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STRATEGIC PLANNING FOR MODULAR ROBOTIC STRUCTURES 

SUMMARY 

The advancements in robotics increases the expectations from robots in terms of 

capability and capacity. Today people expect robots to be more autonomous, more 

functional, more versatile and more affordable. A robot that can play the violin, but 

only playing the violin is not fascinating anymore. Today we expect from the robot 

that plays the violin to come and ask our wish, present what we wished, avoid the 

obstacles while doing this, adapt to a dynamic environment it has not been before 

and solve its own problems if it has any while operating. Besides, these robots should 

be affordable. 

The purpose of this study is to design a functional and versatile modular robotic 

structure and develop a strategic planning algorithm that can answer these 

demanding expectations. The modular robotic system is expected to be able to create 

configurations that can implement quadruped and wheeled locomotion methods and 

to have configuration specific abilities such as passing over or under obstacles. 

Another expectation is to decide the appropriate configuration to implement proper 

locomotion method and configuration specific ability with the help of the developed 

strategic planning algorithm. 

The modular robotic structure designed in this study is a chain type modular robotic 

system which are known for their suitability in implementing advanced locomotion 

methods easily. To overcome the general self reconfiguration problem of this class, 

the modules are designed to be self mobile. To control the modular robotic structure 

a strategic planning algorithm is developed. The architecture of the algorithm can be 

classified as hybrid deliberative/reactive. The hybrid architecture is chosen for its 

two layered architecture which benefits both from the advantages of hierarchical 

paradigm and reactive paradigm. After inspecting different simulation programs such 

as Webots, Gazebo and V-Rep. The last one is found to be the best choice for the 

needs of this study based on its good documentation and ease of use. 

Modules of the robotic structure are designed to have a visual sensor, a force sensor, 

three joints and four connection points. The locomotion method of the modules are 

similar to an inchworm and it is developed by analysing the kinematic chain of a 

single module. A position control algorithm is also developed which is mainly used 

for assembly of configurations. The assembly procedure of configurations is 

determined and a role distribution algorithm is developed. 

Two configurations to implement quadruped and wheeled locomotion are designed. 

The configuration specific abilities for both configurations are designed and the 

design proces of the robotic structure is finalized. 

After the robotic structure is designed, the development of the strategic planning 

algorithm started. A two layered hybrid deliberative/reactive architecture is 

developed to control the robotic structure. The deliberative layer is used to generate a 

plan consisting of sub goals to drive the robotic structure from its initial state to the 

desired goal state. The reactive layer of the algorithm is more like a feedback 

controller. This layer is used to execute the plan generated by the deliberative layer. 
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The designed robotic structure and strategic planning algorithm is tested in V-Rep by 

creating a complex test area. In this complex test area, there are obstacles that can be 

passed over or under with the configuration specific abilities of the robotic structure 

positioned between the initial state of the robotic structure and its desired goal state. 

The behavior and performance of the whole structure is tested based on its success to 

reach the desired goal state. 

The test results of this study is presented in detail and interpreted. According the test 

results, it is proven that with good design and strategic planning algorithm, modular 

robotic structures are more functional and versatile over their monolithic 

counterparts.   
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MODÜLER ROBOTİK YAPILARDA STRATEJİK PLANLAMA 

ÖZET 

Robotik alanındaki araştırmalar arttıkça ve robotiğin dayalı olduğu mekanik, 

elektronik ve yazılım gibi alanlarda hızına yetişilemeyen gelişmeler oldukça, 

insanların robotlardan beklentileri de değişmeye ve gün geçtikçe daha da talepkar 

olmaya başladı. İnsanlar artık robotlardan daha otonom, daha fonksiyonel, daha çok 

yönlü ve daha hesaplı olmalarını bekliyorlar. İnsanoğlu artık keman çalabilen ancak 

sadece keman çalabilen bir robotu eskisi kadar göz kamaştırıcı bulmuyor. Artık 

zamanında hayranlıkla izlenen keman çalabilen robotun, gelip isteklerimizi sorması, 

isteklerimizi sunarken karşısına çıkan engele takılmaması, değişik bir ortama 

girdiğinde hemen adapte olması, hatta bir problem yaşadığında problemini kendi 

kendine çözmesini bekliyoruz. Aynı zamanda bunları yapabilen bir robotun daha 

ucuza mal edilmesini ve bize daha hesaplı bir fiyatla sunulmasını istiyoruz. 

Robotik araştırmacıları, insanların bu talepkar beklentilerini karşılayabilmek için 

değişik alanlarda çalışmalarını sürdürmeye devam ediyorlar. Bir kısmı daha otonom 

ve daha fonksiyonel, operatör kontrolünden daha bağımsız robotlar geliştirmek için 

yapay zeka araştırmalarına yönelirken, bir kısmı elektronik ve mekanik 

optimizasyonlarla hem hesaplı hem çok yönlü robotlar yaratmaya çalışıyorlar. Bu 

tarz istekleri karşılayabilecek monolitik robotların olduğu ve daha bir çoğunun da 

geliştirilebileceği inkar edilmese de daha fonksiyonel, daha çok yönlü ve daha 

hesaplı robotik sistemlerin geliştirilmesi genellikle çoklu robot sistemleri ile 

sağlanmaktadır. Çoklu robot sistemleri denildiğinde ilk akla gelen iki tip robotik 

sistem vardır; (1) sürü robot sistemleri ve (2) modüler robotik sistemler. İki sistem de 

birbirine çok benzer görünse de aslında temel prensipleri açısından oldukça büyük 

farkları bulunmaktadır.  

Bu iki sistemin birbirinden ayrıldığı en temel nokta, modüler robotiğin temelinde 

birleşerek daha fonksiyonel robotlar oluşturmak varken, sürü robotikte birleşmek 

gibi bir olgu yoktur. Modüler robotik sistemlerde çoğu zaman modüller tek başlarına 

görev yapmazken, sürü robot sistemlerinde her robot tek başına çalışır ve sürü 

kendisinden beklenen görevleri bu şekilde yerine getirir. Her iki sistem çok sayıda 

robottan oluşsa da fonksiyonellik açısından, sürü robotik sistemlerdeki robotlar 

modüler robotik sistemlerdekilere oranla oldukça basittirler. Genel kontrol sistemleri 

açısından da iki robotik sınıf arasında farklar vardır. Sürü robotik sistemlerde daha 

dağıtılmış kontrol sistemleri kullanılırken, modüler robotik sistemlerde dağınık 

kontrol algoritmaları kullanılsa da sistemin temelinde birleşmek bulunduğundan, 

kontrol sistemlerinde merkezi ögeler de çoğunlukla bulunur. 

Bu çalışmanın amacı insanların robotlardan yeni beklentileri doğrultusunda daha 

fonksiyonel ve çok yönlü bir modüler robotik sistem tasarlamak ve bu sisteme bir 

stratejik planlama algoritması uygulayarak sistemin fonksiyonelliğini ve çok 

yönlülüğünü ön plana çıkarmaktır. Tasarlanacak modüler robotik sistemden 

beklentiler dört ayaklı ve tekerlekli gibi değişik ilerleme metodlarını uygulayabilecek 

bir yapıda olması, konfigürasyonlara özel engel üzerinden atlama ya da engel 
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altından geçme gibi yeteneklere sahip olması ve geliştirilen stratejik planlama 

algoritması sayesinde doğru ilerleme metodunu ve gerekli yeteneğini kullanabileceği 

doğru konfigürasyonu seçerek hedefine kolayca ulaşabilmesidir.  

Bu çalışmada modüler robotik bir sistemin tasarlanmasının ana nedeni modüler 

robotik sistemlerin genel prensiplerinin basit modüllerin birleşerek ya da zaten 

birleşik şekilde çalışan modüllerin bağlantı şekillerini değiştirerek daha karmaşık ve 

daha fonksiyonel robotik konfigürasyonlar oluşturabilmeleridir. Yeniden insanların 

robotlardan beklentilerine atıfta bulunarak, tekerlekli bir konfigürasyonda hızlı bir 

şekilde hareket eden bir robotun karşısına çıkan bir engeli fark edince üstünden 

geçemeyerek çalışmasını durdurmak yerine, dört ayaklı yürüyebilen bir 

konfigürasyona geçerek engelin üstünden geçebilmesi ve yoluna tekrar hızlı bir 

şekilde tekerlekli konfigürasyonuna dönerek devam edebilmesi çok yönlülük ve 

fonksiyonellik açısından modüler robotik sistemlerin neler sunabileceğinin sadece 

küçük bir örneğini temsil etmektedir. 

Modüler robotik sistemler geometrik yapılandırılmalarına göre üç farklı sınıfa 

ayrılabilirler. Zincir tipi (chain type) modüler robotik sistemler, ilk olarak ortaya 

çıkan sistemlerdir ve genellikle gelişmiş fonksiyonellikleriyle ön plana çıkarlar. 

Yeniden yapılanma konusunda zorluklar çekseler de gelişmiş ilerleme metodlarını 

sorunsuzca uygulayabildiklerinden önemli bir sınıftır. Daha sonra ortaya çıkan örgü 

tipi (lattice type) modüler robotik sistemlerse gelişmiş yeniden yapılanma yetenekleri 

ile zincir tipi sistemlerin bu yöndeki eksiklerini kapatsa da fonksiyonellik açısından 

yetersizdirler. Bu sınıf robotlar genelde basit ilerleme metodlarını uygulamadan 

öteye geçememişlerdir. Son olarak ortaya çıkan ve iki modüler robot tipinin önemli 

özelliklerini biraraya getiren hibrid tip ise oldukça ilgi çekicidir. Hibrid tip modüler 

robotlar gerektiğinde örgü dizilimine sahip olarak yeniden yapılanma problemini 

kolaylaştırırken, daha ileri seviye ilerleme metodlarını uygulamak için zincir 

dizilimine dönüşebilirler. 

Bu çalışmada geliştirilmesi planlanan robotik yapının değişik ilerleme metodlarını 

kolayca uygulayabilmesi daha önemli olduğundan, modüler robotik sistemin zincir 

tipi olması gerektiğine karar verilmiştir. Zincir tipi modüler robotik sistemlerdeki 

genel yeniden yapılandırılma problemini aşmak için modüller toprak kurdu benzeri 

bir ilerleme metodunu uygulayarak pozisyon değiştirebilme yeteneğine sahip olacak 

şekilde tasarlanmışlardır. 

Geliştirilecek stratejik planlama algoritmasının yapısına karar vermek için günümüze 

kadar geliştirilmiş robotik paradigmalara bir göz atmak gereklidir. Robotik alanında 

ortaya çıkan ilk paradigma, hiyerarşik paradigmadır. Bu kontrol mimarisinde robot 

sensörleri yardımıyla çevresinden gerekli bilgileri toplar, topladığı bilgilerle 

çevresinin dijital bir modelini oluşturur, bu modele göre yapması gereken eyleme 

karar verir ve uygular. Oldukça kolay uygulanabilir ve güvenilir bir sistem olmasına 

rağmen bu sistem robot tarafından tanınmayan ya da hızlı değişen dinamik 

ortamlarda oldukça düşük performans göstermektedir. Hiyerarşik paradigmanın 

dinamik ortamlarda yetersiz kalması üzerine geliştirilen reaktif paradigmada ise 

planlama gibi bir temel özellik bulunmaz. Reaktif paradigma ile çalışan bir robot 

sensörleri ile çevreden gerekli bilgileri alır ve bu bilgiler direk olarak eyleme çevrilir. 

Planlama ve modelleme gibi yüksek işlem gücü gerektiren özellikler sistemde 

bulunmadığından bu robotların dinamik ortamlarda tepki süreleri oldukça düşüktür. 

Bu sebeple engelden kaçma ve hedefe ulaşma gibi basit davranışları kolaylıkla yerine 

getirebilirler. Reaktif paradigmada planlama gibi temel bir özellik bulunmasa da 

sensörlerin eyleyicileri direk olarak kontrol ederek robotun sürekli tek bir eylem 

gerçekleşmesinin önüne davranışlar programlayarak geçilir. Davranışlar arasında 
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hiyerarşik bir sıralama yapıldığında robotun istenilen şekilde hareket etmesi 

sağlanabilir. Yine de reaktif paradigma uzun mesafeli amaçlara ulaşmak için 

programlanması gereken davranışların karmaşıklığı ve robot davranışlarını optimize 

etmenin zorluğu nedeniyle limitlerine ulaşmıştır. Bu nedenle hiyerarşik ve reaktif 

paradigmaların önemli özelliklerini barındıran hibrit bilinçli/reaktif paradigma ortaya 

çıkmıştır. Bu hibrit paradigma iki katmandan oluşur. Bilinçli katman hiyerarşik 

paradigmaya benzer bir yapıdayken, reaktif katman bir sıralayıcı eklenmesinin 

dışında reaktif paradigmanın aynısıdır. Bu hibrit paradigmaya göre robot önce 

sensörleri yardımıyla çevresel bilgileri toplar ve bilinçli katman tarafından amaca 

ulaşmak için alt amaçlardan oluşan uygulanabilir bir plan üretilir. Planın 

uygulanması kısmında ise reaktif katman devreye girer ve robotun hızlıca hedefe 

ulaşması sağlanır. Robot reaktif bir şekilde hedefine doğru ilerlerken, çevresel sensör 

verileri bilinçli katmanla paylaşılır ve gerekirse plan revize edilir. Robotun durumu 

ve plana uygunluğu reaktif katmana eklenen sıralayıcı tarafından kontrol edilir ve 

planın alt amaçları tamamlandıkça yeni hedefler sıralanır. 

Hibrit bilinçli/reaktif paradigma bu çalışmanın amaçları doğrultusunda yaratılmak 

istenen stratejik planlama uygulaması için en uygun paradigmadır. Bu nedenle 

algoritmanın mimarisi hibrit bilinçli/reaktif paradigmaya uygun olarak 

geliştirilmiştir. 

Modüler robotik sınıflar ve robotik paradigmalar dışında çalışmanın tamamlanması 

için önemli kararlardan biri de kullanılacak simülasyon ortamının belirlenmesidir. 

Modüler robotik bir sistemi simüle edebilmek için simülasyon programlarında 

aranacak en önemli özellikler programın simülasyon sırasında modüllerin mekanik 

olarak birleşip ayrılmalarını desteklemesi ve simülasyon sırasında birden fazla 

modülün farklı şekilde programlanmasını sağlayabilecek programlama esnekliği 

sunmasıdır. Bu amaçla bu iki önemli özelliğe de sahip olan Gazebo, Webots ve V-

Rep isimli üç farklı simülasyon ortamı incelenmiş ve çalışma için en uygun 

simülasyon ortamının V-Rep olduğuna karar verilmiştir. Simülasyon yazılımı olarak 

V-Rep'in seçilmesindeki sebepler Webots gibi ticari bir yazılım olsa da eğitim 

amacıyla tam sürümünün kullanılmasının mümkün olması ve diğer iki programa göre 

kolay kullanıma ve oldukça düzenli ve detaylı bir dökümantasyona sahip olmasıdır. 

Özellikle Gazebo açık kaynaklı bir program olmasına rağmen dökümantasyon ve 

kullanım kolaylığı açısından yetersiz bir yazılım olarak değerlendirilmiştir. 

Simülasyon ortamı da belirlendikten sonra, V-Rep içerisinde modüler robotik 

sistemin tek modülünün mekanik yapısı, eklemleri, sensörleri ve bağlantı noktaları 

kararlaştırılarak yapısal tasarımı tamamlanmıştır. Yapının tasarlanmasının ardından 

modülün kinematik analizi yapılarak uygun bir ilerleme metodu geliştirilmiştir. 

Geliştirilen bu ilerleme metoduna uygun olarak, modüllerin özellikle birleşme 

amacıyla kullanacakları bir pozisyon kontrol algoritması geliştirilmiş ve tek modül 

tasarımı tamamlanmıştır. 

Modül tasarımlarının ardından, modüler robotik yapının değişik ilerleme metodları 

uygulamak ve özel yeteneklerini sergilemek için oluşturması gereken 

konfigürasyonların tasarımlarına geçilmiştir. Bu amaçla dört ayaklı ilerleme 

metodunu uygulayabilen ve yerdeki engellerin üzerinden geçebilen bir dört ayaklı 

konfigürasyon ve tekerlekli ilerleme metoduna sahip ve boyunu kısaltarak tünel 

benzeri engellerin altından geçebilen bir tekerlekli konfigürasyon tasarlanmıştır. İki 

konfigürasyon da altışar modülün birleşmesiyle oluşacak şekilde tasarlanmıştır. 

Konfigürasyonları oluşturmak için modüllerin birleşme şekillerini belirleyen bir rol 

dağıtım algoritması oluşturulmuş ve konfigürasyonları oluşturmak için modül 

bağlantılarının nasıl yapılacağı belirlenmiştir. Tek modül tasarımında olduğu gibi iki 
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konfigürasyon için de kinematik analiz metodu ile uygun ilerleme metodları ve özel 

yeteneklerini uygulama biçimleri geliştirilmiştir. 

Modüler robotik sistem yapısal olarak tasarlanıp simülasyon ortamında 

oluşturulduktan sonra, stratejik planlama algoritmasının geliştirilmesine geçilmiştir. 

Daha önce bahsedildiği gibi hibrit bilinçli/reaktif paradigmaya uygun bir algoritma 

geliştirilmiştir. Algoritmanın hiyerarşik katmanı simülasyon başında bütün 

modüllerin görsel ve kuvvet sensörlerini kullanarak çevrede bulunan cisimleri 

algılaması ve zeminin sürtünme katsayısını belirlemesi ile robotik yapıyı başlangıç 

durumundan istenen amaç durumuna getirmek için alt amaçlardan oluşan bir plan 

üretir. Üretilen plandaki alt hedefler, bir pozisyona ulaşmak olabileceği gibi, bir 

konfigürasyondan başka bir konfigürasyona dönüşme ya da konfigürasyona özel 

yetenekleri uygulama olabilir. 

Plan üretildikten sonra reaktif katman yine sensör verilerinden faydalanan sıralayıcı 

kısmının belirlediği geçici hedeflerle eylem kısmına geçer ve robotik yapının sırayla 

alt hedeflere ulaşmasını sağlar. Reaktif katmanın aktif olduğu ve robotik yapının 

eylem halinde olduğu süre içerisinde de sensör verileri hiyerarşik katman ile 

paylaşılır. Robotun bulunduğu dinamik ortamda herhangi bir değişiklik olması 

durumunda plan revize edilebilir. Revize dahi edilse eylem kısmına geçilmeden önce 

reaktif katmanın sıralayıcısı arada tampon görevi gördüğünden robot normal 

çalışmasına devam edebilir. 

Tasarlanan modüler robotik yapının ve stratejik planlama algoritmasının test edilmesi 

amacıyla V-Rep içerisinde karmaşık bir test düzeneği oluşturulmuştur. Bu test 

düzeneğinde robotik yapının başlangıç durumu ile hedef durumu arasında engeller 

konulmuş ve robotun davranışı test edilmiştir. 

Bu çalışmada yapılan testlerin sonuçları detaylı olarak paylaşılmış ve 

yorumlanmıştır. Test sonuçlarına göre modüler robotik yapıların iyi bir modül 

tasarımı ve stratejik planlama algoritması ile monolitik benzerlerine oranla çok daha 

fonksiyonel ve çok yönlü olduğu kanıtlanmıştır. 
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1.  INTRODUCTION 

As a relatively new research field, modular robotic structures have gained high 

interest among researchers due to its versatility and its suitability for mass 

production. Modular robotic structures are versatile because they can change 

morphology. With a good design, a modular robotic structure can practice 

quadruped, wheeled or limbless locomotion methods. They are also suitable for mass 

production because generally every module in a modular robotic structure is identical 

and they are interchangeable. Even if the structure does not have identical modules, 

the number of different type of modules does not harm the process of mass 

producing because the modules are often interchangeable.  

In this study, a chain type modular robotic structure that consists of self-mobile 

modules which are able to create different configurations that can operate in various 

locomotion modes such as wheeled and quadruped is created. To overcome the 

general self-reconfiguration problem for the chain type modular robots, the modules 

are designed to have self-mobility. A hybrid deliberative/reactive strategic planning 

algorithm is developed to ensure the system takes the suitable configuration to pass 

over configuration specific obstacles and reach its goal. The system is designed and 

tested in a highly versatile simulation environment called V-Rep (Virtual Robot 

Experimentation Platform).  

In the second chapter, a background for this study is given comprehensively. In the 

first section of the second chapter, the background of modular robotics and notable 

modular robotic systems are explained. In the second section of the second chapter, 

general robotic paradigms are explained to give an insight to the reader about the 

strategic planning algorithm developed in this study. In the third and the last section 

of the second chapter, a brief explanation about simulation environments and some 

well-known simulation programs such as Gazebo, Webots and V-Rep are presented. 

The reasons for using V-Rep in this study are also explained in this part. 



2 

 

The third section is about the developed modular robotic structure in this work. In the 

first section of the third chapter, the single module design is explained in detail. The 

design considerations, development of the locomotion method for a single module  

and control methods of the single module is explained in this section. In the second 

section the configurations that can be created by the robotic structure is presented. 

Their assembly, locomotion methods, control algorithms and configuration specific 

abilities to pass obstacles are explained. In the last section of the third chapter, the 

strategic planning algorithm developed for the robotic structure is explained. The 

strategic planning algorithm is developed to ensure that the structure reaches its 

target. 

In the fourth chapter, simulation and test results regarding the performance of the 

modular robotic system in a complex test area which is created in the simulation 

software. The robotic system is tested based on the performance of the developed 

strategic planning algorithm. The test area consists of configuration specific 

obstacles between the initial state and the target state is created in the simulation 

software.  

The fifth chapter is about the conclusions of this study. In this chapter the test results 

are discussed and the findings are reported. Some recommended additions to the 

modular robotic system design and strategic planning algorithm is also shared.  

1.1 Purpose of Thesis 

The purpose of this thesis is to develop a strategic planning algorithm and implement 

it to a modular robotic structure which can assemble various configurations to 

operate in different locomotion modes such as quadruped and wheeled. The strategic 

planning algorithm is expected to make the robotic structure reach a given goal state 

by assembling proper configurations to pass configuration specific obstacles.
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2.  BACKGROUND 

In this section a background for the related work of this study is given. In Section 

2.1, a brief history of the modular robotics research field and most notable robots 

designed in the sense of classification and progression were presented. In section 2.2, 

the robotic paradigms are presented and their operating principles are explained 

briefly. In section 2.3, some well-known simulation programs such as Gazebo, 

Webots and V-Rep are presented.  

2.1 Modular Robotics 

The idea of distributed robotic systems emerged in the 1980s. It supposed that 

instead of building monolithic and inflexible robots, developing a cellular design 

inspired by nature is more efficient in reaching versatile robot structures. The robots 

would be able to change their shapes by splitting their cellular modules and 

rearranging them in a different configuration. One example given by Toshio Fukuda 

who is also known to be the creator of the philosophical foundation for the field of 

modular robotics was a robot that could move into environments that are difficult to 

reach and once inside, it can change its shape to accomplish a task. 

The first implementation of the presented idea was completed by Toshio Fukuda. 

CEBOT [1] was built for that purpose in 1988. CEBOT was consisting of three 

different types of modules which were actuation modules, structural modules and 

tool modules. Since the definition of self-reconfigurable was not clear when CEBOT 

was developed it was specified as a multi-robot system consisting of mobile robots. 

The first modular robot aiming at self-reconfiguration problem was created by Mark 

Yim in 1993. PolyPod [2] was able to implement different gaits with the connection 

of different types of modules. Polypod was dynamically reconfigurable, but it was 

not able to demonstrate self-reconfiguration. PolyPod is known to be the predecessor 

of chain type modular robots. 
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In 1993 and 1994, the first examples of lattice type modular robots were introduced. 

In 1993 Metamorphic [3] was built by Gregory Chirikjian and in 1994 Satoshi 

Murata built Fracta [4]. Both robots had the ability to change their shape in two 

dimensions. In these robots the configuration of modules was forming a lattice which 

eases the problem of self-reconfiguration. That caused emergence of another class 

which is called lattice type modular robots. 

In 1998, two new chain type modular robots arrived in the scene. CONRO [5] was 

built by Andres Castanõ and a new version of PolyPod which is called PolyBot [6] 

was developed by Mark Yim. Both robots were able to implement various 

locomotion methods, but self-reconfiguration was still an important issue for the 

chain type modular robots.  

While chain type modular robots were still struggling to demonstrate self-

reconfiguration, in 1998 two new lattice type modular robots achieved self-

reconfiguration in three dimensions. 3D Fracta [7] which is the improved version of 

the Fracta robot was developed by Satoshi Murata and Molecule [8] was built by 

Keith Kotay and Daniella Rus. 

Up to that point, two distinctive clasess of modular robots were present which were 

superior to their complementary classes in different ways. While lattice type robots 

were able to demonstrate self-reconfiguration in three dimensions, chain type robots 

could not achieve self-reconfiguration. Chain type robots were superior to their 

lattice type complements by their increased ability to implement advanced 

locomotion gaits although they were not self-reconfigurable.  

After the distinction between two classes was clearly defined, another class of 

modular robots has emerged. M-TRAN [9] which was developed by Satoshi Murata 

in 1999 had the properties of both a chain type and a lattice type modular robot. This 

new class is called hybrid type modular robot as it merges the properties of both 

chain type and lattice type modular robots. The hybrid nature of M-TRAN came 

from its ability to exist in both lattice structure to achieve self-reconfiguration and 

chain structure to make locomotion problem easier. 

ATRON, which is the second hybrid type of robot, was built in 2003 by Jorgensen at 

the University of Southern Denmark, Odense. The novel idea behind ATRON 

[10,11] was fascinating. ATRON modules had only one actuator and they showed 
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that 3D self-reconfiguration can be achieved even with one actuator. This was made 

possible by arranging the rotational axis of each module perpendicular to each other.   

Another hybrid type of modular robot was introduced in 2006 by Wei-Min Shen. 

SuperBot [12] had an extra degree of freedom compared to M-TRAN which had two 

actuators parallel to each other. In SuperBot, an extra actuator is added to control the 

orientation between these actuators. Similar to M-TRAN, SuperBot also had the 

ability to exist in both lattice and chain structures. 

2.2 Robotic Paradigms 

Robotic paradigms can be defined as the control architectures that characterize the 

behavioral cycle of robots. The paradigms can be described in two ways: (1) by the 

relationship between the three primitives of robotics which are sense, plan, act; (2) 

by the way sensory data is processed and distributed through the system. Robotic 

paradigms can be listed as hierarchical, reactive and hybrid deliberative/reactive. 

2.2.1 Hierarchical paradigm 

The hierarchical approach focuses mainly on the planning aspect of operation of a 

robot. The robot senses its environment, plans its next action based on the acquired 

data and then executes the appropriate action using its actuators. Before taking any 

action, the robot plans its next action from the knowledge it has gathered about its 

surroundings up to that point. Figure 2.1 shows the relationship between the robotic 

primitives in hierarchical paradigm. 

 

Figure 2.1 : Relationship of the robotic primitives in hierarchical paradigm. 

The first robot operating under the hierarchical paradigm is "Shakey the robot" [17] 

which was developed at Stanford Research Institute in 1966. Control architecture of 

Shakey was composed of three basic parts which were sensing, planning and 

executing. The sensing system was translating camera image into an internal world 
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model, the planner was using this world model to generate a plan to achieve the goal 

and the executor was applying control inputs according to the plan generated.  

The components of the robot in this case are said to be horizontally organized. 

Information from the world in the form of sensor data has to filter through several 

intermediate stages of interpretation before finally becoming available for a response. 

The emphasis in these early systems was in constructing a detailed world model and 

then carefully planning out what steps to take next. The problem was that while the 

robot was constructing its model and planning what to do next, the world was likely 

to change. Therefore the robots exhibited the odd behavior that they would perceive, 

process and plan and then they would lurch into action for a couple of steps before 

beginning the cycle all over again. This is called look and lurch behavior. This 

behavior was a proof of the inability of these systems to cope with dynamic 

environments. 

2.2.2 Reactive paradigm 

The issues with the hierarchical paradigm caused the emergence of reactive or 

behavioral paradigm. In 1986 Rodney A. Brooks published an article which 

described a type of reactive architecture called the subsumption architecture [13]. 

This architecture became the dominant approach within the reactive robot 

architectures. Reactive paradigm was heavily used in robotics between 1988 and 

1992. As shown in Figure 2.2, reactive paradigm removes the planning primitive 

from the architecture.  

 

Figure 2.2 : Relationship of the robotic primitives in reactive paradigm. 

In the reactive paradigm, the actions taken by the robot are direct results of sensor 

data acquired. Although this implies that the robot takes only one type of action, this 

is not the case. To avoid the robot taking only one action, layers of interacting finite 

state machines which connect sensor data to actuators are added. These finite state 

machines are called behaviors. Depending on the sensor data received, one or more 



7 

 

behaviors can be activated simultaneously. To avoid the confliction between these 

activated behaviors, different handling mechanisms are developed. In the 

subsumption architecture there is a hardware implemented overriding mechanism 

that enables selection of higher level behaviors over low level behaviors. Figure 2.3 

shows the levels of behaviors and their relationship with the sensing and acting 

primitives. 

 

Figure 2.3 : Levels of behaviors in reactive paradigm. 

2.2.3 Hybrid deliberative/reactive paradigm 

In spite of the simple nature of the architecture and its adaptability to dynamic 

environments, reactive paradigm reached its limits due to the difficulties of 

composing behaviors for long range goals and optimizing robot behavior. These 

problems caused the return of the planning primitive in hybrid deliberative/reactive 

paradigm. The hybrid paradigm emerged in the 1990s and it is still the active area of 

research. Figure 2.4 shows the relationship of the robotic primitives in the hybrid 

paradigm. 

 

Figure 2.4 : Relationship of the robotic primitives in hybrid paradigm. 

A robot working under the hybrid paradigm firstly plans how to accomplish a 

mission or a task using a global world model. For that purpose, the planner 

decomposes the task into subtasks and then activates the suitable behaviors to 
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complete each subtask. The behaviors are executed same as the reactive paradigm 

and when the mission is completed, the planner generates another plan. The sensing 

organization in the hybrid paradigm is more complex. Sensor data can both be used 

by the behaviors and the planner. For example, an obstacle detected by a sensor 

which does not activate "avoid obstacles" behavior in the reactive paradigm can be 

used in the hybrid paradigm to create a map of the environment and can use this 

information when a new plan is generated. There can be also planner specific sensors 

which are not used by behaviors. 

The hybrid architectures can be characterized by a layering of capabilities where low 

level layers provide reactive capabilities and high level layers provide the more 

computationally intensive capabilities. Three layered architectures are the most 

popular variant of these hybrid architectures. The layers on these architectures are; 

(1) controller/reactive layer, (2) sequencer/executive layer, (3) planner/deliberative 

layer. 

The controller layer provides low level control and it is characterized by a tight 

sensor-action loop. Controller elements should have low computational complexity 

to allow them to react quickly to stimuli and execute basic behaviors fast. The 

sequencer layer is between the low level controller and the higher level planner 

layers. It accepts directives from the planner and sequences them for the reactive 

layer. The sequencer layer is also responsible for integrating sensor information into 

an internal state representation. The planner or deliberative layer contains the 

heaviest computational components and generates complex solutions tasks. 

2.3 Robotic Simulation Environments  

In this section, some well-known robotic simulation software programs are 

presented. The first two programs Gazebo and Webots are briefly explained. The 

simulation software used in this study, V-Rep, is explained in detail. Reasons for 

choosing V-Rep as the simulation software over other alternatives for this study is 

also explained in this section. 

2.3.1 Gazebo  

Gazebo [18] is an open source outdoor dynamics simulator. Development of Gazebo 

started as a part of the Player project [19] at the University of Southern California in 
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2002. The purpose was to develop a complementary dynamics simulator to the 2D 

simulator Stage. In 2012 Gazebo became an independent project under the Open 

Source Robotics Foundation. Features of Gazebo are listed below. 

 Support for multiple physics engines such as ODE (Open Dynamics Engine), 

Bullet, Simbody and DART (Dynamic Animation and Robotics Toolkit). 

 Advanced 3D graphics with OGRE (Object Oriented Graphics Rendering 

Engine). 

 Plugin support for robot, sensor and environmental control. 

 Wide variety of supported robot models such as PR2, Pioneer2 DX, iRobot 

Create and TurtleBot. 

Gazebo is still under development and the developers announced that Windows 

support is work in progress. 

2.3.2 Webots 

Webots [20] is a commercial robot simulator which uses ODE (Open Dynamics 

Engine) library for dynamic simulations. Its development is started in 1996 at the 

Swiss Federal Institute of Technology. 

Features of Webots 

 ODE support for physics simulation. 

 C, C++, Java, Python and MATLAB support for programming robots. 

 Complete library of customizable sensors and actuators. 

 Robot controllers can be transferred to real robots. Supported robots are Aibo, 

Lego Mindstorms, Khepera, Koala and Hemission. 

 Support for controllable connector devices to simulate modular robotic 

structures. 

 Able to record simulations in AVI or MPEG format. 

2.3.3 V-Rep 

V-Rep [21] is a general purpose robot simulator with integrated development 

environment providing the ability to model and simulate sensors, mechanisms, robots 
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and whole systems. V-Rep is developed by Coppelia Robotics and its first official 

release was in 2010. By the developers of the platform, V-Rep is defined as "the 

Swiss army knife among robot simulators" due to its versatility and modular 

structure to cope with simulating complex robotic systems. V-Rep is used in a wide 

variety of application areas such as fast prototyping and verification, fast algorithm 

development, remote monitoring, hardware control, etc. V-Rep supports three 

different physics engines which are ODE, Bullet and Vortex. 

A simulation scene in V-Rep consists of 3 central elements. These are (1) scene 

objects, (2) calculation modules and (3) control mechanisms. Scene objects are the 

main entities used to build the scene. Calculation modules are the functions that 

handle calculations in the simulation. Control mechanisms are simply the code 

provided by the user to control the simulated entities. 

Scene objects in V-Rep and their brief explanations taken from V-Rep Manual [22] 

are given below. 

 Shape is a rigid mesh that is composed of triangular faces. 

 Joint is a joint or an actuator. Four types are supported: (1) revolute joints, 

(2) prismatic joints, (3) screws and (4) spherical joints. 

 Graph is used to record and visualize simulation data. 

 Dummy is a point with orientation. Dummies are multipurpose objects that 

can have many different applications. 

 Proximity sensor detects objects in a geometrically exact fashion within its 

detection volume. V-Rep supports pyramid, cylinder, disk, cone and ray type 

proximity sensors. 

 Vision sensor is a camera type sensor , reacting to light, colors and images. 

 Force sensor is an object able to measure forces and torques that are applied 

to it. It also has the ability to break if a given threshold is overshot. 

 Mill is a convex volume that can be used to perform cutting operations on 

shape objects. 

 Camera is an object that allows seeing the simulation scene from various 

view points. 
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 Light is an object that allows illuminating the simulation scene. 

 Path is an object that defines a path or trajectory in space. It can be used for 

various purposes, also as a customized joint or actuator. 

 Mirror can reflect images/light, but can also operate as an auxiliary clipping 

pane. 

Figure 2.5 shows the visual representations of scene objects in the scene view and 

hierarchy tree. 

 

Figure 2.5 : Visual representations of scene objects in the scene view and scene 

hierarchy in V-Rep. 

Some of the scene objects can have special properties to allow other objects or 

calculation modules to interact with them. These properties are given below. 

 Collidable objects can be tested for collision against other collidable objects. 

 Measurable objects can have the minimum distance between them and other 

measurable objects calculated. 

 Detectable objects can be detected by proximity sensors. 

 Cuttable objects can be cut by mills. 

 Renderable objects can be seen or detected by vision sensors. 
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 Viewable objects can be looked through, looked at or their image content can 

be visualized in views. 

Besides these properties, each object has a position and orientation within the scene. 

Calculation modules are the functions that handle calculations in the simulation. 

These modules are used by the simulation software to update the simulation world, 

but they can also be used by the user. The following are the calculation modules and 

their brief explanations.  

 Collision detection module allows tracking, recording and visualizing 

collisions that might occur between any collidable entities. 

 Minimum distance calculation module allows tracking, recording and 

visualizing minimum distances between any measurable entities. 

 Inverse kinematics calculation module allows solving any type of inverse or 

forward kinematic problem in a very efficient way. 

 Geometric constraint solver module allows solving inverse or forward 

kinematic problems while offering a great extent of interaction possibilities 

to the user. 

 Dynamics module allows dynamically simulating objects or models to 

achieve object interactions. 

 Path planning module allows performing path planning calculations for 

objects in 2-6 dimensions. Additionally, non-holonomic path planning for 

car-type vehicles is also supported. 

 Motion planning module allows performing motion planning calculations for 

manipulators. 

Each calculation module (except the dynamics module) allows registering 

calculation objects that are user defined. Calculation objects are different from scene 

objects, but are indirectly linked to them by operating on them. This means that 

calculation objects cannot exist by themselves. 
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 Collision detection objects (or collision objects) rely on collidable objects. 

 Minimum distance calculation objects (or distance objects) rely on 

measurable objects. 

 Inverse kinematics calculation objects (or IK groups) rely mainly on 

dummies and kinematic chains, where joint objects play a central role. 

 Geometric constraint solver objects (or mechanisms) rely mainly on 

dummies and kinematic chains, where joint objects play a central role. 

 Path planning objects (or path planning tasks) rely mainly on dummies, a 

path object, and collidable or measurable entities. 

 Motion planning objects (or motion planning tasks) rely mainly on IK 

groups, and collidable or measurable entities. 
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3.  ROBOTIC STRUCTURE AND STRATEGIC PLANNING 

3.1 Single Module Design 

3.1.1 Design considerations 

The main goal of the design process related to a single module of the reconfigurable 

robots is to achieve self-mobility of a single module in order to realize autonomous 

assembly of the robot. In addition to self-mobility of the individual modules, they 

have to be versatile enough to achieve locomotion when arranged in several 

configurations such as quadruped and wheeled. 

3.1.2 Structure 

A single module of the reconfigurable modular robot consists of three main parts. 

These parts can simply be named as wheel, foot and body. The design is very similar 

to an articulated (elbow) manipulator. While the articulated manipulator has its base 

fixed, in the module design, the base is not fixed and it is used as the wheel. The 

structure of a single module in the simulation environment is shown in Figures 3.1 

and 3.2. Figure 3.3 illustrates the structure and terminology associated with the 

articulated manipulator. 

 

Figure 3.1: Single module in simulation software. 
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Figure 3.2: Single module parts shown in exploded view. 

 

Figure 3.3: Articulated manipulator. 

The wheel part is used for orientation control when the module does not have a role 

in a configuration and when it is not part of a larger kinematic chain. The wheel base 

consists of two cylinders which have a force sensor attached between them and a 

revolute joint which connects the cylinders to the main body of the module. The 

force sensor is used to estimate friction coefficient of the terrain. 

The wheel has varying tasks in different configurations. For example, in the 

quadruped walking configuration, in which a single module takes the role of a leg 
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and acts as an articulated manipulator, the wheel forms the base of the articulated 

manipulator. In the wheeled configurations, this part acts as the wheel and plays the 

main role in locomotion. In limbless locomotion mode, the periodic change in the 

joint position of the wheel makes it possible to achieve forward movement. In 

traveling wave locomotion mode, the joint positions of the wheel of some modules 

are used to control the orientation of the whole structure. The wheel has a connection 

point in its center. 

The foot is the part that makes it possible for the module to move in longitudinal 

direction while operating alone. It consists of two rigid links which are connected 

with a revolute joint. The first link is connected to the body with a revolute joint and 

the second link has an orthogonal plate attached to it. This plate has an important role 

when it comes to the locomotion of the single module. It is essential that this part has 

a higher static friction coefficient than that of the cylinder of the wheel. The local 

reference frame is placed at the center of the lower tip of this plate because this 

position is the center of rotation of the module. 

The foot has important functions in different locomotion modes. While the module is 

operating as a leg in the quadruped walking mode, the first and the second joints of 

the foot form the shoulder and elbow and the second link forms the forearm of the 

articulated manipulator. In the wheeled configurations, the joint positions of the foot 

can change the axle length of the structure. In limbless locomotion modes, forward 

movement is achieved by the periodic movement of the foot links. 

The body is the uniting part of the module. The wheel and the foot are connected to 

the body with their revolute joints. A caster is attached to the lower side of the body. 

The caster acts as a pivot point in case the tip of the foot loses contact with the 

terrain. The pole-like structure on which the visual sensor is positioned is attached to 

the upper side of the body with a revolute joint. Two connection points are located 

on the left and right sides of the module. 

3.1.3 Sensor implementations 

3.1.3.1 Force sensor 

Force sensors are used to estimate the friction coefficient between the robot external 

surface and the terrain. Since the decision algorithm for intelligent locomotion and 
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reconfiguration rely highly on this estimation, the role of force sensor is important 

for cooperative behavior of the modules. 

In the simulation software, the force sensors are needed to be positioned between two 

rigid shapes. To satisfy this requirement, the wheel part of the module is created by 

using two identical cylindrical shapes and the force sensor is positioned between 

these two cylinders. Figure 3.4 shows the positioning of the force sensor. The front 

cylinder of the wheel is exposed to friction force while the module is moving and it 

transfers this force to a certain location so that the force sensor can operate. Next, the 

readings of the force sensor can be used in the decision algorithm for intelligent 

locomotion. 

 

Figure 3.4: Force sensor. 

3.1.3.2 Visual sensor 

Visual sensors are the main unit of the modules for sensing the environment around 

them. They have uses both in the assembly phase in which the modules are operating 

alone and in the cooperative phase in which the modules have different roles in a 

configuration. The visual sensors are created using the proxy sensors in the 

simulation software and attached to the body of modules with a pole-like structure 

consisting of two links and two revolute joints. 

In the assembly phase, one of the most important uses of the visual sensors is 

localization of other modules in the neighborhood. After the decision for the 

locomotion mode is made, the modules start scanning the area around them with the 

help of their visual sensors. After the scan, a basic coordinate system is created using 
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the module or obstacle data acquired. During the assembly process, the modules 

continue scanning the environment to update their position on the coordinate system 

if they are not able to get locked to their target modules. 

The creation of visual sensors in the simulation software can be considered as 

simulating a camera by using proxy sensors. The original proxy sensors in the 

simulation software are capable of identifying objects (shapes or dummies) that are 

part of a running simulation and returning axial distances based on its own 

coordinate frame. These capabilities of the proxy sensor make it possible to use it 

like a camera in the simulation environment. 

Another important issue in the implementation process of the visual sensors is 

positioning. Since all mechanical parts of the module are facing orientation and 

position changes during locomotion, having the visual sensor positioned at a 

stationary point would not represent the real situation. Giving the visual sensor a 

relative independency regarding orientation and position control to adjust the visual 

angle makes the localization problem easier. Therefore the visual sensor is positioned 

at the end of a pole-like structure that has two links and two revolute joints and is 

attached to the body of the module. The first joint that connects the pole-like 

structure to the body controls gamma orientation and the second joint controls the 

beta orientation of the visual sensor. This control is very important in assembly phase 

in which the visual sensor of a moving module is required to lock a target module for 

connection. 

3.1.4 Connection mechanism 

The connection mechanism is the most important design element in the modular 

reconfigurable mobile robots because it enables the assembly of several 

configurations. In the simulation, connection of two modules is assumed to be 

completed by creation of a link between the connection points of modules. In each 

module there are four connection points. The connection points are positioned at the 

front side of the wheel, left and right sides of the body and at the back of the foot. 

Although the connection points on any module can create links between other 

connection points on another module, body-to-body and wheel-to-wheel connections 

are not used.  
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The connection points are created by using dummies in the simulation software. 

Dummies are not physical entities. They are points with orientation and can be seen 

as reference frames. Dummies have lots of uses in the simulation software, but their 

capability of creating links between other dummies makes them suitable to be used 

as connection points. There are several types of links between dummies which can be 

used for different purposes, but "Dynamics, overlap constraint" type of link is used 

for making the dummies behave as connection points. When created between two 

dummies, this type of link makes the dummies try to overlap their respective position 

and orientation. Therefore the parent shapes of the two dummies (e.g. the wheel part 

of a module and the foot part of another module), which are physical entities; act as 

if they are physically connected to each other. 

Since "Dynamics, overlap constraint" type of link between two dummies make them 

overlap their positions and orientations, their position and orientation should be set 

accordingly to allow wheel-to-foot, wheel-to-body, foot-to-body and foot-to-foot 

connections. Table 3.1 shows the position (x, y, z) and orientation (α, β, γ) values for 

each dummy relative to reference frame of the module. Recall that the reference 

frame is positioned at the center of the lower tip of the foot. Figure 3.5, Figure 3.6, 

Figure 3.7 and Figure 3.8 show wheel-to-foot, wheel-to-body, foot-to-body and foot-

to-foot connections between two modules and corresponding dummy orientations. 

Note that in the figures, the modules are not connected, but are about to connect and 

some parts of the module are not visible or shown as wireframe for better 

understanding. In all figures the first module is stationary at position (0, 0, 0) and 

orientation (0°, 0°, 0°) and the second module is the connecting module. 

Table 3.1 : Dummy positions and orientations. 

 Position (x, y, z) Orientation (α, β, γ) 

DummyFx (0.172, 0, 0.025) (0, 0, 0) 

DummyLx (0.137, 0.025, 0.025) (0, 0, -90) 

DummyRx (0.137, -0.025, 0.025) (0, 0, 90) 

DummyBFx (0, 0, 0.025) (0, 0, 0) 

DummyBSx (0, 0, 0.025) (0, 0, 180) 
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Figure 3.5: Wheel-to-foot connection.  

 

Figure 3.6: Wheel-to-body connection.  

 

Figure 3.7: Foot-to-body connection.  
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Figure 3.8: Foot-to-foot connection.  

The reason for having two different dummies on the foot is the orientation 

differences between connecting dummies in different connection types. DummyBS is 

the first dummy created for the module to accomplish foot-to-body connections. 

When the module needed to make foot-to-foot connections, the existing dummies 

(DummyBS) at the foot of both modules have different orientations. While the 

orientation of DummyBS of the first module (DummyBSx1) is (0°, 0°, 180°), the 

orientation of the DummyBS of the second module (DummyBSx2) will be (0°, 0°, 

0°). If it is left that way and the dummies are linked to each other, they will try to 

overlap their positions and orientations causing the modules to also overlap. To 

overcome this problem another dummy is added to the back connection point which 

is DummyBF. This dummy has the same position with DummyBS, but has -180
0
 

difference in gamma orientation. This difference makes the orientation of this 

dummy equal to the orientation of the DummyBS of the stationary module in foot-to-

foot connections. Addition of DummyBF also solves the same orientation problem in 

wheel-to-foot connections. The first dummy is named as DummyBS because it was 

the standard for foot-to-body connections before there was not any need for 

DummyBF. The name Dummy BF is given to the second dummy because it is added 

to make foot-to-foot connections possible.  

3.1.5 Locomotion 

3.1.5.1 Kinematics of a single module 

As expressed before the design of a single module is very similar to an articulated 

manipulator. Therefore the kinematic model of a single module is also similar to the 
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kinematic model of an articulated manipulator. Figure 3.9 shows the coordinate 

frames assigned for using Denavit - Hartenberg convention and D-H parameters for 

the kinematic chain are shown in Table 3.2. Note that the base of the kinematic chain 

is the connection point of the wheel and the end-effector is the lower tip of the foot. 

d1 is the distance between the connection point of the wheel and the first joint of the 

foot and it is 77.5 millimeters. d2 is the distance between the two joints of the foot 

and it is 47.5 millimeters long. d3 is the distance between the second joint of the foot 

and the outer center of the orthogonal plate and it is 47 millimeters. a3 is the distance 

between the lower tip of the foot and the outer center of the orthogonal plate attached 

to the foot and its value is 25 millimeters. 

 

Figure 3.9: Coordinate frames for the first kinematic chain. 

Table 3.2 : D-H parameters of the first kinematic chain. 

 Rotz(θi) Transz(di) Transx(ai) Rotx(αi) 

1 θ1 d1 0 α1 

2 0 d2 0 α2 

3 -π/2 d3 a3 0 

Since the homogeneous transformation matrices are represented as a product of four 

basic transformations, any homogeneous transformation matrix associated to a link i 

can be expressed generally as shown in equation (3.1).  
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  (3.1) 

Using (3.1) and placing the corresponding D-H parameters associated to each link, 

the homogeneous transformation matrices can be derived. The derivation of the 

homogeneous transformation matrices associated to each link is shown in equations 

(3.2) to (3.4). 

    

                                     
                                     

                 

    

  (3.2) 

    

    
                 

                 

    

  (3.3) 

    

    
       

     

    

  (3.4) 

The homogeneous transformation matrix that transforms the coordinates of the end 

effector (tip of the foot) to the base (connection point of the wheel) can be derived as 

shown in (3.5). 

  
         (3.5) 

Since the calculations are too complex, an m-file is created to calculate the position 

of the end-effector for different values of α1 and α2 in MATLAB. The m-file also 

transforms the coordinates of the end-effector from the coordinate frame of the base 

of the model to the absolute frame of V-Rep. The transformation is shown in 

equations (3.6) to (3.8). The transformation assumes that the lower tip of the wheel is 



25 

 

positioned at the origin of the absolute frame of V-Rep. Therefore the base of the 

kinematic chain (connection point of the wheel) is positioned at (0, 0, 0.025). 

               (3.6) 

               (3.7) 

               (3.8) 

The first kinematic model is useful in situations in which the wheel and the body of 

the module are assumed to be stationary. An example to this situation is the action 

taken by the module to achieve forward linear motion where the tip of the foot is 

needed to be positioned in a closer position to the body while the body and the wheel 

have to be stationary. That means that the first kinematic model is pretty helpful and 

informative for creating a forward locomotion method for the single module, but this 

does not mean that it is also useful for creating a backward locomotion method in 

which the wheel and the body of the module will not be stationary. Therefore to 

create a backward locomotion method, another kinematic model in which the tip of 

the foot has to be stationary while the wheel and the body of the module have to be 

moving has to be created. 

Second kinematic model is mainly used for creating a gait for backward locomotion 

in which the tip of the foot is stationary and it pulls the wheel and body of the 

module. Although there is no joint in the original design of the module, one virtual 

joint is added to the tip of the foot in the kinematic chain. This joint helps adjusting 

the height of the end-effector which is generally contacting the terrain because of 

dynamic constraints while moving backwards. Basically the joint is not a part of the 

gait to be created, but it is helpful for design purposes. Therefore, the base of the 

kinematic chain is assumed to be the joint on the tip of the foot and the end effector 

is assumed to be the tip of the wheel. Also the position of the caster of the body has 

to be known for designing a backward locomotion gait, so it can be seen as an end-

effector, too. Figures 3.10 and 3.11 show the coordinate frames assigned to each link 

and Table 3.3 shows the D-H parameters for the kinematic chain. 
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Figure 3.10: Coordinate frames for the second kinematic chain. 

 

Figure 3.11: Coordinate frames for the second kinematic chain. 
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Table 3.3 : D-H parameters for the second kinematic chain. 

 Rotz(θi) Transz(di) Transx(ai) Rotx(αi) 

1 θ1 0 a1 0 

2 π/2 0 a2 0 

3 θ3 0 a3 0 

4 θ4 0 a4 -π/2 

5wt 0 d5wt 0 0 

5bc 0 d5bc a5bc 0 

Note that a1 is the distance between the lower tip of the foot and the outer center of 

the orthogonal plate attached to the foot and its value is 25 millimeters. a2 is the 

distance between the outer center of the orthogonal plate and the second joint of the 

foot and it is 47 millimeters. a3 is the distance between the two joints of the foot and 

it is 47.5 millimeters long. a4 is the distance between the outer center of the wheel 

and the first joint of the foot and it is 77.5 millimeters. d5wt is the distance between 

the lower tip of the wheel and the outer center of the wheel and it is also 25 

millimeters. d5bc is the height of the center of the body caster and a5bc is the 

longitudinal distance between the center of the body caster and the lower tip of the 

wheel. They are 5 millimeters and 75 millimeters long, respectively. Placing the D-H 

parameters to the general matrix form shown in (3.1) yields homogeneous 

transformation matrices associated to each link. Equations (3.9) to (3.14) show the 

derivation of these matrices. 
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  (3.10) 
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  (3.13) 

      

       

    
       

    

  (3.14) 

The homogeneous transformation matrices that transform the coordinates of the end 

effectors (tip of the wheel and caster of the body) to the base (the joint on the tip of 

the foot) can be derived as shown in equations (3.15) and (3.16). 

    
               (3.15) 

    
                   (3.16) 

As in the case with the first kinematic model, the calculations are too complex to 

handle without computer support. Another m-file is created to calculate the positions 

of the end-effectors for varying values of θ2 and θ3. It also calculates the suitable 

value for θ1 using the trigonometric relation given in (3.17). After the suitable θ1 

value is calculated, the program recalculates the positions of the end-effectors and 

then assuming the base of the kinematic chain is the origin, transforms it to the 

absolute frame of V-Rep using equations (3.18) to (3.20). 
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  (3.17) 

              (3.18) 

              (3.19) 

              (3.20) 

3.1.5.2 Locomotion methods and gait design 

The module is expected to be moving forward and backward in the longitudinal 

direction. Using the kinematic models of the module, two different locomotion 

methods can be created. The locomotion methods are created by designing poses and 

switching the poses periodically, which in turn causes the foot to push or pull the rest 

of the module providing forward or backward locomotion. 

The easiest way to achieve forward linear motion is to create propulsion by the use of 

the foot. This can be done by moving the tip of the foot to a forward position, then 

(with the help of friction) letting the foot push the rest of the module forward. 

Creating a periodic gait like this provides forward linear motion to a single module.  

The periodic gait for forward movement can be created by repeated implementation 

of two different poses. The purpose of the first pose is to bring the tip of the foot to a 

forward position. The important point to take into consideration while having the 

module take this pose is to make sure the tip of the foot is not contacting the terrain 

until the final position is reached. The second pose is the same pose of a module at 

rest, but the importance of this pose is the action taken by the module to form this 

pose. The tip of the foot should be contacting the terrain while this pose is being 

taken so that the static friction force ensures that the tip of the foot is not moving and 

causing the module to move forward, i.e. to push forward. Figure 3.12 shows the 

motion sequence of described locomotion move. 
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Figure 3.12: Forward locomotion of a single module. 

From position control perspective, the module is expected to be moving as fast as 

possible while the distance from goal position is high. This velocity will be referred 

as "high velocity". Since accuracy is another issue for the module positioning, the 

gait is also expected to provide smaller linear displacements when the distance from 

goal position is lower than the displacement which the high velocity provides. 

Similarly this velocity will be referred as "low velocity". The high velocity and the 

low velocity can be adjusted by finding the suitable joint angles for the first pose of 

the gait. 

To design the gait to provide the high velocity, the first pose of the gait should be 

designed to provide maximum displacement while satisfying the height condition. To 

determine the suitable joint positions for the first pose of the gait, a modified version 

of the m-file created for the first kinematic model is used. The modification makes 

the m-file a searching program which calculates the end-effector position for 

different α1 and α2 values and returns a table satisfying the height condition. As 

expressed before the end-effector should not contact the terrain while the module is 

taking the first pose, so the table consists of α1 and α2 values that make the end-

effector have its z value on the coordinate system between 5 millimeters and 7.5 

millimeters. The pseudo-code of the search program created is given in Table3.4. 

The code of the m-file can be found in Appendix-A. 

Table 3.4 : Pseudo-code of the search program. 

01 FOR(α1 values from -90
0
 to 90

0
)  

02 ---FOR(α2 values from -120
0
 to 120

0
)  

03 ------Create A1, A2, A3 matrices 

04 ------Calculate T3
0
 = A1*A2*A3  

05 ------//Pull coordinates from T3
0
 for kinematic frame then transform it to V-Rep 

absolute frame 

06 ------xmodel = T3
0
(1,4)  

07 ------ymodel = T3
0
(2,4) 
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08 ------zmodel = T3
0
(3,4) 

09 ------xvrep = -zmodel 

10 ------yvrep = -xmodel  

11 ------zvrep = ymodel + 0.025 

12 ------Calculate distance covered xd = 0.172-xvrep 

13 ------IF(xd>0.072 AND 0.005<zvrep<0.0075) THEN 

14 ---------count += 1 

15 ---------Table(count,1) = count  

16 ---------Table(count,2) = α1 

17 ---------Table(count,3) = α2 

18 ---------Table(count,4) = xmodel 

19 ---------Table(count,5) = zmodel 

20 ---------Table(count,6) = xd 

21 ------ENDIF  

22 ---ENDFOR  

23 ENDFOR 

24 Print Table 

After running the m-file, the resulting table listing α1 and α2 values satisfying the 

height condition are given in Table 3.5.  

Table 3.5 : α1 and α2 values for the first pose of the high velocity gait for forward 

locomotion. 

 α1 α2 x (m) z (m) xd (m) 

1 -47 120 -0.0997 0.0075 0.0723 

2 -46 120 -0.0994 0.0071 0.0726 

3 -45 120 -0.0991 0.0067 0.0729 

4 -44 119 -0.0997 0.0061 0.0723 

5 -44 120 -0.0988 0.0063 0.0732 

6 -43 119 -0.0994 0.0057 0.0726 

7 -43 120 -0.0985 0.0060 0.0735 

8 -42 118 -0.0999 0.0051 0.0721 

9 -42 119 -0.0990 0.0054 0.0730 

10 -42 120 -0.0981 0.0056 0.0739 

11 -41 120 -0.0978 0.0053 0.0742 

As it can be seen from the table, the maximum displacement is achieved when α1 is 

(-41
0
) and α2 is (120

0
). Therefore the first pose of the gait for high velocity is 

determined as shown in Figure 3.13. 
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Figure 3.13: First pose of the high velocity gait of forward locomotion. 

To get smaller displacements to determine the low velocity, the first pose of the gait 

can be redesigned and the distance traveled in a single step can be reduced to have 

less positioning errors. To redesign the first pose, the modified m-file used before 

can be run again by changing the distance traveled condition to be around 25 

millimeters. As before, the m-file returns a table listing the α1 and α2 values for 

desired traveling distances. The α1 and α2 values from the resulting table are listed in 

Table 3.6. 

Table 3.6 : α1 and α2 values for first pose of the low velocity gait for forward 

locomotion. 

 α1 α2 x (m) z (m) xd (m) 

1 -36 62 -0.1472 0.0098 0.0248 

2 -35 60 -0.1484 0.0097 0.0236 

3 -35 61 -0.1477 0.0092 0.0243 

4 -34 59 -0.1489 0.0090 0.0231 

5 -34 60 -0.1482 0.0085 0.0238 

6 -34 61 -0.1474 0.0079 0.0246 

7 -33 59 -0.1486 0.0078 0.0234 

8 -33 60 -0.1479 0.0073 0.0241 

9 -33 61 -0.1471 0.0067 0.0249 

10 -32 59 -0.1483 0.0066 0.0237 

11 -32 60 -0.1475 0.0060 0.0245 

12 -31 58 -0.1487 0.0059 0.0233 

13 -31 59 -0.1480 0.0053 0.0240 

Using the table, the suitable values for α1 and α2 are found to be (-33
0
) and (61

0
). 

Figure 3.14 shows the first pose of the low velocity gait for forward locomotion. 
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Figure 3.14: First pose of the low velocity gait of forward locomotion. 

A single step of the high velocity and low velocity gaits for forward locomotion is 

completed after the foot returns to the reset position where α1 and α2 are (0
0
). 

The backward locomotion method design is similar to the design of the forward 

locomotion method. While the module is moving backwards, the foot of the module 

is expected to pull the wheel and the body parts. The difference between the two 

methods is that the forward locomotion can be achieved by two different poses 

because the last pose of the module is also the starting pose of the gait. In the 

backward locomotion method, this seems inapplicable. After the foot pulls the rest of 

the parts to a backward position, the tip of the foot has to lose contact with the terrain 

causing the caster on the body to be the pivot point. Only after losing contact with 

the terrain, the module can return to its starting pose. Therefore, in the backward 

locomotion method, the module needs to have two extra poses, making the total 

poses of the gait four in one step. The first extra pose, which is the second pose of 

the gait, is for making the caster contact the terrain and the second is a transition pose 

for the foot to ensure it is not contacting the terrain while returning to the reset 

position.  

The design process of the poses of the backward locomotion gait is similar to that of 

the poses in the forward locomotion gait. The m-file created for the second kinematic 

model is modified to be a search program which calculates the end-effector positions 

for varying values of θ3 and θ4 and returning the values satisfying several conditions 
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by creating a look-up table. Since the caster becomes the pivot point in the second 

pose, the displacement in one step of the gait is determined in this pose. Therefore, 

the gait design is based on the second pose of the gait. Similar to the forward 

locomotion gait design, two different value pairs will be determined for the high 

velocity and the low velocity for the design of the second pose. 

To determine the θ3 and θ4 values for the second pose of the gait to achieve high 

velocity, several conditions have been set to narrow down the search. These 

conditions are; 

 The distance covered by the wheel of the module should be at least 45 

millimeters, 

 The caster should be contacting the terrain. This means that z-value of the 

center of the cylinder that is used as the caster should be 5 millimeters high 

from the terrain at most. 

Table 3.7 shows the pseudo-code of the search program created for the second 

kinematic model. After the conditions are added, the search program returns the table 

as shown in Table 3.8. The code of the m-file can be found in Appendix-B. 

Table 3.7 : Pseudo-code of the search program created for the second kinematic 

model. 

01 FOR(α1 values from -90
0
 to 90

0
)  

02 ---FOR(α2 values from -120
0
 to 120

0
)  

03 ------Create A1, A2, A3, A4, A5wc, A5bc matrices 

04 ------Calculate T5wt
0
 = A1*A2*A3*A4*A5wt 

05 ------Calculate T5bc
0
 = A1*A2*A3*A4*A5wt *A5bc 

06 ------//Pull coordinates from T5wt
0
 for kinematic frame 

07 ------xmodel = T5wt
 0

(1,4)  

08 ------ymodel = T5wt
 0

(2,4) 

09 ------zmodel = T5wt
0
(3,4) 

10 ------Calculate required θ1 = atan(xmodel/ymodel) 

11 ------Recalculate A1 

12 ------Recalculate T5wt
0
 = A1*A2*A3*A4*A5wt 

13 ------Recalculate T5wt
0
 = A1*A2*A3*A4*A5wt *A5bc  

14 ------//Pull coordinates from T5wt
0
 and T5bc

0
 for kinematic frame then transform it 

to V-Rep absolute frame 

15 ------xmodel = T5wt
0
 (1,4)  

16 ------ymodel = T5wt
0
 (2,4) 

17 ------zmodel = T5wt
0
 (3,4) 

18 ------xwt = ymodel 

19 ------ywt = zmodel  

20 ------zwt = xmodel 
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21 ------xmodel = T5bc
0
 (1,4)  

22 ------ymodel = T5bc
0
 (2,4) 

23 ------zmodel = T5bc
0
 (3,4) 

24 ------xbc = ymodel 

25 ------ybc = zmodel  

26 ------zbc = xmodel 

27 ------Calculate distance covered xd = 0.172-xwt 

28 ------IF(xd>0.045 AND zbc<0.005) 

29 ---------count += 1 

30 ---------Table(count,1) = count  

31 ---------Table(count,2) = θ1 

32 ---------Table(count,3) = θ3 

33 ---------Table(count,4) = θ4 

34 ---------Table(count,5) = xd 

35 ---------Table(count,6) = zbc 

36 ------ENDIF  

37 ---ENDFOR  

38 ENDFOR 

39 Print Table 

Table 3.8 : θ3 and θ4 values for second pose of the high velocity gait for backward 

locomotion. 

 θ1(
0
) θ3(

0
) θ4(

0
) xdif(m) zcaster(m) 

1 -50.38 86 -36 0.0450 0.0045 

2 -50.07 87 -38 0.0451 0.0036 

3 -50.69 87 -37 0.0455 0.0041 

4 -51.30 88 -36 0.0459 0.0046 

5 -49.75 88 -40 0.0452 0.0027 

6 -50.37 88 -39 0.0456 0.0032 

7 -50.99 88 -38 0.0460 0.0037 

8 -51.61 88 -37 0.0464 0.0042 

9 -52.23 88 -36 0.0468 0.0047 

10 -50.67 89 -40 0.0461 0.0028 

11 -51.29 89 -39 0.0465 0.0033 

12 -51.91 89 -38 0.0469 0.0038 

13 -52.53 89 -37 0.0473 0.0043 

14 -53.16 89 -36 0.0478 0.0048 

15 -51.59 90 -40 0.0470 0.0029 

16 -52.21 90 -39 0.0474 0.0034 

17 -52.84 90 -38 0.0478 0.0039 

18 -53.47 90 -37 0.0482 0.0044 

19 -54.09 90 -36 0.0487 0.0049 

While satisfying the conditions, the maximum displacement is achieved when θ3 is 

(90
0
) and θ4 is (-36

0
). Therefore, the second pose of the gait to achieve high velocity 

is determined as shown in Figure 3.16. The same pose can be redesigned to have low 
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velocity using the same way by changing the first condition. When the desired 

displacement in the first condition is changed to be around 20 millimeters, the 

program returns the table as shown in Table 3.9. 

Table 3.9 : θ3 and θ4 values for second pose of the low velocity gait for backward 

locomotion. 

 θ1(
0
) θ3(

0
) θ4(

0
) xdif(m) zcaster(m) 

1 -26.47 50 -24 0.0198 0.0044 

2 -26.24 51 -26 0.0197 0.0034 

3 -26.76 51 -25 0.0202 0.0040 

4 -26.01 52 -28 0.0197 0.0024 

5 -26.53 52 -27 0.0201 0.0030 

6 -27.04 52 -26 0.0205 0.0036 

7 -25.77 53 -30 0.0197 0.0014 

8 -26.29 53 -29 0.0201 0.0020 

9 -26.81 53 -28 0.0205 0.0026 

10 -25.53 54 -32 0.0197 0.0004 

11 -26.05 54 -31 0.0201 0.0010 

12 -26.57 54 -30 0.0204 0.0016 

13 -25.81 55 -33 0.0201 0.0000 

14 -26.33 55 -32 0.0205 0.0006 

It can be seen from the table that when θ3 is (52
0
) and θ4 is (-27

0
) the desired 

displacement of 20 millimeters is achieved. 

After the second pose is determined for both high velocity and low velocity, the first 

and the third poses can be determined for these velocities. The strategy for designing 

these poses is simpler. The requirements for the first pose of the high velocity gait 

are; 

 The distance covered by the end-effector should not exceed 45 millimeters, 

 The caster should not be contacting the terrain, 

 θ3 and θ4 values should be close to (90
0
) and (-36

0
), respectively. 

Running the program with these conditions returns the table as shown in Table 3.10. 
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Table 3.10 : θ3 and θ4 values for first pose of the high velocity gait for backward 

locomotion. 

 θ1(
0
) θ3(

0
) θ4(

0
) xdif(m) zcaster(m) angle_dif(

0
) 

1 -49.87 70 -12 0.0430 0.0156 44 

2 -50.22 71 -13 0.0433 0.0151 42 

3 -50.79 71 -12 0.0439 0.0157 43 

4 -51.36 71 -11 0.0446 0.0162 44 

5 -51.14 72 -13 0.0442 0.0152 41 

6 -51.71 72 -12 0.0449 0.0158 42 

As it can be seen from the table, the most suitable values are (72
0
) for θ3 and (-13

0
) 

for θ4. Figure 3.15 shows the first pose of the high velocity gait for backward 

locomotion. For the low velocity version of the first pose, the conditions are changed 

as; 

 The distance covered by the end-effector should not exceed 20 millimeters, 

 The caster should not be contacting the terrain, 

 θ3 and θ4 values should be close to (52
0
) and (-27

0
), respectively. 

The resulting table is shown at Table 3.11. 

Table 3.11 : θ3 and θ4 values for first pose of the low velocity gait for backward 

locomotion. 

 θ1(
0
) θ3(

0
) θ4(

0
) xdif(m) zcaster(m) angle_dif(

0
) 

1 -23.29 31 0 0.0182 0.0150 48 

2 -23.77 31 -1 0.0188 0.0157 49 

3 -24.07 32 0 0.0189 0.0153 47 

4 -24.55 32 -1 0.0196 0.0160 48 

5 -24.86 33 0 0.0197 0.0156 46 

6 -25.17 34 -1 0.0198 0.0152 44 

Using the table, the best setting for the first pose of the low velocity gait is found to 

be (θ3=34
0
) and (θ4=-1

0
). 

Designing the third pose is simpler than designing the other poses. The third pose is 

used for placing the foot to a higher position from ground so that while returning to 

the reset position, the tip of the foot does not contact the terrain. For that purpose the 
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third pose for the high velocity gait is set to be (θ3=45
0
) and (θ4=-45

0
). For the low 

velocity gait, the setting is (θ3=15
0
) and (θ4=-15

0
). Figures 3.15 to 3.17 show the 

poses for the high velocity gait while Figures 3.18 to 3.20 show the poses for the low 

velocity gait. 

 

Figure 3.15: The first pose of the high velocity gait for backward locomotion. 

 

Figure 3.16: The second pose of the high velocity gait for backward locomotion. 

 

Figure 3.17: The third pose of the high velocity gait for backward locomotion. 
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Figure 3.18: The first pose of the low velocity gait for backward locomotion. 

 

Figure 3.19: The second pose of the low velocity gait for backward locomotion. 

 

Figure 3.20: The third pose of the low velocity gait for backward locomotion. 

Similar to the forward locomotion gaits, a single step of the high velocity and the low 

velocity gaits for backward locomotion is completed after the foot returns to the reset 

position where θ3 and θ4 values are (0
0
). 
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3.1.5.3 Motions kinematics and position control 

The motion kinematic model of the single module consists of the heading angle 

modifications controlled by the front wheel speed of the module and the forward or 

backward motion controlled by the push or pull effect of the foot. General motion 

kinematic model of the single module shown in Figure 3.21 can be desribed as given 

in equations (3.21) to (3.23). The reason for having difference equations to describe 

motion on longitudinal direction is that the motion is discrete. Note that γmod is the 

heading angle of the module and ω is the angular velocity. d is the longitudinal 

displacement caused by the selected gait.  

 

Figure 3.21: Longitudinal displacement and angular velocity of a module. 

                                  (3.21) 

                                  (3.22) 

                    (3.23) 

The longitudinal displacement d depends on both the selected gait and the friction 

coefficient of the terrain. It is determined experimentally in the simulation 

environment for different gaits and terrains with varying friction coefficients.  

Determining longitudinal displacement is simple. After each cycle of the gait is 

completed, x and y coordinates of the module is recorded and longitudinal 

displacement is calculated using (3.24). Since the calculated value varies in each 
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cycle, the average of the recorded longitudinal displacements is calculated whenever 

a new sample is added for 60 seconds of simulation time. This procedure is applied 

on terrains which have friction coefficients varying from 0.2 to 1.0 for all four 

different gait and velocity couples the module can practice.  

                                             (3.24) 

Table 3.12 shows average longitudinal displacement for forward locomotion gait on 

terrains with varying friction coefficients and the time it takes to complete one full 

cycle of the gait. Note that the subscripts "fhv" and "flv" stand for forward high 

velocity and forward low velocity. 

Table 3.12 : Longitudinal displacement and cycle time of forward locomotion gait. 

Terrain Friction  

Coefficient 

High Velocity Low Velocity 

dfhv(m/cycle) tfhv(s/cycle) dflv(m/cycle) tflv(s/cycle) 

1.0 0.0635 0.95 0.0162 0.65 

0.8 0.0652 0.95 0.0165 0.65 

0.6 0.0662 0.95 0.0153 0.65 

0.4 0.0663 0.95 0.0124 0.65 

0.2 0.0502 0.95 0.0106 0.65 

The average longitudinal displacement and the cycle time values for backward 

locomotion gait are given in Table 3.13. The subscripts "bhv" and "blv" stand for 

backward high velocity and backward low velocity similar to the forward locomotion 

case. 

Table 3.13 : Longitudinal displacement and cycle time of backward locomotion gait. 

Terrain Friction  

Coefficient 

High Velocity Low Velocity 

dbhv(m/cycle) tbhv(s/cycle) dblv (m/cycle) tblv (s/cycle) 

1.0 0.0233 1.05 0.0123 0.80 

0.8 0.0210 1.05 0.0113 0.80 

0.6 0.0186 1.05 0.0104 0.80 

0.4 0.0161 1.05 0.0091 0.80 

0.2 0.0117 1.05 0.0075 0.80 

Similar to longitudinal displacement, angular velocity ω  is also dependent on terrain 

friction coefficient, but it is not needed to determine the actual ω value. To decide 

which gait to use, the module has to calculate the time it takes for it to adjust its 

heading angle. Therefore, determining t180 which is the time it takes for the module 
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to change its orientation by ±180° on different terrains will be satisfactory for 

deciding the appropriate gait.  

Since the module can rotate around its reference position, the orientation 

modification provided by the wheel is not used as a steering mechanic. Another 

reason for that is applying a high angular velocity to the wheel while the module is 

moving can cause it to tumble. For these reasons, the angular velocity of the wheel is 

kept at a low value for correcting small orientation errors while the module is 

moving. The low velocity is determined as 90°/sec and it is only applied when the 

orientation difference is less than 5°. To modify the heading angle while the module 

is not moving, a high angular velocity value is also determined. Since the maximum 

angular velocity that the wheel joint can provide is 360°/sec, the high angular 

velocity value is set as 300°/sec and it is used for adjusting the orientation of the 

module when the orientation error is greater than 5°.  

Since the low velocity is relatively small and its effect on the gait decision is 

neglectable, only the high angular velocity is used to determine t180. Table 3.14 

shows t180 in terrains with varying friction coefficients. 

Table 3.14 : Time required for a 180
0
 rotation in varying terrains 

Terrain Friction Coefficient t180(s) 

1.0 4.20 

0.8 4.25 

0.6 4.35 

0.4 4.55 

0.2 4.40 

The modules move to assemble a configuration and as will be explained later, each 

module has a different role in a configuration and these roles also differ in the 

assembly phase. In the assembly phase, the modules are expected to be in a 

predetermined position having a predetermined orientation depending on their roles. 

For that purpose, a position control algorithm is developed for modules to position 

themselves according to their roles as fast as possible. 

The module firstly scans the area to find the module which has the first role. This 

module is used as reference by all modules in the configuration and they calculate 

their target positions relative to this module. The module which has the first role acts 
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as a leader or anchor point for the whole system. After the reference module is found, 

the module calculates its own position by using the data received from the visual 

sensor. The module also calculates its target position depending on the role it has. 

Equations (3.25) and (3.26) show the calculations of the initial module position using 

the reference module. Figure 3.22 is also given for better understanding. 

 

Figure 3.22: Calculating module position using the reference module. 

                                                  (3.25) 

                                                  (3.26) 

In Figure 3.22 and equations (3.25) and (3.26) ddp stands for the distance between 

the detection dummy and the reference position of each module. ddp value is the 

same on each module and it is 102 millimeters. dvis is the distance data provided by 

the visual sensor. γmod, γvis and γref are the gamma orientations of the moving 

module, its visual sensor and the reference module, respectively.  

The calculation of target position using the reference module is shown in Figure 3.23 

and equations (3.27) and (3.28). Note that dlat stands for the required lateral distance 

of the target position relative to the reference module position. Similarly, dlong is the 

required longitudinal distance for the target position. 
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Figure 3.23: Calculating target position using the reference module. 

                                      (3.27) 

                                     (3.28) 

After the target position and the position of the module are calculated, the required 

orientation to reach the target and the difference between the heading angle of the 

module is calculated using the trigonometric relations given in equations (3.29) and 

(3.30). 

           
            

            
  (3.29) 

               (3.30) 

The distance between the module and the target is calculated using (3.31). 

                                         (3.31) 

After the orientation difference and the distance from target is calculated, the 

controller decides the direction of locomotion and the velocity. This is done by 

calculating the required time to reach the target in each option. In both options, the 
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calculated time intervals can be separated as t1, t2 and t3. Since the friction coefficient 

of the terrain is known, it is possible to calculate t1, t2 and t3 values approximately 

because d and ω values are known. 

t1 is the time it takes to have the required heading angle to reach the target. For 

forward locomotion option, t1forward is the time it takes to make the orientation 

difference 0° and for backward locomotion option, t1backward is the time needed to 

make the orientation difference ±180°. Equations (3.32) and (3.33) show the 

calculation of t1. 

          
    

    
     (3.32) 

           
         

    
     (3.33) 

t2 is the time needed to reach the target position by implementing the appropriate 

gait. t2 value is calculated by using the distance between the module and the target 

position and the suitable d values of high and low velocity of the forward or 

backward gaits. Equations (3.34) to (3.35) show the calculation of t2 value for both 

gaits. 

           
       

    
                 

       

    
      

 

    
      (3.34) 

            
       

    
        

       

    
  

       

    
   

    

    
      (3.35) 

Lastly, t3 is the time required for the module to take the desired heading angle after 

reaching the target position. It changes depending on the heading angle the module 

arrives at the target position. Assuming there will not be too much disturbance while 

moving to the target position, the arriving orientation will be equal to the calculated 

required heading angle in the initial position. Calculating the time to change the 

heading angle from the required orientation in the initial position and the desired 

heading angle in the target position can yield the approximate solution for t3. The 

calculations are shown in (3.36) and (3.37). 
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     (3.36) 

           
              

    
     (3.37) 

When all time intervals are calculated for both locomotion methods, the siumlation 

option which takes less time is selected. After the appropriate gait is selected, the 

execution phase starts. Using the wheel joint, the module adjusts its heading angle 

equal to the required heading angle. When the orientation difference is 0°, the 

velocity to be applied is determined. Velocity is determined based on the distance 

from target position. If the distance is greater than dhigh of the selected gait, then the 

velocity is set as high. If the distance is between dhigh and dlow, then the distance is set 

as low and if the distance is lower than dlow, the module decides that it has reached 

the position and changes its heading angle to the desired heading angle. The pseudo-

code of the position control algorithm of the single module is given in Table 3.15. 

Table 3.15 : Pseudo-code of the single module position control algorithm. 

01 WHILE (not reached to the target) 

02 ---Calculate target position, module position  

03 ---Calculate distance, required gamma orientation 

04 ---WHILE(gait not decided) 

05 ------Calculate t1forward, t2forward, t3forward 

06 ------Calculate t1backward, t2backward, t3backward 

07 ------Calculate tforward, tbackward 

08 ------IF(min(tforward,tbackward) == tforward) THEN 

09 ---------gait = forward 

10 ------ENDIF 

11 ------IF(min(tforward,tbackward) == tbackward) THEN 

12 ---------gait = backward 

13 ------ENDIF 

14 ------gait decided 

15 ---ENDWHILE 

16 ---Calculate gamma difference γdif = γreq - γmod 

17 ---IF(gait == backward) THEN 

18 ------Recalculate gamma difference γdif = γdif ± 180 

19 ---ENDIF 

20 ---WHILE(|γdif|>5
0
)  

21 ------set wheel speed = high 

22 ------set gait velocity = 0 

23 ---ENDWHILE 

24 ---WHILE(|γdif|<5
0
)  

25 ------IF(|γdif|>0.5
0
) THEN 
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26 ---------set wheel speed = low 

27 ------ENDIF 

28 ------IF(|γdif|<0.5
0
) THEN 

29 ---------set wheel speed = 0 

30 ------ENDIF 

31 ------IF(gait==forward) THEN 

32 ---------IF(dtarget<dhigh) THEN 

33 ------------set gait velocity = high 

34 ---------ENDIF 

35 ---------IF(dlow<dtarget<dhigh) THEN 

36 ------------set gait velocity = low 

37 ---------ENDIF 

38 ---------IF(dtarget<dlow) THEN 

39 ------------target reached 

40 ------------set gait velocity = 0 

41 ---------ENDIF 

42 ------ENDIF 

43 ------IF(gait==backward) THEN 

44 ---------IF(dtarget<dhigh) THEN 

45 ------------set gait velocity = high 

46 ---------ENDIF 

47 ---------IF(dlow<dtarget<dhigh) THEN 

48 ------------set gait velocity = low 

49 ---------ENDIF 

50 ---------IF(dtarget<dlow) THEN 

51 ------------target reached 

52 ------------set gait velocity = 0 

53 ---------ENDIF 

54 ------ENDIF 

55 ---ENDWHILE 

56 ENDWHILE 

57 WHILE(not have desired orientation) 

58 ---Calculate gamma orientation difference 

59 ---IF(|γdif|>5
0
) THEN 

60 ------set wheel speed = high 

61 ---ENDIF 

62 ---IF(0.5<|γdif|<5
0
) THEN 

63 ------set wheel speed = low 

64 ---ENDIF 

65 ---IF(|γdif|<0.5
0
) THEN 

66 ------set wheel speed = 0 

67 ------have desired orientation 

68 ---ENDIF 

69 ENDWHILE 
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3.2 Cooperative Locomotion Modes and Configurations 

To complete more advanced tasks, the robotic structure can assemble different 

configurations such as quadruped or wheeled.  

In this section the assembly, locomotion methods and specific abilities of quadruped 

and wheeled configurations are explained in detail.  

3.2.1 Roles and communication in cooperative modes 

The modules of the robotic structure can assemble different configurations. In 

configuration mode each module has a role that determines the way it will function 

before or after assembly. Role distribution is done after the system decides to 

assemble a configuration. The roles are distributed to modules based on their 

positioning. In assembly phase, a module determines its target assembly position 

based on its role in the configuration. After the assembly is done and the 

configuration is created, the module which has the first role (Role#1) becomes the 

master of the configuration and sends commands to other modules based on the 

requirements of the system. 

Another important system in cooperative modes is the communication. The modules 

need to communicate with each other mainly in the scanning phase to localize 

themselves and initiate role distribution algorithm, in the assembly phase to notify 

other modules about their connection status and in the configuration phase for 

Role#1 to issue commands to other modules. 

Communications in V-Rep is handled by variables called "Script Simulation 

Parameter". These variables are parts of scripts which can be read and written by 

other scripts that are running in the same simulation. Since every module has a script 

in V-Rep, they also share common script simulation parameters and use them to 

share data and notify other modules. The script simulation parameters can be read 

using "simGetScriptSimulationParameter(Script Handle, "SSP Name")" function. To 

write on parameters, the function "simSetScriptSimulationParameter(Script Handle, 

"SSP Name", value)" is used in V-Rep scripts.  
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3.2.2 Quadruped locomotion 

The robotic structure can assemble a quadruped walker configuration by the 

connection of six modules.  

3.2.2.1 Structure and assembly 

In this configuration the body is formed by two modules which are connected to each 

other by their back connection points. The rest of the modules form the legs of the 

walker robot. The modules operating as legs connect their front connection points to 

the right or left connection points of the modules forming the body of the walker 

robot. Figure 3.24 shows the walker robot standing still. 

 

Figure 3.24: The walker robot standing still. 

The modules forming the body of the configuration are Role#1 and Role#2. It is 

assumed that Role#1 points forward direction for the configuration. Role#2 points to 

the backward direction. The modules forming the front legs of the configuration are 

Role#3 and Role#4 and the modules forming the hind legs of the configuration are 

Role#5 and Role#6.  

Role#3 is assumed to be the right front leg of the walker robot and this module 

connects to the right connection point of Role#1 with its wheel. Role#4 is assumed to 
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be the left front leg of the configuration. The wheel of this module connects to the 

left connection point of Role#1. 

The modules forming the right and left hind legs of the walker robot are Role#5 and 

Role#6, respectively. Since Role#2 points backward, the right hind leg connects to 

the left connection point and left hind leg connects to the right connection point of 

Role#2.  

Figure 3.25 and Table 3.16 shows predetermined module positions for the assembly 

of the quadruped configuration. 

 

Figure 3.25: Predetermined module positions for quadruped configuration 

assembly. 

Table 3.16 : Predetermined module positions for quadruped configuration assembly. 

Role Part Position(x, y, z) Orientation(α, β, γ) 

1 Body Front (0, 0, 0) (0, 0, 0) 

2 Body Back (-0.175, 0, 0) (0, 0, 180) 

3 Front Right Leg (0.137, -0.230, 0) (0, 0, 90) 

4 Front Left Leg (0.137, 0.23, 0) (0, 0, -90) 

5 Back Right Leg (-0.137, -0.372, 0) (0, 0, 90) 

6 Back Left Leg (-0.137, 0.372, 0) (0, 0, -90) 

3.2.2.2 Leg kinematics and gait design 

The walker robot is expected to move on both longitudinal and lateral directions. 

Since the movement characteristics of legs differ in these different locomotion styles, 

different gaits should be applied for both locomotion styles. These gaits are called 
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trotting and sidling. Trotting is used for moving in longitudinal direction and sidling 

is used for moving in lateral direction. Although the locomotion methods in 

longitudinal and lateral directions are said to have different gaits, in truth their 

timetables are same. The difference is the variation of the leg positions defined for 

each of them. 

Timetable used in both locomotion methods belongs to trot gait. The trot gait is 

generally used for low-speed walking. It is commonly seen to be used by quadruped 

animals like horses or dogs in nature. The diagonal legs act together in this gait. The 

timetable of the gait is shown in Table 3.17. 

Table 3.17 : Timetable of trotting and sidling gaits. 

Step Front Right Front Left Back Right Back Left 

0 0 0 0 0 

1 0 x x 0 

2 -1 1 1 -1 

3 x 0 0 x 

4 1 -1 -1 1 

In the timetable, "x" means that the leg is not contacting the terrain, "1" and "-1" are 

the forward and backward positions. "0" is the reset position of the leg. After the 

fourth pose, the legs return to pose one and the gait becomes periodic. Changing the 

positions of states "1" and "-1" in the timetable makes the robot walk backwards. 

Unlike trotting, sidling is not a common walking gait. Crabs, which are not 

quadrupeds, generally use this gait. It is also named crabbing for this reason. The 

diagonal legs act together like trotting. The timetable implemented to the walker 

robot is the same timetable used in trotting. The only difference is "1" and "-1" 

represents right or left depending on the desired side of movement. If the robot is to 

sidle to its right, "1" means right and "-1" means left and vice-versa for sidling to its 

left. 

Since the desired leg positions are defined vaguely by the timetable, by modifying 

the first kinematic model created for the single module, the joint positions can be 

determined for realizing the walking-gaits and clearly defining the leg positions for 

each gait. The modifications of the kinematic model are for changing the end-

effectors. For trotting, the end-effectors need to be the right and left tips of the legs. 
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Similarly for sidling, the end effectors need to be the upper and lower tips of the leg. 

The base of the model is still the connection point of the wheel. The need for having 

two different end-effectors for each gait is that the foot of the module which acts as a 

leg contacts the terrain on different tips while swinging forward or backward while 

the robot is moving in longitudinal or lateral directions. The left tip of the foot 

contacts the terrain while swinging forward and the right tip contacts the terrain 

while swinging backwards on a module which acts as a right sided leg of the walking 

robot and vice-versa for a module acting as a left sided leg of the robot while the 

robot is trotting. When the robot is sidling towards a lateral direction, the lower tip of 

the foot contacts the terrain while swinging forward and the upper tip contacts the 

terrain while swinging backwards for the legs on that side of the robot.  

The kinematic model used for designing the foot positions is the modified version of 

the first kinematic model created for the single module. The modification is done for 

extending the end-effectors from only lower tip to all four tips of the foot. Figure 

3.26 and Figure 3.27 show the coordinate frames associated to a right sided leg of the 

quadruped walker and Table 3.18 shows the corresponding D-H parameters for each 

joint. 

 

Figure 3.26: Coordinate frames used in the kinematic model. 
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Figure 3.27: Coordinate frames used in the kinematic model. 

Table 3.18 : D-H parameters of the kinematic chain 

 Rotz(θi) Transz(di) Transx(ai) Rotx(αi) 

1 θ1 d1 0 α1 

2 0 d2 0 α2 

3lower -π/2 d3 a3lower 0 

3upper -π/2 d3 a3upprt 0 

3right 0 d3 a3right 0 

3left 0 d3 a3left 0 

Note that θ1 stands for the wheel position, α1 and α2 stand for the first and the second 

joints of the foot, respectively. d1 is the distance between the base of the kinematic 

chain (connection point of the wheel) and the first joint of the foot which is 77.5 

millimeters. d2 is the distance between the two joints of the foot and its value is 47.5 

millimeters. d3 is the distance between the second joint of the foot and the outer 

center of the orthogonal plate attached to the foot and it is 47 millimeters. a3lower, 

a3upper, a3left and a3right values are all distances between the outer center of the 

orthogonal plate and the center of the tips of the foot. Their values are all 25 

millimeters. Due to frame positioning, a3lower and a3right are assigned to 0.025 and 

a3upper and a3left are assigned to -0.025 in the calculations. 
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The general matrix form of the homogeneous transformation matrices associated to 

each link was given in (3.1).  Placing D-H parameters to this general form for each 

link i yields the homogeneous transformation matrices. Equations (3.38) to (3.43) 

show these matrices. 

    

                                     
                                     

                 

    

  (3.38) 

    

    
                 
                 

    

  (3.39) 

         

    
            

     

    

  (3.40) 

         

    
            

     

    

  (3.41) 

         

          

    
     

    

  (3.42) 

        

         

    
     

    

  (3.43) 

The transformation matrices that transform the coordinates of the end effectors (tips 

of the foot) to the base (connection point of the wheel) can be derived as shown in 

equations (3.44) to (3.47). 
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              (3.44) 

       
              (3.45) 

       
              (3.46) 

      
             (3.47) 

Since the calculations are complex, a modified version of the m-file created for the 

single module kinematic model is used to analyze the end-effector positions. The m-

file also transforms the coordinates of the end-effector from the coordinate frame of 

the base of the model to the absolute frame of V-Rep. The transformation is shown in 

equations (3.48) to (3.50). The transformation assumes that the base of the kinematic 

chain (connection point of the wheel) is positioned at the origin of the absolute frame 

of V-Rep. 

               (3.48) 

               (3.49) 

              (3.50) 

After the coordinates of the end-effectors are clearly determined in the absolute 

frame of V-Rep, a suitable value for θ1 for the forward and backward positions of the 

leg should be determined for the trot gait. For trotting, only the right and left tips of 

the foot positions are needed and the only variable is the wheel position. The first 

and the second joint positions are fixed at 60
0
 and 30

0
, respectively. For varying θ1 

values, the x, y, z coordinates of the left and right tips of the foot are shown in Figure 

3.28 and Figure 3.29. 
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Figure 3.28: x-y-z coordinates of right tip of the foot for varying θ1 values. 

 

Figure 3.29: x-y-z coordinates of left tip of the foot for varying θ1 values. 

There are two constraints for the selection of θ1 while swinging forward and 

backward. The first constraint is the height constraint. Since the legs have to lose 

contact with the ground after reaching the backward position to move to the forward 

position, the height of the tips of the legs that are contacting the terrain should be 

lower than 47 millimeters. For a right sided leg, this means that while θ1 is positive 

the zl value should be lower than -0.047 because while θ1 is positive the left tip is 

contacting the terrain and while θ1 is negative zr value should be lower than -0.047 to 
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avoid contact between the lifted legs and the terrain. Figure 3.30 shows the zr and zl 

values for varying θ1 values and the -0.047 limit.  

 

Figure 3.30: zr and zl values for varying θ1 values. 

The second constraint is the non-collision constraint. The longitudinal displacement 

of tips of the legs that are not contacting the terrain should not exceed 89.5 

millimeters because there is a period when the hind leg is in the forward position and 

the front leg is in the backward position at the same side of the robot. The length of 

89.5 millimeters is half of the distance between connection points of the front legs 

and the hind legs. Therefore yl of a right sided front leg cannot be higher than 0.0895 

and yr of a right sided hind leg cannot be lower than -0.0895. Figure 3.31 shows the 

yr and yl values for varying θ1 values and the limits. 

 

Figure 3.31: yr and yl values for varying θ1 values 
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From the figures, it can be seen that the height constraint is not as limiting as the 

non-collision constraint. Due to the non-collision constraint, the maximum swing 

range of a leg should not exceed 120
0
 (between -60

0
 and 60

0
). For more safety, the 

implemented maximum swing range is set to be 90
0
 (between -45

0
 and 45

0
). For a 

standard trotting to move forward, the swing range is set to be 60
0
 (between -30

0
 and 

30
0
) to provide space for the orientation controller to increase or decrease the swing 

range. Table 3.19 shows the joint positions for each leg while trotting forward and 

Figure 3.32 to Figure 3.35 show the walker robot state in each step of the gait. 

Table 3.19 : Joint positions of legs while trotting forward. 

Step Front Right (3) Front Left (4) Back Right (5) Back Left (6) 

θ1(
0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) 

0 0 60 30 0 60 30 0 60 30 0 60 30 

1 0 60 30 0 0 90 0 0 90 0 60 30 

2 -30 60 30 -30 60 30 30 60 30 30 60 30 

3 0 0 90 0 60 30 0 60 30 0 0 90 

4 30 60 30 30 60 30 -30 60 30 -30 60 30 

 

Figure 3.32: First step of the trot gait. 
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Figure 3.33: Second step of the trot gait. 

 

Figure 3.34: Third step of the trot gait. 
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Figure 3.35: Fourth step of the trot gait. 

The second part of the kinematic calculations is for sidling. For sidling, positions of 

the upper and lower tips of the foot should be analyzed. The only variable is the 

position of the second joint of the foot, while the wheel and the first joint of the foot 

positions are fixed at 0
0
 and 60

0
, respectively. Figure 3.36 and Figure3.37 show the 

end-effector positions for varying α2 values. 

 

Figure 3.36: x-y-z coordinates of upper tip of the foot for varying α2 values. 
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Figure 3.37: x-y-z coordinates of lower tip of the foot for varying α2 values. 

While sidling, the distance between the operating parts of legs are not as close as in 

the case while trotting. Therefore there is no need for a non-collision constraint. The 

only constraint regarding sidling is the same height constraint set for the trot gait. 

When the second joint position is higher than 30
0
, zupper should be less than -0.047 

and when the second joint position is lower than 30
0
, zlower should be less than -0.047. 

Figure 3.38 shows the zupper and zlower values for varying α2 values and -0.047 limit. 

 

Figure 3.38: zupper and zlower values for varying α2 values. 
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Due to the height constraint, α2 cannot be lower than -81°. Since the height constraint 

is not very limiting, the swing range is set as 120
0
 (between -30

0
 and 90

0
) to provide 

room for the orientation controller to increase it up to 150
0
 (between -45

0
 and 105

0
) 

or decrease it down to 90
0
 (between -15

0
 and 75

0
). Table 3.20 shows the joint 

positions and Figures 3.39 to Figure 3.42 show the robot state while the robot is 

sidling to its left. 

Table 3.20 : Joint positions of legs while sidling to left. 

Step Front Right (3) Front Left (4) Back Right (5) Back Left (6) 

θ1(
0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) 

0 0 60 30 0 60 30 0 60 30 0 60 30 

1 0 60 30 0 0 90 0 0 90 0 60 30 

2 0 60 -30 0 60 -30 0 60 90 0 60 90 

3 0 0 90 0 60 30 0 60 30 0 0 90 

4 0 60 90 0 60 90 0 60 -30 0 60 -30 

 

Figure 3.39: First step of the sidling gait. 
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Figure 3.40: Second step of the sidling gait. 

 

Figure 3.41: Second step of the sidling gait. 
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Figure 3.42: Fourth step of the sidling gait. 

3.2.2.3 Motion kinematics and position control 

The quadruped walker robot is able to move back and forth in longitudinal and 

lateral directions. The robot can also move on a curved path to control its orientation. 

The orientation control of the vehicle is similar to differential drive vehicles. 

Although the robot cannot rotate around its center, the difference between distance 

covered by the opposite sided legs causes an arc-like movement which gives the 

opportunity to control the orientation of the whole structure. 

A switching controller is added to control the orientation of the robot for each gait. 

Both controllers have four states which gradually change the orientation of the 

structure more aggressively. To steer on a desired side of the robot, the controller 

decreases the swing range of the legs on the desired side and increases the swing 

range of the legs on the opposite side. The change in the swing range is 30
0
 in the 

most aggressive state In the middle states, this value is 20
0
 and 10

0
. In the most 

passive state the swing range of the legs on the desired side is decreased by 10
0
 and 

the swing range of opposite sided legs is unchanged. Table 3.21 shows the general 

state of leg joint positions for trot gait. Note that "l" and "r" stand for the effect of the 

controller on the swing range of the legs. "l" is the applied control input to the left 

sided legs and "r" is the applied control input to the right sided legs.  
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Table 3.21 : General joint positions of legs while trotting. 

Step Front Right Front Left Back Right Back Left 

θ1(
0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) 

0 0 60 30 0 60 30 0 60 30 0 60 30 

1 0 60 30 0 0 90 0 0 90 0 60 30 

2 -30-r 60 30 -30-l 60 30 30+r 60 30 30+l 60 30 

3 0 0 90 0 60 30 0 60 30 0 0 90 

4 30+r 60 30 30+l 60 30 -30-r 60 30 -30-l 60 30 

The controller states for sidling is the same, but it applies to the second joint of the 

foot instead of the wheel joint. The general state of leg joint positions is shown in 

Table 3.22. Similar to trotting case "f" and "b" are the effect of the controller on the 

swing range of the legs. "f" is the control input applied to the front legs and "b" is the 

control input applied to the legs at the back. 

Table 3.22 : General joint positions while sidling. 

Step Front Right Front Left Back Right Back Left 

θ1(
0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) 

0 0 60 30 0 60 30 0 60 30 0 60 30 

1 0 60 30 0 0 90 0 0 90 0 60 30 

2 0 60 -30-f 0 60 -30-f 0 60 90+b 0 60 90+b 

3 0 0 90 0 60 30 0 60 30 0 0 90 

4 0 60 90+f 0 60 90+f 0 60 -30-b 0 60 -30-b 

The general motion kinematic model of the quadruped walker robot shown in Figure 

3.43 can be expressed as shown in equations (3.51) to (3.53). 

 

Figure 3.43: Longitudinal displacement and angular velocity of the quadruped 

walker. 
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                           (3.51) 

                           (3.52) 

              (3.53) 

Similar to the single module case, the longitudinal displacement d and angular 

velocity ω are dependent on friction coefficient of the terrain. These values are 

determined experimentally in the simulation software by using terrains with varying 

friction coefficients. The experimental setup is the same as the single module case. 

Only difference is ω value is determined for the quadruped walker. The longitudinal 

displacement is determined by using equation (3.24) and taking its average on a 1 

minute period same as the single module case.  ω is determined by using (3.54) and 

its average is also calculated.   

              (3.54) 

Table 3.23 and Table 3.24 show longitudinal displacement and angular velocity 

while trotting forward on a curved path. 

Table 3.23 : Longitudinal displacement and angular velocity while trotting in more 

aggressive states of the controller. 

Terrain 

Friction 

Coefficient 

r=15, l=-15 r=10, l=-10 

ω(
0
/cycle) d(m/cycle) t(s/cycle) ω(

0
/cycle) d(m/cycle) t(s/cycle) 

1.0 19.95 0.101 1.25 14.72 0.106 1.25 

0.8 20.86 0.106 1.25 15.04 0.112 1.25 

0.6 19.08 0.106 1.20 13.35 0.112 1.20 

0.4 16.61 0.095 1.20 8.59 0.099 1.20 

0.2 7.14 0.058 1.20 3.76 0.06 1.20 
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Table 3.24 : Longitudinal displacement and angular velocity while trotting in more 

passive states of the controller. 

Terrain 

Friction 

Coefficient 

r=5, l=-5 r=0, l=-5 

ω(
0
/cycle) d(m/cycle) t(s/cycle) ω(

0
/cycle) d(m/cycle) t(s/cycle) 

1.0 7.81 0.107 1.25 4.42 0.094 1.25 

0.8 8.09 0.114 1.25 4.71 0.099 1.25 

0.6 6.53 0.116 1.20 3.56 0.105 1.20 

0.4 3.91 0.101 1.20 2.11 0.095 1.20 

0.2 1.47 0.058 1.20 0.36 0.057 1.20 

Equations (3.51) to (3.53) also hold for sidling. For better understanding Figure 3.42 

is modified as shown in Figure 3.44. Table 3.25 and 3.26 show longitudinal 

displacement and angular velocity while sidling to left on a curved path. 

 

Figure 3.44: Longitudinal displacement and angular velocity of the quadruped 

walker. 

Table 3.25 : Longitudinal displacement and angular velocity while sidling in more 

aggressive states of the controller. 

Terrain 

Friction 

Coefficient 

f=15, b=-15 f=10, b=-10 

ω(
0
/cycle) d(m/cycle) t(s/cycle) ω(

0
/cycle) d(m/cycle) t(s/cycle) 

1.0 3.88 0.107 1.90 2.49 0.106 1.80 

0.8 4.96 0.111 1.90 3.54 0.111 1.80 

0.6 6.94 0.116 1.85 4.84 0.120 1.80 

0.4 7.87 0.109 1.80 5.79 0.113 1.80 

0.2 7.58 0.081 1.80 4.22 0.81 1.70 
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Table 3.26 : Longitudinal displacement and angular velocity while sidling in more 

passive states of the controller. 

Terrain 

Friction 

Coefficient 

f=5, b=-5 f=0, b=-5 

ω(
0
/cycle) d(m/cycle) t(s/cycle) ω(

0
/cycle) d(m/cycle) t(s/cycle) 

1.0 1.74 0.107 1.85 1.02 0.103 1.80 

0.8 1.51 0.111 1.80 0.85 0.105 1.80 

0.6 2.35 0.121 1.80 1.22 0.115 1.80 

0.4 1.89 0.115 1.80 1.08 0.110 1.80 

0.2 1.94 0.080 1.80 0.82 0.075 1.80 

Table 3.27 shows the longitudinal displacement while the robot is trotting forward 

and sidling left without the effects of the orientation controller. The angular velocity 

value is not recorded in these cases. 

Table 3.27 : Longitudinal displacement while trotting forward and sidling left 

without controller effect. 

Terrain 

Friction 

Coefficient 

r=0, l=0 f=0, b=0 

d(m/cycle) t(s/cycle) d(m/cycle) t(s/cycle) 

1.0 0.106 1.25 0.110 1.80 

0.8 0.112 1.25 0.113 1.80 

0.6 0.115 1.20 0.124 1.80 

0.4 0.104 1.20 0.118 1.80 

0.2 0.058 1.20 0.080 1.80 

The position control algorithm of the quadruped configuration is different from the 

control algorithms of single module and wheeled configuration because the 

quadruped configuration cannot rotate around its center. Orientation control is a 

harder problem for this configuration than the single module or wheeled 

configuration. Therefore target state orientation should be controlled before arriving 

the target position in this case. 

To control both the position and the orientation of the quadruped robot a switching 

controller is designed which controls the swing range of the right and left sided legs 

while trotting and front and hind legs while sidling. The swing range control is based 

on the desired angle of the target state and lateral and longitudinal distance from the 

target position. Figure 3.45 shows 12 possible actions which can be implemented by 

the quadruped configuration. 
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Figure 3.45: 12 possible actions which can be implemented by the quadruped 

configuration. 

In the figure, blue arcs represent the motion when trotting and yellow lines represent 

the motion when sidling. The small double sided arrows show the new orientation 

range. Blue arrows represent the orientation range when trotting and the yellow 

arrows represent orientation range when sidling. As it can be seen from the figure, 

based on the target and configuration position, the coordinate system can be broken 

down into four quadrants. The other important property of the configuration is that 

the quadruped walker can move towards any of the quadrants while changing its 

orientation clockwise or counter clockwise depending on its decision to trot or sidle. 

The position control algorithm is designed using these properties. The lateral and 

longitudinal distance data acquired from the visual sensor is used to determine on 

which quadrant the target is positioned and using the orientation difference between 

the robot and the target state, the decision to trot or sidle is made. The pseudo code of 

the position control algorithm of the quadruped configuration can be found in Table 

3.28. Note that p-code assumes the visual sensor is locked to the reference target and 

the lateral and longitudinal differencee between the target and the gamma orientation 

desired is correctly calculated. 
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Table 3.28 : Pseudo-code for the position control algorithm of the quadruped 

configuration. 

01-IF(lat_dif>0 AND long_dif>0) THEN 

02----IF(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN 

03------- trotting=0 

04------- sidling=1 

05----ENDIF  

06----IF(0<ornt_dif<90 AND -180<ornt_dif<-90) THEN 

07------- trotting=1 

08------- sidling=0 

09----ENDIF 

10-ENDIF  

11-IF(lat_dif<0 AND long_dif>0) THEN 

12----IF(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN 

13------- trotting=1 

14------- sidling=0 

15----ENDIF  

16----IF(0<ornt_dif<90 AND -180<ornt_dif<-90) THEN 

17------- trotting=0 

18------- sidling=1 

19----ENDIF 

20-ENDIF  

21-IF(lat_dif<0 AND long_dif<0) THEN 

22----IF(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN 

23------- trotting=0 

24------- sidling=1 

25----ENDIF  

26----IF(0<ornt_dif<90 AND -180<ornt_dif<-90) THEN 

27------- trotting=1 

28------- sidling=0 

29----ENDIF 

30-ENDIF  

31-IF(lat_dif>0 AND long_dif>0) THEN 

32----IF(-90<ornt_dif<0 AND 90<ornt_dif<180) THEN 

33------- trotting=1 

34------- sidling=0 

35----ENDIF  

36----IF90<ornt_dif<90 AND -180<ornt_dif<-90) THEN 

37------- trotting=0 

38------- sidling=1 

39----ENDIF 

40-ENDIF  

The pseudo code is very simple compared to the actual position control algorithm 

applied. In the actual algorithm trotting and sidling is done more complex with 

different swing ranges on the right and left sided legs while trotting and different 

swing ranges on the front and hind legs while sidling. The orientation difference 

limits also change depending on the friction coefficient of the terrain. The actual 
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position control algorithm of the robotic system can be found in the move_quad() 

function of the module script given in Appendix-C. 

3.2.2.4 Passing over obstacles 

The ability to pass over obstacles is the most important property of the quadruped 

configuration and the main reason for the robotic structure to decide assembling a 

quadruped walker. Passing over obstacle ability is designed as a simple sequence of 

three poses given in Table 3.29 

Table 3.29 : Joint positions of the poses for passing over obstacles sequence. 

Step Front Right Front Left Back Right Back Left 

θ1(
0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) θ1(

0
) θ2(

0
) θ3(

0
) 

0 0 60 30 0 60 30 0 60 30 0 60 30 

1 -135 60 30 135 60 30 -135 60 30 135 60 30 

2 135 60 30 -135 60 30 135 60 30 -135 60 30 

The poses given in Table 3.29 can be seen visually in figures 3.46 to 3.48. 

 

Figure 3.46: First pose of passing over obstacles sequence. 
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Figure 3.47: Second pose of passing over obstacles sequence. 

 

Figure 3.48: Third pose of passing over obstacles sequence. 

Passing over obstacles sequence is repeated until the quadruped walker passes over 

the obstacle.  
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3.2.3 Wheeled locomotion 

3.2.3.1 Structure and role distribution 

The body of the configuration is formed by two modules making a foot-to-foot 

connection. The rest of the modules form the wheels of the robot and they make a 

foot-to-body connection with the modules forming the body. Four-wheeled robot is 

shown in Figure 3.49. 

 

Figure 3.49: Wheeled configuration. 

The joint positions of modules in normal pose of the wheeled configuration is given 

in Table 3.30 

Table 3.30 : Joint positions of the normal pose of the wheeled configuraion. 

Role Part Front Joint BackJoint1 BackJoint2 

1 Body Front 0 -90 90 

2 Body Back 0 -90 90 

3 Front Right Leg 0 -75 90 

4 Front Left Leg 0 -75 90 

5 Back Right Leg 0 -75 90 

6 Back Left Leg 0 -75 90 

The role distribution of this configuration is very similar to the configuration to 

achieve quadruped locomotion. The two modules forming the body are Role#1 and 

Role#2 and the wheel of Role#1 is assumed to be pointing the forward direction. 
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Role#3 makes a foot-to-body connection with Role#1 and forms the front right 

wheel. Role#4 forms the front left wheel and its foot connects to the left side of the 

body of Role#1. The wheels at the back are created by Role#5 and Role#6. Role#5 

creates the right rear wheel and its foot connects to the left connection point of 

Role#2. The module forming the left rear wheel is Role#6 and it makes a foot-to-

body connection with Role#2 on the left side. 

The predetermined module positions and orientations for each role to assemble the 

wheeled configuration is given in Table 3.31. 

Table 3.31 : Predetermined module positions for wheeled configuration. 

Role Part Position(x, y, z) Orientation(α, β, γ) 

1 Body Front (0, 0, 0) (0, 0, 0) 

2 Body Back (-0.175, 0, 0) (0, 0, 180) 

3 Front Right Wheel (0.137, -0.230, 0) (0, 0, -90) 

4 Front Left Wheel (0.137, 0.230, 0) (0, 0, 90) 

5 Back Right Wheel (-0.137, -0.230, 0) (0, 0, -90) 

6 Back Left Wheel (-0.137, 0.230, 0) (0, 0, 90) 

Similar to the assembly of the quadruped walker configuration, in the table the 

module which has the first role is assumed to be positioned in the origin and its 

gamma orientation is γ1. Figure 3.50 shows the module positions before they start to 

connect. 

 

Figure 3.50: Predetermined module positions for wheeled configuration. 



75 

 

The reason for having the predetermined positions of modules having the third, the 

fourth, the fifth and the sixth roles is their connection types. Since they make foot-to-

body connection with the first and second modules, they have to be positioned away 

enough from these modules in case they decide to reach their predetermined 

positions by forward locomotion gait. If their predetermined positions were not away 

at least one module length, they could collide with the modules they have to connect. 

In actual assembly phase the modules do not wait to connect to their target 

connection points. The modules which have the second, the third and the fourth roles 

move to complete connection after they arrive their predetermined positions and 

adjust their heading angles as desired. The modules which have the fifth and the sixth 

roles wait for the second module to complete its connection before connecting even 

if they have the required position and orientation. 

3.2.3.2 Motion kinematics and position control 

An experimental motion kinematic model of a skid-steered vehicle that is developed 

in [14] is used in this configuration. The development of the model is also explained 

in this part. 

The control inputs for the wheeled configuration are Vl and Vr which are the linear 

velocities of wheels on the left and right with respect to the robot frame. The 

relationship between the control inputs and the motion kinematics of the robot can be 

stated as shown in (3.55) where vx and vy is the vehicle's translational velocity with 

respect to local frame of the vehicle and ωz is the angular velocity. 

 

  

  

  

    
  

  
  (3.55) 

To develop a motion kinematic model for the wheeled configuration, the effects of 

control inputs on motion kinematics of the structure should be determined. The most 

important variable that determines the motion kinematic model is the ICR 

(Instantaneous Center of Rotation) of the vehicle. The formal definition of ICR is 

given in [23] as; 

"The instant centre of rotation, also called instantaneous centre or instant centre, is 

the point in a body undergoing planar movement that has zero velocity at a 
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particular instant of time. At this instant, the velocity vectors of the trajectories of 

other points in the body generate a circular field around this point which is identical 

to what is generated by a pure rotation." 

For a skid steered vehicle such as the wheeled configuration of this modular 

structure, besides the ICR of the vehicle, also the ICRs of left sided and right sided 

wheels can be expressed as given in equations (3.56) to (3.58).Note that in the 

equations ICRl, ICRr and ICRv stands for ICR of the left sided wheels, ICR of the 

right sided wheels and ICR of the wheeled configuration, respectively. 

           
      

  (3.56) 

           
      

  (3.57) 

           
      

  (3.58) 

In [15], it is already stated that there is a line parallel to the x axis of the vehicle 

frame on which ICRl, ICRr and ICRv lies on. Figure 3.51 shows the visual 

representations of the ICR values. 

 

Figure 3.51: Visual representation of ICR values. 
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From Figure 3.47 and equations(3.56) to (3.58), ICR values can be used to relate 

control inputs Vl and Vr to motion kinematic variables of the wheeled configuration 

vx, vy and wz. Equations (3.59) to (3.62) show these relations. 

      
   

  
 (3.59) 

      
       

  
 (3.60) 

      
       

  
 (3.61) 

                  
  

  
 (3.62) 

In equations (3.60) and (3.61), αl and αr stands for correction factors. They are values 

between 0 and 1.00 which are used for determining mechanical factors which are not 

taken into consideration in the motion kinematic model. 

The elements of matrix A given in (3.55) depend on ICR coordinates of the wheels 

on left and right side of the configuration and correction factors. Therefore using 

equations (3.59) to (3.62), the A matrix can be formed as shown in (3.63). 

  
 

           
 

        

       

  

       

        

  

  (3.63) 

As stated before, the wheeled robot assembled in this configuration is symmetric 

around the local x and y axes. This means that ICRs lie symmetrically on the local x 

axis and yICRv is equal to zero. Applying these to (3.63), matrix A takes the form; 

  
 

     
 

 
    

  

 
    

 
  (3.64) 
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where α= αr= αl and xICR = -xICRl=xICRr. 

Since the kinematic relationship is dependent to xICR and α value, the determination 

of these values is the next step. Two experimental methods are proposed to find these 

parameters in [16]. Note that these methods are applicable for symmetric models. 

They do not contemplate the asymmetric effects of the center of mass or mechanical 

misalignments. 

The first method to determine xICR value can be applied by using equal opposite 

control inputs of Vr and Vl in terrains with varying friction coefficients. The vehicle 

is expected to rotate about its z axis. By measuring the distance traveled by the 

wheels and the actual rotated angle, the xICR value can be determined like shown in 

(3.65). 

      
           

  
 (3.65) 

To find the correction factor α, equal control inputs of Vr and Vl is applied. The 

vehicle is expected to move on a straight line. The correction factor can be 

determined by measuring the distance traveled by the wheels and the actual distance 

traveled in straight motion by the vehicle. The equation given in (3.66) shows the 

method to determine the correction factor. 

  
  

           
 (3.66) 

After the xICR and α values are determined for the vehicle and the motion kinematic 

model is created, the position control algorithm can be developed. Since the wheeled 

configuration can rotate around its center like the single module, the control 

algorithms are very similar. The difference is that the wheeled structure can use the 

wheel speed differences on different sides of the configuration for orientation 

correction to avoid the obligation to stop. For that purpose, an orientation controller 

is added to modify the heading angle of the configuration. The orientation controller 

modifies the heading angle of the robot by simply decreasing the speed of the wheels 

on the required turning side of the robot proportional to the orientation error. To 
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prevent the controller from stopping the wheels on any side of the robot, the 

minimum speed limit is set as 25%. 

3.2.3.3 Passing under obstacles 

Wheeled configuration can adjust its axle positions to lower its height and pass under 

tunnel-like obstacles. To pass under obstacles, wheeled configuration only changes 

its pose and uses its general position control algorithm. The module joint positions 

for the low height pose of the wheeled configuration is given in Table 3.32 and 

Figure 3.52 shows the visual representation of low height pose of the configuration. 

Table 3.32 : Joint positions of the pass under obstacles pose of the wheeled 

configuraion. 

Role Part Front Joint BackJoint1 BackJoint2 

1 Body Front 0 0 0 

2 Body Back 0 0 0 

3 Front Right Leg 0 0 30 

4 Front Left Leg 0 0 30 

5 Back Right Leg 0 0 30 

6 Back Left Leg 0 0 30 

 

Figure 3.52: Low height pose of the wheeled configuration. 
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3.3 Strategic Planning 

The strategic planning algorithm is the main control unit of the whole robotic 

structure. It determines the actions to be taken by the structure such as moving to a 

position, assembling or disassembling a configuration and executing configuration 

specific actions depending on the data received from the environment. As expressed 

before the strategic planning algorithm developed in this study is classified as a 

hybrid deliberative/reactive type robotic paradigm. The deliberative side of the 

algorithm is based on generating a plan that will drive the robotic structure from the 

initial state to the desired goal state while reactive part of the algorithm is more like a 

controller which is based on executing the plan generated in the deliberative layer. 

The general strategic planning algorithm is shown in Figure 3.53 

 

Figure 3.53: General strategic planning algorithm. 

3.3.1 Deliberative layer 

The deliberative layer of the strategic planning algorithm is for generating a feasible 

plan to drive the robotic structure from the initial state to the target state. Generation 

of a plan is completed in five steps. These steps are sensing, modeling, role 

distribution and decomposition. Figure 3.54 shows the general workflow of the 

deliberative layer. 
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Figure 3.54: General workflow of deliberative layer. 

3.3.1.1 Deliberative sensing phase 

The sensing phase is about determining environmental conditions. This phase is vital 

for both the deliberative and the reactive layer of the strategic planning algorithm. It 

is essential for deliberative layer because generation of a plan to reach the desired 

goal state starts with getting the environmental data such as obstacle positions and 

friction coefficient of the terrain and the plan is generated according to the data 

received. Sensing phase is vital for the reactive part because in the reactive layer of 

the algorithm, actions taken by the robotic structure is actually reactions to the 

sensory data. Even if a plan is generated to reach the desired target position, sensing 

phase continues in the reactive layer of the algorithm as a part of the feedback 

mechanism. 

The sensing phase of the deliberative layer starts with the friction coefficient 

estimation of the terrain. While estimating friction coefficient, each module takes 

five forward low velocity steps and reads the force sensors positioned between their 

wheel part when the module is in the reset pose. Figures 3.55 to 3.59 show the force 

sensor readings in terrains with different friction coefficients. 

 

Figure 3.55: Force sensor readings when friction coefficient is 1.0. 
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Figure 3.56: Force sensor readings when friction coefficient is 0.8 

 

Figure 3.57: Force sensor readings when friction coefficient is 0.6. 

 

Figure 3.58: Force sensor readings when friction coefficient is 0.4. 

 

Figure 3.59: Force sensor readings when friction coefficient is 0.2. 

The maximum value read while the module has the reset pose is taken and recorded. 

This process is done for each step the module takes and at the end the average of 
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these five readings is taken. The average of the reading is transformed to a friction 

coefficient estimation based on Table 3.33.  

Table 3.33 : Friction estimation based on force sensor readings. 

Friction coefficient estimated Force sensor reading lower 

limit 

Force sensor reading upper 

limit 

1.0 0.75 - 

0.8 0.65 0.75 

0.6 0.45 0.65 

0.4 0.30 0.45 

0.2 - 0.30 

After the friction coefficient of the terrain is estimated, the modules start the initial 

scan to localize other modules, obstacles and targets. In the initial scan each module 

moves its camera 360°, calculates positional difference of every module, obstacle or 

target it identified and records it. The data collected by each module is used in the 

modeling phase to create a coordinate system on which "Module#1" is centered. 

Note that "Module#1" is not the module which has the first role. Role distribution 

algorithm is initiated after the coordinate system is created in the modeling phase.  

3.3.1.2 Modeling phase 

The sensing phase ends with the localization scan in which each module scans its 

environment and collects positional data of other modules, obstacles or targets. In 

modeling phase the acquired data is used to create a coordinate system for the plan to 

be generated. The origin of the coordinate system is assumed to be the reference 

point of Module#1.  

The creation process of the coordinate system starts from Module#1. This module 

uses the positional data it collected in the sensing phase and calculates the position of 

other objects it identified while scanning. After it calculates the position of the 

modules, it sends the positional data to each module it identified, marks them as 

scanned and notifies the scanned modules. 

The scanned modules do what Module#1 does after they are notified and marked as 

scanned with simple differences. The scanned modules does not recalculate the 

positions of modules that are already marked as scanned and they calculate the 

positions of the unmarked modules based on their own received position. 
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While the scanned modules are notified and marked, for obstacles and targets this 

method does not hold. The calculated obstacle and target positions are shared with 

other modules by the module which identifies and calculates them. This is done 

because after role distribution, the strategic planning algorithm is initiated by only 

the module which has the first role. By sharing the obstacle and target position data, 

it is ensured that Role#1 knows the positions of these entities. 

The modeling phase ends after every module is marked as scanned and all positional 

data regarding obstacles and targets are shared among the modules. 

3.3.1.3 Role distribution phase 

Role distribution phase is separated from the plan generation process because either 

the plan generated requires assembling wheeled or quadruped configuration, the role 

distribution will be the same. To avoid unnecessary communication protocols, role 

distribution is done before the execution of the strategic planning algorithm to ensure 

that Role#1 executes the strategic planning algorithm and knows the generated plan. 

Role distribution algorithm is initiated by Module#1 and the rest of the modules are 

notified after the roles are determined. Role distribution is performed based on the 

positional data of the coordinate system created in the modeling phase. The first step 

of role distribution is to determine the module which will have the first role. To 

determine the first module the average of all module positions are taken and the 

closest module to this average position is chosen as Role#1. 

After Role#1 is chosen the assembly positions that are given in Table() for 

quadruped configuration and Table() for wheeled configuration are calculated based 

on the orientation of Role#1. The pseudo code of the role distribution algorithm is 

given in Table 3.34 

Table 3.34 : Pseudo code of the role distribution algorithm. 

01 FOR(i=1,6,1) 

02 ---pos_x_sum += pos_x(Module#i) 

03 ---pos_y_sum += pos_y(Module#i)  

04 ENDFOR  

05 pos_x_avg =  pos_x_sum/6  

06 pos_y_avg =  pos_y_sum/6  

07 FOR(i=1,6,1) 

08 ---x_dif(i)= pos_x_avg -  pos_x(Module#i) 

09 ---y_dif(i)= pos_y_avg -  pos_y(Module#i) 
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10 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2) 

11 ENDFOR  

12 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))  

13 //Selection of Role#1 

14 FOR(i=1,6,1) 

15 ---IF(dist_min==dist(i)) THEN 

16 ------Role#1 = Module#i 

17------gpos_x(1) = pos_x(Role#1) 

18------gpos_y(1) = pos_y(Role#1 

19---ENDIF 

20 ENDFOR 

21 FOR(i=2,6,1) 

22---gpos_x(i) = gpos_x_const(i) + gpos_x(1) 

23---gpos_y(i) = gpos_y_const(i) + gpos_y(1) 

24 ENDFOR 

25 //Selection of Role#2 

26 FOR(i=1,6,1) 

27 ---x_dif(i)= gpos_x(2) -  pos_x(Module#i) 

28 ---y_dif(i)= gpos_y(2) -  pos_y(Module#i) 

29 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2) 

30 ---IF(Module#i==Role#1) THEN 

31 ------dist(i)=HUGE 

32---ENDIF 

33 ENDFOR  

34 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))  

35 FOR(i=1,6,1) 

36 ---IF(dist_min==dist(i)) THEN 

37 ------Role#2 = Module#i 

38---ENDIF 

39 ENDFOR 

40 //Selection of Role#3 

41 FOR(i=1,6,1) 

42 ---x_dif(i)= gpos_x(3) -  pos_x(Module#i) 

43 ---y_dif(i)= gpos_y(3) -  pos_y(Module#i) 

44 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2) 

45 ---IF(Module#i==Role#1 OR Role#2) THEN 

46 ------dist(i)=HUGE 

47---ENDIF 

48 ENDFOR  

49 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))  

50 FOR(i=1,6,1) 

51 ---IF(dist_min==dist(i)) THEN 

52 ------Role#3 = Module#i 

53---ENDIF 

54 ENDFOR 

55 //Selection of Role#4 

56 FOR(i=1,6,1) 

57 ---x_dif(i)= gpos_x(4) -  pos_x(Module#i) 

58 ---y_dif(i)= gpos_y(4) -  pos_y(Module#i) 

59 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2) 
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60 ---IF(Module#i==Role#1 OR Role#2 OR Role#3) THEN 

61 ------dist(i)=HUGE 

62---ENDIF 

63 ENDFOR  

64 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))  

65 FOR(i=1,6,1) 

66 ---IF(dist_min==dist(i)) THEN 

67 ------Role#4 = Module#i 

68---ENDIF 

69 ENDFOR 

70 //Selection of Role#5 

71 FOR(i=1,6,1) 

72 ---x_dif(i)= gpos_x(5) -  pos_x(Module#i) 

73 ---y_dif(i)= gpos_y(5) -  pos_y(Module#i) 

74 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2) 

75 ---IF(Module#i==Role#1 OR Role#2 OR Role#3 OR Role#4) THEN 

76 ------dist(i)=HUGE 

77---ENDIF 

78 ENDFOR  

79 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))  

80 FOR(i=1,6,1) 

81 ---IF(dist_min==dist(i)) THEN 

82 ------Role#5 = Module#i 

83---ENDIF 

84 ENDFOR 

85 //Selection of Role#6 

86 FOR(i=1,6,1) 

87 ---x_dif(i)= gpos_x(6) -  pos_x(Module#i) 

88 ---y_dif(i)= gpos_y(6) -  pos_y(Module#i) 

89 ---dist(i) = sqrt(x_dif(i)^2 + y_dif(i)^2) 

90 ---IF(Module#i==Role#1 OR Role#2 OR Role#3 OR Role#4 OR Role#5) THEN 

91 ------dist(i)=HUGE 

92---ENDIF 

93 ENDFOR  

94 dist_min = min(dist(1), dist(2), dist(3), dist(4), dist(5), dist(6))  

95 FOR(i=1,6,1) 

96 ---IF(dist_min==dist(i)) THEN 

97 ------Role#6 = Module#i 

98---ENDIF 

99 ENDFOR 

3.3.1.4 Decomposition phase 

When role distribution is done, decomposition phase is initiated by Role#1. In 

decomposition phase, the target state of the system is decomposed, creating sub-

goals based on the model of the environment. Decomposition is a forward process, 

meaning that it starts from the initial state of the robotic structure and continues 

creating sub-goals until the target state is reached.  
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The subgoals are represented as arrays of 6 values in the script written in V-Rep. The 

values in the array are desired configuration, V-Rep handle of the reference object, 

desired lateral difference, desired longitudinal distance, desired gamma difference 

and transportation mode. 

Desired configuration can be 1 or 2 depending on the configuration required by the 

plan. For desired configuration, "1" means quadruped configuration and "2" means 

wheeled configuration. V-Rep handle of reference object is the identity of the object 

that the configuration is using as a reference. In V-Rep every entity has a handle that 

identifies it in the scripts. V-Rep handle of modules, obstacles and targets are 

collected while scanning in the sensing phase and they are used for searching and 

locking to the reference objects by script commands. 

Desired lateral and longitudinal difference values are straightforward. The 

configuration determines the target state position using these values. Similar to 

lateral and longitudinal differences, gamma difference is the desired gamma 

difference between the target object and the configuration. The target orientation is 

determined by using this value. 

Transportation mode determines whether the configuration will execute its special 

ability while trying to reach the target position, or not. This value can be 0 or 1. 0 

means the configurations transport normally, executing their position control 

algorithms. When transport mode value is 1, quadruped walker just executes the pass 

over function to pass over the ground obstacle and wheeled configuration changes its 

pose to pass under the obstacle and executes its normal position control algorithm. 

The sub-goals are created in a group based on the obstacle types. If there is a ground 

obstacle in the surroundings, the sub-goal group created for this obstacle consists of 

three sub-goals. The fisrt sub-goal is created to position the configuration facing 

some distance away from the ground obstacle. The second sub-goal is used to 

execute the pass over obstacle ability of the configuration. This sub-goal’s 

transport_mode value is 1, so the configuration executes the pass over obstacle 

function and gets the next sub-goal. The third sub-goal is created for that reason. 

Similar to the first sub-goal, the third sub-goal is used to position the configuration 

some distance away from the obstacle after passing over it. Position and orientation 

of the configuration while passing over obstacles cannot be controlled and after the 
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function is executed there should be another sub-goal to set the configuration on 

track. This is the reason for having three sub-goals for a ground obstacle. 

If there is a lath obstacle in the simulation scene, the group created for this obstacle 

consists of two sub-goals because there is no need for an extra sub-goal to correct 

position and orientation errors while passing under the obstacle. Passing under 

obstacle ability is just an adjustment of the pose of the wheeled configuration code 

and the configuration is driven by the position control algorithm. Therefore there is 

no position or orientation errors while passing under the obstacle. Similar to the 

ground obstacle case the first sub-goal lets the configuration to position itself some 

distance away from the lath obstacle facing it. The second sub-goal can be seen as 

the combination of the second and the third sub-goals of the ground obstacle case. 

This sub-goal requests the configuration to be position some distance away from the 

obstacle facing away from it and its transport_mode value is 1. 

The ordered arrays which represent sub-goal states form a matrix which is the 

representation of a plan in V-Rep scripts. Ordering the sub-goal states is done based 

on the obstacle distance between the goal state and the obstacles. The first rows of 

the plan matrix are consisted of the sub-goal states that are related to the farthest 

obstacle and the last row of the plan matrix is the goal state of the system. 

Representing the plan as a matrix is useful because in the sequencing phase of the 

reactive layer, the target states that are fed to the acting unit are the rows of this 

matrix and when a target state is reached the only reaction of the sequencer is feeding 

the next row of the plan matrix to the acting phase.  

3.3.2 Reactive layer 

Reactive layer of the strategic planning algorithm acts as a feedback controller to 

execute the generated plan to reach the goal state. Like a feedback controller the 

reactive control consists of a continuous sensing and acting loop. There is also a 

scheduling part in addition to traditional sense-act architecture of reactive paradigm. 

The scheduler takes the data collected in the sensing phase and interprets them based 

on the state of the robotic structure and the target state. Based on this interpretation, 

the joints are driven according to requirements in the acting phase. Target states are 

determined by the scheduler due to the sub-goals of the generated plan in the 

deliberative planning phase. The scheduler also determines the target state based on 
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the sub-goal that the robotic structure is trying to achieve. Figure 3.60 shows general 

workflow of reactive layer. 

 

Figure 3.60: Reactive layer workflow. 

3.3.2.1 Reactive sensing phase 

The sensing phase of the reactive layer is used like the sensor of the feedback control 

mechanism. In this phase the visual sensor of Role#1 is always active. It is locked to 

the target position until it is reached. In this phase the orientation and distance values 

are measured and sent to two different units. The first unit is the sequencing unit of 

the reactive layer to check if the system has reached to the desired sub-goal state. 

The second unit is the acting unit of the reactive layer to transfer sensor data into 

motor signals depending on the positional error. 

Unlike the deliberative sensing phase, sensing in reactive layer is continuous. The 

sensing phase is always active, locking to a reference object or if not locked 

searching for it and continually feeding data to the sequencing and acting unit.  

3.3.2.2 Sequencing phase 

The sequencing unit of the reactive layer is used as a low level action based decision 

mechanism. The main function of the sequencing unit is to keep the acting part of the 

reactive layer on track. The plan generated in the deliberative layer is shared with the 

sequencer and after getting the plan, the sequencer organizes the relationship 

between the sensing unit and the acting unit of the reactive layer.  
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The organization is done by comparing the sensory data with the sub-goal state 

requirements. If the configuration requirement of the sub-goal does not match with 

the status of the system, the sequencer issues a reassembly command to the acting 

unit. If the transportation mode requires the use of the special ability of the 

configuration the sequencer calls the corresponding functions to control the acting 

unit. If the configurations match and there is no request for a special ability, the 

sequencer issues no commands to the acting unit and lets it to position itself based on 

the sensory data. 

When the sub-goal state is reached, the sequencer gets the next row of the plan 

matrix and continues comparing until the goal state is reached. Figure 3.61 shows the 

flowchart of the sequencing unit. 

 

Figure 3.61: Flowchart of the sequencing unit. 

If the requirements are not satisfied the sequencer does nothing, but if they are 

satisfied, the sequencer changes the reference value of the acting unit if the subgoal 

has a positioning target. If the subgoal is assembly or ability targeting, the 

sequencing unit sends the appropriate order for the acting unit to execute the 

appropriate protocol. 

3.3.2.3 Acting phase 

Acting phase of the reactive control layer is simply the execution phase of the 

appropriate actions, depending on the sensory data and the sub goal target. The 
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actions to be executed depends on the sub goal of the plan the robot is following. If 

the subgoal has a positioning target, the executed action will be adjusting foot 

positions based on the gait for the quadruped configuration or setting wheel speeds 

for the wheeled configuration.   

The acting unit controls the states of three joints and four connection points of all the 

modules in the system. Therefore any action requiring an adjustment on the statesof 

these joints and connection points needs to be executed on the acting unit. 

Acting phase is not just an actuation phase. Acting unit not only controls joint 

positions, but also executes protocols and processes ordered by the sequencing unit. 

The orders executed by the acting unit are processes like assembly/reassembly, 

configuration position control and ability execution. The acting unit also checks if 

the issued order is satisfied and notifies the sequencer to issue another order. 
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4.  SIMULATION AND TEST RESULTS 

4.1 Test Scene 

To test the modular robotic system and the strategic planning algorithm, a test scene 

is created in V-Rep which consists of two obstacles and a target dummy. One of the 

obstacles is a ground obstacle which can be passed over in a quadruped configuration 

and the other obstacle is a lath obstacle which can be passed under in a wheeled 

configuration. The test scene is shown in figures 4.1 and 4.2. 

 

Figure 4.1 : Test scene created in V-Rep. 

 

Figure 4.2 : Top view of the test scene. 

The test scene is created to prove the strategic planning algorithm works as intended 

and lets the system reach the target state. For that purpose the robotic system should; 

 Scan its surroundings and identify the modules, the target and the obstacles, 
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 Model the environment in a coordinate system, 

 Execute the role distribution and strategic planning algorithm to generate a 

plan using the model, 

 Execute the generated plan by assembling/reassembling, controlling its 

position-orientation in quadruped or wheeled configurations and executing 

the pass over and pass under obstacle abilities when needed, 

 Have the state that is defined by the target dummy at the end of the 

simulation. 

To check the system status during simulation, some additions are made to the 

original code to get some logging information. The modules are positioned 

randomly, but in a way that lets Module#1 to be chosen as Role#1. This is done to 

unite the logging data given by Module#1 and Role#1 in a single console window. In 

addition to script based log data, the internal graph system of V-Rep is used to keep 

track of the reference position of Module#1. 

All of the six modules have the same code written in their scripts which only differs 

by module specific variable definitions. Besides these variables, each variable, 

function or method is identical in each script. The script is given in Appendix-A with 

comments and explanations, but the important functions and methods used in the 

scripts will also be explained briefly in this section. 

4.2 The Simulation 

The simulation starts with the friction coefficient estimation which is the first part of 

the deliberative sensing phase. The modules take five forward low velocity steps and 

read their force sensors to estimate the friction coefficient of the terrain.  

In the programming perspective, this phase mainly depends on the function 

estimate_friction(). This function is continually called in the friction estimation 

phase. Since it is called continually it takes its internal parameters as input and 

returns them as output to be used again. 

The script logger gives only the estimated friction coefficient in this phase of the 

simulation. Figure 4.3 shows Module#1 log. 
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Figure 4.3 : Module#1 log on friction coefficient estimation 

After friction estimation is completed, the modules start the localization scan to 

identify other modules, obstacles and targets in their surroundings. In this part of the 

sensing phase every module is marked as scanned and their positions are shared 

throughout the system.  

In localization scan part, initial_scan() function called continually to control the 

visual sensor orientation of the modules, read the result and record the position data. 

The log output of Module#1 in this part is module, obstacle and target positions. The 

console window showing log output is given in Figure 4.4 

 

Figure 4.4 : Module#1 log on localization scan. 

When the initial scan is completed, the sensing phase of the deliberative layer ends 

and strategic planning starts. The robotic structure starts distributing roles because 

either the plan generated requires assembling wheeled or quadruped configuration, 

the role distribution will be the same. To avoid unnecessary communication 
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protocols, role distribution is done before executing decomposition part of the 

strategic planning algorithm to ensure that Role#1 executes decomposition algorithm 

and knows the generated plan. 

As stated before, role distribution is done based on the module positions in the 

simulation scene. The role distribution algorithm is initiated by Module#1 and the 

function role_distribution() is used. This function is executed in a single call and it 

does the necessary calculations like central position of module group, assembly 

positions and distance of modules to assembly positions. 

The function first calculates the central position of the module group. Then it starts 

calculating the distance between this central position and each module. The closest 

module to this central position is selected as Role#1. After the first role is given, the 

assembly positions are calculated based on the position of Role#1. Selection of other 

roles is carried on similar to selection of Role#1. The distances between module 

positions and role assembly positions are calculated and each role is given to the 

module which has the lowest distance starting from Role#2 to Role#6.  

When the calculations and role distribution is done, Module#1 shares the role 

distribution result using script simulation parameters and notifies other modules. The 

calculations and role distributions are also given as log output by Module#1. The 

console window showing log output of role distribution is given in Figure 4.5 and 

Figure 4.6. 

 

Figure 4.5 : Module#1 log on role distribution part 1. 
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Figure 4.6 : Module#1 log on role distribution part 2. 

As it can be seen from the figure, each role is given to the module which is the 

closest to the assembly position of the role. After role distribution is completed and 

Role#1 is determined. The modules are notified by Module#1 to get their roles. The 

modules use get_role() function of the script to learn their roles. This function is 

pretty simple. It only checks the script simulation parameters of Module#1 and finds 

the role of the module calling the function and returns this value. 

When each module is notified and got its role in the system, Role#1 starts initiating 

the decomposition part of the strategic planning algorithm. This part is the main part 

of the strategic planning algorithm that generates the plan according to target and 

obstacle positions. In this part strategic_planning() function is used. Similar to 

role_distribution() function, this function is executed in a single call. As stated before 

decomposition process creates sub-goal arrays to reach the target state and depending 

on the obstacle and target positions, arranges them in an order and creates a plan 

matrix. 

In the test scene the ground obstacle is closer to the robotic system, so it is the first 

obstacle to pass. Therefore passing over obstacle sub-goal group arrays are placed in 

the first three rows of the plan matrix. The ground obstacle is followed by the lath 

obstacle, so the fourth and the fifth rows of the plan matrix are the sub-goal group of 

the lath obstacle. The sixth and the last row of the plan matrix is the target state of 

the system. 
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After decomposition is done, the plan matrix is created by uniting the sub-goal arrays 

based on the obstacle and target positions. Role#1 also gives log output of the 

generated plan. The log output is shown in Figure 4.7 

 

Figure 4.7 : Decomposition phase and creation of the plan matrix. 

The deliberative layer function ends when the decomposition part is passed and 

reactive layer is activated after the plan is generated. The processing work in the 

reactive layer is carried on by the sequencing unit which gets the sub-goal state of the 

plan and compares it with the system status and issues proper commands to the 

acting unit. 

When the reactive layer is activated, sequence() function is called by Role#1 to get 

the active goal-state. This function compares the configuration required by the sub-

goal state and the actual configuration and if needed executes the 

assembly/reassembly process. If the required and actual configurations are same, 

then the sequencer compares the transportation mode requested by the goal-state. If 

the transportation mode needs a special ability (transport_mode variable is equal to 

1) then the sequencer executes the required special ability of the configuration 

whether it is passing over or under obstacles. If there is no request for a special 

ability, then the sequencer executes normal position control algorithm of the 

configuration using lateral difference, longitudinal difference and gamma difference 

parameters of the sub-goal state. After the sequence() function is executed by 

Role#1, other modules are notified and they also call sequence() function in their 

scripts to get the issued commands and execute them. sequence() function also shares 

the active state via the log output. 
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In the test scene, sequence() function is called by Role#1 to get the active state after 

the plan is generated. The active state shown by the log output is given in Figure 4.8 

 

Figure 4.8 : Active state fetched by the sequence() function, Plan Row 1. 

The active sub-goal state is [1, Ground Obstacle, 0, -0.1, 0, 0]. Since the required 

configuration and the actual configuration of the robotic system do not match, the 

sequencer issues an assembly/reassembly command. The assembly process is mainly 

based on single module movement and position control. For this part there are ten 

functions created in the script. These functions are used for getting the target state of 

a module based on its role, searching the reference target of the role, locking to the 

target and calculating difference, direction and velocity decisions, position and 

orientation control and connection. 

Function get_target_state() is used for getting the target of a single module that has a 

role other than #1. This function takes configuration and role as input and returns 

target handle, lateral, longitudinal and gamma difference. After getting the target 

handle, the module calls search_target() and lock_target() functions to find and lock 

the its target. search_target() function is called continually until the module finds its 

target. Until the target is found, search_target() function rotates the visual sensor. 

When the module finds its target, lock_target() function is called continually to fix 

the visual sensor pointing the target. Functions search_target() and lock_target() are 

complements of each other. When the target is not found, the module calls 

search_target() and searches the target continually and when it finds its target, it 

stops calling search_target() and calls lock_target() until the sub-goal state is 

reached. When the visual sensor of the module locks to its target, the module 

calculates the difference with its target using calculate_difference() function. This 

function takes target handle as input and using the output of the visual sensor, 
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calculates the difference between the target position and module reference position 

dummy. 

After the difference between the target and the module is calculated, the module 

decides the gait and velocity to implement. The functions decide_direction() and 

decide_velocity() are used to determine the appropriate gait. When the gait is 

determined, the module calls correct_ornt() function to adjust its orientation to the 

calculated orientation required to reach the module target. correct_ornt() function 

takes orientation difference as input and controls the wheel velocity depending on the 

difference. The modules call move_single() function to move towards the decided 

direction with the decided velocity after the orientation difference with the required 

orientation is 0°. move_single() and correct_ornt() functions are also called 

continually until the module target is reached. Therefore they also take their internal 

parameters as inputs and returns these values in the same time. 

When the modules arrive to their first assembly positions, they check if they are 

allowed to move to their next assembly target by calling assembly_step_up() 

function. This function is always true for Role#2, Role#3, Role#4, meaning they can 

immediately move to their next assembly targets. Role#5 and Role#6 has to wait for 

Role#2 to connect to its target. Modules write 1 to their script simulation parameters 

called "connected" when they complete connection with their target, so when called 

by Role#5 or Role#6, assembly_step_up() function checks "connected" status of 

Role#2 and becomes true if it is 1 and false if it is not. After the modules reach to 

their last assembly positions, they call function connect() and their corresponding 

dummies create "dynamics, overlap constraint" type of link. Figures 4.9 to 4.12 show 

the visual representation of the assembly phase in the test scene. 

 

Figure 4.9 : Assembly phase in the test scene part 1. 
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Figure 4.10 : Assembly phase in the test scene part 2. 

 

Figure 4.11 : Assembly phase in the test scene part 3. 

 

Figure 4.12 : Assembly phase in the test scene part 4. 

When the assembly of quadruped configuration is done, the sequencer compares the  

sub-goal state and the system status. Since the configurations match and 

transportation_mode is 0, the sequencer executes normal position control algorithm. 

Based on the position control algorithm of the quadruped configuration, the system 

moves towards the ground obstacle. In this part search_target(), lock_target(), 

calculate_difference(), qd_walk() and send_order() functions are called continually 

by Role#1. 
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The function qd_walk() takes lateral, longitudinal and gamma differences as inputs 

and returns a gait decision. send_order() function takes script handle and required 

joint positions for three joints and using the script simulation parameters, sends these 

values to other modules to adjust their joint positions. When an order is sent by 

Role#1 to any module in the configuration, the module adjusts its joint positions and 

writes "1" to its script simulation parameter "order_done". When all modules have 

completed the order, qd_walk() function calculates new joint positions until the sub-

goal is reached. Figures 4.13 to 4.15 show this movement in the test scene. 

 

Figure 4.13 : Quadruped configuration movement part 1. 

 

Figure 4.14 : Quadruped configuration movement part 2. 

 

Figure 4.15 : Quadruped configuration movement part 3. 
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When the quadruped walker reaches to the ground obstacle, the sequencer gets the 

next sub-goal array. The new sub-goal state becomes [1, Ground Obstacle, 0, 0.5, 0, 

1]. Notice that the transportation_mode value is 1. Therefore the sequencer issues the 

pass over command and the configuration passes over the obstacle. To pass over the 

obstacles pass_over() function is called continually. This function sends periodic 

joint positions to the modules until the obstacle is passed. Figures 4.16 to 4.20 show 

the passing over the ground obstacle process. 

 

Figure 4.16 : Quadruped walker passing over ground obstacle part 1. 

 

Figure 4.17 : Quadruped walker passing over ground obstacle part 2. 

 

Figure 4.18 : Quadruped walker passing over ground obstacle part 3. 
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Figure 4.19 : Quadruped walker passing over ground obstacle part 4. 

 

Figure 4.20 : Quadruped walker passing over ground obstacle part 5. 

After the pass over command is initiated, the sequencer gets active again and fetches 

the next goal-state. The new sub-goal array becomes [1, Ground Obstacle, 0, 0.5, 0, 

0]. Since the configurations match and the transportation mode does not need a 

special ability, the normal position control algorithm is executed again. Figure 4.21 

and 4.22 show the repositioning of the quadruped configuration. 

 

Figure 4.21 : Quadruped configuration repositioning part 1. 
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Figure 4.22 : Quadruped configuration repositioning part 2. 

When the quadruped walker reaches to the sub-goal state, the sequencer fetches the 

next sub-goal array. The new sub-goal state is [2, Lath Obstacle, 0, -0.3, 0, 0]. Since 

the configurations does not match, the sequencer issues an assemble/reassemble 

command. Assembling and reassembling are very similar in the robotic structure. 

They are triggered by the same command, but if the system is in a configuration, 

Role#1 calls reassemble() function and the modules execute a protocol before 

implementing the assembly phase. If the system is in a quadruped configuration 

before the assemble/reassemble command is given, Role#1 and Role#2 does not 

break their connections and the rest of the modules break their connections and take 

three steps backwards with high velocity. If the system is in the wheeled 

configuration, Role#1 and Role#2 does not break connections and the rest of the 

modules break their connections before taking 3 steps forwards with high velocity. 

After this protocol is completed, the modules act as if it is an assemble process. 

Figures 4.23 to 4.26 show the reassembly process in the test scene visually. 

 

Figure 4.23 : Quadruped configuration disassembling. 
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Figure 4.24 : System reassembling wheeled configuration part 1. 

 

Figure 4.25 : System reassembling wheeled configuration part 2. 

 

Figure 4.26 : System reassembling wheeled configuration part 3. 

After the assembly of the wheeled configuration is completed, the configuration 

comparison matches and since there is not a special ability request, the sequencer 

executes the position control algorithm for the wheeled configuration. Similar to 

quadruped configuration, position control of the wheeled algorithm uses functions 

search_target() and lock_target(). After target is found and the visual sensor locks to 

it, calculate_difference() function calculates lateral and longitudinal distance between 
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the target and the configuration. Depending on the result of the calculate_difference() 

function Role#1 calls correct_ornt_whld() to adjust the orientation of the 

configuration to the required gamma orientation or calls move_whld() to move 

towards the target. Role#1 uses send_order() function to other modules to control 

their joint positions. The modules forming the wheels interpret the send_order() 

command differently in wheeled configuration. They use the front joint position 

value as speed value and set the rotational speeds of their front joints to the sent 

value. In wheeled configuration, there is not a special function to control the pass 

under lath obstacle process. Instead of this, correct_ornt_whld() and move_whld() 

function take transport_mode value as input and adjust their axle positions depending 

on the value of this parameter. 

The wheeled configuration reaches the lath obstacle and Role#1 calls sequence() 

function again to get the next sub-goal state. Figures 4.27 and 4.28 show the 

movement of wheeled configuration until it reaches to the lath obstacle. 

 

Figure 4.27 : Wheeled configuration moving to lath obstacle part 1. 

 

Figure 4.28 : Wheeled configuration moving to lath obstacle part 2. 
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The sequencer gets the new sub-goal state array as [2, Lath Obstacle, 0, 0.3, 0, 1]. 

The wheeled configuration changes its pose because the transportation_mode value 

is 1. Figures 4.29 and 4.30 show the new pose of the configuration in the test scene. 

 

Figure 4.29 : Wheeled configuration adjusting pose to pass under lath obstacle. 

 

Figure 4.30 : Wheeled configuration adjusting pose to pass under lath obstacle. 

After the wheeled configuration adjusts its height to pass under the lath obstacle, 

position control algorithm of the wheeled configuration is executed normally. When 

the configuration passes under the obstacle and reaches to the goal-state, the 

sequencer gets the next sub-goal state which is [2, System Target, 0, 0, 0, 0]. This 

sub-goal state is also the target state of the system. Since the configurations match 

and transport_mode is 0, the wheeled configuration returns back to its normal pose 

and moves to the target position. Figures 4.31 to 4.34 show this movement. 
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Figure 4.31 : Wheeled configuration passing under lath obstacle. 

 

Figure 4.32 : Wheeled configuration returning to original pose. 

 

Figure 4.33 : Wheeled obstacle moving to target. 
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Figure 4.34 : Wheeled configuration in target state. 

The simulation ends when the robotic system reaches to the target state of the system 

defined by row six of the plan matrix. The blue trace shown on Figure 4.34 is created 

by using V-Rep's graph tools. It is a 3D curve showing the position of the reference 

position of Module#1 throughout the simulation. 
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5.  CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusion 

The purpose of this study is to prove that with a good module design and strategic 

planning algorithm, modular robotic structures can show great functionality and 

versatility over their monolithic counterparts while being affordable due to their 

suitable nature for mass production. For that purpose, a chain type modular robotic 

structure is designed and a hybrid deliberative/reactive type of strategic planning 

algorithm is developed and tested in a simulation environment called V-Rep. 

To overcome the general self-reconfiguration problem of chain type systems, the 

modules of the system are designed to achieve self mobility. The self-mobility of a 

single module is achieved by adding a wheel for orientation control and a foot to 

practice an inchworm like locomotion method for propulsion in longitudinal 

direction. The module has three revolute joints; one for control of the wheel and two 

for manipulating the foot part of the module. Besides these joints, the module has a 

visual sensor attached to a pole like structure with two degrees of freedom for 

controlling the visual orientation and a force sensor embedded between two 

cylindrical discs of the wheel for friction estimation. The single module is designed 

to have four connection points for making connections with other modules to create 

more functional configurations.  

After single module structure is determined, the locomotion gait for positioning of 

the modules is designed. The gait is designed to provide long and short steps in 

forward and backward directions by kinematics analysis of the foot chain. The gait 

designed is used in the position control algorithm of the single module which is 

mainly used for assembly of configurations. The position control algorithm is used to 

decide the step size and direction to be applied to reach the target position of the 

single module in optimum time. 

Assembly of configurations is simply multi module position control. A role 

distribution algorithm based on initial states of modules is developed to position the 

modules before connecting to build a configuration. The positions for each role are 
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predetermined and each module positions itself individually and connects to its target 

in this phase. 

After the assembly process is determined, two configurations consisting of six 

modules to implement quadruped and wheeled locomotion are designed. The 

locomotion methods are designed using kinematic models of each configuration. For 

quadruped walker configuration a trotting gait to move in longitudinal direction and 

a sidling gait to move in lateral direction are developed. Since the wheeled 

locomotion is more straightforward there is no need to develop a locomotion method 

other then controlling the wheels in pairs to steer or rotate in place. The 

configurations are also designed to have configuration specific abilities. The 

quadruped walker configuration has the ability to pass over obstacles in the ground 

and the wheeled configuration has the ability to change its height to pass under 

obstacles. Similar to the single module position control algorithm, using motion 

kinematic models, position control algorithms for each configuration are developed.  

The strategic planning algorithm developed in this study can be classified as hybrid 

deliberative/reactive control architecture. The algorithm consists of two layers; (1) 

deliberative layer to generate a feasible plan consists of sub goals to drive the robotic 

structure from its initial state to the desired goal state and (2) reactive layer to 

execute the plan similar to a feedback control mechanism.  

After both the robotic structure design and strategic planning algorithm development 

are completed, the whole structure is tested in the simulation environment. In the test 

area there are obstacles between the desired goal state and the initial state of the 

robotic structure. The obstacles are passable by the implementation of configuration 

specific abilities. This test area is designed to test the overall performance of the 

whole robotic structure with its control algorithm as a whole. 

The test showed that six simple robots having no specific ability can pass over and 

under obstacles to reach a desired goal position by cooperating and building more 

functional configurations. This proves that modular robotic structures can be more 

functional and more versatile over their monolithic counterparts. 

 

 



113 

 

5.2 Recommendations 

In this study, a modular robotic structure which can change its shape to implement 

different locomotion methods is designed and created in simulation environment. To 

control this modular robotic structure, a hybrid deliberative/reactive strategic 

planning algorithm is also developed. In this section, some recommendations for 

future alterations on the robotic structure and strategic planning algorithm are shared. 

The designing, creating and testing processes of this study is done in simulation 

environment due to time and resource constraints. To realize the study, some 

additions should be done to the presented structure. Firstly, the visual sensors of the 

modules are simulated cameras using proxy sensors in the simulation software and 

they do not have real life counterparts. In a real life implementation of this study, 

cameras or advanced infrared or ultrasonic distance sensors can be used. Camera 

usage will bring extra coding work for image processing and that may mean extra 

electronics load. Distance sensors may not answer the needs of the structure. 

Therefore the feasibility of any sensor solution should be analyzed thoroughly. 

Secondly, this study does not present an applicable connection mechanism for 

modules. The connection mechanism presented in this study is just a representation 

of a connection with the use of dummies specific to the simulation software V-Rep. 

To realize the robotic structure, a proper connection mechanism should be designed 

and implemented. 

Lastly, the communication method applied in the robotic system is not applicable in 

real life. The communication method used in the system uses shared variables called 

script simulation parameters. Therefore, if the system is to be realized, another 

communication method should be set. 

Besides realization of the system, there can be other development options for the 

system. This study is mainly concerned on creating and implementing a strategic 

planning algorithm to a modular robotic structure. The position control algorithms of 

modules or configurations are generally kept at a basic level. These algorithms can 

be developed further and more optimal results can be achieved. Similarly there is a 

lot of room for development in the designed strategic planning algorithm. The hybrid 

architecture is open for further development and numerous functionalities can be 

added in the strategic planning part such as changing the generated plan by the 
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reactive layer sensory data, adding an obstacle avoidance behavior and adding a 

protocol for broken modules. 



115 

 

REFERENCES 

  

[1] T. Fukuda and S. Nakagawa (1988). Approach to the dynamically 

reconfigurable robotic system, Intelligent and Robotic Systems, 

1(1):55-72. 

[2] M. Yim (1994). Locomotion with a unit-modular reconfigurable robot, PhD 

thesis, Department of Mechanical Engineering, Stanford University, 

Stanford, CA. 

[3] G. S. Chirikjian (1994). Kinematics of a metamorphic robotic system, Proc., 

IEEE Int. Conf. on Robotics and Automation, volume 1, pages 449-

455, San Diego, CA. 

[4] S. Murata, H. Kurokawa and S. Kokaji (1994). Self assembling machine, 

Proc., IEEE Int. Conf. on Robotics and Automation, pages 441-448, 

San Diego, CA. 

[5] A. Castano, W.-M. Shen and P. Will (2000). Towards deployable robots with 

inter-robot metamorphic capabilities, Autonomous Robots, 8(3):309-

324. 

[6] M. Yim, D. G. Duff and K. D. Roufas (2000). PolyBot: A modular 

reconfigurable robot, Proc., IEEE Int. Conf. on Robotics and 

Automation, volume 1, pages 441-448, San Diego, CA. 

[7] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita and S. Kokaji (1998). A 3-D 

self-reconfigurable structure, Proc. IEEE Int. Conf. on Robotics and 

Automation, pages 432-439, Leuven, Belgium. 

[8] D. Rus and K. Kotay (1997). Versatility for unknown worlds: Mobile sensors 

and self-reconfiguration, Proc., Field and Service Robotics, Berlin, 

Germany.  

[9] S. Murata, K. Tomita, E. Yoshida, H. Kurokawa and S. Kokaji (2000). Self 

reconfigurable robot-module design and simulation, Proc. 6th Int. 

Conf. on Intelligent Autonomous Systems, pages 911-917, Venice, 

Italy. 

[10] M. W. Jorgensen, E. H. Ostergaard and H. H. Lund (2004). Modular 

ATRON: Modules for a self-reconfigurable robot, Proc. IEEE/RSJ 

Int. Conf. on Robots and Systems, pages 2068-2073, Sendai, Japan.  

[11] E. H. Ostergaard, K. Kassow, R. Beck and H.H. Lund (2006). Design of the 

ATRON lattice-based self-reconfigurable robot, Autonomous Robots, 

21(2):165-183. 



116 

 

[12] W.-M. Shen, M. Krikovon, M. Rubinstein, C.h. Chiu, J. Everst and J. B. 

Venkatesh (2006). Multimode locomotion via self-reconfigurable 

robots, Autonomous Robots, 20(2):165-177. 

 [13] Brooks, R. (1986). A robust layered control system for a mobile robot. 

Robotics and Automation, IEEE Journal of [legacy, pre-1988] 2 (1): 

14–23. 

 [14] Anthony Mandow, Jorge L. Martinez (2007). Experimental kinematics for 

wheeled skid-steer mobile robots, Intelligent Robots and Systems, 

pages 1222-1227. 

 [15] J. L. Martinez, A. Mandow, J. Morales, S.Pedraza and A. Garcia Perezo 

(2005). Approximating kinematics for tracked mobile robots, 

International Journal of Robotics Research, vol. 24, no. 10, pp. 867-

878. 

[16] S. Pedraza, R. Fernandez, V. Munoz and A. Garcia Cerezo (2000). A motion 

control approach for a tracked mobile robot, Proc.of the 4th IFAC 

International Symposium on Intelligent Components and Instruments 

for Control Applications, pp. 147-152, Buenos Aires, Argentina. 

[17] Url - 1 <https://en.wikipedia.org/wiki/Shakey_the_robot>, date retrieved 

18.08.2015. 

[18] Url - 2 <http://www.gazebosim.org/ >, date retrieved 25.04.2015. 

[19] Url - 3 <http://playerstage.sourceforge.net/>, date retrieved 14.08.2015. 

[20] Url - 4 <http://www.cyberbotics.com/>, date retrieved 29.04.2015. 

[21] Url - 5 <http://www.coppeliarobotics.com/>, date retrieved 29.04.2015. 

[22] Url - 6 <http://www.coppeliarobotics.com/helpFiles/index.html> date retrieved 

29.04.2015 

[23] Url - 7 <http://en.wikipedia.org/wiki/Instant_centre_of_rotation> date retrieved 

08.12.2014. 



117 

 

APPENDICES 

APPENDIX-A: Search Program of the First Kinematic Model  

clear 

clc 

 

count = 0; 

 

d1 = 0.0775; 

d2 = 0.0475; 

d3 = 0.0470; 

a3 = 0.025; 

th1 = 0; 

 

for angle1 = -90:0 

   for angle2 = -120:120 

        al1 = angle1*pi/180; 

        al2 = angle2*pi/180; 

        th3 = 0; 

 

        A1 = [cos(th1) -sin(th1)*cos(al1) sin(th1)*sin(al1) 0; sin(th1) cos(th1)*cos(al1) -

cos(th1)*sin(al1) 0; 0 sin(al1) cos(al1) d1; 0 0 0 1]; 

        A2 = [1 0 0 0; 0 cos(al2) -sin(al2) 0; 0 sin(al2) cos(al2) d2; 0 0 0 1]; 

        A3 = [0 1 0 0; -1 0 0 -a3; 0 0 1 d3; 0 0 0 1]; 

 

        A = A1*A2*A3; 

 

        vect = [A(1,4) A(2,4) A(3,4)]; 

        vect_vrep = [-vect(3) -vect(1) vect(2)+0.025]; 

 

        if(vect_vrep(3)>0.005) 

            if(vect_vrep(3)<0.01) 

                if(vect_vrep(1)>-0.1) 

                   count = count + 1; 

                   res(count,1) = count; 

                   res(count,2) = angle1; 

                   res(count,3) = angle2; 

                   res(count,4) = vect_vrep(1); 

                   res(count,5) = vect_vrep(3); 

                   res(count,6) = vect_vrep(1)+0.1720; 

                   px(count) = count; 

                   py1(count) = vect_vrep(1); 

                   py1_dif(count) = vect_vrep(1)+0.1720; 

                   py2(count) = vect_vrep(3); 

                end 

            end 

        end 
         

    end 

end    

 

res 
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plot(px,py1) 

APPENDIX-B: Search Program of the Second Kinematic Model  

clear 

clc 

 

th1 = 0; 

th3 = 15*pi/180; %backjoint2 

th4 = 60*pi/180; %backjoint1 

 

a1 = 0.025; 

a2 = 0.0470; 

a3 = 0.0475; 

a4 = 0.0775; 

d5wt = 0.025; 

a5bc = -0.075; 

d5bc = -0.005; 

 

count = 0; 

 

for i1 = -90:1:90; 

    th3 = i1*pi/180; 

    for i2 = -90:1:90; 

        th1 = 0; 

        th4 = i2*pi/180; 

 

        A1 = [cos(th1) -sin(th1) 0 a1*cos(th1); sin(th1) cos(th1) 0 a1*sin(th1); 0 0 1 0; 0 0 0 1]; 

        A2 = [0 -1 0 0; 1 0 0 a2; 0 0 1 0; 0 0 0 1]; 

        A3 = [cos(th3) -sin(th3) 0 a3*cos(th3); sin(th3) cos(th3) 0 a3*sin(th3); 0 0 1 0; 0 0 0 1]; 

        A4 = [cos(th4) 0 -sin(th4) a4*cos(th4); sin(th4) 0 cos(th4) a4*sin(th4); 0 -1 0 0; 0 0 0 1]; 

        A5wt = [1 0 0 0; 0 1 0 0; 0 0 1 d5wt; 0 0 0 1]; 

        A5bc = [1 0 0 a5bc; 0 1 0 0; 0 0 1 d5bc; 0 0 0 1]; 

 

        Awt = A1*A2*A3*A4*A5wt; 

 

        th1 = atan2(Awt(1,4), Awt(2,4)); 

        A1 = [cos(th1) -sin(th1) 0 a1*cos(th1); sin(th1) cos(th1) 0 a1*sin(th1); 0 0 1 0; 0 0 0 1]; 

 

        C1 = A1*A2; 

        C2 = C1*A3; 

        Awt = C2*A4*A5wt; 

        Abc = Awt*A5bc; 

 

        cond1 = C1(1,4); 

        cond2 = C2(1,4); 

        pos_km(1) = Awt(1,4); 

        pos_km(2) = Awt(2,4); 

        pos_km(3) = Awt(3,4); 

 

        pos_lf(1) = pos_km(2); 

        pos_lf(2) = pos_km(3); 

        pos_lf(3) = pos_km(1); 

         

        f1h = abs(90-i1); 

        f2h = abs(-36-i2); 

         

        f1l = abs(52-i1); 
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        f2l = abs(-27-i2); 

        

%        if( (pos_lf(1)<0.127)&& (pos_lf(1)>0.122) && (pos_lf(1)<0.172)  && (Abc(1,4) <= 0.005) 

&& (Abc(1,4) > 0.0025) )% && (th1*180/pi > -30) )     %caster pivot high-vel search          

%        if( (pos_lf(1)<0.1525)&& (pos_lf(1)>0.1515) && (pos_lf(1)<0.172)  && (Abc(1,4) <= 0.005) 

&& (Abc(1,4) > 0.000) )% && (th1*180/pi > -30) )     %caster pivot low-vel search  

%        if( (pos_lf(1)<0.172)&& (pos_lf(1)>0.127) && (pos_lf(1)<0.172) && (Abc(1,4) >= 0.015) 

&& (f1h+f2h<45) )     %first pose high-vel search    

        if( (pos_lf(1)<0.154)&& (pos_lf(1)>0.152) && (pos_lf(1)<0.172) && (Abc(1,4) >= 0.015) && 

(f1l+f2l<50) )    %first pose low-vel search 

%        if( (pos_lf(1)<0.10)&& (pos_lf(1)>0.08) && (pos_lf(1)<0.172) && (th1*180/pi > -30) && 

(th1*180/pi < 30) && (Abc(1,4) >= 0.02) )     %max displacement 

            count = count + 1; 

            pos_lf_array(count,1) = count; 

            pos_lf_array(count,2) = th1*180/pi; 

            pos_lf_array(count,3) = i1;                                     %backjoint2 

            pos_lf_array(count,4) = i2;                                     %backjoint1 

            pos_lf_array(count,5) = 0.172 - pos_lf(1); 

            pos_lf_array(count,6) = Abc(1,4); 

            pos_lf_array(count,7) = f1h+f2h; 

            pos_lf_array(count,8) = f1l+f2l;             

 

        end 

    end 

end 

pos_lf_array 

 

for v = 1:1:count; 

    px(v) = pos_lf_array(v,1); 

    py1(v) = pos_lf_array(v,5); 

 

end 
plot(px,py1) 

APPENDIX-C: Lua Code of the Module Scripts in V-Rep  

if (sim_call_type==sim_childscriptcall_initialization) then 

 

-- Put some initialization code here 

--//Script Specific Handles and Variables-------------------------------------------------------------- 

    console = simAuxiliaryConsoleOpen("Log#1",1000,10100) 

    log_flag_dummy = 0 

    Script = simGetScriptHandle("Cylinder1x1") 

    Cylinder = simGetObjectHandle("Cylinder1x1") 

 

    det_point = simGetObjectHandle("DetPointx1") 

 

    conn_points = {simGetObjectHandle("DummyFx1"),simGetObjectHandle("DummyBFx1"), 

                    simGetObjectHandle("DummyRx1"),simGetObjectHandle("DummyLx1"), 

                    simGetObjectHandle("DummyBSx1")} 

 

    Fix_FS = simGetObjectHandle("Fix_FSx1") 

 

    cam_dummy = simGetObjectHandle("CamDummyx1") 

    pos_dummy = simGetObjectHandle("Positionx1") 

 

    FrontJoint = simGetObjectHandle("FrontJointx1") 

    BackJoint1 = simGetObjectHandle("BackJoint1x1")  

    BackJoint2 = simGetObjectHandle("BackJoint2x1") 
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    FS = simGetObjectHandle("FS_Cylinderx1") 

 

    Cam = simGetObjectHandle("Camx1") 

    CamJoint1 = simGetObjectHandle("CamJoint1x1") 

    CamJoint2 = simGetObjectHandle("CamJoint2x1") 

--Script Specific Handles and Variables//-------------------------------------------------------------- 

    Scripts = {simGetScriptHandle("Cylinder1x1"),simGetScriptHandle("Cylinder1x2"), 

                simGetScriptHandle("Cylinder1x3"),simGetScriptHandle("Cylinder1x4"), 

                simGetScriptHandle("Cylinder1x5"),simGetScriptHandle("Cylinder1x6"), 

                simGetScriptHandle("target_dummy_1"),simGetScriptHandle("target_dummy_2"), 

                simGetScriptHandle("target_dummy_3")} 

 

    det_points = {simGetObjectHandle("DetPointx1"),simGetObjectHandle("DetPointx2"), 

                    simGetObjectHandle("DetPointx3"),simGetObjectHandle("DetPointx4"), 

                    simGetObjectHandle("DetPointx5"),simGetObjectHandle("DetPointx6"), 

                    simGetObjectHandle("target_dummy_1"),simGetObjectHandle("target_dummy_2"), 

                    simGetObjectHandle("target_dummy_3")} 

 

    Roles = {0,0,0,0,0,0} 

 

    conf = 0 

    conf_req = -1 

--conf_req == -1 means there is no request for configuration 

 

    plan_row = {0,0,0,0,0,0} 

 

    plan_row1 = {0,0,0,0,0,0} 

    plan_row2 = {0,0,0,0,0,0} 

    plan_row3 = {0,0,0,0,0,0} 

    plan_row4 = {0,0,0,0,0,0} 

    plan_row5 = {0,0,0,0,0,0} 

    plan_row6 = {0,0,0,0,0,0} 

    plan_row7 = {0,0,0,0,0,0} 

    plan_row8 = {0,0,0,0,0,0} 

    plan_row9 = {0,0,0,0,0,0} 

    plan_row10 = {0,0,0,0,0,0} 

--plan_rowx format: {conf_req,reference_handle,lat_const,long_const,gamma_const,transport_mode} 

--transport_mode=0 normal, transport_mode=1 ability 

 

--These variables will be a part of strategic planning!!!!!//----- 

 

    simSetScriptSimulationParameter(Script,"Notification1",0) 

    simSetScriptSimulationParameter(Script,"Notification2",0) 

    simSetScriptSimulationParameter(Script,"Notification3",0) 

    simSetScriptSimulationParameter(Script,"scanned",0) 

 

    ms_result = 0 

    forw_step = 0 

    back_step = 0 

    forw_step_f = 0 

    back_step_f = 0 

 

    direction = 0 

    forced_direction = 0 

    velocity = 0 

 

    J1pos = 0 

    J2pos = 0 

    Cylpos = 0 

    a = 0 
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    CamJ1pos = 0 

    CamJ2pos = 0 

    pj1 = 0 

    pj2 = 0 

    search_counter = 0 

 

--//Variables for Friction Test---------------------------------------------------   

    friction_estimation_done = 0 

    friction_step_counter = 0 

    fs_read_counter = 0 

    fs_force_reading_1 = {0,0,0,0,0,0,0,0,0,0} 

    fs_force_reading_2 = {0,0,0,0,0,0,0,0,0,0} 

    fs_force_reading_3 = {0,0,0,0,0,0,0,0,0,0} 

    fs_force_reading_4 = {0,0,0,0,0,0,0,0,0,0} 

    fs_force_reading_max = {0,0,0,0} 

    friction_coeff = 0 

 

--siralama - 0.2,0.4,0.6,0.8,1.0 

    dfhv_list = {0.0502,0.0663,0.0662,0.0662,0.0635} 

    tfhv_list = {0.95,0.95,0.95,0.95,0.95} 

    dflv_list = {0.0106,0.0124,0.0153,0.0165,0.0162} 

    tflv_list = {0.65,0.65,0.65,0.65,0.65} 

 

    dbhv_list = {0.0117,0.0161,0.0186,0.0210,0.0233} 

    tbhv_list = {1.05,1.05,1.05,1.05,1.05} 

    dblv_list = {0.0075,0.0091,0.0104,0.0113,0.0123} 

    tblv_list = {0.80,0.80,0.80,0.80,0.80} 

 

    t180_list = {4.40,4.55,4.35,4.25,4.20} 

 

    w_qtr_ag_list = {19.95,20.86,19.08,16.61,7.14} 

    d_qtr_ag_list = {0.101,0.106,0.106,0.095,0.058} 

    t_qtr_ag_list = {1.25,1.25,1.20,1.20,1.20} 

 

    w_qtr_md1_list = {14.72,15.04,13.35,8.59,3.76} 

    d_qtr_md1_list = {0.106,0.112,0.112,0.099,0.06} 

    t_qtr_md1_list = {1.25,1.25,1.20,1.20,1.20} 

 

    w_qtr_md2_list = {7.81,8.09,6.53,3.91,1.47} 

    d_qtr_md2_list = {0.107,0.114,0.116,0.101,0.058} 

    t_qtr_md2_list = {1.25,1.25,1.20,1.20,1.20} 

 

    w_qtr_ps_list = {4.42,4.71,3.56,2.11,0.36} 

    d_qtr_ps_list = {0.094,0.099,0.105,0.095,0.057} 

    t_qtr_ps_list = {1.25,1.25,1.20,1.20,1.20} 

 

    w_qsd_ag_list = {3.88,4.96,6.94,7.87,7.58} 

    d_qsd_ag_list = {0.107,0.111,0.116,0.109,0.081} 

    t_qsd_ag_list = {1.90,1.90,1.85,1.80,1.80} 

 

    w_qsd_md1_list = {2.49,3.54,4.84,5.79,4.22} 

    d_qsd_md1_list = {0.106,0.111,0.120,0.113,0.081} 

    t_qsd_md1_list = {1.80,1.80,1.80,1.80,1.70} 

 

    w_qsd_md2_list = {1.74,1.51,2.35,1.89,1.94} 

    d_qsd_md2_list = {0.107,0.111,0.121,0.115,0.080} 

    t_qsd_md2_list = {1.85,1.80,1.80,1.80,1.80} 

 

    w_qsd_ps_list = {1.02,0.85,1.22,1.08,0.82} 

    d_qsd_ps_list = {0.103,0.105,0.115,0.110,0.075} 
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    t_qsd_ps_list = {1.80,1.80,1.80,1.80,1.80} 

 

--Variables for Friction Test//---------------------------------------------------   

--//Variables for initial scan---------------------------------------------------- 

     

    initial_scan_done = 0 

    scanned_mods = 0 

    RdetModbin = {0,0,0,0,0,0,0,0,0} 

    ModPos_x = {0,0,0,0,0,0,0,0,0} 

    ModPos_y = {0,0,0,0,0,0,0,0,0} 

 

--Variables for initial scan//---------------------------------------------------- 

--//Variables for Phases---------------------------------------------- 

    sensing_done = 0 

    sp_done = 0 

    rd_done = 0 

 

    pos_x_sum = 0 

    pos_y_sum = 0 

    x_dif = {0,0,0,0,0,0} 

    y_dif = {0,0,0,0,0,0} 

    dist = {0,0,0,0,0,0} 

    gpos_x = {0,0,0,0,0,0} 

    gpos_y = {0,0,0,0,0,0} 

 

--Variables for Phases//---------------------------------------------- 

 

    assembly_counter = 1 

    target_state_reached = 0 

    target_pos_reached = 0 

    target_ornt_reached = 0 

    target_found = 0 

 

    lat_const = 0.5  

    long_const = 0.5 

    gamma_const = 0 

 

    ornt_req = 0 

    ornt_des = 0 

    ornt_dif = 0 

 

--//Four Legged Parameters----------------------------------------------------- 

    c4wa = 0 

    c4wp = 0 

    c4wa_tr = 0 

    c4wa_sd = 0 

    order_done_counter = 0 

    s = -30 

    r = 0 

    l = 0 

    tr= 0 

    sd = 0 

    qd_po_counter = 0 

 

    assembly_phase_done = 0 

    reassemble_step=0 

    reassemble_move_counter = 0 

--Four Legged Parameters//----------------------------------------------------- 

--//Four Wheeled Parameters----------------------------------------------------- 

    c4wh = 0 
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--Four Legged Parameters//----------------------------------------------------- 

 

    function estimate_friction(friction_estimation_done) 

        if(log_flag_dummy==0) then 

            simAuxiliaryConsolePrint(console,"Friction Estimation Started\n") 

            log_flag_dummy=1 

        end 

        if(friction_estimation_done~=1) then 

            if(friction_step_counter<5) then 

                ms_result,J1pos,J2pos,forw_step,back_step = move_single(1,1,forw_step,back_step,0) 

 

                if(forw_step==0)then 

                    friction_estimation_done = 0 

                    fsresult,force,torque=simReadForceSensor(FS) 

                    fs_read_counter = fs_read_counter + 1 

                    if(friction_step_counter==1)    then 

                        fs_force_reading_1[fs_read_counter] = force[3] 

                    end 
                    if(friction_step_counter==2)    then 

                        fs_force_reading_2[fs_read_counter] = force[3] 

                    end 

                    if(friction_step_counter==3)    then 

                        fs_force_reading_3[fs_read_counter] = force[3] 

                    end 
                    if(friction_step_counter==4)    then 

                        fs_force_reading_4[fs_read_counter] = force[3] 

                    end 

                    if(ms_result==1)    then 

                        friction_step_counter = friction_step_counter + 1 

                        fs_read_counter = 0 

                    end 

                end 

            end 

            if(friction_step_counter==5)    then 

                fs_force_reading_max[1] = 

math.max(fs_force_reading_1[1],fs_force_reading_1[2],fs_force_reading_1[3] 

                                            ,fs_force_reading_1[4],fs_force_reading_1[5],fs_force_reading_1[6] 

                                            ,fs_force_reading_1[7],fs_force_reading_1[8],fs_force_reading_1[9] 

                                            ,fs_force_reading_1[10]) 

                fs_force_reading_max[2] = 

math.max(fs_force_reading_2[1],fs_force_reading_2[2],fs_force_reading_2[3] 

                                            ,fs_force_reading_2[4],fs_force_reading_2[5],fs_force_reading_2[6] 

                                            ,fs_force_reading_2[7],fs_force_reading_2[8],fs_force_reading_2[9] 

                                            ,fs_force_reading_2[10]) 

                fs_force_reading_max[3] = 

math.max(fs_force_reading_3[1],fs_force_reading_3[2],fs_force_reading_3[3] 

                                            ,fs_force_reading_3[4],fs_force_reading_3[5],fs_force_reading_3[6] 

                                            ,fs_force_reading_3[7],fs_force_reading_3[8],fs_force_reading_3[9] 

                                            ,fs_force_reading_3[10]) 

                fs_force_reading_max[4] = 

math.max(fs_force_reading_4[1],fs_force_reading_4[2],fs_force_reading_4[3] 

                                            ,fs_force_reading_4[4],fs_force_reading_4[5],fs_force_reading_4[6] 

                                            ,fs_force_reading_4[7],fs_force_reading_4[8],fs_force_reading_4[9] 

                                            ,fs_force_reading_4[10]) 

 

                fs_force_reading_avg = (fs_force_reading_max[1]+fs_force_reading_max[2]+ 

                                        fs_force_reading_max[3]+fs_force_reading_max[4])/4 

 

                if(fs_force_reading_avg>0.15 and fs_force_reading_avg<0.25) then 

                    friction_coeff = 0.2 
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                    dfhv = dfhv_list[1] 

                    tfhv = tfhv_list[1] 

                    dflv = dflv_list[1] 

                    tflv = tflv_list[1] 

 

                    dbhv = dbhv_list[1] 

                    tbhv = tbhv_list[1] 

                    dblv = dblv_list[1] 

                    tblv = tblv_list[1] 

 

                    t180 = t180_list[1] 

 

                end 
                if(fs_force_reading_avg>0.25 and fs_force_reading_avg<0.45) then 

                    friction_coeff = 0.4 

 

                    dfhv = dfhv_list[2] 

                    tfhv = tfhv_list[2] 

                    dflv = dflv_list[2] 

                    tflv = tflv_list[2] 

 

                    dbhv = dbhv_list[2] 

                    tbhv = tbhv_list[2] 

                    dblv = dblv_list[2] 

                    tblv = tblv_list[2] 

 

                    t180 = t180_list[2] 

                end 

                if(fs_force_reading_avg>0.45 and fs_force_reading_avg<0.65) then 

                    friction_coeff = 0.6 

 

                    dfhv = dfhv_list[3] 

                    tfhv = tfhv_list[3] 

                    dflv = dflv_list[3] 

                    tflv = tflv_list[3] 

 

                    dbhv = dbhv_list[3] 

                    tbhv = tbhv_list[3] 

                    dblv = dblv_list[3] 

                    tblv = tblv_list[3] 

 

                    t180 = t180_list[3] 

                end 
                if(fs_force_reading_avg>0.65 and fs_force_reading_avg<0.75) then 

                    friction_coeff = 0.8 

 

                    dfhv = dfhv_list[4] 

                    tfhv = tfhv_list[4] 

                    dflv = dflv_list[4] 

                    tflv = tflv_list[4] 

 

                    dbhv = dbhv_list[4] 

                    tbhv = tbhv_list[4] 

                    dblv = dblv_list[4] 

                    tblv = tblv_list[4] 

 

                    t180 = t180_list[4] 

                end 

                if(fs_force_reading_avg>0.75)   then 
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                    friction_coeff = 1 

 

                    dfhv = dfhv_list[5] 

                    tfhv = tfhv_list[5] 

                    dflv = dflv_list[5] 

                    tflv = tflv_list[5] 

 

                    dbhv = dbhv_list[5] 

                    tbhv = tbhv_list[5] 

                    dblv = dblv_list[5] 

                    tblv = tblv_list[5] 

 

                    t180 = t180_list[5] 

                end 
                friction_estimation_done = 1 

                simAuxiliaryConsolePrint(console,"Friction Estimation Done\n") 

                simAuxiliaryConsolePrint(console,"Friction Coefficient:") 

                simAuxiliaryConsolePrint(console,friction_coeff) 

                simAuxiliaryConsolePrint(console,"\n\n") 

                log_flag_dummy=0 

            end 

        end 
        return friction_coeff,friction_estimation_done 

    end 
     

    function initial_scan(CamJ1pos) 

        if(log_flag_dummy==0) then 

            simAuxiliaryConsolePrint(console,"Localization Scan Started\n") 

            log_flag_dummy=1 

        end 
 

        Cam_act_pos = math.deg(simGetJointPosition(CamJoint1)) 

 

        for i=1,9,1 do 

            result,distance,detP = simCheckProximitySensor(Cam,det_points[i]) 

 

            if(result==1) then 

                fn_pj1 = simGetJointPosition(CamJoint1) 

                fn_pj2 = simGetJointPosition(CamJoint2) 

                ornt = simGetObjectOrientation(pos_dummy,-1) 

 

                matrix = simGetObjectMatrix(cam_dummy,-1) 

                matrix[4] = 0 

                matrix[8] = 0 

                matrix[12] = 0 

                det = {detP[3],detP[1],detP[2]} 

                target = simMultiplyVector(matrix,det) 

                dum_pos = {0,0,0} 

                dum_pos[1] = target[1] + 0.102*math.cos(ornt[3]) + 

(0.0045+0.011*math.cos(fn_pj2))*math.cos(ornt[3]+fn_pj1) 

                dum_pos[2] = target[2] + 0.102*math.sin(ornt[3]) + 

(0.0045+0.011*math.cos(fn_pj2))*math.sin(ornt[3]+fn_pj1) 

                dum_pos[3] = target[3] + 0.175 + 0.06*math.sin(fn_pj2) 

 

                RdetModbin[i] = 1 

                Scornt = simGetScriptSimulationParameter(Scripts[i],"ornt") 

                ModPos_x[i] = dum_pos[1]-0.102*math.cos(Scornt) 

                ModPos_y[i] = dum_pos[2]-0.102*math.sin(Scornt) 

                result = 0 

            end 
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        end 

        if(Cam_act_pos<0)then 

            Cam_act_pos = Cam_act_pos + 360 

        end 
        if(math.abs(CamJ1pos-Cam_act_pos)<10) then 

            CamJ1pos = CamJ1pos + 30 

            simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos)) 

        end 
        if(CamJ1pos>=360) then 

            if(Script==Scripts[1]) then 

                simSetScriptSimulationParameter(Script,"pos_x",0) 

                simSetScriptSimulationParameter(Script,"pos_y",0) 

                for i=1,9,1 do 

                    if(RdetModbin[i]==1 and simGetScriptSimulationParameter(Scripts[i],"scanned")==0) 

then 

                        simSetScriptSimulationParameter(Scripts[i],"pos_x",ModPos_x[i]) 

                        simSetScriptSimulationParameter(Scripts[i],"pos_y",ModPos_y[i]) 

                        simSetScriptSimulationParameter(Scripts[i],"scanned",1) 

                    end 

                end 
                for i=2,6,1 do 

                    if(simGetScriptSimulationParameter(Scripts[i],"scanned")==1) then 

                        scanned_mods = scanned_mods + 1 

                    end 

                end 

                if(scanned_mods==5) then 

                    initial_scan_done = 1 

                    CamJ1pos = 0 

                    simSetScriptSimulationParameter(Script,"scanned",1) 

 

                    simAuxiliaryConsolePrint(console,"Localization Scan Done\n\n") 

 

                    for i=1,6,1 do 

                        simAuxiliaryConsolePrint(console,"Module#") 

                        simAuxiliaryConsolePrint(console,i) 

                        simAuxiliaryConsolePrint(console,"pos_x:") 

                        

simAuxiliaryConsolePrint(console,simGetScriptSimulationParameter(Scripts[i],"pos_x")) 

                        simAuxiliaryConsolePrint(console,"\n") 

                        simAuxiliaryConsolePrint(console,"Module#") 

                        simAuxiliaryConsolePrint(console,i) 

                        simAuxiliaryConsolePrint(console,"pos_y:") 

                        

simAuxiliaryConsolePrint(console,simGetScriptSimulationParameter(Scripts[i],"pos_y")) 

                        simAuxiliaryConsolePrint(console,"\n\n") 

                    end 
                    log_flag_dummy=1 

 

                end 

                scanned_mods = 0 

            end 

            if(Script~=Scripts[1] and simGetScriptSimulationParameter(Script,"scanned")==1) then 

                for i=2,9,1 do 

                    if(RdetModbin[i]==1 and simGetScriptSimulationParameter(Scripts[i],"scanned")==0) 

then 

                        pos_x_scr = simGetScriptSimulationParameter(Script,"pos_x") 

                        pos_y_scr = simGetScriptSimulationParameter(Script,"pos_y") 

                        simSetScriptSimulationParameter(Scripts[i],"pos_x",ModPos_x[i]+pos_x_scr) 

                        simSetScriptSimulationParameter(Scripts[i],"pos_y",ModPos_y[i]+pos_y_scr) 

                        simSetScriptSimulationParameter(Scripts[i],"scanned",1) 
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                    end 

                end 
                if(simGetScriptSimulationParameter(Scripts[1],"scanned")==1) then 

                    initial_scan_done = 1 

                    CamJ1pos = 0 

 

                end 

            end 

        end 

        return initial_scan_done, CamJ1pos 

    end 

 

    function role_dist() 

--//role distribution code here------------------------- 

        simAuxiliaryConsolePrint(console,"Role Distribution Algorithm Initiated\n") 

        for i=1,6,1 do 

            pos_x_sum = pos_x_sum + simGetScriptSimulationParameter(Scripts[i],"pos_x") 

            pos_y_sum = pos_y_sum + simGetScriptSimulationParameter(Scripts[i],"pos_y") 

        end 

        pos_x_avg = pos_x_sum/6 

        pos_y_avg = pos_y_sum/6 

 

        simAuxiliaryConsolePrint(console,"Central Position x:") 

        simAuxiliaryConsolePrint(console,pos_x_avg) 

        simAuxiliaryConsolePrint(console,"\n") 

        simAuxiliaryConsolePrint(console,"Central Position y:") 

        simAuxiliaryConsolePrint(console,pos_y_avg) 

        simAuxiliaryConsolePrint(console,"\n\n") 

        simAuxiliaryConsolePrint(console,"Selection of Role#1\n") 

 

        for i=1,6,1 do 

            x_dif[i] = pos_x_avg - simGetScriptSimulationParameter(Scripts[i],"pos_x") 

            y_dif[i] = pos_y_avg - simGetScriptSimulationParameter(Scripts[i],"pos_y") 

            dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2) 

            simAuxiliaryConsolePrint(console,"Module#") 

            simAuxiliaryConsolePrint(console,i) 

            simAuxiliaryConsolePrint(console," distance: ") 

            simAuxiliaryConsolePrint(console,dist[i]) 

            simAuxiliaryConsolePrint(console,"\n") 

        end 
        dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6]) 

--//Selecting Role#1 

        for i=1,6,1 do 

            if(dist_min==dist[i]) then 

                simAuxiliaryConsolePrint(console,"Role#1: Module#") 

                simAuxiliaryConsolePrint(console,i) 

                simAuxiliaryConsolePrint(console,"\n") 

                simSetScriptSimulationParameter(Script,"Role1",Scripts[i]) 

                gpos_x[1] = simGetScriptSimulationParameter(Scripts[i],"pos_x") 

                gpos_y[1] = simGetScriptSimulationParameter(Scripts[i],"pos_y") 

                orntr1 = simGetScriptSimulationParameter(Scripts[i],"ornt") 

            end 

        end 

        gpos_x[2] = gpos_x[1] - 0*math.sin(orntr1) + (-0.292)*math.cos(orntr1) 

        gpos_y[2] = gpos_y[1] + 0*math.cos(orntr1) + (-0.292)*math.sin(orntr1) 

 

        gpos_x[3] = gpos_x[1] - (-0.23)*math.sin(orntr1) + (0.035)*math.cos(orntr1) 

        gpos_y[3] = gpos_y[1] + (-0.23)*math.cos(orntr1) + (0.035)*math.sin(orntr1) 

 

        gpos_x[4] = gpos_x[1] - (0.23)*math.sin(orntr1) + (0.035)*math.cos(orntr1) 
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        gpos_y[4] = gpos_y[1] + (0.23)*math.cos(orntr1) + (0.035)*math.sin(orntr1) 

 

        gpos_x[5] = gpos_x[1] - (-0.372)*math.sin(orntr1) + (-0.239)*math.cos(orntr1) 

        gpos_y[5] = gpos_y[1] + (-0.372)*math.cos(orntr1) + (-0.239)*math.sin(orntr1) 

 

        gpos_x[6] = gpos_x[1] - (0.372)*math.sin(orntr1) + (-0.239)*math.cos(orntr1) 

        gpos_y[6] = gpos_y[1] + (0.372)*math.cos(orntr1) + (-0.239)*math.sin(orntr1) 

--Selecting Role#2 

        simAuxiliaryConsolePrint(console,"\nSelection of Role#2\n") 

        for i=1,6,1 do 

            x_dif[i] = gpos_x[2] - simGetScriptSimulationParameter(Scripts[i],"pos_x") 

            y_dif[i] = gpos_y[2] - simGetScriptSimulationParameter(Scripts[i],"pos_y") 

            dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2) 

            if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1")) then 

                dist[i] = math.huge 

            end 
            simAuxiliaryConsolePrint(console,"Module#") 

            simAuxiliaryConsolePrint(console,i) 

            simAuxiliaryConsolePrint(console," distance: ") 

            simAuxiliaryConsolePrint(console,dist[i]) 

            simAuxiliaryConsolePrint(console,"\n") 

        end 
        dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6]) 

        for i=1,6,1 do 

            if(dist_min==dist[i]) then 

                simAuxiliaryConsolePrint(console,"Role#2: Module#") 

                simAuxiliaryConsolePrint(console,i) 

                simAuxiliaryConsolePrint(console,"\n") 

                simSetScriptSimulationParameter(Script,"Role2",Scripts[i]) 

            end 

        end 

--Selecting Role#3 

        simAuxiliaryConsolePrint(console,"\nSelection of Role#3\n") 

        for i=1,6,1 do 

            x_dif[i] = gpos_x[3] - simGetScriptSimulationParameter(Scripts[i],"pos_x") 

            y_dif[i] = gpos_y[3] - simGetScriptSimulationParameter(Scripts[i],"pos_y") 

            dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2) 

            if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1") or 

                Scripts[i]==simGetScriptSimulationParameter(Script,"Role2")) then 

                dist[i] = math.huge 

            end 

            simAuxiliaryConsolePrint(console,"Module#") 

            simAuxiliaryConsolePrint(console,i) 

            simAuxiliaryConsolePrint(console," distance: ") 

            simAuxiliaryConsolePrint(console,dist[i]) 

            simAuxiliaryConsolePrint(console,"\n") 

        end 

        dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6]) 

        for i=1,6,1 do 

            if(dist_min==dist[i]) then 

                simAuxiliaryConsolePrint(console,"Role#3: Module#") 

                simAuxiliaryConsolePrint(console,i) 

                simAuxiliaryConsolePrint(console,"\n") 

                simSetScriptSimulationParameter(Script,"Role3",Scripts[i]) 

            end 

        end 
--Selecting Role#4 

        simAuxiliaryConsolePrint(console,"\nSelection of Role#4\n") 

        for i=1,6,1 do 

            x_dif[i] = gpos_x[4] - simGetScriptSimulationParameter(Scripts[i],"pos_x") 
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            y_dif[i] = gpos_y[4] - simGetScriptSimulationParameter(Scripts[i],"pos_y") 

            dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2) 

            if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1") or 

                Scripts[i]==simGetScriptSimulationParameter(Script,"Role2") or 

                Scripts[i]==simGetScriptSimulationParameter(Script,"Role3")) then 

                dist[i] = math.huge 

            end 

            simAuxiliaryConsolePrint(console,"Module#") 

            simAuxiliaryConsolePrint(console,i) 

            simAuxiliaryConsolePrint(console," distance: ") 

            simAuxiliaryConsolePrint(console,dist[i]) 

            simAuxiliaryConsolePrint(console,"\n") 

        end 

        dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6]) 

        for i=1,6,1 do 

            if(dist_min==dist[i]) then 

                simAuxiliaryConsolePrint(console,"Role#4: Module#") 

                simAuxiliaryConsolePrint(console,i) 

                simAuxiliaryConsolePrint(console,"\n") 

                simSetScriptSimulationParameter(Script,"Role4",Scripts[i]) 

            end 

        end 
--Selecting Role#5 

        simAuxiliaryConsolePrint(console,"\nSelection of Role#5\n") 

        for i=1,6,1 do 

            x_dif[i] = gpos_x[5] - simGetScriptSimulationParameter(Scripts[i],"pos_x") 

            y_dif[i] = gpos_y[5] - simGetScriptSimulationParameter(Scripts[i],"pos_y") 

            dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2) 

            if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1") or 

                Scripts[i]==simGetScriptSimulationParameter(Script,"Role2") or 

                Scripts[i]==simGetScriptSimulationParameter(Script,"Role3") or 

                Scripts[i]==simGetScriptSimulationParameter(Script,"Role4")) then 

                dist[i] = math.huge 

            end 
            simAuxiliaryConsolePrint(console,"Module#") 

            simAuxiliaryConsolePrint(console,i) 

            simAuxiliaryConsolePrint(console," distance: ") 

            simAuxiliaryConsolePrint(console,dist[i]) 

            simAuxiliaryConsolePrint(console,"\n") 

        end 
        dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6]) 

        for i=1,6,1 do 

            if(dist_min==dist[i]) then 

                simAuxiliaryConsolePrint(console,"Role#5: Module#") 

                simAuxiliaryConsolePrint(console,i) 

                simAuxiliaryConsolePrint(console,"\n") 

                simSetScriptSimulationParameter(Script,"Role5",Scripts[i]) 

            end 

        end 

--Selecting Role#6 

        simAuxiliaryConsolePrint(console,"\nSelection of Role#6\n") 

        for i=1,6,1 do 

            x_dif[i] = gpos_x[6] - simGetScriptSimulationParameter(Scripts[i],"pos_x") 

            y_dif[i] = gpos_y[6] - simGetScriptSimulationParameter(Scripts[i],"pos_y") 

            dist[i] = math.sqrt(x_dif[i]^2 + y_dif[i]^2) 

            if(Scripts[i]==simGetScriptSimulationParameter(Script,"Role1") or 

                Scripts[i]==simGetScriptSimulationParameter(Script,"Role2") or 

                Scripts[i]==simGetScriptSimulationParameter(Script,"Role3") or 

                Scripts[i]==simGetScriptSimulationParameter(Script,"Role4") or 

                Scripts[i]==simGetScriptSimulationParameter(Script,"Role5")) then 
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                dist[i] = math.huge 

            end 
            simAuxiliaryConsolePrint(console,"Module#") 

            simAuxiliaryConsolePrint(console,i) 

            simAuxiliaryConsolePrint(console," distance: ") 

            simAuxiliaryConsolePrint(console,dist[i]) 

            simAuxiliaryConsolePrint(console,"\n") 

        end 
        dist_min = math.min(dist[1],dist[2],dist[3],dist[4],dist[5],dist[6]) 

        for i=1,6,1 do 

            if(dist_min==dist[i]) then 

                simAuxiliaryConsolePrint(console,"Role#6: Module#") 

                simAuxiliaryConsolePrint(console,i) 

                simAuxiliaryConsolePrint(console,"\n") 

                simSetScriptSimulationParameter(Script,"Role6",Scripts[i]) 

            end 

        end 

        for i=1,6,1 do 

            simSetScriptSimulationParameter(Scripts[i],"Notification1",1) 

        end 
        simAuxiliaryConsolePrint(console,"Role Distribution Done\n\n") 

        rd_done=1 

        return 1 

    end 
 

    function get_role() 

        rd_done = 0 

        if(simGetScriptSimulationParameter(Script,"Notification1")==1) then 

 

            Roles = 

{simGetScriptSimulationParameter(Scripts[1],"Role1"),simGetScriptSimulationParameter(Scripts[1],"

Role2"), 

                    

simGetScriptSimulationParameter(Scripts[1],"Role3"),simGetScriptSimulationParameter(Scripts[1],"

Role4"), 

                    

simGetScriptSimulationParameter(Scripts[1],"Role5"),simGetScriptSimulationParameter(Scripts[1],"

Role6")} 

 

            if(simGetScriptSimulationParameter(Scripts[1],"Role1")==Script) then 

                role = 1 

            end 
            if(simGetScriptSimulationParameter(Scripts[1],"Role2")==Script) then 

                role = 2 

            end 

            if(simGetScriptSimulationParameter(Scripts[1],"Role3")==Script) then 

                role = 3 

            end 
            if(simGetScriptSimulationParameter(Scripts[1],"Role4")==Script) then 

                role = 4 

            end 

            if(simGetScriptSimulationParameter(Scripts[1],"Role5")==Script) then 

                role = 5 

            end 
            if(simGetScriptSimulationParameter(Scripts[1],"Role6")==Script) then 

                role = 6 

            end 

            simSetScriptSimulationParameter(Script,"Notification1",0) 

            simSetScriptSimulationParameter(Script,"role",role) 

            rd_done = 1 
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        end 

        return rd_done,role 

    end 

    function strategic_planning() 

        simAuxiliaryConsolePrint(console,"Strategic Planning Algorithm is Initiated\n") 

        for i=7,9,1 do 

            if(simGetScriptSimulationParameter(Scripts[i],"Type")==3) then 

                sys_target_handle = det_points[i] 

                sys_target_pos_x = simGetScriptSimulationParameter(Scripts[i],"pos_x") 

                sys_target_pos_y = simGetScriptSimulationParameter(Scripts[i],"pos_y") 

                simAuxiliaryConsolePrint(console,"Target Position x:") 

                simAuxiliaryConsolePrint(console,sys_target_pos_x) 

                simAuxiliaryConsolePrint(console,"\n") 

                simAuxiliaryConsolePrint(console,"Target Position y:") 

                simAuxiliaryConsolePrint(console,sys_target_pos_y) 

                simAuxiliaryConsolePrint(console,"\n\n") 

            end 

            if(simGetScriptSimulationParameter(Scripts[i],"Type")==2) then 

                sys_wh_obs_handle = det_points[i] 

                sys_wh_obs_pos_x = simGetScriptSimulationParameter(Scripts[i],"pos_x") 

                sys_wh_obs_pos_y = simGetScriptSimulationParameter(Scripts[i],"pos_y") 

                simAuxiliaryConsolePrint(console,"Lath Obstacle Position x:") 

                simAuxiliaryConsolePrint(console,sys_wh_obs_pos_x) 

                simAuxiliaryConsolePrint(console,"\n") 

                simAuxiliaryConsolePrint(console,"Lath Obstacle Position y:") 

                simAuxiliaryConsolePrint(console,sys_wh_obs_pos_y) 

                simAuxiliaryConsolePrint(console,"\n\n") 

            end 
            if(simGetScriptSimulationParameter(Scripts[i],"Type")==1) then 

                sys_qd_obs_handle = det_points[i] 

                sys_qd_obs_pos_x = simGetScriptSimulationParameter(Scripts[i],"pos_x") 

                sys_qd_obs_pos_y = simGetScriptSimulationParameter(Scripts[i],"pos_y") 

                simAuxiliaryConsolePrint(console,"Ground Obstacle Position x:") 

                simAuxiliaryConsolePrint(console,sys_qd_obs_pos_x) 

                simAuxiliaryConsolePrint(console,"\n") 

                simAuxiliaryConsolePrint(console,"Ground Obstacle Position y:") 

                simAuxiliaryConsolePrint(console,sys_qd_obs_pos_y) 

                simAuxiliaryConsolePrint(console,"\n\n") 

            end 

        end 
        sys_wh_obs_dist = math.sqrt((sys_target_pos_x-sys_wh_obs_pos_x)^2 + (sys_target_pos_y-

sys_wh_obs_pos_y)^2) 

        sys_qd_obs_dist = math.sqrt((sys_target_pos_x-sys_qd_obs_pos_x)^2 + (sys_target_pos_y-

sys_qd_obs_pos_y)^2) 

 

--plan_rowx format: {conf_req,reference_handle,lat_const,long_const,gamma_const,transport_mode} 

--transport_mode=0 normal, transport_mode=1 ability 

        if(sys_wh_obs_dist>sys_qd_obs_dist) then 

            simAuxiliaryConsolePrint(console,"First Obstacle to Pass: Lath Obstacle\n") 

            plan_row1={2,sys_wh_obs_handle,0,-0.3,0,0} 

            plan_row2={2,sys_wh_obs_handle,0,0.3,0,1} 

            plan_row3={1,sys_qd_obs_handle,0,0,-0.3,0} 

            plan_row4={1,sys_qd_obs_handle,0,0,0.5,1} 

            plan_row5={1,sys_qd_obs_handle,0,0.5,0,0} 

            plan_row6={1,sys_target_handle,0,0,0,0} 

        end 
        if(sys_wh_obs_dist<sys_qd_obs_dist) then 

            simAuxiliaryConsolePrint(console,"First Obstacle to Pass: Ground Obstacle\n\n") 

            plan_row1={1,sys_qd_obs_handle,0,-0.1,0,0} 

            plan_row2={1,sys_qd_obs_handle,0,0.5,0,1} 
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            plan_row3={1,sys_qd_obs_handle,0,0.5,0,0} 

            plan_row4={2,sys_wh_obs_handle,0,-0.3,0,0} 

            plan_row5={2,sys_wh_obs_handle,0,0.3,0,1} 

            plan_row6={2,sys_target_handle,0,0,0,0} 

        end 

 

        simAuxiliaryConsolePrint(console,"Plan Matrix:\n\n") 

------------------------------- 
        simAuxiliaryConsolePrint(console,"Plan Row 1=[") 

        simAuxiliaryConsolePrint(console,plan_row1[1]) 

        simAuxiliaryConsolePrint(console,",") 

        if(plan_row1[2]==sys_target_handle) then 

            simAuxiliaryConsolePrint(console,"System Target") 

        end 
        if(plan_row1[2]==sys_qd_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Ground Obstacle") 

        end 

        if(plan_row1[2]==sys_wh_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Lath Obstacle") 

        end 
        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row1[3]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row1[4]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row1[5]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row1[6]) 

        simAuxiliaryConsolePrint(console,"]\n") 

-------------------------------------- 
 

        simAuxiliaryConsolePrint(console,"Plan Row 2=[") 

        simAuxiliaryConsolePrint(console,plan_row2[1]) 

        simAuxiliaryConsolePrint(console,",") 

        if(plan_row2[2]==sys_target_handle) then 

            simAuxiliaryConsolePrint(console,"System Target") 

        end 

        if(plan_row2[2]==sys_qd_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Ground Obstacle") 

        end 
        if(plan_row2[2]==sys_wh_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Lath Obstacle") 

        end 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row2[3]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row2[4]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row2[5]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row2[6]) 

        simAuxiliaryConsolePrint(console,"]\n") 

------------------------------ 

 

        simAuxiliaryConsolePrint(console,"Plan Row 3=[") 

        simAuxiliaryConsolePrint(console,plan_row3[1]) 

        simAuxiliaryConsolePrint(console,",") 

        if(plan_row3[2]==sys_target_handle) then 

            simAuxiliaryConsolePrint(console,"System Target") 

        end 
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        if(plan_row3[2]==sys_qd_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Ground Obstacle") 

        end 

        if(plan_row3[2]==sys_wh_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Lath Obstacle") 

        end 
        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row3[3]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row3[4]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row3[5]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row3[6]) 

        simAuxiliaryConsolePrint(console,"]\n") 

------------------------------------ 
 

        simAuxiliaryConsolePrint(console,"Plan Row 4=[") 

        simAuxiliaryConsolePrint(console,plan_row4[1]) 

        simAuxiliaryConsolePrint(console,",") 

        if(plan_row4[2]==sys_target_handle) then 

            simAuxiliaryConsolePrint(console,"System Target") 

        end 

        if(plan_row4[2]==sys_qd_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Ground Obstacle") 

        end 
        if(plan_row4[2]==sys_wh_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Lath Obstacle") 

        end 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row4[3]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row4[4]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row4[5]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row4[6]) 

        simAuxiliaryConsolePrint(console,"]\n") 

-------------------------------------- 

        simAuxiliaryConsolePrint(console,"Plan Row 5=[") 

        simAuxiliaryConsolePrint(console,plan_row5[1]) 

        simAuxiliaryConsolePrint(console,",") 

        if(plan_row5[2]==sys_target_handle) then 

            simAuxiliaryConsolePrint(console,"System Target") 

        end 

        if(plan_row5[2]==sys_qd_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Ground Obstacle") 

        end 
        if(plan_row5[2]==sys_wh_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Lath Obstacle") 

        end 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row5[3]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row5[4]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row5[5]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row5[6]) 

        simAuxiliaryConsolePrint(console,"]\n") 
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---------------------------------- 

 

        simAuxiliaryConsolePrint(console,"Plan Row 6=[") 

        simAuxiliaryConsolePrint(console,plan_row6[1]) 

        simAuxiliaryConsolePrint(console,",") 

        if(plan_row6[2]==sys_target_handle) then 

            simAuxiliaryConsolePrint(console,"System Target") 

        end 
        if(plan_row6[2]==sys_qd_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Ground Obstacle") 

        end 

        if(plan_row6[2]==sys_wh_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Lath Obstacle") 

        end 
        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row6[3]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row6[4]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row6[5]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row6[6]) 

        simAuxiliaryConsolePrint(console,"]\n\n") 

---------------------------------- 
        plan_counter = 1 

        current_target = 0 

        sp_done = 1 

        simAuxiliaryConsolePrint(console,"Strategic Planning Done\n\n") 

 

        return sp_done 

    end 

    function sequencing(plan_counter) 

        simAuxiliaryConsolePrint(console,"Sequencing Phase\n") 

        if(plan_counter==1) then 

            plan_row = plan_row1 

        end 
        if(plan_counter==2) then 

            plan_row = plan_row2 

        end 

        if(plan_counter==3) then 

            plan_row = plan_row3 

        end 
        if(plan_counter==4) then 

            plan_row = plan_row4 

        end 

        if(plan_counter==5) then 

            plan_row = plan_row5 

        end 
        if(plan_counter==6) then 

            plan_row = plan_row6 

        end 

 

        simAuxiliaryConsolePrint(console,"Active Sub-goal: Plan Row#") 

        simAuxiliaryConsolePrint(console, plan_counter) 

        simAuxiliaryConsolePrint(console,"=[") 

        simAuxiliaryConsolePrint(console,plan_row[1]) 

        simAuxiliaryConsolePrint(console,",") 

        if(plan_row[2]==sys_target_handle) then 

            simAuxiliaryConsolePrint(console,"System Target") 

        end 
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        if(plan_row[2]==sys_qd_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Ground Obstacle") 

        end 

        if(plan_row[2]==sys_wh_obs_handle) then 

            simAuxiliaryConsolePrint(console,"Lath Obstacle") 

        end 
        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row[3]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row[4]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row[5]) 

        simAuxiliaryConsolePrint(console,",") 

        simAuxiliaryConsolePrint(console,plan_row[6]) 

        simAuxiliaryConsolePrint(console,"]\n\n") 

        conf_req = plan_row[1] 

        current_target = plan_row[2] 

        lat_const = plan_row[3] 

        long_const = plan_row[4] 

        gamma_const = plan_row[5] 

        transport_mode = plan_row[6] 

        simSetScriptSimulationParameter(Script,"conf_req",conf_req) 

        for i=1,6,1 do 

            simSetScriptSimulationParameter(Scripts[i],"Notification2",1) 

        end 

        sq_done = 1 

        return sq_done,conf_req 

    end 
 

    function get_plan(role) 

        if(simGetScriptSimulationParameter(Script,"Notification2")==1) then 

            conf_req = simGetScriptSimulationParameter(Roles[1],"conf_req") 

            if(conf_req==1) then 

                if(role==1) then 

                    simSetScriptSimulationParameter(Script,"target_handle", det_point) 

                    simSetScriptSimulationParameter(Roles[2],"connection_target",conn_points[2]) 

                    simSetScriptSimulationParameter(Roles[3],"connection_target",conn_points[3]) 

                    simSetScriptSimulationParameter(Roles[4],"connection_target",conn_points[4]) 

                end 

                if(role==2) then 

                    simSetScriptSimulationParameter(Roles[5],"connection_target",conn_points[4]) 

                    simSetScriptSimulationParameter(Roles[6],"connection_target",conn_points[3]) 

                end 

                if(role==3) then 

 

                end 
                if(role==4) then 

 

                end 

                if(role==5) then 

 

                end 
                if(role==6) then 

 

                end 

            end 
            if(conf_req==2) then 

                if(role==1) then 

                    simSetScriptSimulationParameter(Script,"target_handle", det_point) 

                    simSetScriptSimulationParameter(Roles[2],"connection_target",conn_points[2]) 
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                    simSetScriptSimulationParameter(Roles[3],"connection_target",conn_points[3]) 

                    simSetScriptSimulationParameter(Roles[4],"connection_target",conn_points[4]) 

                end 

                if(role==2) then 

                    simSetScriptSimulationParameter(Roles[5],"connection_target",conn_points[4]) 

                    simSetScriptSimulationParameter(Roles[6],"connection_target",conn_points[3]) 

                end 

                if(role==3) then 

 

                end 
                if(role==4) then 

 

                end 

                if(role==5) then 

 

                end 
                if(role==6) then 

 

                end 

            end 
            simSetScriptSimulationParameter(Script,"Notification2",0) 

            simSetScriptSimulationParameter(Script,"conf_req",conf_req) 

            simSetScriptSimulationParameter(Script,"role",role) 

            sq_done = 1 

        end 

        return sq_done,conf_req 

    end 

 

    function get_target_state(conf_req,role,assembly_counter) 

        if(conf_req==1) then 

--Teze yazilanlar yanlis tezi duzelt 

            if(role==2) then 

                target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle") 

                lat_cons={0,0} 

                long_cons={-0.292,-0.112} 

                gamma_cons={180,180} 

            end 

            if(role==3) then 

                target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle") 

                lat_cons={-0.23,-0.19} 

                long_cons={0.035,0.035} 

                gamma_cons={90,90} 

            end 

            if(role==4) then 

                target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle") 

                lat_cons={0.23,0.19} 

                long_cons={0.035,0.035} 

                gamma_cons={-90,-90} 

            end 

            if(role==5) then 

                target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle") 

                lat_cons={-0.372,-0.19} 

                long_cons={-0.239,-0.239} 

                gamma_cons={90,90} 

            end 

            if(role==6) then 

                target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle") 

                lat_cons={0.372,0.19} 

                long_cons={-0.239,-0.239} 

                gamma_cons={-90,-90} 
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            end 

        end 
     

        if(conf_req==2) then 

            if(role==2) then 

                target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle") 

                lat_cons={0,0} 

                long_cons={-0.292,-0.112} 

                gamma_cons={180,180} 

            end 
            if(role==3) then 

                target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle") 

                lat_cons={-0.23,-0.04} 

                long_cons={0.035,0.035} 

                gamma_cons={-90,-90} 

            end 
            if(role==4) then 

                target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle") 

                lat_cons={0.23,0.04} 

                long_cons={0.035,0.035} 

                gamma_cons={90,90} 

            end 
            if(role==5) then 

                target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle") 

                lat_cons={-0.372,-0.04} 

                long_cons={-0.239,-0.239} 

                gamma_cons={-90,-90} 

            end 
            if(role==6) then 

                target_handle = simGetScriptSimulationParameter(Roles[1],"target_handle") 

                lat_cons={0.372,0.04} 

                long_cons={-0.239,-0.239} 

                gamma_cons={90,90} 

            end 

        end 

     

        return target_handle, lat_cons[assembly_counter], 

long_cons[assembly_counter],gamma_cons[assembly_counter] 

    end 

 

    function ornt_dif_corr(ornt_dif) 

        ornt_dif = math.deg(ornt_dif) 

        if(math.abs(ornt_dif)>=180) then 

            if(ornt_dif<0) then 

                ornt_dif_dummy = ornt_dif+360 

            end 
            if(ornt_dif>0) then 

                ornt_dif_dummy = ornt_dif-360 

            end 

            ornt_dif = ornt_dif_dummy 

        end 

        return math.rad(ornt_dif) 

    end 

--//Search Function---------------------------------------------------------- 

--Search function of the module takes target handle as input returns  

--target_found status 

    function search_target(target_handle, search_counter, CamJ1pos) 

        simSetJointTargetPosition(CamJoint2,math.rad(-10*search_counter)) 

        result,distance,detP = simCheckProximitySensor(Cam,target_handle) 

        if(result==1) then 
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            target_found=1 

            search_counter = 0 

        end 

        if(result~=1) then 

            CamJ1pos = CamJ1pos + 10 

            if(CamJ1pos > 360) then 

                CamJ1pos = 0 

                search_counter = search_counter + 1 

                if(search_counter==15) then 

                    search_counter = 0 

                end 

            end 
            simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos)) 

        end 
 

 

        return target_found, search_counter, CamJ1pos 

    end --Function End 
--Search Function//---------------------------------------------------------- 

 

--//Locking Function--------------------------------------------------------- 

--Makes the camera lock to its target. This function is called continually 

--to keep the module tracking its target. Takes target handle as input, 

--returns nothing 

    function lock_target(target_handle) 

        result,distance,detP = simCheckProximitySensor(Cam,target_handle) 

 

        if(result==1) then 

            CamJ1pos = simGetJointPosition(CamJoint1) 

            CamJ2pos = simGetJointPosition(CamJoint2) 

 

            CamJ1pos_rot = math.atan2(detP[1],detP[3]) 

            CamJ2pos_rot = math.atan2(detP[2],detP[3]) 

 

            CamJ1pos = CamJ1pos+CamJ1pos_rot 

            CamJ2pos = CamJ2pos+CamJ2pos_rot 

 

            simSetJointTargetPosition(CamJoint1,CamJ1pos) 

            simSetJointTargetPosition(CamJoint2,CamJ2pos) 

            target_found = 1 

        end 

        if(result==0) then 

            target_found = 0 

        end 
        return target_found,CamJ1pos 

    end --Function End 
--Locking function//-------------------------------------------------------- 

 

--//Distance Calculation Function------------------------------------------- 

--Calculates lateral and longitudinal distance between target and module 

--reference position. Takes target handle, returns lateral distance, longitudinal 

--distance and gamma orientation difference. 

--mode=0: single module calculation 

--mode=1: quadruped or wheeled calculation 

    function calculate_difference(target_handle,lat_const,long_const,mode) 

        target_pos_reached = 0 

        result,distance,detP = simCheckProximitySensor(Cam,target_handle) 

        if(result==1) then 

            target_found = 1 

            CamJ1pos = simGetJointPosition(CamJoint1) 
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            CamJ2pos = simGetJointPosition(CamJoint2) 

 

            ornt = simGetObjectOrientation(pos_dummy,-1) 

            target_ornt3 = simGetObjectOrientation(target_handle,-1) 

            target_ornt = target_ornt3[3] 

 

            matrix = simGetObjectMatrix(cam_dummy,-1) 

            matrix[4] = 0 

            matrix[8] = 0 

            matrix[12] = 0 

            det = {detP[3],detP[1],detP[2]} 

            target = simMultiplyVector(matrix,det) 

            if(mode==0) then 

                long_dif = target[1] + 0.102*math.cos(ornt[3]) + 

(0.0045+0.011*math.cos(CamJ2pos))*math.cos(ornt[3]+CamJ1pos) 

                lat_dif = target[2] + 0.102*math.sin(ornt[3]) + 

(0.0045+0.011*math.cos(CamJ2pos))*math.sin(ornt[3]+CamJ1pos) 

 

                long_dif = long_dif - lat_const*math.sin(target_ornt)+long_const*math.cos(target_ornt) 

                lat_dif = lat_dif + lat_const*math.cos(target_ornt)+long_const*math.sin(target_ornt)     

            end 

            if(mode==1) then 

                long_dif = target[1] + 0.0525*math.cos(ornt[3]) + 

(0.0045+0.011*math.cos(CamJ2pos))*math.cos(ornt[3]+CamJ1pos) 

                lat_dif = target[2] + 0.0525*math.sin(ornt[3]) + 

(0.0045+0.011*math.cos(CamJ2pos))*math.sin(ornt[3]+CamJ1pos) 

 

                long_dif = long_dif - lat_const*math.sin(target_ornt)+long_const*math.cos(target_ornt) 

                lat_dif = lat_dif + lat_const*math.cos(target_ornt)+long_const*math.sin(target_ornt)     

 

                dist = math.sqrt(long_dif^2 + lat_dif^2) 

                ornt_dif = math.atan2(lat_dif,long_dif)-ornt[3] 

                long_dif = dist*math.cos(ornt_dif) 

                lat_dif = dist*math.sin(ornt_dif) 

            end 

            if(mode==2) then 

                long_dif = target[1] + 0.0525*math.cos(ornt[3]) + 

(0.0045+0.011*math.cos(CamJ2pos))*math.cos(ornt[3]+CamJ1pos) 

                lat_dif = target[2] + 0.0525*math.sin(ornt[3]) + 

(0.0045+0.011*math.cos(CamJ2pos))*math.sin(ornt[3]+CamJ1pos) 

 

                long_dif = long_dif - lat_const*math.sin(target_ornt)+long_const*math.cos(target_ornt) 

                lat_dif = lat_dif + lat_const*math.cos(target_ornt)+long_const*math.sin(target_ornt) 

            end 

        end 

        if(result~=1) then 

            target_found = 0 

        end 
 

        return target_found,lat_dif,long_dif 

 

    end --Function End 
--Distance Calculation Function//---------------------------------------------- 

 

--//Direction Decision Function------------------------------------------------ 

--Decides the direction of the moving gait, forward or backward. Takes lateral 

--and longitudinal difference between the target and the module and returns  

--direction decision to be used in move_single() function. "direction=1" means forward and 

--"direction=-1" means backward. 

    function decide_direction(lat_dif,long_dif,gamma_const,forced_direction) 
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        ornt_req = math.atan2(lat_dif,long_dif) 

        ornt_des = target_ornt + math.rad(gamma_const) 

 

        Modornt3 = simGetObjectOrientation(pos_dummy,-1) 

        Modornt = Modornt3[3] 

        ornt_dif_forw = ornt_dif_corr(ornt_req-Modornt) 

        ornt_dif_back = ornt_dif_corr(ornt_req-Modornt+math.rad(180)) 

 

        t1_forw = math.abs(math.deg(ornt_dif_forw))*t180/180 

        t1_back = math.abs(math.deg(ornt_dif_back))*t180/180 

 

        distance = math.sqrt((lat_dif^2)+(long_dif^2)) 

        t2_forw = math.floor(distance/dfhv)*tfhv + (math.floor(distance-

math.floor(distance/dfhv)*dfhv)/dflv)*tflv 

        t2_back = math.floor(distance/dbhv)*tbhv + (math.floor(distance-

math.floor(distance/dbhv)*dbhv)/dblv)*tblv 

 

        t3_forw = math.abs(math.deg(ornt_dif_corr(ornt_des-ornt_req))*t180/180) 

        t3_back = math.abs(math.deg(ornt_dif_corr(ornt_des-ornt_req+math.rad(180)))*t180/180) 

 

        if(forced_direction==0) then 

            if(t1_forw+t2_forw+t3_forw>t1_back+t2_back+t3_back) then 

                direction = -1 

            end 

            if(t1_forw+t2_forw+t3_forw<t1_back+t2_back+t3_back) then 

                direction = 1 

            end 

        end 

        if(forced_direction~=0) then 

            direction = forced_direction 

        end 
        if(direction==-1) then 

            ornt_req = ornt_req + math.rad(180) 

        end 

        return direction,ornt_req 

    end --Function End 

--Direction Decision Function//------------------------------------------------- 

 

--//Velocity Decision Function------------------------------------------------ 

--Decides the velocity of the moving gait, high or low. Takes lateral 

--and longitudinal difference between the target and the module and returns  

--velocity decision to be used in move_single() function. "velocity=2" means 

--high velocity and "velocity=1" means low velocity. 

    function decide_velocity(direction,lat_dif,long_dif) 

        distance = math.sqrt((lat_dif^2)+(long_dif^2)) 

        if(direction==1) then 

            if(distance>=dfhv) then 

                velocity = 2 

                target_pos_reached = 0 

            end 

            if(distance<dfhv and distance>=dflv) then 

                velocity = 1 

                target_pos_reached = 0 

            end 

            if(distance<dflv) then 

                target_pos_reached = 1 

--              velocity = 0 

            end 

        end 
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        if(direction==-1) then 

            if(distance>=dbhv) then 

                velocity = 2 

                target_pos_reached = 0 

            end 

            if(distance<dbhv and distance>=dblv) then 

                velocity = 1 

                target_pos_reached = 0 

            end 

            if(distance<dblv) then 

                target_pos_reached = 1 

--              velocity = 0 

            end 

        end 
 

        return target_pos_reached,velocity 

    end --Function End 

--Velocity Decision Function//-------------------------------------------------- 

 

--//Orientation Correction Function--------------------------------------------- 

    function correct_ornt(J1pos,J2pos,ornt_req) 

        Modornt3 = simGetObjectOrientation(pos_dummy,-1) 

        Modornt = Modornt3[3] 

        ornt_dif = ornt_dif_corr(ornt_req-Modornt) 

        FJpos = math.deg(simGetJointPosition(FrontJoint)) 

 

        if(math.abs(math.deg(ornt_dif))<1)  then 

            wheel_spd = 0 

        end 

        if(math.abs(math.deg(ornt_dif))<10) then 

            if(math.deg(ornt_dif)<0) then 

                wheel_spd = -1.8*math.deg(ornt_dif) 

            end 

            if(math.deg(ornt_dif)>0) then 

                wheel_spd = -1.8*math.deg(ornt_dif) 

            end 

        end 

        if(math.abs(math.deg(ornt_dif))>10) then 

            J1pos = 15 

            J2pos = 0 

 

            if(math.deg(ornt_dif)<0) then 

                wheel_spd = 18 

            end 
            if(math.deg(ornt_dif)>0) then 

                wheel_spd = -18 

            end 

        end 
        FJpos = FJpos + wheel_spd 

        simSetJointTargetPosition(FrontJoint,math.rad(FJpos)) 

        simSetJointTargetPosition(BackJoint1,math.rad(J1pos)) 

        simSetJointTargetPosition(BackJoint2,math.rad(J2pos)) 

     

        return J1pos,J2pos,ornt_dif 

    end --Function End 

 

 

--Orientation Correction Function//--------------------------------------------- 

--//Single Locomotion Function-------------------------------------------------- 

--Increases the step of the locomotion gait by one whenever its called. Joint 
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--position controls are done in the main loop because of V-Rep limitations. Takes 

--direction, velocity, forward step and backward step value. Returns updated forward 

--step and backward step value 

    function move_single(direction,velocity,forw_step,back_step,ornt_dif) 

        ms_result=0 

        if(math.abs(math.deg(ornt_dif))<10) then 

            if(math.abs(J1pos-math.deg(simGetJointPosition(BackJoint1)))<1 and  

                math.abs(J2pos-math.deg(simGetJointPosition(BackJoint2)))<1) then 

                ms_result=1 

                if(direction==1)then 

                    if(velocity==1) then 

                        if(forw_step==0) then 

                            forw_step_f = 1 

                        end 
                        if(forw_step==1) then 

                            J1pos = -33 

                            J2pos = 61 

                            forw_step_f = 2 

                        end 

                        if(forw_step==2) then 

                            J1pos = 0 

                            J2pos = 0 

                            forw_step_f = 0 

                        end 

                    end 

                    if(velocity==2) then 

                        if(forw_step == 0) then 

                            forw_step_f = 1 

                        end 

                        if(forw_step==1) then 

                            J1pos = -41 

                            J2pos = 120 

                            forw_step_f = 2 

                        end 
                        if(forw_step==2) then 

                            J1pos = 0 

                            J2pos = 0 

                            forw_step_f = 0 

                        end 

                    end 

                end 

                if(direction==-1)then 

                    if(velocity==1) then 

                        if(back_step==0) then 

                            back_step_f = 1 

                        end 
                        if(back_step==1) then 

                            J1pos = -1 

                            J2pos = 34 

                            back_step_f = 2 

                        end 

                        if(back_step==2) then 

                            J1pos = -27 

                            J2pos = 52 

                            back_step_f = 3 

                        end 
                        if(back_step==3) then 

                            J1pos = -15 

                            J2pos = 15 

                            back_step_f = 4 
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                        end 

                        if(back_step==4) then 

                            J1pos = 0 

                            J2pos = 0 

                            back_step_f = 0 

                        end 

                    end 

                    if(velocity==2) then 

                        if(back_step == 0) then 

                            back_step_f = 1 

                        end 

                        if(back_step==1) then 

                            J1pos = -13 

                            J2pos = 72 

                            back_step_f = 2 

                        end 
                        if(back_step==2) then 

                            J1pos = -36 

                            J2pos = 90 

                            back_step_f = 3 

                        end 

                        if(back_step==3) then 

                            J1pos = -30 

                            J2pos = 30 

                            back_step_f = 4 

                        end 
                        if(back_step==4) then 

                            J1pos = 0 

                            J2pos = 0 

                            back_step_f = 0 

                        end 

                    end 

                end 

                simSetJointTargetPosition(BackJoint1,math.rad(J1pos)) 

                simSetJointTargetPosition(BackJoint2,math.rad(J2pos)) 

            end 

        end 

 

        return ms_result,J1pos,J2pos,forw_step_f,back_step_f 

 

    end --Function End 

--Single Locomotion Function//-------------------------------------------------- 

    function assembly_step_up(conf_req,role,assembly_counter) 

        forced_direction = 0 

        step_up = false 

        if(conf_req==1) then 

            if(role==1) then 

 

            end 

            if(role==2) then 

                step_up = true 

                if(assembly_counter>=1) then 

                    forced_direction=-1 

                end 

            end 

            if(role==3) then 

                step_up = true 

            end 
            if(role==4) then 

                step_up = true 
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            end 

            if(role==5) then 

--              if(simGetScriptSimulationParameter(Roles[2],"assembly_counter")>assembly_counter or 

                if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then 

                    step_up = true 

                end 

            end 

            if(role==6) then 

--              if(simGetScriptSimulationParameter(Roles[2],"assembly_counter")>assembly_counter or 

                if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then 

                    step_up = true 

                end 

            end 

        end 
        if(conf_req==2) then 

            if(role==1) then 

 

            end 
            if(role==2) then 

                step_up = true 

                if(assembly_counter>=1) then 

                    forced_direction=-1 

                end 

            end 
            if(role==3) then 

                step_up = true 

                if(assembly_counter>=1) then 

                    forced_direction=-1 

                end 

            end 
            if(role==4) then 

                step_up = true 

                if(assembly_counter>=1) then 

                    forced_direction=-1 

                end 

            end 
            if(role==5) then 

                if(simGetScriptSimulationParameter(Roles[2],"assembly_counter")>assembly_counter or 

                    simGetScriptSimulationParameter(Roles[2],"connected")==1) then 

                    step_up = true 

                end 

                if(assembly_counter>=1) then 

                    forced_direction=-1 

                end 

            end 

            if(role==6) then 

                if(simGetScriptSimulationParameter(Roles[2],"assembly_counter")>assembly_counter or 

                    simGetScriptSimulationParameter(Roles[2],"connected")==1) then 

                    step_up = true 

                end 
                if(assembly_counter>=1) then 

                    forced_direction=-1 

                end 

            end 

        end 

 

        return step_up,forced_direction 

    end  
    function connect() 

        result = false 
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        if(conf_req==1) then 

            if(role==1) then 

 

            end 

            if(role==2) then 

                

simSetLinkDummy(conn_points[5],simGetScriptSimulationParameter(Script,"connection_target")) 

                result = true 

            end 
            if(role==3) then 

                

simSetLinkDummy(conn_points[1],simGetScriptSimulationParameter(Script,"connection_target")) 

                result = true 

            end 

            if(role==4) then 

                

simSetLinkDummy(conn_points[1],simGetScriptSimulationParameter(Script,"connection_target")) 

                result = true 

            end 
            if(role==5) then 

                if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then 

                    

simSetLinkDummy(conn_points[1],simGetScriptSimulationParameter(Script,"connection_target")) 

                    result = true 

                end 

            end 

            if(role==6) then 

                if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then 

                    

simSetLinkDummy(conn_points[1],simGetScriptSimulationParameter(Script,"connection_target")) 

                    result = true 

                end 

            end 

        end 

        if(conf_req==2) then 

            if(role==1) then 

 

            end 

            if(role==2) then 

                

simSetLinkDummy(conn_points[5],simGetScriptSimulationParameter(Script,"connection_target")) 

                result = true 

            end 
            if(role==3) then 

                

simSetLinkDummy(conn_points[2],simGetScriptSimulationParameter(Script,"connection_target")) 

                result = true 

            end 

            if(role==4) then 

                

simSetLinkDummy(conn_points[2],simGetScriptSimulationParameter(Script,"connection_target")) 

                result = true 

            end 
            if(role==5) then 

                if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then 

                    

simSetLinkDummy(conn_points[2],simGetScriptSimulationParameter(Script,"connection_target")) 

                    result = true 

                end 
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            end 

            if(role==6) then 

                if(simGetScriptSimulationParameter(Roles[2],"connected")==1) then 

                    

simSetLinkDummy(conn_points[2],simGetScriptSimulationParameter(Script,"connection_target")) 

                    result = true 

                end 

            end 

        end 

        return result 

    end 

    function send_order(ScrHandle, BJ1pos_conf, BJ2pos_conf, Cylpos_conf) 

        simSetScriptSimulationParameter(ScrHandle,"BJ1pos_conf",BJ1pos_conf) 

        simSetScriptSimulationParameter(ScrHandle,"BJ2pos_conf",BJ2pos_conf) 

        simSetScriptSimulationParameter(ScrHandle,"Cylpos_conf",Cylpos_conf) 

        simSetScriptSimulationParameter(ScrHandle,"Order_sent",1) 

        simSetScriptSimulationParameter(ScrHandle,"Order_done",0) 

        return 0 

    end 

    function angular_diff_rad(angle1,angle2) 

        angle1 = math.atan2(math.sin(angle1),math.cos(angle1)) 

        angle2 = math.atan2(math.sin(angle2),math.cos(angle2)) 

         

        return (angle1-angle2) 

    end 

    function conf_init(conf,transport_mode) 

        if(conf==1) then 

            simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

            simSetJointTargetPosition(BackJoint2,math.rad(90)) 

            send_order(Roles[2],-90,90,0) 

            send_order(Roles[3],60,30,0) 

            send_order(Roles[4],60,30,0) 

            send_order(Roles[5],60,30,0) 

            send_order(Roles[6],60,30,0) 

        end 

        if(conf==2) then 

            if(transport_mode==0) then 

                simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

                simSetJointTargetPosition(BackJoint2,math.rad(90)) 

                send_order(Roles[2],-90,90,0) 

                send_order(Roles[3],-75,90,0) 

                send_order(Roles[4],-75,90,0) 

                send_order(Roles[5],-75,90,0) 

                send_order(Roles[6],-75,90,0) 

            end 

            if(transport_mode==1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(0)) 

                simSetJointTargetPosition(BackJoint2,math.rad(0)) 

                send_order(Roles[2],0,0,0) 

                send_order(Roles[3],30,0,0) 

                send_order(Roles[4],30,0,0) 

                send_order(Roles[5],30,0,0) 

                send_order(Roles[6],30,0,0) 

            end 

        end 

        conf_init_done = 1 

        return conf_init_done 

    end 
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    function move_quad(lat_dif,long_dif) 

        order_done_counter = 0 

        for i = 2,6,1 do 

            if(simGetScriptSimulationParameter(Roles[i],"Order_done")==1) then 

                order_done_counter = order_done_counter + 1 

            end 

        end 

        if(order_done_counter==5) then 

            c4wa = c4wa + 1 

            if(c4wa==5) then 

                c4wa = 0 

--//Decision of movement style------------------------------------------ 

                Modornt3 = simGetObjectOrientation(pos_dummy,-1) 

                Modornt = Modornt3[3] 

                ornt_req3 = simGetObjectOrientation(current_target,-1) 

                ornt_req = ornt_req3[3] 

                ornt_dif = ornt_dif_corr(ornt_req-Modornt) 

                if(lat_dif>0 and long_dif>0) then 

                    if(math.deg(ornt_dif)<-5) then 

                        sd = 1 

                        tr = 0 

                        s = 30 

                        r = -15 

                        l = 15 

                    end 

                    if(math.deg(ornt_dif)>5) then 

                        sd = 0 

                        tr = 1 

                        s = 30 

                        r = 0 

                        l = -5 

                        if(ornt_dif>10) then 

                            r = 5 

                            l = -5 

                        end 

                        if(ornt_dif>15) then 

                            r = 10 

                            l = -10 

                        end 

                        if(ornt_dif>20) then 

                            r = 15 

                            l = -15 

                        end 

                    end 

                end 

                if(lat_dif>0 and long_dif<0) then 

                    if(math.deg(ornt_dif)<-5) then 

                        sd = 0 

                        tr = 1 

                        s = -30 

                        r = -5 

                        l = 0 

                        if(math.deg(ornt_dif)<-10) then 

                            r = -5 

                            l = 5 

                        end 
                        if(math.deg(ornt_dif)<-15) then 

                            r = -10 

                            l = 10 

                        end 
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                        if(math.deg(ornt_dif)<-20) then 

                            r = -15 

                            l = 15 

                        end 

                    end 

                    if(math.deg(ornt_dif)>5) then 

                        sd = 1 

                        tr = 0 

                        s = 30 

                        r = 15 

                        l = -15 

                    end 

                end 

                if(lat_dif<0 and long_dif>0) then 

                    if(math.deg(ornt_dif)<-5) then 

                        sd = 0 

                        tr = 1 

                        s = 30 

                        r = -5 

                        l = 0 

                        if(math.deg(ornt_dif)<-10) then 

                            r = -5 

                            l = 5 

                        end 
                        if(math.deg(ornt_dif)<-15) then 

                            r = -10 

                            l = 10 

                        end 
                        if(math.deg(ornt_dif)<-20) then 

                            r = -15 

                            l = 15 

                        end 

                    end 

                    if(math.deg(ornt_dif)>5) then 

                        sd = 1 

                        tr = 0 

                        s = -30 

                        r = 15 

                        l = -15 

                    end 

                end 

                if(lat_dif<0 and long_dif<0) then 

                    if(math.deg(ornt_dif)<-5) then 

                        sd = 1 

                        tr = 0 

                        s = -30 

                        r = -15 

                        l = 15 

                    end 

                    if(math.deg(ornt_dif)>5) then 

                        sd = 0 

                        tr = 1 

                        s = -30 

                        r = 0 

                        l = -5 

                        if(math.deg(ornt_dif)>10) then 

                            r = 5 

                            l = -5 

                        end 

                        if(math.deg(ornt_dif)>15) then 
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                            r = 10 

                            l = -10 

                        end 

                        if(math.deg(ornt_dif)>20) then 

                            r = 15 

                            l = -15 

                        end 

                    end 

                end 

--Decision of movement style//------------------------------------------ 

                if(math.deg(ornt_dif)>-5 and math.deg(ornt_dif)<5) then 

                    if(math.abs(lat_dif)>math.abs(long_dif)) then 

                        sd = 1 

                        tr = 0 

                        if(lat_dif<0) then 

                            s = -30 

                        end 

                        if(lat_dif>0) then 

                            s = 30 

                        end                                  

                    end 

                    if(math.abs(long_dif)>=math.abs(lat_dif)) then 

                        sd = 0 

                        tr = 1 

                        if(long_dif<0) then 

                            s = -30 

                        end 

                        if(long_dif>0) then 

                            s = 30 

                        end  

                    end 

                end --if(math.deg(ornt_dif)>-5 and math.deg(ornt_dif)<5) 

            end --if(c4wa==5) 

            if(tr==1) then 

                c4wa_tr = c4wa 

            end 
            if(sd==1) then 

                c4wa_sd = c4wa 

            end 

            if(c4wa_tr==0 and tr==1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

                simSetJointTargetPosition(BackJoint2,math.rad(90)) 

                send_order(Roles[2],-90,90,0) 

                send_order(Roles[3],60,30,0) 

                send_order(Roles[4],60,30,0) 

                send_order(Roles[5],60,30,0) 

                send_order(Roles[6],60,30,0) 

            end 
            if(c4wa_tr==1 and tr==1) then 

                send_order(Roles[4],0,90,0) 

                send_order(Roles[5],0,90,0) 

 

                send_order(Roles[3],60,30,0) 

                send_order(Roles[6],60,30,0) 

            end 

            if(c4wa_tr==2 and tr==1) then 

                send_order(Roles[4],60,30,-s-l) 

                send_order(Roles[5],60,30,s+r) 

 

                send_order(Roles[3],60,30,-s-r) 
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                send_order(Roles[6],60,30,s+l) 

            end 
            if(c4wa_tr==3 and tr==1) then 

                send_order(Roles[4],60,30,0) 

                send_order(Roles[5],60,30,0) 

 

                send_order(Roles[3],0,90,0) 

                send_order(Roles[6],0,90,0) 

            end 

            if(c4wa_tr==4 and tr==1) then 

                send_order(Roles[4],60,30,s+l) 

                send_order(Roles[5],60,30,-s-r) 

 

                send_order(Roles[3],60,30,s+r) 

                send_order(Roles[6],60,30,-s-l) 

            end 
 

            if(c4wa_sd==0 and sd==1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

                simSetJointTargetPosition(BackJoint2,math.rad(90)) 

                send_order(Roles[2],-90,90,0) 

                send_order(Roles[3],60,30,0) 

                send_order(Roles[4],60,30,0) 

                send_order(Roles[5],60,30,0) 

                send_order(Roles[6],60,30,0) 

            end 
            if(c4wa_sd==1 and sd==1) then 

                send_order(Roles[4],0,90,0) 

                send_order(Roles[5],0,90,0) 

 

                send_order(Roles[3],60,30,0) 

                send_order(Roles[6],60,30,0) 

 

            end 
            if(c4wa_sd==2 and sd==1) then 

                send_order(Roles[4],60,30-s-r,0) 

                send_order(Roles[5],60,30+s+l,0) 

 

                send_order(Roles[3],60,30-s-r,0) 

                send_order(Roles[6],60,30+s+l,0) 

            end 

            if(c4wa_sd==3 and sd==1) then 

                send_order(Roles[4],60,30,0) 

                send_order(Roles[5],60,30,0) 

 

                send_order(Roles[3],0,90,0) 

                send_order(Roles[6],0,90,0) 

            end 
            if(c4wa_sd==4 and sd==1) then 

                send_order(Roles[4],60,30+s+r,0) 

                send_order(Roles[5],60,30-s-l,0) 

 

                send_order(Roles[3],60,30+s+r,0) 

                send_order(Roles[6],60,30-s-l,0) 

            end 

        end --if(order_done_counter==5) 

 

        return 1     

    end 

    function qd_pass_over(qd_po_counter) 
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        order_done_counter = 0 

        for i = 2,6,1 do 

            if(simGetScriptSimulationParameter(Roles[i],"Order_done")==1) then 

                order_done_counter = order_done_counter + 1 

            end 

        end 
        if(order_done_counter==5) then 

            c4wp = c4wp + 1 

        end 

        if(c4wp==4) then 

            c4wp = 0 

            qd_po_counter = qd_po_counter+1 

        end 

        if(c4wp==0) then 

            send_order(Roles[3],60,30,0) 

            send_order(Roles[4],60,30,0) 

            send_order(Roles[5],60,30,0) 

            send_order(Roles[6],60,30,0) 

        end 

        if(c4wp==1) then 

            send_order(Roles[3],60,30,-135) 

            send_order(Roles[4],60,30,135) 

            send_order(Roles[5],60,30,-135) 

            send_order(Roles[6],60,30,135) 

        end 

        if(c4wp==2) then 

            send_order(Roles[3],60,30,135) 

            send_order(Roles[4],60,30,-135) 

            send_order(Roles[5],60,30,135) 

            send_order(Roles[6],60,30,-135) 

        end      

        if(c4wp==3) then 

            send_order(Roles[3],60,30,0) 

            send_order(Roles[4],60,30,0) 

            send_order(Roles[5],60,30,0) 

            send_order(Roles[6],60,30,0) 

        end 

        return qd_po_counter 

    end 

    function move_whld(lat_dif,long_dif,transport_mode) 

 

        ornt_req = math.atan2(lat_dif,long_dif) 

        Modornt3 = simGetObjectOrientation(pos_dummy,-1) 

        Modornt = Modornt3[3] 

        ornt_dif = ornt_dif_corr(ornt_req-Modornt) 

        if(transport_mode==0) then 

            if(math.deg(ornt_dif)<-1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

                simSetJointTargetPosition(BackJoint2,math.rad(90)) 

                send_order(Roles[2],-90,90,0) 

                send_order(Roles[3],-75,90,30) 

                send_order(Roles[4],-75,90,30) 

                send_order(Roles[5],-75,90,30) 

                send_order(Roles[6],-75,90,30)           

            end 

            if(math.deg(ornt_dif)>1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

                simSetJointTargetPosition(BackJoint2,math.rad(90)) 

                send_order(Roles[2],-90,90,0) 

                send_order(Roles[3],-75,90,-30) 
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                send_order(Roles[4],-75,90,-30) 

                send_order(Roles[5],-75,90,-30) 

                send_order(Roles[6],-75,90,-30)          

            end 
            if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

                simSetJointTargetPosition(BackJoint2,math.rad(90)) 

                send_order(Roles[2],-90,90,0) 

                send_order(Roles[3],-75,90,-30) 

                send_order(Roles[4],-75,90,30) 

                send_order(Roles[5],-75,90,-30) 

                send_order(Roles[6],-75,90,30)           

            end 

        end --if(transport_mode==0) 

        if(transport_mode==1) then 

            if(math.deg(ornt_dif)<-1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(0)) 

                simSetJointTargetPosition(BackJoint2,math.rad(0)) 

                send_order(Roles[2],0,0,0) 

                send_order(Roles[3],30,0,30) 

                send_order(Roles[4],30,0,30) 

                send_order(Roles[5],30,0,30) 

                send_order(Roles[6],30,0,30)             

            end 
            if(math.deg(ornt_dif)>1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(0)) 

                simSetJointTargetPosition(BackJoint2,math.rad(0)) 

                send_order(Roles[2],0,0,0) 

                send_order(Roles[3],30,0,-30) 

                send_order(Roles[4],30,0,-30) 

                send_order(Roles[5],30,0,-30) 

                send_order(Roles[6],30,0,-30)            

            end 

            if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(0)) 

                simSetJointTargetPosition(BackJoint2,math.rad(0)) 

                send_order(Roles[2],0,0,0) 

                send_order(Roles[3],30,0,-30) 

                send_order(Roles[4],30,0,30) 

                send_order(Roles[5],30,0,-30) 

                send_order(Roles[6],30,0,30)             

            end 
        end --if(transport_mode==1) 

 

        return 1 

    end 
    function correct_ornt_whld(target,transport_mode) 

        ornt_des3 = simGetObjectOrientation(target,-1) 

        ornt_des = ornt_des3[3] 

        Modornt3 = simGetObjectOrientation(pos_dummy,-1) 

        Modornt = Modornt3[3] 

        ornt_dif = ornt_dif_corr(ornt_des-Modornt)       

        if(transport_mode==0) then 

            if(math.deg(ornt_dif)<-1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

                simSetJointTargetPosition(BackJoint2,math.rad(90)) 

                send_order(Roles[2],-90,90,0) 

                send_order(Roles[3],-75,90,30) 

                send_order(Roles[4],-75,90,30) 

                send_order(Roles[5],-75,90,30) 
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                send_order(Roles[6],-75,90,30) 

                target_ornt_reached = 0 

            end 

            if(math.deg(ornt_dif)>1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

                simSetJointTargetPosition(BackJoint2,math.rad(90)) 

                send_order(Roles[2],-90,90,0) 

                send_order(Roles[3],-75,90,-30) 

                send_order(Roles[4],-75,90,-30) 

                send_order(Roles[5],-75,90,-30) 

                send_order(Roles[6],-75,90,-30) 

                target_ornt_reached = 0 

            end 

            if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

                simSetJointTargetPosition(BackJoint2,math.rad(90)) 

                send_order(Roles[2],-90,90,0) 

                send_order(Roles[3],-75,90,0) 

                send_order(Roles[4],-75,90,0) 

                send_order(Roles[5],-75,90,0) 

                send_order(Roles[6],-75,90,0) 

                target_ornt_reached = 1 

            end 

        end --if(transport_mode==0) 

        if(transport_mode==1) then 

            if(math.deg(ornt_dif)<-1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(0)) 

                simSetJointTargetPosition(BackJoint2,math.rad(0)) 

                send_order(Roles[2],0,0,0) 

                send_order(Roles[3],30,0,30) 

                send_order(Roles[4],30,0,30) 

                send_order(Roles[5],30,0,30) 

                send_order(Roles[6],30,0,30) 

                target_ornt_reached = 0 

            end 

            if(math.deg(ornt_dif)>1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(0)) 

                simSetJointTargetPosition(BackJoint2,math.rad(0)) 

                send_order(Roles[2],0,0,0) 

                send_order(Roles[3],30,0,-30) 

                send_order(Roles[4],30,0,-30) 

                send_order(Roles[5],30,0,-30) 

                send_order(Roles[6],30,0,-30) 

                target_ornt_reached = 0 

            end 

            if(math.deg(ornt_dif)<1 and math.deg(ornt_dif)>-1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(0)) 

                simSetJointTargetPosition(BackJoint2,math.rad(0)) 

                send_order(Roles[2],0,0,0) 

                send_order(Roles[3],30,0,0) 

                send_order(Roles[4],30,0,0) 

                send_order(Roles[5],30,0,0) 

                send_order(Roles[6],30,0,0) 

                target_ornt_reached = 1 

            end 

        end --if(transport_mode==1) 

        return target_ornt_reached 

    end 
    function stop(conf,transport_mode) 

        if(conf==1) then 
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            simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

            simSetJointTargetPosition(BackJoint2,math.rad(90)) 

            send_order(Roles[2],-90,90,0) 

            send_order(Roles[3],60,30,0) 

            send_order(Roles[4],60,30,0) 

            send_order(Roles[5],60,30,0) 

            send_order(Roles[6],60,30,0) 

        end 
        if(conf==2) then 

            if(transport_mode==0) then 

                simSetJointTargetPosition(BackJoint1,math.rad(-90)) 

                simSetJointTargetPosition(BackJoint2,math.rad(90)) 

                send_order(Roles[2],-90,90,0) 

                send_order(Roles[3],-75,90,0) 

                send_order(Roles[4],-75,90,0) 

                send_order(Roles[5],-75,90,0) 

                send_order(Roles[6],-75,90,0) 

            end 
            if(transport_mode==1) then 

                simSetJointTargetPosition(BackJoint1,math.rad(0)) 

                simSetJointTargetPosition(BackJoint2,math.rad(0)) 

                send_order(Roles[2],0,0,0) 

                send_order(Roles[3],30,0,0) 

                send_order(Roles[4],30,0,0) 

                send_order(Roles[5],30,0,0) 

                send_order(Roles[6],30,0,0) 

            end 

        end 
        return 1 

    end 
    function reassemble(conf,role,reassemble_step) 

        if(reassemble_step==0) then 

            simSetScriptSimulationParameter(Script,"connected",0) 

            simSetScriptSimulationParameter(Script,"order_sent",0) 

            simSetScriptSimulationParameter(Script,"order_done",0) 

            simSetJointTargetPosition(BackJoint1,math.rad(0)) 

            simSetJointTargetPosition(BackJoint2,math.rad(0)) 

            if(math.abs(math.deg(simGetJointPosition(BackJoint1)))<0.1 and  

                math.abs(math.deg(simGetJointPosition(BackJoint2)))<0.1) then 

                forw_step=0 

                back_step=0 

                J1pos=0 

                J2pos=0 

                reassemble_step = 1 

            end 

        end 
        if(reassemble_step==1) then 

            if(role~=1 and role~=2) then 

                for i=1,5,1 do 

                    simSetLinkDummy(conn_points[i],-1) 

                    simSetScriptSimulationParameter(Script,"connected",0) 

                end 

            end 

            reassemble_step = 2 

        end 

        if(reassemble_step==2) then 

            if(role~=1 and role~=2) then 

                if(reassemble_move_counter<5)   then 

                    if(conf==1) then 
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                        ms_result,J1pos,J2pos,forw_step,back_step = move_single(-

1,2,forw_step,back_step,0) 

                        if(back_step==0 and ms_result==1) then 

                            reassemble_move_counter = reassemble_move_counter + 1 

                        end 

                    end 
                    if(conf==2) then 

                        ms_result,J1pos,J2pos,forw_step,back_step = move_single(1,2,forw_step,back_step,0) 

                        if(forw_step==0 and ms_result==1) then 

                            reassemble_move_counter = reassemble_move_counter + 1 

                        end 

                    end 

                end 

                if(reassemble_move_counter==3)  then 

                    conf=0 

                    forw_step=0 

                    back_step=0 

                    J1pos=0 

                    J2pos=0 

                end 

            end 

            if(role==1) then 

                conf=0 

                conf_init_done = 0 

                sq_done = 0 

            end 
            if(role==2) then 

                simSetScriptSimulationParameter(Script,"connected",1) 

                simSetJointTargetPosition(FrontJoint,0) 

                simSetJointTargetPosition(CamJoint1,0) 

                simSetJointTargetPosition(CamJoint2,0) 

                target_ornt_reached = 0 

                target_pos_reached = 0 

                target_state_reached = 0 

                assembly_phase_done = 1 

                forced_direction=0 

                conf=conf_req 

                assembly_req=0 

            end 

        end 
 

        return conf,reassemble_step 

    end 

end 
 

 

if (sim_call_type==sim_childscriptcall_actuation) then 

 

    -- Put your main ACTUATION code here 

    --Main Loop Starts Here--------------------------------------------------------- 

    ornt3 = simGetObjectOrientation(pos_dummy,-1) 

    ornt = ornt3[3] 

    simSetScriptSimulationParameter(Script,"ornt",ornt) 

    simSetScriptSimulationParameter(Script,"conf",conf) 

    simSetScriptSimulationParameter(Script,"assembly_counter",assembly_counter) 

        --//Sensing Phase------------------------------------------------------------------------------- 

    if(sensing_done~=1) then 

        if(friction_estimation_done~=1) then 

            friction_coeff,friction_estimation_done = estimate_friction(friction_estimation_done) 

        end 
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        if(friction_estimation_done==1) then 

            if(initial_scan_done~=1) then 

                initial_scan_done, CamJ1pos = initial_scan(CamJ1pos) 

            end 
            if(initial_scan_done==1) then 

                sensing_done=1 

            end 

        end 

    end 

    --Sensing Phase//------------------------------------------------------------------------------- 

    --//Role Distribution Phase----------------------------------------------------------------------- 

    if(sensing_done==1 and rd_done~=1) then 

        if(Script==Scripts[1]) then 

            role_dist() 

        end 

        rd_done,role = get_role() 

    end 

    --Role Distribution Phase//----------------------------------------------------------------------- 

 

    if(rd_done==1 and sp_done==0 and role==1) then 

        sp_done = strategic_planning() 

    end 
    --//Strategic Planning Phase-------------------------------------------------------------------- 

    if(rd_done==1 and sq_done~=1) then 

        if(role==1) then 

            sq_done,conf_req = sequencing(plan_counter) 

        end 

        sq_done,conf_req = get_plan(role) 

        if(conf_req==conf) then 

            assembly_req = 0 

        end 

        if(conf_req~=conf) then 

            assembly_req=1 

            assembly_phase_done = 0 

            simAuxiliaryConsolePrint(console,"System needs to Assemble/Reassemble\n") 

        end 

    end 

    if(assembly_req==1 and assembly_phase_done~=1) then 

        if(conf==1 or conf==2) then 

            conf,reassemble_step = reassemble(conf,role,reassemble_step) 

        end 

        if(conf==0) then 

            if(role~=1) then 

 

                target_handle,lat_const,long_const,gamma_const = 

get_target_state(conf_req,role,assembly_counter) 

             

                if(target_state_reached~=1) then 

             

                    if(target_pos_reached~=1) then 

                         

                        target_found,CamJ1pos = lock_target(target_handle) 

             

                        if(target_found~=1) then 

                            target_found,search_counter,CamJ1pos = 

search_target(current_target,search_counter,CamJ1pos) 

                        end --if(target_found~=1) 

             

                        if(target_found==1) then 

             



157 

 

                            if(math.abs(math.deg(simGetJointPosition(BackJoint1)))<1 and 

math.abs(math.deg(simGetJointPosition(BackJoint2)))<1) then 

                                target_found,lat_dif,long_dif = 

calculate_difference(target_handle,lat_const,long_const,0) 

                                direction,ornt_req = 

decide_direction(lat_dif,long_dif,gamma_const,forced_direction) 

                                target_pos_reached,velocity = decide_velocity(direction,lat_dif,long_dif) 

                            end 
            --correct orientation is called with gamma_const=0! 

                            J1pos,J2pos,ornt_dif = correct_ornt(J1pos,J2pos,ornt_req) 

                            ms_result,J1pos,J2pos,forw_step,back_step = 

move_single(direction,velocity,forw_step,back_step,ornt_dif) 

             

                        end --if(target_found==1) 

             

                    end --if(target_pos_reached~=1) 

                    if(target_pos_reached==1) then 

                        if(target_ornt_reached~=1) then 

                            target_found,CamJ1pos = lock_target(target_handle) 

                            J1pos,J2pos,ornt_dif = correct_ornt(J1pos,J2pos,ornt_des) 

                            if(math.abs(math.deg(ornt_dif))<1)  then 

                                target_ornt_reached = 1 

                            end 

                        end 
                        if(target_ornt_reached==1)  then 

                            simSetJointTargetPosition(BackJoint1,0) 

                            simSetJointTargetPosition(BackJoint2,0) 

                            if(math.abs(math.deg(simGetJointPosition(BackJoint1)))<1 and 

                                math.abs(math.deg(simGetJointPosition(BackJoint1)))<1) then 

             

                                step_up,forced_direction=assembly_step_up(conf_req,role,assembly_counter) 

                                if(step_up) then 

                                    assembly_counter = assembly_counter + 1 

                                    step_up,forced_direction=assembly_step_up(conf_req,role,assembly_counter) 

             

                                    target_ornt_reached = 0 

                                    target_pos_reached = 0 

                                end 
                                if(assembly_counter==3) then 

                                    if(connect()) then 

                                        simSetScriptSimulationParameter(Script,"connected",1) 

                                        simSetJointTargetPosition(FrontJoint,0) 

                                        simSetJointTargetPosition(CamJoint1,0) 

                                        simSetJointTargetPosition(CamJoint2,0) 

                                        target_ornt_reached = 0 

                                        target_pos_reached = 0 

                                        target_state_reached = 0 

                                        assembly_phase_done = 1 

                                        forced_direction=0 

                                    end 

                                end 

                            end 

                        end 

                    end 
                end --if(target_state_reached~=1) 

            end --if(role~=1) 

            if(role==1) then 

                simSetObjectParent(Cylinder,Fix_FS,true) 

                connected_counter = 0 

                for i=2,6,1 do 
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                    if(simGetScriptSimulationParameter(Roles[i],"connected")==1) then 

                        connected_counter = connected_counter + 1 

                    end 

                end 
                if(connected_counter==5) then 

                    simSetScriptSimulationParameter(Script,"connected",1) 

                    simAuxiliaryConsolePrint(console,"Assembly/Reassembly Complete\n") 

                    assembly_phase_done = 1 

                    conf = conf_req 

                    simSetScriptSimulationParameter(Script,"conf",conf) 

                end  

            end --(role==1) 

        end --if(conf==0) 

    end --if(assembly_req==1 and assembly_phase_done~=1) 

        --//Configuration Phase--------------------------------------------------- 

    if(assembly_phase_done==1) then 

        if(simGetScriptSimulationParameter(Roles[1],"connected")==1) then 

            if(role==1) then 

                if(simGetObjectParent(Cylinder)~=-1) then 

                    simSetObjectParent(Cylinder,-1,true) 

                end 

                if(conf_init_done~=1) then 

                    conf_init_done = conf_init(conf,transport_mode) 

                end 
                target_found,CamJ1pos = lock_target(current_target) 

                if(conf==1) then 

                    if(transport_mode==1) then 

                        qd_po_counter = qd_pass_over(qd_po_counter) 

                        if(qd_po_counter==2) then 

                            stop(conf,transport_mode) 

                            target_pos_reached = 1 

                            CamJ1pos = 0 

                            CamJ2pos = 0 

                            simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos)) 

                            simSetJointTargetPosition(CamJoint2,math.rad(CamJ2pos)) 

                            if(math.abs(math.deg(simGetJointPosition(CamJoint1)))<=2 and 

                                math.abs(math.deg(simGetJointPosition(CamJoint2)))<=2) then 

                                target_state_reached = 1 

                                qd_po_counter = 0 

                            end 

                        end 

                    end 
                    if(transport_mode==0) then 

                        if(target_state_reached~=1) then 

                            if(target_pos_reached~=1) then 

                                if(target_found==0) then 

                                    stop(conf,transport_mode) 

                                    target_found,search_counter,CamJ1pos = 

search_target(current_target,search_counter,CamJ1pos) 

                                end 
                                if(target_found==1) then 

                                    target_found,CamJ1pos = lock_target(current_target) 

                                    target_found,lat_dif,long_dif = 

calculate_difference(current_target,lat_const,long_const,1) 

                                    distance = math.sqrt(lat_dif^2 + long_dif^2) 

                                    if(distance>0.1) then 

                                        move_quad(lat_dif,long_dif) 

                                    end 
                                    if(distance<=0.1) then 

                                        stop(conf,transport_mode) 



159 

 

                                        target_pos_reached=1 

                                    end 
                                end --if(target_found==1) 

                            end --if(target_pos_reached~=1) 

                            if(target_pos_reached==1) then 

                                CamJ1pos = 0 

                                CamJ2pos = 0 

                                simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos)) 

                                simSetJointTargetPosition(CamJoint2,math.rad(CamJ2pos)) 

                                if(math.abs(math.deg(simGetJointPosition(CamJoint1)))<=2 and 

                                    math.abs(math.deg(simGetJointPosition(CamJoint2)))<=2) then 

                                    target_state_reached = 1 

                                end 

                            end --if(target_pos_reached==1) 

                        end --if(target_state_reached~=1) 

                    end --if(transport_mode==0) 

                    if(target_state_reached==1) then 

                        simAuxiliaryConsolePrint(console,"Reached to Sub-goal State\n") 

                        plan_counter = plan_counter + 1 

                        sq_done=0 

                        for i=1,6,1 do 

                            simSetScriptSimulationParameter(Roles[i],"Notification3",1) 

                        end 

                        if(plan_counter<7) then 

                            target_state_reached = 0 

                            target_pos_reached = 0   

                            target_ornt_reached = 0 

                        end 
                        if(plan_counter==7) then 

                            target_state_reached = 1 

                            target_pos_reached = 1 

                            target_ornt_reached = 1 

                            sq_done=1 

                        end 
                    end --if(target_state_reached==1) 

                end --if(conf==1) 

                if(conf==2) then 

                    if(target_state_reached~=1) then 

                        if(target_pos_reached~=1) then 

                            if(target_found==0) then 

                                stop(conf,transport_mode) 

                                target_found,search_counter,CamJ1pos = 

search_target(current_target,search_counter,CamJ1pos) 

                            end 
                            if(target_found==1) then 

                                target_found,CamJ1pos = lock_target(current_target) 

                                target_found,lat_dif,long_dif = 

calculate_difference(current_target,lat_const,long_const,2) 

                                distance = math.sqrt(lat_dif^2 + long_dif^2) 

                                if(distance>0.1) then 

                                    move_whld(lat_dif,long_dif,transport_mode) 

                                end 
                                if(distance<=0.1) then 

                                    stop(conf,transport_mode) 

                                    target_pos_reached=1 

                                end 
                            end --if(target_found==1) 

                        end --if(target_pos_reached~=1) 

                        if(target_pos_reached==1) then 

                            if(target_ornt_reached~=1) then 
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                                target_ornt_reached = correct_ornt_whld(current_target,transport_mode) 

                            end 
                            if(target_ornt_reached==1) then 

                                stop(conf,transport_mode) 

                                CamJ1pos = 0 

                                CamJ2pos = 0 

                                simSetJointTargetPosition(CamJoint1,math.rad(CamJ1pos)) 

                                simSetJointTargetPosition(CamJoint2,math.rad(CamJ2pos)) 

                                if(math.abs(math.deg(simGetJointPosition(CamJoint1)))<=2 and 

                                    math.abs(math.deg(simGetJointPosition(CamJoint2)))<=2) then 

                                    target_state_reached = 1 

                                end 

                            end 

                        end --if(target_pos_reached==1) 

                    end --if(target_state_reached~=1) 

                    if(target_state_reached==1) then 

                        plan_counter = plan_counter + 1 

                        sq_done=0 

                        for i=1,6,1 do 

                            simSetScriptSimulationParameter(Roles[i],"Notification3",1) 

                        end 

                        if(plan_counter<7) then 

                            target_state_reached = 0 

                            target_pos_reached = 0   

                            target_ornt_reached = 0 

                        end 
                        if(plan_counter==7) then 

                            target_state_reached = 1 

                            target_pos_reached = 1 

                            target_ornt_reached = 1 

                            sq_done=1 

                            stop() 

                        end 

                    end --if(target_state_reached==1) 

                end --if(conf==2) 

            end--if(role==1) 

     

            if(role~=1) then 

                assembly_counter = 1 

                conf = simGetScriptSimulationParameter(Roles[1],"conf") 

                simSetScriptSimulationParameter(Script,"conf",conf) 

                if(simGetScriptSimulationParameter(Script,"Notification3")==1) then 

                    sq_done=0 

                    simSetScriptSimulationParameter(Script,"Notification3",0)    

                end 

                if(conf==1) then 

                    if(simGetScriptSimulationParameter(Script,"Order_done")==0 and 

simGetScriptSimulationParameter(Script,"Order_sent")==1) then 

                        

simSetJointTargetPosition(BackJoint1,math.rad(simGetScriptSimulationParameter(Script,"BJ1pos_co

nf"))) 

                        

simSetJointTargetPosition(BackJoint2,math.rad(simGetScriptSimulationParameter(Script,"BJ2pos_co

nf"))) 

                        

simSetJointTargetPosition(FrontJoint,math.rad(simGetScriptSimulationParameter(Script,"Cylpos_con

f"))) 

                        

if(math.abs(math.deg(ornt_dif_corr(math.rad(simGetScriptSimulationParameter(Script,"BJ1pos_conf

"))-simGetJointPosition(BackJoint1))))<5 and 
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math.abs(math.deg(ornt_dif_corr(math.rad(simGetScriptSimulationParameter(Script,"BJ2pos_conf"))

-simGetJointPosition(BackJoint2))))<5 and 

                            

math.abs(math.deg(ornt_dif_corr(math.rad(simGetScriptSimulationParameter(Script,"Cylpos_conf"))-

simGetJointPosition(FrontJoint))))<5) then 

                             

                            simSetScriptSimulationParameter(Script,"Order_done",1) 

                            simSetScriptSimulationParameter(Script,"Order_sent",0) 

                        end 

                    end 

                end 
                if(conf==2) then 

                    if(simGetScriptSimulationParameter(Script,"Order_done")==0 and 

simGetScriptSimulationParameter(Script,"Order_sent")==1) then 

 

                        

simSetJointTargetPosition(BackJoint1,math.rad(simGetScriptSimulationParameter(Script,"BJ1pos_co

nf"))) 

                        

simSetJointTargetPosition(BackJoint2,math.rad(simGetScriptSimulationParameter(Script,"BJ2pos_co

nf"))) 

                        

simSetJointTargetPosition(FrontJoint,math.rad(simGetScriptSimulationParameter(Script,"Cylpos_con

f"))) 

 

                        if(math.abs(simGetScriptSimulationParameter(Script,"BJ1pos_conf")-

math.deg(simGetJointPosition(BackJoint1)))<3 and 

                            math.abs(simGetScriptSimulationParameter(Script,"BJ2pos_conf")-

math.deg(simGetJointPosition(BackJoint2)))<3) then 

                             

                            simSetScriptSimulationParameter(Script,"Order_done",1) 

                            simSetScriptSimulationParameter(Script,"Order_sent",0) 

                        end 

                    end 

                    wheel_spd = simGetScriptSimulationParameter(Script,"Cylpos_conf") 

                    

simSetJointTargetPosition(FrontJoint,simGetJointPosition(FrontJoint)+math.rad(wheel_spd)) 

                end--(conf==2) 

            end--if(role~=1) 

        end--if(simGetScriptSimulationParameter(Roles[1],"connected")==1) 

    end--(if(assembly_phase_done==1) 

    --Configuration Phase//--------------------------------------------------- 

 

end 

 

 

if (sim_call_type==sim_childscriptcall_sensing) then 

 

    -- Put your main SENSING code here 

 

end 
 

 

if (sim_call_type==sim_childscriptcall_cleanup) then 

 

    -- Put some restoration code here 

    for i=1,5,1 do 

        simSetLinkDummy(conn_points[i],-1) 

    end 
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