(!) and the maxV +(!). The related parameter set isS3 := fq0; q1; q2; q3; q4; q5; q6; ::::::::g4. From the minU+(!) and the minV +(!). The related parameter set is62



S4 := fq0; q1; q2; q3; q4; q5; q6; ::::::::gThe four Kharitonov plants areG1(s) = Ksn + :::::::: + q4s4 + q3s3 + q2s2 + q1s+ q0G2(s) = Ksn + :::::::: + q4s4 + q3s3 + q2s2 + q1s+ q0G3(s) = Ksn + :::::::: + q4s4 + q3s3 + q2s2 + q1s+ q0G4(s) = Ksn + :::::::: + q4s4 + q3s3 + q2s2 + q1s+ q0 (4.20)It is clear that the parameters in the sets (S1,S2,S3 and S4) belong to the Kharitonovplants. Thus, one can conclude that the robust phase margin of a stable nth order allpole interval system is achieved at one of the Kharitonov plants. The calculation of theminimum gain margin is similar to the calculation of the minimum phase margin with �set equal to zero in Eq.(4.14).By making some modi�cation in Figure 4.2, it can be shown that the outer boundaryof the Nyquist envelope of a stable nth order all pole interval system comes from theNyquist plots of the Kharitonov plants of this system. If one multiplies the given intervalplant with a complex gain and then apply the procedure which is used for computing thegain and phase margins, it can be proved that a point on the outer portion of the Nyquistenvelope belongs to a Kharitonov plant as follows:Consider a point on the outer portion of the Nyquist envelope of a stable nth order allpole interval system as z = x+ jy and arg[z] = tan�1(yx) (4.21)this point can be written as x2 + y2 = r2 (4.22)which represents a circle with radius r and centred at the origin. Now, replace thefrequency-independent gain-phase compensator (Gc = Kce�j�) with Gc = 1re�j�. Then,63



the characteristic equation of the unity feedback system which is shown in Figure 4.2becomes�(s) = 1 + 1r e�j�G(s;q) = 1 + 1r e�j� Ksn + qn�1sn�1 + ::::::::: + q0 = 0 (4.23)or �(s) = rsn + rqn�1sn�1 + rqn�2sn�2 + :::::::: + rq0 +Kcos(�)� jKsin(�) (4.24)Substituting s = j!,�(j!) = U(!) + jV (!) =rq0 +Kcos(�)� rq2!2 + rq4!4 � :::::: + j(�Ksin(�) + rq1! � rq3!3 + ::::::) (4.25)Thus, the four extreme polynomials for ! � 0 aremaxU+(!) = rq0 +Kcos(�)� rq2!2 + rq4!4 � rq66 + :::::::::::::::minU+(!) = rq0 +Kcos(�)� rq2!2 + rq4!4 � rq6!6 + :::::::::::::maxV +(!) = �Ksin(�) + rq1! � rq3!3 + rq5!5 � rq7!7 + ::::::::minV +(!) = �Ksin(�) + rq1! � rq3!3 + rq5!5 � rq7!7 + ::::::::: (4.26)If one increases � and calculates the roots of these equations, from the generalized Hermite-Biehler theorem for real and complex interval polynomials it can be observed that the strictrobust stability conditions for interval polynomials will be violated at the point z = x+jywhich belongs to a Kharitonov plant. Therefore, one can say that the outer Nyquist en-velope of a stable nth order all pole interval system is covered by the Nyquist plots of theKharitonov plants.Example 4.2Consider an interval system asG(s;q; r) = 1:5s4 + [1:8; 2:2]s3 + [3:6; 4:4]s2 + [3:6; 4:4]s + [0:9; 1:1] (4.27)
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Figure 4.2: A unity feedback systemwhich has the following Kharitonov plantsG1(s) = 1:5s4 + 2:2s3 + 4:4s2 + 3:6s+ 0:9G2(s) = 1:5s4 + 1:8s3 + 4:4s2 + 4:4s+ 0:9G3(s) = 1:5s4 + 2:2s3 + 3:6s2 + 3:6s+ 1:1G4(s) = 1:5s4 + 1:8s3 + 3:6s2 + 4:4s+ 1:1 (4.28)The minimum gain margin is 1:15 and is achieved at G4(s). The minimum phase marginis 86:77 and is achieved at G1(s). The Nyquist plots of the Kharitonov plants and theouter boundary of the Nyquist envelope are shown in Figures 4.3 and 4.4.4.3.2 Bode envelopeThe magnitude and phase extremums of the interval plant of Eq.(2.27) can be found asa) For s = j!�, the maximum and the minimum magnitudes of G(j!�;q; r) occur onone of the Kharitonov or on an edge plant (by edge plant we mean a plant which belongsto the thirty-two systems of Eq.(2.34)).b) The maximum and the minimum phases of G(s;q; r) at s = j!� are always gener-ated by Kharitonov plants.The maximum and minimum magnitudes of Eq.(2.27) at s = j!� can be written asmaxjG(j!�;q; r)j = maxjN(j!�; r)jminjD(j!�;q)j (4.29)
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Figure 4.4: Outer boundary of the Nyquist envelopeclear that the maximum and minimum arguments of N(j!�; r) and D(j!�;q) are achievedat the corners of the value sets which correspond to the Kharitonov polynomials of thenumerator and the denominator.Thus, as a result, one can say that the boundary of the Bode envelope can be calculatedfrom the Kharitonov or edge plants and the boundary of the phase envelope can be foundfrom the phases of the Kharitonov plants.4.3.3 Gain Crossover, Phase Crossover and Bandwidth Frequencies ofInterval SystemsSeveral frequencies such as gain crossover, phase crossover and bandwidth frequencies areused in control systems in order to calculate the gain and phase margins and to characterizethe speed of response of the system. The gain and phase crossover frequencies (!cg and !cp)are de�ned as the frequencies at which the magnitude of the system is equal to unity (0db)and the phase angle is equal to �180o, respectively. Two important frequency-domainmeasures, gain and phase margins which are used as design criteria, are calculated at these67
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Figure 4.5: Value sets of N(s; r) and D(s;q) at s = j!�frequencies. Also, the bandwidth frequency, !b, is the frequency at which the magnitudeof the complementary sensitivity function of the system is equal to 0:707 (�3db). Thebandwidth frequency of the system indicates how fast or how well the system will trackan input signal.In general, �xed systems except conditionally stable systems and some higher-ordersystems with complicated numerator have one gain crossover and one phase crossoverfrequency. Therefore, the calculation of these frequencies for a �xed system is straight-forward. However, for interval systems, there are many gain crossover, phase crossoverand bandwidth frequencies due to the uncertain parameters. So, it is of value to �nd thebounds of these frequencies for uncertain systems. These bounds may o�er a convenientmeans for designing interval control systems. With this motivation, the gain and the phasecrossover and the bandwidth frequencies of the interval plant of Eq.(2.27) are formulatedas follows:
68



1) The relationship of the gain crossover frequencies of G(s;q; r) can be written asmin!cg � !cg1 � !cg2 � :::::::::: � max!cg (4.33)where min!cg and max!cg are achieved at the Kharitonov or edge plants.From Figure 4.6, the intersection points of the magnitude envelope of G(s;q; r) withthe 0db line give the gain crossover frequencies. Since both sides of the magnitude envelopeof G(s;q; r) comes from Kharitonov and edge plants, one can say that the min!cg andthe max!cg belong to one of the Kharitonov or edge plants.Remark 4.1: If the portion of the phase envelope between min!cg and the max!cgis approximately linear and decreasing, the max!cg occurs on the Kharitonov plant whichgives the robust phase margin (pmmin).2) The range of phase crossover frequencies of G(s;q; r) ismin!cp � !cp1 � !cp2 � :::::::::: � max!cp (4.34)where min!cp and max!cp are achieved at the Kharitonov plants.From Figure 4.6, since both sides of the phase envelope of G(s;q; r) come fromKharitonov plants, the min!cp and the max!cp belong to the Kharitonov plants andthe other phase crossover frequencies must lie between min!cp and max!cp.Remark 4.2: If the portion of the magnitude envelope of G(s;q; r) between minwcpandmaxwcp is approximately linear and decreasing then the Kharitonov plant which givesthe robust gain margin (gmmin) has min!cp.3) The relationship of the bandwidth frequencies of G(s;q; r) can be written asmin!b � !b1 � !b2 � :::::::::: � max!b (4.35)where min!b and max!b are achieved at the Kharitonov or edge plants.In order to prove this result, it is necessary to consider the complementary sensitivityfunction of the system. The complementary sensitivity function ofG(s;q; r) can be written
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as T (s;q; r) = G(s;q; r)1 +G(s;q; r) (4.36)It is known that the magnitude envelope of G(s;q; r) is bounded by Kharitonov and edgeplants. Now, the question is \can one say that the magnitude envelope of T (s;q; r) iscovered by Kharitonov and edge plants of G(s;q; r)?". For s = j!�, the value set ofG(s;q; r) is covered by Kharitonov and edge plants. If one shifts the value set of G(s;q; r)along the horizontal(real) axis by 1, the value set of 1+G(j!�;q; r) is obtained. Therefore,minjT (j!�;q; r)j = minjG(j!�;q; r)j1 +maxjG(j!�;q; r)j (4.37)and maxjT (j!�;q; r)j = maxjG(j!�;q; r)j1 +minjG(j!�;q; r)j (4.38)Thus, one can say that the magnitude envelope of T (s;q; r) is bounded by the magnitudeenvelope of the complementary sensitivity functions of the Kharitonov and edge plants ofG(s;q; r).Now, from the magnitude envelope of T (s;q; r), if one draws a line which is paral-lel to the frequency axis at �3db, the line will intersect the magnitude envelope of thecomplementary sensitivity functions. From the intersection points, one can calculate thebandwidth frequencies. From Figure 4.7, since the magnitude envelope of T (s;q; r) isbounded by Kharitonov and edge plants of the system, then the minimum and the maxi-mum bandwidth frequencies (min!b and max!b) of the system occur on the Kharitonovand the edge plants.4.3.4 Nichols EnvelopeThe boundary of a Nyquist template of an interval transfer function (by a Nyquist templatewe mean the value set of G(s;q; r) at s = j!�) is contained in the boundary of Nyquisttemplate of its thirty-two systems. Thus, the Nichols envelope of an interval plant can beconstructed by using the thirty-two systems. The Nichols envelope can also be generatedapproximately from the magnitude and phase envelopes of the family.As a concluding remark, the Nyquist, Nichols and Bode envelopes of interval systemscan be computed using the thirty-two systems of the interval plant family.70
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Figure 4.6: Magnitude and phase envelopes of an interval plant4.4 Maximum Allowable Perturbation Bounds of Parame-ters of a Linear SystemOne of the main problems in robustness of linear systems is to �nd the maximum allowableperturbation bounds of parameters of a linear system while preserving stability. Theinterest in this area has greatly increased since the publication of the Kharitonov theorem.Although the stability of an interval system can be checked by Kharitonov's test, there isno direct indication as to what extent the bounds of parameters can be increased beforethe system becomes unstable. Following the Kharitonov theorem, this problem has beentreated in [14, 136, 120, 40]. In this section, the method of [14] is used in order to preparean algorithm for computing the maximum allowable perturbation.Consider a linear unity feedback system with the nominal transfer function asG(s) = N(s)D(s) = bmsm + bm�1sm�1 + :::+ b0ansn + an�1sn�1 + :::+ a0 ; n � m (4.39)71
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Eq.(4.43),(assuming n =m+ 1), one gets�1(s) = qnsn + (qn�1 + rn�1)sn�1 + (qn�2 + rn�2)sn�2 + (qn�3 + rn�3)sn�3 + :::::�2(s) = qnsn + (qn�1 + rn�1)sn�1 + (qn�2 + rn�2)sn�2 + (qn�3 + rn�3)sn�3 + :::::�3(s) = qnsn + (qn�1 + rn�1)sn�1 + (qn�2 + rn�2)sn�2 + (qn�3 + rn�3)sn�3 + :::::�4(s) = qnsn + (qn�1 + rn�1)sn�1 + (qn�2 + rn�2)sn�2 + (qn�3 + rn�3)sn�3 + :::::(4.44)Thus, for any � > 0, if all these four Kharitonov polynomials of the perturbed systemare Hurwitz stable then stability of the perturbed system is guaranteed. If the maximumperturbations of �1(s), �2(s), �3(s) and �4(s) are respectively �1, �2, �3 and �4, then from�max = minf�1; �2; �3; �4g (4.45)the maximum allowable perturbation can be determined.Example 4.3Let the feedforward transfer function of a unity feedback system beG(s) = b2s2 + b1s+ b0s3 + a2s2 + a1s+ a0 = 4s2 + 6s+ 2s3 + 5s2 + 2s+ 6 (4.46)This nominal system is Hurwitz stable. Now, the question is \how much can one per-turb the parameters (b0; b1; b2; a0; a1; a2) while preserving stability?". The output of thealgorithm for maximum perturbation is�max = 2:438Thus, for this perturbation value, the following interval systemG(s;q; r) = [1:562; 6:438]s2 + [3:562; 8:438]s + [�0:4384; 4:438]s3 + [2:562; 7:438]s2 + [�0:4384; 4:438]s + [3:562; 8:438] (4.47)is Hurwitz stable.
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4.5 AISTK-A Software Package for the Analysis of IntervalSystemsMATLAB with its large collection of fast and e�cient functions and various toolboxes,such as the control systems toolbox, provides an ideal interactive environment for linearcontrol system analysis and design. Its graphical user interface (GUI) allows a user tobuild up user friendly toolboxes. A graphical user interface is a user interface made up ofgraphical objects such as buttons, menus, �gures and so on. A GUI provides an interfacebetween an application and a user. When the user chooses an object from the GUI, itis expected that a certain kind of action will take place. In addition a great majority ofthe control community are familiar with MATLAB and its toolboxes. These reasons havebeen chosen for the development of the Analysis of Interval Systems ToolKit (AISTK) inMATLAB.AISTK is a user friendly MATLAB based software package. It deals with analysis ofuncertain systems de�ned by an interval plant structure. Various functions (M-�les) havebeen developed in the MATLAB environment using the theory given in Chapter 2 and inthis chapter. The objective in developing AISTK was to gather these functions under atoolkit and make them easily usable by students and other users.When AISTK is run the window of Figure 4.8 appears on the screen where G(s;q; r)is an interval plant and C(s) and H(s) are �xed controllers. Double clicking on G(s;q; r),C(s) or H(s) opens up a window in which the user can enter the parameters of an intervalplant and controllers in MATLAB form. There are four pull down menus namely File,Model, Analysis and Plot. The File menu allows for clearing the workspace and quittingfrom the program. The controller type and model to be analysed can be selected fromthe menu Model. The Analysis menu has many submenus which are shown in Figure 4.9.Brie
y, the features provided in the program enable the user to| enter data through a very friendly graphical user interface (GUI);| �nd the Kharitonov plants of G(s;q; r). From the Analysis menu, clicking on the\Kharitonov Plant" button opens up the window of Figure 4.10 in which the user can seethe number of Kharitonov plants and the parameters of any selected Kharitonov plant canbe displayed by using \Show Parameters" button;
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Example 4.4Consider an interval plant asG(s;q; r) = [2; 3]s + [1; 2]s3 + [3; 6]s2 + [2; 3]s + [1; 2] (4.48)and the controller as C(s) = s+ 34s+ 7 (4.49)The robust gain margin is in�nity and the phase margin is equal to 85:39� which is achievedat C(s)G(s)2C(s)G(s;q; r) = (2s2+8s+6)=(4s4+31s3+50s2+18s+7). Figures 4.12 and4.13 show the Nyquist and Nichols templates. The value set of the characteristic equationat ! = 1rad=sec is shown in Figures 4.14. Figures 4.15 and 4.16 show random Bode plotsand the boundary of the Bode envelopes.
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Example 4.5In this example, the Astrom-Hagglund controller tuning method [7] is used in order to�nd the parameters of a PID controller which gives a desired minimum phase margin foran interval plant family. The Astrom-Hagglund controller tuning method is based on theidea that a point on the Nyquist plot of a given transfer function can be moved to anarbitrary point in the complex plane by choosing suitable controller parameters. Such anappropriate point for tuning is the intersection of the Nyquist curve with the negative realaxis which is traditionally described as the critical point. However, for an interval plantthere are many Nyquist curves which cross the negative real axis or for a �xed frequencythere are many points in the Nyquist plane. Therefore, it is necessary to �nd the worstcase transfer function.Consider an interval transfer function asG(s;q; r) = 1[0:002; 0:072]s4 + [0:335; 0:405]s3 + [1:295; 1:365]s2 + [1:965; 2:035]s + [0:965; 1:035] (4.50)The aim is to �nd the parameters of the PID controller of the form ofC(s) = Kp(1 + sTd + 1sTi ) (4.51)for which the phase margin of the system is at least 'm = 45�.From the toolbox, it was computed that the bound of phase crossover frequencies ofG(s;q; r) is !cp = [2:20; 2:46] (4.52)The minimum gain margin of the system is equal to 3:55 at the frequency ! = 2:20 =min!cp. Using this frequency and the gain at this frequency, the following PID controllerwas designed using the Astrom-Hagglund methodC(s) = 3:012s2 + 5:5s+ 2:512:193s (4.53)The minimum phase margin of the overall system is 45:22�. Figure 4.17 shows the closedloop step responses of GK(s) (Kharitonov plant family) and Figure 4.18 shows the closed80
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the Nyquist plots of the Kharitonov plants has been given. The bounds of phase crossover,gain crossover and bandwidth frequencies of an interval plant has been formulated. Anapplication of the Astrom-Hagglund controller design method to an interval plant has beengiven via an example.
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Chapter 5
FREQUENCY RESPONSE OFSYSTEMS WITH AFFINELINEAR UNCERTAINTY
5.1 Introduction5.2 Construction of 2q-Convex Parpolygon5.3 Magnitude and Phase Extremums of Polynomials with A�ne Linear Uncertainty5.3.1 Magnitude and Phase Extremums of P (s;q)5.3.2 Magnitude and Phase Extremums of �(s)P (s;q)5.4 Bode, Nyquist and Nichols Envelopes5.5 Robust Gain and Phase Margins5.6 Controller Synthesis Technique5.7 Conclusion
5.1 IntroductionAs mentioned in Chapter 4, several papers, motivated by the results obtained in theparametric area, have studied the computation of the frequency response of control systemsunder parametric uncertainty. It is also necessary to mention that a large part of theliterature in the �eld of robust parametric control has been devoted to the robust stabilityanalysis paradigm, rather than the robust performance paradigm. This is not because the84



robust performance problems of systems with parametric uncertainty have been solved,but simply because the research has had little success in this �eld so far. The paper byKeel and Bhattacharyya [87] addresses robust versions of the powerful graphical tools suchas the Nyquist plot, Bode plot, and the Nichols chart for uncertain systems de�ned byan interval plant structure, where the numerator and denominator polynomial coe�cientschange independently, and then the problem of controller design using extensions of aclassical approach. However, in practical feedback system analysis and design problemsthe coe�cients of the plant transfer function do not necessarily vary independently.In this chapter, the numerator and the denominator polynomials of the transfer func-tion of a given system are assumed to be a polynomial family of the formP (s;q) = a0(q) + a1(q)s+ ::::::::: + an(q)sn (5.1)whose coe�cients ai(q) depend linearly on q = [q1; q2; ::::; qq ]T and the uncertainty box isQ = fq : qi2[qi; qi]; i = 1; 2; ::::; qg (5.2)where qi and qi are speci�ed lower and upper bounds of the ith perturbation qi, respec-tively. In other words, the system's transfer function is assumed to beG(s;q; r) = N(s; r)D(s;q) = b0(r) + b1(r)s+ ::::: + bm(r)sma0(q) + a1(q)s+ :::::+ an(q)sn (5.3)where q = [q1; q2; ::::::; qq ]T2Q and r = [r1; r2; ::::::; rr ]T2R.Using the method given in [116], where a simpli�cation algorithm was given for testingthe stability of a polytopic polynomial family of the form of Eq.(5.1) by constructing its2q-convex parpolygons (for each s = j!, the 2q-convex parpolygon is de�ned as the outeredges of the image of the exposed edges ((2q�1)q edges) of the Q-box), the amplitude andphase extremums of Eq.(5.1) at s = j!� (!�2[0;1)) are obtained. The amplitude andphase extremums of P (s;q) multiplied with a �xed polynomial, �(s), are also discussed.Once the edges of a 2q-convex parpolygon are identi�ed then the maximum magnitudeand phase extremums of P (s;q) at s = j!� can be calculated from the vertices of the2q-convex parpolygon. For the minimum magnitude, instead of sweeping over the edges
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of the 2q-convex parpolygon, an exact equation is derived. Then, the procedures forconstructing the Bode, Nyquist and Nichols envelopes of a control system de�ned byEq.(5.3) are presented. Finally, using these envelopes, a controller design strategy is given.The distinguishing feature of the results given in this chapter is the e�cient procedureintroduced for constructing the 2q-convex parpolygon of P (s;q). Thus, the approachpresented in this chapter allows one to eliminate some exposed edges of N(s; r) andD(s;q)which are not useful for constructing the Bode, Nyquist and Nichols envelopes.The most closely related work to that of this chapter is that given in [25] and also[10, 62, 22, 23]. The boundary results for Eq.(5.3) given in [25] are based on using allthe exposed edges of N(s; r) and D(s;q). In [10], the transfer function of the system wasassumed similar to Eq.(5.3) and an angle sweeping technique was proposed in order to com-pute the Nichols template boundary. In [62, 22], it was assumed that the coe�cients of thenumerator and the denominator polynomials of Eq.(5.3) were correlated with each otherand it was shown that the Nyquist envelope was contained in the set obtained by mappingthe exposed edges of the uncertainty box in the complex plane. Some improvements of theresults of [62] and [22] were given in [23] for computing the Bode and Nyquist envelopesof uncertain systems. Since a more general uncertainty structure has been considered in[62, 22, 23], the results of [62, 22, 23] are to date the best known results. However, theexponential growth of the edges with respect to the number of uncertain parameters canlead to serious computational di�culties. On the other hand, as is stated above, a novelfeature of the approach given in this chapter is the use of the 2q-convex parpolygonalvalue set. Therefore, if the given plant has the structure of Eq.(5.3) then the results ofthis chapter can be more helpful than existing results for computing the Bode, Nyquistand Nichols envelopes.The outline of the chapter is as follows: In Section 5.2 the construction of the 2q-convexparpolygon is given. The magnitude and phase extremums of Eq.(5.1) are obtained inSection 5.3 and the construction of the Bode, Nyquist and Nichols envelopes of a controlsystem with an uncertain transfer function of the form of Eq.(5.3) are discussed in Section5.4. Section 5.5 deals with the computation of the robust gain and phase margins ofG(s;q; r). In Section 5.6, examples are given to illustrate the bene�ts of the methodpresented. Section 5.7 gives concluding remarks.86



5.2 Construction of 2q-Convex ParpolygonIn Chapter 2, it was stated that the corresponding polytope of a family of polynomials ofEq.(5.1) in the coe�cient space has 2q vertices and (2q�1)q exposed edges [13] and it canbe rewritten asP (s;q) = f0(s) + f1(s)q1 + f2(s)q2 + f3(s)q3 + ::::+ fq(s)qq; q2Q (5.4)The 2q vertex polynomials of the polytope of P (s;q) can be written in the followingpattern c1(s;q) = f0(s) + f1(s)q1 + f2(s)q2 + f3(s)q3 + :::+ fq(s)qqc2(s;q) = f0(s) + f1(s)q1 + f2(s)q2 + f3(s)q3 + :::+ fq(s)qqc3(s;q) = f0(s) + f1(s)q1 + f2(s)q2 + f3(s)q3 + :::+ fq(s)qq� � � (5.5)� � �c2q (s;q) = f0(s) + f1(s)q1 + f2(s)q2 + f3(s)q3 + :::+ fq(s)qqThe value set of Eq.(5.1) can be obtained by mapping the (2q�1)q exposed edges in thecomplex plane for each s = j! and the outer edges of the value set de�ne a 2q-convexparpolygon. The (2q�1)q edges in the complex plane can be divided into q groups whereeach group has the same number of edges (2q�1 edges) [116]. All edges in group i(i = 1; 2; :::; q) are parallel to each other with the same slope. Thus, knowing one edgefrom each group is su�cient to construct the 2q-convex parpolygon. For example, lete(ci; cj) denote the edge with end points ci and cj and for clarity of presentation considerFigure 5.1a which is the image of the exposed edges of a polytope with q = 3 parameters.It can be easily shown that the edges e(c1; c2), e(c3; c4), e(c5; c6) and e(c7; c8) are parallel toeach other as shown in Figure 5.1a. Two of them which have the maximum and minimumintersections with the imaginary axis identify two edges of a 2q-convex parpolygon asshown in Figure 5.1. Similarly, the other edges needed for construction of the 2q-convexparpolygon can be identi�ed. If there are vertical edges which have no intersection with theimaginary axis, in this case from the maximum and the minimum intersections with the87
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real axis, the two required edges can be found. A general formula [116] for the intersectionpoint of the edge line with the imaginary axis isyi = !Ei qXk=1(OkEi �OiEk)(qk � qk); k 6=i (5.6)and with the real axis isxi = 1Oi qXk=1(OiEk �OkEi)(qk � qk); k 6=i (5.7)where i = 1; 2; ::::::; q, qk takes either qk or qk depending on which edge it is associatedwith and Ei and Oi are the even and odd parts of fi(s). Further information about thevalue set of the uncertain polynomials and the construction of the 2q-convex parpolygoncan be found in [13] and [116].For di�erent values of frequency, the edges of a 2q-convex parpolygon may be di�erent.The following theorem is given in order to divide the frequency axis, !2[0;1), into a �nitenumber of intervals where in each interval the edges of the 2q-convex parpolygon remainthe same.Theorem 5.1: The positive real roots ofRe[fi]Im[fj]�Re[fj ]Im[fi] = 0; i; j = 1; 2; :::; q; i6=j (5.8)divide the frequency axis into �nite intervals where in each interval the 2q edges of the(2q�1)q exposed edges which constitute the outer boundary of the convex parpolygonremain unchanged. The frequencies where the outer edges of the convex parpolygon maychange will be referred to as transition frequencies.Proof: It is clear that when the frequency changes, the value of fi(j!); i = 0; 1; 2; :::; qchanges and this may lead to a change of the speci�c subset of (2q�1)q edges whichconstitute the 2q-convex parpolygon. The transition frequency, where the image of anedge of a Q-box changes from the boundary into the interior and vice versa, occurs whenthe phases of two of fi(j!); i = 1; 2; :::; q are equal to each other [1]. Thus, at a transitionfrequency arg[fi(j!)] = arg[fj(j!)]; i; j = 1; 2; :::; q and i6=j (5.9)89



or tan�1(Im[fi]Re[fi] ) = tan�1(Im[fj]Re[fj ] ); i; j = 1; 2; :::; q and i6=j (5.10)From Eq.(5.10), the following equationRe[fi]Im[fj]�Re[fj]Im[fi] = 0 (5.11)is obtained. 2Remark 5.1: This theorem is not new. Indeed, a similar result is given in [116]. However,the proof given here is based on the condition which may lead to the change of the edgesof the 2q-convex parpolygon explained in the book by Ackermann [1, pp. 137]. Therefore,it may be considered as an alternative proof.Example 5.1Consider P (s;q) = q5s4 + q4s3 + (q2 + q3)s2 + (q1 + 0:5q2 + q3)s+ q1 (5.12)Q = fq : q12[0:965; 1:035]; q22[0:59; 0:73]; q32[0:5; 0:65]; q42[0:33; 0:41]; q52[0:02; 0:072]g(5.13)From theorem 5.1 it was computed that there was no transition frequency for P (s;q) ofEq.(5.12). Thus, one single value of frequency within !2(0;1) is su�cient to identify theedges of the 2q-convex parpolygons of P (s;q). For example, writing Eq.(5.6) for i = 1y1 = ![(0:5 + !2)(q2 � q2) + (1 + !2)(q3 � q3)� !4(q4 � q4)� !4(q5 � q5)] (5.14)and from this equation the maximum value of y1 occurs for any value of !2(0;1) whenq2 = q2, q3 = q3, q4 = q4, q5 = q5 and the minimum occurs for q2 = q2, q3 = q3,q4 = q4, q5 = q5. So, the edges e(c7; c8) and e(c25; c26), (here, c7, c8, c25, ::: are thevertex polynomials of the polytope of P (s;q) which constitute the edges of a 2q-convexparpolygon and they can be obtained by using Eq.(5.5)), are the two outer edges of theconvex parpolygon. Similarly, the other edges, e(c22; c24), e(c9; c11), e(c18; c22), e(c11; c15),e(c18; c26), e(c7; c15), e(c8; c24) and e(c9; c25), are found to constitute the boundary of the2q-convex parpolygons of P (s;q). Thus for all !2(0;1), the set of the vertex polynomials90



is SPV = f0:02s4 + 0:33s3 + 1:38s2 + 1:98s+ 0:965; 0:02s4 + 0:33s3 + 1:38s2 + 2:05s+ 1:035;0:072s4 + 0:33s3 + 1:38s2 + 2:05s+ 1:035; 0:072s4 + 0:33s3 + 1:24s2 + 1:98s+ 1:035;0:072s4 + 0:33s3 + 1:09s2 + 1:83s+ 1:035; 0:072s4 + 0:41s3 + 1:09s2 + 1:83s+ 1:035;0:072s4 + 0:41s3 + 1:09s2 + 1:76s+ 0:965; 0:02s4 + 0:41s3 + 1:09s2 + 1:76s+ 0:965;0:02s4 + 0:41s3 + 1:23s2 + 1:83s+ 0:965; 0:02s4 + 0:41s3 + 1:38s2 + 1:98s+ 0:965g (5.15)and the set of edge polynomials isSPE = f0:02s4 + 0:33s3 + 1:38s2 + (1:98 + 0:07�)s + (0:965 + 0:07�);(0:02 + 0:052�)s4 + 0:33s3 + 1:38s2 + 2:05s+ 1:035;0:072s4 + 0:33s3 + (1:24 + 0:14�)s2 + (1:98 + 0:07�)s + 1:035;0:072s4 + 0:33s3 + (1:09 + 0:15�)s2 + (1:83 + 0:15�)s + 1:035;0:072s4 + (0:33 + 0:08�)s3 + 1:09s2 + 1:83s+ 1:035;0:072s4 + 0:41s3 + 1:09s2 + (1:76 + 0:07�)s + (0:965 + 0:07�);(0:02 + 0:052�)s4 + 0:41s3 + 1:09s2 + 1:76s+ 0:965;0:02s4 + 0:41s3 + (1:09 + 0:14�)s2 + (1:76 + 0:07�)s + 0:965;0:02s4 + 0:41s3 + (1:23 + 0:15�)s2 + (1:83 + 0:15�)s + 0:965;0:02s4 + (0:33 + 0:08�)s3 + 1:38s2 + 1:98s + 0:965g (5.16)Since the polynomial of Eq.(5.12) has q = 5 uncertain parameters, the value set at eachfrequency is contained in the image of 2q = 10 edges, which are given by Eq.(5.16).Using these edge polynomials, the value set of P (s;q) can be constructed. The 2q-convexparpolygons of P (s;q) for !2[0; 3] are shown in Figure 5.25.3 Magnitude and Phase Extremums of P (s;q) and �(s)P (s;q)In this section, the magnitude and phase extremums of an uncertain polynomial family,P (s;q) of Eq.(5.1), at s = j!� are �rst investigated. Then, the magnitude and phaseextremums of P (s;q) multiplied by a �xed polynomial, �(s), are obtained. These results91
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Figure 5.2: 2q-convex parpolygons for the polynomial of Eq.(5.12)will be used in the next section in order to develop the robust versions of the frequency-domain analysis and design tools such as the Nyquist, Bode and Nichols envelopes for thetransfer function of Eq.(5.3).5.3.1 Magnitude and Phase Extremums of P (s;q)Let the 2q vertices of the 2q-convex parpolygon of P (s;q) at s = j!� be vp1, vp2, vp3, ::::,vp2q (see Figure 5.1b). Then,Theorem 5.2: The maximum magnitude of P (s;q) at s = j!� ismaxjP (j!�;q)j = max(jvp1j; jvp2j; jvp3j; :::; jvp2q j) (5.17)and the phase extremums of P (j!�;q) areminarg[P (j!�;q)] = min(arg[vp1]; arg[vp2]; arg[vp3]; :::::; arg[vp2q ])maxarg[P (j!�;q)] = max(arg[vp1]; arg[vp2]; arg[vp3]; :::::; arg[vp2q ]) (5.18)
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Proof: The proof of this theorem follows in a straightforward manner from the geometricstructure of the value set of P (s;q) at s = j!�. Since the value set of P (j!�;q) iscontained in a 2q-convex parpolygon, the maximum distance from the origin to the pointwhich belongs to the parpolygon edges is achieved at a corner of the 2q-convex parpolygonand the phase extremums will be on the vertices of the 2q-convex parpolygon (see Figure5.1b). 2To �nd the minimum magnitude, the following theorem is given,Theorem 5.3: De�ne jvpij = min(jvp1j; jvp2j; jvp3j; :::; jvp2q j) (5.19)where i = 1; 2; 3; ::::::; 2q. Considering Figure 5.3a let e(vpi; vpx) and e(vpi; vpy) be twoedges of the 2q-convex parpolygon which have the common vertex vpi. Let �pi, �px and�py be the angles of vpi, vpx and vpy respectively. Draw the lines l1 and l2 which passthrough the points (vpx; vpi) and (vpy; vpi). Let �h1 and �h2 be the angles of the linesh1 and h2 which are drawn from the origin and are perpendicular to the lines l1 and l2,respectively. Assume also that the 2q-convex parpolygon does not include the origin (ifthe value set includes the origin for s = j!� then the minimum magnitude is equal tozero). Then, minjP (j!�;q)j = 8>>>><>>>>: jvpij if �h1 62(�pi; �px)&�h2 62(�py; �pi)�12�1 if �h12(�pi; �px)�22�2 if �h22(�py; �pi) (5.20)where �1 = [(2jvpij�1)2 � (jvpij2 � jvpxj2 + �21)2]1=2�2 = [(2jvpij�2)2 � (jvpij2 � jvpyj2 + �22)2]1=2�1 = [(Re[vpx]�Re[vpi])2 + (Im[vpx]� Im[vpi])2]1=2�2 = [(Re[vpy]�Re[vpi])2 + (Im[vpy]� Im[vpi])2]1=2 (5.21)Proof: First of all, the minimum magnitude of P (s;q) at s = j!� should be achieved
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at the edges of a 2q-convex parpolygon. If jvpij = min(jvp1j; jvp2j; ::::::; jvp2q j) at s = j!�,geometrically the minjP (j!�;q)j must be on the edge e(vpi; vpy) or e(vpi; vpx). From the�gure, it is seen that �h2 62(�py; �pi) so it is not possible that the edge, e(vpi; vpy), has apoint whose magnitude is smaller than jvpij. However, since �h12(�i; �x), it is possiblethat the edge, e(vpi; vpx), has a point whose magnitude is less than jvpij and it can becalculated as �1 = [(Re[vpx]�Re[vpi])2 + (Im[vpx]� Im[vpi])2]1=2 (5.22)jvpxj2 � (�1 � �)2 = jvpij2 � �2 (5.23)From Eqs.(5.22-5.23)minjP (j!�;q)j = h1 = [jvpij2 � �2]1=2 = �12�1 =[(2jvpij�1)2 � (jvpij2 � jvpxj2 + �21)2]1=22[(Re[vpx]�Re[vpi])2 + (Im[vpx]� Im[vpi])2]1=2 2 (5.24)The application of this theorem, however, may give some di�culties, since for each fre-quency, one needs to �nd the lines l1, l2, h1 and h2 and the phases �pi, �px, �py, �h1and �h2. Therefore, an equivalent result which is easily applied is given by the followinglemma.Lemma 5.1: De�ne the segmentss1 = (1� �)vpi + �vpx; s2 = (1� �)vpi + �vpy (5.25)where �2[0; 1]. Take a value for �, say ��, which is very close to zero such as 0 < ���10�6and write k1 = (1� ��)vpi + ��vpx; k2 = (1� ��)vpi + ��vpy (5.26)Then, the minimum magnitude of P (s;q) at s = j!� isminjP (j!�;q)j = 8>>>><>>>>: jvpij if jvpij < jk1j&jvpij < jk2j�12�1 if jk1j < jvpij�22�2 if jk2j < jvpij (5.27)
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where �1, �2, �1 and �2 are given in Eq.(5.21) and jvpij is de�ned by Eq.(5.19).Proof: The proof of this lemma is similar to the proof of theorem 5.3. Here, insteadof using the lines l1 and l2 and corresponding perpendicular lines h1 and h2, we cancalculate the minimum magnitude of P (j!�;q) by choosing the points k1 and k2 on theedges e(vpi; vpx) and e(vpi; vpy) and checking the magnitude of these points. Of course, thepoints k1 and k2 must be very close to the point vpi. In other words, we have to assumethat , it is not possible to draw a perpendicular line to the edge e(vpi; k1) or e(vpi; k2) whichpasses through the origin. Therefore, by taking the value of �� very close to zero, thisassumption can be ful�lled. From Figure 5.3b, since jk1j < jvpij, the minimum magnitudeis minjP (j!�;q)j = h = [jvpij2 � �2]1=2 = �12�1Likewise, when jk2j < jvpij, the related equation for the minimum magnitude can be de-rived. 2Remark 5.2: For s = j!�, if jvpxj = jvpij = min(jvp1j; jvp2j; ::::; jvp2q j) where i; x =1; 2; :::; 2q and i 6= x, in this case, the minimum magnitude of P (j!�;q) will be on theedge e(vpx; vpi) and its value isminjP (j!�;q)j = �12�1 = [(2jvpij)2 � �21]1=22 (5.28)
5.3.2 Magnitude and Phase Extremums of �(s)P (s;q)The magnitude and phase extremums of an uncertain polynomial P (s;q) multiplied witha �xed polynomial �(s) = �0 + �1s + :::: + �nsn at s = j!� are given by the followingtheorem:Theorem 5.4: The magnitude and phase extremums of �(s)P (s;q) at s = j!� areminj�(j!�)P (j!�;q)j = j�(j!�)jminjP (j!�;q)jmaxj�(j!�)P (j!�;q)j = j�(j!�)jmaxjP (j!�;q)j (5.29)
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minarg[�(j!�)P (j!�;q)] = arg[�(j!�)] +minarg[P (j!�;q)]maxarg[�(j!�)P (j!�;q)] = arg[�(j!�)] +maxarg[P (j!�;q)] (5.30)Proof: For s = j!�, �(s) can be written as�(j!�) =M(!�)ej�(!�) (5.31)whereM(!�) = (Re[�(j!�)]2+Im[�(j!�)]2)1=2 and �(!�) = tan�1[Im(�(j!�))=Re(�(j!�))].Thus, geometrically, the e�ect of multiplying P (j!�;q) by �(j!�) = M(!�)ej�(!�) is torotate and scale the value set of P (s;q) at s = j!�, but not to distort its shape. There-fore, the value set of �(j!�)P (j!�;q) is still a 2q-convex parpolygon. So, from the resultsobtained in Section 5.3.1, the magnitude and phase extremums of �(s)P (s;q) can becomputed using Eqs.(5.29-5.30). 25.4 Bode, Nyquist and Nichols EnvelopesIn this section, the construction of the Bode, Nyquist and Nichols envelopes of a givenuncertain transfer function of the form of Eq.(5.3) is discussed. Throughout this section,it is assumed that 062D(s;q). If this assumption fails to hold one can exclude the values ofthe frequencies which violate the assumption. Now, consider the transfer function givenin Eq.(5.3) and let vn1, vn2, vn3, :::, vn2r and vd1, vd2, vd3, :::, vd2q be the vertices of the 2rand 2q-convex parpolygons of N(s; r) and D(s;q) at s = j!�. Then de�ne the sets SNVand SNE which contain the vertices and the edges of the 2r-convex parpolygon of N(s; r)at s = j!� as SNV = fvn1; vn2; :::::; vn2rg (5.32)SNE=fen1; en2; :::; en2rg=f(1��)vn1+�vn2; (1��)vn2+�vn3; :::; (1��)vn2r+�vn1g; �2[0; 1](5.33)similarly de�ne SDV and SDE for the denominator asSDV = fvd1; vd2; :::::; vd2qg (5.34)
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SDE = fed1; ed2; :::; ed2qg = f(1��)vd1+�vd2; (1��)vd2+�vd3; :::; (1��)vd2q+�vd1g; �2[0; 1](5.35)Then, the magnitude and phase extremums of G(s;q; r) at s = j!� can be found by thefollowing theoremTheorem 5.5: The magnitude extremums of G(s;q; r) at s = j!� aremaxjG(j!�;q; r)j = maxjN(j!�; r)jminjD(j!�;q)j = maxvni2SNV jvnijminedj2SDE jedj j (5.36)minjG(j!�;q; r)j = minjN(j!�; r)jmaxjD(j!�;q)j = mineni2SNE jenijmaxvdj2SDV jvdj j (5.37)and the phase extremums aremaxarg[G(j!�;q; r)] = maxarg[N(j!�; r)]�minarg[D(j!�;q)]= maxargvni2SNV [vni]�minargvdj2SDV [vdj ] (5.38)minarg[G(j!�;q; r)] = minarg[N(j!�; r)]�maxarg[D(j!�;q)]= minargvni2SNV [vni]�maxargvdj2SDV [vdj ] (5.39)where i = 1; 2; ::::; 2r and j = 1; 2; ::::; 2q.Proof: The proof of this theorem follows immediately from the results of the previoussection. Since at each frequency, the value sets of N(s; r) and D(s;q) are contained in2r and 2q-convex parpolygons, the magnitude and phase extremums of G(s;q; r) can befound from the magnitude and phase extremums of the 2r and 2q-convex parpolygons.2 For the computation of the Nyquist and Nichols envelopes of the transfer function ofEq.(5.3), it has been shown in [25, pp. 362-363] that @G(s;q; r)�GE(s) where @ denotesthe boundary and GE(s) = fG(s; �) : �2
Eg (5.40)where � = [q1; q2; ::::; qq ; r1; r2; ::::; rr ]T denotes the parameter vector and 
E denotes theexposed edges of the uncertainty polytope 
 = f� : qi2[qi; qi]; rj2[rj ; rj ]; i = 1; 2; :::; q; j =98



1; 2; :::; rg. However, it is clear that the uncertainty polytope, 
, has (2(q+r)�1)(q + r)exposed edges. By using the 2q-convex parpolygonal value set of a polynomial family ofEq.(5.1), the following theorem, which is not computationally expensive, is givenTheorem 5.6: At s = j!�,@G(j!�;q; r)�GE(j!�) = SNVSDE [SNESDV (5.41)where @ denotes the boundary and SNV , SNE , SDV and SDE are de�ned in Eqs.(5.32-5.35).Proof: Let A and B be the two complex plane polygons with vertex sets SAV and SBV ,and edge sets SAE and SBV , respectively. Then, from the complex plane geometry, thefollowing is known [25, pp. 335]: @(AB )�(SAVSBE [SAESBV ) (5.42)Since the value set of the numerator N(s; r) and the denominator D(s;q) of Eq.(5.3) ats = j!� are independent 2r and 2q-convex parpolygons, we can writeSAV = SNV ; SBV = SDV ; SAE = SNE ; SBE = SDEThus, @G(j!�;q; r)�SNVSDE [SNESDV = GE(j!�) 2 (5.43)A more generalized version of theorem 5.6 which will be essential for the computationof the robust gain and phase margins can be given under the assumption of no transitionfrequency (a discussion on this assumption can be found in Chapter 6). Assume thatneither N(s; r) nor D(s;q) has any transition frequency. This assumption guarantees thatthe identi�ed edges for a single frequency which constitute the 2r and 2q-convex parpoly-gons remain unchanged for all !2(0;1). Thus an extremal subset which characterizesthe boundary of the Nyquist envelope for all frequencies can be obtained. This is given asfollows:Theorem 5.7: Assume that neither N(s; r) nor D(s;q) has any transition frequency.Then, @G(j!;q; r)�GE(j!) = SNVSDE [SNESDV (5.44)99



where @ denotes the boundary and SNV , SNE , SDV and SDE are de�ned in Eqs.(5.32-5.35).The results of Section 5.2 enable one to identify the edges which constitute a 2q-convexparpolygon of a polynomial family of Eq.(5.1). Therefore, the advantage of the resultspresented is that it is not necessary to consider all the exposed edges and vertices of thecorresponding polytopes of the numerator and denominator polynomials. For example, inorder to �nd a Nyquist template of a transfer function of Eq.(5.3) with r = 4 and q = 5uncertain parameters then using known results one needs to �nd the image of 9(28) = 2304edges, however, from theorem 5.6, one needs to �nd the image of only 160 edges.The following procedure is given to compute the Bode, Nyquist and Nichols envelopesof G(s;q; r)1. Rewrite N(s; r) and D(s;q) in the form of Eq.(5.4).2. Solve Eq.(5.8) both for N(s; r) and D(s;q) and �nd the transition frequencies ofN(s; r) and D(s;q).3. Obtain the frequency intervals, within these intervals the edges of the 2r and2q-convex parpolygons of N(s; r) and D(s;q) remain unchanged, as(0; !n1); (!n1; !n2); :::; (!n�1;1) for N(s; r)(0; !d1); (!d1; !d2); :::; (!d�2;1) for D(s;q)where !n1 < !n2 < ::: < !n�1 and !d1 < !d2 < ::: < !d�2 are the transition frequencies ofN(s; r) and D(s;q), respectively.4. Choose an arbitrary value of frequency within each interval found in 3 and by usingEqs.(5.6-5.7), identify the 2r and 2q-convex parpolygons edges and obtain the vertex andedge sets (SNV , SNE , SDV and SDE) of the numerator and the denominator polynomialsfor each interval.5. For each s = j!, using the sets (SNV , SNE , SDV and SDE ) found in 4 and the resultsgiven in Section 5.3 and in this section, obtain the Bode, Nyquist and Nichols envelopes.Remark 5.3: The results of this section can be extended to a system with a �xed con-troller and a transfer function given by Eq.(5.3). From Section 5.3.2 it has been seen thatthe value set of an uncertain polynomial of the form of Eq.(5.1) multiplied with a �xed100



polynomial at s = j!� is still a 2q-convex parpolygon. Also, the procedures given abovecan be used for computing the frequency response of the more general uncertainty structuresuch as G(s;q2Q) = N(s;q)=D(s;q) (the numerator and the denominator coe�cients arecorrelated with each other) by de�ning new uncertainty boxes for the numerator and thedenominator polynomials. However, the result will be conservative.5.5 Robust Gain and Phase MarginsAs stated in Chapter 4, the gain and phase margins are two important frequency domainspeci�cations. This section deals with the calculation of the robust gain and phase marginsfor systems with an uncertain transfer function of the form of Eq.(5.3) using the theorypresented in the previous sections.Suppose that a closed loop system with an uncertain plant of the form of Eq.(5.3) isstable then the robust gain margin is the largest value of the gain K greater than 1 forwhich the stability of KG(s;q; r) is preserved and the robust phase margin is the largestvalue of phase � for which the uncertain system with e�j�G(s;q; r) is robustly stable.Thus, the worst case gain margin K� and phase margin �� can be stated asK� = infG(s)2G(s;q;r)KG; �� = infG(s)2G(s;q;r)�G (5.45)where KG stands for gain margin of G(s) and �G stands for phase margin of G(s).Using the following theorem, the values of K� and �� can be computed from theextremal system, GE(s) of Eq.(5.44).Theorem 5.8: Suppose a unity feedback system with G(s;q; r) is stable and assume thatneither N(s; r) nor D(s;q) has any transition frequency (if there is transition frequency,see Remark 5.4). Then, the robust gain and phase margins areK� = infG(s)2GE(s)KG; �� = infG(s)2GE(s)�G (5.46)where GE(s) = (SNV =SDE )[(SNE=SDV ) and SNV , SNE , SDV and SDE are de�ned inEqs.(5.32-5.35).Proof: Let A and B be the two complex plane polygons with vertex sets SAV and SBV ,101



and edge sets SAE and SBE , respectively. Then, from the complex plane geometry, thefollowing is known @(A+B)�(SAE + SBV )[(SAV + SBE ) (5.47)Now, for the calculation of the gain margin, one needs to �nd the maximum value of Kgreater than 1 for which �(s) = KN(s; r) +D(s;q) (5.48)is Hurwitz stable. From theorem 5.1, it is clear that if there is no transition frequencythen the identi�ed edges which constitute the 2r and 2q-convex parpolygons for a singlefrequency remain unchanged for all !2(0;1). The multiplication of a 2r-convex parpoly-gon with a �xed K is still a 2r-convex parpolygon. Thus, for a �xed value of K, one canwrite SAV = KSNV ; SBV = SDV ; SAE = KSNE ; SBE = SDEand from Eq.(5.48), the following equation can be written�(j!)��E(j!) = (KSNE + SDV )[(KSNV + SDE ) (5.49)Therefore, the stability of �E(s) implies the stability of �(s). For the phase margin calcu-lation, the gain K of Eq.(5.48) will be a complex gain such as K = e�j� = cos(�)�jsin(�)and the same proof will be valid. 2Remark 5.4: For clarity of presentation, theorem 5.8 is given for the no transition fre-quency case. If there is a transition frequency then the Nyquist envelope can be obtainedby using theorem 5.6. Thus, the result of theorem 5.8 can be reformulated for this case.However, the GE(s) of Eq.(5.44) may be di�erent for di�erent frequency intervals.5.6 Controller Synthesis TechniqueIn this section, using the tools (Bode, Nyquist and Nichols envelopes) developed in theprevious section, classical controller design methods are used to design robust controllersfor systems with a�ne linear uncertainty. Classical controller design techniques are ba-sically based on two approaches. One is the Root-locus approach and the other is the102



frequency-response approach. Here, the frequency-response approach is used in order todesign a controller which compensates a system of the form of Eq.(5.3). The design proce-dure is given by the following two examples. The �rst example deals with a Lead controllerdesign. The objective of the second example is to design a robust PI controller for a givenuncertain system.Example 5.2Consider a feedback system with an uncertain transfer functionG(s;q; r) = N(s; r)D(s;q) = r1q4s3 + (q2 + q3)s2 + (q1 + 0:5q2 + q3)s+ q1 (5.50)where R = fr = [r1] : r12[5; 7]g (5.51)Q = fq = [q1 q2 q3 q4]T : q12[0:05; 0:25]; q22[0:4; 0:5]; q32[0:5; 0:7]; q42[0:09; 0:11]g (5.52)The objective is to design a Lead controller of the formC(s) = Kc Ts+ 1�Ts+ 1 ; 0 < � < 1 (5.53)which guarantees that the system has a phase margin of at least ' = 45� and a gainmargin of not less than � = 12db. It is desired that the bandwidth of the closed loopsystem be equal to or greater than 0:5rad=sec.Since N(s; r) = r1, the sets SNV and SNE areSNV = f5; 7g and SNE = f5 + 2�g 8!2(0;1); �2[0; 1] (5.54)Using theorem 1 it was computed that there is no transition frequency for D(s;q). Thus,one single value of frequency within !2(0;1) is su�cient to identify the edges of the 2q-convex parpolygons of D(s;q). The edges, e(c7; c8), e(c9; c10), e(c6; c8), e(c9; c11), e(c2; c6),e(c11; c15), e(c2; c15) and e(c7; c15), were found to constitute the boundary of the 2q-convexparpolygons of D(s;q). Thus for all !2(0;1), the vertex and edge sets of D(s;q) areSDV = f0:09s3 + 0:9s2 + 0:95s + 0:25;103



0:09s3 + 1:1s2 + 1:15s+ 0:25;0:09s3 + 1:2s2 + 1:2s+ 0:25;0:09s3 + 1:2s2 + s+ 0:05;0:11s3 + 1:2s2 + s+ 0:05;0:11s3 + s2 + 0:8s+ 0:05;0:11s3 + 0:9s2 + 0:75s+ 0:05;0:11s3 + 0:9s2 + 0:95s+ 0:25g (5.55)and SDE = f0:09s3 + (0:9 + 0:2�)s2 + (0:95 + 0:2�)s+ 0:25;0:09s3 + (1:1 + 0:1�)s2 + (1:15 + 0:05�)s+ 0:25;0:09s3 + 1:2s2 + (1:2 � 0:2�)s+ 0:25 � 0:2�;(0:09 + 0:02�)s3 + 1:2s2 + s+ 0:05;0:11s3 + (1:2 � 0:2�)s2 + (1� 0:2�)s + 0:05;0:11s3 + (1� 0:1�)s2 + (0:8� 0:05�)s + 0:05;0:11s3 + 0:9s2 + (0:75 + 0:2�)s+ 0:05 + 0:2�;(0:11 � 0:02�)s3 + 0:9s2 + 0:95s+ 0:25g (5.56)Using the result given in [25], it can be seen that the extremal system, GE(s), has 80systems with one unknown parameter �2[0; 1]. On the other hand, from theorem 5.6, it isclear that there are 24 systems each of which has one unknown parameter namely �2[0; 1].So, the computational gain for this example is about 70%. Figure 5.4 shows the Nyquisttemplate of G(s;q; r) at ! = 2rad=sec by using the results of [25] and a Nyquist templateof G(s;q; r) at ! = 2rad=sec obtained by using the results developed in this paper isshown in Figure 5.5.From the magnitude and phase envelopes of G(s;q; r), which are shown in Figure 5.6,the gain margin of the uncompensated system is �1:21db and the phase margin is �2:5�.
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Figure 5.4: A Nyquist template at ! = 2rad=sec
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Figure 5.5: A Nyquist template at ! = 2rad=sec
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Thus, it is necessary to adjust the phase of the open loop transfer function by an amount�m = 45� � (�2:5�) = 47:5� (5.57)At ! = 2:64rad=sec:, the minimum phase of G(s;q; r) is about �180�. Therefore, we needa phase lead controller with a maximum phase value �m = 47:5� at !m = 2:64rad=sec.So, from � = 1� sin�m1 + sin�m and !m = 1Tp� (5.58)one obtains � = 0:15 and T = 0:97. However, a phase lead compensator will shift the gaincrossover frequency to a higher frequency where the phase is less than at the original gaincrossover frequency. Therefore, in order to bring the Bode envelope of (0:97s+1)=(0:146s+1)G(s;q; r) to 0db, at this frequency requires20log10Kc = �9:5db (5.59)giving Kc = 0:34. Thus, the Lead controllerC(s) = 0:34 0:97s+ 10:146s + 1 (5.60)is obtained.The phase and gain margins of the compensated system were computed to be 47:7� and13:5db, respectively. From the magnitude envelope of the closed loop transfer function ofthe compensated system, it was found that the bandwidth of every system in the family liesbetween 0:68rad=sec and 1:28rad=sec:. Therefore, the designed Lead controller satis�esthe design speci�cation robustly. The Bode, Nyquist and Nichols envelopes of the uncom-pensated and compensated systems are shown in Figures 5.6, 5.7 and 5.8, respectively.
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Figure 5.8: Nichols envelopes108



for !2(0;1) and the edges of the 2q-convex parpolygons of D(s;q) within !2(0; 1) and!2(1;1) are shown in Table 5.1.Edges of 2r-convex Edges of 2q-convex Edges of 2q-convexparpolygon for !2(0;1) parpolygon for !2(0; 1) parpolygon for !2(1;1)e(c4; c3) e(c5; c6) e(c1; c2)e(c5; c6) e(c11; c12) e(c15; c16)e(c6; c8) e(c6; c8) e(c1; c3)e(c1; c3) e(c9; c11) e(c14; c16)e(c4; c8) e(c9; c13) e(c10; c14)e(c1; c5) e(c4; c8) e(c3; c7)e(c5; c13) e(c2; c10)e(c4; c12) e(c7; c15)Table 5.1: Identi�ed edges which constitute the boundary of the 2r and 2q-convex par-polygonsNow �m = 45� + 5�(additional phase) = 50� (5.65)and from �m = 50� = 180� +minarg[G(j!1;q; r)] (5.66)the value of !1 is 0:01203rad=sec: and the maximum magnitude of G(s;q; r) at s = j!1is 77:8db. From �20log10Kp = maxjG(j!1;q; r)jdb = 77:8db (5.67)Kp = 1:29�10�4. If one chooses the corner frequency Ki=Kp to be one decade below !1then Ki = (!1=10)Kp = 1:55�10�7. Thus, the designed PI controller isC(s) = 1:29�10�4s+ 1:55�10�7s (5.68)It was computed that the phase margin of the compensated system is greater than 56:7�.Figures 5.9, 5.10 and 5.11 show the Bode, Nyquist and Nichols envelopes of the uncom-pensated and compensated systems.
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Figure 5.11: Nichols envelopes5.7 ConclusionA technique has been presented for plotting the frequency response of a transfer functionwith a�ne linear uncertainty structure. The technique is based on a 2q-convex parpolygo-nal value set. Several new results have been derived for construction of the Bode, Nyquist,and Nichols envelopes of control systems with uncertain parameters. These results havebeen used to design compensators that provide a guaranteed level of performance, in thesense of gain and phase margins, for systems with a�ne linear uncertainty.
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Chapter 6
ANALYSIS OF CONTROLSYSTEMS WITH MIXEDPERTURBATIONS
6.1 Introduction6.2 Assumption of No Transition Frequency6.3 Small Gain Theorem6.4 Robust Performance6.5 SPR (Strict Positive Realness) Conditions6.6 Absolute Stability Problems6.7 Conclusion
6.1 IntroductionThis chapter is an extension of the results contained in the previous chapter. It considerscontrol systems with parametric as well as unstructured uncertainty. It is known that inmost practical systems at least two types of uncertainties are present, namely unstructured(or nonparametric) uncertainty which represents unmodeled dynamics, nonlinearities etc.,and structured (or parametric) uncertainty, representing a lack of precise knowledge ofthe actual parameters. The robust stability analysis of a control system in the presence
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of unstructured uncertainty is an important and well-developed subject in control theory.The well-known absolute stability problem [134] which was formulated in the 1950s is animportant robustness problem regarding unstructured uncertainty. In this problem, a �xedlinear system is subjected to perturbations consisting of all possible nonlinear feedbackgains lying in a sector. A similar problem was studied in the 1980's by modelling theperturbations as H1 norm bounded perturbations of a �xed linear system. And in recentyears, as mentioned before, a substantial amount of research [13] concerning robustnessanalysis of control systems a�ected by real parametric uncertainty has been done.The aim of this chapter is to study the determination of the robust small gain theo-rem, robust performance, strict positive realness and absolute stability problem of controlsystems with parametric as well as unstructured uncertainty. Thus, the system underinvestigation contains a mixed type uncertainty structure. Parametric uncertainty ismodelled by a transfer function whose numerator and denominator polynomials are ofthe form of Eq.(5.1). The unstructured uncertainty is modelled as H1 norm boundedperturbations and perturbations consisting of a family of nonlinear sector bounded feed-back gains. These problems for systems with parametric uncertainty are studied in[37, 48, 38, 67, 129, 39, 46, 59, 107]. The main ideas of the approaches presented inthese references regarding these problems are based on the boundary results developedfor uncertain transfer functions by using the Kharitonov theorem [88], the generalizedKharitonov theorem [34] and the edge theorem [21]. The majority of these results dealtwith uncertain systems de�ned by an interval plant structure. On the other hand, in thischapter, it is assumed that the uncertain transfer function of the system is in the form ofEq.(5.3). Under the assumption of no transition frequency and using the boundary resultsdeveloped in Chapter 5, which are based on the 2q-convex parpolygonal value set of thepolynomial of the form of Eq.(5.1), the classical small gain theorem, robust performance,strict positive realness and the absolute stability problem of a control system with anuncertain transfer function of the form of Eq.(5.3) are formulated.The chapter is organized as follows: In Section 6.2 a discussion on the assumption of notransition frequency is given. In Section 6.3, the robust version of the small gain theoremis derived. The robust performance of a feedback system with parametric uncertaintyis discussed in Section 6.4. In Section 6.5, the strict positive realness conditions of the113



transfer function of Eq.(5.3) are investigated. The problem of robust absolute stabilityof systems with parametric uncertainty is discussed in Section 6.6. Section 6.7 givesconcluding remarks.6.2 Assumption of No Transition FrequencyIn this chapter, the results are presented under the assumption of no transition frequency.Therefore, theorem 5.7 is mainly used in order to prove the results. A polynomial of theform of Eq.(5.1) has no transition frequency, if Eq.(5.8) does not have any positive realroot. The assumption of no transition frequency does not mean that the results are nothelpful in the case of a transition frequency. The reason for making such an assumption isto allow results to be presented in a clear and closed form. Therefore, the results given inthe next sections can be reformulated for the case of a transition frequency. The followingexample is given to clarify the situation (assumption of no transition frequency).Example 6.1Consider G(s;q; r) = N(s; r)D(s;q) = r3s2 + (r1 + r2 + r3)s+ 2r1 + r2q4s3 + q2s2 + (q1 + q2 + q4)s+ q1 + q3 (6.1)where R = fr = [r1 r2 r3]T : r12[1; 3]; r22[4; 6]; r32[0:2; 2:8]g (6.2)Q = fq = [q1 q2 q3 q4]T : q12[1; 2]; q22[3; 5]; q32[0:25; 1:5]; q42[0:4; 1:4]g (6.3)From theorem 5.1 it was computed that there was no transition frequency for N(s; r).Thus, one single value of frequency within !2(0;1) is su�cient to identify the edges ofthe 2r-convex parpolygons of N(s; r). However, for D(s;q), it was found that there isone transition frequency at 1rad=sec. The edges of the 2r-convex parpolygons of N(s; r)for !2(0;1) and the edges of the 2q-convex parpolygons of D(s;q) within !2(0; 1) and!2(1;1) are shown in Table 6.1. For frequency response computation, the result givenin theorem 5.6 is always superior to the boundary results of [25, pp.362-363]. For thisexample, using the boundary result given in [25] it can be seen that the extremal system,GE(s), has 448 systems. On the other hand, the extremal system obtained by theorem114



Edges of 2r-convex Edges of 2q-convex Edges of 2q-convexparpolygon for !2(0;1) parpolygon for !2(0; 1) parpolygon for !2(1;1)e(c1; c2) e(c11; c12) e(c3; c4)e(c2; c4) e(c5; c6) e(c13; c14)e(c1; c5) e(c14; c16) e(c6; c8)e(c5; c7) e(c1; c3) e(c9; c11)e(c4; c8) e(c12; c16) e(c4; c8)e(c7; c8) e(c1; c5) e(c9; c13)e(c6; c14) e(c6; c14)e(c3; c11) e(c3; c11)Table 6.1: Identi�ed edges which constitute the boundary of the 2r and 2q-convex par-polygons5.6 contains 96 systems for each frequency. Therefore, the computational gain at eachfrequency is about 78:5%. However, for other control problems such as the computationof the maximum H1 norm of the family or calculation of robust gain and phase margins,the scenario is a little di�erent. For example, in order to compute the maximum H1 normof the system given in Eq.(6.1), one needs to consider two extremal systems namely GE1(s)and GE2(s) for !2(0; 1) and !2(1;1), respectively. Since there is no transition frequencyfor N(s; r), six exposed edges of N(s; r) are eliminated. For D(s;q), from Table 6.1, itcan be seen that the edges e(c6; c14) and e(c3; c11) remain unchanged for all frequencies.Thus, 36 systems of GE2(s) are similar to the 36 systems of GE1(s). So, it is necessary toconsider a total of 96 + 60 = 156 systems for calculating the maximum H1 norm of thefamily and the computational gain reduces to 65%.From this example, it is clear that extensions of the results of the present chapter to thetransfer function with transition frequency is obvious. There will always be a considerablecomputational reduction as long as the number of the total extremal systems is not equalto the extremal system given in [25].6.3 Small Gain TheoremThis is a very useful theorem in robust stability studies. The small gain theorem canbe posed in any normed algebra, and it gives conditions under which a system of inter-connected components is stable. Generally, the classical small gain theorem studies the115



G(s)

∆P

-

Figure 6.1: Closed loop system with H1 norm bounded perturbation
G(s,q,r)

∆P

-

Figure 6.2: Closed loop system with mixed perturbationsrobust stability of the closed-loop system of Figure 6.1 where G(s) is a stable linear time-invariant system which is perturbed via feedback by a stable transfer function �P withbounded H1 norm. It states that the con�guration of Figure 6.1 remains stable for allfeedback perturbations �P satisfying k�Pk1 < � if and only ifkGk1� 1� (6.4)In the following theorem this result is extended to the case where in addition to unstruc-tured feedback perturbations, the G(s) of Figure 6.1 is subject to parameter perturbationsde�ned by Eq.(5.3).Theorem 6.1 (small gain theorem for con�guration of Figure 6.2): Given an un-certain familyG(s;q; r) of stable proper plants with no transition frequency, the closed loopsystem of Figure 6.2 remains stable for all stable perturbations �P such that k�Pk1 < �if and only if �� 1maxG2GE(s)kGk1 (6.5)
116



where GE(s) is given by Eq.(5.44).Proof: The proof of this theorem comes from theorem 5.7. From theorem 5.7, for allfrequencies, since @G(j!;q; r)�GE(j!), the maximum H1 norm over the parameter setoccurs over the subset GE(s) of Eq.(5.44). 2Now, consider the control system block diagrams given in Figures 6.3 and 6.4 whereC(s) is a stabilizing controller for the entire family. In order to determine the amount of
G(s,q,r)

C(s)

P(s)∆

-

+

Figure 6.3: Closed loop system with additive perturbations
G(s,q,r)

C(s)

+
-

P(s)∆

Figure 6.4: Closed loop system with multiplicative perturbationsunstructured perturbations that can be tolerated by the additively perturbed uncertainsystem shown in Figure 6.3, one needs to �nd the maximum of the H1 norm of the closedloop transfer function C(s)(1 + C(s)G(s))�1 (6.6)over all elements G(s)2G(s;q; r). In the case of the multiplicative perturbations shown in117



Figure 6.4, it is necessary to �nd the maximum of the H1 norm of the closed loop transferfunction C(s)G(s)(1 +C(s)G(s))�1 (6.7)for all elements G(s)2G(s;q; r).The following theorem is given for computing the level of unstructured perturbationsthat can be tolerated in both the additive and multiplicative cases shown in Figures 6.3and 6.4, respectively.Theorem 6.2 (small gain theorem for Figures 6.3 and 6.4): Let G(s;q; r) ofFigures 6.3 and 6.4 be a proper family of plants with no transition frequency and C(s) bea stabilizing controller then the closed loop sytem in Figures 6.3 and 6.4 remains stablefor all stable perturbations �P satisfying k�Pk1 < � if and only if,�� 1supG(s)2GE(s)kC(s)(1 + C(s)G(s))�1k1 for figure 6:3 (6.8)and �� 1supG(s)2GE(s)kC(s)G(s)(1 + C(s)G(s))�1k1 for figure 6:4 (6.9)where GE(s) is de�ned by Eq.(5.44).Proof: Let the polynomial P (s;q) of Eq.(5.1) be multiplied with a �xed polynomial�(s) = �0 + �1s + :::: + �nsn. At s = j!�, the value set of P (j!�;q) is contained in a2q-convex parpolygon. For s = j!�, geometrically, the a�ect of multiplying P (j!�;q) by�(j!�) is to rotate and scale the value set of P (s;q) at s = j!�, but not to distort itsshape. Therefore, the value set of �(j!�)P (j!�;q) is still a 2q-convex parpolygon (seesection 5.3.2). Thus,@(C(j!)(1 + C(j!)G(j!;q; r))�1)�C(j!)(1 +GE(j!)C(j!))�1 (6.10)From this equationsupG(s)2G(s;q;r)jC(j!)(1 + C(j!)G(j!))�1j=supG(s)2GE(s)jC(j!)(1 +GE(j!)C(j!))�1j(6.11)
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Hence,supG(s)2G(s;q;r)kC(j!)(1+C(j!)G(j!))�1k1=supG(s)2GE(s)kC(j!)(1+GE(j!)C(j!))�1k1(6.12)Similarly, it can be shown that supG(s)2G(s;q;r)kC(j!)G(j!)(1 + C(j!)G(j!))�1k1 =supG(s)2GE(s)kC(j!)GE(j!)(1 +GE(j!)C(j!))�1k1 for Eq.(6.9). 2Example 6.2ConsiderG(s;q; r) = N(s; r)D(s;q) = r2s+ r1(q2 + q3)s3 + (q1 + q2 + q3)s2 + (q1 + q2)s+ q1 + q2 + q3 (6.13)where R = fr = [r1 r2]T : r12[1; 2]; r22[0:2; 0:8]g (6.14)Q = fq = [q1 q2 q3]T : q12[4; 5]; q22[0:5; 1:2]; q32[0:5; 0:8]g (6.15)Since N(s; r) is an interval polynomial, from the Kharitonov theorem the sets SNV andSNE 8!2(0;1) are SNV = f0:2s + 1; 0:2s+ 2; 0:8s+ 2; 0:8s+ 1g (6.16)and SNE = f0:2s + 1 + �; (0:2 + 0:6�)s+ 2; 0:8s+ 2� �; (0:8 � 0:6�)s+ 1g (6.17)where �2[0; 1]. Using theorem 5.1 it is easily shown that there is no transition frequencyfor D(s;q). Thus, one single value of frequency within !2(0;1) is su�cient to identifythe edges of the 2q-convex parpolygons of D(s;q). The edges, e(c1; c2), e(c2; c4), e(c5; c7),e(c4; c8), e(c1; c5) and e(c7; c8), are found to constitute the boundary of the 2q-convexparpolygons of D(s;q). Thus for all !2(0;1), from Eqs.(5.32-5.35) the vertex, SDV , andthe edge, SDE , sets of D(s;q) can be written asSDV = fs3 + 5s2 + 4:5s+ 5;119



s3 + 6s2 + 5:5s+ 6;1:7s3 + 6:7s2 + 6:2s+ 6:7;2s3 + 7s2 + 6:2s+ 7;2s3 + 6s2 + 5:2s+ 6;1:3s3 + 5:3s2 + 4:5s+ 5:3g (6.18)and SDE = fs3 + (5 + �)s2 + (4:5 + �)s+ 6 + �;(1 + 0:7�)s3 + (6 + 0:7�)s2 + (5:5 + 0:7�)s + 6 + 0:7�;(1:7 + 0:3�)s3 + (6:7 + 0:3�)s2 + 6:2s+ 6:7 + 0:3�;2s3 + (6 + �)s2 + (5:2 + �)s+ 6 + �;(1:3 + 0:7�)s3 + (5:3 + 0:7�)s2 + (4:5 + 0:7�)s+ 5:3 + 0:7�;(1 + 0:3�)s3 + (5 + 0:3�)s2 + 4:5s+ 5 + 0:3�g (6.19)Using these vertex and edge sets the maximum H1 norm of the family can be computedas 0:6782. Thus, from theorem 6.1, the entire family of systems remains stable under anyunstructured feedback perturbations of H1 norm less than� = 10:6782 = 1:47The Nyquist envelope of the extremal system, GE(s), of G(s;q; r) is shown in Figure 6.5.
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Figure 6.5: Nyquist envelope of G(s;q; r) and H1 stability margin6.4 Robust PerformanceThe error, output and control signal transfer functions from the input for the controlsystem block diagram shown in Figure 6.6 can be written asT e(s) = (1 + C(s)G(s;q; r))�1T y(s) = C(s)G(s;q; r)(1 + C(s)G(s;q; r))�1T u(s) = C(s)(1 +C(s)G(s;q; r))�1 (6.20)In the H1 approach to robust control problems, system performance is measured bythe size of the H1 norm of error, output and other transfer functions. The worst caseperformance of the transfer functions given in Eq.(6.20) can be determined by the followingtheoremTheorem 6.3 (robust performance): The maximum value of the H1 norms of T e(s),
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T y(s) and T u(s) are:supG(s)2G(s;q;r)k(1 + C(s)G(s))�1k1 = supG(s)2GE(s)k(1 +G(s)C(s))�1k1supG(s)2G(s;q;r)kC(s)G(s)(1 + C(s)G(s))�1k1 = supG(s)2GE(s)kC(s)G(s)(1 +G(s)C(s))�1k1supG(s)2G(s;q;r)kC(s)(1 + C(s)G(s))�1k1 = supG(s)2GE(s)kC(s)(1 +G(s)C(s))�1k1(6.21)Proof: The proof of this theorem is similar to the proof of theorem 6.1. Therefore, it isomitted.
e u yr

C(s) G(s,q,r)+
-Figure 6.6: A unity feedback system with parametric uncertainty6.5 SPR (Strict Positive Realness) ConditionsStrictly positive real transfer functions are of importance in control theory. Such transferfunctions are stable and their Nyquist diagrams are in the �rst and fourth quadrants ofthe complex plane. A de�nition of a strictly positive real transfer function is given asDe�nition 6.1 [1, pp. 211]: A proper transfer function, G(s) = N(s)=D(s), is calledstrictly positive real ifi) D(s) is Hurwitz andii) Re[G(j!)] > 0, 8!�0In other words, a transfer function is strictly positive real if it is stable and its Nyquistplot is completely contained in the right half complex plane. With this de�nition, one canproceed to investigate the SPR property of the transfer function of the form of Eq.(5.3)which is given by the following theoremTheorem 6.4: Assume that neither N(s; r) nor D(s;q) has any transition frequency.Let the vertex and edge sets of N(s; r) and D(s;q) be given by Eqs.(5.32-5.35). Then,G(s;q; r) is a strictly positive real transfer function family if122



a) SDE has at least one stable member and the 2q-convex parpolygons of D(s;q) donot include the origin for all frequencies.b) For all frequencies jargvni2SNV [vni]� argvdj2SDV [vdj ]j < �2 (6.22)where i = 1; 2; :::; 2r and j = 1; 2; :::; 2q.Proof:a) From de�nition 6.1, D(s;q) must be stable. The stability of D(s;q) can be checkedby using the zero exclusion principle and value set concept. The value set of D(s;q) ats = j!� is contained in a 2q-convex parpolygon. The assumption of no transition frequencyguarantees that the identi�ed edges for a single frequency which constitute the edges ofa 2q-convex parpolygon remain unchanged. Thus, from the zero exclusion principle, forstability of D(s;q), the edge set, SDE , of D(s;q) must be stable. This implies that theremust be at least one stable member of SDE and the 2q-convex parpolygonal value set ofD(s;q) will not include the origin.b) The value set of the numerator N(s; r) and the denominator D(s;q) for a �xed s = j!�are 2r and 2q-convex parpolygons. The phase condition of G(s;q; r) to be strictly positivereal is jarg[G(j!;q; r)]j = jarg[N(j!; r)] � arg[D(j!;q)]j < �2 (6.23)This means that for each frequency both the 2r and 2q-convex parpolygonal value sets mustbe included in a �=2-sector, see Figure 6.7. This is guaranteed if the transfer functionsobtained by the vertex sets (SNV and SDV ) achieve this phase condition. Therefore, forSPR of G(s;q; r), Eq.(6.23) can be written asjargvni2SNV [vni]� argvdj2SDV [vdj ]j < �2 2 (6.24)
Example 6.3Consider the uncertain transfer function given in Example 6.1. The edges which consti-tute the boundary of the 2r and 2q-convex parpolygons were given in Table 6.1. Here, the123
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Figure 6.7: Convex parpolygons for r = 3 and q = 4 uncertain parametersobjective is to check whether the transfer function of Eq.(6.1) is a strictly positive realtransfer function or not. Using Eqs.(5.32-5.35) and the identi�ed edges given in Table 6.1,the vertex and edge sets SNV and SNE for N(s; r) and SDV and SDE for D(s;q) can beobtained. Since one member of SDE , for example p(s)2SDE = s3 + 3s2 + 4:4s + 1:25, isstable and the 2q-convex parpolygons which are shown in Figure 6.8 exclude the origin,one can conclude that SDE and subsequently D(s;q) is stable. However, it was found thatthere are transfer functions obtained from vertex sets of the numerator and denomina-tor polynomials that violate the condition given in Eq.(6.22). For example, the absolutevalue of the phase of G(s)2SNV =SDV = (0:2s2 + 5:2s + 6)=(0:4s3 + 3s2 + 4:4s + 3:4) at! = 10rad=sec is equal to 125:13� which is greater than �=2. Therefore, one can say thatthe uncertain family of Eq.(6.1) is not a strictly positive real family. The Nyquist envelopeof the family is shown in Figure 6.9.
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Figure 6.8: 2q-convex parpolygon of D(s;q)
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Figure 6.9: Nyquist envelope125



6.6 Absolute Stability ProblemsHere, the robust versions of the classical absolute stability criteria for systems with para-metric uncertainty de�ned by Eq.(5.3) are derived. The proofs of the theorems given belowcan be done by using theorem 5.7 and the proofs given in previous sections. Therefore,the proofs are omitted.Theorem 6.5: (Lur'e Criterion) if G(s;q; r) of Figure 6.10 is a stable transfer functionwith no transition frequency and the nonlinearity � belongs to the sector [0; kl] then thecondition for absolute stability is1kl +Re[GE(j!)] > 0; 8!�0 (6.25)where GE(s) is given by Eq.(5.44).Theorem 6.6: (Popov Criterion) If G(s;q; r) of Figure 6.10 is a stable transfer functionwith no transition frequency and � is a time-invariant nonlinearity which belongs to thesector [0; kp] then the condition for absolute stability is that there exists a real number �such that 1kp +Re[(1 + �j!)GE(j!)] > 0; 8!�0 (6.26)where GE(s) is de�ned by Eq.(5.44).For the circle criterion de�ne a circle C which is centered on the negative real axis atthe point (�(k1 + k2)=2k1k2; 0) and cutting the negative real axis at �1=k1 and �1=k2where k1 > 0, k2 > 0 and k1 < k2. Then,Theorem 6.7: (Circle Criterion) If G(s;q; r) of Figure 6.10 is a stable transfer functionwith no transition frequency and � is a time-invariant nonlinearity which belongs to thesector [k1; k2] then the condition for absolute stability is that the Nyquist plots of GE(s)which are given by Eq.(5.44) stay outside of the circle C.Remark 6.1: The results given above, can be extended to the systems of Figures 6.11and 6.12. It can be easily shown that@C(j!)G(j!;q; r)�C(j!)GE(j!) (6.27)
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for the system of Figure 6.11 and@C(j!)G(j!;q; r)(1 + C(j!)G(j!;q; r))�1�C(j!)GE(j!)(1 + C(j!)GE(j!))�1 (6.28)for the system of Figure 6.12.
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Example 6.4Let the controller of Figure 6.11 beC(s) = 0:3 1:2s+ 10:12s + 1 (6.29)and the plant be G(s;q; r) of Eq.(5.50). In example 5.2, the vertex and edge sets of thenumerator and denominator of G(s;q; r) were found and given by Eq.(5.54) and Eqs.(5.55-5.56), respectively. Thus, using these vertex and edge sets the Nyquist envelope and Popovplots of C(s)G(s;q; r) can be obtained.Using theorem 6.5 and Figure 6.13, the robust Lur'e gain was computed as kl = 1:5361.From Figure 6.14, it was found that the robust Popov gain was kp = 5:026, and from Figure6.15 that the radii of the smallest circles C1, C2 and C3 centered at (�0:5; 0), (�1; 0) and(�1:25; 0) and touching the envelope are equal to 0:196, 0:622 and 0:835, respectively.Thus, the robust absolute stability sector for C1 is [k1; k2] = [1:436; 3:289], for C2 is[k1; k2] = [0:617; 2:645] and for C3 is [k1; k2] = [0:479; 2:409].
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Figure 6.13: Lur'e criterion
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Figure 6.14: Popov criterion

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

real

im
a

g
in

a
ry

C1C2C3

Figure 6.15: Circle criterion
129



6.7 ConclusionThe robust stability of a control system subject to both unstructured uncertainty, modelledas norm bounded H1 perturbations and sector bounded nonlinear feedback gains, andparametric uncertainty, modelled as parameter variations in the coe�cients of the planthas been studied. A novel feature of the results given in this chapter is the use of the 2q-convex parpolygonal value set of a polynomial with a�ne linear uncertainty. The examplesgiven clearly show the bene�t of the method presented for determination of the robustsmall gain theorem, robust performance, SPR conditions and absolute stability problemof control systems with mixed perturbations.
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Chapter 7
THE DESCRIBING FUNCTIONANALYSIS OF NONLINEARDISCRETE INTERVALSYSTEMS
7.1 Introduction7.2 Describing Function Analysis7.3 Schur Stability of Discrete Interval Polynomials7.4 Nonlinear Discrete Systems with Uncertain Parameters7.5 Conclusion
7.1 IntroductionIt is well-known that many physical systems are not linear, although they are often rep-resented approximately by linear equations. The principle of superposition does not holdfor nonlinear systems with the result that the system response depends on the magnitudeand type of the input. For example, the response of a nonlinear system to step inputs ofdi�erent magnitudes may be completely di�erent. Therefore, procedures for �nding thesolutions of problems involving nonlinear systems, in general, are extremely complicated.131



Because of this mathematical di�culty attached to nonlinear systems, one often �nds itnecessary to use equivalent linearization techniques and to solve the resulting linearizedproblem. Linearization is the procedure in which a set of nonlinear di�erential equationsis approximated by a linear set. The Describing Function method is one of the popularequivalent linearization methods for dealing with nonlinear control problems [8, 64, 91].Describing Function (DF) based methods play a major part in the analysis of nonlineardiscrete and continuous systems. In particular, these methods are used for assessing thesystem stability where instability is envisaged in the form of limit cycles. However, theclassical DF method was developed for �xed nominal systems and in general is inapplica-ble when several uncertain parameters are present. In these situations, it is necessary todevelop DF based methods for nonlinear uncertain systems in order to carry out analysis.The DF analysis of nonlinear continuous systems with parametric uncertainty was studiedin [58, 57, 81] by using the �-synthesis framework, the Kharitonov theorem and the map-ping theorem [139]. However, for nonlinear discrete systems with parametric uncertainty,there are not any results to date.In this chapter, the extension of the results given in [57, 81] to nonlinear discretesystems is given. Some of the now well developed results from the area of parametricrobust control are combined with the describing function method to analyze the stabilityproblem of uncertain discrete time systems with separable nonlinearities. The systemunder investigation is shown in Figure 7.1a where both the linear and nonlinear elementscontain parametric uncertainties. The characteristic equation of such systems turns out tobe a discrete uncertain polynomial. Using the so-called overbounding method and resultsgiven in the literature about the Schur stability of interval polynomials [30, 77, 44, 92, 93,85, 111, 89], a method is proposed for the prediction of limit cycles.The chapter is organized as follows: A review of the classical DF method is given inSection 7.2. Section 7.3 investigates the robust Schur stability of interval polynomials. Astability result for discrete interval plants with separable nonlinearity is derived in section7.4. Section 7.5 gives some concluding remarks.
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Figure 7.1: a) Uncertain nonlinear discrete system b) Saturation nonlinearity7.2 Describing Function AnalysisThe DF method is an approximate procedure for investigating the existence of limit cyclesin control systems with separable nonlinearities. The details of this method can be foundin the books by Atherton [8, 9]. The basic idea is that a steady-state sinusoidal input intoa nonlinear element will produce an output that has components of the same frequencyas the input as well as the harmonics. Describing function analysis assumes that only thefundamental component of the output is important. Thus, the DF of a nonlinear elementcan be de�ned as the complex ratio of the fundamental component of the output to thesinusoidal input.Consider an input x(t) = Asin(!t) to the nonlinear element, the output can be ex-
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pressed in a Fourier series as follows:y(t) = a02 + 1Xn=1[ancos(n!t) + bnsin(n!t)] (7.1)where an = 1� Z 2�0 y(t)cos(n!t)d(!t) (7.2)and bn = 1� Z 2�0 y(t)sin(n!t)d(!t) (7.3)For an odd nonlinearity a0 is zero. Using the fundamental component of y(t), the nonlin-earity is represented with the describing function asN(A) = b1 + ja1A (7.4)Since Eq.(7.4) is a scalar quantity, any parametric uncertainty in the nonlinearity canbe easily represented by varying the describing function in an interval. Therefore, theuncertain describing function can be denoted withN(A;p) where p is a vector of uncertainparameters. Now, the characteristic equation of the uncertain system shown in Figure 7.1acan be written as 1 +N(A;p)G(z;x;y) = 0 (7.5)where G(z;x;y) is an interval discrete plant. From Eq.(7.5), the following equation canbe obtained G(z;x;y) = � 1N(A;p) (7.6)Thus, the possible range of (A;!) values can be investigated by plotting G(ej!T ;x;y) and�1=N(A;p) together. If an intersection exists, the system may have limit cycles in thoseranges of (A;!) determined by the intersection points. The stability of the system can beassessed by applying the Nyquist criterion. In this case, the single (�1; 0) critical point isreplaced by a locus of critical points, which are given by �1=N(A;p).The advantage of the DF method is its simplicity and its easy usability with classicalcontrol methods. However, its down side is that, since it is an approximate procedure,it may give incorrect results. The accuracy of the DF method depends on two factors134



which are the distortion produced by the nonlinearity assuming a sinusoidal input and thefrequency characteristic of the linear element. In the presence of uncertainty, the resultsof the DF method may deteriorate further. Thus, using the results developed in the �eldof parametric robust control some reliable results can be obtained.7.3 Schur Stability of Interval PolynomialsThe problem of the stability of interval polynomials was solved in continuous time systemsby the Kharitonov theorem. To date, such a solution does not exist for discrete timepolynomials of the form P (z;a) = nXi=0 aizn�i (7.7)where ai2[ai; ai]; i = 0; 1; :::; n and as usual ai and ai are speci�ed lower and upper boundsof the ith perturbation ai, respectively. For example, consider the following interval poly-nomials P (z;a) = z4 + [�1:3;�1]z3 + [0:42; 0:5]z2 + [�0:16;�0:1]z + 0:0096 (7.8)The four Kharitonov polynomialsp1(z) = z4 � z3 + 0:5z2 � 0:16z + 0:0096p2(z) = z4 � 1:3z3 + 0:5z2 � 0:1z + 0:0096p3(z) = z4 � z3 + 0:42z2 � 0:16z + 0:0096p4(z) = z4 � 1:3z3 + 0:42z2 � 0:1z + 0:0096 (7.9)are all Schur stable. However, the polynomialp(z)2P (z;a) = z4 � 1:28z3 + 0:42z2 � 0:155z + 0:0096 (7.10)is not Schur Stable. This shows that the stability of the Kharitonov polynomials does notguarantee the Schur stability of the entire family. Furthermore, it is known that [25] eventhe Schur stability of all the vertex polynomials of interval discrete polynomials does notguarantee the stability of the entire family.135



One method for tackling the robust discrete-stability of the polynomials is based onthe bilinear transformation. If P (z;a) has all zeros jzj < 1, thenQ(s;a) = (s� 1)nP (s+ 1s� 1 ;a) (7.11)has all zeros in Re(s) < 0. However, the problem is that if the coe�cients of P (z;a) lie inrectangular boxes with sides parallel to the axes, this is not the case for the coe�cients ofQ(s;a), nor conversely. So, the bilinear transformation distorts regions in the coe�cientspace which makes the problem di�cult. Another method is the edge theorem. As statedin Chapter 2, the edge theorem is a very useful tool for robust D stability of uncertainpolynomials. In the case of discrete polynomials the region D is a unit circle in the complexplane. Therefore, from the edge theorem, one can say that a discrete interval polynomialis Schur stable if all the exposed edges of the family are Schur stable. However, sincethe number of exposed edges is dependent exponentially on the number of the uncertainparameters, this procedure is computationally expensive.Kharitonov like results for monic low order (�rst, second and third order) discreteinterval polynomials were developed in [77, 44]. For higher orders and when all the co-e�cients of a given polynomial are subject to perturbation, the problem of robust Schurstability was solved in [85] using a Kharitonov parameter box. The results given in [77]are reviewed as follows:Theorem 7.1 (Hollot and Bartlett [77]): Assume that all the ai's of P (z;a) are con-stant for i = 0; 1; 2; :::; n=2? (by n=2? we mean next lower integer with respect to n=2).Then the interval polynomial family P (z;a) is Schur stable if and only if all the cornerpolynomials are Schur stable. These corner polynomials can be represented asCk(z) = n=2?Xi=0 aizn�i + nXj=n=2?+1ajzn�j (7.12)where ai = ai and aj2faj ; ajg.With this theorem, one can consider the special case of interval polynomials whoseorder n�3. For monic interval polynomials of order n = 1 and n = 2, the robust Schurstability is equivalent to the robust Schur stability of Kharitonov polynomials. A monic136



third order discrete interval polynomial is robust Schur stable if all 23 = 8 extreme poly-nomials are stable (instead of only four polynomials in Kharitonov's test). However, whenall the (n + 1) coe�cients of P (z;a) are subject to change, the robust Schur stability ofcorner polynomials or Kharitonov polynomials are not su�cient for stability of all thefamily. In this case Katbab and Jury [85] have used a Kharitonov parameter box in orderto determine robust Schur stability. This method is actually a simpli�cation of the edgetheorem for discrete interval polynomials. The method is summarized as follows:Consider two di�erent boxes corresponding to the lower, Pl(z), and upper, Pu(z), partsof a polynomial P (z;a) which is represented in Eq.(7.7) form asP (z;a) = Pl(z) + Pu(z) = n=2?Xi=0 aizn�i + nXj=n=2?+1ajzn�j (7.13)The upper box, Pu(z), has K = 2n�n=2? corners. The upper part of the kth such cornercan be written as Cku(z) = nXj=n=2?+1ajzn�j (7.14)where aj2faj ; ajg and k = 1; 2; :::;K. Also, the total number of all ai-edges of the lowerbox, Pl(z), is h = n02n0�1 for monic and h = (n0+1)2n0 for non-monic polynomials, wheren0 = n=2?. The lower part of the eth such ai-edge, e = 1; 2; :::; h, has the general formEel (z) = n=2?Xi=0 [(1 � �i)ai + �iai]zn�i (7.15)where only one of the �is, i = 0; 1; :::; n=2? belongs to the interval [0; 1] and the others areeither 0 or 1. Thus, in order to check the stability of P (z;a), one needs to check H = K�hedge polynomials. The hth one is shown below:Eh(z) = Eel + Cku = n=2?Xi=0 [(1� �i)ai + �iai]zn�i + nXj=n=2?+1ajzn�j (7.16)where h = 1; 2; :::;H, k = 1; 2; :::;K, e = 1; 2; :::; h, and as mentioned before only one ofthe �i's, i = 1; 2; :::; n=2? belongs to the interval [0; 1] and the others are either 0 or 1.
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Example 7.1Consider P (z;a) = a0z3 + a1z2 + a2z + a3 (7.17)where a02[0:9; 1:1], a12[�0:35;�0:15], a22[�0:85;�0:65] and a32[0:08; 0:28]. Since thereare four unknown parameters, from the edge theorem the corresponding polytope of thefamily has 32 exposed edges. However, using the method of Katbab and Jury, it is possibleto reduce the number of edges which are necessary for the stability of the family by 50%as follows:The lower polynomial Pl(z) = a0z3 + a1z2 (7.18)has h = 4 edges as followsE1l = [(1 � �)a0 + �a0]z3 + a1z2 = [(1 � �)0:9 + �1:1]z3 � 0:35z2E2l = [(1 � �)a0 + �a0]z3 + a1z2 = [(1 � �)0:9 + �1:1]z3 � 0:15z2E3l = a0z3 + [(1� �)a1 + �a1]z2 = 0:9z3 + [�(1� �)0:35 � �0:15]z2E4l = a0z3 + [(1� �)a1 + �a1]z2 = 1:1z3 + [�(1� �)0:35 � �0:15]z2 (7.19)and the upper polynomial Pu(z) = a2z + a3 (7.20)has K = 4 corners as follows:C1u = a2z + a3 = �0:85z + 0:08C2u = a2z + a3 = �0:85z + 0:28C3u = a2z + a3 = �0:65z + 0:08C4u = a2z + a3 = �0:65z + 0:28 (7.21)Thus, for the stability of P (z;a), it is necessary to check the stability of H = K�h = 16edge polynomials. These edge polynomials can be obtained from Eq.(7.16). For example,
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one of these edge polynomials isE1 = E1l + C1u = [(1� �)a0 + �a0]z3 + a1z2 + a2z + a3 (7.22)Similarly, the other edges can be obtained. The value sets of these 16 edges are shown inFigure 7.2. It can be tested that the four Kharitonov polynomials of the family are Schurstable. However, since the value sets include the origin from the zero exclusion principle,one can conclude that the discrete interval polynomial of Eq.(7.17) is not Schur stable.
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Figure 7.2: Value sets of 16 edges7.4 Nonlinear Discrete Systems with Uncertain ParametersThe describing function analysis of continuous systems with parametric uncertainty hasbeen studied in [57] and [81]. In [57], it was assumed that the linear part was an intervalplant of the form of Eq.(2.27) and the nonlinear element was represented by an uncertaingain with lower and upper values. Then, it is easy to show that the characteristic equa-tion of such a system is a polynomial with multilinear uncertainty structure unless thenumerator of the linear part is constant. By overbounding the coe�cients of the character-139



istic equation and using the Kharitonov theorem, a stability result has been given in [57].However, since the overbounding technique has been used in [57], the given results areconservative. On the other hand, by using the mapping theorem and also assuming thatthe linear part may have an a�ne linear uncertainty structure, some improved results inthis direction have been given by Impram and Munro [81]. The extension of these resultsto the discrete nonlinear system is considered in this section. In particular, the aim of thissection is to study the stability of systems of Figure 7.1a.Let the describing function of the nonlinear element which contains uncertain param-eters be N(A;p) = [pr; pr] + j[pi; pi] (7.23)For a memoryless nonlinearity, the interval describing function isN(A;p) = [pr; pr] (7.24)and let the discrete interval plant, G(z,x,y), of Figure 7.1a be given asG(z;x;y) = N(z;x)D(z;y) = Pmi=0 xizm�iPni=0 yizn�i ; m�n (7.25)where xi2[xi; xi] and yi2[yi; yi]. Then the characteristic equation of the system can bewritten as 1 +N(A;p)G(z;x;y) = 1 + [pr; pr]Pmi=0 xizm�iPni=0 yizn�i =nXi=0[yi; yi]zn�i + [pr; pr] mXi=0[xi; xi]zm�i = 0 (7.26)It can be seen that the characteristic equation of the system has a multilinear uncertaintystructure. In order to apply the results summarized in the previous section, one needsto obtain an independent uncertainty structure. To do this, the so-called overboundingmethod which enables one to convert a dependent uncertainty structure to an independentone is used. Thus, by overbounding the parameters, Eq.(7.26) can be written asn�(m+1)Xi=0 [yi; yi]zn�i + nXi=n�m[prxi�(n�m) + yi; prxi�(n�m) + yi]zn�i = 0 (7.27)
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or writing Eq.(7.27) in the form of Eq.(7.7)�(z) = n�(m+1)Xi=0 [yi; yi]zn�i + nXi=n�m[prxi�(n�m) + yi; prxi�(n�m) + yi]zn�i = nXi=0 aizn�i(7.28)where ai2[ai; ai] = [yi; yi] for 0�i�n� (m+ 1)and ai2[ai; ai] = [pr xi�(n�m) + yi; pr xi�(n�m) + yi] for n�m�i�nThen, in the light of the results given in the previous section, the robust stability of thenonlinear discrete interval systems of Figure 7.1a can be stated as follows:i) If the closed loop characteristic equation of the system, �(z) of Eq.(7.28), is a monic�rst or second order interval polynomial then the given system is robustly Schur stable ifand only if the following Kharitonov polynomials are robustly stable.monic �rst order: �1(z) = z + a1�2(z) = z + a1 (7.29)monic second order: �1(z) = z2 + a1z + a2�2(z) = z2 + a1z + a2�3(z) = z2 + a1z + a2�4(z) = z2 + a1z + a2 (7.30)ii) If the characteristic equation is a monic third order one, the following 8 extremepolynomials will be enough for robust stability of the system:�1(z) = z3 + a1z2 + a2z + a3�2(z) = z3 + a1z2 + a2z + a3
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�3(z) = z3 + a1z2 + a2z + a3�4(z) = z3 + a1z2 + a2z + a3�5(z) = z3 + a1z2 + a2z + a3�6(z) = z3 + a1z2 + a2z + a3�7(z) = z3 + a1z2 + a2z + a3�8(z) = z3 + a1z2 + a2z + a3 (7.31)iii) When all coe�cients of �(z) of Eq.(7.28) are subject to perturbation then the ro-bust Schur stability of H (H = K�h where K = 2n�n=2?, h = n02n0�1 for monic andh = (n0 + 1)2n0 for non-monic polynomials and n0 = n=2?) edges guarantees the robuststability of the system. The general form of such an edge is shown in Eq.(7.16).Example 7.2Consider the nonlinear system of Figure 7.1a withG(z;x;y) = 0:1746z + 0:1529z2 + y1z + y2 (7.32)where y12[�1:5746;�1:3746] and y22[0:7; 0:8] and let the nonlinear element have the sat-uration characteristic, with a and k as shown in Figure 7.1b. If A < a the describingfunction is a constant k. For A > a, the describing function isN(A; k) = 2k� [arcsin( aA) + ( aA)s1� a2A2 ] (7.33)For k2[1; 4], the describing function becomes N(A; k)2[0; 4]. Then, the characteristicequation of the system can be written as1 +N(A; k)G(z;x;y) = 0 = 1 + [0; 4] 0:1746z + 0:1529z2 + [�1:5746;�1:3741]z + [0:7; 0:8] (7.34)and from Eq.(7.34), the characteristic equation reduces to�(z) = z2 + [�1:5746;�0:6757]z + [0:7; 1:4116] = 0 (7.35)
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and the four Kharitonov polynomials are�1(z) = z2 � 1:5746z + 0:7�2(z) = z2 � 0:6757z + 0:7�3(z) = z2 � 1:5746z + 1:4116�4(z) = z2 � 0:6757z + 1:4116 (7.36)The roots of �3(z) and �4(z) are 0:7873�j0:8898 and 0:3378�j1:1391 respectively, whichare not inside the unit circle. This shows that the nonlinear system is not robust Schurstable. The frequency response of G(ej!T ;x;y) and describing function �1=N(A; k) areshown in Figure 7.3. It can be seen that the describing function plot intersects with theNyquist envelope of G(ej!T ;x;y). Therefore, one can say that a limit cycle is likely tooccur.
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Figure 7.3: Graphical prediction of limit cycle
143



Example 7.3Here, we consider the system of Figure 7.1a to haveG(z;x;y) = 0:1y0z2 + y1z + y2 (7.37)where y02[2:5; 4], y12[�0:1; 0:25] and y22[0:1; 0:7] and again consider the saturation non-linearity as in Example 7.2. The closed loop characteristic equation of the system is1 +N(A; k)G(z;x;y) = 0 = 1 + [0; 4] 0:1[2:5; 4]z2 + [�0:1; 0:25]z + [0:1; 0:7] (7.38)and it can be written as�(z) = [2:5; 4]z2 + [�0:1; 0:25]z + [0:1; 1:1] (7.39)which is a non-monic second order polynomial. Therefore, the robust Schur stability ofthe Kharitonov polynomials alone will not be su�cient. From the results of Section 7.3,�l(z) = [2:5; 4]z2 (7.40)which has the h = 1 edge as followsE1l = [(1� �)2:5 + 4�]; �2[0; 1] (7.41)The upper box �u(z) = [�0:1; 0:25]z + [0:1; 1:1] (7.42)has K = 4 corners as follows: C1u = �0:1z + 0:1C2u = �0:1z + 1:1C3u = 0:25z + 0:1C4u = 0:25z + 1:1 (7.43)
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Thus, there are H = K�h = 4 edge polynomials to check the stability of �(z), which areE1(�; z) = E1l + C1u = (2:5 + 1:5�)z2 � 0:1z + 0:1E2(�; z) = E1l + C2u = (2:5 + 1:5�)z2 � 0:1z + 1:1E3(�; z) = E1l + C3u = (2:5 + 1:5�)z2 + 0:25z + 0:1E4(�; z) = E1l + C4u = (2:5 + 1:5�)z2 + 0:25z + 1:1 (7.44)The stability of these four edge polynomials can be checked by using the zero exclusionprinciple. The image set (value set) of Eh(�; ej!T ), h = 1; 2; 3; 4 is shown in Figure 7.4.It can be seen that the image set excludes the origin (062Eh(�; ej!T )), which shows thatthe entire family is asymptotically stable. The Nyquist envelope of G(z;x;y) of Eq.(7.37)and the describing function �1=N(A; k) are shown in Figure 7.5.
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Figure 7.5: Nyquist envelope and Describing function7.5 ConclusionIn this chapter, the describing function analysis of nonlinear discrete systems with para-metric uncertainty has been studied. It has been shown that the characteristic equationof such systems with an interval plant and an uncertain describing function turns out tobe a polynomial with multilinear uncertainty structure. Using the so-called overbound-ing procedure and combining the describing function method with some well establishedresults from the area of robust control under parametric uncertainty, a method has beenproposed for the prediction of limit cycles in uncertain discrete systems with separablenonlinearities. Since the DF technique is an approximate procedure, it may give inaccu-rate results. However, the results which are produced by the DF method can be reliedupon if the linear subsystem is su�ciently low pass and the DF approximation is valid.
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Chapter 8
CONCLUSIONS
8.1 New Contributions8.2 Future Work
8.1 New ContributionsSeveral important control problems have been addressed in this thesis. The new contri-butions of the thesis are summarized below:1. Extension of the Ho et al. method [72] to a Lag/Lead controller structure for stabi-lizing a given �xed plant;2. Extension of the Ho et al. method to PI, Lag=Lead and PID controllers for relativestabilization of a �xed plant;3. Extension of the Ho et al. method to interval plant stabilization;4. Development of an alternative approach, which is based on the generalized Hermite-Biehler theorem, for computing the robust gain and phase margins and outer bound-ary of the Nyquist envelope of an interval plant family;5. Formulation of the gain crossover, phase crossover and bandwidth frequencies of aninterval plant;6. Development of a user friendly software program to analyse interval systems;147



7. Application of a simple autotuning method to an interval plant via an example;8. An alternative proof of the idea that the edges of the 2q-convex parpolygon of P (s;q)of Eq.(5.1) remain unchanged within some frequency intervals (Theorem 5.1);9. It was shown that the maximum magnitude and the phase extremums of P (s;q) ofEq.(5.1) and �(s)P (s;q), where �(s) is a �xed polynomial, at s = j!� can be foundfrom vertices of the 2q-convex parpolygon. For computing the minimum magnitude,an exact equation was derived (Theorem 5.1, Theorem 5.3, Lemma 5.1 and Theorem5.4);10. It has been shown that the magnitude extremums, the phase extremums and theboundary of a Nyquist template of G(s;q; r) of Eq.(5.3) at s = j!� can be computedfrom the vertex and edge sets of 2r and 2q-convex parpolygons of the numerator anddenominator polynomials of G(s;q; r) (Theorem 5.5, Theorem 5.6 and Theorem 5.7);11. A procedure has been given for computing the Bode, Nyquist and Nichols envelopesof a transfer function with a�ne linear uncertainty;12. It was shown that the robust gain and phase margins of G(s;q; r) of Eq.(5.3) canbe found from the vertex and edge sets of 2r and 2q-convex parpolygons of thenumerator and denominator polynomials of G(s;q; r) (Theorem 5.8);13. Extension of classical control design methods to systems with a�ne linear uncer-tainty;14. A robust version of the small gain theorem for a control system with G(s;q; r) ofEq.(5.3) was derived (Theorem 6.1 and Theorem 6.2);15. Robust performance of control systems with a�ne linear uncertainty was formulated(Theorem6.3);16. Strict positive realness conditions of a transfer function of the form of Eq.(5.3) havebeen investigated (Theorem 6.4);17. Robust versions of absolute stability criteria were derived (Theorem 6.6, Theorem6.7 and Theorem 6.8); 148



18. A method has been given to investigate the stability of nonlinear discrete intervalsystems.8.2 Future WorkThere are several possibilities for future work which include:1. Development of analogous results to those obtained in Chapter 3 for cone stabiliza-tion and stabilization of uncertain systems with an a�ne linear uncertainty structure;2. Extension of the program described in Chapter 4 to systems with a�ne linear uncer-tainty and the addition of some algorithms to design robust controllers for uncertainsystems;3. In Chapter 5, it was shown that the magnitude and phase extremums of P (s;q) ofEq.(5.1) at s = j!� can be computed from the boundary of the 2q-convex parpoly-gon. It would be bene�cial to obtain frequency intervals within which the polyno-mials that give the magnitude and phase extremums remain unchanged. Thus, afurther reduction for computing the Bode envelope of G(s;q; r) of Eq.(5.3) will bepossible;4. Using the boundary results developed in Chapter 5 to �nd the maximum time-delay,�max, such that the stability of a feedback system with C(s)G(s;q; r)e��s, whereC(s) is a �xed controller and G(s;q; r) is a transfer function of the form of Eq.(5.3),is preserved for all 0�� < �max;5. The critical direction theory proposed in [98] can be extended to a control systemwith a transfer function of the form of Eq.(5.3). The critical direction method statesthat, at any given frequency, there is only one direction of perturbations which isimportant for stability analysis. The critical direction is de�ned by a vector withorigin at the nominal transfer function and pointing towards the point �1 + j0.Thus, at each frequency, the points on the Nyquist template which do not lie onthe critical vector can be ignored. This would be a helpful method for checking therobust stability of control systems with a�ne linear uncertainty by combining thistheory with the boundary results developed in Chapter 5;149



6. The results given in Chapter 5 can be further developed to compute frequency re-sponses of multilinear a�ne systems whose numerator and denominator polynomialsare multilinear a�ne polynomials such asP (s;q1;q2; :::;q3) = P1(s;q1)P2(s;q2) � � �Pm(s;qm) (8.1)where each Pi(s;qi); i = 1; 2; :::;m is a polynomial of the form of Eq.(5.1).7. Development of similar results to those presented in Chapter 6 for multilinear a�nesystems.8. Extensions of the results given in Chapter 7 to nonlinear discrete systems with morecomplex uncertainty structures.
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Appendix A
Using The Root Locus forNarrowing the Sweeping Range
In Chapter 3, the generalized Hermite-Biehler theorem was used to �nd the controllerparameters which stabilize a given plant. It was seen that in order to apply the Hermite-Biehler theorem successfully, it is necessary to �nd the positive real roots of the realor imaginary part of the closed loop characteristic equation. However, the real and theimaginary parts of the closed loop characteristic equation are dependent on the controllerparameters. Therefore, the following root locus idea which is given in [74] can be used fornarrowing the sweeping range.\Consider the problem of determining the root locus of U(x)+kV (x) = 0, where U(x)and V (x) are real and coprime polynomials and k varies from �1 to 1. Then, one canmake the following observations:1) The real breakaway points on the root locus of U(x) + kV (x) = 0 correspond to areal multiple root and must, therefore, satisfyd(V (x)U(x) )dx = 0Then one obtains U(x)dV (x)dx � V (x)dU(x)dxU2(x) = 0The real breakaway points are the real zeros of the above equation.
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2) Let k1 < k2 < ::: < kz be the distinct, �nite, values of k corresponding to thereal breakaway points xi; i = 1; 2; :::; z on the root locus of U(x) + kV (x) = 0. Alsode�ne k0 = �1 and kz+1 = 1. Then xi; i = 1; 2; :::; z are the multiple real roots ofU(x) + kV (x) = 0 and the corresponding k's are the ki's. Note that for k2(ki; ki+1), thereal roots of U(x)+kV (x) = 0 are simple and the number of real roots of U(x)+kV (x) = 0is invariant.3) if U(0) + kV (0)6=0 for all k2(ki; ki+1), then the distribution of the real roots ofU(x) + kV (x) = 0 with respect to the origin is invariant over this range of k values.Example A.1Let U(x) = (x+ 1)3(x� 1)(x2 � x+ 1)2and V (x) = (x� 2)2(x+ 3)(x2 + 2x+ 2)Then, U(x)dV (x)dx � V (x)dU(x)dxU2(x) =[�3x12 � 4x11 + 41x10 + 38x9 � 82x8 � 188x7 + 77x6 + 82x5 � 265x4+28x3 + 160x2 � 36x� 8]=(x+ 1)6(x� 1)2(x2 � x+ 1)4The breakaway points xi which are the real zeros of the above equation are: x1 = 2:96872,x2 = �1, x3 = 0:42142, x4 = 0:66720, x5 = �0:14008 and x6 = �1 and the corresponding�nite ki's (arranged in ascending order of magnitude) are: k1 = �61:44924, k2 = 0,k3 = 0:03689, k4 = 0:03791, k5 = 0:04279 and k6 = 163:73847. Also, U(x) + kV (x) = 0has a root at the origin when k = k� = 0:04167.Now, for k2(ki; ki+1) and k� 62(ki; ki+1), the distribution of the real roots of U(x) +kV (x) = 0 with respect to the origin is invariant. Thus, one can simply check an arbitraryk2(ki; ki+1) and determine the real root distribution of U(x) + kV (x) = 0 with respectto the origin, and this distribution is valid for all k in that interval. In this example,k�2(k4; k5), and so the the real root distribution of U(x) + kV (x) = 0 with respect to the
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origin may not be invariant over the entire interval (k4; k5). Therefore, one needs to splitthe interval (k4; k5) into two subintervals (k4; k�), (k�; k5), and then check the real rootdistribution for each of these subintervals.The real root distribution, with respect to the origin, of U(x) + kV (x) = 0 for kbelonging to the di�erent intervals, is given below:k2(�1;�61:44924) : 3 positive and 1 negative real rootsk2(�61:44924; 0) : 1 positive and 1 negative real rootsK2(0; 0:03689) : 1 positive and 1 negative real rootsk2(0:03689; 0:03791) : 3 positive and 1 negative real rootsk2(0:03791; 0:04167) : 1 positive and 1 negative real rootsk2(0:04167; 0:04279) : 2 negative real rootsk2(0:04279; 163:73847) : no real rootsk2(163:73847;1) : 2 negative real rootsThis example shows how the root locus ideas can be used to determine the distributionof the real zeros of U(x) + kV (x) = 0, with respect to the origin, as k varies from �1 to1."
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