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STRATEGIC PLANNING FOR MODULAR ROBOTIC STRUCTURES

SUMMARY

The advancements in robotics increases the expectations from robots in terms of
capability and capacity. Today people expect robots to be more autonomous, more
functional, more versatile and more affordable. A robot that can play the violin, but
only playing the violin is not fascinating anymore. Today we expect from the robot
that plays the violin to come and ask our wish, present what we wished, avoid the
obstacles while doing this, adapt to a dynamic environment it has not been before
and solve its own problems if it has any while operating. Besides, these robots should
be affordable.

The purpose of this study is to design a functional and versatile modular robotic
structure and develop a strategic planning algorithm that can answer these
demanding expectations. The modular robotic system is expected to be able to create
configurations that can implement quadruped and wheeled locomotion methods and
to have configuration specific abilities such as passing over or under obstacles.
Another expectation is to decide the appropriate configuration to implement proper
locomotion method and configuration specific ability with the help of the developed
strategic planning algorithm.

The modular robotic structure designed in this study is a chain type modular robotic
system which are known for their suitability in implementing advanced locomotion
methods easily. To overcome the general self reconfiguration problem of this class,
the modules are designed to be self mobile. To control the modular robotic structure
a strategic planning algorithm is developed. The architecture of the algorithm can be
classified as hybrid deliberative/reactive. The hybrid architecture is chosen for its
two layered architecture which benefits both from the advantages of hierarchical
paradigm and reactive paradigm. After inspecting different simulation programs such
as Webots, Gazebo and V-Rep. The last one is found to be the best choice for the
needs of this study based on its good documentation and ease of use.

Modules of the robotic structure are designed to have a visual sensor, a force sensor,
three joints and four connection points. The locomotion method of the modules are
similar to an inchworm and it is developed by analysing the kinematic chain of a
single module. A position control algorithm is also developed which is mainly used
for assembly of configurations. The assembly procedure of configurations is
determined and a role distribution algorithm is developed.

Two configurations to implement quadruped and wheeled locomotion are designed.
The configuration specific abilities for both configurations are designed and the
design proces of the robotic structure is finalized.

After the robotic structure is designed, the development of the strategic planning
algorithm started. A two layered hybrid deliberative/reactive architecture is
developed to control the robotic structure. The deliberative layer is used to generate a
plan consisting of sub goals to drive the robotic structure from its initial state to the
desired goal state. The reactive layer of the algorithm is more like a feedback
controller. This layer is used to execute the plan generated by the deliberative layer.
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The designed robotic structure and strategic planning algorithm is tested in V-Rep by
creating a complex test area. In this complex test area, there are obstacles that can be
passed over or under with the configuration specific abilities of the robotic structure
positioned between the initial state of the robotic structure and its desired goal state.
The behavior and performance of the whole structure is tested based on its success to
reach the desired goal state.

The test results of this study is presented in detail and interpreted. According the test
results, it is proven that with good design and strategic planning algorithm, modular
robotic structures are more functional and versatile over their monolithic
counterparts.
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MODULER ROBOTIK YAPILARDA STRATEJiK PLANLAMA

OZET

Robotik alanindaki arastirmalar arttikca ve robotigin dayali oldugu mekanik,
elektronik ve yazilim gibi alanlarda hizina yetisilemeyen gelismeler oldukga,
insanlarin robotlardan beklentileri de degismeye ve giin gectikge daha da talepkar
olmaya basladi. Insanlar artik robotlardan daha otonom, daha fonksiyonel, daha ¢ok
yonlii ve daha hesapli olmalarimi bekliyorlar. Insanoglu artik keman calabilen ancak
sadece keman calabilen bir robotu eskisi kadar gz kamastirict bulmuyor. Artik
zamaninda hayranlikla izlenen keman calabilen robotun, gelip isteklerimizi sormasi,
isteklerimizi sunarken karsisina c¢ikan engele takilmamasi, degisik bir ortama
girdiginde hemen adapte olmasi, hatta bir problem yasadiginda problemini kendi
kendine ¢ozmesini bekliyoruz. Ayni zamanda bunlar1 yapabilen bir robotun daha
ucuza mal edilmesini ve bize daha hesapli bir fiyatla sunulmasini istiyoruz.

Robotik aragtirmacilari, insanlarin bu talepkar beklentilerini karsilayabilmek icin
degisik alanlarda ¢alismalarini siirdiirmeye devam ediyorlar. Bir kism1 daha otonom
ve daha fonksiyonel, operator kontroliinden daha bagimsiz robotlar gelistirmek igin
yapay zeka arastirmalarina yonelirken, bir kismu elektronik ve mekanik
optimizasyonlarla hem hesapli hem ¢ok yonlii robotlar yaratmaya calistyorlar. Bu
tarz istekleri karsilayabilecek monolitik robotlarin oldugu ve daha bir ¢ogunun da
gelistirilebilecegi inkar edilmese de daha fonksiyonel, daha ¢ok yonlii ve daha
hesapli robotik sistemlerin gelistirilmesi genellikle ¢oklu robot sistemleri ile
saglanmaktadir. Coklu robot sistemleri denildiginde ilk akla gelen iki tip robotik
sistem vardir; (1) siirii robot sistemleri ve (2) modiiler robotik sistemler. Iki sistem de
birbirine ¢ok benzer goriinse de aslinda temel prensipleri agisindan olduk¢a biiyiik
farklar1 bulunmaktadir.

Bu iki sistemin birbirinden ayrildig1 en temel nokta, modiiler robotigin temelinde
birleserek daha fonksiyonel robotlar olusturmak varken, siirii robotikte birlesmek
gibi bir olgu yoktur. Modiiler robotik sistemlerde cogu zaman modiiller tek baglarina
gorev yapmazken, siirli robot sistemlerinde her robot tek basina calisir ve siirii
kendisinden beklenen gorevleri bu sekilde yerine getirir. Her iki sistem ¢ok sayida
robottan olugsa da fonksiyonellik agisindan, siirii robotik sistemlerdeki robotlar
modiler robotik sistemlerdekilere oranla oldukga basittirler. Genel kontrol sistemleri
acgisindan da iki robotik siif arasinda farklar vardir. Siirii robotik sistemlerde daha
dagitilmis kontrol sistemleri kullanilirken, modiiler robotik sistemlerde daginik
kontrol algoritmalar1 kullanilsa da sistemin temelinde birlesmek bulundugundan,
kontrol sistemlerinde merkezi 6geler de ¢ogunlukla bulunur.

Bu calismanin amaci insanlarin robotlardan yeni beklentileri dogrultusunda daha
fonksiyonel ve ¢ok yonlii bir modiiler robotik sistem tasarlamak ve bu sisteme bir
stratejik planlama algoritmas1 uygulayarak sistemin fonksiyonelligini ve c¢ok
yonliliiginic 6n plana ¢ikarmaktir. Tasarlanacak modiiler robotik sistemden
beklentiler dort ayakli ve tekerlekli gibi degisik ilerleme metodlarini uygulayabilecek
bir yapida olmasi, konfigiirasyonlara 6zel engel iizerinden atlama ya da engel

XXi



altindan gegcme gibi yeteneklere sahip olmasi ve gelistirilen stratejik planlama
algoritmasi sayesinde dogru ilerleme metodunu ve gerekli yetenegini kullanabilecegi
dogru konfigiirasyonu se¢erek hedefine kolayca ulasabilmesidir.

Bu calismada modiiler robotik bir sistemin tasarlanmasinin ana nedeni modiiler
robotik sistemlerin genel prensiplerinin basit modiillerin birleserek ya da zaten
birlesik sekilde ¢alisan modiillerin baglant1 sekillerini degistirerek daha karmasik ve
daha fonksiyonel robotik konfigiirasyonlar olusturabilmeleridir. Yeniden insanlarin
robotlardan beklentilerine atifta bulunarak, tekerlekli bir konfigiirasyonda hizli bir
sekilde hareket eden bir robotun karsisina ¢ikan bir engeli fark edince istiinden
gecemeyerek ¢alismasini  durdurmak yerine, dort ayakli yiiriiyebilen bir
konfigiirasyona gecerek engelin Ustiinden gegebilmesi ve yoluna tekrar hizli bir
sekilde tekerlekli konfigiirasyonuna donerek devam edebilmesi ¢ok yonliilik ve
fonksiyonellik agisindan modiiler robotik sistemlerin neler sunabileceginin sadece
kii¢iik bir 6rnegini temsil etmektedir.

Modiiler robotik sistemler geometrik yapilandirilmalarina gore ii¢ farkli simnifa
ayrilabilirler. Zincir tipi (chain type) modiiler robotik sistemler, ilk olarak ortaya
cikan sistemlerdir ve genellikle gelismis fonksiyonellikleriyle 6n plana c¢ikarlar.
Yeniden yapilanma konusunda zorluklar ¢ekseler de gelismis ilerleme metodlarini
sorunsuzca uygulayabildiklerinden 6nemli bir siniftir. Daha sonra ortaya ¢ikan orgii
tipi (lattice type) modiiler robotik sistemlerse gelismis yeniden yapilanma yetenekleri
ile zincir tipi sistemlerin bu yondeki eksiklerini kapatsa da fonksiyonellik agisindan
yetersizdirler. Bu smif robotlar genelde basit ilerleme metodlarini uygulamadan
oteye gecememislerdir. Son olarak ortaya ¢ikan ve iki modiiler robot tipinin 6nemli
ozelliklerini biraraya getiren hibrid tip ise oldukga ilgi ¢ekicidir. Hibrid tip modiiler
robotlar gerektiginde Orgii dizilimine sahip olarak yeniden yapilanma problemini
kolaylastirirken, daha ileri seviye ilerleme metodlarimi uygulamak icin zincir
dizilimine doniisebilirler.

Bu calismada gelistirilmesi planlanan robotik yapinin degisik ilerleme metodlarim
kolayca uygulayabilmesi daha 6nemli oldugundan, modiiler robotik sistemin zincir
tipi olmas1 gerektigine karar verilmistir. Zincir tipi modiiler robotik sistemlerdeki
genel yeniden yapilandirilma problemini asmak i¢in modiiller toprak kurdu benzeri
bir ilerleme metodunu uygulayarak pozisyon degistirebilme yetenegine sahip olacak
sekilde tasarlanmiglardir.

Gelistirilecek stratejik planlama algoritmasinin yapisina karar vermek i¢in giiniimiize
kadar gelistirilmis robotik paradigmalara bir goz atmak gereklidir. Robotik alaninda
ortaya c¢ikan ilk paradigma, hiyerarsik paradigmadir. Bu kontrol mimarisinde robot
sensOrleri yardimiyla c¢evresinden gerekli bilgileri toplar, topladigir bilgilerle
cevresinin dijital bir modelini olusturur, bu modele gore yapmasi gereken eyleme
karar verir ve uygular. Oldukga kolay uygulanabilir ve gilivenilir bir sistem olmasina
ragmen bu sistem robot tarafindan taninmayan ya da hizli degisen dinamik
ortamlarda oldukg¢a diisiik performans gostermektedir. Hiyerarsik paradigmanin
dinamik ortamlarda yetersiz kalmasi iizerine gelistirilen reaktif paradigmada ise
planlama gibi bir temel 6zellik bulunmaz. Reaktif paradigma ile c¢alisan bir robot
sensorleri ile ¢cevreden gerekli bilgileri alir ve bu bilgiler direk olarak eyleme gevrilir.
Planlama ve modelleme gibi yliksek islem giicii gerektiren Ozellikler sistemde
bulunmadigindan bu robotlarin dinamik ortamlarda tepki siireleri olduk¢a diisiiktiir.
Bu sebeple engelden kagma ve hedefe ulagsma gibi basit davranislar1 kolaylikla yerine
getirebilirler. Reaktif paradigmada planlama gibi temel bir 6zellik bulunmasa da
sensorlerin eyleyicileri direk olarak kontrol ederek robotun siirekli tek bir eylem
gerceklesmesinin Oniine davranislar programlayarak gecilir. Davraniglar arasinda
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hiyerarsik bir siralama yapildiginda robotun istenilen sekilde hareket etmesi
saglanabilir. Yine de reaktif paradigma uzun mesafeli amaglara ulasmak igin
programlanmasi gereken davranislarin karmagsikligi ve robot davranislarini optimize
etmenin zorlugu nedeniyle limitlerine ulasmistir. Bu nedenle hiyerarsik ve reaktif
paradigmalarin 6nemli 6zelliklerini barindiran hibrit bilingli/reaktif paradigma ortaya
c¢ikmistir. Bu hibrit paradigma iki katmandan olusur. Bilingli katman hiyerarsik
paradigmaya benzer bir yapidayken, reaktif katman bir siralayici eklenmesinin
disinda reaktif paradigmanin aynisidir. Bu hibrit paradigmaya gore robot Once
sensorleri yardimiyla cevresel bilgileri toplar ve bilingli katman tarafindan amaca
ulagmak i¢in alt amaglardan olusan uygulanabilir bir plan fretilir. Planin
uygulanmasi kisminda ise reaktif katman devreye girer ve robotun hizlica hedefe
ulagmast saglanir. Robot reaktif bir sekilde hedefine dogru ilerlerken, cevresel sensor
verileri bilingli katmanla paylasilir ve gerekirse plan revize edilir. Robotun durumu
ve plana uygunlugu reaktif katmana eklenen siralayici tarafindan kontrol edilir ve
planin alt amaglari tamamlandikga yeni hedefler siralanir.

Hibrit bilingli/reaktif paradigma bu caligmanin amaglart dogrultusunda yaratilmak
istenen stratejik planlama uygulamasi i¢in en uygun paradigmadir. Bu nedenle
algoritmanin  mimarisi  hibrit  bilingli/reaktif paradigmaya uygun olarak
gelistirilmistir.

Modiiler robotik smiflar ve robotik paradigmalar disinda ¢alismanin tamamlanmasi
i¢in 6nemli kararlardan biri de kullanilacak simiilasyon ortaminin belirlenmesidir.
Modiiler robotik bir sistemi simiile edebilmek icin simiilasyon programlarinda
aranacak en onemli 6zellikler programin simiilasyon sirasinda modiillerin mekanik
olarak birlesip ayrilmalarin1 desteklemesi ve simiilasyon sirasinda birden fazla
modiliin farkli sekilde programlanmasini saglayabilecek programlama esnekligi
sunmasidir. Bu amagla bu iki 6nemli 6zellige de sahip olan Gazebo, Webots ve V-
Rep isimli ii¢ farkli simiilasyon ortami incelenmis ve calisma i¢in en uygun
simiilasyon ortaminin V-Rep olduguna karar verilmistir. Simiilasyon yazilim1 olarak
V-Rep'in secilmesindeki sebepler Webots gibi ticari bir yazilim olsa da egitim
amaciyla tam siirimiiniin kullanilmasinin miimkiin olmasi ve diger iki programa gore
kolay kullanima ve oldukg¢a diizenli ve detayli bir dokiimantasyona sahip olmasidir.
Ozellikle Gazebo acik kaynakli bir program olmasima ragmen dokiimantasyon ve
kullanim kolaylig1 agisindan yetersiz bir yazilim olarak degerlendirilmistir.
Simiilasyon ortami da belirlendikten sonra, V-Rep igerisinde modiiler robotik
sistemin tek modiiliiniin mekanik yapisi, eklemleri, sensorleri ve baglanti noktalari
kararlastirilarak yapisal tasarimi tamamlanmistir. Yapinin tasarlanmasinin ardindan
modiiliin kinematik analizi yapilarak uygun bir ilerleme metodu gelistirilmistir.
Gelistirilen bu ilerleme metoduna uygun olarak, modiillerin 6zellikle birlesme
amaciyla kullanacaklar1 bir pozisyon kontrol algoritmasi gelistirilmis ve tek modiil
tasarimi tamamlanmustir.

Modiil tasarimlarinin ardindan, modiiler robotik yapinin degisik ilerleme metodlari
uygulamak ve 0Ozel yeteneklerini sergilemek icin olusturmas: gereken
konfigilirasyonlarin tasarimlarina gegilmistir. Bu amagla dort ayakli ilerleme
metodunu uygulayabilen ve yerdeki engellerin iizerinden gegebilen bir dort ayakli
konfigiirasyon ve tekerlekli ilerleme metoduna sahip ve boyunu kisaltarak tiinel
benzeri engellerin altindan gegebilen bir tekerlekli konfigiirasyon tasarlanmistir. iki
konfiglirasyon da altisar modiiliin birlesmesiyle olusacak sekilde tasarlanmistir.
Konfigiirasyonlar1 olusturmak i¢in modiillerin birlesme sekillerini belirleyen bir rol
dagitim algoritmasi olusturulmus ve konfiglirasyonlar1 olusturmak i¢in modiil
baglantilarinin nasil yapilacagi belirlenmistir. Tek modiil tasariminda oldugu gibi iki
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konfigilirasyon i¢in de kinematik analiz metodu ile uygun ilerleme metodlar1 ve 6zel
yeteneklerini uygulama bigimleri gelistirilmistir.

Modiiler robotik sistem yapisal olarak tasarlanip simiilasyon ortaminda
olusturulduktan sonra, stratejik planlama algoritmasinin gelistirilmesine gecilmistir.
Daha 6nce bahsedildigi gibi hibrit bilingli/reaktif paradigmaya uygun bir algoritma
gelistirilmistir.  Algoritmanin hiyerarsik katmani simiilasyon basinda biitiin
modiillerin gorsel ve kuvvet sensorlerini kullanarak cevrede bulunan cisimleri
algilamasi ve zeminin siirtlinme katsayisini belirlemesi ile robotik yapiy1 baslangi¢
durumundan istenen amag¢ durumuna getirmek i¢in alt amaclardan olusan bir plan
iiretir. Uretilen plandaki alt hedefler, bir pozisyona ulasmak olabilecegi gibi, bir
konfiglirasyondan bagka bir konfigiirasyona doniisme ya da konfigiirasyona 6zel
yetenekleri uygulama olabilir.

Plan iiretildikten sonra reaktif katman yine sensor verilerinden faydalanan siralayici
kisminin belirledigi gecici hedeflerle eylem kismina geger ve robotik yapinin sirayla
alt hedeflere ulasmasin1 saglar. Reaktif katmanin aktif oldugu ve robotik yapinin
eylem halinde oldugu siire icerisinde de sensér verileri hiyerarsik katman ile
paylasilir. Robotun bulundugu dinamik ortamda herhangi bir degisiklik olmasi
durumunda plan revize edilebilir. Revize dahi edilse eylem kismina gegilmeden dnce
reaktif katmanin siralayicis1 arada tampon gorevi gordiigiinden robot normal
calismasina devam edebilir.

Tasarlanan modiiler robotik yapinin ve stratejik planlama algoritmasinin test edilmesi
amaciyla V-Rep icerisinde karmasik bir test diizenegi olusturulmustur. Bu test
diizeneginde robotik yapinin baslangic durumu ile hedef durumu arasinda engeller
konulmus ve robotun davranisi test edilmistir.

Bu c¢alismada yapilan testlerin sonuglart detayli olarak paylasilmis ve
yorumlanmustir. Test sonuglarina gére modiiler robotik yapilarin iyi bir modiil
tasarimi Ve stratejik planlama algoritmasi ile monolitik benzerlerine oranla ¢ok daha
fonksiyonel ve ¢ok yonlii oldugu kanitlanmistir.
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1. INTRODUCTION

As a relatively new research field, modular robotic structures have gained high
interest among researchers due to its versatility and its suitability for mass
production. Modular robotic structures are versatile because they can change
morphology. With a good design, a modular robotic structure can practice
quadruped, wheeled or limbless locomotion methods. They are also suitable for mass
production because generally every module in a modular robotic structure is identical
and they are interchangeable. Even if the structure does not have identical modules,
the number of different type of modules does not harm the process of mass

producing because the modules are often interchangeable.

In this study, a chain type modular robotic structure that consists of self-mobile
modules which are able to create different configurations that can operate in various
locomotion modes such as wheeled and quadruped is created. To overcome the
general self-reconfiguration problem for the chain type modular robots, the modules
are designed to have self-mobility. A hybrid deliberative/reactive strategic planning
algorithm is developed to ensure the system takes the suitable configuration to pass
over configuration specific obstacles and reach its goal. The system is designed and
tested in a highly versatile simulation environment called V-Rep (Virtual Robot

Experimentation Platform).

In the second chapter, a background for this study is given comprehensively. In the
first section of the second chapter, the background of modular robotics and notable
modular robotic systems are explained. In the second section of the second chapter,
general robotic paradigms are explained to give an insight to the reader about the
strategic planning algorithm developed in this study. In the third and the last section
of the second chapter, a brief explanation about simulation environments and some
well-known simulation programs such as Gazebo, Webots and V-Rep are presented.

The reasons for using V-Rep in this study are also explained in this part.



The third section is about the developed modular robotic structure in this work. In the
first section of the third chapter, the single module design is explained in detail. The
design considerations, development of the locomotion method for a single module
and control methods of the single module is explained in this section. In the second
section the configurations that can be created by the robotic structure is presented.
Their assembly, locomotion methods, control algorithms and configuration specific
abilities to pass obstacles are explained. In the last section of the third chapter, the
strategic planning algorithm developed for the robotic structure is explained. The
strategic planning algorithm is developed to ensure that the structure reaches its

target.

In the fourth chapter, simulation and test results regarding the performance of the
modular robotic system in a complex test area which is created in the simulation
software. The robotic system is tested based on the performance of the developed
strategic planning algorithm. The test area consists of configuration specific
obstacles between the initial state and the target state is created in the simulation

software.

The fifth chapter is about the conclusions of this study. In this chapter the test results
are discussed and the findings are reported. Some recommended additions to the

modular robotic system design and strategic planning algorithm is also shared.

1.1 Purpose of Thesis

The purpose of this thesis is to develop a strategic planning algorithm and implement
it to a modular robotic structure which can assemble various configurations to
operate in different locomotion modes such as quadruped and wheeled. The strategic
planning algorithm is expected to make the robotic structure reach a given goal state

by assembling proper configurations to pass configuration specific obstacles.



2. BACKGROUND

In this section a background for the related work of this study is given. In Section
2.1, a brief history of the modular robotics research field and most notable robots
designed in the sense of classification and progression were presented. In section 2.2,
the robotic paradigms are presented and their operating principles are explained
briefly. In section 2.3, some well-known simulation programs such as Gazebo,

Webots and V-Rep are presented.

2.1 Modular Robotics

The idea of distributed robotic systems emerged in the 1980s. It supposed that
instead of building monolithic and inflexible robots, developing a cellular design
inspired by nature is more efficient in reaching versatile robot structures. The robots
would be able to change their shapes by splitting their cellular modules and
rearranging them in a different configuration. One example given by Toshio Fukuda
who is also known to be the creator of the philosophical foundation for the field of
modular robotics was a robot that could move into environments that are difficult to

reach and once inside, it can change its shape to accomplish a task.

The first implementation of the presented idea was completed by Toshio Fukuda.
CEBOT [1] was built for that purpose in 1988. CEBOT was consisting of three
different types of modules which were actuation modules, structural modules and
tool modules. Since the definition of self-reconfigurable was not clear when CEBOT

was developed it was specified as a multi-robot system consisting of mobile robots.

The first modular robot aiming at self-reconfiguration problem was created by Mark
Yim in 1993. PolyPod [2] was able to implement different gaits with the connection
of different types of modules. Polypod was dynamically reconfigurable, but it was
not able to demonstrate self-reconfiguration. PolyPod is known to be the predecessor

of chain type modular robots.



In 1993 and 1994, the first examples of lattice type modular robots were introduced.
In 1993 Metamorphic [3] was built by Gregory Chirikjian and in 1994 Satoshi
Murata built Fracta [4]. Both robots had the ability to change their shape in two
dimensions. In these robots the configuration of modules was forming a lattice which
eases the problem of self-reconfiguration. That caused emergence of another class

which is called lattice type modular robots.

In 1998, two new chain type modular robots arrived in the scene. CONRO [5] was
built by Andres Castand and a new version of PolyPod which is called PolyBot [6]
was developed by Mark Yim. Both robots were able to implement various
locomotion methods, but self-reconfiguration was still an important issue for the

chain type modular robots.

While chain type modular robots were still struggling to demonstrate self-
reconfiguration, in 1998 two new lattice type modular robots achieved self-
reconfiguration in three dimensions. 3D Fracta [7] which is the improved version of
the Fracta robot was developed by Satoshi Murata and Molecule [8] was built by

Keith Kotay and Daniella Rus.

Up to that point, two distinctive clasess of modular robots were present which were
superior to their complementary classes in different ways. While lattice type robots
were able to demonstrate self-reconfiguration in three dimensions, chain type robots
could not achieve self-reconfiguration. Chain type robots were superior to their
lattice type complements by their increased ability to implement advanced

locomotion gaits although they were not self-reconfigurable.

After the distinction between two classes was clearly defined, another class of
modular robots has emerged. M-TRAN [9] which was developed by Satoshi Murata
in 1999 had the properties of both a chain type and a lattice type modular robot. This
new class is called hybrid type modular robot as it merges the properties of both
chain type and lattice type modular robots. The hybrid nature of M-TRAN came
from its ability to exist in both lattice structure to achieve self-reconfiguration and

chain structure to make locomotion problem easier.

ATRON, which is the second hybrid type of robot, was built in 2003 by Jorgensen at
the University of Southern Denmark, Odense. The novel idea behind ATRON
[10,11] was fascinating. ATRON modules had only one actuator and they showed



that 3D self-reconfiguration can be achieved even with one actuator. This was made

possible by arranging the rotational axis of each module perpendicular to each other.

Another hybrid type of modular robot was introduced in 2006 by Wei-Min Shen.
SuperBot [12] had an extra degree of freedom compared to M-TRAN which had two
actuators parallel to each other. In SuperBot, an extra actuator is added to control the
orientation between these actuators. Similar to M-TRAN, SuperBot also had the

ability to exist in both lattice and chain structures.

2.2 Robotic Paradigms

Robotic paradigms can be defined as the control architectures that characterize the
behavioral cycle of robots. The paradigms can be described in two ways: (1) by the
relationship between the three primitives of robotics which are sense, plan, act; (2)
by the way sensory data is processed and distributed through the system. Robotic
paradigms can be listed as hierarchical, reactive and hybrid deliberative/reactive.

2.2.1 Hierarchical paradigm

The hierarchical approach focuses mainly on the planning aspect of operation of a
robot. The robot senses its environment, plans its next action based on the acquired
data and then executes the appropriate action using its actuators. Before taking any
action, the robot plans its next action from the knowledge it has gathered about its
surroundings up to that point. Figure 2.1 shows the relationship between the robotic

primitives in hierarchical paradigm.

|—- SENSE PLAN » ACT —‘

Figure 2.1 :  Relationship of the robotic primitives in hierarchical paradigm.

v

The first robot operating under the hierarchical paradigm is "Shakey the robot" [17]
which was developed at Stanford Research Institute in 1966. Control architecture of
Shakey was composed of three basic parts which were sensing, planning and

executing. The sensing system was translating camera image into an internal world
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model, the planner was using this world model to generate a plan to achieve the goal

and the executor was applying control inputs according to the plan generated.

The components of the robot in this case are said to be horizontally organized.
Information from the world in the form of sensor data has to filter through several
intermediate stages of interpretation before finally becoming available for a response.
The emphasis in these early systems was in constructing a detailed world model and
then carefully planning out what steps to take next. The problem was that while the
robot was constructing its model and planning what to do next, the world was likely
to change. Therefore the robots exhibited the odd behavior that they would perceive,
process and plan and then they would lurch into action for a couple of steps before
beginning the cycle all over again. This is called look and lurch behavior. This
behavior was a proof of the inability of these systems to cope with dynamic

environments.

2.2.2 Reactive paradigm

The issues with the hierarchical paradigm caused the emergence of reactive or
behavioral paradigm. In 1986 Rodney A. Brooks published an article which
described a type of reactive architecture called the subsumption architecture [13].
This architecture became the dominant approach within the reactive robot
architectures. Reactive paradigm was heavily used in robotics between 1988 and
1992. As shown in Figure 2.2, reactive paradigm removes the planning primitive

from the architecture.

Act Sense

Figure 2.2 : Relationship of the robotic primitives in reactive paradigm.

In the reactive paradigm, the actions taken by the robot are direct results of sensor
data acquired. Although this implies that the robot takes only one type of action, this
is not the case. To avoid the robot taking only one action, layers of interacting finite
state machines which connect sensor data to actuators are added. These finite state

machines are called behaviors. Depending on the sensor data received, one or more

6



behaviors can be activated simultaneously. To avoid the confliction between these
activated behaviors, different handling mechanisms are developed. In the
subsumption architecture there is a hardware implemented overriding mechanism
that enables selection of higher level behaviors over low level behaviors. Figure 2.3
shows the levels of behaviors and their relationship with the sensing and acting
primitives.

] '
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Figure 2.3 : Levels of behaviors in reactive paradigm.
2.2.3 Hybrid deliberative/reactive paradigm

In spite of the simple nature of the architecture and its adaptability to dynamic
environments, reactive paradigm reached its limits due to the difficulties of
composing behaviors for long range goals and optimizing robot behavior. These
problems caused the return of the planning primitive in hybrid deliberative/reactive
paradigm. The hybrid paradigm emerged in the 1990s and it is still the active area of
research. Figure 2.4 shows the relationship of the robotic primitives in the hybrid

paradigm.

PLAN

ACT o SENSE

v

Figure 2.4 : Relationship of the robotic primitives in hybrid paradigm.

A robot working under the hybrid paradigm firstly plans how to accomplish a
mission or a task using a global world model. For that purpose, the planner

decomposes the task into subtasks and then activates the suitable behaviors to

7



complete each subtask. The behaviors are executed same as the reactive paradigm
and when the mission is completed, the planner generates another plan. The sensing
organization in the hybrid paradigm is more complex. Sensor data can both be used
by the behaviors and the planner. For example, an obstacle detected by a sensor
which does not activate "avoid obstacles" behavior in the reactive paradigm can be
used in the hybrid paradigm to create a map of the environment and can use this
information when a new plan is generated. There can be also planner specific sensors

which are not used by behaviors.

The hybrid architectures can be characterized by a layering of capabilities where low
level layers provide reactive capabilities and high level layers provide the more
computationally intensive capabilities. Three layered architectures are the most
popular variant of these hybrid architectures. The layers on these architectures are;
(1) controller/reactive layer, (2) sequencer/executive layer, (3) planner/deliberative

layer.

The controller layer provides low level control and it is characterized by a tight
sensor-action loop. Controller elements should have low computational complexity
to allow them to react quickly to stimuli and execute basic behaviors fast. The
sequencer layer is between the low level controller and the higher level planner
layers. It accepts directives from the planner and sequences them for the reactive
layer. The sequencer layer is also responsible for integrating sensor information into
an internal state representation. The planner or deliberative layer contains the

heaviest computational components and generates complex solutions tasks.

2.3 Robotic Simulation Environments

In this section, some well-known robotic simulation software programs are
presented. The first two programs Gazebo and Webots are briefly explained. The
simulation software used in this study, V-Rep, is explained in detail. Reasons for
choosing V-Rep as the simulation software over other alternatives for this study is

also explained in this section.

2.3.1 Gazebho

Gazebo [18] is an open source outdoor dynamics simulator. Development of Gazebo
started as a part of the Player project [19] at the University of Southern California in
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2002. The purpose was to develop a complementary dynamics simulator to the 2D
simulator Stage. In 2012 Gazebo became an independent project under the Open

Source Robotics Foundation. Features of Gazebo are listed below.

e Support for multiple physics engines such as ODE (Open Dynamics Engine),
Bullet, Simbody and DART (Dynamic Animation and Robotics Toolkit).

e Advanced 3D graphics with OGRE (Object Oriented Graphics Rendering
Engine).

e Plugin support for robot, sensor and environmental control.

e Wide variety of supported robot models such as PR2, Pioneer2 DX, iRobot
Create and TurtleBot.

Gazebo is still under development and the developers announced that Windows
support is work in progress.
2.3.2 Webots

Webots [20] is a commercial robot simulator which uses ODE (Open Dynamics
Engine) library for dynamic simulations. Its development is started in 1996 at the

Swiss Federal Institute of Technology.

Features of Webots
e ODE support for physics simulation.
e C, C++, Java, Python and MATLAB support for programming robots.
e Complete library of customizable sensors and actuators.

e Robot controllers can be transferred to real robots. Supported robots are Aibo,

Lego Mindstorms, Khepera, Koala and Hemission.

e Support for controllable connector devices to simulate modular robotic

structures.

e Able to record simulations in AVI or MPEG format.

2.3.3 V-Rep

V-Rep [21] is a general purpose robot simulator with integrated development

environment providing the ability to model and simulate sensors, mechanisms, robots



and whole systems. V-Rep is developed by Coppelia Robotics and its first official
release was in 2010. By the developers of the platform, V-Rep is defined as "the
Swiss army knife among robot simulators” due to its versatility and modular
structure to cope with simulating complex robotic systems. V-Rep is used in a wide
variety of application areas such as fast prototyping and verification, fast algorithm
development, remote monitoring, hardware control, etc. V-Rep supports three

different physics engines which are ODE, Bullet and Vortex.

A simulation scene in V-Rep consists of 3 central elements. These are (1) scene
objects, (2) calculation modules and (3) control mechanisms. Scene objects are the
main entities used to build the scene. Calculation modules are the functions that
handle calculations in the simulation. Control mechanisms are simply the code

provided by the user to control the simulated entities.

Scene objects in V-Rep and their brief explanations taken from V-Rep Manual [22]

are given below.
e Shape is a rigid mesh that is composed of triangular faces.

e Joint is a joint or an actuator. Four types are supported: (1) revolute joints,

(2) prismatic joints, (3) screws and (4) spherical joints.
e Graph is used to record and visualize simulation data.

e Dummy is a point with orientation. Dummies are multipurpose objects that

can have many different applications.

e Proximity sensor detects objects in a geometrically exact fashion within its
detection volume. V-Rep supports pyramid, cylinder, disk, cone and ray type

proximity sensors.
e Vision sensor is a camera type sensor , reacting to light, colors and images.

e [Force sensor is an object able to measure forces and torques that are applied

to it. It also has the ability to break if a given threshold is overshot.

e Mill is a convex volume that can be used to perform cutting operations on

shape objects.

e Camera is an object that allows seeing the simulation scene from various

view points.
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e Lightis an object that allows illuminating the simulation scene.

e Path is an object that defines a path or trajectory in space. It can be used for

various purposes, also as a customized joint or actuator.

e Mirror can reflect images/light, but can also operate as an auxiliary clipping
pane.

Figure 2.5 shows the visual representations of scene objects in the scene view and
hierarchy tree.
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Figure 2.5 : Visual representations of scene objects in the scene view and scene
hierarchy in V-Rep.

Some of the scene objects can have special properties to allow other objects or

calculation modules to interact with them. These properties are given below.
e Collidable objects can be tested for collision against other collidable objects.

e Measurable objects can have the minimum distance between them and other

measurable objects calculated.
e Detectable objects can be detected by proximity sensors.
e Cuttable objects can be cut by mills.

e Renderable objects can be seen or detected by vision sensors.
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Viewable objects can be looked through, looked at or their image content can

be visualized in views.

Besides these properties, each object has a position and orientation within the scene.

Calculation modules are the functions that handle calculations in the simulation.

These modules are used by the simulation software to update the simulation world,

but they can also be used by the user. The following are the calculation modules and

their brief explanations.

Collision detection module allows tracking, recording and visualizing

collisions that might occur between any collidable entities.

Minimum distance calculation module allows tracking, recording and

visualizing minimum distances between any measurable entities.

Inverse kinematics calculation module allows solving any type of inverse or

forward kinematic problem in a very efficient way.

Geometric constraint solver module allows solving inverse or forward
kinematic problems while offering a great extent of interaction possibilities

to the user.

Dynamics module allows dynamically simulating objects or models to

achieve object interactions.

Path planning module allows performing path planning calculations for
objects in 2-6 dimensions. Additionally, non-holonomic path planning for

car-type vehicles is also supported.

Motion planning module allows performing motion planning calculations for

manipulators.

Each calculation module (except the dynamics module) allows registering

calculation objects that are user defined. Calculation objects are different from scene

objects, but are indirectly linked to them by operating on them. This means that

calculation objects cannot exist by themselves.
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Collision detection objects (or collision objects) rely on collidable objects.

Minimum distance calculation objects (or distance objects) rely on

measurable objects.

Inverse kinematics calculation objects (or IK groups) rely mainly on

dummies and kinematic chains, where joint objects play a central role.

Geometric constraint solver objects (or mechanisms) rely mainly on

dummies and kinematic chains, where joint objects play a central role.

Path planning objects (or path planning tasks) rely mainly on dummies, a

path object, and collidable or measurable entities.

Motion planning objects (or motion planning tasks) rely mainly on IK

groups, and collidable or measurable entities.
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3. ROBOTIC STRUCTURE AND STRATEGIC PLANNING

3.1 Single Module Design

3.1.1 Design considerations

The main goal of the design process related to a single module of the reconfigurable
robots is to achieve self-mobility of a single module in order to realize autonomous
assembly of the robot. In addition to self-mobility of the individual modules, they
have to be versatile enough to achieve locomotion when arranged in several

configurations such as quadruped and wheeled.

3.1.2 Structure

A single module of the reconfigurable modular robot consists of three main parts.
These parts can simply be named as wheel, foot and body. The design is very similar
to an articulated (elbow) manipulator. While the articulated manipulator has its base
fixed, in the module design, the base is not fixed and it is used as the wheel. The
structure of a single module in the simulation environment is shown in Figures 3.1
and 3.2. Figure 3.3 illustrates the structure and terminology associated with the

articulated manipulator.

Figure 3.1: Single module in simulation software.
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Figure 3.2: Single module parts shown in exploded view.
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Figure 3.3: Articulated manipulator.

The wheel part is used for orientation control when the module does not have a role
in a configuration and when it is not part of a larger kinematic chain. The wheel base
consists of two cylinders which have a force sensor attached between them and a
revolute joint which connects the cylinders to the main body of the module. The

force sensor is used to estimate friction coefficient of the terrain.

The wheel has varying tasks in different configurations. For example, in the

quadruped walking configuration, in which a single module takes the role of a leg
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and acts as an articulated manipulator, the wheel forms the base of the articulated
manipulator. In the wheeled configurations, this part acts as the wheel and plays the
main role in locomotion. In limbless locomotion mode, the periodic change in the
joint position of the wheel makes it possible to achieve forward movement. In
traveling wave locomotion mode, the joint positions of the wheel of some modules
are used to control the orientation of the whole structure. The wheel has a connection

point in its center.

The foot is the part that makes it possible for the module to move in longitudinal
direction while operating alone. It consists of two rigid links which are connected
with a revolute joint. The first link is connected to the body with a revolute joint and
the second link has an orthogonal plate attached to it. This plate has an important role
when it comes to the locomotion of the single module. It is essential that this part has
a higher static friction coefficient than that of the cylinder of the wheel. The local
reference frame is placed at the center of the lower tip of this plate because this

position is the center of rotation of the module.

The foot has important functions in different locomotion modes. While the module is
operating as a leg in the quadruped walking mode, the first and the second joints of
the foot form the shoulder and elbow and the second link forms the forearm of the
articulated manipulator. In the wheeled configurations, the joint positions of the foot
can change the axle length of the structure. In limbless locomotion modes, forward
movement is achieved by the periodic movement of the foot links.

The body is the uniting part of the module. The wheel and the foot are connected to
the body with their revolute joints. A caster is attached to the lower side of the body.
The caster acts as a pivot point in case the tip of the foot loses contact with the
terrain. The pole-like structure on which the visual sensor is positioned is attached to
the upper side of the body with a revolute joint. Two connection points are located

on the left and right sides of the module.
3.1.3 Sensor implementations

3.1.3.1 Force sensor

Force sensors are used to estimate the friction coefficient between the robot external
surface and the terrain. Since the decision algorithm for intelligent locomotion and
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reconfiguration rely highly on this estimation, the role of force sensor is important

for cooperative behavior of the modules.

In the simulation software, the force sensors are needed to be positioned between two
rigid shapes. To satisfy this requirement, the wheel part of the module is created by
using two identical cylindrical shapes and the force sensor is positioned between
these two cylinders. Figure 3.4 shows the positioning of the force sensor. The front
cylinder of the wheel is exposed to friction force while the module is moving and it
transfers this force to a certain location so that the force sensor can operate. Next, the
readings of the force sensor can be used in the decision algorithm for intelligent

locomotion.

= Selected objects 0
.

Figure 3.4: Force sensor.

3.1.3.2 Visual sensor

Visual sensors are the main unit of the modules for sensing the environment around
them. They have uses both in the assembly phase in which the modules are operating
alone and in the cooperative phase in which the modules have different roles in a
configuration. The visual sensors are created using the proxy sensors in the
simulation software and attached to the body of modules with a pole-like structure

consisting of two links and two revolute joints.

In the assembly phase, one of the most important uses of the visual sensors is
localization of other modules in the neighborhood. After the decision for the
locomotion mode is made, the modules start scanning the area around them with the

help of their visual sensors. After the scan, a basic coordinate system is created using
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the module or obstacle data acquired. During the assembly process, the modules
continue scanning the environment to update their position on the coordinate system

if they are not able to get locked to their target modules.

The creation of visual sensors in the simulation software can be considered as
simulating a camera by using proxy sensors. The original proxy sensors in the
simulation software are capable of identifying objects (shapes or dummies) that are
part of a running simulation and returning axial distances based on its own
coordinate frame. These capabilities of the proxy sensor make it possible to use it

like a camera in the simulation environment.

Another important issue in the implementation process of the visual sensors is
positioning. Since all mechanical parts of the module are facing orientation and
position changes during locomotion, having the visual sensor positioned at a
stationary point would not represent the real situation. Giving the visual sensor a
relative independency regarding orientation and position control to adjust the visual
angle makes the localization problem easier. Therefore the visual sensor is positioned
at the end of a pole-like structure that has two links and two revolute joints and is
attached to the body of the module. The first joint that connects the pole-like
structure to the body controls gamma orientation and the second joint controls the
beta orientation of the visual sensor. This control is very important in assembly phase
in which the visual sensor of a moving module is required to lock a target module for

connection.

3.1.4 Connection mechanism

The connection mechanism is the most important design element in the modular
reconfigurable mobile robots because it enables the assembly of several
configurations. In the simulation, connection of two modules is assumed to be
completed by creation of a link between the connection points of modules. In each
module there are four connection points. The connection points are positioned at the
front side of the wheel, left and right sides of the body and at the back of the foot.
Although the connection points on any module can create links between other
connection points on another module, body-to-body and wheel-to-wheel connections

are not used.
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The connection points are created by using dummies in the simulation software.
Dummies are not physical entities. They are points with orientation and can be seen
as reference frames. Dummies have lots of uses in the simulation software, but their
capability of creating links between other dummies makes them suitable to be used
as connection points. There are several types of links between dummies which can be
used for different purposes, but "Dynamics, overlap constraint™ type of link is used
for making the dummies behave as connection points. When created between two
dummies, this type of link makes the dummies try to overlap their respective position
and orientation. Therefore the parent shapes of the two dummies (e.g. the wheel part
of a module and the foot part of another module), which are physical entities; act as

if they are physically connected to each other.

Since "Dynamics, overlap constraint™ type of link between two dummies make them
overlap their positions and orientations, their position and orientation should be set
accordingly to allow wheel-to-foot, wheel-to-body, foot-to-body and foot-to-foot
connections. Table 3.1 shows the position (X, y, z) and orientation («, £, ) values for
each dummy relative to reference frame of the module. Recall that the reference
frame is positioned at the center of the lower tip of the foot. Figure 3.5, Figure 3.6,
Figure 3.7 and Figure 3.8 show wheel-to-foot, wheel-to-body, foot-to-body and foot-
to-foot connections between two modules and corresponding dummy orientations.
Note that in the figures, the modules are not connected, but are about to connect and
some parts of the module are not visible or shown as wireframe for better
understanding. In all figures the first module is stationary at position (0, 0, 0) and

orientation (0°, 0°, 0°) and the second module is the connecting module.

Table 3.1 : Dummy positions and orientations.

Position (x, Y, 2) Orientation (a, B, )

DummyFx (0.172, 0, 0.025) (0, 0,0)
DummyLx  (0.137, 0.025, 0.025) (0, 0,-90)
DummyRx  (0.137, -0.025, 0.025) (0, 0, 90)
DummyBFx (0, 0, 0.025) 0,0,0)
DummyBSx (0, 0,0.025) (0,0, 180)
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Figure 3.7: Foot-to-body connection.
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Figure 3.8: Foot-to-foot connection.

The reason for having two different dummies on the foot is the orientation
differences between connecting dummies in different connection types. DummyBS is
the first dummy created for the module to accomplish foot-to-body connections.
When the module needed to make foot-to-foot connections, the existing dummies
(DummyBS) at the foot of both modules have different orientations. While the
orientation of DummyBS of the first module (DummyBSx1) is (0°, 0°, 180°), the
orientation of the DummyBS of the second module (DummyBSx2) will be (0°, 0°,
0°). If it is left that way and the dummies are linked to each other, they will try to
overlap their positions and orientations causing the modules to also overlap. To
overcome this problem another dummy is added to the back connection point which
is DummyBF. This dummy has the same position with DummyBS, but has -180°
difference in gamma orientation. This difference makes the orientation of this
dummy equal to the orientation of the DummyBS of the stationary module in foot-to-
foot connections. Addition of DummyBF also solves the same orientation problem in
wheel-to-foot connections. The first dummy is named as DummyBS because it was
the standard for foot-to-body connections before there was not any need for
DummyBF. The name Dummy BF is given to the second dummy because it is added

to make foot-to-foot connections possible.
3.1.5 Locomotion

3.1.5.1 Kinematics of a single module

As expressed before the design of a single module is very similar to an articulated

manipulator. Therefore the kinematic model of a single module is also similar to the
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kinematic model of an articulated manipulator. Figure 3.9 shows the coordinate
frames assigned for using Denavit - Hartenberg convention and D-H parameters for
the kinematic chain are shown in Table 3.2. Note that the base of the kinematic chain
is the connection point of the wheel and the end-effector is the lower tip of the foot.
d; is the distance between the connection point of the wheel and the first joint of the
foot and it is 77.5 millimeters. d, is the distance between the two joints of the foot
and it is 47.5 millimeters long. ds is the distance between the second joint of the foot
and the outer center of the orthogonal plate and it is 47 millimeters. as is the distance
between the lower tip of the foot and the outer center of the orthogonal plate attached

to the foot and its value is 25 millimeters.

Figure 3.9: Coordinate frames for the first kinematic chain.

Table 3.2 : D-H parameters of the first kinematic chain.

Rot,(0;) Trans,(d;)) Trans,(a) Rot(a;)

1 91 d]_ 0 (051
2 O d2 0 (0%]
3 -t/2 d; ds 0

Since the homogeneous transformation matrices are represented as a product of four
basic transformations, any homogeneous transformation matrix associated to a link i

can be expressed generally as shown in equation (3.1).
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cos(0;) —sin(0;)cos(a;) sin(0;)sin(a;) a;cos(6;)

Ai:

sin(@;) cos(08;)cos(a;) —cos(0;)sin(a;) a;sin(6;)

0 sin(a;) cos(a;) d; (3.1)

0 0 0 1

Using (3.1) and placing the corresponding D-H parameters associated to each link,

the homogeneous transformation matrices can be derived. The derivation of the

homogeneous transformation matrices associated to each link is shown in equations

(3.2) to (3.4).

A1=

cos(0;) -—sin(04)cos(a;) sin(O¢)sin(a;) O

sin(@;) cos(f;)cos(a;) —cos(B;)sin(a;) O (3.2)
0 sin(a;) cos(a,) d, '
0 0 0 1

1 0 0 0
|0 cos(ay) -—sin(az) O
2=10 sin(ay) cos(ay) d, (3.3)
0 0 0 1
0O 1.0 0
-1 0 O —as
Az = 0 0 1 d, (3.4)
0O 0 0 1

The homogeneous transformation matrix that transforms the coordinates of the end

effector (tip of the foot) to the base (connection point of the wheel) can be derived as
shown in (3.5).

TS = AA,A; (3.5)

Since the calculations are too complex, an m-file is created to calculate the position

of the end-effector for different values of a; and a, in MATLAB. The m-file also

transforms th

of the mode

e coordinates of the end-effector from the coordinate frame of the base

| to the absolute frame of V-Rep. The transformation is shown in

equations (3.6) to (3.8). The transformation assumes that the lower tip of the wheel is
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positioned at the origin of the absolute frame of V-Rep. Therefore the base of the

kinematic chain (connection point of the wheel) is positioned at (0, 0, 0.025).

Xlocal = ~Zmodel (36)
Yiocal = —Xmodel (3-7)
Zigcal =Y + 0.025 (38)

The first kinematic model is useful in situations in which the wheel and the body of
the module are assumed to be stationary. An example to this situation is the action
taken by the module to achieve forward linear motion where the tip of the foot is
needed to be positioned in a closer position to the body while the body and the wheel
have to be stationary. That means that the first kinematic model is pretty helpful and
informative for creating a forward locomotion method for the single module, but this
does not mean that it is also useful for creating a backward locomotion method in
which the wheel and the body of the module will not be stationary. Therefore to
create a backward locomotion method, another kinematic model in which the tip of
the foot has to be stationary while the wheel and the body of the module have to be

moving has to be created.

Second kinematic model is mainly used for creating a gait for backward locomotion
in which the tip of the foot is stationary and it pulls the wheel and body of the
module. Although there is no joint in the original design of the module, one virtual
joint is added to the tip of the foot in the kinematic chain. This joint helps adjusting
the height of the end-effector which is generally contacting the terrain because of
dynamic constraints while moving backwards. Basically the joint is not a part of the
gait to be created, but it is helpful for design purposes. Therefore, the base of the
kinematic chain is assumed to be the joint on the tip of the foot and the end effector
is assumed to be the tip of the wheel. Also the position of the caster of the body has
to be known for designing a backward locomotion gait, so it can be seen as an end-
effector, too. Figures 3.10 and 3.11 show the coordinate frames assigned to each link

and Table 3.3 shows the D-H parameters for the kinematic chain.
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Figure 3.10: Coordinate frames for the second kinematic chain.
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Figure 3.11: Coordinate frames for the second kinematic chain.
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Table 3.3 : D-H parameters for the second kinematic chain.

Rot,(8;)) Trans,(d;) Transe(a) ROt (o)

1 0, 0 a 0
2 /2 0 a 0
3 05 0 ag 0
4 04 0 ay -11/2
5wt 0 st 0 0
5bc 0 Ospe ashe 0

Note that a; is the distance between the lower tip of the foot and the outer center of
the orthogonal plate attached to the foot and its value is 25 millimeters. a, is the
distance between the outer center of the orthogonal plate and the second joint of the
foot and it is 47 millimeters. az is the distance between the two joints of the foot and
it is 47.5 millimeters long. a4 is the distance between the outer center of the wheel
and the first joint of the foot and it is 77.5 millimeters. ds is the distance between
the lower tip of the wheel and the outer center of the wheel and it is also 25
millimeters. dspc is the height of the center of the body caster and asy is the
longitudinal distance between the center of the body caster and the lower tip of the
wheel. They are 5 millimeters and 75 millimeters long, respectively. Placing the D-H
parameters to the general matrix form shown in (3.1) yields homogeneous
transformation matrices associated to each link. Equations (3.9) to (3.14) show the

derivation of these matrices.

cos(8;) -sin(64) 0 aqcos(64)
A. = sin(64,) cos(04) 0 aqsin(6,) _
! 0 0 1 0 (3.9)
0 0 0 1

0 -1 0 O

_ 1 0 0 a,
A, = 0 0 1 0 (3.10)

0O 0 0 1
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cos(03) -—sin(03) 0 azcos(03)
Aa = sin(03) cos(03) 0 azsin(03) .
3 0 0 1 0 (3.11)
0 0 0 1

cos(04) 0 —sin(0,) aycos(0y)
_|sin(04) 0 cos(04) a4sin(6,)

A A2
* 0 -1 0 0 (3.12)
0 0 0 1
1 0 0 0
o1 0 o
0 0 O 1
1 0 O Aspc
o 1 0 o
0 0 O 1

The homogeneous transformation matrices that transform the coordinates of the end
effectors (tip of the wheel and caster of the body) to the base (the joint on the tip of

the foot) can be derived as shown in equations (3.15) and (3.16).

T2, = A1A2A3A4 A5, (3.15)

T2y = A1A2A3A4 A5, Asp, (3.16)

As in the case with the first kinematic model, the calculations are too complex to
handle without computer support. Another m-file is created to calculate the positions
of the end-effectors for varying values of 6, and 6. It also calculates the suitable
value for 6; using the trigonometric relation given in (3.17). After the suitable 6,
value is calculated, the program recalculates the positions of the end-effectors and
then assuming the base of the kinematic chain is the origin, transforms it to the

absolute frame of V-Rep using equations (3.18) to (3.20).
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xmodel)

0, = tan™1( (3.17)
Ymodel

Xlocal = Ymodel (3.18)

Yiocal = Zmodel (3.19)

Ziocal = Xmodel (3.20)

3.1.5.2 Locomotion methods and gait design

The module is expected to be moving forward and backward in the longitudinal
direction. Using the kinematic models of the module, two different locomotion
methods can be created. The locomotion methods are created by designing poses and
switching the poses periodically, which in turn causes the foot to push or pull the rest

of the module providing forward or backward locomotion.

The easiest way to achieve forward linear motion is to create propulsion by the use of
the foot. This can be done by moving the tip of the foot to a forward position, then
(with the help of friction) letting the foot push the rest of the module forward.

Creating a periodic gait like this provides forward linear motion to a single module.

The periodic gait for forward movement can be created by repeated implementation
of two different poses. The purpose of the first pose is to bring the tip of the foot to a
forward position. The important point to take into consideration while having the
module take this pose is to make sure the tip of the foot is not contacting the terrain
until the final position is reached. The second pose is the same pose of a module at
rest, but the importance of this pose is the action taken by the module to form this
pose. The tip of the foot should be contacting the terrain while this pose is being
taken so that the static friction force ensures that the tip of the foot is not moving and
causing the module to move forward, i.e. to push forward. Figure 3.12 shows the

motion sequence of described locomotion move.
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Figure 3.12: Forward locomotion of a single module.

From position control perspective, the module is expected to be moving as fast as
possible while the distance from goal position is high. This velocity will be referred
as "high velocity". Since accuracy is another issue for the module positioning, the
gait is also expected to provide smaller linear displacements when the distance from
goal position is lower than the displacement which the high velocity provides.
Similarly this velocity will be referred as "low velocity". The high velocity and the
low velocity can be adjusted by finding the suitable joint angles for the first pose of

the gait.

To design the gait to provide the high velocity, the first pose of the gait should be
designed to provide maximum displacement while satisfying the height condition. To
determine the suitable joint positions for the first pose of the gait, a modified version
of the m-file created for the first kinematic model is used. The modification makes
the m-file a searching program which calculates the end-effector position for
different a; and a, values and returns a table satisfying the height condition. As
expressed before the end-effector should not contact the terrain while the module is
taking the first pose, so the table consists of a; and a, values that make the end-
effector have its z value on the coordinate system between 5 millimeters and 7.5
millimeters. The pseudo-code of the search program created is given in Table3.4.

The code of the m-file can be found in Appendix-A.

Table 3.4 : Pseudo-code of the search program.

01 FOR(ay values from -90° to 90°)

02 ---FOR(az, values from -120° to 120°)

03 ------ Create A;, Ay, Az matrices

04 ------ Calculate T3 = A;*Ay*As

05 ------ //Pull coordinates from T3° for kinematic frame then transform it to V-Rep
absolute frame

06 ------ Xmodel = T30(1!4)

07 ------ Ymodel = T30(2,4)
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08 ------ Zmodel = T30(374)

09 ------ Xvrep = ~Zmodel

10 ------ Yvrep = ~Xmodel

11 ------ Zyrep = Ymodel + 0.025

12 -—---- Calculate distance covered Xg = 0.172-Xyrep
13 --—---1F(xg>0.072 AND 0.005<7yrep<0.0075) THEN
14 - count +=1

15 -----m--- Table(count,1) = count

16 --------- Table(count,2) = oy

17 --------- Table(count,3) = a;

18 -----—--- Table(count,4) = Xmodel

o JE—— Table(count,5) = Znogel

20 --------- Table(count,6) = xq

p ) — ENDIF

22 ---ENDFOR

23 ENDFOR

24 Print Table
After running the m-file, the resulting table listing «; and o, values satisfying the

height condition are given in Table 3.5.

Table 3.5 : a; and a; values for the first pose of the high velocity gait for forward
locomotion.

o o X (m) z (m) Xq (M)

[EEN
1

N

~

120 -0.0997 0.0075 0.0723
-46 120 -0.0994 0.0071 0.0726
-45 120 -0.0991 0.0067 0.0729
-44 119 -0.0997 0.0061 0.0723
120 -0.0988 0.0063 0.0732
-43 119 -0.0994 0.0057 0.0726
-43 120 -0.0985 0.0060 0.0735
-42 118 -0.0999 0.0051 0.0721

© o ~N oo oM w N
1
N
N

-42 119 -0.0990 0.0054 0.0730

'—\
o
1
o
N

120 -0.0981 0.0056 0.0739
11 -41 120 -0.0978 0.0053 0.0742

As it can be seen from the table, the maximum displacement is achieved when a; is
(-41°% and ay is (120°%). Therefore the first pose of the gait for high velocity is

determined as shown in Figure 3.13.
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Figure 3.13: First pose of the high velocity gait of forward locomotion.

To get smaller displacements to determine the low velocity, the first pose of the gait

can be redesigned and the distance traveled in a single step can be reduced to have

less positioning errors. To redesign the first pose, the modified m-file used before

can be run again by changing the distance traveled condition to be around 25

millimeters. As before, the m-file returns a table listing the a; and a, values for

desired traveling distances. The a; and a, values from the resulting table are listed in

Table 3.6.

Table 3.6 : a; and a; values for first pose of the low velocity gait for forward

locomotion.

o 02 X (m) z(m)  Xq(m)
1 -36 62 -0.1472 0.0098 0.0248
2 -35 60 -0.1484 0.0097 0.0236
3 -35 61 -0.1477 0.0092 0.0243
4 -34 59 -0.1489 0.0090 0.0231
5 -34 60 -0.1482 0.0085 0.0238
6 -34 61 -0.1474 0.0079 0.0246
7 -33 59 -0.1486 0.0078 0.0234
8 -33 60 -0.1479 0.0073 0.0241
9 -33 61 -0.1471 0.0067 0.0249
10 -32 59 -0.1483 0.0066 0.0237
11 -32 60 -0.1475 0.0060 0.0245
12 -31 58 -0.1487 0.0059 0.0233
13 -31 59 -0.1480 0.0053 0.0240

Using the table, the suitable values for a; and a, are

found to be (-33%) and (61°).

Figure 3.14 shows the first pose of the low velocity gait for forward locomotion.
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Figure 3.14: First pose of the low velocity gait of forward locomotion.

A single step of the high velocity and low velocity gaits for forward locomotion is

completed after the foot returns to the reset position where a; and a; are (0°).

The backward locomotion method design is similar to the design of the forward
locomotion method. While the module is moving backwards, the foot of the module
is expected to pull the wheel and the body parts. The difference between the two
methods is that the forward locomotion can be achieved by two different poses
because the last pose of the module is also the starting pose of the gait. In the
backward locomotion method, this seems inapplicable. After the foot pulls the rest of
the parts to a backward position, the tip of the foot has to lose contact with the terrain
causing the caster on the body to be the pivot point. Only after losing contact with
the terrain, the module can return to its starting pose. Therefore, in the backward
locomotion method, the module needs to have two extra poses, making the total
poses of the gait four in one step. The first extra pose, which is the second pose of
the gait, is for making the caster contact the terrain and the second is a transition pose
for the foot to ensure it is not contacting the terrain while returning to the reset
position.

The design process of the poses of the backward locomotion gait is similar to that of
the poses in the forward locomotion gait. The m-file created for the second kinematic
model is modified to be a search program which calculates the end-effector positions
for varying values of #; and 6, and returning the values satisfying several conditions

33



by creating a look-up table. Since the caster becomes the pivot point in the second
pose, the displacement in one step of the gait is determined in this pose. Therefore,
the gait design is based on the second pose of the gait. Similar to the forward
locomotion gait design, two different value pairs will be determined for the high

velocity and the low velocity for the design of the second pose.

To determine the #; and 6, values for the second pose of the gait to achieve high
velocity, several conditions have been set to narrow down the search. These

conditions are;

e The distance covered by the wheel of the module should be at least 45

millimeters,

e The caster should be contacting the terrain. This means that z-value of the
center of the cylinder that is used as the caster should be 5 millimeters high

from the terrain at most.

Table 3.7 shows the pseudo-code of the search program created for the second
kinematic model. After the conditions are added, the search program returns the table
as shown in Table 3.8. The code of the m-file can be found in Appendix-B.

Table 3.7 : Pseudo-code of the search program created for the second kinematic
model.

01 FOR(ay values from -90° to 90°)

02 ---FOR (o values from -120° to 120°)

03 ------ Create Ay, Ay, As, As, Asuc, Aspc matrices

04 ------ Calculate Tsy® = A*A*As*As*Asye

05 ------ Calculate Tspe’ = Ar*A2*As*As*Asut *Ashe

06 ------ //Pull coordinates from Ts, for kinematic frame
07 ------ Xmodel = Tsut 0(114)

08 ------ Ymodel = Tt 0(2,4)

09 ------ Zmodel = T5Wt0(314)

10 ------ Calculate required 61 = atan(Xmodel/Ymode!)

11 ------ Recalculate A;

12 ------ Recalculate Tsu = Ar*As*Ag*As*Asut

13 - Recalculate Tsu = Ar*Ar*Ag*As*Asut *Aspe

14 ------ //Pull coordinates from Ts,’ and Ts,c for kinematic frame then transform it

to V-Rep absolute frame

15 --==Xmodgel = Tsut_ (1,4)
16 ------ Ymodel = TSWIO (214)
17 -Zmodel = Tout’ (3.4)

18 ------ Xwt = Ymodel
19 ------ Ywt = Zmodel
20 ------ Zwt = Xmodel
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21 ------ Xmodel = T5bc2 (1,4)
22 ------ Ymodel = T5bco (2,4)
23 ------ Zmodel = Tshc (314)

24 ------ Xoe = Ymodel

25 ------ Ybe = Zmodel

26 ------ Zpc = Xmodel

27 ------ Calculate distance covered xq = 0.172-Xy
28 ------ IF(x4>0.045 AND z,:<0.005)
29 -------- count+=1

30 --------- Table(count,1) = count

31 ----eeee- Table(count,2) = 6,

32 - Table(count,3) = 63

33 - Table(count,4) = 6,

34 —--emeee- Table(count,5) = x4

35 —----o--- Table(count,6) = zp¢

36 ------ ENDIF

37 ---ENDFOR

38 ENDFOR

39 Print Table

Table 3.8 : 03 and 6, values for second pose of the high velocity gait for backward

locomotion.

91(0) 93(0) 94(0) Xgit(M)  Zeaster(M)
1 -50.38 86 -36 0.0450 0.0045
2 -50.07 87 -38 0.0451 0.0036
3 -50.69 87 -37 0.0455 0.0041
4 -51.30 88 -36 0.0459 0.0046
5 -49.75 88 -40 0.0452 0.0027
6 -50.37 88 -39 0.0456 0.0032
7 -50.99 88 -38 0.0460 0.0037
8 -51.61 88 -37 0.0464 0.0042
9 -52.23 88 -36 0.0468 0.0047
10 -50.67 89 -40 0.0461 0.0028
11 -51.29 89 -39 0.0465 0.0033
12 -51.91 89 -38 0.0469 0.0038
13 -52.53 89 -37 0.0473 0.0043
14 -53.16 89 -36 0.0478 0.0048
15 -51.59 90 -40 0.0470 0.0029
16 -52.21 90 -39 0.0474 0.0034
17 -52.84 90 -38 0.0478 0.0039
18 -53.47 90 -37 0.0482 0.0044
19 -54.09 90 -36 0.0487 0.0049

While satisfying the conditions, the maximum displacement is achieved when 65 is
(90°% and 6, is (-36°). Therefore, the second pose of the gait to achieve high velocity

is determined as shown in Figure 3.16. The same pose can be redesigned to have low
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velocity using the same way by changing the first condition. When the desired
displacement in the first condition is changed to be around 20 millimeters, the

program returns the table as shown in Table 3.9.

Table 3.9 : 65 and 6, values for second pose of the low velocity gait for backward
locomotion.

91(0) 93 (O) e4 (0) Xdif(m) anster(m)

1 -26.47 50 -24  0.0198 0.0044
2 -26.24 51 -26  0.0197 0.0034
3 -26.76 51 -25  0.0202 0.0040
4 -26.01 52 -28  0.0197 0.0024
5 -26.53 52 -27  0.0201 0.0030
6 -27.04 52 -26  0.0205 0.0036
7 -25.77 53 -30  0.0197 0.0014

8 -26.29 53 -29  0.0201 0.0020
9 -26.81 53 -28  0.0205 0.0026
10 -25.53 54 -32 0.0197 0.0004
11 -26.05 54 -31  0.0201 0.0010
12 -26.57 54 -30  0.0204 0.0016
13 -2581 55 -33  0.0201 0.0000
14  -26.33 55 -32  0.0205 0.0006

It can be seen from the table that when 65 is (52°) and 6, is (-27°) the desired
displacement of 20 millimeters is achieved.

After the second pose is determined for both high velocity and low velocity, the first
and the third poses can be determined for these velocities. The strategy for designing
these poses is simpler. The requirements for the first pose of the high velocity gait

are;
e The distance covered by the end-effector should not exceed 45 millimeters,
e The caster should not be contacting the terrain,
e 0 and 6, values should be close to (90°) and (-36°), respectively.

Running the program with these conditions returns the table as shown in Table 3.10.
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Table 3.10 : 83 and 6, values for first pose of the high velocity gait for backward

locomotion.
0:%)  0s() 0s(°) Xa(M) Zeasier(m) angle_dif(°)

1 -4987 70 -12 0.0430 0.0156 44
2 -50.22 71 -13 0.0433 0.0151 42
3 -50.79 71  -12 0.0439 0.0157 43
4 -51.36 71 -11 0.0446 0.0162 44
5 -51.14 72 -13 0.0442 0.0152 41
6 -51.71 72 -12 0.0449 0.0158 42

As it can be seen from the table, the most suitable values are (72°) for 65 and (-13°)
for 6,. Figure 3.15 shows the first pose of the high velocity gait for backward
locomotion. For the low velocity version of the first pose, the conditions are changed

as;
e The distance covered by the end-effector should not exceed 20 millimeters,
e The caster should not be contacting the terrain,
e 3 and 6, values should be close to (52°) and (-27°), respectively.

The resulting table is shown at Table 3.11.

Table 3.11 : 6; and 6, values for first pose of the low velocity gait for backward

locomotion.
0:)  0s() 0s() Xa(M)  Zeasier(m)  angle_dif(’)

1 -23.29 31 0 0.0182 0.0150 48
2 -23.77 31 -1 0.0188 0.0157 49
3 -24.07 32 0 0.0189 0.0153 47
4 -24.55 32 -1 0.0196 0.0160 48
5 -24.86 33 0 0.0197 0.0156 46
6 -25.17 34 -1 0.0198 0.0152 44

Using the table, the best setting for the first pose of the low velocity gait is found to
be (65=34°) and (04=-1°).

Designing the third pose is simpler than designing the other poses. The third pose is
used for placing the foot to a higher position from ground so that while returning to

the reset position, the tip of the foot does not contact the terrain. For that purpose the
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third pose for the high velocity gait is set to be (£;=45°) and (64=-45°). For the low
velocity gait, the setting is (#5=15% and (6,=-15°). Figures 3.15 to 3.17 show the
poses for the high velocity gait while Figures 3.18 to 3.20 show the poses for the low

velocity gait.

Figure 3.17: The third pose of the high velocity gait for backward locomotion.
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Figure 3.20: The third pose of the low velocity gait for backward locomotion.

Similar to the forward locomotion gaits, a single step of the high velocity and the low
velocity gaits for backward locomotion is completed after the foot returns to the reset

position where 63 and 6 values are (0°).
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3.1.5.3 Motions kinematics and position control

The motion kinematic model of the single module consists of the heading angle
modifications controlled by the front wheel speed of the module and the forward or
backward motion controlled by the push or pull effect of the foot. General motion
kinematic model of the single module shown in Figure 3.21 can be desribed as given
in equations (3.21) to (3.23). The reason for having difference equations to describe
motion on longitudinal direction is that the motion is discrete. Note that ynoq IS the
heading angle of the module and w is the angular velocity. d is the longitudinal
displacement caused by the selected gait.

Figure 3.21:  Longitudinal displacement and angular velocity of a module.

xmod[k] = xmod[k —-1]+ dSin(Ymod[k - 1]) (3-21)
Ymod [k] = Ymod [k—1] + dcos(Ymod [k — 1]) (3.22)
Ymod [k] = Vmod [k - 1] tw (3-23)

The longitudinal displacement d depends on both the selected gait and the friction
coefficient of the terrain. It is determined experimentally in the simulation

environment for different gaits and terrains with varying friction coefficients.

Determining longitudinal displacement is simple. After each cycle of the gait is
completed, x and y coordinates of the module is recorded and longitudinal

displacement is calculated using (3.24). Since the calculated value varies in each
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cycle, the average of the recorded longitudinal displacements is calculated whenever
a new sample is added for 60 seconds of simulation time. This procedure is applied
on terrains which have friction coefficients varying from 0.2 to 1.0 for all four

different gait and velocity couples the module can practice.

d= \/(xmod[k] — Xmod [k — 1])2 + (ymod[k] - Ymod[k - 1])2 (3.24)

Table 3.12 shows average longitudinal displacement for forward locomotion gait on
terrains with varying friction coefficients and the time it takes to complete one full
cycle of the gait. Note that the subscripts "fhv" and "flv" stand for forward high

velocity and forward low velocity.

Table 3.12 : Longitudinal displacement and cycle time of forward locomotion gait.

Terrain Friction High Velocity Low Velocity
Coefficient 4 7oycle) tasloycle) dm(micycle) talslcycle)
1.0 0.0635 0.95 0.0162 0.65
0.8 0.0652 0.95 0.0165 0.65
0.6 0.0662 0.95 0.0153 0.65
0.4 0.0663 0.95 0.0124 0.65
0.2 0.0502 0.95 0.0106 0.65

The average longitudinal displacement and the cycle time values for backward
locomotion gait are given in Table 3.13. The subscripts "bhv" and "blv" stand for
backward high velocity and backward low velocity similar to the forward locomotion

case.

Table 3.13 : Longitudinal displacement and cycle time of backward locomotion gait.

Terrain Friction High Velocity Low Velocity
Coefficient dorv(m/cycle)  tyn(s/cycle)  dy, (m/cycle) ty,y (s/cycle)
1.0 0.0233 1.05 0.0123 0.80
0.8 0.0210 1.05 0.0113 0.80
0.6 0.0186 1.05 0.0104 0.80
0.4 0.0161 1.05 0.0091 0.80
0.2 0.0117 1.05 0.0075 0.80

Similar to longitudinal displacement, angular velocity e is also dependent on terrain
friction coefficient, but it is not needed to determine the actual w value. To decide
which gait to use, the module has to calculate the time it takes for it to adjust its

heading angle. Therefore, determining t;go which is the time it takes for the module
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to change its orientation by +180° on different terrains will be satisfactory for

deciding the appropriate gait.

Since the module can rotate around its reference position, the orientation
modification provided by the wheel is not used as a steering mechanic. Another
reason for that is applying a high angular velocity to the wheel while the module is
moving can cause it to tumble. For these reasons, the angular velocity of the wheel is
kept at a low value for correcting small orientation errors while the module is
moving. The low velocity is determined as 90°/sec and it is only applied when the
orientation difference is less than 5°. To modify the heading angle while the module
is not moving, a high angular velocity value is also determined. Since the maximum
angular velocity that the wheel joint can provide is 360°/sec, the high angular
velocity value is set as 300°/sec and it is used for adjusting the orientation of the

module when the orientation error is greater than 5°.

Since the low velocity is relatively small and its effect on the gait decision is
neglectable, only the high angular velocity is used to determine t;go. Table 3.14

shows tigo in terrains with varying friction coefficients.

Table 3.14 : Time required for a 180° rotation in varying terrains

Terrain Friction Coefficient t180(S)

1.0 4.20
0.8 4.25
0.6 4.35
0.4 4.55
0.2 4.40

The modules move to assemble a configuration and as will be explained later, each
module has a different role in a configuration and these roles also differ in the
assembly phase. In the assembly phase, the modules are expected to be in a
predetermined position having a predetermined orientation depending on their roles.
For that purpose, a position control algorithm is developed for modules to position

themselves according to their roles as fast as possible.

The module firstly scans the area to find the module which has the first role. This
module is used as reference by all modules in the configuration and they calculate

their target positions relative to this module. The module which has the first role acts
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as a leader or anchor point for the whole system. After the reference module is found,
the module calculates its own position by using the data received from the visual
sensor. The module also calculates its target position depending on the role it has.
Equations (3.25) and (3.26) show the calculations of the initial module position using

the reference module. Figure 3.22 is also given for better understanding.

Figure 3.22: Calculating module position using the reference module.

Xmod = ddp Cos(yref) — dyis €0S(Vimoa + Vvis) — ddp c0S(Vmoa) (3.25)

Ymod = ddp Sin(yref) — dyis SIN(Ymoa + Vuis) — ddp Sin(Vmoq) (3.26)

In Figure 3.22 and equations (3.25) and (3.26) ddp stands for the distance between
the detection dummy and the reference position of each module. ddp value is the
same on each module and it is 102 millimeters. dvis is the distance data provided by
the visual sensor. ymod, yvis and yref are the gamma orientations of the moving

module, its visual sensor and the reference module, respectively.

The calculation of target position using the reference module is shown in Figure 3.23
and equations (3.27) and (3.28). Note that dlat stands for the required lateral distance
of the target position relative to the reference module position. Similarly, dlong is the
required longitudinal distance for the target position.
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Figure 3.23: Calculating target position using the reference module.

Xtarget = —diqt Sin(yref) + dlong Cos(yref) (3.27)

Ytarget = diat COS(Yref) + dlong Sin(Yref) (328)

After the target position and the position of the module are calculated, the required
orientation to reach the target and the difference between the heading angle of the
module is calculated using the trigonometric relations given in equations (3.29) and
(3.30).

1Y — Ymod
I e ) (3.29)
xtarget Xmod

Yaif = Vreq — VYmod (3.30)

The distance between the module and the target is calculated using (3.31).

dtarget = \/(xtarget - xmod)z + (ytarget - ymod)2 (331)

After the orientation difference and the distance from target is calculated, the
controller decides the direction of locomotion and the velocity. This is done by

calculating the required time to reach the target in each option. In both options, the
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calculated time intervals can be separated as t;, t, and t3. Since the friction coefficient
of the terrain is known, it is possible to calculate t;, t, and t3 values approximately

because d and w values are known.

tl is the time it takes to have the required heading angle to reach the target. For
forward locomotion option, tiorwarg 1S the time it takes to make the orientation
difference 0° and for backward locomotion option, tlbackward is the time needed to
make the orientation difference +180°. Equations (3.32) and (3.33) show the

calculation of t;.

Yaif
t1forward = Tgos t180 (3.32)
Yair £ 180°
tibackward = lthmo (3.33)

t, is the time needed to reach the target position by implementing the appropriate
gait. t, value is calculated by using the distance between the module and the target
position and the suitable d values of high and low velocity of the forward or
backward gaits. Equations (3.34) to (3.35) show the calculation of t, value for both

gaits.
dt t dt t 1
toforward = [%| trny + l(dtarget - l% dny .| trw (3.34)
fhv fhv flv
de t de t de t d
t2packward = %J tphy + [( darge - darge J * dbhv thiv (335)
bhv bhv bhv blv

Lastly, t3 is the time required for the module to take the desired heading angle after
reaching the target position. It changes depending on the heading angle the module
arrives at the target position. Assuming there will not be too much disturbance while
moving to the target position, the arriving orientation will be equal to the calculated
required heading angle in the initial position. Calculating the time to change the
heading angle from the required orientation in the initial position and the desired
heading angle in the target position can yield the approximate solution for t3. The

calculations are shown in (3.36) and (3.37).
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Ydes — Vs
t3forward = Wtwo (3.36)

Ydes — Vreq £ 180°
t3baCkWard = 1800 t180

(3.37)

When all time intervals are calculated for both locomotion methods, the siumlation
option which takes less time is selected. After the appropriate gait is selected, the
execution phase starts. Using the wheel joint, the module adjusts its heading angle
equal to the required heading angle. When the orientation difference is 0°, the
velocity to be applied is determined. Velocity is determined based on the distance
from target position. If the distance is greater than dyign Of the selected gait, then the
velocity is set as high. If the distance is between dhigh and diow, then the distance is set
as low and if the distance is lower than dq, the module decides that it has reached
the position and changes its heading angle to the desired heading angle. The pseudo-

code of the position control algorithm of the single module is given in Table 3.15.

Table 3.15 : Pseudo-code of the single module position control algorithm.

01 WHILE (not reached to the target)

02 ---Calculate target position, module position

03 ---Calculate distance, required gamma orientation
04 ---WHILE(gait not decided)

05 ------ Calculate tiforward, Dforward, t3forward

06 ------ Calculate tipackward, tobackward, tabackward

07 ------ Calculate tforward, thackward

08 ------ IF(Min(torward:thackward) == tforwara) THEN
(o] J— gait = forward

10 ------ ENDIF

11 ------ IF(Min(trorward: thackward) == thackward) THEN
[ — gait = backward

13 ------ ENDIF

14 ------ gait decided

15 ---ENDWHILE

16 ---Calculate gamma difference ygit = yreq - ¥mod
17 ---1F(gait == backward) THEN

18 ------ Recalculate gamma difference ygir = yqir + 180
19 --ENDIF

20 ---WHILE ([yi|>5°)

21 —----- set wheel speed = high

22 ------ set gait velocity = 0

23 ---ENDWHILE

24 --WHILE (Jyai|<5%)

25 -----1F(|ya|>0.5°) THEN
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26 --------- set wheel speed = low

27 ----ENDIF

28 ------1F(|ya|<0.5°) THEN

¢ JE— set wheel speed =0

30 -----ENDIF

31 ------ IF(gait==forward) THEN

C Y Je— | F(dtarget<dhigh) THEN

101G S set gait velocity = high
O/ —— ENDIF

0] Jp—— IF(diow<dtarget<dhigh) THEN
] J set gait velocity = low
Y g— ENDIF

38 ——e- I F (dtarger<diow) THEN

] P target reached

YT P set gait velocity = 0

P p— ENDIF

42 -----ENDIF

43 ------ IF(gait==backward) THEN
44 ————————- | F(dtarget<dhigh) THEN
i1 set gait velocity = high
T — ENDIF

/iy G — |F(d|ow<dtarget<dhi9h) THEN
/1 QP set gait velocity = low
e p— ENDIF

50 --————-- | F(dtarget<d|OW) THEN

oy — target reached

33 S — set gait velocity =0

Y — ENDIF

54 ---—--ENDIF

55 ---ENDWHILE

56 ENDWHILE

57 WHILE(not have desired orientation)
58 ---Calculate (b;amma orientation difference
59 ---1F(|ygi|>5") THEN

60 ------ set wheel speed = high

61 ---ENDIF

62 ---1F(0.5<|ygi|<5%) THEN

63 ------ set wheel speed = low

64 ---ENDIF

65 ---1F(|yaif] <0.5°) THEN

66 ------ set wheel speed =0

67 ------ have desired orientation

68 ---ENDIF

69 ENDWHILE
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3.2 Cooperative Locomotion Modes and Configurations

To complete more advanced tasks, the robotic structure can assemble different

configurations such as quadruped or wheeled.

In this section the assembly, locomotion methods and specific abilities of quadruped
and wheeled configurations are explained in detail.

3.2.1 Roles and communication in cooperative modes

The modules of the robotic structure can assemble different configurations. In
configuration mode each module has a role that determines the way it will function
before or after assembly. Role distribution is done after the system decides to
assemble a configuration. The roles are distributed to modules based on their
positioning. In assembly phase, a module determines its target assembly position
based on its role in the configuration. After the assembly is done and the
configuration is created, the module which has the first role (Role#1) becomes the
master of the configuration and sends commands to other modules based on the

requirements of the system.

Another important system in cooperative modes is the communication. The modules
need to communicate with each other mainly in the scanning phase to localize
themselves and initiate role distribution algorithm, in the assembly phase to notify
other modules about their connection status and in the configuration phase for

Role#1 to issue commands to other modules.

Communications in V-Rep is handled by variables called "Script Simulation
Parameter”. These variables are parts of scripts which can be read and written by
other scripts that are running in the same simulation. Since every module has a script
in V-Rep, they also share common script simulation parameters and use them to
share data and notify other modules. The script simulation parameters can be read
using "simGetScriptSimulationParameter(Script Handle, "SSP Name™)" function. To
write on parameters, the function "simSetScriptSimulationParameter(Script Handle,

"SSP Name", value)" is used in V-Rep scripts.
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3.2.2 Quadruped locomotion

The robotic structure can assemble a quadruped walker configuration by the

connection of six modules.

3.2.2.1 Structure and assembly

In this configuration the body is formed by two modules which are connected to each
other by their back connection points. The rest of the modules form the legs of the
walker robot. The modules operating as legs connect their front connection points to

the right or left connection points of the modules forming the body of the walker

robot. Figure 3.24 shows the walker robot standing still.

7
i

Figure 3.24: The walker robot standing still.

The modules forming the body of the configuration are Role#1 and Role#2. It is
assumed that Role#1 points forward direction for the configuration. Role#2 points to
the backward direction. The modules forming the front legs of the configuration are
Role#3 and Role#4 and the modules forming the hind legs of the configuration are
Role#5 and Role#6.

Role#3 is assumed to be the right front leg of the walker robot and this module
connects to the right connection point of Role#1 with its wheel. Role#4 is assumed to
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be the left front leg of the configuration. The wheel of this module connects to the

left connection point of Role#1.

The modules forming the right and left hind legs of the walker robot are Role#5 and
Role#6, respectively. Since Role#2 points backward, the right hind leg connects to
the left connection point and left hind leg connects to the right connection point of
Role#2.

Figure 3.25 and Table 3.16 shows predetermined module positions for the assembly

of the quadruped configuration.

o e o B | i =i

Figure 3.25:  Predetermined module positions for quadruped configuration
assembly.

Table 3.16 : Predetermined module positions for quadruped configuration assembly.

Role Part Position(x, y, z)  Orientation(a, S, 7)
1 Body Front 0,0,0) 0,0,0)
2 Body Back (-0.175, 0, 0) (0, 0, 180)
3  FrontRight Leg (0.137, -0.230, 0) (0, 0, 90)
4 Front Left Leg (0.137,0.23,0) (0, 0, -90)
5 BackRightLeg (-0.137,-0.372,0) (0, 0, 90)
6 Back Left Leg  (-0.137,0.372, 0) (0, 0, -90)

3.2.2.2 Leg kinematics and gait design

The walker robot is expected to move on both longitudinal and lateral directions.
Since the movement characteristics of legs differ in these different locomotion styles,

different gaits should be applied for both locomotion styles. These gaits are called
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trotting and sidling. Trotting is used for moving in longitudinal direction and sidling
is used for moving in lateral direction. Although the locomotion methods in
longitudinal and lateral directions are said to have different gaits, in truth their
timetables are same. The difference is the variation of the leg positions defined for

each of them.

Timetable used in both locomotion methods belongs to trot gait. The trot gait is
generally used for low-speed walking. It is commonly seen to be used by quadruped
animals like horses or dogs in nature. The diagonal legs act together in this gait. The
timetable of the gait is shown in Table 3.17.

Table 3.17 : Timetable of trotting and sidling gaits.

Step Front Right Front Left Back Right Back Left

0 0 0 0 0
1 X X 0
2 -1 1 1 -1
3 X 0 0 X
4 -1 -1

In the timetable, X" means that the leg is not contacting the terrain, "1" and "-1" are
the forward and backward positions. "0" is the reset position of the leg. After the
fourth pose, the legs return to pose one and the gait becomes periodic. Changing the

positions of states "1" and "-1" in the timetable makes the robot walk backwards.

Unlike trotting, sidling is not a common walking gait. Crabs, which are not
quadrupeds, generally use this gait. It is also named crabbing for this reason. The
diagonal legs act together like trotting. The timetable implemented to the walker
robot is the same timetable used in trotting. The only difference is "1" and "-1"
represents right or left depending on the desired side of movement. If the robot is to
sidle to its right, "1" means right and "-1" means left and vice-versa for sidling to its
left.

Since the desired leg positions are defined vaguely by the timetable, by modifying
the first kinematic model created for the single module, the joint positions can be
determined for realizing the walking-gaits and clearly defining the leg positions for
each gait. The modifications of the kinematic model are for changing the end-

effectors. For trotting, the end-effectors need to be the right and left tips of the legs.
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Similarly for sidling, the end effectors need to be the upper and lower tips of the leg.
The base of the model is still the connection point of the wheel. The need for having
two different end-effectors for each gait is that the foot of the module which acts as a
leg contacts the terrain on different tips while swinging forward or backward while
the robot is moving in longitudinal or lateral directions. The left tip of the foot
contacts the terrain while swinging forward and the right tip contacts the terrain
while swinging backwards on a module which acts as a right sided leg of the walking
robot and vice-versa for a module acting as a left sided leg of the robot while the
robot is trotting. When the robot is sidling towards a lateral direction, the lower tip of
the foot contacts the terrain while swinging forward and the upper tip contacts the

terrain while swinging backwards for the legs on that side of the robot.

The kinematic model used for designing the foot positions is the modified version of
the first kinematic model created for the single module. The modification is done for
extending the end-effectors from only lower tip to all four tips of the foot. Figure
3.26 and Figure 3.27 show the coordinate frames associated to a right sided leg of the
quadruped walker and Table 3.18 shows the corresponding D-H parameters for each

joint.

Figure 3.26: Coordinate frames used in the kinematic model.
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Figure 3.27: Coordinate frames used in the kinematic model.

Table 3.18 : D-H parameters of the kinematic chain

Rot,(8;) Trans,(d;)) Trans,(a) ROt (o)

1 91 dl 0 (021
2 0 d; 0 o2
3Iower - /2 d3 A3lower 0
3upper -7 /2 d3 aE’»upprt 0
3ri_qht 0 d3 Aright 0
Blett 0 ds Alet 0

Note that ¢, stands for the wheel position, «; and o, stand for the first and the second
joints of the foot, respectively. d; is the distance between the base of the kinematic
chain (connection point of the wheel) and the first joint of the foot which is 77.5
millimeters. d, is the distance between the two joints of the foot and its value is 47.5
millimeters. ds is the distance between the second joint of the foot and the outer
center of the orthogonal plate attached to the foot and it is 47 millimeters. asiower,
Azuppers Aaleft and asrigne Values are all distances between the outer center of the
orthogonal plate and the center of the tips of the foot. Their values are all 25
millimeters. Due to frame positioning, asiower and asrighe are assigned to 0.025 and

asupper AN agiee are assigned to -0.025 in the calculations.

53



The general matrix form of the homogeneous transformation matrices associated to
each link was given in (3.1). Placing D-H parameters to this general form for each
link i yields the homogeneous transformation matrices. Equations (3.38) to (3.43)

show these matrices.

cos(04) -sin(01)cos(a,) sin(0q)sin(a;) O

A = sin(@4) cos(04)cos(ay) —cos(0y)sin(ay) O (3.38)
1 0 sin(ay) cos(ay) dq '
0 0 0 1
1 0 0 0
|0 cos(ay) -—sin(az) O
2= sin(ay) cos(ay) d, (3.39)
0 0 0 1
0O 1 0 0
-1 0 0 —a
A310wer 0 0 1 Zl:wer (3-40)
0O 0O 1
0o 10 0
-1 0 0 -a
A3upper = 0 0 1 3dugpper (3.41)
0O 0O 1
100 a3right
1
A3right= g 0 (1) (;)3 (3.42)
0 0O 1
1 0 O a3left
010 0
Azpeft = 00 1 d, (3.43)
0 0O 1

The transformation matrices that transform the coordinates of the end effectors (tips
of the foot) to the base (connection point of the wheel) can be derived as shown in
equations (3.44) to (3.47).
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Tglower = A142A310wer (3.44)

Tgupper = AlAZASupper (3.45)
T(S)right = A1A2A3right (3.46)
Tiese = A1A2 43105 (3.47)

Since the calculations are complex, a modified version of the m-file created for the
single module kinematic model is used to analyze the end-effector positions. The m-
file also transforms the coordinates of the end-effector from the coordinate frame of
the base of the model to the absolute frame of V-Rep. The transformation is shown in
equations (3.48) to (3.50). The transformation assumes that the base of the kinematic
chain (connection point of the wheel) is positioned at the origin of the absolute frame
of V-Rep.

Xiocal = ~Zmodel (348)
Yiocal = ~Xmodel (3-49)
Ziocal = Ymodel (350)

After the coordinates of the end-effectors are clearly determined in the absolute
frame of V-Rep, a suitable value for 8, for the forward and backward positions of the
leg should be determined for the trot gait. For trotting, only the right and left tips of
the foot positions are needed and the only variable is the wheel position. The first
and the second joint positions are fixed at 60° and 30°, respectively. For varying 6,
values, the X, y, z coordinates of the left and right tips of the foot are shown in Figure
3.28 and Figure 3.29.
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Right Tip Coordinates for Varying Wheel Pasitions

Figure 3.28:

x-y-z coordinates of right tip of the foot for varying ¢, values.

LeR Tip Caordinates for Varying Wheel Positions.
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1
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Figure 3.29:

100

X-y-z coordinates of left tip of the foot for varying 6; values.

There are two constraints for the selection of #; while swinging forward and

backward. The first constraint is the height constraint. Since the legs have to lose

contact with the ground after reaching the backward position to move to the forward

position, the height of the tips of the legs that are contacting the terrain should be

lower than 47 millimeters. For a right sided leg, this means that while 6, is positive

the z value should be lower than -0.047 because while 0, is positive the left tip is

contacting the terrain and while 6, is negative z, value should be lower than -0.047 to
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avoid contact between the lifted legs and the terrain. Figure 3.30 shows the z, and z

values for varying 6, values and the -0.047 limit.

Figure 3.30: z, and z, values for varying ¢ values.

The second constraint is the non-collision constraint. The longitudinal displacement

of tips of the legs that are not contacting the terrain should not exceed 89.5

millimeters because there is a period when the hind leg is in the forward position and

the front leg is in the backward position at the same side of the robot. The length of

89.5 millimeters is half of the distance between connection points of the front legs

and the hind legs. Therefore y, of a right sided front leg cannot be higher than 0.0895

and y, of a right sided hind leg cannot be lower than -0.0895. Figure 3.31 shows the

yr and y; values for varying ¢, values and the limits.

Longtuinal Displacement of Lk and Right Tips For Varying Wheel Postions

Figure 3.31: y, and y, values for varying 6; values
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From the figures, it can be seen that the height constraint is not as limiting as the
non-collision constraint. Due to the non-collision constraint, the maximum swing
range of a leg should not exceed 120° (between -60° and 60°). For more safety, the
implemented maximum swing range is set to be 90° (between -45° and 45°). For a
standard trotting to move forward, the swing range is set to be 60° (between -30° and
30°) to provide space for the orientation controller to increase or decrease the swing
range. Table 3.19 shows the joint positions for each leg while trotting forward and

Figure 3.32 to Figure 3.35 show the walker robot state in each step of the gait.

Table 3.19 : Joint positions of legs while trotting forward.

Step Front Right (3) Front Left (4) Back Right (5) Back Left (6)

00 6:0) 60 0.0 6O 60 6O 0.0 6O) 6O 6.0) 60
0 60 30 0 60 30 0 60 30 0 60 30

0 60 30 0 0 90 0 0 90 0 60 30
60 30 -30 60 30 30 60 30 30 60 30
0 0 90 0 60 30 0 60 30 0 0 90

IS w N = o
'
w
o

30 60 30 30 60 3 -30 60 30 -30 60 30

m7‘ |
L}

Figure 3.32: First step of the trot gait.
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Figure 3.33: Second step of the trot gait.
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Figure 3.34: Third step of the trot gait.
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Figure 3.35: Fourth step of the trot gait.

The second part of the kinematic calculations is for sidling. For sidling, positions of
the upper and lower tips of the foot should be analyzed. The only variable is the
position of the second joint of the foot, while the wheel and the first joint of the foot
positions are fixed at 0° and 60°, respectively. Figure 3.36 and Figure3.37 show the
end-effector positions for varying o, values.

Upper Tip Coordnates vs Second Joint Positions
o T I T T T T

01— - —

EET T T T

0 | | | | | | | |

Figure 3.36: x-y-z coordinates of upper tip of the foot for varying a, values.
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Lower Tip Coordinates vs Secand Joint Positions
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Figure 3.37: x-y-z coordinates of lower tip of the foot for varying a;, values.

While sidling, the distance between the operating parts of legs are not as close as in
the case while trotting. Therefore there is no need for a non-collision constraint. The
only constraint regarding sidling is the same height constraint set for the trot gait.
When the second joint position is higher than 30°, zyper should be less than -0.047
and when the second joint position is lower than 30°, Ziower Should be less than -0.047.

Figure 3.38 shows the z,pper aNd Zjower values for varying o, values and -0.047 limit.

Height of Lower and Upper Tips vs Second Joint Positions
002
T I I T

Figure 3.38: zypper and Zjower Values for varying a, values.

61



Due to the height constraint, a, cannot be lower than -81°. Since the height constraint
is not very limiting, the swing range is set as 120° (between -30° and 90°) to provide
room for the orientation controller to increase it up to 150° (between -45° and 105°)
or decrease it down to 90° (between -15° and 75°). Table 3.20 shows the joint
positions and Figures 3.39 to Figure 3.42 show the robot state while the robot is

sidling to its left.

Table 3.20 : Joint positions of legs while sidling to left.

Step  Front Right (3) Front Left (4) Back Right (5) Back Left (6)
0.) 0:() 8:) 6:) 6,0) 0:0) 6:() 6,() () 6:) 6:() 65C)
0

0 60 30 0 60 30 0 60 30 0 60 30
1 0 60 30 0 0 90 0 0 90 0 60 30
2 0 60 -30 0 60 -30 0 60 90 0 60 90
3 0 0 90 0 60 30 0 60 30 0 0 90
4 0 60 90 0 60 90 0 60 -30 0 60 -30

mym :
5

Figure 3.39: First step of the sidling gait.
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Figure 3.40: Second step of the sidling gait.

Figure 3.41: Second step of the sidling gait.
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Figure 3.42: Fourth step of the sidling gait.
3.2.2.3 Motion kinematics and position control

The quadruped walker robot is able to move back and forth in longitudinal and
lateral directions. The robot can also move on a curved path to control its orientation.
The orientation control of the vehicle is similar to differential drive vehicles.
Although the robot cannot rotate around its center, the difference between distance
covered by the opposite sided legs causes an arc-like movement which gives the

opportunity to control the orientation of the whole structure.

A switching controller is added to control the orientation of the robot for each gait.
Both controllers have four states which gradually change the orientation of the
structure more aggressively. To steer on a desired side of the robot, the controller
decreases the swing range of the legs on the desired side and increases the swing
range of the legs on the opposite side. The change in the swing range is 30° in the
most aggressive state In the middle states, this value is 20° and 10° In the most
passive state the swing range of the legs on the desired side is decreased by 10° and
the swing range of opposite sided legs is unchanged. Table 3.21 shows the general
state of leg joint positions for trot gait. Note that "I" and "r" stand for the effect of the
controller on the swing range of the legs. "I" is the applied control input to the left
sided legs and "r" is the applied control input to the right sided legs.
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Table 3.21 : General joint positions of legs while trotting.

Step Front Right Front Left Back Right Back Left
0.0) 6:0) 68:0) 6.0 6:0) 8:0) 6.0 6:() 6:() 6:) 6:0) 6:()
0 60 30 0 60 30 0 60 30 0 60 30
0 60 30 0 0 90 0 0 90 0 60 30
-30-r 60 30 -30-1 60 30 30+r 60 30 30+ 60 30
0 0 90 0 60 30 0 60 30 0 0 90
304«r 60 30 30+ 60 30 -30-r 60 30 -30-1 60 30

A WwWNPEFO

The controller states for sidling is the same, but it applies to the second joint of the
foot instead of the wheel joint. The general state of leg joint positions is shown in
Table 3.22. Similar to trotting case "f" and "b" are the effect of the controller on the
swing range of the legs. "f" is the control input applied to the front legs and "b" is the

control input applied to the legs at the back.

Table 3.22 : General joint positions while sidling.

Step Front Right Front Left Back Right Back Left
0.) 6:() 68:) 6:() 6:0) () 6:) 6:() 6:() 6:) 6:,() 650

0 0 60 30 0 60 30 0 60 30 0 60 30
1 0 60 30 0 0 90 0 0 90 0 60 30
2 0 60 -30f O 60 -30f O 60 90+b O 60 90+b
3 0 0 90 0 60 30 0 60 30 0 0 90
4 0 60 90+f O 60 90+f O 60 -30-b O 60 -30-b

The general motion kinematic model of the quadruped walker robot shown in Figure

3.43 can be expressed as shown in equations (3.51) to (3.53).

Figure 3.43: Longitudinal displacement and angular velocity of the quadruped
walker.

65



xk] = x[k — 1] + dsin(y[k — 1] + w) (3.51)

ylk] = y[k — 1] + dcos(y[k — 1] + w) (3.52)

vkl =vlk-1]+ o (3.53)

Similar to the single module case, the longitudinal displacement d and angular
velocity w are dependent on friction coefficient of the terrain. These values are
determined experimentally in the simulation software by using terrains with varying
friction coefficients. The experimental setup is the same as the single module case.
Only difference is w value is determined for the quadruped walker. The longitudinal
displacement is determined by using equation (3.24) and taking its average on a 1
minute period same as the single module case.  is determined by using (3.54) and

its average is also calculated.

w =y[k] —y[k—1] (3.54)

Table 3.23 and Table 3.24 show longitudinal displacement and angular velocity

while trotting forward on a curved path.

Table 3.23 : Longitudinal displacement and angular velocity while trotting in more
aggressive states of the controller.

Terrain r=15, I=-15 r=10, I=-10
Friction

Coefficient  (%cycle) d(m/cycle) t(s/cycle) o(%lcycle)  d(micycle)  t(s/cycle)

1.0 19.95 0.101 1.25 14.72 0.106 1.25
0.8 20.86 0.106 1.25 15.04 0.112 1.25
0.6 19.08 0.106 1.20 13.35 0.112 1.20
0.4 16.61 0.095 1.20 8.59 0.099 1.20
0.2 7.14 0.058 1.20 3.76 0.06 1.20
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Table 3.24 : Longitudinal displacement and angular velocity while trotting in more
passive states of the controller.

Terrain r=5, I=-5 r=0, I=-5
Friction 5 5
Coefficient  @(/cycle) d(m/cycle)  t(s/cycle) o(“/cycle) d(m/cycle)  t(s/cycle)

1.0 7.81 0.107 1.25 4.42 0.094 1.25
0.8 8.09 0.114 1.25 4.71 0.099 1.25
0.6 6.53 0.116 1.20 3.56 0.105 1.20
0.4 3.91 0.101 1.20 2.11 0.095 1.20
0.2 1.47 0.058 1.20 0.36 0.057 1.20

Equations (3.51) to (3.53) also hold for sidling. For better understanding Figure 3.42
is modified as shown in Figure 3.44. Table 3.25 and 3.26 show longitudinal

displacement and angular velocity while sidling to left on a curved path.

Figure 3.44: Longitudinal displacement and angular velocity of the quadruped
walker.

Table 3.25 : Longitudinal displacement and angular velocity while sidling in more
aggressive states of the controller.

Terrain f=15, b=-15 =10, b=-10
Friction 5 5
Coefficient o(/cycle) d(m/cycle)  t(s/cycle) o(/cycle) d(micycle)  t(s/cycle)

1.0 3.88 0.107 1.90 2.49 0.106 1.80
0.8 4.96 0.111 1.90 3.54 0.111 1.80
0.6 6.94 0.116 1.85 4.84 0.120 1.80
0.4 7.87 0.109 1.80 5.79 0.113 1.80
0.2 7.58 0.081 1.80 4.22 0.81 1.70

67



Table 3.26 : Longitudinal displacement and angular velocity while sidling in more
passive states of the controller.

Terrain f=5, b=-5 =0, b=-5
Friction T 0
Coefficient o(/cycle) d(mlcycle) t(s/cycle) w(/cycle) d(m/cycle) t(s/cycle)

1.0 1.74 0.107 1.85 1.02 0.103 1.80
0.8 151 0.111 1.80 0.85 0.105 1.80
0.6 2.35 0.121 1.80 1.22 0.115 1.80
0.4 1.89 0.115 1.80 1.08 0.110 1.80
0.2 1.94 0.080 1.80 0.82 0.075 1.80

Table 3.27 shows the longitudinal displacement while the robot is trotting forward

and sidling left without the effects of the orientation controller. The angular velocity

value is not recorded in these cases.

Table 3.27 : Longitudinal displacement while trotting forward and sidling left
without controller effect.

Terrain r=0, I=0 f=0, b=0
Friction
Coefficient
d(m/cycle) t(s/cycle) d(m/cycle) t(s/cycle)

1.0 0.106 1.25 0.110 1.80
0.8 0.112 1.25 0.113 1.80
0.6 0.115 1.20 0.124 1.80
0.4 0.104 1.20 0.118 1.80
0.2 0.058 1.20 0.080 1.80

The position control algorithm of the quadruped configuration is different from the
control algorithms of single module and wheeled configuration because the
quadruped configuration cannot rotate around its center. Orientation control is a
harder problem for this configuration than the single module or wheeled
configuration. Therefore target state orientation should be controlled before arriving

the target position in this case.

To control both the position and the orientation of the quadruped robot a switching
controller is designed which controls the swing range of the right and left sided legs
while trotting and front and hind legs while sidling. The swing range control is based
on the desired angle of the target state and lateral and longitudinal distance from the
target position. Figure 3.45 shows 12 possible actions which can be implemented by

the quadruped configuration.
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lat_dif>0 lat_dif<0
long_dif<0 | long_dif>0
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lat_dif>0 | lat_dif<0
long_dif>0 Iong_di_f<0

Figure 3.45: 12 possible actions which can be implemented by the quadruped
configuration.

In the figure, blue arcs represent the motion when trotting and yellow lines represent
the motion when sidling. The small double sided arrows show the new orientation
range. Blue arrows represent the orientation range when trotting and the yellow
arrows represent orientation range when sidling. As it can be seen from the figure,
based on the target and configuration position, the coordinate system can be broken
down into four quadrants. The other important property of the configuration is that
the quadruped walker can move towards any of the quadrants while changing its
orientation clockwise or counter clockwise depending on its decision to trot or sidle.
The position control algorithm is designed using these properties. The lateral and
longitudinal distance data acquired from the visual sensor is used to determine on
which quadrant the target is positioned and using the orientation difference between
the robot and the target state, the decision to trot or sidle is made. The pseudo code of
the position control algorithm of the quadruped configuration can be found in Table
3.28. Note that p-code assumes the visual sensor is locked to the reference target and
the lateral and longitudinal differencee between the target and the gamma orientation

desired is correctly calculated.

69



Table 3.28 : Pseudo-code for the position control algorithm of the quadruped
configuration.

01-1F(lat_dif>0 AND long_dif>0) THEN
02----1F(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN
03------- trotting=0

04------- sidling=1

05----ENDIF

06----1F(0<ornt_dif<90 AND -180<ornt_dif<-90) THEN
07---—---- trotting=1

08------- sidling=0

09----ENDIF

10-ENDIF

11-1F(lat_dif<0 AND long_dif>0) THEN
12----1F(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN
13------- trotting=1

14------- sidling=0

15----ENDIF

16----1F(0<ornt_dif<90 AND -180<ornt_dif<-90) THEN
17------- trotting=0

18------- sidling=1

19----ENDIF

20-ENDIF

21-1F(lat_dif<0 AND long_dif<0) THEN
22----1F(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN
23------- trotting=0

24------- sidling=1

25----ENDIF

26----1F(0<ornt_dif<90 AND -180<ornt_dif<-90) THEN
27------- trotting=1

28------- sidling=0

29----ENDIF

30-ENDIF

31-1F(lat_dif>0 AND long_dif>0) THEN
32----1F(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN
33------- trotting=1

34------- sidling=0

35----ENDIF

36----1F90<ornt_dif<90 AND -180<ornt_dif<-90) THEN
37------- trotting=0

38------- sidling=1

39----ENDIF

40-ENDIF

The pseudo code is very simple compared to the actual position control algorithm

applied. In the actual algorithm trotting and sidling is done more complex with

different swing ranges on the right and left sided legs while trotting and different

swing ranges on the front and hind legs while sidling. The orientation difference

limits also change depending on the friction coefficient of the terrain. The actual
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position control algorithm of the robotic system can be found in the move_quad()

function of the module script given in Appendix-C.

3.2.2.4 Passing over obstacles

The ability to pass over obstacles is the most important property of the quadruped
configuration and the main reason for the robotic structure to decide assembling a
quadruped walker. Passing over obstacle ability is designed as a simple sequence of

three poses given in Table 3.29

Table 3.29 : Joint positions of the poses for passing over obstacles sequence.

Step Front Right Front Left Back Right Back Left

60 6:0) 6:0) 6O 6:0) 6:0) 6O 6.0 6O) 6.0 6.0 60

0 0 60 30 0 60 30 0 60 30 0 60 30

1 -13 60 30 135 60 30 -135 60 30 135 60 30

2 135 60 30 -135 60 30 135 60 30 ~-135 60 30

The poses given in Table 3.29 can be seen visually in figures 3.46 to 3.48.

Figure 3.46: First pose of passing over obstacles sequence.
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Figure 3.47: Second pose of passing over obstacles sequence.

Figure 3.48: Third pose of passing over obstacles sequence.

Passing over obstacles sequence is repeated until the quadruped walker passes over

the obstacle.
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3.2.3 Wheeled locomotion

3.2.3.1 Structure and role distribution

The body of the configuration is formed by two modules making a foot-to-foot
connection. The rest of the modules form the wheels of the robot and they make a
foot-to-body connection with the modules forming the body. Four-wheeled robot is

shown in Figure 3.49.

Figure 3.49: Wheeled configuration.

The joint positions of modules in normal pose of the wheeled configuration is given
in Table 3.30

Table 3.30 : Joint positions of the normal pose of the wheeled configuraion.

Role Part Front Joint BackJointl BackJoint2
1 Body Front 0 -90 90
2 Body Back 0 -90 90
3 Front Right Leg 0 -75 90
4 Front Left Leg 0 -75 90
5 Back Right Leg 0 -75 90
6 Back Left Leg 0 -75 90

The role distribution of this configuration is very similar to the configuration to
achieve quadruped locomotion. The two modules forming the body are Role#1 and

Role#2 and the wheel of Role#1 is assumed to be pointing the forward direction.
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Role#3 makes a foot-to-body connection with Role#1 and forms the front right
wheel. Role#4 forms the front left wheel and its foot connects to the left side of the
body of Role#1. The wheels at the back are created by Role#5 and Role#6. Role#5
creates the right rear wheel and its foot connects to the left connection point of
Role#2. The module forming the left rear wheel is Role#6 and it makes a foot-to-

body connection with Role#2 on the left side.

The predetermined module positions and orientations for each role to assemble the

wheeled configuration is given in Table 3.31.

Table 3.31 : Predetermined module positions for wheeled configuration.

Role Part Position(x, y, z)  Orientation(a, f, y)
1 Body Front (0,0,0) 0,0,0)
2 Body Back (-0.175, 0, 0) (0, 0, 180)
3 Front Right Wheel (0.137, -0.230, 0) (0, 0,-90)
4 Front Left Wheel  (0.137, 0.230, 0) (0, 0,90)
5  Back Right Wheel (-0.137, -0.230, 0) (0, 0,-90)
6 Back Left Wheel  (-0.137, 0.230, 0) (0, 0, 90)

Similar to the assembly of the quadruped walker configuration, in the table the
module which has the first role is assumed to be positioned in the origin and its
gamma orientation is y;. Figure 3.50 shows the module positions before they start to

connect.

= § =
i

ril fec

Figure 3.50: Predetermined module positions for wheeled configuration.
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The reason for having the predetermined positions of modules having the third, the
fourth, the fifth and the sixth roles is their connection types. Since they make foot-to-
body connection with the first and second modules, they have to be positioned away
enough from these modules in case they decide to reach their predetermined
positions by forward locomotion gait. If their predetermined positions were not away

at least one module length, they could collide with the modules they have to connect.

In actual assembly phase the modules do not wait to connect to their target
connection points. The modules which have the second, the third and the fourth roles
move to complete connection after they arrive their predetermined positions and
adjust their heading angles as desired. The modules which have the fifth and the sixth
roles wait for the second module to complete its connection before connecting even

if they have the required position and orientation.

3.2.3.2 Motion kinematics and position control

An experimental motion kinematic model of a skid-steered vehicle that is developed
in [14] is used in this configuration. The development of the model is also explained

in this part.

The control inputs for the wheeled configuration are V, and V, which are the linear
velocities of wheels on the left and right with respect to the robot frame. The
relationship between the control inputs and the motion kinematics of the robot can be
stated as shown in (3.55) where vy and vy is the vehicle's translational velocity with

respect to local frame of the vehicle and w; is the angular velocity.

(2) =4 ([I,”) (3.55)

w,

To develop a motion kinematic model for the wheeled configuration, the effects of
control inputs on motion kinematics of the structure should be determined. The most
important variable that determines the motion kinematic model is the ICR
(Instantaneous Center of Rotation) of the vehicle. The formal definition of ICR is

given in [23] as;

"The instant centre of rotation, also called instantaneous centre or instant centre, is

the point in a body undergoing planar movement that has zero velocity at a

75



particular instant of time. At this instant, the velocity vectors of the trajectories of
other points in the body generate a circular field around this point which is identical

to what is generated by a pure rotation."

For a skid steered vehicle such as the wheeled configuration of this modular
structure, besides the ICR of the vehicle, also the ICRs of left sided and right sided
wheels can be expressed as given in equations (3.56) to (3.58).Note that in the
equations ICR;, ICR; and ICR, stands for ICR of the left sided wheels, ICR of the

right sided wheels and ICR of the wheeled configuration, respectively.

ICR, = (Xicr, Yicr,) (3.56)
ICR, = (X[cRr,, Yicr,) (3.57)
ICR; = (X[crp Yicr,) (3.58)

In [15], it is already stated that there is a line parallel to the x axis of the vehicle
frame on which ICR,, ICR, and ICR, lies on. Figure 3.51 shows the visual

representations of the ICR values.

ICR, ICR;
€6
m_'

Figure 3.51: Visual representation of ICR values.
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From Figure 3.47 and equations(3.56) to (3.58), ICR values can be used to relate
control inputs V, and V, to motion kinematic variables of the wheeled configuration

Vy, Vy and w,. Equations (3.59) to (3.62) show these relations.

XICRv = w_zy (3.59)

XICRl = %:vy (3.60)
XICRr = %Z_vy (3.61)
Yicrv = Yicrl = YIcRr = % (3.62)

z

In equations (3.60) and (3.61), & and o, stands for correction factors. They are values
between 0 and 1.00 which are used for determining mechanical factors which are not

taken into consideration in the motion kinematic model.

The elements of matrix A given in (3.55) depend on ICR coordinates of the wheels
on left and right side of the configuration and correction factors. Therefore using
equations (3.59) to (3.62), the A matrix can be formed as shown in (3.63).

1 —YIicrRv®1  YICRv®r
A=———| Xijcrr®1  —XCcRIOr (3.63)
X1crRr — XICRI a; a,

As stated before, the wheeled robot assembled in this configuration is symmetric
around the local x and y axes. This means that ICRs lie symmetrically on the local x

axis and y,cgy is equal to zero. Applying these to (3.63), matrix A takes the form;

o 0 0
A=—|x X 3.64
2% _IC1R 11CR ( )
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where a= oy= oy and Xicr = -XicrI=XICRr-

Since the kinematic relationship is dependent to X,cg and o value, the determination
of these values is the next step. Two experimental methods are proposed to find these
parameters in [16]. Note that these methods are applicable for symmetric models.
They do not contemplate the asymmetric effects of the center of mass or mechanical

misalignments.

The first method to determine x,cr value can be applied by using equal opposite
control inputs of V, and V, in terrains with varying friction coefficients. The vehicle
IS expected to rotate about its z axis. By measuring the distance traveled by the
wheels and the actual rotated angle, the x,cg value can be determined like shown in
(3.65).

_Jv.dt—[V,dt
XICR = 2¢

(3.65)

To find the correction factor a, equal control inputs of V. and V, is applied. The
vehicle is expected to move on a straight line. The correction factor can be
determined by measuring the distance traveled by the wheels and the actual distance
traveled in straight motion by the vehicle. The equation given in (3.66) shows the

method to determine the correction factor.

_ 2d
*= [v,.dt+ [V,dt

(3.66)

After the xicr and « values are determined for the vehicle and the motion kinematic
model is created, the position control algorithm can be developed. Since the wheeled
configuration can rotate around its center like the single module, the control
algorithms are very similar. The difference is that the wheeled structure can use the
wheel speed differences on different sides of the configuration for orientation
correction to avoid the obligation to stop. For that purpose, an orientation controller
is added to modify the heading angle of the configuration. The orientation controller
modifies the heading angle of the robot by simply decreasing the speed of the wheels

on the required turning side of the robot proportional to the orientation error. To
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prevent the controller from stopping the wheels on any side of the robot, the

minimum speed limit is set as 25%.

3.2.3.3 Passing under obstacles

Wheeled configuration can adjust its axle positions to lower its height and pass under
tunnel-like obstacles. To pass under obstacles, wheeled configuration only changes
its pose and uses its general position control algorithm. The module joint positions
for the low height pose of the wheeled configuration is given in Table 3.32 and

Figure 3.52 shows the visual representation of low height pose of the configuration.

Table 3.32 : Joint positions of the pass under obstacles pose of the wheeled
configuraion.

Role Part Front Joint  BackJointl  BackJoint2
1 Body Front 0 0 0
2 Body Back 0 0 0
3 Front Right Leg 0 0 30
4 Front Left Leg 0 0 30
5 Back Right Leg 0 0 30
6 Back Left Leg 0 0 30

-

!
\

Figure 3.52: Low height pose of the wheeled configuration.
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3.3 Strategic Planning

The strategic planning algorithm is the main control unit of the whole robotic
structure. It determines the actions to be taken by the structure such as moving to a
position, assembling or disassembling a configuration and executing configuration
specific actions depending on the data received from the environment. As expressed
before the strategic planning algorithm developed in this study is classified as a
hybrid deliberative/reactive type robotic paradigm. The deliberative side of the
algorithm is based on generating a plan that will drive the robotic structure from the
initial state to the desired goal state while reactive part of the algorithm is more like a
controller which is based on executing the plan generated in the deliberative layer.

The general strategic planning algorithm is shown in Figure 3.53

Modeling > Role Distribution —J» Decomposition
A
Generated ¢
Plan
Deliberative Layer
—_ — — — —{  Sensng |— — —_ —_ = — = = = = -

Reactive Layer

——  Sequencng |——|  Acing

E

Figure 3.53: General strategic planning algorithm.

3.3.1 Deliberative layer

The deliberative layer of the strategic planning algorithm is for generating a feasible
plan to drive the robotic structure from the initial state to the target state. Generation
of a plan is completed in five steps. These steps are sensing, modeling, role
distribution and decomposition. Figure 3.54 shows the general workflow of the

deliberative layer.
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Sub-goal Creation
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Target Positions Sub-goal Arrangement
\ 4

Sensing Plan

Figure 3.54: General workflow of deliberative layer.
3.3.1.1 Deliberative sensing phase

The sensing phase is about determining environmental conditions. This phase is vital
for both the deliberative and the reactive layer of the strategic planning algorithm. It
is essential for deliberative layer because generation of a plan to reach the desired
goal state starts with getting the environmental data such as obstacle positions and
friction coefficient of the terrain and the plan is generated according to the data
received. Sensing phase is vital for the reactive part because in the reactive layer of
the algorithm, actions taken by the robotic structure is actually reactions to the
sensory data. Even if a plan is generated to reach the desired target position, sensing
phase continues in the reactive layer of the algorithm as a part of the feedback

mechanism.

The sensing phase of the deliberative layer starts with the friction coefficient
estimation of the terrain. While estimating friction coefficient, each module takes
five forward low velocity steps and reads the force sensors positioned between their
wheel part when the module is in the reset pose. Figures 3.55 to 3.59 show the force

sensor readings in terrains with different friction coefficients.

1.00000000
050000000
000000000
0.00000000
False

1.00000000
Maximum contacts g8

Soft ERP 020000000
0.00000000
0.00000000
000000000

.....................  S— e 0.00000000

Figure 3.55: Force sensor readings when friction coefficient is 1.0.
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§ Physics Engines Properties - Material - 0 S

Property Value

Material name usr 2
Duplicate material Duplicate
Bullet properties

Friction 0.80000001
Restitution 0.50000000

Linear damping 0.00000000
Angular damping 0.00000000
Sticky contact 7] False
Auto-shrink convex mesh [ False

[T False

Custom collision margin factor 0.10000000

Custom collision mergin

Friction 1.00000000
Maximum contacts 8

Soft ERP 0.20000000
Soft CFM 0.00000000
Linear damping 0.00000000
Angular damping 0.00000000

Restitution 000000000

Ractitution thrachold 0 50000000

Figure 3.56: Force sensor readings when friction coefficient is 0.8

= ¥ Physics Engines Properties - Material - [

Property Value
Material name us 2
Duplicate materizl Duplicate

Friction 050000002
Restitution 0.50000000
Linear damping 0.00000000

Angular damping 0.00000000
Sticky contact ] False
Auto-shrink convex mesh ] Felse
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Soft ERP 0.20000000
Soft CFM 0.00000000
Linear damping 0.00000000
Anguler damping 0.00000000
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Restitution 0.00000000
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Figure 3.57: Force sensor readings when friction coefficient is 0.6.
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Property value

Material name usr2

Duplicate material Duplicate

Friction 040000001
Restitution 0.50000000
Linear damping 0.00000000

Angular damping 0.00000000
Sticky contact [C] False
Aute-shrink convex mesh [ False
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Friction 100000000
Maximum contacts g
Soft ERP 020000000
Soft CFM 0.00000000
000000000
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0.00000000
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Figure 3.58: Force sensor readings when friction coefficient is 0.4.

2 } Physics Engines Properties - Material (SR

Value

Material name usr 2
Dupliczte material Duplicate

Friction 0.20000000

Restitution 0.50000000

Linear damping 0.00000000

Angular damping 0.00000000

Sticky contact ] False

Aute-shrink convex mesh [ False
]

ion margin factor 0.

Friction 100000000
Maximum contacts 8

Soft ERP 0.20000000
Soft CFM 0.00000000
Linear dzmping 000000000
Angular damping 0,00000000

000000000

Figure 3.59: Force sensor readings when friction coefficient is 0.2.

The maximum value read while the module has the reset pose is taken and recorded.

This process is done for each step the module takes and at the end the average of
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these five readings is taken. The average of the reading is transformed to a friction

coefficient estimation based on Table 3.33.

Table 3.33 : Friction estimation based on force sensor readings.

Friction coefficient estimated  Force sensor reading lower Force sensor reading upper

limit limit
1.0 0.75 -
0.8 0.65 0.75
0.6 0.45 0.65
0.4 0.30 0.45
0.2 - 0.30

After the friction coefficient of the terrain is estimated, the modules start the initial
scan to localize other modules, obstacles and targets. In the initial scan each module
moves its camera 360°, calculates positional difference of every module, obstacle or
target it identified and records it. The data collected by each module is used in the
modeling phase to create a coordinate system on which "Module#1" is centered.
Note that "Module#1" is not the module which has the first role. Role distribution

algorithm is initiated after the coordinate system is created in the modeling phase.

3.3.1.2 Modeling phase

The sensing phase ends with the localization scan in which each module scans its
environment and collects positional data of other modules, obstacles or targets. In
modeling phase the acquired data is used to create a coordinate system for the plan to
be generated. The origin of the coordinate system is assumed to be the reference
point of Module#1.

The creation process of the coordinate system starts from Module#1. This module
uses the positional data it collected in the sensing phase and calculates the position of
other objects it identified while scanning. After it calculates the position of the
modules, it sends the positional data to each module it identified, marks them as

scanned and notifies the scanned modules.

The scanned modules do what Module#1 does after they are notified and marked as
scanned with simple differences. The scanned modules does not recalculate the
positions of modules that are already marked as scanned and they calculate the

positions of the unmarked modules based on their own received position.
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While the scanned modules are notified and marked, for obstacles and targets this
method does not hold. The calculated obstacle and target positions are shared with
other modules by the module which identifies and calculates them. This is done
because after role distribution, the strategic planning algorithm is initiated by only
the module which has the first role. By sharing the obstacle and target position data,

it is ensured that Role#1 knows the positions of these entities.

The modeling phase ends after every module is marked as scanned and all positional

data regarding obstacles and targets are shared among the modules.

3.3.1.3 Role distribution phase

Role distribution phase is separated from the plan generation process because either
the plan generated requires assembling wheeled or quadruped configuration, the role
distribution will be the same. To avoid unnecessary communication protocols, role
distribution is done before the execution of the strategic planning algorithm to ensure

that Role#1 executes the strategic planning algorithm and knows the generated plan.

Role distribution algorithm is initiated by Module#1 and the rest of the modules are
notified after the roles are determined. Role distribution is performed based on the
positional data of the coordinate system created in the modeling phase. The first step
of role distribution is to determine the module which will have the first role. To
determine the first module the average of all module positions are taken and the

closest module to this average position is chosen as Role#1.

After Role#1 is chosen the assembly positions that are given in Table() for
quadruped configuration and Table() for wheeled configuration are calculated based
on the orientation of Role#1. The pseudo code of the role distribution algorithm is

given in Table 3.34

Table 3.34 : Pseudo code of the role distribution algorithm.

01 FOR(i=1,6,1)

02 ---pos_x_sum += pos_x(Module#i)

03 ---pos_y_sum += pos_y(Module#i)

04 ENDFOR

05 pos_x_avg = pos_x_sum/6

06 pos_y_avg = pos_y_sum/6

07 FOR(i=1,6,1)

08 ---x_dif(i)= pos_x_avg - pos_x(Module#i)
09 ---y_dif(i)= pos_y_avg - pos_y(Module#i)
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10 ---dist(i) = sqrt(x_dif(i)*2 +y_dif(i)"2)

11 ENDFOR

12 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))
13 //Selection of Role#1

14 FOR(i=1,6,1)

15 ---1F(dist_min==dist(i)) THEN

16 ------ Role#1 = Module#i

17------ gpos_x(1) = pos_x(Role#1)

18------ gpos_y(1) = pos_y(Role#1
19---ENDIF

20 ENDFOR

21 FOR(i=2,6,1)

22---gpos_x(i) = gpos_x_const(i) + gpos_x(1)
23---gpos_y(i) = gpos_y_const(i) + gpos_y(1)
24 ENDFOR

25 //Selection of Role#2

26 FOR(i=1,6,1)

27 ---x_dif(i)= gpos_x(2) - pos_x(Module#i)
28 ---y_dif(i)= gpos_y(2) - pos_y(Module#i)
29 ---dist(i) = sqrt(x_dif(i)*2 + y_dif(i)"2)

30 ---IF(Module#i==Role#1) THEN

31 ------ dist(i)=HUGE

32---ENDIF

33 ENDFOR

34 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))
35 FOR(i=1,6,1)

36 ---1F(dist_min==dist(i)) THEN

37 ------ Role#2 = Module#i

38---ENDIF

39 ENDFOR

40 //Selection of Role#3

41 FOR(i=1,6,1)

42 ---x_dif(i)= gpos_x(3) - pos_x(Module#i)
43 ---y_dif(i)= gpos_y(3) - pos_y(Module#i)
44 ---dist(i) = sqrt(x_dif(i)*2 + y_dif(i)"2)

45 ---1F(Module#i==Role#1 OR Role#2) THEN
46 ------ dist(i))=HUGE

47---ENDIF

48 ENDFOR

49 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))
50 FOR(i=1,6,1)

51 ---1F(dist_min==dist(i)) THEN

52 ------ Role#3 = Module#i

53---ENDIF

54 ENDFOR

55 //Selection of Role#4

56 FOR(i=1,6,1)

57 ---x_dif(i)= gpos_x(4) - pos_x(Module#i)
58 ---y_dif(i)= gpos_y(4) - pos_y(Module#i)
59 ---dist(i) = sqrt(x_dif(i)*2 + y_dif(i)"2)
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60 ---1F(Module#i==Role#1 OR Role#2 OR Role#3) THEN

61 ------ dist(i)=HUGE

62---ENDIF

63 ENDFOR

64 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))
65 FOR(i=1,6,1)

66 ---1F(dist_min==dist(i)) THEN

67 ------ Role#4 = Module#i

68---ENDIF

69 ENDFOR

70 //Selection of Role#5

71 FOR(i=1,6,1)

72 ---x_dif(i)= gpos_x(5) - pos_x(Module#i)

73 ---y_dif(i)= gpos_y(5) - pos_y(Module#i)

74 ---dist(i) = sqrt(x_dif(i)*2 + y_dif(i)"2)

75 ---1F(Module#i==Role#1 OR Role#2 OR Role#3 OR Role#4) THEN
76 ------ dist(i)=HUGE

77---ENDIF

78 ENDFOR

79 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))
80 FOR(i=1,6,1)

81 ---1F(dist_min==dist(i)) THEN

82 ------ Role#5 = Module#i

83---ENDIF

84 ENDFOR

85 //Selection of Role#6

86 FOR(i=1,6,1)

87 ---x_dif(i)= gpos_x(6) - pos_x(Module#i)

88 ---y_dif(i)= gpos_y(6) - pos_y(Module#i)

89 ---dist(i) = sqrt(x_dif(i)"2 + y_dif(i)"2)

90 ---1F(Module#i==Role#1 OR Role#2 OR Role#3 OR Role#4 OR Role#5) THEN
91 ------ dist(i)=HUGE

92---ENDIF

93 ENDFOR

94 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))
95 FOR(i=1,6,1)

96 ---1F(dist_min==dist(i)) THEN

97 ------ Role#6 = Module#i

98---ENDIF

99 ENDFOR

3.3.1.4 Decomposition phase

When role distribution is done, decomposition phase is initiated by Role#1. In
decomposition phase, the target state of the system is decomposed, creating sub-
goals based on the model of the environment. Decomposition is a forward process,
meaning that it starts from the initial state of the robotic structure and continues

creating sub-goals until the target state is reached.
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The subgoals are represented as arrays of 6 values in the script written in VV-Rep. The
values in the array are desired configuration, V-Rep handle of the reference object,
desired lateral difference, desired longitudinal distance, desired gamma difference

and transportation mode.

Desired configuration can be 1 or 2 depending on the configuration required by the
plan. For desired configuration, "1" means quadruped configuration and "2" means
wheeled configuration. V-Rep handle of reference object is the identity of the object
that the configuration is using as a reference. In VV-Rep every entity has a handle that
identifies it in the scripts. V-Rep handle of modules, obstacles and targets are
collected while scanning in the sensing phase and they are used for searching and

locking to the reference objects by script commands.

Desired lateral and longitudinal difference values are straightforward. The
configuration determines the target state position using these values. Similar to
lateral and longitudinal differences, gamma difference is the desired gamma
difference between the target object and the configuration. The target orientation is

determined by using this value.

Transportation mode determines whether the configuration will execute its special
ability while trying to reach the target position, or not. This value can be 0 or 1. 0
means the configurations transport normally, executing their position control
algorithms. When transport mode value is 1, quadruped walker just executes the pass
over function to pass over the ground obstacle and wheeled configuration changes its

pose to pass under the obstacle and executes its normal position control algorithm.

The sub-goals are created in a group based on the obstacle types. If there is a ground
obstacle in the surroundings, the sub-goal group created for this obstacle consists of
three sub-goals. The fisrt sub-goal is created to position the configuration facing
some distance away from the ground obstacle. The second sub-goal is used to
execute the pass over obstacle ability of the configuration. This sub-goal’s
transport_mode value is 1, so the configuration executes the pass over obstacle
function and gets the next sub-goal. The third sub-goal is created for that reason.
Similar to the first sub-goal, the third sub-goal is used to position the configuration
some distance away from the obstacle after passing over it. Position and orientation

of the configuration while passing over obstacles cannot be controlled and after the
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function is executed there should be another sub-goal to set the configuration on

track. This is the reason for having three sub-goals for a ground obstacle.

If there is a lath obstacle in the simulation scene, the group created for this obstacle
consists of two sub-goals because there is no need for an extra sub-goal to correct
position and orientation errors while passing under the obstacle. Passing under
obstacle ability is just an adjustment of the pose of the wheeled configuration code
and the configuration is driven by the position control algorithm. Therefore there is
no position or orientation errors while passing under the obstacle. Similar to the
ground obstacle case the first sub-goal lets the configuration to position itself some
distance away from the lath obstacle facing it. The second sub-goal can be seen as
the combination of the second and the third sub-goals of the ground obstacle case.
This sub-goal requests the configuration to be position some distance away from the
obstacle facing away from it and its transport_mode value is 1.

The ordered arrays which represent sub-goal states form a matrix which is the
representation of a plan in V-Rep scripts. Ordering the sub-goal states is done based
on the obstacle distance between the goal state and the obstacles. The first rows of
the plan matrix are consisted of the sub-goal states that are related to the farthest
obstacle and the last row of the plan matrix is the goal state of the system.
Representing the plan as a matrix is useful because in the sequencing phase of the
reactive layer, the target states that are fed to the acting unit are the rows of this
matrix and when a target state is reached the only reaction of the sequencer is feeding
the next row of the plan matrix to the acting phase.

3.3.2 Reactive layer

Reactive layer of the strategic planning algorithm acts as a feedback controller to
execute the generated plan to reach the goal state. Like a feedback controller the
reactive control consists of a continuous sensing and acting loop. There is also a
scheduling part in addition to traditional sense-act architecture of reactive paradigm.
The scheduler takes the data collected in the sensing phase and interprets them based
on the state of the robotic structure and the target state. Based on this interpretation,
the joints are driven according to requirements in the acting phase. Target states are
determined by the scheduler due to the sub-goals of the generated plan in the

deliberative planning phase. The scheduler also determines the target state based on
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the sub-goal that the robotic structure is trying to achieve. Figure 3.60 shows general

workflow of reactive layer.

Sequencing Order Done
— h
Order
P
Sensing o Acting

System Status

Figure 3.60: Reactive layer workflow.
3.3.2.1 Reactive sensing phase

The sensing phase of the reactive layer is used like the sensor of the feedback control
mechanism. In this phase the visual sensor of Role#1 is always active. It is locked to
the target position until it is reached. In this phase the orientation and distance values
are measured and sent to two different units. The first unit is the sequencing unit of
the reactive layer to check if the system has reached to the desired sub-goal state.
The second unit is the acting unit of the reactive layer to transfer sensor data into

motor signals depending on the positional error.

Unlike the deliberative sensing phase, sensing in reactive layer is continuous. The
sensing phase is always active, locking to a reference object or if not locked

searching for it and continually feeding data to the sequencing and acting unit.

3.3.2.2 Sequencing phase

The sequencing unit of the reactive layer is used as a low level action based decision
mechanism. The main function of the sequencing unit is to keep the acting part of the
reactive layer on track. The plan generated in the deliberative layer is shared with the
sequencer and after getting the plan, the sequencer organizes the relationship

between the sensing unit and the acting unit of the reactive layer.
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The organization is done by comparing the sensory data with the sub-goal state
requirements. If the configuration requirement of the sub-goal does not match with
the status of the system, the sequencer issues a reassembly command to the acting
unit. If the transportation mode requires the use of the special ability of the
configuration the sequencer calls the corresponding functions to control the acting
unit. If the configurations match and there is no request for a special ability, the
sequencer issues no commands to the acting unit and lets it to position itself based on

the sensory data.

When the sub-goal state is reached, the sequencer gets the next row of the plan
matrix and continues comparing until the goal state is reached. Figure 3.61 shows the

flowchart of the sequencing unit.
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Figure 3.61: Flowchart of the sequencing unit.

If the requirements are not satisfied the sequencer does nothing, but if they are
satisfied, the sequencer changes the reference value of the acting unit if the subgoal
has a positioning target. If the subgoal is assembly or ability targeting, the
sequencing unit sends the appropriate order for the acting unit to execute the

appropriate protocol.

3.3.2.3 Acting phase

Acting phase of the reactive control layer is simply the execution phase of the

appropriate actions, depending on the sensory data and the sub goal target. The

90



actions to be executed depends on the sub goal of the plan the robot is following. If
the subgoal has a positioning target, the executed action will be adjusting foot
positions based on the gait for the quadruped configuration or setting wheel speeds

for the wheeled configuration.

The acting unit controls the states of three joints and four connection points of all the
modules in the system. Therefore any action requiring an adjustment on the statesof

these joints and connection points needs to be executed on the acting unit.

Acting phase is not just an actuation phase. Acting unit not only controls joint
positions, but also executes protocols and processes ordered by the sequencing unit.
The orders executed by the acting unit are processes like assembly/reassembly,
configuration position control and ability execution. The acting unit also checks if

the issued order is satisfied and notifies the sequencer to issue another order.
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4. SIMULATION AND TEST RESULTS

4.1 Test Scene

To test the modular robotic system and the strategic planning algorithm, a test scene
is created in V-Rep which consists of two obstacles and a target dummy. One of the
obstacles is a ground obstacle which can be passed over in a quadruped configuration
and the other obstacle is a lath obstacle which can be passed under in a wheeled

configuration. The test scene is shown in figures 4.1 and 4.2.

Figure 4.1 : Test scene created in V-Rep.

Figure 4.2 : Top view of the test scene.

The test scene is created to prove the strategic planning algorithm works as intended

and lets the system reach the target state. For that purpose the robotic system should;

e Scan its surroundings and identify the modules, the target and the obstacles,
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e Model the environment in a coordinate system,

e Execute the role distribution and strategic planning algorithm to generate a

plan using the model,

e Execute the generated plan by assembling/reassembling, controlling its
position-orientation in quadruped or wheeled configurations and executing

the pass over and pass under obstacle abilities when needed,

e Have the state that is defined by the target dummy at the end of the

simulation.

To check the system status during simulation, some additions are made to the
original code to get some logging information. The modules are positioned
randomly, but in a way that lets Module#1 to be chosen as Role#1. This is done to
unite the logging data given by Module#1 and Role#1 in a single console window. In
addition to script based log data, the internal graph system of V-Rep is used to keep
track of the reference position of Module#1.

All of the six modules have the same code written in their scripts which only differs
by module specific variable definitions. Besides these variables, each variable,
function or method is identical in each script. The script is given in Appendix-A with
comments and explanations, but the important functions and methods used in the

scripts will also be explained briefly in this section.

4.2 The Simulation

The simulation starts with the friction coefficient estimation which is the first part of
the deliberative sensing phase. The modules take five forward low velocity steps and

read their force sensors to estimate the friction coefficient of the terrain.

In the programming perspective, this phase mainly depends on the function
estimate_friction(). This function is continually called in the friction estimation
phase. Since it is called continually it takes its internal parameters as input and

returns them as output to be used again.

The script logger gives only the estimated friction coefficient in this phase of the

simulation. Figure 4.3 shows Module#1 log.
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Figure 4.3 : Module#1 log on friction coefficient estimation

After friction estimation is completed, the modules start the localization scan to
identify other modules, obstacles and targets in their surroundings. In this part of the
sensing phase every module is marked as scanned and their positions are shared
throughout the system.

In localization scan part, initial_scan() function called continually to control the
visual sensor orientation of the modules, read the result and record the position data.
The log output of Module#1 in this part is module, obstacle and target positions. The
console window showing log output is given in Figure 4.4
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localization Scan Started
Localization Scan Dene
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Figure 4.4 : Module#1 log on localization scan.

When the initial scan is completed, the sensing phase of the deliberative layer ends
and strategic planning starts. The robotic structure starts distributing roles because
either the plan generated requires assembling wheeled or quadruped configuration,

the role distribution will be the same. To avoid unnecessary communication
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protocols, role distribution is done before executing decomposition part of the
strategic planning algorithm to ensure that Role#1 executes decomposition algorithm

and knows the generated plan.

As stated before, role distribution is done based on the module positions in the
simulation scene. The role distribution algorithm is initiated by Module#1 and the
function role_distribution() is used. This function is executed in a single call and it
does the necessary calculations like central position of module group, assembly

positions and distance of modules to assembly positions.

The function first calculates the central position of the module group. Then it starts
calculating the distance between this central position and each module. The closest
module to this central position is selected as Role#1. After the first role is given, the
assembly positions are calculated based on the position of Role#1. Selection of other
roles is carried on similar to selection of Role#1. The distances between module
positions and role assembly positions are calculated and each role is given to the

module which has the lowest distance starting from Role#2 to Role#6.

When the calculations and role distribution is done, Module#1 shares the role
distribution result using script simulation parameters and notifies other modules. The
calculations and role distributions are also given as log output by Module#1. The
console window showing log output of role distribution is given in Figure 4.5 and

Figure 4.6.
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Figure 4.5 : Module#1 log on role distribution part 1.
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Figure 4.6 : Module#1 log on role distribution part 2.

As it can be seen from the figure, each role is given to the module which is the
closest to the assembly position of the role. After role distribution is completed and
Role#1 is determined. The modules are notified by Module#1 to get their roles. The
modules use get_role() function of the script to learn their roles. This function is
pretty simple. It only checks the script simulation parameters of Module#1 and finds

the role of the module calling the function and returns this value.

When each module is notified and got its role in the system, Role#1 starts initiating
the decomposition part of the strategic planning algorithm. This part is the main part
of the strategic planning algorithm that generates the plan according to target and
obstacle positions. In this part strategic_planning() function is used. Similar to
role_distribution() function, this function is executed in a single call. As stated before
decomposition process creates sub-goal arrays to reach the target state and depending
on the obstacle and target positions, arranges them in an order and creates a plan

matrix.

In the test scene the ground obstacle is closer to the robotic system, so it is the first
obstacle to pass. Therefore passing over obstacle sub-goal group arrays are placed in
the first three rows of the plan matrix. The ground obstacle is followed by the lath
obstacle, so the fourth and the fifth rows of the plan matrix are the sub-goal group of
the lath obstacle. The sixth and the last row of the plan matrix is the target state of

the system.

97



After decomposition is done, the plan matrix is created by uniting the sub-goal arrays
based on the obstacle and target positions. Role#1 also gives log output of the

generated plan. The log output is shown in Figure 4.7

Figure 4.7 : Decomposition phase and creation of the plan matrix.

The deliberative layer function ends when the decomposition part is passed and
reactive layer is activated after the plan is generated. The processing work in the
reactive layer is carried on by the sequencing unit which gets the sub-goal state of the
plan and compares it with the system status and issues proper commands to the

acting unit.

When the reactive layer is activated, sequence() function is called by Role#1 to get
the active goal-state. This function compares the configuration required by the sub-
goal state and the actual configuration and if needed executes the
assembly/reassembly process. If the required and actual configurations are same,
then the sequencer compares the transportation mode requested by the goal-state. If
the transportation mode needs a special ability (transport_mode variable is equal to
1) then the sequencer executes the required special ability of the configuration
whether it is passing over or under obstacles. If there is no request for a special
ability, then the sequencer executes normal position control algorithm of the
configuration using lateral difference, longitudinal difference and gamma difference
parameters of the sub-goal state. After the sequence() function is executed by
Role#1, other modules are notified and they also call sequence() function in their
scripts to get the issued commands and execute them. sequence() function also shares

the active state via the log output.
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In the test scene, sequence() function is called by Role#1 to get the active state after

the plan is generated. The active state shown by the log output is given in Figure 4.8

Figure 4.8 : Active state fetched by the sequence() function, Plan Row 1.

The active sub-goal state is [1, Ground Obstacle, 0, -0.1, 0, 0]. Since the required
configuration and the actual configuration of the robotic system do not match, the
sequencer issues an assembly/reassembly command. The assembly process is mainly
based on single module movement and position control. For this part there are ten
functions created in the script. These functions are used for getting the target state of
a module based on its role, searching the reference target of the role, locking to the
target and calculating difference, direction and velocity decisions, position and

orientation control and connection.

Function get_target_state() is used for getting the target of a single module that has a
role other than #1. This function takes configuration and role as input and returns
target handle, lateral, longitudinal and gamma difference. After getting the target
handle, the module calls search_target() and lock_target() functions to find and lock
the its target. search_target() function is called continually until the module finds its
target. Until the target is found, search_target() function rotates the visual sensor.
When the module finds its target, lock target() function is called continually to fix
the visual sensor pointing the target. Functions search_target() and lock_target() are
complements of each other. When the target is not found, the module calls
search_target() and searches the target continually and when it finds its target, it
stops calling search_target() and calls lock target() until the sub-goal state is
reached. When the visual sensor of the module locks to its target, the module
calculates the difference with its target using calculate_difference() function. This
function takes target handle as input and using the output of the visual sensor,
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calculates the difference between the target position and module reference position

dummy.

After the difference between the target and the module is calculated, the module
decides the gait and velocity to implement. The functions decide_direction() and
decide_velocity() are used to determine the appropriate gait. When the gait is
determined, the module calls correct_ornt() function to adjust its orientation to the
calculated orientation required to reach the module target. correct_ornt() function
takes orientation difference as input and controls the wheel velocity depending on the
difference. The modules call move_single() function to move towards the decided
direction with the decided velocity after the orientation difference with the required
orientation is 0°. move_single() and correct ornt() functions are also called
continually until the module target is reached. Therefore they also take their internal

parameters as inputs and returns these values in the same time.

When the modules arrive to their first assembly positions, they check if they are
allowed to move to their next assembly target by calling assembly step up()
function. This function is always true for Role#2, Role#3, Role#4, meaning they can
immediately move to their next assembly targets. Role#5 and Role#6 has to wait for
Role#2 to connect to its target. Modules write 1 to their script simulation parameters
called "connected™" when they complete connection with their target, so when called
by Role#5 or Role#6, assembly step_up() function checks "connected" status of
Role#2 and becomes true if it is 1 and false if it is not. After the modules reach to
their last assembly positions, they call function connect() and their corresponding
dummies create "dynamics, overlap constraint” type of link. Figures 4.9 to 4.12 show

the visual representation of the assembly phase in the test scene.

Figure 4.9 : Assembly phase in the test scene part 1.
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Figure 4.12 : Assembly phase in the test scene part 4.

When the assembly of quadruped configuration is done, the sequencer compares the
sub-goal state and the system status. Since the configurations match and
transportation_mode is 0, the sequencer executes normal position control algorithm.
Based on the position control algorithm of the quadruped configuration, the system
moves towards the ground obstacle. In this part search_target(), lock target(),
calculate_difference(), qd_walk() and send_order() functions are called continually
by Role#1.
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The function qd_walk() takes lateral, longitudinal and gamma differences as inputs
and returns a gait decision. send_order() function takes script handle and required
joint positions for three joints and using the script simulation parameters, sends these
values to other modules to adjust their joint positions. When an order is sent by
Role#1 to any module in the configuration, the module adjusts its joint positions and
writes "1" to its script simulation parameter "order_done". When all modules have
completed the order, qd_walk() function calculates new joint positions until the sub-

goal is reached. Figures 4.13 to 4.15 show this movement in the test scene.

Figure 4.15 : Quadruped configuration movement part 3.
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When the quadruped walker reaches to the ground obstacle, the sequencer gets the
next sub-goal array. The new sub-goal state becomes [1, Ground Obstacle, 0, 0.5, 0,
1]. Notice that the transportation_mode value is 1. Therefore the sequencer issues the
pass over command and the configuration passes over the obstacle. To pass over the
obstacles pass_over() function is called continually. This function sends periodic
joint positions to the modules until the obstacle is passed. Figures 4.16 to 4.20 show

the passing over the ground obstacle process.

Figure 4.18 : Quadruped walker passing over ground obstacle part 3.
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Figure 4.20 : Quadruped walker passing over ground obstacle part 5.

After the pass over command is initiated, the sequencer gets active again and fetches
the next goal-state. The new sub-goal array becomes [1, Ground Obstacle, 0, 0.5, 0,
0]. Since the configurations match and the transportation mode does not need a
special ability, the normal position control algorithm is executed again. Figure 4.21
and 4.22 show the repositioning of the quadruped configuration.

Sequancing Shase
Active Sub-goal: Plan Rcw#2=(1,Ground Obstacle,0,0.5,0,1]

Reached to Sub-goal State
Sequencing Pase
Active Sub-goal: Plen Rows3=[l,Ground Gbetacle,0,0.5,0,01

Figure 4.21 : Quadruped configuration repositioning part 1.
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Figure 4.22 : Quadruped configuration repositioning part 2.

When the quadruped walker reaches to the sub-goal state, the sequencer fetches the
next sub-goal array. The new sub-goal state is [2, Lath Obstacle, 0, -0.3, 0, 0]. Since
the configurations does not match, the sequencer issues an assemble/reassemble
command. Assembling and reassembling are very similar in the robotic structure.
They are triggered by the same command, but if the system is in a configuration,
Role#1 calls reassemble() function and the modules execute a protocol before
implementing the assembly phase. If the system is in a quadruped configuration
before the assemble/reassemble command is given, Role#1 and Role#2 does not
break their connections and the rest of the modules break their connections and take
three steps backwards with high wvelocity. If the system is in the wheeled
configuration, Role#1 and Role#2 does not break connections and the rest of the
modules break their connections before taking 3 steps forwards with high velocity.
After this protocol is completed, the modules act as if it is an assemble process.

Figures 4.23 to 4.26 show the reassembly process in the test scene visually.
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Figure 4.23 : Quadruped configuration disassembling.
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Figure 4.25 : System reassembling wheeled configuration part 2.
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Figure 4.26 : System reassembling wheeled configuration part 3.

After the assembly of the wheeled configuration is completed, the configuration
comparison matches and since there is not a special ability request, the sequencer
executes the position control algorithm for the wheeled configuration. Similar to
quadruped configuration, position control of the wheeled algorithm uses functions
search_target() and lock_target(). After target is found and the visual sensor locks to
it, calculate_difference() function calculates lateral and longitudinal distance between
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the target and the configuration. Depending on the result of the calculate_difference()
function Role#1 calls correct_ornt whid() to adjust the orientation of the
configuration to the required gamma orientation or calls move_whld() to move
towards the target. Role#1 uses send_order() function to other modules to control
their joint positions. The modules forming the wheels interpret the send_order()
command differently in wheeled configuration. They use the front joint position
value as speed value and set the rotational speeds of their front joints to the sent
value. In wheeled configuration, there is not a special function to control the pass
under lath obstacle process. Instead of this, correct_ornt_whld() and move_whld()
function take transport_mode value as input and adjust their axle positions depending

on the value of this parameter.

The wheeled configuration reaches the lath obstacle and Role#1 calls sequence()
function again to get the next sub-goal state. Figures 4.27 and 4.28 show the

movement of wheeled configuration until it reaches to the lath obstacle.

Figure 4.27 :

Figure 4.28 : Wheeled configuration moving to lath obstacle part 2.
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The sequencer gets the new sub-goal state array as [2, Lath Obstacle, 0, 0.3, 0, 1].
The wheeled configuration changes its pose because the transportation_mode value
is 1. Figures 4.29 and 4.30 show the new pose of the configuration in the test scene.
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Figure 4.29 : Wheeled configuration adjusting pose to pass under lath obstacle.
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Figure 4.30 : Wheeled configuration adjusting pose to pass under lath obstacle.

After the wheeled configuration adjusts its height to pass under the lath obstacle,
position control algorithm of the wheeled configuration is executed normally. When
the configuration passes under the obstacle and reaches to the goal-state, the
sequencer gets the next sub-goal state which is [2, System Target, 0, 0, 0, 0]. This
sub-goal state is also the target state of the system. Since the configurations match
and transport_mode is 0, the wheeled configuration returns back to its normal pose

and moves to the target position. Figures 4.31 to 4.34 show this movement.
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Figure 4.31 : Wheeled configuration passing under lath obstacle.
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Figure 4.32 : Wheeled configuration returning to original pose.
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Figure 4.33 : Wheeled obstacle moving to target.
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Figure 4.34 : Wheeled configuration in target state.

The simulation ends when the robotic system reaches to the target state of the system
defined by row six of the plan matrix. The blue trace shown on Figure 4.34 is created
by using V-Rep's graph tools. It is a 3D curve showing the position of the reference

position of Module#1 throughout the simulation.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

The purpose of this study is to prove that with a good module design and strategic
planning algorithm, modular robotic structures can show great functionality and
versatility over their monolithic counterparts while being affordable due to their
suitable nature for mass production. For that purpose, a chain type modular robotic
structure is designed and a hybrid deliberative/reactive type of strategic planning

algorithm is developed and tested in a simulation environment called V-Rep.

To overcome the general self-reconfiguration problem of chain type systems, the
modules of the system are designed to achieve self mobility. The self-mobility of a
single module is achieved by adding a wheel for orientation control and a foot to
practice an inchworm like locomotion method for propulsion in longitudinal
direction. The module has three revolute joints; one for control of the wheel and two
for manipulating the foot part of the module. Besides these joints, the module has a
visual sensor attached to a pole like structure with two degrees of freedom for
controlling the visual orientation and a force sensor embedded between two
cylindrical discs of the wheel for friction estimation. The single module is designed
to have four connection points for making connections with other modules to create

more functional configurations.

After single module structure is determined, the locomotion gait for positioning of
the modules is designed. The gait is designed to provide long and short steps in
forward and backward directions by kinematics analysis of the foot chain. The gait
designed is used in the position control algorithm of the single module which is
mainly used for assembly of configurations. The position control algorithm is used to
decide the step size and direction to be applied to reach the target position of the

single module in optimum time.

Assembly of configurations is simply multi module position control. A role
distribution algorithm based on initial states of modules is developed to position the

modules before connecting to build a configuration. The positions for each role are
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predetermined and each module positions itself individually and connects to its target

in this phase.

After the assembly process is determined, two configurations consisting of six
modules to implement quadruped and wheeled locomotion are designed. The
locomotion methods are designed using kinematic models of each configuration. For
quadruped walker configuration a trotting gait to move in longitudinal direction and
a sidling gait to move in lateral direction are developed. Since the wheeled
locomotion is more straightforward there is no need to develop a locomotion method
other then controlling the wheels in pairs to steer or rotate in place. The
configurations are also designed to have configuration specific abilities. The
quadruped walker configuration has the ability to pass over obstacles in the ground
and the wheeled configuration has the ability to change its height to pass under
obstacles. Similar to the single module position control algorithm, using motion

kinematic models, position control algorithms for each configuration are developed.

The strategic planning algorithm developed in this study can be classified as hybrid
deliberative/reactive control architecture. The algorithm consists of two layers; (1)
deliberative layer to generate a feasible plan consists of sub goals to drive the robotic
structure from its initial state to the desired goal state and (2) reactive layer to

execute the plan similar to a feedback control mechanism.

After both the robotic structure design and strategic planning algorithm development
are completed, the whole structure is tested in the simulation environment. In the test
area there are obstacles between the desired goal state and the initial state of the
robotic structure. The obstacles are passable by the implementation of configuration
specific abilities. This test area is designed to test the overall performance of the

whole robotic structure with its control algorithm as a whole.

The test showed that six simple robots having no specific ability can pass over and
under obstacles to reach a desired goal position by cooperating and building more
functional configurations. This proves that modular robotic structures can be more

functional and more versatile over their monolithic counterparts.
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5.2 Recommendations

In this study, a modular robotic structure which can change its shape to implement
different locomotion methods is designed and created in simulation environment. To
control this modular robotic structure, a hybrid deliberative/reactive strategic
planning algorithm is also developed. In this section, some recommendations for

future alterations on the robotic structure and strategic planning algorithm are shared.

The designing, creating and testing processes of this study is done in simulation
environment due to time and resource constraints. To realize the study, some
additions should be done to the presented structure. Firstly, the visual sensors of the
modules are simulated cameras using proxy sensors in the simulation software and
they do not have real life counterparts. In a real life implementation of this study,
cameras or advanced infrared or ultrasonic distance sensors can be used. Camera
usage will bring extra coding work for image processing and that may mean extra
electronics load. Distance sensors may not answer the needs of the structure.

Therefore the feasibility of any sensor solution should be analyzed thoroughly.

Secondly, this study does not present an applicable connection mechanism for
modules. The connection mechanism presented in this study is just a representation
of a connection with the use of dummies specific to the simulation software V-Rep.
To realize the robotic structure, a proper connection mechanism should be designed

and implemented.

Lastly, the communication method applied in the robotic system is not applicable in
real life. The communication method used in the system uses shared variables called
script simulation parameters. Therefore, if the system is to be realized, another

communication method should be set.

Besides realization of the system, there can be other development options for the
system. This study is mainly concerned on creating and implementing a strategic
planning algorithm to a modular robotic structure. The position control algorithms of
modules or configurations are generally kept at a basic level. These algorithms can
be developed further and more optimal results can be achieved. Similarly there is a
lot of room for development in the designed strategic planning algorithm. The hybrid
architecture is open for further development and numerous functionalities can be

added in the strategic planning part such as changing the generated plan by the
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reactive layer sensory data, adding an obstacle avoidance behavior and adding a

protocol for broken modules.
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APPENDICES

APPENDIX-A: Search Program of the First Kinematic Model

clear
cle

count = 0;

dl= ;
d2 = ;
d3= ;
a3 = ;
thl1 =0;

for anglel = -
for angle2 = -120:
all = angle1*pi/180;
al2 = angle2*pi/180;

th3 =0;

Al =[cos(thl) -sin(th1)*cos(all) sin(thl)*sin(all) 0; sin(thl) cos(thl)*cos(all) -
cos(thl)*sin(all) O; O sin(all) cos(all) d1; 1

A2 =] ; 0 cos(al2) -sin(al2) 0; 0 sin(al2) cos(al2) d2; 1;

A3=[ ; - -a3; ds; I;

A = A1*A2*A3;

vect = [A(1,4) A(2,4) AG,D)];
vect_vrep = [-vect(3) -vect(1) vect(2)+ 1;

if(vect_vrep(3)> )
if(vect_vrep(3)<0.01)
if(vect_vrep(1)>-0.1)
count = count + 1;
res(count,1) = count;
res(count,?) = anglel;
res(count,3) = angle?;
res(count,4) = vect_vrep(1);
res(count,5) = vect_vrep(3);
res(count,6) = vect_vrep(1)+ ;
px(count) = count;
pyl(count) = vect_vrep(1);
pyl_dif(count) = vect_vrep(1)+
py2(count) = vect_vrep(3);
end
end
end

end
end

res
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plot(px,py1)
APPENDIX-B: Search Program of the Second Kinematic Model

clear
clc

thl = 0;
th3 = 15*pi/180; %backjoint2
th4 = 60*pi/180; %backjointl

al = ;
a2= ;
a3 = ;
ad = ;
d5wt =

abbc = - ;
d5bc = -

count = 0;

for il =-90:1:90;
th3 = i1*pi/
for i2 =-90:1:90;
thl =0;
th4 = i2*pi/180;

Al = [cos(thl) -sin(thl) O al*cos(thl); sin(thl) cos(thl) O al*sin(thl);
A2=[0-100; a2, ; 15

A3 = [cos(th3) -sin(th3) 0 a3*cos(th3); sin(th3) cos(th3) 0 a3*sin(th3);
A4 = [cos(th4) O -sin(th4) ad*cos(th4); sin(th4) 0 cos(th4) a4*sin(th4); O -
Abwt = [ ; ; d5wt; I;

Abbc = [ a5hc; ; dshc; 1;

Awt = A1*A2* A3* Ad4*ASwit;

thl = atan2(Awt(1,4), Awt(2,4));
Al = [cos(thl) -sin(thl) 0 al*cos(thl); sin(thl) cos(thl) O al*sin(thl);

Cl=Al1*A2;

C2 =C1*A3;

Awt = C2*A4*A5wt;
Abc = Awt*Abhbc;

condl = C1(1,4);
cond2 = C2(1,4);
pos_km(1) = Awt(1,4);
pos_km(2) = Awt(Z,4);
pos_km(3) = Awt(3,4);

pos_If(1) = pos_km(2);
pos_If(2) = pos_km(3);
pos_If(3) = pos_km(1);

flh = abs(90-i1);
f2h = abs(-36-i2);
1l = abs(52-il);
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21 = abs(-27-i2);

% if( (pos_If(1)<0.127)&& (pos_If(1)>0.122) && (pos_If(1)<0.172) && (Abc(1,4) <=0.005)
&& (Abc(1,4) >0.0025) )% && (th1*180/pi > -30) )  %caster pivot high-vel search
% if( (pos_If(1)<0.1525)&& (pos_If(1)>0.1515) && (pos_If(1)<0.172) && (Abc(1,4) <=0.005)
&& (Abc(1,4) > 0.000) )% && (th1*180/pi >-30) )  %caster pivot low-vel search
% if( (pos_If(1)<0.172)&& (pos_If(1)>0.127) && (pos_If(1)<0.172) && (Abc(1,4) >=0.015)
&& (flh+f2h<45))  %first pose high-vel search
if( (pos_If(1)<0.154)&& (pos_If(1)>0.152) && (pos_If(1)<0.172) && (Abc(1,4) >=0.015) &&

(fL1+f21<50) )  %first pose low-vel search
% if( (pos_If(1)<0.10)&& (pos_If(1)>0.08) && (pos_If(1)<0.172) && (th1*180/pi > -30) &&
(th1*180/pi < 30) && (Abc(1,4) >=0.02) )  %max displacement

count = count + 1;

pos_If array(count,1) = count;

pos_If array(count,?) = th1*180/pi;

pos_If array(count,3) =il %backjoint2

pos_If array(count,4) = i2; %backjointl

pos_If array(count,5) =0.172 - pos_If(1);

pos_If array(count,6) = Abc(1,4);

pos_If array(count,7) = flh+f2h;

pos_If_array(count,8) = f1l+f2lI;

end
end
end
pos_If array

for v =1:1:count;
px(v) = pos_If array(v,1);
pyl(v) = pos_If array(v,5);

end
plot(px,pyl)

APPENDIX-C: Lua Code of the Module Scripts in V-Rep

if (sim_call_type==sim_childscriptcall_initialization) then

-- Put some initialization code here
--//Script Specific Handles and Variables
console = simAuxiliaryConsoleOpen("Log#1",1000,10100)
log_flag_dummy =0
Script = simGetScriptHandle(""Cylinder1x1")
Cylinder = simGetObjectHandle("Cylinder1x1")

det_point = simGetObjectHandle("DetPointx1")

conn_points = {simGetObjectHandle("DummyFx1"),simGetObjectHandle("DummyBFx1"),
simGetObjectHandle("DummyRx1"),simGetObjectHandle("DummyLx1"),
simGetObjectHandle("DummyBSx1")}

Fix_FS = simGetObjectHandle("Fix_FSx1")

cam_dummy = simGetObjectHandle("CamDummyx1")
pos_dummy = simGetObjectHandle("Positionx1")

FrontJoint = simGetObjectHandle("FrontJointx1")

BackJointl = simGetObjectHandle('BackJoint1x1")
BackJoint2 = simGetObjectHandle("BackJoint2x1")
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FS = simGetObjectHandle("FS_Cylinderx1™)

Cam = simGetObjectHandle("Camx1")

CamJointl = simGetObjectHandle("CamJoint1x1")

CamJoint2 = simGetObjectHandle("CamJoint2x1")

--Script Specific Handles and Variables//

Scripts = {simGetScriptHandle("Cylinder1x1"),simGetScriptHandle("Cylinderix2"),
simGetScriptHandle("Cylinder1x3"),simGetScriptHandle("Cylinder1x4"),
simGetScriptHandle("Cylinder1x5"),simGetScriptHandle("Cylinder1x6"),
simGetScriptHandle("target_dummy_1"),simGetScriptHandle("target_dummy_2"),
simGetScriptHandle("target_dummy_3")}

det_points = {simGetObjectHandle("DetPointx1"),simGetObjectHandle("DetPointx2"),
simGetObjectHandle("DetPointx3"),simGetObjectHandle("DetPointx4"),
simGetObjectHandle("DetPointx5"),simGetObjectHandle("'DetPointx6"),
simGetObjectHandle("target_dummy_1"),simGetObjectHandle("target_dummy_2"),
simGetObjectHandle("target_dummy_3")}

Roles ={0,0,0,0,0,0}

conf =
conf req =-
--conf_req == -1 means there is no request for configuration

plan_row = {0,0,0,0,0,0}

plan_rowl = {0,0,0,0,0,
plan_row2 = {0,0,0,0,
plan_row3 = {0,0,0,0,
plan_row4 = {0,0,0,0,
plan_row5 = {0,0,0,0,
plan_row6 = {0,0,0,0,
plan_row7 = {0,0,0,0,
plan_row8 = {0,0,0,0,
plan_row9 = {0,0,0,0,0,
plan_row10 = {0,0,0,0,0,0}

--plan_rowx format: {conf_req,reference_handle,lat_const,long_const,gamma_const,transport_mode}

--transport_mode=0 normal, transport_mode=1 ability

[ R T RN T R R v R v

simSetScriptSimulationParameter(Script, “"Notification1",0)
simSetScriptSimulationParameter(Script,Notification2",0)
simSetScriptSimulationParameter(Script,”Notification3",0)
simSetScriptSimulationParameter(Script,‘scanned",0)

ms_result =
forw_step =
back_step =
forw_step f=
back_step f=

direction =
forced_direction =
velocity =

J1pos =
J2pos =
Cylpos =
a=
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CamJlpos =0
CamJ2pos =0

Pl =0

pj2=0
search_counter =0

--//Variables for Friction Test

friction_estimation_done = 0
friction_step_counter = 0

fs_read_counter =0

fs_force_reading_1 = {0,0,0,0,0,0,0,0,0,0}
fs_force_reading_2 = {0,0,0,0,0,0,0,0,0,0}
fs_force_reading_3 = {0,0,0,0,0,0,0,0,0,0}
fs_force_reading_4 = {0,0,0,0,0,0,0,0,0,0}
fs_force_reading_max ={0,0,0,0}
friction_coeff =0

--siralama - 0.2,0.4,0.6,0.8,1.0
dfhv_list = {0.0502,0.0663,0.0662,0.0662,0.0635}
tfhv_list = {0.95,0.95,0.95,0.95,0.95}
dflv_list = {0.0106,0.0124,0.0153,0.0165,0.0162}
tflv_list = {0.65,0.65,0.65,0.65,0.65}

dbhv_list = {0.0117,0.0161,0.0186,0.0210,0.0233}
tbhv_list = {1.05,1.05,1.05,1.05,1.05}
dblv_list = {0.0075,0.0091,0.0104,0.0113,0.0123}
tblv_list = {0.80,0.80,0.80,0.80,0.80}

t180_list = {4.40,4.55,4.35,4.25,4.20}

w_qtr_ag_list = {19.95,20.86,19.08,16.61,7.14}
d_gtr_ag_list ={0.101,0.106,0.106,0.095,0.058}
t_gtr_ag_list = {1.25,1.25,1.20,1.20,1.20}

w_gtr_mdZ1_list = {14.72,15.04,13.35,8.59,3.76}
d_gtr_md1_list = {0.106,0.112,0.112,0.099,0.06}
t_qgtr_md1_list = {1.25,1.25,1.20,1.20,1.20}

w_gtr_md2_list = {7.81,8.09,6.53,3.91,1.47}
d_qtr_md2_list = {0.107,0.114,0.116,0.101,0.058}
t_qtr_md2_list = {1.25,1.25,1.20,1.20,1.20}

w_qtr_ps_list = {4.42,4.71,3.56,2.11,0.36}
d_qtr_ps_list = {0.094,0.099,0.105,0.095,0.057}
t_qtr_ps_list = {1.25,1.25,1.20,1.20,1.20}

w_qgsd_ag_list = {3.88,4.96,6.94,7.87,7.58}
d_gsd_ag_list = {0.107,0.111,0.116,0.109,0.081}
t_gsd_ag_list = {1.90,1.90,1.85,1.80,1.80}

w_qgsd_md1_list ={2.49,3.54,4.84,5.79,4.22}
d_gsd_md1_list = {0.106,0.111,0.120,0.113,0.081}
t_gsd_md1_list = {1.80,1.80,1.80,1.80,1.70}

w_qgsd_md2_list ={1.74,1.51,2.35,1.89,1.94}
d_gsd_md2_list = {0.107,0.111,0.121,0.115,0.080}
t_gsd_md2_list = {1.85,1.80,1.80,1.80,1.80}

w_gsd_ps_list = {1.02,0.85,1.22,1.08,0.82}
d_gsd_ps_list = {0.103,0.105,0.115,0.110,0.075}
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t_qsd_ps_list = {1.80, , ,

--Variables for Friction Test//

--//Variables for initial scan

initial_scan_done =
scanned_mods =

RdetModbin = {0,0,0,0,0,0,0,0,0}
ModPos_x = {0,0,0,0,0,0,0,0,0}
ModPos_y = {0,0,0,0,0,0,0,0,0}

--Variables for initial scan//

--//Variables for Phases

sensing_done =
sp_done =
rd_done =

pos_Xx_sum =
pos_y sum =
x_dif = {0,0,0,0,0,0}
y_dif = {0,0,0,0,0,0}
dist = {0,0,0,0,0,0}
gpos_x = {0,0,0,0,0,0}
gpos_y ={0,0,0,0,0,0}

--Variables for Phases//

assembly_counter =
target_state reached =
target_pos_reached =
target_ornt_reached =
target_found =

lat_const =
long_const =
gamma_const =

ornt_req =
ornt_des =
ornt_dif =

--//Four Legged Parameters

c4wa =

cdwp =

cdwa_tr =

cdwa_sd =
order_done_counter =
s=-

qd_po_counter =

assembly_phase_done =
reassemble_step=
reassemble_move_counter =

--Four Legged Parameters//
--/IFour Wheeled Parameters

c4wh =
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--Four Legged Parameters//

function estimate_friction(friction_estimation_done)
if(log_flag_dummy==0) then
simAuxiliaryConsolePrint(console,"Friction Estimation Started\n™)
log_flag_dummy=
end
if(friction_estimation_done~=1) then
if(friction_step_counter<b) then
ms_result,J1pos,J2pos,forw_step,back_step = move_single(1,1,forw_step,back_step,0)

if(forw_step==0)then
friction_estimation_done =
fsresult,force,torque=simReadForceSensor(FS)
fs_read_counter = fs_read_counter +

if(friction_step_counter==1) then
fs_force_reading_1[fs_read_counter] = force[3]

end

if(friction_step_counter==2) then
fs_force_reading_2[fs_read_counter] = force[3]

end

if(friction_step_counter==3) then
fs_force_reading_3[fs_read_counter] = force[3]

end

if(friction_step_counter==4) then
fs_force_reading_4[fs_read_counter] = force[3]

end

if(ms_result== then

friction_step_counter = friction_step_counter +
fs_read_counter =
end
end
end
if(friction_step_counter==5) then
fs_force_reading_max[1] =
math.max(fs_force_reading_1[1],fs_force reading_1[2],fs_force reading_1[3]
fs_force_reading_1[4],fs_force_reading_1[5],fs_force_reading_1[6]
fs_force_reading_1[7],fs_force_reading_1[8],fs_force_reading_1[9]
fs_force_reading_1[10])
fs_force_reading_max[?] =
math.max(fs_force_reading_2[1],fs_force reading_2[2],fs_force_reading_2[3]
fs_force_reading_2[4],fs_force_reading_2[5],fs_force_reading_2[6]
fs_force_reading_2[7],fs_force_reading_2[8],fs_force_reading 2[9]
fs_force_reading_2[10])
fs_force_reading_max[3] =
math.max(fs_force _reading_3[1],fs_force reading_3[2],fs_force reading_3[3]
fs_force_reading_3[4],fs_force_reading_3[5],fs_force_reading_3[6]
fs_force_reading_3[7],fs_force_reading_3[8],fs_force_reading_3[9]
fs_force_reading_3[10])
fs_force_reading_max[4] =
math.max(fs_force_reading_4[1],fs_force_reading_4[2],fs_force_reading_4[3]
fs_force_reading_4[4],fs_force_reading_4[5],fs_force_reading_4[6]
fs_force_reading_4[7],fs_force_reading_4[8],fs_force_reading_4[9]
fs_force_reading_4[10])

fs_force_reading_avg = (fs_force_reading_max[1]+fs_force_reading_max[2]+
fs_force_reading_max[3]+fs_force_reading_max[4])/

if(fs_force_reading_avg> and fs_force_reading_avg<0.25) then
friction_coeff =

123



dfhv = dfhv_list[1]
tfhv = tfhv_list[1]
dfiv = dfiv_list[1]
tflv = tflv_list[1]

dbhv = dbhv_list[1]
tohv = tbhv_Tist[1]
dblv = dblv_list[1]
thlv = tblv_list[1]

180 = t180_list[1]

end
if(fs_force_reading_avg> and fs_force_reading_avg<0.45) then
friction_coeff =

dfhv = dfhv_list[2]
tfhv = tfhv_list[7]
dfiv = dfiv_list[2]
tflv = tflv_list[2]

dbhv = dbhv_list[2]
tbhv = tbhv_list[2]
dblv = dblv_list[?]
thlv = tblv_list[2]

t180 = t180_list[2]

end

if(fs_force_reading_avg> and fs_force_reading_avg<0.65) then
friction_coeff =

dfhv = dfhv_list[3]
tfhv = tfhv_list[2]
dflv = dfiv_list[3]
tflv = tfiv_list[3]

dbhv = dbhv_list[3]
tbhv = tbhv_Tist[3]
dblv = dblv_list[3]
thlv = thlv_list[3]

t180 = t180_list[3]

end

if(fs_force_reading_avg> and fs_force_reading_avg<0.75) then
friction_coeff =

dfhv = dfhv_list[4]
tfhv = tfhv_list[4]
dfiv = dfiv_list[4]
tflv = tfiv_list[4]

dbhv = dbhv._list[4]
tbhv = tbhv_Tist[4]
dblv = dblv_list[4]
thlv = thlv_list[4]

t180 = t180_list[4]

end
if(fs_force_reading_avg>0.75) then
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friction_coeff =

dffv = dfhv_list[5]
tfhv = tfhv_list[5]
dfiv = dfiv_list[5]
tflv = tfiv_list[5]

dbhv = dbhv_list[5]
tbhv = tbhv_list[5]
dblv = dblv_list[5]
thlv = tblv_list[5]

t180 =t180_list[5]
end
friction_estimation_done =
simAuxiliaryConsolePrint(console, "Friction Estimation Done\n")
simAuxiliaryConsolePrint(console,"Friction Coefficient:")
simAuxiliaryConsolePrint(console,friction_coeff)
simAuxiliaryConsolePrint(console, "\n\n")
log_flag_dummy=
end
end
return friction_coeff,friction_estimation_done
end

function initial_scan(CamJ1pos)
if(log_flag_dummy==0) then
simAuxiliaryConsolePrint(console,"Localization Scan Started\n™)
log_flag_dummy=
end

Cam_act_pos = math.deg(simGetJointPosition(CamJoint1))

for i=1,9,1 do
result,distance,detP = simCheckProximitySensor(Cam,det_points[i])

if(result==1) then
fn_pjl = simGetJointPosition(CamJoint1)
fn_pj2 = simGetJointPosition(CamJoint2)
ornt = simGetObjectOrientation(pos_dummy,-1)

matrix = simGetObjectMatrix(cam_dummy,-1)

matrix[4] =

matrix[8] =

matrix[12] =

det = {detP[3],detP[1],detP[2]}

target = simMultiplyVector(matrix,det)

dum_pos = {0,0,0}

dum_pos[1] =target[1] + *math.cos(ornt[3]) +
+ *math.cos(fn_pj2))*math.cos(ornt[3]+fn_pj1)

dum_pos[2] =target[2] + *math.sin(ornt[3]) +
+ *math.cos(fn_pj2))*math.sin(ornt[3]+fn_pj1)

dum_pos[3] = target[3] + + *math.sin(fn_pj2)

RdetModbin[i] =
Scornt = simGetScriptSimulationParameter(Scripts[i],"ornt™)

ModPos_x[i] = dum_pos[1]- *math.cos(Scornt)
ModPos_y[i] = dum_pos[Z]- *math.sin(Scornt)
result =

end
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end
if(Cam_act_pos<0O)then
Cam_act_pos = Cam_act_pos +
end
if(math.abs(CamJ1pos-Cam_act_pos)<10) then
CamJlpos = CamJlpos +
simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos))
end
if(CamJ1pos>=360) then
if(Script==Scripts[1]) then
simSetScriptSimulationParameter(Script,”pos_x",0)
simSetScriptSimulationParameter(Script,"pos_y",0)
fori=1,9,1 do
if(RdetModbin[i]==1 and simGetScriptSimulationParameter(Scripts[i],"scanned")==
then
simSetScriptSimulationParameter(Scripts[i], "pos_x",ModPos_x[i])
simSetScriptSimulationParameter(Scripts[i], "pos_y",ModPos_y[i])
simSetScriptSimulationParameter(Scripts[i],"scanned™,1)
end
end
for i=2,6,1 do
if(simGetScriptSimulationParameter(Scripts[i], 'scanned")==1) then
scanned_mods = scanned_mods +
end
end
if(scanned_mods==5) then
initial_scan_done =
CamJlpos =
simSetScriptSimulationParameter(Script,‘scanned™,1)

simAuxiliaryConsolePrint(console,"Localization Scan Done\n\n")

fori=1,6,1 do
simAuxiliaryConsolePrint(console, " Module#")
simAuxiliaryConsolePrint(console, i)
simAuxiliaryConsolePrint(console, "pos_x:")

simAuxiliaryConsolePrint(console,simGetScriptSimulationParameter(Scripts[i],"pos_x"))
simAuxiliaryConsolePrint(console,"\n")
simAuxiliaryConsolePrint(console, "Module#")
simAuxiliaryConsolePrint(console,i)
simAuxiliaryConsolePrint(console, "pos_y:")

simAuxiliaryConsolePrint(console,simGetScriptSimulationParameter(Scripts[i],"pos_y"))
simAuxiliaryConsolePrint(console,"\n\n")
end
log_flag_dummy=

end
scanned_mods =

end

if(Script~=Scripts[1] and simGetScriptSimulationParameter(Script,"scanned™")==1) then
for i=2,9,1 do

if(RdetModbin[i]==1 and simGetScriptSimulationParameter(Scripts[i],"scanned")==
then
pos_x_scr = simGetScriptSimulationParameter(Script, ‘pos_x")
pos_y_scr = simGetScriptSimulationParameter(Script, ‘pos_y")
simSetScriptSimulationParameter(Scripts[i], "‘pos_x",ModPos_x[i]+p0os_x_scr)
simSetScriptSimulationParameter(Scripts[i], "pos_y",ModPos_y[i]+pos_y_scr)
simSetScriptSimulationParameter(Scripts[i], "scanned™,1)
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end

end

if(simGetScriptSimulationParameter(Scripts[1],"scanned")==1) then
initial_scan_done =
CamJipos =

end
end
end
return initial_scan_done, CamJ1pos
end

function role_dist()
--/[role distribution code here
simAuxiliaryConsolePrint(console,"Role Distribution Algorithm Initiated\n")
for i=1,6,1 do
pos_X_sum = pos_X_sum + simGetScriptSimulationParameter(Scripts[i], "pos_x")
pos_y_sum = pos_y_sum + simGetScriptSimulationParameter(Scripts[i], "pos_y")
end
pos_X_avg = pos_x_sum/
pos_y_avg = pos_y_sum/

simAuxiliaryConsolePrint(console,"Central Position x:")
simAuxiliaryConsolePrint(console,pos_x_avg)
simAuxiliaryConsolePrint(console,"\n")
simAuxiliaryConsolePrint(console,"Central Position y:")
simAuxiliaryConsolePrint(console,pos_y_avg)
simAuxiliaryConsolePrint(console,"\n\n")
simAuxiliaryConsolePrint(console,"Selection of Role#1\n")

for i=1,6,1 do
x_dif[i] = pos_x_avg - simGetScriptSimulationParameter(Scripts[i],"pos_x")
y_dif[i] = pos_y_avg - simGetScriptSimulationParameter(Scripts[i],"pos_vy")
dist[i] = math.sqrt(x_dif[i]™2 + y_dif[i]*2)
simAuxiliaryConsolePrint(console,"Module#")
simAuxiliaryConsolePrint(console,i)
simAuxiliaryConsolePrint(console,” distance: ")
simAuxiliaryConsolePrint(console,dist[i])
simAuxiliaryConsolePrint(console,"\n")
end
dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])
--//Selecting Role#
for i=1,6,1 do
if(dist_min==dist[i]) then
simAuxiliaryConsolePrint(console, "Role#1: Module#")
simAuxiliaryConsolePrint(console, i)
simAuxiliaryConsolePrint(console,"\n")
simSetScriptSimulationParameter(Script,"Role1",Scripts[i])
gpos_x[1] = simGetScriptSimulationParameter(Scripts[i],"pos x")
gpos_y[1] = simGetScriptSimulationParameter(Scripts[i],"pos v")
orntrl = simGetScriptSimulationParameter(Scripts[i], “ornt")
end
end
gpos_x[2] = gpos_x[1] - O*math.sin(orntrl) + (- )*math.cos(orntrl)
gpos_y[2] = gpos_y[1] + O*math.cos(orntrl) + (- )*math.sin(orntrl)

gpos_Xx[3] = gpos_x[1] - (-0.23)*math.sin(orntrl) + ( )*math.cos(orntrl)
gpos_y[3] = gpos_y[1] + (-0.23)*math.cos(orntrl) + ( )*math.sin(orntrl)

gpos_x[4] = gpos_x[1] - (0.23)*math.sin(orntrl) + ( )*math.cos(orntrl)
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gpos_y[4] = gpos_y[1] + (0.23)*math.cos(orntrl) + ( )*math.sin(orntrl)

gpos_x[5] = gpos_X[1] - (- )*math.sin(orntrl) + (- )*math.cos(orntrl)
gpos_y[5] = gpos_Vy[1] + (- )*math.cos(orntrl) + (- )*math.sin(orntrl)

gpos_x[6] = gpos_X[1] - ( )*math.sin(orntrl) + (- )*math.cos(orntrl)
gpos_y[6] = gpos_Vy[1] + ( )*math.cos(orntrl) + (- )*math.sin(orntrl)
--Selecting Role#

simAuxiliaryConsolePrint(console, "\nSelection of Role#2\n™)

fori=1,6,1 do
x_dif[i] = gpos_x[2] - simGetScriptSimulationParameter(Scripts[i],"pos_x")
y_diffi] = gpos_y[?] - simGetScriptSimulationParameter(Scripts[i],"pos_y")
dist[i] = math.sqrt(x_dif[i]"2 + y_dif[i]"2)
if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1")) then

dist[i] = math.huge

end
simAuxiliaryConsolePrint(console,"Module#")
simAuxiliaryConsolePrint(console, i)
simAuxiliaryConsolePrint(console," distance: ")
simAuxiliaryConsolePrint(console,dist[i])
simAuxiliaryConsolePrint(console,"\n")

end
dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])
for i=1,6,1 do

if(dist_min==dist[i]) then
simAuxiliaryConsolePrint(console,"Role#2: Module#")
simAuxiliaryConsolePrint(console, i)
simAuxiliaryConsolePrint(console,"\n")
simSetScriptSimulationParameter(Script,"Role2",Scripts[i])
end
end
--Selecting Role#
simAuxiliaryConsolePrint(console, \nSelection of Role#3\n")
fori=1,6,1 do
x_diffi] = gpos_x[3] - simGetScriptSimulationParameter(Scripts[i],"pos_x")
y_diffi] = gpos_y[3] - simGetScriptSimulationParameter(Scripts[i],"pos_y")
dist[i] = math.sqrt(x_dif[i]"2 + y_dif[i]"2)
if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1") or
Scripts[i]==simGetScriptSimulationParameter(Script,"Role2")) then
dist[i] = math.huge
end
simAuxiliaryConsolePrint(console,"Module#")
simAuxiliaryConsolePrint(console, i)
simAuxiliaryConsolePrint(console,” distance: ")
simAuxiliaryConsolePrint(console,dist[i])
simAuxiliaryConsolePrint(console,"\n")

end
dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])
for i=1,6,1 do

if(dist_min==dist[i]) then
simAuxiliaryConsolePrint(console, "Role#3: Module#")
simAuxiliaryConsolePrint(console,i)
simAuxiliaryConsolePrint(console,"\n")
simSetScriptSimulationParameter(Script, "Role3",Scripts[i])
end
end
--Selecting Role#
simAuxiliaryConsolePrint(console,"\nSelection of Role#4\n")
fori=1,6,1 do
x_dif[i] = gpos_x[4] - simGetScriptSimulationParameter(Scripts[i],"pos_x")
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y_dif[i] = gpos_y[4] - simGetScriptSimulationParameter(Scripts[i],"pos_vy")

dist[i] = math.sqrt(x_dif[i]*2 + y_dif[i]"2)

if(Scripts[i]==simGetScriptSimulationParameter(Script,"Rolel") or
Scripts[i]==simGetScriptSimulationParameter(Script,"Role2") or
Scripts[i]==simGetScriptSimulationParameter(Script,"Role3")) then
dist[i] = math.huge

end

simAuxiliaryConsolePrint(console,"Module#")

simAuxiliaryConsolePrint(console,i)

simAuxiliaryConsolePrint(console,” distance: )

simAuxiliaryConsolePrint(console,dist[i])

simAuxiliaryConsolePrint(console,"\n")

end
dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])
for i=1,6,1 do

if(dist_min==dist[i]) then
simAuxiliaryConsolePrint(console, "Role#4: Module#")
simAuxiliaryConsolePrint(console, i)
simAuxiliaryConsolePrint(console,"\n")
simSetScriptSimulationParameter(Script, "Role4",Scripts[i])
end
end
--Selecting Role#
simAuxiliaryConsolePrint(console,"\nSelection of Role#5\n")
for i=1,6,1 do
x_dif[i] = gpos_x[5] - simGetScriptSimulationParameter(Scripts[i],"pos x")
y_dif[i] = gpos_y[5] - simGetScriptSimulationParameter(Scripts[i],"pos_vy")
dist[i] = math.sgrt(x_dif[i]*2 + y_dif[i]*2)
if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1") or
Scripts[i]==simGetScriptSimulationParameter(Script,"Role2") or
Scripts[i]==simGetScriptSimulationParameter(Script,"Role3") or
Scripts[i]==simGetScriptSimulationParameter(Script, 'Role4")) then
dist[i] = math.huge
end
simAuxiliaryConsolePrint(console,"Module#")
simAuxiliaryConsolePrint(console,i)
simAuxiliaryConsolePrint(console,” distance: ")
simAuxiliaryConsolePrint(console,dist[i])
simAuxiliaryConsolePrint(console,"\n")

end
dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])
for i=1,6,1 do

if(dist_min==dist[i]) then
simAuxiliaryConsolePrint(console,"Role#5: Module#")
simAuxiliaryConsolePrint(console, i)
simAuxiliaryConsolePrint(console,"\n")
simSetScriptSimulationParameter(Script, "Role5",Scripts[i])
end
end
--Selecting Role#
simAuxiliaryConsolePrint(console, \nSelection of Role#6\n")
for i=1,6,1 do
x_dif[i] = gpos_x[6] - simGetScriptSimulationParameter(Scripts[i],"pos_x")
y_dif[i] = gpos_y[6] - simGetScriptSimulationParameter(Scripts[i],"pos_y")
dist[i] = math.sqrt(x_dif[i]*2 + y_dif[i]"2)
if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1") or
Scripts[i]==simGetScriptSimulationParameter(Script,"Role2") or
Scripts[i]==simGetScriptSimulationParameter(Script,"Role3") or
Scripts[i]==simGetScriptSimulationParameter(Script,"Role4") or
Scripts[i]==simGetScriptSimulationParameter(Script, 'Role5")) then
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dist[i] = math.huge
end
simAuxiliaryConsolePrint(console, " Module#")
simAuxiliaryConsolePrint(console, i)
simAuxiliaryConsolePrint(console," distance: ")
simAuxiliaryConsolePrint(console,dist[i])
simAuxiliaryConsolePrint(console,"\n")

end
dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6])
for i=1,6,1 do

if(dist_min==dist[i]) then
simAuxiliaryConsolePrint(console,"Role#6: Module#")
simAuxiliaryConsolePrint(console, i)
simAuxiliaryConsolePrint(console,"\n")
simSetScriptSimulationParameter(Script,"Role6",Scripts[i])
end
end
for i=1,6,1 do
simSetScriptSimulationParameter(Scripts[i], "Notification1",1)
end
simAuxiliaryConsolePrint(console,"Role Distribution Done\n\n™)
rd_done=
return
end

function get_role()
rd_done =
if(simGetScriptSimulationParameter(Script,”Notification1")==1) then

Roles =
{simGetScriptSimulationParameter(Scripts[1],"Rolel"),simGetScriptSimulationParameter(Scripts[1],"
Role2"),

simGetScriptSimulationParameter(Scripts[1],"Role3"),simGetScriptSimulationParameter(Scripts[1],"
Role4™),

simGetScriptSimulationParameter(Scripts[1],"Role5"),simGetScriptSimulationParameter(Scripts[1],"
Role6")}

if(simGetScriptSimulationParameter(Scripts[1],"Rolel")==Script) then
role =

end

if(simGetScriptSimulationParameter(Scripts[1],"Role2")==Script) then
role =

end

if(simGetScriptSimulationParameter(Scripts[1],"Role3")==Script) then
role =

end

if(simGetScriptSimulationParameter(Scripts[1],"Role4"")==Script) then
role =

end

if(simGetScriptSimulationParameter(Scripts[1],"Role5")==Script) then
role =

end

if(simGetScriptSimulationParameter(Scripts[1],"Role6™")==Script) then
role =

end

simSetScriptSimulationParameter(Script,”Notification1",0)

simSetScriptSimulationParameter(Script,"role",role)

rd_done =
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end
return rd_done,role
end
function strategic_planning()
simAuxiliaryConsolePrint(console,"Strategic Planning Algorithm is Initiated\n™)
for i=7,9,1 do
if(simGetScriptSimulationParameter(Scripts[i]," Type")==3) then
sys_target_handle = det_points[i]
sys_target_pos_x = simGetScriptSimulationParameter(Scripts[i], “pos_x")
sys_target_pos_y = simGetScriptSimulationParameter(Scripts[i], "pos_y")
simAuxiliaryConsolePrint(console, " Target Position x:")
simAuxiliaryConsolePrint(console,sys_target_pos_x)
simAuxiliaryConsolePrint(console,"\n")
simAuxiliaryConsolePrint(console, " Target Position y:")
simAuxiliaryConsolePrint(console,sys_target _pos_y)
simAuxiliaryConsolePrint(console,"\n\n")
end
if(simGetScriptSimulationParameter(Scripts[i], " Type™)==2) then
sys_wh_obs_handle = det_points[i]
sys_wh_obs_pos_x = simGetScriptSimulationParameter(Scripts[i], ‘pos_x")
sys_wh_obs_pos_y = simGetScriptSimulationParameter(Scripts[i], ‘'pos_y")
simAuxiliaryConsolePrint(console,"Lath Obstacle Position x:™)
simAuxiliaryConsolePrint(console,sys_wh_obs_pos_x)
simAuxiliaryConsolePrint(console,"\n")
simAuxiliaryConsolePrint(console,Lath Obstacle Position y:™)
simAuxiliaryConsolePrint(console,sys_wh_obs_pos_y)
simAuxiliaryConsolePrint(console,"\n\n")
end
if(simGetScriptSimulationParameter(Scripts[i], " Type")==1) then
sys_qd_obs_handle = det_points][i]
sys_qd_obs_pos_x = simGetScriptSimulationParameter(Scripts[i],"pos x")
sys_qd_obs_pos_y = simGetScriptSimulationParameter(Scripts[i],"pos_vy")
simAuxiliaryConsolePrint(console,"Ground Obstacle Position x:")
simAuxiliaryConsolePrint(console,sys_qd_obs pos_x)
simAuxiliaryConsolePrint(console,"\n")
simAuxiliaryConsolePrint(console,"Ground Obstacle Position y:")
simAuxiliaryConsolePrint(console,sys_qd_obs_pos_y)
simAuxiliaryConsolePrint(console, "\n\n")
end
end
sys_wh_obs_dist = math.sqrt((sys_target_pos X-sys_wh_obs_pos_x)"2 + (sys_target_pos_y-
sys_wh_obs_pos_y)"?2)
sys_qd_obs_dist = math.sqrt((sys_target_pos x-sys_qd_obs_pos_x)"2 + (sys_target_pos_y-
sys_qd_obs_pos_y)"?2)

--plan_rowx format: {conf_req,reference_handle,lat_const,long_const,gamma_const,transport_mode}
--transport_mode=0 normal, transport_mode=1 ability
if(sys_wh_obs_dist>sys _qd_obs_dist) then
simAuxiliaryConsolePrint(console,"First Obstacle to Pass: Lath Obstacle\n™)
plan_row1={2,sys_wh_obs_handle,0,-0.3,0,0}
plan_row2={2,sys_wh_obs_handle,0,0.3,0,1}
plan_row3={1,sys_qd_obs_handle,0,0,-0.3,0}
plan_row4={1,sys_qd_obs_handle,0,0,0.5,1}
plan_row5={1,sys_qd_obs_handle,0,0.5,0,0}
plan_row6={1,sys_target_handle,0,0,0,0}
end
if(sys_wh_obs_dist<sys _qd_obs_dist) then
simAuxiliaryConsolePrint(console,"First Obstacle to Pass: Ground Obstacle\n\n")
plan_row1={1,sys_qd_obs_handle,0,-0.1,0,0}
plan_row2={1,sys_qd_obs_handle,0,0.5,0,1}
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plan_row3={1,sys_qd_obs_handle,0,0.5,0,0}

plan_row4={2,sys_wh_obs_handle,0,-0.3,0,0}

plan_row5={2,sys_wh_obs_handle,0,0.3,0,1}

plan_row6={2,sys_target_handle,0,0,0,0}
end

simAuxiliaryConsolePrint(console,"Plan Matrix:\n\n")

simAuxiliaryConsolePrint(console,"Plan Row 1=[")
simAuxiliaryConsolePrint(console,plan_row1[1])
simAuxiliaryConsolePrint(console,”,")
if(plan_row1[2]==sys_target_handle) then
simAuxiliaryConsolePrint(console,"System Target™)
end
if(plan_rowl1[2]==sys_qd_obs_handle) then
simAuxiliaryConsolePrint(console,"Ground Obstacle™)
end
if(plan_rowl1[2]==sys_wh_obs_handle) then
simAuxiliaryConsolePrint(console,"Lath Obstacle™)
end
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row1[3])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row1[4])
simAuxiliaryConsolePrint(console,”,")
simAuxiliaryConsolePrint(console,plan_row1[5])
simAuxiliaryConsolePrint(console,”,")
simAuxiliaryConsolePrint(console,plan_row1[6])
simAuxiliaryConsolePrint(console,"]\n")

simAuxiliaryConsolePrint(console,"Plan Row 2=[")
simAuxiliaryConsolePrint(console,plan_row2[1])
simAuxiliaryConsolePrint(console,",")
if(plan_row2[2]==sys_target_handle) then
simAuxiliaryConsolePrint(console,"System Target")
end
if(plan_row2[2]==sys_qd_obs_handle) then
simAuxiliaryConsolePrint(console,"Ground Obstacle™)
end
if(plan_row2[2]==sys_wh_obs_handle) then
simAuxiliaryConsolePrint(console,"Lath Obstacle™)
end
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row2[3])
simAuxiliaryConsolePrint(console,”,")
simAuxiliaryConsolePrint(console,plan_row2[4])
simAuxiliaryConsolePrint(console,”,")
simAuxiliaryConsolePrint(console,plan_row2[5])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row2[6])
simAuxiliaryConsolePrint(console, ]\n")

simAuxiliaryConsolePrint(console,"Plan Row 3=[")
simAuxiliaryConsolePrint(console,plan_row3[1])
simAuxiliaryConsolePrint(console,",")
if(plan_row3[2]==sys_target_handle) then

simAuxiliaryConsolePrint(console,"System Target")
end
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if(plan_row3[2]==sys_qd_obs_handle) then
simAuxiliaryConsolePrint(console,"Ground Obstacle")
end
if(plan_row3[2]==sys_wh_obs_handle) then
simAuxiliaryConsolePrint(console,"Lath Obstacle™)
end
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row3[3])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row3[4])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row3[5])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row3[6])
simAuxiliaryConsolePrint(console,"]\n")

simAuxiliaryConsolePrint(console,"Plan Row 4=[")
simAuxiliaryConsolePrint(console,plan_row4[1])
simAuxiliaryConsolePrint(console,",")
if(plan_row4[2]==sys_target_handle) then
simAuxiliaryConsolePrint(console,"System Target™)
end
if(plan_row4[2]==sys_qd_obs_handle) then
simAuxiliaryConsolePrint(console,"Ground Obstacle")
end
if(plan_row4[2]==sys_wh_obs_handle) then
simAuxiliaryConsolePrint(console,Lath Obstacle")
end
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row4[3])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row4[4])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row4[5])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row4[6])
simAuxiliaryConsolePrint(console,"1\n")

simAuxiliaryConsolePrint(console,"Plan Row 5=[")
simAuxiliaryConsolePrint(console,plan_row5[1])
simAuxiliaryConsolePrint(console,",")
if(plan_row5[2]==sys_target_handle) then
simAuxiliaryConsolePrint(console,"System Target™)
end
if(plan_row5[2]==sys_qd_obs_handle) then
simAuxiliaryConsolePrint(console,"Ground Obstacle”)
end
if(plan_row5[2]==sys_wh_obs_handle) then
simAuxiliaryConsolePrint(console,"Lath Obstacle")
end
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row5[3])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row5[4])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row5[5])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row5[6])
simAuxiliaryConsolePrint(console,"]\n")
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simAuxiliaryConsolePrint(console,"Plan Row 6=[")
simAuxiliaryConsolePrint(console,plan_row6[1])
simAuxiliaryConsolePrint(console,",")
if(plan_row6[2]==sys_target_handle) then
simAuxiliaryConsolePrint(console,"System Target")
end
if(plan_row6[2]==sys_qd_obs_handle) then
simAuxiliaryConsolePrint(console,"Ground Obstacle™)
end
if(plan_row6[2]==sys_wh_obs_handle) then
simAuxiliaryConsolePrint(console,Lath Obstacle™)
end
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row6[3])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row6[4])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row6[5])
simAuxiliaryConsolePrint(console,",")
simAuxiliaryConsolePrint(console,plan_row6[6])
simAuxiliaryConsolePrint(console,]\n\n")

plan_counter =

current_target =

sp_done =

simAuxiliaryConsolePrint(console, "Strategic Planning Done\n\n")

return sp_done
end
function sequencing(plan_counter)

simAuxiliaryConsolePrint(console,"Sequencing Phase\n™)

if(plan_counter==1) then
plan_row = plan_row1l

end

if(plan_counter==2) then
plan_row = plan_row2

end

if(plan_counter==3) then
plan_row = plan_row3

end

if(plan_counter==4) then
plan_row = plan_row4

end

if(plan_counter==5) then
plan_row = plan_row5

end

if(plan_counter==6) then
plan_row = plan_row6

end

simAuxiliaryConsolePrint(console,” Active Sub-goal: Plan Row#")
simAuxiliaryConsolePrint(console, plan_counter)
simAuxiliaryConsolePrint(console,"=[")
simAuxiliaryConsolePrint(console,plan_row[1])
simAuxiliaryConsolePrint(console,",")
if(plan_row[2]==sys_target_handle) then
simAuxiliaryConsolePrint(console,"System Target")
end
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if(plan_row[2]==sys_qd_obs_handle) then
simAuxiliaryConsolePrint(console,"Ground Obstacle")

end

if(plan_row[2]==sys_wh_obs_handle) then
simAuxiliaryConsolePrint(console,"Lath Obstacle™)

end

simAuxiliaryConsolePrint(console,",")

simAuxiliaryConsolePrint(console,plan_row[3])

simAuxiliaryConsolePrint(console,",")

simAuxiliaryConsolePrint(console,plan_row[4])

simAuxiliaryConsolePrint(console,",")

simAuxiliaryConsolePrint(console,plan_row[5])

simAuxiliaryConsolePrint(console,",")

simAuxiliaryConsolePrint(console,plan_row[6])

simAuxiliaryConsolePrint(console,"]\n\n")

conf_req = plan_row[1]

current_target = plan_row[2]

lat_const = plan_row[3]

long_const = plan_row[4]

gamma_const = plan_row[5]

transport_mode = plan_row[6]

simSetScriptSimulationParameter(Script,"conf _req"”,conf_req)

for i=1,6,1 do
simSetScriptSimulationParameter(Scripts[i], "Notification2",1)

end

sg_done =

return sg_done,conf_req

end

function get_plan(role)
if(simGetScriptSimulationParameter(Script, “Notification2")==1) then
conf_req = simGetScriptSimulationParameter(Roles[1],"conf req")
if(conf_req==1) then
if(role==1) then
simSetScriptSimulationParameter(Script,“target_handle"”, det_point)
simSetScriptSimulationParameter(Roles[2], "connection_target”,conn_points[2])
simSetScriptSimulationParameter(Roles[ 3], “‘connection_target”,conn_points[3])
simSetScriptSimulationParameter(Roles[4], " "connection_target”,conn_points[4])
end
if(role==2) then
simSetScriptSimulationParameter(Roles[5], ‘connection_target”,conn_points[4])
simSetScriptSimulationParameter(Roles[6]," "connection_target™,conn_points[3])
end
if(role==3) then

end
if(role==4) then

end
if(role==5) then

end
if(role==6) then

end
end
if(conf_req==2) then
if(role==1) then
simSetScriptSimulationParameter(Script,“target_handle", det_point)
simSetScriptSimulationParameter(Roles[2], "connection_target”,conn_points[2])
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simSetScriptSimulationParameter(Roles[ 3], ‘connection_target”,conn_points[3])
simSetScriptSimulationParameter(Roles[4],"connection_target”,conn_points[4])
end
if(role==2) then
simSetScriptSimulationParameter(Roles[5], ‘connection_target”,conn_points[4])
simSetScriptSimulationParameter(Roles[6], ‘connection_target”,conn_points[3])
end
if(role==3) then

end
if(role==4) then

end
if(role==5) then

end
if(role==6) then

end

end
simSetScriptSimulationParameter(Script,“Notification2",0)
simSetScriptSimulationParameter(Script,conf req"”,conf_req)
simSetScriptSimulationParameter(Script, role”,role)
sq_done =

end

return sq_done,conf_req

end

function get_target_state(conf_req,role,assembly_counter)
if(conf_req==1) then
--Teze yazilanlar yanlis tezi duzelt

if(role==2) then
target_handle = simGetScriptSimulationParameter(Roles[1], “target_handle™)
lat_cons={0,0}
long_cons={- - }
gamma_cons={180,180}

end

if(role==3) then
target_handle = simGetScriptSimulationParameter(Roles[1], "target_handle™)

lat_cons={- ,-0.19}

long_cons={ , }

gamma_cons={90,90}
end

if(role==4) then
target_handle = simGetScriptSimulationParameter(Roles[1], "target_handle™)
lat_cons={0.23,0.19}
long_cons={ , }
gamma_cons={-90,-90}
end
if(role==5) then
target_handle = simGetScriptSimulationParameter(Roles[ 1], "target _handle™)
lat_cons={- ,-0.19}
long_cons={- - }
gamma_cons={90,90}
end
if(role==6) then
target_handle = simGetScriptSimulationParameter(Roles[ 1], "target_handle™)
lat_cons={ ,0.19}
long_cons={- - }
gamma_cons={-90,-90}
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end
end

if(conf_req==2) then

if(role==2) then
target_handle = simGetScriptSimulationParameter(Roles[ 1], "target_handle™)
lat_cons={0,0}
long_cons={- - }
gamma_cons={180,180}

end

if(role==3) then
target_handle = simGetScriptSimulationParameter(Roles[ 1], "target _handle™)
lat_cons={- ,-0.04}
long_cons={ , }
gamma_cons={-90,-90}

end

if(role==4) then
target_handle = simGetScriptSimulationParameter(Roles[ 1], "target_handle™)
lat_cons={0.23,0.04}
long_cons={ , }
gamma_cons={90,90}

end

if(role==5) then
target_handle = simGetScriptSimulationParameter(Roles[1], "target_handle")

lat_cons={- ,-0.04}

long_cons={- - }

gamma_cons={-90,-90}
end

if(role==6) then
target_handle = simGetScriptSimulationParameter(Roles[ 1], "target_handle™)

lat_cons={ ,0.04}
long_cons={- - }
gamma_cons={90,90}

end

end

return target_handle, lat_cons[assembly_counter],
long_cons[assembly_counter],gamma_cons[assembly_counter]
end

function ornt_dif_corr(ornt_dif)
ornt_dif = math.deg(ornt_dif)
if(math.abs(ornt_dif)>=180) then
if(ornt_dif<0) then
ornt_dif_dummy = ornt_dif+
end
if(ornt_dif>0) then
ornt_dif dummy = ornt_dif-
end
ornt_dif = ornt_dif_dummy
end
return math.rad(ornt_dif)
end
--//Search Function
--Search function of the module takes target handle as input returns
--target_found status
function search_target(target_handle, search_counter, CamJ1pos)
simSetJointTargetPosition(CamJoint2,math.rad(-10*search_counter))
result,distance,detP = simCheckProximitySensor(Cam,target_handle)
if(result==1) then
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target_found=
search_counter =

end

if(result~=1) then
CamJlpos = CamJ1pos +
if(CamJ1pos > 360) then

CamJlpos =

search_counter = search_counter +

if(search_counter==15) then

search_counter =

end
end
simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos))

end

return target_found, search_counter, CamJ1pos
end --Function End
--Search Function//

--//Locking Function
--Makes the camera lock to its target. This function is called continually
--to keep the module tracking its target. Takes target handle as input,
--returns nothing
function lock_target(target_handle)
result,distance,detP = simCheckProximitySensor(Cam,target_handle)

if(result==1) then
CamJ1pos = simGetJointPosition(CamJoint1)
CamJ2pos = simGetJointPosition(CamJoint2)

CamJ1pos_rot = math.atan2(detP[1],detP[3])
CamJ2pos_rot = math.atan2(detP[2],detP[3])

CamJipos = CamJ1pos+CamJlpos_rot
CamJ2pos = CamJ2pos+CamJ2pos_rot

simSetJointTargetPosition(CamJointl,CamJ1pos)
simSetJointTargetPosition(CamJoint2,CamJ2pos)
target_found =
end
if(result==0) then
target_found =
end
return target_found,CamJ1lpos
end --Function End
--Locking function//

--//Distance Calculation Function
--Calculates lateral and longitudinal distance between target and module
--reference position. Takes target handle, returns lateral distance, longitudinal
--distance and gamma orientation difference.
--mode=0: single module calculation
--mode=1: quadruped or wheeled calculation
function calculate_difference(target_handle,lat_const,long_const,mode)
target_pos_reached =
result,distance,detP = simCheckProximitySensor(Cam,target_handle)
if(result==1) then
target_found =
CamJ1pos = simGetJointPosition(CamJoint1)
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CamJ2pos = simGetJointPosition(CamJoint2)

ornt = simGetObjectOrientation(pos_dummy,-1)
target_ornt3 = simGetObjectOrientation(target_handle,-1)
target_ornt = target_ornt3[3]

matrix = simGetObjectMatrix(cam_dummy,-1)
matrix[4] =
matrix[8] =
matrix[12] =
det = {detP[3],detP[1],detP[2]}
target = simMultiplyVector(matrix,det)
if(mode==0) then
long_dif = target[1] + *math.cos(ornt[3]) +

+ *math.cos(CamJ2pos))*math.cos(ornt[3]+CamJ1pos)
lat_dif = target[2] + *math.sin(ornt[3]) +
+ *math.cos(CamJ2pos))*math.sin(ornt[3]+CamJ1pos)

long_dif = long_dif - lat_const*math.sin(target_ornt)+long_const*math.cos(target_ornt)
lat_dif = lat_dif + lat_const*math.cos(target_ornt)+long_const*math.sin(target_ornt)
end
if(mode==1) then

long_dif = target[1] + *math.cos(ornt[3]) +
+ *math.cos(CamJ2pos))*math.cos(ornt[3]+CamJ1pos)
lat_dif = target[2] + *math.sin(ornt[3]) +

+ *math.cos(CamJ2pos))*math.sin(ornt[3]+CamJ1pos)

long_dif = long_dif - lat_const*math.sin(target_ornt)+long_const*math.cos(target_ornt)
lat_dif = lat_dif + lat_const*math.cos(target_ornt)+long_const*math.sin(target_ornt)

dist = math.sgrt(long_dif~2 + lat_dif*2)
ornt_dif = math.atan2(lat_dif,long_dif)-ornt[3]
long_dif = dist*math.cos(ornt_dif)

lat_dif = dist*math.sin(ornt_dif)

end

if(mode==2) then
long_dif = target[1] + *math.cos(ornt[3]) +

+ *math.cos(CamJ2pos))*math.cos(ornt[3]+CamJ1pos)
lat_dif = target[2] + *math.sin(ornt[3]) +

+ *math.cos(CamJ2pos))*math.sin(ornt[3]+CamJ1pos)

long_dif = long_dif - lat_const*math.sin(target_ornt)+long_const*math.cos(target_ornt)
lat_dif = lat_dif + lat_const*math.cos(target_ornt)+long_const*math.sin(target_ornt)
end

end

if(result~=1) then
target_found =

end

return target_found,lat_dif,long_dif

end --Function End

--Distance Calculation Function//

--//Direction Decision Function

--Decides the direction of the moving gait, forward or backward. Takes lateral
--and longitudinal difference between the target and the module and returns
--direction decision to be used in move_single() function. "direction=1" means forward and
--"direction=-1" means backward.
function decide_direction(lat_dif,long_dif,gamma_const,forced_direction)
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ornt_req = math.atan2(lat_dif,long_dif)
ornt_des = target_ornt + math.rad(gamma_const)

Modornt3 = simGetObjectOrientation(pos_dummy,-1)

Modornt = Modornt3[3]

ornt_dif_forw = ornt_dif_corr(ornt_reg-Modornt)

ornt_dif_back = ornt_dif_corr(ornt_reg-Modornt+math.rad(180))

t1_forw = math.abs(math.deg(ornt_dif_forw))*t180/
t1_back = math.abs(math.deg(ornt_dif back))*t180/

distance = math.sqrt((lat_dif*2)+(long_dif*2))
t2_forw = math.floor(distance/dfhv)*tfhv + (math.floor(distance-

math.floor(distance/dfhv)*dfhv)/dflv)*tflv

t2_back = math.floor(distance/dbhv)*tbhv + (math.floor(distance-

math.floor(distance/dbhv)*dbhv)/dblv)*tblv

--//\Velocity Decision Function

t3_forw = math.abs(math.deg(ornt_dif corr(ornt_des-ornt_req))*t180/180)
t3_back = math.abs(math.deg(ornt_dif corr(ornt_des-ornt_reg+math.rad(180)))*t180/

if(forced_direction==0) then
if(tl_forw+t2_forw+t3_forw>t1 back+t2_back+t3_back) then
direction = -
end
if(t1_forw+t2_forw+t3_forw<tl back+t2_back+t3_back) then
direction =
end
end
if(forced_direction~=0) then
direction = forced_direction
end
if(direction==-1) then
ornt_req = ornt_req + math.rad(180)
end
return direction,ornt_req

end --Function End
--Direction Decision Function//

--Decides the velocity of the moving gait, high or low. Takes lateral

--and longitudinal difference between the target and the module and returns
--velocity decision to be used in move_single() function. "velocity=2" means
--high velocity and "velocity=1" means low velocity.

function decide_velocity(direction,lat_dif,long_dif)

distance = math.sqrt((lat_dif~2)+(long_dif*2))
if(direction==1) then
if(distance>=dfhv) then
velocity =
target_pos_reached =
end
if(distance<dfhv and distance>=dflv) then
velocity =
target_pos_reached =
end
if(distance<dflv) then
target_pos_reached =
velocity =
end
end
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if(direction==-1) then
if(distance>=dbhv) then
velocity =
target_pos_reached =
end
if(distance<dbhv and distance>=dblv) then
velocity =
target_pos_reached =
end
if(distance<dblv) then
target_pos_reached =
-- velocity =
end
end

return target_pos_reached,velocity
end --Function End
--Velocity Decision Function//

--//Orientation Correction Function
function correct_ornt(J1pos,J2pos,ornt_req)
Modornt3 = simGetObjectOrientation(pos_dummy,-1)
Modornt = Modornt3[3]
ornt_dif = ornt_dif_corr(ornt_req-Modornt)
FJpos = math.deg(simGetJointPosition(FrontJoint))

if(math.abs(math.deg(ornt_dif))<1) then
wheel_spd =
end
if(math.abs(math.deg(ornt_dif))<10) then
if(math.deg(ornt_dif)<0) then
wheel_spd = -1.8*math.deg(ornt_dif)
end
if(math.deg(ornt_dif)>0) then
wheel_spd = -1.8*math.deg(ornt_dif)
end
end
if(math.abs(math.deg(ornt_dif))>10) then
J1pos =
J2pos =

if(math.deg(ornt_dif)<0) then
wheel_spd =
end
if(math.deg(ornt_dif)>0) then
wheel spd = -
end
end
FJpos = FJpos + wheel_spd
simSetJointTargetPosition(FrontJoint,math.rad(FJpos))
simSetJointTargetPosition(BackJoint1,math.rad(J1pos))
simSetJointTargetPosition(BackJoint2,math.rad(J2pos))

return J1pos,J2pos,ornt_dif
end --Function End

--Orientation Correction Function//
--//Single Locomotion Function
--Increases the step of the locomotion gait by one whenever its called. Joint
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--position controls are done in the main loop because of V-Rep limitations. Takes
--direction, velocity, forward step and backward step value. Returns updated forward
--step and backward step value
function move_single(direction,velocity,forw_step,back_step,ornt_dif)
ms_result=
if(math.abs(math.deg(ornt_dif))<10) then
if(math.abs(J1pos-math.deg(simGetJointPosition(BackJoint1)))<1 and
math.abs(J2pos-math.deg(simGetJointPosition(BackJoint2)))<1) then
ms_result=
if(direction==1)then
if(velocity==1) then
if(forw_step==0) then
forw_step_f=
end
if(forw_step==1) then
J1pos = -
J2pos =
forw_step_f=
end
if(forw_step==2) then
J1pos =
J2pos =
forw_step f=
end
end
if(velocity==2) then
if(forw_step == 0) then
forw_step f=
end
if(forw_step==1) then
J1pos = -
J2pos =
forw_step f=
end
if(forw_step==2) then
J1pos =
J2pos =
forw_step f=
end
end
end
if(direction==-1)then
if(velocity==1) then
if(back_step==0) then
back_step_f =
end
if(back_step==1) then
J1pos = -
J2pos =
back_step f=
end
if(back_step==2) then
J1pos = -
J2pos =
back_step f=
end
if(back_step==3) then
J1pos = -
J2pos =
back_step f=
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end
if(back_step==4) then
J1pos =
J2pos =
back_step f=
end
end
if(velocity==2) then
if(back_step == 0) then
back_step f=
end
if(back_step==1) then
J1pos = -
J2pos =
back_step f=
end
if(back_step==2) then
J1pos = -
J2pos =
back_step f
end
if(back_step==3) then
Jipos = -
J2pos =
back_step f=
end
if(back_step==4) then
Jipos =
J2pos =
back_step f=
end
end
end
simSetJointTargetPosition(BackJoint1l,math.rad(J1pos))
simSetJointTargetPosition(BackJoint2,math.rad(J2pos))
end
end

return ms_result,J1pos,J2pos,forw_step_f,back step_f

end --Function End

--Single Locomotion Function//
function assembly_step_up(conf_req,role,assembly_counter)
forced_direction =
step_up = false
if(conf_req==1) then
if(role==1) then

end

if(role==2) then
step_up =true
if(assembly_counter>=1) then

forced_direction=-

end

end

if(role==3) then
step_up =true

end

if(role==4) then
step_up =true
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end
if(role==5) then
-- if(simGetScriptSimulationParameter(Roles[2], “assembly counter")>assembly_counter or
if(simGetScriptSimulationParameter(Roles[2],"connected)==1) then
step_up =true
end
end
if(role==6) then
-- if(simGetScriptSimulationParameter(Roles[2], "assembly_counter")>assembly_counter or
if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then
step_up =true
end
end
end
if(conf_req==2) then
if(role==1) then

end
if(role==2) then
step_up =true
if(assembly_counter>=1) then
forced_direction=-
end
end
if(role==3) then
step_up = true
if(assembly_counter>=1) then
forced_direction=-
end
end
if(role==4) then
step_up =true
if(assembly_counter>=1) then
forced_direction=-
end
end
if(role==5) then
if(simGetScriptSimulationParameter(Roles[2],"assembly counter)>assembly_counter or
simGetScriptSimulationParameter(Roles[2], "connected™)==1) then
step_up =true
end
if(assembly_counter>=1) then
forced_direction=-
end
end
if(role==6) then
if(simGetScriptSimulationParameter(Roles[2], "assembly_counter")>assembly_counter or
simGetScriptSimulationParameter(Roles[2],""connected™)==1) then
step_up =true
end
if(assembly_counter>=1) then
forced_direction=-
end
end
end

return step_up,forced_direction
end
function connect()

result = false
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if(conf_req==1) then
if(role==1) then

end
if(role==2) then

simSetLinkDummy/(conn_points[5],simGetScriptSimulationParameter(Script,”connection_target™))
result = true
end
if(role==3) then

simSetLinkDummy(conn_points[1],simGetScriptSimulationParameter(Script, “connection_target"))
result = true
end
if(role==4) then

simSetLinkDummy(conn_points[1],simGetScriptSimulationParameter(Script, “connection_target"))
result = true
end
if(role==5) then
if(simGetScriptSimulationParameter(Roles[2],""connected™)==1) then

simSetLinkDummy/(conn_points[1],simGetScriptSimulationParameter(Script,”connection_target™))
result = true
end
end
if(role==6) then
if(simGetScriptSimulationParameter(Roles[ 2], "connected™)==1) then

simSetLinkDummy/(conn_points[1],simGetScriptSimulationParameter(Script,“connection_target™))
result = true
end
end
end
if(conf_req==2) then
if(role==1) then

end
if(role==2) then

simSetLinkDummy/(conn_points[5],simGetScriptSimulationParameter(Script,”connection_target™))
result = true
end
if(role==3) then

simSetLinkDummy/(conn_points[2],simGetScriptSimulationParameter(Script,”connection_target™))
result = true
end
if(role==4) then

simSetLinkDummy/(conn_points[2],simGetScriptSimulationParameter(Script,”connection_target™))
result = true
end
if(role==5) then
if(simGetScriptSimulationParameter(Roles[2], "connected™)==1) then

simSetLinkDummy(conn_points[2],simGetScriptSimulationParameter(Script, connection_target"))

result = true
end
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end
if(role==6) then
if(simGetScriptSimulationParameter(Roles[2], "connected)==1) then

simSetLinkDummy(conn_points[2],simGetScriptSimulationParameter(Script,"connection_target™))
result = true
end
end

end
return result

end

function send_order(ScrHandle, BJ1pos_conf, BJ2pos_conf, Cylpos_conf)
simSetScriptSimulationParameter(ScrHandle, 'BJ1pos _conf",BJ1pos_conf)
simSetScriptSimulationParameter(ScrHandle,"BJ2pos_conf",BJ2pos_conf)
simSetScriptSimulationParameter(ScrHandle, "Cylpos_conf",Cylpos_conf)
simSetScriptSimulationParameter(ScrHandle, "Order_sent”,1)
simSetScriptSimulationParameter(ScrHandle, "Order_done™,0)
return

end

function angular_diff_rad(anglel,angle2)
anglel = math.atan2(math.sin(anglel),math.cos(anglel))
angle2 = math.atan2(math.sin(angle2),math.cos(angle2))

return (anglel-angle2)
end
function conf_init(conf,transport_mode)
if(conf==1) then
simSetJointTargetPosition(BackJoint1,math.rad(-90))
simSetJointTargetPosition(BackJoint2,math.rad(90))
send_order(Roles[2],-90,90,0)
send_order(Roles[3],60,30,0)
send_order(Roles[4],60,30,0)
send_order(Roles[5],60,30,0)
send_order(Roles[6],60,30,0)
end
if(conf==2) then
if(transport_mode==0) then
simSetJointTargetPosition(BackJoint1,math.rad(-90))
simSetJointTargetPosition(BackJoint2,math.rad(90))

send_order(Roles[2],-90,90,0)

send_order(Roles[3],-75,90,0)

send_order(Roles[4],-75,90,0)

send_order(Roles[5],-75,90,0)

send_order(Roles[6],-75,90,0)
end

if(transport_mode==1) then
simSetJointTargetPosition(BackJoint1,math.rad(0))
simSetJointTargetPosition(BackJoint2,math.rad(0))
send_order(Roles[~],0,0,0)
send_order(Roles[3],30,0,0)
send_order(Roles[4],30,0,0)
send_order(Roles[5],30,0,0)
send_order(Roles[6],30,0,0)
end
end
conf_init_done =
return conf_init_done
end
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function move_quad(lat_dif,long_dif)
order_done_counter =
fori=2,6,1do
if(simGetScriptSimulationParameter(Roles[i],"Order done™)==1) then
order_done_counter = order_done_counter +
end
end
if(order_done_counter==5) then
c4wa = c4wa +
if(c4wa==>5) then
cdwa =
--//Decision of movement style
Modornt3 = simGetObjectOrientation(pos_dummy,-1)
Modornt = Modornt3[3]
ornt_reqg3 = simGetObjectOrientation(current_target,-1)
ornt_req = ornt_req3[3]
ornt_dif = ornt_dif_corr(ornt_reg-Modornt)
if(lat_dif>0 and long_dif>0) then
if(math.deg(ornt_dif)<-5) then
sd =
tr=
Ss=
r=-
| =
end
if(math.deg(ornt_dif)>5) then
sd =
tr=
Ss=
r=

if(ornt_dif>10) then
r=
I=-

end

if(ornt_dif>15) then
r=
| =-

end

if(ornt_dif>20) then

end
if(lat_dif>0 and long_dif<0) then
if(math.deg(ornt_dif)<-5) then
sd =
tr=
s=-

| =
if(math.deg(ornt_dif)<-10) then

| =
end
if(math.deg(ornt_dif)<-15) then

end
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if(math.deg(ornt_dif)<-20) then

end
if(math.deg(ornt_dif)>5) then
sd =
tr=
Ss=
r=
l=-
end
end
if(lat_dif<0O and long_dif>0) then
if(math.deg(ornt_dif)<-5) then
sd =
tr=
Ss=
r=-
| =
if(math.deg(ornt_dif)<-10) then
r=-
| =
end
if(math.deg(ornt_dif)<-15) then
| =
end
if(math.deg(ornt_dif)<-20) then

end

if(math.deg(ornt_dif)>5) then
sd =
tr=

end
if(lat_dif<0O and long_dif<0) then
if(math.deg(ornt_dif)<-5) then
sd =
tr=
S=-
r=-
| =
end
if(math.deg(ornt_dif)>5) then
sd =
tr=
S=-
r=
l=-
if(math.deg(ornt_dif)>10) then
r=

end
if(math.deg(ornt_dif)>15) then
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r=
end
if(math.deg(ornt_dif)>20) then
r=
I=-
end
end
end
--Decision of movement style//
if(math.deg(ornt_dif)>-5 and math.deg(ornt_dif)<5) then
if(math.abs(lat_dif)>math.abs(long_dif)) then
sd =
tr=
if(lat_dif<0) then
S=-
end
if(lat_dif>0) then
S=
end
end
if(math.abs(long_dif)>=math.abs(lat_dif)) then
sd =
tr=
if(long_dif<0) then
S=-
end
if(long_dif>0) then
Ss=
end
end
end --if(math.deg(ornt_dif)>-5 and math.deg(ornt_dif)<5)
end --if(c4dwa==
if(tr==1) then
cdwa_tr = c4wa
end
if(sd==1) then
cdwa_sd = cdwa
end
if(cdwa_tr==0 and tr==1) then
simSetJointTargetPosition(BackJoint1,math.rad(-90))
simSetJointTargetPosition(BackJoint2,math.rad(90))
send_order(Roles[2],-90,90,0)
send_order(Roles[3],
send_order(Roles[4],
send_order(Roles[5],
send_order(Roles[6],
end
if(c4wa_tr==1 and tr==1) then
send_order(Roles[4],0,90,0)
send_order(Roles[5],0,90,0)

send_order(Roles[3],60,30,0)
send_order(Roles[6],60,30,0)
end
if(c4wa_tr==2 and tr==1) then
send_order(Roles[4],60,30,-s-I)
send_order(Roles[5],60,30,s+r)

send_order(Roles[3],60,30,-s-r)
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send_order(Roles[6],60,30,s+1)
end
if(cdwa_tr==3 and tr==1) then

send_order(Roles[4],60,30,0)
send_order(Roles[5],60,30,0)
send_order(Roles[3],0,90,0)
send_order(Roles[6],0,90,0)

end

if(cdwa_tr==4 and tr==1) then
send_order(Roles[4],60,30,s+)
send_order(Roles[5],60,30,-s-r)
send_order(Roles[3],60,30,s+r)
send_order(Roles[6],60,30,-s-1)

end

if(cdwa_sd==0 and sd==1) then
simSetJointTargetPosition(BackJoint1,math.rad(-90))
simSetJointTargetPosition(BackJoint2,math.rad(90))
send_order(Roles[2],-90,90,0)

send_order(Roles[3],60,30,0)
send_order(Roles[4],60,30,0)
send_order(Roles[5],60,30,0)
send_order(Roles[6],60,30,0)

end

if(cdwa_sd==1 and sd==1) then
send_order(Roles[4],0,90,0)
send_order(Roles[5],0,90,0)
send_order(Roles[3],60,30,0)
send_order(Roles[6],60,30,0)

end

if(c4wa_sd==2 and sd==1) then
send_order(Roles[4],60,30-s-r,0)
send_order(Roles[5],60,30+s+1,0)
send_order(Roles[3],60,30-s-r,0)
send_order(Roles[6],60,30+s+1,0)

end

if(c4wa_sd==3 and sd==1) then
send_order(Roles[4],60,30,0)
send_order(Roles[5],60,30,0)
send_order(Roles[3],0,90,0)
send_order(Roles[6],0,90,0)

end

if(c4wa_sd==4 and sd==1) then
send_order(Roles[4],60,30+s+r,0)
send_order(Roles[5],60,30-s-1,0)
send_order(Roles[3],60,30+s+r,0)
send_order(Roles[6],60,30-s-1,0)

end

end --if(order_done_counter==
return

end
function qd_pass_over(qd_po_counter)
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order_done_counter =

fori=2,6,1do
if(simGetScriptSimulationParameter(Roles[i],"Order done")==1) then

order_done_counter = order_done_counter +

end

end

if(order_done_counter==5) then
c4wp = cdwp +

end
if(cAwp==4) then

cdwp =

qd_po_counter = qd_po_counter+
end

if(c4wp==0) then
send_order(Roles[3],
send_order(Roles[4],
send_order(Roles[5],
send_order(Roles[6],

end

if(c4wp==1) then
send_order(Roles[3],60,30,-135)
send_order(Roles[4],60,30,135)
send_order(Roles[5],60,30,-135)
send_order(Roles[6],60,30,135)

end

if(cAwp==2) then
send_order(Roles[3],60,30,
send_order(Roles[4],60,30,
send_order(Roles[5],60,30,135)
send_order(Roles[6],60,30,

end

if(c4wp==3) then
send_order(Roles[3],60,30,0)
send_order(Roles[4],60,30,0)
send_order(Roles[5],60,30,0)
send_order(Roles[6],60,30,0)

end

return qd_po_counter

end
function move_whlid(lat_dif,long_dif,transport_mode)

— — — —

ornt_req = math.atan2(lat_dif,long_dif)
Modornt3 = simGetObjectOrientation(pos_dummy,-1)
Modornt = Modornt3[3]
ornt_dif = ornt_dif_corr(ornt_req-Modornt)
if(transport_mode==0) then
if(math.deg(ornt_dif)<-1) then
simSetJointTargetPosition(BackJoint1,math.rad(-90))
simSetJointTargetPosition(BackJoint2,math.rad(90))
send_order(Roles[2],-90,90,0)
send_order(Roles[3],-75,90,
send_order(Roles[4],-75,90,
send_order(Roles[5],-75,90,
send_order(Roles[6],-75,90,
end
if(math.deg(ornt_dif)>1) then
simSetJointTargetPosition(BackJoint1,math.rad(-90))
simSetJointTargetPosition(BackJoint2,math.rad(90))
send_order(Roles[2],-90,90,0)
send_order(Roles[3],-75,90,-30)

— — — —
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send_order(Roles[4],-75,90,-30)
send_order(Roles[5],-75,90,-30)
send_order(Roles[6],-75,90,-30)

end

if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then

simSetJointTargetPosition(BackJoint1,math.rad(-

)

simSetJointTargetPosition(BackJoint2,math.rad(90))

send_order(Roles[2],-90,90,0)

send_order(Roles[3],- ,-30)
send_order(Roles[4],-75,90,30)
send_order(Roles[5],-75,90,-30)
send_order(Roles[6],-75,90,30)

end
end --if(transport_mode==
if(transport_mode==1) then

if(math.deg(ornt_dif)<-1) then
simSetJointTargetPosition(BackJoint1l,math.rad(0))
simSetJointTargetPosition(BackJoint2,math.rad(0))
send_order(Roles[2],0,0,0)
send_order(Roles[3],30,0,30)
send_order(Roles[4],30,0,30)
send_order(Roles[5],30,0,30)
send_order(Roles[6],30,0,30)

end

if(math.deg(ornt_dif)>1) then
simSetJointTargetPosition(BackJoint1,math.rad(0))
simSetJointTargetPosition(BackJoint2,math.rad(0))
send_order(Roles[~],0,0,0)
send_order(Roles[3],30,0,-30)
send_order(Roles[4],30,0,-30)
send_order(Roles[5],30,0,-30)
send_order(Roles[6],30,0,-30)

end

if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then
simSetJointTargetPosition(BackJoint1,math.rad(0))
simSetJointTargetPosition(BackJoint2,math.rad(0))

send_order(Roles[2],0,0,0)

send_order(Roles[3],30,0,-30)
send_order(Roles[4],30,0,30)
send_order(Roles[5],30, )

send_order(Roles[6],

end
end --if(transport_mode==

return
end

function correct_ornt_whld(target,transport_mode)
ornt_des3 = simGetObjectOrientation(target,-1)

ornt_des = ornt_des3[3]

Modornt3 = simGetObjectOrientation(pos_dummy,-1)

Modornt = Modornt3[3]

ornt_dif = ornt_dif_corr(ornt_des-Modornt)

if(transport_mode==0) then

if(math.deg(ornt_dif)<-1) then

simSetJointTargetPosition(BackJoint1,math.rad(-

)

simSetJointTargetPosition(BackJoint2,math.rad(90))

send_order(Roles[2],-90,
send_order(Roles[3],-75,
send_order(Roles[4],-75,
send_order(Roles[5],-75,

0)
30)
30)
30)

152



send_order(Roles[6],-75,90,30)
target_ornt_reached =

end

if(math.deg(ornt_dif)>1) then
simSetJointTargetPosition(BackJoint1,math.rad(-90))
simSetJointTargetPosition(BackJoint2,math.rad(90))
send_order(Roles[2],-90,90,0)
send_order(Roles[3],-75,90,-30)
send_order(Roles[4],-75,90,-30)
send_order(Roles[5],-75,90,-30)
send_order(Roles[6],-75,90,-30)
target_ornt_reached =

end

if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then
simSetJointTargetPosition(BackJoint1,math.rad(-90))
simSetJointTargetPosition(BackJoint2,math.rad(90))

send_order(Roles[2],-90,90,0)
send_order(Roles[3],-75,90,0)
send_order(Roles[4],-75,90,0)
send_order(Roles[5],-75,90,0)
send_order(Roles[6],-75,90,0)

target_ornt_reached =
end
end --if(transport_mode==
if(transport_mode==1) then
if(math.deg(ornt_dif)<-1) then
simSetJointTargetPosition(BackJoint1,math.rad(0))
simSetJointTargetPosition(BackJoint2,math.rad(0))
send_order(Roles[2],0,0,0)
send_order(Roles[3],30,0,
send_order(Roles[4],30,0,
send_order(Roles[5],30,0,
send_order(Roles[6],30,0,
target_ornt_reached =
end
if(math.deg(ornt_dif)>1) then
simSetJointTargetPosition(BackJoint1,math.rad(0))
simSetJointTargetPosition(BackJoint2,math.rad(0))
send_order(Roles[2],0,0,0)
send_order(Roles[3],30,0,-
send_order(Roles[4],30,0,-
send_order(Roles[5],30,0,-
send_order(Roles[6],30,0,-
target_ornt_reached =
end
if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then
simSetJointTargetPosition(BackJoint1,math.rad(0))
simSetJointTargetPosition(BackJoint2,math.rad(0))
send_order(Roles[2],0,0,0)
send_order(Roles[3],30,0,0)
send_order(Roles[4],30,0,0)
)
)

— — N —

)
)
)
)

send_order(Roles[5],30,0,
send_order(Roles[6],30,0,
target_ornt_reached =
end
end --if(transport_mode==
return target_ornt_reached
end
function stop(conf,transport_mode)
if(conf==1) then
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simSetJointTargetPosition(BackJoint1,math.rad(-90))
simSetJointTargetPosition(BackJoint2,math.rad(90))
send_order(Roles[2],-90,90,0)
send_order(Roles[3],60,30,0)
send_order(Roles[4],60,30,0)
send_order(Roles[5],60,30,0)
send_order(Roles[6],60,30,0)
end
if(conf==2) then
if(transport_mode==0) then
simSetJointTargetPosition(BackJoint1,math.rad(-90))
simSetJointTargetPosition(BackJoint2,math.rad(90))
send_order(Roles[2],-90,90,0)
send_order(Roles[3],-75,90,0)
send_order(Roles[4],-75,90,0)
send_order(Roles[5],-75,90,0)
send_order(Roles[6],-75,90,0)
end
if(transport_mode==1) then
simSetJointTargetPosition(BackJoint1,math.rad(0))
simSetJointTargetPosition(BackJoint2,math.rad(0))
send_order(Roles[2],0,0,0)
send_order(Roles[3],30,0,0)
send_order(Roles[4],30,0,0)
send_order(Roles[5],30,0,0)
send_order(Roles[6],30,0,0)
end
end
return
end
function reassemble(conf,role,reassemble_step)
if(reassemble_step==0) then
simSetScriptSimulationParameter(Script,“connected™,0)
simSetScriptSimulationParameter(Script,"order_sent”,0)
simSetScriptSimulationParameter(Script,“order_done",0)
simSetJointTargetPosition(BackJoint1,math.rad(0))
simSetJointTargetPosition(BackJoint2,math.rad(0))
if(math.abs(math.deg(simGetJointPosition(BackJoint1)))<0.1 and
math.abs(math.deg(simGetJointPosition(BackJoint2)))<0.1) then
forw_step=
back_step=
J1pos=
J2pos=
reassemble_step =
end
end
if(reassemble_step==1) then
if(role~=1 and role~=2) then
for i=1,5,1 do
simSetLinkDummy(conn_points[i],-1)
simSetScriptSimulationParameter(Script, ‘connected™,0)
end
end
reassemble_step =
end
if(reassemble_step==2) then
if(role~=1 and role~=2) then
if(reassemble_move_counter<5) then
if(conf==1) then
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ms_result,J1pos,J2pos,forw_step,back_step = move_single(-
,2,forw_step,back_step,0)
if(back_step==0 and ms_result==1) then
reassemble_move_counter = reassemble_move_counter +
end
end
if(conf==2) then
ms_result,J1pos,J2pos,forw_step,back_step = move_single(1,2,forw_step,back_step,0)
if(forw_step==0 and ms_result==1) then
reassemble_move_counter = reassemble_move_counter +
end
end
end
if(reassemble_move_counter==3) then
conf=
forw_step=
back_step=
J1pos=
J2pos=
end
end
if(role==1) then
conf=
conf_init_done =
sg_done =
end
if(role==2) then
simSetScriptSimulationParameter(Script,‘connected”,1)
simSetJointTargetPosition(FrontJoint,0)
simSetJointTargetPosition(CamJoint1,0)
simSetJointTargetPosition(CamJoint2,0)
target_ornt_reached =
target_pos_reached =
target_state reached =
assembly phase_done =
forced_direction=
conf=conf_req
assembly_req=
end
end

return conf,reassemble_step
end
end

if (sim_call_type==sim_childscriptcall_actuation) then

-- Put your main ACTUATION code here
--Main Loop Starts Here
ornt3 = simGetObjectOrientation(pos_dummy,-1)
ornt = ornt3[3]
simSetScriptSimulationParameter(Script,“ornt",ornt)
simSetScriptSimulationParameter(Script, “conf",conf)
simSetScriptSimulationParameter(Script, "assembly counter”,assembly_counter)
--//Sensing Phase
if(sensing_done~=1) then
if(friction_estimation_done~=1) then
friction_coeff,friction_estimation_done = estimate_friction(friction_estimation_done)
end
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if(friction_estimation_done==1) then
if(initial_scan_done~=1) then
initial_scan_done, CamJ1pos = initial_scan(CamJ1pos)
end
if(initial_scan_done==1) then
sensing_done=
end
end
end
--Sensing Phase//
--//Role Distribution Phase

if(sensing_done==1 and rd_done~=1) then
if(Script==Scripts[1]) then
role_dist()
end
rd_done,role = get_role()
end

--Role Distribution Phase//

if(rd_done==1 and sp_done==0 and role==1) then
sp_done = strategic_planning()
end
--//Strategic Planning Phase
if(rd_done==1 and sq_done~=1) then
if(role==1) then
sg_done,conf_req = sequencing(plan_counter)
end
sg_done,conf_req = get_plan(role)
if(conf_req==conf) then
assembly req =
end
if(conf_reg~=conf) then
assembly_req=
assembly_phase_done =
simAuxiliaryConsolePrint(console,"System needs to Assemble/Reassemble\n™)
end
end
if(assembly_req==1 and assembly_phase_done~=1) then
if(conf==1 or conf==2) then
conf,reassemble_step = reassemble(conf,role,reassemble_step)
end
if(conf==0) then
if(role~=1) then

target_handle,lat_const,long_const,gamma_const =
get_target_state(conf req,role,assembly_counter)

if(target_state_reached~=1) then
if(target_pos_reached~=1) then
target_found,CamJ1pos = lock_target(target_handle)
if(target_found~=1) then
target_found,search_counter,CamJ1pos =
search_target(current_target,search_counter,CamJ1pos)

end --if(target_found~=1)

if(target_found==1) then
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if(math.abs(math.deg(simGetJointPosition(BackJoint1)))<1 and
math.abs(math.deg(simGetJointPosition(BackJoint2)))<1) then
target_found,lat_dif,long_dif =
calculate_difference(target_handle,lat_const,long_const,0)
direction,ornt_req =
decide_direction(lat_dif,long_dif,gamma_const,forced_direction)
target_pos_reached,velocity = decide_velocity(direction,lat_dif,long_dif)
end
--correct orientation is called with gamma_const=0!
J1pos,J2pos,ornt_dif = correct_ornt(J1pos,J2pos,ornt_req)
ms_result,J1pos,J2pos,forw_step,back_step =
move_single(direction,velocity,forw_step,back_step,ornt_dif)

end --if(target_found==

end --if(target_pos_reached~=1)
if(target_pos_reached==1) then
if(target_ornt_reached~=1) then
target_found,CamJ1pos = lock_target(target_handle)
J1pos,J2pos,ornt_dif = correct_ornt(J1pos,J2pos,ornt_des)
if(math.abs(math.deg(ornt_dif))<1) then
target_ornt_reached =
end
end
if(target_ornt_reached==1) then
simSetJointTargetPosition(BackJoint1,0)
simSetJointTargetPosition(BackJoint2,0)
if(math.abs(math.deg(simGetJointPosition(BackJoint1)))<1 and
math.abs(math.deg(simGetJointPosition(BackJoint1)))<1) then

step_up,forced_direction=assembly_step_up(conf_req,role,assembly_counter)
if(step_up) then
assembly_counter = assembly_counter +
step_up,forced_direction=assembly_step_up(conf _req,role,assembly_counter)

target_ornt_reached =
target_pos_reached =
end
if(assembly_counter==3) then
if(connect()) then
simSetScriptSimulationParameter(Script, ‘connected”,1)
simSetJointTargetPosition(FrontJoint,0)
simSetJointTargetPosition(CamJoint1,0)
simSetJointTargetPosition(CamJoint2,0)
target_ornt_reached =
target_pos_reached =
target_state_reached =
assembly_phase_done =
forced_direction=
end
end
end
end
end
end --if(target_state reached~=1)
end --if(role~=1)
if(role==1) then
simSetObjectParent(Cylinder,Fix_FS,true)
connected_counter =
for i=2,6,1 do

157



if(simGetScriptSimulationParameter(Roles[i],"connected™)==1) then
connected_counter = connected_counter +
end
end
if(connected_counter==5) then
simSetScriptSimulationParameter(Script, ‘connected™,1)
simAuxiliaryConsolePrint(console,"Assembly/Reassembly Complete\n™)
assembly_phase_done =
conf = conf_req
simSetScriptSimulationParameter(Script, ‘conf",conf)
end
end --(role==
end --if(conf==0)
end --if(assembly_req==1 and assembly_phase_done~=1)
--//Configuration Phase
if(assembly_phase_done==1) then
if(simGetScriptSimulationParameter(Roles[1], "connected")==1) then
if(role==1) then
if(simGetObjectParent(Cylinder)~=-1) then
simSetObjectParent(Cylinder,-1,true)
end
if(conf_init_done~=1) then
conf_init_done = conf_init(conf,transport_mode)
end
target_found,CamJ1pos = lock_target(current_target)
if(conf==1) then
if(transport_mode==1) then
qd_po_counter = qd_pass_over(qd_po_counter)
if(qgd_po_counter==2) then
stop(conf,transport_mode)
target_pos_reached =
CamJlpos =
CamJ2pos =
simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos))
simSetJointTargetPosition(CamJoint2,math.rad(CamJ2pos))
if(math.abs(math.deg(simGetJointPosition(CamJoint1)))<=2 and
math.abs(math.deg(simGetJointPosition(CamJoint2)))<=2) then
target_state reached =
qd_po_counter =
end
end
end
if(transport_mode==0) then
if(target_state reached~=1) then
if(target_pos_reached~=1) then
if(target_found==0) then
stop(conf,transport_mode)
target_found,search_counter,CamJ1pos =
search_target(current_target,search_counter,CamJ1pos)
end
if(target_found==1) then
target_found,CamJ1pos = lock_target(current_target)
target_found, lat_dif,long_dif =
calculate_difference(current_target,lat_const,long_const,1)
distance = math.sqrt(lat_dif~2 + long_dif*2)
if(distance>0.1) then
move_quad(lat_dif,long_dif)
end
if(distance<=0.1) then
stop(conf,transport_mode)
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target_pos_reached=
end
end --if(target_found==
end --if(target_pos_reached~=1)
if(target_pos_reached==1) then
CamJlpos =
CamJ2pos =
simSetJointTargetPosition(CamJointl,math.rad(CamJ1pos))
simSetJointTargetPosition(CamJoint2,math.rad(CamJ2pos))
if(math.abs(math.deg(simGetJointPosition(CamJoint1)))<=2 and
math.abs(math.deg(simGetJointPosition(CamJoint2)))<=2) then
target_state reached =
end
end --if(target_pos_reached==
end --if(target_state reached~=1)
end --if(transport_mode==
if(target_state reached==1) then
simAuxiliaryConsolePrint(console, "Reached to Sub-goal State\n™)
plan_counter = plan_counter +

sq_done=

for i=1,6,1 do
simSetScriptSimulationParameter(Roles[i],"Notification3",1)

end

if(plan_counter<7) then
target_state_reached =
target_pos_reached =
target_ornt_reached =
end
if(plan_counter==7) then
target_state_reached =
target_pos_reached =
target_ornt_reached =
sg_done=
end
end --if(target_state_reached==
end --if(conf==1)
if(conf==2) then
if(target_state_reached~=1) then
if(target_pos_reached~=1) then
if(target_found==0) then
stop(conf,transport_mode)
target_found,search_counter,CamJ1pos =
search_target(current_target,search_counter,CamJ1pos)
end
if(target_found==1) then
target_found,CamJ1pos = lock_target(current_target)
target_found,lat_dif,long_dif =
calculate_difference(current_target,lat_const,long_const,2)
distance = math.sgrt(lat_dif*2 + long_dif"2)
if(distance>0.1) then
move_whld(lat_dif,long_dif,transport_mode)
end
if(distance<=0.1) then
stop(conf,transport_mode)
target_pos_reached=
end
end --if(target_found==
end --if(target_pos_reached~=1)
if(target_pos_reached==1) then
if(target_ornt_reached~=1) then
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target_ornt_reached = correct_ornt_whld(current_target,transport_mode)
end
if(target_ornt_reached==1) then
stop(conf,transport_mode)
CamJlpos =
CamJ2pos =
simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos))
simSetJointTargetPosition(CamJoint2,math.rad(CamJ2pos))
if(math.abs(math.deg(simGetJointPosition(CamJoint1)))<=2 and
math.abs(math.deg(simGetJointPosition(CamJoint2)))<=2) then
target_state_reached =
end
end
end --if(target_pos_reached==
end --if(target_state reached~=1)
if(target_state_reached==1) then
plan_counter = plan_counter +

sg_done=
for i=1,6,1 do

simSetScriptSimulationParameter(Roles[i], "Notification3",1)
end

if(plan_counter<7) then
target_state reached =
target_pos_reached =
target_ornt_reached =

end

if(plan_counter==7) then
target_state reached =
target_pos_reached =
target_ornt_reached =
sq_done=
stop()

end

end --if(target_state_reached==
end --if(conf==
end--if(role==

if(role~=1) then

assembly_counter =

conf = simGetScriptSimulationParameter(Roles[ 1], "conf")

simSetScriptSimulationParameter(Script,"conf”,conf)

if(simGetScriptSimulationParameter(Script, "Notification3")==1) then
sg_done=
simSetScriptSimulationParameter(Script,”Notification3",0)

end

if(conf==1) then
if(simGetScriptSimulationParameter(Script,"Order_done")==0 and

simGetScriptSimulationParameter(Script,"Order_sent")==1) then

simSetJointTargetPosition(BackJoint1,math.rad(simGetScriptSimulationParameter(Script, 'BJ1pos co

n")))

simSetJointTargetPosition(BackJoint2,math.rad(simGetScriptSimulationParameter(Script, "BJ2pos_co

nt")))

simSetJointTargetPosition(FrontJoint,math.rad(simGetScriptSimulationParameter(Script,“Cylpos_con

D))

if(math.abs(math.deg(ornt_dif _corr(math.rad(simGetScriptSimulationParameter(Script,"'BJ1pos_conf
"))-simGetJointPosition(BackJoint1))))<5 and
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math.abs(math.deg(ornt_dif_corr(math.rad(simGetScriptSimulationParameter(Script, BJ2pos_conf"))
-simGetJointPosition(BackJoint2))))<5 and

math.abs(math.deg(ornt_dif_corr(math.rad(simGetScriptSimulationParameter(Script,"Cylpos_conf"))-
simGetJointPosition(FrontJoint))))<5) then

simSetScriptSimulationParameter(Script, " Order_done",1)
simSetScriptSimulationParameter(Script, "Order_sent",0)
end
end
end
if(conf==2) then
if(simGetScriptSimulationParameter(Script,"Order_done™)==0 and
simGetScriptSimulationParameter(Script,"Order_sent")==1) then

simSetJointTargetPosition(BackJointl,math.rad(simGetScriptSimulationParameter(Script, "BJ1pos_co

n")))

simSetJointTargetPosition(BackJoint2,math.rad(simGetScriptSimulationParameter(Script,"BJ2pos_co

nf")))

simSetJointTargetPosition(FrontJoint,math.rad(simGetScriptSimulationParameter(Script,"Cylpos_con

™))

if(math.abs(simGetScriptSimulationParameter(Script,"BJ1pos_conf")-
math.deg(simGetJointPosition(BackJoint1)))<3 and

math.abs(simGetScriptSimulationParameter(Script,"BJ2pos_conf")-
math.deg(simGetJointPosition(BackJoint2)))<3) then

simSetScriptSimulationParameter(Script,"Order_done",1)
simSetScriptSimulationParameter(Script, "Order_sent",0)
end
end
wheel_spd = simGetScriptSimulationParameter(Script,"Cylpos_conf")

simSetJointTargetPosition(FrontJoint,simGetJointPosition(FrontJoint)+math.rad(wheel_spd))
end--(conf==2)
end--if(role~=1)
end--if(simGetScriptSimulationParameter(Roles[ 1], "connected)==1)
end--(if(assembly_phase_done==
--Configuration Phase//

end

if (sim_call_type==sim_childscriptcall_sensing) then
-- Put your main SENSING code here

end

if (sim_call_type==sim_childscriptcall_cleanup) then

-- Put some restoration code here

for i=1,5,1 do
simSetLinkDummy(conn_points[i],-1)
end
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