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OZET

Genellegtirilmig Laguerre fonksiyonlarimn incelendigi bu galigma ii¢ béliim-
den olugmaktadir.

Birinci boliimde, bir Weyl uzayinin metrik tensoriine ait uydularin genel-
legtirilmig tirevleri ve genellegtirilmig kovaryant tiirevleri tammlanarak, n-li
dikgen bir gebekeye ait vektor alanlarina ve bunlarin kargitlarina ait tiirev
formilleri verilmigtir. .

Caligmanin ikinci boliimiinde ise, Wy41 Weyl uzayina ait 7 normalinin Wy,
hiperyiizeyine ait 17 vektorii dogrultusundaki tendansimin bu dogrultudaki nor-
mal egriligin nega.tiﬁne egit oldugu gosterilmigtir. Wy, hiperyiizeyinin her nok-
tasmda.n bir egrisi gegmek tizere Wy, +1 Weyl uzayna ait (A) kongriians egrisinin
X teget vektoriiniin kontravaryant bilegeninin C' ve C' efrileri dogrultusundaki
genellegtirilmig kovaryant tiirevleri bulunmusg; ayrica V;, genellegtirilmig ko-
varyant tlirev sembolii olamak tizere bir D operatorii tanimlanmigtir. Ayrica,
C egrisinin herhangi bir P noktasindaki A kongiiransina gore normal egrilikle
ilgili bir teorem ispatlanmigtir.

Son boéliimde ise, W, de mi teget vektoriine sahip C egrlsmm bu dogrul-
tudaki genelleghirilmig Laguerre fonksiyonu ve La.guerre egrisi tamumlanmgtir.
Bununla ilgili olarak iki teorem ispatlanmg ve eger (A) kongriians1 normaller
kongriians: olarak alinirsa genellegtirilmig Laguerre fonksiyonunun {7] deki ko-
gullan1 sagladifim gosteren son bir teorem daha ispatlanmigtir. Bu boliimde
son olarak Weyl uzayindan Riemann uzaymna gegildiginde [8] de ki Riemann
hiperyiizeylerine ait Laguerre fonksiyonu elde edilmigtir.
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SUMMARY
LAGUERRE’S FUNCTION IN A WEYL HYPERSURFACE

An n-dimensional manifold W,, is said to be a Weyl space, if it has a confor-
mal metric tensor g;; and a symmetric connection satisfying the compatibility
given by the equation Vigi; — 2Tkgi; = 0, where T} denotes a covariant vector
and Vigi; denotes usual covariant derivative. Under renormalization of the
fundamental tensor of the form §;; = A?g;; the complementary vector T; is
transformed by the law T; = T; + 8; In \, where X is a function of the point. In
n-dimensional Weyl space W,, the independent vector fields 1/'" (r=1,2,---,n)

determine an n-dimensional net (}/, y, RN 'Y) .

Let A be a satellite of g;; with weight {k}. ;A given by the equation
&iA = 8;A— kTA,-
is said to be the prolonged derivative of A and V., A, given by the equation
VA =V,A—kT,A

is called the prolonged covariant derivative of A.

The prolonged covariant derivatives of the vector fields yi and their recip-

rocalsﬁ are, respectively, given by
ViVt =5y Vi =1 G ka0 = 1,2, )

From these formulas, it follows that

g

fEk cos p = 0,

1

ER"“ +nV[, Ty =0,

[+

V[sfk) +1Iy) =0
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where R!,; and ¢ are, respectively, the curvature tensor of W, and the angle
between the directions determined by y and ,Y

Let Wy, (gij, Tk) be a hypersurface, with coordinates u(i = 1,2,---,n),of a
Weyl space W41 (gab, Tc) with coordinates z%(a = 1,2,---,n+1) Suppose that
the metrics of W,, and W, are elliptic and that they are given, respectively,
by gijdu‘du’ and g,;dz®dz® which are connected by the relations

gij = gasafzl (a,b=1,2--,n+1i,j =1,2,--,n)

where z{ denotes the covariant derivative of z* with respect to u'. The pro-
longed covariant derivative of A, relative to W,,, and W4, are related by

Vid=2z(V.A (k=1,2,---,m5¢=1,2,---,n+1).

Let n® be the contravariant components of the vector field in Wy, 41 normal
to W,, and let it be renormalized by the condition g,sn°n® = 1. The moving
frame {z},nq} on Wy, reciprocal to the moving frame {z¢,n°} is defined by
the relations

nen® =1, n.zf=0, nz, =0, zfzl=6 .

On the other hand, we have the covariant derivatives of z§ with respect to

uk

Vka:f = w,-kn“ .

We have the prolonged covariant derivatives of n® with respect to u*

. Vin® = —gJ'wjk:c;' .

Let C : u' = u'(s) be any curve in W, passing through a point P and
mt, m®, the contravariant components of the tangent vector to the curve C
in W,, and Wy, which are renormalized by the conditions g;jm'm/ = 1 and
gaym®mb = 1, respectively. Hence

mVim=—-K,
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is said to be the tendency of the 71 in the direction of the vector 1 in W,,
where K, is the normal curvature of the curve C.

Consider a curve C in W,with tangent vector of components m} and prin-
cipal vector of components mj relative to W,,.

According to [6], at any point P on the geodesic tangent to the curve C,
we have the following Frenet formulae:

6 : .
Em; =Kymy, — K,_aml_;(z=1,2,---,n+1)
where Ky = K, +1 = 0, and the vectors m,mg, -« - , 7,41 are mutually orthog-
onal in Wy41.
In particular i
6 i
6—8-mi = Iym;

where K, is the first curvature of the curve Cand % is the symbol of the
prolonged derivative in the direction of the curve C.

The normal curvature vector of C in the direction of n® is denoted by K.
We find

= wismimd

On the other hand, the function
Ty = wijmim}

may be regarded as the invariants of the geodesic torsion of the curve C relative
to the normal component n®.

Let A% be the contravariant components in Wy, of the tangent vector X
to a curve of the congruence () such that one curve of the congruence passes
through each point of W,,. Resolving X tangentially and normally to W,, we
have

A% = gft! 4 rn®
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where t = gab/\“/\b = glmt't"‘ + r2.

Choose a curve C' : wu' = u'(s') in W, such that b; and b® are the
contravariant components of the tangent vectors to the curve C' in W,and
Wa+1 which are normalized by the conditions g;jbibj = 1 abd g,.b%b° = 1,
respectively.

Hence the prolonged covariant derivative of A* with respect to the curve C
is given by
e
os
and the prolonged covariant derivative of A% with respect to the curve C' is
given by

= (I{,\lnna -+ I{)‘lgza) i

5Aa > a o -
5 =) (I—&Alnn +I(AIQZ )t.

where

(i) Katn, Kn1g are the normal curvature and geodesic curvature of the congru-
ence (A) with respect to C and X a1, , K a1y are the normal curvature and
geodesic curvature of the same congruence with respect to C'.

(ii) 7 is the vector along the normal curvature vector of the congruence (})
which is normalized by gasn®n® = 1. 2, 7 are the vectors along the geodesic
curvature vector of congruence ()\) with respect to C and C' which are
normalized by gqp2%2% =1 and gapZ°Z® = 1, respectively.

(iii) V; is the symbol for the prolonged covariant differentiation. We have ex-
pressed the prolonged covariant derivative of X with respect to the curve C
in the following forth: )

o\

— i \e
P m?V;A

In addition, the prolonged covariant derivative X with respect to the curve
C' is given by .
oA

5 =¥ V;\ ..
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Let us define the operator D
D =g}g'V;

where the operator V ;7 is the symbol of the pfoliix.lged covariant differentiation.

We find that
K, =w;kmimf

Kgm; =mfVim}

where K,,, K, are the normal curvature and geodesic curvature of the congru-
ence () with respect to C, respectively .

Hence, we obtained
mDm = I,n® + K b°

Similarly, we have
mDX = (I&'Mnn“ + K,\|gz“) t

where Kin, Kl are the normal curvature and geodesic curvature of the con-
gruence (A) with respect to C.

We obtained
Kjnt = mJ (er + t'wﬂ)
K,\|gtz' =m! (vjtl - rgh"whj)

and

T{_,\I,,t =t (er + t'wﬂ)

T{-,\Igtil = (V,-t' - rg)"iw;j) .
where Kin, K sinare the normal curvatures of the congruence (A) with respect
to C and C', respectively and Kjig, K1y are the geodesic curvatures of the

congruence (A) with respect to C' and C’, respectively.
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Let q;- = .Vjt' ~rgilwj, sj=wjt' + V,-r. Then we have

v i
V;A® = g;z] + sjn°

Hence L.
LoD
m-&fm = —m*mim* (Viqnj — 2Tkqnj — Sjwen) -
We obtained
. 6DA .
—mIm*m* (Vign; — sjwin) = —m—ss—m 2Ty gn;m’ m*m*

We shall call ~mim®m* (Vigs; — sjwis) as the the generalised Laguerre
function for the direction /7t and we may denote this by Ly;. A curve in W, for
which the tangent vector 17 satisfies the equation Ly; = 0 as generalised La-
guerre line. Let s is the arc length along the curve C.

Hence

(e
61({““ + I{,\ngfg cos ¢ + .K,\lg.K tcos@

L=

+ KamKat — guTjt' K, (b* + )
- ghlmhmjmkvk (Tjt') - 2quhjmhmjmk
where

%n—lD)\m K AlgKgt cos 0

MDA = KatnKnt + K1y Kt cos ¢

When A is normal to W, and P; = Tkmf, VkKn = VK, hence

mfm{mi‘vkwhj = mekK,, —2K17y 4+ 2P K,

X



We may denote this by L. Consider the Riemannien space, T = 0, P, = 0,
Tg = —Pz and I(l = I{g

Hence £ can be put in the following form [8]:

<
L= %;'i + 2K, T,



BOLUM 1
WEYL UZAYLARI

1.1 Girig

TANIM 1.1.1 Burulmasiz bir konneksiyona sahip n-boyutlu bir W,, ma-

nifoldunda, g;; konform metrik tensorii ile konneksiyon arasinda
Vigi; —29:iTk =0 (1.1.1)

uygunluk kogulu varsa, W, manifolduna bir Weyl uzay: denir ve Wy.(g;, Tk)
geklinde gosterilir. Burada T} bir kovaryant vektor olup Weyl uzayimmin
komplemanter vektorii adim alir[l]. A bir skaler fonksiyon olmak iizere

Wi(gij, Tk) uzayinda, metrik tensoriin
gij = Ngij (1.1.2)
geklindeki bir doniigiimii altinda, T kovaryant vektorii
Ty =Tr + O ln ) (1.1.3)

geklinde degigmektedir. Riemann geometrisindekine benzer gekilde Weyl

uzayin g;; metrik tensoriiniin kovaryant tiirevi,

Vigij = Okgij ~ gniTh — ginTh
dir. Burada I'}; ile gosterilen (T'}; = I'{,) konneksiyon katsayilari
k= {kl} + 9" (gmkTt + gmiTk — giTm) (1.1.4)

geklindedir. { ,:, }, gij ye ve tiirevlerine gore hesaplanmug ikinci cins Christof-

fel sembolleridir.



i,

TEOREM 1.1.1 (1.1.1) bagmntisim saglayan bir simetrik konneksiyon i¢in
gij metrik tensorii ve T komplemanter vektorit tek tirlii belli degildir.
ISPAT : Gij = )\zg,-j ve T = Tk + Ok In X geklinde tammlanan §gij tensorii
ve T} kovaryant vektorii igin
Vidi; — 25Tk = Vi (M gij) = 22295 (Te + Ok In )
2 . . 2 . 2 akA
=\ Vigij + 2\ (6k,\) gij — 2 9ij Tk — 2X g,'jT
= A?* (Vigij — 29i;Tk)
bulunur. Buna gore g;; tensorii ve Ti kovaryant vektord (1.1.1) kogulunu

saglarsa, (§ij, Tt) ikilisi de bu bagmtiy: saglar.

SONUC Her Weyl uzayina, birbirlerine (1.1.2) ve (1.1.3) ile bagh olan
sonsuz sayida (gij, Tr), (g,-,-,Tk), tensor ¢ifti karg gelir.

TANIM 1.1.2 g;; tensoriiniin §;; = A?g;; geklindeki bir normlanmasina
kargibk bir A biyikligi ' ‘
A=2)k4A (1.1.5)

geklinde degigiyorsa, A ya gi; tensoriiniin {k} agirlikh bir uydusu denir[2].

1.2 Genellegtirilmig Tiirev ve Genellegtirilmig

Kovaryant Tirev
TANIM 1.2.1 A, g;; nin {k} agirhkli bir uydusu olmak iizere,
A =08A—-kT;A (1.2.1)
geklinde tanimlanan 9; A ifadesine A’nin genellegtirilmis tiirevi denir(3].

TANIM 1.2.2 A, g;; nin {k} agirlikh bir uydusu olmak iizere,

VsA=V,A—kT,A" ' (1.2.2)
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seklinde tanimlanan V,A biiyiikliigiine, A'mn gehellegtirilmig kovaryant tii-

revi denir. Burada VA aligilmig kovaryant tiirevdir[2].

TEOREM 1.2.2 g;, metrik tensorii ile bunun ¢** kargit tensoriiniin ge-

nellegtirilmig kovaryant tirevi sifirdir.

ISPAT : (1.1.2) yardimuyla g;, tensoriiniin agirhg {2} dir. gis’nin genel-

legtirilmig kovaryant tiirevi alimirsa, (1.1.1) den
Vigis = Vigis — 2Tkgis =0 (1.2.3)
elde edilir. g;, tensoriiniin ¢g* ile gosterilen kargit tensorii arasindaki bagint:
gisg?® = 61 - (1.2.4)

geklinde tanimlandigindan, bu bagintimn her iki yanimin genellegtirilmig ko-

varyant tiirevi alimir ve (1.2.3) gozoniine alimirsa,
Vi (9is9”*) = Vi (5f) =0
= (vkgis) gjs + gis (vkgjs)

= gis (ngj ’)
=0

bulunur. Esitligin her iki tarafi g*! ile garpilir ve ¢ indisi {izerine toplam

alinirsa
-9"gis (ngj ’) = 5§Vk'gf )
= ngj '
=0 (1.2.5)

elde edilir.
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1.3 Weyl Uzayinda Ttiirev Formiilleri

Wa(g9ij, Tr) Weyl uzayinda lineer bagimsiz éf (a = 1,2,---,n) vektor

alanlarinin kontravaryant bilegenleri
gis V'V =1 (1.3.1)
kogulunu saglasinlar. g;; tensoriiniin agirhig {2} oldugu igin X‘ kontravar-

yant vektor alanlarmin agirhig {—1} dir.

c‘v/(a = 1,2, -,n) vektor alanlar1 n-boyutlu (Y, g, cen 7‘{) gebekesini be-

lirler.
o

v,y =83, V, vk =6t (1.3.2)

[
bagintilar1 yardimu ile yi vektor alanlarimin kargitlarn olan, {1} aélrhklxﬁr

kovaryant vektor alanlari tanimlanmg olur(4].
‘Y" ve A/" dogrultulan arasindaki ag ¢, ile gosterildigine gore
gesy"g/” =cos
dir.
y" kontravaryant vektor alanlarimin genellegtirilmig kovaryant tirevi
5% =gfky‘ (G, k, 0,0 =1,2,-+,n) (1.3.3)

geklinde yazilabilir. 17, karsit vektor alanlarimin genellegtirilmig kovaryant
tiirevi ise )

LI ¢ § a o

ViV; = -—Z'kV,- (1.3.4)

geklindedir. Gergekten, I‘},y' = §2 egitliginin her iki yammn genellestirilmig

kovaryant tiirevi alimrsa
Vi (‘2}/') = Vkﬁ') yi +Vi (W}’i)

(
(0
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veya
(Vkﬁ') yi +f?k =0
bulunur. Son esitligin her iki ya,nﬂ%- ile carpilip o indisi izerinden toplanirsa
(ka}i) oVi‘g'j = _Ijkf}j)
L ¢ 4 i _ Qo :
(V&) 8 = 4,
LI ¢ 4
Viy; = —fi‘z
elde edilir.

TEOREM 1.3.1 Bir Weyl uzayinda i’k cos ¢ = 0 bagintis1 mevcuttur.

ISPAT : (1.3.1) bagntisin her iki yammn genellegtirilmis kovaryant
tlirevi alimirsa, (1.3.3) yardimiyla

gis (kai) Y° +gis (Yi (Vk;”) =0
gis%q' k}/‘y’ + gis (}"'f(l:'ky" =
2 i 2 ivre __
:‘Z;kgisy (Ys +:¢Z;kgts cY y =0
g
%’k cos % =0
bulunur(2].
TEOREM 1.3.2 R}, W, uzayimn egrilik tensorii olmak fizere:
(2) 3Rk + 0V Ty =0
X g o
(b) V[afk] +1jxTLy =0
dir.

ISPAT: Norden’e gore[1]

2V, Vg Vi =VER,,
(1.3.5)
R:'sk = a"']'-‘;k - 63F:.k + F:nr :;c - :ns :;c
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olup, ikinci bagmtida k = ¢ konulursa

ik = O T% — QT + T, T — T3, T (1.3.6)

mr

bulunur. (1.1.4) kullambrsa

a"Pii = O ({ :‘l,} - (6;T1 + 6:T~1 - gisTi)) ’

= 0, ({ Z,} — (Ts +nT,s — Ts)) )
st
i
=0, { } —n0,T,
st

elde edilir. Buradan,

63[‘:." = 63 { Z.} - 71'83Tr

r

bulunur. Diger taraftan,

mr

P:'nrr‘:; = { ’ } - (ajnTr + 6iﬂn - gmrTi)] X

{"l} _ (6;"Ti + ‘ﬁnTs _ gisTm)

Lsz

Z m 0 mmn, m . m
{ mr }{ st } { mr } (68 T‘ + 6' T’ g'-‘JT )

1 ; ;
B { st } (émTr + 6:-Tm — Jmrd )

+ (631LTT + 6::Tm - gmrTi) (6;"Ti + 6;"Ts —_ g,;.,T"‘)

mr 81 Sr r mr sm

B Tm,{ :n } + ngTi{ "':'} + 6fnTr6;nTi + 61inTr6£"Ts
sr 81

- rgsme + 1,1 + 17T, — gsrTme - gsrTiTi — T, Ts + TsT,

mrnr 82 sr ST



dir.

r ve s indislerini kendi aralarinda degistirerek

i, = { ‘ }{"7} - { ’ }T - {’”}Tm +T,T,
ms 7t 78 S

bulunur. Bu ifadeler (1.3.5) de yerine konulursa

Ri‘si =a7'{ z-} - narTs - 63{ Z. } + 'lla.qTr
S1 7
+{ 1 }{"?}—-{z}Ti-—{m}Tm+TrTs
mr S 3sr sr
_{ i }{n?}_*_{ i }Ti—{m}Tm—TrTs
ms 72 rs rs

{ : } =6310g\/§

elde edilir.

s2

oldugu hatirlanirsa
ar{ = } = 3,0,log \/§ = 8,0,log /7 = a..,{ y }

elde edilir. Ote yandan

Lo}~ L

dir. Bu degerler R}; nin ifadesinde yerine konulursa

Ri ;= —n(8,T,s — 8,T")

rsi

bulunur.

V. Ts — VoTy = (0,Ty — Tkl'E,) — (0:T — TiI'%,)
= (0,Ts — 0,Ty) — Tk (TF, — T%))

= arTv - asTr

(1.3.7)
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oldugundan (1.3.7) ifadesi kullamlarak
Risi = —2nV[,.T3]

veya

1 ...
ER:.“' + nV[,TS] =0

bulunur[2].
(b) ,Yi nin agirhg {—1} oldugundan, (1.2.2) bagintisina gore
vkyi = kai + Tkyi
dir. <7,,(y" yerine (1.3.3) deki degeri yazilirsa
ViV =TV - TV (1.3.8)
elde edilir. ka‘ nin kovaryant tiirevi alinirsa,

V. (V) =9 (Vi) -7 (W)

=¥, (G - ny’) -1 (Gy* - 1Y)

o

=V, (fy) - Vu (my?) - 7. By + TIYY)

[

=y‘v

)

k +T"kV, Vi - Viv,,Tk
[+ 4 o o
~ TV Y - THY + LY
—viv.T + T yi- ViV
o . o a o o

-1, Y - ThY + T (1.3.9)

Buradan, k ve s indislerinin yerleri degigtirilerek
Vi (V. V) =Vivif + By - ViV,
k S = kas + o ckX o kls

-1, yi-Thy + LYy (13.10)
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bulunur. (1.3.9) ve (1.3.10) bagintilan taraf tarafa gikarilirsa,
yiv[ék] + ,}/'fé‘kf 5] + yiV[kTs] - V[aVk];’i =0

elde edilir. Esgitligin her iki yam f}, ile carpilip, ¢ indisi lizerinden toplam
alinirsa

o o a o i
V[‘,%'k] +ﬁk€s] + nV[kT,] —V.'V[kVSJy =0 (1.3.11)

bulunur. (1.3.5) de verilen 2V[3Vk]V‘ = VIR, , bagmntisn1 ‘Y" icin yazilirsa
ZV[,V,‘]J‘/" = y'Rik, elde edilir. Bu bagmntimmn her iki tarafi V; ile garpilir

ve a indisi lizerinden toplanirsa
f}iv[svk]yi = %“}i(leikl = % ki
bulunur. Son bagint: kullanibrsa (1.3.11) bagintig
Vil + Bl + nViRTy — -;-ng,. =0 (1.3.12)
gekline girer. Teoremin (a) sikk: geregince (1.3.12) den

V[sfk] +i:}kfa] =0

elde edilir[2].



BOLUM 2
WEYL HIPERYUZEYLERINDE
GENELLESTIRILMIS KOVARYANT TUREVLERI

2.1 Weyl Hiperyiizeyleri

Koordinatlan z%(a = 1,2,---,n + 1) olan Wy 11(gas, Te) Weyl uzayinn,
koordinatlan u'(i = 1,2,---,n) olan W,(g;;, Tx) hiperyiizeyini gbzoniine
alahm. Wy, ve W, ’e ait metriklerin, sirasiyla, gqpdz®dz® ve g;jdu‘duj
(a,6=1,2,---,n+1;4,j = 1,2,.-- n) seklinde verildigini ve eliptik oldugu-

nu kabul edelim. g;; ile gqp arasinda
9ij = gabTia] (2.1.1)

bagntilan mevcut olup, burada z? ; % mn u' ye gore kovaryant tiirevini

gostermektedir.

Wa nin T}, komplemanter vektorii ile Wy, 41'in T, komplemanter vektorii
birbirlerine

Ty = z§T, (2.1.2)

bagntilan ile baghdirlar.

TEOREM 2.1.1 Bir A uydusunun W, ve Wh+1'e gore genellegtirilmig ko-

varyant tiirevleri arasinda
Vid=z(VA (k=1,2,--,n5¢=1,2,---,n+1) (2.1.3)

bagintilan mevcuttur.

ISPAT: A uydusu invaryant olarak segildiginde A uydusunun u* ya gére

kismi turevi ile kovaryant tiirevi birbirlerine esit olmaktadir, yani Vi A = g‘—"%
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olacaktir. A uydusu koordinat doniigiimleri altipda invaryant oldugundan

VA= gfg yazilabilir. A uydusunun agirhiginmn {k} odugunu kabul edelim.

Yukaridaki ifade ve (2.1.2), (1.2.2) de yerine yazlarak, her iki taraf «§
ile carpildiginda

TV A = a:ig% — kTrA

bulunur. Burada z§ ; ¢ nin u* ya gore kovaryant tiirevini gosterdiginden

zf = g—ﬁ- olacaktir. Dolayisiyla son egitlik

e 0A Oz°
kacA 5:;611" - kaA
dir. Diger taraftan
0A 9z¢ OA
Oz Quk ~— QuF Vid

oldugundan

TSV A =ViA— kalA’
elde edilir. (1.2.2) ifadesi geregince
(VA = Vi A
bulunur.
Way1'e ait gq5n®n® = 1 olacak gekilde normlanmg olan, normal vektoriin

kontravaryant bilegenleri n® olsun. W,’de tammh {z¢,n®} hareketli ¢atis1

ile {z},nq} karsit hareketli gatis1 arasinda

ngn® =1, ngz =0, n°zl =0, clxl = 6,?. (2.1.4)

bagintilar ta,mmlanmjgt;r[l]. zf mn agirhgimn {0} oldugu gozdniine alna-
rak, (2.1.4), ifadesinin her iki yaninin u' ye gore genellegtirilmig kovaryant

tirevi alimirsa,
Vi (a2i) =Vi (afah) = Vi (6]) =0
Vi (af2]) = (Viat) of + 2t (Vai)

=(Vea?)zd + 22 (Viz)) (2.1.5)
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bulunur.

Vka:? = wgkn“ (2.1.6)

oldugu hatirlanirsa[l], (2.1.5) ve (2.1.4) bagintilarindan
w,-kn“:z:{; + zgvkmi =, :c?.kaﬁ =0. (2.1.7)

elde edilir. Buradan, 2 koordinatlarimn bir fonksiyonu olarak diigiiniilen ve

W, +1’e ait olan Vka:£ mn W, ’e dik bir vektor oldugu anlagilir. Bu durumda
Vizi = Qin, (2.1.8)
geklinde ifade edilir[5].

TEOREM 2.1.2 W,,41’e ait, gapn®n® = 1 olacak sekilde normlanmyg olan

normal vektorin kontravaryant bilegenleri n* olmak {izere,
Vin® = —g"jw,-k:z:;f
dir.

ISPAT: gapn®n® = 1 ifadesinin her iki tarafimn u* ya gore genellegtirilmig

kovaryant tiirevi alindiginda ve Teorem 1.2.2 kullamldiginda
gabvknanb + gakanbna =10

bulunur. g, fonksiyonu simetrik oldugundan a ve b indislerinin yerleri

degigtirilebilir. Bu takdirde,
gabvknanb =0

elde edilir. Buradan, Vin® ile g,sn® ifadesinin birbirlerine dik oldugu sonucu
ortaya gikar. gqpn®, W, 41'e ait olan normal vektdriin kontravaryant bilegen-
leri oldugundan, Vin®, W, hiperyiizeyine ait’ bir vektdr olacaktir. Bu

nedenle,

Vin® = 224} (2.1.9)
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geklinde yazilabilir. (2.1.4); ifadesinin her iki tarafinin u* ya gore genelleg-

tirilmig kovaryant tiirevi alimir ve Teorem 1.2.2 kullanmihirsa
Vi (zing) = Vi (gabm?nb)
= gap Vizin® + go3 Vinba?
=0

elde edilir. (2.1.6) ifadesi yukaridaki egitlikte yerine yazilir ve gqn®n® = 1

oldugu hatirlanirsa
Vi (#§n®) = wik + gapVinzf
_ .
elde edilir. (2.1.9) ve (2.1.1) ifadeleri yardimyla,
Vi (2214) = wik + gij AL
=0
bulunur. Bu ifadenin her iki tarafi g* ile garpilirsa
A= gy (2.1.10)
bulunur. (2.1.9) ifadesinde (2.1.10) yerine yazilirsa,
Vin® = —gYwial (2.1.11)

elde edilir.

TANIM 2.1..1 Woatt'e ait gapn®n? = 1 olacak gekilde normlanmig olan
i normal vektorii ile ayni gekilde Wy ’e ait gijm'm? = 1 olacak gekilde
normlanmg 77 vektorii igin 7 V 7 m ifadesine 7 normalinin m vektori

dogrultusundaki tendans: denir.

TEOREM 2.1.3 Normalin, yiizeye ait herhangi bir dogrultudaki tendansi,
bu dogrultudaki normal egriligin negatifine esittir, yani m, Wy’e ait bir
vektor olmak iizere,

mVam=-K,
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dir.

ISPAT: Normalize edilmig 77 teget vektoriinin W,,4+1 ve W, ’e gore kon-

b b b

travaryant bilegenleri, sirasiyla, m® ve m* olsun. m® = z km" oldugu goz

oniine alimir ve (2.1.3) ifadesi kullanilirsa,
Vin® = wZﬁ'bni‘
geklinde yazilabilir. Son esitligin her iki tarafi m* ile garpilirsa
m*Vin® = m*ziVyn® = m*Vyn® (2.1.12)
elde edilir. (2.1.11) ifadesi (2.1.12) ifadesinde yerine yazilirsa

mbVyn® = —g"w,-ka:;‘m"

elde edilir. Bu ifadenin her iki tarafi g,.m°® ile carpilarak a ve c indisleri
uzerinde toplam alinir ve m® = z;m? oldugu hatirlanirsa, (2.1.1)’e gore

(mbvbn“) Gacm® = —g" go ozl TSWimPmF
k .

= —g'Jgjpw,-km”m

= —6;,wgkm7’mk

=—I,
bulunur. Diger taraftan, (1.2.2) ve (2.1.4); den
(mbvbn“) g;cm" =m? (Ven® + Tkn®) gocm®

= (m*Vyn®) geem® + Tygacn®mm®

= (m’Vyn®) gacm®

O halde

-K, = (mebn“) Gactt®

dir.



SONUG: w Vit m = m Vi m = — K, dir
2.2 Frenet Formiilleri

TANIM 2.2.1 [6]’ya gore W,i1’e ait ikiger ikiger birbirlerine dik
(m1,mg,- -, mpy1) vektorleri igin herhangi bir P noktasinda C egrisine ait
Frenet formiilleri

i

§mi

T = Kemi —Keoymi_, (2=1,2,-++,n+1) (2.2.1)

geklinde gosterilir. Burada K¢ = K,4+; = 0 dir.

Wy’e ait bir C egrsinin herhangi bir P noktasindaki normalize edilmis
my teget vektoriintin W, ve Wi41'e gore kontravaryant bilegenleri, sirasiyla,
m} ve m¢, aym gekilde 173 asal normalinin bilegenleri de m§ ve m? olsun.
Ozel olarak (2.2.1) ifadesinde K, C egrisinin birinci egriligini, 35; sembolil
de C dogrultusundaki genellestrilmig kovaryant tiirev semboliinii gostermek

Uzere
1
omj

i =Kymi. .. . (2.2.2)

elde edilir. m§ vektoriniin C egrisi dogrultusundaki genellegtirilmig ko-
varyant tiirevi ise, (2.1.3) ve (2.1.6)’dan

mSV.me =mfVim? (2.2.3)

=m¥Vy (z¢m)

=m¥Viztmi + mFVimiz?

= (wikmtmy) n® + (mkam;) z? (2.2.30)

geklinde bulunur. 57":—;— = mkami ol‘duéunda.n (’2.2.1)’e gore (2.2.3a) ifadesi
mVimg = (wixmimb) n® + (Komh — Kymi) zf

dir.
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2%2- = me xm3 ifadesi yukaridaki egitlikte yerine yazilirsa

< a
om3

bs

= (wgkm’fmf;,) n® + (Kym} — Kym}) z? (2.2.4)
bulunur. (1.2.2) ifadesine gore
Vimg = Vim? — Tymiz?
yukaridaki esitligin her iki tarafi mf ile carpildiginda
mEVms = mEVeme — Tombmiz?
mEVimg = ¥4 oldugundan
émg  ém?

és és

— Tym¥Emiz? (2.2.5)

elde edilir. (2.2.5) ifadesinde (2.2.4) ifadesini yerine yazarsak

dmg
os

= (wigmFmi) n® + (Kom§ — Kymj — Tim§m}) o}
olarak bulunur. Yukaridaki ifadede n®’nin katsayisina C egrisinin n® normal

bilegenine gore geodezik burulmas: denir ve 7, ile gosterilir. Bu durumda

Ty = wikmim (2.2.6)

TEOREM 2.2.1 W,’e ait bir C egrisinin herhangi bir P noktasindaki
geodezik ve normal egrilikleri, sirasiyla, I, ve I, ise,
.Kn =w,~km'i mf

K mi =m¥vim}

dir.
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ISPAT: m$ vektoriniin C egrisi dogrultusundaki genellegtirilmig kovar-

yant tirevi (2.1.3) ve (2.1.6) yardlml?rla,
m¢V.m¢ =mfVm?
= (w;kmimf) n® + (mkam'i) z?

geklinde bulunur. %L = m’kam’i oldugu hatirlanirsa ve (2.2.2) ifadesi goz

oniline alimirsa .
a
om{
s

elde edilir. Diger taraftan,

= (wikmimf) n® + K,mhz? (2.2.7)

= (wgkmimf) n® + (m{‘Vkmi) zf (2.2.8)
dir.

Yukaridaki egitlikte normal bilegenin katsayisina normal egrilik denirse

i,k

olarak bulunur. Buna gore (2.2.7) ifadesi

C, a
omg

s = Kan® + K miz? (2.2.9)

olarak bulunur. m$ vektériiniin C egrisi dogrultusundaki genellegtirilmig

kovaryant tirevi alimrsa (2.2.5) ifadesine benzer olarak

a 5 a .
6;’:1 = —6%1— — Thm¥mia? (2.2.10)

elde edilir. (2.2.10) ifadesinde (2.2.8) ve (2.2.9) ifadeleri yerine yazilirsa
(wixmim¥) n® + (mfViml) 2? = Kon® + (Kymi — Timimy) zf

bulunur.
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Yukanidaki ifadede normal ve tegetsel bilegenler ayri ayr esitlenirse
Kgmg — Tymimk = m¥Vmi
Kymy = m§Vim} + Tymim} (2.2.11)
(2.2.11) ifadesinde (1.2.2) ifadesi kullanilirsa
Kymb = mfVimi ° ' (2.2.11a)

olarak bulunur.
2.3 Wyy1 Weyl Uzayina Ait (A) Kongriiansina Gore

Genellestirilmig Kovaryant Tiirevler

Whn(gij, Tr) hiperyiizeyinin her noktasindan bir egrisi gegmek iizere
Wht1(gab, Tc) uzayina ait bir A kongriiansimi goz oniine alahm. \ kongriians

erisine ait X teget vektorini
A =gft +n® (2.3.1)
seklinde tamimlayalim. Burada g,3n®n® = 1 normalizasyonu altinda,
t= gab/\“)\b = gzm't't"" -.l-.r2 | (2.3.2)
dir.

W, de u* ="u'(s) ile verilen bir C egrisinin normalize edilmig birim teget
vektoriiniin Wy, ve Wiy e gore kontravaryant bilegenleri, sirasiyla, m* ve m®
olsun W,de u* = u'(s') ile verilen bir C' egrisinin normalize edilmig birim

teget vektoriiniin W, ve W, +1’e gore kontravaryant bilegenleri b* ve b olsun.

A kongriians egrisine ait X teget vektoriiniin kontravaryant bilegeninin C

egrisi dogrultusunda genellegtirilmig kovaryant tirevi

s\
= = (Kaan® + Kapz®)t (2.3.3)
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dir. Aym kongriians egrisinin X teget vektoriintin kontravaryant bilegeninin
C' egrisi dogrultusundaki genellegtirilmig kovaryant tiirevi
éA°
és

= (—I_&;,“nna + RMgE‘l) t (2.3.4)

geklindedir.

i) Kxjn, Ky)y W, hiperyiizeyine ait C egrisinin (1) kongiiransina gore nor-
mal ve geodezik egriliklerini, Tf,\ln, F)\l ¢ ise Wy, hiperyiizeyine ait bir C'
egrisinin (A) kongriiansina gore normal ve geodezik egriliklerini goster-

mektedir.

ii) i, W, hiperyiizeyine ait bir C egrisinin (A) kongriiansina gore normal
egrilik vektorii boyunca hareket eden normalize edilmig birim vektoriinii,
7 ve Zise C ve C' efrilerinin ) kongiiransma gore geodezik egrilik vektorii

boyunca hareket eden normalize edilmig birim vektorleri gostersin

ii1) Vi, W, hiperyiizeyinde gozoniine alinan C ve C' egrileri dogrultusundaki

genellestirilmig kovaryant tiirev semboliidiir.

(2.3.1) ifadesinin her iki tarafimin u’’ye gore genellegtirilmig kovaryant
tirevi alimrsa,

Vj/\a = ‘-7]' (a:;‘t' -+ rna) (2.3.5)

elde edilir. (2.1.6) ve (2.1.11) yardimuyla (2.3.5) ifadesi
Vj)‘a = (Vjtl - rg“w;j) zi + (trw.jl + V',-r) n® (2.3.6)

gekline doniigiic. W, de C ve C' egrilerinin normalize edilmig birim teget
vektorlerinin Wy’e gore kontravaryant bilesenleri m? ve % olmak iizere,
(A) kongriians egrisine ait X teget vektoriiniin C egrisi dogrultusundaki
genellegtirilmig kovaryant tiirevi
e
és

=mIV;\* (2.3.7)
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dir. Aym gekilde (A) kongiirans egrisine ait X teget vektoriniin C' egrisi
dogrultusundaki genellegtirilmig kovaryant tiirevi ise
2%

= AV (2.3.8)

dir. V ;j genellestirilmig kovaryant tiirev sembolii olmak iizere D operatorii
D =z%g"V; . . (2.3.9)

geklinde tamimlansin.

u' = ui(s) denklemi ile verilen C egrisinin W,ve W,,1’e gore normalize
edilmig birim teget vektérlerinin kontravaryant bilegenleri, sirasiyla, m' ve
m® olmak {izere, C egrisi dogrultusundaki genellegtrilmig kovaryant tiirevi

éme®
bs

= mjvjm“ (2.3.10)
geklindedir.

TEOREM 2.3.1 K, ve K, sirasiyla C egrisinin normal ve geodezik egri-
lerini gostermek tizere W,.1’e gore C egrisinin normalize edilmig m® teget

vektori igin _.
mDm = Kn,n® + K b*

dir.
ISPAT: (2.3.9) ifadesinin m® tefiet vektdriine uygulanmasiyla,
Dii = g¥z?V;m®;, m® =zim' (2.3.11)
elde edilir. Bu ifadenin ;1er iki tarafi m ile ¢arpildiginda,
mDm = ggpm® (g"ja::-'vjm“)
= gapzizlg i m!V,;m®

bulunur. Son ifade (2.1.1)’e gore

mDA =miVm® (2.3.12)
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olarak bulunur. (2.2.9) ifadesine benzer olarak - -

éme

és

= Knn" + K b* (2.3.13)
elde edilir. (2.3.12) ifadesi, (2.3.10) ve (2.3.13) ifadeleri kullanilirsa
mDm = Kpn® + IKgh* (2.3.14)

olarak bulunur.

TEOREM 2.3.2 K, ve Ky, sirasiyla C egrisinin () kongriiansina gore

normal ve geodezik egriliklerini gostermek lizere
MDX = (Kjan® + Kyjp2%) t
dir.
ISPAT: (2.3.9) ifadesinin A* teget vektoriine uygulanmasiyla
DX = gapm® (gija:?vj)\“) ;. mb=zm! (2.3.15)
(2.1.1) ifadesi ve (2.1.4), ifadeleri kullanilirsa
mDX = miV;\® (2.3.16)
olarak bulunur. (2.3.16) ifadesinde (2.3.3) ve (2.3.7) ifadeleri kullanilirsa
MDA = (Kapan® + Kapp2°) t (2.3.17)

olarak bulunur. b, u* = u*(s') ile verilen C' egrisinin normalize edilmig birim
yuf = u g

teget vektoriinii gostermek iizere, (2.3.16) ifadesine benzer olarak
bDX = bV;A° (2.3.18)
olarak bulunur. (2.3.18) ifadesi (2.3.4) ve (2.3.8) ifadeleri kullamhrsa
BDX = (K apn® + Kyp2°) t (2.3.19)

elde edilir.
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TEOREM 2.3.3 Wy41'e ait herhangi bir ¥ vektoriiniin kontravaryant
bilegeni v® olmak iizere

Dv = vkvk

dir.

ISPAT: @ vektoriiniin Wy'e gore kontravaryant bilegeni v/ olmak iizere

b

= zlv/ dir. (2.3.9) ifadesi ¥ vektériine uygulandiginda

Dy = gabm?gikvkvb
elde edilir. Yukandaki egitlikte (2.1.6) ve (2.1.4); ifadeleri kullanihirsa
Dv = g,'jg"kvkvj

= Vio*

TEOREM 2.3.4 W, de bir C egrisinin herhangi bir P noktasindaki ())

kongriiansina gore normal egriligi
—K\|n = gni (@jtl - rg“w,'j) mh.mf.— ghszt’m"mj
dir.
ISPAT: Teorem 2.1.3 deki ifadeyi genellegtirirsek, Ky, Wode C egrisinin
() kongiiransina gore normal egriligini gostermek iizere, (A) kongliransimin

yiizeye ait herhangi bir .doérultudaki tendansi, bu dogrultudaki normal eg-

riligin negatifine egittir. Buna gore —Kjj, = MV dir. Yani
—Kyjn = (me;,,\“) gacm®

(1.2.2) ifadesine gore V4A® = VpA® + TpA* dur. Bu esitligin her iki yam m?
ile carpildiginda
mPVpA? = mbV,A% + Tym®A®
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bulunur. Bu ifadenin her iki yan1 g,.m® ile garpilip (m"Vb/\“) gacm® ifadesi
yalmz birakildiginda

(m*V5A?) gaem® = (m"Vb/\“) gacm® — mP Ty A*goem®
olarak bulunur. O halde,
~ K\ = (m"ﬁb/\“) Gaem® — mPTyAgacm® (2.3.20)
dir.

(2.1.12) ifadesine benzer olarak m?V;A® = mi VA esitligi (2.3.20) ifa-

desinde yerine yazilirsa
Ky = (miv,-,\“) Gaem® — mPTy A ggern® (2.3.21)

elde edilir. (2.1.1), (2.1.2), (2.1.4)3, (2.3.1) ve (2.3.6) ifadeleri (2.3.21) de

yerine yazilirsa
—Kj\|n = gn (Vjtl — rg"w;j) mtmI — ghszt'mhmj (2.3.21a)
olarak bulunur.

TEOREM 2.3.5 W,, de C egrisinin herhangi bir P noktasindaki () kong-
rilansina gore normal egrilifi K., geodezik egriligi Ky, olsun. Bu takdirde

Kynt = mi (V'7,~r + tlel)
I{Mgtzl =m’ (V,-tl - rgh'whj)
dir.

ISPAT: (2.3.6) ifadesinin her iki tarafi m’ ile garpilir ve (2.3.7) ifadesi

kullanilirsa

61

5 = (Vjt' - rg"'whj) miz] + (t’w,-z + er) min® (2.3.22)
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bulunur. (2.3.22) ve (2.3.3) den
Kyt =m? (Vjr + ;1) (2.3.23)
K,\|ytz' =m! (Vjt' - rgi'w;j) (2.3.24)
bulunur. (1.2.2)’ye gore
Kyjnt =m? (Vir +t'wj) (2.3.25)
Kygtz' =m? (V;t — rgiwi; + T;t!) (2.3.26)
dir.

Benzer gekilde, W, de bir C' egrisinin herhangi bir P noktasindaki ()

kongriiansina gore normal egriligi F’\lm geodezik egriligi K |, ise
f,“nt = (er -I-tlel) (2.3.27)
- L TN, i i,
Rp#'t = b (Vit' = rg'wi;) (2.3.28)

dir



BOLUM 3
WEYL HIiPERYUZEYLERINDE
GENELLESTIRILMIS LAGUERRE FONKSIYONU

3.1 Genellestirilmis Laguerre Fonksiyonu

Wa(gij, Tx) hiperyiizeyinin her noktasindan bir egrisi gegmek iizere
Wa+t1(gab, Tc) Weyl uzayina ait (1) kongriiansim1 gozoniine alalim, Syle ki
()) kongriians egrisine ait X teget vektoriiniin kontravaryant bilegeni A°
(¢=1,2,:--,n+1) olsun. X C ‘egrisine ait genellegtirilmig kovaryant

tiirevi (2.3.6) ifadesine gore
Y'7,-,\° = (Vjtl - rg“'wij) a:,c + (wjztl + er) n’
dir. Burada
q} = v_,-t' —rgwi;, sj= wjit + er (3.1.1)
olarak alindiginda yukaridaki ifade
V;A® = q;a:f + s;jn° (3.1.2)

[}

geklinde yazilir.

= 8D

Wpde s, C egrisi boyunca yay uzunlugunu gostermek tizere m 522 '\m ifa-

desini goz oniine alalim.» Teorem 1.2.2 gbz oniine alinarak (2.1.6), (2.3.9) ve
(3.1.2) yardimuyla

6DA Y T 2 1jv7.1\¢

R LAY

o (e st 5,)

= wign®gIm* VA + 2¢gTmFVV;A° (3.1.3)

= wixn®gIm* (q;a:f + sjnc) + a:?gijmkﬁkvj)\c
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elde edilir. (3.1.2) ifadesinin her iki tarafimn u* ya gore genellegtirilmig
kovaryant tiirevi alimr ve (2.1.6) ve (2.1.11) ifadeleri kullamlirsa

VijX" = Vk (q;a:f + Sjnc)
= mkaq;- + q;-Vka:f + nVis; + 8;Vn® (3.1.4)

= (qu;' - 3jgnlwkn) zf + (q}wu + "71:«91') n®

bulunur. —ﬁ'zsgxﬁ’z ifadesinde (3.1.3) ve (3.1.4)’1 yerine yazarsak
- 6DX - e c c
—~m 5s m = — gabm;’,m”m" [w,-kn (q;-:c, +s;n )

+atg" (Vag) = sjg™wen) of
+ (q}wu + Vksj) n“] geazhm”
bulunur. Yukaridaki egitlikte (2.1.4); ifadesi kullanilirsa

_éDX

i os

M = —gum"mim* (qu;- - s_,-g”'wkn) (3.1.5)
bulunur. (3.1.5) ifadesi Teorem 1.2.2 yardimiyla

L6DX . :
—-m—&;—m = —mImPm* (Vthj — s,-wkh) (3.1.6)

gekline dontgiir. (1.2.2)’ye gore (3.1.6) ifadesi igin

és
bulunur. Buradan da,

L6DX :
Imtm* (Vagr; — sjwen) = —A it = 2TrgrjmimPmF  (3.1.7)

elde edilir. (3.1.7) ifadesinin sol tarafindaki ifadeye W, de normalize edilmisg
1 teget vektoriine sahip bir bir C egrisinin 7 dogrultusundaki genellestiril-

mig Laguerre fonksiyonu diyelim ve Ly; ile gosterelim. Eger Ly = 0 olarak
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aliirsa, W, hiperyiizeyine ait 7% dogrultusundaki genellestirilmig Laguerre

egrisi elde edilir. Buna gore

§DX .
Ly = —r?z—gs—n’i — 2quhjm"m7m'c (3.1.7a)

dir. (3.1.5) de (3.1.1) ifadesi yerine yazihrsa

_TﬁSDX
és

M = — gum*mim* [Vk (Vjtl — rg“'w.'j)

- ('w,-gt' + er) g"lwkn}
= — ghlmhmjmkvk (Vjt' - rg“ng)
+m? (wﬂt' + er) wpgm®m*  (3.1.8)
bulunur. Teorem 1.2.2 kullanihirsa (3.1.8) igin

_éDX

-m bs

m=— mjmhmk‘vk {ghl (Vjtl - rg“w;j)]
+ mJ ('U)j[tl + V,r) w}.};m"mk
= — mkvk [gm (Vjt' - rg“w.'j) mjm"]
+ mjghz (Vjt’ — rg“w,-_,-) mkvkmj
+ mhghl (Vjt' - rg“w;,-) mkvkmj
Cmd (wjzt' + vjr wrem*mE (3.1.9)
elde edilir.

(3.1.9) ifadesinin sag tarafim, sirasiyla, 1. terim, II. terim, III. terim, ve

IV. terim olarak adlandiralim. Bu takdirde,

I. terim : —mFV, (ghz (Vjt' — rgi'ng) m"mj) (3.1.10)
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olacaktir. (2.3.21a) gore (3.1.10) ifadesi
—mkvk l:gu (vjtl - rg”w,-j) mhmj] = —mkvk (—-K;un + ghzl’jt'mh1n5)

= m"VkKMn - mkvk (ghlrjtlmhmj)

_ $Kxin

s m*V; (ghsztlmhmj)

(3.1.11)

gekline gelir.

Yukaridaki egitligin sag tarafindaki ifadenin ikinci kismn Teorem 1.2.2,
(2.3.12) ve (2.3.14) ifadelerine gore

—mkvk (gthjtlmhm-") =— gthjt' mkvkmh + mkvkmj]

- g;.,m"mjm"Vk (Tjtl)
=— gthjtlI(g (bh + b’) - ghzmhmjmkvk (Tjtl)
(3.1.12)

olarak elde edilir. Buna gore (3.1.12) ifadesi (3.1.10) ifadesinde yerine yaz:-

lirsa

— guTit' K, (b* + &)

: ~ ; | Sk
_mkvk l:gh’ (Vjtl _ rgtlw?j) mhm]] — 6:ln
— gum"mimkv, (T,-t') (3.1.13)
olacaktir.

IL terim: mign (Vjt' - rg"w;j) m*Vm" icin (2.3.12) ve (2.3.14) ifa-
deleri kullanilirsa
m? ghl (Vjt' - Tg"wij) Kb (3.1.14)

bulunur. Bu ifade de (2.3.24) kullamlirsa

ghgmj (Vjt' — 'rg"'w,'j) mk ~ Vkmh = I(Ang{gtghzbhz'
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bulunur. C' egrisinin K, geodezik egrilik vektorii dogrultusundaki b* ile C
egrisinin A kongriiansina gore K i, peodezik egrilik vektori boyunca hareket
eden z' normalize edilmig vektorleri arasindaki ag1 ¢ olmak iizere, cos ¢ =

grib® 2! olarak alindiginda II. terim igin
gum? (V! = rgiwi;) m*Vim? = Ky K gt cos ¢ (3.1.15)

bulunur.

IIL. terim olan gpym™ (V,-t' - rg“w.'j) m*Vm/ ifadesi (2.3.12), (2.3.14)
ve (2.3.28) ifadelerine gore

ghzmh’ (Vjtl - rgilwij) mkamj = ghlmh (Vjtl — rg“w;,-) .Kybj
= Tf,\nggtghzth'

olarak elde edilir.

C egrisinin K, geodezik egrilik vektorii dogrultusundaki mhile C' eg-
risinin A kongriiansina gore K xi, geodezik vektorleri arasindaki agiy: 6 ile

gosterelim. Dolayisiyla cos @ = gpym™z' olacaktir. Bu takdirde IIL. terim
gum® (Vjt' — rg“wij) m*Vemd = K K t cosé (3.1.16)
olacaktur.
IV. terim olan, mJ (wﬂt' + er) wprmtm?¥ ifadesi (2.3.25) e gore
mJ (wjgt' + er) whkmtm® = Kyjn Kat (3.1.17)

olarak bulunur. (3.1.9) ifadesinde (3.1.13), (3.1.15), (3.1.16) ve (3.1.17)

ifadeleri yerine yazilirsa

__m . _51'{,\1"
65 ' 63

+ KinKnt' — guiTjt I, (0" + )

+ KxigKgtcos ¢ + F)ugth cos @

- ghzmhmjmkvk (Tjtl) (3.1.18)
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elde edilir. (317) ifadesinde (3.1.18)’i yerine yazdifimizda

6Kin
és

+ KatnKnt — guTit I, (" + 57)

Ly = + Knig Iyt cos qb + K,\ng tcosf

— gumPmIm* Vv, (T;t") — 2Tkqnjm"*mIm* (3.1.19)

bulunur. Buna gore agagidaki teoremi ifade edebiliriz.

TEOREM 3.1.1 (3.1.19) ifadesi W,, hiperyiizeyine ait bir C egrisi dogrul-
tusundaki genellegtirilmig Laguerre fonksiyonudur. (3.1.19) ifadesinin gimdi

farkhi bir metotla ispatim verelim.

ISPAT: W, ’e ait bir A kongriiansina gore, m DX ifadesinin genelles-
tirilmig kovaryant tiirevi alindiginda
§ (fﬁD'\'ﬁ) 5* L6DX L b

bulunur.

(3.1.20) ifadesinin sag tarafinda bulunan ifadenin ikinci terimi, egitligin
sol tarafina gegirirsek
; 6 (MDA
80X 8 e + +mD/\6—m - (———)
és bs és és

%—TD-’n'"'z ifadesinde (2.3.9) ve (2.3.13) ifadeleri kullanilirsa

(3.1.21)

%@D/\m gab (Knn® + K, b“)( 'jv,-)\c) gcd:cﬁmh

bulunur. Yukaridaki egitlikte (2.1.1), (2.1.4); ve (3.1.2) ifadeleri kullamlirsa

ve b*= z3bP oldugu hatirlamrsa

%m—D/\m GebZ; bntg'i K, V A€ gcda:hm +gabb" 'ngVj)\"‘gcda:gmh

elde edilir.

%"—’mm =K, bV ;A geazim®

=Kgbj (q;:vf + s;n°) geazimhP
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olarak bulunur. Yukaridaki egitlikte (2.1.1) ve (2.1.4)3 ve (3.1.1) ifadeleri
kullanilirsa

61 o . .
gDz\m = g’ (Vjtl - rg"w,-j) Kgmh

geklinde yazilabilir. Bu taktirde, (2.3.28)’e gore

.
-t

ém

ED;\‘T?L = T,\zngtgumh'z"

elde edilir. 77 ile 7 vektorleri arasindaki aginin @ oldugu hatirlanirsa

om

—3DX7?1 = T(_)ugKyt cos @ (3.1.22)

dir. ﬁiDX%'?— ifadesi, (2.3.13) ve (2.3.17) ifadeleri kullamldiginda ve 2’ ve b

vektorleri arasindaki acinin ¢ oldugu hatirlandiginda
mDJ\";—T = (Kxinft + Kty ?) (Knﬁ + KgE) :
=K \inKnht - 71 + I(,\ly.th cos ¢
+ KngKntz - it + Kan Kt - b
olarak elde edilir. Yukaridaki egitlik (2.1.4);’e gore
mD)\E- = KainInt + KxigIl gt cos ¢ (3.1.23)

sekline gelir. mDXm ifadesi (2.1.1), (2.1.4)3, (2.3.9), (3.1.1) ve (3.1.2)'ye

gore
MDA = gapm® (z?g"jvj”) geazim® ; mb= w;’,m"

= gabm?w:’,gijm”vj)\cgcdzﬁmh

= gina¥mPV i \° d h

= Gipg " VA GedTpM

=m! (gizf + sjn°) geazim”

= gn (@jt' - 'rg"w,-j) mtm? (3.1.24)
geklindedir. Yukaridaki egitlikte (2.3.21a) ifadesi kullanldig takdirde

ﬁ'zDXﬁ’z = —Kyin+ ghﬂ'}'tlmhmj



-32 —

bulunur. Buna gore

6 (DX ¢ 5 Tt hmi
( - ) = S | 6 (guTyt'm m) (3.1.25)
s s s

; gtk . .
bulunur. s(y“T’;sm ) = mkV, (ghszt'mhmJ) ifadesi (3.1.12) deki ifade

ile aym1 oldugundan

6 (gth}‘tlmhmj)
és

= gth}'thg (bh +b'1) + g.hlmhmjmkvk (Tjtl)

olacaktir. Buna gore (3.1.25) ifadesi

6 (r?zDXﬁz) Ko

5 = 5s -+ gthjtl.Ky (bh + b’) + ghzmhmjmkvk (Tjtl)

(3.1.25a)

(3.1.21) ifadesinde (3.1.22),(3.1.23) ve (3.1.25a) ifadeleri yerine yazilirsa

ve —m ag)‘ﬁ'l ifadesi yalniz birakilirsa

_6DX . 6K
-m m =

=~ A KnigKytcos ¢ + KaigKyt cos 8 + Kapn Kt

- ghszt'I{g (bh + b’) - yhlmhmjmkvk (Tjt‘)

elde edilir. (3.1.26) ifadesi (3.1.7a) ifadesinde yerine yazilirsa

6K xin

33 + KigICgt cos ¢ + f)ugth cos @ + KainI{nt

L=
- ghsztlI{g (bh + b]) - ghgmhmjkajtlv (Tjtl)

~ 2TrgnjmPmim* ' (3.1.27)

bulunur. (3.1.27) ifadesi ile (3.1.19) ifadesi aym oldugundan Laguerre fonk-

siyonu farkli bir metotla bulunmug olur.

TEOREM 3.1.2 Eger X normaller kongiirans: ise genellegtirilmig Laguerre

fonksiyonunun ifadesi

Py = Tumf (3.1.28)
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olmak tlizere

mEmimbViws; = mEVi K, — 2K 7, + 2P, K,

dir.

ISPAT : W,’e ait bir C egrisinin herhangi bir P noktasindaki normalize
edilmig 17 teget vektoriintin W, ve Wy,41’e gore kontravaryant bilegenleri,
sirasiyla, m{ ve m¢, aym gekilde r7i2 asal normalinin bilegenleri de mi ve
m§ olsun. (3.1.20) ifadesinde 7 = i1 ve A kongriiansi yerine normaller

kongriians: alindiginda

6(m1Dnm1) _ 6m1 Dnm1 + m1 6Dnm1 + man 6m1
os és ds os

bulunur. —m; 25" 'SD $D# 2. ifadesi yalmz blraklldlgmda,

¢ — 6' —t 6 — D—o —
—77—7:1 6Dn 77’?1 5m1 Dnm1 + man my 4 (m1 nm)
bs bs bs bs

(3.1.29)

bulunur. Yukaridaki egitligin sag tarafindaki ifadeleri ayr1 ayr1 inceleyelim.
81 D7y ifadesinde (2.1.1), (2.1.11), (2.2.2), (2.2.5) ve (2.3.9) ifadeleri kul-

lanilirsa

-
—

%Dﬁrﬁl =gap K1m3 (w?gijvjnc) gcdmﬁmh
__gabIﬁz mza:b '-’( ~W;j gk”:t: )gcda:',{mh
= - Klwhjmi‘mg
= —i(lrg (3.1.30)

bulunur. 7y Dﬁ%’%‘- ifadesi ile s—g—lDﬁ'ﬁl ifadesi aym olacagindan (3.1.30)’a
gore .
6m1

manT.; =-K7, (3.1.31)

bulunur.

A kongriians: yerine normaller kongriians1 alindiginda (2.3.1) ifadesinde
tegetsel kismin katsayis1 olan ¢ = 0 ve normal kismn katsayis1 r = 1

olacagindan
q;' =—g'wi; , s;=0 (3.1.32)
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gekline donugiir. (3.1.32) ifadesi gp ile ¢arpilirsa

ghj = —Whj (3.1.33)
bulunur. (3.1.33) ifadesi (3.1.6a) ifadesinde yerine yazildig: takdirde

. 6Dt -
—fi — =y = m{mi’m{‘ (Viwnj — 2Tkwp;) (3.1.34)

olarak bulunur. Son olarak 'i('ﬁ‘&—%@l ifadesini ele alalim.

(3.1.24) ifadesi (3.1.32)’ye gore
my Dty = —ngmim{ (3.1.35)
gekline doniiglir. (3.1.29) ifadesinde (3.1.30), (3.1.31), (3.1.34), (3.1.35)

ifadeleri yerine yazilirsa

K,
és

elde edilir. Yukaridaki egitlikte (3.1.28) ifa:desi kullanildigy takdirde

mImPmEVwn, — 2Tkm{‘whjmhm’ = -2 74 +

K,
és

mimtmiViws; — 2P K, = —2K 7, +

bulunur. VkK = VK, oldugu hatirlanirsa son esitlik

6K,
6s

m{m;’m’kawhj = + 2P K; — 2K7g (3.1.36)

olarak elde edilir.

(3.1.36) ifadesinin sol tarafindaki ifadeye [7]’ye gore genellegtirilmig La-
guerre fonksiyo;m denir. Eger Weyl uzayindan Riemann uzaymna gegilirse
Tk = 0 ve (3.1.28) ifadesindeki Py = 0 olacaktir.

Aym zamanda, Riemann uzayinda (2.2.6) ifadesi —I'; ye Cegrisinin bir-
inci egriligini gosteren K, ise K, ye egit oldugundan (3.1.36) ifadesi

L= ‘Sﬁ“ +2K,T'; (3.1.37)

olur. (3.1.37) ifadesi [8]'e gore Riemannien hiperyiizeylerde Laguerre fonk-

siyonunu verir.



SONUCLAR VE ONERILER

Bu ¢aligmada, W, 41 weyl uzayina ait () kongriiansina gore W, hiperyi-
zeyinin bir C egrisi dogrultusundaki genellestiriliig Laguerre fonksiyonu elde

edilmigtir.

Bu sonuglardan yararlanarak, W, de genellestirilmig Laguerre egrilerinin bi-

rinci ve ikinci cins Chebyshev gebekelerinden ibaret olmalar hali incelenebilir.
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WEYL HIiPERYUZEYLERINDE GENELLESTiRiLMiS
LAGUERRE FONKSIYONU -

Sezgin ALTAY

Anahtar Kelimeler:Komplemanter vektor, genellééfii‘ilmig tiirev, ge-
nellestirilmig kovaryant tiirev, tendans, normal egrilik, geodezik egrilik,
kongriians, genellestirilmig Laguerre fonksiyonu,genellestirilmig Laguerre
¢lzgisi. :

Ozet:Ug boliimden olugan bu ¢aligmanin birinci ve ikinci boliimlerinde
vektor alanlarinin genellestirilmis kovaryant tiirevleri ile ilgili baz1 temel
tanim ve teoremlere yer verilmigtir. Ucgfincii béliimde ise Weyl hiperyii-
zeylerinde genellegtirilmis Laguerre fonksiyonunun ifadesi ve ele alinan
kongriiansin normal dogrultuda olmas: durumunda Laguerre fonksiyonu-
nun 6zel bir formu elde edilmigtir.

GENERALISED LAGUERRE FUNCTION
IN A WEYL HYPERSURFACE

Sezgin ALTAY

Keywords:Complementary vector, prolonged derivative, prolonged co-
variant derivative, tendency, normal curvature, geodesic curvature, con-
gruence, generalised Laguerre function,generalised Laguerre line.

Abstract:In this work, after having given the fundamental definitions
related to the prolonged covariant derivatives of the vector fields of a
Weyl space , some theorem concerning these concepts are proved.In the
third section, we obtained the generalised Laguerre function.
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