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ABSTRACT

Angin, Pelin Ph.D., Purdue University, December 2013. Autonomous Agents-based
Mobile-Cloud Computing. Major Professor: Bharat K. Bhargava.

The proliferation of cloud computing resources in recent years o↵ers a way for

mobile devices with limited resources to achieve computationally intensive tasks in

real-time. The mobile-cloud computing paradigm, which involves collaboration of

mobile and cloud resources in such tasks, is expected to become increasingly popular

in mobile application development. While mobile-cloud computing is promising to

overcome the computational limitations of mobile devices, the lack of frameworks

compatible with standard technologies makes it harder to adopt dynamic mobile-

cloud computing at large. In this dissertation, we present a dynamic code o✏oading

framework for mobile-cloud computing, based on autonomous agents. Our approach

does not impose any requirements on the cloud platform other than providing isolated

execution containers, and it alleviates the management burden of o✏oaded code by

the mobile platform using autonomous agent-based application partitions. We also

investigate the e↵ects of di↵erent runtime environment conditions on the performance

of mobile-cloud computing, and present a simple and low-overhead dynamic makespan

estimation model for computation o✏oaded to the cloud that can be integrated into

mobile agents to enhance them with self-performance evaluation capability.

O✏oading mobile computation to the cloud entails security risks associated with

handing sensitive data and code over to an untrusted platform. Security frameworks

for mobile-cloud computing are not very numerous and most of them focus only

on privacy, and ignore the very important aspect of integrity. Perfect security is

hard to achieve in real-time mobile-cloud computing due to the extra computational

overhead introduced by complex security mechanisms. In this dissertation, we propose
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a dynamic tamper-resistance approach for protecting mobile computation o✏oaded to

the cloud, by augmenting mobile agents with self-protection capability. The tamper-

resistance framework achieves very low execution time overhead and is capable of

detecting both load-time and runtime modifications to agent code.

Lastly, we propose novel applications of mobile-cloud computing for helping context-

aware navigation by visually-impaired people. Specifically, we present the results of

a feasibility study for using real-time mobile-cloud computing for the task of guiding

blind users at pedestrian crossings with no accessible pedestrian signal.
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1. INTRODUCTION

1.1 Motivation

Mobile computing devices have become increasingly popular during the past decade,

replacing desktops and mainframes for daily computing needs. Many of these de-

vices have limited processing power, storage and battery compared to their wall-

socket-powered, tethered counterparts, which limits their capabilities for real-time,

computationally-intensive applications such as image processing. Computation of-

floading to more powerful servers is the solution to provide these devices with the

resources they need to achieve complex tasks. Cloud computing, emerging as a new

computing paradigm in the recent years, o↵ers computing resources to users on de-

mand, obviating the need to actually own those resources. With increasing popu-

larity and availability, cloud computing has the potential to fill the gap between the

resource needs of mobile devices and availability of those resources, through the con-

cept of mobile-cloud computing (MCC), which partitions mobile applications between

mobile and cloud platforms for execution.

Most mobile applications today involve an inflexible split of computation between

the mobile and cloud platforms, following the client-server paradigm with hardcoded

interactions with the server. This inflexibility prevents applications from adapting

to conditions such as high network latency, which could result in poor performance

when cloud resources are preferred over computation on the device. For applications

requiring large data transfers to the remote server, performing the computation on

the device can have better performance than relying on processing by the remote

server when the device’s Internet connection is poor.

Achieving high performance with mobile-cloud computing is contingent upon an

optimal partitioning of the mobile application components between the mobile and
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cloud platforms based on runtime conditions, as well as the dynamic monitoring of

the performance of application components during their execution. Recent work on

this problem has resulted in frameworks with various partitioning and optimization

techniques. Most of these frameworks impose strict requirements on the cloud side,

such as a full clone of the application code/virtual machine or special application

management software, hindering wide applicability in public clouds.

One reason to avoid flexibility in computation partitioning is the security risks

associated with using the cloud: Application components involving sensitive data

would need di↵erent security measures for migration to the cloud than those executing

on the mobile device. The lack of control on resources and multi-tenancy of di↵erent

users’ applications on the same physical machine make cloud platforms vulnerable

to attacks. Possible security breaches in the cloud include leakage/modification of

private data and modification of program code among others. Because mobile-cloud

computing is still a young field of research, there are not many security mechanisms

for code and data o✏oaded to the cloud from a mobile device. Security mechanisms

relying heavily on the participation of the mobile platform are undesirable due to the

extra communication and processing costs involved for the mobile platform. Existing

strong security mechanisms for mobile code can also not be applied directly to the

problem of MCC security, as they are cryptography-intensive (i.e. computationally-

intensive), which could cause an MCC framework to fall short of satisfying the real-

time requirements of a computation task.

Both the performance and security problems associated with MCC call for a gen-

eralized computation o✏oading framework that requires minimal involvement of the

mobile platform for both performance and security monitoring of o✏oaded compu-

tation, where all dynamic decision-making processes are achieved with lightweight

components.
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1.2 Thesis Statement

In this dissertation, we demonstrate that autonomous (mobile) agents are e↵ec-

tive tools for dynamic computation o✏oading in MCC. We specifically focus on the

design of a generalized computation o✏oading framework, where o✏oaded code is

transported between platforms using mobile agents that are capable of protecting

their own integrity and evaluating their own runtime performance.

The thesis statement of this dissertation is:

Autonomous agents, when augmented with self-protection and self-performance

evaluation capability, are e↵ective tools for high-performance, secure mobile-cloud

computing.

1.3 Dissertation Contributions

The main contributions of this dissertation are the following:

• Design, development and performance evaluation of an e�cient computation

o✏oading framework for mobile-cloud computing based on autonomous agents

• Design, development and performance evaluation of a low-overhead tamper-

resistance approach for mobile-cloud computing

• Design, development and performance evaluation of a context-aware computa-

tion migration and execution approach for mobile-cloud computing

• A novel application of mobile-cloud computing to assistive technologies for the

visually-impaired

1.4 Dissertation Organization

The rest of this dissertation is organized as follows:

Chapter 2. Related Work In this chapter, we provide a summary of related

work in the field of mobile-cloud computing, with particular focus on (a) existing
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computation o✏oading techniques and their use in mobile-cloud computing, and (b)

mechanisms to protect code o✏oaded to a foreign (cloud) platform for execution.

We state the major shortcomings of the existing mobile-cloud computation o✏oad-

ing frameworks and identify essential features for a framework accounting for those

shortcomings.

Chapter 3. Mobile-Cloud Computing (MCC) In this chapter, we provide a

brief overview of mobile-cloud computing, needed for a better understanding of the

concepts used in the subsequent chapters. We start with a brief description of cloud

computing, including common service models and deployment models. We continue

with a definition of mobile-cloud computing and discuss its advantages, applications

and general architecture. Next, we discuss the major challenges dynamic mobile-

cloud computing faces, which provides the motivation for the design of a computation

o✏oading framework overcoming those challenges.

Chapter 4. An Autonomous Agents-based Computation O✏oading

Framework for MCC In this chapter, we introduce a novel computation o✏oading

framework for MCC based on autonomous (mobile) agents. We start the chapter with

a brief overview of mobile agents, the advantages of using mobile agents for MCC and

the details of the workings of a popular mobile agent framework. Next, we present the

details of our proposed computation o✏oading framework for MCC, named AAMCC.

We conclude the chapter with the results of experiments using AAMCC for three real-

world mobile applications and a comparison of the results with those of monolithic

execution of the same applications on a mobile device.

Chapter 5. Tamper-Resistant Execution in the Cloud In this chapter,

we introduce a tamper-resistance technique for code o✏oaded to the cloud using our

proposed computation o✏oading framework. We start with a discussion of tamper-

resistance and security issues with mobile agents. Next, we discuss two main ideas

for mobile code and data protection–active bundles and software guards–inspiring

the approach for tamper-resistance that we take in this work. Then, we present the

details of the elements used in our approach and state how they are used together
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to form a security framework for AAMCC. We conclude the chapter with a perfor-

mance evaluation of the proposed tamper-resistance approach in terms of its security

capabilities and runtime overhead.

Chapter 6. Context-Aware Mobile-Cloud Computing In this chapter, we

discuss the need for dynamic execution profiling for high-performance MCC and in-

troduce our proposed models for network conditions-based computation o✏oading

and runtime execution profiling on a cloud platform. We demonstrate through exper-

iments with the mobile applications introduced in the earlier chapters that the pro-

posed context-aware computation models are e↵ective for achieving high-performance

under varying network and cloud conditions.

Chapter 7. Application: Mobile-Cloud Navigation Guide for the Blind

In this chapter, we discuss the use of MCC in assistive technologies, specifically in

context-aware navigation by visually-impaired people. We start the chapter with a

discussion of the need for assistive technologies by the visually-impaired, and present

the details of a mobile-cloud computing framework that we propose for context-aware

navigation. We introduce a mobile-cloud pedestrian crossing guide application for the

blind and discuss its feasibility of use for real-time guidance. We conclude the chapter

with a discussion of other mobile-cloud applications that could help visually-impaired

people achieve better context-awareness in foreign environments.

Chapter 8. Summary This chapter concludes the dissertation with a summary

of the main contributions and discussion of possible future extensions to the work.
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2. RELATED WORK

2.1 Computation O✏oading

Significant research e↵orts have been put into computation o✏oading since the

early 1990s. Until 2000, the focus was on making o✏oading feasible, due to the

limitations in wireless networks. Improvements in virtualization technology, avail-

ability of high network bandwidths and cloud computing infrastructures increased

the feasibility of real-time computation o✏oading.

Initial e↵orts on mobile computation o✏oading focused mostly on the problem

of developing robust frameworks for heterogeneous pervasive computation environ-

ments such as mobile ad-hoc networks (MANETs). Chu et al. [1] propose Roam,

which is a seamless application framework for migrating a running application among

heterogeneous devices. The Roam system is based on partitioning of an application

and it selects the most appropriate adaptation strategy at the component level of the

target platform. Gu et al. [2] propose an o✏oading inference engine using the fuzzy

control model, to solve the problem of timely triggering of adaptive o✏oading and

intelligent selection of an application partitioning policy. Gouveris et al. [3] propose

a middleware-based programmable infrastructure that allows nodes of a MANET to

download and activate required protocol and service software dynamically, which al-

lows for alignment of the nodes’ capabilities so that common services and protocols

can be used among heterogeneous network nodes.

Chen et al. [4] present an approach for choosing which components of Java pro-

grams to o✏oad. Their approach divides a Java program into methods and uses

input parameters such as the size of methods to compute the cost of executing each

method. An optimal partitioning decision is then made by comparing the local ex-

ecution cost of each method with the remote execution cost, based on the network
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conditions. Wang and Li [5] present a computation o✏oading scheme on mobile

devices based on a polynomial time algorithm, which partitions a program into dis-

tributed subprograms, where all physical memory references are mapped into the

references of abstract memory locations. Hunt and Scott [6] present a distributed

partitioning system called Coign, which automatically transforms a program into dis-

tributed applications without access to their source code. Coign constructs a graph

model of the application’s intercomponent communication through network profiling

to find the best partitioning and applies the lift-to-front minimum-cut graph-cutting

algorithm [7] to choose the partitions with the minimum communication cost.

Ou et al. [8] analyze the performance of o✏oading systems in wireless environ-

ments, considering the cases where the application is executed locally, o✏oaded with

no failures, and o✏oaded in the presence of failure and recoveries. Their approach

only re-o✏oads failed subtasks, which provides shortened execution time.

Tang and Cao [9] explain appropriate solutions for o✏oading in di↵erent environ-

ments, taking into account three common environmental changes. Upon connection

status changes, the server in their model periodically checks the connection status

with the client and maintains the execution status about its running tasks. When

the client is reconnected, the server sends the execution results. If the client never

reconnects, the server waits for a specific time interval, and deletes the tasks.

Although e↵orts in computation o✏oading have a long history, research in mobile-

cloud computing is still at its infancy. Early work in dynamic mobile-cloud computing

models includes CloneCloud [10] and MAUI [11], both of which partition applications

using a framework that combines static program analysis with dynamic program pro-

filing, and optimizes execution time and energy consumption on the mobile device

using an optimization solver. The disadvantage of these approaches is that they re-

quire a copy of the whole application code/virtual machine at the remote execution

site, which is both a quite strict requirement for public cloud machines and makes

the application code vulnerable to analysis by malicious parties on the same plat-

form. Yang et al. [12] propose a partitioning and execution framework specifically
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for mobile data stream applications. Huang et al. [13] propose a low-complexity of-

floading algorithm to minimize energy consumption on a mobile device, however they

do not provide details of the system architecture. Park et al. [14] propose an of-

floading framework limited to JavaScript based applications. The recently proposed

ThinkAir [15] framework provides better scalability and parallelism features than its

predecessors, however it still requires the existence of the complete application code

on the cloud server, exhibiting the disadvantages of CloneCloud and MAUI.

Xian et al. [16] propose a computation o✏oading method that does not require the

estimation of makespan for each application component. They use online statistics

of the application makespan to compute an optimal timeout, and the computation is

o✏oaded to a remote server only if it is not completed on the device by the timeout.

They show through experiments that this approach not only addresses the problem of

inaccurate makespan estimation but also saves more energy than existing approaches.

Li et al. [17] propose a middleware framework based on mobile agents for deploying

mobile computation in the cloud. The problem they address is enabling of mobile

services in the cloud. The purpose of the framework they propose is to provide a

simple model for cloud services running and migrating in the cloud smoothly. The

general idea behind their proposal is to establish an environment supporting global

invocation and addressing of mobile services and provide mechanisms to manage

the services for transparent utilization, which is quite di↵erent from the problem we

address in this work.

2.2 MCC Security

The two main approaches to provide MCC security are (a) ensuring the security of

the cloud platform on which the mobile code will execute for all users of that platform

and (b) ensuring the security of the mobile code and data sent to the cloud platform

for execution, without relying on the trustworthiness of the cloud platform. Below

we provide a review of related work for each of these approaches.
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2.2.1 Virtualization Security

Lombardi and Di Pietro [18] propose a secure virtualization architecture, which

monitors the integrity of guest and infrastructure components while remaining fully

transparent to virtual machines and to cloud users. The proposed architecture can

locally react to security breaches as well as notify a further security management layer

of such events and has low overhead.

Szefer et al. [19] propose a virtualization architecture, which eliminates the hy-

pervisor attack surface by enabling the guest virtual machines (VMs) to run natively

on the underlying hardware while maintaining the ability to run multiple VMs con-

currently. Their proposed system is based on four key ideas: (i) pre-allocation of

processor cores and memory resources, (ii) use of virtualized I/O devices, (iii) minor

modifications to the guest OS to perform all system discovery during bootup, and

(iv) avoiding indirection by bringing the guest virtual machine in more direct con-

tact with the underlying hardware. Hence, in their proposed approach, no hypervisor

is needed to allocate resources dynamically, emulate I/O devices, support system

discovery after bootup, or map interrupts and other identifiers.

Zhang et al. [20] propose a transparent approach to protect the privacy and in-

tegrity of customers’ virtual machines on commodity virtualized infrastructures, even

in the case of facing a complete compromise of the virtual machine monitor (VMM)

and the management VM. The key of their approach is the separation of the resource

management from security protection in the virtualization layer. A tiny security mon-

itor is introduced underneath the commodity VMM using nested virtualization and

provides protection to the hosted VMs. As a result, their approach allows virtualiza-

tion software to handle complex tasks of managing leased VMs for the cloud, without

compromising the security of users’ data inside the VMs.

Li et al. [21] address the problem of providing a secure execution environment on

a virtualized computing platform under the assumption of an untrusted management

OS. They propose a virtualization architecture that provides a secure runtime en-
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vironment, network interface, and secondary storage for a guest VM. The proposed

architecture significantly reduces the trusted computing base of security-critical guest

VMs, leading to improved security in an untrusted management environment. The

proposed architecture relies on the forcing of all memory access to go through the

hypervisor and making sure that the host operating system only sees an encrypted

view of the guest operating systems.

Although solutions for secure virtualization are promising to make cloud platforms

reliable components for MCC, their implementation is (at least currently) limited to a

small set of providers. Without guarantees for the existence of such security services,

the security of code o✏oaded to the cloud cannot be ensured. These approaches also

do not provide mechanisms for the protection of code running on the same virtual

machine as an attacker.

2.2.2 Mobile Code and Data Security

One approach taken by previous research [22, 23] in mobile code security and

secret program execution is homomorphic encryption, which operates with encrypted

functions obtained by homomorphic transformations. However this approach was

only shown to be usable for polynomial and rational functions, which prevents it

from providing a general solution to the problem of secret execution in the cloud.

Another popular approach for preventing malicious analysis of mobile code is ob-

fuscation. A code obfuscator is a tool which repeatedly applies semantics-preserving

code transformations to a program [24]. The obfuscator tries to make a program as

incomprehensible as possible in order to protect it from being reverse-engineered or

to protect a secret stored in the program from being discovered. Typically, code

obfuscating transformations use the following operations: fold/flatten (turn a d-

dimensional construct into d+1 or d-1 dimensional ones), split/merge (turn a com-

pound construct into two constructs or merge two constructs into one), box/unbox

(add or remove a layer of abstraction), ref/deref (add or remove a level of indirection),



11

reorder (swap two adjacent constructs), and rename (assign a new name to a labeled

construct). While obfuscation makes a program more di�cult to analyze, it comes at

a cost: The obfuscated programs usually have greater complexity than their original,

optimized counterparts, which causes worse performance. Therefore, the best prac-

tice for providing code confidentiality would be to use obfuscation sparingly, only in

parts of a program, which include content that must be protected against leakage.

As the obfuscation process itself could be costly too, it should be applied once for a

mobile application before or upon installation instead of before each execution.

A recent proposal for securing cloud MANET applications [25] adopts cloud com-

puting technology to create a virtualized environment for MANET operations in mul-

tiple service provisioning domains according to the criticality of the MANET services

and corresponding security requirements.

Zhang et al. [26] propose an authentication and secure communication framework

for elastic applications, which consist of weblets (program partitions) running on mo-

bile device and cloud nodes concurrently. Their proposed method leverages elasticity

managers on the cloud and the mobile device to establish a shared secret between we-

blets, to provide authentication between the weblets. They also propose approaches

to authorize weblets running on the cloud to access sensitive data such as those pro-

vided by other web services. While this is one of the few proposals considering secure

mobile-cloud computing, the authors do not mention any implementation details or

performance results.

Itani et al. [27] propose a scheme to verify the integrity of documents stored on a

cloud server. Their model is based on o✏oading most of the integrity verification tasks

to the cloud and a trusted third party (TTP) to minimize the processing overhead

and energy consumption on the mobile client. The main limitation of the proposed

framework is that it is dependent on a TTP.

Jia et al. [28] propose a data service, which uses proxy re-encryption and identity-

based encryption to outsource data and security management to the cloud without

disclosing any user information. The main limitation of this work is that it trusts the
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cloud to perform the security management and re-encryption on behalf of the mobile

user, while this trustworthiness assumption may not always hold.

Hsueh et al. [29] propose a security scheme for the storage of mobile data in

the cloud that ensures the security, integrity, and authentication of the stored data.

The proposed scheme is based on the encryption of the data by the mobile device

using traditional asymmetric encryption techniques. The major shortcomings of this

approach are that the confidential data of the mobile user may be stored on a cloud

server hosted by an attacker, and that cryptographic operations are performed on the

mobile device, causing performance penalties.

Yang et al. [30] propose a scheme for mobile devices with limited resources to

publicly prove possession of data, which provides privacy and confidentiality. Their

scheme involves a TTP for the handling of encoding/decoding, encryption/decryption,

signature generation, and verification on behalf of the mobile user.

Zhou and Huang [31] propose a framework that o✏oads computationally-intensive

encryption and decryption operations on a mobile device to the cloud by extending

the ciphertext policy attribute-based encryption scheme [32], so that no information

about the data contents and security keys is revealed. The main problem with this

scheme is that the ciphertext grows linearly with an increasing number of attributes,

which hurts real-time performance.

Xiao and Gong [33] propose a collaboration model between mobile and cloud

platforms to dynamically generate credentials to protect the mobile user from di↵erent

types of attacks. The proposed scheme assumes that the cloud is a fully trusted

component in the implementation of the proposed security solution. This assumption

is too strong especially for public clouds.

Chow et al. [34] propose a policy-based cloud authentication platform for mobile

users, which is based on the application of hash functions on data by the mobile

platform with a client-generated key and the transfer of the generated information

to a data collector in the cloud. The main shortcoming of this approach is that the
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mobile client has to apply a hash function on frequently generated data to achieve

privacy, resulting in high performance overhead.

Bilogrevica et al. [35] propose a solution to preserve the privacy of mobile devices

while using the scheduling services on a cloud. The proposed approach uses homo-

morphic properties of well-known cryptographic systems for secure evaluation of the

common availability of mobile users. In the proposed scheme, the mobile device is

responsible for encrypting and encoding the messages to ensure indistinguishability,

which incurs performance overhead on the device.

Most of the security solutions for mobile-cloud computing listed above focus on

the confidentiality of mobile data o✏oaded to the cloud. Frameworks for protecting

the runtime integrity of code o✏oaded to the cloud are still at a mostly premature

state.
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3. MOBILE-CLOUD COMPUTING (MCC)

This chapter provides a brief overview of mobile-cloud computing including its def-

inition, advantages, applications, general architecture and challenges. The concepts

presented in this chapter prepare the stage for a clear understanding of the subsequent

chapters of this dissertation.

3.1 Cloud Computing Overview

3.1.1 Definition

The National Institute of Standards and Technology (NIST) defines cloud com-

puting as follows [36]:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and re-

leased with minimal management e↵ort or service provider interaction.

According to this definition, a cloud computing platform should have the following

five essential properties [36]:

1. On-demand self-service: A cloud service consumer can provision computing

capabilities and use a service automatically with no need of human interaction

with the provider.

2. Broad network access: Services are made available through a network and

can be accessed using standard mechanisms by heterogeneous client platforms.

3. Resource pooling: The service provider’s resources are shared between mul-

tiple consumers using a multi-tenant architecture by pooling. Di↵erent physical
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and virtual resources are assigned to customers dynamically based on their de-

mands.

4. Rapid elasticity: Computing resources can be provisioned and made available

to consumers dynamically and automatically by scaling up/down rapidly based

on demand.

5. Measured service: Cloud systems use a metering capability to optimize re-

source usage, by monitoring, controlling and reporting usage to the provider

and consumers.

3.1.2 Service Models

Cloud service providers o↵er their services to consumers using one of the following

three models:

1. Software as a Service (SaaS): This service model allows a consumer to use

a cloud service provider’s applications running on a cloud infrastructure, which

can be accessed through a thin client interface or a program interface. The

consumer in this case has no control over the underlying cloud infrastructure,

including operating system, network or storage.

2. Platform as a Service (PaaS): This service model allows consumers to deploy

their own applications on the cloud infrastructure, with access to the program-

ming languages, libraries, services and tools supported by the provider. It is

similar to SaaS in the sense that consumers cannot control the infrastructure

(underlying network, operationg system etc.), but di↵erent in that they can

control the applications running on the infrastructure.

3. Infrastructure as a Service (IaaS): This service model provides the cus-

tomers with the capability to deploy arbitrary software, including operating

systems and applications, on the cloud platform. Although this model gives
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more control over the computing resources to the customer than the other ser-

vice models, it still does not provide control over the underlying physical cloud

infrastructure. The provisioning of resources in this model is usually achieved

using virtualization.

3.1.3 Deployment Models

1. Private cloud: In this deployment model, the cloud infrastructure is reserved

for use by a single organization consisting of multiple consumers (units).

2. Community cloud: This deployment model provisions the cloud infrastruc-

ture for use by a specific community of users with shared concerns. The most

common application of this model is multiple organizations in an agreement to

share resources to achieve a common goal.

3. Public cloud: This model provisions the cloud infrastructure for open use

by the general public. The deployment is on the premises of the cloud service

provider.

4. Hybrid cloud: This model is a composition of two or more di↵erent cloud

infrastructures, which are bound by standard technology enabling data and

application portability between them.

3.2 Mobile-Cloud Computing Overview

3.2.1 Definition

Mobile-cloud computing (MCC) refers to an infrastructure where the data storage

and processing can happen outside of the mobile device [37]. Mobile-cloud applica-

tions move the computing power and data storage away from the mobile devices and

into powerful and centralized computing platforms located in clouds, which are then

accessed over a wireless connection with those platforms.
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3.2.2 Advantages

Mobile-cloud computing o↵ers several advantages over traditional mobile comput-

ing, among which are the following [37]:

• Extending battery lifetime: Computation o✏oading migrates large com-

putations and complex processing from resource-limited devices (i.e., mobile

devices) to resourceful machines (i.e., servers in clouds). The remote execution

of energy-intensive parts of an application can result in significant energy sav-

ings. Many mobile applications already take advantage of task migration and

remote processing to extend battery lifetime.

• Improving data storage capacity and processing power: MCC enables

mobile users to store/access large data on the cloud, therefore overcoming the

storage capacity constraints on mobile devices. One of the most significant

advantages of MCC is that it helps reduce the makespan for computationally-

intensive applications, making real-time complex computation possible for mo-

bile applications.

• Improving reliability and availability: Keeping data and applications in

clouds provides increased reliability and availability due to replication and back-

ups by cloud service providers.

• Dynamic resource provisioning: MCC provides dynamic, on-demand provi-

sioning of computational resources to mobile users on a fine-grained, self-service

basis. The resources do not need to be reserved in advance, which provides ease-

of-use and economic advantage.

• Scalability: MCC allows mobile applications to scale to meet unpredictable

user demands, by providing access to powerful servers in the cloud and using

the elasticity feature of cloud platforms.



18

• Ease of integration of services from multiple providers: MCC allows for

the easy integrations of multiple services from di↵erent providers through the

cloud to meet changing demands of mobile users.

3.2.3 Applications

MCC has been is in use by many mobile applications in the market since its

inception. Below is a list of the major fields of mobile applications, which benefit

from the power of MCC [37], among many others.

• Augmented reality: Augmented reality (a view of the real-world supple-

mented by computer-generated input such as sound, video, graphics, loca-

tion data etc.) applications have been increasingly popular since mobile com-

puting devices became commonplace. Augmented reality applications involve

computationally-intensive tasks such as video/image processing, vision or voice-

based interaction etc., which mobile devices face several limitations in achieving

on their own in real-time. Use of cloud platforms for such computationally-

intensive tasks enables augmented reality on mobile devices with limited re-

sources [38].

• Security and emergency applications: Homeland security and emergency

applications are increasingly exploiting the power of mobile computing to ensure

widespread presence, which they need for real-time response to catastrophic

events. Most of these applications require computationally-intensive tasks such

as searching through a large collection of data in real-time, fast image processing

for face recognition etc., which need powerful servers for computation. Cloud

computing comes to the rescue for these safety-critical applications, providing

the needed resources.

• Mobile healthcare: Mobile healthcare applications, having the goal of over-

coming the limitations of traditional medical treatment, provide easy access to
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resources such as health records, comprehensive health monitoring services and

intelligent emergency management, among other features. In order to deliver

the best service experience, these applications rely on cloud resources for the

storage and processing of the wealth of data they gather.

• Mobile gaming: The gaming industry is ever-growing, creating games with

advanced graphics requiring complex calculations. Mobile gaming is another

field that greatly benefits from o✏oading computation to the cloud, as shown

by Cuervo et al. [11]. The speed of cloud resources in processing the game state

provides a satisfactory gaming experience, while also prolonging the battery life

of the mobile device.

• Mobile commerce: Mobile commerce applications provide support for achiev-

ing commercial tasks requiring mobility, such as mobile transactions, mobile

payments etc. Because these applications face challenges such as low network

bandwidth and complex security operations, they can greatly benefit from the

use of cloud computing platforms to complete their tasks in real-time.

• Assistive technologies: Assistive technologies for people with various disabil-

ities are among the applications to get the greatest benefit from MCC. These

technologies require portability as an essential feature, which makes lightweight

mobile devices a good match for that purpose, but they also involve highly

complex operations such as image processing (for visually-impaired people) and

speech recognition (for hearing-impaired people), which rely on more powerful

computing resources.

3.2.4 Architecture

Figure 3.1 shows the general architecture for MCC [37]. Mobile devices are con-

nected to mobile networks via wireless access points or base transceiver stations

(BTS). Service requests from mobile devices are delivered to a cloud through the
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Internet using these mobile networks. Access controllers to the cloud receive service

requests and route them to appropriate servers in the cloud. Upon receipt of requests,

cloud servers process the requests and present the mobile user with the corresponding

service through the established communication link. The services could be provided

in any of the cloud service models mentioned in section 3.1.2.
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Fig. 3.1.: General MCC architecture.

3.3 Dynamic MCC Challenges

Although MCC is a promising tool to overcome the several challenges faced by

mobile devices with limited computational power, it faces challenges too due to the

highly dynamic environments it has to operate in. The major challenges that MCC

faces include interoperability and standardization issues, security issues arising from

the sharing of data and computation with untrusted platforms, and e�cient and
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e↵ective computation partitioning and o✏oading in real-time. The subsections below

provide details about each of these challenges.

3.3.1 Interoperability and Standardization

Interoperability is the ability of a system to work with (o↵er services to and ac-

cept services from) di↵erent systems without substantial e↵ort. In the context of

MCC, interoperability refers to the ability of a mobile-cloud system to work with

di↵erent cloud service providers, di↵erent cloud architectures and di↵erent mobile

devices. Because of the strict reliance of MCC performance on immediate access to

cloud resources, ability to function with multiple cloud providers is essential, as the

resource availability of di↵erent providers could fluctuate. To ensure interoperability,

it is important for an MCC model to use standard communication interfaces and

be operable in di↵erent cloud platforms. Operability in di↵erent cloud platforms is

contingent upon minimal reliance on very specific infrastructure requirements, such

as non-standard software, libraries, devices etc.

While a high degree of interoperability is desirable for MCC, as for any other sys-

tem, it could prove di�cult to achieve it due to other constraints such as performance,

need of a special runtime environment with specific software etc., which is a major

challenge for MCC.

3.3.2 E�cient and E↵ective Computation Partititioning/O✏oading

One of the greatest challenges MCC faces in highly dynamic environments is e�-

cient and e↵ective partitioning and o✏oading of mobile computation. Here, e�ciency

of computation partitioning/o✏oading refers to the overhead incurred by the compu-

tation partitioning/o✏oading mechanism in terms of factors like response time and

energy. The e↵ectiveness of the computation partitioning/o✏oading mechanism de-

termines whether the execution of the resulting computation partitions will provide

improved performance over a monolithic execution of the application on the mobile
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device. Providing a general solution to these challenges is a di�cult problem due to

the following reasons:

• Variable bandwidth: Mobile environments face high variability in available net-

work bandwidth. A fluctuating bandwidth requires frequent network moni-

toring to make the best o✏oading decisions, which comes with the price of

monitoring costs in terms of time and energy.

• Mobile service availability: The highly dynamic nature of mobile environments

expose mobile users to frequent disconnections due to network tra�c congestion,

network failures and low signal strength problems. A computation partition-

ing/o✏oading model that completely disregards the possibility of such failures

will not be able to make optimal decisions.

• Di�culty of runtime conditions estimation: In highly dynamic environments

like the mobile and cloud platforms in MCC, it is di�cult to estimate runtime

conditions of the platform on which the application is running. The environment

could be shared with other processes, which could incur unexpected performance

penalties. Especially in the lack of specific quality of service (QoS) guarantees by

the cloud platform, the makespan of the o✏oaded computation could be highly

variable, which is an important factor for computation o✏oading decisions.

3.3.3 Security

While MCC is promising to overcome the computational limitations of mobile

devices, o✏oading mobile computation to the cloud entails security risks associated

with handing sensitive data and code over to an untrusted platform, including but

not limited to the following:

• Lack of control on resources and multi-tenancy of di↵erent users’ applications

on the same physical machine make cloud platforms vulnerable to attacks.
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• In addition to privacy issues, programs running in the cloud are prone to tamper-

ing with code, data, execution flow and communication, as well as masquerading

attacks.

• Mobile code can navigate through multiple platforms before returning to the

origin, giving rise to the end-to-end security problem, which involves decreasing

control with every further hop in the chain of platforms.

In order to provide complete security, the application should ensure all communica-

tion with/execution on the cloud platforms are trusted. Achieving ultimate flexibility

and performance in mobile-cloud computing is contingent upon the availability of a

secure computing framework capable of dynamic decision making with regards to the

execution location of di↵erent program partitions.

3.4 Chapter Summary

In this chapter, we provided a brief overview of the general concepts of mobile-

cloud computing and the challenges involved in implementing a dynamic computation

o✏oading framework for this computing paradigm. The list of dynamic MCC chal-

lenges presented in this chapter serves as a guide for the essential features of the

computation o✏oading framework we propose in this work.
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4. AN AUTONOMOUS AGENTS-BASED

COMPUTATION OFFLOADING FRAMEWORK FOR

MCC

This chapter provides an overview of mobile (autonomous) agents, describes the de-

tails of our proposed computation o✏oading framework for MCC based on mobile

agents, and provides a performance evaluation of the proposed framework for three

real-world mobile applications.

4.1 Mobile Agents Overview

4.1.1 What is a Mobile Agent?

A mobile agent is a software program with mobility, which can be sent out from

a computer into a network and roam among the computer nodes in the network [39].

It can be executed on those computers to finish its task on behalf of its owner. When

an application using mobile agents needs to request a service from a remote server, it

gathers the required information and passes it to the agent’s execution environment.

At some point during its lifetime, the agent executes an instruction for migration,

which results in the following sequence of events [39, 40]:

1. The current agent process is suspended or a new child process is created.

2. The suspended (or new child) process is converted into a message including all

of its state information (process state, stack, heap, external references). This

message is addressed to the destination where execution will continue.

3. The message is routed to the destination server, which delivers it to the server’s

agent execution environment.
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4. The message is reconstituted to an executable and the associated process is

dispatched.

5. Execution continues with the next instruction in the agent program. Upon

completion of the agent program at the remote server, the agent might terminate

its execution, become resident at the server or migrate back to the originating

client or another server.

Client' Server'

1.'request'

2.'response'

(a)'Client6server'communica9on'

Client' Server'Mobile'Agent'

2.'request'

3.'response'

1.'Send'to''
'server'

(b)'Mobile'agent'communica9on'

4.'Return'to'
client'

Fig. 4.1.: Mobile agent vs. client-server communication.

4.1.2 Advantages of Agent-based Computing

Mobile agents provide several advantages over other distributed computing mod-

els such as the client-server model, especially in the case of mobile clients. Figure 4.1

illustrates the main di↵erences between agent-based computing and client-server com-
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puting. The main advantages of mobile agent computing, making them e↵ective tools

for mobile-cloud computing are the following [39]:

• Agents can provide better support for mobile clients: Mobile devices such as

smartphones are intermittently connected to a network, especially in the case

of roaming in areas with low GSM/CDMA coverage. Even when the cellular

signal is strong, data communication costs set a limit to users’ willingness to use

applications involving continuous transfer of data from/to a remote server. Yet,

due to the limited processing capacities of mobile devices, applications running

on them need to o✏oad computationally-intensive operations to more powerful

servers. This makes mobile agents, which are based on asynchronous interaction

with servers, ideal for mobile client systems.

• Agents facilitate real-time interaction with server: In the case of high network

latency, executing a program on a server which provides resources the program

needs access to, will be faster than transferring information over the communi-

cation link with that server. This makes agent computing a better fit for sat-

isfying the real-time requirements of applications than traditional approaches

that maintain constant communication between the client and the server.

• Agent-based queries/transactions can be more robust: Mobile agent computing

o↵ers greater reliability than the client-server paradigm due to two main reasons:

Asynchronous communication provides reliable transport between the client and

the server without requiring reliable communication, and the mobile agent is

capable of dealing with a server’s unavailability to provide service (in which

case it would be routed to a di↵erent server with the required service).

• Agent-based transactions avoid the need to preserve process state: The ability

of a mobile agent to carry its state around with it relieves the sending host of

the need to preserve state, which could otherwise add considerable burden to

the client.
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• An agent-based application module is capable of moving across di↵erent cloud

machine instances transparently, without requiring management by its caller

module. This feature makes it capable of migrating to a di↵erent location for

reasons including poor performance on its current execution location or a hostile

(attack-prone) runtime environment.

• An autonomous application module can be equipped with techniques to check

self-integrity before and after execution, independent of the host platform. This

is important for ensuring tamper-proof results from an untrusted platform,

which is a major problem for the large-scale adoption of cloud computing today.

Note that hereafter, we will be using the phrases mobile agent and autonomous

agent interchangeably, as the agents in our proposed framework are both mobile and

autonomous.

4.1.3 JADE Agent Development Framework

JADE (Java Agent Development Environment) is a popular software framework

to develop agent applications in compliance with the FIPA (Foundation for Intelligent

Physical Agents) specifications for interoperable intelligent multi-agent systems [41].

JADE is written purely in Java, which makes object-oriented programming in hetero-

geneous environments possible with features including object serialization and remote

method invocation (RMI). All agent communication in JADE is achieved through

message passing. Each agent execution environment is a Java Virtual Machine (JVM)

and communication between di↵erent virtual machines (VMs) as well as event sig-

naling within a single VM is achieved with Java Remote Method Invocation (RMI).

Figure 4.2 demonstrates the distributed JADE architecture [42].

The Agent Management System (AMS) controls access to the platform and it is

responsible for the authentication of resident agents as well as control of registrations.

The Directory Facilitator (DF) is an agent that provides a yellow pages service to

the agent platform. Each agent container is a multi-threaded execution environment
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Fig. 4.2.: JADE distributed architecture.

composed of one thread for every agent plus system threads spawned by RMI run-

time system for message dispatching. Each agent container is an RMI server object

that locally manages a set of agents. It controls the life cycle of agents by creating,

suspending, resuming and killing them. Besides, it deals with all the communica-

tion aspects by dispatching incoming messages and routing them according to the

destination field [41].

Every agent in the JADE framework is composed of a single execution thread,

and tasks (code) to be executed by agents are implemented as Behaviour objects. In

order to have an agent execute a specific task, the task should be implemented as a

subclass of the Behaviour class and added to the agent task list using the relevant

application programming interface (API).
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We chose JADE as the mobile agent development platform for this work due to its

prevalence in mobile agent computing and support for multiple platforms including

Android OS [43].

4.2 Proposed Computation O✏oading Framework: AAMCC

Figure 4.3 shows a high level view of the proposed computation framework, and

figure 4.4 shows the framework in action for a mobile application consisting of three

modules. Each mobile application in the proposed framework consists of a set of

agent-based application modules that are o✏oadable to the cloud for execution (P2

and P3 in figure 4.4), in addition to a set of native application components that are

always executed on the device due to constraints such as accessing native sensors of

the device, modifying native state or providing the user interface of the application

(P1 in figure 4.4). Partitioning of the application into these two types of components

is performed statically before the installation of the application on the mobile device.

During the o✏ine application partitioning process, any program partition that is not

computationally intensive should not be set as an o✏oadable component even if it

does not have to be pinned to the device, as this would incur additional runtime

processing overhead for partitions that would likely never be o✏oaded. Therefore we

advocate the use of programmer help for identifying the o✏oadable partitions much

like the approach taken in MAUI [11].

When a mobile application is launched, the execution manager contacts the cloud

directory service to get a list of available machine instances in the cloud and selects

the instance(s) with the highest communication link speed with the mobile device as

well as the highest computing power. After this step, an execution plan containing

o✏oading decisions for the agent-based modules is created by the execution manager.

If the execution plan requires o✏oading a particular application module, a bridge is

formed between the caller of that module and the cloud host selected by the execution

manager, through which the o✏oaded module migrates to the container in the host,
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Fig. 4.3.: High level view of the proposed computation framework.

carrying along its input parameters. Upon migration, the module starts executing

and communicates its output data to the caller through the same bridge. In the

case that the communication between the mobile platform and the cloud platform

where the o✏oaded agent resides is disrupted before the mobile platform receives the

computation result, the agent remains on the cloud platform until the mobile platform

reconnects to request the result. The ability to reconnect to the agent provides high

reliability for the framework, obviating the need to execute the o✏oaded task from

scratch, which could incur high performance penalties.

4.2.1 Proposed Framework Components

The four main components of the proposed framework are described below.
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Fig. 4.4.: Proposed computation framework in action for sample mobile application.

Autonomous Application Modules

An autonomous application module is a chunk of application code packed in a

mobile agent that is executable in a cloud host. Agent-based application modules

provide great advantages over existing mobile-cloud program o✏oading techniques

discussed in section 2 due to their autonomous computing capabilities. Autonomy

of these application modules is particularly useful in the context of mobile-cloud

computing due to the capability of transparently moving between cloud hosts without

requiring management by their caller and self-cloning in di↵erent cloud hosts, which

can help boost performance in the case of changing runtime conditions in the cloud.

The transformation from a regular application module to the corresponding agent-

based module is achieved through a behaviour as described in section 4.2.2. In the

current framework, application modules have either class-level or method-level gran-

ularity, but the same arguments would apply to finer granularity application compo-

nents as well (such as part of a method).
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Execution Manager

This component is a service running on the mobile device, responsible for prob-

ing the network for bandwidth and latency measurement and making the decision

regarding the execution platform of the di↵erent agent-based application partitions.

In order to decide where to execute the application partitions, the execution man-

ager contacts the cloud directory service to get a list of cloud hosts (virtual machine

instances) that are available for use, and estimates the bandwidth of the connection

with the hosts. It then runs an optimization algorithm to find the partitioning of the

o✏oadable application modules between the mobile device and the selected host(s)

that minimizes the total execution time. Application modules are o✏oaded/run on

the device according to the results of the partitioning decisions.

Cloud Directory Service

The cloud directory service is a web service that maintains an up-to-date database

of virtual machine instances (cloud hosts) available for use in the cloud. Along with

the public IP addresses of the machine instances, information regarding the architec-

ture of the instances, physical regions of the instances and performance records of the

most recent interactions with the instances can be provided by this service.

Cloud Hosts

Virtual machine instances (VMIs) in the cloud provide a runtime environment for

agent-based application partitions. They provide platform as a service (PaaS), rather

than software as a service (SaaS), and the only requirement they need to satisfy is

to provide an isolated container (such as a Java Virtual Machine) for each o✏oaded

partition to execute in. In the prototype framework implemented, this component

corresponds to JADE agent containers running on Amazon EC2 virtual machine

instances [44].
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4.2.2 Implementation of Agent Behaviours

As mentioned in section 4.1.3, each application partition needs to be implemented

as an agent behaviour in the proposed computation o✏oading framework. The trans-

formation between a regular Java method and an agent behaviour is quite simple.

Listing 4.1 shows part of the code for a Java class Queens (for the NQueens puzzle

described in section 4.3.3), and listing 4.2 shows the corresponding agent behaviour

class. While all local and global variables of the original class remain the same in

the agent class, method parameters are saved in a special storage structure called the

Datastore, and the main method call in the class constructor is moved inside a special

method called action.

1public class Queens {

2int [ ] x ;

3public stat ic ArrayList<int [ ]> s o l u t i o n s ;

4public Queens ( int numQueens ) {

5x = new int [ numQueens ] ;

6s o l u t i o n s = new ArrayList<int [ ] > ( ) ;

7ca l lp laceNQueens ( ) ;

8}

9public void ca l lp laceNQueens ( ) {

10placeNqueens (0 , x . l ength ) ;

11}

12. . .

13}

Listing 4.1: Sample mobile application module code
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1public class QueensBehaviour extends OneShotBehaviour {

2int [ ] x ;

3public stat ic ArrayList<int [ ]> s o l u t i o n s ;

4int numQueens ;

5public QueensBehaviour ( ) {

6DataStore ds = getDataStore ( ) ;

7numQueens = ( int ) ds . get ( ”numQueens” ) ;

8}

9public void ac t i on ( ) {

10x = new int [ numQueens ] ;

11s o l u t i o n s = new ArrayList<int [ ] > ( ) ;

12ca l lp laceNQueens ( ) ;

13}

14public void ca l lp laceNQueens ( ) {

15placeNqueens (0 , x . l ength ) ;

16}

17. . .

18}

Listing 4.2: Agent behaviour implementation

The transformation from a regular mobile application module to an agent-based

module is performed statically before application installation, as the overhead of

transformation should be avoided at runtime to achieve optimal performance. For

every agent-based application module, there is a corresponding regular application

module. Whether the regular module or the agent-based module will be executed is

decided by the execution manager at application runtime.
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4.3 Experiments with Proposed Computation O✏oading Framework

4.3.1 Experiments with Face Recognition

The performance of the proposed mobile-cloud computing framework was eval-

uated with two face recognition applications, which given the picture of a person,

identify the most similar face to it in a set of pictures. Both applications are based on

the face recognition program available at [45]. The autonomous application modules

for each application were implemented as JADE [41] mobile agents and simulations

were performed using virtual machine instances with JADE containers in the Amazon

EC2 [44] as the servers for code o✏oading. All sets of experiments were run using an

Android emulator over a period of 12 hours to capture possible variations in network

conditions and the results reported are the averages for 75 runs.

Face Recognition with Online Data

This face recognition application assumes that the set of pictures to compare

against are available online (as in the case of pictures of people in the online social

network of the mobile user). Figure 4.5 provides a comparison of executing the

application wholly on the mobile device vs. using the proposed o✏oading framework,

for di↵erent number of pictures to compare against. We see that the proposed model

achieves significantly higher performance than device-only execution, completing the

recognition task in as much as 49 times shorter time for the biggest number of pictures.

Face Recognition with Local Data

This application assumes that the set of pictures to compare against is only lo-

cally available on the mobile device, i.e. if the application component processing the

pictures is o✏oaded, the data for each picture is sent with it too. Figure 4.6 provides

a comparison of executing the application wholly on the mobile device vs. using the
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Fig. 4.5.: Execution time vs. number of pictures to compare against for face recogni-
tion application with online data.

proposed o✏oading framework, for di↵erent number of pictures to compare against.

We see that the proposed model achieves a significant 13 times shorter execution time

than the device-only approach for all picture set sizes.

4.3.2 Experiments with Sudoku

Sudoku is a logic-based number-placement puzzle, where the objective is to fill

a 9x9 grid with digits (1-9) such that each column, each row, and each of the nine

3x3 subgrids composing the grid contain all digits from 1 to 9, i.e. the same digit

cannot appear in the same row, column or in any of the 3x3 subgrids of the board. A

puzzle with 17 filled cells has a unique solution. In the Sudoku application used in the

experiments, the Sudoku solver component finds and stores all possible solutions for a

Sudoku puzzle with a given initial configuration using a recursive algorithm. Although

the problem is solvable in moderate time when 17 or more cells are filled in the
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Fig. 4.6.: Execution time vs. number of pictures to compare against for face recogni-
tion application with local-only data.

initial configuration, it becomes increasingly computation-intensive with a decreasing

number of initially filled cells.

The experiments were performed using a Motorola Atrix 4G [46], where the cloud

platform was a medium VMI in the east1-a region of EC2. Each experiment was

repeated 10 times and we report the average numbers over the runs. Figure 4.7

provides a comparison for device-only vs. o✏oaded execution time of the Sudoku

solver component for di↵erent numbers of initially filled cells. We observe that while

the execution time for on-device and o✏oaded execution are very close to each other

for puzzle configurations of down to 18 initially filled cells, o✏oaded execution achieves

34 times better performance than on-device execution when the initial board has 14

filled cells.

We also measured the average energy consumption of the application on the mobile

device using the PowerTutor tool developed by Gordon et al. [47]. Figure 4.8 shows

the total (Wi-Fi + CPU) energy consumption on the mobile device for device-only vs.
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Fig. 4.7.: Sudoku solver execution time for device-only vs. o✏oaded execution.

20 19 18 17 16 15 14
0

50

100

150

200

number of filled cells

E
n
er
gy

co
n
su
m
p
ti
on

(J
ou

le
)

Device-only O✏oaded with AAMCC

Fig. 4.8.: Sudoku solver energy consumption for device-only vs. o✏oaded execution.
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o✏oaded execution of the Sudoku solver. We see that o✏oaded execution achieves

significantly higher performance than device-only execution in terms of energy con-

sumption too, consuming 87 times less energy for the lowest number of initially filled

cells.

Figure 4.9 shows the distribution of energy consumption over Wi-Fi and CPU

utilization in the case of o✏oaded execution. When the number of initially filled cells

is between 17-20, Wi-Fi energy consumption is relatively stable, as the application

receives a single (unique) puzzle solution. For fewer initially filled cells, the data

received from the cloud is bigger, carrying all possible puzzle solutions for the given

initial state. We also see a spike in CPU utilization on the device for those cases: This

can be explained by the need to allocate space for the received data on the mobile

device.
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Fig. 4.9.: Sudoku solver energy components for o✏oaded execution.
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4.3.3 Experiments with NQueens Puzzle

The NQueens puzzle is the problem of placing n chess queens on an n x n chess-

board such that no two queens can attack each other, i.e. no two queens share the

same row, column or diagonal. Solutions to the problem exist for all natural numbers

n except for 2 and 3. In the following sets of experiments, we used an NQueens puz-

zle application, which either finds and stores all possible solutions to the puzzle for a

given n (Case 1), or finds all possible solutions, but only stores the number of solutions

(Case 2). The experiments below used the same setup as those in section 4.3.2.

Case 1: Returning All Possible Solutions for the Puzzle

In this version of the NQueens application, the puzzle solver component finds all

possible solutions for the puzzle using a backtracking (recursive) algorithm and stores

them in memory.
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Fig. 4.10.: NQueens solver (all solutions) execution time for device-only vs. o✏oaded
execution.
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Fig. 4.11.: NQueens solver (all solutions) energy consumption for device-only vs.
o✏oaded execution.

Figure 4.10 shows a comparison of the device-only vs. o✏oaded execution time for

this version of the NQueens puzzle application for di↵erent number of queens. Note

that the mobile device cannot handle more than 13 queens due to memory limitations.

As seen in the figure, while the execution times are close to each other for up to 12

queens, o✏oading performs about 25% better for 13 queens.

Figure 4.11 shows the total energy consumption on the mobile device for this set

of experiments. We observe that o✏oading always consumes more energy than the

device-only approach, with the di↵erence getting sharper with increasing number of

queens. For 13 queens, there are 73712 solutions to the puzzle, resulting in both a

high data transfer cost and a high memory allocation cost in terms of energy, whereas

8 queens with only 92 solutions has moderate energy consumption.

Figure 4.12 shows the distribution of energy consumption over the CPU and Wi-

Fi components for o✏oaded execution. We see that the percentage of the two energy

components are quite close to each other for every case.
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Fig. 4.12.: NQueens solver (all solutions) energy components for o✏oaded execution.

Case 2: Returning the Number of Solutions for the Puzzle

In this version of the NQueens application, the puzzle solver component still finds

all solutions to the puzzle using the same backtracking algorithm as in section 4.3.3,

but only returns the number of solutions (i.e. puzzles are solved in place, not requiring

memory allocation for each solution). Figure 4.13 provides a comparison of the device-

only vs. o✏oaded execution times for this version of the application for di↵erent

number of queens. While the execution times are close to each other for up to 12

queens, o✏oaded execution achieves significantly better performance than on-device

execution for more than 13 queens. Actually, it outperforms on-device execution by

about 15 times when the number of queens is 15.

Figure 4.14 shows a comparison of the total energy consumption on the mobile

device for device-only vs. o✏oaded execution. The energy consumption for o✏oading

is significantly lower than for device-only execution when the number of queens is

more than 13. For 15 queens, o✏oading consumes about 1600 times less energy.
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Fig. 4.13.: NQueens solver (number of solutions) execution time for device-only vs.
o✏oaded execution.

The distribution of energy consumption over Wi-Fi and CPU utilization for o✏oaded

execution is seen in Figure 4.15. As expected, Wi-Fi energy consumption is very low,

as the response data contains only a single integer.

4.4 Chapter Summary

In this chapter we proposed a dynamic computation o✏oading framework for

MCC based on autonomous application modules o✏oaded to the cloud in the form

of mobile agents. The proposed framework takes advantage of the high performance

and reliability characteristics of mobile agents to achieve computationally-intensive

tasks of mobile applications, with an easy-to-adopt interface and minimal cloud in-

frastructure requirements. Experiments with three real-world applications show that

the proposed framework achieves significantly higher makespan performance than on-

device execution of computationally-intensive tasks, suggesting that it is a promising

tool for high-performance dynamic MCC.
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Fig. 4.14.: NQueens solver (number of solutions) energy consumption for device-only
vs. o✏oaded execution.
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5. TAMPER-RESISTANT EXECUTION IN THE CLOUD

One of the most important security issues in MCC is the violation of the integrity

of the code and/or data sent to the cloud. Any tampering with code or data in

the cloud will lead to inaccurate information/results being received by the mobile

platform, which defeats the whole purpose of o✏oading computation to the cloud. In

this chapter, we focus on the design and evaluation of a tamper-resistance mechanism

for AAMCC, addressing both the general security challenges for MCC and the security

issues peculiar to mobile agents.

5.1 Tamper-Resistance Overview

Tamperproofing a program is ensuring that it executes as intended, even when

there is an adversary who tries to disrupt, monitor or change the execution. An

attacker typically modifies a program with the intent to force it to execute in a way

to serve malicious purposes. The attacker can achieve this in one of the following

ways [48]:

• Removing code from and/or inserting new code into the executable file before

execution

• Removing code from and/or inserting new code into the program during exe-

cution

• Altering the runtime behavior of the program using externals agents such as

emulators, debuggers, or a hostile operating system

Cloud computing platforms are especially vulnerable to tampering due to the

multi-tenancy of applications from di↵erent parties on the same physical machine. In
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a public cloud, it is hard to control the intentions and actions of the di↵erent users

of a platform. A security case study of the Amazon EC2 by Ristenpart et al. [49] has

revealed the vulnerabilities introduced by virtualization, which is the main technology

most cloud computing providers rely on to provide shared access to the same physical

infrastructure. According to the study, it is possible for an attacker to identify where

a particular virtual machine is likely to reside and launch virtual machines on the

same physical machine as the target. Tamperproofing code executing in the cloud is

especially important to mitigate the e↵ects of such targeted attacks.

Tamperproofing techniques follow the detection of tamper (checking whether data

and/or code has been modified) by an appropriate response mechanism, where the

execution stops with a report of tamper or the code/data is corrected dynamically to

continue execution.

The most common methods to check for the existence of tampering are the fol-

lowing [48]:

• Checking code: This method checks that the code executed has no di↵erence

from the original code, usually using hashing techniques to compare the origi-

nal hash value of the code with that at runtime. A collision-resistant hashing

algorithm will ensure that any tampering will be detected with high probability

when using this method.

• Checking results : This method checks the result of some computation in the

program to ensure that it falls in a certain range or matches an exact preset

value, in order to reason about the existence of tamper in the code/data. Al-

though this method is more e�cient than checking the code itself, it could miss

cases of tamper that modifies parts of code without a↵ecting the expected re-

sult, i.e. this method will not be su�cient to detect tamper when used alone,

especially in cases of large software.

• Checking the environment : This method, being one of the most di�cult to im-

plement, monitors the runtime environment to check its trustworthiness. The



47

checks performed during the monitoring process can include whether the pro-

gram is running under emulation, whether a debugger is attached to the process,

whether the operating system is at the proper patch level, etc. It is especially

di�cult to check for such conditions in a foreign execution platform such as a

public cloud, where the program has no control over most hardware and software

resources of the platform, and the responses to the checks performed cannot be

fully trusted.

5.2 Mobile Agent Security Issues

While mobile agents o↵er many advantages in distributed computing, they are

prone to many security risks due to the loss of control over their execution in untrusted

environments. Security issues associated with the use of mobile agents can be broadly

categorized under three headings: Attacks on mobile agents by malicious agent hosts,

attacks on mobile agents by other mobile agents and attacks on hosts by mobile

agents. In this chapter we consider the first two types of attacks since our objective

is to ensure confidentiality and integrity of mobile code executing in the cloud and

not to protect cloud resources against malicious mobile agents. The attacks of these

first two types can be summarized as follows [40]:

• Leak out/modify mobile agent’s code: As the mobile agent’s code is executed on

the host platform, the host can read the instructions in the code to comprehend

the agent’s behavior and by accessing the memory location where the code

resides, it can modify the agent’s code.

• Leak out/modify mobile agent’s data: If a malicious host discovers the location

of sensitive data such as cryptographic keys that belong to the mobile agent, it

can modify the data or use the data for malicious purposes, such as leaking it

to outside parties.
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• Leak out/modify mobile agent’s execution flow: By discovering the mobile

agent’s physical address of the counter, code and data, the malicious host can

predict the set of instructions to be executed next by the agent. With this

information, it can change the execution flow to achieve a malicious goal.

• Masquerading: With this scheme, a malicious host can pretend to be the des-

tination platform of a mobile agent, which would allow it to get the sensitive

data of the mobile agent and even hurt the original platform’s reputation.

• Leak out/Modify the interaction between a mobile agent and other parties: A

malicious host might eavesdrop on the communication between a mobile agent

and other parties to extract sensitive data (man-in-the-middle attack). This

way, it can even modify the contents of the communication and expose itself as

part of the interaction.

In the context of mobile-cloud computing, security mechanisms for protecting

mobile agents should satisfy the constraints of:

• Real-time response under intermittent network connection

• Keeping communication costs with the mobile platform at minimum

• Incurring limited computation overhead

In order to satisfy the first two constraints, it is important to keep the involvement

of the mobile platform in the tamper-resistance framework at a minimum, which can

be achieved by augmenting the agents with self-protection capability, as described in

section 5.3 below.

5.3 Self-Protecting Agents

The tamper-resistance mechanism we propose for AAMCC is based on the idea

of self-protecting mobile agents, which are capable of detecting tampering with their
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code and data dynamically and taking appropriate actions to report the tamper and

move away from the compromised platform. The use of self-protecting agents for

tamper-resistance in AAMCC is inspired by two main ideas: Active bundles for self-

protecting data and dynamic software integrity verification constructs similar to the

software guards proposed by Chang and Atallah [50]. Below we provide details of the

these two data/software protection techniques.

5.3.1 Active Bundles

An active bundle is a data protection mechanism that encapsulates sensitive data

with metadata and a virtual machine. This mechanism takes an information-centric

approach for data protection, where data is protected from within instead of from

outside as proposed by [51] (a similar approach was taken by Ametller et al. [52]

for protecting mobile agents). Active bundles have been successfully used for entity-

centric identity management in the cloud [53], and secure data dissemination in a

peer-to-peer network of unmanned aerial vehicles [54], which allows for selective data

disclosure based on the trustworthiness of the platform the data are sent to.

The structure of an active bundle is shown in figure 5.1. Sensitive data consti-

tutes content to be protected from privacy violations, data leaks and unauthorized

dissemination. Metadata describes the active bundle and its privacy policies. The

metadata includes (but is not limited to) the following components: (a) provenance

metadata; (b) integrity check metadata; (c) access control metadata; (d) dissemina-

tion control metadata; (e) life duration value. The policy enforcer (virtual machine)

manages and controls the program enclosed in a bundle. The main VM functions in-

clude (a) enforcing bundle access control policies through apoptosis (self-destruction)

or data filtering (b) enforcing bundle dissemination policies; and (c) validating bundle

integrity. What follows is a description of the lifecycle of an active bundle (AB) [51].



50

Sensi&ve((
Data(

Metadata(

Policy(enforcer((VM)(

•  Iden&ty(informa&on(
•  Data(integrity(checks(
•  Access(control(policies(
•  Dissemina&on(policies(
•  Life(dura&on(
•  …(

•  Interprets(metadata(
•  Checks(ac&ve(bundle(integrity(
•  Enforces(access(and((
dissemina&on(control(policies(

Fig. 5.1.: Active bundle structure.

Initialization of an AB: An owner of sensitive data constructs an AB by putting

together data, metadata, and a virtual machine. After this stage, the AB becomes

an active entity capable of self-protection.

Building an AB: The steps taken in the process of building an AB are as follows:

1. The AB gets two pairs of public/private keys from a Security Service Agent

(SSA), which is a trusted third party (TTP), where the first pair of keys is used

for encrypting the AB and the second pair of keys is used for signing/verifying

the signature of sensitive data included in the AB.

2. The AB sends a request to SSA asking it to record the AB’s security information,

which includes its name, a decryption key, and the trust level that a host must

satisfy to use the AB. The decryption keys are given only to hosts that are

eligible to access the AB.
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3. The AB computes a hash value for sensitive data and signs them using the

signature key. The signature certifies that sensitive data is from its owner.

4. The AB encrypts sensitive data using the encryption key.

Enabling an AB: After arriving at the destination host, AB enables itself. The

steps of the enabling algorithm are as follows:

• Step 1: AB sends a request to SSA asking for the security information on AB

and the host’s trust level.

• Step 2: AB checks if the host’s trust level is lower than the minimal trust level

required for AB access. If so, the AB apoptosizes (i.e. completely destroys

itself) (executes Step 3); otherwise, it executes Step 4.

• Step 4: AB checks integrity of its sensitive data. It computes the hash value

for sensitive data and it verifies AB’s signed hash value by comparing it to the

computed hash value. If verification fails, AB apoptosizes (Step 5); otherwise,

it decrypts the data (Step 6).

• Step 7: AB enforces its privacy policies.

• Step 8: AB provides the output to the host.

As can be deduced from the above description, active bundles provide self pro-

tection of sensitive data with the help of an active policy and integrity enforcer, as

they move through various foreign platforms. However, once data is shared with a

platform, they do not have control over its integrity. This makes them e↵ective tools

for data dissemination, but they need to be augmented with other dynamic security

mechanisms to prove e↵ective for dissemination and trusted execution of software.

One major shortcoming of active bundles for real-time MCC is their reliance on a

TTP for their operations including the determination of the trust level of a plat-

form, receiving of decryption keys and audit. Communication with a third party
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adds increased runtime costs and additional security problems, which is undesirable

in MCC.

5.3.2 Introspection

Introspection in the context of software tamper-resistance is the examination of a

program or code segment to check that its integrity is preserved. The main method

used for code introspection is the augmentation of a program with code that computes

a hash value (or a checksum) over a code region and compares it to an expected

value [48]. The code snippet in listing 5.1 shows an example of introspection [48] in

a C-like syntax. Lines 2-4 in the code setup the starting end ending positions of the

code whose integrity is to be checked and lines 5-8 calculates a hash of the code in

that region using a special operation �. Lines 9-10 act as the response code by taking

the action of aborting execution in the case that the calculated hash value does not

match the expected value for the region.

1. . .

2s t a r t = s t a r t a dd r e s s ;

3end = end address ;

4h = 0 ;

5while ( s t a r t < end ) {

6h = h � ⇤ s t a r t ;

7s t a r t++;

8}

9i f (h != expec ted va lue )

10abort ( ) ;

11. . .

Listing 5.1: Introspection example
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Attacks against tamper-resistant software using introspection generally use pattern-

matching methods to identify locations in the program that include suspicious code

(such as conditionals checking the value of a hash). In order to prevent the response

to a tamper detection, these attacks usually modify the response code or replace the

hash value with a pre-computed one that would force the program to continue exe-

cution. The only way to make sure that tampering will be detected in this case is

to ensure the integrity of the tamper-resistance code itself. Even though it may not

be possible to ensure perfect resistance against such attacks, especially in the case of

large code size, the probability of success of the attacks can be decreased by using

the idea of a network of software guards, as described below.

Software Guards

The software guards algorithm as proposed by Chang and Atallah [50], is based on

the idea that in order to prevent tampering it is not su�cient for guards (introspection

code) to check the integrity of the software code: They need to check the integrity of

each other as well. The algorithm is based on the following principles:

• The program is divided into code regions, where each region is either user code,

a checker guard or a responder guard. A checker guard is an execution unit

that checks the integrity of a code region by comparing its checksum value to

an expected value, whereas a responder guard is an execution unit that replaces

a tampered code region with the original code for that region.

• A region can be checked by multiple checkers, and a tampered code region can

be repaired by multiple responders.

• To provide tamper-resistance, a network of guards is placed in the execution

flow graph of the program in a way that satisfies the conditions: (1) every

responder guard is inserted into a point that is reached before the execution of

the code it guards, (2) every checker guard is inserted at a point in the program
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during the execution of which the code to be guarded is present in the program

image.

• It is possible to create a circular chain of guards such that each guard in the

chain protects its neighbor, forming a cycle with no unprotected guards.

The introduction of software guards was a pioneering e↵ort in the field of self-

protecting software. The level of protection provided by this approach depends on

the number of guards integrated into the program, where a greater number of guards

covering a larger part of the code base will provide better protection against attacks.

Additional measures to make attacks harder include (1) obfuscating guard code, so

that the guard can protect itself in addition to being protected by other guards, and

(2) excluding recognizable signatures that the attacker could statically scan for from

the guard code. There are two main issues with increasing the resilience of a software

program against tampering attacks with these hardening approaches:

1. Code size: Integration of an increased number of guards into the program code

results in increased code size. While this may not be an important factor for

static software running on a dedicated platform, it could have a significant

e↵ect on the performance of mobile code in an MCC system, due to bandwidth

limitations and sharing of resources.

2. Runtime performance: The integration of guard code into the program could

result in significantly lower performance, especially if the guard code dominates

the program. This is especially important in the case of software with real-

time requirements, and software that runs on a platform sharing resources with

others, as in the case of MCC.

The tamper-resistance approach we propose for AAMCC, described in section 5.6,

is inspired by the main idea of software guards that guard code needs tamper detection

too. In order to meet the real-time requirements of MCC, we propose a low-overhead

tamper detection mechanism as described in section 5.4. One main di↵erence of our
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approach from the software guards approach is that the program does not continue

execution in the cloud platform once tampering is detected, as this signifies that the

platform is compromised and cannot be trusted further. In order to make the mobile

platform aware of the tamper, a form of remote tamper-resistance, as described in

section 5.5, is needed.

5.4 Low-Overhead Tamper Detection

The main challenges for achieving dynamic tamper-resistance with self-protecting

software in MCC are the following:

• The tamper detection mechanism should involve minimal modification to the

software structure, and be transparent to the programmer.

• Appropriate measures should be taken in case of tamper detection in a way that

is transparent to the software.

• The runtime performance overhead of tamper detection and response should be

minimal.

• Communication costs for detection and reporting of tamper should be minimal.

• The size of the program code/data should not be increased significantly due to

the protection mechanism.

Our solution to address these challenges in AAMCC is to use Aspect-Oriented

Programming (AOP) to integrate integrity verification units, like the software guards

described in section 5.3.2, into the autonomous application modules. Section 5.4.1

below provides an overview of AOP.

5.4.1 Aspect-Oriented Programming

Aspect-oriented programming (AOP) is a programming technique that al-

lows for the augmentation of software with cross-cutting concerns, which are behav-
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iors that span multiple, often unrelated, implementation modules [55]. Examples

for cross-cutting concerns include security, logging, debugging, synchronization and

persistence among others. An aspect, as defined by Kiczales et al. [56], is property

that a↵ects the performance or semantics of the components of a system, and is not

a unit of the system’s functional decomposition itself. AOP enables programmers to

cleanly separate aspects and software components, so that cross-cutting concerns of a

program can be seamlessly integrated into program code, obviating the need to inline

the code for the concern in multiple places.

AOP languages are based on five main elements [57, 58]:

• Join point: An identifiable point in the execution of a program, such as the

execution of a method or the handling of an exception, where enhancements

may be added.

• Advice: The behavior to be executed at a particular join point. Many AOP

frameworks model an advice as an interceptor.

• Pointcut: A means of identifying join points (i.e. a predicate that matches

join points). An advice is associated with a pointcut expression, and is executed

at the join points matched by the pointcut.

• Introduction: Declaring additional methods or fields on behalf of a type.

• Weaving: A method of attachment of units to a program. This can be done

at compile-time, load-time or runtime.

The code snippet in listing 5.2 shows an example of using the AspectJ [59] AOP

framework to output the name of each method invoked in the QueensBehaviour class

from section 4.2.2 and the corresponding makespan.
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1public aspect P r o f i l e r {

2po intcut methodCalls ( ) :

3execut ion (⇤ QueensBehaviour . ⇤ ( . . ) ) ;

4

5Object around ( ) : methodCalls ( ) {

6long s t a r t = System . cur r entT imeMi l l i s ( ) ;

7try {

8return proceed ( ) ;

9}

10f ina l ly {

11long end = System . cur rentT imeMi l l i s ( ) ;

12S t r ing method = th i s Jo inPo in t . ge tS ignature ( ) . getName ( ) ;

13System . out . p r i n t l n (method + ”\ t ” + ( end � s t a r t ) ) ;

14}

15}

16}

Listing 5.2: AOP example using AspectJ

Line 2 in the code declares a pointcut methodCalls, which is a regular expression

to match during the execution of the program. In this case, the pointcut matches

all invocations of all methods of the QueensBehaviour class. Any point matching

this pointcut in the program is a join point. Line 5 declares the code (advice) to be

executed upon matching the declared pointcut. The around keyword specifies that

the enclosed code has parts to be executed before (line 6) and after (lines 10-14) the

body of the matched methods, with the body of the method executing in between (as

specified by the special method proceed). We see that the whole process of adding the

makespan profiling functionality is completely transparent to the actual application

code.
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5.5 Remote Tamper-Resistance

Remote tamper-resistance is a special case of tamper-resistance, where the pro-

gram to be protected runs on an untrusted platform, but communicates with a master

program on the trusted platform, which detects or is made aware of any tampering

with the program running on the untrusted platform [48]. This kind of tamper-

resistance is especially necessary in the context of MCC, where the mobile platform

needs to ensure the integrity of o✏oaded computation before integrating results/in-

formation received from the cloud platform.

One of the main techniques used for remote tamper-resistance is the use of intro-

spection for the program running on the untrusted platform and reporting the hash

value of the code to the trusted platform, which can make sure that it matches a

pre-computed value. However, this approach is not su�cient to ensure tamper-free

execution, as the remote platform can tamper with the hash value before reporting.

Two main approaches proposed to mitigate the problem of tampering with the hash

value are the following:

1. Making sure that the hash value was computed with the correct code: The

Pioneer [60] system proposed by Seshadri et al. relies on a hash function con-

structed such that, if the remote platform cheats during the computation the

computed hash will either be wrong or it will take a longer time than expected

to compute it. This approach relies on the knowledge of the exact system prop-

erties on the remote platform, such as the CPU model, clock speed, memory

latency, memory size etc. to estimate the execution time of the hash function,

therefore it is too restrictive for MCC using public clouds, where the mobile

platform may not have the knowledge of any of these properties.

2. Continuous code replacement [48]: This approach proposed by Collberg et al. is

based on the idea of continuously obfuscating the code executing on the remote

platform. The o✏oaded software in this approach consists of blocks of code,

where each block may be modified at runtime based on updates received from
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the trusted platform. Frequent updates to the blocks make it di�cult for an

adversary to analyze the code and modify it to serve malicious purposes. This

approach requires constant communication between the platforms, making it

unfit for MCC due to bandwidth limitations and the real-time computation

requirements.

Even under security models ensuring the integrity of all computation on a for-

eign platform, remote tamper-resistance relies on secure communication between the

trusted and untrusted platforms, as data could still be tampered with in transit. Sec-

tion 5.5.1 below provides an overview of the secure communication problem in the

MCC setting and presents the details of one possible solution to the problem.

5.5.1 Secure Communication with the Cloud

While tamper-resistant execution is one of the requirements for getting trustwor-

thy results from o✏oaded computation, without a secure communication link between

the mobile and cloud platforms, it would not be possible to judge the integrity of the

results received. In order to trust the messages sent by an autonomous application

module, the mobile platform should be able to verify the following conditions upon

message receipt:

1. The message was sent by a legitimate agent (authentication)

2. The message was not modified during transmission (integrity)

3. The content of the message was hidden from the outside world during trans-

mission (confidentiality)

4. The content of the message is in the expected form

One of the most e�cient ways to verify the first three conditions all at once is to

use authenticated encryption for messages sent by mobile agents.
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Authenticated Encryption

Authenticated encryption (AE) is a shared-key based transform whose goal

is to provide both privacy and authenticity of the encapsulated data [61, 62]. The

encryption process E in an authenticated encryption scheme takes a plaintext p and

a shared secret key k and returns a ciphertext c, whereas the decryption process D

takes the ciphertext c and the same key k and outputs either the plaintext p or a

special symbol ?.

i.e.

E(k, p)! c

D(k, c)! p [ ?
(5.1)

An output of ? by D means that the received ciphertext c was invalid or unau-

thentic. Using AE for a message sent by Alice to Bob, encrypted with their shared

key k has two implications:

1. An active adversary (man-in-the-middle) cannot create a ciphertext which would

make Bob believe that it was encrypted by Alice, i.e.

if D(k, c) 6= ? ) c is from someone who knows the shared key k.

2. The message is protected against chosen ciphertext attacks, i.e. the privacy of

the message is preserved.

5.6 Proposed Tamper-Resistance Approach

5.6.1 Assumptions and Attack Model

Before delving into the details of the proposed tamper-resistance protocol, we state

our assumptions about the environment in which an autonomous application module

executes and the common types of attacks such execution platforms are vulnerable
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to. The proposed tamper-resistance protocol is supposed to operate correctly under

the following assumptions:

• The VMI on which the agent is executing resides in a public cloud with no strict

security policy enforcements.

• The cloud service provider is trusted, however users of the cloud services may

not be trusted.

• A user (attacker) residing on the same physical machine as the agent is capable

of modifying data and code at the application layer, but not capable of modi-

fying anything at the hypervisor, host operating system or hardware layers.

Under these assumptions, the autonomous application modules are prone to at

least the following kinds of attacks:

• Man-in-the-middle: This attack involves eavesdropping on the communication

between the agent in the cloud and the mobile platform, forming independent

connections with each and modifying messages exchanged between them [63].

The attack would only be successful if the attacker can impersonate the parties

involved, i.e. convince the parties that the messages they receive are coming

from the expected party at the other end of the communication link, and not

from an attacker.

• Active attacks against code and data integrity: These attacks comprise the most

common forms of tampering on a shared execution platform. The attacker could

tamper with a program statically before or dynamically during its execution by

tampering with the libraries it uses, attaching a debugger to the program and

modifying code on-the-fly by replacing values of variables, methods etc.

• Data privacy violations: These attacks involve the revealing of private data

in the cloud to an attacker who could use it for malicious purposes. The at-

tacker can extract private information from the agent data during execution or
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from the messages exchanged between the agent and the mobile platform by

eavesdropping on the communication link.

• Code privacy violations: These attacks involve leaking of proprietary program

code to an unauthorized party. It can be achieved by an attacker by making a

copy of the code as it is executing with the help of a debugger etc.

5.6.2 Tamper Detection and Reporting Protocol

The approach we propose for tamper-resistant execution of o✏oaded code in the

cloud is based on augmenting the mobile agents sent to a cloud platform with self-

protection capability, using the mechanisms detailed in the sections 5.4 and 5.5 above.

Integrity checkpoints are distributed throughout the agent code to ensure timely

detection of tamper. Upon tamper detection, the agent stops execution, moves to a

di↵erent platform and either (a) starts execution from the beginning or (b) resumes

execution from the last integrity-verified checkpoint. The self-protection method relies

on the following two main ideas:

1. Tamper checking guards: As the agent code is executing in the cloud, the

integrity of the code is checked using introspection by software guards placed at

various integrity checkpoints. These guards are also capable of reporting tamper

to the mobile platform.

2. Guard tamper tracking code: Each time a software guard checks for tamper, its

own hash value is saved in agent data. The agent accumulates the guard hash

values in a variable, which forms the key to encrypt the result sent to the mobile

platform when the computation is complete. The mobile platform is capable of

computing the key value independently, therefore it can decrypt the message

received to extract the result from the autonomous application module.

Using an encryption key formed by the dynamic hash values of the software guard

code in the authenticated encryption of the result has the following implication: For
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the correct encryption key to be formed, the guard hash value at each integrity

checkpoint needs to be integrated into the key and the integrated value needs to

match the true (original) hash value for that guard. If the result received from the

mobile agent cannot be decrypted by the mobile platform, there are two possibilities:

1. The message containing the result was modified in transit to the mobile plat-

form.

2. The message was not encrypted with the correct key on the cloud platform.

In either of these conditions, the result cannot be integrated into the program on the

mobile platform.

In the proposed security approach, accumulation of guard hash values during

agent code execution is a stealthy tamper-resistance mechanism in the sense that it

does not involve any checks (conditional expressions) that are prone to detection by

pattern matching methods used by attackers. It is important to form the encryption

key using all guard hash values, as we are interested in detecting any tamper during

the execution of the agent. This incremental formation of the encryption key serves

two purposes:

1. The encryption key is not revealed until the end of program execution, which

makes it harder for an attacker to dynamically swap the value of the corre-

sponding variable with the original key value to hide tamper.

2. The mobile platform can ensure that all integrity verification blocks in the of-

floaded module were executed in the case of a correct key value, as the execution

of guard hashing code is triggered by the execution of guard code blocks.

As evident from the above description, the strength of the mechanism for detecting

tampering with the software guards relies heavily on the strength of the encryption

key. In order to create a strong key, allowing for the detection of tamper with high

probability, the process of forming the key should satisfy the following conditions:
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• All guard hash values should be integrated into the key.

• The individual guard hash values should be formed using a collision-resistant

hash function.

• The function forming the encryption key from the individual guard hash val-

ues should output uniformly distributed (pseudorandom) results in its output

domain.

• The function forming the encryption key should be able to operate incrementally

(not necessarily commutative or associative), instead of requiring all input at

once. This is because storing the individual hash values throughout the program

execution both increases space requirements and makes the hash values prone

to modification attacks.

Another condition that needs to be satisfied for the tamper detection mechanism to

operate correctly is the ability of the mobile platform to calculate the encryption key

independently, as a symmetric-key encryption mechanism is used in the model. This

means that integrity checkpoints should be placed in the code in such a way that their

execution is independent of the control-flow of the program, i.e. the corresponding

guard code is executed no matter which path the program takes based on the runtime

conditions.

Let H be a collision-resistant hash function used to calculate the guard hash

values. The algorithm to compute the encryption key is provided in Algorithm 1. The

result of the o✏oaded computation is encrypted using an authenticated encryption

scheme introduced in section 5.5.1, with the secret key formed using this algorithm.
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Algorithm 1: Algorithm for computing AE encryption key
input : guardCode: Array of guard code text, H: hash function, F : guard

hash accumulation function

output: encryption key for autonomous application module result

numBlocks size(guardCode)

key  0;

mostRecentGuard 0;

while mostRecentGuard < numBlocks do

hashOfGuard H(guardCode[mostRecentGuard]);

key  F(key, hashOfGuard));

mostRecentGuard mostRecentGuard+ 1;

end

Figure 5.2 shows the UML activity diagram of the execution lifecycle of a mobile

agent in the proposed tamper-resistance framework. The main steps taken by the

agent during execution are as follows:

• Step 1: The running guard hash value for mobile agent MA is reset.

• Step 2: MA is sent to a selected VMI for execution.

• Step 3: MA checks the integrity of its code and data before starting execution

on the cloud platform.

• Step 4: If the integrity of MA was preserved during the transfer, MA starts

executing the first code block in the application module and goes onto Step 5.

Otherwise, a new VMI V is selected by inquiring the cloud directory service,

MA sends a message to the mobile platform including the tamper report and

its new VMI address, moves to V and restarts execution from Step 1.

• Step 5: The software guard for the most recently executed code block checks the

runtime integrity of the block. If no tamper was detected, the running guard
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Fig. 5.2.: Activity diagram for proposed tamper-resistance mechanism.

hash value is updated with the hash of the guard code performing the most

recent check. Step 5 is repeated until there are no more code blocks to execute.
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If tamper was detected by the guard, a new VMI V is selected by inquiring the

cloud directory service, MA sends a message to the mobile platform including

the tamper report and its new VMI address, moves to V and restarts execution

from Step 1.

• Step 6: The result of the o✏oaded computation is encrypted with the guard

hash value and sent to the mobile platform.

• Step 7: If the mobile platform is able to successfully decrypt the result message

received from MA, it integrates the result into the program. If the decryption

of the result message fails on the mobile platform, the whole process of MA’s

execution is repeated starting with Step 1.

5.6.3 State-based Programming for Resuming Agent Execution after Tam-

per Detection

The tamper-resistance approach introduced above forces a complete restart of the

execution of an autonomous application module every time it moves to a di↵erent

platform due to tampering. This could introduce significant delay for the receipt of

a response on the mobile platform, especially in the case of late tamper detection in

program modules of high computational complexity. One approach that could be used

to avoid the performance penalty due to tampering is to exploit the statefulness of

mobile agents to resume execution from the last integrity-preserved point of execution

after migration to a new platform.

Figure 5.3 shows a UML activity diagram of the tamper-resistance protocol en-

hanced with stateful agents capable of resuming computation from the last code block

of confirmed integrity. Note that the main structure of the agent lifecycle is the same

as that in Figure 5.2, with the major di↵erences being emphasized by rectangles with

thicker borders. The main changes to the tamper-resistance algorithm are as follows:
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• In addition to saving a guard hash value for every execution block, the agent

keeps track of its execution state, i.e. it records the last block of tamper-free

execution after each tamper check.

• When tampering is detected and the agent moves to a di↵erent platform, it

does not start execution from scratch. Instead, it continues execution with the

code block during the execution of which tampering was detected.

• The conditions under which the agent restarts execution from scratch (i.e. failed

decryption and failed initial integrity check) involve a reset of the agent state

in addition to the guard hash.

The introduction of states to the autonomous application modules requires a slight

modification of the program code to align integrity checkpoints with agent state

updates. An agent program consisting of the sequential code blocks block1, block2

and block3 (where integrity checkpoints are attached) in listing 5.3 is transformed

into the stateful program in listing 5.4 to acquire the ability to resume execution with

the last integrity-verified checkpoint after migration.

1public class S t a t e l e s s {

2public stat ic void main ( St r ing [ ] a rgs ){

3block1 ( ) ;

4b lock2 ( ) ;

5b lock3 ( ) ;

6}

7. . .

8}

Listing 5.3: Sample stateless program
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Fig. 5.3.: Activity diagram for proposed tamper-resistance mechanism with states.
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1public class S t a t e f u l {

2stat ic int s t a t e = 0 ;

3public stat ic void main ( St r ing [ ] a rgs ) {

4i f ( s t a t e == 0) {

5block1 ( ) ;

6s t a t e = s t a t e + 1 ;

7}

8else i f ( s t a t e == 1) {

9block2 ( ) ;

10s t a t e = s t a t e + 1 ;

11}

12else i f ( s t a t e == 2) {

13block3 ( ) ;

14s t a t e = s t a t e + 1 ;

15}

16. . .

17}

18}

Listing 5.4: Stateful program

5.6.4 Implementation Details

In the proof-of-concept implementation of the proposed tamper-resistance frame-

work, integrity checkpoints are inserted around every method call using the As-

pectJ [59] AOP framework. The hash value for each method is calculated on the

bytecode for that method using the SHA-256 secure hash algorithm. The Galois/-

Counter (GCM) mode of operation [64] is used for the authenticated encryption of

the result by the mobile agent in the cloud platform and the decryption on the mobile

platform. GCM is a block cipher mode of operation that uses universal hashing over
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a binary Galois field to provide authenticated encryption. It can be implemented in

hardware to achieve high speeds with low cost and low latency, and software imple-

mentations can achieve very high performance by using table-driven field operations.

Authenticated encryption using GCM takes three inputs:

• A secret key K

• An initialization vector IV , that can have any number of bits between 1 and

264. For a fixed value of the key, each IV value must be distinct, but need not

have equal lengths.

• A plaintext P, which can have any number of bits between 0 and 239 - 256.

The output is a ciphertext C of the same length as P . The decryption process

takes the inputs C, K, and IV and either outputs P or ?, depending on whether

there was tampering on the cloud platform or during message transmission.

In the proof-of-concept implementation, the secret key is formed from the bitwise

addition of the hash values of guard code, while the initialization vector of length

128 bits is determined using a random number generator on the mobile platform and

integrated into agent data before it is sent to a cloud platform for execution.

5.7 Evaluation of Proposed Tamper-Resistance Protocol

5.7.1 Resilience against Attacks

The resilience of the proposed security model against the attacks listed in sec-

tion 5.6.1 is as follows:

• Man-in-the-middle: The proposed model provides protection against man-in-

the-middle attacks with authenticated encryption. An attacker would need

to have knowledge of the secret shared key of the mobile platform and the

autonomous agent in order to be able to impersonate the agent in a message
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sent to the mobile platform. Any message encrypted with a key other than the

true shared key will not be decryptable by the mobile platform.

• Active attacks against code and data integrity: The proposed model provides

protection against active data and code tampering attacks using software guards

to check the dynamic integrity of program code and passively tracking the in-

tegrity of software guards during execution, any tampering with which is re-

vealed upon attempting decryption of data encrypted with a key whose value

is based upon the integrity of guard code. The proposed scheme is resistant

against modification of agent code at load-time and hot-swapping of code dur-

ing runtime. However, any modifications performed at the kernel or the native

libraries on the cloud platform, which require higher privileges, will go unde-

tected by this tamper-resistance framework.

The proposed tamper-resistance framework was tested with (a) tampering with

o✏oded code before execution using a faulty class loader and (b) tampering

with o✏oaded code during runtime using the Javasnoop [65] tool, which allows

intercepting methods and altering data during the execution of a Java program,

by attaching to the running process. Attacks were implemented against the

integrity of both the program code and the guard code. The proposed framework

was able to detect all tampering cases.

• Data privacy violations: Although the proposed model provides protection

against privacy violations in data communication by using encryption, it does

not protect the privacy of data in the cloud once it is revealed by an agent.

Protection of sensitive data in AAMCC is provided by avoiding the o✏oading

of such data to the cloud altogether.

• Code privacy violations: The proposed model does not provide protection of

code privacy, as the code is run in clear text on the cloud platform. Using

encrypted functions would be a way to mitigate this problem, however it could

significantly hurt the application performance. Therefore, any code the privacy
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of which needs protection is kept local on the device in the current computation

o✏oading framework.

5.7.2 Experimental Evaluation

Experiments were performed to evaluate the performance overhead of the proposed

tamper-resistance mechanism for the makespan of two of the applications introduced

in section 4.3.

Experiments with Face Recognition

The experiments with the face recognition application with local-only data were

performed for the case of a picture database of 32 subjects to compare against. An

Android emulator was used as the mobile platform, and a medium VMI in the west1-

a region of EC2 was used to host the mobile agents. 62 integrity checkpoints were

inserted into the agent code. Each experiment was repeated 75 times and we report

the average makespans. Figure 5.4 shows the comparison of the average makespan

of the face recognition application with code o✏oading in the case of no tamper-

resistance mechanism present and the average makespan of the same application with

the proposed tamper-resistance mechanism integrated.

As seen in the figure, the di↵erence between the average makespans for the two

cases is always less than 600 ms, which is only about 1.8% of the total execution

time. The average makespan for on-device execution for the same application is

around 255 sec, therefore the AAMCC with tamper detection still does much better

than monolithic execution on a mobile device, and the tamper-resistance overhead is

negligible.
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Fig. 5.4.: Comparison of execution times for the face recognition application with vs.
without tamper-resistance mechanism.

Experiments with NQueens Puzzle

The experiments with the NQueens application were performed with the version

outputting the number of solutions for a puzzle with a particular number of queens.

A Motorola Atrix 4G device was used to host the mobile application, whereas a

medium VMI in the west1-a region of EC2 was used to host the cloud platform.

The connection between the mobile and cloud platforms was provided over a wireless

network. 2 integrity checkpoints were inserted into the agent code. Each experiment

was repeated 10 times and we report the average makespans. Figure 5.5 shows the

comparison of the average makespan of the NQueens application with code o✏oading

in the case of no tamper-resistance mechanism present and the average makespan of

the same application with the proposed tamper-resistance mechanism integrated, for

di↵erent number of queens.

As seen in the figure, the di↵erence between the average makespans for the two

cases is always less than 2.2 sec, which is less than 3.6% of the total execution time

for the case with 15 queens. The average makespan for on-device execution for the

same case is 872 sec, therefore the AAMCC with tamper detection still does much
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Fig. 5.5.: Comparison of execution times for the NQueens solver application with vs.
without tamper-resistance mechanism.

better than execution on the mobile device, and the tamper-resistance overhead is

negligible once again.

We also performed experiments where the first VMI to which the NQueens ap-

plication module was o✏oaded had a faulty class loader, i.e. the agent code was

tampered with at the first hop it was o✏oaded to. Figure 5.6 shows the comparison

of the execution times for (a) device-only execution, (b) o✏oaded execution with no

tampering, and (c) o✏oaded execution where execution on the first VMI the agent

runs on involves tampering, but the next VMI it migrates to after detection of tamper-

ing (at the first integrity checkpoint) does not. The execution time for the o✏oading

case is measured as the time between the start of the application and the time when

a correct result is received from the agent.

Figure 5.6 shows that execution with tampering (involving migration of the agent)

involves a fixed extra cost of about 15 seconds over the no-tamper case, due to the

migration of the agent, for all numbers of queens. However, even with tampering
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Fig. 5.6.: Comparison of execution times for the NQueens application for (a) device-
only execution, (b) o✏oaded execution with no tampering, and (c) o✏oaded execution
with tampering on first VMI.

involved, AAMCC with tamper-resistance still achieves significantly higher perfor-

mance than device-only execution.

5.8 Chapter Summary

In this chapter we discussed major security issues with o✏oading code and data to

a public cloud and proposed a tamper-resistance framework for MCC based on self-

protecting agents, using various integrity checkpoints of code introspection to detect

and report tamper. We also discussed details of a state-based programming model

for MCC, where the agent can continue execution from the last integrity-preserving

checkpoint after migration to a di↵erent platform, instead of starting execution from

the beginning. The proposed tamper-resistance framework was shown to incur very

low runtime overhead and successfully detect load-time and runtime code tamper-
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ing attacks. The negligible performance overhead of using self-protecting agents for

tamper-resistance proves that mobile agents are e↵ective tools for high-performance,

secure MCC.
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6. CONTEXT-AWARE MOBILE-CLOUD COMPUTING

This chapter discusses the e↵ects of di↵erent types of context on the performance

of mobile-cloud computing. We start with motivating experiments using mobile ap-

plications under di↵erent conditions to demonstrate the importance of context in

o✏oading decision-making. We then propose a computation o✏oading model for

multi-component mobile applications taking into account the network context, and a

self-performance evaluation algorithm for agent-based application modules consider-

ing the cloud resources context.

6.1 Context in MCC

Context plays a very important role in achieving high quality of service with

both mobile and cloud computing, as both computing paradigms face highly dynamic

conditions, i.e. highly variable context. Richness and e�cient gathering/utilization

of contextual information gains even more importance in the case of collaboration

between mobile and cloud platforms, as achieving high computational performance

and user satisfaction is contingent upon the correct identification of resources to be

utilized and various constraints peculiar to mobile computing.

Mobile-cloud context consists of the following elements [66]:

1. User preference: This element of context captures user-specific preference set-

tings for particular mobile applications, and could potentially a↵ect the com-

position of mobile services.

2. Device context:

• Device characteristics: This type of context information is related to the

inherent features of the mobile device, such as the mobile operating system,
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processor speed, memory size, etc. It is most useful for determining the

expected performance of a mobile application running on the device.

• Energy: This is one of the most utilized and dynamic types of context

information in mobile-cloud computing. Energy utilization by di↵erent

components of a mobile application and the power level of a mobile de-

vice during application runtime are strong determinants for computation

o✏oading/service composition decisions in a mobile application.

• Workload: The workload on the mobile device (the usage of device re-

sources by di↵erent applications, or by di↵erent components of an appli-

cation) is another highly dynamic element of context a↵ecting application

component o✏oading decisions.

3. Quality of service

• Data connection type, bandwidth: The available bandwidth between the

mobile device and a cloud server and the data connection type are impor-

tant factors especially for real-time data-processing intensive applications.

• Cloud resource availability: This contextual clue captures the availability

and quality of various resources on specific cloud hosts, and can be used

to make decisions regarding the selection of cloud services to achieve the

best application performance.

4. Situational context: This context element consists of monitored data and in-

formation regarding the mobile user location, time and other data collected by

sensors on the device (e.g. accelerometer). It is most useful in personalizing

mobile applications to achieve high user satisfaction.

6.2 E↵ects of Mobile-Cloud Context on Autonomous Agents-based MCC

The subsections below provide an evaluation of the e↵ects of di↵erent elements of

mobile-cloud context on the performance of AAMCC, by reporting the results of a
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series of experiments performed using the framework in di↵erent contexts on the face

recognition and NQueens puzzle applications introduced in section 4.3.

6.2.1 E↵ect of Network Speed

Figure 6.1 shows the e↵ect of di↵erent network speeds on the execution time of the

face recognition application with local-only data using AAMCC, when the number

of pictures to compare against is fixed at 32. In this case, we observe a significant

performance penalty with a slow network, due to the large data transfer involved in

o✏oading. However, the performance of the o✏oading approach under the slowest

network conditions is still significantly better than that of device-only execution.
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Fig. 6.1.: Execution time vs. network speed for face recognition application with
local-only data.

6.2.2 E↵ect of Multi-Tasking

In this set of experiments, we evaluate the performance of a multi-threaded version

of the NQueens puzzle from section 4.3.3, where there are as many threads as the
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number of queens and each thread of execution finds the number of solutions for the

puzzle for a fixed position of the first queen (queen on the first row).

Table 6.1: Single vs. multi-threaded NQueens execution time (in seconds).

number of
queens

device-
only single
thread

device-only
multi-
thread

o✏oaded
single
thread

o✏oaded
multi-
thread

8 0.03 0.04 0.31 0.29
10 0.13 0.15 0.30 0.32
12 3.07 2.48 0.61 0.60
13 18.65 10.32 1.77 1.85
14 123.45 63.85 9.46 9.50
15 872.01 447.24 60.60 61.26

Table 6.1 provides a comparison of the execution time performances of the single-

threaded vs. multi-threaded versions of the NQueens puzzle solver. Note that of-

floaded execution uses a single core machine (medium instance) in Amazon EC2. For

on-device execution, we observe close to 2-fold speed-up with multi-threading. The

number 2 here is attributable to the existence of 2 cores on the mobile device. We

also observe that although o✏oaded execution still performs significantly better than

on-device execution, there is no noticeable di↵erence between the single-threaded and

multi-threaded versions of o✏oaded execution, which is best explained by the lack of

multiple cores on the cloud host. Table 6.2 shows that the total energy consumption

on the mobile device is not a↵ected by multi-threading.

6.2.3 E↵ect of Cloud VMI Characteristics

We also performed experiments with di↵erent machine instance types in Amazon

EC2 as the cloud hosts, to see the e↵ect of cloud host architecture on execution time.

Specifications for the machine instance types we used in the experiments are shown

in Table 6.3.
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Table 6.2: Single vs. multi-threaded NQueens energy consumption (in Joules).

number of
queens

device-
only single
thread

device-only
multi-
thread

o✏oaded
single
thread

o✏oaded
multi-
thread

8 0.08 0.05 0.20 0.21
10 0.16 0.14 0.27 0.23
12 1.84 2.08 0.26 0.19
13 10.64 10.38 0.22 0.21
14 69.32 70.16 0.32 0.27
15 488.86 493.52 0.29 0.26

Table 6.3: Amazon EC2 instance type specifications [67]

Instance type memory number of cores network performance
Micro 0.615 GB 1 very low
Small 1.7 GB 1 low

Medium 3.75 GB 1 moderate
Large 7.5 GB 2 moderate

2x Large 30 GB 8 high

Figure 6.2 shows the e↵ect of the cloud VMI type on the execution time of the

face recognition application with local-only data for di↵erent number of pictures to

compare against. We observe that the performance of the application degrades by

50% when a small machine instance (1.7 GB memory, 1 core) is used instead of a

medium instance (3.75 GB memory, 2 cores).

Figure 6.3 compares execution times for the multi-threaded NQueens puzzle solver

for di↵erent cloud host types in Amazon EC2. We observe that for 14 and 15 queens,

the performance speed-up is commensurate with the number of cores in the host

machine, with the 2x large machine instance taking 8 times shorter than the medium

instance and 4 times shorter than the large instance for the same number of queens.

These results suggest that resource provisioning in the cloud has a significant e↵ect

on the performance of mobile-cloud applications, and that o✏oading decisions should

be made based on the characteristics of the available resources.
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Fig. 6.2.: Execution time of face recognition application with local-only data for small
vs. medium AWS machine instances.

6.3 O✏oading Decision-Making

6.3.1 O✏oading Manager

One of the most important features a↵ecting the performance of an MCC frame-

work is its ability to adapt to changing network conditions when making o✏oading

decisions. O✏oading decisions in AAMCC are made by the o✏oading (execution)

manager mentioned in chapter 4. The o✏oading (execution) manager is a service run-

ning on the mobile device, which is responsible for dynamically determining whether

a specific application module should be migrated to a cloud server to minimize execu-

tion time, given the execution tree of the application. An execution tree, the structure

of which is seen in figure 6.4, is a representation of the interactions between the mod-

ules of an application. The node at the top of the tree is the application entry node

(i.e. the main module). If a node is the direct child of another node in the execution

tree, the module represented by the parent node makes a direct invocation to the



84

8 10 12 13 14 15
0

10

20

30

40

50

60

number of queens

E
xe
cu
ti
on

ti
m
e(
se
c)

medium AMI large AMI 2x large AMI

Fig. 6.3.: O✏oaded execution time of multi-threaded NQueens solver for (a) medium,
(b) large and (c) 2x large AWS machine instances.

module represented by the child node. Note that a tree-based representation of the

interactions between application modules is based on the assumption that there are

no cyclic dependencies, which is a good programming practice, between any modules.

Also, any application module invoked by multiple di↵erent modules is represented as

a di↵erent node for each dependency (i.e. replicated), to avoid increased complexity

of the o✏oading optimization problem.

Each node x in the execution tree is annotated with a number m
x

. m
x

is the time

to execute the module x on the mobile device less the time to execute its submodules.

Each edge in the tree is annotated with a number c
x

, which is the total size of the

data that flows into module x from its parent module and back for the invocation of

x. Note that although the structure of the execution tree would not change between

di↵erent executions, the edge annotations are determined at application runtime,

as the execution time and size of data to be transferred between modules could be

functions of the problem size. Note that this representation does not include numbers
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Fig. 6.4.: Execution tree structure.

for execution time of a module in the cloud. Because the execution plan only includes

o✏oadable modules, execution time in the cloud is considered negligible compared to

that on the device.

The o✏oading manager uses the following cost model to make o✏oading decisions

for each o✏oadable application partition (Note that a submodule s of an application

module x is a module invoked by x):

cd
x

: the cost (in execution time) of executing application partition x locally on

the device

cc
x

: the cost (in execution time) of executing application partition x in the cloud

b: the network bandwidth available to the application

x
s

: the set of submodules of x.
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Then cd
x

and cc
x

are calculated as follows:

cd
x

= m
x

+
X

i2xs

argmin(cd
i

, cc
i

) (6.1)

cc
x

= c
x

/b (6.2)

In order to determine m
x

, we currently use a static application profiler measuring

the execution time of each application partition and record the results as metadata

of the application, so they are available for use by the execution manager during

application execution.

As seen in equation 6.1, the optimization problem has a recursive formulation:

To determine the execution cost of an application module, we first need to determine

the execution costs of its submodules. However, the o✏oading decisions regarding

the submodules of a module could become invalid once the costs of executing the

module on the device and in the cloud are calculated, as o✏oading the module implies

o✏oading its submodules too. We solve the optimization problem with a depth-first

traversal of the execution tree, updating the local and o✏oaded execution cost of each

module once all of its submodule execution costs are set. Algorithm 2 shows how to

solve the makespan optimization problem. Note that, once the whole execution tree

is traversed using this algorithm, all children of a node chosen to be o✏oaded are

o✏oaded with it as well (even if the first decision for them during the traversal was

to keep them local).
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Algorithm 2: Algorithm for making o✏oading decisions
input : tree: Execution tree, where each node is annotated with the

local execution cost m and o✏oading data transfer cost d

output: execution plan containing o✏oading decisions for each node in

the tree

parentNode tree.root;

while parentNode has more children do

childNode parentNode.nextChild;

if childNode.nextChild = null then

if childNode.m > childNode.d then

childNode.decision offload;

childNode.cost childNode.d;

else

childNode.decision local;

childNode.cost childNode.m;

end

parentNode.m parentNode.m+childNode.cost;

if parentNode.nextChild = null then

if parentNode.m > parentNode.d then

parentNode.decision offload;

parentNode.cost parentNode.d;

else

parentNode.decision local;

parentNode.cost parentNode.m;

end

parentNode parentNode.parent;

end

else

parentNode childNode;

end

end
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6.3.2 Experiments with O✏oading Manager

Experiments were performed with a synthetic application consisting of 6 o✏oad-

able modules to evaluate the performance of the o✏oading manager in making e↵ec-

tive o✏oading decisions. Each module in the application has a di↵erent execution

time on the mobile device and di↵erent amount of data transfer requirements for of-

floading. Figure 6.5 shows a comparison of the total execution times of the application

for the cases of (a) monolithic execution on the device, (b) complete o✏oading to the

cloud, and (c) using the o✏oading manager to decide which modules to o✏oad to the

cloud, where the device’s available bandwidth is upper-bounded by the connection

speed types on the x-axis. The values for the di↵erent connection types is provided in

table 6.4. The experiments were run 5 times under stable conditions on a Motorola

Atrix 4G device for each connection speed type, and we report the average results.

Table 6.4: Connection speeds used in the o✏oading manager experiments

Connection
type

downlink
bandwidth

uplink
bandwidth

DNS delay downlink
delay

uplink
delay

Wi-Fi 40 mbps 33 mbps 0 ms 1 ms 1 ms
Cable 6 mbps 1 mbps 3000 ms 2 ms 2 ms
3G 780 kbps 330 kbps 0 ms 100 ms 100 ms

As seen in figure 6.5, using the proposed o✏oading manager for execution plat-

form decisions always achieves better (or same) performance than both monolithic

execution on the device and o✏oading all modules to the cloud.

6.4 Makespan Estimation

The ability to make a close estimation of the makespan (the time taken to run

a program segment) of an application module is important for an MCC model to

be e↵ective. While most of the previously proposed makespan estimation models for

MCC are based on the assumption that the execution time of an application module

o✏oaded to the cloud will be negligible, this assumption may not always hold due to
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Fig. 6.5.: Comparison of the average execution times for a multi-module synthetic
application in the case of (a) device-only execution, (b) complete o✏oading and (c)
o✏oading manager-advised execution for di↵erent network speeds.

the dynamic nature of cloud platforms and the lack of information about the platform

characteristics in some cases. In section 6.2.3, we showed that the characteristics of

VMIs in the cloud can have significant e↵ects on the performance of the applications

they are hosting. Additionally, because cloud resources are shared between multiple

users, the existence of other users on the same platform can significantly a↵ect the

makespan of an application in the cloud as well.

Estimation of the makespan of an application module serves the following purposes

in the context of MCC:

• The estimated makespan can be compared to an expected value to see whether

the execution is likely to satisfy specific time constraints. In the case of a low-

performance platform, the computation can be migrated to a di↵erent platform.
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• In the case of continuous or periodic makespan estimation updates, fluctuations

in the estimates can provide an idea about the sharing of resources on the cloud

platform.

6.4.1 Execution Profiling Model

Software execution profiling is an active area of research, as runtime performance

of applications is of utmost importance for many systems. Although profiling the

execution of an application under stable conditions on a specific architecture can

yield accurate estimations for the makespan of the application under the exact same

conditions, getting an accurate estimation under highly dynamic conditions and for

platforms with di↵erent architectures is much more di�cult. One of the main ap-

proaches used for makespan estimation is low-level analysis of a program to identify

all instructions in the program and calculate the number of CPU cycles the program

would take to execute, which then translates into a specific total execution time based

on the architecture of the platform [68]. However, this approach is too specific and

requires knowledge of the exact architecture of the target platform. It also does not

account for the dynamicity of the runtime environment. In order to achieve accurate

results, a makespan estimation model should continuously update its estimates based

on changing runtime conditions, and not rely on a specific architecture. Fitness for

MCC also requires that the model not be too complex, so that real-time performance

requirements can be satisfied.

The model we propose for makespan estimation of an application module is a

simple, platform-independent model based on heuristics a↵ecting makespan. The

main idea is that the relative makespans of di↵erent execution blocks in an application

should be fixed under stable runtime conditions. This means that, if it takes x seconds

to execute a code block b1 on machine m1, and 2x seconds to execute block b2 on the

same machine, then b2 will take 2y seconds to execute on another machine where b1

takes y seconds. There are a few exceptions to this:
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• Code blocks involving network activity, since their makespan is highly depen-

dent on the network conditions.

• Code blocks involving conditionals with branches of significantly di↵erent com-

putational complexity.

• Code blocks accepting input parameters of significantly di↵erent sizes at runtime

(at di↵erent runs), where the input size determines computational complexity.

The makespan estimation model is trained and used in the application code as

follows:

1. The list of exceptions above forms the list of heuristics we use in the model, i.e.

when selecting the code blocks whose makespans are to be integrated into the

estimation model, we eliminate such blocks from the candidate block list.

2. For the remaining code blocks, we run the application multiple times on the

same platform and record the average makespan for each block.

3. Performance checkpoints corresponding to the selected code blocks are inserted

into the application.

4. During application execution, each performance checkpoint records the actual

makespan of the corresponding code block at runtime. It also makes an esti-

mation of the makespan of the next code block with a performance checkpoint,

based on the relative makespans of the two code blocks.

Given an application with n performance checkpoints, the makespan estimation

for code block number x is calculated using equation 6.3:

T
est

(x) = T
true

(x� 1)⇥ T
avg

(x)

T
avg

(x� 1)
(6.3)

In equation 6.3:

T
est

: Makespan for a code block estimated using the model
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T
avg

: The average makespan for a code block obtained from the statistics

T
true

: The actual makespan for a code block recorded at runtime

The estimated total makespan for the remaining code blocks after x is calculated

using equation 6.4:

T
remaining

(x) =
nX

i=x+1

T
true

(x)⇥ T
avg

(i)

T
avg

(x)
(6.4)

6.4.2 Self-Performance Evaluating Agents

In order to be used in AAMCC, the proposed makespan estimation model needs to

be integrated into the autonomous application modules, so that they can monitor their

own performance during execution on a cloud platform and take appropriate actions

based on the estimated remaining execution time. The integration is performed in a

manner similar to the integration of integrity checkpoints into agent code, described

in section 5.6, using AOP. In the case of self-performance evaluating agents, during

agent execution an updated estimate of the remaining makespan is calculated at each

performance checkpoint. The agent can then use this information to clone itself to

a di↵erent platform if the performance is significantly below an expected threshold.

Note that the agent code is transformed into a stateful program as described in

section 5.6.3 to use this cloning approach, so that the time spent on the already

executed code blocks is not wasted. States correspond to the di↵erent performance

checkpoints.

6.4.3 Experiments with Execution Profiler

We evaluated the performance of the makespan estimation model with the face

recognition application running on di↵erent VMIs in EC2 (VMI specifications listed

in table 6.5). 9 performance checkpoints were inserted into the application, which

correspond to the major method calls. Each experiment was repeated 100 times and
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we report the average numbers over those runs. The face recognition application was

the only process running on the VMIs in this set of experiments.

Table 6.5: Amazon EC2 instance type specifications for makespan estimation exper-
iments [67]

Instance type memory number of cores network performance
m1.small 1.7 GB 1 low

m1.medium 3.75 GB 1 moderate
m1.large 7.5 GB 2 moderate
c1.medium 1.7 GB 2 moderate
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Fig. 6.6.: Comparison of average actual and estimated total makespans for the face
recognition application for di↵erent VMI types in EC2.

Figure 6.6 provides a comparison of the total actual and estimated makespans of

the face recognition application for di↵erent types of VMIs in Amazon EC2. As seen

in the figure, the actual average makespans and the average makespans estimated

by the proposed model are very close to each other for all VMI types. For each

VMI type, we also calculated the absolute value of the di↵erence between the true
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makespan and the estimated makespan at each data point. Table 6.6 summarizes

the average of the absolute errors and the ratio of the average absolute error to the

average true makespan for each VMI type. As seen in the table, the average absolute

error is less than or equal to 292 ms, which translates into less than 2% of the total

makespan for all VMI types, which is negligible. We also observe that the error

increases slightly on VMIs with smaller computing power. These results prove that

the proposed makespan estimation model is an e↵ective tool for MCC, under stable

conditions in the cloud.

Table 6.6: Makespan estimation errors for di↵erent VMI types

Instance type avg. true makespan
(ms)

avg. absolute error
(ms)

absolute error
percentage (%)

m1.small 15142 292 1.9
c1.medium 10147 125 1.2
m1.medium 7277 132 1.8
m1.large 7234 75 1.0

We also performed experiments to see the e↵ect of integrating the proposed self-

performance evaluation approach into autonomous application modules in AAMCC,

as described in section 6.4.2. Experiments were performed with the face recognition

module always o✏oaded to a micro instance in EC2. Based on the performance

evaluation on the micro instance, the o✏oaded agent made the decision regarding

whether to clone itself to another VMI in EC2. For the experiments, the only other

process running on each VMI was a CPU-intensive C process (the same process on

all instances).

Table 6.7: Average execution time savings (in seconds) of self-performance evaluation
for face recognition module cloned from a micro instance

m1.large c1.medium m1.medium m1.small
78.70 74.90 71.94 62.04
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Table 6.7 shows the average execution time savings obtained by using the self-

performance evaluation and cloning approach, for di↵erent types of machine instances

as the second hop (the VMI where the agent is cloned to). The average total makespan

without dynamic performance monitoring in the experiments was around 101 seconds.

As seen in the table, the proposed model is able to achieve between 61% - 73%

time savings by making the decision to clone an agent under unfavorable runtime

conditions.

6.5 Chapter Summary

In this chapter we discussed the importance of context-aware decision-making on

the performance of MCC frameworks and proposed a bandwidth-aware o✏oading

approach for multi-component mobile applications in AAMCC, as well as a model

for performance-aware execution of autonomous agents in the cloud. The proposed

o✏oading management approach was shown to provide better performance than both

on-device execution and complete o✏oading under various network conditions. We

also showed that the proposed dynamic makespan estimation model can achieve high

performance under stable conditions in the cloud, which allows autonomous applica-

tion modules to monitor their own performance and make e↵ective migration decisions

to minimize application makespan.
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7. APPLICATION: MOBILE-CLOUD NAVIGATION

GUIDE FOR THE BLIND

7.1 Motivation

There were about 21.2 million visually-impaired people in the United States in

2011, according to the survey by the National Center for Health Statistics [69]. The

2009 survey by the U.S. Bureau of Labor Statistics [70] states that at all levels of

education, persons with a disability were less than half as likely to be employed than

were their counterparts with no disability and 75% of the blind population in the

survey were not part the labor force. The two biggest challenges for independent

living of the visually-impaired as stated in [71] are access to printed material and

safe and e�cient navigation. In order to navigate safely, blind people must learn

how to detect obstructions, find curbs when outside and stairs when inside buildings,

interpret tra�c patterns, find bus stops and know their own location [71], i.e. be

fully aware of the context of their environment. Fully context-aware navigation for

the blind is not only safely reaching a destination, but also being able to track personal

items/objects of use (such as luggage on an airport carousel), and identify/interact

with acquaintances on the way or at a social gathering.

Independent navigation is becoming a more challenging task for blind people every

day with the advances in technology, products of which such as hybrid cars (aka quiet

cars), makes it more di�cult to rely on other senses such as hearing for safety [72].

Hence, while technology is thought to improve the lives of many people in the world,

it often causes people with disabilities to fall behind, sometimes even putting their

lives at risk. Most navigation aids utilizing high technology have high price tags

(a few thousands of dollars), making them inaccessible to the majority of the blind

population. The di�culty of independent navigation in the increasingly complex
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urban world and the lack of a↵ordable navigation technology cause isolation of the

visually-impaired. Blind people, not being able to drive vehicles, are the ones in

greatest need for accessible transportation services. However, as stated by Kwan et

al. [73], in many cities, people with disabilities are seldom seen using the street or

public transportation due to insu�cient accessibility. This situation has not changed

significantly despite requirements of compliance with special accessibility rules in

buildings and facilities vehicles (e.g. announcing major stops in public transportation

vehicles) such as those stated in the Americans with Disabilities Act Accessibility

Guidelines [74].

As reported by the World Health Organization, more than 82% of the visually-

impaired population in the world is age 50 or older [75], and the old population forms

a group with a diverse range of abilities [76]. This diversity makes it di�cult to

develop a single navigation device usable by the whole blind population. Devices

requiring an involved training process are especially not appropriate for the elderly

people with relatively limited learning capability compared to the young. The design

of a self-complete navigation aid for the visually-impaired thus requires consideration

of many aspects of the problem including wide usability –in terms of both ease of use

by a group of diverse learning abilities and minimal infrastructural requirements–,

real-time processing capability, providing maximal context-awareness, minimal ob-

trusiveness, optimal interface, as well as preservation of the privacy of the users and

the people around them.

Cloud computing is very promising to make computerized systems increasingly

capable, as it provides access to huge amounts of information and computation re-

sources without having to own them. Cloud computing has significant implications

for the advancement of truly accessible and e↵ective technology for context-aware

navigation of the visually-impaired, as it obviates the need to process information

locally with limited resources and makes it possible to provide various functionali-

ties on a single handheld device. Use of cloud computing also makes it possible to

integrate data from various resources for more accurate guidance as opposed to ap-
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proaches relying on a single source of data (such as pure image processing). Aware of

the fact that the interplay between mobile and cloud computing has the potential to

solve many problems remaining largely unsolved for the blind and visually impaired

community, we focus on applications that take a mobile-cloud computing approach

to context-aware navigation in this chapter.

7.2 Proposed Context-Aware Navigation Architecture

The basic mobile-cloud system architecture we propose for building the context-

aware navigation functionality consists of the main components seen in Figure 7.1.

Visual context data is captured by camera modules integrated into eyeglasses and

fed to the mobile device through an appropriate interface (recent technologies such

as Google Glass [77] combining these functionalities in a single device facilitate this

interaction). A speech interface on the handheld device takes commands from the

user and context-awareness guidance is achieved with local computation on the mobile

device with an integrated compass and positioning module as well as computation in

the cloud. Context-relevant feedback is provided to the user via an auditory interface

on the mobile device. Machine instances in the cloud run di↵erent context-awareness

tasks, each acting as an integrator of context relevant data from the mobile device

and various resources on the web to provide accurate guidance.

7.3 Pedestrian Crossing Guide

The ability to detect the status of pedestrian signals accurately is an important

aspect of providing safe guidance during navigation. The inherent di�culty of the

problem is the fast image processing required for locating and detecting the status

of the signals in the immediate environment. As real-time image processing is de-

manding in terms of computational resources, mobile devices with limited resources

fall short in achieving accurate and timely detection. An accurate pedestrian sig-

nal status detection service would benefit not only the visually-impaired, but also
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Fig. 7.1.: Proposed mobile-cloud architecture for context-aware blind navigation

the color-blind as well as systems like autonomous ground vehicles and even careless

drivers. This problem has been studied by many researchers including [78–82]. The

major shortcoming of some of the previously proposed approaches is their reliance

on a low-portability computation device for the necessary image processing, and yet

others are lacking the universal design principle by limiting their training data to a

specific set and draining the battery of the mobile device by running the detection

algorithm on the device. On the other hand, although the approach proposed by Bo-

honos et al. [83], not relying on image processing, is promising for accurate detection,

it requires installation of special hardware at pedestrian signals, which limits its use

to a very small area.

Our initial e↵orts for the proposed context-aware navigation system focused on

the development of a pedestrian signal detector with an Android-based mobile phone

and a crossing guidance algorithm running on a machine instance in the Amazon
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EC2. We developed the system by integrating crossing guidance into an outdoor

navigation application, WalkyTalky, released by the Eyes-Free group at Google [84].

The pedestrian signal detector of the developed system uses a cascade of boosted

classifiers based on the AdaBoost algorithm [85], which is popular for real-time object

recognition tasks, and haar-like features [86] to detect the presence and status of

pedestrian signals in a picture captured by the camera of the Android mobile phone.

The flow of events in the system is as follows:

1. The Android application relies on the GPS receiver on the phone and the Google

Maps [87] server to detect the current location of the blind user.

2. Once the application detects that the blind user is at an urban intersection, it

will trigger the native camera to take a picture (or multiple consecutive pictures)

and send the picture to the server running on the Amazon EC2 cloud.

3. The server performs the image processing, applying the pedestrian signal detec-

tion algorithm and returns the result as to whether it is safe for the user to

cross.

An important aspect of the pedestrian signal status detection problem are time-

liness of response and accuracy. The real-time nature of the problem necessitates

response times of less than 1 second, while high accuracy of detection should be

achieved to ensure safety of the user. Experiments were performed to test the re-

sponse time of the pedestrian signal detector application developed. Test data used

in the experiments consists of pictures at outdoor locations at the Purdue University

campus, which include scenes of di↵erent pedestrian signals. The application devel-

oped was installed on an Android mobile phone, connected to the Internet through a

4G network. The sample task in the experiments involved processing five di↵erent res-

olution level versions of pictures. The average response times that were determined by

the time period between capturing a frame and receiving the response from the server

running at Amazon Elastic Compute Cloud about the pedestrian signal status, were
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measured for each frame resolution level as determined by a Java platform-specific

measure. A resolution level of 0.75 stands for the original frame as captured by

the camera, whereas the lower resolution levels represent compressed versions of the

same set of frames, where image quality falls with decreasing resolution levels. The

response times for di↵erent resolution levels are seen in figure 7.2. Response times

for the original frames are around 660 milliseconds on average, which are acceptable

levels for the real-time requirements of the problem. We also see that response time

decreases further when lower-quality, compressed versions of the frames are sent to

the remote server instead of the originals.
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Fig. 7.2.: Response times of the pedestrian crossing guide application for di↵erent
frame resolution levels.
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7.4 Other Possible Applications of MCC to Assistive Technologies for the

Blind

7.4.1 Indoor Way-finding

Indoor navigation in unfamiliar environments is a di�cult task even for people

without visual impairments. Blindness makes this task harder with the added com-

plexity of the presence of obstacles, stairs, doorways, etc. Accurate positioning is one

of the main challenges faced by indoor navigation aids, while another major challenge

is the absence of maps such as those available for streets. The absence of GPS signals

indoors necessitates the use of some other positioning technology, the common one

being Wi-Fi tracking. However, Wi-Fi has been shown to provide accuracy at most

at the room level [88], which is not su�cient for more refined tasks such as going to

a specific seat in a specific room.

An MCC approach for indoor navigation has the advantage of being able to com-

bine information from many resources to guide the user to find his/her way in an

unfamiliar indoor environment. Whenever maps of the location in question are avail-

able online (The Micello [89] company is already mapping important indoor locations

worldwide), they can be used for guidance and in other cases image processing will

help to detect people in the surroundings to ask for help or optical character recog-

nition will help to detect signs in the building leading to various places. Use of cloud

computing also makes it possible to form a large online database of places visited by

di↵erent users, such that after the first visit to that place, di↵erent features of the

place can be logged in the database for use at subsequent visits to the same place.

7.4.2 Recognition of Objects in Complex Scenes

Real-time and accurate classification of objects in highly complex scenes is an

important problem, having been the recent focus of attention of the computer vi-

sion community due to its many application areas. A solution to this problem is



103

particularly significant for the visually-impaired, as they have great di�culty reach-

ing desired objects especially in unfamiliar environments. While boosting methods

with the sliding window approach provide fast processing and accurate results for

particular object categories, they cannot achieve the desired performance for other

more involved categories of objects. Recent research in computer vision has shown

that exploiting object context through relational dependencies between object cate-

gories leads to improved accuracy in object recognition. Integration of the pair-wise

co-occurrence frequencies of object categories has proven e↵ective to classify objects

when the categories of their neighbors in the scene are known. While e↵orts in col-

lective classification of objects in images have resulted in complex algorithms, the

real-time nature of the problem requires the use of simpler algorithms with accurate

results. Use of mobile-cloud computing is promising for a real-time solution to this

problem, as the user will no longer be limited to the computational power of a mobile

device for object classification in highly complex scenes and will be able to utilize the

high processing power of the cloud resources to obtain accurate results.

7.4.3 Recognition of People Augmented with Social Networks and Loca-

tion

Blind people have limited opportunities for social interaction compared to those

without visual impairments. Aiding social interaction for blind people has not re-

ceived as much attention by assistive technology researchers as other topics, such as

indoor/outdoor navigation, although it is a major component of context-awareness,

except for a few proposals including a system using a haptic belt to convey non-verbal

communication cues during social interactions to individuals who are blind [90]. Iden-

tifying familiar people in the immediate surroundings is a significant aspect of context-

awareness and a system capable of this task is highly desirable by the blind, as it is

expected to help with social interaction. Recognizing gestures makes communication

even more e↵ective.
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Research in face detection mainly built on the state-of-the-art Viola-Jones algo-

rithm [91], has proven quite successful and is utilized by many real-world systems

today, such as digital cameras and online social networks. The release of depth cam-

eras is promising for further advances in the field of face recognition, as these cameras

provide a three-dimensional pixel map of the face and make it easier to detect certain

facial features with the extra information of pixel depth.

We believe robust person recognition can only be achieved with a combination

of clues indicating the presence of a specific person in the immediate environment

instead of solely relying on face recognition. One of those clues is the current location

of a person as determined by GPS and another one is the information that can be

retrieved from online social networks that the person is a member of. This multi-cue

approach to person recognition can be made possible by using the combined resources

of mobile and cloud computing.

We propose a mobile-cloud based system for person recognition with a face recog-

nition algorithm running in the cloud and where an Android phone is used to capture

an image of the environment and send it to the cloud server for matching against a

dataset of friends’ pictures for a specific person. Higher performance is expected upon

extension of the system to include location information retrieved from the profiles in

the user’s social network to figure out patterns such as the frequent co-occurrence

of specific people at the same location or information as to where a specific person

currently is.

7.5 Chapter Summary

In this chapter, we proposed an open, extensible mobile-cloud computing archi-

tecture to enable context-aware navigation for the visually-impaired. The proposed

system is based on a collaboration model between everyday mobile devices, the wealth

of location-specific information resources on the web, and the computational resources

made available by major cloud computing providers. The proposed architecture al-
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lows for richer context-awareness and high quality navigation guidance. We discussed

major possible functionalities of the proposed system and showed promising results

for real-time responses from the proposed architecture in the context of a pedestrian

crossing guide.
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8. SUMMARY

8.1 Contributions

This dissertation focuses on the problem of e↵ective, e�cient and secure compu-

tation o✏oading and execution in mobile-cloud computing.

Our main contributions with this dissertation can be summarized as follows:

1. E�cient computation o✏oading framework for mobile-cloud comput-

ing:

We proposed a dynamic code o✏oading framework for mobile-cloud computing,

based on autonomous agents. Our approach does not impose any requirements

on the cloud platform other than providing isolated execution containers, and

it alleviates the management burden of o✏oaded code by the mobile platform

using autonomous agent-based application partitions. The experiments we per-

formed with real-world applications using the Amazon EC2 cloud show that the

framework achieves significantly higher performance with regards to execution

time compared to monolithic application execution on a mobile device, in the

computationally intensive cases of the applications.

2. Low-overhead tamper-resistance approach for mobile-cloud comput-

ing:

We proposed a dynamic tamper-resistance approach for protecting mobile com-

putation o✏oaded to the cloud, by augmenting mobile agents with self-protection

capability. The proposed approach uses integrity verification units integrated

transparently into application code, which are used for program introspection

during runtime. The framework uses a special mechanism for the encryption of

messages to be sent from the cloud to the mobile platforms, which allows for the
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detection of tampering with messages in transit or with the integrity verification

units during their execution in the cloud. We showed through experiments that

the tamper-resistance framework achieves very low execution time overhead and

is capable of detecting both load-time and runtime modifications to agent code,

as well as taking the appropriate actions upon tamper detection.

3. Context-aware computation migration and execution approach for

mobile-cloud computing:

We investigated the e↵ects of di↵erent runtime environment conditions (con-

text) including varying network bandwidth, multi-tasking and di↵erent machine

architectures, on the makespan performance of o✏oaded computation in mobile-

cloud computing. We proposed a simple and low-overhead dynamic makespan

estimation model for computation o✏oaded to the cloud, that can be integrated

into mobile agents to enhance them with self-performance evaluation capability.

Experiments we performed using a real-world application with di↵erent virtual

machine instance types in the Amazon EC2 cloud show that the proposed model

is capable of estimating makespan with high accuracy.

4. Application of mobile-cloud computing to assistive technologies:

We proposed novel applications of mobile-cloud computing for helping context-

aware navigation by visually-impaired people. Specifically, we performed a fea-

sibility study for using real-time mobile-cloud computing for the task of guiding

blind users at pedestrian crossings with no accessible pedestrian signal. The

system we propose for this task is based on the recognition of the status of

pedestrian signals at crossings, using an object recognition algorithm running

in the cloud, communicating with the mobile device of the user. We presented

initial performance results of the developed navigation application, which proves

that mobile-cloud computing is promising for assistive technologies with real-

time requirements.
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The mobile-cloud computation framework we introduced in this dissertation is

an important tool for high-performance, secure mobile-cloud computing, providing

the chance for widespread adoption due to its ease of integration into many di↵erent

mobile and cloud platforms. The results of the work in this dissertation are also

highly relevant for other fields of computer science. The major broader impacts of

this work can be summarized as follows:

• The proposed computation o✏oading model o↵ers a new way of thinking about

mobile application programming, which could be extended in various directions

to achieve real-time, high-performance mobile computing.

• The principles of the proposed tamper-resistance approach apply not only to

MCC, but also to secure (tamper-resistant) cloud computing in general. The

techniques introduced in this work are promising to provide security solutions

for program execution in untrusted cloud environments, which will allow for

higher confidence in the adoption of cloud computing for various computing

needs.

• The proposed self-performance evaluation approach for autonomous agents is

highly relevant for high-performance agent-based distributed computing. Its

simplicity and reliance on standard technologies makes it an e↵ective tool for

various distributed computing problems.

• Experiments and observations of this work about the importance of context

provide important guidance for future work in the field of real-time mobile-

cloud computing.

8.2 Future Work

The mobile-cloud computation framework we introduced in this dissertation can

be extended in a number of ways to address other challenges peculiar to MCC. Below
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is a list of tasks we plan to work on to integrate solutions into the proposed framework

for some of those major challenges.

1. O✏oading manager with energy constraints

The current framework makes o✏oading decisions for applications components

in a way to minimize the total makespan of the application. While minimizing

the execution time is an important factor in real-time mobile computing, an

equally important factor is the energy consumption on the mobile device. As the

experiments in chapter 4 suggest, data transfer to/from the cloud can consume a

significant amount of energy. In future work, we plan to extend the optimization

model of the execution manager to include energy constraints. This will be

achieved by transforming the optimization problem into a constraint satisfaction

problem, where the constraints will ensure that the total energy consumption

with o✏oading does not exceed the total energy for on-device execution.

2. Makespan estimation of on-device execution

The current framework uses static values for the on-device makespan of applica-

tion components as determined by previous runs of the application on the mobile

device. While this approach provides an accurate estimation of the on-device

makespan under stable conditions on the exact same mobile device, makespan

values could vary significantly across devices with di↵erent characteristics and

di↵erent runtime conditions. In future work, we plan to integrate a dynamic

makespan estimation model, much like the one we introduced in chapter 6, into

the execution manager component of the framework to estimate the on-device

makespan of application components. This approach will allow for generaliza-

tion of makespan estimation across a range of devices, and obviate the need to

gather statistics for di↵erent devices before application installation.

3. Generalization of cost estimation model for di↵erent problem sizes

In the current framework, the execution cost of application components (in

terms of time) is measured statically as mentioned in the above item. Although
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this approach works well with problems of a pre-determined size, it does not

allow for generalization to di↵erent sizes of the same problem, i.e. it does not

integrate the computational complexity of a problem to estimate the execution

time for di↵erent instances (input sizes) of that problem. In future work, we plan

to integrate a computational complexity component into the execution manager

to estimate the makespans of application components for dynamic problem in-

put sizes. This approach will provide yet another level of generalization, and a

much needed one for dynamic MCC.

4. Automatic selection of best tamper-resistance integrity checkpoints

In our current tamper-resistance model, integrity checkpoints are placed at every

method call in an application component o✏oaded to the cloud for execution.

For applications densely populated with method calls, sparser placement of

integrity checkpoints could achieve nearly as good tamper-resistance. In future

work, we plan to design an algorithm for automated placement of integrity

checkpoints in o✏oadable application components in a way that minimizes the

number of integrity checkpoints, but provides the same level of security against

tampering attacks.

5. Automatic selection of best performance checkpoints for makespan

estimation

In our current makespan estimation model, performance checkpoints are placed

at every execution block that passes the inclusion test. Depending on the ap-

plication structure, it might be possible to eliminate some of these checkpoints,

such as very small blocks of code, which are not very suggestive for the remain-

ing makespan of the application. It is also possible to group di↵erent blocks of

code with similar characteristics (e.g. same operations) together to make even

more accurate makespan estimations. In future work, we plan to design an algo-

rithm to automatically select the best performance checkpoints for o✏oadable
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application components to maximize the accuracy of the makespan estimation

under varying runtime conditions.
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