Essays on Infrastructure Design and Planning

for Clean Energy Systems

Ayse Selin Kocaman

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
in the Graduate School of Arts and Sciences
COLUMBIA UNIVERSITY

2014



© 2014
Ayse Selin Kocaman

All rights reserved



ABSTRACT
Essays on Infrastructure Design and Planning for Clean Energy Systems

Ayse Selin Kocaman

The International Energy Agency estimates that the number of people who do not have
access to electricity is nearly 1.3 billion and a billion more have only unreliable and intermittent
supply. Moreover, current supply for electricity generation mostly relies on fossil fuels, which
are finite and one of the greatest threats to the environment. Rising population growth rates,
depleting fuel sources, environmental issues and economic developments have increased the
need for mathematical optimization to provide a formal framework that enables systematic and
clear decision-making in energy operations. This thesis through its methodologies and algorithms
enable tools for energy generation, transmission and distribution system design and help policy
makers make cost assessments in energy infrastructure planning rapidly and accurately.

In Chapter 2, we focus on local-level power distribution systems planning for rural
electrification using techniques from combinatorial optimization. We describe a heuristic
algorithm that provides a quick solution for the partial electrification problem where the
distribution network can only connect a pre-specified number of households with low voltage
lines. The algorithm demonstrates the effect of household settlement patterns on the
electrification cost. We also describe the first heuristic algorithm that selects the locations and
service areas of transformers without requiring candidate solutions and simultaneously builds a
two-level grid network in a green-field setting. The algorithms are applied to real world rural

settings in Africa, where household locations digitized from satellite imagery are prescribed.



In Chapter 3 and 4, we focus on power generation and transmission using clean energy
sources. Here, we imagine a country in the future where hydro and solar are the dominant
sources and fossil fuels are only available in minimal form. We discuss the problem of modeling
hydro and solar energy production and allocation, including long-term investments and storage,
capturing the stochastic nature of hourly supply and demand data. We mathematically model two
hybrid energy generation and allocation systems where time variability of energy sources and
demand is balanced using the water stored in the reservoirs. In Chapter 3, we use conventional
hydro power stations (incoming stream flows are stored in large dams and water release is
deferred until it is needed) and in Chapter 4, we use pumped hydro stations (water is pumped
from lower reservoir to upper reservoir during periods of low demand to be released for
generation when demand is high). Aim of the models is to determine optimal sizing of
infrastructure needed to match demand and supply in a most reliable and cost effective way.

An innovative contribution of this work is the establishment of a new perspective to
energy modeling by including fine-grained sources of uncertainty such as stream flow and solar
radiations in hourly level as well as spatial location of supply and demand and transmission
network in national level. In addition, we compare the conventional and the pumped hydro
power systems in terms of reliability and cost efficiency and quantitatively show the
improvement provided by including pumped hydro storage. The model will be presented with a
case study of India and helps to answer whether solar energy in addition to hydro power potential
in Himalaya Mountains would be enough to meet growing electricity demand if fossil fuels could

be almost completely phased out from electricity generation.



Table of Contents

LISE OF TADIES.....eceeee ettt bbb e 1\
LISE OF FIQUIES ..ottt bbbttt e bbb bt ne e vii
ACKNOWIBAGMENT ...ttt e e e reesreesaeaneeareeeeas XVii
Chapter 1
T T L8 T4 X T o ST RRPSSRTSN 1
Chapter 2
Power Distribution Systems Design for Rural Electrification............ccocoovviiiiiiieiiieicencee 8
220 1o oo [0 Tox 1 o] o I USSR 9
2.1.1 Rural Electrification Background ...........ccccocoviiiiiiiiiincc e 11
2.1.2 LItErature REVIBW. ....c..i ittt sttt sttt sb e 12
A 10101 B D - PSPPI 13
2.3 Single Level Power Distribution System DeSIgN ........ccciveiiiieiieie e 15
2.3.1 FUI CONNECLIVILY ....viieieiecie ettt sttt e sre e re e 16
2.3.2 Partial CONNECTIVITY ....c.oiviiiiiiiiieieieie et 17
2.4 Multi-level Power Distribution SyStem DESIGN ........ccooeiiiiriiiriniseeieiee e 21
2.4.1 MEENOAOIOGY ... bbb 24
2.4.2 Results on the sub-Saharan Africa SItES..........ccoviirieiiieie e 30
2.5 Discussion on Multi-level Power Distribution Systems ReSults...........cccooeveriiiiininnnnnns 33
2.5.1 Network Sensitivity Analysis in Terms of Cost Parameters..........c.cccoevervvververeennnn 34
2.5.2 Testing of Algorithm on Simulated Data...........cccoeieieiiiiieiieeee e 40
2.5.3. Comparison of Our Algorithm with a Sequential Approach ...........cccceeveiiiiiicinnn, 44
2.5.4. Limitations of Our Algorithm and Possible EXtensions............cccccccevveevieiie e, 45
pZL G T 03 Tod 11151 o] o PSR 48
BIDHOGIAPNY ...t bbb 49



Chapter 3

Modelling of a Hybrid Energy System with Conventional Hydro Storage...........cccocvevevienennnnns 55
S L INEFOUUCTION ..ttt bbbttt b b e et e bbb beeneanean 56
BT = - Tod (o | £ 101 o SRR 59

3.2.1 LITErature REVIBW.....ccueiiiieiiieie ettt sttt et sneeeeene e 59
3.2.2 Background for India Case StUdY ..........ccveiieiieiieieiie e 60
R o (0] o] [T S LT 41T 0| ST STRR 62
3.3.1 Hybrid System COMPONENTS ......coviieiiieiieiieriesie e 64
3.3 2 INPUL DIALA. ...t 69
3.4 Problem FOrMUIALION. .......c.cuiiiiiieieiee et aneas 76
3.4.1 ODJECHIVE FUNCLION.......oiiiiiiiie ittt e st be e tesreesreeneenne e 78
3i4.2 CONSLIAINTS ....viviitietieiie ettt sttt et e b b e bbb eebe e s e e st e e e naesbenbeabeene e 79
B D RESUITS ..ttt ettt ettt et et s R et e Rt e R e et e ne e R e e te e ne e teeneenneeen 81
3.5.1 Case Study I: Single Basin- Single Demand Point (Bhagirathi River and Delhi) Case
............................................................................................................ 82
3.5.2 Case Study Il: Multi Demand Points, Multi Basins SYStem ..........ccccceovvvrenenenennenn. 92
3.5.3 Case Study I1I: Multi Demand Points, Multi Basins System Il...........cccccooenininnnnnnn 95
TGRS o1 1SS} o] SRS 98
3.6.1 SENSITIVILY ANAIYSIS ...vviiveiiiiie ittt sre e re e 99
KT A 04 Tod 1115 o] o 1SRRI 102
BIDHIOGIrAPNY ...t ns 103

Chapter 4

Modelling of a Hybrid Energy System with Pumped Hydro Storage ..........ccccoeveveiievecviecnnenne. 108
g I 1o oo U Tox 1 o] oSSR 109
4.2 BACKGIOUND ...ttt bbbttt bbb i 111
4.3 Problem STAtEMENT .........oiieiiiie ettt ae e e sreeeesneesneeeeas 113
|V 1= 1 g ToTo (o] (o] |V USSP PP PTTPRPRPRPRIN 116

4.4.1 Problem FOrmMUIAtioN .........ooiveiiiieiiec e 116
4.4.2 Scenario DetermiNation .........ccccviieiieiieie et eas 123
4.4.3 HEUNIStIC APPIrOACH ... e 126
Sl o ] OSSP 131



4.5.1 Case Study I: Single Basin, Single Demand Point Case.........c.cccocevvervnieeneeriesenee 132

4.5.2 Case Study II: Multi Demand Points, Multi Basins System...........cccccccevvvevveveieene. 143
4.5.3 Case Study I1I: Multi Demand Points, Multi Basins System Il...........c.cccceevevevnenee. 150
4.6 DISCUSSTON ...veuteiieitieteeteeste et ssee st e teeseesbe et e s s e sbe e teese e s beesbeaseesaeeseeaseesbeenbeaneesbeeeeaneeaneensens 158
4.6.1 SENSITIVILY ANAIYSIS ..o.veiiiiiieciieieee ettt e e sreees 158
4.6.2 Analysis on Time Resolution of the Model ...........ccccocveiiiiiicice e, 160
4.6.3 Analysis on Multiple Years Stream FIOW Data ............cccccevevviieiiciicie e 164
O] Tod [1 ] o] PSSR ORTSPTRORN 169
BIDIIOGIAPNY ..ot nas 170
Chapter 5
Main Conclusions and FULUIE WOTK .........ccveeiieiieii et 174
5.1 MaIN CONCIUSTONS....c.vitiitiitiiiieiieieie ettt bbbt bbbt e e e bt benbesreene e 175
5.1.1 Power Distribution Systems Design for Rural Electrification............cccocoeiiiiiinnns 175
5.1.2 Power Generation and Transmission Using Clean Energy Sources ............c.cccoeveunene 177
5.2 FULUIE WOTK ..ottt te et e b et eeneesteeeesneenneenee s 183
N e N1 ) G SRS 190
TranSMISSION LINE COSE ....eouiiiiiiieiieeie ettt eie sttt e e te e steesteeneesneeteeneesraeneeneesreensens 190
N e o N1 ) G = TSRS 197
[Tyt o [ 7 - PSS 197



List of Tables

Table 2.1 | Algorithm results for nine sub-Saharan Africa sites
Table 2.2 | Critical p* ratio for some of sub-Saharan sites

Table 2.3 | Comparison of our algorithm with a sequential approach
Table 3.1 | General Statistics for Basins

Table 3.2 | List of states used as aggregated demand points

Table 3.3 | Solar Radiation Data

Table 3.4 | Indices for parameters and decision variables

Table 3.5 | Parameters of the model

Table 3.6 | Variables of the model

Table 3.7 | Parameters used in the model

Table 3.8 | Summary results for single basin-single demand point case

Table 3.9 | Summary results for alternative technologies

Table 3.10 | Size of the hydropower stations proposed for basins

Table 3.11 | Solar Panel Areas and Energy Generation by Type

Table 3.12 | Transmission line capacities between basins and demand points

Table 3.13 | Capacity factors of the transmission lines between basins and demand points

Table 3.14 | Sensitivity ranges for the optimal solution obtained with cost parameters used in the
model

Table 3.15 | Sensitivity Analysis for Diesel Cost

Table 3.16 | Sensitivity Analysis with the Unit Cost of Reservoirs

Table 3.17 | Sensitivity Analysis for Unit Cost of Solar Panel



Table 4.1 | Indices for parameters and decision variables

Table 4.2 | Parameters for model

Table 4.3 | Variables of the model

Table 4.4 | Scenarios determined from time series of stream flows

Table 4.5 | Heuristic results compared optimal solution

Table 4.6 | Distribution of resources to meet the demand

Table 4.7 | Results of the pumped hydro system compared to conventional hydro system
Table 4.8 | Bhagirathi and Pinder Rivers combined to meet Delhi’s demand

Table 4.9 | Chenab, Pinder and Bhagirathi River Systems

Table 4.10 | Another demand point (Punjab) added to the system

Table 4.11 | Reservoir and Generator Sizes for the Hybrid System with Pumped Hydro Storage
Table 4.12 | Reservoir and Generator Sizes for the Hybrid System with Conventional Hydro
Table 4.13 | Solar Panel Area and Energy Generation Percentages by Type

Table 4.14 | Solar Panel Area and Energy Generation Percentages by Type for the Conventional
System

Table 4.15 | Transmission lines for the pumped hydro system

Table 4.16 | Transmission lines for the conventional system

Table 4.17 | Average power sent from supply point to demand points (hydropower)

Table 4.18 | Average power sent from demand point to supply points (solar power)

Table 4.19 | Solar energy production and utilization in demand points

Table 4.20 | Reservoir and Generator Sizes for the Hybrid System with Pumped Hydro Storage

for Multiple Scenarios



Table 4.21 | Solar Panel Area in Demand Points for the Hybrid System with Pumped Hydro
Storage for Multiple Scenarios

Table 4.22 | Transmission Lines between Demand Points and Basins for Hybrid System with
Pumped Hydro Storage for Multiple Scenarios

Table 4.23 | Sensitivity Analysis of Cost Parameters

Table 4.24 | Sensitivity Analysis with Different Resolutions

Table 4.25 | Variability of Infrastructure Sizes for Different Years

Table 4.26 | Probabilities for different ranges of upper and lower reservoir sizes

Table 4.27 | Average unit cost for different ranges of upper and lower reservoir sizes

Table 4.28 | Percentage of demand met by diesel for different ranges of upper and lower
reservoir sizes

Table 5.1 | Results for Bhagirathi and Pinder Rivers combined system to meet Delhi’s demand

Vi



List of Figures

Figure 2.1 | Demand point locations for nine Sub-Saharan Africa sites digitized from satellite
imagery

Figure 2.2 | lllustration of MST Algorithm

Figure 2.3 | a, Comparison of results of the composite Prim's algorithm (thick lines) with those
obtained from the k-MST algorithm proposed by Chudak et al. (2001) (thin lines). b-e,
Households distribution in Mbola, Ruhiira, Potou, Tiby

Figure 2.4 | Examples network configurations. a, Point to Point network (star configuration). b,
Multi-point network

Figure 2.5 | Illustration of Power Distribution System

Figure 2.6 | Flow Chart of the Algorithm

Figure 2.7 | Agglomerative Clustering Example. a, Initial configuration where each demand
point has one transformer. b, The closest pair (1 and 2) gets connected. ¢, Next closest pair is 1
and 3. d, 4 and 5 are connected and no further change is possible without violating Dmax
constraint

Figure 2.8 | A seven-point example of Essau-William’s CMST algorithm. a, Initial star
configuration. b, Maximum trade-off value is for Point 1 (2.23) however it violates Lmax. Point
with the next best trade-off value (Point 2) is selected. ¢, Next best trade-off value is for Point 6.
d, Final configuration is reached after Point 4 is connected

Figure 2.9 | Match between proposed network and existing grid. Proposed transformers, LV and
MV networks compared to partial existing grid. Algorithm outputs 90 transformers for 1175

demand points

vii



Figure 2.10 | Change in total length of MV and LV lines. As the algorithm decreases the
number of transformers for 1000 uniformly distributed randomly generated demand points data
within a 10X10km? area, total MV line length decreases, while total LV line length increases
Figure 2.11 | Network Sensitivity Analysis. a, The sudden change in the number of
transformers as the ratio between Cmv and Cpv cost parameters increases. b, Change in total MV
and LV lengths from the 1000 transformer case. ¢, The change in the number of transformers for
different q ratios as p ratio increases.(See Section 5.1.2 for q). d, The difference between the
curves in b with MV weighted with different p ratios

Figure 2.12 | Network sensitivity analysis. a, The change in the number of transformers as the
C1/Cvv ratio increases. b, The change in the number of transformers for different p ratios as q
ratio increases

Figure 2.13 | Multivariate normally distributed random data and results. a-c, e-g, Multivariate
normally distributed 10X10 km?sites with 1000 demand points. d, The behavior of algorithm as
the standard deviation increases. h, Average LV line per transformer declines as the average MV
line and the number of transformer increases

Figure 2.14 | Uniformly distributed randomly generated data on different sized areas

Figure 2.15 | Results for uniformly distributed random data. a, Number of transformers
outputted by algorithm for the sites which have same number of demand points but different
average nearest distances. b, The number of demand points when the ratio between Dmax and
Average Nearest Distance is kept constant for each site. ¢, Number of transformers versus
average nearest distance for different values of Dmax constraint

Figure 3.1 | a, Stream Flow Data of Bhagirathi River for 2003 and 2004. Monsoon is expected to

be observed around June and its withdrawal completes by around October every year. b, Stream

viii



Flow Data of Bhagirathi River for a week in March. Most of the snow melts occur in the summer

period correlated with the sun light and cause diurnal variation in the stream flow.

Figure 3.2 | Daily demand profile of Delhi in 2012

Figure 3.3 | Monthly total demand of ten states in India in 2012

Figure 3.4 | Basins and demand points determined in India for analysis. Data is collected from
CEA (Central Electricity Authority, Power Ministry of India) and other official websites to
accurately estimate the 3-hourly demand load profile of each state for one year. If there is
missing data for some days or hours within a day, interpolation/extrapolation methods are

performed for projection.

Figure 3.5 | a, 3-hourly stream flow data of Bhagirathi River for one year (Sep 1970-Aug 1971).
b, Solar energy for every three hour per meter square for year in Delhi. ¢, Demand load curve for

one year in Delhi.

Figure 3.6 | Contribution of each “fuel” (supply) type that has been used to meet the demand
through the year for each day. Solar energy contribution is quite constant throughout the year

with some fluctuations in the Monsoon. Hydro and diesel work as complementary to each other.

Figure 3.7 | Comparison of alternative technologies. Solely diesel is the most expensive. As the
use and the variety of clean energy increase, the unit cost goes down substantially. It is more cost
efficient to design solar panel area based on high demand and spill some of the renewable energy
in low demand periods.

Figure 3.8 | Solar Production and demand for a) when spill is allowed, b) when solar is not
allowed.



Figure 3.9 | Summarized results for one-basin, one-demand point case studies. Bhagirathi has
13.3 km?® annual stream flow and Delhi has 7500 GWh annual demand. Chenab has 52 km?
annual stream flow and Punjab has a 12000 GWh (quarter of actual demand) computed annual

demand.

Figure 3.10 | Summarized results for two basins-two demand points case. Combined system
generates 2% more hydro energy with much smaller reservoirs (78% and 58% decrease in
reservoir size respectively). Solar energy generation increases almost 6% and the improvements
in hydro and solar energy generation provide a 10% reduction in diesel usage. There is 13%
more transmission cost to build extra transmission line but overall cost is 5% lower.

Figure 4.1 | A schematic illustration for hybrid system with pumped hydro storage. There are
two-level of reservoirs and water can be pumped from lower reservoir to upper reservoir during

periods of low demand to be released for generation when demand is high.

Figure 4.2 | Autocorrelation function for the stream flow data of Bhagirathi River (1970-2004).
Time series of climate and meteorological variables are frequently serially dependent, reflecting
the strong persistence of the meteorological and climate phenomena. For example, a rainfall

effect can be seen in multiple consecutive periods.

Figure 4.3 | Decomposition of time series data. The seasonal fluctuations are roughly constant in
size over time and do not seem to depend on the level of the time series. a, The components of

the additive model for stream flow. b, The components of the additive model for solar radiation.

Figure 4.4 | Results for the first step of the heuristic algorithm (each scenario is run
individually). a, Only the upper reservoir size varies significantly for each individual scenario

with 0.62 coefficient of variation (CV) . b-d the other components of the power system



especially solar panel area, lower reservoir size do and generator capacity not vary a lot between

scenarios (Coefficient of variations: 0.08, 0.11,0.10 respectively) .

Figure 4.5 | Superimposed results for 3hourly and daily run for a scenario. Once the “solar
energy related” components of the model are estimated, the resolution of our problem can be
changed (one day or one week) to estimate the size of the upper reservoir. a, 3hourly and daily

individual run of year 1974. b, 3hourly and daily run of year 1981.

Figure 4.6 | The data for each year is used to run the model fixing the investment decision
variables to the values in the optimal solution to observe how the diesel usage changes over
different years. Red dots are the years chosen as scenarios and we observe that the unit cost of
the system varies between the bounds determined by the years chosen as scenarios. This result
supports the fact that scenarios are chosen to represent extreme event years such as most
variables, most dry, wettest etc.

Figure 4.7 | Input data used in the model - Data used in Chapter 3 for illustration of single basin,
single demand point case is also used here in order to be able to show the benefits of pumped
hydro model.

Figure 4.8 | Water stored in the upper and lower reservoirs — The upper reservoir is assumed to
be full at the start and the end of the cycle as the planning horizon starts in September which is
close to end of the Monsoon season. There is no water stored in the lower reservoir in the
Monsoon season since there is no need to pump water to upper reservoir. (0.01 km3 ~ 2.4 GWh)
Figure 4.9 | Flows from/to the upper reservoir level - Water is stored in dry season (November to
March) and is utilized starting from March. As there is high solar radiation in spring-summer
period that can be used to pump more water, lower reservoir utilization is increased until

Monsoon seasons starts again. (0.01 km® ~ 2.4 GWh)

Xi



Figure 4.10 | One week operation balance in reservoir and demand points — a, Solar energy is
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constraint, system increases the size of the upper reservoir. Up to 4%, system increases the size
of solar panels, upper and lower reservoirs; however after 4% system only increases the upper
reservoir size. b, Duel price of the constraint also presents that increasing diesel by 1 GWh
reduces the objective function by $140000 between 0% and 4%. The effect of relaxing the
constraint decreases around optimal solution (8%).

Figure 5.1 | Match between proposed network and existing grid. Proposed transformers, low
voltage (LV) and medium voltage (MV) networks compared to partial existing grid. Algorithm
outputs 90 transformers for 1175 demand points.

Figure 5.2 | Network Sensitivity Analysis. a, The sudden change in the number of transformers
as the ratio between Cwmv (unit cost for medium voltage line) and Crv (unit cost for low voltage
line) cost parameters increases. b, Change in total MV and LV lengths from the 1000
transformer case. ¢, The change in the number of transformers for different g ratios as p ratio
increases.(See Section 5.1.2 for ). d, The difference between the curves in b with MV weighted
with different p ratios.

Figure 5.3 | Basins and demand points determined in India for analysis. Data is collected from
CEA (Central Electricity Authority, Power Ministry of India) and other official websites to
accurately estimate the 3-hourly demand load profile of each state for one year. If there is
missing data for some days or hours within a day, interpolation/extrapolation methods are

performed for projection.

Figure 5.4 | Comparison of alternative technologies. Solely diesel is the most expensive. As the
use and the variety of clean energy increase, the unit cost goes down substantially. It is more cost
efficient to design solar panel area based on high demand and spill some of the renewable energy

in low demand periods.
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Figure 5.5 | Alternative Technologies - Compared to other hybrid systems, the system with
pumped hydro storage is the most cost efficient design with much lower unit cost. Having two-
level reservoir with a pump system reduces the intermittency effect of renewable sources and the
system can utilize more clean energy. In particular, total hydro production increases with even

smaller reservoir size compared to conventional system.

Figure 5.6 | Comparisons of solar production profile of one day in November for conventional
(a) and pumped hydro systems (b) - Total production is scaled up by increased the solar panel
area as the solar radiation curve is same. The role of solar energy in pumped system is twofold:
internal solar and pumped solar. Solar energy used internally for the 4" and 5" time periods are
the same between two systems as extra solar energy is spent for pumping, however shaded area
in 3 and 6™ time periods in (b) represents extra solar internal.

Figure 5.7 | Pinder basin is added to the system to show that geographic aggregation of
alternative sources can reduce the variability of renewable sources.

Figure 5.8 | Spectral distribution of stream flow and demand for Bhagirathi River and Delhi case
study. (a) The spectrum for 51 years of 3-hour resolution data shows the yearly fluctuations. (b)
The diurnal fluctuations observed in March is showed on the spectrum for 1 month data with 3-
hour resolution. (c) Spectral distribution of demand is presented for 1 year data of 3-hour
resolution and therefore seasonal fluctuations can not be observed in the figure.

Figure 5.9 | Spectral distribution of intermittent sources. a, The spectrum of solar data used in
base case studies (Delhi) with 1-hour resolution. b, The spectrum of wind data used as an

example and collected from NREL website.

XV



Figure 5.10 | Energy generation distribution comparisons for solar and wind. a, Proportion of
wasted, internally used and pumped energy as a percentage of demand. b, Proportion of hydro

energy generated by natural stream flow or pumped water.
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Chapter 1

Introduction



The International Energy Agency estimates that the number of people who do not have
access to electricity is nearly 1.3 billion and a billion more have only unreliable and intermittent
supply. These numbers are expected to increase unless investments in providing modern energy
services are expanded significantly. Moreover, current supply for electricity generation mostly
relies on fossil fuels, which are finite and one of the greatest threats to the environment. Rising
population growth rates, depleting fuel sources, environmental issues and economic
developments have increased the importance of sustainable energy planning and applications of
Operations Research techniques in energy industry. Mathematical optimization provides a formal
framework that enables systematic and clear decision making in energy operations. This thesis
through its methodologies and algorithms enable tools for energy generation, transmission and
distribution system design and help policy makers to make cost assessments in energy
infrastructure planning rapidly and accurately.

To this end, in Chapter 2, we first focus on power distribution systems planning for rural
electrification using techniques from combinatorial optimization. As governments of the
developing countries attempt to increase the electricity coverage, they are seeking an
understanding of the various modalities of public and private sector contributions. These
modalities require a detailed understanding of the cost structure of electrification to make rapid
assessment of the progress in rural electrification. With the emergence of off-grid and distributed
approaches, there is a need amongst infrastructure planners to evaluate the costs of networked or
grid approaches vis a vis off-grid approaches The investment costs of off-grid approaches are
easier to estimate, but the investment costs of networked approaches are more difficult to
estimate, taking into account both the spatial distribution of demand and the optimal placement

of infrastructure to meet that demand.



For distribution systems planning problem studied in Chapter 2, we digitized QuickBird
satellite imagery using remote sensing techniques to identify household-level demand points in
some villages in Sub-Saharan Africa. Given the detailed local-level information from remote-
sensing data, we developed new methods to estimate the cost of local-level distribution systems
for a least-cost network, and to compute additional information of interest to policymakers, such
as the marginal cost of connecting additional households to a grid as a function of the penetration
rate while taking into account populations structure. If it is possible to connect only some portion
of the households to electricity due to limited funding, how to choose that portion is a very
critical question and detailed mathematical analysis provided in this chapter can help answer this
type of questions.

Moreover, in Chapter 2 we present another heuristic algorithm for rural electrification
projects which designs multi-level distribution system layouts while minimizing overall cost of
infrastructure costs; specifically the combined costs of transformers and the two-tiered network
together. To our knowledge, this algorithm is the first heuristic algorithm that selects the
locations and service areas of transformers without requiring candidate solutions and
simultaneously builds two-level grid network in a green-field setting. It allows one to specify
different costs for the higher throughput lines upstream of the transformer as compared to
downstream of the transformer This algorithm can serve as a tool for network engineers and
planners to make rapid assessments assisting them with (a) estimates of total cost of distribution,
(b) layouts of initial designs and (c) breakdown of total costs into transformer cost and medium
and low voltage line costs and giving them a good starting point for more detailed smart grid

projects. Proposed methodologies can easily be adapted to other infrastructure problems such as



designing communication networks and water supply network. This discussion forms and
completes Chapter 2.

In Chapter 3 and 4, we focus on power generation and transmission using clean energy
sources. Current supply for electricity generation mostly relies on fossil fuels. However, fossil
fuels are finite and their combustion causes global warming and health hazards. To reduce the
role of fossil fuels and ease the concerns on the electricity generation, energy models which
involve clean and renewable energy sources are necessitated. However, renewable sources are
generally are intermittent and heavily dependent on the spatial location (e.g. sun doesn't shine
constantly at any given time in any given place). Intermittency causes limited control on power
output because of variability and partially predictability of the renewable sources such as solar
and wind and dependence on the spatial location causes a mismatched between potential of
renewable energy generation and where the energy will be ultimately consumed. One of the
ways to mitigate the intermittency of renewable sources is to design hybrid systems which
operate as a combination of alternative resources. Energy storage, long distance transmission
line and demand response programs are other critical components of electricity generation and
transmission system to improve power grid reliability/efficiency and integrate intermittent

renewable energy sources.

To this end, in Chapter 3 and 4, we discuss the problem of modeling hydro and solar
energy production and allocation, including long-term investments and storage, capturing the
stochastic nature of hourly supply and demand data. We imagine a country in the future where
hydro and solar are the dominant sources and fossil fuels are only available in minimal form, in
the shape of diesel generators as an example. In this country, we first identify candidate basins

for hydro power stations and aggregated demand point locations (the cities or the states of the



country). Within demand points solar energy production is possible. Then, we determine the
possible transmission network between supply and demand points. We mathematically model
this hybrid energy generation and allocation system, where time variability of energy sources and
demand is balanced with the water stored in the reservoirs of hydropower stations. The aim of
this model is to obtain the optimal size of infrastructure needed to meet the demand, combining
three major components of power systems to reduce the intermittency: hybrid systems, long
distance transmission lines and energy storage. In these chapters, we present results with several
cases studies from India which help answer whether solar energy in addition to high hydro power
potential in Himalaya Mountains would be enough to meet growing electricity demand if fossil
fuels could be almost completely phased out from electricity generation.

In Chapter 3, a scenario based linear programming approach is described for modeling
the hybrid solar and hydropower ststem with conventional hydro storage. In this system,
incoming stream flows are stored in large reservoirs in dams and water release is deferred until it
is needed. We first provide results for a single basin-single demand point case for one sceario to
show the the basic results that the model can provide. Then, we provide multi basin-multi
demand point cases to show how the unit cost of the systems is reduced when geographic
aggregation of sources are possible with transmission lines. A sensitivity analyis of the cost

parameters used in the model completes the Chapter 3.

Furthermore in chapter 4, to the same problem in chapter 3, we apply pumped hydro
power stations in which water is pumped from lower reservoir to upper reservoir during periods
of low demand to be released for generation when demand is high. We show that introduction of
the pumped hydro storage increases the utilization of both hydro and solar sources and decreases

the unit cost of the system significantly. Now, as the solar energy can be also stored, it helps



reducing the variability of sources. In this chapter, we introduce a heuristic algorithm based on
decomposition of scenarios for the stochastic linear programming model.

An innovative contribution of the work in chapter 4 and chapter 5 is the establishment of
a new perspective to energy modeling by including fine-grained sources of uncertainty such as
stream flow, solar radiations and demand in hourly level as well as spatial location of supply and

demand in national level.



Chapter 2

Power Distribution Systems Design for Rural Electrification



2.1 Introduction

The International Energy Agency estimates that the number of people who do not have
access to electricity is nearly 1.3 billion and more than eight out of ten people without modern
energy access live in rural areas. Attempts to increase electricity coverage require detailed
understanding of the cost structure of electrification in rural settings. This chapter through its
methodologies and algorithms enable tools for energy planning and policy making to make cost
assessments in energy infrastructure planning rapidly and accurately.

Rural energy planning has, thus far, focused primarily on the national to regional scale
with aggregated supply and demand information. However, effective implementation of the new
energy technologies requires a new planning approach that can consider information across
spatial scales. In a technological landscape that is altered by the emergence of off-grid and
distributed approaches, there is a need amongst infrastructure planners to evaluate the costs of
networked or grid approaches vis a vis off-grid approaches. However, estimating the investment
cost of networked approaches requires the information for both spatial distribution of demand
and the optimal placement of the infrastructure to meet that demand. To this end, in this chapter
we first present a new data set of local-level demand points developed from QuickBird satellite
imagery and provide new tools to estimate the cost of green-field power distribution system
rapidly and with high accuracy considering local-level spatial distribution data.

In the first part of this chapter, we address the question of how the population settlement
patterns influence the cost of electrification. Understanding the impact of the spatial structure of
the population on infrastructure costs is critical in rural energy planning. If it is possible to
connect only some portion of the households to electricity due to limited funding, how to

optimally choose that portion requires detailed mathematical analysis. Given the possibility of



acquiring detailed local-level information from remote-sensing data, we develop a new method
for estimating a more detailed, per-unit cost of infrastructure, while taking into account
population structure. Since settlement patterns influence the cost of local distribution networks
while not directly impacting the costs of transmission and generation, we focus on these local
distribution networks.

Moreover, in this chapter, we provide a heuristic algorithm which designs multi-level
distribution system layouts while minimizing overall cost of infrastructure costs; specifically the
combined costs of transformers and the two-tiered network together. To our knowledge, this
algorithm is the first heuristic algorithm that selects the locations and service areas of
transformers without requiring candidate solution and simultaneously builds two-level grid
network in a green-field setting. Proposed methodologies can easily be adapted to other
infrastructure problems such as designing communication networks and water supply network.

The algorithm we propose does not require a set of candidate locations to be considered
as transformer locations. The maximum service distance in a low voltage distribution network is
also pre-specified and determined from engineering practice. Given these costs, the demand
points, the location of the HV network, and the maximum distance of the demand point from the
transformer, the algorithm automatically finds the locations and service areas transformers as
well as the LV and MV network layout with the goal of minimizing the total costs. This
algorithm can serve as a tool for network engineers and planners to make rapid assessments
assisting them with a) estimates of total cost of distribution, b) layouts of initial designs and c)
breakdown of total costs into transformer cost and medium and low voltage line costs and giving

them a good starting point for more detailed smart grid projects.
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2.1.1 Rural Electrification Background

Electricity access is one of the most important components of rural developments. It has
been shown that better living conditions in developing countries cannot be achieved without
investments in electricity [1]. In rural areas where renewable energy resources are widely
available, small off-grid standalone systems appears to be an attractive alternative [2]. Moreover,
decentralized technologies seems to be more suitable for rural and remote areas due to the fact
that it helps avoid long distribution lines with low load densities, underutilized transformers and
losses in distribution. It also has been discussed that whether decentralized alternatives which use
locally available resources provide more reliable supply of energy [2, 3]. Thus, most of the
earlier research aims to investigate primarily renewable energy alternatives and off-grid
technologies [4-9]. It is worth noting that, although there has been a lot of attention to rural
electrification projects, literature on the networked approaches is very limited.

Moreover, rural energy planning has, thus far, focused primarily on the national to
regional scale. Experience has been gained in design and implementation of rural electrification
projects at the national level, with reviews such as that by Bekker (2008) [10] in South Africa,
and Haanyika (2008) [11] in Zambia providing a basis for future policy and systems design.
However, much work remains to be done, particularly on the local level. Effective
implementation of the new energy technologies requires a new planning approach that can
consider information across spatial scales. Local-level spatial information helps planners
optimally locate critical energy infrastructure. For example, energy storage is an important
component of the power systems; especially when effectively utilized with renewable sources,
storage allows improved efficiency and lower cost generations. Moreover, optimal location of

storages and transformers can help reduce distribution losses and increases the efficiencies of the
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power systems. The development of design strategies that consider local-level data in
conjunction with the regional scale picture is important for planning cost-effective rural energy
networks. In this chapter, an attempt is made on estimating the cost of rural networks to facilitate
the rural energy decision making based on purely cost comparison without considering other

consequences of off-grid and grid approaches.

2.1.2 Literature Review

The so-called power distribution system problem, in general, has been studied
extensively in the literature [12-21]. Techniques developed in prior efforts for this complex
problem usually divide the problem into sub-problems at each level and then solve each sub-
problem separately using various optimization techniques [12-16]. These studies differ from each
other in how they represent the problem components as well as in the algorithms utilized. None
of these studies address the problem of designing both LV and medium voltage (MV) networks
in a single framework. However, dividing the problem into sub-problems and solving them
separately reduces the probability of reaching an optimal solution and prevents us from seeing
the effects of different cost parameters on the final network layout. The methods that have been
proposed in the literature are based on either mathematical programming techniques such as
Mixed Integer Programming, Branch and Bound Method [14, 15, 19] or heuristic algorithms
such as Genetic Algorithm [13, 20, 21]. However, complexity of the models and the algorithms
reduces their applicability to estimate the cost of networked approaches in rural electrification
discussions when spatial distribution of a very large data set (demand points) is available. In
addition, regardless of the solution methods, all studies mentioned here, except for [13], includes
pre-assumption of candidate locations for transformers or feeders. These studies do not provide a

method to update the candidate transformer locations during the search for an optimum solution.
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Therefore, the final feeder network is strictly dependent upon the initial selection of candidate
locations. In practice, however, determination of candidate locations is not always a simple task,
and if the methodology has to scale to a larger number of demand points, clearly the transformer

locations should be an outcome of the optimization process.

2.2 Input Data

The algorithms of this chapter have been tested on household level data from nine sites in
Sub-Saharan Africa shown in Figure 2.1. The data were digitized from QuickBird satellite
imagery of sites; details of the digitization method are discussed in Zvoleff and Kocaman et al.
(2009) [22]. For most of the sites, a QuickBird image covers an area of 10x10km? which covers
a large representative area. Even though all structures do not necessarily correspond to
households, we assume that each structure represents a demand point which needs to be

electrified.

13



a) Potou, SENEGAL

) Mbola, TANZANIA
c) Tiby, MALI
d) Ruhiira, UGANDA

e) Bonsaaso, GHANA

f) Ikaram, NIGERIA

g) Mayange, RWANDA
h) Pampaida, NIGERIA

i) Mwandama, MALAWI

Each point digitized
from satellite
imagery corresponds
to a demand pointin
Sub-Saharan Africa

Figure 2.1 | Demand point locations for nine Sub-Saharan Africa sites digitized from satellite imagery

Although the data acquired thus far shows a broad range of spatial distributions of
populations, there are common features that have been observed. Qualitatively, sites can be
classified as sparse or dense, and nucleated or dispersed. A sparse site has a relatively low
density as compared to a dense site. A nucleated site shows clustering of population around
certain centroids, whereas a dispersed site is closer to a random distribution of points around the
landscape.

Using these relative terms, a site can therefore be nucleated but sparse, or dense yet
dispersed. While Ruhiira, Uganda is densely populated (compared to the other areas we discuss
here) it is not nucleated, although topography and local road networks influence settlement

locations to some extent. Tiby, Mali exemplifies the most nucleated areas, with a small number
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of very dense clusters of structures dotting the landscape. Potou, Senegal and Mbola, Tanzania
fall in between these two extremes. Potou shows nucleation in the south and along the coast in
the west, and is otherwise dispersed. Mbola features one large cluster in the south, while the

remaining area is sparse.

2.3 Single Level Power Distribution System Design

Here, we discuss a methodology to estimate the cost of local-level distribution systems
for a least-cost network. The main questions we want to answer are: i) How does rural
population structure affect the cost of infrastructure investments? ii) If only pre-specified
percentage of the households are connected, how does the per-unit cost of grid construction vary
with this percentage (this percentage will be referred as the penetration rate)? We also provide
additional information of interest to policy makers, such as the marginal cost of connecting
additional households to a grid as a function of the penetration rate.

To see the effect of settlement patterns of households on the distribution system cost, we
first made several simplifications. In this section, the distribution system consists of only Low
Voltage (LV) lines we assume that total cost of the network is linearly related to the lengths of
the network. Moreover, additional cost of transformers is assumed to simply be proportional to
low-voltage network length. This is actually a realistic assumption as in in rural settings the local,
low-voltage lines network is the dominant components of the infrastructure [23]. Thus, here we
can define the cost in units of lengths instead of monetary units. To be able to compare different
possible networks, we define the unit cost of a network as the mean inter-household distance
(MID) which is simply calculated by dividing the total length of the network with the number of

connections in that network.
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2.3.1 Full Connectivity

In full connectivity case, we are interested in connecting households to the electricity
with 100% penetration rate. The least cost network which spans all the households without
creating a cycle is called minimum spanning tree (MST). An MST easily be calculated by using
the well-studied Minimum Spanning Tree (MST) algorithms [24-26] which aim to find a tree
(i.e. network containing no cycles) that spans all the points minimizing the total length of the
network with the guarantee of the exact optimal solution. Although there are different MST
algorithms in the literature; in this thesis, Prim’s algorithm [24] is implemented as it has better
running time performance for dense sites [27]. Prim’s MST algorithm starts with choosing a
starting point and adds the shortest segment of this point to the network. Until all nodes are
spanned, the shortest segment emanating from the existing points on the network is added. The
connections that would create cycles are avoided. We note that since the MST algorithm finds
the optimal network, changing the starting point will not affect the result as all starting points
will end up with the same network. A five node illustration of MST algorithm can be seen in

Figure 2.2.
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Figure 2.2 | lllustration of MST Algorithm

2.3.2 Partial Connectivity

Given limited funding, one of the most important concerns for infrastructure planners is
the initial decision to extend the network into an unserved area. If it is possible to connect only
some portion of the households to electricity, how to choose that portion is a very critical
question. One common approach in this case is to expand the network to the strategic demand
points where the total cost or per-household demand is minimized. This approach usually results
with excluding sparsely inhabited areas from the network to avoid very long cable runs and
underutilized transformers and exposes the question of how the population structures offer
potential cost savings due to partial penetration or connectivity.

Partial connectivity problem that we study here is to construct a network such that the
mean inter-household distance (MID) is minimized subject to the requirement that the network

connects a pre-specified percentage of the households. In graph theory, an abstraction of this
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problem is known as the k-MST problem. The objective of the k-MST problem is to find the
least cost network which spans at least k nodes on a graph. When penetration rate is 100% (k
equals to the number of all points), optimal solution can easily be calculated with the greedy
minimum spanning tree algorithms. However, k-MST problem is an NP-hard problem [28] and
several attempts have been made to find the approximation algorithms for the problem [29-33].

For the problem of minimizing the network length subject to the penetration rate,
Composite Prim’s Algorithm (CPA), a simple and computationally efficient approach, is
developed by Zvoleff and Kocaman et al. (2009) [22] based on the Prim’s algorithm. For a fixed
penetration rate, Prim's algorithm is modified as follows. For each initial demand point, the
Prim's algorithm is run until the required penetration rate is achieved. By running this algorithm
repeatedly, using a different initial demand point for each run, a series of different networks is
calculated. Then for each penetration rate, the network which has minimum MID is selected.

As the CPA is based on Prim's algorithm, it is important to recognize that it necessarily
builds subgraphs of the MST. Therefore, any network produced by the CPA can be expanded to
full penetration with no penalty. The same is not necessarily true for expansion of a minimum
cost network spanning a subset of the population to another network also providing less than full
coverage. For example, the optimal network for 10% penetration may not be a subgraph of the
optimal network for 20% penetration, as the two may start from different starting points. For
example, a planner interested in constructing a network spanning only 10% of the grid and who
is planning for later expansion up to 20% connectivity could minimize their expansion costs by
estimating with the CPA the optimal network for 20% connectivity, and building initially
building a network that is a sub-graph of this network. The CPA appears to handle these cases

reasonably well, based on the observed empirical results; however we don’t know the how the
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solution of the heuristic algorithm is compared to optimal solution. For this reason, we compare
the results of the CPA algorithm with another approximation algorithm which has a proven
performance guarantee.

An a-approximation algorithm for a minimization problem runs in polynomial
time and guarantees that the cost of the solution is no more than a times of the optimal solution.
The value a is called performance guarantee or approximation ratio of the algorithm. Here, we
present the results of the CPA algorithm together with the results of a 2-approximation algorithm
proposed for k-MST problem by Chudak et al. (2001) [33]. Their approach is based on the fact
that the Lagrangian version of the k-MST problem is a well-studied Prize Collecting Steiner Tree
problem, for which a similar guarantee has been developed using the so-called primal-dual
algorithm [34]. The primal-dual algorithm searches for the best possible solution by keeping
track of both the feasible solution and its shadow prices related to the constraints. While the
algorithm by Chudak et al. (2001) [33] has a theoretically appealing property, its implementation
is much more complex than that of the CPA. We have implemented both algorithms, and find
that both have similar performances. As seen in Figure 2.3, the mean cost curves obtained from

these two algorithms match closely.
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from the k-MST algorithm proposed by Chudak et al. (2001) (thin lines). b-e, Households distribution in
Mbola, Ruhiira, Potou, Tiby.

To understand the effect of spatial distribution of households in the cost of electrification,
Figure 2.3a should be examined together with Figures 2.3b-e. The area of Mbola, Tanzania
considered here shows a sparse pattern of population, with little clustering of households except
for two areas in the southwest. These dense areas allow interconnections within a portion of the
population (up to about 15%) with a relatively low MID. Connecting the remaining population,
however,is expensive. Ruhiira, Uganda is far more densely populated than the other sites
considered here. Ruhiira clearly has the least clustering of the four distributions shown here. The

lack of clustering leads to a situation where after 5% penetration, the MID is essentially the same.
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Potou, Senegal is sparsely populated, with two nucleated areas; one in the south and another in
the northwest along the coast. The MID rise slowly as the largest population center (in the south
of the image) is connected to the grid. After 20% penetration, the MID begins to rise more
quickly as the outskirts of the main cluster are connected to the grid. After 60% penetration, the
network begins to reach nucleated areas along the coast. The population of Tiby, Mali is split
into several nucleated clusters, with few outliers. The ease of connecting these dense, nucleated
clusters allows connection of the entire population with an MID of only 32.7 m. However, the
large separation between population centers in Tiby leads to “jumps” in the curve as connections

are made between clusters.

2.4 Multi-level Power Distribution System Design

In the previous section, we assumed that each household can be connected to electricity
with low voltage lines without considering a capacity constraint. We also assumed that
transformer costs are linearly related to the length of the network. Here, we study a more realistic
problem where we have three different cost parameters: 1) the cost per meter of LV line, CLV;,
2) the cost per meter of MV line, CMV; and 3) the unit cost of a transformer, CT. The capacity
constraint on the transformers, Dmax1, is defined as the maximum service distance and modeled
as the radius of coverage of a transformer.

The algorithm we present in this section combines the transformer location problem and
the Low Voltage (LV) and Medium Voltage (MV) network design problem into a single problem
and solves them in a single optimization framework. We propose a heuristic algorithm to design
a two-level radial power distribution system. The first level includes the determination of the

numbers, locations and capacities of transformers that feed an LV distribution network. The

! This distance would vary over the network with local geography and topography but is assumed constant here.
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transformers represent load points for an upstream MV network and the MV network is also
determined as a part of the first level. The second level includes the determination of the layout
of the low voltage network between the transformers and the specified ultimate demand points.
Note that the high-voltage (HV) network (for that matter source points) further upstream of the
MV network are assumed to be known?2. One could have further generalized the problem to
include the determination of the HV networks as well, making it a three level problem, but here

we consider the HV network as pre-specified for simplicity.
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Figure 2.4 | Examples network configurations. a, Point to Point network (star configuration). b, Multi-
point network.

Locations of ultimate consumers are called “demand points” in the rest of the chapter.
Each demand point is assumed to have the same load and the load is assumed not to change over
time making the problem “static”. Distribution system is designed to be radial, to have one path

between demand points and transformers, due to the fact that it is the most widely used form of

2 The medium voltage network connects these transformers to electricity sources further upstream where they could
either be sub-stations of a high voltage transmission network or power generating stations. Note that the costs
associated with what we call here for convenience High-voltage networks or transformations from High-voltage to
Medium-Voltage are not considered here.
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distribution design and it is the cheapest and the simplest alternative compared to loop and
networked designs [35]. In radial design, since there is only one path between demand points and
transformers, power flow is certain and the system can be operated easily. The major drawback
to radial feeder design is reliability. Any equipment failure will interrupt service to all customers
downstream from it. However, low statistical rate of failure of equipment on the low voltage
level makes the adaptation of radial systems easier [14].

Within the service areas of the transformers, the low voltage network is permitted to be
multi-point, in that, in order to minimize costs the wire to a demand point further in distance can
first go through one or more intermediate demand points. This architecture is called a “multi-
point” LV network here (See Figure 2.4b). Maximum distance capacity of an LV line is then
defined as another design parameter and called Lmax (i.e. the maximum LV line used to connect a
demand point to the transformer directly or through other demand points should be less than
Lmax’). Lmax Value should be used to limit the maximum total load on LV line and should be
greater than or equal to Dmax SO that each demand point within the service area of a transformer
gets connected.

Given the cost parameters and subject to the constraints described above, the desired outputs
of the algorithm are:
e number and locations of the transformers;
e medium voltage (MV) network that connects a source point to the transformers; and

e |low voltage (LV) network between the demand points and transformers.

* Lmax can also be considered as a constraint on distribution losses in LV level as the losses and wire lengths are
linearly related.
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Our objective function is the minimization of total system cost, which includes cost of
transformers, cost of low voltage and medium voltage networks. Schematic illustration of our

problem formulation can be seen in Figure 2.5.

Power Distribution System Design Problem

Given :

—Demand Point Locations (X,y)

—Cost Parameters
*Cy v :Cost of Im MV wire
*(Cpy; :Cost of Im LV wire
*Cr :Cost of one transformer

Subject to:

—D . The maximum direct distance between a demand
point

and a transformer

—Lze. The maximum distance capacity of LY wire

Minimize: Total Cost of Power Distribution System

which involves :

—The number of the transformers * C; 0

—Total length of medium voltage network * C,r; [T] Transformer
S

Demand Point

—Total length of low voltage network * Cp;;

Bource

LV Network

Figure 2.5 | Illustration of Power Distribution System.

2.4.1 Methodology

Given the difficulty of the problem, a heuristic algorithm is developed to place
transformers and locate the networks. The algorithm relies on a “greedy” approach that starts
with a stage that each demand point has one transformer (i.e. for n demand points, there would
be n transformers) and iteratively decreases the number of transformers. Initially, transformers

are connected to a prescribed single source point and to each other with a least cost medium
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voltage network; there is no LV network at this stage. The cost of this design is computed and
provided as an initial upper bound to the cost of the network design since it is a feasible solution
to the problem. It contains the maximum possible number of transformers and maximum length
of MV line (which per unit length is more expensive than LV line). Then, one begins the process
of eliminating transformers one at a time while removing some of the MV lines and adding new
LV lines in the process to find a least cost network. The algorithm consists of the repeated
applications of the following iterations:

e Search for the closest pair of transformers which can be replaced by a single transformer
located at the centroid (center of mass) of the demand points without violating, Dmax
constraint.

e Build the MV network between the updated set of transformers and the source point. (See
Section 1.4.1.2 for details)

e Build the LV network between the demand points that are no longer served directly by
transformers using LV line, ensuring constraint Lmax. (See Section 1.4.1.3)

e Compute the new overall cost.

The heuristic algorithm continues this iterative process until the number of transformers
cannot be reduced any further without violating the Dmax constraint. (Note that the solution with
the least number of transformers is not necessarily the least cost since the design with the least
number of transformers may have been obtained by adding more LV line length, and this trade-
off may not be favorable to the total cost.).

At this stage, all the computed costs during the transformer elimination process are
compared and the least cost network design is selected. With one transformer replacing a “pair”,

and process repeated, one can think of the sets of demand points being served by one transformer
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as a “cluster”. With this perspective the algorithm is an agglomerative algorithm, using a bottom-
up approach to iteratively agglomerate (merges) the closest pair of points. (See Section 1.4.1.1
for details)

The algorithm is further analyzed in its three components; i) selecting the transformers to
be removed, ii) creating a MV network among the transformers and iii) connecting the demand
points and the transformers with an LV network. A flow chart of the algorithm can be seen in

Figure 2.6.

+ Initialize one transformer for each demand point
*  Build an MST among transformers
* Recordthe total cost of design (cost of network and transformers)

Is there a pair of transformers
which can be replaced by a single transformer

Select the least

located at the centr.oid gfthe demand points without cost design
violating D, ?
+  Select the closest pair of transformers which satisfy the condition
above
| +  Update the set of transformers |
| +  Build an MST among transformers |
*  Build a CMST between demand points and their associated
transformer ensuring L,.ax
* Recordthe total cost of design

Figure 2. 6 | Flow Chart of the Heuristic Algorithm
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2.4.1.1 Locating the transformers

A capacitated agglomerative hierarchical clustering method is adapted to find the
locations of transformers since it does not require pre-selected candidate locations for
transformers. Note again that this is different than most of the work in the literature and is a must
for our target demand points, households in rural Africa with little or none existing infrastructure.

An agglomerative hierarchical clustering method starts with as many clusters as the
number points to be clustered. At each step, the clusters are merged according to a rule and
eventually only one cluster remains where all points are connected. In contrast, a capacitated
agglomerative hierarchical clustering method has no assumption on the final number of clusters
[36] and finds the minimum possible number of clusters that can be achieved with the given
constraints. In clustering methods, many rules can be used depending on the problem definition.
In our problem, to be able to incorporate the Dmax conveniently, the closest pair based on the
Euclidean distance between transformers has higher priority to be merged. The applications of
clustering methods on similar problems using Euclidean distance can also be seen in [36-40].
Here, as opposed to stopping the process when the best possible agglomeration violates the
capacity constraint (infeasible) [37], we choose the next best feasible agglomeration (if there
exists one) as proposed by [39].

An illustrative example of our agglomerative clustering approach is presented in Figure
2.7. In this example, we have five demand points and Dmax is 2. Figure 2.7a represents the initial
configuration and Figure 2.7b-d show how the closest pairs of transformers which do not violate
the capacity condition are connected one by one. No further change is possible in Figure 2.7 d

since the agglomeration of the final two clusters would violate the Dmax constraint.
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Figure 2.7 | Agglomerative Clustering Example. a, Initial configuration where each demand point has
one transformer. b, The closest pair (1 and 2) gets connected. ¢, Next closest pair is 1 and 3. d, 4 and 5 are
connected and no further change is possible without violating Dmax constraint.

2.4.1.2 Medium Voltage Line Layout

At any iteration, when transformer locations are known, the problem is to find the least
cost layout that connects the transformers and the given source point. This can easily be solved
by using the well-studied Minimum Spanning Tree (MST) algorithms discussed in Section 2.3.1,
which aim to find a tree (i.e. network) that spans all the points minimizing the total length of the
network* with the guarantee of the exact optimal solution [26]. For the problem at hand, the
points represent the transformers and the source point.

2.4.1.3 Low Voltage Line Layout

> Since there is no constraint on the maximum length of MV line, the least cost solution is simply the least total
length.
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As “clusters” emerge during each iteration cycle, an LV network needs to be laid out
within each cluster. The total length of the connections is minimized while ensuring that the
length of LV line between a transformer and the demand points are always less than a given Lmax
value.

Constructing a least cost multi-point network (cost efficient compared to star
configuration, see Figure 2.4) is similar to the minimum spanning tree (MST) problem, but with
an additional Lmax constraint. This extra condition converts the problem into a capacitated
minimum spanning tree (CMST) problem. CMST is a minimal cost spanning tree which has a
designated root (transformers) and a capacity constraint which ensures that the length of a sub-
tree incident on the root does not exceed a certain distance (Lmax). This problem is well studied
for its applications to centralized communication design. Unlike MST, CMST cannot be
efficiently solved in polynomial time. However, Essau-Williams [41] and Sharma [42]
developed heuristic algorithms to solve the CMST problem and Chandy and Russell [43] showed
that these heuristics find near optimal solutions within 10 percent (often 5 percent) of the optimal
solution.

Essau-William’s heuristic algorithm is implemented in order to get the least total length
LV layout within each cluster. A CMST algorithm starts with connecting all demand points to
the transformers using the star configuration. The procedure to go from star configuration to a
multi-point configuration is simply the successive iterations of calculating the trade-off values
from removing the direct connections between the demand points and the transformer ,as well as,
adding indirect connections through their neighbors. At each iteration, the trade-off value is

computed for every demand point and the largest trade-off value (i.e. the greatest improvement)
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that does not lead to a violation of the Lmax constraint is used to update the network. The
algorithm terminates when there is no further improvement possible.

An example of CMST algorithm with Lmax value of 5 is presented in Figure 2.8. It starts
with the star configuration in Figure 2.8a, and constructs the multi-point connections in Figure
2.8b-2.8d until there is no further change possible with the given Lmax. Notice that although the
trade-off value of point 1 is greater, its direct connection to the transformer is not removed due to

the constraint.

Figure 2.8 | A seven-point example of Essau-William’s CMST algorithm. a, Initial star configuration. b,
Maximum trade-off value is for Point 1 (2.23) however it violates Lmax. Point with the next best trade-
off value (Point 2) is selected. c, Next best trade-off value is for Point 6. d, Final configuration is reached
after Point 4 is connected.

2.4.2 Results on the sub-Saharan Africa sites

The algorithm is tested on household level data from nine sites in Sub-Saharan Africa

shown in Figure 2.1. In rural electrification programs, the clusters of demand points and loads
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are small, so we use representative costs corresponding to the typical small 25kVVA transformer
[35, 36]. Cost parameters and other constraints consistent with rural electrification practice [37-
40] are assumed to be: Dmax = 500 meters, Lmax = 600 meters, CLy = $10/meter, Cwmv = $25/meter,
Cr =$5000.

In Table 1, statistics and the outcome of our algorithm are shown for all sites. These results
can help network engineers and planners estimate the number of transformers and the LV, MV
line lengths easily for a particular location. In addition, by using our algorithm, they can also
quantify their empirical observations. For example, from Figure 2.1 b-e, Mbola seems more
dispersed than Bonsaaso (both have around 1000 households). Therefore the dynamics of their
networks are expected to be different by observation. The algorithm indeed outputs 90
transformers for Mbola and 18 for Bonsaaso, and, the cost per household is more than 2.5 times
for Mbola than for Bonsaaso. Similarly, Tiby (Figure 2.1 c) seems highly nucleated and this
leads to shorter (cheaper) connections. Hence, with $691 Tiby has the lowest per households cost
among all sites.

Table 2.1 | Algorithm results for nine sub-Saharan Africa sites

Area | Number Total Length Average Length Cost Distribution
of the of Number of per Household Total Cost ég:trageer
Image | Demand | Transformers Transf (USD) H E id
(km? | Points MV(m) | LV(m) | MV(m) | LV(m) | o MV Lv ouseno
SEN‘“E"G“AL 95.5 1797 71 57,644 | 63742 | 3208 | 3547 | 1460% | 59.20% | 26.20% | 2433515 1,354
T A"ﬁlbz‘ml A | 100 1175 ) 70762 | 81,320 | 6022 | 69.21 | 14.80% | 58.30% | 26.80% | 3,032,239 2,581
;‘2{; 100 2496 32 42026 | 51361 | 1684 | 2058 | 9.30% | 60.90% | 20.80% | 1,724,264 691
UR(;:;\II';‘A 100 6434 212 124293 | 351,209 | 1932 | 54.60 | 13.80% | 4050% | 45.70% | 7,680,302 1,194
B"Gr;f:ﬁi"' 100 993 18 27775 | 22334 | 2797 | 2249 | 890% | 6890% | 22.20% | 1,007,723 1,015
Ikaram, o, 0,
NIGERIA 100 1484 33 33572 | 46417 | 2262 | 3128 | 11.20% | 57.20% | 31.60% | 1.468479 990
Mayange, ) 0 0
RAND 100 3909 114 68,746 | 185987 | 1759 | 47.58 | 13.70% | 41.40% | 44.80% | 4.148506 1,061
Pﬁ%‘g‘l’:' 100 1570 88 73576 | 68,863 | 46.86 | 43.86 | 14.80% 62% 23.20% | 2,968,042 1,890
Mﬂi’lma’ 100 4230 152 97,763 | 213116 | 2311 | 5038 | 14.20% | 45.80% | 39.90% | 5,335,237 1,261
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From the test results, it is also possible to reach some generalized conclusions. For all sites,
overall transformer costs are between 8%-15% of the total cost. In addition, for sites that has
1000 to 2500 household for 100 km?, the bulk (~60%) of the total cost is composed of MV
voltage lines. In the dense sites (Ruhiira, Mayange and Mwandama), there is a greater number of
households per transformers and the total cost of LV line is comparable or even higher than the
total cost of medium voltage lines despite the fact that the MV line is more expensive than LV
line.

Furthermore, as a result of the rural electrification programs, some of the sites such as
Mwandama, Pampaida and Mbola have already partial existing grid. When we compare our
medium voltage network with the existing medium voltage line in these sites, we observe a
highly good match. In Figure 2.9, the overlap between the existing grid and the proposed grid is
shown. This indicates that the planners may benefit from our algorithm in estimating the network

structure and related costs also for these sites where there is an existing partial network.
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Figure 2.9 | Match between proposed network and existing grid. Proposed transformers, LV and MV
networks compared to partial existing grid. Algorithm outputs 90 transformers for 1175 demand points.

2.5 Discussion on Multi-level Power Distribution Systems

Results

In this section, we first assess the sensitivity of the two-level power distribution networks
in terms of the cost parameters for LV, MV lines and transformers (Section 1.5.1). This analysis
can be significantly useful for policy planners to estimate the total cost fluctuations due to
individual cost parameters. Next, considering that the complexity and the noise in the real data
from Sub-Saharan Africa may complicate the understanding of our results, we also test our
algorithm on simplified (simulated) datasets (Section 1.5.2) and see that we get consistent results
for the artificial data [49]. Then, we compare our algorithm with a sequential approach (Section

1.5.3) to see the relative performance and finally, we discuss the limitations and possible
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extensions of the algorithm for more detailed planning of power distribution systems and other

parts of infrastructure problems such as siting of health or educational facilities (Section 1.5.4).

2.5.1 Network Sensitivity Analysis in Terms of Cost Parameters

In our base case results, the cost parameters; CLv, Cmv, Cr; are chosen as $10, $25 and
$5000 respectively. We perform a sensitivity analysis to understand whether there is a drastic
change in the final network due to slight movements in these cost parameters. For the sake of
generality, we present the general behaviors of the algorithm on uniformly distributed randomly
generated points (1000 demand points on 10X10km?). At the end, we also present several runs of
the algorithm on the data from Sub-Saharan Africa and verify the generalizations in real datasets.

2.5.1.1 Analysis with MV and LV Line Costs

First, we define a ratio, p, between cost parameters of MV and LV lines (i.e. p=Cmv/CLv).
When the transformer cost parameter, Cr, is set to zero, the differences in final networks help us
understand the sensitivity of final network design to the ratio between cost of MV and LV lines.
Initially every demand point has one transformer; therefore maximum amount of MV and zero
LV lengths are used in the system. Figure 2.10 shows how the total length of MV and LV lines
change as the algorithm reduces the number of transformers from number of demand points to

the minimum number of transformers subject to Dmax constraint.
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Figure 2.10 | Change in total length of MV and LV lines. As the algorithm decreases the number of
transformers for 1000 uniformly distributed randomly generated demand points data within a 10X10km?
area, total MV line length decreases, while total LV line length increases

In Figure 2.11 a, we show the change in number of transformers as the p ratio is increased
from 1 to infinity. We interestingly observe that there is a critical value (p*) such that for all
values less than p* one transformer for each demand point (maximum number of transformer
case) is the minimum cost design. For other values, greater than or equal to p*, the solution
includes almost the minimum possible number of transformers without violating the maximum
distance (Dmax) constraint between demand points and transformers. Here, the critical p value

(p*) is observed around 1.70.
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Figure 2.11 | Network Sensitivity Analysis. a, The sudden change in the number of transformers as the
ratio between Cmy and Cpy cost parameters increases. b, Change in total MV and LV lengths from the
1000 transformer case. ¢, The change in the number of transformers for different q ratios as p ratio
increases.(See Section 5.1.2 for q). d, The difference between the curves in b with MV weighted with
different p ratios.

To understand this sudden change further, we need to think about how the algorithm works

in each step. The total cost is given by the following equation;
TotalCost; =C; xi+C,,, x > MVLength +C,, x >_LVLength
And when we assume there is no transformer cost, it becomes

TotalCost; =C,,, x >_MVLength +C, x> LVLength
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The algorithm compares the total cost values in determining the number of transformers.

Therefore, the only way to decrease the number of transformers is if

TotalCost; <TotalCost; where i< J . This means;
Cyy X X_MVLength +C, x> LVLength <C,,, x > MVLength +C,, x >_LVLength
and

p(z MVLength > MVLength)z (ZLVLength > LVLength)

Here, for small p values, the change in the transformer number is not profitable because it
also makes LV longer and cost of the LV is not cheap enough to make above equation hold (see
the black (darkest) line in Figure 2.11d). Then algorithm results in one transformer for each
demand point. However, after a critical p value (p=1.70 in Figure 2.11a) cost saving becomes
possible by decreasing number of transformers within the allowed configurations. Once the
algorithm favors less number of transformers, for all higher p values it goes all the way down to
the minimum number of transformers subject to the Dmax constraint because decrease in the MV
length is faster than the increase in LV length; the fewer the number of transformers the less total
cost (see Figure 2.11 b).

We perform the same analysis for some of the Sub-Saharan African sites and again obtain
similar results; most notably, a sudden drop in the number of transformers. Table 2.2 summarizes
the results. We observe that p* differs based on the number of demand points and their spatial
distributions. For example, for clustered sites (Bonsaaso and lkaram) p* value is smaller than the
rest of the sites and p* is highest for Mbola which is known as its dispersed settlement pattern.
Since p* is actually the ratio between the changes in LV and MV as the algorithm proceeds, it is
expected to have smaller ratios for clustered sites where the decrease in total MV line is much

faster than the increase in LV line for small number of transformers. Moreover, when Dnax iS set
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to 750 meters, algorithm finds less transformers than the 500 meters case and the sudden drop
point happens at smaller p* values as expected.

Table 2.2 | Critical p* ratio for some of sub-Saharan sites

Dmax=500 m Dmax=750 m
Drop Drop
p* Ratio p* Ratio
From To From To
Bonsaaso,
GHANA 1.20 993 18 0.018 1.18 993 17 0.02
lkaram,
NIGERIA 1.31 1484 35 0.024 1.27 1484 30 0.02
Pampaida,
NIGERIA 1.64 1570 288 0.183 1.63 1570 67 0.04
Mbola, 1.74 1169 93 0.080 1.64 1174 61 0.05
TANZANIA ’ y ' '
random1000 1.70 1000 169 0.169 1.54 1000 91 0.09

2.5.1.2 Analysis with LV Line and Transformer Costs

To be able to see the effect of transformer cost on the final network design, another ratio
between Cr and Cyv is defined here as q=C+t/ (CLv *Dmax) and the cost of MV line is set to zero
(since the cost contributions from Cr and Cwv are in the same way). Unlike the p ratio, Dmax iS
introduced in the q ratio to make it dimensionless.

The total cost is given by

TotalCost; =C; x j+C,, x>_LVLength

To be able to decrease the number of transformers

TotalCost; <TotalCost,
C,; xi+Cy, x> _LVLength <C; x j+C,, x > LVLength

(Z LVLength — > LVLength )<aD, . (i—i)
This time there is no sudden change and the number of transformers decreases gradually as q

increases (Figure 2.12a). The S-shaped behavior is due to the fact that closer nodes are connected
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first so the cost from LV length is initially smaller and the total cost is more sensitive to the

change in transformer cost.
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Figure 2.12 | Network sensitivity analysis. a, The change in the number of transformers as the C+/Cpv
ratio increases. b, The change in the number of transformers for different p ratios as q ratio increases.

2.5.1.3 Analysis with all cost parameters

In Figure 2.11c and Figure 2.12b, we looked at more realistic cases where all the cost
parameters are present. Figure 2.11c shows p ratio analysis for different g values. For high q
values, effect of S-shaped behavior of g dominates the sudden drop effect of p and we observe
higher critical p values for small g values. In Figure 2.12b, q ratio analysis with different p
values is presented and for high p ratios the sudden drop effect of p ratio dominates the smooth
decrease effect of g ratio.

In conclusion, depending on the price changes the design with minimum cost may change
drastically. For the values (p = 2.5, g = 1) that we use for calculating the grid in the nine Sub-

Saharan Africa sites, network generated by our algorithm is not sensitive. However, policy
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makers can use our algorithm as a tool to understand whether or not there is a possible design

change with future prices.

2.5.2 Testing of Algorithm on Simulated Data

Our results for African sites are specific to each site because all sites have different
number of demand points and spatial distribution patterns. The noise and the variety in the data
from Sub-Saharan Africa sites can make it difficult to draw conclusions from the results of the
algorithm. This is why we test our algorithm on simulated data which provide more intuitive
sense of what results would be. Same cost parameters and constraints are used for the base case
run of simulated data. (CLv=10, Cmv=25, C1=5000, Dmax=500, Lmax=600)

2.5.2.1 Multivariate Normally Distributed Randomly Generated Data

We present six 10 X 10km? artificial sites with 1000 demand points that are randomly
generated using multivariate normal distribution (generalization of Gaussian distribution in two
dimensions). To filter out the noise, we stretch out the points in two dimensions by increasing
standard deviations of the multivariate normal distribution (from 250 to 1500). The generated
sites are shown in Figure 2.13a-c, e-g, and the results are presented in Figure 2.13d, h. As
expected, the number of transformers goes up with higher standard deviation (Figure 2.13d) and
as the number of transformers increases, the total MV line used increases, while the total LV

decreases consistently (Figure 2.13h).
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Figure 2.13 | Multivariate normally distributed random data and results. a-c, e-g, Multivariate normally
distributed 10X10 km? sites with 1000 demand points. d, The behavior of algorithm as the standard

deviation increases. h, Average LV line per transformer declines as the average MV line and the number
of transformer increases.

2.5.2.2 Uniformly Distributed Randomly Generated Data

Next, we present 6 different sized areas (4X4, 6X6, 8X8, 10X10, 12X12, 14X14 km?)
with again 1000 demand points that are generated randomly using uniform distribution (i.e. the
likelihood of generating a demand point on any point of the site is same). Since these sites have
different areas but the same number of points the mean distance between demand points is the
highest for 14X14 km? site and decreases as the site area gets smaller. The generated sites are

presented in Figure 2.14 and the results are summarized in Figure 2.15.
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(a) (b)

Figure 2.14 | Uniformly distributed randomly generated data on different sized areas.

To facilitate the quantitative comparison between sites, we refer to “average nearest
distance” defined by Clark and Evans [44]. We calculate the average nearest distance using a
Geographic Information System (GIS) tool for each different sized site and they are shown in the
x-axis of Figure 2.15a-b (60 for the densest site (4X4 km?), around 260 for the largest site
(14X14 km?)). Due to the lower number of demand points within the radius of Dmax, number of
transformers increases almost linearly (Figure 2.15a) as the average nearest distance increases
(same total number of demand points, same Dmax) and when we keep the ratio between the
average nearest distance and the Dmax Same, we obtain the same number of transformers for each

site (Figure 2.15b).
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In addition, we also test our algorithm on the same sites setting the Dmax to various
numbers between 50 and 1000 and present the results in Figure 2.15c. As expected, the number
of transformers increases as the Dmax decreases and converges to the number of demand points.
This is in general more sensitive in the dispersed areas making the slope steeper (slope in the

Figure 2.15a) for lower Dmax values.
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Figure 2.15 | Results for uniformly distributed random data. a, Number of transformers outputted by
algorithm for the sites which have same number of demand points but different average nearest distances.
b, The number of demand points when the ratio between Dmax and Average Nearest Distance is kept
constant for each site. ¢, Number of transformers versus average nearest distance for different values of
Dmax constraint.
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2.5.3. Comparison of Our Algorithm with a Sequential Approach

As it was discussed in Section 2.1.2, to our knowledge, none of the previous studies in
rural electrification and power engineering literature exactly matches with the objective of our
paper. Complexity of the existing models [14, 15, 19] limits their suitability for the large data
sets of demand points (up to 6500 households per site in our case). However; we can still
compare our results with a relatively simpler sequential approach. In this approach, problem is
divided into three sub-problems: transformer location problem, MV network design problem and
LV network design problem. Then, each sub-problem is solved sequentially.

In the sequential approach, a greedy approach proposed for set covering problem® by
Chavatal [45] is implemented to solve transformer location problem. Chavatal proves that the

cost returned by the heuristic algorithm is at most H(d) times of the cost of an optimal solution

d
where H(d):zyi and d is the size of the largest set found by the algorithm. Once the
i=1

locations of the transformer and their service areas are known, the MV and LV networks are
found using MST and CMST algorithms, respectively. Then, total cost of transformers and cost
of networks are calculated.

Final number of transformers and total cost results for both sequential approach and our
algorithm are presented in Table 2.3. It is shown that our algorithm tends to perform better than
the sequential approach in terms of the total cost providing 4.5% improvement across all sites.
We note that both approaches discussed here are based on polynomial time algorithms and

provide reasonably good solutions to an NP-hard problem.

5Set covering problem aims to find the minimum number of sets subject to the constraint that each demand point
should be covered (served) by a facility within a certain coverage criterion.
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Table 2.3 | Comparison of our algorithm with a sequential approach

Number of Number of Transformers Total Cost (S)
Demand
Points Our Algorithm Sequential Our Algorithm Sequential Difference

Approach Approach
SEETEC()SUAL 1797 71 70 2,433,520 2,534,654 -4.2%
TANINIECI;":JIIA 1175 90 96 3,032,250 3,180,655 -4.9%
Ifllt;ylfl 2496 32 31 1,724,260 1,716,742 0.4%
UR(lﬁigll\llr[a)A 6434 212 199 7,680800 8,323,259 -8.4%
Bgr;ISAa:JS;) 993 18 16 1,007,715 996,358 1.1%
Illﬁ?SrSF:TA 1484 33 34 1408 1,546,644 -5.3%
r@fg[g)i 3909 114 107 4,148,520 4,327,479 -4.3%

P id

ilrlr(]SpEaRllﬂ?) 1570 88 98 2’ . -5.9%
Mﬁiﬁma' 4230 152 154 2,335,235 2,832,993 -9.3%

The model described in this paper intended for obtaining quick estimates for the network

e Our present model does not take some concepts into consideration such as power flow,

implementation. Below we list a set of simplifications that we adopted:

2.5.4. Limitations of Our Algorithm and Possible Extensions

structure and associated costs as a part of feasibility analysis, rather than being used for detailed

power loss, voltage regulations, and transformer sizes for simplicity purposes.

e We use constant cost parameters throughout the entire system for transformers and wires.

Thus, we limit our model to have single type of transformer (25kVVA) and single LV and

MV technology (three-phase).

45




e We assume that our demand points are distributed with the similar loads and spatial
characteristics and do not model bulk MV and non-homogenous loads.

e Upfront capital costs dominate the operations and maintenance (O&M) costs and are
treated as “overnight” costs (i.e. it is assumed that the entire system investment is made at
once).

e We do not include in our model network control devices such as voltage regulators,
switches etc.

Our intent in this paper is to keep the model as simple as possible with the assumptions
above while focusing on designing two-level network such that the overall distribution system is
optimized in one framework as suggested by [46]. A multi-level network design problem which
includes multi-point network configuration in one level has enough complexity; however our
model can still be extended to include some of the important concepts mentioned above.

For example, based on the number of demand points served by a transformer, transformer
size can also be determined by the model and different cost parameters can be used to calculate
the total transformer costs. For example, instead of using 25kVA for $5000 each, we can prefer
assigning cheaper 16kVA transformers to the clusters which serve small number of points in
sparse areas. Thus, we could decrease the total cost and avoid underutilized transformers.

Furthermore, it is also possible to put a capacity constraint (to incorporate the power losses
and voltage regulations) in MV network even though this would make the problem even more
complicated. Using the source as root, we can use CMST algorithm to design the MV level
instead of using MST. For the LV level, Lmax can be determined from the power loss and voltage

drop constraints. Based on the number of transformers and the total length of the network,
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number of network control devices can be estimated and the cost of these devices can also be
included in the objective function (total cost) of the system.

Another modification in the algorithm that could be done is that instead of using, multi-point
network configuration in the LV level, star configuration can also be employed as it might be
preferable for some situations. In this case, at each step of the algorithm CMST algorithm will be
skipped and total cost of LV network will be found after calculating the direct distance between
transformers and their associated demand points.

It is also possible to introduce time in our model with an assumption on the lifetime of a grid.
For depreciation purposes, the lifetime of a grid is considered between 20 and 30 years but in
reality it is usually more with a proper maintenance [35]. It is also acceptable to use a number
between 1/8 and 1/30 of the capital cost for an estimate on the O&M costs in annual basis [35].
Thus, given annual costs and life time the grid, O&M costs can be discounted to the present
value and be included in our objective function.

Furthermore, another potential application of our algorithm would be in facility location
problem where given a set of household locations, planners are interested in finding how many
schools or health facilities they need [44-48]. The unique situations of rural areas, in particular
the sites in Sub-Saharan Africa as explained in the introduction; prevent many of the existing
algorithms from being applicable as they usually require a set of candidate facilities as an input
and there is no way to refine the candidate locations on the two dimensional coordinate system of
the ground in these sites. By removing the cost of the network from the objective function, our
algorithm can easily be modified for this purpose. This will simplify our algorithm to an

agglomerative clustering algorithm that minimizes the total cost of opening facilities subject to
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the Dmax constraint, which specifies the maximum distance between each household and the

facilities (discussed in Section 4.1 in detail).

2.6 Conclusion

With the local-level household data developed from satellite imagery, we look at how the
settlement patterns of households (demand points) affect the cost of power distribution systems.
Rural energy planning has mainly focused primarily on the national to regional scale. This study
is one of the first examples which focus on the local level analysis and help energy planners
make the rapid assessment of distribution systems planning and partial electrification in rural
settings. In the first part of this chapter (single level electrification), we show that some
population settlement patterns offer the potential for savings (on a per-unit basis) in upfront
investments through an initial roll-out that covers part of the population; later expansion of these
partially spanning networks can be undertaken at little additional cost in the long-term.

In the second part (multi-level), a new heuristic algorithm for the design of two-level
power distribution systems has been introduced. It has been presented that the algorithm finds
the number and locations of MV/LV transformers without giving any candidate locations and
finds a multi-point low voltage network between demand points and transformers. The proposed
algorithm ignores transmission losses, load flow considerations and local topography. Hence it
should be viewed as a quick tool which simplifies a complex problem and provides good starting
point for decision makers and practitioners. However; our algorithm is flexible such that it can be
simplified to other infrastructure problems (for example; facility location problem) or it can be

extended to include more distribution system components such as transformer sizes.
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Chapter 3

Modelling of a Hybrid Energy System with Conventional

Hydro Storage

55



3.1 Introduction

The importance of sustainable energy planning has increased substantially with rising
population growth rates, environmental issues and economic developments. International Energy
Agency (IEA) estimated that primary sources of electricity in 2009 consisted of 40.6% coal,
21.4% natural gas and 5.1% petroleum summing up to a 67.1% share for fossil fuels in primary
electricity consumption in the world [1]. However, fossil fuels are finite and their combustion
results in greenhouse gas emissions, which contribute to global warming and health hazards.
Therefore, energy models that involve clean and renewable energy sources are necessitated to
ease the concerns on the electricity generation that meets the projected demand.

Transition to alternative renewable energy sources is inevitable. However, renewable
sources are generally are variable and heavily dependent on the spatial location (e.g. sunshine
while more predictable, is limited to daytime hours, and the total annual insolation is also
spatially varying. Annual wind energy potential is even more spatially heterogeneous.). Thus if a
future energy system wants to predominantly rely on these sources, it must utilize a mix of
variable and dispatch-able resources that are interconnected, thus requiring investments in
transmission, or utilize back-up dispatch-able resources (likely to be fossil fuels or hydro in the
near term), or utilize some form of storage (e.g. pumped hydro or compressed air energy storage),
or allow some of the energy generated to be curtailed or use intelligent demand side management.
For cost-effectiveness of the overall system, the approach is likely to be “all of the above” [2-4].
Here, for the sake of demonstration we imagine a long-term scenario that primarily relies on
solar and hydro as the renewable resources and assume that fossil fuels will be expensive and

hence judiciously used.
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We imagine the demand profiles of a specific country, and model the long-term
investments and storage while capturing the volatility of hourly supply and demand. In this
country, we first identify candidate basins for hydro power stations and aggregated demand point
locations (the cities or the states of the country). We assume that the first use of solar will be for
immediate in time as well as locally. Then, we determine the possible transmission network
between supply and demand points. We mathematically model this hybrid energy generation and
allocation system, where time variability of energy sources and demand is balanced with the

water stored in the reservoirs of hydropower stations.

Hydropower plants are known as reliable parts of power systems due to their inherent
instantaneous starting, stopping and load variation ability [5] and can be designed with or
without storage. A plant without storage is called run-of-the-river system and produces
electricity by diverting river flow through turbines that spin generators without materially
altering the normal course of the river. Hydropower plants with storage can be either a
conventional plant where incoming stream flows are stored in large reservoirs in dams and water
release can be varied or deferred as per need or a pumped hydro plant where water can also be
moved between a lower and a upper reservoir for later use. In this chapter, we present a model
for a hybrid system which includes conventional hydropower stations and decentralized solar
power stations working together to meet the variable demand. To increase the reliability of the
system, diesel generators (as a proxy for expensive fossil resources) are used as a backup source
where we ideally use only when there is no hydro and solar power production possible due to the
intermittency of renewable sources. The objective is to find the least-cost design for the power
stations and transmission lines, which also minimizes the diesel usage. Then, in the next chapter,

we present a pumped hydro model where excess electricity generated from solar energy can be
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transmitted to hydropower stations and used to pump water to the upper reservoir to store energy

in the form of potential energy.

The main motivation of the model is to determine the optimal capacities of infrastructure
needed to match projected demand and supply in the most cost effective way. We answer
questions such as; -where to locate hydro and solar power stations, -where, when and how much
solar and hydro energy should be produced during each time interval, -what should be the size of
reservoirs so that the demand and supply would be matched, —from/to where and how much
energy should be transmitted? In this section, we also provide results for alternative hybrid
system designs such as solar-diesel, run of the river-diesel, solar-conventional hydro-diesel and

show the quantitative importance of storage while using renewable sources.

An innovative contribution of this work is the establishment of a new perspective to
energy modeling by including fine-grained sources of variability such as stream flow, solar
radiation in hourly level as well as spatial location of supply and demand in the national/regional
level. The model is formulated as a stochastic linear program. Stochastic nature of inputs such as
stream flow is addressed by determining scenarios from the time series. The model will be
presented with a case study of India and helps answer whether solar energy in addition to high
hydro power potential in the Himalayas would provide a back-bone for a low carbon economy in
the face of growing electricity demand if fossil fuels could be almost completely phased out from

electricity generation.
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3.2 Background

3.2.1 Literature Review

This study is relevant to some well-studied problems in the literature such as planning of
hybrid energy systems, long-term energy investment planning problems, and electricity
generation expansion problem.

The idea of a hybrid system is to obtain the most cost efficient system using alternative
sources. In order to obtain electricity from a hybrid system reliably and at an economical price, it
must be designed optimally in terms of operation and component selection. Many different
hybrid systems which has been proposed in literature, involves renewable resources such as solar
photovoltaic, wind and hydro with or without existence of storage alternatives such as pumped
hydro or batteries [2-4]. Mathematical modeling and optimization of hybrid systems is not an
easy task as they usually involve many components and decision variables. Especially in the
existence of storage, the fact that all time units in the planning horizon are linked to each other
complicates the solution of the model. Therefore, hybrid systems have generally been proposed
more for localized and decentralized systems without including transmission part of the power
systems to reduce the complexity of the models. However, there is a need for feasibility studies
in the literature which help understand contribution of the renewable sources in national energy
system planning.

In the macro level, several national level energy planning models have been proposed [6-
11]. These models provide policy makers with extensive details on energy generations and
consumption technologies and how to meet some of the long-term goals related to government
policies such as phasing out fossil fuels or decreasing greenhouse gas emissions. Previously

proposed studies (except for [6]) include time component in their model with increments from 1
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to 5 years and use the average values for energy sources and demand. However, it has been
shown that models that utilize intermittent sources such as solar and wind tend to understate their
value when averages are used [12]. These sources look more valuable when production periods
are set to as short as a few hours. In addition, all these models use aggregated supply and demand
without explicitly representing spatial locations. Therefore it is not possible to answer specific
investment questions such as where to locate solar power station or how to expand the

transmission lines.

3.2.2 Background for India Case Study

India, with 1.27 billion people, is the second most populous country in the world as of
2013. According to World Energy Outlook, 2012 version from IEA, India is expected to
overtake China soon after 2025 becoming the most populous country and its population will
exceed 1.5 billion in 2035 [13]. In India, nearly 25 percent of the population lacks basic access to
electricity and electrified areas suffer from electricity blackouts [14]. Moreover, India heavily
depends on coal for meeting its current energy demand (with a share of 42% in 2009). It is
currently the third-largest generator of coal-fired power after China and United States and
estimated to overtake United States to become the second-largest by the end of 2025 [14].
Therefore, increasing rate of energy consumption, heavy dependence on petroleum fuels and
volatility of world oil market increase the importance of clean energy sources in order to be able
to balance the need for electricity and address the environmental concerns for sustainable
development in India. Furthermore, there is also additional factors such as global pressure,
voluntary targets for greenhouse gas emission reduction and intensification of rural

electrification program that promote the use of renewable sources in the country [15].
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India, with a vast land area, is very rich in terms of renewable energy sources like solar,
hydro, wind and biomass [16]. Given the Himalayan ranges in the north having numerous rivers
and streams with perennial flows; one of the biggest renewable potential in India is the
hydropower. Stream flow in the Himalayan Rivers is generated from rainfall and concentrated
snow. The flows are observed throughout the years and steep geographical slopes make all the
streams in Himalayans high potential sites for hydropower generation [17]. As the potential is
quite significant, both large-scale and small-scale hydropower stations can be considered for
installation. Our goal in this chapter is to evaluate both alternatives. In national level, large
power plants seem to be more cost effective as they include “water storage (reservoirs)” instead
of substantially expensive “energy storage” (batteries) and small-scale plants (e.g. run-off-the
river stations) is environmentally friendly and sufficiently meets the need in smaller demand
areas.

Moreover, India lies in the sunny belt of the world and a very promising place for solar
energy generation. The average intensity of solar radiation received in India is 200 MW/km?
with 250-300 sunny days in one year [18]. With the increasing urbanization rate, cooling
demand also increases in India and the same trend in solar radiation and cooling demand makes
solar energy utterly suitable source to meet the peak demand caused by the air conditioners. In
our model, we consider the energy generated from solar power as a part of the nation-wide
energy planning optimization processes and find the optimized solar panel area for each demand
point using the hourly solar radiation data.

In addition to hydro potential and solar energy, wind power and biomass are the other
clean energy resource currently being exploited in India [19]. Wind power is widely distributed

energy resource and has its own unique advantages especially for the developing world such as
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being able be installed quickly in areas where electricity is urgently needed. Total wind energy
potential in India has been assessed as 45 GW in 2008 [20] and as of September 2013 19.8 GW
of these capacity has been installed [21]. In our model, we include neither wind energy nor
biomass in our problem; however, once the data is available, it is fairly easy to extend the model

to include more renewable sources as can be seen below.

3.3 Problem Statement

Dispatch-able power is the power that can be called on when needed, in contrast to base
load power, which is essentially always on. Dispatch-able generation is a premium power source
since it is controllable and not wasted. For example; when air conditioners are off and
refrigerators are not running, there is no need for power inflow and in this case, having
controllable supply power saves energy. In a carbon-constrained world, we want to use as much
renewable sources as possible; however, because of the intermittency of renewable sources, they
are mostly non-dispatch-able. Hybrid power systems, energy storage, long distance transmission
and demand response programs can help reduce intermittency of the renewables and allow the
grid accommodate more variation on both supply and demand. In this problem, our goal is to see
how combining multiple renewable sources which have different variability, storage and
transmission can help reduce the intermittency and variability of sources and increase the

reliability of the power systems.

Our model is designed to help infrastructure planners make long-term investment
decisions based on the results for electric dispatch, energy resource allocation and storage over
one-year horizon. The objective of the model is to minimize the sum of the investment costs and
expected penalty cost for the demand which can not be met by renewable sources. Given
demand points and candidate basin locations for hydropower stations, we are interested in
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optimal sizing of power stations (hydropower and solar) and transmission lines (between basins
and demand points) while minimizing the infrastructure cost of solar and hydropower stations
and cost of the back-up energy source (diesel generators) that we use in case there is no stream
flow or solar radiation available. In this system, water stored in the reservoirs can mitigate
volatility of supply and demand. Water release from the reservoirs can be controlled and deferred
until it is needed. Thus, reservoirs facilitate energy transfer from low use periods to peak use
periods, allowing the system operate based on demand load while maintaining high system
reliability.

Storage is the key enabling technology for intermittent energy; however, it complicates
the design of optimization problems by coupling all the time periods together. While working
with sources that are not constantly available such as solar, the time increment that we use in the
optimization model becomes quite important. As it will be discussed in Section 3.3.2.1, stream
flow data in Himalayas, solar radiations as well as demand show both seasonal and diurnal
variability. To accurately capture the diurnal variability, it is necessary to model energy supply
and demand in hourly time increments. Moreover, because of the seasonal variability of the
sources, it is also crucially important to use at least one year as time horizon. An approach that
avoids capturing every time increment over a year by simply sampling different time periods (e.g.
different time of the years and time of the days) fails to accurately model the storage. Moreover,
modeling reservoir systems is principally more complicated than modeling other storage types
such as a battery which stores energy during the day and releases at night. Here, we may put
water in reservoir storage in September so it can be used in dry seasons, couple of months in the

future.
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The nature of hydropower generation, storage and the stochastic aspect of the key
variables like stream flow, solar radiation and demand make optimization problems quite
difficult to be dynamically solved as high number of units is involved. Here, following the
typical strategy in stochastic programming, we present a scenario based static model with
multiple time periods and time periods are coupled by storage. Possible random situations are
represented by scenarios with the associated probabilities. By scenario approach, a set of
prototype 1-year series with 3 hourly time increments are selected from the time series as a
particular realization of the uncertain data. A drawback of a scenario-based approach is the fact
that scenarios are generated in advance, and this limits their ability to capture the interaction
between decisions and exogenous events. We assume that effect of this drawback can be
minimized during the real-time operations of the power systems. For example, in case of very
rainy season which is not foreseen and captured by scenarios, the water in the reservoirs can be

controlled to be prepared for the season.

3.3.1 Hybrid System Components

The hybrid model described in this chapter has three sub-systems; hydropower stations,
solar power stations and transmission network between hydro and solar power stations. Design
of individual power systems is not in the scope of this problem so several assumptions are made
to reduce the complexity of the model.

3.3.1.1 Hydropower Systems

Here, we identify several basins as candidate locations for hydropower stations and
optimization model is solved for the size of the reservoirs and generators to determine the type

and capacity of the power systems. If the generator size is zero for a candidate basin, there is no
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need for a hydropower station at that candidate basin. Moreover, when generator size is positive
whereas the reservoir size is zero, then it means a run-of-the-river system is the optimal choice of
the basin. It should be noted that these decisions are based only on supply and demand data.
Other site-specific concerns such as effects of dams on fishing, recreational activities and
tourism or environmental constraints are not taken into account.

In a more detailed hydropower plant design problem, diameter of the pipe from the
reservoir to turbines would be another constraint to consider. Here, we assume that pipeline sizes
are proportional to reservoir size and cost can be included in reservoir cost. Moreover, empirical
information shows that there is no operational cost based on the output level of the hydropower
station [22]. Water represents the only variable that could be in the form of opportunity cost and
is not taken into account in our model. For our case studies, we use $1/m?* as unit cost of
reservoir capacity (i.e. constant incremental cost of installing reservoir capacity) which is within
the ranges given in [38] and [39]. For the unit cost of powerhouse (generator, turbine/pump,
transformers), we use $500/kW as this value is the lower bound of the range given in [40] for the
capital cost of the medium to large hydropower stations (assuming that the lowest cost system
has no storage). The cost parameters can clearly vary from site to site and this can easily be
incorporated in the model assigning site specific unit cost for each investment variable.

In this model, although we are interested in finding the size of multiple reservoirs, we
assume that each hydropower plant operates independently and each plant is assigned to one
reservoir. Due to frictions in the tunnel, turbines and generators, 12-14% of the potential energy
of the water can be lost while generating electricity [22]. Therefore, we use 88% efficiency for

all plants here. Losses due to evaporation from the reservoirs are ignored.
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The potential for power production at a reservoir site mainly depends on the flow rate of
water that can pass through generation turbines and the potential head available. Potential head
usually depends on the topology and the constructed wall of the dam because based on the design
of the dams; the water level stored in the reservoirs can have an important influence on the
energy potential of water. For example; in Norwegian statistics, the vertical height of a waterfall
is measured from the intake to the turbines [22]. Given the steep slopes of the Himalayas, it
would be reasonable to use the same statistic here. Thus, we use a constant head for each
reservoir during the operations and do not consider the reduced electricity conversion efficiency,
which is caused by the fact that height of water falls is reduced as the reservoir is drawn.
Moreover, usually reservoirs have dead storage capacities for providing a firm head for
hydropower production taking care of the sedimentation requirements. Since our optimization
model solves for only the active storage, a prescribed fraction of the total reservoir cost can
simply be added to objective function with a minor change.

3.3.1.2 Solar Power Systems

Sun is with no doubt is the largest energy source present and the amount of energy it
provides to the Earth (1.8 x 10** MW) in one hour is more than the total energy consumed in an
entire year. However, generated power from the solar sources is less than a percent of the
world's power consumption [23]. Many research groups have been studying various ways to
increase the energy generation efficiency and storage capability [24, 25]. The two main device
types that are utilized for this purpose are photovoltaic (solar cells to generate electricity directly
via the photoelectric effect) and concentrated solar power (capturing solar thermal energy for use
in power producing heat processes). In both types, there are techniques developed to enhance the

efficiency such as designing the materials and the systems that are used to absorb sunlight or
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using sun-trackers to compensate the Earth’s motions keeping the best orientation relative to the
sun [23-25].

Here, we use a simplistic approach and set the efficiency to 12% [25] and assume that
solar power systems cost is linearly dependent on the size of the solar panels. Upfront capital
costs dominate the operations and maintenance (O&M) costs and are treated as “overnight” costs
(i.e. it is assumed that the entire system investment is made at once). The estimated range for
overnight capital cost of a solar photovoltaic system is between $2500/kW and $9500/kW [40].
Assuming 200 MW/km? average solar radiation and 12% efficiency, a solar power station with 1
km? solar panel could generate 24 MW. Then, the cost of a 24 MW system with 1km? solar panel
is estimated to be between $60 and $228 million. In our model, we use $150 million as the
estimate for the representative solar power system unit area (1 km? solar panel). Therefore, we
use approximately $6200/kW as our overnight capital cost for a solar photovoltaic system.

No battery storage introduced in the solar power stations here because the solar
power system will only function in the day light and the generated power will be sold to
the grid.

3.3.1.3 Transmission Network

Transmission cost in a power network usually depends on the capacity, distance from
generation sites to demand points and related power losses in the lines. In our model, we use a
process that allows us to have the transmission cost dependent on both the distance and the
capacity of the lines. The details of the cost analysis along with the data are provided in
APPENDIX A and here we will provide a short description of the process and some fundamental

details.
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We first calculate how the unit cost of unit power transmission varies based on the
distance (further details given in the next paragraph). Next, we calculate the spherical distance
between two points and multiply it with the corresponding cost multiplier to estimate the unit
investment cost of the transmission line between the two points per unit power [26]. Then, we
use this unit cost in the objective function of our optimization model to minimize the total
investment cost. The data used in the model is compiled by Selcuk Korel, MS’2010, Columbia
University, using the sources [41-43]. The way we calculate the cost per unit power per distance
is as follows:

We initially determine what type of transmission lines can be used to transmit a certain
amount of power by a certain length of distance using surge impedance loading factor. Then, the
investment costs of alternative transmission lines are calculated. For example, in order to
transmit 300 MW by 250 miles, one can choose to use 500 kV DC Bipole, 230 kV AC Double,
345 kV AC Single Circuit or 500 kV AC Single Circuit transmission lines where investment
costs are estimated to be $442 million, $275.8 million, $308 million and $537.5 million
respectively. We then repeat this procedure and calculate the cost of 1 MW power transmission
by 1 km for 27 alternatives including various distances and for various power levels. After we
have the unit cost values for all the alternatives, we then fit a curve to estimate the incremental
cost per unit power per distance. In our analysis, we have determined a linear relationship
between the amount of power and the cost. The slope of this relationship decreases with the
distance transmitted. As a result, we have computed three cost parameters for three distance
ranges (0-500 km, 500-1000 km and >1000 km) as $1.1 million, $0.8 million and $0.6 million

per giga watt per kilometer, respectively.
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In our model, there is a loss parameter that is proportional to the distance. Underground
cable transporting and the cost for the stations have been also assumed to be proportional to the
distance of the connection and included in the unit cost calculations.

Possible network flow directions from sources to demand points are prescribed with
dedicated lines and designed as a point-to-point topology. Here we neither model the grid itself
nor consider real power flow equations / phase angle differences and assume that power flows
over lines can be independently assigned. This level of detail is only required for operational
models and for certain types of regional planning models that aims to identify the bottlenecks in
the grid. Our model does not have an explicit representation of the grid, but utilizes point-to-
point distances to compute transportation costs and transmission losses with individual links for
power station-to-state transmission. This representation of power flows, which captures point-to-
point movements without explicitly modeling the grid, is a common approximation made in
policy studies [6]. A more detailed discussion on transmission systems and how they can be

linearly modeled can be found in [27].

3.3.2 Input Data

Aside from the physical features of the hybrid system, the model needs the following
input data to determine the scenarios and calculate the estimated operation in the planning
horizon; stream flow data for each candidate hydropower locations, solar radiation data and
demand profile for each demand point.

3.3.2.1 Stream Flow Data
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Stream flow in the Himalayan Rivers is generated from rainfall and the melting from
accumulated snow-pack. The flows are observed through the all years and steep slopes make all
the streams in Himalayans potential sites for hydropower generation [17].

Forecasting the inflows and capturing the structure of the processes is of vital importance
to hydropower models. This issue is discussed in detail in [28]. For our model we identified
several basins from [29] in Himalaya Mountains which are either proposed or under construction
areas for hydropower generation. Then, 3-hourly stream flow data for the years between 1951
and 2004 for each candidate basins is obtained from the Variable Infiltration Capacity (VIC) land
surface model which is a large scale hydrological model. This model can be implemented at grid
cells from 1/8° to 2° latitude by longitude and with temporal resolutions from hourly to daily.
For this study model is ran at 1° at 3 hourly resolutions. The details of the VIC model can be
found in [30, 31]. General statistics about basins and details of the data are given in Table 3.1.

Table 3.1 | General Statistics for Basins

Period 1951-2004 (Stream Flow m3/s)
Standard Coefficient of

No River Project Lat(°E) Long(°N}) Min Max Average Deviation Variation
1 Bhagirathi Tehri 30.38 78.48 2 36550 217 592 2.73
2 Pinder Devsari 3041 79.37 0 13734 165 230 1.39
3 Chenab Pakal Dul 33.46 75.81 169 43334 1765 1957 1.11
4 Marusudar Bursar 33.29 75.76 44 12749 466 516 1.11
5 Lohit Demwe 28.03 96.45 77 18915 599 616 1.03
6 Dibang Dibang 2834 95.78 46 21362 284 305 1.08
7 Barak Tipaimukh 24.23 93.02 0 46528 2086 1968 0.94
8 Siang Siang 28.17 95.23 878 1863500 13879 23303 1.68

In India, the normal onset of Monsoon is expected to be observed around June and its
withdrawal completes by around October every year. Therefore, as it can be observed from the
stream flow time series data of Bhagirathi River for the years 2003 and 2004 in Figure 3.1a,
stream flow data shows significant seasonal variation. There is also a substantial contribution
from snowmelt runoff to the annual stream flows of the Himalayan Rivers [17]. The water yield
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from a high Himalayan basin is roughly twice as high as that from an equivalent basin located in
the peninsular part of India. A higher water yield from the Himalayan basins is mainly due to the
large inputs from the snowmelt and glaciers [32]. Most of the snow melts occur in the summer
period correlated with the sun light and cause diurnal variation in the stream flow. An example to
show diurnal variability is presented in Figure 3.1b.
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Figure 3.1 | a, Stream Flow Data of Bhagirathi River for 2003 and 2004. Monsoon is expected to be
observed around June and its withdrawal completes by around October every year. b, Stream Flow Data
of Bhagirathi River for a week in March. Most of the snow melts occur in the summer period correlated
with the sun light and cause diurnal variation in the stream flow.

3.3.2.2 Demand Data

Aggregated electricity demand data in 3-hourly resolution is collected for Delhi and 7
other states which are located in northern part of India. Total monthly power availabilities and
requirements for each state for the year 2012 are provided on Central Electricity Authority,
Power Ministry of India (CEA) website [33]. On the website of Load Dispatch Center of Delhi,
daily load profiles for the days where peak demand occurred in each month are provided. A few
other states such as Chhattisgarh, Assam and Punjab also publish on their website daily, weekly
or monthly reports for daily load profiles for a number of days or for the times when the

minimum and maximum demands are observed. We have used the collected data to accurately

71



estimate the 3-hourly demand load profile of each state for one year. If there is missing data for
some days or hours within a day, interpolation/extrapolation methods are performed to project
the data. When there is only limited number of days that we can use as a representative of all
days in a month, we generated data from a normal distribution with mean equal to observed
demand of given days and standard deviation equal to 5 percent of the observed data.

For the states which we do not have access to daily load profiles such as Uttar Pradesh,
Bihar, Jharkhand and West Bengal, we used Chhattisgarh as a reference state. Daily load profiles
of Chhattisgarh are rescaled by the ratio between total monthly demands collected from CEA’s
website. The location of the basins and demand points are presented in Figure 3.4 and the list of
the states with the estimated annual demand for the year 2012 is provided in Table 3.2.
Population data provided in the table is based on 2011 Population Census [34].

Table 3.2 | List of states used as aggregated demand points

Population Estimated Annual

(Million) Demand in 2012 F';‘Z?gr
(2011 Census) (GWh)

Delhi 16.8 30,013 0.71
Punjab 27.7 47,534 0.59
Uttaranchal 10.1 12,786 0.82
Himachal Pradesh 6.9 7,744 0.72
Uttar Pradesh 199.6 87,916 0.79
Bihar 103.8 13,774 0.76
West Bengal 91.3 40,777 0.79
Jharkhand 33 5,663 0.78
Assam 31.2 5,162 0.63
Chhattisgarh 25.5 17,718 0.81

The daily demand profiles of Delhi for each month in 2012 are presented in Figure 3.2.
The highest demand is observed in summer months and the demand is lowest in winter months.

The fact that the highest demand occurs in summer and daily peak demand is observed in the
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afternoon can be explained by the increasing cooling demand in summer. In winter, it is possible
to observe two peaks in the daily load profile, one in the morning and one in the evening and this
can be explained by the lightning demand. In Figure 3.3 we present the monthly total demand of
the ten states listed in Table 3.2. The daily distribution of the demand used in the case studies of

this thesis can be obtained from Appendix B.
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Figure 3.2 | Daily demand profile of Delhi in 2012
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Figure 3.4 | Basins and demand points determined in India for analysis. Data is collected from CEA
(Central Electricity Authority, Power Ministry of India) and other official websites to accurately estimate
the 3-hourly demand load profile of each state for one year. If there is missing data for some days or
hours within a day, interpolation/extrapolation methods are performed for projection.

3.3.2.3 Solar Radiation Data

Site and time specific, high resolution solar radiation data was developed using weather
satellite by the U.S. National Renewable Energy Laboratory (NREL) in cooperation with India's
Ministry of New and Renewable Energy. Global and direct irradiance at hourly intervals on the

10-km grid for all of India for the years 2001-2008 is available on NREL’s website. Solar
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radiation data for all demand points used in the model is presented with some statistics in Table

3.3.
Table 3.3 | Solar Radiation Data
Period 2001-2008 (Global Horizontal Irradiance : W /m?2)
Standard Coefficient of
Lat(°E) Long (°*N} Min Max Average Deviation Variation

Delhi 29.02 77.38 0 1004 213 295 138
Punjab 30.79 76.78 0 880 208 287 1.38
Uttaranchal 30.33 78.06 0 998 209 289 138
HimachalPradesh 31.10 77.17 0 1013 213 292 137
UttarPradesh 26.85 80.91 0 1002 221 320 1.45
Bihar 25.37 85.13 0 1006 221 321 1.45
WestBengal 22.57 288.37 0 999 212 313 1.47
Jharkhand 23.35 85.33 0 1009 224 224 1.00
Assam 26.14 91.77 0 974 193 273 141
Chattisgarh 21.27 21.60 0 1003 232 312 134

3.4 Problem Formulation

As discussed above, we propose a stochastic linear programming approach to formulate
and solve the described problem where uncertainties in the input data will be facilitated in the
form of scenario realizations. Tables 3.4, 3.5 and 3.6 summarize the indices, parameters and
variables used in the model.

Table 3.4 | Indices for parameters and decision variables

i: hydropower generation point 1,...,I, with a total of I locations

J: demand (solar power generation) point 1,...,J, with a total of J points
t: time period 1,...,T, with a total of T periods
w: scenarios 1,..., Q, with a total of Q scenarios

Table 3.5 | Parameters of the model

n: length of time periods
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d: dimensionless annualization parameter used to express the investment cost on a yearly
basis
lij: percentage of power loss while transmitting electricity from hydropower generation

point i to demand point j.

g: standard acceleration due to gravity (~9.8 m/s?)

hi: height of the reservoir in hydropower generation point i

o efficiency of hydropower station

V: efficiency of solar panels

Csi: unit cost of reservoir capacity in hydropower generation point i

Croai: unit cost of generator capacity in hydropower generation point i

Cwi: unit cost of solar array in demand point j

Crij: unit cost of transmission line capacity between hydropower generation point i and

demand point j
uj: unit cost of generating electricity using diesel generator (i.e. penalty for mismatched
demand in demand point j)

Po- weight of scenario w, where ¥&_. p,, = 1and p,, = 0

Table 3.6 | Variables of the model

Exogenous Variables:

WL water runoff to hydropower generation point i in period t in scenario w
Njwf: solar radiation in point j in period t in in scenario w
pot- demand in point j at time t in in scenario w

J
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State/Decision Variables:

SPt water stored in the reservoir in hydropower generation point i at the end of period t in
scenario w

Zj‘"t: mismatched demand in demand point j in period t in scenario w

Ti‘;’t: electricity sent from hydropower generation point i to demand point j in period t in
scenario w

LYt water spilled from the reservoir in hydropower generation point i in period t in
scenario w

R¥t: water released from the reservoir in hydropower generation point i in period t in
scenario w

Smax;:  active reservoir capacity in hydropower generation point i
M;: size of solar panels at demand point j
PGmax;: generator size in hydropower generation point i

Tmax;;:  maximum energy transmitted from hydropower generation point i to demand point j

3.4.1 Objective Function

The objective of the model is to minimize the sum of the investment costs and expected
penalty cost for the mismatched demand. Unit costs of investments are assumed to be the
constant incremental cost of installing capacities and indexed by the location so that different
costs parameters can be used for different locations. Objective function has five components:

i) Cost of Reservoirs:

01 =) Cg; * Smax;
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i1) Cost of Hydropower Generators:

02 =) Cpgi * PGmax;

iii) Cost of Solar Power Stations:

O3 =2 Cuj * M

iv) Cost of Transmission Lines:

O4= X 2j Cryj * Tmax;;

V) Expected Cost of Mismatched Demand:

Os :tha) Pow * ijt *

Obijective function can be stated as:

min (O1+02+03+04)*d+0s

3.4.2 Constraints

The equality and inequality constraints of the problem are stated below:

(1)
)
3)
(4)
(5)
(6)
(")

(8)

SPt < Smax;

SPt = P 4wt — Ret — 19t
SPt = Smax; + WP — RPT — LY
ST = Smax;

foi(RPY) < PGmax; *n

Zj Tl-(;-)t = fGi(RfUt)

Ti‘;’t < Tmax;; *n

DPt < 2P+ fi (M) + ET + (1-1y)
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(9) S{"t,Smaxi,PGmaxi,R{"t,L‘i"t,Mj,Ti‘;.’t,Tmaxij,Zj‘“t >0 Vijtw

The constraint in (1) ensures that water stored in the reservoir is limited by the size of the
reservoir at each time period of every scenario. Constraints in (2-4) represent the mass balance
equations in reservoirs. Constraint in (2) couples the reservoir levels between subsequent time
periods. In (3) and (4), beginning and ending balance of reservoirs are set. Here, we assume that
operations begin and end with full reservoirs at each scenario. In the model, scenarios start in
September, which is almost end of Monsoon season in India and end at the end of August next
year. Thus, it is quite reasonable to assume that reservoirs are full at this time of the year.
Constraint in (5) ensures that generated energy defined by the function f;; (Rt ) is limited by the
generator capacity at each time period of every scenario and f;; (R®* ) =R'* g+ hixa.
Constraint in (6) ensures that at any period in any scenario, total energy transmitted to the
demand points from a hydropower generation is equal to generated energy in that hydropower
generation point. Constraint in (7) ensures that transmitted energy is limited by the transmission
line capacity. Constraint (8) ensures that demand D]-‘“tis met by sum of the energy transmitted
from hydropower generation points, energy generated in solar power stations and energy
generated using diesel generators within demand point j in time period t in scenario w. Energy
generated in solar power stations is defined by the function fsj(Mj) where fsj(Mj) = I\Ij“’t *
M; =y . For operational purposes, it is important to keep as much water as possible in the
reservoirs although full kept amount will never be used. Here, since for one scenario the policy is
"anticipatory" of what's happening in the future, the system spills the water that would not be
needed. Although it would also have been optimal to keep water as much as possible in the

reservoir, the solver can choose the solution with less water. For this reason, in the objective
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function we add another term: ¥, S** = € where € is a very small amount. This term tilts the
balance so that the solver will choose the option with more water in the reservoir. When we

report the final cost, we omit this term.

3.5 Results

Our linear program is implemented and solved in IBM ILOG CPLEX Optimization
Studio (CPLEX) [35]. We present multiple case studies for India to emphasize the different
aspects of our results. We first present results for single basin-single demand point case study to
illustrate the basic information that our model can provide. Parameters that are used in analysis
of the data are shown in Table 3.7. We also assess the sensitivity of the system in terms of cost
parameters. Then, we introduce more basins and demand points to the system in order to observe
how the network (transmission lines) and storage options can aid the integration of intermittent
renewables as geographic aggregation smoothes the variability of the stream flows and solar
radiations. Although our model is able to include different scenarios to take the uncertainty of the
stream flows and solar radiations into account, in this chapter, we present results for a
deterministic case where we assume how the exogenous variables will unfold within a year.
Uncertainty of the data will be considered in the next chapter.

For the cases studied here, we use $1/m3 as unit cost of reservoir capacity (i.e.
constant incremental cost of installing reservoir capacity) which is within the ranges given in
[38] and [39]. For the unit cost of powerhouse (generator, turbine/pump, transformers), we use
$500/kW as this value is the lower bound of the range given in [40] for the capital cost of the
medium to large hydropower stations (assuming that the lowest cost system has no storage).
According to estimates given in [40], the cost of a 24 MW system with 1km? solar panel is

estimated to be between $60 and $228 million. In our model, we use $150 million as the estimate
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for the representative solar power system unit area (1 km? solar panel). These cost parameters
can clearly vary from site to site and this can easily be incorporated in the model assigning site
specific unit cost for each investment variable. Efficiency of solar and hydropower systems are
used as 12% [25] and 88% [22] respectively. Planning horizon is assumed to be 25 years and
discount rate or risk-free interest rate is used as 5% [44]. Using discount rate and planning
horizon, a dimensionless annualization parameter is calculated as 0.07 using the following
formula to express the investment cost on a yearly basis. Let the planning horizon be n and
interest rate be i,
Annualization Parameter =i/ (1 - (1+i)™)

Table 3.7 | Parameters used in the model

Unit Cost of Reservoir Capacity Cg;: $1/m3
Unit Cost of Generator Capacity Cpg;: S500/kW
Unit Cost of Solar Array C $150/m?2
Unit Cost of Diesel pj: 50.15/kWh
Efficiency of Hydropower System a: 88%
Efficiency of Solar Panels y: 12%
Discount Rate: 5%
Planning Horizon: 25 years

3.5.1 Case Study I: Single Basin- Single Demand Point (Bhagirathi
River and Delhi) Case

Bhagirathi is a Himalayan river in the state of Uttarakhand. On Bhagirathi, one of the
tallest dam in Asia (260 m head), Tehri Dam, and Koteshwar Dam have been built as a part of
the Tehri Dam Project [36]. According to VIC land surface model, average discharge of the river

between 1954 and 2002 is estimated to be around 215 m®/s. A sample one year data with 13.3
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km? annual inflow is taken from the time series data for this analysis. Stream flow data for the
sample year has been presented in Figure 3.5a. Demand data is projected with the method
described in Section 3.3.2.2. Annual total demand is estimated to be around 30000 GWh for
2011-2012 and three-hourly demand load curve presented in Figure 3.5c. If all of the 13.3 km?
inflow could be used to turn the turbine to generate electricity, it could generate about 3200
GWh electricity (assuming 100 m head and 88% efficiency). Since demand is an order of
magnitude higher compared to hydro potential, in this section we present results for both normal
demand and low demand profiles where low demand profile being equal to one fourth of normal
demand. Solar radiation data of Delhi for 2002 is used for this analysis and data is presented in

Figure 3.5h.
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Figure 3.5 | a, 3-hourly stream flow data of Bhagirathi River for one year (Sep 1970-Aug 1971). b, Solar
energy for every three hour per kilo meter square for year in Delhi. ¢, Demand load curve for one year in
Delhi.

Table 3.8 compares the results for the actual and low demand profiles. A smaller
reservoir and a bigger generator are needed in actual demand case where the demand is
significantly higher (~10 times) than the energy potential of the river. The reason for a smaller
reservoir in the higher demand case can be explained by the fact that most of the inflow goes
directly to the turbine to meet as much demand as possible at that time period instead of being
stored in the reservoir for future time periods. This can also be observed from the residence time
of the reservoirs. Residence time is a widely used term in hydrology to express the average time
a water molecule spends in that reservoir. Relying on the conservation of mass principle,

residence time of the reservoir can be estimated by dividing the volume of the reservoir by the
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rate by which reservoir either gets filled or depleted [36]. Therefore, conceptually, this term can
be also expressed as the time that takes reservoir to empty from full if no water were to enter. In
this chapter, we estimate our residence time (RT) in days by the following formula:

RT? = SUmax; * 365/ ¥, R"*
where SUmax; is the size of the reservoir i and Y, R represents the total amount of water
released from the reservoir i in one year (our time horizon) under scenario w. Using the formula
above, residence times of the reservoirs are estimated to be 5.25 and 11.75 days for actual and

low demand cases respectively.

Table 3.8 | Summary results for single basin-single demand point case

Actual Demand Low Demand
{Actual Demand/4)

Investments

L N
Reservair Size (km”*32) 0.18 (~44 GWh) 0.29 (~70 GWh)
(1km™3~240 Gh)

i o

Solar Panel Size (km™2) 63.67 (~1,5 GW) 12.5 (~0.3 GW)
(1km™2~0.0245W)
Generator Size [3W) 1.86 1.06
Transmission Line Size (GW) 1.86 1.06
Production GWh % Demand GWh % Demand
Solar 112749 37.58 2533 33.76
Hydro 3045 1015 2184 29.11
Diesel 156849 5227 2786 37.13
Total 30013 100 7503 100
Demand
Average Demand (GW) 2.43 0.86
Peak Demand [i3W) 5.40 1.25
Load Factor 0.63 0.63
Diesel
Sverage Diesel Usage (GW) 1.79 0.21
Peak Diesel Usage (GW) 5.14 1.29
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Solar

Efficiency 79% 0%
Average Solar Production [GYW) 163 0.3z
Peak Solar Production (GW) 7.18 141
Capacity Factor 0.23 023
Hydro

Mverage Hydro Production (GW) 0.35 0.25
Peak Hydro Production (GW) 1.86 1.06
Capacity Factor 0.19 024

Transmission

Average Transmission (GW) 0.35 0,25
Peak Transmission (G5W) 1.86 1.06
Capacity Factor 0.19 0.24
Unit Cost

Unit Cost of Hydro (5/kWh) 0.03 0.04
Unit Cost of Solar (S/kwh) 0.06 0,05
Unit Cost of Diesel {S/kWh) 015 0,15
Unit Cost of the System (S/kWh) 0.10 0.08

Distribution of each “fuel” (supply) type that has been used to meet the demand is also
presented in Table 3.8 with annual aggregated figures. The change in this distribution over a year
is also presented for low demand profile in Figure 3.6 below. As can be seen from the Figure 3.5
b-c, with having lowest values in winter and peak values in summer, solar radiation and demand
have similar trends. This causes the percentage wise average solar energy contribution to be
quite constant throughout the year. However, we still observe that solar contribution in Monsoon
season is highly fluctuating due to the cloudy days of this rainy season (The variability of the
solar radiation in Monsoon season can also be observed in Figure 3.5b). Contribution of hydro
goes up to 100% in Monsoon season when there is excessive inflow to the reservoir and there is
almost no need for diesel’s contribution. In the other seasons, hydro energy and diesel work as

complementary to each other.
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3.5.1.1 Comparison of Alternative Technologies

When 100% of the demand is met by only one component of the system (e.g. diesel), unit
cost of the system will also be the unit cost of that component (for diesel it is $0.15/kWh). Here,
we start with no renewable source in the system (100% diesel) and gradually modify the system
so that it includes more advanced use of renewable source and finally obtain our model that we
have discussed above. In particular we look at diesel and solar, diesel and run-of-the-river hydro,
diesel and conventional hydro and finally diesel, solar and conventional hydro combinations
respectively. For this analysis, without formulating a new problem for each alternative, we use
our model described in Section 3.4 assigning extreme cost parameters for the system components
that we want to exclude. For example, when we want to find the optimal system for diesel and
run of the river alternative, we make sure that we assigned high enough costs for reservoir and

solar panel that solution does not include these components. Then, model finds the least cost
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solution for the components with regular cost parameters. Results for this process are presented
in Figure 3.7. The detailed results for components of alternative systems are presented in Table
3.9. Table 3.9 also shows how much diesel capacity is displaced as alternative technologies are

included into the system.
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Figure 3.7 | Comparison of alternative technologies. Solely diesel is the most expensive. As the use and
the variety of clean energy increase, the unit cost goes down substantially. It is more cost efficient to
design solar panel area based on high demand and spill some of the renewable energy in low demand
periods.
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Table 3.9 | Summary results for alternative technologies

DIESEL+ DSESLELF: DIESEL
DIESEL+ DIESEL+ CONV | (no Spill)+ SOLAR+
SOLAR ROR HYDRO CONV. I—(I:\(?DN:O
HYDRO
Investments
0.24 0.23 0.29
Reservoir Size (km”3) NA NA
~57 GWh) (~56 GWh) (~70 GWh
(1km”3 ~240 GWh) ( ) i )
16.35 6.35 12.58
Solar Panel Size (km”2) NA NA
~0.39 GW ~0.15 GW) (~0.30 GW
(1km"2~0.024GW) ( ) ( A )
Generator Size (GW) 0 1.10 1.14 1.06 1.06
Transmission Line Size (GW) 0 1.10 1.14 1.06 1.06
Production (GWh)
Solar 2861 0 0 1422 2548
Hydro 0 2275 2661 2406 2178
Diesel 4647 5233 4847 3679 2782
Total 7508 7508 7508 7508 7508
Demand
Average Demand (GW) 0.86
Peak Demand (GW) 1.35
Load Factor 0.63
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Diesel

Average Diesel Usage (GW) 0.53 0.60 0.55 0.42 0.32
Peak Diesel Usage (GW) 1.31 1.26 1.27 1.22 1.29
Solar

Efficiency 78% 100% 90%
Average Solar Production (GW) 0.42 NA NA 0.16 0.32
Peak Solar Production (GW) 1.84 0.72 1.42
Capacity Factor 0.23 0.23 0.23
Hydro

Average Hydro Production (GW) 0.26 0.30 0.27 0.25
Peak Hydro Production (GW) NA 1.10 1.14 1.06 1.06
Capacity Factor 0.24 0.27 0.26 0.23

Transmission

Average Transmission (GW) 0.26 0.30 0.27 0.25
Peak Transmission (GW) NA 1.10 1.14 1.06 1.06
Capacity Factor 0.24 0.27 0.26 0.23
Unit Cost

Unit Cost of Hydro (S/kWh) NA 0.02 0.02 0.02 0.03
Unit Cost of Solar (S/kWh) 0.06 NA 0.00 0.05 0.05
Unit Cost of Diesel (S/kWh) 0.15 0.15 0.15 0.15 0.15
Unit Cost of the System (S/kWh) 0.116 0.112 0.107 0.092 0.084

As can be seen in Figure 3.7, as the use of the renewable increase and gets more
advanced, unit cost of the system decreases and the most cost efficient alternative is the one that
we have used in our model. Figure 3.7 also shows that diesel-solar system is more expensive
than the diesel-run-of-the-river system. When a reservoir is added to system (diesel-conventional
hydro), flexibility of deferring water release decreases the system cost even more compared to
diesel-run-of-the-river system.

In Figure 3.7, there is an additional system (Conv. Hydro - Solar (No spill) - Diesel) that

we have included in order to make a point clearer and we needed to slightly modify our
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formulation for this additional system in the following way. In our regular formulation, we allow
excessive solar energy to be spilled which means that some of the solar energy generated may
not be used to fulfill the demand and solar system works with a lower efficiency than 100%. In
order to see if allowing spill is a profitable decision, in constraint (8) of our formulation, we can
replace the inequality with equality and force the system not to spill renewable energy. It is quite
interesting to see that when we allow solar to be spilled, unit cost of the system is reduced. When
we have a detailed comparison between the two systems, we see that solar panel area of the
system in which spill is allowed is almost twice of the system in which it is not allowed. This is
due to the fact that constraint (8) is satisfied for each time period and in case of equality, solar
panel area is mainly determined based on the time periods when demand is low. However, it is
more cost efficient to increase the solar panel area considering the time periods when there is
high demand and spill some of the solar energy in periods when low demand occurs. Figure 3.8
shows solar energy production and demand for the systems when some renewable energy is
spilled and when it is not spilled. In Figure 3.8a the orange area (solar) above the grey area

(demand) is being spilled.
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Figure 3.8 | Solar Production and demand for a) when spill is allowed, b) when spill is not allowed.

3.5.2 Case Study I1: Multi Demand Points, Multi Basins System

In this section, we show the effect of combining multiple basins and demand points
together. As individual systems are connected with transmission lines and work as a single
system, the variability and intermittency of renewable sources is expected to be smoothed out.
To see this effect, we first run our model with Chenab (another basin with 52 km?® annual stream
flow) and Punjab (demand point with approximately 12000 GWh (quarter of actual demand)

annual demand. Then, we combine this case with our previous Bhagirathi (13.3 km® annual
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stream flow) and Delhi (7500 GWh annual demand) case study and run a two-basin and two-
demand points case. Figure 3.9 summarizes the comparison between single-basin—single-demand
point cases and Figure 3.10 shows the results for the two basins-two demand points’ case.
Results in Figure 3.10 evidently show that with much smaller reservoirs (78% and 58%
decrease in reservoir size respectively); combined system generates 2% more hydro energy. We
note here that smaller reservoir may not necessarily imply a better solution since an additional
inflow could drive larger reservoirs when higher hydro storage capacity is needed or smaller
reservoirs when a system like run-of-the-river is sufficient. However, there are also other factors
that we do not consider here but make smaller reservoirs favorable such as environmental effects
of large dams. In addition, solar energy generation increases almost 6% and the improvements in
hydro and solar energy generation provide a 10% reduction in diesel usage. It should also be
noted that combined system is more cost efficient as total cost of single-basin-single-demand
point cases is more than the total cost of combined system. In our case study, we need to pay
13% more transmission cost to build extra transmission line, yet we still save 5% from the

overall total cost.
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ReservoirSize (km”3) ReservoirSize (km”3)

.29 (™ 0.10 (~24 GW
(1km”3~240GWh) e Rl (1km”3~240GWh) ( )
SolarPanelSize(km”2) SolarPanelSize(km”2)

.58 (~0. 14.80 (~0.36GW
(1km”2~0.024 GW) et Gl (1km”2~0.024 GW) ( )
Generator Size (GW) 1.06 Generator Size (GW) 2.11
TransmissionLine (GW) 1.06 TransmissionLine (GW) 211
Unit Costs (S/kWh) Unit Costs (S/kWh)
Hydro 0.03 Hydro 0.01
Transmission 0.01 Transmission 0.01
Solar 0.05 Solar 0.05
Diesel 0.15 Diesel 0.15
System 0.08 System 0.05
Energy Generation Energy Generation
Solar 34% 2533 Solar 26% 3054
Hydro 29% 2186 Hydro 57% 6722
Diesel 37% 2784 Diesel 18% 2107
Total 100% 7503 Total 100% 11883

Figure 3.9 | Summarized results for one-basin, one-demand point case studies. Bhagirathi has 13.3 km?
annual stream flow and Delhi has 7500 GWh annual demand. Chenab has 52 km? annual stream flow and
Punjab has a 12000 GWh (quarter of actual demand) computed annual demand.
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a) b)
Bhagirathi  Chenab
e 0.065 0.0424
ReservoirSize (km”"3) (~16 GWh) | (~10 Gwh)
GeneratorSize (GW) 0.758 2.458
Chenab Transmissionline to (GW)
' Delhi 0.416 0.733
% Punjab 0.472 1.725
Punjab— ¢ SolarPanelSize (km”2
_. — Delhi 11.78 (~ 0.28 GW)
s Punjab 17.97 (~ 0.42 GW)
S Bhagirathi S
elhi ¢
N4 Unit Costs (S/kWh)
Hydro 0.013
| Transmission 0.008
Q) Solar 0.054
Diesel 0.150
System 0.060
Delhi Punjab
Energy Generation GWh % Demand GWh % Demand
Solar 2420 32.2% 3497 29.4%
Hydro 3105 41.4% 5984 50.4%
Diesel 1979 26.4% 2402 20.2%
Total 7503 100.0% 11883 100.0%

Figure 3.10 | Summarized results for two basins-two demand points case. Combined system generates
2% more hydro energy with much smaller reservoirs (78% and 58% decrease in reservoir size
respectively). Solar energy generation increases almost 6% and the improvements in hydro and solar
energy generation provide a 10% reduction in diesel usage. There is 13% more transmission cost to build

extra transmission line but overall cost is 5% lower.

3.5.3 Case Study I11: Multi Demand Points, Multi Basins System |1

After we show the effect of combining multiple basins and demand points together in the
previous section, in this case study, we analyze a much larger problem and provide results that

include all the basins and demand points of India that we could collect the data for. The
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motivation behind this study is to demonstrate how an actual hybrid network could look like in
the future country we are interested in where fossil fuels are only used in the minimal form.

The model is run with 8 basins and 10 demand points with their actual demand that are
shown in Figure 3.2. Here, it is not possible to have comparison figures relative to the individual
systems as we present in 3.5.2 due to the fact that basins and demand points are not one to one
paired. However we can consider the utilization of transmission lines in a minimum cost network
as the proof for higher hydro and solar contribution with smoother variations and decreased
diesel contribution. As discussed in Section 3.3.1, unit cost of transmission lines between
demand points and basins are calculated based on the spherical distance between points.

Table 3.10 summarizes the results and shows the proposed sizes for reservoirs and
generators for each basin. With having 456 km?® annual inflows Siang River has by far the
highest potential and provides electricity to almost all the states in the case study. One should
keep in mind that in this study we include lower/upper bounds for neither reservoir sizes nor
generator capacities. Other environmental and geographic constraints which are specific to
basins are also not in the scope of this thesis. These results are based on the stream flow
potentials of the proposed basins.

Table 3.10 | Size of the hydropower stations proposed for basins

Rivers Annual Inflow  Reservoir Size Generator Generation
(km3/ ~GWwh) (km¥ ~GWh)  Size (GW) (%Demand)

Bhagirathi 13.51 /~3242 0.28/~67 1.22 1.0%
Pinder 6.29 /~1510 0.16/~38 0.71 0.5%
Chenab 45.57 [~10937 0.49/~118 4.27 3.8%
Marusudar  12.02 /~2885 0.23/~55 1.19 1.0%
Lohit 19.17 /~4600 0.07/~17 1.21 1.5%
Dibang 9.17 /~2200 0.02/~5 0.40 0.6%
Barak 57.71/~13850 0.08/~19 4.08 4.6%
Siang 456.47/~109552 0.81/~194 23.07 30.3%
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As a summary, unit cost of the system is 6.9 cents/kWh (unit cost of diesel production is

15 cents/kWh and see Table 3.7 for other parameters). Hydropower is the cheapest source with

having 1.2 cents/kWh. After including 1.7 cents average unit cost for transmission, adjusted cost

for hydro power is about 3 cents/kWh. Unit cost of solar energy is estimated to be 5.4 cents.

In Table 3.11, solar panel areas that are proposed for installation in each demand point

are presented. It can be seen that solar panel area is almost linearly related to the demand. The

role of hydropower in meeting the demand changes between 36%- 59%. Total annual inflow of

basins is about 620 km?® and if all of the 620 km?® inflow could be used to turn the turbine to

generate electricity, it would generate about 168000 GWh electricity (assuming 100 m head and

88% efficiency). Given that sum of demand across all demand points is about 270000 GWh, the

system utilizes hydropower fairly well and hydro portion in meeting the total demand is quite

close to the theoretical (probably impractical) limit (62%).

Table 3.11 | Solar Panel Areas and Energy Generation by Type

Demand Points Demand Solar Panel Area Energy Generation by Type
(GWh) (km?/~ GW) (% Demand)

Solar Hydro Diesel
Delhi 30013 49.7/~1.2 34% 36% 31%
Punjab 47534 75.1/~1.8 30% 46% 24%
Uttaranchal 11357 17.2/~0.4 25% 59% 16%
Himalach 7744 13.6/~0.3 33% 46% 20%
Pradesh
Uttar Pradesh 87916 132.4/~3.2 29% 40% 31%
Bihar 13774 20.2/~0.5 29% 42% 29%
West Bengal 40777 55.0/~1.3 27% 45% 27%
Jharkhand 5663 8.7/~0.2 31% 41% 27%
Assam 5162 7.2/~0.2 25% 49% 26%
Chhattisgarh 17718 24.8/~0.6 30% 51% 19%
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The major transmission lines (=1GW) between hydropower stations and demand points
can be seen in Table 3.12. The first four basins listed in the tables are located in the North part of
India and the others are located in the north-east region. An important result to note here is that
high stream flow potential of the basins in the north-east region was quite useful in fulfilling the
demand of northern states and high capacity long transmission lines are preferred instead of local
diesel generators within demand points.

Table 3.12 | Transmission line capacities between basins and demand points

Riversf Delhi Punjab Uttarak- Himalach  Uttar Bihar West Jharak- ssam Chattis-
States hand Pradesh Pradesh Bengal hand garh
Bhagirathi 0z 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Pinder 0z 0.1 0.7 0.0 0.4 0.0 0.0 0.0 0.0 0.1
Chenak 16 1.8 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0
harusudar | 0.0 1.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lohit 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0
Dibang 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0
Barak 0.0 0.0 1.6 0.1 0.5 0.0 1.8 0.0 0.3 0.4
Siang 2.3 2.8 0.6 0.5 9.5 1.6 2.3 0.6 0.6 1.6

Table 3.13 | Capacity factors of the transmission lines between basins and demand points

Rivers/ Delhi Punjab Uttarak- Himalach  Uttar ihar West Jharak- ssam Chattis-
States hand Pradesh Pradesh Bengal hand garh
Bhagirathi 0.1 0.z 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.3
Finder 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.2
Chenab 0.2 0.3 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0
kAarusudar 0.0 0.z 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lohit 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
Cibang 0.0 0.5 0.0 0.4 0.0 0.4 0.0 0.5 0.0 0.5
Barak 0.z 0.0 0.z 0.2 0.4 0.2 0.3 0.2 0.3 0.4
Siang 0.3 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.3 0.5

3.6 Discussion
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3.6.1 Sensitivity Analysis

In this section, several sensitivity analyses have been performed to inspect how sensitive
our model to the cost parameters as these analyses can provide meaningful insight about
differences in the optimal solution of the problem in response to small changes in the cost
parameters. We first show the sensitivity range of each investment variable for the calculated
optimal solution, and then we vary the unit cost of diesel, solar panel area and reservoir size and
resolve the linear program.

In Table 3.14, each investment variable, its reduced cost and the range over which its
objective function coefficient can vary without forcing a change in the optimal basis is displayed.
One needs to do this with some +/- range in the total investment. We see that we have very small
ranges for each variable in which our current optimal solution remains the same. This means that
with the default (realistic) values, there is a dynamic balance between the cost parameters and
any foreseen significant change in the cost parameters should be seriously considered by the
infrastructure planners before they make a decision as it may alter the optimal solution.

Table 3.14 | Sensitivity ranges for the optimal solution obtained with cost parameters used in the model

Unit Cost Down Up Sensitivity Range
Reservoir (5/m3) 1 -2.02% 0.01% 0.979-1.000
Generator (5/kW) 500 -0.07% 1.19% 499.6-505.9
Solar Panel ($/m2) 150 -0.16% 0.19% 149.7-150.2
Transmission Line ($/kW) 254 -0.03% 2.24% 253.9-259.6

Our objective function in this problem minimizes annualized investment cost of power
systems and transmission lines and total cost of generating electricity using diesel generators. In
the case studies in this chapter, we use $0.25/kWh, $1/m3, and $150 as the unit cost of diesel
generation, reservoir size and solar panel area respectively. Diesel component of the network is

ideally the expensive alternative and can be considered as a penalty that is paid for each unit of
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electricity that could not be generated using renewable sources. Therefore, unit cost of diesel is
also marginal cost and our model compares that with the marginal cost of renewable sources. For
example, if increasing the size of the reservoir to generate an additional kWh of hydro energy
(without causing any size increase in generator or transmission lines) is cheaper than the unit
cost of diesel, the model increases the size of the reservoir. Table 3.15 - 3.17 summarize the

analyses performed for the unit costs.

Table 3.15 | Sensitivity Analysis for Diesel Cost

uj=0.05 pj=0.1 pj=0.15 pj=0.2 uj=0.25 uji=0.3
ReservoirSize (km#3) 0.06 0.12 0.29 0.31 0.31 5.38
GeneratorSize (GW) 0.89 0.99 1.06 1.08 1.09 1.10
SolarPanelSize (km*2) 2.08 11.09 12.50 16.21 18.78 21.78
TransmissionLine (GW) 0.89 0.99 1.06 1.08 1.09 1.10
% Demand
Solar 6% 31% 34% 38% 40% 42%
Hydro 31% 28% 29% 28% 28% 43%
Diesel 63% 40% 37% 34% 32% 15%
ResidenceTime of Reservoir (days 2.3 4.7 11.7 12.7 13.3 145.4
Efficiency of Solar System 100% 95% 90% 78% 72% 65%
Table 3.16 | Sensitivity Analysis with the Unit Cost of Reservoirs
C.=805/m |G =81/m3|C; =815/ m*|C =82 /m°

ReservoirSize (km"3) 4.70 0.29 0.11 0.08

GeneratorSize (GW) 105 106 1.05 1.05

SolarPanelSize (km*2) 12.60 12.50 12.55 12.60

TransmissionLine (GW) 105 106 1.05 1.05

% Demand

Solar 34% 34% 34% 34%

Hydro 43% 29% 28% 28%

Diesel 23% 37% 38% 30%

ResidenceTime of Reservoir {days) 127.1 11.7 4.7 3.3

Efficiency of Solar 90% 90% 90% 90%
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Table 3.17 | Sensitivity Analysis for Unit Cost of Solar Panel

Cy = $50 /m? [Cyy = $100 /m?Cy = $150 /m?| Cy = $200 /m?[Cyy = $250 /m?

ReservoirSize (km*3) 0.34 0.31 0.29 0.29 0.28
GeneratorSize (GW) 1.04 1.05 1.06 1.06 1.05
SolarPanelSize (km*"2) 27.07 17.50 12.50 11.45 10.79
Transmissionline {GW) 1.04 1.05 1.06 1.06 1.05
% Demand

Solar 45% 39% 34% 32% 31%
Hydro 26% 28% 29% 30% 30%
Diesel 29% 33% 37% 38% 39%
ResidenceTime of Reservoir (days) 15.3 13.1 11.7 113 10.9
Efficiency of Solar 56% 75% 90% 94% 96%

In Tables 3.15-3.17, we observe some interesting sudden changes in the distribution in
meeting the annual demand. For example, in Table 3.15 when diesel cost is increased to
$0.30/kWh, there is a significant increase in the size of the reservoir and proportion of hydro in
meeting the annual demand. The reason behind this difference is as follows: the unit cost of
reservoir capacity (i.e. constant incremental cost of additional capacity) that we used for our
analysis is $1/m3. If an additional 1 m®of a reservoir is used only once (in one time period only)
during our planning horizon (1 year), we could generate 0.24 kWh of electricity (with 100 m
head and 88% efficiency) with that 1m?3 water. In addition, annualized cost of an additional 1m?
reservoir is $0.07 (with 25 year life time and 5% discount rate). Therefore, marginal cost of
hydro can be roughly calculated as $0.29/kWh. This is the main reason for the jump in Table
3.15 as the preference in terms of the units cost flips once the unit cost for the diesel generation
becomes higher than $0.29/kWh. Similar analyses can also be compiled to explain the increase
in solar proportion when diesel cost is increased from $0.05/kWh to $0.10/kWh in Table 3.15
and the decrease in the reservoir size from 4.70 km?® to 0.29 km® in Table 3.16.

Other two analyses with the unit cost of reservoir and solar panel area are presented in

Table 3.16 and Table 3.17.
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3.7 Conclusion

In summary, we have presented a model which is designed to help infrastructure planners
make long-term investment decisions based on the results for electric dispatch, energy resource
allocation and storage over one-year horizon. The objective of the model is to minimize the sum
of the investment costs and expected penalty cost for the mismatched demand. We have shown
that as we increase the use and complexity of the renewable sources, the unit cost for the overall
system decreases and by combining multiple individual systems, we can have a further reduction

in system cost with a possibility of smaller network components.
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4.1 Introduction

Current supply for electricity generation mostly relies on fossil fuels. However, fossil
fuels are finite and their combustion causes global warming and health hazards. To reduce the
role of fossil fuels and ease the concerns on the electricity generation, energy models which
involve clean and renewable energy sources are necessitated. The International Energy Agency
(IEA) estimates that nearly 50 percent of global electricity supplies will have to come from
renewable energy sources in order to achieve a 50 percent reduction of global CO2 emissions by

2050.

Transition to renewable sources is inevitable. However, renewable sources present
important challenges while integrating them into the power systems: i) Renewable sources are
intermittent; ii) They are heavily dependent on the spatial location. Intermittency causes limited
control on power output because of variability and partially predictability of the renewable
sources such as solar and wind and dependence on the spatial location causes a mismatched
between potential of renewable energy generation and where the energy will be ultimately
consumed. Delucchi and Jacobson argue that it is possible to overcome the difficulties working
with renewables and show that it is technologically and economically feasible to meet the 100

percent of the world energy demand by wind, water and solar [1,2].

To mitigate the intermittency of renewable sources, there are several ideas proposed to
design and operate cost efficient and reliable renewable energy systems. Designing hybrid
systems which operate as a combination of alternative resources, using energy storage and long
distance transmission lines and employing demand response programs help reduce intermittency
of the renewables and allow the grid accommodate more variation on both supplies and demand.

The technology improvements in transmission lines provide more geographic aggregation which
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smoothes the variability of intermittent sources over large distances. This helps design more
efficient hybrid systems reducing the storage costs and generate more dispatchable (controllable)
power.

As generation and distribution of energy resources are becoming more complex, there is
an ever-growing need for mathematical optimization to design the worldwide competitive energy
systems and to provide a formal framework that enables systematic and clear decision-making in
energy operations. Here, we imagine a country in the future where hydro and solar are the
dominant sources and fossil fuels are only available in minimal form (e.g. in the shape of diesel
generators). In this country, we identify candidate locations for pumped hydro power stations
and aggregated demand point locations such as the cities or the states in which solar energy
production is possible. We then mathematically model a hybrid energy generation and allocation
system including long distance transmissions and pumped hydro storage (water is pumped from
lower reservoir to upper reservoir during periods of low demand to be released for generation
when demand is high).

Aim of the model is to determine optimal sizing of infrastructure needed to match
demand and supply in a most reliabile and cost effective way. With this model, we are for the
first time combining three important concepts which help reduce the intermittency of renewable
sources: hybrid systems, pumped hydro storage with two-level reservoirs and long distance
transmission in regional or national level. Similar to Chapter 3, the model will be presented with
a case study of India and we compare the conventional hydro power system discussed in Chapter
3 and the pumped hydro power systems in terms of reliability and cost efficiency. Our model
helps assess how efficiently solar energy in addition to pumped hydro system utilizing high

hydro power potential in Himalaya Mountains could meet the growing electricity demand if
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fossil fuels could be almost completely phased out from electricity generation.

4.2 Background

There is an ample amount of literature dealing with problems which are relevant to our
study such as planning of hybrid energy systems, long-term energy investment planning
problems, water reservoir management problem. In Section 3.2.1 of Chapter 3, we explain the
developments in these problems and how our problem can be differentiated from the local level
hybrid systems [3-5] and here we discuss how the stochastic nature of this problem and water
reservoir management have been studied in the previous studies.

So-called energy-technology management problems are also studied extensively in the
literature [6-13]. These problems usually differ from each other by the technologies they include,
uncertainties present in the model or the objective of the models. Stoyan et al. (2011) [12] uses a
scenario based approach to consider uncertainties and proposes stochastic mixed-integer model
which minimizes cost and emission levels associated with energy generation while meeting
energy demand of a given region. Powell et al. (2010) [13] addresses the problem of modeling
energy resource allocations with long term investment strategies for new technologies using an
approximate dynamic programming approach.

The literature on water reservoir management is fairly broad [13-22]. There is a variety of
models that aim to model specifically hydroelectric power generation [20 - 22]. Some of these
work use dynamic programming technique and they propose different alternatives to overcome
the “curse of dimensionality” which is a major drawback of dynamic programs [18]. Pereira and
Pinto (1991) [19] provide one of the first attempts of stochastic dual dynamic programming
approach applied to large, multi-reservoir hydropower plant. Jacobs et al. (1995) [20] uses the

concept of scenario trees to include information related the uncertain exogenous variables in
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hydroelectric generations systems. Lall et al. (1981) [14] proposes a non-linear model for
planning more generalized regional water-energy systems. Lall et al. (1988) [13] describes a
simulation optimization methodology proposed for multipurpose reservoir systems. Their model
differs from others by not including monthly mass balance equations for reservoirs but they
require presumption of monthly demand fractions for hydropower, municipal and irrigation
demands. A common practice in reservoir management problem is to use a monthly time
increment and as also discussed in Chapter 4, it is not a suitable approach when hydropower
generation is combined with the renewable sources to accurately capture the diurnal variability.
Another body of literature can be grouped under modeling of energy storage to handle
either variability or uncertainty of supply sources and demand [23-25]. Castronuovo et al. (2004)
[23] takes the hourly variability of wind into account to optimize the daily operation of a wind-
hydro power plant. They determine a set of scenarios for wind power generation and solve a
linear program for each scenario individually providing an average and a range of output. Brown
et al (2008) [24] uses a fuzzy clustering approach to determine hourly load and renewable
generations scenarios for a day and minimizes the expected daily cost of operation and
amortization of investments. The pumped hydro systems in these models include only one
elevated reservoir which is expected to have a daily cycle, storing energy during off-peak hours
to be used during peak hours. Since the pump/generator operations is supposed to be on a daily
basis, the planning horizon is chosen to be one day, assuming that beginning and ending balances
in the reservoir will be same. In a more recent study, Kuznia et al. (2012) [25] proposes a
stochastic mixed integer programming model for a hybrid power system design problem,
including renewable energy generation, storage device, transmission network and thermal

generators. They generate daily scenarios with hourly time increments taking samples from the
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different seasons of a year. An important assumption here is that their storage type also has daily
cycle. They show that this problem is a special case of capacitated lot sizing problem which is in
general a NP-hard problem. To solve the stochastic mixed integer program, they propose a
Benders’ decomposition algorithm.

In summary, although there is vast literature on the direct impact of various clean energy
technologies, few investigations involve large scale analysis of managing such technologies to
meet future energy demands [12]. Here, we propose the first hybrid model with pumped hydro
storage with two-level reservoir designed for national/regional energy planning considering
spatial locations and transmission lines where the storage cycle can be anywhere between a few

hours to a year.

4.3 Problem Statement

As in Chapter 3, we are interested in optimally sizing the infrastructure of a hybrid
system which combines hydro and solar energy and transmission lines between basins and
demand points. To mitigate the volatility of the supply and demand, we still use reservoirs as
“water storage” with one crucial difference. Instead of having one reservoir, we have two-level
of reservoirs and water can be pumped from lower reservoir to upper reservoir during periods of
low demand to be released for generation when demand is high. A schematic illustration of our
hybrid system with pumped hydro storage is given in Figure 4.1. In pumped hydro energy
storage (PHES), the generator and water turbine can operate as a motor and pump. The excessive
solar energy can be transmitted to hydropower stations with bi-directional transmission lines and
can be used to pump water stored in the lower reservoir to upper reservoir. Unlike the hybrid
system with conventional hydro storage which is described in the previous chapter, here solar

energy can be stored and this increases the flexibility while reducing the intermittency of solar
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and stream flow. The goal is to minimize the infrastructure cost of power stations (reservoirs,
generator, and solar panel area), transmission lines and the cost of an expensive back-up source
(e.g. diesel generators) that will be used when renewable sources are not available.

Reservoirs in PHES effectively transfer energy from low use periods to peak use periods,
allowing the system operate based on demand load while maintaining high system reliability.
Thus, these systems can increase the flexibility of hydro systems even more compared to
conventional systems, however they still do face important limitations that other hydro systems
have. Hydro installations are geographically limited and in certain cases adding additional hydro
may not be an option. They are only feasible for locations that have sufficient water availability
and are capable of having large reservoirs at different heights. These geographical challenges
increase the importance of transmission lines. Different technologies (alternating current (AC)
and direct current (DC)) are available that can facilitate the routing of power from one location to
another in a controllable fashion. For connection of remote renewables, high voltage direct
current (HVDC) technology is especially well suited due to low losses and high controllability
when compared to AC. In this problem, possible network flow directions from sources to
demand points are prescribed with dedicated lines and designed as a point-to-point topology.
Here we neither model the grid itself nor consider real power flow equations and phase angle
differences. We assume that power flows over lines can be independently assigned. This

representation of power flows, which captures point-to-point movements without explicitly
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modeling the grid, is a common approximation made in policy studies [6].

I i: Candidate locations for hydropower stations
o -

1 jr Demand point locations
1
l Release

Turbine/
Pump

Spill_Upper

Demand Point j

Transmission Lines

Figure 4.1 | A schematic illustration for hybrid system with pumped hydro storage. There are two-level of
reservoirs and water can be pumped from lower reservoir to upper reservoir during periods of low
demand to be released for generation when demand is high.

We use the same data sets (basins and demand point locations, solar radiation, stream
flow and demand) that we used in the previous chapter in order to be able to see easily the
advantage of a pumped hydro system over a conventional hydro system. As in the hybrid system
with conventional hydro storage, it is necessary to model energy supply and demand with hourly
time periods for at least one year planning horizon to accurately capture both the hourly and
seasonal variability of the sources. Here, as the solar energy can be also stored and there is
significant solar radiation variability in hourly level, using hourly time increments in addressing
this problem becomes even more important. An approach that avoids capturing every time
increment over a year by simply sampling different time periods (e.g. different time of the years
and time of the days) fails to accurately model the storage. Moreover, modeling reservoir
systems is especially more complicated than modeling other storage types such as a battery
which stores energy during the day and releases at night. However, in a realistic reservoir system,
we may put water in reservoir storage in September so it can be used couple of months later in

the future. In addition, we also need to include the mass balance equations of the lower reservoir
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and power flows from demand points to hydro stations and deal with a larger scale problem
compared to conventional system.

In terms of capturing the uncertainty, we are following the powerful and highly
acceptable approach in similar problems in the literature using a scenario approach [24-26]. Here,
we present a scenario based static model with multiple time periods that are coupled by storage.
By scenario approach, a set of prototype 1-year series with 3 hourly time increments are
determined as a particular realization of the uncertain data such as stream flows. A drawback of
a scenario-based approach is the fact that scenarios are generated in advance, and this limits their
ability to capture the interaction between decisions and exogenous events. We assume that effect
of this drawback can be minimized during the real-time operations of the power systems. For
example, in case of quite rainy season which is not foreseen and captured by scenarios, water in

the reservoirs can be controlled to be prepared for the season.

4.4 Methodology

In this section, we first provide our stochastic linear program formulation for the hybrid
system with pumped hydro storage. Then, we describe our methodology to determine the

scenarios which will be used to determine our scenarios.

4.4.1 Problem Formulation

As we have discussed above, to formulate and solve the described problem, we propose a
two-stage stochastic linear programming approach where uncertainties in the input data will be
facilitated in the form of scenario realizations. Table 4.1, 4.2 and 4.3 summarize the indices,
parameters and variables used in the model.

Table 4.1] Indices for parameters and decision variables
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hydropower generation point 1,...,I, with a total of I locations

demand (solar power generation) point 1,...,J, with a total of J points

t: time period 1,...,T, with a total of T periods
w:. scenarios 1,..., ©, with a total of QQ scenarios
Table 4.2| Parameters for model

n: length of time periods

d: dimensionless annualization parameter used to express the investment cost on a
yearly basis

lij: percentage of power loss while transmitting electricity from hydropower
generation point i to demand point j.

g: acceleration

hi: height of the reservoir in hydropower generation point i

o efficiency of hydropower station

y: efficiency of solar panels

Csi: unit cost of reservoir capacity in hydropower generation point i

Crai: unit cost of generator capacity in hydropower generation point i

Cwij: unit cost of solar array in demand point j

Crij: unit cost of transmission line capacity between hydropower generation point i and
demand point j

uj: unit cost of generating electricity using diesel generator (i.e. penalty for

mismatched demand in demand point j)
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Do weight of scenario w, where ¥2_. p,, = 1and p,, = 0

Table 4.3| Variables of the model

Exogenous Variables:

WeE: water runoff to hydropower generation point i in period t in scenario w
Nj“’t: solar radiation in point j in period t in in scenario w
powt- demand in point j at time t in in scenario w

J

State / Decision Variables:

SUPt: water stored in the upper reservoir in hydropower generation point i at the end
of period t in scenario w

SLYt: water stored in the lower reservoir in hydropower generation point i at the end

of period t in scenario w

Zj‘"t: mismatched demand in demand point j in period t in scenario w

Ti‘;’t: electricity sent from hydropower generation point i to demand point j in period t
in scenario w

Tj‘;)t: electricity sent from demand point j to hydropower generation point i in period t
in scenario w

LUPE: water spilled from upper reservoir in hydropower generation point i in period t
in scenario w

LLYt: water spilled from lower reservoir in hydropower generation point i in period t
in scenario w
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Vj“’t: solar energy internally used in point j in period t in scenario w

RYE: water released from upper reservoir in hydropower generation point i in period
t in scenario w
PPt water pumped from lower reservoir to upper reservoir in hydropower

generation point i in period t in scenario w

SUmax;: active upper reservoir capacity in hydropower generation point i

SLmax;: lower reservoir capacity in hydropower generation point i

M;: size of solar panels at demand point j

PGmax;: generator size in hydropower generation point i

Tmax;;: maximum energy transmitted from hydropower generation point i to demand
point j

4.4.1.1 Objective Function

Similar to the Chapter 3, the objective of the model is to minimize the sum of the
investment costs and expected penalty cost for the mismatched demand. Unit costs of
investments are assumed to be the constant incremental amount of installing capacities and
indexed by the location so that different costs parameters can be used for different locations.
Objective function has five components:

i) Cost of Reservoirs:

O1 =2 Cs, * (SUmax; + SLmax;)

ii) Cost of Hydropower Generators:

02 =Y, Cpgi * PGmax;
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iii) Cost of Solar Power Stations:
O3 =2 Cuj * M
iv) Cost of Transmission Lines:

04: Zi Z] CTij * Tmaxij

v) Expected Cost of Mismatched Demand:

Os :thw Pow * ijt *
Obijective function can be stated as:
min (O1+02+03+04)*d+0s

4.4.1.2 Constraints

The equality and inequality constraints of the problem are stated below:

(1)  SUP < SUmax;
(2 SLY* < SLmax;

(3)  SULt =sUuPCTY Wt 4+ pPt — REt — LUPt

4)  SUP' = SUmax; + Wt + PPt — RPH — LUP!

(5)  SUPT = SUmax;

6)  SLt=SLYY 4 RPE — PRt — LI

(7)  SL¥' =RPT — pPl — LIP?

@)  max{fs (R, fpi(P*)} < PGmax; * n

@ X Ti(;-)t = fai(R{%)
(10) fpi(PPH =Y, T](lot «(1-1;)
(11) max {Ti“.’t, T]‘l‘)t} < Tmax;; *n

(12) VP +ETE < fi (M)

(13) z=DP -V - *(1-1)

Vi t,w
Vit w
Vit:t>1,w
Viw

Viw

Vi t,w
Vit:t>1,w
Vitw

Vi t,w

Vi t,w
Vi,jt,w
Vjtw

Vjtw

(14)  SU{t, SLYY, SUmax;, SLmax;, PGmax;, PP, R, LU, LLY, M;



T T, Tmaxy, V', 20 2 0 Vijtw

In the hybrid energy system with pumped hydro storage, we have thirteen constraints as
opposed to nine in the conventional system in Chapter 3. This is as a result of including the mass
balance equations of the lower reservoir and power flows from demand points to hydro station.
We explain each one of the updated constraints here. The constraints in (1) and (2) ensure that
water stored in the reservoirs is limited by the size of the reservoir at each time period of every
scenario. Constraints in (3-5) represent the mass balance equations in reservoirs. Constraint in
(3) couples the upper reservoir levels between subsequent time periods. In (4) and (5), beginning
and ending balance of reservoirs are set. Here, we again assume that operations begin and end
with full upper reservoirs. In the model, each scenario starts in September, the end of Monsoon
season in India, and continues for a year. Thus, it is quite reasonable to assume that reservoirs are
full at this time of the year. Constraint in (6-7) couples the lower reservoir levels between
subsequent time periods. Constraint in (8) ensures that generated and pumped energy defined by
the functions f;;(R®" ) and fp; (P ") respectively, are limited by the generator/pump capacity in
every time period of every scenario where f;;(R®' ) =R®t x g x h; x a and fp; (P*") = PP = g *
h; = 1/a. Constraint can easily be linearized by reformulating it in the form of f;;(R®Y) <
PGmax; xn and fp;(P") < PGmax; * n. Constraint in (9) ensures that energy transmitted to
demand points from a hydropower generation is equal to generated energy in that hydropower
generation point in period t in scenario w and constraint. Likewise, constraint in (10) provides
that pumped energy cannot be greater than the total amount of energy sent from demand points
in in period t in scenario w. Constraint in (11) ensures that transmitted energy is limited by the

transmission line capacity. In pumped hydro system, since there is also power flow from demand
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points, transmission lines are bi-directional and should be size based on the flow in both
directions. Constraint in (12) ensures that solar energy internally used in a demand point j and
the total energy sent from point j to hydropower stations should be less than the amount of solar
energy generated in demand point j in time period t in scenario w. Energy generated in solar
power stations is defined by the function fs;(M;) where f5;(M;) = N** « M; xy . Constraint
in (13) ensures that demand D]-‘"tis met by sum of the energy transmitted from hydropower
generation points, energy generated in solar power stations and energy generated using diesel
generators within demand point j in time period t in scenario w. Since we don’t have an
operational cost for each pumping and releasing operation in our objective function, to prevent
the pumping and releasing happening at the same time especially for multi-basin and multi—

demand point cases, we also include a binary decision variable, I, , into our model which makes
our model a mixed integer program (MIP). The two sets of constraints, P** < I, * M and RPt <

(1 — Ip) « M are, then, added for V i, t, w where M is a very large number. The same idea can
also be used to prevent the simultaneous bidirectional flows in the transmission lines. As in
Chapter 3, again for operational purposes, it is important to keep as much water as possible in the
upper reservoirs although full kept amount will never be used. Here, since for one scenario the
policy is "anticipatory" of what's happening in the future, the system spills the water that would
not be needed. Although it would also have been optimal to keep water as much as possible in
the upper reservoir, the solver can choose the solution with less water. For this reason, in the
objective function we add another term: ¥;;,, SU®" = € where € is a very small amount. This
term tilts the balance so that the solver will choose the option with more water in the upper

reservoir. When we report the final cost, we omit this term.
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4.4.2 Scenario Determination

Our model consists of three exogenous variables: stream flow, solar radiation and
demand. As discussed in Chapter 3, time series data for stream flows for the years between 1951
and 2004 is obtained from the VIC land surface model [27, 28]. We decompose the time series
using an additive model, as the seasonal fluctuations are roughly constant in size over time and
do not seem to depend on the level of the time series. The components of the additive model are
presented in Figure 4.3a. We observe that after 1970, time series has a more fluctuating trend and
we focus on this part of the time series while determining our scenarios. To be able to find the
best representative years of the time series, we first divide a year into six seasons, each including
two months: autumn (end of monsoon), prewinter (post monsoon), winter, spring, summer,
monsoon. For each season of the years between 1971 and 2004, we calculate the mean, standard
deviation and coefficient of variation. Our goal is to determine the years in which ‘wettest’,
‘driest’ and the most ‘variable’ seasons are observed. To find the wet and dry seasons we use the
mean of the stream flows within a month as our metric. For example, in Bahagirathi River, the
wettest autumn season is observed in 1978 with the mean flow of 8.17x10-3 km3 whereas, the
direst autumn season is observed in 1974 with the mean flow of 8.45 x10-4 km3. To find the
year in which the most variable autumn season is observed, we use coefficient of variation as our
decision metric. Coefficient of variation represents the ratio of standard deviation to the mean
and is a widely used metric to see the variability of the data sets with different mean.

Time series of climate and meteorological variables are frequently serially dependent,
reflecting the strong persistence of the meteorological and climate phenomena. For example, a
rainfall effect can be seen in multiple consecutive periods. The autocorrelation function of stream

flow up to 50 lags presented in Figure 4.2 also supports this. The idea of taking yearly samples
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from the time series also helps keep the dynamics within a year. Using the approach described
here, we determined 13 years as representatives of the time series in terms of the extreme and the

most variable cases.
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Figure 4.2| Autocorrelation function for the stream flow data of Bhagirathi River (1970-2004). Time
series of climate and meteorological variables are frequently serially dependent, reflecting the strong
persistence of the meteorological and climate phenomena. For example, a rainfall effect can be seen in
multiple consecutive periods.

Same procedure is also applied to 6 years of solar radiation data of Delhi. Since solar
radiation data did not show a significant variation between years, we take one year of data (2002)
as a representative solar radiation data. Additive decomposition of solar radiation time series can
be seen in Figure 4.3b. We also use one demand scenario which is the yearly demand load curve

described in Chapter 3. Therefore, we have 13 scenarios that we can use with our model.
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Figure 4.3| Decomposition of time series data. The seasonal fluctuations are roughly constant in size over
time and do not seem to depend on the level of the time series. a, The components of the additive model
for stream flow. b, The components of the additive model for solar radiation.

Table 4.4 | Scenarios determined from time series of stream flows

Autumn PreWinter Winter Spring Summer Monsoon

(End of (Post

Monsoon)  Monsoon)

Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV
1970- 36781 11 6399 04 3913 20 7152 28 43044 15 18120.7 1.0
1971
1974- 8448 05 2295 09 6635 27 6093 18 8841 34 70604 13
1975
1977- 5700.1 09 9130 11 4540 1.7 11342 26 12108 1.4 124933 15
1978
1978- 81658 1.7 9275 0.8 10099 3.0 1050.3 1.7 8264 19 66124 1.9
1979
1979- 12284 09 2516 04 3395 34 3145 26 8450 15 101210 1.3
1980
1981- 1210.7 08 5299 3.0 5865 31 9071 20 6411 15 45278 18
1982
1985- 6250.0 1.0 12727 1.0 5451 18 8754 14 11841 25 74135 13
1986
1986- 1814.8 0.8 5964 12 4940 22 7470 16 12587 24 16133 2.7
1987
1987- 12537 1.6 1798 09 1306 18 4223 22 9299 16 74448 11
1988
1989- 35659 2.7 6137 12 3605 19 7185 1.7 12978 16 77413 14
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1990
1990- 3261.1 09 7610 1.2 10993 28 7000 1.7 8302 16 27191 20
1991
1994- 19046 08 3896 04 3857 24 5174 16 3965 52 63921 1.8
1995
2001- 12249 13 2418 04 6978 3.0 7412 25 3024 20 60751 29
2002

4.4.3 Heuristic Approach

The scenario based linear program described in Section 4.4.1 can be a large scale
program depending on the number of basins, demand points and the scenarios. Although number
of constraints and variables increases linearly with the number of scenarios, solution time of the
linear programming solvers is not linearly related to number of variables or constraints.

Given some characteristics of the data, the number of scenarios in the problem could be
limited and then solved optimally using CPLEX 12.5 [29]. However, one might probably still
need a heuristic approach when large scale instances of the problem cannot be solved in full
space. With having short time periods in hourly level (3 hours), the number of time periods in a
planning horizon can be high (2920 in one year planning horizon). This increases the problem
size very quickly, especially when the scenarios are included into the problem to take the
uncertainty into account. The reason why such short time increments (fine resolution) are used
here is that solar radiation has daily cycle and the hourly variations are needed to be captured.
Using longer timer increments has the effect of averaging out the peaks which are crucially
important while designing more controllable power systems [30].

We have started with running the individual 1-year scenarios separately and the results
are summarized in Figure 4.4. From these results, we can clearly conclude that only the upper
reservoir size varies significantly for each individual scenario and the other components of the

power system especially solar panel area and lower reservoir size do not vary a lot between
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scenarios. Next, we have developed our heuristic algorithm based on the fact that solar panel

area and lower reservoir size are mostly dependent on solar radiation which does not

significantly change between years.
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Figure 4.4| Results for the first step of the heuristic algorithm (each scenario is run individually). a, Only
the upper reservoir size varies significantly for each individual scenario with 0.62 coefficient of variation
(CV) . b-d the other components of the power system especially solar panel area, lower reservoir size do
and generator capacity not vary a lot between scenarios (Coefficient of variations: 0.08, 0.11, 0.10
respectively) .

Our heuristic algorithm involves three steps. Running each scenario separately and
estimating the solar panel area, lower reservoir size and amount of pumped water in each time
period is the first step. In the second step, we refine our solution and run each scenario again
with the fixed solar panel area and lower reservoir to have a more accurate estimate of how much
water is pumped in a day/week with the specified variables. Then, in the third step, we combine

all the scenarios together and run the multi-scenario model with a higher resolution (one day).
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An important feature of our heuristic is that once we estimate the “solar energy related”
components of the model such as solar panel area, lower reservoir and amount of energy pumped
to upper reservoir for each scenario, we can change the resolution of our problem and run our
model with computationally supportable longer time increments (one day or one week) to
estimate the size of the upper reservoir. This is appropriate as upper reservoir size is highly
dependent on the stream flows of various years (as can be seen in Figure 4.4 a) and it is the

parameter of interest between different years.

We first test this idea for each scenario individually, without combining all scenarios
together. We run each scenario with daily resolution with fixed (estimated) lower reservoir size,
solar panel area and amount of pumped water to upper reservoir. Then we superimpose the
results of the 3-hourly and daily runs, and observe a remarkable match. An example (Bhagirathi

River and Delhi with the stream flow data of 1974 and 1980) is illustrated in Figure 4.5.
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Figure 4.5| Superimposed results for 3hourly and daily run for a scenario. Once the “solar energy related”
components of the model are estimated, the resolution of our problem can be changed (one day or one
week) to estimate the size of the upper reservoir. a, 3hourly and daily individual run of year 1974. b,
3hourly and daily run of year 1981.

In summary, the main point of our heuristic is to estimate the 3-hourly fluctuations due to
pumped water and then calculate the blue curve in Figure 4.5, which is determined mostly by
seasonal variations of stream flow based on the estimated values (i.e. daily resolution is enough).
It should be noted that our heuristic algorithm can underestimate the upper reservoir size. This is
due to the fact that, we estimate some decision variables of our model, thus relax some
constraints based on these variables. We should keep in mind that this means increasing the

feasibility region (solution space) of our model and may lead to a lower cost than the optimal
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cost for our original problem. The intuitive way to explain this would be the following; when we
increase the time period of the model (resolution) to one day and estimate the total pumped water
within a day, we lose some details of the information such as the time pump operations peak
within a day. Then, the system decides about release amount based on the aggregated pumped
water which may provide more flexibility (lower objective for a minimization problem) to the
system.

In order to see the effect of relaxing the constraints, we tested the performance of our
heuristic algorithm by comparing it with the optimal solution of a single basin-single demand
point case run with the scenarios described in the previous section. Table 4.5 summarizes the
results for each investment variable. There is indeed a smaller size upper reservoir; however the
values are in the same order and we can take the reservoir size of the heuristic result as the lower
bound for the optimal solution. Moreover, using these solutions as initial points for solvers often
leads to further improvements. We note that since the algorithm involves decomposition of each
scenario and running them individually, it is suitable for implementation in parallel processors

which results in a shorter running time and efficient memory usage.

Table 4.5 | Heuristic results compared optimal solution

Heuristic Optimal
Upper Reservoir 0.134 0.165
Lower Reservoir 0.045 0.042
Pump/Generator 1.600 1.624
Solar Panel 31.356 30.894
Transmission Line 1.600 1.624

Finally, as a validation of our scenario approach we perform a simulation analysis and

run the data for all years (including the ones not chosen as a scenario here) fixing the investment
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decision variables to optimal values presented in Table 4.5. Figure 4.6 presents this result. Red
dots are the years chosen as scenarios and blue dots are the rest of the years. We observe that the
unit cost of the system varies between the bounds determined the scenarios. This result supports
the fact that scenarios are chosen to represent extreme event years such as most variables, most

dry, wettest etc.
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Figure 4.6] The data for each year is used to run the model fixing the investment decision
variables to the values in the optimal solution to observe how the diesel usage changes over different
years. Red dots are the years chosen as scenarios and we observe that the unit cost of the system varies
between the bounds determined by the years chosen as scenarios. This result supports the fact that
scenarios are chosen to represent extreme event years such as most variables, most dry, wettest etc.

4.5 Results

The goal of Chapter 3 and 4 of this thesis is to provide mathematical models that
demonstrate how combining alternative sources (hybrid systems), energy storage and long
distance transmission lines would handle the limited controllability of renewable sources. In
Chapter 3, we showed how we can combine variety of clean energy sources in a conventional
system to obtain a cost efficient and reliable. As explained in Section 4.3 and 4.4, in Chapter 4

we add a pump component to make the system further clean energy friendly. That’s why we
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present our results here compared to the systems in Chapter 3 and talk about the enhancements
due to the pumping component. Results in Chapter 3 may be reviewed together with these results.

Our linear program described in section 4.3 is implemented by following the approach in
section 4.4, solved using CPLEX and the results are presented in a similar fashion with Chapter 3.
We have multiple case studies for India to emphasize the different aspects of our results. We first
present our results with a single basin, single demand point case study to illustrate the basic
information that our pumped hydropower model can provide. Next, we introduce more basins
and demand points to explain how the transmission and storage improvements can aid the
integration of intermittent renewables as geographic aggregation smoothes the variability of the
stream flows and solar radiations and how integration of additional demand points can change
the balance in the system. Then, we calculated the results of our algorithm for all the data we
have for India (8 basins and 10 demand points mostly in Northern India and Bengal) and observe
how our model works in a real time complicated nationwide network. Cost parameters that are
used in analysis are the same as in Chapter 3. We assess the sensitivity of the system in terms of

cost parameters in the next section.

4.5.1 Case Study I: Single Basin, Single Demand Point Case

This is the section where we show the benefits of having a lower reservoir and pump
some of the water to save the excessive solar power in form of potential energy. We use a simple
single basin, single demand point case for this purpose. We first illustrate the water stored in the
upper and lower reservoirs together with components that determine the upper reservoir level.
Then, we discuss a one week zoomed operation balance in reservoir and demand points. We
finally compare the results with the conventional system in Chapter 4 including how we should

consider the residence time of the reservoirs in this system.
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Data used in Chapter 3 for illustration of single basin, single demand point case is also
used here in order to be able to show the benefits of pumped hydro model explicitly and compare
the results with conventional hydropower system case easily. The sample one year data with 13.3
km?3 annual inflow is taken from the time series data of stream flow for Bhagirathi River
calculated by VIC land surface model. Solar radiation data of Delhi for the year 2002 is collected
from National Renewable Energy Laboratory website. 3-hourly demand data for Delhi is
estimated as described in previous chapter. To be able to scale supply potential and demand, a
low demand profile for Delhi is created by dividing actual demand by four and results are

presented based on the scaled data. The input data used in this section is shown in Figure 4.

a)

o 01F .
£ o005t l .
L L L L Adeal - l am L e nl
Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
b)
1 000 | | | | ‘ - I 1 1 | 1
o ' '
£ 500 ' ‘
= | |
0 I
Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
C) 5 I T T T T T I T T T T
< il i
5 A g "

|
Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

Figure 4.7 | Input data used in the model - Data used in Chapter 3 for illustration of single basin, single
demand point case is also used here in order to be able to show the benefits of pumped hydro model.

Figure 4.8a-b shows the water level stored in the upper and lower reservoirs during the
operation for one year. We start and end the operations with full upper reservoirs due to the fact

that our planning horizon starts in September (almost the end of the Monsoon season). The
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fluctuations in the upper and lower reservoirs support a daily cycle in pumped hydro operations.
As can be seen in Figure 4.8, there is no water stored in the lower reservoir in the Monsoon
season since there is no need to pump water to upper reservoir. We can also conclude that water
stored in the lower reservoir (water to be pumped with the extra solar power) during winter
season closely follow the solar radiation curve (Figure 4.7b). During the dry season ( ~ between
November and March), upper reservoir is highly utilized: Since the model “see” that rainy
season (high inflow) coming up (violating nonanticipativity condition), water is stored in dry
season and is used starting from March. In addition, as there is also high solar radiation in
spring-summer period that can be used to pump more water, we observe that there is more water
in the lower reservoir until Monsoon seasons starts again. This result can be verified from the
components of the mass balance equations of the upper reservoir such as inflow, released,
pumped and spilled water which are presented in Figure 4.9. The pumped water to upper
reservoir is so high that the pumped amount is limited by the generator size as can be understood

from the flatness between February and June.
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Figure 4.8| Water stored in the upper and lower reservoirs — The upper reservoir is assumed to be full
at the start and the end of the cycle as the planning horizon starts in September which is close to end of
the Monsoon season. There is no water stored in the lower reservoir in the Monsoon season since there is
no need to pump water to upper reservoir. (0.01 km3 ~ 2.4 GWh)
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Figure 4.9| Flows from/to the upper reservoir level - Water is stored in dry season (November to March)
and is utilized starting from March. As there is high solar radiation in spring-summer period that can be
used to pump more water, lower reservoir utilization is increased until Monsoon seasons starts again.
(0.01 km?® ~ 2.4 GWh)

Furthermore, we now zoom into one week in March and see the balance between solar,
hydro and diesel components to meet the demand and the results are shown in Figure 4.9. Figure
4.10a illustrates that solar energy is enough to meet the demand during the day and hydro
becomes effective when the Sun does not shine (at night). Hydro and solar together satisfies the
demand during the week. Figure 4.10b shows how the reservoir operates for the same week. Due
to the inflow observed in the first day of the week, extra solar energy generated in the demand

point is not needed to pump to upper reservoir in the first two days.
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Figure 4.10 | One week operation balance in reservoir and demand points — a, Solar energy is enough to
meet the demand during the day and hydro becomes effective at night. Deficit is zero during all week. b,
Due to the inflow observed in the first day of the week, extra solar energy generated in the demand point
is not necessary to pump to upper reservoir in the first two days. No spill is observed during all week.

Next, the detailed distribution of alternative sources to meet the demand is summarized in
Table 4.6. 47% of the demand is met by hydropower. 25% of this is directly generated from the
inflow to the reservoir whereas, 22% is generated using the pumped water. Solar energy
generated 84 percent of the annual demand, of which 45% is directly used as “internal” solar
energy and 28% is sent to reservoirs to be stored. The 6% difference between the hydro energy
generated from the pumped water and solar energy sent to reservoirs stems from the generator

and pump efficiencies.
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Table 4.6| Distribution of resources to meet the demand

GWh % of Demand
Inflow 1864.6 25%
Hydro Production Solar 1652.4 22%
SUM 3517.0 47%
Internal 3402.6 45%
p 2133.7 28%
Solar Production Hmp -
Spill 779.2 10%
SUM 6315.5 84%
Diesel 583.8 8%
Demand 7503.3 100%

As we now have the results for the pumped hydro system for the same case study
discussed in previous chapter, we can expand the comparison of alternative systems results to
include pumped hydro system. Figure 4.11 clearly shows that compared to other hybrid systems
the system with pumped hydro storage is the most cost efficient design with much lower unit
cost. Having two-level reservoir with a pump system reduces the intermittency effect of
renewable sources and the system can utilize more clean energy. In particular, total hydro
production increases to 47% (it was 29% in conventional system in Chapter 3) with even smaller
reservoir size compared to conventional system. With an addition of 0.04 km? lower reservoir,
upper reservoir size is reduced to 0.15 km?(0.29 km?® in the conventional system). Further details

about the efficiencies, capacity factors and unit cost of the systems are summarized below in

Table 4.7.
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Figure 4.11] Alternative Technologies - Compared to other hybrid systems, the system with pumped
hydro storage is the most cost efficient design with much lower unit cost. Having two-level reservoir with
a pump system reduces the intermittency effect of renewable sources and the system can utilize more
clean energy. In particular, total hydro production increases with even smaller reservoir size compared to
conventional system. Shaded area in the solar power bar is transferred to hydro power.6% is lost due to

generator and pump efficiencies.

Table 4.7| Results of the pumped hydro system compared to conventional system

Conventional Hydro

Pumped Hydro

Investments

Upper Reservoir Size(km*3/~GWh)
Lower Reservoir Size(km*3/GWh)
Pump/Generator Size(GW)

Solar Panel Size(km”2/~GW)

0.29/~70
N/A
1.06
12.50/~0.30

0.15/~36
0.04/~9
1.50
28.18/~0.68

Production

GWh |% Demand

GWh | % Demand

Solar (Internal)
Hydro

Diesel

Total

2533 33.76
2184 29.11
2786 37.13
7503 100

3224 45.35
3695 46.87
584 71.78
7503 100
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Diesel

Average Diesel Usage (GW) 0.32 0.06

Peak Diesel Usage (GW) 1.29 1.08
Demand

Average Demand (GW) 0.86

Peak Demand (GW) 1.35

Load Factor 0.63

Solar

Efficiency 90% 88%
Average Solar Production {GW) 0.32 0.72

Peak Solar Production (GW) 141 3.18
Capacity Factor 0.23 0.23
Hydro Turbine Pump Turbine
Average Hydro Production {(GW) 0.25 0.21 0.40
Peak Hydro Production {GW) 1.06 1.50 1.50
Capacity Factor 0.24 0.14 0.27
Transmission Hydro Hydro Solar
Average Transmission {GW) 0.25 0.40 0.24
Peak Transmission (GW) 1.06 1.50 1.50
Capacity Factor 0.23 0.27 0.16
Unit Cost

Unit Cost of Hydro {$/kWh) 0.04 0.02

Unit Cost of Solar {S/kwh) 0.05 0.05

Unit Cost of Diesel {$/kWh) 0.15 0.15

Unit Cost of the System {S/kWh) 0.08 0.06

We now compare the pumped hydro system with the conventional hydro system and see
that how the residence time of the reservoir went down (water has been cycled more), how the
solar contributed both to hydropower (pumping) and to internal usage (larger panels) and as a
result diesel usage decreased to 8% from 37%.

In pumped hydro system, there are two level reservoirs in the system with more
complicated working principal than the conventional system, we revisit the term, “residence time

of the reservoir” that is introduced in Chapter 4. The operation of the upper reservoir in our
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pumped hydro system is no different than the reservoir in the conventional hydro system. As
pumped water can only be considered as an additional inflow to the upper reservoir, we do not
need to change our definition of residence time for the upper reservoir. However, we need to
define the residence time for the lower reservoir which practically has a quite different operation
cycle compared to the upper reservoir. To estimate the average time a water molecule spends in
the lower reservoir, we again rely on the conservation of mass principle and estimate the
residence time of the reservoir by dividing the volume of the reservoir by the rate by which water
either gets filled or depleted the reservoir [31]. Here, the rate by which the water is pumped to
upper reservoir represents the rate by which the water exits the lower reservoir. Therefore,
residence time of upper and lower reservoirs, RT _upper{ and RT _lower{ respectively, in

hydropower station i under scenario w can be calculated by the formulas below:

RT _upper? = SUmax; =365/ Z Rt
t

RT_lower? = SLmax; * 365/ Z )
t

where SUmax; and SLmax; are the size of the upper an d lower reservoirs respectively , ¥ R@t
represents the total amount of water released from the upper reservoir i and Y, P°* represents the
total amount of pumped water from lower reservoir to upper reservoir in a year (our time
horizon) under scenario w. Using the formula above, residence times of the reservoirs are
estimated to be 3.6 and 2 days for upper and lower respectively. We note that in Chapter 3,
residence time of the reservoir in conventional hydro system with the same demand data is
calculated as 11.7 days. This means we can cycle water a few times and generate more power
from renewable sources. In Table 4.7, detailed results of the pumped hydro system are given

compared to conventional hydro system. Results show that with an additional 0.04 km? lower
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reservoir, a smaller upper reservoir (almost the half of the one in conventional system (0.15 km?®
vs 0.29 km®) is needed. The flexibility that pumped hydro system brings combining hydro and
solar potentials provides reduced residence time of upper reservoir. Table 4.7 shows that
introducing the pump to the system reduced the diesel usage from 37 percent to 7 percent and
decreased the unit cost of the overall system.

Another interesting result demonstrated in Table 4.7 and Figure 4.12 is the increase in the
percentage of internally used solar energy in pumped hydro system, compared to conventional
system. This is mainly due to the fact that it is expected that solar panel area in pumped hydro
system is larger than the area in conventional system as the role of solar energy in pumped
system is twofold: internal solar and pumped solar. In addition, in the pumped hydro system,
solar energy is usually transmitted to hydro stations for pumping for two consecutive time
periods (total of 6 hours) in one day on average. However, solar radiation is available for more
time periods and as the solar panel area is larger, the energy generated during the day when there
IS no pumping, is being used internally. Therefore increased solar panel area also contributes the
internally used solar energy. In particular, in Table 4.7, we see that 28% of solar generated in the
pumped hydro system is being pumped and 45% is being used internally within demand points
whereas, in conventional system, the internally used solar energy is 33%. Figure 4.12 compares
conventional and pumped hydro systems in terms of the solar energy produced in one day. It can
be seen that total production is scaled up by increased solar panel area as the solar radiation
curve is same. Solar energy used internally for the 4" and 5" time periods are the same as extra
solar energy is spent for pumping, however shaded area in 3" and 6" time periods in Figure
4.12b represents the parts which explain the difference between solar internal percentages in

conventional and pumped systems. This consistently supports the explanation above. The fact
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that we still have some spill in the solar power in the pumped hydro system is due to optimized
size in the high demand period as explained in Chapter 3. Another way to see the difference is

presented in Figure 4.13. Internally used solar energy for one week in November is presented.

a) Conventional Hydro System b) Pumped Hydro System
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Figure 4.12 | Comparisons of solar production profile of one day in November for conventional (a) and
pumped hydro systems (b) - Total production is scaled up by increased the solar panel area as the solar
radiation curve is same. The role of solar energy in pumped system is twofold: internal solar and pumped
solar. Solar energy used internally for the 4" and 5" time periods are the same between two systems as

extra solar energy is spent for pumping, however shaded area in 3™ and 6™ time periods in (b) represents
extra solar internal.
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Figure 4.13 | Comparisons of internally used solar energy for one week in November. The area under
curves explains the difference between solar proportions to meet the demand in Table 4.7.

4.5.2 Case Study I1: Multi Demand Points, Multi Basins System

In Chapter 3 and 4.5.1, we have shown that combining variety of resources gives us
higher cost efficiency (Figure 4.11) and how a pumped hydro storage system increases the
flexibility of intermittent sources in matching supply and demand. Now, in this section we
provide results for the effect of long distance transmission lines between resources which are
expected to have different variability. As individual systems are connected with each other
through transmission lines and work as a single system, the variability and intermittency of
renewable sources is expected to be smoothed out. To demonstrate this effect, we sequentially

add more basins and demand points to the system that we discussed in previous section.
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Figure 4.14 | Multi-basins, Multi-demand Points Cases — a, is the system discussed in Section 5.5.1. b,
introduces an additional basin (Pinder River with 6.2 km3 annual inflow) to the system and reduces the
unit cost. ¢, Higher flexibility from the variety of resources is observed when third basin (Chenab River
with 45.5 km®) is included. d, Another demand point (Punjab - 10000GWh annual demand in the
calculations) is added and observed the balances between reservoirs change when the demand increases.

We start with the system in Figure 4.14a. With 13.3 km?® annual inflow of Bhagirathi
River and 7500 GWh demand size (one fourth of actual demand of Delhi) is discussed in detail
in Section 5.5.1. Then, we first add Pinder River with 6.2 km® annual inflow to the system
(Figure 4.14b). Results showing the comparison between two cases are summarized in Table 4.8.
The immediate result is the reduced unit cost of combined system (Table 4.8). In further

details, one important point is that although the distance between Pinder and Delhi is longer than
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the distance between Delhi and Bhagirathi (Figure 4.14b), it is still cost efficient to reduce the
size of a shorter transmission lines between Delhi and Bhagirathi and add another transmission
line for 0.21 GW between Delhi and Pinder. Moreover, total generator size in latter case is
smaller than the single basin-single demand point case. This indicates that combining two
sources with different variability increases the flexibility of obtaining cheaper systems.

Table 4.8 | Bhagirathi and Pinder Rivers combined to meet Delhi’s demand

Pinder + Bhagirathi Bhagirathi
Investment Size Pinder Bhagirathi
Upper Reservoir Size(km”3/~GWh) | 0.032/7.6  0.093/22.4 0.148/36.6
Lower Reservoir Size(km”"3/~GWh) 0.004/1.0 0.028/6.8 0.0385/9.4
Pump/Generator Size(GW) 0.216 1.139 1.499
Transmission Line to Delhi (GW) 0.216 1.139 1.500
Solar Panel Size(km*®2 /~GW) 24.98/0.60 GW 28.18/0.68
GWh ‘ % Demand GWh ‘ %Demand
Hydro Inflow 577.4 8%
Production | |Solar 105.1 1%
Devsari SUM 682.5 9%
Hydro Inflow 1758.8 23% 1864.6 25%
Production Il |Solar 1180.0 16% 1652.4 279
Tehri SUM 2938.9 39% 3517.0 47%
Internal 3291.9 44% 3402.6 45%
Solar Pump 1659.5 22% 2133.7 28%
Production |Spill 645.5 9% 779.2 10%
SUM 5597.0 75% 6315.5 84%
Diesel 590.0 8% 583.8 8%
Demand 7503.3 100% 7503.3 100%
Diesel
Average Diesel Usage (GW) 0.07 0.06
Peak Diesel Usage (GW) 0.91 1.08
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Demand

Average Demand (GW)
Peak Demand (GW)
Load Factor

0.86
1.35
0.63

Solar

Efficiency

Average Solar Production (GW)
Peak Solar Production (GW)
Capacity Factor

0.885
0.64
2.82
0.23

0.880
0.72
3.18
0.23

Hydro Production | (Pinder)

Pump Turbine

Average Hydro Production (GW)
Peak Hydro Production (GW)
Capacity Factor

0.01 0.08
0.216 0.216
0.06 0.36

Hydro Production Il (Bhagirathi)

Pump Turbine

Pump Turbine

Average Hydro Production (GW)
Peak Hydro Production (GW)
Capacity Factor

0.15 0.34
1.14 1.14
0.13 0.29

0.21 0.40
1.50 1.50
0.14 0.27

Unit Cost

Unit Cost of Hydro (S/kWh)

Unit Cost of Solar ($/kWh)

Unit Cost of Diesel (S/kWh)

Unit Cost of the System (S/kWh)

0.016
0.054
0.150
0.059

0.019
0.054
0.150
0.064

Higher flexibility from the variety of resources can be observed with further clarity when
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Chenab River with 45.5 km? isincluded in the system (Figure 4.14c). Table 4.9 summarizes the
results and shows that Chenab River with a high stream flow potential reduced the unit cost of
the system by around 42% (from 59 cents to 34 cents). Interestingly, due to the high potential of
the river, a conventional hydropower station is found to be sufficient for Chenab River. In
addition, the new source has also affected to Pinder Hydropower Station and a pumped hydro
system is no longer needed. In comparison with the previous case, the sum of the reservoirs,
generators and transmission sizes are all reduced. As more potential is added to the system,

hydro power got particularly cheaper reducing the proportion of solar in meeting the total




demand. Next, it should be noted that when all cases are compared, we observe that proportion
of diesel is about 8% and could not be reduced. This is because of the fact that although basins
have different potentials with short term variability, they have similar seasonal variability. In
winter, the stream flow potential and solar radiation decreases and diesel usage becomes
compulsory to provide 100% reliability.

Table 4.9 | Chenab, Pinder and Bhagirathi River Systems

Chenab + Pinder + Bhagirathi Pinder+ Bhagirathi
Investment Size Chenab  Pinder Bhagirathi Pinder Bhagirathi
Upper Reservoir Size(km”3/~GWh) [0.010/2.5]| 0.005/1.2| 0.019/4.5 | 0.032/7.6 | 0.093/22.3
Lower Reservoir Size{km"3/~GWh) 0.000 0.000 0.009/2.2 | 0.004/1.0 0.028/6.8
Pump/Generator Size{GW) 0.665 0.103 0.255 0.216 1.129
Transmission Line to Delhi (GW) 0.665 0.103 0.355 0.216 1.129
Solar Panel Size(km”2/~GW) 8.82/~0.21 24.98/~0.60
Production GWh % Demand GWh % Demand
Hydro Inflow 3619.3 18%
Production | Solar 0.0 0%
Chenab SUM 3619.3 48%
Hydro Inflow 349.0 5% 577.4 8%
Production Il |Solar 0.8 0% 105.1 1%
Pinder SUM 349.7 5% b32.5 0%
Hydro Inflow 1026.4 14% 1758.8 23%
Production Il |Solar 73.3 1% 1130.0 16%
Bhagirathi SUM 1099.7 15% 2938.9 30%
Solar Pump 95.b 1% 1659.5 22%
) Spill 44.9 1% b45.5 0%
Production
SUM 1976.9 26% 5597.0 75%
Diesel 598.3 8% 590.0 8%
Demand 7503.3 100% 7503.3 100%
Diesel
Average Diesel Usage (GW) 0.07 0.07
Peak Diesel Usage {GW) 0.83 0.91
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Demand

Average Demand (GW) 0.806

Peak Demand (GW) 1.35

Load Factor 0.63

Solar

Efficiency 98% 88%
Average Solar Production {GW) 0.23 0.72

Peak Solar Production (GW) 0.99 3.18
Capacity Factor 0.23 0.23

Hydro Production | (Chenab) Pump Turbine

Average Hydro Production (GW) 0.00 0.41

Peak Hydro Production (GW) 0.67 0.67

Capacity Factor 0.00 0.62

Hydro Production Il {Pinder) Pump Turbine Pump Turbine
Average Hydro Production (GW) 0.00 0.04 0.01 0.08
Peak Hydro Production (GW) 0.10 0.10 0.22 0.22
Capacity Factor 0.00 0.39 0.06 0.30
Hydro Production Il (Bhagirathi) Pump Turbine Pump Turbine
Average Hydro Production (GW) 0.01 0.13 0.15 0.34
Peak Hydro Production (GW) 0.36 0.36 1.14 114
Capacity Factor 0.03 0.35 0.13 0.29
Unit Cost

Unit Cost of Hydro {5/kWh) 0.008 0.016

Unit Cost of Solar {$/kWh) 0.049 0.054

Unit Cost of Diesel (5/kWh) 0.150 0.150

Unit Cost of the System (S/kWh} 0.034 0.059

Finally, another demand point with annual demand around 10000GWh (one half of
Punjab’s demand) is added to system in order to observe how the balances between reservoirs
change when the demand increases (Figure 4.14d). These results are presented in Table 4.10 and
it can be seen that Chenab and Pinder have now pump hydro stations. Therefore transmission
lines in the system clearly distribute the renewable sources eliminating variability and

intermittency.
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Table 4.10 | Another demand point (Punjab) added to the system

Delhi +Punjab Delhi
Investment Size Chenab Pinder Bhagirathi | Chenab Pinder Bhagirathi
Upper Reservoir Size(km3/~GWh)| 0.032/7.7 | 0.015/3.5 | 0.168/0.17 | 0.01/2.5 | 0.005/1.19 | 0.019/4.5
Lower Reservoir Size(km3/~GWh) | 0.012/2.8 | 0.004/0.99 | 0.039/9.4 0.000 0.00/0.05 | 0.009/2.19
Pump/Generator Size {GW) 1.08 0.21 1.60 0.67 0.10 22.46
Transmission Line to
Delhi (GW) 0.20 0.21 0.76 0.67 0.10 0.36
Punjab ({GW) 0.88 0.00 0.98
Solar Panel Size
Delhi (km2/~GW) 19.06/0.46 8.82/0.21
Punjab (km2/~GW) 22.46/0.54
GWh % of Total GWh % of Total
Hydro Inflow 4988.4 27.40% 3619.3 48.24%
Production | |Solar 189.1 1.04% 0.0 0.00%
Chenab SUM 5177.4 28.44% 3619.3 48.24%
Hydro Inflow 741.4 4.07% 349.0 4.65%
Production Il [Solar 99.4 0.55% 0.8 0.01%
Pinder SUM 840.8 4.62% 349.7 4.66%
Hydro Inflow 23439 12.87% 1026.4 13.68%
Production Il [Solar 1524.3 837% 73.3 0.98%
Bhagirathi |SUM 3868.2 21.25% 1099.7 14.66%
Solar Internal 2946.9 16.19% 1836.4 24.48%
. Pump 1097.9 6.03% 95.6 1.27%
Production | -
Delhi Spill 225.7 1.24% 449 0.60%
SUM 4270.4 23.46% 1976.9 26.35%
Internal 3510.7 19.28%
Solar
Production Il Pump 1243.0 6.83%
. Spill 150.9 0.83%
Punjab
SUM 4904.6 26.94%
Diesel Delhi- Punjab Delhi
Average Diesel Usage (GW) 0.1 0.1 0.07
Peak Diesel Usage (GW) 0.9 1.3 0.83
Demand Delhi- Punjab Delhi
Average Demand (GW) 0.86 1.22 0.86
Peak Demand (GW) 135 2.15 1.35
Load Factor 0.63 0.57 0.63
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Solar Delhi- Punjab Delhi

Efficiency 95% 96% 98%

Average Solar Production (GW) 0.49 0.56 0.23

Peak Solar Production (GW) 2.15 2.45 0.99

Capacity Factor 0.23 0.23 0.23

Hydro Production | (Chenab) Pump Turhine Pump Turbine
Average Hydro Production (GW) 0.02 0.59 0.00 0.00
Peak Hydro Production {GW) 1.08 1.08 0.67 0.67
Capacity Factor 0.02 0.55 0.00 0.00
Hydro Production Il (Pinder) Pump Turbine Pump Turbine
Average Hydro Production {GW) 0.10 0.10 0.00 0.00
Peak Hydro Production {GW) 0.21 021 0.10 0.10
Capacity Factor 0.46 0.46 0.00 0.00
Hydro Production lll (Bhagirathi) Pump Turbine Pump Turbine
Average Hydro Production {GW) 0.20 0.44 0.01 0.00
Peak Hydro Production (GW) 160 160 0.26 0.26
Capacity Factor 0.12 0.28 0.03 0.00

4.5.3 Case Study I11: Multi Demand Points, Multi Basins System 11

In this section, similar to Chapter 3, we provide results for India in national level (for all
basins and demand points of the India that we could collect the data for). Same data sets
described in Chapter 3 is used so that effect of using a pumped hydro storage can be explained

easily. Table 4.11 shows the results for proposed sizes of upper and lower reservoirs and

generators for each basin.

Table 4.11 | Reservoir and Generator Sizes for the Hybrid System with Pumped Hydro Storage

Rivers Annual Upper Lower Generator  Generation
Inflow Reservoir Reservoir  Size (GW) (%Demand)
(km3) Size (km3) Size (km3)

(1km3 ~ 240 GWh)

Bhagirathi 13.51 1.19 0.51 22.72 15.9%

Pinder 6.29 0.16 0.02 0.87 1.0%

Chenab 45.57 0.52 0.05 2.79 4.1%

Marusudar 12.02 0.16 0.02 0.93 1.1%

Lohit 19.17 0.07 0.02 0.93 1.4%
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Dibang 9.17 0.02 0.01 0.27 0.5%
Barak 57.71 0.35 0.15 S.77 7.4%
Siang 456.47 0.49 0.30 15.56 29.2%

Table 4.12 | Reservoir and Generator Sizes for the Hybrid System with Conventional Hydro

Rivers Annual Reservoir Generator Generation
Inflow (km3) Size (km3) Size (GW) (%Demand)

(1km3 ~ 240 GWh)

Bhagirathi 13.51 0.28 1.22 1.0%
Pinder 6.29 0.16 0.71 0.5%
Chenab 45.57 0.49 4.27 3.8%
Marusudar 12.02 0.23 1.19 1.0%
Lohit 19.17 0.07 1.21 1.5%
Dibang 9.17 0.02 0.40 0.6%
Barak 57.71 0.08 4.08 4.6%
Siang 456.47 0.81 23.07 30.3%

In order to analyze the comparison easily, we present the counterpart result of Chapter 3
in Table 4.11-4.12. Most surprising change observed in Bhagirathi. In the pumped hydro system,
Bhagirathi has highest capacity (22 GW) and provides the 15.9% of the energy compared to
1.22GW and 1.0% in the conventional system. The reason for this change is as follows: Since the
solar energy generated in demand points can also be stored with pumped hydro system,
recirculation of the inflow is possible and this enhances the generation at Bhagirathi quite a lot

Table 4.13 summarizes the pumped hydro case from the demand points’ side and Table
4.14 shows the results for conventional system. There is a remarkable change in the diesel usage
and pumped hydro system evidently helps reduce the intermittency of stream flow and increased

the percentage of hydro contribution while fulfilling demand.
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Table 4.13 | Solar Panel Area and Energy Generation Percentages by Type

Demand Points Demand Solar Panel Energy Generation by

(GWh) Area Type (% Demand)

(km2/~GW)  Solar  Hydro Diesel

Delhi 30013 81/~1.9 41% 55% 4%
Punjab 47534 122/~2.9 35% 62% 3%
Uttaranchal 11357 68/~1.6 35% 60% 5%
Himachal Pradesh 7744 176/~4.2 53% 43% 4%
Uttar Pradesh 87916 202/~4.8 31% 65% 4%
Bihar 13774 33/~0.8 31% 61% 8%
West Bengal 40777 112/~2.7 36% 59% 5%
Jharkhand 5663 16/~0.4 34% 59% 8%
Assam 5162 12/~0.3 25% 67% 8%
Chhattisgarh 17718 49/~1.2 37% 56% 7%

Table 4.14 | Solar Panel Area and Energy Generation Percentages by Type for the Conventional System

Demand Points Demand  Solar Panel Energy Generation by
(GWh) Area Type (% Demand)
(km2/~GW)  Solar Hydro  Diesel
Delhi 30013 49.7/~1.2 34% 36% 31%
Punjab 47534 75.1/~1.8 30% 46% 24%
Uttaranchal 12786 17.2/~0.4 25% 59% 16%
Himachal Pradesh 7744 13.6/~0.3 33% 46% 20%
Uttar Pradesh 87916 132.4/~3.2 29% 40% 31%
Bihar 13774 20.2/~0.5 29% 42% 29%
West Bengal 40777 55.0/~1.3 27% 45% 27%
Jharkhand 5663 8.7/~0.2 31% 41% 27%
Assam 5162 7.2/~0.2 25% 49% 26%
Chhattisgarh 17718 24.8/~0.6 30% 51% 19%

The major transmission lines (=1GW) between hydropower stations and demand points
can be seen in Table 4.15 (Table 4.16 for the conventional system). In the pumped hydro system,
solar energy is also transmitted via bi-directional transmission lines and we observe that

especially Northern India, this increases the capacity of the lines. For example, Himalach
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Pradesh which is one of the states with the lowest demand has a twelve times larger solar panel
area compared to conventional system. This shows that solar energy potential in Himalach

Pradesh is mostly sent to Bhagirathi to be pumped up and released again to meet demand in the

other states.
Table 4.15| Transmission lines for the pumped hydro system
. . Uttarak- Himalach  Uttar . West Jharak- Chattis-
GW_peak Delhi- Punjab hand Pradesh Pradesh Bihar Bengal hand Aissam garh
Bhagirathi 3.4 4.6 4.9 17.0 2.2 0.4 0.6 0.2 0.0 1.1
Pinder 0.2 0.0 0.1 0.2 0.3 0.2 0.1 0.0 0.0 0.2
Chenab 0.3 1.9 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0
Marusudar 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lohit 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0
Dibang 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0
Barak 0.0 0.0 0.0 0.0 0.8 0.1 3.7 0.2 0.5 1.1
Siang 1.0 2.0 1.0 0.0 7.8 1.3 0.8 0.5 0.5 0.6
Table 4.16 | Transmission lines for the conventional system
. . Uttarak- Himalach  Uttar . West Chattis-

GW _peak Delhi  Punjab hand Pradesh Pradesh Bihar Bengal Iharakhan Assam garh
Bhagirathi 0.2 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Pinder 0.2 0.1 0.7 0.0 0.4 0.0 0.0 0.0 0.0 0.1
Chenab 1.6 1.8 0.8 0.4 0.0 0.0 0.0 0.0 0.0 0.0
Marusudar 0.0 1.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lohit 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0
Dibang 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0
Barak 0.0 0.0 1.6 0.1 0.5 0.0 1.8 0.0 0.2 0.4
Siang 2.3 3.8 0.6 0.5 9.5 1.6 2.3 0.6 0.6 1.6

In Table 4.17 and 4.18, we present average power transmitted between supply and
demand points which is calculated over one year horizon. We note that these values are
underestimated since pumping and generation cannot happen at the same time and we average
both quantities over 24 hours in a day. Supporting the discussion above for the transmission lines
for the pumped hydro system (Table 4.15 in comparison with Table 4.16), Table 4.18 also shows
a significant power flow from Himalach Pradesh and Bhagirathi River to be pumped up. This

point can be seen with further clarity: In Table 4.19 we present total solar production within each
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demand points over planning horizon to see what percentage of the solar energy is being pumped,
internally used or wasted. We see that 82% of the solar energy generated in Himalach Pradesh is
being pumped in Bhagirathi power station to be distributed to other demand points. These
results can be analyzed together with Table 4.13 where we show the energy supply breakdown to
meet the total demand (The solar components in Table 4.13 represent the internally used solar
energy amount). One should keep in mind that here we allow a network only between demand
and supply points. The transmission network might look different (and more complicated) if
power flow between demand points is also allowed.

Table 4.17 | Average power sent from supply point to demand points (hydropower)

Supply to . .
PPl . . Uttarak- Himalach Uttar- . West Jharak- Chattis-
Demand Delhi  Punjah Bihar Assam
hand Pradesh Pradesh Bengal han garh
{GW _avg)
Bhagirathi 1.3 1.0 0.4 0.1 1.2 0.1 0.2 0.1 0.0 0.4
Pinder 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1
Chenab 0.1 0.9 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Marusudar 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lohit 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
Dibang 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
Barak 0.0 0.0 0.0 0.0 0.2 0.0 1.6 0.0 0.1 0.2
Sia ng 0.4 1.1 0.4 0.0 4.8 0.8 0.5 0.2 0.2 0.2

Table 4.18 | Average power sent from demand point to supply points (solar power)

Demand to
. . Uttarak- Himalach  Uttar . West Jharak- Chattis-
Supply Delhi  Punjab Bihar Assam

hand Pradesh Pradesh Bengal han garh

{GW_avg)
Bhagirathi 0.3 0.5 0.8 3.4 0.5 0.1 0.1 0.0 0.0 0.2
Pinder 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chenab 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Marusudar 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lohit 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Dibang 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Barak 0.0 0.0 0.0 0.0 0.1 0.0 0.6 0.0 0.1 0.2
Siang 0.1 0.2 0.2 0.0 0.7 0.1 0.1 0.1 0.0 0.1
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Table 4.19 | Solar energy production and utilization in demand points

Demand Points Demand Solar Solar % Distribution of Solar
(GWh) Panel Production Production
Area (GWh) Pumped Internal Spilled
(km2)
1km2 ~ 0.024 GW
Delhi 30013 81 18250 24% 67% 9%
Punjab 47534 122 26584 34% 63% 3%
Uttarakhand 12786 68 14869 57% 30% 13%
HimalachPradesh 7744 176 38349 82% 11% 8%
UttarPradesh 87916 202 43449 29% 63% 8%
Bihar 13774 33 7266 26% 59% 16%
West Bengal 40777 112 23686 32% 61% 7%
Jharakhan 5663 16 3768 33% 51% 17%
Assam 5162 12 2505 34% 51% 15%
Chattisgarh 17718 49 11845 36% 55% 9%

The results for multi basins- multi demand points case, so far are given for a deterministic
case with comparison to conventional hydro system for the same data. In order to be able to
consider different scenarios, we identify four scenarios which are observed as years with either
highest or lowest inflow for multiple basins. The optimal solution for these scenarios are
calculated and presented in Table 4.20-22.

Table 4.20 | Reservoir and Generator Sizes for the Hybrid System with Pumped Hydro Storage for
Multiple Scenarios

Basin Rivers Annual  Upper Lower  Generator
Number Inflow Reservoir Reservoir Size (GW)
(km3) Size Size

(km3) (km3)
(1km3~ 240 GWh)

1 Bhagirathi  13.51 0.68 0.47 20.16
2 Pinder 6.29 0.36 0.03 1.15
3 Chenab 45.57 1.00 0.06 3.29
4 Marusudar  12.02 0.32 0.02 0.98
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Table 4.21 | Solar Panel Area in Demand Points for the Hybrid System with Pumped Hydro
Storage for Multiple Scenarios

Demand Points Demand (GWh) Solar Panel
(1km2~ 0.024 GW) Area (km2)
Delhi 30013 75
Punjab 47534 111
Uttarakhand 12786 46
HimachalPradesh 7744 208
UttarPradesh 87916 196
Bihar 13774 32
West Bengal 40777 110
Jharakhan 5663 15
Assam 5162 12
Chattisgarh 17718 47

Table 4.22 | Transmission Lines between Demand Points and Basins for Hybrid System with
Pumped Hydro Storage for Multiple Scenarios

Uttarak- Himalach Uttar West Jharak- Chattis-
Rivers/ States | Delhi Punjab hand  Pradesh Pradesh Bihar Bengal hand Assam garh
Bhagirathi 2.8 5.1 2.5 19.8 3.1 0.2 0.4 0.2 0.0 0.7
Pinder 0.0 0.0 0.4 0.2 0.4 0.2 0.1 0.0 0.0 0.4
Chenab 0.7 1.8 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0
Marusudar 0.0 0.9 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
Lohit 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0
Dibang 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
Barak 0.0 0.0 0.0 0.0 0.2 0.1 3.4 0.2 0.4 1.1
Siang 1.2 1.6 1.2 0.1 8.0 1.2 0.9 0.5 0.6 0.6

The major transmission lines between basins and demand points are also presented in

Figure 4.15. Blue lines shows the flow which are dominated by hydropower transmission and

yellow lines represent solar power dominated transmissions. In our model, transmission lines are
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assumed to be bidirectional and designed as a point-to-point topology. Direct Euclidean
distances are calculated between source and destination points. Normally, for transmission
networks, we observe multi-point topology. For example, in Figure 4.15 instead of having a low
capacity dedicated transmission line between Basin 7 (Barak) and Chhattisgarh, a higher
capacity transmission line could be first expanded to West Bengal and West Bengal and
Chhattisgarh could be connected with another lower capacity transmission line. However,
optimization of different network topologies is not the scope of this paper. Moreover, we should
note that transmission lines which pass through Himalaya Mountains (e.g. Basin 8 and Delhi)

may not be possible because of the elevation and other geographic constraints.

- North India, Transmissions for multi-scenario case

Chattisgarh (C)

ﬁ 100 200 400 Miles A
A I N T B |

Figure 4.15 | Major transmission lines between basins and demand points. Blue lines represent
hydro power dominated transmission lines. Yellow line represents the solar power dominated line
between Himalach Pradesh and Bhagirathi River.
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Finally, one should keep in mind that in this study we did not include lower and upper
bounds for reservoir sizes or generator capacities. Other environmental and geographic
constraints which are specific to basins are not also in the scope of this thesis. These results are

only based on the stream flow potentials of the proposed basins.

4.6 Discussion

4.6.1 Sensitivity Analysis

Sensitivity analysis of the objective function can provide meaningful insight about the
ways in which the optimal solution of the problem changes in response to small changes in the
cost parameters. In Table 4.23, each investment variable, its reduced cost and the range over
which its objective function coefficient can vary without forcing a change in the optimal basis is
displayed. We see that we have very small ranges for each variable in which our current optimal
solution remains the same.

Table 4.23| Sensitivity Analysis of Cost Parameters

Unit Cost Down Up  Sensitivity Ranges

Upper Reservoir 1$/m? -0.62%  9.73% 0.994-1.097

Lower Reservoir 1$/m? -1.71%  1.29% 0.983-1.029

Pump/Generator 500$/kW -0.05% 0.32%  499.75-501.62
Solar Panel 150$/m? -0.46%  0.03% 149.30-150.04

Transmission Line® 254 $/kW -0.16%  0.23% 252.59-253.59

Then, we perfomed another analysis to see the sensitivity of diesel usage and amount of
pumped energy as the reservoir sizes change. The results of this analysis is presented in Figure

4.16. In Figure 4.16a we run our model fixing the lower reservoir size at different levels. Until

8 Unit cost of transmission depends on the distance between points. This unit cost is calculated based on the distance
between Delhi and Bhagirathi
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the optimal size of lower reservoir, amount of pumped energy increases rapidly while diesel

usage decreases. After optimal value we see that there is no gain from increasing the reservoir

size.
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Figure 4.16 | Change in the pumped energy and diesel usage as reservoir sizes are fixed at different
values. a, Lower Reservoir. b, Upper Reservoir.

In Figure 4.17, we show the marginal effect of increasing upper reservoir size. In Figure
4.16a, the change in the hydropower production with increasing reservoir size is presented.
When upper reservoir size is zero, the hydro system works as run-of-the-river systems and more
than 20% of the demand is met by hydro. Including a pumped storage system increases hydro’s
proportion to 47%. However, the marginal effect of increasing the upper reservoir size decreases.
Here, it is possible to conclude that utilization of the reservoir decreases as the reservoir size
increases. Another way to show the marginal effect of increasing reservoir size is presented in
Figure 4.17b where we analyze the unit cost as the upper reservoir size increases. We see that
when reservoir is smaller, the effect of increasing reservoir size has a bigger effect on the unit
cost. Since the demand is constant, the unit cost represents the total cost and it naturally starts
increasing after optimal size of upper reservoir. Figure 4.17c presents the results of dual analysis

for upper reservoir size. For this analysis, an upper bound constraint is added to the model so that
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dual variables at different reservoir sizes can be calculated. Figure shows the marginal effect of
increasing upper reservoir size on the objective function. The smaller the upper bound in the

model is, the bigger is the improvement in the objective function when reservoir size is increased

by one unit.
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Figure 4.17 | Change in the hydropower production and unit cost of the system as upper reservoir sizes
are fixed at different values. a, Hydropower production is normalized by demand. Figure shows that
marginal value of increasing reservoir size decreases as the reservoir size is increased. b, Unit cost of the
system is minimized when the upper reservoir is at optimal value. c, The dual price gives the
improvement in the objective function if the constraint is relaxed by one unit. The smaller the upper
bound in the model is, the bigger is the improvement in the objective function when reservoir size is

increased by one unit.

4.6.2 Analysis on Time Resolution of the Model

The time resolution (increment) used in the model becomes quite important while

working with variable and intermittent sources such as solar and wind. As seen in Figure 4.7,
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solar radiation has fluctuations on both short and long time scales. An approach that avoids
capturing the variability of solar in short time scales could easily fail to accurately estimate the
system sizes for new infrastructure. Moreover, as can be seen in Figure 3.1, we also observe
diurnal variation in Himalayan stream flows occurring due to snow melts correlated with the sun
light in the summer months. This also emphasizes the fact that systems including renewable
sources may need to be modeled using short time increments as low as hours or minutes.

Furthermore, given that solar energy can be stored in the pumped hydro system in our
model, and there is significant solar radiation variability in hourly level, using hourly time
increments in addressing the problem becomes even more important. For our base case studies,
our model is run with 3 hourly time increments. Clearly, the shorter the time increment is, the
more accurate the results can be expected. However, increasing the resolution of the model will
also increase the solution time significantly. Therefore, one needs to find the most suitable time
increment that captures almost all the variability without making the analysis unnecessarily
complicated. Here, we show that the critical time resolution due to the nature of our data is 3-
hour increments.

To understand the effect of resolution for solar, output is first examined in terms of the
frequency spectrum of solar radiation. As discussed in [32], spectral density of the output of
solar systems provides insights for the diurnal, daily and seasonal cycles as well as the weather
related, non-cyclic fluctuations. The method we followed to estimate the power spectrum has
been described in [33]. Since the solar radiation data provided by NREL has hourly time
intervals, to be able to increase the resolution even further, we used one-month real solar power
output of a power station located in Gujarat (The output of the station in March 2012 is provided

in Figure 4.18). The data is first rescaled to Delhi (for our case study) by latitude and linear
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interpolation method is used to expand the data for one year. Here, we applied Fourier transform
to our input solar radiation data and plotted an estimate for the spectral density in logarithmic
scale. The result for the data with 15-min resolution is provided in Figure 4.19.

The frequency spectrum shows that the highest peak is observed at a frequency of
1.157x10-5 Hz (24 hours) as expected because of the cyclic daily availability of solar. The
resolution of the available data (15-min resolution) limits the observations in spectrum to
1.11x10-3 Hz. The most critical outcome obtained from the spectrum is that for time increments
less than 3 hours, there is no significant peak observed in the data. Therefore, one can conclude
that for our problem, using a time increment longer than 3 hours would fail to capture the
variability of solar, whereas time increments less than 3 hours might not provide further

improvements on the results.
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Figure 4.18 | Real energy output data from a solar power station in Gujarat over one month
(March 2012) with 15-min sampling frequency.
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Figure 4.19 | An estimate for the spectrum of solar radiation data sampled at 15 min resolution.
Highest peak is observed at 24hours and beyond 3hours, there is no significant peak is observed.

Next, we want to verify the conclusion above and analyze the effect of increased
resolution. Decreasing the time increment of the model increases the number of constraints and
reduces the solution space of the problem. Therefore, it is expected to observe higher cost for our
minimization problem with smaller time increments. We present the results with 1-hour and 15-
min time increments in comparison with 3-hour increments for Bhagirathi River and Delhi case
study in Table 4.24. Here, we regenerated 1-hour and 3-hour resolution data using the 15-min
resolution data to be able to have the sum of the radiation for one year equal for all data sets. The
results for our analysis with different resolutions show that unit cost of the system indeed
increases as time increment decreases; however, as the difference between the results of 3-hour
resolution and 15-min resolution is not significant (2%), we can confidently assume that 3-hour

resolution is sufficient to include the vast majority of the variations exist in the data.
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Table 4.24] Sensitivity Analysis with Different Resolutions

RESOLUTION

3-hour 1-hour 15-min
Investments
Upper Reservoir Size(km?3/~GWh) 0.1474 (35.4) 0.156 (37.4) 0.1565 (37.5)
Lower Reservoir Size(km"3/~GWh) 0.0410 (9.84) 0.0405 (9.72) 0.0408 (9.79)
Pump/Generator Size(GW) 1.478 1.543 1.560
Solar Panel Size(km"2/~GW) 28.28 (0.68) 28.48 (0.68) 28.43 (0.68)
Production GWh | % Demand| GWh |% Demand| GWh | % Demand
Solar 3490 46.48 3276 43.63 3242 43.17
Hydro 3476 46.30 3681 49.02 3710 49.40
Diesel 542 7.22 552 7.35 557 7.42
Total 7508 100 7508 100 7508 100
Unit Cost
Unit Cost of Hydro ($/kWh) 0.0189 0.0187 0.0187
Unit Cost of Solar ($/kWh) 0.0536 0.0540 0.0540
Unit Cost of Diesel ($/kWh) 0.1500 0.1500 0.1500
Unit Cost of the System (S/kWh) 0.0632 0.0642 0.0644

4.6.3 Analysis on Multiple Years Stream Flow Data

To be able to see the effect of different stream flows on infrastructure sizes in more detail,
we have also completed an analysis with the complete time series of 53 years. We first run our
model presented in Section 4.4.1 for every year individually. In Table 4.25, we observe that
upper and lower reservoir sizes are more dependent on the inter-annual variability of the stream
flow as expected and highest variability is observed in upper reservoir size as discussed in

scenario analysis in Section 4.4.3.

Table 4.25 | Variability of Infrastructure Sizes for Different Years

Mean STDEV CVv
Upper Reservoir (km?) 0.31 0.17 0.53
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Lower Reservoir (km®) 0.05 0.01 0.16
Generator/Pump (GW) 1.70 0.11 0.06
Solar Panel Area (km?) 31.23 1.74 0.06
Transmission Line (GW) 1.70 0.11 0.06

Here, we use Bivariate Kernel Density Estimator to fit a joint probability distribution to
lower and upper reservoir sizes and derive the bivariate density function shown in Figure 4.20.
Joint density function appears to be bimodal and wide suggesting that the deterministic optimal
solution calculated over the set of different years is not tight and wide range of options can give
similar unit costs. First, we calculate the probability matrix given in Table 4.26 for different
ranges of upper and lower reservoirs. We observe that according to deterministic results, for
most of the years lower reservoir ranges between 0.040 km?and 0.055 km?® and upper ranges
between 0.1 km® and 0.4 km?®. For given ranges, we also present the average unit cost and
percentage of demand met by the alternative fossil fuels (diesel) available for 53 years in Tables
4.27 and 4.28 respectively. As expected unit cost does not show significant variation for different
ranges but diesel usage does. We observe that diesel distribution changes between 4% and 9%.
The values around 4% is observed for larger upper reservoir size and the values around 9% is
observed for smaller lower reservoir sizes.

Furthermore, we also estimate the expected unit cost of the system based on the
probabilities of each year calculated using the density estimator. The expected unit cost of the

system is calculated to be 0.069 $/kWh.
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Figure 4.20 | Bivariate Kernel Density Estimate of Reservoir Sizes. Kernel density estimator
based on [34] in MATLAB (kde2.m) is used with default parameters to estimate the densities. Red dots

represent the observations for each year.

Table 4.26 | Probabilities for different ranges of upper and lower reservoir sizes

Upper Reservoir (km3)

0.095-0.2| 0.2-0.3 | 0.3-0.4 | 0.4-0.5] 0.5-0.6 | 0.6-0.7 | 0.7-0.8 [0.8-0.8406

0.0335-0.035| 0.004 0.004 0.004 0.003 0.002 0.001 0.000 0.000
0.035-0.04 | 0.032 0.029 0.024 0.019 0.012 0.007 0.004 0.001
0.04-0.045 0.065 0.061 0.050 0.037 0.024 0.014 o0.010 0.004
0.045-0.05 0.068 0.066 0.055 0.038 0.022 0.013 0.012 0.005
0.05-0.055 0.050 0.040 0.027 0.015 0.007 0.004 0.006 0.003
0.055-0.06 0.027 0.018 0.008 0.003 0.001 0.000 0.001 0.000
0.06-0.065 0.019 0.016 0.011 0.005 0.001 0.000 0.000 0.000

0.065-0.0681| 0.011 0.014 0.013 0.007 0.002 0.000 0.000 0.000

Lower Reservoir Size (km3)
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Table 4.27 | Average unit cost for different ranges of upper and lower reservoir sizes

Upper Reservoir (km3)

Unit Cost
($/kWh) 0.095-0.2| 0.2-0.3 | 0.3-04 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.8406
— | 0.0335-0.035 0.065
£ | 0035004 | 0065 0.069  0.068
o | 0040045 | 0069 0069 0068 0066 0.067 0.068
C | 0045005 | 0070 0071 0070 0.075 0.071 0.074
% 0.05-0.055 | 0.069 0070 0.070 0.078
0
8 | 0055006 | 0.070
g 0.06-0.065 0.069
9 | 0.065-0.0681 0.073  0.072

Table 4.28 | Percentage of demand met by diesel for different ranges of upper and lower reservoir sizes

% Demand met by Upper Reservoir (km3)
Diesel 0.095-0.2| 0.2-0.3 | 0.3-0.4 | 0.4-0.5]0.5-0.6 | 0.6-0.7 |0.7-0.8] 0.8-0.8406
@ | 0.0335-0.035 9.05
% 0.035-0.04 7.76 920  7.22
& | 0.04-0.045 8.36 7.55 6.09 570 521 4.63
§ 0.045-0.05 8.49 6.70 644 606 490  4.33
5 | 0.05-0.055 7.17 6.24 5.59 4.35
& | 0.055-0.06 6.51
g 0.06-0.065 6.02
S | 0.065-0.0681 7.63 6.35

For the stream flow of a particular year (our base case, 1970), we also add a ‘reliability’
constraint to the model. In our model, the mismatched demand is penalized by an alternative
fossil fuel cost (eg. diesel) and the goal is to meet the demand by renewable sources. Although
system provides 100% reliabililty meeting the demand either by hyro,solar or diesel, we include
a reliabiliy constraint into the model by limiting the percentage of demand met by diesel source.

Figure 4.21 presents these results. At optimal solution, the diesel fraction to meet the demand is
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8%. When diesel fraction is limited by a constraint, system increases the size of the upper
reservoir. If the reliability constraint is above 4%, system increases the size of solar panels, upper
and lower reservoirs; however between 0% and 4% system only increases the upper reservoir
size. This can also be understood from the dual price as the dual price can be calculated from the
change in upper reservoir when the reliability constraint is between 0 and 4%. As discussed in
Chapter 3, the unit cost of reservoir capacity (i.e. constant incremental cost of additional
capacity) that we used for our analysis is $1/m?. If an additional 1 m®of a reservoir is used only
once (in one time period only) during our planning horizon (1 year), we could generate 0.24
kWh of electricity (with 100 m head and 88% efficiency) with that 1m?® water. In addition,
annualized cost of an additional 1m?3 reservoir is $0.07 (with 25 year life time and 5% discount
rate). Therefore, marginal cost of hydro can be roughly calculated as $0.29/kWh. We use unit
cost for diesel as $0.15/kWh. For example, at 2% increasing the diesel usage by 1GWh will
cause an increase in the objective function by $150000; however the gain from decreasing the
upper reservoir size will be around $290000. Therefore, between 0% and 4% , the dual price is

about $140000/ GWh and as the constraint approaches to optimal solution, the dual price goes to
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Figure 4.21 | Analysis on percentage of demand met by diesel source for a particular year. a, At
optimal solution 8% of the demand is met by diesel. When diesel percentage is limited by a constraint,
system increases the size of the upper reservoir. Up to 4%, system increases the size of solar panels, upper
and lower reservoirs; however after 4% system only increases the upper reservoir size. b, Duel price of
the constraint also presents that increasing diesel by 1 GWh reduces the objective function by $140000
between 0% and 4%. The effect of relaxing the constraint decreases around optimal solution (8%).

4.7 Conclusion

We have introduced a model to determine optimal sizing of infrastructure needed to
match demand and supply in a most reliable and cost effective way. We have combined for the
first time three important concepts which help reduce the intermittency of renewable sources:
hybrid systems, energy storage (pumped hydro) and long distance transmission in regional or
national level. This model is obtained by enhancing the model in Chapter 3 by introducing the
pump hydro ability with a secondary lower reservoir. We show that pumped hydro systems
increases the cost efficiency and utilization of renewable sources increasing the flexibility to
match supply and demand. We also show examples of how transmission lines provide more
geographic aggregation which smoothes the variability of intermittent sources over large
distances. This helps design more efficient hybrid systems reducing the storage costs and

generate more dispatchable (controllable) power.
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Chapter 5

Main Conclusions and Future Work
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5.1 Main Conclusions

Main results from this thesis through its methodologies and algorithms are tools for
energy generation, transmission and distribution system design and help policy makers to make
cost assessments in energy infrastructure planning rapidly and accurately. In the first part, we
focus on power distribution systems planning for rural electrification using techniques from
combinatorial optimization and developed new methods to estimate the cost of local-level
distribution systems. In the second part, we focus on power generation and transmission using
clean energy sources and demonstrate how we can get more reliable systems by combining
various renewables and build a system where we can save one source of energy (solar power) in
the form of other (hydro) using an infrastructure optimization (lower reservoir for a pumped
hydro).

We note that, all of the results presented in this thesis are based on actual data and
realistic assumptions. For optimizing distribution systems, we have analyzed some villages in
Sub-Saharan Africa as there is either no network coverage or a partial coverage in these villages,
a perfect setting for testing our algorithm. We have worked on Northern India for the advanced
hybrid systems with clean energy sources, where there is rich solar energy in addition to high
hydro power potential in Himalaya Mountains, to see if renewables could be utilized to meet

growing electricity demand without fossil fuels in electricity generation.

5.1.1 Power Distribution Systems Design for Rural Electrification

The investment costs of off-grid approaches are easier to estimate, but the investment costs
of networked approaches are more difficult to estimate, taking into account both the spatial

distribution of demand and the optimal placement of infrastructure to meet that demand. We
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have used digitized QuickBird satellite imagery with remote sensing techniques to identify
household-level demand points in the Sub-Saharan African villages. Figure 5.1 shows the

household distribution and the existing grid for Mbola, Tanzania as an example.

Mbola, TANZANIA

Demand Points
[@ Proposed Transformers

s MV Wire

— LV Wire

— Existing Grid

N

,-2 | o %

Figure 5.1 | Match between proposed network and existing grid. Proposed transformers, low voltage
(LV) and medium voltage (MV) networks compared to partial existing grid. Algorithm outputs 90
transformers for 1175 demand points.

We present a heuristic algorithm for multi-level distribution system layouts while minimizing
overall cost of infrastructure costs; specifically the combined costs of transformers and the two-
tiered network together. To our knowledge, this algorithm is the first heuristic algorithm that
selects the locations and service areas of transformers without requiring candidate solutions and
simultaneously builds two-level grid network in a green-field setting. It allows one to specify
different costs for the higher throughput lines upstream of the transformer as compared to
downstream of the transformer. This point is particularly important as that is the case in the real
world implementations and through our analysis we have showed that the ratio between the unit
cost for low voltage (LV) lines and medium voltage(MV) lines could be quite critical in
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designing the overall network and give policy planners a good starting point for more detailed

smart grid projects. Figure 5.2 summarizes the network sensitivity results.
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Figure 5.2 | Network Sensitivity Analysis. a, The sudden change in the number of transformers as the
ratio between Cwmv (unit cost for medium voltage line) and Cpv (unit cost for low voltage line) cost
parameters increases. b, Change in total MV and LV lengths from the 1000 transformer case. ¢, The
change in the number of transformers for different g ratios as p ratio increases.(See Section 5.1.2 for q). d,
The difference between the curves in b with MV weighted with different p ratios.

5.1.2 Power Generation and Transmission Using Clean Energy
Sources

In Chapter 3 and 4, we focus on power generation and transmission using clean energy
sources. To reduce the role of fossil fuels and ease the concerns on the electricity generation,
energy models which involve clean and renewable energy sources are necessitated. However,
renewable sources are generally are intermittent and heavily dependent on the spatial location.
One of the ways to mitigate the intermittency of renewable sources is to design hybrid systems
which operate as a combination of alternative resources. We discuss the problem of modeling

hydro and solar energy production and allocation, including long-term investments and storage,
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capturing the stochastic nature of hourly supply and demand data.

We imagine a country in the future where hydro and solar are the dominant sources and
fossil fuels are only available in minimal form, in the shape of diesel generators as an example.
In this country, we first identify candidate basins for hydro power stations and aggregated
demand point locations (the cities or the states of the country). Within demand points solar
energy production is possible. Then, we determine the possible transmission network between
supply and demand points. Northern India with widespread solar power potential and high
hydro power potential in Himalaya Mountains seems to be a very good candidate for the

imagined country in the future. Figure 5.3 shows the identified basins and demand points.

@® Basins
Demand Points
2 §
Lo N
e A i
€7\ Himachalkadesh
; Punjsb! imacl a\’\(?q“es
o q% hand o
§ " 7 C:
LY Dein = f
£ el
?4’""1_,» S
{ \"“ﬁ‘{_
P LN
Fp @ e
_~ Uﬂabpradesh 4: = e
& p > ¢ -
e B O " ;*"e}’ A
| -y ;() ‘F\L‘ EA'LJ"‘k_\N} Conar /7
Ty Yt AT
M o v-5 ! @ Y
;,) ' Jharkhand L"r\ C:F
o~ HEE o
(‘C;' 5. ) g&Jh j’ Lmﬁ&%ﬁﬂ%
s £ S r
[ ‘«.) ?:)r" s = s @ 5/\.‘\
1 0 205 500 1,180 Miles
d
{/C’:v P N ;\. e /

Figure 5.3 | Basins and demand points determined in India for analysis. Data is collected from CEA
(Central Electricity Authority, Power Ministry of India) and other official websites to accurately estimate
the 3-hourly demand load profile of each state for one year. If there is missing data for some days or
hours within a day, interpolation/extrapolation methods are performed for projection.

An innovative contribution of the work in chapter 3 and chapter 4 is the establishment of

a new perspective to energy modeling by including fine-grained sources of uncertainty such as
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stream flow, solar radiations and demand in hourly level as well as spatial location of supply and
demand in national level.

In Chapter 3, a scenario based linear programming approach is described for modeling
the hybrid solar and hydropower system with conventional hydro storage. In this system,
incoming stream flows are stored in large reservoirs in dams and water release is deferred until it
is needed. Figure 5.4 clearly shows that as the use of the renewable increase and gets more
advanced, unit cost of the system decreases and the most cost efficient alternative is the one that

we have used in our model for Chapter 3.
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Figure 5.4 | Comparison of alternative technologies. Solely diesel is the most expensive. As the use and
the variety of clean energy increase, the unit cost goes down substantially. It is more cost efficient to
design solar panel area based on high demand and spill some of the solar energy in low demand periods.

Furthermore in chapter 4, to the same problem in chapter 3, we apply pumped hydro

power stations in which water is pumped from lower reservoir to upper reservoir during periods
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of low demand to be released for generation when demand is high. We show that introduction of
the pumped hydro storage increases the utilization of both hydro and solar sources and decreases
the unit cost of the system significantly. The losses of the pumping process makes the pumped
hydro stations a net consumer of energy overall (6% in Figure 5.5 is lost due to losses). However,
as the solar energy can be also stored in the pumped systems, it provides more flexibility to the
systems utilizing more clean energy and helps reducing the variability of sources and decreases
the unit cost of the system (25% in the case study in Figure 5.5). Especially in the case study for
which we provided this figure, addition of a small lower reservoir to the system (0.04 km3)
causes to have a smaller “big” (upper) reservoir compared to conventional hydro system (0.15

km?® compared to 0.29 km?).
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Diesel Diesel Diesel

Upper Reservoir (km3) - - 0.24 0.24 0.29 0.15
Lower Reservoir (km3) - - - - 0.04
Generator (GW) - 1.09 1.13 1.05 1.06 1.50
SolarPanel (km2) 16.61 - - 6.42 12.50 28.18

Figure 5.5 | Alternative Technologies - Compared to other hybrid systems, the system with pumped
hydro storage is the most cost efficient design with much lower unit cost. Having two-level reservoir with
a pump system reduces the intermittency effect of renewable sources and the system can utilize more
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clean energy. In particular, total hydro production increases with even smaller reservoir size compared to
conventional system.

The role of solar energy in pumped system is twofold: internal solar and pumped solar.
Therefore, it is expected that the solar panel area in the hybrid system with pumped storage is
larger compared to a system with conventional storage. Here, what is interesting is that internally
used solar energy in the demand points is also higher in the systems with pumped storage.
Figure 5.6 compares conventional and pumped hydro systems in terms of the solar energy
produced in one day. It can be seen that total production is scaled up by increased the solar panel
area as the solar radiation curve is same. Solar energy used internally for the 4" and 5" time
periods are the same as extra solar energy is spent for pumping, however shaded area in 3" and
6" time periods in Figure 5.6 b represents the parts which explain the increase in the amount of

solar energy internally used in demand points.

a) Conventional Hydro System b) Pumped Hydro System
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Figure 5.6 | Comparisons of solar production profile of one day in November for conventional. a, and
pumped hydro systems. b, - Total production is scaled up by increased the solar panel area as the solar
radiation curve is same. The role of solar energy in pumped system is twofold: internal solar and pumped
solar. Solar energy used internally for the 4™ and 5" time periods are the same between two systems as
extra solar energy is spent for pumping, however shaded area in 3" and 6™ time periods in b represents
extra solar internal.

Moreover, as individual systems are connected with each other through

transmission lines and work as a single system, the variability and intermittency of renewable
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sources is expected to be smoothed out. To demonstrate effect of geographic aggregation, we
sequentially add more basins and demand points to the system that we discussed in previous
sections. We observe that unit cost of combined system is reduced when sources are used
together. Total generator size used in the system with two basins is lower than the one with one
basin. This indicates that combining two sources with different variability increases the

flexibility of obtaining cheaper systems.

a)

Figure 5.7 | Pinder basin is added to the system to show that geographic aggregation of alternative
sources can reduce the variability of renewable sources.
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Table 5.1 | Results for Bhagirathi and Pinder Rivers combined system to meet Delhi’s demand

Pinder + Bhagirathi Bhagirathi

Investment Size Pinder Bhagirathi
Upper Reservoir Size(km”3) 0.032 0.093 0.148
Lower Reservoir Size(km”3) 0.004 0.028 0.039
Pump/Generator Size(GW) 0.216 1.139 1.499
Transmission Line to Delhi (GW) 0.216 1.139 1.500
Solar Panel Size(km”2) 24.98 28.18

(1 km2 ~24MW)
Production GWh % Demand GWh % Demand
Solar 3291.95 43.87 3224.17 45.35
Hydro 3621.35 48.26 3695.38 46.87
Diesel 590.03 7.86 583.76 7.78
Total 7503.30 100.00 7503.30 100.00
Unit Cost
Unit Cost of Hydro (S/kWh) 0.016 0.019
Unit Cost of Solar (S/kWh) 0.054 0.054
Unit Cost of Diesel (S/kWh) 0.150 0.150
Unit Cost of the System ($/kWh) 0.059 0.064

5.2 Future Work

There are many interesting optimization problems in the sustainable development field,
especially the ones with a focus on rural electrification are particularly important. In chapter 2,
we discuss about optimization of single and multi-level power distribution systems. Our
discussion includes the initial decision of extending the network into an unserved area given the
limited funding for a single level grid network. If it is only possible to connect some portion of
the households to the electricity, how to choose that portion is a very critical and interesting
question in terms multi-level networks as well and there is a need for analyzing this problem in

the literature. To this end, we want to extent our algorithms on partial electrification problems to
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multi-levelnetworks.

Furthermore, renewable energy based decentralized systems are getting extremely
favorable as they constitute an alternative to power generation in centralized power plants with
fossil fuels due to the fact that they are expected to play a significant role in emission reduction
and climate change mitigation. A decentralized power system can function either in the presence
of a grid or as a stand-alone isolated system to meet the local demand. In literature, there a lot of
studies about isolated cases and applications of decentralized systems [5]. However, we believe,
more generalized studies are needed for assessing the feasibility of grid-connected and

standalone decentralized energy systems.

We can also expand our contribution to the Smart Grid literature. Substantial research
efforts continue to focus on Smart Grid technologies and many of the power system components
in these emerging technologies such as energy storage devices and hybrid generation systems
which include renewable resources are discussed in this thesis. However, there are still
interesting concepts such as demand response programs which help integration of renewables
into the grid and lead to more energy-efficient, environmentally-friendly, sustainable and more
reliable electricity supply chains. Effective integration of these components poses important
challenges and also good opportunities in planning of future power systems operations. Main
point here is that demand response includes all electricity consumption pattern modifications by
customers that are intended to change the timing and level of instantaneous demand and this is
expected to make the grid more cost efficient. However, systems where consumers can directly
participate in demand management require new efforts for forecasting the electric loads of

individual consumers.
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Our work on incorporating renewable sources into the grid can be expanded to analyze
the frequency spectrum of intermittent sources in more detail. Frequency spectrum of the
fluctuating data can help understand the coherence between the demand, solar production and the
stream flow. For example, in our dataset we observe yearly, seasonal cycles (Figure 5.8a) and,
for some sites, diurnal cycles (Figure 5.8b) in the stream flow data. Diurnal cycle in Bhagirathi
River, for example, is observed for a short period of time especially in March and this cycle is
supposed to be correlated with sun light and solar production (we also discussed about the
spectrum of solar in Chapter 4). Frequency spectrum of 3-hourly demand data for one year in
Figure 5.8c also shows the cycles observed in the data. Further analysis can be done with the
individual power stations to understand how the combining alternative sources which have same
or different cyclic behaviors can affect the use of back up source (diesel in our model). This
analysis can give us idea about the alternative back up sources and their ramp rate characteristics
to fill-in when there is not enough renewable power. Moreover, we can have more information
about the demand response programs used to handle intermittency of renewables. Last but not
least, understanding spectral distribution of resources and demand can also arise the possibility

of additional decomposition methodologies across different time scale.
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Figure 5.8 | Spectral distribution of stream flow and demand for Bhagirathi River and Delhi case study. a,
The spectrum for 51 years of 3-hour resolution stream flow data shows the yearly fluctuations. b, The
diurnal fluctuations observed in March is showed on the spectrum for 1 month data with 3-hour resolution.
¢, Spectral distribution of demand is presented for 1 year data of 3-hour resolution and therefore seasonal
fluctuations can not be observed in the figure.

Another valuable extension to Chapter 4 would be to examine the variability of different
intermittent sources and their effect on the pumped hydro system. The intermittent renewables
have certain time scales that they vary. The energy spectrum of wind suggests that the diurnal
variability of wind is not as strong as solar; however, as opposed to solar, wind also shows
significant variation for the periods longer than one day (Figure 5.9). To answer the question of

how the results would differ if we used another intermittent renewable source along with pumped
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hydro, we have also completed an preliminary analysis with wind data. A representative wind
speed data with hourly time intervals is collected from NREL’s website. We assume that we
have 3MW turbines that we can place one in every 40D? of area where D is the diameter of the
wind turbine. To calculate the wind output, the characteristics given in a technical report for a 3
MW turbine is used [1]. The diameter is assumed to be 80 meters. To be able to use the current
models for wind without making any significant changes, the wind input is also provided for unit
area. Then, the model estimated the potential of wind generation by optimizing the area (which
can also be converted to number of turbines needed using our 40D? coverage assumption). In
order to have a meaningful comparison between wind and solar, the cost of turbines is selected in
a way that average cost of wind and solar per unit area would be same (provided that the average

amount of the input data both for wind and solar could be generated throughout the year).
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Figure 5.9 | Spectral distribution of intermittent sources. a, The spectrum of solar data used in base case
studies (Delhi) with 1-hour resolution. b, The spectrum of wind data used as an example and collected

from NREL website.
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Figure 5.10 summarizes the initial results. Figure 5.10a shows that the wind energy
generation is lower than the solar energy generation; however, the proportion of wind energy
which is directly being used in demand points is higher than solar energy. This is possibly
because the wind component with less diurnal variability and possibly being available during the
night can be more suitable to be used directly. Moreover, the Figure 5.10 b shows the difference
in hydropower generation with pumped water and the incoming stream flow when pumped hydro
system is combined with an intermittent source (solar or wind). In both systems, the same
amount of stream flow enters to the system but hydro power generation for the system combined
with solar is higher than the one combined with wind. This work can be expanded to better
understand the main driver which sizes the pumped hydro system and changes the proportions of

sources to meet the demand.
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Figure 5.10 | Energy generation distribution comparisons for solar and wind. a, Proportion of wasted,
internally used and pumped energy as a percentage of demand. b, Proportion of hydro energy generated
by natural stream flow or pumped water.

Moreover, in chapter 3 and 4, we discuss about designing hydropower stations with large
dams in order to be able to store energy in the reservoirs in the form of potential energy.
Although, large hydro stations are sometimes considered environmentally unacceptable (building

of major dams may involve displacement of land and populations and some geographical
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problems), commercial interest in conventional and pumped hydro systems has been increasing.
The problems we discuss here consider the feasibility of resources in terms of their potentials
and examine whether they are enough if fossil fuels can be eliminated from the electricity
generation without looking into other environmental, social and political constraints related to
them. In addition to the concerns related to building large dams such as including disrupting
local ecology, and displacement of nearby people and animals, there might be other political
constraints such as water sharing agreements between countries. Our work can be expanded to

include more political and geographic aspects, social and environmental considerations.

[1] ENERCON Wind energy converters. Product overview. Version: July 2010.
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APPENDIX A

Transmission Line Cost
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Here, we will provide more details about the investment cost analysis for transmission
lines used in Chapter 3 and Chapter 4. In our implementation, we consider the transmission cost
is dependent on the distance and the capacity of the lines and we do not include the losses in our
analysis.

We first calculate how the unit cost of unit power transmission varies based on the
distance: We initially determine what type of transmission lines can be used to transmit a certain
amount of power by a certain length of distance using surge impedance loading factor. Then, the
investment costs of alternative transmission lines are calculated. For example, in order to
transmit 300 MW by 250 miles, one can choose to use 500 kV DC Bipole, 500kV DC Bipole,
230 kV AC Double, 345 kV AC Single Circuit or 500 kV AC Single Circuit transmission lines
where investment costs are estimated to be $442 million, $275.8 million, $308 million and
$537.5 million respectively. We then repeat this procedure and calculate the cost for IMW
power transmission by 1 km for multiple scenarios including various distances and for various

power levels. Table A1, A2, and A3 presents these results.
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Table A4 : Transmission line type and associated investment costs for 100 miles

100 Miles
Transmission
Circuit Line Cost ($M)

11 kV AC Single 0.708

1MW 33 KV AC Single 2.71
66 kV AC Single 6.14
2MW 115 KV AC Single 30.23
161 kVV AC Single 55.3

100MW 230 KV AC Single 65.3
161 kV AC Double 78.6

200MW 230 KV AC Single 79.2
345 KV AC Single 163
300MW 230 KV AC Double 125.8
500 KV DC Bipole 250

230 KV AC Double 243

345 KV AC Single 185

500MW 500 KV AC Single 295
500 KV DC Bipole 300

600 KV DC Bipole 335

345 KV AC Double 280

1000MW 500 KV AC Single 380
500 KV DC Bipole 370
600 KV DC Bipole 412.5

345 KV AC Double 335

1500MW 500 KV AC Single 475
500 KV DC Bipole 440

600 KV DC Bipole 490

2000MW 765 KV AC Single 681
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Table A5: Transmission line type and associated investment costs for 500 miles

500 miles
Transmission
Circuit Line Cost ($M)
66 kV AC Single 20.0
1MW 33 KV AC Single 3.5
66 kVV AC Single 20.1
138 KV AC Single 115.2
10MW 115 KV AC Single 85.1
161 KV AC Single 199.3
234 KV AC Single 312.3
100MW 500 KV DC Bipole 803.3
500 KV DC Bipole 828.0
345 KV AC Single 347.0
200MW 500 KV AC Single 711.0
500 KV DC Bipole 842.0
300MW 345 KV AC Double 358.0
500 KV DC Bipole 870.0
345 KV AC Double 555.0
500MW 500 KV AC Single 765.0
500 KV DC Bipole 940.0
500 KV AC Double 985.0
1000MW 765 KV AC Single 1030.0
500 KV DC Bipole 1010.0
600 KV DC Bipole 1132.5
1500MW 765 KV AC Double 1140.0
500 KV DC Bipole 1080.0
600 KV DC Bipole 1210.0
765 KV AC Double 1245.0
2000MW 800 KV DC Bipole 1315.0
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Table A6: Transmission line type and associated investment costs for 750 miles

750 miles
Transmission
Circuit Line Cost ($M)

66 kV AC Single 24.764

1MW 115 KV AC Single 127.523
66 kV AC Single 24.89

138 KV AC Single 172.73

10MW 115 KV AC Single 37.83
345 KV AC Single 498.5

100MW 230 KV AC Double 286.1
500 KV DC Bipole 1228

345 KV AC Single 509.5

200MW 500 KV AC Single 1048.5
500 KV DC Bipole 1242
345 KV AC Double 783

300MW 500 KV AC Single 1066.5
500 KV DC Bipole 1270

500 KV AC Single 1102.5

500MW 765 KV AC Single 1342.5
500 KV DC Bipole 1340
600 KV DC Bipole 1505

1000MW 765 KV AC Double 1447.5
500 KV DC Bipole 1410

600 KV DC Bipole 1582.5
1500MW 765 KV AC Double 2790
500 KV DC Bipole 1480
600 KV DC Bipole 1660

2000MW 800 KV DC Bipole 1802.5

After we have the unit cost values for all the scenarios, we then fit a linear curve to
estimate the incremental cost per unit power per distance. The fitted curves are shown in Figure

Al.
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Figure Al| Curves fitted linearly to estimate the incremental cost per unit power per distance. We have
calculated the cost for IMW power transmission by 1 km for multiple scenarios including various
distances and for various power levels (Table A1, A2 and A3).

In our analysis, we have determined a linear relationship between the amount of power
and the cost. The slope of this relationship decreases with the distance transmitted. As a result,
we have computed three cost parameters for three distance ranges (0-500 km, 500-1000 km and
>1000 km) as $1.1 million, $0.8 million and $0.6 million per megawatt per kilometer,

respectively. These findings are summarized in Table A4.

Table A7: Final transmission cost multipliers

Distance (km) | Cost multiplier per GW per mile (M) | Cost multiplier per GW per km ($M)
<=500 1.79 1.1
500-1000 1.33 0.8
>=1000 0.96 0.6
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Next, in our model, we calculate the spherical distance between two points and multiply
it with the corresponding cost multiplier from above to estimate the unit investment cost of the
transmission line between the two points per unit power [1]. Then, we use this unit cost in the
objective function of our optimization model to minimize the total investment cost. The data
used in the model is compiled by Selcuk Korel, MS’2010, Columbia University, using the
sources [2-4].
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Here, we will show the demand data that we have used for the states discussed in Chapter
3 and Chapter 4. As it is mentioned in Chapter 3.3.2.2, total monthly power availabilities and
requirements for each state for the year 2012 are provided on Central Electricity Authority,
Power Ministry of India (CEA) website.

On the website of Load Dispatch Center of Delhi, daily load profiles for the days where
peak demand occurred in each month are provided.

Table B1 shows the results for Delhi.

Delhi (MWh) 12am-3am 3am-6am 6am-9am 9am-12pm  12pm-3pm 3pm-6pm 6pm-9pm 9pm-12am
Jan 4,944 5,322 10,061 11,581 9,824 9,626 10,538 7,998
Feb 4,327 5,287 9,323 9,336 7,639 7,859 8,904 6,718
Mar 6,333 6,375 7,887 9,220 8,972 9,161 9,581 7,858
Apr 10,155 8,976 8,586 10,718 11,619 11,229 10,852 11,485
May 12,177 11,078 10,419 12,678 13,635 13,688 12,598 12,268
Jun 12,484 11,231 10,964 13,443 13,987 14,313 13,319 13,986

Jul 11,596 10,506 10,218 12,712 13,484 13,537 12,604 12,997
Aug 12,200 11,116 10,589 12,913 14,159 14,416 13,865 14,121
Sep 12,415 11,480 10,184 12,113 13,221 13,487 13,239 13,969
Oct 8,931 8,096 8,564 10,602 10,867 10,484 11,499 10,462
Nov 4,966 5,500 7,763 8,585 8,110 8,747 8,904 6,573
Dec 4,492 5,104 9,340 10,606 8,970 8,237 9,758 7,838

Chhattisgarh, Assam, Punjab, Himalach Pradesh and Uttarakhand also publish on their
website daily, weekly or monthly reports for daily load profiles for a number of days or for the
times when the minimum and maximum demands are observed. We have used the collected data
to accurately estimate the 3-hourly demand load profile of each state for one year. If there is
missing data for some days or hours within a day, interpolation/extrapolation methods are
performed to project the data. When there is only limited number of days that we can use as a
representative of all days in a month, we generated data from a normal distribution with mean
equal to observed demand of given days and standard deviation equal to 5 percent of the

observed data. The results can be seen in Table B2 — B6.
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Table B2: Monthly average demand for Chhattisgarhi

Chattisgarhi(MWh) 12am-3am  3am-6am 6am-9am 9am-12pm  12pm-3pm  3pm-6pm 6pm-9pm  9pm-12am
Jan 5,496 6,161 7,500 6,161 5,600 6,161 7,612 6,161
Feb 6,648 6,942 7,554 7,315 6,588 7,302 7,710 6,994
Mar 5,496 6,161 7,500 6,161 5,600 6,161 7,612 6,161
Apr 5,900 6,973 7,500 6,973 5,738 6,973 7,753 6,973
May 6,400 6,814 7,500 6,814 6,292 6,814 7,733 6,814
Jun 5,700 6,202 6,300 6,202 5,440 6,202 6,810 6,202
Jul 6,000 6,769 7,400 6,769 5,874 6,769 7,602 6,769
Aug 6,000 6,480 7,100 6,480 5,795 6,480 7,303 6,480
Sep 5,200 5,968 6,400 5,968 5,049 5,968 6,642 5,968
Oct 6,700 7,351 7,800 7,351 6,612 7,351 8,083 7,351
Nov 5,600 6,142 7,400 6,142 5,524 6,142 7,586 6,142
Dec 5,850 6,336 7,500 6,336 5,729 6,336 7,640 6,336

Table B3: Monthly average demand for Punjab
Punjab (MWh) 12am-3am  3am-6am 6am-9am 9am-12pm  12pm-3pm 3pm-6pm 6pm-9pm  9pm-12am
Jan 8,954 11,403 13,852 11,069 11,069 11,069 12,407 11,403
Feb 10,500 10,404 16,445 13,099 14,398 14,398 15,050 13,099
Mar 12,583 10,905 14,901 12,583 12,583 12,583 14,504 12,583
Apr 12,732 10,139 14,914 12,732 10,344 12,732 14,709 12,732
May 15,089 14,349 18,216 17,073 17,073 13,580 17,806 17,073
Jun 22,210 18,842 25,617 22,210 22,210 21,469 26,467 22,210
Jul 27,077 23,752 26,870 26,870 26,870 21,662 26,870 28,320
Aug 25,914 21,382 23,916 23,916 23,916 21,768 23,916 26,400
Sep 18,715 17,971 20,087 20,087 21,571 20,087 21,252 18,397
Oct 17,826 17,274 19,027 19,027 20,228 19,280 21,376 19,027
Nov 10,807 12,921 12,921 14,527 12,921 12,921 12,921 11,396
Dec 8,017 10,198 12,282 10,198 10,198 8,422 11,682 10,198
Table B4: Monthly average demand for Assam
Assam (MWh) 12am-3am 3am-6am 6am-9am 9am-12pm  12pm-3pm 3pm-6pm 6pm-9pm 9pm-12am
Jan 1,560 1,919 1,920 1,919 1,471 1,919 2,726 1,919
Feb 1,660 2,054 1,975 2,054 1,677 2,054 2,901 2,054
Mar 1,546 1,907 1,732 1,907 1,581 1,907 2,770 1,907
Apr 1,697 2,017 1,821 2,017 1,764 2,017 2,785 2,017
May 1,857 2,113 1,827 2,113 1,893 2,113 2,875 2,113
Jun 2,193 2,400 2,123 2,400 2,215 2,400 3,069 2,400
Jul 2,235 2,476 2,240 2,476 2,212 2,476 3,217 2,476
Aug 2,543 2,609 2,294 2,609 2,284 2,609 3,315 2,609
Sep 2,204 2,513 2,114 2,513 2,320 2,513 3,412 2,513
Oct 2,059 2,407 1,941 2,407 2,116 2,407 3,512 2,407
Nov 1,755 2,117 2,055 2,117 1,709 2,117 2,947 2,117
Dec 1,807 2,226 2,134 2,226 1,832 2,226 3,130 2,226
Table B5: Monthly average demand for Uttarakhand

Uttarakhand (MWh) 12am-3am  3am-6am 6am-9am 9am-12pm  12pm-3pm 3pm-6pm 6pm-9pm  9pm-12am
Jan 3,230 3,445 4,153 3,961 3,639 3,862 4,522 3,736
Feb 3,135 3,496 4,475 4,168 3,606 4,130 4,561 3,821
Mar 3,099 1,962 3,417 3,743 3,564 3,739 4,746 3,827
Apr 3,909 3,810 4,039 3,777 2,593 3,299 4,040 3,967
May 3,721 3,834 3,948 4,057 4,203 4,213 4,555 4,470
Jun 3,930 4,617 4,749 4,519 3,951 4,084 4,143 4,173
Jul 4,305 4,270 4,074 3,923 3,875 3,719 4,045 4,144
Aug 3,746 3,807 3,973 3,522 3,768 3,815 4,279 3,961
Sep 3,774 3,829 4,258 3,804 3,779 4,035 4,357 3,830
Oct 3,113 3,675 3,687 4,124 4,016 4,084 4,644 3,721
Nov 3,302 3,758 4,044 3,638 3,115 3,746 4,584 3,514
Dec 3,173 3,516 4,486 4,165 3,767 4,067 4,447 3,509
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Table B6: Monthly average demand for Himalach Pradesh

HimalachPradesh(MWh) | 12am-3am  3am-6am 6am-9am 9am-12pm  12pm-3pm 3pm-6pm 6pm-9pm  9pm-12am
Jan 2,309 2,366 3,261 3,388 2,896 2,991 3,253 2,731
Feb 2,492 2,533 3,615 3,510 3,095 3,189 3,149 2,810
Mar 2,240 2,305 3,312 3,248 2,865 2,823 2,839 2,563
Apr 2,453 2,489 3,483 3,498 3,259 3,251 3,278 2,922
May 2,775 2,824 3,382 3,426 3,311 3,264 3,042 2,945
Jun 2,703 2,756 3,324 3,447 3,362 3,406 3,111 3,123

Jul 2,782 2,777 3,268 3,253 3,057 3,060 2,992 3,037
Aug 2,884 2,882 3,452 3,505 3,380 3,326 3,163 2,957
Sep 3,477 3,503 4,346 4,245 4,122 4,059 4,189 3,725
Oct 2,626 2,704 3,425 3,342 3,106 3,038 3,297 2,785
Nov 2,341 2,464 3,548 3,342 2,973 3,130 3,322 2,645
Dec 2,387 2,388 3,530 3,512 3,048 3,203 3,497 2,821

For the states which we do not have access to daily load profiles such as Uttar Pradesh,
Bihar, Jharkhand and West Bengal, we used Chhattisgarh as a reference state. Daily load profiles
of Chhattisgarh are rescaled by the ratio between total monthly demands collected from CEA’s

website. Tables B7 to B10 show the results.
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Table B7: Monthly average demand for Uttar Pradesh

UttarPradesh (MWh) 12am-3am  3am-6am 6am-9am 9am-12pm  12pm-3pm 3pm-6pm 6pm-9pm  9pm-12am
Jan 24,292 27,233 33,150 27,233 24,752 27,233 33,647 27,233
Feb 28,303 29,554 32,160 31,142 28,047 31,087 32,824 29,776
Mar 24,149 27,073 32,955 27,073 24,606 27,073 33,449 27,073
Apr 23,759 28,079 30,202 28,079 23,106 28,079 31,219 28,079
May 29,523 31,432 34,598 31,432 29,027 31,432 35,671 31,432
Jun 32,387 35,236 35,796 35,236 30,911 35,236 38,694 35,236
Jul 29,136 32,872 35,935 32,872 28,524 32,872 36,918 32,872
Aug 28,927 31,240 34,230 31,240 27,936 31,240 35,206 31,240
Sep 27,495 31,553 33,840 31,553 26,696 31,553 35,122 31,553
Oct 27,917 30,629 32,500 30,629 27,552 30,629 33,678 30,629
Nov 26,060 28,582 34,436 28,582 25,707 28,582 35,301 28,582
Dec 27,174 29,432 34,838 29,432 26,613 29,432 35,487 29,432

Table B8: Monthly average demand for Bihar
Bihar (MWh) 12am-3am  3am-6am 6am-9am 9am-12pm  12pm-3pm 3pm-6pm 6pm-9pm  9pm-12am
Jan 4,326 4,850 5,904 4,850 4,408 4,850 5,992 4,850
Feb 4,994 5,215 5,674 5,495 4,949 5,485 5,792 5,254
Mar 4,689 5,257 6,399 5,257 4,778 5,257 6,495 5,257
Apr 4,592 5,426 5,837 5,426 4,466 5,426 6,033 5,426
May 4,445 4,732 5,209 4,732 4,370 4,732 5,370 4,732
Jun 4,969 5,406 5,492 5,406 4,743 5,406 5,937 5,406
Jul 4,742 5,350 5,849 5,350 4,643 5,350 6,009 5,350
Aug 4,843 5,230 5,731 5,230 4,677 5,230 5,894 5,230
Sep 4,171 4,787 5,134 4,787 4,050 4,787 5,329 4,787
Oct 4,647 5,099 5,410 5,099 4,586 5,099 5,606 5,099
Nov 5,046 5,535 6,668 5,535 4,978 5,535 6,836 5,535
Dec 4,843 5,245 6,208 5,245 4,742 5,245 6,324 5,245
Table B9: Monthly average demand for West Bengal

WestBengal (MWh) 12am-3am  3am-6am 6am-9am 9am-12pm  12pm-3pm 3pm-6pm 6pm-9pm  9pm-12am
Jan 10,215 11,451 13,939 11,451 10,408 11,451 14,148 11,451
Feb 12,168 12,706 13,827 13,389 12,059 13,365 14,112 12,802
Mar 12,265 13,750 16,737 13,750 12,497 13,750 16,988 13,750
Apr 13,075 15,452 16,621 15,452 12,716 15,452 17,180 15,452
May 14,221 15,141 16,665 15,141 13,982 15,141 17,182 15,141
Jun 15,326 16,674 16,939 16,674 14,628 16,674 18,310 16,674
Jul 13,955 15,744 17,211 15,744 13,662 15,744 17,681 15,744
Aug 14,551 15,714 17,218 15,714 14,052 15,714 17,709 15,714
Sep 14,135 16,222 17,397 16,222 13,725 16,222 18,056 16,222
Oct 13,838 15,183 16,110 15,183 13,658 15,183 16,695 15,183
Nov 11,371 12,471 15,025 12,471 11,217 12,471 15,403 12,471
Dec 10,443 11,310 13,388 11,310 10,227 11,310 13,637 11,310
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Table B10: Monthly average demand for Jharkhan

Jharkhand (MWh) 12am-3am  3am-6am 6am-9am 9am-12pm  12pm-3pm 3pm-6pm 6pm-9pm  9pm-12am
Jan 1,977 2,216 2,697 2,216 2,014 2,216 2,738 2,216
Feb 1,985 2,073 2,256 2,184 1,967 2,180 2,302 2,088
Mar 1,963 2,200 2,678 2,200 2,000 2,200 2,719 2,200
Apr 2,039 2,410 2,592 2,410 1,983 2,410 2,679 2,410
May 2,192 2,334 2,569 2,334 2,156 2,334 2,649 2,334
Jun 2,177 2,368 2,406 2,368 2,078 2,368 2,601 2,368

Jul 2,206 2,489 2,721 2,489 2,160 2,489 2,795 2,489
Aug 2,243 2,422 2,654 2,422 2,166 2,422 2,730 2,422
Sep 1,999 2,294 2,461 2,294 1,941 2,294 2,554 2,294
Oct 2,036 2,234 2,370 2,234 2,009 2,234 2,456 2,234
Nov 2,221 2,436 2,935 2,436 2,191 2,436 3,009 2,436
Dec 2,131 2,308 2,732 2,308 2,087 2,308 2,783 2,308

202




