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Abstract

In this thesis, we deal with the model theory of algebraically closed fields expanded
by predicates to denote either elements of small height or multiplicative subgroups
satisfying a diophantine condition. The questions we consider belong to the area of
model theory and stability theory. In Chapter 2, we investigate an algebraically closed
field with a distinguished multiplicative subgroup satisfying the Mann property. The
model theory of this pair was first studied in the papers of B. Zilber and L. van den
Dries - A. Gilinaydin respectively. In 1965, H. Mann showed that the set of complex
roots of unity has the Mann Property. Later, it was proved that any multiplicative
group of finite rank in any field of characteristic zero has the Mann property. In this
chapter, we characterize the independence which enables us to characterize definable
and interpretable groups. In Chapter 3, we study algebraically closed fields expanded
by two unary predicates denoting an algebraically closed subfield and a multiplicative
subgroup. This will be a proper extension of algebraically closed fields with a group
satisfying the Mann property, and also pairs of algebraically closed fields. Then we
characterize definable and interpretable groups in the triple. Another goal of this
thesis is to study the field of algebraic numbers with elements of small height. In
Chapter 4, we show that this theory is not simple and has the independence property.
We also relate the simplicity of a certain pair with Lehmer’s conjecture. In Chapter
5, we apply nonstandard analysis to prove the existence of certain height bounds on
the complexity of the coefficients of some polynomials. This allows us to characterize
the ideal membership of a given polynomial. Moreover, we obtain a bound for the

logarithmic height function, which enables us to test the primality of an ideal.
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Résumé

Dans cette these, nous traitons la théorie des modeles des corps algébriquement clos
étendu par prédicats pour désigner soit des éléments de hauteur bornée, soit des sous-
groupes multiplicatifs satisfaisant une condition diophantienne. Les questions que
nous considérons appartiennent au domaine de la théorie des modeles et la théorie de
la stabilité. Dans le Chapitre 2, nous examinons un corps algébriquement clos avec
un sous-groupe multiplicatif distingué qui satisfait la propriété Mann. La théorie des
modeles de cette paire était d’abord étudiée dans les articles de B. Zilber et L. van
den Dries - A. Giinaydin respectivement. En 1965, H. Mann a montré que ’ensemble
des racines de I'unité a la propriété Mann. Plus tard, il était prouvé que tout groupe
multiplicatif de rang fini dans tout corps de caractéristique zéro a la propriété Mann.
Dans ce chapitre, nous caractérisons 'indépendance qui nous permet de caractériser les
groupes définissables et les groupes interprétables. Dans le Chapitre 3, nous étudions
les corps algébriquement clos étendu par deux prédicats unaires qui dénotent un sous-
corps algébriquement clos et un sous-groupe multiplicatif. Ce sera une extension
propre du corps algébriquement clos avec un groupe satisfaisant la propriété Mann, et
aussi les paires des corps algébriquement clos. Ensuite, nous caractérisons les groupes
définissables et interprétables dans le triple. Un autre but de cette these est d’étudier
la théorie de corps des nombres algébriques avec des éléments de petite hauteur. Dans
le Chapitre 4, nous montrons que cette théorie n’est pas simple et a la propriété
d’indépendance. Nous nous rapportons aussi a la simplicité de la certaine paire avec
la conjecture de Lehmer. Dans le Chapitre 5, nous appliquons ’analyse nonstandard
pour prouver l’existence de certaines bornes de hauteur de la complexité des coefficients
de certains polynémes. Cela nous permet de caractériser I'appartenance idéale d’un
polynéme donné. De plus, nous obtenons une borne pour la fonction de la hauteur

logarithmique, ce qui nous permet de tester la primalité d’un idéal.






?QOur greatest glory is not in never falling, but in rising

every time we fall.”
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Introduction

In this thesis, we study fields with a predicate to denote either elements of small height
or multiplicative subgroups satisfying a certain diophantine condition. In particular,
we are applying Nonstandard Analysis to find height bounds and Geometric Model

Theory to analyse extensions of algebraically closed fields with a distinguished group.

In model theory, one of the main objectives is to understand the definable sets in
a structure. Recall that a set is called definable if it is given by a first-order formula.
Type-definable means an intersection of definable sets. Another important notion in
model theory is interpretability. A set is called interpretable if it is a quotient of a
definable set by a definable equivalence relation. To illustrate, in algebraically closed
fields, definable sets are the constructible sets from algebraic geometry and definable

groups correspond to the algebraic groups.

Classification theory is an extensive project in model theory, emerged from the
work of M. Morley in the 1960’s and S. Shelah in the 1970’s, pursuing the catego-
rization of first-order theories based on how much discrepancy there is among their
models, and also to get back structural information about the models. The question
of how many models a theory can have has been at the heart of the most fundamental
progresses in the history of model theory. Stable theories are important to classify
their models. If a theory is not stable then its models are too complicated and numer-
ous to classify, and arithmetic fits in this case. A theory T is said to be stable if there
is no first-order formula in 7" which defines an infinite linear order. Stable theories
enjoy a notion of independence, namely the forking independence, with a well-defined
set of properties, reminiscent of the algebraic independence in fields and the linear
independence in vector spaces. A theory is simple, if in fact it is characterized by
the presence of such an independence notion which is symmetric. A theory T is said
to have the independence property, if there is a first-order formula in some model of
T that can code any given subset of an arbitrarily large finite set. It is known that
stable theories are simple and do not have the independence property. For instance,
the theory of algebraically closed fields and abelian groups in the group language are
stable. The theory of the real numbers is unstable since one can define the order,

however it does not have the independence property.
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xiv INTRODUCTION

In Chapter 2, we study algebraically closed fields with a distinguished multiplicative
subgroup in terms of stability. Let K be an algebraically closed field, the field F its
prime field and G be a multiplicative subgroup of K*. In this thesis, a fundamental
notion about multiplicative groups is the Mann property. To define this property,

consider an equation

a1 + -4 AnTy = 1 (001)

with n > 2 and a; € F. A solution (g1, ..., g, ) of this equation is called non-degenerate

if for every non-empty subset I of {1,2,...,n}, the sum >_._; a;g; is not zero. We say

iel
that G has the Mann property if every such equation (0.0.1) has only finitely many
non-degenerate solutions in G. In 1965, H. Mann [26] showed that the set of complex
roots of unity p has the Mann property. Later, it was proved that any multiplicative
group of finite rank in any field of characteristic zero, for instance 2%, has the Mann
property; see [32, 13, 23]. In 1990, in an unpublished note, B. Zilber [41] showed that

the pair (C, p1) is stable and his pattern was based on the result of H. Mann [26].

Now we fix K and G as above. The model theory of the pair (K,G) was first
studied in the paper of L. van den Dries and A. Giinaydin [9]. The result of B. Zilber
[41] was generalized by L. van den Dries and A. Giinaydin [9] to (K, G) where G has
the Mann property. They axiomatized (K, G) and proved that the theory of (K, G)
is stable. Furthermore in [9], L. van den Dries and A. Giinaydin showed that G has
the Mann property over K, this means that if a; is in K in (0.0.1), we still have only
finitely many non-degenerate solutions in G. They also proved that every subset of
G™ definable in (K, G) is definable in the abelian group G, in other words the induced

structure on G is the pure group structure.

In Chapter 2, we first characterize the model-theoretic algebraic closure in (K, G).
This allows us to characterize the independence in the pair (K,G) in terms of the
algebraic independence in K with the help of the group G. In [31], B. Poizat char-
acterized the independence for beautiful pairs, in particular for pairs of algebraically
closed fields. Tt turns out that the independence in (K, G) is different from the beauti-
ful pairs and it is simpler in a sense. Definable groups in stable theories is a recurrent
topic in model theory and they play a significant role for the classification theory pio-
neered by B. Zilber in the 1970’s. In Chapter 2, after characterizing the independence
in the pair, we turn our attention to definable groups in the pair (K, G). Characteri-
zation of the model-theoretic algebraic closure and the independence in (K, G) enable
us to characterize definable groups in (K, G) up to isogeny, in terms of definable and
interpretable groups in K and G. The proof entails a well-known technique from ge-

ometric stability theory, namely the group configuration theorem [19]. We follow the
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approach of [2], where T. Blossier and A. Martin-Pizarro characterized interpretable
groups in pairs of proper extension of algebraically closed fields using a result of A.

Pillay [28]. Precisely, we prove the following result:

Theorem A. (Definable Groups (2.30)) Let K be an algebraically closed field and G
be a multiplicative subgroup of K* with the Mann property. Any type-definable group
in (K, G) is isogenous to a subgroup of an algebraic group. Moreover any type-definable
group is, up to isogeny, an extension of a type-interpretable group in G by an algebraic

group.

In the case where G is divisible, we can characterize interpretable groups in (K, G)
in terms of definable groups in (K, G). Our method will combine the methods in [2]

and [28] and we prove the following theorem:

Theorem B. (Interpretable groups (2.56)) Let K be an algebraically closed field and
G be a divisible multiplicative subgroup of K* with the Mann property. Every inter-
pretable group H in (K, G) is, up to isogeny, an extension of an interpretable abelian
group in G by an interpretable group N, which is a quotient of an algebraic group V

by a subgroup N1, which is an abelian group interpretable in G.

In Chapter 3, we study algebraically closed fields expanded by two unary predicates
denoting an algebraically closed subfield and a multiplicative subgroup. This will be
a proper extension of algebraically closed fields with a group satisfying the Mann
property as in Chapter 2, and also pairs of algebraically closed fields. More precisely:
let 2 be an algebraically closed field, the field k£ be a proper subfield of {2 which is also

algebraically closed and T" be a multiplicative subgroup of Q2*. Consider an equation

kix1+-- -+ kpx, =1 (002)

with n > 1 and k; € k.

We say that (k,T) is a Mann pair if for all n there is a finite subset I'(n) of T" such
that for all kq, ..., k, in & all non-degenerate solutions of (0.0.2) in T lie in I'(n). In
particular, the group I" has the Mann property and the intersection k£ N I is finite.
This is a uniform version of the Mann property. For instance, the pair (Q, exp(Q)) is

a Mann pair by Lindemann’s theorem.

Now we fix 2, k and T as above. The model theory of the triple (92, k,T) was
first studied by L. van den Dries and A. Giinaydin [10, 11]. Among other things,
they axiomatized the triple and characterized definable sets by a relative quantifier
elimination. They also proved that the theory of (2, k,T") is stable. Moreover in [10],
L. van den Dries and A. Giinaydin showed that if the intersection kNI is trivial and
I" has finite rank, then (k,T') is a Mann pair.
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In Chapter 3, as an initial step we characterize the model-theoretic algebraic closure
in the triple (Q, k,T"). This permits us to characterize the independence in the triple,
which is given by the algebraic independence in 2 and k. After characterizing the
independence in the triple, we focus on definable and interpretable groups in the
triple. We pursue a similar procedure as in the Chapter 2. We first characterize
definable groups, up to isogeny, in the triple in terms of definable and interpretable
groups in , k and I'. Again the proof requires the group configuration theorem and

the motivation comes from [2].

Theorem C. (Definable Groups for the triple (3.23)) Let Q be an algebraically closed
field, the field k be a proper subfield of Q0 which is also algebraically closed and T' be
a multiplicative subgroup of Q* such that (k,T) is a Mann pair. Any type-definable
group in (Q, k,T) is isogenous to a subgroup of an algebraic group. Moreover any type-
definable group s, up to isogeny, an extension of a direct sum of k-rational points of
an algebraic group defined over k and a type-interpretable abelian group in I' by an

algebraic group.

When T is divisible, the characterization of definable groups in the triple enables

us to characterize interpretable groups. In particular, we conclude:

Theorem D. (Interpretable groups for the triple (3.33)) Let Q be an algebraically
closed field, the field k be a proper subfield of Q@ which is also algebraically closed and
T be a divisible multiplicative subgroup of Q* such that (k,T) is a Mann pair. Every
interpretable group H in (Q,k,T') is, up to isogeny, an extension of a direct sum of
k-rational points of an algebraic group defined over k and an interpretable abelian
group in I by an interpretable group N, which is a quotient of an algebraic group by
a subgroup Ny which is isogenous to a cartesian product of k-rational points of an

algebraic group defined over k and an interpretable abelian group in T

Another objective of this work is to study the field of algebraic numbers with ele-
ments of small height. In Chapter 4, our concern will be mainly the model theory of the
field of algebraic numbers with a certain predicate. Model theory of pairs have been
studied for some time. More generally, stable theories with a predicate were studied in
the paper of E. Casanovas and M. Ziegler [6]. Their result in [6] implies the result of B.
Zilber [41] and also the stability of the theory of pairs of algebraically closed fields [31].

A height function is a function that measures the complexity of an element. This
is a fundamental notion at the basis of diophantine geometry. The most significant
example is the logarithmic height function on the field of algebraic numbers. In order
to define the logarithmic height function, we first define the Mahler measure of a

polynomial over C. For a polynomial

f(@) =aa(X —a1) - (X — aq),
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its Mahler measure is defined as the product

m(f) = laal ] layl-

laj|>1

Let Q be the field of algebraic numbers. For o in Q with minimal polynomial f(z) in
Z[X] of degree d, we define its Mahler measure as m(a) = m(f) and the logarithmic

height of « is defined as
~ logm(a)

h(a) = 7
Kronecker’s theorem, which is a characterization of being a root of unity, states that
h(a) = 0 if and only if « is a root of unity or zero. Lehmer’s conjecture, which is still
open, states that there exists an absolute constant ¢ > 1 such that if m(a) > 1 then
m(a) > c. In other words, it asserts that the Mahler measure is bounded away from 1
except for the set of roots of unity. This question was posed by D. Lehmer [24] around
1933. The best known example of smallest Mahler measure greater than 1 so far was

also given by Lehmer: if « is a root of the polynomial
X0 x9 X7 X0 X5 X' X34+ X +1,

then m(a) =~ 1.17628. A real algebraic integer o > 1 is called a Salem number if «
and 1/« are Galois conjugate and all others Galois conjugates of « lie on the unit
circle. Clearly, for any Salem number a we have that m(a) = «. Another pertinent
open question is whether 1 is a limit point of Salem numbers. Details can be found in
in the surveys [35, 36] of C. Smyth.

The model-theoretic properties of Q are well-known; it has quantifier elimination,
which corresponds to the projection of a constructible set being constructible from
algebraic geometry. Moreover it is stable. Let P, := {a € Q : m(a) < b} where b > 1
and S, = {a € Q: h(a) < €} where € > 0. Note that both P, and S, contain the set of
roots of unity p. In other words, Lehmer’s Conjecture states that there is b > 1 such
that P, = Py = p. The pairs (Q, P,) and (Q, S.) can be seen as an L,,(U) = L,, U{U}
structures where L,, = {1,-}, the operation - is the usual multiplication and U is an

unary relation symbol whose interpretations are P, and S, respectively.

In Chapter 4, we study the model theory of (Q, S.) and we prove a result which
shows that small perturbations of the property of being a root of unity changes drasti-
cally the stability properties of the ambient structure. We also relate the simplicity of
the pair (Q, P,) with Lehmer’s conjecture. In the same chapter, we prove the following
theorem (see (4.11) and (4.16)):

Theorem E. The theory of (Q,S.) is not simple and has the independence property
in the language L,,(U). Moreover, if the theory of (Q, Py) is simple for some b > 1 in
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L,,(U), then Lehmer’s conjecture holds for all Salem numbers.

In Chapter 5, the results are in the realm of nonstandard analysis which we apply to
find certain height bounds. Nonstandard analysis was originated in the 1960’s by the
work of A. Robinson, which was arose as a rigorous and exhaustive way of studying
infinitesimal calculus. We refer the reader to [15, 14] for a treatment of the topic.
Given a field K, if fy, fi1,..., fs are in K[Xq,..., X,,] all have degree less than D and

s

foisin (f1,..., fs), then fo = Z fih; for certain h; whose degrees are bounded by a

constant C = C(n, D) dependir_lé; only on n and D. This result was first established
in a paper of G. Hermann [16] using algorithmic tools. Then the same result was
proved by L. van den Dries and K. Schmidt [8] using nonstandard methods, and they
paved the way for how nonstandard methods can be used for such bounds. Let R be

a commutative domain and 6 : N — N be a function. A function
h:R—[0,00)

is said to be a height function of #-type if for any  and y in R with h(z) < n and
h(y) < n, then both h(x + y) < 6(n) and h(xzy) < 6(n). We say that h is a height
function on R if h is a height function of #-type for some 6 : N — N. In plain words,
a height function behaves well under certain arithmetic operations.

We can extend the height function h to the polynomial ring R[X7, ..., X,,] by setting

h ( za: aaXo‘) = max h(aq).

Inspired by [8], using nonstandard methods, we prove the existence of certain
height bounds on the complexity of the coefficients of some polynomials. This allows
us to characterize the ideal membership of a given polynomial. Moreover, we obtain
a bound for the logarithmic height function, which enables us to test the primality of
an ideal. We say that an ideal I of Q[X1, ..., X,,] is a (D, H)-type ideal if the degree of
all generators of I is bounded by D and the logarithmic height of all generators of
is bounded by H. For the following theorem, the degree bounds ¢; and B follow from
[8]. We prove the existence of the constants co and c3 below, see (5.12) and (5.17):

Theorem F. Let R be a commutative domain with a height function. For allmn > 1,
D > 1 and H > 1 there are two constants c1(n, D) and ca(n, D, H) such that if f1, ..., fs
in R[X1,..., X,;] have no common zero in a field containing R with deg(f;) < D and
h(f;) < H, then there exist nonzero a in R and hy,...,hs in R[Xy,..., X,] such that

(i) a = fihy + -+ fshs
(ZZ) deg(ht) <c

(m) h(a),h(hz) < Co.
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Moreover, if R = Q and h is the logarithmic height function, there are bounds B(n, D)
and c3(n, D, H) such that if I is a (D, H)-type ideal of Q[X1, ..., X,)] then I is prime
if and only if 1 ¢ I, and for all f, g in Q[X1, ..., X,,] of degree less than B(n,D) and
height less than cs(n, D, H), if fg € I, then either f or g is in I.
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Introduction en Francais

Dans cette these, nous étudions les corps avec un prédicat pour dénoter soit des
éléments de hauteur bornée soit des sous-groupes multiplicatifs qui satisfont une cer-
taine condition diophantienne. En particulier, nous appliquons I’analyse nonstandard
pour trouver des bornes de hauteur et la théorie des modeles géométrique pour ana-

lyser I’extension des corps algébriquement clos avec un groupe distingué.

En théorie des modeles, I'un des principaux objectifs est de comprendre les ensem-
bles définissables dans une structure. Rappelons quun ensemble est appelé définissable
s’il est donné par une formule du premier-ordre. Un type-définissable correspond a
I'intersection des ensembles définissables. Une autre notion importante en théorie des
modeles est U'interprétabilité. Un ensemble est dit interprétable s’il est un quotient
d’un ensemble définissable par une relation d’équivalence définissable. Pour illus-
trer, dans un corps algébriquement clos, les ensembles définissables sont les ensembles
constructibles de géométrie algébrique et les groupes définissables correspondent aux

groupes algébriques.

La théorie de la classification est un projet vaste en théorie des modeles, issue des
travaux de M. Morley dans les années 1960 et S. Shelah dans les années 1970, pour-
suivant la catégorisation des théories de premier-ordre basée sur combien de différence
il y a entre leurs modeles, et également de reprendre des informations structurelles sur
les modeles. La question de savoir combien de modeéles une théorie peut avoir a été
au cceeur des développements les plus fondamentaux dans ’histoire de la théorie des
modeles. Les théories stables sont importantes pour classifier leurs modeles. Si une
théorie n’est pas stable alors ses modeles sont trop complexes et nombreux a classifier,
et Parithmétique s’adapte dans ce cas. Une théorie T est dite stable s’il n’y a aucune
formule du premier-ordre dans 7" qui définit un ordre linéaire infini. Les théories sta-
bles jouissent d’une notion d’indépendance, nommé l'indépendance de déviation, avec
un ensemble de propriétés bien définies, rappellant 'indépendance algébrique dans les
corps et 'indépendance linéaire dans les espaces vectoriels. Une théorie est simple,
si en effet elle est caractérisée par la présence d’une telle notion d’indépendance qui
est symétrique. Une théorie T a la propriété d’indépendance, s’il y a une formule du

premier-ordre dans un certain modele de T qui peut coder tout sous-ensemble donné

poel
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d’un ensemble fini arbitrairement grand. Il est connu que les théories stables sont
simples et n’ont pas la propriété d’indépendance. Par exemple, la théorie des corps
algébriquement clos et les groupes abéliens dans le language de groupes sont stables.
La théorie des nombres réels est instable puisque 1’on peut définir 'ordre, mais elle

n’a pas la propriété d’indépendance.

Dans le Chapitre 2, nous étudions les corps algébriquement clos avec un sous-groupe
multiplicatif distingué en termes de stabilité. Soient K un corps algébriquement clos,
le corps F son corps premier et G un sous-groupe multiplicatif de K*. Dans cette
these, une notion fondamentale a propos des groupes multiplicatifs est la propriété

Mann. Pour définir cette propriété, considérons une équation

a1z, + - Fapr, =1 (0.0.3)

avec n > 2 et a; € F. Une solution (g1, ...,g,) de cette équation est appelée non-
dégénérée si pour tout sous-ensemble non-vide I de {1,2,...,n}, la somme >, a;g;
n’est pas zéro. On dit que G a la propriété Mann si chaque équation (0.0.3) a seule-
ment un nombre fini non-dégénéré de solutions dans G. En 1965, H. Mann [26] a
montré que ’ensemble des racines de 'unité p a la propriété Mann. Plus tard, il était
prouvé que tout groupe multiplicatif de rang fini dans tout corps de caractéristique
zéro, par exemple 22, a la propriété Mann; voir [32, 13, 23]. En 1990, dans une note
non-publiée, B. Zilber [41] a démontré que la paire (C, ) est stable en utilisant un
résultat de H. Mann [26].

Maintenant nous fixons K et G comme ci-dessus. La théorie des modeles de la
paire (K, Q) était d’abord étudiée dans larticle de L. van den Dries et A. Gilinaydin
[9]. Le résultat de B. Zilber [41] était généralisé par L. van den Dries et A. Gilinaydin
[9] & (K,G) ou G a la propriété Mann. Ils avaient axiomatisé (K, G) et prouvé aussi
que la théorie de (K, G) est stable. De plus dans [9], L. van den Dries et A. Giinaydin
ont montré que G a la propriété Mann sur K, cela siginifie que si a; dans K dans
(0.0.3), nous avons encore un nombre fini non-dégénéré de solutions dans G. Ils ont
prouvé que chaque sous-ensemble de G™ définissable dans (K, G) est définissable dans
le groupe abélien G, en d’autres termes la structure induite sur G est la structure pur

groupe.

Dans le Chapitre 2, nous caractérisons premierement la cloture algébrique dans
(K,G). Cela nous permet de caractériser I'indépendance dans la paire (K,G) en
termes d’indépendance algébrique de K avec l’aide du groupe G. Dans [31], B. Poizat a
caractérisé I'indépendance pour des belles paires, en particulier pour les paires de corps
algébriquement clos. Il s’avere que I'indépendance en (K, G) est différente des belles

paires et elle est plus simple dans un sens. Les groupes définissables dans les théories
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stables sont des sujets récurrents en théorie des modeles et ils jouent un role significatif
pour la théorie de classification mis au point par B. Zilber dans les années 1970. Dans
le Chapitre 2, aprés avoir caractérisé 'indépendance dans la paire, nous tournons notre
attention vers les groupes définissables dans la paire (K, G). La caractérisation de la
cloture algébrique du modele théorique et I'indépendance dans (K, G) nous permet
de caractériser les groupes définissables dans (K, G), & isogénie pres, en termes de
groupes définissables et interprétables dans K et G. La démonstration entraine une
technique bien connue de la théorie de stabilité géométrique, nommée le théoreme de
la configuration de groupe [19]. Nous suivons I’approche de [2], ou T. Blossier et A.
Martin-Pizarro ont caractérisé les groupes interprétables dans les paires d’extension
propre de corps algébriquement clos en utilisant le résultat de A. Pillay [28] . Plus

précisément, nous prouvons le résultat suivant:

Théoreme A. (Groupes définissables (2.30)) Soient K un corps algébriqguement clos
et G un sous-groupe multiplicatif de K> avec la propriété Mann. Tout groupe de
type-définissable dans (K, Q) est isogéne d un sous-groupe d’un groupe algébrique. De
plus, un groupe type-définissable est, a isogénie prés, une extension d’un groupe type-

interprétable dans G par un groupe algébrique.

Dans le cas ou G est divisible, nous pouvons caractériser les groupes interprétables
dans (K,G) en termes des groupes définissables de (K, G). Notre méthode sera de

combiner les méthodes des [2] et [28] et nous prouvons le théoréme suivant:

Théoreme B. (Groupes interprétables (2.56)) Soient K un corps algébriquement
clos et G un sous-groupe multiplicatif divisible de K* avec la propriété Mann. Chaque
groupe interprétable H dans (K,G) est, a isogénie prés, une extension d’un groupe
commutatif interprétable dans G d’un Tp-groupe interprétable N, qui est un quotient
d’un groupe algébrique V' par un sous-groupe Ny qui est un groupe commutalif in-

terprétable dans G.

Dans le Chapitre 3, nous étudions les corps algébriquement clos étendus par deux
prédicats unaires qui dénotent un sous-corps algébriquement clos et un sous-groupe
multiplicatif. Ce sera une extension propre du corps algébriquement clos avec un
groupe satisfaisant la propriété Mann comme dans le Chapitre 2, et aussi les paires de
corps algébriquement clos. Plus précisément: soient {2 un corps algébriquement clos, k
un sous-corps de €2 qui est aussi algébriquement clos et I' un sous-groupe multiplicatif

de Q*. Considérons I’équation

kizy + -+ kpan =1 (0.0.4)

avecn > 1let k; € k.

Nous disons que (k,T') est une paire Mann si pour tout n il y a un sous-ensemble

fini I'(n) de T tel que pour tout k1, ..., k, € k™ toutes les solutions non dégénérées de
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(0.0.4) dans T se trouvent dans I'(n). En particulier, le groupe I' a la propriété Mann
et 'intersection kN T est finie. C’est une version uniforme de la propriété Mann. Par

exemple, la paire (Q,exp(Q)) est une paire Mann par le théoréeme de Lindemann.

Maintenant nous fixons €2, k et I' comme ci-dessus. La théorie des modeles du triple
(Q, k,T) était premierement étudiée par L. van den Dries et A. Giinaydin [10, 11]. En-
tre autres, ils ont axiomatisé le triple et caractérisé les ensembles définissables par
élimination d’un rapport de quantificateur. Ils ont aussi prouvé que la théorie de
(Q,k,T) est stable. De plus dans [10], L. van den Dries et A. Giinaydin ont prouvé

que si Pintersection kNI est triviale et I a le rang fini, alors (k, ") est une paire Mann.

Dans le Chapitre 3, comme une premiere étape nous caractérisons la cloture algébri-
que du modele théorique dans le triple (Q,%,T'). Cela nous permet de caractériser
I'indépendance dans le triple. On obtient ainsi que l'indépendance est donnée par
I'indépendance algébrique. Apres avoir caractérisé 'indépendance dans le triple, nous
nous concentrons sur les groupes définissables et interprétables dans le triple. Nous
suivons le méme chemin que dans le Chapitre 2. Nous caractérisons d’abord les groupes
définissables, a isogénie pres, dans le triple en termes de groupes définissables et in-
terprétables dans €, k et I". Encore la preuve nécessite le théoréme de la configuration

du groupe et la motivation vient du [2].

Théoreme C. (Groupes définissables (3.23)) Soient Q un corps algébriquement clos,
le corps k un sous-corps propre de €2 qui est aussi algébriqguement clos et I' un sous-
groupe multiplicatif de Q* ot (k,T') est une paire Mann. Tout groupe de type-définissable
dans (Q,k,T) est isogéne & un sous-groupe d’un groupe algébrique. De plus, un
groupe de type-définissable est, a isogénie pres, l'extension d’une somme directe de k-
rationnels points d’un groupe algébrique défini sur k et un groupe de type-interprétable

commutatif dans T par un groupe algébrique.

Quand I" est divisible, la caractérisation des groupes définissables dans le triple nous

permet de caractériser les groupes interprétables. En particulier, nous concluons:

Théoreme D. (Groupes interprétables (3.33)) Soient Q un corps algébriquement clos,
le corps k un sous-corps propre de  qui est aussi algébriqguement clos et I' un sous-
groupe multiplicatif divisible de Q* ou (k,T') est une paire Mann. Tout groupe in-
terprétable H dans (2, k,T') est, a isogénie prés, une extension d’un produit cartésien
de k-rationnels points d’un groupe algébrique défini sur k et un groupe commutatif
interprétable dans T' par un groupe interprétable N, qui est le quotient d’un groupe
algébrique par un sous-groupe N1 qui est isogéne a un produit cartésien de k-rationnels
points d’un groupe algébrique défini sur k et un groupe commutatif interprétable dans
r.

Un autre objectif de ces travaux est d’étudier le corps des nombres algébri-ques avec

des éléments de petite hauteur. Dans le Chapitre 4, notre préoccupation sera princi-
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palement la théorie des modeles des nombres algébriques avec un certain prédicat.
La théorie des modeles des paires a été étudiée pendant un certain temps. Plus
généralement, les théories stables avec un prédicat ont été étudiées dans ’article de
E. Casanovas et M. Ziegler [6]. Leur résultat dans [6] implique le résultat de B. Zilber

[41] et aussi la stabilité de la théorie des paires de corps algébriquement clos [31].

Une fonction hauteur est une fonction qui mesure la complexité d’un élément.
Cette notion est fondamentale a la base de la géométrie diophantienne. L’exemple le
plus significatif est la fonction de la hauteur logarithmique sur le corps des nombres
algébriques. Avant de définir la fonction de la hauteur logarithmique, nous définissons

d’abord la mesure de Mahler d’un polynéme sur C. Pour un polynéme

f(@) = ag(X —ar) - (X - aq),

sa mesure de Mahler est définie par le produit

m(f) = laal T loyl-

| >1

Soit @ le corps des nombres algébriques. Pour a dans Q avec un polynéme minimal
f(z) € Z[X] de degré d, nous définissons sa mesure de Mahler par m(a) = m(f) et la
hauteur logarithmique de « est définie par
logm(a
ha) = %.

Le théoreme de Kronecker, qui est une caractérisation d’étre une racine de 'unité,
indique que h(a) = 0 si et seulement si « est une racine de 'unité ou zéro. La
conjecture de Lehmer, qui est toujours ouverte, indique qu’il existe une constante
absolue ¢ > 1 telle que si m(a) > 1, alors m(a) > ¢. En d’autres termes, cela affirme
que la mesure de Mahler est bornée loin de 1, sauf pour ’ensemble des racines de
l'unité. Cette question a été posée par D. Lehmer [24] vers 1933. L’exemple le plus
connu de la plus petite mesure de Mahler supérieure a 1 a également été donnée par

Lehmer: si a est une racine du polynome
X104 x9 X7 X6 X5 X*— X34+ X 41,

alors m(«) = 1,17628. Un entier algébrique réel o > 1 est appelé un nombre Salem si
a et 1/a sont Galois conjugués et tous les autres Galois conjugués de « se trouvent sur
le cercle unité. De toute évidence, pour tout nombre Salem «, nous avons m(a) = a.
Une autre question ouverte pertinente est de savoir si 1 est un point limite des nombres

Salem. Les détails peuvent étre trouvés dans les expositions [35, 36] de C. Smyth.
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Les propriétés modeles-théoriques de Q sont bien connues; le corps Q a I’élimination
des quantificateurs, ce qui correspond a un résultat de géométrie algébrique: la pro-
jection d’un ensemble constructible étant constructible. De plus, il est stable. Soient
Po={acQ:ma) <bloub>1letS ={aecQ:h(a) <e}ole>0. Notons
que P, et S. contiennent ’ensemble des racines de I'unité p. Autrement dit, la con-
jecture de Lehmer indique qu'il y a b > 1 tel que P, = P; = p. Les paires (Q, P,) et
(Q, S.) peuvent étre considérées comme Ly, (U) = L,, U{U?} structures ot L,, = {1,-},
loperation - est la multiplication usuelle et U est un symbole de relation unaire dont

Iinterprétations sont P, et S, respectivement.

Dans le Chapitre 4, nous étudions la théorie des modeles de (Q, S.) et nous prou-
vons un résultat qui montre que de petites perturbations de la propriété d’étre une
racine de l'unité change radicalement les propriétés de stabilité de la structure am-
biante. Nous nous rapportons aussi  la simplicité de la paire (Q, P,) avec la conjecture
de Lehmer. Dans le méme chapitre, nous prouvons le théoréme suivant (voir (4.11) et
(4.16)):

Théoréme E. La théorie de (Q, S.) n'est pas simple et a la propriété de Iindépendance
dans le language L,(U). De plus, si la théorie de (Q, P,) est simple pour un certain
b > 1 dans Lg(U), alors la conjecture de Lehmer pour tous les nombres Salem est

vraie.

Dans le Chapitre 5, les résultats sont dans le domaine de I’analyse nonstandard
que nous appliquons pour trouver certaines bornes hauteur. Dans les années 1960,
I’analyse nonstandard est apparu avec les travaux de A. Robinson, qui a surgi de
fagon rigoureuse et exhaustive pour étudier le calcul infinitésimal. Nous renvoyons le
lecteur & [15, 14] pour un traitement du sujet. Etant donné un corps K, si fo, f1, . [s

sont dans K[Xj,..., X,] et ont tous un degré inférieur & D et fy est dans (f1, ..., fs)

S
alors fo = Z fih; pour certains h; dont les degrés sont délimités par C' = C(n, D) une
i=1
constante ne dépendant que de n et D. Ce résultat a été établi dans un article de G.

Hermann [19] en utilisant des outils algorithmiques. Ensuite, le méme résultat a été
prouvé par L. van den Dries et K. Schmidt [8] & 'aide des méthodes nonstandard, et
ils ont ouvert la voie & la fagon dont les méthodes nonstandard peuvent étre utilisées

pour de telles bornes. Soit # : N — N une fonction. Nous disons que
h: R —[0,00)

est une fonction hauteur de type 6 si pour tout x et y en R avec h(z) < n et h(y) < n,
puis les deux h(xz +y) < 0(n) et h(xy) < 6(n). Nous disons que h est une fonction

hauteur sur R si h est une fonction hauteur de type 6 pour un certain 6 : N — N.

Nous pouvons étendre la fonction hauteur h & Panneau de polynémes R[X1,...X,]
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par
o) _
h( Ea aaX ) —mgxh(aa).

Inspiré par [8], en utilisant les méthodes nonstandard, nous prouvons P'existence de
certaine hauteur des bornes sur la complexité des coefficients de certains polynomes.
Cela nous permet de caractériser I'appartenance idéale d’un polynome donné. De plus,
nous obtenons une borne pour la fonction de la hauteur logarithmique, ce qui nous
permet de tester la primalité d’un idéal. On dit qu'un idéal I de Q[X1, ..., X,] est
un type (D, H) idéal si le degré de tous les générateurs de I est borné par D et la
hauteur logarithmique de tous les générateurs de I est bornée par H. Pour le théoreme
suivant, les degrés bornés ¢; et B viennent d’apres [8]. Nous démontrons l’existence

des constantes ¢y et ¢z ci-dessous, voir (5.12) et (5.17):

Théoréeme F. Soit R un anneau avec une fonction de la hauteur. Pour tous les
n>1, D >1 et H>1 il existe deur constantes ¢c; = c1(n, D) et ca = ca(n, D, H) de
telle sorte que si fi,..., fs dans R[Xy,..., X,] n'ont pas de zéro en commun dans un
corps qui contient R avec deg(f;) < D et h(f;) < H, alors il existe une valeur non

nulle a dans R et hq,...,hs dans R[X1,...X,] tel que
(i) a= fih1 +- -+ fshs
(i) deg(hi) <

(i) h(a), h(he) < 2.

De plus, si R = Q et h est la fonction de la hauteur logarithmique, il existe
deuz constantes B(n, D) et cs(n,D, H) telles que, si I est un type (D, H) idéal de
Q[X1, ..., X, alors I est premier ssi 1 ¢ I et pour tout f, g dans Q[X1,..., X,] de
degré inférieur a B(n, D) et la hauteur inférieure a cs(n,D,H), si fg € I alors soit

f ou g est dans I.
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Preliminaries and Notations

This chapter provides an introduction to the tools and notations which will be used
later on. We assume familiarity with algebraic number theory and basic model theory.
Some of these will be given briefly, with no proofs, since the detailed arguments can
be found in [4, 18, 29, 37].

Let Q denote the field of algebraic numbers. For a given field K, the algebraic
closure of K will be denoted by K“°.

1.1 The Logarithmic Height Function

In this section we define the logarithmic height function which will be needed in chap-
ters 4 and 5 and we refer the reader to [4, Chapter 1] and [18, Chapter 5].

An absolute value on a field K is a map |- | : K — [0,00) from K to positive real

numbers including zero such that for every z,y in K,
e |z| =0 if and only if 2 = 0,
o |zyl = |||y,
e There exists an absolute constant C' such that |z + y| < C'max(|z|, |y|).

Let Mg = {|- |, : p prime or oo} be the set of representative of absolute values

on Q, where if p = oo then |- |, is the ordinary absolute value on Q, and if p is prime

1
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then the absolute value is the p-adic absolute value on Q with |p|, = 1/p.

Let K be a number field with the ring of integers O. Now we define the set of
standard absolute values My on K. Suppose that there are r; real embeddings and
ro pairs of complex embeddings of K. Therefore we have [K : Q] = 1 + 2ry. Every
embedding o from K into C provides an absolute value. Thus we have ry + 75 absolute
values defined by |z|, = |o(x)| if o is real and |z|, = |o(z)|? if o is complex. These
absolute values are the archimedean absolute values on K. Now we define the non-
archimedean absolute values on K. For a non-zero ideal I of O, we denote the norm of
I by N(I). If q is a prime number factoring by ¢O = p1°* ---p,,,°™ with N(p;) = ¢’ and
Z e;fi = [K : Q], then for each nonzero prime ideal p in O, we define the absolute
i<m

value |a|, on K by |a|, = N(p)~"r®

, where v,(a) is the exponent of p in the prime
factorization of the ideal aO for nonzero a € O, and v,(a/b) = vp(a) — vy(b) for any
nonzero a,b € O. As usual, we let v,(0) = co. By the set Mk we mean these absolute

values on K.

An important result for the absolute values on a number field is the product for-

mula.

Proposition 1.1. [4, 1.4.4](Product Formula) Let K be a number field and Mg be

the set of absolute values on K extending the absolute values in Mg. For any nonzero

ae K,
H laly, = 1.
vEMEK

Since all but finitely many of the |a|,’s are 1, this infinite product is actually a

finite product, so it is well-defined.

Before defining the logarithmic height function we first define the Mahler measure
of a polynomial over C. For a polynomial f(z) = aq(X —ay) - - - (X — ag), its Mahler

measure is defined as the product

m(f) = laal [T layl-

levj |21

For o in Q with minimal polynomial f(x) € Z[X], we define its Mahler measure as

m(a) = m(f). The absolute non-logarithmic height of « is defined as
H(a) = m(a)t/?
where d = deg f. Then the logarithmic height of « is defined as

h(a) =log H(a) = %.
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It is not known whether there exists an absolute constant ¢ > 1 such that if m(a) > 1
then m(a) > ¢. This question was posed by D. Lehmer [24] around 1933, who claimed
that the polynomial

X104 x9 xT X6 X5 X' X34+ X +1

has the smallest Mahler measure, which is approximately 1.17628. For a detailed ex-

position on Mahler measure and Lehmer’s problem, see [35].

The logarithmic height function measures the arithmetic complexity of an algebraic
number and it behaves well under arithmetic operations. However, using the definition
above, it is not immediate to see. Here we give an equivalent definition based on the

absolute values on a number field.

Let a be an algebraic number contained in a number field K. Then we set

1

"= Eg

Z max{0, log |/, }.

vEMEK

The definition is independent from the choice of the number field K, and now one can

see the logarithmic height function behaves well under arithmetic operations:

e For a rational number a/b where a and b are coprime,
h(a/b) = max{log |al,log|b|},

For all  in Q, we have h(a™) = nh(a) where n € N,

For all @ and 3 in Q, we have h(a + 3) < h(a) + h(B) +log 2,

For all a and § in Q, we have h(af) < h(a) + h(B),

For all non-zero « in Q, we have h(1/a) = h(a).

1.2 Model Theory and Stability

In this section, we recall briefly some definitions and theorems in model theory. Details
can be found in [29, 30, 34, 37].

From now on, let T' be a complete theory in a fixed language L and fix a suffi-
ciently saturated and strongly homogeneous model U of T. An imaginary element is
an equivalence class d/FE for some tuple d in U and some definable equivalence rela-

tion E on U. Let (E;);cs be a list of all 0-definable equivalence relations on U with
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n;-tuples. Let U°? be the many-sorted structure (U,U™ /E;) and T4 be its complete
theory in the appropriate many-sorted language L°Y. Note that the elements in the
home sorts U™ / E; are exactly the imaginary elements. Moreover, the theory T°% and
the language L°? expand T and L respectively. The algebraic closure and the defin-
able closure in U° are denoted by acl®® and dcl®® respectively. We say that T has
elimination of imaginaries, El for short, if every imaginary element is interdefinable
with some real tuple, that is to say for every imaginary element e there is a real tuple
¢ such that e € dcl®¥(c) and ¢ € dcl(e). It is known that 7 eliminates imaginaries.
Elimination of imaginaries enables us to work with quotients in the original model. We
say that T has weak elimination of imaginaries, WEI for short, if for every imaginary
element e there is a real tuple ¢ such that e € dcl®¥(c) and ¢ € acl(e). The theory T
has geometric elimination of imaginaries, GEI for short, if every imaginary element is

interalgebraic with a real element.

Example 1.2. Let ACF, and DCF), be the theories of algebraically closed and dif-
ferentially closed fields with a fized characteristic p. Then they both have QF and EI.
Let u be the set of complex roots of unity. Then Th(u) has QE and WEI in the pure

group language.

Now we recall some definitions from stability. In model theory, Morley rank is
a natural notion of dimension on the definable sets of U. It generalizes the Krull
dimension from algebraic geometry. Let X be a definable subset. We define the
relation MR(X) > a by induction on the ordinal «.

e The Morley rank MR(X) > 0 if and only X is not empty,
e For a limit ordinal «, the Morley rank MR(X) > « if MR(X) > f for all 5 < a,

e We say that MR(X) > a + 1 if there are pairwise disjoint definable sets X; C X
for i < w such that MR(X;) > « for all i.

If X is empty, we define MR(X) = —oo. If X is not empty, we say that MR(X) = « if
MR(X) > a but MR(X) # a + 1. If there is no such an ordinal, we let MR(X) = oo
and we say that the Morley rank does not exist. The Morley rank of a theory is the

Morley rank of the formula z = x.

Definition 1.3. e LetM =T and ¢(x) be a non-algebraic formula L(M )-formula.
The set ¢p(M) is called minimal in M if for all L(M)-formulas 1 (x), the inter-
section ¢(M) N (M) is either finite or cofinite in ¢(M).

e The formula ¢(x) is strongly minimal if ¢(x) defines a minimal set in any ele-

mentary extension of M.

o A theory T is called strongly minimal if the formula x = x is strongly minimal.
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e A formula v (x) is called almost strongly minimal if there is a strongly minimal
formula ¢(x) defined over a set of parameters B such that, for every M = T
containing B, we have

(M) < acl(p(M), B).

Remark 1.4. Morley rank is definable in almost strongly minimal formulas. More
precisely, for any almost strongly minimal formula ¢(x) and any formula ¥(x1, ..., T, y)
which implies ¢(x;) for alli, the set {b : MR(¢(x1, ..., xn, b)) = k} is definable for every
k in N.

We now define stability.

Definition 1.5. Let k be an infinite cardinal. We say that T is k-stable if in each
model of T, over every parameter set of size at most K, there are at most kK many

n-types for any integer n > 1, i.e
Al <k = |Sp(4)| < k.

A theory T is said to be stable if it is k-stable for some infinite cardinal k.

In w-stable theories, Morley rank always exists. Strongly minimal theories are w-
stable of Morley rank 1. By QE, one sees that AC'F), is strongly minimal. The theory
DCF is w-stable with Morley rank w. It is also known that abelian groups are stable

in the pure group language. If T is stable, then so is 7°4.

Before defining the notion of independence, we need one more definition.

Definition 1.6. Let I be a linear order, the set M be an L-structure and A C M
be a set of parameters. A family of elements (a;);er of M is called an indiscernible
sequence over A if for all L-formulas ¢(x1, ..., x,) over A and two increasing sequences
11 < oo <y and j1 < ... < jp from I

M= ¢laiy, oy ai,) < $lag,, oo a5,).

For instance, a transcendence basis in an algebraically closed field is an example

of an indiscernible sequence over the empty set.

Next, we define dividing (forking) in stable theories.

Definition 1.7. Let T be a stable theory.

1- A formula o(x,a) is said to divide (fork) over A if there is an indiscernible sequence
(a;); over A with ag = a such that the set {p(x,a;)} is inconsistent.

2- A type p divides over A if it contains some formula which divides over A.

3- As usual a | b means that the type tp(a/bC) does not fork over C, and we read: a

c
is independent from b over C.
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4- A sequence (a;); is said to be independent over A if for every j we have that

a; | {a; 1 i < j}. It is called a Morley sequence over A if it is indiscernible over

A
A and independent over A.
5- A Morley sequence in a type p € S(A) is a Morley sequence over A consisting of

realizations of p.

Example 1.8. In algebraically closed fields, forking and algebraic independence agree.
In vector spaces, forking is the linear independence. In pure sets, the independence

a | b means {a,C}N{b,C} =C.
c

Fact (Kim): A formula ¢(z,a) does not divide over A if and only if there is a
Morley sequence (a;); in tp(a/A) such that the set {p(z,a;)} is consistent.

In a stable theory, forking independence has the following properties. Let a be a

tuple and A C B be parameter sets.

o (Existence of nonforking extensions) There exists an element b such that tp(b/A) =
tp(a/A) and b | B.
A

o (Transitivity) For B C C, we have ¢ | C if and only a | B and a | C.
A A B

o (Symmetry) If b is another tuple then a | b if and only if b | a.

A A
e (Finite character) a | B if and only if a | By for all finite By C B.
A A

Remark 1.9. e Ifa¢ acl(A), then tp(a/aA) divides over A.

e We have always a J/Aacl(A). So by transitivity, for any A, B and C we have
A | B if and only if acl(A) | acl(B).
C acl(C)
Another important notion concerning stable groups is the notion of generics which
we define next. For the details, we refer the reader to [30] and [29, Chapter 1, Section
6].

Definition 1.10. Let T be a stable theory and M be a model of T. Let G be a type-
definable group in M.

e By a relatively definable subset A of G we mean a set of the form {a € G : p(a)}

where @(x) is some formula in M.

o A relatively definable subset A C G is called a generic in G, if G is covered by
finitely many right or left translates of A.

e Let B C M be a set of parameters. A type p € S1(B) which contains the type

x € G is called generic, if it only contains generic formulas.
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o The connected component of G, denoted by G°, is the intersection of all definable
(relatively) subgroups of G of finite index. We say that G is connected if G = G°.

Theorem 1.11. [30] Let T be a stable theory and M be a model of T. Let G be
a type-definable group in M without parameters and B be a set of parameters in M.
There exists a generic type over B. A generic type over B does not fork over the
empty set. Moreover G is connected if and only if there is a unique generic type of G

over a given set of parameters.

Remark 1.12. [29, Chapter 1, Lemma 6.9] Let G and p be as in (1.10). Then p is
generic if and only if whenever a |=p and g is in G with a J/A g, then g-a J/Ag.

An element g in G is called a generic if it realizes a generic type. Every non-forking
extension of a generic is also generic. Every element of G can be written as a product
of two generics. The product of two independent generics over A is also a generic over

A and also it is independent from the each factor over A.

Now we recall stationarity.

Definition 1.13. Let T be a stable theory and p be a type over A. The type p is said

to be stationary if there is a unique non-forking extension to every B containing A.

Definition 1.14. Let T be stable with M =T and M C A be a set of parameters.
Let p be a type over M and q € S(A) an extension of p to A. We call q an heir of p
if for every L(M)-formula ¢(x,y) such that o(x,a) € q for some a € A there is some
m € M with (x,m) € p.

Let T be a stable theory. Then types over models are stationary. Moreover in 79,
a type over an algebraically closed set A = acl®d(A) is stationary. Let p be a type over
a model M of T. If M C A then g € S(A) is the non-forking extension of p to A if

and only if ¢ is an heir of p.

Next, we define canonical bases in stable theories which generalizes the field of

definition of a variety from algebraic geometry.

Definition 1.15. A canonical base for a type p € S(U) is a set B which is pointwise

fizxed by the same automorphism which leave p invariant.

In stable theories, canonical bases always exist, however they can be imaginary
tuples (possibly infinite). If T' is w-stable, then one can choose a canonical base to be
a finite tuple. Note that if By and By are both canonical bases of p, then they are
interdefinable. For p(x) € S(A) a stationary type (it can be viewed as a global type
over U), the canonical base of p, denoted by Cb(p), means the definable closure of a

canonical base. Moreover, the type p does not fork over its canonical base Cb(p).

The next definition takes an important role in the classification of geometries.
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Definition 1.16. The theory T is one-based if for every real set A and every real

tuple ¢ the canonical base Cb(c/A) is algebraic over c.

It is known that pure abelian groups are one-based. However AC'F is not one-
based; see [37, Chapter 10, Proposition 10.3.6].

Now, we give the group configuration theorem from geometric stability theory
which is useful to construct a group from some independent elements. This theorem
will be vital in Chapter 2 and Chapter 3. By a *-tuple, we mean a possibly infinite
tuple (a;);er in U where the index set I has cardinality less than of saturation of
U. By a x-definable set, we mean a collection of *-tuples (each tuple being indexed
by some fixed I), which is the set of realizations of a partial infinitary type. By a -
definable group, we mean a group G such that both G and the graph of multiplication
are x-definable. A x-definable group G is called connected, if it has a unique generic

in terms of the independence as given in remark (1.12).

Definition 1.17. Let T be a stable theory and U its sufficiently saturated model. By
a group configuration over A we mean 6-tuple of points (possibly infinite) (in U°Y)

(a,b,c,z,y,2) such that

c Y

any triple of non-collinear points are A-independent,

acl®d(A, a,b) = acl®¥(4, a,c) = acl®l(A, b, ¢),

x and y are interalgebraic over Aa, the elements y and z are interalgebraic over

Ab, the elements z and x are interalgebraic over Ac,

a € acl®(z,y, A), b € acl®i(y, z, A) and ¢ € acl®d(z, z, A).

Now we give the group configuration theorem which states that every group con-

figuration arises from a definable group with its independent generic elements.

Theorem 1.18. [19] (The Group Configuration Theorem) Let T be a stable theory
and U its sufficiently saturated model. Suppose M C U to be a |T|T-saturated model
of T, and suppose (a,b,c,z,y,z) is a group configuration over M. Then there is a
x-definable group G in U over M, and there are elements a',b',c,x',y', 2" of G

which form a group configuration, each gemeric over M, such that the element a is
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interalgebraic with a' over M and the same holds for the other elements. Moreover,
we have a'x’ =y, by =2/, 2’ =2 and V'a' = .

We recall some basic definitions which play a role in the classification theory which
emerged from the work of Shelah [34].

Definition 1.19. A formula ¢(x,y) has the tree property (TP) if there is a set of

parameters (as : ) # s € w<¥) such that
(i) For all s € w<¥, the set (p(x,as) : i < w) is 2-inconsistent.
(it) For all o0 € w¥, the set (p(x,as) : 0 # s C 0) is consistent.
We say that T is simple if no formula has the tree property.

It is known that stable theories are simple. For more on simplicity we refer the
reader to [37, 38].

Example 1.20. The theory of dense linear orders without end points (DLO) is not
simple because the formula ¢(x,y,2) : y < x < z has tree property. Let I be the set
of rational numbers in the interval (0,1) which is a model of DLO. We fix a tree of
parameters (qs : 0 # s € w<¥) for this model which we will use in order to prove
Theorem (4.11).

Definition 1.21. Let T be a complete L-theory where L is a language. An L-formula
¢(x,y) is said to have the independence property (IP) if in every model M of T there
is for each n a family of tuples by, ...,b,, such that for each of the 2" subsets I of
{1,...,n} there is a tuple a; in M for which

M = ¢(ar,b;) <= i€l

A theory T is called NIP if no formula has IP.

It is known that stable theories are NIP. Moreover T is stable if and only if T is
simple and NIP. For more on the subject; see [34].

Now we define the notion of smallness in a structure. For the following definitions,
we follow [6, 40] and [9].

Given sets X and Y we write
f:X-5Y

to indicate that f is a map from X to the power set of Y such that |f(z)| < n for all
x € X. For such a map f, its graph Graph(f) is the set

{(z,y) e X xY :y € fx)},
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and for a subset Z of X, we set f(Z) = J,c, f(z). If X and Y are definable in a
structure M, then such an f is called definable if Graph(f) is.

Definition 1.22. Let M be an L-structure and A be an infinite subset of M. We call
A small if there is a pair (N, B) elementarily equivalent to (M, A) such that for every
finite subset b of N every L—type over Bb is realized in N. We call A large if there

exist natural numbers m and n and a definable function f : M™ 25 M such that

f(A™ =M
For the following lemma, the first part does not use strong minimality.

Lemma 1.23. In strongly minimal theories, being large is equivalent to not being

small.

Proof. Let T be a strongly minimal theory, M =T and A be an infinite subset of M.
Suppose that A is large in M. So there exist natural numbers m and n and a definable
function f : M™ - M such that f(A™) = M. Let (N, B) be elementarily equivalent
to (M, A). So we also have that f : N™ — N is definable and f(B™) = N. Thus the
type

p(x) ={z: (x, f(b1,....,bm)) & Graph(f),b; € B}

is not realized in N. Hence A is not small in M. Conversely suppose that A is not small
in M. Since in strongly minimal theories there is a unique non-algebraic type over a
given set of parameters, we conclude that for any (N, B) elementarily equivalent to
(M, A), we have that N = acl(B). By compactness, there is a formula ¢(z,y) such
that ¢(z,b) is algebraic for all tuples b € B and N = |J,c5 ¢(x,b). This gives the
desired definable function and hence A is large in M. O

Finally, we define a nonstandard extension of a given structure. We apply non-

standard analysis in Chapters 4 and 5.

Definition 1.24. (Nonstandard Extension of a Structure) Let M be a nonempty struc-
ture in a countable language L. A nonstandard extension *M of M is an ultrapower

of M with respect to a nonprincipal ultrafilter on N.

Now let *M be a nonstandard extension of Ml with respect to a nonprincipal ultra-
filter D on N. Note that *M is an elementary extension of M and the elements of *M
are of the form (z,)n/D where (z,), is a sequence in M. Ultraproduct of structures
automatically become Ni-saturated. For a subset A of M, the set *A is defined to be
the set

{(an)n/D : {n: a, € A} € D}.

Subsets of *M of the form *A for some subset A of M are called internal. Not every
subset of *M need to be internal. The following sets *N, *Z, *Q, *R are called hyper-

natural numbers, hyperintegers, hyperrational numbers and hyperreals respectively.
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The elements *R \ R are called nonstandard real numbers. Let

Ry = {z € "R |z| < n for some n € N}.
The elements in *R \ Ry;, are called infinite.

Note that the notion of a nonstandard extension and its properties can be general-
ized to many-sorted structures. This will be significant for the definition of the height
function which takes values in R. For more detailed information about Nonstandard

Analysis, the reader might consult [14, 15].
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CHAPTER 1. PRELIMINARIES AND NOTATIONS



Algebraically Closed Field with a Group

2.1 Mann Property

In this chapter, we analyze algebraically closed fields with a distinguished multiplica-
tive subgroup. Let K be an algebraically closed field, the field F its prime field and G

be a multiplicative subgroup of K*. Consider an equation

4z 4+ apz, = 1 (2.1.1)

with n > 2 and a; € F. A solution (g1, ..., gn) of this equation is called non-degenerate
if for every non-empty subset I of {1,2,...,n}, the sum ), ; a;g; is not zero. We say
that G has the Mann property if every such equation (2.1.1) has only finitely many
non-degenerate solutions in G. In [26], H. Mann showed that the set of complex roots
of unity p has the Mann property and his proof is effective. The rank of an abelian
group G is the dimension of the Q-vector space G ®z Q, where G is viewed as a Z-
module. In the 1980’s, H. Mann’s result was generalized and it was proved that any
multiplicative group of finite rank (note that p has rank 0) in any field of characteristic
zero has the Mann property; see [32, 13, 23]. To illustrate, every finitely generated
multiplicative subgroup of C* has the Mann property, such as 223%. The result
above is not true in the positive characteristic, for instance the multiplicative group
of the algebraic closure of a finite field has rank 0, however it does not have the Mann
property since the equation x + y = 1 has infinitely many non-degenerate solutions.

More generally, the multiplicative group of an infinite field does not have the Mann

13
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property. However, any cyclic group has the Mann property in all characteristics. The
unit circle in C does not also have the Mann property. It was first B. Zilber in 1990,
who considered the model theory of the pair (C, ). In his unpublished note, B. Zilber
[41] showed that the pair (C, i) is w-stable, using as a main tool the result of H. Mann.

Now fix K and G with the Mann property as above. By the pair (K,G), we
mean the structure (K,G,+,—,-,0,1). So our language is L(U) = {+,—,-,0,1,U}
where U is a unary relation whose interpretation in K is G. The model theory of the
pair (K, G) was first studied in the paper of L. van den Dries and A. Giinaydin [9],
and it was proved that G is small in K as is defined in the previous chapter in the
definition (1.22). So by changing the model if necessary, we may assume that K is
|G| *-saturated as a field. Moreover, we suppose that the pair (K, Q) is s-saturated
for some big uncountable cardinal k¥ > wy. In this chapter we will be working in this
sufficiently saturated model. Among other things, in [9] an axiomatization of the
theory of (K,G) was obtained by adding the constants to denote the collection of
non-degenerate solutions of the equation (2.1.1). L. van den Dries and A. Giinaydin
[9] generalized B. Zilber’s result to (K,G), where K is an algebraically closed field
and G has the Mann property, that is to say, the theory of (K, &), denoted by Tp, is
stable and if G is superstable (w-stable) in the pure group language then so is the pair
(K,G). In [9], it was also proved that the Mann property is global, which means we
can choose a; to be in K in (2.1.1) and this still gives finitely many non-degenerate
solutions in G. Furthermore, L. van den Dries and A. Giinaydin [9] showed that every
subset of G™ definable in (K, G) is definable in the abelian group G, in other words

the induced structure on G is just the pure abelian group structure.

Our results in this chapter will mainly concern the stability theoretical framework
of the pair (K, G). In particular, we study the pair (K, G) in terms of geometric model
theory. In the next two sections, we characterize algebraic closure and forking in the
pair in terms of the algebraic closure and the independence in the pure field K. Then
in 2.4, we characterize definable groups in (K, G) by applying the group configuration
theorem [19] and the tools used in the article of T. Blossier and A. Martin-Pizarro [2].
It turns out that, up to isogeny, a type-definable group in (K, G) is an extension of
a type-interpretable group in G by an algebraic group defined in K. Next, we study
imaginaries in the pair via canonical bases as studied by A. Pillay [28] and we give
a description in terms of real elements. Finally, we obtain characterization of inter-

pretable groups in the pair.

Now we fix some more notations. For a substructure A in the sense of the pair, we
denote G4 = AN G. By acl(A) we mean the algebraic closure of A in the field sense,
and aclp(A) signifies the algebraic closure of A in the pair (K,G). By | we mean

P
the independence in the pure field K, and | denotes the independence in the pair.
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If A is a subset of G, the algebraic closure of A in G will be denoted by aclg(A4). By
G
L we represent the independence in the pure group G. Let a be a tuple in K and B

be a set of parameters. Unless otherwise stated, the type tp(a/B) denotes the type

of a over B in the pure field sense and T indicates the theory of K, in other words

ACF, where p is the characteristic of K. By tp”(a/B), we mean the type of a over B

in (K, Q) and tps(v/C) indicates a type in the pure group G where v and C lie in G.
ld

Finally given three fields E, F and L C EN F, the notation F | F represents that F

L
is linearly disjoint from F' over L.

The next remark will be subsequently used through the chapter.

Remark 2.1. Let Nd denote the collection of all non-degenerate solutions in G of the
equation (2.1.1) for every n > 2 and aq, ..., a, in the prime subfield. Then for every

natural number n and elements of the prime field a1, ..., a,, the set

{(91,-,9n) s @191 + - - - + angn = 0} CG"

is definable over Nd in the pure abelian group structure G. Now let C' be a subset
of G containing the set Nd. This in turn gives that every group automorphism of G
over C extends to a ring automorphism of the ring F|G|, which further extends to a
field automorphism of the field F(G). In particular, since every algebraically closed
structure A in the sense of the pair (K, G) contains Nd, every group automorphism
of G over G4 extends to a field automorphism of the field F(G).

For the following lemma see [3]:

Lemma 2.2. [3, Lemma 2.1] Let Ty C Ty be stable theories. Suppose that Ty elim-
inates imaginaries. Let M be a model of To and a, b be tuples in M. If C is an

Ty T
algebraically closed set in the sense of Ty, then a | b implies a | b.
c c

In particular, if C is algebraically closed in (K, G) and a,b € K, then the indepen-

P
dence a | b implies the algebraic independence a | b.
c c

2.2 Characterization of Algebraic Closure

In this section, we characterize algebraically closed structures in the pair (K, G) which
will be used frequently for all other proofs in this chapter. In order to characterize the
algebraic closure, we need the stability of the pair (K, G) which we know by [9], and
we apply lemma (2.2).

After characterizing algebraic closure, in the next section we will characterize in-
dependence. Thus, our method will be different from [1], though we use a similar

technique for the characterization of forking. We begin with a definition.
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d
Definition 2.3. We say that a substructure A is G-independent if A | TF(G).
F(Ga)
Lemma 2.4. Let A be algebraically closed in the sense of the pair. Then A is G-

independent.

Proof. Let aq,...,a, be in A and 31, 3s, ..., 3, be in F(G) such that
alZl +a222 + - —i—anEn =0.

By multiplying with the denominators, we may assume that ¥; = k;191 4+ +kimgm for
some natural number m > 1 where k;; in F and g; in G for 1 <7 <nand 1 <j <m.
Thus we obtain that ¢1g1 + - - - + ¢ngm = 0 where ¢; = arky; + asko; + - - - + ankp;
which is in A. Without loss of the generality, we may assume that no proper subsum

of c1g1 + -+ - 4 ¢mgm is 0. Then we have

—c —c
€92 4+ m gm = 1.
C1 g1 1 g1
Note that the tuple (22, ..., 2m) is a non-degenerate solution of the equation
b g1 g1
—c —c
721~2+...+ mwm:]..
C1 C1

As G has the Mann property over K, we know that this equation has only finitely many
solutions in G. Since A is algebraically closed, we conclude that the tuple (g—f, . %)

is in A and hence in G 4. Therefore we obtain that c¢; + CQZ—’;’ + et cm% = 0. Hence

we conclude that
z1 Zn
ag—+---+a,— =0
g1 g1

and = in F(G4) for 1 <i <n. O

Next, we give the characterization of the algebraic closure in the pair. We apply a
similar method as in the paper [9] where they apply a back-and-forth argument. We
also benefit from the stability of the pair and lemma (2.2). In [9, Corollary 3.7], they
prove that A is an elementary substructure of K in the sense of the pair if and only
if A is an algebraically closed field, the group G 4 is an elementary substructure of G

and A is G-independent. The next lemma is inspired by their result.

Lemma 2.5. (Algebraic Closure for pairs) Let A C K. Then A is algebraically closed
in the sense of the pair if and only if A is an algebraically closed field, the group G 4
is algebraically closed in G containing the set Nd and A is G-independent.

Proof. Clearly if A is algebraically closed in the sense of the pair, then A is an alge-
braically closed field and G 4 is an algebraically closed subgroup of GG. Moreover by
lemma (2.4), we know that A is G-independent. Conversely, suppose that A is an

algebraically closed field, the group G 4 is an algebraically closed subgroup of G and
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A is G-independent. Let « be in K but not in A.

Case 1: Let o € G\ G 4. Then since G4 is algebraically closed, we know that a has
infinitely many conjugates in GG. Choose a conjugate § € G of a. Then, there is an
automorphism f € Aut(G/G4) sending « to S. Since G has the Mann property, by
remark (2.1) f extends to a ring automorphism of F[G], which also extends to a field
automorphism of F(G). Since A is G-independent, by linear disjointness the former au-
tomorphism extends to a field automorphism of A(G) over A and this further extends
to an automorphism of K over A which is actually an automorphism of the pair (K, G)
over A. This yields that a is not in aclp(A). In particular, we have G, (4) = Ga.
Case 2: Let o € acl(4,G) \ A. Then there exist ¢1,...,g, € G such that « is in
A(g1, -, 9n)™ \ A. So there is a rational polynomial r(zg, 21, ..., z,) with coefficients
from A such that r(a, g1, ..., gn) = 0. We may assume that ¢1, ..., g, are algebraically
independent over A. Therefore by the first case, we know that g; is not in aclp(A)
for 1 < i < n. Thus the type p = tp? (g1, ..., gn/ aclp(A)) is not algebraic. Now take
(h1,....;hn) |E p such that hq,..., h, i 91y - gn- By lemma (2.2) we obtain that

1p(A
hi,e.shn L 91,---s gn. Moreover :npc(e )aclp(A) is G-independent by lemma (2.4)

aclp(A)
and Gaclp(a) = Ga, by transitivity we get that

h17 7hn J/ gl, ,gn
A

Since there is a pair automorphism over A sending (g1, .., gn) to (h1, ..., hy,), this gives
a conjugate 3 of a owing to the polynomial equation » = 0. Observe that S is different

from o thanks to the independence hi, ..., hn, | g1, ..., gn. Choosing other independent
A

conjugates, as a result we conclude that « has infinitely many conjugates over A and
hence « is not in aclp(A4).

Case 3: The element « is not in acl(A, G). Note that every field automorphism fixing
G is an automorphism of the pair (K, G). This shows that acl(4,G) = aclp(4,G),

and hence « is not in aclp(A). Thus we are done. O

The lemma (2.5) yields the following corollary.

Corollary 2.6. For any subset D in K,
aclp(D) = acl(D, Gacip(D))-

In particular, if H is an algebraically closed substructure of G containing Nd in the

sense of the pure group, then aclp(H) = acl(H).

Proof. As acl(D, Gy, (py) € aclp(D) and aclp(D) is G-independent by lemma (2.4),
we conclude by applying (2.5). The proof of lemma (2.5) case 1 shows that Gl (m) =
H. Since aclp(H) is G-independent by lemma (2.4), applying lemma (2.5) we deduce
that aclp(H) = acl(H). O
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2.3 Characterization of Forking

In this section, we characterize forking in the pair. Since we have the following equiv-

P
alence A | B if and only if
c

P

aclp(4) | aclp(B),
aclp(C)

we characterize forking for algebraically closed sets in terms of the algebraic indepen-
dence in K.
First, we start with a lemma concerning just pure abelian groups. Let A be an

abelian group written additively. An equation is a formula (%) of the form
mizy + - - -+ mpx, =0,

where m; € Z. A positive primitive formula is of the form 3g(y1 A... A7) where v;(Zg)
are equations. The next lemma requires that every formula in a pure abelian group is

equivalent to a Boolean combinations of positive primitive formulas, see [39, Theorem
4.2.8].

Lemma 2.7. (Algebraic Closure for abelian groups) Let A be an abelian group writ-
ten additively and B,C be algebraically closed subgroups of A. Then B + C is also

algebraically closed in the sense of the pure abelian group A.

Proof. Let o(x,b,c) be an algebraic formula over B 4+ C' where b is a tuple in B with
|| = s and ¢ is a tuple in C with |¢| = ¢. Since every formula in an abelian group is
equivalent to a Boolean combinations of positive primitive formulas, we may assume
that ¢(z,y,2) = a+D where « € acla(0) and D is a subgroup of Ax A*x A*. Note that
By ={g:(g,b,0) € a+D} is finite and so it lies in B. Similarly C; = {g : (¢,0,¢) € D}
is finite and hence it is a subset of C. As By +C1 = {¢: (9,b,¢) e a+ D} C B+ C

and it is finite, we are done. O

The next lemma affirms when two algebraically closed structures have the same

type over a common algebraically closed substructure.

Lemma 2.8. Let By, By and C C By N By be three algebraically closed sets in the
sense of the pair (K,G). Then tp¥(B1/C) = tp”(B2/C) if and only if there is a
field automorphism over C sending By to By with Gg, to Gp,, and tp(Gp,/Ge) =
tpa(GB,/Ge).

Proof. Suppose that there is a field automorphism f sending (B1,Gp,) to (B2, Gp,)
over C' and a group automorphism & of G sending G g, to G, over G¢. Since G has the
Mann property, by remark (2.1) the automorphism h extends to a field automorphism
of F(G). As C is G-independent by lemma (2.4), the automorphism h further extends
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to an automorphism of C(G) over C. Since both By and Bs are G-independent, we

1d
obtain B; | C(G) for each i = 1,2. The automorphisms f and h now extend to
C(Gg,)
an isomorphism between B (G) and Bs(G) over C' which further extends to K. Thus

we conclude that tp”(B;/C) = tpf’(By/C).
O

Now we prove a lemma which will be crucial for the characterization of forking and

the characterization of definable groups in this chapter.

Lemma 2.9. Let C = AN B and all be algebraically closed in the sense of the pair.
If A | B,G, then aclp(A, B) = acl(A, B) and Gaq,a,8) = acla(Ga,G).

c,G
Proof. Since A is algebraically closed and it contains C, by lemma (2.4) we have
A | C,G. Transitivity of the algebraic independence yields that A | B, G and so

C,GA C7GA
A | G. As B is algebraically closed, similarly we have that B | G and therefore
B,GA GB

B | G. By transitivity of the algebraic independence again, we obtain that
GAGp

AB | G
GaGp

which in turn gives
acl(A, B) iﬁ acl(G).
acl(GAGB)
Note that by lemma (2.7), the group GG p is algebraically closed in G. By corollary
(2.6), we see that aclp(GaGp) = acl(G4Gp). Since by lemma (2.4) acl(G4Gp) is also

G-independent, by transitivity and in terms of linear disjointness, we conclude that

1d
acl(A,B) | F(G).
F(GAGB)
Hence by lemma (2.5), we deduce that aclp(A,B) = acl(A, B) and Gac,p(a,B) =
GAGBZaCIC;(GA7GB). O

The next lemma is somewhat surprising, however it holds in the pair (K,G) con-
trary to pairs of algebraically closed fields.

Lemma 2.10. Let C = AN B and all be algebraically closed in the sense of the pair.
IfA | B,G then A | B.

c,G c
Proof. Since A is algebraically closed in the sense of the pair, by lemma (2.4) and

transitivity we can replace A | B,G by A | B,G. By transitivity, it is enough to
c,G C,Ga
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1d
show that B | C(Ga). Let by,...,b, € B and ¢y, ..., g, € G4 be such that
c

bigi+ -+ bagn =0.

We may suppose that no proper subsum of this equation is 0. Thus similar to the
proof of lemma (2.4), we obtain that % € Bfori=1,2,...,n. As they are also in G 4,

we deduce that % € G¢. Hence we are done. O

Remark 2.11. The lemma (2.10) does not hold in pairs of algebraically closed fields.
This is one of the points where the pair (K, G) and pairs of algebraically closed fields
differ from each other. This will be the main reason why the independence in (K, G) is
more plain than the independence in pairs of algebraically closed fields. More precisely,
let K and E be two algebraically closed fields such that E is small in K, that is to say
E is not K. Let C = AN B and all be algebraically closed in the pair (K, E). Note also
that all the fields E4, Ep and E¢ are also algebraically closed in the pair (K, E). Then

ud
we do not necessarily have B | C(E4), since C is algebraically closed, by transitivity
c

i
the previous independence is equivalent to B | E4. As B is algebraically closed, by
Ec
transitivity the latter independence is equivalent to the independence Ep | Ea. Since
Ec
as a field E is not one-based, the independence Ep | Ea does not hold always. A
Ec
counter example can be found in [37, Chapter 10, Proposition 10.3.6]. This is one of
the differences between (K, G) and (K, E), and therefore we have just one independence
in the field sense in order to characterize forking in the next Theorem (2.12). This
results from the fact that E* does not have the Mann property as it is infinite and the
equation x +y = 1 has infinitely many non-degenerate solutions in E*. Recall that in

(K7 E) H
)
A | B
C

if and only if A | B,FE and A | B. For the details, we refer the reader to [1, 31].
C.E c

Now we are ready to characterize forking in the pair (K, G) by using the charac-

terization of the algebraic closure (2.5), lemma (2.9) and lemma (2.10).

Theorem 2.12. (Forking) Let C = AN B and all be algebraically closed in the sense

of the pair. Then the following are equivalent:
P
(i) AL B,
c

(i) A | B,G,

.G

ld
(ii) A | B(G).

C(Ga)



2.3. CHARACTERIZATION OF FORKING 21

Proof. We first show that (i) and (i7) are equivalent and then we prove that (i) and
(i) are equivalent.

P
Now suppose that A | B. Moreover, suppose for a contradiction that A J B,G. Let

c toXe:
g = tp(B/C UGpg) and A > w;. By saturation, there exists a sequence (B;);<x with

B = By such that B; = ¢ and (B;);<x is independent over C U G in the field sense,

and in particular B; | C,G and Gg C Gp, for all i. On the other hand, by the
C,Gx
independence B; | C,G we have that Gp, C acl(C,Gp) C B. Thus we obtain the
C,Gp
equality Gg = Gp, for all i. As B is G-independent by lemma (2.4), we have that

ld
¢(Gs) L F(G).

F(GB)

Thus by lemma (2.5), we deduce that aclp(C,Gp) = acl(C,Gp) and Gp = Gac(c,ap)-

1d
So we see that acl(C,Gg) | F(G). As B; | C,G, by transitivity and in terms of
]F(GB) C;GB
linear disjointness, we obtain that

ld
B, | FQ).

F(Gp)

Therefore by lemma (2.5) again, this results in that B; is algebraically closed in the
sense of the pair for all 4. Then by lemma (2.8), we conclude that tp?(B;/C) =
tp?”(B/C). By Erdés-Rado theorem, we may assume that (B;);<» is C-indiscernible

P
in the sense of Tp. Let p; = tp”’(A/B;). Since A | B, we know that |J,., pi(z, B;)
- <

is consistent. So there exists A; such that tp? (A, B;) = tp” (AB) for all i. Now, the

sequence (B;);<x is independent over CUG and A; f B, for each B;. This contradicts
c,G
the stability of the field K.

Conversely, assume that A | B,G. By lemma (2.10), we know that A | B. Let
c,G c
(B;); be a Morley sequence over C' in the sense of the pair where By = B. Note that

the sequence (B;, Gp,); is also a Morley sequence over C but for simplicity we write
(B;); instead. The independence A | B yields that G4 | B. By stationarity over

c c
algebraically closed sets (they are models of ACF) and since K is w-stable, we may

assume that (B;); is a Morley sequence over C'U G 4 in the field sense. Since A | B,

c
we also have A | B,Ga. Let p(z) = tp(A/BUG4) and p;(z) be the copy over B;.
C.Ga
Then by A | B,G and by saturation, there exists an element d |= J, pi(z) such
C.Ga

that

d | B;,G
C,Ga
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for all i. Observe that G4 = Ga and tp(dB;Ga) = tp(ABG4) for all i. Moreover,
1d
since A is G-independent by lemma (2.4), we have that C(G4) | TF(G). So by

F(Ga)
lemma (2.5), we see that aclp(C,G4) = acl(C,G4). As we also have that d | G, by
.G
ld !
transitivity and in terms of linear disjointness, we obtain that d | F(G). By lemma
F(Ga)

(2.5) again, we deduce that d is algebraically closed in the sense of the pair. By lemma
(2.9), we know that aclp(A, B) = acl(4, B) and Gy, (4,8) = GaGp, and also

1d
acl(4,B) | F(G).
F(GaGp)

By the choice of d and lemma (2.9) once again, we also have that

1d
acl(d,B;) |  TF(G).
F(GAGBI.)
Applying tp(dB;G ) = tp(ABG ) and the previous two linear disjointless, we con-

P
clude that tp? (dB;G ) = tp” (ABG ) for all i. Hence we obtain A | B.
c

Now we prove that (i7) and (ii¢) are equivalent. Clearly (#i7) implies (i7). So suppose
(ii). By lemma (2.9), we know that aclp(A, B) = acl(4, B) and Gael,(a,8) = GaGp,

1d ld
and also acl(A,B) | F(G). Therefore we obtain that AB | B(G). Moreover
F(GaGB) B(Ga)

1d
since C is algebraically closed and A | B by (2.10), we see that A | B and hence
c c

1d 1d
A | B(Gj,). By transitivity we conclude that A | B(G).
C(Ga) C(Ga)

Now we give some corollaries of Theorem (2.12).

P
Corollary 2.13. Let a and b be finite tuples from K and C be a subset of K. Ifa | b
C

then a | b. Moreover, if we have
(oXe]

aclp(a,C) Naclp(b,C) = aclp(C),

P
then a | b also implies a | b.
c.G c

Proof. Observe that for any subset D of K we have that

acl(D, G) = acl(aclp(D),G) = aclp(D, G).
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Now we conclude by Theorem (2.12). O

P

Remark 2.14. Note that if a | b, then we do not necessarily have a | b unless
c c

C = aclp(C). To see this, it is enough to take a subset C such that aclp(C) is not

equal to C*°.

P
Corollary 2.15. For every a € K, we have the independence a | — G.
G

aclp(a)

Proof. Since aclp(a) is G-independent by lemma (2.4), we have the independence

aclp(a) L acl(G)

acl(Gacip(a))

and aclp(a)Nacl(G) = acl(Gacip(a))- By (2.6), we see that acl(Gaciy(a)) = aclp(Gacip(a))
and acl(G) = aclp(G). Therefore we have

aclp(a) L aclp(G).
aclp(Gacip (a))

With the help of Theorem (2.12) we finish the corollary. O
Next, we prove that the independence in the pair implies the independence in G.

Lemma 2.16. Let C = AN B and all be algebraically closed in the sense of the pair

P el
and A | B. Then we have the independence G4 | Gp in G.
e} Ge

P P
Proof. As A | B, we have G4 | Gp. Corollary (2.15) and transitivity of the inde-
c c

P G
pendence yield that G4 | Gp. Hence we conclude that G4 | Gp. O
GC GC

2.3.1 Stationarity

In this subsection, we prove that types over algebraically closed sets are stationary if

G has WEIL First, we need two basic lemmas.

Lemma 2.17. (Shelah lemma) Let T be a stable theory. If the type tp(A/C) is
stationary and B \LC A, given two C-elementary maps f : A — Ay and g : B — B
such that Aq \LC By, then f U g is also C-elementary.

Proof. Since g is C-elementary, we have that g(A) \LC B; and g(A) =¢ A=¢ A;. By
stationarity there is an automorphism h fixing B; and sending g(A) to A;. Now one
can see that h o g restricted to AU B is fUg. O

The next lemma states that under WEI, types over algebraically closed sets are

stationary in stable theories.
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Lemma 2.18. Suppose that T is stable and M |= T has weak elimination of imagi-

naries (WEI). Then every type over an algebraically closed set is stationary.

Proof. Let A be an algebraically closed set in M. Since T" has WEI, we have that
acl®l(A) = dcl®l(A). Since in a stable theory types over acl®l(A) are stationary, we

are done. O

The next remark does not require that the group G has the Mann property.
Remark 2.19. The pair (K, G) does not have GEI.

Proof. To see that (K, G) does not have GEI, we consider the quotient K */G. Now let
a be an element of K which is not in acl(G). Put e = aG which is an imaginary element.
Suppose there is a real element ¢ such that e € aclp®(c) and ¢ € aclp(e). If we have
¢ € acl(@), then as a is not in acl(G), we can send a to any element b which is also not
in acl(G). Since there are infinitely elements which are not in acl(G) as G is small in K,
this contradicts the assumption e € aclp®(c). This yields that ¢ is not in acl(G). Since
e € dclp(a), we see that ¢ € aclp(e) C aclp(a) C acl(a, G). Thus there is a polynomial
f such that f(a,c,g) = 0 where g is a tuple from G. So there are polynomials
fo, -, fx such that a satisfies the polynomial fi(c, ) X* + - - -+ fi(c,9)X + folc, g)
and fr(c, g) is not 0. Since ¢ € aclp(e), there are finitely may conjugates of ¢ under e,
say ¢ = cq, ..., Cpp- Note also that any automorphism fixing G and sending a to ah fixes
e, where h € G. Therefore, every such automorphism gives finitely many polynomials
with coefficients from ¢ and cy, ..., ¢, but infinitely many elements satisfying these

polynomials, a contradiction. O

With the help of the lemmas (2.17), (2.18) and assuming that G has WEI, we are
able to prove that the types in (K, G) over algebraically closed sets are stationary
although (K, G) does not have GEI.

Corollary 2.20. Suppose that G has WEIL. Let A be algebraically closed in the sense
of the pair and a € K. Then the type tp® (a/A) is stationary.

Proof. Let B be a set containing A. We may suppose that B is algebraically closed

in the sense of the pair. Let a; and as be such that tpf(a;/A) = tpf(az/A), and we
P p

have the following two independence a; | B and as | B. Note that aclp(aq, A) and

A A
aclp(ag, A) have the same type over A in the sense of the pair. By the characteriza-

id
tion of the independence (2.12), we see that a;, A | B(G) for i = 1,2. By lemma
A(G)

G

(2.16), we also have Gacip(a;,a) L G for i = 1,2, Since tpg(Gacip(ar,4)/Ga) =
Ga

tPG(Gacip(as,4)/Ga) and G has WEI, we obtain that

th(Gaclp(al,A) /GB) = th(Gaclp(ag,A) /GB)
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with the help of lemma (2.18). Let f be an automorphism of G over Gp sending

Gaclp(ar,4) 10 Gaclp(as,4)- As G has the Mann property, by remark (2.1) the map f ex-

tends to a field automorphism of F(G) over F(G ). Moreover since B is G-independent

by lemma (2.4), the map f further extends to an automorphism of B(G) over B. Now
1d

since a;, A | B(G) for i = 1,2 and tpf(a;/A) = tp”(az/A), we have an isomor-

A(G)
phism from B(a1, @) to B(as, G) sending a; to ay over B. Since this also extends to

an automorphism of K, we conclude that tp”(a;/B) = tp” (as/B).
O

2.4 Definable Groups for the Pair

In this section, we give the characterization of type-definable groups in the pair (K, G).
We apply the group configuration theorem (1.18) and it turns out that any definable
group, up to isogeny, is an extension of a type-interpretable abelian group in G by an
algebraic group over K. In plain words, definable and interpretable groups in K and
G give rise to all definable groups in the pair (K, G). For more on the applications of

the group configuration theorem, we refer the reader to [22].

Remark 2.21. In stable theories, every type-definable group is an intersection of

definable groups in this theory.

2.4.1 Generics and Isogeny

Generics of a group as defined in Chapter 1, are useful to construct a group in stable
theories. They will play a significant role in the characterization of definable groups

in the pair.

The following lemma is from [30]:

Lemma 2.22. (Generic [30, 5.4]) Suppose that H is a stable group. Every formula
o(z,y) can be associated with a natural number n = n(p) such that, if A is a generic

subset of H defined by a formula o(x,a), then H is covered by n translates of A.

The next lemma states when a type-definable group in the pair is actually an

algebraic group and the motivation comes from [2, 2.1]

Lemma 2.23. (The Group Lemma) Let H be a connected Tp-type-definable subgroup
of an algebraic group V', all definable over an algebraically closed set A in the sense of
the pair. Let a be the generic over A which lies in some translate of H which is also
definable over A. If Gaclp(a,a) = Ga, then H is an algebraic group. In particular, H
is definable.
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Proof. First we may assume that a € H as follows: Suppose that a € bH. Let a’ be

such that tp?(a’/A) = tp” (a/A) and o’ J/ a. Then we have a~'a’ L aanda 'a’ € H
A

is the generic over A. As we have a’, A \|/ a, A, therefore by Theorem (2.12) and lemma
A
(2.9), we see that

Gaclp(a_la’,A) - Gaclp(a’,a,A) c a(ﬂG(GaClP(a/,A)a Gaclp((l,A))'

Since Gacip(ar,A) = Gaclp(a,4) = Ga, we obtain that G, a-1a7,4) = Ga. So we may
assume that a € H.

Put p = tp(a/A) and py its T-reduct. Let Hy be the smallest algebraic group
containing H which exists by the assumption and the w-stability of K. Note that
H = stabp(p) C stabr(po). So Hy C stabr(po). On the other hand since po(z) implies
that € Hop, we get that stabr(pg) € Hp. Thus we have the equality and moreover
Hy is T-connected.

To prove the lemma, it is enough to show that p is the unique generic of Hj since
this implies that Hy is Tp-connected and Hy = stabp(p) = H. Let h be a generic of
Hy over A in the sense of the pair and put ¢ = tpf'(h/A). Observe that py C ¢ since
Hy is T-connected.

Claim: We have the following independence h | G.

A
Proof of the claim: First, note that a € Hy and since the algebraic closure is G-
independent and also by the assumption G, (a,4) = Ga, We obtain that a,A | G
Ga
and so a | G. As a result, the element a is a generic over AUG. Now if h f G, then
A A
there exists a T-formula ¢(z,g) € tp(h/A, G) with parameters from A which is not

generic in Hy. Put n = n(p) as in lemma (2.22) and let

0(y) = 3h1...3h,, € Ho(Vx € Hy \/ hip(a,y))

i<n

and ¢(x,y) = —0(y) A p(z,y). Observe that for any tuple b, the formula ¢(z,b) is not
generic in Hy. However the formula ¢ (z) = Jy(U(y) A ¢(z,y)) with parameters from
A is realized by h, and so it is generic in Hy. Thus a finite number of translates of
Y(x) cover Hy, say Hy = |J,<, ait(x). Take o’ such that tpf(a’/A) = tp”(a/A) and

P P
a | oq,...ap. Thus for certain o € Hy, we may suppose that a € at)(x) and a | o.

A A
So a € ap(x, g’) for some ¢’ € G. By the characterization of the independence (2.12),

we have that @ | « and by transitivity we get the independence a | «,G. This is
A,G A
a contradiction since the formula ag(z,g’) is not generic in Hy. Hence we have the

claim.

Now as A is G-independent by lemma (2.4), by transitivity of the independence, we
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1d
get that h, A | G.In terms of linear disjointness, this gives that acl(h, A) | F(G)".
Ga F(Ga)*®
By corollary (2.6), we see that aclp(G4) = F(G4)". Moreover, since the algebraic

closure is G-independent, by transitivity we get that

id
acl(h,A) | F(G).
F(Ga)

Therefore by lemma, (2.5), we deduce that aclp(h, A) = acl(h, A) and Gaqi,(h,4) = Ga.
Since there is a field automorphism sending a to h over A, by linear disjointness this
in turn gives rise to a field automorphism over A U G. We conclude that ¢ = p which

is determined by po. Hence H = Hj as required.
O

Remark 2.24. The group G does not satisfy the conditions of the previous lemma
even it is connected, as for any a in G we do not have the equality Gacip(a,4) = Ga-

This is expected as G is not an algebraic group.

Definition 2.25. (Isogeny) Let G and H be two type-definable groups in a stable
theory. We say that G and H are isogenous (or there is an isogeny between them) if

there is a type-definable subgroup S of G x H such that

e The projection of S into G, denoted by Gg, has bounded indez (the index is less

than the saturation cardinal k) in G,
e The projection of S into H, denoted by Hg, has bounded index in H,

o The kernel ker(S) ={g € G: (g,1) € S} and the co-kernel coker(S) ={h € H :
(1,h) € S} are finite.

Note that if G and H are isogenous, then there is an isomorphism between Gg/ker(.S)
and Hg/coker(S).

Remark 2.26. Note that the isogeny relation is an equivalence relation. Every group
is isogenous to its connected component and every isogeny of the connected component

gives rise to an isogeny of the group.

The following lemma is in [2] and it enables us to construct an isogeny between

two groups.

Lemma 2.27. [2, 2./ and 2.5] Let G1 and Gy be two groups type-definable (type-
interpretable) in a stable theory. If there exist parameters C = acl®d(C) and elements
a1,b1 of Gy and as, by of G such that

(1) a1 and ag, by and by, a1b; and asby are C-interalgebraic

(2) a1, by and a1by are pairwise independent over C,
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then the element a; (respectively as) is generic in a unique translate of a connected
subgroup Hy of Gy (respectively Ha of G2 ), all definable over C' and there is an isogeny
between Hy and Ho given by the stabilizer of the type tp(ai,a2/C). If in the condi-
tion (1), if we just have ag is algebraic over C,ay (respectively for ba and asbs), then

there is a type-interpretable projection from Hy to a quotient of Ha by a finite subgroup.

The above results can be generalized to the case when both groups Gi and Gs
are x-interpretable. Furthermore, if G1 is type-definable and Gy is x-interpretable, by
stability there is an isogeny between G1 (respectively a projection with the same kernel)
and a connected x-interpretable subgroup D of Gy whose generic is C-interalgebraic

with the generic of Ha.

Remark 2.28. In the previous lemma (2.27), if Go is x-interpretable and if the kernel
of the projection is definable, then we can take D to be a type-interpretable group by

compactness.

2.4.2 Characterization of Definable Groups

Now we are ready for the characterization of definable groups in the pair (K, G) up to
isogeny. Our method is to apply group configuration from geometric stability theory
as in [2]. So we need Theorem (2.12), lemma (2.16), lemma (2.23) and lemma (2.27).
In this subsection, by 7" we mean the theory of K as an algebraically closed field, in
other words T' = AC'F,, where p = char(K).

Recall the result proved by E. Hrushovski and A. Pillay [20]:

Theorem 2.29. [20] Let A be an interpretable group in a one-based stable theory.

Then the connected component of A is abelian.

Theorem 2.30. (Definable Groups) Let K be an algebraically closed field and G be
a multiplicative subgroup of K* with the Mann property. Any type-definable group in
(K, G) is isogenous to a subgroup of an algebraic group. Moreover any type-definable
group s, up to isogeny, an extension of a type-interpretable abelian group in G by an

algebraic group.

Proof. By remark (2.26), it is enough to assume that H is a connected type-definable
group in (K, Q) over some parameters. We will work over a model containing these
parameters which we will omit. Given two independent generics a and b of H, we write
@, b and ab instead of their algebraic closures in the sense of the pair respectively. By
lemma (2.9) and Theorem (2.12), the set ab is T-algebraic over @Ub since @, b are two
independent algebraically closed subsets. With the help of the third generic ¢ which

is independent from a, b, we obtain the following diagram:
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ab

Then by lemma (2.2), we have a T-group configuration. Therefore by the group
configuration theorem (1.18) and lemma (2.27), there exists a #-interpretable group
V in T, whose generic is Tp-interalgebraic with the generic of H. Thus by elimination
of imaginaries in K and applying the lemma (2.27) again, we may assume that there
exists an algebraic group in which H embeds up to isogeny. In other words, up to
isogeny, we may suppose that H is a subgroup of an algebraic group. By lemma
(2.9), the set G is G-algebraic over Gz U Gy. Moreover by lemma (2.16), we have the
following diagram in G:

Gea

So by the group configuration theorem (1.18) and lemma (2.27) again, we obtain

a connected *-interpretable group H; in G and a projection m from H to H;. Also,

the generic h of H; is G-interalgebraic with Gg. Furthermore, we may assume that

the generic h of Hy is Tp-interalgebraic with Gz. Note that H; is abelian by Theorem

(2.29) and remark (2.21). Finally, we show that the connected component N of the

kernel ker(m) is an algebraic group by the group lemma (2.23). Let n be a generic of N
P P

over a in the sense of the pair. So we have n | a and na | a. Observe that na € Na
is a generic also. Since the tuple (n, 1) is in the stabilizer of tp?(a, k), we have that
the tuples (na,h) and (a,h) have the same P-type. Thus in particular, we see that
Grna = Gg. Moreover by lemma (2.9) and Theorem (2.12), the group Gaci,(na,q) is in
the G-algebraic closure of Grg and Gg. Therefore we obtain that Gacip(na,e) = Ga-
Hence, the type tp? (na/a) satisfies the hypothesis of the group lemma (2.23) and we
conclude that N is an algebraic group. Now by (2.28), the group H; can be taken to
be type-interpretable.

O
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Remark 2.31. Note that if G is w-stable in the pure group language, then every type-
interpretable group in G is interpretable in G. For erxample if G is an elementary
extension of u, then every definable group in the pair is an extension of an interpretable

group in G by an algebraic group.

Example 2.32. (Some definable groups) The additive group of K, the multiplicative
group K>, any algebraic group over K, the group G and its powers, the cartesian
product K x G and

SL(Q,G,K):{< “ Z) :ad—bceG}

C

are all definable in the pair. Observe that they all satisfy the conclusion of Theorem
(2.30).

2.5 Imaginaries and Interpretable Groups

In this section, we characterize interpretable groups in (K,G). To achieve this, we
need (K, G) to be w-stable since we will use the existence of the Morley rank in lemma
(2.53). By [9, Corollary 6.2], it is enough and sufficient to suppose that G is w-stable as
a pure abelian group. Moreover by [25], we see that G is divisible by finite. This means
G = DF where D is divisible and F' is a finite group and D N F = 1. Furthermore,
the group D is the connected component of G, it is definable and strongly minimal.
In other words, G is almost strongly minimal. Moreover, any infinite algebraically
closed subset A of G contains F' and it is of the form D4 F where Dy = AN D which
is also divisible. Hence, any infinite algebraically closed subset of G is an elementary

substructure.

In this section, we assume that G is w-stable in the pure group language. As an
example, we can take (K,G) to be an elementary extension of the pair (C,pu). As
noted in [9, 6.4], the pair (K, G) is w-stable and MR(K, G) = w. Thus the pair (K, G)
cannot be uncountably categorical since uncountably categorical theories have finite
Morley rank. Moreover if K and L are countable algebraically closed fields where L
is a proper extension of K, then we have (K,G) = (L, G) by [9, Corollary 3.7]. Thus

the pair (K, G) is not categorical for any infinite cardinal.

First, we compute the Morley rank of tuples from K and we show that Morley
rank and U-rank coincide. This will be a generalization of the result MR(K,G) = w
in [9]. We will also provide a description for imaginaries in (K, G), which allows us to
characterize interpretable groups in (K, G). Our description of imaginaries will be via
canonical bases as in [28]. Recall that (K, G) does not eliminate imaginaries which is

expained in (2.19), since one can not eliminate the quotient K*/G.
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Now we recall the notions of internality and orthogonality from geometric stability

theory.

2.5.1 Internality and Orthogonality

Definition 2.33. Let T be a stable theory. Let a be a tuple and A be set of parameters
(possibly containing imaginary elements), and D be a definable subset. We say that
the type tp(a/A) is almost D-internal if there exists a set of parameters B such that
a | B and a € acl(A, B, D). We say that tp(a/A) is D-internal if we replace acl by

A
dcl.

Note that every extension of an almost D-internal type is almost D-internal and

every non-forking restriction is also almost D-internal.

Remark 2.34. For a stable theory T, if p = tp(a/A) is a type and D is a definable
set, then it is known that p is almost D-internal if and only if there is some B such
that if o’ realizes p then o’ € acl(B, D). Details can be found in [30, Lemma 2.17].

Lemma 2.35. Let a be a real tuple from K. If tp®(a/A) is almost G-internal over a
real set of parameters A, then a € acl(4,G).

P
Proof. Take B containing A such that a | B and a € aclp(B,G) = acl(B,G). The

A
characterization of the independence (2.12) yields that a | B,G and therefore we
A,G
obtain that a € acl(A4, G). O

Remark 2.36. Note that lemma (2.35) may fail if the parameter set A contains

imaginary elements.

The following lemma uses the characterization of definable groups in the pair and

it will be vital for the characterization of interpretable groups in the pair (K, Q).

Lemma 2.37. Let H be a definable group in the sense of the pair. If a generic of H

is almost G-internal then H is isogenous to an interpretable group in G.

Proof. By almost internality, we deduce that H is of finite Morley rank. Since infinite
algebraic groups have infinite Morley rank in the pair, by Theorem (2.30) and w-
stability we conclude the lemma. O

The following lemma is from [28] which will be needed in lemma (2.51).

Lemma 2.38. [28, 1.2] Let T be a stable theory and M be a model of T. Suppose
that tp(a/A) is stationary and almost internal to the definable set ¥.. Then there is
a’ € M such that o’ € dcl(a, A), a € acl(a’) and tp(a’/A) is internal to ¥. Moreover

a’ can be taken to be a code (canonical parameter) for a certain finite set of realizations
of tp(a/A).
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Now, we define the U-rank, weight, orthogonality and regular types.

Definition 2.39. Let T be a stable theory. For a type p, we define its U-rank U(p)
as follows:

1- The U-rank of p is always > 0,

2- The U-rank U(p) > a+1 if and only if there is a forking extension q of p such that
U(q) > a,

3- For limit ordinal 8, the U-rank U(p) > 6 if and only if U(p) > « for all a < 6.

We say that U(q) = a when the U(q) > a but not U(q) > a+ 1. If U(q) > « for all

ordinals o, we say the U-rank is unbounded.

If p = tp(a/A), then U(p) is denoted by U(a/A). If T is an w-stable theory then
we always have that U(p) < MR(p). Now we define the symmetric sum @ for ordinals.
If o is an ordinal, we can write « as a finite sum Zw(’“‘mi, where a7 > ... > a,, and

i=1

n n
m; € N. If a = Zwo‘imi and 8 = Zwo‘ini, then a @ (8 is defined to be

=1 i=1
n
Z w (mz -+ Tll)
i=1

Note that a + 8 < a @ . For example, the sum 1 4+ w = w while 1 fw =w + 1 > w.
One of the properties of the U-rank is Lascar’s inequalities [29, Chapter 1, 3.26]:

U(a/bC) + U(b/C) < U(ab/C) < U(a/bC) & U(b/C).

Definition 2.40. Let T be a stable theory. Let a be a tuple and A be set of parameters.
The preweight of a complete type tp(a/A) is defined to be the supremum of the cardinals
K such that there is some A-independent set {by : A < K} such that a forks with by
over A for every X\. We denote the preweight of a type as prewt(p).

If p is a stationary type, the weight of p is defined to be the largest preweight of any
non-forking extension of p. We denote the weight of p by wt(p).

Next we define orthogonality and regular types.

Definition 2.41. I- If p,q € S(A), then p and q are said to be almost orthogonal if
whenever a and b realize p and q respectively then a and b are independent over A.

2- Two stationary types p and q are said to be orthogonal if all their non-forking
extensions to common domains are almost orthogonal.

8- A stationary type p is called regular if it is non-algebraic and it is orthogonal to all

its forking extensions.

It is known that if p is a regular type then wt(p) = 1, see [29, Chapter 1, 4.5.3].
Moreover, the type p € S(A) is regular if and only if the independence over A is a
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pregeometry on the realizations of p; see [29, Chapter 7, Remark 1.1].

Proposition 2.42. Let a be in K. Let p = tp¥’(a/A) be a non-algebraic type such
that a ¢ A(G)* and A = aclp(A) be a parameter set. Then p is stationary and it is
a regular type with the pregeometry cl(C) = acl(C,G) on the set of realizations of p.
In particular, if a ¢ A(G)" then wt(a/A) is 1. Furthermore, we have

U(p) = MR(p) = w.

Proof. Let A’ be a parameter set containing A. Let a; and ay be such that tpf (a1 /A) =
P

tp?(az/A) = tpF(a/A) and a; | A’ for i = 1,2. By Theorem (2.12), we see that a;
A

and ap are not in A’(G)“. Since there is only one transcendental type over A’(G)*
in the pure field K and since every field automorphism fixing G is an automorphism
of the pair (K,G), we conclude that the type p is stationary. Let R be the set of
realizations of the type p in K. It is sufficient to show that (R,cl) is a pregeometry

where p
cd(By={beR:b / B}
A

for B C R. First observe that if b € R then we also have that b ¢ A(G)“. Moreover as

b | G and A is G-independent, by transitivity we obtain that b, A | G. By corollary
A Ga
(2.6) and in terms of linear disjointness we see that

id
acl(b,A) | TF(G).
F(Ga)

Therefore by lemma (2.5), we deduce that aclp(b, A) = acl(b, A) and Gacib,4) = Ga.

P
Now by applying corollary (2.13), we conclude that b f B if and only if b J B if
A A,G
and only if b € B(G)* = acl(B,G). So we have a pregeometry since (K,acl) is a

pregeometry. Hence the type p is regular and has weight 1.

Let C be a set containing A. Since aclp(a, A) = acl(a, A) and Gacip(a,4) = Ga

P
as shown before, by Theorem (2.12) we see that a / C if and only if a J C iff a €
A AG
acl(C,G). Now take di,...,d, which are algebraically independent over A(G). Let

g1, -, §n be independent generics of G over D = Ad;...d,,. Put @’ = dyg1 + -+ dpngn.
Note that no proper subsum of d1g; + - - - + d, gy, is 0. Moreover, the elements a and
a’ have the same type over A and o’ forks with D over A. Since G has the Mann
property over K, we see that ¢1,...,g, € aclp(a, D). This proves that U(a/D) >
U(g1, ...y gn/D) = n. Thus we obtain that U(p) > w. Finally, since the theory (K, G)
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has Morley rank w, we conclude that U(p) < MR(p) < w and hence
U(p) = MR(p) = w.
O

Remark 2.43. In [9, 6.4], it was shown that if a € A(G)" then MR(a/A) is finite.
This shows that if b is not in A(G)", then MR(b/A) < w since there is only one such

type.

Remark 2.44. Note that if a € A(G)*\ A, then the type q = tp® (a/A) need not be
reqular. To see this, let g1 and go be two independent generics of G over A and put
a = g1 + g2. Since G has the Mann property, we see that g1,g2 € aclp(a). However,
each g; forks with a over A since they are not in A. Therefore wt(a/A) > 2 and hence

it cannot be regular.

Now we recall a theorem which connects Morley rank and U-rank, and also the

definability of Morley rank.

Theorem 2.45. [39, Chapter 4, 4.7.10] Let T be an w-stable theory. Suppose that
there exists strongly minimal formulas @1, ..., & such that any type is non-orthogonal
to a certain ¢;. Then T has finite Morley rank which coincides with U-rank and Morley
rank is definable, that is to say for every formula 0(x,y) and every natural number
n < w the set {a : MR(0(x,a)) = n} is definable.

Next we compute the rank of an element from K.

Lemma 2.46. Ifa € A(G)" where A = aclp(A), then
U(CI,/A) = MR(CL/A) = MRG(Gaclp(a,A)/GA)-

Proof. As G is almost strongly minimal and a is in A(G)", by Theorem (2.45) we
see that U(a/A) = MR(a/A). Now we prove the other equality. Since a € A(G)",
there are g1, ..., gn from G such that a € A(g1, ..., gn)*". We may assume that g1, ..., g
are algebraically independent over A and n is minimal. So without loss of generality,
we may suppose that a = d1hy + - - - + dy,hy, where h; is in G and d; is in the field
generated by a and A, the element a is algebraic over d,...,dm,, A and no proper
subsum of dihy + - - - + dyhy is 0. Since G has the Mann property, this yields
that hy, ..., h, € aclp(a, A). Thus MR(a/A) = MR(h1, ..., hy/A) = MR(Gacl;(a,4)/A)-
Since A is G-independent by lemma (2.4) and the induced structure on G is the pure

group structure, we conclude that

MR(Gaclp(a,A) /A) = MRG(Gaclp (a,A) /GA)
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Combining proposition (2.42) and lemma (2.46) we have the following formula for

the ranks in the pair:

Corollary 2.47. Let a be finite tuple from K and A = aclp(A) be a set of parameters.
Then

U(a/A) = MR(a/A) = w - tr.deg(a/A(G)) + MRG(Gacip(a,4)/GA)-

Proof. We have already proved it if a is an element in K by (2.42) and (2.46). Now
let a be a finite tuple from K. In this case, we split the tuple into two parts a; and by
where a; is algebraically independent over A(G) and b; € acl(ay, A, G). Then we can
replace b by a tuple g in G as we did in (2.46). Thus we obtain that

U(a/A) = U(arb1/A) = U(arg/A)

and similarly for the Morley rank. Note also that a; is independent from g over A in
the sense of the pair. Since also a; is independent over A and the U-rank is additive,
we obtain the formula for the finite tuples for the U-rank. For the Morley rank, we
proceed by induction and use a similar argument as in remark (2.43) to obtain that
MR(a19/A) < w - tr.deg(ai/A(G)) + MR(g/A). Since we know the formula for the
U-rank and U-rank is always smaller than the Morley rank, this yields the formula for
finite tuples. O

We end this subsection by characterizing definable subfields of K.

Proposition 2.48. If F' is an infinite definable subfield of K in the sense of the pair,
then F = K.

Proof. Note that F' is an algebraically closed field since it is w-stable. So its additive
group and multiplicative group are connected. First, we show that Morley rank of F'
is infinite. If the Morley rank of F' is finite, then by proposition (2.42), the generic
of the additive group of F' and the multiplicative group of F' are G-internal. By
lemma (2.37), they are isogeneous to a group interpretable in G. However, since G
is an abelian group, it cannot interpret an infinite field. This indicates that MR(F)
is infinite. Thus we obtain that MR(F) = w as MR(K) = w. So the extension K/F

cannot be infinite. Since F' is algebraically closed, we conclude that F = K. O

2.5.2 Canonical Base Lemmas

In this subsection we prove several lemmas for the properties of canonical bases in

(K, G). These lemmas will be analogous to the lemmas in [28] for the pair (K, G).

Lemma 2.49. Let B be an elementary substructure of (K,G). Suppose that d =
P

Cb(tp(a/acl(B,Q))). Then a | B,G.
d
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Proof. By elimination of imaginaries in K, we may assume that d is in K. First observe
that

aclp(B,G) = acl(B, G)
and a | B,G. Note also that acl(d, Gac1,(a)) is algebraically closed in the sense of

d
the pair by corollary (2.6). For the same reason, the set acl(Gac,.(q)) is also alge-

braically closed in (K, G). In particular, they are G-independent by lemma (2.4). The

independence a | B, G yields that
d

acl(a, d, Gaclp(d)) \|./ G7
a,Gaclp ()

and since acl(d, Gacp(q)) [ G, by transitivity we obtain that
Gaclp(d)

acl(a, d, Gaclp(d)) J./ G.
Gaclp(d)

As acl(Gaclp(d)) = aclp(Gaclp(a)), by transitivity and in terms of linear disjointness

this gives us that
1d

aCI(a7 d, Gaclp(d)) J./ IF<G)
F(Gacip(a))
Thus by lemma (2.5), we deduce that aclp(a,d,Gaap@) = acl(a,d,Gacpq)) and
Gacip(a,d) = Gacip(a)- Now since a | B, G, we have that
d

acl(a, d, Gacip(a)) L acl(B, Q).
aC1(d>Ga01P(d))

By corollary (2.6) again, we see that acl(d, Gac1,(4)) = aclp(d) and we obtain that

aclp(a,d) | aclp(B,G).
aclp(d)

We finish the lemma by applying the characterization of the independence (2.12).
O

Corollary 2.50. Let B be an elementary substructure of (K, G) and let a be a finite
tuple from K. Set d = Cb(tp(a/acl(B,G))). Then Cb(tpf(a/B)) is interalgebraic in
(K,G) with Cb(tp(d/B)).

Proof. Set pp = tp’'(a/B) and qp = tp®'(d/B). Let e; = Cb(p) and e; = Cb(q). Note

P P
that both e; and e are in B®1. By lemma (2.49), we know that a | B,G.Soa | B,d
d d

P P P
and a | B,d. Asd | B, by transitivity we conclude that a | B. This yields that e;

ez,d €2 ez
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is algebraic over es.

Now we show the converse. Take B; such that tpf(B;/e;) = tpf(B/e1) and

P
B; | B. Let pp, and gp, be the corresponding types. Choose an element a; =

€1

P
pp Upp, such that a1 | B, B;. Put di = Cb(ay1/acl(B, B, G)), the element dy =

€1

P
Cb(a1/acl(B,G)) and d3 = Cb(a;/acl(B1,G)). The independence ay | B, B; gives

e1
P
that a1 | B and by the characterization of the independence (2.12) we obtain that

B
a1 | Bi. As ds is in acl(B, @) and by transitivity, we see that a; | B, By, G. Thus
B,G ds
we deduce that d; is algebraic over ds and in particular it is in acl(B,G). Similarly,

the element d; is algebraic over ds and it is in acl(Bj, G). Moreover, the independence

a1 | B,B1,G and d; € acl(B,G) yield that a; | B,G and hence d5 is algebraic over
d1 dl
di. As a result, we conclude that d; = do = d3. By the choice of the element a;, we see

that d; = ¢p U ¢p, . Furthermore, the element d; is in aclp(ai, B) Naclp(ay, B1) as it
is the canonical base of the types tp(a1/acl(B, G)) and tp(a1/ acl(B1, G)). Now, from
P P

P
a1 | B and d; € aclp(aq, B1), we obtain that d; | B. By the independence By | B
B1 By €1

P
and transitivity, we get that dy | B. Hence es is algebraic over e;. O

€1

The next lemma states that, up to interalgebraicity, an imaginary element is a

canonical base of a type over itself and this type is almost G-internal.

Lemma 2.51. Let e € (K,G)® be an imaginary element. Then there is ¢ €
(K,G)*? interalgebraic with e, such that for some finite tuple d' from K we have
e/ = Cb(tpf(d'/e’)) and tp®(d'/e’) is almost G-internal.

Proof. Let a be a tuple in K such that e = f(a) for some 0-definable function in
(K,G). Set e; = Cb(tp”(a/aclp®(e))). Observe that e; is algebraic over e. As

P p
e = f(a) and a | e, we obtain that e | e and hence e and e; are interalgebraic. Now

el €1
let (B,Gp) be an elementary substructure of (K, G) such that e; € (B,Gg)® and
P
a | B.Letd= Cb(tp(a/acl(B,G))). We may assume d to be a finite tuple in K owing

€1

to the w-stability and elimination of imaginaries in K. Let eo = Cb(tp”(d/B)). Then

P
by corollary (2.50) and a | B, we see that e; and ey are interalgebraic. Note that the

€1

P
type tpf’(d/B) is almost G-internal. Thus as we have d | B, the type tpf(d/es) is

€2
also almost G-internal. By lemma (2.38), there is an imaginary element d’ € (K, G)4

such that d’ € aclp(d,e) and d € aclp(d’), and also the type tpf(d’/es) is almost
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P
G-internal. Let ¢/ = Cb(tp?'(d’/es)). Then €’ € aclp(ez) and d | ez as d € aclp(d').

Hence ey € aclp(e’). As a result, we conclude that e and €’ are interalgebraic. O

From now on, we assume that G is w-stable with aclg(()) infinite in the pure group

language.

Lemma 2.52. (Coheir) Let e € (K,G)®? and B = aclp(e) N G. Let ¢ be a tuple from
G. Then tp®(c/B,e) is finitely satisfiable in B.

Proof. First observe that the type p = tpf(e/F(G)*) is stationary. Let d be the
canonical base of p. Thus, we see that d is in aclp®¥(G). Note also that, any automor-
phism in the sense of the pair fixes G setwise, and so fixes F(G)*“ setwise as well. This
yields that d is contained in aclp®(e), and as a result we obtain that d is contained in
aclp®d(B). Therefore p is the non-forking extension of the type tp? (e/B) and hence p
is definable over B. Therefore for a given formula ¢(x,y) of L(U)° over B, there is a
formula ¢ (y) over B such that ¢(x,~) € p if and only if ¥)(v) holds. Since G has the
Mann property and by stability, there exists a formula f(y) over B in the language of
pure groups such that, for all v € G we have = 1(v) if and only if = f(v). Since B is
an elementary substructure of G (because it is infinite and algebraically closed in G),
if c € G and = ¢(e, ¢) then | 9(c) and so = f(c), therefore for some ¢; € B we have
= f(c1) and as a consequence = ¢(e, c1).

O

Lemma 2.53. Let e € (K,G)® be an imaginary element. There is a tuple d from
K, an L(U)-definable function f(x) over O, an L(U)-formula ¢(y) over e and an
L(U)-definable function h(y, z) over e such that

(1) f(d)=e,
(i) ¥(y) € tp(d/e),
(iit) (Vy,y')(P(y) Ap(y') = F2(U(2) Ahly,2) =y'))

(iv) Furthermore, the element d is independent from G over e.

Proof. For (i), (i4) and (4i¢) we refer the reader to [28, 2.4]. Now we prove (iv). Choose
d such that MR(tpf’(d/e)) is minimized. Moreover by lemma (2.51), we can assume
that ¢ = tp?’(d/e) is almost G-internal. Thus remark (2.34) yields that there is some
set u such that if d' = ¢ then d’ € acl(u,G). We will show that d is independent
from G over e. Suppose not and choose b € G such that d forks with b over e. Note
that by almost internality and as G has Morley rank 1, we deduce that MR(tpf(d/e))
is finite. Let m = MR(tpf(d/e,b)) < MR(tp”(d/e)). Note that the Morley rank is
definable in acl(u, G) by remark (1.4) or by Theorem (2.45) as G is almost strongly
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minimal. Let x(y, z) be a formula over e such that x(d,b) holds and for any ¢, we have
MR(x(y,c)) = m if it is consistent. Let A(z) be the formula

(f(y) =enb(y) Ay, v )y AY(y) = (Wy,2) =y AU(2))).

Therefore A(b) holds. Let B = aclp(e)NG. By lemma (2.52), there is b1 € B such that
A(by) holds. Then we find d; satisfying (i), (i7) and (ii7) of the lemma with x(d1,b1)
holds. As b, is algebraic over e, we have that MR(tp? (d;/e)) < m, contradicting the
choice of d.

O

Therefore combining lemmas (2.51) and (2.53), we have the following theorem

describing imaginariy elements in the pair:

Theorem 2.54. Let e € (K,G)*? be an imaginary element. There is a finite real
tuple d such that e is algebraic over d, the type tp® (d/e) is almost G-internal and d

is independent from G over e in the sense of the pair.

2.5.3 Characterization of Interpretable Groups

We start with a lemma from [2]:

Lemma 2.55. [2, Lemma 3.1] Let H be a connected interpretable group in a stable
theory. Let o, B and vy be three independent generics of H and ag be a real element

such that o is algebraic over ag. Then there exist real tuples a,b,c,d,e and f such that

(a,a) = (avﬂ) = (677) = (dv O‘ﬂ) = (e,’yoz) = (fﬁaﬂ) = (a07a)

and
a \L b» c, da €, f
and the same for the other tuples. Moreover in the following diagram:
a
b c
d e

all non-linear triples are independent and each point is independent from the lines

which do mot contain it.
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Now we are ready to characterize interpretable groups in the pair (K, G) which

requires all the tools developed through the chapter.

Theorem 2.56. (Interpretable groups in (K,G)) Let K be an algebraically closed
field and G be an w-stable multiplicative subgroup of K> with aclg(D) infinite and
with the Mann property. Every interpretable group H in (K,G) is, up to isogeny,
an extension of an interpretable abelian group in G by a Tp-interpretable group N,
which is a quotient of an algebraic group V' by a subgroup Ny which is an interpretable

abelian group in G.

Proof. Let H be an interpretable group in (K, G). By remark (2.26), we may assume
that H is connected. Again we work over a small model that we omit. Let o, 8 and
~ be three independent generics of H in the sense of the pair. By Theorem (2.54),
the generic « is algebraic over a real tuple ag which is independent from G over « in
the sense of the pair, and the type tp”(ag/a) is almost G-internal. Then by lemma
(2.55), there are real tuples a,b,c,d, e and f such that

(a,0)="(a, B)="(c,7)="(d, aB)="(e,72)="(f,70B)=" (a0, @)

and if we put @ = aclp(a) and the same for the others, we have the following diagram:

such that all non-linear triples are Tp-independent and each point is Tp-independent
P
from the lines which do not contain it. Since a | G, we see that Gg C aclp(a) C @.

Therefore, we obtain that Gz = aclp(a) N G. Moreover by lemma (2.9) and Theorem
(2.12), we have that G, 55 = acla(Ga, Gp). Since

Gg=aclp(aBf) NG C G @ p)>

we get that G C aclg(Gg, Gf). This is true for all other tuples and by lemma (2.16),
the set G is G-independent from aclg(Gy, Gz). The same holds for the others. So we

have the following diagram:
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Gz

and by the group configuration theorem (1.18), we have a connected *-interpretable
group Hy(G) in G whose generic h is G-algebraic with Gg. By w-stability and by lemma
(2.27), we may assume that H; is interpretable and its generic h is Tp-interalgebraic

with Ggz. Moreover, we have a type-definable surjection
7w H— Hi(G).
Furthermore by Theorem (2.29), we see that H; is abelian.

Next we show that the points @, b,¢,d, €, f give a T-group configuration with the
help of the parameter set G. We know that any three non-colinear points among
them are independent in the sense of the pair, and hence they are T-independent over
G. As 8 is algebraic over b and af is algebraic over d, we have that « is algebraic
over b,d. Moreover by lemma (2.9), we know that acl(b,d) = aclp(b,d). Since the
type tp? (a/a) is almost G-internal and « is algebraic over b, d, we observe that the
type tpf(a/ acl(b,d)) is also almost G-internal. Thus by lemma (2.35) we obtain that
a € acl(G, b,d). The same holds for the other tuples.

Therefore we obtain a connected *-interpretable group V over acl(G) in the field
sense and two independent generics a1, b; of V such that a; is field interalgebraic with
@ over G, the element b, is field interalgebraic with b and a;b; is field interalgebraic
with d. Since the tuples «, 5 and ~ are algebraic over the finite tuples a;,b; and a;b;
respectively and as V is a connected pro-algebraic group, there exists a connected
algebraic group W over acl(G) and two independent generics as,bs such that « is
algebraic over ao and the same for the others. Note that a; is field algebraic over G,a
and the same holds for the others. Moreover, since @, b, d are pairwise Tp-independent

over GG, so are as, by and aobs.

p P

As « is algebraic over a and a | G by corollary (2.15), we see that « | G.
GE GE

Now let N be the connected component of ker(w). Then « is generic in Na over

aclp(h) = aclp(Gg), therefore « is also generic over the group G.

Now we apply the lemma (2.27) to the tuples (as,«) and (be, 3). This yields a
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type-definable surjection ¢ from W to N, up to isogeny. Lastly, we prove that the
connected component Ny of ker(¢) is isogenous to an interpretable group in G. Let
ny be a generic of Ny over G,as. Then the point (n1,1x) is in the stabilizer of the
type tp(az, o/ acl®)(@)) and so tp” (niaz/a) = tpf(az/a). Since tp” (az/a) is almost
G-internal and as ay is algebraic over G, a then the type tpf(nias/a) is also almost

G-internal. As « is algebraic over G, as, the type tp? (n1/G,az) is almost G-internal.
P

Owing to the independence n; | as, we conclude that tpf(n;/G) is also almost G-
G

internal. Then by lemma (2.37) we have that N7 is isogenous to an interpretable group

in G. Theorem (2.29) yields again that the group Nj is abelian.
O

2.6 Remarks on Differentially Closed Field Case

In this section, we just give the analogous theorems for differentially closed fields with
no proofs. Let (€2, 0) be a differentially closed field of characteristic 0 and let

C={zecQ:d) =0}

be the constant field of Q. Recall that (€2, 9) has QE and EI. Moreover, it is w-stable.
Let G be a multiplicative subgroup of Q* with the Mann property. The pair (£2, 9, G)
can be seen as an L(U) = LU {U} structure where L is the usual language for dif-
ferential fields and U is an unary predicate whose interpretation in 2 is G. We begin

with a question:
Question: Is the theory of (€, 0, G) stable?

In contrast to algebraically closed case, the question is not always affirmative. Even
there is a possibility to define the ring of integers Z in (£2,9,G). First assume that
O(G) is not zero. Let g € G be such that 9(g) is not zero. In particular, it is not a
torsion element. Observe that m = gd(g™)/9(g)g™. Therefore even in the simplest

case where G is cyclic and generated by the element g, the formula

_ _ 90(y)
o(r,9) = 3y<U(y) Nx = a(g)y)

defines Z. Now we give some examples. Let 2 be a differentially closed field containing
C((t)) where O(t) = 1. Thus (£2,0,t%) and (2,9, e'Z) are not stable and we can define

Z in (2,0, e'?) without parameters as d(e') = e.

Hence in order to prove the stability of (2,0, G), this leads us to assume that
O(G) = 0, in other words G is a subset of the constant field C. From now on we
suppose that 9(G) = 0. This in return gives us that, the results 3.2, 3.4, 3.5 and 5.1
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in [9] are valid also in the differential case, so similarly we conclude that the induced
structure on G is itself, the pair (£2,0,G) is stable and if G is w-stable in the pure
group language then so is (22,9, G).

Moreover one can similarly prove that the independence in (€2, 9, G) is given exactly
by the independence (2.12). One can prove all the analogous results from this with
similar methods. We just give definable and interpretable groups in (2,0, G). Thus

one can obtain the following results:

Theorem 2.57. (Definable Groups (2,0, G)) Any type-definable group in (2,0, G) is
isogenous to a subgroup of a differential algebraic group. Moreover any type-definable
group is, up to isogeny, an extension of a type-interpretable group in G by a differential

algebraic group.

In the case where G is divisible with aclg(() infinite, we can characterize inter-

pretable groups in (€, 9, G):

Theorem 2.58. (Interpretable groups in (2,0, QG))
Every interpretable group H in (2,0,G) is, up to isogeny, an extension of an
interpretable abelian group in G by an interpretable group N, which is a quotient of a

differential algebraic group D by a subgroup N1 which is interpretable in G.
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Mann Pairs

In this chapter, let £ be an algebraically closed ambient field, the field k be a proper
subfield of € which is also algebraically closed and T" be a multiplicative subgroup of
Q*. Now we define a uniform version of the Mann property which was introduced in

the previous chapter. Consider an equation

a1 —+ -+ AnTyp = 1 (301)

with n > 1 and a; € k.

We say that (k,T') is a Mann pair if for all n there is a finite subset I'(n) of T" such
that for all aq,...,a, in k* all non-degenerate solutions of (3.0.1) in I lie in I'(n). In
particular, the group I' has the Mann property. Observe that if (k,T') is a Mann pair,
then taking n = 1 in the definition, we see that kNI is finite, thus the intersection is a
finite subset of the group of roots of unity in §2. Therefore, most of the elements in T’
are transcendental over the field k. To illustrate, the pair (Q,exp(Q)) is a Mann pair
by Lindemann’s theorem. In [10, Theorem 1.1], L. van den Dries and A. Giinaydmn
proved that if the intersection k NI is trivial and if T" is of finite rank, then (k,I") is a
Mann pair. This provides substantial examples of Mann pairs, such as (C,t%) where

t is an indeterminate.

Now fix Qp, ko and Ty where (ko,[¢) is a Mann pair as above. By the triple
(Qo, ko, T'o) we actually mean the structure (Qq, ko, o, +, —, -, 0, 1). Thus our language

45
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is {+,—,-,0,1, P;, P»} where P; and P, are unary predicates whose interpretations in
Qo are kg and T'g respectively. The model theory of the triple (9, ko, o) was studied
in [10, 11] by L. van den Dries and A. Giinaydin, where they proved that the theory
Th(Q0o, ko, To) is stable and it is w-stable if Ty is divisible. In order to study definable
groups in the triple, we need to add the constants kqUT as they did in [10] in order to
have certain sets definable with parameters from ko and I'y, see theorem (3.1). So our
language L; through the chapter is {+,—,-,0,1, P;, P>} together with the constants
for each element of kg U Tg. Let T; be the complete theory of (o, ko, o) in the lan-
guage L;. Therefore if (Q, k,T) is a model of T} then k contains ko and T' contains the
group T'g. Note also that, if (2, k,T") is a model of T} then the triple (€2, ko, T'o) is an
elementary substructure of (2, k,T') by [11, 4.4]. Moreover in [10], L. van den Dries
and A. Giinaydin proved that & UT is small in Q as defined in Chapter 1. Therefore,
by changing the model we may assume that Q is |k UT|"-saturated as a field, and the
triple is k-saturated for some uncountable cardinal x. Through the chapter, we will be

working in this sufficiently saturated model.

In the previous chapter, we focused on the model theory of the pair (2,T") in terms
of stability. As cited before, the model theory and definable groups in (Q2,%) were
studied in [31, 1, 2]. In this chapter, our concern will be the triple (Q,k,T') in the
stability frame work and we bring present the connection between the triple (€2, k,T")
and the pairs (Q,k) and (Q,T"). More precisely, we characterize the algebraic closure
and forking in the triple. This allows us to characterize definable groups in the triple
in terms of definable and interpretable groups in 2, k and I'. As the strongest result
in this chapter, we characterize interpretable groups in a similar way to the previous

chapter.

We stick to a similar notation as in Chapter 2. For a substructure A in the sense
of the triple, we denote k4 = ANk and 'y = ANT. By acl(A), we mean the algebraic

closure of A in the field sense and acl;(A) indicates the algebraic closure of A in the

t

triple (2, k,T"). By | we mean the algebraic independence in the pure field 2 and |
Py

signifies the independence in the triple. Similarly, | denotes the independence in the

P,
pair (2, k) and j indicates the independence in the pair (Q,T). If A is a subset of T',
the algebraic closure of A in T" will be represented by aclp(A).

Let a be a tuple in 2 and B be a set of parameters. Unless otherwise stated, the
type tp(a/B) denotes the type of a over B in the pure field sense. By tp‘(a/B) we
mean the type of a over B in the sense of the triple. We use similar notations for tp,

and tpp to indicate the types in k and I' respectively. Finally, for three fields E, F’

id
and L C ENF, the notation E | F means that E is linearly disjoint from F' over L.
L
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Adding the constants for each element of ky and I'g will be significant to control
the parameters for definability, since we need algebraically closed structures to contain

enough elements.

The following is in [10] and it states that k and I" are orthogonal in model-theoretic

sense.

Theorem 3.1. [10, Theorem 1.2 and Remark in 8.3] For all m,n > 1, every definable
subset of k™ x I'™ definable in (2, k,T') is a finite union of sets X xY with X C k
definable in the field k and Y C T' definable in the group I'. Moreover, the set ¥, =
{(k1y ooy kn, 915 ooy Gn) 2 k1g1+ -+ Engn = 0} C k™ xXT™ is a finite union of sets X xY
with X C k definable in the field k with parameters from kg and Y C T definable in
the group T' with parameters from T'y. In other words, the induced structure on (k,T")
is itself.

Using the theorem above, the following lemma follows immediately.

Lemma 3.2. Let f and g be automorphisms of Aut(k/kg) and Aut(T'/Ty) respectively.
Then there is an automorphism of k(T') which extends both f and g.

Proof. Define X, = {(k1, ..., kn, g1, -, gn) : K191+ -+ kngn = 0} C k™ xT"™. By Theo-
rem (3.1), the set 3, is a finite union of sets X x Y with X C k definable in the field &k
with parameters from &y and Y C I" definable in the group I' with parameters from T'y.

Therefore (kly seey kna’ylv 7771) € Zn if and Only if (f(kl)v (a3} f(kn)ag(71)7 79(771)) €
Y,. This yields a ring automorphism h of the ring k[I'] given by

h(’ﬁ’h + -+ kn'Yn) = f(kl)g(’yl) + -+ f(kn)g(’Yn)

which further extends to the field k(T") . O

Remark 3.3. Let k1 be an algebraically closed subfield of k and 'y be an elementary

substructure of T. Then the pair (k1,T1) is an elementary substructure of (k,T).

Proof. By quantifier elimination of algebraically closed fields, the field k; is an ele-
mentary substructure of k and I'y is an elementary substructure of I'. We conclude by
Theorem (3.1). O

3.1 Characterization of Algebraic Closure for the
Triple

In this section, we give the characterization of algebraically closed structures in the
triple which will be a key tool for all other proofs through the chapter. In order to
characterize the algebraic closure, we depend upon the stability of the triple (2, k,T")
which we know by [10] and we apply lemma (2.2). We begin with a definition.
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Definition 3.4. We say that a substructure A of the triple (Q, k,T") is (k,T")-independent
if
1d
A | kD).

ka(Ta)

1d
Similarly A is k-independent if A | k and A is T'-independent if
ka

ld
A | F@D.

F(Ta)

Note that if A is algebraically closed in the sense of the triple, then it is k-
independent and I'-independent.

Recall that the determinant of a matrix S = (s;;); j<n is given by

Z sgn(o) H Sio(i)-

g€Sy

Lemma 3.5. Let A be algebraically closed in the sense of the triple. Then A is (k,T')-

independent.

ld
Proof. Since A is also algebraically closed in the sense of (€, k), this yields that A | k
ka

ld ld
and so we have A | k(T'4). By transitivity, it is enough to prove that A | k(T).
ka(Ta) k(T a)
Let aq,...,a, be in A (not necessarily distinct), the elements ki, ...,k, be in k and

g1, .-, gn be in I' such that a1ki1g1 + - - - + ankngn = 0. If g1,...,gn € A then we are
done. So suppose that the tuple g = (g1, ..., g») is not in A. Thus ¢ has infinitely many
A-conjugates in the triple. Let g; = (gs1, ..., gin) be some conjugates of g over A where

2<i<nand g=(g11,.,91n)- Then we have a system of linear equations:
arkiigin + -+ -+ ankingin = 0.

Thus the determinant of this matrix is in the field k(T"). Moreover this determinant
is zero and it is a polynomial ¢ such that q(k1g1, ..., knngnn) = 0. By the determinant

formula, we have an homogeneous equation

Z kohy =0

og€eSy

where k; € k and hy = [] gio(;y € I'. We may assume that no proper subsum of the

equation ) kohs = 0 is zero. Dividing by the element k(;9)h(12), we obtain the

[o4S] Sn
inhomogeneous equation
_ka ho

—1.
k(12) h(12)

oceS\{(12)}



3.1. CHARACTERIZATION OF ALGEBRAIC CLOSURE 49

Since (k,T") is a Mann pair and A is algebraically closed, this yields that the element

h(Id) _ 91922

€ A
h(12) 92921

However, if we put other conjugates to the determinant and since (k,I") is a Mann pair,
by uniform finiteness I'(n! — 1) and cancellation we deduce that go1/911 = g2/91 € A.
Choosing other transpositions, similarly we obtain that g;/g; € A for all i. Hence we
finish the proof by dividing the equation a1k191 + - - - + ankngn = 0 by g1.

O

Next, we give the characterization of the algebraic closure in the triple. We follow

a similar method as in the previous chapter.

Lemma 3.6. (Algebraic closure for triples) Let A C Q. Then A is algebraically closed
in the sense of the triple if and only if A and ka are algebraically closed fields, the
group T 4 is algebraically closed in T and A is (k,T)-independent.

Proof. If A is algebraically closed in the sense of the triple then A and k4 are alge-
braically closed fields and T'4 is algebraically closed in T'. Moreover by lemma (3.5),
A is (k,T)-independent. Now we prove the converse. Let o be in Q \ A.

Case 1: Let a € I'. Then since I 4 is algebraically closed, we know that a has infinitely
many conjugates in I'. Choose a conjugate 8 € I' of a. Then there is an automorphism
f € Aut(T'/T 4) sending « to . Since I'4 contains I'g, by lemma (3.2) there is an auto-
morphism & of k(") which is identity on k and f on I'. Since A is (k,I')-independent,
by linear disjointness the former automorphism extends to a field automorphism of
A(k,T) over A and this extends to an automorphism of Q over A which is actually an
automorphism of the triple (Q, k,T') over A. Thus « is not in acl;(A). In particular,
we have Faclt(A) = FA.

Case 2: Let a € k. Then since k4 is an algebraically closed field, we know that «
has infinitely many conjugates in k. Choose a conjugate 5 € k of a. Then there is
an automorphism f € Aut(k/ka) sending a to . Since k4 contains kg, by lemma
(3.2) there is an automorphism h of k(I") which is identity on I and f on k. Since A is
(k,T')-independent, by linear disjointness h extends to a field automorphism of A(k,T")
over A and this extends to an automorphism of Q over A which is an automorphism of
the triple (€2, k,T") over A. Thus « is not in acl;(A). This indicates that ke, 4y = ka.
Case 3: Let a € A(k, )\ A. Then there exist ki,...,k, € k and g1, ..., g, € I such
that o € A(k1, ..., kny g1, -, gn)™ \ A. So for a rational polynomial

T(x071‘1; vy Ty Y1 "'7yn)

with coefficients from A and we have that

r(a, ki ooy kny g1y ooy gn) = 0.



50 CHAPTER 3. MANN PAIRS

Moreover, we may assume that k1, ..., ky, g1, ..., gn are algebraically independent over
A. Thus by the first two cases, we know that k; and g; are not in acl;(A) for 1 <
i < n. Thus the type p = tp'(k1, ..., kn, g1, .-, gn/ acly(A)) is not algebraic. Now take
My ooy My N1y ey by such that (my, ..., my, by, ..., hy) E p and

t
m17~~~7mn7h17~~~7hn J,/ klw“»knvgl?"'?gnu
acly (A)

By lemma (2.2), we obtain that

mly"'7mnah1a'~-ahn \|,/ kly"'7knagla"'agn-
acly (A)
Moreover since acl;(A) is (k,I')-independent by lemma (3.5), as Kuci,(4) = ka and
[act,(a) = T'a, by transitivity we get that

My, ..., My, h17 ey hn \l,, kl? ceey knagla =y 9n-
A

Since there is a triple automorphism over A sending (k1, ..., kn, g1, --, gn) to the tuple
(M1, ...ymp, b1, ..., hy), this gives a conjugate § of o with the help of the polynomial

equation r = 0. Observe that S is different than « as we have
mi, ..., Mp, h17 o] hn J_, kla ceey knagla ~eeydn
A

and « is not in A. Choosing other independent elements, as a result, we conclude that
« has infinitely many conjugates over A and hence « is not in acl;(A).
Case 4: The element « is not in A(k,T')*“. Since any field automorphism of Q fixing
k and T is an automorphism of the triple, we deduce that acl(4, k,T") = acly(A4, k,T).
This indicates that « is not in acl;(A). Hence we are done.

O

Now we give two immediate corollaries of the previous lemma.

Corollary 3.7. For any subset D in §,
aClt(D) = aCI(D7 kaclt(D)v Faclt (D))

Moreover if B = acly(k1,T'1) where k1 and Ty are algebraically closed in k and T
respectively, then B = acl(k1,T'1).

Proof. As acl(D, ke, (D), Lact,(p)) € acly(D) and acly(D) is (k,T')-independent by
lemma (3.5), we conclude by (3.6). In the proof of lemma (3.6) Case 1 and Case
2, we observe that kg = k; and I'g = I';. We finish by lemma (3.6) again.

O
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Corollary 3.8. Let B be algebraically closed in the sense of the triple. Then I'p =
Lacty(B,k) and kp = kac1,(B,1)- In particular, we have B(k)NI' = 'y and B(I')Nk = kp.

1d
Proof. As B is (k,T')-independent by lemma (3.5), we obtain that B(k) | k(I
k(T'p)

ld
and B(I') | Kk(T). Therefore by lemma (3.6), we see that I'p = [',,(B.x) and
kg (T)
kp = kacl,(B,r)- In particular, we obtain that B(k) N\I' =T'p and B(I') Nk = kp.

O

3.2 Characterization of Forking

In this section, we characterize forking in the triple. First, we need several lemmas.
The following lemma states when two algebraically closed structures in the sense of

the triple have the same type over a common substructure.

Lemma 3.9. Let By,B; and C C By N By be three algebraically closed sets in
the sense of the triple. Then tp'(B1/C) = tpt(Bs/C) if and only if there is a
field automorphism over C sending By to By with (kp,,I'p,) to (kp,,I'p,), and
tpy(kp, /kc) = tpy(kp, /kc) and tpp(I's, /Te) = tpp (T, /T'c).

Proof. <: By tp,(kp, /kc) = tpy(kp,/kc) and tpr(T'p, /T'¢) = tpr(I's, /T'¢), there is
an automorphism f € Aut(k/kc) sending kp, to kp, and there is an automorphism
g € Aut(T'/T¢) sending I'p, to I'p,. As k¢ contains kg and T'¢ contains Ty, by
lemma (3.2) there is an automorphism h of k(T') over ko (T'¢) sending kp, (T'p,) to
kp,(T'p,). Since C is (k,T')-independent by lemma (3.5), the map h further extends
to an automorphism of C(k,T') over C. Moreover since each B; is (k,I')-independent
by lemma (3.5), we deduce that
1d

B, | C(kD).
C(ks,T's,)

As we also have tp((Bi1, kp,,I's,)/C) = tp((B2,kpB,,I'p,)/C) and the linear disjoint-
ness above, the map h further extends to an isomorphism between Bj(k,I') and

By (k,T') over C which extends to Q. Hence tp’(By/C) = tp'(B2/C). The other

direction is clear. O

Now we prove another lemma before characterizing the independence in (9, k.T).

Lemma 3.10. Let C' C AN B be three algebraically closed structures in the sense of

the triple and suppose that A | B, k,T. Then acl;(A, B) = acl(4, B). Moreover, we
C,k,T

have ka1, (a,B) = acl(ka, k) and Ty, 4,8y = aclp(T'a, T'p).
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Proof. Since A is algebraically closed, lemma (3.5) and transitivity yield that

A | BT
Cika,l'a

andso A | k,T. As B is algebraically closed, similarly we have that B | k,T
B,ka,l'a kg,I'p
and thus

B L kT
acl(ka,kg)(Tal'p)

By transitivity, we obtain that

A,B L k,T.
acl(ka,kg)(Tal'B)

Note that by lemma (2.7), the group I'yI'p is algebraically closed in I'. By corollary
(3.7), we see that acly(ka, kg, I'a,I'p) = acl(ka,kp,['a,I'p). Since acl(ka, kg, T'a,I's)
is also (k,T')-independent by lemma (3.5), by transitivity and in terms of linear dis-
jointness we deduce that
ld
acl(A, B) Fll E(T).
aCl(k}A,kB)(FAFB)
Hence by lemma, (3.6), we deduce that acl;(A, B) = acl(A, B) and also that ka1, (4,5) =
acl(kA, kB) and Facl,,(A,B) = aclp(FA,I‘B) = FAFB. ]

Now we are ready to give the characterization of forking in the triple by applying
lemmas (3.6), (3.9) and (3.10). We follow a similar method as in (2.12). It turns our
that independence in the triple is given by the algebraic independence in 2 and k; see

(ii7) below.

Theorem 3.11. (Characterization of Forking)
Let C = AN B and all be algebraically closed in the sense of the triple T;. Then

the following are equivalent:
t
(i) AL B,
c

(ii) A | B,k,T"and A | B

C,k,T C
(iii) A | B,kT and ks | kp.
C.k,T ke

t

Proof. First suppose that A | B. By lemma (2.2), we have that A | B. In particu-
c c

lar, we obtain k4 | kp. Moreover since C is algebraically closed in the sense of (£, k),

c
we also have that C' | k and so C' | kpg. This two independence give us that k4 | kp.
ke ko ke
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Now we prove that A | B, k,I'. Suppose for a contradiction that
C,k,T

A J B,kT.
C,k,T

Let ¢ = tp(B/CUkpUT'p) and A > w;. By saturation, there exists (B;);<x with B =
By such that B; |= ¢ and (B;);<x is independent over CUEUT in the field sense, and in

particular B; | C,k,T'.Sokp C kp, and'g C I'g, for all i. On the other hand, by
Ckp,I'p
the independence B; |  C,k,T we have that kp,,I'p, C acl(C,kp,I'g) C B. Thus
Ckp,I'p
we obtain the equalities kg = kp, and 'y = I'p, for all 4. As C' is (k,I')-independent

by lemma (3.5), we see that

1d
C(ks,Ts) L k().
]i)B(FB)
Thus by lemma (3.6), we deduce that acl;(C,kp,I'g) = acl(C, kp,T'5), and also that

kB = kaci(C,kp,rp) and I'p = Taci(c kp,rp)- SO We see that

ld
acl(C’,kB,FB) \L k(F)
k}B(FB)

As B; | kT, by transitivity and in terms of linear disjointness, we obtain that
C.kp,I'p

ld
B, | k(D).

kB(FB)

Therefore by lemma (3.6) again, we deduce that B; is algebraically closed in the sense
of the triple for all i. Then, lemma (3.9) yields that tp*(B;/C) = tp'(B/C). By Erdds-
Rado theorem, we may assume that (B;);<x is C-indiscernible in the sense of T}. Let

t
pi = tp'(A/B;). Since A | B, we know that |J,., pi(x, B;) is consistent. So there
- <

exists A; such that tp®(A4;B;) = tp'(AB) for all i. Now (B;);<» is independent over

CUEUT and A; [ B; for each B;. This contradicts the stability of the field €.
C,k,T

Hence we proved that (i) implies (#4) and (7).

Now we prove that (i¢) and (4i7) are equivalent. We already proved that (i) implies
(#i1) in the beginning. Suppose that we have (ii7). Since A is algebraically closed in
the sense of the triple, it is k-independent. In particular, C'(k4) is k-independent and

hence we get that C'(ka) | kp. As we also have k4 | kg, by transitivity we obtain
kA kC
that C(ka) | kp and hence k4 | kp. As A and B are k-independent, by transitivity
ko c
we conclude the independence A | B.
c
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Lastly, we prove that (i) implies (¢). Let (B;); be a Morley sequence over C' in
the sense of the triple where By = B. Note that (B;,kp,,I',); is also a Morley
sequence over C in the sense of the triple but for simplicity we write (B;); instead.

By (i7) we also have that ka,T'4 | B. By stationarity over algebraically closed sets
c
in ACF and as Q is w-stable, we may assume that (B;); is a Morley sequence over

CUksgUT, in the field sense. Since A | B, we also have A |  B,ka,I'4. Let
C Cika,l'a
p(z) = tp(A/BUk4 UT4) and p;(x) be the copy over B;. Then by A |  B,k,T
Cka,Ta
and saturation also, there exists an element d = J, pi(x) such that

d | BikT
Cika,l'a

for all 4. Observe that kg = k4 and T'y = T'4, and also tp(dB;kal'4) = tp(ABkaT 4)

for all i. Moreover since A is (k,I')-independent by lemma (3.5), we have that

1d
Clka,Ta) L k(D).
ka(Ta)
So by lemma (3.6), we obtain that acly(C,k4,T4) = acl(C,ka,T4). In particular

acl(C,ka,T4) is (k,T')-independent by lemma (3.5). Since also we haved | k,T,
Cika,Ta
by transitivity and in terms of linear disjointness, we deduce that

ld
d | KkID).

ka(Ta)
Therefore by lemma (3.6) again, we conclude that d is algebraically closed in the
sense of the triple. By lemma (3.10), we see that acl;(A, B) = acl(4, B), and also
Kact,(a,By = acl(ka, kp) and T'aq,(a,8) = aclp(I'4,I'p). Moreover, we have
ld

acl(A, B) L E(T).

acl(ka,kg)(TalB)
By the choice of d, we also have that
ld

acl(d, B;) L k().
acl(ka,kp,;)(Talp,;)

Using tp(dB;kal'a) = tp(ABkaT'4) and the previous two linearly disjointness, we
conclude that tp!(dB;kaTl a) = tp!(ABkAT 4) for all i. Hence we have (7). O
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Corollary 3.12. For every a € 2, we have that

t
a L k,T.
kacly (o) Lacly (a)

¢
Moreover we also have the independence a | T.

Taciy ()

Proof. Since acly(a) is (k,T')-independent by lemma (3.5), we have that

acl(a) L acl(k,T")
acl(Kaciy (a) Tacly (a))

and acly(a) Nacl(k,T") = acl(kacl, (a)s Lacl, (a))- By corollary (3.7), we see that

aCl(kjaclt (a)» Faclt (a) ) = acly (kaclt (a)» Faclt (a) )

and also that acly(k,T") = acl(k,T"). Therefore, we deduce that

acl(a) L acly(k,T).

acly (Kaciy (a)sLacly (a))

Applying Theorem (3.11), we have the first part. For the second part, we have
acly(I") = acl(T', ko) and acly(Tacl,(a)) = acl(Tac,(a), ko), and also that k.., )y = ko
by corollary (3.7). As acli(a) is I'-independent by remark (??), we conclude by Theo-
rem (3.11) similar to the first part. O

The next lemma states that the independence in the triple implies the independence
in I" as a pure group.
Lemma 3.13. Let C = AN B and all be algebmzcally closed in the sense of the triple
and A J/ B. Then we have the independence T 4 J/ T'p in the abelian group T.
C I'e

t t
Proof. As A | B, we have I'y | T'p. Corollary (3.12) and the transitivity of the

c c

t r

independence yield that I'y | I'p . Hence we conclude that T'y | T'p. O

Fc FC

3.2.1 Independence over Models and Stationarity

In this subsection we study the independence over models. Then we investigate the
relation between the independence in the triple and the independence in (€2, k) and
(€,1).

Proposition 3.14. Let M = ANB where A, B are algebraically closed in the sense of

the triple Ty and M is a model of Ty. Then A J/ B if and only if A J/ B(k,T)
M(ka,Ta)
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1d
and ka | kp.

ke

t 1d

Proof. By Theorem (3.11), it is enough to prove that A | BimpliesA |  B(k,T).
M M(ka,Ta)

Now let aq, ..., a, be in A (not necessarily distinct), the elements b1, ..., b, be in B, the

elements k1, ..., &k, be in k and g1, ..., g, be in I" such that
alblklgl +--+ anbnkngn =0.

Let f(%,¥,Zz,t) be the formula z1y121t1 + - - - + TpYnzntn = 0. Let (T, 7) be the
formula
Az e P33t e Pf(z,9, 2, 1).

_ ¢
Then a = ¢(z,b). As A | B, by stability the type tp’(A/B) is an heir extension of
M

tp'(A/M). So there is m € M such that a = ¢(z,m). We finish the proof since A is
(k,T')-independent by lemma (3.5).
O

Proposition 3.15. Let C = AN B and all be algebraically closed in the sense of the
t Py P,
triple Ty. If A | B then we have the independences A | B and A | B in the sense
C c C
of the pairs (Q, k) and (Q,T) respectively.
¢
Proof. Suppose that A | B. As A is (k,T')-independent by lemma (3.5), by tran-
C
sitivity we have A | B,k,T and A | B. Thus by remark (?7?), it is enough

CkaTa c
to show that A | B,k and A | B,I'. Note that by corollary (3.8), we have that
C.k c,r
Lacl,(B,k) = I'p and kuep,(g,ry = kp. In order to show A | B, k, by transitivity it is

Ck

ld
enough to show that B(k) | C(k,T'4). Solet by,...,b, be in B, the elements kq, ..., k,
c(k)
be in k and ¢, ..., g, be in I'4 such that

bikigi + - - + bpkng, =0.

We may suppose that no proper subsum of this equation is zero. Since I' has the Mann

property over 2, we obtain that % € acly(B, k) and so % € I'p for all i. As % ely

also, we obtain that % € I'c for all 4. Thus we have what we desired. Similarly,
to prove A | B,T', we need to show that B(I') | ka. Since k., r) = kp and
cor c(r)
acly(B,T") is k-independent, in particular we obtain that B(I') | ka. As we also have
kB

t
kg | ka by A | B, we conclude by transitivity. Hence we have the proposition. O
ke c
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Now we give more equivalences for the characterization of forking in the triple:

Corollary 3.16. Let C = AN B and all be algebraically closed in the sense of the
triple Ty. Then the following are equivalent:

¢

(i) AL B,
C

(i) A | B,k,T'and A | B
C,k,T c

(isi) A | B,kT and ks | kg,
C,k,I" ke

(iv) A | B,k,T and A | B,T.

C,k,l c.r
Proof. By Theorem (3.11) and proposition (3.15) we know that (i), (i) and (ii4)
are equivalent and (¢) implies (iv). Now we show that (iv) implies (ii). If we have
A | B,T, then lemma (2.10) yields the desired independence A | B.

cr c
O
Remark 3.17. Note that in corollary (3.16)(iv), we cannot replace A | B,T' by
cr
A | B,k since the latter independence does not imply the independence A | B.
C.k c

Next we prove that the types over algebraically closed sets are stationary under T’
has WEI, even though we do not have WEI in the triple.

Proposition 3.18. Suppose that ' has WEI. Let C be algebraically closed in the sense
of the triple T; and b is a tuple (possibly infinite) from Q. Then the type tp'(b/C) is

stationary.

Proof. Suppose that T' has WEIL Let B = acl;(B) be a set containing C. Let b; and

¢
be be such that b; | B for i = 1,2 and tpt(b;/C) = tp'(b2/C). Put d; = acl(b;,C)
c
for i« = 1,2. By the characterization of the independence (3.11) and since k¢ is an
1d 1d
algebraically closed field, we see that d; 1L B(kD)* and kg, | kp for i =
C(ka, ,Ta;)*° kc
1,2. Note that we also have that tp’(d;/C) = tp'(d2/C). Now we will prove that
r
tpt(b1/B) = tp'(ba/B). By lemma (3.13), we obtain that 'y, | I'p for i = 1,2. By
T'c
WET and since I'¢ is algebraically closed in T', the type tpp(I'y, /T'¢) is stationary by

lemma (2.18). So by lemma (2.17), there is an automorphism g € Aut(I'/T'g) sending
ld

'y, to I'y,. Similarly with the help of k4, | kp and stationarity over k¢, there is
kc

an automorphism f € Aut(k/kg) sending ka to ka,. As kp contains kg and I'p

contains I'g, by lemma (3.2) there is an automorphism h of k(I") over kp(I'p) sending
kg, (Ta,) to kqy(Ta,). Moreover since B is (k,I')-independent, the map h further
extends to an automorphism of B(k,T') over B and this also extends to B(k,T")".
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Id
Now since b; | B(k,T)" and tp'(b;/C) = tp'(ba/C), we have an isomorphism
C(kp,; Ty, )
from by B(k,T)" to ba B(k,T')* sending b; to by over B. Since this also extends to an

automorphism of Q, we conclude that tp’(b,/B) = tp’(b2/B). O

3.3 Definable Groups

In this section, we characterize definable groups in the triple (Q,k,T') up to isogeny.
It emerges that definable groups in the triple are given by definable and interpretable

groups in 2, k and I'. We follow a similar method to the previous chapter.

3.3.1 Generics and Examples

The following lemma is analogous to the lemma (2.23). It states when a type-definable

group in the triple is an algebraic group.

Lemma 3.19. (The Group Lemma for the triple) Let H be a connected Ti-type-
definable subgroup of an algebraic group V', all definable over an algebraically closed
set A in the sense of the triple. Let a be the generic over A which lies in some translate
of H which is also definable over A. If kacl,(a,4) = ka and Tyci,(a,4) = T4, then H is

an algebraic group. In particular H is definable.

Proof. First we may assume that a € H: Suppose that a € bH. Let o’ be such that
pt(a’/A) = tpt(a/A) and o J/ a. Then we have a=! ’J/ a and a~'a’ € H is generic.

Since o’ J/ a, we have that a’, A J/ a, A. So by lemma (3.10) and Theorem (3.11), we
A A
see that

kaclt(afla’,A) c kacl,«,(a’,a,A) c aCl(kaclt(a’,A)a kach(a,A))-

Since kacl, (ar,4) = Kacl, (a,4) = ka, we deduce that kuc, (a-147,4) = Facl,(4)- Similarly we
obtain that T, (q-147,4) = ['a. Thus we may assume that a € H. Put p = tp’(a/A)
and pg its T-reduct. Let Hy be the smallest algebraic group containing H which exists
by the assumption and the w-stability of Q. Note that H = stab:(p) C stabr(po).
So Hy C stabr(pg). On the other hand, since po(z) implies that © € Hy, we get that
stabr(po) C Hy. Thus we have the equality and moreover Hy is T-connected. To prove
the lemma it is enough to show that p is the unique generic of Hy. Let h be a generic
of Hy over A in the sense of the triple and put ¢ = tp?(h/A).

Claim: We have h | k,T. First note that a € Hy and as the algebraic closure is
A
(k,T')-independent and by the assumptions K., (q,4) = ka and Tucp,(a,4) = Ta, we
have that a,A | k,T andsoa | k,T. As a consequence, we see that a is a generic
ka,la A
over AUkEUT. Now if h J k,T', then there exists a formula ¢(z,m,~) € tp(h/A, k,T)
A
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which is not generic in Hy, with parameters from A, where m € k and v € T'. Put

n =n(p) as in lemma (2.22) and

0(y,z) = 3hy..3h, € Ho(Vx € Hy \/ hio(z,y, 2))

i<n

and ¢(z,y,z) = —0(y,2) A p(z,y, z). Observe that for all tuples (b,c), the formula

¢(z,b,c) is not generic in Hy. However the formula
w(l’) = Ely € Pl Jz € P2 ¢($7Z/72)

whose parameters from A is realized by h and so it is generic in Hy. Therefore finite

number of translates of ¢(x) cover Hy, say Ho = ;<; @ip(x). Take a’ such that

t
tp'(a’/A) = tp'(a/A) and a | «i,.... Thus for certain @ € Hy we may suppose
A

t
that a € atp(z) and a | «a. So a € ag(x,m’,¢’) for some m’ € k and v/ € T'. By the

A
characterization of the independence (3.11), we have that a | « and by transitivity
Ak,T
we get a | a, k,T. This is a contradiction since the formula a¢(x, m’, ¢’) is not generic

A
in Hy. So we have the claim.

Now since A is (k,I')-independent by lemma (3.5), by transitivity of the indepen-

dence, we see that h, A | k,T. As acly(ka,T4a) = acl(ka,T'4) by corollary (3.7), it
ka,Ta
is (k,T') independent. Therefore, by transitivity and in terms of linear disjointness, we

obtain that y
acl(h,A) | k().
ka(Ta)
Thus by lemma (3.6), we conclude that acl;(h, A) = acl(h, A), and also that ke, (n,4) =
ka and Tae,(n,4) = T'a. Since there is a field automorphism over A sending a to h,
linear disjointness yields a field automorphism over A U k U T sending a to h. Hence
we obtain that ¢ = p and we conclude that H = Hj.
O

Remark 3.20. Observe that none of the groups k™ and T' satisfy the conclusion of

lemma (3.19) as they are not algebraic groups in €.

Lemma 3.21. Let v and h be generics over a small model M of T; of an algebraic

group V' defined over k and a type-definable group H in I' respectively. Then we have
t

the independence v | h. If V and H are connected, then so is V x H.
M

Proof. Suppose that there is a formula ¢(z,h) over M such that = ¢(v, h) and the
formula ¢(x, h) forks. Let ¢(x,y) = p(z,y) A (x € P1) A (y € P2). Then by Theorem
(3.1), we know that ¢(z,y) = U, ; ¢i(z) A ¢;(y), where ¢;(z) is a formula defined in
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k and ¢;(y) is a formula defined in I'. Thus for some ¢ or j, we obtain that ¢;(x) or
¢;(y) fork. However, a generic does not fork over the empty set, a contradiction. If V'
and H are connected, lemma (2.17) yields that the tuple (v, h) is the unique generic
of V- x H over M and hence the product is also connected. O

Before characterizing definable groups in the triple, we give some examples.

Example 3.22. (Some definable groups in the triple) Algebraic groups over Q, alge-

braic groups over k, the group I' and its powers, the product Q) x k x T" and

SL(Z,k,F,Q){( “ Z);adbcekX}x{< “ Z);adbcer}
C C

are all definable in the triple. One can see that each of them satisfy the hypothesis of
the following Theorem (3.23).

3.3.2 Characterization of Definable Groups

Now we are ready to characterize definable groups in the triple (2,%,T) in terms
of definable and interpretable groups in each sort. We use the group configuration
theorem (1.18) together with lemma (2.27), Theorem (3.11), lemma (3.13), lemma
(3.19) and lemma (3.21).

Theorem 3.23. (Definable Groups for the triple) Let Q be an algebraically closed
field, the field k be a proper subfield of Q which is also algebraically closed and I" be
a multiplicative subgroup of Q* such that (k,T) is a Mann pair. Any type-definable
group in (Q, k,T') is isogenous to a subgroup of an algebraic group. Moreover any type-
definable group is, up to isogeny, an extension of a direct sum of k-rational points of
an algebraic group defined over k and a type-interpretable abelian group in I' by an

algebraic group.

Proof. Let H be a type-definable group in (€2, k,I') over some parameters. By remark
(2.26), we may suppose that H is connected. We will work over a model containing
the parameters defining H which we will omit. Given two independent generics a
and b of H, we write @, b and ab instead of their algebraic closures in the sense of
the triple respectively. Observe that by lemma (3.10) and the characterization of the
independence (3.11), the tuple ab is T-algebraic over @Ub since @, b are two independent
algebraically closed subsets. With the help of the third generic ¢ which is independent

from a and b, we obtain the following diagram:
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ca

Then by lemma (2.2), we have a T-group configuration. So by the group config-
uration theorem (1.18) and lemma (2.27), there exists a *-interpretable group in the
pure field Q2 whose generic is interalgebraic with the generic of H. So we conclude that
there is an algebraic group in {2 which H embeds in up to isogeny. Thus up to isogeny,

we may assume that H is a subgroup of an algebraic group.
By lemma (3.10) and Theorem (3.11), the set k- is k-algebraic over kg U kz.

Similarly, the set I'_z is I'-algebraic over I'z U I';. Applying the characterization of

independence (3.11) and lemma (3.13), we have the following diagrams:

kea

I'za

So by the group configuration theorem (1.18), we obtain a connected *-interpretable
group V; in k and a connected *-interpretable group H; in I'. Moreover a generic v of
V1 is k-interalgebraic with kz. Similar thing holds for I'. Now lemma (2.27) yields a pro-
jection 71 from H to a V; and a projection mo from H to H;. Furthermore the generic
v of V; is Ti-interalgebraic with kg and the generic h of H; is Tj-interalgebraic with
I'z. By lemma (3.21), the tuple (v, h) is a generic of V4 x Hy which is Ti-interalgebraic
with (kg,T'z). Since V7 and H; are connected, lemma (3.21) also yields that the tuple
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(v, h) is the only generic of Vi x Hy and this product is also connected. Thus by lemma
(2.27) again, we have a projection 7 from H to V3 x Hy in k x I" which is given by the
stabilizer of the type tp’(a, v, h). Finally we show that the connected component N of
the kernel ker(m) is an algebraic group by the group lemma (3.19): Let n be a generic

of N over a in the sense of the triple. So we have n i a and na i a. Observe that
na € Na is a generic also. Since the tuple (n,1,1) is in the stabilizer of tp(a, v, h), we
have that the tuples (na, v, h) and (a,v, h) have the same t-type. Thus in particular,
we have kng = kg and I'zg = I'z. Moreover by lemma (3.10) and Theorem (3.11) we
obtain that kpge is in the k-algebraic closure of kng and k. Therefore we see that
kra = ka and similarly I'rgzz = I'z. Now the type tp’(na/a) satisfies the hypothesis
of the lemma (3.19) and we conclude that N is an algebraic group. So by elimination
of imaginaries in k and by (2.28), we can take V; to be an algebraic group and H;
to be type-interpretable. Note also that Hj is abelian by Theorem (2.29) and remark
(2.21).

O

3.4 Imaginaries and Interpretable Groups

Our goal in this section is to characterize interpretable groups in the triple (Q,k,T).
Through the section, we assume that I' is divisible. As in the previous chapter, note
that I' is strongly minimal and every infinite algebraically closed subset of I' is an
elementary substructure. By [10], the triple is w-stable has infinite Morley rank. In
this section, we will give a description of imaginaries in the triple which enables us to
characterize interpretable groups in (€, k,T"). Observe that (€2, k,T") does not eliminate

imaginaries.

3.4.1 Canonical Base Lemmas

Our description of imaginaries will be by means of canonical bases as in the previous
chapter and as in [28]. The next three results are analogues of lemma (2.49), corollary
(2.50) and lemma (2.51) from Chapter 2 which are adapted to the triple (Q, %, T').

Lemma 3.24. Let B be an elementary substructure of (Q,k,T"). Suppose that d =
t

Cb(tp(a/acl(B,k,T))). Then a | B,k,T.
d

Proof. As () eliminates imaginaries, we might assume that d is contained in . First
of all, note that acly(B, k,T') = acl(B,k,T') and a | B,k,T as d is the canonical base.
d

The independence a | B, k,T yields that
d

acl(a, d) L k,T.
dykacty () Tacty (a)
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Note that by corollary (3.7) we see that
acly (d) = a‘CI(dv kaclt (d)» 1—‘aclt (d))

and acly(Kkac, (d), Dacty(d)) = acl(Kact,(d), Lacty(a))- So in particular, they are (k,T)-
independent by lemma (3.5). Since

d | kT,

kaciy (d) Lacty ()

by transitivity we obtain that

aCI(a7 d7 kaclt(d)v Faclt(ul)) \L I{i, T.

kacly (d) L acly ()
In terms of linear disjointness, this gives us that

ld
aCl(a7 d, kaclt(d)a I‘aclt(d)) J./ k<F)
kaclt(a) (Faclt(d))

Thus by corollary (3.7) again, we deduce that

acly (CL, d, kaclt(d)a 1_\aclt(d)) = acl(a, d, kaclf,(d)a Faclt(d))a

and also that Kac,(a,d) = Kacl,(a) a0d Tacl, (a,d) = Lact,(d)- Now as a | B, k, T, we have
d
that

aCI(av du kaclt (d)» Facl,,(d)) J_/ aCI(B, k, F)
acl(d,kaci, (a):Tacty (4))

and this yields that

acly(a,d) | acly(B,k,T).
acly (d)

We finish the lemma by the characterization of the independence (3.11). O

Corollary 3.25. Let B be an elementary substructure of (2, k,I') and let a be a finite

tuple from Q. Put d = Cb(tp(a/ acl(B, k,T"))). Then Cb(tp'(a/B)) is interalgebraic in

(2, k,T) with Cb(tp'(d/B)).

Proof. Set p = tp'(a/B) and q = tp’(d/B). Let e; = Cb(p) and ez = Cb(q). Note
¢ t

that e; and es are in B°L. By lemma (3.24), we know that a | B,k,T. So a | B,d

d d
t ¢ ¢
and a | B,d. As d | B, by transitivity we conclude that a | B. This gives that e;
ea,d e2 €2
is algebraic over es.
The converse follows from a similar proof of corollary (2.50). O

We say that a type in the triple (Q,%,T') is almost (k,T')-internal if it is almost
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k U I'-internal. The next lemma asserts that, up to interalgebraicity, an imaginary
element in the triple is a canonical base of a type over itself and this type is almost
(k,T')-internal.

Lemma 3.26. Let e € (2, k,1)% be an imaginary element. There is ¢/ € (Q,k,T)%4
interalgebraic with e, such that for some finite tuple d’ from Q we have ¢’ = Cb(tp*(d’/e’))
and tpt(d'/e’) is almost (k,T)-internal.

Proof. Let a be a tuple in  such that e = f(a) for some 0-definable function in
(Q,k,T)%49. Set e; = Cb(tpf(a/acl;®I(e))). Observe that e; is algebraic over e. As
t

t
e = f(a) and a | e, we obtain that e | e and hence e and e; are interalgebraic. Now
€1 €1
let (B, kp,T'p) be an elementary substructure of (€, k,T") such that e; € (B, kg,T'5)%
¢
and a | B. Let d = Cb(tp(a/acl(B,k,T))). We may assume d to be a finite tuple in

e1

Q) owing to w-stability and elimination of imaginaries. Put es = Cb(tp’(d/B)). Then
t
by corollary (3.25) and a | B, we see that e; and es are interalgebraic. Note that the

€1

t
type tp'(d/B) is almost (k,T')-internal. Thus since d | B, the type tp’(d/ez) is also
es

almost (k, I')-internal. By lemma (2.38), there is an imaginary element d’ € (Q2, k,T")®4

such that d’ € acly(d, e) and d € acl;(d’), and also the type tpf(d’/es) is almost (k,T)-
¢

internal. Let ¢’ = Cb(tp’(d’/ez)). Then €’ € acly(es) and d | es as d € acly(d’). Hence
e/

e € acly(e’). Thus, we conclude that e and €’ are interalgebraic. O

Lemma 3.27. (Coheir) Let e € (Q,k, )% and B = acly(e) N (kUT). Let ¢ be a tuple

from kUT. Then tp'(c/B,e) is finitely satisfiable in B.

Proof. First observe that the type p = tp’(e/k(I')*) is stationary. Let d be the canon-
ical base of p. Therefore, the element d is in acl;°(k,T"). Note that any automorphism
in the triple fixes kUT setwise, and so fixes k(I")" setwise as well. Thus d is contained
in acly(e). As a consequence, the element d is contained in acl;°!(B). As a result, the
type p is the non-forking extension of the type tp'(e/B) and hence p is definable over
B. Therefore for a given formula ¢(z,y) of L;°? over B, there is a formula ¢ (y) over
B such that ¢(x, 8) € p if and only if ¢)(3) holds. By Theorem (3.1) we know that the
induced structure on (k,T') is itself and by stability, there exists a formula f(y) in the
pure field k and a formula g(y) in T in the language of pure groups such that, for all
B € kUT we have = () if and only if

EBekAf(B)V(BeTAgB)).

Note that B contains kg U I'g. Since kg is an elementary substructure of k& and I'p
is an elementary substructure of T, if ¢ € kUT and | ¢(e,c) then = ¢(c), so
E (ce kA f(e)V(ceT Agl(c)), thus either for some ¢; € kp we have = f(c1) or
some ¢y € I'p we have |= g(c2) and this yields that = ¢(e, m) for some m € B.
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O

We know that the Morley rank is definable in k£ and I" as they are strongly minimal.
The next remark states that the Morley rank is also definable in the pair (k,T") and

in its algebraic closure.

Remark 3.28. (Morley Rank is definable in (k,T)) Morley rank is definable in the
pair (k,T') since they are both strongly minimal and orthogonal. Let B be a set of
parameters from ). Furthermore the Morley rank is definable in acl(B, k,T") for every

natural number m by Theorem (2.45).

Lemma 3.29. Lete € (Q,k,T)%1 be an imaginary element. There is a tuple d from 2,
an Li-definable function f(x) over (), an Li-formula ¥(y) over e and an Li-definable

function h(y,z) over e such that
(i) f(d) =e,
(ii) (y) € tp(d/e),
(iii) (Vy,y") (W (y) Ap(y') = Fz((Pi(2) Vv Pa(2)) A h(y, 2) = ¢'))
(iv) Moreover d is T-independent from kUT over e.

Proof. For (i), (i) and (iii) we refer the reader to [28, 2.4] as before. Now we prove
(iv). Choose d such that MR(tp?(d/e)) is minimized. By lemma (3.26) we can assume
that the type ¢ = tp’(d/e) is almost (k,I')-internal. Thus remark (2.34) yields that
there is some set u such that if ' = ¢ then d’ € acl(u, k,T"). We will show that d is
independent from k,I" over e. Suppose not and choose b € kUT such that d forks with
b over e. Note that by almost internality and as k and I' are strongly minimal, we
deduce that MR(tp‘(d/e)) is finite. Let m = MR(tp’(d/e,b)) < MR(tp‘(d/e)). Note
that the Morley rank is definable in acl(u, k,T') by remark (3.28). Let x(y,z) be a
formula over e such that x(d,b) holds and for any ¢, we have MR (x(y,¢)) = m if it is

consistent. Let A(z) be the formula

Fy(f(y) =enyp(y) A (V.0 ) (@) AP) = (hy,2) =y A (Pi(z) V Pa(2))).

Observe that A(b) holds. Let B = acly(e) N (kUT). By lemma (3.27), there is b; € B
such that A(by) holds. Then we find d; satisfying (¢), (i7) and (ii7) of the lemma
with x(d1,b1) holds. Since b; is algebraic over e, we have that MR(tp’(d/e)) < m,
contradicting the choice of d. O

Combining lemmas (3.26) and (3.29), we obtain the following theorem which is a

description of imaginaries in terms of real elements:

Theorem 3.30. Let e € (2,k,T)°Y be an imaginary element. There is a finite real
tuple d such that e is algebraic over d, the type tpt(d/e) is almost (k,T')-internal and

d is independent from kUL over e in the sense of the triple.



66 CHAPTER 3. MANN PAIRS

3.4.2 Characterization of Interpretable Groups

In this subsection, we characterize interpretable groups in the triple. We need two

more lemmas.

Lemma 3.31. If tp'(a/A) is almost (k,T)-internal over a real set of parameters A,
then a € acl(A, k,T').

¢
Proof. Take B = acl(B) containing A such that a | B and a € acly(B,k,I') =
A
acl(B, k,T"). The characterization of the independence (3.11) yields that « | B and
Ak,T
therefore we obtain that a € acl(4, k,T). O

Lemma 3.32. Let H be a definable group in the sense of the triple. If a generic of
H is almost (k,T')-internal then H is isogenous to a cartesian product of k-rational

points of an algebraic group defined over k and an interpretable group in I'.

Proof. By almost internality, we conclude that H is of finite Morley rank. Since infinite
algebraic groups have infinite Morley rank in the triple, we conclude by Theorem (3.23)
and w-stability. O

Now we are ready to characterize interpretable groups in the triple. This is the
strongest result in this chapter and it demands all the tools we have proved through

the chapter.

Theorem 3.33. (Interpretable groups in (Q,k,I')) Let Q be an algebraically closed
field, the field k be a proper subfield of Q@ which is also algebraically closed and T
be a divisible multiplicative subgroup of Q% such that (k,T') is a Mann pair. FEvery
interpretable group H in (Q,k,T) is, up to isogeny, an extension of a direct sum of
k-rational points of an algebraic group defined over k and an interpretable abelian
group in I by an interpretable group N, which is the quotient of an algebraic group
by a subgroup N1, which is isogenous to a cartesian product of k-rational points of an

algebraic group defined over k and an interpretable abelian group in T

Proof. Let H be an interpretable group in (2, k,I'). By remark (2.26), we may suppose
that H is connected. Again we work over a small model that we omit. Let «, 5 and ~
be three independent generics of H in the sense of the triple. By Theorem (3.30), the
generic « is algebraic over a real tuple ag which is Ti-independent from k,I" over «
and the type tp’(ag/a) is almost (k,I')-internal. Then by (2.55), there are real tuples
a,b,c,d,e and f such that

(a,)="(a, B)="(c,7)="(d, aB)=" (e, 70)="(f,7B8)=" (a0, )

and if we put @ = acl;(a) and the same for the others, we have the following diagram:
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d

€
such that each non-colinear triples of them are T;-independent and each set is T;-

t
independent from the lines which do not contain it. Since a | k,T", we see that kz C

acly(a) C @. Therefore, we obtain that kz = acl;(«) N k. Moreover by lemma (3.10)
and Theorem (3.11), we have that k,, 55 = acl(ka, ky). Since kg = acly(af) Nk C
kaclt(675)’ we get that k; C acl(kg, k). This is true for all other tuples and by Theorem
(3.11), the set kg is independent in the field sense from acl(ky, kz) and the same for
the others. We have the same thing for the group I' by lemma (3.13). So we have the

following diagrams:

ka

and by the group configuration theorem (1.18), there is a connected *-interpretable
group V7 (k) in k whose generic v is k-algebraic with kz. By w-stability, lemma (2.27)
and since k eliminates imaginaries, we may assume that V7 is an algebraic group and
its generic v is interalgebraic with kg in the sense of the triple. Similarly, there exists
a connected interpretable group H;(I') in I" whose generic h is interalgebraic with I'z
in T;. Furthermore, by Theorem (2.29), the group H; is abelian. By lemma (3.21), the
tuple (v, h) is the generic of V; x Hy which is Ti-interalgebraic with (kz, I'z). Moreover

by lemma (2.27), we have a projection 7 from H to the connected group Vi x H; in
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k x T which is given by the stabilizer of the type tp‘(a,v, h).

Next we show that the points @, b,¢,d, €, f give a T-group configuration with the
help of the parameter set k,I'. We know that all three non-colinear of them are in-
dependent in the sense of the triple. As f is algebraic over b and «f is algebraic
over d, we have that « is algebraic over b, d. Moreover by lemma (3.10), we know that
acl(b, d) = acl(b, d). Since the type tp‘(a/a) is almost (k, I')-internal and « is algebraic
over b, d, we observe that the type tp‘(a/acl(b,d)) is also almost (k,T')-internal. Thus
by lemma (3.31) we obtain that a € acl(k,T',b,d). The same holds for the other tuples.

Therefore, we obtain a connected *-interpretable group V over acl(k,I') in the field
sense and two independent generics a1, b; of V such that a; is field interalgebraic with
@ over k, T, the element b; is field interalgebraic with b and a1b, is field interalgebraic
with d. Since the tuples a, 8 and v are algebraic over the finite tuples a1, by and ab;
respectively and as V' is a connected pro-algebraic group, there exists a connected
algebraic group W over acl(k,T') and two independent generics ag, by such that « is
algebraic over as and the same for the others. Note that a; is field algebraic over k,I", @
and the same for the others. Moreover, since @, b and d are pairwise Tj-independent

over k,I', then so are as, by and agbs.

¢ t

As a is algebraic over a and @ | k,T by corollary (3.12), we see that a | k,T.
k:E7FE kE,FE

Now let N be the connected component of ker(w). Then « is generic in Na over

acl(v, h) = acly(kg, I'z), so « is also generic over k UT.

Now we apply the lemma (2.27) to the tuples (a2, ) and (bs, ). So this gives us
a type-definable surjection ¢ from W to N, up to isogeny. Lastly, we show that the
connected component N; of ker(¢) is isogenous to a cartesian product of k-rational
points of an algebraic group defined over k£ and an interpretable group in I'. Let n4
be a generic of Ny over k,T" and as. Then the point (n1,1y) is in the stabilizer of the
type tp(az, a/ acl®d(k,T')) and so tp’(niaz/a) = tp'(az/a). Since tp'(az/a) is almost
(k,T)-internal and as ag is algebraic over k,T',a then the type tp‘(nias/«) is also
almost (k,T')-internal. As « is algebraic over k, I, as, the type tp’(n1/k, T, ag) is almost
(k,T)-internal. Owing to the independence nq i as, we conclude that tpt(ny/k,T) is

kD
also almost (k,T')-internal. Then by lemma (3.33) we have that Nj is isogenous to

a cartesian product of k-rational points of an algebraic group defined over k& and an
interpretable group in I' which is abelian by Theorem (2.29).
O



Algebraic Numbers with low height elements

Let Q be the field of algebraic numbers. The model theoretic properties of Q are well
understood; it is strongly minimal and has quantifier elimination in the language of
rings L, = {+,—,-,0,1}. In this chapter, we mainly focus on the pair Q together
with a predicate, in particular our predicate will be the elements of height less than a
given positive real number. Moreover, we study these pairs in terms of stability. As
mentioned earlier in this thesis, B. Zilber [41] showed that the pair

(C,p) = (@Q,p)

is w-stable where p is the set of complex roots of unity. In this chapter, our predicate,
namely the elements of small height, contains the group j, and the theory of Q with
this predicate will be a proper extension of the theory of (Q,u). Model theory of
pairs have attracted a lot of attention recently. More generally, stable theories with
a predicate were analysed in the paper of E. Casanovas and M. Ziegler [6], where
they gave criteria for a pair to be stable. If the based model is strongly minimal, this
criterion coincides with the induced structure on the predicate is stable. Their result
in [6] involves the result of B. Zilber [41] and also B. Poizat’s result on the w-stability
of the theory of pairs of algebraically closed fields [31]. Before defining our notations
in the chapter, we state Kronecker theorem from diophantine geometry with no proof,
as the details can be found in the book [4].

Theorem 4.1. (Kronecker [{, 1.5.9]) Let a in Q be a non-zero algebraic number.

69
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Then h(a) = 0 if and only if it is a root of unity.

Combining Zilber’s result [41] with Kronecker theorem, we see that the pair

(Q.{a€Q:h(a) =0})

is w-stable.

Through this chapter, the language L,, will denote the language {1,-} where the

binary operation - is the usual multiplication. Let
Se={aecQ:h(a) <€}

be the set of algebraic numbers whose heights are less than €, where h is the absolute
logarithmic height function and € > 0. We call S, the set of algebraic numbers of small
height. Note that the Mahler measure of an algebraic number is again an algebraic
number. Put also S = S; = {a € Q : h(a) < 1}, as there is no algebraic number whose

height is 1 by Lindemann’s theorem.

The pair (Q, S¢) can be seen as an L,.(U) = L,.U{U} structure where U is an unary
relation symbol whose interpretation is S.. Let 7. be the theory Th(Q, S.). In this
chapter, we focus on the model theory of (Q, S.) in the language L., (U) = L,, U {U}
and we prove a result which shows that small perturbations of the property of being a
root of unity modify immensely the stability properties of the ambient structure. We

also relate the simplicity of a certain pair with Lehmer’s conjecture.

4.1 Height Lemmas

In this section, we give the height inequality for the height function on the field of
algebraic numbers. The following two lemmas, details and generalized versions can be
found in [4, 17].

Lemma 4.2. [4, 1.6.7] Let f = ag+a1 X +---+aqX? € C[X]. Put | f| = max;{|a;|}.
Then we have 27| f| < m(f) < 224+1|f|.

Let f = ap+ a1 X + -+ agX? € K[X], where K is a number field. For any
absolute value v € Mg, we define |f|, = max;{]a;|»}. The following lemma is the

Gauss lemma.

Lemma 4.3. (Gauss lemma [4, 1.6.8]) Let K be a number field and suppose f, g are

in K[X]. For a non-archimedean absolute value v on K, we have |fgl, = |f|v|glv-

There is a relation between height of a polynomial and height of its roots. For a

polynomial f = ag + a1 X + - - - + ag X% over the field of algebraic numbers, define
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H(f) = max; H(a;), where H is the non-logarithmic height function. Then if f is a

polynomial over a number field K, we have that

H(f)= ] wmax{1,|f],}m.

vEMK

Now we are ready to prove the height inequality.

Lemma 4.4. For a polynomial
f@)=X-a) (X —aq) =ap+ @ X +--+ X cQX]

over Q, the non-logarithmic height (the logarithmic height respectively) H (o) is uni-
formly bounded by H(f) and d i.e

27H(f) < [[ H(ew) < 22 H(f).
i<d

Proof. Let K be a number field containing the elements «; and a; for i,5 < d. By
lemma (4.2), we see that
270 f| < m(f) < 22 ).

For non-archimedean absolute value v € Mg, the Gauss lemma (4.3) yields that
| flo = [[;cqmax{1, |ai|,}. Asm(f) > 1, we obtain that

274 H max{1,|fl|,} < H max{lv‘ai‘v}§22d+l H max{1,|fl,}.

vEMg 1%\/{d vEMEK
veMg

Hence we get the desired inequality

2H(f) < [] Hes) < 220 H()).
O

Now using the properties of the height function, we prove several lemmas which

we will need in the next section.

Lemma 4.5. For any non-zero algebraic number o which is not a root of unity, the

set A(a) = {h(a?) : ¢ € Q} is dense in the positive real numbers.

Proof. Let a be a non-zero algebraic number which is not a root of unity. Then by
Theorem (4.1), we know that h(a) > 0. Furthermore, one sees that h(a?) = |q|h(c)
for any ¢ € Q. Given an interval (a,b) where 0 < a < b; choose r € Q such that
a/h(a) <r < b/h(a). Then we conclude that a < h(a™) < b. O
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Lemma 4.6. Let py,...,pr and mq,...,my be positive natural numbers. Then
h(pr /™ p ) = h(p M) 4 ().

Proof. Put m = my...my and n; = m/m;. Then by the properties of the logarithmic
height function, we know that for any algebraic number « and rational number ¢ we
have that h(a?) = |q|h(«). Therefore, we see that

h(pi™ - - pp"*)

h(pll/ml .. .pkl/mk) =
m

Since for a natural number n > 1 we have h(n) = logn, we conclude that

h(pa™ -~ - pp™) _ h(pi™) +-- -+ h(pe™) h(pr /™) 4 - B(py V).

O

Lemma 4.7. Let py,...,pg, Pr+1 and mq,...,mg, mi+1 be natural numbers such that

P1...-pk and pry1 are coprime. Then we have

I/ma .. g, 1/mg
h(pl Pk

Pk 1/mk+1 ) 3 max{h(pll/ml S pkl/mk% h(pk+11/mk+l)}.
+1

Proof. Put m = mq..mpmg1 and n; = m/m,;. Recall that for coprime integers a and

b, we have h(a/b) = max{log|al|,log |b|} = max{h(a),h(b)}. Thus by the properties of

the logarithmic height function, we have
Umai g 1/me 1 niL Ly, Tk
n( Pt Pk — (P Pk
Preg1 /M1 m D17k +1

1
= max{h(p1"™* - - pr""*), h(Pr+1""*1)},

and the lemma follows from the properties of the logarithmic height function again. [

Let p be the set of complex roots of unity. Utilizing Kronecker’s theorem, we can

define g uniformly in the pair (Q, S.) for any positive e.

Lemma 4.8. Let ¢(x) be the formula x # 0 AVy(U(y) — U(zy)) in the language
L, (U). Then for any positive €, the formula ¢(z) defines u in the pair (Q, S.).

Proof. Let € be a positive real number. A root of the unity satisfies the formula since
the height function satisfies h(xy) < h(z) + h(y) and the height of a root of unity is
0. Now suppose « satisfies the formula. If we take y = 1 in the formula, we see that
h(a) < e. Then letting y = «, we get h(a) < €/2. So taking powers of «, we conclude
that h(a) = 0. The lemma follows from Kronecker’s theorem (4.1).

O
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The next lemma is in [9]. It states that in an algebraically closed field, the many-

valued function in the definition of “large” can be replaced by an ordinary function:

Lemma 4.9. [9, 2.4] Let K be an algebraically closed field and suppose A C K is
large in K. Then there is a definable function F : K' — K such that F(A') = K.

Since ACFy is strongly minimal, by lemma (1.23) and by the height inequality

(4.4), we can prove that S, is small in Q.
Lemma 4.10. The set S, is small in Q for any € > 0.

Proof. We can assume that ¢ is 1. Suppose that S is large in Q. So by lemma (4.9),
there is a definable function f : Q" — Q such that f(S™) = Q. By quantifier elimina-
tion, we see that Graph(f) = {(z1, ..., ®m,y) : f(x1,...,2m) = y} is a subset of union

of varieties in Qm+ . Without loss of generalities, we may assume that

G’I’llph(f) =V = {(xlv "'7xWL7y) :p(xla "'axmvy) = O}

is a variety, where p is a polynomial of degree d. Then we see that y is algebraic over
S? having degree at most d, where S? is the set of algebraic elements whose heights
are bounded by d. Now by lemma (4.4) we obtain that h(y) is also bounded. However,
since h is unbounded on Q, we cannot have that f(S™) = Q. By lemma (1.23), we
conclude that S is small as desired.

O

4.2 Small Height Elements

In this section, we turn our attention to model-theoretic properties of algebraic num-
bers expanded by a predicate to denote elements of small heights. We have all the

tools to work on these pairs.

4.2.1 Simplicity and Independence Property

Now we are ready to prove our main result in this chapter by using the lemmas (4.5),
(4.6) and (4.7).

Theorem 4.11. The theory of (Q, S.) is not simple and has the independence property
(IP) in the language L, (U).

Proof. Recall that the Mahler measure of an algebraic number is again an algebraic
number. Therefore by Lindemann’s theorem, the logarithmic height of an algebraic
number « is transcendental if h(«) # 0. First we prove that the theory is not simple.

In order to show this, we exhibit a formula which has the tree property.
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Case 1: The element € is in the range of the logarithmic height function, that is

to say € = h(a) for some a € Q. Now put

wm%aw:U(f>AU<f).

Observe that for any rational number r, s € (0, 1),

ar
h<a) <e <<= r<s.
aS

So we can order rational numbers in this theory. Furthermore if (1, s1) and (72, s2)

are disjoint intervals of (0,1), where r < $1 < ro < s € Q, then we cannot have

(@7 Se) ': 3x(¢(x7 arl ) aSl ) a) /\ ¢(x7 aTQ ) aSQ ) a))’

h<a x ) <e€ and h(aa ) <e.
a1 T

Therefore, if we multiply these elements, we obtain that h(a2 ZTQ) < 2¢. This is a

otherwise we have

s1

contradiction, since s; < o and h(a?) = 2¢. Thus the formula ¢(x,y, 2,t) has the tree

property if we take the parameters (a%, a) where the parameters (qs : ) # s € w<¥)
as given in (1.20).

Case 2: The element € is not in the range of the logarithmic height function.

Without loss of generality, we can assume that e = 1i.e S =S as 1 is not transcen-

dental. This time we use the fact that the range of the logarithmic height function is

dense in the positive reals. Again we set

Ma%awzv(f>AU<f>.

We will show that this formula has the tree property by finding some parameters in

some model of T.

Let *M be a nonstandard extension of the many-sorted structure
M= (Q,+,—,0,1,h Rx).

Then the logarithmic height function extends to *Q and it takes values in positive
hyperreal numbers. We also denote this extension as h. Then the pair (*@, *S) is an
elementary extension of (Q,S) in L,,(U). Note that *S is the set of hyperalgebraic
numbers whose heights are less than 1. Let st(a) denote the standard part of a
finite hyperreal number. By lemma (4.5), we know that the sequence {h(2¥)} is

dense in positive real numbers where k is a rational number. In particular, there is a
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hyperrational number ¢ such that st(h(29)) = 1. Moreover ¢ > 1 in the sense of usual
ordering of hyperreal numbers and it is infinitely close to the real number 1/log2.

Observe again that for any rational number r, s € (0,1),
27‘
h 2‘12—5 <l <<= r<s.

Furthermore if (71, s1) and (rz, s2) are disjoint intervals of (0, 1), where r; < s1 <12 <

s9 € Q, then we cannot have
("Q,*S) k= Fw(p(x, 27,27, 29) A p(a, 272, 2°2,27)),

otherwise we have

T2
h<2q i ) <1  and h<2q2> <1
251 T

Therefore, if we multiply these elements, we obtain that

Q"
h(22‘1251) < 2.

This is a contradiction, since s; < 75 and st(h(2%¢) = 2, and also

or2
h(22‘1231) > 2.

Thus the formula ¢(z,y, z,t) has the tree property if we take the parameters (2%, 29)

where the parameters (¢ : @ # s € w<¥) as given in (1.20). Hence T is not simple.

Now we show that T has the independence property. Let ¢(z,y) be the formula

U(z/y).

We will show that this formula has IP. Let n > 1 be given. Let p1, ..., p, be distinct
prime numbers. Put b,, = p,,* where k € Q will be chosen. Now let I be a subset of
{1,...,n} and r be the size of I. For i € I, by lemma (4.5) we can choose e; € Q such
that

1 1 1
S < h(p) <t 4
r (p )*r—’_(n—i—l)2
Set
aI:HpiEi-
il

By lemma (4.6), we have

1
1<h <l+—-.:
(ar) < +n—|—1
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Now by lemma (4.5), choose k such that

1
n+1

1-— < h(bm) < 1.

Then by lemma (4.7) and the properties of the height function, we get ¢(ay, b;) if and
only if ¢ € I. This yields that ¢(z,y) has the independence property and hence T is
not NIP. O

Let R be the real algebraic numbers and put S(R) = S N R. For real algebraic

numbers, we have the same result:

Corollary 4.12. The theory of (R, S(R)) is not simple and has IP in the language
L (0).

Remark 4.13. The proof of Theorem (4.11) indicates that the theory T, has the tree
property of the first kind T Py.

4.2.2 Elliptic Curve Case

In this short subsection, we give an analogous result of Theorem (4.11) for elliptic

curves with the canonical height function on it. For more on the subject; see [33].

An elliptic curve over Q is the solution set of the equation
v =a34+ar+0b

in Q with an additional point at the infinity O, where a,b € Q and 4a® + 27b? is not
zero. An elliptic over Q will be denoted by E = E(Q). An elliptic curve (E(Q),O) is
an abelian group such that O is the identity element. Since Q is algebraically closed,

the group F(Q) is divisible.

Analogous to the logarithmic height function on the set of algebraic numbers, there

is a canonical height function on elliptic curves.

Theorem 4.14. [18, Chapter 5, 2.2.2] Let (E,O) be an elliptic curve over Q. We
define the canonical height h by the formula B(O) =0 and if P is not O then

h(P) = lim h@(2"P))

n—o00 4n
This height over E satisfies the parallelogram law:
h(P + Q)+ h(P — Q) = 2h(P) + 21(Q).

In particular h(mP) = m2h(P). Finally, h(P) = 0 if and only if P is a torsion point.
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Let Tors be the elements in E whose canonical height is zero and .S be the elements
in E whose canonical height < 1. Note that for every integer n > 1, there are finitely
many n-torsion points in E. Similar to the main theorem in this chapter, we have the

following theorem:

Proposition 4.15. Let E be an elliptic curve over Q and h be the canonical height

on it. Then the pair (E(Q),Tors) is stable, however the pair (E(Q), S) is not simple
in the language L, (U).

Proof. The proof is similar to the proof of the previous theorem, so we will be brief.
Note that since FE is divisible with finitely many n-torsions for every n > 1, it has QE
and it is w-stable. Similar to lemma (4.10), one can show that Tors is small in E. By
Theorem (4.14), we know that Tors is exactly the torsion elements in E. Thus Tors is
a divisible group. Hence Tors is an elementary substructure of F. This indicates the
stability of the pair (E,Tors) by [6]. On the other hand by Theorem (4.14), for all ¢
in Q and P € E, we have that h(¢P) = ¢>h(P). Moreover, since Q2 is dense in the
positive real line, by choosing a non-torsion element, similar to the proof of Theorem

(4.11), one can show that the formula

oy, 2,1) U(tg) AU(t:)

has the tree property. O

4.3 Salem Numbers

Lehmer’s Conjecture (1933): There exists an absolute constant ¢ > 1 such that if

« is not a root of unity then m(«) > ¢. This conjecture is still open.

A real algebraic integer o > 1 is called a Salem number if @ and 1/« are Galois
conjugate and all others Galois conjugates of « lie on the unit circle. Observe that for

a Salem number a and a positive integer n, we have

and in general this is not true for an arbitrary algebraic number. It is an open question
whether 1 is a limit point of Salem numbers. This is a special case of Lehmer’s
Conjecture. The smallest known Salem number « was given by D. Lehmer [24] which

is the root of the polynomial
X0 X0 X" x5 - X° X' - X3+ X +1

with a &~ 1.17628 and not many Salem numbers known in the interval (1, 1.3). For more

about Lehmer’s conjecture and Salem numbers, we direct the reader to [35, 36]. Let
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Py :={a € Q : m(a) < b} where b > 1. Note that P, contains the set of roots of unity
w. Lehmer’s Conjecture is equivalent of there exists b > 1 such that P, = P; = u. So
if Lehmer’s Conjecture is true, then we know that the pair (Q, P;) is w-stable for some
b > 1 by a theorem of B. Zilber [41]. The next proposition relates the simplicity of the
pair (Q, P,) with Lehmer’s Conjecture. It states that if the pair (Q, P,) is simple for
some b > 1, which is a weaker statement than w-stability, then Lehmer’s Conjecture

is true for Salem numbers.

Proposition 4.16. If the theory of (Q, Py) is simple for some b > 1 in L, (U), then

Lehmer’s Conjecture is true for Salem numbers.

Proof. Suppose that (Q,P,) is simple for some b > 1. Assume that 1 is a limit
point of Salem numbers in order to get a contradiction. Then we can choose a
Salem number o and a positive integer n such that o™ is very close to b. Let
M= (*Q,+,—,-,0,1,m, *R>1) be a nonstandard extension of the many-sorted struc-
ture M = (Q, +, —,+,0,1,m,R>1). Then the Mahler measure m extends to *Q and it
takes values in positive hyperreal numbers > 1. We also denote this extension as m.
Then the pair (*Q, *P;) is an elementary extension of (Q, P,) in L,,(U). Note that * P,
is the set of hyper algebraic numbers whose Mahler measure is less than b. Then there
is a nonstandard Salem number 8 > 1 which is infinitely close to 1, and an infinite

nonstandard natural number N such that st(3") = b. Put

d(x,y, 2, t) : U(’;y) AU(’ZE)

as before. Denote the integer part of a as [a]. Observe that for any rational numbers

r and s in (0, 1), we have

N BT
m<ﬂ ﬁ[NS]> <b <<= r<s.

Therefore, we can order rational numbers in this pair. Then similar to the proof
of (4.11), the formula ¢(z,y, z,t) has the tree property by taking the parameters

as = (BNl BN, Hence (Q, P,) is not simple, a contradiction. O

Remark 4.17. Let Cy, be the set of Salem numbers less than b, where b > 1. The proof
of proposition (4.16) indicates that the simplicity of the pair (Q,Cy) for some b > 1 in
L,,(U) is equivalent to Lehmer’s conjecture for Salem numbers. We call an algebraic
number o multiplicative if m(a™) = m(a)™ for all natural numbers n > 1. Let Dy, be
set of multiplicative algebraic numbers whose Mahler measure is less than b. Note that
Dy, contains Cy. Then the same proof of proposition (4.16) shows that the simplicity
of the pair (Q, Dy) for some b > 1 in L,,(U) is equivalent to Lehmer’s conjecture for

multiplicative algebraic numbers.

Remark 4.18. One way of showing the simplicity it to find a notion of independence

which is symmetric and satisfying the axioms of non-forking.
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We end this chapter by posing the following question and the conjecture which are
related to Lehmer’s conjecture.

e Is y definable in (Q, P,) for some b > 1?

Conjecture 4.19. The theory of (Q, Py) is stable for some b > 1 in L,,(U). Moreover
the stability of the pair (Q, Py) in L,,(U) for some b > 1 implies Lehmer’s conjecture.
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Nonstandard Analysis and its applications
to heights

The arithmetic version of the Nullstellensatz states that if f1,..., fs belong to the ring
Z[X1, ..., X,] without a common zero in C, then there exist @ in Z \ {0} and g1, ..., gs
in Z[X, ..., X;,] such that a = f1g1 +-- -+ fsgs. Finding degree and height bounds for
a and g1, ..., gs has received continuous attention using computational methods. By
deg f, we mean the total degree of the polynomial f in several variables. T. Krick,
L. M. Pardo and M. Sombra [21] proved degree and height bounds for a and g1, ..., gs

which are sharp and effective.

On the other hand, finding bounds in mathematics using nonstandard extensions
has been studied often, for example: Given a field K, if fo, f1, ..., fs in K[X1,..., X},]
S

all have degree less than D and fy is in (f1, ..., fs), then fo = Z fih; for certain h;

whose degrees are bounded by a constant C = C'(n, D) dependli;lé; only on n and D.
This result was first validated in a paper of G. Hermann [16], where his pattern was
based on linear algebra and computational methods. Then the same result was proved
by L. van den Dries and K. Schmidt [8] using nonstandard methods, and their tech-
nique smoothed the way how nonstandard methods can be used for such bounds. In
this chapter, we apply nonstandard methods in order to prove the existence of bounds
for the complexity of the coefficients of h; as above by taking fy = 1. In plain words,

using nonstandard methods, we prove the existence of certain height bounds on the

81
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complexity of the coefficients of some polynomials. This enables us to characterize
the ideal membership of a given polynomial. Moreover, we obtain a bound for the

logarithmic height function, which entitles us to test the primality of an ideal.

In this chapter, we also define an abstract height function on a ring R, which
generalizes the absolute value function and the logarithmic height function, and it
measures the complexity of the coefficients of polynomials over R[Xj,...,X,]. We
will generalize the result of [21] to any integral domain and height function, and
furthermore our constant for the height function does not depend on R or s, however
it is ineffective. We assume that all rings are commutative with unity through the
chapter. Moreover throughout this chapter, the ring R stands for an integral domain
and K for its field of fractions. The symbol h denotes a height function on a ring R,

which will be defined in the next section.

5.1 Generalized Height Function

Let 6 : N — N be a function. We say that
h:R—[0,00)

is a height function of 6-type if for any = and y in R with h(z) < n and h(y) < n, then
both h(x 4+ y) < 68(n) and h(zy) < 0(n). We say that h is a height function on R if h
is a height function of #-type for some 6 : N — N.

We can extend the height function h to the polynomial ring R[Xq, ..., X,] by

h ( Z aaXo‘> = max h(ay)-
o
Note that this extension does not have to be a height function, it is just an extension

of functions. Now we give some examples of height functions.

Example 5.1. For the following examples of height functions, one can take 6(n) =
(n+1)2.

o If(R,||) is an absolute valued ring then h(x) = |z| is a height function. Moreover

h(z) = |z| + 1 and h(x) = max(1, |z|) are also height functions on R.
e The degree function on R[X1,...,Xy] is a height function.

e Let X be a positive real number. On Z[X], define
k .
h(ag + a1 X + -+ apX") = Z |a;| A"
i=0

Then this is a height function on Z[X].
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e Let h: R— [0,00) be a function such that the sets
A, ={zr € R:h(z)<n}

are all finite for all n > 1. Then h is a height function of 0-type where O(n) =
max {h(z +y) + h(zy)}.
z,y€EA,

e The p-adic valuation on Z is not a height function. Note that 1 and p™ — 1 are

not divisible by p, however their sum is divisible by p™.

5.1.1 Nonstandard Extensions and Height Function

Let *K be a nonstandard extension of the many-sorted structure
K = (K[Xh ey X"]? +7 R 07 17 h'7 97 dega R[Xla ceey Xn]a RZOa N)7

where h is a function from R[X;, ..., X,] to R>q, the function 6 is a function from
N to N and deg is the degree function on K[Xji,..., X,;] which takes values in N.
As usual, the functions deg and 6 extend to *N and they take values in *N. Note
that *K[X1, ..., X,,] € *(K[Xq,...,X,]) and *K[Xq, ..., X,,)] = {f € *(K[X4,...,X,]) :
deg f € N}. If h is a height function on R of f-type, then it extends to *(R[ X1, ..., Xp])
which takes values in *R>o though this extension is no longer a height function if A
is unbounded. Moreover it satisfies the same first-order properties as h. In particular
if x, y are in *R with h(z) < n and h(y) < n, where n € *N, then we have both
h(z+y) < 6(n) and h(zy) < 6(n). Define

Rfm = {37 €*R: h(:z:) c Rfm}

where Ry, = {z € *R : 2| < n for some n € N} and *R is a nonstandard extension
of R. The elements in *R \ Ry;, are called infinite.

By the properties of a height function, if there is a height function on R, we see
that Ry, is a subring of *R and it contains R. Note that *(R[X1, ..., X,,]), *R and *K

are internal sets. The next lemma shows when Ry;, is internal.

Lemma 5.2. The set Ry;y, is an internal subset of * R if and only if the height function

on R is bounded.

Proof. Suppose Ry, = *A for some subset A of R. First we show that the height
function on A must be bounded. To see this, if there is a sequence (a,), in A such
that lim h(a,) = oo, then there is an element in *A whose height is infinite. This
contrga)i(():%s the fact that all the elements in Ry;, have bounded height. So the height
function on A is bounded. Therefore the height function on *A is also bounded.

However since R4, contains R, the height function on R must be bounded. Conversely
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if the height function on R is bounded, then we have Ryf;, = *R and so Ry, is

internal. O

Now we fix some more notations. Put L = Frac(Ry;,) which is a subfield of *K.
Note that *K is the fraction field of *R. In fact, of being a height function is very
related to the set Ry;,. The following proposition is the nonstandard point of view
definition of a height function. However it is ineffective, i.e. it does not provide the

0-type of the height function.

Proposition 5.3. A function h: R — [0,00) is a height function on R if and only if
Ryin is a subring of *R.

Proof. We have seen that if h is a height function then Ry;, is a subring. Conversely
suppose Ry;y is a subring and h is not a height function. This means there is some
N € N such that we have two sequences (r,) and (s,) in R with h(r,) < N and
h(sn) < N, however n11_>1r010 h(rp * $5) = 00, where the binary operation * means either
addition or multiplication. Thus we obtain two elements r and s in *R such that
h(r) < N, h(s) < N, but h(r x s) is infinite. This contradicts the fact that Ry;, is a
subring. U

5.1.2 Degree Bounds and Primality

In this subsection, we prove some results from commutative algebra and give the

results in [8] that lead to the existence of the constant ¢; in Theorem (5.8).

Lemma 5.4. Let F be a field and fi,..., fs € F[X1,...,Xy]. Then 1 € (f1,..., fs) if

and only if fi1,..., fs have no common zeros in F*°.

Proof. =: Clear.

<: By Hilbert’s Nullstellensatz, there are gi,...,gs € F*[Xy,..., X,] such that 1 =
fig1+- -+ fsgs- This is a system of linear equations when we consider the coefficients
of all the polynomials. Therefore 1 = f1Y7 + - - - + fsY, has a solution in F*°. Now
by the Gauss-Jordan Theorem, this linear system has a solution in F. So there are
hi,..,hs € F[Xy, ..., X;,] such that

1:f1h1+"'+fshs~
O

Remark 5.5. Let F C F be a field extension and I C F[Xq, ..., X,,] be a proper ideal.
Then the ideal I1F[X1, ..., X,] C F1[X4,..., X,] is also proper.

Proof. Let I C F[Xy,...,X,] be a proper ideal. Then since I is finitely generated,
the ideal I = (fi,..., fs) for some fi,...,fs € F[Xy,...,X,]. By lemma (5.4), the

polynomials f1, ..., fs have a common zero in F%. Since we may assume F% C F; ¢,
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there is a common zero of f1, ..., fs in F1%. So by lemma (5.4) again, IF[X1, ..., X,,] #
Fy[X1, ., Xo]. 0

Recall that the theory of algebraically closed fields is model complete since it has
QE. Next we prove that of being an irreducible variety does not change if we go to an

extension.

Lemma 5.6. Let Fy} C Fy be a field extension such that both are algebraically closed.
Let V' be an irreducible variety in Fy"™. Then the Zariski closure of V in Fy" (with

respect to the Zariski topology on Fy™) is an irreducible variety in F5".

Proof. Since V is a variety in F|", there are some polynomials py, ..., ps such that V
is the zero set of p1, ..., ps. Then clearly the Zariski closure of V in Fy" is the zero set
of p1,...,ps in F»™. Call this closure ¢l(V). Thus both V and c¢l(V') are defined by the

formula

¢(z) = [\ pi@).

i<s

Now suppose that cl(V) is not irreducible, so there are two proper subvarieties V3 and
Vs of cl(V) such that cl(V) = V3 U Vi. Then since the theory of algebraically closed

fields is model complete, we deduce that V is also reducible. O

Corollary 5.7. Let Fy C F5 be a field extension such that Fy is algebraically closed.
Then I is a prime ideal in F\[ X1, ..., X,;] if and only if [F5[ X1, ..., X,] is a prime ideal
m FQ[Xl, ceey Xn]

Proof. Suppose I = (f1,..., fs) is a prime ideal in F;[X7, ..., X,]. Let V = V(I) be the
variety given by I. Then by Nullstellensatz V is irreducible. So by lemma (5.6), the va-
riety cl(V') is also irreducible in F5". Again by Nullstellensatz, the ideal I F»[X7, ..., X;,]

is prime. Conversely, the equality
(IF[Xy, ... Xu) N EFy [ X, ., Xy =1
follows from a similar proof of lemma (5.4), since we need to solve a system of linear
equations. 0O
The following theorem yields the existence of the constant ¢; in Theorem (5.8).

Theorem 5.8. [8, 1.11] If fo, f1,..., fs in K[X1,...,X,] all have degree less than D
and fo isin (f1,..., fs), then fo = Z fih; for certain h; whose degrees are bounded by

i=1
a constant ¢; = c1(n, D) depending only onn and D.

The following is also from [8]:

Theorem 5.9. [8, 2.5] I is a prime ideal in *K[X1, ..., X,,] if and only if I*(K[ X7, ..., X,])
is a prime ideal in *(K[X1, ..., X,]).
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5.1.3 UFD with the p-property

Definition 5.10. We say that R is a UFD with the p-property if R is a unique
factorization domain endowed with an absolute value such that every unit has absolute

value 1 and if there are primes p and q satisfying
Il <1 <ldql,

then there is another prime r non-associated to p with |r| < 1.
Examples

e The ring of integers Z is a UFD with the p-property whose primes have absolute
value bigger than 1.

e The p-adic integers Z, is a UFD with the p-property whose only prime has

absolute value 1/p.

e Let v € (0,1) be a transcendental number. Then the ring S = Z[y] is a unique
factorization domain since it is isomorphic to Z[X] and its units are only 1 and
-1. We put the usual absolute value on S. Then S has infinitely many primes p

with |p| < 1 and infinitely many primes ¢ with |¢| > 1. So S is a UFD with the
p-property.

Lemma 5.11. Suppose R is a UFD with the p-property. If there are primes p and g
with |p| <1 < |q|, then there are infinitely many non-associated primes with absolute
value strictly less than 1 and infinitely many non-associated primes with absolute value

strictly bigger than 1.

Proof. We know there are at least two non-associated primes with absolute value less

than 1. Let pq, ..., px (for k > 2) be non-associated primes with absolute value less than
k

Z(A/pi)m‘ < 1. Since
i=1
this element is not a unit, as it does not have absolute value 1, it must be divisible

1. Put A = p;y...px. Now choose m large enough such that

by a prime whose absolute value is strictly less than 1. This yields a new prime. For
the second part, given ¢, ..., qr primes of absolute value larger than 1, for large n the

element ¢;"gs...q; +1 provides a new prime that has absolute value greater than 1. [J

5.2 Height Bounds

In this section, we will give our main results of this chapter.

Theorem 5.12. Let R be a ring with a height function of 0-type. For alln > 1, D > 1
and H > 1 there are two constants c¢1(n, D) and cao(n, D, H,0) such that if fi,..., fs
in R[X1,...,Xp] have no common zero in K with deg(f;) < D and h(f;) < H, then
there exist nonzero a in R and hq,...,hs in R[X1,..., X,] such that
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(7’) a= fihy+- -+ fshs
(ii) deg(h;) < ¢
(iii) h(a),h(h;) < co

(iv) Furthermore, if R is a UFD with the p-property and h(x) = |x| is the absolute
value on R, then we can choose a such that ged(a, aq, ..., any) = 1 where aq, ..., ap,

are all elements that occur as some coefficient of some h;.

Remark 5.13. The constant c¢; does not depend on s because the vector space

V(n,D)={f € K[Xy,...,X,] : deg(f) < D}
is finite dimensional over K. In fact the dimension is q(n,D) = (”ZD). Given
1= fih1+ -+ fshs, we may always assume s < q = q(n, D) because if s > q then
fiys fs € V(n, D) are linearly dependent over K. Assume first that r < q¢ many of
them are linearly independent. Therefore the other terms fri1,..., fs can be written as
a linear combination of fi, ..., fr over K. Thus the equation 1 = fihy+---+ fshs may be
transformed into another equation 1 = f1g1+---+ frgr. Consequently if 1 € {f1,..., fs),
then 1 € (fi,,..., fi,) where v < ¢ and i; € {1,...,s}. Hence, we can always assume
s = q. Similarly the constant co does not depend on s. Moreover, none of the constants

depend on R.

Remark 5.14. There is also a direct proof of (5.12) as follows: Using the degree bound
B(n, D) for the polynomials g1, ...,gs in a Bezout expression 1 = fig1 + -+ gsfs,
we can derive a height bound since the degree bound allows to translate the problem
to solving a linear system of equations with precise number of unknowns equations
and the height function satisfies some additive and multiplicative properties. Howewver,
this computational method is also complicated since the bounds for the height function
depend on 0 which is implicitly given. Thus in practice, this method is ineffective.
For this reason and to show how the problem is related to model theory, we prefer

nonstandard methods as in [8].

Remark 5.15. If R is a ring with absolute value which has arbitrarily small nonzero

elements, then we can multiply both sides of the equation
a:f1h1+"'+fshs

by some small ¢ € R. Therefore the height bound co can be taken 1 and the result
becomes trivial. Note that (iv) in (5.12) prevents us from doing this if there are no
small units in R. However, if there is a unit u with |u| < 1, then multiplying both
sides of the equation with powers of u the height can be made small again. So the
interesting case is when there are no small units which is equivalent to all the units

having absolute value 1. Note also that if |ab] < 1 then |a| can be very big and |b| can
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be very small. So cancellation can make the height larger if there are sufficiently small

and big elements in the ring. Thus for the equation
a:f1h1+...+fshs7

simply dividing by ged(a, ay, ..., am) may not work in order to obtain (iv) in Theorem
(5.12).

Proof. If s = 1 then by Nullstellensatz, f; must be a nonzero constant. Thus we
may assume that s > 2 and fy f2 is not 0. By Theorem (5.8), the constant ¢; exists
and it only depends on n and D. Now we prove the existence of the constant cs.
Our language is the many-sorted language which was given in the subsection (5.1.1).
Assume n, D and H are given and there is no bound co. Therefore for every m > 1
there exists an integral domain R,,, with a height function ht,, of 6-type and fi, ..., fs
in Rp[Xy,...,X,] with deg f; < D and hit,,(f;) < H witnessing to this. Thus in the
field of fractions K,, of R,,, there exist g1, ..., gs in K, [X1,..., X;n] with degg; < &1
and

1:flgl+"'+fsgs7

however for all hq,...,hs € Kp[X1, ..., X,,] with degh; < ¢1, the sum
1:flh1+"'+fshs

implies max ht,(a;) > m where a; € R,, is an element that occurs as a numerator
J

or denominator of some h;. By compactness there is an integral domain R with a

height function hg of f-type and polynomials fi, ..., fs in Rsin[Xi, ..., X,,] of degrees

less than D such that the linear system
f1Y1+"'+,sts:1

has a solution in *K[Xy,..., X,] but not in L[Xy,...,X,], where K is the field of
fractions of R and L is field of fractions of Ry;,. This contradicts remark (5.5) since
the ideal (f1, ..., f) is proper in L[X1, ..., X,,].

Hence we know that given fi,..., fs € R[X},.., X;] with no common zeros in K¢
with deg(f;) < D and h(f;) < H, there are hq,...,hs in K[Xy,..., X,] such that 1 =
fihi+-+fshs and deg(h;) < ¢1(n, D). Moreover s < ¢(n, D) and h(e) < ¢s(n, D, H,0)
for some c3, where e € R is an element which occurs as a numerator or denominator
for some coefficient of some h;. Let by, ..., b,, be all the elements in R that occur as a
denominator for some coefficient of some h;. Note that m = m(n, D) < ¢* depends on
n and D only. Also we know that h(b;) < c3. Put

a = bl...bm.
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By the multiplicative properties of the height function, we get h(a) < c¢4(n, D, H,0)

for some c4. Now we see that
S
a = Z.fl : (a'h‘i)a
i=1

fi and ah; are in R[X},.., X,,] and deg(ah;) = deg(h;) < ¢;1. Moreover, again by the
multiplicative properties of the height function, we have h(ah;) < ¢s5(n, D, H,0) for

some c5. Now take co = max(cy, ¢5). Therefore, we obtain (i), (i4) and (4i7).

Now we prove (iv). Assume R is a UFD with the p-property. We need to choose
a such that ged(a, ay, ..., am) = 1 where aq, ..., a,, are all elements that occur as some
coefficient of some h;. If all the primes in R have absolute value bigger than 1 or

smaller than 1, then we can divide both sides of the equation
a= fih1 4+ foho + - -+ fshs

by ged(a,aq, ..., a,) and get the result, because if all the primes in R have absolute
value bigger than 1, then cancellation makes the height smaller and if all the primes
in R have absolute value less than 1 then height is bounded by 1. The remaining case
is when there are primes of absolute value bigger than 1 and primes of absolute value
smaller than 1. By lemma (5.11), there are infinitely many primes with absolute value
strictly less than 1. Now choose a prime p such that |p| < 1 and p does not divide
a. Let d be the greatest common divisor of all coefficients of f; and f,. Then, the
coefficients of f;/d and f5/d have no common divisor. On the other hand, since there
are both small and large elements in the ring, the element d can be very small and so
fi/d and f3/d may have very large absolute values. Thus choose a natural number k
such that p¥f)/d and p* f/d have absolute value less than 1. Put v = ¢;(n, D) + 1.

Then we have
0= f1(X1"p" fo)d) + fo(—X1"p* f1/d).

Therefore, we obtain that
a= fi(hi +X1"p" fa2/d) + fa(ho — Xi"p" fr/d) + - - + fohs

= fi91 + faga + - + fsgs

where deg g; < D(c1 + 1) = ¢(n, D) and h(g;) < ca. Observe that
ged(a,ay, .o, am) =1

where aq, ..., a,, are all elements that occur as some coefficient of some g;. O

Let F be a field and I an ideal of F[X7, ..., X,,]. We say that I is a D-type ideal if
the degree of all the generators of I is bounded by D. By [8] it is known that there is
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a bound B(n, D) such that if I is a D-type ideal then I is prime if and only if 1 ¢ I,
and for all f, g in F[Xq,..., X,] of degree less than B(n, D), if fg € I then f or g is in
I. Let Q be the field of algebraic numbers. We say that an ideal I of Q[ X1, ..., X,,] is
a (D, H)-type ideal if it is a D-type ideal and the logarithmic height of all generators
of I is bounded by H. Next, we show that it is enough to check the primality up to a
certain height bound.

From now on, the function A denotes the logarithmic height function on the set of

algebraic numbers Q. Set
Qpin = {z €"Q: h(z) € Ryin}-

Lemma 5.16. The ring @fm s an algebraically closed field.

Proof. Since the logarithmic height function behaves well under algebraic operations
and inverse, we obtain that @fm is a field. By the height inequality (4.4), we see that
@fm is algebraically closed. O

Theorem 5.17. Let h be the logarithmic height function. There are bounds B(n, D)
and C(n, D, H) such that if I is a (D, H)-type ideal of Q[ X1, ..., X,)] then I is prime
if and only if 1 ¢ I, and for all f, g in Q[X1, ..., X,,] of degree less than B(n, D) and
height less than C(n, D, H), if fg € I, then either f or g is in I.

Proof. First note that if J = (f1,..., fs) is an ideal of D-type then the number of

generators of J can be taken less than
g=q(n,D) =dimg{f € K[X1,...,X,,] : deg f < D}.

So we can always assume that s < g. We know the existence of the bound B=B(n, D)
by [8]. Now we prove the existence of the bound C(n, D, H). Suppose there is no such
bound. This means for all m > 0 there is an ideal I,,, of (D, H)-type of Q[ X1, ..., X,,]
which is not prime such that for all f,¢g with deg f and degg less than B, and h(f),
h(g) less than m, if fg € I, then either f or g is in I,,,. Then by compactness there
is an ideal I of (D, H)-type of *(Q[X1, ..., X,,]) such that the ideal I is not prime but
for all m > 0, if f, g are of degree less than B and are of height less than m, if fg € I
then either f or g is in I. Now, we see that the ideal I is prime in Qy;,[X1, ..., Xy].
However, it is not prime in *Q[X, ..., X,,] by (5.9). This contradicts Theorem (5.7)
since @fm is algebraically closed by lemma (5.16).

O

Question: Can we compute C(n, D, H) in (5.17) effectively?

Next, we prove the existence of a height bound similar to the height bound in The-
orem (5.17). For the details, we direct the reader to [12, 27]. Let R be a commutative
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Noetherian ring with 1 and M be an R-module. For a prime ideal p of R, we say that
p is an associated prime of M, if p is the annihilator of some x in M. For an ideal J of
R, the associated prime ideals containing J coincides with Assr(R/J), which in fact
is the set of prime ideals which are the radicals of the primary ideals occurring in the
primary decomposition of J. First, we recall the followings facts from commutative

algebra.

Remark 5.18. e An ideal J is a primary ideal if and only if Assr(R/J) has

exactly one element.

e Every ideal J (through primary decomposition) is expressible as a finite intersec-
tion of primary ideals. The radical of each of these ideals is a prime ideal and

these primes are exactly the elements of Assgr(R/J) .

o Any prime ideal minimal with respect to containing an ideal J is in Assr(R/J).

These primes are precisely the isolated primes.
Corollary 5.19. Letn € N, X = (Xy,...,X,,) and I be an ideal of@fm[X].

(1) If py...,pm are the distinct minimal primes of I then
pl*@[X]ﬂ "',pm*@[X]
are the distinct minimal primes of I*Q[X1, ..., X,,].

(2) \/I*QX] = VI*QX].

(3) If M is a Qy;,[X]-module, then
Ass.gp (M ©g, x) QX)) = {p"QX] : p € Assg, 1) (M)}

(4) The ideal I is a primary ideal if and only if I*Q[X] is a primary ideal of *Q[X].

(5) Let I = I, N...N I, be a reduced primary decomposition, Ij; being a pg-primary
ideal. Then
QX = L*Q[X]N...Nn I,,*Q[X]

is a reduced primary decomposition of I*Q[X], and I*Q[X] is a pr*Q[X]-

primary ideal.

Proof. (1) is an immediate consequence of corollary (5.7) and lemma (5.16). (2) follows
from (1), since radical of an ideal is the intersection of minimal prime ideals which
contain the ideal. Since Qy;,[X] is Noetherian, (3) follows from [5, Chapter 4, 2.6,
Theorem 2] and remark (5.5). To prove (4), suppose that I is a p-primary ideal. So we
get Ass@fm[X] (Qyin[X]/T) = {p}. Applying (3) with M = Qy;,[X]/I, we obtain that
Ass.gx ("Q[X]/I) = {p*Q[X]} and this yields (4) with the help of remark (5.18).
The converse of (4) can be seen by remark (5.5). (5) follows from (4).
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O

Now we give the standard corollaries. For the following corollary, the existence of
the constant F(n, D, H) is new.

Corollary 5.20. There are constants B(n, D), C(n, D) and E(n,D, H) such that if
I is an ideal of (D, H)-type, then

(1) VT is generated by polynomials of degree less than B and height less than E, if
f e VI then f€ 1.

(2) There are at most B associated primes of I and each generated by polynomials
of degree less than B and height less than E.

(3) I is primary if and only if 1 ¢ I, and for all f, g of degree less than B and height
less than E, if fg € I then f € I or g© € I.

(4) There is a reduced primary decomposition of I consisting of at most B primary
ideals, each of which is generated by polynomials of degree at most B and height

at most E.

Proof. We know the existence of B(n,D) and C(n,D) by [8]. The existence of
E(n,D, H) follows from the previous corollary. Proofs are similar to the proof of
Theorem (5.17). O

Question: Can we compute F(n, D, H) effectively in corollary (5.20)7

5.3 Concluding Remarks

In this section, we discuss Theorem (5.12) in terms of unique factorization domains,
valuations and some arithmetical functions. Also, we give some counter examples for

(5.12) for non-height functions.

Definition 5.21. We say that R is a UFD with the 1-property if R is a unique
factorization domain endowed with an absolute value such that every unit has absolute
value 1 and there is only one prime p of absolute value less than 1 and infinitely many

primes q of absolute value greater than 1.

Example 5.22. Let R be a unique factorization domain and p be a prime in R. Put
the p-adic absolute value on R with |p|, = 1/2. Let ¢ > 1 be any real number. On
R[X] we define

lag + a1 X 4+ - - - + ap X*| = m?xci\a”p.

Then R[X] is a UFD with the I-property whose only small prime is p.
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We proved Theorem (5.12) for UFD with the p-property. Thus the remaining case
is when R is a UFD with the 1-property. Now we show that Theorem (5.12) is not
true for a UFD with the 1-property. The reason behind this is the fact that an element
has small absolute value if and only if its p-adic valuation is very large where p is the

unique prime of absolute value less than 1.

Remark 5.23. Let R be a UFD with the 1-property. Then we cannot ensure the

correctness of (iit) and (iv) simultaneously in Theorem (5.12).

Proof. Let p be the unique small prime in R of absolute value less than 1. Let B be
an element in R of absolute value very big which is coprime to p. Choose m minimal
such that |[p™B| < 1. Similarly choose k minimal such that [p*B| < cy. Note that as
B is very large then so are m and k. Set f; = p?" ! +p?™X and fo, = p™B — p"BX.

Clearly f; and fs have no common zero since
p*"B(p+1) = Bfi +p™"f2

and p is not -1. Whenever we write a = fih1 + faho, we observe that p™ divides
hy and B divides h;. Also we have that p?™ B divides a. Now suppose |h;| < ¢y for
i = 1,2. Since B divides h;, we see that p* divides h; since p is the unique small prime
in R. Thus p* divides a, h; and hy. Furthermore we may assume that the only prime
divisor of a, hy; and hso is p, because if there is ¢ dividing all of them which is coprime
to p, then there is I > k such that p' divides h; in order to make the absolute value of
h1 less than co. Similar observation shows that p' also divides ho and a. Therefore, in
order to satisfy (iv) in Theorem (5.12), we need to divide a, hy and hy by p*. So the
absolute value of hy/p* becomes very large.

O

Definition 5.24. A wvaluation v on an integral domain R is a function
v:R—=TU{oo}
from R into an ordered abelian group T that satisfies the followings:
(i) v(a) = oo if and only if a =0
(i) v(zy) = v(z) +v(y)
(#i) v(x + y) > min(v(z), v(y)).
Here 0o is some element that is bigger than every element in I.

For a nonzero polynomial in n-variable we define its valuation as follows:

v(za:aaX“) = max{v(aa) : o # 0}
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Note that this may not be a valuation that satisfies the three conditions above. Take
R = Z and as a valuation we put a p-adic valuation for some prime p. Set f; =
1+ X +(1—p™)X? and fo = X2 where m is some large integer. Then the valuations
of f1 and fo are 0 and clearly they have no common zero in C. One can see that 1 is a
linear combination of f; and fy and so every integer is. However, whenever we write
a = fihi+ fohs where a is nonzero, then h; must have degree bigger than 2 and the first
three coefficients of h; are uniquely determined: if hy(x) = by+b1 X +bo X2 +--- +b Xk
then automatically we have by = a, by = —a and by = ap™. So the valuation of by can

be very large. The main nonstandard reason behind this is the fact that
Ryfin ={x € "R :v(z) € Ry } U {0}

is not a ring, because for nonstandard N € *N the elements pVN —1and 1isin R, fin
but not their sum. Therefore by proposition (5.3), we know that the p-adic valuation

on Z is not a height function.

If we take g1 = p™ — 1+ X and ¢go = 1 — X then they have no common zero and
whenever we write a = g1hy + g2hs, then h; and ho must have the same degree and
same leading coefficient. This implies that p™ divides a which means that valuation

of a can be very big even if the valuations of g; and g2 are 0.

A valuation is called trivial if for all nonzero x we have v(z) = 0. We say that a
valuation is a height function if the set R, iy is a subring. In fact we can determine

when a valuation is a height function.
Remark 5.25. A valuation v on R is a height function if and only if it is trivial.

Proof. If the valuation is trivial then clearly it is a height function. Conversely is v is
not trivial, then it is unbounded. So by saturation there is an element a in * R whose
valuation is infinite. Then

via—1)=0

because if two elements have different valuation then the valuation of their sum is the
minimum of their valuations. So the elements a — 1 and 1 are in R, y;, but not their

sum. O

Now we discuss some arithmetical functions and which of them are height functions
and relate them to Theorem (5.12).

Definition 5.26. A function g:{1,2,3,...} = C is called an arithmetical function.

Every arithmetical function g extends to Z by defining g(n) = g(—n) and ¢(0) = 0.

Such a function is called an arithmetical function on Z. Similarly for an arithmetical
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function g on Z, we extend it to Z[X] by
glag+ a1 X + -+ ap X)) = miaxg(ai).
Let *7Z be a proper nonstandard extension of Z. Note that
ZLfin = {2z € *Z : |x| < n for some n € N} = Z.
For an arithmetical function g, we define
Zgfin ={x € *Z : |g(z)| < n for some n € N}.

By proposition (5.3), observe that |g| is a height function if and only if Zg;, is a

subring. Now we give some examples of arithmetical functions.

Example 5.27. e p(n)={1<k<n:(kn)=1}
e d(n) = number of divisors of n
e w(n) = number of distinct prime factors of n.

Lemma 5.28. Let g be an arithmetical function and assume that

nh_)rr;o g(n) = oco.

Then |g| is a height function.

Proof. If N is an infinite number in *Z then g(N) is also infinite. This shows that
Zgfin = Lygin = Z which is a subring of *Z. Hence by proposition (5.3), the function
lg| is a height function on Z. O

Lemma 5.29. For alln > 1, we have @ < p(n).

1
Proof. Since ¢(n) = Hn(l — =), we get p(n) > oty > T0ny- Finally since d(n) <
p
pl

2+/n, we get the result. O

Corollary 5.30. The function p(n) is a height function.

Vn
2
lary. O

Proof. Owing to the inequality < ¢(n) and lemma (5.28), we conclude the corol-

Fact: Every sufficiently large odd integer can be written as a sum of three primes.
This was proved by I. M. Vinogradov. For more about this theorem, we direct the
reader to [7].

Lemma 5.31. The divisor function d(n) is not a height function.
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Proof. By three primes theorem and compactness, there is an odd infinite N in *Z
which can be written as a sum of three primes in *P where PP is the set of all primes.
Furthermore we can choose N such that w(N) is infinite. This shows that the set ZLafin
is not closed under addition. So by proposition (5.3), it cannot be a height function
on Z. U

The next corollary is also true for the function w(n). For simplicity, we just give

the proofs for the divisor function.

Corollary 5.32. There exist a natural number A and two sequences {an} and {b,}
in N such that d(a,) < A and d(b,) < A but

lim d(a, + b,) = cc.

n— oo

Remark 5.33. The result (5.12) is not true for the divisor function d(n).

Proof. Set fi = a, + X + b,2 X2 and f2 = X3 where a,, and b,, are as in (5.32). Then
d(f1) and d(f2) are bounden by A% and they have no common zero in C. However,
whenever we write a = f1hy + fohy where a is nonzero, then h; must have degree
bigger than 2 and the first three coefficients of hy are uniquely determined: if hy(z) =
o+ a1 X + X2+ -+ ¢, X" then automatically we have cg = a, ¢c; = —ana
and ¢y = a(a, — by)(an, + by). Hence d(cz) can be very large. Moreover if we put
g1 = a, + X and g3 = b, — X then they have no common zero. However, whenever
we write a = g1hy + gaheo, then d(a) > d(a, + by,). Thus a has many divisors although
d(g1) and d(g2) are bounded by A.

O
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