

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

AUGUST 2015

STRATEGIC PLANNING FOR

MODULAR ROBOTIC STRUCTURES

Mehmet Cem ŞANLI

Department of Mechanical Engineering

Mechatronics Engineering Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

AUGUST 2015

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

STRATEGIC PLANNING FOR

MODULAR ROBOTIC STRUCTURES

M.Sc. THESIS

Mehmet Cem ŞANLI

 (518091048)

Department of Mechanical Engineering

Mechatronics Engineering Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Thesis Advisor: Assoc. Prof. Dr. Pınar BOYRAZ

AĞUSTOS 2015

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

MODULER ROBOTİK YAPILARDA

STRATEJİK PLANLAMA

YÜKSEK LİSANS TEZİ

Mehmet Cem ŞANLI

(518091048)

Makine Mühendisliği Anabilim Dalı

Mekatronik Mühendisliği Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Tez Danışmanı: Doç. Dr. Pınar BOYRAZ

v

Thesis Advisor : Assoc. Prof. Dr. Pınar BOYRAZ

 İstanbul Technical University

Jury Members : Prof. Dr. Şeniz ERTUĞRUL
 Istanbul Technical University

Asst. Prof. Dr. Akın DELİBAŞI

Yıldız Technical University

Mehmet Cem Şanlı, a M.Sc. student of ITU Graduate School of Science and

Technology student ID 518091048, successfully defended the thesis/dissertation

entitled “STRATEGIC PLANNING FOR MODULAR ROBOTIC

STRUCTURES”, which he prepared after fulfilling the requirements specified in the

associated legislations, before the jury whose signatures are below.

Date of Submission : 4 May 2015

Date of Defense : 19 August 2015

vi

vii

To my family and friends,

viii

ix

FOREWORD

Firstly, I would like to thank all people who have helped and inspired me during my

M.Sc. study in Istanbul Technical University. I would especially like to thank to my

supervisor Assoc. Prof. Pınar BOYRAZ for her endless patience and support during

my study. Without her guidance this work would not be possible.

I would like to dedicate this study to my family and friends and I am truly thankful

for their lifelong support.

May 2015

Mehmet Cem ŞANLI

Systems Engineer

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix

TABLE OF CONTENTS .. xi

LIST OF TABLES .. xiii

LIST OF FIGURES ... xv

SUMMARY ... xix

ÖZET .. xxi

1. INTRODUCTION .. 1
1.1 Purpose of Thesis ... 2

2. BACKGROUND .. 3
2.1 Modular Robotics ... 3

2.2 Robotic Paradigms ... 5

2.2.1 Hierarchical paradigm ... 5

2.2.2 Reactive paradigm ... 6

2.2.3 Hybrid deliberative/reactive paradigm .. 7

2.3 Robotic Simulation Environments ... 8

2.3.1 Gazebo ... 8

2.3.2 Webots ... 9

2.3.3 V-Rep .. 9

3. ROBOTIC STRUCTURE AND STRATEGIC PLANNING 15
3.1 Single Module Design .. 15

3.1.1 Design considerations ... 15

3.1.2 Structure .. 15

3.1.3 Sensor implementations .. 17

3.1.3.1 Force sensor .. 17

3.1.3.2 Visual sensor .. 18

3.1.4 Connection mechanism ... 19

3.1.5 Locomotion ... 22

3.1.5.1 Kinematics of a single module ... 22

3.1.5.2 Locomotion methods and gait design 29

3.1.5.3 Motions kinematics and position control 40

3.2 Cooperative Locomotion Modes and Configurations 48

3.2.1 Roles and communication in cooperative modes 48

3.2.2 Quadruped locomotion .. 49

3.2.2.1 Structure and assembly ... 49

3.2.2.2 Leg kinematics and gait design .. 50

3.2.2.3 Motion kinematics and position control 64

3.2.2.4 Passing over obstacles .. 71

3.2.3 Wheeled locomotion ... 73

3.2.3.1 Structure and role distribution .. 73

3.2.3.2 Motion kinematics and position control 75

xii

3.2.3.3 Passing under obstacles .. 79

3.3 Strategic Planning ... 80

3.3.1 Deliberative layer .. 80

3.3.1.1 Deliberative sensing phase ... 81

3.3.1.2 Modeling phase ... 83

3.3.1.3 Role distribution phase ... 84

3.3.1.4 Decomposition phase .. 86

3.3.2 Reactive layer .. 88

3.3.2.1 Reactive sensing phase ... 89

3.3.2.2 Sequencing phase.. 89

4. SIMULATION AND TEST RESULTS .. 93
4.1 Test Scene ... 93

4.2 The Simulation ... 94

5. CONCLUSIONS AND RECOMMENDATIONS ... 111
5.1 Conclusion .. 111

5.2 Recommendations .. 113

REFERENCES ... 115

APPENDICES .. 117
APPENDIX-A: Search Program of the First Kinematic Model 117

APPENDIX-B: Search Program of the Second Kinematic Model 118

APPENDIX-C: Lua Code of the Module Scripts in V-Rep 119

CURRICULUM VITAE .. 163

xiii

LIST OF TABLES

Page

Table 3.1 : Dummy positions and orientations. .. 20

Table 3.2 : D-H parameters of the first kinematic chain. .. 23

Table 3.3 : D-H parameters for the second kinematic chain. 27

Table 3.4 : Pseudo-code of the search program. ... 30

Table 3.5 : α1 and α2 values for the first pose of the high velocity gait for forward

locomotion. .. 31

Table 3.6 : α1 and α2 values for first pose of the low velocity gait for forward

locomotion. .. 32

Table 3.7 : Pseudo-code of the search program created for the second kinematic

model. .. 34

Table 3.8 : θ3 and θ4 values for second pose of the high velocity gait for backward

locomotion. .. 35

Table 3.9 : θ3 and θ4 values for second pose of the low velocity gait for backward

locomotion. .. 36

Table 3.10 : θ3 and θ4 values for first pose of the high velocity gait for backward

locomotion. ... 37

Table 3.11 : θ3 and θ4 values for first pose of the low velocity gait for backward

locomotion. ... 37

Table 3.12 : Longitudinal displacement and cycle time of forward locomotion gait.

 .. 41

Table 3.13 : Longitudinal displacement and cycle time of backward locomotion gait.

 .. 41

Table 3.14 : Time required for a 180
0
 rotation in varying terrains 42

Table 3.15 : Pseudo-code of the single module position control algorithm. 46

Table 3.16 : Predetermined module positions for quadruped configuration assembly.

 .. 50

Table 3.17 : Timetable of trotting and sidling gaits. ... 51

Table 3.18 : D-H parameters of the kinematic chain .. 53

Table 3.19 : Joint positions of legs while trotting forward. 58

Table 3.20 : Joint positions of legs while sidling to left. .. 62

Table 3.21 : General joint positions of legs while trotting. 65

Table 3.22 : General joint positions while sidling. ... 65

Table 3.23 : Longitudinal displacement and angular velocity while trotting in more

aggressive states of the controller. .. 66

Table 3.24 : Longitudinal displacement and angular velocity while trotting in more

passive states of the controller. ... 67

Table 3.25 : Longitudinal displacement and angular velocity while sidling in more

aggressive states of the controller. .. 67

Table 3.26 : Longitudinal displacement and angular velocity while sidling in more

passive states of the controller. ... 68

xiv

Table 3.27 : Longitudinal displacement while trotting forward and sidling left

without controller effect. ... 68

Table 3.28 : Pseudo-code for the position control algorithm of the quadruped

configuration. .. 70

Table 3.29 : Joint positions of the poses for passing over obstacles sequence. 71

Table 3.30 : Joint positions of the normal pose of the wheeled configuraion. 73

Table 3.31 : Predetermined module positions for wheeled configuration................. 74

Table 3.32 : Joint positions of the pass under obstacles pose of the wheeled

configuraion. ... 79

Table 3.33 : Friction estimation based on force sensor readings. 83

Table 3.34 : Pseudo code of the role distribution algorithm. 84

xv

LIST OF FIGURES

Page

Figure 2.1 : Relationship of the robotic primitives in hierarchical paradigm. 5

Figure 2.2 : Relationship of the robotic primitives in reactive paradigm. 6

Figure 2.3 : Levels of behaviors in reactive paradigm. .. 7

Figure 2.4 : Relationship of the robotic primitives in hybrid paradigm. 7

Figure 2.5 : Visual representations of scene objects in the scene view and scene

hierarchy in V-Rep. .. 11

Figure 3.1: Single module in simulation software. ... 15

Figure 3.2: Single module parts shown in exploded view. 16

Figure 3.3: Articulated manipulator. ... 16

Figure 3.4: Force sensor. ... 18

Figure 3.5: Wheel-to-foot connection. .. 21

Figure 3.6: Wheel-to-body connection. .. 21

Figure 3.7: Foot-to-body connection. ... 21

Figure 3.8: Foot-to-foot connection. ... 22

Figure 3.9: Coordinate frames for the first kinematic chain. 23

Figure 3.10: Coordinate frames for the second kinematic chain. 26

Figure 3.11: Coordinate frames for the second kinematic chain. 26

Figure 3.12: Forward locomotion of a single module. .. 30

Figure 3.13: First pose of the high velocity gait of forward locomotion. 32

Figure 3.14: First pose of the low velocity gait of forward locomotion. 33

Figure 3.15: The first pose of the high velocity gait for backward locomotion. .. 38

Figure 3.16: The second pose of the high velocity gait for backward locomotion.

 .. 38

Figure 3.17: The third pose of the high velocity gait for backward locomotion. . 38

Figure 3.18: The first pose of the low velocity gait for backward locomotion..... 39

Figure 3.19: The second pose of the low velocity gait for backward locomotion. 39

Figure 3.20: The third pose of the low velocity gait for backward locomotion. .. 39

Figure 3.21: Longitudinal displacement and angular velocity of a module.......... 40

Figure 3.22: Calculating module position using the reference module. 43

Figure 3.23: Calculating target position using the reference module. 44

Figure 3.24: The walker robot standing still. .. 49

Figure 3.25: Predetermined module positions for quadruped configuration

assembly. .. 50

Figure 3.26: Coordinate frames used in the kinematic model. 52

Figure 3.27: Coordinate frames used in the kinematic model. 53

Figure 3.28: x-y-z coordinates of right tip of the foot for varying θ1 values. 56

Figure 3.29: x-y-z coordinates of left tip of the foot for varying θ1 values. 56

Figure 3.30: zr and zl values for varying θ1 values. ... 57

Figure 3.31: yr and yl values for varying θ1 values ... 57

Figure 3.32: First step of the trot gait.. 58

Figure 3.33: Second step of the trot gait. .. 59

Figure 3.34: Third step of the trot gait. ... 59

xvi

Figure 3.35: Fourth step of the trot gait. ... 60

Figure 3.36: x-y-z coordinates of upper tip of the foot for varying α2 values....... 60

Figure 3.37: x-y-z coordinates of lower tip of the foot for varying α2 values....... 61

Figure 3.38: zupper and zlower values for varying α2 values. 61

Figure 3.39: First step of the sidling gait. ... 62

Figure 3.40: Second step of the sidling gait. ... 63

Figure 3.41: Second step of the sidling gait. ... 63

Figure 3.42: Fourth step of the sidling gait. .. 64

Figure 3.43: Longitudinal displacement and angular velocity of the quadruped

walker. .. 65

Figure 3.44: Longitudinal displacement and angular velocity of the quadruped

walker. .. 67

Figure 3.45: 12 possible actions which can be implemented by the quadruped

configuration. ... 69

Figure 3.46: First pose of passing over obstacles sequence. 71

Figure 3.47: Second pose of passing over obstacles sequence. 72

Figure 3.48: Third pose of passing over obstacles sequence. 72

Figure 3.49: Wheeled configuration.. 73

Figure 3.50: Predetermined module positions for wheeled configuration. 74

Figure 3.51: Visual representation of ICR values. .. 76

Figure 3.52: Low height pose of the wheeled configuration................................. 79

Figure 3.53: General strategic planning algorithm.. 80

Figure 3.54: General workflow of deliberative layer. ... 81

Figure 3.55: Force sensor readings when friction coefficient is 1.0. 81

Figure 3.56: Force sensor readings when friction coefficient is 0.8 82

Figure 3.57: Force sensor readings when friction coefficient is 0.6. 82

Figure 3.58: Force sensor readings when friction coefficient is 0.4. 82

Figure 3.59: Force sensor readings when friction coefficient is 0.2. 82

Figure 3.60: Reactive layer workflow. .. 89

Figure 3.61: Flowchart of the sequencing unit. ... 90

Figure 4.1 : Test scene created in V-Rep. .. 93

Figure 4.2 : Top view of the test scene. ... 93

Figure 4.3 : Module#1 log on friction coefficient estimation 95

Figure 4.4 : Module#1 log on localization scan. .. 95

Figure 4.5 : Module#1 log on role distribution part 1. ... 96

Figure 4.6 : Module#1 log on role distribution part 2. ... 97

Figure 4.7 : Decomposition phase and creation of the plan matrix. 98

Figure 4.8 : Active state fetched by the sequence() function, Plan Row 1. 99

Figure 4.9 : Assembly phase in the test scene part 1. ... 100

Figure 4.10 : Assembly phase in the test scene part 2.. 101

Figure 4.11 : Assembly phase in the test scene part 3.. 101

Figure 4.12 : Assembly phase in the test scene part 4.. 101

Figure 4.13 : Quadruped configuration movement part 1. 102

Figure 4.14 : Quadruped configuration movement part 2. 102

Figure 4.15 : Quadruped configuration movement part 3. 102

Figure 4.16 : Quadruped walker passing over ground obstacle part 1. 103

Figure 4.17 : Quadruped walker passing over ground obstacle part 2. 103

Figure 4.18 : Quadruped walker passing over ground obstacle part 3. 103

Figure 4.19 : Quadruped walker passing over ground obstacle part 4. 104

Figure 4.20 : Quadruped walker passing over ground obstacle part 5. 104

xvii

Figure 4.21 : Quadruped configuration repositioning part 1. 104

Figure 4.22 : Quadruped configuration repositioning part 2. 105

Figure 4.23 : Quadruped configuration disassembling. 105

Figure 4.24 : System reassembling wheeled configuration part 1. 106

Figure 4.25 : System reassembling wheeled configuration part 2. 106

Figure 4.26 : System reassembling wheeled configuration part 3. 106

Figure 4.27 : Wheeled configuration moving to lath obstacle part 1. 107

Figure 4.28 : Wheeled configuration moving to lath obstacle part 2. 107

Figure 4.29 : Wheeled configuration adjusting pose to pass under lath obstacle. 108

Figure 4.30 : Wheeled configuration adjusting pose to pass under lath obstacle. 108

Figure 4.31 : Wheeled configuration passing under lath obstacle. 109

Figure 4.32 : Wheeled configuration returning to original pose. 109

Figure 4.33 : Wheeled obstacle moving to target. ... 109

Figure 4.34 : Wheeled configuration in target state. .. 110

xviii

xix

STRATEGIC PLANNING FOR MODULAR ROBOTIC STRUCTURES

SUMMARY

The advancements in robotics increases the expectations from robots in terms of

capability and capacity. Today people expect robots to be more autonomous, more

functional, more versatile and more affordable. A robot that can play the violin, but

only playing the violin is not fascinating anymore. Today we expect from the robot

that plays the violin to come and ask our wish, present what we wished, avoid the

obstacles while doing this, adapt to a dynamic environment it has not been before

and solve its own problems if it has any while operating. Besides, these robots should

be affordable.

The purpose of this study is to design a functional and versatile modular robotic

structure and develop a strategic planning algorithm that can answer these

demanding expectations. The modular robotic system is expected to be able to create

configurations that can implement quadruped and wheeled locomotion methods and

to have configuration specific abilities such as passing over or under obstacles.

Another expectation is to decide the appropriate configuration to implement proper

locomotion method and configuration specific ability with the help of the developed

strategic planning algorithm.

The modular robotic structure designed in this study is a chain type modular robotic

system which are known for their suitability in implementing advanced locomotion

methods easily. To overcome the general self reconfiguration problem of this class,

the modules are designed to be self mobile. To control the modular robotic structure

a strategic planning algorithm is developed. The architecture of the algorithm can be

classified as hybrid deliberative/reactive. The hybrid architecture is chosen for its

two layered architecture which benefits both from the advantages of hierarchical

paradigm and reactive paradigm. After inspecting different simulation programs such

as Webots, Gazebo and V-Rep. The last one is found to be the best choice for the

needs of this study based on its good documentation and ease of use.

Modules of the robotic structure are designed to have a visual sensor, a force sensor,

three joints and four connection points. The locomotion method of the modules are

similar to an inchworm and it is developed by analysing the kinematic chain of a

single module. A position control algorithm is also developed which is mainly used

for assembly of configurations. The assembly procedure of configurations is

determined and a role distribution algorithm is developed.

Two configurations to implement quadruped and wheeled locomotion are designed.

The configuration specific abilities for both configurations are designed and the

design proces of the robotic structure is finalized.

After the robotic structure is designed, the development of the strategic planning

algorithm started. A two layered hybrid deliberative/reactive architecture is

developed to control the robotic structure. The deliberative layer is used to generate a

plan consisting of sub goals to drive the robotic structure from its initial state to the

desired goal state. The reactive layer of the algorithm is more like a feedback

controller. This layer is used to execute the plan generated by the deliberative layer.

xx

The designed robotic structure and strategic planning algorithm is tested in V-Rep by

creating a complex test area. In this complex test area, there are obstacles that can be

passed over or under with the configuration specific abilities of the robotic structure

positioned between the initial state of the robotic structure and its desired goal state.

The behavior and performance of the whole structure is tested based on its success to

reach the desired goal state.

The test results of this study is presented in detail and interpreted. According the test

results, it is proven that with good design and strategic planning algorithm, modular

robotic structures are more functional and versatile over their monolithic

counterparts.

xxi

MODÜLER ROBOTİK YAPILARDA STRATEJİK PLANLAMA

ÖZET

Robotik alanındaki araştırmalar arttıkça ve robotiğin dayalı olduğu mekanik,

elektronik ve yazılım gibi alanlarda hızına yetişilemeyen gelişmeler oldukça,

insanların robotlardan beklentileri de değişmeye ve gün geçtikçe daha da talepkar

olmaya başladı. İnsanlar artık robotlardan daha otonom, daha fonksiyonel, daha çok

yönlü ve daha hesaplı olmalarını bekliyorlar. İnsanoğlu artık keman çalabilen ancak

sadece keman çalabilen bir robotu eskisi kadar göz kamaştırıcı bulmuyor. Artık

zamanında hayranlıkla izlenen keman çalabilen robotun, gelip isteklerimizi sorması,

isteklerimizi sunarken karşısına çıkan engele takılmaması, değişik bir ortama

girdiğinde hemen adapte olması, hatta bir problem yaşadığında problemini kendi

kendine çözmesini bekliyoruz. Aynı zamanda bunları yapabilen bir robotun daha

ucuza mal edilmesini ve bize daha hesaplı bir fiyatla sunulmasını istiyoruz.

Robotik araştırmacıları, insanların bu talepkar beklentilerini karşılayabilmek için

değişik alanlarda çalışmalarını sürdürmeye devam ediyorlar. Bir kısmı daha otonom

ve daha fonksiyonel, operatör kontrolünden daha bağımsız robotlar geliştirmek için

yapay zeka araştırmalarına yönelirken, bir kısmı elektronik ve mekanik

optimizasyonlarla hem hesaplı hem çok yönlü robotlar yaratmaya çalışıyorlar. Bu

tarz istekleri karşılayabilecek monolitik robotların olduğu ve daha bir çoğunun da

geliştirilebileceği inkar edilmese de daha fonksiyonel, daha çok yönlü ve daha

hesaplı robotik sistemlerin geliştirilmesi genellikle çoklu robot sistemleri ile

sağlanmaktadır. Çoklu robot sistemleri denildiğinde ilk akla gelen iki tip robotik

sistem vardır; (1) sürü robot sistemleri ve (2) modüler robotik sistemler. İki sistem de

birbirine çok benzer görünse de aslında temel prensipleri açısından oldukça büyük

farkları bulunmaktadır.

Bu iki sistemin birbirinden ayrıldığı en temel nokta, modüler robotiğin temelinde

birleşerek daha fonksiyonel robotlar oluşturmak varken, sürü robotikte birleşmek

gibi bir olgu yoktur. Modüler robotik sistemlerde çoğu zaman modüller tek başlarına

görev yapmazken, sürü robot sistemlerinde her robot tek başına çalışır ve sürü

kendisinden beklenen görevleri bu şekilde yerine getirir. Her iki sistem çok sayıda

robottan oluşsa da fonksiyonellik açısından, sürü robotik sistemlerdeki robotlar

modüler robotik sistemlerdekilere oranla oldukça basittirler. Genel kontrol sistemleri

açısından da iki robotik sınıf arasında farklar vardır. Sürü robotik sistemlerde daha

dağıtılmış kontrol sistemleri kullanılırken, modüler robotik sistemlerde dağınık

kontrol algoritmaları kullanılsa da sistemin temelinde birleşmek bulunduğundan,

kontrol sistemlerinde merkezi ögeler de çoğunlukla bulunur.

Bu çalışmanın amacı insanların robotlardan yeni beklentileri doğrultusunda daha

fonksiyonel ve çok yönlü bir modüler robotik sistem tasarlamak ve bu sisteme bir

stratejik planlama algoritması uygulayarak sistemin fonksiyonelliğini ve çok

yönlülüğünü ön plana çıkarmaktır. Tasarlanacak modüler robotik sistemden

beklentiler dört ayaklı ve tekerlekli gibi değişik ilerleme metodlarını uygulayabilecek

bir yapıda olması, konfigürasyonlara özel engel üzerinden atlama ya da engel

xxii

altından geçme gibi yeteneklere sahip olması ve geliştirilen stratejik planlama

algoritması sayesinde doğru ilerleme metodunu ve gerekli yeteneğini kullanabileceği

doğru konfigürasyonu seçerek hedefine kolayca ulaşabilmesidir.

Bu çalışmada modüler robotik bir sistemin tasarlanmasının ana nedeni modüler

robotik sistemlerin genel prensiplerinin basit modüllerin birleşerek ya da zaten

birleşik şekilde çalışan modüllerin bağlantı şekillerini değiştirerek daha karmaşık ve

daha fonksiyonel robotik konfigürasyonlar oluşturabilmeleridir. Yeniden insanların

robotlardan beklentilerine atıfta bulunarak, tekerlekli bir konfigürasyonda hızlı bir

şekilde hareket eden bir robotun karşısına çıkan bir engeli fark edince üstünden

geçemeyerek çalışmasını durdurmak yerine, dört ayaklı yürüyebilen bir

konfigürasyona geçerek engelin üstünden geçebilmesi ve yoluna tekrar hızlı bir

şekilde tekerlekli konfigürasyonuna dönerek devam edebilmesi çok yönlülük ve

fonksiyonellik açısından modüler robotik sistemlerin neler sunabileceğinin sadece

küçük bir örneğini temsil etmektedir.

Modüler robotik sistemler geometrik yapılandırılmalarına göre üç farklı sınıfa

ayrılabilirler. Zincir tipi (chain type) modüler robotik sistemler, ilk olarak ortaya

çıkan sistemlerdir ve genellikle gelişmiş fonksiyonellikleriyle ön plana çıkarlar.

Yeniden yapılanma konusunda zorluklar çekseler de gelişmiş ilerleme metodlarını

sorunsuzca uygulayabildiklerinden önemli bir sınıftır. Daha sonra ortaya çıkan örgü

tipi (lattice type) modüler robotik sistemlerse gelişmiş yeniden yapılanma yetenekleri

ile zincir tipi sistemlerin bu yöndeki eksiklerini kapatsa da fonksiyonellik açısından

yetersizdirler. Bu sınıf robotlar genelde basit ilerleme metodlarını uygulamadan

öteye geçememişlerdir. Son olarak ortaya çıkan ve iki modüler robot tipinin önemli

özelliklerini biraraya getiren hibrid tip ise oldukça ilgi çekicidir. Hibrid tip modüler

robotlar gerektiğinde örgü dizilimine sahip olarak yeniden yapılanma problemini

kolaylaştırırken, daha ileri seviye ilerleme metodlarını uygulamak için zincir

dizilimine dönüşebilirler.

Bu çalışmada geliştirilmesi planlanan robotik yapının değişik ilerleme metodlarını

kolayca uygulayabilmesi daha önemli olduğundan, modüler robotik sistemin zincir

tipi olması gerektiğine karar verilmiştir. Zincir tipi modüler robotik sistemlerdeki

genel yeniden yapılandırılma problemini aşmak için modüller toprak kurdu benzeri

bir ilerleme metodunu uygulayarak pozisyon değiştirebilme yeteneğine sahip olacak

şekilde tasarlanmışlardır.

Geliştirilecek stratejik planlama algoritmasının yapısına karar vermek için günümüze

kadar geliştirilmiş robotik paradigmalara bir göz atmak gereklidir. Robotik alanında

ortaya çıkan ilk paradigma, hiyerarşik paradigmadır. Bu kontrol mimarisinde robot

sensörleri yardımıyla çevresinden gerekli bilgileri toplar, topladığı bilgilerle

çevresinin dijital bir modelini oluşturur, bu modele göre yapması gereken eyleme

karar verir ve uygular. Oldukça kolay uygulanabilir ve güvenilir bir sistem olmasına

rağmen bu sistem robot tarafından tanınmayan ya da hızlı değişen dinamik

ortamlarda oldukça düşük performans göstermektedir. Hiyerarşik paradigmanın

dinamik ortamlarda yetersiz kalması üzerine geliştirilen reaktif paradigmada ise

planlama gibi bir temel özellik bulunmaz. Reaktif paradigma ile çalışan bir robot

sensörleri ile çevreden gerekli bilgileri alır ve bu bilgiler direk olarak eyleme çevrilir.

Planlama ve modelleme gibi yüksek işlem gücü gerektiren özellikler sistemde

bulunmadığından bu robotların dinamik ortamlarda tepki süreleri oldukça düşüktür.

Bu sebeple engelden kaçma ve hedefe ulaşma gibi basit davranışları kolaylıkla yerine

getirebilirler. Reaktif paradigmada planlama gibi temel bir özellik bulunmasa da

sensörlerin eyleyicileri direk olarak kontrol ederek robotun sürekli tek bir eylem

gerçekleşmesinin önüne davranışlar programlayarak geçilir. Davranışlar arasında

xxiii

hiyerarşik bir sıralama yapıldığında robotun istenilen şekilde hareket etmesi

sağlanabilir. Yine de reaktif paradigma uzun mesafeli amaçlara ulaşmak için

programlanması gereken davranışların karmaşıklığı ve robot davranışlarını optimize

etmenin zorluğu nedeniyle limitlerine ulaşmıştır. Bu nedenle hiyerarşik ve reaktif

paradigmaların önemli özelliklerini barındıran hibrit bilinçli/reaktif paradigma ortaya

çıkmıştır. Bu hibrit paradigma iki katmandan oluşur. Bilinçli katman hiyerarşik

paradigmaya benzer bir yapıdayken, reaktif katman bir sıralayıcı eklenmesinin

dışında reaktif paradigmanın aynısıdır. Bu hibrit paradigmaya göre robot önce

sensörleri yardımıyla çevresel bilgileri toplar ve bilinçli katman tarafından amaca

ulaşmak için alt amaçlardan oluşan uygulanabilir bir plan üretilir. Planın

uygulanması kısmında ise reaktif katman devreye girer ve robotun hızlıca hedefe

ulaşması sağlanır. Robot reaktif bir şekilde hedefine doğru ilerlerken, çevresel sensör

verileri bilinçli katmanla paylaşılır ve gerekirse plan revize edilir. Robotun durumu

ve plana uygunluğu reaktif katmana eklenen sıralayıcı tarafından kontrol edilir ve

planın alt amaçları tamamlandıkça yeni hedefler sıralanır.

Hibrit bilinçli/reaktif paradigma bu çalışmanın amaçları doğrultusunda yaratılmak

istenen stratejik planlama uygulaması için en uygun paradigmadır. Bu nedenle

algoritmanın mimarisi hibrit bilinçli/reaktif paradigmaya uygun olarak

geliştirilmiştir.

Modüler robotik sınıflar ve robotik paradigmalar dışında çalışmanın tamamlanması

için önemli kararlardan biri de kullanılacak simülasyon ortamının belirlenmesidir.

Modüler robotik bir sistemi simüle edebilmek için simülasyon programlarında

aranacak en önemli özellikler programın simülasyon sırasında modüllerin mekanik

olarak birleşip ayrılmalarını desteklemesi ve simülasyon sırasında birden fazla

modülün farklı şekilde programlanmasını sağlayabilecek programlama esnekliği

sunmasıdır. Bu amaçla bu iki önemli özelliğe de sahip olan Gazebo, Webots ve V-

Rep isimli üç farklı simülasyon ortamı incelenmiş ve çalışma için en uygun

simülasyon ortamının V-Rep olduğuna karar verilmiştir. Simülasyon yazılımı olarak

V-Rep'in seçilmesindeki sebepler Webots gibi ticari bir yazılım olsa da eğitim

amacıyla tam sürümünün kullanılmasının mümkün olması ve diğer iki programa göre

kolay kullanıma ve oldukça düzenli ve detaylı bir dökümantasyona sahip olmasıdır.

Özellikle Gazebo açık kaynaklı bir program olmasına rağmen dökümantasyon ve

kullanım kolaylığı açısından yetersiz bir yazılım olarak değerlendirilmiştir.

Simülasyon ortamı da belirlendikten sonra, V-Rep içerisinde modüler robotik

sistemin tek modülünün mekanik yapısı, eklemleri, sensörleri ve bağlantı noktaları

kararlaştırılarak yapısal tasarımı tamamlanmıştır. Yapının tasarlanmasının ardından

modülün kinematik analizi yapılarak uygun bir ilerleme metodu geliştirilmiştir.

Geliştirilen bu ilerleme metoduna uygun olarak, modüllerin özellikle birleşme

amacıyla kullanacakları bir pozisyon kontrol algoritması geliştirilmiş ve tek modül

tasarımı tamamlanmıştır.

Modül tasarımlarının ardından, modüler robotik yapının değişik ilerleme metodları

uygulamak ve özel yeteneklerini sergilemek için oluşturması gereken

konfigürasyonların tasarımlarına geçilmiştir. Bu amaçla dört ayaklı ilerleme

metodunu uygulayabilen ve yerdeki engellerin üzerinden geçebilen bir dört ayaklı

konfigürasyon ve tekerlekli ilerleme metoduna sahip ve boyunu kısaltarak tünel

benzeri engellerin altından geçebilen bir tekerlekli konfigürasyon tasarlanmıştır. İki

konfigürasyon da altışar modülün birleşmesiyle oluşacak şekilde tasarlanmıştır.

Konfigürasyonları oluşturmak için modüllerin birleşme şekillerini belirleyen bir rol

dağıtım algoritması oluşturulmuş ve konfigürasyonları oluşturmak için modül

bağlantılarının nasıl yapılacağı belirlenmiştir. Tek modül tasarımında olduğu gibi iki

xxiv

konfigürasyon için de kinematik analiz metodu ile uygun ilerleme metodları ve özel

yeteneklerini uygulama biçimleri geliştirilmiştir.

Modüler robotik sistem yapısal olarak tasarlanıp simülasyon ortamında

oluşturulduktan sonra, stratejik planlama algoritmasının geliştirilmesine geçilmiştir.

Daha önce bahsedildiği gibi hibrit bilinçli/reaktif paradigmaya uygun bir algoritma

geliştirilmiştir. Algoritmanın hiyerarşik katmanı simülasyon başında bütün

modüllerin görsel ve kuvvet sensörlerini kullanarak çevrede bulunan cisimleri

algılaması ve zeminin sürtünme katsayısını belirlemesi ile robotik yapıyı başlangıç

durumundan istenen amaç durumuna getirmek için alt amaçlardan oluşan bir plan

üretir. Üretilen plandaki alt hedefler, bir pozisyona ulaşmak olabileceği gibi, bir

konfigürasyondan başka bir konfigürasyona dönüşme ya da konfigürasyona özel

yetenekleri uygulama olabilir.

Plan üretildikten sonra reaktif katman yine sensör verilerinden faydalanan sıralayıcı

kısmının belirlediği geçici hedeflerle eylem kısmına geçer ve robotik yapının sırayla

alt hedeflere ulaşmasını sağlar. Reaktif katmanın aktif olduğu ve robotik yapının

eylem halinde olduğu süre içerisinde de sensör verileri hiyerarşik katman ile

paylaşılır. Robotun bulunduğu dinamik ortamda herhangi bir değişiklik olması

durumunda plan revize edilebilir. Revize dahi edilse eylem kısmına geçilmeden önce

reaktif katmanın sıralayıcısı arada tampon görevi gördüğünden robot normal

çalışmasına devam edebilir.

Tasarlanan modüler robotik yapının ve stratejik planlama algoritmasının test edilmesi

amacıyla V-Rep içerisinde karmaşık bir test düzeneği oluşturulmuştur. Bu test

düzeneğinde robotik yapının başlangıç durumu ile hedef durumu arasında engeller

konulmuş ve robotun davranışı test edilmiştir.

Bu çalışmada yapılan testlerin sonuçları detaylı olarak paylaşılmış ve

yorumlanmıştır. Test sonuçlarına göre modüler robotik yapıların iyi bir modül

tasarımı ve stratejik planlama algoritması ile monolitik benzerlerine oranla çok daha

fonksiyonel ve çok yönlü olduğu kanıtlanmıştır.

1

1. INTRODUCTION

As a relatively new research field, modular robotic structures have gained high

interest among researchers due to its versatility and its suitability for mass

production. Modular robotic structures are versatile because they can change

morphology. With a good design, a modular robotic structure can practice

quadruped, wheeled or limbless locomotion methods. They are also suitable for mass

production because generally every module in a modular robotic structure is identical

and they are interchangeable. Even if the structure does not have identical modules,

the number of different type of modules does not harm the process of mass

producing because the modules are often interchangeable.

In this study, a chain type modular robotic structure that consists of self-mobile

modules which are able to create different configurations that can operate in various

locomotion modes such as wheeled and quadruped is created. To overcome the

general self-reconfiguration problem for the chain type modular robots, the modules

are designed to have self-mobility. A hybrid deliberative/reactive strategic planning

algorithm is developed to ensure the system takes the suitable configuration to pass

over configuration specific obstacles and reach its goal. The system is designed and

tested in a highly versatile simulation environment called V-Rep (Virtual Robot

Experimentation Platform).

In the second chapter, a background for this study is given comprehensively. In the

first section of the second chapter, the background of modular robotics and notable

modular robotic systems are explained. In the second section of the second chapter,

general robotic paradigms are explained to give an insight to the reader about the

strategic planning algorithm developed in this study. In the third and the last section

of the second chapter, a brief explanation about simulation environments and some

well-known simulation programs such as Gazebo, Webots and V-Rep are presented.

The reasons for using V-Rep in this study are also explained in this part.

2

The third section is about the developed modular robotic structure in this work. In the

first section of the third chapter, the single module design is explained in detail. The

design considerations, development of the locomotion method for a single module

and control methods of the single module is explained in this section. In the second

section the configurations that can be created by the robotic structure is presented.

Their assembly, locomotion methods, control algorithms and configuration specific

abilities to pass obstacles are explained. In the last section of the third chapter, the

strategic planning algorithm developed for the robotic structure is explained. The

strategic planning algorithm is developed to ensure that the structure reaches its

target.

In the fourth chapter, simulation and test results regarding the performance of the

modular robotic system in a complex test area which is created in the simulation

software. The robotic system is tested based on the performance of the developed

strategic planning algorithm. The test area consists of configuration specific

obstacles between the initial state and the target state is created in the simulation

software.

The fifth chapter is about the conclusions of this study. In this chapter the test results

are discussed and the findings are reported. Some recommended additions to the

modular robotic system design and strategic planning algorithm is also shared.

1.1 Purpose of Thesis

The purpose of this thesis is to develop a strategic planning algorithm and implement

it to a modular robotic structure which can assemble various configurations to

operate in different locomotion modes such as quadruped and wheeled. The strategic

planning algorithm is expected to make the robotic structure reach a given goal state

by assembling proper configurations to pass configuration specific obstacles.

3

2. BACKGROUND

In this section a background for the related work of this study is given. In Section

2.1, a brief history of the modular robotics research field and most notable robots

designed in the sense of classification and progression were presented. In section 2.2,

the robotic paradigms are presented and their operating principles are explained

briefly. In section 2.3, some well-known simulation programs such as Gazebo,

Webots and V-Rep are presented.

2.1 Modular Robotics

The idea of distributed robotic systems emerged in the 1980s. It supposed that

instead of building monolithic and inflexible robots, developing a cellular design

inspired by nature is more efficient in reaching versatile robot structures. The robots

would be able to change their shapes by splitting their cellular modules and

rearranging them in a different configuration. One example given by Toshio Fukuda

who is also known to be the creator of the philosophical foundation for the field of

modular robotics was a robot that could move into environments that are difficult to

reach and once inside, it can change its shape to accomplish a task.

The first implementation of the presented idea was completed by Toshio Fukuda.

CEBOT [1] was built for that purpose in 1988. CEBOT was consisting of three

different types of modules which were actuation modules, structural modules and

tool modules. Since the definition of self-reconfigurable was not clear when CEBOT

was developed it was specified as a multi-robot system consisting of mobile robots.

The first modular robot aiming at self-reconfiguration problem was created by Mark

Yim in 1993. PolyPod [2] was able to implement different gaits with the connection

of different types of modules. Polypod was dynamically reconfigurable, but it was

not able to demonstrate self-reconfiguration. PolyPod is known to be the predecessor

of chain type modular robots.

4

In 1993 and 1994, the first examples of lattice type modular robots were introduced.

In 1993 Metamorphic [3] was built by Gregory Chirikjian and in 1994 Satoshi

Murata built Fracta [4]. Both robots had the ability to change their shape in two

dimensions. In these robots the configuration of modules was forming a lattice which

eases the problem of self-reconfiguration. That caused emergence of another class

which is called lattice type modular robots.

In 1998, two new chain type modular robots arrived in the scene. CONRO [5] was

built by Andres Castanõ and a new version of PolyPod which is called PolyBot [6]

was developed by Mark Yim. Both robots were able to implement various

locomotion methods, but self-reconfiguration was still an important issue for the

chain type modular robots.

While chain type modular robots were still struggling to demonstrate self-

reconfiguration, in 1998 two new lattice type modular robots achieved self-

reconfiguration in three dimensions. 3D Fracta [7] which is the improved version of

the Fracta robot was developed by Satoshi Murata and Molecule [8] was built by

Keith Kotay and Daniella Rus.

Up to that point, two distinctive clasess of modular robots were present which were

superior to their complementary classes in different ways. While lattice type robots

were able to demonstrate self-reconfiguration in three dimensions, chain type robots

could not achieve self-reconfiguration. Chain type robots were superior to their

lattice type complements by their increased ability to implement advanced

locomotion gaits although they were not self-reconfigurable.

After the distinction between two classes was clearly defined, another class of

modular robots has emerged. M-TRAN [9] which was developed by Satoshi Murata

in 1999 had the properties of both a chain type and a lattice type modular robot. This

new class is called hybrid type modular robot as it merges the properties of both

chain type and lattice type modular robots. The hybrid nature of M-TRAN came

from its ability to exist in both lattice structure to achieve self-reconfiguration and

chain structure to make locomotion problem easier.

ATRON, which is the second hybrid type of robot, was built in 2003 by Jorgensen at

the University of Southern Denmark, Odense. The novel idea behind ATRON

[10,11] was fascinating. ATRON modules had only one actuator and they showed

5

that 3D self-reconfiguration can be achieved even with one actuator. This was made

possible by arranging the rotational axis of each module perpendicular to each other.

Another hybrid type of modular robot was introduced in 2006 by Wei-Min Shen.

SuperBot [12] had an extra degree of freedom compared to M-TRAN which had two

actuators parallel to each other. In SuperBot, an extra actuator is added to control the

orientation between these actuators. Similar to M-TRAN, SuperBot also had the

ability to exist in both lattice and chain structures.

2.2 Robotic Paradigms

Robotic paradigms can be defined as the control architectures that characterize the

behavioral cycle of robots. The paradigms can be described in two ways: (1) by the

relationship between the three primitives of robotics which are sense, plan, act; (2)

by the way sensory data is processed and distributed through the system. Robotic

paradigms can be listed as hierarchical, reactive and hybrid deliberative/reactive.

2.2.1 Hierarchical paradigm

The hierarchical approach focuses mainly on the planning aspect of operation of a

robot. The robot senses its environment, plans its next action based on the acquired

data and then executes the appropriate action using its actuators. Before taking any

action, the robot plans its next action from the knowledge it has gathered about its

surroundings up to that point. Figure 2.1 shows the relationship between the robotic

primitives in hierarchical paradigm.

Figure 2.1 : Relationship of the robotic primitives in hierarchical paradigm.

The first robot operating under the hierarchical paradigm is "Shakey the robot" [17]

which was developed at Stanford Research Institute in 1966. Control architecture of

Shakey was composed of three basic parts which were sensing, planning and

executing. The sensing system was translating camera image into an internal world

6

model, the planner was using this world model to generate a plan to achieve the goal

and the executor was applying control inputs according to the plan generated.

The components of the robot in this case are said to be horizontally organized.

Information from the world in the form of sensor data has to filter through several

intermediate stages of interpretation before finally becoming available for a response.

The emphasis in these early systems was in constructing a detailed world model and

then carefully planning out what steps to take next. The problem was that while the

robot was constructing its model and planning what to do next, the world was likely

to change. Therefore the robots exhibited the odd behavior that they would perceive,

process and plan and then they would lurch into action for a couple of steps before

beginning the cycle all over again. This is called look and lurch behavior. This

behavior was a proof of the inability of these systems to cope with dynamic

environments.

2.2.2 Reactive paradigm

The issues with the hierarchical paradigm caused the emergence of reactive or

behavioral paradigm. In 1986 Rodney A. Brooks published an article which

described a type of reactive architecture called the subsumption architecture [13].

This architecture became the dominant approach within the reactive robot

architectures. Reactive paradigm was heavily used in robotics between 1988 and

1992. As shown in Figure 2.2, reactive paradigm removes the planning primitive

from the architecture.

Figure 2.2 : Relationship of the robotic primitives in reactive paradigm.

In the reactive paradigm, the actions taken by the robot are direct results of sensor

data acquired. Although this implies that the robot takes only one type of action, this

is not the case. To avoid the robot taking only one action, layers of interacting finite

state machines which connect sensor data to actuators are added. These finite state

machines are called behaviors. Depending on the sensor data received, one or more

7

behaviors can be activated simultaneously. To avoid the confliction between these

activated behaviors, different handling mechanisms are developed. In the

subsumption architecture there is a hardware implemented overriding mechanism

that enables selection of higher level behaviors over low level behaviors. Figure 2.3

shows the levels of behaviors and their relationship with the sensing and acting

primitives.

Figure 2.3 : Levels of behaviors in reactive paradigm.

2.2.3 Hybrid deliberative/reactive paradigm

In spite of the simple nature of the architecture and its adaptability to dynamic

environments, reactive paradigm reached its limits due to the difficulties of

composing behaviors for long range goals and optimizing robot behavior. These

problems caused the return of the planning primitive in hybrid deliberative/reactive

paradigm. The hybrid paradigm emerged in the 1990s and it is still the active area of

research. Figure 2.4 shows the relationship of the robotic primitives in the hybrid

paradigm.

Figure 2.4 : Relationship of the robotic primitives in hybrid paradigm.

A robot working under the hybrid paradigm firstly plans how to accomplish a

mission or a task using a global world model. For that purpose, the planner

decomposes the task into subtasks and then activates the suitable behaviors to

8

complete each subtask. The behaviors are executed same as the reactive paradigm

and when the mission is completed, the planner generates another plan. The sensing

organization in the hybrid paradigm is more complex. Sensor data can both be used

by the behaviors and the planner. For example, an obstacle detected by a sensor

which does not activate "avoid obstacles" behavior in the reactive paradigm can be

used in the hybrid paradigm to create a map of the environment and can use this

information when a new plan is generated. There can be also planner specific sensors

which are not used by behaviors.

The hybrid architectures can be characterized by a layering of capabilities where low

level layers provide reactive capabilities and high level layers provide the more

computationally intensive capabilities. Three layered architectures are the most

popular variant of these hybrid architectures. The layers on these architectures are;

(1) controller/reactive layer, (2) sequencer/executive layer, (3) planner/deliberative

layer.

The controller layer provides low level control and it is characterized by a tight

sensor-action loop. Controller elements should have low computational complexity

to allow them to react quickly to stimuli and execute basic behaviors fast. The

sequencer layer is between the low level controller and the higher level planner

layers. It accepts directives from the planner and sequences them for the reactive

layer. The sequencer layer is also responsible for integrating sensor information into

an internal state representation. The planner or deliberative layer contains the

heaviest computational components and generates complex solutions tasks.

2.3 Robotic Simulation Environments

In this section, some well-known robotic simulation software programs are

presented. The first two programs Gazebo and Webots are briefly explained. The

simulation software used in this study, V-Rep, is explained in detail. Reasons for

choosing V-Rep as the simulation software over other alternatives for this study is

also explained in this section.

2.3.1 Gazebo

Gazebo [18] is an open source outdoor dynamics simulator. Development of Gazebo

started as a part of the Player project [19] at the University of Southern California in

9

2002. The purpose was to develop a complementary dynamics simulator to the 2D

simulator Stage. In 2012 Gazebo became an independent project under the Open

Source Robotics Foundation. Features of Gazebo are listed below.

 Support for multiple physics engines such as ODE (Open Dynamics Engine),

Bullet, Simbody and DART (Dynamic Animation and Robotics Toolkit).

 Advanced 3D graphics with OGRE (Object Oriented Graphics Rendering

Engine).

 Plugin support for robot, sensor and environmental control.

 Wide variety of supported robot models such as PR2, Pioneer2 DX, iRobot

Create and TurtleBot.

Gazebo is still under development and the developers announced that Windows

support is work in progress.

2.3.2 Webots

Webots [20] is a commercial robot simulator which uses ODE (Open Dynamics

Engine) library for dynamic simulations. Its development is started in 1996 at the

Swiss Federal Institute of Technology.

Features of Webots

 ODE support for physics simulation.

 C, C++, Java, Python and MATLAB support for programming robots.

 Complete library of customizable sensors and actuators.

 Robot controllers can be transferred to real robots. Supported robots are Aibo,

Lego Mindstorms, Khepera, Koala and Hemission.

 Support for controllable connector devices to simulate modular robotic

structures.

 Able to record simulations in AVI or MPEG format.

2.3.3 V-Rep

V-Rep [21] is a general purpose robot simulator with integrated development

environment providing the ability to model and simulate sensors, mechanisms, robots

10

and whole systems. V-Rep is developed by Coppelia Robotics and its first official

release was in 2010. By the developers of the platform, V-Rep is defined as "the

Swiss army knife among robot simulators" due to its versatility and modular

structure to cope with simulating complex robotic systems. V-Rep is used in a wide

variety of application areas such as fast prototyping and verification, fast algorithm

development, remote monitoring, hardware control, etc. V-Rep supports three

different physics engines which are ODE, Bullet and Vortex.

A simulation scene in V-Rep consists of 3 central elements. These are (1) scene

objects, (2) calculation modules and (3) control mechanisms. Scene objects are the

main entities used to build the scene. Calculation modules are the functions that

handle calculations in the simulation. Control mechanisms are simply the code

provided by the user to control the simulated entities.

Scene objects in V-Rep and their brief explanations taken from V-Rep Manual [22]

are given below.

 Shape is a rigid mesh that is composed of triangular faces.

 Joint is a joint or an actuator. Four types are supported: (1) revolute joints,

(2) prismatic joints, (3) screws and (4) spherical joints.

 Graph is used to record and visualize simulation data.

 Dummy is a point with orientation. Dummies are multipurpose objects that

can have many different applications.

 Proximity sensor detects objects in a geometrically exact fashion within its

detection volume. V-Rep supports pyramid, cylinder, disk, cone and ray type

proximity sensors.

 Vision sensor is a camera type sensor , reacting to light, colors and images.

 Force sensor is an object able to measure forces and torques that are applied

to it. It also has the ability to break if a given threshold is overshot.

 Mill is a convex volume that can be used to perform cutting operations on

shape objects.

 Camera is an object that allows seeing the simulation scene from various

view points.

11

 Light is an object that allows illuminating the simulation scene.

 Path is an object that defines a path or trajectory in space. It can be used for

various purposes, also as a customized joint or actuator.

 Mirror can reflect images/light, but can also operate as an auxiliary clipping

pane.

Figure 2.5 shows the visual representations of scene objects in the scene view and

hierarchy tree.

Figure 2.5 : Visual representations of scene objects in the scene view and scene

hierarchy in V-Rep.

Some of the scene objects can have special properties to allow other objects or

calculation modules to interact with them. These properties are given below.

 Collidable objects can be tested for collision against other collidable objects.

 Measurable objects can have the minimum distance between them and other

measurable objects calculated.

 Detectable objects can be detected by proximity sensors.

 Cuttable objects can be cut by mills.

 Renderable objects can be seen or detected by vision sensors.

12

 Viewable objects can be looked through, looked at or their image content can

be visualized in views.

Besides these properties, each object has a position and orientation within the scene.

Calculation modules are the functions that handle calculations in the simulation.

These modules are used by the simulation software to update the simulation world,

but they can also be used by the user. The following are the calculation modules and

their brief explanations.

 Collision detection module allows tracking, recording and visualizing

collisions that might occur between any collidable entities.

 Minimum distance calculation module allows tracking, recording and

visualizing minimum distances between any measurable entities.

 Inverse kinematics calculation module allows solving any type of inverse or

forward kinematic problem in a very efficient way.

 Geometric constraint solver module allows solving inverse or forward

kinematic problems while offering a great extent of interaction possibilities

to the user.

 Dynamics module allows dynamically simulating objects or models to

achieve object interactions.

 Path planning module allows performing path planning calculations for

objects in 2-6 dimensions. Additionally, non-holonomic path planning for

car-type vehicles is also supported.

 Motion planning module allows performing motion planning calculations for

manipulators.

Each calculation module (except the dynamics module) allows registering

calculation objects that are user defined. Calculation objects are different from scene

objects, but are indirectly linked to them by operating on them. This means that

calculation objects cannot exist by themselves.

13

 Collision detection objects (or collision objects) rely on collidable objects.

 Minimum distance calculation objects (or distance objects) rely on

measurable objects.

 Inverse kinematics calculation objects (or IK groups) rely mainly on

dummies and kinematic chains, where joint objects play a central role.

 Geometric constraint solver objects (or mechanisms) rely mainly on

dummies and kinematic chains, where joint objects play a central role.

 Path planning objects (or path planning tasks) rely mainly on dummies, a

path object, and collidable or measurable entities.

 Motion planning objects (or motion planning tasks) rely mainly on IK

groups, and collidable or measurable entities.

14

15

3. ROBOTIC STRUCTURE AND STRATEGIC PLANNING

3.1 Single Module Design

3.1.1 Design considerations

The main goal of the design process related to a single module of the reconfigurable

robots is to achieve self-mobility of a single module in order to realize autonomous

assembly of the robot. In addition to self-mobility of the individual modules, they

have to be versatile enough to achieve locomotion when arranged in several

configurations such as quadruped and wheeled.

3.1.2 Structure

A single module of the reconfigurable modular robot consists of three main parts.

These parts can simply be named as wheel, foot and body. The design is very similar

to an articulated (elbow) manipulator. While the articulated manipulator has its base

fixed, in the module design, the base is not fixed and it is used as the wheel. The

structure of a single module in the simulation environment is shown in Figures 3.1

and 3.2. Figure 3.3 illustrates the structure and terminology associated with the

articulated manipulator.

Figure 3.1: Single module in simulation software.

16

Figure 3.2: Single module parts shown in exploded view.

Figure 3.3: Articulated manipulator.

The wheel part is used for orientation control when the module does not have a role

in a configuration and when it is not part of a larger kinematic chain. The wheel base

consists of two cylinders which have a force sensor attached between them and a

revolute joint which connects the cylinders to the main body of the module. The

force sensor is used to estimate friction coefficient of the terrain.

The wheel has varying tasks in different configurations. For example, in the

quadruped walking configuration, in which a single module takes the role of a leg

17

and acts as an articulated manipulator, the wheel forms the base of the articulated

manipulator. In the wheeled configurations, this part acts as the wheel and plays the

main role in locomotion. In limbless locomotion mode, the periodic change in the

joint position of the wheel makes it possible to achieve forward movement. In

traveling wave locomotion mode, the joint positions of the wheel of some modules

are used to control the orientation of the whole structure. The wheel has a connection

point in its center.

The foot is the part that makes it possible for the module to move in longitudinal

direction while operating alone. It consists of two rigid links which are connected

with a revolute joint. The first link is connected to the body with a revolute joint and

the second link has an orthogonal plate attached to it. This plate has an important role

when it comes to the locomotion of the single module. It is essential that this part has

a higher static friction coefficient than that of the cylinder of the wheel. The local

reference frame is placed at the center of the lower tip of this plate because this

position is the center of rotation of the module.

The foot has important functions in different locomotion modes. While the module is

operating as a leg in the quadruped walking mode, the first and the second joints of

the foot form the shoulder and elbow and the second link forms the forearm of the

articulated manipulator. In the wheeled configurations, the joint positions of the foot

can change the axle length of the structure. In limbless locomotion modes, forward

movement is achieved by the periodic movement of the foot links.

The body is the uniting part of the module. The wheel and the foot are connected to

the body with their revolute joints. A caster is attached to the lower side of the body.

The caster acts as a pivot point in case the tip of the foot loses contact with the

terrain. The pole-like structure on which the visual sensor is positioned is attached to

the upper side of the body with a revolute joint. Two connection points are located

on the left and right sides of the module.

3.1.3 Sensor implementations

3.1.3.1 Force sensor

Force sensors are used to estimate the friction coefficient between the robot external

surface and the terrain. Since the decision algorithm for intelligent locomotion and

18

reconfiguration rely highly on this estimation, the role of force sensor is important

for cooperative behavior of the modules.

In the simulation software, the force sensors are needed to be positioned between two

rigid shapes. To satisfy this requirement, the wheel part of the module is created by

using two identical cylindrical shapes and the force sensor is positioned between

these two cylinders. Figure 3.4 shows the positioning of the force sensor. The front

cylinder of the wheel is exposed to friction force while the module is moving and it

transfers this force to a certain location so that the force sensor can operate. Next, the

readings of the force sensor can be used in the decision algorithm for intelligent

locomotion.

Figure 3.4: Force sensor.

3.1.3.2 Visual sensor

Visual sensors are the main unit of the modules for sensing the environment around

them. They have uses both in the assembly phase in which the modules are operating

alone and in the cooperative phase in which the modules have different roles in a

configuration. The visual sensors are created using the proxy sensors in the

simulation software and attached to the body of modules with a pole-like structure

consisting of two links and two revolute joints.

In the assembly phase, one of the most important uses of the visual sensors is

localization of other modules in the neighborhood. After the decision for the

locomotion mode is made, the modules start scanning the area around them with the

help of their visual sensors. After the scan, a basic coordinate system is created using

19

the module or obstacle data acquired. During the assembly process, the modules

continue scanning the environment to update their position on the coordinate system

if they are not able to get locked to their target modules.

The creation of visual sensors in the simulation software can be considered as

simulating a camera by using proxy sensors. The original proxy sensors in the

simulation software are capable of identifying objects (shapes or dummies) that are

part of a running simulation and returning axial distances based on its own

coordinate frame. These capabilities of the proxy sensor make it possible to use it

like a camera in the simulation environment.

Another important issue in the implementation process of the visual sensors is

positioning. Since all mechanical parts of the module are facing orientation and

position changes during locomotion, having the visual sensor positioned at a

stationary point would not represent the real situation. Giving the visual sensor a

relative independency regarding orientation and position control to adjust the visual

angle makes the localization problem easier. Therefore the visual sensor is positioned

at the end of a pole-like structure that has two links and two revolute joints and is

attached to the body of the module. The first joint that connects the pole-like

structure to the body controls gamma orientation and the second joint controls the

beta orientation of the visual sensor. This control is very important in assembly phase

in which the visual sensor of a moving module is required to lock a target module for

connection.

3.1.4 Connection mechanism

The connection mechanism is the most important design element in the modular

reconfigurable mobile robots because it enables the assembly of several

configurations. In the simulation, connection of two modules is assumed to be

completed by creation of a link between the connection points of modules. In each

module there are four connection points. The connection points are positioned at the

front side of the wheel, left and right sides of the body and at the back of the foot.

Although the connection points on any module can create links between other

connection points on another module, body-to-body and wheel-to-wheel connections

are not used.

20

The connection points are created by using dummies in the simulation software.

Dummies are not physical entities. They are points with orientation and can be seen

as reference frames. Dummies have lots of uses in the simulation software, but their

capability of creating links between other dummies makes them suitable to be used

as connection points. There are several types of links between dummies which can be

used for different purposes, but "Dynamics, overlap constraint" type of link is used

for making the dummies behave as connection points. When created between two

dummies, this type of link makes the dummies try to overlap their respective position

and orientation. Therefore the parent shapes of the two dummies (e.g. the wheel part

of a module and the foot part of another module), which are physical entities; act as

if they are physically connected to each other.

Since "Dynamics, overlap constraint" type of link between two dummies make them

overlap their positions and orientations, their position and orientation should be set

accordingly to allow wheel-to-foot, wheel-to-body, foot-to-body and foot-to-foot

connections. Table 3.1 shows the position (x, y, z) and orientation (α, β, γ) values for

each dummy relative to reference frame of the module. Recall that the reference

frame is positioned at the center of the lower tip of the foot. Figure 3.5, Figure 3.6,

Figure 3.7 and Figure 3.8 show wheel-to-foot, wheel-to-body, foot-to-body and foot-

to-foot connections between two modules and corresponding dummy orientations.

Note that in the figures, the modules are not connected, but are about to connect and

some parts of the module are not visible or shown as wireframe for better

understanding. In all figures the first module is stationary at position (0, 0, 0) and

orientation (0°, 0°, 0°) and the second module is the connecting module.

Table 3.1 : Dummy positions and orientations.

 Position (x, y, z) Orientation (α, β, γ)

DummyFx (0.172, 0, 0.025) (0, 0, 0)

DummyLx (0.137, 0.025, 0.025) (0, 0, -90)

DummyRx (0.137, -0.025, 0.025) (0, 0, 90)

DummyBFx (0, 0, 0.025) (0, 0, 0)

DummyBSx (0, 0, 0.025) (0, 0, 180)

21

Figure 3.5: Wheel-to-foot connection.

Figure 3.6: Wheel-to-body connection.

Figure 3.7: Foot-to-body connection.

22

Figure 3.8: Foot-to-foot connection.

The reason for having two different dummies on the foot is the orientation

differences between connecting dummies in different connection types. DummyBS is

the first dummy created for the module to accomplish foot-to-body connections.

When the module needed to make foot-to-foot connections, the existing dummies

(DummyBS) at the foot of both modules have different orientations. While the

orientation of DummyBS of the first module (DummyBSx1) is (0°, 0°, 180°), the

orientation of the DummyBS of the second module (DummyBSx2) will be (0°, 0°,

0°). If it is left that way and the dummies are linked to each other, they will try to

overlap their positions and orientations causing the modules to also overlap. To

overcome this problem another dummy is added to the back connection point which

is DummyBF. This dummy has the same position with DummyBS, but has -180
0

difference in gamma orientation. This difference makes the orientation of this

dummy equal to the orientation of the DummyBS of the stationary module in foot-to-

foot connections. Addition of DummyBF also solves the same orientation problem in

wheel-to-foot connections. The first dummy is named as DummyBS because it was

the standard for foot-to-body connections before there was not any need for

DummyBF. The name Dummy BF is given to the second dummy because it is added

to make foot-to-foot connections possible.

3.1.5 Locomotion

3.1.5.1 Kinematics of a single module

As expressed before the design of a single module is very similar to an articulated

manipulator. Therefore the kinematic model of a single module is also similar to the

23

kinematic model of an articulated manipulator. Figure 3.9 shows the coordinate

frames assigned for using Denavit - Hartenberg convention and D-H parameters for

the kinematic chain are shown in Table 3.2. Note that the base of the kinematic chain

is the connection point of the wheel and the end-effector is the lower tip of the foot.

d1 is the distance between the connection point of the wheel and the first joint of the

foot and it is 77.5 millimeters. d2 is the distance between the two joints of the foot

and it is 47.5 millimeters long. d3 is the distance between the second joint of the foot

and the outer center of the orthogonal plate and it is 47 millimeters. a3 is the distance

between the lower tip of the foot and the outer center of the orthogonal plate attached

to the foot and its value is 25 millimeters.

Figure 3.9: Coordinate frames for the first kinematic chain.

Table 3.2 : D-H parameters of the first kinematic chain.

 Rotz(θi) Transz(di) Transx(ai) Rotx(αi)

1 θ1 d1 0 α1

2 0 d2 0 α2

3 -π/2 d3 a3 0

Since the homogeneous transformation matrices are represented as a product of four

basic transformations, any homogeneous transformation matrix associated to a link i

can be expressed generally as shown in equation (3.1).

24

 (3.1)

Using (3.1) and placing the corresponding D-H parameters associated to each link,

the homogeneous transformation matrices can be derived. The derivation of the

homogeneous transformation matrices associated to each link is shown in equations

(3.2) to (3.4).

 (3.2)

 (3.3)

 (3.4)

The homogeneous transformation matrix that transforms the coordinates of the end

effector (tip of the foot) to the base (connection point of the wheel) can be derived as

shown in (3.5).

 (3.5)

Since the calculations are too complex, an m-file is created to calculate the position

of the end-effector for different values of α1 and α2 in MATLAB. The m-file also

transforms the coordinates of the end-effector from the coordinate frame of the base

of the model to the absolute frame of V-Rep. The transformation is shown in

equations (3.6) to (3.8). The transformation assumes that the lower tip of the wheel is

25

positioned at the origin of the absolute frame of V-Rep. Therefore the base of the

kinematic chain (connection point of the wheel) is positioned at (0, 0, 0.025).

 (3.6)

 (3.7)

 (3.8)

The first kinematic model is useful in situations in which the wheel and the body of

the module are assumed to be stationary. An example to this situation is the action

taken by the module to achieve forward linear motion where the tip of the foot is

needed to be positioned in a closer position to the body while the body and the wheel

have to be stationary. That means that the first kinematic model is pretty helpful and

informative for creating a forward locomotion method for the single module, but this

does not mean that it is also useful for creating a backward locomotion method in

which the wheel and the body of the module will not be stationary. Therefore to

create a backward locomotion method, another kinematic model in which the tip of

the foot has to be stationary while the wheel and the body of the module have to be

moving has to be created.

Second kinematic model is mainly used for creating a gait for backward locomotion

in which the tip of the foot is stationary and it pulls the wheel and body of the

module. Although there is no joint in the original design of the module, one virtual

joint is added to the tip of the foot in the kinematic chain. This joint helps adjusting

the height of the end-effector which is generally contacting the terrain because of

dynamic constraints while moving backwards. Basically the joint is not a part of the

gait to be created, but it is helpful for design purposes. Therefore, the base of the

kinematic chain is assumed to be the joint on the tip of the foot and the end effector

is assumed to be the tip of the wheel. Also the position of the caster of the body has

to be known for designing a backward locomotion gait, so it can be seen as an end-

effector, too. Figures 3.10 and 3.11 show the coordinate frames assigned to each link

and Table 3.3 shows the D-H parameters for the kinematic chain.

26

Figure 3.10: Coordinate frames for the second kinematic chain.

Figure 3.11: Coordinate frames for the second kinematic chain.

27

Table 3.3 : D-H parameters for the second kinematic chain.

 Rotz(θi) Transz(di) Transx(ai) Rotx(αi)

1 θ1 0 a1 0

2 π/2 0 a2 0

3 θ3 0 a3 0

4 θ4 0 a4 -π/2

5wt 0 d5wt 0 0

5bc 0 d5bc a5bc 0

Note that a1 is the distance between the lower tip of the foot and the outer center of

the orthogonal plate attached to the foot and its value is 25 millimeters. a2 is the

distance between the outer center of the orthogonal plate and the second joint of the

foot and it is 47 millimeters. a3 is the distance between the two joints of the foot and

it is 47.5 millimeters long. a4 is the distance between the outer center of the wheel

and the first joint of the foot and it is 77.5 millimeters. d5wt is the distance between

the lower tip of the wheel and the outer center of the wheel and it is also 25

millimeters. d5bc is the height of the center of the body caster and a5bc is the

longitudinal distance between the center of the body caster and the lower tip of the

wheel. They are 5 millimeters and 75 millimeters long, respectively. Placing the D-H

parameters to the general matrix form shown in (3.1) yields homogeneous

transformation matrices associated to each link. Equations (3.9) to (3.14) show the

derivation of these matrices.

 (3.9)

 (3.10)

28

 (3.11)

 (3.12)

 (3.13)

 (3.14)

The homogeneous transformation matrices that transform the coordinates of the end

effectors (tip of the wheel and caster of the body) to the base (the joint on the tip of

the foot) can be derived as shown in equations (3.15) and (3.16).

 (3.15)

 (3.16)

As in the case with the first kinematic model, the calculations are too complex to

handle without computer support. Another m-file is created to calculate the positions

of the end-effectors for varying values of θ2 and θ3. It also calculates the suitable

value for θ1 using the trigonometric relation given in (3.17). After the suitable θ1

value is calculated, the program recalculates the positions of the end-effectors and

then assuming the base of the kinematic chain is the origin, transforms it to the

absolute frame of V-Rep using equations (3.18) to (3.20).

29

 (3.17)

 (3.18)

 (3.19)

 (3.20)

3.1.5.2 Locomotion methods and gait design

The module is expected to be moving forward and backward in the longitudinal

direction. Using the kinematic models of the module, two different locomotion

methods can be created. The locomotion methods are created by designing poses and

switching the poses periodically, which in turn causes the foot to push or pull the rest

of the module providing forward or backward locomotion.

The easiest way to achieve forward linear motion is to create propulsion by the use of

the foot. This can be done by moving the tip of the foot to a forward position, then

(with the help of friction) letting the foot push the rest of the module forward.

Creating a periodic gait like this provides forward linear motion to a single module.

The periodic gait for forward movement can be created by repeated implementation

of two different poses. The purpose of the first pose is to bring the tip of the foot to a

forward position. The important point to take into consideration while having the

module take this pose is to make sure the tip of the foot is not contacting the terrain

until the final position is reached. The second pose is the same pose of a module at

rest, but the importance of this pose is the action taken by the module to form this

pose. The tip of the foot should be contacting the terrain while this pose is being

taken so that the static friction force ensures that the tip of the foot is not moving and

causing the module to move forward, i.e. to push forward. Figure 3.12 shows the

motion sequence of described locomotion move.

30

Figure 3.12: Forward locomotion of a single module.

From position control perspective, the module is expected to be moving as fast as

possible while the distance from goal position is high. This velocity will be referred

as "high velocity". Since accuracy is another issue for the module positioning, the

gait is also expected to provide smaller linear displacements when the distance from

goal position is lower than the displacement which the high velocity provides.

Similarly this velocity will be referred as "low velocity". The high velocity and the

low velocity can be adjusted by finding the suitable joint angles for the first pose of

the gait.

To design the gait to provide the high velocity, the first pose of the gait should be

designed to provide maximum displacement while satisfying the height condition. To

determine the suitable joint positions for the first pose of the gait, a modified version

of the m-file created for the first kinematic model is used. The modification makes

the m-file a searching program which calculates the end-effector position for

different α1 and α2 values and returns a table satisfying the height condition. As

expressed before the end-effector should not contact the terrain while the module is

taking the first pose, so the table consists of α1 and α2 values that make the end-

effector have its z value on the coordinate system between 5 millimeters and 7.5

millimeters. The pseudo-code of the search program created is given in Table3.4.

The code of the m-file can be found in Appendix-A.

Table 3.4 : Pseudo-code of the search program.

01 FOR(α1 values from -90
0
 to 90

0
)

02 ---FOR(α2 values from -120
0
 to 120

0
)

03 ------Create A1, A2, A3 matrices

04 ------Calculate T3
0
 = A1*A2*A3

05 ------//Pull coordinates from T3
0
 for kinematic frame then transform it to V-Rep

absolute frame

06 ------xmodel = T3
0
(1,4)

07 ------ymodel = T3
0
(2,4)

31

08 ------zmodel = T3
0
(3,4)

09 ------xvrep = -zmodel

10 ------yvrep = -xmodel

11 ------zvrep = ymodel + 0.025

12 ------Calculate distance covered xd = 0.172-xvrep

13 ------IF(xd>0.072 AND 0.005<zvrep<0.0075) THEN

14 ---------count += 1

15 ---------Table(count,1) = count

16 ---------Table(count,2) = α1

17 ---------Table(count,3) = α2

18 ---------Table(count,4) = xmodel

19 ---------Table(count,5) = zmodel

20 ---------Table(count,6) = xd

21 ------ENDIF

22 ---ENDFOR

23 ENDFOR

24 Print Table

After running the m-file, the resulting table listing α1 and α2 values satisfying the

height condition are given in Table 3.5.

Table 3.5 : α1 and α2 values for the first pose of the high velocity gait for forward

locomotion.

 α1 α2 x (m) z (m) xd (m)

1 -47 120 -0.0997 0.0075 0.0723

2 -46 120 -0.0994 0.0071 0.0726

3 -45 120 -0.0991 0.0067 0.0729

4 -44 119 -0.0997 0.0061 0.0723

5 -44 120 -0.0988 0.0063 0.0732

6 -43 119 -0.0994 0.0057 0.0726

7 -43 120 -0.0985 0.0060 0.0735

8 -42 118 -0.0999 0.0051 0.0721

9 -42 119 -0.0990 0.0054 0.0730

10 -42 120 -0.0981 0.0056 0.0739

11 -41 120 -0.0978 0.0053 0.0742

As it can be seen from the table, the maximum displacement is achieved when α1 is

(-41
0
) and α2 is (120

0
). Therefore the first pose of the gait for high velocity is

determined as shown in Figure 3.13.

32

Figure 3.13: First pose of the high velocity gait of forward locomotion.

To get smaller displacements to determine the low velocity, the first pose of the gait

can be redesigned and the distance traveled in a single step can be reduced to have

less positioning errors. To redesign the first pose, the modified m-file used before

can be run again by changing the distance traveled condition to be around 25

millimeters. As before, the m-file returns a table listing the α1 and α2 values for

desired traveling distances. The α1 and α2 values from the resulting table are listed in

Table 3.6.

Table 3.6 : α1 and α2 values for first pose of the low velocity gait for forward

locomotion.

 α1 α2 x (m) z (m) xd (m)

1 -36 62 -0.1472 0.0098 0.0248

2 -35 60 -0.1484 0.0097 0.0236

3 -35 61 -0.1477 0.0092 0.0243

4 -34 59 -0.1489 0.0090 0.0231

5 -34 60 -0.1482 0.0085 0.0238

6 -34 61 -0.1474 0.0079 0.0246

7 -33 59 -0.1486 0.0078 0.0234

8 -33 60 -0.1479 0.0073 0.0241

9 -33 61 -0.1471 0.0067 0.0249

10 -32 59 -0.1483 0.0066 0.0237

11 -32 60 -0.1475 0.0060 0.0245

12 -31 58 -0.1487 0.0059 0.0233

13 -31 59 -0.1480 0.0053 0.0240

Using the table, the suitable values for α1 and α2 are found to be (-33
0
) and (61

0
).

Figure 3.14 shows the first pose of the low velocity gait for forward locomotion.

33

Figure 3.14: First pose of the low velocity gait of forward locomotion.

A single step of the high velocity and low velocity gaits for forward locomotion is

completed after the foot returns to the reset position where α1 and α2 are (0
0
).

The backward locomotion method design is similar to the design of the forward

locomotion method. While the module is moving backwards, the foot of the module

is expected to pull the wheel and the body parts. The difference between the two

methods is that the forward locomotion can be achieved by two different poses

because the last pose of the module is also the starting pose of the gait. In the

backward locomotion method, this seems inapplicable. After the foot pulls the rest of

the parts to a backward position, the tip of the foot has to lose contact with the terrain

causing the caster on the body to be the pivot point. Only after losing contact with

the terrain, the module can return to its starting pose. Therefore, in the backward

locomotion method, the module needs to have two extra poses, making the total

poses of the gait four in one step. The first extra pose, which is the second pose of

the gait, is for making the caster contact the terrain and the second is a transition pose

for the foot to ensure it is not contacting the terrain while returning to the reset

position.

The design process of the poses of the backward locomotion gait is similar to that of

the poses in the forward locomotion gait. The m-file created for the second kinematic

model is modified to be a search program which calculates the end-effector positions

for varying values of θ3 and θ4 and returning the values satisfying several conditions

34

by creating a look-up table. Since the caster becomes the pivot point in the second

pose, the displacement in one step of the gait is determined in this pose. Therefore,

the gait design is based on the second pose of the gait. Similar to the forward

locomotion gait design, two different value pairs will be determined for the high

velocity and the low velocity for the design of the second pose.

To determine the θ3 and θ4 values for the second pose of the gait to achieve high

velocity, several conditions have been set to narrow down the search. These

conditions are;

 The distance covered by the wheel of the module should be at least 45

millimeters,

 The caster should be contacting the terrain. This means that z-value of the

center of the cylinder that is used as the caster should be 5 millimeters high

from the terrain at most.

Table 3.7 shows the pseudo-code of the search program created for the second

kinematic model. After the conditions are added, the search program returns the table

as shown in Table 3.8. The code of the m-file can be found in Appendix-B.

Table 3.7 : Pseudo-code of the search program created for the second kinematic

model.

01 FOR(α1 values from -90
0
 to 90

0
)

02 ---FOR(α2 values from -120
0
 to 120

0
)

03 ------Create A1, A2, A3, A4, A5wc, A5bc matrices

04 ------Calculate T5wt
0
 = A1*A2*A3*A4*A5wt

05 ------Calculate T5bc
0
 = A1*A2*A3*A4*A5wt *A5bc

06 ------//Pull coordinates from T5wt
0
 for kinematic frame

07 ------xmodel = T5wt
 0

(1,4)

08 ------ymodel = T5wt
 0

(2,4)

09 ------zmodel = T5wt
0
(3,4)

10 ------Calculate required θ1 = atan(xmodel/ymodel)

11 ------Recalculate A1

12 ------Recalculate T5wt
0
 = A1*A2*A3*A4*A5wt

13 ------Recalculate T5wt
0
 = A1*A2*A3*A4*A5wt *A5bc

14 ------//Pull coordinates from T5wt
0
 and T5bc

0
 for kinematic frame then transform it

to V-Rep absolute frame

15 ------xmodel = T5wt
0
 (1,4)

16 ------ymodel = T5wt
0
 (2,4)

17 ------zmodel = T5wt
0
 (3,4)

18 ------xwt = ymodel

19 ------ywt = zmodel

20 ------zwt = xmodel

35

21 ------xmodel = T5bc
0
 (1,4)

22 ------ymodel = T5bc
0
 (2,4)

23 ------zmodel = T5bc
0
 (3,4)

24 ------xbc = ymodel

25 ------ybc = zmodel

26 ------zbc = xmodel

27 ------Calculate distance covered xd = 0.172-xwt

28 ------IF(xd>0.045 AND zbc<0.005)

29 ---------count += 1

30 ---------Table(count,1) = count

31 ---------Table(count,2) = θ1

32 ---------Table(count,3) = θ3

33 ---------Table(count,4) = θ4

34 ---------Table(count,5) = xd

35 ---------Table(count,6) = zbc

36 ------ENDIF

37 ---ENDFOR

38 ENDFOR

39 Print Table

Table 3.8 : θ3 and θ4 values for second pose of the high velocity gait for backward

locomotion.

 θ1(
0
) θ3(

0
) θ4(

0
) xdif(m) zcaster(m)

1 -50.38 86 -36 0.0450 0.0045

2 -50.07 87 -38 0.0451 0.0036

3 -50.69 87 -37 0.0455 0.0041

4 -51.30 88 -36 0.0459 0.0046

5 -49.75 88 -40 0.0452 0.0027

6 -50.37 88 -39 0.0456 0.0032

7 -50.99 88 -38 0.0460 0.0037

8 -51.61 88 -37 0.0464 0.0042

9 -52.23 88 -36 0.0468 0.0047

10 -50.67 89 -40 0.0461 0.0028

11 -51.29 89 -39 0.0465 0.0033

12 -51.91 89 -38 0.0469 0.0038

13 -52.53 89 -37 0.0473 0.0043

14 -53.16 89 -36 0.0478 0.0048

15 -51.59 90 -40 0.0470 0.0029

16 -52.21 90 -39 0.0474 0.0034

17 -52.84 90 -38 0.0478 0.0039

18 -53.47 90 -37 0.0482 0.0044

19 -54.09 90 -36 0.0487 0.0049

While satisfying the conditions, the maximum displacement is achieved when θ3 is

(90
0
) and θ4 is (-36

0
). Therefore, the second pose of the gait to achieve high velocity

is determined as shown in Figure 3.16. The same pose can be redesigned to have low

36

velocity using the same way by changing the first condition. When the desired

displacement in the first condition is changed to be around 20 millimeters, the

program returns the table as shown in Table 3.9.

Table 3.9 : θ3 and θ4 values for second pose of the low velocity gait for backward

locomotion.

 θ1(
0
) θ3(

0
) θ4(

0
) xdif(m) zcaster(m)

1 -26.47 50 -24 0.0198 0.0044

2 -26.24 51 -26 0.0197 0.0034

3 -26.76 51 -25 0.0202 0.0040

4 -26.01 52 -28 0.0197 0.0024

5 -26.53 52 -27 0.0201 0.0030

6 -27.04 52 -26 0.0205 0.0036

7 -25.77 53 -30 0.0197 0.0014

8 -26.29 53 -29 0.0201 0.0020

9 -26.81 53 -28 0.0205 0.0026

10 -25.53 54 -32 0.0197 0.0004

11 -26.05 54 -31 0.0201 0.0010

12 -26.57 54 -30 0.0204 0.0016

13 -25.81 55 -33 0.0201 0.0000

14 -26.33 55 -32 0.0205 0.0006

It can be seen from the table that when θ3 is (52
0
) and θ4 is (-27

0
) the desired

displacement of 20 millimeters is achieved.

After the second pose is determined for both high velocity and low velocity, the first

and the third poses can be determined for these velocities. The strategy for designing

these poses is simpler. The requirements for the first pose of the high velocity gait

are;

 The distance covered by the end-effector should not exceed 45 millimeters,

 The caster should not be contacting the terrain,

 θ3 and θ4 values should be close to (90
0
) and (-36

0
), respectively.

Running the program with these conditions returns the table as shown in Table 3.10.

37

Table 3.10 : θ3 and θ4 values for first pose of the high velocity gait for backward

locomotion.

 θ1(
0
) θ3(

0
) θ4(

0
) xdif(m) zcaster(m) angle_dif(

0
)

1 -49.87 70 -12 0.0430 0.0156 44

2 -50.22 71 -13 0.0433 0.0151 42

3 -50.79 71 -12 0.0439 0.0157 43

4 -51.36 71 -11 0.0446 0.0162 44

5 -51.14 72 -13 0.0442 0.0152 41

6 -51.71 72 -12 0.0449 0.0158 42

As it can be seen from the table, the most suitable values are (72
0
) for θ3 and (-13

0
)

for θ4. Figure 3.15 shows the first pose of the high velocity gait for backward

locomotion. For the low velocity version of the first pose, the conditions are changed

as;

 The distance covered by the end-effector should not exceed 20 millimeters,

 The caster should not be contacting the terrain,

 θ3 and θ4 values should be close to (52
0
) and (-27

0
), respectively.

The resulting table is shown at Table 3.11.

Table 3.11 : θ3 and θ4 values for first pose of the low velocity gait for backward

locomotion.

 θ1(
0
) θ3(

0
) θ4(

0
) xdif(m) zcaster(m) angle_dif(

0
)

1 -23.29 31 0 0.0182 0.0150 48

2 -23.77 31 -1 0.0188 0.0157 49

3 -24.07 32 0 0.0189 0.0153 47

4 -24.55 32 -1 0.0196 0.0160 48

5 -24.86 33 0 0.0197 0.0156 46

6 -25.17 34 -1 0.0198 0.0152 44

Using the table, the best setting for the first pose of the low velocity gait is found to

be (θ3=34
0
) and (θ4=-1

0
).

Designing the third pose is simpler than designing the other poses. The third pose is

used for placing the foot to a higher position from ground so that while returning to

the reset position, the tip of the foot does not contact the terrain. For that purpose the

38

third pose for the high velocity gait is set to be (θ3=45
0
) and (θ4=-45

0
). For the low

velocity gait, the setting is (θ3=15
0
) and (θ4=-15

0
). Figures 3.15 to 3.17 show the

poses for the high velocity gait while Figures 3.18 to 3.20 show the poses for the low

velocity gait.

Figure 3.15: The first pose of the high velocity gait for backward locomotion.

Figure 3.16: The second pose of the high velocity gait for backward locomotion.

Figure 3.17: The third pose of the high velocity gait for backward locomotion.

39

Figure 3.18: The first pose of the low velocity gait for backward locomotion.

Figure 3.19: The second pose of the low velocity gait for backward locomotion.

Figure 3.20: The third pose of the low velocity gait for backward locomotion.

Similar to the forward locomotion gaits, a single step of the high velocity and the low

velocity gaits for backward locomotion is completed after the foot returns to the reset

position where θ3 and θ4 values are (0
0
).

40

3.1.5.3 Motions kinematics and position control

The motion kinematic model of the single module consists of the heading angle

modifications controlled by the front wheel speed of the module and the forward or

backward motion controlled by the push or pull effect of the foot. General motion

kinematic model of the single module shown in Figure 3.21 can be desribed as given

in equations (3.21) to (3.23). The reason for having difference equations to describe

motion on longitudinal direction is that the motion is discrete. Note that γmod is the

heading angle of the module and ω is the angular velocity. d is the longitudinal

displacement caused by the selected gait.

Figure 3.21: Longitudinal displacement and angular velocity of a module.

 (3.21)

 (3.22)

 (3.23)

The longitudinal displacement d depends on both the selected gait and the friction

coefficient of the terrain. It is determined experimentally in the simulation

environment for different gaits and terrains with varying friction coefficients.

Determining longitudinal displacement is simple. After each cycle of the gait is

completed, x and y coordinates of the module is recorded and longitudinal

displacement is calculated using (3.24). Since the calculated value varies in each

41

cycle, the average of the recorded longitudinal displacements is calculated whenever

a new sample is added for 60 seconds of simulation time. This procedure is applied

on terrains which have friction coefficients varying from 0.2 to 1.0 for all four

different gait and velocity couples the module can practice.

 (3.24)

Table 3.12 shows average longitudinal displacement for forward locomotion gait on

terrains with varying friction coefficients and the time it takes to complete one full

cycle of the gait. Note that the subscripts "fhv" and "flv" stand for forward high

velocity and forward low velocity.

Table 3.12 : Longitudinal displacement and cycle time of forward locomotion gait.

Terrain Friction

Coefficient

High Velocity Low Velocity

dfhv(m/cycle) tfhv(s/cycle) dflv(m/cycle) tflv(s/cycle)

1.0 0.0635 0.95 0.0162 0.65

0.8 0.0652 0.95 0.0165 0.65

0.6 0.0662 0.95 0.0153 0.65

0.4 0.0663 0.95 0.0124 0.65

0.2 0.0502 0.95 0.0106 0.65

The average longitudinal displacement and the cycle time values for backward

locomotion gait are given in Table 3.13. The subscripts "bhv" and "blv" stand for

backward high velocity and backward low velocity similar to the forward locomotion

case.

Table 3.13 : Longitudinal displacement and cycle time of backward locomotion gait.

Terrain Friction

Coefficient

High Velocity Low Velocity

dbhv(m/cycle) tbhv(s/cycle) dblv (m/cycle) tblv (s/cycle)

1.0 0.0233 1.05 0.0123 0.80

0.8 0.0210 1.05 0.0113 0.80

0.6 0.0186 1.05 0.0104 0.80

0.4 0.0161 1.05 0.0091 0.80

0.2 0.0117 1.05 0.0075 0.80

Similar to longitudinal displacement, angular velocity ω is also dependent on terrain

friction coefficient, but it is not needed to determine the actual ω value. To decide

which gait to use, the module has to calculate the time it takes for it to adjust its

heading angle. Therefore, determining t180 which is the time it takes for the module

42

to change its orientation by ±180° on different terrains will be satisfactory for

deciding the appropriate gait.

Since the module can rotate around its reference position, the orientation

modification provided by the wheel is not used as a steering mechanic. Another

reason for that is applying a high angular velocity to the wheel while the module is

moving can cause it to tumble. For these reasons, the angular velocity of the wheel is

kept at a low value for correcting small orientation errors while the module is

moving. The low velocity is determined as 90°/sec and it is only applied when the

orientation difference is less than 5°. To modify the heading angle while the module

is not moving, a high angular velocity value is also determined. Since the maximum

angular velocity that the wheel joint can provide is 360°/sec, the high angular

velocity value is set as 300°/sec and it is used for adjusting the orientation of the

module when the orientation error is greater than 5°.

Since the low velocity is relatively small and its effect on the gait decision is

neglectable, only the high angular velocity is used to determine t180. Table 3.14

shows t180 in terrains with varying friction coefficients.

Table 3.14 : Time required for a 180
0
 rotation in varying terrains

Terrain Friction Coefficient t180(s)

1.0 4.20

0.8 4.25

0.6 4.35

0.4 4.55

0.2 4.40

The modules move to assemble a configuration and as will be explained later, each

module has a different role in a configuration and these roles also differ in the

assembly phase. In the assembly phase, the modules are expected to be in a

predetermined position having a predetermined orientation depending on their roles.

For that purpose, a position control algorithm is developed for modules to position

themselves according to their roles as fast as possible.

The module firstly scans the area to find the module which has the first role. This

module is used as reference by all modules in the configuration and they calculate

their target positions relative to this module. The module which has the first role acts

43

as a leader or anchor point for the whole system. After the reference module is found,

the module calculates its own position by using the data received from the visual

sensor. The module also calculates its target position depending on the role it has.

Equations (3.25) and (3.26) show the calculations of the initial module position using

the reference module. Figure 3.22 is also given for better understanding.

Figure 3.22: Calculating module position using the reference module.

 (3.25)

 (3.26)

In Figure 3.22 and equations (3.25) and (3.26) ddp stands for the distance between

the detection dummy and the reference position of each module. ddp value is the

same on each module and it is 102 millimeters. dvis is the distance data provided by

the visual sensor. γmod, γvis and γref are the gamma orientations of the moving

module, its visual sensor and the reference module, respectively.

The calculation of target position using the reference module is shown in Figure 3.23

and equations (3.27) and (3.28). Note that dlat stands for the required lateral distance

of the target position relative to the reference module position. Similarly, dlong is the

required longitudinal distance for the target position.

44

Figure 3.23: Calculating target position using the reference module.

 (3.27)

 (3.28)

After the target position and the position of the module are calculated, the required

orientation to reach the target and the difference between the heading angle of the

module is calculated using the trigonometric relations given in equations (3.29) and

(3.30).

 (3.29)

 (3.30)

The distance between the module and the target is calculated using (3.31).

 (3.31)

After the orientation difference and the distance from target is calculated, the

controller decides the direction of locomotion and the velocity. This is done by

calculating the required time to reach the target in each option. In both options, the

45

calculated time intervals can be separated as t1, t2 and t3. Since the friction coefficient

of the terrain is known, it is possible to calculate t1, t2 and t3 values approximately

because d and ω values are known.

t1 is the time it takes to have the required heading angle to reach the target. For

forward locomotion option, t1forward is the time it takes to make the orientation

difference 0° and for backward locomotion option, t1backward is the time needed to

make the orientation difference ±180°. Equations (3.32) and (3.33) show the

calculation of t1.

 (3.32)

 (3.33)

t2 is the time needed to reach the target position by implementing the appropriate

gait. t2 value is calculated by using the distance between the module and the target

position and the suitable d values of high and low velocity of the forward or

backward gaits. Equations (3.34) to (3.35) show the calculation of t2 value for both

gaits.

 (3.34)

 (3.35)

Lastly, t3 is the time required for the module to take the desired heading angle after

reaching the target position. It changes depending on the heading angle the module

arrives at the target position. Assuming there will not be too much disturbance while

moving to the target position, the arriving orientation will be equal to the calculated

required heading angle in the initial position. Calculating the time to change the

heading angle from the required orientation in the initial position and the desired

heading angle in the target position can yield the approximate solution for t3. The

calculations are shown in (3.36) and (3.37).

46

 (3.36)

 (3.37)

When all time intervals are calculated for both locomotion methods, the siumlation

option which takes less time is selected. After the appropriate gait is selected, the

execution phase starts. Using the wheel joint, the module adjusts its heading angle

equal to the required heading angle. When the orientation difference is 0°, the

velocity to be applied is determined. Velocity is determined based on the distance

from target position. If the distance is greater than dhigh of the selected gait, then the

velocity is set as high. If the distance is between dhigh and dlow, then the distance is set

as low and if the distance is lower than dlow, the module decides that it has reached

the position and changes its heading angle to the desired heading angle. The pseudo-

code of the position control algorithm of the single module is given in Table 3.15.

Table 3.15 : Pseudo-code of the single module position control algorithm.

01 WHILE (not reached to the target)

02 ---Calculate target position, module position

03 ---Calculate distance, required gamma orientation

04 ---WHILE(gait not decided)

05 ------Calculate t1forward, t2forward, t3forward

06 ------Calculate t1backward, t2backward, t3backward

07 ------Calculate tforward, tbackward

08 ------IF(min(tforward,tbackward) == tforward) THEN

09 ---------gait = forward

10 ------ENDIF

11 ------IF(min(tforward,tbackward) == tbackward) THEN

12 ---------gait = backward

13 ------ENDIF

14 ------gait decided

15 ---ENDWHILE

16 ---Calculate gamma difference γdif = γreq - γmod

17 ---IF(gait == backward) THEN

18 ------Recalculate gamma difference γdif = γdif ± 180

19 ---ENDIF

20 ---WHILE(|γdif|>5
0
)

21 ------set wheel speed = high

22 ------set gait velocity = 0

23 ---ENDWHILE

24 ---WHILE(|γdif|<5
0
)

25 ------IF(|γdif|>0.5
0
) THEN

47

26 ---------set wheel speed = low

27 ------ENDIF

28 ------IF(|γdif|<0.5
0
) THEN

29 ---------set wheel speed = 0

30 ------ENDIF

31 ------IF(gait==forward) THEN

32 ---------IF(dtarget<dhigh) THEN

33 ------------set gait velocity = high

34 ---------ENDIF

35 ---------IF(dlow<dtarget<dhigh) THEN

36 ------------set gait velocity = low

37 ---------ENDIF

38 ---------IF(dtarget<dlow) THEN

39 ------------target reached

40 ------------set gait velocity = 0

41 ---------ENDIF

42 ------ENDIF

43 ------IF(gait==backward) THEN

44 ---------IF(dtarget<dhigh) THEN

45 ------------set gait velocity = high

46 ---------ENDIF

47 ---------IF(dlow<dtarget<dhigh) THEN

48 ------------set gait velocity = low

49 ---------ENDIF

50 ---------IF(dtarget<dlow) THEN

51 ------------target reached

52 ------------set gait velocity = 0

53 ---------ENDIF

54 ------ENDIF

55 ---ENDWHILE

56 ENDWHILE

57 WHILE(not have desired orientation)

58 ---Calculate gamma orientation difference

59 ---IF(|γdif|>5
0
) THEN

60 ------set wheel speed = high

61 ---ENDIF

62 ---IF(0.5<|γdif|<5
0
) THEN

63 ------set wheel speed = low

64 ---ENDIF

65 ---IF(|γdif|<0.5
0
) THEN

66 ------set wheel speed = 0

67 ------have desired orientation

68 ---ENDIF

69 ENDWHILE

48

3.2 Cooperative Locomotion Modes and Configurations

To complete more advanced tasks, the robotic structure can assemble different

configurations such as quadruped or wheeled.

In this section the assembly, locomotion methods and specific abilities of quadruped

and wheeled configurations are explained in detail.

3.2.1 Roles and communication in cooperative modes

The modules of the robotic structure can assemble different configurations. In

configuration mode each module has a role that determines the way it will function

before or after assembly. Role distribution is done after the system decides to

assemble a configuration. The roles are distributed to modules based on their

positioning. In assembly phase, a module determines its target assembly position

based on its role in the configuration. After the assembly is done and the

configuration is created, the module which has the first role (Role#1) becomes the

master of the configuration and sends commands to other modules based on the

requirements of the system.

Another important system in cooperative modes is the communication. The modules

need to communicate with each other mainly in the scanning phase to localize

themselves and initiate role distribution algorithm, in the assembly phase to notify

other modules about their connection status and in the configuration phase for

Role#1 to issue commands to other modules.

Communications in V-Rep is handled by variables called "Script Simulation

Parameter". These variables are parts of scripts which can be read and written by

other scripts that are running in the same simulation. Since every module has a script

in V-Rep, they also share common script simulation parameters and use them to

share data and notify other modules. The script simulation parameters can be read

using "simGetScriptSimulationParameter(Script Handle, "SSP Name")" function. To

write on parameters, the function "simSetScriptSimulationParameter(Script Handle,

"SSP Name", value)" is used in V-Rep scripts.

49

3.2.2 Quadruped locomotion

The robotic structure can assemble a quadruped walker configuration by the

connection of six modules.

3.2.2.1 Structure and assembly

In this configuration the body is formed by two modules which are connected to each

other by their back connection points. The rest of the modules form the legs of the

walker robot. The modules operating as legs connect their front connection points to

the right or left connection points of the modules forming the body of the walker

robot. Figure 3.24 shows the walker robot standing still.

Figure 3.24: The walker robot standing still.

The modules forming the body of the configuration are Role#1 and Role#2. It is

assumed that Role#1 points forward direction for the configuration. Role#2 points to

the backward direction. The modules forming the front legs of the configuration are

Role#3 and Role#4 and the modules forming the hind legs of the configuration are

Role#5 and Role#6.

Role#3 is assumed to be the right front leg of the walker robot and this module

connects to the right connection point of Role#1 with its wheel. Role#4 is assumed to

50

be the left front leg of the configuration. The wheel of this module connects to the

left connection point of Role#1.

The modules forming the right and left hind legs of the walker robot are Role#5 and

Role#6, respectively. Since Role#2 points backward, the right hind leg connects to

the left connection point and left hind leg connects to the right connection point of

Role#2.

Figure 3.25 and Table 3.16 shows predetermined module positions for the assembly

of the quadruped configuration.

Figure 3.25: Predetermined module positions for quadruped configuration

assembly.

Table 3.16 : Predetermined module positions for quadruped configuration assembly.

Role Part Position(x, y, z) Orientation(α, β, γ)

1 Body Front (0, 0, 0) (0, 0, 0)

2 Body Back (-0.175, 0, 0) (0, 0, 180)

3 Front Right Leg (0.137, -0.230, 0) (0, 0, 90)

4 Front Left Leg (0.137, 0.23, 0) (0, 0, -90)

5 Back Right Leg (-0.137, -0.372, 0) (0, 0, 90)

6 Back Left Leg (-0.137, 0.372, 0) (0, 0, -90)

3.2.2.2 Leg kinematics and gait design

The walker robot is expected to move on both longitudinal and lateral directions.

Since the movement characteristics of legs differ in these different locomotion styles,

different gaits should be applied for both locomotion styles. These gaits are called

51

trotting and sidling. Trotting is used for moving in longitudinal direction and sidling

is used for moving in lateral direction. Although the locomotion methods in

longitudinal and lateral directions are said to have different gaits, in truth their

timetables are same. The difference is the variation of the leg positions defined for

each of them.

Timetable used in both locomotion methods belongs to trot gait. The trot gait is

generally used for low-speed walking. It is commonly seen to be used by quadruped

animals like horses or dogs in nature. The diagonal legs act together in this gait. The

timetable of the gait is shown in Table 3.17.

Table 3.17 : Timetable of trotting and sidling gaits.

Step Front Right Front Left Back Right Back Left

0 0 0 0 0

1 0 x x 0

2 -1 1 1 -1

3 x 0 0 x

4 1 -1 -1 1

In the timetable, "x" means that the leg is not contacting the terrain, "1" and "-1" are

the forward and backward positions. "0" is the reset position of the leg. After the

fourth pose, the legs return to pose one and the gait becomes periodic. Changing the

positions of states "1" and "-1" in the timetable makes the robot walk backwards.

Unlike trotting, sidling is not a common walking gait. Crabs, which are not

quadrupeds, generally use this gait. It is also named crabbing for this reason. The

diagonal legs act together like trotting. The timetable implemented to the walker

robot is the same timetable used in trotting. The only difference is "1" and "-1"

represents right or left depending on the desired side of movement. If the robot is to

sidle to its right, "1" means right and "-1" means left and vice-versa for sidling to its

left.

Since the desired leg positions are defined vaguely by the timetable, by modifying

the first kinematic model created for the single module, the joint positions can be

determined for realizing the walking-gaits and clearly defining the leg positions for

each gait. The modifications of the kinematic model are for changing the end-

effectors. For trotting, the end-effectors need to be the right and left tips of the legs.

52

Similarly for sidling, the end effectors need to be the upper and lower tips of the leg.

The base of the model is still the connection point of the wheel. The need for having

two different end-effectors for each gait is that the foot of the module which acts as a

leg contacts the terrain on different tips while swinging forward or backward while

the robot is moving in longitudinal or lateral directions. The left tip of the foot

contacts the terrain while swinging forward and the right tip contacts the terrain

while swinging backwards on a module which acts as a right sided leg of the walking

robot and vice-versa for a module acting as a left sided leg of the robot while the

robot is trotting. When the robot is sidling towards a lateral direction, the lower tip of

the foot contacts the terrain while swinging forward and the upper tip contacts the

terrain while swinging backwards for the legs on that side of the robot.

The kinematic model used for designing the foot positions is the modified version of

the first kinematic model created for the single module. The modification is done for

extending the end-effectors from only lower tip to all four tips of the foot. Figure

3.26 and Figure 3.27 show the coordinate frames associated to a right sided leg of the

quadruped walker and Table 3.18 shows the corresponding D-H parameters for each

joint.

Figure 3.26: Coordinate frames used in the kinematic model.

53

Figure 3.27: Coordinate frames used in the kinematic model.

Table 3.18 : D-H parameters of the kinematic chain

 Rotz(θi) Transz(di) Transx(ai) Rotx(αi)

1 θ1 d1 0 α1

2 0 d2 0 α2

3lower -π/2 d3 a3lower 0

3upper -π/2 d3 a3upprt 0

3right 0 d3 a3right 0

3left 0 d3 a3left 0

Note that θ1 stands for the wheel position, α1 and α2 stand for the first and the second

joints of the foot, respectively. d1 is the distance between the base of the kinematic

chain (connection point of the wheel) and the first joint of the foot which is 77.5

millimeters. d2 is the distance between the two joints of the foot and its value is 47.5

millimeters. d3 is the distance between the second joint of the foot and the outer

center of the orthogonal plate attached to the foot and it is 47 millimeters. a3lower,

a3upper, a3left and a3right values are all distances between the outer center of the

orthogonal plate and the center of the tips of the foot. Their values are all 25

millimeters. Due to frame positioning, a3lower and a3right are assigned to 0.025 and

a3upper and a3left are assigned to -0.025 in the calculations.

54

The general matrix form of the homogeneous transformation matrices associated to

each link was given in (3.1). Placing D-H parameters to this general form for each

link i yields the homogeneous transformation matrices. Equations (3.38) to (3.43)

show these matrices.

 (3.38)

 (3.39)

 (3.40)

 (3.41)

 (3.42)

 (3.43)

The transformation matrices that transform the coordinates of the end effectors (tips

of the foot) to the base (connection point of the wheel) can be derived as shown in

equations (3.44) to (3.47).

55

 (3.44)

 (3.45)

 (3.46)

 (3.47)

Since the calculations are complex, a modified version of the m-file created for the

single module kinematic model is used to analyze the end-effector positions. The m-

file also transforms the coordinates of the end-effector from the coordinate frame of

the base of the model to the absolute frame of V-Rep. The transformation is shown in

equations (3.48) to (3.50). The transformation assumes that the base of the kinematic

chain (connection point of the wheel) is positioned at the origin of the absolute frame

of V-Rep.

 (3.48)

 (3.49)

 (3.50)

After the coordinates of the end-effectors are clearly determined in the absolute

frame of V-Rep, a suitable value for θ1 for the forward and backward positions of the

leg should be determined for the trot gait. For trotting, only the right and left tips of

the foot positions are needed and the only variable is the wheel position. The first

and the second joint positions are fixed at 60
0
 and 30

0
, respectively. For varying θ1

values, the x, y, z coordinates of the left and right tips of the foot are shown in Figure

3.28 and Figure 3.29.

56

Figure 3.28: x-y-z coordinates of right tip of the foot for varying θ1 values.

Figure 3.29: x-y-z coordinates of left tip of the foot for varying θ1 values.

There are two constraints for the selection of θ1 while swinging forward and

backward. The first constraint is the height constraint. Since the legs have to lose

contact with the ground after reaching the backward position to move to the forward

position, the height of the tips of the legs that are contacting the terrain should be

lower than 47 millimeters. For a right sided leg, this means that while θ1 is positive

the zl value should be lower than -0.047 because while θ1 is positive the left tip is

contacting the terrain and while θ1 is negative zr value should be lower than -0.047 to

57

avoid contact between the lifted legs and the terrain. Figure 3.30 shows the zr and zl

values for varying θ1 values and the -0.047 limit.

Figure 3.30: zr and zl values for varying θ1 values.

The second constraint is the non-collision constraint. The longitudinal displacement

of tips of the legs that are not contacting the terrain should not exceed 89.5

millimeters because there is a period when the hind leg is in the forward position and

the front leg is in the backward position at the same side of the robot. The length of

89.5 millimeters is half of the distance between connection points of the front legs

and the hind legs. Therefore yl of a right sided front leg cannot be higher than 0.0895

and yr of a right sided hind leg cannot be lower than -0.0895. Figure 3.31 shows the

yr and yl values for varying θ1 values and the limits.

Figure 3.31: yr and yl values for varying θ1 values

58

From the figures, it can be seen that the height constraint is not as limiting as the

non-collision constraint. Due to the non-collision constraint, the maximum swing

range of a leg should not exceed 120
0
 (between -60

0
 and 60

0
). For more safety, the

implemented maximum swing range is set to be 90
0
 (between -45

0
 and 45

0
). For a

standard trotting to move forward, the swing range is set to be 60
0
 (between -30

0
 and

30
0
) to provide space for the orientation controller to increase or decrease the swing

range. Table 3.19 shows the joint positions for each leg while trotting forward and

Figure 3.32 to Figure 3.35 show the walker robot state in each step of the gait.

Table 3.19 : Joint positions of legs while trotting forward.

Step Front Right (3) Front Left (4) Back Right (5) Back Left (6)

θ1(
0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
)

0 0 60 30 0 60 30 0 60 30 0 60 30

1 0 60 30 0 0 90 0 0 90 0 60 30

2 -30 60 30 -30 60 30 30 60 30 30 60 30

3 0 0 90 0 60 30 0 60 30 0 0 90

4 30 60 30 30 60 30 -30 60 30 -30 60 30

Figure 3.32: First step of the trot gait.

59

Figure 3.33: Second step of the trot gait.

Figure 3.34: Third step of the trot gait.

60

Figure 3.35: Fourth step of the trot gait.

The second part of the kinematic calculations is for sidling. For sidling, positions of

the upper and lower tips of the foot should be analyzed. The only variable is the

position of the second joint of the foot, while the wheel and the first joint of the foot

positions are fixed at 0
0
 and 60

0
, respectively. Figure 3.36 and Figure3.37 show the

end-effector positions for varying α2 values.

Figure 3.36: x-y-z coordinates of upper tip of the foot for varying α2 values.

61

Figure 3.37: x-y-z coordinates of lower tip of the foot for varying α2 values.

While sidling, the distance between the operating parts of legs are not as close as in

the case while trotting. Therefore there is no need for a non-collision constraint. The

only constraint regarding sidling is the same height constraint set for the trot gait.

When the second joint position is higher than 30
0
, zupper should be less than -0.047

and when the second joint position is lower than 30
0
, zlower should be less than -0.047.

Figure 3.38 shows the zupper and zlower values for varying α2 values and -0.047 limit.

Figure 3.38: zupper and zlower values for varying α2 values.

62

Due to the height constraint, α2 cannot be lower than -81°. Since the height constraint

is not very limiting, the swing range is set as 120
0
 (between -30

0
 and 90

0
) to provide

room for the orientation controller to increase it up to 150
0
 (between -45

0
 and 105

0
)

or decrease it down to 90
0
 (between -15

0
 and 75

0
). Table 3.20 shows the joint

positions and Figures 3.39 to Figure 3.42 show the robot state while the robot is

sidling to its left.

Table 3.20 : Joint positions of legs while sidling to left.

Step Front Right (3) Front Left (4) Back Right (5) Back Left (6)

θ1(
0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
)

0 0 60 30 0 60 30 0 60 30 0 60 30

1 0 60 30 0 0 90 0 0 90 0 60 30

2 0 60 -30 0 60 -30 0 60 90 0 60 90

3 0 0 90 0 60 30 0 60 30 0 0 90

4 0 60 90 0 60 90 0 60 -30 0 60 -30

Figure 3.39: First step of the sidling gait.

63

Figure 3.40: Second step of the sidling gait.

Figure 3.41: Second step of the sidling gait.

64

Figure 3.42: Fourth step of the sidling gait.

3.2.2.3 Motion kinematics and position control

The quadruped walker robot is able to move back and forth in longitudinal and

lateral directions. The robot can also move on a curved path to control its orientation.

The orientation control of the vehicle is similar to differential drive vehicles.

Although the robot cannot rotate around its center, the difference between distance

covered by the opposite sided legs causes an arc-like movement which gives the

opportunity to control the orientation of the whole structure.

A switching controller is added to control the orientation of the robot for each gait.

Both controllers have four states which gradually change the orientation of the

structure more aggressively. To steer on a desired side of the robot, the controller

decreases the swing range of the legs on the desired side and increases the swing

range of the legs on the opposite side. The change in the swing range is 30
0
 in the

most aggressive state In the middle states, this value is 20
0
 and 10

0
. In the most

passive state the swing range of the legs on the desired side is decreased by 10
0
 and

the swing range of opposite sided legs is unchanged. Table 3.21 shows the general

state of leg joint positions for trot gait. Note that "l" and "r" stand for the effect of the

controller on the swing range of the legs. "l" is the applied control input to the left

sided legs and "r" is the applied control input to the right sided legs.

65

Table 3.21 : General joint positions of legs while trotting.

Step Front Right Front Left Back Right Back Left

θ1(
0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
)

0 0 60 30 0 60 30 0 60 30 0 60 30

1 0 60 30 0 0 90 0 0 90 0 60 30

2 -30-r 60 30 -30-l 60 30 30+r 60 30 30+l 60 30

3 0 0 90 0 60 30 0 60 30 0 0 90

4 30+r 60 30 30+l 60 30 -30-r 60 30 -30-l 60 30

The controller states for sidling is the same, but it applies to the second joint of the

foot instead of the wheel joint. The general state of leg joint positions is shown in

Table 3.22. Similar to trotting case "f" and "b" are the effect of the controller on the

swing range of the legs. "f" is the control input applied to the front legs and "b" is the

control input applied to the legs at the back.

Table 3.22 : General joint positions while sidling.

Step Front Right Front Left Back Right Back Left

θ1(
0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
)

0 0 60 30 0 60 30 0 60 30 0 60 30

1 0 60 30 0 0 90 0 0 90 0 60 30

2 0 60 -30-f 0 60 -30-f 0 60 90+b 0 60 90+b

3 0 0 90 0 60 30 0 60 30 0 0 90

4 0 60 90+f 0 60 90+f 0 60 -30-b 0 60 -30-b

The general motion kinematic model of the quadruped walker robot shown in Figure

3.43 can be expressed as shown in equations (3.51) to (3.53).

Figure 3.43: Longitudinal displacement and angular velocity of the quadruped

walker.

66

 (3.51)

 (3.52)

 (3.53)

Similar to the single module case, the longitudinal displacement d and angular

velocity ω are dependent on friction coefficient of the terrain. These values are

determined experimentally in the simulation software by using terrains with varying

friction coefficients. The experimental setup is the same as the single module case.

Only difference is ω value is determined for the quadruped walker. The longitudinal

displacement is determined by using equation (3.24) and taking its average on a 1

minute period same as the single module case. ω is determined by using (3.54) and

its average is also calculated.

 (3.54)

Table 3.23 and Table 3.24 show longitudinal displacement and angular velocity

while trotting forward on a curved path.

Table 3.23 : Longitudinal displacement and angular velocity while trotting in more

aggressive states of the controller.

Terrain

Friction

Coefficient

r=15, l=-15 r=10, l=-10

ω(
0
/cycle) d(m/cycle) t(s/cycle) ω(

0
/cycle) d(m/cycle) t(s/cycle)

1.0 19.95 0.101 1.25 14.72 0.106 1.25

0.8 20.86 0.106 1.25 15.04 0.112 1.25

0.6 19.08 0.106 1.20 13.35 0.112 1.20

0.4 16.61 0.095 1.20 8.59 0.099 1.20

0.2 7.14 0.058 1.20 3.76 0.06 1.20

67

Table 3.24 : Longitudinal displacement and angular velocity while trotting in more

passive states of the controller.

Terrain

Friction

Coefficient

r=5, l=-5 r=0, l=-5

ω(
0
/cycle) d(m/cycle) t(s/cycle) ω(

0
/cycle) d(m/cycle) t(s/cycle)

1.0 7.81 0.107 1.25 4.42 0.094 1.25

0.8 8.09 0.114 1.25 4.71 0.099 1.25

0.6 6.53 0.116 1.20 3.56 0.105 1.20

0.4 3.91 0.101 1.20 2.11 0.095 1.20

0.2 1.47 0.058 1.20 0.36 0.057 1.20

Equations (3.51) to (3.53) also hold for sidling. For better understanding Figure 3.42

is modified as shown in Figure 3.44. Table 3.25 and 3.26 show longitudinal

displacement and angular velocity while sidling to left on a curved path.

Figure 3.44: Longitudinal displacement and angular velocity of the quadruped

walker.

Table 3.25 : Longitudinal displacement and angular velocity while sidling in more

aggressive states of the controller.

Terrain

Friction

Coefficient

f=15, b=-15 f=10, b=-10

ω(
0
/cycle) d(m/cycle) t(s/cycle) ω(

0
/cycle) d(m/cycle) t(s/cycle)

1.0 3.88 0.107 1.90 2.49 0.106 1.80

0.8 4.96 0.111 1.90 3.54 0.111 1.80

0.6 6.94 0.116 1.85 4.84 0.120 1.80

0.4 7.87 0.109 1.80 5.79 0.113 1.80

0.2 7.58 0.081 1.80 4.22 0.81 1.70

68

Table 3.26 : Longitudinal displacement and angular velocity while sidling in more

passive states of the controller.

Terrain

Friction

Coefficient

f=5, b=-5 f=0, b=-5

ω(
0
/cycle) d(m/cycle) t(s/cycle) ω(

0
/cycle) d(m/cycle) t(s/cycle)

1.0 1.74 0.107 1.85 1.02 0.103 1.80

0.8 1.51 0.111 1.80 0.85 0.105 1.80

0.6 2.35 0.121 1.80 1.22 0.115 1.80

0.4 1.89 0.115 1.80 1.08 0.110 1.80

0.2 1.94 0.080 1.80 0.82 0.075 1.80

Table 3.27 shows the longitudinal displacement while the robot is trotting forward

and sidling left without the effects of the orientation controller. The angular velocity

value is not recorded in these cases.

Table 3.27 : Longitudinal displacement while trotting forward and sidling left

without controller effect.

Terrain

Friction

Coefficient

r=0, l=0 f=0, b=0

d(m/cycle) t(s/cycle) d(m/cycle) t(s/cycle)

1.0 0.106 1.25 0.110 1.80

0.8 0.112 1.25 0.113 1.80

0.6 0.115 1.20 0.124 1.80

0.4 0.104 1.20 0.118 1.80

0.2 0.058 1.20 0.080 1.80

The position control algorithm of the quadruped configuration is different from the

control algorithms of single module and wheeled configuration because the

quadruped configuration cannot rotate around its center. Orientation control is a

harder problem for this configuration than the single module or wheeled

configuration. Therefore target state orientation should be controlled before arriving

the target position in this case.

To control both the position and the orientation of the quadruped robot a switching

controller is designed which controls the swing range of the right and left sided legs

while trotting and front and hind legs while sidling. The swing range control is based

on the desired angle of the target state and lateral and longitudinal distance from the

target position. Figure 3.45 shows 12 possible actions which can be implemented by

the quadruped configuration.

69

Figure 3.45: 12 possible actions which can be implemented by the quadruped

configuration.

In the figure, blue arcs represent the motion when trotting and yellow lines represent

the motion when sidling. The small double sided arrows show the new orientation

range. Blue arrows represent the orientation range when trotting and the yellow

arrows represent orientation range when sidling. As it can be seen from the figure,

based on the target and configuration position, the coordinate system can be broken

down into four quadrants. The other important property of the configuration is that

the quadruped walker can move towards any of the quadrants while changing its

orientation clockwise or counter clockwise depending on its decision to trot or sidle.

The position control algorithm is designed using these properties. The lateral and

longitudinal distance data acquired from the visual sensor is used to determine on

which quadrant the target is positioned and using the orientation difference between

the robot and the target state, the decision to trot or sidle is made. The pseudo code of

the position control algorithm of the quadruped configuration can be found in Table

3.28. Note that p-code assumes the visual sensor is locked to the reference target and

the lateral and longitudinal differencee between the target and the gamma orientation

desired is correctly calculated.

70

Table 3.28 : Pseudo-code for the position control algorithm of the quadruped

configuration.

01-IF(lat_dif>0 AND long_dif>0) THEN

02----IF(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN

03------- trotting=0

04------- sidling=1

05----ENDIF

06----IF(0<ornt_dif<90 AND -180<ornt_dif<-90) THEN

07------- trotting=1

08------- sidling=0

09----ENDIF

10-ENDIF

11-IF(lat_dif<0 AND long_dif>0) THEN

12----IF(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN

13------- trotting=1

14------- sidling=0

15----ENDIF

16----IF(0<ornt_dif<90 AND -180<ornt_dif<-90) THEN

17------- trotting=0

18------- sidling=1

19----ENDIF

20-ENDIF

21-IF(lat_dif<0 AND long_dif<0) THEN

22----IF(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN

23------- trotting=0

24------- sidling=1

25----ENDIF

26----IF(0<ornt_dif<90 AND -180<ornt_dif<-90) THEN

27------- trotting=1

28------- sidling=0

29----ENDIF

30-ENDIF

31-IF(lat_dif>0 AND long_dif>0) THEN

32----IF(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN

33------- trotting=1

34------- sidling=0

35----ENDIF

36----IF90<ornt_dif<90 AND -180<ornt_dif<-90) THEN

37------- trotting=0

38------- sidling=1

39----ENDIF

40-ENDIF

The pseudo code is very simple compared to the actual position control algorithm

applied. In the actual algorithm trotting and sidling is done more complex with

different swing ranges on the right and left sided legs while trotting and different

swing ranges on the front and hind legs while sidling. The orientation difference

limits also change depending on the friction coefficient of the terrain. The actual

71

position control algorithm of the robotic system can be found in the move_quad()

function of the module script given in Appendix-C.

3.2.2.4 Passing over obstacles

The ability to pass over obstacles is the most important property of the quadruped

configuration and the main reason for the robotic structure to decide assembling a

quadruped walker. Passing over obstacle ability is designed as a simple sequence of

three poses given in Table 3.29

Table 3.29 : Joint positions of the poses for passing over obstacles sequence.

Step Front Right Front Left Back Right Back Left

θ1(
0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
)

0 0 60 30 0 60 30 0 60 30 0 60 30

1 -135 60 30 135 60 30 -135 60 30 135 60 30

2 135 60 30 -135 60 30 135 60 30 -135 60 30

The poses given in Table 3.29 can be seen visually in figures 3.46 to 3.48.

Figure 3.46: First pose of passing over obstacles sequence.

72

Figure 3.47: Second pose of passing over obstacles sequence.

Figure 3.48: Third pose of passing over obstacles sequence.

Passing over obstacles sequence is repeated until the quadruped walker passes over

the obstacle.

73

3.2.3 Wheeled locomotion

3.2.3.1 Structure and role distribution

The body of the configuration is formed by two modules making a foot-to-foot

connection. The rest of the modules form the wheels of the robot and they make a

foot-to-body connection with the modules forming the body. Four-wheeled robot is

shown in Figure 3.49.

Figure 3.49: Wheeled configuration.

The joint positions of modules in normal pose of the wheeled configuration is given

in Table 3.30

Table 3.30 : Joint positions of the normal pose of the wheeled configuraion.

Role Part Front Joint BackJoint1 BackJoint2

1 Body Front 0 -90 90

2 Body Back 0 -90 90

3 Front Right Leg 0 -75 90

4 Front Left Leg 0 -75 90

5 Back Right Leg 0 -75 90

6 Back Left Leg 0 -75 90

The role distribution of this configuration is very similar to the configuration to

achieve quadruped locomotion. The two modules forming the body are Role#1 and

Role#2 and the wheel of Role#1 is assumed to be pointing the forward direction.

74

Role#3 makes a foot-to-body connection with Role#1 and forms the front right

wheel. Role#4 forms the front left wheel and its foot connects to the left side of the

body of Role#1. The wheels at the back are created by Role#5 and Role#6. Role#5

creates the right rear wheel and its foot connects to the left connection point of

Role#2. The module forming the left rear wheel is Role#6 and it makes a foot-to-

body connection with Role#2 on the left side.

The predetermined module positions and orientations for each role to assemble the

wheeled configuration is given in Table 3.31.

Table 3.31 : Predetermined module positions for wheeled configuration.

Role Part Position(x, y, z) Orientation(α, β, γ)

1 Body Front (0, 0, 0) (0, 0, 0)

2 Body Back (-0.175, 0, 0) (0, 0, 180)

3 Front Right Wheel (0.137, -0.230, 0) (0, 0, -90)

4 Front Left Wheel (0.137, 0.230, 0) (0, 0, 90)

5 Back Right Wheel (-0.137, -0.230, 0) (0, 0, -90)

6 Back Left Wheel (-0.137, 0.230, 0) (0, 0, 90)

Similar to the assembly of the quadruped walker configuration, in the table the

module which has the first role is assumed to be positioned in the origin and its

gamma orientation is γ1. Figure 3.50 shows the module positions before they start to

connect.

Figure 3.50: Predetermined module positions for wheeled configuration.

75

The reason for having the predetermined positions of modules having the third, the

fourth, the fifth and the sixth roles is their connection types. Since they make foot-to-

body connection with the first and second modules, they have to be positioned away

enough from these modules in case they decide to reach their predetermined

positions by forward locomotion gait. If their predetermined positions were not away

at least one module length, they could collide with the modules they have to connect.

In actual assembly phase the modules do not wait to connect to their target

connection points. The modules which have the second, the third and the fourth roles

move to complete connection after they arrive their predetermined positions and

adjust their heading angles as desired. The modules which have the fifth and the sixth

roles wait for the second module to complete its connection before connecting even

if they have the required position and orientation.

3.2.3.2 Motion kinematics and position control

An experimental motion kinematic model of a skid-steered vehicle that is developed

in [14] is used in this configuration. The development of the model is also explained

in this part.

The control inputs for the wheeled configuration are Vl and Vr which are the linear

velocities of wheels on the left and right with respect to the robot frame. The

relationship between the control inputs and the motion kinematics of the robot can be

stated as shown in (3.55) where vx and vy is the vehicle's translational velocity with

respect to local frame of the vehicle and ωz is the angular velocity.

 (3.55)

To develop a motion kinematic model for the wheeled configuration, the effects of

control inputs on motion kinematics of the structure should be determined. The most

important variable that determines the motion kinematic model is the ICR

(Instantaneous Center of Rotation) of the vehicle. The formal definition of ICR is

given in [23] as;

"The instant centre of rotation, also called instantaneous centre or instant centre, is

the point in a body undergoing planar movement that has zero velocity at a

76

particular instant of time. At this instant, the velocity vectors of the trajectories of

other points in the body generate a circular field around this point which is identical

to what is generated by a pure rotation."

For a skid steered vehicle such as the wheeled configuration of this modular

structure, besides the ICR of the vehicle, also the ICRs of left sided and right sided

wheels can be expressed as given in equations (3.56) to (3.58).Note that in the

equations ICRl, ICRr and ICRv stands for ICR of the left sided wheels, ICR of the

right sided wheels and ICR of the wheeled configuration, respectively.

 (3.56)

 (3.57)

 (3.58)

In [15], it is already stated that there is a line parallel to the x axis of the vehicle

frame on which ICRl, ICRr and ICRv lies on. Figure 3.51 shows the visual

representations of the ICR values.

Figure 3.51: Visual representation of ICR values.

77

From Figure 3.47 and equations(3.56) to (3.58), ICR values can be used to relate

control inputs Vl and Vr to motion kinematic variables of the wheeled configuration

vx, vy and wz. Equations (3.59) to (3.62) show these relations.

 (3.59)

 (3.60)

 (3.61)

 (3.62)

In equations (3.60) and (3.61), αl and αr stands for correction factors. They are values

between 0 and 1.00 which are used for determining mechanical factors which are not

taken into consideration in the motion kinematic model.

The elements of matrix A given in (3.55) depend on ICR coordinates of the wheels

on left and right side of the configuration and correction factors. Therefore using

equations (3.59) to (3.62), the A matrix can be formed as shown in (3.63).

 (3.63)

As stated before, the wheeled robot assembled in this configuration is symmetric

around the local x and y axes. This means that ICRs lie symmetrically on the local x

axis and yICRv is equal to zero. Applying these to (3.63), matrix A takes the form;

 (3.64)

78

where α= αr= αl and xICR = -xICRl=xICRr.

Since the kinematic relationship is dependent to xICR and α value, the determination

of these values is the next step. Two experimental methods are proposed to find these

parameters in [16]. Note that these methods are applicable for symmetric models.

They do not contemplate the asymmetric effects of the center of mass or mechanical

misalignments.

The first method to determine xICR value can be applied by using equal opposite

control inputs of Vr and Vl in terrains with varying friction coefficients. The vehicle

is expected to rotate about its z axis. By measuring the distance traveled by the

wheels and the actual rotated angle, the xICR value can be determined like shown in

(3.65).

 (3.65)

To find the correction factor α, equal control inputs of Vr and Vl is applied. The

vehicle is expected to move on a straight line. The correction factor can be

determined by measuring the distance traveled by the wheels and the actual distance

traveled in straight motion by the vehicle. The equation given in (3.66) shows the

method to determine the correction factor.

 (3.66)

After the xICR and α values are determined for the vehicle and the motion kinematic

model is created, the position control algorithm can be developed. Since the wheeled

configuration can rotate around its center like the single module, the control

algorithms are very similar. The difference is that the wheeled structure can use the

wheel speed differences on different sides of the configuration for orientation

correction to avoid the obligation to stop. For that purpose, an orientation controller

is added to modify the heading angle of the configuration. The orientation controller

modifies the heading angle of the robot by simply decreasing the speed of the wheels

on the required turning side of the robot proportional to the orientation error. To

79

prevent the controller from stopping the wheels on any side of the robot, the

minimum speed limit is set as 25%.

3.2.3.3 Passing under obstacles

Wheeled configuration can adjust its axle positions to lower its height and pass under

tunnel-like obstacles. To pass under obstacles, wheeled configuration only changes

its pose and uses its general position control algorithm. The module joint positions

for the low height pose of the wheeled configuration is given in Table 3.32 and

Figure 3.52 shows the visual representation of low height pose of the configuration.

Table 3.32 : Joint positions of the pass under obstacles pose of the wheeled

configuraion.

Role Part Front Joint BackJoint1 BackJoint2

1 Body Front 0 0 0

2 Body Back 0 0 0

3 Front Right Leg 0 0 30

4 Front Left Leg 0 0 30

5 Back Right Leg 0 0 30

6 Back Left Leg 0 0 30

Figure 3.52: Low height pose of the wheeled configuration.

80

3.3 Strategic Planning

The strategic planning algorithm is the main control unit of the whole robotic

structure. It determines the actions to be taken by the structure such as moving to a

position, assembling or disassembling a configuration and executing configuration

specific actions depending on the data received from the environment. As expressed

before the strategic planning algorithm developed in this study is classified as a

hybrid deliberative/reactive type robotic paradigm. The deliberative side of the

algorithm is based on generating a plan that will drive the robotic structure from the

initial state to the desired goal state while reactive part of the algorithm is more like a

controller which is based on executing the plan generated in the deliberative layer.

The general strategic planning algorithm is shown in Figure 3.53

Figure 3.53: General strategic planning algorithm.

3.3.1 Deliberative layer

The deliberative layer of the strategic planning algorithm is for generating a feasible

plan to drive the robotic structure from the initial state to the target state. Generation

of a plan is completed in five steps. These steps are sensing, modeling, role

distribution and decomposition. Figure 3.54 shows the general workflow of the

deliberative layer.

81

Figure 3.54: General workflow of deliberative layer.

3.3.1.1 Deliberative sensing phase

The sensing phase is about determining environmental conditions. This phase is vital

for both the deliberative and the reactive layer of the strategic planning algorithm. It

is essential for deliberative layer because generation of a plan to reach the desired

goal state starts with getting the environmental data such as obstacle positions and

friction coefficient of the terrain and the plan is generated according to the data

received. Sensing phase is vital for the reactive part because in the reactive layer of

the algorithm, actions taken by the robotic structure is actually reactions to the

sensory data. Even if a plan is generated to reach the desired target position, sensing

phase continues in the reactive layer of the algorithm as a part of the feedback

mechanism.

The sensing phase of the deliberative layer starts with the friction coefficient

estimation of the terrain. While estimating friction coefficient, each module takes

five forward low velocity steps and reads the force sensors positioned between their

wheel part when the module is in the reset pose. Figures 3.55 to 3.59 show the force

sensor readings in terrains with different friction coefficients.

Figure 3.55: Force sensor readings when friction coefficient is 1.0.

82

Figure 3.56: Force sensor readings when friction coefficient is 0.8

Figure 3.57: Force sensor readings when friction coefficient is 0.6.

Figure 3.58: Force sensor readings when friction coefficient is 0.4.

Figure 3.59: Force sensor readings when friction coefficient is 0.2.

The maximum value read while the module has the reset pose is taken and recorded.

This process is done for each step the module takes and at the end the average of

83

these five readings is taken. The average of the reading is transformed to a friction

coefficient estimation based on Table 3.33.

Table 3.33 : Friction estimation based on force sensor readings.

Friction coefficient estimated Force sensor reading lower

limit

Force sensor reading upper

limit

1.0 0.75 -

0.8 0.65 0.75

0.6 0.45 0.65

0.4 0.30 0.45

0.2 - 0.30

After the friction coefficient of the terrain is estimated, the modules start the initial

scan to localize other modules, obstacles and targets. In the initial scan each module

moves its camera 360°, calculates positional difference of every module, obstacle or

target it identified and records it. The data collected by each module is used in the

modeling phase to create a coordinate system on which "Module#1" is centered.

Note that "Module#1" is not the module which has the first role. Role distribution

algorithm is initiated after the coordinate system is created in the modeling phase.

3.3.1.2 Modeling phase

The sensing phase ends with the localization scan in which each module scans its

environment and collects positional data of other modules, obstacles or targets. In

modeling phase the acquired data is used to create a coordinate system for the plan to

be generated. The origin of the coordinate system is assumed to be the reference

point of Module#1.

The creation process of the coordinate system starts from Module#1. This module

uses the positional data it collected in the sensing phase and calculates the position of

other objects it identified while scanning. After it calculates the position of the

modules, it sends the positional data to each module it identified, marks them as

scanned and notifies the scanned modules.

The scanned modules do what Module#1 does after they are notified and marked as

scanned with simple differences. The scanned modules does not recalculate the

positions of modules that are already marked as scanned and they calculate the

positions of the unmarked modules based on their own received position.

84

While the scanned modules are notified and marked, for obstacles and targets this

method does not hold. The calculated obstacle and target positions are shared with

other modules by the module which identifies and calculates them. This is done

because after role distribution, the strategic planning algorithm is initiated by only

the module which has the first role. By sharing the obstacle and target position data,

it is ensured that Role#1 knows the positions of these entities.

The modeling phase ends after every module is marked as scanned and all positional

data regarding obstacles and targets are shared among the modules.

3.3.1.3 Role distribution phase

Role distribution phase is separated from the plan generation process because either

the plan generated requires assembling wheeled or quadruped configuration, the role

distribution will be the same. To avoid unnecessary communication protocols, role

distribution is done before the execution of the strategic planning algorithm to ensure

that Role#1 executes the strategic planning algorithm and knows the generated plan.

Role distribution algorithm is initiated by Module#1 and the rest of the modules are

notified after the roles are determined. Role distribution is performed based on the

positional data of the coordinate system created in the modeling phase. The first step

of role distribution is to determine the module which will have the first role. To

determine the first module the average of all module positions are taken and the

closest module to this average position is chosen as Role#1.

After Role#1 is chosen the assembly positions that are given in Table() for

quadruped configuration and Table() for wheeled configuration are calculated based

on the orientation of Role#1. The pseudo code of the role distribution algorithm is

given in Table 3.34

Table 3.34 : Pseudo code of the role distribution algorithm.

01 FOR(i=1,6,1)

02 ---pos_x_sum += pos_x(Module#i)

03 ---pos_y_sum += pos_y(Module#i)

04 ENDFOR

05 pos_x_avg = pos_x_sum/6

06 pos_y_avg = pos_y_sum/6

07 FOR(i=1,6,1)

08 ---x_dif(i)= pos_x_avg - pos_x(Module#i)

09 ---y_dif(i)= pos_y_avg - pos_y(Module#i)

85

10 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2)

11 ENDFOR

12 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))

13 //Selection of Role#1

14 FOR(i=1,6,1)

15 ---IF(dist_min==dist(i)) THEN

16 ------Role#1 = Module#i

17------gpos_x(1) = pos_x(Role#1)

18------gpos_y(1) = pos_y(Role#1

19---ENDIF

20 ENDFOR

21 FOR(i=2,6,1)

22---gpos_x(i) = gpos_x_const(i) + gpos_x(1)

23---gpos_y(i) = gpos_y_const(i) + gpos_y(1)

24 ENDFOR

25 //Selection of Role#2

26 FOR(i=1,6,1)

27 ---x_dif(i)= gpos_x(2) - pos_x(Module#i)

28 ---y_dif(i)= gpos_y(2) - pos_y(Module#i)

29 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2)

30 ---IF(Module#i==Role#1) THEN

31 ------dist(i)=HUGE

32---ENDIF

33 ENDFOR

34 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))

35 FOR(i=1,6,1)

36 ---IF(dist_min==dist(i)) THEN

37 ------Role#2 = Module#i

38---ENDIF

39 ENDFOR

40 //Selection of Role#3

41 FOR(i=1,6,1)

42 ---x_dif(i)= gpos_x(3) - pos_x(Module#i)

43 ---y_dif(i)= gpos_y(3) - pos_y(Module#i)

44 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2)

45 ---IF(Module#i==Role#1 OR Role#2) THEN

46 ------dist(i)=HUGE

47---ENDIF

48 ENDFOR

49 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))

50 FOR(i=1,6,1)

51 ---IF(dist_min==dist(i)) THEN

52 ------Role#3 = Module#i

53---ENDIF

54 ENDFOR

55 //Selection of Role#4

56 FOR(i=1,6,1)

57 ---x_dif(i)= gpos_x(4) - pos_x(Module#i)

58 ---y_dif(i)= gpos_y(4) - pos_y(Module#i)

59 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2)

86

60 ---IF(Module#i==Role#1 OR Role#2 OR Role#3) THEN

61 ------dist(i)=HUGE

62---ENDIF

63 ENDFOR

64 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))

65 FOR(i=1,6,1)

66 ---IF(dist_min==dist(i)) THEN

67 ------Role#4 = Module#i

68---ENDIF

69 ENDFOR

70 //Selection of Role#5

71 FOR(i=1,6,1)

72 ---x_dif(i)= gpos_x(5) - pos_x(Module#i)

73 ---y_dif(i)= gpos_y(5) - pos_y(Module#i)

74 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2)

75 ---IF(Module#i==Role#1 OR Role#2 OR Role#3 OR Role#4) THEN

76 ------dist(i)=HUGE

77---ENDIF

78 ENDFOR

79 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))

80 FOR(i=1,6,1)

81 ---IF(dist_min==dist(i)) THEN

82 ------Role#5 = Module#i

83---ENDIF

84 ENDFOR

85 //Selection of Role#6

86 FOR(i=1,6,1)

87 ---x_dif(i)= gpos_x(6) - pos_x(Module#i)

88 ---y_dif(i)= gpos_y(6) - pos_y(Module#i)

89 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2)

90 ---IF(Module#i==Role#1 OR Role#2 OR Role#3 OR Role#4 OR Role#5) THEN

91 ------dist(i)=HUGE

92---ENDIF

93 ENDFOR

94 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))

95 FOR(i=1,6,1)

96 ---IF(dist_min==dist(i)) THEN

97 ------Role#6 = Module#i

98---ENDIF

99 ENDFOR

3.3.1.4 Decomposition phase

When role distribution is done, decomposition phase is initiated by Role#1. In

decomposition phase, the target state of the system is decomposed, creating sub-

goals based on the model of the environment. Decomposition is a forward process,

meaning that it starts from the initial state of the robotic structure and continues

creating sub-goals until the target state is reached.

87

The subgoals are represented as arrays of 6 values in the script written in V-Rep. The

values in the array are desired configuration, V-Rep handle of the reference object,

desired lateral difference, desired longitudinal distance, desired gamma difference

and transportation mode.

Desired configuration can be 1 or 2 depending on the configuration required by the

plan. For desired configuration, "1" means quadruped configuration and "2" means

wheeled configuration. V-Rep handle of reference object is the identity of the object

that the configuration is using as a reference. In V-Rep every entity has a handle that

identifies it in the scripts. V-Rep handle of modules, obstacles and targets are

collected while scanning in the sensing phase and they are used for searching and

locking to the reference objects by script commands.

Desired lateral and longitudinal difference values are straightforward. The

configuration determines the target state position using these values. Similar to

lateral and longitudinal differences, gamma difference is the desired gamma

difference between the target object and the configuration. The target orientation is

determined by using this value.

Transportation mode determines whether the configuration will execute its special

ability while trying to reach the target position, or not. This value can be 0 or 1. 0

means the configurations transport normally, executing their position control

algorithms. When transport mode value is 1, quadruped walker just executes the pass

over function to pass over the ground obstacle and wheeled configuration changes its

pose to pass under the obstacle and executes its normal position control algorithm.

The sub-goals are created in a group based on the obstacle types. If there is a ground

obstacle in the surroundings, the sub-goal group created for this obstacle consists of

three sub-goals. The fisrt sub-goal is created to position the configuration facing

some distance away from the ground obstacle. The second sub-goal is used to

execute the pass over obstacle ability of the configuration. This sub-goal’s

transport_mode value is 1, so the configuration executes the pass over obstacle

function and gets the next sub-goal. The third sub-goal is created for that reason.

Similar to the first sub-goal, the third sub-goal is used to position the configuration

some distance away from the obstacle after passing over it. Position and orientation

of the configuration while passing over obstacles cannot be controlled and after the

88

function is executed there should be another sub-goal to set the configuration on

track. This is the reason for having three sub-goals for a ground obstacle.

If there is a lath obstacle in the simulation scene, the group created for this obstacle

consists of two sub-goals because there is no need for an extra sub-goal to correct

position and orientation errors while passing under the obstacle. Passing under

obstacle ability is just an adjustment of the pose of the wheeled configuration code

and the configuration is driven by the position control algorithm. Therefore there is

no position or orientation errors while passing under the obstacle. Similar to the

ground obstacle case the first sub-goal lets the configuration to position itself some

distance away from the lath obstacle facing it. The second sub-goal can be seen as

the combination of the second and the third sub-goals of the ground obstacle case.

This sub-goal requests the configuration to be position some distance away from the

obstacle facing away from it and its transport_mode value is 1.

The ordered arrays which represent sub-goal states form a matrix which is the

representation of a plan in V-Rep scripts. Ordering the sub-goal states is done based

on the obstacle distance between the goal state and the obstacles. The first rows of

the plan matrix are consisted of the sub-goal states that are related to the farthest

obstacle and the last row of the plan matrix is the goal state of the system.

Representing the plan as a matrix is useful because in the sequencing phase of the

reactive layer, the target states that are fed to the acting unit are the rows of this

matrix and when a target state is reached the only reaction of the sequencer is feeding

the next row of the plan matrix to the acting phase.

3.3.2 Reactive layer

Reactive layer of the strategic planning algorithm acts as a feedback controller to

execute the generated plan to reach the goal state. Like a feedback controller the

reactive control consists of a continuous sensing and acting loop. There is also a

scheduling part in addition to traditional sense-act architecture of reactive paradigm.

The scheduler takes the data collected in the sensing phase and interprets them based

on the state of the robotic structure and the target state. Based on this interpretation,

the joints are driven according to requirements in the acting phase. Target states are

determined by the scheduler due to the sub-goals of the generated plan in the

deliberative planning phase. The scheduler also determines the target state based on

89

the sub-goal that the robotic structure is trying to achieve. Figure 3.60 shows general

workflow of reactive layer.

Figure 3.60: Reactive layer workflow.

3.3.2.1 Reactive sensing phase

The sensing phase of the reactive layer is used like the sensor of the feedback control

mechanism. In this phase the visual sensor of Role#1 is always active. It is locked to

the target position until it is reached. In this phase the orientation and distance values

are measured and sent to two different units. The first unit is the sequencing unit of

the reactive layer to check if the system has reached to the desired sub-goal state.

The second unit is the acting unit of the reactive layer to transfer sensor data into

motor signals depending on the positional error.

Unlike the deliberative sensing phase, sensing in reactive layer is continuous. The

sensing phase is always active, locking to a reference object or if not locked

searching for it and continually feeding data to the sequencing and acting unit.

3.3.2.2 Sequencing phase

The sequencing unit of the reactive layer is used as a low level action based decision

mechanism. The main function of the sequencing unit is to keep the acting part of the

reactive layer on track. The plan generated in the deliberative layer is shared with the

sequencer and after getting the plan, the sequencer organizes the relationship

between the sensing unit and the acting unit of the reactive layer.

90

The organization is done by comparing the sensory data with the sub-goal state

requirements. If the configuration requirement of the sub-goal does not match with

the status of the system, the sequencer issues a reassembly command to the acting

unit. If the transportation mode requires the use of the special ability of the

configuration the sequencer calls the corresponding functions to control the acting

unit. If the configurations match and there is no request for a special ability, the

sequencer issues no commands to the acting unit and lets it to position itself based on

the sensory data.

When the sub-goal state is reached, the sequencer gets the next row of the plan

matrix and continues comparing until the goal state is reached. Figure 3.61 shows the

flowchart of the sequencing unit.

Figure 3.61: Flowchart of the sequencing unit.

If the requirements are not satisfied the sequencer does nothing, but if they are

satisfied, the sequencer changes the reference value of the acting unit if the subgoal

has a positioning target. If the subgoal is assembly or ability targeting, the

sequencing unit sends the appropriate order for the acting unit to execute the

appropriate protocol.

3.3.2.3 Acting phase

Acting phase of the reactive control layer is simply the execution phase of the

appropriate actions, depending on the sensory data and the sub goal target. The

91

actions to be executed depends on the sub goal of the plan the robot is following. If

the subgoal has a positioning target, the executed action will be adjusting foot

positions based on the gait for the quadruped configuration or setting wheel speeds

for the wheeled configuration.

The acting unit controls the states of three joints and four connection points of all the

modules in the system. Therefore any action requiring an adjustment on the statesof

these joints and connection points needs to be executed on the acting unit.

Acting phase is not just an actuation phase. Acting unit not only controls joint

positions, but also executes protocols and processes ordered by the sequencing unit.

The orders executed by the acting unit are processes like assembly/reassembly,

configuration position control and ability execution. The acting unit also checks if

the issued order is satisfied and notifies the sequencer to issue another order.

92

93

4. SIMULATION AND TEST RESULTS

4.1 Test Scene

To test the modular robotic system and the strategic planning algorithm, a test scene

is created in V-Rep which consists of two obstacles and a target dummy. One of the

obstacles is a ground obstacle which can be passed over in a quadruped configuration

and the other obstacle is a lath obstacle which can be passed under in a wheeled

configuration. The test scene is shown in figures 4.1 and 4.2.

Figure 4.1 : Test scene created in V-Rep.

Figure 4.2 : Top view of the test scene.

The test scene is created to prove the strategic planning algorithm works as intended

and lets the system reach the target state. For that purpose the robotic system should;

 Scan its surroundings and identify the modules, the target and the obstacles,

94

 Model the environment in a coordinate system,

 Execute the role distribution and strategic planning algorithm to generate a

plan using the model,

 Execute the generated plan by assembling/reassembling, controlling its

position-orientation in quadruped or wheeled configurations and executing

the pass over and pass under obstacle abilities when needed,

 Have the state that is defined by the target dummy at the end of the

simulation.

To check the system status during simulation, some additions are made to the

original code to get some logging information. The modules are positioned

randomly, but in a way that lets Module#1 to be chosen as Role#1. This is done to

unite the logging data given by Module#1 and Role#1 in a single console window. In

addition to script based log data, the internal graph system of V-Rep is used to keep

track of the reference position of Module#1.

All of the six modules have the same code written in their scripts which only differs

by module specific variable definitions. Besides these variables, each variable,

function or method is identical in each script. The script is given in Appendix-A with

comments and explanations, but the important functions and methods used in the

scripts will also be explained briefly in this section.

4.2 The Simulation

The simulation starts with the friction coefficient estimation which is the first part of

the deliberative sensing phase. The modules take five forward low velocity steps and

read their force sensors to estimate the friction coefficient of the terrain.

In the programming perspective, this phase mainly depends on the function

estimate_friction(). This function is continually called in the friction estimation

phase. Since it is called continually it takes its internal parameters as input and

returns them as output to be used again.

The script logger gives only the estimated friction coefficient in this phase of the

simulation. Figure 4.3 shows Module#1 log.

95

Figure 4.3 : Module#1 log on friction coefficient estimation

After friction estimation is completed, the modules start the localization scan to

identify other modules, obstacles and targets in their surroundings. In this part of the

sensing phase every module is marked as scanned and their positions are shared

throughout the system.

In localization scan part, initial_scan() function called continually to control the

visual sensor orientation of the modules, read the result and record the position data.

The log output of Module#1 in this part is module, obstacle and target positions. The

console window showing log output is given in Figure 4.4

Figure 4.4 : Module#1 log on localization scan.

When the initial scan is completed, the sensing phase of the deliberative layer ends

and strategic planning starts. The robotic structure starts distributing roles because

either the plan generated requires assembling wheeled or quadruped configuration,

the role distribution will be the same. To avoid unnecessary communication

96

protocols, role distribution is done before executing decomposition part of the

strategic planning algorithm to ensure that Role#1 executes decomposition algorithm

and knows the generated plan.

As stated before, role distribution is done based on the module positions in the

simulation scene. The role distribution algorithm is initiated by Module#1 and the

function role_distribution() is used. This function is executed in a single call and it

does the necessary calculations like central position of module group, assembly

positions and distance of modules to assembly positions.

The function first calculates the central position of the module group. Then it starts

calculating the distance between this central position and each module. The closest

module to this central position is selected as Role#1. After the first role is given, the

assembly positions are calculated based on the position of Role#1. Selection of other

roles is carried on similar to selection of Role#1. The distances between module

positions and role assembly positions are calculated and each role is given to the

module which has the lowest distance starting from Role#2 to Role#6.

When the calculations and role distribution is done, Module#1 shares the role

distribution result using script simulation parameters and notifies other modules. The

calculations and role distributions are also given as log output by Module#1. The

console window showing log output of role distribution is given in Figure 4.5 and

Figure 4.6.

Figure 4.5 : Module#1 log on role distribution part 1.

97

Figure 4.6 : Module#1 log on role distribution part 2.

As it can be seen from the figure, each role is given to the module which is the

closest to the assembly position of the role. After role distribution is completed and

Role#1 is determined. The modules are notified by Module#1 to get their roles. The

modules use get_role() function of the script to learn their roles. This function is

pretty simple. It only checks the script simulation parameters of Module#1 and finds

the role of the module calling the function and returns this value.

When each module is notified and got its role in the system, Role#1 starts initiating

the decomposition part of the strategic planning algorithm. This part is the main part

of the strategic planning algorithm that generates the plan according to target and

obstacle positions. In this part strategic_planning() function is used. Similar to

role_distribution() function, this function is executed in a single call. As stated before

decomposition process creates sub-goal arrays to reach the target state and depending

on the obstacle and target positions, arranges them in an order and creates a plan

matrix.

In the test scene the ground obstacle is closer to the robotic system, so it is the first

obstacle to pass. Therefore passing over obstacle sub-goal group arrays are placed in

the first three rows of the plan matrix. The ground obstacle is followed by the lath

obstacle, so the fourth and the fifth rows of the plan matrix are the sub-goal group of

the lath obstacle. The sixth and the last row of the plan matrix is the target state of

the system.

98

After decomposition is done, the plan matrix is created by uniting the sub-goal arrays

based on the obstacle and target positions. Role#1 also gives log output of the

generated plan. The log output is shown in Figure 4.7

Figure 4.7 : Decomposition phase and creation of the plan matrix.

The deliberative layer function ends when the decomposition part is passed and

reactive layer is activated after the plan is generated. The processing work in the

reactive layer is carried on by the sequencing unit which gets the sub-goal state of the

plan and compares it with the system status and issues proper commands to the

acting unit.

When the reactive layer is activated, sequence() function is called by Role#1 to get

the active goal-state. This function compares the configuration required by the sub-

goal state and the actual configuration and if needed executes the

assembly/reassembly process. If the required and actual configurations are same,

then the sequencer compares the transportation mode requested by the goal-state. If

the transportation mode needs a special ability (transport_mode variable is equal to

1) then the sequencer executes the required special ability of the configuration

whether it is passing over or under obstacles. If there is no request for a special

ability, then the sequencer executes normal position control algorithm of the

configuration using lateral difference, longitudinal difference and gamma difference

parameters of the sub-goal state. After the sequence() function is executed by

Role#1, other modules are notified and they also call sequence() function in their

scripts to get the issued commands and execute them. sequence() function also shares

the active state via the log output.

99

In the test scene, sequence() function is called by Role#1 to get the active state after

the plan is generated. The active state shown by the log output is given in Figure 4.8

Figure 4.8 : Active state fetched by the sequence() function, Plan Row 1.

The active sub-goal state is [1, Ground Obstacle, 0, -0.1, 0, 0]. Since the required

configuration and the actual configuration of the robotic system do not match, the

sequencer issues an assembly/reassembly command. The assembly process is mainly

based on single module movement and position control. For this part there are ten

functions created in the script. These functions are used for getting the target state of

a module based on its role, searching the reference target of the role, locking to the

target and calculating difference, direction and velocity decisions, position and

orientation control and connection.

Function get_target_state() is used for getting the target of a single module that has a

role other than #1. This function takes configuration and role as input and returns

target handle, lateral, longitudinal and gamma difference. After getting the target

handle, the module calls search_target() and lock_target() functions to find and lock

the its target. search_target() function is called continually until the module finds its

target. Until the target is found, search_target() function rotates the visual sensor.

When the module finds its target, lock_target() function is called continually to fix

the visual sensor pointing the target. Functions search_target() and lock_target() are

complements of each other. When the target is not found, the module calls

search_target() and searches the target continually and when it finds its target, it

stops calling search_target() and calls lock_target() until the sub-goal state is

reached. When the visual sensor of the module locks to its target, the module

calculates the difference with its target using calculate_difference() function. This

function takes target handle as input and using the output of the visual sensor,

100

calculates the difference between the target position and module reference position

dummy.

After the difference between the target and the module is calculated, the module

decides the gait and velocity to implement. The functions decide_direction() and

decide_velocity() are used to determine the appropriate gait. When the gait is

determined, the module calls correct_ornt() function to adjust its orientation to the

calculated orientation required to reach the module target. correct_ornt() function

takes orientation difference as input and controls the wheel velocity depending on the

difference. The modules call move_single() function to move towards the decided

direction with the decided velocity after the orientation difference with the required

orientation is 0°. move_single() and correct_ornt() functions are also called

continually until the module target is reached. Therefore they also take their internal

parameters as inputs and returns these values in the same time.

When the modules arrive to their first assembly positions, they check if they are

allowed to move to their next assembly target by calling assembly_step_up()

function. This function is always true for Role#2, Role#3, Role#4, meaning they can

immediately move to their next assembly targets. Role#5 and Role#6 has to wait for

Role#2 to connect to its target. Modules write 1 to their script simulation parameters

called "connected" when they complete connection with their target, so when called

by Role#5 or Role#6, assembly_step_up() function checks "connected" status of

Role#2 and becomes true if it is 1 and false if it is not. After the modules reach to

their last assembly positions, they call function connect() and their corresponding

dummies create "dynamics, overlap constraint" type of link. Figures 4.9 to 4.12 show

the visual representation of the assembly phase in the test scene.

Figure 4.9 : Assembly phase in the test scene part 1.

101

Figure 4.10 : Assembly phase in the test scene part 2.

Figure 4.11 : Assembly phase in the test scene part 3.

Figure 4.12 : Assembly phase in the test scene part 4.

When the assembly of quadruped configuration is done, the sequencer compares the

sub-goal state and the system status. Since the configurations match and

transportation_mode is 0, the sequencer executes normal position control algorithm.

Based on the position control algorithm of the quadruped configuration, the system

moves towards the ground obstacle. In this part search_target(), lock_target(),

calculate_difference(), qd_walk() and send_order() functions are called continually

by Role#1.

102

The function qd_walk() takes lateral, longitudinal and gamma differences as inputs

and returns a gait decision. send_order() function takes script handle and required

joint positions for three joints and using the script simulation parameters, sends these

values to other modules to adjust their joint positions. When an order is sent by

Role#1 to any module in the configuration, the module adjusts its joint positions and

writes "1" to its script simulation parameter "order_done". When all modules have

completed the order, qd_walk() function calculates new joint positions until the sub-

goal is reached. Figures 4.13 to 4.15 show this movement in the test scene.

Figure 4.13 : Quadruped configuration movement part 1.

Figure 4.14 : Quadruped configuration movement part 2.

Figure 4.15 : Quadruped configuration movement part 3.

103

When the quadruped walker reaches to the ground obstacle, the sequencer gets the

next sub-goal array. The new sub-goal state becomes [1, Ground Obstacle, 0, 0.5, 0,

1]. Notice that the transportation_mode value is 1. Therefore the sequencer issues the

pass over command and the configuration passes over the obstacle. To pass over the

obstacles pass_over() function is called continually. This function sends periodic

joint positions to the modules until the obstacle is passed. Figures 4.16 to 4.20 show

the passing over the ground obstacle process.

Figure 4.16 : Quadruped walker passing over ground obstacle part 1.

Figure 4.17 : Quadruped walker passing over ground obstacle part 2.

Figure 4.18 : Quadruped walker passing over ground obstacle part 3.

104

Figure 4.19 : Quadruped walker passing over ground obstacle part 4.

Figure 4.20 : Quadruped walker passing over ground obstacle part 5.

After the pass over command is initiated, the sequencer gets active again and fetches

the next goal-state. The new sub-goal array becomes [1, Ground Obstacle, 0, 0.5, 0,

0]. Since the configurations match and the transportation mode does not need a

special ability, the normal position control algorithm is executed again. Figure 4.21

and 4.22 show the repositioning of the quadruped configuration.

Figure 4.21 : Quadruped configuration repositioning part 1.

105

Figure 4.22 : Quadruped configuration repositioning part 2.

When the quadruped walker reaches to the sub-goal state, the sequencer fetches the

next sub-goal array. The new sub-goal state is [2, Lath Obstacle, 0, -0.3, 0, 0]. Since

the configurations does not match, the sequencer issues an assemble/reassemble

command. Assembling and reassembling are very similar in the robotic structure.

They are triggered by the same command, but if the system is in a configuration,

Role#1 calls reassemble() function and the modules execute a protocol before

implementing the assembly phase. If the system is in a quadruped configuration

before the assemble/reassemble command is given, Role#1 and Role#2 does not

break their connections and the rest of the modules break their connections and take

three steps backwards with high velocity. If the system is in the wheeled

configuration, Role#1 and Role#2 does not break connections and the rest of the

modules break their connections before taking 3 steps forwards with high velocity.

After this protocol is completed, the modules act as if it is an assemble process.

Figures 4.23 to 4.26 show the reassembly process in the test scene visually.

Figure 4.23 : Quadruped configuration disassembling.

106

Figure 4.24 : System reassembling wheeled configuration part 1.

Figure 4.25 : System reassembling wheeled configuration part 2.

Figure 4.26 : System reassembling wheeled configuration part 3.

After the assembly of the wheeled configuration is completed, the configuration

comparison matches and since there is not a special ability request, the sequencer

executes the position control algorithm for the wheeled configuration. Similar to

quadruped configuration, position control of the wheeled algorithm uses functions

search_target() and lock_target(). After target is found and the visual sensor locks to

it, calculate_difference() function calculates lateral and longitudinal distance between

107

the target and the configuration. Depending on the result of the calculate_difference()

function Role#1 calls correct_ornt_whld() to adjust the orientation of the

configuration to the required gamma orientation or calls move_whld() to move

towards the target. Role#1 uses send_order() function to other modules to control

their joint positions. The modules forming the wheels interpret the send_order()

command differently in wheeled configuration. They use the front joint position

value as speed value and set the rotational speeds of their front joints to the sent

value. In wheeled configuration, there is not a special function to control the pass

under lath obstacle process. Instead of this, correct_ornt_whld() and move_whld()

function take transport_mode value as input and adjust their axle positions depending

on the value of this parameter.

The wheeled configuration reaches the lath obstacle and Role#1 calls sequence()

function again to get the next sub-goal state. Figures 4.27 and 4.28 show the

movement of wheeled configuration until it reaches to the lath obstacle.

Figure 4.27 : Wheeled configuration moving to lath obstacle part 1.

Figure 4.28 : Wheeled configuration moving to lath obstacle part 2.

108

The sequencer gets the new sub-goal state array as [2, Lath Obstacle, 0, 0.3, 0, 1].

The wheeled configuration changes its pose because the transportation_mode value

is 1. Figures 4.29 and 4.30 show the new pose of the configuration in the test scene.

Figure 4.29 : Wheeled configuration adjusting pose to pass under lath obstacle.

Figure 4.30 : Wheeled configuration adjusting pose to pass under lath obstacle.

After the wheeled configuration adjusts its height to pass under the lath obstacle,

position control algorithm of the wheeled configuration is executed normally. When

the configuration passes under the obstacle and reaches to the goal-state, the

sequencer gets the next sub-goal state which is [2, System Target, 0, 0, 0, 0]. This

sub-goal state is also the target state of the system. Since the configurations match

and transport_mode is 0, the wheeled configuration returns back to its normal pose

and moves to the target position. Figures 4.31 to 4.34 show this movement.

109

Figure 4.31 : Wheeled configuration passing under lath obstacle.

Figure 4.32 : Wheeled configuration returning to original pose.

Figure 4.33 : Wheeled obstacle moving to target.

110

Figure 4.34 : Wheeled configuration in target state.

The simulation ends when the robotic system reaches to the target state of the system

defined by row six of the plan matrix. The blue trace shown on Figure 4.34 is created

by using V-Rep's graph tools. It is a 3D curve showing the position of the reference

position of Module#1 throughout the simulation.

111

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

The purpose of this study is to prove that with a good module design and strategic

planning algorithm, modular robotic structures can show great functionality and

versatility over their monolithic counterparts while being affordable due to their

suitable nature for mass production. For that purpose, a chain type modular robotic

structure is designed and a hybrid deliberative/reactive type of strategic planning

algorithm is developed and tested in a simulation environment called V-Rep.

To overcome the general self-reconfiguration problem of chain type systems, the

modules of the system are designed to achieve self mobility. The self-mobility of a

single module is achieved by adding a wheel for orientation control and a foot to

practice an inchworm like locomotion method for propulsion in longitudinal

direction. The module has three revolute joints; one for control of the wheel and two

for manipulating the foot part of the module. Besides these joints, the module has a

visual sensor attached to a pole like structure with two degrees of freedom for

controlling the visual orientation and a force sensor embedded between two

cylindrical discs of the wheel for friction estimation. The single module is designed

to have four connection points for making connections with other modules to create

more functional configurations.

After single module structure is determined, the locomotion gait for positioning of

the modules is designed. The gait is designed to provide long and short steps in

forward and backward directions by kinematics analysis of the foot chain. The gait

designed is used in the position control algorithm of the single module which is

mainly used for assembly of configurations. The position control algorithm is used to

decide the step size and direction to be applied to reach the target position of the

single module in optimum time.

Assembly of configurations is simply multi module position control. A role

distribution algorithm based on initial states of modules is developed to position the

modules before connecting to build a configuration. The positions for each role are

112

predetermined and each module positions itself individually and connects to its target

in this phase.

After the assembly process is determined, two configurations consisting of six

modules to implement quadruped and wheeled locomotion are designed. The

locomotion methods are designed using kinematic models of each configuration. For

quadruped walker configuration a trotting gait to move in longitudinal direction and

a sidling gait to move in lateral direction are developed. Since the wheeled

locomotion is more straightforward there is no need to develop a locomotion method

other then controlling the wheels in pairs to steer or rotate in place. The

configurations are also designed to have configuration specific abilities. The

quadruped walker configuration has the ability to pass over obstacles in the ground

and the wheeled configuration has the ability to change its height to pass under

obstacles. Similar to the single module position control algorithm, using motion

kinematic models, position control algorithms for each configuration are developed.

The strategic planning algorithm developed in this study can be classified as hybrid

deliberative/reactive control architecture. The algorithm consists of two layers; (1)

deliberative layer to generate a feasible plan consists of sub goals to drive the robotic

structure from its initial state to the desired goal state and (2) reactive layer to

execute the plan similar to a feedback control mechanism.

After both the robotic structure design and strategic planning algorithm development

are completed, the whole structure is tested in the simulation environment. In the test

area there are obstacles between the desired goal state and the initial state of the

robotic structure. The obstacles are passable by the implementation of configuration

specific abilities. This test area is designed to test the overall performance of the

whole robotic structure with its control algorithm as a whole.

The test showed that six simple robots having no specific ability can pass over and

under obstacles to reach a desired goal position by cooperating and building more

functional configurations. This proves that modular robotic structures can be more

functional and more versatile over their monolithic counterparts.

113

5.2 Recommendations

In this study, a modular robotic structure which can change its shape to implement

different locomotion methods is designed and created in simulation environment. To

control this modular robotic structure, a hybrid deliberative/reactive strategic

planning algorithm is also developed. In this section, some recommendations for

future alterations on the robotic structure and strategic planning algorithm are shared.

The designing, creating and testing processes of this study is done in simulation

environment due to time and resource constraints. To realize the study, some

additions should be done to the presented structure. Firstly, the visual sensors of the

modules are simulated cameras using proxy sensors in the simulation software and

they do not have real life counterparts. In a real life implementation of this study,

cameras or advanced infrared or ultrasonic distance sensors can be used. Camera

usage will bring extra coding work for image processing and that may mean extra

electronics load. Distance sensors may not answer the needs of the structure.

Therefore the feasibility of any sensor solution should be analyzed thoroughly.

Secondly, this study does not present an applicable connection mechanism for

modules. The connection mechanism presented in this study is just a representation

of a connection with the use of dummies specific to the simulation software V-Rep.

To realize the robotic structure, a proper connection mechanism should be designed

and implemented.

Lastly, the communication method applied in the robotic system is not applicable in

real life. The communication method used in the system uses shared variables called

script simulation parameters. Therefore, if the system is to be realized, another

communication method should be set.

Besides realization of the system, there can be other development options for the

system. This study is mainly concerned on creating and implementing a strategic

planning algorithm to a modular robotic structure. The position control algorithms of

modules or configurations are generally kept at a basic level. These algorithms can

be developed further and more optimal results can be achieved. Similarly there is a

lot of room for development in the designed strategic planning algorithm. The hybrid

architecture is open for further development and numerous functionalities can be

added in the strategic planning part such as changing the generated plan by the

114

reactive layer sensory data, adding an obstacle avoidance behavior and adding a

protocol for broken modules.

115

REFERENCES

[1] T. Fukuda and S. Nakagawa (1988). Approach to the dynamically

reconfigurable robotic system, Intelligent and Robotic Systems,

1(1):55-72.

[2] M. Yim (1994). Locomotion with a unit-modular reconfigurable robot, PhD

thesis, Department of Mechanical Engineering, Stanford University,

Stanford, CA.

[3] G. S. Chirikjian (1994). Kinematics of a metamorphic robotic system, Proc.,

IEEE Int. Conf. on Robotics and Automation, volume 1, pages 449-

455, San Diego, CA.

[4] S. Murata, H. Kurokawa and S. Kokaji (1994). Self assembling machine,

Proc., IEEE Int. Conf. on Robotics and Automation, pages 441-448,

San Diego, CA.

[5] A. Castano, W.-M. Shen and P. Will (2000). Towards deployable robots with

inter-robot metamorphic capabilities, Autonomous Robots, 8(3):309-

324.

[6] M. Yim, D. G. Duff and K. D. Roufas (2000). PolyBot: A modular

reconfigurable robot, Proc., IEEE Int. Conf. on Robotics and

Automation, volume 1, pages 441-448, San Diego, CA.

[7] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita and S. Kokaji (1998). A 3-D

self-reconfigurable structure, Proc. IEEE Int. Conf. on Robotics and

Automation, pages 432-439, Leuven, Belgium.

[8] D. Rus and K. Kotay (1997). Versatility for unknown worlds: Mobile sensors

and self-reconfiguration, Proc., Field and Service Robotics, Berlin,

Germany.

[9] S. Murata, K. Tomita, E. Yoshida, H. Kurokawa and S. Kokaji (2000). Self

reconfigurable robot-module design and simulation, Proc. 6th Int.

Conf. on Intelligent Autonomous Systems, pages 911-917, Venice,

Italy.

[10] M. W. Jorgensen, E. H. Ostergaard and H. H. Lund (2004). Modular

ATRON: Modules for a self-reconfigurable robot, Proc. IEEE/RSJ

Int. Conf. on Robots and Systems, pages 2068-2073, Sendai, Japan.

[11] E. H. Ostergaard, K. Kassow, R. Beck and H.H. Lund (2006). Design of the

ATRON lattice-based self-reconfigurable robot, Autonomous Robots,

21(2):165-183.

116

[12] W.-M. Shen, M. Krikovon, M. Rubinstein, C.h. Chiu, J. Everst and J. B.

Venkatesh (2006). Multimode locomotion via self-reconfigurable

robots, Autonomous Robots, 20(2):165-177.

 [13] Brooks, R. (1986). A robust layered control system for a mobile robot.

Robotics and Automation, IEEE Journal of [legacy, pre-1988] 2 (1):

14–23.

 [14] Anthony Mandow, Jorge L. Martinez (2007). Experimental kinematics for

wheeled skid-steer mobile robots, Intelligent Robots and Systems,

pages 1222-1227.

 [15] J. L. Martinez, A. Mandow, J. Morales, S.Pedraza and A. Garcia Perezo

(2005). Approximating kinematics for tracked mobile robots,

International Journal of Robotics Research, vol. 24, no. 10, pp. 867-

878.

[16] S. Pedraza, R. Fernandez, V. Munoz and A. Garcia Cerezo (2000). A motion

control approach for a tracked mobile robot, Proc.of the 4th IFAC

International Symposium on Intelligent Components and Instruments

for Control Applications, pp. 147-152, Buenos Aires, Argentina.

[17] Url - 1 <https://en.wikipedia.org/wiki/Shakey_the_robot>, date retrieved

18.08.2015.

[18] Url - 2 <http://www.gazebosim.org/ >, date retrieved 25.04.2015.

[19] Url - 3 <http://playerstage.sourceforge.net/>, date retrieved 14.08.2015.

[20] Url - 4 <http://www.cyberbotics.com/>, date retrieved 29.04.2015.

[21] Url - 5 <http://www.coppeliarobotics.com/>, date retrieved 29.04.2015.

[22] Url - 6 <http://www.coppeliarobotics.com/helpFiles/index.html> date retrieved

29.04.2015

[23] Url - 7 <http://en.wikipedia.org/wiki/Instant_centre_of_rotation> date retrieved

08.12.2014.

117

APPENDICES

APPENDIX-A: Search Program of the First Kinematic Model

clear

clc

count = 0;

d1 = 0.0775;

d2 = 0.0475;

d3 = 0.0470;

a3 = 0.025;

th1 = 0;

for angle1 = -90:0

 for angle2 = -120:120

 al1 = angle1*pi/180;

 al2 = angle2*pi/180;

 th3 = 0;

 A1 = [cos(th1) -sin(th1)*cos(al1) sin(th1)*sin(al1) 0; sin(th1) cos(th1)*cos(al1) -

cos(th1)*sin(al1) 0; 0 sin(al1) cos(al1) d1; 0 0 0 1];

 A2 = [1 0 0 0; 0 cos(al2) -sin(al2) 0; 0 sin(al2) cos(al2) d2; 0 0 0 1];

 A3 = [0 1 0 0; -1 0 0 -a3; 0 0 1 d3; 0 0 0 1];

 A = A1*A2*A3;

 vect = [A(1,4) A(2,4) A(3,4)];

 vect_vrep = [-vect(3) -vect(1) vect(2)+0.025];

 if(vect_vrep(3)>0.005)

 if(vect_vrep(3)<0.01)

 if(vect_vrep(1)>-0.1)

 count = count + 1;

 res(count,1) = count;

 res(count,2) = angle1;

 res(count,3) = angle2;

 res(count,4) = vect_vrep(1);

 res(count,5) = vect_vrep(3);

 res(count,6) = vect_vrep(1)+0.1720;

 px(count) = count;

 py1(count) = vect_vrep(1);

 py1_dif(count) = vect_vrep(1)+0.1720;

 py2(count) = vect_vrep(3);

 end

 end

 end

 end

end

res

118

plot(px,py1)

APPENDIX-B: Search Program of the Second Kinematic Model

clear

clc

th1 = 0;

th3 = 15*pi/180; %backjoint2

th4 = 60*pi/180; %backjoint1

a1 = 0.025;

a2 = 0.0470;

a3 = 0.0475;

a4 = 0.0775;

d5wt = 0.025;

a5bc = -0.075;

d5bc = -0.005;

count = 0;

for i1 = -90:1:90;

 th3 = i1*pi/180;

 for i2 = -90:1:90;

 th1 = 0;

 th4 = i2*pi/180;

 A1 = [cos(th1) -sin(th1) 0 a1*cos(th1); sin(th1) cos(th1) 0 a1*sin(th1); 0 0 1 0; 0 0 0 1];

 A2 = [0 -1 0 0; 1 0 0 a2; 0 0 1 0; 0 0 0 1];

 A3 = [cos(th3) -sin(th3) 0 a3*cos(th3); sin(th3) cos(th3) 0 a3*sin(th3); 0 0 1 0; 0 0 0 1];

 A4 = [cos(th4) 0 -sin(th4) a4*cos(th4); sin(th4) 0 cos(th4) a4*sin(th4); 0 -1 0 0; 0 0 0 1];

 A5wt = [1 0 0 0; 0 1 0 0; 0 0 1 d5wt; 0 0 0 1];

 A5bc = [1 0 0 a5bc; 0 1 0 0; 0 0 1 d5bc; 0 0 0 1];

 Awt = A1*A2*A3*A4*A5wt;

 th1 = atan2(Awt(1,4), Awt(2,4));

 A1 = [cos(th1) -sin(th1) 0 a1*cos(th1); sin(th1) cos(th1) 0 a1*sin(th1); 0 0 1 0; 0 0 0 1];

 C1 = A1*A2;

 C2 = C1*A3;

 Awt = C2*A4*A5wt;

 Abc = Awt*A5bc;

 cond1 = C1(1,4);

 cond2 = C2(1,4);

 pos_km(1) = Awt(1,4);

 pos_km(2) = Awt(2,4);

 pos_km(3) = Awt(3,4);

 pos_lf(1) = pos_km(2);

 pos_lf(2) = pos_km(3);

 pos_lf(3) = pos_km(1);

 f1h = abs(90-i1);

 f2h = abs(-36-i2);

 f1l = abs(52-i1);

119

 f2l = abs(-27-i2);

% if((pos_lf(1)<0.127)&& (pos_lf(1)>0.122) && (pos_lf(1)<0.172) && (Abc(1,4) <= 0.005)

&& (Abc(1,4) > 0.0025))% && (th1*180/pi > -30)) %caster pivot high-vel search

% if((pos_lf(1)<0.1525)&& (pos_lf(1)>0.1515) && (pos_lf(1)<0.172) && (Abc(1,4) <= 0.005)

&& (Abc(1,4) > 0.000))% && (th1*180/pi > -30)) %caster pivot low-vel search

% if((pos_lf(1)<0.172)&& (pos_lf(1)>0.127) && (pos_lf(1)<0.172) && (Abc(1,4) >= 0.015)

&& (f1h+f2h<45)) %first pose high-vel search

 if((pos_lf(1)<0.154)&& (pos_lf(1)>0.152) && (pos_lf(1)<0.172) && (Abc(1,4) >= 0.015) &&

(f1l+f2l<50)) %first pose low-vel search

% if((pos_lf(1)<0.10)&& (pos_lf(1)>0.08) && (pos_lf(1)<0.172) && (th1*180/pi > -30) &&

(th1*180/pi < 30) && (Abc(1,4) >= 0.02)) %max displacement

 count = count + 1;

 pos_lf_array(count,1) = count;

 pos_lf_array(count,2) = th1*180/pi;

 pos_lf_array(count,3) = i1; %backjoint2

 pos_lf_array(count,4) = i2; %backjoint1

 pos_lf_array(count,5) = 0.172 - pos_lf(1);

 pos_lf_array(count,6) = Abc(1,4);

 pos_lf_array(count,7) = f1h+f2h;

 pos_lf_array(count,8) = f1l+f2l;

 end

 end

end

pos_lf_array

for v = 1:1:count;

 px(v) = pos_lf_array(v,1);

 py1(v) = pos_lf_array(v,5);

end
plot(px,py1)

APPENDIX-C: Lua Code of the Module Scripts in V-Rep

if (sim_call_type==sim_childscriptcall_initialization) then

-- Put some initialization code here

--//Script Specific Handles and Variables--

 console = simAuxiliaryConsoleOpen("Log#1",1000,10100)

 log_flag_dummy = 0

 Script = simGetScriptHandle("Cylinder1x1")

 Cylinder = simGetObjectHandle("Cylinder1x1")

 det_point = simGetObjectHandle("DetPointx1")

 conn_points = {simGetObjectHandle("DummyFx1"),simGetObjectHandle("DummyBFx1"),

 simGetObjectHandle("DummyRx1"),simGetObjectHandle("DummyLx1"),

 simGetObjectHandle("DummyBSx1")}

 Fix_FS = simGetObjectHandle("Fix_FSx1")

 cam_dummy = simGetObjectHandle("CamDummyx1")

 pos_dummy = simGetObjectHandle("Positionx1")

 FrontJoint = simGetObjectHandle("FrontJointx1")

 BackJoint1 = simGetObjectHandle("BackJoint1x1")

 BackJoint2 = simGetObjectHandle("BackJoint2x1")

120

 FS = simGetObjectHandle("FS_Cylinderx1")

 Cam = simGetObjectHandle("Camx1")

 CamJoint1 = simGetObjectHandle("CamJoint1x1")

 CamJoint2 = simGetObjectHandle("CamJoint2x1")

--Script Specific Handles and Variables//--

 Scripts = {simGetScriptHandle("Cylinder1x1"),simGetScriptHandle("Cylinder1x2"),

 simGetScriptHandle("Cylinder1x3"),simGetScriptHandle("Cylinder1x4"),

 simGetScriptHandle("Cylinder1x5"),simGetScriptHandle("Cylinder1x6"),

 simGetScriptHandle("target_dummy_1"),simGetScriptHandle("target_dummy_2"),

 simGetScriptHandle("target_dummy_3")}

 det_points = {simGetObjectHandle("DetPointx1"),simGetObjectHandle("DetPointx2"),

 simGetObjectHandle("DetPointx3"),simGetObjectHandle("DetPointx4"),

 simGetObjectHandle("DetPointx5"),simGetObjectHandle("DetPointx6"),

 simGetObjectHandle("target_dummy_1"),simGetObjectHandle("target_dummy_2"),

 simGetObjectHandle("target_dummy_3")}

 Roles = {0,0,0,0,0,0}

 conf = 0

 conf_req = -1

--conf_req == -1 means there is no request for configuration

 plan_row = {0,0,0,0,0,0}

 plan_row1 = {0,0,0,0,0,0}

 plan_row2 = {0,0,0,0,0,0}

 plan_row3 = {0,0,0,0,0,0}

 plan_row4 = {0,0,0,0,0,0}

 plan_row5 = {0,0,0,0,0,0}

 plan_row6 = {0,0,0,0,0,0}

 plan_row7 = {0,0,0,0,0,0}

 plan_row8 = {0,0,0,0,0,0}

 plan_row9 = {0,0,0,0,0,0}

 plan_row10 = {0,0,0,0,0,0}

--plan_rowx format: {conf_req,reference_handle,lat_const,long_const,gamma_const,transport_mode}

--transport_mode=0 normal, transport_mode=1 ability

--These variables will be a part of strategic planning!!!!!//-----

 simSetScriptSimulationParameter(Script,"Notification1",0)

 simSetScriptSimulationParameter(Script,"Notification2",0)

 simSetScriptSimulationParameter(Script,"Notification3",0)

 simSetScriptSimulationParameter(Script,"scanned",0)

 ms_result = 0

 forw_step = 0

 back_step = 0

 forw_step_f = 0

 back_step_f = 0

 direction = 0

 forced_direction = 0

 velocity = 0

 J1pos = 0

 J2pos = 0

 Cylpos = 0

 a = 0

121

 CamJ1pos = 0

 CamJ2pos = 0

 pj1 = 0

 pj2 = 0

 search_counter = 0

--//Variables for Friction Test---

 friction_estimation_done = 0

 friction_step_counter = 0

 fs_read_counter = 0

 fs_force_reading_1 = {0,0,0,0,0,0,0,0,0,0}

 fs_force_reading_2 = {0,0,0,0,0,0,0,0,0,0}

 fs_force_reading_3 = {0,0,0,0,0,0,0,0,0,0}

 fs_force_reading_4 = {0,0,0,0,0,0,0,0,0,0}

 fs_force_reading_max = {0,0,0,0}

 friction_coeff = 0

--siralama - 0.2,0.4,0.6,0.8,1.0

 dfhv_list = {0.0502,0.0663,0.0662,0.0662,0.0635}

 tfhv_list = {0.95,0.95,0.95,0.95,0.95}

 dflv_list = {0.0106,0.0124,0.0153,0.0165,0.0162}

 tflv_list = {0.65,0.65,0.65,0.65,0.65}

 dbhv_list = {0.0117,0.0161,0.0186,0.0210,0.0233}

 tbhv_list = {1.05,1.05,1.05,1.05,1.05}

 dblv_list = {0.0075,0.0091,0.0104,0.0113,0.0123}

 tblv_list = {0.80,0.80,0.80,0.80,0.80}

 t180_list = {4.40,4.55,4.35,4.25,4.20}

 w_qtr_ag_list = {19.95,20.86,19.08,16.61,7.14}

 d_qtr_ag_list = {0.101,0.106,0.106,0.095,0.058}

 t_qtr_ag_list = {1.25,1.25,1.20,1.20,1.20}

 w_qtr_md1_list = {14.72,15.04,13.35,8.59,3.76}

 d_qtr_md1_list = {0.106,0.112,0.112,0.099,0.06}

 t_qtr_md1_list = {1.25,1.25,1.20,1.20,1.20}

 w_qtr_md2_list = {7.81,8.09,6.53,3.91,1.47}

 d_qtr_md2_list = {0.107,0.114,0.116,0.101,0.058}

 t_qtr_md2_list = {1.25,1.25,1.20,1.20,1.20}

 w_qtr_ps_list = {4.42,4.71,3.56,2.11,0.36}

 d_qtr_ps_list = {0.094,0.099,0.105,0.095,0.057}

 t_qtr_ps_list = {1.25,1.25,1.20,1.20,1.20}

 w_qsd_ag_list = {3.88,4.96,6.94,7.87,7.58}

 d_qsd_ag_list = {0.107,0.111,0.116,0.109,0.081}

 t_qsd_ag_list = {1.90,1.90,1.85,1.80,1.80}

 w_qsd_md1_list = {2.49,3.54,4.84,5.79,4.22}

 d_qsd_md1_list = {0.106,0.111,0.120,0.113,0.081}

 t_qsd_md1_list = {1.80,1.80,1.80,1.80,1.70}

 w_qsd_md2_list = {1.74,1.51,2.35,1.89,1.94}

 d_qsd_md2_list = {0.107,0.111,0.121,0.115,0.080}

 t_qsd_md2_list = {1.85,1.80,1.80,1.80,1.80}

 w_qsd_ps_list = {1.02,0.85,1.22,1.08,0.82}

 d_qsd_ps_list = {0.103,0.105,0.115,0.110,0.075}

122

 t_qsd_ps_list = {1.80,1.80,1.80,1.80,1.80}

--Variables for Friction Test//---

--//Variables for initial scan--

 initial_scan_done = 0

 scanned_mods = 0

 RdetModbin = {0,0,0,0,0,0,0,0,0}

 ModPos_x = {0,0,0,0,0,0,0,0,0}

 ModPos_y = {0,0,0,0,0,0,0,0,0}

--Variables for initial scan//--

--//Variables for Phases--

 sensing_done = 0

 sp_done = 0

 rd_done = 0

 pos_x_sum = 0

 pos_y_sum = 0

 x_dif = {0,0,0,0,0,0}

 y_dif = {0,0,0,0,0,0}

 dist = {0,0,0,0,0,0}

 gpos_x = {0,0,0,0,0,0}

 gpos_y = {0,0,0,0,0,0}

--Variables for Phases//--

 assembly_counter = 1

 target_state_reached = 0

 target_pos_reached = 0

 target_ornt_reached = 0

 target_found = 0

 lat_const = 0.5

 long_const = 0.5

 gamma_const = 0

 ornt_req = 0

 ornt_des = 0

 ornt_dif = 0

--//Four Legged Parameters---

 c4wa = 0

 c4wp = 0

 c4wa_tr = 0

 c4wa_sd = 0

 order_done_counter = 0

 s = -30

 r = 0

 l = 0

 tr= 0

 sd = 0

 qd_po_counter = 0

 assembly_phase_done = 0

 reassemble_step=0

 reassemble_move_counter = 0

--Four Legged Parameters//---

--//Four Wheeled Parameters---

 c4wh = 0

123

--Four Legged Parameters//---

 function estimate_friction(friction_estimation_done)

 if(log_flag_dummy==0) then

 simAuxiliaryConsolePrint(console,"Friction Estimation Started\n")

 log_flag_dummy=1

 end

 if(friction_estimation_done~=1) then

 if(friction_step_counter<5) then

 ms_result,J1pos,J2pos,forw_step,back_step = move_single(1,1,forw_step,back_step,0)

 if(forw_step==0)then

 friction_estimation_done = 0

 fsresult,force,torque=simReadForceSensor(FS)

 fs_read_counter = fs_read_counter + 1

 if(friction_step_counter==1) then

 fs_force_reading_1[fs_read_counter] = force[3]

 end
 if(friction_step_counter==2) then

 fs_force_reading_2[fs_read_counter] = force[3]

 end

 if(friction_step_counter==3) then

 fs_force_reading_3[fs_read_counter] = force[3]

 end
 if(friction_step_counter==4) then

 fs_force_reading_4[fs_read_counter] = force[3]

 end

 if(ms_result==1) then

 friction_step_counter = friction_step_counter + 1

 fs_read_counter = 0

 end

 end

 end

 if(friction_step_counter==5) then

 fs_force_reading_max[1] =

math.max(fs_force_reading_1[1],fs_force_reading_1[2],fs_force_reading_1[3]

 ,fs_force_reading_1[4],fs_force_reading_1[5],fs_force_reading_1[6]

 ,fs_force_reading_1[7],fs_force_reading_1[8],fs_force_reading_1[9]

 ,fs_force_reading_1[10])

 fs_force_reading_max[2] =

math.max(fs_force_reading_2[1],fs_force_reading_2[2],fs_force_reading_2[3]

 ,fs_force_reading_2[4],fs_force_reading_2[5],fs_force_reading_2[6]

 ,fs_force_reading_2[7],fs_force_reading_2[8],fs_force_reading_2[9]

 ,fs_force_reading_2[10])

 fs_force_reading_max[3] =

math.max(fs_force_reading_3[1],fs_force_reading_3[2],fs_force_reading_3[3]

 ,fs_force_reading_3[4],fs_force_reading_3[5],fs_force_reading_3[6]

 ,fs_force_reading_3[7],fs_force_reading_3[8],fs_force_reading_3[9]

 ,fs_force_reading_3[10])

 fs_force_reading_max[4] =

math.max(fs_force_reading_4[1],fs_force_reading_4[2],fs_force_reading_4[3]

 ,fs_force_reading_4[4],fs_force_reading_4[5],fs_force_reading_4[6]

 ,fs_force_reading_4[7],fs_force_reading_4[8],fs_force_reading_4[9]

 ,fs_force_reading_4[10])

 fs_force_reading_avg = (fs_force_reading_max[1]+fs_force_reading_max[2]+

 fs_force_reading_max[3]+fs_force_reading_max[4])/4

 if(fs_force_reading_avg>0.15 and fs_force_reading_avg<0.25) then

 friction_coeff = 0.2

124

 dfhv = dfhv_list[1]

 tfhv = tfhv_list[1]

 dflv = dflv_list[1]

 tflv = tflv_list[1]

 dbhv = dbhv_list[1]

 tbhv = tbhv_list[1]

 dblv = dblv_list[1]

 tblv = tblv_list[1]

 t180 = t180_list[1]

 end
 if(fs_force_reading_avg>0.25 and fs_force_reading_avg<0.45) then

 friction_coeff = 0.4

 dfhv = dfhv_list[2]

 tfhv = tfhv_list[2]

 dflv = dflv_list[2]

 tflv = tflv_list[2]

 dbhv = dbhv_list[2]

 tbhv = tbhv_list[2]

 dblv = dblv_list[2]

 tblv = tblv_list[2]

 t180 = t180_list[2]

 end

 if(fs_force_reading_avg>0.45 and fs_force_reading_avg<0.65) then

 friction_coeff = 0.6

 dfhv = dfhv_list[3]

 tfhv = tfhv_list[3]

 dflv = dflv_list[3]

 tflv = tflv_list[3]

 dbhv = dbhv_list[3]

 tbhv = tbhv_list[3]

 dblv = dblv_list[3]

 tblv = tblv_list[3]

 t180 = t180_list[3]

 end
 if(fs_force_reading_avg>0.65 and fs_force_reading_avg<0.75) then

 friction_coeff = 0.8

 dfhv = dfhv_list[4]

 tfhv = tfhv_list[4]

 dflv = dflv_list[4]

 tflv = tflv_list[4]

 dbhv = dbhv_list[4]

 tbhv = tbhv_list[4]

 dblv = dblv_list[4]

 tblv = tblv_list[4]

 t180 = t180_list[4]

 end

 if(fs_force_reading_avg>0.75) then

125

 friction_coeff = 1

 dfhv = dfhv_list[5]

 tfhv = tfhv_list[5]

 dflv = dflv_list[5]

 tflv = tflv_list[5]

 dbhv = dbhv_list[5]

 tbhv = tbhv_list[5]

 dblv = dblv_list[5]

 tblv = tblv_list[5]

 t180 = t180_list[5]

 end
 friction_estimation_done = 1

 simAuxiliaryConsolePrint(console,"Friction Estimation Done\n")

 simAuxiliaryConsolePrint(console,"Friction Coefficient:")

 simAuxiliaryConsolePrint(console,friction_coeff)

 simAuxiliaryConsolePrint(console,"\n\n")

 log_flag_dummy=0

 end

 end
 return friction_coeff,friction_estimation_done

 end

 function initial_scan(CamJ1pos)

 if(log_flag_dummy==0) then

 simAuxiliaryConsolePrint(console,"Localization Scan Started\n")

 log_flag_dummy=1

 end

 Cam_act_pos = math.deg(simGetJointPosition(CamJoint1))

 for i=1,9,1 do

 result,distance,detP = simCheckProximitySensor(Cam,det_points[i])

 if(result==1) then

 fn_pj1 = simGetJointPosition(CamJoint1)

 fn_pj2 = simGetJointPosition(CamJoint2)

 ornt = simGetObjectOrientation(pos_dummy,-1)

 matrix = simGetObjectMatrix(cam_dummy,-1)

 matrix[4] = 0

 matrix[8] = 0

 matrix[12] = 0

 det = {detP[3],detP[1],detP[2]}

 target = simMultiplyVector(matrix,det)

 dum_pos = {0,0,0}

 dum_pos[1] = target[1] + 0.102*math.cos(ornt[3]) +

(0.0045+0.011*math.cos(fn_pj2))*math.cos(ornt[3]+fn_pj1)

 dum_pos[2] = target[2] + 0.102*math.sin(ornt[3]) +

(0.0045+0.011*math.cos(fn_pj2))*math.sin(ornt[3]+fn_pj1)

 dum_pos[3] = target[3] + 0.175 + 0.06*math.sin(fn_pj2)

 RdetModbin[i] = 1

 Scornt = simGetScriptSimulationParameter(Scripts[i],"ornt")

 ModPos_x[i] = dum_pos[1]-0.102*math.cos(Scornt)

 ModPos_y[i] = dum_pos[2]-0.102*math.sin(Scornt)

 result = 0

 end

126

 end

 if(Cam_act_pos<0)then

 Cam_act_pos = Cam_act_pos + 360

 end
 if(math.abs(CamJ1pos-Cam_act_pos)<10) then

 CamJ1pos = CamJ1pos + 30

 simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos))

 end
 if(CamJ1pos>=360) then

 if(Script==Scripts[1]) then

 simSetScriptSimulationParameter(Script,"pos_x",0)

 simSetScriptSimulationParameter(Script,"pos_y",0)

 for i=1,9,1 do

 if(RdetModbin[i]==1 and simGetScriptSimulationParameter(Scripts[i],"scanned")==0)

then

 simSetScriptSimulationParameter(Scripts[i],"pos_x",ModPos_x[i])

 simSetScriptSimulationParameter(Scripts[i],"pos_y",ModPos_y[i])

 simSetScriptSimulationParameter(Scripts[i],"scanned",1)

 end

 end
 for i=2,6,1 do

 if(simGetScriptSimulationParameter(Scripts[i],"scanned")==1) then

 scanned_mods = scanned_mods + 1

 end

 end

 if(scanned_mods==5) then

 initial_scan_done = 1

 CamJ1pos = 0

 simSetScriptSimulationParameter(Script,"scanned",1)

 simAuxiliaryConsolePrint(console,"Localization Scan Done\n\n")

 for i=1,6,1 do

 simAuxiliaryConsolePrint(console,"Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console,"pos_x:")

simAuxiliaryConsolePrint(console,simGetScriptSimulationParameter(Scripts[i],"pos_x"))

 simAuxiliaryConsolePrint(console,"\n")

 simAuxiliaryConsolePrint(console,"Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console,"pos_y:")

simAuxiliaryConsolePrint(console,simGetScriptSimulationParameter(Scripts[i],"pos_y"))

 simAuxiliaryConsolePrint(console,"\n\n")

 end
 log_flag_dummy=1

 end

 scanned_mods = 0

 end

 if(Script~=Scripts[1] and simGetScriptSimulationParameter(Script,"scanned")==1) then

 for i=2,9,1 do

 if(RdetModbin[i]==1 and simGetScriptSimulationParameter(Scripts[i],"scanned")==0)

then

 pos_x_scr = simGetScriptSimulationParameter(Script,"pos_x")

 pos_y_scr = simGetScriptSimulationParameter(Script,"pos_y")

 simSetScriptSimulationParameter(Scripts[i],"pos_x",ModPos_x[i]+pos_x_scr)

 simSetScriptSimulationParameter(Scripts[i],"pos_y",ModPos_y[i]+pos_y_scr)

 simSetScriptSimulationParameter(Scripts[i],"scanned",1)

127

 end

 end
 if(simGetScriptSimulationParameter(Scripts[1],"scanned")==1) then

 initial_scan_done = 1

 CamJ1pos = 0

 end

 end

 end

 return initial_scan_done, CamJ1pos

 end

 function role_dist()

--//role distribution code here-------------------------

 simAuxiliaryConsolePrint(console,"Role Distribution Algorithm Initiated\n")

 for i=1,6,1 do

 pos_x_sum = pos_x_sum + simGetScriptSimulationParameter(Scripts[i],"pos_x")

 pos_y_sum = pos_y_sum + simGetScriptSimulationParameter(Scripts[i],"pos_y")

 end

 pos_x_avg = pos_x_sum/6

 pos_y_avg = pos_y_sum/6

 simAuxiliaryConsolePrint(console,"Central Position x:")

 simAuxiliaryConsolePrint(console,pos_x_avg)

 simAuxiliaryConsolePrint(console,"\n")

 simAuxiliaryConsolePrint(console,"Central Position y:")

 simAuxiliaryConsolePrint(console,pos_y_avg)

 simAuxiliaryConsolePrint(console,"\n\n")

 simAuxiliaryConsolePrint(console,"Selection of Role#1\n")

 for i=1,6,1 do

 x_dif[i] = pos_x_avg - simGetScriptSimulationParameter(Scripts[i],"pos_x")

 y_dif[i] = pos_y_avg - simGetScriptSimulationParameter(Scripts[i],"pos_y")

 dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2)

 simAuxiliaryConsolePrint(console,"Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console," distance: ")

 simAuxiliaryConsolePrint(console,dist[i])

 simAuxiliaryConsolePrint(console,"\n")

 end
 dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])

--//Selecting Role#1

 for i=1,6,1 do

 if(dist_min==dist[i]) then

 simAuxiliaryConsolePrint(console,"Role#1: Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console,"\n")

 simSetScriptSimulationParameter(Script,"Role1",Scripts[i])

 gpos_x[1] = simGetScriptSimulationParameter(Scripts[i],"pos_x")

 gpos_y[1] = simGetScriptSimulationParameter(Scripts[i],"pos_y")

 orntr1 = simGetScriptSimulationParameter(Scripts[i],"ornt")

 end

 end

 gpos_x[2] = gpos_x[1] - 0*math.sin(orntr1) + (-0.292)*math.cos(orntr1)

 gpos_y[2] = gpos_y[1] + 0*math.cos(orntr1) + (-0.292)*math.sin(orntr1)

 gpos_x[3] = gpos_x[1] - (-0.23)*math.sin(orntr1) + (0.035)*math.cos(orntr1)

 gpos_y[3] = gpos_y[1] + (-0.23)*math.cos(orntr1) + (0.035)*math.sin(orntr1)

 gpos_x[4] = gpos_x[1] - (0.23)*math.sin(orntr1) + (0.035)*math.cos(orntr1)

128

 gpos_y[4] = gpos_y[1] + (0.23)*math.cos(orntr1) + (0.035)*math.sin(orntr1)

 gpos_x[5] = gpos_x[1] - (-0.372)*math.sin(orntr1) + (-0.239)*math.cos(orntr1)

 gpos_y[5] = gpos_y[1] + (-0.372)*math.cos(orntr1) + (-0.239)*math.sin(orntr1)

 gpos_x[6] = gpos_x[1] - (0.372)*math.sin(orntr1) + (-0.239)*math.cos(orntr1)

 gpos_y[6] = gpos_y[1] + (0.372)*math.cos(orntr1) + (-0.239)*math.sin(orntr1)

--Selecting Role#2

 simAuxiliaryConsolePrint(console,"\nSelection of Role#2\n")

 for i=1,6,1 do

 x_dif[i] = gpos_x[2] - simGetScriptSimulationParameter(Scripts[i],"pos_x")

 y_dif[i] = gpos_y[2] - simGetScriptSimulationParameter(Scripts[i],"pos_y")

 dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2)

 if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1")) then

 dist[i] = math.huge

 end
 simAuxiliaryConsolePrint(console,"Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console," distance: ")

 simAuxiliaryConsolePrint(console,dist[i])

 simAuxiliaryConsolePrint(console,"\n")

 end
 dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])

 for i=1,6,1 do

 if(dist_min==dist[i]) then

 simAuxiliaryConsolePrint(console,"Role#2: Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console,"\n")

 simSetScriptSimulationParameter(Script,"Role2",Scripts[i])

 end

 end

--Selecting Role#3

 simAuxiliaryConsolePrint(console,"\nSelection of Role#3\n")

 for i=1,6,1 do

 x_dif[i] = gpos_x[3] - simGetScriptSimulationParameter(Scripts[i],"pos_x")

 y_dif[i] = gpos_y[3] - simGetScriptSimulationParameter(Scripts[i],"pos_y")

 dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2)

 if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1") or

 Scripts[i]==simGetScriptSimulationParameter(Script,"Role2")) then

 dist[i] = math.huge

 end

 simAuxiliaryConsolePrint(console,"Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console," distance: ")

 simAuxiliaryConsolePrint(console,dist[i])

 simAuxiliaryConsolePrint(console,"\n")

 end

 dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])

 for i=1,6,1 do

 if(dist_min==dist[i]) then

 simAuxiliaryConsolePrint(console,"Role#3: Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console,"\n")

 simSetScriptSimulationParameter(Script,"Role3",Scripts[i])

 end

 end
--Selecting Role#4

 simAuxiliaryConsolePrint(console,"\nSelection of Role#4\n")

 for i=1,6,1 do

 x_dif[i] = gpos_x[4] - simGetScriptSimulationParameter(Scripts[i],"pos_x")

129

 y_dif[i] = gpos_y[4] - simGetScriptSimulationParameter(Scripts[i],"pos_y")

 dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2)

 if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1") or

 Scripts[i]==simGetScriptSimulationParameter(Script,"Role2") or

 Scripts[i]==simGetScriptSimulationParameter(Script,"Role3")) then

 dist[i] = math.huge

 end

 simAuxiliaryConsolePrint(console,"Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console," distance: ")

 simAuxiliaryConsolePrint(console,dist[i])

 simAuxiliaryConsolePrint(console,"\n")

 end

 dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])

 for i=1,6,1 do

 if(dist_min==dist[i]) then

 simAuxiliaryConsolePrint(console,"Role#4: Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console,"\n")

 simSetScriptSimulationParameter(Script,"Role4",Scripts[i])

 end

 end
--Selecting Role#5

 simAuxiliaryConsolePrint(console,"\nSelection of Role#5\n")

 for i=1,6,1 do

 x_dif[i] = gpos_x[5] - simGetScriptSimulationParameter(Scripts[i],"pos_x")

 y_dif[i] = gpos_y[5] - simGetScriptSimulationParameter(Scripts[i],"pos_y")

 dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2)

 if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1") or

 Scripts[i]==simGetScriptSimulationParameter(Script,"Role2") or

 Scripts[i]==simGetScriptSimulationParameter(Script,"Role3") or

 Scripts[i]==simGetScriptSimulationParameter(Script,"Role4")) then

 dist[i] = math.huge

 end
 simAuxiliaryConsolePrint(console,"Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console," distance: ")

 simAuxiliaryConsolePrint(console,dist[i])

 simAuxiliaryConsolePrint(console,"\n")

 end
 dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])

 for i=1,6,1 do

 if(dist_min==dist[i]) then

 simAuxiliaryConsolePrint(console,"Role#5: Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console,"\n")

 simSetScriptSimulationParameter(Script,"Role5",Scripts[i])

 end

 end

--Selecting Role#6

 simAuxiliaryConsolePrint(console,"\nSelection of Role#6\n")

 for i=1,6,1 do

 x_dif[i] = gpos_x[6] - simGetScriptSimulationParameter(Scripts[i],"pos_x")

 y_dif[i] = gpos_y[6] - simGetScriptSimulationParameter(Scripts[i],"pos_y")

 dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2)

 if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1") or

 Scripts[i]==simGetScriptSimulationParameter(Script,"Role2") or

 Scripts[i]==simGetScriptSimulationParameter(Script,"Role3") or

 Scripts[i]==simGetScriptSimulationParameter(Script,"Role4") or

 Scripts[i]==simGetScriptSimulationParameter(Script,"Role5")) then

130

 dist[i] = math.huge

 end
 simAuxiliaryConsolePrint(console,"Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console," distance: ")

 simAuxiliaryConsolePrint(console,dist[i])

 simAuxiliaryConsolePrint(console,"\n")

 end
 dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])

 for i=1,6,1 do

 if(dist_min==dist[i]) then

 simAuxiliaryConsolePrint(console,"Role#6: Module#")

 simAuxiliaryConsolePrint(console,i)

 simAuxiliaryConsolePrint(console,"\n")

 simSetScriptSimulationParameter(Script,"Role6",Scripts[i])

 end

 end

 for i=1,6,1 do

 simSetScriptSimulationParameter(Scripts[i],"Notification1",1)

 end
 simAuxiliaryConsolePrint(console,"Role Distribution Done\n\n")

 rd_done=1

 return 1

 end

 function get_role()

 rd_done = 0

 if(simGetScriptSimulationParameter(Script,"Notification1")==1) then

 Roles =

{simGetScriptSimulationParameter(Scripts[1],"Role1"),simGetScriptSimulationParameter(Scripts[1],"

Role2"),

simGetScriptSimulationParameter(Scripts[1],"Role3"),simGetScriptSimulationParameter(Scripts[1],"

Role4"),

simGetScriptSimulationParameter(Scripts[1],"Role5"),simGetScriptSimulationParameter(Scripts[1],"

Role6")}

 if(simGetScriptSimulationParameter(Scripts[1],"Role1")==Script) then

 role = 1

 end
 if(simGetScriptSimulationParameter(Scripts[1],"Role2")==Script) then

 role = 2

 end

 if(simGetScriptSimulationParameter(Scripts[1],"Role3")==Script) then

 role = 3

 end
 if(simGetScriptSimulationParameter(Scripts[1],"Role4")==Script) then

 role = 4

 end

 if(simGetScriptSimulationParameter(Scripts[1],"Role5")==Script) then

 role = 5

 end
 if(simGetScriptSimulationParameter(Scripts[1],"Role6")==Script) then

 role = 6

 end

 simSetScriptSimulationParameter(Script,"Notification1",0)

 simSetScriptSimulationParameter(Script,"role",role)

 rd_done = 1

131

 end

 return rd_done,role

 end

 function strategic_planning()

 simAuxiliaryConsolePrint(console,"Strategic Planning Algorithm is Initiated\n")

 for i=7,9,1 do

 if(simGetScriptSimulationParameter(Scripts[i],"Type")==3) then

 sys_target_handle = det_points[i]

 sys_target_pos_x = simGetScriptSimulationParameter(Scripts[i],"pos_x")

 sys_target_pos_y = simGetScriptSimulationParameter(Scripts[i],"pos_y")

 simAuxiliaryConsolePrint(console,"Target Position x:")

 simAuxiliaryConsolePrint(console,sys_target_pos_x)

 simAuxiliaryConsolePrint(console,"\n")

 simAuxiliaryConsolePrint(console,"Target Position y:")

 simAuxiliaryConsolePrint(console,sys_target_pos_y)

 simAuxiliaryConsolePrint(console,"\n\n")

 end

 if(simGetScriptSimulationParameter(Scripts[i],"Type")==2) then

 sys_wh_obs_handle = det_points[i]

 sys_wh_obs_pos_x = simGetScriptSimulationParameter(Scripts[i],"pos_x")

 sys_wh_obs_pos_y = simGetScriptSimulationParameter(Scripts[i],"pos_y")

 simAuxiliaryConsolePrint(console,"Lath Obstacle Position x:")

 simAuxiliaryConsolePrint(console,sys_wh_obs_pos_x)

 simAuxiliaryConsolePrint(console,"\n")

 simAuxiliaryConsolePrint(console,"Lath Obstacle Position y:")

 simAuxiliaryConsolePrint(console,sys_wh_obs_pos_y)

 simAuxiliaryConsolePrint(console,"\n\n")

 end
 if(simGetScriptSimulationParameter(Scripts[i],"Type")==1) then

 sys_qd_obs_handle = det_points[i]

 sys_qd_obs_pos_x = simGetScriptSimulationParameter(Scripts[i],"pos_x")

 sys_qd_obs_pos_y = simGetScriptSimulationParameter(Scripts[i],"pos_y")

 simAuxiliaryConsolePrint(console,"Ground Obstacle Position x:")

 simAuxiliaryConsolePrint(console,sys_qd_obs_pos_x)

 simAuxiliaryConsolePrint(console,"\n")

 simAuxiliaryConsolePrint(console,"Ground Obstacle Position y:")

 simAuxiliaryConsolePrint(console,sys_qd_obs_pos_y)

 simAuxiliaryConsolePrint(console,"\n\n")

 end

 end
 sys_wh_obs_dist = math.sqrt((sys_target_pos_x-sys_wh_obs_pos_x)^2 + (sys_target_pos_y-

sys_wh_obs_pos_y)^2)

 sys_qd_obs_dist = math.sqrt((sys_target_pos_x-sys_qd_obs_pos_x)^2 + (sys_target_pos_y-

sys_qd_obs_pos_y)^2)

--plan_rowx format: {conf_req,reference_handle,lat_const,long_const,gamma_const,transport_mode}

--transport_mode=0 normal, transport_mode=1 ability

 if(sys_wh_obs_dist>sys_qd_obs_dist) then

 simAuxiliaryConsolePrint(console,"First Obstacle to Pass: Lath Obstacle\n")

 plan_row1={2,sys_wh_obs_handle,0,-0.3,0,0}

 plan_row2={2,sys_wh_obs_handle,0,0.3,0,1}

 plan_row3={1,sys_qd_obs_handle,0,0,-0.3,0}

 plan_row4={1,sys_qd_obs_handle,0,0,0.5,1}

 plan_row5={1,sys_qd_obs_handle,0,0.5,0,0}

 plan_row6={1,sys_target_handle,0,0,0,0}

 end
 if(sys_wh_obs_dist<sys_qd_obs_dist) then

 simAuxiliaryConsolePrint(console,"First Obstacle to Pass: Ground Obstacle\n\n")

 plan_row1={1,sys_qd_obs_handle,0,-0.1,0,0}

 plan_row2={1,sys_qd_obs_handle,0,0.5,0,1}

132

 plan_row3={1,sys_qd_obs_handle,0,0.5,0,0}

 plan_row4={2,sys_wh_obs_handle,0,-0.3,0,0}

 plan_row5={2,sys_wh_obs_handle,0,0.3,0,1}

 plan_row6={2,sys_target_handle,0,0,0,0}

 end

 simAuxiliaryConsolePrint(console,"Plan Matrix:\n\n")

 simAuxiliaryConsolePrint(console,"Plan Row 1=[")

 simAuxiliaryConsolePrint(console,plan_row1[1])

 simAuxiliaryConsolePrint(console,",")

 if(plan_row1[2]==sys_target_handle) then

 simAuxiliaryConsolePrint(console,"System Target")

 end
 if(plan_row1[2]==sys_qd_obs_handle) then

 simAuxiliaryConsolePrint(console,"Ground Obstacle")

 end

 if(plan_row1[2]==sys_wh_obs_handle) then

 simAuxiliaryConsolePrint(console,"Lath Obstacle")

 end
 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row1[3])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row1[4])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row1[5])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row1[6])

 simAuxiliaryConsolePrint(console,"]\n")

 simAuxiliaryConsolePrint(console,"Plan Row 2=[")

 simAuxiliaryConsolePrint(console,plan_row2[1])

 simAuxiliaryConsolePrint(console,",")

 if(plan_row2[2]==sys_target_handle) then

 simAuxiliaryConsolePrint(console,"System Target")

 end

 if(plan_row2[2]==sys_qd_obs_handle) then

 simAuxiliaryConsolePrint(console,"Ground Obstacle")

 end
 if(plan_row2[2]==sys_wh_obs_handle) then

 simAuxiliaryConsolePrint(console,"Lath Obstacle")

 end

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row2[3])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row2[4])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row2[5])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row2[6])

 simAuxiliaryConsolePrint(console,"]\n")

 simAuxiliaryConsolePrint(console,"Plan Row 3=[")

 simAuxiliaryConsolePrint(console,plan_row3[1])

 simAuxiliaryConsolePrint(console,",")

 if(plan_row3[2]==sys_target_handle) then

 simAuxiliaryConsolePrint(console,"System Target")

 end

133

 if(plan_row3[2]==sys_qd_obs_handle) then

 simAuxiliaryConsolePrint(console,"Ground Obstacle")

 end

 if(plan_row3[2]==sys_wh_obs_handle) then

 simAuxiliaryConsolePrint(console,"Lath Obstacle")

 end
 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row3[3])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row3[4])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row3[5])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row3[6])

 simAuxiliaryConsolePrint(console,"]\n")

 simAuxiliaryConsolePrint(console,"Plan Row 4=[")

 simAuxiliaryConsolePrint(console,plan_row4[1])

 simAuxiliaryConsolePrint(console,",")

 if(plan_row4[2]==sys_target_handle) then

 simAuxiliaryConsolePrint(console,"System Target")

 end

 if(plan_row4[2]==sys_qd_obs_handle) then

 simAuxiliaryConsolePrint(console,"Ground Obstacle")

 end
 if(plan_row4[2]==sys_wh_obs_handle) then

 simAuxiliaryConsolePrint(console,"Lath Obstacle")

 end

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row4[3])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row4[4])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row4[5])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row4[6])

 simAuxiliaryConsolePrint(console,"]\n")

 simAuxiliaryConsolePrint(console,"Plan Row 5=[")

 simAuxiliaryConsolePrint(console,plan_row5[1])

 simAuxiliaryConsolePrint(console,",")

 if(plan_row5[2]==sys_target_handle) then

 simAuxiliaryConsolePrint(console,"System Target")

 end

 if(plan_row5[2]==sys_qd_obs_handle) then

 simAuxiliaryConsolePrint(console,"Ground Obstacle")

 end
 if(plan_row5[2]==sys_wh_obs_handle) then

 simAuxiliaryConsolePrint(console,"Lath Obstacle")

 end

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row5[3])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row5[4])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row5[5])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row5[6])

 simAuxiliaryConsolePrint(console,"]\n")

134

 simAuxiliaryConsolePrint(console,"Plan Row 6=[")

 simAuxiliaryConsolePrint(console,plan_row6[1])

 simAuxiliaryConsolePrint(console,",")

 if(plan_row6[2]==sys_target_handle) then

 simAuxiliaryConsolePrint(console,"System Target")

 end
 if(plan_row6[2]==sys_qd_obs_handle) then

 simAuxiliaryConsolePrint(console,"Ground Obstacle")

 end

 if(plan_row6[2]==sys_wh_obs_handle) then

 simAuxiliaryConsolePrint(console,"Lath Obstacle")

 end
 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row6[3])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row6[4])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row6[5])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row6[6])

 simAuxiliaryConsolePrint(console,"]\n\n")

 plan_counter = 1

 current_target = 0

 sp_done = 1

 simAuxiliaryConsolePrint(console,"Strategic Planning Done\n\n")

 return sp_done

 end

 function sequencing(plan_counter)

 simAuxiliaryConsolePrint(console,"Sequencing Phase\n")

 if(plan_counter==1) then

 plan_row = plan_row1

 end
 if(plan_counter==2) then

 plan_row = plan_row2

 end

 if(plan_counter==3) then

 plan_row = plan_row3

 end
 if(plan_counter==4) then

 plan_row = plan_row4

 end

 if(plan_counter==5) then

 plan_row = plan_row5

 end
 if(plan_counter==6) then

 plan_row = plan_row6

 end

 simAuxiliaryConsolePrint(console,"Active Sub-goal: Plan Row#")

 simAuxiliaryConsolePrint(console, plan_counter)

 simAuxiliaryConsolePrint(console,"=[")

 simAuxiliaryConsolePrint(console,plan_row[1])

 simAuxiliaryConsolePrint(console,",")

 if(plan_row[2]==sys_target_handle) then

 simAuxiliaryConsolePrint(console,"System Target")

 end

135

 if(plan_row[2]==sys_qd_obs_handle) then

 simAuxiliaryConsolePrint(console,"Ground Obstacle")

 end

 if(plan_row[2]==sys_wh_obs_handle) then

 simAuxiliaryConsolePrint(console,"Lath Obstacle")

 end
 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row[3])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row[4])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row[5])

 simAuxiliaryConsolePrint(console,",")

 simAuxiliaryConsolePrint(console,plan_row[6])

 simAuxiliaryConsolePrint(console,"]\n\n")

 conf_req = plan_row[1]

 current_target = plan_row[2]

 lat_const = plan_row[3]

 long_const = plan_row[4]

 gamma_const = plan_row[5]

 transport_mode = plan_row[6]

 simSetScriptSimulationParameter(Script,"conf_req",conf_req)

 for i=1,6,1 do

 simSetScriptSimulationParameter(Scripts[i],"Notification2",1)

 end

 sq_done = 1

 return sq_done,conf_req

 end

 function get_plan(role)

 if(simGetScriptSimulationParameter(Script,"Notification2")==1) then

 conf_req = simGetScriptSimulationParameter(Roles[1],"conf_req")

 if(conf_req==1) then

 if(role==1) then

 simSetScriptSimulationParameter(Script,"target_handle", det_point)

 simSetScriptSimulationParameter(Roles[2],"connection_target",conn_points[2])

 simSetScriptSimulationParameter(Roles[3],"connection_target",conn_points[3])

 simSetScriptSimulationParameter(Roles[4],"connection_target",conn_points[4])

 end

 if(role==2) then

 simSetScriptSimulationParameter(Roles[5],"connection_target",conn_points[4])

 simSetScriptSimulationParameter(Roles[6],"connection_target",conn_points[3])

 end

 if(role==3) then

 end
 if(role==4) then

 end

 if(role==5) then

 end
 if(role==6) then

 end

 end
 if(conf_req==2) then

 if(role==1) then

 simSetScriptSimulationParameter(Script,"target_handle", det_point)

 simSetScriptSimulationParameter(Roles[2],"connection_target",conn_points[2])

136

 simSetScriptSimulationParameter(Roles[3],"connection_target",conn_points[3])

 simSetScriptSimulationParameter(Roles[4],"connection_target",conn_points[4])

 end

 if(role==2) then

 simSetScriptSimulationParameter(Roles[5],"connection_target",conn_points[4])

 simSetScriptSimulationParameter(Roles[6],"connection_target",conn_points[3])

 end

 if(role==3) then

 end
 if(role==4) then

 end

 if(role==5) then

 end
 if(role==6) then

 end

 end
 simSetScriptSimulationParameter(Script,"Notification2",0)

 simSetScriptSimulationParameter(Script,"conf_req",conf_req)

 simSetScriptSimulationParameter(Script,"role",role)

 sq_done = 1

 end

 return sq_done,conf_req

 end

 function get_target_state(conf_req,role,assembly_counter)

 if(conf_req==1) then

--Teze yazilanlar yanlis tezi duzelt

 if(role==2) then

 target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle")

 lat_cons={0,0}

 long_cons={-0.292,-0.112}

 gamma_cons={180,180}

 end

 if(role==3) then

 target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle")

 lat_cons={-0.23,-0.19}

 long_cons={0.035,0.035}

 gamma_cons={90,90}

 end

 if(role==4) then

 target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle")

 lat_cons={0.23,0.19}

 long_cons={0.035,0.035}

 gamma_cons={-90,-90}

 end

 if(role==5) then

 target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle")

 lat_cons={-0.372,-0.19}

 long_cons={-0.239,-0.239}

 gamma_cons={90,90}

 end

 if(role==6) then

 target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle")

 lat_cons={0.372,0.19}

 long_cons={-0.239,-0.239}

 gamma_cons={-90,-90}

137

 end

 end

 if(conf_req==2) then

 if(role==2) then

 target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle")

 lat_cons={0,0}

 long_cons={-0.292,-0.112}

 gamma_cons={180,180}

 end
 if(role==3) then

 target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle")

 lat_cons={-0.23,-0.04}

 long_cons={0.035,0.035}

 gamma_cons={-90,-90}

 end
 if(role==4) then

 target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle")

 lat_cons={0.23,0.04}

 long_cons={0.035,0.035}

 gamma_cons={90,90}

 end
 if(role==5) then

 target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle")

 lat_cons={-0.372,-0.04}

 long_cons={-0.239,-0.239}

 gamma_cons={-90,-90}

 end
 if(role==6) then

 target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle")

 lat_cons={0.372,0.04}

 long_cons={-0.239,-0.239}

 gamma_cons={90,90}

 end

 end

 return target_handle, lat_cons[assembly_counter],

long_cons[assembly_counter],gamma_cons[assembly_counter]

 end

 function ornt_dif_corr(ornt_dif)

 ornt_dif = math.deg(ornt_dif)

 if(math.abs(ornt_dif)>=180) then

 if(ornt_dif<0) then

 ornt_dif_dummy = ornt_dif+360

 end
 if(ornt_dif>0) then

 ornt_dif_dummy = ornt_dif-360

 end

 ornt_dif = ornt_dif_dummy

 end

 return math.rad(ornt_dif)

 end

--//Search Function--

--Search function of the module takes target handle as input returns

--target_found status

 function search_target(target_handle, search_counter, CamJ1pos)

 simSetJointTargetPosition(CamJoint2,math.rad(-10*search_counter))

 result,distance,detP = simCheckProximitySensor(Cam,target_handle)

 if(result==1) then

138

 target_found=1

 search_counter = 0

 end

 if(result~=1) then

 CamJ1pos = CamJ1pos + 10

 if(CamJ1pos > 360) then

 CamJ1pos = 0

 search_counter = search_counter + 1

 if(search_counter==15) then

 search_counter = 0

 end

 end
 simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos))

 end

 return target_found, search_counter, CamJ1pos

 end --Function End
--Search Function//--

--//Locking Function---

--Makes the camera lock to its target. This function is called continually

--to keep the module tracking its target. Takes target handle as input,

--returns nothing

 function lock_target(target_handle)

 result,distance,detP = simCheckProximitySensor(Cam,target_handle)

 if(result==1) then

 CamJ1pos = simGetJointPosition(CamJoint1)

 CamJ2pos = simGetJointPosition(CamJoint2)

 CamJ1pos_rot = math.atan2(detP[1],detP[3])

 CamJ2pos_rot = math.atan2(detP[2],detP[3])

 CamJ1pos = CamJ1pos+CamJ1pos_rot

 CamJ2pos = CamJ2pos+CamJ2pos_rot

 simSetJointTargetPosition(CamJoint1,CamJ1pos)

 simSetJointTargetPosition(CamJoint2,CamJ2pos)

 target_found = 1

 end

 if(result==0) then

 target_found = 0

 end
 return target_found,CamJ1pos

 end --Function End
--Locking function//--

--//Distance Calculation Function---

--Calculates lateral and longitudinal distance between target and module

--reference position. Takes target handle, returns lateral distance, longitudinal

--distance and gamma orientation difference.

--mode=0: single module calculation

--mode=1: quadruped or wheeled calculation

 function calculate_difference(target_handle,lat_const,long_const,mode)

 target_pos_reached = 0

 result,distance,detP = simCheckProximitySensor(Cam,target_handle)

 if(result==1) then

 target_found = 1

 CamJ1pos = simGetJointPosition(CamJoint1)

139

 CamJ2pos = simGetJointPosition(CamJoint2)

 ornt = simGetObjectOrientation(pos_dummy,-1)

 target_ornt3 = simGetObjectOrientation(target_handle,-1)

 target_ornt = target_ornt3[3]

 matrix = simGetObjectMatrix(cam_dummy,-1)

 matrix[4] = 0

 matrix[8] = 0

 matrix[12] = 0

 det = {detP[3],detP[1],detP[2]}

 target = simMultiplyVector(matrix,det)

 if(mode==0) then

 long_dif = target[1] + 0.102*math.cos(ornt[3]) +

(0.0045+0.011*math.cos(CamJ2pos))*math.cos(ornt[3]+CamJ1pos)

 lat_dif = target[2] + 0.102*math.sin(ornt[3]) +

(0.0045+0.011*math.cos(CamJ2pos))*math.sin(ornt[3]+CamJ1pos)

 long_dif = long_dif - lat_const*math.sin(target_ornt)+long_const*math.cos(target_ornt)

 lat_dif = lat_dif + lat_const*math.cos(target_ornt)+long_const*math.sin(target_ornt)

 end

 if(mode==1) then

 long_dif = target[1] + 0.0525*math.cos(ornt[3]) +

(0.0045+0.011*math.cos(CamJ2pos))*math.cos(ornt[3]+CamJ1pos)

 lat_dif = target[2] + 0.0525*math.sin(ornt[3]) +

(0.0045+0.011*math.cos(CamJ2pos))*math.sin(ornt[3]+CamJ1pos)

 long_dif = long_dif - lat_const*math.sin(target_ornt)+long_const*math.cos(target_ornt)

 lat_dif = lat_dif + lat_const*math.cos(target_ornt)+long_const*math.sin(target_ornt)

 dist = math.sqrt(long_dif^2 + lat_dif^2)

 ornt_dif = math.atan2(lat_dif,long_dif)-ornt[3]

 long_dif = dist*math.cos(ornt_dif)

 lat_dif = dist*math.sin(ornt_dif)

 end

 if(mode==2) then

 long_dif = target[1] + 0.0525*math.cos(ornt[3]) +

(0.0045+0.011*math.cos(CamJ2pos))*math.cos(ornt[3]+CamJ1pos)

 lat_dif = target[2] + 0.0525*math.sin(ornt[3]) +

(0.0045+0.011*math.cos(CamJ2pos))*math.sin(ornt[3]+CamJ1pos)

 long_dif = long_dif - lat_const*math.sin(target_ornt)+long_const*math.cos(target_ornt)

 lat_dif = lat_dif + lat_const*math.cos(target_ornt)+long_const*math.sin(target_ornt)

 end

 end

 if(result~=1) then

 target_found = 0

 end

 return target_found,lat_dif,long_dif

 end --Function End
--Distance Calculation Function//--

--//Direction Decision Function--

--Decides the direction of the moving gait, forward or backward. Takes lateral

--and longitudinal difference between the target and the module and returns

--direction decision to be used in move_single() function. "direction=1" means forward and

--"direction=-1" means backward.

 function decide_direction(lat_dif,long_dif,gamma_const,forced_direction)

140

 ornt_req = math.atan2(lat_dif,long_dif)

 ornt_des = target_ornt + math.rad(gamma_const)

 Modornt3 = simGetObjectOrientation(pos_dummy,-1)

 Modornt = Modornt3[3]

 ornt_dif_forw = ornt_dif_corr(ornt_req-Modornt)

 ornt_dif_back = ornt_dif_corr(ornt_req-Modornt+math.rad(180))

 t1_forw = math.abs(math.deg(ornt_dif_forw))*t180/180

 t1_back = math.abs(math.deg(ornt_dif_back))*t180/180

 distance = math.sqrt((lat_dif^2)+(long_dif^2))

 t2_forw = math.floor(distance/dfhv)*tfhv + (math.floor(distance-

math.floor(distance/dfhv)*dfhv)/dflv)*tflv

 t2_back = math.floor(distance/dbhv)*tbhv + (math.floor(distance-

math.floor(distance/dbhv)*dbhv)/dblv)*tblv

 t3_forw = math.abs(math.deg(ornt_dif_corr(ornt_des-ornt_req))*t180/180)

 t3_back = math.abs(math.deg(ornt_dif_corr(ornt_des-ornt_req+math.rad(180)))*t180/180)

 if(forced_direction==0) then

 if(t1_forw+t2_forw+t3_forw>t1_back+t2_back+t3_back) then

 direction = -1

 end

 if(t1_forw+t2_forw+t3_forw<t1_back+t2_back+t3_back) then

 direction = 1

 end

 end

 if(forced_direction~=0) then

 direction = forced_direction

 end
 if(direction==-1) then

 ornt_req = ornt_req + math.rad(180)

 end

 return direction,ornt_req

 end --Function End

--Direction Decision Function//---

--//Velocity Decision Function--

--Decides the velocity of the moving gait, high or low. Takes lateral

--and longitudinal difference between the target and the module and returns

--velocity decision to be used in move_single() function. "velocity=2" means

--high velocity and "velocity=1" means low velocity.

 function decide_velocity(direction,lat_dif,long_dif)

 distance = math.sqrt((lat_dif^2)+(long_dif^2))

 if(direction==1) then

 if(distance>=dfhv) then

 velocity = 2

 target_pos_reached = 0

 end

 if(distance<dfhv and distance>=dflv) then

 velocity = 1

 target_pos_reached = 0

 end

 if(distance<dflv) then

 target_pos_reached = 1

-- velocity = 0

 end

 end

141

 if(direction==-1) then

 if(distance>=dbhv) then

 velocity = 2

 target_pos_reached = 0

 end

 if(distance<dbhv and distance>=dblv) then

 velocity = 1

 target_pos_reached = 0

 end

 if(distance<dblv) then

 target_pos_reached = 1

-- velocity = 0

 end

 end

 return target_pos_reached,velocity

 end --Function End

--Velocity Decision Function//--

--//Orientation Correction Function---

 function correct_ornt(J1pos,J2pos,ornt_req)

 Modornt3 = simGetObjectOrientation(pos_dummy,-1)

 Modornt = Modornt3[3]

 ornt_dif = ornt_dif_corr(ornt_req-Modornt)

 FJpos = math.deg(simGetJointPosition(FrontJoint))

 if(math.abs(math.deg(ornt_dif))<1) then

 wheel_spd = 0

 end

 if(math.abs(math.deg(ornt_dif))<10) then

 if(math.deg(ornt_dif)<0) then

 wheel_spd = -1.8*math.deg(ornt_dif)

 end

 if(math.deg(ornt_dif)>0) then

 wheel_spd = -1.8*math.deg(ornt_dif)

 end

 end

 if(math.abs(math.deg(ornt_dif))>10) then

 J1pos = 15

 J2pos = 0

 if(math.deg(ornt_dif)<0) then

 wheel_spd = 18

 end
 if(math.deg(ornt_dif)>0) then

 wheel_spd = -18

 end

 end
 FJpos = FJpos + wheel_spd

 simSetJointTargetPosition(FrontJoint,math.rad(FJpos))

 simSetJointTargetPosition(BackJoint1,math.rad(J1pos))

 simSetJointTargetPosition(BackJoint2,math.rad(J2pos))

 return J1pos,J2pos,ornt_dif

 end --Function End

--Orientation Correction Function//---

--//Single Locomotion Function--

--Increases the step of the locomotion gait by one whenever its called. Joint

142

--position controls are done in the main loop because of V-Rep limitations. Takes

--direction, velocity, forward step and backward step value. Returns updated forward

--step and backward step value

 function move_single(direction,velocity,forw_step,back_step,ornt_dif)

 ms_result=0

 if(math.abs(math.deg(ornt_dif))<10) then

 if(math.abs(J1pos-math.deg(simGetJointPosition(BackJoint1)))<1 and

 math.abs(J2pos-math.deg(simGetJointPosition(BackJoint2)))<1) then

 ms_result=1

 if(direction==1)then

 if(velocity==1) then

 if(forw_step==0) then

 forw_step_f = 1

 end
 if(forw_step==1) then

 J1pos = -33

 J2pos = 61

 forw_step_f = 2

 end

 if(forw_step==2) then

 J1pos = 0

 J2pos = 0

 forw_step_f = 0

 end

 end

 if(velocity==2) then

 if(forw_step == 0) then

 forw_step_f = 1

 end

 if(forw_step==1) then

 J1pos = -41

 J2pos = 120

 forw_step_f = 2

 end
 if(forw_step==2) then

 J1pos = 0

 J2pos = 0

 forw_step_f = 0

 end

 end

 end

 if(direction==-1)then

 if(velocity==1) then

 if(back_step==0) then

 back_step_f = 1

 end
 if(back_step==1) then

 J1pos = -1

 J2pos = 34

 back_step_f = 2

 end

 if(back_step==2) then

 J1pos = -27

 J2pos = 52

 back_step_f = 3

 end
 if(back_step==3) then

 J1pos = -15

 J2pos = 15

 back_step_f = 4

143

 end

 if(back_step==4) then

 J1pos = 0

 J2pos = 0

 back_step_f = 0

 end

 end

 if(velocity==2) then

 if(back_step == 0) then

 back_step_f = 1

 end

 if(back_step==1) then

 J1pos = -13

 J2pos = 72

 back_step_f = 2

 end
 if(back_step==2) then

 J1pos = -36

 J2pos = 90

 back_step_f = 3

 end

 if(back_step==3) then

 J1pos = -30

 J2pos = 30

 back_step_f = 4

 end
 if(back_step==4) then

 J1pos = 0

 J2pos = 0

 back_step_f = 0

 end

 end

 end

 simSetJointTargetPosition(BackJoint1,math.rad(J1pos))

 simSetJointTargetPosition(BackJoint2,math.rad(J2pos))

 end

 end

 return ms_result,J1pos,J2pos,forw_step_f,back_step_f

 end --Function End

--Single Locomotion Function//--

 function assembly_step_up(conf_req,role,assembly_counter)

 forced_direction = 0

 step_up = false

 if(conf_req==1) then

 if(role==1) then

 end

 if(role==2) then

 step_up = true

 if(assembly_counter>=1) then

 forced_direction=-1

 end

 end

 if(role==3) then

 step_up = true

 end
 if(role==4) then

 step_up = true

144

 end

 if(role==5) then

-- if(simGetScriptSimulationParameter(Roles[2],"assembly_counter")>assembly_counter or

 if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then

 step_up = true

 end

 end

 if(role==6) then

-- if(simGetScriptSimulationParameter(Roles[2],"assembly_counter")>assembly_counter or

 if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then

 step_up = true

 end

 end

 end
 if(conf_req==2) then

 if(role==1) then

 end
 if(role==2) then

 step_up = true

 if(assembly_counter>=1) then

 forced_direction=-1

 end

 end
 if(role==3) then

 step_up = true

 if(assembly_counter>=1) then

 forced_direction=-1

 end

 end
 if(role==4) then

 step_up = true

 if(assembly_counter>=1) then

 forced_direction=-1

 end

 end
 if(role==5) then

 if(simGetScriptSimulationParameter(Roles[2],"assembly_counter")>assembly_counter or

 simGetScriptSimulationParameter(Roles[2],"connected")==1) then

 step_up = true

 end

 if(assembly_counter>=1) then

 forced_direction=-1

 end

 end

 if(role==6) then

 if(simGetScriptSimulationParameter(Roles[2],"assembly_counter")>assembly_counter or

 simGetScriptSimulationParameter(Roles[2],"connected")==1) then

 step_up = true

 end
 if(assembly_counter>=1) then

 forced_direction=-1

 end

 end

 end

 return step_up,forced_direction

 end
 function connect()

 result = false

145

 if(conf_req==1) then

 if(role==1) then

 end

 if(role==2) then

simSetLinkDummy(conn_points[5],simGetScriptSimulationParameter(Script,"connection_target"))

 result = true

 end
 if(role==3) then

simSetLinkDummy(conn_points[1],simGetScriptSimulationParameter(Script,"connection_target"))

 result = true

 end

 if(role==4) then

simSetLinkDummy(conn_points[1],simGetScriptSimulationParameter(Script,"connection_target"))

 result = true

 end
 if(role==5) then

 if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then

simSetLinkDummy(conn_points[1],simGetScriptSimulationParameter(Script,"connection_target"))

 result = true

 end

 end

 if(role==6) then

 if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then

simSetLinkDummy(conn_points[1],simGetScriptSimulationParameter(Script,"connection_target"))

 result = true

 end

 end

 end

 if(conf_req==2) then

 if(role==1) then

 end

 if(role==2) then

simSetLinkDummy(conn_points[5],simGetScriptSimulationParameter(Script,"connection_target"))

 result = true

 end
 if(role==3) then

simSetLinkDummy(conn_points[2],simGetScriptSimulationParameter(Script,"connection_target"))

 result = true

 end

 if(role==4) then

simSetLinkDummy(conn_points[2],simGetScriptSimulationParameter(Script,"connection_target"))

 result = true

 end
 if(role==5) then

 if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then

simSetLinkDummy(conn_points[2],simGetScriptSimulationParameter(Script,"connection_target"))

 result = true

 end

146

 end

 if(role==6) then

 if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then

simSetLinkDummy(conn_points[2],simGetScriptSimulationParameter(Script,"connection_target"))

 result = true

 end

 end

 end

 return result

 end

 function send_order(ScrHandle, BJ1pos_conf, BJ2pos_conf, Cylpos_conf)

 simSetScriptSimulationParameter(ScrHandle,"BJ1pos_conf",BJ1pos_conf)

 simSetScriptSimulationParameter(ScrHandle,"BJ2pos_conf",BJ2pos_conf)

 simSetScriptSimulationParameter(ScrHandle,"Cylpos_conf",Cylpos_conf)

 simSetScriptSimulationParameter(ScrHandle,"Order_sent",1)

 simSetScriptSimulationParameter(ScrHandle,"Order_done",0)

 return 0

 end

 function angular_diff_rad(angle1,angle2)

 angle1 = math.atan2(math.sin(angle1),math.cos(angle1))

 angle2 = math.atan2(math.sin(angle2),math.cos(angle2))

 return (angle1-angle2)

 end

 function conf_init(conf,transport_mode)

 if(conf==1) then

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],60,30,0)

 send_order(Roles[4],60,30,0)

 send_order(Roles[5],60,30,0)

 send_order(Roles[6],60,30,0)

 end

 if(conf==2) then

 if(transport_mode==0) then

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],-75,90,0)

 send_order(Roles[4],-75,90,0)

 send_order(Roles[5],-75,90,0)

 send_order(Roles[6],-75,90,0)

 end

 if(transport_mode==1) then

 simSetJointTargetPosition(BackJoint1,math.rad(0))

 simSetJointTargetPosition(BackJoint2,math.rad(0))

 send_order(Roles[2],0,0,0)

 send_order(Roles[3],30,0,0)

 send_order(Roles[4],30,0,0)

 send_order(Roles[5],30,0,0)

 send_order(Roles[6],30,0,0)

 end

 end

 conf_init_done = 1

 return conf_init_done

 end

147

 function move_quad(lat_dif,long_dif)

 order_done_counter = 0

 for i = 2,6,1 do

 if(simGetScriptSimulationParameter(Roles[i],"Order_done")==1) then

 order_done_counter = order_done_counter + 1

 end

 end

 if(order_done_counter==5) then

 c4wa = c4wa + 1

 if(c4wa==5) then

 c4wa = 0

--//Decision of movement style--

 Modornt3 = simGetObjectOrientation(pos_dummy,-1)

 Modornt = Modornt3[3]

 ornt_req3 = simGetObjectOrientation(current_target,-1)

 ornt_req = ornt_req3[3]

 ornt_dif = ornt_dif_corr(ornt_req-Modornt)

 if(lat_dif>0 and long_dif>0) then

 if(math.deg(ornt_dif)<-5) then

 sd = 1

 tr = 0

 s = 30

 r = -15

 l = 15

 end

 if(math.deg(ornt_dif)>5) then

 sd = 0

 tr = 1

 s = 30

 r = 0

 l = -5

 if(ornt_dif>10) then

 r = 5

 l = -5

 end

 if(ornt_dif>15) then

 r = 10

 l = -10

 end

 if(ornt_dif>20) then

 r = 15

 l = -15

 end

 end

 end

 if(lat_dif>0 and long_dif<0) then

 if(math.deg(ornt_dif)<-5) then

 sd = 0

 tr = 1

 s = -30

 r = -5

 l = 0

 if(math.deg(ornt_dif)<-10) then

 r = -5

 l = 5

 end
 if(math.deg(ornt_dif)<-15) then

 r = -10

 l = 10

 end

148

 if(math.deg(ornt_dif)<-20) then

 r = -15

 l = 15

 end

 end

 if(math.deg(ornt_dif)>5) then

 sd = 1

 tr = 0

 s = 30

 r = 15

 l = -15

 end

 end

 if(lat_dif<0 and long_dif>0) then

 if(math.deg(ornt_dif)<-5) then

 sd = 0

 tr = 1

 s = 30

 r = -5

 l = 0

 if(math.deg(ornt_dif)<-10) then

 r = -5

 l = 5

 end
 if(math.deg(ornt_dif)<-15) then

 r = -10

 l = 10

 end
 if(math.deg(ornt_dif)<-20) then

 r = -15

 l = 15

 end

 end

 if(math.deg(ornt_dif)>5) then

 sd = 1

 tr = 0

 s = -30

 r = 15

 l = -15

 end

 end

 if(lat_dif<0 and long_dif<0) then

 if(math.deg(ornt_dif)<-5) then

 sd = 1

 tr = 0

 s = -30

 r = -15

 l = 15

 end

 if(math.deg(ornt_dif)>5) then

 sd = 0

 tr = 1

 s = -30

 r = 0

 l = -5

 if(math.deg(ornt_dif)>10) then

 r = 5

 l = -5

 end

 if(math.deg(ornt_dif)>15) then

149

 r = 10

 l = -10

 end

 if(math.deg(ornt_dif)>20) then

 r = 15

 l = -15

 end

 end

 end

--Decision of movement style//--

 if(math.deg(ornt_dif)>-5 and math.deg(ornt_dif)<5) then

 if(math.abs(lat_dif)>math.abs(long_dif)) then

 sd = 1

 tr = 0

 if(lat_dif<0) then

 s = -30

 end

 if(lat_dif>0) then

 s = 30

 end

 end

 if(math.abs(long_dif)>=math.abs(lat_dif)) then

 sd = 0

 tr = 1

 if(long_dif<0) then

 s = -30

 end

 if(long_dif>0) then

 s = 30

 end

 end

 end --if(math.deg(ornt_dif)>-5 and math.deg(ornt_dif)<5)

 end --if(c4wa==5)

 if(tr==1) then

 c4wa_tr = c4wa

 end
 if(sd==1) then

 c4wa_sd = c4wa

 end

 if(c4wa_tr==0 and tr==1) then

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],60,30,0)

 send_order(Roles[4],60,30,0)

 send_order(Roles[5],60,30,0)

 send_order(Roles[6],60,30,0)

 end
 if(c4wa_tr==1 and tr==1) then

 send_order(Roles[4],0,90,0)

 send_order(Roles[5],0,90,0)

 send_order(Roles[3],60,30,0)

 send_order(Roles[6],60,30,0)

 end

 if(c4wa_tr==2 and tr==1) then

 send_order(Roles[4],60,30,-s-l)

 send_order(Roles[5],60,30,s+r)

 send_order(Roles[3],60,30,-s-r)

150

 send_order(Roles[6],60,30,s+l)

 end
 if(c4wa_tr==3 and tr==1) then

 send_order(Roles[4],60,30,0)

 send_order(Roles[5],60,30,0)

 send_order(Roles[3],0,90,0)

 send_order(Roles[6],0,90,0)

 end

 if(c4wa_tr==4 and tr==1) then

 send_order(Roles[4],60,30,s+l)

 send_order(Roles[5],60,30,-s-r)

 send_order(Roles[3],60,30,s+r)

 send_order(Roles[6],60,30,-s-l)

 end

 if(c4wa_sd==0 and sd==1) then

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],60,30,0)

 send_order(Roles[4],60,30,0)

 send_order(Roles[5],60,30,0)

 send_order(Roles[6],60,30,0)

 end
 if(c4wa_sd==1 and sd==1) then

 send_order(Roles[4],0,90,0)

 send_order(Roles[5],0,90,0)

 send_order(Roles[3],60,30,0)

 send_order(Roles[6],60,30,0)

 end
 if(c4wa_sd==2 and sd==1) then

 send_order(Roles[4],60,30-s-r,0)

 send_order(Roles[5],60,30+s+l,0)

 send_order(Roles[3],60,30-s-r,0)

 send_order(Roles[6],60,30+s+l,0)

 end

 if(c4wa_sd==3 and sd==1) then

 send_order(Roles[4],60,30,0)

 send_order(Roles[5],60,30,0)

 send_order(Roles[3],0,90,0)

 send_order(Roles[6],0,90,0)

 end
 if(c4wa_sd==4 and sd==1) then

 send_order(Roles[4],60,30+s+r,0)

 send_order(Roles[5],60,30-s-l,0)

 send_order(Roles[3],60,30+s+r,0)

 send_order(Roles[6],60,30-s-l,0)

 end

 end --if(order_done_counter==5)

 return 1

 end

 function qd_pass_over(qd_po_counter)

151

 order_done_counter = 0

 for i = 2,6,1 do

 if(simGetScriptSimulationParameter(Roles[i],"Order_done")==1) then

 order_done_counter = order_done_counter + 1

 end

 end
 if(order_done_counter==5) then

 c4wp = c4wp + 1

 end

 if(c4wp==4) then

 c4wp = 0

 qd_po_counter = qd_po_counter+1

 end

 if(c4wp==0) then

 send_order(Roles[3],60,30,0)

 send_order(Roles[4],60,30,0)

 send_order(Roles[5],60,30,0)

 send_order(Roles[6],60,30,0)

 end

 if(c4wp==1) then

 send_order(Roles[3],60,30,-135)

 send_order(Roles[4],60,30,135)

 send_order(Roles[5],60,30,-135)

 send_order(Roles[6],60,30,135)

 end

 if(c4wp==2) then

 send_order(Roles[3],60,30,135)

 send_order(Roles[4],60,30,-135)

 send_order(Roles[5],60,30,135)

 send_order(Roles[6],60,30,-135)

 end

 if(c4wp==3) then

 send_order(Roles[3],60,30,0)

 send_order(Roles[4],60,30,0)

 send_order(Roles[5],60,30,0)

 send_order(Roles[6],60,30,0)

 end

 return qd_po_counter

 end

 function move_whld(lat_dif,long_dif,transport_mode)

 ornt_req = math.atan2(lat_dif,long_dif)

 Modornt3 = simGetObjectOrientation(pos_dummy,-1)

 Modornt = Modornt3[3]

 ornt_dif = ornt_dif_corr(ornt_req-Modornt)

 if(transport_mode==0) then

 if(math.deg(ornt_dif)<-1) then

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],-75,90,30)

 send_order(Roles[4],-75,90,30)

 send_order(Roles[5],-75,90,30)

 send_order(Roles[6],-75,90,30)

 end

 if(math.deg(ornt_dif)>1) then

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],-75,90,-30)

152

 send_order(Roles[4],-75,90,-30)

 send_order(Roles[5],-75,90,-30)

 send_order(Roles[6],-75,90,-30)

 end
 if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],-75,90,-30)

 send_order(Roles[4],-75,90,30)

 send_order(Roles[5],-75,90,-30)

 send_order(Roles[6],-75,90,30)

 end

 end --if(transport_mode==0)

 if(transport_mode==1) then

 if(math.deg(ornt_dif)<-1) then

 simSetJointTargetPosition(BackJoint1,math.rad(0))

 simSetJointTargetPosition(BackJoint2,math.rad(0))

 send_order(Roles[2],0,0,0)

 send_order(Roles[3],30,0,30)

 send_order(Roles[4],30,0,30)

 send_order(Roles[5],30,0,30)

 send_order(Roles[6],30,0,30)

 end
 if(math.deg(ornt_dif)>1) then

 simSetJointTargetPosition(BackJoint1,math.rad(0))

 simSetJointTargetPosition(BackJoint2,math.rad(0))

 send_order(Roles[2],0,0,0)

 send_order(Roles[3],30,0,-30)

 send_order(Roles[4],30,0,-30)

 send_order(Roles[5],30,0,-30)

 send_order(Roles[6],30,0,-30)

 end

 if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then

 simSetJointTargetPosition(BackJoint1,math.rad(0))

 simSetJointTargetPosition(BackJoint2,math.rad(0))

 send_order(Roles[2],0,0,0)

 send_order(Roles[3],30,0,-30)

 send_order(Roles[4],30,0,30)

 send_order(Roles[5],30,0,-30)

 send_order(Roles[6],30,0,30)

 end
 end --if(transport_mode==1)

 return 1

 end
 function correct_ornt_whld(target,transport_mode)

 ornt_des3 = simGetObjectOrientation(target,-1)

 ornt_des = ornt_des3[3]

 Modornt3 = simGetObjectOrientation(pos_dummy,-1)

 Modornt = Modornt3[3]

 ornt_dif = ornt_dif_corr(ornt_des-Modornt)

 if(transport_mode==0) then

 if(math.deg(ornt_dif)<-1) then

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],-75,90,30)

 send_order(Roles[4],-75,90,30)

 send_order(Roles[5],-75,90,30)

153

 send_order(Roles[6],-75,90,30)

 target_ornt_reached = 0

 end

 if(math.deg(ornt_dif)>1) then

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],-75,90,-30)

 send_order(Roles[4],-75,90,-30)

 send_order(Roles[5],-75,90,-30)

 send_order(Roles[6],-75,90,-30)

 target_ornt_reached = 0

 end

 if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],-75,90,0)

 send_order(Roles[4],-75,90,0)

 send_order(Roles[5],-75,90,0)

 send_order(Roles[6],-75,90,0)

 target_ornt_reached = 1

 end

 end --if(transport_mode==0)

 if(transport_mode==1) then

 if(math.deg(ornt_dif)<-1) then

 simSetJointTargetPosition(BackJoint1,math.rad(0))

 simSetJointTargetPosition(BackJoint2,math.rad(0))

 send_order(Roles[2],0,0,0)

 send_order(Roles[3],30,0,30)

 send_order(Roles[4],30,0,30)

 send_order(Roles[5],30,0,30)

 send_order(Roles[6],30,0,30)

 target_ornt_reached = 0

 end

 if(math.deg(ornt_dif)>1) then

 simSetJointTargetPosition(BackJoint1,math.rad(0))

 simSetJointTargetPosition(BackJoint2,math.rad(0))

 send_order(Roles[2],0,0,0)

 send_order(Roles[3],30,0,-30)

 send_order(Roles[4],30,0,-30)

 send_order(Roles[5],30,0,-30)

 send_order(Roles[6],30,0,-30)

 target_ornt_reached = 0

 end

 if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then

 simSetJointTargetPosition(BackJoint1,math.rad(0))

 simSetJointTargetPosition(BackJoint2,math.rad(0))

 send_order(Roles[2],0,0,0)

 send_order(Roles[3],30,0,0)

 send_order(Roles[4],30,0,0)

 send_order(Roles[5],30,0,0)

 send_order(Roles[6],30,0,0)

 target_ornt_reached = 1

 end

 end --if(transport_mode==1)

 return target_ornt_reached

 end
 function stop(conf,transport_mode)

 if(conf==1) then

154

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],60,30,0)

 send_order(Roles[4],60,30,0)

 send_order(Roles[5],60,30,0)

 send_order(Roles[6],60,30,0)

 end
 if(conf==2) then

 if(transport_mode==0) then

 simSetJointTargetPosition(BackJoint1,math.rad(-90))

 simSetJointTargetPosition(BackJoint2,math.rad(90))

 send_order(Roles[2],-90,90,0)

 send_order(Roles[3],-75,90,0)

 send_order(Roles[4],-75,90,0)

 send_order(Roles[5],-75,90,0)

 send_order(Roles[6],-75,90,0)

 end
 if(transport_mode==1) then

 simSetJointTargetPosition(BackJoint1,math.rad(0))

 simSetJointTargetPosition(BackJoint2,math.rad(0))

 send_order(Roles[2],0,0,0)

 send_order(Roles[3],30,0,0)

 send_order(Roles[4],30,0,0)

 send_order(Roles[5],30,0,0)

 send_order(Roles[6],30,0,0)

 end

 end
 return 1

 end
 function reassemble(conf,role,reassemble_step)

 if(reassemble_step==0) then

 simSetScriptSimulationParameter(Script,"connected",0)

 simSetScriptSimulationParameter(Script,"order_sent",0)

 simSetScriptSimulationParameter(Script,"order_done",0)

 simSetJointTargetPosition(BackJoint1,math.rad(0))

 simSetJointTargetPosition(BackJoint2,math.rad(0))

 if(math.abs(math.deg(simGetJointPosition(BackJoint1)))<0.1 and

 math.abs(math.deg(simGetJointPosition(BackJoint2)))<0.1) then

 forw_step=0

 back_step=0

 J1pos=0

 J2pos=0

 reassemble_step = 1

 end

 end
 if(reassemble_step==1) then

 if(role~=1 and role~=2) then

 for i=1,5,1 do

 simSetLinkDummy(conn_points[i],-1)

 simSetScriptSimulationParameter(Script,"connected",0)

 end

 end

 reassemble_step = 2

 end

 if(reassemble_step==2) then

 if(role~=1 and role~=2) then

 if(reassemble_move_counter<5) then

 if(conf==1) then

155

 ms_result,J1pos,J2pos,forw_step,back_step = move_single(-

1,2,forw_step,back_step,0)

 if(back_step==0 and ms_result==1) then

 reassemble_move_counter = reassemble_move_counter + 1

 end

 end
 if(conf==2) then

 ms_result,J1pos,J2pos,forw_step,back_step = move_single(1,2,forw_step,back_step,0)

 if(forw_step==0 and ms_result==1) then

 reassemble_move_counter = reassemble_move_counter + 1

 end

 end

 end

 if(reassemble_move_counter==3) then

 conf=0

 forw_step=0

 back_step=0

 J1pos=0

 J2pos=0

 end

 end

 if(role==1) then

 conf=0

 conf_init_done = 0

 sq_done = 0

 end
 if(role==2) then

 simSetScriptSimulationParameter(Script,"connected",1)

 simSetJointTargetPosition(FrontJoint,0)

 simSetJointTargetPosition(CamJoint1,0)

 simSetJointTargetPosition(CamJoint2,0)

 target_ornt_reached = 0

 target_pos_reached = 0

 target_state_reached = 0

 assembly_phase_done = 1

 forced_direction=0

 conf=conf_req

 assembly_req=0

 end

 end

 return conf,reassemble_step

 end

end

if (sim_call_type==sim_childscriptcall_actuation) then

 -- Put your main ACTUATION code here

 --Main Loop Starts Here---

 ornt3 = simGetObjectOrientation(pos_dummy,-1)

 ornt = ornt3[3]

 simSetScriptSimulationParameter(Script,"ornt",ornt)

 simSetScriptSimulationParameter(Script,"conf",conf)

 simSetScriptSimulationParameter(Script,"assembly_counter",assembly_counter)

 --//Sensing Phase---

 if(sensing_done~=1) then

 if(friction_estimation_done~=1) then

 friction_coeff,friction_estimation_done = estimate_friction(friction_estimation_done)

 end

156

 if(friction_estimation_done==1) then

 if(initial_scan_done~=1) then

 initial_scan_done, CamJ1pos = initial_scan(CamJ1pos)

 end
 if(initial_scan_done==1) then

 sensing_done=1

 end

 end

 end

 --Sensing Phase//---

 --//Role Distribution Phase---

 if(sensing_done==1 and rd_done~=1) then

 if(Script==Scripts[1]) then

 role_dist()

 end

 rd_done,role = get_role()

 end

 --Role Distribution Phase//---

 if(rd_done==1 and sp_done==0 and role==1) then

 sp_done = strategic_planning()

 end
 --//Strategic Planning Phase--

 if(rd_done==1 and sq_done~=1) then

 if(role==1) then

 sq_done,conf_req = sequencing(plan_counter)

 end

 sq_done,conf_req = get_plan(role)

 if(conf_req==conf) then

 assembly_req = 0

 end

 if(conf_req~=conf) then

 assembly_req=1

 assembly_phase_done = 0

 simAuxiliaryConsolePrint(console,"System needs to Assemble/Reassemble\n")

 end

 end

 if(assembly_req==1 and assembly_phase_done~=1) then

 if(conf==1 or conf==2) then

 conf,reassemble_step = reassemble(conf,role,reassemble_step)

 end

 if(conf==0) then

 if(role~=1) then

 target_handle,lat_const,long_const,gamma_const =

get_target_state(conf_req,role,assembly_counter)

 if(target_state_reached~=1) then

 if(target_pos_reached~=1) then

 target_found,CamJ1pos = lock_target(target_handle)

 if(target_found~=1) then

 target_found,search_counter,CamJ1pos =

search_target(current_target,search_counter,CamJ1pos)

 end --if(target_found~=1)

 if(target_found==1) then

157

 if(math.abs(math.deg(simGetJointPosition(BackJoint1)))<1 and

math.abs(math.deg(simGetJointPosition(BackJoint2)))<1) then

 target_found,lat_dif,long_dif =

calculate_difference(target_handle,lat_const,long_const,0)

 direction,ornt_req =

decide_direction(lat_dif,long_dif,gamma_const,forced_direction)

 target_pos_reached,velocity = decide_velocity(direction,lat_dif,long_dif)

 end
 --correct orientation is called with gamma_const=0!

 J1pos,J2pos,ornt_dif = correct_ornt(J1pos,J2pos,ornt_req)

 ms_result,J1pos,J2pos,forw_step,back_step =

move_single(direction,velocity,forw_step,back_step,ornt_dif)

 end --if(target_found==1)

 end --if(target_pos_reached~=1)

 if(target_pos_reached==1) then

 if(target_ornt_reached~=1) then

 target_found,CamJ1pos = lock_target(target_handle)

 J1pos,J2pos,ornt_dif = correct_ornt(J1pos,J2pos,ornt_des)

 if(math.abs(math.deg(ornt_dif))<1) then

 target_ornt_reached = 1

 end

 end
 if(target_ornt_reached==1) then

 simSetJointTargetPosition(BackJoint1,0)

 simSetJointTargetPosition(BackJoint2,0)

 if(math.abs(math.deg(simGetJointPosition(BackJoint1)))<1 and

 math.abs(math.deg(simGetJointPosition(BackJoint1)))<1) then

 step_up,forced_direction=assembly_step_up(conf_req,role,assembly_counter)

 if(step_up) then

 assembly_counter = assembly_counter + 1

 step_up,forced_direction=assembly_step_up(conf_req,role,assembly_counter)

 target_ornt_reached = 0

 target_pos_reached = 0

 end
 if(assembly_counter==3) then

 if(connect()) then

 simSetScriptSimulationParameter(Script,"connected",1)

 simSetJointTargetPosition(FrontJoint,0)

 simSetJointTargetPosition(CamJoint1,0)

 simSetJointTargetPosition(CamJoint2,0)

 target_ornt_reached = 0

 target_pos_reached = 0

 target_state_reached = 0

 assembly_phase_done = 1

 forced_direction=0

 end

 end

 end

 end

 end
 end --if(target_state_reached~=1)

 end --if(role~=1)

 if(role==1) then

 simSetObjectParent(Cylinder,Fix_FS,true)

 connected_counter = 0

 for i=2,6,1 do

158

 if(simGetScriptSimulationParameter(Roles[i],"connected")==1) then

 connected_counter = connected_counter + 1

 end

 end
 if(connected_counter==5) then

 simSetScriptSimulationParameter(Script,"connected",1)

 simAuxiliaryConsolePrint(console,"Assembly/Reassembly Complete\n")

 assembly_phase_done = 1

 conf = conf_req

 simSetScriptSimulationParameter(Script,"conf",conf)

 end

 end --(role==1)

 end --if(conf==0)

 end --if(assembly_req==1 and assembly_phase_done~=1)

 --//Configuration Phase---

 if(assembly_phase_done==1) then

 if(simGetScriptSimulationParameter(Roles[1],"connected")==1) then

 if(role==1) then

 if(simGetObjectParent(Cylinder)~=-1) then

 simSetObjectParent(Cylinder,-1,true)

 end

 if(conf_init_done~=1) then

 conf_init_done = conf_init(conf,transport_mode)

 end
 target_found,CamJ1pos = lock_target(current_target)

 if(conf==1) then

 if(transport_mode==1) then

 qd_po_counter = qd_pass_over(qd_po_counter)

 if(qd_po_counter==2) then

 stop(conf,transport_mode)

 target_pos_reached = 1

 CamJ1pos = 0

 CamJ2pos = 0

 simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos))

 simSetJointTargetPosition(CamJoint2,math.rad(CamJ2pos))

 if(math.abs(math.deg(simGetJointPosition(CamJoint1)))<=2 and

 math.abs(math.deg(simGetJointPosition(CamJoint2)))<=2) then

 target_state_reached = 1

 qd_po_counter = 0

 end

 end

 end
 if(transport_mode==0) then

 if(target_state_reached~=1) then

 if(target_pos_reached~=1) then

 if(target_found==0) then

 stop(conf,transport_mode)

 target_found,search_counter,CamJ1pos =

search_target(current_target,search_counter,CamJ1pos)

 end
 if(target_found==1) then

 target_found,CamJ1pos = lock_target(current_target)

 target_found,lat_dif,long_dif =

calculate_difference(current_target,lat_const,long_const,1)

 distance = math.sqrt(lat_dif^2 + long_dif^2)

 if(distance>0.1) then

 move_quad(lat_dif,long_dif)

 end
 if(distance<=0.1) then

 stop(conf,transport_mode)

159

 target_pos_reached=1

 end
 end --if(target_found==1)

 end --if(target_pos_reached~=1)

 if(target_pos_reached==1) then

 CamJ1pos = 0

 CamJ2pos = 0

 simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos))

 simSetJointTargetPosition(CamJoint2,math.rad(CamJ2pos))

 if(math.abs(math.deg(simGetJointPosition(CamJoint1)))<=2 and

 math.abs(math.deg(simGetJointPosition(CamJoint2)))<=2) then

 target_state_reached = 1

 end

 end --if(target_pos_reached==1)

 end --if(target_state_reached~=1)

 end --if(transport_mode==0)

 if(target_state_reached==1) then

 simAuxiliaryConsolePrint(console,"Reached to Sub-goal State\n")

 plan_counter = plan_counter + 1

 sq_done=0

 for i=1,6,1 do

 simSetScriptSimulationParameter(Roles[i],"Notification3",1)

 end

 if(plan_counter<7) then

 target_state_reached = 0

 target_pos_reached = 0

 target_ornt_reached = 0

 end
 if(plan_counter==7) then

 target_state_reached = 1

 target_pos_reached = 1

 target_ornt_reached = 1

 sq_done=1

 end
 end --if(target_state_reached==1)

 end --if(conf==1)

 if(conf==2) then

 if(target_state_reached~=1) then

 if(target_pos_reached~=1) then

 if(target_found==0) then

 stop(conf,transport_mode)

 target_found,search_counter,CamJ1pos =

search_target(current_target,search_counter,CamJ1pos)

 end
 if(target_found==1) then

 target_found,CamJ1pos = lock_target(current_target)

 target_found,lat_dif,long_dif =

calculate_difference(current_target,lat_const,long_const,2)

 distance = math.sqrt(lat_dif^2 + long_dif^2)

 if(distance>0.1) then

 move_whld(lat_dif,long_dif,transport_mode)

 end
 if(distance<=0.1) then

 stop(conf,transport_mode)

 target_pos_reached=1

 end
 end --if(target_found==1)

 end --if(target_pos_reached~=1)

 if(target_pos_reached==1) then

 if(target_ornt_reached~=1) then

160

 target_ornt_reached = correct_ornt_whld(current_target,transport_mode)

 end
 if(target_ornt_reached==1) then

 stop(conf,transport_mode)

 CamJ1pos = 0

 CamJ2pos = 0

 simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos))

 simSetJointTargetPosition(CamJoint2,math.rad(CamJ2pos))

 if(math.abs(math.deg(simGetJointPosition(CamJoint1)))<=2 and

 math.abs(math.deg(simGetJointPosition(CamJoint2)))<=2) then

 target_state_reached = 1

 end

 end

 end --if(target_pos_reached==1)

 end --if(target_state_reached~=1)

 if(target_state_reached==1) then

 plan_counter = plan_counter + 1

 sq_done=0

 for i=1,6,1 do

 simSetScriptSimulationParameter(Roles[i],"Notification3",1)

 end

 if(plan_counter<7) then

 target_state_reached = 0

 target_pos_reached = 0

 target_ornt_reached = 0

 end
 if(plan_counter==7) then

 target_state_reached = 1

 target_pos_reached = 1

 target_ornt_reached = 1

 sq_done=1

 stop()

 end

 end --if(target_state_reached==1)

 end --if(conf==2)

 end--if(role==1)

 if(role~=1) then

 assembly_counter = 1

 conf = simGetScriptSimulationParameter(Roles[1],"conf")

 simSetScriptSimulationParameter(Script,"conf",conf)

 if(simGetScriptSimulationParameter(Script,"Notification3")==1) then

 sq_done=0

 simSetScriptSimulationParameter(Script,"Notification3",0)

 end

 if(conf==1) then

 if(simGetScriptSimulationParameter(Script,"Order_done")==0 and

simGetScriptSimulationParameter(Script,"Order_sent")==1) then

simSetJointTargetPosition(BackJoint1,math.rad(simGetScriptSimulationParameter(Script,"BJ1pos_co

nf")))

simSetJointTargetPosition(BackJoint2,math.rad(simGetScriptSimulationParameter(Script,"BJ2pos_co

nf")))

simSetJointTargetPosition(FrontJoint,math.rad(simGetScriptSimulationParameter(Script,"Cylpos_con

f")))

if(math.abs(math.deg(ornt_dif_corr(math.rad(simGetScriptSimulationParameter(Script,"BJ1pos_conf

"))-simGetJointPosition(BackJoint1))))<5 and

161

math.abs(math.deg(ornt_dif_corr(math.rad(simGetScriptSimulationParameter(Script,"BJ2pos_conf"))

-simGetJointPosition(BackJoint2))))<5 and

math.abs(math.deg(ornt_dif_corr(math.rad(simGetScriptSimulationParameter(Script,"Cylpos_conf"))-

simGetJointPosition(FrontJoint))))<5) then

 simSetScriptSimulationParameter(Script,"Order_done",1)

 simSetScriptSimulationParameter(Script,"Order_sent",0)

 end

 end

 end
 if(conf==2) then

 if(simGetScriptSimulationParameter(Script,"Order_done")==0 and

simGetScriptSimulationParameter(Script,"Order_sent")==1) then

simSetJointTargetPosition(BackJoint1,math.rad(simGetScriptSimulationParameter(Script,"BJ1pos_co

nf")))

simSetJointTargetPosition(BackJoint2,math.rad(simGetScriptSimulationParameter(Script,"BJ2pos_co

nf")))

simSetJointTargetPosition(FrontJoint,math.rad(simGetScriptSimulationParameter(Script,"Cylpos_con

f")))

 if(math.abs(simGetScriptSimulationParameter(Script,"BJ1pos_conf")-

math.deg(simGetJointPosition(BackJoint1)))<3 and

 math.abs(simGetScriptSimulationParameter(Script,"BJ2pos_conf")-

math.deg(simGetJointPosition(BackJoint2)))<3) then

 simSetScriptSimulationParameter(Script,"Order_done",1)

 simSetScriptSimulationParameter(Script,"Order_sent",0)

 end

 end

 wheel_spd = simGetScriptSimulationParameter(Script,"Cylpos_conf")

simSetJointTargetPosition(FrontJoint,simGetJointPosition(FrontJoint)+math.rad(wheel_spd))

 end--(conf==2)

 end--if(role~=1)

 end--if(simGetScriptSimulationParameter(Roles[1],"connected")==1)

 end--(if(assembly_phase_done==1)

 --Configuration Phase//---

end

if (sim_call_type==sim_childscriptcall_sensing) then

 -- Put your main SENSING code here

end

if (sim_call_type==sim_childscriptcall_cleanup) then

 -- Put some restoration code here

 for i=1,5,1 do

 simSetLinkDummy(conn_points[i],-1)

 end

162

end

163

CURRICULUM VITAE

Name Surname: Mehmet Cem ŞANLI

Place and Date of Birth: Mersin,1986

E-Mail: cem_sanli@hotmail.com

B.Sc.: Systems Engineer (Automation and Control Engineer)

