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PROTEIN FOLD CLASSIFICATION AND MOTIF RETRIEVAL METHODS
BY USING THE PRIMARY AND SECONDARY STRUCTURES

SUMMARY

Proteins are crucial molecules in biological phenomena because they form much of
the functional and structural machinery in every cell in organisms and their function
is determined by their spatial structures. Protein structures can be described at various
levels in detail, ranging from atomic coordinates, through vector approximations, to
secondary structure elements. Protein structure comparison is an important issue that
helps biologists understand various aspects of protein function and evolution. It is
commonly believed that the 3D fold has a major effect on the ability of a protein
to bind other proteins or ligands. The similarity analysis of protein structure is
therefore an important process in understanding the protein’s role in the machinery of
life. Comparison of protein structures is also essential for estimating the evolutionary
distances between proteins and protein families. Protein fold classification is also
an important problem in bioinformatics and a challenging task for machine-learning
algorithms. According to convention a protein could be classified into one of four
structural classes based on its secondary structure components; all-α , all-β , α/β , α +
β . Structural Classification of Proteins (SCOP) provides a detailed and comprehensive
description of the structural and evolutionary relationships among all proteins whose
structures are known. According to SCOP four structural classes are divided into folds.
Protein fold classification problem is to determine that the query protein belongs to
which fold. In this thesis we deal with two problems related to proteins; protein fold
classification and structural block comparison (motif retrieval).

Proteins are formed by two basic regular 3D structural patterns called secondary
structures; helices and strands. A structural motif is a compact 3D protein structure
referring to a small specific combination, which appears in a variety of molecules.
In this thesis, primarily protein fold classification problem is employed. For the
classification of protein folds, neural network based three methods are used; Grow and
Learn (GAL) network, Self-Organizing Maps (SOM) and Self-Organizing Maps for
Structured Data (SOM-SD). For GAL and SOM primary protein structures are used,
on the other hand for SOM-SD secondary protein structures are used.

Firstly GAL method is used to classify the protein folds. Here, six attributes which
are physicochemical features of amino acids (amino acid composition, predicted
secondary structure, hydrophobicity, normalized van der Waals volume, polarity and
polarizability) are used as features. A number of proteins are selected from Protein
Data Bank (PDB). Then, 27-class protein fold classification problem is tried to be
solved with this method. To increase the success rate one-versus-others (OvO)
prediction method is used. Secondly SOM is used to classify the protein folds.
Features and proteins in the previous method are used also in here. As in the previous
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method, OvO method is applied for performance evaluation. Thirdly SOM-SD method
is used for protein fold classification. While using SOM-SD, Protein Gaussian Image
(PGI) representation of proteins is used as feature. PGI is a representation in the
Gaussian sphere in which each secondary structure is mapped with a unit vector from
the origin of the sphere having the orientation of the secondary structures. The chain
sequence of secondary structures is recorded as a list which is mapped on the sphere
surface. To test this method the dataset including three folds with 45 proteins (15
proteins in each fold) from PDB is used.

To determine the effectiveness of the attributes some tests were made using GAL.
Firstly, only C (amino acid composition) attribute was used to be contained in the
feature vectors. Then S (predicted secondary structure) attribute was appended to C,
so C+S was used to be the elements of the feature vectors, progressively in the last
set all six attributes were used and tested by using GAL. The test results showed that
the most important attribute is the amino acid composition. This attribute has a good
performance even tested alone.

Besides in here, for reducing dimension of the feature vector without changing success
rate divergence analysis was applied. This analysis calculates divergence values of the
features and put them in order according to their importance. After this analysis the
most significant 30, 40, 50 and 60 features were determined and they were tested with
GAL. The results related to protein fold classification problem showed that proteins are
classified according to their folds with a good precision and the results are comparable
to the existing methods in the literature.

In this thesis after protein fold classification problem, motif retrieval problem is
handled. Here, a particular motif is retrieved from a particular protein using structural
block comparison. To do this, three methods based on Generalized Hough Transform
(GHT) are used. The first method uses single secondary structure, the second one uses
secondary structure couple co-occurrences and the third one uses secondary structure
triplets. For all three methods the barycenter (geometric mean) of the motif is assigned
as Reference Point (RP) and in order to determine this point a mapping rule is figured
out. Then, voting process is applied and the point having maximum number of votes is
assigned as the candidate RP. For the test, a few proteins selected from PDB are used
and the test results showed that the RP is determined with a good precision and the
motif is retrieved from the protein with expected number of votes.
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PRİMER VE SEKONDER YAPILAR KULLANILARAK
PROTEİNLERİN FOLD DÜZEYİNDE SINIFLANDIRILMASI

VE MOTİF ÇIKARIMI

ÖZET

Proteinler canlı hayatındaki en temel biyolojik birimlerdir ve canlı vücudundaki bütün
biyolojik işlevler proteinler tarafından gerçekleştirilir. Moleküler biyoloji ve genetik
alanında yapılan çalışmalar sonucunda çoğu hastalığın protein yapısındaki kusur,
hasar ve değişiklikten kaynaklandığı ortaya çıkarılmıştır. Proteinlerin fonksiyonları
onların yapıları tarafından belirlenmektedir. Bu nedenle proteinlerin yapı analizi,
protein yapılarının karşılaştırılması, benzer yapıların belirlenmesi, motif çıkarımı ve
proteinlerin sınıflandırılması moleküler biyoloji açısından önemlidir.

Proteinler, amino asitlerin belirli türde, belirli sayıda ve belirli diziliş sırasında karak-
teristik düz zincirde birbirlerine kovalent bağlanmasıyla oluşmuş polipeptidlerdir. Her
proteinin kendisine has özelliklerinin olmasını sağlayan özel amino asit dizilimleri
vardır. Protein yapısı, primer, sekonder, tersiyer ve kuaterner olmak üzere dört
ayrı şekilde incelenebilir. Tezde proteinin fold düzeyinde sınıflandırılması ve motif
çıkarımı olmak üzere iki konu ele alınmıştır. Bu konulara ilişkin çalışmalar yapılırken
proteinin primer ve sekonder yapılarına ilişkin öznitelikler kullanılmıştır.

Polipeptidin düzenli katlanmalar yapması sekonder yapıyı oluşturmaktadır. Yaygın
olarak iki tip sekonder yapı vardır: α-heliks ve β -tabaka. Proteinler sekonder yapı
bileşenlerine göre dört ana gruba ayrılmaktadır; all-α , all-β , α/β , α+β . SCOP’a
göre bu dört ana sınıf kendi içinde foldlara ayrılırlar. Foldlar sekonder yapıların
belirli bir düzene göre katlanmalarından meydana gelen üç boyutlu şekillerdir.
Proteinlerin fonksiyonları onların yapıları tarafından belirlendiğinden, aynı yapıya
sahip proteinlerin belirlenmesi yani proteinlerin fold seviyesinde sınıflandırılması
moleküler biyolojinin önemli çalışmalarından biridir. Proteinlerin fold seviyesinde
sınıflandırılması problemi sorgulanan proteinin hangi folda ait olduğunu belirlemektir.
Tezde öncelikle proteinlerin fold seviyesinde sınıflandırılması problemi ele alınmakta
ve sınıflandırma için yapay sinir ağlarının alt modellerinden olan GAL, SOM ve
SOM-SD kullanılmaktadır. GAL ve SOM için primer yapılara ilişkin öznitelikler
kullanılırken, SOM-SD için sekonder yapılara ilişkin öznitelikler kullanılmıştır.

Proteinlerin fold düzeyinde sınıflandırılması amacı ile kullanılan ilk yöntem büyü
ve öğren (GAL) ağıdır. Büyü ve öğren ağında sınıf sınırları en yakın mesafe
ölçüsüne göre belirlenmektedir. Giriş vektörü ile ağdaki tüm vektörler arasındaki
mesafe hesaplanır. Giriş vektörünün sınıfı, bu vektöre en yakın mesafedeki ağ
düğümünün sınıfı olarak belirlenir. Ağın düğüm sayısı eğitim sırasında otomatik
olarak belirlenir. Ağın eğitimi öğrenme ve unutma algoritması olarak iki algoritma
tarafından gerçekleştirilir. Öğrenme algoritmasında ağa düğüm eklenirken unutma
algoritmasında ağın performansını düşürmeyecek olan gereksiz düğümler ağdan
çıkarılırlar. Kalan düğümler ile de yeni girişler test edilir. Bu yöntem ile yapılan
testlerde eğitim kümesi için 311 test kümesi için 383 olmak üzere protein veri

xxi



bankasından (PDB) alınan 694 protein kullanılmıştır. Kullanılan öznitelik vektörü 125
boyutludur ve amino asitlere ilişkin fizyokimyasal özellikleri belirtmektedir. Altı adet
öznitelik kullanılmıştır: Amino asit kompozisyonu (20D), tahmin edilen sekonder yapı
(21D), hidrofobisite (21D), normalize van der Waals hacmi (21D), polarite (21D) ve
polarizebilite (21D). Bu öznitelikler ve GAL ağı kullanılarak 27-sınıflı proteinin fold
seviyesinde sınıflandırılması problemi ele alınmıştır.

İkinci olarak proteinlerin sınıflandırılması amacı ile SOM ağı (Kohonen ağı)
kullanılmıştır. SOM danışmansız bir yapay sinir ağıdır, yarışmacı öğrenme
algoritmasını kullanır. Bu yöntemde ağın nöronları aktif edilmek için aralarında
yarışırlar ve sonuçta yalnızca bir nöron yarışı kazanır. Buradaki temel hedef
herhangi bir boyuttaki giriş sinyal desenini iki boyutlu bir haritaya adaptif bir şekilde
dönüştürmektir. Sonrasında ise ağa giriş olarak verilen sorgu proteinlerinin sınıfını
belirlemektir. Bu yöntemde yapılan testlerde önce üç sınıflı problem sonrasında
bir önceki yöntemde olduğu gibi 27-sınıflı problem ele alınmış ve aynı veri kümesi
kullanılmıştır.

Proteinin fold düzeyinde sınıflandırılması amacıyla kullanılan üçüncü yöntem
SOM-SD’dir. SOM’dan kullandığı veri yapısı nedeniyle farklıdır. SOM-SD girişinde
veri olarak grafları kullanan bir yapay sinir ağı modelidir. Bu yöntemde veri yapısı
olarak proteinlerin PGI gösterimi kullanılmıştır. PGI, EGI’nın (Extended Gaussian
Image) proteinler üzerine uygulanmış halidir. Protein içindeki sekonder yapılar
Gauss küresi üzerine, başlangıç noktaları küre merkezine bitiş noktaları küre yüzeyine
gelecek şekilde yerleştirilirler. Burada küre yüzeyindeki sekonder yapıların bulunduğu
noktalar o sekonder yapının oryantasyon bilgisini içermektedir. Sekonder yapıların
zincir sırası küre yüzeyine haritalanan bir liste olarak kaydedilir. PGI gösterimi
küre yüzeyindeki noktaların sekonder yapıların sırasına uygun olarak birleştirilmiş
halidir. Burada proteinlerin içerisindeki sekonder yapı sayıları farklı olduğundan
dolayı ağa giriş verilerinin uzunluğu da farklı olacaktır. SOM-SD ile bu problem
ortadan kaldırılmakta ve her bir giriş verisinin uzunluğu eşitlenmektedir. Bu metot
PDB’den seçilen üç folda ilişkin 45 protein (her foldda 15 protein) üzerinde test edilmiş
ve üç sınıflı, proteinlerin fold düzeyinde sınıflandırılması problemi ele alınmıştır.

Tezde ayrıca yukarıda bahsedilen altı öznitelikten hangisinin sınıflandırmada daha
baskın olduğunu belirlemek amacıyla testler yapılmıştır. Testler yapılırken daha
iyi başarım vermesinden dolayı GAL ağı kullanılmıştır. Öncelikle amino asit
kompozisyonu tek başına GAL ağı ile test edilmiş ve sınıflandırma başarımı
hesaplanmıştır. Sonrasında amino asit kompozisyonuna ek olarak tahmin edilen
sekonder yapı da öznitelik vektörüne eklenmiş ve sınıflandırma başarımı test
edilmiştir. Öznitelikler bu şekilde sırasıyla birbirine eklenmiş ve son aşamada
altı özniteliğin hepsi kullanılarak sınıflayıcı test edilimiştir. Test sonuçlarına göre
proteinlerin sınıflandırılmasında amino asit kompozisyonunun diğerlerine göre daha
etkili olduğu ve tek başına bile proteinleri, literatürdekilerle karşılaştırılabilecek
düzeyde sınıflandırdığı ortaya çıkarılmıştır.

Tez kapsamında, kullanılan öznitelik vektörünün boyutunu sınıflayıcının performan-
sını değiştirmeden azaltmak amacıyla diverjans analizi kullanılmıştır. Diverjans
analizi iki veya daha fazla sınıfın söz konusu olduğu problemlerde kullanılan tüm
özniteliklerin arasından istenen sayıda, performansı azaltmayan en iyi özniteliklerin
seçilmesi amacıyla uygulanır. Diverjans hesaplamada sınıf içi saçılım ve sınıflar
arası saçılım, sınıfları ayırma kriteri olarak kullanılmaktadır. Tezde kullanılan veriye

xxii



diverjans analizi uygulanmış ve GAL ağı ile test edilmiştir. Test sonucu, proteinlerin
daha az sayıda öznitelik ile başarım değişmeden sınıflandırılabildiğini göstermiştir.

GAL ve SOM ağları kullanılırken sınıflayıcının performansını artırmak amacıyla
OvO yöntemi kullanılmıştır. Bu yöntem çok sınıflı problemlerde kullanılan K-sınıflı
problemi iki sınıflı probleme indirgeyen bir yöntemdir. Bir sınıf 1. sınıftaki proteinleri
içerirken diğer sınıf 1. sınıf dışındaki K-1 sınıfta olan proteinleri içerir. Aynı şekilde
bir sınıf 2. sınıftaki proteinleri içerirken diğer sınıf 2. sınıf dışındaki K-1 sınıfta
olan proteinlerin tümünü içerir. Bu şekilde K tane 2 sınıflı sınıflandırıcı oluşturulur
ve sorgulanan protein K adet sınıflayıcıda ayrı ayrı test edilir.

Proteinin fold düzeyinde sınıflandırılmasına ilişkin yapılan testlerde sınıf başarımı
hesaplanırken literatürde çoğunlukla kullanılan duyarlılık hesabı kullanılmıştır. Buna
göre yapılan testler 27 sınıflı problem için GAL ve SOM’un literatürde kullanılan
yöntemlerle karşılaştırılabileceği sonucunu ortaya çıkarmış ve proteinler yüksek bir
başarımla sınıflandırılmıştır.

Proteinler heliks ve tabaka olmak üzere sekonder yapıların belirli bir sırada
dizilimlerinden meydana gelmektedir. Bir yapısal motif ise proteinin belirli küçük
bir parçası olup daha az sayıda sekonder yapıdan meydana gelmekte ve aynı
motifi içeren farklı proteinler benzer işlevler yapabilmektedirler. Tezde proteinlerin
fold düzeyinde sınıflandırılmasından farklı olarak, yapısal blokların karşılaştırılması
ile motif çıkarımı konusu da ele alınmıştır. Bunun için Genelleştirilmiş Hough
dönüşümü tabanlı üç yöntem önerilmektedir. Genelleştirilmiş Hough dönüşümü,
genellikle obje tanımada kullanılmakta ve parametre uzayında oylama işlemine
dayanmaktadır. Tez kapsamında kullanılan bu yöntemde amaç, motif çıkarımı için
motifin referans noktasının belirlenmesidr. Bu yöntemde motife ilişkin bazı özellikler
referans tablosuna kaydedilmekte ve oy verilecek nokta veya koordinatlar referans
tablosu elemanları vasıtasıyla hesaplanan özel bir haritalama kuralı uygulanarak
belirlenmektedir. Genelleştirilmiş Hough dönüşümü bazlı metotlardan birincisi
sekonder yapı teklilerini, ikincisi sekonder yapı ikililerini ve üçüncüsü ise sekonder
yapı üçlülerini kullanmaktadırlar. Her üç metot için de motifin geometrik ortası
referans noktası olarak belirlenmektedir. Burada amaç motif içindeki sekonder yapılar
ile protein içindeki sekonder yapıları karşılaştırıp, oluşturulan haritalama kuralına göre
oylama prosedürünü uygulamak ve en fazla oy alan noktayı aday referans noktası
olarak belirlemektir. Tekli yöntemde motif içerisindeki her bir sekonder yapı için
referans noktasının lokasyonu tanımlanırken, ikili ve üçlü yöntemlerde sırasıyla ikili
ve üçlü sekonder yapılar için referans noktasının lokasyonu tanımlanmaktadır. Açı
ve mesafe değerleri ile oluşturulan bu tanımlama haritalama kuralını oluşturmaktadır.
Tekli yöntemde haritalama kuralı protein içerisindeki her bir sekonder yapıya
uygulanırken ikili ve üçlü yöntemlerde sırasıyla protein ve motif ikililerinin ve
üçlülerinin eşleşmesi durumunda uygulanmaktadır. Yöntemleri test etmek amacıyla
PDB’den seçilen 1FNB proteini içinden rasgele dört ve beş sekonder yapıdan oluşan
iki motif seçilmiş ve her üç yöntem de test edilmiştir. Diğer bir testte PDB’den
altı adet protein seçilmiş ve bunlardan üçü dört sekonder yapıdan oluşan, kalan üçü
ise beş sekonder yapıdan oluşan motiflerin çıkarımı amacıyla test edilmiştir. Bu
kısımda son olarak PDB’den 20 adet protein seçilmiş, bu proteinler içindeki üç, dört
ve beş sekonder yapıdan oluşan olası bütün motifler test edilmiştir. Yapılan tüm bu
testler, referans noktasının yüksek bir doğrulukla belirlendiğini ve motifin proteinden
beklenen sayıda oy alarak çıkarıldığını göstermiştir.

xxiii



xxiv



1. INTRODUCTION

1.1 Purpose of Thesis

In this thesis we focused on protein fold classification and motif retrieval by structural

block comparison. The first purpose of the thesis is to classify proteins according

to their folds. For fold classification neural network based three methods; Grow and

Learn (GAL) networks, Kohonen’s Self-Organizing Maps (SOM) and Self-Organizing

Maps for Structured Data (SOM-SD) were employed. For GAL and SOM, features

related to primary structure, and for SOM-SD, features related to secondary structure

(SS) were used; and better results were obtained compared to existing methods.

For protein motif retrieval task, three new algorithms based on Generalized Hough

Transform (GHT) were used. Here, a few attributes related to SS were used as

features; and experimental results showed the effectiveness of these approaches in

motif retrieval.

1.2 Literature Review

Proteins are fundamental biological macromolecules which organize essential parts of

living organisms to control all of their vital functionalities. Protein functions depend

on protein chemical reactions with their surrounding and other proteins. Also protein

functions are determined by its shape and three-dimensional (3D) structure [1]. The

information related to all known proteins is deposited in a data bank called Protein Data

Bank (PDB) [2]. There are currently 109,661 (at 22/06/2015) 3D protein structures

experimentally determined in PDB and this number increases consistently with an

increment of about 700 new molecules for month. However there are a lot of similar

structures (not identical) in this protein set. So protein structure comparison came

into question in computational biology and is an important issue that helps biologists

understand various aspects of protein function and evolution. It is commonly believed

that the 3D fold has a major effect on the ability of a protein to bind other proteins or
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ligands. The similarity analysis of protein structure is therefore an important process

in understanding the protein’s role in the machinery of life. Comparison of protein

structures is also essential for estimating evolutionary distance between proteins and

protein families [3].

In proteins, a structural motif is a 3D structural element which appears in a variety

of molecules and usually consists of just a few elements. Several motifs packed

together to form compact, local, semi-independent units are called domains. The

size of individual structural domains varies from about 25 up to 500 amino acids,

but majority, 90%, has less than 200 residues with an average of approximately 100

residues. The term family as it is used in taxonomy should not be confused with

protein family which is a group of evolutionarily related proteins, that is, proteins

in a protein family descend from a common ancestor and typically have similar

3D structures, functions and significant sequence. Note that it is also often used

the term super-*, where * can stand for motif, or domain, or family, or fold, or

class [4]. There are several methods for defining protein SSs; Dictionary of Secondary

Structure of Proteins (DSSP) and Structural Identification (STRIDE) [5,6] are the most

commonly used. The DSSP defines eight types of SSs, nevertheless, the majority

of secondary prediction methods simplify further to the three dominant components;

helix, strand and coil. The structural analysis for protein recognition and comparison

is conducted mainly on the basis of the two most frequent components; the helices and

the strands [7]. Structural Classification of Proteins (SCOP) [8] provides a detailed and

comprehensive description of the structural and evolutionary relationships among all

proteins whose structures are known [9]. According to convention a protein could be

classified into one of four structural classes based on its SS components; all-α , all-β ,

α/β and α + β ; and according to the SCOP four structural classes are divided into

folds, folds are divided into superfamilies, and superfamilies are divided into families.

Folds represent the 3D shape of proteins and because of that the protein structure define

the protein function. Hence, classifying the proteins according to their folds is an

important issue for structural biology.

In the literature there are several types of works about proteins. The basic works

are about protein structure comparison [4, 10–16] prediction of protein SSs [17–

24], prediction of protein structural classes [25–34] and classification of protein
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folds [1, 9, 35–74]. In this thesis we focused on protein structure comparison and

fold classification. Related to protein structure comparison, these studies have been

done: Can et al. [10] presents a new method for conducting protein structure similarity

searches and applies differential geometry knowledge on protein 3D structure for

extracting signatures such as curvature, torsion and SS type. Camoglu et al. [11],

in order to find similarities in a protein structure database, builds an indexing structure

based on SS elements triplets by using R-tree. Chionh et al. [12] propose the SCALE

algorithm to compare protein 3D structures based on angle-distance matrices that

utilizes angles and distances between SS elements. Chi et al. [13] design a fast

system for protein structure retrieval by using image based distance matrices and a

multidimensional index. Zotenko et al. [14] propose an approach to speed up protein

structure comparison by mapping a protein structure to a high-dimensional vector and

approximating structural similarity by distance between the corresponding vectors.

Krissinel et al. [15] describe the Secondary Structure Matching (SSM) algorithm of

protein structure comparison in 3D, which includes an original procedure of matching

graphs built on the protein’s SS elements, followed by an iterative 3D alignment of

protein backbone Cα atoms. Cantoni et al. [4,16] made a study for retrieving structural

motifs by using Generalized Hough Transform (GHT) and range tree. They also

retrieved the Greek Key motif, which is formed by four SSs, from the protein files

by using the GHT. In a part of the thesis, we propose three new methods based on

GHT for protein motif retrieval.

Protein fold classification is the prediction of protein’s tertiary structure (fold) given the

protein’s sequence without relying on sequence similarity. In the past three decades,

many efforts have been made to classify the proteins according to their folds. A variety

of classification methods have been applied to this task such as neural networks [9,35–

38, 43, 47, 60], Bayesian classifiers [46], K-nearest neighbor [44, 50, 66, 67], support

vector machine (SVM) [40,45,52] and ensemble classifiers [1,39,48,49,51,54,58,68,

73, 74].

One of the early studies about fold classification was done by Reczko and Bohr [35].

They used a special type of feed-forward neural networks called Cascade-Correlators.

In their study, the training algorithm optimizes the weights and the number of hidden

units in a feed-forward network by adding units during the training process. The

3



process of adding new hidden units that maximize the correlation between their activity

and the error remaining at the output layer is repeated until the mapping has the desired

accuracy. Their predictive performance turned out to be rather successful with a score

of around 82% for predicting fold classes (with a total of 42 classes).

In 1999, Dubchak et al. [9] developed a neural network based computational method

for the assignment of a protein sequence to a folding class in the SCOP. In that study

three layer feed-forward neural networks were used with the neural network weights

adjusted by conjugate gradient minimization. This method used global descriptors of

a primary protein sequence in terms of the physical, chemical and structural properties

of the constituent amino acids and performed well for protein fold prediction.

In 2001, Edler et al. [36] made a study to show the role and results of statistical methods

in the prediction of protein fold classes. They used feed-forward neural networks and

standard statistical classification procedures to classify proteins. They applied logistic

regression, additive models, and projection pursuit regression from the family of

methods based on posterior probabilities; linear, quadratic, and a flexible discriminant

analysis from the class of methods based on class conditional probabilities, and the

nearest neighbor classification rule to a dataset of 268 proteins (including 42 folds). In

the same year, Ding and Dubchak [37] used SVMs and neural networks learning

methods as base classifiers to recognize protein folds. They used the database,

including 27 protein folds, in their earlier study [9]. These folds include 311 proteins

for training set and 383 proteins for test set, totally 694 proteins. To increase the

success rate they applied one-versus-others (OvO), unique one-versus-others (uOvO)

and all-versus-all (AvA) prediction methods. They classified the protein folds with a

56% success rate using SVM with AvA prediction method.

Motivated by Ding and Dubchak, Bologna and Appel used an ensemble of four-layer

Discretized Interpretable Multi Layer Perceptron (DIMLP) [38] trained with the

dataset produced by Ding and Dubchak [37]. In addition, they added the length of

the amino acid sequence as an effective feature to each feature group. Different from

Ding and Dubchak’s study, in [37], each classifier learned all the folds simultaneously.

They classified the proteins with a 61.1% success rate.
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In 2003, Bindewald et al. presented a hybrid of different approaches as protein fold

recognition method called MANIFOLD (MANheIm FOLD recognition) [39]. They

used sequence similarity, SS and functional information to improve fold recognition.

They tested this method on the dataset provided by Ding and Dubchak [37] and

they obtained a prediction accuracy of 74.9%. Markowetz et al. [40] compared

the performance of SVM to neural networks and to standard statistical classification

methods as Discriminant Analysis and Nearest Neighbor classification. They used the

dataset, in [36] including 268 proteins (42 folds) and they obtained the best error rate

23.2%. Tan et al. [41] applied ensemble learning algorithm to the prediction of fold

classes. Huang et al. [42] proposed a hierarchical learning architecture (HLA) method

that classified proteins into four major classes; all-α , all-β , α+β , α/β . Then in the

next level they used another set of classifiers (MLP, GRNN, RBFN, SVM) to further

classify the proteins into 27 folds. The best accuracy of HLA method based on RBFN

is up to 65.5% on the Ding and Dubchak’s dataset.

In 2004, Igel et al. [43] applied standard feed-forward neural networks to assign

primary sequences of proteins to one out of 42 fold classes. They used early-stopping

for implicit regularization to improve the generalization properties of the neural

networks. For comparison of their neural network approach with the results in the

literature, they used the same data and basically the same performance measures as

in [36, 40] and they obtained the best error rate 22.4%. To classify the proteins

according to their folds, Okun used a modified nearest neighbor algorithm called the

K-Local Hyperplane Distance Nearest Neighbor (HKNN) [44]. He used the dataset

in [37] and classified the proteins with a success rate 57.4%. Shi et al. [45] proposed

a multi-objective feature analysis algorithm. The objective of this algorithm is

simultaneously selecting the effective features, improving the accuracy and providing

bias information of train and test data. To achieve this objective, authors used an

extended wrapper method for feature selection and processed SVM for classification

task. They used the same dataset used in [37] and achieved 61.6% classification

performance.

In 2005, Chinnasamy et al. [46] presented a framework using Tree-Augmented

Networks (TAN) based on the theory of learning Bayesian networks but with less

restrictive assumptions than the naive Bayesian networks. In order to enhance the
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TAN’s performance, they did pre-processing of data with feature discretization and

post-processing by using Mean Probability Voting (MPV) scheme. They used the

datasets in [36] and [37], and they obtained classification performances of 58.9% and

74.4% respectively. Huang et al. [47] used neural network based hierarchical learning

architecture to deal with fold classification problem. In this study, the network can

not only select features in an online manner during learning, but it also does some

feature extraction. They combined the feature selection with their hierarchical learning

architecture and applied it multi-class protein fold classification and they had a result

in a test accuracy of 56.4%.

In 2006, Nanni made two studies related to protein fold classification [48, 49]. In

the first study he proposed a new ensemble of K-local hyperplanes based on random

subspace and feature selection. In the second, he developed an ensemble classifier by

combining Fisher’s linear classifier and HKNN [44]. He tested these methods on the

dataset including 27 folds and he obtained 61.1% and 60.3% classification performance

respectively. Shen and Chou developed an ensemble classifier for fold pattern

recognition [50]. In this study, the operation engine for the constituent individual

classifiers was OET-KNN (optimized evidence-theoretic K-nearest neighbors) rule.

Their outcomes were combined through a weighted voting to give a final determination

for classifying a query protein. The method was tested on the dataset in [37] and the

proteins were classified with 62.1% success rate.

In 2007, Chen and Kurgan proposed PFRES method for automated protein fold

classification [51]. This method combines evolutionary information by using the

PSI-BLAST profile-based composition vector and information extracted from the

SS predicted with PSI-PRED. In this study, they used a voting-based ensemble

classifier and obtained 68.4% prediction accuracy. Shamim et al. [52] developed a

SVM-based classifier that uses secondary structural state and solvent accessibility state

frequencies of amino acids and amino acid pairs as feature vector. They performed

their method on the dataset in [37] and they obtained 70.5% performance accuracy

by using OvO prediction method. In 2008, Abual-Rub and Abdullah [53] reviewed

different algorithms related to protein fold classification and they concluded that the

evolutionary algorithms can be used for this task.
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In 2008, motivated by [50], Guo and Gao proposed a novel hierarchical ensemble

classifier named GAOEC (Genetic-Algorithm Optimized Ensemble Classifier) [54]

and they overcame the shortcomings in [50]. To construct the classifier, firstly, a novel

optimized classifier named GAET-KNN (Genetic-Algorithm Evidence-Theoretic K

Nearest Neighbor) was proposed as a component classifier. Secondly, six component

classifiers in the first layer were used to get a potential class index for every query

protein. Thirdly, according to the results of the first layer, every component classifier

in the second layer generated a 27-dimensional vector whose elements represented the

confidence degrees of 27 folds. Finally, genetic algorithm was used for generating

weights for the outputs of the second layer to get the final classification result. Guo

and Gao tested this classifier on the dataset in [37] and they had a 64.7% prediction

accuracy. A different study was done by Krishnaraj and Reddy in 2008 [55]. They

used two variants of Boosting algorithms (AdaBoost and LogitBoost) for the problem

of fold recognition. Prediction accuracy was measured on the dataset including the

most famous 27 SCOP folds, and AdaBoost and LogitBoost achieved 57.7% and

60.13% fold recognition accuracy, respectively. Damoulas and Girolami [56] proposed

a multi-class multi-kernel learning method to recognize protein folds. It applied a

single multi-class kernel machine on all of the characteristic spaces simultaneously

and then combined their results. The method achieved the best accuracy of 70% on the

benchmark dataset proposed by Ding and Dubchak [37].

In 2009, Shen and Chou [57] proposed a new approach which is featured by combining

the functional domain information and the sequential evolution information through a

fusion ensemble classifier, and they called it FPF-FunDEsqE. Tests were performed

for identifying proteins among their 27 fold patterns and the classifier achieved 70.5%

prediction accuracy. Hashemi et al. [1] applied two classification methods; MLP and

RBF networks. Also they used Bayesian and Majority Voting classifier ensemble

methods to improve the prediction results of the base classifiers. In their study the MLP

network had only one hidden layer with tangent sigmoid as activation function. For

recognizing the exact class of a protein they used the label of the maximum output unit

in the network as the protein class label. They used Correct Classification Rate (CCR)

as the evaluation measure which is the number of correct classified instances over the

total number of instances. In this study final CCR became around 59%. Chen et al. [58]
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developed a novel approach based on genetic algorithms and a SVM to determine the

best feature selector. The SVM applied the best feature selector to the feature vectors

in the test dataset to classify the protein folds. This method achieved an accuracy

of 71.28% for protein fold classification problem. To predict protein folds, Ghanty

and Pal [59] proposed several new features and used some existing features including

frequencies of adjacent residues, frequencies of residues separated by one residue,

and triplets of amino acid compositions; and they used MLP network, RBF network

and SVM as machine learning tools. To improve the recognition accuracies further,

they used fusion of different classifiers and their system achieved 68.6% test accuracy

for the fold recognition with 27 folds. Jazebi et al. [60] employed a fusion method

(using weighted voted approach and OWA operators) for fold pattern recognition. They

used the Probabilistic Neural Network (PNN) as base classifier in the fusion method.

Tests were performed on the dataset in [37] and 52.3% classification performance was

obtained.

In 2010, Dehzangi et al. [61] used Random Forest, which is a recently introduced

method based on bagging algorithm that trains a group of base classifiers by randomly

selecting sets of features then, combining results obtained from base classifiers by

majority voting. In this study, to investigate the effectiveness of the number of base

learners on the performance of the Random Forest, twelve different number of base

classifiers (between 30 and 600) were applied for the classifier and they achieved

62.7% prediction accuracy. They also used Rotation Forest [62], a straightforward

extension of bagging algorithms which aims to promote diversity within the ensemble

through feature extraction by using Principal Component Analysis (PCA). Valavanis

et al. [63] used five different classification techniques, namely MLP, PNN, nearest

neighbor classifier, multi-class SVM and Classification Trees (CTs) for protein fold

recognition problem on the dataset including 27 folds, and polynomial SVM achieved

42.8% classification performance. Wang and Gao [64] developed a two-layer learning

architecture, named TLLA, for multi-class protein fold classification problem. In

the first layer, OET-KNN was used as the component classifier to find the most

probable K-folds of the query protein. In the second layer, SVM was used to build

the multi-class classifier just on the K-folds. The dataset in [37] was used to evaluate

the performance of the classifier and the method achieved 63% success rate.
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Motivated by [55, 61, 62] in 2011, Dehzangi and Karamizadeh used a fusion of

heterogeneous Meta classifiers, namely LogitBoost, Random Forest and Rotation

Forest [65]. They used Ding’s feature set and achieved 65.3% protein fold prediction

accuracy. Kavousi et al. extracted ten different features from protein sequences

and used ten OET-KNN classifiers as the classification engine [66] and in 2012

they dealt with protein fold classification based on the concepts of hyperfold [67].

Tests were performed on the dataset in [37] and they achieved 67.2% and 73.1%

classification performances in 2011 and 2012, respectively. Yang et al. [68] proposed

a novel margin-based ensemble classifier, called MarFold, for multi-class protein fold

recognition task where multiple heterogeneous feature space were available. They built

this method on three component classifiers, namely, adaptive local hyperplane (ALH),

SVM and ALHK (a variant of ALH). To evaluate the proposed method they used

the dataset established by Ding and Dubchak [37] and they obtained 71.7% overall

prediction accuracy by MarFold.

In 2012 Suvarnavani et al. [69] applied boosting algorithm (SMOTE) to rebalance

the imbalanced dataset to boost the performance and then they used a decision

tree classifier to classify folds from the features of contact map. They obtained

over 70% accuracy for the feature set generated by Triangle Sub division method.

Another study was made by Chmielnicki and Stapor [70]. They suggested a hybrid

discriminative/generative approach. Accordingly, they combined the well-known

SVM classifier with regularized discriminant analysis (RDA). In this method, SVM

classified the proteins using the results of RDA. The dataset including 27 folds was

used and 77.9% classification performance was achieved.

In 2013, Bae et al. [71] made a study to deal with fold classification problem. In

this study, prediction of structural fold classes of proteins with torsion angle based

SS profile library and multi-class linear discriminant analysis, was performed. In

one of the recent studies, Suryanto et al. [72] proposed a new approach for protein

fold classification by introducing the concept of large margin nearest neighbor for

combining multiple measures of distance between protein structures. They combined

the Euclidean distance matrices of 12 features extracted from the amino acid sequence

of the protein, the root mean square deviation (RMSD) obtained from the geometrical

alignment using Combinatorial Extension, and the canonical angles between the
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subspaces generated from the synthesized multi-view protein structure images. To

demonstrate the effectiveness of the proposed method they used the dataset produced

by Ding and Dubchak and they achieved 92.4% prediction accuracy. Another

up-to-date study was made by Lin et al. [73] in 2013. They utilized a K-means

clustering algorithm to choose a series of different base classifiers and a circulating,

combined static selective strategy. Tests were performed on the dataset in [37] and

74.2% accuracy rate was obtained.

In 2015, Aram et al. [74] used a Two-Layer Classification Framework (TLCF) and a

fusion of MLP, RBFN and Rotation Forest. In the first layer they classified the proteins

according to their structural classes, and in the second layer according to their folds.

The fusion method was performed on the dataset in [37] and 65.7% prediction accuracy

was obtained.

In this thesis we dealt with two problems: Protein fold classification and motif retrieval

by structural block comparison. For the first problem, we used GAL networks, SOM

and SOM-SD approaches to solve protein fold classification problem. While GAL

and SOM use primary protein structures, SOM-SD uses secondary protein structures.

Neural network models are widely used in literature for protein fold classification

problem, but to the best of our knowledge, GAL networks, SOM and SOM-SD have

not been used for this task. For the second problem, motif retrieval, we proposed

three new methods based on GHT. These three methods use single SS, SS couple

co-occurrences and SS triplet co-occurrences as primitive aggregates, and they use

the attributes related to secondary protein structures for motif retrieval.

1.3 Thesis Organization

The aim of this thesis is to retrieve a motif from the protein with structural block

comparison by using GHT based methods and to classify the proteins according to

their folds using GAL, SOM and SOM-SD networks.

Before going into details of the algorithms for motif retrieval and fold classification,

bioinformatics and basic concepts about the protein structure and function are

introduced in Chapter 2.
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Chapter 3 discusses feature extraction from primary and secondary protein structures

and feature reduction with divergence analysis.

The methods used for fold classification and motif retrieval are explained in Chapter

4. For fold classification GAL, SOM and SOM-SD networks; for motif retrieval

GHT-based approaches are told in Section 4.1, 4.2, 4.3 and 4.4, respectively.

In Chapter 5 experiments and results are explained and Chapter 6 concludes the thesis.
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2. PROTEIN STRUCTURES

Protein fold classification, structural block comparison and motif retrieval examined

in the thesis scope are studies related to proteomics (protein recognition, protein

classification) and are included by bioinformatics study areas. Being a subclass of

Computational Biology, bioinformatics is a scientific discipline dedicated to solve

biological problems at the molecular level with computer methods. It is an attempt

to describe biological phenomena in terms of numerical and statistical methods.

Historically biology has used less mathematical approaches than other scientific

disciplines such as physics and chemistry. Bioinformatics then, tried to address this

gap by providing the typical results of biochemistry and molecular biology a kit

of analytical and numerical tools, involving computer science, applied mathematics,

statistics, chemistry and artificial intelligence concepts [75].

Proteomics is a subclass of Bioinformatics and deal with large scale study of proteins

especially protein structures and functions. The basic study areas of proteomics are

like that:

• predicting protein structure from their sequence

• structural classifications of proteins

• protein fold classification

• protein motif retrieval

• predicting protein-ligand interactions

• aligning proteins’ sequences

• defining criteria of similarity between proteins

• protein structure comparison
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Within this context, there are a number of approaches for each one of the mentioned

study areas. For the scope of this thesis, we will concentrate our attention on protein

motif retrieval, protein structure comparison and protein fold classification.

2.1 Proteins

Proteins can be found in all living systems ranging from bacteria and viruses through

the unicellular and simple eukaryotes to vertebrates and higher mammals such as

humans. Proteins are present in larger quantities than any other biomolecule and make

up over 50 percent of the dry weight of cells. Proteins are also very important amongst

other macromolecules because they are the basis for any reaction that occurs in living

systems [76].

2.1.1 Biological functions of proteins

Proteins provide a wide range of different biological features that range from DNA

replication to molecules transformation. The possible functions of proteins are large

enough and today we still learn new ones as long as knowledge on protein increases.

Below is a list of several types of proteins and their functions inside a body [75]:

Antibodies are specialized proteins commonly found in blood or other bodily fluids of

vertebrates. They are used by the immune system to identify and neutralize antigens

(foreign invaders like virus or bacteria). One way antibodies destroy antigens is by

immobilizing them so that they can be destroyed by white blood cells.

Contractile proteins participate in contractile processes. They are not only involved

in muscle contraction and movement, but they also participate in localized events

in the cytoplasm or general cell aggregation phenomena.

Enzymes are proteins that facilitate and speed up biochemical reactions. They are

often referred as catalysts. Examples include the enzymes lactase and pepsin.

Lactase breaks down the sugar lactose found in milk and is essential for digestive

hydrolysis of lactose milk. Pepsin works in the stomach and is fundamental for the

process of digestion to break down proteins in food.

Hormonal proteins are messenger chemically released by a cell in one part of the

body that sends out messages that affects cells in other part of the organism. This
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function helps to coordinate certain bodily activities. An example is insulin, that

helps to regulate glucose metabolism by controlling the blood-sugar concentration.

Structural proteins are fibrous and provide both external protection and internal

connective support for the body. For example keratin forms protective covering

of land vertebrates: skin, fur, hair, wool, nails, horns, beaks and feathers. Another

example is elastin that provides support for connective tissues such as tendons,

hides and ligaments.

Storage proteins store amino acids and metal ions used by organisms. Seeds,

particularly of leguminous plants, contain high concentrations of storage proteins.

Examples of amino acid storage proteins in animals include casein and ovalbumin.

Transport proteins are carriers of molecules from one place to another inside the

body. The most known examples are haemoglobin, which carries oxygen from the

lungs to the tissue, and myoglobin, which takes oxygen from the haemoglobin in

the blood and carries it around until needed by the muscle cells.

A placement of each protein in a formal class is not correct because each protein can

have more than one function at a time; because of that many proteins are not easy

to classify. However, all proteins are characterized by the same basic structure made

of 20 types of amino acids. What really differentiates them is the composition; not

all have the same amount of each amino acid and some may even lack one or two

members of the group of 20 entirely. It was realized early in the study of proteins that

variation in size and complexity is common and the molecular weight and number of

subunits (polypeptide chains) show tremendous diversity [76]. There is no correlation

between the size of the protein and the number of polypeptide chains. For example

haemoglobin has four subunits and a molecular mass of 64500 while insulin has two

subunits but only a molecular mass of 5700 [75].

2.1.2 Protein structure

Proteins are formed by different combinations of amino acids and peptide bonds

connecting two amino acids; and they are defined by different levels of protein

structures (primary, secondary, tertiary and quaternary structures). In the next three
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sub sections amino acids, peptide bonds and different levels of protein structures will

be introduced briefly.

2.1.2.1 Amino acids

All proteins are made of a linear composition of amino acid residues. This assemblage

is called polypeptide chain. Amino acids are the chemical units or building blocks of

the body that make up the proteins. Twenty different amino acids are used to synthesize

proteins. The shape and other properties of each protein are dictated by the precise

sequence of amino acids in it.

Each amino acid consists of an alpha carbon atom to which the structures in below are

connected (see Figure 2.1):

• a hydrogen atom;

• an amino group NH+
3 ;

• a carboxyl group COO−. This gives up a proton and is thus an acid;

• one of 20 different "R" groups (side chain). It is the structure of the R group that

determinates univocally each amino acid and also its special properties.

Figure 2.1 : The basic amino acid structure.

All amino acids contain carbon, hydrogen, nitrogen and oxygen with two of the

20 amino acids also containing sulfur (Table 2.1 summarizes each amino acid

composition). At pH7 the amino and carboxyl groups are charged, but at different

values of pH from 1 to 14 these groups exhibit different behaviors involving binding
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Table 2.1 : Amino acid names, three and one-letter standard abbreviations and linear
structures.

Name Abbreviation Linear Structure

Alanine ala A CH3-CH(NH2)-COOH

Arginine arg R HN=C(NH2)-NH-(CH2)3-CH(NH2)-COOH

Asparigine asn N H2N-CO-CH2-CH(NH2)-COOH

Aspartic Acid asp D HOOC-CH2-CH(NH2)-COOH

Cysteine cys C HS-CH2-CH(NH2)-COOH

Glutamic Acid glu E HOOC-(CH2)2-CH(NH2)-COOH

Glutamine gln Q H2N-CO-(CH2)2-CH(NH2)-COOH

Glycine gly G NH2-CH2-COOH

Histidine his H NH-CH=N-CH=C-CH2-CH(NH2)-COOH

Isoleucine ile I CH3-CH2-CH(CH3)-CH(NH2)-COOH

Leucine leu L (CH3)2-CH-CH2-CH(NH2)-COOH

Lysine lys K H2N-(CH2)4-CH(NH2)-COOH

Methionine met M CH3-S-(CH2)2-CH(NH2)-COOH

Phenylalanine phe F Ph-CH2-CH(NH2)-COOH

Proline pro P NH-(CH2)3-CH-COOH

Serine ser S HO-CH2-CH(NH2)-COOH

Threonine thr T CH3-CH(OH)-CH(NH2)-COOH

Tryptophan trp W Ph-NH-CH=C-CH2-CH(NH2)-COOH

Tyrosine tyr Y HO-Ph-CH2-CH(NH2)-COOH

Valine val V (CH3)-CH-CH(NH2)-COOH

and dissociation of a proton. This behavior distinguishes the groups as weak acids

or weak bases. The acid-base behavior in particular is very important since it affects

the potential properties of the protein and their reactivity. As shown in Figures 2.1

and 2.2 all the components of amino acids (amino, carboxyl, hydrogen and R group)

are arranged tetrahedrally around the central alpha carbon.

Each amino acid has a characteristic side chain, or R group that imparts chemical

individuality to the molecule. These R side chains contain different structural features,

such as aromatic rings, -OH groups, -NH3+ groups, COO- groups, sulfur containing
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Figure 2.2 : Alanine composition and its 3D spatial arrangement generated with
Jmol [78].

residues etc. This variety in side chains causes difference in the properties of the

individual amino acids and the proteins containing different combinations of them.

2.1.2.2 Peptide bonds

A peptide bond is a covalent bond that is formed between two molecules when the

carboxyl group of one molecule reacts with the amino group of another molecule,

releasing a molecule of water [77]. This is how amino acids are joined together. The

resulting CO-NH bond is called a peptide bond, and the resulting molecule is an amide

(see Figure 2.3).

Figure 2.3 : Two amino acids join together by the carboxyl group of one and the
amino group of the second, and a molecule water is removed in this
process. Here, grey shows the carbon, blue nitrogen, red oxygen and

white hydrogen.

The molecules must be orientated so that the carboxylic acid group of one can react

with the amino group of the other.
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Any number of amino acids can be joined together in chains of 50 amino acids called

peptides, 50-100 amino acids called polypeptides, and over 100 amino acids called

proteins. A number of hormones, antibiotics, antihumor agents and neurotransmitters

are peptides (proteins).

A peptide bond can be broken down by hydrolysis (addition of water). The peptide

bonds that are formed within proteins have a tendency to break spontaneously when

subjected to the presence of water releasing about 10 kJ/mol of free energy.

Amino acid sequences are read from left to right (from amino to carboxyl terminal).

In order to save space in long protein sequences, only a three letter code (or a single

letter code) is used for each amino acid (see Table 2.1).

The protein sequence can be divided into main chain and side chain components. The

main chain is the same for any protein and differs only in extensions. The main chain

includes all the residues found in the polypeptide chain. This backbone represents

repetition of peptide bonds made up of the N, Cα and C atoms. On the contrary the

side chain represents different components in each protein [75].

2.1.2.3 Primary structure

The primary structure of a protein is the linear order of amino acid residues along the

polypeptide chain [76]. It is the amino acid sequence between terminals expressed

with three of single letter codes. Here is an example of primary structure:

NH3-Ala-Glu-Glu-Ser-Ser-Lys-Ala-Val-Lys-Tyr-Tyr-Thr-...

NH3-A-E-E-S-S-K-A-V-K-Y-Y-T-...

Each protein is defined by a unique sequence of residues. All other representations are

based on this primary level of structure. It is important to realize that two proteins that

contain the same amino acid composition can have very different primary structures.

The following two peptides, for example, are formed by the same amino acids, but

their primary structures are different, since the sequences are different:

H2N-Glu-Ala-Val-Ser-Leu-Ala-Lys-Cys-COOH

H2N-Ala-Glu-Val-Ser-Ala-Leu-Lys-Cys-COOH
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The primary structure determines the three-dimensional structure of the protein, which

in turns determines its biological function. Alteration in normal primary structure of

proteins can produce catastrophic results [75].

2.1.2.4 Secondary structure

Primary structure leads to SS that takes into consideration the local confirmation of

the polypeptide chain or the spatial relationship between amino acids’ residues that are

close together in the primary sequences. The three basic units of the SS are α-helix,

β -strand and turns. It is possible to have other structures but they are considered

variations of the three previous.

α-helix: The most common structural pattern which can be found in a protein is

the right-handed α-helix. A regular α-helix has 3.6 residues per turn with an offset

between residues of 0.15 nm. The pitch of the helix is therefore 0.54 nm (3.6 × 0.15)

that is the translation distance between two corresponding atoms on the helix. The

α-helix model has two important angles with regular values that are called φ and ψ ,

torsion or dihedral angles. The particular arrangement of the α-helix allows some of

the backbone atoms to form hydrogen bonds between the backbone carboxyl oxygen

(acceptor) of one residue and the amide hydrogen (donor) of a residue four ahead

in the polypeptide chain. α-helices are represented with a wireframe, spacefilling,

ball-and-stick and usually cartoon representation (see Figures 2.4, 2.5, 2.6 and 2.7).

β -strand: The β -strand is the second unit of the SS. Although it is displayed as

an arrow in the SS its actual conformation is very similar to an extremely elongated

helix (see Figure 2.4). Regular β -strand has only two residues per turn and a pitch of

0.7 nm. Since a single β -strand is not stable because of the limited number of local

interactions, the majority of β -strands are arranged adjacent to other strands and form

an extensive hydrogen bond network with their neighbors in which the N-H groups

in the backbone of one strand establish hydrogen bonds with the C=O groups in the

backbone of the adjacent strands.

Adjacent strands can align in parallel or anti-parallel arrangements. The arrow in the

cartoon representation of proteins shows the direction towards the C terminal. It is rare

to find less than five interacting parallel strands in a motif, suggesting that a smaller

number of strands may be unstable.
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Figure 2.4 : Cartoon representation of the 1FNB (PDB ID) protein. Helices are
represented as pink and purple ribbons, strands are represented as yellow

arrow. Image generated with Jmol [78].

Figure 2.5 : Spacefilling representation of the 1FNB (PDB ID) protein. Image
generated with Jmol [78].
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Figure 2.6 : Wireframe representation of the 1FNB (PDB ID) protein. Image
generated with Jmol [78].

Figure 2.7 : Ball-and-stick representation of the 1FNB (PDB ID) protein. Image
generated with Jmol [78].
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A stable block of β -strands is usually called β -sheet and consists of some β -strands

connected laterally by at least two or three backbone hydrogen bonds, forming a

generally twisted, pleated sheet.

The most known and spectacular arrangement of β -strands is called β -barrel. The

β -barrel is a large β -sheet that twists and coils to form a closed structure in which the

first strand is hydrogen bonded to the last. β -strands in β -barrels are typically arranged

in an anti-parallel fashion.

Turns: Turns have the universal role of enabling the polypeptide to change direction

and in some cases to reverse back on itself. The reverse turns or bends arise from the

geometric properties associated with these elements of protein structure.

Several definable turns and bends in protein structure have been recognized and

classified either by the relationship between the φ , ψ angles of the residues in the

turn or the hydrogen bonding of their amide N-H and carbonyl-oxygen atoms. The

tightest turns involve only three residues with hydrogen bonding between the carbonyl

of the first residue (N-terminal end) and the N-H of the third residue. These turns are

referred to as γ turns. Turns involving four residues are more common with hydrogen

bonding from the carbonyl of residue 1 to the N-H of residue 4. One class of these

turns is called β -turns, typically found at turns of β -sheet structure [75].

2.1.2.5 Tertiary structure

The description of the complex and irregular folding of the peptide chain in three

dimensions is called tertiary structure. It is essentially a picture of what the shape of

the entire protein actually looks like. The functionality of the protein derive strictly

from its conformation. If something changes the three dimensional conformation the

activity of the protein will be lost. These complex structures are held together by

the R-groups of each amino acid in the chain that generate a combination of several

molecular interactions. In short, R-groups determine the structure of regions of peptide

chains that do not form a regular SS [75].

2.1.2.6 Quaternary structure

The quaternary structure of a protein describes the interactions between different

polypeptide chains that make up the protein [79]. Some proteins (such as hemoglobin)
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have more than one peptide chain (these are called multimeric or oligomeric proteins).

Oligomeric proteins can be composed of multiple identical polypeptide chains.

Proteins with identical subunits are termed homo-oligomers. Proteins containing

several distinct polypeptide chains are termed hetero-oligomers. The manner in which

these chains fit together is the quaternary structure. Obviously, if a protein is made up

of only one chain (monomeric), there is no quaternary structure for that protein. The

forces that hold different chains together are the same that hold the tertiary structure

together. Figure 2.8 shows the structure of hemoglobin, the oxygen carrying protein

of the blood, that has four subunits. Each subunit is defined with a different color and

contains two α and two β subunits arranged with a quaternary structure in the form,

α2β2. Hemoglobin is, therefore, a hetero-oligomeric protein [75].

Figure 2.8 : Quaternary structure of hemoglobin [79].
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3. FEATURE EXTRACTION FROM PROTEIN STRUCTURES

In this thesis, for protein fold classification and motif retrieval, different features

extracted from primary and secondary protein structures were used. To classify

proteins according to their folds GAL network, SOM and SOM-SD methods were

used. GAL network and SOM were tested with features extracted from primary protein

structures and representing physicochemical attributes of amino acids. SOM-SD was

tested with a new data structure extracted from protein SS to classify the proteins. For

motif retrieval, GHT-based three methods were used with the features extracted from

protein SSs. These features will be explained in the following sections.

3.1 Feature Extraction for Primary Protein Structures

To deal with the fold classification problem, Ding and Dubchak extracted the

following six attributes from protein sequences; amino acid composition, predicted SS,

hydrophobicity, normalized van der Waals volume, polarity and polarizability [37]. Of

the above six attributes, only amino acid composition contains 20 components, with

each representing the occurrence frequency of one of the 20 native amino acids in a

given protein. For the remaining five attributes, each contains 21 components [50].

These attributes are shown in Table 3.1.

Table 3.1 : The six attributes that form feature vector, their symbols and number of
components. Feature vector’s dimension is 125.

Symbol Attribute #Components
C Amino acid composition 20
S Predicted SS 21
H Hydrophobicity 21
V Normalized van der Waals volume 21
P Polarity 21
Z Polarizability 21

The composition vector is computed directly from amino acid sequence.

Given that the 20 amino acids which are ordered alphabetically (A,C,D,E,F,G,
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H,I,K,L,M,N,P,Q,R,S,T,V,W,Y) are represented as AA1, AA2,..., AA19 and AA20; and

the number of occurrences of AAi in the entire sequence is denoted as ni, the

composition vector is defined as:

n1

L
,
n2

L
, ...,

n19

L
,
n20

L
(3.1)

where L is the length of the sequence [51]. The predicted SS is divided into three

groups which are helix, strand and coil; and also for the other four attributes, those

of hydrophobicity, normalized van der Waals volume, polarity and polarizability, the

20 amino acids are divided into three groups according to the magnitudes of their

numerical values. These three groups are shown in Table 3.2. Three descriptors,

composition (C), transition (T) and distribution (D) are calculated for a given attribute

to describe the global percent composition of each of the three groups in a protein, the

percent frequencies with which the attribute change its index along the entire length of

the protein, and the distribution pattern of the attribute along the sequence, respectively.

Five different amino acid attributes produce five parameter vectors each containing

3(C)+3(T)+5×3(D)=21 scalar components. The sixth parameter vector used was the

vector of the percent composition of amino acids. Consequently, the feature vector

includes 20+21×5 = 125 features (components) for a protein [9].

Table 3.2 : Five attributes (predicted SS, hydrophobicity, normalized van der Waals
volume, polarity and polarizability) and the division into three groups.
While the first attribute is related to SSs, the other four attributes are

related to amino acids.

Property Group 1 Group 2 Group 3
S Helix Strand Coil

Polar Neutral Hydrophobic
H R,K,E,D,Q,N G,A,S,T,P,H,Y C,V,L,I,M,F,W

0-2.78 2.95-4.0 4.43-8.08
V G,A,S,C,T,P,D N,V,E,Q,I,L M,H,K,F,R,Y,W

4.9-6.2 8.0-9.2 10.4-13.0
P L,I,F,W,C,M,V,Y P,A,T,G,S H,Q,R,K,N,E,D

0-0.108 0.128-0.186 0.219-0.409
Z G,A,S,D,T C,P,N,V,E,Q,I,L K,M,H,F,R,Y,W

3.2 Feature Extraction for Secondary Protein Structures

To extract the features for secondary protein structures a new file format having .nss

extension was obtained for each individual protein. In these files each SS of protein
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has the format shown in below:

# type <ALPHA,BETA>

# CharName = E beta beta-strand

# CharName = B bridge short-beta-bridge

# CharName = G 310 310-helix

# CharName = H helix alpha-helix

# CharName = I pi pi-helix

# CharName = T turn turn

# CharName = S bend bend

# CharName = C coil random coil

# number of residues

# chain

# sequence of residues

# (BP1 BP2 sheet) for each residue (only for beta)

# coordinates of the first α-Carbon (x,y,z)

# number of the first residue

# coordinates of the last α-Carbon (x,y,z)

# number of the last residue

# barycentre (x,y,z)

# orientation (x,y,z)

Of the above attributes coordinates of first α-Carbon atom and coordinates of last

α-Carbon atom related to each SS in protein were used as features for structural block

comparison with GHT-based methods; and orientation related to each SS in protein

was used as feature to classify proteins with SOM-SD.

3.2.1 Protein Gaussian image (PGI)

Extended Gaussian Images (EGI) are useful for representing the shapes of

surfaces [80]. Surface normal vector for any object can be mapped onto a unit sphere,

called the Gaussian sphere. Mapping is called the Gaussian image of the object. The

mapping is that the surface normals for each point of the object are placed so that

their tails lie at the center of the Gaussian sphere and heads lie on a point on the

sphere appropriate to the particular surface orientation. It can be extended assigning
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a weight to each point on the Gaussian sphere equal to the area of the surface having

the given normal. In this situation, the mapping is called extended Gaussian image.

EGI represents the histogram of the surface orientations (see Figure 3.1). The EGI

introduced for applications of photometry by B.K.P. Horn [80] has been extended by

K. Ikeuchi [81, 82] (the complex EGI). PGI is a representation in the Gaussian image

Figure 3.1 : The EGI of cube. The EGI of a 3D object or shape is an orientation
histogram that records the distribution of surfeace area with respect to

surface orientation [80].

in which each SS is mapped with a unit vector from the origin of the sphere having

the orientation of the SS. Each point of the sphere surface contains the data orientation

(length, location of starting and ending residue, etc.) of the existing protein SSs having

the corresponding orientation. In Figures 3.2 and 3.3, two examples of 1FNB and

4GCR proteins are shown in PGI representation.

The chain sequence of SS is recorded as a list which is mapped on the sphere

surface and a directed graph is obtained. Nodes of the graph include the orientation

information related to SS. In Figure 3.4 green arrows represent the chain sequence

(directed graph) related to Greek Key motif.
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Figure 3.2 : Left picture generated by JMol represents the SSs of protein 1FNB.
Right picture is PGI of the 1FNB. For both pictures blues are β -sheets

and reds are α-helices.

Figure 3.3 : Left picture generated by JMol represents the SSs of protein 4GCR.
Right picture is PGI of the 4GCR. For both pictures blues are β -sheets

and reds are α-helices.

Figure 3.4 : PGI of Greek Key motif contained in protein 1FNB. Red arrows
represent the Greek key motif, while the green lines show the sequence

of SSs.
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3.3 Feature Reduction

Feature reduction is to transform the data from high dimensional space to fewer

dimensional space. The aim of this technique is to define the most significant features

in order to save time without changing success rate. There are several methods related

to feature reduction; in this thesis divergence analysis is employed for this task.

3.3.1 Divergence analysis

Divergence analysis is generally used to examine scatter of classes and distances

between classes in feature space. In divergence analysis the best d features are selected

among the given n features. We can say that it is used to determine the best features.

In this thesis divergence analysis was used to reduce dimension of feature vector. To

calculate divergence value within-class scatter matrix and between-class scatter matrix

are used. These two matrices can be used as class separation criteria. Within-class

scatter matrix W is the covariance matrix of the features (attributes) of the given

class. Between-class scatter matrix B is the covariance of class means. Divergence

value is proportional to between-class scatter matrix and inversely proportional to the

within-class scatter matrix [83]. Divergence value is calculated using (3.2):

W j
i = ∑

t
(β t j

i
− µ̂

j
i
) · (β t j

i
− µ̂

j
i
)T

µ̂
i
=

K

∑
k=1

µ̂
k
i

Wi =
K

∑
k=1

W k
i

Bi =
K

∑
k=1

(µ̂
i
− µ̂

k
i
) · (µ̂

i
− µ̂

k
i
)T

Di = tr((Wi)
−1Bi)

j = 1,2, ...,K; i = 1,2, ..,n

(3.2)

Here, β
t j
i

represents the feature vector belonging to j-th class and having i dimension;

µ̂
j
i

represents the mean of feature vectors belonging to j-th class and having i

dimension; W j
i represents within-class scatter matrix of j-th class; Bi represents

between-class scatter matrix; K represents the number of classes; Di represents the

divergence value in i-dimension; and tr(.) represents the application of trace process

to the matrix obtained as a result of division.
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Divergence value provides information about the scatter of the vectors formed by

chosen features. Small divergence values and large divergence values represent

vectors’ scattering and vectors’ aggregating, respectively in the feature space [84].

So, in this thesis, the features having large divergence values were searched for better

classification performance and dimension reduction.

31



32



4. PROTEIN CLASSIFICATION METHODS

Protein fold classification and motif retrieval are important issues for proteomics.

There are several methods to classify proteins according to their folds in the literature.

In this thesis to classify proteins three neural network models were used: GAL, SOM

and SOM-SD networks. This thesis has a novelty because to the best of our knowledge,

these methods have not been used for protein fold classification task. Besides, for

motif retrieval problem three methods based on GHT were developed. These fold

classification and motif retrieval methods will be described in the following sections.

4.1 Grow and Learn (GAL) Network

In protein fold classification, it is desired that the decision-making processes lead

to high performances with low computational loads, and are controlled with few

parameters. These requirements are almost satisfied by the Grow and Learn (GAL)

network. GAL is an incremental neural network for supervised learning, and

determines the number of nodes during training if need arises. The network grows

when it learns and shrinks when it forgets [85]. GAL represents the distribution of

feature vectors according to the minimum distance measure. Computational loads of

training and classification processes of GAL are rather low. Moreover, there is not any

parameter to be determined before the training.

4.1.1 GAL network structure

The structure of GAL network is portrayed in Figure 4.1. The first layer is the layer

of the input units. The second layer is that of the exemplars (prototypes) and the

third is the class layer. The number of nodes in the exemplar layer is automatically

determined during the training. When an input feature vector X is presented to the

network, the distances between X and the weight vectors (Wj) of exemplars, Ej nodes,

are computed using a suitable metric, e.g., Euclidean distance. The winner-takes-all

ensures that only one node will be activated, namely the node whose weight vector
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is closest to the input vector is determined as the winner node. Network structure is

Figure 4.1 : GAL network structure. X is the input vector. Wj is the weight vector of
the exemplar node E j. D j is the distance between X and Wj. The nodes

in the exemplar layer compete and only one of E j is active. C is the layer
of class units. n is feature space dimension [85].

described by the following equations [84]:

D j =
n

∑
i=1

(xi−w ji)
2

Ee =

{
1, De=min

j
(D j)

0, otherwise

Tec =

{
1, if e is an exemplar of class c

0, otherwise

Cc = ∑
e

Ee ·Tec

(4.1)

where, xi denotes the i-th element of input feature vector X. Wj is the weight vector

of the exemplar node E j, and w ji denotes the i-th element of Wj. D j is the distance

between input vector X an Wj. Only one of E j is active, namely that whose weight

vector is closest to the input vector which in turn activates the corresponding class

node. C is the layer of class nodes. Tec is the connection between exemplar e to class

c. Tec values are 1 or 0 depending on whether e is an exemplar of class c or not. These

connections are initially set to zero, and become 1 during the training. The activations

of class nodes are computed by a dot product, at this last stage Boolean OR operation

is thus executed over the exemplars representing the same class. n is the dimension of

feature space.
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4.1.2 Partitioning of feature space by GAL network

As an example to depict how GAL partitions the feature space, a two-dimensional

phantom feature space is formed, see Figure 4.2. In this phantom space, it is seen that

there are two different classes each having three nodes (exemplars). As the nearest

distance measure is used in the classification, a hyperplane passes through the two

closest nodes which belong to different classes, and this hyperplane is equidistant to

both nodes. A piecewise class boundary is thus created with several hyperplanes (the

term "hyperplane" is used for the general form in an n-dimensional feature space; it is

a "line" in two dimensions, and a "plane" in three dimensions). The same mechanism

is valid in multi-dimensional feature spaces.

Figure 4.2 : GAL’s partitioning of a two-dimensional phantom feature space.
E1−3and E4−6 are nodes (exemplars) of class 1 and class 2, respectively.
A piecewise boundary is approximated with several hyperplanes, each

one passing equidistantly through the closest two nodes of opposite
classes. feature1 and feature2 values are assumed to be scaled within

[0−1] range [84].

4.1.3 Learning and forgetting in GAL

The most important feature of GAL is that the number of E j nodes are automatically

determined and gradually increased during learning according to the distribution of the

feature vectors in the feature space. The choice of exemplar layer nodes, hence, the

structure of GAL network depends on the order of the initially given input vectors. A

node stored in previous iterations may become redundant when a new node closer to

class boundary is generated. In order to keep the topology of the network simple those

redundant nodes may be excluded from the network with the forgetting algorithm of
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GAL. The aim of the forgetting algorithm is to detect and exclude those nodes that do

not change the performance of the network when being eliminated. The steps during

the learning are mentioned below [85].

• Step1 : Initially choose a number of feature vectors randomly from the training

set as many as the number of classes. Each vector should be chosen among the

patterns of a particular class. Set each chosen vector as an exemplar layer node of

GAL. Initialize the iteration number.

• Step2 : Decrease the iteration number. If the iteration number is equal to zero

terminate the learning algorithm, otherwise go to Step 3.

• Step3 : Choose a vector randomly from the training set, and present it to the network

as input.

• Step4 : Calculate the distances between the input vector and the nodes and

determine the closest node according to (4.1). If the classes of the closest node

and input vector are the same, go to Step 2. Otherwise, go to Step 5.

• Step5 : Include the input vector as a new node to the network. The input vector is

assigned as the associated weight vector of the new node. Go to Step 2.

Forgetting algorithm can be run several times during the training depending on the

iteration number. The steps during the forgetting are given below. Iteration number is

initialized as the number of exemplar layer nodes.

• Step1 : Temporarily remove a node from the network in some order and present this

node as an input vector to the network.

• Step2 : Calculate the distances between input vector and network nodes. If the

classes of the input vector and the closest node are the same, go to Step 4.

• Step3 : Include the input vector again in the network.

• Step4 : Decrease the iteration number. If the iteration number is equal to zero

terminate the forgetting algorithm, otherwise go to Step 1.
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4.2 Kohonen’s Self-Organizing Map (SOM)

Kohonen’s SOM, which is developed by Tuevo Kohonen in 1982 [86], is a type of

neural network which uses unsupervised learning method. The aim of the SOM

learning algorithm [87] is to learn a feature map which, given a vector in the input

space return a point in the output space. This is obtained in the SOM by associating

each point in the output space to a different neuron (output node). Given an input

vector, the SOM returns the coordinates within the output space, of the node with

the closest weight vector. Thus, the set of output nodes induces a partition of the

input space, where input vectors that are close to each other will activate neighbor

output nodes. In the training of Kohonen network not only the weights of the winner

output node but also weights of its neighbors within a pre-determined neighborhood

are updated. During learning, as the iteration number increases the neighborhood size

is decreased nonlinearly [84]. The structure of SOM network is depicted in Figure 4.3.

The distance between the j-th node (w j) in the output layer and the input vector x is

calculated as follows:

D j =
n

∑
i=1

(xi−w ji(k))2 (4.2)

where n is the feature vector dimension and k is the iteration number. Training of

Figure 4.3 : Input and output spaces related to Kohonen’s SOM network.

Kohonen’s SOM network is as follows [88]:

Step 1. Before starting the learning; number of output nodes, number of iterations and

neighborhood function are determined. Initial weights of the output nodes are set to
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random values within [0-1] range.

Step 2. A vector randomly chosen from the training set is presented to the network as

input.

Step 3. The distances between the input vector and network nodes are calculated using

(4.1). Here, xi and w ji represent the i-th element of the input vector and i-th weight of

the j-th output node, respectively i = 1,2, ...,n.

Step 4. j-th output node having the minimum distance is determined.

Step 5. The weights of the j-th output node and its neighbors are updated using the

expression below.

w ji(k+1) = w ji(k)+η(k) · (xi−w ji(k)) (4.3)

Here, η(k) is learning rate and k is iteration number.

Step 6. Number of iterations is reduced. If the number of iterations is not equal to

0, Step 2 and other steps are repeated. If the number of iterations is 0, the learning

algorithm is terminated.

After completing the training, class labels are assigned to the output nodes. To

accomplish the labeling, each vector in the training set is fed to the trained network and

the winner node at the output layer whose weight vector lies closest to the input vector

is determined. The output nodes are associated with training data classes according to

majority voting, i.e, the training data class that is assigned most frequently to an output

node becomes its label.

The number of output nodes of SOM network should be determined before the

training process. Inability to determine the optimum number of nodes decreases the

classification performance. Using an excessive number of nodes causes elongation

of the classification time. In GAL network, output nodes are located close to the

boundaries. However, in SOM network, the training algorithm distributes (places)

the output nodes homogeneously through the input feature space. SOM’s training

algorithm, with this strategy, causes the use of more output nodes in multi-dimensional

feature space [84].
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4.2.1 Partitioning of feature space by SOM network

SOM network’s partitioning of feature space is similar to that of GAL network. There

are two important differences between SOM and GAL networks: (i) The number of

output nodes in GAL network is determined according to the needs during training,

and (ii) weights of the output nodes in GAL network are determined by assigning the

input vectors’ elements directly to those output nodes [84].

4.3 Self Organizing Maps for Structured Data (SOM-SD)

In this part of the thesis proteins are classified according to their folds using

SOM-SD. A new data representation PGI is derived from EGI and in order to validate

the effectiveness of the PGI representation of the protein structure we employ an

unsupervised framework for structured data (SOM-SD [89]) in a practical structural

learning problem, where each protein is represented by a PGI. SOM-SD represents

an extension of the SOM framework, where the input space is structured domain

and the computational framework is similar to that defined for recursive neural

networks [90, 91].

SOM-SD is a fully unsupervised model, namely an extension of traditional SOM, for

the processing of labelled directed acyclic graphs (DAGs). The extension is obtained

by using the unfolding procedure adopted in recurrent and recursive neural networks,

with the replicated neurons in the unfolded network comprising of a full SOM. The

essential idea of recursive neural networks is to model each node of an input DAG by

a multilayer perceptron, and then to process the DAG from its sink nodes toward the

source node, using the structure of the DAG to connect the neurons from one node to

another [89]. In this section the same notation as in [89] was used.

SOM-SD framework can be defined by using a computational framework similar to

that defined for recursive neural networks [91]. The class of functions which can be

realized by an RNN can be characterized as the class of functional DAG transductions

τ : I# → Rk, which can be represented in the following form τ = g ◦ τ̂ , where τ̂ :

I#→ Rn is the encoding function and g : Rn→ Rk is the output function. τ̂ is defined

recursively as:

τ̂(D) =

{
0(the null vector in Rn), if D= void graph

τ(ys, τ̂(D
(1), ...,D(c))), otherwise

(4.4)
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where D is a DAG, ys is the label of the supersource of D and τ is defined as:

τ : Rm×Rn× . . .×Rn︸ ︷︷ ︸
c times

→ Rn (4.5)

A typical form for τ is:

τ(uυ ,x(1), . . . ,x(c)) = F(Wuυ +
c

∑
j=1

Ŵ jx j +θ) (4.6)

where Fi(v) = sgd(υi) (sigmoidal function), uυ ∈ Rm is a label, θ ∈ Rn is the bias

vector, W ∈ Rm×n is the weight matrix associated with the label space, x( j) ∈ Rm

are the vectorial codes obtained by the application of the encoding function τ̂ to the

subgraphs D( j) (i.e., x( j) = τ̂(D( j))), and Ŵ j ∈ Rm×m is the weight matrix associated

with the j-th subgraph space. The output function g is generally realized by a

feed-forward neural network.

The key consideration to adapt this framework to the unsupervised SOM approach,

is that the function τ maps information about a node and its children from a higher

dimensional space (i.e., m + c · n) to a lower space (i.e., n). The aim of the SOM

learning algorithm is to learn a feature map

M : I→A (4.7)

which, given a vector in input space I returns a point in the output space A. This

is obtained in the SOM by associating each point in A to a different neuron. Given

an input vector υ , the SOM returns the coordinates within A of the neuron with

the closest weight vector. Thus, the set of neurons induces a partition of the input

space I. In typical applications I ≡ Rm, where m � 2, and A is given by a two

dimensional lattice of neurons. In this way, input vectors which are close to each

other will activate neighbor neurons in the lattice. SOM-SD represents an extension of

the SOM framework, where the τ function is implemented in an unsupervised learning

framework, in order to generalize (4.7) to deal with the case I ≡ Y#(c) , i.e., the input

space is a structured domain with labels in Y. The function

M# : Y#(c) →A (4.8)

is realized by defining (4.4) as shown in (4.9)

M#(D) =

{
nilA, if D= void graph

Mnode(ys,M
#(D(1)), ...,M#(D(c))), otherwise

(4.9)
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where s = source(D),(D(1), ...,D(c) are the subgraphs pointed by the outgoing edges

leaving from s,nilA is a special coordinate vector into the discrete output space A, and

Mnode : Y×A× . . .×A︸ ︷︷ ︸
c times

→A (4.10)

is a SOM, defined on a generic node, which takes as input the label of the node and the

"encoding" of the subgraphs D(1), ...,D(c) according to the M# map. By "unfolding"

the recursive definition in (4.9), it turns out that M#(D) can be computed by starting

to apply Mnode to leaf nodes (i.e., nodes with null outdegree), and proceeding with the

application of Mnode bottom-up from the frontier nodes (sink nodes) to the supersource

of the graph D. In this process Mnode returns the coordinates of the winning neuron,

which, due to the data reduction capability of the SOM, still constitutes a reduced

descriptor of the node. An example of structured data and how the computation

described above proceeds is shown in Figures 4.4 and 4.5, respectively. In this case,

nilA is represented by the coordinates (-1, -1). A highlighted neuron in Figure 4.5

refers to the best matching neuron for the given input vector.

Figure 4.4 : Structured-data (DAG), obtained using the PGI representation, on a
cube. Red lines show the SSs and the green lines represent the sequence
of the SSs and forms a graph including three edges and three vertexes

(nodes). Each node has a three-dimensional label.

At the application of Mnode each label in Y encode in U ⊂ Rm. So, for each node

(vertex) υ in vert(D) there is an m-dimensional vector uυ and the output space A is

formed by a q-dimensional lattice of neurons. For example, if q = 2, and we have

n1 neurons on the horizontal axis and n2 neurons on the vertical axis, then output
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Figure 4.5 : Example of computation of M# for the graph related to structural data in
Figure 4.4. The picture shows multiple applications of Mnode to the

nodes of the graph. First of all, the leaf node 3 is presented to Mnode,
where the null coordinates are represented by (-1, -1). The winning
neuron has coordinates (2, 2). This information is used to define the

input vector representing node 2. This vector is then presented to Mnode
and the winning neuron is found to have coordinates (1, 0). Using both

this information and the previous one, the input vector for node 1 can be
composed and presented to Mnode. This time the winning neuron is

found to have coordinates (0, 1) and it is associated to the whole graph,
i.e., M#D= (0,1).
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space A ≡ [1...n1]× [1...n2] and the winning neuron is represented by the coordinate

vector c ≡ (c1,c2) ∈ [1...n1]× [1...n2] of the neuron which is the most active in this

two-dimensional lattice. With the above assumptions, we have

Mnode : Rm× ([1...n1]×·· ·× [1...nq])
c→ [1...n1]×·· ·× [1...nq] (4.11)

and the m+cq dimensional input vector v to Mnode. Here, v represents the information

about a generic node v and v is defined as

v = [uvxch1[v]xch2[v]...xchc[v]] (4.12)

where xchi[v] is the coordinate vector of the winning neuron for the subgraph pointed

by the i-th pointer of v.

Given a DAG D in order to compute M#(D), the SOM Mnode must be recursively

applied to the nodes of D.

Each neuron with coordinates vector c j in the q-dimensional lattice has an associated

weight vector wc j ∈ Rm+cq. The weights related to each neuron in the q-dimensional

lattice Mnode can be trained using the two-step process. In the first step, the neuron

which is most similar to the input node v, defined as in (4.12), is chosen as follows:

ci∗(t) = arg min︸︷︷︸
ci

‖ Λ(v(t)−wci(t)) ‖ (4.13)

where t is iteration and Λ is a (m+ cq)× (m+ cq) diagonal matrix which is used to

balance the importance of the label versus the importance of the pointers. In the second

step, the weight vector wci∗ is moved closer to the input vector v

wcr(t +1) = wcr(t)+η(t) f (∆i∗r)(v(t)−wcr(t)) (4.14)

where η is learning rate, f (∆i∗r) is neighborhood function and ∆i∗r is the topological

distance between cr and ci∗. The neighborhood function takes the form of a Gaussian

function

f (∆i∗r) = exp
(
−∆2

i∗r
2σ2

)
(4.15)

where σ is the spread function which determines the neighborhood size. As the

learning proceeds and new input vectors are given to the map, the learning rate

gradually decreases to zero according to the specified learning rate function type. A

pseudocode of the training algorithm for M# is seen in Table 4.1.
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Table 4.1 : Training algorithm for M#.

Input : Set of training DAGs T =Di=1,...,N , c maximum outdegree of DAGs in T ,
map Mnode;

begin
Randomly set the weights for Mnode
repeat

Randomly select D ∈ T with uniform distribution;
List(D)← an inverted topological order for vert(D)
for v = first(List(D)) : last(List(D)) do

train(Mnode([uvM
#(ch1[v])M#(ch2[v]) · · ·M#(chc[v])]));

end
end

4.4 Hough Transform for Protein Motif Retrieval

Hough transform (HT) is a feature extracting method using coordinate transforma-

tion [92]. It was introduced by P.V.C. Hough in 1962 and patented by IBM. Hough used

angle-radius parameters exclusively for retrieving the straight lines. HT was extended

for extracting circles by R.O. Duda and P.E. Hart in 1972 [93] and for retrieving

parabolas by H. Wechsler and J. Sklansky in 1973 [94]. Later it was generalized as

GHT by Ballard for retrieving arbitrary shapes [95]. Basically, the original HT is a

voting process where each contour point detected in the image votes for all possible

patterns passing through that point. As an example in the implementation to detect

straight lines, votes are accumulated in an array A(ρ,θ), where θ is the angle made by

the normal to the straight line with the x-axis and ρ is the perpendicular distance of the

straight line from the origin. The representation of the straight line in (ρ,θ) form is

xcosθ + ysinθ = ρ (4.16)

This accumulator array A(ρ,θ) is called the Hough Space (HS). The number of

votes for each cell in A(ρ,θ) represents the number of pixels in the searched pattern

extracted from the image. In this process each pixel in the image space is mapped to

a sinusoidal curve of (4.16) in the HS. So HT is a transformation from a point to a

curve [96].

The HT allows the identification of geometric objects by transformation of the points

in an image in a parameter space and is translation and rotation insensitive. Figure 4.6

shows how three points in the left x, y coordinate space can be transformed into lines
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in a parameter space in which parameters are slope m and intercept q. Parameter

space represents the parameters of the bundle of lines which cross each particular

point (three points in the example). If the same transformation is carried out for every

point of the segment on the left in Figure 4.6, then the parameter space will consist

of a bundle of lines all of which will intersect in a particular point of the mq space

corresponding to the actual slope and intercept of the line containing three points.

The HT consists of performing a vote procedure in a quantized parameter space and

retrieving the peaks which will have a high probability of corresponding to descriptors

of the actual instances of the wanted shapes in the query image. The same principle

Figure 4.6 : The principle of Hough transform for lines: geometric space (left) and
parameter space (right).

also works for other shapes. Figure 4.7 shows the case of a circle [97], in which a

point on the circle in the geometric space corresponds a circle in the parameter space.

The parameters x and y positions in the geometric space correspond the coordinate

of the of the center in the parameter space and the intercept coordinate of the circles

represents the coordinate of the center in the geometric space. Geometric spaces are

Figure 4.7 : Retrieval of circles of known radius: geometric space (left) and
parameter space (right).

used as parameter spaces for retrieval of general objects, whatever the shape, by fixing

a Reference Point (RP) internal to the objects. This extension is called Generalized
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Hough Transform (GHT) [95]. In GHT arbitrary shapes are represented in the HS

which consists of the parameters of the rigid motion - in 2D (x,y,θ ,s) x, y representing

translation, θ rotation and s a scaling factor. For each evidence extracted from the

image, like in the original Hough approach, a mapping rule is defined which determines

the value of the parameters of rigid motion (locus of points in HS) compatible with the

evidence. Figure 4.8 shows an arbitrary shape and Reference Table (RT) parameters

(α , r). For retrieving the arbitrary shape the process is that [98]

1. Pick a RP (e.g., (xc,yc))

2. Draw a line from the RP to the boundary

3. Compute φ (i.e., perpendicular to gradient’s direction)

4. Store the RP (xc,yc) as a function of φ (i.e., build the RT)

5. Quantize the parameter space

P[xcmin...xcmax ][ycmin...ycmax ]

6. For each edge point (x,y)

(a) Using the gradient angle φ , retrieve from the RT all the (α , r) values indexed

under φ

(b) For each (α , r) compute the candidate RPs:

xc = x+ rcos(α)

yc = y+ rsin(α)

(c) Increase counters by giving vote to the possible RP locations:

++(P[xc][yc])

7. Possible locations of the object contour are given by local maxima in P[xc][yc]

8. If P[xc][yc] has the maximum number of votes, then the object contour is located at

(xc,yc)

Figures 4.9 and 4.10 are pictorial 2D representations of applying GHT to discrete

objects such as proteins made up of different SSs. In Figure 4.9 arrows represent
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Figure 4.8 : Retrieval of arbitrary shapes using RT parameters (α , r).

protein SSs and the motif consists of two helices and three strands. At the top left of

the figure query protein and the RP related to this protein are shown. RP is generally

determined as the geometric mean of the SSs. At the bottom left mapping rule is seen.

To determine the mapping rule, for each SS (two helices and three strands) the distance

between SS midpoint and RP, ρ; and the angle between SS segment and the segment

between SS midpoint and the RP, θ are calculated. At the right of the figure votes

space is seen and the point having the maximum number of votes is determined as the

RP. In Figure 4.10 query protein and mapping rule are the same as in Figure 4.9. In the

right of this figure, each vote is given to different points. So there is no peak formation.

In this thesis the GHT is exploited for comparison and search of structural similarity

between a given motif or domain or entire protein and the proteins of a database like

PDB [2]. Note that, if the searched structure is just a component of a protein (like

a structural motif or a domain) the same algorithm supports the detection and the

statistical distribution of these components.

Here, GHT-based three algorithms are used for motif retrieval. The first algorithm

uses single SS, the second one uses SS couple co-occurrences and the third one

uses SS triplet co-occurrences for searching a general motif in the macromolecule

(protein). In all three algorithms firstly a motif model is created by using SSs of
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Figure 4.9 : Applying GHT to proteins, positive case with peak formation.

Figure 4.10 : Applying GHT to proteins, no peak formation is detected.
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a given macromolecule, e.g. for creating five-SS motif, five SSs of the protein are

selected randomly and used.

4.4.1 Selected primitive aggregate: The single secondary structure (SSS)

This method adopts the single SS as primitive for the voting process. The SS being

a helix or a sheet is represented by a straight segment on the regression line from all

the Cα atoms of the segment. The extremes are determined by the projection of the

terminal Cα atoms. The selective component of the RT consists of two parameters,

ρ and θ , (see Figure 4.11a); ρ is the segment length between RP and SS midpoint

A, and θ is the angle between SS axis and the segment
−−−−→
A−RP. The mapping rule

which determines the candidate RP locations, for a given SS, is a circle on a plane

perpendicular to the axis of the SS (see Figure 4.11b), with radius r = ρ sinθ , having

the center along the SS axis and with a displacement d = ρ cosθ from midpoint A.

Each SS of the protein under scrutiny contributes on a circular locus on the parameter

space. The candidate RP locations are detected as the points of intersections of these

circles and, in ideal conditions, the number of intersections is just S1. S1 is the

number of SSs in the query motif. Figures 4.12a and 4.12b show the parameter

Figure 4.11 : a) Single SS and RT parameters. b) Locus of candidate RP positions in
parameter space.

space resulting from the search of a homogeneous motif consisting of four SSs

(β -sheets) and five heterogeneous SSs (three α-helices and two β -sheets). In these

two examples the peaks, consisting of four blue circle intersections and three red and

two blue intersections are located for four-SS and five-SS motifs, respectively. For

what concerns the implementation, it is worth to point out that in order to detect the
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Figure 4.12 : a) Parameter space formed by applying the SSS strategy on the 22 SSs
of 1FNB protein. b) The same on the 46 SSs of 7FAB protein. RP and

maximum circle intersections are almost coincident for both cases.

peaks of intersections, the voting space is smoothed by the accumulation of nearby

votes (within a given radius). In this application time complexity is O(n2), where n is

the number of votes in the vote space (note that only the relevant votes are stored in

memory, there is not a matrix with all the possible cells). After smoothing, the peaks

are detected avoiding to pick high votes that however are not the top of a peak but lie

close to one such peak [99–101].

4.4.2 Selected primitive aggregate: The secondary structure couple

co-occurrences (SSC)

In this method a couple of SSs set up a local reference system, e.g. having the origin

in the middle point of the first SS, the y-axis on its SS axis and the x-axis on the plane

defined by the y-axis and the midpoint of the second SS, then the z-axis is orthonormal

to the previous two. In this reference system, the motif RP coordinate is determined,

and for each couple of SSs of the protein under scrutiny that matches a motif couple,

the candidate RP location is uniquely fixed.

The number of motif couples and protein couples is given by 2-combinations of m and

N respectively: C(m,2) and C(N,2). Here, m is the number of motif SSs and N is the

number of protein SSs. As consequence, the computational complexity of the motif

retrieval process is O(N2m2) [102]. For every couple in the motif, a tuple is introduced

in the RT where the selective component that characterizes the couple co-occurrence

is composed by the three parameters (see Figure 4.13) [103]: Md, Ad and ϕ . Md is

the Euclidean distance between middle points of two SSs, Ad is the shortest distance
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between middle points of two SSs axis and ϕ is the angle between two SSs translated to

present common extreme. These three parameters are used as comparison parameters.

The motif couple parameters are stored in the RT. Around the axis of a SS a local

reference system can rotate but fixing an external point (i.e. the middle point of the

selected second SS) no degree of freedom remains and the RP position is precisely

fixed. In Figure 4.13 a couple of SSs (A and B) is represented. The local reference

system is evidenced together with the three quoted parameters and the correspondent

RP position. To build the RT the barycenter of the motif is defined for each couple

Figure 4.13 : The co-occurrence couple local reference system.

of the motif model. So for each couple, the RP coordinates must be determined with

this local reference system. These coordinates constitute the tuples of the RT. The

cardinality of the RT will be the number of motif couples, C. A macromolecule has

NSS couples:

NSS = (N,2) =
N!

(N−2)!2!
(4.17)

where N is the number of protein SSs. For each of these couples three parameters Md,

Ad and ϕ are computed. Every couple of macromolecule is compared to the couples

in the motif. If the couples have the same parameter values, a vote is given to the

candidate RP which is calculated by using the above coordinates (mapping rule). For

each motif couple the mapping rule is reduced to a single location. In Table 4.2 a

pseudocode is given for searching all possible motifs in a set of M proteins and in

Figure 4.14 a graphic sketch of this process is given. Here, the aim is searching the

motif model on the top right in the macromolecule on the left. To do this, couple

parameters are used. In this figure only the parameter Md is represented. Md values
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(d1, d2, d3) for the three couples in the motif are stored in the RT. If the motif

couple parameters are equal to macromolecule couple parameters the RP is determined

according to the mapping rule related to that motif couple. On the top of Figure 4.14 a

complete instance of the model is present, so the correspondent RP position will gather

three contributions (only one is graphically shown). Instead on the bottom right, an

instance constituted of two SSs is present, and only one contribution is given in the

correspondent RP position. Being m = h+ s the number of SSs in the motif (h the

Table 4.2 : Algorithm for the retrieval of all possible r motifs contained in a set of M
proteins using SSC method.

Input : Protein DSSP files; Ni: number of protein SSs; m: number of motif SSs
Output : Locations of candidate motifs in the accumulator ARP, representing the para-

meter space
1 for i=1 to M do
2 Calculate all m combinations of Ni: r=C(Ni,m)
3 for j=1 to r do
4 Find the motif barycenter RP
5 Calculate the number of motif couples: c =C(m,2)
6 Calculate the number of protein couples: p =C(Ni,2)
7 end
8 for k=1 to c do
9 Compute the motif couple parameters: Mdk, Adk and ϕk (RT constituents)
10 end
11 for l=1 to p do
12 Compute the protein couple parameters: Mdl , Adl and ϕl
13 end
14 for k=1 to c do
15 if match (Mdk, Adk, ϕk and Mdl , Adl and ϕl) then ARPl = ARPl +1
16 end
17 Compute the peaks in HS
18 Assign the position with the expected votes as candidate RP
19 end

number of helices and s the number of strands) and considering both homogeneous

and heterogeneous couples, the cardinality of the RT is given by: S2 = (m2−m)/2

(precisely they are divided in h× s heterogeneous votes) and (h2−h)/2 homogeneous

with helices and (s2− s)/2 homogeneous with strands.

S2 is the expected peak intensity, and when the motif is heterogeneous, also the

quoted peak decomposition can be useful for discrimination purposes. We remark that,
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also the single contribution of a couple can be weighted by the couple composition

itself [99–101].

Figure 4.14 : The voting process for a couple of helices. On the top right a sketch of
motif having three SSs, and on the left RP locations of two compatible

couples.

4.4.3 Selected primitive aggregate: The secondary structure triplet

co-occurrences (SST)

In 3D, middle points of three SSs can be joined and an imaginary triangle is composed.

So, through the SS triplets a local reference system is setup, e.g. having the origin in

the triangle barycenter, the y-axis passing through the farthest vertex, the x-axis lying

on the triangle plane and orthonormal to y-axis, and the z-axis following the triangle

plane normal (see Figure 4.15). With this reference system the motif RP coordinates

are determined, and also in this case for each triplet of SSs of the protein under

scrutiny that matches a motif triplet, the candidate RP location is uniquely fixed [104].

For every triplet in the motif, a tuple is introduced in the RT in which the selective

component that characterizes the triplet is composed of three parameters: the lengths

of the triangle edges. For each motif triplet the mapping rule is reduced to a single

location.

For the experimentation, firstly a motif is defined selecting some SSs of the protein

and then the number of triangles in this motif is calculated using (3.2). Here, m and t

are the number of SSs of the motif and the number of motif triangles respectively.

t =C(m,3) =
m!

(m−3)!3!
(4.18)
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Figure 4.15 : Local reference system representation for the A, B, C triplet. The
comparison parameters are the length of triangle edges (i.e. the

midpoints’ distances). Other discriminant parameters can be considered
such as: type of SS (π-helices, α-helices, β -strands, etc.), SS lengths

(i.e. number of amino acids), types of amino, etc.

For every triangle in the motif, three edges’ lengths are computed and these parameters

are stored in the RT. To build the RT, the barycenter of the motif is defined for each

motif triangle, and the position of the RP referring to the local triangle reference system

is also stored in RT. So the mapping rule is figured out with these definitions. For each

triangle this information constitutes the tuple of the RT. The cardinality of the RT will

be the number of motif triangles t. Then the number of all possible triangles, T , in the

protein is computed using (4.19). In this equation N represents the number of SSs in

the protein. For each triangle in the protein, edge lengths are calculated. Then motif

triangles and protein triangles are compared. For every correspondence a vote is given

to the point which is determined by the mapping rule contained in the RT. Table 4.3

shows a pseudocode of this algorithm for searching all possible motifs in a set of M

proteins. The time/space computational complexity of the motif retrieval process, in

this approach, is O(N3m3).

T =C(N,3) =
N!

(N−3)!3!
(4.19)

In this case the cardinality of the RT is given by: S3 = C(m,3) = m(m2− 3m+ 2)/6

precisely they are divided in hs(h+ s−2)/2 heterogeneous and C(h,3) homogeneous

with helices and C(s,3) homogeneous with splines. S3 is the expected peak intensity,

and as previously with SSC when the motif is heterogeneous, the quoted peak

decomposition can be useful for discrimination purposes. Note that also in this case

the single triplet contribution can be weighted on the basis of its composition.
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Table 4.3 : Algorithm for the retrieval of all possible r motifs contained in a set of M
proteins using SST method.

Input : Protein DSSP files; Ni: number of protein SSs; m: number of motif SSs
Output : Locations of candidate motifs in the accumulator ARP, representing the para-

meter space
1 for i=1 to M do
2 Calculate all m combinations of Ni: r=C(Ni,m)
3 for j=1 to r do
4 Find the motif barycenter RP
5 Calculate the number of motif triangles: c =C(m,3)
6 Calculate the number of protein triangles: p =C(Ni,3)
7 end
8 for k=1 to c do
9 Compute the lengths of motif triangle: d1k, d2k and d3k (RT constituents)
10 end
11 for l=1 to p do
12 Compute the lengths of protein triangle: d1l , d2l and d3l
13 end
14 for k=1 to c do
15 if match (d1k, d2k, d3k and d1l , d2l and d3l) then ARPl = ARPl +1
16 end
17 Compute the peaks in HS
18 Assign the position with the expected votes as candidate RP
19 end

Figure 4.16 shows an example of five-SSs motif including one π-helices and four

α-helices.

Figure 4.16 : Representation of a motif composed of five SSs (e.g. one π-helices and
four α-helices, as shown on the right). In this case t = 10, as shown in

the list on the left. Just one mapping is drawn completely in the protein,
the corresponding RP location will receive one contribution for each of

the ten triangles. In the picture ABC contribution is outlined the and
only two others corresponding to triangles AEC and CDB are sketched.
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Firstly a RP is determined for the motif (generally fixed on the motif barycenter, in

this case it has been selected outside for evidencing graphically the voting process).

In this case, there are ten triplets and these triplets compose ten triangles. For every

triangle, the barycenter is computed and then the motif RP is located referring to the

local coordinate system. This constitutes the mapping rule for the voting procedure

to detect the candidate RP location(s). When comparing motif triangles and protein

triangles, for every correspondence a vote is given to the candidate RP position defined

with this mapping rule [99–101, 105].
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5. SIMULATION RESULTS

5.1 Protein Database

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB

PDB) provides access to the data in the PDB, the single archive of experimentally

determined structures of nucleic acids, proteins and complex assemblies [106]. The

PDB was established at Brookhaven National Laboratories in 1971 as an archive

for biological macromolecular crystal structures. In the beginning the archive held

seven structures, and with each year a handful more were deposited [107]. The

public archive currently contains >109,000 entries, derived data files and related data

dictionaries. Data is obtained by X-ray crystallography, NMR (Nucleic Magnetic

Resonance) spectroscopy and electron microscopy. In each of these methods, the

scientists use many pieces of information to create the final atomic model. Primarily,

the scientists have some kind of experimental data about the structure of the molecule.

For X-ray crystallography, this is the X-ray diffraction pattern; for NMR spectroscopy,

it is information on the local conformation and distance between atoms that are close

to one another; and for electron microscopy, it is an image of the overall shape of the

molecule.

Most of the structures included in the PDB archive were determined using X-ray

crystallography. For this method, the protein is purified and crystallized, then subjected

to an intense beam of X-rays. The proteins in the crystal diffract the X-ray beam into

one or another characteristic pattern of spots, which are then analyzed to determine

the distribution of electrons in the protein. The resulting map of the electron density

is then interpreted to determine the location of each atom. The PDB archive contains

two types of data for crystal structures. The coordinate files include atomic positions

for the final model of the structure, and the data files include the structure factors (the

intensity and phase of the X-ray spots in the diffraction pattern) from the structure

determination. X-ray crystallography can provide very detailed atomic information,
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showing every atom in a protein or nucleic acid along with atomic details of ligands,

inhibitors, ions, and other molecules that are incorporated into the crystal. However,

the process of crystallization is difficult and can impose limitations on the types of

proteins that may be studied by this method. For example, X-ray crystallography is

an excellent method for determining the structures of rigid proteins that form nice,

ordered crystals. Flexible proteins, on the other hand, are far more difficult to study

by this method because crystallography relies on having many molecules aligned in

exactly the same orientation, like a repeated pattern in wallpaper. Flexible portions

of protein will often be invisible in crystallographic electron density maps, since their

electron density will be smeared over a large space [2].

NMR spectroscopy may be used to determine the structure of proteins. The protein

is purified, placed in a strong magnetic field, and then probed with radio waves. A

distinctive set of observed resonances may be analyzed to give a list of atomic nuclei

that are close to one another, and to characterize the local conformation of atoms that

are bonded together. This list of restraints is then used to build a model of the protein

that shows the location of each atom. The technique is currently limited to small or

medium proteins, since large proteins present problems with overlapping peaks in the

NMR spectra. In the PDB archive, you will typically find two types of coordinate

entries for NMR structures. The first includes the full ensemble from the structural

determination, with each structure designated as a separate model. The second type

of entry is a minimized average structure. These files attempt to capture the average

properties of the molecule based on the different observations in the ensemble. You

can also find a list of restraints that were determined by the NMR experiment. These

include things like hydrogen bonds and disulfide linkages, distances between hydrogen

atoms that are close to one another, and restraints on the local conformation and

stereochemistry of the chain [2].

Electron microscopy is also used to determine structures of large macromolecular

complexes. A beam of electrons is used to image the molecule directly. Several

tricks are used to obtain 3D images. If the proteins can be coaxed into forming

small crystals or if they pack symmetrically in a membrane, electron diffraction can

be used to generate a 3D density map, using methods similar to X-ray diffraction. If

the molecule is very symmetrical, such as in virus capsids, many separate images may
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be taken, providing a number of different views. These views are then aligned and

averaged to extract 3D information. Electron tomography, on the other hand, obtains

many views by rotating a single specimen and taking several electron micrographs.

These views are then processed to give the 3D information. For a few particularly

well-behaved systems, electron diffraction produces atomic-level data, but typically,

electron micrographic experiments do not allow the researcher to see each atom.

Electron micrographic studies often combine information from X-ray crystallography

or NMR spectroscopy to sort out the atomic details. Atomic structures are docked

into the electron density map to yield a model of the complex. This has proven

very useful for multimolecular structures such as complexes of ribosomes, tRNA and

protein factors, and muscle actomyosin structures [2].

Data is obtained by using the methods described above and submitted by biologists and

biochemists from all around the world to be freely accessible on internet via its member

organizations’ websites and is updated weekly. The mission is to maintain a single

protein archive of macromolecular structural data (see Figure 5.1). Each structure

published in PDB receives a four character alphanumeric identifier or accession

number like 1FNB, 4GCR. PDB file format is a textual file format describing the

three dimensional structures of molecules held in the PDB. PDB also provides atomic

coordinates, sequences, side chains, SSs and atomic connectivity of the molecules.

Here, structure files may be viewed using various free and commercial visualization

programs and web browsers’ plug-ins.

In this thesis, the dataset including primary structure attributes, and tested by GAL

and SOM was taken from Ding and Dubchak [37]. The dataset is available on

http://ranger.uta.edu/ chqding/protein/. The original training dataset and test dataset

contain 313 and 385 proteins respectively. However, four of these proteins do not have

sequence records (in training dataset 2SCMC and 2GPS, in test dataset 2YHX_1 and

2YHX_2). Accordingly we have 311 proteins for training dataset and 383 proteins for

test dataset. None of the proteins in the test dataset has >35% sequence identity to

those in the training dataset [37]. All these proteins belong to 27 folds including four

structural classes. Table 5.1 shows these folds. Of these 27 fold types, types 1-6 belong

to all-α structural class, types 7-15 to all-β class, types 16-24 to α/β class and types

25-27 to α +β . So, the classification of 27 folds is one level deeper than that of four
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Figure 5.1 : PDB website

structural classes [108–111]. Hence, it is more challenging and difficult to conduct

prediction among the 27-fold types than among the four structural classes [29, 112].

The dataset including SS attributes is taken from PDB and derived by University of

Naples Parthenope, Computer Vision and Pattern Recognition Laboratory. This dataset

includes 20 proteins, and available on http://opolat.cumhuriyet.edu.tr/data.rar (See

Table 5.2).
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Table 5.1 : The most common 27 SCOP folds, structural classes that folds belong to
and the number of proteins contained in training and test sets.

Fold No. Fold name Str. class Train Test

1 Globin-like all-α 13 6

2 Cytochrome c all-α 7 9

3 DNA-binding 3-helical bundle all-α 12 20

4 4-helical up-and-down bundle all-α 7 8

5 4-helical cytokines all-α 9 9

6 Alpha; EF-hand all-α 6 9

7 Immunoglobulin-like β -sandwich all-β 30 44

8 Cupredoxins all-β 9 12

9 Viral coat and capsid proteins all-β 16 13

10 ConA-like lectins/glucanases all-β 7 6

11 SH3-like barrel all-β 8 8

12 OB-fold all-β 13 19

13 Trefoil all-β 8 4

14 Trypsin-like serine proteases all-β 9 4

15 Lipocalins all-β 9 7

16 (TIM)-barrel α/β 29 48

17 FAD (also NAD)-binding motif α/β 11 12

18 Flavodoxin-like α/β 11 13

19 NAD(P)-binding Rossmann-fold α/β 13 27

20 P-loop containing nucleotide α/β 10 12

21 Thioredoxin-like α/β 9 8

22 Ribonuclease H-like motif α/β 10 12

23 Hydrolases α/β 11 7

24 Periplasmic binding protein-like α/β 11 4

25 β -grasp α +β 7 8

26 Ferredoxin-like α +β 13 27

27 Small inhibitors, toxins, lectins α +β 13 27
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Table 5.2 : List of the proteins tested by SSC and SST methods. The SS segments are
obtained by DSSP.

PDB ID Description Number of SSs

2Z98 FMN-dependent NADH-azoreductase 14

2Z9C FMN-dependent NADH-azoreductase 15

2Z9B FMN-dependent NADH-azoreductase 16

4GCR GAMMA-B CRYSTALLIN 18

3E9O Pre-mRNA-splicing factor 8 21

1FNB FERREDOXIN-NADP+ REDUCTASE 22

3E9L Pre-mRNA-processing-splicing factor 8 23

2PZN Aldose reductase 24

3C3U Aldo-keto reductase family 1 member C1 26

2Z7G Adenosine deaminase 28

2Z7K Queuine tRNA-ribosyltransferase 33

2PRL Dihydroorotate dehydrogenase, mitochondrial 34

2QX8 Ribosyldihydronicotinamide dehydrogenase [quinone] 35

2QMY Ribosyldihydronicotinamide dehydrogenase 36

3C94 Exodeoxyribonuclease I 37

2QX9 Ribosyldihydronicotinamide dehydrogenase [quinone] 38

3C95 Exodeoxyribonuclease I 39

3DC7 Putative uncharacterized protein l p3323 43

3DHP Alpha-amylase 1 44

7FAB IGG1-LAMBDA NEW FAB (LIGHT CHAIN) 46

5.2 Protein Classification Results using Primary Structures

5.2.1 One-versus-others (OvO) method and performance measures

OvO prediction method is a simple and effective method [9, 113] for multi-class

problems. To explain this method, suppose that there are K classes. Firstly we

transform the multi-class problem to two-class problem. One class contains all the

proteins belonging to the i-th fold which are labeled as positive, and the other class

contains all other proteins that are labeled as negative. So we construct K binary

classifiers to predict the protein folds. For example, in the first classifier one class
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contains the first fold’s proteins and the other class contains the other K − 1 folds’

proteins.

In the recognition process, new query protein is tested at each of the K binary classifiers

to determine if it belongs to the given class or not. This leads to K scores from the K

classifiers. Ideally only one of the K classifiers will show a positive result and the other

classifiers show negative results, assigning the query protein to a unique fold [37].

In this section for K = 27, we try to solve 27-class protein fold classification

problem. We made various tests to classify the protein fold patterns. To calculate

the classification success rate for individual fold we used sensitivity (true positive rate,

TPR) (5.1) and we generalized the sensitivity formula for 27-class to calculate overall

success rate (5.2).

Ind.Fold SuccessRate =
∑TruePositive

∑TruePositive+∑FalseNegative
(5.1)

Overall SuccessRate =
∑

27
i=1 TruePositive

∑
27
i=1 TruePositive+∑

27
i=1 FalseNegative

(5.2)

In some tests we did not use OvO method and we calculated classifier’s performance

using accuracy as below:

Accuracy =
∑TruePositive+∑TrueNegative

∑Positive+∑Negative
(5.3)

5.2.2 Protein classification results by using GAL

In this section protein folds were classified using GAL network. Here, the dataset

mentioned in Section 5.1 was used. The dataset produced by [37] includes 311 and

383 proteins (125 dimensional) for training and test sets, respectively. In the first

experiment 27-class protein folds were classified using one classifier (without OvO)

and the success rate was calculated using (5.3). The algorithm was tested with 3000

iterations. For the classification, GAL produced a network including 242 nodes and
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the proteins were classified in 4.32 seconds. For each test the average performance

over 50 runs was reported. The results related to this experiment is shown in Table 5.3.

Table 5.3 : Performance of GAL for 27-class fold classification problem.

Fold Success Rate(%) Fold Success Rate(%) Fold Success Rate(%)

1 66.7 10 16.7 19 37.0

2 55.6 11 37.5 20 41.7

3 45.0 12 21.1 21 25.0

4 62.5 13 25.0 22 66.7

5 66.7 14 50.0 23 57.1

6 22.2 15 28.6 24 75.0

7 45.4 16 64.6 25 37.5

8 16.7 17 58.3 26 25.9

9 41.7 18 38.5 27 48.1

Overall Success Rate 44.1

To get unbiased training data for the classification of proteins we used 10-fold cross

validation with GAL network. The training set is partitioned into ten folds with each

fold containing almost equal number of patterns. Among the 10 sets, one of them is

assigned as testing data to validate the data and the rest is used as training data. The

process of cross-validation is repeated 10 times, where each of the 10 sets is used once

as the validation model. Tests were done with 3000 iterations as previous. For each of

ten folds, the network generated an average of 53 nodes. Classification process took

an average of 1.1 seconds for each fold. As we have already expected, the success rate

was increased. The results related to this experiment are shown in Table 5.4.

Table 5.4 : Performance of GAL for 27-class fold classification problem by using
10-fold cross validation technique.

Folds 1 2 3 4 5 6 7 8 9 10

Success Rate(%) 45.1 67.6 69.6 69.6 68.6 50.0 56.7 58.0 51.4 34.3

Overall Success Rate 57.1

As seen from Tables 5.3 and 5.4 proteins were classified with low success rate. Then,

OvO method was used with GAL network to increase classification performance. The

results related to this experiment are shown in Table 5.5. According to this table,
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seven of 27 folds were classified perfectly (100%) and the minimum classification

performance is 52.6% for the 12th fold.

Table 5.5 : Performance of GAL for 27-class fold classification problem by using
OvO prediction method.

Fold Success Rate(%) Fold Success Rate(%) Fold Success Rate(%)

1 100.0 10 66.7 19 81.5

2 100.0 11 87.5 20 75.0

3 80.0 12 52.6 21 87.5

4 87.5 13 100.0 22 91.0

5 100.0 14 75.0 23 100.0

6 77.8 15 85.7 24 100.0

7 70.5 16 85.4 25 75.0

8 75.0 17 75.0 26 66.7

9 84.6 18 84.6 27 100.0

Overall Success Rate 81.2

To further improve the classification performance, another experiment was done using

OvO and 10-fold cross validation technique together; and the overall success rate was

increased as expected. Here, proteins were classified according to their folds with

an 87.7% success rate. But the computation time was increased for the average of

ten runs for each of 27 folds because of using either OvO method or 10-fold cross

validation technique. The results related to this experiment is shown in Table 5.6 and

the comparison of the results are shown in Table 5.7.

Table 5.6 : Performance of GAL for 27-class fold classification problem by using
10-fold cross validation and OvO prediction method.

Folds 1 2 3 4 5 6 7 8 9 10

Success Rate(%) 91.5 93.0 91.3 91.3 87.1 85.3 83.4 88.4 91.4 74.3

Overall Success Rate 87.7

To determine the effectiveness of the features, we made some tests as Ding and

Dubchak did [37]. Firstly we used only C (amino acid composition) attribute to be

contained in the feature vectors. Then we appended S (predicted SS) attribute to C, so
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Table 5.7 : Prediction methods used with GAL and the success rates related to them.

Test Methods Success Rate (%)

Accuracy 44.1

10-fold CV + Accuracy 57.1

OvO + Sensitivity 81.2

10-fold CV + OvO +Sensitivity 87.7

we used C+S to be the elements of the feature vectors, progressively in the last test we

used all six attributes to form the feature vectors. To select attributes with this strategy

does not claim to give optimum results. Because we started to test with C attribute as

in [37]. In the test process, iteration number was determined as 3000. The results are

shown in Table 5.8.

Above, to determine the most significant attribute and decrease the dimension of

the feature vector we had considered the feature blocks including 20 or 21 features

(Table 5.8). Here, we individually considered each of the 125 features with dynamic

programming and we calculated the divergence values of each one. So we put in order

125 features according to their significance. Then we classified the proteins using the

best 30, 40, 50 and 60 features with GAL. We did not run the classifier for more than

60 features because as seen from Table 5.9 we got better classification performance

(81.5%) than that of Table 5.8 (81.2%). Test results related to divergence analysis are

shown in Table 5.9.
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Table 5.8 : True positive rates for each individual fold and overall success rates for
the OvO method using GAL. Dimension of the feature vector is

incremented gradually by including the six attributes with the order ‘C’,
‘S’, ‘H’, ‘V’, ‘P’ and ‘Z’.

Fold no C CS CSH CSHV CSHVP CSHVPZ

1 83.3 100.0 100.0 100.0 100.0 100.0

2 77.8 88.9 88.9 100.0 100.0 100.0

3 60.0 75.0 75.0 85.0 85.0 80.0

4 87.5 87.5 100.0 100.0 100.0 87.5

5 100.0 100.0 100.0 100.0 100.0 100.0

6 66.7 66.7 66.7 55.6 55.6 77.8

7 65.9 65.9 72.7 68.2 70.5 70.5

8 50.0 66.7 66.7 75.0 75.0 75.0

9 92.3 76.9 76.9 76.9 84.6 84.6

10 66.7 66.7 83.3 83.3 83.3 66.7

11 62.5 75.0 87.5 100.0 87.5 87.5

12 36.8 52.6 47.4 47.4 47.4 52.6

13 75.0 75.0 100.0 100.0 100.0 100.0

14 75.0 100.0 100.0 100.0 100.0 75.0

15 85.7 71.4 85.7 85.7 71.4 85.7

16 79.2 83.3 83.3 83.3 87.5 85.4

17 66.7 83.3 83.3 91.7 83.3 75.0

18 61.5 69.2 69.2 76.9 69.2 84.6

19 66.7 59.3 59.3 66.7 51.9 81.5

20 83.3 75.0 75.0 66.7 75.0 75.0

21 62.5 75.0 87.5 87.5 87.5 87.5

22 91.7 91.7 91.7 83.3 91.7 91.7

23 85.7 85.7 100.0 100.0 100.0 100.0

24 75.0 100.0 100.0 100.0 100.0 100.0

25 50.0 75.0 75.0 75.0 87.5 75.0

26 51.9 59.3 59.3 55.6 70.4 66.7

27 100.0 92.6 92.6 88.9 96.3 100.0

Success Rate(%) 71.3 75.2 77.5 78.1 79.4 81.2
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Table 5.9 : Performance of the GAL classifier using different dimensional feature
vectors formed by divergence analysis.

Fold No Dim = 30 Dim = 40 Dim = 50 Dim = 60

1 100.0 100.0 100.0 100.0

2 100.0 100.0 100.0 100.0

3 85.0 95.0 90.0 85.0

4 100.0 100.0 87.5 87.5

5 100.0 100.0 100.0 100.0

6 77.8 66.7 77.8 77.8

7 70.5 68.2 70.5 68.2

8 75.0 75.0 75.0 83.3

9 92.3 92.3 92.3 92.3

10 83.3 83.3 100.0 83.3

11 87.5 87.5 87.5 100.0

12 68.4 57.9 57.9 63.2

13 100.0 100.0 100.0 100.0

14 75.0 50.0 75.0 75.0

15 71.4 57.1 71.4 85.7

16 87.5 85.4 81.3 75.0

17 91.7 83.3 91.7 100.0

18 76.9 69.2 76.9 76.9

19 74.1 81.5 70.4 74.1

20 83.3 83.3 75.0 75.0

21 87.5 87.5 75.0 75.0

22 83.3 91.7 100.0 100.0

23 71.4 85.7 100.0 100.0

24 75.0 75.0 100.0 75.0

25 75.0 75.0 100.0 75.0

26 59.3 55.6 55.6 59.3

27 88.9 81.5 96.3 100.0

Success Rate(%) 80.7 79.1 80.9 81.5
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5.2.3 Protein classification results by using SOM

In this section experiments were done firstly on a dataset including 125 dimensional

120 proteins which belong to three different folds, namely “Flavodoxin-like”,

“Ribonuclease H-like motif” and “TIMbeta/alpha-barrel”. We used these three folds to

compare the performance of SOM with the performance of SOM-SD in [90]. 10-fold

cross-validation is implemented to classify protein folds in SCOP. By using 10-fold

cross-validation, the datasets are partitioned into 10 sets having 12 samples in each.

So, each time 108 proteins and 12 proteins were used for training data and test data,

respectively. Here, the network was trained on 9× 9 neurons with a neighborhood

spread σ = 1, considering learning rate η = 0.5 and λ = 500 iterations. After the

training and test processes the accuracy rate was calculated using (5.3). Performance

was calculated as the average of 10 sets’ performance.

We compared our results with the results in [90]. Both works basically use SOM

but apply it in different ways. [90] uses SOM-SD but we use classical SOM. The

difference between these methods is in the used features’ types. SOM uses 125 features

obtained from six attributes and the dimension of the data is fixed (125 dimensional

data) but SOM-SD in [90] uses a new data type called PGI which includes variable

number of features. In that work features are directions of the SSs in the protein so the

dimension of the data in [90] is variable, because the number of SSs in the proteins are

variable. So these two methods are applied differently to proteins. For classification

of proteins SOM and SOM-SD use 120 and 45 proteins belonging to same three folds,

respectively. Comparison results related to these methods are shown in Table 5.10.

According to this table, SOM has better classification performance (93.3%) compared

to SOM-SD (86.4%) although using less nodes.

Table 5.10 : Comparison results in terms of number of nodes, number of used
proteins and accuracy rate for the proposed SOM and SOM-SD

classifiers.

Methods Number of Nodes Number of Proteins Accuracy Rate(%)

SOM 9 × 9 120 93.3

SOM-SD 200 × 200 45 86.4

Then, SOM is used to classify the 27 well-known SCOP folds. For 27-class problem,

SOM was trained on 18×18 neurons with a neighborhood spread σ = 1, considering
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learning rate η = 0.5 and λ = 3000 iterations. To calculate the classification

performance we used sensitivity (true positive rate). While we test using OvO we used

sensitivity to calculate success rate for individual fold (5.1) and we used generalized

sensitivity for 27 folds to calculate overall success rate (5.2). Table 5.11 shows SOM’s

statistical performance values related to each fold. Here, as previous, it is difficult to

classify the proteins of the 12th fold, they are classified with low success rate; but the

proteins of the first, 13th and 27th folds are classified perfectly. According to this table,

SOM is not as good as GAL for 27-class protein fold classification, but it has a success

rate comparable with that of existing methods in literature.

Table 5.11 : Performance of 18×18 SOM with OvO for 27-class fold classification
problem.

Fold Success Rate(%) Fold Success Rate(%) Fold Success Rate(%)

1 100.0 10 50.0 19 63.0

2 88.9 11 75.0 20 66.7

3 80.0 12 52.6 21 87.5

4 87.5 13 100.0 22 75.0

5 100.0 14 75.0 23 71.4

6 66.7 15 85.7 24 75.0

7 72.7 16 72.9 25 62.5

8 58.3 17 66.7 26 55.6

9 84.6 18 61.5 27 100.0

Overall Success Rate 73.4

5.3 Protein Classification Results using Secondary Structures

5.3.1 Protein classification results by using SOM-SD

This section shows preliminary results obtained by SOM-SD using a set of proteins

represented by PGI as input. In particular, for each SS, only its direction is considered.

The dataset is composed of 45 proteins classified by SCOP as belonging to the

class “Alpha and beta proteins (α/β )”. Three folds have been considered, namely

“Flavodoxin-like”, “Ribonuclease H-like motif” and “TIMbeta/alpha-barrel”, and for
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each fold 15 proteins have been chosen. The task consists of grouping proteins

belonging to the same fold.

The network performances are reported in terms of clustering performance,

classification performance and retrieval performance. The clustering performance is a

measure on how well clusters are formed. The classification performance is a measure

on how well the clustering corresponds to the desired clustering by comparing the

target values of vertices mapped to the same location. The retrieval performance is a

measure of confidence of the clustering result, so that if there are many vertices with

different targets mapped to the same location, the confidence in the clustering is low,

hence producing a low retrieval performance. SOM-SD was trained on 200× 200

neurons (output nodes) with a neighborhood spread of σ = 60, considering different

learning rates η = [1 1.25 1.5] and different iterations λ = [40 60 80]. For each test the

average performance over 50 runs is reported. The dataset for each test was composed

by randomly picking the 70% of the patterns for the training phase and the remaining

30% for the testing phase.

The test has been conducted considering the whole protein as pattern, i.e., each protein

is represented by a PGI. It can be observed in Table 5.12 that the results are quite

good in term of clustering performance. Even though this measure does not take

into account the desired clustering outcome, the result is supported by the good

retrieval performance which reflects a reduced confusion in the mappings of each

pattern. The classification performance, reflecting the performance with respect to the

desired clustering outcome, shows less accurate results but with an interesting peak

86.42% [90].

Table 5.12 : Performance of a 200×200 SOM–SD for three-class fold classification
problem.

Test Set

Learning Rate 1 1.25 1.5

Iterations 40 60 80 40 60 80 40 60 80

Retrieval 74.39 81.67 79.63 92.72 92.35 93.40 92.36 92.34 93.85

Classification 75.58 76.37 77.64 85.11 84.14 84.17 85.03 85.78 86.42

Clustering 0.80 0.80 0.80 0.79 0.80 0.79 0.79 0.80 0.79
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5.3.2 Protein motif retrieval by using GHT

In this section three group of tests were processed for structural block comparison

using a few proteins in PDB. To calculate the error rate, relative error rate formula

given below was used.

ErrorRate = 100× |Moti f RP−CandidateRP|
Moti f RP

(5.4)

First group experiments: Two examples of searching motifs composed of four and

five SSs are discussed here. In the first, a motif composed of five SSs (3 α-helices

and 2 β -strands) is selected randomly from the protein 7FAB and is searched in the

same protein. The protein under analysis, 7FAB, contains 46 SSs (9 α-helices and

37 β -strands). To apply SSS method, a mapping rule is figured out using ρ and θ

values for each SS in the motif. In this experiment the number of SSs in the motif

is five so, the expected number of votes in this method is five. To apply the SSC

method, firstly comparison parameters (Md, Ad and φ ) are determined related to motif

couples and the mapping rule is figured out using ρ and θ values for each couple

in the motif. Then, motif couples and protein couples are compared and if there is

a correspondence a vote is given to the candidate RP. In this method the expected

number of votes is the number of motif couples. In this situation, it is 10. For the SST

method, motif triangles are compared to protein triangles using comparison parameters

(edge values of the motif triangles) and if there is a correspondence a vote is given to

the candidate RP. In this method expected number of votes is the number of motif

triangles, so it is 10. Table 5.13 summarizes the performances in terms of the precision

in locating and computation time. Second column represents the motif RP, third one

represents the candidate RP location and the fourth one represents the displacement

of the RP location with respect to the position of motif center of gravity and the last

column is the searching time. It can be seen from Table 5.13 that SSC and SST have

better computation time compared to SSS; but SST has the best retrieval performance

compared to others.

The second one relates a well-known motif: The Greek Key which is formed by just

four β -strands. The protein under analysis is 1FNB containing 22 SSs (9 α-helices

and 13 β -strands). Table 5.14 summarizes the performances of these three methods.
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Table 5.13 : Performances of searching five-SSs motif in 7FAB protein.

Methods Motif RP Candidate RP Error Rate(%) Search Time

SSS [-17.59 9.51 15.21] [-17.56 9.46 15.17] 0.28 108sec

SSC [-17.48 9.17 15.48] [-17.40 9.14 15.48] 0.34 42.51sec

SST [-17.48 9.17 15.48] [-17.48 9.17 15.48] 0.00 48.89sec

Table 5.14 : Performances of searching four-SSs motif in 1FNB protein.

Methods Motif RP Candidate RP Error Rate(%) Search Time

SSS [31.33 1.14 12.01] [31.41 1.16 11.94] 0.32 35.2sec

SSC [31.38 1.08 11.69] [31.33 1.08 11.79] 0.33 3.86sec

SST [31.38 1.08 11.69] [31.38 1.08 11.69] 0.00 5.76sec

For the first group experiments, tables show that the SST strategy has the best precision.

The worst case is the SSS strategy mainly for the computation time, certainly because

of the cumbersome mapping rule and cumbersome detection of the pick in the circles

intersection.

Second group experiments: Here, SSC and SST methods were processed. Two sets

of experiments were done. In the first set of experiments, 4GCR, 1FNB and 7FAB

proteins containing 18, 22 and 46 SSs respectively were used. Three motifs composed

of four SSs were selected randomly from these three proteins. First motif contains the

6th, 9th, 13rd, 17th SSs of 4GCR protein, second motif contains the 2nd, 8th, 15th

20th SSs of 1FNB protein and the third motif contains the 9th, 17th, 32nd, 40th SSs of

7FAB protein. Here SSC and SST methods are tested, and Table 5.15 and 5.16 show

the results related to these tests.

In the second set of these experiments, different proteins and the motifs formed by

five SSs were used. These proteins are 2Z9B, 3C94 and 3DHP containing 16, 37 and

44 SSs respectively. Three motifs composed of five SSs were selected randomly from

these three proteins. First motif contains the 3rd, 5th, 7th, 12th, 15th SSs of 2Z9B

protein, second motif contains the 10th, 19th, 21st, 27th, 32nd SSs of 3C94 protein
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Table 5.15 : Results for searching the motif formed by four SSs in the 4GCR, 1FNB
and 7FAB proteins by using SSC.

PDB ID Motif RP Candidate RP #Max votes Search Time

4GCR [14.30 13.46 22.43] [14.30 13.46 22.43] 6 0.004sec

1FNB [23.55 8.10 15.57] [23.55 8.10 15.57] 6 0.006sec

7FAB [-30.17 14.39 13.23] [-30.17 14.39 13.23] 6 0.009sec

Table 5.16 : Results for searching the motif formed by four SSs in the 4GCR, 1FNB
and 7FAB proteins by using SST.

PDB ID Motif RP Candidate RP #Max votes Search Time

4GCR [14.30 13.46 22.43] [14.30 13.46 22.43] 4 0.007sec

1FNB [23.55 8.10 15.57] [23.55 8.10 15.57] 4 0.007sec

7FAB [-30.17 14.39 13.23] [-30.17 14.39 13.23] 4 0.011sec

and the third motif contains the 6th, 11th, 22nd, 30th, 39th SSs of 3DHP protein. Here

SSC and SST methods are tested, and Tables 5.17 and 5.18 show the results related to

these tests.

In these two sets of tests, the RP locations were determined with precision and had

exactly the expected number of votes/contributions. Moreover no spurious peaks have

been detected, and no displacement from the true RP location could be measured. The

motif location perfectly coincides with the true RP location. The given computation

times in the tables are related to a desktop computer with a processor Intel Core 2 Duo

6600, 2.4 GHz, 2 GB RAM.

Table 5.17 : Results for searching the motif formed by five SSs in the 2Z9B, 3C94
and 3DHP proteins by using SSC.

PDB ID Motif RP Candidate RP #Max votes Search Time

2Z9B [7.38 26.97 6.14] [7.38 26.97 6.14] 10 0.006sec

3C94 [14.03 28.67 26.88] [14.03 28.67 26.88] 10 0.011sec

3DHP [3.62 55.52 19.69] [3.62 55.52 19.69] 10 0.008sec
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Table 5.18 : Results for searching the motif formed by five SSs in the 2Z9B, 3C94
and 3DHP proteins by using SST.

PDB ID Motif RP Candidate RP #Max votes Search Time

2Z9B [7.38 26.97 6.14] [7.38 26.97 6.14] 10 0.007sec

3C94 [14.03 28.67 26.88] [14.03 28.67 26.88] 10 0.011sec

3DHP [3.62 55.52 19.69] [3.62 55.52 19.69] 10 0.012sec

Third group of experiments: Here, a set of proteins (see Table 5.2) has been randomly

selected among the PDB structures having a number of Ni of SSs ranging from 14 to

46 (a number of residue from 174 to 496); in Table 5.2 the selected set is detailed.

All possible structural blocks with m equal to three, four and five, have been retrieved

for the SSC and SST approaches. Table 5.19 reports the number of experiments for the

SSC and SST cases ∑
M
i=1C(Ni,m), M is the number of the proteins selected from PDB,

(column two: C(Ni,m)) and the cumulative and average time performances.

Table 5.19 : Performances and protein parameters for the tested set. Time ranges
under the columns 3-4 are highlighted within square brackets.

Number of
motif SSs: m

Total
number of

motifs

Average search time
and range per motif

for SSC (msec)

Average search time
and range per motif

for SST (msec)

3 105971 1.1 [0.6-1.5] 7.3 [0.9-11.7]

4 918470 1.4 [0.5-1.8] 11.2 [1.2-16.9]

5 6455009 1.7 [0.5-2.2] 17.3 [1.4-24.4]

In all about 7.5 million cases, the matching of candidate motifs with the RT tuples has

been verified with a tolerance in the comparison parameters of ε = 1%. In all cases,

the collected RP locations had exactly the expected number of votes. Moreover, no

spurious peaks have been detected for the SSC and SST cases. And, no displacement

from the true RP position has been measured. The motif location perfectly coincided

to the detected RP location.
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6. CONCLUSIONS

Proteins are the most important macromolecules because they form much of the

functional and structural machinery in every cell in all organisms. Function of

the protein is determined by its spatial structure so that it is important to learn

structure-function relationship in the protein universe by comparing their structures

and retrieving similar models. In this thesis we focused on two problems related to

proteins; protein fold classification and motif retrieval (structural block comparison)

by using primary and secondary protein structures. Primary protein structures were

used with GAL and SOM to classify the proteins according to their folds. Secondary

protein structures were used with SOM-SD to classify the protein folds and with GHT

to compare structural blocks for motif retrieval. Shortly, we used GAL, SOM and

SOM-SD to classify the proteins, and used GHT to compare structural blocks.

Classifying the proteins according to their folds is one of the important study areas

of the molecular biology. We can say that the proteins having the same structure

perform the same function. So, the classification of proteins is important. In this

thesis primarily protein fold classification problem is handled. To classify the proteins

neural network based three methods were used; GAL, SOM and SOM-SD.

Firstly, GAL network was used to classify the protein folds. GAL is an incremental

neural network for supervised learning, and determines the number of nodes during

training if need arises. The network grows when it learns and shrinks when it

forgets. GAL represents the distribution of feature vectors according to the minimum

distance measure. Computational loads of training and classification processes of

GAL are rather low. Moreover, there is not any parameter to be determined before

the training. For application of GAL method to proteins, features extracted from the

sequences were used. These features related to primary protein structures represent

amino acids’ physicochemical properties, namely amino acid composition, predicted

SS, hydrophobicity, normalized van der Waals volume, polarity and polarizability. Of

these attributes, amino acid composition has 20 dimensions and the other five attributes
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have 21 dimensions. Thus, in total a feature vector combining six attributes has

125 dimensions. The dataset used with GAL was derived from SCOP by Ding and

Dubchak [37]. This dataset, including 27 folds, contains 694 proteins having less than

35 percent sequence identity with each other. 311 of these proteins were used for

training and the remaining 383 proteins were used for test. We do not approve the

separation of dataset in this way, but after Ding and Dubchak, in a series of studies,

this dataset was used like that. We had to use the same training and test sets to compare

our results with those in the literature. However, by using K-fold cross validation, we

achieved more realistic performance. The algorithm was tested with 3000 iterations.

For the classification, GAL produced a network including 242 nodes and the proteins

were classified in 4.32 seconds with a 44.1% success rate. Due to the poor success

rate and imbalanced data 10-fold cross validation technique was used with GAL and

the proteins were classified with a 57.1% success rate. To increase the classification

performance OvO method was employed with GAL. With this method 27-class fold

classification problem was transformed to two-class classification problem, so 27

binary classifiers were formed and the dataset was tested with these classifiers. Test

results showed that the proteins were classified with a 81.2% success rate. To further

increase the classification performance GAL network was tested with 10-fold cross

validation and OvO techniques together, and this method achieved 87.7% success rate.

To determine the effectiveness of the attributes we made some tests using GAL. Firstly

we used only C (amino acid composition) attribute to be contained in the feature

vectors. Then we appended S (predicted SS) attribute to C, so we used C+S to be the

elements of the feature vectors, progressively in the last set we used all six attributes

and we tested by using GAL. The test results showed that the most important attribute

is the amino acid composition. This attribute has a good performance (71.3%) even

tested alone.

To decrease the feature vector dimension without changing the success rate divergence

analysis was applied. This analysis calculates divergence values of the features and put

them in order according to their importance. Here, after divergence analysis, the most

significant 30, 40, 50 and 60 features were determined, and they were presented to

GAL network. For the most significant 60 features, we obtained 81.5% classification

performance, so we did not test anymore. As a result, using this method we decreased
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the feature vector dimension from 125 to 60 without decreasing success rate, and so

we reduced the computational load.

To classify the proteins according to their folds, secondly, SOM was used. Kohonen’s

SOM is a type of unsupervised learning. It uses competitive learning algorithm.

In this algorithm the network neurons compete to be activated and eventually only

one neuron wins the race. The goal is to train the network so that nearby outputs

correspond to the nearby inputs, and to project the high dimensional data onto low

dimensional map in an adaptive way. In the tests of this part we used two-dimensional

rectangular grid of nodes. The dataset used with GAL was also used with SOM. Here,

primarily three-fold, namely "Flavodoxin-like", "Ribonuclease H-likemotif" and "TIM

beta/alpha-barrel" from α/β structural class, and then 27-fold classification problems

were handled. The network was trained on 9× 9 neurons with a neighborhood

spread σ = 1, considering learning rate η = 0.5 and λ = 500 iterations for three-fold

classification problem, and 18× 18 neurons with a neighborhood spread σ = 1,

considering learning rate η = 0.5 and λ = 3000 iterations for 27-fold classification

problem. To calculate the classification performance sensitivity (true positive rate)

was used. As a result of tests, the protein fold classification problem was solved with

93.3% and 73.4% success rates for three-fold and 27-fold cases, with SOM by using

OvO.

Thirdly, SOM-SD was used for protein fold classification problem. This method differs

from classic SOM in the way of used data. While applying SOM-SD a new data

structure called PGI derived from secondary protein structures was used. Here, every

protein was shown using PGI representation. In this representation, the chain sequence

of SSs in the protein is recorded as a list which is mapped on a sphere surface and a

directed graph is obtained. Nodes of the graph include the orientation information

related to corresponding SS. The method was tested on the same three folds as in the

SOM. These folds include 45 proteins (15 proteins in each fold). According to test

results these three folds were classified with a 86.4% success rate.

When we consider all the test results, we can say that GAL network outperforms

SOM for 27-class fold classification problem, and SOM outperforms SOM-SD for

three-class fold classification problem. Besides, these methods can successfully

compete with other methods in the literature.
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In this thesis besides fold classification problem, we dealt with motif retrieval by

structural block comparison. To do that GHT-based three methods (SSS, SSC and

SST) were used. SSS uses the single SS, SSC uses the SS couple co-occurrences and

SST uses the SS triplets. For each of the three methods a mapping rule is figured

out to determine the location of reference point of the motif. For SSS this mapping

rule is applied to all SSs in the motif; for SSC, this mapping rule is applied if there

is a correspondence between motif couples and protein couples and a vote is given

to this point. And as in the SSC, for SST, the mapping rule is applied if there is

correspondence between motif triangles and protein triangles. To test these methods

three group tests were processed. In the first group experiments, two motifs formed

by four and five SSs were selected from 1FNB and 7FAB proteins, respectively,

and SSS, SSC and SST methods were employed. Test results showed that SSC and

SST have better computation time compared to SSS; but SST has the best retrieval

performance compared to others. In the second group experiments, SSC and SST

methods were tried for four-SS and five-SS motifs retrieval with six proteins selected

randomly from PDB. According to test results, the RP locations related to the motifs

were determined with precision and had exactly the expected number of votes. For

the third group experiments, 20 proteins were selected from PDB randomly, and all

possible three-SS, four-SS and five-SS motifs were searched by using SSC and SST

methods for motif retrieval. Test results showed that the RP locations were determined

precisely. Moreover, no spurious peaks have been detected. For the computation time

SSC method has better performance compared to SST.

In future works, to increase the success rate of protein fold classification problem,

improvements in the learning algorithms of GAL, SOM and SOM-SD networks will

be searched. The methods can be tested on larger datasets. Moreover, the dimension

of the feature vector derived from primary protein structures, in this thesis 125, can

be reduced by using different dimension reduction techniques and the classifier can be

tested with low-dimensional data for high performance and low computation time. For

better classification performances, new feature extraction methods and new network

structures can be searched.
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