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PROTEIN FOLD CLASSIFICATION AND MOTIF RETRIEVAL METHODS
BY USING THE PRIMARY AND SECONDARY STRUCTURES

SUMMARY

Proteins are crucial molecules in biological phenomena because they form much of
the functional and structural machinery in every cell in organisms and their function
is determined by their spatial structures. Protein structures can be described at various
levels in detail, ranging from atomic coordinates, through vector approximations, to
secondary structure elements. Protein structure comparison is an important issue that
helps biologists understand various aspects of protein function and evolution. It is
commonly believed that the 3D fold has a major effect on the ability of a protein
to bind other proteins or ligands. The similarity analysis of protein structure is
therefore an important process in understanding the protein’s role in the machinery of
life. Comparison of protein structures is also essential for estimating the evolutionary
distances between proteins and protein families. Protein fold classification is also
an important problem in bioinformatics and a challenging task for machine-learning
algorithms. According to convention a protein could be classified into one of four
structural classes based on its secondary structure components; all-c, all-f, o/, o +
B. Structural Classification of Proteins (SCOP) provides a detailed and comprehensive
description of the structural and evolutionary relationships among all proteins whose
structures are known. According to SCOP four structural classes are divided into folds.
Protein fold classification problem is to determine that the query protein belongs to
which fold. In this thesis we deal with two problems related to proteins; protein fold
classification and structural block comparison (motif retrieval).

Proteins are formed by two basic regular 3D structural patterns called secondary
structures; helices and strands. A structural motif is a compact 3D protein structure
referring to a small specific combination, which appears in a variety of molecules.
In this thesis, primarily protein fold classification problem is employed. For the
classification of protein folds, neural network based three methods are used; Grow and
Learn (GAL) network, Self-Organizing Maps (SOM) and Self-Organizing Maps for
Structured Data (SOM-SD). For GAL and SOM primary protein structures are used,
on the other hand for SOM-SD secondary protein structures are used.

Firstly GAL method is used to classify the protein folds. Here, six attributes which
are physicochemical features of amino acids (amino acid composition, predicted
secondary structure, hydrophobicity, normalized van der Waals volume, polarity and
polarizability) are used as features. A number of proteins are selected from Protein
Data Bank (PDB). Then, 27-class protein fold classification problem is tried to be
solved with this method. To increase the success rate one-versus-others (OvO)
prediction method is used. Secondly SOM is used to classify the protein folds.
Features and proteins in the previous method are used also in here. As in the previous
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method, OvO method is applied for performance evaluation. Thirdly SOM-SD method
is used for protein fold classification. While using SOM-SD, Protein Gaussian Image
(PGI) representation of proteins is used as feature. PGI is a representation in the
Gaussian sphere in which each secondary structure is mapped with a unit vector from
the origin of the sphere having the orientation of the secondary structures. The chain
sequence of secondary structures is recorded as a list which is mapped on the sphere
surface. To test this method the dataset including three folds with 45 proteins (15
proteins in each fold) from PDB is used.

To determine the effectiveness of the attributes some tests were made using GAL.
Firstly, only C (amino acid composition) attribute was used to be contained in the
feature vectors. Then S (predicted secondary structure) attribute was appended to C,
so C+S was used to be the elements of the feature vectors, progressively in the last
set all six attributes were used and tested by using GAL. The test results showed that
the most important attribute is the amino acid composition. This attribute has a good
performance even tested alone.

Besides in here, for reducing dimension of the feature vector without changing success
rate divergence analysis was applied. This analysis calculates divergence values of the
features and put them in order according to their importance. After this analysis the
most significant 30, 40, 50 and 60 features were determined and they were tested with
GAL. The results related to protein fold classification problem showed that proteins are
classified according to their folds with a good precision and the results are comparable
to the existing methods in the literature.

In this thesis after protein fold classification problem, motif retrieval problem is
handled. Here, a particular motif is retrieved from a particular protein using structural
block comparison. To do this, three methods based on Generalized Hough Transform
(GHT) are used. The first method uses single secondary structure, the second one uses
secondary structure couple co-occurrences and the third one uses secondary structure
triplets. For all three methods the barycenter (geometric mean) of the motif is assigned
as Reference Point (RP) and in order to determine this point a mapping rule is figured
out. Then, voting process is applied and the point having maximum number of votes is
assigned as the candidate RP. For the test, a few proteins selected from PDB are used
and the test results showed that the RP is determined with a good precision and the
motif is retrieved from the protein with expected number of votes.
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PRIMER VE SEKONDER YAPILAR KULLANILARAK
PROTEINLERIN FOLD DUZEYINDE SINIFLANDIRILMASI
VE MOTIF CIKARIMI

OZET

Proteinler canli hayatindaki en temel biyolojik birimlerdir ve canli viicudundaki biitiin
biyolojik iglevler proteinler tarafindan gerceklestirilir. Molekiiler biyoloji ve genetik
alaninda yapilan calismalar sonucunda ¢ogu hastaliin protein yapisindaki kusur,
hasar ve degisiklikten kaynaklandig1 ortaya ¢ikarilmistir. Proteinlerin fonksiyonlar
onlarin yapilar tarafindan belirlenmektedir. Bu nedenle proteinlerin yap1 analizi,
protein yapilarinin karsilastiritlmasi, benzer yapilarin belirlenmesi, motif ¢ikarimi ve
proteinlerin siniflandirilmasi molekiiler biyoloji agisindan 6nemlidir.

Proteinler, amino asitlerin belirli tiirde, belirli sayida ve belirli dizilis sirasinda karak-
teristik diiz zincirde birbirlerine kovalent baglanmasiyla olusmus polipeptidlerdir. Her
proteinin kendisine has 6zelliklerinin olmasini saglayan 6zel amino asit dizilimleri
vardir. Protein yapisi, primer, sekonder, tersiyer ve kuaterner olmak iizere dort
ayr sekilde incelenebilir. Tezde proteinin fold diizeyinde simiflandirilmasi ve motif
cikarimi olmak iizere iki konu ele alinmigtir. Bu konulara iliskin calismalar yapilirken
proteinin primer ve sekonder yapilarina iligkin 6znitelikler kullanilmisgtir.

Polipeptidin diizenli katlanmalar yapmas1 sekonder yapiy1 olusturmaktadir. Yaygin
olarak iki tip sekonder yap1 vardir: «-heliks ve f-tabaka. Proteinler sekonder yapi
bilesenlerine gore dort ana gruba ayrilmaktadir; all-c, all-B, o/B, a+. SCOP’a
gore bu dort ana sinif kendi i¢inde foldlara ayrilirlar. Foldlar sekonder yapilarin
belirli bir diizene gore katlanmalarindan meydana gelen ii¢c boyutlu sekillerdir.
Proteinlerin fonksiyonlar1 onlarin yapilari tarafindan belirlendiginden, aym1 yapiya
sahip proteinlerin belirlenmesi yani proteinlerin fold seviyesinde siniflandirilmasi
molekiiler biyolojinin 6nemli ¢alismalarindan biridir. Proteinlerin fold seviyesinde
siniflandirilmasi problemi sorgulanan proteinin hangi folda ait oldugunu belirlemektir.
Tezde Oncelikle proteinlerin fold seviyesinde siniflandirilmasi problemi ele alinmakta
ve smiflandirma i¢in yapay sinir aglarinin alt modellerinden olan GAL, SOM ve
SOM-SD kullanilmaktadir. GAL ve SOM icin primer yapilara iligkin 6znitelikler
kullanilirken, SOM-SD icin sekonder yapilara iliskin 6znitelikler kullanilmagtir.

Proteinlerin fold diizeyinde siniflandirilmasit amaci ile kullanilan ilk yontem biiyii
ve O0gren (GAL) agidir. Biiyii ve 0gren aginda simf sinirlart en yakin mesafe
Olciisiine gore belirlenmektedir. Girig vektorii ile agdaki tiim vektorler arasindaki
mesafe hesaplanir.  Girig vektoriiniin sinifi, bu vektdore en yakin mesafedeki ag
diigiimiiniin sinifi olarak belirlenir. Agin diiglim sayis1 egitim sirasinda otomatik
olarak belirlenir. Agin egitimi 68renme ve unutma algoritmasi olarak iki algoritma
tarafindan gerceklestirilir. Ogrenme algoritmasinda aga diigiim eklenirken unutma
algoritmasinda agin performansini diisiirmeyecek olan gereksiz diigiimler agdan
cikarilirlar. Kalan diigiimler ile de yeni girisler test edilir. Bu yontem ile yapilan
testlerde egitim kiimesi icin 311 test kiimesi i¢in 383 olmak iizere protein veri
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bankasindan (PDB) alinan 694 protein kullanilmigtir. Kullanilan 6znitelik vektorii 125
boyutludur ve amino asitlere iligskin fizyokimyasal 6zellikleri belirtmektedir. Alt1 adet
Oznitelik kullanilmigtir: Amino asit kompozisyonu (20D), tahmin edilen sekonder yap1
(21D), hidrofobisite (21D), normalize van der Waals hacmi (21D), polarite (21D) ve
polarizebilite (21D). Bu 6znitelikler ve GAL ag1 kullanilarak 27-siifl1 proteinin fold
seviyesinde siniflandirilmasi problemi ele alinmustir.

Ikinci olarak proteinlerin siniflandirilmasi amaci ile SOM ag1 (Kohonen agi)
kullanilmigtir.  SOM damigsmansiz bir yapay sinir agidir, yarigmaci Ogrenme
algoritmasint kullanir. Bu yontemde agin noronlart aktif edilmek igin aralarinda
yarigirlar ve sonugta yalnizca bir noron yarisi kazanir.  Buradaki temel hedef
herhangi bir boyuttaki giris sinyal desenini iki boyutlu bir haritaya adaptif bir sekilde
donustiirmektir. Sonrasinda ise aga girig olarak verilen sorgu proteinlerinin sinifini
belirlemektir. Bu yontemde yapilan testlerde once ii¢ siifli problem sonrasinda
bir dnceki yontemde oldugu gibi 27-smifl1 problem ele alinmis ve ayni veri kiimesi
kullanilmistir.

Proteinin fold diizeyinde siniflandirilmasi amaciyla kullanilan ii¢lincii yontem
SOM-SD’dir. SOM’dan kullandi81 veri yapisi nedeniyle farklidir. SOM-SD girisinde
veri olarak graflari kullanan bir yapay sinir ag1 modelidir. Bu yontemde veri yapisi
olarak proteinlerin PGI gosterimi kullanilmigtir. PGI, EGI’min (Extended Gaussian
Image) proteinler iizerine uygulanmig halidir. Protein icindeki sekonder yapilar
Gauss kiiresi iizerine, baslangi¢ noktalar kiire merkezine bitis noktalari kiire yiizeyine
gelecek sekilde yerlestirilirler. Burada kiire yiizeyindeki sekonder yapilarin bulundugu
noktalar o sekonder yapiin oryantasyon bilgisini icermektedir. Sekonder yapilarin
zincir siras1 kiire yiizeyine haritalanan bir liste olarak kaydedilir. PGI gosterimi
kiire ylizeyindeki noktalarin sekonder yapilarin sirasina uygun olarak birlestirilmis
halidir. Burada proteinlerin icerisindeki sekonder yapi sayilar1 farkli oldugundan
dolayr aga giris verilerinin uzunlugu da farkli olacaktir. SOM-SD ile bu problem
ortadan kaldirilmakta ve her bir girig verisinin uzunlugu esitlenmektedir. Bu metot
PDB’den secilen ii¢ folda iliskin 45 protein (her foldda 15 protein) iizerinde test edilmis
ve li¢ sinifl1, proteinlerin fold diizeyinde siniflandirilmasi problemi ele alinmagtir.

Tezde ayrica yukarida bahsedilen alti 6znitelikten hangisinin siniflandirmada daha
baskin oldugunu belirlemek amaciyla testler yapilmistir. Testler yapilirken daha
iyi basarim vermesinden dolayr GAL ag kullamlmistir.  Oncelikle amino asit
kompozisyonu tek basmma GAL ag1 ile test edilmis ve simiflandirma bagarimi
hesaplanmigtir.  Sonrasinda amino asit kompozisyonuna ek olarak tahmin edilen
sekonder yap1 da Oznitelik vektoriine eklenmis ve smiflandirma bagarimi test
edilmistir.  Oznitelikler bu sekilde sirasiyla birbirine eklenmis ve son asamada
altt Ozniteligin hepsi kullanilarak siniflayici test edilimistir. Test sonuclarina gore
proteinlerin siniflandirilmasinda amino asit kompozisyonunun digerlerine gore daha
etkili oldugu ve tek basina bile proteinleri, literatiirdekilerle karsilastirilabilecek
diizeyde siniflandirdig ortaya ¢ikarilmagtir.

Tez kapsaminda, kullanilan 6znitelik vektoriiniin boyutunu siniflayicinin performan-
sin1 degistirmeden azaltmak amaciyla diverjans analizi kullanilmigtir.  Diverjans
analizi iki veya daha fazla smifin s6z konusu oldugu problemlerde kullanilan tiim
Ozniteliklerin arasindan istenen sayida, performans: azaltmayan en iyi 6zniteliklerin
secilmesi amaciyla uygulanir. Diverjans hesaplamada sinif i¢i sagilim ve simiflar
arasi sagilim, siniflart ayirma kriteri olarak kullanilmaktadir. Tezde kullanilan veriye
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diverjans analizi uygulanmis ve GAL agi ile test edilmistir. Test sonucu, proteinlerin
daha az sayida 6znitelik ile basarim degismeden siniflandirilabildigini gostermistir.

GAL ve SOM aglan kullanilirken siniflayicinin performansini artirmak amaciyla
OvO yontemi kullanilmistir. Bu yontem ¢ok siniflt problemlerde kullanilan K-sinifl
problemi iki sinifl1 probleme indirgeyen bir yontemdir. Bir sinif 1. simiftaki proteinleri
icerirken diger sinif 1. sinif disindaki K-1 sinifta olan proteinleri igerir. Ayni sekilde
bir sinif 2. siiftaki proteinleri icerirken diger simif 2. sinif digindaki K-1 sinifta
olan proteinlerin tiimiinii icerir. Bu sekilde K tane 2 sinifl1 siniflandirict olusturulur
ve sorgulanan protein K adet siniflayicida ayr1 ayri test edilir.

Proteinin fold diizeyinde smiflandirilmasina iligkin yapilan testlerde sinif basarimi
hesaplanirken literatiirde cogunlukla kullanilan duyarlilik hesab1 kullanilmigtir. Buna
gore yapilan testler 27 simfli problem icin GAL ve SOM’un literatiirde kullanilan
yontemlerle karsilastirilabilece8i sonucunu ortaya c¢ikarmis ve proteinler yiiksek bir
bagarimla siniflandirilmagtir.

Proteinler heliks ve tabaka olmak {iizere sekonder yapilarin belirli bir sirada
dizilimlerinden meydana gelmektedir. Bir yapisal motif ise proteinin belirli kii¢iik
bir parcast olup daha az sayida sekonder yapidan meydana gelmekte ve ayni
motifi iceren farkli proteinler benzer islevler yapabilmektedirler. Tezde proteinlerin
fold diizeyinde siniflandirilmasindan farkli olarak, yapisal bloklarin kargilagtiriimasi
ile motif ¢ikarimi konusu da ele alinmistir. Bunun icin Genellestirilmis Hough
doniistimii tabanli ii¢ yontem Onerilmektedir. Genellestirilmis Hough doniisiimii,
genellikle obje tanimada kullanilmakta ve parametre uzayinda oylama islemine
dayanmaktadir. Tez kapsaminda kullanilan bu yontemde amacg, motif ¢ikarimi icin
motifin referans noktasinin belirlenmesidr. Bu yontemde motife iliskin bazi1 6zellikler
referans tablosuna kaydedilmekte ve oy verilecek nokta veya koordinatlar referans
tablosu elemanlar1 vasitasiyla hesaplanan 6zel bir haritalama kurali uygulanarak
belirlenmektedir.  Genellestirilmis Hough doniisiimii bazli metotlardan birincisi
sekonder yap1 teklilerini, ikincisi sekonder yap1 ikililerini ve {igiinciisii ise sekonder
yap1 Ucliilerini kullanmaktadirlar. Her iic metot i¢cin de motifin geometrik ortasi
referans noktasi olarak belirlenmektedir. Burada ama¢ motif i¢indeki sekonder yapilar
ile protein i¢indeki sekonder yapilar1 karsilastirip, olusturulan haritalama kuralina gére
oylama prosediiriinii uygulamak ve en fazla oy alan noktay1 aday referans noktasi
olarak belirlemektir. Tekli yontemde motif igerisindeki her bir sekonder yap1 icin
referans noktasinin lokasyonu tanimlanirken, ikili ve {i¢lii yontemlerde sirasiyla ikili
ve liclii sekonder yapilar icin referans noktasinin lokasyonu tanimlanmaktadir. Aci
ve mesafe degerleri ile olusturulan bu tanimlama haritalama kuralin1 olusturmaktadir.
Tekli yontemde haritalama kurali protein igerisindeki her bir sekonder yapiya
uygulanirken ikili ve t¢lii yontemlerde sirasiyla protein ve motif ikililerinin ve
ticliilerinin eslesmesi durumunda uygulanmaktadir. YOntemleri test etmek amaciyla
PDB’den secilen 1FNB proteini i¢inden rasgele dort ve bes sekonder yapidan olusan
iki motif secilmis ve her lic yontem de test edilmistir. Diger bir testte PDB’den
alt1 adet protein secilmis ve bunlardan ii¢ii dort sekonder yapidan olusan, kalan iicii
ise bes sekonder yapidan olusan motiflerin ¢ikarimi amaciyla test edilmigstir. Bu
kisimda son olarak PDB’den 20 adet protein secilmis, bu proteinler i¢indeki ii¢, dort
ve bes sekonder yapidan olusan olas1 biitiin motifler test edilmistir. Yapilan tiim bu
testler, referans noktasinin yiiksek bir dogrulukla belirlendigini ve motifin proteinden
beklenen sayida oy alarak ¢ikarildigini géstermistir.
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1. INTRODUCTION

1.1 Purpose of Thesis

In this thesis we focused on protein fold classification and motif retrieval by structural
block comparison. The first purpose of the thesis is to classify proteins according
to their folds. For fold classification neural network based three methods; Grow and
Learn (GAL) networks, Kohonen’s Self-Organizing Maps (SOM) and Self-Organizing
Maps for Structured Data (SOM-SD) were employed. For GAL and SOM, features
related to primary structure, and for SOM-SD, features related to secondary structure

(SS) were used; and better results were obtained compared to existing methods.

For protein motif retrieval task, three new algorithms based on Generalized Hough
Transform (GHT) were used. Here, a few attributes related to SS were used as
features; and experimental results showed the effectiveness of these approaches in

motif retrieval.

1.2 Literature Review

Proteins are fundamental biological macromolecules which organize essential parts of
living organisms to control all of their vital functionalities. Protein functions depend
on protein chemical reactions with their surrounding and other proteins. Also protein
functions are determined by its shape and three-dimensional (3D) structure [1]. The
information related to all known proteins is deposited in a data bank called Protein Data
Bank (PDB) [2]. There are currently 109,661 (at 22/06/2015) 3D protein structures
experimentally determined in PDB and this number increases consistently with an
increment of about 700 new molecules for month. However there are a lot of similar
structures (not identical) in this protein set. So protein structure comparison came
into question in computational biology and is an important issue that helps biologists
understand various aspects of protein function and evolution. It is commonly believed

that the 3D fold has a major effect on the ability of a protein to bind other proteins or



ligands. The similarity analysis of protein structure is therefore an important process
in understanding the protein’s role in the machinery of life. Comparison of protein
structures is also essential for estimating evolutionary distance between proteins and

protein families [3].

In proteins, a structural motif is a 3D structural element which appears in a variety
of molecules and usually consists of just a few elements. Several motifs packed
together to form compact, local, semi-independent units are called domains. The
size of individual structural domains varies from about 25 up to 500 amino acids,
but majority, 90%, has less than 200 residues with an average of approximately 100
residues. The term family as it is used in taxonomy should not be confused with
protein family which is a group of evolutionarily related proteins, that is, proteins
in a protein family descend from a common ancestor and typically have similar
3D structures, functions and significant sequence. Note that it is also often used
the term super-*, where * can stand for motif, or domain, or family, or fold, or
class [4]. There are several methods for defining protein SSs; Dictionary of Secondary
Structure of Proteins (DSSP) and Structural Identification (STRIDE) [5,6] are the most
commonly used. The DSSP defines eight types of SSs, nevertheless, the majority
of secondary prediction methods simplify further to the three dominant components;
helix, strand and coil. The structural analysis for protein recognition and comparison
is conducted mainly on the basis of the two most frequent components; the helices and
the strands [7]. Structural Classification of Proteins (SCOP) [8] provides a detailed and
comprehensive description of the structural and evolutionary relationships among all
proteins whose structures are known [9]. According to convention a protein could be
classified into one of four structural classes based on its SS components; all-c, all-f3,
o /B and o + B; and according to the SCOP four structural classes are divided into
folds, folds are divided into superfamilies, and superfamilies are divided into families.
Folds represent the 3D shape of proteins and because of that the protein structure define
the protein function. Hence, classifying the proteins according to their folds is an

important issue for structural biology.

In the literature there are several types of works about proteins. The basic works
are about protein structure comparison [4, 10-16] prediction of protein SSs [17—

24], prediction of protein structural classes [25-34] and classification of protein



folds [1,9,35-74]. In this thesis we focused on protein structure comparison and
fold classification. Related to protein structure comparison, these studies have been
done: Can et al. [10] presents a new method for conducting protein structure similarity
searches and applies differential geometry knowledge on protein 3D structure for
extracting signatures such as curvature, torsion and SS type. Camoglu et al. [11],
in order to find similarities in a protein structure database, builds an indexing structure
based on SS elements triplets by using R-tree. Chionh et al. [12] propose the SCALE
algorithm to compare protein 3D structures based on angle-distance matrices that
utilizes angles and distances between SS elements. Chi et al. [13] design a fast
system for protein structure retrieval by using image based distance matrices and a
multidimensional index. Zotenko et al. [14] propose an approach to speed up protein
structure comparison by mapping a protein structure to a high-dimensional vector and
approximating structural similarity by distance between the corresponding vectors.
Krissinel et al. [15] describe the Secondary Structure Matching (SSM) algorithm of
protein structure comparison in 3D, which includes an original procedure of matching
graphs built on the protein’s SS elements, followed by an iterative 3D alignment of
protein backbone C, atoms. Cantoni et al. [4,16] made a study for retrieving structural
motifs by using Generalized Hough Transform (GHT) and range tree. They also
retrieved the Greek Key motif, which is formed by four SSs, from the protein files
by using the GHT. In a part of the thesis, we propose three new methods based on

GHT for protein motif retrieval.

Protein fold classification is the prediction of protein’s tertiary structure (fold) given the
protein’s sequence without relying on sequence similarity. In the past three decades,
many efforts have been made to classify the proteins according to their folds. A variety
of classification methods have been applied to this task such as neural networks [9,35—
38,43,47,60], Bayesian classifiers [46], K-nearest neighbor [44, 50, 66, 67], support
vector machine (SVM) [40,45,52] and ensemble classifiers [1,39,48,49,51,54,58,68,
73,74].

One of the early studies about fold classification was done by Reczko and Bohr [35].
They used a special type of feed-forward neural networks called Cascade-Correlators.
In their study, the training algorithm optimizes the weights and the number of hidden

units in a feed-forward network by adding units during the training process. The



process of adding new hidden units that maximize the correlation between their activity
and the error remaining at the output layer is repeated until the mapping has the desired
accuracy. Their predictive performance turned out to be rather successful with a score

of around 82% for predicting fold classes (with a total of 42 classes).

In 1999, Dubchak et al. [9] developed a neural network based computational method
for the assignment of a protein sequence to a folding class in the SCOP. In that study
three layer feed-forward neural networks were used with the neural network weights
adjusted by conjugate gradient minimization. This method used global descriptors of
a primary protein sequence in terms of the physical, chemical and structural properties

of the constituent amino acids and performed well for protein fold prediction.

In 2001, Edler et al. [36] made a study to show the role and results of statistical methods
in the prediction of protein fold classes. They used feed-forward neural networks and
standard statistical classification procedures to classify proteins. They applied logistic
regression, additive models, and projection pursuit regression from the family of
methods based on posterior probabilities; linear, quadratic, and a flexible discriminant
analysis from the class of methods based on class conditional probabilities, and the
nearest neighbor classification rule to a dataset of 268 proteins (including 42 folds). In
the same year, Ding and Dubchak [37] used SVMs and neural networks learning
methods as base classifiers to recognize protein folds. They used the database,
including 27 protein folds, in their earlier study [9]. These folds include 311 proteins
for training set and 383 proteins for test set, totally 694 proteins. To increase the
success rate they applied one-versus-others (OvO), unique one-versus-others (uOvO)
and all-versus-all (AvA) prediction methods. They classified the protein folds with a

56% success rate using SVM with AvA prediction method.

Motivated by Ding and Dubchak, Bologna and Appel used an ensemble of four-layer
Discretized Interpretable Multi Layer Perceptron (DIMLP) [38] trained with the
dataset produced by Ding and Dubchak [37]. In addition, they added the length of
the amino acid sequence as an effective feature to each feature group. Different from
Ding and Dubchak’s study, in [37], each classifier learned all the folds simultaneously.

They classified the proteins with a 61.1% success rate.



In 2003, Bindewald et al. presented a hybrid of different approaches as protein fold
recognition method called MANIFOLD (MANhelm FOLD recognition) [39]. They
used sequence similarity, SS and functional information to improve fold recognition.
They tested this method on the dataset provided by Ding and Dubchak [37] and
they obtained a prediction accuracy of 74.9%. Markowetz et al. [40] compared
the performance of SVM to neural networks and to standard statistical classification
methods as Discriminant Analysis and Nearest Neighbor classification. They used the
dataset, in [36] including 268 proteins (42 folds) and they obtained the best error rate
23.2%. Tan et al. [41] applied ensemble learning algorithm to the prediction of fold
classes. Huang et al. [42] proposed a hierarchical learning architecture (HLA) method
that classified proteins into four major classes; all-ct, all-B, a+f, o/f. Then in the
next level they used another set of classifiers (MLP, GRNN, RBFN, SVM) to further
classify the proteins into 27 folds. The best accuracy of HLA method based on RBFN
is up to 65.5% on the Ding and Dubchak’s dataset.

In 2004, Igel et al. [43] applied standard feed-forward neural networks to assign
primary sequences of proteins to one out of 42 fold classes. They used early-stopping
for implicit regularization to improve the generalization properties of the neural
networks. For comparison of their neural network approach with the results in the
literature, they used the same data and basically the same performance measures as
in [36, 40] and they obtained the best error rate 22.4%. To classify the proteins
according to their folds, Okun used a modified nearest neighbor algorithm called the
K-Local Hyperplane Distance Nearest Neighbor (HKNN) [44]. He used the dataset
in [37] and classified the proteins with a success rate 57.4%. Shi et al. [45] proposed
a multi-objective feature analysis algorithm. The objective of this algorithm is
simultaneously selecting the effective features, improving the accuracy and providing
bias information of train and test data. To achieve this objective, authors used an
extended wrapper method for feature selection and processed SVM for classification
task. They used the same dataset used in [37] and achieved 61.6% classification

performance.

In 2005, Chinnasamy et al. [46] presented a framework using Tree-Augmented
Networks (TAN) based on the theory of learning Bayesian networks but with less

restrictive assumptions than the naive Bayesian networks. In order to enhance the



TAN’s performance, they did pre-processing of data with feature discretization and
post-processing by using Mean Probability Voting (MPV) scheme. They used the
datasets in [36] and [37], and they obtained classification performances of 58.9% and
74.4% respectively. Huang et al. [47] used neural network based hierarchical learning
architecture to deal with fold classification problem. In this study, the network can
not only select features in an online manner during learning, but it also does some
feature extraction. They combined the feature selection with their hierarchical learning
architecture and applied it multi-class protein fold classification and they had a result

in a test accuracy of 56.4%.

In 2006, Nanni made two studies related to protein fold classification [48, 49]. In
the first study he proposed a new ensemble of K-local hyperplanes based on random
subspace and feature selection. In the second, he developed an ensemble classifier by
combining Fisher’s linear classifier and HKNN [44]. He tested these methods on the
dataset including 27 folds and he obtained 61.1% and 60.3% classification performance
respectively. Shen and Chou developed an ensemble classifier for fold pattern
recognition [50]. In this study, the operation engine for the constituent individual
classifiers was OET-KNN (optimized evidence-theoretic K-nearest neighbors) rule.
Their outcomes were combined through a weighted voting to give a final determination
for classifying a query protein. The method was tested on the dataset in [37] and the

proteins were classified with 62.1% success rate.

In 2007, Chen and Kurgan proposed PFRES method for automated protein fold
classification [51]. This method combines evolutionary information by using the
PSI-BLAST profile-based composition vector and information extracted from the
SS predicted with PSI-PRED. In this study, they used a voting-based ensemble
classifier and obtained 68.4% prediction accuracy. Shamim et al. [52] developed a
SVM-based classifier that uses secondary structural state and solvent accessibility state
frequencies of amino acids and amino acid pairs as feature vector. They performed
their method on the dataset in [37] and they obtained 70.5% performance accuracy
by using OvO prediction method. In 2008, Abual-Rub and Abdullah [53] reviewed
different algorithms related to protein fold classification and they concluded that the

evolutionary algorithms can be used for this task.



In 2008, motivated by [50], Guo and Gao proposed a novel hierarchical ensemble
classifier named GAOEC (Genetic-Algorithm Optimized Ensemble Classifier) [54]
and they overcame the shortcomings in [50]. To construct the classifier, firstly, a novel
optimized classifier named GAET-KNN (Genetic-Algorithm Evidence-Theoretic K
Nearest Neighbor) was proposed as a component classifier. Secondly, six component
classifiers in the first layer were used to get a potential class index for every query
protein. Thirdly, according to the results of the first layer, every component classifier
in the second layer generated a 27-dimensional vector whose elements represented the
confidence degrees of 27 folds. Finally, genetic algorithm was used for generating
weights for the outputs of the second layer to get the final classification result. Guo
and Gao tested this classifier on the dataset in [37] and they had a 64.7% prediction
accuracy. A different study was done by Krishnaraj and Reddy in 2008 [55]. They
used two variants of Boosting algorithms (AdaBoost and LogitBoost) for the problem
of fold recognition. Prediction accuracy was measured on the dataset including the
most famous 27 SCOP folds, and AdaBoost and LogitBoost achieved 57.7% and
60.13% fold recognition accuracy, respectively. Damoulas and Girolami [56] proposed
a multi-class multi-kernel learning method to recognize protein folds. It applied a
single multi-class kernel machine on all of the characteristic spaces simultaneously
and then combined their results. The method achieved the best accuracy of 70% on the

benchmark dataset proposed by Ding and Dubchak [37].

In 2009, Shen and Chou [57] proposed a new approach which is featured by combining
the functional domain information and the sequential evolution information through a
fusion ensemble classifier, and they called it FPF-FunDEsqE. Tests were performed
for identifying proteins among their 27 fold patterns and the classifier achieved 70.5%
prediction accuracy. Hashemi et al. [1] applied two classification methods; MLP and
RBF networks. Also they used Bayesian and Majority Voting classifier ensemble
methods to improve the prediction results of the base classifiers. In their study the MLP
network had only one hidden layer with tangent sigmoid as activation function. For
recognizing the exact class of a protein they used the label of the maximum output unit
in the network as the protein class label. They used Correct Classification Rate (CCR)
as the evaluation measure which is the number of correct classified instances over the

total number of instances. In this study final CCR became around 59%. Chen et al. [58]



developed a novel approach based on genetic algorithms and a SVM to determine the
best feature selector. The SVM applied the best feature selector to the feature vectors
in the test dataset to classify the protein folds. This method achieved an accuracy
of 71.28% for protein fold classification problem. To predict protein folds, Ghanty
and Pal [59] proposed several new features and used some existing features including
frequencies of adjacent residues, frequencies of residues separated by one residue,
and triplets of amino acid compositions; and they used MLP network, RBF network
and SVM as machine learning tools. To improve the recognition accuracies further,
they used fusion of different classifiers and their system achieved 68.6% test accuracy
for the fold recognition with 27 folds. Jazebi et al. [60] employed a fusion method
(using weighted voted approach and OWA operators) for fold pattern recognition. They
used the Probabilistic Neural Network (PNN) as base classifier in the fusion method.
Tests were performed on the dataset in [37] and 52.3% classification performance was

obtained.

In 2010, Dehzangi et al. [61] used Random Forest, which is a recently introduced
method based on bagging algorithm that trains a group of base classifiers by randomly
selecting sets of features then, combining results obtained from base classifiers by
majority voting. In this study, to investigate the effectiveness of the number of base
learners on the performance of the Random Forest, twelve different number of base
classifiers (between 30 and 600) were applied for the classifier and they achieved
62.7% prediction accuracy. They also used Rotation Forest [62], a straightforward
extension of bagging algorithms which aims to promote diversity within the ensemble
through feature extraction by using Principal Component Analysis (PCA). Valavanis
et al. [63] used five different classification techniques, namely MLP, PNN, nearest
neighbor classifier, multi-class SVM and Classification Trees (CTs) for protein fold
recognition problem on the dataset including 27 folds, and polynomial SVM achieved
42.8% classification performance. Wang and Gao [64] developed a two-layer learning
architecture, named TLLA, for multi-class protein fold classification problem. In
the first layer, OET-KNN was used as the component classifier to find the most
probable K-folds of the query protein. In the second layer, SVM was used to build
the multi-class classifier just on the K-folds. The dataset in [37] was used to evaluate

the performance of the classifier and the method achieved 63% success rate.



Motivated by [55, 61, 62] in 2011, Dehzangi and Karamizadeh used a fusion of
heterogeneous Meta classifiers, namely LogitBoost, Random Forest and Rotation
Forest [65]. They used Ding’s feature set and achieved 65.3% protein fold prediction
accuracy. Kavousi et al. extracted ten different features from protein sequences
and used ten OET-KNN classifiers as the classification engine [66] and in 2012
they dealt with protein fold classification based on the concepts of hyperfold [67].
Tests were performed on the dataset in [37] and they achieved 67.2% and 73.1%
classification performances in 2011 and 2012, respectively. Yang et al. [68] proposed
a novel margin-based ensemble classifier, called MarFold, for multi-class protein fold
recognition task where multiple heterogeneous feature space were available. They built
this method on three component classifiers, namely, adaptive local hyperplane (ALH),
SVM and ALHK (a variant of ALH). To evaluate the proposed method they used
the dataset established by Ding and Dubchak [37] and they obtained 71.7% overall

prediction accuracy by MarFold.

In 2012 Suvarnavani et al. [69] applied boosting algorithm (SMOTE) to rebalance
the imbalanced dataset to boost the performance and then they used a decision
tree classifier to classify folds from the features of contact map. They obtained
over 70% accuracy for the feature set generated by Triangle Sub division method.
Another study was made by Chmielnicki and Stapor [70]. They suggested a hybrid
discriminative/generative approach. Accordingly, they combined the well-known
SVM classifier with regularized discriminant analysis (RDA). In this method, SVM
classified the proteins using the results of RDA. The dataset including 27 folds was

used and 77.9% classification performance was achieved.

In 2013, Bae et al. [71] made a study to deal with fold classification problem. In
this study, prediction of structural fold classes of proteins with torsion angle based
SS profile library and multi-class linear discriminant analysis, was performed. In
one of the recent studies, Suryanto et al. [72] proposed a new approach for protein
fold classification by introducing the concept of large margin nearest neighbor for
combining multiple measures of distance between protein structures. They combined
the Euclidean distance matrices of 12 features extracted from the amino acid sequence
of the protein, the root mean square deviation (RMSD) obtained from the geometrical

alignment using Combinatorial Extension, and the canonical angles between the



subspaces generated from the synthesized multi-view protein structure images. To
demonstrate the effectiveness of the proposed method they used the dataset produced
by Ding and Dubchak and they achieved 92.4% prediction accuracy. Another
up-to-date study was made by Lin et al. [73] in 2013. They utilized a K-means
clustering algorithm to choose a series of different base classifiers and a circulating,
combined static selective strategy. Tests were performed on the dataset in [37] and

74.2% accuracy rate was obtained.

In 2015, Aram et al. [74] used a Two-Layer Classification Framework (TLCF) and a
fusion of MLP, RBFN and Rotation Forest. In the first layer they classified the proteins
according to their structural classes, and in the second layer according to their folds.
The fusion method was performed on the dataset in [37] and 65.7% prediction accuracy

was obtained.

In this thesis we dealt with two problems: Protein fold classification and motif retrieval
by structural block comparison. For the first problem, we used GAL networks, SOM
and SOM-SD approaches to solve protein fold classification problem. While GAL
and SOM use primary protein structures, SOM-SD uses secondary protein structures.
Neural network models are widely used in literature for protein fold classification
problem, but to the best of our knowledge, GAL networks, SOM and SOM-SD have
not been used for this task. For the second problem, motif retrieval, we proposed
three new methods based on GHT. These three methods use single SS, SS couple
co-occurrences and SS triplet co-occurrences as primitive aggregates, and they use

the attributes related to secondary protein structures for motif retrieval.

1.3 Thesis Organization

The aim of this thesis is to retrieve a motif from the protein with structural block
comparison by using GHT based methods and to classify the proteins according to

their folds using GAL, SOM and SOM-SD networks.

Before going into details of the algorithms for motif retrieval and fold classification,
bioinformatics and basic concepts about the protein structure and function are

introduced in Chapter 2.
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Chapter 3 discusses feature extraction from primary and secondary protein structures

and feature reduction with divergence analysis.

The methods used for fold classification and motif retrieval are explained in Chapter
4. For fold classification GAL, SOM and SOM-SD networks; for motif retrieval
GHT-based approaches are told in Section 4.1, 4.2, 4.3 and 4.4, respectively.

In Chapter 5 experiments and results are explained and Chapter 6 concludes the thesis.
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2. PROTEIN STRUCTURES

Protein fold classification, structural block comparison and motif retrieval examined
in the thesis scope are studies related to proteomics (protein recognition, protein
classification) and are included by bioinformatics study areas. Being a subclass of
Computational Biology, bioinformatics is a scientific discipline dedicated to solve
biological problems at the molecular level with computer methods. It is an attempt
to describe biological phenomena in terms of numerical and statistical methods.
Historically biology has used less mathematical approaches than other scientific
disciplines such as physics and chemistry. Bioinformatics then, tried to address this
gap by providing the typical results of biochemistry and molecular biology a kit
of analytical and numerical tools, involving computer science, applied mathematics,

statistics, chemistry and artificial intelligence concepts [75].

Proteomics is a subclass of Bioinformatics and deal with large scale study of proteins

especially protein structures and functions. The basic study areas of proteomics are

like that:

predicting protein structure from their sequence
e structural classifications of proteins

e protein fold classification

e protein motif retrieval

e predicting protein-ligand interactions

e aligning proteins’ sequences

e defining criteria of similarity between proteins

e protein structure comparison

13



Within this context, there are a number of approaches for each one of the mentioned
study areas. For the scope of this thesis, we will concentrate our attention on protein

motif retrieval, protein structure comparison and protein fold classification.

2.1 Proteins

Proteins can be found in all living systems ranging from bacteria and viruses through
the unicellular and simple eukaryotes to vertebrates and higher mammals such as
humans. Proteins are present in larger quantities than any other biomolecule and make
up over 50 percent of the dry weight of cells. Proteins are also very important amongst
other macromolecules because they are the basis for any reaction that occurs in living

systems [76].

2.1.1 Biological functions of proteins

Proteins provide a wide range of different biological features that range from DNA
replication to molecules transformation. The possible functions of proteins are large
enough and today we still learn new ones as long as knowledge on protein increases.

Below is a list of several types of proteins and their functions inside a body [75]:

Antibodies are specialized proteins commonly found in blood or other bodily fluids of
vertebrates. They are used by the immune system to identify and neutralize antigens
(foreign invaders like virus or bacteria). One way antibodies destroy antigens is by

immobilizing them so that they can be destroyed by white blood cells.

Contractile proteins participate in contractile processes. They are not only involved
in muscle contraction and movement, but they also participate in localized events

in the cytoplasm or general cell aggregation phenomena.

Enzymes are proteins that facilitate and speed up biochemical reactions. They are
often referred as catalysts. Examples include the enzymes lactase and pepsin.
Lactase breaks down the sugar lactose found in milk and is essential for digestive
hydrolysis of lactose milk. Pepsin works in the stomach and is fundamental for the

process of digestion to break down proteins in food.

Hormonal proteins are messenger chemically released by a cell in one part of the

body that sends out messages that affects cells in other part of the organism. This
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function helps to coordinate certain bodily activities. An example is insulin, that

helps to regulate glucose metabolism by controlling the blood-sugar concentration.

Structural proteins are fibrous and provide both external protection and internal
connective support for the body. For example keratin forms protective covering
of land vertebrates: skin, fur, hair, wool, nails, horns, beaks and feathers. Another
example is elastin that provides support for connective tissues such as tendons,

hides and ligaments.

Storage proteins store amino acids and metal ions used by organisms. Seeds,
particularly of leguminous plants, contain high concentrations of storage proteins.

Examples of amino acid storage proteins in animals include casein and ovalbumin.

Transport proteins are carriers of molecules from one place to another inside the
body. The most known examples are haemoglobin, which carries oxygen from the
lungs to the tissue, and myoglobin, which takes oxygen from the haemoglobin in

the blood and carries it around until needed by the muscle cells.

A placement of each protein in a formal class is not correct because each protein can
have more than one function at a time; because of that many proteins are not easy
to classify. However, all proteins are characterized by the same basic structure made
of 20 types of amino acids. What really differentiates them is the composition; not
all have the same amount of each amino acid and some may even lack one or two
members of the group of 20 entirely. It was realized early in the study of proteins that
variation in size and complexity is common and the molecular weight and number of
subunits (polypeptide chains) show tremendous diversity [76]. There is no correlation
between the size of the protein and the number of polypeptide chains. For example
haemoglobin has four subunits and a molecular mass of 64500 while insulin has two

subunits but only a molecular mass of 5700 [75].

2.1.2 Protein structure

Proteins are formed by different combinations of amino acids and peptide bonds
connecting two amino acids; and they are defined by different levels of protein

structures (primary, secondary, tertiary and quaternary structures). In the next three
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sub sections amino acids, peptide bonds and different levels of protein structures will
be introduced briefly.
2.1.2.1 Amino acids

All proteins are made of a linear composition of amino acid residues. This assemblage
is called polypeptide chain. Amino acids are the chemical units or building blocks of
the body that make up the proteins. Twenty different amino acids are used to synthesize
proteins. The shape and other properties of each protein are dictated by the precise

sequence of amino acids in it.

Each amino acid consists of an alpha carbon atom to which the structures in below are

connected (see Figure 2.1):

e a hydrogen atom;
e an amino group NH;";
e a carboxyl group COO™. This gives up a proton and is thus an acid;

e one of 20 different "R" groups (side chain). It is the structure of the R group that

determinates univocally each amino acid and also its special properties.

a-Carbon Hydrogen
H \ H
+H N \'C
H
Amino Group L Carboxylic Acid
Group
Variable
Side Chain

Figure 2.1 : The basic amino acid structure.

All amino acids contain carbon, hydrogen, nitrogen and oxygen with two of the
20 amino acids also containing sulfur (Table 2.1 summarizes each amino acid
composition). At pH7 the amino and carboxyl groups are charged, but at different

values of pH from 1 to 14 these groups exhibit different behaviors involving binding
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Table 2.1 : Amino acid names, three and one-letter standard abbreviations and linear

structures.
Name Abbreviation | Linear Structure
Alanine ala A CH3-CH(NH2)-COOH
Arginine arg R HN=C(NH2)-NH-(CH2)3-CH(NH2)-COOH
Asparigine asn N H2N-CO-CH2-CH(NH2)-COOH
Aspartic Acid | asp D HOOC-CH2-CH(NH2)-COOH
Cysteine cys C HS-CH2-CH(NH2)-COOH
Glutamic Acid | glu E HOOC-(CH2)2-CH(NH2)-COOH
Glutamine gln Q H2N-CO-(CH2)2-CH(NH2)-COOH
Glycine gly G NH2-CH2-COOH
Histidine his H NH-CH=N-CH=C-CH2-CH(NH2)-COOH
Isoleucine ilel CH3-CH2-CH(CH3)-CH(NH2)-COOH
Leucine leu L (CH3)2-CH-CH2-CH(NH2)-COOH
Lysine lys K H2N-(CH2)4-CH(NH2)-COOH
Methionine met M CH3-S-(CH2)2-CH(NH2)-COOH
Phenylalanine | phe F Ph-CH2-CH(NH2)-COOH
Proline pro P NH-(CH2)3-CH-COOH
Serine ser S HO-CH2-CH(NH2)-COOH
Threonine thr T CH3-CH(OH)-CH(NH2)-COOH
Tryptophan trp W Ph-NH-CH=C-CH2-CH(NH2)-COOH
Tyrosine tyr' Y HO-Ph-CH2-CH(NH2)-COOH
Valine val V (CH3)-CH-CH(NH2)-COOH

and dissociation of a proton. This behavior distinguishes the groups as weak acids
or weak bases. The acid-base behavior in particular is very important since it affects
the potential properties of the protein and their reactivity. As shown in Figures 2.1
and 2.2 all the components of amino acids (amino, carboxyl, hydrogen and R group)

are arranged tetrahedrally around the central alpha carbon.

Each amino acid has a characteristic side chain, or R group that imparts chemical
individuality to the molecule. These R side chains contain different structural features,

such as aromatic rings, -OH groups, -NH3+ groups, COO- groups, sulfur containing
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Figure 2.2 : Alanine composition and its 3D spatial arrangement generated with
Jmol [78].

H

residues etc. This variety in side chains causes difference in the properties of the

individual amino acids and the proteins containing different combinations of them.

2.1.2.2 Peptide bonds

A peptide bond is a covalent bond that is formed between two molecules when the
carboxyl group of one molecule reacts with the amino group of another molecule,
releasing a molecule of water [77]. This is how amino acids are joined together. The
resulting CO-NH bond is called a peptide bond, and the resulting molecule is an amide

(see Figure 2.3).

Carboxyl group Amino

l Peptide bond

........................

v
w Water

Figure 2.3 : Two amino acids join together by the carboxyl group of one and the
amino group of the second, and a molecule water is removed in this
process. Here, grey shows the carbon, blue nitrogen, red oxygen and

white hydrogen.

The molecules must be orientated so that the carboxylic acid group of one can react

with the amino group of the other.
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Any number of amino acids can be joined together in chains of 50 amino acids called
peptides, 50-100 amino acids called polypeptides, and over 100 amino acids called
proteins. A number of hormones, antibiotics, antihumor agents and neurotransmitters

are peptides (proteins).

A peptide bond can be broken down by hydrolysis (addition of water). The peptide
bonds that are formed within proteins have a tendency to break spontaneously when

subjected to the presence of water releasing about 10 kJ/mol of free energy.

Amino acid sequences are read from left to right (from amino to carboxyl terminal).
In order to save space in long protein sequences, only a three letter code (or a single

letter code) is used for each amino acid (see Table 2.1).

The protein sequence can be divided into main chain and side chain components. The
main chain is the same for any protein and differs only in extensions. The main chain
includes all the residues found in the polypeptide chain. This backbone represents
repetition of peptide bonds made up of the N, Cy and C atoms. On the contrary the

side chain represents different components in each protein [75].

2.1.2.3 Primary structure

The primary structure of a protein is the linear order of amino acid residues along the
polypeptide chain [76]. It is the amino acid sequence between terminals expressed

with three of single letter codes. Here is an example of primary structure:

NH3-Ala-Glu-Glu-Ser-Ser-Lys-Ala-Val-Lys-Tyr-Tyr-Thr-...
NH3-A-E-E-S-S-K-A-V-K-Y-Y-T-...

Each protein is defined by a unique sequence of residues. All other representations are
based on this primary level of structure. It is important to realize that two proteins that
contain the same amino acid composition can have very different primary structures.
The following two peptides, for example, are formed by the same amino acids, but

their primary structures are different, since the sequences are different:

H2N-Glu-Ala-Val-Ser-Leu-Ala-Lys-Cys-COOH
H2N-Ala-Glu-Val-Ser-Ala-Leu-Lys-Cys-COOH
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The primary structure determines the three-dimensional structure of the protein, which
in turns determines its biological function. Alteration in normal primary structure of

proteins can produce catastrophic results [75].

2.1.2.4 Secondary structure

Primary structure leads to SS that takes into consideration the local confirmation of
the polypeptide chain or the spatial relationship between amino acids’ residues that are
close together in the primary sequences. The three basic units of the SS are a-helix,
B-strand and turns. It is possible to have other structures but they are considered
variations of the three previous.
o-helix: The most common structural pattern which can be found in a protein is
the right-handed a-helix. A regular -helix has 3.6 residues per turn with an offset
between residues of 0.15 nm. The pitch of the helix is therefore 0.54 nm (3.6 x 0.15)
that is the translation distance between two corresponding atoms on the helix. The
o-helix model has two important angles with regular values that are called ¢ and y,
torsion or dihedral angles. The particular arrangement of the ¢-helix allows some of
the backbone atoms to form hydrogen bonds between the backbone carboxyl oxygen
(acceptor) of one residue and the amide hydrogen (donor) of a residue four ahead
in the polypeptide chain. «-helices are represented with a wireframe, spacefilling,
ball-and-stick and usually cartoon representation (see Figures 2.4, 2.5, 2.6 and 2.7).
B-strand: The f-strand is the second unit of the SS. Although it is displayed as
an arrow in the SS its actual conformation is very similar to an extremely elongated
helix (see Figure 2.4). Regular B-strand has only two residues per turn and a pitch of
0.7 nm. Since a single B-strand is not stable because of the limited number of local
interactions, the majority of $-strands are arranged adjacent to other strands and form
an extensive hydrogen bond network with their neighbors in which the N-H groups
in the backbone of one strand establish hydrogen bonds with the C=0 groups in the

backbone of the adjacent strands.

Adjacent strands can align in parallel or anti-parallel arrangements. The arrow in the
cartoon representation of proteins shows the direction towards the C terminal. It is rare
to find less than five interacting parallel strands in a motif, suggesting that a smaller

number of strands may be unstable.

20



Figure 2.4 : Cartoon representation of the IENB (PDB ID) protein. Helices are
represented as pink and purple ribbons, strands are represented as yellow
arrow. Image generated with Jmol [78].

Figure 2.5 : Spacefilling representation of the 1FNB (PDB ID) protein. Image
generated with Jmol [78].
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Figure 2.6 : Wireframe representation of the IFNB (PDB ID) protein. Image
generated with Jmol [78].

Figure 2.7 : Ball-and-stick representation of the 1FNB (PDB ID) protein. Image
generated with Jmol [78].

22



A stable block of B-strands is usually called 3-sheet and consists of some f-strands
connected laterally by at least two or three backbone hydrogen bonds, forming a

generally twisted, pleated sheet.

The most known and spectacular arrangement of -strands is called B-barrel. The
B-barrel is a large B-sheet that twists and coils to form a closed structure in which the
first strand is hydrogen bonded to the last. -strands in 3-barrels are typically arranged
in an anti-parallel fashion.

Turns: Turns have the universal role of enabling the polypeptide to change direction
and in some cases to reverse back on itself. The reverse turns or bends arise from the

geometric properties associated with these elements of protein structure.

Several definable turns and bends in protein structure have been recognized and
classified either by the relationship between the ¢, y angles of the residues in the
turn or the hydrogen bonding of their amide N-H and carbonyl-oxygen atoms. The
tightest turns involve only three residues with hydrogen bonding between the carbonyl
of the first residue (N-terminal end) and the N-H of the third residue. These turns are
referred to as Yy turns. Turns involving four residues are more common with hydrogen
bonding from the carbonyl of residue 1 to the N-H of residue 4. One class of these

turns is called B-turns, typically found at turns of f3-sheet structure [75].

2.1.2.5 Tertiary structure

The description of the complex and irregular folding of the peptide chain in three
dimensions is called tertiary structure. It is essentially a picture of what the shape of
the entire protein actually looks like. The functionality of the protein derive strictly
from its conformation. If something changes the three dimensional conformation the
activity of the protein will be lost. These complex structures are held together by
the R-groups of each amino acid in the chain that generate a combination of several
molecular interactions. In short, R-groups determine the structure of regions of peptide

chains that do not form a regular SS [75].

2.1.2.6 Quaternary structure

The quaternary structure of a protein describes the interactions between different

polypeptide chains that make up the protein [79]. Some proteins (such as hemoglobin)
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have more than one peptide chain (these are called multimeric or oligomeric proteins).
Oligomeric proteins can be composed of multiple identical polypeptide chains.
Proteins with identical subunits are termed homo-oligomers. Proteins containing
several distinct polypeptide chains are termed hetero-oligomers. The manner in which
these chains fit together is the quaternary structure. Obviously, if a protein is made up
of only one chain (monomeric), there is no quaternary structure for that protein. The
forces that hold different chains together are the same that hold the tertiary structure
together. Figure 2.8 shows the structure of hemoglobin, the oxygen carrying protein
of the blood, that has four subunits. Each subunit is defined with a different color and
contains two & and two 8 subunits arranged with a quaternary structure in the form,

o 3>. Hemoglobin is, therefore, a hetero-oligomeric protein [75].

Figure 2.8 : Quaternary structure of hemoglobin [79].

24



3. FEATURE EXTRACTION FROM PROTEIN STRUCTURES

In this thesis, for protein fold classification and motif retrieval, different features
extracted from primary and secondary protein structures were used. To classify
proteins according to their folds GAL network, SOM and SOM-SD methods were
used. GAL network and SOM were tested with features extracted from primary protein
structures and representing physicochemical attributes of amino acids. SOM-SD was
tested with a new data structure extracted from protein SS to classify the proteins. For
motif retrieval, GHT-based three methods were used with the features extracted from

protein SSs. These features will be explained in the following sections.

3.1 Feature Extraction for Primary Protein Structures

To deal with the fold classification problem, Ding and Dubchak extracted the
following six attributes from protein sequences; amino acid composition, predicted SS,
hydrophobicity, normalized van der Waals volume, polarity and polarizability [37]. Of
the above six attributes, only amino acid composition contains 20 components, with
each representing the occurrence frequency of one of the 20 native amino acids in a
given protein. For the remaining five attributes, each contains 21 components [50].
These attributes are shown in Table 3.1.

Table 3.1 : The six attributes that form feature vector, their symbols and number of
components. Feature vector’s dimension is 125.

Symbol Attribute #Components
C Amino acid composition 20
S Predicted SS 21
H Hydrophobicity 21
A% Normalized van der Waals volume 21
P Polarity 21
Z Polarizability 21

The composition vector is computed directly from amino acid sequence.

Given that the 20 amino acids which are ordered alphabetically (A,C,D,E,EG,
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H,LK,L.M,N,PQ,R,S,T,V,W,Y) are represented as AA|, AA,,..., AAj9 and AAyp; and
the number of occurrences of AA; in the entire sequence is denoted as n;, the
composition vector is defined as:

momymg ny
L’L77 L’ L
where L is the length of the sequence [51]. The predicted SS is divided into three

3.D

groups which are helix, strand and coil; and also for the other four attributes, those
of hydrophobicity, normalized van der Waals volume, polarity and polarizability, the
20 amino acids are divided into three groups according to the magnitudes of their
numerical values. These three groups are shown in Table 3.2. Three descriptors,
composition (C), transition (T) and distribution (D) are calculated for a given attribute
to describe the global percent composition of each of the three groups in a protein, the
percent frequencies with which the attribute change its index along the entire length of
the protein, and the distribution pattern of the attribute along the sequence, respectively.
Five different amino acid attributes produce five parameter vectors each containing
3(C)+3(T)+5x3(D)=21 scalar components. The sixth parameter vector used was the
vector of the percent composition of amino acids. Consequently, the feature vector
includes 20+ 21 x 5 = 125 features (components) for a protein [9].
Table 3.2 : Five attributes (predicted SS, hydrophobicity, normalized van der Waals
volume, polarity and polarizability) and the division into three groups.

While the first attribute is related to SSs, the other four attributes are
related to amino acids.

Property Group 1 Group 2 Group 3

S Helix Strand Coil
Polar Neutral Hydrophobic

H R.K,E.D,Q,N G,ASTPHY C,VLIMEW
0-2.78 2.95-4.0 4.43-8.08

\Y% G,AS,C,T.,PD N,V.E.,Q,LLL M,H,K,ER,Y,W
4.9-6.2 8.0-9.2 10.4-13.0

P LLEW,CM, VY PATG,S H,Q.R,K,N.E,D
0-0.108 0.128-0.186 0.219-0.409

Z G,A,S,D,T C,PN,VE,QILL KMHFR,Y,W

3.2 Feature Extraction for Secondary Protein Structures

To extract the features for secondary protein structures a new file format having .nss

extension was obtained for each individual protein. In these files each SS of protein
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has the format shown in below:

# type <ALPHA,BETA>

# CharName = E beta beta-strand

# CharName = B bridge short-beta-bridge

# CharName = G 3o 3;9-helix

# CharName = H helix alpha-helix

# CharName = I pi pi-helix

# CharName = T turn turn

# CharName = S bend bend

# CharName = C coil random coil

# number of residues

# chain

# sequence of residues

# (BP1 BP2 sheet) for each residue (only for beta)

# coordinates of the first a-Carbon (x,y,z)

# number of the first residue

# coordinates of the last a-Carbon (x,y,z)

# number of the last residue

# barycentre (X,y,z)

# orientation (x,y,z)

Of the above attributes coordinates of first -Carbon atom and coordinates of last
o-Carbon atom related to each SS in protein were used as features for structural block
comparison with GHT-based methods; and orientation related to each SS in protein

was used as feature to classify proteins with SOM-SD.

3.2.1 Protein Gaussian image (PGI)

Extended Gaussian Images (EGI) are useful for representing the shapes of
surfaces [80]. Surface normal vector for any object can be mapped onto a unit sphere,
called the Gaussian sphere. Mapping is called the Gaussian image of the object. The
mapping is that the surface normals for each point of the object are placed so that
their tails lie at the center of the Gaussian sphere and heads lie on a point on the

sphere appropriate to the particular surface orientation. It can be extended assigning
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a weight to each point on the Gaussian sphere equal to the area of the surface having
the given normal. In this situation, the mapping is called extended Gaussian image.
EGI represents the histogram of the surface orientations (see Figure 3.1). The EGI
introduced for applications of photometry by B.K.P. Horn [80] has been extended by
K. Ikeuchi [81, 82] (the complex EGI). PGI is a representation in the Gaussian image

Gauss mapping

ny,

Figure 3.1 : The EGI of cube. The EGI of a 3D object or shape is an orientation
histogram that records the distribution of surfeace area with respect to
surface orientation [80].

in which each SS is mapped with a unit vector from the origin of the sphere having
the orientation of the SS. Each point of the sphere surface contains the data orientation
(Iength, location of starting and ending residue, etc.) of the existing protein SSs having
the corresponding orientation. In Figures 3.2 and 3.3, two examples of 1FNB and

4GCR proteins are shown in PGI representation.

The chain sequence of SS is recorded as a list which is mapped on the sphere
surface and a directed graph is obtained. Nodes of the graph include the orientation
information related to SS. In Figure 3.4 green arrows represent the chain sequence

(directed graph) related to Greek Key motif.
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Figure 3.2 : Left picture generated by JMol represents the SSs of protein 1FNB.
Right picture is PGI of the 1FNB. For both pictures blues are f3-sheets
and reds are a-helices.

05T
-1 ’_1
Figure 3.3 : Left picture generated by JMol represents the SSs of protein 4GCR.
Right picture is PGI of the 4GCR. For both pictures blues are 3-sheets

and reds are o-helices.

05

Figure 3.4 : PGI of Greek Key motif contained in protein 1FNB. Red arrows
represent the Greek key motif, while the green lines show the sequence
of SSs.
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3.3 Feature Reduction

Feature reduction is to transform the data from high dimensional space to fewer
dimensional space. The aim of this technique is to define the most significant features
in order to save time without changing success rate. There are several methods related

to feature reduction; in this thesis divergence analysis is employed for this task.

3.3.1 Divergence analysis

Divergence analysis is generally used to examine scatter of classes and distances
between classes in feature space. In divergence analysis the best d features are selected
among the given n features. We can say that it is used to determine the best features.
In this thesis divergence analysis was used to reduce dimension of feature vector. To
calculate divergence value within-class scatter matrix and between-class scatter matrix
are used. These two matrices can be used as class separation criteria. Within-class
scatter matrix W is the covariance matrix of the features (attributes) of the given
class. Between-class scatter matrix B is the covariance of class means. Divergence
value is proportional to between-class scatter matrix and inversely proportional to the

within-class scatter matrix [83]. Divergence value is calculated using (3.2):

Wl =Y (B~ i) (B ~ )"
t

R K . K .
M= ZH;’ Wi = ZW,

k=1 k=1

K L (3.2)
Bi=Y (B,~R) (-1

k=1
Di=tr(W,)"'B))

j=12,.,K; i=12,..n

Here, sz represents the feature vector belonging to j-th class and having i dimension;
=
I

dimension; W, represents within-class scatter matrix of j-th class; B; represents

represents the mean of feature vectors belonging to j-th class and having i

between-class scatter matrix; K represents the number of classes; D; represents the
divergence value in i-dimension; and ¢r(.) represents the application of trace process

to the matrix obtained as a result of division.
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Divergence value provides information about the scatter of the vectors formed by
chosen features. Small divergence values and large divergence values represent
vectors’ scattering and vectors’ aggregating, respectively in the feature space [84].
So, in this thesis, the features having large divergence values were searched for better

classification performance and dimension reduction.
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4. PROTEIN CLASSIFICATION METHODS

Protein fold classification and motif retrieval are important issues for proteomics.
There are several methods to classify proteins according to their folds in the literature.
In this thesis to classify proteins three neural network models were used: GAL, SOM
and SOM-SD networks. This thesis has a novelty because to the best of our knowledge,
these methods have not been used for protein fold classification task. Besides, for
motif retrieval problem three methods based on GHT were developed. These fold

classification and motif retrieval methods will be described in the following sections.

4.1 Grow and Learn (GAL) Network

In protein fold classification, it is desired that the decision-making processes lead
to high performances with low computational loads, and are controlled with few
parameters. These requirements are almost satisfied by the Grow and Learn (GAL)
network. GAL is an incremental neural network for supervised learning, and
determines the number of nodes during training if need arises. The network grows
when it learns and shrinks when it forgets [85]. GAL represents the distribution of
feature vectors according to the minimum distance measure. Computational loads of
training and classification processes of GAL are rather low. Moreover, there is not any

parameter to be determined before the training.

4.1.1 GAL network structure

The structure of GAL network is portrayed in Figure 4.1. The first layer is the layer
of the input units. The second layer is that of the exemplars (prototypes) and the
third is the class layer. The number of nodes in the exemplar layer is automatically
determined during the training. When an input feature vector X is presented to the
network, the distances between X and the weight vectors (W;) of exemplars, E; nodes,
are computed using a suitable metric, e.g., Euclidean distance. The winner-takes-all

ensures that only one node will be activated, namely the node whose weight vector
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is closest to the input vector is determined as the winner node. Network structure is

C class layer
[Q] E exemplar layer
WINNER TAKES ALL

C)C)C) O C)C)

W weights of
exemplars
input layer

Figure 4.1 : GAL network structure. X is the mput vector. W; is the weight vector of
the exemplar node E;. D; is the distance between X and W;. The nodes
in the exemplar layer compete and only one of Ej is active. C is the layer
of class units. n is feature space dimension [85].

described by the following equations [84]:

(xi —wji)?

S
I
M=

p—

, De=min(D))
j

&
|
—N

0, otherwise 4.1)

1, if eis an exemplar of class ¢

0, otherwise
Ee : Tec

0
I

3
I
M

where, x; denotes the i-th element of input feature vector X. W; is the weight vector
of the exemplar node E;, and wj; denotes the i-th element of W;. D; is the distance
between input vector X an W;. Only one of E; is active, namely that whose weight
vector is closest to the input vector which in turn activates the corresponding class
node. C is the layer of class nodes. T, is the connection between exemplar e to class
c. T, values are 1 or O depending on whether e is an exemplar of class ¢ or not. These
connections are initially set to zero, and become 1 during the training. The activations
of class nodes are computed by a dot product, at this last stage Boolean OR operation
is thus executed over the exemplars representing the same class. » is the dimension of

feature space.
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4.1.2 Partitioning of feature space by GAL network

As an example to depict how GAL partitions the feature space, a two-dimensional
phantom feature space is formed, see Figure 4.2. In this phantom space, it is seen that
there are two different classes each having three nodes (exemplars). As the nearest
distance measure is used in the classification, a hyperplane passes through the two
closest nodes which belong to different classes, and this hyperplane is equidistant to
both nodes. A piecewise class boundary is thus created with several hyperplanes (the
term "hyperplane" is used for the general form in an n-dimensional feature space; it is
a "line" in two dimensions, and a "plane" in three dimensions). The same mechanism

is valid in multi-dimensional feature spaces.

Sfeature;
1 -+
nodes of class 1
ESTI
ki x P
W12 Leescrsenerssnnsrssnne @
O \ piecewise
boundary formed
. : ’
o 4 & by the nodes
nodes of class 2
0 w11 1 feature,

Figure 4.2 : GAL’s partitioning of a two-dimensional phantom feature space.
Ey_3and E4_¢ are nodes (exemplars) of class 1 and class 2, respectively.
A piecewise boundary is approximated with several hyperplanes, each
one passing equidistantly through the closest two nodes of opposite
classes. feature; and feature, values are assumed to be scaled within
[0—1] range [84].

4.1.3 Learning and forgetting in GAL

The most important feature of GAL is that the number of E; nodes are automatically
determined and gradually increased during learning according to the distribution of the
feature vectors in the feature space. The choice of exemplar layer nodes, hence, the
structure of GAL network depends on the order of the initially given input vectors. A
node stored in previous iterations may become redundant when a new node closer to
class boundary is generated. In order to keep the topology of the network simple those

redundant nodes may be excluded from the network with the forgetting algorithm of
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GAL. The aim of the forgetting algorithm is to detect and exclude those nodes that do

not change the performance of the network when being eliminated. The steps during

the learning are mentioned below [85].

Stepl : Initially choose a number of feature vectors randomly from the training
set as many as the number of classes. Each vector should be chosen among the
patterns of a particular class. Set each chosen vector as an exemplar layer node of

GAL. Initialize the iteration number.

Step2 : Decrease the iteration number. If the iteration number is equal to zero

terminate the learning algorithm, otherwise go to Step 3.

Step3 : Choose a vector randomly from the training set, and present it to the network

as input.

Step4 . Calculate the distances between the input vector and the nodes and
determine the closest node according to (4.1). If the classes of the closest node

and input vector are the same, go to Step 2. Otherwise, go to Step 5.

StepS5 : Include the input vector as a new node to the network. The input vector is

assigned as the associated weight vector of the new node. Go to Step 2.

Forgetting algorithm can be run several times during the training depending on the

iteration number. The steps during the forgetting are given below. Iteration number is

initialized as the number of exemplar layer nodes.

Stepl : Temporarily remove a node from the network in some order and present this

node as an input vector to the network.

Step2 : Calculate the distances between input vector and network nodes. If the

classes of the input vector and the closest node are the same, go to Step 4.
Step3 : Include the input vector again in the network.

Step4 : Decrease the iteration number. If the iteration number is equal to zero

terminate the forgetting algorithm, otherwise go to Step 1.
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4.2 Kohonen’s Self-Organizing Map (SOM)

Kohonen’s SOM, which is developed by Tuevo Kohonen in 1982 [86], is a type of
neural network which uses unsupervised learning method. The aim of the SOM
learning algorithm [87] is to learn a feature map which, given a vector in the input
space return a point in the output space. This is obtained in the SOM by associating
each point in the output space to a different neuron (output node). Given an input
vector, the SOM returns the coordinates within the output space, of the node with
the closest weight vector. Thus, the set of output nodes induces a partition of the
input space, where input vectors that are close to each other will activate neighbor
output nodes. In the training of Kohonen network not only the weights of the winner
output node but also weights of its neighbors within a pre-determined neighborhood
are updated. During learning, as the iteration number increases the neighborhood size
is decreased nonlinearly [84]. The structure of SOM network is depicted in Figure 4.3.
The distance between the j-th node (w;) in the output layer and the input vector x is

calculated as follows:
n
D;j =Y (xi—wji(k))? (4.2)
i=1

where 7 is the feature vector dimension and k is the iteration number. Training of

<+— output space

output node

input node
O O
X . X, <«— n-dimensional

input space
Figure 4.3 : Input and output spaces related to Kohonen’s SOM network.
Kohonen’s SOM network is as follows [88]:
Step 1. Before starting the learning; number of output nodes, number of iterations and
neighborhood function are determined. Initial weights of the output nodes are set to
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random values within [0-1] range.

Step 2. A vector randomly chosen from the training set is presented to the network as
input.

Step 3. The distances between the input vector and network nodes are calculated using
(4.1). Here, x; and wj; represent the i-th element of the input vector and i-th weight of
the j-th output node, respectively i = 1,2, ...,n.

Step 4. j-th output node having the minimum distance is determined.

Step 5. The weights of the j-th output node and its neighbors are updated using the

expression below.
wii(k+1) = wji(k) +n (k) - (xi = w;i(k)) (4.3)

Here, 1 (k) is learning rate and k is iteration number.
Step 6. Number of iterations is reduced. If the number of iterations is not equal to
0, Step 2 and other steps are repeated. If the number of iterations is 0, the learning

algorithm is terminated.

After completing the training, class labels are assigned to the output nodes. To
accomplish the labeling, each vector in the training set is fed to the trained network and
the winner node at the output layer whose weight vector lies closest to the input vector
is determined. The output nodes are associated with training data classes according to
majority voting, i.e, the training data class that is assigned most frequently to an output

node becomes its label.

The number of output nodes of SOM network should be determined before the
training process. Inability to determine the optimum number of nodes decreases the
classification performance. Using an excessive number of nodes causes elongation
of the classification time. In GAL network, output nodes are located close to the
boundaries. However, in SOM network, the training algorithm distributes (places)
the output nodes homogeneously through the input feature space. SOM’s training
algorithm, with this strategy, causes the use of more output nodes in multi-dimensional

feature space [84].
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4.2.1 Partitioning of feature space by SOM network

SOM network’s partitioning of feature space is similar to that of GAL network. There
are two important differences between SOM and GAL networks: (i) The number of
output nodes in GAL network is determined according to the needs during training,
and (i1) weights of the output nodes in GAL network are determined by assigning the

input vectors’ elements directly to those output nodes [84].

4.3 Self Organizing Maps for Structured Data (SOM-SD)

In this part of the thesis proteins are classified according to their folds using
SOM-SD. A new data representation PGI is derived from EGI and in order to validate
the effectiveness of the PGI representation of the protein structure we employ an
unsupervised framework for structured data (SOM-SD [89]) in a practical structural
learning problem, where each protein is represented by a PGI. SOM-SD represents
an extension of the SOM framework, where the input space is structured domain
and the computational framework is similar to that defined for recursive neural

networks [90,91].

SOM-SD is a fully unsupervised model, namely an extension of traditional SOM, for
the processing of labelled directed acyclic graphs (DAGs). The extension is obtained
by using the unfolding procedure adopted in recurrent and recursive neural networks,
with the replicated neurons in the unfolded network comprising of a full SOM. The
essential idea of recursive neural networks is to model each node of an input DAG by
a multilayer perceptron, and then to process the DAG from its sink nodes toward the
source node, using the structure of the DAG to connect the neurons from one node to

another [89]. In this section the same notation as in [89] was used.

SOM-SD framework can be defined by using a computational framework similar to
that defined for recursive neural networks [91]. The class of functions which can be
realized by an RNN can be characterized as the class of functional DAG transductions
7 : 7* — RX, which can be represented in the following form T = go T, where 7 :
J# — R is the encoding function and g : R"* — R* is the output function. 7 is defined

recursively as:

0(the null vector in R"), if D = void graph

(D) = { 4.4)
o(y;, 7(DW, ..., D)), otherwise
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where D is a DAG, y; is the label of the supersource of D and 7 is defined as:

T:R"xR"x...xR"— R" 4.5)
%/_/
c times
A typical form for 7 is:
C
t(uy,xV,... x9) = F(Wuy, + ) Wi/ +6) (4.6)

j=1
where F;(v) = sgd(v;) (sigmoidal function), u, € R™ is a label, 6 € R”" is the bias
vector, W € R™*" is the weight matrix associated with the label space, x() e R
are the vectorial codes obtained by the application of the encoding function 7 to the
subgraphs D) (i.e., x/) = (D)), and W € R™™ is the weight matrix associated
with the j-th subgraph space. The output function g is generally realized by a

feed-forward neural network.

The key consideration to adapt this framework to the unsupervised SOM approach,
is that the function 7 maps information about a node and its children from a higher
dimensional space (i.e., m+ c-n) to a lower space (i.e., n). The aim of the SOM

learning algorithm is to learn a feature map
M:T—-A 4.7)

which, given a vector in input space J returns a point in the output space A. This
is obtained in the SOM by associating each point in A to a different neuron. Given
an input vector v, the SOM returns the coordinates within A of the neuron with
the closest weight vector. Thus, the set of neurons induces a partition of the input
space J. In typical applications J = R™, where m > 2, and A is given by a two
dimensional lattice of neurons. In this way, input vectors which are close to each
other will activate neighbor neurons in the lattice. SOM-SD represents an extension of
the SOM framework, where the 7 function is implemented in an unsupervised learning
framework, in order to generalize (4.7) to deal with the case J = ‘g}#(c), i.e., the input

space is a structured domain with labels in Y. The function
ME YR A (4.8)

is realized by defining (4.4) as shown in (4.9)
nilg, if D = void graph
MH(D) = 4.9)
Miode (ys, MF(DW), . M*(D)), otherwise
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where s = source(D), (D), ..., D are the subgraphs pointed by the outgoing edges

leaving from s, nil 4 is a special coordinate vector into the discrete output space A, and

Mupde - YxAX...xA—A (4.10)
——

¢ times

1s a SOM, defined on a generic node, which takes as input the label of the node and the
"encoding" of the subgraphs D), ... D(©) according to the M* map. By "unfolding"
the recursive definition in (4.9), it turns out that M*(D) can be computed by starting
to apply M,,,4. to leaf nodes (i.e., nodes with null outdegree), and proceeding with the
application of M,,,4, bottom-up from the frontier nodes (sink nodes) to the supersource
of the graph D. In this process M, 4. returns the coordinates of the winning neuron,
which, due to the data reduction capability of the SOM, still constitutes a reduced
descriptor of the node. An example of structured data and how the computation
described above proceeds is shown in Figures 4.4 and 4.5, respectively. In this case,
nil 4 is represented by the coordinates (-1, -1). A highlighted neuron in Figure 4.5

refers to the best matching neuron for the given input vector.

0.38,0.80,0.45 0.21,0.87,-0.44

-0.41,-0.89,0.17

Figure 4.4 : Structured-data (DAG), obtained using the PGI representation, on a
cube. Red lines show the SSs and the green lines represent the sequence
of the SSs and forms a graph including three edges and three vertexes
(nodes). Each node has a three-dimensional label.

At the application of M,,,4. each label in Y encode in U C R™. So, for each node
(vertex) v in vert(D) there is an m-dimensional vector u, and the output space A is
formed by a g-dimensional lattice of neurons. For example, if ¢ = 2, and we have

ni neurons on the horizontal axis and n neurons on the vertical axis, then output
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Figure 4.5 : Example of computation of M for the graph related to structural data in
Figure 4.4. The picture shows multiple applications of M,,,4. to the
nodes of the graph. First of all, the leaf node 3 is presented to M,,,4e,
where the null coordinates are represented by (-1, -1). The winning
neuron has coordinates (2, 2). This information is used to define the
input vector representing node 2. This vector is then presented to M,,,4.
and the winning neuron is found to have coordinates (1, 0). Using both
this information and the previous one, the input vector for node 1 can be
composed and presented to M,,,;.. This time the winning neuron is
found to have coordinates (0, 1) and it is associated to the whole graph,
ie, M*D = (0,1).
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space A = [1...n1] x [1...np] and the winning neuron is represented by the coordinate
vector ¢ = (cy,c2) € [1...n1] x [1...n3] of the neuron which is the most active in this

two-dimensional lattice. With the above assumptions, we have
Moode : R" x ([L...nq] x -+ x [1...ng])¢ — [1..ng] x - x [1...ng] (4.11)

and the m + cq dimensional input vector v to M,,,4.. Here, v represents the information

about a generic node v and v is defined as

V= [uvxchl (v Xehy[v] "'Xchc[v]] 4.12)

where X[, 1s the coordinate vector of the winning neuron for the subgraph pointed

by the i-th pointer of v.

Given a DAG D in order to compute M*(D), the SOM M,,,4. must be recursively
applied to the nodes of D.

Each neuron with coordinates vector ¢ in the g-dimensional lattice has an associated

weight vector we, € R™*<4, The weights related to each neuron in the g-dimensional

lattice M,,,4. can be trained using the two-step process. In the first step, the neuron

which is most similar to the input node v, defined as in (4.12), is chosen as follows:
cix(t) = arg min | A(v(t) —we, (1)) || (4.13)

Ci
where 7 is iteration and A is a (m+ cq) X (m+ cq) diagonal matrix which is used to
balance the importance of the label versus the importance of the pointers. In the second

step, the weight vector we,,. is moved closer to the input vector v

We, (1 4+1) = We, (1) +1 (1) f (Aisr) (V(2) = We, (1)) (4.14)

where 7 is learning rate, f(A;.,) is neighborhood function and A;,, is the topological
distance between ¢, and ¢;*. The neighborhood function takes the form of a Gaussian

function

A2
f(Air) = exp (— ’*r) (4.15)

202
where o is the spread function which determines the neighborhood size. As the
learning proceeds and new input vectors are given to the map, the learning rate
gradually decreases to zero according to the specified learning rate function type. A

pseudocode of the training algorithm for M* is seen in Table 4.1.
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Table 4.1 : Training algorithm for M.

Input : Set of training DAGs T = D;_ ..y, ¢ maximum outdegree of DAGs in T,
map Mm}de;
begin
Randomly set the weights for M4,
repeat
Randomly select D € T with uniform distribution;
List(D) < an inverted topological order for vert(D)
for v = first(List(D)) : last(List(D)) do
train(Myoqe ([, M* (chy V) ) MF (cha [V]) - - - M* (che [V))]));
end
end

4.4 Hough Transform for Protein Motif Retrieval

Hough transform (HT) is a feature extracting method using coordinate transforma-
tion [92]. It was introduced by P.V.C. Hough in 1962 and patented by IBM. Hough used
angle-radius parameters exclusively for retrieving the straight lines. HT was extended
for extracting circles by R.O. Duda and PE. Hart in 1972 [93] and for retrieving
parabolas by H. Wechsler and J. Sklansky in 1973 [94]. Later it was generalized as
GHT by Ballard for retrieving arbitrary shapes [95]. Basically, the original HT is a
voting process where each contour point detected in the image votes for all possible
patterns passing through that point. As an example in the implementation to detect
straight lines, votes are accumulated in an array A(p, 0), where 0 is the angle made by
the normal to the straight line with the x-axis and p is the perpendicular distance of the

straight line from the origin. The representation of the straight line in (p, 0) form is
xcos@ +ysin@ =p (4.16)

This accumulator array A(p,0) is called the Hough Space (HS). The number of
votes for each cell in A(p, 6) represents the number of pixels in the searched pattern
extracted from the image. In this process each pixel in the image space is mapped to
a sinusoidal curve of (4.16) in the HS. So HT is a transformation from a point to a

curve [96].

The HT allows the identification of geometric objects by transformation of the points
in an image in a parameter space and is translation and rotation insensitive. Figure 4.6

shows how three points in the left x, y coordinate space can be transformed into lines
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in a parameter space in which parameters are slope m and intercept g. Parameter
space represents the parameters of the bundle of lines which cross each particular
point (three points in the example). If the same transformation is carried out for every
point of the segment on the left in Figure 4.6, then the parameter space will consist
of a bundle of lines all of which will intersect in a particular point of the mq space
corresponding to the actual slope and intercept of the line containing three points.
The HT consists of performing a vote procedure in a quantized parameter space and
retrieving the peaks which will have a high probability of corresponding to descriptors

of the actual instances of the wanted shapes in the query image. The same principle

y y = mx+q q q = yrmx;
3 4 _
25 y=-0.5x+2 15 W:%:i —
2 3
15 25
1 2
05 15
g 1
05 05
-1 X 0 m

al L { z 3 L < 2 45 4 105 d 05 1 15 2
Figure 4.6 : The principle of Hough transform for lines: geometric space (left) and

parameter space (right).

also works for other shapes. Figure 4.7 shows the case of a circle [97], in which a
point on the circle in the geometric space corresponds a circle in the parameter space.
The parameters x and y positions in the geometric space correspond the coordinate
of the of the center in the parameter space and the intercept coordinate of the circles

represents the coordinate of the center in the geometric space. Geometric spaces are

Ay Xeyet) = F-ye) H(x-x)*r’=0

c

2 25
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Figure 4.7 : Retrieval of circles of known radius: geometric space (left) and

parameter space (right).

used as parameter spaces for retrieval of general objects, whatever the shape, by fixing

a Reference Point (RP) internal to the objects. This extension is called Generalized
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Hough Transform (GHT) [95]. In GHT arbitrary shapes are represented in the HS
which consists of the parameters of the rigid motion - in 2D (x,y, 0,s) x, y representing
translation, 0 rotation and s a scaling factor. For each evidence extracted from the
image, like in the original Hough approach, a mapping rule is defined which determines
the value of the parameters of rigid motion (locus of points in HS) compatible with the
evidence. Figure 4.8 shows an arbitrary shape and Reference Table (RT) parameters

(e, r). For retrieving the arbitrary shape the process is that [98]

1. Pick aRP (e.g., (x¢,y¢))

2. Draw a line from the RP to the boundary

(98]

. Compute ¢ (i.e., perpendicular to gradient’s direction)

o

. Store the RP (x.,y.) as a function of ¢ (i.e., build the RT)

)

. Quantize the parameter space

P [‘xcmin . 'xcmax] [ycmin . 'ycmax]

6. For each edge point (x,y)

(a) Using the gradient angle ¢, retrieve from the RT all the (a, r) values indexed

under ¢

(b) For each (o, r) compute the candidate RPs:

Xe = x+rcos(o)

Ve =y+rsin(@)
(c) Increase counters by giving vote to the possible RP locations:
+ 4 (Plee][ye])
7. Possible locations of the object contour are given by local maxima in P[x.|[y.]

8. If P[x][y.] has the maximum number of votes, then the object contour is located at

(-xC7yC)

Figures 4.9 and 4.10 are pictorial 2D representations of applying GHT to discrete

objects such as proteins made up of different SSs. In Figure 4.9 arrows represent
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Figure 4.8 : Retrieval of arbitrary shapes using RT parameters (., r).

protein SSs and the motif consists of two helices and three strands. At the top left of
the figure query protein and the RP related to this protein are shown. RP is generally
determined as the geometric mean of the SSs. At the bottom left mapping rule is seen.
To determine the mapping rule, for each SS (two helices and three strands) the distance
between SS midpoint and RP, p; and the angle between SS segment and the segment
between SS midpoint and the RP, 6 are calculated. At the right of the figure votes
space is seen and the point having the maximum number of votes is determined as the
RP. In Figure 4.10 query protein and mapping rule are the same as in Figure 4.9. In the

right of this figure, each vote is given to different points. So there is no peak formation.

In this thesis the GHT is exploited for comparison and search of structural similarity
between a given motif or domain or entire protein and the proteins of a database like
PDB [2]. Note that, if the searched structure is just a component of a protein (like
a structural motif or a domain) the same algorithm supports the detection and the

statistical distribution of these components.

Here, GHT-based three algorithms are used for motif retrieval. The first algorithm
uses single SS, the second one uses SS couple co-occurrences and the third one
uses SS triplet co-occurrences for searching a general motif in the macromolecule

(protein). In all three algorithms firstly a motif model is created by using SSs of
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Figure 4.9 : Applying GHT to proteins, positive case with peak formation.

helices and strands

Query protein

Mapping Rule Votes Space
Figure 4.10 : Applying GHT to proteins, no peak formation is detected.
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a given macromolecule, e.g. for creating five-SS motif, five SSs of the protein are

selected randomly and used.

4.4.1 Selected primitive aggregate: The single secondary structure (SSS)

This method adopts the single SS as primitive for the voting process. The SS being
a helix or a sheet is represented by a straight segment on the regression line from all
the Cy atoms of the segment. The extremes are determined by the projection of the
terminal Cy atoms. The selective component of the RT consists of two parameters,
p and O, (see Figure 4.11a); p is the segment length between RP and SS midpoint
A, and 0 is the angle between SS axis and the segment m The mapping rule
which determines the candidate RP locations, for a given SS, is a circle on a plane
perpendicular to the axis of the SS (see Figure 4.11b), with radius r = p sin 6, having
the center along the SS axis and with a displacement d = p cos @ from midpoint A.
Each SS of the protein under scrutiny contributes on a circular locus on the parameter
space. The candidate RP locations are detected as the points of intersections of these
circles and, in ideal conditions, the number of intersections is just Sj. §; is the

number of SSs in the query motif. Figures 4.12a and 4.12b show the parameter

A =
- K\-
Type A: a-helix, 1, TD.. —

a
Figure 4.11 : a) Single SS azld RT parameters. b) Locus of candidate RP positions in
parameter space.
space resulting from the search of a homogeneous motif consisting of four SSs
(B-sheets) and five heterogeneous SSs (three o-helices and two 3-sheets). In these
two examples the peaks, consisting of four blue circle intersections and three red and
two blue intersections are located for four-SS and five-SS motifs, respectively. For

what concerns the implementation, it is worth to point out that in order to detect the
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Figure 4.12 : a) Parameter space formed by applying the SSS strategy on the 22 SSs
of 1FNB protein. b) The same on the 46 SSs of 7FAB protein. RP and
maximum circle intersections are almost coincident for both cases.
peaks of intersections, the voting space is smoothed by the accumulation of nearby
votes (within a given radius). In this application time complexity is O(n?), where 7 is
the number of votes in the vote space (note that only the relevant votes are stored in
memory, there is not a matrix with all the possible cells). After smoothing, the peaks

are detected avoiding to pick high votes that however are not the top of a peak but lie

close to one such peak [99-101].

4.4.2 Selected primitive aggregate: The secondary structure couple

co-occurrences (SSC)

In this method a couple of SSs set up a local reference system, e.g. having the origin
in the middle point of the first SS, the y-axis on its SS axis and the x-axis on the plane
defined by the y-axis and the midpoint of the second SS, then the z-axis is orthonormal
to the previous two. In this reference system, the motif RP coordinate is determined,
and for each couple of SSs of the protein under scrutiny that matches a motif couple,

the candidate RP location is uniquely fixed.

The number of motif couples and protein couples is given by 2-combinations of m and
N respectively: C(m,2) and C(N,2). Here, m is the number of motif SSs and N is the
number of protein SSs. As consequence, the computational complexity of the motif
retrieval process is O(N>m?) [102]. For every couple in the motif, a tuple is introduced
in the RT where the selective component that characterizes the couple co-occurrence
is composed by the three parameters (see Figure 4.13) [103]: Md, Ad and ¢. Md is

the Euclidean distance between middle points of two SSs, Ad is the shortest distance
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between middle points of two SSs axis and ¢ is the angle between two SSs translated to
present common extreme. These three parameters are used as comparison parameters.
The motif couple parameters are stored in the RT. Around the axis of a SS a local
reference system can rotate but fixing an external point (i.e. the middle point of the
selected second SS) no degree of freedom remains and the RP position is precisely
fixed. In Figure 4.13 a couple of SSs (A and B) is represented. The local reference
system is evidenced together with the three quoted parameters and the correspondent

RP position. To build the RT the barycenter of the motif is defined for each couple

S

W
RP \ Axis angle \ ¢

B

Midpoint Type A: n-helix, |;, TD..

7 Qi'sl‘:hiince Type B: a-helix, |, TP..
..\\.h"‘--\.

Axis
Distance
Ad

,.

Figure 4.13 : The co-occurrence couple local reference system.

of the motif model. So for each couple, the RP coordinates must be determined with
this local reference system. These coordinates constitute the tuples of the RT. The
cardinality of the RT will be the number of motif couples, C. A macromolecule has

Ngs couples:
N!
(N—2)12!

where N is the number of protein SSs. For each of these couples three parameters Md,

Nss = (N,2) = (4.17)

Ad and ¢ are computed. Every couple of macromolecule is compared to the couples
in the motif. If the couples have the same parameter values, a vote is given to the
candidate RP which is calculated by using the above coordinates (mapping rule). For
each motif couple the mapping rule is reduced to a single location. In Table 4.2 a
pseudocode is given for searching all possible motifs in a set of M proteins and in
Figure 4.14 a graphic sketch of this process is given. Here, the aim is searching the
motif model on the top right in the macromolecule on the left. To do this, couple

parameters are used. In this figure only the parameter Md is represented. Md values
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(d1, d2, d3) for the three couples in the motif are stored in the RT. If the motif
couple parameters are equal to macromolecule couple parameters the RP is determined
according to the mapping rule related to that motif couple. On the top of Figure 4.14 a
complete instance of the model is present, so the correspondent RP position will gather
three contributions (only one is graphically shown). Instead on the bottom right, an
instance constituted of two SSs is present, and only one contribution is given in the

correspondent RP position. Being m = h + s the number of SSs in the motif (4 the

Table 4.2 : Algorithm for the retrieval of all possible r motifs contained in a set of M
proteins using SSC method.

Input : Protein DSSP files; NV;: number of protein SSs; m: number of motif SSs
Output : Locations of candidate motifs in the accumulator Agp, representing the para-
meter space

1 fori=1toMdo

2 Calculate all m combinations of N;: r=C(N;,m)

3 for j=1to r do

4 Find the motif barycenter RP

5 Calculate the number of motif couples: ¢ = C(m,2)

6 Calculate the number of protein couples: p = C(N;,2)

7 end

8 for k=1 to c do

9 Compute the motif couple parameters: Mdy, Ady and @, (RT constituents)

10 end

11 for /=1 to p do

12 Compute the protein couple parameters: Md;, Ad; and ¢,

13 end

14 for k=1 to c do

15 if match (Md,, Ady, ()3 and Md,;, Ad; and (Pl) then Agp; = Arp; + 1

16 end

17 Compute the peaks in HS

18 Assign the position with the expected votes as candidate RP

19  end

number of helices and s the number of strands) and considering both homogeneous
and heterogeneous couples, the cardinality of the RT is given by: S, = (m?> —m)/2
(precisely they are divided in /2 x s heterogeneous votes) and (h> — k) /2 homogeneous

with helices and (s> —s) /2 homogeneous with strands.

S, is the expected peak intensity, and when the motif is heterogeneous, also the

quoted peak decomposition can be useful for discrimination purposes. We remark that,
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also the single contribution of a couple can be weighted by the couple composition

itself [99-101].

Motif
Model 2
4 yb'i /
/ ng
<0 | X
TN
,‘-'eo,
Y

X Q-
Figure 4.14 : The voting process for a couple of helices. On the top right a sketch of
motif having three SSs, and on the left RP locations of two compatible
couples.

4.4.3 Selected primitive aggregate: The secondary structure triplet

co-occurrences (SST)

In 3D, middle points of three SSs can be joined and an imaginary triangle is composed.
So, through the SS triplets a local reference system is setup, e.g. having the origin in
the triangle barycenter, the y-axis passing through the farthest vertex, the x-axis lying
on the triangle plane and orthonormal to y-axis, and the z-axis following the triangle
plane normal (see Figure 4.15). With this reference system the motif RP coordinates
are determined, and also in this case for each triplet of SSs of the protein under
scrutiny that matches a motif triplet, the candidate RP location is uniquely fixed [104].
For every triplet in the motif, a tuple is introduced in the RT in which the selective
component that characterizes the triplet is composed of three parameters: the lengths
of the triangle edges. For each motif triplet the mapping rule is reduced to a single

location.

For the experimentation, firstly a motif is defined selecting some SSs of the protein
and then the number of triangles in this motif is calculated using (3.2). Here, m and ¢
are the number of SSs of the motif and the number of motif triangles respectively.

m)

(4.18)
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Figure 4.15 : Local reference system representation for the A, B, C triplet. The
comparison parameters are the length of triangle edges (i.e. the
midpoints’ distances). Other discriminant parameters can be considered
such as: type of SS (7-helices, a-helices, B-strands, etc.), SS lengths
(i.e. number of amino acids), types of amino, etc.
For every triangle in the motif, three edges’ lengths are computed and these parameters
are stored in the RT. To build the RT, the barycenter of the motif is defined for each
motif triangle, and the position of the RP referring to the local triangle reference system
is also stored in RT. So the mapping rule is figured out with these definitions. For each
triangle this information constitutes the tuple of the RT. The cardinality of the RT will
be the number of motif triangles 7. Then the number of all possible triangles, 7', in the
protein is computed using (4.19). In this equation N represents the number of SSs in
the protein. For each triangle in the protein, edge lengths are calculated. Then motif
triangles and protein triangles are compared. For every correspondence a vote is given
to the point which is determined by the mapping rule contained in the RT. Table 4.3
shows a pseudocode of this algorithm for searching all possible motifs in a set of M
proteins. The time/space computational complexity of the motif retrieval process, in
this approach, is O(N>m?).

N!

(4.19)

In this case the cardinality of the RT is given by: S3 = C(m,3) = m(m* —3m+2)/6
precisely they are divided in hs(h+ s —2)/2 heterogeneous and C(h,3) homogeneous
with helices and C(s,3) homogeneous with splines. S3 is the expected peak intensity,
and as previously with SSC when the motif is heterogeneous, the quoted peak
decomposition can be useful for discrimination purposes. Note that also in this case

the single triplet contribution can be weighted on the basis of its composition.
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Table 4.3 : Algorithm for the retrieval of all possible r motifs contained in a set of M
proteins using SST method.

Input : Protein DSSP files; N;: number of protein SSs; m: number of motif SSs
Output : Locations of candidate motifs in the accumulator Agp, representing the para-
meter space

1 fori=ItoMdo

2 Calculate all m combinations of N;: r=C(N;,m)

3 for j=1to rdo

4 Find the motif barycenter RP

5 Calculate the number of motif triangles: ¢ = C(m,3)

6 Calculate the number of protein triangles: p = C(N;,3)

7 end

8 for k=1 to c do

9 Compute the lengths of motif triangle: d1, d2; and d3; (RT constituents)
10 end

11 for /=1 to p do

12 Compute the lengths of protein triangle: d1;, d2; and d3;

13 end

14 for k=1 to c do

15 if match (dlk, d2k, d3k and dll, d21 and d3l) then ARPl :ARpl +1
16 end

17 Compute the peaks in HS

18 Assign the position with the expected votes as candidate RP

19  end

Figure 4.16 shows an example of five-SSs motif including one 7-helices and four

o-helices.

Reference Point

Ten Triangles Type A: m-helix, |4
ABC ACD 8 Type B: a-helix, |,
BCD BDE Type C: a-helix, I3
CDE CEA i

Type D: «-helix, |4
DEA DAB Type E: a-helix, |
EAB EBC -

Figure 4.16 : Representation of a motif composed of five SSs (e.g. one 7-helices and
four a-helices, as shown on the right). In this case ¢t = 10, as shown in
the list on the left. Just one mapping is drawn completely in the protein,
the corresponding RP location will receive one contribution for each of
the ten triangles. In the picture ABC contribution is outlined the and
only two others corresponding to triangles AEC and CDB are sketched.
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Firstly a RP is determined for the motif (generally fixed on the motif barycenter, in
this case it has been selected outside for evidencing graphically the voting process).
In this case, there are ten triplets and these triplets compose ten triangles. For every
triangle, the barycenter is computed and then the motif RP is located referring to the
local coordinate system. This constitutes the mapping rule for the voting procedure
to detect the candidate RP location(s). When comparing motif triangles and protein
triangles, for every correspondence a vote is given to the candidate RP position defined

with this mapping rule [99-101, 105].
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5. SIMULATION RESULTS

5.1 Protein Database

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB
PDB) provides access to the data in the PDB, the single archive of experimentally
determined structures of nucleic acids, proteins and complex assemblies [106]. The
PDB was established at Brookhaven National Laboratories in 1971 as an archive
for biological macromolecular crystal structures. In the beginning the archive held
seven structures, and with each year a handful more were deposited [107]. The
public archive currently contains >109,000 entries, derived data files and related data
dictionaries. Data is obtained by X-ray crystallography, NMR (Nucleic Magnetic
Resonance) spectroscopy and electron microscopy. In each of these methods, the
scientists use many pieces of information to create the final atomic model. Primarily,
the scientists have some kind of experimental data about the structure of the molecule.
For X-ray crystallography, this is the X-ray diffraction pattern; for NMR spectroscopy,
it is information on the local conformation and distance between atoms that are close
to one another; and for electron microscopy, it is an image of the overall shape of the

molecule.

Most of the structures included in the PDB archive were determined using X-ray
crystallography. For this method, the protein is purified and crystallized, then subjected
to an intense beam of X-rays. The proteins in the crystal diffract the X-ray beam into
one or another characteristic pattern of spots, which are then analyzed to determine
the distribution of electrons in the protein. The resulting map of the electron density
is then interpreted to determine the location of each atom. The PDB archive contains
two types of data for crystal structures. The coordinate files include atomic positions
for the final model of the structure, and the data files include the structure factors (the
intensity and phase of the X-ray spots in the diffraction pattern) from the structure

determination. X-ray crystallography can provide very detailed atomic information,
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showing every atom in a protein or nucleic acid along with atomic details of ligands,
inhibitors, ions, and other molecules that are incorporated into the crystal. However,
the process of crystallization is difficult and can impose limitations on the types of
proteins that may be studied by this method. For example, X-ray crystallography is
an excellent method for determining the structures of rigid proteins that form nice,
ordered crystals. Flexible proteins, on the other hand, are far more difficult to study
by this method because crystallography relies on having many molecules aligned in
exactly the same orientation, like a repeated pattern in wallpaper. Flexible portions
of protein will often be invisible in crystallographic electron density maps, since their

electron density will be smeared over a large space [2].

NMR spectroscopy may be used to determine the structure of proteins. The protein
is purified, placed in a strong magnetic field, and then probed with radio waves. A
distinctive set of observed resonances may be analyzed to give a list of atomic nuclei
that are close to one another, and to characterize the local conformation of atoms that
are bonded together. This list of restraints is then used to build a model of the protein
that shows the location of each atom. The technique is currently limited to small or
medium proteins, since large proteins present problems with overlapping peaks in the
NMR spectra. In the PDB archive, you will typically find two types of coordinate
entries for NMR structures. The first includes the full ensemble from the structural
determination, with each structure designated as a separate model. The second type
of entry is a minimized average structure. These files attempt to capture the average
properties of the molecule based on the different observations in the ensemble. You
can also find a list of restraints that were determined by the NMR experiment. These
include things like hydrogen bonds and disulfide linkages, distances between hydrogen
atoms that are close to one another, and restraints on the local conformation and

stereochemistry of the chain [2].

Electron microscopy is also used to determine structures of large macromolecular
complexes. A beam of electrons is used to image the molecule directly. Several
tricks are used to obtain 3D images. If the proteins can be coaxed into forming
small crystals or if they pack symmetrically in a membrane, electron diffraction can
be used to generate a 3D density map, using methods similar to X-ray diffraction. If

the molecule is very symmetrical, such as in virus capsids, many separate images may
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be taken, providing a number of different views. These views are then aligned and
averaged to extract 3D information. Electron tomography, on the other hand, obtains
many views by rotating a single specimen and taking several electron micrographs.
These views are then processed to give the 3D information. For a few particularly
well-behaved systems, electron diffraction produces atomic-level data, but typically,
electron micrographic experiments do not allow the researcher to see each atom.
Electron micrographic studies often combine information from X-ray crystallography
or NMR spectroscopy to sort out the atomic details. Atomic structures are docked
into the electron density map to yield a model of the complex. This has proven
very useful for multimolecular structures such as complexes of ribosomes, tRNA and

protein factors, and muscle actomyosin structures [2].

Data is obtained by using the methods described above and submitted by biologists and
biochemists from all around the world to be freely accessible on internet via its member
organizations’ websites and is updated weekly. The mission is to maintain a single
protein archive of macromolecular structural data (see Figure 5.1). Each structure
published in PDB receives a four character alphanumeric identifier or accession
number like 1FNB, 4GCR. PDB file format is a textual file format describing the
three dimensional structures of molecules held in the PDB. PDB also provides atomic
coordinates, sequences, side chains, SSs and atomic connectivity of the molecules.
Here, structure files may be viewed using various free and commercial visualization

programs and web browsers’ plug-ins.

In this thesis, the dataset including primary structure attributes, and tested by GAL
and SOM was taken from Ding and Dubchak [37]. The dataset is available on
http://ranger.uta.edu/ chqding/protein/. The original training dataset and test dataset
contain 313 and 385 proteins respectively. However, four of these proteins do not have
sequence records (in training dataset 2SCMC and 2GPS, in test dataset 2YHX_1 and
2YHX_2). Accordingly we have 311 proteins for training dataset and 383 proteins for
test dataset. None of the proteins in the test dataset has >35% sequence identity to
those in the training dataset [37]. All these proteins belong to 27 folds including four
structural classes. Table 5.1 shows these folds. Of these 27 fold types, types 1-6 belong
to all-o structural class, types 7-15 to all-f class, types 16-24 to o/ class and types

25-27 to a+ B. So, the classification of 27 folds is one level deeper than that of four
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Figure 5.1 : PDB website

structural classes [108—111]. Hence, it is more challenging and difficult to conduct

prediction among the 27-fold types than among the four structural classes [29, 112].

The dataset including SS attributes is taken from PDB and derived by University of
Naples Parthenope, Computer Vision and Pattern Recognition Laboratory. This dataset
includes 20 proteins, and available on http://opolat.cumhuriyet.edu.tr/data.rar (See

Table 5.2).
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Table 5.1 : The most common 27 SCOP folds, structural classes that folds belong to
and the number of proteins contained in training and test sets.

Fold No. Fold name Str. class  Train Test
1 Globin-like all-a 13 6
2 Cytochrome ¢ all-a 7 9
3 DNA-binding 3-helical bundle all-a 12 20
4 4-helical up-and-down bundle all-a 7 8
5 4-helical cytokines all-o 9 9
6 Alpha; EF-hand all-a 6 9
7 Immunoglobulin-like B-sandwich all-f 30 44
8 Cupredoxins all-B 9 12
9 Viral coat and capsid proteins all-p 16 13
10 ConA-like lectins/glucanases all-p 7 6
11 SH3-like barrel all-B 8 8
12 OB-fold all-B 13 19
13 Trefoil all-pB 8 4
14 Trypsin-like serine proteases all-gB 9 4
15 Lipocalins all-B 9 7
16 (TIM)-barrel o/B 29 48
17 FAD (also NAD)-binding motif o/B 11 12
18 Flavodoxin-like o/B 11 13
19 NAD(P)-binding Rossmann-fold o /f3 13 27
20 P-loop containing nucleotide o/B 10 12
21 Thioredoxin-like o/B 9 8
22 Ribonuclease H-like motif o/B 10 12
23 Hydrolases o/B 11

24 Periplasmic binding protein-like  a/f 11 4
25 B-grasp o+ 7 8
26 Ferredoxin-like o+ 13 27
27 Small inhibitors, toxins, lectins oa+p 13 27
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Table 5.2 : List of the proteins tested by SSC and SST methods. The SS segments are

obtained by DSSP.
PDB ID Description Number of SSs
2798 FMN-dependent NADH-azoreductase 14
279C FMN-dependent NADH-azoreductase 15
279B FMN-dependent NADH-azoreductase 16
4GCR GAMMA-B CRYSTALLIN 18
3E90 Pre-mRNA-splicing factor 8 21
1FNB FERREDOXIN-NADP+ REDUCTASE 22
3E9L Pre-mRNA-processing-splicing factor 8 23
2PZN Aldose reductase 24
3C3U Aldo-keto reductase family 1 member C1 26
277G Adenosine deaminase 28
277K Queuine tRNA-ribosyltransferase 33
2PRL Dihydroorotate dehydrogenase, mitochondrial 34
2QX8 Ribosyldihydronicotinamide dehydrogenase [quinone] 35
2QMY Ribosyldihydronicotinamide dehydrogenase 36
3C9%4 Exodeoxyribonuclease I 37
2QX9 Ribosyldihydronicotinamide dehydrogenase [quinone] 38
3C95 Exodeoxyribonuclease 1 39
3DC7 Putative uncharacterized protein /p3323 43
3DHP Alpha-amylase 1 44
7FAB IGG1-LAMBDA NEW FAB (LIGHT CHAIN) 46

5.2 Protein Classification Results using Primary Structures

5.2.1 One-versus-others (OvO) method and performance measures

OvO prediction method is a simple and effective method [9, 113] for multi-class
problems. To explain this method, suppose that there are K classes. Firstly we
transform the multi-class problem to two-class problem. One class contains all the
proteins belonging to the i-th fold which are labeled as positive, and the other class
contains all other proteins that are labeled as negative. So we construct K binary

classifiers to predict the protein folds. For example, in the first classifier one class
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contains the first fold’s proteins and the other class contains the other K — 1 folds’

proteins.

In the recognition process, new query protein is tested at each of the K binary classifiers
to determine if it belongs to the given class or not. This leads to K scores from the K
classifiers. Ideally only one of the K classifiers will show a positive result and the other

classifiers show negative results, assigning the query protein to a unique fold [37].

In this section for K = 27, we try to solve 27-class protein fold classification
problem. We made various tests to classify the protein fold patterns. To calculate
the classification success rate for individual fold we used sensitivity (true positive rate,
TPR) (5.1) and we generalized the sensitivity formula for 27-class to calculate overall

success rate (5.2).

TruePositive
Ind. Fold Success Rate = Z - “ : - 5.1
Y TruePositive+ Y FalseNegative

lell TruePositive
Zl-zl] TruePositive + Zl-zll FalseNegative

(5.2)

Overall Success Rate =

In some tests we did not use OvO method and we calculated classifier’s performance

using accuracy as below:

A Y TruePositive +) TrueNegative (5.3)
ccuracy = .
Y Y Positive + Y Negative

5.2.2 Protein classification results by using GAL

In this section protein folds were classified using GAL network. Here, the dataset
mentioned in Section 5.1 was used. The dataset produced by [37] includes 311 and
383 proteins (125 dimensional) for training and test sets, respectively. In the first
experiment 27-class protein folds were classified using one classifier (without OvO)
and the success rate was calculated using (5.3). The algorithm was tested with 3000

iterations. For the classification, GAL produced a network including 242 nodes and
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the proteins were classified in 4.32 seconds. For each test the average performance

over 50 runs was reported. The results related to this experiment is shown in Table 5.3.

Table 5.3 : Performance of GAL for 27-class fold classification problem.

Fold Success Rate(%) Fold Success Rate(%) Fold Success Rate(%)

1 66.7 10 16.7 19 37.0
2 55.6 11 37.5 20 41.7
3 45.0 12 21.1 21 25.0
4 62.5 13 25.0 22 66.7
5 66.7 14 50.0 23 57.1
6 22.2 15 28.6 24 75.0
7 454 16 64.6 25 37.5
8 16.7 17 58.3 26 25.9
9 41.7 18 38.5 27 48.1

Overall Success Rate 44.1

To get unbiased training data for the classification of proteins we used 10-fold cross

validation with GAL network. The training set is partitioned into ten folds with each

fold containing almost equal number of patterns. Among the 10 sets, one of them is

assigned as testing data to validate the data and the rest is used as training data. The

process of cross-validation is repeated 10 times, where each of the 10 sets is used once

as the validation model. Tests were done with 3000 iterations as previous. For each of

ten folds, the network generated an average of 53 nodes. Classification process took

an average of 1.1 seconds for each fold. As we have already expected, the success rate

was increased. The results related to this experiment are shown in Table 5.4.

Table 5.4 : Performance of GAL for 27-class fold classification problem by using

10-fold cross validation technique.

Folds 1 2 3 4 5 6 7 8 9 10
Success Rate(%) | 45.1 | 67.6 | 69.6 | 69.6 | 68.6 | 50.0 | 56.7 | 58.0 | 51.4 | 34.3
Overall Success Rate 57.1

As seen from Tables 5.3 and 5.4 proteins were classified with low success rate. Then,

OvO method was used with GAL network to increase classification performance. The

results related to this experiment are shown in Table 5.5. According to this table,
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seven of 27 folds were classified perfectly (100%) and the minimum classification

performance is 52.6% for the 12th fold.

Table 5.5 : Performance of GAL for 27-class fold classification problem by using

OvO prediction method.

Fold Success Rate(%) Fold Success Rate(%) Fold Success Rate(%)

1 100.0 10 66.7 19 81.5
2 100.0 11 87.5 20 75.0
3 80.0 12 52.6 21 87.5
4 87.5 13 100.0 22 91.0
5 100.0 14 75.0 23 100.0
6 77.8 15 85.7 24 100.0
7 70.5 16 85.4 25 75.0
8 75.0 17 75.0 26 66.7
9 84.6 18 84.6 27 100.0

Overall Success Rate 81.2

To further improve the classification performance, another experiment was done using

OvO and 10-fold cross validation technique together; and the overall success rate was

increased as expected. Here, proteins were classified according to their folds with

an 87.7% success rate. But the computation time was increased for the average of

ten runs for each of 27 folds because of using either OvO method or 10-fold cross

validation technique. The results related to this experiment is shown in Table 5.6 and

the comparison of the results are shown in Table 5.7.

Table 5.6 : Performance of GAL for 27-class fold classification problem by using
10-fold cross validation and OvO prediction method.

Folds 1 2 3 4 5 6 7 8 9 10
Success Rate(%) | 91.5|93.0| 91.3|91.3 | 87.1 | 853|834 | 884|914 |74.3
Overall Success Rate 87.7

To determine the effectiveness of the features, we made some tests as Ding and

Dubchak did [37]. Firstly we used only C (amino acid composition) attribute to be

contained in the feature vectors. Then we appended S (predicted SS) attribute to C, so
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Table 5.7 : Prediction methods used with GAL and the success rates related to them.

Test Methods Success Rate (%)
Accuracy 44.1
10-fold CV + Accuracy 57.1
OvO + Sensitivity 81.2
10-fold CV + OvO +Sensitivity 87.7

we used C+S to be the elements of the feature vectors, progressively in the last test we
used all six attributes to form the feature vectors. To select attributes with this strategy
does not claim to give optimum results. Because we started to test with C attribute as
in [37]. In the test process, iteration number was determined as 3000. The results are

shown in Table 5.8.

Above, to determine the most significant attribute and decrease the dimension of
the feature vector we had considered the feature blocks including 20 or 21 features
(Table 5.8). Here, we individually considered each of the 125 features with dynamic
programming and we calculated the divergence values of each one. So we put in order
125 features according to their significance. Then we classified the proteins using the
best 30, 40, 50 and 60 features with GAL. We did not run the classifier for more than
60 features because as seen from Table 5.9 we got better classification performance
(81.5%) than that of Table 5.8 (81.2%). Test results related to divergence analysis are
shown in Table 5.9.
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Table 5.8 : True positive rates for each individual fold and overall success rates for
the OvO method using GAL. Dimension of the feature vector is
incremented gradually by including the six attributes with the order ‘C’,
‘S, ‘H’, *V’, ‘P’ and ‘Z’.

Fold no C CS CSH CSHV CSHVP CSHVPZ
1 83.3 100.0 100.0 100.0 100.0 100.0
2 77.8 889 88.9 100.0 100.0 100.0
3 60.0 750 750 85.0 85.0 80.0
4 87.5 87.5 100.0 100.0 100.0 87.5
5 100.0 100.0 100.0 100.0 100.0 100.0
6 66.7 66.7 66.7 55.6 55.6 77.8
7 659 659 727 68.2 70.5 70.5
8 50.0 66.7 66.7 75.0 75.0 75.0
9 923 769 769 76.9 84.6 84.6
10 66.7 66.7 833 83.3 83.3 66.7
11 62.5 750 87.5 1000 87.5 87.5
12 36.8 526 474 47.4 474 52.6
13 75.0 75.0 100.0 100.0 100.0 100.0
14 75.0 100.0 100.0 100.0 100.0 75.0
15 857 714 857 85.7 71.4 85.7
16 79.2 833 833 83.3 87.5 85.4
17 66.7 833 833 91.7 83.3 75.0
18 615 692 692 76.9 69.2 84.6
19 66.7 593 593 66.7 51.9 81.5
20 83.3 750 75.0 66.7 75.0 75.0
21 62.5 750 875 87.5 87.5 87.5
22 91.7 917 917 83.3 91.7 91.7
23 85.7 85.7 100.0 100.0 100.0 100.0
24 75.0 100.0 100.0 100.0 100.0 100.0
25 50.0 750 750 75.0 87.5 75.0
26 519 593 593 55.6 70.4 66.7
27 100.0 926 92.6 88.9 96.3 100.0

Success Rate(%) 71.3 752 77.5 78.1 79.4 81.2
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Table 5.9 : Performance of the GAL classifier using different dimensional feature
vectors formed by divergence analysis.

Fold No Dim=30 Dim=40 Dim=50 Dim =60

—_—

100.0 100.0 100.0 100.0

2 100.0 100.0 100.0 100.0
3 85.0 95.0 90.0 85.0
4 100.0 100.0 87.5 87.5
5 100.0 100.0 100.0 100.0
6 77.8 66.7 77.8 77.8
7 70.5 68.2 70.5 68.2
8 75.0 75.0 75.0 83.3
9 92.3 92.3 92.3 92.3
10 83.3 83.3 100.0 83.3
11 87.5 87.5 87.5 100.0
12 68.4 57.9 57.9 63.2
13 100.0 100.0 100.0 100.0
14 75.0 50.0 75.0 75.0
15 71.4 57.1 71.4 85.7
16 87.5 85.4 81.3 75.0
17 91.7 83.3 91.7 100.0
18 76.9 69.2 76.9 76.9
19 74.1 81.5 70.4 74.1
20 83.3 83.3 75.0 75.0
21 87.5 87.5 75.0 75.0
22 83.3 91.7 100.0 100.0
23 71.4 85.7 100.0 100.0
24 75.0 75.0 100.0 75.0
25 75.0 75.0 100.0 75.0
26 59.3 55.6 55.6 59.3
27 88.9 81.5 96.3 100.0
Success Rate(%) 80.7 79.1 80.9 81.5
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5.2.3 Protein classification results by using SOM

In this section experiments were done firstly on a dataset including 125 dimensional
120 proteins which belong to three different folds, namely ‘“Flavodoxin-like”,
“Ribonuclease H-like motif” and “TIMbeta/alpha-barrel”. We used these three folds to
compare the performance of SOM with the performance of SOM-SD in [90]. 10-fold
cross-validation is implemented to classify protein folds in SCOP. By using 10-fold
cross-validation, the datasets are partitioned into 10 sets having 12 samples in each.
So, each time 108 proteins and 12 proteins were used for training data and test data,
respectively. Here, the network was trained on 9 x 9 neurons with a neighborhood
spread 6 = 1, considering learning rate 1 = 0.5 and A = 500 iterations. After the
training and test processes the accuracy rate was calculated using (5.3). Performance

was calculated as the average of 10 sets’ performance.

We compared our results with the results in [90]. Both works basically use SOM
but apply it in different ways. [90] uses SOM-SD but we use classical SOM. The
difference between these methods is in the used features’ types. SOM uses 125 features
obtained from six attributes and the dimension of the data is fixed (125 dimensional
data) but SOM-SD in [90] uses a new data type called PGI which includes variable
number of features. In that work features are directions of the SSs in the protein so the
dimension of the data in [90] is variable, because the number of SSs in the proteins are
variable. So these two methods are applied differently to proteins. For classification
of proteins SOM and SOM-SD use 120 and 45 proteins belonging to same three folds,
respectively. Comparison results related to these methods are shown in Table 5.10.
According to this table, SOM has better classification performance (93.3%) compared
to SOM-SD (86.4%) although using less nodes.
Table 5.10 : Comparison results in terms of number of nodes, number of used

proteins and accuracy rate for the proposed SOM and SOM-SD
classifiers.

Methods | Number of Nodes | Number of Proteins | Accuracy Rate(%)
SOM 9%x9 120 93.3
SOM-SD 200 x 200 45 86.4

Then, SOM is used to classify the 27 well-known SCOP folds. For 27-class problem,

SOM was trained on 18 x 18 neurons with a neighborhood spread o = 1, considering
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learning rate 1 = 0.5 and A = 3000 iterations. To calculate the classification
performance we used sensitivity (true positive rate). While we test using OvO we used
sensitivity to calculate success rate for individual fold (5.1) and we used generalized
sensitivity for 27 folds to calculate overall success rate (5.2). Table 5.11 shows SOM’s
statistical performance values related to each fold. Here, as previous, it is difficult to
classify the proteins of the 12th fold, they are classified with low success rate; but the
proteins of the first, 13th and 27th folds are classified perfectly. According to this table,
SOM is not as good as GAL for 27-class protein fold classification, but it has a success

rate comparable with that of existing methods in literature.

Table 5.11 : Performance of 18 x 18 SOM with OvO for 27-class fold classification
problem.

Fold Success Rate(%) Fold Success Rate(%) Fold Success Rate(%)

1 100.0 10 50.0 19 63.0
2 88.9 11 75.0 20 66.7
3 80.0 12 52.6 21 87.5
4 87.5 13 100.0 22 75.0
5 100.0 14 75.0 23 71.4
6 66.7 15 85.7 24 75.0
7 72.7 16 72.9 25 62.5
8 58.3 17 66.7 26 55.6
9 84.6 18 61.5 27 100.0

Overall Success Rate 73.4

5.3 Protein Classification Results using Secondary Structures

5.3.1 Protein classification results by using SOM-SD

This section shows preliminary results obtained by SOM-SD using a set of proteins
represented by PGI as input. In particular, for each SS, only its direction is considered.
The dataset is composed of 45 proteins classified by SCOP as belonging to the
class “Alpha and beta proteins (&/fB)”. Three folds have been considered, namely

“Flavodoxin-like”, “Ribonuclease H-like motif”” and “TIMbeta/alpha-barrel”, and for
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each fold 15 proteins have been chosen. The task consists of grouping proteins

belonging to the same fold.

The network performances are reported in terms of clustering performance,
classification performance and retrieval performance. The clustering performance is a
measure on how well clusters are formed. The classification performance is a measure
on how well the clustering corresponds to the desired clustering by comparing the
target values of vertices mapped to the same location. The retrieval performance is a
measure of confidence of the clustering result, so that if there are many vertices with
different targets mapped to the same location, the confidence in the clustering is low,
hence producing a low retrieval performance. SOM-SD was trained on 200 x 200
neurons (output nodes) with a neighborhood spread of o = 60, considering different
learning rates 7 = [1 1.25 1.5] and different iterations A = [40 60 80]. For each test the
average performance over 50 runs is reported. The dataset for each test was composed
by randomly picking the 70% of the patterns for the training phase and the remaining

30% for the testing phase.

The test has been conducted considering the whole protein as pattern, i.e., each protein
is represented by a PGI. It can be observed in Table 5.12 that the results are quite
good in term of clustering performance. Even though this measure does not take
into account the desired clustering outcome, the result is supported by the good
retrieval performance which reflects a reduced confusion in the mappings of each
pattern. The classification performance, reflecting the performance with respect to the
desired clustering outcome, shows less accurate results but with an interesting peak

86.42% [90].

Table 5.12 : Performance of a 200 x 200 SOM-SD for three-class fold classification

problem.
Test Set
Learning Rate 1 1.25 1.5
Iterations 40 60 80 40 60 80 40 60 80
Retrieval 74.39 | 81.67 | 79.63 | 92.72 | 92.35 | 93.40 | 92.36 | 92.34 | 93.85
Classification | 75.58 | 76.37 | 77.64 | 85.11 | 84.14 | 84.17 | 85.03 | 85.78 | 86.42
Clustering 0.80 | 0.80 | 0.80 | 0.79 | 0.80 | 0.79 | 0.79 | 0.80 | 0.79
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5.3.2 Protein motif retrieval by using GHT

In this section three group of tests were processed for structural block comparison
using a few proteins in PDB. To calculate the error rate, relative error rate formula

given below was used.

|MotifRP — CandidateRP|

ErrorRate = 100 x -
MotifRP
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First group experiments: Two examples of searching motifs composed of four and
five SSs are discussed here. In the first, a motif composed of five SSs (3 a-helices
and 2 B-strands) is selected randomly from the protein 7FAB and is searched in the
same protein. The protein under analysis, 7FAB, contains 46 SSs (9 «-helices and
37 B-strands). To apply SSS method, a mapping rule is figured out using p and 6
values for each SS in the motif. In this experiment the number of SSs in the motif
is five so, the expected number of votes in this method is five. To apply the SSC
method, firstly comparison parameters (Md, Ad and ¢) are determined related to motif
couples and the mapping rule is figured out using p and 6 values for each couple
in the motif. Then, motif couples and protein couples are compared and if there is
a correspondence a vote is given to the candidate RP. In this method the expected
number of votes is the number of motif couples. In this situation, it is 10. For the SST
method, motif triangles are compared to protein triangles using comparison parameters
(edge values of the motif triangles) and if there is a correspondence a vote is given to
the candidate RP. In this method expected number of votes is the number of motif
triangles, so it is 10. Table 5.13 summarizes the performances in terms of the precision
in locating and computation time. Second column represents the motif RP, third one
represents the candidate RP location and the fourth one represents the displacement
of the RP location with respect to the position of motif center of gravity and the last
column is the searching time. It can be seen from Table 5.13 that SSC and SST have
better computation time compared to SSS; but SST has the best retrieval performance

compared to others.

The second one relates a well-known motif: The Greek Key which is formed by just
four B-strands. The protein under analysis is IFNB containing 22 SSs (9 a-helices

and 13 B-strands). Table 5.14 summarizes the performances of these three methods.
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Table 5.13 : Performances of searching five-SSs motif in 7FAB protein.

Methods Motif RP Candidate RP Error Rate(%) Search Time
SSS [-17.599.51 15.21] [-17.56 9.46 15.17] 0.28 108sec
SSC [-17.489.17 15.48] [-17.409.14 15.48] 0.34 42.51sec
SST [-17.48 9.17 15.48] [-17.48 9.17 15.48] 0.00 48.89sec

Table 5.14 : Performances of searching four-SSs motif in 1FNB protein.

Methods Motif RP Candidate RP Error Rate(%) Search Time
SSS [31.331.14 12.01] [31.41 1.16 11.94] 0.32 35.2sec
SSC [31.38 1.08 11.69] [31.331.08 11.79] 0.33 3.86sec
SST [31.38 1.08 11.69] [31.38 1.08 11.69] 0.00 5.76sec

For the first group experiments, tables show that the SST strategy has the best precision.
The worst case is the SSS strategy mainly for the computation time, certainly because
of the cumbersome mapping rule and cumbersome detection of the pick in the circles

intersection.

Second group experiments: Here, SSC and SST methods were processed. Two sets
of experiments were done. In the first set of experiments, 4GCR, 1FNB and 7FAB
proteins containing 18, 22 and 46 SSs respectively were used. Three motifs composed
of four SSs were selected randomly from these three proteins. First motif contains the
6th, 9th, 13rd, 17th SSs of 4GCR protein, second motif contains the 2nd, 8th, 15th
20th SSs of 1FNB protein and the third motif contains the 9th, 17th, 32nd, 40th SSs of
7FAB protein. Here SSC and SST methods are tested, and Table 5.15 and 5.16 show

the results related to these tests.

In the second set of these experiments, different proteins and the motifs formed by
five SSs were used. These proteins are 229B, 3C94 and 3DHP containing 16, 37 and
44 SSs respectively. Three motifs composed of five SSs were selected randomly from
these three proteins. First motif contains the 3rd, 5th, 7th, 12th, 15th SSs of 2Z9B
protein, second motif contains the 10th, 19th, 21st, 27th, 32nd SSs of 3C94 protein
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Table 5.15 : Results for searching the motif formed by four SSs in the 4GCR, 1FNB
and 7FAB proteins by using SSC.

PDB ID Motif RP Candidate RP #Max votes Search Time
4GCR [14.3013.4622.43] [14.30 13.46 22.43] 6 0.004sec
1IFNB  [23.558.10 15.57] [23.55 8.10 15.57] 6 0.006sec
7FAB  [-30.17 14.39 13.23] [-30.17 14.39 13.23] 6 0.009sec

Table 5.16 : Results for searching the motif formed by four SSs in the 4GCR, 1FNB
and 7FAB proteins by using SST.

PDB ID Motif RP Candidate RP #Max votes Search Time
4GCR [14.30 13.4622.43] [14.30 13.46 22.43] 4 0.007sec
IFNB  [23.558.10 15.57] [23.55 8.10 15.57] 4 0.007sec
7FAB  [-30.17 14.39 13.23] [-30.17 14.39 13.23] 4 0.011sec

and the third motif contains the 6th, 11th, 22nd, 30th, 39th SSs of 3DHP protein. Here
SSC and SST methods are tested, and Tables 5.17 and 5.18 show the results related to

these tests.

In these two sets of tests, the RP locations were determined with precision and had
exactly the expected number of votes/contributions. Moreover no spurious peaks have
been detected, and no displacement from the true RP location could be measured. The
motif location perfectly coincides with the true RP location. The given computation
times in the tables are related to a desktop computer with a processor Intel Core 2 Duo

6600, 2.4 GHz, 2 GB RAM.

Table 5.17 : Results for searching the motif formed by five SSs in the 2Z9B, 3C94
and 3DHP proteins by using SSC.

PDB ID Motif RP Candidate RP #Max votes  Search Time
279B  [7.3826.97 6.14] [7.3826.97 6.14] 10 0.006sec
3C94  [14.03 28.67 26.88] [14.03 28.67 26.88] 10 0.011sec
3DHP [3.6255.5219.69]  [3.6255.5219.69] 10 0.008sec

74



Table 5.18 : Results for searching the motif formed by five SSs in the 2Z9B, 3C94
and 3DHP proteins by using SST.

PDBID Motif RP Candidate RP #Max votes Search Time
279B  [7.3826.97 6.14] [7.38 26.97 6.14] 10 0.007sec
3C94  [14.03 28.67 26.88] [14.03 28.67 26.88] 10 0.011sec
3DHP [3.6255.5219.69] [3.6255.52 19.69] 10 0.012sec

Third group of experiments: Here, a set of proteins (see Table 5.2) has been randomly
selected among the PDB structures having a number of N; of SSs ranging from 14 to

46 (a number of residue from 174 to 496); in Table 5.2 the selected set is detailed.

All possible structural blocks with m equal to three, four and five, have been retrieved
for the SSC and SST approaches. Table 5.19 reports the number of experiments for the
SSC and SST cases Y, C(N;,m), M is the number of the proteins selected from PDB,

(column two: C(N;,m)) and the cumulative and average time performances.

Table 5.19 : Performances and protein parameters for the tested set. Time ranges
under the columns 3-4 are highlighted within square brackets.

Total Average search time Average search time
Number of . .
motif SSs: m number of and range per motif and range per motif
' motifs for SSC (msec) for SST (msec)
3 105971 1.1 [0.6-1.5] 7.3[0.9-11.7]
4 918470 1.4[0.5-1.8] 11.2[1.2-16.9]
5 6455009 1.7 [0.5-2.2] 17.3 [1.4-24.4]

In all about 7.5 million cases, the matching of candidate motifs with the RT tuples has
been verified with a tolerance in the comparison parameters of € = 1%. In all cases,
the collected RP locations had exactly the expected number of votes. Moreover, no
spurious peaks have been detected for the SSC and SST cases. And, no displacement
from the true RP position has been measured. The motif location perfectly coincided

to the detected RP location.
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6. CONCLUSIONS

Proteins are the most important macromolecules because they form much of the
functional and structural machinery in every cell in all organisms. Function of
the protein is determined by its spatial structure so that it is important to learn
structure-function relationship in the protein universe by comparing their structures
and retrieving similar models. In this thesis we focused on two problems related to
proteins; protein fold classification and motif retrieval (structural block comparison)
by using primary and secondary protein structures. Primary protein structures were
used with GAL and SOM to classify the proteins according to their folds. Secondary
protein structures were used with SOM-SD to classify the protein folds and with GHT
to compare structural blocks for motif retrieval. Shortly, we used GAL, SOM and

SOM-SD to classify the proteins, and used GHT to compare structural blocks.

Classifying the proteins according to their folds is one of the important study areas
of the molecular biology. We can say that the proteins having the same structure
perform the same function. So, the classification of proteins is important. In this
thesis primarily protein fold classification problem is handled. To classify the proteins

neural network based three methods were used; GAL, SOM and SOM-SD.

Firstly, GAL network was used to classify the protein folds. GAL is an incremental
neural network for supervised learning, and determines the number of nodes during
training if need arises. The network grows when it learns and shrinks when it
forgets. GAL represents the distribution of feature vectors according to the minimum
distance measure. Computational loads of training and classification processes of
GAL are rather low. Moreover, there is not any parameter to be determined before
the training. For application of GAL method to proteins, features extracted from the
sequences were used. These features related to primary protein structures represent
amino acids’ physicochemical properties, namely amino acid composition, predicted
SS, hydrophobicity, normalized van der Waals volume, polarity and polarizability. Of

these attributes, amino acid composition has 20 dimensions and the other five attributes
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have 21 dimensions. Thus, in total a feature vector combining six attributes has
125 dimensions. The dataset used with GAL was derived from SCOP by Ding and
Dubchak [37]. This dataset, including 27 folds, contains 694 proteins having less than
35 percent sequence identity with each other. 311 of these proteins were used for
training and the remaining 383 proteins were used for test. We do not approve the
separation of dataset in this way, but after Ding and Dubchak, in a series of studies,
this dataset was used like that. We had to use the same training and test sets to compare
our results with those in the literature. However, by using K-fold cross validation, we
achieved more realistic performance. The algorithm was tested with 3000 iterations.
For the classification, GAL produced a network including 242 nodes and the proteins
were classified in 4.32 seconds with a 44.1% success rate. Due to the poor success
rate and imbalanced data 10-fold cross validation technique was used with GAL and
the proteins were classified with a 57.1% success rate. To increase the classification
performance OvO method was employed with GAL. With this method 27-class fold
classification problem was transformed to two-class classification problem, so 27
binary classifiers were formed and the dataset was tested with these classifiers. Test
results showed that the proteins were classified with a 81.2% success rate. To further
increase the classification performance GAL network was tested with 10-fold cross

validation and OvO techniques together, and this method achieved 87.7% success rate.

To determine the effectiveness of the attributes we made some tests using GAL. Firstly
we used only C (amino acid composition) attribute to be contained in the feature
vectors. Then we appended S (predicted SS) attribute to C, so we used C+S to be the
elements of the feature vectors, progressively in the last set we used all six attributes
and we tested by using GAL. The test results showed that the most important attribute
is the amino acid composition. This attribute has a good performance (71.3%) even

tested alone.

To decrease the feature vector dimension without changing the success rate divergence
analysis was applied. This analysis calculates divergence values of the features and put
them in order according to their importance. Here, after divergence analysis, the most
significant 30, 40, 50 and 60 features were determined, and they were presented to
GAL network. For the most significant 60 features, we obtained 81.5% classification

performance, so we did not test anymore. As a result, using this method we decreased
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the feature vector dimension from 125 to 60 without decreasing success rate, and so

we reduced the computational load.

To classify the proteins according to their folds, secondly, SOM was used. Kohonen’s
SOM is a type of unsupervised learning. It uses competitive learning algorithm.
In this algorithm the network neurons compete to be activated and eventually only
one neuron wins the race. The goal is to train the network so that nearby outputs
correspond to the nearby inputs, and to project the high dimensional data onto low
dimensional map in an adaptive way. In the tests of this part we used two-dimensional
rectangular grid of nodes. The dataset used with GAL was also used with SOM. Here,
primarily three-fold, namely "Flavodoxin-like", "Ribonuclease H-likemotif" and "TIM
beta/alpha-barrel” from o/f structural class, and then 27-fold classification problems
were handled. The network was trained on 9 x 9 neurons with a neighborhood
spread ¢ = 1, considering learning rate 1 = 0.5 and A = 500 iterations for three-fold
classification problem, and 18 x 18 neurons with a neighborhood spread o = 1,
considering learning rate n = 0.5 and A = 3000 iterations for 27-fold classification
problem. To calculate the classification performance sensitivity (true positive rate)
was used. As a result of tests, the protein fold classification problem was solved with
93.3% and 73.4% success rates for three-fold and 27-fold cases, with SOM by using
OvO.

Thirdly, SOM-SD was used for protein fold classification problem. This method differs
from classic SOM in the way of used data. While applying SOM-SD a new data
structure called PGI derived from secondary protein structures was used. Here, every
protein was shown using PGI representation. In this representation, the chain sequence
of SSs in the protein is recorded as a list which is mapped on a sphere surface and a
directed graph is obtained. Nodes of the graph include the orientation information
related to corresponding SS. The method was tested on the same three folds as in the
SOM. These folds include 45 proteins (15 proteins in each fold). According to test

results these three folds were classified with a 86.4% success rate.

When we consider all the test results, we can say that GAL network outperforms
SOM for 27-class fold classification problem, and SOM outperforms SOM-SD for
three-class fold classification problem. Besides, these methods can successfully

compete with other methods in the literature.

79



In this thesis besides fold classification problem, we dealt with motif retrieval by
structural block comparison. To do that GHT-based three methods (SSS, SSC and
SST) were used. SSS uses the single SS, SSC uses the SS couple co-occurrences and
SST uses the SS triplets. For each of the three methods a mapping rule is figured
out to determine the location of reference point of the motif. For SSS this mapping
rule is applied to all SSs in the motif; for SSC, this mapping rule is applied if there
is a correspondence between motif couples and protein couples and a vote is given
to this point. And as in the SSC, for SST, the mapping rule is applied if there is
correspondence between motif triangles and protein triangles. To test these methods
three group tests were processed. In the first group experiments, two motifs formed
by four and five SSs were selected from 1FNB and 7FAB proteins, respectively,
and SSS, SSC and SST methods were employed. Test results showed that SSC and
SST have better computation time compared to SSS; but SST has the best retrieval
performance compared to others. In the second group experiments, SSC and SST
methods were tried for four-SS and five-SS motifs retrieval with six proteins selected
randomly from PDB. According to test results, the RP locations related to the motifs
were determined with precision and had exactly the expected number of votes. For
the third group experiments, 20 proteins were selected from PDB randomly, and all
possible three-SS, four-SS and five-SS motifs were searched by using SSC and SST
methods for motif retrieval. Test results showed that the RP locations were determined
precisely. Moreover, no spurious peaks have been detected. For the computation time

SSC method has better performance compared to SST.

In future works, to increase the success rate of protein fold classification problem,
improvements in the learning algorithms of GAL, SOM and SOM-SD networks will
be searched. The methods can be tested on larger datasets. Moreover, the dimension
of the feature vector derived from primary protein structures, in this thesis 125, can
be reduced by using different dimension reduction techniques and the classifier can be
tested with low-dimensional data for high performance and low computation time. For
better classification performances, new feature extraction methods and new network

structures can be searched.
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