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ABSTRACT

Craze damage development in high-impact polystyrene (HIPS) has been studied
experimentally, theoretically and numerically. In the experimental program, six different
grades of compression-molded HIPS were investigated. The results were analyzed and
compared to understand the significance of morphological features of the blends, such as
the particle volume fraction, size and its distribution in achieving the desired effects.

Toughening glassy polystyrene (PS) into the HIPS depends on characteristics of
crazing. The statistical nature of craze formation has been studied in terms of craze
density, craze orientation and craze size. Craze density in the HIPS was determined first
and corresponding density and cumulative functions of craze orientation and craze size
were obtained at different strain levels. The results reveal that cumulative and density
distributions of craze length follow the form of a three-parameter Weibull’s funciion.
Cumulative and density distributions of craze orientation can be described with a rermal
distribution function.

Additional experiments were conducted to examine the characteristics of craze
damage and its evolution. Craze damage development, thermodynamic driving force, and
damage evolution under uniaxial loading were addressed. Results show that craze
damage increases initially with strain but eventually approaches to a saturation state.
Further loading does not cause an appreciable amount of damage increase. An orthotropic
craze damage theory has been developed, based on a continuum damage mechanics

approach. A damage tensor is introduced, and constitutive equations for the damaged



polymer are derived. Theoretical predictions of damage mechanics variables are
compared with experimental results.

Micromechanics modeling based on a finite element method has been conducted
to obtain occluded particle volume fraction and size effects on craze formation in a HIPS
polymer. Numerical results show that stress concentrations at the equator of a particle is
amplified with increasing occluded particle volume fraction. Crazes are most probably
initiated from the large particle’s equator in a HIPS with a bimodal particle distribution.

Craze interactions are also modeled with an observed HIPS microstructure to address

their potential growth under stress.
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1. INTRODUCTION

Rubber modification of a brittle polymer has long been recognized as a means to
improve toughness of the material. For example, incorporation of a small amount of
polybutadiene into brittle polystyrene, knowr as HIPS, increases the toughness of the
modified polystyrene at least by a factor of two | 1].

Macroscopic toughening of many glassy polymers has been achieved by a
mechanism of inelastic deforinaiion. called crazing, including the one in HIPS. Crazing,
caused by a negative, local hydrostatic pressure, consists of an array of microscopic
cavities, equivalent to a crack with surfaces tied by load-bearing fibrils, in the polymer.
The craze-induced inelastic deformation dissipates energy and increases matsrial’s crack
resistance. A craze could be a precursor of a crack, leading to fracture at the end unless in
a well-controlled condition [2]. These dual roles are governed by the microstructure of
the polymer blend, such as the particle volnme fraction. size and its distiiicion to attain
the desired eftect.

This research addresses several iniportont issues of craze damage developiment m
high-impact polystyrene. It includes experimental, theoretical and numerical descriptions
of craze-induced inelastic deformation. These subjects are Iinvestigared both
imcroscopically and inacroscopically

Some of tiie important features of microscopic craze damage may be described by
density and cumulative distribution functions, owing to the inherent microstructure of
craze formation and growth, with exhibit statistical characteristics ir length and

orientation. Proper experimental methods are developed to quantify the craze damage



development in HIPS. Craze density may also be defined with corresponding cumulative
concept. The density ﬁlnctio;xs of craze orientation and craze size in HIPS are constructed
at different strain levels.

Continuum damage mechanics (CDM), based on irreversible thermodynamics,
has been used for evaluation of the damage state and macroscopic property degradation
of a polymer. In this study, deformation, damage and failure of six different grades of
HIPS polymers are evaluated and compared. A craze damage tensor is introduced, and
constitutive equations of a polymer with distributed crazes are derived using effective
stress concept and associated strain equivalence principle. Theoretical predictions of
damage mechanics variables are compared with experimental data.

Micromechanics modeling, based on a finite element method, has been conducted
to study the effects of occluded particle volume fractions and size distribution on crazing
in a HIPS polymer.

The research is presented in the next nine chapters. A brief literature review 1¢
given in Chapter 2. The objectives of the research are presented in Chapter 3. An
experimental program is described in Chapter 4, including compositions and mechanicai
properties of the polymers used, types of the experiments conducted, and data acquisition
and analyses. The statistical nature of craze damage is discussed in Chapter 5. Chapter 6
is devoted to micromechanics of HIPS. Mechanical properties of the polymers are
estimated using proper micromechanics models with rubber-phase incompressibility.
Continuum damage mechanics for craze damage is developed in Chapter 7. Basic
continuum damage mechanics variables are introduced first. Formulation of an

orthotropic craze damage theory is made and constitutive equations of a damaged



polymer are derived. Computational micromechanics for HIPS crazing is conducted in
Chapter 8. Finite element models are used to investigate the influence of polymer
properties and microstructure on craze formation and growth. In Chapter 9, experimental,
theoretical and numerical results are presented and compared. Craze damage formation,
accumulation and evolution are addressed. Correlations between microscopic and
macroscopic damage are also discussed. In Chapter 10, the conclusions obtained from the

study are presented and a list of recommendations for future studies is given in Chapter

1.



2. LITERATURE REVIEW

2.1 Inelastic Deformation in Amorphous Polymers and HIPS

Damage and fracture of amorphous polymers are related to plastic deformation,
crazing, and crack growth. Their mechanical responses to applied load vary differently.
For example, polystyrene and polymethymethacrylate are brittle under tension whereas
polycarbonate is intrinsically tough [3]. Toughening brittle amorphous polymers has been
done successfully by addition, most often blending, of a second-phase elastomer.

Under tension, the following molecular mechanisms, typical for polycarbonate,
are Iikely involved in polymer deformation. Usually, for strains less than 1% or 2%,
stress is proportional to strain, Thus, deformation is homogeneous and linear elastic. At
this point, polymer chains are displaced from their equilibrium positions. The material
returns to its original shape when the load is released. When a polymer is subject to a
monotonically increasing load beyond the elastic limit, plastic deformation starts. At this
stage, segment chain motions and permanent slips between the chains occur. In fact,
mechanical properties of amorphous polymers depend on how easy the chains can move
relative to one another. As the material is further extended, the load passes & maximumn
(“yield strength’) with localized deformation. The plastic flow may follow with a strain
softening or hardening. The non-uniform plastic softening with large scale chain
movement continues as the tension proceeds until the onset of strain hardening.
Orientation of drawn chains stabilizes the strain localization process and results in the

strain hardening response of the material. Eventually, with separation of the chains,

fracture occurs [4, 5].



Glassy, high molecular weight amorphous polymers exhibit two distinct modes of
plastic deformation: shear yielding and crazing. Depending on the loading rate,
temperature, stress state and other factors, polymers may deform with either one or both
mechanisms [6].

The shear yielding is a localized, irreversible shear deformation [7, 8] of a
polymer. It takes place at a constant volume and often emerges as shear bands, which
form at about 45° to the normal stress direction.

Crazing is generally considered to be a primary source of plastic strain response
in rubber-modified polymers. Sauer et al. (1949), for the first time, have proved that the
crazes are not true cracks. They investigate polystyrene (PS) and obtain little or no
change on its mechanical characteristics with the presence of crazes.

Crazing is a major source of toughening for brittle polymers. Thus, it has been the
sabject of many studies. Particularly, characteristics of crazing in PS at room temperature

have been extensively studied [9] and well documented in the literature over the last few

decades.

2.1.1 Craze Initiation

Craze initiation in glassy polymers has been studied extensively but not fully
understood because of complex interactions among van‘oqs microscopic factors.

In 1968, Sternstein, Silverman and Ongchin [2, 6] have studied formation and
growth of polymer crazes in bi-axial stress fields. They propose a criterion for craze
formation, which requires the first stress invariant satisfy a specified relationship. They

also show that a craze propagates normal to the major principal stress direction. They test



polymethylmethacrylate (PMMA) in biaxial (plane stress) conditions and propose the
stress invariant criterion for initiation of crazes in PMMA as

o, =loy - o, 2 AT) + ——BIST) ,
1

where o1, and &, are the principal stresses; oy, the stress bias; I} = o1+ o2+ o3, the first
stress invariant; A(T) and B(T) are temperature dependent material parameters. Later,
Sternstein and Myers [10] extend the 2-D criterion to general three-dimensional problems
by interpreting o, and o as the maximum and minimum principal stresses. The lack of
time dependency in the nucleation and the absence of specific correlations between the
parameters and physical mechanisms of craze initiation are the major drawbacks, which
limit its applicability to other particular conditions (e.g., in the presence of a crazing
agent). Surface-active liquid environment promotes crazing by lowering the polymer
surface tension/energy at phase boundary. Particularly in crganic media, environmental
stress crazing and cracking have been one of the main practical problem for glassy
polymers.

Argon and Hannoosh [11] generalize the Sternstein and Ongchin’s criterion to
three-dimensional states of stress. They perform experiments on unorienied polystyrene,
free of plasticizers, under different combinations of deviatoric stresses and pegative
pressure (in tension-torsion experiments) at room temperature. Under a given deviatoric
siress and a negative pressure, craze density is observed to initially increase with time
and then approach a saturation state. In the experiments, the delay time for craze
initiation decreases and the saturated craze density increases with negative pressure.
Craze nucleates as a result of localized plastic flow produced by large stress

concentrations at an interface of an inclusion. Argon and Hannoosh’s criterion is derived



from creep tests under a constant stress. According to their model, craze initiation time, t;,

is defined in terms of a local hydrostatic stress, oy, and the von Misses stress, o, as

C 3o,
t, =7exp| —-— )
o, 20Y

where T is a characteristic time constant, depending primarily on temperature; C is a
temperature-dependent constant, proportional to the activation energy of micro-shear
processes; Q is a measure of the interaction of the shear and the hydrostatic stress
components; and Y is the tensile plastic resistance. The parameters for PS at room
temperature have been reported by Piorkowska et al. [12], as: T = 6.0x 10% s; C = 1.65
GPa; Q= 0.0133; Y = 70 MPa. Although the model is formulated for homogeneous PS,
Berger and Kramer [13] have successfully predicted experimentally observed trends for

other PS blends.

2.1.2 Craze Growth

Kinetics of crazing can be classified into three stages: craze initiation, propagation
and thickening. Craze growth is an important stage in polymer degradation and failure.
Craze propagates with two different mechanisms: craze tip advance and;or thickening as
a result of drawn and stretched fibrils. Most of the craze growth studies have involved
measurements of only one of these dimensional changes with time.

Klemperer [14] has investigated craze growth in the plane normal to the
maximum principal stress direction. This fact is also verified later for curvilinear stress
fields, such as around cavities in which craze growth is curvilinear, foliowing the path

normal to an applied principal stress [2, 6]. Direct microscopic observations appear to be



the most effective way for analysis of craze kinetics. Regel [15] uses this approach to
monitor craze initiation and growth in PMMA.

Theoretical studies on craze growth have been mainly based on one-dimensional
plasticity theory, such as the Dugdale model [16] or a Fourier transform solution for
stress analysis [17]. In both methods, polymers outside the craze are considered to be
linearly elastic with appropriate boundary conditions.

Knight [17] takes a Fourier transform solution to calculate the stress distribution
along a craze. Kramer et al. [18, 19] use it for calculations of thickness profiles for
PMMA and polystyrene by holography and electron microscopy, respectively. Later,
Verheulpen-Heymans and Bauwens [20] state some of the shortcomings of Knight’s
Fourier transform solution.

Line plasticity solutions have received much attention by including craze growth
kinetics. Using this approach, craze growth is quantified in terms of both length and
thickness via measurements, or a critical energy release rate [21], a critical craze-tip
opening angle or displacement [22].

Craze growth mechanisms have not been included mn previous theoretical studies
except the work conducted by Andrews and Bevan [21]. They note craze growth based
on elasto-plastic expansion of cavities while excluding their initiation. Argon [23]
suggests that a craze propagates by repeated formation of cavities ahead of the craze-tip
following his proposed craze formation mechanism. The same hemogeneous plastic flow
factor that causes craze formation is also responsible for its growth. However, the work
done by Salama [24] shows drawbacks cf the proposed model, i.e., stress concentration

ahead of a craze tip is not sufficient for cavity formation and the postulated mechanism



would give a different topology than the observed. Argon [25] subsequently postulates a
new craze growth mechanism, called “meniscus instability”- craze growth with repeated
convolutions that result in a yielded polymer to break up and produce new crazes each
time at the polymer/air interface. As the craze tip advances, the polymer breaks up into a
series of fingers, and fibrils are developed by the deformation of the polymer between
fibrils, which generate a correct craze topology. Donald and Kramer [26] verify the
meniscus instability model by demonstrating it on tilted, high magnification TEM
micrographs of polystyrene. Michler [27] interprets his “precraze” observations, ahead of
a craze tip, as an evidence of nucleation of isolated pores. Kramer and Berger [28] object
this interpretation and suggest that the precrazes are previously crazed and coalesced
polymer.

Argon and Salama [29, 30] also provide a theoretical model for their meniscus
instability mechanism and show supporting experimental results. The Argon-Salama
model is twe dimensional, similar to Verheulpen-Bauwens’[20] in the sense that both
consider a single craze in an infinitely large matrix with a tensile nominal stress.
Verheulpen and Bauwens analyze the craze matter in two parts, i.e., craze body and craze
tip, with assumed normal tractions in these regions. They use a conformal mapping
method for the stress analysis. However, in Argon and Salama’s model, a single traction
torce normal to the craze plane is assumed. The craze matter is modeled with a yield zone
ahead of the craze tip with stress, Y,. The same mathematical procedure is used for
calculation of local stress components. Even though the models are verified by a limited

number of experimental data, they both do not consider any craze interaction.



2.1.3 Craze Interaction

Interaction among crazes is expected in a polymer with multiple crazes. Most
craze theories concentrate on one craze only, not on its surrounding, thereby excluding
the craze-craze interaction, which in turn affects their growth kinetics.

During polymer deformation, not a single, but a number of crazes initiate and
grow simultaneously, causing stress redistribution adjacent to the crazing matter, which
affects craze formation and growth.

Mills [31] suggests that craze interaction starts at an early stage of its growth,
proposes a threshold for the interaction: interaction begins when surface crazes penetrate
,normal to the free surface, more than 20% of their separation distance in the loading
direction. Mills models the craze interaciion by considering isolated two off-set crazes. In
his two dimensional model, he adapts Argon’s [23] approach and uses a smgle traction
force across the craze matter. He predicts craze growth paths and calculates the
corresponding driving force for craze growth. For PVC, he has observed overlapping
surface crazes with no visible deviation in their growth paths. He shows that when the
traction force in the craze matter is between 90% and 100% of the applied load, craze
pairs remain parallel to each other. He also shows that modeling the craze matter with a
single or two traction forces resulting in a negligible difference when the traction force ir
the craze matter is greater than 90% of the applied load. In addition, calculated potential
energy values for craze growth reveal a decreasing trend as a result of craze interaction.
In a recent study, Michler [32] mentions a phenomenon: craze growth diminishes with
increasing craze interaction as interparticle distance decreases with a second-phase

particles volume fraction increase for rubber-toughened PMMA samples.
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2.2 Effects of Rubber Particles on Crazing

Addition of second-phase rubber particles into a glassy polymer is aimed to
produce a soft but tough polymer. High-impact polystyrene (HIPS) is a toughened
polymer by adding second-phase particles. Bucknall and Smith [1] provide an
explanation of the rubber-toughening mechanism in HIPS. They stretch a thin film of
HIPS and observe macroscopic yielding caused by the formation of multiple crazes
around the rubber particles [1].

Rubber particles, which act as stress concentrators, promote a large number of
craze formation and cause energy absorption. Under a tensile stress, craze initiation
occurs near the equator of a particle and propagates outward. Integrity of a crazed
polymer is retained as long as craze growth is controlled. The second phase particles in a
polymer are characterized by their volume fraction, compliance, size and size
distribution, which all affect the craze formation [32-42].

Direct electron microscope observations of rubber-particle-modified polymers
reveal the microstructure of the rubber particles [43, 44]. Rubber particles in many
toughened polymers are microscopic composites themselves as a result of occlusion of
the continuous phase polymer inside the rubber particles. The sub-inclusions affect both
compliance and volume fraction of the rubber particles, and thus, determine mechanical
properties of the polymer. For a HIPS, the measured values given by Bucknall [45] show
that the major constitute in an occluded particle is dispersed polystyrene. He reports that,
for a HIPS with 10.5% polybutadiene by weight, the occluded-particle voluine fraction is
42% of the total volume. However, the polybutadiene occupies only 28% of the occluded

particle volume while the remaining 72% particle volume is polystyrene. A high
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polystyrene content means a low particle compliance; hence, low craze formation
efficiency of that particle. A high amount of polystyrene inclusions may also reduce craze
termination ability of particles a craze can continue through an occluded particle via
polystyrene sub-inclusions [46]. In addition, a high polystyrene content causes particle-
break up during melt processing which resulting in loss of toughening efficiency [47].
When a polystyrene content increases inside of the occluded particle, the overall
occluded-particle volume fraction in a HIPS increases resulting in more particles; thus,
more stress concentration sites for craze formation.

Microstructure and mechanical properties of the particles, inciuding volume
fraction, particle size, size distribution, and compliance can be changed during
polymerization process. For example, the particle compliance, size and size distribution
cann be controlled by the agitation rate during and after phase inversion. However,
controlling the rubber particle size without affecting other microstructural parameters is
not easy.

The influence of particie size on mechanical properties of a nibber-icugiiened
polymer has been a subject of many studies [12, 48-53]. These studies conclude that there
is a critical particle size, which is a microstructural property, below which nce craze
initiates [49, 50]. Bragaw [50] describes an “effective particle™ as a particle having a
diameter larger than a thickness of a craze. Keskkula [54] reports that the rubber particic
size of 1-2p is the optimum size for HIPS. Donald and Kramer [55] also work on HIiP$
and provide a critical particle diameter of 0.8y below which no craze initiation is
observed. A similar study by Gebizlioglu et al. [56, 57] reports a different critical particle

size, between 0.1 to 0.4, for concentric spherical shell particles. In addition to those
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studies, different diameter values for optimum toughening are reported [39, 58] for
various material systems in which different failure mechanisms take place. For example,
Sultan and McGarry [58] test rubber-toughened epoxy samples with different average
rubber particle sizes. They investigate the change of deformation mechanisms from shear
yielding (shear bands) to tensil;e yielding (crazing) as the average rubber particle size
increases.

For a polymer with a fixed occluded particle content, rubber particles with
different sizes result in different toughnesses. When an average particle size is decreased,
the number of particles increases. More particles means more stress concentration sites
for craze formation. Studies [59, 60] have shown that, the interparticle distance is related
to particle diameter and it becomes smaller as the particle size decreases. For this reason
alone, shorter crazes generate when they are inhibited by neighboring particles [46] .

Argon et al. [53] have investigate the size distribution effect by comparing three
HIPS grades. Using a HIPS, they harvest particles and produce two new blends with an
average size of 1.03 and 3.97 microns. Their results show that the bimodal particle size
distribution yields a higher toughness. In a similar study performed by Wrotecki and
Charentenay [61], on the effect of the bimodal particle size distribution, four HIPS grades
differing in the polybutadiene content and particle size are tested. They suggest that the
microstructure of the second phase is not the main coniributor in craze initiation.
Moreover, synergy between small and big particles as a result of their amounts is an
important factor in toughening.

Bucknall [62] proposes two possible reasons to explain high efficiency of large

particles compared to small particles: either small particles are inefficient in initiating
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crazes or they are inefficient in inhibiting crazes. Experiments conducted on HIPS with
small rubber particles show high craze rates with increasing trends throughout the tests.
On the contrary, low impact strengths with low failure strains are observed for the
polymers, which support the argument that poor craze termination by small rubber
particles.

With a high voltage electron microscopy, Michler [39] works on particle size
effect. He stretches semi-thin (1-3 pm thick) HIPS and ABS samples while observing
craze formation quantitatively, He counts particles which contribute craze formation and
monitors craze thickness and craze intensity, which in turn relates to the number of crazes
around a single particle. Michler suggests an efficient particle diameter in the range of
about 1-2 micron, which gives the highest efficiency in terms of craze thickness and the
number of crazes formed by a single particle.

Toughness increases with the particle volume fraction but decreases sharply with
the particle sizes below a critical diameter, and for particle sizes significantly above the
critical diameter [63, 64]. Not knowing the individual contributions of volume fraction
and particle size, Wu [60] suggests using the interparticle spacing as a micréstructure.
property for toughening. He gives an expression for the optimum interparticle spacing as
a function of both volume fraction and average particle size. Later, this approach is
adopted by other researchers [39, 65-67] with modified representations for a interparticle

spacing formula and applied to different material systems.

14



2.3 Continuum Damage Mechanics for Polymer Crazing

Damage may be defined as a material microstructural change under a given
mechanical loading and an environmental condition. Kachanov [68, 69] is the first to
introduce the continuum damage mechanics concept. Later, Rabotnov [70] postulates an
equivalent strain principle to model rupture of metals under creep. Based on the
equivalent strain principle, deformation behavior of a damaged solid, as defined by its
constitutive equations, may be represented by the same constitutive laws (of the virgin
material), but with the usual stress replaced by an effective stress. This concept has been
extended to ductile fracture and fatigue fracture by Chaboche [71], Lemaitre [72-74],
Hult [75], Leckie [76] and Murakami [77, 78].

Polystyrene and high-impact polystyrene are two polymeric materials on which
theoretical and experimental continuum damage mechanics studies have been conducted.
Recently, a series of papers [79-85] have been published, covering various aspects of
craze damage behavior of PS and HIPS. In [79], a series of tensile tests are conducted. In-
plane material property degradation is reported in terms of changes in Poisson’s ratio,
longitudinal and transverse Young’s moduli. Corresponding damage variables are
proposed with a second-rank, non-symmetric damage matrix. In [80], damage driving
force is determined. It has been experimentally proved that under tension, no material
degradation occurs in the transverse direction. In [81, 83-86], a dissipation potential is
introduced and a damage evolution law is proposed for an isotropic damage case. An
orthotropic damage model is also derived assuming a second-order, symmetrical damage
matrix. The damage development and evolution in the vicinity of the craze tip are studied

using a modified Dugdale model and continuum damage mechanics theory. Craze
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damage growth is examined experimentally and modeling of a non-linear stress-strain
relation has been attempted. In the studies [79-85], material property degradation
resulting from crazing is addressed via experimental methods to a certain degree.
However, micromechanics and theoretical results are limited either by a single craze or

isotropic damage. If not, they have suffered from lack of closed form solutions.

2.4 Micromechanics of Crazing in Rubber Toughened Polymers

Most  brittle amorphous polymers, such as polystyrene (PS) and
polymethylmethacrylate (PMMA), may be toughened by introducing second-phase
particles. The amount of toughness achieved depends primarily on the morphology and
properties of the second phase particles, such as volume fraction, compliance, size and
size distribution [32-42]. Thus, prediction of the optimal morphology is useful to realize
the desired mechanical properties of the polymer. Owing to inherent complexity,
micromechanical models need to be established first for a better understanding of
coupling between micro- and macroscopic deformation behavior.

Analytical methods may be developed for modeling polymers with simpile
geometry and in some limit cases [87, 88]. Numerical techniques, such as finite element
methods, are generally needed to capture complex and detailed aspects of the physical
material microstructure and deformation mechanisms. Modeling of the polymer
microstructure and investigation of their resulting deformation mechanisms of two-phase
polymers have been made by many researchers, for example, [89-96]. Huang and
Kinloch [93, 94] model plastic deformation of epoxy filled with rubber particles under

tension. With the development of realistic elasto-viscoplastic constitutive models [97-
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1001, considerable efforts have been directed towards the influence of rubber-modified
polymers microstructure on its post-yield mechanical response. For instance, Steenbrink
[101] models the void growth in polycarbonate, in which void interaction is included. In
similar studies, Smit et al. [35, 37, 102] numerically investigate the coupling between
microscopic and macroscopic stress-strain relation for toughened polycarbonate and
polystyrene containing various volume fractions of rubbery particles. They conclude that
in order to reach an optimal toughening, strain softening needs to be avoided by strain
hardening stabilization. In a more detailed study, Boyce et al. [1] introduce a special
craze element, which depicts the physical structure and properties of craze. The effects of
micromechanical features, mainly the particle size, compliance and volume fraction, on
craze initiation and growth are investigated on a high-impact polystyrene. Using a two-
dimensional model, they simulate multiple crazing by implementing the craze elements
around a particle with their normal parallel to the maximum principal stress direction.
The model overestimates the stiffness of the crazed polymer, but does capture some local
craze parameters correctly, such as craze thickness and fibril draw ratio. In a following
study [103], a three-dimensional micromechanical model has also been developed,
depicting the heterogeneous microstructure and allowing a random distribution of second
phase particles. The elasto-viscoplastic deformation mechanisms of porous polycarbonate
with various initial void volume fractions are investigated by replacing rubber particles
with voids. Possible correlations between local mechanisms and corresponding
macroscopic material responses have been sought. A constitutive model for mechanical

properties of porous polymers has been proposed, based on the micromechanical model.
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2.5 Craze Statistics

Craze formation and growth possess a strong directionality relative to their
maximum principal stress directions [2, 6] and the crazes have a tendency to be spaced
apart with somewhat regular distances [46]. Moreover, direct microscopic observations
reveal that the morphology of crazing polymers exhibits well defined statistical
characteristics.

The state of craze damage is govermned by craze density, characteristic craze
length, and distribution of craze orientation, and also inherently dependent on the local
microstructure, stress state, and environment. Argon and Hannoosh [11] perform creep
experiments on polystyrene and report a craze density increase with an eventual
saturation. Their experiments show that the delay time for craze initiation decreases and
the saturation craze density increases with negative hydrostatic pressure. In the study, the
craze density observations are not explored by any quantitative theory. No data or
explanation on craze length or craze orientation is reported.

Statistical descriptions of craze initiation and growth kinetics are essential for
developing quantitative information on microscopic craze damage accumulation,
evolution, and associated property degradation. No study or nondestructive testing
method has been found in the literature to implement a rational treatment to describe the
statistical nature and their distributions of microscopic crazes. However, a probabilistic
model, based on statistical characteristics of microcracks, has been established to
investigate microscopic fatigue damage in random short-fiber composites [104, 105]. In
the study, a Weibull-form function is chosen to describe the density and cumulative

distributions of evolving microcracks, and a fourth-order power form of trigonometric
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function used to evaluate the statistical nature of microcrack orientation density and the
cumulative distributions. Constitutive equations for the damaged polymer composite have
been subsequently derived, based on the microcrack density and cumulative distribution

functions, with the aid of a self-consistent micromechanics scheme.
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3. RESEARCH PLAN AND OBJECTIVES

Inelastic deformation and fracture of amorphous HIPS polymers are related to
craze damage growth and instability. Craze damage in HIPS is governed by local
microstructure and stress state.

In this research, microscopic craze damage development and associated
macroscopic property degradation of high-impact polystyrene subjected to uniaxial
tensile loading have been investigated. The goal is to obtain a fundamental understanding
of the basic mechanics and mechanisms of the craze damage formation and evolution in
HIPS, considering the influence of microstructural features. The flow chart of overall
research plan is shown in Fig.3.1.

In the experimental program, two types of tests are designed and conducted: a
series of monotonic tensile experiments to acquire the data required for craze damage
statistics analysis and disruptive loading-unloading-reloading tensile tests to quantify
macroscopic deformation and property degradation of HIPS. The details of the
experimental program are described in Chapter 4.

In the theoretical and computational program, mechanical properties of second-
phase particles (with rubber-phase incompressibility) and HIPS polymers are estimated
using proper micromechanics models. A quantitative, statistical description of
microscopic craze evolution in HIPS is established. Continuum damage mechanics for
craze damage is developed, and formulation of an orthotropic craze damage theory is

made. Constitutive equations of a damaged polymer are derived. Computational
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micromechanics modeling, based on a finite element method is conducted to investigate
craze initiation and evolution in HIPS polymers.

This study is undertaken with the following objectives: (1) to characterize the
statistical nature of craze development in HIPS polymers; (2) to quantify craze damage
formation; (3) to investigate effects of second-phase particle volume fraction, size,
dispersion on craze development; (4) to formulate a craze damage theory based on
continuum damage mechanics in conjunction with statistical nature of craze formation in

HIPS, and; (4) to compare the theoretical predictions with experimental data.
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Figure 3.1.1: Flow chart of the Research Plan.
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4. EXPERIMENTAL PROGRAM

A proper experimental method(s) needs to be established to characterize and
quantify the statistical nature of craze damage development and associated property
degradation in HIPS. In this chapter, an experimental program is described including
compositions and mechanical properties of the polymers used, types of the experiments

conducted, and data acquisition and analyses.

4.1 HIPS Composition and Morphology

High-impact polystyrene is a two-phase polymer system, composed of a
continuous polystyrene matrix and a dispersed rubber phase, mainly polybutadiene.
Polystyrene and polybutadiene have complementary mechanical properties. Polystyrene
is generally very brittle with a high modulus at room temperature, and polybutadiene, an
elastomer, with low T, and rubbery at room temperature. The rubber content of the
polystyrene-polybutadiene copolymer is limited to 14 % approximately by weight.
During a HIPS manufacturing process, the occlusion amount with a desired particle size

and shape may be controlled, using multiple agitated reactors in series [106].

4.1.1 Polystyrene

Polystyrene contains long hydrocarbon chains with a phenyl group attached to

every other carbon atom. It is commonly produced by free radical polymerization from
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the monomer styrene [106]. Polystyrene has a relatively simple, linear structure and its

polymerization is relatively easy. It is nonpolar, chemically inert and resistant to water.

4.1.2 Polybutadiene

Polybutadiene is a homopolymer contains a monomer with four carbon atoms and
six hydrogen atoms (C4Hg). The four carbon atoms are in a straight chain containing two

double bonds. It is the double bonds that are the key to polymer formation. Polybutadiene

may be made by Ziegler-Natta polymerization [106].

4.1.3 High Impact Polystyrene

High-impact polystyrene (HIPS), a binary polymer system, known for its ease of
processing, dimensional stability and impact strength, is preduced by copolymerization or
blending of a butadiene elastomer [106].

In the blending process, the PS resin is compounded with polybutadiene or
styrene-butadiene-styrene rubber. The rubber phase is dispersed in the PS matrix and the
mechano-chemically generated free radicals bring about grafting and cross-linking in the
rubber phase [106].

A HIPS can also be made by copolymerization of styrene and butadiene
elastomer. A bulk process is commonly used. In the process, rubber is dissolved in the
styrene monomer along with additives and reaction takes place among the constituents.
Initiation may be made thermally or by the use of initiators. During the reaction, the

rubber phase is grafted to the PS matrix. The extent of grafting depends on the
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copolymerization parameters, such as reaction temperature, the type and amount of
initiators, grafting activators and the polybutadiene content. Phase inversion is an
important stage in the polymerization and critical for achieving the desired characteristics
of HIPS [106]. HIPS products can be manufactured by injection molding, injection blow

molding, thermoforming and extrusion [106].

4.1.4 Specimen Materials and Manufacturing

Compression-molded HIPS specimens were used in the study. Six different kinds
of HIPS were included: four from TOTAL Petrochemical, and two from other
manufacturers. To explore the influence of the polymer microstructure on craze
formation and evolution, TOTAL’s HIPS were designed and made with controlled
particle sizes and distributions: two grades containing similar average particle sizes with
different size distributions and the other two with a similar particle size distribution but
containing different average particle sizes. General microstructural features of the six
kinds of HIPS are shown in Fig. 4.1.1. In the material with TOTAL’s HIPS, low cis
polybutadiene (consisting of approximately 35% cis, 55 % trans and 10% vinyl by
weight) was used. Glass transition temperature, Ty, measurements (by DSC) revealed that
their polybutadiene chemical compositions were similar for all the HIPS grades.

In Tables 4.1.1, 4.1.2 and 4.1.3, a summary of material and microstructure
parameters is shown, including chemical compositions and mechanical properties of the
HIPS samples and the properties of an unmodified polystyrene. The composition, average
rubber particle sizes, and particle dispersion information were determined by AFM

imaging [107] and a light-scattering [108]. Knowing the limitations (see Appendix A) of
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both the AFM microscopy and the light-scattering method, the AFM data (for rubber
particle size) were modified with Saltykov’s [59] correction for further calculations.

Details of the procedure and the corresponding particle size distributions are given in

Appendix A.

4.1.5 Micromechanical Properties _and Microstructure Parameters of

Occluded Particles

Micromechanical properties and microstructure of occluded particles are
important in the later study of craze initiation and growth. The values given in Table
4.1.3 were calculated, based on the micromechanics models in Chapter 6. [Note that the
mineral oil, which was an additive to regulate the melt-flow rate in processing, was
included in the calculation.] In the table, Cyc, Vo, Hoc are the volume fraction, Poisson’s
ratio and shear modulus of occluded particles. Moreover, Cps and Cpg are the volume
fractions of polystyrene and polybutadiene in occluded particles, respectively. Also in
Table 4.1.3, the light—scaﬁte‘ring results were measured values obtained from a light-
scattering analysis [108]. In addition, the AFM imaging results, based on the ratio of the
total area of occluded particles to the overall image area, were extracted from AFM

pictures taken directly from the HIPS samples.
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Figure 4.1.1: Microstructures of Six kinds of HIPS Used in the Study.
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Table 4.1.1: HIPS Composition and Microstructure

4.48E+07

COMPOSITICN and MICROSTRUCTURE HIPSA | HIPS B HIPS C HIPS D HIPS E HIPS F
Weight % Rubber (Polybutadiene) 8.1 8.3 8.0 79 82 8.5
Volume % Rubber { Polybutadiene), p= 0.92 91 9.3 9.0 8.9 9.2 9.6
Weight % Mineral Qil (Flow Modifier) 29 286 26 2.8 1.9 15
Volume % Mineral Qil (Flow Modifier), p = 0.87 34 341 341 3.3 2.3 1.8
Weight % Polystyrene 89.0 89.1 89.4 89.3 89.9 90.0
Volume % Polystyrene, p = 1.05 87.5 87.6 87.9 87.8 88.5 88.7
RPS* Volume Median [:m] [108] 8.0 79 7.0 6.7 77 76
Gel Phase volume % insolubles (in toluene) 23.3 23.9 24.8 24.7 27.2 28.8
Swell index (in toluene) 9.0 9.2 8.5 8.4 8.3 9.5
% Grafting = (% gel - % rubber) / % rubber 189 187 207 215 232 239
% Gel/ % rubber (Measure of rubber utilizalion) 29 2.9 3.1 3.1 33 34
Glass Transition Temperature, T, [ °C] 102.6 102.9 102.4 102.4 104.5 108.9
Number-average Molecular Weight, Mn 81400 74760 74180 71900 82200 92870
Weight-average Molecular Weighl, Mw 208850 202660 207870 200520 197870 205540
Volume Average RPS (Modified for swelling) [107] 4.88 4.82 427 4.09 4.70 4.63
Number Average of RPS (Measured by AFM)
(after Saltykov’s correction) [59] 1.16 1.34 1.16 1.35 1.74 2.30
Number Average of RPS (Measured by AFM) 147 1.69 1.85 1.52 1.86 1.72
Standard Deviation for # Average of RPS
[Measured by AFM] 1.85 1.76 176 1.63 2.10 177
Occluded Particles' Valume Fraction (calculated) 0.251 0.256 0.244 0.249 0.351 0.433
Inter particle Dislance, Dv [um)] 8.23 8.11 5.61 524 5.36 4.94
6.10E+0
Number of Particles Per unit volume [#/ mm?3] 7 5.35E+07 | 5.18E+07 | 3.67E+07 2.20E+07

* RPS = Rubber particle size.
[ #] = Refers to a corresponding reference.
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Table 4.1.2: Mechanical Properties of PS and HIPS

MECHANICAL POLYSTYRENE HIPS A HIPS B HIPS C HIPSD HIPSE HIPS F
PROPERTIES (D[ (Di =®, b, D, b, (}[I'rJ

f1 (@) fz(q)) f3(¢) f4(®) = f3(q)) f5(d)) fs(([’)
E [Msi] 0.397 0.241 0.242 0.245 0.242 0.206 0.186
U"y [ksi] 6.55 1.88 1.94 2.10 2.13 1.73 1.64
g, [ivin] (at G"y) 0.0190 0.0095 0.0095 0.0105 0.0105 0.0105 0.0113
& [in/in] 0.02 0.33 0.34 035 0.26 042 0.38
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Table 4.1.3: Micromechanical Properties and Microstructure Parameters of Occluded

Particles in HIPS Materials

HIPS Coc [%] Vo Boc [ksi] | Inside Occluded Particle
Samples

P Cos [%] | Cpg [%]
HIPS A
Mod. Matrix + Rubber* 25.14 0.392 2.38 63.80 36.20
Unmod. Matrix + Rubber® 26.39 0.389 4,18 65.50 34,50
Light Scattering 23.30 _ _ _ -
AFM Imaging 25.22-37.69 . — 58.28-68.35 31.6541.72
HIPS B
Mod. Matrix + Rubber 25.60 0.392 247 63.70 36.30
Light Scattering 23.90 s - ey .
AFM Imaging 24.91-34.32 _ _ 66.27-80.35 19.65-33.73
HIPS C
Mod. Matrix + Rubber 24.38 ¢.399 2.32 63.10 36.90
Light Scattering 24.80 _ . _ _
AFM imaging 27.65-34.02 _ _ 72.39-73.47 26.53-27.61
HIPS D
Mod. Matrix + Rubber 24.88 0.391 248 64.20 35.80
Light Scattering 24.70 _ . . .
AFM Imaging 26.43-33 e _ 75.90-77.54 22.46-24.10
HIPSE
Mod. Matrix + Rubber 35.10 0.375 7.15 73.80 26.20
Unmod. Matrix + Rubber 37.80 0.371 11.90 75.70 24.30
Light Scattering 27.20 . . _ .
AFM Imaging 36.94-42.61 . _ 67.59-81.59 1841324
HIFS F
Mod. Matrix + Rubber 43.31 0.368 12.64 77.80 22.20
Unmod. Matrix + Rubber 49.20 0.363 18,70 80.50 19.50
Light Scattering 28.80 . . _ _
AFM Imaging 37.20-42.21 _ _ 79.838-85.42 14.58-20.12

where Coc, Voc, Hoc are the volume fraction, Poisson’s ratio and shear modulus of occluded particles. Cpg
and Cpp are the volume fractions of polystyrene and rubber in occluded particles.

* Mineral oil effect included in the calculation (see Chapter 6).

** Mineral oil effect not included in the calculation (see Chapter 6).
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4.2 Deformation and Craze Statistics in HIPS

It is well recognized that crazes in a HIPS material exhibit a number of statistical
features in their formation and growth. It is essential to obtain critical information on the
statistical characteristics during microscopic craze damage evolution in HIPS for
establishing a proper probabilistic model to quantitatively analyze and describe the craze
damage development. A series of monotonic tensile experiments were designed and
conducted to acquire the needed data for subsequent analyses and micromechanics
modeling.

All six grades of HIPS materials used in this study were tested to determine their
effective mechanical properties and to collect the craze formation and growth statistics.
The monotonic tensile experiments were conducted in air at room temperature with a
constant strain rate at 0.00007in/in/sec. [Repetitions with at least three samples from each

grade were made to ensure the validity of the experiments.]

4.2.1 Specimen Geometry

Dumbbell-shaped test specimens (similar to the Type-1 specimen defined in
ASTM D638 standard [109]) were used (Fig. 4.2.1) for the experiments. In designing the
test specimen, the radius of the fillet, R, was kept large while the gage length was kept
short (compared to the ASTM D638 Type-I specimen.). By keeping the radius of the
fillet large, stress concentration was reduced at the griping ends; thus, undesirable

heterogeneous craze initiation was avoided. The gage length was kept short for
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homogeneous crazing but with adequate length to mount a standard MTS extensometer

for the axial strain measurement.
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(All the dimensions are m inch.)

Figure 4.2.1: Test Specimen Geometry for Statistics Study.

4.2.2 Sample Preparation

All the samples were made with the same compression-molding procedure. A

summary of the compression-molding procedure is explained below:
(1)  Mold and photographic chrome plates were cleaned with a sharp razor and wiped

using acetone and soft cloth to remove all polymer residues.

(2) Backing plates and molds were laid down in an order as depicted in Fig. 4.2.2.
3 During the above process, polymer pellets (9.2 gram) were placed into each bar

of the mold and distributed evenly.

4) Strips of an aluminum foil were inserted around the edges to allow for a small

amount of polymer flashing on the bottom side.
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(5) The entire apparatus (the sandwich of plates) was placed into a heated

compression molder for curing.

(6)  The following curing cycle was used:

1)
2)
3)

4)

Preheated the compression moid to 177 °C.
Applied 2 ksi pressure at 177 °C for 20 minutes.
Applied 40 ksi pressure at 177 °C for 10 minutes.

Cooled-down to room temperature at 15 °C per minute rate at 40 ksi.

(7)  Cured samples were removed from the mold using an ejection plate.

For craze ebservations, the compression molded samples must have no surface

mars or scratches. Therefore, the HIPS samples were polished to obtain a smooth surface

prior to testing. A LECO VP-150 Polisher with a 150 rpm wheel speed was used for the

polishing process. Three different deionized water-alumina solutions were used with

2.4% concentrations, containing 1 p, 0.3 p and 0.005 p size alumina particles. Both

surfaces of each sample were polished, using the solutions in a descending order, i.e.,

starting from the solution with the highest alumina particle size and finishing with the one

with the smallest alumina size. For each sclution application, both the sample and the

polisher were cleaned with water. The surface quality of the sample was observed under 2

microscope. Polished samples were cleaned ultrasonically and dried by compressed air.
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Figure 4.2.2: Sample Manufacturing by Compression Molding.

4.2.3 Test Facilities and Setup

A servo hydraulic material testing machine was used for the uniaxial mechanical
tests. A standard exiensometer with a 2-inch gage length was used to acquire the strain
data. During the tests, specimen gage lengths were continuously recorded via a high
magnification (x1300) video camera for craze observations. The experimental setup of a

uniaxial tensile test for the craze analysis is shown in Fig. 4.2.3.

Figure 4.2.3: Experimental Facilities and Test Fixtures.
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4.2.4 Experimental Procedure

A dumbbell-shaped specimen was mounted on the test machine after a
dimensional measurement. An extensometer was then attached to the specimen gage
section. A uniaxial (monotonic) tensile test was conducted in a strain control mode.
Specimens were loaded at the rate of 0.00007 in/in/sec. During the entire loading history
the gage-section surface of the HIPS specimen was video-taped at high magnification to
obtain craze initiation and growth images. The same procedure was repeated in each test
and minimum three specimens were examined for each HIPS grade. Virgin PS and HIPS

test specimens along with a tested HIPS specimen are shown in Fig. 4.2.4.

4.2.5 Data Acquisition and Analysis

A computer-controlled data acquisition system was used to record the applied

load from a load cell mounted on the test machine, and axial deformation from an
extensometer with a gage length of 2 inches.

Crazing images were continuously recorded via a high-magnification video
camera (Fig. 4.2.5). Recorded images at desired strain levels were transferred to a PC for
detailed analyses. Image analyses of craze length and orientation statistics were carried
out using an OPTIMAS software. In Fig. 4.2.6, the selected strain levels were shown for
taking pictures for the image analyses. Excel spreadsheet was used to process the digital
image data extracted from the OPTIMAS and to construct the cumulative and density

distribution functions of craze length and orientation.
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Figure 4.2.5: Craze Development in HIPS.
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Figure 4.2.6: Strain Levels Selected for Craze Statistical Analyses.

4.3 Craze Damage Mechanics Experiments

Continuum damage mechanics (CDM) based on irreversible thermodynamics may
be used to describe the damage state and property degradation of HIPS. However, proper
experimental method(s) needs to be developed to quantify the craze damage
development. In this section, an experimental program designed and conducted for craze

damage mechanics analyses is described.

4.3.1 Specimen Geometry

HIPS specimens with the same geometry shown in Fig. 4.2.1 were used for the

craze damage mechanics experiments.
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4.3.2 Sample Prépamtion

The same compression-molded samples described in Section 4.2.2 were used for

the experiments. The sample preparation was the same as described previously.

4.3.3 Test Facilities and Setup

A serve hydraulic material testing machine was used for the damage-mechanics
experiments with a prescribed disruptive loading-unloading-reloading procedure. The
strain data were acquired using a standard extensometer with a 2 inch gage length. The

experimental setup is shown in Fig. 4.3.1.

Figure 4.3.1: Test Setup for Damage-mechanics Experiments.

4.3.4 Experimental Procedure

A dumbbell-shaped specimen was mounted on a servo hydraulic machine after a

measurement of the specimen dimensions. An extensometer was then attached to the
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specimen gage section. A prescribed, disruptive loading-unloading-reloading tensile
testing was conducted in a strain ra‘te controlled mode. Specimens were loaded and
unloaded at selected strain levels with the same loading rate of 0.00007in/in/sec. At each
unloading step, the specimen was unloaded by 10% of corresponding load level prior to
its reloading (Fig. 4.3.2). The same procedure was repeated for each test and minimum

three experiments were conducted for each HIPS grade material.

25 -
E= 58108
£ e 125,48
Ei=B3873
R VTPPT E=60.181 .__,...df—-’/
£, =107 81 /
.o ki £ (= 52085
151 [ B, =23226 E,=10005 /
i /
% ‘ !
= )= 24098 PJ/ Ey=53403
Il o —
g Eg= 248.77
\ |
# N A—
T 0 0.002 0.004
E=-248.?7)

a v r T T
VDBS c1 015 02 025 03 035

E {infin]

Figure 4.3.2: A Damage-mechanics Experiment Procedure to Measure Young’s Modulus
Degradation. [HIPS A;T=RT ; &=0.00007 in/in/sec]

|

4.3.5 Data Acquisition and Analysis

A computer-controlled data acquisition system was used to record the applied

load from a load cell mounted on the test machine, and axial deformation from an

extensometer with a gage length of 2 inches.
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A direct coﬁsequence of crazing is the change of macroscopic mechanical
properties. Craze damage along the loading direction may be measured in terms of
modulus degradation. During testing, modulus measurements were taken in the reloading
process by using the first 25 data points (Fig. 4.3.2). The modulus degradation data were

used later to calculate the craze damage accumulation and evolution.
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S STATISTICAL DESCRIPTION OF CRAZE EVOLUTION IN
RUBBER-TOUGHENED POLYMERS

A quantitative theory of toughening mechanics for rubber-toughened polymers
such as HIPS must be account for the unique characteristics of crazing in the
heterogeneous solids. Thus, craze density, orientation, size and their distributions are
important microstructure parameters which must be included. It is essential to describe
the statistical nature of crazing with suitable mathematical expressions. In a
homogeneous crazing process their distributions may be considered uniform through the
thickness direction [104].

Craze density is defined as the number of crazes per unit volume. It is generally
difficult to measure the craze density nondestructively and directly from the experiments.
In the study, all the measurements were taken on specimen surfaces. 3-D spatial
disiributions of crazes in a test sample are evaluated assuming homogeneous crazing
through the sample thickness direction. Denoting the craze density by 4 and assuming
that A is uniform through the thickness of the material, one relate A4 to the craze density

function, craze per unit area, N as

A= %z\ (5.1)

where 2h is an average spacing between the occluded particles. Its formulation is given in

[60] as

_ 3
2h=¢[ - J (5.2)
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and ¢ and C,. are the average occluded particle size and the particle volume fraction,
respectively. Thus, the craze density can be extracted conveniently from the images
obtained from microscopic craze damage observations. Observed craze densities are in

the order of several hundreds of thousands per cubic millimeter.

Microscopic craze evolution may be described by the number, size and orientation
of the crazes. Owing to the statistical nature of craze formation, each craze needs to be
characterized with a size, ¢, and an angle, 0, relative to the applied loading direction. The
random variables £ and 8 may be assumed probabilistically independent, and thus density

functions f{¢) and g(0) can be determined from cumulative distribution functions F(£) and

G(0) as
’ . . dF ,
F(f) = Dj F(£)dt with f(&)= ~ (5.3)
and
2 . . dG(#
G(O) = _lg(e)de with (8] = % , (5.4)

2

where F(£) and G(0) are obtained from direct optical images (Fig. 5.1.1).
In the study, the curve fittings for the distribution functions were done using three
data sets obtained from three tested samples. Parameters of the distribuiion functions

were determined, and their effects on craze evolution are discussed.
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Figure 5.1.1: Optical Micrograph of Crazes in HIPS at € = 0.35 (x 400).
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6. MICROMECHANICS FOR RUBBER TOUGHENED HIPS
AND OCCLUDED PARTICLE

In many rubber-toughened polymers, the second-phase particles are micro
composites themselves as a result of matrix f)hase sub-inclusions inside of the rubber
particles. The amount of sub-inclusions determines both compliance and volume fraction
of the second-phase particles which affects the mechanical properties of the polymer. For
these reasons alone, it is essentiél to know effective properties of occluded particles.

Micromechanics may be used to obtain important information on effective
properties of heterogeneous polymers. In this chapter, micromechanics models are
employed and compared to evaluate properties of occluded particles in the HIPS.

The AFM images of high-impact polystyrene (Fig.4.1.1) have shown that it
possesses a rather complex heterogeneous microstructure. The occluded particles are
randomly dispersed in a polystyrene matrix. In addition, the occluded particies
themselves are microscopic composite inclusions containing segregated phases of
polybutadiene and polystyrene. Based on the AFM images, a HIPS microstructure may
be viewed as a multi-scaled heterogeneous polymer composite as shown in Fig. 6.1 1. It
has a constant particle volume fraction with an average size for the occluded particles.

assuming that both the occluded particles and the polystyrene sub-inclusions are

spherical.
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Figure 6.1.1: The Microstructure of a HIPS Polymer.

In this study, four different micromechanics approaches have been considered:
(1) Halpin-Tsai Approach
(2)  Generalized SCM
3) Differential Scheme

(4)  Mor-Tanaka Approach.

A brief summary of the first two is given in this chapter and the others are presented in
Appendix B where comparisons of different approaches along with experimenial data are
also given. Two micromechanics methods (i.e. the Halpin-Tsai approach [110] and the
generalized SCM [111]) are selected to apply to the HIPS as a two-scale composite to
estimate the average mechanical properties of the occluded particles. The occluded
particles are considered as a composite consisting of an incompressible rubber phase as
the matrix and polystyrene as inclusions. The overall HIPS is considered as a particulate
composite with PS as the matrix phase and occluded particles are the inclusions.

Corresponding micromechanics equations derived from both systems are solved
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concurrently to determine the occluded volume fraction, Co, and effective properties of
the occluded particles.

The reduced form of the generalized SCM, includes incompressible polybutadiene
matrix in occluded particles and the Halpin-Tsai Equations with a modified spherical
shape factor is used for the formulation of overall HIPS microstructure. Note that,
material properties used for the calculations are modified to include the mineral oil effect.
The ratio of solubility of mineral ¢il in rubber phase to matrix phase is taken asl to 3

vased on the manufacturer’s suggestion. The results are presented in Table 4.1.3.
6.1 Halpir-Tsai Equations

Halpin-Tsai equations are developed based on “self-consistent model” (introduced
by R.Hill [112})-a tiber composite modeled as a single fiber surrounded by a cylinder of
matrix with both phases embedded inside of an unbound hemogeneous medium, which is
equivalent to composite itself. Herman [113] employed this model and found a solution
for composite moduli. Halpin-Tsai simplify the Herman’s solution and extended it to

composites with different reinforcement geometries

1+&nC
£ =___§77?f 6.1)
‘le 1 - Uc’f
where
_P/E)-1 (6.2)

TN

and
P = composite material modulus E; , Gz, or 023

Ps= corresponding reinforcing material modulus E¢, Gy, or v¢
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P, = corresponding matrix modulus Ey, , G, , or vy,

In Eq. 6.4, the coefficient £ is related with second-phase material packing geometry

_T-5v,

e v, (Particulate composite) (6.3)

g

Hewitt and de Malherbe [114] suggest a £ to compensate the second-phase material

volume fraction dependence of moduli. For spherical inclusions, the & is given as

£=1+40C,". (6.4)
6.2 Three Phase Model with Generalized Self Consistent Method

The generalized self consistent method (Generalized SCM), which is referred to
as Three Phase Model, is developed by Christensen and Lo [111] but in a slightly
different form. The basic problem is defined as the spherical inclusion embedded in a
concentric spherical annulus of the matrix material of the prescribed volume fraction,
which in turn embedded in an infinite medium with the unknown effective properties.

The exact solution is given in a quadratic form as

N2
A(iJ i 2B[i] +C=0, (6.5)
k#ﬂl lul’ﬂ
where
, { ,
v J(4—5Vm)mcw’3 —2{63| -’u’——lerz +2771?73}cm +252( ... \nzcm
k /.l m \ ‘L! m - lam /

s 50(-‘”—' — 1J(7 — lem + Svmz }726 + 4(7 =1 Ovm )ﬂ2773

m
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B = —2(-’-‘-"—— 1](1 “5v e+ 2[63[i- }72 + 2.1, }cm - 252(i - ancs”
K

m n m

+ 75(fi ~ 1}(3 —v Ypev, + -;-(1 5v =7,

n

C= 4[&-— J(Slfm — 7, ~2[63[£L— qu + 20,7, }cm +252(i- J?]zcm
7

ﬂ m nr m

m

with -

Il

m, ﬁ-l}(’/‘ ~10v, X7 +5v,)+105(v, —v,,)

m

n, = -"i—1}(7+5y,.)+ 35(1-v,)
Ao ,

7, :(_’Li—l](8~101/m)+15(1—vm),

m

. .\3
where c-z{%J , W is the elastic shear modulus, and v is the Poisson’s ratio. The

subscripts 1 and m are referring to inclusion and matrix phases, respectively. Moreover,

solution for the effective bulk modulus K is given by

. c(K.-K,)
K=K, + g . (6.6)
RO dm —fi

K, +—
( m 3#"‘[)
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In the present case i1ﬂm0(10"’~10'5) in the occluded particle where spherical
Hps

polystyrene inclusions are rigid and polybutadiene matrix is incompressible, then
occluded particle shear modulus is given as

H 27
— 3 (6.7)

u,  16(1—c¢)®*’
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7.  CONTINUUM DAMAGE MECHANICS FOR CRAZING
DEVELOPMENT IN HIPS

Continuum Damage Mechanics (CDM) may be suitable for evaluation of craze
evolution and associated property degradation. Continuum damage mechanics is a subject
based on irreversible thermodynamics of kinetics, material microstructure change and
property degradation under thermomechanical loading. It provides a (mathematically and
experimentally) quantitative description of the process of material microstructural and
associated property changes in the context of | continuum mechanics. In this chapter,
development of CDM on polymer crazing in glassy HIPS is presented. Fundamental
variables and parameters are defined (also see Appendix C ) for craze damage first.
Thermodynamic development of damage mechanics on orthotropic crazing evolution in

the heterogeneous HIPS is discussed.

7.1 Craze Damage in Glassy Polymers

Crazes occur in glassy polymer only in certain dilatational stress states (see
Appendix D) and grow along the plane normal to the maximum principal stress direction.
Crazes cause the damaged polymers to transmit and reflect light differing from that of
cracks. They are stabilized by fibrils of oriented and drawn polymers (Fig. 7.1.1) from the
bulk material surrounding them [46]. The fibrils are capable of transmitting loads across
the craze’s faces. Polymer fibrillation causes stress-induced flow of initial bulk polymer
into fine aggregates of oriented macromolecules. The transformation of bulky polymer

into fibril-like structures occurs irreversibly normal to the craze plane. The length of such
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aggregates is estimated to be few micron, while their average diameter changes between

tens to hundreds of angstroms [115].

1t tetr 1

Bulk Polymer

Figure 7.1.1: Fibril Development in a Craze.

7.2 Craze Damage Metric

Damage such as crazes is defined commonly as microstructural changes in a
material under a given mechanical loading in an environment. This definition brings a
necessity of introducing internal variables which represent a deteriorated state of the
material. The craze damage metric gives a measure of the deterioration and could be an
intrinsic variable for the problem. It relates the microstructure change (e.g., amount of
crazes per unit volume or area) to mechanical or physical property degradation (e.g.,
modulus change or change of dielectric constant) [74].

With the introduction of the effective stress concept [68] and associated strain

equivalence principle [70], the damage mechanics approach will be shown to be effective
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in addressing a homogeneous craze distribution problem in glassy polymers. The strain
equivalence principle is postulated at a mesoscale that craze degradation of the glassy
polymer is only affected by craze damage associated effective stress. Deformation
behavior of the polymer with craze is represented by the constitutive laws of the virgin

material with the usual stress replaced with an effective stress.

7.3 A Theory for Orthotropic Craze Damage in Glassy Polymers

Under a uniaxial stress, craze formation exhibits strong directionality. Craze
growth occurs in planes normal to the applied stress direction and the damaged material
becomes orthotropic.

In this chapter, an orthotropic craze damage model is developed based on elastic
continuum damage mechanics formulation. A fourth-order damage tensor representing
material degradation and coupling between damage variables (e.g., D2 and D-;) are
derived in terms of the elastic properties of the virgin and damaged, orthotropic, polymer.
The effective stress concept and the strain equivalence principle are employed to
establish constitutive equations of the damaged polymer. Thermodynamic driving force

for craze damage growth is obtained using complimentary strain energy density function.

7.3.1 Craze Damage Matrix

Using the effective stress concept and the strain equivalence principle,

constitutive equations of damaged polymer may be written as

o= [I-D] "o and O :“Cgktgzl
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(7.1)

o =[I-D]Ce’ .
*=8S[I-D]'o wak Sour = Cou

where the damage tensor D is defined as
(7.2)

p=1-CcC”
andC represents the stiffness matrix of a craze damaged polymer.

The virgin HIPS is isotropic. Based on experimental observations (Figs. 4.2.5 and

5.1.1), the crazed damaged polymer becomes orthotropic. In this case, the damaged

polymer’s stiffness matrix, C, along with the virgin polymer stiffness in a plane stress

condition is

—

M

0 0 2(5,-5)

™
i
1]

o $On

0
0 and c!
C

(o]

66

Next, with Eq. (7. 2), the damage matrix may be written as

D =T =8
1—(511515 +E]2S12) _'(511512 +512S11) 0
0 (7.3)

= _(512511 + azlez) 1_(612512 + szsn)

Dir'
0 0 1_2C66(Sll _SIZ)
where
1
Sll =E—
0
-V
R
12 Eo
and
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=~ _ E[ ~ Vlez 6 _ Ez 5 -
n=T . 1= 22—1_ i 66 = Ji2-
ViaVa

- = ]
1-v,vy L=v;vy

Substituting the associated representations, one may obtain the damage components, Dj;

as:
Dy, =1"1—"—1'_"(E1 -vv,E))
E, (1-vy,vy)
D —L—}-—(VE -v.,E))
. Eo (I_Vtzv:n) : e
(7.4a,b,c,d)
1 1
D, =——-—(VE,-Vv,E
A E, (I"Vu"'z])( 2 ~Vaka)
Dy, =1__1"—1—'(E2 —vv,pE,)
E, (1=vvy) i
Dy = _91_2_.

]
In reference to a solid with distributed, parallel cracks, results from the homogenization

theory | 116] show that the D matrix is in the form of

B, 000 0 0]
B, 000 0 O
B, 000 0 O
Bl=| " , 7.
B1=l 6 0600 0 o (73)
0 000 B, O
0 0 00 0 By,

where B, are components of a damage matrix for a solid with parallel cracks. One would

expect a same form of damage tensor for distributed, parallel crazes under uniaxial

loading, resulting D,, = D,, = 0. This means that

<

Vv
e For D,=0and 2-=—2-

1
El E2

54



1

1
D, =———-+——WE -v,E,})=0 and
12 Eo (1_.‘}[2}}21)( 1 12 2)
Vn=v (7.6)
e For D, =0 with LI .
1 EZ
D,, = L L (E,—vv,E,}=0 and
“ Ey (1-vyvy) ’ e
E
@=£5,%=%%. (7.7a,b)

Substituting the above results into Eq. (7.4), one obtains the non-zero damage Dy, D2y

and Dgg¢ as:
B {z]
E E G
D, = 2;5 21:_‘_2EG_=1011 Dy, = —G_]z-
1_" i 1_" i 0
E, E,

(7.84,,¢)

7.3.2 Constitutive Equations For Craze Damaged Polymer

The constitutive equations for a craze damaged polymer are given as
o =[I - D]Cs"

g =8[I-D]"o.
In the above expression, the term,S[/—D]", has to be symmetric.

Symmetrization according to Murakami and Ohno[116] requires

y:%bU—DF+p—DFS}

For a virgin, isotropic polymer,
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‘Sll Slz SIZ 0 0 O
S12 Sl] Sll 0 0 0
S= S12 Sl2 Sil 0 0 O
0 0 0 2(5,-S.) 0 0
o 0 0 0 205~ 5iz) 0
0 0 0 0 0 208, - S1) ]
Si =‘E]:"
where 0
S, =-EK.

(D, 000 0 0]
D, 000 O 0
D, 00 0 O 0
[D] = 31
¢ 0 0 0 O 0
0 000 D; O
| 0 0 0 0 0 Dy
Then,
4 K P 0 0 0
K 8§ S, 0 0 0
P 8, B8y 0 0 0
§' = 0 0 0 28,-55) 0 0
0 0 0 0 2(S11 —Slz) 0
1-D,,
0 0 0 0 0 2= )
L 1Dy
where
A= Si + Sz (Dy, +Dy)
1-D,, 1-D,
1 1 1
K= E[Su(l + 1-D, y+ I-D,, (S, Dy +S1,D4)]
1 1 1
P= E[SIZ (1+ 1D, ¥+ 1-D, (S12D21 i SllDSI)] .
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The constitutive equations for the polymer with orthotropic craze damage may be derived

as:
5; =S.;k!6k1
5, 1 1 1
= 4 D, +D,) |+o0,| =[5,(1+ +
g O-lI:I—D” Ty (Dy 31)j| 2[2[ 12 € l—D”) ¥
1 1
=[S,.(1+ + S.D,. +S. D
+O'3|i2[ ja (. l—D“) I—DH( 124721 1 31)]}
1 1 1 |
2P 1_5[512 (1+1—D“ )+ y (S, Dy +S12D31)]_
1 1 1 ]
&3 1;2_[512 (1 +1—D“ )+1—D“ (512D +S11D31)]_

Yo = T3 2(S;; —Si,)

2(S;, —5,,)

Va1 = T3 IEDSSIL

2 2(5,, —Si)
i =Ty 1-D,

(SIIDZI + S12D31 )]:l

+0,5,+06,5,

+0,5, +0,;5,

(7'9 a,b,c,d,e,f)

In plane stress case, the constitutive equations can be simplified further and the reduced

non-zero strain components become:

Yau =7

S D
gl=O']|:l Slll) ¥ l2JD21:|-*-0-2[_1-[‘5'12(1"' : )+
I B 1_J'Dn 2 1—Dll 1—-‘Dn
1 1 S.D
o, | =[S, 1+ + 2,8
1[2[ 12( 1-D11) l—-D”]} 2911
2(511_512)
zn“‘“‘I_D_‘66

(7.10 a,b,c)

In a uniaxial loading case (c1#0) and inserting the definitions for S and Sy, the

constitutive relations (plane stress) case for a craze damaged polymer, are:
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81=0'1|:'—‘L'_ e, <l :|— 7 [1”VD21]

Eu(l"Dn) Eo (1_D11) Eo(l_Dn)
1 1 S, D vo
£, =0, —[S, 1+ Y+ =2 | = 1 [Dy,
2 1-D,, 1-Dy, 2E,(1-D,)
Yn=0
where
_E {-gj
E
Dy, 20 D, = 2 : =vD,,
. E, =Y E,
E, E,

4+ Dy —2]

(7.11 ab,c)

7.3.3 Energy Release Rate for Craze Growth in Glassy Polymers

The energy release rate for craze growth, i.e., the thermodynamic craze damage

driving force, may be derived from the complimentary strain energy function, W,

W 2-;—(1-D)’150'0'T.

(7.12)

Using Eq. (7.12), one can derive the components of thermodynamic driving force for

plane stress case as:

We‘(a):l Si +511D21 012+ Sy +(S12D2[+S“) 022
2\\1-D,;, 1-D, 1-D, 1-D,

-

Z(Sn - Su) 72
i-By

1 { B . S +(S”D2‘ +.S'“)+—-—‘5"*D21 Jaloz +{ Sy Sulu | 260 —S”)Jffﬁu
2|\1-D,, 1-D, 1-Dy, 1-Dy, 1-D,, 1-Dy, 1= Dy,
+l|:[ Slz o7 (SIZDZI +S“)+ 2(SII _Su)}fzflz}
2|\1-D,, '1-D, 1-D
a y e 2 2
Y, = W, b+ Dsi [O’,' ~vo; +(1-v)o,0,+0,T, -—Verm]

aDn ZED(I'"DH)Z ‘

*

g W1
* oD, 2K, (1-Dy)

2 2
[cr]' -vo, +(1-v)o,0, +0,7); —valrlg]
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Y =6We = d=v) = [Glru'*'o"zrlz'{‘flzz]'
Dy  Ey(1—Dg)”

The above results can be further simplified for the uniaxial loading case (5,#0) as:

oW’

[

aD,, 2E,(1-D,)*

(4B s

l

Y, =

lig? 1 2 (7.14 a,b,¢)

Y”l= = o
T @Dy 2E,(1-Dy)

ow’
Y =—==0.
oD,

7.3.4 Craze Damage Evolution

For a craze damaged polymer, the damage, D, represents inelastic deformation
resulting from crazing. The dissipation function (see Appendix C) may be constructed for

an isothermal and orthotropic damage case as
pp=-YD=20 (7.15 a,b)
@p ==Y Dy =¥y Dy — Y66D66

where

e}

% ___(1+D,) ; ¥ G4

:'—" = ——— and Y66=0'
2E0(1_D11)— ) 2E0(1_D11)

Yn
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8. COMPUTATIONAL MICROMECHANICS FOR CRAZE
INITIATION AND INTERACTION IN HIPS

Owing to the complex microstructure of craze development in HIPS
polymers, computational micromechanics is required in the present study. FEM modeling
is needed for understanding the influence on craze formation and interactions by the
occluded particle volume fraction and size distribution. In this chapter, appropriate
models have been developed for the purpose. 2-D finite-element models have been
employed for the analyses. Crazing is 3-D in nature; however, 2-D modeling is simple
(captures the HIPS microstructure) yet an effective way for a comparative study to
explore the influence of the occluded particle volume fraction and size distribution on
craze formation and interaction in HIPS polymers. Also, 2-D modeling is efficient in
saving computing time. Validity and accuracy of the models with the suitable boundary
conditions and numerical procedure have been verified with selected reference solutions.
Material properties used for the calculations are given in Tables 4.1.2 and 4.1.3. In the
Tab. 4.1.3, the light-scattering results were measured values and the AFM imagirg results
were extracted from AFM pictures taken directly from the HIPS samples (based on the
ratio of the total area of occluded particles to the overall image area). In the modeling,

micromechanics results which include mineral oil effect are used for effective properties

of occluded particles.
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8.1 HIPS Microstructure and Computational Micromechanics
Models

Proper Finite-element models have been introduced to address the HIPS
microstructure. A HIPS observed in an AFM is shown in Fig. 4.1.1. In addition, the
following TEM pictures (Fig. 8.1.1) are also shown as a base for micromechanics
modeling in the study.

In the current study, it is difficult in modeling exactly the occluded particles with
a large number of randomly distributed sub-particles. Hence, a periodical microstructure
is assumed. The advantage in dealing with the periodical arrangement is its simplicity.

Multi-particle systems can then be modeled by a representative volume with only one or

a few particles using symmetry conditions involved.

Figure 8.1.1: HIPS Microstructure. [Provided by Total Petrochemicals]

Microscopic observations are crucial to reveal the characteristics of continuous

craze initiation, growth and possible craze interaction. Progressive craze growth
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characteristics in : .o
HIPS are depicted in Fig. 8.1.2.Crazes initiate from particl d
icles and grow
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€=0.035

Figure 8.1.2: Progressive Craze Formation, Growth and Interaction in HIPS (x650).
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e€=0.035 T

Figure 8.1.3: Craze Growth in HIPS (x1300).

8.2 Solution Accuracy and Convergence

i) Volume-Fraction Effect:

The solution accuracy and mesh quality of the computational model have been
checked, considering a finite-width, thin plate with a circular hole. A reference solution,

stress concentration factor, for the problem is given by Howland [117] as

2
K =0.284+ _2 _ 0.600[1 ——d—J + 1.32(1 = fl-—) ; (8.1)
H H

5
H
where d and H are the diameter of the hole and the width of the plate as depicted in Fig.

8.2.1., respectively.
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b4 >
Figure 8.2.1: Thin Plate with a Circular Hole.

In Fig. 8.2.1, the maximum stress occurs at point A and the corresponding stress

concentration is given as

o)
0. =0, ad K=—"%,
o

A quadrant of a plate with a circular hole is used for modeling the problem shown in Fig.

8.2.2.

U=l 4

1 ey ﬂz—f-l}

L.,
R

Figure 8.2.2: FEM Model for Studying Mesh Quality and Boundary Conditions.

L ; :
The aspect ratio,ﬁ:;’, is chosen to be 10 (see Fig. 8.2.2) and two different cases are

: ; e B QL
considered by changing L,; taking -—}-23—=10 and ?2:20. Only quadratic, eight-node

quadrilateral elements are used for the study. The mesh quality is checked as the results

converge to the true solution via refining the mesh by changing the number of elements,
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¢, and size of the elements, 1. These variables are elucidated in Fig. 8.2.3. In the figure,
for example, & = 10 and =10 refer to that 10 elements are used on a given edge with

element sizes (from a to b in Fig. 8.2.3) of 1, 2, 3, 4, 5...10 units, respectively.

N

Y

T

-4y

R W]
itdanhang

! :‘:%ft'i;ir""'_i“:"

i
HH
S5

T
T

y

g

it
i

&= 2 of elements

and

b
na -—
a
Figure 8.2.3: Mesh Refinement Parameters.
In Figs. 8.2.4 and 8.2.5, the convergence of the numerical solutions toward the
. . L, L,
true solution is shown as a function of £ and 7 for both o =10 and T =20 cases. The

calculated values for these cases are

K=2mx 3085 and K=Tmx_3037

o o

, respectively. The reference solution, calculated with Eq. (8.1), is

g

- =3.036
log

and the solution accuracy from the FEM results for both cases are

Kk K-K
A=——"R7 +J00~1.7% and A= R/ ¥100 ~ 0.03%

Re f Re f

, respectively.
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Figure 8.2.4: Stress Concentration Factor vs. Element Size.
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Figure 8.2.5: Stress Concentration Factor vs. Number of Element.
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L
A higher accuracy is attained for the case ?2 =20 compared to the case % =10 (Figs.

L') " %
8.2.4 and 8.2.5). When ?‘-:20, the model geometry is close to the reference solution

geometry. Thus, the FEM results yield a higher accuracy. The optimum values for & and
7 are chosen to be 30 and 10, respectively, which give an average element aspect ratio, X,

of 1.46 and result in a stress concentration K as

K =Zm 3083,
()

L
with an error, €, less than 0.1% for the case Ez =10,

Ko~ K,
=——"2x100 = 0.1%.

{rue

g

ii) Size Effect:

Currently, to the author’s knowledge, there is no reference solution available in
the open literature for the problem shown in Fig. 8.2.6 (b). However, the validity and
accuracy of the micromechanics model are justified by starting with a limiting case,
shown in Fig. 8.2.6 (a) and showing the convergence of the results to another limiting
case (Fig. 9.2.6 (c)), through progressive steps of the current problem (Fig. 9.2.6 (b)). The
calculation order is depicted with the arrows in Fig. 8.2.6, and it is executed with the
same order, from left to right. In other word, first, a perforated plate (a square pattern)
with circular holes is considered (Fig.9.2.6 (a)). A reference solution for this problem is

given by Meijers [117]. The calculated values are presented in Fig. 8.2.7 along with the

reference solution value.
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Reference Sclution el Solution of Our Problem ====0»  Reference Solution
@
HEEREERRY

000000\
000000
000000
000000
000000
000000

Figure 8.2.6:Validity of the Current Problem using Reference Solutions. a)A Thin
Perforated Plate with a Square Pattern [117]; b)The Current Problem; c)A
Thin Perforated Plate with a Diamond Pattern [117].

Then, reducing the radius of every other hole in Fig.8.2.6 (a) (from r; to ry), the
current model is recovered (Fig. 8.2.6 (b)). The same process ,gradually reducing the 13,
is continued until r;=0 and a perforated plate (a diamond pattern) with circular holes (Fig.
8.2.6 (c)) is recovered for which a reference solution is available [117].

Convergence of the results from one reference solution to another is depicted in

Fig. 8.2.8.
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Figure 8.2.8: Stress Concentration, K, vs. Particle’s Radius Ratio.

The radius, r, is the initial radius of the holes and r, represents the reduced radius

for the next progressive model (Fig. 8.2.9 a, b, ¢). Therefore, the reference solutions are

available for the cases: r, =r, (Fig. 8.2.7) and r, =0 (Fig. 8.2.10).
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Indeed, in the case of uniform-diameter circular holes (i.e., 1;=r3), the prior model
(volume effect model) is recovered and two models become identical (Fig. 8.2.11 a,b).
This can also be seen in Fig. 8.2.12, where stress concentrations for both models at

various occluded particle volume fractions are compared.
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ii) Craze Interaction:

The legitimacy and precision of the computational model has been vindicated via
a reference solution [118]: a rectangular plate with a circular hole and two radial cracks

emanating from the hole under uniaxial stress (Fig. 8.2.13).

P11 T

? K, =omF

L
- |
2
W

v
-

4

G
Figure 8.2.13: Cracks Emanating from a Circular Hole.

The expression for the stress intensity factor, K, is given above where F is the
configuration correction factor (CCF). Its value changes depending on the crack size, a,

and the radius of the hole, R.

A quadrant of a plate with a crack, shown in Fig. 8.2.14, is considered for
modeling the problem. Contour integral, J-integral, is calculated, and the stress intensity
factor is estimated assuming linear elasticity. For linear elastic case, J-integral is equal to

the change in total potential energy due to a crack growth, and the following relation

holds in a plane strain condition:
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E
1-v

J=G and K*=G (plane strain)

2

where G is strain energy release rate, E is elastic modulus and v is Poisson’s ratio.

o=1
i t 1
< > 4
W
H_,
W
Ui=0 H 2R 025
W

a U2=0
Figure 8.2.14: A Quadrant of the Plate with a Hole and a Crack.

The J-integral is path independent. However, owing to the approximate nature of
the finite element solution, J-integral estimates from different rings may vary and thus the

first few contours may be inaccurate [119].In linear elastic problems, it is suggested that

[119], the first and second contours should be ignored.

In the study, three different cases associated with different CCF values are
calculated and the solutions are compared to the reference [118] values. J-integrals
around the first five contours surrounding the crack-tip are evaluated. The value of a
contour integral that appears approximately constant is used to estimate the
corresponding stress intensity factor. In Fig. 8.2.15, the geometry and the mesh of all

three cases are shown with the calculated stress intensity factors.
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8.3 Craze Initiation in HIPS Polymer

Occluded particles in a HIPS may be considered as elastic inclusions in the
polymer matrix and their interactions may be ignored at relatively low volume fractions.
In this case, Eshelby’s [87] and Goodier’s [88] solutions are applicable. A common
measure for particle interaction is taken as one diameter distance between particles,
which corresponds to, for example, a volume fraction of 0.085 for body center cubic
(BCC) periodic arrangement [120]. In a typical rubber-modified polymer, the occluded
particle volume fraction is higher than 15%, resulting in a possible particle interaction.
Therefore, analytical results are no longer valid and a numerical model is needed.

Craze initiation in a HIPS polymer is modeled such that effects of both second-
phase particle volume fraction and size distribution are considered using two separate

models, based on the observed polymer microstructure.

8.3.1 Craze Initiation Criteria in HIPS Polymer

Sternstein and Ongchin [6] have proposed the following multi-axial stress

criterion for craze initiation.

o, =|o'[ —0'2| > A(T)+—Bl(rﬂ, (8.2)

1
where o, o, are non-zero principal stresses; oy is the stress bias; I} = o1+ o2+ o3 is the

first invariant of the stress tensor; and A(T) and B(T) are temperature-dependent material

constants.
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chemical grafting of polystyrene onto polybutadiene makes these phases inseparable. The
current model is assumed to have a two-fold symmetry with respect to the x and y axes in
the basic unit. A uniaxial loading case is modeled by a nominal loading on the HIPS.
Analyses are carried out on only one quadrant of the region as shown in Fig. 8.3.3. A
plane stress condition is assumed. A mesh refinement study (see Section 8.2) is
conducted around the occluded particles. Quadratic, eight-node (with the total number of
degrees of freedom is equal to 16), quadrilateral elements are used in the numerical

analysis. The element size is chosen such that the results are least mesh-sensitive. The
; g s . 1
element aspect ratio, x, is kept within the limits of Z<x <4 [121] for the elements

around the occluded particles. Particle interaction is also taken in to consideration.

Figure 8.3.1: A HIPS with Occluded Particles Subjected to a Uniform Nominal Stress
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8.3.3 Modeling of Size Effect of Occluded Rubber Particles

Owing to its inherent complexity, the particle size distribution is modeled with
consideration of a binomial size distribution. Having a bimodal size distribution is a
simple yet an effective way to capture the particle size effect. In addition, experimental
studies [53, 61] have shown that the bimodal size distribution enhances HIPS polymer
toughness. In the study, the HIPS is considered as a polymer with homogeneously
distributed occluded particles of two different sizes embedded in a PS matrix. In Fig.
8.3.4, the particle arrangement and a representative volume element (RVE) are depicted.
Based on symmetry considerations, only the first quadrant of the RVE needs to be
analyzed. Again, plane stress condition is assumed. Quadratic, eight-node (with the total

number of degrees of freedom is equal to 16), quadrilateral elements are used for

meshing (Fig. 8.3.5).

trrr ittt
e
|/ \

{
1
‘rJ
i

Figure 8.3.4: HIPS with Binomial Particle Size Distribution Subjected to Uniform
Nominal Stress, Gew.
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In Fig. 8.3.5, the modeled quadrant with boundary conditions and finite element

mesh is shown.
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Figure 8.3.5: First Quadrant of the RVE with Boundary Conditions and FEM Mesh.
8.4 Craze Interaction

Generally, not a single craze, but a number of crazes initiate and grow
simultaneously. Therefore, craze growth characteristics, eventually, are associated with
craze interaction. The craze damage is influenced by craze interaction. As a result of the
craze interaction, stress perturbation occurs and the stress state changes. Hence, the craze

formation and growth is affected. It is essential to model the craze interaction to address

the craze growth characteristics.

8.4.1 Craze Growth Criteria in HIPS

In the literature, craze growth studies are mainly based on one-dimensional

plasticity theory, such as the Dugdale Model [122]. For example, in [16, 123] it is
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assumed that plastic deformation concentrates in a strip in front of the craze and the
material outside of the craze behaves linearly elastic.

In the study, craze interactions are explored without considering craze growth
kinetics. A simple criterion is adapted based on the local maximum principal stress. It is

assumed that craze will grow when the local maximum principal stress is equal to the

yield stress of the polystyrene.

8.4.2 Modeling of Craze Interaction in HIPS

In this section, craze interaction is modeled by considering a HIPS microstructure
and observed craze geometry (i.e., size and thickness). Owing to inherent complexity
(Figs. 8.1.1 and 8.1.2), craze interaction is modeled assuming a regular arrangement and
considering mono and bimodal size distributions only. A plane strain condition is applied.
Quadratic, eight-node (with the total number of degrees of freedom is equal to 16),
quadrilateral elements are used for meshing. The element size is chosen such that the

results are least mesh-sensitive. The element aspect ratio, x, is kept within the limits of
1 . .
” <x<4 [121] for the elements around and at the tip of a craze emanating from an

occluded particle. Symmetry conditions are identified and only the first quadrant of the
repeating unit is analyzed. Craze is modeled as a crack with a constant normal traction
force applied on its surfaces depicting load carrying fibrils. The craze size estimation is
made by using craze-length density distribution curves constructed based on microscopic

craze damage observations. At a given deformation, the craze length, ¢, appearing with

the highest frequency is used in the model. The surface traction force is calculated using
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the applied load and the observed craze geometry. At a given strain (knowing the applied
load and the corresponding observed craze length), traction force, o;, on the craze

surfaces is increased gradually until the craze thickness is equal to the observed value of

that strain level.

In Fig. 8.4.1, a representative volume element for a mono-size system is shown

with boundary conditions and finite element mesh.
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Figure 8.4.1: A Quadrant of the Representative Volume with Boundary Conditions and
FEM Mesh.
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9, RESULTS AND DISCUSSION

In this chapter, results of experimental, theoretical and numerical investigation on
craze formation and growth in HIPS are presented. The mechanical behavior of
unmodified PS and HIPS are discussed and compared. Craze formation is observed with
an optical microscopy during plastic deformation and a statistical description of craze
damage in the HIPS is conducted. Craze length and orientation distributions are found to
follow well defined statistical functions. Comparisons are made among various HIPS
systems differ by a second-phase particle volume fraction and/or particle microstructure.

The results of damage-mechanics experiments are given in detail. The associated
material property degradation is reported. Craze damage accumulation and evolution are
investigated. Based on the irreversible thermodynamics formulation given in Section 7.3,
damage mechanics variables and associated driving forces for damage formation in HIPS
are determined. The orthotropic nature of craze damage in the HIPS polymer is also
investigated. The important characteristics of damage formation and growth in HIPS are
explored by a computational micromechanics method. The effects of second-phase

particle volume fraction and size on the craze formation are discussed.

9.1 Basic Stress-Strain Relationship of HIPS

Typical stress-strain responses of an unmodified polystyrene and HIPS are shown
in Fig. 9.1.1. The experiments were conducted in the same conditions. [Test specimens

were loaded in a strain-rate control mode (£ =0.00007 in/in/sec) and the test were

conducted in air at room temperature until failure.]
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The PS showed almost linear behavior and broke in a brittle manner. The HIPS
had a linear elastic response only up to1% strain. Apparently, the occluded particles had a
drastic effect on macroscopic properties. As can be seen, a typical stress-strain response
of the HIPS showed a small-strain elastic response before yielding, followed by strain
softening and strain hardening. There was a negligible change in the cross-sectional area
during testing with no sign of necking.

As expected, strength and modulus of the unmodified PS were higher than those
of the HIPS. The difference was more than three times in material’s strengths. The
strength of the PS was 6.6 ksi, and it was approximately 1.9 ksi for the HIPS. Failure
strain of the HIPS was approximately fifteen times larger than that of the PS. [Failure

strain for the PS was 0.022 and 0.33 in/in for the HIPS.]
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Figure 9.1.1: Stress-Strain Relationship of PS & HIPS at RT [ & = 0.00007in lin/sec].

All six different kinds of HIPS used in this study were tested first to establish
their base-line mechanical properties for subsequent analytical studies. For comparison,
the stress-strain behavior of three HIPS grades (i.e., HIPS A, HIPS E and HIPS F) from
different manufacturers were obtained and shown in Fig. 9.1.2. The HIPS F had a soft
initial elastic response, a low yield strength, followed by a shallow strain softening and a
substantial strain hardening. Reductions in stiffness and yield strength were consistent

with expectations and they may be attributed to HIPS F’s high occluded particle volume

fraction.

At least three mechanical tests for each grade HIPS were conducted. Their

mechanical properties are given in Table 4.1.2 for all the HIPS used.
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Figure 9.1.2: Stress-Strain Relationship of Different HIPS at RT
[ £ =0.00007in/in/sec]

9.2 Craze Damage Observations on HIPS

Earlier observations [36, 124] of HIPS polymers conducted under TEM reveal a
cellular structure of rubber particles, with sub-inclusions of the PS dispersed in particles
with a continuum rubber phase. Crazes connected the rubber particles but did not go
through them.

In this study, microscopic characterization of crazing was done by means of SEM
and optical-microscope observations. Analyses were conducted on images of test
specimens both under loads and with no load. Images given in Fig. 9.2.1 were taken in an
optical microscope. The micrographs reveal whitened surfaces of fractured samples in a

no load condition, depicting high craze concentrations prior to the failure of HIPS. As can
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be seen, crazes were generated from the rubber particles and possessed a strong
directionality. The crazes grew in the direction perpendicular to the applied load although
few deviated from the expected direction. Many crazes were too close to distinguish

themselves under optical microscope observations.

Figure 9.2.1: Optical Microscope Images of Crazes in HIPS (x400).

In Fig. 9.2.2, craze formation and evolution are shown along a stress-strain curve.
Craze formation started at the strain level of 0.0085 in/in where craze initiation was
detected the first time. Whitening became more intense as the load increased and higher

craze densities were observed.

SEM images (e.g., Figs. 9.2.3 and 9.2.4) with better resolutions are shown here
for a subsequent analysis. The micrograph in Fig. 9.2.3 was taken in a broken sample, no
load condition. Approximate length, width, and orientation associated with the craze are
clearly visible. Micrographs in Fig. 9.2.4 were taken from a surface of a loaded HIPS
specimen by using specially designed tensile loading stage. These pictures were taken

somewhere in the same region but at different strain levels.
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Figure 9.2.3: SEM Micrograph of a Craze Emanating from a Rubber Particle in HIPS.
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Figure 9.2.4: SEM Images of a Crazed Surface in a HIPS under Mechanical Loading.

As can be seen, the crazes were normal to the applied load with variety of lengths.
They had somewhat uniform craze width (1.5-2 pm). The craze density increase is
obvious when the two images are compared. The micrograph on the right, Fig. 9.2.4 (b)
was taken at a higher strain level; thus, the observed craze density is higher compared to

the one on the left.

9.3 Microscopic Craze Damage Characterization

Microscopic characteristics of craze damage were studied and are presented in
this Section. Craze accumulation was analyzed quantitatively by measurements of craze
density, orientation and size as discussed in Chap. 5. Their quantities were extracted from
experiments, and corresponding statistical distribution functions were constructed. The
images captured at 1300x magnification were used for the detailed analyses. The limit of

accuracy of the results is set by the microscope’s magnification.
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Even though experiments and associated statistical analyses were carried out for
all six kinds of HIPS materials, the general discussion is mostly focused on HIPS A.
Some results were compared with other two grades (HIPS E and HIPS F). The

information on the other HIPS grades is to be covered in the later sections.

9.3.1 Density and Cumulative Functions of Craze Length

Experimental data for cumulative distribution functions of craze length, F({), in a

HIPS &t strain levels of 0.0095, 0.02, 0.05 and 0.1 arc shown in Fig. 9.3.1. In these plots,

the y-azis, F(£), represents the total number of crazes per unit area. These data were

exteacted from three specimens (HIPS A) using images taken at the different strain levels.

Fhe cumulative distribution functions in HIPS A, HIPS E and HIPS F at different sirain

levels are given in Fig. 9.3.2.

From the figures, for example in HIPS A, it can be seen that F(§) became saturated
heyond 0.035 mm. Almost 85-90 % of the crazes have their lengths smaller than 0.035
mm The saturation state gets smaller at a lower strain level {¢ ~0.02mm for &= 0.01). In
general, F(0) increased rapidly with the craze length, ¢, between 0 and 0.015mm, which
was an indication of a high craze length concentration in that range. The F({) curves also

increased with deformation (Fig. 9.3.2), implying that the number of crazes increased

with the applied strain. The statistical data appeared to follow the following Weibull

function [125]:

e

Fl)=N{-¢ ? ), ©.1)
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where N is the total number of crazes observed on a sampled surface area; 23 is a
measure of the craze length; and o is a shape parameter, representing the spread of the

distribution function. The least square curve fitting method was used to determine o and

B.
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The density function for craze length distribution was obtained by differentiating Eq.

(9.1) with respect to 1 and has the following form

(,'_,r" ¥

)= N%(I—IO e A _ (9.2)

For the cases of €= 0.0095, 0.02, 0.05 and 0.1, experimental data of the craze
Jength density distribution functions, f(1), for HIPS A are given in Fig. 9.3.3. (All data
were plotted in a Ax= 0.006 mm increments.) The craze density functions at different
strain levels are given in Fig. 9.3.4 and the results for HIPS E and HIPS F are also
included.

The characteristic craze Iength,?, defined as the craze length appearing with the
highest frequency, can be extracted from the craze-length density distribution functions at
given strain levels. A slight right shift of the peak of each progressive density distribution
curve indicates that the characteristic craze length increased with the applied strain. As
the same procedures were used for all six HIPS grades, similar trends were observed.

Variations of N, B, a, and the characteristic length, ¢ . with the applied strain are
shown in Figs. 9.3.5, 9.3.6, 9.3.7, and 9.3.8 respectively. Results for the other two HIPS

grades (HIPS E and HIPS F) are also included in these graphs.
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As expected, a higher number of crazes, N, was observed for higher applied
strain, implying that more crazes were initiated as the deformation increased. Among the
three HIPS grades, at a given strain, the highest craze density was observed in HIPS F,
which also contained the highest volume fraction of occluded particles.

The value of B increased with the strain and tended to reach an asymptotic level
eventually. The craze density distribution function, f(1), spread wider with a larger value
of scaling parameter as seen in Fig. 9.3.4. Apparently, crazes grew into larger sizes in the
HIPS E. In Fig. 9.3.9, the aforementioned characteristics are shown by comparing the
spreads of the three grades at various strains. This can also be seen in Fig. 9.3.8, where
HIPS E had a higher characteristic craze length. On the contrary, shorter crazes were
characteristic of HIPS F.

The Weibull shape parameter, o, were related to the craze density and the nature
of craze growth. Larger o generated more pointed f(1) curves, as seen in Fig. 9.3.9.
represented a higher craze population and indicated a higher degree of craze growth
homogeneity. In Fig. 9.3.7. an increase in shape parameter, c., with applied strain was not
surprising because the number of crazes, N, also increased (Fig. 9.3.5). In the same
figure, higher number of craze was formed and grew more homogeneously in the HIPS F

compared to the other grades.

Briefly, a higher number but shorter crazes were generated in the HIPS F. and
they grew together, more homogeneously than those of the HIPS A and HIPS E. HIPS A
and HIPS E were comparable in terms of the number of crazes formed and their growth

nature but larger crazes were characteristic of HIPS E.
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Figure 9.3.5 : Craze Density, N, as a Function of Applied Strain in HIPS.
[T=RT; & =0.00007 in/in/sec]
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Figure 9.3.6 : Variation of Weibull’s Scaling Parameter, j, as a Function of Applied
Strain in HIPS. [T=RT; & =0.00007 in/in/sec]
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Figure 9.3.7 : Variation of Weibull’s Scaling Parameter, o, as a Function of Applied
Strain in HIPS. [T=RT; & = 0.00007 in/in/sec]
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Figure 9.3.8 : Variation of Characteristic Craze Length, ¢ . as a Function of Applied
Strain in HIPS. [T=RT; £ =0.00007 in/in/sec]
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9.3.2 Density and Cumulative Functions of Craze Orientation

In Fig. 9.3.10, experimental data are given for the cumulative distribution
functions, G(0), for the cases with e= 0.0095, 0.03, 0.05 and 0.1 for HIPS A. In these
graphs, the vertical axis, G(0), represents the total number of crazes per unit area and the
horizontal axis represents the craze orientation. The G(O) curves increased with
deformation (Fig. 9.3.10), implying that the number of crazes increased with the applied
strain. The cumulative distribution functions of craze orientation at different strain levels
are shown in Fig. 9.3.11. The results of HIPS E and HIPS F are also included in the
figure.

Although craze density and lengths increased with the applied strain, orientations
of the crazes were almost unchanged. The 90-95% of the crazes had orientations in the
angle range of -35° and 35°. The G(6) became saturated beyond 35° implying that the
crazes had preferred orientations. The experimental data follow the standard Gaussian

distribution function as

(§-a)’
N (9.3)

G(6) = [e2 az.

oN2m
where N is the total number of crazes observed on the test specimen surface: a is the

mean: and o is the standard deviation.

109



‘$600°0 = 3 (¢ :sureng waspIi( 18 [V SdIH] SdIH Ui toneuaLQ) 9ZeI1D) SNSIA “(9)D uonouny uonnquisiq sAne[nun)) :01°g¢ 2nsLy

(p)

[28:65Q] @

08 09 or T

(a)

[8a102Q] @
08

0Ll

[ 008 /ut jur0000°0=2 L0 =11 T0=3(PS00=230T00=3@Q

ol

[athad] g
09- 08- 08 09- 02
& o
= =z
= =
-3 —
g s9g-e z
- BEI=0 L8
=0 5 o
h' -
(e)
[aaibag] e
08 08- o8-

[eary #] (919

95 1=
e 61=0

feasy 1) (91O

=(5




1k

[ 098 ut jur£0000°0 = 31 =L1"4 SdIH (@
‘g SAIH(q *V SJIH(e :sutens w211 18 SJIH Ul UONEIusL() 928l SNSIaA “(9)D ‘uonoun,{ UOHNQIISI(] dANR[NWNY :[[°€"6 NI

(0)

[ea1beq) &
0F 03 or b4 0 oz- hts 09- o8-
SBO00—* p—
£LLo0=2 A
z00=3 |
EUOD=2
\DE o
4 SdiH £
son== - st =
|
i - 0ac =
gg=2 “ XNTAO
By .._. =L - (o
L osc Phe N
[ w
—..OHD
L oog
(a) (e)
[sas63Q] ¢ [aa16aQ] &
oz - or- c9- 98- 08 Qg or- 0a- 08-

SE00°0 =3
3 SdiH 2 wo-2 ¥ SdIH @
2 5
* £00=3 by
x z
s 8

) - XCMO 20= e ) - ¥EAO
o == 7 i o 2 = =0

(LRI 100=13 e F

o=3




By differentiating the craze orientation distribution function, G(8), with respect to

O the craze orientation density function, g(8), has the following form,

N A
g(e) s \/Er—o‘ e—{b’ﬂn 20 . (94)

For the cases of €= 0.0095, 0.02, 0.05 and 0.1, experimental data for the density
distribution functions, g(B). are given in Fig. 9.3.12. In the figures, symmetry of the
distribution function, g(@), about 6=0° can be seen.

The craze orientation density functions at different strain levels are given in Fig.
9.3.13 and the results for HIPS E and HIPS F are also included.

The characteristic craze orientation.d, which is the angle with the highest

appearing frequency, can be extracted from the experimental data at a given strain level.

Variation of @ with the strain is shown in Fig. 9.3.14, and the results for HIPS E and
HIPS F are also shown. A constant trend for all the HIPS grades can be seen from the
figure: the characteristic craze orientation did not change with the applied strain and was
about 0° (i.e., perpendicular to the loading direction). The initially observed 8 scattering
(around 2° for HIPS A) might be a result of surface and material inhomogeneity causing
microscopic stress variation, in return, a deviation from 0°. The scattering diminished as

the load increased, and crazes grew normal to principal stress direction.
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Figure 9.3.14: Variation of Characteristic Angle, 6, as a Function of the Applied Strain.
[T=RT; & =0.00007 in/in/sec]
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9.4 Craze Damage Development and Associated CDM Parameters

In this section, the results of experimental and theoretical study on damage
mechanics are presented. Mechanical property degradation with crazing is reported.
Craze damage accumulation and evolution in HIPS is addressed. Associated continuum
damage mechanics parameters are determined. Possible correlations between microscopic
(i.e.. microstructural craze damage parameters) and resulting macroscopic (i.e., CDM
Variables) craze damage are investigated.

Even though experiments and calculations were carried out for all six HIPS
polymers, the general discussion given in this Section is limited to HIPS A, HIPS E and
HIPS F. Damage mechanics experiments conducted for the grades are shown in Fig.

9.4.1.

HIPS F HIPSE HIPS A

65 4

0 005 a1 015 02 025 03 035 04 0.45 05
€ {iatin]

Figure 9.4.1: Stress-strain Behavior of HIPS with Loading-unloading-reloading
Interruptions. [T=RT; &= 0.00007 in/in/sec]
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9.4.1 Degradation of Mechanical Properties with Crazing

The microscopic craze damage has a preferred orientation distribution, as
mentioned in the preceding sections. This leads to damaged-induced orthotropy (see
Section 7.3) of material properties. In this part, degradations of in-plane material
constants are reported. The Young’s modulus change along the loading direction was
recorded during damage mechanics experiments. Degradations of the other in-plane
properties, Ez, vi2, V21, were calculated analytically, as discussed in Sec. 7.3. In Figs.
9.4.2 and 9.4.3, Young’s moduli and Poisson’s ratio change with the craze damage in
HIPS are shown. In Fig. 9.4.2. significant material softening in the loading direction is
obvious. For example, at a 35% strain, a total stiffness reduction of about 80% from the
reference value was found prior to failure. However, the predicted results revealed no
change in E» with the craze formation and growth implying that there was no softening
in the transverse direction. Supportive numerical findings and experimental observations
are reported [79-81, 126] in the literature.

A similar trend was predicted in Poisson’s ratio change with craze development.
Major Poisson’s ratio, v». degraded with the craze damage, while minor Poisson’s ratio,

31, was found unchanged (Fig. 9.4.3).
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Figure 9.4.2: Young’s Moduli Degradation with Applied Strain.
[HIPS A, T=RT; &=0.00007 in/in/sec]
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Figure 9.4.3: Poisson’s Ratio Degradation with Applied Strain.
[HIPS A, T=RT ; £=0.00007 in/in/sec]
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9.4.2 Craze Damage Accumulation and Evolution

In Fig. 9.4.4, craze damage development in HIPS under increasing strain in air at
room temperature is shown. The craze damage, Dii. increased rapidly over the first 2%
strain then kept increasing slowly to 25% strain. At a later stage of deformation, damage

accumulation rate started increasing again until the HIPS failed at the end.

00 005 g0 G015 020 025 830 035 040 045 050
E {infin]

Figure 9.4.4: Craze Damage Development in HIPS Under Increasing Strain.
[T=RT: &= 0.00007 in/in/sec]
The severity of craze damage is related to its microstructure parameters (i.e.,
craze density, size, orientation and their distributions). The craze density is the number of
crazes per unit volume. Its formulation is given in Chap. 5. In the study, the craze

population, size and orientation data were acquired up to 10 % strain, and some of the
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results have already been reported in Sec. 10.3. In this part, possible correlations between
the craze damage microstructure parameters and CDM variables are reported.

In Figs. 9.4.5 and 9.4.6, variation of craze damage with craze density, A, and
characteristic craze length,l”, up to 10% strain are shown, respectively. Damage
accumnulation with craze density was not linear and increased slowly. However, the craze

damage increased somewhat linearly with characteristic craze length.

08 4

©
m -
o

0 80 100 150 200 250 300

A pri0® #tmm®]

Figure 9.4.5: Craze Damage Accumulation with Craze Density.
[T=RT; & =0.00007 in/in/sec]
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Figure 9.4.6: Craze Damage Accumulation with Characteristic Craze Length.
[T=RT; & =0.00007 in/in/sec]

When all three HIPS grades were considered (Fig.9.4.4). at any given strain, less damage
was developed in HIPS F. Fracture of HIPS A and HIPS E did not occur until Dy,
approached 90%. For HIPS F, fracture occurred at D;, less than 75%. Apparently, the

HIPS with a higher craze density but shorter craze sizes was more resistant to craze

damage accumulation.

9.4.3 Thermodynamic Driving Force for Craze Damage Development

Thermodynamic driving force, -Y1, corresponds to the energy released during

craze growth as a result of craze formation. The thermodynamic driving force for craze



development in HIPS under an increasing strain at room temperature is shown in Fig.
9.4.7. The damage strain energy release rate increased continually with the applied
loading. As expected, relationship was not linear because of the nature of the Eq. C .3 (see
Appendix C).Thermodynamic driving force méy be correlated to the applied stress and
the corresponding damage state. It is, indeed, a quadratic function of the applied stress
(Sec. 7.3.3). In Fig. 9.4.7, at any given strain level, the magnitude of strain energy release

rate for HIPS A was found to be larger compared to HIPS E and HIPS F.
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Figure 9.4.7: Thermodynamic Driving Force for Craze Development in HIPS under
Increasing Strain. [T= RT; ¢ = 0.00007 in/in/sec]

In Fig. 9.4.8. the relationship was determined for HIPS between craze damage and

the thermodynamic driving force. The craze damage increased quickly with increasing

thermodynamic force.



05
=
o
04

a3
02
01

0o
a

Figure 9.4.8:

In Figs.

HIPSF HIPSE HIPS A

Yy 2 10° tm’]

Craze Damage Developments in HIPS under Increasing Thermodynamic
Driving Force. [T= RT; ¢ = 0.00007 in/in/sec]

9.4.9 and 9.4.10. craze density, A, and the characteristic craze length, ?

change are correlated with the thermodynamic driving force.
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Figure 9.4.9: Craze Density as a Function of Thermodynamic Driving Force.

[T=RT; & = 0.00007 in/in/sec]
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Figure 9.4.10: Characteristic Craze Length as a Function of Thermodynamic Driving

Force. [T=RT; & = 0.00007 in/in/sec]

As can be seen from the figures, the values of craze density and characteristic

craze length both increased with an increasing thermodynamic driving force.

9.4.4 Craze Damage Evolution Rate

Craze damage evolution gives physical processes of craze damage development.

The rate of change of craze damage may be evaluated from the mechanical property

degradation data obtained in the damage mechanics experiments. The craze damage

evolution of the HIPS was determined in the study from the damage accumulation results.

In Figs. 9.4.11 and 10.9.12, craze damage evolution in HIPS is given. The results show
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that the craze damage rate changed with the applied loading in a complex manner. The
craze damage rate increased sharply and reached its peak value around 1% strain which is
the limit of thermodynamic reversible deformation. The craze damage rate decreased
immediately with the material hardening with sﬁbsequent slow down. The craze fibrils in

the loading direction might have provided additional load carrying and material

resistance.

45 -
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Figure 9.4.11: Craze Damage Rate, D,, , in HIPS under Increasing Strain.
[T=RT; & = 0.00007 in/in/sec]
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Figure 9.4.12: Relationship Between Craze Damage Rate in HIPS and Thermodynamic
Driving Force. [T=RT ; & =0.00007 in/in/sec]

In Figs. 9.4.13 and 9.4.14, the craze density change and craze growth rate are

shown. In the figures, the decreases in the rate of formation of new crazes and their

growth are obvious. The craze damage rate characteristics for all grades were similar

except at the early stage of deformation. where higher rates were observed for HIPS E.
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Figure 9.4.13: The Rate Change of Craze Density in HIPS Subjected to Increasing
Strain. [T=RT: & =0.00007 in/in/sec]’
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Figure 9.4.14: Craze Growth Rate versus Strain. [T=RT; ¢ = 0.00007 in/in/sec]
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9.5 Effect of Microstructure on Craze Damage

Mechanical properties of HIPS depend on the microstructure of the HIPS.
Controlling the volume fraction. properties, size and dispersion of the second phase in the
HIPS polymer are critical to achieve a desired HIPS microstructure. The effects of
particle size and distribution on craze damage in the HIPS are studied and reported in this
section. Four HIPS grades were investigated comparatively. Among the cases studied,
two HIPS grades had similar particle sizes but with different dispersions, and other two
had similar particle dispersions but with different sizes. The statistical nature of craze
formation and evolution, as well as craze damage and its evolution, under uniaxial
loading were evaluated. The relationships between microscopic statistical features and

continuum damage mechanics results for the HIPS were addressed.

9.5.1 Effect of Rubber Particle Size

Mechanical properties of rubber-toughened polymers are recognized to be
affected by the size of the second-phase particles. For the convenience of the study. the
amount of occluded particle was kept fixed, the effect of rubber particle size was studied
here. For example, the number of reinforcing particles increased, when the particle size
decreased; thereby more stress concentration sites for craze formation were generated.

In this part, results for the two HIPS grades, namely HIPS C and HIPS D. with
similar particle size distributions but different sizes are presented. A summary of

chemical compositions and selected mechanical properties of the HIPS polymers is given
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in Tables 4.1.1 and 4.1.2, respectively. The microstructures of the polymers are shown in
Fig. 4.1.1 and corresponding particle size distributions can be found in Appendix A (Fig.
A3) after Saltykov’s correction [59]. In Table Al, statistical parameters of the rubber
particle size distributions are also given.

Stress-strain responses of both grades of the HIPS were compared and shown in
Fig. 9.5.1. Apparently, the two HIPS polymers were relatively close in terms of their
mechanical responses to applied loads. Both of the HIPS grades had similar chemical
compositions and microstructures; thus, their mechanical properties were comparable.
These experiments were conducted under the same conditions. [Samples were loaded in a

strain-rate control mode (& =0.00007 in/in/sec) in air at room temperature until

failure.]

o9 3
s {1 \ HPSD ©,4=6.7 &

® HPSC f4(cp)

o [Ksi]

where

To(®) = (D)

05 1

. sme  am T T L
zfodn]

0 0.05 o1 D13 Q2 0% 03 03 04 045 0s
€ [infin]

Figure 9.5.1: Stress-strain Behavior of Selected HIPS. [T=RT;£= 0.00007 in/in/sec]
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Microscopic craze features were observed and given in Figs. 9.5.2 and 9.5.3. In
Fig. 9.5.2, the craze density, A, was found to be associated with the applied strain,g, the
damage variable, Dy, and the thermodynamic force, -Y: A increased with & and -Y,.
The relationship between the damage variable, D1, and the craze density was found to be
nonlinear. At a given strain, the craze density was higher in HIPS C, but the amount of
damage in the two HIPS appeared to be close (Fig. 9.5.3). In Figs. 9.5.4 and 9.5.5,

Weibull's parameters for craze size distribution functions are determined.
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Figure 9.5.3: Craze Damage Developments in HIPS under Applied Strain, €.
[T=RT; ¢ =0.00007 infin/sec]
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Figure 9.5.4: Weibull's Shape Parameter,c. for Craze Length Statistics in HIPS
Polymers. [T=RT; & = 0.00007 in/in/sec] ‘
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Figure 9.5.5: Weibull's Scaling Parameter, B, for Craze Length Statistics in HIPS
Polymers. [T=RT; ¢ =0.00007 in/in/sec]

The HIPS C had slightly lower scaling parameter. f. at a given applied strain.

Based on Fig. 9.5.5. a similar distribution of craze size was expected in the HIPS

polymers, as shown in Fig. 9.5.6, where the characteristic craze length changed with the

applied strain, thermodynamic force, and the resulting damage, Dy.
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9.5.2 Effect of Particle Size Distribution

Occluded particle dispersion is an important factor in toughening the PS polymer.
Owing to its inherent complexity, the effect of particle size distribution on toughening is
not completely understood. Earlier studies [53, 61] have been conducted mostly on
simpler systems like those with a binomial size distribution.

In this section. HIPS polymers with similar average particle sizes but with
different size distributions were studied and results are presented. The chemical
compositions and mechanical properties for the test grade HIPS, namely HIPS A and
HIPS B. are given in Tables 4.1.1 and 4.1.2, respectively. The HIPS material
microstructures are presented in Fig. 4.1.1, and the associated particle size distributions
can be found in Appendix A (Fig. A2) [with Saltykov’s correction[59]]. Also. in Table
Al, statistical parameters of the rubber particle size distributions in HIPS are summarized
and presented. |

In Fig. 9.5.7. stress-strain behavior of the HIPS polymers is shown. Their
mechanical properties were close, owing to similar chemical compositions and
microstructures. All experiments were conducted in the same conditions. [Samples were

loaded in a strain-rate control mode (£ =0.00007 in/in/sec) in air at room temperature

until failure.
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Figure 9.5.7.: Stress-strain Behavior of HIPS P;olymers.
[T=RT; ¢ = 0.00007 in/in/sec]

Comparisons of microscopic craze formation and growth characteristics between
the two HIPS are given in Figs. 9.5.8 and 9.5.9. Craze density changes with the applied
strain,e, damage variable, Dy, and thermodynamic force.-Y),, are determined shown in
Fig. 9.5.8.

As anticipated, the craze density in the HIPS increased with the applied strain and
the thermodynamic driving force, but its rate of change decreased. Again, the craze
density change with the damage variable, Dy;, was nonlinear. While a higher craze
population was observed for HIPS A, damage developments for both grades were fairly

close as shown in Fig. 9.5.9.



LElL

[oas/ui/ut £0000°0 = 2 ‘1Y =L] 99104 SuIAL(] STBUAPOULIAL],
wpun (0 i ‘eFeweq i uopey (q “ureng Suisearou] fapup) (B sIWAOJ SIIH Ul ATURYD ANsus(q 9zer) "8°6'6 ANBL

Ly ¢ D1 YA~

:_“_
¥ £ < 8 K] 1 )
R ; 3 0 . 4
o
+ or
st B
. Lz 2,
I x
#®
e 2 1 5
@ . Zr 2
g SIH L oct I 102
L] \
F S
)" ﬁ ©
¥ I 09t _. iz
(o (q
fupur] 2
LD (] 80O 900 e c00 o]
¥ . . R : 0
or
-
=
X
L8 3
F 0gh
QoL Am
- - [ ] - [ ]



08 q

e 803 3
07 - ‘ ! '

0e

B ¢

4

<D
L= ]
<«

05 A

HIPS B HIPS A
- B 5

So4im fAP) (@)
¢
034 @
]
a2 ;
a
01 '}

o0oa 005 010 015 020 025 030 035 040 045

Efinfin]

Figure 9.5.9: Effect of Particle Size Distribution in HIPS on Craze Damage Subjected to
Increasing Strain. [T=RT: & = 0.00007 in/in/sec]

Weibull’s shape and scaling parameters of craze-length distributions in HIPS A
and HIPS B are presented in Figs. 9.5.10 and 9.5.11, respectively. The HIPS A had a
slightly larger shape parameter. whereas the HIPS B held a higher scale parameter. In
Fig.9.5.12, the characteristic craze length development is shown with an increasing strain,
thermodynamic force and damage variable. Dy;. Characteristic craze length exhibited
similar trends: it increased gradually and eventually reached an asymptotic value. The

relationship between the damage variable, Di1. and characteristic length appeared to be

linear with a larger craze size, 7 , in HIPS B.
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Figure 9.5.10: Weibull’s Shape Parameter, . in HIPS Polymers.
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Figure 9.5.11: Weibull’s Scaling Parameter, B, in HIPS Polymer.
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9.6 Effect of Orthotropic Nature of Craze Damage in HIPS Polymers

An orthotropic damage theory has been formulated in Sec. 7.3 based on
continuum damage mechanics. From the theory and experimental observations, crazes
grow perpendicularly to the maximum principal stress direction and craze damage
becomes highly orthotropic. A similar problem of a polymeric solid with aligned cracks
has also been previously studied, for example, Refs. [127-131]. The case of aligned
microcracks may be viewed as the limiting case (in theory) of aligned crazes distributed
in the polymer. A comparison of these two problems (Fig. 9.6.1) sheds light on the nature

of craze damage in glassy polymers.
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Figure 9.6.1: A Comparison of a Cracked and a Crazed HIPS Polymer.
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In Fig. 9.6.2, damage variable, Dy;, obtained by current theory and various crack

models is shown. Experimental results are also included for comparison.

1721
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Figure 9.6.2: Craze Damage Variable, Dy, in HIPS under Increasing Strain, €.
[Experimental data, theoretical results and comparison with various crack

models].

It is clear from the figure that the experimental data and the results from the craze
mechanics theory developed in Sec. 7.3 are consistent. The results from different
micromechanics crack approaches apparently overestimate the damage effect by the
distributed crazes. Different than both the differential scheme and Mori-Tanaka’s
method, the homogenization theory [116] accounts crack interactions through periodical

boundary conditions of the unit cells. Homogenization theory on aligned microcracks



provides the results initially close to experimental data. However, at higher loads, it
overestimates the effect, as expected.

In Sec. 7.3, a craze damage tensor has been introduced; thus, the non-zero damage
components, Dyj, D3, and Dgs, give the orthotropic nature of the craze damage. The
subscript <17 represents the direction normal to the plane of a craze. Dy and Dgg are
related to Young’s modulus and shear modulus degradations. Dy is a coupling term
caused by the Poisson's effect. It represents the material property change in 17 direction
due to the presence of crazes in the orthogonal direction. In Fig. 9.6.3, damage variables,

Dy, and D, are determined for the HIPS craze problem with the aforementioned craze

damage.
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Figure 9.6.3: Orthotropic Damage, Dj;, in HIPS under Increasing Strain, €.
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In the following figure, Fig. 9.6.4, the results for the HIPS with parallel cracks are

also included for comparison.

Do { Homogemza non — Crack)

D= (CDM — Craze)
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R - - -
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o2 025 63 035 04

€ [indn]

Figure 9.6.4: Orthotropic Damage, Dy;. in HIPS under Increasing Strain. &.
[Results from micromechanics crack approaches are also given for
comparison].
The craze damage evolution in the HIPS is studied by direct differentiation of the
damage growth in Fig. 9.6.3. The results are shown in Fig. 9.6.5 in which the

experimental data obtained in the study are also included. In Fig. 9.6.6, related

microcrack damage evolution curves are included for comparison.
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Figure 9.6.5: Orthotropic Nature of Damage Evolution in HIPS Polymers.
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Figure 9.6.6: Orthotropic Nature of Damage Evolution in HIPS Polymers.
[Results from micromechanics crack approaches are also given for

comparison].
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The associated thermodynamic driving forces for craze growth in the HIPS, -Y),
Y1, -Yee, are derived in Sec. 7.3. In a uniaxial damage mechanics experiment, their
values are shown in Fig. 9.6.7. As expected, crack models conferred greater results and
strain energy release rates are higher for parallel cracks compared to crazes. Possibly,
load bearing fibrillation between craze surfaces augments the damage endurance and

results in an additional craze damage resistance.
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Figure 9.6.7: Orthotropic Nature of Thermodynamic Craze Damage Driving Forces in
HIPS.
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9.7 Craze Initiation

Micromechanics on craze development in particle-filled HIPS polymers has been
carried out with finite element methods. Effects-of volume fraction and size distribution
of occluded particles on craze formation in HIPS have been investigated. In Chapter 8,
two dimensional micromechanics models have been introduced to determine local stress
and deformation fields associated with the embedded occluded particles for craze
initiation. Comparative evaluation has been made on craze formation in HIPS polymers

with different sizes and volume fractions of the rubber toughened PS systems.

9.7.1 Volume-Fraction Effect of Occluded Particles

A finite element model is used to investigate the particle volume fraction effect on
craze formation in HIPS polymers. HIPS polymers with three different volume fractions
are considered (Fig. 9.7.1). The HIPS is subjected to a nominal tensile stress along the
axial direction. Eight-node, quadrilateral elements with displacement based formulation
are used in the micromechanicg modeling (Fig. 9.3.2). A plane stress condition is
assumed. [The difference between the plane stress and plane strain assumptions is
approximately 10%. A case study in which results of the plane stress and plane strain
conditions are compared is given in Appendix E.]

Numerical results are presented in terms of local stress concentration factors, i.e.,
ratios of the local stresses to the applied nominal stress. Stress concentrations are shown

as a function of particle volume fraction at the locations of interest.
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V,=0.05 V,=0.25

Figure 9.7.1: Representative Volume Element in HIPS with Different Particle Volume
Fractions.
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In Fig. 9.7.2. contours of stress concentration. —2 and the maximum principal
o

ow

o : . :
mx are shown for the case of an HIPS with a 25% volume fraction of particles.
o

=

stress,
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The highest stress concentration OCCUIs at the equator of the occluded particle.

The maximum principal stress also occurs parallel to the applied stress at the equator.

This is illustrated in Fig. 9.7.3 in which maximum principal stresses around a particle at

different circular paths are shown. Previous theoretical predictions and experimental

results [88., 120. 132-134] are in accord with the findings, indicating craze initiation and

growth are most likely to start from a particle equator.
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Figure 9.7.3: Maximum Principal Stresses and Their Directions at Various Circular Paths
Around an Occluded Particles. (Uniaxial Nominal Stress )
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In Fig. 9.7.4, the maximum principal stresses (in a vector form) are shown around

an occluded particle.

/
3{'\'
*Z.L

IEEEe

Figure 9.7.4: Maximum Principal Stress and Craze Growth Directions. (V= 0.25:
Uniaxial Nominal Stress )

Blue arrows in the figure (Fig.9.7.4) are representing the local principal stresses
while red lines. normal to the principal stress directions, are drawn to illustrate possible
craze directions. (Lengths of the lines are proportional to their magnitudes.)

The maximum stress concentration increases with the occluded particle volume
fraction (Fig. 9.7.5). Assuming that the size of the particle is uniform, an increase in
particle volume fraction results in a higher number of particles with shorter inter particle
distance; thus, promotes particle interaction; hence, higher stress concentrations. Also,
having a uniform size, all the particles have the same probability to initiate a craze. Two
limit cases, i.e.. unmodified polystyrene and polystyrene with holes, are also shown for
comparison. The stress concentrations are noted to decrease as the occlusion

(polystyrene) amount in the rubber particle increases (Fig. 9.7.6).

152



€51

'SUOTIORI] AN[OA JUAIAJJIC YNM SJTH UL 3[21Te ] € JO Jojenbg 9y} 18 suonenuaouo)) ssaig :§°L°6 an3ig

I%l'A
09 0% ay i oz oL 0 ;
L1
o0=8
g=| ®p
@, = X Lz
(ue)
s L"... I MM
i
Ly
|
(ompouopy  Scl we—
L]
J10H %
VELLILLLGGs SdH e
"% ﬁ
g
= e



501

43 1

AV(=25%

191 BVI=35%

24 ] BVI=13%

301

Kt

257

104

HIPS

05 A

0.0 . : - : .
0 02 04 06 08 1 12
E,/En

Figure 9.7.6: Stress Concentrations at a Particle Equator in HIPS with Different
Occluded Particle Moduli.

In Figs. 9.7.7 and 9.7.8, stresses around an occluded particle are shown in polar
coordinates for an HIPS with a particle volume fraction of 0.25. The radial and shear
stresses at the interface (i.e., in the resin and in the particle along the interface) are
continuous. The only significant stress component is the circumferential stress, ogg, in the
matrix and it has its maximum at the equator. Its value decreases towards particle’s pole
and becomes negative around 63°. Similar trends are found in the HIPS with other
volume fractions. At a lower volume fraction, the value of the circumferential stress

converges to -1 (its theoretical value).
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In Fig. 9.7.9, the maximum principal stresses in the PS matrix around an occluded
particle in HIPS with various volume fractions are presented. In the figure, the right-hand
y-axis shows the directions of the maximum principal stresses. As can be seen, the
maximum principal stresses increase with the particle volume fraction and their
directions are parallel to the applied load direction, both at the equator and at the pole.

Stress distributions in the polystyrene matrix containing occluded particles are
found to be similar to the ones containing holes. This can be seen in Fig. 9.7.10 in which
the maximum principal stresses in the matrix are compared along particle-matrix and

hole-matrix interfaces.
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The stress field between occluded particles is given in Fig. 9.7.11. In the figure,

the horizontal axis represents the normalized, center to center, half distance between the

y X . D
particles. For example, 5 =1 corresponds to the polystyrene matrix-particle interface.
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Figure 9.7.11: Stress Field Between Occluded Particles in HIPS Polymers.

As can be seen, shear stresses are zero due to symmetry and the value of &} is not
significant in the occluded particle. Only a small amount of stress is transmitted to the
occluded particles. The stress component, G2z, has a maximum value at the interface and

its value drops away from the particle.

In Fig. 9.7.12, the maximum principal stress distributions between particles in
HIPS with various volume fractions are shown. The right vertical-axis indicates

directions of associated stresses.
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Figure 9.7.12: Maximum Principal Stresses Between Particles in HIPS at Various
Volume Fractions.

The maximum principal stresses increase with the particle volume fraction,
possibly, as a result of the shorter interparticle distance and particle interaction. However,
the maximum principal stress directions are all the same in the applied load direction.
The highest principal stress is at the particle interface; even though, it gradually decreases
away from the particle.

Theoretically, stresses inside of the occluded particles need to be uniform [87]
and almost perfectly hydrostatic in this case. This is because of high Poisson’s ratio of the

occluded particles (voc is around 0.4) and the applied tensile stress state. At relatively
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high volume fractions and for less complaint particles, stresses inside of the occluded

particle are not always uniform. This can be seen clearly in Fig. 9.7.13.
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9.7.2 Effects of Particle Sizes and Interactions

In this section, the effects of particle sizes and their interactions on craze
formation in HIPS are explored. In this study, a bimodal distribution of occluded particles
is considered as it has been commonly used in toughened polymers. Thus the
micromechanics model addresses a HIPS with a homogeneously distributed rubber
particles with two different sizes embedded in polystyrene matrix. Details of the
computational micromechanics modeling are given in Section 8.1.2. [n a representative
volume element as shown in Fig. 9.7.14, a particle of diameter 2r; is placed next to the
- second particle of diameter 5u. which is the average diameter of occluded particles in
HIPS. Various bimodal systems in the HIPS are investigated by changing the bimodal
ratio, k (Fig. 9.7.14). Numerical examples on a HIPS with a bimodal distribution of
particles (Vy = 25%) are conducted in the study. A uniform nominal displacement
boundary condition corresponding to a unit axial stress is applied on the upper boundary

of the representative volume element.
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Figure 9.7.14: Representative Volume Element of Bimodal Particle Distribution in HIPS
Polymers.
Results are presented in terms of stress concentrations. the ratio of local stress to

the nominal stress, and the maximum principal stresses.

In Fig. 9.7.15. maximum Sstress concentrations change with the first particle size,

ri, are shown at particles-matrix interfaces.
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In the HIPS polymer with particles of bimodal sizes, the maximum stress
concentration is obtained at the equator of the larger particle. Its value increases with
particle size and reaches a maximum at k= 2.3 (Fig. 9.7.15). In fact, this is the critical
bimodal ratio which gives the smallest interparticle distance, i.e., the surface-to-surface
distance between two particles for V¢=25%. As the first particle size increases further,
the maximum stress concentration factor at A (see Fig.9.7.15) start to decrease. As
expected, maximum stress concentrations are the same for k=1 (mono-modal particles in
HIPS). After this point, the size of the first particle is larger than the 5 micron diameter:
thus, higher stress concentrations are observed at the equator of the first particle, i.e.. the
larger particle.

Conclusively. stresses are concentrated at the equator of a large particle.
Therefore, crazes may be initiated at the large particle’s equator. The same phenomenon
has been observed under a transmission electron microscope and reported in the literature
[48, 53].

In the four selected bimodal ratio. the contour diagrams of stress concentrations
and the maximum principal stresses are shown in Fig. 9.7.16. These figures represent a
full description of the stress state in HIPS with bimodal particles.

In Figs. 9.7.17 and 9.7.18. the corresponding maximum principal stresses around

particles are shown with their associated directions.
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In the figures, the left vertical-axis gives the maximum principle stress. The right

vertical-axis shows their associated directions.

In Fig. 9.7.18, the highest maximum principal stress occurs at the particle’s
equator along the particle-matrix interface in a monomodal HIPS (k=1). Its direction is
parallel to the applied load, with a value decreasing gradually from the equator to the
pole. As mentioned before, in a bimodal HIPS, the highest maximum principal stress is
found at the large particle’s equator (i.e., the second particle). However, for the small
particles. depending on the bimodal ratio, a higher local maximum principal stress is
found at the particle’s pole (Fig. 9.7.18, k=5 and k=10) rather than that at its equator.
Along the small particle-matrix interface, the direction of the maximum principal stress
decreases from 90° at the equator (where 0 = 0°) to 0° at the pole (where 6 = 90°).

In Figs.9.7.19, 9.7.20 and 9.7.21, maximum principal stresses are shown along
three different paths, i.c., along the x-axis, along the y-axis and along the first diagonal
(along the r direction at 6 = 45°). Again. in the figures. the right y-axis is for the stress

and the left y-axis is for its associated stress direction.
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A uniform, maximum principal stress is found inside of the particles. Different
from the Figs. 9.7.19 and 9.7.20, the distributions of principal stresses in Fig. 9.7.21 are
symmetric to its diagonals. In the figure, the solid lines represent the highest values, i.e.,
values at the equator of the large particle. Thus, the large particles are crucial for craze
formation. In Fig. 9.7.22, distributions of the maximum principal stress are shown in
representative volume elements of different bimodal HIPS systems. In the figures, blue
arrows represent the maximum principal stress vectors whereas red lines show the
possible craze directions. The length of each craze line is proportional to the magnitude

of the maximum principal stress.
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9.8 Interaction among Crazes Emanating from Rubber Particles

In this Section, a micromechanics study on interaction of crazes emanating from
adjacent rubber particles (Fig. 9.8.1) is reported. The maximum principal stresses and
possible craze growth trajectories are obtained in a vicinity of a craze tip emanating from

occluded particles.

Representative Volume
Element

Figure 9.8.1: Interaction of Crazes Emanating from adjacent Rubber Particle in HIPS
Polymers.

The maximum principal stress criterion is used to estimate the craze growth direction in a
HIPS polymer with a rubber particle volume fraction of 25%.Computational
micromechanics are carried out for HIPS polymers with mono-modal and bimodal
particle systems. Nominal displacements on representative elements for these cases are
made, using the damage variables obtained at selected strain levels. Details of the

micromechanics modeling are discussed in Section 8.2.2.
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In Fig. 9.8.2, the maximum principal stresses and possible craze growth and new
craze formation are shown in the vicinity of existing crazes emanating from rubber

particles in a HIPS polymer with mono-modal particle dispersion (.= 0.0085).
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In the figure, maximum principal stresses are shown in blue and new craze
formation and growth in red. All particles have the same size; thus, the same probability
to have crazes. At €, = 0.0085, the length of each craze is estimated to be 3.7 pm, based
on the craze statistics experiments reported in Section 4.2.

High stress concentrations occur at the craze tip and, craze growth and new craze
formation are expected to occur in the direction perpendicular to the principal stress
direction. SEM micrographs (Fig.9.8.3) taken from a 25% particle filled HIPS reveal the
craze growth and formation patterns that are suggested by the micromechanics results

(Fig. 9.8.2).

Figure 9.8.3: Initiation of Crazes Emanating from Rubber Particles in HIPS Polymers.
[V=0.25; e=0.35]

In Fig. 9.8.4, interaction among crazes and their growth around the rubber

particles are shown in a mono-modal dispersed rubber-particle filled HIPS polymer under
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two different levels of strain. At £, = 0.01, a larger initial craze length and nominal load
are employed in the micromechanics modeling, based on experiments in assessing craze

statistics and craze damage.

a) ¢,=0.0085 b) £_=0.01

Figure 9.8.4:Maximum Principal Stress (blue) in the Vicinity of Crazes Emanating from
Rubber Particles and Possible Craze Formation and Growth (red) in HIPS
at: a) €, = 0.0085; b) &, = 0.01. [V=0.25; Mono-modal, k=1, Particle
Dispersion]

In Fig. 9.8.5, interaction of crazes emanating from rubber particles and potential
craze formation and growth paths around rubber particles in a bimodal dispersed rubber
particle filled HIPS (k=2) are shown at a loading level, &, = 0.0085. In the
micromechanics model, only larger particles emanate crazes (based on the results

obtained in Section 9.7.2). Compared to the mono-modal dispersion HIPS, two crazes are

introduced at the equator of the larger particles. Computational micromechanics
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procedures used are the same as those carried out in the craze interaction problems on

mono-modal dispersion HIPS polymers.
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As can be seen in Fig.9.8.5, the interaction of crazes emanating from particles
affects new craze formation and growth in the bimodal HIPS. The bimodal HIPS system
does not have a microstructure symmetry. The craze interaction affects the local stress
field (Fig.9.8.6) and may cause a shift in the craze growth and formation. Craze

formation and growth are not orthogonal to applied load direction.
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In Fig. 9.8.6, around the particle and in the vicinity of an existing craze,
maximum principal stresses and possible craze formation and growth trajectories under
uniaxial tensile load are shown. Blue arrows are the maximum principal stress directions
and red lines are possible craze formation and growth trails. The stress field shown in the
figure corresponds to the applied nominal load of 1.86 ksi and all the obtained maximum
principal stresses are shown. However, only the ones exceed the yield stress of
polystyrene (Gys = 6.6 ksi) will cause craze formation. In Fig. 9.8.7 (a), those maximum
principal stresses higher than the polystyrene yield stress are given along with the crazes
formed at several load levels. Craze damage growth under three different loading, i.e.,
e,= 0.0085, £,=0.01 and &,= 0.02. are investigated and possible craze damage zone
growth is shown in Fig. 9.8.7(b). In micromechanics modeling, employed nominal
displacements are based on obtained damage variables at given strain levels. Also, at a

given strain level, characteristic craze length, 1, and thickness, 8, are estimated from

direct microscopic observations (see Section 4.2).
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In a HIPS polymer with a stationary craze emanating from a rubber particle, new
crazes are formed adjacent parallel to the existing one under an increasing load. Craze
damage appears to grow both upward and forward. The evolving craze damage zone

eventually gets connected to the next cne and causing large stress whitening areas as

observed in experiments.

Comparisons the case of k=2 with those of k=1 and k=10 (V=0.25 and
£,=0.0085) reveal that the bimodal (k=2) HIPS system is more critical in that the
maximum principal stresses and the corresponding craze growth zone size are greater
than those of k=1 and k=10. For the k=1 and k=2 cases, maximum principal stresses and
craze damage formation in the craze-tip vicinity are shown in Figs. 9.8.8 and 9.8.9.

respectively.
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10. CONCLUSIONS

Craze damage development in high-impact polystyrene (HIPS) has been studied
experimentally, theoretically and numerically from continuum and microscopic points of
view. The following conclusions have been drawn based on the results obtained in the
study:

1. A series of monotonic tensile experiments have been conducted. Important
microstructure parameters, e.g., craze density, orientation, size and their
distributions have been obtained during craze damage evolution in HIPS.

2, A proper experimental method, using a loading-unloading-reloading test scheme,
has been introduced. Macroscopic craze damage development and resulting

property degradation of HIPS have been measured.

38}

Microscopic craze damage evolution in HIPS can be characterized by density and

cumulative distribution functions of craze length and orientation.

4, Cumulative and density distributions of craze length can be described with a
three-parameter Weibull-form function. The Weibull shape and scale parametess,
o and B, are found to be related to the craze density, size and the nature of craze
growth. Cumulative and density distributions of craze orientation followed the
standard Gaussian distribution function.

5 A comparative study on micromechanics of rubber toughened polymer has been

made for proper evaluation of effective properties of occluded particles in the

HIPS.
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A generalized SCM, including incompressible polybutadiene matrix in occluded
particles, has been used to account for the HIPS microstructure details.
Constitutive properties used in the micromechanics formulation have been
modified to include the mineral oil effect.

The effect of craze damage on mechanical property degradation has been studied
with the aid of experimentally measured modulus reductions. The maximum
degradation of the modulus is about 20%. Transverse Young modulus, E, and
Poisson’s ratio‘, vy1, are not expected to change with the craze formation and
growth under uniaxial tensile loading.

Craze orthotropy has been investigated with a craze damage model, based on
continuum damage mechanics formulation. A fourth-order damage tensor
representing material degradation and coupling between damage variables (e.g.,
Dy, and Dy;) has been derived. The effective stress concept and the strain
equivalence principle are employed to formulate constitutive equations of the
damaged polymer. Also, thermodynamic driving force for craze damage growth is
obtained using a complementary strain energy density function.

Computational micromechanics modeling, based on a finite element method, has
been developed to study the influence of the occluded particle volume fraction
and size distribution on craze formation in HIPS. The maximum stress
concentration increases with the occluded particle volume fraction, but decreases
as the occlusion (polystyrene) amount in the rubber particle increases. In a HIPS

polymer with occluded particles of bimodal sizes, the maximum Stress
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concentration is found to be located at the equator of the larger particle. Thus,
crazes are expected to initiate at the equators of large particles.

Craze interaction has also been modeled with the HIPS microstructure and craze
geometry. The associated craze growth characteristics in HIPS have been studied.
In a HIPS polymer with mono-modal particle dispersion, craze growth and new
craze formation are found to occur in the direction perpendicular to the maximurma
principal stress direction. In a bimodal HIPS system, craze interaction affects the
local stress field and causes a shift in the craze growth and formation The strong
interaction causes craze formation and growth not to occur orthogonal to applied
load direction. The crazes appear to attract and grow into each other under

increasing loading.
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11. FUTURE RESEARCH

The following recommendations may be considered in the future research to
extend the current experimental, analytical and numerical studies on investigate craze
damage development in HIPS:

1. he predicted in-plane properties, Ez, Vi, var, need to be validated with
additional experiments. Development of new experimental methods is essential to
assess the damage components, Dy and Des and to confirm the analytical

estimates.

o]

Non-zero thermodynamic driving force components, -Yi, -Y31, associated with
the corresponding damage variables have been formulated. However, the critical
thermodynamic driving force, Y which is a measure of material damage
resistance has not been measured. It is essential to develop new experimental
methods to measure Y.

8. The orthotropic damage formulatior based on continuum damage mechanics
(CDM) fer uniaxial loading can be extended to general anisotropic damage in
multiaxial loading states.

4. Constitutive equations of the damaged polymer have been derived for only
uidaxjal tensile loading condition. Further studies are necessary to expand the
study to cover various loading conditions.

5. In computational micromechanics modeling, occluded particles are assumed to be

miscible and effective material properties are used (ignoring polystyrene sub-

inclusions; hence, it’s real microstructure). It is also assumed that the particles are
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perfectly bonded to the matrix and dispersed in a regular arrangement. Current
models need to be improved to account all of these.

The occluded particle size effect has been studied considering a bimodal HIPS
only. General models, which include other particle size distributions, are needed
to ascertain the relationship between the particle size dispersion and the craze
formation.

This research has covered only a small aspect of craze damage in HIPS. All the
experimental methodé, theoretical and numerical analyses have been formulated
for the simple, uniaxial tensile loading condition in air at room temperature. Craie
development in HIPS subjected to other environments (i.e., temperature, fluid

etc.) and stress states should also be investigated.
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13 APPENDICES
APPENDIX A: Rubber Particle Size Modification

Accurate rubber particle size distributions data are necessary to investigate
second-phase particle size and distribution effect. There are two commonly used methods
to measure particle size distributions: Light-scattering Method and Image Analysis
Method.

These methods are approximate. The light-scattering is based on measurements
done in a liquid suspension (Toluene or MEK) which causes particle swelling; thus,
observed particle sizes and corresponding distributions are not accurate. Image analysis
method is a direct method; however, three dimensional particle size distributions are
estimated from size dispersion data extracted using 2-D images.

In the study, occluded particle size distributions measured by light-scattering
method are corrected by a correction factor, a swelling factor, given by R. A. Hall [1067].
He studies swelling of rubber particles in MEK solvent experimentally and gives an
estimated swelling factor of 1.64. Also, occluded particle size distributions extracted
from AFM images are corrected via Saltykov’s Method. Details of the correction
procedure are given elsewhere [59].

In Fig.Al, measured occluded particle size distribution (by light-scattering
method) and particle size dispersion data (by AFM imaging analysis) are shown for HIPS

A. In the figure, corrected particle size distribution curve and size dispersion data are also

included for comparison.
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Figure A1: Original and corrected Particle Size Distributions for HIPS A.

For the study, particle size dispersion data were available only by AFM imaging.
Thus, supplied particle size distribution data for all six grades of HIPS used for the study

are corrected using Saltykov’s method.

In the following figures, Figs.A2-A4, particle size distribution functions (analysis
in number) estimated after Saltykov’s correction are shown for all the HIPS grades

comparatively. Overall results are summarized in Table Al.
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Figure A3: HIPS Grades with a Similar Particle Size Distribution, but Different Average
Particle Sizes.
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Table Al: Summary of Rubber Particle Size Distribution after Saltykov’s Correction

(Analysis in Number)
& [um] HIPS A HIPSB HIPS C HIPSD HIPSE HIPS F
Rubber Particle Size Dist. - P i " o %

" vl = 7 vB
(Analysis by Number) £ () ng( . facgj f() :‘f‘fam fﬁ(‘g} AL
Average 1.16 1.34 1.1€ 1.35 174 230
Mode 0.77 0.80 0.66 0.87 1,10 144
Median 0.39 0.47 0.49 0.29 037 1.00
Standard Deviation 227 2.21 1.79 2.50 313 282
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APPENDIX B: Micromechanics Models

B.1 Differential Method

Bruggeman [135] performed the first study related to Differential Method of
modeling. However, it was not in the context of mechanics. Later, the Differential
Method was applied by Roscoe [136] on modeling the behavior of fluid suspensions even
though the method was equally good for both fluid and solid suspensions.

The starting point of the Differential Method is based on the elastic solution of
dilute suspension given by Goodier [137]

#1500y U= )]

Fu 75 12(4-5v, )24
a , (B.1a,b)

K=K, + K, ~Ky) c

1+[(K, -K, (K, + g,um)]

3
where, ¢ = [—g—) is the volume fraction of the spherical particles under dilute conditions

(c « 1), p is the elastic shear modulus, K is the bulk modulus, and v is the Poisson’s ratio.
Subscripts i and m are referring to inclusion and matrix phases respectively.

The basic idea behind the method is viewing the whole composite as a sequence
of dilute suspensions when a new increment of inclusions is added each time. In this step
wise process, new effective properties are calculated from suitably modified
homogeneous medium of the previous step. This process is continued until the volume

fraction of the inclusion phase reaches to 1. Mathematically, it comes to a point where the
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increments of the added inclusions become infinitesimal and a differential form results.

The end result of this process gives the following governing equations [138]

da, _ 150-vu-p) o
de (1—c)|:7—5v+2(4—5v)%}

and (B.2 a,b)
de
(1-c) 1+ B K
4
K"l‘g‘u

where effective Poisson’s ratio, v, is related to K and p through

e 3K-2u . (B.3)
203K + u)

These differential equations are coupled and non-linear. They need to be solved
simultaneously for the values K, p, and v by satisfying the following boundary

conditions [138]

at c=0 L= py
K=Kn

at c=1 L= L
K=K

In the case of perfectly rigid inclusions and incompressible matrix phase where Km >> Hm
the above equations take the simpler forms

H o 1
Mo (=0
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and (B4 a,b)

K 1
K, (1—0)'

B.2 Mori-Tanaka Method

Different than both the Differential Method and the Three Phase Model, Mori-
Tanaka model is a mathematical formulation. It involves rather complex manipulations of
the field variable in the context of eigenstrain and backstress. Even though the Mori-
Tanaka Method made numerous contributions in micromechanics analysis, Benveniste
[139] gave the simplest derivation of the Mori-Tanaka’s formulation.

When applied to the spherical inclusion problem under non-dilute conditions,

following equations are given by Benveniste [139]

1
=+l = a,,) (B.S5)
Jui —fum
1+0-e) — "Gk, T8m)
T 6K, -2, )
and
K = Km + C(Ki ZKKT')K ) b (B6)
(] st T m
(K, +§#m)

In case of perfectly rigid inclusions and nearly incompressible matrix phase

Eqgs.(B.5) and (B.6) become
3
1+(=)c
Moo 2 (B.7)
My (1=0)

222



and

K 1
1 B.8
Km (I—C) ( )

B.3 Comparison Among Different Approaches

Among all the micromechanics models considered for occluded particle and HIPS
polymer, Halpin-Tsai Equations are applicable to elastic cases only and incompressibility
is not included in the formulation. Different than the Halpin-Tsai Equations, the
Differential Scheme, the Generalized Self-Consistent Method and the Mori-Tanaka
Method can be used both for elastic and incompressible materials. These three methods
are summarized in Table B.1 and their reduced forms are given for the cases of an
incompressible matrix with rigid inclusions.

For comparison, the reduced forms are useful in the sense that they allow one to
have a simple analytical form rather than a graphical assessment [138]. The dominant
characteristic of these models (Table B.1) is the exponent of the (1-c) term. The solutions
diverge as ¢ —1, which is similar to order of singularities in elastic problems. While the
Differential Method and the Generalized Self Consistent Method show higher order
effect for incompressible matrix case than for the compressible case, the Mori-Tanaka
Method predicts same order effect for the both cases. As explained in [138] that strain
gradients have higher order in the incompressible case than in compressible case; thus,

the Mori-Tanaka Method can be divergence based on this argument by orders of

magnitude as ¢ —1.
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Table B.1: Summary of Micromechanics Models which Include Rubber Phase

Incompressibility

224

Micro-Mechanical Elastic Matrix Incompressible
Method Matrix with
Rigid Inclusions
dy 15(1=-vu —u,) -0 Mo 1
-c_[(_'_+ P = ﬂ_—— (l_c}sxl
(l—c)f:7—5v+2(4—5vj—'—:| il
Differential Method &4. (k = k) . 0#
de [ N k 1
k, -k =
B & | P =g, = ki U~2)
k+ —p
3
: ’ 21
U “ Hg e E
2B C=0 -
A{l’m] ’ [F,.,J+ U, 16(1-¢)’
Three Phase Method clk, - k,)
k=k =)
1+(1- c)m—’—4—"’——
k ral
(k, + 311,,,)
4 g, +velp, ~n,) ! 9
1+ (=)
1+{-c el B L 2
PIREH LR FI) A, (-e)
Mori-Tanaka Method 6(k, —2u.)
PR U R g e
1+(]—C)f—'—4—'"-— k., (1-¢)
(ke +—#y)
3
»
»
b ]
.-}




With regard to the Differential Method, Norris [140] and Milton [141] mention
the Differential Method is a step wise method. Initial dilute suspension is homogenized to
a new dilute suspension .Then the homogenization of the previous step is transferred to
another dilute suspension. The process is repeated until a limit is reached. The
Differential Method is a combination of several models and this sequence of models
might lead to a result which is very different than a single model involving very tightly
packed spheres. R.M. Christensen [138] compared these three models over the fuil
volume fraction range without any approximation and showed that full range results are
consistent with the asymptotic results. His comparative results are given in Fig.B.1 and

Fig. B.2 for the cases of v, =0.2 and v, =0.5 respectively. As seen in Fig. B.1, bulk

modulus calculations using the Generalized SCM and the Mori-Tanaka Method give
identical results while results are very close to each other for shear modulus calculations.
On the contrary, the Differential Method predictions are drastically different from both of
them. For the incompressible matrix material case, (Fig. B.2) all three methods give
different predictions while the biggest difference is between the Generalized SCM and

the Mori-Tanaka Method. In Fig. B.2, some experimental data which are presented by

Thomas [142] are also included.
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Figure B.1: Comparison of Micromechanics Models for Compressible Matrix Material
Case (U= 0.2) Through Full Range of Volume Fraction, ¢
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Figure B.2; Comparison of Micromechanics Models for Incompressible Matrix Material
Case (U= 0.5) Through Full Range of Volume Fraction, ¢

In Fig. B.3, which is taken from R.M. Christensen paper, [138] the three methods
are compared with different experimental results. In the figure, effective viscosity instead
of shear modulus change with volume fraction is plotted. However, difference is merely

notational [138]. The lowest data set is considered as a comparison criterion in the sense
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that for a fixed value of c, higher viscosity values correspond to the mono-disperse
inclusion suspensions while lower viscosity values correspond to the poly-disperse
inclusion suspensions which is more suitable for ¢ —1cases. The chosen set of data from
Eilers [143] belongs to a polydisperse emulsion of solid spherical droplets with diameters
from 1.6 to 4.7 pm.

The Generalized SCM fits experimental data (Fig. B.3) the best. From Fig. B.2, it
is revealed that, in linear scale, both the Differential Method and the Mori-Tanaka

Method deviate drastically from the experimental data.
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Figure B.3: Comparison of Micromechanics Models for Incompressible Matrix Material
Case (U= 0.5) Through Full Range of Volume Fraction, c.
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APPENDIX C: Continuum Damage Mechanics Variables

C.1 Geometrical Definition of Craze Damage

A representation of craze damage in a glassy polymer under uniaxial loading
(damaged solid and representative volume element (RVE)) is given in Fig. C.1. If 8S is a
cross sectional area of the RVE at local coordinates, and 88 is an effective cross sectional
area which excludes the domain cut through the craze. As expected, &5 = &S, and the
difference of the areas give the area of damage traces dSp:

5, =85 -69. (C.1)

The measure of a local craze damage D;, at point K in the direction n can be defined as

D& =2 €2)

Based on this definition, one has the following:

Dy,=0 (virgin state)
Dy=1 (fracture state) (C.3)
0<D,<1 (any craze damage state).
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Figure C.1: Craze Damage and Its Damage Mechanics Representation.

If the craze damage is homogeneous (Fig. C.1) and if the maximum Dj is selected for

representation then

(C.4)

D(X,n) = Max|D,(K,n,£)|,

where & are local coordinates. In the case of multiaxial isotropic damage, D does not

depend on the orientation of the normal n.

An effective stress is the stress calculated over the section which effectively
resists the forces. Based on the effective stress concept, the total stress may be defined
without considering the space that the crazes take. In a uniaxial loading case, if the

applied load is F on a representative volume element, then the stress is

F C.5)

An effective area, 8S, by definition is
58 =85-65, =a5(1-D). (C.6)

Using Eqs. (C.5 and C.6), an effective stress may be represented as
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- &S
g =—
oS
or (C.7)
— o
o =—.
(1-D)

Evidently, &> ¢ and& = o for a virgin material, and & — o for a fractured material. In
the case of uniaxial stress, for example, a linear elastic constitutive law of a damaged
polymer is

g o
_E“(l——ﬁf' (C.8)

“e

C.2 Thermodynamic Driving Force Of Crazes In Glassy Polymers

Thermodynamic driving force, -Y, is the associated variable for craze damage
parameter, D. It has been shown [74] to relate to the elastic energy release rate during

craze damage growth. The -Y may be derived from the Helmholtz free

energy, ¥ = y(&,T; D) .Consider a glassy polymer with craze damage. One may express

v as

5
py = E(I—D)Cyﬂa,jsk,, (C.9)

where the Cjjq is the stiffness matrix of the polymer. Then, constitutive equations for the

polymer with craze damage become

e
. ‘O{ajj = (1- D)Cputy- (C.10)
/7

oy

The associated variable -Y (damage driving force) for D is defined as
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Yy 1
~Y= —p(EJT =~ CiutyPus (C.11)

The strain energy density function for the craze damaged polymer may be written as

&y

W, = [Cp(l-D)z,ds, (C.12)
0

or

1
W, =5CW (1-D)e;ey. (C.13)

Comparing Eq.(C.11) with (C.13), one has

W,
o P, C.14
= (C.14)

The -Y is positive definite and takes the unit of strain energy.

C.2 Craze Damage Evolution

Damage evolution can be studied with irreversible thermodynamics based on the
second principle. In fact, the second principle of thermodynamics is used for formulating
a mathematical description of craze damage evolution. However, some assumptions need
to be made for suitable application of the second principle. The first one assumes that
entropy is a state function, valid for both reversible and irreversible processes. The
second is that the second principle of thermodynamics is extendable locally to the entire

system. Based on these, the second principle of thermodynamics (total entropy change) is

dS=d,S+d.S, (C.15)
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where d.S is the external (surrounding) entropy, shows the interaction of a system with
surrounding and d;S is the intrinsic (system) entropy, stands for the internal changes of

the system.

The second principle of thermodynamics requires that intrinsic entropy to be

positive. For an isothermal case, intrinsic entropy. change can be written as

c&¥ ~YD—A,V, 20, (C.16)
where£71is the plastic strain rate tensor, 4, is the k™ thermodynamic driving force
associated with the k™ internal (flux) variable 7, . In addition to isothermal case, one can
have damage with insignificant plastic deformation then,

-YD20. (C.17)

To construct the evolution law(s), dissipation potential(s), which is the
representation for the change of state of a system, needs to be derived using existing
energy potential(s). It is suggested [74] that taking dissipation potential, @, as a positive
and quadratic function of flux variables would be the simplest form, i.e., for an

isothermal case

p=p(&”,V,,D)  with A, ba%%‘ (C.18)
It is also stated that a dissipation potential, @;, exists for each irreversible process,
expressed in terms of flux variables [74]. For example, intrinsic dissipation, which is
mechanical and microstructural induced dissipation, is

@ =0:6" -4V, 20 (C.19)

and for example, craze damage dissipation is
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@, =-YD=0. (C.20)
Egs. (C.19 and C.20) imply that total dissipation potential can be written as

Q=@ +p,. (C.21)

For a damaged polymer, assuming that the matrix is elastic all the time and
inelastic deformation results from crazing is taken in to consideration by the damage

variable, D, dissipation function (for isothermal case ) may be constructed as
p=-YD20. (C.22)
Using Legendre-Fenchel transformation, complementary dissipation function, (p*, can be
constructed so that D is expressed in terms of D and -Y as
0 =9 (¥,D) (C.23)
and a kinetics law for a crazed damaged polymer may be stated with the help of

generalized normality conditions as

5 agp*
M A, C.24
o (C.24)
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APPENDIX D: Inelastic Deformation of Rubber-Toughened Polymers

Mechanical behaviors of polymers are difficult to be characterized because of
their loading-rate and temperature dependency. Their mechanical properties are also
dependent on the conditions of testing [144, 145]. Glassy polymers can show all the
characteristics of thermoelastic, viscoelastic, rubbery state and rubbery flow behavior of
solids depending on the temperature and time scale of measurements.

At a temperature below (Tg-50 °C) solid polymers tend to exhibit elastic behavior
at small strains. When they are strained to higher levels, the relationship between stress
and strain is non-Hookean [4, 5]. Inelastic deformation, such as yielding, starts at the
stress level above which irreversible deformations appear. Yield stress is the minimum
stress at which irreversible strain generates when applied stress is removed.

Yielding in the polymers may be interpreted differently from plastic deformation
in metals. Two different yielding modes, namely crazing and shear yielding, occur in
polymers. Both the normal stress yielding (crazing) and the shear yielding are dependent
on dilatational and deviatoric components of the stress tensor [6]. A study by Sternstein
and Myers [10] show that depending on the stress state, a glassy polymer may exhibit
four different yielding responses (Fig. D.1):

a. No crazing and no shear yielding
b. Crazing only
c. Shear yielding only

d. Simultaneous crazing and shear yielding
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Figure D.1: Biaxial Stress Yielding of a Glassy Polymer.

D.1 Shear Yielding

S.S. Sternstein, L. Ongchin [6] propose thaf shear yielding in a glassy polymer is

governed by

Tocr =Tp = HOp: (D1}
where

Lo 2= ;:\(’(r_rl ~0,) +(0,~0,) + (o, — 7))’ (D.2)
is the octahedral shear stress, and

o, = %(01 +0o,+0;) (D.3)

is the mean normal stress. The p and 1, are material constants, which have temperature
and rate dependency, respectively. Equation (D.1) is a modified von Misses’ criterion,

including the hydrostatic stress, 6. When p=0, it becomes the von Mises yield criterion.
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D.2 Tensile Yielding

S.S. Sternstein, L. Ongchin, propose [6] the following necessary and sufficient

conditions for craze formation in a glassy polymer:

B(T
oy =02 acry + 22 5, %0, (D 4)

1
where I, =6, + 6, +0, >0; o1 and o, are the non-zero principal stresses; A(T) and B(T)

are temperature dependent material parameters.

D.3 HIPS Yielding

Yielding criteria given above are for homopolymers, i.e., Egs. (D.1) and (D.4) are
good for single-phase polymers. They need to be modified for multiphase rubber
polymers such as HIPS. Yielding of a HIPS polymer usually depends on dilatational
stress components. Moreover, even under a uniaxial stress state, stress field at the second-
phase particle and the matrix interface will be triaxial. Therefore, a yield function
including effective stress and dilatational stress components is needed. The following
form of a yield function may be used for HIPS polynier

f(&,1)-k=0. (D.5)
In the equation, & is the effective (or average effective stress) related with global HIPS

system (effective HIPS properties) and may be defined by

g 3 ' ' 172
0'=(—2—<0',.J. ><o,>) ",
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where <o > is effective deviatoric stress for the HIPS polymer and the first stress

invariant, I;, is also given in terms of average stress components (average HIPS
hydrostatic stress) and might be written as

I, =<0,;>=3<0,>.
The k is a material constant and equal to HIPS yield stress in this case. One can modify

Eqn. D.1 and write it in the following form

I

g5+ p?[ =17, = k = constant. (D.6)
In Eqn. (D.5), the p and 1, are material constants, which have temperature and rate
dependency, respectively. For the calculation of & and I;, local stress field averaging

over the entire HIPS volume is needed. Corresponding relationship may be given as

g L4
<0y >=<0,>+<0,>6,
with

1
<oy >=— Jo*,jdv
v

where o;; represents the local stress field.
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APPENDIX E: A case study: Plane Stress-strain comparison

O

A case study is done so that a comparison of analyses conducted in plane stress

and plane strain can be made. The same micromechanics model given in Section 9.7 to

" study particle volume fraction effect is considered. In other words, the same problem is

5 formulated assuming plane strain condition (using plane strain elements for meshing). A
limiting case, polystyrene with holes, is considered for comparison and the stress

concentrations at the equator of a hole are reported for both plane stress-strain conditions

at different volume fraction (Fig. E.1). Obtained values are given in Table E.1.

+ HOLE-Plane Stress /

& HOLE-Piane Strain

! 1
< A PLELLabLES
ERL o =,
{m)
) <l :'ﬂ;f
2 T, [s=R
'-0?
;]
0 - s
G 10 2 3 40 50 60
V, PAT
& Figure E.1: Plane Stress-Strain Comparison: Stress Concentrations at the Equator of a

Hole in HIPS with Different Volume Fractions.
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Table E.1: Stress Concentrations under Plane Stress-strain Cases.

Volume Fraction [%] K™ (Plane Strain) K™ (Plane Stress)
0.8 33 82 2.995
25 3.559 371
35 4.103 3.656
50 5.754 5.127
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