
ITERATIVE ALGORITHMS FOR TRUST AND
REPUTATION MANAGEMENT AND RECOMMENDER

SYSTEMS

A Thesis
Presented to

The Academic Faculty

by

Erman Ayday

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2011

ITERATIVE ALGORITHMS FOR TRUST AND
REPUTATION MANAGEMENT AND RECOMMENDER

SYSTEMS

Approved by:

Professor Faramarz Fekri, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Douglas M. Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Ian Akyildiz
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Ling Liu
College of Computing
Georgia Institute of Technology

Professor Steven W. McLaughlin
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 10 November 2011

To my lovely wife, my parents,

and in loving memory of my grandfather

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my appreciation to my advisor, Prof.

Faramarz Fekri, whose knowledge, wisdom, experience, and caring paved the way for

success in my academic career. Dr. Fekri has provided me the tools, the will, the

power, and the strive to reach success. His support will always be remembered.

I would like to extend my special thanks to Professor Ian F. Akyildiz. I got the

chance to learn about wireless sensor networks from him, a pioneer in this field, and

to be inspired by his knowledge and personality. I am also indebted to Dr. Akyildiz

for creating a family atmosphere for me during his house parties and soccer games. I

thank him deeply for being a great mentor and support to me.

I also would like to thank my other thesis committee members: Professor Douglas

M. Blough and Professor Ling Liu, whom I had the opportunity to learn a lot from,

and Professor Steven W. McLaughlin, whom I had also the opportunity to take a

class and to benefit from his valuable insight for my career. I thank all of these

outstanding professors for their inspiration, support, and guidance on my thesis.

I have so many friends and colleagues whom I would also like to thank. I would

like to thank all my friends at the Georgia Tech Information Processing, Communi-

cations and Security (IPCAS) Research Lab for their support. I would like to extend

my gratitude to the students, faculty, and staff at the Center for Signal and Image

Processing (CSIP), who provided a great, thriving, and friendly work environment.

I would like to thank my great and dear family. My dear mom, Selmin Ayday, who

thought me all the languages I can speak, and my dear dad, Can Ayday, who taught

me to love research and more importantly to be a good human being. They taught

me to be strong and determined. Thank you very much for all your love and support,

iv

and dedication and sacrifices that you made in your lives to make my life a better

and more fruitful one. Hearing your voices from miles away has been a great source

of energy for me to keep going. I also would like to thank my dear grandmothers

Sevim Ayday, Ayten Colpan, and my dear grandfather Zuhtu Colpan for their loving

care, support and encouragement. Last but not least, I thank my best friend and

dear wife, Meltem. We started this journey 4 years ago together, and her presence

has made a significant difference in both my professional and personal life. Thank

you for always being there for me.

I would like to dedicate this thesis in the loving memories of Sevgi Soydan, Mustafa

Remzi Soydan and my unforgettable grandfather Hayrettin Ayday. Without his sup-

port, I wouldn’t even think of achieving this.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xiv

I INTRODUCTION . 1

1.1 Iterative Trust and Reputation Management and Its Application to
Delay Tolerant Networks (DTNs) . 3

1.2 Belief Propagation for Trust and Reputation Management and Its
Application to Peer-to-Peer (P2P) Networks 7

1.3 Application of Belief Propagation for Recommender Systems 9

II BACKGROUND . 12

2.1 Trust and Reputation Management for Online Service Provision . . 12

2.1.1 Commercial and Live Reputation Systems 12

2.1.2 Bayesian Approach . 14

2.1.3 Cluster Filtering . 15

2.2 Security for Delay Tolerant Networks (DTNs) 16

2.2.1 Trust Management in Mobile Ad-hoc Networks (MANETs) . 17

2.3 Trust and Reputation Management in Peer-to-Peer (P2P) Networks 18

2.4 Recommender Systems . 19

III ITERATIVETRUST ANDREPUTATIONMANAGEMENTMECH-
ANISM . 21

3.1 Introduction . 21

3.1.1 Contributions . 22

3.2 Iterative Trust and Reputation Management Mechanism (ITRM) . . 23

3.2.1 Managing Raters’ Trustworthiness 26

vi

3.3 Security Evaluation of ITRM via User Modeling 27

3.3.1 Analytic Evaluation . 27

3.3.2 Simulations . 30

3.4 Summary . 36

IV APPLICATION OF ITRM TO AD-HOC NETWORKS 37

4.1 Introduction . 37

4.1.1 Contributions . 38

4.2 Trust Management and Adversary Detection in Delay Tolerant Net-
works (DTNs) . 39

4.2.1 Adversary Models and Security Threats 39

4.2.2 Network/Communication Model and Technical Background in
Context . 42

4.2.3 Iterative Malicious Node Detection for DTNs 45

4.2.4 Trust Management Scheme for DTNs 47

4.2.5 Security Evaluation . 52

4.3 Summary . 72

V ITERATIVE TRUST AND REPUTATION MANAGEMENT US-
ING BELIEF PROPAGATION . 74

5.1 Introduction . 74

5.1.1 Contributions . 76

5.1.2 Belief Propagation . 76

5.2 Belief Propagation for Iterative Trust and Reputation Management
(BP-ITRM) . 78

5.3 Security Evaluation of BP-ITRM via User Modeling 85

5.3.1 Attack Models . 85

5.3.2 Analytic Evaluation . 86

5.3.3 Simulations . 93

5.4 Summary . 101

VI BELIEF PROPAGATIONFOR TRUST ANDREPUTATIONMAN-
AGEMENT IN DISTRIBUTED SYSTEMS 103

vii

6.1 Introduction . 103

6.1.1 Contributions . 104

6.2 Belief Propagation-Based Trust and Reputation Management for P2P
Networks (BP-P2P) . 105

6.2.1 Secure BP-P2P . 110

6.2.2 Efficient BP-P2P . 113

6.3 Security Evaluation . 116

6.3.1 Threat Model . 116

6.3.2 Analytical Evaluation . 119

6.3.3 Simulations . 123

6.4 Summary . 132

VII BELIEF PROPAGATION-BASED ITERATIVERECOMMENDER
SYSTEM . 134

7.1 Introduction . 134

7.1.1 Contributions . 136

7.2 Belief Propagation for Recommender Systems (BPRS) 137

7.3 Evaluation of BPRS . 142

7.3.1 Prediction Accuracy . 142

7.3.2 Precision and Recall . 153

7.3.3 Computational Complexity 155

7.4 Summary . 156

VIIICONCLUSION . 157

8.1 Contributions . 157

8.2 Suggestions for Future Research . 160

REFERENCES . 162

VITA . 171

viii

LIST OF TABLES

1 Notations and definitions. 27

2 Computational complexity of Cluster Filtering and ITRM. 36

3 Overhead of the proposed trust management scheme for Π = 10 and
Π = 20. 72

4 Notations and definitions. 86

5 Notations and definitions. 116

6 Performance of BPRS in RMSE and MAE vs. number of iterations
when all users connected to each active user via a path are considered. 146

7 Performance of BPRS in RMSE and MAE vs. number of iterations
when only the 2-hop neighbors of each active user are considered. . . 146

8 Performance of BPRS in RMSE and MAE vs. the inconsistency weight
(w) when all users connected to each active user via a path are considered.149

9 Performance of BPRS in RMSE and MAE vs. the inconsistency weight
(w) when only the 2-hop neighbors of each active user are considered. 149

10 Performance of BPRS in RMSE and MAE vs. the BP message weight
when all users connected to each active user via a path are considered. 152

11 Performance of BPRS in RMSE and MAE vs. the BP message weight
when only the 2-hop neighbors of each active users are considered. . . 152

ix

LIST OF FIGURES

1 Illustrative example of ITRM. 26

2 Waiting time for τ -eliminate-optimal. 30

3 MAE performance of ITRM versus time for bad-mouthing and varying
W . 33

4 MAE performance of various schemes for bad-mouthing when W = 0.10. 34

5 MAE performance of various schemes for bad-mouthing when W = 0.30. 34

6 MAE performance of ITRM for bad-mouthing when W = 0.10 and for
varying ∆. 35

7 Collecting and combining the rating tables at the judge node J 47

8 Indirect type I feedback between nodes A (judge), B (suspect) and C
(witness). 50

9 Confidence of a judge node on its verdict vs. the detection level for
W = 0.10. 55

10 M̂ versus the detection level when Σ = 0.95 for different values of W . 56

11 Probability of detection success for fixed k and varying s values with
RWP mobility model for W = 0.10. 59

12 Probability of detection success for fixed s and varying k values with
RWP mobility model for W = 0.10. 60

13 Probability of detection success for fixed k and varying s values with
LW mobility model for W = 0.10. 60

14 Probability of detection success for fixed s and varying k values with
LW mobility model for W = 0.10. 61

15 MAE performance of various schemes for bad-mouthing when W = 0.30. 64

16 Fraction of the recovered messages versus time for W = 0.10 with LW
mobility model. 66

17 Fraction of the recovered messages versus time for W = 0.40 with LW
mobility model. 66

18 Probability of message recovery for a single flow versus time for W =
0.10 with LW mobility model. 68

19 Probability of message recovery for a single flow versus time for W =
0.40 with LW mobility model. 68

x

20 Packet delivery ratio versus time for W = 0.10 with LW mobility model. 70

21 Packet delivery ratio versus time for W = 0.40 with LW mobility model. 70

22 Factor graph between the SPs and the raters in (20). 81

23 Setup of the scheme. 82

24 Message from the factor node k to the variable node a at the νth iteration. 84

25 Message from the variable node a to the factor node k at the νth iteration. 85

26 Probability of BP-ITRM to satisfy Condition 1 versus fraction of ma-
licious raters. 92

27 Probability that BP-ITRM is an ǫ-optimal scheme versus fraction of
malicious raters for different ǫ values. 92

28 The average ǫ values for which BP-ITRM is an ǫ-optimal scheme with
high probability versus fraction of malicious raters. 93

29 MAE performance of BP-ITRM versus time when W of the existing
raters become malicious in RepTrap [105]. 96

30 Change in average trustworthiness of malicious raters versus time for
BP-ITRM when W of the existing raters become malicious in Rep-
Trap [105]. 97

31 The average number of iterations versus time for BP-ITRM when W
of the existing raters become malicious in RepTrap [105]. 97

32 MAE performance of various schemes when 30% of the existing raters
become malicious in RepTrap [105]. 98

33 MAE performance of BP-ITRM versus time when W of the existing
raters become malicious and rating values are integers from {1, . . . , 5}
in RepTrap [105]. 99

34 MAE performance of various schemes when 30% of the existing raters
become malicious and rating values are from {1, . . . , 5} in RepTrap [105]. 99

35 MAE performance of various schemes when 30% of the newcomer raters
are malicious. 100

36 Message from the factor node (client) k to the variable node (server)
a at the νth iteration. 109

37 Message from the variable node (server) a to the factor node (client)
k at the νth iteration. 109

38 Utilizing score managers in BP-P2P. 112

xi

39 Probability of BP-P2P to provide an MAE that is less than ǫ versus
fraction of malicious peers. 122

40 The average MAE values provided by BP-P2P with high probability
versus fraction of malicious peers. 123

41 The average number of iterations versus time for BP-P2P to converge
when W of the existing peers become malicious. 126

42 MAE performance of BP-P2P versus time whenW of the existing peers
become malicious. 127

43 Change in average trustworthiness of malicious clients versus time for
BP-P2P when W of the existing peers become malicious. 127

44 MAE performance of various schemes when different fractions of the
existing peers become malicious at the first time-slot the attack is applied.128

45 MAE performance of BP-P2P for different values of ξ and for different
fractions of malicious peers at the first time-slot the attack is applied. 128

46 MAE performance of BP-P2P for different ξ values and for W = 25%
malicious peers, at different time-slots. 129

47 MAE performance of various schemes when the rating values are from
Υ = {1, . . . , 5}. 130

48 MAE performance of BP-P2P when the attackers only attack as mali-
cious clients, at different time-slots. 131

49 MAE comparison of different attack scenarios for different fractions of
malicious peers at the first time-slot the attack is applied. 132

50 Graphical representation of the scheme from user z’s point of view. . 139

51 Message exchange between the factor node k and variable node a. . . 141

52 Performance of BPRS in RMSE vs. number of iterations when: (i) all
users connected to each active user via a path, and (ii) only the 2-hop
neighbors of each active user are considered. 145

53 Performance of BPRS in MAE vs. number of iterations when: (i) all
users connected to each active user via a path, and (ii) only the 2-hop
neighbors of each active user are considered. 146

54 Performance of BPRS in RMSE vs. the inconsistency weight (w) when:
(i) all users connected to each active user via a path, and (ii) only the
2-hop neighbors of each active user are considered. 148

xii

55 Performance of BPRS in MAE vs. the inconsistency weight (w) when:
(i) all users connected to each active user via a path, and (ii) only the
2-hop neighbors of each active user are considered. 148

56 Performance of BPRS in RMSE vs. the BP message weight when: (i)
all users connected to each active user via a path, and (ii) only the
2-hop neighbors of each active user are considered. 151

57 Performance of BPRS in MAE vs. the BP message weight when: (i)
all users connected to each active user via a path, and (ii) only the
2-hop neighbors of each active user are considered. 151

58 Recall. 154

59 Precision vs Recall. 155

xiii

SUMMARY

This thesis investigates both theoretical and practical aspects of the design

and analysis of iterative algorithms for trust and reputation management and rec-

ommender systems. It also studies the application of iterative trust and reputation

management mechanisms in ad-hoc networks and P2P systems.

First, an algebraic and iterative trust and reputation management scheme (ITRM)

is proposed. The proposed ITRM can be applied to centralized schemes, in which a

central authority collects the reports and forms the reputations of the service providers

(sellers) as well as report/rating trustworthiness of the (service) consumers (buyers).

It is shown that ITRM is robust in filtering out the peers who provide unreliable

ratings. Next, the first application of Belief Propagation algorithm, a fully iter-

ative probabilistic algorithm, on trust and reputation management (BP-ITRM) is

proposed. In BP-ITRM, the reputation management problem is formulated as an

inference problem, and it is described as computing marginal likelihood distributions

from complicated global functions of many variables. However, it is observed that

computing the marginal probability functions is computationally prohibitive for large

scale reputation systems. Therefore, the belief propagation algorithm is utilized to

efficiently (in linear complexity) compute these marginal probability distributions. In

BP-ITRM, the reputation system is modeled by using a factor graph and reputation

values of the service providers (sellers) are computed by iterative probabilistic mes-

sage passing between the factor and variable nodes on the graph. It is shown that

BP-ITRM is reliable in filtering out malicious/unreliable reports. It is proven that

BP-ITRM iteratively reduces the error in the reputation values of service providers

due to the malicious raters with a high probability. Further, comparison of BP-ITRM

xiv

with some well-known and commonly used reputation management techniques (e.g.,

Averaging Scheme, Bayesian Approach and Cluster Filtering) indicates the superior-

ity of the proposed scheme both in terms of robustness against attacks and efficiency.

The introduction of the belief propagation and iterative message passing methods

onto trust and reputation management has opened up several research directions.

Thus, next, the first application of the belief propagation algorithm in the design of

recommender systems (BPRS) is proposed. In BPRS, recommendations (predicted

ratings) for each active user are iteratively computed by probabilistic message passing

between variable and factor nodes in a factor graph. It is shown that as opposed to

the previous recommender algorithms, BPRS does not require solving the recommen-

dation problem for all users if it wishes to update the recommendations for only a

single active user using the most recent data (ratings). Further, BPRS computes the

recommendations for each user with linear complexity, without requiring a training

period while it remains comparable to the state of art methods such as Correlation-

based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in

terms of rating and precision accuracy.

This work also explores fundamental research problems related to application of

iterative and probabilistic reputation management systems in various fields (such as

ad-hoc networks and P2P systems). A distributed malicious node detection mecha-

nism is proposed for delay tolerant networks (DTNs) using ITRM which enables every

node to evaluate other nodes based on their past behavior, without requiring a central

authority. Further, for the first time. the belief propagation algorithm is utilized in

the design and evaluation of distributed trust and reputation management systems

for P2P networks. Several schemes are extensively simulated and are compared to

demonstrate the effectiveness of the iterative algorithms and belief propagation on

these applications.

xv

CHAPTER I

INTRODUCTION

Trust and Reputation are crucial requirements for most environments wherein entities

participate in various transactions and protocols among each other. In most online

service systems, the consumer of the service (e.g., the buyer) has no choice but to rely

on the reputation of the service provider (e.g., the seller) based on the latter’s prior

performance. A reputation management mechanism is a promising method to protect

the users against deceitful service providers. This mechanism lets a user to have some

foresight about the service providers before using (or purchasing) their services. By

using a reputation management scheme, an individual peer’s reputation can be formed

by the combination of received reports (ratings). Hence, after each transaction, a

party who receives the service (referred to as the rater) provides (to the central

authority) its report about the quality of the service provided for that transaction.

The central authority collects the reports and updates the reputations of the service

providers. The reputation mechanism, however, opens up new vulnerabilities as the

raters may provide unreliable or malicious reports, demonizing the reputations of the

service providers unfairly. Therefore, the main goal of a reputation mechanism is

to determine the service qualities of the service providers and the trustworthiness of

the raters based on their reports about the service qualities. Hence, the success of a

reputation scheme depends on the robustness of the mechanism to accurately evaluate

the reputations of the service providers and the trustworthiness of the raters.

Trust and reputation mechanisms have various application areas from online ser-

vices [3–7] to Mobile Ad-hoc Networks (MANETs) [23, 24, 39, 96]. Most well-known

commercial web sites such as eBay, Amazon, Netflix and Google use some types of

1

reputation mechanisms. Another interesting potential application of trust and rep-

utation management schemes is the peer review process of the journals/conferences

to protect good papers against unfair reviews. Although generally considered essen-

tial to academic quality, peer review has been criticized as ineffective and sometimes

unfair. A reputation mechanism can be implemented to prevent such issues.

Online auction and shopping web site, eBay, stresses the importance of reputation

systems by saying that “feedback is an essential part of what makes eBay a successful

community” [2]. As eBay spokesperson Lisa Malyon puts it: “As eBay has evolved,

our feedback system has evolved. By relying on the feedback of other users, our buyers

are able to make purchases based on confidence and trust. Sellers are no longer rated

on the number of transactions; it is the service they offer for each individual transac-

tion”. On the other hand, buyers and sellers seem to be engaged in a war of attrition

where negative feedback is one of the main weapons, and now eBay has announced

that sellers will no longer be able to leave negative feedback on buyers, hoping that

this will help to rebalance things. Randy Farmer, author of the forthcoming book

Building Web Reputation Systems (with Bryce Glass) states that a user-generated,

negative public rating is simply too problematic to be left to the crowd. On the other

hand, a reputation system cannot give accurate results without negative feedbacks.

Hence, eBay admits that there is still a crucial need to improve the existing reputa-

tion systems. Indeed, eBay announced that it is considering changes to its feedback

system that will be used soon [1].

According to a research conducted by the Pew Internet and American Life Project,

A quarter of online Americans have taken advantage of one of the Internet’s true

powers: the ability to let users collectively decide whether to trust a product, service

or individual.“The more voices that are in the mix, the better off everybody is” said

Lee Rainie, director of the Pew group [8]. Thus, an increasing number of commercial

sites are following the lead long since set by Amazon.com, eBay and others that allow

2

users to weigh in on the value or reputations of products or other users of the service.

It is foreseeable that the social web is going to be driven by these reputation systems.

As in every system, trust and reputation management systems are also subject to

malicious behaviors. Malicious raters may attack particular service providers in order

to undermine their reputations while they help other service providers by boosting

their reputations. Similarly, malicious service providers may provide good service

qualities for certain customers in order to keep their reputations high while cheating

the other customers. Moreover, malicious raters (or service providers) may collab-

oratively come up with sophisticated attacking strategies by exploiting their prior

knowledge about the reputation mechanism. Hence, building a resilient trust and

reputation management system that is robust against malicious activities becomes a

challenging issue.

In summary, we believe that trust and reputation management systems will lead

various applications from the social web to ad-hoc networks in near future and there

are needs for scalable and attack resilient reputation systems. In this thesis, we first

propose an iterative trust and reputation management algorithm and its application

to Delay Tolerant Networks (DTNs). Then, we introduce the first application of

the BP algorithm for trust and reputation management and study its application for

Peer-to-Peer (P2P) networks. Finally, relying on the similarities between the repu-

tation and recommender systems and successful application of iterative algorithms

on reputation systems, we study the application of BP algorithm for recommender

systems. We briefly summarize these works in following.

1.1 Iterative Trust and Reputation Management and Its
Application to Delay Tolerant Networks (DTNs)

One of the primary objectives of this thesis is to develop a trust and reputation

management scheme that not only provides immunity against malicious ratings but

also discourages the service providers from any unfair and discriminating behaviors.

3

Our work on reputation systems stems from the prior success in the use of iterative

algorithms, such as message passing techniques and Belief Propagation (BP) [83,110]

in the decoding of Low-Density Parity-Check (LDPC) codes in erasure channels [75,

98]. These algorithms rely on graph-based representations of codes, where decoding

can be viewed as message passing between the nodes in the graph. Moreover, they

are shown to perform at error rates near what can be achieved by the optimal scheme,

maximum likelihood decoding, while requiring far less computational complexity (i.e.,

linear in the length of the code). We believe that these significant benefits offered by

iterative algorithms can be tapped in to benefit the field of reputation systems.

To achieve this, focusing mainly on centralized reputation management systems,

we first introduce the “Iterative Trust and Reputation Mechanism” (ITRM) [11] in

Chapter 3. ITRM is an algebraic trust and reputation management scheme inspired

by the earlier work on iterative decoding of error-control codes in the presence of

stopping sets [74,75,98]. In this work, we show the benefit of using iterative algorithms

to detect and filter out unreliable ratings in a trust and reputation management

system. Then, in Chapter 4, we explore the application of ITRM for Delay Tolerant

Networks (DTNs).

DTNs are relatively new class of networks [38], wherein sparseness and delay

are particularly high. In conventional MANETs, the existence of end-to-end paths

via contemporaneous links is assumed in spite of node mobility. It is also assumed

that if a path is disrupted due to mobility, the disruption is temporary and either

the same path or an alternative one is restored very quickly. In contrast, DTNs are

characterized by intermittent contacts between nodes, leading to space-time evolution

of multihop paths (routes) for transmitting packets to the destination. In other

words, DTNs’ links on an end-to-end path do not exist contemporaneously, and hence

intermediate nodes may need to store, carry, and wait for opportunities to transfer

data packets towards their destinations. Hence, DTNs are much more general than

4

MANETs in the mobile network space (i.e., MANETs are special types of DTNs).

Applications of DTNs include emergency response, wildlife surveying, vehicular-to-

vehicular communications, healthcare, military, and tactical sensing.

Compared to traditional MANETs, common problems in packet communication

such as routing, unicasting, broadcasting and multicasting become sufficiently harder

in DTNs even with lossless links (i.e., no packet erasures due to communication link).

This increase in difficulty can be directly attributed to the lack of knowledge on the

network topology, and the lack of end-to-end paths. Hence, the schemes for routing

packets have to be primitive such as forwarding to the next available node, injecting

multiple copies into available nodes and employing erasure block codes [101]. On the

other hand, depending upon the model for mobility, efficient communication schemes

for stationary ad-hoc networks can be extended partially or wholly to DTNs.

As in MANETs, adversary may mount several threats against DTNs to reduce

the performance of the network. The most serious attacks are due to the Byzantine

(insider) adversary in which one or more legitimate nodes have been compromised

and are fully controlled by the adversary. A Byzantine-malicious node may mount

the following attacks in order to give serious damage to the network: 1. Packet drop,

in which the malicious node drops legitimate packets to disrupt data availability, 2.

Bogus packet injection, in which the Byzantine node injects bogus packets to consume

the limited resources of the network, 3. Noise injection, in which the malicious node

changes the integrity of legitimate packets, 4. Routing attacks, in which the adversary

tempers with the routing by misleading the nodes, 5. Flooding attacks, in which

the adversary keeps the communication channel busy to prevent legitimate traffic

from reaching its destination, and 6. Impersonation attacks, in which the adversary

impersonates the legitimate nodes to mislead the network. We note that because of

the lack of end-to-end path from a source to its destination in DTNs, routing attacks

are not significant threats for such networks. Attacks on packet integrity may be

5

prevented using a robust authentication mechanism in both MANETs and DTNs.

However, packet drop is harder to contain because nodes’ cooperation is fundamental

for the operation of these networks (i.e., a group of nodes cooperate in routing each

others’ packets using multihop wireless links without any centralized control). This

cooperation can be undermined by Byzantine attackers, selfish nodes, or even innocent

but faulty nodes. Therefore, we focus on packet drop attack which gives serious

damages to the network in terms of data availability, latency, and throughput. Finally,

Byzantine nodes may individually or in collaboration attack the security mechanism

(e.g., the trust management and malicious node detection schemes).

In MANETs, reputation-based trust management systems are shown to be an

effective way to cope with adversary. By establishing trust with the nodes it has or has

not directly interacted, a node in the network diagnoses other nodes and predicts their

future behavior in the network. Hence, trust plays a pivotal role for a node in choosing

with which nodes it should cooperate, improving data availability in the network.

Further, examining trust values has been shown to lead to the detection of malicious

nodes in MANETs. Despite all the progress for securing MANETs, achieving the

same for DTNs leads to additional challenges. The special constraints posed by

DTNs make existing security protocols inefficient or impractical in such networks as

will be discussed in Section 2.2.1. Thus, In Chapter 4, we propose a distributed

malicious node detection mechanism for DTNs [12] using ITRM which enables every

node to evaluate other nodes based on their past behavior, without requiring a central

authority. Our results show that the resulting scheme effectively provides high data

availability and low latency in the presence of Byzantine attackers. We also show

that the proposed iterative mechanism is far more effective than some well-known

reputation management techniques (e.g., Bayesian framework and EigenTrust) in

detecting Byzantine nodes.

6

1.2 Belief Propagation for Trust and Reputation Manage-
ment and Its Application to Peer-to-Peer (P2P) Net-

works

In Chapter 5, we expand our work in Chapter 3 and introduce the first application of

the BP algorithm (a fully probabilistic and iterative algorithm), on centralized trust

and reputation management systems. Different from our initial work in Chapter 3, in

this work, we view the reputation management problem as an inference problem and

describe it as computing marginal likelihood distributions from complicated global

functions of many variables. Further, we utilize the BP algorithm to efficiently (in

linear complexity) compute these marginal probability distributions. Thus, we in-

troduce the “Belief Propagation-Based Iterative Trust and Reputation Management

Scheme” (BP-ITRM). We show the efficiency and robustness of BP-ITRM both via

analysis and extensive simulations in a centralized setting.

In a distributed infrastructure, trust and reputation management is more compli-

cated than in centralized solutions. Hence, in Chapter 6, we focus on P2P networks

and explore the application of BP-based trust and reputation management algorithms

in a completely decentralized environment in the presence of malicious peers mounting

attacks. Peer-to-peer (P2P) networks are commonly defined as distributed architec-

tures in which the workload is partitioned between the peers and each peer is equally

privileged. As opposed to traditional client-server networking (in which certain peers

are responsible for providing resources while other peers only consume), in P2P net-

works, every peer plays the role of both a client and a server. In other words, each

peer provides access to its resources (e.g., processing power or storage) as a server

without the need for a central authority. P2P networks especially became popular

as distributed file sharing systems in which peers exchange files between each other

(such as Gnutella or Napster).

7

Due to their size and the distributed architecture, P2P systems are highly vulner-

able to attacks by the malicious peers. The most common attack to P2P systems is in

the form of injecting inauthentic files (or introducing viruses) to the network. Mali-

cious behavior in P2P networks is mainly confronted by utilizing trust and reputation

management systems in which clients get to rate the servers based on the quality of

the transactions. A trust and reputation management mechanism is a promising

method to protect the client by forming some foresight about the servers before using

their resources. Using a distributed trust and reputation management mechanism,

reputation values of the servers and the trustworthiness values of the clients (on their

ratings) can be computed by the peers without needing a central authority. As a

result of this, malicious behavior can be detected and honest behavior can be en-

couraged in the network. As we discussed before, trust and reputation management

systems are also subject to malicious behaviors. Malicious peers may attack the sys-

tem to undermine (or boost) the reputation values of certain peers. Hence, building

a resilient trust and reputation management system that is robust against malicious

activities in a decentralized environment becomes a challenging issue. Despite recent

advances in trust and reputation management in P2P networks, there is yet a need

to develop reliable, scalable and dependable schemes that would also be resilient to

various ways a distributed trust and reputation system can be attacked. Thus, in

Chapter 6, for the first time, we utilize the BP algorithm in the design and eval-

uation of distributed trust and reputation management systems for P2P networks.

We introduce the “Belief Propagation-Based Trust and Reputation Management for

P2P Networks” (BP-P2P). We show via analysis and simulations that BP-P2P is

resilient against attacks in a distributed environment. Further, we show that the

computational complexity of BP-P2P grows only linearly with the number of peers

and the communication overhead of BP-P2P is lower than the well-known EigenTrust

algorithm.

8

1.3 Application of Belief Propagation for Recommender
Systems

Relying on our success in the reputation management problem, in Chapter 7, we ex-

tend the BP-based technique to arrive at scalable, accurate and robust recommender

systems. Today, the quantity of available information grows rapidly, overwhelming

consumers to discover useful information and filter out the irrelevant items. The ex-

plosive growth of the Internet has made this issue increasingly more serious. Thus,

the user is confronted with a big challenge of finding the most relevant information or

item in the short amount of time. Without some support, the process of filtering out

irrelevant items and finally selecting the most appropriate one could be very difficult.

Recommender systems are aimed at addressing this overload problem, suggesting to

the users those items that meet their interests and preferences the best in a particular

situation and context. These systems are used to direct users towards items they will

like while interacting with large information spaces. More generally, recommender

systems can learn about user preferences and profile over time, based on data min-

ing algorithms, and automatically suggest products (from a large space of possible

options) that fit the user needs.

Currently, recommender systems are used in a variety of application domains,

e.g., books, movies, and music. Most well-known commercial web sites such as eBay,

Amazon and Netflix use some types of recommender systems. Further, recommender

systems have applications in advertisements; which is a successful source of income

for Google and social networking web sites. By finding similarity among people’s

choices, recommender systems can be used for the customer directed advertising in

which users are directed toward those items that meet their needs and preferences

the best. Hence, it is foreseeable that the social web is going to be driven by these

recommender systems.

9

The online movie rental service, Netflix, emphasizes the importance of recom-

mender systems and the need to improve them by saying that “if there is a much bet-

ter approach, it could make a big difference to our customers and our business” [7].

Indeed, in September 2009, the company awarded a $1 million prize to a team of

engineers, statisticians and researchers that improved the accuracy of its movie rec-

ommendation system by 10%. “Personalized recommendations,” says Brent Smith,

Amazon’s director of personalization, “are at the heart of why online shopping offers

so much promise”.

However, there are certain challenges to design accurate and scalable recommender

systems. On one hand, unfortunately, recommender systems have to operate on in-

complete profiles because users either do not like to disclose lots of personal informa-

tion and preferences, and/or are not completely aware about their preferences. On the

other hand, with the rapid growth of information flow, an increasing number of appli-

cations require recommender systems to make predictions without full knowledge of

the problem they are trying to solve. The available data for the recommender systems

is incomplete, uncertain, inconsistent and/or intentionally-contaminated. Challenges

of this sort underlie the prediction problem in electronic commerce (where relevant

information is hidden by parties who may have an incentive to misreport it), and on-

line services (where the quality of predictions in the present depends on information

revealed only in the future). Hence, new research needed to focus on algorithms which

meet these challenges in the face of such uncertainty and yet maintain computational

efficiency.

The two main collaborative filtering approaches that emerged as victorious from

the Netflix Prize [7] are neighborhood methods and latent factor models. Neigh-

borhood methods use similarity functions such as the Pearson Correlation or Cosine

Distance to compute sets of neighbors to a user or an item. Recommendations are

then computed by using data from those neighbors. On the other hand, latent factor

10

models such as Matrix Factorization [93] solve the recommendation problem by de-

composing the user-item matrix and learning latent factors for each user and item.

The underlying assumption is that both users and items can be modeled by a reduced

number of factors. This approach has proven to be the most accurate method in the

Root Mean Square Error (RMSE) sense. However, most existing and highly popular

recommender systems are shown to be prone to malicious behavior [29, 97] and they

have scalability issues. In other words, they fall short of incorporating the attack pro-

files and the extra noise generated by the malicious users. Further, each new update

(using the most recent data or ratings) for a particular active user requires to solve

the entire problem for every user in the system, making it unattractive for large scale

systems. On the other hand, Matrix Factorization methods are optimized to mini-

mize RMSE. However, it is widely argued that RMSE cannot serve as a good proxy

for usage precision accuracy [31]. Therefore, there is yet a need to develop scalable

and dependable schemes. Thus, we formulate the recommender system problem as

finding the marginal probability distributions of the unknown variables on a factor

graph and we introduce the “Belief Propagation-Based Iterative Recommender Sys-

tem” (BPRS) in Chapter 7. We show that BPRS computes the recommendations for

each user instantaneously (with linear complexity) using the most recent data and

without requiring a training period. Further, we show that BPRS also provides com-

parable usage prediction and rating prediction accuracy to other popular methods

such as Correlation-based neighborhood model (CorNgbr) [18] and Singular Value

Decomposition (SVD) [102].

Finally, Chapter 8 summarizes the completed work and points out some of the

possible future research directions.

11

CHAPTER II

BACKGROUND

In this chapter, we review the work related to the trust and reputation management

schemes, security of Delay Tolerant Networks (DTNs), trust and reputation manage-

ment in Peer-to-peer (P2P) networks, and recommender systems.

2.1 Trust and Reputation Management for Online Service

Provision

We may classify reputation mechanisms for centralized systems as i) global reputa-

tion systems, where the reputation of a service provider is based on the ratings from

general users [25,68], and ii) personalized reputation systems (i.e., recommender sys-

tems), where the reputation of a service provider is determined based on the rat-

ings of a group of particular users, which may be different in the eyes of different

users [35,108] (personalized reputation systems will be discussed in Section 2.4). The

most famous and primitive global reputation system is the one that is used in eBay.

Other well-known web sites such as Amazon, Epinions, and AllExperts use a more

advanced reputation mechanism than eBay. Use of the Bayesian Approach is also

proposed in [25, 103]. Finally, [35] proposed to use the Cluster Filtering method [64]

for reputation management. We briefly review these schemes in the following.

2.1.1 Commercial and Live Reputation Systems

The most famous and primitive global reputation system is the one that is used in

eBay [5]. In eBay, after each transaction, sellers and buyers rate each other with the

ratings 1 (positive), 0 (neutral) or −1 (negative), and the total rating of a peer is the

sum of the individual ratings it received from the other peers. To provide information

12

about the recent behavior of a peer, ratings about the past 6 months, ratings about

the past month and the ratings about the past 7 days are kept separately. It is shown

in [78] that, even this simple reputation mechanism provides the sellers with high

reputation to sell their items more than the other sellers. However, there are a few

major problems about the reputation scheme of eBay as well. Since all individual

ratings are weighted equally, the unfair ratings (the ones coming from the malicious

peers) are not filtered, and hence, they effect the reputation values of the sellers

significantly. Moreover, since each peer initially starts with a reputation of 0, any

peer with a negative reputation value may sign in to the system again with a new ID

to increase its reputation value to 0. Another problem about the eBay is that since

peers can see the ratings of each other in a transaction, peers give good ratings to each

other most of the time which causes the reputation values to increase for each peer.

EBay charges each seller a fee for selling an item to prevent fake transactions between

peers (to avoid the collaboration of the peers to increase each others reputations).

However, the loss due to the fake transactions can be compensated by the gain after

having a high reputation value.

The well known online shopping site Amazon also uses a reputation system to rate

its products [4]. Members give ratings to the products between 1 and 5, and each

member is treated equally for their ratings as in eBay. The difference of Amazon from

eBay is that users can also vote on the reviews of the other users on the products.

This mechanism determines each reviewers rank as a function of the helpful votes it

received.

Epinions [6], is a product review site in which users can rate and review items.

Similar to Amazon, users can also give ratings to the reviews. Hence, the ratings

of members on a review and on a product are considered separately. As a result of

this, users are classified based on the quality of their ratings. In Epinions, users are

motivated to write high quality reviews to the products by getting paid, and authors

13

of more useful reviews earn more than the others.

An expert site, AllExperts [3], also uses a global centralized reputation system

to rate the experts who provide service by answering the questions of the users.

In [3], depending on the quality of the reply, the user who asked the question rates

the expert on various aspects with a rating from 1 to 10. The average rating of an

expert is basically the average of the individual ratings it receives from the users to

whom it provided a service. The number of questions an expert answered is also

displayed along with its average rating. However, there is no security mechanism

against malicious peers and unfair ratings in [3], which makes this system vulnerable

to malicious activities.

It is worth noting that the above reputation management mechanisms compute

the average (or weighted average) of the ratings received for a product (or a peer)

to evaluate the global reputation of a product (or a peer). Hence, these schemes are

vulnerable to collaborative attacks by malicious peers.

2.1.2 Bayesian Approach

In Bayesian reputation systems [25,103], the a posteriori reputation value of a peer is

computed combining its a priory reputation value with the new ratings received for

that peer. The reputation of a peer is represented in the form of Beta PDF parameter

tuple (α, β) (amount of positive and negative feedbacks) or the expectation value of

the Beta PDF. When nothing is known, the a priori distribution is the uniform Beta

PDF with α = 1 and β = 1 . Then, after observing r positive and s negative outcomes,

the a posteriori distribution is the Beta PDF with α = r+1 and β = s+1. A PDF of

this type expresses the uncertain probability that future interactions will be positive.

Further, the reputation score is commonly defined in the form of the probability

expectation value of the Beta PDF. Moreover, Bayesian reputation systems use a

threshold method to determine and update the report reliability (reliability of the

14

ratings) of the peers. The server checks whether the received ratings are within a

definite interval. Peers whose ratings lie within the interval are considered to be

honest. Hence, reliability of a peer increases when the peer reports a reliable rating

but decreases otherwise.

Since we present and evaluate our proposed trust and reputation management

frameworks (ITRM and BP-ITRM) in a centralized setting, the most well-known

Bayesian Approaches in Buchegger’s work [25] and Whitby’s work [103] can be con-

sidered as similar. In [25], if a rater’s rating is deviated more than the deviation

threshold d from the calculated reputation value, its trustworthiness value is updated

accordingly. Further, if a rater’s trustworthiness exceeds a definite threshold t, it is

detected as malicious. Similarly, in [103], instead of using the deviation threshold,

the authors check if the calculated reputation value for the service provider falls be-

tween a definite interval for each rater’s rating distribution. Furthermore, we identify

that both [25] and [103] have the same shortcoming against colluding malicious raters;

both [25] and [103] first calculate the reputation value of a particular service provider,

and then based on the calculated value, they adjust each rater’s trustworthiness value.

On the other hand, when the malicious raters collude, it is likely that the majority

of the ratings to the victim service providers will be from malicious raters. In this

scenario, the Bayesian Approach not only fails to filter the malicious ratings but it

also punishes the honest raters which rates the victim service providers.

2.1.3 Cluster Filtering

Cluster Filtering [35] performs a dissimilarity test among the raters and then updates

the reputation values of the peers using only the honest raters. Cluster Filtering [35]

introduces a mechanism of controlled anonymity to avoid unfair ratings from malicious

raters. To reduce the effect of unfair ratings, the authors first use collaborative

filtering techniques [40, 80] to determine a neighborhood group of rater peers whose

15

ratings over many subjects are similar. They then propose the Cluster Filtering

approach [64] to filter out the unfair ratings. The idea of this approach is to apply a

divisive clustering algorithm to separate the ratings into two clusters, the lower rating

cluster and the higher rating cluster. Ratings in the lower rating cluster are considered

as fair ratings. Ratings in the higher rating cluster are considered as unfair ratings,

and therefore are excluded or discounted. To deal with the situation where ratings

vary over time, the Cluster Filtering approach considers only the ratings within the

most recent time window whose width is influenced by the frequency of fair ratings.

Different from these existing schemes, our proposed algorithms (ITRM [11] and

BP-ITRM [16]) are graph based iterative algorithms motivated by the previous success

on message passing techniques and belief propagation algorithms.

2.2 Security for Delay Tolerant Networks (DTNs)

Several works in the literature have focused on securing DTNs. In [88], the chal-

lenges of providing secure communication (i.e., confidentiality) in DTNs is discussed

and the use of Identity-Based Cryptography (IBC) [32] is suggested. In [55], source

authentication and anonymous communication as well as message confidentiality are

provided using IBC. In [26], the use of packet replication is proposed to improve

message delivery rate instead of using cryptographic techniques. We note that the

existing techniques to secure DTNs are aimed to provide data confidentiality and

authentication only. On the other hand, our proposed trust-based scheme provides

malicious node detection and high data availability with low packet latency in the

presence of Byzantine attacks. In MANETs, reputation-based trust management sys-

tems are shown to be an effective way to cope with adversary. In the following we

discuss these systems and their impracticality for DTNs.

16

2.2.1 Trust Management in Mobile Ad-hoc Networks (MANETs)

The main goal for building a reputation system in MANETs is to protect the reactive

routing protocol from attackers and increase the performance of the network. A

recent review of these secure routing protocols for MANETs [73] indicates that these

protocols either use the watchdog mechanism or Acknowledgement (ACK) messages

to build trust values between the nodes. In MANETs, a node evaluates another by

using either direct or indirect measurements. Building reputation values by direct

measurement is either achieved by using the watchdog mechanism or by using the

ACK from the destination. Building reputation values by just relying on the direct

measurements and using the watchdog mechanism is proposed in [65, 69]. These

schemes rely on monitoring the neighbor node to detect possible misbehavior. In

other words, once a node forwards its packets to a specific node, it monitors the node

by overhearing its transmission. Hence, a malicious node is detected by its neighbor

when it drops a packet or changes the integrity of a packet. In [23, 24], the use of

indirect measurements to build reputation values is also allowed while the watchdog

mechanism is used to obtain the direct measurements. In these schemes, a node uses

the reputation values that are established by some other node along with its own

direct measurements. In [13, 15, 37, 61, 107], reputation values are constructed using

the ACK messages sent by the destination node. In other words, a source node, which

has established a path to its destination, would blame a path with a negative ACK

and would attempt to use a path with higher credentials to increase the efficiency.

We note that these techniques are not applicable to DTNs due to the following

reasons. In DTNs, a node cannot use the watchdog mechanism and monitor another

intermediate node after forwarding its packets to it. This is because links on an end-

to-end path do not exist contemporaneously, and hence an intermediate node needs

to store, carry and wait for opportunities to transfer those packets. As a result, the

node loses connection with the intermediate node which it desires to monitor. This

17

implies that a Byzantine node in DTNs can get packets from a legitimate node, then

move away and drop the packets. Similarly, relying on the ACK packets from the

destination to establish reputation values would fail in DTNs because of the lack of a

fixed common multihop path from the source to the destination. Even if we assume an

ACK from destination to the source (which incurs large latency), this feedback packet

travels to the source via intermediate nodes that are different from the set of nodes

that delivered the data packet to the destination. More specifically, the source node,

upon receiving a negative ACK, cannot decide which node on the forwarding path is

to be blamed. Lastly, using indirect measurements is possible in DTNs. However, it

is unclear as to how these measurements can be obtained in the first place.

2.3 Trust and Reputation Management in Peer-to-Peer (P2P)
Networks

Trust and reputation management systems for P2P networks received a lot of atten-

tion [9, 30, 33, 43, 52, 53, 79]. In [79] and [52], authors cover most of the work on the

use of trust and reputation management systems for P2P networks. Most proposed

P2P trust and reputation management mechanisms utilize the idea that a peer can

monitor others and obtain direct observations [9] or a peer can enquire about the rep-

utation value of another peer (and hence, obtain indirect observations) before using

the service provided by that peer [30, 33].

EigenTrust [53] is one of the most popular reputation management algorithms for

P2P networks. In EigenTrust algorithm, each peer i rates another peer j by rating

each downloaded file (from peer j) either as positive (if the downloaded file is au-

thentic) or negative (if the downloaded file is fake). Each peer maintains a sum of all

his transactions with other peers in a local trust vector. Then, the local trust values

are aggregated around the network and normalized so that malicious peers will not

be able to assign arbitrarily high trust values to other malicious peers. This normal-

ization ensures that all trust values will lie between 0 and 1. Global reputation of

18

each peer i is computed from the local trust values assigned to peer i by other peers.

These local trust values are weighted by global reputations of assigning peers. This

process iteratively continues until the global reputation values converge (the change

in global reputation values drops below a threshold). The EigenTrust algorithm is

constrained by the fact that trustworthiness of a peer (on its feedback) is equivalent

to its reputation value. However, trusting a peer’s feedback and trusting a peer’s

service quality are two different concepts. A malicious peer can attack the trust and

reputation management system while providing a high quality service. Further, the

EigenTrust algorithm relies on the presence of pre-trusted peers in the network which

is not practical in most networks. Most importantly, the EigenTrust algorithm com-

putes the global reputation values by a simple iterative weighted averaging mechanism

which is vulnerable to collaborative attacks from the malicious peers.

Use of the Bayesian framework is also proposed in [23] (Bayesian framework is

discussed in Section 2.1.2). In schemes utilizing the Bayesian framework, each repu-

tation value is computed independent of the other nodes’ reputation values. However,

the ratings provided by the nodes induce a probability distribution on the reputation

values. These distributions are correlated because they are induced by the overlap-

ping set of nodes. The strength of our proposed approach (BP-P2P) stems from the

fact that it tries to capture this correlation in analyzing the ratings and computing

the trust and reputation values.

2.4 Recommender Systems

Techniques to build recommender systems [10, 81, 86, 87] can be classified into two

main categories: i) content-based filtering [17, 46] in which the system uses behav-

ioral data about a user to recommend items similar to those previously consumed

by the user, and ii) collaborative filtering [40, 80] in which the system compares one

user’s behavior against the other users’ behaviors and identifies items which were

19

preferred by similar users. There are also hybrid methods combining these two tech-

niques [27]. Collaborative filtering algorithms also fall into two general classes: i)

memory-based algorithms [21, 45, 77] in which the value of an unknown rating is

computed by aggregating the ratings of some other users for the same item, and ii)

model-based algorithms [28, 48, 49, 51, 56–58, 67] in which the system uses the collec-

tion of the ratings to learn a model that is then used to make rating predictions.

Methods that combine both memory-based and model-based algorithms are also sug-

gested [71]. Memory-based algorithms are further classified into user-based [47, 62],

item-based [36, 54, 84], and hybrid methods [100]. On the other hand, model-based

algorithms include clustering methods [67], probabilistic methods [49], methods ex-

ploiting Singular Value Decomposition (SVD), Principal Component Analysis (PCA)

and Maximum Margin Matrix Factorization (MMMF) techniques [41, 85, 93, 102].

The application of Bayesian networks and message passing algorithms for rec-

ommender systems is also studied in the past [34, 94]. In [94], the message passing

technique is used to determine the latent factors of the users and items (as an alter-

native to SVD). In [34], because of the fuzziness associated with the ambiguity in the

description of the ratings, a (non-iterative) inference is proposed among the users to

remove this ambiguity. The key difference between our proposed approach and the

other message passing-based methods is that, we describe the recommendation prob-

lem as computing marginal likelihood distributions from complicated global functions

of many variables. To solve this problem whose complexity grows exponentially, we

resort to the Belief Propagation (BP) algorithm whose computational efficiency (i.e.,

linear in the number of users) is driven by exploring the way in which the global

functions factors into a product of simpler local functions. Inspired by successful

applications of BP algorithms in various fields such as decoding of error correcting

codes [59, 60, 66, 104], Artificial Intelligence [70], and reputation systems [16], we de-

velop a new accurate and scalable recommender system.

20

CHAPTER III

ITERATIVE TRUST AND REPUTATION

MANAGEMENT MECHANISM

3.1 Introduction

As we discussed in Chapter 1, trust and reputation are crucial requirements for most

environments wherein entities participate in various transactions and protocols among

each other. On the other hand, trust and reputation management systems are sub-

ject to various malicious behaviors. Hence, there is yet a need to develop reliable,

scalable and dependable reputation management schemes that would also be resilient

to various ways a reputation management system can be attacked. Focusing mainly

on centralized reputation systems, the ultimate objective of this chapter is to develop

a trust and reputation management scheme that not only provides immunity against

malicious ratings but also discourages the service providers from any unfair and dis-

criminating behaviors. To achieve this, we propose an algebraic iterative algorithm

referred as “Iterative Trust and Reputation Mechanism” (ITRM). As in every trust

and reputation management mechanism, we have two main goals: 1. Computing the

service quality (reputation) of the peers who provide a service (henceforth referred

to as Service Providers or SPs) by using the feedbacks from the peers who used the

service (referred to as the raters), and 2. Determining the trustworthiness of the

raters by analyzing their feedback about SPs. We consider the following major at-

tacks that are common for any trust and reputation management mechanisms: i)

Bad-mouthing, in which malicious raters collude and attack the SPs with the highest

reputation by giving low ratings in order to undermine them, and ii) Ballot-stuffing,

in which malicious raters collude to increase the reputation values of peers with low

21

reputations. Further, we evaluate ITRM against some sophisticated attacks (which

utilizes bad-mouthing or ballot-stuffing with a strategy) such as RepTrap [105] or the

one in which malicious raters provide both reliable and malicious ratings to mislead

the algorithm.

Our proposed iterative algorithm is inspired by the earlier work on the improved

iterative decoding algorithm of LDPC codes in the presence of stopping sets [75,98].

In iterative decoding of LDPC, every check-vertex (in the graph representation of the

code) has some opinion of what the value of each bit-vertex should be. The iterative

decoding algorithm would then analyze the collection of these opinions to decide, at

each iteration, what value to assign for the bit-vertex under examination. Once the

values of the bit-vertices are estimated, in the next iteration, those values are used to

determine the satisfaction of the check-vertex values. The novelty of this work stems

from the observation that a similar approach can be adapted to determine SPs’ repu-

tation values as well as the trustworthiness of the raters. Furthermore, the analysis of

reputation systems resembles that of the code design problem. In LDPC, one of the

goals is to find the decoding error for the a fixed set of check constraints. Similarly, in

ITRM, our goal is to specify the regions of trust for the set of the system parameters.

A region of trust is the range of parameters for which we can confidently determine

the reputation values within a given error bound. We acknowledge, however, that we

have a harder problem in the case of reputation systems as the adversary dynamics

is far more complicated to analyze than the channel noise in the coding problem.

3.1.1 Contributions

The main strengths of the ITRM scheme are summarized in the following.

1. The proposed algorithm computes the reputations of the service providers accu-

rately (with a small error) in a short amount of time in the presence of attackers.

2. ITRM is a robust and efficient methodology for detecting and filtering out

22

unreliable ratings (from malicious raters) in a short amount of time.

3. ITRM detects the malicious raters with a high accuracy, and updates their trust-

worthiness accordingly. Hence, ITRM enforces the malicious raters to execute

low grade attacks in order to remain undercover.

4. The proposed ITRM algorithm has a computational complexity that is linear

with the number of raters. Hence, ITRM is scalable and suitable for large scale

implementations.

3.2 Iterative Trust and Reputation Management Mecha-
nism (ITRM)

Let TRj be the global reputation of the jth SP. Further, TRij represents the rating

that the peer i reports about the SP j, whenever a transaction is completed between

the two peers. Moreover, Ri denotes the (report/rating) trustworthiness of the ith

peer as a rater1. The first step in developing ITRM is to interpret the collection of

the raters and the SPs together with their associated relations as a bipartite graph,

as in Fig. 1(a). In this representation, each rater corresponds to a check vertex in

the graph, shown as a square and each SP is represented by a bit vertex shown as a

hexagon in the graph. If a rater i has a rating about the jth SP, we place an edge

with value TRij from the ith check-vertex to the jth bit-vertex. As time passes, we

use the age-factored values as the edge values instead. To each edge {ij}, a value

WRij = wijTRij is assigned, where WRij is the age-factored TRij value. The factor

wij(t) is used to incorporate the time-varying aspect of the reputation of the SPs (i.e.,

time-varying service quality). We use a known factor wij(t) = λ̂t−tij where λ̂ and tij

are the fading parameter and the time when the last transaction between the rater i

and the SP j occurred, respectively. If a new rating arrives from the ith rater about

1All of these parameters (TRj, TRij and Ri) may evolve with time. However, for simplicity, we
omitted time dependencies from the notation.

23

the jth SP, our scheme updates the new value of the edge {ij} by averaging the new

rating and the old value of the edge multiplied with the fading factor.

We consider slotted time throughout this discussion. At each time-slot, ITRM

will be executed using the input parameters Ri and WRij to obtain the reputation

parameters (e.g., TRj) and the list of malicious raters (referred to as the blacklist).

Initially, the blacklist is set empty. Details of ITRM may be described by the following

procedure at the Lth time-slot. Let Ri and TRij be the parameter values prior to the

present execution (the Lth execution) of ITRM algorithm. Let also TRν
j and TRν

ij

be the values of the bit-vertex and the {ij}th edge at the iteration ν of the ITRM

algorithm. Prior to the start of the iteration (ν = 0), we set TRν=0
ij = TRij and

compute the initial value of each bit-vertex (referred to as the initial guess TRν=0
j)

based on the weighted average of the age-factored edge values (WRν
ij) of all the edges

incident to the bit-vertex j. Equivalently, we compute

TRν
j =

∑

i∈Aj

Ri ×WRν
ij

∑

i∈Aj

Ri × wij(t)
, (1)

where Aj is the set of all check-vertices connected to the bit-vertex j. It is interest-

ing to note that the initial guess-values resemble the received information from the

channel in the channel coding problem. Then, the first iteration starts (i.e., ν = 1).

We first compute the average inconsistency factor Cν
i of each check-vertex i using

the values of the bit-vertices (i.e., TRν−1
j) for which it is connected to. That is, we

compute

Cν
i =

1
∑

j∈Bi

λ̂t−tij

∑

j∈Bi

d(TRν−1
ij , TRν−1

j), (2)

where Bi is the set of bit vertices connected to the check-vertex i and d(·, ·) is a

distance metric used to measure the inconsistency. We use the L1 norm (absolute

value) as the distance metric, and hence,

d(TRν−1
ij , TRν−1

j) = |TRν−1
ij − TRν−1

j |λ̂t−tij . (3)

24

After computing the inconsistency factor for every check-vertex, we list them is as-

cending order. Then, the check-vertex i with the highest inconsistency is selected

and placed in the blacklist if its inconsistency is greater than or equal to a definite

threshold τ (whose choice will be discussed later). If there is no check-vertex with

inconsistency greater than or equal to τ , the algorithm stops its iterations. Once the

check-vertex i is blacklisted, we delete its rating TRν
ij for all the bit-vertices j it is

connected to. Then, we update the values of all the bit-vertices using (1). This com-

pletes the first iteration of ITRM. The iterative algorithm proceeds to other iterations

exactly in the same way as the first iteration, updating the values of the bit-vertices

and blacklisting some other check-vertices as a result. However, once a check-vertex

is placed in the blacklist, for the remaining iterations it is neither used for the evalu-

ation of TRj values nor for the inconsistency measure of the check-vertices. We stop

the iterations when the inconsistencies of all the check-vertices (excluding the ones

already placed in the blacklist) fall below τ .

As an example, ITRM is illustrated in Fig. 1 for 7 raters, 3 SPs, and τ = 0.7. It is

assumed that the rates are integer values from {1, . . . , 5} and the actual reputations

of the SPs, ˆTRj , are equal to 5. For simplicity, we assumed wi’s to be equal to 1 and

Ri’s to be equal for all raters. Furthermore, we assumed that the peers 1, 2, 3, 4, and 5

are honest but 6 and 7 are malicious raters. The malicious raters (6 and 7) mount the

bad-mouthing attack in this example by rating the SPs with ˆTRj = 5 as 1 (to degrade

their reputations). Fig. 1(a) shows the TRij values (illustrated by different line-styles)

prior to the execution of ITRM. The TRj values and the individual inconsistencies

of the raters after each iteration are also illustrated in Fig. 1(c). We note that the

algorithm stops at the third iteration when all the raters have inconsistencies less

than τ . Fig. 1(c) indicates how ITRM gives better estimates of TRj ’s compared to

the weighted averaging method (which is correspond to the zero iteration). Fig. 1(b)

illustrates the edges after the final iteration of ITRM. It is worth noting that the

25

malicious raters 6 and 7 are blacklisted and their ratings are accordingly deleted.

Moreover, rater 3, although honest, is also blacklisted at the third iteration. We note

that this situation is possible when an honest but faulty rater’s rating have a large

deviation from the other honest raters.

(c)

te

xt

5

TR
ij
= 5

TR
ij
= 4

TR
ij
= 3

TR
ij
= 2

TR
ij
= 1

rater peer

blacklisted rater

service provider

Iteration
 C1

0

1

2

1.1

3

.85

.43

.12

C2

.72

.43

.35

.38

C3

.10

.35

.77

-

C4

1.52

1.23

.65

.63

C5

1.1

.85

.43

.12

C6

1.87

2.42

-

-

Iteration
 TR
 1
 TR
2
 TR
3

0

1

2

4.8

4.8

4.8

3
 2.75

3.5
 3.33

4.33
 4.5

3
 4.75
 5
 4.5

5
 5
 5

R1
 R2
 R3
 R4
 R5
 R6
 R7

S1
 S2
 S3

(b)

5
 5
 5

R1
 R2
 R3
 R4
 R5
 R6
 R7

S1
 S2
 S3

(a)

1.87

-

-

-

C7

TR
11
 TR
73

Figure 1: Illustrative example of ITRM.

3.2.1 Managing Raters’ Trustworthiness

We update the Ri values using the set of all past blacklists together in a Beta distri-

bution [25]. Initially, prior to the first time-slot, for each rater-peer i, the Ri value is

set to 0.5 (φi = 1 and ϕi = 1). Then, if the rater-peer i is blacklisted, Ri is decreased

by setting

ϕi(t+ 1) = λ̄ϕi(t) + (Ci + 1− τ)δ, (4)

otherwise, Ri is increased by setting

φi(t + 1) = λ̄φi(t) + 1, (5)

26

where λ̄ is the fading parameter and δ denotes the penalty factor for the blacklisted

raters. We note that updating Ri values via the Beta distribution has one major

disadvantage. An existing malicious rater with low Ri could cancel its account and

sign in with a new ID (whitewashing). This problem may be prevented by updating

Ri’s using the method proposed in [108].

3.3 Security Evaluation of ITRM via User Modeling

In order to facilitate future references, frequently used notations are listed in Table 1.

Table 1: Notations and definitions.

D Number of malicious raters
H Number of honest raters
N Number of service providers
W D/(D +H) (i.e., fraction of malicious raters)
m Rating given by an honest rater
n Rating given by a malicious rater
X Total number of malicious ratings TRij received by a victim SP
d Total number of newly generated ratings, per time-slot, by an honest rater
b Total number of newly generated ratings, per time-slot, by a malicious rater

b̂
Total number of newly generated attacking/malicious ratings, per time-slot,
by a malicious rater

∆ b̂/b (i.e., fraction of attacking ratings per time-slot)
µ Total number of un-attacked SPs rated by an honest rater

3.3.1 Analytic Evaluation

We adopted the following models for various peers involved in the reputation sys-

tem. We assumed that the quality of SPs remains unchanged during time-slots. We

provided the evaluation for the bad-mouthing attack only, as similar results hold for

ballot-stuffing and combinations of bad-mouthing and ballot-stuffing. We let T̂Rj

be the actual reputation value of the jth SP. Ratings (i.e., TRij) generated by the

non-malicious raters are distributed uniformly among the SPs. We further assumed

27

that m is a random variable with folded normal distribution (mean ˆTRj and variance

0.5), however, it takes only discrete values from 1 to 5. Furthermore, the Ri values for

all the raters are set to the highest value (i.e., Ri = 1) for simplicity (which reflects

the worst case). Finally, we assumed that d is a random variable with Yule-Simon

distribution, which resembles the power-law distribution used in modeling online sys-

tems, with the probability mass function fd(d; ρ) = ρB(d, ρ+ 1), where B(·, ·) is the

Beta function. For modeling the adversary, we made the following assumptions. We

assumed that the malicious raters initiate bad-mouthing and collude while attacking

the SPs. Further, the malicious raters attack the same set Γ of SPs at each time-slot.

In other words, Γ represents a set of size b̂ in which each SP has an incoming edge

from all malicious raters. The following discussions are developed for the time-slot t.

τ-eliminate-optimal Scheme: We declare a reputation scheme to be τ -eliminate-

optimal if it can eliminate all the malicious raters whose inconsistency (measured

from actual reputation values ˆTRj of SPs) exceeds the threshold τ . Hence, such a

scheme would compute the reputations of the SPs by just using the honest raters.

Naturally, we need to answer the following question: For a fixed τ , what are the

conditions to have a τ -eliminate-optimal scheme? The conditions for ITRM to be a

τ -eliminate-optimal scheme are given by the following lemma:

Lemma 3.3.1. Let Θj and dt be the number of unique raters for the jth SP and the

total number of outgoing edges from an honest rater in t elapsed time-slots, respec-

tively. Let also Q be a random variable denoting the exponent of the fading parameter

λ̂ at the tth time-slot. Then ITRM would be a τ -eliminate-optimal scheme if the

conditions
∑

r∈Λ

Ψr ≥ (b̂m+ bτ) (6a)

and

µ

dt
> 1−

Θλ̂Q∆

D
(6b)

28

are satisfied at the tth time-slot, where

Ψr =
mX + nΘrλ̂

Q

X +Θrλ̂Q
for r ∈ Λ, (7)

and Λ is the index set of the set Γ.

Proof. At each iteration, ITRM blacklists the rater i with the highest inconsistency

Ci if Ci ≥ τ . Each malicious rater has b̂ attacking ratings at each time slot. More-

over, the inconsistency of a malicious rater due to each of its attacking edge j is
(

mX+nΘj λ̂
Q

X+Θj λ̂Q
−m

)

, where j ∈ Γ. Therefore, the total inconsistency of a malicious

rater (which is calculated considering both its attacking and non-attacking ratings)

should be greater than or equal to τ to be blacklisted. This results the condition in

(6a). Further, given Ci ≥ τ for a malicious rater i, to have a τ -eliminate-optimal

scheme, we require that the inconsistency of the malicious rater with the highest

inconsistency exceeds the inconsistencies of all the honest raters so that the black-

listed rater can be a malicious one in all iterations. To make sure ITRM blacklists

all malicious raters, the inconsistency of a malicious rater must be greater than the

inconsistency of an honest rater at the 0th iteration with a high probability. The

inconsistency of a malicious rater at the tth time slot is given by

(

|
mX + ncλQ

X + cλQ
−m|

)

∆. (8)

Similarly, the inconsistency of an honest rater at the tth time slot is

(

|
mX + ncλQ

X + cλQ
− n|

)

dt − µ

dt
. (9)

Hence, to blacklist a malicious rater, we require the term in (8) be greater than that

of (9) which leads to (6b).

The design parameter τ should be selected based on the highest fraction of ma-

licious raters to be tolerated. To determine the optimal value of τ , we start with

Lemma 3.3.1. We use a waiting time t such that (6a) and (6b) are satisfied with high

29

probability (given the highest fraction of malicious raters to be tolerated). Then,

among all τ values that satisfy (6a) and (6b) with high probability, we select the

highest τ value. The intention for selecting the highest τ value is to minimize the

probability of blacklisting an honest rater. In the following example, we designed the

scheme to tolerate up to W = 0.30 (i.e., 30% malicious raters). For the given param-

eters D + H = 200, N = 100, ∆ = 1, ρ = 1 and λ̂ = 0.9, we obtained the optimal

τ = 0.4. In Fig. 2, we illustrate the waiting time for ITRM to be τ -eliminate-optimal

for different fractions of malicious raters. As shown in Fig. 2, for W lower than 0.30,

the waiting time becomes shorter to have a τ -eliminate-optimal scheme for τ = 0.4.

However, the scheme may also blacklist a few non-malicious raters in addition to the

malicious ones when W is actually less than 0.30. This is because the optimal value

of τ is higher for a τ -eliminate-optimal scheme when W is actually less than 0.30.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

time slot

P
r(

IT
R

M
 b

ei
ng

 τ
−e

lim
in

at
e−

op
tim

al
)

W=0.10
W=0.15
W=0.20
W=0.25
W=0.30

Figure 2: Waiting time for τ -eliminate-optimal.

3.3.2 Simulations

We compared the performance of ITRM with three well-known and commonly used

reputation management schemes: 1) The Averaging Scheme, 2) Bayesian Approach,

30

and 3) Cluster Filtering. The Averaging Scheme is widely used in well-known web

sites such as Amazon and AllExperts (as discussed in Section 2.1.1). The Bayesian

Approach [25] updates the TRj values using a Beta distribution (as discussed in

Section 2.1.2). For this scheme, we assumed a deviation threshold of 0.5 and a

trustworthiness threshold of 0.75, which are the same parameters used in the original

paper [25] (for details refer to [25]). Cluster Filtering [35] performs a dissimilarity

test among the raters and then updates the TRj values using only the honest raters

(as discussed in Section 2.1.3).

We assumed that there were already 200 raters (all of which are honest and pro-

vide reliable ratings) and 50 SPs in the system. Moreover, a total of 50 time-slots

have passed since the launch of the system. Further, ratings generated during pre-

vious time-slots were distributed among the SPs in proportion to their reputation

values. After this initialization process, we introduced 50 more SPs as newcomers.

Further, we assumed that a fraction of the existing raters changed behavior and be-

came malicious after the initialization process. Hence, by providing reliable ratings

during the initialization period (for 50 time-slots) the malicious raters increased their

trustworthiness values before they attack. Eventually, we had D + H = 200 raters

and N = 100 SPs in total. We further assumed that d is a random variable with

Yule-Simon distribution as discussed in the analysis. At each time-slot, the newly

generated ratings from honest raters are assigned to the SPs in proportion to the

present estimate of their reputation values, TRj . We obtained the performance of

ITRM, for each time-slot, as the mean absolute error (MAE) |TRj − T̂Rj |, averaged

over all the SPs that are under attack (where, T̂Rj is the actual value of the reputa-

tion). We used the following parameters throughout our simulations: b = 5, ρ = 1,

λ̂ = λ̄ = 0.9, the penalty factor δ = 10, and τ = 0.4 (the choice of τ is based on the

analytical results discussed in Section 3.3.1).

We have evaluated the performance of ITRM in the presence of bad-mouthing

31

and ballot-stuffing. Here, we provide an evaluation of the bad-mouthing attack only,

as similar results hold for ballot-stuffing. In all simulations, we considered the worst-

case scenario in which the victims are chosen among the newcomer SPs with an actual

reputation value of ˆTRj = 5 in order to have the most adverse effect. The malicious

raters do not deviate very much from the actual ˆTRj = 5 values to remain under

cover as many time-slots as possible (while still attacking). Hence, at each time-slot,

the malicious raters apply a low intensity attack by choosing the same set of SPs

from Γ and rating them as n = 4. We had also tried higher deviations from the

ˆTRj value and observed that the malicious raters were easily detected by ITRM in

fewer time-slots. Therefore, we identified the low intensity attack scenario as the

most adverse one against the reputation management mechanism. We note that this

attack scenario also resembles the RepTrap attack in [105] which is proved to be a

strong and destructive attack that can undermine the reputation system. Further,

by assuming that the ratings of the honest raters deviate from the actual reputation

values, our attack scenario becomes even harder to detect when compared to the

RepTrap. In Fig. 3, we show the performance of ITRM for this attack scenario after

the newcomer SPs joined to the system and for differentW values (with ∆ = b̂/b = 1).

We observed that ITRM guarantees significantly low errors regardless of the fraction

of the malicious raters. As W becomes larger, it takes more time to get negligibly

small error values (which is consistent with our analysis). The lags in the plots of

ITRM in Fig. 3 correspond to waiting times to include the newcomer SPs into the

execution of ITRM, computed based on our analytical results presented in Fig. 2.

Figures 4 and 5 illustrate the comparison of ITRM with the other schemes (i.e.,

Cluster Filtering, Bayesian Approach and Averaging Scheme) for the above attack

scenario and when W = 0.10 and W = 0.30 of existing raters changed behavior and

became malicious, respectively. Thus, the plots in Figs. 4 and 5 are shown from the

time-slot the newcomers are introduced and existing raters changed behavior. We

32

6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time slot

M
A

E

W = 0.10
W = 0.15
W = 0.20
W = 0.25
W = 0.30

Figure 3: MAE performance of ITRM versus time for bad-mouthing and varying W .

note that for this simulation we set ∆ = b̂/b = 1. Again, the lags in the plots of

ITRM in Figs. 4 and 5 correspond to waiting times to include the newcomer SPs

into the execution of ITRM, computed based on our analytical results. On the other

hand, we executed the other 3 schemes starting from the first time-slot, since we

observed that their performances were better that way. We also observed that the

average number of iterations for ITRM is around 5 and it decreases with time and

with decreasing fraction of malicious raters.

33

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time slot

M
A

E

ITRM
Cluster Filtering
Bayesian Approach
Averaging Scheme

Figure 4: MAE performance of various schemes for bad-mouthing when W = 0.10.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time slot

M
A

E

ITRM
Cluster Filtering
Bayesian Approach
Averaging Scheme

Figure 5: MAE performance of various schemes for bad-mouthing when W = 0.30.

We also evaluated the performance of ITRM when the malicious raters provide

both reliable and malicious ratings to mislead the algorithm. In Fig. 6, we illustrate

the performance of ITRM for this attack for W = 0.10 and different ∆ = b̂/b values.

34

We observed that as the malicious raters attack with less number of edges (for low

values of b̂), it requires more time slots to have negligibly low error values. Further,

when the b̂ values becomes very small (b̂ = 1, 2), it is hard to detect the malicious

peers. On the other hand, although the malicious raters stay under cover when they

attack with very less number of edges, this type of an attack limits the malicious

raters’ ability to make a serious impact (they can only attack to a small number

of SPs). We note that for small values of b̂, although not plotted, other reputation

management mechanisms also fail to detect the malicious raters. Further, for different

values of ∆ and W , we observed that ITRM still keeps its superiority over the other

schemes.

6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time slot

M
A

E

∆ = 1
∆ = 0.8
∆ = 0.6
∆ = 0.4
∆ = 0.2

Figure 6: MAE performance of ITRM for bad-mouthing when W = 0.10 and for
varying ∆.

From these simulation results, we conclude that ITRM significantly outperforms

the Averaging Scheme and the Bayesian Approach in the presence of attacks. We

identify that the reputation management scheme with the closest performance to

ITRM is Cluster Filtering. However, the computational complexity of Cluster Fil-

tering is much higher than ITRM. Specifically, the number of operations required in

35

both methods is illustrated in Table 2. Therefore, while Cluster Filtering introduces

quadratic complexity, the computational complexity of ITRM is linear with the num-

ber of raters. As a result, our proposed scheme is more scalable and suitable for large

scale reputation systems.

Table 2: Computational complexity of Cluster Filtering and ITRM.

ITRM Cluster Filtering

Addition O
(

D +H
)

O
(

(D +H)2
)

Multiplication O
(

D +H
)

O
(

(D +H)2
)

3.4 Summary

In this chapter, we introduced the “Iterative Trust and Reputation Management

Scheme” (ITRM). Our work is a graph based iterative algorithm motivated by prior

success on message passing techniques for decoding LDPC codes. The proposed ITRM

is a robust mechanism to evaluate the quality of the service of the service providers

from the ratings received from the recipients of the service (raters). Moreover, it ef-

fectively evaluates the providers’ reputations and the trustworthiness of raters while

introducing a linear computational complexity with respect to the number of raters.

We studied ITRM by a detailed analysis, and showed the robustness using computer

simulations. Besides, we compared ITRM with some well-known reputation manage-

ment schemes and showed the superiority of our scheme both in terms of robustness

and efficiency.

36

CHAPTER IV

APPLICATION OF ITRM TO AD-HOC NETWORKS

4.1 Introduction

Delay Tolerant Networks (DTNs) are relatively new class of networks, wherein sparse-

ness and delay are particularly high (as we discussed in Chapter 1). These special

constraints posed by DTNs make existing security protocols inefficient or impracti-

cal in such networks. Our main objective in this chapter is to develop a security

mechanism for DTNs which enables us to evaluate the nodes based on their behavior

during their past interactions and to detect misbehavior due to Byzantine adversaries,

selfish nodes and faulty nodes. The resulting scheme would effectively provide high

data availability and packet delivery ratio with low latency in DTNs in the presence

of Byzantine attackers. To achieve this goal, we aim at obtaining a reputation-based

trust management system and an iterative malicious node detection mechanism for

DTNs. Thus, we explore the application of Iterative Trust and Reputation Mecha-

nism (ITRM), which is described in Chapter 3, on DTNs. We propose a distributed

malicious node detection mechanism for DTNs using ITRM which enables every node

to evaluate other nodes based on their past behavior, without requiring a central au-

thority. We will show that the resulting scheme effectively provides high data avail-

ability and low latency in the presence of Byzantine attackers. We will also show that

the proposed iterative mechanism is far more effective than some well-known reputa-

tion management techniques (e.g., Bayesian framework and EigenTrust) in detecting

Byzantine nodes in a DTN environment.

We note that the security issues such as source authentication and data authen-

tication have been previously studied for disconnected networks in [55, 88]. Hence,

37

they are not considered in this research. The security objectives of our research are

summarized as follows.

1. Data availability with low latency: Data availability should be ensured. Further,

regeneration of the original messages at their destinations should not be delayed

for a noticeable time by the Byzantine nodes.

2. A robust trust mechanism: Each node should be able to evaluate the average

behaviors of the nodes that it has interacted with by the help of the feedbacks

it receives from the other nodes. Moreover, this mechanism should be robust

to individual and colluding Byzantine attackers.

3. Mitigating the Byzantine behavior: As we will explain in Section 4.2.1, ma-

licious nodes may attack with different probabilities to hide from the trust

management system. The network suffers the most due to malicious nodes with

high attacking rates. Hence, containment of malicious nodes that do the most

damage should be given the highest priority.

4. Detection of malicious nodes: As a result of the trust establishment, the system

must be able to detect the Byzantine nodes without using a central authority. In

particular, the performance of the detection algorithm should not be degraded

by collaborative attacks against the trust management mechanism.

4.1.1 Contributions

The main contributions of our work are summarized in the following.

1. We introduce the application of ITRM into DTNs as an iterative trust man-

agement and malicious node detection scheme. The scheme provides high data

availability and packet delivery ratio with low latency in the presence of Byzan-

tine attackers.

38

2. The proposed algorithm computes the reputations of the network nodes accu-

rately in a short amount of time in the presence of attackers without any central

authority.

3. The proposed algorithm mitigates the impacts of Byzantine attackers propor-

tional to their attack degrees. That is, the ones that are attacking with the

highest strength are detected with higher probability.

4. Comparison of ITRM with some well-known reputation management techniques

(e.g., Bayesian framework and EigenTrust) indicates the superiority of ITRM

in terms of robustness against attacks in a realistic DTN environment. Further,

the proposed algorithm is very efficient in terms of its computational complexity.

Specifically, the complexity of ITRM is linear in the number of nodes. Hence,

it is scalable and suitable for large scale implementations.

4.2 Trust Management and Adversary Detection in Delay
Tolerant Networks (DTNs)

4.2.1 Adversary Models and Security Threats

As discussed in Section 4.1, we consider the challenging problem of countering Byzan-

tine (insider) attacks (that give serious damage to the network in terms of data avail-

ability, latency and throughput). Broadly we consider two types of attack: 1. Attack

on the network communication protocol, 2. Attack on the security mechanism.

Packet drop and packet injection (attack on the network communication

protocol): An insider adversary drops legitimate packets it has received. This be-

havior of the malicious nodes has a serious impact on the data availability and the

total latency of the network. Moreover, a malicious node may also generate its own

flow to deliver to another (malicious) node via the legitimate nodes. As a result,

bogus flows compete with legitimate traffic for the scarce network resources.

39

Bad-mouthing (ballot-stuffing) on the trust management (attack on the

security mechanism): As it will be discussed, a legitimate node needs feedbacks

from a subset of nodes to determine its trust on a specific node. When a malicious

node is an element of this subset, it gives incorrect feedback in order to undermine

the trust management system. Bad-mouthing and ballot-stuffing attacks attempt

to reduce the trust on a victim node and boost the trust value of a malicious ally,

respectively. A successful attack may result in an incorrect edge value (rating) from

a non-malicious check-vertex in the graph representation in Fig. 1(a).

Random attack on trust management (attack on the security mechanism):

A Byzantine node may adjust its packet drop rate (on the scale of zero-to-one) to

stay under cover, making it harder to detect.

Bad-mouthing (ballot-stuffing) on the detection scheme (attack on the

security mechanism): As it will be discussed, every legitimate node, in order to

detect the nature of every network node, creates its own trust entries in a table

(referred to as the node’s rating table) for a subset of network nodes for which the

node has collected sufficient feedbacks. Further, each node also collects rating tables

from other nodes. When the Byzantine nodes transfer their tables to a legitimate

node, they may victimize the legitimate nodes (in the case of bad-mouthing) or help

their malicious allies (in the case of ballot-stuffing) in their rating table entries. This

effectively reduces the detection performance of the system. Furthermore, malicious

nodes can provide both reliable and malicious ratings to mislead the algorithm as

discussed in Section 3.3.2. A successful attack adds a malicious check-vertex providing

malicious edges (ratings) in the graph representation in Fig. 1(a).

During the evaluation of the proposed scheme, we assumed that malicious nodes

may mount attacks on both the network communication protocol and the underlying

40

security mechanism (trust and reputation management mechanism, ITRM) simulta-

neously. In the attack on the network communication protocol, we assumed that ma-

licious nodes both drop the legitimate packets they have received from reliable nodes

and generate their own flows to deliver to other (malicious) nodes via the legitimate

nodes in order to degrade the network performance (i.e., data availability and packet

delivery ratio) directly. In the attack on the security mechanism, we assumed that

malicious nodes simultaneously execute “bad-mouthing (ballot-stuffing) on the trust

management”, “random attack on trust management”, and “bad-mouthing (ballot-

stuffing) on the detection scheme” (which are described above) to cheat the underlying

trust and reputation management scheme (i.e., ITRM) and degrade the network per-

formance indirectly. We study the impact of these attacks and evaluate our proposed

scheme in the presence of these attacks (on the network communication protocol and

the security mechanism) in Section 4.2.5. First, we study the impact of the attacks to

cheat the underlying trust and reputation management mechanism alone and obtain

the time required to detect all the malicious nodes in the network. Next, we study the

impact of the “packet drop and packet injection attack” to the network performance

(in terms of data availability and packet delivery ratio) while the malicious nodes also

mount attacks on the underlying reputation mechanism.

As a result of our studies, we concluded that ITRM provides a very efficient trust

management and malicious node detection mechanism for DTNs under the threat

model discussed above. The most significant advantage of ITRM under the above

threat model, in addition to resiliency to a high fraction of malicious nodes, is to let

each network node accurately compute the reputation values of the other network

nodes in a short time. Computing the reputation values in a short time is a very

crucial issue in DTNs because of their unique characteristics (such as the intermittent

contacts between the nodes). As a result of this advantage, each legitimate node

detects and isolates the malicious nodes from the network to minimize their impact

41

to the network performance (as will be illustrated in Section 4.2.5).

4.2.2 Network/Communication Model and Technical Background in Con-
text

Before giving a high level description of our scheme, we will introduce the net-

work/communication model and the main tools that we use for the system to operate.

Mobility model: We use both Random Waypoint (RWP) and Levy-walk (LW)

mobility models for our study which are widely used for simulating DTNs. RWP

model produces exponentially decaying inter-contact time distributions for the net-

work nodes making the mobility analysis tractable. On the other hand, LW mobility

is shown to produce power-law distributions that has been studied extensively for

animal patterns and recently has been shown to be promising as a model for human

mobility [82]. In the RWP mobility model [22], each node is assigned an initial lo-

cation in the field and travels at a constant speed to a randomly chosen destination.

The speed is randomly chosen from [vmin, vmax] regardless of the initial location and

destination. After reaching the destination, the node may pause for a random amount

of time before the new destination and speed are chosen randomly. In LW mobility

model [50, 72, 82], each flight length and pause time distributions closely match the

truncated power-law distributions. Further, angles of movement are pulled from a

uniform distribution. Our implementation of LW mobility model is based on the

model in [82]. A step is represented by four variables, flight length (ℓ), direction (θ),

flight time (Υtf), and pause time (Υtp). The model selects flight lengths and pause

times randomly from their probability distributions p(ℓ) and ψ(Υtp) which are Levy

distributions with coefficients α and β, respectively. Finally, regardless of the mobil-

ity model used, we assume a finite rate of packet transfer which forces the number of

packets transmitted per contact to be directly proportional to the contact time.

Packet format: We require that each packet contains its two hop history in its

42

header. In other words, when node B receives a packet from node A, it learns from

which node A received that packet. This mechanism is useful for the feedback mech-

anism as discussed in Section 4.2.4.

Routing and packet exchange protocol: We assume that messages at the source

are packetized. Further, the source node never transmits multiple copies of the same

packet. Hence, at any given time, there is at most a single copy of each packet in the

network. We assume only single-copy routing since reliable single-copy routing with

packetization is achieved by encoding the data packets using rateless codes [63, 91]

(as briefly discussed next) at the source node. The use of rateless coding improves

reliability and latency in DTNs even when there is no adversary [99]. Furthermore,

exchange of packets between two nodes follows a back-pressure policy. To illustrate

this, assume node A and B have x and y packets belonging to the same flow f ,

respectively (where x > y). Then if the contact duration permits, node A transfers

(x− y)/2 packets to node B belonging to flow f . As a result of the mobility model,

each node has the same probability to meet with the destination of a specific flow.

Hence, by using the back-pressure policy we equally share the resources (e.g., contact

time) among the flows.

The packet exchange protocol also enforces fairness among multiple nodes that

forwarded the same flow to a node. To clarify, let us assume that node A has some

packets from a flow f (which were forwarded to it by χ different nodes) and based

on the back-pressure policy, it needs to transfer some of them to node B. In this

situation, node A must fairly select the packets based on their previous hops (which

is available via the packet format discussed before). In other words, each packet that

is received from a different node has the same probability to be selected for transfer.

This mechanism is useful for the feedback mechanism as discussed later. Finally,

when a node forwards a packet, it deletes it from its buffer.

Rateless Coding: Recently, a new class of efficient codes called rateless codes have

43

been proposed that require no knowledge of channel parameters to perform near-

optimally with a simple decoding algorithm [63]. The rateless encoder can potentially

generate a limitless stream of encoded packets for a list of η input (information)

packets. Fundamental to rateless coding is a probability distribution Ω on the set

{1, 2, ...η}, i.e., the probability of the symbol i is given by Ω(i). To generate an

encoded packet, the encoder generates an instance ξ of a random variable Ξ with the

distribution Ω. The encoder then chooses ξ distinct input packets, say Pi1, ..., Piξ ,

from the available η input packets (each with, say, l bits) and declares the encoded

packet to be Pi1 ⊕ Pi2... ⊕ Piξ , where ⊕ denotes the packet-level XOR operation. In

such a setup, it can be shown that when the decoder receives η(1+ ζη) packets, where

ζη is a positive number very close to zero, it can successfully decode all η input packets

with high probability [63] (coding overhead ζη decreases as η increases).

Bloom filter: A Bloom filter is a simple space-efficient randomized data structure

for representing a set in order to support membership queries [20]. A Bloom filter for

representing a set U of G elements is described by an array of κ bits, initially all set

to 0. It employs γ independent hash functions H1, . . . ,Hγ with range { 1, . . . , κ }. For

every element x ∈ U , the bits H1(x), . . . ,Hγ(x) in the array are set to 1. A location

can be set to 1 multiple times, but only the first change has an effect. To check if y

belongs to U , we check whether all H1(y), . . . ,Hγ(y) are set to 1. If not, y definitely

does not belong to U . Otherwise, we assume y ∈ U although this may be wrong with

some probability. Hence, a Bloom filter may yield a false positive where it suggests

that y is in U even though it is not.

The probability of false positive is an important parameter in a Bloom filter. After

all elements of U are hashed into the filter, the probability that a specific bit is 0 is

(

1−
1

κ

)γG

≈ e−γG/κ. (10)

44

Hence, the probability of false positive is

p̃ =

(

1−

(

1−
1

κ

)γG
)γ

≈
(

1− e−γG/κ
)γ
. (11)

The network designer can arbitrarily decrease this probability to the expense of in-

creasing communication overhead. We note that the false positive probability can be

significantly reduced by using recently proposed techniques such as [44].

4.2.3 Iterative Malicious Node Detection for DTNs

In this section, we will describe how ITRM is adapted in DTNs as an iterative mali-

cious node detection mechanism. We will pick an arbitrary node in the network and

present the algorithm from its point of view throughout the rest of this discussion.

We denote this node as a judge for clarification of our presentation. Further, the

counterpart to the quality of a SP in the discussion of ITRM is the reliability of the

node in DTN in faithfully following the network (routing) protocols to deliver the

packets.

Since direct monitoring is not an option in DTNs (as explained in Section 2.2.1), a

judge node creates its own rating about another network node by collecting feedbacks

about the node and aggregating them. Each judge node has a table (referred to as

a Rating Table) whose entries (which are obtained using the feedback mechanism

described in Section 4.2.4) are used for storing the ratings of the network nodes. In

DTNs, due to intermittent contacts, a judge node has to wait for a very long time to

issue its own ratings for all the nodes in the network. However, it is desirable for a

judge node to have a fresh estimate of the reputation values of all the nodes in the

network in a timely manner, mitigating the effects of malicious nodes immediately.

To achieve this goal, we propose an iterative malicious node detection mechanism

which operates by using the rating tables formed by other nodes (acting as judges

themselves). The rating table of a judge node can be represented by a bipartite graph

consisting one check-vertex (the judge node) and some bit-vertices (i.e., a subset of

45

all the nodes in the network for which the judge node has received sufficient number

of feedbacks to form a rating with high confidence). Besides, by collecting sufficient

number of rating tables from other nodes, a judge node can generate a bipartite graph

as in Section 3.2; which includes all the network nodes as bit-vertices. We illustrate

this process at judge node J in Fig. 7 in which node J collects rating tables from

other judge nodes (including K and V) and generates a bipartite graph including all

network nodes as bit-vertices. Assuming N nodes in the network, a judge node may

create a bipartite graph with N bit-vertices by collecting rating tables from k − 1

nodes each with at least s non-empty entries. Hence, the resulting graph would have

k check-vertices (the kth check vertex belongs the judge node). The parameters s and

k are to be determined for high probability of detection while minimizing detection

latency. Clearly, higher s and k reduces the detection error but increases the delay.

We will discuss this issue in Section 4.2.5. Hence, when two nodes establish a contact

in a DTN, they exchange their rating tables. Once a judge node collects sufficient

number of tables each with sufficient number of non-empty entries, it can then proceed

with the iterative algorithm to specify the reputation values for all the nodes.

To adapt the ITRM scheme for DTNs, we will present (feedback) ratings as “0”

or “1”, which results in binary reputation values. In this special case, the iterative

reputation scheme becomes a detection scheme. That is, a node with a reputation

value of zero would be interpreted as a malicious node. Therefore, the proposed

scheme detects and isolates the malicious nodes from the network to minimize their

impact. We note that we used binary rating values for simplicity of the setup. Al-

ternatively, one may consider a setup where ratings are non-binary. In this scenario,

when two nodes establish a contact, they may exchange packets with some probability

associated with their reputation values (i.e., they may exchange packets proportional

to their reputation values). Moreover, we did not incorporate Ri (trustworthiness)

values for simplicity of simulations, and hence, we set all Ri values to one for the

46

i+1
 i+5
i+2
 i+3
 i+4
i

J

. . .
. . .

. . .
. . .

. . .
. . .

i+1
 i+5
i+2
 i+3
 i+4
i

J
K
 V

Node
 Rating

.
.
.

.
.
.

.
.
.

.
.
.

i

i+1

i+2

i+3

i+4

i+5

-

1

0

1

-

-

Node K’s

Rating Table

Node
 Rating

.
.
.

.
.
.

.
.
.

.
.
.

i

i+1

i+2

i+3

i+4

i+5

-

-

1

-

0

0

Node V’s

Rating Table

. . .

Figure 7: Collecting and combining the rating tables at the judge node J .

application of ITRM in DTNs. In other words, we assume that the judge node does

not have any previous knowledge about the nodes from which it receives the feedbacks

and it trusts each node equally.

4.2.4 Trust Management Scheme for DTNs

In the proposed scheme, the authentication mechanism for the packets generated by

a specific source is provided by a Bloom filter [20] and ID-based signature (IBS) [32].

Whenever a source node sends some packets belonging to the flow that is initiated by

itself, it creates a Bloom filter output from those packets, signs it using IBS and sends

it to its contacts. The Bloom filter output provides an authentication mechanism for

the packets generated by a specific source. It is worth noting that whenever an

47

intermediate node forwards packets belonging to a specific flow to its contact, it also

forwards the signed Bloom filter output belonging to those packets for the packet

level authentication at each intermediate node. We do not give further details of the

authentication mechanism as source and data authentication for DTNs have been

considered before [55, 88] and they are out of the scope of this work.

Our proposed feedback mechanism to determine the entries in the rating table is

based on a 3-hop loop (referred to as Indirect type I feedback). We will describe this

scheme by using a toy example between 3 nodes A, B, and C as follows. Let us denote

the node that is evaluating as the judge (node A), the node that is being evaluated

as the suspect (node B), and the node that was the direct contact of the suspect as

the witness (node C). The basic working principle of the mechanism is that after the

judge node has a transaction (in the form of passing some packets) with a suspect,

the judge node waits to make contacts and receive feedback about the suspect from

every node (i.e., witnesses) that has been in direct contact with the suspect. It is

worth noting that this feedback mechanism is only used for constructing the entries

in the judge node’s rating table for a few network nodes. In overall, rating tables

are collected from the contacts of the judge node and ITRM is applied to find the

reputations of all network nodes (as described in Section 4.2.3).

Let assume that node A meets B, B meets C and C meets A at times t0, t1 and

t2, respectively, where t0 < t1 < t2. Indirect type I feedback between nodes A, B

and C is illustrated in Fig. 8. At time t0, A and B execute mutual packet exchange

as described in Section 4.2.2. When B and C meet at t1, they first exchange signed

time-stamps. Hence, when C establishes a contact with A, it can prove that it indeed

met B. Then B sends the packets in its buffer executing the fairness protocol as

discussed in Section 4.2.2. Moreover, suspect node B transfers the receipts it received

thus far to the witness C. Those receipts include the proofs of node B’s deliveries

(including deliveries of the packets belonging to node A) thus far and are signed by

48

the nodes to which its packets were delivered. We note that the receipts expire in

time and deleted from the buffers of the witnesses. Hence, they are not accumulated

in the buffers of the nodes. The lifetime of the receipts are determined based on the

detection performance of the scheme (required time for the scheme to have a high

malicious node detection accuracy) as will be described in Section 4.2.5. At the end

of the contact, node C also gives a signed receipt to node B including the IDs of the

packets it received from B during the contact. Finally, when the judge node A and

the witness C meet, they initially exchange their contact histories. Hence, A learns

that C has met B and requests the feedback. The feedback consists of 2 parts: i)

Those receipts of B that are useful for A’s evaluation (i.e., receipts which include the

delivery proofs of the packets belonging to node A), and ii) If node C received node

A’s packets from node B, it sends the hashes of those packets to A for the latter’s

evaluation. We note that C can easily find out A’s packets by just examining the

headers explained in Section 4.2.2. From B’s receipts, node A can determine if B

followed the packet delivery procedure (which is described in Section 4.2.2) properly

while delivering the packets forwarded by node A at time t0 (B’s receipts will reveal

the packet deliveries of B after time t0). Further, from the hashes of its own packets

(if there is any received by node C), node A can determine if node B modified any

of the packets before delivery.

If both parts of the feedback are verified by node A (if node B followed the packet

delivery procedure for A’s packets and delivered the packets properly), then the judge

A makes a “positive evaluation” as 1. Otherwise, if either part of the feedback is not

verified, the evaluation will be “negative” as 0. We note that if node C did not

receive any packets belonging to node A, then node A’s evaluation will be only based

on the receipts of B which are provided by node C at time t2 (i.e., node A will

evaluate node B based on the receipts it received from node C, which is the first part

of the feedback explained before). Each judge node uses the Beta distribution [25]

49

A
 B

B
 C

C
 A

Packets
from A’s buffer

Time Stamp
 signed by B

Receipts
 to prove its deliveries

Contact History

Request feedback for B

Feedback
for B

(t

0

)

(t
1
)

(t

2

)

Figure 8: Indirect type I feedback between nodes A (judge), B (suspect) and C
(witness).

to aggregate multiple evaluations it has made about a suspect using the associated

feedbacks. The collection of multiple feedbacks generates the rating (verdict) of a

judge node for a suspect node1. That is, if the aggregation of multiple feedbacks

for a suspect node is bigger that 0.5, the suspect node is rated as 1 in the judge

node’s rating table. Otherwise, if the aggregation value is smaller than or equal to

0.5, the suspect node is rated as 0. We note that the feedbacks from the witnesses

are not trustable. Because of the bad-mouthing (ballot-stuffing) and random attacks

(discussed in Section 4.2.1), a judge node waits for a definite number of feedbacks

to give its verdict about a suspect node with a high confidence. We will discuss

this waiting time, the number of required feedbacks, and their interplay for different

adversarial models in Section 4.2.5.

In the high level description of ITRM, it was implicitly assumed that the judge

has a priori knowledge about the packet drop rate of the Byzantine node. This is

unrealistic as the nodes may apply random attacks as in Section 4.2.1. To remove this

1ITRM utilizes the rating tables whose entries are associated verdicts to determine the final faith
of a node. Hence, the verdicts will be further processed by ITRM.

50

assumption, we propose detection at different levels. We observed that the sufficient

number of feedbacks that is required to give a verdict with high confidence depends

on the packet drop rate of the Byzantine nodes. In other words, for a node with a

higher drop rate, we would require fewer feedbacks than a node with a lower drop rate.

Assume that we desire to perform detection at level p1 = 0.8. This implies that after

applying ITRM, each judge node would identify and isolate all the Byzantine nodes

whose packet drop rates are p1 or higher. Further, assume that the detection at level

p1 requires at least M̂1 feedbacks about a suspect node. The number of feedbacks

depends on the confidence we seek at the accuracy of a verdict (before detection).

The level of confidence is determined by the detection strategy. For instance, for

ITRM, a confidence value in the order of 0.95 (out of 1) would be sufficient. Clearly,

the number of feedbacks also depends on the detection level. The lower the detection

level, the higher is the number of required feedbacks to maintain the same detection

confidence. Hence, every judge stores together with its verdict the lowest level of

detection at which the verdict can be used. Obviously, an entry verdict with lower

detection level (e.g., p = 0.6) is also good for use in a high detection level (e.g.,

p = 0.8), but the inverse is not true. An entry is left empty if the judge does not have

the sufficient number of feedbacks to give any verdict even at the highest detection

level. We note that there is no pre-determined detection level for the proposed scheme.

The judge node applies the ITRM for the lowest possible detection level (to minimize

the impacts of malicious nodes) depending on the entries (number of feedbacks used

to construct each entry verdict) in both its own rating table and the rating tables it

collected from other nodes. The judge checks the detection level of each table entry

(from both its own table and the collected tables) and performs the ITRM at the

detection level of the entry verdict which is the largest. To clarify this, assume a

judge node J collects rating tables from other judge nodes K and V as in Fig. 7.

For this toy example, we assume that the judge node J will perform the ITRM by

51

using only 3 rating tables (its own rating table and the ones collected from nodes

K and V). We further assume that the rating table entry (in the rating tables of

nodes J , K, and V) with the largest detection level has a detection level of j in

the judge node J ’s rating table, and detection levels of k and v for nodes K and

V ’s rating tables, respectively. Then, the judge node J performs the ITRM at the

detection level of max(j, k, v). The malicious nodes may try to survive from the

detection mechanism by setting their packet drop rates to lower values. However, the

proposed detection mechanism eventually detects all the malicious nodes (even the

ones with lower packet drop rates) when the judge node waits longer times to apply

the ITRM at a lower detection level. Further, as the drop rate of the malicious nodes

gets lower, the negative impact of the malicious nodes gets less significant in terms

of data availability and packet delivery ratio.

4.2.5 Security Evaluation

In this section, we give an analysis of the metrics of interest and illustrate our sim-

ulation results. Further, we compare the performance of ITRM with the well-known

reputation management schemes (Bayesian framework [24] and EigenTrust [53]) in a

realistic DTN environment. Finally, we show the performance of the proposed scheme

for the malicious node detection, availability and packet delivery ratio via simulations

(conducted using MATLAB). We assumed the mobility models (RWP and LW) of

Section 4.2.2 with N nodes in the network. It is shown that the inter-contact time

distributions of the LW can be modeled by a truncated Pareto distribution [50]. On

the other hand, as we mentioned in Section 4.2.2, the fact that the inter-contact times

of the RWP mobility model can be modeled as a Poisson process [42] makes the mo-

bility analysis tractable. Therefore, for our analytical conclusions (in Lemmas 4.2.1

and 4.2.2), we assumed the RWP mobility model2. However, for the simulations, we

2Similar results can be obtained for the LW mobility model using a truncated Pareto distribution
for the inter-contact times.

52

used both RWP and LW mobility models to evaluate the performance of the proposed

scheme under different mobility models.

In all simulations, we fixed the simulation area to 4.5km by 4.5km (with reflect-

ing boundaries) which includes N = 100 nodes each with a transmission range of

250m (which is the typical value for IEEE 802.11b). For the RWP model, we used

[vmin, vmax] = [10, 30]m/s and ignored the pause time for the nodes. For the LW

mobility model, we set the speed of every node to 10m/s. Further, we set the scale

factors of flight lengths and pause times to 10 and 1, respectively. We used the Levy

distribution coefficients of α = 1 and β = 1. Finally, we set the maximum flight

length and pause time to 4km and 2 hours, respectively.

Confidence on a Verdict: We let λi be the inter-contact time between two par-

ticular nodes. We analytically illustrated the waiting time of a judge node to collect

sufficient number of feedbacks about a suspect (to give its verdict with high confi-

dence) and evaluated the effect of random attack on the required number of feedbacks

in the following. Let the random variables x, y and z represent the number of feed-

backs received at a specific judge node A (about a suspect node B), total number of

contacts that the suspect node B established after meeting A, and the number of dis-

tinct contacts of B after meeting A, respectively. The following lemma characterizes

the time needed to receive M distinct feedbacks about a particular suspect node B

at a particular judge node A for the RWP mobility model.

Lemma 4.2.1. Let t0 be the time that a transaction occurred between a particular

judge-suspect pair. Further, let NT be the number of feedbacks received by the judge

for that particular suspect node since t = t0. Then, the probability that the judge node

has at least M feedbacks about the suspect node from M distinct witnesses at time

T + t0 is given by

Pr(NT ≥M) =

∫ ∞

M

∫ +∞

−∞

f(x|z, T)f(z, T)dzdx. (12)

53

Here, the distribution f(x|z, t) is Poisson with rate λiz/2 and

f(z, t) =

∫ +∞

−∞

f(z|y, t)f(y, t)dy, (13)

where f(y, t) and f(z|y, t) are both Poisson distributions with rates (N − 2)λi and

(N − 2)λi − λiy/2, respectively.

Proof. The probability that a particular judge node receives at least M feedbacks

(from distinct witnesses) about a particular suspect node between time t0 and t0 + T

is given by

Pr(NT ≥M) =

∫ ∞

M

f(x, T)dx, (14)

where f(x, t) =
∫ +∞

−∞
f(x|z, t)f(z, t)dz. As a result of the RWP mobility model,

it can be shown that f(x|z, t) is Poisson with rate λiz/2 where z represents the

number of distinct contacts of the suspect between time t0 and t0 + T and x is the

number of feedbacks received by the judge node (about the suspect) from a subset of

those z contacts. Further, since there are N nodes in the network, it can be shown

that the number of contacts established by any node has a Poisson distribution with

rate (N − 1)λi (excluding itself). Therefore, the number of contacts the suspect

established after the transaction with the judge, y, has a Poisson distribution with

rate (N − 2)λi (excluding the judge node and the suspect node itself), and given y,

the number of distinct contacts of the suspect, z, has a Poisson distribution with rate

(N − 2)λi − λiy/2.

We studied the effect of random attack on the required number of feedbacks for

a network with N = 1003. We denote the fraction of the Byzantine nodes in the

network as W . As we discussed in Section 4.2.4, a judge node waits for a definite

number of feedbacks to give its verdict about a suspect node with a high confidence.

Figure 9 illustrates the variation of a (judge) node’s confidence Σ on its verdict for

3The results illustrated (in Figs. 9 and 10) are independent of the mobility model used.

54

a suspect versus different levels of detection p. This is given for different number

of feedbacks (M) when W = 0.10. As expected, a node has more confidence at

higher detection levels and for high M values. As we discussed before, due to the

bad-mouthing, ballot-stuffing and random attacks, a judge node waits for a definite

number of feedbacks to give its verdict about a suspect node with a high confidence.

Let M̂ be the minimum number of feedbacks required about a specific suspect node

for an acceptable confidence level on a verdict. In Fig. 10, the variance of M̂ for

different detection levels (p) and different W values is illustrated given a judge node

has Σ = 0.95 confidence on its verdict (M̂=M for Σ ≃ 0.95). Hence, we can say that

a judge node needs more feedbacks about a suspect when there are more malicious

nodes mounting bad-mouthing (or ballot-stuffing) on the trust management.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection level (p)

C
on

fid
en

ce
 (

Σ)

M=20
M=40
M=60
M=80
M=100

Figure 9: Confidence of a judge node on its verdict vs. the detection level for
W = 0.10.

Detection Performance: We analytically illustrated the waiting time of a judge

node before executing ITRM and evaluated the effects of attacks on the detection

scheme for a network of size N in which the inter-contact time between two particular

nodes is λi. Let M̂ be the minimum number of feedbacks required about a specific

55

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

Detection level (p)

W=0.05
W=0.10
W=0.15
W=0.20
W=0.25
W=0.30

M̂

Figure 10: M̂ versus the detection level when Σ = 0.95 for different values of W .

suspect node for an acceptable confidence level on a verdict. Further, let T̂ be the

time required to receive M̂ feedbacks for a specific suspect. The following lemma

along with the simulation results illustrated in Figs. 11, 12, 13 and 14 (which will be

presented next) provide a good insight for a judge node about the instant it should

apply ITRM (the proof is similar to that of Lemma 4.2.1).

Lemma 4.2.2. Let a particular judge node start collecting feedbacks and generating

its rating table at time t = t0. Further, let N̂T be the number of entries in the rating

table of the judge node. Then, the probability that the judge node has at least s entries

at time t0 + T is given by

Pr(N̂T ≥ s) =

∫ +∞

s

∫ +∞

−∞

f(z|x, T − T̂)f(x, T − T̂)dxdz, (15)

where f(x, t) and f(z|x, t) are Poisson distributions with the rates (N − 1)λi and

(N − 1)λi − λix/2 for the RWP mobility model, respectively.

We evaluated the performance of ITRM for different (k, s) pairs (where k is the

number of rating tables collected at the judge node and s is the number of non-empty

56

entries in each table). Moreover, we compared ITRM with the well-known Voting

Technique in which a judge node decides on the type of a suspect based on the

majority of the votes for that node. For the Voting Technique, we used the Indirect

type I feedback as described in Section 4.2.4 (since direct monitoring is not possible

in DTNs, we believe that this feedback mechanism is the only option for the nodes).

However, in the Voting Technique, instead of utilizing the ITRM, a judge node decides

on the type of a suspect node based on the majority of feedbacks it received (i.e., a

suspect node is identified as a malicious node if it received more negative feedbacks

than the positive ones).

We defined the success of a scheme as its capability of detecting all malicious

nodes in the network (without identifying any reliable node as malicious by mistake).

We illustrated the probability of success, S, of ITRM and the Voting Technique for

different (k, s) pairs, and showed the time needed to obtain such a success probability.

We used both RWP and LW mobility models (with the settings discussed before) in

our simulations to evaluate the proposed scheme in a realistic DTN environment. In

both mobility models, whenever two nodes establish a contact, a transaction occurs

between them in the form of packet exchange. Further, the judge and malicious

nodes start generating their rating tables and mounting their attacks at time t = 0,

respectively.

We provide the evaluation only for the bad-mouthing on the detection scheme and

bad-mouthing on the trust management only, as similar results hold for ballot-stuffing

and combinations of bad-mouthing and ballot-stuffing. In particular, malicious nodes

provide incorrect feedbacks to the judge nodes about their reliable contacts in order

to cause the judge nodes to misjudge the types of reliable nodes (in their verdicts). As

a result of the malicious feedback, a judge node may make a “negative evaluation” (as

described in Section 4.2.4) on a reliable node. Second, the malicious nodes collabora-

tively victimize the reliable nodes (i.e., attack the same set of reliable nodes) in their

57

own rating tables by rating them as “0” and forward these rating tables whenever

they contact with reliable nodes to mislead the detection mechanism.

In Fig. 11, we illustrated S versus time for fixed values of k and varying s for the

RWP mobility model. In Fig. 12, the s values are fixed and the parameter k is varied

with increments of 5 for the RWP model. Similarly in Figs. 13 and 14, we illustrated

S for ITRM and the Voting Technique with the LW mobility model. In all figures,

time is measured starting from t = 0. Our results support the fact that RWP shows

a more optimistic routing performance compared to LW since its high occurrences

of long movements intensify the chance of meeting destinations [82]. Further, these

results also give some indication of the false positive (tagging a reliable node as

malicious) and false negative (labeling a malicious node as reliable) probabilities of

the proposed scheme as well. As S increases, the probability that the scheme detects

all malicious nodes gets higher along with the probability that the scheme identifies

all reliable nodes as reliable. Similarly, as S decreases, the probability that the

scheme labels a malicious node as reliable gets higher along with the probability that

the scheme marks a reliable node as a malicious one. In other words, false positive

and false negative probabilities are high when the probability of success is low as in

Figs. 11, 12, 13 and 14. Furthermore, these results can also be used to determine the

lifetimes of the receipts at the witness nodes. Knowing how long it takes to have a

high success probability at a judge node for a given detection level, the witnesses can

delete the receipts which have been stored for more than the sufficient time required

for a high success probability from their buffers. Based on our simulation results, we

concluded that ITRM significantly outperforms the Voting Technique by providing

higher success rates in shorter time (regardless of the mobility model) which is a very

crucial issue in DTNs. We obtained these results for the fraction of malicious nodes

W is 0.10 and for a detection level of p = 0.8. However, we note that the required

(k, s) pairs to obtain a high success probability do not change with the detection level,

58

which only has an effect on M̂ . It is worth noting that even though the time required

to get the high success probability increases with increasing W , the performance gap

between ITRM and the Voting Technique remains similar for different values of W .

18 20 22 24 26 28

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time (minutes)

S
uc

ce
ss

 p
ro

ba
bi

lit
y

k=10 ITRM
k=15 ITRM
k=20 ITRM
k=10 Voting
k=15 Voting
k=20 Voting

s=15

s=25

s=30
s=35

s=40

s=20

s=10

Figure 11: Probability of detection success for fixed k and varying s values with
RWP mobility model for W = 0.10.

59

18 20 22 24 26 28

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time (minutes)

S
uc

ce
ss

 p
ro

ba
bi

lit
y

s=10 ITRM
s=20 ITRM
s=30 ITRM
s=40 ITRM
s=10 Voting
s=20 Voting
s=30 Voting
s=40 Voting

k=15

k=20

k=10

Figure 12: Probability of detection success for fixed s and varying k values with

RWP mobility model for W = 0.10.

60 70 80 90 100 110

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time (minutes)

S
uc

ce
ss

 p
ro

ba
bi

lit
y

k=10 ITRM
k=15 ITRM
k=20 ITRM
k=10 Voting
k=15 Voting
k=20 Voting

s=10

s=15

s=20

s=25

s=30

s=35
s=40

Figure 13: Probability of detection success for fixed k and varying s values with LW

mobility model for W = 0.10.

60

60 70 80 90 100 110

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time (minutes)

S
uc

ce
ss

 p
ro

ba
bi

lit
y

s=10 ITRM
s=20 ITRM
s=30 ITRM
s=40 ITRM
s=10 Voting
s=20 Voting
s=30 Voting
s=40 Voting

k=10

k=15

k=20

Figure 14: Probability of detection success for fixed s and varying k values with LW

mobility model for W = 0.10.

In the rest of this section, we will present our simulation results for different

network parameters and show the performance of the proposed scheme for Mean Ab-

solute Error (MAE) in the computed reputation values, data availability, and packet

delivery ratio. We note that we did not compare the proposed scheme with existing

DTN security schemes such as [55] since none of the existing schemes is aimed to

provide data availability and malicious node detection as in our work. Further, it is

worth noting that there is no existing trust and reputation management mechanism

for DTNs. In spite of this, we compared the proposed scheme with the Bayesian

reputation management framework in [24] (which is also proposed as the reputation

management system of the well-known CONFIDANT protocol [23]) and the Eigen-

Trust algorithm [53] in a DTN environment. For the Bayesian framework [24], we

used the parameters from the original work [24] (deviation threshold d = 0.5 and

trustworthiness threshold t = 0.75). Further, we set the fading parameter to 0.9 (for

details refer to [24]). It is worth noting that neither the original Bayesian reputation

61

framework in [24] nor EigenTrust [53] is directly applicable to DTNs since both pro-

tocols rely on direct measurements (e.g., watchdog mechanism) which is not practical

for DTNs as discussed in Section 2.2.1. Therefore, we implemented [24] and [53] by

letting the judge nodes collect indirect measurements (feedbacks) from the witnesses

using Indirect type I feedback as described in Section 4.2.4. Since direct monitoring

is not possible in DTNs, we believe that this feedback mechanism is the only option

for the nodes. Thus we assumed that, as in our scheme, each judge node collects feed-

backs and forms its rating table. Further, each judge node exchanges its rating table

with the other nodes upon a contact and then executes the reputation management

protocol in [24] or EigenTrust [53].

We used the simulation settings described before with the LW mobility model.

We assumed that a definite amount of time (4 hours) has elapsed since the launch of

the system as the initialization period, during which new messages are generated by

a Poisson distribution at rate λm = 1/3000 at the source nodes and transmitted to

their respective destinations. Further, during this initialization period, rating tables

were being created at the judge nodes. Then, at time t = 0 (after the initializa-

tion period)4, we assumed legitimate nodes simultaneously start new flows to their

destinations (while the previous flows may still exist) and attackers start mounting

their attacks (both on the network communication protocol and the security sys-

tem). Therefore, at time t = 0, we assumed each legitimate source node has 1000

information packets which are encoded via a rateless code for single-copy routing

transmission. Hence, the number of encoded packets required by each destination to

recover a message is roughly 10005. We assumed packets with 128 bytes payloads and

a data rate of 250 kbps for each link. We note that we used the same routing and

4Once the initialization period is elapsed, we set the time as t = 0.
5It can be shown that when the decoder receives 1000(1+ ζ1000) packets, where ζ1000 is a positive

number very close to zero, it can successfully decode all 1000 input packets with high probability [63,
91].

62

packet exchange protocol for ITRM, Bayesian framework and EigenTrust algorithm

(routing and packet exchange protocol is described in Section 4.2.2). We evaluated

the data availability and packet delivery ratio for these new flows since time t = 0.

Moreover, we let each judge node execute ITRM, Bayesian framework, or EigenTrust

algorithm starting from time t = 0, and hence, we also evaluated the MAE since

time t = 0. Thus, for all simulations, the plots are shown from time t = 0. The

percentage of the Byzantine nodes in the network is denoted as W . For ITRM, the

Bayesian framework in [24], and EigenTrust [53], we assumed that each judge node

randomly picks 10 entries from each rating table it received in order to prevent the

malicious users from flooding the mechanism with incorrect entries. We ran each

simulation 100 times to get an average. We executed the experiment with different

parameters in the LW mobility model (e.g., different Levy distribution coefficients,

node speeds, etc.) and obtained similar trends. We further simulated the proposed

scheme with the RWP mobility model with [vmin, vmax] = [10, 30]m/s and ignoring

the pause times. We obtained similar trends with the RWP model as the LW mobility

model, and hence, we do not illustrate the results of the RWP mobility model.

As before, we present the evaluation only for the bad-mouthing on the detection

scheme and bad-mouthing on the trust management (as described in Section 4.2.1), as

similar results hold for ballot-stuffing and combinations of bad-mouthing and ballot-

stuffing. Malicious nodes provide incorrect feedbacks to the judge nodes about their

reliable contacts in order to cause the judge nodes to misjudge the types of reliable

nodes (in their verdicts). Further, malicious nodes collaboratively victimize the reli-

able nodes in their rating tables by rating them as “0” and forward their rating tables

whenever they contact with a reliable node to mislead the detection mechanism. In

addition to the attacks on the security mechanism (i.e., the trust management and

the detection algorithms), malicious nodes mount attacks on the network commu-

nication protocol by both dropping the legitimate packets they have received from

63

reliable nodes (with different packet drop rates) and generating their own flows to

deliver to other (malicious) nodes via the legitimate nodes. The ultimate goal of the

adversary is to degrade the network performance (i.e., data availability and packet

delivery ratio).

Mean Absolute Error (MAE): In Fig. 15, we compared the performance of ITRM

with the Bayesian reputation management framework in [24] and the EigenTrust

algorithm [53] (in the DTN environment presented before) in terms of MAE when

the fraction of the malicious raters (W) is 0.30. In other words, for each legitimate

judge, we computed the average MAE (between the actual reputation value and the

computed reputation value) based on the reputation values computed at that judge

node. Further, since each legitimate judge node computes the reputation values (of

the other nodes) itself using ITRM, Bayesian framework or EigenTrust, we computed

the average MAE over all legitimate nodes.

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (minutes)

M
A

E

ITRM
Bayesian framework [11]
Eigentrust

Figure 15: MAE performance of various schemes for bad-mouthing when W = 0.30.

From these simulation results, we conclude that ITRM significantly outperforms

the Bayesian framework and the EigenTrust algorithm in the presence of attacks.

64

Further, for different values of W and for different parameters in the LW mobility

model, we still observed the superiority of ITRM over the other schemes. We note

that since the Bayesian framework shows a better performance than the EigenTrust

in terms of MAE, we compare the performance of ITRM with the Bayesian framework

for data availability and packet delivery ratio in the rest of this section.

Availability: We define the availability as the percentage of recovered messages (by

their final destinations) in the network at a given time. In Figs. 16 and 17, we showed

the percentage of recovered messages versus time for the following scenarios: i) when

there is no defense against the malicious nodes and each malicious node has a packet

drop rate of 1, ii) when a detection level of 0.8 is used by ITRM (in which each

judge node is supposed to identify and isolate all the Byzantine nodes whose packet

drop rates are 0.8 or higher), iii) when a complete detection is used by ITRM (in

which all malicious nodes are supposed to be detected and isolated regardless of their

packet drop rate), and iv) when the Bayesian reputation management framework

in [24] is used to detect the malicious nodes. We note that in the second, third,

and fourth scenarios, the packet drop rates by the malicious nodes are uniformly

distributed between 0 and 1 in order to make the detection harder. Further, for the

second, third, and fourth scenarios, we assume the attack on the security mechanism

as described before.

65

100 200 300 400 500 600 700 800 900 1000
10

20

30

40

50

60

70

80

90

time (minutes)

%
 r

ec
ov

er
ed

 m
es

sa
ge

s

defenseless
detection level of 0.8
complete detection
Bayesian framework [11]

Figure 16: Fraction of the recovered messages versus time for W = 0.10 with LW
mobility model.

200 400 600 800 1000 1200 1400 1600
10

20

30

40

50

60

70

80

90

time (minutes)

%
 r

ec
ov

er
ed

 m
es

sa
ge

s

defenseless
detection level of 0.8
complete detection
Bayesian framework [11]

Figure 17: Fraction of the recovered messages versus time for W = 0.40 with LW

mobility model.

The plots show that the percentage of recovered messages at a given time signifi-

cantly decreases with increasing W for the defenseless scheme. On the other hand, we

66

observed a considerable improvement in the percentage of recovered messages even

after a high level detection (p = 0.8) using the proposed scheme. We further ob-

served that the Bayesian reputation management framework in [24] fails to provide

high data availability with low latency. This is due to the fact that when the ma-

licious nodes collaboratively attack the reputation management scheme, reputation

systems which rely on the Bayesian Approach (such as [24]) result in high MAE in the

reputation values of the nodes (as illustrated in Fig. 15). Therefore, the reputation

mechanism in [24] not only fails to detect all malicious nodes in the network, but it

also labels some reliable nodes (which are victimized by the malicious nodes using

the bad-mouthing attack) as malicious. Moreover, we considered the reliable message

delivery as the probability of the delivery of a single specific message to its destination

at any given time. Thus, the probability of recovery (of a specific message) at the

destination node at any given time is plotted (while other flows still exist) in Figs. 18

and 19. These figures also illustrate the improvement in reliable message delivery as

a result of the proposed scheme even after a high level detection. We again observed

that the reputation mechanism in [24] fails to provide fast reliable message delivery

due to the vulnerability of the Bayesian reputation management framework to detect

malicious nodes.

67

80 100 120 140 160 180 200 220 240
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (minutes)

P
ro

ba
bi

lit
y

of
 m

es
sa

ge
 r

ec
ov

er
y

defenseless
detection level of 0.8
complete detection
Bayesian framework [11]

Figure 18: Probability of message recovery for a single flow versus time forW = 0.10
with LW mobility model.

100 200 300 400 500 600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (minutes)

P
ro

ba
bi

lit
y

of
 m

es
sa

ge
 r

ec
ov

er
y

defenseless
detection level of 0.8
complete detection
Bayesian framework [11]

Figure 19: Probability of message recovery for a single flow versus time forW = 0.40

with LW mobility model.

Comparing the time required for a high success probability (for detection) in

Figs. 13 and 14 and the time required to have high data availability at the receivers,

68

we observed that the ITRM enables the judge nodes to calculate the reputations of

all the network nodes in a relatively short amount of time. In other words, the time

required to calculate the reputation values of all the network nodes at a judge node

is significantly less than the time required for the transmission of a single message,

which is a significant result for DTNs.

Packet Delivery Ratio: We define the packet delivery ratio as the ratio of the

number of legitimate packets received by their destinations to the number of legitimate

packets transmitted by their sources. Therefore, we observed the impact of malicious

nodes on the packet delivery ratio and the progress achieved as a result of our scheme

in Figs. 20 and 21. As before, we consider i) the defenseless scheme, ii) a detection

level of 0.8, iii) a complete detection, and iv) the Bayesian reputation management

framework in [24]. We observed a notable improvement in the packet delivery ratio

as a result of the proposed scheme. As W increases, the packet delivery ratio of the

defenseless scheme decreases significantly while our proposed scheme still provides

a high packet delivery ratio even at the detection level of 0.8, which illustrates the

robustness of the proposed scheme. Finally, we observed that the scheme in [24]

fails to provide a high packet delivery ratio due to its vulnerability against colluding

malicious nodes as discussed before.

69

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (minutes)

P
ac

ke
t d

el
iv

er
y

ra
tio

defenseless
detection level of 0.8
complete detection
Bayesian framework [11]

Figure 20: Packet delivery ratio versus time for W = 0.10 with LW mobility model.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (minutes)

P
ac

ke
t d

el
iv

er
y

ra
tio

defenseless
detection level of 0.8
complete detection
Bayesian framework [11]

Figure 21: Packet delivery ratio versus time for W = 0.40 with LW mobility model.

Overhead due to the trust management scheme: Computation and communi-

cation overhead introduced due to the proposed trust management scheme is domi-

nated by the generation, verification, and transmission of the IBS among the judge,

suspect, and witness nodes. The crucial parameters of IBC to generate and verify

70

the signatures are as follows [32]. i) G1 and G2 are an additive and a multiplicative

group, respectively. Moreover, they are cyclic groups of order ̟. ii) Φ and ϑ are two

distinct generators for the group G1. iii) The discrete logarithm problem is hard in

both G1 and G2. iv) There is a bilinear pairing, ê : G1 ×G1 → G2, such as the modi-

fied Tate pairing on a supersingular elliptic curve [19]. The cryptographic primitives

that are essential to sign and verify messages are scalar multiplication in G1, MG1 ,

exponentiation in G2, E, and pairing, P . We consider IBS scheme in [32] to calculate

the overhead of the proposed trust management scheme. In [32], 1MG1 + 1E and

1MG1 + 1E + 1P are required to sign and verify a signature, respectively. Moreover,

the size of the signature is G1 × Z∗
̟. We define the average number of contacts a

suspect node requires to deliver all packets it received from a particular judge node

as Π. Hence, we calculated the extra overhead of the proposed trust management

scheme until a judge node obtains s entries in its trust-table, each generated by at

least M = 20 feedbacks (M ≥ 20 is required for a verdict with high confidence as

illustrated in Fig. 9). In Table 3 we illustrated the average number of signature gener-

ation (Sign), verification (Verify) and signature transfer (Trans) per a judge, suspect

and witness node, respectively for Π = 10 and Π = 20 (we observed 10 ≤ Π ≤ 20 on

the average based on our simulations). It is worth noting that we did not consider

the hash operations upon illustrating the overhead of the proposed trust management

scheme because of the low complexity of the hashing operation. We can roughly say

that verification of an IBS consumes 1000 times more power than hashing a 64-Byte

message [76].

Further, the overhead caused by the extra messages between the nodes due to the

security protocol is negligible when compared with the data packets. This is because

the overhead due to the security mechanism is dominated by the signed receipts from

the suspect nodes to prove the deliveries by the suspect nodes. As we mentioned

before, knowing how long it takes to have a high success probability at a judge node

71

Table 3: Overhead of the proposed trust management scheme for Π = 10 and Π = 20.

judge suspect witness

Π 10 20 10 20 10 20

Sign 0 0 0.1× s 0.1 × s 0.1 × s 0.1 × s

Verify 7.9× s 19.9 × s 0 0 0 0

Trans 0 0 17× s 32× s 0.2 × s 0.4 × s

for a given detection level (from the results in Figs. 13 and 14), the witnesses can

determine the lifetimes of the signed receipts. For example, in the LW mobility

model used, the scheme provides a high probability of success (S) in approximately

70 minutes. Therefore, the lifetime of a signed receipt is estimated as 70 minutes,

on the average. Moreover, for the chosen mobility model, each node establishes (on

the average) 30 contacts in 70 minutes. This means that a suspect node transfers

approximately 30 signed receipts to a witness node upon its contact. Since the length

of the signature is about 20 bytes [109] and the size of a data packet is 128 bytes, 30

signed receipts can be delivered via 5 data packets. Considering the data rates of 250

kbps, the overhead of 5 data packets becomes negligible when compared to the entire

message exchange between two nodes during the contact. This also shows that the

proposed algorithm does not introduce a significant overhead burden on the network.

4.3 Summary

In this chapter, we introduced a robust and efficient security mechanism for delay

tolerant networks (DTNs). The proposed security mechanism consists of a trust

management mechanism and an iterative reputation management scheme (ITRM).

The trust management mechanism enables each network node to determine the trust-

worthiness of the nodes with which it had direct transactions. On the other hand,

ITRM takes advantage of an iterative mechanism to detect and isolate the malicious

nodes from the network in a short time. We studied the performance of the proposed

scheme and showed that it effectively detects the malicious nodes even in the presence

72

of the attacks on the trust and detection mechanism. We also illustrated that the

proposed scheme is far more effective than the Bayesian framework and EigenTrust in

computing the reputation values in a DTN environment. Moreover, using computer

simulations we showed that the proposed mechanism provides high data availability

with low information latency by detecting and isolating the malicious nodes in a short

time.

73

CHAPTER V

ITERATIVE TRUST AND REPUTATION

MANAGEMENT USING BELIEF PROPAGATION

5.1 Introduction

As we discussed in Chapter 1, we believe that trust and reputation management sys-

tems will lead various applications from the social web to ad-hoc networks in near

future and there are needs for scalable and attack resilient reputation systems. In

this chapter, we introduce the first application of the Belief Propagation (BP) algo-

rithm in the design and evaluation of trust and reputation management systems. In

our previous work, inspired by the earlier work on iterative decoding of error-control

codes in the presence of stopping sets [74, 75, 98], we proposed an algebraic iterative

algorithm [11] referred as ITRM for reputation systems (described in Chapter 3) and

showed the benefit of using iterative algorithms for trust and reputation manage-

ment. Here, we expand this work and introduce a fully probabilistic approach based

on the BP algorithm. Different from ITRM, in this chapter, we view the reputation

management problem as an inference problem and describe it as computing marginal

likelihood distributions from complicated global functions of many variables. Fur-

ther, we utilize the BP algorithm to efficiently (in linear complexity) compute these

marginal probability distributions. The work is inspired by earlier work on graph-

based iterative probabilistic decoding of turbo codes and low-density parity-check

(LDPC) codes, the most powerful practically decodable error-control codes known.

These decoding algorithms are shown to perform at error rates near what can be

achieved by the optimal scheme, maximum likelihood decoding, while requiring far

less computational complexity (i.e., linear in the length of the code). We believe that

74

the significant benefits offered by the iterative probabilistic algorithms can be also

tapped in to benefit the field of reputation systems.

We introduce the “Belief Propagation-Based Iterative Trust and Reputation Man-

agement Scheme” (BP-ITRM). BP algorithm [59,70,110] (discussed in Section 5.1.2)

is usually described in terms of operations on factor graphs. In BP-ITRM, the sellers

(i.e., service providers) and buyers (i.e., consumers or raters) are represented via a

factor graph on which they are arranged as two sets of variable and factor nodes that

are connected via some edges. The reputation can be computed by message pass-

ing between nodes in the graph. In each iteration of the algorithm, all the variable

nodes (sellers), and subsequently all the factor nodes (buyers), pass new messages

to their neighbors until the reputation value converges. We show that the proposed

iterative scheme is reliable (in filtering out malicious/unreliable reports). Further, we

prove that BP-ITRM iteratively reduces the error in the reputation values of service

providers due to the malicious raters with a high probability. We observe that this

probability suddenly drops if the fraction of malicious raters exceeds a threshold.

Hence, the scheme has a threshold property.

The proposed reputation management algorithm can be utilized in well-known

online services such as eBay or Epinions. In eBay, each seller-buyer pair rate each

other after a transaction. Thus, BP-ITRM can be used in eBay to compute the

reputation values of the sellers and buyers along with the trustworthiness values of

the peers in their ratings. Epinions, on the other hand, is a product review site in

which users can rate and review items. Users can also give ratings to the reviews.

Hence, the ratings of members on a review and on a product are considered separately.

BP-ITRM can be utilized in such an environment to compute the reputations of the

reviewers based on the ratings given by the users on the reviews. Although we present

the proposed algorithm as a centralized approach, BP-based trust and reputation

management can also be utilized in decentralized systems such as ad-hoc networks

75

and P2P systems to compute the reputations of the peers in the network (as we will

discuss in Chapter 6).

5.1.1 Contributions

The main contributions of our work are summarized in the following.

1. We introduce the first application of the Belief Propagation (BP) algorithm on

trust and reputation management systems.

2. As the core of our trust and reputation management system, we use the BP

algorithm which is proven to be a powerful tool on decoding of turbo codes

and LDPC codes. Therefore, we introduce a graph-based trust and reputation

management mechanism that relies on an appropriately chosen factor graph

and computes the reputation values of service providers (sellers) by a message

passing algorithm.

3. The proposed iterative algorithm computes the reputation values of the service

providers (sellers) accurately (with a small error) in a short amount of time in

the presence of attackers. The scheme is also a robust and efficient methodology

for detecting and filtering out malicious ratings. Further, the scheme detects

the malicious raters with a high accuracy, and updates their trustworthiness

accordingly enforcing them to execute low grade attacks to remain undercover.

4. The proposed BP-ITRM significantly outperforms the existing and commonly

used reputation management techniques such as the Averaging Scheme, Bayesian

Approach as in [25, 103] and Cluster Filtering in the presence of attackers.

5.1.2 Belief Propagation

Belief propagation (BP) [59, 70, 110] is a message passing algorithm for performing

inference on graphical models (factor graphs, Bayesian networks, Markov random

76

fields). It is a method for computing marginal distributions of the unobserved nodes

conditioned on the observed ones. Computing marginal distributions is hard in gen-

eral as it might require summing an exponentially large number of terms. Hence,

BP algorithm is usually described in terms of operations on a factor graph. A factor

graph is a bipartite graph containing nodes corresponding to variables and factors

with edges between them. A factor graph has a variable node for each variable xi,

a factor node for each function fa, and an edge connecting variable node i to the

factor node a if and only if xi is an argument of fa. The marginal distribution of an

unobserved node can be computed accurately using the BP algorithm if the factor

graph has no cycles. However, the algorithm is still well defined and often gives good

approximate results even for the factor graphs with cycles (as it has been observed

in decoding of LDPC codes).

BP algorithm simply works by passing messages between the factor and variable

nodes on the factor graph. The message λa→i(xi) from the factor node a to the

variable node i can be interpreted as a statement about the relative probabilities

that xi is in its different states based on the function fa. On the other hand, the

message µi→a(xi) from the variable node i to the factor node a can be interpreted as

a statement about the relative probabilities that xi is in different states based on all

the information node i has except for that based on the function fa. The messages

are updated according to the following rules [59]:

λa→i(xi) =
∑

xa\xi

fa(xa)
∏

j∈Na\i

µj→a(xj) (16)

and

µi→a(xi) =
∏

c∈Ni\a

λc→i(xi). (17)

Here, Ni\a denotes all the nodes that are neighbors of node i except for node a.

Further,
∑

xa\xi
denotes a sum over all the variables xa that are arguments of fa

except xi.

77

BP is commonly used in artificial intelligence and information theory. It has

demonstrated empirical success in numerous applications including turbo codes, free

energy approximation, satisfiability, and LDPC codes. While the optimal decoding

technique of LDPC codes, maximum likelihood (ML) decoding, is an NP problem,

BP algorithm provides a very efficient decoding that gets close to the bit error rate

(BER) performance of the ML decoding when the code length becomes large. In other

words, BP performs at error rates near what can be achieved by the optimal scheme

while requiring far less computational complexity. Here, we exploit such benefits in

trust and reputation management systems.

5.2 Belief Propagation for Iterative Trust and Reputation

Management (BP-ITRM)

As in Chapter 3, we have two main goals: 1. computing the service quality (reputa-

tion) of the peers who provide a service (henceforth referred to as Service Providers

or SPs) by using the feedbacks from the peers who used the service (referred to as

the raters), and 2. determining the trustworthiness of the raters by analyzing their

feedback about SPs. We assume two different sets in the system: i) the set of service

providers, S and ii) the set of service consumers (hereafter referred as raters), U. We

note that these two sets are not necessarily disjoint. Transactions occur between SPs

and raters, and raters provide feedbacks in the form of ratings about SPs after each

transaction.

Let Gj be the reputation value of SP j (j ∈ S) and Tij be the rating that rater

i (i ∈ U) reports about SP j (j ∈ S), whenever a transaction is completed between

the two peers. Moreover, let Ri denote the trustworthiness of the peer i (i ∈ U) as

a rater. In other words, Ri represents the amount of confidence that the reputation

system has about the correctness of any feedback/rating provided by rater i. All of

these parameters may evolve with time. However, for simplicity, we omitted time

dependencies from the notation. We assume there are u raters and s SPs in the

78

system (i.e., |U| = u and |S| = s). Let G = {Gj : j ∈ S} and R = {Ri : i ∈ U} be the

collection of variables representing the reputations of the SPs and the trustworthiness

values of the raters, respectively. Further, let T be the s × u SP-rater matrix that

stores the rating values (Tij), and Ti be the set of ratings provided by rater i. We

consider slotted time throughout this discussion. At each time-slot (or epoch), the

iterative reputation algorithm is executed using the input parameters R and T to

obtain the reputation parameters (e.g., G). After completing its iterations, the BP-

ITRM scheme outputs new global reputations of the SPs as well as the trustworthiness

(R values) of the raters. For simplicity of presentation, we assume that the rating

values are from the set Υ = {0, 1}. The extension in which rating values can take

any real number can be developed similarly (we implemented the proposed scheme

for both cases and illustrate its performance in Section 5.3.3).

The reputation management problem can be viewed as finding the marginal prob-

ability distributions of each variable in G, given the observed data (i.e., evidence).

There are s marginal probability functions, p(Gj |T,R), each of which is associated

with a variable Gj; the reputation value of SP j. Loosely speaking, the present

Bayesian approaches [25, 103] solve for these marginal distributions separately, lead-

ing to poor estimates as they neglect the interplay of the entire evidence. In contrast,

we formulate the problem by considering the global function p(G|T,R), which is the

joint probability distribution function of the variables in G given the rating matrix

and the trustworthiness values of the raters. Then, clearly, each marginal probability

function p(Gj|T,R) may be obtained as follows:

p(Gj|T,R) =
∑

G\{Gj}

p(G|T,R), (18)

where the notation G\{Gj} implies all variables in G except Gj.

Unfortunately, the number of terms in (18) grows exponentially with the number

of variables, making the computation infeasible for large-scale systems even for binary

79

reputation values. However, we propose to factorize (18) to local functions fi using

a factor graph and utilize the BP algorithm to calculate the marginal probability

distributions in linear complexity. A factor graph is a bipartite graph containing two

sets of nodes (corresponding to variables and factors) and edges incident between

two sets. Following [59], we form a factor graph by setting a variable node for each

variable Gj, a factor node for each function fi, and an edge connecting variable node

j to the factor node i if and only if Gj is an argument of fi. We note that computing

marginal probability functions is exact when the factor graph has no cycles. However,

the BP algorithm is still well-defined and empirically often gives good approximate

results for the factor graphs with cycles [106].

To describe the reputation system, we arrange the collection of the raters and

the SPs together with their associated relations (i.e., the ratings of the SPs by the

raters) as a bipartite (or factor) graph, as in Fig. 22. In this representation, each

rater peer corresponds to a factor node in the graph, shown as a square. Each SP is

represented by a variable node shown as a hexagon in the graph. Each report/rating

is represented by an edge from the factor node to the variable node. Hence, if a rater

i (i ∈ U) has a report about SP j (j ∈ S), we place an edge with value Tij from

the factor node i to the variable node representing SP j. We note that the Tij value

between rater i and SP j is the aggregation of all past and present ratings between

these two peers as described in the following. If any new rating arrives from rater i

about SP j, our scheme updates the value Tij by averaging the new rating and the

old value of the edge multiplied with the fading factor. The factor γij(t) is used to

incorporate the fading factor of the SPs’ reputation (service quality). We use a known

factor γij(t) = ϑt−tij where ϑ and tij are the fading parameter and the time when the

last transaction between rater i and SP j occurred, respectively. The parameter ϑ is

chosen to be less than one to give greater importance to more recent ratings.

80

k

a
 c

m
 n

b

T
ka
 T
nc

Figure 22: Factor graph between the SPs and the raters in (20).

Next, we suppose that the global function p(G|T,R) factors into products of sev-

eral local functions, each having a subset of variables from G as arguments as follows1:

p(G|T,R) =
1

Z

∏

i∈U

fi(Gi,Ti, Ri), (19)

where Z is the normalization constant and Gi is a subset of G. Hence, in the graph

representation of Fig. 22, each factor node is associated with a local function and each

local function fi represents the probability distributions of its arguments given the

trustworthiness value and the existing ratings of the associated rater. As an example,

the factor graph in Fig. 22 corresponds to

p(Ga, Gb, Gc|T,R) =
1

Z
fk(Ga, Gb, Gc, Tka, Tkb, Tkc, Rk)×

fm(Ga, Gb, Tma, Tmb, Rm)× fn(Ga, Gc, Tna, Tnc, Rn). (20)

We note that using (20) in (18), one can attempt to compute the marginal distribu-

tions. However, as discussed before, this can get computationally infeasible. Instead,

we utilize the BP algorithm to calculate the marginal distributions of the variables

in G.

We now introduce the messages between the factor and the variable nodes to

compute the marginal distributions using BP. We note that all the messages are

1It is shown that such a factorization eventually gives the marginal probability distributions via
the BP algorithm [59].

81

formed by the algorithm that is ran in the central authority. To that end, we choose

an arbitrary factor graph as in Fig. 23 and describe message exchanges between rater k

and SP a. We represent the set of neighbors of the variable node (SP) a and the factor

node (rater) k as Na and Nk, respectively (neighbors of a SP are the set of raters

who rated the SP while neighbors of a rater are the SPs whom it rated). Further,

let Ξ = Na\{k} and ∆ = Nk\{a}. The BP algorithm iteratively exchanges the

probabilistic messages between the factor and the variable nodes in Fig. 23, updating

the degree of beliefs on the reputation values of the SPs as well as the confidence of the

raters on their ratings (i.e., trustworthiness values) at each step, until convergence.

Let G(ν) = {G
(ν)
j : j ∈ S} be the collection of variables representing the values of the

variable nodes at the iteration ν of the algorithm. We denote the messages from the

variable nodes to the factor nodes and from the factor nodes to the variable nodes as

µ and λ, respectively. The message µ
(ν)
a→k(G

(ν)
a) denotes the probability of G

(ν)
a = ℓ,

ℓ ∈ {0, 1}, at the νth iteration. On the other hand, λ
(ν)
k→a(G

(ν)
a) denotes the probability

that G
(ν)
a = ℓ, for ℓ ∈ {0, 1}, at the νth iteration given Tka and Rk.

k

a
 c

m
 n

b

T
ka
 T
nc

Figure 23: Setup of the scheme.

The message from the factor node k to the variable node a at the νth iteration is

formed using the principles of the BP as

λ
(ν)
k→a(G

(ν)
a) =

∑

G
(ν)
k

\{G
(ν)
a }

fk(G
(ν)
k ,Tk, R

(ν−1)
k)

∏

x∈∆

µ
(ν−1)
x→k (G(ν)

x), (21)

82

where G
(ν)
k is the set of variable nodes which are the arguments of the local function fk

at the factor node k. This message transfer is illustrated in Fig. 24. Further, R
(ν−1)
k

(the trustworthiness of rater k calculated at the end of (ν − 1)th iteration) is a value

between zero and one and can be calculated as follows:

R
(ν−1)
k = 1−

1

|Nk|

∑

i∈Nk

∑

x∈{0,1}

|Tki − x|µ
(ν−1)
i→k (x). (22)

The above equation can be interpreted as one minus the average inconsistency of

rater k calculated by using the messages it received from all its neighbors. Using (21)

and assuming that the arguments of a local function at a factor node are independent

from each other (to reduce the computational complexity), it can be shown that

fk(G
(ν)
k ,Tk, R

(ν−1)
k) =

∏

i∈Nk

fk(G
(ν)
i ,Tk, R

(ν−1)
k). (23)

Thus, the message in (21) becomes

λ
(ν)
k→a(G

(ν)
a) =fk(G

(ν)
a ,Tk, R

(ν−1)
k)×

{

∑

G
(ν)
k

\{G
(ν)
a }

[

∏

i∈Nk\{a}

fk(G
(ν)
i ,Tk, R

(ν−1)
k)

∏

x∈∆

µ
(ν−1)
x→k (G(ν)

x)
]}

. (24)

Since the second part of (24) is a constant, λ
(ν)
k→a(G

(ν)
a) ∝ fk(G

(ν)
a ,Tk, R

(ν−1)
k), and

hence, λ
(ν)
k→a(G

(ν)
a) ∝ p(G

(ν)
a |Tka, R

(ν−1)
k), where

p(G(ν)
a |Tka, R

(ν−1)
k) =

[

(R
(ν−1)
k +

1−R
(ν−1)
k

2
)Tka +

1− R
(ν−1)
k

2
(1− Tka)

]

G(ν)
a +

[1− R
(ν−1)
k

2
Tka + (R

(ν−1)
k +

1− R
(ν−1)
k

2
)(1− Tka)

]

(1−G(ν)
a). (25)

This resembles the belief/pleusability concept of the Dempster-Shafer Theory [89,90].

Given Tka = 1, R
(ν−1)
k can be viewed as the belief of the kth rater that G

(ν)
a is one

(at the νth iteration). In other words, in the eyes of rater k, G
(ν)
a is equal to one

with probability R
(ν−1)
k . Thus, (1 − R

(ν−1)
k) corresponds to the uncertainty in the

83

belief of rater k. In order to remove this uncertainty and express p(G
(ν)
a |Tka, R

(ν−1)
k)

as the probabilities that G
(ν)
a is zero and one, we distribute the uncertainty uniformly

between two outcomes (one and zero). Hence, in the eyes of the kth rater, G
(ν)
a is

equal to one with probability (R
(ν−1)
k + (1 − R

(ν−1)
k)/2), and zero with probability

((1− R
(ν−1)
k)/2). We note that a similar statement holds for the case when Tka = 0.

It is worth noting that, as opposed to the Dempster-Shafer Theory, we do not combine

the beliefs of the raters. Instead, we consider the belief of each rater individually and

calculate probabilities that G
(ν)
a being one and zero in the eyes of each rater as in

(25). The above computation must be performed for every neighbors of each factor

nodes. This finishes the first half of the νth iteration.

a
 b
 c

k

µ
bk

µ
ck

ka

(v-1)
(v-1)

(v)

λ

Figure 24: Message from the factor node k to the variable node a at the νth iteration.

During the second half, the variable nodes generate their messages (µ) and send

to their neighbors. Variable node a forms µ
(ν)
a→k(G

(ν)
a) by multiplying all information

it receives from its neighbors excluding the factor node k, as shown in Fig. 25. Hence,

the message from variable node a to the factor node k at the νth iteration is given by

µ
(ν)
a→k(G

(ν)
a) =

1
∑

h∈{0,1}

∏

i∈Ξ

λ
(ν)
i→a(h)

×
∏

i∈Ξ

λ
(ν)
i→a(G

(ν)
a) (26)

This computation is repeated for every neighbors of each variable node. The algorithm

proceeds to the next iteration in the same way as the νth iteration.

84

We note that the iterative algorithm starts its first iteration by computing λ
(1)
k→a(G

(1)
a)

in (21). However, instead of calculating in (22), the trustworthiness value Rk from

the previous execution of BP-ITRM is used as initial values in (25).

n
m
k

a

na

ma

µ
ak

(v)
 (v)

(v)

λ
λ

Figure 25: Message from the variable node a to the factor node k at the νth iteration.

The iterations stop when all variables in G converge. Therefore, at the end of

each iteration, the reputations are calculated for each SP. To calculate the reputation

value G
(ν)
a , we first compute µ

(ν)
a (G

(ν)
a) using (26) but replacing Ξ with Na, and then

we set G
(ν)
a =

∑

i∈Υ

iµ
(ν)
a (i).

5.3 Security Evaluation of BP-ITRM via User Modeling

In this section, we mathematically model and analyze BP-ITRM. Moreover, we sup-

port the analysis via computer simulations and compare BP-ITRM with the existing

and commonly used trust management schemes. In order to facilitate future refer-

ences, frequently used notations are listed in Table 4.

5.3.1 Attack Models

We consider two major attacks that are common for any trust and reputation manage-

ment mechanisms. Further, we assume that the attackers may collude and collaborate

with each other:

85

Table 4: Notations and definitions.

S The set of service providers (SPs)
UM The set of malicious raters
UR The set of reliable raters
rh Report (rating) given by a reliable rater
rm Report (rating) given by a malicious rater

d
Total number of newly generated ratings, per time-slot,
per a reliable rater

b
Total number of newly generated ratings, per time-slot,
per a malicious rater

• Bad-mouthing: Malicious raters collude and attack the service providers with

the highest reputation by giving low ratings in order to undermine them. It

is also noted that in addition to the malicious peers, in some applications,

bad-mouthing may be originated by a group of selfish peers who attempt to

weaken high-reputation providers in the hope of improving their own chances

as providers.

• Ballot-stuffing: Malicious raters collude to increase the reputation value of

peers with low reputations. Just as in bad-mouthing, in some applications, this

could be mounted by a group of selfish consumers attempting to favor their

allies.

5.3.2 Analytic Evaluation

We adopted the following models for various peers involved in the reputation system.

We acknowledge that although the models are not inclusive of every scenario, they

are good illustrations to present our results. We assumed that the quality of each

service provider remains unchanged during time-slots. Moreover, the rating values are

either 0 or 1 where 1 represents a good service quality. Ratings generated by the non-

malicious raters are distributed uniformly among the SPs (i.e., their ratings/edges in

the graph representation are distributed uniformly among SPs). We further assumed

that the rating value rh (provided by the non-malicious raters) is a random variable

86

with Bernoulli distribution, where Pr(rh = Ĝj) = pc and Pr(rh 6= Ĝj) = (1 −

pc), and Ĝj is the actual value of the global reputation of SP j. To the advantage

of malicious raters, we assumed that a total of T time-slots had passed since the

initialization of the system and a fraction of the existing raters change behavior and

become malicious after T time-slots. In other words, malicious raters behaved like

reliable raters before mounting their attacks at the (T + 1)th time-slot. Finally, we

assumed that d is a random variable with Yule-Simon distribution, which resembles

the power-law distribution used in modeling online systems [92], with the probability

mass function fd(d; ρ) = ρB(d, ρ+ 1), where B is the Beta function. For modeling

the adversary, we made the following assumptions. We assumed that the malicious

raters initiate bad-mouthing and collude while attacking the SPs (they attack the

SPs who have the highest reputation values by rating them as rm = 0). Further, the

malicious raters attack the same set Γ of SPs at each time-slot. In other words, we

denote by Γ the set of size b in which every victim SP has one edge from each of

the malicious raters. We wish to evaluate the performance for the time-slot (T + 1).

It is worth noting that even though we discuss the details for bad-mouthing attack,

similar counterpart results hold for ballot-stuffing and combinations of bad-mouthing

and ballot-stuffing as well.

ǫ-optimal Scheme: The performance of a reputation scheme is determined by its

accuracy of estimating the global reputations of the SPs. We declare a reputation

scheme to be ǫ-optimal if the mean absolute error (MAE) (|Gj − Ĝj|) is less than or

equal to ǫ for every SP.

Naturally, we need to answer the following question: For a fixed ǫ, what are the

conditions to have an ǫ-optimal scheme? In order to answer this question we require

two conditions to be satisfied: 1) the scheme should iteratively reduce the impact

of malicious raters and decrease the error in the reputation values of the SPs until

it converges, and 2) the error on the Gj value of each SP j should be less than or

87

equal to ǫ once the scheme converges. In the following, we obtained the condition to

arrive at the ǫ-optimal scheme. Although the discussions of the analysis are based on

bad-mouthing attack, the system designed using these criteria will be robust against

ballot-stuffing and combinations of bad-mouthing and ballot-stuffing as well.

The bad-mouthing attack is aimed to reduce the global reputation values of the

victim SPs. Hence, Gj value of a victim SP j should be a non-decreasing function of

iterations. This leads to the first condition on the ǫ-optimal scheme.

Lemma 5.3.1. (Condition 1): The error in the reputation values of the SPs decreases

with each successive iterations (until convergence) if G
(2)
a > G

(1)
a is satisfied with high

probability for every SP a (a ∈ S) with Ĝa = 12.

Proof. Let G
(ω)
a and G

(ω+1)
a be the reputation value of an arbitrary SP a with Ĝa = 1

calculated at the (ω)th and (ω + 1)th iterations, respectively. G
(ω+1)
a > G

(ω)
a if the

following is satisfied at the (ω + 1)th iteration.

∏

j∈UR∩Na

2pcR
(w+1)
j + 1−R

(w+1)
j

−2pcR
(w+1)
j + 1 +R

(w+1)
j

∏

j∈UM∩Na

1− R̂
(w+1)
j

1 + R̂
(w+1)
j

>

∏

j∈UR∩Na

2pcR
(w)
j + 1−R

(w)
j

−2pcR
(w)
j + 1 +R

(w)
j

∏

j∈UM∩Na

1− R̂
(w)
j

1 + R̂
(w)
j

,

(27)

where R
(w)
j and R̂

(w)
j are the trustworthiness values of a reliable and malicious rater

calculated as in (22) at the wth iteration, respectively.

Given G
(ω)
a > G

(ω−1)
a holds at the ωth iteration, we would get R̂

(w)
j > R̂

(w+1)
j for

j ∈ UM ∩Na and R
(w+1)
j ≥ R

(w)
j for j ∈ UR ∩Na. Thus, (27) would hold for the

(w + 1)th iteration. On the other hand, if G
(ω)
a < G

(ω−1)
a , we get R̂

(w)
j < R̂

(w+1)
j for

j ∈ UM ∩Na and R
(w+1)
j < R

(w)
j for j ∈ UR ∩Na. Hence, (27) is not satisfied at the

(w + 1)th iteration. Therefore, if G
(ω)
a > G

(ω−1)
a holds for some iteration ω, then the

2The opposite must hold for any SP with Ĝa = 0.

88

BP-ITRM algorithm reduces the error on the global reputation value (Ga) until the

iterations stop3, and hence, it is sufficient to satisfy G
(2)
j > G

(1)
j with high probability

for every SP j with Ĝj = 1 (the set of SPs from which the victims are taken) to

guarantee that BP-ITRM iteratively reduces the impact of malicious raters until it

stops.

Although because of the Condition1, the error in the reputation values of the SPs

decrease with successive iterations, it is unclear what would be the eventual impact of

malicious raters. Hence, in the following, we derive the probability P for ǫ-optimality.

Lemma 5.3.2. (Condition 2): Suppose that the Condition 1 is met. Let ν be the

iteration at which the algorithm has converged. Then, BP-ITRM would be an ǫ-

optimal scheme with probability P , where P is given as below:

P =
∏

a∈S

Pr
{

ǫ ≥ 1−
̟

̟ + ζ

}

(28)

where,

̟ =
∏

j∈UR∩Na

(2pcR
(ν+1)
j + 1− R

(ν+1)
j)

∏

j∈UM∩Na

(1− R̂
(ν+1)
j), (29a)

ζ =
∏

j∈UR∩Na

(−2pcR
(ν+1)
j + 1 +R

(ν+1)
j)

∏

j∈UM∩Na

(1 + R̂
(ν+1)
j). (29b)

Proof. Given Condition 1 is satisfied, Ga value of an arbitrary SP a (with Ĝa = 1)

increases with iterations. Let BP-ITRM converges at the νth iteration. Then, to have

an ǫ-optimal scheme, Ga value calculated at the last iteration of BP-ITRM (G
(ν)
a)

should result in an error less than or equal to ǫ for every SP. That is, the following

should hold for every SP.

1−G(ν)
a ≤ ǫ. (30)

3Since the rating values are either 0 or 1, Ga values cannot be negative or above 1. Further, since
the error decreases with each successive iterations, Ga values converge at some iteration.

89

Further, if the scheme continues one more iteration after convergence, it can be shown

that

G(ν+1)
a = G(ν)

a . (31)

Thus, combining (30) and (31) leads to (28).

We note that Conditions 1 and 2 in Lemmas 5.3.1 and 5.3.2 are to give an insight

about the performance of the algorithm prior to the implementation. Hence, these

conditions do not need to be checked at each execution of BP-ITRM in the real-life

implementation of the algorithm.

Finally, the variation of the probability of BP-ITRM being an ǫ-optimal scheme

over time is an important factor affecting the performance of the scheme. We observed

that given BP-ITRM satisfies Condition 1 (that the error in the reputation values

of the SPs monotonically decreases with iterations), the probability of BP-ITRM

being an ǫ-optimal scheme increases with time. This criteria is given by the following

lemma:

Lemma 5.3.3. Let PT+1 and PT+2 be the probabilities that BP-ITRM is ǫ-optimal at

the (T +1)th and (T + 2)th time-slots, respectively. Then, given Condition 1 holds at

the (T + 1)th time-slot, we have PT+2 > PT+1.

Proof. Due to the fading factor, the contributions of the past reliable ratings of the

malicious raters to their Ri values become less dominant with increasing time. Let

Ri(T) and R̂i(T) be the trustworthiness of a reliable and malicious rater at the T th

time-slot, respectively. Then, given that Condition 1 is satisfied at the (T + 1)th

time-slot, it can be shown that Ri(T + 1) ≥ Ri(T) and R̂i(T + 1) < R̂i(T). Thus,

the probability that BP-ITRM satisfies Condition 1 increases at the (T + 2)th time-

slot.

In the following example, we illustrate the results of our analytical evaluation.

The parameters we used are |UM | + |UR| = 100, |S| = 100, ρ = 1, ϑ = 0.9, T = 50,

90

b = 5 and pc = 0.8. We note that there is no motive to select these parameters.

We evaluated BP-ITRM with different parameters and obtained similar results. BP-

ITRM works properly when the error in the reputation values of the SPs decreases

monotonically with iterations until convergence. In other words, Condition 1 (in

Lemma 5.3.1) is a fundamental requirement. In Fig. 26 we illustrated the probability

of BP-ITRM to satisfy Condition 1 versus fraction of malicious raters. We observed

that BP-ITRM satisfies Condition 1 with a high probability for up to 30% malicious

raters. Further, we observed a threshold phenomenon. That is, the probability of

BP-ITRM to satisfy Condition 1 suddenly drops after exceeding a particular fraction

of malicious raters. Next, in Fig. 27, we illustrated the probability of BP-ITRM

being an ǫ-optimal scheme versus fraction of malicious raters for three different ǫ

values. Again, we observed a threshold phenomenon. As the fraction of adversary

exceeds a certain value, the probability of BP-ITRM being an ǫ-optimal scheme drops

sharply. Moreover, Fig. 28 illustrates the average ǫ values (ǫav) for which BP-ITRM is

an ǫ-optimal scheme with high probability for different fractions of malicious raters.

We observed that BP-ITRM provides significantly small error values for up to 30%

malicious raters. We note that these analytical results are also consistent with our

simulation results that are illustrated in the next section.

91

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

% malicious raters

P
r(

B
P

−I
T

R
M

 s
at

is
fie

s
C

on
di

tio
n

1)

Figure 26: Probability of BP-ITRM to satisfy Condition1 versus fraction of malicious
raters.

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

% malicious raters

P
r(

B
P

−I
T

R
M

 is
 a

n
ε−

op
tim

al
 s

ch
em

e)

ε = 0.1
ε = 0.01
ε = 0.00001

Figure 27: Probability that BP-ITRM is an ǫ-optimal scheme versus fraction of

malicious raters for different ǫ values.

92

5 10 15 20 25 30 35 40
0

2

4

6

8

10

% malicious raters

−l
og

10
(ε

av
)

Figure 28: The average ǫ values for which BP-ITRM is an ǫ-optimal scheme with

high probability versus fraction of malicious raters.

5.3.3 Simulations

We evaluated the performance of BP-ITRM in the presence of bad-mouthing, ballot-

stuffing, and combinations of bad-mouthing and ballot-stuffing. Here, we provide

an evaluation of the bad-mouthing attack only, as similar results hold for ballot-

stuffing and combinations of bad-mouthing and ballot-stuffing. We compared the

performance of BP-ITRM with three well-known and commonly used reputation man-

agement schemes: 1) The Averaging Scheme, 2) Bayesian Approach, and 3) Cluster

Filtering. The Averaging Scheme is widely used as in eBay or Amazon (as discussed

in Section 2.1.1). The Bayesian Approach [25, 103] updates Gj using a Beta distri-

bution. We implemented the Buchegger’s Bayesian approach in [25] (as discussed in

Section 2.1.2) for the comparison with the deviation threshold d = 0.5 and trustwor-

thiness threshold t = 0.754 (for details refer to [25]). As we discussed before, since

we present and evaluate BP-ITRM in a centralized setting, Buchegger’s work in [25]

4We note that these are the same parameters used in the original paper [25].

93

and Whitby’s work in [103] can be considered as similar. In [25], if a rater’s rating

deviates beyond the deviation threshold d from the calculated reputation value, its

trustworthiness value is modified accordingly. Further, if a rater’s trustworthiness ex-

ceeds a definite threshold t, it is detected as malicious. Similarly, in [103], instead of

using the deviation threshold, the authors check if the calculated reputation value for

the SP falls between a definite interval for each rater’s rating distribution. As we will

discuss later, both [25] and [103] have the same problem against colluding malicious

raters. Cluster Filtering [35, 64] (as discussed in Section 2.1.3), on the other hand,

performs a dissimilarity test among the raters and then updates Gj using only the

reliable raters. Finally, we compared BP-ITRM with our previous work on iterative

trust and reputation management [11] (referred to as ITRM) to show the benefit of

using BP.

We assumed that d is a random variable with Yule-Simon distribution (with ρ =

1 throughout the simulations) as discussed in Section 5.3.2. Further, the fading

parameter is set as ϑ = 0.95 and number of ratings, per time-slot, by a malicious

rater as b = 5. Let Ĝj be the actual value of the global reputation of SP j. Then,

we obtained the performance of BP-ITRM, for each time-slot, as the mean absolute

error (MAE) |Gj − Ĝj|, averaged over all the SPs that are under attack.

We assumed that the malicious raters collude and attack the SPs who have the

highest reputation values (assuming that the attackers knows the reputation values)

and received the lowest number of ratings from the reliable raters (assuming that

the attackers have this information). We note that this assumption may not hold

in practice since the actual values of the global reputations and number of ratings

received by each SP may not be available to malicious raters. However, we assumed

that this information is available to the malicious raters to consider the worst case

5We note that for the Averaging Scheme, Bayesian Approach, and Cluster Filtering we used the
same fading mechanism as BP-ITRM (discussed in Section 5.2) and set the fading parameter as
ϑ = 0.9.

94

scenario. Further, the malicious raters collude and attack the same set Γ of SPs in

each time-slot (which represents the strongest attack by the malicious raters). We

further assumed that there are |U| = 100 rater peers and |S| = 100 SPs. Moreover,

a total of T = 50 time-slots had passed since the lunch of the system, and reliable

reports generated during those time-slots were distributed among the SPs uniformly.

We note that we start our observations at time slot 1 after the initialization period.

Initially, we assumed that a fraction of the existing raters change behavior and

become malicious after the start of the system (at time-slot one). Using all their edges,

the malicious raters collude and attack the SPs who have the highest reputation values

and received the lowest number of ratings from the reliable raters, by rating them as

rm = 0 (assuming the rating values are either 0 or 1). We note that this attack scenario

also represents the RepTrap attack in [105] which is shown to be a strong attack.

Further, we assumed that the rating rh (provided by the non-malicious raters) is a

random variable with Bernoulli distribution, where Pr(rh = Ĝj) = 0.8 and Pr(rh 6=

Ĝj) = 0.2. First, we evaluated the MAE performance of BP-ITRM for different

fractions of malicious raters (W = |UM |
|UM |+|UR|

), at different time-slots (measured since

the attack is applied) in Fig. 296. We observed that the proposed BP-ITRM provides

significantly low errors for up to W = 30% malicious raters. Moreover, MAE at the

first time slot is consistent with our analytical evaluation which was illustrated in

Fig. 28. Next, we observed the change in the average trustworthiness (Ri values)

of malicious raters with time. Figure 30 illustrates the drop in the trustworthiness

of the malicious raters with time. We conclude that the Ri values of the malicious

raters decrease over time, and hence, the impact of their malicious ratings is totally

neutralized over time. We further observed the average number of required iterations

of BP-ITRM at each time-slot in Fig. 31. We conclude that the average number

6The plots in Figs. 29, 30, 31, 32, 33 and 34 are shown from the time-slot the adversary introduced
its attack.

95

of iterations for BP-ITRM decreases with time and decreasing fraction of malicious

raters. Finally, we compared the MAE performance of BP-ITRM with the other

schemes. Figure 32 illustrates the comparison of BP-ITRM with the other schemes

for bad-mouthing when the fraction of malicious raters (W) is 30%. It is clear that

BP-ITRM outperforms all the other techniques significantly.

1 2 3 4 5 6 7 8 9 10

10
−20

10
−15

10
−10

10
−5

10
0

time−slot

M
A

E

0

~~
W=10%

W=15%

W=20% W=25%

W=30%
W=35%

W=40%

Figure 29: MAE performance of BP-ITRM versus time whenW of the existing raters
become malicious in RepTrap [105].

96

5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

0.6

0.7

time−slot

A
ve

ra
ge

 tr
us

tw
or

th
in

es
s

of
 m

al
ic

io
us

 r
at

er
s

W=10%
W=20%
W=30%

Figure 30: Change in average trustworthiness of malicious raters versus time for

BP-ITRM when W of the existing raters become malicious in RepTrap [105].

1 2 3 4 5 6 7 8 9 10
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

time−slot

N
um

be
r

of
 it

er
at

io
ns

W=5%
W=10%
W=15%
W=20%
W=25%
W=30%
W=35%

Figure 31: The average number of iterations versus time for BP-ITRM when W of

the existing raters become malicious in RepTrap [105].

97

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time−slot

M
A

E

BP−ITRM
ITRM
Cluster Filtering
Averaging Scheme
Bayesian Approach

Figure 32: MAE performance of various schemes when 30% of the existing raters

become malicious in RepTrap [105].

Next, we simulated the same attack scenario when ratings are integers from the

set {1, . . . , 5} instead of binary values. We assumed that the rating rh is a random

variable with folded normal distribution (mean Ĝj and variance 0.5), however, it takes

only discrete values from 1 to 5. Malicious raters choose SPs from Γ and rate them

as rm = 4. The malicious raters do not deviate very much from the actual Ĝj = 5

values to remain undercover (while still attacking) as many time-slots as possible.

We also tried higher deviations from the Ĝj value and observed that the malicious

raters were easily detected by BP-ITRM. Figure 33 illustrates that BP-ITRM provides

significantly low MAE for up to W = 40% malicious raters. We then compared the

MAE performance of BP-ITRM with the other schemes in Fig. 34 and observed that

BP-ITRM outperforms all the other techniques significantly.

98

1 2 3 4 5 6 7 8 9 10

10
−20

10
−15

10
−10

10
−5

10
0

time−slot

M
A

E

~~

0

W=10%

W=15%

W=25%

W=30%

W=20%

W=35%
W=40%

Figure 33: MAE performance of BP-ITRM versus time whenW of the existing raters
become malicious and rating values are integers from {1, . . . , 5} in RepTrap [105].

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time−slot

M
A

E

BP−ITRM
ITRM
Cluster Filtering
Averaging Scheme
Bayesian Approach

Figure 34: MAE performance of various schemes when 30% of the existing raters

become malicious and rating values are from {1, . . . , 5} in RepTrap [105].

In most trust and reputation management systems, the adversary causes the most

serious damage by introducing newcomer raters to the system. Since it is not possible

99

for the system to know the trustworthiness of the newcomer raters, the adversary may

introduce newcomer raters to the systems and attack the SPs using those raters. To

study the effect of newcomer malicious raters to the reputation management scheme,

we introduced 100 more raters as newcomers. Hence, we had |UM | + |UR| = 200

raters and |S| = 100 SPs in total. We assumed that the rating values are either 0 or

1, rh is a random variable with Bernoulli distribution as before, and malicious raters

choose SPs from Γ and rate them as rm = 0 (this particular attack scenario does not

represent the RepTrap attack). We compared the MAE performance of BP-ITRM

with the other schemes for this scenario in Fig. 357.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time−slot

M
A

E

BP−ITRM
ITRM
Cluster Filtering
Averaging Scheme
Bayesian Approach

Figure 35: MAE performance of various schemes when 30% of the newcomer raters
are malicious.

From these simulation results, we conclude that BP-ITRM significantly outper-

forms the Averaging Scheme, Bayesian Approach and Cluster Filtering in the pres-

ence of attackers. We identify that the Bayesian Approach performs the worst against

the RepTrap attack and colluding attacks from malicious raters. Indeed, both [25]

and [103] have the same shortcoming against colluding malicious raters. Both [25]

7The plot is shown from the time-slot the newcomers are introduced.

100

and [103] first calculate the reputation value of a particular SP, and then based on

the calculated value, they adjust each rater’s trustworthiness value. On the other

hand, when the malicious raters collude (as in our attack scenario), it is likely that

the majority of the ratings to the victim SPs will be from malicious raters. In this

scenario, the Bayesian approach not only fails to filter the malicious ratings but it

also punishes the reliable raters which rates the victim SPs. We also identify that

ITRM (i.e., our algebraic iterative scheme described in Chapter 3) is the closest in

accuracy to BP-ITRM. This emphasizes the robustness of using iterative message

passing algorithms for reputation management.

Finally, assuming u raters and s SPs, we obtained the computational complexity

of BP-ITRM as max(O
(

cu
)

,O
(

cs
)

) in the number of multiplications, where c is a

small number representing the average number of rating edges per rater. In contrast,

Cluster Filtering suffers quadratic complexity versus number of raters (or SPs).

5.4 Summary

In this chapter, we introduced the “Belief Propagation-Based Iterative Trust and

Reputation Management Scheme” (BP-ITRM). Our work is an iterative probabilis-

tic algorithm motivated by the prior success of message passing techniques and be-

lief propagation algorithms on decoding of turbo codes and low-density parity-check

codes. BP-ITRM relies on a graph-based representation of an appropriately chosen

factor graph for reputation systems. In this representation, service providers and

raters are arranged as two sets of variable and factor nodes that are connected via

some edges. The reputation values of service providers are computed by probabilistic

message passing between nodes in the graph until the convergence. The proposed

BP-ITRM is a robust mechanism to evaluate the quality of the service of the service

providers from the ratings received from the recipients of the service (raters). More-

over, it effectively evaluates the trustworthiness of the raters. We studied BP-ITRM

101

by a detailed analysis and showed the robustness using computer simulations. We

proved that BP-ITRM iteratively reduces the error in the reputation values of service

providers due to the malicious raters with a high probability. Further, we observed

that this probability demonstrates a threshold property. That is, exceeding a partic-

ular fraction of malicious raters reduces the probability sharply. We also compared

BP-ITRM with some well-known reputation management schemes and showed the

superiority of our scheme both in terms of robustness and efficiency.

102

CHAPTER VI

BELIEF PROPAGATION FOR TRUST AND

REPUTATION MANAGEMENT IN DISTRIBUTED

SYSTEMS

6.1 Introduction

Due to their size and the distributed architecture, Peer-to-peer (P2P) networks are

highly vulnerable to attacks by the malicious peers (as we discussed in Chapter 1).

The most common attack to P2P systems is in the form of injecting inauthentic files

(or introducing viruses) to the network, which can be confronted by utilizing trust

and reputation management systems. Thus, in this chapter, we introduce the first

application of the Belief Propagation (BP) [59,70,110], an iterative probabilistic algo-

rithm, in the design and evaluation of distributed trust and reputation management

systems for P2P networks. Belief Propagation (BP) [59,70,110] is a message passing

algorithm for performing inference on graphical models. It is a method for computing

marginal distributions of the unobserved nodes conditioned on the observed ones. In

our previous work, we developed a BP-based reputation management algorithm for

centralized environments [16] (as described in Chapter 5). However, in a distributed

infrastructure, trust and reputation management is more complicated than in cen-

tralized solutions. Hence, different from our previous work in Chapter 5, in this

chapter, we focus on P2P networks and explore trust and reputation management in

a completely decentralized environment in the presence of malicious peers mounting

attacks.

We introduce the “Belief Propagation-Based Trust and Reputation Management

103

for P2P Networks” (BP-P2P). BP-P2P formulates the trust and reputation man-

agement problem as finding the marginal probability distributions of the reputation

values. This problem, however, cannot be solved in a large-scale systems, because

the number of terms grow exponentially with the number of peers in the network.

The key role of the BP algorithm is that we can use it to compute those marginal

distributions in the complexity that grows only linearly with the number of peers.

BP-P2P describes the P2P network on a factor graph and lets the peers compute

the reputation and trustworthiness values by distributed message passing between

each other. We show that the proposed BP-based scheme is reliable (in filtering out

malicious ratings and computing the reputation values) while being computationally

efficient (i.e., linear in the number of peers). We further show that the communica-

tion overhead of BP-P2P is lower than the well-known EigenTrust algorithm which

is particularly designed for P2P networks.

6.1.1 Contributions

The main contributions of our work are summarized in the following.

1. We introduce the first application of the Belief Propagation (BP) algorithm

in the design and evaluation of distributed trust and reputation management

systems for P2P networks. We introduce a graph-based mechanism which relies

on a factor graph to compute the reputation of each peer (as a server) and

its trustworthiness value (as a client) by a BP-based iterative and distributed

message passing algorithm.

2. The proposed distributed algorithm enables the peers to compute the reputation

values (of other peers) with a small error in the presence of attackers. Further,

it also allows the peers to obtain the trustworthiness values (of other peers)

by analyzing the ratings provided, which enables them detect and filter out

malicious ratings effectively.

104

3. The computational complexity of BP-P2P is at most linear in the number of

peers in the network, making it very attractive for large-scale systems. Further,

its communication overhead is lower than the well-known EigenTrust algorithm.

4. The proposed BP-P2P outperforms the existing and commonly used P2P rep-

utation management techniques such as the EigenTrust algorithm [53] and the

Bayesian Approach [24] (which is also proposed as the reputation management

system of the well-known CONFIDANT protocol [23]) in the presence of at-

tackers.

6.2 Belief Propagation-Based Trust and Reputation Man-

agement for P2P Networks (BP-P2P)

We assume two different sets in the system: i) the set of servers, S (|S| = s) and ii) the

set of clients, U (|U| = u) . As opposed to our centralized approach (BP-ITRM), we

assume that every peer in the network plays the role of both a client and a server (and

hence, u = s in a typical P2P network). In other words, each peer provides access to

its resources (e.g., provides files) as a server. On the other hand, each peer also uses

the resources of other servers as a client. Therefore, sets S and U are not disjoint

and each peer i is represented both in set S (as a server) and in set U (as a client).

Transactions occur between the servers and clients, and clients provide feedbacks in

the form of ratings about servers after each transaction (based on the service quality

of the transaction). First, for the simplicity and clarity of the presentation, we will

describe the fundamental scheme assuming that each peer follows the protocol of

message passing faithfully. In other words, each peer computes its own reputation

value (as a server) and trustworthiness value (as a client) via distributed message

passing and report these values to other peers when they are queried. However, this

fundamental scheme is not completely secure as malicious peers may report incorrect

values for their own reputation and trustworthiness values upon an inquiry. Then, in

105

Section 6.2.1, we will describe how we make this scheme completely secure by allowing

different groups of peers (referred as the score managers) to compute the reputation

and trustworthiness values of individual peers.

Similar to the discussion in Chapter 5, let Gj be the reputation value of server j

(j ∈ S), Tij be the rating that client i (i ∈ U) reports about server j (j ∈ S), T be

the s× u server-client matrix, Ti be the set of ratings provided by client i, and Ri be

the trustworthiness of the peer i (i ∈ U) as a client. Further, G = {Gj : j ∈ S} and

R = {Ri : i ∈ U} are the collection of variables representing the reputations of the

servers and the trustworthiness values of the clients, respectively. We consider slotted

time throughout this discussion. At each time-slot, BP-P2P algorithm is executed

using the input parameters R and T to obtain the reputation parameters at each

peer. We note that different from the centralized algorithms, each peer has only a

part of the input parameters based on its previous transactions. More specifically,

we assume that every peer i knows the ratings it previously provided as a client (i.e.,

Ti) and the set of servers for whom it provided these ratings. Moreover, every peer

i knows the ratings it previously received from other peers as a server and the set

of clients who provided these ratings (similar to [53]). After BP-P2P completes its

iterations, each peer computes its new reputation value as a server as well as its

updated trustworthiness value as a client. For simplicity of presentation, we assume

that the rating values are from the set Υ = {0, 1}. The extension in which rating

values can take any real number can be developed similarly.

Again, we approach the reputation management problem as finding s marginal

probability functions, p(Gj|T,R), (each of which is associated with a variable Gj)

given the observed data (i.e., evidence). As we discussed in Chapter 5, each marginal

probability function p(Gj |T,R) may be obtained from the global function p(G|T,R)

by solving (18). However, the number of terms in (18) grows exponentially with the

number of variables, making the computation infeasible. Further, (18) can only be

106

solved in a centralized environment in which all the evidence T and R is available

at a central unit. On the other hand, P2P networks are typically distributed en-

vironments, and hence, solving (18) at each peer is not feasible in such distributed

environments in which each peer has only a part of the evidence. Thus, we factorize

(18) to local functions fi using a factor graph and utilize the Belief Propagation (BP)

algorithm to calculate the marginal probability distributions in linear complexity and

in a distributed environment.

First, we arrange the collection of the clients and the servers together with the

ratings as a factor graph, as in Fig. 23. In this representation, each client corresponds

to a factor node shown as a square and each server is represented by a variable node

shown as a hexagon in Fig. 23. Further, each rating is represented by an edge from the

factor node to the variable node. We note that we use the same fading mechanism

described in Section 5.2 (with the fading parameter ϑ) for the ratings to keep up

with the temporal dynamics of the peers. Then, we suppose that the global function

p(G|T,R) factors into products of several local functions, each having a subset of

variables from G as arguments as in (19). Hence, in the graph representation of

Fig. 23, each factor node is associated with a local function and each local function

fi represents the probability distributions of its arguments given the trustworthiness

value and the existing ratings of the associated client.

We now introduce the messages between the factor and the variable nodes (i.e.,

between the servers and the clients) to compute the marginal distributions at each

server using BP. For the simplicity of the presentation we describe the message ex-

change between peer k (as a client) and peer a (as a server) in Fig. 23. We represent

the set of neighbors of the variable node (server) a and the factor node (client) k as

Ns

a
and Nc

k
, respectively (neighbors of a server are the set of clients who rated the

server while neighbors of a client are the servers whom it rated). Superscripts in the

representation of the neighbors denote whether the neighbors of a peer are determined

107

considering the peer as a client (c) or as a server (s). We note that neighbors of a

peer as a server (or variable node) do not need to be the same as its neighbors as

a client (or factor note). Factor and variable nodes in Fig. 23 iteratively exchange

probabilistic messages following the BP algorithm, updating the degree of beliefs on

the reputation values of the servers as well as the confidence of the clients on their

ratings (i.e., trustworthiness values) at each step, until the iterations stop.

Let G(ν) = {G
(ν)
j : j ∈ S} be the collection of variables representing the values of

the variable nodes at the iteration ν of the algorithm. The message from the factor

node (client) k to the variable node (server) a at the νth iteration is formed as

λ
(ν)
k→a(G

(ν)
a) =

∑

G
(ν)
k

\{G
(ν)
a }

fk(G
(ν)
k ,Tk, R

(ν−1)
k)

∏

x∈∆

µ
(ν−1)
x→k (G(ν)

x), (32)

where Gk is the set of variable nodes which are the arguments of the local function fk

at the factor node k and ∆ = Nc

k
\{a}. This message transfer is illustrated in Fig. 36.

Further, R
(ν−1)
k (the trustworthiness of client k calculated at the end of (ν − 1)th

iteration) can be calculated as follows:

R
(ν−1)
k = 1−

1

|Nc

k
|

∑

i∈Nc
k

∑

x∈{0,1}

|Tki − x|µ
(ν−1)
i→k (x). (33)

The above equation can be interpreted as one minus the average inconsistency of

client k calculated by using the messages it received from all its neighbors. The

above computation must be performed for every neighbors of each factor node. This

finishes the first half of the νth iteration.

During the second half, the variable nodes (servers) generate their messages (µ)

and send to their neighbors. Variable node a forms µ
(ν)
a→k(G

(ν)
a) by multiplying all

information it receives from its neighbors excluding the factor node k, as shown in

Fig. 37. Hence, the message from variable node a to the factor node k at the νth

iteration is given by

µ
(ν)
a→k(G

(ν)
a) =

1
∑

h∈{0,1}

∏

i∈Ξ

λ
(ν)
i→a(h)

×
∏

i∈Ξ

λ
(ν)
i→a(G

(ν)
a), (34)

108

a
 b

c
 d

peer
k

as client

ka

(v)

µ
ak

(v-1)
 µ
bk

(v-1)

µ
ck

(v-1)
 µ
dk

(v-1)

λ

Figure 36: Message from the factor node (client) k to the variable node (server) a
at the νth iteration.

where Ξ = Ns

a
\{k}. This computation is repeated for every neighbors of each variable

node. The algorithm proceeds to the next iteration in the same way as the νth

iteration. It is worth noting that since each peer is both a server and a client, at

the first half of the iteration, each peer generates messages as a client and in the

second half of the iteration, each peer generates messages as a server. We note

that the iterative algorithm starts its first iteration by computing λ
(1)
k→a(G

(1)
a) in (32).

However, instead of calculating in (33), the trustworthiness value Rk from the previous

execution of BP-P2P is used as initial values in (32).

peer
a

as server

m

i

k

n

µ

ak

(v)

ka

(v)

ma

(v)

na

(v)

ia

(v)

λλ

λλ

Figure 37: Message from the variable node (server) a to the factor node (client) k
at the νth iteration.

109

BP-P2P stops after Ψ iterations (which is a pre-defined number and its selection

will be discussed in Section 6.3.3). At the end of each iteration, the reputations are

calculated at each server. To calculate the reputation valueG
(ν)
a , each server computes

µ
(ν)
a (G

(ν)
a) using (34) but replacing Ξ with Ns

a
, and then sets G

(ν)
a =

∑1
i=0 iµ

(ν)
a (i).

Thus, after the last iteration (i.e., Ψth iteration), each server peer obtains its updated

reputation value and each client peer obtains its updated trustworthiness value.

6.2.1 Secure BP-P2P

As we discussed before, the fundamental scheme described in Section 6.2 is not com-

pletely secure since it assumes that every peer will honestly follow the protocol of

message passing algorithm in BP. In other words, thus far we assumed that the

messages associated with the reputation and trustworthiness values are computed

faithfully according to the BP rules. We further assumed that each peer computes

its own reputation and trustworthiness values and shares these values with the other

peers upon an inquiry. However, it is clear that a malicious peer would not necessar-

ily follow the BP rules and it would report its own reputation and trustworthiness

values to the other peers incorrectly. Therefore, we propose to use a group of ran-

domly selected peers (referred as the score managers) to do the message exchange,

and hence, compute the reputation and trustworthiness values on behalf of each peer

as in [53]. Similar to [53], to assign score managers, we use a Distributed Hash Table

(DHT) [95]. DHTs use a hash function to deterministically map the unique ID of each

peer into the points in a logical coordinate space. At any time, the coordinate space is

partitioned among the peers in the P2P network such that every peer covers a region

in the coordinate space. Hence, score manager(s) of an arbitrary peer i is determined

by hashing the unique ID of peer i into a point in the coordinate space and the peer

which currently covers this point as part of its DHT region is appointed as the score

110

manager of peer i1. Thus, any peer can easily determine the score manager(s) of peer

i from its unique ID. We assume that the DHT can cope with the dynamics of the

network (e.g., score managers leaving the system) as in [53]. Since it is not the main

contribution of this work, we do not give further detail about the selection of the

score managers. As we mentioned before, our main contribution is the computation

of trust and reputation values at the score managers via the distributed BP-based

algorithm. Next, we show how we modify our fundamental scheme such that it can

be executed by score managers.

Using the DHT, each peer k is assigned with ξ score managers from the set Hk =

{H1
k , H

2
k , . . . , H

ξ
k}. We assume that each score manager of peer k knows: i) neighbors

of peer k as a server (i.e., Ns

k
), and hence, the score managers of these neighbors,

ii) neighbors of peer k as a client (i.e., Nc

k
), and hence, the score managers of these

neighbors, iii) ratings previously provided by peer k as a client (i.e., Tk), iv) ratings

previously received by peer k as a server, and v) trustworthiness value of peer k as a

client computed at the previous execution of the algorithm. The score managers in

Hk generate the BP messages on behalf of peer k both as a server (variable node) and

as a client (factor node). Further, they compute the reputation value (as a server) and

the trustworthiness value (as a client) of peer k based on the messages they receive

from the score managers of peer k’s neighbors.

We note that since each peer in the network plays the role of both a client and a

server; each score manager also has the same property. Therefore, at the first half of

an iteration, each score manager generates messages as a client (factor node) and in

the second half of the iteration, each score manager generates messages as a server

(variable node) on behalf of the peer they are responsible for. From now on, we refer

a score manager as “client score manager” when it generates messages as a client, and

1If peer i has more than one score managers, the unique ID of peer i can be concatenated with
an integer before hashing.

111

as “server score manager” when it generates messages as a server in order to avoid

confusion. Thus, different from the fundamental scheme described in Section 6.2, BP

messages are now between the client score managers and the server score managers.

Due to this change, the factor graph in Fig. 23 is also modified based on the score

managers of the peers. As an example, we illustrate the change in the connectivity of

client k in Fig. 38 assuming ξ = 3. As illustrated in the figure, instead of connecting

client k to the servers it rated (servers a, b and c), we connect the score managers of

peer k to the score managers of peers a, b and c in the factor graph.

k

a
 c
b

H
k

1
 H
k

2
 H
k

3

H
a

1
 H
a

2
 H
a

3

Ha

Hk

Hb Hc

Figure 38: Utilizing score managers in BP-P2P.

Messages are exchanged between the score managers of the peers following the

principles of the BP algorithm (as described in Section 6.2) and the algorithm stops

after Ψ iterations (selection of Ψ will be discussed in Section 6.3.3). We note that

every score manager waits to receive all messages from its neighbors before it gener-

ates its new message. Further, score managers keep track of the iteration numbers

to both remain loosely synchronized between each other and realize when to stop the

algorithm. When a client i wants to use the service of a server j, it queries the repu-

tation value Gj from the score managers of the peer j. Similarly, the trustworthiness

value of a peer (as a client) can also be queried from its score managers. Once the

112

client i receives all the computed Gj values from ξ different score managers in Hj , it

computes the mean of the received reputation values to determine the final reputation

value of server j2.

There is one obvious drawback of using score managers for BP-P2P algorithm.

When a malicious peer becomes the score manager of a reliable or malicious peer,

it may create and send bogus messages to its neighbors. Therefore, malicious mes-

sages may propagate in the BP algorithm affecting the efficiency of the algorithm.

We describe the attack strategies of such malicious score managers in Section 6.3.1.

Further, we evaluate BP-P2P under this attack both analytically and via simulations

in Sections 6.3.2 and 6.3.3, respectively.

6.2.2 Efficient BP-P2P

In this section, we provide some discussion on the computational complexity and

communication overhead of BP-P2P.

6.2.2.1 Computational Complexity

On can show that the computational complexity of BP-P2P as max(O
(

ξc
)

,O
(

ξv
)

)

per peer in the number of multiplications, where c and v are small numbers repre-

senting the average number of ratings generated by a client and the average number

of ratings received by a server. Therefore, the computational complexity of BP-P2P

is at most linear in the number of peers in the network, making it very attractive for

large-scale systems.

6.2.2.2 Communication Overhead

In the fundamental scheme described in Section 6.2, each client (and each server) sends

different messages to each of its neighbors at each iteration. This introduces extra

communication overhead to the scheme when multiple score managers are present

2The client i can also query the trustworthiness values of the score managers in Hj and compute
the reputation value of server j using weighted average.

113

for each peer. Therefore, in this section, we modify the messages in (32) and (34)

between the peers (between the score managers of the peers in the secure version

described in Section 6.2.1) to reduce the communication overhead due to the multiple

score managers for each peer.

Before discussing these modifications in the messages between the score managers,

we first approximate and simplify the message in (32) by assuming that the arguments

of a local function at a factor node are independent from each other (to reduce the

computational complexity at the client peers). Using this assumption, as we discussed

in Section 5.2, it can be shown that λ
(ν)
k→a(G

(ν)
a) ∝ p(G

(ν)
a |Tka, R

(ν−1)
k), where

p(G(ν)
a |Tka, R

(ν−1)
k) =

[

(R
(ν−1)
k +

1−R
(ν−1)
k

2
)Tka +

1− R
(ν−1)
k

2
(1− Tka)

]

G(ν)
a +

[1− R
(ν−1)
k

2
Tka + (R

(ν−1)
k +

1− R
(ν−1)
k

2
)(1− Tka)

]

(1−G(ν)
a). (35)

This resembles the belief/pleusability concept of the Dempster-Shafer Theory [89,90]

(as we also discussed in Section 5.2). Given Tka = 1, R
(ν−1)
k can be viewed as the belief

of the client k that G
(ν)
a is one (at the νth iteration). In other words, in the eyes of

client k, G
(ν)
a is equal to one with probability R

(ν−1)
k . Thus, (1−R

(ν−1)
k) corresponds

to the uncertainty in the belief of client k. In order to remove this uncertainty and

express p(G
(ν)
a |Tka, R

(ν−1)
k) as the probabilities that G

(ν)
a is zero and one, we distribute

the uncertainty uniformly between two outcomes (one and zero). Hence, in the eyes

of the client k, G
(ν)
a is equal to one with probability (R

(ν−1)
k + (1 − R

(ν−1)
k)/2), and

zero with probability ((1−R
(ν−1)
k)/2). We note that a similar statement holds for the

case when Tka = 0.

We now describe how we modify the BP messages in (35) and (34) to reduce the

communication overhead caused by multiple score managers per each peer. Let Hk be

the set of score managers of peer k (in the secure version described in Section 6.2.1).

In principal, at each iteration, we let each score manager H i
k in Hk broadcast a single

114

message to all of its neighbors instead of sending different messages to each of its

neighbors. Then, each neighbor of the score manager H i
k computes the actual BP

message in (35) or (34) using the broadcasted message (from H i
k) and the information

it already possesses. In the following, we discuss the details of this process.

Let HNc

k
denote the set of score managers of neighbors of client k. Instead of

computing (35) for all its neighbors separately, each client score manager in Hk (in the

secure version described in Section 6.2.1) only computes and broadcasts the updated

trustworthiness value of the client k to its neighbors inHNc

k
instead of sending different

messages to each of its neighbors. Since the score managers in HNc

k
know the rating

value given by client k to the servers they are responsible for, each score manager in

HNc

k
computes the actual message itself. For example, since the score managers of

server a know Tka, they compute the message in (35) by only using the broadcasted

R
(ν−1)
k value.

Similarly, all messages from a server score manager (Hj
a) to its neighbors (in

HNs
a
) may be communicated simultaneously via a single broadcast step to decrease

the communication overhead. The message from Hj
a to one of its neighbors i in

HNs
a
is formed by multiplying all the messages received at Hj

a excluding the one

received from the score manager i (similar to (34)). Thus, Hj
a can simply broadcast

the multiplication of all received messages to its neighbors, and allow i (and all

other neighbors) to deduce the actual message from this broadcast. Therefore, at

each iteration, a server score manager broadcasts a single message instead of sending

different messages to each of its neighbors.

We note that we used these modified message formats for the evaluation of BP-P2P

(in Section 6.3). Let Ψ be the total number of iterations required for a single execution

of the algorithm and ξ be the number of score managers for each peer. Then, each

score manager sends (on the average) 2ξΨ messages during the execution of the BP-

P2P algorithm (Ψ ≤ 10 as will be discussed in Section 6.3.3). On the other hand, in

115

EigenTrust [53] each score manager sends (on the average) max(O
(

2ξΨc
)

,O
(

2ξΨv
)

)

messages during the algorithm, where c and v represent the average number of ratings

generated by a client and the average number of ratings received by a server. Further,

Ψ is reported to be (on the average) 10 for EigenTrust [53]. Therefore, we conclude

that the proposed BP-based algorithm does not introduce a significant communication

overhead to the network.

6.3 Security Evaluation

In this section, we mathematically model and analyze BP-P2P. Moreover, we support

the analysis via computer simulations and compare BP-P2P with the existing and

commonly used P2P reputation management mechanisms. In order to facilitate future

references, frequently used notations are listed in Table 5.

Table 5: Notations and definitions.

S The set of servers
UM The set of malicious clients
UR The set of non-malicious clients
Hi The set of score managers of peer i
rm Rating given by a malicious client

d
Total number of newly generated ratings, per time-slot,
per a non-malicious client

b
Total number of newly generated ratings, per time-slot,
per a malicious client

6.3.1 Threat Model

We mainly focus on the malicious behaviors of the clients and score managers and

explore their impact on the proposed trust and reputation management algorithm.

6.3.1.1 Malicious Clients

There are two major attacks that are common for any trust and reputation man-

agement mechanisms: i) Bad-mouthing, in which malicious clients attack the servers

with the highest reputation by giving low ratings in order to undermine them, and

116

ii) Ballot-stuffing, in which malicious clients try to increase the reputation values of

servers with low reputations. Further, there are opportunities for the malicious score

managers to attack specifically to the BP algorithm by creating incorrect BP mes-

sages. In the following, we describe how we modeled the adversary considering the

aforementioned threats to evaluate BP-P2P in the most adverse environment.

We assumed that the malicious clients initiate bad-mouthing3. Further, all the

malicious clients collude and attack the same subset Γ of servers in each time-slot

(which represents the strongest attack), by rating those servers as rm = 0 (assuming

the rating values are either 0 or 1). In other words, we denote by Γ the set of size

b in which every victim server has one edge from each of the malicious clients (in

the factor graph in Fig. 23). The subset Γ is chosen to include those servers who

have the highest reputation values but received the lowest number of ratings from

the non-malicious clients (assuming that the attackers have this information4). We

note that this attack scenario also represents the RepTrap attack in [105] which is

shown to be a strong attack. To the advantage of malicious peers, we assumed that a

total of T time-slots had passed since the initialization of the network and a fraction

of the existing peers change behavior and become malicious after T time-slots. In

other words, malicious clients behaved like non-malicious clients and increased their

trustworthiness values before mounting their attacks at the (T + 1)th time-slot. We

will evaluate the performance for the time-slot (T + 1).

6.3.1.2 Malicious Score Managers

As we discussed in Section 6.2.1 score managers of an arbitrary peer i generate the

BP messages on behalf of the peer i (both as server and as a client). Therefore,

malicious score managers of a peer may create and send incorrect messages to their

3Even though we use the bad-mouthing attack, similar counterpart results hold for ballot-stuffing
and combinations of bad-mouthing and ballot-stuffing.

4Although it may appear unrealistic for some applications, availability of such information for
the malicious clients would imply the worst case scenario.

117

neighbors. By doing so, malicious score managers specifically attack the accuracy of

the BP algorithm. When a malicious peer j is the score manager of a peer i (i.e.,

j ∈ Hi) it creates bogus BP messages depending on the type of peer i as below:

• If i is a non-malicious peer:

– When j creates a message as a server score manager on behalf of peer i,

it reports an incorrect value for the probability of G
(ν)
i = ℓ (ℓ ∈ {0, 1}) at

every iteration ν (e.g., if normally G
(ν)
i = 1 with high probability, j creates

a message reporting that G
(ν)
i = 0 with a probability of 1 − ̺, where ̺ is

a positive number close to zero).

– When j creates a message as a client score manager on behalf of peer i,

it reports a low trustworthiness value for peer i as a client (e.g., j reports

the trustworthiness value of peer i as R
(ν)
i = σ at every iteration ν, where

σ is a positive number close to zero).

• If i is a malicious peer:

– When j creates a message as a server score manager on behalf of peer i,

it reports a high value for the probability of G
(ν)
i = 1 at every iteration ν

to favor its ally (e.g., j creates a message reporting that G
(ν)
i = 1 with a

probability of 1− ̺, where ̺ is a positive number close to zero).

– When j creates a message as a client score manager on behalf of peer i,

it reports a high trustworthiness value for the malicious peer i as a client

(e.g., j reports the trustworthiness value of peer i as R
(ν)
i = 1−σ at every

iteration ν, where σ is a positive number close to zero).

We note that since the score managers of the peers are assigned via a DHT, we assume

that malicious score managers do not collaborate. We considered the above threat

models for both our analytical evaluation and simulations.

118

6.3.2 Analytical Evaluation

We adopted the following models for various peers involved in the P2P trust and

reputation management system. We assumed that the service quality of each server

remains unchanged during our evaluation. Moreover, the rating values are either 0 or

1 where 1 represents a good service quality (e.g., providing authentic files). Ratings

generated by the non-malicious clients are distributed uniformly among the servers.

We wish to evaluate the performance for the time-slot (T + 1) at which malicious

peers change behavior and initiate their attacks as discussed in Section 6.3.1.

The performance of a reputation management mechanism is determined by its

accuracy of estimating the reputation values of the servers. Therefore, we evaluate

BP-P2P in terms of the Mean Absolute Error (MAE) (|Gj − Ĝj |) computed at each

non-malicious score manager of every server j, where Ĝj is the actual value of the

reputation of server j. Similar to our centralized scheme in Chapter 5, we require two

conditions to be satisfied: 1) the scheme should iteratively reduce the impact of ma-

licious peers and decrease the error in the reputation values of the servers (computed

at the non-malicious score managers) until the iterations stop, and 2) the error on

the Gj value of each server j (computed at the non-malicious score managers) should

be less than or equal to ǫ (where ǫ should be a small value) after the last iteration

(i.e., Ψth iteration). In the following, we obtained the conditions and probabilities to

arrive at such a scheme. We note that although the discussions of the analysis are

based on RepTrap attack via bad-mouthing (as described in Section 6.3.1), the system

designed using these criteria will be robust against ballot-stuffing and combinations

of bad-mouthing and ballot-stuffing as well.

Ga value of a victim server a (computed at the non-malicious score managers in

set Ha) should be a non-decreasing function of iterations (since the bad-mouthing

attack is aimed to reduce the reputation values of the victim servers). This leads to

the below lemma.

119

Lemma 6.3.1. The error in the reputation values of the servers decreases with each

successive iterations (until the iterations stop) if G
(2)
a > G

(1)
a is satisfied with high

probability at the non-malicious score managers of peer a (Ha ∩UR) for every server

a (a ∈ S) with Ĝa = 15.

Proof. Let G
(ω)
a and G

(ω+1)
a be the reputation value of an arbitrary server a with

Ĝa = 1 calculated at the (ω)th and (ω + 1)th iterations at the non-malicious score

managers of peer a (Ha ∩ UR), respectively. Further, let HR
Ns

a
denote the set of score

managers of non-malicious neighbors of server a (i.e., Ns

a
∩ UR) and HM

Ns
a
denote the

set of score managers of malicious neighbors of server a (i.e., Ns

a
∩UM). G

(ω+1)
a > G

(ω)
a

if the following is satisfied at the (ω + 1)th iteration.

∏

j∈HR
Ns

a
∩UR

R
(w+1)
j + 1

1−R
(w+1)
j

∏

j∈HM
Ns

a
∩UR

1− R̂
(w+1)
j

1 + R̂
(w+1)
j

>

∏

j∈HR
Ns

a
∩UR

R
(w)
j + 1

1−R
(w)
j

∏

j∈HM
Ns

a
∩UR

1− R̂
(w)
j

1 + R̂
(w)
j

,

(36)

where R
(w)
j and R̂

(w)
j are the trustworthiness values of a reliable and malicious client

calculated at a non-malicious score manager (as in (33)) at the wth iteration, respec-

tively.

Given G
(ω)
a > G

(ω−1)
a holds at the ωth iteration, we would get R̂

(w)
j > R̂

(w+1)
j for

j ∈ HM
Ns

a
∩ UR and R

(w+1)
j ≥ R

(w)
j for j ∈ HR

Ns
a
∩ UR. Thus, (36) would hold for the

(w + 1)th iteration. On the other hand, if G
(ω)
a < G

(ω−1)
a , we get R̂

(w)
j < R̂

(w+1)
j for

j ∈ HM
Ns

a
∩ UR and R

(w+1)
j < R

(w)
j for j ∈ HR

Ns
a
∩ UR. Hence, (36) is not satisfied at the

(w+1)th iteration. Therefore, if G
(ω)
a > G

(ω−1)
a holds for some iteration ω at the peers

in Ha∩UR, then the BP-P2P algorithm reduces the error on the reputation value (Ga)

until the iterations stop, and hence, it is sufficient to satisfy G
(2)
a > G

(1)
a with high

5The opposite must hold for any server with Ĝa = 0.

120

probability at the non-malicious score managers of every server a with Ĝa = 1 (the

set of servers from which the victims are taken) to guarantee that BP-P2P iteratively

reduces the impact of malicious clients at the non-malicious score managers until it

stops.

Although because of the Lemma 6.3.1, the error in the reputation values of the

servers decrease with successive iterations, it is unclear what would be the eventual

impact of the malicious peers. Once the condition in Lemma 6.3.1 is met and assuming

Ψ be the total number of iterations required for a single execution of the BP-P2P

algorithm, the probability (P) that BP-P2P provides an MAE that is less than ǫ for

each server at every non-malicious score managers can be obtained as below:

P =
∏

a∈S

Pr
{

ǫ ≥ 1−
̟

̟ + ζ

}

(37)

where,

̟ =
∏

j∈HR
N

s
a
∩UR

(R
(Ψ+1)
j + 1)

∏

j∈HM
N

s
a
∩UR

(1− R̂
(Ψ+1)
j)

∏

j∈HM
N

s
a
∩UM

(1− R̃
(Ψ+1)
j) (38a)

ζ =
∏

j∈HR
Ns

a
∩UR

(1−R
(Ψ+1)
j)

∏

j∈HM
Ns

a
∩UR

(1 + R̂
(Ψ+1)
j)

∏

j∈HM
Ns

a
∩UM

(1 + R̃
(Ψ+1)
j). (38b)

In (38), R
(Ψ+1)
j and R̂

(Ψ+1)
j are the trustworthiness values of a reliable and malicious

client calculated at a non-malicious score manager, respectively. Further, R̃
(Ψ+1)
j is

the trustworthiness value of a malicious client calculated at a malicious score manager.

In the following example, we illustrate the results of our analytical evaluation.

The parameters we used are |UM |+ |UR| = 100, |S| = 100, ϑ = 0.9, T = 20, b = 10,

̺ = σ = 0.1, ξ = 3 and Ψ = 10 (selection of Ψ will be discussed in Section 6.3.3).

Further, we assumed that d is a random variable with Yule-Simon distribution, which

resembles the power-law distribution used in modeling P2P and online systems [92],

with the probability mass function fd(d; ρ) = ρB(d, ρ+ 1) (with ρ = 1), where B is

121

the Beta function. Finally, we assumed the threat model described in Section 6.3.1.

We note that we also evaluated BP-P2P with different parameters and obtained

similar results. In Fig. 39, we illustrated the probability of BP-P2P providing an

MAE that is less than ǫ (at each non-malicious score manager) versus fraction of

malicious peers for two different ǫ values. We observed that for an acceptable value

of ǫ (ǫ = 0.1), BP-P2P satisfies MAE < ǫ with high probability for up to 30%

malicious peers. Moreover, Fig. 40 illustrates the average MAE values provided by

BP-P2P (at each non-malicious score manager) with high probability for different

fractions of malicious peers. We observed that BP-P2P provides significantly small

error values for up to 30% malicious peers. We note that these analytical results are

also consistent with our simulation results that are illustrated in the next section.

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% malicious peers

P
r(

M
A

E
 <

 ε
)

ε = 0.1
ε = 0.001

Figure 39: Probability of BP-P2P to provide an MAE that is less than ǫ versus
fraction of malicious peers.

122

5 10 15 20 25 30 35
−25

−20

−15

−10

−5

0

% malicious peers

A
ve

ra
ge

(lo
g

10
M

A
E

)

Figure 40: The average MAE values provided by BP-P2P with high probability

versus fraction of malicious peers.

6.3.3 Simulations

We evaluated the performance of BP-P2P via computer simulations (via MATLAB)

and compared BP-P2P with the Bayesian reputation management framework in [24]

(which is also proposed as the reputation management system of the well-known

CONFIDANT protocol [23]) and the EigenTrust algorithm [53] in a distributed P2P

network environment.

We assumed that d is a random variable with Yule-Simon distribution (with ρ = 1)

as discussed in Section 6.3.2. We set T = 20, b = 10, ρ = 1, |U| = 100, |S| = 100, ̺ =

σ = 0.1, ξ = 3, and the fading parameter as ϑ = 0.96. Further, we assumed that rating

values are from the set Υ = {0, 1}. Finally, we assumed the threat model described in

Section 6.3.1 in which there are both malicious clients and malicious score managers.

Let Ĝj be the actual reputation value of server j. We obtained the performance of

6We note that for the EigenTrust and the Bayesian framework we used the same fading mechanism
as BP-P2P and set the fading parameter as ϑ = 0.9.

123

BP-P2P, at each time-slot, as the Mean Absolute Error (MAE) |Gj − Ĝj |, averaged

over the reputation values of all victim servers (i.e., the servers that are under attack)

computed at their non-malicious score managers. For the Bayesian framework [24],

we used the parameters from the original work [24] (deviation threshold d = 0.5 and

trustworthiness threshold t = 0.75). Further, in favor of the Bayesian framework,

we assumed that each peer have access to the server-client matrix T. Therefore, we

observed the reputation values computed at all non-malicious peers and we averaged

the MAE over the reputation values of the victim servers. For the EigenTrust, we

implemented the distributed algorithm described in [53] (with ξ = 3 score managers

for each peer as in BP-P2P) and observed the reputation values computed at the

non-malicious score managers as we did for BP-P2P. We note that we did not assume

the existence of the pre-trusted peers for any schemes.

It is worth noting that in principle, BP-P2P performs better than the Bayesian

framework since Bayesian approaches of [24] and [103] assume that the reputation

values of the peers are independent. Hence, in these schemes, each reputation value

is computed independent of the other peers’ reputation values using the ratings given

to each peer. However, this assumption is not valid because the ratings provided by

the client peers induce a probability distribution on the reputation values of the server

peers. These distributions are correlated because they are induced by the overlapping

set of client peers. The strength of BP-P2P stems from the fact that captures this

correlation in analyzing the ratings and computing the reputations. On the other

hand, as we discussed in Section 2.3, the EigenTrust algorithm is constrained by the

fact that trustworthiness of a peer (on its feedback) is equivalent to its reputation

value. However, trusting a peer’s feedback and trusting a peer’s service quality are two

different concepts. This is one of the reasons why we expect that the BP-P2P would

perform better than the EigenTrust algorithm. Further, the EigenTrust algorithm

computes the reputation values by a simple iterative weighted averaging mechanism

124

which is vulnerable to collaborative attacks from the malicious peers. Therefore, the

proposed BP-P2P algorithm is more powerful than the EigenTrust algorithm since

it views the reputation management problem as an inference problem and computes

the reputation values via probabilistic message passing between the peers, which is

shown to be robust against colluding attackers in Chapter 5. Indeed, our simulation

results (presented next) also support these arguments.

First, we determined the total number of iterations (Ψ) required for the BP-P2P

algorithm. Thus, in Fig. 417, we observed the average number of required iterations

for BP-P2P to converge at each peer (i.e., computed reputation values stop chang-

ing) for different fractions of malicious peers (W = |UM |
|UM |+|UR|

), at different time-slots

(measured since the attack is applied). We conclude that the average number of

iterations for convergence is always less than 10 and it decreases with time and de-

creasing fraction of malicious peers. Thus, we used Ψ = 10 for the remaining of this

section. Then, we evaluated the MAE performance of BP-P2P for different fractions

of malicious peers (W), at different time-slots in Fig. 42. We observed that BP-P2P

provides significantly low errors for up to about W = 25% malicious peers. Next, we

observed the change in the average trustworthiness (Ri values) of malicious clients

computed at the non-malicious score managers. Figure 43 illustrates the drop in the

trustworthiness of the malicious clients with time. We conclude that the Ri values

of the malicious clients (computed at non-malicious score managers) decrease over

time, and hence, the impact of their malicious ratings is neutralized over time. We

also compared the MAE performance of BP-P2P with the Bayesian Framework and

the EigenTrust algorithm. Figure 44 illustrates the comparison of BP-P2P with these

schemes for different fractions of malicious peers at the first time-slot the attack is ap-

plied. It is clear that BP-P2P outperforms the Bayesian Framework and EigenTrust

7The plots in Figs. 41, 42 and 43 are shown from the time-slot the adversary introduced its
attack.

125

significantly. We note that at later time-slots, BP-P2P still keeps its superiority over

the other schemes. From this comparison, we conclude that in EigenTrust, even the

non-malicious score managers compute the reputation values with a large MAE in the

presence of the attackers. Further, when the malicious nodes collaboratively attack,

Bayesian Framework results in a high MAE in the reputation values of the servers.

Finally, we observed the impact of ξ (the number of score managers for each peer)

to the performance of BP-P2P under the same attack scenario (in which there are

both malicious clients and malicious score managers as described in Section 6.3.1). In

Fig. 45, we illustrated MAE performance of BP-P2P for different values of ξ and for

different fractions of malicious peers at the first time-slot the attack is applied. Next

in Fig. 46, we evaluated the MAE performance of BP-P2P for different ξ values and

for W = 25% malicious peers, at different time-slots. As expected, for small values of

ξ (i.e., ξ = 1 and ξ = 2), BP-P2P provides higher MAE values since the probability

that all score managers of a victim client being malicious increases with decreasing

values of ξ.

1 2 3 4 5 6 7 8 9 10
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

time−slot

N
um

be
r

of
 it

er
at

io
ns

W=5%
W=10%
W=15%
W=20%
W=25%
W=30%

Figure 41: The average number of iterations versus time for BP-P2P to converge
when W of the existing peers become malicious.

126

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time−slot

M
A

E

W=5%
W=10%
W=15%
W=20%
W=25%
W=30%

Figure 42: MAE performance of BP-P2P versus time when W of the existing peers

become malicious.

1 2 3 4 5 6 7 8 9 10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

time−slot

A
ve

ra
ge

 tr
us

tw
or

th
in

es
s

of
 m

al
ic

io
us

 p
ee

rs

W=5%
W=10%
W=15%
W=20%
W=25%
W=30%

Figure 43: Change in average trustworthiness of malicious clients versus time for

BP-P2P when W of the existing peers become malicious.

127

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

% malicious peers

M
A

E

BP−P2P
EigenTrust
Bayesian Framework

Figure 44: MAE performance of various schemes when different fractions of the

existing peers become malicious at the first time-slot the attack is applied.

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ξ

M
A

E

W=5%
W=10%
W=15%
W=20%
W=25%
W=30%

Figure 45: MAE performance of BP-P2P for different values of ξ and for different

fractions of malicious peers at the first time-slot the attack is applied.

128

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time−slot

M
A

E

ξ=1
ξ=2
ξ=3
ξ=4
ξ=5

Figure 46: MAE performance of BP-P2P for different ξ values and for W = 25%

malicious peers, at different time-slots.

Next, we simulated the same attack scenario (in which there are both malicious

clients and malicious score managers) when ratings are integers from the set Υ =

{1, . . . , 5} instead of binary values8 when ξ = 3. Malicious clients choose the victim

servers from Γ and rate them as rm = 4. The malicious clients do not deviate very

much from the actual Ĝj = 5 values to remain undercover as many time-slots as

possible. We also tried higher deviations from the Ĝj value and observed that the

malicious clients were easily detected by BP-P2P. We compared the MAE performance

of BP-P2P with the other schemes at the first time-slot the attack is applied in Fig. 47

and observed that BP-P2P outperforms all the other techniques. We observed that

BP-P2P provides significantly low MAE for up to W = 30% malicious clients. We

further observed that the Bayesian Framework performs better than EigenTrust for

this scenario.

8For the attack from the malicious score managers, we assumed a similar scenario to the binary
case as discussed in Section 6.3.1.

129

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

% malicious peers

M
A

E

BP−P2P
EigenTrust
Bayesian Framework

Figure 47: MAE performance of various schemes when the rating values are from
Υ = {1, . . . , 5}.

Finally, we observed the impact of “malicious clients” and “malicious score man-

agers” (described in Section 6.3.1) separately when ξ = 3 and ratings are binary

values from the set Υ = {0, 1} (we kept all the other parameters the same as de-

scribed before). In Fig. 48, we illustrated the MAE performance of BP-P2P when

the attackers only attack as malicious clients (by collaboratively bad-mouthing the

victim servers) and they behave reliably as score managers (by providing correct mes-

sages in the BP algorithm). Similarly, we studied the MAE performance when the

attackers only attack as malicious score managers (by providing malicious messages in

the BP algorithm) and behave reliably as clients (by providing reliable ratings). We

observed that such an attack causes a significantly low MAE for up to W = 30% of

attackers, and hence, we do not plot the results of this attack separately. We finally

compared the impacts of these attacks when W = 25% of clients are malicious in

Fig. 49. In Fig. 49, “hybrid attack” implies the attack in which the attackers attack

both as malicious clients and malicious score managers. Further, “malicious clients”

and “malicious score managers” imply the attacks in which the attackers only attack

130

as malicious clients and the attackers only attack as malicious score managers, re-

spectively. Based on these results, we conclude that the attacker has the most impact

(in terms of MAE) when the malicious peers execute the “hybrid attack”.

1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

time−slot

M
A

E

W=5%
W=10%
W=15%
W=20%
W=25%
W=30%

Figure 48: MAE performance of BP-P2P when the attackers only attack as malicious
clients, at different time-slots.

131

5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

% maicious peers

M
A

E

malicious score managers
malicious clients
hybrid attack

Figure 49: MAE comparison of different attack scenarios for different fractions of

malicious peers at the first time-slot the attack is applied.

6.4 Summary

We introduced the first application of the belief propagation algorithm in the design

and evaluation of distributed trust and reputation management systems for P2P

networks. We presented the general protocol for Belief Propagation-Based Trust

and Reputation Management for P2P Networks (BP-P2P). BP-P2P is a graph-based

system in which the reputation and trustworthiness value of each peer is computed

by distributed message passing among the peers in the graph. We studied BP-P2P

in a detailed analysis and computer simulations. We showed that proposed BP-

P2P is a robust mechanism to evaluate the reputation values of the peers from the

received ratings. Moreover, it effectively evaluates the trustworthiness of the peers

(in the reliability of their ratings). We also compared BP-P2P with some well-known

P2P reputation management schemes and showed the superiority of the proposed

scheme in terms of its robustness against malicious behavior. Finally, we showed that

the computational complexity of the proposed scheme grows only linearly with the

132

number of peers in the network while its communication overhead is lower that the

well-known EigenTrust algorithm.

133

CHAPTER VII

BELIEF PROPAGATION-BASED ITERATIVE

RECOMMENDER SYSTEM

7.1 Introduction

In the previous chapters, we viewed the reputation management problem as an in-

ference problem whose solution involves computing marginal distributions. Then, we

solved the problem efficiently (in linear complexity) by applying the Belief Propaga-

tion (BP) algorithm. We provided strong evidence that the proposed BP-ITRM (in

Chapter 5) and BP-P2P (in Chapter 6) are superior to their counterparts. Relying

on our success in the reputation management problem, we now extend the BP-based

technique to arrive at scalable, accurate and robust recommender systems. As we dis-

cussed in Chapter 1, recommender systems are aimed at addressing the information

overload problem, suggesting to the users those items that meet their interests and

preferences the best in a particular situation and context. These systems are used

to direct users towards items they will like while interacting with large information

spaces. However, there are certain challenges to design accurate and scalable rec-

ommender systems. Hence, new research needed to focus on algorithms which meet

these challenges. Thus, in this chapter we introduce the first application of Belief

Propagation (BP), an iterative probabilistic algorithm, to solve the recommendation

problem.

The key observation we make is that recommender systems deal with complicated

global functions of many variables (e.g., users and items). By using a factor graph,

we can obtain a qualitative representation of how the users and items are related

on a graphical structure. Further, by using such a representation and the relations

134

between the users and the items, global functions factor into a product of simpler

local functions, each of which depends on a subset of the variables. Therefore, we

propose to model the recommender system on a factor graph using which our goal is to

compute the marginal probability distribution functions of the variables representing

the ratings to be predicted for the users. However, we observe that computing the

marginal probability functions is computationally prohibitive (i.e., exponential in

the number of users and items) for large-scale recommender systems. Therefore, we

propose to utilize the BP algorithm (discussed in Section 5.1.2) to efficiently compute

these marginal probability distributions. BP algorithms are very powerful to solve

inference problems, at least approximately. In fact, many algorithms (such as the

forward-backward algorithm, Pearl’s belief propagation for Bayesian networks, and

iterative decoding of Gallager code) discovered in various scientific fields, although

apparently different, are all special cases of the BP algorithm. The key role of the

BP algorithm is that we can use it to compute the marginal distributions (of the

variables representing the ratings to be predicted) in a complexity that grows only

linearly with the number of nodes (i.e, users/items). For that reason, BP acts as a

powerful tool to operate on statistical data encoded on some forms of large graphical

models. We believe that the significant benefits offered by BP can be tapped in to

benefit the field of recommender systems.

Hereafter, we refer to our scheme as the “Belief Propagation-Based Iterative Rec-

ommender System” (BPRS). In BPRS, the items and users are represented via a

factor graph on which they are arranged as two sets of variable and factor nodes con-

nected via some edges. The predictions of a user’s ratings are computed by message

passing between nodes in the graph. In each iteration of the algorithm, all the vari-

able nodes (items), and subsequently all the factor nodes (users), pass new messages

to their neighbors along with their edges on the graph until the recommendations

converge. BPRS has several prominent features. First, it does not require to solve

135

the problem for all users if it wishes to update the predictions for only a single active

user and it does not require a training period to utilize the most recent data (rat-

ings). Second, its complexity remains linear per single user, making it very attractive

for large-scale systems. Therefore, it can update the recommendations for each ac-

tive (online) user instantaneously using the most recent data (ratings). Further, we

showed that BPRS provides comparable usage prediction and rating prediction ac-

curacy to other popular methods such as the Correlation-based neighborhood model

(CorNgbr) [18] and Singular Value Decomposition (SVD) [102], while it provides sig-

nificant scalability advantages as discussed above. Furthermore, we are confident that

this BP-based approach will enable us integrate data from different content domains

to answer how the behaviors in one content domain represent the user preferences in

another domain and provide resiliency against attacks. Therefore, we are very opti-

mistic that this work promises a new direction for the recommender systems which

will be scalable, accurate, and resilient to attacks.

7.1.1 Contributions

The main contributions of our work are summarized in the following.

1. We introduce the first application of the Belief Propagation (BP) algorithm in

the design of recommender systems.

2. BPRS does not require solving the recommendation problem for all users if it

wishes to update the recommendations for only a single active user using the

most recent data (ratings).

3. BPRS computes the recommendations for each user with linear complexity and

without requiring a training period.

4. BPRS iteratively reduces the error in the predicted ratings of the users until it

136

converges and it is comparable to the state of art methods such as Correlation-

based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD)

in terms of rating and precision accuracy.

7.2 Belief Propagation for Recommender Systems (BPRS)

In the following, we discuss as to how we will give a new formulation of the rec-

ommender system problem as finding the marginal probability distributions of the

unknown variables on a factor graph, using which we will arrive at a scalable and

accurate recommender system (hereafter called BPRS).

We assume two different sets in the system: i) the set of users U and ii) the

set of items (products) I. Users provide feedbacks, in the form of ratings, about

the items for which they have an opinion. The main goal is to provide accurate

recommendations for every user by predicting the ratings of the user for the items

that he/she did not rate before (unseen item). Here, we consider an arbitrary user

z (referred as the active user) and compute the prediction of ratings for user z for

unseen items to describe the algorithm. We assume u users and s items in the system

(i.e., |U| = u and |I| = s). Let Gz = {Gzj : j ∈ I} be the collection of variables

representing the ratings of the items to be predicted1 for the active user z. Let also

Rz = {Rzi : i ∈ U} be the confidence of the system on the users for their ratings’

reliability, given the active user is z. Further, we denote Tij to represent the rating

provided previously by user i about the item j. We denote T as the s× u item-user

matrix that stores these ratings, and Ti be the set of ratings provided by the user i.

We note that some rating entries could be missing (attributed to unseen items). To

be consistent with the most of existing recommender systems, we assume that the

rating values are integers from the set Υ = {1, 2, 3, 4, 5}.

Our objective is to formulate the recommendation problem as making statistical

1A subset of these variables are already known as the corresponding items were rated by user z.
Hence, they do not require any prediction.

137

inference about the ratings of users for unseen items based on observations. That

is, given the past data evidence, what would be the likelihood (probability) that the

rating takes a particular value? Here, the probability is the degree of belief to which

the prediction of the rating is supported by the available evidence. This requires

finding the marginal probability distributions of the variables in Gz conditioned on

some observed preferences. However, computing these probability distributions is

computationally prohibitive for large-scale recommender systems. Using the same

principles discussed in Section 5.2, we represent the recommender system problem on

a factor graph and utilize the BP algorithm to estimate these marginal probability

distributions via message passing between the items and the users with a complexity

that grows linearly with the number of variables in the system. As a result, we arrange

the collection of the users and items together with the ratings provided by the users

as a factor graph g(U, I). In this representation, each user corresponds to a factor

node in the graph, shown as a square and each item is represented by a variable node

shown as a hexagon. Further, each rating is represented by an edge from the factor

node to the variable node. Then, since we consider the particular active user z, the

factor graph is reduced to g(Û, I) (as in Fig. 50) by only keeping the users that are

connected to z via a path in g(U, I) and removing all the other user nodes from the

graph together with their edges. Eventually, the g(Û, I) graph has |Û| = û users and

|I| = s items.

As in Section 5.2, the joint probability function p(Gz|T,Rz) factors into a product

of û local functions fi, (i ∈ Û), each having a subset of Gz as arguments similar to

(19). Each local function is associated with a different factor node, and the function

fi(Gzi,Ti, Rzi) has the argument Gzi that is a subset of Gz. Further, each local func-

tion fi represents the probability distributions of its arguments given the amount of

confidence of the system to the associated factor node (as a user) and the existing

ratings of the associated user.

138

T
ka
 T
mc

n
m

b
 c

k

a

Figure 50: Graphical representation of the scheme from user z’s point of view.

We now describe message exchange between user k and item a (in Fig. 50) provided

that the active user is z. We represent the set of neighbors of the variable node a and

the factor nodes k and z (in g(Û, I)) as Na, Nk, and Nz, respectively. Further, let

Ξ = Na\{k} and ∆ = Nk\{a}. Let G
(ν)
zj be the value of variable Gzj at the iteration

ν of the algorithm. The message µ
(ν)
a→k(G

(ν)
za) (from variable node a to the factor node

k) denotes the probability that G
(ν)
za = ℓ (ℓ ∈ Υ) at the νth iteration. On the other

hand, λ
(ν)
k→a(G

(ν)
za) (from factor node k to the variable node a) denotes the relative

probabilities that G
(ν)
za = ℓ (ℓ ∈ Υ) at the νth iteration, given Tka and R

(ν−1)
zk .

The message from the factor node k to the variable node a at the νth iteration is

formed similar to the discussion on Section 5.2 as follows:

λ
(ν)
k→a(G

(ν)
za) =

∑

G
(ν)
zk

\{G
(ν)
za }

fk(G
(ν)
zk ,Tk, R

(ν−1)
zk)

∏

x∈∆

µ
(ν−1)
x→k (G(ν)

zx), (39)

where Gzk is the set of variable nodes which are the arguments of the local function fk

at the factor node k. This message transfer is illustrated in the right half of Fig. 51.

Further, R
(ν−1)
zk can be calculated as follows:

R
(ν−1)
zk = 1−

1

ρ|Nk|

∑

i∈Nk

∑

x∈Υ

|Tki − x|µ
(ν−1)
i→k (x). (40)

In the above equation, ρ, which is the highest possible deviation of a user, is set to

4 in this particular rating system, where the rating values are integers from the set

139

Υ. Thus, the reliability of users (in their ratings) is measured based on the messages

formed by the algorithm. Using (39) and assuming that the predicted ratings in set

Gzk are independent from each other at each intermediate step (as we discussed in

Section 5.2), it can be shown that λ
(ν)
k→a(G

(ν)
za) ∝ p(G

(ν)
za |Tka, R

(ν−1)
zk), where

p(G(ν)
za = ℓ|Tka, R

(ν−1)
zk) =



































[

R
(ν−1)
zk + (1−R

(ν−1)
zk)× 1/|Az−ℓ|∑

h∈Υ
1/|Az−h|

]

if Tka = ℓ

[

(1− R
(ν−1)
zk)× 1/|Az−Tka|∑

h∈Υ
1/|Az−h|

]

if Tka 6= ℓ.

(41)

Here, Az =
∑

i∈Nz
Tzi

|Nz|
is the average rating of user z (for the items it previously rated).

The way we compute the probabilities in (41) resembles the belief/pleusability concept

of the Dempster-Shafer Theory [89] (similar to the discussion in Section 5.2). Given

Tka = 1, R
(ν−1)
zk can be viewed as the belief of user k that G

(ν)
za is one (at the νth

iteration). In other words, in the eyes of user k, G
(ν)
za is equal to one with probability

R
(ν−1)
zk . Thus, (1 − R

(ν−1)
zk) corresponds to the uncertainty in the belief of user k. In

order to remove this uncertainty and express p(G
(ν)
za |Tka, R

(ν−1)
zk) as the probabilities

that G
(ν)
za is ℓ (ℓ ∈ Υ), we distribute the uncertainty among the possible outcomes (one

to five) in proportion to Az. Therefore, from user k’s point of view, Gza is equal to one

with probability R
(ν−1)
zk +(1−R

(ν−1)
zk)× 1/|Az−1|∑

γ∈Υ
1/|Az−γ|

. On the other hand, it is equal to ℓ

(ℓ 6= 1) with probability (1−R
(ν−1)
k)× 1/|Az−ℓ|∑

γ∈Υ
1/|Az−γ|

. We note that the above discussion

assumed Tka = 1 and similar statements hold for the cases when Tka = 2, 3, 4, 5. The

above computation in (41) must be performed for every neighbors of each factor node.

This finishes the first half of the νth iteration.

In the second half of the νth iteration, we calculate the message µ
(ν)
a→k(G

(ν)
za) by

multiplying all probabilities the variable node a received from its neighbors excluding

140

m

n

k

b

c

a

.

.

.

.

.

.

µ
ak

(v)

ka

(v)

µ
bk

(v-1)

µ
ck

(v-1)

ma

(v)

na

(v
)

N
a
\{k}
 N
k
\{a}

λ

λ

λ

Figure 51: Message exchange between the factor node k and variable node a.

the one from the factor node k, as shown in the left half of Fig. 51. We note that

the previous ratings of the active user play a key role in the algorithm. Hence, the

values of those variables in Gz which are associated with the items already rated by

the active user z are set to the corresponding ratings (i.e., Gzj = Tzj if j ∈ Nz).

Thus, if a ∈ Nz, the messages generated from the variable node a do not vary with

iterations since the value of this variable node (Gza) is fixed based on the ratings of

the active user. Therefore, the message from the variable node a to the factor node

k at the νth iteration is given by

µ
(ν)
a→k(G

(ν)
za = ℓ) =



















































1
∑

h∈Υ

∏

i∈Ξ
λ
(ν)
i→a(h)

×
∏

i∈Ξ

λ
(ν)
i→a(G

(ν)
za) if a 6∈ Nz

1 if a ∈ Nz and Tza = ℓ

0 if a ∈ Nz and Tza 6= ℓ.

(42)

The algorithm proceeds to the next iteration in the same way as the νth iteration.

We clarify that the iterative algorithm starts by computing λ
(1)
k→a by using R

(0)
zk = ̺,

where ̺ (0 < ̺ < 1) is the system’s present confidence on the users for the reliability

141

of their ratings computed at the previous execution of the algorithm. At the end

of each iteration, the upper equation in (42), after following modification, is used to

compute the prediction of ratings of the active user z. That is, we use the set Na

instead of Ξ in (42) to compute µ
(ν)
a (G

(ν)
za) for every item a for which the active user

z did not have any rating. Then, we set G
(ν)
za =

∑5
i=1 iµ

(ν)
a (i). The iterations stop

when Gzj values converge for every item j.

7.3 Evaluation of BPRS

We evaluated the performance of BPRS using the 100K MovieLens dataset2. The

dataset contains 100, 000 ratings from 943 users on 1682 items (movies) in which

each user has rated at least 20 items. Further, the rating values are integers from 1

to 5. We implemented all the experiments via MATLAB on a 2 GHz PC with 4 GB

RAM. We note that based on our simulations, we observed that BPRS converges, on

the average, in 10 iterations. Therefore, for the remaining of this section, we either

show our results during the first 10 iterations or after the 10th iteration.

7.3.1 Prediction Accuracy

First, we evaluated the rating prediction accuracy of BPRS in terms of Root Mean

Square Error (RMSE) and Mean Absolute Error (MAE) metrics over the predicted

ratings. For this evaluation, we used five different test datasets (i.e., we employed

a five-fold cross-validation by evaluating BPRS using five different datasets) and we

presented the average values resulting from these five datasets. We note that each

test dataset is created by 80%/20% split of the full data into training and test data.

We note that since this split is done randomly, each time we evaluated BPRS using a

different training and test dataset. Then, we used the training data (80% of the whole

dataset) to predict the ratings in the test dataset. It is worth noting that BPRS does

2Available at: http://www.grouplens.org/node/73.

142

not require a training period, and hence, we used the training set to compute the

unknown ratings in the test data. Thus, we computed the RMSE and MAE as below:

RMSE =

√

1

|K|

∑

i∈U,j∈I

(Gij − Ĝij)2 (43a)

MAE =
1

|K|

∑

i∈U,j∈I

|Gij − Ĝij|, (43b)

where |K| is the number of ratings (to be predicted) in the test dataset, Ĝij is the

actual value of the rating provided by user i for the item j in the test dataset, and

Gij is the predicted rating value by the algorithm. Next, we focus on some key

components of BPRS, study their impacts to the prediction accuracy, and show the

potential rooms for improvement in the proposed algorithm.

7.3.1.1 Handling the Uncertainty

In Section 7.2, to compute the message λ
(ν)
k→a(G

(ν)
za) from the factor node k to the

variable node a in (41), we distributed the uncertainty among the possible outcomes

(one to five) in proportion to the average rating of the active user z (for the items it

previously rated). Using this method, we observed that BPRS provides an RMSE of

0.9340 after running the algorithm for 10 iterations for each active user.

On the other hand, since the genres (i.e., types) of the movies are also available

in the MovieLens dataset, we modified the above method and distributed the uncer-

tainty in a more personalized way as follows. Given the active user is z, to compute

λ
(ν)
k→a(G

(ν)
za) from the factor node (user) k to the variable node (item) a, we first deter-

mine the genre (or genres if it has multiple genres) of item a3. We denote the genre

(or the set of genres) of item a as κa. Then, we observe the histogram of the ratings

provided by the active user z for the same genre (κa)
4 and distribute the uncertainty

3This information is available in the MovieLens dataset.
4We note that the rating histograms of users for the items in different genres can be computed

offline.

143

in proportion to this histogram. That is, if the active user previously provided high

ratings for the items in the same genre as κa, then we distribute most of the uncer-

tainty to the higher ratings in proportion to the rating histogram of the active user for

the items in the same genre as κa. Similarly, if the active user previously provided low

ratings for the items in the same genre as κa, we distribute most of the uncertainty

to the lower ratings. We note that if the active user z did not rate any items from

this particular genre (κa), we distribute the uncertainty in proportion to the average

rating of user z as we did previously. Using this more personalized technique, we

observed that BPRS provides an RMSE of 0.9208 (after running the algorithm for 10

iterations for each active user). Thus, for the remaining of this section, we utilized

this method to distribute the uncertainty and compute the message in (41).

7.3.1.2 Sampling the Graph

In Section 7.2, the factor graph g(U, I) is reduced to g(Û, I) by only keeping the users

that are connected to z via a path (regardless of the length of the path) in g(U, I) and

removing all the other user nodes from the graph together with their edges. Here, we

want to observe the impact of sampling g(U, I) in a different way by only keeping the

2-hop neighbors of the active user z and removing all the other user nodes from the

graph together with their edges. We note that the 2-hop neighbors of the active user

z are the users who previously rated at least one common item with the active user

z in the training dataset.

In Figs. 52 and 53, we show the RMSE and MAE provided by BPRS for these two

different scenarios (i.e., when all users connected to each active user via a path are

considered and when only the 2-hop neighbors of each active user are considered in

the algorithm) for the first 10 iterations of the algorithm, respectively. Further, the

RMSE and MAE values in Figs. 52 and 53 are listed in Tables 6 and 7. We observed

that BPRS provides an RMSE of 0.9208 when all users connected to each active user

144

via a path are considered, and an RMSE of 0.9198 when only the 2-hop neighbors

of each active user are considered. Thus, we conclude that keeping only the 2-hop

neighbors of each active user provides better performance in terms of both RMSE

and MAE. Further, keeping fewer number of users also reduces the computational

complexity as will be discussed later. We note that we also tried using at most 4-hop

(i.e., only including 2-hop and 4-hop neighbors) and at most 6-hop neighbors (i.e.,

only including 2-, 4-, and 6-hop neighbors) of each active user as well. However, the

results were almost the same as including all users connected to each active user via

a path, and hence, we do not show those results here.

1 2 3 4 5 6 7 8 9 10
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

iteration

R
M

S
E

All connected users
Only 2−hop neighbors

Figure 52: Performance of BPRS in RMSE vs. number of iterations when: (i) all
users connected to each active user via a path, and (ii) only the 2-hop neighbors of
each active user are considered.

145

1 2 3 4 5 6 7 8 9 10

0.74

0.75

0.76

0.77

0.78

0.79

iteration

M
A

E

All connected users
Only 2−hop neighbors

Figure 53: Performance of BPRS in MAE vs. number of iterations when: (i) all

users connected to each active user via a path, and (ii) only the 2-hop neighbors of

each active user are considered.

Table 6: Performance of BPRS in RMSE and MAE vs. number of iterations when
all users connected to each active user via a path are considered.

iteration 1 2 3 4 5 6 7 8 9 10

RMSE 0.9733 0.9614 0.9505 0.9433 0.9372 0.9327 0.9281 0.9253 0.9228 0.9208

MAE 0.7860 0.7601 0.7483 0.7433 0.7428 0.7427 0.7417 0.7404 0.7398 0.7388

Table 7: Performance of BPRS in RMSE and MAE vs. number of iterations when
only the 2-hop neighbors of each active user are considered.

iteration 1 2 3 4 5 6 7 8 9 10

RMSE 0.9747 0.9253 0.9244 0.9242 0.9226 0.9224 0.9220 0.9214 0.9200 0.9198

MAE 0.7825 0.7442 0.7436 0.7429 0.7423 0.7422 0.7413 0.7396 0.7385 0.7384

146

7.3.1.3 Biasing the Algorithm Toward the Active User

To give more weight to the ratings provided by the active user (for whom the algorithm

computes the missing ratings), we studied further biasing the algorithm toward the

active user by computing the user’s reliability in (40) differently. In other words,

instead of giving equal weight to each neighbor of user k while computing (40), we

give more weight to user k’s neighbors (in Nk) which are also neighbors of the active

user z. Thus, instead of computing the reliability as in (40), we compute the reliability

of user k as below:

R
(ν−1)
zk =1−

1

ρ[|Nk ∩Nz|(w − 1) + |Nk|]

[

∑

i∈(Nk∩Nz)

∑

x∈Υ

w|Tki − x|µ
(ν−1)
i→k (x) +

∑

j∈Nk\(Nk∩Nz)

∑

x∈Υ

|Tkj − x|µ
(ν−1)
j→k (x)

]

,

(44)

where w is the weight we give to the inconsistency of user k due to the items in

Nk ∩ Nz. We note that when w = 1, the weight given to each neighbor of user k

becomes equal and (44) simplifies to (40).

In Figs. 54 and 55, we showed the RMSE and MAE performances of BPRS for

different values of w, respectively. Again, we observed the performance when all

users connected to each active user via a path are considered and when only the 2-

hop neighbors of each active user are considered in the algorithm. Further, we listed

the RMSE and MAE values of Figs. 54 and 55 in Tables 8 and 9. We again observed

that when only the 2-hop neighbors of each active user are considered, BPRS provides

better prediction accuracy. We further observed that there is an optimal point for w

beyond which both RMSE and MAE increase. Further, when only the 2-hop neighbors

of each active user are considered, RMSE gets its minimum value when w = 5 while

MAE gets its minimum when w = 7.

147

1 2 3 4 5 6 7 8 9 10
0.915

0.916

0.917

0.918

0.919

0.92

0.921

0.922

0.923

inconsistency weight (w)

R
M

S
E

All connected users
Only 2−hop neighbors

Figure 54: Performance of BPRS in RMSE vs. the inconsistency weight (w) when:
(i) all users connected to each active user via a path, and (ii) only the 2-hop neighbors
of each active user are considered.

1 2 3 4 5 6 7 8 9 10
0.734

0.735

0.736

0.737

0.738

0.739

0.74

inconsistency weight (w)

M
A

E

All connected users
Only 2−hop neighbors

Figure 55: Performance of BPRS in MAE vs. the inconsistency weight (w) when: (i)

all users connected to each active user via a path, and (ii) only the 2-hop neighbors

of each active user are considered.

148

Table 8: Performance of BPRS in RMSE and MAE vs. the inconsistency weight (w)
when all users connected to each active user via a path are considered.

w 1 2 3 4 5 6 7 8 9 10

RMSE 0.9208 0.9206 0.9192 0.9180 0.9165 0.9184 0.9192 0.9198 0.9204 0.9214

MAE 0.7388 0.7383 0.7380 0.7372 0.7348 0.7355 0.7369 0.7373 0.7378 0.7384

Table 9: Performance of BPRS in RMSE and MAE vs. the inconsistency weight (w)
when only the 2-hop neighbors of each active user are considered.

w 1 2 3 4 5 6 7 8 9 10

RMSE 0.9198 0.9194 0.9172 0.9157 0.9151 0.9154 0.9162 0.9166 0.9170 0.9181

MAE 0.7384 0.7379 0.7376 0.7366 0.7345 0.7344 0.7343 0.7349 0.7356 0.7364

On the other hand, we observed that some users previously rated more common

items with the active user, and hence, their opinions should be more valuable com-

pared to the users who rated less (or no) common items with the active user. To

study this, we modified the BP message in (42) in order to give more importance to

the messages of the users who previously rated more common items with the active

user as in the following.

Given the active user is z, we first determine the number of common items rated

both by the active user z and the other users in the training dataset. Thus, we

construct the vector Θz = {θzi : i ∈ U \ {z}}, in which θzi denotes the number of

common items rated both by user i and the active user z. Then, instead of computing

as in (42), we compute the message from the variable node (item) a to the factor node

149

(user) k as below:

µ
(ν)
a→k(G

(ν)
za = ℓ) =



















































1
∑

h∈Υ

∏

i∈Ξ
(λ

(ν)
i→a(h))

ζzi
×
∏

i∈Ξ

(λ
(ν)
i→a(G

(ν)
za))ζzi if a 6∈ Nz

1 if a ∈ Nz and Tza = ℓ

0 if a ∈ Nz and Tza 6= ℓ,

(45)

where

ζzi = 1 + (Ψ− 1)×
θzi

max(Θz)
, (46)

and Ψ is the BP message weight used to give more weight to the messages of the

users who previously rated more common items with the active user. We note that

when Ψ = 1, the algorithm gives equal weight to the message of each user as we had

previously.

In Figs. 56 and 57, we illustrate the RMSE and MAE provided by BPRS for dif-

ferent values of Ψ. Further, we listed the actual RMSE and MAE values of Figs. 56

and 57 in Tables 10 and 11. Once again, we observed that when only the 2-hop neigh-

bors of each active user are considered, BPRS provides better prediction accuracy.

Similar to the inconsistency weight (w), we observed that Ψ also has an optimal value

(Ψ = 2) and after this value both RMSE and MAE start increasing.

150

1 2 3 4 5
0.906

0.908

0.91

0.912

0.914

0.916

0.918

0.92

BP message weight (Ψ)

R
M

S
E

All connected users
Only 2−hop neighbors

Figure 56: Performance of BPRS in RMSE vs. the BP message weight when: (i) all
users connected to each active user via a path, and (ii) only the 2-hop neighbors of
each active user are considered.

1 2 3 4 5
0.724

0.726

0.728

0.73

0.732

0.734

0.736

BP message weight (Ψ)

M
A

E

All connected users
Only 2−hop neighbors

Figure 57: Performance of BPRS in MAE vs. the BP message weight when: (i) all

users connected to each active user via a path, and (ii) only the 2-hop neighbors of

each active user are considered.

151

Table 10: Performance of BPRS in RMSE and MAE vs. the BP message weight
when all users connected to each active user via a path are considered.

BP message weight 1 2 3 4 5

RMSE 0.9165 0.9156 0.9156 0.9159 0.9179

MAE 0.7348 0.7325 0.7327 0.7332 0.7334

Table 11: Performance of BPRS in RMSE and MAE vs. the BP message weight
when only the 2-hop neighbors of each active users are considered.

BP message weight 1 2 3 4 5

RMSE 0.9151 0.9072 0.9083 0.9093 0.9095

MAE 0.7345 0.7256 0.7268 0.7284 0.7284

7.3.1.4 Comparison with Other Schemes

We evaluated BPRS against some popular recommendation algorithms over the same

dateset (100K MovieLens dataset). We report the results as 1. MovieAvg (which

computes the predicting ratings for the movies by averaging all the received rat-

ings for each movie) with an RMSE of 1.053, 2. Correlation-based neighborhood

model (CorNgbr), which is one of the most popular cluster filtering methods, with

an RMSE of 0.9406 [57], and 3. SVD latent factor model with 50 factors and RMSE

of 0.9046 [57]. We conclude that BPRS, with an RMSE of 0.9072 (as illustrated in

Table 11), is comparable to existing methods such as CorNgbr and SVD in terms of

rating prediction accuracy. On the other hand, BPRS generates recommendations in

linear complexity for each active user (as we will discuss in Section 7.3.3). Further,

it updates the recommendations for each active user instantaneously using the most

recent data (ratings) without solving the recommendation problem for all users (as

we discussed in Section 7.1). Therefore, we claim that it has a significant advantage

over the existing methods.

152

7.3.2 Precision and Recall

We also evaluated the usage precision accuracy of BPRS on the 100K MovieLens

dataset. As such, we measured the percentage of the favored items that were suggested

by the algorithm (i.e., recall) and the percentage of desirable recommendations (i.e.,

precision). For measuring precision and recall on the MovieLens dataset, we followed

the method in [31]. We randomly sub-sampled 14% of the ratings from the MovieLens

dataset to create a probe set5. Then, we let the training set M contain the remaining

ratings and the test set T contain all the 5-star ratings from the probe set (i.e., T

contains items relevant to the respective users). Next, for each test item i (rated by

the user j) in the test set T , we randomly selected 500 additional items unrated by

user j and we predicted the ratings for the test item i and for the additional 500

items via BPRS using the ratings in the training set M . To measure the precision

and recall, we formed a top-N recommendation list by picking the N top ranked items

(in terms of the value of their predicted ratings) as a result of BPRS. Then, if the

test item is within the top-N recommendation list, we said that “we have a hit” (i.e.,

the test item i is recommended to the user), otherwise, “we have a miss”. Finally, we

computed the precision and recall introduced by BPRS by using the following two

metrics:

recall(N) =
number of hits

|T |
(47a)

precision(N) =
number of hits

N.|T |
=

recall(N)

N
, (47b)

where |T | is cardinality of set T . We illustrate recall versus N and precision versus

recall provided by BPRS in Figs. 58 and 59, respectively when the inconsistency

weight w = 5, BP message weight Ψ = 2, and only 2-hop neighbors of each active

5In [31], 1.4% of the rating are sub-sampled from the 1M MovieLens dataset. Therefore, we
sub-sampled 14% of the ratings from the 100K MovieLens dataset to have approximately the same
number of test items.

153

user are considered. As expected, as N (i.e., the number of items recommended

by BPRS) increases, recall increases, however, precision decreases with increasing

N. Further, we observed that the resulting precision and recall values by BPRS are

comparable to other popular and accurate methods such as CorNgbr and SVD (refer

to [31] for the precision and recall values of the other schemes).

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N

re
ca

ll(
N

)

Figure 58: Recall.

154

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

recall

pr
ec

is
io

n

Figure 59: Precision vs Recall.

7.3.3 Computational Complexity

Assuming u users and s items in the system, we obtained the computational com-

plexity of BPRS (in the number of multiplications) as max(O(cs),O(cu)) per each

active user, where c is the average number of nonzero elements in each row of the

user-item matrix6. We note that due to the sparseness of the user-item matrix, the

coefficient c is a small number. Further, as we discussed before, BPRS converges, on

the average, in 10 iterations. Hence, we did not include the number of iterations in

the complexity measure as it only introduces a small constant in front of the total

complexity. This result indicates that BPRS can compute the recommendations for

each active user very efficiently using the most recent data (ratings). On the other

hand, SVD based recommender systems (whose prediction accuracy is slightly better

than BPRS as discussed in Section 7.3.1.4) require solving the recommendation prob-

lem for all users even if they wish to update the recommendations for only a single

6We measure the complexity of BPRS per user as it can predict the ratings for each user separately
using the most recent data (ratings); in contrast to other schemes.

155

active user using the most recent data. Further, the computational complexity of

SVD based recommender systems is O(usk), where k is the number of latent factors

used in the algorithm. Therefore, we claim that the BP-based approach toward the

recommendation problem is very promising and can result in a new class of accurate

and scalable recommender systems.

7.4 Summary

We introduced the “Belief Propagation-Based Iterative Recommender System” (BPRS).

BPRS formulates the recommendation problem as making statistical inference about

the ratings of users for unseen items based on observations. BPRS represents the rec-

ommendation problem on a factor graph and utilizes the belief propagation algorithm

to efficiently estimate the marginal probability distributions of the variables repre-

senting the ratings of the items to be predicted via message passing between the items

and the users. BPRS provides a complexity that remains linear per single active user,

making it very attractive for large-scale systems. Further, it can update the recom-

mendations for each active user instantaneously using the most recent data (ratings)

and without solving the recommendation problem for all users. While providing these

significant scalability advantages over the existing methods, we showed (via computer

simulations using the 100K MovieLens dataset) that BPRS also provides compara-

ble usage prediction and rating prediction accuracy to other popular methods such as

Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition

(SVD).

156

CHAPTER VIII

CONCLUSION

8.1 Contributions

In this dissertation, we explored and investigated new theoretical and practical chal-

lenges in the application of iterative algorithms and belief propagation in trust and

reputation management and recommender systems.

First we proposed an algebraic iterative algorithm (referred as ITRM) for trust

and reputation management in centralized environments. In a typical online transac-

tion, the recipient of the service often has insufficient information about the service

quality of the service provider before the transaction. Hence, the service recipient

should take a prior risk before receiving the actual service. This risk puts the recipi-

ent into an unprotected position since he has no opportunity to try the service before

he receives it. This problem gives rise to the use of reputation management systems

in which reputations are determined by rules that evaluate the evidence generated

by the past behavior of an entity within a protocol. Hence, after each transaction,

a party who receives the service (referred to as the rater) provides (to the central

authority) its report about the quality of the service provided for that transaction.

The central authority collects the reports and updates the reputations of the service

providers. Therefore, trust and reputation management systems are expected to lead

various applications from social networks to ad-hoc networks in the near future. On

the other hand, reputation management systems are subject to various manipulations,

launched by a malicious participant or a group of colluding malicious participants.

The proposed ITRM is a robust mechanism to evaluate the reputations of the service

providers as well as the trustworthiness values of raters in their ratings. Comparison

157

of ITRM with some well-known reputation management techniques (e.g., Averaging

Scheme, Bayesian Approach and Cluster Filtering) indicates the superiority of the

proposed scheme both in terms of robustness against attacks and efficiency. Further-

more, we showed that the computational complexity of the proposed ITRM is far less

than the Cluster Filtering; which has the closest performance (to ITRM) in terms of

resiliency to attacks. Specifically, the complexity of ITRM is linear in the number of

users, while that of the Cluster Filtering is quadratic.

Then, we explored the application of ITRM for Delay Tolerant Networks (DTNs).

DTNs are characterized by intermittent contacts between nodes, leading to space-

time evolution of multihop paths for transmitting packets to the destination. Due

to these special characteristics posed by DTNs, existing reputation systems are in-

efficient or impractical in such networks. On the other hand, adversary may mount

several threats against DTNs to reduce the performance of the network. The most

serious attacks are due to the Byzantine (insider) adversary in which one or more le-

gitimate nodes have been compromised and fully controlled by the adversary. Among

these attacks, packet drop is harder to contain because nodes’ cooperation is funda-

mental for the operation of DTNs. Therefore, in this work, we considered the packet

drop attack which gives serious damages to the network in terms of data availability,

latency, and throughput. Thus, we introduced a distributed malicious node detection

mechanism for DTNs using ITRM. The proposed work enables every node to evaluate

other nodes based on their past behavior, without requiring a central authority. We

showed that the resulting scheme effectively provides high data availability and low

latency in the presence of Byzantine attackers. We also showed that the proposed

iterative mechanism is far more effective than Bayesian framework and EigenTrust in

computing the reputation values in a DTN environment.

Next, we extended ITRM and introduced the first application of the Belief Prop-

agation (BP) algorithm, a fully probabilistic and iterative algorithm, for trust and

158

reputation management (referred as BP-ITRM) in a centralized environment. In

this work, we introduced, for the first time, a formulation in which the reputation

management problem is described as an inference problem on a factor graph. This

representation requires computing marginal likelihood distributions from complicated

global functions of many variables. To solve this problem whose complexity grows

exponentially, we resorted to BP whose computational efficiency (i.e., linear in the

number of users) is driven by exploring the way in which the global functions fac-

tors into a product of simpler local functions. In BP-ITRM, the sellers (i.e., service

providers) and buyers (i.e., raters) are represented via a factor graph on which they

are arranged as two sets of variable and factor nodes that are connected via some

edges. The reputation values of service providers are computed by message pass-

ing between nodes in the graph. We showed that the proposed iterative scheme is

reliable (in filtering out malicious/unreliable ratings) while being computationally ef-

ficient (i.e., linear in the number of variables). Thus, it can be used as an effective and

scalable reputation management system in many applications such as online services.

As expected, trust and reputation management is more complicated in distributed

environments than in centralized solutions. Hence, next, we extended BP-ITRM

and introduced the first application of BP algorithm in the design and evaluation

of distributed trust and reputation management systems for P2P networks (referred

as BP-P2P). In BP-P2P, the reputation and trustworthiness value of each peer is

computed by distributed message passing among the peers on a factor graph. We

compared BP-P2P with some well-known P2P reputation management schemes (such

as the EigenTrust algorithm and the Bayesian Approach) and showed the superiority

of BP-P2P in terms of its robustness against malicious behavior. Further, we showed

that the computational complexity of BP-P2P grows only linearly with the number of

peers in the network while its communication overhead is lower that the well-known

EigenTrust algorithm.

159

Relying on the similarities between the reputation and recommender systems and

successful application of iterative algorithms on reputation systems, finally, we in-

troduced the application of BP algorithm to arrive at scalable, accurate and robust

recommender systems. Recommender systems form a specific type of information fil-

tering technique that aim to support users in their decision-making while interacting

with large information spaces. There are two different sets in a recommender system:

i) the set of users, and ii) the set of items (products). Users provide feedbacks, in

the form of ratings, about the items for which they have an opinion. The main goal

of a recommender system is to provide accurate recommendations for every user by

predicting the ratings of the user for the items that he/she did not rate before. Our

proposed mechanism (referred as BPRS) represents the recommendation problem on

a factor graph and utilizes the BP algorithm to efficiently estimate the marginal

probability distributions of the variables representing the ratings of the items to be

predicted. We showed that BPRS computes the recommendations for each user with

linear complexity and without requiring a training period. We further showed that

BPRS is comparable to the state of art methods such as Correlation-based neighbor-

hood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating

and precision accuracy.

8.2 Suggestions for Future Research

This dissertation opened up many interesting theoretical and practical research pos-

sibilities in trust and reputation management and recommender systems, and other

related areas in ad-hoc networks and P2P networks. In the following, some of the

interesting and potentially rich open directions for future research are listed.

• Scalability, complexity and convergence analysis of BP-ITRM and BPRS.

• Study of optimal attack strategies for BP-ITRM by the malicious users using a

game theoretical approach.

160

• Evaluation of BP-ITRM and BPRS via real-life datasets and user studies.

• New applications of belief propagation-based trust and reputation management

algorithm.

• New formulations of the recommender system problem on a factor graph, a

pairwise Markov random field or a Bayesian network.

• Study of robust and manipulation resilient recommender systems.

• Utilizing BPRS to integrate data from different content domains.

• Analysis and impact of noisy belief propagation messages in a distributed envi-

ronment.

• Study of various attacks on BP-P2P and prevention against malicious score

managers.

161

REFERENCES

[1] “http://blog.auctionbytes.com/cgi-bin/blog/blog.pl?/comments/2009/11/
1258208701.html.” Oct. 2011.

[2] “http://pages.ebay.com/services/forum/feedback.html.” Oct. 2011.

[3] “http://www.allexperts.com.” Oct. 2011.

[4] “http://www.amazon.com.” Oct. 2011.

[5] “http://www.ebay.com.” Oct. 2011.

[6] “http://www.epinions.com.” Oct. 2011.

[7] “http://www.netflixprize.com.” Oct. 2011.

[8] “http://www.pewinternet.org/media-mentions/2004/americans-using-online-
reputation-systems.aspx.” Oct. 2011.

[9] Aberer, K. and Despotovic, Z., “Managing trust in a peer-2-peer informa-
tion system,” CIKM ’01: Proceedings of the 10th International Conference on
Information and knowledge management, pp. 310–317, 2001.

[10] Adomavicius, G. and Tuzhilin, A., “Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible extensions,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17, pp. 734–749,
June 2005.

[11] Ayday, E., Lee, H., and Fekri, F., “An iterative algorithm for trust and rep-
utation management,” ISIT ’09: Proceedings of IEEE International Symposium
on Information Theory, 2009.

[12] Ayday, E., Lee, H., and Fekri, F., “Trust management and adversary de-
tection in delay tolerant networks,” In Proceedings of IEEE Military Commu-
nications Conference (MILCOM), 2010.

[13] Ayday, E. and Fekri, F., “Using node accountability in credential based rout-
ing for mobile ad-hoc networks,” Proceedings of the Fifth IEEE International
Conference on Mobile Ad-hoc and Sensor Systems, 2008.

[14] Ayday, E. and Fekri, F., “A belief propagation based recommender system
for online services,” Proceedings of the fourth ACM conference on Recommender
systems, pp. 217–220, 2010.

162

[15] Ayday, E. and Fekri, F., “A protocol for data availability in mobile ad-hoc
networks in the presence of insider attacks,” Elsevier Ad Hoc Networks, vol. 8,
pp. 181–192, Mar. 2010.

[16] Ayday, E. and Fekri, F., “BP-ITRM: belief propagation for iterative trust
and reputation management,” ISIT ’11: Proceedings of IEEE International
Symposium on Information Theory, 2011.

[17] Balabanovic, M. and Shoham, Y., “Fab: Content-based, collaborative rec-
ommendation,” Communications of the ACM, vol. 40, pp. 66–72, 1997.

[18] Bell, R. M. and Koren, Y., “Lessons from the netflix prize challenge,” ACM
SIGKDD Explorations Newsletter, vol. 9, pp. 75–79, December 2007.

[19] Blake, I., Seroussi, G., and Smart, N., “Advances in elliptic curve cryp-
tography,” London Mathematical Society Lecture Note Series, 2005.

[20] Bloom, B. H., “Space/time trade-offs in hash coding with allowable errors,”
ACM Communications, vol. 13, pp. 422–426, July 1970.

[21] Breese, J. S., Heckerman, D., and Kadie, C., “Empirical analysis of
predictive algorithms for collaborative filtering,” Proceedings of the 14th Con-
ference on Uncertainty in Artificial Intelligence, pp. 43–52, 1998.

[22] Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y.-C., and Jetcheva, J.,
“A performance comparison of multi-hop wireless ad hoc network routing pro-
tocols,” MobiCom ’98: Proceedings of the 4th Annual ACM/IEEE International
Conference on Mobile Computing and Networking, pp. 85–97, 1998.

[23] Buchegger, S. and Boudec, J., “Performance analysis of CONFIDANT
protocol (coorperation of nodes: Fairness in dynamic ad-hoc networks),” Pro-
ceedings of IEEE/ACM Symposium on Mobile Ad Hoc Networking and Com-
puting (MobiHOC), June 2002.

[24] Buchegger, S. and Boudec, J., “A robust reputation system for p2p and
mobile ad-hoc networks,” Proceedings of the Second Workshop on the Eco-
nomics of Peer-to-Peer Systems, 2004.

[25] Buchegger, S. and J.Boudec, “Coping with false accusations in misbehav-
ior reputation systems for mobile ad-hoc networks,” EPFL-DI-ICA Technical
Report IC/2003/31, 2003.

[26] Burgess, J., Bissias, G., Corner, M., and Levine, B., “Surviving attacks
on disruption-tolerant networks without authentication,” Proceedings of the 8th
ACM International Symposium on Mobile Ad Hoc Networking and Computing,
pp. 61–70, 2007.

[27] Burke, R., “Hybrid recommender systems: Survey and experiments,” User
Modeling and User-Adapted Interaction, vol. 12, pp. 331–370, November 2002.

163

[28] Canny, J., “Collaborative filtering with privacy via factor analysis,” In Pro-
ceedings of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 238–245, 2002.

[29] Cheng, Z. and Hurley, N., “Effective diverse and obfuscated attacks on
model-based recommender systems,” In Proceedings of the third ACM confer-
ence on Recommender systems, pp. 141–148, 2009.

[30] Cornelli, F., Damiani, E., di Vimercati, S. D. C., Paraboschi, S.,
and Samarati, P., “Choosing reputable servents in a P2P network,” WWW
’02: Proceedings of the 11th International Conference on World Wide Web,
pp. 376–386, 2002.

[31] Cremonesi, P., Koren, Y., and Turrin, R., “Performance of recommender
algorithms on top-n recommendation tasks,” In Proceedings of the fourth ACM
conference on Recommender systems, pp. 39–46, 2010.

[32] Cui, S., Duan, P., and Chan, C., “An efficient identity-based signature
scheme with batch verifications,” Proceedings of the 1st International Confer-
ence on Scalable Information Systems (InfoScale ’06), p. 22, 2006.

[33] Damiani, E., di Vimercati, D. C., Paraboschi, S., Samarati, P., and
Violante, F., “A reputation-based approach for choosing reliable resources
in peer-to-peer networks,” CCS ’02: Proceedings of the 9th ACM Conference
on Computer and Communications Security, pp. 207–216, 2002.

[34] de Campos, L. M., Fernández-Luna, J. M., and Huete, J. F., “A col-
laborative recommender system based on probabilistic inference from fuzzy ob-
servations,” Fuzzy Sets Syst., vol. 159, pp. 1554–1576, June 2008.

[35] Dellarocas, C., “Immunizing online reputation reporting systems against
unfair ratings and discriminatory behavior,” EC ’00: Proceedings of the 2nd
ACM conference on Electronic commerce, pp. 150–157, 2000.

[36] Deshpande, M. and Karypis, G., “Item-based top-N recommendation algo-
rithms,” ACM Trans. Inf. Syst., vol. 22, pp. 143–177, January 2004.

[37] Dewan, P., Dasgupta, P., and Bhattacharya, A., “On using reputations
in ad-hoc networks to counter malicious nodes,” Proceedings of the Tenth Inter-
national Conference on Parallel and Distributed Systems (ICPADS04), 2004.

[38] Fall, K., “A delay-tolerant network architecture for challenged internets,”
ACM SIGCOMM, pp. 27–34, 2003.

[39] Ganeriwal, S. and Srivastava, M., “Reputation-based framework for high
integrity sensor networks,” Proc. 2nd ACM Workshop on Security of Ad Hoc
and Sensor Networks, pp. 66–77, 2004.

164

[40] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D., “Using col-
laborative filtering to weave an information tapestry,” Communications of the
ACM, vol. 35, pp. 61–70, December 1992.

[41] Goldberg, K., Roeder, T., Gupta, D., and Perkins, C., “Eigentaste: A
constant time collaborative filtering algorithm,” Information Retrieval, vol. 4,
no. 2, pp. 133–151, 2001.

[42] Groenevelt, R., Nain, P., and Koole, G., “The message delay in mobile
ad hoc networks,” Performance Evaluation, vol. 62, no. 1-4, pp. 210–228, 2005.

[43] Gupta, M., Judge, P., and Ammar, M., “A reputation system for peer-to-
peer networks,” NOSSDAV ’03: Proceedings of the 13th International Work-
shop on Network and Operating Systems Support for Digital Audio and Video,
pp. 144–152, 2003.

[44] Hao, F., Kodialam, M., and Lakshman, T. V., “Building high accuracy
Bloom filters using partitioned hashing,” Proceedings of ACM International
Conference on Measurement and Modeling of Computer Systems, pp. 277–288,
2007.

[45] Herlocker, J., Konstan, J. A., and Riedl, J., “An empirical analysis of
design choices in neighborhood-based collaborative filtering algorithms,” Infor-
mation Retrieval, vol. 5, no. 4, pp. 287–310, 2002.

[46] Herlocker, J. L. and Konstan, J. A., “Content-independent task-focused
recommendation,” IEEE Internet Computing, vol. 5, pp. 40–47, November 2001.

[47] Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J., “An
algorithmic framework for performing collaborative filtering,” In Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 230–237, 1999.

[48] Herlocker, J. L., Konstan, J. A., and Riedl, J., “Explaining collabo-
rative filtering recommendations,” In Proceedings of the ACM conference on
Computer supported cooperative work, pp. 241–250, 2000.

[49] Hofmann, T., “Latent class models for collaborative filtering,” In Proceedings
of the 16th International Joint Conference on Artificial Intelligence, pp. 688–
693, 1999.

[50] Hong, S., Rhee, I., Kim, S. J., Lee, K., and Chong, S., “Routing per-
formance analysis of human-driven delay tolerant networks using the truncated
levy walk model,” Proceeding of the 1st ACM SIGMOBILE workshop on Mo-
bility models, pp. 25–32, 2008.

[51] Jin, R., Si, L., and Zhai, C., “A study of mixture models for collaborative
filtering,” Inf. Retr., vol. 9, pp. 357–382, June 2006.

165

[52] Jøsang, A., Ismail, R., and Boyd, C., “A survey of trust and reputation
systems for online service provision,” Decision Support Systems, vol. 43, no. 2,
pp. 618–644, 2007.

[53] Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H., “The eigen-
trust algorithm for reputation management in P2P networks,” WWW ’03: Pro-
ceedings of the 12th International Conference on World Wide Web, pp. 640–651,
2003.

[54] Karypis, G., “Evaluation of item-based top-N recommendation algorithms,”
In Proceedings of the tenth international conference on Information and knowl-
edge management, pp. 247–254, 2001.

[55] Kate, A., Zaverucha, G., and Hengartner, U., “Anonymity and security
in delay tolerant networks,” Proceedings of the 3rd International Conference on
Security and Privacy in Communication Networks (SecureComm07), 2007.

[56] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon,

L. R., Riedl, J., and Volume, H., “Grouplens: Applying collaborative fil-
tering to usenet news,” Communications of the ACM, vol. 40, pp. 77–87, 1997.

[57] Koren, Y., “Factorization meets the neighborhood: a multifaceted collabo-
rative filtering model,” In Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 426–434, 2008.

[58] Koren, Y., Bell, R., and Volinsky, C., “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, pp. 30–37, August 2009.

[59] Kschischang, F., Frey, B., and Loeliger, H. A., “Factor graphs and the
sum-product algorithm,” IEEE Transactions on Information Theory, vol. 47,
pp. 498–519, Feb. 2001.

[60] Kschischang, F. R., Frey, B. J., and andrea Loeliger, H., “Factor
graphs and the sum-product algorithm,” IEEE Transactions on Information
Theory, vol. 47, pp. 498–519, 1998.

[61] Liu, K., Deng, J., Varshney, P. K., and Balakrishnan, K., “An
acknowledgment-based approach for the detection of routing misbehavior in
MANETs,” IEEE Transactions on Mobile Computing, vol. 6, pp. 536–550, May
2007.

[62] Liu, N. N. and Yang, Q., “Eigenrank: a ranking-oriented approach to collab-
orative filtering,” In Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 83–90,
2008.

[63] Luby, M., “LT codes,” FOCS ’02: Proceedings of the 43rd Symposium on
Foundations of Computer Science, pp. 271–280, 2002.

166

[64] Macnaughton-Smith, P., Williams, W. T., Dale, M. B., and Mock-

ett, L. G., “Dissimilarity analysis: A new technique of hierarchical sub-
division,” Natue(202), pp. 1034–1035, 1964.

[65] Marti, S., Giuli, T., Lai, K., and Baker, M., “Mitigating routing misbe-
havior in mobile ad-hoc networks,” Proceedings of ACM International Confer-
ence on International Conference on Mobile Computing and Networking (Mo-
biCom00), pp. 255–265, 2000.

[66] Mceliece, R. J., Mackay, D. J. C., and Cheng, J.-F., “Turbo decoding
as an instance of Pearl’s “belief propagation” algorithm,” IEEE Journal on
Selected Areas in Communications, vol. 16, pp. 140–152, 1998.

[67] Mobasher, B., Dai, H., Luo, T., and Nakagawa, M., “Discovery and
evaluation of aggregate usage profiles for web personalization,” Data Mining
and Knowledge Discovery, vol. 6, no. 1, pp. 61–82, 2002.

[68] Page, L., Brin, S., Motwani, R., and Winograd, T., “The pagerank ci-
tation ranking: Bringing order to the web,” tech. rep., Stanford Digital Library
Technologies Project, 1998.

[69] Paul, K. and Westhoff, D., “Context aware detection of selfish nodes in
dsr based ad-hoc networks,” Proceedings of IEEE Global Telecommunications
Conference (GLOBECOM02), pp. 178–182, 2002.

[70] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-
ble Inference. Morgan Kaufmann Publishers, Inc., 1988.

[71] Pennock, D., Horvitz, E., Lawrence, S., and Giles, C. L., “Collabo-
rative filtering by personality diagnosis: A hybrid memory- and model-based
approach,” In Proceedings of the Sixteenth Conference on Uncertainty in Arti-
ficial Intelligence, pp. 473–480, 2000.

[72] Petz, A., Enderle, J., and Julien, C., “A framework for evaluating DTN
mobility models,” Proceedings of the 2nd International Conference on Simula-
tion Tools and Techniques, pp. 94:1–94:8, 2009.

[73] Pirzada, A. A., McDonald, C., and Datta, A., “Performance compar-
ison of trust-based reactive routing protocols,” IEEE Transactions on Mobile
Computing, vol. 5, pp. 695–710, June 2006.

[74] Pishro-Nik, H. and Fekri, F., “On decoding of low-density parity-check
codes on the binary erasure channel,” IEEE Transactions on Information The-
ory, vol. 50, pp. 439–454, March 2004.

[75] Pishro-Nik, H. and Fekri, F., “Results on punctured low-density parity-
check codes and improved iterative decoding techniques,” IEEE Transactions
on Information Theory, vol. 53, pp. 599–614, Feb. 2007.

167

[76] Potlapally, N., Ravi, S., Raghunathan, A., and Jha, N., “Analyz-
ing the energy consumption of security protocols,” Proceedings of International
Symposium of Low Power Electronics and Design, Aug. 2003.

[77] Rashid, A. M., Lam, S. K., Karypis, G., and Riedl, J., “ClustKNN: a
highly scalable hybrid model-& memory-based CF algorithm,” In Proceedings
of WebKDD-06, KDD Workshop on Web Mining and Web Usage Analysis,
at 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
2006.

[78] Resnick, P. and Zeckhauser, R., “Trust among strangers in internet trans-
actions: Empirical analysis of ebay’s reputation system,” Workshop on Empri-
cal Studies of Electronic Commerce, 2002.

[79] Resnick, P., Zeckhauser, R., Friedman, E., and Kuwabara, K., “Rep-
utation systems: facilitating trust in internet interactions,” Communications of
the ACM, vol. 43, no. 12, pp. 45–48, 2000.

[80] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl,

J., “GroupLens: an open architecture for collaborative filtering of netnews,”
CSCW ’94: Proceedings of the 1994 ACM conference on Computer supported
cooperative work, pp. 175–186, 1994.

[81] Resnick, P. and Varian, H. R., “Recommender systems,” Communications
of the ACM, vol. 40, pp. 56–58, March 1997.

[82] Rhee, I., Shin, M., Hong, S., Lee, K., and Chong, S., “On the levy walk
nature of human mobility,” INFOCOM ’08: Processings of the IEEE Interna-
tional Conference on Computer Communications, 2008.

[83] Richardson, T. J. andUrbanke, R. L., “The capacity of low-density parity
check codes under message-passing decoding,” IEEE Transactions on Informa-
tion Theory, vol. 47, pp. 599–618, Feb. 2001.

[84] Sarwar, B., Karypis, G., Konstan, J., and Reidl, J., “Item-based col-
laborative filtering recommendation algorithms,” Proceedings of the 10th inter-
national conference on World Wide Web, pp. 285–295, 2001.

[85] Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J. T., “Ap-
plication of dimensionality reduction in recommender system - a case study,”
ACM WebKDD Workshop, 2000.

[86] Schafer, J. B., Konstan, J., and Riedi, J., “Recommender systems in e-
commerce,” In Proceedings of the 1st ACM conference on Electronic commerce,
pp. 158–166, 1999.

[87] Schafer, J. B., Konstan, J. A., and Riedl, J., “E-commerce recommen-
dation applications,” Data Min. Knowl. Discov., vol. 5, pp. 115–153, January
2001.

168

[88] Seth, A. and Keshav, S., “Practical security for disconnected nodes,” Pro-
ceedings of the 1st IEEE ICNP Workshop on Secure Network Protocols (NPSec),
pp. 31–36, 2005.

[89] Shafer, G., A Mathematical Theory of Evidence. Princeton University Press,
Princeton, N.J., 1976.

[90] Shafer, G., “The Dempster-Shafer theory,” Encyclopedia of Artificial Intelli-
gence, 1992.

[91] Shokrollahi, A., “Raptor codes,” IEEE Transactions on Information The-
ory, vol. 52, pp. 2551–2567, June 2006.

[92] Slanina, F. and Zhang, Y. C., “Referee networks and their spectral prop-
erties,” Acta Physica Polonica B, vol. 36, pp. 2797–+, Sept. 2005.

[93] Srebro, N., Rennie, J., and Jaakkola, T., “Maximum margin matrix
factorizations,” In Proceedings of Advances in Neural Information Processing
Systems (NIPS), 2005.

[94] Stern, D. H., Herbrich, R., and Graepel, T., “Matchbox: large scale on-
line bayesian recommendations,” In Proceedings of the 18th international con-
ference on World wide web, pp. 111–120, 2009.

[95] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakr-

ishnan, H., “Chord: A scalable peer-to-peer lookup service for internet ap-
plications,” SIGCOMM ’01: Proceedings of the 2001 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communica-
tions, pp. 149–160, 2001.

[96] Sun, Y., Yu, W., Han, Z., and Liu, K., “Information theoretic framework of
trust modeling and evaluation for ad hoc networks,” IEEE Journal on Selected
Areas in Communications, vol. 24, pp. 305–317, Feb. 2006.

[97] Van Roy, B. and Yan, X., “Manipulation-resistant collaborative filtering
systems,” In Proceedings of the third ACM conference on Recommender systems,
pp. 165–172, 2009.

[98] Vellambi, B. N. and Fekri, F., “Results on the improved decoding algo-
rithm for low-density parity-check codes over the binary erasure channel,” IEEE
Transactions on Information Theory, vol. 53, pp. 1510–1520, April 2007.

[99] Vellambi, B. N., Subramanian, R., Fekri, F., andAmmar, M., “Reliable
and efficient message delivery in delay tolerant networks using rateless codes,”
MobiOpp ’07: Proceedings of the 1st international MobiSys workshop on Mobile
opportunistic networking, pp. 91–98, 2007.

169

[100] Wang, J., de Vries, A. P., and Reinders, M. J. T., “Unifying user-based
and item-based collaborative filtering approaches by similarity fusion,” In Pro-
ceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 501–508, 2006.

[101] Wang, Y., Jain, S., Martonosi, M., and Fall, K., “Erasure-coding based
routing for opportunistic networks,” WDTN ’05: Proceeding of the 2005 ACM
SIGCOMM workshop on Delay-tolerant networking, pp. 229–236, 2005.

[102] Weimer, M., Karatzoglou, A., and Smola, A., “Adaptive collaborative
filtering,” In Proceedings of the 2008 ACM conference on Recommender sys-
tems, pp. 275–282, 2008.

[103] Whitby, A., Josang, A., and Indulska, J., “Filtering out unfair ratings in
bayesian reputation systems,” AAMAS ’04: Proceedings of the 7th International
Workshop on Trust in Agent Societies, 2004.

[104] Wiberg, N., “Codes and decoding on general graphs,” PhD thesis, Linkping
University, Sweden, 1996.

[105] Yang, Y., Feng, Q., Sun, Y. L., and Dai, Y., “RepTrap: a novel attack on
feedback-based reputation systems,” SecureComm ’08: Proceedings of the 4th
International Conference on Security and Privacy in Communication Networks,
pp. 1–11, 2008.

[106] Yedidia, J. S., Freeman, W. T., and Weiss, Y., “Constructing free energy
approximations and generalized belief propagation algorithms,” IEEE Transac-
tions on Information Theory, vol. 51, pp. 2282–2312, 2005.

[107] Yu, W. and Liu, K. R., “Game theoretic analysis of cooperation stimulation
and security in autonomous mobile ad-hoc networks,” IEEE Transactions on
Mobile Computing, vol. 6, pp. 507–521, May 2007.

[108] Zacharia, G., Moukas, A., and Maes, P., “Collaborative reputation mech-
anisms in electronic marketplaces,” HICSS ’99: Proceedings of the Thirty-
second Annual Hawaii International Conference on System Sciences-Volume
8, 1999.

[109] Zhang, C., Lu, R., Lin, X., Ho, P.-H., and Shen, X., “An efficient iden-
titybased batch verification scheme for vehicular sensor networks,” INFOCOM
’08: Processings of the IEEE International Conference on Computer Commu-
nications, 2008.

[110] Zhang, J. and M.Fossorier, “Shuffled belief propagation decoding,” Pro-
ceedings of the 36th Asilomar Conference on Signals, Systems and Computers,
Nov. 2002.

170

VITA

Erman Ayday received his B.S. degree in Electrical and Electronics Engineering from

the Middle East Technical University, Ankara, Turkey, in 2005. He received his

M.S. degree from the School of Electrical and Computer Engineering (ECE), Georgia

Institute of Technology, Atlanta, GA, in 2007. He is currently a Research Assistant in

the Information Processing, Communications and Security Research Laboratory and

pursuing his Ph.D. degree at the School of ECE, Georgia Institute of Technology,

Atlanta, GA. His current research interests include wireless network security, game

theory for wireless networks, trust and reputation management, and recommender

systems. Erman Ayday is the recipient of 2010 Outstanding Research Award from

the Center of Signal and Image Processing (CSIP) at Georgia Tech and 2011 ECE

Graduate Research Assistant (GRA) Excellence Award from Georgia Tech.

171

