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ABSTRACT 
 

Essays on Infrastructure Design and Planning for Clean Energy Systems 

 
Ayse Selin Kocaman 

 

The International Energy Agency estimates that the number of people who do not have 

access to electricity is nearly 1.3 billion and a billion more have only unreliable and intermittent 

supply. Moreover, current supply for electricity generation mostly relies on fossil fuels, which 

are finite and one of the greatest threats to the environment. Rising population growth rates, 

depleting fuel sources, environmental issues and economic developments have increased the 

need for mathematical optimization to provide a formal framework that enables systematic and 

clear decision-making in energy operations. This thesis through its methodologies and algorithms 

enable tools for energy generation, transmission and distribution system design and help policy 

makers make cost assessments in energy infrastructure planning rapidly and accurately.  

In Chapter 2, we focus on local-level power distribution systems planning for rural 

electrification using techniques from combinatorial optimization. We describe a heuristic 

algorithm that provides a quick solution for the partial electrification problem where the 

distribution network can only connect a pre-specified number of households with low voltage 

lines. The algorithm demonstrates the effect of household settlement patterns on the 

electrification cost. We also describe the first heuristic algorithm that selects the locations and 

service areas of transformers without requiring candidate solutions and simultaneously builds a 

two-level grid network in a green-field setting. The algorithms are applied to real world rural 

settings in Africa, where household locations digitized from satellite imagery are prescribed.  



 

In Chapter 3 and 4, we focus on power generation and transmission using clean energy 

sources. Here, we imagine a country in the future where hydro and solar are the dominant 

sources and fossil fuels are only available in minimal form. We discuss the problem of modeling 

hydro and solar energy production and allocation, including long-term investments and storage, 

capturing the stochastic nature of hourly supply and demand data. We mathematically model two 

hybrid energy generation and allocation systems where time variability of energy sources and 

demand is balanced using the water stored in the reservoirs. In Chapter 3, we use conventional 

hydro power stations (incoming stream flows are stored in large dams and water release is 

deferred until it is needed) and in Chapter 4, we use pumped hydro stations (water is pumped 

from lower reservoir to upper reservoir during periods of low demand to be released for 

generation when demand is high). Aim of the models is to determine optimal sizing of 

infrastructure needed to match demand and supply in a most reliable and cost effective way.  

An innovative contribution of this work is the establishment of a new perspective to 

energy modeling by including fine-grained sources of uncertainty such as stream flow and solar 

radiations in hourly level as well as spatial location of supply and demand and transmission 

network in national level. In addition, we compare the conventional and the pumped hydro 

power systems in terms of reliability and cost efficiency and quantitatively show the 

improvement provided by including pumped hydro storage. The model will be presented with a 

case study of India and helps to answer whether solar energy in addition to hydro power potential 

in Himalaya Mountains would be enough to meet growing electricity demand if fossil fuels could 

be almost completely phased out from electricity generation.              .
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Figure 5.10 | Energy generation distribution comparisons for solar and wind. a, Proportion of 
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The International Energy Agency estimates that the number of people who do not have 

access to electricity is nearly 1.3 billion and a billion more have only unreliable and intermittent 

supply. These numbers are expected to increase unless investments in providing modern energy 

services are expanded significantly. Moreover, current supply for electricity generation mostly 

relies on fossil fuels, which are finite and one of the greatest threats to the environment. Rising 

population growth rates, depleting fuel sources, environmental issues and economic 

developments have increased the importance of sustainable energy planning and applications of 

Operations Research techniques in energy industry. Mathematical optimization provides a formal 

framework that enables systematic and clear decision making in energy operations. This thesis 

through its methodologies and algorithms enable tools for energy generation, transmission and 

distribution system design and help policy makers to make cost assessments in energy 

infrastructure planning rapidly and accurately. 

To this end, in Chapter 2, we first focus on power distribution systems planning for rural 

electrification using techniques from combinatorial optimization. As governments of the 

developing countries attempt to increase the electricity coverage, they are seeking an 

understanding of the various modalities of public and private sector contributions. These 

modalities require a detailed understanding of the cost structure of electrification to make rapid 

assessment of the progress in rural electrification. With the emergence of off-grid and distributed 

approaches, there is a need amongst infrastructure planners to evaluate the costs of networked or 

grid approaches vis a vis off-grid approaches The investment costs of off-grid approaches are 

easier to estimate, but the investment costs of networked approaches are more difficult to 

estimate, taking into account both the spatial distribution of demand and the optimal placement 

of infrastructure to meet that demand. 
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For distribution systems planning problem studied in Chapter 2, we digitized QuickBird 

satellite imagery using remote sensing techniques to identify household-level demand points in 

some villages in Sub-Saharan Africa. Given the detailed local-level information from remote-

sensing data, we developed new methods to estimate the cost of local-level distribution systems 

for a least-cost network, and to compute additional information of interest to policymakers, such 

as the marginal cost of connecting additional households to a grid as a function of the penetration 

rate while taking into account populations structure. If it is possible to connect only some portion 

of the households to electricity due to limited funding, how to choose that portion is a very 

critical question and detailed mathematical analysis provided in this chapter can help answer this 

type of questions.  

Moreover, in Chapter 2  we  present another heuristic algorithm for rural electrification 

projects which designs multi-level distribution system layouts while minimizing overall cost of 

infrastructure costs; specifically the combined costs of transformers and the two-tiered network 

together. To our knowledge, this algorithm is the first heuristic algorithm that selects the 

locations and service areas of transformers without requiring candidate solutions and 

simultaneously builds two-level grid network in a green-field setting. It allows one to specify 

different costs for the higher throughput lines upstream of the transformer as compared to 

downstream of the transformer This algorithm can serve as a tool for network engineers and 

planners to make rapid assessments assisting them with (a) estimates of total cost of distribution, 

(b) layouts of initial designs and (c) breakdown of total costs into transformer cost and medium 

and low voltage line costs and giving them a good starting point for more detailed smart grid 

projects. Proposed methodologies can easily be adapted to other infrastructure problems such as 
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designing communication networks and water supply network. This discussion forms and 

completes Chapter 2. 

In Chapter 3 and 4, we focus on power generation and transmission using clean energy 

sources. Current supply for electricity generation mostly relies on fossil fuels. However, fossil 

fuels are finite and their combustion causes global warming and health hazards. To reduce the 

role of fossil fuels and ease the concerns on the electricity generation, energy models which 

involve clean and renewable energy sources are necessitated. However, renewable sources are 

generally are intermittent and heavily dependent on the spatial location (e.g. sun doesn't shine 

constantly at any given time in any given place). Intermittency causes limited control on power 

output because of variability and partially predictability of the renewable sources such as solar 

and wind and dependence on the spatial location causes a mismatched between potential of 

renewable energy generation and where the energy will be ultimately consumed. One of the 

ways to mitigate the intermittency of renewable sources is to design hybrid systems which 

operate as a combination of alternative resources. Energy storage, long distance transmission 

line and demand response programs are other critical components of electricity generation and 

transmission system to improve power grid reliability/efficiency and integrate intermittent 

renewable energy sources.  

To this end, in Chapter 3 and 4, we discuss the problem of modeling hydro and solar 

energy production and allocation, including long-term investments and storage, capturing the 

stochastic nature of hourly supply and demand data. We imagine a country in the future where 

hydro and solar are the dominant sources and fossil fuels are only available in minimal form, in 

the shape of diesel generators as an example. In this country, we first identify candidate basins 

for hydro power stations and aggregated demand point locations (the cities or the states of the 
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country). Within demand points solar energy production is possible. Then, we determine the 

possible transmission network between supply and demand points. We mathematically model 

this hybrid energy generation and allocation system, where time variability of energy sources and 

demand is balanced with the water stored in the reservoirs of hydropower stations.  The aim of 

this model is to obtain the optimal size of infrastructure needed to meet the demand, combining 

three major components of power systems to reduce the intermittency: hybrid systems, long 

distance transmission lines and energy storage. In these chapters, we present results with several 

cases studies from India which help answer whether solar energy in addition to high hydro power 

potential in Himalaya Mountains would be enough to meet growing electricity demand if fossil 

fuels could be almost completely phased out from electricity generation. 

In Chapter 3, a scenario based linear programming approach is described for modeling 

the hybrid solar and hydropower ststem with conventional hydro storage. In this system, 

incoming stream flows are stored in large reservoirs in dams and water release is deferred until it 

is needed. We first provide results for a single basin-single demand point case for one sceario to 

show the the basic results that the model can provide. Then, we provide multi basin-multi 

demand point cases to show how the unit cost of the systems is reduced when geographic 

aggregation of sources are possible with transmission lines. A sensitivity analyis of the cost 

parameters used in the model completes the Chapter 3. 

Furthermore in chapter 4, to the same problem in chapter 3, we apply pumped hydro 

power stations in which water is pumped from lower reservoir to upper reservoir during periods 

of low demand to be released for generation when demand is high. We show that introduction of 

the pumped hydro storage increases the utilization of both hydro and solar sources and decreases 

the unit cost of the system significantly. Now, as the solar energy can be also stored, it helps 
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reducing the variability of sources. In this chapter, we introduce a heuristic algorithm based on 

decomposition of scenarios for the stochastic linear programming model. 

An innovative contribution of the work in chapter 4 and chapter 5 is the establishment of 

a new perspective to energy modeling by including fine-grained sources of uncertainty such as 

stream flow, solar radiations and demand in hourly level as well as spatial location of supply and 

demand in national level.  
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Chapter 2 
 

 

Power Distribution Systems Design for Rural Electrification 
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2.1 Introduction 
 

The International Energy Agency estimates that the number of people who do not have 

access to electricity is nearly 1.3 billion and  more than eight out of ten people without modern 

energy access live in rural areas. Attempts to increase electricity coverage require detailed 

understanding of the cost structure of electrification in rural settings.  This chapter through its 

methodologies and algorithms enable tools for energy planning and policy making to make cost 

assessments in energy infrastructure planning rapidly and accurately.    

Rural energy planning has, thus far, focused primarily on the national to regional scale 

with aggregated supply and demand information.  However, effective implementation of the new 

energy technologies requires a new planning approach that can consider information across 

spatial scales. In a technological landscape that is altered by the emergence of off-grid and 

distributed approaches, there is a need amongst infrastructure planners to evaluate the costs of 

networked or grid approaches vis a vis off-grid approaches. However, estimating the investment 

cost of networked approaches requires the information for both spatial distribution of demand 

and the optimal placement of the infrastructure to meet that demand. To this end, in this chapter 

we first present a new data set of local-level demand points developed from QuickBird satellite 

imagery and provide new tools to estimate the cost of green-field power distribution system 

rapidly and with high accuracy considering local-level spatial distribution data.       

 In the first part of this chapter, we address the question of how the population settlement 

patterns influence the cost of electrification. Understanding the impact of the spatial structure of 

the population on infrastructure costs is critical in rural energy planning. If it is possible to 

connect only some portion of the households to electricity due to limited funding, how to 

optimally choose that portion requires detailed mathematical analysis. Given the possibility of 
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acquiring detailed local-level information from remote-sensing data, we develop a new method 

for estimating a more detailed, per-unit cost of infrastructure, while taking into account 

population structure. Since settlement patterns influence the cost of local distribution networks 

while not directly impacting the costs of transmission and generation, we focus on these local 

distribution networks.  

 Moreover, in this chapter, we provide a heuristic algorithm which designs multi-level 

distribution system layouts while minimizing overall cost of infrastructure costs; specifically the 

combined costs of transformers and the two-tiered network together. To our knowledge, this 

algorithm is the first heuristic algorithm that selects the locations and service areas of 

transformers without requiring candidate solution and simultaneously builds two-level grid 

network in a green-field setting. Proposed methodologies can easily be adapted to other 

infrastructure problems such as designing communication networks and water supply network.  

The algorithm we propose does not require a set of candidate locations to be considered 

as transformer locations. The maximum service distance in a low voltage distribution network is 

also pre-specified and determined from engineering practice. Given these costs, the demand 

points, the location of the HV network, and the maximum distance of the demand point from the 

transformer, the algorithm automatically finds the locations and service areas transformers as 

well as the LV and MV network layout with the goal of minimizing the total costs. This 

algorithm can serve as a tool for network engineers and planners to make rapid assessments 

assisting them with a) estimates of total cost of distribution, b) layouts of initial designs and c) 

breakdown of total costs into transformer cost and medium and low voltage line costs and giving 

them a good starting point for more detailed smart grid projects. 
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2.1.1 Rural Electrification Background 

Electricity access is one of the most important components of rural developments. It has 

been shown that better living conditions in developing countries cannot be achieved without 

investments in electricity [1]. In rural areas where renewable energy resources are widely 

available, small off-grid standalone systems appears to be an attractive alternative [2]. Moreover, 

decentralized technologies seems to be more suitable for rural and remote areas due to the fact 

that it helps avoid long distribution lines with low load densities, underutilized transformers and 

losses in distribution. It also has been discussed that whether decentralized alternatives which use 

locally available resources provide more reliable supply of energy [2, 3]. Thus, most of the 

earlier research aims to investigate primarily renewable energy alternatives and off-grid 

technologies [4-9]. It is worth noting that, although there has been a lot of attention to rural 

electrification projects, literature on the networked approaches is very limited.  

Moreover, rural energy planning has, thus far, focused primarily on the national to 

regional scale. Experience has been gained in design and implementation of rural electrification 

projects at the national level, with reviews such as that by Bekker (2008) [10] in South Africa, 

and Haanyika (2008) [11] in Zambia providing a basis for future policy and systems design. 

However, much work remains to be done, particularly on the local level. Effective 

implementation of the new energy technologies requires a new planning approach that can 

consider information across spatial scales. Local-level spatial information helps planners 

optimally locate critical energy infrastructure. For example, energy storage is an important 

component of the power systems; especially when effectively utilized with renewable sources, 

storage allows improved efficiency and lower cost generations. Moreover, optimal location of 

storages and transformers can help reduce distribution losses and increases the efficiencies of the 
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power systems. The development of design strategies that consider local-level data in 

conjunction with the regional scale picture is important for planning cost-effective rural energy 

networks. In this chapter, an attempt is made on estimating the cost of rural networks to facilitate 

the rural energy decision making based on purely cost comparison without considering other 

consequences of off-grid and grid approaches. 

2.1.2 Literature Review 

The so-called power distribution system problem, in general, has been studied 

extensively in the literature [12-21]. Techniques developed in prior efforts for this complex 

problem usually divide the problem into sub-problems at each level and then solve each sub-

problem separately using various optimization techniques [12-16]. These studies differ from each 

other in how they represent the problem components as well as in the algorithms utilized.  None 

of these studies address the problem of designing both LV and medium voltage (MV) networks 

in a single framework. However, dividing the problem into sub-problems and solving them 

separately reduces the probability of reaching an optimal solution and prevents us from seeing 

the effects of different cost parameters on the final network layout. The methods that have been 

proposed in the literature are based on either mathematical programming techniques such as 

Mixed Integer Programming, Branch and Bound Method [14, 15, 19] or heuristic algorithms 

such as Genetic Algorithm [13, 20, 21].  However, complexity of the models and the algorithms 

reduces their applicability to estimate the cost of networked approaches in rural electrification 

discussions when spatial distribution of a very large data set (demand points) is available. In 

addition, regardless of the solution methods, all studies mentioned here, except for [13], includes 

pre-assumption of candidate locations for transformers or feeders. These studies do not provide a 

method to update the candidate transformer locations during the search for an optimum solution. 



 

13 

 

Therefore, the final feeder network is strictly dependent upon the initial selection of candidate 

locations. In practice, however, determination of candidate locations is not always a simple task, 

and if the methodology has to scale to a larger number of demand points, clearly the transformer 

locations should be an outcome of the optimization process. 

2.2 Input Data 
 

The algorithms of this chapter have been tested on household level data from nine sites in 

Sub-Saharan Africa shown in Figure 2.1. The data were digitized from QuickBird satellite 

imagery of sites; details of the digitization method are discussed in Zvoleff and Kocaman et al. 

(2009) [22]. For most of the sites, a QuickBird image covers an area of 10x10km2 which covers 

a large representative area.  Even though all structures do not necessarily correspond to 

households, we assume that each structure represents a demand point which needs to be 

electrified. 
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Figure 2.1 | Demand point locations for nine Sub-Saharan Africa sites digitized from satellite imagery 

 

Although the data acquired thus far shows a broad range of spatial distributions of 

populations, there are common features that have been observed. Qualitatively, sites can be 

classified as sparse or dense, and nucleated or dispersed. A sparse site has a relatively low 

density as compared to a dense site. A nucleated site shows clustering of population around 

certain centroids, whereas a dispersed site is closer to a random distribution of points around the 

landscape. 

Using these relative terms, a site can therefore be nucleated but sparse, or dense yet 

dispersed. While Ruhiira, Uganda is densely populated (compared to the other areas we discuss 

here) it is not nucleated, although topography and local road networks influence settlement 

locations to some extent. Tiby, Mali exemplifies the most nucleated areas, with a small number 
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of very dense clusters of structures dotting the landscape. Potou, Senegal and Mbola, Tanzania 

fall in between these two extremes. Potou shows nucleation in the south and along the coast in 

the west, and is otherwise dispersed. Mbola features one large cluster in the south, while the 

remaining area is sparse. 

2.3 Single Level Power Distribution System Design 

Here, we discuss a methodology to estimate the cost of local-level distribution systems 

for a least-cost network. The main questions we want to answer are:  i) How does rural 

population structure affect the cost of infrastructure investments? ii)  If only pre-specified 

percentage of the households are connected, how does the per-unit cost of grid construction vary 

with this percentage (this percentage will be referred as the penetration rate)? We also provide 

additional information of interest to policy makers, such as the marginal cost of connecting 

additional households to a grid as a function of the penetration rate. 

To see the effect of settlement patterns of households on the distribution system cost, we 

first made several simplifications. In this section, the distribution system consists of only Low 

Voltage (LV) lines we assume that total cost of the network is linearly related to the lengths of 

the network. Moreover, additional cost of transformers is assumed to simply be proportional to 

low-voltage network length. This is actually a realistic assumption as in in rural settings the local, 

low-voltage lines network is the dominant components of the infrastructure [23]. Thus, here we 

can define the cost in units of lengths instead of monetary units. To be able to compare different 

possible networks, we define the unit cost of a network as the mean inter-household distance 

(MID) which is simply calculated by dividing the total length of the network with the number of 

connections in that network. 
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2.3.1 Full Connectivity  

In full connectivity case, we are interested in connecting households to the electricity 

with 100% penetration rate. The least cost network which spans all the households without 

creating a cycle is called minimum spanning tree (MST). An MST easily be calculated by using 

the well-studied Minimum Spanning Tree (MST) algorithms [24-26] which aim to find a tree 

(i.e. network containing no cycles) that spans all the points minimizing the total length of the 

network with the guarantee of the exact optimal solution. Although there are different MST 

algorithms in the literature; in this thesis, Prim’s algorithm [24] is implemented as it has better 

running time performance for dense sites [27]. Prim’s MST algorithm starts with choosing a 

starting point and adds the shortest segment of this point to the network. Until all nodes are 

spanned, the shortest segment emanating from the existing points on the network is added. The 

connections that would create cycles are avoided. We note that since the MST algorithm finds 

the optimal network, changing the starting point will not affect the result as all starting points 

will end up with the same network. A five node illustration of MST algorithm can be seen in 

Figure 2.2. 

http://www.sciencedirect.com/science/article/pii/S0306261912001237#b0130
http://www.sciencedirect.com/science/article/pii/S0306261912001237#b0150
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Figure 2.2 | Illustration of MST Algorithm 

2.3.2 Partial Connectivity 

Given limited funding, one of the most important concerns for infrastructure planners is 

the initial decision to extend the network into an unserved area. If it is possible to connect only 

some portion of the households to electricity, how to choose that portion is a very critical 

question. One common approach in this case is to expand the network to the strategic demand 

points where the total cost or per-household demand is minimized. This approach usually results 

with excluding sparsely inhabited areas from the network to avoid very long cable runs and 

underutilized transformers and exposes the question of how the population structures offer 

potential cost savings due to partial penetration or connectivity. 

Partial connectivity problem that we study here is to construct a network such that the 

mean inter-household distance (MID) is minimized subject to the requirement that the network 

connects a pre-specified percentage of the households. In graph theory, an abstraction of this 
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problem is known as the k-MST problem. The objective of the k-MST problem is to find the 

least cost network which spans at least k nodes on a graph. When penetration rate is 100% (k 

equals to the number of all points), optimal solution can easily be calculated with the greedy 

minimum spanning tree algorithms. However, k-MST problem is an NP-hard problem [28] and 

several attempts have been made to find the approximation algorithms for the problem [29-33]. 

For the problem of minimizing the network length subject to the penetration rate, 

Composite Prim’s Algorithm (CPA), a simple and computationally efficient approach, is 

developed by Zvoleff and Kocaman et al. (2009) [22] based on the Prim’s algorithm. For a fixed 

penetration rate, Prim's algorithm is modified as follows. For each initial demand point, the 

Prim's algorithm is run until the required penetration rate is achieved. By running this algorithm 

repeatedly, using a different initial demand point for each run, a series of different networks is 

calculated. Then for each penetration rate, the network which has minimum MID is selected.  

As the CPA is based on Prim's algorithm, it is important to recognize that it necessarily 

builds subgraphs of the MST. Therefore, any network produced by the CPA can be expanded to 

full penetration with no penalty. The same is not necessarily true for expansion of a minimum 

cost network spanning a subset of the population to another network also providing less than full 

coverage. For example, the optimal network for 10% penetration may not be a subgraph of the 

optimal network for 20% penetration, as the two may start from different starting points. For 

example, a planner interested in constructing a network spanning only 10% of the grid and who 

is planning for later expansion up to 20% connectivity could minimize their expansion costs by 

estimating with the CPA the optimal network for 20% connectivity, and building initially 

building a network that is a sub-graph of this network. The CPA appears to handle these cases 

reasonably well, based on the observed empirical results; however we don’t know the how the 
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solution of the heuristic algorithm is compared to optimal solution. For this reason, we compare 

the results of the CPA algorithm with another approximation algorithm which has a proven 

performance guarantee. 

 An α-approximation algorithm for a minimization problem runs in polynomial 

time and guarantees that the cost of the solution is no more than α times of the optimal solution. 

The value α is called performance guarantee or approximation ratio of the algorithm. Here, we 

present the results of the CPA algorithm together with the results of a 2-approximation algorithm 

proposed for k-MST problem by Chudak et al. (2001) [33]. Their approach is based on the fact 

that the Lagrangian version of the k-MST problem is a well-studied Prize Collecting Steiner Tree 

problem, for which a similar guarantee has been developed using the so-called primal-dual 

algorithm [34]. The primal-dual algorithm searches for the best possible solution by keeping 

track of both the feasible solution and its shadow prices related to the constraints. While the 

algorithm by Chudak et al. (2001) [33] has a theoretically appealing property, its implementation 

is much more complex than that of the CPA. We have implemented both algorithms, and find 

that both have similar performances. As seen in Figure 2.3, the mean cost curves obtained from 

these two algorithms match closely. 

http://www.sciencedirect.com/science/article/pii/S0301421509003231?np=y#bib3
http://www.sciencedirect.com/science/article/pii/S0301421509003231?np=y#fig9
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Figure 2.3 | a, Comparison of results of the composite Prim's algorithm (thick lines) with those obtained 

from the k-MST algorithm proposed by Chudak et al. (2001) (thin lines). b-e, Households distribution in 

Mbola, Ruhiira, Potou, Tiby. 

 To understand the effect of spatial distribution of households in the cost of electrification, 

Figure 2.3a should be examined together with Figures 2.3b-e. The area of Mbola, Tanzania 

considered here shows a sparse pattern of population, with little clustering of households except 

for two areas in the southwest. These dense areas allow interconnections within a portion of the 

population (up to about 15%) with a relatively low MID. Connecting the remaining population, 

however,is expensive. Ruhiira, Uganda is far more densely populated than the other sites 

considered here. Ruhiira clearly has the least clustering of the four distributions shown here. The 

lack of clustering leads to a situation where after 5% penetration, the MID is essentially the same. 
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Potou, Senegal is sparsely populated, with two nucleated areas; one in the south and another in 

the northwest along the coast.  The MID rise slowly as the largest population center (in the south 

of the image) is connected to the grid. After 20% penetration, the MID begins to rise more 

quickly as the outskirts of the main cluster are connected to the grid. After 60% penetration, the 

network begins to reach nucleated areas along the coast. The population of Tiby, Mali is split 

into several nucleated clusters, with few outliers. The ease of connecting these dense, nucleated 

clusters allows connection of the entire population with an MID of only 32.7 m. However, the 

large separation between population centers in Tiby leads to “jumps” in the curve as connections 

are made between clusters.  

2.4 Multi-level Power Distribution System Design 

In the previous section, we assumed that each household can be connected to electricity 

with low voltage lines without considering a capacity constraint.  We also assumed that 

transformer costs are linearly related to the length of the network. Here, we study a more realistic 

problem where we have three different cost parameters: 1) the cost per meter of LV line, CLV; 

2) the cost per meter of MV line, CMV; and 3) the unit cost of a transformer, CT.  The capacity 

constraint on the transformers, Dmax1, is defined as the maximum service distance and modeled 

as the radius of coverage of a transformer.  

The algorithm we present in this section combines the transformer location problem and 

the Low Voltage (LV) and Medium Voltage (MV) network design problem into a single problem 

and solves them in a single optimization framework. We propose a heuristic algorithm to design 

a two-level radial power distribution system. The first level includes the determination of the 

numbers, locations and capacities of transformers that feed an LV distribution network.  The 

                                                 
1 This distance would vary over the network with local geography and topography but is assumed constant here.  
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transformers represent load points for an upstream MV network and the MV network is also 

determined as a part of the first level. The second level includes the determination of the layout 

of the low voltage network between the transformers and the specified ultimate demand points. 

Note that the high-voltage (HV) network (for that matter source points) further upstream of the 

MV network are assumed to be known2. One could have further generalized the problem to 

include the determination of the HV networks as well, making it a three level problem, but here 

we consider the HV network as pre-specified for simplicity. 

 

Figure 2.4 | Examples network configurations. a, Point to Point network (star configuration). b, Multi-

point network. 

 

Locations of ultimate consumers are called “demand points” in the rest of the chapter. 

Each demand point is assumed to have the same load and the load is assumed not to change over 

time making the problem “static”. Distribution system is designed to be radial, to have one path 

between demand points and transformers, due to the fact that it is the most widely used form of 

                                                 

 
2 

The medium voltage network connects these transformers to electricity sources further upstream where they could 

either be sub-stations of a high voltage transmission network or power generating stations. Note that the costs 

associated with what we call here for convenience High-voltage networks or transformations from High-voltage to 

Medium-Voltage are not considered here.  
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distribution design and it is the cheapest and the simplest alternative compared to loop and 

networked designs [35]. In radial design, since there is only one path between demand points and 

transformers, power flow is certain and the system can be operated easily. The major drawback 

to radial feeder design is reliability. Any equipment failure will interrupt service to all customers 

downstream from it. However, low statistical rate of failure of equipment on the low voltage 

level makes the adaptation of radial systems easier [14].     

Within the service areas of the transformers, the low voltage network is permitted to be 

multi-point, in that, in order to minimize costs the wire to a demand point further in distance can 

first go through one or more intermediate demand points. This architecture is called a “multi-

point” LV network here (See Figure 2.4b). Maximum distance capacity of an LV line is then 

defined as another design parameter and called Lmax (i.e. the maximum LV line used to connect a 

demand point to the transformer directly or through other demand points should be less than 

Lmax
3). Lmax value should be used to limit the maximum total load on LV line and should be 

greater than or equal to Dmax so that each demand point within the service area of a transformer 

gets connected. 

Given the cost parameters and subject to the constraints described above, the desired outputs 

of the algorithm are:  

 number and locations of the transformers; 

 medium voltage (MV) network that connects a source point to the transformers; and 

 low voltage (LV) network between the demand points and transformers.  

                                                 
3 Lmax can also be considered as a constraint on distribution losses in LV level as the losses and wire lengths are 

linearly related. 
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Our objective function is the minimization of total system cost, which includes cost of 

transformers, cost of low voltage and medium voltage networks. Schematic illustration of our 

problem formulation can be seen in Figure 2.5. 

 

Figure 2.5 | Illustration of Power Distribution System. 

2.4.1 Methodology 

Given the difficulty of the problem, a heuristic algorithm is developed to place 

transformers and locate the networks. The algorithm relies on a “greedy” approach that starts 

with a stage that each demand point has one transformer (i.e.  for n demand points, there would 

be n transformers) and iteratively decreases the number of transformers. Initially, transformers 

are connected to a prescribed single source point and to each other with a least cost medium 
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voltage network; there is no LV network at this stage. The cost of this design is computed and 

provided as an initial upper bound to the cost of the network design since it is a feasible solution 

to the problem. It contains the maximum possible number of transformers and maximum length 

of MV line (which per unit length is more expensive than LV line). Then, one begins the process 

of eliminating transformers one at a time while removing some of the MV lines and adding new 

LV lines in the process to find a least cost network. The algorithm consists of the repeated 

applications of the following iterations: 

 Search for the closest pair of transformers which can be replaced by a single transformer 

located at the centroid (center of mass) of the demand points without violating, Dmax 

constraint. 

 Build the MV network between the updated set of transformers and the source point. (See 

Section 1.4.1.2 for details) 

 Build the LV network between the demand points that are no longer served directly by 

transformers using LV line, ensuring constraint Lmax.  (See Section 1.4.1.3) 

 Compute the new overall cost. 

The heuristic algorithm continues this iterative process until the number of transformers 

cannot be reduced any further without violating the Dmax constraint.  (Note that the solution with 

the least number of transformers is not necessarily the least cost since the design with the least 

number of transformers may have been obtained by adding more LV line length, and this trade-

off may not be favorable to the total cost.).  

At this stage, all the computed costs during the transformer elimination process are 

compared and the least cost network design is selected. With one transformer replacing a “pair”, 

and process repeated, one can think of the sets of demand points being served by one transformer 
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as a “cluster”. With this perspective the algorithm is an agglomerative algorithm, using a bottom-

up approach to iteratively agglomerate (merges) the closest pair of points. (See Section 1.4.1.1 

for details) 

The algorithm is further analyzed in its three components; i) selecting the transformers to 

be removed, ii) creating a MV network among the transformers and iii) connecting the demand 

points and the transformers with an LV network. A flow chart of the algorithm can be seen in 

Figure 2.6. 

 

 

Figure 2. 6 | Flow Chart of the Heuristic Algorithm 
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2.4.1.1 Locating the transformers 

A capacitated agglomerative hierarchical clustering method is adapted to find the 

locations of transformers since it does not require pre-selected candidate locations for 

transformers. Note again that this is different than most of the work in the literature and is a must 

for our target demand points, households in rural Africa with little or none existing infrastructure. 

An agglomerative hierarchical clustering method starts with as many clusters as the 

number points to be clustered. At each step, the clusters are merged according to a rule and 

eventually only one cluster remains where all points are connected. In contrast, a capacitated 

agglomerative hierarchical clustering method has no assumption on the final number of clusters 

[36] and finds the minimum possible number of clusters that can be achieved with the given 

constraints. In clustering methods, many rules can be used depending on the problem definition. 

In our problem, to be able to incorporate the Dmax conveniently, the closest pair based on the 

Euclidean distance between transformers has higher priority to be merged. The applications of 

clustering methods on similar problems using Euclidean distance can also be seen in [36-40]. 

Here, as opposed to stopping the process when the best possible agglomeration violates the 

capacity constraint (infeasible) [37], we choose the next best feasible agglomeration (if there 

exists one) as proposed by [39].  

An illustrative example of our agglomerative clustering approach is presented in Figure 

2.7. In this example, we have five demand points and Dmax is 2. Figure 2.7a represents the initial 

configuration and Figure 2.7b-d show how the closest pairs of transformers which do not violate 

the capacity condition are connected one by one. No further change is possible in Figure 2.7 d 

since the agglomeration of the final two clusters would violate the Dmax constraint. 
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Figure 2.7 | Agglomerative Clustering Example. a, Initial configuration where each demand point has 

one transformer. b, The closest pair (1 and 2) gets connected. c, Next closest pair is 1 and 3. d, 4 and 5 are 

connected and no further change is possible without violating Dmax constraint.       

2.4.1.2 Medium Voltage Line Layout 

At any iteration, when transformer locations are known, the problem is to find the least 

cost layout that connects the transformers and the given source point. This can easily be solved 

by using the well-studied Minimum Spanning Tree (MST) algorithms discussed in Section 2.3.1, 

which aim to find a tree (i.e. network) that spans all the points minimizing the total length of the 

network4 with the guarantee of the exact optimal solution [26]. For the problem at hand, the 

points represent the transformers and the source point.  

2.4.1.3 Low Voltage Line Layout 

                                                 

 
5
 Since there is no constraint on the maximum length of MV line, the least cost solution is simply the least total 

length. 
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As “clusters” emerge during each iteration cycle, an LV network needs to be laid out 

within each cluster. The total length of the connections is minimized while ensuring that the 

length of LV line between a transformer and the demand points are always less than a given Lmax 

value.  

Constructing a least cost multi-point network (cost efficient compared to star 

configuration, see Figure 2.4) is similar to the minimum spanning tree (MST) problem, but with 

an additional Lmax constraint. This extra condition converts the problem into a capacitated 

minimum spanning tree (CMST) problem. CMST is a minimal cost spanning tree which has a 

designated root (transformers) and a capacity constraint which ensures that the length of a sub-

tree incident on the root does not exceed a certain distance (Lmax). This problem is well studied 

for its applications to centralized communication design. Unlike MST, CMST cannot be 

efficiently solved in polynomial time. However, Essau-Williams [41] and Sharma [42] 

developed heuristic algorithms to solve the CMST problem and Chandy and Russell [43] showed 

that these heuristics find near optimal solutions within 10 percent (often 5 percent) of the optimal 

solution.  

Essau-William’s heuristic algorithm is implemented in order to get the least total length 

LV layout within each cluster. A CMST algorithm starts with connecting all demand points to 

the transformers using the star configuration. The procedure to go from star configuration to a 

multi-point configuration is simply the successive iterations of calculating the trade-off values 

from removing the direct connections between the demand points and the transformer ,as well as, 

adding indirect connections through their neighbors. At each iteration, the trade-off value is 

computed for every demand point and the largest trade-off value (i.e. the greatest improvement) 
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that does not lead to a violation of the Lmax constraint is used to update the network. The 

algorithm terminates when there is no further improvement possible.  

An example of CMST algorithm with Lmax value of 5 is presented in Figure 2.8. It starts 

with the star configuration in Figure 2.8a, and constructs the multi-point connections in Figure 

2.8b-2.8d until there is no further change possible with the given Lmax. Notice that although the 

trade-off value of point 1 is greater, its direct connection to the transformer is not removed due to 

the constraint. 

 

Figure 2.8 | A seven-point example of Essau-William’s CMST algorithm. a, Initial star configuration.  b, 

Maximum trade-off value is for Point 1 (2.23) however it violates Lmax. Point with the next best trade-

off value (Point 2) is selected. c, Next best  trade-off value is for Point 6. d, Final configuration is reached 

after Point 4 is connected.    

2.4.2 Results on the sub-Saharan Africa sites 

The algorithm is tested on household level data from nine sites in Sub-Saharan Africa 

shown in Figure 2.1. In rural electrification programs, the clusters of demand points and loads 
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are small, so we use representative costs corresponding to the typical small 25kVA transformer 

[35, 36].  Cost parameters and other constraints consistent with rural electrification practice [37-

40] are assumed to be: Dmax = 500 meters, Lmax = 600 meters, CLV   = $10/meter, CMV = $25/meter, 

CT    = $5000.  

In Table 1, statistics and the outcome of our algorithm are shown for all sites. These results 

can help network engineers and planners estimate the number of transformers and the LV, MV 

line lengths easily for a particular location. In addition, by using our algorithm, they can also 

quantify their empirical observations. For example, from Figure 2.1 b-e, Mbola seems more 

dispersed than Bonsaaso (both have around 1000 households). Therefore the dynamics of their 

networks are expected to be different by observation. The algorithm indeed outputs 90 

transformers for Mbola and 18 for Bonsaaso, and, the cost per household is more than 2.5 times 

for Mbola than for Bonsaaso. Similarly, Tiby (Figure 2.1 c) seems highly nucleated and this 

leads to shorter (cheaper) connections. Hence, with $691 Tiby has the lowest per households cost 

among all sites. 

Table 2.1 | Algorithm results for nine sub-Saharan Africa sites 
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 From the test results, it is also possible to reach some generalized conclusions. For all sites, 

overall transformer costs are between 8%-15% of the total cost. In addition, for sites that has 

1000 to 2500 household for 100 km2, the bulk (~60%) of the total cost is composed of MV 

voltage lines. In the dense sites (Ruhiira, Mayange and Mwandama), there is a greater number of 

households per transformers and the total cost of LV line is comparable or even higher than the 

total cost of medium voltage lines despite the fact that the MV line is more expensive than LV 

line.  

Furthermore, as a result of the rural electrification programs, some of the sites such as 

Mwandama, Pampaida and Mbola have already partial existing grid. When we compare our 

medium voltage network with the existing medium voltage line in these sites, we observe a 

highly good match. In Figure 2.9, the overlap between the existing grid and the proposed grid is 

shown. This indicates that the planners may benefit from our algorithm in estimating the network 

structure and related costs also for these sites where there is an existing partial network. 
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Figure 2.9 | Match between proposed network and existing grid. Proposed transformers, LV and MV 

networks compared to partial existing grid. Algorithm outputs 90 transformers for 1175 demand points.  

 

2.5 Discussion on Multi-level Power Distribution Systems 

Results 

In this section, we first assess the sensitivity of the two-level power distribution networks 

in terms of the cost parameters for LV, MV lines and transformers (Section 1.5.1). This analysis 

can be significantly useful for policy planners to estimate the total cost fluctuations due to 

individual cost parameters. Next, considering that the complexity and the noise in the real data 

from Sub-Saharan Africa may complicate the understanding of our results, we also test our 

algorithm on simplified (simulated) datasets (Section 1.5.2) and see that we get consistent results 

for the artificial data [49]. Then, we compare our algorithm with a sequential approach (Section 

1.5.3) to see the relative performance and finally, we discuss the limitations and possible 
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extensions of the algorithm for more detailed planning of power distribution systems and other 

parts of infrastructure problems such as siting of health or educational facilities (Section 1.5.4).  

 

2.5.1 Network Sensitivity Analysis in Terms of Cost Parameters 

In our base case results, the cost parameters; CLV, CMV, CT; are chosen as $10, $25 and 

$5000 respectively. We perform a sensitivity analysis to understand whether there is a drastic 

change in the final network due to slight movements in these cost parameters. For the sake of 

generality, we present the general behaviors of the algorithm on uniformly distributed randomly 

generated points (1000 demand points on 10X10km2). At the end, we also present several runs of 

the algorithm on the data from Sub-Saharan Africa and verify the generalizations in real datasets.  

2.5.1.1 Analysis with MV and LV Line Costs 

First, we define a ratio, p, between cost parameters of MV and LV lines (i.e.  p=CMV/CLV). 

When the transformer cost parameter, CT, is set to zero, the differences in final networks help us 

understand the sensitivity of final network design to the ratio between cost of MV and LV lines. 

Initially every demand point has one transformer; therefore maximum amount of MV and zero 

LV lengths are used in the system. Figure 2.10 shows how the total length of MV and LV lines 

change as the algorithm reduces the number of transformers from number of demand points to 

the minimum number of transformers subject to Dmax constraint.  
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Figure 2.10 |  Change in total length of MV and LV lines. As the algorithm decreases the number of 

transformers for 1000 uniformly distributed randomly generated demand points data within a 10X10km2 

area, total MV line length decreases, while total LV line length increases 

In Figure 2.11 a, we show the change in number of transformers as the p ratio is increased 

from 1 to infinity. We interestingly observe that there is a critical value (p*) such that for all 

values less than p* one transformer for each demand point (maximum number of transformer 

case) is the minimum cost design. For other values, greater than or equal to p*, the solution 

includes almost the minimum possible number of transformers without violating the maximum 

distance (Dmax) constraint between demand points and transformers.  Here, the critical p value 

(p*) is observed around 1.70.  
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Figure 2.11 | Network Sensitivity Analysis. a, The sudden change in the number of transformers as the 

ratio between CMV and CLV cost parameters increases. b, Change in total MV and LV lengths from the 

1000 transformer case. c, The change in the number of transformers for different q ratios as p ratio 

increases.(See Section 5.1.2 for q). d, The difference between the curves in b with MV weighted with 

different p ratios. 

 

To understand this sudden change further, we need to think about how the algorithm works 

in each step. The total cost is given by the following equation; 

  iLViMVTi LVLengthCMVLengthCiCΤotalCost

   
And when we assume there is no transformer cost, it becomes 

 

  iLViMVi LVLengthCMVLengthCΤotalCost
 



 

37 

 

The algorithm compares the total cost values in determining the number of transformers. 

Therefore, the only way to decrease the number of transformers is if 

ji TotalCostTotalCost   where ji  . This means; 

    jLVjMViLViMV LVLengthCMVLengthCLVLengthCMVLengthC
 

and 

     jiij LVLengthLVLengthMVLengthMVLengthp
 

Here, for small p values, the change in the transformer number is not profitable because it 

also makes LV longer and cost of the LV is not cheap enough to make above equation hold (see 

the black (darkest) line in Figure 2.11d). Then algorithm results in one transformer for each 

demand point. However, after a critical p value (p=1.70 in Figure 2.11a) cost saving becomes 

possible by decreasing number of transformers within the allowed configurations. Once the 

algorithm favors less number of transformers, for all higher p values it goes all the way down to 

the minimum number of transformers subject to the Dmax constraint because decrease in the MV 

length is faster than the increase in LV length; the fewer the number of transformers the less total 

cost (see Figure 2.11 b). 

We perform the same analysis for some of the Sub-Saharan African sites and again obtain 

similar results; most notably, a sudden drop in the number of transformers. Table 2.2 summarizes 

the results. We observe that p* differs based on the number of demand points and their spatial 

distributions. For example, for clustered sites (Bonsaaso and Ikaram) p* value is smaller than the 

rest of the sites and p* is highest for Mbola which is known as its dispersed settlement pattern. 

Since p* is actually the ratio between the changes in LV and MV as the algorithm proceeds, it is 

expected to have smaller ratios for clustered sites where the decrease in total MV line is much 

faster than the increase in LV line for small number of transformers. Moreover, when Dmax is set 
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to 750 meters, algorithm finds less transformers than the 500 meters case and the sudden drop 

point happens at smaller p* values as expected. 

Table 2.2 | Critical p* ratio for some of sub-Saharan sites 

 

2.5.1.2 Analysis with LV Line and Transformer Costs 

To be able to see the effect of transformer cost on the final network design, another ratio 

between CT and CLV is defined here as q=CT/ (CLV *Dmax) and the cost of MV line is set to zero 

(since the cost contributions from CT and CMV are in the same way). Unlike the p ratio, Dmax is 

introduced in the q ratio to make it dimensionless.  

The total cost is given by           

 jLVTj LVLengthCjCΤotalCost
 

To be able to decrease the number of transformers 

ji TotalCostΤotalCost 
 

  jLVTiLVT LVLengthCjCLVLengthCiC
 

   ijqDLVLengthLVLength ji  max   

This time there is no sudden change and the number of transformers decreases gradually as q 

increases (Figure 2.12a). The S-shaped behavior is due to the fact that closer nodes are connected 
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first so the cost from LV length is initially smaller and the total cost is more sensitive to the 

change in transformer cost.  

 

Figure 2.12 | Network sensitivity analysis. a, The change in the number of transformers as the CT/CLV 

ratio increases. b, The change in the number of transformers for different p ratios as q ratio increases. 

2.5.1.3 Analysis with all cost parameters 

In Figure 2.11c and Figure 2.12b, we looked at more realistic cases where all the cost 

parameters are present. Figure 2.11c shows p ratio analysis for different q values. For high q 

values, effect of S-shaped behavior of q dominates the sudden drop effect of p and we observe 

higher critical p values for small q values. In Figure 2.12b, q ratio analysis with different p 

values is presented and for high p ratios the sudden drop effect of p ratio dominates the smooth 

decrease effect of q ratio.  

In conclusion, depending on the price changes the design with minimum cost may change 

drastically. For the values (p = 2.5, q = 1) that we use for calculating the grid in the nine Sub-

Saharan Africa sites, network generated by our algorithm is not sensitive. However, policy 
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makers can use our algorithm as a tool to understand whether or not there is a possible design 

change with future prices.  

2.5.2 Testing of Algorithm on Simulated Data 

Our results for African sites are specific to each site because all sites have different 

number of demand points and spatial distribution patterns. The noise and the variety in the data 

from Sub-Saharan Africa sites can make it difficult to draw conclusions from the results of the 

algorithm. This is why we test our algorithm on simulated data which provide more intuitive 

sense of what results would be. Same cost parameters and constraints are used for the base case 

run of simulated data. (CLV=10, CMV=25, CT=5000, Dmax=500, Lmax=600) 

2.5.2.1 Multivariate Normally Distributed Randomly Generated Data 

We present six 10 X 10km2 artificial sites with 1000 demand points that are randomly 

generated using multivariate normal distribution (generalization of Gaussian distribution in two 

dimensions). To filter out the noise, we stretch out the points in two dimensions by increasing 

standard deviations of the multivariate normal distribution (from 250 to 1500).  The generated 

sites are shown in Figure 2.13a-c, e-g, and the results are presented in Figure 2.13d, h. As 

expected, the number of transformers goes up with higher standard deviation (Figure 2.13d) and 

as the number of transformers increases, the total MV line used increases, while the total LV 

decreases consistently (Figure 2.13h).  
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Figure 2.13 | Multivariate normally distributed random data and results. a-c, e-g, Multivariate normally 

distributed 10X10 km2 sites with 1000 demand points. d, The behavior of algorithm as the standard 

deviation increases. h, Average LV line per transformer declines as the average MV line and the number 

of transformer increases. 

2.5.2.2 Uniformly Distributed Randomly Generated Data 

Next, we present 6 different sized areas (4X4, 6X6, 8X8, 10X10, 12X12, 14X14 km2) 

with again 1000 demand points that are generated randomly using uniform distribution (i.e. the 

likelihood of generating a demand point on any point of the site is same). Since these sites have 

different areas but the same number of points the mean distance between demand points is the 

highest for 14X14 km2 site and decreases as the site area gets smaller. .The generated sites are 

presented in Figure 2.14 and the results are summarized in Figure 2.15.  
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Figure 2.14 | Uniformly distributed randomly generated data on different sized areas. 

To facilitate the quantitative comparison between sites, we refer to “average nearest 

distance” defined by Clark and Evans [44]. We calculate the average nearest distance using a 

Geographic Information System (GIS) tool for each different sized site and they are shown in the 

x-axis of Figure 2.15a-b (60 for the densest site (4X4 km2), around 260 for the largest site 

(14X14 km2)). Due to the lower number of demand points within the radius of Dmax, number of 

transformers increases almost linearly (Figure 2.15a) as the average nearest distance increases 

(same total number of demand points, same Dmax) and when we keep the ratio between the 

average nearest distance and the Dmax same, we obtain the same number of transformers for each 

site (Figure 2.15b).   
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In addition, we also test our algorithm on the same sites setting the Dmax to various 

numbers between 50 and 1000 and present the results in Figure 2.15c. As expected, the number 

of transformers increases as the Dmax decreases and converges to the number of demand points. 

This is in general more sensitive in the dispersed areas making the slope steeper (slope in the 

Figure 2.15a) for lower Dmax values. 

 

Figure 2.15 | Results for uniformly distributed random data. a, Number of transformers outputted by 

algorithm for the sites which have same number of demand points but different average nearest distances. 

b, The number of demand points when the ratio between Dmax and Average Nearest Distance is kept 

constant for each site. c, Number of transformers versus average nearest distance for different values of 

Dmax constraint. 
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2.5.3. Comparison of Our Algorithm with a Sequential Approach 

As it was discussed in Section 2.1.2, to our knowledge, none of the previous studies in 

rural electrification and power engineering literature exactly matches with the objective of our 

paper. Complexity of the existing models [14, 15, 19] limits their suitability for the large data 

sets of demand points (up to 6500 households per site in our case). However; we can still 

compare our results with a relatively simpler sequential approach. In this approach, problem is 

divided into three sub-problems: transformer location problem, MV network design problem and 

LV network design problem. Then, each sub-problem is solved sequentially. 

In the sequential approach, a greedy approach proposed for set covering problem5 by 

Chavatal [45] is implemented to solve transformer location problem. Chavatal proves that the 

cost returned by the heuristic algorithm is at most H(d) times of the cost of an optimal solution 

where 



d

i

idH
1

/1)(  and d is the size of the largest set found by the algorithm. Once the 

locations of the transformer and their service areas are known, the MV and LV networks are 

found using MST and CMST algorithms, respectively. Then, total cost of transformers and cost 

of networks are calculated. 

Final number of transformers and total cost results for both sequential approach and our 

algorithm are presented in Table 2.3. It is shown that our algorithm tends to perform better than 

the sequential approach in terms of the total cost providing 4.5% improvement across all sites. 

We note that both approaches discussed here are based on polynomial time algorithms and 

provide reasonably good solutions to an NP-hard problem.  

                                                 
5Set covering problem aims to find the minimum number of sets subject to the constraint that each demand point 

should be covered (served) by a facility within a certain coverage criterion.   
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Table 2.3 | Comparison of our algorithm with a sequential approach 

 

2.5.4. Limitations of Our Algorithm and Possible Extensions 

The model described in this paper intended for obtaining quick estimates for the network 

structure and associated costs as a part of feasibility analysis, rather than being used for detailed 

implementation.  Below we list a set of simplifications that we adopted: 

 Our present model does not take some concepts into consideration such as power flow, 

power loss, voltage regulations, and transformer sizes for simplicity purposes. 

 We use constant cost parameters throughout the entire system for transformers and wires. 

Thus, we limit our model to have single type of transformer (25kVA) and single LV and 

MV technology (three-phase). 
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 We assume that our demand points are distributed with the similar loads and spatial 

characteristics and do not model bulk MV and non-homogenous loads. 

 Upfront capital costs dominate the operations and maintenance (O&M) costs and are 

treated as “overnight” costs (i.e. it is assumed that the entire system investment is made at 

once). 

 We do not include in our model network control devices such as voltage regulators, 

switches etc.  

Our intent in this paper is to keep the model as simple as possible with the assumptions 

above while focusing on designing two-level network such that the overall distribution system is 

optimized in one framework as suggested by [46]. A multi-level network design problem which 

includes multi-point network configuration in one level has enough complexity; however our 

model can still be extended to include some of the important concepts mentioned above.  

For example, based on the number of demand points served by a transformer, transformer 

size can also be determined by the model and different cost parameters can be used to calculate 

the total transformer costs. For example, instead of using 25kVA for $5000 each, we can prefer 

assigning cheaper 16kVA transformers to the clusters which serve small number of points in 

sparse areas. Thus, we could decrease the total cost and avoid underutilized transformers.  

Furthermore, it is also possible to put a capacity constraint (to incorporate the power losses 

and voltage regulations) in MV network even though this would make the problem even more 

complicated.  Using the source as root, we can use CMST algorithm to design the MV level 

instead of using MST. For the LV level, Lmax can be determined from the power loss and voltage 

drop constraints. Based on the number of transformers and the total length of the network, 
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number of network control devices can be estimated and the cost of these devices can also be 

included in the objective function (total cost) of the system. 

Another modification in the algorithm that could be done is that instead of using, multi-point 

network configuration in the LV level, star configuration can also be employed as it might be 

preferable for some situations. In this case, at each step of the algorithm CMST algorithm will be 

skipped and total cost of LV network will be found after calculating the direct distance between 

transformers and their associated demand points.   

It is also possible to introduce time in our model with an assumption on the lifetime of a grid. 

For depreciation purposes, the lifetime of a grid is considered between 20 and 30 years but in 

reality it is usually more with a proper maintenance [35]. It is also acceptable to use a number 

between 1/8 and 1/30 of the capital cost for an estimate on the O&M costs in annual basis [35]. 

Thus, given annual costs and life time the grid, O&M costs can be discounted to the present 

value and be included in our objective function. 

Furthermore, another potential application of our algorithm would be in facility location 

problem where given a set of household locations, planners are interested in finding how many 

schools or health facilities they need [44-48]. The unique situations of rural areas, in particular 

the sites in Sub-Saharan Africa as explained in the introduction; prevent many of the existing 

algorithms from being applicable as they usually require a set of candidate facilities as an input 

and there is no way to refine the candidate locations on the two dimensional coordinate system of 

the ground in these sites.  By removing the cost of the network from the objective function, our 

algorithm can easily be modified for this purpose. This will simplify our algorithm to an 

agglomerative clustering algorithm that minimizes the total cost of opening facilities subject to 
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the Dmax constraint, which specifies the maximum distance between each household and the 

facilities (discussed in Section 4.1 in detail).
 
 

2.6 Conclusion  

With the local-level household data developed from satellite imagery, we look at how the 

settlement patterns of households (demand points) affect the cost of power distribution systems. 

Rural energy planning has mainly focused primarily on the national to regional scale. This study 

is one of the first examples which focus on the local level analysis and help energy planners 

make the rapid assessment of distribution systems planning and partial electrification in rural 

settings.  In the first part of this chapter (single level electrification), we show that some 

population settlement patterns offer the potential for savings (on a per-unit basis) in upfront 

investments through an initial roll-out that covers part of the population; later expansion of these 

partially spanning networks can be undertaken at little additional cost in the long-term. 

In the second part (multi-level), a new heuristic algorithm for the design of two-level 

power distribution systems has been introduced. It has been presented that the algorithm finds 

the number and locations of MV/LV transformers without giving any candidate locations and 

finds a multi-point low voltage network between demand points and transformers. The proposed 

algorithm ignores transmission losses, load flow considerations and local topography. Hence it 

should be viewed as a quick tool which simplifies a complex problem and provides good starting 

point for decision makers and practitioners. However; our algorithm is flexible such that it can be 

simplified to other infrastructure problems (for example; facility location problem) or it can be 

extended to include more distribution system components such as transformer sizes. 
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Modelling of a Hybrid Energy System with Conventional 

Hydro Storage 
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3.1 Introduction 
 

The importance of sustainable energy planning has increased substantially with rising 

population growth rates, environmental issues and economic developments. International Energy 

Agency (IEA) estimated that primary sources of electricity in 2009 consisted of 40.6% coal, 

21.4% natural gas and 5.1% petroleum summing up to a 67.1% share for fossil fuels in primary 

electricity consumption in the world [1]. However, fossil fuels are finite and their combustion 

results in greenhouse gas emissions, which contribute to global warming and health hazards. 

Therefore, energy models that involve clean and renewable energy sources are necessitated to 

ease the concerns on the electricity generation that meets the projected demand.  

Transition to alternative renewable energy sources is inevitable.  However, renewable 

sources are generally are variable and heavily dependent on the spatial location (e.g. sunshine 

while more predictable, is limited to daytime hours, and the total annual insolation is also 

spatially varying. Annual wind energy potential is even more spatially heterogeneous.). Thus if a 

future energy system wants to predominantly rely on these sources, it must utilize a mix of 

variable and dispatch-able resources that are interconnected, thus requiring investments in 

transmission, or utilize back-up dispatch-able resources (likely to be fossil fuels or hydro in the 

near term), or utilize some form of storage (e.g. pumped hydro or compressed air energy storage), 

or allow some of the energy generated to be curtailed or use intelligent demand side management. 

For cost-effectiveness of the overall system, the approach is likely to be “all of the above” [2-4].   

Here, for the sake of demonstration we imagine a long-term scenario that primarily relies on 

solar and hydro as the renewable resources and assume that fossil fuels will be expensive and 

hence judiciously used.  
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We imagine the demand profiles of a specific country, and model the long-term 

investments and storage while capturing the volatility of hourly supply and demand. In this 

country, we first identify candidate basins for hydro power stations and aggregated demand point 

locations (the cities or the states of the country). We assume that the first use of solar will be for 

immediate in time as well as locally. Then, we determine the possible transmission network 

between supply and demand points. We mathematically model this hybrid energy generation and 

allocation system, where time variability of energy sources and demand is balanced with the 

water stored in the reservoirs of hydropower stations.   

Hydropower plants are known as reliable parts of power systems due to their inherent 

instantaneous starting, stopping and load variation ability [5] and can be designed with or 

without storage. A plant without storage is called run-of-the-river system and produces 

electricity by diverting river flow through turbines that spin generators without materially 

altering the normal course of the river. Hydropower plants with storage can be either a 

conventional plant where incoming stream flows are stored in large reservoirs in dams and water 

release can be varied or deferred as per need or a pumped hydro plant where water can also be 

moved between a lower and a upper reservoir for later use. In this chapter, we present a model 

for a hybrid system which includes conventional hydropower stations and decentralized solar 

power stations working together to meet the variable demand. To increase the reliability of the 

system, diesel generators (as a proxy for expensive fossil resources) are used as a backup source 

where we ideally use only when there is no hydro and solar power production possible due to the 

intermittency of renewable sources. The objective is to find the least-cost design for the power 

stations and transmission lines, which also minimizes the diesel usage. Then, in the next chapter, 

we present a pumped hydro model where excess electricity generated from solar energy can be 
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transmitted to hydropower stations and used to pump water to the upper reservoir to store energy 

in the form of potential energy. 

The main motivation of the model is to determine the optimal capacities of infrastructure 

needed to match projected demand and supply in the most cost effective way. We answer 

questions such as; -where to locate hydro and solar power stations, -where, when and how much 

solar and hydro energy should be produced during each time interval, -what should be the size of 

reservoirs so that the demand and supply would be matched, –from/to where and how much 

energy should be transmitted? In this section, we also provide results for alternative hybrid 

system designs such as solar-diesel, run of the river-diesel, solar-conventional hydro-diesel and 

show the quantitative importance of storage while using renewable sources. 

An innovative contribution of this work is the establishment of a new perspective to 

energy modeling by including fine-grained sources of variability such as stream flow, solar 

radiation in hourly level as well as spatial location of supply and demand in the national/regional 

level. The model is formulated as a stochastic linear program. Stochastic nature of inputs such as 

stream flow is addressed by determining scenarios from the time series. The model will be 

presented with a case study of India and helps answer whether solar energy in addition to high 

hydro power potential in the Himalayas would provide a back-bone for a low carbon economy in 

the face of growing electricity demand if fossil fuels could be almost completely phased out from 

electricity generation. 
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3.2 Background 

3.2.1 Literature Review 

This study is relevant to some well-studied problems in the literature such as planning of 

hybrid energy systems, long-term energy investment planning problems, and electricity 

generation expansion problem. 

The idea of a hybrid system is to obtain the most cost efficient system using alternative 

sources. In order to obtain electricity from a hybrid system reliably and at an economical price, it 

must be designed optimally in terms of operation and component selection. Many different 

hybrid systems which has been proposed in literature, involves renewable resources such as solar 

photovoltaic, wind and hydro with or without existence of storage alternatives such as pumped 

hydro or batteries [2-4]. Mathematical modeling and optimization of hybrid systems is not an 

easy task as they usually involve many components and decision variables. Especially in the 

existence of storage, the fact that all time units in the planning horizon are linked to each other 

complicates the solution of the model. Therefore, hybrid systems have generally been proposed 

more for localized and decentralized systems without including transmission part of the power 

systems to reduce the complexity of the models. However, there is a need for feasibility studies 

in the literature which help understand contribution of the renewable sources in national energy 

system planning. 

In the macro level, several national level energy planning models have been proposed [6-

11]. These models provide policy makers with extensive details on energy generations and 

consumption technologies and how to meet some of the long-term goals related to government 

policies such as phasing out fossil fuels or decreasing greenhouse gas emissions. Previously 

proposed studies (except for [6]) include time component in their model with increments from 1 
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to 5 years and use the average values for energy sources and demand. However, it has been 

shown that models that utilize intermittent sources such as solar and wind tend to understate their 

value when averages are used [12]. These sources look more valuable when production periods 

are set to as short as a few hours. In addition, all these models use aggregated supply and demand 

without explicitly representing spatial locations. Therefore it is not possible to answer specific 

investment questions such as where to locate solar power station or how to expand the 

transmission lines. 

3.2.2 Background for India Case Study 

India, with 1.27 billion people, is the second most populous country in the world as of 

2013. According to World Energy Outlook, 2012 version from IEA, India is expected to 

overtake China soon after 2025 becoming the most populous country and its population will 

exceed 1.5 billion in 2035 [13]. In India, nearly 25 percent of the population lacks basic access to 

electricity and electrified areas suffer from electricity blackouts [14].  Moreover, India heavily 

depends on coal for meeting its current energy demand (with a share of 42% in 2009). It is 

currently the third-largest generator of coal-fired power after China and United States and 

estimated to overtake United States to become the second-largest by the end of 2025 [14]. 

Therefore, increasing rate of energy consumption, heavy dependence on petroleum fuels and 

volatility of world oil market increase the importance of clean energy sources in order to be able 

to balance the need for electricity and address the environmental concerns for sustainable 

development in India. Furthermore, there is also additional factors such as global pressure, 

voluntary targets for greenhouse gas emission reduction and intensification of rural 

electrification program that promote the use of renewable sources in the country [15]. 
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India, with a vast land area, is very rich in terms of renewable energy sources like solar, 

hydro, wind and biomass [16]. Given the Himalayan ranges in the north having numerous rivers 

and streams with perennial flows; one of the biggest renewable potential in India is the 

hydropower. Stream flow in the Himalayan Rivers is generated from rainfall and concentrated 

snow. The flows are observed throughout the years and steep geographical slopes make all the 

streams in Himalayans high potential sites for hydropower generation [17].  As the potential is 

quite significant, both large-scale and small-scale hydropower stations can be considered for 

installation. Our goal in this chapter is to evaluate both alternatives. In national level, large 

power plants seem to be more cost effective as they include “water storage (reservoirs)” instead 

of substantially expensive “energy storage” (batteries) and small-scale plants (e.g. run-off-the 

river stations) is environmentally friendly and sufficiently meets the need in smaller demand 

areas.   

Moreover, India lies in the sunny belt of the world and a very promising place for solar 

energy generation. The average intensity of solar radiation received in India is 200 MW/km2 

with 250–300 sunny days in one year [18]. With the increasing urbanization rate, cooling 

demand also increases in India and the same trend in solar radiation and cooling demand makes 

solar energy utterly suitable source to meet the peak demand caused by the air conditioners. In 

our model, we consider the energy generated from solar power as a part of the nation-wide 

energy planning optimization processes and find the optimized solar panel area for each demand 

point using the hourly solar radiation data. 

In addition to hydro potential and solar energy, wind power and biomass are the other 

clean energy resource currently being exploited in India [19].  Wind power is widely distributed 

energy resource and has its own unique advantages especially for the developing world such as 
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being able be installed quickly in areas where electricity is urgently needed. Total wind energy 

potential in India has been assessed as 45 GW in 2008 [20] and as of September 2013 19.8 GW 

of these capacity has been installed [21]. In our model, we include neither wind energy nor 

biomass in our problem; however, once the data is available, it is fairly easy to extend the model 

to include more renewable sources as can be seen below.  

3.3 Problem Statement 
 

Dispatch-able power is the power that can be called on when needed, in contrast to base 

load power, which is essentially always on. Dispatch-able generation is a premium power source 

since it is controllable and not wasted. For example; when air conditioners are off and 

refrigerators are not running, there is no need for power inflow and in this case, having 

controllable supply power saves energy. In a carbon-constrained world, we want to use as much 

renewable sources as possible; however, because of the intermittency of renewable sources, they 

are mostly non-dispatch-able. Hybrid power systems, energy storage, long distance transmission 

and demand response programs can help reduce intermittency of the renewables and allow the 

grid accommodate more variation on both supply and demand. In this problem, our goal is to see 

how combining multiple renewable sources which have different variability, storage and 

transmission can help reduce the intermittency and variability of sources and increase the 

reliability of the power systems. 

Our model is designed to help infrastructure planners make long-term investment 

decisions based on the results for electric dispatch, energy resource allocation and storage over 

one-year horizon. The objective of the model is to minimize the sum of the investment costs and 

expected penalty cost for the demand which can not be met by renewable sources.  Given 

demand points and candidate basin locations for hydropower stations, we are interested in 
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optimal sizing of power stations (hydropower and solar) and transmission lines (between basins 

and demand points) while minimizing the infrastructure cost of solar and hydropower stations 

and cost of the back-up energy source (diesel generators) that we use in case there is no stream 

flow or solar radiation available. In this system, water stored in the reservoirs can mitigate 

volatility of supply and demand. Water release from the reservoirs can be controlled and deferred 

until it is needed. Thus, reservoirs facilitate energy transfer from low use periods to peak use 

periods, allowing the system operate based on demand load while maintaining high system 

reliability.  

 Storage is the key enabling technology for intermittent energy; however, it complicates 

the design of optimization problems by coupling all the time periods together. While working 

with sources that are not constantly available such as solar, the time increment that we use in the 

optimization model becomes quite important. As it will be discussed in Section 3.3.2.1, stream 

flow data in Himalayas, solar radiations as well as demand show both seasonal and diurnal 

variability. To accurately capture the diurnal variability, it is necessary to model energy supply 

and demand in hourly time increments. Moreover, because of the seasonal variability of the 

sources, it is also crucially important to use at least one year as time horizon. An approach that 

avoids capturing every time increment over a year by simply sampling different time periods (e.g. 

different time of the years and time of the days) fails to accurately model the storage. Moreover, 

modeling reservoir systems is principally more complicated than modeling other storage types 

such as a battery which stores energy during the day and releases at night. Here, we may put 

water in reservoir storage in September so it can be used in dry seasons, couple of months in the 

future. 
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  The nature of hydropower generation, storage and the stochastic aspect of the key 

variables like stream flow, solar radiation and demand make optimization problems quite 

difficult to be dynamically solved as high number of units is involved. Here, following the 

typical strategy in stochastic programming, we present a scenario based static model with 

multiple time periods and time periods are coupled by storage. Possible random situations are 

represented by scenarios with the associated probabilities. By scenario approach, a set of 

prototype 1-year series with 3 hourly time increments are selected from the time series as a 

particular realization of the uncertain data.  A drawback of a scenario-based approach is the fact 

that scenarios are generated in advance, and this limits their ability to capture the interaction 

between decisions and exogenous events. We assume that effect of this drawback can be 

minimized during the real-time operations of the power systems. For example, in case of very 

rainy season which is not foreseen and captured by scenarios, the water in the reservoirs can be 

controlled to be prepared for the season. 

3.3.1 Hybrid System Components 

The hybrid model described in this chapter has three sub-systems; hydropower stations, 

solar power stations and transmission network between hydro and solar power stations. Design 

of individual power systems is not in the scope of this problem so several assumptions are made 

to reduce the complexity of the model. 

3.3.1.1 Hydropower Systems  

Here, we identify several basins as candidate locations for hydropower stations and 

optimization model is solved for the size of the reservoirs and generators to determine the type 

and capacity of the power systems. If the generator size is zero for a candidate basin, there is no 
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need for a hydropower station at that candidate basin. Moreover, when generator size is positive 

whereas the reservoir size is zero, then it means a run-of-the-river system is the optimal choice of 

the basin. It should be noted that these decisions are based only on supply and demand data. 

Other site-specific concerns such as effects of dams on fishing, recreational activities and 

tourism or environmental constraints are not taken into account. 

  In a more detailed hydropower plant design problem, diameter of the pipe from the 

reservoir to turbines would be another constraint to consider. Here, we assume that pipeline sizes 

are proportional to reservoir size and cost can be included in reservoir cost. Moreover, empirical 

information shows that there is no operational cost based on the output level of the hydropower 

station [22]. Water represents the only variable that could be in the form of opportunity cost and 

is not taken into account in our model. For our case studies, we use $1/m3 as unit cost of 

reservoir capacity (i.e. constant incremental cost of installing reservoir capacity) which is within 

the ranges given in [38] and [39]. For the unit cost of powerhouse (generator, turbine/pump, 

transformers), we use $500/kW as this value is the lower bound of the range given in [40] for the 

capital cost of the medium to large hydropower stations (assuming that the lowest cost system 

has no storage). The cost parameters can clearly vary from site to site and this can easily be 

incorporated in the model assigning site specific unit cost for each investment variable. 

In this model, although we are interested in finding the size of multiple reservoirs, we 

assume that each hydropower plant operates independently and each plant is assigned to one 

reservoir. Due to frictions in the tunnel, turbines and generators, 12-14% of the potential energy 

of the water can be lost while generating electricity [22]. Therefore, we use 88% efficiency for 

all plants here. Losses due to evaporation from the reservoirs are ignored. 
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The potential for power production at a reservoir site mainly depends on the flow rate of 

water that can pass through generation turbines and the potential head available. Potential head 

usually depends on the topology and the constructed wall of the dam because based on the design 

of the dams; the water level stored in the reservoirs can have an important influence on the 

energy potential of water. For example; in Norwegian statistics, the vertical height of a waterfall 

is measured from the intake to the turbines [22]. Given the steep slopes of the Himalayas, it 

would be reasonable to use the same statistic here. Thus, we use a constant head for each 

reservoir during the operations and do not consider the reduced electricity conversion efficiency, 

which is caused by the fact that height of water falls is reduced as the reservoir is drawn. 

Moreover, usually reservoirs have dead storage capacities for providing a firm head for 

hydropower production taking care of the sedimentation requirements. Since our optimization 

model solves for only the active storage, a prescribed fraction of the total reservoir cost can 

simply be added to objective function with a minor change. 

3.3.1.2 Solar Power Systems 

Sun is with no doubt is the largest energy source present and the amount of energy it 

provides to the Earth (1.8 × 1011 MW) in one hour is more than the total energy consumed in an 

entire year.  However, generated power from the solar sources is less than a percent of the 

world's power consumption [23]. Many research groups have been studying various ways to 

increase the energy generation efficiency and storage capability [24, 25]. The two main device 

types that are utilized for this purpose are photovoltaic (solar cells to generate electricity directly 

via the photoelectric effect) and concentrated solar power (capturing solar thermal energy for use 

in power producing heat processes). In both types, there are techniques developed to enhance the 

efficiency such as designing the materials and the systems that are used to absorb sunlight or 
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using sun-trackers to compensate the Earth’s motions keeping the best orientation relative to the 

sun [23-25].  

Here, we use a simplistic approach and set the efficiency to 12% [25] and assume that 

solar power systems cost is linearly dependent on the size of the solar panels. Upfront capital 

costs dominate the operations and maintenance (O&M) costs and are treated as “overnight” costs 

(i.e. it is assumed that the entire system investment is made at once). The estimated range for 

overnight capital cost of a solar photovoltaic system is between $2500/kW and $9500/kW [40]. 

Assuming 200 MW/km2 average solar radiation and 12% efficiency, a solar power station with 1 

km2 solar panel could generate 24 MW. Then, the cost of a 24 MW system with 1km2 solar panel 

is estimated to be between $60 and $228 million. In our model, we use $150 million as the 

estimate for the representative solar power system unit area (1 km2 solar panel).  Therefore, we 

use approximately $6200/kW as our overnight capital cost for a solar photovoltaic system. 

 No battery storage introduced in the solar power stations here because the solar 

power system will only function in the day light and the generated power will be sold to 

the grid.  

3.3.1.3 Transmission Network 

Transmission cost in a power network usually depends on the capacity, distance from 

generation sites to demand points and related power losses in the lines. In our model, we use a 

process that allows us to have the transmission cost dependent on both the distance and the 

capacity of the lines. The details of the cost analysis along with the data are provided in 

APPENDIX A and here we will provide a short description of the process and some fundamental 

details. 
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We first calculate how the unit cost of unit power transmission varies based on the 

distance (further details given in the next paragraph). Next, we calculate the spherical distance 

between two points and multiply it with the corresponding cost multiplier to estimate the unit 

investment cost of the transmission line between the two points per unit power [26]. Then, we 

use this unit cost in the objective function of our optimization model to minimize the total 

investment cost. The data used in the model is compiled by Selcuk Korel, MS’2010, Columbia 

University, using the sources [41-43]. The way we calculate the cost per unit power per distance 

is as follows:  

We initially determine what type of transmission lines can be used to transmit a certain 

amount of power by a certain length of distance using surge impedance loading factor. Then, the 

investment costs of alternative transmission lines are calculated. For example, in order to 

transmit 300 MW by 250 miles, one can choose to use 500 kV DC Bipole, 230 kV AC Double, 

345 kV AC Single Circuit or 500 kV AC Single Circuit transmission lines where investment 

costs are estimated to be $442 million, $275.8 million, $308 million and $537.5 million 

respectively. We then repeat this procedure and calculate the cost of 1 MW power transmission 

by 1 km for 27 alternatives including various distances and for various power levels. After we 

have the unit cost values for all the alternatives, we then fit a curve to estimate the incremental 

cost per unit power per distance. In our analysis, we have determined a linear relationship 

between the amount of power and the cost. The slope of this relationship decreases with the 

distance transmitted. As a result, we have computed three cost parameters for three distance 

ranges (0-500 km, 500-1000 km and >1000 km) as $1.1 million, $0.8 million and $0.6 million 

per giga watt per kilometer, respectively. 
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In our model, there is a loss parameter that is proportional to the distance. Underground 

cable transporting and the cost for the stations have been also assumed to be proportional to the 

distance of the connection and included in the unit cost calculations. 

Possible network flow directions from sources to demand points are prescribed with 

dedicated lines and designed as a point-to-point topology. Here we neither model the grid itself 

nor consider real power flow equations / phase angle differences and assume that power flows 

over lines can be independently assigned. This level of detail is only required for operational 

models and for certain types of regional planning models that aims to identify the bottlenecks in 

the grid. Our model does not have an explicit representation of the grid, but utilizes point-to-

point distances to compute transportation costs and transmission losses with individual links for 

power station-to-state transmission. This representation of power flows, which captures point-to-

point movements without explicitly modeling the grid, is a common approximation made in 

policy studies [6]. A more detailed discussion on transmission systems and how they can be 

linearly modeled can be found in [27]. 

3.3.2 Input Data 

Aside from the physical features of the hybrid system, the model needs the following 

input data to determine the scenarios and calculate the estimated operation in the planning 

horizon; stream flow data for each candidate hydropower locations, solar radiation data and 

demand profile for each demand point. 

3.3.2.1 Stream Flow Data 
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Stream flow in the Himalayan Rivers is generated from rainfall and the melting from 

accumulated snow-pack. The flows are observed through the all years and steep slopes make all 

the streams in Himalayans potential sites for hydropower generation [17]. 

Forecasting the inflows and capturing the structure of the processes is of vital importance 

to hydropower models. This issue is discussed in detail in [28]. For our model we identified 

several basins from [29] in Himalaya Mountains which are either proposed or under construction 

areas for hydropower generation. Then, 3-hourly stream flow data for the years between 1951 

and 2004 for each candidate basins is obtained from the Variable Infiltration Capacity (VIC) land 

surface model which is a large scale hydrological model. This model can be implemented at grid 

cells from 1/8° to 2° latitude by longitude and with temporal resolutions from hourly to daily. 

For this study model is ran at 1° at 3 hourly resolutions. The details of the VIC model can be 

found in [30, 31]. General statistics about basins and details of the data are given in Table 3.1.  

Table 3.1 | General Statistics for Basins 

 

In India, the normal onset of Monsoon is expected to be observed around June and its 

withdrawal completes by around October every year. Therefore, as it can be observed from the 

stream flow time series data of Bhagirathi River for the years 2003 and 2004 in Figure 3.1a, 

stream flow data shows significant seasonal variation.  There is also a substantial contribution 

from snowmelt runoff to the annual stream flows of the Himalayan Rivers [17]. The water yield 



 

71 

 

from a high Himalayan basin is roughly twice as high as that from an equivalent basin located in 

the peninsular part of India. A higher water yield from the Himalayan basins is mainly due to the 

large inputs from the snowmelt and glaciers [32]. Most of the snow melts occur in the summer 

period correlated with the sun light and cause diurnal variation in the stream flow. An example to 

show diurnal variability is presented in Figure 3.1b. 

 

Figure 3.1 | a, Stream Flow Data of Bhagirathi River for 2003 and 2004. Monsoon is expected to be 

observed around June and its withdrawal completes by around October every year. b, Stream Flow Data 

of Bhagirathi River for a week in March. Most of the snow melts occur in the summer period correlated 

with the sun light and cause diurnal variation in the stream flow.  

3.3.2.2 Demand Data 

Aggregated electricity demand data in 3-hourly resolution is collected for Delhi and 7 

other states which are located in northern part of India. Total monthly power availabilities and 

requirements for each state for the year 2012 are provided on Central Electricity Authority, 

Power Ministry of India (CEA) website [33]. On the website of Load Dispatch Center of Delhi, 

daily load profiles for the days where peak demand occurred in each month are provided.  A few 

other states such as Chhattisgarh, Assam and Punjab also publish on their website daily, weekly 

or monthly reports for daily load profiles for a number of days or for the times when the 

minimum and maximum demands are observed. We have used the collected data to accurately 
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estimate the 3-hourly demand load profile of each state for one year. If there is missing data for 

some days or hours within a day, interpolation/extrapolation methods are performed to project 

the data. When there is only limited number of days that we can use as a representative of all 

days in a month, we generated data from a normal distribution with mean equal to observed 

demand of given days and standard deviation equal to 5 percent of the observed data. 

For the states which we do not have access to daily load profiles such as Uttar Pradesh, 

Bihar, Jharkhand and West Bengal, we used Chhattisgarh as a reference state. Daily load profiles 

of Chhattisgarh are rescaled by the ratio between total monthly demands collected from CEA’s 

website. The location of the basins and demand points are presented in Figure 3.4 and the list of 

the states with the estimated annual demand for the year 2012 is provided in Table 3.2. 

Population data provided in the table is based on 2011 Population Census [34]. 

Table 3.2 | List of states used as aggregated demand points 

 
 

The daily demand profiles of Delhi for each month in 2012 are presented in Figure 3.2. 

The highest demand is observed in summer months and the demand is lowest in winter months. 

The fact that the highest demand occurs in summer and daily peak demand is observed in the 

Population 

(Million)      

(2011 Census) 

Estimated Annual 

Demand in 2012    

(GWh)

Load 

Factor

Delhi 16.8 30,013 0.71

Punjab 27.7 47,534 0.59

Uttaranchal 10.1 12,786 0.82

Himachal Pradesh 6.9 7,744 0.72

Uttar Pradesh 199.6 87,916 0.79

Bihar 103.8 13,774 0.76

West Bengal 91.3 40,777 0.79

Jharkhand 33 5,663 0.78

Assam 31.2 5,162 0.63

Chhattisgarh 25.5 17,718 0.81
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afternoon can be explained by the increasing cooling demand in summer. In winter, it is possible 

to observe two peaks in the daily load profile, one in the morning and one in the evening and this 

can be explained by the lightning demand. In Figure 3.3 we present the monthly total demand of 

the ten states listed in Table 3.2. The daily distribution of the demand used in the case studies of 

this thesis can be obtained from Appendix B.  

 

 

Figure 3.2 | Daily demand profile of Delhi in 2012 
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Figure 3.3 | Monthly total demand of ten states in India in 2012 
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Figure 3.4 | Basins and demand points determined in India for analysis. Data is collected from CEA 

(Central Electricity Authority, Power Ministry of India) and other official websites to accurately estimate 

the 3-hourly demand load profile of each state for one year. If there is missing data for some days or 

hours within a day, interpolation/extrapolation methods are performed for projection. 

 

3.3.2.3 Solar Radiation Data 

Site and time specific, high resolution solar radiation data was developed using weather 

satellite by the U.S. National Renewable Energy Laboratory (NREL) in cooperation with India's 

Ministry of New and Renewable Energy. Global and direct irradiance at hourly intervals on the 

10-km grid for all of India for the years 2001-2008 is available on NREL’s website. Solar 
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radiation data for all demand points used in the model is presented with some statistics in Table 

3.3.  

Table 3.3 | Solar Radiation Data 

 

3.4 Problem Formulation 
 

As discussed above, we propose a stochastic linear programming approach to formulate 

and solve the described problem where uncertainties in the input data will be facilitated in the 

form of scenario realizations. Tables 3.4, 3.5 and 3.6 summarize the indices, parameters and 

variables used in the model. 

Table 3.4 | Indices for parameters and decision variables 

i: 

j: 

t: 

𝜔: 

hydropower generation point 1,…,I, with a total of I locations 

demand (solar power generation) point 1,…,J, with a total of J points 

time period 1,…,T, with a total of T periods 

scenarios 1,…, Ω, with a total of Ω scenarios 

 

Table 3.5 | Parameters of the model 

n: length of time periods 
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d: 

 

lij: 

 

g:     

hi:    

α:      

𝛾:   

CSi:  

CPGi:  

CMj:   

CTij:  

 

µj:     

  

𝑝𝜔:    

dimensionless annualization parameter used to express the investment cost on a yearly 

basis 

percentage of power loss while transmitting electricity from hydropower generation 

point i to demand point j. 

standard acceleration due to gravity (~9.8 m/s2) 

height of the reservoir in hydropower generation point i 

efficiency of hydropower station 

efficiency of solar panels 

unit cost of reservoir capacity  in hydropower generation point i 

unit cost of generator capacity in hydropower generation point i 

unit cost of solar array in demand point j 

unit cost of transmission line capacity between hydropower generation point i and 

demand point j  

unit cost of generating electricity using diesel generator (i.e.  penalty for mismatched 

demand in demand point j) 

weight of scenario 𝜔, where ∑ pω
Ω
ω=1 = 1and pω ≥ 0 

 

 

Table 3.6 | Variables of the model 

Exogenous Variables:  

𝑊𝑖
𝜔𝑡: 

𝑁𝑗
𝜔𝑡: 

𝐷𝑗
𝜔𝑡: 

water runoff to hydropower generation point i in period t in scenario 𝜔 

solar radiation in  point j in period t in in scenario 𝜔 

demand in point j at time t in in scenario 𝜔 
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State/Decision Variables:  

𝑆𝑖
𝜔𝑡:          water stored in the reservoir in hydropower generation point i at the end of period t in 

scenario 𝜔 

𝑍
𝑗 
𝜔𝑡:              mismatched demand in demand point j in period t in scenario 𝜔 

𝑇𝑖𝑗
𝜔𝑡:            electricity sent from hydropower generation point i to demand point j in period t in 

scenario 𝜔 

𝐿𝑖
𝜔𝑡:         water spilled from the reservoir in hydropower generation point i in period t in 

scenario 𝜔 

𝑅𝑖
𝜔𝑡:        water released from the reservoir in hydropower generation point i in period t in 

scenario 𝜔 

𝑆𝑚𝑎𝑥𝑖:       active reservoir capacity in hydropower generation point i 

𝑀𝑗:        size of solar panels at demand point j 

𝑃𝐺𝑚𝑎𝑥𝑖:    generator size in hydropower generation point i 

𝑇𝑚𝑎𝑥𝑖𝑗:      maximum energy transmitted from hydropower generation point i to demand point j  

 

3.4.1 Objective Function 

The objective of the model is to minimize the sum of the investment costs and expected 

penalty cost for the mismatched demand. Unit costs of investments are assumed to be the 

constant incremental cost of installing capacities and indexed by the location so that different 

costs parameters can be used for different locations. Objective function has five components: 

i) Cost of Reservoirs:  

 O1 = ∑ 𝐶𝑆𝑖 ∗𝑖 𝑆𝑚𝑎𝑥𝑖 
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ii) Cost of Hydropower Generators:  

O2 = ∑ C𝑃𝐺𝑖 ∗ 𝑃𝐺𝑚𝑎𝑥𝑖𝑖  

iii) Cost of Solar Power Stations: 

O3 = ∑ C𝑀𝑗 ∗ 𝑀𝑗𝑗  

iv) Cost of Transmission Lines: 

O4= ∑ ∑ C𝑇𝑖𝑗 ∗  𝑇𝑚𝑎𝑥𝑖𝑗𝑗𝑖                       

v) Expected Cost of Mismatched Demand: 

O5 =∑ 𝑝𝜔 ∗ 𝑍
𝑗  
𝜔𝑡

𝑗𝑡𝜔 ∗ µj 

 Objective function can be stated as: 

min (O1+O2+O3+O4)*d+O5 

 

3.4.2 Constraints 

The equality and inequality constraints of the problem are stated below: 

(1) 𝑆𝑖
𝜔𝑡 ≤ 𝑆𝑚𝑎𝑥𝑖                                                                          ∀ 𝑖, 𝑡, 𝜔 

(2) 𝑆𝑖
𝜔𝑡 = 𝑆𝑖

𝜔(𝑡−1)
+ 𝑊𝑖

𝜔𝑡 − 𝑅𝑖
𝜔𝑡 − 𝐿𝑖

𝜔𝑡                                 ∀ 𝑖, 𝑡: 𝑡 > 1, 𝜔 

(3) 𝑆𝑖
𝜔1 = 𝑆𝑚𝑎𝑥𝑖 + 𝑊𝑖

𝜔1 − 𝑅𝑖
𝜔1 − 𝐿𝑖

𝜔1                          ∀ 𝑖, 𝜔 

(4) 𝑆𝑖
𝜔𝑇 = 𝑆𝑚𝑎𝑥𝑖                                                                          ∀ 𝑖, 𝜔 

(5) 𝑓𝐺𝑖(𝑅𝑖
𝜔𝑡) ≤ 𝑃𝐺𝑚𝑎𝑥𝑖 ∗ 𝑛                                                         ∀ 𝑖, 𝑡, 𝜔 

(6) ∑ 𝑇
𝑖𝑗  
𝜔𝑡

𝑗 = 𝑓𝐺𝑖(𝑅𝑖
𝜔𝑡)                                 ∀ 𝑖, 𝑡, 𝜔 

(7) 𝑇
𝑖𝑗  
𝜔𝑡 ≤ 𝑇𝑚𝑎𝑥𝑖𝑗 ∗ 𝑛                                                         ∀ 𝑖, 𝑗, 𝑡, 𝜔 

(8) 𝐷𝑗
𝜔𝑡 ≤  𝑍

𝑗 
𝜔𝑡 + 𝑓𝑆𝑗(𝑀𝑗) + ∑ 𝑇

𝑖𝑗  
𝜔𝑡 ∗ (1 − Ɩ𝑖𝑗)𝑖         ∀ 𝑗, 𝑡, 𝜔 
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(9) 𝑆𝑖
𝜔𝑡, 𝑆𝑚𝑎𝑥𝑖, 𝑃𝐺𝑚𝑎𝑥𝑖, 𝑅𝑖

𝜔𝑡, 𝐿𝑖
𝜔𝑡, 𝑀𝑗 , 𝑇

𝑖𝑗  
𝜔𝑡, 𝑇𝑚𝑎𝑥𝑖𝑗, 𝑍

𝑗 
𝜔𝑡  ≥ 0     ∀ 𝑖, 𝑗, 𝑡, 𝜔   

                                               

The constraint in (1) ensures that water stored in the reservoir is limited by the size of the 

reservoir at each time period of every scenario. Constraints in (2-4) represent the mass balance 

equations in reservoirs. Constraint in (2) couples the reservoir levels between subsequent time 

periods. In (3) and (4), beginning and ending balance of reservoirs are set. Here, we assume that 

operations begin and end with full reservoirs at each scenario. In the model, scenarios start in 

September, which is almost end of Monsoon season in India and end at the end of August next 

year. Thus, it is quite reasonable to assume that reservoirs are full at this time of the year. 

Constraint in (5) ensures that generated energy defined by the function 𝑓𝐺𝑖(𝑅𝑖
𝜔𝑡 ) is limited by the 

generator capacity at each time period of every scenario and 𝑓𝐺𝑖 (𝑅𝑖
𝜔𝑡  ) =𝑅𝑖

𝜔𝑡 ∗ 𝑔 ∗ ℎ𝑖 ∗ 𝛼 . 

Constraint in (6) ensures that at any period in any scenario, total energy transmitted to the 

demand points from a hydropower generation is equal to generated energy in that hydropower 

generation point. Constraint in (7) ensures that transmitted energy is limited by the transmission 

line capacity. Constraint (8) ensures that demand 𝐷𝑗
𝜔𝑡is met by sum of the energy transmitted 

from hydropower generation points, energy generated in solar power stations and energy 

generated using diesel generators within demand point j in time period t in scenario 𝜔. Energy 

generated in solar power stations is defined by the function  𝑓𝑆𝑗(𝑀𝑗)  where 𝑓𝑆𝑗(𝑀𝑗) = 𝑁𝑗
𝜔𝑡 ∗

𝑀𝑗 ∗ 𝛾 . For operational purposes, it is important to keep as much water as possible in the 

reservoirs although full kept amount will never be used. Here, since for one scenario the policy is 

"anticipatory" of what's happening in the future, the system spills the water that would not be 

needed. Although it would also have been optimal to keep water as much as possible in the 

reservoir, the solver can choose the solution with less water. For this reason, in the objective 
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function we add another term: ∑ 𝑆𝑖
𝜔𝑡

𝑖𝑡𝜔 ∗ Ɛ where Ɛ is a very small amount. This term tilts the 

balance so that the solver will choose the option with more water in the reservoir.  When we 

report the final cost, we omit this term. 

3.5 Results 
 

Our linear program is implemented and solved in IBM ILOG CPLEX Optimization 

Studio (CPLEX) [35]. We present multiple case studies for India to emphasize the different 

aspects of our results. We first present results for single basin-single demand point case study to 

illustrate the basic information that our model can provide. Parameters that are used in analysis 

of the data are shown in Table 3.7. We also assess the sensitivity of the system in terms of cost 

parameters. Then, we introduce more basins and demand points to the system in order to observe 

how the network (transmission lines) and storage options can aid the integration of intermittent 

renewables as geographic aggregation smoothes the variability of the stream flows and solar 

radiations. Although our model is able to include different scenarios to take the uncertainty of the 

stream flows and solar radiations into account, in this chapter, we present results for a 

deterministic case where we assume how the exogenous variables will unfold within a year. 

Uncertainty of the data will be considered in the next chapter. 

For the cases studied here, we use $1/m3 as unit cost of reservoir capacity (i.e. 

constant incremental cost of installing reservoir capacity) which is within the ranges given in 

[38] and [39]. For the unit cost of powerhouse (generator, turbine/pump, transformers), we use 

$500/kW as this value is the lower bound of the range given in [40] for the capital cost of the 

medium to large hydropower stations (assuming that the lowest cost system has no storage). 

According to estimates given in [40], the cost of a 24 MW system with 1km2 solar panel is 

estimated to be between $60 and $228 million. In our model, we use $150 million as the estimate 
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for the representative solar power system unit area (1 km2 solar panel).  These cost parameters 

can clearly vary from site to site and this can easily be incorporated in the model assigning site 

specific unit cost for each investment variable. Efficiency of solar and hydropower systems are 

used as 12% [25] and 88% [22] respectively.  Planning horizon is assumed to be 25 years and 

discount rate or risk-free interest rate is used as 5% [44]. Using discount rate and planning 

horizon, a dimensionless annualization parameter is calculated as 0.07 using the following 

formula to express the investment cost on a yearly basis. Let the planning horizon be n and 

interest rate be i, 

Annualization Parameter = i / (1 - (1+i)-n) 

Table 3.7 | Parameters used in the model 

 

3.5.1 Case Study I: Single Basin- Single Demand Point (Bhagirathi 

River and Delhi) Case 

Bhagirathi is a Himalayan river in the state of Uttarakhand. On Bhagirathi, one of the 

tallest dam in Asia (260 m head), Tehri Dam, and Koteshwar Dam have been built as a part of 

the Tehri Dam Project [36]. According to VIC land surface model, average discharge of the river 

between 1954 and 2002 is estimated to be around 215 m3/s. A sample one year data with 13.3 
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km3 annual inflow is taken from the time series data for this analysis. Stream flow data for the 

sample year has been presented in Figure 3.5a. Demand data is projected with the method 

described in Section 3.3.2.2. Annual total demand is estimated to be around 30000 GWh for 

2011-2012 and three-hourly demand load curve presented in Figure 3.5c. If all of the 13.3 km3 

inflow could be used to turn the turbine to generate electricity, it could generate about 3200 

GWh electricity (assuming 100 m head and 88% efficiency). Since demand is an order of 

magnitude higher compared to hydro potential, in this section we present results for both normal 

demand and low demand profiles where low demand profile being equal to one fourth of normal 

demand. Solar radiation data of Delhi for 2002 is used for this analysis and data is presented in 

Figure 3.5b. 
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Figure 3.5 | a, 3-hourly stream flow data of Bhagirathi River for one year (Sep 1970-Aug 1971). b, Solar 

energy for every three hour per kilo meter square for year in Delhi. c, Demand load curve for one year in 

Delhi. 

Table 3.8 compares the results for the actual and low demand profiles. A smaller 

reservoir and a bigger generator are needed in actual demand case where the demand is 

significantly higher (~10 times) than the energy potential of the river. The reason for a smaller 

reservoir in the higher demand case can be explained by the fact that most of the inflow goes 

directly to the turbine to meet as much demand as possible at that time period instead of being 

stored in the reservoir for future time periods. This can also be observed from the residence time 

of the reservoirs. Residence time is a widely used term in hydrology to express the average time 

a water molecule spends in that reservoir. Relying on the conservation of mass principle, 

residence time of the reservoir can be estimated by dividing the volume of the reservoir by the 
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rate by which reservoir either gets filled or depleted [36]. Therefore, conceptually, this term can 

be also expressed as the time that takes reservoir to empty from full if no water were to enter.  In 

this chapter, we estimate our residence time (RT) in days by the following formula: 

𝑅𝑇𝑖
𝜔 = 𝑆𝑈𝑚𝑎𝑥𝑖 ∗ 365/ ∑ 𝑅𝑖

𝜔𝑡
𝑡         

 where 𝑆𝑈𝑚𝑎𝑥𝑖  is the size of the reservoir i and   ∑ 𝑅𝑖
𝜔𝑡

𝑡    represents the total amount of water 

released from the reservoir i in one year (our time horizon) under scenario 𝜔. Using the formula 

above, residence times of the reservoirs are estimated to be 5.25 and 11.75 days for actual and 

low demand cases respectively. 

Table 3.8 | Summary results for single basin-single demand point case 
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Distribution of each “fuel” (supply) type that has been used to meet the demand is also 

presented in Table 3.8 with annual aggregated figures. The change in this distribution over a year 

is also presented for low demand profile in Figure 3.6 below. As can be seen from the Figure 3.5 

b-c, with having lowest values in winter and peak values in summer, solar radiation and demand 

have similar trends. This causes the percentage wise average solar energy contribution to be 

quite constant throughout the year. However, we still observe that solar contribution in Monsoon 

season is highly fluctuating due to the cloudy days of this rainy season (The variability of the 

solar radiation in Monsoon season can also be observed in Figure 3.5b). Contribution of hydro 

goes up to 100% in Monsoon season when there is excessive inflow to the reservoir and there is 

almost no need for diesel’s contribution. In the other seasons, hydro energy and diesel work as 

complementary to each other.   
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Figure 3.6 | Contribution of each “fuel” (supply) type that has been used to meet the demand through the 

year for each day. Solar energy contribution is quite constant throughout the year with some fluctuations 

in the Monsoon. Hydro and diesel work as complementary to each other.   

 

3.5.1.1 Comparison of Alternative Technologies 

When 100% of the demand is met by only one component of the system (e.g. diesel), unit 

cost of the system will also be the unit cost of that component (for diesel it is $0.15/kWh). Here, 

we start with no renewable source in the system (100% diesel) and gradually modify the system 

so that it includes more advanced use of renewable source and finally obtain our model that we 

have discussed above. In particular we look at diesel and solar, diesel and run-of-the-river hydro, 

diesel and conventional hydro and finally diesel, solar and conventional hydro combinations 

respectively. For this analysis, without formulating a new problem for each alternative, we use 

our model described in Section 3.4 assigning extreme cost parameters for the system components 

that we want to exclude. For example, when we want to find the optimal system for diesel and 

run of the river alternative, we make sure that we assigned high enough costs for reservoir and 

solar panel that solution does not include these components.  Then, model finds the least cost 
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solution for the components with regular cost parameters. Results for this process are presented 

in Figure 3.7. The detailed results for components of alternative systems are presented in Table 

3.9. Table 3.9 also shows how much diesel capacity is displaced as alternative technologies are 

included into the system. 

 

Figure  3.7 | Comparison of alternative technologies. Solely diesel is the most expensive. As the use and 

the variety of clean energy increase, the unit cost goes down substantially. It is more cost efficient to 

design solar panel area based on high demand and spill some of the renewable energy in low demand 

periods. 
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Table 3.9 | Summary results for alternative technologies 
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As can be seen in Figure 3.7, as the use of the renewable increase and gets more 

advanced, unit cost of the system decreases and the most cost efficient alternative is the one that 

we have used in our model.  Figure 3.7 also shows that diesel-solar system is more expensive 

than the diesel-run-of-the-river system. When a reservoir is added to system (diesel-conventional 

hydro), flexibility of deferring water release decreases the system cost even more compared to 

diesel-run-of-the-river system. 

In Figure 3.7, there is an additional system (Conv. Hydro - Solar (No spill) - Diesel) that 

we have included in order to make a point clearer and we needed to slightly modify our 
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formulation for this additional system in the following way. In our regular formulation, we allow 

excessive solar energy to be spilled which means that some of the solar energy generated may 

not be used to fulfill the demand and solar system works with a lower efficiency than 100%. In 

order to see if allowing spill is a profitable decision, in constraint (8) of our formulation, we can 

replace the inequality with equality and force the system not to spill renewable energy. It is quite 

interesting to see that when we allow solar to be spilled, unit cost of the system is reduced. When 

we have a detailed comparison between the two systems, we see that solar panel area of the 

system in which spill is allowed is almost twice of the system in which it is not allowed. This is 

due to the fact that constraint (8) is satisfied for each time period and in case of equality, solar 

panel area is mainly determined based on the time periods when demand is low. However, it is 

more cost efficient to increase the solar panel area considering the time periods when there is 

high demand and spill some of the solar energy in periods when low demand occurs. Figure 3.8 

shows solar energy production and demand for the systems when some renewable energy is 

spilled and when it is not spilled. In Figure 3.8a the orange area (solar) above the grey area 

(demand) is being spilled.   
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Figure 3.8 | Solar Production and demand for a) when spill is allowed, b) when spill is not allowed. 

 

3.5.2 Case Study II: Multi Demand Points, Multi Basins System 

In this section, we show the effect of combining multiple basins and demand points 

together. As individual systems are connected with transmission lines and work as a single 

system, the variability and intermittency of renewable sources is expected to be smoothed out. 

To see this effect, we first run our model with Chenab (another basin with 52 km3 annual stream 

flow) and Punjab (demand point with approximately 12000 GWh (quarter of actual demand) 

annual demand. Then, we combine this case with our previous Bhagirathi (13.3 km3 annual 
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stream flow) and Delhi (7500 GWh annual demand) case study and run a two-basin and two-

demand points case. Figure 3.9 summarizes the comparison between single-basin–single-demand 

point cases and Figure 3.10 shows the results for the two basins-two demand points’ case.  

Results in Figure 3.10 evidently show that with much smaller reservoirs (78% and 58% 

decrease in reservoir size respectively); combined system generates 2% more hydro energy. We 

note here that smaller reservoir may not necessarily imply a better solution since an additional 

inflow could drive larger reservoirs when higher hydro storage capacity is needed or smaller 

reservoirs when a system like run-of-the-river is sufficient. However, there are also other factors 

that we do not consider here but make smaller reservoirs favorable such as environmental effects 

of large dams. In addition, solar energy generation increases almost 6% and the improvements in 

hydro and solar energy generation provide a 10% reduction in diesel usage.  It should also be 

noted that combined system is more cost efficient as total cost of single-basin-single-demand 

point cases is more than the total cost of combined system. In our case study, we need to pay 

13% more transmission cost to build extra transmission line, yet we still save 5% from the 

overall total cost. 



 

94 

 

 

Figure 3.9 | Summarized results for one-basin, one-demand point case studies. Bhagirathi has 13.3 km3 

annual stream flow and Delhi has 7500 GWh annual demand. Chenab has 52 km3 annual stream flow and 

Punjab has a 12000 GWh (quarter of actual demand) computed annual demand. 
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Figure 3.10 | Summarized results for two basins-two demand points case. Combined system generates 

2% more hydro energy with much smaller reservoirs (78% and 58% decrease in reservoir size 

respectively). Solar energy generation increases almost 6% and the improvements in hydro and solar 

energy generation provide a 10% reduction in diesel usage.  There is 13% more transmission cost to build 

extra transmission line but overall cost is 5% lower. 

 

3.5.3 Case Study III: Multi Demand Points, Multi Basins System II 

After we show the effect of combining multiple basins and demand points together in the 

previous section, in this case study, we analyze a much larger problem and provide results that 

include all the basins and demand points of India that we could collect the data for. The 
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motivation behind this study is to demonstrate how an actual hybrid network could look like in 

the future country we are interested in where fossil fuels are only used in the minimal form.  

The model is run with 8 basins and 10 demand points with their actual demand that are 

shown in Figure 3.2. Here, it is not possible to have comparison figures relative to the individual 

systems as we present in 3.5.2 due to the fact that basins and demand points are not one to one 

paired. However we can consider the utilization of transmission lines in a minimum cost network 

as the proof for higher hydro and solar contribution with smoother variations and decreased 

diesel contribution. As discussed in Section 3.3.1, unit cost of transmission lines between 

demand points and basins are calculated based on the spherical distance between points. 

Table 3.10 summarizes the results and shows the proposed sizes for reservoirs and 

generators for each basin. With having 456 km3 annual inflows Siang River has by far the 

highest potential and provides electricity to almost all the states in the case study. One should 

keep in mind that in this study we include lower/upper bounds for neither reservoir sizes nor 

generator capacities. Other environmental and geographic constraints which are specific to 

basins are also not in the scope of this thesis. These results are based on the stream flow 

potentials of the proposed basins. 

Table 3.10 | Size of the hydropower stations proposed for basins 

Rivers Annual Inflow      

(km3/ ~GWh) 

Reservoir Size      

(km3/ ~GWh) 

Generator 

Size (GW) 

Generation  

(%Demand) 

Bhagirathi 13.51 /~3242 0.28/~67 1.22 1.0% 

Pinder 6.29 /~1510 0.16/~38 0.71 0.5% 

Chenab 45.57 /~10937 0.49/~118 4.27 3.8% 

Marusudar  12.02 /~2885 0.23/~55 1.19 1.0% 

Lohit 19.17 /~4600 0.07/~17 1.21 1.5% 

Dibang 9.17 /~2200 0.02/~5 0.40 0.6% 

Barak 57.71/~13850 0.08/~19 4.08 4.6% 

Siang 456.47/~109552 0.81/~194 23.07 30.3% 
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As a summary, unit cost of the system is 6.9 cents/kWh (unit cost of diesel production is 

15 cents/kWh and see Table 3.7 for other parameters). Hydropower is the cheapest source with 

having 1.2 cents/kWh. After including 1.7 cents average unit cost for transmission, adjusted cost 

for hydro power is about 3 cents/kWh. Unit cost of solar energy is estimated to be 5.4 cents. 

In Table 3.11, solar panel areas that are proposed for installation in each demand point 

are presented. It can be seen that solar panel area is almost linearly related to the demand. The 

role of hydropower in meeting the demand changes between 36%- 59%. Total annual inflow of 

basins is about 620 km3 and if all of the 620 km3 inflow could be used to turn the turbine to 

generate electricity, it would generate about 168000 GWh electricity (assuming 100 m head and 

88% efficiency). Given that sum of demand across all demand points is about 270000 GWh, the 

system utilizes hydropower fairly well and hydro portion in meeting the total demand is quite 

close to the theoretical (probably impractical) limit (62%).  

Table 3.11 | Solar Panel Areas and Energy Generation by Type 

Demand Points Demand    

(GWh) 

Solar Panel Area 

(km2/~ GW) 

Energy Generation by Type  

(% Demand) 

Solar Hydro Diesel 

Delhi 30013 49.7/~1.2 34% 36% 31% 

Punjab 47534 75.1/~1.8 30% 46% 24% 

Uttaranchal 11357 17.2/~0.4 25% 59% 16% 

Himalach 

Pradesh 

7744 13.6/~0.3 33% 46% 20% 

Uttar Pradesh 87916 132.4/~3.2 29% 40% 31% 

Bihar 13774 20.2/~0.5 29% 42% 29% 

West Bengal 40777 55.0/~1.3 27% 45% 27% 

Jharkhand 5663 8.7/~0.2 31% 41% 27% 

Assam 5162 7.2/~0.2 25% 49% 26% 

Chhattisgarh 17718 24.8/~0.6 30% 51% 19% 
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The major transmission lines (≥1GW) between hydropower stations and demand points 

can be seen in Table 3.12. The first four basins listed in the tables are located in the North part of 

India and the others are located in the north-east region. An important result to note here is that 

high stream flow potential of the basins in the north-east region was quite useful in fulfilling the 

demand of northern states and high capacity long transmission lines are preferred instead of local 

diesel generators within demand points.  

Table 3.12 | Transmission line capacities between basins and demand points 

 
 

 Table 3.13 | Capacity factors of the transmission lines between basins and demand points 

 

3.6 Discussion 
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3.6.1 Sensitivity Analysis 

In this section, several sensitivity analyses have been performed to inspect how sensitive 

our model to the cost parameters as these analyses can provide meaningful insight about 

differences in the optimal solution of the problem in response to small changes in the cost 

parameters. We first show the sensitivity range of each investment variable for the calculated 

optimal solution, and then we vary the unit cost of diesel, solar panel area and reservoir size and 

resolve the linear program. 

In Table 3.14, each investment variable, its reduced cost and the range over which its 

objective function coefficient can vary without forcing a change in the optimal basis is displayed. 

One needs to do this with some +/- range in the total investment. We see that we have very small 

ranges for each variable in which our current optimal solution remains the same. This means that 

with the default (realistic) values, there is a dynamic balance between the cost parameters and 

any foreseen significant change in the cost parameters should be seriously considered by the 

infrastructure planners before they make a decision as it may alter the optimal solution. 

Table 3.14 | Sensitivity ranges for the optimal solution obtained with cost parameters used in the model 

 

Our objective function in this problem minimizes annualized investment cost of power 

systems and transmission lines and total cost of generating electricity using diesel generators. In 

the case studies in this chapter, we use $0.25/kWh, $1/m3, and $150 as the unit cost of diesel 

generation, reservoir size and solar panel area respectively. Diesel component of the network is 

ideally the expensive alternative and can be considered as a penalty that is paid for each unit of 
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electricity that could not be generated using renewable sources. Therefore, unit cost of diesel is 

also marginal cost and our model compares that with the marginal cost of renewable sources. For 

example, if increasing the size of the reservoir to generate an additional kWh of hydro energy 

(without causing any size increase in generator or transmission lines) is cheaper than the unit 

cost of diesel, the model increases the size of the reservoir. Table 3.15 - 3.17 summarize the 

analyses performed for the unit costs.  

Table 3.15 | Sensitivity Analysis for Diesel Cost 

 

Table 3.16 | Sensitivity Analysis with the Unit Cost of Reservoirs 
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Table 3.17 | Sensitivity Analysis for Unit Cost of Solar Panel 

 
 

In Tables 3.15-3.17, we observe some interesting sudden changes in the distribution in 

meeting the annual demand. For example, in Table 3.15 when diesel cost is increased to 

$0.30/kWh, there is a significant increase in the size of the reservoir and proportion of hydro in 

meeting the annual demand. The reason behind this difference is as follows: the unit cost of 

reservoir capacity (i.e. constant incremental cost of additional capacity) that we used for our 

analysis is $1/m3. If an additional 1 m3 of a reservoir is used only once (in one time period only)  

during our planning horizon (1 year), we could generate 0.24 kWh of electricity (with 100 m 

head and 88% efficiency) with that 1m3 water. In addition, annualized cost of an additional 1m3 

reservoir is $0.07 (with 25 year life time and 5% discount rate). Therefore, marginal cost of 

hydro can be roughly calculated as $0.29/kWh. This is the main reason for the jump in Table 

3.15 as the preference in terms of the units cost flips once the unit cost for the diesel generation 

becomes higher than $0.29/kWh.  Similar analyses can also be compiled to explain the increase 

in solar proportion when diesel cost is increased from $0.05/kWh to $0.10/kWh in Table 3.15 

and the decrease in the reservoir size from 4.70 km3 to 0.29 km3 in Table 3.16. 

 Other two analyses with the unit cost of reservoir and solar panel area are presented in 

Table 3.16 and Table 3.17.     
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3.7 Conclusion 
 

In summary, we have presented a model which is designed to help infrastructure planners 

make long-term investment decisions based on the results for electric dispatch, energy resource 

allocation and storage over one-year horizon. The objective of the model is to minimize the sum 

of the investment costs and expected penalty cost for the mismatched demand. We have shown 

that as we increase the use and complexity of the renewable sources, the unit cost for the overall 

system decreases and by combining multiple individual systems, we can have a further reduction 

in system cost with a possibility of smaller network components.  



 

103 

 

Bibliography 
 

[1] Key World Energy Statistics (2011), International Energy Agency.   

[2] Ashok, S. (2007). Optimised model for community-based hybrid energy system.Renewable 

energy, 32(7), 1155-1164. 

[3] Ekren, O., & Ekren, B. Y. (2010). Size optimization of a PV/wind hybrid energy conversion 

system with battery storage using simulated annealing. Applied Energy, 87(2), 592-598. 

[4] Ekren, O., Ekren, B. Y., & Ozerdem, B. (2009). Break-even analysis and size optimization of 

a PV/wind hybrid energy conversion system with battery storage–a case study. Applied 

Energy, 86(7), 1043-1054. 

[5] Dudhani, S., Sinha, A. K., & Inamdar, S. S. (2006). Assessment of small hydropower 

potential using remote sensing data for sustainable development in India. Energy Policy, 34(17), 

3195-3205. 

[6] Powell, W. B., George, A., Simão, H., Scott, W., Lamont, A., & Stewart, J. (2012). SMART: 

A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and 

Policy. INFORMS Journal on Computing, 24(4), 665-682.  

[7] Mallah, S., & Bansal, N. K. (2010). Allocation of energy resources for power generation in 

India: business as usual and energy efficiency. Energy Policy,38(2), 1059-1066.  

[8] Cormio, C., Dicorato, M., Minoia, A., & Trovato, M. (2003). A regional energy planning 

methodology including renewable energy sources and environmental constraints. Renewable and 

Sustainable Energy Reviews, 7(2), 99-130.  

[9] NEMS (2003), The National Energy Modeling System: An Overview 2003, Technical report, 

Energy Information Administration, Office of Integrated Analysis and Forecasting, U.S. 

Department of Energy, Washington, DC 20585. 



 

104 

 

[10] Loulou, R., Goldstein, G. & Noble, K. (2004), Documentation for the MARKAL Family of 

Models, Technical report, Energy Technology Systems Analysis Programme. 

[11 Fishbone, L. G., & Abilock, H. (1981). Markal, a linear‐programming model for energy 

systems analysis: Technical description of the bnl version. International journal of Energy 

research, 5(4), 353-375.  

[12] Lamont, A. D. (2008). Assessing the long-term system value of intermittent electric 

generation technologies. Energy Economics, 30(3), 1208-1231.  

[13] International Energy Agency. (2012). World Energy Outlook, 2012. OECD/IEA. 

[14] Ahn, S. J., & Graczyk, D. (2012). Understanding Energy Challenges in India: Policies, 

Players, and Issues. Paris: IEA. 

[15] Bhattacharya, S. C., & Jana, C. (2009). Renewable energy in India: Historical developments 

and prospects. Energy, 34(8), 981-991. 

[16] Suganthi, L., & Williams, A. (2000). Renewable energy in India—a modelling study for 

2020–2021. Energy policy, 28(15), 1095-1109. 

[17] Singh, P., & Jain, S. K. (2002). Snow and glacier melt in the Satluj River at Bhakra Dam in 

the western Himalayan region. Hydrological sciences journal,47(1), 93-106. 

[18] Sharma, N. K., Tiwari, P. K., & Sood, Y. R. (2012). Solar energy in India: Strategies, 

policies, perspectives and future potential. Renewable and Sustainable Energy Reviews, 16(1), 

933-941.  

[19]  http://pmindia.nic.in/speech-details.php?nodeid=1307 

[20] Kumar, A., Kumar, K., Kaushik, N., Sharma, S., & Mishra, S. (2010). Renewable energy in 

India: Current status and future Potentials. Renewable and Sustainable Energy Reviews, 14(8), 

2434-2442. 



 

105 

 

[21] MNRE (Ministry of New and Renewable Energy), http://www.mnre.gov.in/mission-and-

vision-2/achievements/ 

[22] Førsund, F. (2007). Hydro Power Economics. International Series in Operations Research 

and Management Science. 

[23] Barlev, D., Vidu, R., & Stroeve, P. (2011). Innovation in concentrated solar power. Solar 

Energy Materials and Solar Cells, 95(10), 2703-2725.  

[24 ] Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia, K., & Sharifi, A. (2009). A 

review of principle and sun-tracking methods for maximizing solar systems output. Renewable 

and Sustainable Energy Reviews, 13(8), 1800-1818.  

[25] Parida, B., Iniyan, S., & Goic, R. (2011). A review of solar photovoltaic 

technologies. Renewable and Sustainable Energy Reviews, 15(3), 1625-1636.  

[26] Sanoh, A., Kocaman, A. S., Kocal, S., Sherpa, S., & Modi, V. (2014). The economics of 

clean energy resource development and grid interconnection in Africa. Renewable Energy, 62, 

598-609. 

[27] Wu, F., Varaiya, P., Spiller, P., & Oren, S. (1996). Folk theorems on transmission access: 

Proofs and counterexamples. Journal of Regulatory Economics, 10(1), 5-23. 

[28] Tejada-Guibert, J. A., Johnson, S. A., & Stedinger, J. R. (1995). The value of hydrologic 

information in stochastic dynamic programming models of a multireservoir system. Water 

Resources Research, 31(10), 2571-2579. 

[29] Dharmadhikary, S. (2008). Mountains of concrete: Dam building in the Himalayas (No. id: 

1815). 

[30] Liang, X., Lettenmaier, D., Wood, E., & Burges, S. (1994). A simple hydrologically based 

model of land surface water and energy fluxes for general circulation models. Journal of 



 

106 

 

Geophysical Research, 99(14), 415–14. 

[31] Liang, X., Wood, E. F., & Lettenmaier, D. P. (1996). Surface soil moisture parameterization 

of the VIC-2L model: Evaluation and modification. Global and Planetary Change, 13(1), 195-

206. 

[32] Singh, P., & Jain, S. K. (2003). Modelling of streamflow and its components for a large 

Himalayan basin with predominant snowmelt yields. Hydrological sciences journal, 48(2), 257-

276. 

[33] http://www.cea.nic.in/executive_summary.html (2013) 

[34] Statistical Abstract of Delhi (2012), Directorate of Economics and Statistics 

[35] http://www-01.ibm.com/software/info/ilog/ 

[36] Adhikari, B. R. (2009). Tehri Dam: An Engineering Marvel. Hydro Nepal: Journal of Water, 

Energy and Environment, 5, 26-30. 

[37] Rueda, F., Moreno-Ostos, E., & Armengol, J. (2006). The residence time of river water in 

reservoirs. Ecological Modelling, 191(2), 260-274. 

[38] http://www.hydrocoop.org/publications/2.12.1.1.article.pdf 

[39] Keller, A. A., Sakthivadivel, R., & Seckler, D. W. (2000). Water scarcity and the role of 

storage in development (Vol. 39) 

[40] OpenEI Transparent Cost Database. Accessed 12/10/2013 

[41] Gutman, R., Marchenko, P. P., & Dunlop, R. D. (1979). Analytical development of 

loadability characteristics for EHV and UHV transmission lines. Power Apparatus and Systems, 

IEEE Transactions on, (2), 606-617. 



 

107 

 

[42] Hao, J., & Xu, W. (2008, October). Extended transmission line loadability curve by 

including voltage stability constrains. In Electric Power Conference, 2008. EPEC 2008. IEEE 

Canada (pp. 1-5). IEEE. 

[43] Bergen, A. R. (2000). Vijay Vittal Power System Analysis. 

[44] Ekholm, T., Krey, V., Pachauri, S., & Riahi, K. (2010). Determinants of household energy 

consumption in India. Energy Policy, 38(10), 5696-5707. 

  



 

108 

 

 

 

 

 

 

Chapter 4 
 

Modelling of a Hybrid Energy System with Pumped Hydro 

Storage 
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4.1 Introduction 
 

Current supply for electricity generation mostly relies on fossil fuels. However, fossil 

fuels are finite and their combustion causes global warming and health hazards. To reduce the 

role of fossil fuels and ease the concerns on the electricity generation, energy models which 

involve clean and renewable energy sources are necessitated. The International Energy Agency 

(IEA) estimates that nearly 50 percent of global electricity supplies will have to come from 

renewable energy sources in order to achieve a 50 percent reduction of global CO2 emissions by 

2050. 

  Transition to renewable sources is inevitable. However, renewable sources present 

important challenges while integrating them into the power systems: i) Renewable sources are 

intermittent; ii) They are heavily dependent on the spatial location. Intermittency causes limited 

control on power output because of variability and partially predictability of the renewable 

sources such as solar and wind and dependence on the spatial location causes a mismatched 

between potential of renewable energy generation and where the energy will be ultimately 

consumed. Delucchi and Jacobson argue that it is possible to overcome the difficulties working 

with renewables and show  that it is technologically and economically feasible  to meet the 100 

percent of the world energy demand by wind, water and solar [1,2].  

 To mitigate the intermittency of renewable sources, there are several ideas proposed to 

design and operate cost efficient and reliable renewable energy systems. Designing hybrid 

systems which operate as a combination of alternative resources, using energy storage and long 

distance transmission lines and employing demand response programs help reduce intermittency 

of the renewables and allow the grid accommodate more variation on both supplies and demand. 

The technology improvements in transmission lines provide more geographic aggregation which 
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smoothes the variability of intermittent sources over large distances. This helps design more 

efficient hybrid systems reducing the storage costs and generate more dispatchable (controllable) 

power.  

As generation and distribution of energy resources are becoming more complex, there is 

an ever-growing need for mathematical optimization to design the worldwide competitive energy 

systems and to provide a formal framework that enables systematic and clear decision-making in 

energy operations. Here, we imagine a country in the future where hydro and solar are the 

dominant sources and fossil fuels are only available in minimal form (e.g. in the shape of diesel 

generators). In this country, we identify candidate locations for pumped hydro power stations 

and aggregated demand point locations such as the cities or the states in which solar energy 

production is possible. We then mathematically model a hybrid energy generation and allocation 

system including long distance transmissions and pumped hydro storage (water is pumped from 

lower reservoir to upper reservoir during periods of low demand to be released for generation 

when demand is high). 

Aim of the model is to determine optimal sizing of infrastructure needed to match 

demand and supply in a most reliabile and cost effective way. With this model, we are for the 

first time combining three important concepts which help reduce the intermittency of renewable 

sources: hybrid systems, pumped hydro storage with two-level reservoirs and long distance 

transmission in regional or national level. Similar to Chapter 3, the model will be presented with 

a case study of India and we compare the conventional hydro power system discussed in Chapter 

3 and the pumped hydro power systems in terms of reliability and cost efficiency. Our model 

helps assess how efficiently solar energy in addition to pumped hydro system utilizing high 

hydro power potential in Himalaya Mountains could meet the growing electricity demand if 
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fossil fuels could be almost completely phased out from electricity generation. 

4.2 Background 
 

There is an ample amount of literature dealing with problems which are relevant to our 

study such as planning of hybrid energy systems, long-term energy investment planning 

problems, water reservoir management problem. In Section 3.2.1 of Chapter 3, we explain the 

developments in these problems and how our problem can be differentiated from the local level 

hybrid systems [3-5] and here we discuss how the stochastic nature of this problem and water 

reservoir management have been studied in the previous studies. 

So-called energy-technology management problems are also studied extensively in the 

literature [6-13]. These problems usually differ from each other by the technologies they include, 

uncertainties present in the model or the objective of the models. Stoyan et al. (2011) [12] uses a 

scenario based approach to consider uncertainties and proposes stochastic mixed-integer model 

which minimizes cost and emission levels associated with energy generation while meeting 

energy demand of a given region. Powell et al. (2010) [13] addresses the problem of modeling 

energy resource allocations with long term investment strategies for new technologies using an 

approximate dynamic programming approach. 

The literature on water reservoir management is fairly broad [13-22]. There is a variety of 

models that aim to model specifically hydroelectric power generation [20 - 22]. Some of these 

work use dynamic programming technique and they propose different alternatives to overcome 

the “curse of dimensionality” which is a major drawback of dynamic programs [18]. Pereira and 

Pinto (1991) [19] provide one of the first attempts of stochastic dual dynamic programming 

approach applied to large, multi-reservoir hydropower plant. Jacobs et al. (1995) [20] uses the 

concept of scenario trees to include information related the uncertain exogenous variables in 
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hydroelectric generations systems. Lall et al. (1981) [14] proposes a non-linear model for 

planning more generalized regional water-energy systems. Lall et al. (1988) [13] describes a 

simulation optimization methodology proposed for multipurpose reservoir systems.  Their model 

differs from others by not including monthly mass balance equations for reservoirs but they 

require presumption of monthly demand fractions for hydropower, municipal and irrigation 

demands. A common practice in reservoir management problem is to use a monthly time 

increment and as also discussed in Chapter 4, it is not a suitable approach when hydropower 

generation is combined with the renewable sources to accurately capture the diurnal variability.  

Another body of literature can be grouped under modeling of energy storage to handle 

either variability or uncertainty of supply sources and demand [23-25]. Castronuovo et al. (2004) 

[23] takes the hourly variability of wind into account to optimize the daily operation of a wind-

hydro power plant. They determine a set of scenarios for wind power generation and solve a 

linear program for each scenario individually providing an average and a range of output.  Brown 

et al (2008) [24] uses a fuzzy clustering approach to determine hourly load and renewable 

generations scenarios for a day and minimizes the expected daily cost of operation and 

amortization of investments. The pumped hydro systems in these models include only one 

elevated reservoir which is expected to have a daily cycle, storing energy during off-peak hours 

to be used during peak hours.  Since the pump/generator operations is supposed to be on a daily 

basis, the planning horizon is chosen to be one day, assuming that beginning and ending balances 

in the reservoir will be same. In a more recent study, Kuznia et al. (2012) [25] proposes a 

stochastic mixed integer programming model for a hybrid power system design problem, 

including renewable energy generation, storage device, transmission network and thermal 

generators.  They generate daily scenarios with hourly time increments taking samples from the 
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different seasons of a year.  An important assumption here is that their storage type also has daily 

cycle. They show that this problem is a special case of capacitated lot sizing problem which is in 

general a NP-hard problem. To solve the stochastic mixed integer program, they propose a 

Benders’ decomposition algorithm. 

In summary, although there is vast literature on the direct impact of various clean energy 

technologies, few investigations involve large scale analysis of managing such technologies to 

meet future energy demands [12]. Here, we propose the first hybrid model with pumped hydro 

storage with two-level reservoir designed for national/regional energy planning considering 

spatial locations and transmission lines where the storage cycle can be anywhere between a few 

hours to a year. 

4.3 Problem Statement 
 

As in Chapter 3, we are interested in optimally sizing the infrastructure of a hybrid 

system which combines hydro and solar energy and transmission lines between basins and 

demand points. To mitigate the volatility of the supply and demand, we still use reservoirs as 

“water storage” with one crucial difference. Instead of having one reservoir, we have two-level 

of reservoirs and water can be pumped from lower reservoir to upper reservoir during periods of 

low demand to be released for generation when demand is high. A schematic illustration of our 

hybrid system with pumped hydro storage is given in Figure 4.1.  In pumped hydro energy 

storage (PHES), the generator and water turbine can operate as a motor and pump. The excessive 

solar energy can be transmitted to hydropower stations with bi-directional transmission lines and 

can be used to pump water stored in the lower reservoir to upper reservoir. Unlike the hybrid 

system with conventional hydro storage which is described in the previous chapter, here solar 

energy can be stored and this increases the flexibility while reducing the intermittency of solar 
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and stream flow. The goal is to minimize the infrastructure cost of power stations (reservoirs, 

generator, and solar panel area), transmission lines and the cost of an expensive back-up source 

(e.g. diesel generators) that will be used when renewable sources are not available. 

Reservoirs in PHES effectively transfer energy from low use periods to peak use periods, 

allowing the system operate based on demand load while maintaining high system reliability. 

Thus, these systems can increase the flexibility of hydro systems even more compared to 

conventional systems, however they still do face important limitations that other hydro systems 

have. Hydro installations are geographically limited and in certain cases adding additional hydro 

may not be an option. They are only feasible for locations that have sufficient water availability 

and are capable of having large reservoirs at different heights. These geographical challenges 

increase the importance of transmission lines. Different technologies (alternating current (AC) 

and direct current (DC)) are available that can facilitate the routing of power from one location to 

another in a controllable fashion. For connection of remote renewables, high voltage direct 

current (HVDC) technology is especially well suited due to low losses and high controllability 

when compared to AC. In this problem, possible network flow directions from sources to 

demand points are prescribed with dedicated lines and designed as a point-to-point topology. 

Here we neither model the grid itself nor consider real power flow equations and phase angle 

differences. We assume that power flows over lines can be independently assigned. This 

representation of power flows, which captures point-to-point movements without explicitly 



 

115 

 

modeling the grid, is a common approximation made in policy studies [6].

 

Figure 4.1 | A schematic illustration for hybrid system with pumped hydro storage. There are two-level of 

reservoirs and water can be pumped from lower reservoir to upper reservoir during periods of low 

demand to be released for generation when demand is high.  

We use the same data sets (basins and demand point locations, solar radiation, stream 

flow and demand) that we used in the previous chapter in order to be able to see easily the 

advantage of a pumped hydro system over a conventional hydro system. As in the hybrid system 

with conventional hydro storage, it is necessary to model energy supply and demand with hourly 

time periods for at least one year planning horizon to accurately capture both the hourly and 

seasonal variability of the sources. Here, as the solar energy can be also stored and there is 

significant solar radiation variability in hourly level, using hourly time increments in addressing 

this problem becomes even more important. An approach that avoids capturing every time 

increment over a year by simply sampling different time periods (e.g. different time of the years 

and time of the days) fails to accurately model the storage. Moreover, modeling reservoir 

systems is especially more complicated than modeling other storage types such as a battery 

which stores energy during the day and releases at night. However, in a realistic reservoir system, 

we may put water in reservoir storage in September so it can be used couple of months later in 

the future. In addition, we also need to include the mass balance equations of the lower reservoir 
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and power flows from demand points to hydro stations and deal with a larger scale problem 

compared to conventional system. 

In terms of capturing the uncertainty, we are following the powerful and highly 

acceptable approach in similar problems in the literature using a scenario approach [24-26]. Here, 

we present a scenario based static model with multiple time periods that are coupled by storage. 

By scenario approach, a set of prototype 1-year series with 3 hourly time increments are 

determined as a particular realization of the uncertain data such as stream flows.  A drawback of 

a scenario-based approach is the fact that scenarios are generated in advance, and this limits their 

ability to capture the interaction between decisions and exogenous events. We assume that effect 

of this drawback can be minimized during the real-time operations of the power systems. For 

example, in case of quite rainy season which is not foreseen and captured by scenarios, water in 

the reservoirs can be controlled to be prepared for the season. 

4.4 Methodology 
 

 In this section, we first provide our stochastic linear program formulation for the hybrid 

system with pumped hydro storage. Then, we describe our methodology to determine the 

scenarios which will be used to determine our scenarios. 

4.4.1 Problem Formulation 

As we have discussed above, to formulate and solve the described problem, we propose a 

two-stage stochastic linear programming approach where uncertainties in the input data will be 

facilitated in the form of scenario realizations. Table 4.1, 4.2 and 4.3 summarize the indices, 

parameters and variables used in the model. 

Table 4.1| Indices for parameters and decision variables 
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i: 

j: 

t: 

𝜔: 

hydropower generation point 1,…,I, with a total of I locations 

demand (solar power generation) point 1,…,J, with a total of J points 

time period 1,…,T, with a total of T periods 

scenarios 1,…, Ω, with a total of Ω scenarios 

 

Table 4.2| Parameters for model 

n: 

d: 

 

lij: 

 

g:     

hi:    

α:      

𝛾:   

CSi:  

CPGi:  

CMj:   

CTij:  

 

µj:     

  

length of time periods 

dimensionless annualization parameter used to express the investment cost on a 

yearly basis 

percentage of power loss while transmitting electricity from hydropower 

generation point i to demand point j. 

acceleration 

height of the reservoir in hydropower generation point i 

efficiency of hydropower station 

efficiency of solar panels 

unit cost of reservoir capacity  in hydropower generation point i 

unit cost of generator capacity in hydropower generation point i 

unit cost of solar array in demand point j 

unit cost of transmission line capacity between hydropower generation point i and 

demand point j  

unit cost of generating electricity using diesel generator (i.e.  penalty for 

mismatched demand in demand point j) 
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𝑝𝜔:    weight of scenario 𝜔, where ∑ pω
Ω
ω=1 = 1and pω ≥ 0 

 

 

Table 4.3| Variables of the model 

Exogenous Variables:  

𝑊𝑖
𝜔𝑡: 

𝑁𝑗
𝜔𝑡: 

𝐷𝑗
𝜔𝑡: 

water runoff to hydropower generation point i in period t in scenario 𝜔 

solar radiation in  point j in period t in in scenario 𝜔 

demand in point j at time t in in scenario 𝜔 

State / Decision Variables:  

𝑆𝑈𝑖
𝜔𝑡:            water stored in the upper reservoir in hydropower generation point i at the end 

of period t in scenario 𝜔 

𝑆𝐿𝑖
𝜔𝑡:           water stored in the lower reservoir in hydropower generation point i at the end 

of period t in scenario 𝜔 

𝑍
𝑗 
𝜔𝑡:               mismatched demand in demand point j in period t in scenario 𝜔 

𝑇𝑖𝑗
𝜔𝑡:            electricity sent from hydropower generation point i to demand point j in period t 

in scenario 𝜔 

𝑇𝑗𝑖
𝜔𝑡:            electricity sent from demand point j to hydropower generation point i in period t 

in scenario 𝜔 

𝐿𝑈𝑖
𝜔𝑡:           water spilled from upper reservoir in hydropower generation point i in period t 

in scenario 𝜔 

𝐿𝐿𝑖
𝜔𝑡:           water spilled from lower reservoir in hydropower generation point i in period t 

in scenario 𝜔 



 

119 

 

𝑉
𝑗  
𝜔𝑡:           solar energy internally used in point j in period t in scenario 𝜔 

𝑅𝑖
𝜔𝑡:  water released from upper reservoir in hydropower generation point i in period 

t in scenario 𝜔 

𝑃𝑖
𝜔𝑡:  water pumped from lower reservoir to upper reservoir in hydropower 

generation point i in period t in scenario 𝜔 

𝑆𝑈𝑚𝑎𝑥𝑖: active upper reservoir capacity in hydropower generation point i 

𝑆𝐿𝑚𝑎𝑥𝑖: lower reservoir capacity in hydropower generation point i 

𝑀𝑗:  size of solar panels at demand point j 

𝑃𝐺𝑚𝑎𝑥𝑖: generator size in hydropower generation point i 

𝑇𝑚𝑎𝑥𝑖𝑗: maximum energy transmitted from hydropower generation point i to demand 

point j  

 

 

4.4.1.1 Objective Function 

Similar to the Chapter 3, the objective of the model is to minimize the sum of the 

investment costs and expected penalty cost for the mismatched demand. Unit costs of 

investments are assumed to be the constant incremental amount of installing capacities and 

indexed by the location so that different costs parameters can be used for different locations. 

Objective function has five components: 

i) Cost of Reservoirs:  

 O1 = ∑ 𝐶𝑆; ∗ (𝑖 𝑆𝑈𝑚𝑎𝑥𝑖 + 𝑆𝐿𝑚𝑎𝑥𝑖)  

 

ii) Cost of Hydropower Generators:  

O2 = ∑ C𝑃𝐺𝑖 ∗ 𝑃𝐺𝑚𝑎𝑥𝑖𝑖  
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iii) Cost of Solar Power Stations: 

O3 = ∑ C𝑀𝑗 ∗ 𝑀𝑗𝑗  

iv)  Cost of Transmission Lines: 

O4= ∑ ∑ C𝑇𝑖𝑗 ∗  𝑇𝑚𝑎𝑥𝑖𝑗𝑗𝑖                    

v) Expected Cost of Mismatched Demand: 

O5 =∑ 𝑝𝜔 ∗ 𝑍
𝑗  
𝜔𝑡

𝑗𝑡𝜔 ∗ µj 

 Objective function can be stated as: 

min (O1+O2+O3+O4)*d+O5 

4.4.1.2 Constraints 

The equality and inequality constraints of the problem are stated below: 

(1) 𝑆𝑈𝑖
𝜔𝑡 ≤ 𝑆𝑈𝑚𝑎𝑥𝑖                                                  ∀ 𝑖, 𝑡, 𝜔 

(2) 𝑆𝐿𝑖
𝜔𝑡 ≤  𝑆𝐿𝑚𝑎𝑥𝑖                                                  ∀ 𝑖, 𝑡, 𝜔 

(3) 𝑆𝑈𝑖
𝜔𝑡 = 𝑆𝑈𝑖

𝜔(𝑡−1)
+ 𝑊𝑖

𝜔𝑡 + 𝑃𝑖
𝜔𝑡 − 𝑅𝑖

𝜔𝑡 − 𝐿𝑈𝑖
𝜔𝑡         ∀ 𝑖, 𝑡: 𝑡 > 1, 𝜔 

(4) 𝑆𝑈𝑖
𝜔1 = 𝑆𝑈𝑚𝑎𝑥𝑖 + 𝑊𝑖

𝜔1 + 𝑃𝑖
𝜔1 − 𝑅𝑖

𝜔1 − 𝐿𝑈𝑖
𝜔1         ∀ 𝑖, 𝜔 

(5) 𝑆𝑈𝑖
𝜔𝑇 = 𝑆𝑈𝑚𝑎𝑥𝑖                                                                     ∀ 𝑖, 𝜔 

(6) 𝑆𝐿𝑖
𝜔𝑡 = 𝑆𝐿𝑖

𝜔(𝑡−1)
+ 𝑅𝑖

𝜔𝑡 − 𝑃𝑖
𝜔𝑡 − 𝐿𝐿𝑖

𝜔𝑡                  ∀ 𝑖, 𝑡, 𝜔 

(7) 𝑆𝐿𝑖
𝜔1 = 𝑅𝑖

𝜔1 − 𝑃𝑖
𝜔1 − 𝐿𝐿𝑖

𝜔1  ∀ 𝑖, 𝑡: 𝑡 > 1, 𝜔 

(8) 𝑚𝑎𝑥{𝑓𝐺𝑖(𝑅𝑖
𝜔𝑡), 𝑓𝑃𝑖(𝑃𝑖

𝜔𝑡)} ≤ 𝑃𝐺𝑚𝑎𝑥𝑖 ∗ 𝑛                               ∀ 𝑖, 𝑡, 𝜔 

(9) ∑ 𝑇
𝑖𝑗  
𝜔𝑡

𝑗 = 𝑓𝐺𝑖(𝑅𝑖
𝜔𝑡)                      ∀ 𝑖, 𝑡, 𝜔 

(10) 𝑓𝑃𝑖(𝑃𝑖
𝜔𝑡) = ∑ 𝑇

𝑗𝑖  
𝜔𝑡

𝑗 ∗ (1 − Ɩ𝑗𝑖)                            ∀ 𝑖, 𝑡, 𝜔 

(11) 𝑚𝑎𝑥 {𝑇
𝑖𝑗  
𝜔𝑡, 𝑇

𝑗𝑖  
𝜔𝑡} ≤ 𝑇𝑚𝑎𝑥𝑖𝑗 ∗ 𝑛                                   ∀ 𝑖, 𝑗, 𝑡, 𝜔 

(12) 𝑉
𝑗  
𝜔𝑡 + ∑ 𝑇

𝑗𝑖  
𝜔𝑡

𝑖 ≤ 𝑓𝑆𝑗(𝑀𝑗)                              ∀ 𝑗, 𝑡, 𝜔 

(13) 𝑍
𝑗 
𝜔𝑡 = 𝐷𝑗

𝜔𝑡 − 𝑉
𝑗  
𝜔𝑡 − ∑ 𝑇

𝑖𝑗  
𝜔𝑡 ∗ (1 − Ɩ𝑖𝑗)𝑖        ∀ 𝑗, 𝑡, 𝜔 

(14) 𝑆𝑈𝑖
𝜔𝑡, 𝑆𝐿𝑖

𝜔𝑡, 𝑆𝑈𝑚𝑎𝑥𝑖, 𝑆𝐿𝑚𝑎𝑥𝑖, 𝑃𝐺𝑚𝑎𝑥𝑖, 𝑃𝑖
𝜔𝑡, 𝑅𝑖

𝜔𝑡, 𝐿𝑈𝑖
𝜔𝑡, 𝐿𝐿𝑖

𝜔𝑡, 𝑀𝑗 
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𝑇
𝑖𝑗  
𝜔𝑡, 𝑇

𝑗𝑖  
𝜔𝑡, 𝑇𝑚𝑎𝑥𝑖𝑗, 𝑉

𝑗  
𝜔𝑡, 𝑍

𝑗 
𝜔𝑡  ≥ 0                                                ∀ 𝑖, 𝑗, 𝑡, 𝜔                                                             

                                               

In the hybrid energy system with pumped hydro storage, we have thirteen constraints as 

opposed to nine in the conventional system in Chapter 3. This is as a result of including the mass 

balance equations of the lower reservoir and power flows from demand points to hydro station.  

We explain each one of the updated constraints here. The constraints in (1) and (2) ensure that 

water stored in the reservoirs is limited by the size of the reservoir at each time period of every 

scenario. Constraints in (3-5) represent the mass balance equations in reservoirs. Constraint in 

(3) couples the upper reservoir levels between subsequent time periods. In (4) and (5), beginning 

and ending balance of reservoirs are set. Here, we again assume that operations begin and end 

with full upper reservoirs. In the model, each scenario starts in September, the end of Monsoon 

season in India, and continues for a year. Thus, it is quite reasonable to assume that reservoirs are 

full at this time of the year. Constraint in (6-7) couples the lower reservoir levels between 

subsequent time periods. Constraint in (8) ensures that generated and pumped energy defined by 

the functions 𝑓𝐺𝑖(𝑅𝑖
𝜔𝑡 ) and 𝑓𝑃𝑖(𝑃𝑖

𝜔𝑡) respectively, are limited by the generator/pump capacity in 

every time period of every scenario where 𝑓𝐺𝑖(𝑅𝑖
𝜔𝑡 ) =𝑅𝑖

𝜔𝑡 ∗ 𝑔 ∗ ℎ𝑖 ∗ 𝛼 and 𝑓𝑃𝑖(𝑃𝑖
𝜔𝑡) = 𝑃𝑖

𝜔𝑡 ∗ 𝑔 ∗

ℎ𝑖 ∗ 1/𝛼. Constraint can easily be linearized by reformulating it in the form of  𝑓𝐺𝑖(𝑅𝑖
𝜔𝑡) ≤

𝑃𝐺𝑚𝑎𝑥𝑖 ∗ 𝑛   and  𝑓𝑃𝑖(𝑃𝑖
𝜔𝑡) ≤ 𝑃𝐺𝑚𝑎𝑥𝑖 ∗ 𝑛.  Constraint in (9) ensures that energy transmitted to 

demand points from a hydropower generation is equal to generated energy in that hydropower 

generation point in period t in scenario 𝜔 and constraint. Likewise, constraint in (10) provides 

that pumped energy cannot be greater than the total amount of energy sent from demand points 

in in period t in scenario 𝜔. Constraint in (11) ensures that transmitted energy is limited by the 

transmission line capacity. In pumped hydro system, since there is also power flow from demand 
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points, transmission lines are bi-directional and should be size based on the flow in both 

directions. Constraint in  (12) ensures that solar energy internally used in a demand point j and 

the total energy sent from point j to hydropower stations should be less than the amount of solar 

energy generated in demand point j in time period t in scenario 𝜔. Energy generated in solar 

power stations is defined by the function  𝑓𝑆𝑗(𝑀𝑗)  where  𝑓𝑆𝑗(𝑀𝑗) = 𝑁𝑗
𝜔𝑡 ∗ 𝑀𝑗 ∗ 𝛾  . Constraint 

in (13) ensures that demand 𝐷𝑗
𝜔𝑡 is met by sum of the energy transmitted from hydropower 

generation points, energy generated in solar power stations and energy generated using diesel 

generators within demand point j in time period t in scenario  𝜔 . Since we don’t have an 

operational cost for each pumping and releasing operation in our objective function, to prevent 

the pumping and releasing happening at the same time especially for multi-basin and multi–

demand point cases, we also include a binary decision variable, 𝐼𝑝 , into our model which makes 

our model a mixed integer program (MIP). The two sets of constraints, 𝑃𝑖
𝜔𝑡 ≤  𝐼𝑝 ∗ 𝑀 and 𝑅𝑖

𝜔𝑡 ≤

(1 − 𝐼𝑝) ∗ 𝑀 are, then, added for ∀ 𝑖, 𝑡, 𝜔 where M is a very large number. The same idea can 

also be used to prevent the simultaneous bidirectional flows in the transmission lines. As in 

Chapter 3, again for operational purposes, it is important to keep as much water as possible in the 

upper reservoirs although full kept amount will never be used. Here, since for one scenario the 

policy is "anticipatory" of what's happening in the future, the system spills the water that would 

not be needed. Although it would also have been optimal to keep water as much as possible in 

the upper reservoir, the solver can choose the solution with less water. For this reason, in the 

objective function we add another term: ∑ 𝑆𝑈𝑖
𝜔𝑡

𝑖𝑡𝜔 ∗ Ɛ where Ɛ is a very small amount. This 

term tilts the balance so that the solver will choose the option with more water in the upper 

reservoir.  When we report the final cost, we omit this term. 
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4.4.2 Scenario Determination 

Our model consists of three exogenous variables: stream flow, solar radiation and 

demand. As discussed in Chapter 3, time series data for stream flows for the years between 1951 

and 2004 is obtained from the VIC land surface model [27, 28]. We decompose the time series 

using an additive model, as the seasonal fluctuations are roughly constant in size over time and 

do not seem to depend on the level of the time series. The components of the additive model are 

presented in Figure 4.3a. We observe that after 1970, time series has a more fluctuating trend and 

we focus on this part of the time series while determining our scenarios. To be able to find the 

best representative years of the time series, we first divide a year into six seasons, each including 

two months: autumn (end of monsoon), prewinter (post monsoon), winter, spring, summer, 

monsoon. For each season of the years between 1971 and 2004, we calculate the mean, standard 

deviation and coefficient of variation. Our goal is to determine the years in which ‘wettest’, 

‘driest’ and the most ‘variable’ seasons are observed. To find the wet and dry seasons we use the 

mean of the stream flows within a month as our metric. For example, in Bahagirathi River, the 

wettest autumn season is observed in 1978 with the mean flow of 8.17x10-3 km3 whereas, the 

direst autumn season is observed in 1974 with the mean flow of 8.45 x10-4 km3. To find the 

year in which the most variable autumn season is observed, we use coefficient of variation as our 

decision metric.  Coefficient of variation represents the ratio of standard deviation to the mean 

and is a widely used metric to see the variability of the data sets with different mean. 

Time series of climate and meteorological variables are frequently serially dependent, 

reflecting the strong persistence of the meteorological and climate phenomena. For example, a 

rainfall effect can be seen in multiple consecutive periods. The autocorrelation function of stream 

flow up to 50 lags presented in Figure 4.2 also supports this. The idea of taking yearly samples 
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from the time series also helps keep the dynamics within a year. Using the approach described 

here, we determined 13 years as representatives of the time series in terms of the extreme and the 

most variable cases. 

 

Figure 4.2| Autocorrelation function for the stream flow data of Bhagirathi River (1970-2004). Time 

series of climate and meteorological variables are frequently serially dependent, reflecting the strong 

persistence of the meteorological and climate phenomena. For example, a rainfall effect can be seen in 

multiple consecutive periods. 

Same procedure is also applied to 6 years of solar radiation data of Delhi. Since solar 

radiation data did not show a significant variation between years, we take one year of data (2002) 

as a representative solar radiation data. Additive decomposition of solar radiation time series can 

be seen in Figure 4.3b. We also use one demand scenario which is the yearly demand load curve 

described in Chapter 3. Therefore, we have 13 scenarios that we can use with our model. 
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Figure 4.3| Decomposition of time series data. The seasonal fluctuations are roughly constant in size over 

time and do not seem to depend on the level of the time series. a, The components of the additive model 

for stream flow. b, The components of the additive model for solar radiation.  

Table 4.4 | Scenarios determined from time series of stream flows 

 Autumn       

(End of 

Monsoon) 

PreWinter 

(Post 

Monsoon) 

Winter Spring Summer Monsoon 

 Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV 

1970-

1971 

3678.1 1.1 639.9 0.4 391.3 2.0 715.2 2.8 4304.4 1.5 18120.7 1.0 

1974-

1975 

844.8 0.5 229.5 0.9 663.5 2.7 609.3 1.8 884.1 3.4 7060.4 1.3 

1977-

1978 

5700.1 0.9 913.0 1.1 454.0 1.7 1134.2 2.6 1210.8 1.4 12493.3 1.5 

1978-

1979 

8165.8 1.7 927.5 0.8 1009.9 3.0 1050.3 1.7 826.4 1.9 6612.4 1.9 

1979-

1980 

1228.4 0.9 251.6 0.4 339.5 3.4 314.5 2.6 845.0 1.5 10121.0 1.3 

1981-

1982 

1210.7 0.8 529.9 3.0 586.5 3.1 907.1 2.0 641.1 1.5 4527.8 1.8 

1985-

1986 

6250.0 1.0 1272.7 1.0 545.1 1.8 875.4 1.4 1184.1 2.5 7413.5 1.3 

1986-

1987 

1814.8 0.8 596.4 1.2 494.0 2.2 747.0 1.6 1258.7 2.4 1613.3 2.7 

1987-

1988 

1253.7 1.6 179.8 0.9 130.6 1.8 422.3 2.2 929.9 1.6 7444.8 1.1 

1989- 3565.9 2.7 613.7 1.2 360.5 1.9 718.5 1.7 1297.8 1.6 7741.3 1.4 
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1990 

1990-

1991 

3261.1 0.9 761.0 1.2 1099.3 2.8 700.0 1.7 830.2 1.6 2719.1 2.0 

1994-

1995 

1904.6 0.8 389.6 0.4 385.7 2.4 517.4 1.6 396.5 5.2 6392.1 1.8 

2001-

2002 

1224.9 1.3 241.8 0.4 697.8 3.0 741.2 2.5 302.4 2.0 6075.1 2.9 

 

4.4.3 Heuristic Approach 

 The scenario based linear program described in Section 4.4.1 can be a large scale 

program depending on the number of basins, demand points and the scenarios. Although number 

of constraints and variables increases linearly with the number of scenarios, solution time of the 

linear programming solvers is not linearly related to number of variables or constraints.  

Given some characteristics of the data, the number of scenarios in the problem could be 

limited and then solved optimally using CPLEX 12.5 [29]. However, one might probably still 

need a heuristic approach when large scale instances of the problem cannot be solved in full 

space. With having short time periods in hourly level (3 hours), the number of time periods in a 

planning horizon can be high (2920 in one year planning horizon). This increases the problem 

size very quickly, especially when the scenarios are included into the problem to take the 

uncertainty into account. The reason why such short time increments (fine resolution) are used 

here is that solar radiation has daily cycle and the hourly variations are needed to be captured. 

Using longer timer increments has the effect of averaging out the peaks which are crucially 

important while designing more controllable power systems [30].  

 We have started with running the individual 1-year scenarios separately and the results 

are summarized in Figure 4.4. From these results, we can clearly conclude that only the upper 

reservoir size varies significantly for each individual scenario and the other components of the 

power system especially solar panel area and lower reservoir size do not vary a lot between 
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scenarios. Next, we have developed our heuristic algorithm based on the fact that solar panel 

area and lower reservoir size are mostly dependent on solar radiation which does not 

significantly change between years.  

 

Figure 4.4| Results for the first step of the heuristic algorithm (each scenario is run individually). a, Only 

the upper reservoir size varies significantly for each individual scenario with 0.62 coefficient of variation 

(CV) . b-d the other components of the power system especially solar panel area, lower reservoir size do 

and generator capacity not vary a lot between scenarios (Coefficient of variations: 0.08, 0.11, 0.10 

respectively) . 

Our heuristic algorithm involves three steps. Running each scenario separately and 

estimating the solar panel area, lower reservoir size and amount of pumped water in each time 

period is the first step. In the second step, we refine our solution and run each scenario again 

with the fixed solar panel area and lower reservoir to have a more accurate estimate of how much 

water is pumped in a day/week with the specified variables. Then, in the third step, we combine 

all the scenarios together and run the multi-scenario model with a higher resolution (one day).   
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An important feature of our heuristic is that once we estimate the “solar energy related” 

components of the model such as solar panel area, lower reservoir and amount of energy pumped 

to upper reservoir for each scenario, we can change the resolution of our problem and run our 

model with computationally supportable longer time increments (one day or one week) to 

estimate the size of the upper reservoir. This is appropriate as upper reservoir size is highly 

dependent on the stream flows of various years (as can be seen in Figure 4.4 a) and it is the 

parameter of interest between different years. 

We first test this idea for each scenario individually, without combining all scenarios 

together. We run each scenario with daily resolution with fixed (estimated) lower reservoir size, 

solar panel area and amount of pumped water to upper reservoir. Then we superimpose the 

results of the 3-hourly and daily runs, and observe a remarkable match.  An example (Bhagirathi 

River and Delhi with the stream flow data of 1974 and 1980) is illustrated in Figure 4.5.  
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Figure 4.5| Superimposed results for 3hourly and daily run for a scenario. Once the “solar energy related” 

components of the model are estimated, the resolution of our problem can be changed (one day or one 

week) to estimate the size of the upper reservoir. a, 3hourly and daily individual run of year 1974. b, 

3hourly and daily run of year 1981. 

 

In summary, the main point of our heuristic is to estimate the 3-hourly fluctuations due to 

pumped water and then calculate the blue curve in Figure 4.5, which is determined mostly by 

seasonal variations of stream flow based on the estimated values (i.e. daily resolution is enough). 

It should be noted that our heuristic algorithm can underestimate the upper reservoir size. This is 

due to the fact that, we estimate some decision variables of our model, thus relax some 

constraints based on these variables. We should keep in mind that this means increasing the 

feasibility region (solution space) of our model and may lead to a lower cost than the optimal 
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cost for our original problem. The intuitive way to explain this would be the following; when we 

increase the time period of the model (resolution) to one day and estimate the total pumped water 

within a day, we lose some details of the information such as the time pump operations peak 

within a day. Then, the system decides about release amount based on the aggregated pumped 

water which may provide more flexibility (lower objective for a minimization problem) to the 

system.  

In order to see the effect of relaxing the constraints, we tested the performance of our 

heuristic algorithm by comparing it with the optimal solution of a single basin-single demand 

point case run with the scenarios described in the previous section. Table 4.5 summarizes the 

results for each investment variable. There is indeed a smaller size upper reservoir; however the 

values are in the same order and we can take the reservoir size of the heuristic result as the lower 

bound for the optimal solution. Moreover, using these solutions as initial points for solvers often 

leads to further improvements. We note that since the algorithm involves decomposition of each 

scenario and running them individually, it is suitable for implementation in parallel processors 

which results in a shorter running time and efficient memory usage. 

 

Table 4.5 | Heuristic results compared optimal solution 

  

Heuristic Optimal 

Upper Reservoir 0.134 0.165 

Lower Reservoir 0.045 0.042 

Pump/Generator 1.600 1.624 

Solar Panel 31.356 30.894 

Transmission Line 1.600 1.624 

 

Finally, as a validation of our scenario approach we perform a simulation analysis and 

run the data for all years (including the ones not chosen as a scenario here) fixing the investment 
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decision variables to optimal values presented in Table 4.5. Figure 4.6 presents this result. Red 

dots are the years chosen as scenarios and blue dots are the rest of the years. We observe that the 

unit cost of the system varies between the bounds determined the scenarios. This result supports 

the fact that scenarios are chosen to represent extreme event years such as most variables, most 

dry, wettest etc. 

  

 

 
Figure 4.6| The data for each year is used to run the model fixing the investment decision 

variables to the values in the optimal solution to observe how the diesel usage changes over different 

years. Red dots are the years chosen as scenarios and we observe that the unit cost of the system varies 

between the bounds determined by the years chosen as scenarios. This result supports the fact that 

scenarios are chosen to represent extreme event years such as most variables, most dry, wettest etc. 

  

 

4.5 Results 
 

The goal of Chapter 3 and 4 of this thesis is to provide mathematical models that 

demonstrate how combining alternative sources (hybrid systems), energy storage and long 

distance transmission lines would handle the limited controllability of renewable sources. In 

Chapter 3, we showed how we can combine variety of clean energy sources in a conventional 

system to obtain a cost efficient and reliable. As explained in Section 4.3 and 4.4, in Chapter 4 

we add a pump component to make the system further clean energy friendly. That’s why we 
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present our results here compared to the systems in Chapter 3 and talk about the enhancements 

due to the pumping component. Results in Chapter 3 may be reviewed together with these results.    

Our linear program described in section 4.3 is implemented by following the approach in 

section 4.4, solved using CPLEX and the results are presented in a similar fashion with Chapter 3. 

We have multiple case studies for India to emphasize the different aspects of our results. We first 

present our results with a single basin, single demand point case study to illustrate the basic 

information that our pumped hydropower model can provide. Next, we introduce more basins 

and demand points to explain how the transmission and storage improvements can aid the 

integration of intermittent renewables as geographic aggregation smoothes the variability of the 

stream flows and solar radiations and how integration of additional demand points can change 

the balance in the system. Then, we calculated the results of our algorithm for all the data we 

have for India (8 basins and 10 demand points mostly in Northern India and Bengal) and observe 

how our model works in a real time complicated nationwide network. Cost parameters that are 

used in analysis are the same as in Chapter 3. We assess the sensitivity of the system in terms of 

cost parameters in the next section. 

4.5.1 Case Study I: Single Basin, Single Demand Point Case 

This is the section where we show the benefits of having a lower reservoir and pump 

some of the water to save the excessive solar power in form of potential energy. We use a simple 

single basin, single demand point case for this purpose. We first illustrate the water stored in the 

upper and lower reservoirs together with components that determine the upper reservoir level. 

Then, we discuss a one week zoomed operation balance in reservoir and demand points. We 

finally compare the results with the conventional system in Chapter 4 including how we should 

consider the residence time of the reservoirs in this system.  
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Data used in Chapter 3 for illustration of single basin, single demand point case is also 

used here in order to be able to show the benefits of pumped hydro model explicitly and compare 

the results with conventional hydropower system case easily. The sample one year data with 13.3 

km3 annual inflow is taken from the time series data of stream flow for Bhagirathi River 

calculated by VIC land surface model. Solar radiation data of Delhi for the year 2002 is collected 

from National Renewable Energy Laboratory website. 3-hourly demand data for Delhi is 

estimated as described in previous chapter. To be able to scale supply potential and demand, a 

low demand profile for Delhi is created by dividing actual demand by four and results are 

presented based on the scaled data. The input data used in this section is shown in Figure 4.

 

Figure 4.7 | Input data used in the model - Data used in Chapter 3 for illustration of single basin, single 

demand point case is also used here in order to be able to show the benefits of pumped hydro model. 

 

Figure 4.8a-b shows the water level stored in the upper and lower reservoirs during the 

operation for one year. We start and end the operations with full upper reservoirs due to the fact 

that our planning horizon starts in September (almost the end of the Monsoon season). The 
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fluctuations in the upper and lower reservoirs support a daily cycle in pumped hydro operations. 

As can be seen in Figure 4.8, there is no water stored in the lower reservoir in the Monsoon 

season since there is no need to pump water to upper reservoir. We can also conclude that water 

stored in the lower reservoir (water to be pumped with the extra solar power) during winter 

season closely follow the solar radiation curve (Figure 4.7b). During the dry season ( ~ between 

November and March), upper reservoir is highly utilized: Since the model “see” that rainy 

season (high inflow) coming up (violating nonanticipativity condition), water is stored in dry 

season and is used starting from March. In addition, as there is also high solar radiation in 

spring-summer period that can be used to pump more water, we observe that there is more water 

in the lower reservoir until Monsoon seasons starts again. This result can be verified from the 

components of the mass balance equations of the upper reservoir such as inflow, released, 

pumped and spilled water which are presented in Figure 4.9. The pumped water to upper 

reservoir is so high that the pumped amount is limited by the generator size as can be understood 

from the flatness between February and June. 
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     Figure 4.8| Water stored in the upper and lower reservoirs – The upper reservoir is assumed to be full 

at the start and the end of the cycle as the planning horizon starts in September which is close to end of 

the Monsoon season. There is no water stored in the lower reservoir in the Monsoon season since there is 

no need to pump water to upper reservoir. (0.01 km3 ~ 2.4 GWh) 

 

Figure 4.9| Flows from/to the upper reservoir level - Water is stored in dry season (November to March) 

and is utilized starting from March. As there is high solar radiation in spring-summer period that can be 

used to pump more water, lower reservoir utilization is increased until Monsoon seasons starts again. 

(0.01 km3 ~ 2.4 GWh) 

Furthermore, we now zoom into one week in March and see the balance between solar, 

hydro and diesel components to meet the demand and the results are shown in Figure 4.9. Figure 

4.10a illustrates that solar energy is enough to meet the demand during the day and hydro 

becomes effective when the Sun does not shine (at night). Hydro and solar together satisfies the 

demand during the week. Figure 4.10b shows how the reservoir operates for the same week. Due 

to the inflow observed in the first day of the week, extra solar energy generated in the demand 

point is not needed to pump to upper reservoir in the first two days. 
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Figure 4.10 | One week operation balance in reservoir and demand points – a, Solar energy is enough to 

meet the demand during the day and hydro becomes effective at night. Deficit is zero during all week. b, 

Due to the inflow observed in the first day of the week, extra solar energy generated in the demand point 

is not necessary to pump to upper reservoir in the first two days. No spill is observed during all week.  

 

Next, the detailed distribution of alternative sources to meet the demand is summarized in 

Table 4.6. 47% of the demand is met by hydropower. 25% of this is directly generated from the 

inflow to the reservoir whereas, 22% is generated using the pumped water. Solar energy 

generated 84 percent of the annual demand, of which 45% is directly used as “internal” solar 

energy and 28% is sent to reservoirs to be stored. The 6% difference between the hydro energy 

generated from the pumped water and solar energy sent to reservoirs stems from the generator 

and pump efficiencies. 
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Table 4.6| Distribution of resources to meet the demand 

 

 As we now have the results for the pumped hydro system for the same case study 

discussed in previous chapter, we can expand the comparison of alternative systems results to 

include pumped hydro system. Figure 4.11 clearly shows that compared to other hybrid systems 

the system with pumped hydro storage is the most cost efficient design with much lower unit 

cost. Having two-level reservoir with a pump system reduces the intermittency effect of 

renewable sources and the system can utilize more clean energy. In particular, total hydro 

production increases to 47% (it was 29% in conventional system in Chapter 3) with even smaller 

reservoir size compared to conventional system. With an addition of 0.04 km3 lower reservoir, 

upper reservoir size is reduced to 0.15 km3 (0.29 km3 in the conventional system). Further details 

about the efficiencies, capacity factors and unit cost of the systems are summarized below in 

Table 4.7.  
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Figure 4.11| Alternative Technologies - Compared to other hybrid systems, the system with pumped 

hydro storage is the most cost efficient design with much lower unit cost. Having two-level reservoir with 

a pump system reduces the intermittency effect of renewable sources and the system can utilize more 

clean energy. In particular, total hydro production increases with even smaller reservoir size compared to 

conventional system. Shaded area in the solar power bar is transferred to hydro power.6% is lost due to 

generator and pump efficiencies. 

 
Table 4.7| Results of the pumped hydro system compared to conventional system 
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We now compare the pumped hydro system with the conventional hydro system and see 

that how the residence time of the reservoir went down (water has been cycled more), how the 

solar contributed both to hydropower (pumping) and to internal usage (larger panels) and as a 

result diesel usage decreased to 8% from 37%.  

In pumped hydro system, there are two level reservoirs in the system with more 

complicated working principal than the conventional system, we revisit the term, “residence time 

of the reservoir” that is introduced in Chapter 4. The operation of the upper reservoir in our 
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pumped hydro system is no different than the reservoir in the conventional hydro system. As 

pumped water can only be considered as an additional inflow to the upper reservoir, we do not 

need to change our definition of residence time for the upper reservoir. However, we need to 

define the residence time for the lower reservoir which practically has a quite different operation 

cycle compared to the upper reservoir. To estimate the average time a water molecule spends in 

the lower reservoir, we again rely on the conservation of mass principle and estimate the 

residence time of the reservoir by dividing the volume of the reservoir by the rate by which water 

either gets filled or depleted the reservoir [31]. Here, the rate by which the water is pumped to 

upper reservoir represents the rate by which the water exits the lower reservoir. Therefore, 

residence time of upper and lower reservoirs, 𝑹𝑻_𝒖𝒑𝒑𝒆𝒓𝒊
𝝎  and 𝑹𝑻_𝒍𝒐𝒘𝒆𝒓𝒊

𝝎  respectively, in 

hydropower station i under scenario 𝝎 can be calculated by the formulas below: 

𝑹𝑻_𝒖𝒑𝒑𝒆𝒓𝒊
𝝎 = 𝑺𝑼𝒎𝒂𝒙𝒊 ∗ 𝟑𝟔𝟓/ ∑ 𝑹𝒊

𝝎𝒕

𝒕

 

𝑹𝑻_𝒍𝒐𝒘𝒆𝒓𝒊
𝝎 = 𝑺𝑳𝒎𝒂𝒙𝒊 ∗ 𝟑𝟔𝟓/ ∑ 𝑷𝒊

𝝎𝒕

𝒕

 

where SUmaxi and  SLmaxi  are the size of the upper an d lower reservoirs respectively , ∑ Ri
ωt

t    

represents the total amount of water released from the upper reservoir i and ∑ Pi
ωt

t  represents the 

total amount of pumped water from lower reservoir to upper reservoir in a year (our time 

horizon) under scenario 𝜔. Using the formula above, residence times of the reservoirs are 

estimated to be 3.6 and 2 days for upper and lower respectively.  We note that in Chapter 3, 

residence time of the reservoir in conventional hydro system with the same demand data is 

calculated as 11.7 days. This means we can cycle water a few times and generate more power 

from renewable sources. In Table 4.7, detailed results of the pumped hydro system are given 

compared to conventional hydro system. Results show that with an additional 0.04 km3 lower 
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reservoir, a smaller upper reservoir (almost the half of the one in conventional system (0.15 km3 

vs 0.29 km3) is needed. The flexibility that pumped hydro system brings combining hydro and 

solar potentials provides reduced residence time of upper reservoir. Table 4.7 shows that 

introducing the pump to the system reduced the diesel usage from 37 percent to 7 percent and 

decreased the unit cost of the overall system.  

Another interesting result demonstrated in Table 4.7 and Figure 4.12 is the increase in the 

percentage of internally used solar energy in pumped hydro system, compared to conventional 

system. This is mainly due to the fact that it is expected that solar panel area in pumped hydro 

system is larger than the area in conventional system as the role of solar energy in pumped 

system is twofold: internal solar and pumped solar. In addition, in the pumped hydro system, 

solar energy is usually transmitted to hydro stations for pumping for two consecutive time 

periods (total of 6 hours) in one day on average. However, solar radiation is available for more 

time periods and as the solar panel area is larger, the energy generated during the day when there 

is no pumping, is being used internally. Therefore increased solar panel area also contributes the 

internally used solar energy. In particular, in Table 4.7, we see that 28% of solar generated in the 

pumped hydro system is being pumped and 45% is being used internally within demand points 

whereas, in conventional system, the internally used solar energy is 33%. Figure 4.12 compares 

conventional and pumped hydro systems in terms of the solar energy produced in one day. It can 

be seen that total production is scaled up by increased solar panel area as the solar radiation 

curve is same. Solar energy used internally for the 4th and 5th time periods are the same as extra 

solar energy is spent for pumping, however shaded area in 3rd and 6th time periods in Figure 

4.12b represents the parts which explain the difference between solar internal percentages in 

conventional and pumped systems. This consistently supports the explanation above. The fact 
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that we still have some spill in the solar power in the pumped hydro system is due to optimized 

size in the high demand period as explained in Chapter 3. Another way to see the difference is 

presented in Figure 4.13. Internally used solar energy for one week in November is presented.  

 

Figure 4.12 | Comparisons of solar production profile of one day in November for conventional (a) and 

pumped hydro systems (b) - Total production is scaled up by increased the solar panel area as the solar 

radiation curve is same. The role of solar energy in pumped system is twofold: internal solar and pumped 

solar. Solar energy used internally for the 4th and 5th time periods are the same between two systems as 

extra solar energy is spent for pumping, however shaded area in 3rd and 6th time periods in (b) represents 

extra solar internal. 
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Figure 4.13 | Comparisons of internally used solar energy for one week in November. The area under 

curves explains the difference between solar proportions to meet the demand in Table 4.7. 

 

4.5.2 Case Study II: Multi Demand Points, Multi Basins System 

In Chapter 3 and 4.5.1, we have shown that combining variety of resources gives us 

higher cost efficiency (Figure 4.11) and how a pumped hydro storage system increases the 

flexibility of intermittent sources in matching supply and demand. Now, in this section we 

provide results for the effect of long distance transmission lines between resources which are 

expected to have different variability. As individual systems are connected with each other 

through transmission lines and work as a single system, the variability and intermittency of 

renewable sources is expected to be smoothed out. To demonstrate this effect, we sequentially 

add more basins and demand points to the system that we discussed in previous section. 
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Figure 4.14 | Multi-basins, Multi-demand Points Cases – a, is the system discussed in Section 5.5.1. b, 

introduces an additional basin (Pinder River with 6.2 km3 annual inflow) to the system and reduces the 

unit cost. c, Higher flexibility from the variety of resources is observed when third basin (Chenab River 

with 45.5 km3) is included. d, Another demand point (Punjab - 10000GWh annual demand in the 

calculations) is added and observed the balances between reservoirs change when the demand increases. 

 

 

We start with the system in Figure 4.14a. With 13.3 km3 annual inflow of Bhagirathi 

River and 7500 GWh demand size (one fourth of actual demand of Delhi) is discussed in detail 

in Section 5.5.1. Then, we first add Pinder River with 6.2 km3 annual inflow to the system 

(Figure 4.14b). Results showing the comparison between two cases are summarized in Table 4.8. 

The immediate result is the reduced unit cost of combined system (Table 4.8). In further 

details, one important point is that although the distance between Pinder and Delhi is longer than 
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the distance between Delhi and Bhagirathi (Figure 4.14b), it is still cost efficient to reduce the 

size of a shorter transmission lines between Delhi and Bhagirathi and add another transmission 

line for 0.21 GW between Delhi and Pinder. Moreover, total generator size in latter case is 

smaller than the single basin-single demand point case. This indicates that combining two 

sources with different variability increases the flexibility of obtaining cheaper systems.  

Table 4.8 | Bhagirathi and Pinder Rivers combined to meet Delhi’s demand 
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Higher flexibility from the variety of resources can be observed with further clarity when 

Chenab River with 45.5 km3 is included in the system (Figure 4.14c). Table 4.9 summarizes the 

results and shows that Chenab River with a high stream flow potential reduced the unit cost of 

the system by around 42% (from 59 cents to 34 cents). Interestingly, due to the high potential of 

the river, a conventional hydropower station is found to be sufficient for Chenab River. In 

addition, the new source has also affected to Pinder Hydropower Station and a pumped hydro 

system is no longer needed. In comparison with the previous case, the sum of the reservoirs, 

generators and transmission sizes are all reduced. As more potential is added to the system, 

hydro power got particularly cheaper reducing the proportion of solar in meeting the total 
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demand. Next, it should be noted that when all cases are compared, we observe that proportion 

of diesel is about 8% and could not be reduced. This is because of the fact that although basins 

have different potentials with short term variability, they have similar seasonal variability. In 

winter, the stream flow potential and solar radiation decreases and diesel usage becomes 

compulsory to provide 100% reliability. 

Table 4.9 | Chenab, Pinder and Bhagirathi River Systems 
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Finally, another demand point with annual demand around 10000GWh (one half of 

Punjab’s demand) is added to system in order to observe how the balances between reservoirs 

change when the demand increases (Figure 4.14d). These results are presented in Table 4.10 and 

it can be seen that Chenab and Pinder have now pump hydro stations. Therefore transmission 

lines in the system clearly distribute the renewable sources eliminating variability and 

intermittency. 
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Table 4.10 | Another demand point (Punjab) added to the system 
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4.5.3 Case Study III: Multi Demand Points, Multi Basins System II 

In this section, similar to Chapter 3, we provide results for India in national level (for all 

basins and demand points of the India that we could collect the data for). Same data sets 

described in Chapter 3 is used so that effect of using a pumped hydro storage can be explained 

easily. Table 4.11 shows the results for proposed sizes of upper and lower reservoirs and 

generators for each basin. 

Table 4.11 | Reservoir and Generator Sizes for the Hybrid System with Pumped Hydro Storage 

Rivers Annual 

Inflow  

(km3) 

Upper 

Reservoir 

Size (km3) 

Lower 

Reservoir 

Size (km3) 

Generator 

Size (GW) 

Generation 

(%Demand) 

(1km3 ~ 240 GWh) 

Bhagirathi 13.51 1.19 0.51 22.72 15.9% 

Pinder 6.29 0.16 0.02 0.87 1.0% 

Chenab 45.57 0.52 0.05 2.79 4.1% 

Marusudar  12.02 0.16 0.02 0.93 1.1% 

Lohit 19.17 0.07 0.02 0.93 1.4% 
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Dibang 9.17 0.02 0.01 0.27 0.5% 

Barak 57.71 0.35 0.15 5.77 7.4% 

Siang 456.47 0.49 0.30 15.56 29.2% 

   

Table 4.12 | Reservoir and Generator Sizes for the Hybrid System with Conventional Hydro 

Rivers Annual 

Inflow (km3) 

Reservoir 

Size (km3) 

Generator 

Size (GW) 

Generation  

(%Demand) 

(1km3 ~ 240 GWh) 
Bhagirathi 13.51 0.28 1.22 1.0% 

Pinder 6.29 0.16 0.71 0.5% 

Chenab 45.57 0.49 4.27 3.8% 

Marusudar 12.02 0.23 1.19 1.0% 

Lohit 19.17 0.07 1.21 1.5% 

Dibang 9.17 0.02 0.40 0.6% 

Barak 57.71 0.08 4.08 4.6% 

Siang 456.47 0.81 23.07 30.3% 

 

 In order to analyze the comparison easily, we present the counterpart result of Chapter 3 

in Table 4.11-4.12. Most surprising change observed in Bhagirathi. In the pumped hydro system, 

Bhagirathi has highest capacity (22 GW) and provides the 15.9% of the energy compared to 

1.22GW and 1.0% in the conventional system. The reason for this change is as follows: Since the 

solar energy generated in demand points can also be stored with pumped hydro system, 

recirculation of the inflow is possible and this enhances the generation at Bhagirathi quite a lot    

Table 4.13 summarizes the pumped hydro case from the demand points’ side and Table 

4.14 shows the results for conventional system. There is a remarkable change in the diesel usage 

and pumped hydro system evidently helps reduce the intermittency of stream flow and increased 

the percentage of hydro contribution while fulfilling demand.   
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Table 4.13 | Solar Panel Area and Energy Generation Percentages by Type 

Demand Points Demand 

(GWh) 

Solar Panel 

Area 

(km2/~GW) 

 Energy Generation by 

Type        (% Demand) 

Solar Hydro Diesel 

Delhi 30013 81/~1.9 41% 55% 4% 

Punjab 47534 122/~2.9 35% 62% 3% 

Uttaranchal 11357 68/~1.6 35% 60% 5% 

Himachal Pradesh 7744 176/~4.2 53% 43% 4% 

Uttar Pradesh 87916 202/~4.8 31% 65% 4% 

Bihar 13774 33/~0.8 31% 61% 8% 

West Bengal 40777 112/~2.7 36% 59% 5% 

Jharkhand 5663 16/~0.4 34% 59% 8% 

Assam 5162 12/~0.3 25% 67% 8% 

Chhattisgarh 17718 49/~1.2 37% 56% 7% 

 

Table 4.14 | Solar Panel Area and Energy Generation Percentages by Type for the Conventional System 

Demand Points Demand    

(GWh) 

Solar Panel 

Area 

(km2/~GW) 

Energy Generation by 

Type (% Demand) 

Solar Hydro Diesel 

Delhi 30013 49.7/~1.2 34% 36% 31% 

Punjab 47534 75.1/~1.8 30% 46% 24% 

Uttaranchal 12786 17.2/~0.4 25% 59% 16% 

Himachal Pradesh 7744 13.6/~0.3 33% 46% 20% 

Uttar Pradesh 87916 132.4/~3.2 29% 40% 31% 

Bihar 13774 20.2/~0.5 29% 42% 29% 

West Bengal 40777 55.0/~1.3 27% 45% 27% 

Jharkhand 5663 8.7/~0.2 31% 41% 27% 

Assam 5162 7.2/~0.2 25% 49% 26% 

Chhattisgarh 17718 24.8/~0.6 30% 51% 19% 

 

The major transmission lines (≥1GW) between hydropower stations and demand points 

can be seen in Table 4.15 (Table 4.16 for the conventional system). In the pumped hydro system, 

solar energy is also transmitted via bi-directional transmission lines and we observe that 

especially Northern India, this increases the capacity of the lines. For example, Himalach 
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Pradesh which is one of the states with the lowest demand has a twelve times larger solar panel 

area compared to conventional system. This shows that solar energy potential in Himalach 

Pradesh is mostly sent to Bhagirathi to be pumped up and released again to meet demand in the 

other states.  

Table 4.15| Transmission lines for the pumped hydro system 

 
 

Table 4.16 | Transmission lines for the conventional system 

 

In Table 4.17 and 4.18, we present average power transmitted between supply and 

demand points which is calculated over one year horizon. We note that these values are 

underestimated since pumping and generation cannot happen at the same time and we average 

both quantities over 24 hours in a day. Supporting the discussion above for the transmission lines 

for the pumped hydro system (Table 4.15 in comparison with Table 4.16), Table 4.18 also shows 

a significant power flow from Himalach Pradesh and Bhagirathi River to be pumped up.  This 

point can be seen with further clarity: In Table 4.19 we present total solar production within each 
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demand points over planning horizon to see what percentage of the solar energy is being pumped, 

internally used or wasted. We see that 82% of the solar energy generated in Himalach Pradesh is 

being pumped in Bhagirathi power station to be distributed to other demand points.  These 

results can be analyzed together with Table 4.13 where we show the energy supply breakdown to 

meet the total demand (The solar components in Table 4.13 represent the internally used solar 

energy amount). One should keep in mind that here we allow a network only between demand 

and supply points. The transmission network might look different (and more complicated) if 

power flow between demand points is also allowed. 

 Table 4.17 | Average power sent from supply point to demand points (hydropower) 

 
 

 

Table 4.18 | Average power sent from demand point to supply points (solar power) 
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Table 4.19 | Solar energy production and utilization in demand points 

Demand Points Demand 

(GWh) 

Solar 

Panel 

Area 

(km2) 

Solar 

Production 

(GWh) 

 % Distribution of Solar 

Production 

Pumped Internal Spilled 

1km2 ~ 0.024 GW 

Delhi 30013 81 18250 24% 67% 9% 

Punjab 47534 122 26584 34% 63% 3% 

Uttarakhand 12786 68 14869 57% 30% 13% 

HimalachPradesh 7744 176 38349 82% 11% 8% 

UttarPradesh 87916 202 43449 29% 63% 8% 

Bihar 13774 33 7266 26% 59% 16% 

West Bengal 40777 112 23686 32% 61% 7% 

Jharakhan 5663 16 3768 33% 51% 17% 

Assam 5162 12 2505 34% 51% 15% 

Chattisgarh 17718 49 11845 36% 55% 9% 

 

The results for multi basins- multi demand points case, so far are given for a deterministic 

case with comparison to conventional hydro system for the same data. In order to be able to 

consider different scenarios, we identify four scenarios which are observed as years with either 

highest or lowest inflow for multiple basins. The optimal solution for these scenarios are 

calculated and presented in Table 4.20-22.  

Table 4.20 | Reservoir and Generator Sizes for the Hybrid System with Pumped Hydro Storage for 

Multiple Scenarios 

Basin 

Number 

 

Rivers Annual 

Inflow 

(km3) 

Upper 

Reservoir 

Size 

(km3) 

Lower 

Reservoir 

Size 

(km3) 

Generator 

Size (GW) 

(1km3~ 240 GWh) 

1 Bhagirathi 13.51 0.68 0.47 20.16 

2 Pinder 6.29 0.36 0.03 1.15 

3 Chenab 45.57 1.00 0.06 3.29 

4 Marusudar 12.02 0.32 0.02 0.98 
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5 Lohit 19.17 0.11 0.02 1.11 

6 Dibang 9.17 0.02 0.01 0.37 

7 Barak 57.71 0.25 0.13 4.94 

8 Siang 456.47 0.48 0.31 15.97 

 

Table 4.21 | Solar Panel Area in Demand Points for the Hybrid System with Pumped Hydro 

Storage for Multiple Scenarios 

Demand Points 

(1km2~ 0.024 GW) 
Demand (GWh) 

 

Solar Panel 

Area (km2) 

Delhi 30013 75 

Punjab 47534 111 

Uttarakhand 12786 46 

HimachalPradesh 7744 208 

UttarPradesh 87916 196 

Bihar 13774 32 

West Bengal 40777 110 

Jharakhan 5663 15 

Assam 5162 12 

Chattisgarh 17718 47 

 

 

 

Table 4.22 | Transmission Lines between Demand Points and Basins for Hybrid System with 

Pumped Hydro Storage for Multiple Scenarios 

 

The major transmission lines between basins and demand points are also presented in 

Figure 4.15. Blue lines shows the flow which are dominated by hydropower transmission and 

yellow lines represent solar power dominated transmissions. In our model, transmission lines are 
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assumed to be bidirectional and designed as a point-to-point topology. Direct Euclidean 

distances are calculated between source and destination points. Normally, for transmission 

networks, we observe multi-point topology. For example, in Figure 4.15 instead of having a low 

capacity dedicated transmission line between Basin 7 (Barak) and Chhattisgarh, a higher 

capacity transmission line could be first expanded to West Bengal and West Bengal and 

Chhattisgarh could be connected with another lower capacity transmission line. However, 

optimization of different network topologies is not the scope of this paper. Moreover, we should 

note that transmission lines which pass through Himalaya Mountains (e.g. Basin 8 and Delhi) 

may not be possible because of the elevation and other geographic constraints. 

 

 

Figure 4.15 | Major transmission lines between basins and demand points. Blue lines represent 

hydro power dominated transmission lines. Yellow line represents the solar power dominated line 

between Himalach Pradesh and Bhagirathi River. 
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Finally, one should keep in mind that in this study we did not include lower and upper 

bounds for reservoir sizes or generator capacities. Other environmental and geographic 

constraints which are specific to basins are not also in the scope of this thesis. These results are 

only based on the stream flow potentials of the proposed basins. 

4.6 Discussion 

4.6.1 Sensitivity Analysis 

Sensitivity analysis of the objective function can provide meaningful insight about the 

ways in which the optimal solution of the problem changes in response to small changes in the 

cost parameters. In Table 4.23, each investment variable, its reduced cost and the range over 

which its objective function coefficient can vary without forcing a change in the optimal basis is 

displayed. We see that we have very small ranges for each variable in which our current optimal 

solution remains the same. 

Table 4.23| Sensitivity Analysis of Cost Parameters 

  

   Unit Cost Down Up Sensitivity Ranges 

Upper Reservoir 1$/m3 -0.62% 9.73% 0.994-1.097 

Lower Reservoir 1$/m3 -1.71% 1.29% 0.983-1.029 

Pump/Generator 500$/kW -0.05% 0.32% 499.75-501.62 

Solar Panel 150$/m2 -0.46% 0.03% 149.30-150.04 

Transmission Line6 254 $/kW -0.16% 0.23% 252.59-253.59 

    

Then, we perfomed another analysis to see the sensitivity of diesel usage and amount of 

pumped energy as the reservoir sizes change. The results of this analysis is presented in Figure 

4.16. In Figure 4.16a we run our model fixing the lower reservoir size at different levels. Until 

                                                 
6 Unit cost of transmission depends on the distance between points. This unit cost is calculated based on the distance 

between Delhi and Bhagirathi 
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the optimal size of lower reservoir, amount of pumped energy increases rapidly while diesel 

usage decreases. After optimal value we see that there is no gain from increasing the reservoir 

size. 

 

Figure 4.16 | Change in the pumped energy and diesel usage as reservoir sizes are fixed at different 

values. a, Lower Reservoir. b, Upper Reservoir. 

 

 In Figure 4.17, we show the marginal effect of increasing upper reservoir size. In Figure 

4.16a, the change in the hydropower production with increasing reservoir size is presented. 

When upper reservoir size is zero, the hydro system works as run-of-the-river systems and more 

than 20% of the demand is met by hydro. Including a pumped storage system increases hydro’s 

proportion to 47%. However, the marginal effect of increasing the upper reservoir size decreases. 

Here, it is possible to conclude that utilization of the reservoir decreases as the reservoir size 

increases. Another way to show the marginal effect of increasing reservoir size is presented in 

Figure 4.17b where we analyze the unit cost as the upper reservoir size increases. We see that 

when reservoir  is smaller, the effect of increasing reservoir size has a bigger effect on the unit 

cost. Since the demand is constant, the unit cost represents the total cost and it naturally starts 

increasing after optimal size of upper reservoir. Figure 4.17c presents the results of dual analysis 

for upper reservoir size. For this analysis, an upper bound constraint is added to the model so that 
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dual variables at different reservoir sizes can be calculated. Figure shows the marginal effect of 

increasing upper reservoir size on the objective function. The smaller the upper bound in the 

model is, the bigger is the improvement in the objective function when reservoir size is increased 

by one unit. 

 

Figure 4.17 | Change in the hydropower production and unit cost of the system as upper reservoir sizes 

are fixed at different values. a, Hydropower production is normalized by demand. Figure shows that 

marginal value of increasing reservoir size decreases as the reservoir size is increased. b, Unit cost of the 

system is minimized when the upper reservoir is at optimal value. c, The dual price gives the 

improvement in the objective function if the constraint is relaxed by one unit. The smaller the upper 

bound in the model is, the bigger is the improvement in the objective function when reservoir size is 

increased by one unit. 

 

4.6.2 Analysis on Time Resolution of the Model 

The time resolution (increment) used in the model becomes quite important while 

working with variable and intermittent sources such as solar and wind. As seen in Figure 4.7, 
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solar radiation has fluctuations on both short and long time scales. An approach that avoids 

capturing the variability of solar in short time scales could easily fail to accurately estimate the 

system sizes for new infrastructure. Moreover, as can be seen in Figure 3.1, we also observe 

diurnal variation in Himalayan stream flows occurring due to snow melts correlated with the sun 

light in the summer months. This also emphasizes the fact that systems including renewable 

sources may need to be modeled using short time increments as low as hours or minutes. 

Furthermore, given that solar energy can be stored in the pumped hydro system in our 

model, and there is significant solar radiation variability in hourly level, using hourly time 

increments in addressing the problem becomes even more important. For our base case studies, 

our model is run with 3 hourly time increments. Clearly, the shorter the time increment is, the 

more accurate the results can be expected. However, increasing the resolution of the model will 

also increase the solution time significantly. Therefore, one needs to find the most suitable time 

increment that captures almost all the variability without making the analysis unnecessarily 

complicated. Here, we show that the critical time resolution due to the nature of our data is 3-

hour increments.   

To understand the effect of resolution for solar, output is first examined in terms of the 

frequency spectrum of solar radiation. As discussed in [32], spectral density of the output of 

solar systems provides insights for the diurnal, daily and seasonal cycles as well as the weather 

related, non-cyclic fluctuations. The method we followed to estimate the power spectrum has 

been described in [33]. Since the solar radiation data provided by NREL has hourly time 

intervals, to be able to increase the resolution even further, we used one-month real solar power 

output of a power station located in Gujarat (The output of the station in March 2012 is provided 

in Figure 4.18). The data is first rescaled to Delhi (for our case study) by latitude and linear 
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interpolation method is used to expand the data for one year. Here, we applied Fourier transform 

to our input solar radiation data and plotted an estimate for the spectral density in logarithmic 

scale. The result for the data with 15-min resolution is provided in Figure 4.19.  

The frequency spectrum shows that the highest peak is observed at a frequency of 

1.157x10-5 Hz (24 hours) as expected because of the cyclic daily availability of solar. The 

resolution of the available data (15-min resolution) limits the observations in spectrum to 

1.11x10-3 Hz. The most critical outcome obtained from the spectrum is that for time increments 

less than 3 hours, there is no significant peak observed in the data. Therefore, one can conclude 

that for our problem, using a time increment longer than 3 hours would fail to capture the 

variability of solar, whereas time increments less than 3 hours might not provide further 

improvements on the results. 

 

Figure 4.18 | Real energy output data from a solar power station in Gujarat over one month 

(March 2012) with 15-min sampling frequency. 
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Figure 4.19 | An estimate for the spectrum of solar radiation data sampled at 15 min resolution. 

Highest peak is observed at 24hours and beyond 3hours, there is no significant peak is observed. 

 

Next, we want to verify the conclusion above and analyze the effect of increased 

resolution. Decreasing the time increment of the model increases the number of constraints and 

reduces the solution space of the problem. Therefore, it is expected to observe higher cost for our 

minimization problem with smaller time increments. We present the results with 1-hour and 15-

min time increments in comparison with 3-hour increments for Bhagirathi River and Delhi case 

study in Table 4.24. Here, we regenerated 1-hour and 3-hour resolution data using the 15-min 

resolution data to be able to have the sum of the radiation for one year equal for all data sets. The 

results for our analysis with different resolutions show that unit cost of the system indeed 

increases as time increment decreases; however, as the difference between the results of 3-hour 

resolution and 15-min resolution is not significant (2%), we can confidently assume that 3-hour 

resolution is sufficient to include the vast majority of the variations exist in the data.  
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Table 4.24| Sensitivity Analysis with Different Resolutions 

 

 

4.6.3 Analysis on Multiple Years Stream Flow Data 

To be able to see the effect of different stream flows on infrastructure sizes in more detail, 

we have also completed an analysis with the complete time series of 53 years. We first run our 

model presented in Section 4.4.1 for every year individually.  In Table 4.25, we observe that 

upper and lower reservoir sizes are more dependent on the inter-annual variability of the stream 

flow as expected and highest variability is observed in upper reservoir size as discussed in 

scenario analysis in Section 4.4.3.  

 
Table 4.25 | Variability of Infrastructure Sizes for Different Years  

 

Mean STDEV CV 

Upper Reservoir (km3) 0.31 0.17 0.53 
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Lower Reservoir (km3) 0.05 0.01 0.16 

Generator/Pump (GW) 1.70 0.11 0.06 

Solar Panel Area (km2) 31.23 1.74 0.06 

Transmission Line (GW) 1.70 0.11 0.06 

 

Here, we use Bivariate Kernel Density Estimator to fit a joint probability distribution to 

lower and upper reservoir sizes and derive the bivariate density function shown in Figure 4.20. 

Joint density function appears to be bimodal and wide suggesting that the deterministic optimal 

solution calculated over the set of different years is not tight and wide range of options can give 

similar unit costs.  First, we calculate the probability matrix given in Table 4.26 for different 

ranges of upper and lower reservoirs. We observe that according to deterministic results, for 

most of the years lower reservoir ranges between 0.040 km3 and 0.055 km3 and upper ranges 

between 0.1 km3 and 0.4 km3. For given ranges, we also present the average unit cost and 

percentage of demand met by the alternative fossil fuels (diesel) available for 53 years in Tables 

4.27 and 4.28 respectively. As expected unit cost does not show significant variation for different 

ranges but diesel usage does. We observe that diesel distribution changes between 4% and 9%. 

The values around 4% is observed for larger upper reservoir size and the values around 9% is 

observed for smaller lower reservoir sizes. 

Furthermore, we also estimate the expected unit cost of the system based on the 

probabilities of each year calculated using the density estimator. The expected unit cost of the 

system is calculated to be 0.069 $/kWh.  
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Figure 4.20 | Bivariate Kernel Density Estimate of Reservoir Sizes. Kernel density estimator 

based on [34] in MATLAB (kde2.m) is used with default parameters to estimate the densities. Red dots 

represent the observations for each year. 

 

 

 

Table 4.26 | Probabilities for different ranges of upper and lower reservoir sizes

 

0.095-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.8406

0.0335-0.035 0.004 0.004 0.004 0.003 0.002 0.001 0.000 0.000

0.035-0.04 0.032 0.029 0.024 0.019 0.012 0.007 0.004 0.001

0.04-0.045 0.065 0.061 0.050 0.037 0.024 0.014 0.010 0.004

0.045-0.05 0.068 0.066 0.055 0.038 0.022 0.013 0.012 0.005

0.05-0.055 0.050 0.040 0.027 0.015 0.007 0.004 0.006 0.003

0.055-0.06 0.027 0.018 0.008 0.003 0.001 0.000 0.001 0.000

0.06-0.065 0.019 0.016 0.011 0.005 0.001 0.000 0.000 0.000

0.065-0.0681 0.011 0.014 0.013 0.007 0.002 0.000 0.000 0.000

Upper Reservoir (km3)
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Table 4.27 | Average unit cost for different ranges of upper and lower reservoir sizes

 

Table 4.28 | Percentage of demand met by diesel for different ranges of upper and lower reservoir sizes

 

For the stream flow of a particular year (our base case, 1970), we also add a ‘reliability’ 

constraint to the model. In our model, the mismatched demand is penalized by an alternative 

fossil fuel cost (eg. diesel) and the goal is to meet the demand by renewable sources. Although 

system provides 100% reliabililty meeting the demand either by hyro,solar or diesel, we include 

a reliabiliy constraint into the model by limiting the percentage of demand met by diesel source. 

Figure 4.21 presents these results. At optimal solution, the diesel fraction to meet the demand is 
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8%. When diesel fraction is limited by a constraint, system increases the size of the upper 

reservoir. If the reliability constraint is above 4%, system increases the size of solar panels, upper 

and lower reservoirs; however between 0% and 4% system only increases the upper reservoir 

size. This can also be understood from the dual price as the dual price can be calculated from the 

change in upper reservoir when the reliability constraint is between 0 and 4%. As discussed in 

Chapter 3, the unit cost of reservoir capacity (i.e. constant incremental cost of additional 

capacity) that we used for our analysis is $1/m3. If an additional 1 m3 of a reservoir is used only 

once (in one time period only)  during our planning horizon (1 year), we could generate 0.24 

kWh of electricity (with 100 m head and 88% efficiency) with that 1m3 water. In addition, 

annualized cost of an additional 1m3 reservoir is $0.07 (with 25 year life time and 5% discount 

rate). Therefore, marginal cost of hydro can be roughly calculated as $0.29/kWh. We use unit 

cost for diesel as $0.15/kWh. For example, at 2% increasing the diesel usage by 1GWh will 

cause an increase in the objective function by $150000; however the gain from decreasing the 

upper reservoir size will be around $290000. Therefore, between 0% and 4% , the dual price is 

about $140000/ GWh and as the constraint approaches to optimal solution, the dual price goes to 

zero. 
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Figure 4.21 | Analysis on percentage of demand met by diesel source for a particular year. a, At 

optimal solution 8% of the demand is met by diesel. When diesel percentage is limited by a constraint, 

system increases the size of the upper reservoir. Up to 4%, system increases the size of solar panels, upper 

and lower reservoirs; however after 4% system only increases the upper reservoir size. b, Duel price of 

the constraint also presents that increasing diesel by 1 GWh reduces the objective function by $140000 

between 0% and 4%. The effect of relaxing the constraint decreases around optimal solution (8%). 

 

4.7 Conclusion 
 

We have introduced a model to determine optimal sizing of infrastructure needed to 

match demand and supply in a most reliable and cost effective way. We have combined for the 

first time three important concepts which help reduce the intermittency of renewable sources: 

hybrid systems, energy storage (pumped hydro) and long distance transmission in regional or 

national level. This model is obtained by enhancing the model in Chapter 3 by introducing the 

pump hydro ability with a secondary lower reservoir. We show that pumped hydro systems 

increases the cost efficiency and utilization of renewable sources increasing the flexibility to 

match supply and demand. We also show examples of how transmission lines provide more 

geographic aggregation which smoothes the variability of intermittent sources over large 

distances. This helps design more efficient hybrid systems reducing the storage costs and 

generate more dispatchable (controllable) power.  
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Main Conclusions and Future Work 
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5.1 Main Conclusions 
 

Main results from this thesis through its methodologies and algorithms are tools for 

energy generation, transmission and distribution system design and help policy makers to make 

cost assessments in energy infrastructure planning rapidly and accurately. In the first part, we 

focus on power distribution systems planning for rural electrification using techniques from 

combinatorial optimization and developed new methods to estimate the cost of local-level 

distribution systems. In the second part, we focus on power generation and transmission using 

clean energy sources and demonstrate how we can get more reliable systems by combining 

various renewables and build a system where we can save one source of energy (solar power) in 

the form of other (hydro) using an infrastructure optimization (lower reservoir for a pumped 

hydro).  

We note that, all of the results presented in this thesis are based on actual data and 

realistic assumptions. For optimizing distribution systems, we have analyzed some villages in 

Sub-Saharan Africa as there is either no network coverage or a partial coverage in these villages, 

a perfect setting for testing our algorithm. We have worked on Northern India for the advanced 

hybrid systems with clean energy sources, where there is rich solar energy in addition to high 

hydro power potential in Himalaya Mountains, to see if renewables could be utilized to meet 

growing electricity demand without fossil fuels in electricity generation. 

5.1.1 Power Distribution Systems Design for Rural Electrification 

The investment costs of off-grid approaches are easier to estimate, but the investment costs 

of networked approaches are more difficult to estimate, taking into account both the spatial 

distribution of demand and the optimal placement of infrastructure to meet that demand. We 



 

176 

 

have used digitized QuickBird satellite imagery with remote sensing techniques to identify 

household-level demand points in the Sub-Saharan African villages. Figure 5.1 shows the 

household distribution and the existing grid for Mbola, Tanzania as an example. 

 

Figure 5.1 | Match between proposed network and existing grid. Proposed transformers, low voltage 

(LV) and medium voltage (MV) networks compared to partial existing grid. Algorithm outputs 90 

transformers for 1175 demand points.  

 

We present a heuristic algorithm for multi-level distribution system layouts while minimizing 

overall cost of infrastructure costs; specifically the combined costs of transformers and the two-

tiered network together. To our knowledge, this algorithm is the first heuristic algorithm that 

selects the locations and service areas of transformers without requiring candidate solutions and 

simultaneously builds two-level grid network in a green-field setting. It allows one to specify 

different costs for the higher throughput lines upstream of the transformer as compared to 

downstream of the transformer. This point is particularly important as that is the case in the real 

world implementations and through our analysis we have showed that the ratio between the unit 

cost for low voltage (LV) lines and medium voltage(MV) lines could be quite critical in 
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designing the overall network and give policy planners a good starting point for more detailed 

smart grid projects. Figure 5.2 summarizes the network sensitivity results. 

 

Figure 5.2 | Network Sensitivity Analysis. a, The sudden change in the number of transformers as the 

ratio between CMV (unit cost for medium voltage line) and CLV (unit cost for low voltage line) cost 

parameters increases. b, Change in total MV and LV lengths from the 1000 transformer case. c, The 

change in the number of transformers for different q ratios as p ratio increases.(See Section 5.1.2 for q). d, 

The difference between the curves in b with MV weighted with different p ratios. 

5.1.2 Power Generation and Transmission Using Clean Energy 

Sources 

In Chapter 3 and 4, we focus on power generation and transmission using clean energy 

sources. To reduce the role of fossil fuels and ease the concerns on the electricity generation, 

energy models which involve clean and renewable energy sources are necessitated. However, 

renewable sources are generally are intermittent and heavily dependent on the spatial location. 

One of the ways to mitigate the intermittency of renewable sources is to design hybrid systems 

which operate as a combination of alternative resources. We discuss the problem of modeling 

hydro and solar energy production and allocation, including long-term investments and storage, 
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capturing the stochastic nature of hourly supply and demand data.  

We imagine a country in the future where hydro and solar are the dominant sources and 

fossil fuels are only available in minimal form, in the shape of diesel generators as an example. 

In this country, we first identify candidate basins for hydro power stations and aggregated 

demand point locations (the cities or the states of the country). Within demand points solar 

energy production is possible. Then, we determine the possible transmission network between 

supply and demand points. Northern India with widespread solar power potential and high 

hydro power potential in Himalaya Mountains seems to be a very good candidate for the 

imagined country in the future. Figure 5.3 shows the identified basins and demand points. 

 

Figure 5.3 | Basins and demand points determined in India for analysis. Data is collected from CEA 

(Central Electricity Authority, Power Ministry of India) and other official websites to accurately estimate 

the 3-hourly demand load profile of each state for one year. If there is missing data for some days or 

hours within a day, interpolation/extrapolation methods are performed for projection. 

An innovative contribution of the work in chapter 3 and chapter 4 is the establishment of 

a new perspective to energy modeling by including fine-grained sources of uncertainty such as 
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stream flow, solar radiations and demand in hourly level as well as spatial location of supply and 

demand in national level.  

In Chapter 3, a scenario based linear programming approach is described for modeling 

the hybrid solar and hydropower system with conventional hydro storage. In this system, 

incoming stream flows are stored in large reservoirs in dams and water release is deferred until it 

is needed. Figure 5.4 clearly shows that as the use of the renewable increase and gets more 

advanced, unit cost of the system decreases and the most cost efficient alternative is the one that 

we have used in our model for Chapter 3. 

 

Figure 5.4 | Comparison of alternative technologies. Solely diesel is the most expensive. As the use and 

the variety of clean energy increase, the unit cost goes down substantially. It is more cost efficient to 

design solar panel area based on high demand and spill some of the solar energy in low demand periods. 

 

Furthermore in chapter 4, to the same problem in chapter 3, we apply pumped hydro 

power stations in which water is pumped from lower reservoir to upper reservoir during periods 
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of low demand to be released for generation when demand is high. We show that introduction of 

the pumped hydro storage increases the utilization of both hydro and solar sources and decreases 

the unit cost of the system significantly. The losses of the pumping process makes the pumped 

hydro stations a net consumer of energy overall (6% in Figure 5.5 is lost due to losses). However, 

as the solar energy can be also stored in the pumped systems, it provides more flexibility to the 

systems utilizing more clean energy and helps reducing the variability of sources and decreases 

the unit cost of the system (25% in the case study in Figure 5.5).  Especially in the case study for 

which we provided this figure, addition of a small lower reservoir to the system (0.04 km3) 

causes to have a smaller “big” (upper) reservoir compared to conventional hydro system (0.15 

km3 compared to 0.29 km3).   

 

Figure 5.5 | Alternative Technologies - Compared to other hybrid systems, the system with pumped 

hydro storage is the most cost efficient design with much lower unit cost. Having two-level reservoir with 

a pump system reduces the intermittency effect of renewable sources and the system can utilize more 
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clean energy. In particular, total hydro production increases with even smaller reservoir size compared to 

conventional system.  

The role of solar energy in pumped system is twofold: internal solar and pumped solar. 

Therefore, it is expected that the solar panel area in the hybrid system with pumped storage is 

larger compared to a system with conventional storage. Here, what is interesting is that internally 

used solar energy in the demand points is also higher in the systems with pumped storage.  

Figure 5.6 compares conventional and pumped hydro systems in terms of the solar energy 

produced in one day. It can be seen that total production is scaled up by increased the solar panel 

area as the solar radiation curve is same. Solar energy used internally for the 4th and 5th time 

periods are the same as extra solar energy is spent for pumping, however shaded area in 3rd and 

6th time periods in Figure 5.6 b represents the parts which explain the increase in the amount of 

solar energy internally used in demand points. 

 

 

Figure 5.6 | Comparisons of solar production profile of one day in November for conventional. a, and 

pumped hydro systems. b, - Total production is scaled up by increased the solar panel area as the solar 

radiation curve is same. The role of solar energy in pumped system is twofold: internal solar and pumped 

solar. Solar energy used internally for the 4th and 5th time periods are the same between two systems as 

extra solar energy is spent for pumping, however shaded area in 3rd and 6th time periods in b represents 

extra solar internal. 

 

 Moreover, as individual systems are connected with each other through 

transmission lines and work as a single system, the variability and intermittency of renewable 
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sources is expected to be smoothed out. To demonstrate effect of geographic aggregation, we 

sequentially add more basins and demand points to the system that we discussed in previous 

sections. We observe that unit cost of combined system is reduced when sources are used 

together. Total generator size used in the system with two basins is lower than the one with one 

basin. This indicates that combining two sources with different variability increases the 

flexibility of obtaining cheaper systems.  

 

 

Figure 5.7 | Pinder basin is added to the system to show that geographic aggregation of alternative 

sources can reduce the variability of renewable sources. 
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Table 5.1 | Results for Bhagirathi and Pinder Rivers combined system to meet Delhi’s demand 

 

5.2 Future Work 
 

  There are many interesting optimization problems in the sustainable development field, 

especially the ones with a focus on rural electrification are particularly important. In chapter 2, 

we discuss about optimization of single and multi-level power distribution systems. Our 

discussion includes the initial decision of extending the network into an unserved area given the 

limited funding for a single level grid network. If it is only possible to connect some portion of 

the households to the electricity, how to choose that portion is a very critical and interesting 

question in terms multi-level networks as well and there is a need for analyzing this problem in 

the literature. To this end, we want to extent our algorithms on partial electrification problems to 

Investment Size Pinder Bhagirathi

Upper Reservoir Size(km^3) 0.032 0.093

Lower Reservoir Size(km^3) 0.004 0.028

Pump/Generator Size(GW) 0.216 1.139

Transmission Line to Delhi (GW) 0.216 1.139

Solar Panel Size(km^2) 

(1 km2 ~24MW)

Production GWh % Demand GWh % Demand

Solar 3291.95 43.87 3224.17 45.35

Hydro 3621.35 48.26 3695.38 46.87

Diesel 590.03 7.86 583.76 7.78

Total 7503.30 100.00 7503.30 100.00

Unit Cost

Unit Cost of Hydro ($/kWh)

Unit Cost of Solar ($/kWh)

Unit Cost of Diesel ($/kWh)

Unit Cost of the System ($/kWh)

Solar

Efficiency

Max Production in a Year (GWh/3h)

Possible Solar Production (GWh/yr)

Actual Solar Production (GWh/yr)

Capacity Factor

Hydro Production I (Devsari) Pump Turbine

Actual Hydro Production (GWh/yr) 119.41 682.49
Possible Production (GWh/yr) 1893.74 1893.74
Capacity Factor 0.06 0.36

Hydro Production II (Tehri) Pump Turbine Pump Turbine

Actual Hydro Production (GWh/yr) 1340.96 2938.86 1877.68 3516.99

Possible Production (GWh/yr) 9979.73 9979.73 13133.87 13133.87

Capacity Factor 0.13 0.29 0.14 0.27

0.148

0.039

Pinder + Bhagirathi Bhagirathi

0.885 0.880

8.45 9.53

1.499

24.98

1.500

28.18

0.150 0.150

0.059 0.064

0.016 0.019

0.054

0.23 0.23

24672 27839

5597 6316

0.054
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multi-levelnetworks. 

           Furthermore, renewable energy based decentralized systems are getting extremely 

favorable as they constitute an alternative to power generation in centralized power plants with 

fossil fuels due to the fact that they are expected to play a significant role in emission reduction 

and climate change mitigation. A decentralized power system can function either in the presence 

of a grid or as a stand-alone isolated system to meet the local demand. In literature, there a lot of 

studies about isolated cases and applications of decentralized systems [5]. However, we believe, 

more generalized studies are needed for assessing the feasibility of grid-connected and 

standalone decentralized energy systems. 

 

            We can also expand our contribution to the Smart Grid literature. Substantial research 

efforts continue to focus on Smart Grid technologies and many of the power system components 

in these emerging technologies such as energy storage devices and hybrid generation systems 

which include renewable resources are discussed in this thesis. However, there are still 

interesting concepts such as demand response programs which help integration of renewables 

into the grid and lead to more energy-efficient, environmentally-friendly, sustainable and more 

reliable electricity supply chains. Effective integration of these components poses important 

challenges and also good opportunities in planning of future power systems operations. Main 

point here is that demand response includes all electricity consumption pattern modifications by 

customers that are intended to change the timing and level of instantaneous demand and this is 

expected to make the grid more cost efficient. However, systems where consumers can directly 

participate in demand management require new efforts for forecasting the electric loads of 

individual consumers. 
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Our work on incorporating renewable sources into the grid can be expanded to analyze 

the frequency spectrum of intermittent sources in more detail. Frequency spectrum of the 

fluctuating data can help understand the coherence between the demand, solar production and the 

stream flow. For example, in our dataset we observe yearly, seasonal cycles (Figure 5.8a) and, 

for some sites, diurnal cycles (Figure 5.8b) in the stream flow data. Diurnal cycle in Bhagirathi 

River, for example, is observed for a short period of time especially in March and this cycle is 

supposed to be correlated with sun light and solar production (we also discussed about the 

spectrum of solar in Chapter 4). Frequency spectrum of 3-hourly demand data for one year in 

Figure 5.8c also shows the cycles observed in the data. Further analysis can be done with the 

individual power stations to understand how the combining alternative sources which have same 

or different cyclic behaviors can affect the use of back up source (diesel in our model). This 

analysis can give us idea about the alternative back up sources and their ramp rate characteristics 

to fill-in when there is not enough renewable power. Moreover, we can have more information 

about the demand response programs used to handle intermittency of renewables. Last but not 

least, understanding spectral distribution of resources and demand can also arise the possibility 

of additional decomposition methodologies across different time scale. 
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Figure 5.8 | Spectral distribution of stream flow and demand for Bhagirathi River and Delhi case study. a,  

The spectrum for 51 years of 3-hour resolution stream flow data shows the yearly fluctuations. b,  The 

diurnal fluctuations observed in March is showed on the spectrum for 1 month data with 3-hour resolution. 

c, Spectral distribution of demand is presented for 1 year data of 3-hour resolution and therefore seasonal 

fluctuations can not be observed in the figure.  

 

     Another valuable extension to Chapter 4 would be to examine the variability of different 

intermittent sources and their effect on the pumped hydro system. The intermittent renewables 

have certain time scales that they vary. The energy spectrum of wind suggests that the diurnal 

variability of wind is not as strong as solar; however, as opposed to solar, wind also shows 

significant variation for the periods longer than one day (Figure 5.9).  To answer the question of 

how the results would differ if we used another intermittent renewable source along with pumped 
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hydro, we have also completed an preliminary analysis with wind data. A representative wind 

speed data with hourly time intervals is collected from NREL’s website. We assume that we 

have 3MW turbines that we can place one in every 40D2 of area where D is the diameter of the 

wind turbine. To calculate the wind output, the characteristics given in a technical report for a 3 

MW turbine is used [1]. The diameter is assumed to be 80 meters. To be able to use the current 

models for wind without making any significant changes, the wind input is also provided for unit 

area. Then, the model estimated the potential of wind generation by optimizing the area (which 

can also be converted to number of turbines needed using our 40D2 coverage assumption). In 

order to have a meaningful comparison between wind and solar, the cost of turbines is selected in 

a way that average cost of wind and solar per unit area would be same (provided that the average 

amount of the input data both for wind and solar could be generated throughout the year). 

 
Figure 5.9 | Spectral distribution of intermittent sources. a, The spectrum of solar data used in base case 

studies (Delhi) with 1-hour resolution. b, The spectrum of wind data used as an example and collected 

from NREL website.  
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Figure 5.10 summarizes the initial results. Figure 5.10a shows that the wind energy 

generation is lower than the solar energy generation; however, the proportion of wind energy 

which is directly being used in demand points is higher than solar energy. This is possibly 

because the wind component with less diurnal variability and possibly being available during the 

night can be more suitable to be used directly. Moreover, the Figure 5.10 b shows the difference 

in hydropower generation with pumped water and the incoming stream flow when pumped hydro 

system is combined with an intermittent source (solar or wind). In both systems, the same 

amount of stream flow enters to the system but hydro power generation for the system combined 

with solar is higher than the one combined with wind. This work can be expanded to better 

understand the main driver which sizes the pumped hydro system and changes the proportions of 

sources to meet the demand. 

 
 
Figure 5.10 | Energy generation distribution comparisons for solar and wind. a, Proportion of wasted, 

internally used and pumped energy as a percentage of demand. b,  Proportion of hydro energy generated 

by natural stream flow or pumped water. 

 

 Moreover, in chapter 3 and 4, we discuss about designing hydropower stations with large 

dams in order to be able to store energy in the reservoirs in the form of potential energy. 

Although, large hydro stations are sometimes considered environmentally unacceptable (building 

of major dams may involve displacement of land and populations and some geographical 
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problems), commercial interest in conventional and pumped hydro systems has been increasing. 

The problems we discuss here consider the feasibility of resources in terms of their potentials 

and examine whether they are enough if fossil fuels can be eliminated from the electricity 

generation without looking into other environmental, social and political constraints related to 

them. In addition to the concerns related to building large dams such as including disrupting 

local ecology, and displacement of nearby people and animals, there might be other political 

constraints such as water sharing agreements between countries. Our work can be expanded to 

include more political and geographic aspects, social and environmental considerations. 

[1] ENERCON Wind energy converters. Product overview. Version: July 2010. 
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APPENDIX A 
 

Transmission Line Cost 
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Here, we will provide more details about the investment cost analysis for transmission 

lines used in Chapter 3 and Chapter 4. In our implementation, we consider the transmission cost 

is dependent on the distance and the capacity of the lines and we do not include the losses in our 

analysis.  

We first calculate how the unit cost of unit power transmission varies based on the 

distance: We initially determine what type of transmission lines can be used to transmit a certain 

amount of power by a certain length of distance using surge impedance loading factor. Then, the 

investment costs of alternative transmission lines are calculated. For example, in order to 

transmit 300 MW by 250 miles, one can choose to use 500 kV DC Bipole, 500kV DC Bipole, 

230 kV AC Double, 345 kV AC Single Circuit or 500 kV AC Single Circuit transmission lines 

where investment costs are estimated to be $442 million, $275.8 million, $308 million and 

$537.5 million respectively. We then repeat this procedure and calculate the cost for 1MW 

power transmission by 1 km for multiple scenarios including various distances and for various 

power levels. Table A1, A2, and A3 presents these results. 
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Table A4 : Transmission line type and associated investment costs for 100 miles 

100 Miles 

 

Circuit 

Transmission 

Line Cost ( $M ) 

1MW 

11 kV AC Single 0.708 

33 KV AC Single 2.71 

2MW 

66 kV AC Single 6.14 

115 KV AC Single 30.23 

100MW 

161 kV AC Single 55.3 

230 KV AC Single 65.3 

200MW 

161 kV AC Double 78.6 

230 KV AC Single 79.2 

300MW 

345 KV AC Single 163 

230 KV AC Double 125.8 

500MW 

500 KV DC Bipole 250 

230 KV AC Double 243 

345 KV AC Single 185 

500 KV AC Single 295 

1000MW 

500 KV DC Bipole 300 

600 KV DC Bipole 335 

345 KV AC Double 280 

500 KV AC Single 380 

1500MW 

500 KV DC Bipole 370 

600 KV DC Bipole 412.5 

345 KV AC Double 335 

500 KV AC Single 475 

2000MW 

500 KV DC Bipole 440 

600 KV DC Bipole 490 

765 KV AC Single 681 
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Table A5: Transmission line type and associated investment costs for 500 miles 

500 miles 

 

Circuit 

Transmission 

Line Cost ( $M ) 

1MW 

66 kV AC Single 20.0 

33 KV AC Single 3.5 

10MW 

66 kV AC Single 20.1 

138 KV AC Single 115.2 

115 KV AC Single 85.1 

100MW 

161 KV AC Single 199.3 

234 KV AC Single 312.3 

500 KV DC Bipole 803.3 

200MW 

500 KV DC Bipole 828.0 

345 KV AC Single 347.0 

500 KV AC Single 711.0 

300MW 

500 KV DC Bipole 842.0 

345 KV AC Double 358.0 

500MW 

500 KV DC Bipole 870.0 

345 KV AC Double 555.0 

500 KV AC Single 765.0 

1000MW 

500 KV DC Bipole 940.0 

500 KV AC Double 985.0 

765 KV AC Single 1030.0 

1500MW 

500 KV DC Bipole 1010.0 

600 KV DC Bipole 1132.5 

765 KV AC Double 1140.0 

2000MW 

500 KV DC Bipole 1080.0 

600 KV DC Bipole 1210.0 

765 KV AC Double 1245.0 

800 KV DC Bipole 1315.0 
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Table A6: Transmission line type and associated investment costs for 750 miles 

750 miles 

 

Circuit 

Transmission 

Line Cost ( $M ) 

1MW 

66 kV AC Single 24.764 

115 KV AC Single 127.523 

10MW 

66 kV AC Single 24.89 

138 KV AC Single 172.73 

115 KV AC Single 37.83 

100MW 

345 KV AC Single 498.5 

230 KV AC Double 286.1 

200MW 

500 KV DC Bipole 1228 

345 KV AC Single 509.5 

500 KV AC Single 1048.5 

300MW 

500 KV DC Bipole 1242 

345 KV AC Double 783 

500 KV AC Single 1066.5 

500MW 

500 KV DC Bipole 1270 

500 KV AC Single 1102.5 

765 KV AC Single 1342.5 

1000MW 

500 KV DC Bipole 1340 

600 KV DC Bipole 1505 

765 KV AC Double 1447.5 

1500MW 

500 KV DC Bipole 1410 

600 KV DC Bipole 1582.5 

765 KV AC Double 2790 

2000MW 

500 KV DC Bipole 1480 

600 KV DC Bipole 1660 

800 KV DC Bipole 1802.5 

 

 

After we have the unit cost values for all the scenarios, we then fit a linear curve to 

estimate the incremental cost per unit power per distance. The fitted curves are shown in Figure 

A1.  
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Figure A1| Curves fitted linearly to estimate the incremental cost per unit power per distance. We have 

calculated the cost for 1MW power transmission by 1 km for multiple scenarios including various 

distances and for various power levels (Table A1, A2 and A3). 

 

In our analysis, we have determined a linear relationship between the amount of power 

and the cost. The slope of this relationship decreases with the distance transmitted. As a result, 

we have computed three cost parameters for three distance ranges (0-500 km, 500-1000 km and 

>1000 km) as $1.1 million, $0.8 million and $0.6 million per megawatt per kilometer, 

respectively. These findings are summarized in Table A4. 

 

Table A7: Final transmission cost multipliers 

Distance (km) Cost multiplier per GW per mile ($M) Cost multiplier per GW per km ($M) 

<=500 1.79 1.1 

500-1000 1.33 0.8 

>=1000 0.96 0.6 
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Next, in our model, we calculate the spherical distance between two points and multiply 

it with the corresponding cost multiplier from above to estimate the unit investment cost of the 

transmission line between the two points per unit power [1]. Then, we use this unit cost in the 

objective function of our optimization model to minimize the total investment cost. The data 

used in the model is compiled by Selcuk Korel, MS’2010, Columbia University, using the 

sources [2-4].  
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Demand Data 
 

  



 

198 

 

Here, we will show the demand data that we have used for the states discussed in Chapter 

3 and Chapter 4. As it is mentioned in Chapter 3.3.2.2, total monthly power availabilities and 

requirements for each state for the year 2012 are provided on Central Electricity Authority, 

Power Ministry of India (CEA) website.  

On the website of Load Dispatch Center of Delhi, daily load profiles for the days where 

peak demand occurred in each month are provided.   

Table B1 shows the results for Delhi. 

 

 

Chhattisgarh, Assam, Punjab, Himalach Pradesh and Uttarakhand also publish on their 

website daily, weekly or monthly reports for daily load profiles for a number of days or for the 

times when the minimum and maximum demands are observed. We have used the collected data 

to accurately estimate the 3-hourly demand load profile of each state for one year. If there is 

missing data for some days or hours within a day, interpolation/extrapolation methods are 

performed to project the data. When there is only limited number of days that we can use as a 

representative of all days in a month, we generated data from a normal distribution with mean 

equal to observed demand of given days and standard deviation equal to 5 percent of the 

observed data. The results can be seen in Table B2 – B6. 
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Table B2: Monthly average demand for Chhattisgarhi

 

Table B3: Monthly average demand for Punjab

 

Table B4: Monthly average demand for Assam

 

Table B5: Monthly average demand for Uttarakhand
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Table B6: Monthly average demand for Himalach Pradesh

 

For the states which we do not have access to daily load profiles such as Uttar Pradesh, 

Bihar, Jharkhand and West Bengal, we used Chhattisgarh as a reference state. Daily load profiles 

of Chhattisgarh are rescaled by the ratio between total monthly demands collected from CEA’s 

website. Tables B7 to B10 show the results. 
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Table B7: Monthly average demand for Uttar Pradesh

 

Table B8: Monthly average demand for Bihar

 

 

Table B9: Monthly average demand for West Bengal
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Table B10: Monthly average demand for Jharkhan

 

 


