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M. Ayhan GÜNAYDIN Université des Beaux-Arts Mimar-Sinan, Istanbul Examinateur
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Abstract

In this thesis, we deal with the model theory of algebraically closed fields expanded

by predicates to denote either elements of small height or multiplicative subgroups

satisfying a diophantine condition. The questions we consider belong to the area of

model theory and stability theory. In Chapter 2, we investigate an algebraically closed

field with a distinguished multiplicative subgroup satisfying the Mann property. The

model theory of this pair was first studied in the papers of B. Zilber and L. van den

Dries - A. Günaydın respectively. In 1965, H. Mann showed that the set of complex

roots of unity has the Mann Property. Later, it was proved that any multiplicative

group of finite rank in any field of characteristic zero has the Mann property. In this

chapter, we characterize the independence which enables us to characterize definable

and interpretable groups. In Chapter 3, we study algebraically closed fields expanded

by two unary predicates denoting an algebraically closed subfield and a multiplicative

subgroup. This will be a proper extension of algebraically closed fields with a group

satisfying the Mann property, and also pairs of algebraically closed fields. Then we

characterize definable and interpretable groups in the triple. Another goal of this

thesis is to study the field of algebraic numbers with elements of small height. In

Chapter 4, we show that this theory is not simple and has the independence property.

We also relate the simplicity of a certain pair with Lehmer’s conjecture. In Chapter

5, we apply nonstandard analysis to prove the existence of certain height bounds on

the complexity of the coefficients of some polynomials. This allows us to characterize

the ideal membership of a given polynomial. Moreover, we obtain a bound for the

logarithmic height function, which enables us to test the primality of an ideal.
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Résumé

Dans cette thèse, nous traitons la théorie des modèles des corps algébriquement clos

étendu par prédicats pour désigner soit des éléments de hauteur bornée, soit des sous-

groupes multiplicatifs satisfaisant une condition diophantienne. Les questions que

nous considérons appartiennent au domaine de la théorie des modèles et la théorie de

la stabilité. Dans le Chapitre 2, nous examinons un corps algébriquement clos avec

un sous-groupe multiplicatif distingué qui satisfait la propriété Mann. La théorie des

modèles de cette paire était d’abord étudiée dans les articles de B. Zilber et L. van

den Dries - A. Günaydın respectivement. En 1965, H. Mann a montré que l’ensemble

des racines de l’unité a la propriété Mann. Plus tard, il était prouvé que tout groupe

multiplicatif de rang fini dans tout corps de caractéristique zéro a la propriété Mann.

Dans ce chapitre, nous caractérisons l’indépendance qui nous permet de caractériser les

groupes définissables et les groupes interprétables. Dans le Chapitre 3, nous étudions

les corps algébriquement clos étendu par deux prédicats unaires qui dénotent un sous-

corps algébriquement clos et un sous-groupe multiplicatif. Ce sera une extension

propre du corps algébriquement clos avec un groupe satisfaisant la propriété Mann, et

aussi les paires des corps algébriquement clos. Ensuite, nous caractérisons les groupes

définissables et interprétables dans le triple. Un autre but de cette thèse est d’étudier

la théorie de corps des nombres algébriques avec des éléments de petite hauteur. Dans

le Chapitre 4, nous montrons que cette théorie n’est pas simple et a la propriété

d’indépendance. Nous nous rapportons aussi à la simplicité de la certaine paire avec

la conjecture de Lehmer. Dans le Chapitre 5, nous appliquons l’analyse nonstandard

pour prouver l’existence de certaines bornes de hauteur de la complexité des coefficients

de certains polynômes. Cela nous permet de caractériser l’appartenance idéale d’un

polynôme donné. De plus, nous obtenons une borne pour la fonction de la hauteur

logarithmique, ce qui nous permet de tester la primalité d’un idéal.
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”Our greatest glory is not in never falling, but in rising

every time we fall.”

Confucius

Dedication

To Ali and Züleyha Göral.
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always supported me from long distances during my thesis.

ix



x



Contents

Introduction xiii

Introduction en Français xxi
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Introduction

In this thesis, we study fields with a predicate to denote either elements of small height

or multiplicative subgroups satisfying a certain diophantine condition. In particular,

we are applying Nonstandard Analysis to find height bounds and Geometric Model

Theory to analyse extensions of algebraically closed fields with a distinguished group.

In model theory, one of the main objectives is to understand the definable sets in

a structure. Recall that a set is called definable if it is given by a first-order formula.

Type-definable means an intersection of definable sets. Another important notion in

model theory is interpretability. A set is called interpretable if it is a quotient of a

definable set by a definable equivalence relation. To illustrate, in algebraically closed

fields, definable sets are the constructible sets from algebraic geometry and definable

groups correspond to the algebraic groups.

Classification theory is an extensive project in model theory, emerged from the

work of M. Morley in the 1960’s and S. Shelah in the 1970’s, pursuing the catego-

rization of first-order theories based on how much discrepancy there is among their

models, and also to get back structural information about the models. The question

of how many models a theory can have has been at the heart of the most fundamental

progresses in the history of model theory. Stable theories are important to classify

their models. If a theory is not stable then its models are too complicated and numer-

ous to classify, and arithmetic fits in this case. A theory T is said to be stable if there

is no first-order formula in T which defines an infinite linear order. Stable theories

enjoy a notion of independence, namely the forking independence, with a well-defined

set of properties, reminiscent of the algebraic independence in fields and the linear

independence in vector spaces. A theory is simple, if in fact it is characterized by

the presence of such an independence notion which is symmetric. A theory T is said

to have the independence property, if there is a first-order formula in some model of

T that can code any given subset of an arbitrarily large finite set. It is known that

stable theories are simple and do not have the independence property. For instance,

the theory of algebraically closed fields and abelian groups in the group language are

stable. The theory of the real numbers is unstable since one can define the order,

however it does not have the independence property.

xiii
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In Chapter 2, we study algebraically closed fields with a distinguished multiplicative

subgroup in terms of stability. Let K be an algebraically closed field, the field F its

prime field and G be a multiplicative subgroup of K×. In this thesis, a fundamental

notion about multiplicative groups is the Mann property. To define this property,

consider an equation

a1x1 + · · ·+ anxn = 1 (0.0.1)

with n ≥ 2 and ai ∈ F. A solution (g1, ..., gn) of this equation is called non-degenerate

if for every non-empty subset I of {1, 2, ..., n}, the sum
∑
i∈I aigi is not zero. We say

that G has the Mann property if every such equation (0.0.1) has only finitely many

non-degenerate solutions in G. In 1965, H. Mann [26] showed that the set of complex

roots of unity µ has the Mann property. Later, it was proved that any multiplicative

group of finite rank in any field of characteristic zero, for instance 2Z, has the Mann

property; see [32, 13, 23]. In 1990, in an unpublished note, B. Zilber [41] showed that

the pair (C, µ) is stable and his pattern was based on the result of H. Mann [26].

Now we fix K and G as above. The model theory of the pair (K,G) was first

studied in the paper of L. van den Dries and A. Günaydın [9]. The result of B. Zilber

[41] was generalized by L. van den Dries and A. Günaydın [9] to (K,G) where G has

the Mann property. They axiomatized (K,G) and proved that the theory of (K,G)

is stable. Furthermore in [9], L. van den Dries and A. Günaydın showed that G has

the Mann property over K, this means that if ai is in K in (0.0.1), we still have only

finitely many non-degenerate solutions in G. They also proved that every subset of

Gn definable in (K,G) is definable in the abelian group G, in other words the induced

structure on G is the pure group structure.

In Chapter 2, we first characterize the model-theoretic algebraic closure in (K,G).

This allows us to characterize the independence in the pair (K,G) in terms of the

algebraic independence in K with the help of the group G. In [31], B. Poizat char-

acterized the independence for beautiful pairs, in particular for pairs of algebraically

closed fields. It turns out that the independence in (K,G) is different from the beauti-

ful pairs and it is simpler in a sense. Definable groups in stable theories is a recurrent

topic in model theory and they play a significant role for the classification theory pio-

neered by B. Zilber in the 1970’s. In Chapter 2, after characterizing the independence

in the pair, we turn our attention to definable groups in the pair (K,G). Characteri-

zation of the model-theoretic algebraic closure and the independence in (K,G) enable

us to characterize definable groups in (K,G) up to isogeny, in terms of definable and

interpretable groups in K and G. The proof entails a well-known technique from ge-

ometric stability theory, namely the group configuration theorem [19]. We follow the
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approach of [2], where T. Blossier and A. Martin-Pizarro characterized interpretable

groups in pairs of proper extension of algebraically closed fields using a result of A.

Pillay [28]. Precisely, we prove the following result:

Theorem A. (Definable Groups (2.30)) Let K be an algebraically closed field and G

be a multiplicative subgroup of K× with the Mann property. Any type-definable group

in (K,G) is isogenous to a subgroup of an algebraic group. Moreover any type-definable

group is, up to isogeny, an extension of a type-interpretable group in G by an algebraic

group.

In the case where G is divisible, we can characterize interpretable groups in (K,G)

in terms of definable groups in (K,G). Our method will combine the methods in [2]

and [28] and we prove the following theorem:

Theorem B. (Interpretable groups (2.56)) Let K be an algebraically closed field and

G be a divisible multiplicative subgroup of K× with the Mann property. Every inter-

pretable group H in (K,G) is, up to isogeny, an extension of an interpretable abelian

group in G by an interpretable group N , which is a quotient of an algebraic group V

by a subgroup N1, which is an abelian group interpretable in G.

In Chapter 3, we study algebraically closed fields expanded by two unary predicates

denoting an algebraically closed subfield and a multiplicative subgroup. This will be

a proper extension of algebraically closed fields with a group satisfying the Mann

property as in Chapter 2, and also pairs of algebraically closed fields. More precisely:

let Ω be an algebraically closed field, the field k be a proper subfield of Ω which is also

algebraically closed and Γ be a multiplicative subgroup of Ω×. Consider an equation

k1x1 + · · ·+ knxn = 1 (0.0.2)

with n ≥ 1 and ki ∈ k.

We say that (k,Γ) is a Mann pair if for all n there is a finite subset Γ(n) of Γ such

that for all k1, ..., kn in k× all non-degenerate solutions of (0.0.2) in Γ lie in Γ(n). In

particular, the group Γ has the Mann property and the intersection k ∩ Γ is finite.

This is a uniform version of the Mann property. For instance, the pair (Q, exp(Q)) is

a Mann pair by Lindemann’s theorem.

Now we fix Ω, k and Γ as above. The model theory of the triple (Ω, k,Γ) was

first studied by L. van den Dries and A. Günaydın [10, 11]. Among other things,

they axiomatized the triple and characterized definable sets by a relative quantifier

elimination. They also proved that the theory of (Ω, k,Γ) is stable. Moreover in [10],

L. van den Dries and A. Günaydın showed that if the intersection k ∩ Γ is trivial and

Γ has finite rank, then (k,Γ) is a Mann pair.
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In Chapter 3, as an initial step we characterize the model-theoretic algebraic closure

in the triple (Ω, k,Γ). This permits us to characterize the independence in the triple,

which is given by the algebraic independence in Ω and k. After characterizing the

independence in the triple, we focus on definable and interpretable groups in the

triple. We pursue a similar procedure as in the Chapter 2. We first characterize

definable groups, up to isogeny, in the triple in terms of definable and interpretable

groups in Ω, k and Γ. Again the proof requires the group configuration theorem and

the motivation comes from [2].

Theorem C. (Definable Groups for the triple (3.23)) Let Ω be an algebraically closed

field, the field k be a proper subfield of Ω which is also algebraically closed and Γ be

a multiplicative subgroup of Ω× such that (k,Γ) is a Mann pair. Any type-definable

group in (Ω, k,Γ) is isogenous to a subgroup of an algebraic group. Moreover any type-

definable group is, up to isogeny, an extension of a direct sum of k-rational points of

an algebraic group defined over k and a type-interpretable abelian group in Γ by an

algebraic group.

When Γ is divisible, the characterization of definable groups in the triple enables

us to characterize interpretable groups. In particular, we conclude:

Theorem D. (Interpretable groups for the triple (3.33)) Let Ω be an algebraically

closed field, the field k be a proper subfield of Ω which is also algebraically closed and

Γ be a divisible multiplicative subgroup of Ω× such that (k,Γ) is a Mann pair. Every

interpretable group H in (Ω, k,Γ) is, up to isogeny, an extension of a direct sum of

k-rational points of an algebraic group defined over k and an interpretable abelian

group in Γ by an interpretable group N , which is a quotient of an algebraic group by

a subgroup N1 which is isogenous to a cartesian product of k-rational points of an

algebraic group defined over k and an interpretable abelian group in Γ.

Another objective of this work is to study the field of algebraic numbers with ele-

ments of small height. In Chapter 4, our concern will be mainly the model theory of the

field of algebraic numbers with a certain predicate. Model theory of pairs have been

studied for some time. More generally, stable theories with a predicate were studied in

the paper of E. Casanovas and M. Ziegler [6]. Their result in [6] implies the result of B.

Zilber [41] and also the stability of the theory of pairs of algebraically closed fields [31].

A height function is a function that measures the complexity of an element. This

is a fundamental notion at the basis of diophantine geometry. The most significant

example is the logarithmic height function on the field of algebraic numbers. In order

to define the logarithmic height function, we first define the Mahler measure of a

polynomial over C. For a polynomial

f(x) = ad(X − α1) · · · (X − αd),
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its Mahler measure is defined as the product

m(f) = |ad|
∏
|αj |≥1

|αj |.

Let Q be the field of algebraic numbers. For α in Q with minimal polynomial f(x) in

Z[X] of degree d, we define its Mahler measure as m(α) = m(f) and the logarithmic

height of α is defined as

h(α) =
logm(α)

d
.

Kronecker’s theorem, which is a characterization of being a root of unity, states that

h(α) = 0 if and only if α is a root of unity or zero. Lehmer’s conjecture, which is still

open, states that there exists an absolute constant c > 1 such that if m(α) > 1 then

m(α) ≥ c. In other words, it asserts that the Mahler measure is bounded away from 1

except for the set of roots of unity. This question was posed by D. Lehmer [24] around

1933. The best known example of smallest Mahler measure greater than 1 so far was

also given by Lehmer: if α is a root of the polynomial

X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1,

then m(α) ≈ 1.17628. A real algebraic integer α > 1 is called a Salem number if α

and 1/α are Galois conjugate and all others Galois conjugates of α lie on the unit

circle. Clearly, for any Salem number α we have that m(α) = α. Another pertinent

open question is whether 1 is a limit point of Salem numbers. Details can be found in

in the surveys [35, 36] of C. Smyth.

The model-theoretic properties of Q are well-known; it has quantifier elimination,

which corresponds to the projection of a constructible set being constructible from

algebraic geometry. Moreover it is stable. Let Pb := {a ∈ Q : m(a) ≤ b} where b ≥ 1

and Sε = {a ∈ Q : h(a) ≤ ε} where ε > 0. Note that both Pb and Sε contain the set of

roots of unity µ. In other words, Lehmer’s Conjecture states that there is b > 1 such

that Pb = P1 = µ. The pairs (Q, Pb) and (Q, Sε) can be seen as an Lm(U) = Lm∪{U}
structures where Lm = {1, ·}, the operation · is the usual multiplication and U is an

unary relation symbol whose interpretations are Pb and Sε respectively.

In Chapter 4, we study the model theory of (Q, Sε) and we prove a result which

shows that small perturbations of the property of being a root of unity changes drasti-

cally the stability properties of the ambient structure. We also relate the simplicity of

the pair (Q, Pb) with Lehmer’s conjecture. In the same chapter, we prove the following

theorem (see (4.11) and (4.16)):

Theorem E. The theory of (Q, Sε) is not simple and has the independence property

in the language Lm(U). Moreover, if the theory of (Q, Pb) is simple for some b > 1 in
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Lm(U), then Lehmer’s conjecture holds for all Salem numbers.

In Chapter 5, the results are in the realm of nonstandard analysis which we apply to

find certain height bounds. Nonstandard analysis was originated in the 1960’s by the

work of A. Robinson, which was arose as a rigorous and exhaustive way of studying

infinitesimal calculus. We refer the reader to [15, 14] for a treatment of the topic.

Given a field K, if f0, f1, ..., fs are in K[X1, ..., Xn] all have degree less than D and

f0 is in 〈f1, ..., fs〉, then f0 =

s∑
i=1

fihi for certain hi whose degrees are bounded by a

constant C = C(n,D) depending only on n and D. This result was first established

in a paper of G. Hermann [16] using algorithmic tools. Then the same result was

proved by L. van den Dries and K. Schmidt [8] using nonstandard methods, and they

paved the way for how nonstandard methods can be used for such bounds. Let R be

a commutative domain and θ : N→ N be a function. A function

h : R→ [0,∞)

is said to be a height function of θ-type if for any x and y in R with h(x) ≤ n and

h(y) ≤ n, then both h(x + y) ≤ θ(n) and h(xy) ≤ θ(n). We say that h is a height

function on R if h is a height function of θ-type for some θ : N → N. In plain words,

a height function behaves well under certain arithmetic operations.

We can extend the height function h to the polynomial ring R[X1, ..., Xn] by setting

h

(∑
α

aαX
α

)
= max

α
h(aα).

Inspired by [8], using nonstandard methods, we prove the existence of certain

height bounds on the complexity of the coefficients of some polynomials. This allows

us to characterize the ideal membership of a given polynomial. Moreover, we obtain

a bound for the logarithmic height function, which enables us to test the primality of

an ideal. We say that an ideal I of Q[X1, ..., Xn] is a (D,H)-type ideal if the degree of

all generators of I is bounded by D and the logarithmic height of all generators of I

is bounded by H. For the following theorem, the degree bounds c1 and B follow from

[8]. We prove the existence of the constants c2 and c3 below, see (5.12) and (5.17):

Theorem F. Let R be a commutative domain with a height function. For all n ≥ 1,

D ≥ 1 and H ≥ 1 there are two constants c1(n,D) and c2(n,D,H) such that if f1, ..., fs

in R[X1, ..., Xn] have no common zero in a field containing R with deg(fi) ≤ D and

h(fi) ≤ H, then there exist nonzero a in R and h1, ..., hs in R[X1, ..., Xn] such that

(i) a = f1h1 + · · ·+ fshs

(ii) deg(hi) ≤ c1

(iii) h(a), h(hi) ≤ c2.
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Moreover, if R = Q and h is the logarithmic height function, there are bounds B(n,D)

and c3(n,D,H) such that if I is a (D,H)-type ideal of Q[X1, ..., Xn] then I is prime

if and only if 1 /∈ I, and for all f , g in Q[X1, ..., Xn] of degree less than B(n,D) and

height less than c3(n,D,H), if fg ∈ I, then either f or g is in I.



xx INTRODUCTION



Introduction en Français

Dans cette thèse, nous étudions les corps avec un prédicat pour dénoter soit des

éléments de hauteur bornée soit des sous-groupes multiplicatifs qui satisfont une cer-

taine condition diophantienne. En particulier, nous appliquons l’analyse nonstandard

pour trouver des bornes de hauteur et la théorie des modèles géométrique pour ana-

lyser l’extension des corps algébriquement clos avec un groupe distingué.

En théorie des modèles, l’un des principaux objectifs est de comprendre les ensem-

bles définissables dans une structure. Rappelons qu’un ensemble est appelé définissable

s’il est donné par une formule du premier-ordre. Un type-définissable correspond à

l’intersection des ensembles définissables. Une autre notion importante en théorie des

modèles est l’interprétabilité. Un ensemble est dit interprétable s’il est un quotient

d’un ensemble définissable par une relation d’équivalence définissable. Pour illus-

trer, dans un corps algébriquement clos, les ensembles définissables sont les ensembles

constructibles de géométrie algébrique et les groupes définissables correspondent aux

groupes algébriques.

La théorie de la classification est un projet vaste en théorie des modèles, issue des

travaux de M. Morley dans les années 1960 et S. Shelah dans les années 1970, pour-

suivant la catégorisation des théories de premier-ordre basée sur combien de différence

il y a entre leurs modèles, et également de reprendre des informations structurelles sur

les modèles. La question de savoir combien de modèles une théorie peut avoir a été

au cœur des développements les plus fondamentaux dans l’histoire de la théorie des

modèles. Les théories stables sont importantes pour classifier leurs modèles. Si une

théorie n’est pas stable alors ses modèles sont trop complexes et nombreux à classifier,

et l’arithmétique s’adapte dans ce cas. Une théorie T est dite stable s’il n’y a aucune

formule du premier-ordre dans T qui définit un ordre linéaire infini. Les théories sta-

bles jouissent d’une notion d’indépendance, nommé l’indépendance de déviation, avec

un ensemble de propriétés bien définies, rappellant l’indépendance algébrique dans les

corps et l’indépendance linéaire dans les espaces vectoriels. Une théorie est simple,

si en effet elle est caractérisée par la présence d’une telle notion d’indépendance qui

est symétrique. Une théorie T a la propriété d’indépendance, s’il y a une formule du

premier-ordre dans un certain modèle de T qui peut coder tout sous-ensemble donné

xxi
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d’un ensemble fini arbitrairement grand. Il est connu que les théories stables sont

simples et n’ont pas la propriété d’indépendance. Par exemple, la théorie des corps

algébriquement clos et les groupes abéliens dans le language de groupes sont stables.

La théorie des nombres réels est instable puisque l’on peut définir l’ordre, mais elle

n’a pas la propriété d’indépendance.

Dans le Chapitre 2, nous étudions les corps algébriquement clos avec un sous-groupe

multiplicatif distingué en termes de stabilité. Soient K un corps algébriquement clos,

le corps F son corps premier et G un sous-groupe multiplicatif de K×. Dans cette

thèse, une notion fondamentale à propos des groupes multiplicatifs est la propriété

Mann. Pour définir cette propriété, considérons une équation

a1x1 + · · ·+ anxn = 1 (0.0.3)

avec n ≥ 2 et ai ∈ F. Une solution (g1, ..., gn) de cette équation est appelée non-

dégénérée si pour tout sous-ensemble non-vide I de {1, 2, ..., n}, la somme
∑
i∈I aigi

n’est pas zéro. On dit que G a la propriété Mann si chaque équation (0.0.3) a seule-

ment un nombre fini non-dégénéré de solutions dans G. En 1965, H. Mann [26] a

montré que l’ensemble des racines de l’unité µ a la propriété Mann. Plus tard, il était

prouvé que tout groupe multiplicatif de rang fini dans tout corps de caractéristique

zéro, par exemple 2Z, a la propriété Mann; voir [32, 13, 23]. En 1990, dans une note

non-publiée, B. Zilber [41] a démontré que la paire (C, µ) est stable en utilisant un

résultat de H. Mann [26].

Maintenant nous fixons K et G comme ci-dessus. La théorie des modèles de la

paire (K,G) était d’abord étudiée dans l’article de L. van den Dries et A. Günaydın

[9]. Le résultat de B. Zilber [41] était généralisé par L. van den Dries et A. Günaydın

[9] à (K,G) où G a la propriété Mann. Ils avaient axiomatisé (K,G) et prouvé aussi

que la théorie de (K,G) est stable. De plus dans [9], L. van den Dries et A. Günaydın

ont montré que G a la propriété Mann sur K, cela siginifie que si ai dans K dans

(0.0.3), nous avons encore un nombre fini non-dégénéré de solutions dans G. Ils ont

prouvé que chaque sous-ensemble de Gn définissable dans (K,G) est définissable dans

le groupe abélien G, en d’autres termes la structure induite sur G est la structure pur

groupe.

Dans le Chapitre 2, nous caractérisons premièrement la clôture algébrique dans

(K,G). Cela nous permet de caractériser l’indépendance dans la paire (K,G) en

termes d’indépendance algébrique de K avec l’aide du groupe G. Dans [31], B. Poizat a

caractérisé l’indépendance pour des belles paires, en particulier pour les paires de corps

algébriquement clos. Il s’avère que l’indépendance en (K,G) est différente des belles

paires et elle est plus simple dans un sens. Les groupes définissables dans les théories
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stables sont des sujets récurrents en théorie des modèles et ils jouent un rôle significatif

pour la théorie de classification mis au point par B. Zilber dans les années 1970. Dans

le Chapitre 2, après avoir caractérisé l’indépendance dans la paire, nous tournons notre

attention vers les groupes définissables dans la paire (K,G). La caractérisation de la

clôture algébrique du modèle théorique et l’indépendance dans (K,G) nous permet

de caractériser les groupes définissables dans (K,G), à isogénie près, en termes de

groupes définissables et interprétables dans K et G. La démonstration entrâıne une

technique bien connue de la théorie de stabilité géométrique, nommée le théorème de

la configuration de groupe [19]. Nous suivons l’approche de [2], où T. Blossier et A.

Martin-Pizarro ont caractérisé les groupes interprétables dans les paires d’extension

propre de corps algébriquement clos en utilisant le résultat de A. Pillay [28] . Plus

précisément, nous prouvons le résultat suivant:

Théorème A. (Groupes définissables (2.30)) Soient K un corps algébriquement clos

et G un sous-groupe multiplicatif de K× avec la propriété Mann. Tout groupe de

type-définissable dans (K,G) est isogène à un sous-groupe d’un groupe algébrique. De

plus, un groupe type-définissable est, à isogénie près, une extension d’un groupe type-

interprétable dans G par un groupe algébrique.

Dans le cas où G est divisible, nous pouvons caractériser les groupes interprétables

dans (K,G) en termes des groupes définissables de (K,G). Notre méthode sera de

combiner les méthodes des [2] et [28] et nous prouvons le théorème suivant:

Théorème B. (Groupes interprétables (2.56)) Soient K un corps algébriquement

clos et G un sous-groupe multiplicatif divisible de K× avec la propriété Mann. Chaque

groupe interprétable H dans (K,G) est, à isogénie près, une extension d’un groupe

commutatif interprétable dans G d’un TP -groupe interprétable N , qui est un quotient

d’un groupe algébrique V par un sous-groupe N1 qui est un groupe commutatif in-

terprétable dans G.

Dans le Chapitre 3, nous étudions les corps algébriquement clos étendus par deux

prédicats unaires qui dénotent un sous-corps algébriquement clos et un sous-groupe

multiplicatif. Ce sera une extension propre du corps algébriquement clos avec un

groupe satisfaisant la propriété Mann comme dans le Chapitre 2, et aussi les paires de

corps algébriquement clos. Plus précisément: soient Ω un corps algébriquement clos, k

un sous-corps de Ω qui est aussi algébriquement clos et Γ un sous-groupe multiplicatif

de Ω×. Considérons l’équation

k1x1 + · · ·+ knxn = 1 (0.0.4)

avec n ≥ 1 et ki ∈ k.

Nous disons que (k,Γ) est une paire Mann si pour tout n il y a un sous-ensemble

fini Γ(n) de Γ tel que pour tout k1, ..., kn ∈ k× toutes les solutions non dégénérées de
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(0.0.4) dans Γ se trouvent dans Γ(n). En particulier, le groupe Γ a la propriété Mann

et l’intersection k ∩ Γ est finie. C’est une version uniforme de la propriété Mann. Par

exemple, la paire (Q, exp(Q)) est une paire Mann par le théorème de Lindemann.

Maintenant nous fixons Ω, k et Γ comme ci-dessus. La théorie des modèles du triple

(Ω, k,Γ) était premièrement étudiée par L. van den Dries et A. Günaydın [10, 11]. En-

tre autres, ils ont axiomatisé le triple et caractérisé les ensembles définissables par

élimination d’un rapport de quantificateur. Ils ont aussi prouvé que la théorie de

(Ω, k,Γ) est stable. De plus dans [10], L. van den Dries et A. Günaydın ont prouvé

que si l’intersection k∩Γ est triviale et Γ a le rang fini, alors (k,Γ) est une paire Mann.

Dans le Chapitre 3, comme une première étape nous caractérisons la clôture algébri-

que du modèle théorique dans le triple (Ω, k,Γ). Cela nous permet de caractériser

l’indépendance dans le triple. On obtient ainsi que l’indépendance est donnée par

l’indépendance algébrique. Après avoir caractérisé l’indépendance dans le triple, nous

nous concentrons sur les groupes définissables et interprétables dans le triple. Nous

suivons le même chemin que dans le Chapitre 2. Nous caractérisons d’abord les groupes

définissables, à isogénie près, dans le triple en termes de groupes définissables et in-

terprétables dans Ω, k et Γ. Encore la preuve nécessite le théorème de la configuration

du groupe et la motivation vient du [2].

Théorème C. (Groupes définissables (3.23)) Soient Ω un corps algébriquement clos,

le corps k un sous-corps propre de Ω qui est aussi algébriquement clos et Γ un sous-

groupe multiplicatif de Ω× où (k,Γ) est une paire Mann. Tout groupe de type-définissable

dans (Ω, k,Γ) est isogène à un sous-groupe d’un groupe algébrique. De plus, un

groupe de type-définissable est, à isogénie près, l’extension d’une somme directe de k-

rationnels points d’un groupe algébrique défini sur k et un groupe de type-interprétable

commutatif dans Γ par un groupe algébrique.

Quand Γ est divisible, la caractérisation des groupes définissables dans le triple nous

permet de caractériser les groupes interprétables. En particulier, nous concluons:

Théorème D. (Groupes interprétables (3.33)) Soient Ω un corps algébriquement clos,

le corps k un sous-corps propre de Ω qui est aussi algébriquement clos et Γ un sous-

groupe multiplicatif divisible de Ω× où (k,Γ) est une paire Mann. Tout groupe in-

terprétable H dans (Ω, k,Γ) est, à isogénie près, une extension d’un produit cartésien

de k-rationnels points d’un groupe algébrique défini sur k et un groupe commutatif

interprétable dans Γ par un groupe interprétable N , qui est le quotient d’un groupe

algébrique par un sous-groupe N1 qui est isogène à un produit cartésien de k-rationnels

points d’un groupe algébrique défini sur k et un groupe commutatif interprétable dans

Γ.

Un autre objectif de ces travaux est d’étudier le corps des nombres algébri-ques avec

des éléments de petite hauteur. Dans le Chapitre 4, notre préoccupation sera princi-
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palement la théorie des modèles des nombres algébriques avec un certain prédicat.

La théorie des modèles des paires a été étudiée pendant un certain temps. Plus

généralement, les théories stables avec un prédicat ont été étudiées dans l’article de

E. Casanovas et M. Ziegler [6]. Leur résultat dans [6] implique le résultat de B. Zilber

[41] et aussi la stabilité de la théorie des paires de corps algébriquement clos [31].

Une fonction hauteur est une fonction qui mesure la complexité d’un élément.

Cette notion est fondamentale à la base de la géométrie diophantienne. L’exemple le

plus significatif est la fonction de la hauteur logarithmique sur le corps des nombres

algébriques. Avant de définir la fonction de la hauteur logarithmique, nous définissons

d’abord la mesure de Mahler d’un polynôme sur C. Pour un polynôme

f(x) = ad(X − α1) · · · (X − αd),

sa mesure de Mahler est définie par le produit

m(f) = |ad|
∏
|αj |≥1

|αj |.

Soit Q le corps des nombres algébriques. Pour α dans Q avec un polynôme minimal

f(x) ∈ Z[X] de degré d, nous définissons sa mesure de Mahler par m(α) = m(f) et la

hauteur logarithmique de α est définie par

h(α) =
logm(α)

d
.

Le théorème de Kronecker, qui est une caractérisation d’être une racine de l’unité,

indique que h(α) = 0 si et seulement si α est une racine de l’unité ou zéro. La

conjecture de Lehmer, qui est toujours ouverte, indique qu’il existe une constante

absolue c > 1 telle que si m(α) > 1, alors m(α) ≥ c. En d’autres termes, cela affirme

que la mesure de Mahler est bornée loin de 1, sauf pour l’ensemble des racines de

l’unité. Cette question a été posée par D. Lehmer [24] vers 1933. L’exemple le plus

connu de la plus petite mesure de Mahler supérieure à 1 a également été donnée par

Lehmer: si α est une racine du polynôme

X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1,

alors m(α) ≈ 1, 17628. Un entier algébrique réel α > 1 est appelé un nombre Salem si

α et 1/α sont Galois conjugués et tous les autres Galois conjugués de α se trouvent sur

le cercle unité. De toute évidence, pour tout nombre Salem α, nous avons m(α) = α.

Une autre question ouverte pertinente est de savoir si 1 est un point limite des nombres

Salem. Les détails peuvent être trouvés dans les expositions [35, 36] de C. Smyth.
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Les propriétés modèles-théoriques deQ sont bien connues; le corpsQ a l’élimination

des quantificateurs, ce qui correspond à un résultat de géométrie algébrique: la pro-

jection d’un ensemble constructible étant constructible. De plus, il est stable. Soient

Pb = {a ∈ Q : m(a) ≤ b} où b ≥ 1 et Sε = {a ∈ Q : h(a) ≤ ε} où ε > 0. Notons

que Pb et Sε contiennent l’ensemble des racines de l’unité µ. Autrement dit, la con-

jecture de Lehmer indique qu’il y a b > 1 tel que Pb = P1 = µ. Les paires (Q, Pb) et

(Q, Sε) peuvent être considérées comme Lm(U) = Lm∪{U} structures où Lm = {1, ·},
l’operation · est la multiplication usuelle et U est un symbole de relation unaire dont

l’interprétations sont Pb et Sε respectivement.

Dans le Chapitre 4, nous étudions la théorie des modèles de (Q, Sε) et nous prou-

vons un résultat qui montre que de petites perturbations de la propriété d’être une

racine de l’unité change radicalement les propriétés de stabilité de la structure am-

biante. Nous nous rapportons aussi à la simplicité de la paire (Q, Pb) avec la conjecture

de Lehmer. Dans le même chapitre, nous prouvons le théorème suivant (voir (4.11) et

(4.16)):

Théorème E. La théorie de (Q, Sε) n’est pas simple et a la propriété de l’indépendance

dans le language Lg(U). De plus, si la théorie de (Q, Pb) est simple pour un certain

b > 1 dans Lg(U), alors la conjecture de Lehmer pour tous les nombres Salem est

vraie.

Dans le Chapitre 5, les résultats sont dans le domaine de l’analyse nonstandard

que nous appliquons pour trouver certaines bornes hauteur. Dans les années 1960,

l’analyse nonstandard est apparu avec les travaux de A. Robinson, qui a surgi de

façon rigoureuse et exhaustive pour étudier le calcul infinitésimal. Nous renvoyons le

lecteur à [15, 14] pour un traitement du sujet. Étant donné un corps K, si f0, f1, ..., fs

sont dans K[X1, ..., Xn] et ont tous un degré inférieur à D et f0 est dans 〈f1, ..., fs〉

alors f0 =

s∑
i=1

fihi pour certains hi dont les degrés sont délimités par C = C(n,D) une

constante ne dépendant que de n et D. Ce résultat a été établi dans un article de G.

Hermann [19] en utilisant des outils algorithmiques. Ensuite, le même résultat a été

prouvé par L. van den Dries et K. Schmidt [8] à l’aide des méthodes nonstandard, et

ils ont ouvert la voie à la façon dont les méthodes nonstandard peuvent être utilisées

pour de telles bornes. Soit θ : N→ N une fonction. Nous disons que

h : R→ [0,∞)

est une fonction hauteur de type θ si pour tout x et y en R avec h(x) ≤ n et h(y) ≤ n,

puis les deux h(x + y) ≤ θ(n) et h(xy) ≤ θ(n). Nous disons que h est une fonction

hauteur sur R si h est une fonction hauteur de type θ pour un certain θ : N→ N.

Nous pouvons étendre la fonction hauteur h à l’anneau de polynômes R[X1, ...Xn]
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par

h

(∑
α

aαX
α

)
= max

α
h(aα).

Inspiré par [8], en utilisant les méthodes nonstandard, nous prouvons l’existence de

certaine hauteur des bornes sur la complexité des coefficients de certains polynômes.

Cela nous permet de caractériser l’appartenance idéale d’un polynôme donné. De plus,

nous obtenons une borne pour la fonction de la hauteur logarithmique, ce qui nous

permet de tester la primalité d’un idéal. On dit qu’un idéal I de Q[X1, ..., Xn] est

un type (D,H) idéal si le degré de tous les générateurs de I est borné par D et la

hauteur logarithmique de tous les générateurs de I est bornée par H. Pour le théorème

suivant, les degrés bornés c1 et B viennent d’après [8]. Nous démontrons l’existence

des constantes c2 et c3 ci-dessous, voir (5.12) et (5.17):

Théorème F. Soit R un anneau avec une fonction de la hauteur. Pour tous les

n ≥ 1, D ≥ 1 et H ≥ 1 il existe deux constantes c1 = c1(n,D) et c2 = c2(n,D,H) de

telle sorte que si f1, ..., fs dans R[X1, ..., Xn] n’ont pas de zéro en commun dans un

corps qui contient R avec deg(fi) ≤ D et h(fi) ≤ H, alors il existe une valeur non

nulle a dans R et h1, ..., hs dans R[X1, ...Xn] tel que

(i) a = f1h1 + · · ·+ fshs

(ii) deg(hi) ≤ c1

(iii) h(a), h(hi) ≤ c2.

De plus, si R = Q et h est la fonction de la hauteur logarithmique, il existe

deux constantes B(n,D) et c3(n,D,H) telles que, si I est un type (D,H) idéal de

Q[X1, ..., Xn], alors I est premier ssi 1 /∈ I et pour tout f , g dans Q[X1, ..., Xn] de

degré inférieur à B(n,D) et la hauteur inférieure à c3(n,D,H), si fg ∈ I alors soit

f ou g est dans I.
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1
Preliminaries and Notations

This chapter provides an introduction to the tools and notations which will be used

later on. We assume familiarity with algebraic number theory and basic model theory.

Some of these will be given briefly, with no proofs, since the detailed arguments can

be found in [4, 18, 29, 37].

Let Q denote the field of algebraic numbers. For a given field K, the algebraic

closure of K will be denoted by Kac.

1.1 The Logarithmic Height Function

In this section we define the logarithmic height function which will be needed in chap-

ters 4 and 5 and we refer the reader to [4, Chapter 1] and [18, Chapter 5].

An absolute value on a field K is a map | · | : K → [0,∞) from K to positive real

numbers including zero such that for every x, y in K,

• |x| = 0 if and only if x = 0,

• |xy| = |x||y|,

• There exists an absolute constant C such that |x+ y| ≤ C max(|x|, |y|).

Let MQ = {| · |p : p prime or ∞} be the set of representative of absolute values

on Q, where if p =∞ then | · |p is the ordinary absolute value on Q, and if p is prime

1
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then the absolute value is the p-adic absolute value on Q with |p|p = 1/p.

Let K be a number field with the ring of integers O. Now we define the set of

standard absolute values MK on K. Suppose that there are r1 real embeddings and

r2 pairs of complex embeddings of K. Therefore we have [K : Q] = r1 + 2r2. Every

embedding σ from K into C provides an absolute value. Thus we have r1 +r2 absolute

values defined by |x|σ = |σ(x)| if σ is real and |x|σ = |σ(x)|2 if σ is complex. These

absolute values are the archimedean absolute values on K. Now we define the non-

archimedean absolute values on K. For a non-zero ideal I of O, we denote the norm of

I by N(I). If q is a prime number factoring by qO = p1
e1 ···pmem with N(pi) = qfi and∑

i≤m

eifi = [K : Q], then for each nonzero prime ideal p in O, we define the absolute

value |a|p on K by |a|p = N(p)
−vp(a)

, where vp(a) is the exponent of p in the prime

factorization of the ideal aO for nonzero a ∈ O, and vp(a/b) = vp(a) − vp(b) for any

nonzero a, b ∈ O. As usual, we let vp(0) =∞. By the set MK we mean these absolute

values on K.

An important result for the absolute values on a number field is the product for-

mula.

Proposition 1.1. [4, 1.4.4](Product Formula) Let K be a number field and MK be

the set of absolute values on K extending the absolute values in MQ. For any nonzero

α ∈ K, ∏
v∈MK

|α|v = 1.

Since all but finitely many of the |α|v’s are 1, this infinite product is actually a

finite product, so it is well-defined.

Before defining the logarithmic height function we first define the Mahler measure

of a polynomial over C. For a polynomial f(x) = ad(X − α1) · · · (X − αd), its Mahler

measure is defined as the product

m(f) = |ad|
∏
|αj |≥1

|αj |.

For α in Q with minimal polynomial f(x) ∈ Z[X], we define its Mahler measure as

m(α) = m(f). The absolute non-logarithmic height of α is defined as

H(α) = m(α)1/d

where d = deg f. Then the logarithmic height of α is defined as

h(α) = logH(α) =
logm(α)

d
.
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It is not known whether there exists an absolute constant c > 1 such that if m(α) > 1

then m(α) ≥ c. This question was posed by D. Lehmer [24] around 1933, who claimed

that the polynomial

X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1

has the smallest Mahler measure, which is approximately 1.17628. For a detailed ex-

position on Mahler measure and Lehmer’s problem, see [35].

The logarithmic height function measures the arithmetic complexity of an algebraic

number and it behaves well under arithmetic operations. However, using the definition

above, it is not immediate to see. Here we give an equivalent definition based on the

absolute values on a number field.

Let α be an algebraic number contained in a number field K. Then we set

h(α) =
1

[K : Q]

∑
v∈MK

max{0, log |α|v}.

The definition is independent from the choice of the number field K, and now one can

see the logarithmic height function behaves well under arithmetic operations:

• h(0) = h(1) = 0,

• For a rational number a/b where a and b are coprime,

h(a/b) = max{log |a|, log |b|},

• For all α in Q, we have h(αn) = nh(α) where n ∈ N,

• For all α and β in Q, we have h(α+ β) ≤ h(α) + h(β) + log 2,

• For all α and β in Q, we have h(αβ) ≤ h(α) + h(β),

• For all non-zero α in Q, we have h(1/α) = h(α).

1.2 Model Theory and Stability

In this section, we recall briefly some definitions and theorems in model theory. Details

can be found in [29, 30, 34, 37].

From now on, let T be a complete theory in a fixed language L and fix a suffi-

ciently saturated and strongly homogeneous model U of T. An imaginary element is

an equivalence class d/E for some tuple d in U and some definable equivalence rela-

tion E on U . Let (Ei)i∈I be a list of all 0-definable equivalence relations on U with



4 CHAPTER 1. PRELIMINARIES AND NOTATIONS

ni-tuples. Let Ueq be the many-sorted structure (U ,Uni/Ei) and T eq be its complete

theory in the appropriate many-sorted language Leq. Note that the elements in the

home sorts Uni/Ei are exactly the imaginary elements. Moreover, the theory T eq and

the language Leq expand T and L respectively. The algebraic closure and the defin-

able closure in Ueq are denoted by acleq and dcleq respectively. We say that T has

elimination of imaginaries, EI for short, if every imaginary element is interdefinable

with some real tuple, that is to say for every imaginary element e there is a real tuple

c such that e ∈ dcleq(c) and c ∈ dcl(e). It is known that T eq eliminates imaginaries.

Elimination of imaginaries enables us to work with quotients in the original model. We

say that T has weak elimination of imaginaries, WEI for short, if for every imaginary

element e there is a real tuple c such that e ∈ dcleq(c) and c ∈ acl(e). The theory T

has geometric elimination of imaginaries, GEI for short, if every imaginary element is

interalgebraic with a real element.

Example 1.2. Let ACF p and DCF p be the theories of algebraically closed and dif-

ferentially closed fields with a fixed characteristic p. Then they both have QE and EI.

Let µ be the set of complex roots of unity. Then Th(µ) has QE and WEI in the pure

group language.

Now we recall some definitions from stability. In model theory, Morley rank is

a natural notion of dimension on the definable sets of U . It generalizes the Krull

dimension from algebraic geometry. Let X be a definable subset. We define the

relation MR(X) ≥ α by induction on the ordinal α.

• The Morley rank MR(X) ≥ 0 if and only X is not empty,

• For a limit ordinal α, the Morley rank MR(X) ≥ α if MR(X) ≥ β for all β < α,

• We say that MR(X) ≥ α+ 1 if there are pairwise disjoint definable sets Xi ⊂ X
for i < ω such that MR(Xi) ≥ α for all i.

If X is empty, we define MR(X) = −∞. If X is not empty, we say that MR(X) = α if

MR(X) ≥ α but MR(X) � α + 1. If there is no such an ordinal, we let MR(X) =∞
and we say that the Morley rank does not exist. The Morley rank of a theory is the

Morley rank of the formula x = x.

Definition 1.3. • LetM |= T and φ(x) be a non-algebraic formula L(M)-formula.

The set φ(M) is called minimal in M if for all L(M)-formulas ψ(x), the inter-

section φ(M) ∩ ψ(M) is either finite or cofinite in φ(M).

• The formula φ(x) is strongly minimal if φ(x) defines a minimal set in any ele-

mentary extension of M.

• A theory T is called strongly minimal if the formula x = x is strongly minimal.



1.2. MODEL THEORY AND STABILITY 5

• A formula ψ(x) is called almost strongly minimal if there is a strongly minimal

formula ϕ(x) defined over a set of parameters B such that, for every M |= T

containing B, we have

ψ(M) ⊆ acl(ϕ(M), B).

Remark 1.4. Morley rank is definable in almost strongly minimal formulas. More

precisely, for any almost strongly minimal formula φ(x) and any formula ψ(x1, ..., xn, y)

which implies φ(xi) for all i, the set {b : MR(ψ(x1, ..., xn, b)) = k} is definable for every

k in N.

We now define stability.

Definition 1.5. Let κ be an infinite cardinal. We say that T is κ-stable if in each

model of T , over every parameter set of size at most κ, there are at most κ many

n-types for any integer n ≥ 1, i.e

|A| ≤ κ =⇒ |Sn(A)| ≤ κ.

A theory T is said to be stable if it is κ-stable for some infinite cardinal κ.

In ω-stable theories, Morley rank always exists. Strongly minimal theories are ω-

stable of Morley rank 1. By QE, one sees that ACF p is strongly minimal. The theory

DCF 0 is ω-stable with Morley rank ω. It is also known that abelian groups are stable

in the pure group language. If T is stable, then so is T eq.

Before defining the notion of independence, we need one more definition.

Definition 1.6. Let I be a linear order, the set M be an L-structure and A ⊆ M

be a set of parameters. A family of elements (ai)i∈I of M is called an indiscernible

sequence over A if for all L-formulas φ(x1, ..., xn) over A and two increasing sequences

i1 < ... < in and j1 < ... < jn from I

M |= φ(ai1 , ..., ain)↔ φ(aj1 , ..., ajn).

For instance, a transcendence basis in an algebraically closed field is an example

of an indiscernible sequence over the empty set.

Next, we define dividing (forking) in stable theories.

Definition 1.7. Let T be a stable theory.

1- A formula ϕ(x, a) is said to divide (fork) over A if there is an indiscernible sequence

(ai)i over A with a0 = a such that the set {ϕ(x, ai)} is inconsistent.

2- A type p divides over A if it contains some formula which divides over A.

3- As usual a |̂
C

b means that the type tp(a/bC) does not fork over C, and we read: a

is independent from b over C.
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4- A sequence (ai)i is said to be independent over A if for every j we have that

aj |̂
A

{ai : i < j}. It is called a Morley sequence over A if it is indiscernible over

A and independent over A.

5- A Morley sequence in a type p ∈ S(A) is a Morley sequence over A consisting of

realizations of p.

Example 1.8. In algebraically closed fields, forking and algebraic independence agree.

In vector spaces, forking is the linear independence. In pure sets, the independence

a |̂
C

b means {a,C} ∩ {b, C} = C.

Fact (Kim): A formula ϕ(x, a) does not divide over A if and only if there is a

Morley sequence (ai)i in tp(a/A) such that the set {ϕ(x, ai)} is consistent.

In a stable theory, forking independence has the following properties. Let a be a

tuple and A ⊆ B be parameter sets.

• (Existence of nonforking extensions) There exists an element b such that tp(b/A) =

tp(a/A) and b |̂
A

B.

• (Transitivity) For B ⊆ C, we have a |̂
A

C if and only a |̂
A

B and a |̂
B

C.

• (Symmetry) If b is another tuple then a |̂
A

b if and only if b |̂
A

a.

• (Finite character) a |̂
A

B if and only if a |̂
A

B0 for all finite B0 ⊆ B.

Remark 1.9. • If a /∈ acl(A), then tp(a/aA) divides over A.

• We have always a |̂
A

acl(A). So by transitivity, for any A,B and C we have

A |̂
C

B if and only if acl(A) |̂
acl(C)

acl(B).

Another important notion concerning stable groups is the notion of generics which

we define next. For the details, we refer the reader to [30] and [29, Chapter 1, Section

6].

Definition 1.10. Let T be a stable theory and M be a model of T. Let G be a type-

definable group in M.

• By a relatively definable subset A of G we mean a set of the form {a ∈ G : ϕ(a)}
where ϕ(x) is some formula in M .

• A relatively definable subset A ⊆ G is called a generic in G, if G is covered by

finitely many right or left translates of A.

• Let B ⊆ M be a set of parameters. A type p ∈ S1(B) which contains the type

x ∈ G is called generic, if it only contains generic formulas.
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• The connected component of G, denoted by G0, is the intersection of all definable

(relatively) subgroups of G of finite index. We say that G is connected if G = G0.

Theorem 1.11. [30] Let T be a stable theory and M be a model of T. Let G be

a type-definable group in M without parameters and B be a set of parameters in M.

There exists a generic type over B. A generic type over B does not fork over the

empty set. Moreover G is connected if and only if there is a unique generic type of G

over a given set of parameters.

Remark 1.12. [29, Chapter 1, Lemma 6.9] Let G and p be as in (1.10). Then p is

generic if and only if whenever a |= p and g is in G with a |̂
A
g, then g · a |̂

A
g.

An element g in G is called a generic if it realizes a generic type. Every non-forking

extension of a generic is also generic. Every element of G can be written as a product

of two generics. The product of two independent generics over A is also a generic over

A and also it is independent from the each factor over A.

Now we recall stationarity.

Definition 1.13. Let T be a stable theory and p be a type over A. The type p is said

to be stationary if there is a unique non-forking extension to every B containing A.

Definition 1.14. Let T be stable with M |= T and M ⊂ A be a set of parameters.

Let p be a type over M and q ∈ S(A) an extension of p to A. We call q an heir of p

if for every L(M)-formula ϕ(x, y) such that ϕ(x, a) ∈ q for some a ∈ A there is some

m ∈M with ϕ(x,m) ∈ p.

Let T be a stable theory. Then types over models are stationary. Moreover in T eq,

a type over an algebraically closed set A = acleq(A) is stationary. Let p be a type over

a model M of T . If M ⊂ A then q ∈ S(A) is the non-forking extension of p to A if

and only if q is an heir of p.

Next, we define canonical bases in stable theories which generalizes the field of

definition of a variety from algebraic geometry.

Definition 1.15. A canonical base for a type p ∈ S(U) is a set B which is pointwise

fixed by the same automorphism which leave p invariant.

In stable theories, canonical bases always exist, however they can be imaginary

tuples (possibly infinite). If T is ω-stable, then one can choose a canonical base to be

a finite tuple. Note that if B1 and B2 are both canonical bases of p, then they are

interdefinable. For p(x) ∈ S(A) a stationary type (it can be viewed as a global type

over U), the canonical base of p, denoted by Cb(p), means the definable closure of a

canonical base. Moreover, the type p does not fork over its canonical base Cb(p).

The next definition takes an important role in the classification of geometries.
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Definition 1.16. The theory T is one-based if for every real set A and every real

tuple c the canonical base Cb(c/A) is algebraic over c.

It is known that pure abelian groups are one-based. However ACF is not one-

based; see [37, Chapter 10, Proposition 10.3.6].

Now, we give the group configuration theorem from geometric stability theory

which is useful to construct a group from some independent elements. This theorem

will be vital in Chapter 2 and Chapter 3. By a ∗-tuple, we mean a possibly infinite

tuple (ai)i∈I in Ueq where the index set I has cardinality less than of saturation of

U . By a ∗-definable set, we mean a collection of ∗-tuples (each tuple being indexed

by some fixed I), which is the set of realizations of a partial infinitary type. By a ∗-
definable group, we mean a group G such that both G and the graph of multiplication

are ∗-definable. A ∗-definable group G is called connected, if it has a unique generic

in terms of the independence as given in remark (1.12).

Definition 1.17. Let T be a stable theory and U its sufficiently saturated model. By

a group configuration over A we mean 6-tuple of points (possibly infinite) (in Ueq)

(a, b, c, x, y, z) such that

�
�
�
�
�
�
�
�
�
�

@
@
@

@
@
@

@
@
@

@

!!
!!

!!
!!

!!
!!

!!
!

aa
aa

aa
aa

aa
aa

aa
a

c y

a

b x
z

• •

•

•
• •

• any triple of non-collinear points are A-independent,

• acleq(A, a, b) = acleq(A, a, c) = acleq(A, b, c),

• x and y are interalgebraic over Aa, the elements y and z are interalgebraic over

Ab, the elements z and x are interalgebraic over Ac,

• a ∈ acleq(x, y,A), b ∈ acleq(y, z, A) and c ∈ acleq(x, z,A).

Now we give the group configuration theorem which states that every group con-

figuration arises from a definable group with its independent generic elements.

Theorem 1.18. [19] (The Group Configuration Theorem) Let T be a stable theory

and U its sufficiently saturated model. Suppose M ⊂ U to be a |T |+-saturated model

of T , and suppose (a, b, c, x, y, z) is a group configuration over M. Then there is a

∗-definable group G in Ueq over M , and there are elements a′, b′, c′, x′, y′, z′ of G

which form a group configuration, each generic over M , such that the element a is
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interalgebraic with a′ over M and the same holds for the other elements. Moreover,

we have a′x′ = y′, b′y′ = z′, c′x′ = z′ and b′a′ = c′.

We recall some basic definitions which play a role in the classification theory which

emerged from the work of Shelah [34].

Definition 1.19. A formula φ(x, y) has the tree property (TP) if there is a set of

parameters (as : ∅ 6= s ∈ ω<ω) such that

(i) For all s ∈ ω<ω, the set (φ(x, asi) : i < ω) is 2-inconsistent.

(ii) For all σ ∈ ωω, the set (φ(x, as) : ∅ 6= s ⊂ σ) is consistent.

We say that T is simple if no formula has the tree property.

It is known that stable theories are simple. For more on simplicity we refer the

reader to [37, 38].

Example 1.20. The theory of dense linear orders without end points (DLO) is not

simple because the formula φ(x, y, z) : y < x < z has tree property. Let I be the set

of rational numbers in the interval (0, 1) which is a model of DLO. We fix a tree of

parameters (qs : ∅ 6= s ∈ ω<ω) for this model which we will use in order to prove

Theorem (4.11).

Definition 1.21. Let T be a complete L-theory where L is a language. An L-formula

φ(x, y) is said to have the independence property (IP ) if in every model M of T there

is for each n a family of tuples b1, ..., bn, such that for each of the 2n subsets I of

{1, ..., n} there is a tuple aI in M for which

M |= φ(aI , bi) ⇐⇒ i ∈ I.

A theory T is called NIP if no formula has IP.

It is known that stable theories are NIP. Moreover T is stable if and only if T is

simple and NIP. For more on the subject; see [34].

Now we define the notion of smallness in a structure. For the following definitions,

we follow [6, 40] and [9].

Given sets X and Y we write

f : X
n−→ Y

to indicate that f is a map from X to the power set of Y such that |f(x)| ≤ n for all

x ∈ X. For such a map f , its graph Graph(f) is the set

{(x, y) ∈ X × Y : y ∈ f(x)},
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and for a subset Z of X, we set f(Z) =
⋃
x∈Z f(x). If X and Y are definable in a

structure M , then such an f is called definable if Graph(f) is.

Definition 1.22. Let M be an L-structure and A be an infinite subset of M. We call

A small if there is a pair (N,B) elementarily equivalent to (M,A) such that for every

finite subset b of N every L–type over Bb is realized in N . We call A large if there

exist natural numbers m and n and a definable function f : Mm n−→ M such that

f(Am) = M.

For the following lemma, the first part does not use strong minimality.

Lemma 1.23. In strongly minimal theories, being large is equivalent to not being

small.

Proof. Let T be a strongly minimal theory, M |= T and A be an infinite subset of M.

Suppose that A is large in M. So there exist natural numbers m and n and a definable

function f : Mm n−→M such that f(Am) = M. Let (N,B) be elementarily equivalent

to (M,A). So we also have that f : Nm n−→ N is definable and f(Bm) = N. Thus the

type

p(x) = {x : (x, f(b1, ..., bm)) /∈ Graph(f), bi ∈ B}

is not realized in N. Hence A is not small in M. Conversely suppose that A is not small

in M. Since in strongly minimal theories there is a unique non-algebraic type over a

given set of parameters, we conclude that for any (N,B) elementarily equivalent to

(M,A), we have that N = acl(B). By compactness, there is a formula φ(x, y) such

that φ(x, b) is algebraic for all tuples b ∈ B and N =
⋃
b∈B φ(x, b). This gives the

desired definable function and hence A is large in M.

Finally, we define a nonstandard extension of a given structure. We apply non-

standard analysis in Chapters 4 and 5.

Definition 1.24. (Nonstandard Extension of a Structure) Let M be a nonempty struc-

ture in a countable language L. A nonstandard extension ∗M of M is an ultrapower

of M with respect to a nonprincipal ultrafilter on N.

Now let ∗M be a nonstandard extension of M with respect to a nonprincipal ultra-

filter D on N. Note that ∗M is an elementary extension of M and the elements of ∗M
are of the form (xn)n/D where (xn)n is a sequence in M. Ultraproduct of structures

automatically become ℵ1-saturated. For a subset A of M, the set ∗A is defined to be

the set

{(an)n/D : {n : an ∈ A} ∈ D}.

Subsets of ∗M of the form ∗A for some subset A of M are called internal. Not every

subset of ∗M need to be internal. The following sets ∗N, ∗Z, ∗Q, ∗R are called hyper-

natural numbers, hyperintegers, hyperrational numbers and hyperreals respectively.
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The elements ∗R \ R are called nonstandard real numbers. Let

Rfin = {x ∈ ∗R : |x| < n for some n ∈ N}.

The elements in ∗R \ Rfin are called infinite.

Note that the notion of a nonstandard extension and its properties can be general-

ized to many-sorted structures. This will be significant for the definition of the height

function which takes values in R. For more detailed information about Nonstandard

Analysis, the reader might consult [14, 15].
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2
Algebraically Closed Field with a Group

2.1 Mann Property

In this chapter, we analyze algebraically closed fields with a distinguished multiplica-

tive subgroup. Let K be an algebraically closed field, the field F its prime field and G

be a multiplicative subgroup of K×. Consider an equation

a1x1 + · · ·+ anxn = 1 (2.1.1)

with n ≥ 2 and ai ∈ F. A solution (g1, ..., gn) of this equation is called non-degenerate

if for every non-empty subset I of {1, 2, ..., n}, the sum
∑
i∈I aigi is not zero. We say

that G has the Mann property if every such equation (2.1.1) has only finitely many

non-degenerate solutions in G. In [26], H. Mann showed that the set of complex roots

of unity µ has the Mann property and his proof is effective. The rank of an abelian

group G is the dimension of the Q-vector space G ⊗Z Q, where G is viewed as a Z-

module. In the 1980’s, H. Mann’s result was generalized and it was proved that any

multiplicative group of finite rank (note that µ has rank 0) in any field of characteristic

zero has the Mann property; see [32, 13, 23]. To illustrate, every finitely generated

multiplicative subgroup of C× has the Mann property, such as 2Z3Z. The result

above is not true in the positive characteristic, for instance the multiplicative group

of the algebraic closure of a finite field has rank 0, however it does not have the Mann

property since the equation x + y = 1 has infinitely many non-degenerate solutions.

More generally, the multiplicative group of an infinite field does not have the Mann

13
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property. However, any cyclic group has the Mann property in all characteristics. The

unit circle in C does not also have the Mann property. It was first B. Zilber in 1990,

who considered the model theory of the pair (C, µ). In his unpublished note, B. Zilber

[41] showed that the pair (C, µ) is ω-stable, using as a main tool the result of H. Mann.

Now fix K and G with the Mann property as above. By the pair (K,G), we

mean the structure (K,G,+,−, ·, 0, 1). So our language is L(U) = {+,−, ·, 0, 1, U}
where U is a unary relation whose interpretation in K is G. The model theory of the

pair (K,G) was first studied in the paper of L. van den Dries and A. Günaydın [9],

and it was proved that G is small in K as is defined in the previous chapter in the

definition (1.22). So by changing the model if necessary, we may assume that K is

|G|+-saturated as a field. Moreover, we suppose that the pair (K,G) is κ-saturated

for some big uncountable cardinal κ ≥ ω1. In this chapter we will be working in this

sufficiently saturated model. Among other things, in [9] an axiomatization of the

theory of (K,G) was obtained by adding the constants to denote the collection of

non-degenerate solutions of the equation (2.1.1). L. van den Dries and A. Günaydın

[9] generalized B. Zilber’s result to (K,G), where K is an algebraically closed field

and G has the Mann property, that is to say, the theory of (K,G), denoted by TP , is

stable and if G is superstable (ω-stable) in the pure group language then so is the pair

(K,G). In [9], it was also proved that the Mann property is global, which means we

can choose ai to be in K in (2.1.1) and this still gives finitely many non-degenerate

solutions in G. Furthermore, L. van den Dries and A. Günaydın [9] showed that every

subset of Gn definable in (K,G) is definable in the abelian group G, in other words

the induced structure on G is just the pure abelian group structure.

Our results in this chapter will mainly concern the stability theoretical framework

of the pair (K,G). In particular, we study the pair (K,G) in terms of geometric model

theory. In the next two sections, we characterize algebraic closure and forking in the

pair in terms of the algebraic closure and the independence in the pure field K. Then

in 2.4, we characterize definable groups in (K,G) by applying the group configuration

theorem [19] and the tools used in the article of T. Blossier and A. Martin-Pizarro [2].

It turns out that, up to isogeny, a type-definable group in (K,G) is an extension of

a type-interpretable group in G by an algebraic group defined in K. Next, we study

imaginaries in the pair via canonical bases as studied by A. Pillay [28] and we give

a description in terms of real elements. Finally, we obtain characterization of inter-

pretable groups in the pair.

Now we fix some more notations. For a substructure A in the sense of the pair, we

denote GA = A ∩G. By acl(A) we mean the algebraic closure of A in the field sense,

and aclP (A) signifies the algebraic closure of A in the pair (K,G). By |̂ we mean

the independence in the pure field K, and
P

|̂ denotes the independence in the pair.
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If A is a subset of G, the algebraic closure of A in G will be denoted by aclG(A). By
G

|̂ we represent the independence in the pure group G. Let a be a tuple in K and B

be a set of parameters. Unless otherwise stated, the type tp(a/B) denotes the type

of a over B in the pure field sense and T indicates the theory of K, in other words

ACFp where p is the characteristic of K. By tpP (a/B), we mean the type of a over B

in (K,G) and tpG(γ/C) indicates a type in the pure group G where γ and C lie in G.

Finally given three fields E,F and L ⊆ E ∩F , the notation E
ld

|̂
L

F represents that E

is linearly disjoint from F over L.

The next remark will be subsequently used through the chapter.

Remark 2.1. Let Nd denote the collection of all non-degenerate solutions in G of the

equation (2.1.1) for every n ≥ 2 and a1, ..., an in the prime subfield. Then for every

natural number n and elements of the prime field a1, ..., an, the set

{(g1, ..., gn) : a1g1 + · · ·+ angn = 0} ⊆ Gn

is definable over Nd in the pure abelian group structure G. Now let C be a subset

of G containing the set Nd. This in turn gives that every group automorphism of G

over C extends to a ring automorphism of the ring F[G], which further extends to a

field automorphism of the field F(G). In particular, since every algebraically closed

structure A in the sense of the pair (K,G) contains Nd, every group automorphism

of G over GA extends to a field automorphism of the field F(G).

For the following lemma see [3]:

Lemma 2.2. [3, Lemma 2.1] Let T1 ⊂ T2 be stable theories. Suppose that T1 elim-

inates imaginaries. Let M be a model of T2 and a, b be tuples in M . If C is an

algebraically closed set in the sense of T2, then a
T2

|̂
C

b implies a
T1

|̂
C

b.

In particular, if C is algebraically closed in (K,G) and a, b ∈ K, then the indepen-

dence a
P

|̂
C

b implies the algebraic independence a |̂
C

b.

2.2 Characterization of Algebraic Closure

In this section, we characterize algebraically closed structures in the pair (K,G) which

will be used frequently for all other proofs in this chapter. In order to characterize the

algebraic closure, we need the stability of the pair (K,G) which we know by [9], and

we apply lemma (2.2).

After characterizing algebraic closure, in the next section we will characterize in-

dependence. Thus, our method will be different from [1], though we use a similar

technique for the characterization of forking. We begin with a definition.
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Definition 2.3. We say that a substructure A is G-independent if A
ld

|̂
F(GA)

F(G).

Lemma 2.4. Let A be algebraically closed in the sense of the pair. Then A is G-

independent.

Proof. Let a1, ..., an be in A and Σ1,Σ2, ...,Σn be in F(G) such that

a1Σ1 + a2Σ2 + · · ·+ anΣn = 0.

By multiplying with the denominators, we may assume that Σi = ki1g1+···+kimgm for

some natural number m ≥ 1 where kij in F and gj in G for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Thus we obtain that c1g1 + · · · + cmgm = 0 where ci = a1k1i + a2k2i + · · · + ankni

which is in A. Without loss of the generality, we may assume that no proper subsum

of c1g1 + · · ·+ cmgm is 0. Then we have

−c2
c1

g2

g1
+ · · ·+ −cm

c1

gm
g1

= 1.

Note that the tuple ( g2g1 , ...,
gm
g1

) is a non-degenerate solution of the equation

−c2
c1

x2 + · · ·+ −cm
c1

xm = 1.

As G has the Mann property over K, we know that this equation has only finitely many

solutions in G. Since A is algebraically closed, we conclude that the tuple ( g2g1 , ...,
gm
g1

)

is in A and hence in GA. Therefore we obtain that c1 + c2
g2
g1

+ · · ·+ cm
gm
g1

= 0. Hence

we conclude that

a1
Σ1

g1
+ · · ·+ an

Σn
g1

= 0

and Σi

g1
in F(GA) for 1 ≤ i ≤ n.

Next, we give the characterization of the algebraic closure in the pair. We apply a

similar method as in the paper [9] where they apply a back-and-forth argument. We

also benefit from the stability of the pair and lemma (2.2). In [9, Corollary 3.7], they

prove that A is an elementary substructure of K in the sense of the pair if and only

if A is an algebraically closed field, the group GA is an elementary substructure of G

and A is G-independent. The next lemma is inspired by their result.

Lemma 2.5. (Algebraic Closure for pairs) Let A ⊂ K. Then A is algebraically closed

in the sense of the pair if and only if A is an algebraically closed field, the group GA

is algebraically closed in G containing the set Nd and A is G-independent.

Proof. Clearly if A is algebraically closed in the sense of the pair, then A is an alge-

braically closed field and GA is an algebraically closed subgroup of G. Moreover by

lemma (2.4), we know that A is G-independent. Conversely, suppose that A is an

algebraically closed field, the group GA is an algebraically closed subgroup of G and
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A is G-independent. Let α be in K but not in A.

Case 1: Let α ∈ G \GA. Then since GA is algebraically closed, we know that α has

infinitely many conjugates in G. Choose a conjugate β ∈ G of α. Then, there is an

automorphism f ∈ Aut(G/GA) sending α to β. Since G has the Mann property, by

remark (2.1) f extends to a ring automorphism of F[G], which also extends to a field

automorphism of F(G). Since A is G-independent, by linear disjointness the former au-

tomorphism extends to a field automorphism of A(G) over A and this further extends

to an automorphism of K over A which is actually an automorphism of the pair (K,G)

over A. This yields that α is not in aclP (A). In particular, we have GaclP (A) = GA.

Case 2: Let α ∈ acl(A,G) \ A. Then there exist g1, ..., gn ∈ G such that α is in

A(g1, ..., gn)
ac \ A. So there is a rational polynomial r(x0, x1, ..., xn) with coefficients

from A such that r(α, g1, ..., gn) = 0. We may assume that g1, ..., gn are algebraically

independent over A. Therefore by the first case, we know that gi is not in aclP (A)

for 1 ≤ i ≤ n. Thus the type p = tpP (g1, ..., gn/ aclP (A)) is not algebraic. Now take

(h1, ..., hn) |= p such that h1, ..., hn
P

|̂
aclP (A)

g1, ..., gn. By lemma (2.2) we obtain that

h1, ..., hn |̂
aclP (A)

g1, ..., gn. Moreover since aclP (A) is G-independent by lemma (2.4)

and GaclP (A) = GA, by transitivity we get that

h1, ..., hn |̂
A

g1, ..., gn.

Since there is a pair automorphism over A sending (g1, .., gn) to (h1, ..., hn), this gives

a conjugate β of α owing to the polynomial equation r = 0. Observe that β is different

from α thanks to the independence h1, ..., hn |̂
A

g1, ..., gn. Choosing other independent

conjugates, as a result we conclude that α has infinitely many conjugates over A and

hence α is not in aclP (A).

Case 3: The element α is not in acl(A,G). Note that every field automorphism fixing

G is an automorphism of the pair (K,G). This shows that acl(A,G) = aclP (A,G),

and hence α is not in aclP (A). Thus we are done.

The lemma (2.5) yields the following corollary.

Corollary 2.6. For any subset D in K,

aclP (D) = acl(D,GaclP (D)).

In particular, if H is an algebraically closed substructure of G containing Nd in the

sense of the pure group, then aclP (H) = acl(H).

Proof. As acl(D,GaclP (D)) ⊆ aclP (D) and aclP (D) is G-independent by lemma (2.4),

we conclude by applying (2.5). The proof of lemma (2.5) case 1 shows that GaclP (H) =

H. Since aclP (H) is G-independent by lemma (2.4), applying lemma (2.5) we deduce

that aclP (H) = acl(H).
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2.3 Characterization of Forking

In this section, we characterize forking in the pair. Since we have the following equiv-

alence A
P

|̂
C

B if and only if

aclP (A)
P

|̂
aclP (C)

aclP (B),

we characterize forking for algebraically closed sets in terms of the algebraic indepen-

dence in K.

First, we start with a lemma concerning just pure abelian groups. Let A be an

abelian group written additively. An equation is a formula γ(x̄) of the form

m1x1 + · · ·+mnxn = 0,

where mi ∈ Z. A positive primitive formula is of the form ∃ȳ(γ1∧ ...∧γk) where γi(x̄ȳ)

are equations. The next lemma requires that every formula in a pure abelian group is

equivalent to a Boolean combinations of positive primitive formulas, see [39, Theorem

4.2.8].

Lemma 2.7. (Algebraic Closure for abelian groups) Let A be an abelian group writ-

ten additively and B,C be algebraically closed subgroups of A. Then B + C is also

algebraically closed in the sense of the pure abelian group A.

Proof. Let ϕ(x, b, c) be an algebraic formula over B + C where b is a tuple in B with

|b| = s and c is a tuple in C with |c| = t. Since every formula in an abelian group is

equivalent to a Boolean combinations of positive primitive formulas, we may assume

that ϕ(x, y, z) = α+D where α ∈ aclA(∅) and D is a subgroup of A×As×At. Note that

B1 = {g : (g, b, 0) ∈ α+D} is finite and so it lies inB. Similarly C1 = {g : (g, 0, c) ∈ D}
is finite and hence it is a subset of C. As B1 + C1 = {g : (g, b, c) ∈ α + D} ⊆ B + C

and it is finite, we are done.

The next lemma affirms when two algebraically closed structures have the same

type over a common algebraically closed substructure.

Lemma 2.8. Let B1, B2 and C ⊆ B1 ∩ B2 be three algebraically closed sets in the

sense of the pair (K,G). Then tpP (B1/C) = tpP (B2/C) if and only if there is a

field automorphism over C sending B1 to B2 with GB1 to GB2 , and tpG(GB1/GC) =

tpG(GB2/GC).

Proof. Suppose that there is a field automorphism f sending (B1, GB1) to (B2, GB2)

over C and a group automorphism h of G sending GB1 to GB2 over GC . Since G has the

Mann property, by remark (2.1) the automorphism h extends to a field automorphism

of F(G). As C is G-independent by lemma (2.4), the automorphism h further extends
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to an automorphism of C(G) over C. Since both B1 and B2 are G-independent, we

obtain Bi
ld

|̂
C(GBi

)

C(G) for each i = 1, 2. The automorphisms f and h now extend to

an isomorphism between B1(G) and B2(G) over C which further extends to K. Thus

we conclude that tpP (B1/C) = tpP (B2/C).

Now we prove a lemma which will be crucial for the characterization of forking and

the characterization of definable groups in this chapter.

Lemma 2.9. Let C = A ∩ B and all be algebraically closed in the sense of the pair.

If A |̂
C,G

B,G, then aclP (A,B) = acl(A,B) and GaclP (A,B) = aclG(GA, GB).

Proof. Since A is algebraically closed and it contains C, by lemma (2.4) we have

A |̂
C,GA

C,G. Transitivity of the algebraic independence yields that A |̂
C,GA

B,G and so

A |̂
B,GA

G. As B is algebraically closed, similarly we have that B |̂
GB

G and therefore

B |̂
GAGB

G. By transitivity of the algebraic independence again, we obtain that

A,B |̂
GAGB

G

which in turn gives

acl(A,B)
ld

|̂
acl(GAGB)

acl(G).

Note that by lemma (2.7), the group GAGB is algebraically closed in G. By corollary

(2.6), we see that aclP (GAGB) = acl(GAGB). Since by lemma (2.4) acl(GAGB) is also

G-independent, by transitivity and in terms of linear disjointness, we conclude that

acl(A,B)
ld

|̂
F(GAGB)

F(G).

Hence by lemma (2.5), we deduce that aclP (A,B) = acl(A,B) and GaclP (A,B) =

GAGB = aclG(GA, GB).

The next lemma is somewhat surprising, however it holds in the pair (K,G) con-

trary to pairs of algebraically closed fields.

Lemma 2.10. Let C = A ∩B and all be algebraically closed in the sense of the pair.

If A |̂
C,G

B,G then A |̂
C

B.

Proof. Since A is algebraically closed in the sense of the pair, by lemma (2.4) and

transitivity we can replace A |̂
C,G

B,G by A |̂
C,GA

B,G. By transitivity, it is enough to
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show that B
ld

|̂
C

C(GA). Let b1, ..., bn ∈ B and g1, ..., gn ∈ GA be such that

b1g1 + · · ·+ bngn = 0.

We may suppose that no proper subsum of this equation is 0. Thus similar to the

proof of lemma (2.4), we obtain that gi
g1
∈ B for i = 1, 2, ..., n. As they are also in GA,

we deduce that gi
g1
∈ GC . Hence we are done.

Remark 2.11. The lemma (2.10) does not hold in pairs of algebraically closed fields.

This is one of the points where the pair (K,G) and pairs of algebraically closed fields

differ from each other. This will be the main reason why the independence in (K,G) is

more plain than the independence in pairs of algebraically closed fields. More precisely,

let K and E be two algebraically closed fields such that E is small in K, that is to say

E is not K. Let C = A∩B and all be algebraically closed in the pair (K,E). Note also

that all the fields EA, EB and EC are also algebraically closed in the pair (K,E). Then

we do not necessarily have B
ld

|̂
C

C(EA), since C is algebraically closed, by transitivity

the previous independence is equivalent to B
ld

|̂
EC

EA. As B is algebraically closed, by

transitivity the latter independence is equivalent to the independence EB |̂
EC

EA. Since

as a field E is not one-based, the independence EB |̂
EC

EA does not hold always. A

counter example can be found in [37, Chapter 10, Proposition 10.3.6]. This is one of

the differences between (K,G) and (K,E), and therefore we have just one independence

in the field sense in order to characterize forking in the next Theorem (2.12). This

results from the fact that E× does not have the Mann property as it is infinite and the

equation x+ y = 1 has infinitely many non-degenerate solutions in E×. Recall that in

(K,E),

A
(K,E)

|̂
C

B

if and only if A |̂
C,E

B,E and A |̂
C

B. For the details, we refer the reader to [1, 31].

Now we are ready to characterize forking in the pair (K,G) by using the charac-

terization of the algebraic closure (2.5), lemma (2.9) and lemma (2.10).

Theorem 2.12. (Forking) Let C = A∩B and all be algebraically closed in the sense

of the pair. Then the following are equivalent:

(i) A
P

|̂
C

B,

(ii) A |̂
C,G

B,G,

(iii) A
ld

|̂
C(GA)

B(G).
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Proof. We first show that (i) and (ii) are equivalent and then we prove that (ii) and

(iii) are equivalent.

Now suppose that A
P

|̂
C

B. Moreover, suppose for a contradiction that A 6 |̂
C,G

B,G. Let

q = tp(B/C ∪ GB) and λ ≥ ω1. By saturation, there exists a sequence (Bi)i≤λ with

B = B0 such that Bi |= q and (Bi)i≤λ is independent over C ∪ G in the field sense,

and in particular Bi |̂
C,GB

C,G and GB ⊆ GBi for all i. On the other hand, by the

independence Bi |̂
C,GB

C,G we have that GBi ⊆ acl(C,GB) ⊆ B. Thus we obtain the

equality GB = GBi for all i. As B is G-independent by lemma (2.4), we have that

C(GB)
ld

|̂
F(GB)

F(G).

Thus by lemma (2.5), we deduce that aclP (C,GB) = acl(C,GB) and GB = Gacl(C,GB).

So we see that acl(C,GB)
ld

|̂
F(GB)

F(G). As Bi |̂
C,GB

C,G, by transitivity and in terms of

linear disjointness, we obtain that

Bi
ld

|̂
F(GB)

F(G).

Therefore by lemma (2.5) again, this results in that Bi is algebraically closed in the

sense of the pair for all i. Then by lemma (2.8), we conclude that tpP (Bi/C) =

tpP (B/C). By Erdős-Rado theorem, we may assume that (Bi)i≤λ is C-indiscernible

in the sense of TP . Let pi = tpP (A/Bi). Since A
P

|̂
C

B, we know that
⋃
i≤λ pi(x,Bi)

is consistent. So there exists A1 such that tpP (A1Bi) = tpP (AB) for all i. Now, the

sequence (Bi)i≤λ is independent over C∪G and A1 6 |̂
C,G

Bi for each Bi. This contradicts

the stability of the field K.

Conversely, assume that A |̂
C,G

B,G. By lemma (2.10), we know that A |̂
C

B. Let

(Bi)i be a Morley sequence over C in the sense of the pair where B0 = B. Note that

the sequence (Bi, GBi
)i is also a Morley sequence over C but for simplicity we write

(Bi)i instead. The independence A |̂
C

B yields that GA |̂
C

B. By stationarity over

algebraically closed sets (they are models of ACF ) and since K is ω-stable, we may

assume that (Bi)i is a Morley sequence over C ∪GA in the field sense. Since A |̂
C

B,

we also have A |̂
C,GA

B,GA. Let p(x) = tp(A/B ∪GA) and pi(x) be the copy over Bi.

Then by A |̂
C,GA

B,G and by saturation, there exists an element d |=
⋃
i pi(x) such

that

d |̂
C,GA

Bi, G
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for all i. Observe that Gd = GA and tp(dBiGA) = tp(ABGA) for all i. Moreover,

since A is G-independent by lemma (2.4), we have that C(GA)
ld

|̂
F(GA)

F(G). So by

lemma (2.5), we see that aclP (C,GA) = acl(C,GA). As we also have that d |̂
C,GA

G, by

transitivity and in terms of linear disjointness, we obtain that d
ld

|̂
F(GA)

F(G). By lemma

(2.5) again, we deduce that d is algebraically closed in the sense of the pair. By lemma

(2.9), we know that aclP (A,B) = acl(A,B) and GaclP (A,B) = GAGB , and also

acl(A,B)
ld

|̂
F(GAGB)

F(G).

By the choice of d and lemma (2.9) once again, we also have that

acl(d,Bi)
ld

|̂
F(GAGBi

)

F(G).

Applying tp(dBiGA) = tp(ABGA) and the previous two linear disjointless, we con-

clude that tpP (dBiGA) = tpP (ABGA) for all i. Hence we obtain A
P

|̂
C

B.

Now we prove that (ii) and (iii) are equivalent. Clearly (iii) implies (ii). So suppose

(ii). By lemma (2.9), we know that aclP (A,B) = acl(A,B) and GaclP (A,B) = GAGB ,

and also acl(A,B)
ld

|̂
F(GAGB)

F(G). Therefore we obtain that AB
ld

|̂
B(GA)

B(G). Moreover

since C is algebraically closed and A |̂
C

B by (2.10), we see that A
ld

|̂
C

B and hence

A
ld

|̂
C(GA)

B(GA). By transitivity we conclude that A
ld

|̂
C(GA)

B(G).

Now we give some corollaries of Theorem (2.12).

Corollary 2.13. Let a and b be finite tuples from K and C be a subset of K. If a
P

|̂
C

b

then a |̂
C,G

b. Moreover, if we have

aclP (a,C) ∩ aclP (b, C) = aclP (C),

then a |̂
C,G

b also implies a
P

|̂
C

b.

Proof. Observe that for any subset D of K we have that

acl(D,G) = acl(aclP (D), G) = aclP (D,G).
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Now we conclude by Theorem (2.12).

Remark 2.14. Note that if a
P

|̂
C

b, then we do not necessarily have a |̂
C

b unless

C = aclP (C). To see this, it is enough to take a subset C such that aclP (C) is not

equal to Cac.

Corollary 2.15. For every a ∈ K, we have the independence a
P

|̂
GaclP (a)

G.

Proof. Since aclP (a) is G-independent by lemma (2.4), we have the independence

aclP (a) |̂
acl(GaclP (a))

acl(G)

and aclP (a)∩acl(G) = acl(GaclP (a)). By (2.6), we see that acl(GaclP (a)) = aclP (GaclP (a))

and acl(G) = aclP (G). Therefore we have

aclP (a) |̂
aclP (GaclP (a))

aclP (G).

With the help of Theorem (2.12) we finish the corollary.

Next, we prove that the independence in the pair implies the independence in G.

Lemma 2.16. Let C = A ∩ B and all be algebraically closed in the sense of the pair

and A
P

|̂
C

B. Then we have the independence GA
G

|̂
GC

GB in G.

Proof. As A
P

|̂
C

B, we have GA
P

|̂
C

GB . Corollary (2.15) and transitivity of the inde-

pendence yield that GA
P

|̂
GC

GB . Hence we conclude that GA
G

|̂
GC

GB .

2.3.1 Stationarity

In this subsection, we prove that types over algebraically closed sets are stationary if

G has WEI. First, we need two basic lemmas.

Lemma 2.17. (Shelah lemma) Let T be a stable theory. If the type tp(A/C) is

stationary and B |̂
C
A, given two C-elementary maps f : A → A1 and g : B → B1

such that A1 |̂ C B1, then f ∪ g is also C-elementary.

Proof. Since g is C-elementary, we have that g(A) |̂
C
B1 and g(A) ≡C A ≡C A1. By

stationarity there is an automorphism h fixing B1 and sending g(A) to A1. Now one

can see that h ◦ g restricted to A ∪B is f ∪ g.

The next lemma states that under WEI, types over algebraically closed sets are

stationary in stable theories.
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Lemma 2.18. Suppose that T is stable and M |= T has weak elimination of imagi-

naries (WEI). Then every type over an algebraically closed set is stationary.

Proof. Let A be an algebraically closed set in M . Since T has WEI, we have that

acleq(A) = dcleq(A). Since in a stable theory types over acleq(A) are stationary, we

are done.

The next remark does not require that the group G has the Mann property.

Remark 2.19. The pair (K,G) does not have GEI.

Proof. To see that (K,G) does not have GEI, we consider the quotient K×/G. Now let

a be an element of K which is not in acl(G). Put e = aG which is an imaginary element.

Suppose there is a real element c such that e ∈ aclP
eq(c) and c ∈ aclP (e). If we have

c ∈ acl(G), then as a is not in acl(G), we can send a to any element b which is also not

in acl(G). Since there are infinitely elements which are not in acl(G) as G is small in K,

this contradicts the assumption e ∈ aclP
eq(c). This yields that c is not in acl(G). Since

e ∈ dclP (a), we see that c ∈ aclP (e) ⊆ aclP (a) ⊆ acl(a,G). Thus there is a polynomial

f such that f(a, c, g) = 0 where g is a tuple from G. So there are polynomials

f0, ..., fk such that a satisfies the polynomial fk(c, g)Xk + · · · + f1(c, g)X + f0(c, g)

and fk(c, g) is not 0. Since c ∈ aclP (e), there are finitely may conjugates of c under e,

say c = c1, ..., cm. Note also that any automorphism fixing G and sending a to ah fixes

e, where h ∈ G. Therefore, every such automorphism gives finitely many polynomials

with coefficients from g and c1, ..., cm, but infinitely many elements satisfying these

polynomials, a contradiction.

With the help of the lemmas (2.17), (2.18) and assuming that G has WEI, we are

able to prove that the types in (K,G) over algebraically closed sets are stationary

although (K,G) does not have GEI.

Corollary 2.20. Suppose that G has WEI. Let A be algebraically closed in the sense

of the pair and a ∈ K. Then the type tpP (a/A) is stationary.

Proof. Let B be a set containing A. We may suppose that B is algebraically closed

in the sense of the pair. Let a1 and a2 be such that tpP (a1/A) = tpP (a2/A), and we

have the following two independence a1

P

|̂
A

B and a2

P

|̂
A

B. Note that aclP (a1, A) and

aclP (a2, A) have the same type over A in the sense of the pair. By the characteriza-

tion of the independence (2.12), we see that ai, A
ld

|̂
A(G)

B(G) for i = 1, 2. By lemma

(2.16), we also have GaclP (ai,A)

G

|̂
GA

GB for i = 1, 2. Since tpG(GaclP (a1,A)/GA) =

tpG(GaclP (a2,A)/GA) and G has WEI, we obtain that

tpG(GaclP (a1,A)/GB) = tpG(GaclP (a2,A)/GB)



2.4. DEFINABLE GROUPS FOR THE PAIR 25

with the help of lemma (2.18). Let f be an automorphism of G over GB sending

GaclP (a1,A) to GaclP (a2,A). As G has the Mann property, by remark (2.1) the map f ex-

tends to a field automorphism of F(G) over F(GB). Moreover since B is G-independent

by lemma (2.4), the map f further extends to an automorphism of B(G) over B. Now

since ai, A
ld

|̂
A(G)

B(G) for i = 1, 2 and tpP (a1/A) = tpP (a2/A), we have an isomor-

phism from B(a1, G) to B(a2, G) sending a1 to a2 over B. Since this also extends to

an automorphism of K, we conclude that tpP (a1/B) = tpP (a2/B).

2.4 Definable Groups for the Pair

In this section, we give the characterization of type-definable groups in the pair (K,G).

We apply the group configuration theorem (1.18) and it turns out that any definable

group, up to isogeny, is an extension of a type-interpretable abelian group in G by an

algebraic group over K. In plain words, definable and interpretable groups in K and

G give rise to all definable groups in the pair (K,G). For more on the applications of

the group configuration theorem, we refer the reader to [22].

Remark 2.21. In stable theories, every type-definable group is an intersection of

definable groups in this theory.

2.4.1 Generics and Isogeny

Generics of a group as defined in Chapter 1, are useful to construct a group in stable

theories. They will play a significant role in the characterization of definable groups

in the pair.

The following lemma is from [30]:

Lemma 2.22. (Generic [30, 5.4]) Suppose that H is a stable group. Every formula

ϕ(x, y) can be associated with a natural number n = n(ϕ) such that, if A is a generic

subset of H defined by a formula ϕ(x, a), then H is covered by n translates of A.

The next lemma states when a type-definable group in the pair is actually an

algebraic group and the motivation comes from [2, 2.1]

Lemma 2.23. (The Group Lemma) Let H be a connected TP -type-definable subgroup

of an algebraic group V , all definable over an algebraically closed set A in the sense of

the pair. Let a be the generic over A which lies in some translate of H which is also

definable over A. If GaclP (a,A) = GA, then H is an algebraic group. In particular, H

is definable.
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Proof. First we may assume that a ∈ H as follows: Suppose that a ∈ bH. Let a′ be

such that tpP (a′/A) = tpP (a/A) and a′
P

|̂
A

a. Then we have a−1a′
P

|̂
A

a and a−1a′ ∈ H

is the generic over A. As we have a′, A
P

|̂
A

a,A, therefore by Theorem (2.12) and lemma

(2.9), we see that

GaclP (a−1a′,A) ⊆ GaclP (a′,a,A) ⊆ aclG(GaclP (a′,A), GaclP (a,A)).

Since GaclP (a′,A) = GaclP (a,A) = GA, we obtain that GaclP (a−1a′,A) = GA. So we may

assume that a ∈ H.

Put p = tpP (a/A) and p0 its T -reduct. Let H0 be the smallest algebraic group

containing H which exists by the assumption and the ω-stability of K. Note that

H = stabP (p) ⊂ stabT (p0). So H0 ⊆ stabT (p0). On the other hand since p0(x) implies

that x ∈ H0, we get that stabT (p0) ⊆ H0. Thus we have the equality and moreover

H0 is T -connected.

To prove the lemma, it is enough to show that p is the unique generic of H0 since

this implies that H0 is TP -connected and H0 = stabP (p) = H. Let h be a generic of

H0 over A in the sense of the pair and put q = tpP (h/A). Observe that p0 ⊆ q since

H0 is T -connected.

Claim: We have the following independence h |̂
A

G.

Proof of the claim: First, note that a ∈ H0 and since the algebraic closure is G-

independent and also by the assumption GaclP (a,A) = GA, we obtain that a,A |̂
GA

G

and so a |̂
A

G. As a result, the element a is a generic over A ∪G. Now if h 6 |̂
A

G, then

there exists a T -formula ϕ(x, g) ∈ tp(h/A,G) with parameters from A which is not

generic in H0. Put n = n(ϕ) as in lemma (2.22) and let

θ(y) = ∃h1...∃hn ∈ H0(∀x ∈ H0

∨
i≤n

hiϕ(x, y))

and φ(x, y) = ¬θ(y) ∧ ϕ(x, y). Observe that for any tuple b, the formula φ(x, b) is not

generic in H0. However the formula ψ(x) = ∃y(U(y) ∧ φ(x, y)) with parameters from

A is realized by h, and so it is generic in H0. Thus a finite number of translates of

ψ(x) cover H0, say H0 =
⋃
i≤k αiψ(x). Take a′ such that tpP (a′/A) = tpP (a/A) and

a
P

|̂
A

α1, ...αk. Thus for certain α ∈ H0, we may suppose that a ∈ αψ(x) and a
P

|̂
A

α.

So a ∈ αφ(x, g′) for some g′ ∈ G. By the characterization of the independence (2.12),

we have that a |̂
A,G

α and by transitivity we get the independence a |̂
A

α,G. This is

a contradiction since the formula αφ(x, g′) is not generic in H0. Hence we have the

claim.

Now as A is G-independent by lemma (2.4), by transitivity of the independence, we
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get that h,A |̂
GA

G. In terms of linear disjointness, this gives that acl(h,A)
ld

|̂
F(GA)ac

F(G)
ac
.

By corollary (2.6), we see that aclP (GA) = F(GA)
ac

. Moreover, since the algebraic

closure is G-independent, by transitivity we get that

acl(h,A)
ld

|̂
F(GA)

F(G).

Therefore by lemma (2.5), we deduce that aclP (h,A) = acl(h,A) and GaclP (h,A) = GA.

Since there is a field automorphism sending a to h over A, by linear disjointness this

in turn gives rise to a field automorphism over A ∪G. We conclude that q = p which

is determined by p0. Hence H = H0 as required.

Remark 2.24. The group G does not satisfy the conditions of the previous lemma

even it is connected, as for any a in G we do not have the equality GaclP (a,A) = GA.

This is expected as G is not an algebraic group.

Definition 2.25. (Isogeny) Let G and H be two type-definable groups in a stable

theory. We say that G and H are isogenous (or there is an isogeny between them) if

there is a type-definable subgroup S of G×H such that

• The projection of S into G, denoted by GS, has bounded index (the index is less

than the saturation cardinal κ) in G,

• The projection of S into H, denoted by HS, has bounded index in H,

• The kernel ker(S) = {g ∈ G : (g, 1) ∈ S} and the co-kernel coker(S) = {h ∈ H :

(1, h) ∈ S} are finite.

Note that ifG andH are isogenous, then there is an isomorphism betweenGS/ker(S)

and HS/coker(S).

Remark 2.26. Note that the isogeny relation is an equivalence relation. Every group

is isogenous to its connected component and every isogeny of the connected component

gives rise to an isogeny of the group.

The following lemma is in [2] and it enables us to construct an isogeny between

two groups.

Lemma 2.27. [2, 2.4 and 2.5] Let G1 and G2 be two groups type-definable (type-

interpretable) in a stable theory. If there exist parameters C = acleq(C) and elements

a1, b1 of G1 and a2, b2 of G2 such that

(1) a1 and a2, b1 and b2, a1b1 and a2b2 are C-interalgebraic

(2) a1, b1 and a1b1 are pairwise independent over C,
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then the element a1 (respectively a2) is generic in a unique translate of a connected

subgroup H1 of G1 (respectively H2 of G2), all definable over C and there is an isogeny

between H1 and H2 given by the stabilizer of the type tp(a1, a2/C). If in the condi-

tion (1), if we just have a2 is algebraic over C, a1 (respectively for b2 and a2b2), then

there is a type-interpretable projection from H1 to a quotient of H2 by a finite subgroup.

The above results can be generalized to the case when both groups G1 and G2

are ∗-interpretable. Furthermore, if G1 is type-definable and G2 is ∗-interpretable, by

stability there is an isogeny between G1 (respectively a projection with the same kernel)

and a connected ∗-interpretable subgroup D of G2 whose generic is C-interalgebraic

with the generic of H2.

Remark 2.28. In the previous lemma (2.27), if G2 is ∗-interpretable and if the kernel

of the projection is definable, then we can take D to be a type-interpretable group by

compactness.

2.4.2 Characterization of Definable Groups

Now we are ready for the characterization of definable groups in the pair (K,G) up to

isogeny. Our method is to apply group configuration from geometric stability theory

as in [2]. So we need Theorem (2.12), lemma (2.16), lemma (2.23) and lemma (2.27).

In this subsection, by T we mean the theory of K as an algebraically closed field, in

other words T = ACFp where p = char(K).

Recall the result proved by E. Hrushovski and A. Pillay [20]:

Theorem 2.29. [20] Let A be an interpretable group in a one-based stable theory.

Then the connected component of A is abelian.

Theorem 2.30. (Definable Groups) Let K be an algebraically closed field and G be

a multiplicative subgroup of K× with the Mann property. Any type-definable group in

(K,G) is isogenous to a subgroup of an algebraic group. Moreover any type-definable

group is, up to isogeny, an extension of a type-interpretable abelian group in G by an

algebraic group.

Proof. By remark (2.26), it is enough to assume that H is a connected type-definable

group in (K,G) over some parameters. We will work over a model containing these

parameters which we will omit. Given two independent generics a and b of H, we write

a, b and ab instead of their algebraic closures in the sense of the pair respectively. By

lemma (2.9) and Theorem (2.12), the set ab is T -algebraic over a∪ b since a, b are two

independent algebraically closed subsets. With the help of the third generic c which

is independent from a, b, we obtain the following diagram:



2.4. DEFINABLE GROUPS FOR THE PAIR 29

�
�
�
�
�
�
�
�
�
�

@
@

@
@

@
@
@

@
@
@

!!
!!

!!
!!

!!
!!

!!
!

aa
aa

aa
aa

aa
aa

aa
a

ab ca

a

b c
cab

• •

•

•
• •

Then by lemma (2.2), we have a T -group configuration. Therefore by the group

configuration theorem (1.18) and lemma (2.27), there exists a ∗-interpretable group

V in T , whose generic is TP -interalgebraic with the generic of H. Thus by elimination

of imaginaries in K and applying the lemma (2.27) again, we may assume that there

exists an algebraic group in which H embeds up to isogeny. In other words, up to

isogeny, we may suppose that H is a subgroup of an algebraic group. By lemma

(2.9), the set Gab is G-algebraic over Ga∪Gb. Moreover by lemma (2.16), we have the

following diagram in G:
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Gb GcGcab

• •

•

•
• •

So by the group configuration theorem (1.18) and lemma (2.27) again, we obtain

a connected ∗-interpretable group H1 in G and a projection π from H to H1. Also,

the generic h of H1 is G-interalgebraic with Ga. Furthermore, we may assume that

the generic h of H1 is TP -interalgebraic with Ga. Note that H1 is abelian by Theorem

(2.29) and remark (2.21). Finally, we show that the connected component N of the

kernel ker(π) is an algebraic group by the group lemma (2.23). Let n be a generic of N

over a in the sense of the pair. So we have n
P

|̂ a and na
P

|̂ a. Observe that na ∈ Na
is a generic also. Since the tuple (n, 1) is in the stabilizer of tpP (a, h), we have that

the tuples (na, h) and (a, h) have the same P -type. Thus in particular, we see that

Gna = Ga. Moreover by lemma (2.9) and Theorem (2.12), the group GaclP (na,a) is in

the G-algebraic closure of Gna and Ga. Therefore we obtain that GaclP (na,a) = Ga.

Hence, the type tpP (na/a) satisfies the hypothesis of the group lemma (2.23) and we

conclude that N is an algebraic group. Now by (2.28), the group H1 can be taken to

be type-interpretable.
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Remark 2.31. Note that if G is ω-stable in the pure group language, then every type-

interpretable group in G is interpretable in G. For example if G is an elementary

extension of µ, then every definable group in the pair is an extension of an interpretable

group in G by an algebraic group.

Example 2.32. (Some definable groups) The additive group of K, the multiplicative

group K×, any algebraic group over K, the group G and its powers, the cartesian

product K ×G and

SL(2, G,K) =

{(
a b

c d

)
: ad− bc ∈ G

}

are all definable in the pair. Observe that they all satisfy the conclusion of Theorem

(2.30).

2.5 Imaginaries and Interpretable Groups

In this section, we characterize interpretable groups in (K,G). To achieve this, we

need (K,G) to be ω-stable since we will use the existence of the Morley rank in lemma

(2.53). By [9, Corollary 6.2], it is enough and sufficient to suppose that G is ω-stable as

a pure abelian group. Moreover by [25], we see that G is divisible by finite. This means

G = DF where D is divisible and F is a finite group and D ∩ F = 1. Furthermore,

the group D is the connected component of G, it is definable and strongly minimal.

In other words, G is almost strongly minimal. Moreover, any infinite algebraically

closed subset A of G contains F and it is of the form DAF where DA = A ∩D which

is also divisible. Hence, any infinite algebraically closed subset of G is an elementary

substructure.

In this section, we assume that G is ω-stable in the pure group language. As an

example, we can take (K,G) to be an elementary extension of the pair (C, µ). As

noted in [9, 6.4], the pair (K,G) is ω-stable and MR(K,G) = ω. Thus the pair (K,G)

cannot be uncountably categorical since uncountably categorical theories have finite

Morley rank. Moreover if K and L are countable algebraically closed fields where L

is a proper extension of K, then we have (K,G) � (L,G) by [9, Corollary 3.7]. Thus

the pair (K,G) is not categorical for any infinite cardinal.

First, we compute the Morley rank of tuples from K and we show that Morley

rank and U-rank coincide. This will be a generalization of the result MR(K,G) = ω

in [9]. We will also provide a description for imaginaries in (K,G), which allows us to

characterize interpretable groups in (K,G). Our description of imaginaries will be via

canonical bases as in [28]. Recall that (K,G) does not eliminate imaginaries which is

expained in (2.19), since one can not eliminate the quotient K×/G.
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Now we recall the notions of internality and orthogonality from geometric stability

theory.

2.5.1 Internality and Orthogonality

Definition 2.33. Let T be a stable theory. Let a be a tuple and A be set of parameters

(possibly containing imaginary elements), and D be a definable subset. We say that

the type tp(a/A) is almost D-internal if there exists a set of parameters B such that

a |̂
A

B and a ∈ acl(A,B,D). We say that tp(a/A) is D-internal if we replace acl by

dcl .

Note that every extension of an almost D-internal type is almost D-internal and

every non-forking restriction is also almost D-internal.

Remark 2.34. For a stable theory T , if p = tp(a/A) is a type and D is a definable

set, then it is known that p is almost D-internal if and only if there is some B such

that if a′ realizes p then a′ ∈ acl(B,D). Details can be found in [30, Lemma 2.17].

Lemma 2.35. Let a be a real tuple from K. If tpP (a/A) is almost G-internal over a

real set of parameters A, then a ∈ acl(A,G).

Proof. Take B containing A such that a
P

|̂
A

B and a ∈ aclP (B,G) = acl(B,G). The

characterization of the independence (2.12) yields that a |̂
A,G

B,G and therefore we

obtain that a ∈ acl(A,G).

Remark 2.36. Note that lemma (2.35) may fail if the parameter set A contains

imaginary elements.

The following lemma uses the characterization of definable groups in the pair and

it will be vital for the characterization of interpretable groups in the pair (K,G).

Lemma 2.37. Let H be a definable group in the sense of the pair. If a generic of H

is almost G-internal then H is isogenous to an interpretable group in G.

Proof. By almost internality, we deduce that H is of finite Morley rank. Since infinite

algebraic groups have infinite Morley rank in the pair, by Theorem (2.30) and ω-

stability we conclude the lemma.

The following lemma is from [28] which will be needed in lemma (2.51).

Lemma 2.38. [28, 1.2] Let T be a stable theory and M be a model of T . Suppose

that tp(a/A) is stationary and almost internal to the definable set Σ. Then there is

a′ ∈M eq such that a′ ∈ dcl(a,A), a ∈ acl(a′) and tp(a′/A) is internal to Σ. Moreover

a′ can be taken to be a code (canonical parameter) for a certain finite set of realizations

of tp(a/A).
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Now, we define the U-rank, weight, orthogonality and regular types.

Definition 2.39. Let T be a stable theory. For a type p, we define its U-rank U(p)

as follows:

1- The U-rank of p is always ≥ 0,

2- The U-rank U(p) ≥ α+ 1 if and only if there is a forking extension q of p such that

U(q) ≥ α,

3- For limit ordinal δ, the U-rank U(p) ≥ δ if and only if U(p) ≥ α for all α < δ.

We say that U(q) = α when the U(q) ≥ α but not U(q) ≥ α + 1. If U(q) ≥ α for all

ordinals α, we say the U-rank is unbounded.

If p = tp(a/A), then U(p) is denoted by U(a/A). If T is an ω-stable theory then

we always have that U(p) ≤ MR(p). Now we define the symmetric sum ⊕ for ordinals.

If α is an ordinal, we can write α as a finite sum

n∑
i=1

ωαimi, where α1 > ... > αn and

mi ∈ N. If α =

n∑
i=1

ωαimi and β =

n∑
i=1

ωαini, then α⊕ β is defined to be

n∑
i=1

ωαi(mi + ni).

Note that α+ β ≤ α⊕ β. For example, the sum 1 + ω = ω while 1⊕ ω = ω + 1 > ω.

One of the properties of the U-rank is Lascar’s inequalities [29, Chapter 1, 3.26]:

U(a/bC) + U(b/C) ≤ U(ab/C) ≤ U(a/bC)⊕U(b/C).

Definition 2.40. Let T be a stable theory. Let a be a tuple and A be set of parameters.

The preweight of a complete type tp(a/A) is defined to be the supremum of the cardinals

κ such that there is some A-independent set {bλ : λ < κ} such that a forks with bλ

over A for every λ. We denote the preweight of a type as prewt(p).

If p is a stationary type, the weight of p is defined to be the largest preweight of any

non-forking extension of p. We denote the weight of p by wt(p).

Next we define orthogonality and regular types.

Definition 2.41. 1- If p, q ∈ S(A), then p and q are said to be almost orthogonal if

whenever a and b realize p and q respectively then a and b are independent over A.

2- Two stationary types p and q are said to be orthogonal if all their non-forking

extensions to common domains are almost orthogonal.

3- A stationary type p is called regular if it is non-algebraic and it is orthogonal to all

its forking extensions.

It is known that if p is a regular type then wt(p) = 1, see [29, Chapter 1, 4.5.3].

Moreover, the type p ∈ S(A) is regular if and only if the independence over A is a
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pregeometry on the realizations of p; see [29, Chapter 7, Remark 1.1].

Proposition 2.42. Let a be in K. Let p = tpP (a/A) be a non-algebraic type such

that a /∈ A(G)
ac

and A = aclP (A) be a parameter set. Then p is stationary and it is

a regular type with the pregeometry cl(C) = acl(C,G) on the set of realizations of p.

In particular, if a /∈ A(G)
ac

then wt(a/A) is 1. Furthermore, we have

U(p) = MR(p) = ω.

Proof. Let A′ be a parameter set containing A. Let a1 and a2 be such that tpP (a1/A) =

tpP (a2/A) = tpP (a/A) and ai
P

|̂
A

A′ for i = 1, 2. By Theorem (2.12), we see that a1

and a2 are not in A′(G)
ac
. Since there is only one transcendental type over A′(G)

ac

in the pure field K and since every field automorphism fixing G is an automorphism

of the pair (K,G), we conclude that the type p is stationary. Let R be the set of

realizations of the type p in K. It is sufficient to show that (R, cl) is a pregeometry

where

cl(B) = {b ∈ R : b
P

6 |̂
A

B}

for B ⊆ R. First observe that if b ∈ R then we also have that b /∈ A(G)
ac
. Moreover as

b |̂
A

G and A is G-independent, by transitivity we obtain that b, A |̂
GA

G. By corollary

(2.6) and in terms of linear disjointness we see that

acl(b, A)
ld

|̂
F(GA)

F(G).

Therefore by lemma (2.5), we deduce that aclP (b, A) = acl(b, A) and GaclP (b,A) = GA.

Now by applying corollary (2.13), we conclude that b
P

6 |̂
A

B if and only if b 6 |̂
A,G

B if

and only if b ∈ B(G)
ac

= acl(B,G). So we have a pregeometry since (K, acl) is a

pregeometry. Hence the type p is regular and has weight 1.

Let C be a set containing A. Since aclP (a,A) = acl(a,A) and GaclP (a,A) = GA

as shown before, by Theorem (2.12) we see that a
P

6 |̂
A

C if and only if a 6 |̂
A,G

C iff a ∈

acl(C,G). Now take d1, ..., dn which are algebraically independent over A(G). Let

g1, ..., gn be independent generics of G over D = Ad1...dn. Put a′ = d1g1 + · · ·+ dngn.

Note that no proper subsum of d1g1 + · · ·+ dngn is 0. Moreover, the elements a and

a′ have the same type over A and a′ forks with D over A. Since G has the Mann

property over K, we see that g1, ..., gn ∈ aclP (a,D). This proves that U(a/D) ≥
U(g1, ..., gn/D) = n. Thus we obtain that U(p) ≥ ω. Finally, since the theory (K,G)
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has Morley rank ω, we conclude that U(p) ≤ MR(p) ≤ ω and hence

U(p) = MR(p) = ω.

Remark 2.43. In [9, 6.4], it was shown that if a ∈ A(G)
ac

then MR(a/A) is finite.

This shows that if b is not in A(G)
ac

, then MR(b/A) ≤ ω since there is only one such

type.

Remark 2.44. Note that if a ∈ A(G)
ac \ A, then the type q = tpP (a/A) need not be

regular. To see this, let g1 and g2 be two independent generics of G over A and put

a = g1 + g2. Since G has the Mann property, we see that g1, g2 ∈ aclP (a). However,

each gi forks with a over A since they are not in A. Therefore wt(a/A) ≥ 2 and hence

it cannot be regular.

Now we recall a theorem which connects Morley rank and U-rank, and also the

definability of Morley rank.

Theorem 2.45. [39, Chapter 4, 4.7.10] Let T be an ω-stable theory. Suppose that

there exists strongly minimal formulas φ1, ..., φk such that any type is non-orthogonal

to a certain φi. Then T has finite Morley rank which coincides with U-rank and Morley

rank is definable, that is to say for every formula θ(x, y) and every natural number

n < ω the set {a : MR(θ(x, a)) = n} is definable.

Next we compute the rank of an element from K.

Lemma 2.46. If a ∈ A(G)
ac

where A = aclP (A), then

U(a/A) = MR(a/A) = MRG(GaclP (a,A)/GA).

Proof. As G is almost strongly minimal and a is in A(G)
ac

, by Theorem (2.45) we

see that U(a/A) = MR(a/A). Now we prove the other equality. Since a ∈ A(G)
ac

,

there are g1, ..., gn from G such that a ∈ A(g1, ..., gn)
ac

. We may assume that g1, ..., gn

are algebraically independent over A and n is minimal. So without loss of generality,

we may suppose that a = d1h1 + · · · + dmhm where hi is in G and di is in the field

generated by a and A, the element a is algebraic over d1, ..., dm, A and no proper

subsum of d1h1 + · · · + dmhm is 0. Since G has the Mann property, this yields

that h1, ..., hn ∈ aclP (a,A). Thus MR(a/A) = MR(h1, ..., hn/A) = MR(GaclP (a,A)/A).

Since A is G-independent by lemma (2.4) and the induced structure on G is the pure

group structure, we conclude that

MR(GaclP (a,A)/A) = MRG(GaclP (a,A)/GA).
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Combining proposition (2.42) and lemma (2.46) we have the following formula for

the ranks in the pair:

Corollary 2.47. Let a be finite tuple from K and A = aclP (A) be a set of parameters.

Then

U(a/A) = MR(a/A) = ω · tr.deg(a/A(G)) + MRG(GaclP (a,A)/GA).

Proof. We have already proved it if a is an element in K by (2.42) and (2.46). Now

let a be a finite tuple from K. In this case, we split the tuple into two parts a1 and b1

where a1 is algebraically independent over A(G) and b1 ∈ acl(a1, A,G). Then we can

replace b1 by a tuple g in G as we did in (2.46). Thus we obtain that

U(a/A) = U(a1b1/A) = U(a1g/A)

and similarly for the Morley rank. Note also that a1 is independent from g over A in

the sense of the pair. Since also a1 is independent over A and the U-rank is additive,

we obtain the formula for the finite tuples for the U-rank. For the Morley rank, we

proceed by induction and use a similar argument as in remark (2.43) to obtain that

MR(a1g/A) ≤ ω · tr.deg(a1/A(G)) + MR(g/A). Since we know the formula for the

U-rank and U-rank is always smaller than the Morley rank, this yields the formula for

finite tuples.

We end this subsection by characterizing definable subfields of K.

Proposition 2.48. If F is an infinite definable subfield of K in the sense of the pair,

then F = K.

Proof. Note that F is an algebraically closed field since it is ω-stable. So its additive

group and multiplicative group are connected. First, we show that Morley rank of F

is infinite. If the Morley rank of F is finite, then by proposition (2.42), the generic

of the additive group of F and the multiplicative group of F are G-internal. By

lemma (2.37), they are isogeneous to a group interpretable in G. However, since G

is an abelian group, it cannot interpret an infinite field. This indicates that MR(F )

is infinite. Thus we obtain that MR(F ) = ω as MR(K) = ω. So the extension K/F

cannot be infinite. Since F is algebraically closed, we conclude that F = K.

2.5.2 Canonical Base Lemmas

In this subsection we prove several lemmas for the properties of canonical bases in

(K,G). These lemmas will be analogous to the lemmas in [28] for the pair (K,G).

Lemma 2.49. Let B be an elementary substructure of (K,G). Suppose that d =

Cb(tp(a/ acl(B,G))). Then a
P

|̂
d

B,G.
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Proof. By elimination of imaginaries in K, we may assume that d is in K. First observe

that

aclP (B,G) = acl(B,G)

and a |̂
d

B,G. Note also that acl(d,GaclP (d)) is algebraically closed in the sense of

the pair by corollary (2.6). For the same reason, the set acl(GaclP (d)) is also alge-

braically closed in (K,G). In particular, they are G-independent by lemma (2.4). The

independence a |̂
d

B,G yields that

acl(a, d,GaclP (d)) |̂
d,GaclP (d)

G,

and since acl(d,GaclP (d)) |̂
GaclP (d)

G, by transitivity we obtain that

acl(a, d,GaclP (d)) |̂
GaclP (d)

G.

As acl(GaclP (d)) = aclP (GaclP (d)), by transitivity and in terms of linear disjointness

this gives us that

acl(a, d,GaclP (d))
ld

|̂
F(GaclP (d))

F(G).

Thus by lemma (2.5), we deduce that aclP (a, d,GaclP (d)) = acl(a, d,GaclP (d)) and

GaclP (a,d) = GaclP (d). Now since a |̂
d

B,G, we have that

acl(a, d,GaclP (d)) |̂
acl(d,GaclP (d))

acl(B,G).

By corollary (2.6) again, we see that acl(d,GaclP (d)) = aclP (d) and we obtain that

aclP (a, d) |̂
aclP (d)

aclP (B,G).

We finish the lemma by applying the characterization of the independence (2.12).

Corollary 2.50. Let B be an elementary substructure of (K,G) and let a be a finite

tuple from K. Set d = Cb(tp(a/ acl(B,G))). Then Cb(tpP (a/B)) is interalgebraic in

(K,G) with Cb(tpP (d/B)).

Proof. Set pB = tpP (a/B) and qB = tpP (d/B). Let e1 = Cb(p) and e2 = Cb(q). Note

that both e1 and e2 are in Beq. By lemma (2.49), we know that a
P

|̂
d

B,G. So a
P

|̂
d

B, d

and a
P

|̂
e2,d

B, d. As d
P

|̂
e2

B, by transitivity we conclude that a
P

|̂
e2

B. This yields that e1
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is algebraic over e2.

Now we show the converse. Take B1 such that tpP (B1/e1) = tpP (B/e1) and

B1

P

|̂
e1

B. Let pB1
and qB1

be the corresponding types. Choose an element a1 |=

pB ∪ pB1
such that a1

P

|̂
e1

B,B1. Put d1 = Cb(a1/ acl(B,B1, G)), the element d2 =

Cb(a1/ acl(B,G)) and d3 = Cb(a1/ acl(B1, G)). The independence a1

P

|̂
e1

B,B1 gives

that a1

P

|̂
B

B1 and by the characterization of the independence (2.12) we obtain that

a1 |̂
B,G

B1. As d2 is in acl(B,G) and by transitivity, we see that a1 |̂
d2

B,B1, G. Thus

we deduce that d1 is algebraic over d2 and in particular it is in acl(B,G). Similarly,

the element d1 is algebraic over d3 and it is in acl(B1, G). Moreover, the independence

a1 |̂
d1

B,B1, G and d1 ∈ acl(B,G) yield that a1 |̂
d1

B,G and hence d2 is algebraic over

d1. As a result, we conclude that d1 = d2 = d3. By the choice of the element a1, we see

that d1 |= qB ∪ qB1
. Furthermore, the element d1 is in aclP (a1, B) ∩ aclP (a1, B1) as it

is the canonical base of the types tp(a1/ acl(B,G)) and tp(a1/ acl(B1, G)). Now, from

a1

P

|̂
B1

B and d1 ∈ aclP (a1, B1), we obtain that d1

P

|̂
B1

B. By the independence B1

P

|̂
e1

B

and transitivity, we get that d1

P

|̂
e1

B. Hence e2 is algebraic over e1.

The next lemma states that, up to interalgebraicity, an imaginary element is a

canonical base of a type over itself and this type is almost G-internal.

Lemma 2.51. Let e ∈ (K,G)eq be an imaginary element. Then there is e′ ∈
(K,G)eq interalgebraic with e, such that for some finite tuple d′ from K we have

e′ = Cb(tpP (d′/e′)) and tpP (d′/e′) is almost G-internal.

Proof. Let a be a tuple in K such that e = f(a) for some 0-definable function in

(K,G)eq. Set e1 = Cb(tpP (a/aclP
eq(e))). Observe that e1 is algebraic over e. As

e = f(a) and a
P

|̂
e1

e, we obtain that e
P

|̂
e1

e and hence e and e1 are interalgebraic. Now

let (B,GB) be an elementary substructure of (K,G) such that e1 ∈ (B,GB)eq and

a
P

|̂
e1

B. Let d = Cb(tp(a/ acl(B,G))). We may assume d to be a finite tuple in K owing

to the ω-stability and elimination of imaginaries in K. Let e2 = Cb(tpP (d/B)). Then

by corollary (2.50) and a
P

|̂
e1

B, we see that e1 and e2 are interalgebraic. Note that the

type tpP (d/B) is almost G-internal. Thus as we have d
P

|̂
e2

B, the type tpP (d/e2) is

also almost G-internal. By lemma (2.38), there is an imaginary element d′ ∈ (K,G)eq

such that d′ ∈ aclP (d, e) and d ∈ aclP (d′), and also the type tpP (d′/e2) is almost
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G-internal. Let e′ = Cb(tpP (d′/e2)). Then e′ ∈ aclP (e2) and d
P

|̂
e′
e2 as d ∈ aclP (d′).

Hence e2 ∈ aclP (e′). As a result, we conclude that e and e′ are interalgebraic.

From now on, we assume that G is ω-stable with aclG(∅) infinite in the pure group

language.

Lemma 2.52. (Coheir) Let e ∈ (K,G)eq and B = aclP (e) ∩G. Let c be a tuple from

G. Then tpP (c/B, e) is finitely satisfiable in B.

Proof. First observe that the type p = tpP (e/F(G)
ac

) is stationary. Let d be the

canonical base of p. Thus, we see that d is in aclP
eq(G). Note also that, any automor-

phism in the sense of the pair fixes G setwise, and so fixes F(G)
ac

setwise as well. This

yields that d is contained in aclP
eq(e), and as a result we obtain that d is contained in

aclP
eq(B). Therefore p is the non-forking extension of the type tpP (e/B) and hence p

is definable over B. Therefore for a given formula φ(x, y) of L(U)
eq

over B, there is a

formula ψ(y) over B such that φ(x, γ) ∈ p if and only if ψ(γ) holds. Since G has the

Mann property and by stability, there exists a formula f(y) over B in the language of

pure groups such that, for all γ ∈ G we have |= ψ(γ) if and only if |= f(γ). Since B is

an elementary substructure of G (because it is infinite and algebraically closed in G),

if c ∈ G and |= φ(e, c) then |= ψ(c) and so |= f(c), therefore for some c1 ∈ B we have

|= f(c1) and as a consequence |= φ(e, c1).

Lemma 2.53. Let e ∈ (K,G)eq be an imaginary element. There is a tuple d from

K, an L(U)-definable function f(x) over ∅, an L(U)-formula ψ(y) over e and an

L(U)-definable function h(y, z) over e such that

(i) f(d) = e,

(ii) ψ(y) ∈ tp(d/e),

(iii) (∀y, y′)(ψ(y) ∧ ψ(y′) =⇒ ∃z(U(z) ∧ h(y, z) = y′))

(iv) Furthermore, the element d is independent from G over e.

Proof. For (i), (ii) and (iii) we refer the reader to [28, 2.4]. Now we prove (iv). Choose

d such that MR(tpP (d/e)) is minimized. Moreover by lemma (2.51), we can assume

that q = tpP (d/e) is almost G-internal. Thus remark (2.34) yields that there is some

set u such that if d′ |= q then d′ ∈ acl(u,G). We will show that d is independent

from G over e. Suppose not and choose b ∈ G such that d forks with b over e. Note

that by almost internality and as G has Morley rank 1, we deduce that MR(tpP (d/e))

is finite. Let m = MR(tpP (d/e, b)) < MR(tpP (d/e)). Note that the Morley rank is

definable in acl(u,G) by remark (1.4) or by Theorem (2.45) as G is almost strongly
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minimal. Let χ(y, z) be a formula over e such that χ(d, b) holds and for any c, we have

MR(χ(y, c)) = m if it is consistent. Let ∆(z) be the formula

∃y(f(y) = e ∧ ψ(y)) ∧ (∀y, y′)(ψ(y) ∧ ψ(y′) =⇒ (h(y, z) = y′ ∧ U(z))).

Therefore ∆(b) holds. Let B = aclP (e)∩G. By lemma (2.52), there is b1 ∈ B such that

∆(b1) holds. Then we find d1 satisfying (i), (ii) and (iii) of the lemma with χ(d1, b1)

holds. As b1 is algebraic over e, we have that MR(tpP (d1/e)) ≤ m, contradicting the

choice of d.

Therefore combining lemmas (2.51) and (2.53), we have the following theorem

describing imaginariy elements in the pair:

Theorem 2.54. Let e ∈ (K,G)eq be an imaginary element. There is a finite real

tuple d such that e is algebraic over d, the type tpP (d/e) is almost G-internal and d

is independent from G over e in the sense of the pair.

2.5.3 Characterization of Interpretable Groups

We start with a lemma from [2]:

Lemma 2.55. [2, Lemma 3.1] Let H be a connected interpretable group in a stable

theory. Let α, β and γ be three independent generics of H and a0 be a real element

such that α is algebraic over a0. Then there exist real tuples a, b, c, d, e and f such that

(a, α) ≡ (a, β) ≡ (c, γ) ≡ (d, αβ) ≡ (e, γα) ≡ (f, γαβ) ≡ (a0, α)

and

a |̂
α

b, c, d, e, f

and the same for the other tuples. Moreover in the following diagram:

�
�
�
�
�
�
�
�
�
�

@
@

@
@

@
@
@

@
@
@

!!
!!

!!
!!

!!
!!

!!
!

aa
aa

aa
aa

aa
aa

aa
a

d e

a

b c
f

• •

•

•
• •

all non-linear triples are independent and each point is independent from the lines

which do not contain it.
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Now we are ready to characterize interpretable groups in the pair (K,G) which

requires all the tools developed through the chapter.

Theorem 2.56. (Interpretable groups in (K,G)) Let K be an algebraically closed

field and G be an ω-stable multiplicative subgroup of K× with aclG(∅) infinite and

with the Mann property. Every interpretable group H in (K,G) is, up to isogeny,

an extension of an interpretable abelian group in G by a TP -interpretable group N ,

which is a quotient of an algebraic group V by a subgroup N1 which is an interpretable

abelian group in G.

Proof. Let H be an interpretable group in (K,G). By remark (2.26), we may assume

that H is connected. Again we work over a small model that we omit. Let α, β and

γ be three independent generics of H in the sense of the pair. By Theorem (2.54),

the generic α is algebraic over a real tuple a0 which is independent from G over α in

the sense of the pair, and the type tpP (a0/α) is almost G-internal. Then by lemma

(2.55), there are real tuples a, b, c, d, e and f such that

(a, α)≡P (a, β)≡P (c, γ)≡P (d, αβ)≡P (e, γα)≡P (f, γαβ)≡P (a0, α)

and if we put a = aclP (a) and the same for the others, we have the following diagram:

�
�
�
�
�
�
�
�
�
�

@
@

@
@

@
@
@

@
@
@

!!
!!

!!
!!

!!
!!

!!
!

aa
aa

aa
aa

aa
aa

aa
a

d e

a

b c
f

• •

•

•
• •

such that all non-linear triples are TP -independent and each point is TP -independent

from the lines which do not contain it. Since a
P

|̂
α

G, we see that Ga ⊂ aclP (α) ⊂ a.

Therefore, we obtain that Ga = aclP (α) ∩G. Moreover by lemma (2.9) and Theorem

(2.12), we have that GaclP (a,b) = aclG(Ga, Gb). Since

Gd = aclP (αβ) ∩G ⊂ GaclP (a,b),

we get that Gd ⊂ aclG(Ga, Gb). This is true for all other tuples and by lemma (2.16),

the set Ga is G-independent from aclG(Gb, Ge). The same holds for the others. So we

have the following diagram:
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�
�
�
�
�
�
�
�
�
�

@
@

@
@

@
@
@

@
@
@

!!
!!

!!
!!

!!
!!

!!
!

aa
aa

aa
aa

aa
aa

aa
a

Gd Ge

Ga

Gb GcGf

• •

•

•
• •

and by the group configuration theorem (1.18), we have a connected ∗-interpretable

group H1(G) in G whose generic h is G-algebraic with Ga. By ω-stability and by lemma

(2.27), we may assume that H1 is interpretable and its generic h is TP -interalgebraic

with Ga. Moreover, we have a type-definable surjection

π : H → H1(G).

Furthermore by Theorem (2.29), we see that H1 is abelian.

Next we show that the points a, b, c, d, e, f give a T -group configuration with the

help of the parameter set G. We know that any three non-colinear points among

them are independent in the sense of the pair, and hence they are T -independent over

G. As β is algebraic over b and αβ is algebraic over d, we have that α is algebraic

over b, d. Moreover by lemma (2.9), we know that acl(b, d) = aclP (b, d). Since the

type tpP (a/α) is almost G-internal and α is algebraic over b, d, we observe that the

type tpP (a/ acl(b, d)) is also almost G-internal. Thus by lemma (2.35) we obtain that

a ∈ acl(G, b, d). The same holds for the other tuples.

Therefore we obtain a connected ∗-interpretable group V over acl(G) in the field

sense and two independent generics a1, b1 of V such that a1 is field interalgebraic with

a over G, the element b1 is field interalgebraic with b and a1b1 is field interalgebraic

with d. Since the tuples α, β and γ are algebraic over the finite tuples a1, b1 and a1b1

respectively and as V is a connected pro-algebraic group, there exists a connected

algebraic group W over acl(G) and two independent generics a2, b2 such that α is

algebraic over a2 and the same for the others. Note that a1 is field algebraic over G, a

and the same holds for the others. Moreover, since a, b, d are pairwise TP -independent

over G, so are a2, b2 and a2b2.

As α is algebraic over a and a
P

|̂
Ga

G by corollary (2.15), we see that α
P

|̂
Ga

G.

Now let N be the connected component of ker(π). Then α is generic in Nα over

aclP (h) = aclP (Ga), therefore α is also generic over the group G.

Now we apply the lemma (2.27) to the tuples (a2, α) and (b2, β). This yields a
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type-definable surjection φ from W to N , up to isogeny. Lastly, we prove that the

connected component N1 of ker(φ) is isogenous to an interpretable group in G. Let

n1 be a generic of N1 over G, a2. Then the point (n1, 1N ) is in the stabilizer of the

type tp(a2, α/ acleq(G)) and so tpP (n1a2/α) = tpP (a2/α). Since tpP (a2/α) is almost

G-internal and as a2 is algebraic over G, a then the type tpP (n1a2/α) is also almost

G-internal. As α is algebraic over G, a2, the type tpP (n1/G, a2) is almost G-internal.

Owing to the independence n1

P

|̂
G

a2, we conclude that tpP (n1/G) is also almost G-

internal. Then by lemma (2.37) we have that N1 is isogenous to an interpretable group

in G. Theorem (2.29) yields again that the group N1 is abelian.

2.6 Remarks on Differentially Closed Field Case

In this section, we just give the analogous theorems for differentially closed fields with

no proofs. Let (Ω, ∂) be a differentially closed field of characteristic 0 and let

C = {x ∈ Ω : ∂(x) = 0}

be the constant field of Ω. Recall that (Ω, ∂) has QE and EI. Moreover, it is ω-stable.

Let G be a multiplicative subgroup of Ω× with the Mann property. The pair (Ω, ∂,G)

can be seen as an L(U) = L ∪ {U} structure where L is the usual language for dif-

ferential fields and U is an unary predicate whose interpretation in Ω is G. We begin

with a question:

Question: Is the theory of (Ω, ∂,G) stable?

In contrast to algebraically closed case, the question is not always affirmative. Even

there is a possibility to define the ring of integers Z in (Ω, ∂,G). First assume that

∂(G) is not zero. Let g ∈ G be such that ∂(g) is not zero. In particular, it is not a

torsion element. Observe that m = g∂(gm)/∂(g)gm. Therefore even in the simplest

case where G is cyclic and generated by the element g, the formula

ϕ(x, g) = ∃y
(
U(y) ∧ x =

g∂(y)

∂(g)y

)
defines Z. Now we give some examples. Let Ω be a differentially closed field containing

C((t)) where ∂(t) = 1. Thus (Ω, ∂, tZ) and (Ω, ∂, etZ) are not stable and we can define

Z in (Ω, ∂, etZ) without parameters as ∂(et) = et.

Hence in order to prove the stability of (Ω, ∂,G), this leads us to assume that

∂(G) = 0, in other words G is a subset of the constant field C. From now on we

suppose that ∂(G) = 0. This in return gives us that, the results 3.2, 3.4, 3.5 and 5.1
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in [9] are valid also in the differential case, so similarly we conclude that the induced

structure on G is itself, the pair (Ω, ∂,G) is stable and if G is ω-stable in the pure

group language then so is (Ω, ∂,G).

Moreover one can similarly prove that the independence in (Ω, ∂,G) is given exactly

by the independence (2.12). One can prove all the analogous results from this with

similar methods. We just give definable and interpretable groups in (Ω, ∂,G). Thus

one can obtain the following results:

Theorem 2.57. (Definable Groups (Ω, ∂,G)) Any type-definable group in (Ω, ∂,G) is

isogenous to a subgroup of a differential algebraic group. Moreover any type-definable

group is, up to isogeny, an extension of a type-interpretable group in G by a differential

algebraic group.

In the case where G is divisible with aclG(∅) infinite, we can characterize inter-

pretable groups in (Ω, ∂,G):

Theorem 2.58. (Interpretable groups in (Ω, ∂,G))

Every interpretable group H in (Ω, ∂,G) is, up to isogeny, an extension of an

interpretable abelian group in G by an interpretable group N , which is a quotient of a

differential algebraic group D by a subgroup N1 which is interpretable in G.
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3
Mann Pairs

In this chapter, let Ω be an algebraically closed ambient field, the field k be a proper

subfield of Ω which is also algebraically closed and Γ be a multiplicative subgroup of

Ω×. Now we define a uniform version of the Mann property which was introduced in

the previous chapter. Consider an equation

a1x1 + · · ·+ anxn = 1 (3.0.1)

with n ≥ 1 and ai ∈ k.

We say that (k,Γ) is a Mann pair if for all n there is a finite subset Γ(n) of Γ such

that for all a1, ..., an in k× all non-degenerate solutions of (3.0.1) in Γ lie in Γ(n). In

particular, the group Γ has the Mann property. Observe that if (k,Γ) is a Mann pair,

then taking n = 1 in the definition, we see that k∩Γ is finite, thus the intersection is a

finite subset of the group of roots of unity in Ω. Therefore, most of the elements in Γ

are transcendental over the field k. To illustrate, the pair (Q, exp(Q)) is a Mann pair

by Lindemann’s theorem. In [10, Theorem 1.1], L. van den Dries and A. Günaydın

proved that if the intersection k ∩Γ is trivial and if Γ is of finite rank, then (k,Γ) is a

Mann pair. This provides substantial examples of Mann pairs, such as (C, tZ) where

t is an indeterminate.

Now fix Ω0, k0 and Γ0 where (k0,Γ0) is a Mann pair as above. By the triple

(Ω0, k0,Γ0) we actually mean the structure (Ω0, k0,Γ0,+,−, ·, 0, 1). Thus our language

45
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is {+,−, ·, 0, 1, P1, P2} where P1 and P2 are unary predicates whose interpretations in

Ω0 are k0 and Γ0 respectively. The model theory of the triple (Ω0, k0,Γ0) was studied

in [10, 11] by L. van den Dries and A. Günaydın, where they proved that the theory

Th(Ω0, k0,Γ0) is stable and it is ω-stable if Γ0 is divisible. In order to study definable

groups in the triple, we need to add the constants k0∪Γ0 as they did in [10] in order to

have certain sets definable with parameters from k0 and Γ0, see theorem (3.1). So our

language Lt through the chapter is {+,−, ·, 0, 1, P1, P2} together with the constants

for each element of k0 ∪ Γ0. Let Tt be the complete theory of (Ω0, k0,Γ0) in the lan-

guage Lt. Therefore if (Ω, k,Γ) is a model of Tt then k contains k0 and Γ contains the

group Γ0. Note also that, if (Ω, k,Γ) is a model of Tt then the triple (Ω, k0,Γ0) is an

elementary substructure of (Ω, k,Γ) by [11, 4.4]. Moreover in [10], L. van den Dries

and A. Günaydın proved that k ∪ Γ is small in Ω as defined in Chapter 1. Therefore,

by changing the model we may assume that Ω is |k ∪Γ|+-saturated as a field, and the

triple is κ-saturated for some uncountable cardinal κ. Through the chapter, we will be

working in this sufficiently saturated model.

In the previous chapter, we focused on the model theory of the pair (Ω,Γ) in terms

of stability. As cited before, the model theory and definable groups in (Ω, k) were

studied in [31, 1, 2]. In this chapter, our concern will be the triple (Ω, k,Γ) in the

stability frame work and we bring present the connection between the triple (Ω, k,Γ)

and the pairs (Ω, k) and (Ω,Γ). More precisely, we characterize the algebraic closure

and forking in the triple. This allows us to characterize definable groups in the triple

in terms of definable and interpretable groups in Ω, k and Γ. As the strongest result

in this chapter, we characterize interpretable groups in a similar way to the previous

chapter.

We stick to a similar notation as in Chapter 2. For a substructure A in the sense

of the triple, we denote kA = A∩k and ΓA = A∩Γ. By acl(A), we mean the algebraic

closure of A in the field sense and aclt(A) indicates the algebraic closure of A in the

triple (Ω, k,Γ). By |̂ we mean the algebraic independence in the pure field Ω and
t

|̂

signifies the independence in the triple. Similarly,
P1

|̂ denotes the independence in the

pair (Ω, k) and
P2

|̂ indicates the independence in the pair (Ω,Γ). If A is a subset of Γ,

the algebraic closure of A in Γ will be represented by aclΓ(A).

Let a be a tuple in Ω and B be a set of parameters. Unless otherwise stated, the

type tp(a/B) denotes the type of a over B in the pure field sense. By tpt(a/B) we

mean the type of a over B in the sense of the triple. We use similar notations for tpk

and tpΓ to indicate the types in k and Γ respectively. Finally, for three fields E,F

and L ⊆ E ∩ F , the notation E
ld

|̂
L

F means that E is linearly disjoint from F over L.
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Adding the constants for each element of k0 and Γ0 will be significant to control

the parameters for definability, since we need algebraically closed structures to contain

enough elements.

The following is in [10] and it states that k and Γ are orthogonal in model-theoretic

sense.

Theorem 3.1. [10, Theorem 1.2 and Remark in 8.3] For all m,n ≥ 1, every definable

subset of km × Γn definable in (Ω, k,Γ) is a finite union of sets X × Y with X ⊆ k

definable in the field k and Y ⊆ Γ definable in the group Γ. Moreover, the set Σn =

{(k1, ..., kn, g1, ..., gn) : k1g1 + · · ·+kngn = 0} ⊆ kn×Γn is a finite union of sets X×Y
with X ⊆ k definable in the field k with parameters from k0 and Y ⊆ Γ definable in

the group Γ with parameters from Γ0. In other words, the induced structure on (k,Γ)

is itself.

Using the theorem above, the following lemma follows immediately.

Lemma 3.2. Let f and g be automorphisms of Aut(k/k0) and Aut(Γ/Γ0) respectively.

Then there is an automorphism of k(Γ) which extends both f and g.

Proof. Define Σn = {(k1, ..., kn, g1, ..., gn) : k1g1 + · · ·+kngn = 0} ⊆ kn×Γn. By Theo-

rem (3.1), the set Σn is a finite union of sets X×Y with X ⊆ k definable in the field k

with parameters from k0 and Y ⊆ Γ definable in the group Γ with parameters from Γ0.

Therefore (k1, ..., kn, γ1, ..., γn) ∈ Σn if and only if (f(k1), ..., f(kn), g(γ1), ..., g(γn)) ∈
Σn. This yields a ring automorphism h of the ring k[Γ] given by

h(k1γ1 + · · ·+ knγn) = f(k1)g(γ1) + · · ·+ f(kn)g(γn)

which further extends to the field k(Γ) .

Remark 3.3. Let k1 be an algebraically closed subfield of k and Γ1 be an elementary

substructure of Γ. Then the pair (k1,Γ1) is an elementary substructure of (k,Γ).

Proof. By quantifier elimination of algebraically closed fields, the field k1 is an ele-

mentary substructure of k and Γ1 is an elementary substructure of Γ. We conclude by

Theorem (3.1).

3.1 Characterization of Algebraic Closure for the

Triple

In this section, we give the characterization of algebraically closed structures in the

triple which will be a key tool for all other proofs through the chapter. In order to

characterize the algebraic closure, we depend upon the stability of the triple (Ω, k,Γ)

which we know by [10] and we apply lemma (2.2). We begin with a definition.
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Definition 3.4. We say that a substructure A of the triple (Ω, k,Γ) is (k,Γ)-independent

if

A
ld

|̂
kA(ΓA)

k(Γ).

Similarly A is k-independent if A
ld

|̂
kA

k and A is Γ-independent if

A
ld

|̂
F(ΓA)

F(Γ).

Note that if A is algebraically closed in the sense of the triple, then it is k-

independent and Γ-independent.

Recall that the determinant of a matrix S = (sij)i,j≤n is given by∑
σ∈Sn

sgn(σ)
∏

siσ(i).

Lemma 3.5. Let A be algebraically closed in the sense of the triple. Then A is (k,Γ)-

independent.

Proof. Since A is also algebraically closed in the sense of (Ω, k), this yields that A
ld

|̂
kA

k

and so we have A
ld

|̂
kA(ΓA)

k(ΓA). By transitivity, it is enough to prove that A
ld

|̂
k(ΓA)

k(Γ).

Let a1, ..., an be in A (not necessarily distinct), the elements k1, ..., kn be in k and

g1, ..., gn be in Γ such that a1k1g1 + · · · + ankngn = 0. If g1, ..., gn ∈ A then we are

done. So suppose that the tuple g = (g1, ..., gn) is not in A. Thus g has infinitely many

A-conjugates in the triple. Let gi = (gi1, ..., gin) be some conjugates of g over A where

2 ≤ i ≤ n and g = (g11, ..., g1n). Then we have a system of linear equations:

a1ki1gi1 + · · ·+ ankingin = 0.

Thus the determinant of this matrix is in the field k(Γ). Moreover this determinant

is zero and it is a polynomial q such that q(k1g1, ..., knngnn) = 0. By the determinant

formula, we have an homogeneous equation∑
σ∈Sn

kσhσ = 0

where kσ ∈ k and hσ =
∏
giσ(i) ∈ Γ. We may assume that no proper subsum of the

equation
∑
σ∈Sn

kσhσ = 0 is zero. Dividing by the element k(12)h(12), we obtain the

inhomogeneous equation ∑
σ∈Sn\{(12)}

−kσ
k(12)

hσ
h(12)

= 1.
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Since (k,Γ) is a Mann pair and A is algebraically closed, this yields that the element

h(Id)

h(12)
=
g1g22

g2g21
∈ A.

However, if we put other conjugates to the determinant and since (k,Γ) is a Mann pair,

by uniform finiteness Γ(n!− 1) and cancellation we deduce that g21/g11 = g2/g1 ∈ A.
Choosing other transpositions, similarly we obtain that gi/g1 ∈ A for all i. Hence we

finish the proof by dividing the equation a1k1g1 + · · ·+ ankngn = 0 by g1.

Next, we give the characterization of the algebraic closure in the triple. We follow

a similar method as in the previous chapter.

Lemma 3.6. (Algebraic closure for triples) Let A ⊂ Ω. Then A is algebraically closed

in the sense of the triple if and only if A and kA are algebraically closed fields, the

group ΓA is algebraically closed in Γ and A is (k,Γ)-independent.

Proof. If A is algebraically closed in the sense of the triple then A and kA are alge-

braically closed fields and ΓA is algebraically closed in Γ. Moreover by lemma (3.5),

A is (k,Γ)-independent. Now we prove the converse. Let α be in Ω \A.
Case 1: Let α ∈ Γ. Then since ΓA is algebraically closed, we know that α has infinitely

many conjugates in Γ. Choose a conjugate β ∈ Γ of α. Then there is an automorphism

f ∈ Aut(Γ/ΓA) sending α to β. Since ΓA contains Γ0, by lemma (3.2) there is an auto-

morphism h of k(Γ) which is identity on k and f on Γ. Since A is (k,Γ)-independent,

by linear disjointness the former automorphism extends to a field automorphism of

A(k,Γ) over A and this extends to an automorphism of Ω over A which is actually an

automorphism of the triple (Ω, k,Γ) over A. Thus α is not in aclt(A). In particular,

we have Γaclt(A) = ΓA.

Case 2: Let α ∈ k. Then since kA is an algebraically closed field, we know that α

has infinitely many conjugates in k. Choose a conjugate β ∈ k of α. Then there is

an automorphism f ∈ Aut(k/kA) sending α to β. Since kA contains k0, by lemma

(3.2) there is an automorphism h of k(Γ) which is identity on Γ and f on k. Since A is

(k,Γ)-independent, by linear disjointness h extends to a field automorphism of A(k,Γ)

over A and this extends to an automorphism of Ω over A which is an automorphism of

the triple (Ω, k,Γ) over A. Thus α is not in aclt(A). This indicates that kaclt(A) = kA.

Case 3: Let α ∈ A(k,Γ)
ac \ A. Then there exist k1, ..., kn ∈ k and g1, ..., gn ∈ Γ such

that α ∈ A(k1, ..., kn, g1, ..., gn)
ac \A. So for a rational polynomial

r(x0, x1, ..., xn, y1, ..., yn)

with coefficients from A and we have that

r(α, k1, ..., kn, g1, ..., gn) = 0.
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Moreover, we may assume that k1, ..., kn, g1, ..., gn are algebraically independent over

A. Thus by the first two cases, we know that ki and gi are not in aclt(A) for 1 ≤
i ≤ n. Thus the type p = tpt(k1, ..., kn, g1, ..., gn/ aclt(A)) is not algebraic. Now take

m1, ...,mn, h1, ..., hn such that (m1, ...,mn, h1, ..., hn) |= p and

m1, ...,mn, h1, ..., hn
t

|̂
aclt(A)

k1, ..., kn, g1, ..., gn.

By lemma (2.2), we obtain that

m1, ...,mn, h1, ..., hn |̂
aclt(A)

k1, ..., kn, g1, ..., gn.

Moreover since aclt(A) is (k,Γ)-independent by lemma (3.5), as kaclt(A) = kA and

Γaclt(A) = ΓA, by transitivity we get that

m1, ...,mn, h1, ..., hn |̂
A

k1, ..., kn, g1, ..., gn.

Since there is a triple automorphism over A sending (k1, ..., kn, g1, .., gn) to the tuple

(m1, ...,mn, h1, ..., hn), this gives a conjugate β of α with the help of the polynomial

equation r = 0. Observe that β is different than α as we have

m1, ...,mn, h1, ..., hn |̂
A

k1, ..., kn, g1, ..., gn

and α is not in A. Choosing other independent elements, as a result, we conclude that

α has infinitely many conjugates over A and hence α is not in aclt(A).

Case 4: The element α is not in A(k,Γ)
ac
. Since any field automorphism of Ω fixing

k and Γ is an automorphism of the triple, we deduce that acl(A, k,Γ) = aclt(A, k,Γ).

This indicates that α is not in aclt(A). Hence we are done.

Now we give two immediate corollaries of the previous lemma.

Corollary 3.7. For any subset D in Ω,

aclt(D) = acl(D, kaclt(D),Γaclt(D)).

Moreover if B = aclt(k1,Γ1) where k1 and Γ1 are algebraically closed in k and Γ

respectively, then B = acl(k1,Γ1).

Proof. As acl(D, kaclt(D),Γaclt(D)) ⊆ aclt(D) and aclt(D) is (k,Γ)-independent by

lemma (3.5), we conclude by (3.6). In the proof of lemma (3.6) Case 1 and Case

2, we observe that kB = k1 and ΓB = Γ1. We finish by lemma (3.6) again.
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Corollary 3.8. Let B be algebraically closed in the sense of the triple. Then ΓB =

Γaclt(B,k) and kB = kaclt(B,Γ). In particular, we have B(k)∩Γ = ΓB and B(Γ)∩k = kB .

Proof. As B is (k,Γ)-independent by lemma (3.5), we obtain that B(k)
ld

|̂
k(ΓB)

k(Γ)

and B(Γ)
ld

|̂
kB(Γ)

k(Γ). Therefore by lemma (3.6), we see that ΓB = Γaclt(B,k) and

kB = kaclt(B,Γ). In particular, we obtain that B(k) ∩ Γ = ΓB and B(Γ) ∩ k = kB .

3.2 Characterization of Forking

In this section, we characterize forking in the triple. First, we need several lemmas.

The following lemma states when two algebraically closed structures in the sense of

the triple have the same type over a common substructure.

Lemma 3.9. Let B1,B2 and C ⊆ B1 ∩ B2 be three algebraically closed sets in

the sense of the triple. Then tpt(B1/C) = tpt(B2/C) if and only if there is a

field automorphism over C sending B1 to B2 with (kB1 ,ΓB1) to (kB2 ,ΓB2), and

tpk(kB1/kC) = tpk(kB2/kC) and tpΓ(ΓB1/ΓC) = tpΓ(ΓB2/ΓC).

Proof. ⇐: By tpk(kB1
/kC) = tpk(kB2

/kC) and tpΓ(ΓB1
/ΓC) = tpΓ(ΓB2

/ΓC), there is

an automorphism f ∈ Aut(k/kC) sending kB1
to kB2

and there is an automorphism

g ∈ Aut(Γ/ΓC) sending ΓB1
to ΓB2

. As kC contains k0 and ΓC contains Γ0, by

lemma (3.2) there is an automorphism h of k(Γ) over kC(ΓC) sending kB1
(ΓB1

) to

kB2
(ΓB2

). Since C is (k,Γ)-independent by lemma (3.5), the map h further extends

to an automorphism of C(k,Γ) over C. Moreover since each Bi is (k,Γ)-independent

by lemma (3.5), we deduce that

Bi
ld

|̂
C(kBi

,ΓBi
)

C(k,Γ).

As we also have tp((B1, kB1
,ΓB1

)/C) = tp((B2, kB2
,ΓB2

)/C) and the linear disjoint-

ness above, the map h further extends to an isomorphism between B1(k,Γ) and

B2(k,Γ) over C which extends to Ω. Hence tpt(B1/C) = tpt(B2/C). The other

direction is clear.

Now we prove another lemma before characterizing the independence in (Ω, k.Γ).

Lemma 3.10. Let C ⊆ A ∩ B be three algebraically closed structures in the sense of

the triple and suppose that A |̂
C,k,Γ

B, k,Γ. Then aclt(A,B) = acl(A,B). Moreover, we

have kaclt(A,B) = acl(kA, kB) and Γaclt(A,B) = aclΓ(ΓA,ΓB).
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Proof. Since A is algebraically closed, lemma (3.5) and transitivity yield that

A |̂
C,kA,ΓA

B, k,Γ

and so A |̂
B,kA,ΓA

k,Γ. As B is algebraically closed, similarly we have that B |̂
kB ,ΓB

k,Γ

and thus

B |̂
acl(kA,kB)(ΓAΓB)

k,Γ.

By transitivity, we obtain that

A,B |̂
acl(kA,kB)(ΓAΓB)

k,Γ.

Note that by lemma (2.7), the group ΓAΓB is algebraically closed in Γ. By corollary

(3.7), we see that aclt(kA, kB ,ΓA,ΓB) = acl(kA, kB ,ΓA,ΓB). Since acl(kA, kB ,ΓA,ΓB)

is also (k,Γ)-independent by lemma (3.5), by transitivity and in terms of linear dis-

jointness we deduce that

acl(A,B)
ld

|̂
acl(kA,kB)(ΓAΓB)

k(Γ).

Hence by lemma (3.6), we deduce that aclt(A,B) = acl(A,B) and also that kaclt(A,B) =

acl(kA, kB) and Γaclt(A,B) = aclΓ(ΓA,ΓB) = ΓAΓB .

Now we are ready to give the characterization of forking in the triple by applying

lemmas (3.6), (3.9) and (3.10). We follow a similar method as in (2.12). It turns our

that independence in the triple is given by the algebraic independence in Ω and k; see

(iii) below.

Theorem 3.11. (Characterization of Forking)

Let C = A ∩ B and all be algebraically closed in the sense of the triple Tt. Then

the following are equivalent:

(i) A
t

|̂
C

B,

(ii) A |̂
C,k,Γ

B, k,Γ and A |̂
C

B

(iii) A |̂
C,k,Γ

B, k,Γ and kA |̂
kC

kB.

Proof. First suppose that A
t

|̂
C

B. By lemma (2.2), we have that A |̂
C

B. In particu-

lar, we obtain kA |̂
C

kB . Moreover since C is algebraically closed in the sense of (Ω, k),

we also have that C |̂
kC

k and so C |̂
kC

kB . This two independence give us that kA |̂
kC

kB .
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Now we prove that A |̂
C,k,Γ

B, k,Γ. Suppose for a contradiction that

A 6 |̂
C,k,Γ

B, k,Γ.

Let q = tp(B/C ∪ kB ∪ΓB) and λ ≥ ω1. By saturation, there exists (Bi)i≤λ with B =

B0 such that Bi |= q and (Bi)i≤λ is independent over C∪k∪Γ in the field sense, and in

particular Bi |̂
C,kB ,ΓB

C, k,Γ. So kB ⊆ kBi
and ΓB ⊆ ΓBi

for all i.On the other hand, by

the independence Bi |̂
C,kB ,ΓB

C, k,Γ we have that kBi
,ΓBi

⊆ acl(C, kB ,ΓB) ⊆ B. Thus

we obtain the equalities kB = kBi and ΓB = ΓBi for all i. As C is (k,Γ)-independent

by lemma (3.5), we see that

C(kB ,ΓB)
ld

|̂
kB(ΓB)

k(Γ).

Thus by lemma (3.6), we deduce that aclt(C, kB ,ΓB) = acl(C, kB ,ΓB), and also that

kB = kacl(C,kB ,ΓB) and ΓB = Γacl(C,kB ,ΓB). So we see that

acl(C, kB ,ΓB)
ld

|̂
kB(ΓB)

k(Γ).

As Bi |̂
C,kB ,ΓB

k,Γ, by transitivity and in terms of linear disjointness, we obtain that

Bi
ld

|̂
kB(ΓB)

k(Γ).

Therefore by lemma (3.6) again, we deduce that Bi is algebraically closed in the sense

of the triple for all i. Then, lemma (3.9) yields that tpt(Bi/C) = tpt(B/C). By Erdős-

Rado theorem, we may assume that (Bi)i≤λ is C-indiscernible in the sense of Tt. Let

pi = tpt(A/Bi). Since A
t

|̂
C

B, we know that
⋃
i≤λ pi(x,Bi) is consistent. So there

exists A1 such that tpt(A1Bi) = tpt(AB) for all i. Now (Bi)i≤λ is independent over

C ∪ k ∪ Γ and A1 6 |̂
C,k,Γ

Bi for each Bi. This contradicts the stability of the field Ω.

Hence we proved that (i) implies (ii) and (iii).

Now we prove that (ii) and (iii) are equivalent. We already proved that (ii) implies

(iii) in the beginning. Suppose that we have (iii). Since A is algebraically closed in

the sense of the triple, it is k-independent. In particular, C(kA) is k-independent and

hence we get that C(kA) |̂
kA

kB . As we also have kA |̂
kC

kB , by transitivity we obtain

that C(kA) |̂
kC

kB and hence kA |̂
C

kB . As A and B are k-independent, by transitivity

we conclude the independence A |̂
C

B.



54 CHAPTER 3. MANN PAIRS

Lastly, we prove that (ii) implies (i). Let (Bi)i be a Morley sequence over C in

the sense of the triple where B0 = B. Note that (Bi, kBi
,ΓBi

)i is also a Morley

sequence over C in the sense of the triple but for simplicity we write (Bi)i instead.

By (ii) we also have that kA,ΓA |̂
C

B. By stationarity over algebraically closed sets

in ACF and as Ω is ω-stable, we may assume that (Bi)i is a Morley sequence over

C ∪ kA ∪ ΓA in the field sense. Since A |̂
C

B, we also have A |̂
C,kA,ΓA

B, kA,ΓA. Let

p(x) = tp(A/B ∪ kA ∪ ΓA) and pi(x) be the copy over Bi. Then by A |̂
C,kA,ΓA

B, k,Γ

and saturation also, there exists an element d |=
⋃
i pi(x) such that

d |̂
C,kA,ΓA

Bi, k,Γ

for all i. Observe that kd = kA and Γd = ΓA, and also tp(dBikAΓA) = tp(ABkAΓA)

for all i. Moreover since A is (k,Γ)-independent by lemma (3.5), we have that

C(kA,ΓA)
ld

|̂
kA(ΓA)

k(Γ).

So by lemma (3.6), we obtain that aclt(C, kA,ΓA) = acl(C, kA,ΓA). In particular

acl(C, kA,ΓA) is (k,Γ)-independent by lemma (3.5). Since also we have d |̂
C,kA,ΓA

k,Γ,

by transitivity and in terms of linear disjointness, we deduce that

d
ld

|̂
kA(ΓA)

k(Γ).

Therefore by lemma (3.6) again, we conclude that d is algebraically closed in the

sense of the triple. By lemma (3.10), we see that aclt(A,B) = acl(A,B), and also

kaclt(A,B) = acl(kA, kB) and Γaclt(A,B) = aclΓ(ΓA,ΓB). Moreover, we have

acl(A,B)
ld

|̂
acl(kA,kB)(ΓAΓB)

k(Γ).

By the choice of d, we also have that

acl(d,Bi)
ld

|̂
acl(kA,kBi

)(ΓAΓBi
)

k(Γ).

Using tp(dBikAΓA) = tp(ABkAΓA) and the previous two linearly disjointness, we

conclude that tpt(dBikAΓA) = tpt(ABkAΓA) for all i. Hence we have (i).
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Corollary 3.12. For every a ∈ Ω, we have that

a
t

|̂
kaclt(a),Γaclt(a)

k,Γ.

Moreover we also have the independence a
t

|̂
Γaclt(a)

Γ.

Proof. Since aclt(a) is (k,Γ)-independent by lemma (3.5), we have that

aclt(a) |̂
acl(kaclt(a),Γaclt(a))

acl(k,Γ)

and aclt(a) ∩ acl(k,Γ) = acl(kaclt(a),Γaclt(a)). By corollary (3.7), we see that

acl(kaclt(a),Γaclt(a)) = aclt(kaclt(a),Γaclt(a))

and also that aclt(k,Γ) = acl(k,Γ). Therefore, we deduce that

aclt(a) |̂
aclt(kaclt(a),Γaclt(a))

aclt(k,Γ).

Applying Theorem (3.11), we have the first part. For the second part, we have

aclt(Γ) = acl(Γ, k0) and aclt(Γaclt(a)) = acl(Γaclt(a), k0), and also that kaclt(Γ) = k0

by corollary (3.7). As aclt(a) is Γ-independent by remark (??), we conclude by Theo-

rem (3.11) similar to the first part.

The next lemma states that the independence in the triple implies the independence

in Γ as a pure group.

Lemma 3.13. Let C = A∩B and all be algebraically closed in the sense of the triple

and A
t

|̂
C

B. Then we have the independence ΓA
Γ

|̂
ΓC

ΓB in the abelian group Γ.

Proof. As A
t

|̂
C

B, we have ΓA
t

|̂
C

ΓB . Corollary (3.12) and the transitivity of the

independence yield that ΓA
t

|̂
ΓC

ΓB . Hence we conclude that ΓA
Γ

|̂
ΓC

ΓB .

3.2.1 Independence over Models and Stationarity

In this subsection we study the independence over models. Then we investigate the

relation between the independence in the triple and the independence in (Ω, k) and

(Ω,Γ).

Proposition 3.14. Let M = A∩B where A, B are algebraically closed in the sense of

the triple Tt and M is a model of Tt. Then A
t

|̂
M

B if and only if A
ld

|̂
M(kA,ΓA)

B(k,Γ)
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and kA
ld

|̂
kM

kB.

Proof. By Theorem (3.11), it is enough to prove thatA
t

|̂
M

B impliesA
ld

|̂
M(kA,ΓA)

B(k,Γ).

Now let a1, ..., an be in A (not necessarily distinct), the elements b1, ..., bn be in B, the

elements k1, ..., kn be in k and g1, ..., gn be in Γ such that

a1b1k1g1 + · · ·+ anbnkngn = 0.

Let f(x̄, ȳ, z̄, t̄) be the formula x1y1z1t1 + · · · + xnynzntn = 0. Let φ(x̄, ȳ) be the

formula

∃z̄ ∈ P1∃t̄ ∈ P2f(x̄, ȳ, z̄, t̄).

Then ā |= φ(x̄, b̄). As A
t

|̂
M

B, by stability the type tpt(A/B) is an heir extension of

tpt(A/M). So there is m̄ ∈ M such that ā |= φ(x̄, m̄). We finish the proof since A is

(k,Γ)-independent by lemma (3.5).

Proposition 3.15. Let C = A ∩B and all be algebraically closed in the sense of the

triple Tt. If A
t

|̂
C

B then we have the independences A
P1

|̂
C

B and A
P2

|̂
C

B in the sense

of the pairs (Ω, k) and (Ω,Γ) respectively.

Proof. Suppose that A
t

|̂
C

B. As A is (k,Γ)-independent by lemma (3.5), by tran-

sitivity we have A |̂
C,kA,ΓA

B, k,Γ and A |̂
C

B. Thus by remark (??), it is enough

to show that A |̂
C,k

B, k and A |̂
C,Γ

B,Γ. Note that by corollary (3.8), we have that

Γaclt(B,k) = ΓB and kaclt(B,Γ) = kB . In order to show A |̂
C,k

B, k, by transitivity it is

enough to show that B(k)
ld

|̂
C(k)

C(k,ΓA). So let b1, ..., bn be in B, the elements k1, ..., kn

be in k and g1, ..., gn be in ΓA such that

b1k1g1 + · · ·+ bnkngn = 0.

We may suppose that no proper subsum of this equation is zero. Since Γ has the Mann

property over Ω, we obtain that gi
g1
∈ aclt(B, k) and so gi

g1
∈ ΓB for all i. As gi

g1
∈ ΓA

also, we obtain that gi
g1
∈ ΓC for all i. Thus we have what we desired. Similarly,

to prove A |̂
C,Γ

B,Γ, we need to show that B(Γ) |̂
C(Γ)

kA. Since kaclt(B,Γ) = kB and

aclt(B,Γ) is k-independent, in particular we obtain that B(Γ) |̂
kB

kA. As we also have

kB |̂
kC

kA by A
t

|̂
C

B, we conclude by transitivity. Hence we have the proposition.
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Now we give more equivalences for the characterization of forking in the triple:

Corollary 3.16. Let C = A ∩ B and all be algebraically closed in the sense of the

triple Tt. Then the following are equivalent:

(i) A
t

|̂
C

B,

(ii) A |̂
C,k,Γ

B, k,Γ and A |̂
C

B

(iii) A |̂
C,k,Γ

B, k,Γ and kA |̂
kC

kB,

(iv) A |̂
C,k,Γ

B, k,Γ and A |̂
C,Γ

B,Γ.

Proof. By Theorem (3.11) and proposition (3.15) we know that (i), (ii) and (iii)

are equivalent and (i) implies (iv). Now we show that (iv) implies (ii). If we have

A |̂
C,Γ

B,Γ, then lemma (2.10) yields the desired independence A |̂
C

B.

Remark 3.17. Note that in corollary (3.16)(iv), we cannot replace A |̂
C,Γ

B,Γ by

A |̂
C,k

B, k since the latter independence does not imply the independence A |̂
C

B.

Next we prove that the types over algebraically closed sets are stationary under Γ

has WEI, even though we do not have WEI in the triple.

Proposition 3.18. Suppose that Γ has WEI. Let C be algebraically closed in the sense

of the triple Tt and b is a tuple (possibly infinite) from Ω. Then the type tpt(b/C) is

stationary.

Proof. Suppose that Γ has WEI. Let B = aclt(B) be a set containing C. Let b1 and

b2 be such that bi
t

|̂
C

B for i = 1, 2 and tpt(b1/C) = tpt(b2/C). Put di = aclt(bi, C)

for i = 1, 2. By the characterization of the independence (3.11) and since kC is an

algebraically closed field, we see that di
ld

|̂
C(kdi ,Γdi

)ac

B(k,Γ)
ac

and kdi
ld

|̂
kC

kB for i =

1, 2. Note that we also have that tpt(d1/C) = tpt(d2/C). Now we will prove that

tpt(b1/B) = tpt(b2/B). By lemma (3.13), we obtain that Γdi
Γ

|̂
ΓC

ΓB for i = 1, 2. By

WEI and since ΓC is algebraically closed in Γ, the type tpΓ(Γd1/ΓC) is stationary by

lemma (2.18). So by lemma (2.17), there is an automorphism g ∈ Aut(Γ/ΓB) sending

Γd1 to Γd2 . Similarly with the help of kdi
ld

|̂
kC

kB and stationarity over kC , there is

an automorphism f ∈ Aut(k/kB) sending kA to kA1
. As kB contains k0 and ΓB

contains Γ0, by lemma (3.2) there is an automorphism h of k(Γ) over kB(ΓB) sending

kd1(Γd1) to kd2(Γd2). Moreover since B is (k,Γ)-independent, the map h further

extends to an automorphism of B(k,Γ) over B and this also extends to B(k,Γ)
ac
.
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Now since bi
ld

|̂
C(kbi ,Γbi

)ac

B(k,Γ)
ac

and tpt(b1/C) = tpt(b2/C), we have an isomorphism

from b1B(k,Γ)
ac

to b2B(k,Γ)
ac

sending b1 to b2 over B. Since this also extends to an

automorphism of Ω, we conclude that tpt(b1/B) = tpt(b2/B).

3.3 Definable Groups

In this section, we characterize definable groups in the triple (Ω, k,Γ) up to isogeny.

It emerges that definable groups in the triple are given by definable and interpretable

groups in Ω, k and Γ. We follow a similar method to the previous chapter.

3.3.1 Generics and Examples

The following lemma is analogous to the lemma (2.23). It states when a type-definable

group in the triple is an algebraic group.

Lemma 3.19. (The Group Lemma for the triple) Let H be a connected Tt-type-

definable subgroup of an algebraic group V , all definable over an algebraically closed

set A in the sense of the triple. Let a be the generic over A which lies in some translate

of H which is also definable over A. If kaclt(a,A) = kA and Γaclt(a,A) = ΓA, then H is

an algebraic group. In particular H is definable.

Proof. First we may assume that a ∈ H: Suppose that a ∈ bH. Let a′ be such that

tpt(a′/A) = tpt(a/A) and a′
t

|̂
A

a. Then we have a−1a′
t

|̂
A

a and a−1a′ ∈ H is generic.

Since a′
t

|̂
A

a, we have that a′, A
t

|̂
A

a,A. So by lemma (3.10) and Theorem (3.11), we

see that

kaclt(a−1a′,A) ⊆ kaclt(a′,a,A) ⊆ acl(kaclt(a′,A), kaclt(a,A)).

Since kaclt(a′,A) = kaclt(a,A) = kA, we deduce that kaclt(a−1a′,A) = kaclt(A). Similarly we

obtain that Γaclt(a−1a′,A) = ΓA. Thus we may assume that a ∈ H. Put p = tpt(a/A)

and p0 its T -reduct. Let H0 be the smallest algebraic group containing H which exists

by the assumption and the ω-stability of Ω. Note that H = stabt(p) ⊂ stabT (p0).

So H0 ⊆ stabT (p0). On the other hand, since p0(x) implies that x ∈ H0, we get that

stabT (p0) ⊆ H0. Thus we have the equality and moreover H0 is T -connected. To prove

the lemma it is enough to show that p is the unique generic of H0. Let h be a generic

of H0 over A in the sense of the triple and put q = tpt(h/A).

Claim: We have h |̂
A

k,Γ. First note that a ∈ H0 and as the algebraic closure is

(k,Γ)-independent and by the assumptions kaclt(a,A) = kA and Γaclt(a,A) = ΓA, we

have that a,A |̂
kA,ΓA

k,Γ and so a |̂
A

k,Γ. As a consequence, we see that a is a generic

over A∪ k ∪Γ. Now if h 6 |̂
A

k,Γ, then there exists a formula ϕ(x,m, γ) ∈ tp(h/A, k,Γ)
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which is not generic in H0, with parameters from A, where m ∈ k and γ ∈ Γ. Put

n = n(ϕ) as in lemma (2.22) and

θ(y, z) = ∃h1...∃hn ∈ H0(∀x ∈ H0

∨
i≤n

hiϕ(x, y, z))

and φ(x, y, z) = ¬θ(y, z) ∧ ϕ(x, y, z). Observe that for all tuples (b, c), the formula

φ(x, b, c) is not generic in H0. However the formula

ψ(x) = ∃y ∈ P1 ∃z ∈ P2 φ(x, y, z)

whose parameters from A is realized by h and so it is generic in H0. Therefore finite

number of translates of ψ(x) cover H0, say H0 =
⋃
i≤k αiψ(x). Take a′ such that

tpt(a′/A) = tpt(a/A) and a
t

|̂
A

α1, ...αk. Thus for certain α ∈ H0 we may suppose

that a ∈ αψ(x) and a
t

|̂
A

α. So a ∈ αφ(x,m′, g′) for some m′ ∈ k and γ′ ∈ Γ. By the

characterization of the independence (3.11), we have that a |̂
A,k,Γ

α and by transitivity

we get a |̂
A

α, k,Γ. This is a contradiction since the formula αφ(x,m′, g′) is not generic

in H0. So we have the claim.

Now since A is (k,Γ)-independent by lemma (3.5), by transitivity of the indepen-

dence, we see that h,A |̂
kA,ΓA

k,Γ. As aclt(kA,ΓA) = acl(kA,ΓA) by corollary (3.7), it

is (k,Γ) independent. Therefore, by transitivity and in terms of linear disjointness, we

obtain that

acl(h,A)
ld

|̂
kA(ΓA)

k(Γ).

Thus by lemma (3.6), we conclude that aclt(h,A) = acl(h,A), and also that kaclt(h,A) =

kA and Γaclt(h,A) = ΓA. Since there is a field automorphism over A sending a to h,

linear disjointness yields a field automorphism over A ∪ k ∪ Γ sending a to h. Hence

we obtain that q = p and we conclude that H = H0.

Remark 3.20. Observe that none of the groups k× and Γ satisfy the conclusion of

lemma (3.19) as they are not algebraic groups in Ω.

Lemma 3.21. Let v and h be generics over a small model M of Tt of an algebraic

group V defined over k and a type-definable group H in Γ respectively. Then we have

the independence v
t

|̂
M

h. If V and H are connected, then so is V ×H.

Proof. Suppose that there is a formula ϕ(x, h) over M such that |= ϕ(v, h) and the

formula ϕ(x, h) forks. Let φ(x, y) = ϕ(x, y) ∧ (x ∈ P1) ∧ (y ∈ P2). Then by Theorem

(3.1), we know that φ(x, y) =
⋃
i,j φi(x) ∧ φj(y), where φi(x) is a formula defined in
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k and φj(y) is a formula defined in Γ. Thus for some i or j, we obtain that φi(x) or

φj(y) fork. However, a generic does not fork over the empty set, a contradiction. If V

and H are connected, lemma (2.17) yields that the tuple (v, h) is the unique generic

of V ×H over M and hence the product is also connected.

Before characterizing definable groups in the triple, we give some examples.

Example 3.22. (Some definable groups in the triple) Algebraic groups over Ω, alge-

braic groups over k, the group Γ and its powers, the product Ω× k × Γ and

SL(2, k,Γ,Ω) =

{(
a b

c d

)
: ad− bc ∈ k×

}
×
{(

a b

c d

)
: ad− bc ∈ Γ

}

are all definable in the triple. One can see that each of them satisfy the hypothesis of

the following Theorem (3.23).

3.3.2 Characterization of Definable Groups

Now we are ready to characterize definable groups in the triple (Ω, k,Γ) in terms

of definable and interpretable groups in each sort. We use the group configuration

theorem (1.18) together with lemma (2.27), Theorem (3.11), lemma (3.13), lemma

(3.19) and lemma (3.21).

Theorem 3.23. (Definable Groups for the triple) Let Ω be an algebraically closed

field, the field k be a proper subfield of Ω which is also algebraically closed and Γ be

a multiplicative subgroup of Ω× such that (k,Γ) is a Mann pair. Any type-definable

group in (Ω, k,Γ) is isogenous to a subgroup of an algebraic group. Moreover any type-

definable group is, up to isogeny, an extension of a direct sum of k-rational points of

an algebraic group defined over k and a type-interpretable abelian group in Γ by an

algebraic group.

Proof. Let H be a type-definable group in (Ω, k,Γ) over some parameters. By remark

(2.26), we may suppose that H is connected. We will work over a model containing

the parameters defining H which we will omit. Given two independent generics a

and b of H, we write a, b and ab instead of their algebraic closures in the sense of

the triple respectively. Observe that by lemma (3.10) and the characterization of the

independence (3.11), the tuple ab is T -algebraic over a∪b since a, b are two independent

algebraically closed subsets. With the help of the third generic c which is independent

from a and b, we obtain the following diagram:
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Then by lemma (2.2), we have a T -group configuration. So by the group config-

uration theorem (1.18) and lemma (2.27), there exists a ∗-interpretable group in the

pure field Ω whose generic is interalgebraic with the generic of H. So we conclude that

there is an algebraic group in Ω which H embeds in up to isogeny. Thus up to isogeny,

we may assume that H is a subgroup of an algebraic group.

By lemma (3.10) and Theorem (3.11), the set kab is k-algebraic over ka ∪ kb.
Similarly, the set Γab is Γ-algebraic over Γa ∪ Γb. Applying the characterization of

independence (3.11) and lemma (3.13), we have the following diagrams:
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So by the group configuration theorem (1.18), we obtain a connected ∗-interpretable

group V1 in k and a connected ∗-interpretable group H1 in Γ. Moreover a generic v of

V1 is k-interalgebraic with ka. Similar thing holds for Γ. Now lemma (2.27) yields a pro-

jection π1 from H to a V1 and a projection π2 from H to H1. Furthermore the generic

v of V1 is Tt-interalgebraic with ka and the generic h of H1 is Tt-interalgebraic with

Γa. By lemma (3.21), the tuple (v, h) is a generic of V1×H1 which is Tt-interalgebraic

with (ka,Γa). Since V1 and H1 are connected, lemma (3.21) also yields that the tuple
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(v, h) is the only generic of V1×H1 and this product is also connected. Thus by lemma

(2.27) again, we have a projection π from H to V1×H1 in k×Γ which is given by the

stabilizer of the type tpt(a, v, h). Finally we show that the connected component N of

the kernel ker(π) is an algebraic group by the group lemma (3.19): Let n be a generic

of N over a in the sense of the triple. So we have n
t

|̂ a and na
t

|̂ a. Observe that

na ∈ Na is a generic also. Since the tuple (n, 1, 1) is in the stabilizer of tpt(a, v, h), we

have that the tuples (na, v, h) and (a, v, h) have the same t-type. Thus in particular,

we have kna = ka and Γna = Γa. Moreover by lemma (3.10) and Theorem (3.11) we

obtain that kna,a is in the k-algebraic closure of kna and ka. Therefore we see that

kna,a = ka and similarly Γna,a = Γa. Now the type tpt(na/a) satisfies the hypothesis

of the lemma (3.19) and we conclude that N is an algebraic group. So by elimination

of imaginaries in k and by (2.28), we can take V1 to be an algebraic group and H1

to be type-interpretable. Note also that H1 is abelian by Theorem (2.29) and remark

(2.21).

3.4 Imaginaries and Interpretable Groups

Our goal in this section is to characterize interpretable groups in the triple (Ω, k,Γ).

Through the section, we assume that Γ is divisible. As in the previous chapter, note

that Γ is strongly minimal and every infinite algebraically closed subset of Γ is an

elementary substructure. By [10], the triple is ω-stable has infinite Morley rank. In

this section, we will give a description of imaginaries in the triple which enables us to

characterize interpretable groups in (Ω, k,Γ). Observe that (Ω, k,Γ) does not eliminate

imaginaries.

3.4.1 Canonical Base Lemmas

Our description of imaginaries will be by means of canonical bases as in the previous

chapter and as in [28]. The next three results are analogues of lemma (2.49), corollary

(2.50) and lemma (2.51) from Chapter 2 which are adapted to the triple (Ω, k,Γ).

Lemma 3.24. Let B be an elementary substructure of (Ω, k,Γ). Suppose that d =

Cb(tp(a/ acl(B, k,Γ))). Then a
t

|̂
d

B, k,Γ.

Proof. As Ω eliminates imaginaries, we might assume that d is contained in Ω. First

of all, note that aclt(B, k,Γ) = acl(B, k,Γ) and a |̂
d

B, k,Γ as d is the canonical base.

The independence a |̂
d

B, k,Γ yields that

acl(a, d) |̂
d,kaclt(d),Γaclt(d)

k,Γ.
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Note that by corollary (3.7) we see that

aclt(d) = acl(d, kaclt(d),Γaclt(d))

and aclt(kaclt(d),Γaclt(d)) = acl(kaclt(d),Γaclt(d)). So in particular, they are (k,Γ)-

independent by lemma (3.5). Since

d |̂
kaclt(d),Γaclt(d)

k,Γ,

by transitivity we obtain that

acl(a, d, kaclt(d),Γaclt(d)) |̂
kaclt(d),Γaclt(d)

k,Γ.

In terms of linear disjointness, this gives us that

acl(a, d, kaclt(d),Γaclt(d))
ld

|̂
kaclt(a)(Γaclt(d)

)

k(Γ).

Thus by corollary (3.7) again, we deduce that

aclt(a, d, kaclt(d),Γaclt(d)) = acl(a, d, kaclt(d),Γaclt(d)),

and also that kaclt(a,d) = kaclt(d) and Γaclt(a,d) = Γaclt(d). Now as a |̂
d

B, k,Γ, we have

that

acl(a, d, kaclt(d),Γaclt(d)) |̂
acl(d,kaclt(d),Γaclt(d)

)

acl(B, k,Γ)

and this yields that

aclt(a, d) |̂
aclt(d)

aclt(B, k,Γ).

We finish the lemma by the characterization of the independence (3.11).

Corollary 3.25. Let B be an elementary substructure of (Ω, k,Γ) and let a be a finite

tuple from Ω. Put d = Cb(tp(a/ acl(B, k,Γ))). Then Cb(tpt(a/B)) is interalgebraic in

(Ω, k,Γ) with Cb(tpt(d/B)).

Proof. Set p = tpt(a/B) and q = tpt(d/B). Let e1 = Cb(p) and e2 = Cb(q). Note

that e1 and e2 are in Beq. By lemma (3.24), we know that a
t

|̂
d

B, k,Γ. So a
t

|̂
d

B, d

and a
t

|̂
e2,d

B, d. As d
t

|̂
e2

B, by transitivity we conclude that a
t

|̂
e2

B. This gives that e1

is algebraic over e2.

The converse follows from a similar proof of corollary (2.50).

We say that a type in the triple (Ω, k,Γ) is almost (k,Γ)-internal if it is almost
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k ∪ Γ-internal. The next lemma asserts that, up to interalgebraicity, an imaginary

element in the triple is a canonical base of a type over itself and this type is almost

(k,Γ)-internal.

Lemma 3.26. Let e ∈ (Ω, k,Γ)eq be an imaginary element. There is e′ ∈ (Ω, k,Γ)eq

interalgebraic with e, such that for some finite tuple d′ from Ω we have e′ = Cb(tpt(d′/e′))

and tpt(d′/e′) is almost (k,Γ)-internal.

Proof. Let a be a tuple in Ω such that e = f(a) for some 0-definable function in

(Ω, k,Γ)eq. Set e1 = Cb(tpt(a/aclt
eq(e))). Observe that e1 is algebraic over e. As

e = f(a) and a
t

|̂
e1

e, we obtain that e
t

|̂
e1

e and hence e and e1 are interalgebraic. Now

let (B, kB ,ΓB) be an elementary substructure of (Ω, k,Γ) such that e1 ∈ (B, kB ,ΓB)eq

and a
t

|̂
e1

B. Let d = Cb(tp(a/ acl(B, k,Γ))). We may assume d to be a finite tuple in

Ω owing to ω-stability and elimination of imaginaries. Put e2 = Cb(tpt(d/B)). Then

by corollary (3.25) and a
t

|̂
e1

B, we see that e1 and e2 are interalgebraic. Note that the

type tpt(d/B) is almost (k,Γ)-internal. Thus since d
t

|̂
e2

B, the type tpt(d/e2) is also

almost (k,Γ)-internal. By lemma (2.38), there is an imaginary element d′ ∈ (Ω, k,Γ)eq

such that d′ ∈ aclt(d, e) and d ∈ aclt(d
′), and also the type tpt(d′/e2) is almost (k,Γ)-

internal. Let e′ = Cb(tpt(d′/e2)). Then e′ ∈ aclt(e2) and d
t

|̂
e′
e2 as d ∈ aclt(d

′). Hence

e2 ∈ aclt(e
′). Thus, we conclude that e and e′ are interalgebraic.

Lemma 3.27. (Coheir) Let e ∈ (Ω, k,Γ)eq and B = aclt(e)∩ (k ∪Γ). Let c be a tuple

from k ∪ Γ. Then tpt(c/B, e) is finitely satisfiable in B.

Proof. First observe that the type p = tpt(e/k(Γ)
ac

) is stationary. Let d be the canon-

ical base of p. Therefore, the element d is in aclt
eq(k,Γ). Note that any automorphism

in the triple fixes k∪Γ setwise, and so fixes k(Γ)
ac

setwise as well. Thus d is contained

in aclt(e). As a consequence, the element d is contained in aclt
eq(B). As a result, the

type p is the non-forking extension of the type tpt(e/B) and hence p is definable over

B. Therefore for a given formula φ(x, y) of Lt
eq over B, there is a formula ψ(y) over

B such that φ(x, β) ∈ p if and only if ψ(β) holds. By Theorem (3.1) we know that the

induced structure on (k,Γ) is itself and by stability, there exists a formula f(y) in the

pure field k and a formula g(y) in Γ in the language of pure groups such that, for all

β ∈ k ∪ Γ we have |= ψ(β) if and only if

|= (β ∈ k ∧ f(β)) ∨ (β ∈ Γ ∧ g(β)).

Note that B contains k0 ∪ Γ0. Since kB is an elementary substructure of k and ΓB

is an elementary substructure of Γ, if c ∈ k ∪ Γ and |= φ(e, c) then |= ψ(c), so

|= (c ∈ k ∧ f(c)) ∨ (c ∈ Γ ∧ g(c)), thus either for some c1 ∈ kB we have |= f(c1) or

some c2 ∈ ΓB we have |= g(c2) and this yields that |= φ(e,m) for some m ∈ B.
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We know that the Morley rank is definable in k and Γ as they are strongly minimal.

The next remark states that the Morley rank is also definable in the pair (k,Γ) and

in its algebraic closure.

Remark 3.28. (Morley Rank is definable in (k,Γ)) Morley rank is definable in the

pair (k,Γ) since they are both strongly minimal and orthogonal. Let B be a set of

parameters from Ω. Furthermore the Morley rank is definable in acl(B, k,Γ) for every

natural number m by Theorem (2.45).

Lemma 3.29. Let e ∈ (Ω, k,Γ)eq be an imaginary element. There is a tuple d from Ω,

an Lt-definable function f(x) over ∅, an Lt-formula ψ(y) over e and an Lt-definable

function h(y, z) over e such that

(i) f(d) = e,

(ii) ψ(y) ∈ tp(d/e),

(iii) (∀y, y′)(ψ(y) ∧ ψ(y′) =⇒ ∃z((P1(z) ∨ P2(z)) ∧ h(y, z) = y′))

(iv) Moreover d is Tt-independent from k ∪ Γ over e.

Proof. For (i), (ii) and (iii) we refer the reader to [28, 2.4] as before. Now we prove

(iv). Choose d such that MR(tpt(d/e)) is minimized. By lemma (3.26) we can assume

that the type q = tpt(d/e) is almost (k,Γ)-internal. Thus remark (2.34) yields that

there is some set u such that if d′ |= q then d′ ∈ acl(u, k,Γ). We will show that d is

independent from k,Γ over e. Suppose not and choose b ∈ k∪Γ such that d forks with

b over e. Note that by almost internality and as k and Γ are strongly minimal, we

deduce that MR(tpt(d/e)) is finite. Let m = MR(tpt(d/e, b)) < MR(tpt(d/e)). Note

that the Morley rank is definable in acl(u, k,Γ) by remark (3.28). Let χ(y, z) be a

formula over e such that χ(d, b) holds and for any c, we have MR(χ(y, c)) = m if it is

consistent. Let ∆(z) be the formula

∃y(f(y) = e ∧ ψ(y)) ∧ (∀y, y′)(ψ(y) ∧ ψ(y′) =⇒ (h(y, z) = y′ ∧ (P1(z) ∨ P2(z))).

Observe that ∆(b) holds. Let B = aclt(e) ∩ (k ∪ Γ). By lemma (3.27), there is b1 ∈ B
such that ∆(b1) holds. Then we find d1 satisfying (i), (ii) and (iii) of the lemma

with χ(d1, b1) holds. Since b1 is algebraic over e, we have that MR(tpt(d1/e)) ≤ m,

contradicting the choice of d.

Combining lemmas (3.26) and (3.29), we obtain the following theorem which is a

description of imaginaries in terms of real elements:

Theorem 3.30. Let e ∈ (Ω, k,Γ)eq be an imaginary element. There is a finite real

tuple d such that e is algebraic over d, the type tpt(d/e) is almost (k,Γ)-internal and

d is independent from k ∪ Γ over e in the sense of the triple.
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3.4.2 Characterization of Interpretable Groups

In this subsection, we characterize interpretable groups in the triple. We need two

more lemmas.

Lemma 3.31. If tpt(a/A) is almost (k,Γ)-internal over a real set of parameters A,

then a ∈ acl(A, k,Γ).

Proof. Take B = aclt(B) containing A such that a
t

|̂
A

B and a ∈ aclt(B, k,Γ) =

acl(B, k,Γ). The characterization of the independence (3.11) yields that a |̂
A,k,Γ

B and

therefore we obtain that a ∈ acl(A, k,Γ).

Lemma 3.32. Let H be a definable group in the sense of the triple. If a generic of

H is almost (k,Γ)-internal then H is isogenous to a cartesian product of k-rational

points of an algebraic group defined over k and an interpretable group in Γ.

Proof. By almost internality, we conclude that H is of finite Morley rank. Since infinite

algebraic groups have infinite Morley rank in the triple, we conclude by Theorem (3.23)

and ω-stability.

Now we are ready to characterize interpretable groups in the triple. This is the

strongest result in this chapter and it demands all the tools we have proved through

the chapter.

Theorem 3.33. (Interpretable groups in (Ω, k,Γ)) Let Ω be an algebraically closed

field, the field k be a proper subfield of Ω which is also algebraically closed and Γ

be a divisible multiplicative subgroup of Ω× such that (k,Γ) is a Mann pair. Every

interpretable group H in (Ω, k,Γ) is, up to isogeny, an extension of a direct sum of

k-rational points of an algebraic group defined over k and an interpretable abelian

group in Γ by an interpretable group N , which is the quotient of an algebraic group

by a subgroup N1, which is isogenous to a cartesian product of k-rational points of an

algebraic group defined over k and an interpretable abelian group in Γ.

Proof. Let H be an interpretable group in (Ω, k,Γ). By remark (2.26), we may suppose

that H is connected. Again we work over a small model that we omit. Let α, β and γ

be three independent generics of H in the sense of the triple. By Theorem (3.30), the

generic α is algebraic over a real tuple a0 which is Tt-independent from k,Γ over α

and the type tpt(a0/α) is almost (k,Γ)-internal. Then by (2.55), there are real tuples

a, b, c, d, e and f such that

(a, α)≡t(a, β)≡t(c, γ)≡t(d, αβ)≡t(e, γα)≡t(f, γαβ)≡t(a0, α)

and if we put a = aclt(a) and the same for the others, we have the following diagram:
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such that each non-colinear triples of them are Tt-independent and each set is Tt-

independent from the lines which do not contain it. Since a
t

|̂
α

k,Γ, we see that ka ⊂

aclt(α) ⊂ a. Therefore, we obtain that ka = aclt(α) ∩ k. Moreover by lemma (3.10)

and Theorem (3.11), we have that kaclt(a,b)
= acl(ka, kb). Since kd = aclt(αβ) ∩ k ⊂

kaclt(a,b)
, we get that kd ⊂ acl(ka, kb). This is true for all other tuples and by Theorem

(3.11), the set ka is independent in the field sense from acl(kb, ke) and the same for

the others. We have the same thing for the group Γ by lemma (3.13). So we have the

following diagrams:
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and by the group configuration theorem (1.18), there is a connected ∗-interpretable

group V1(k) in k whose generic v is k-algebraic with ka. By ω-stability, lemma (2.27)

and since k eliminates imaginaries, we may assume that V1 is an algebraic group and

its generic v is interalgebraic with ka in the sense of the triple. Similarly, there exists

a connected interpretable group H1(Γ) in Γ whose generic h is interalgebraic with Γa

in Tt. Furthermore, by Theorem (2.29), the group H1 is abelian. By lemma (3.21), the

tuple (v, h) is the generic of V1×H1 which is Tt-interalgebraic with (ka,Γa). Moreover

by lemma (2.27), we have a projection π from H to the connected group V1 ×H1 in
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k × Γ which is given by the stabilizer of the type tpt(a, v, h).

Next we show that the points a, b, c, d, e, f give a T -group configuration with the

help of the parameter set k,Γ. We know that all three non-colinear of them are in-

dependent in the sense of the triple. As β is algebraic over b and αβ is algebraic

over d, we have that α is algebraic over b, d. Moreover by lemma (3.10), we know that

acl(b, d) = aclt(b, d). Since the type tpt(a/α) is almost (k,Γ)-internal and α is algebraic

over b, d, we observe that the type tpt(a/ acl(b, d)) is also almost (k,Γ)-internal. Thus

by lemma (3.31) we obtain that a ∈ acl(k,Γ, b, d). The same holds for the other tuples.

Therefore, we obtain a connected ∗-interpretable group V over acl(k,Γ) in the field

sense and two independent generics a1, b1 of V such that a1 is field interalgebraic with

a over k,Γ, the element b1 is field interalgebraic with b and a1b1 is field interalgebraic

with d. Since the tuples α, β and γ are algebraic over the finite tuples a1, b1 and a1b1

respectively and as V is a connected pro-algebraic group, there exists a connected

algebraic group W over acl(k,Γ) and two independent generics a2, b2 such that α is

algebraic over a2 and the same for the others. Note that a1 is field algebraic over k,Γ, a

and the same for the others. Moreover, since a, b and d are pairwise Tt-independent

over k,Γ, then so are a2, b2 and a2b2.

As α is algebraic over a and a
t

|̂
ka,Γa

k,Γ by corollary (3.12), we see that a
t

|̂
ka,Γa

k,Γ.

Now let N be the connected component of ker(π). Then α is generic in Nα over

aclt(v, h) = aclt(ka,Γa), so α is also generic over k ∪ Γ.

Now we apply the lemma (2.27) to the tuples (a2, α) and (b2, β). So this gives us

a type-definable surjection φ from W to N , up to isogeny. Lastly, we show that the

connected component N1 of ker(φ) is isogenous to a cartesian product of k-rational

points of an algebraic group defined over k and an interpretable group in Γ. Let n1

be a generic of N1 over k,Γ and a2. Then the point (n1, 1N ) is in the stabilizer of the

type tpt(a2, α/ acleq(k,Γ)) and so tpt(n1a2/α) = tpt(a2/α). Since tpt(a2/α) is almost

(k,Γ)-internal and as a2 is algebraic over k,Γ, a then the type tpt(n1a2/α) is also

almost (k,Γ)-internal. As α is algebraic over k,Γ, a2, the type tpt(n1/k,Γ, a2) is almost

(k,Γ)-internal. Owing to the independence n1

t

|̂
k,Γ

a2, we conclude that tpt(n1/k,Γ) is

also almost (k,Γ)-internal. Then by lemma (3.33) we have that N1 is isogenous to

a cartesian product of k-rational points of an algebraic group defined over k and an

interpretable group in Γ which is abelian by Theorem (2.29).



4
Algebraic Numbers with low height elements

Let Q be the field of algebraic numbers. The model theoretic properties of Q are well

understood; it is strongly minimal and has quantifier elimination in the language of

rings Lr = {+,−, ·, 0, 1}. In this chapter, we mainly focus on the pair Q together

with a predicate, in particular our predicate will be the elements of height less than a

given positive real number. Moreover, we study these pairs in terms of stability. As

mentioned earlier in this thesis, B. Zilber [41] showed that the pair

(C, µ) ≡ (Q, µ)

is ω-stable where µ is the set of complex roots of unity. In this chapter, our predicate,

namely the elements of small height, contains the group µ, and the theory of Q with

this predicate will be a proper extension of the theory of (Q, µ). Model theory of

pairs have attracted a lot of attention recently. More generally, stable theories with

a predicate were analysed in the paper of E. Casanovas and M. Ziegler [6], where

they gave criteria for a pair to be stable. If the based model is strongly minimal, this

criterion coincides with the induced structure on the predicate is stable. Their result

in [6] involves the result of B. Zilber [41] and also B. Poizat’s result on the ω-stability

of the theory of pairs of algebraically closed fields [31]. Before defining our notations

in the chapter, we state Kronecker theorem from diophantine geometry with no proof,

as the details can be found in the book [4].

Theorem 4.1. (Kronecker [4, 1.5.9]) Let α in Q be a non-zero algebraic number.

69
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Then h(α) = 0 if and only if it is a root of unity.

Combining Zilber’s result [41] with Kronecker theorem, we see that the pair

(Q, {a ∈ Q : h(a) = 0})

is ω-stable.

Through this chapter, the language Lm will denote the language {1, ·} where the

binary operation · is the usual multiplication. Let

Sε = {a ∈ Q : h(a) ≤ ε}

be the set of algebraic numbers whose heights are less than ε, where h is the absolute

logarithmic height function and ε > 0. We call Sε the set of algebraic numbers of small

height. Note that the Mahler measure of an algebraic number is again an algebraic

number. Put also S = S1 = {a ∈ Q : h(a) < 1}, as there is no algebraic number whose

height is 1 by Lindemann’s theorem.

The pair (Q, Sε) can be seen as an Lr(U) = Lr∪{U} structure where U is an unary

relation symbol whose interpretation is Sε. Let Tε be the theory Th(Q, Sε). In this

chapter, we focus on the model theory of (Q, Sε) in the language Lm(U) = Lm ∪ {U}
and we prove a result which shows that small perturbations of the property of being a

root of unity modify immensely the stability properties of the ambient structure. We

also relate the simplicity of a certain pair with Lehmer’s conjecture.

4.1 Height Lemmas

In this section, we give the height inequality for the height function on the field of

algebraic numbers. The following two lemmas, details and generalized versions can be

found in [4, 17].

Lemma 4.2. [4, 1.6.7] Let f = a0 + a1X + · · ·+ adX
d ∈ C[X]. Put |f | = maxi{|ai|}.

Then we have 2−d|f | ≤ m(f) ≤ 22d+1|f |.

Let f = a0 + a1X + · · · + adX
d ∈ K[X], where K is a number field. For any

absolute value v ∈ MK , we define |f |v = maxi{|ai|v}. The following lemma is the

Gauss lemma.

Lemma 4.3. (Gauss lemma [4, 1.6.3]) Let K be a number field and suppose f , g are

in K[X]. For a non-archimedean absolute value v on K, we have |fg|v = |f |v|g|v.

There is a relation between height of a polynomial and height of its roots. For a

polynomial f = a0 + a1X + · · · + adX
d over the field of algebraic numbers, define
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H(f) = maxiH(ai), where H is the non-logarithmic height function. Then if f is a

polynomial over a number field K, we have that

H(f) =
∏

v∈MK

max{1, |f |v}
1

[K:Q] .

Now we are ready to prove the height inequality.

Lemma 4.4. For a polynomial

f(x) = (X − α1) · · · (X − αd) = a0 + a1X + · · ·+Xd ∈ Q[X]

over Q, the non-logarithmic height (the logarithmic height respectively) H(αi) is uni-

formly bounded by H(f) and d i.e

2−dH(f) ≤
∏
i≤d

H(αi) ≤ 22d+1H(f).

Proof. Let K be a number field containing the elements αi and aj for i, j ≤ d. By

lemma (4.2), we see that

2−d|f | ≤ m(f) ≤ 22d+1|f |.

For non-archimedean absolute value v ∈ MK , the Gauss lemma (4.3) yields that

|f |v =
∏
i≤d max{1, |αi|v}. As m(f) ≥ 1, we obtain that

2−d
∏

v∈MK

max{1, |f |v} ≤
∏
i≤d
v∈MK

max{1, |αi|v} ≤ 22d+1
∏

v∈MK

max{1, |f |v}.

Hence we get the desired inequality

2−dH(f) ≤
∏
i

H(αi) ≤ 22d+1H(f).

Now using the properties of the height function, we prove several lemmas which

we will need in the next section.

Lemma 4.5. For any non-zero algebraic number α which is not a root of unity, the

set A(α) = {h(αq) : q ∈ Q} is dense in the positive real numbers.

Proof. Let α be a non-zero algebraic number which is not a root of unity. Then by

Theorem (4.1), we know that h(α) > 0. Furthermore, one sees that h(αq) = |q|h(α)

for any q ∈ Q. Given an interval (a, b) where 0 ≤ a < b; choose r ∈ Q such that

a/h(α) < r < b/h(α). Then we conclude that a < h(αr) < b.
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Lemma 4.6. Let p1, ..., pk and m1, ...,mk be positive natural numbers. Then

h(p1
1/m1 · · · pk1/mk) = h(p1

1/m1) + · · ·+ h(p1
1/mk).

Proof. Put m = m1...mk and ni = m/mi. Then by the properties of the logarithmic

height function, we know that for any algebraic number α and rational number q we

have that h(αq) = |q|h(α). Therefore, we see that

h(p1
1/m1 · · · pk1/mk) =

h(p1
n1 · · · pknk)

m
.

Since for a natural number n ≥ 1 we have h(n) = log n, we conclude that

h(p1
n1 · · · pknk)

m
=
h(p1

n1) + · · ·+ h(pk
nk)

m
= h(p1

1/m1) + · · ·+ h(p1
1/mk).

Lemma 4.7. Let p1, ..., pk, pk+1 and m1, ...,mk,mk+1 be natural numbers such that

p1...pk and pk+1 are coprime. Then we have

h

(
p1

1/m1 · · · pk1/mk

pk+1
1/mk+1

)
= max{h(p1

1/m1 · · · pk1/mk), h(pk+1
1/mk+1)}.

Proof. Put m = m1...mkmk+1 and ni = m/mi. Recall that for coprime integers a and

b, we have h(a/b) = max{log |a|, log |b|} = max{h(a), h(b)}. Thus by the properties of

the logarithmic height function, we have

h

(
p1

1/m1 · · · pk1/mk

pk+1
1/mk+1

)
=

1

m
h

(
p1
n1 · · · pknk

pk+1
nk+1

)

=
1

m
max{h(p1

n1 · · · pknk), h(pk+1
nk+1)},

and the lemma follows from the properties of the logarithmic height function again.

Let µ be the set of complex roots of unity. Utilizing Kronecker’s theorem, we can

define µ uniformly in the pair (Q, Sε) for any positive ε.

Lemma 4.8. Let φ(x) be the formula x 6= 0 ∧ ∀y(U(y) → U(xy)) in the language

Lm(U). Then for any positive ε, the formula φ(x) defines µ in the pair (Q, Sε).

Proof. Let ε be a positive real number. A root of the unity satisfies the formula since

the height function satisfies h(xy) ≤ h(x) + h(y) and the height of a root of unity is

0. Now suppose α satisfies the formula. If we take y = 1 in the formula, we see that

h(α) ≤ ε. Then letting y = α, we get h(α) ≤ ε/2. So taking powers of α, we conclude

that h(α) = 0. The lemma follows from Kronecker’s theorem (4.1).
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The next lemma is in [9]. It states that in an algebraically closed field, the many-

valued function in the definition of “large” can be replaced by an ordinary function:

Lemma 4.9. [9, 2.4] Let K be an algebraically closed field and suppose A ⊆ K is

large in K. Then there is a definable function F : Kl → K such that F (Al) = K.

Since ACF0 is strongly minimal, by lemma (1.23) and by the height inequality

(4.4), we can prove that Sε is small in Q.

Lemma 4.10. The set Sε is small in Q for any ε ≥ 0.

Proof. We can assume that ε is 1. Suppose that S is large in Q. So by lemma (4.9),

there is a definable function f : Qm → Q such that f(Sm) = Q. By quantifier elimina-

tion, we see that Graph(f) = {(x1, ..., xm, y) : f(x1, ..., xm) = y} is a subset of union

of varieties in Qm+1
. Without loss of generalities, we may assume that

Graph(f) = V = {(x1, ..., xm, y) : p(x1, ..., xm, y) = 0}

is a variety, where p is a polynomial of degree d. Then we see that y is algebraic over

Sd having degree at most d, where Sd is the set of algebraic elements whose heights

are bounded by d. Now by lemma (4.4) we obtain that h(y) is also bounded. However,

since h is unbounded on Q, we cannot have that f(Sm) = Q. By lemma (1.23), we

conclude that S is small as desired.

4.2 Small Height Elements

In this section, we turn our attention to model-theoretic properties of algebraic num-

bers expanded by a predicate to denote elements of small heights. We have all the

tools to work on these pairs.

4.2.1 Simplicity and Independence Property

Now we are ready to prove our main result in this chapter by using the lemmas (4.5),

(4.6) and (4.7).

Theorem 4.11. The theory of (Q, Sε) is not simple and has the independence property

(IP) in the language Lm(U).

Proof. Recall that the Mahler measure of an algebraic number is again an algebraic

number. Therefore by Lindemann’s theorem, the logarithmic height of an algebraic

number α is transcendental if h(α) 6= 0. First we prove that the theory is not simple.

In order to show this, we exhibit a formula which has the tree property.
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Case 1: The element ε is in the range of the logarithmic height function, that is

to say ε = h(α) for some α ∈ Q. Now put

φ(x, y, z, t) : U

(
ty

x

)
∧ U

(
tx

z

)
.

Observe that for any rational number r, s ∈ (0, 1),

h

(
α
αr

αs

)
< ε ⇐⇒ r < s.

So we can order rational numbers in this theory. Furthermore if (r1, s1) and (r2, s2)

are disjoint intervals of (0, 1), where r1 < s1 < r2 < s2 ∈ Q, then we cannot have

(Q, Sε) |= ∃x(φ(x, αr1 , αs1 , α) ∧ φ(x, αr2 , αs2 , α)),

otherwise we have

h

(
α
x

αs1

)
≤ ε and h

(
α
αr2

x

)
≤ ε.

Therefore, if we multiply these elements, we obtain that h

(
α2 αr2

αs1

)
≤ 2ε. This is a

contradiction, since s1 < r2 and h(α2) = 2ε. Thus the formula φ(x, y, z, t) has the tree

property if we take the parameters (αqs , α) where the parameters (qs : ∅ 6= s ∈ ω<ω)

as given in (1.20).

Case 2: The element ε is not in the range of the logarithmic height function.

Without loss of generality, we can assume that ε = 1 i.e Sε = S as 1 is not transcen-

dental. This time we use the fact that the range of the logarithmic height function is

dense in the positive reals. Again we set

φ(x, y, z, t) : U

(
ty

x

)
∧ U

(
tx

z

)
.

We will show that this formula has the tree property by finding some parameters in

some model of T.

Let ∗M be a nonstandard extension of the many-sorted structure

M = (Q,+,−, ·, 0, 1, h,R≥0).

Then the logarithmic height function extends to ∗Q and it takes values in positive

hyperreal numbers. We also denote this extension as h. Then the pair (∗Q, ∗S) is an

elementary extension of (Q, S) in Lm(U). Note that ∗S is the set of hyperalgebraic

numbers whose heights are less than 1. Let st(a) denote the standard part of a

finite hyperreal number. By lemma (4.5), we know that the sequence {h(2k)} is

dense in positive real numbers where k is a rational number. In particular, there is a
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hyperrational number q such that st(h(2q)) = 1. Moreover q > 1 in the sense of usual

ordering of hyperreal numbers and it is infinitely close to the real number 1/ log 2.

Observe again that for any rational number r, s ∈ (0, 1),

h

(
2q

2r

2s

)
< 1 ⇐⇒ r < s.

Furthermore if (r1, s1) and (r2, s2) are disjoint intervals of (0, 1), where r1 < s1 < r2 <

s2 ∈ Q, then we cannot have

(∗Q, ∗S) |= ∃x(φ(x, 2r1 , 2s1 , 2q) ∧ φ(x, 2r2 , 2s2 , 2q)),

otherwise we have

h

(
2q

x

2s1

)
≤ 1 and h

(
2q

2r2

x

)
≤ 1.

Therefore, if we multiply these elements, we obtain that

h

(
22q 2r2

2s1

)
≤ 2.

This is a contradiction, since s1 < r2 and st(h(22q) = 2, and also

h

(
22q 2r2

2s1

)
> 2.

Thus the formula φ(x, y, z, t) has the tree property if we take the parameters (2qs , 2q)

where the parameters (qs : ∅ 6= s ∈ ω<ω) as given in (1.20). Hence T is not simple.

Now we show that T has the independence property. Let φ(x, y) be the formula

U(x/y).

We will show that this formula has IP. Let n ≥ 1 be given. Let p1, ..., pn be distinct

prime numbers. Put bm = pm
k where k ∈ Q will be chosen. Now let I be a subset of

{1, ..., n} and r be the size of I. For i ∈ I, by lemma (4.5) we can choose ei ∈ Q such

that
1

r
< h(pi

ei) ≤ 1

r
+

1

(n+ 1)2
.

Set

aI =
∏
i∈I

pi
ei .

By lemma (4.6), we have

1 < h(aI) ≤ 1 +
1

n+ 1
.
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Now by lemma (4.5), choose k such that

1− 1

n+ 1
< h(bm) < 1.

Then by lemma (4.7) and the properties of the height function, we get φ(aI , bi) if and

only if i ∈ I. This yields that φ(x, y) has the independence property and hence T is

not NIP.

Let R be the real algebraic numbers and put S(R) = S ∩ R. For real algebraic

numbers, we have the same result:

Corollary 4.12. The theory of (R, S(R)) is not simple and has IP in the language

Lm(U).

Remark 4.13. The proof of Theorem (4.11) indicates that the theory Tε has the tree

property of the first kind TP1.

4.2.2 Elliptic Curve Case

In this short subsection, we give an analogous result of Theorem (4.11) for elliptic

curves with the canonical height function on it. For more on the subject; see [33].

An elliptic curve over Q is the solution set of the equation

y2 = x3 + ax+ b

in Q with an additional point at the infinity O, where a, b ∈ Q and 4a3 + 27b2 is not

zero. An elliptic over Q will be denoted by E = E(Q). An elliptic curve (E(Q), O) is

an abelian group such that O is the identity element. Since Q is algebraically closed,

the group E(Q) is divisible.

Analogous to the logarithmic height function on the set of algebraic numbers, there

is a canonical height function on elliptic curves.

Theorem 4.14. [18, Chapter 5, 2.2.2] Let (E,O) be an elliptic curve over Q. We

define the canonical height ĥ by the formula ĥ(O) = 0 and if P is not O then

ĥ(P ) = lim
n→∞

h(x(2nP ))

4n
.

This height over E satisfies the parallelogram law:

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q).

In particular ĥ(mP ) = m2ĥ(P ). Finally, ĥ(P ) = 0 if and only if P is a torsion point.
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Let Tors be the elements in E whose canonical height is zero and S be the elements

in E whose canonical height ≤ 1. Note that for every integer n ≥ 1, there are finitely

many n-torsion points in E. Similar to the main theorem in this chapter, we have the

following theorem:

Proposition 4.15. Let E be an elliptic curve over Q and ĥ be the canonical height

on it. Then the pair (E(Q), T ors) is stable, however the pair (E(Q), S) is not simple

in the language Lm(U).

Proof. The proof is similar to the proof of the previous theorem, so we will be brief.

Note that since E is divisible with finitely many n-torsions for every n ≥ 1, it has QE

and it is ω-stable. Similar to lemma (4.10), one can show that Tors is small in E. By

Theorem (4.14), we know that Tors is exactly the torsion elements in E. Thus Tors is

a divisible group. Hence Tors is an elementary substructure of E. This indicates the

stability of the pair (E, Tors) by [6]. On the other hand by Theorem (4.14), for all q

in Q and P ∈ E, we have that ĥ(qP ) = q2ĥ(P ). Moreover, since Q2 is dense in the

positive real line, by choosing a non-torsion element, similar to the proof of Theorem

(4.11), one can show that the formula

φ(x, y, z, t) : U

(
ty

x

)
∧ U

(
tx

z

)
has the tree property.

4.3 Salem Numbers

Lehmer’s Conjecture (1933): There exists an absolute constant c > 1 such that if

α is not a root of unity then m(α) ≥ c. This conjecture is still open.

A real algebraic integer α > 1 is called a Salem number if α and 1/α are Galois

conjugate and all others Galois conjugates of α lie on the unit circle. Observe that for

a Salem number α and a positive integer n, we have

m(αn) = m(α)n = αn,

and in general this is not true for an arbitrary algebraic number. It is an open question

whether 1 is a limit point of Salem numbers. This is a special case of Lehmer’s

Conjecture. The smallest known Salem number α was given by D. Lehmer [24] which

is the root of the polynomial

X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1

with α ≈ 1.17628 and not many Salem numbers known in the interval (1, 1.3). For more

about Lehmer’s conjecture and Salem numbers, we direct the reader to [35, 36]. Let
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Pb := {a ∈ Q : m(a) ≤ b} where b ≥ 1. Note that Pb contains the set of roots of unity

µ. Lehmer’s Conjecture is equivalent of there exists b > 1 such that Pb = P1 = µ. So

if Lehmer’s Conjecture is true, then we know that the pair (Q, Pb) is ω-stable for some

b > 1 by a theorem of B. Zilber [41]. The next proposition relates the simplicity of the

pair (Q, Pb) with Lehmer’s Conjecture. It states that if the pair (Q, Pb) is simple for

some b > 1, which is a weaker statement than ω-stability, then Lehmer’s Conjecture

is true for Salem numbers.

Proposition 4.16. If the theory of (Q, Pb) is simple for some b > 1 in Lm(U), then

Lehmer’s Conjecture is true for Salem numbers.

Proof. Suppose that (Q, Pb) is simple for some b > 1. Assume that 1 is a limit

point of Salem numbers in order to get a contradiction. Then we can choose a

Salem number α and a positive integer n such that αn is very close to b. Let
∗M = (∗Q,+,−, ·, 0, 1,m, ∗R≥1) be a nonstandard extension of the many-sorted struc-

ture M = (Q,+,−, ·, 0, 1,m,R≥1). Then the Mahler measure m extends to ∗Q and it

takes values in positive hyperreal numbers ≥ 1. We also denote this extension as m.

Then the pair (∗Q, ∗Pb) is an elementary extension of (Q, Pb) in Lm(U). Note that ∗Pb

is the set of hyper algebraic numbers whose Mahler measure is less than b. Then there

is a nonstandard Salem number β > 1 which is infinitely close to 1, and an infinite

nonstandard natural number N such that st(βN ) = b. Put

φ(x, y, z, t) : U

(
ty

x

)
∧ U

(
tx

z

)
as before. Denote the integer part of a as [a]. Observe that for any rational numbers

r and s in (0, 1), we have

m

(
βN

β[Nr]

β[Ns]

)
< b ⇐⇒ r < s.

Therefore, we can order rational numbers in this pair. Then similar to the proof

of (4.11), the formula φ(x, y, z, t) has the tree property by taking the parameters

as = (β[Nqs], βN ). Hence (Q, Pb) is not simple, a contradiction.

Remark 4.17. Let Cb be the set of Salem numbers less than b, where b > 1. The proof

of proposition (4.16) indicates that the simplicity of the pair (Q, Cb) for some b > 1 in

Lm(U) is equivalent to Lehmer’s conjecture for Salem numbers. We call an algebraic

number α multiplicative if m(αn) = m(α)n for all natural numbers n ≥ 1. Let Db be

set of multiplicative algebraic numbers whose Mahler measure is less than b. Note that

Db contains Cb. Then the same proof of proposition (4.16) shows that the simplicity

of the pair (Q, Db) for some b > 1 in Lm(U) is equivalent to Lehmer’s conjecture for

multiplicative algebraic numbers.

Remark 4.18. One way of showing the simplicity it to find a notion of independence

which is symmetric and satisfying the axioms of non-forking.
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We end this chapter by posing the following question and the conjecture which are

related to Lehmer’s conjecture.

• Is µ definable in (Q, Pb) for some b > 1?

Conjecture 4.19. The theory of (Q, Pb) is stable for some b > 1 in Lm(U). Moreover

the stability of the pair (Q, Pb) in Lm(U) for some b > 1 implies Lehmer’s conjecture.
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5
Nonstandard Analysis and its applications

to heights

The arithmetic version of the Nullstellensatz states that if f1, ..., fs belong to the ring

Z[X1, ..., Xn] without a common zero in C, then there exist a in Z \ {0} and g1, ..., gs

in Z[X1, ..., Xn] such that a = f1g1 + · · ·+ fsgs. Finding degree and height bounds for

a and g1, ..., gs has received continuous attention using computational methods. By

deg f , we mean the total degree of the polynomial f in several variables. T. Krick,

L. M. Pardo and M. Sombra [21] proved degree and height bounds for a and g1, ..., gs

which are sharp and effective.

On the other hand, finding bounds in mathematics using nonstandard extensions

has been studied often, for example: Given a field K, if f0, f1, ..., fs in K[X1, ..., Xn]

all have degree less than D and f0 is in 〈f1, ..., fs〉, then f0 =

s∑
i=1

fihi for certain hi

whose degrees are bounded by a constant C = C(n,D) depending only on n and D.

This result was first validated in a paper of G. Hermann [16], where his pattern was

based on linear algebra and computational methods. Then the same result was proved

by L. van den Dries and K. Schmidt [8] using nonstandard methods, and their tech-

nique smoothed the way how nonstandard methods can be used for such bounds. In

this chapter, we apply nonstandard methods in order to prove the existence of bounds

for the complexity of the coefficients of hi as above by taking f0 = 1. In plain words,

using nonstandard methods, we prove the existence of certain height bounds on the

81
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complexity of the coefficients of some polynomials. This enables us to characterize

the ideal membership of a given polynomial. Moreover, we obtain a bound for the

logarithmic height function, which entitles us to test the primality of an ideal.

In this chapter, we also define an abstract height function on a ring R, which

generalizes the absolute value function and the logarithmic height function, and it

measures the complexity of the coefficients of polynomials over R[X1, ..., Xn]. We

will generalize the result of [21] to any integral domain and height function, and

furthermore our constant for the height function does not depend on R or s, however

it is ineffective. We assume that all rings are commutative with unity through the

chapter. Moreover throughout this chapter, the ring R stands for an integral domain

and K for its field of fractions. The symbol h denotes a height function on a ring R,

which will be defined in the next section.

5.1 Generalized Height Function

Let θ : N→ N be a function. We say that

h : R→ [0,∞)

is a height function of θ-type if for any x and y in R with h(x) ≤ n and h(y) ≤ n, then

both h(x+ y) ≤ θ(n) and h(xy) ≤ θ(n). We say that h is a height function on R if h

is a height function of θ-type for some θ : N→ N.
We can extend the height function h to the polynomial ring R[X1, ..., Xn] by

h

(∑
α

aαX
α

)
= max

α
h(aα).

Note that this extension does not have to be a height function, it is just an extension

of functions. Now we give some examples of height functions.

Example 5.1. For the following examples of height functions, one can take θ(n) =

(n+ 1)2.

• If (R, |·|) is an absolute valued ring then h(x) = |x| is a height function. Moreover

h(x) = |x|+ 1 and h(x) = max(1, |x|) are also height functions on R.

• The degree function on R[X1, ..., Xn] is a height function.

• Let λ be a positive real number. On Z[X], define

h(a0 + a1X + · · ·+ akX
k) =

k∑
i=0

|ai|λi.

Then this is a height function on Z[X].
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• Let h : R→ [0,∞) be a function such that the sets

An = {x ∈ R : h(x) ≤ n}

are all finite for all n ≥ 1. Then h is a height function of θ-type where θ(n) =

max
x,y∈An

{h(x+ y) + h(xy)}.

• The p-adic valuation on Z is not a height function. Note that 1 and pn − 1 are

not divisible by p, however their sum is divisible by pn.

5.1.1 Nonstandard Extensions and Height Function

Let ∗K be a nonstandard extension of the many-sorted structure

K = (K[X1, ..., Xn],+,−, ·, 0, 1, h, θ, deg, R[X1, ..., Xn],R≥0,N),

where h is a function from R[X1, ..., Xn] to R≥0, the function θ is a function from

N to N and deg is the degree function on K[X1, ..., Xn] which takes values in N.
As usual, the functions deg and θ extend to ∗N and they take values in ∗N. Note

that ∗K[X1, ..., Xn] ( ∗(K[X1, ..., Xn]) and ∗K[X1, ..., Xn] = {f ∈ ∗(K[X1, ..., Xn]) :

deg f ∈ N}. If h is a height function on R of θ-type, then it extends to ∗(R[X1, ..., Xn])

which takes values in ∗R≥0 though this extension is no longer a height function if h

is unbounded. Moreover it satisfies the same first-order properties as h. In particular

if x, y are in ∗R with h(x) ≤ n and h(y) ≤ n, where n ∈ ∗N, then we have both

h(x+ y) ≤ θ(n) and h(xy) ≤ θ(n). Define

Rfin = {x ∈ ∗R : h(x) ∈ Rfin}

where Rfin = {x ∈ ∗R : |x| < n for some n ∈ N} and ∗R is a nonstandard extension

of R. The elements in ∗R \ Rfin are called infinite.

By the properties of a height function, if there is a height function on R, we see

that Rfin is a subring of ∗R and it contains R. Note that ∗(R[X1, ..., Xn]), ∗R and ∗K

are internal sets. The next lemma shows when Rfin is internal.

Lemma 5.2. The set Rfin is an internal subset of ∗R if and only if the height function

on R is bounded.

Proof. Suppose Rfin = ∗A for some subset A of R. First we show that the height

function on A must be bounded. To see this, if there is a sequence (an)n in A such

that lim
n→∞

h(an) = ∞, then there is an element in ∗A whose height is infinite. This

contradicts the fact that all the elements in Rfin have bounded height. So the height

function on A is bounded. Therefore the height function on ∗A is also bounded.

However since Rfin contains R, the height function on R must be bounded. Conversely
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if the height function on R is bounded, then we have Rfin = ∗R and so Rfin is

internal.

Now we fix some more notations. Put L = Frac(Rfin) which is a subfield of ∗K.

Note that ∗K is the fraction field of ∗R. In fact, of being a height function is very

related to the set Rfin. The following proposition is the nonstandard point of view

definition of a height function. However it is ineffective, i.e. it does not provide the

θ-type of the height function.

Proposition 5.3. A function h : R→ [0,∞) is a height function on R if and only if

Rfin is a subring of ∗R.

Proof. We have seen that if h is a height function then Rfin is a subring. Conversely

suppose Rfin is a subring and h is not a height function. This means there is some

N ∈ N such that we have two sequences (rn) and (sn) in R with h(rn) ≤ N and

h(sn) ≤ N , however lim
n→∞

h(rn ? sn) =∞, where the binary operation ? means either

addition or multiplication. Thus we obtain two elements r and s in ∗R such that

h(r) ≤ N , h(s) ≤ N , but h(r ? s) is infinite. This contradicts the fact that Rfin is a

subring.

5.1.2 Degree Bounds and Primality

In this subsection, we prove some results from commutative algebra and give the

results in [8] that lead to the existence of the constant c1 in Theorem (5.8).

Lemma 5.4. Let F be a field and f1, ..., fs ∈ F [X1, ..., Xn]. Then 1 ∈ 〈f1, ..., fs〉 if

and only if f1, ..., fs have no common zeros in F ac.

Proof. ⇒: Clear.

⇐: By Hilbert’s Nullstellensatz, there are g1, ..., gs ∈ F ac[X1, ..., Xn] such that 1 =

f1g1 + · · ·+fsgs. This is a system of linear equations when we consider the coefficients

of all the polynomials. Therefore 1 = f1Y1 + · · · + fsYs has a solution in F ac. Now

by the Gauss-Jordan Theorem, this linear system has a solution in F. So there are

h1, ..., hs ∈ F [X1, ..., Xn] such that

1 = f1h1 + · · ·+ fshs.

Remark 5.5. Let F ⊆ F1 be a field extension and I ⊂ F [X1, ..., Xn] be a proper ideal.

Then the ideal IF1[X1, ..., Xn] ⊂ F1[X1, ..., Xn] is also proper.

Proof. Let I ⊂ F [X1, ..., Xn] be a proper ideal. Then since I is finitely generated,

the ideal I = 〈f1, ..., fs〉 for some f1, ..., fs ∈ F [X1, ..., Xn]. By lemma (5.4), the

polynomials f1, ..., fs have a common zero in F ac. Since we may assume F ac ⊆ F1
ac,
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there is a common zero of f1, ..., fs in F1
ac. So by lemma (5.4) again, IF1[X1, ..., Xn] 6=

F1[X1, ..., Xn].

Recall that the theory of algebraically closed fields is model complete since it has

QE. Next we prove that of being an irreducible variety does not change if we go to an

extension.

Lemma 5.6. Let F1 ⊂ F2 be a field extension such that both are algebraically closed.

Let V be an irreducible variety in F1
n. Then the Zariski closure of V in F2

n (with

respect to the Zariski topology on F2
n) is an irreducible variety in F2

n.

Proof. Since V is a variety in F1
n, there are some polynomials p1, ..., ps such that V

is the zero set of p1, ..., ps. Then clearly the Zariski closure of V in F2
n is the zero set

of p1, ..., ps in F2
n. Call this closure cl(V ). Thus both V and cl(V ) are defined by the

formula

φ(x) =
∧
i≤s

pi(x).

Now suppose that cl(V ) is not irreducible, so there are two proper subvarieties V1 and

V2 of cl(V ) such that cl(V ) = V1 ∪ V2. Then since the theory of algebraically closed

fields is model complete, we deduce that V is also reducible.

Corollary 5.7. Let F1 ⊂ F2 be a field extension such that F1 is algebraically closed.

Then I is a prime ideal in F1[X1, ..., Xn] if and only if IF2[X1, ..., Xn] is a prime ideal

in F2[X1, ..., Xn].

Proof. Suppose I = 〈f1, ..., fs〉 is a prime ideal in F1[X1, ..., Xn]. Let V = V (I) be the

variety given by I. Then by Nullstellensatz V is irreducible. So by lemma (5.6), the va-

riety cl(V ) is also irreducible in F2
n. Again by Nullstellensatz, the ideal IF2[X1, ..., Xn]

is prime. Conversely, the equality

(IF2[X1, ..., Xn]) ∩ F1[X1, ..., Xn] = I

follows from a similar proof of lemma (5.4), since we need to solve a system of linear

equations.

The following theorem yields the existence of the constant c1 in Theorem (5.8).

Theorem 5.8. [8, 1.11] If f0, f1, ..., fs in K[X1, ..., Xn] all have degree less than D

and f0 is in 〈f1, ..., fs〉, then f0 =

s∑
i=1

fihi for certain hi whose degrees are bounded by

a constant c1 = c1(n,D) depending only on n and D.

The following is also from [8]:

Theorem 5.9. [8, 2.5] I is a prime ideal in ∗K[X1, ..., Xn] if and only if I∗(K[X1, ..., Xn])

is a prime ideal in ∗(K[X1, ..., Xn]).
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5.1.3 UFD with the p-property

Definition 5.10. We say that R is a UFD with the p-property if R is a unique

factorization domain endowed with an absolute value such that every unit has absolute

value 1 and if there are primes p and q satisfying

|p| < 1 < |q|,

then there is another prime r non-associated to p with |r| < 1.

Examples

• The ring of integers Z is a UFD with the p-property whose primes have absolute

value bigger than 1.

• The p-adic integers Zp is a UFD with the p-property whose only prime has

absolute value 1/p.

• Let γ ∈ (0, 1) be a transcendental number. Then the ring S = Z[γ] is a unique

factorization domain since it is isomorphic to Z[X] and its units are only 1 and

-1. We put the usual absolute value on S. Then S has infinitely many primes p

with |p| < 1 and infinitely many primes q with |q| > 1. So S is a UFD with the

p-property.

Lemma 5.11. Suppose R is a UFD with the p-property. If there are primes p and q

with |p| < 1 < |q|, then there are infinitely many non-associated primes with absolute

value strictly less than 1 and infinitely many non-associated primes with absolute value

strictly bigger than 1.

Proof. We know there are at least two non-associated primes with absolute value less

than 1. Let p1, ..., pk (for k ≥ 2) be non-associated primes with absolute value less than

1. Put A = p1...pk. Now choose m large enough such that

∣∣∣∣ k∑
i=1

(A/pi)
m

∣∣∣∣ < 1. Since

this element is not a unit, as it does not have absolute value 1, it must be divisible

by a prime whose absolute value is strictly less than 1. This yields a new prime. For

the second part, given q1, ..., qk primes of absolute value larger than 1, for large n the

element q1
nq2...qk+1 provides a new prime that has absolute value greater than 1.

5.2 Height Bounds

In this section, we will give our main results of this chapter.

Theorem 5.12. Let R be a ring with a height function of θ-type. For all n ≥ 1, D ≥ 1

and H ≥ 1 there are two constants c1(n,D) and c2(n,D,H, θ) such that if f1, ..., fs

in R[X1, ..., Xn] have no common zero in Kac with deg(fi) ≤ D and h(fi) ≤ H, then

there exist nonzero a in R and h1, ..., hs in R[X1, ..., Xn] such that
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(i) a = f1h1 + · · ·+ fshs

(ii) deg(hi) ≤ c1

(iii) h(a), h(hi) ≤ c2

(iv) Furthermore, if R is a UFD with the p-property and h(x) = |x| is the absolute

value on R, then we can choose a such that gcd(a, a1, ..., am) = 1 where a1, ..., am

are all elements that occur as some coefficient of some hi.

Remark 5.13. The constant c1 does not depend on s because the vector space

V (n,D) = {f ∈ K[X1, ..., Xn] : deg(f) ≤ D}

is finite dimensional over K. In fact the dimension is q(n,D) =
(
n+D
n

)
. Given

1 = f1h1 + · · · + fshs, we may always assume s ≤ q = q(n,D) because if s > q then

f1, ..., fs ∈ V (n,D) are linearly dependent over K. Assume first that r ≤ q many of

them are linearly independent. Therefore the other terms fr+1, ..., fs can be written as

a linear combination of f1, ..., fr over K. Thus the equation 1 = f1h1+···+fshs may be

transformed into another equation 1 = f1g1 +···+frgr. Consequently if 1 ∈ 〈f1, ..., fs〉,
then 1 ∈ 〈fi1 , ..., fir 〉 where r ≤ q and ij ∈ {1, ..., s}. Hence, we can always assume

s = q. Similarly the constant c2 does not depend on s. Moreover, none of the constants

depend on R.

Remark 5.14. There is also a direct proof of (5.12) as follows: Using the degree bound

B(n,D) for the polynomials g1, ..., gs in a Bezout expression 1 = f1g1 + · · · + gsfs,

we can derive a height bound since the degree bound allows to translate the problem

to solving a linear system of equations with precise number of unknowns equations

and the height function satisfies some additive and multiplicative properties. However,

this computational method is also complicated since the bounds for the height function

depend on θ which is implicitly given. Thus in practice, this method is ineffective.

For this reason and to show how the problem is related to model theory, we prefer

nonstandard methods as in [8].

Remark 5.15. If R is a ring with absolute value which has arbitrarily small nonzero

elements, then we can multiply both sides of the equation

a = f1h1 + · · ·+ fshs

by some small ε ∈ R. Therefore the height bound c2 can be taken 1 and the result

becomes trivial. Note that (iv) in (5.12) prevents us from doing this if there are no

small units in R. However, if there is a unit u with |u| < 1, then multiplying both

sides of the equation with powers of u the height can be made small again. So the

interesting case is when there are no small units which is equivalent to all the units

having absolute value 1. Note also that if |ab| < 1 then |a| can be very big and |b| can
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be very small. So cancellation can make the height larger if there are sufficiently small

and big elements in the ring. Thus for the equation

a = f1h1 + · · ·+ fshs,

simply dividing by gcd(a, a1, ..., am) may not work in order to obtain (iv) in Theorem

(5.12).

Proof. If s = 1 then by Nullstellensatz, f1 must be a nonzero constant. Thus we

may assume that s ≥ 2 and f1f2 is not 0. By Theorem (5.8), the constant c1 exists

and it only depends on n and D. Now we prove the existence of the constant c2.

Our language is the many-sorted language which was given in the subsection (5.1.1).

Assume n, D and H are given and there is no bound c2. Therefore for every m ≥ 1

there exists an integral domain Rm with a height function htm of θ-type and f1, ..., fs

in Rm[X1, ..., Xn] with deg fi ≤ D and htm(fi) ≤ H witnessing to this. Thus in the

field of fractions Km of Rm, there exist g1, ..., gs in Km[X1, ..., Xm] with deg gi ≤ c1

and

1 = f1g1 + · · ·+ fsgs,

however for all h1, ..., hs ∈ Km[X1, ..., Xn] with deg hi ≤ c1, the sum

1 = f1h1 + · · ·+ fshs

implies max
j
htm(aj) > m where aj ∈ Rm is an element that occurs as a numerator

or denominator of some hi. By compactness there is an integral domain R with a

height function hR of θ-type and polynomials f1, ..., fs in Rfin[X1, ..., Xn] of degrees

less than D such that the linear system

f1Y1 + · · ·+ fsYs = 1

has a solution in ∗K[X1, ..., Xn] but not in L[X1, ..., Xn], where K is the field of

fractions of R and L is field of fractions of Rfin. This contradicts remark (5.5) since

the ideal 〈f1, ..., fs〉 is proper in L[X1, ..., Xn].

Hence we know that given f1, ..., fs ∈ R[X1, .., Xn] with no common zeros in Kac

with deg(fi) ≤ D and h(fi) ≤ H, there are h1, ..., hs in K[X1, ..., Xn] such that 1 =

f1h1+···+fshs and deg(hi) ≤ c1(n,D).Moreover s ≤ q(n,D) and h(e) ≤ c3(n,D,H, θ)

for some c3, where e ∈ R is an element which occurs as a numerator or denominator

for some coefficient of some hi. Let b1, ..., bm be all the elements in R that occur as a

denominator for some coefficient of some hi. Note that m = m(n,D) ≤ q2 depends on

n and D only. Also we know that h(bi) ≤ c3. Put

a = b1...bm.
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By the multiplicative properties of the height function, we get h(a) ≤ c4(n,D,H, θ)

for some c4. Now we see that

a =

s∑
i=1

fi · (ahi),

fi and ahi are in R[X1, .., Xn] and deg(ahi) = deg(hi) ≤ c1. Moreover, again by the

multiplicative properties of the height function, we have h(ahi) ≤ c5(n,D,H, θ) for

some c5. Now take c2 = max(c4, c5). Therefore, we obtain (i), (ii) and (iii).

Now we prove (iv). Assume R is a UFD with the p-property. We need to choose

a such that gcd(a, a1, ..., am) = 1 where a1, ..., am are all elements that occur as some

coefficient of some hi. If all the primes in R have absolute value bigger than 1 or

smaller than 1, then we can divide both sides of the equation

a = f1h1 + f2h2 + · · ·+ fshs

by gcd(a, a1, ..., am) and get the result, because if all the primes in R have absolute

value bigger than 1, then cancellation makes the height smaller and if all the primes

in R have absolute value less than 1 then height is bounded by 1. The remaining case

is when there are primes of absolute value bigger than 1 and primes of absolute value

smaller than 1. By lemma (5.11), there are infinitely many primes with absolute value

strictly less than 1. Now choose a prime p such that |p| < 1 and p does not divide

a. Let d be the greatest common divisor of all coefficients of f1 and f2. Then, the

coefficients of f1/d and f2/d have no common divisor. On the other hand, since there

are both small and large elements in the ring, the element d can be very small and so

f1/d and f2/d may have very large absolute values. Thus choose a natural number k

such that pkf1/d and pkf2/d have absolute value less than 1. Put v = c1(n,D) + 1.

Then we have

0 = f1(X1
vpkf2/d) + f2(−X1

vpkf1/d).

Therefore, we obtain that

a = f1(h1 +X1
vpkf2/d) + f2(h2 −X1

vpkf1/d) + · · ·+ fshs

= f1g1 + f2g2 + · · ·+ fsgs

where deg gi ≤ D(c1 + 1) = c(n,D) and h(gi) ≤ c2. Observe that

gcd(a, a1, ..., am) = 1

where a1, ..., am are all elements that occur as some coefficient of some gi.

Let F be a field and I an ideal of F [X1, ..., Xn]. We say that I is a D-type ideal if

the degree of all the generators of I is bounded by D. By [8] it is known that there is
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a bound B(n,D) such that if I is a D-type ideal then I is prime if and only if 1 /∈ I,

and for all f , g in F [X1, ..., Xn] of degree less than B(n,D), if fg ∈ I then f or g is in

I. Let Q be the field of algebraic numbers. We say that an ideal I of Q[X1, ..., Xn] is

a (D,H)-type ideal if it is a D-type ideal and the logarithmic height of all generators

of I is bounded by H. Next, we show that it is enough to check the primality up to a

certain height bound.

From now on, the function h denotes the logarithmic height function on the set of

algebraic numbers Q. Set

Qfin = {x ∈ ∗Q : h(x) ∈ Rfin}.

Lemma 5.16. The ring Qfin is an algebraically closed field.

Proof. Since the logarithmic height function behaves well under algebraic operations

and inverse, we obtain that Qfin is a field. By the height inequality (4.4), we see that

Qfin is algebraically closed.

Theorem 5.17. Let h be the logarithmic height function. There are bounds B(n,D)

and C(n,D,H) such that if I is a (D,H)-type ideal of Q[X1, ..., Xn] then I is prime

if and only if 1 /∈ I, and for all f , g in Q[X1, ..., Xn] of degree less than B(n,D) and

height less than C(n,D,H), if fg ∈ I, then either f or g is in I.

Proof. First note that if J = (f1, ..., fs) is an ideal of D-type then the number of

generators of J can be taken less than

q = q(n,D) = dimK{f ∈ K[X1, ..., Xn] : deg f ≤ D}.

So we can always assume that s ≤ q. We know the existence of the bound B=B(n,D)

by [8]. Now we prove the existence of the bound C(n,D,H). Suppose there is no such

bound. This means for all m > 0 there is an ideal Im of (D,H)-type of Q[X1, ..., Xn]

which is not prime such that for all f, g with deg f and deg g less than B, and h(f),

h(g) less than m, if fg ∈ Im then either f or g is in Im. Then by compactness there

is an ideal I of (D,H)-type of ∗(Q[X1, ..., Xn]) such that the ideal I is not prime but

for all m > 0, if f, g are of degree less than B and are of height less than m, if fg ∈ I
then either f or g is in I. Now, we see that the ideal I is prime in Qfin[X1, ..., Xn].

However, it is not prime in ∗Q[X1, ..., Xn] by (5.9). This contradicts Theorem (5.7)

since Qfin is algebraically closed by lemma (5.16).

Question: Can we compute C(n,D,H) in (5.17) effectively?

Next, we prove the existence of a height bound similar to the height bound in The-

orem (5.17). For the details, we direct the reader to [12, 27]. Let R be a commutative
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Noetherian ring with 1 and M be an R-module. For a prime ideal p of R, we say that

p is an associated prime of M , if p is the annihilator of some x in M . For an ideal J of

R, the associated prime ideals containing J coincides with AssR(R/J), which in fact

is the set of prime ideals which are the radicals of the primary ideals occurring in the

primary decomposition of J . First, we recall the followings facts from commutative

algebra.

Remark 5.18. • An ideal J is a primary ideal if and only if AssR(R/J) has

exactly one element.

• Every ideal J (through primary decomposition) is expressible as a finite intersec-

tion of primary ideals. The radical of each of these ideals is a prime ideal and

these primes are exactly the elements of AssR(R/J) .

• Any prime ideal minimal with respect to containing an ideal J is in AssR(R/J).

These primes are precisely the isolated primes.

Corollary 5.19. Let n ∈ N, X = (X1, ..., Xn) and I be an ideal of Qfin[X].

(1) If pk, ..., pm are the distinct minimal primes of I then

p1
∗Q[X], ..., pm

∗Q[X]

are the distinct minimal primes of I∗Q[X1, ..., Xn].

(2)
√
I∗Q[X] =

√
I∗Q[X].

(3) If M is a Qfin[X]-module, then

Ass∗Q[X](M ⊗Qfin[X]
∗Q[X]) = {p∗Q[X] : p ∈ AssQfin[X](M)}.

(4) The ideal I is a primary ideal if and only if I∗Q[X] is a primary ideal of ∗Q[X].

(5) Let I = I1 ∩ ... ∩ Im be a reduced primary decomposition, Ik being a pk-primary

ideal. Then

I∗Q[X] = I1
∗Q[X] ∩ ... ∩ Im∗Q[X]

is a reduced primary decomposition of I∗Q[X], and Ik
∗Q[X] is a pk

∗Q[X]-

primary ideal.

Proof. (1) is an immediate consequence of corollary (5.7) and lemma (5.16). (2) follows

from (1), since radical of an ideal is the intersection of minimal prime ideals which

contain the ideal. Since Qfin[X] is Noetherian, (3) follows from [5, Chapter 4, 2.6,

Theorem 2] and remark (5.5). To prove (4), suppose that I is a p-primary ideal. So we

get AssQfin[X](Qfin[X]/I) = {p}. Applying (3) with M = Qfin[X]/I, we obtain that

Ass∗Q[X](
∗Q[X]/I) = {p∗Q[X]} and this yields (4) with the help of remark (5.18).

The converse of (4) can be seen by remark (5.5). (5) follows from (4).
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Now we give the standard corollaries. For the following corollary, the existence of

the constant E(n,D,H) is new.

Corollary 5.20. There are constants B(n,D), C(n,D) and E(n,D,H) such that if

I is an ideal of (D,H)-type, then

(1)
√
I is generated by polynomials of degree less than B and height less than E, if

f ∈
√
I then fC ∈ I.

(2) There are at most B associated primes of I and each generated by polynomials

of degree less than B and height less than E.

(3) I is primary if and only if 1 /∈ I, and for all f, g of degree less than B and height

less than E, if fg ∈ I then f ∈ I or gC ∈ I.

(4) There is a reduced primary decomposition of I consisting of at most B primary

ideals, each of which is generated by polynomials of degree at most B and height

at most E.

Proof. We know the existence of B(n,D) and C(n,D) by [8]. The existence of

E(n,D,H) follows from the previous corollary. Proofs are similar to the proof of

Theorem (5.17).

Question: Can we compute E(n,D,H) effectively in corollary (5.20)?

5.3 Concluding Remarks

In this section, we discuss Theorem (5.12) in terms of unique factorization domains,

valuations and some arithmetical functions. Also, we give some counter examples for

(5.12) for non-height functions.

Definition 5.21. We say that R is a UFD with the 1-property if R is a unique

factorization domain endowed with an absolute value such that every unit has absolute

value 1 and there is only one prime p of absolute value less than 1 and infinitely many

primes q of absolute value greater than 1.

Example 5.22. Let R be a unique factorization domain and p be a prime in R. Put

the p-adic absolute value on R with |p|p = 1/2. Let c > 1 be any real number. On

R[X] we define

|a0 + a1X + · · ·+ akX
k| = max

i
ci|ai|p.

Then R[X] is a UFD with the 1-property whose only small prime is p.
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We proved Theorem (5.12) for UFD with the p-property. Thus the remaining case

is when R is a UFD with the 1-property. Now we show that Theorem (5.12) is not

true for a UFD with the 1-property. The reason behind this is the fact that an element

has small absolute value if and only if its p-adic valuation is very large where p is the

unique prime of absolute value less than 1.

Remark 5.23. Let R be a UFD with the 1-property. Then we cannot ensure the

correctness of (iii) and (iv) simultaneously in Theorem (5.12).

Proof. Let p be the unique small prime in R of absolute value less than 1. Let B be

an element in R of absolute value very big which is coprime to p. Choose m minimal

such that |pmB| ≤ 1. Similarly choose k minimal such that |pkB| ≤ c2. Note that as

B is very large then so are m and k. Set f1 = p2m+1 + p2mX and f2 = pmB− pmBX.
Clearly f1 and f2 have no common zero since

p2mB(p+ 1) = Bf1 + pmf2

and p is not -1. Whenever we write a = f1h1 + f2h2, we observe that pm divides

h2 and B divides h1. Also we have that p2mB divides a. Now suppose |hi| ≤ c2 for

i = 1, 2. Since B divides h1, we see that pk divides h1 since p is the unique small prime

in R. Thus pk divides a, h1 and h2. Furthermore we may assume that the only prime

divisor of a, h1 and h2 is p, because if there is q dividing all of them which is coprime

to p, then there is l ≥ k such that pl divides h1 in order to make the absolute value of

h1 less than c2. Similar observation shows that pl also divides h2 and a. Therefore, in

order to satisfy (iv) in Theorem (5.12), we need to divide a, h1 and h2 by pk. So the

absolute value of h1/p
k becomes very large.

Definition 5.24. A valuation v on an integral domain R is a function

v : R→ Γ ∪ {∞}

from R into an ordered abelian group Γ that satisfies the followings:

(i) v(a) =∞ if and only if a = 0

(ii) v(xy) = v(x) + v(y)

(iii) v(x+ y) ≥ min(v(x), v(y)).

Here ∞ is some element that is bigger than every element in Γ.

For a nonzero polynomial in n-variable we define its valuation as follows:

v

(∑
α

aαX
α

)
= max

α
{v(aα) : aα 6= 0}.
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Note that this may not be a valuation that satisfies the three conditions above. Take

R = Z and as a valuation we put a p-adic valuation for some prime p. Set f1 =

1 +X + (1− pm)X2 and f2 = X3 where m is some large integer. Then the valuations

of f1 and f2 are 0 and clearly they have no common zero in C. One can see that 1 is a

linear combination of f1 and f2 and so every integer is. However, whenever we write

a = f1h1+f2h2 where a is nonzero, then h1 must have degree bigger than 2 and the first

three coefficients of h1 are uniquely determined: if h1(x) = b0+b1X+b2X
2+···+bkXk

then automatically we have b0 = a, b1 = −a and b2 = apm. So the valuation of b2 can

be very large. The main nonstandard reason behind this is the fact that

Rvfin = {x ∈ ∗R : v(x) ∈ Rfin} ∪ {0}

is not a ring, because for nonstandard N ∈ ∗N the elements pN − 1 and 1 is in Rvfin

but not their sum. Therefore by proposition (5.3), we know that the p-adic valuation

on Z is not a height function.

If we take g1 = pm − 1 +X and g2 = 1−X then they have no common zero and

whenever we write a = g1h1 + g2h2, then h1 and h2 must have the same degree and

same leading coefficient. This implies that pm divides a which means that valuation

of a can be very big even if the valuations of g1 and g2 are 0.

A valuation is called trivial if for all nonzero x we have v(x) = 0. We say that a

valuation is a height function if the set Rvfin is a subring. In fact we can determine

when a valuation is a height function.

Remark 5.25. A valuation v on R is a height function if and only if it is trivial.

Proof. If the valuation is trivial then clearly it is a height function. Conversely is v is

not trivial, then it is unbounded. So by saturation there is an element a in ∗R whose

valuation is infinite. Then

v(a− 1) = 0

because if two elements have different valuation then the valuation of their sum is the

minimum of their valuations. So the elements a− 1 and 1 are in Rvfin, but not their

sum.

Now we discuss some arithmetical functions and which of them are height functions

and relate them to Theorem (5.12).

Definition 5.26. A function g : {1, 2, 3, ...} → C is called an arithmetical function.

Every arithmetical function g extends to Z by defining g(n) = g(−n) and g(0) = 0.

Such a function is called an arithmetical function on Z. Similarly for an arithmetical
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function g on Z, we extend it to Z[X] by

g(a0 + a1X + · · ·+ akX
k) = max

i
g(ai).

Let ∗Z be a proper nonstandard extension of Z. Note that

Zfin = {x ∈ ∗Z : |x| < n for some n ∈ N} = Z.

For an arithmetical function g, we define

Zgfin = {x ∈ ∗Z : |g(x)| < n for some n ∈ N}.

By proposition (5.3), observe that |g| is a height function if and only if Zgfin is a

subring. Now we give some examples of arithmetical functions.

Example 5.27. • ϕ(n) = |{1 ≤ k ≤ n : (k, n) = 1}|

• d(n) = number of divisors of n

• ω(n) = number of distinct prime factors of n.

Lemma 5.28. Let g be an arithmetical function and assume that

lim
n→∞

g(n) =∞.

Then |g| is a height function.

Proof. If N is an infinite number in ∗Z then g(N) is also infinite. This shows that

Zgfin = Zfin = Z which is a subring of ∗Z. Hence by proposition (5.3), the function

|g| is a height function on Z.

Lemma 5.29. For all n ≥ 1, we have
√
n

2 ≤ ϕ(n).

Proof. Since ϕ(n) =
∏
p|n

n(1 − 1

p
), we get ϕ(n) ≥ n

2ω(n) ≥ n
d(n) . Finally since d(n) ≤

2
√
n, we get the result.

Corollary 5.30. The function ϕ(n) is a height function.

Proof. Owing to the inequality
√
n

2 ≤ ϕ(n) and lemma (5.28), we conclude the corol-

lary.

Fact: Every sufficiently large odd integer can be written as a sum of three primes.

This was proved by I. M. Vinogradov. For more about this theorem, we direct the

reader to [7].

Lemma 5.31. The divisor function d(n) is not a height function.
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Proof. By three primes theorem and compactness, there is an odd infinite N in ∗Z
which can be written as a sum of three primes in ∗P where P is the set of all primes.

Furthermore we can choose N such that ω(N) is infinite. This shows that the set Zdfin
is not closed under addition. So by proposition (5.3), it cannot be a height function

on Z.

The next corollary is also true for the function ω(n). For simplicity, we just give

the proofs for the divisor function.

Corollary 5.32. There exist a natural number A and two sequences {an} and {bn}
in N such that d(an) ≤ A and d(bn) ≤ A but

lim
n→∞

d(an + bn) =∞.

Remark 5.33. The result (5.12) is not true for the divisor function d(n).

Proof. Set f1 = an +X + bn
2X2 and f2 = X3 where an and bn are as in (5.32). Then

d(f1) and d(f2) are bounden by A2 and they have no common zero in C. However,

whenever we write a = f1h1 + f2h2 where a is nonzero, then h1 must have degree

bigger than 2 and the first three coefficients of h1 are uniquely determined: if h1(x) =

c0 + c1X + c2X
2 + · · · + ckX

k then automatically we have c0 = a, c1 = −ana
and c2 = a(an − bn)(an + bn). Hence d(c2) can be very large. Moreover if we put

g1 = an + X and g2 = bn −X then they have no common zero. However, whenever

we write a = g1h1 + g2h2, then d(a) ≥ d(an + bn). Thus a has many divisors although

d(g1) and d(g2) are bounded by A.
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