
SCALABLE LAYOUT OF LARGE GRAPHS
ON DISK

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Abdurrahman Yaşar

June, 2015

Scalable Layout of Large Graphs on Disk

By Abdurrahman Yaşar

June, 2015

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Buğra Gedik (Advisor)

Assoc. Prof Dr. Hakan Ferhatosmanoğlu

Asst. Prof. Dr. Gültekin Kuyzu

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

SCALABLE LAYOUT OF LARGE GRAPHS ON DISK

Abdurrahman Yaşar

M.S. in Computer Engineering

Advisor: Assoc. Prof. Dr. Buğra Gedik

June, 2015

We are witnessing an enormous growth in social networks as well as in the volume

of data generated by them. As a consequence, processing this massive amount

of data has become a major problem. An important portion of this data is in

the form of graphs. In recent years, several graph processing and management

systems emerged to handle large-scale graphs. The primary goal of these systems

is to run graph algorithms in an efficient and scalable manner. Unlike relational

data, graphs are semi-structured in nature. Thus, storing and accessing graph

data using secondary storage requires new solutions that can provide locality of

access for graph processing workloads. In this work, we propose a novel scalable

disk layout technique for graphs, which aims at reducing the I/O cost of disk-

based graph processing algorithms. To achieve this goal, we designed a scalable

Map/Reduce-style method called ICBP, which can divide the graph into a series

of disk blocks that contain sub-graphs with high locality. Furthermore, ICBP can

order the resulting blocks on the disk to further reduce non-local accesses. We

experimentally evaluated ICBP to showcase its scalability, layout quality, as well

as the effectiveness of automatic parameter tuning for ICBP. We also deployed the

graph layouts generated by ICBP to the Neo4j [1] graph database management

system. Our experimental results show that the default layout results in 1.5 to

2.5 times higher running times compared to ICBP.

Keywords: Block formation, disk layout, graph.

iii

ÖZET

BÜYÜK ÇİZGELER İÇİN ÖLÇEKLENEBİLİR DİSK
YERLEŞİMİ

Abdurrahman Yaşar

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Assoc. Prof. Dr. Buğra Gedik

Haziran, 2015

Son yıllarda sosyal ağ kullanımının hızlı bir şekilde yaygınlaşmasına tanıklık et-

mekteyiz. Bu yaygınlaşmanın neticesindeyse sosyal ağlar tarafından oluşturulan

veri büyüklüğü devasa boyutlara geldi ve mevcut bu verinin işlenip anlam-

landırılması gerek akademi gerekse sanayii için mühim bir konu haline dönüştü.

Bu verinin büyük bir kısmıysa çizgeler halinde saklanmaktadır. Bu nedenledir

ki son birkaç yılda büyük ölçekli çizgeleri işleyebilmek amacıyla pek çok sistem

geliştirilmiştir. Bu sistemlerin öncelikli hedefleri ise mevcut çizge algoritmalarını

büyük ölçekli çizgelerde etkin bir şekilde uygulanmasını saglamaktır. Fakat

ilişkisel verilerin aksine çizgeler yarı yapısal temeldedir. Bu nedenle ikincil depo-

lama alanları üzerinden çizgelere ulaşmak ve işlemek çizge içerisindeki bezerlikleri

göz önüne alan farklı çözümlere ihtiyaç duymaktadır. Bu yüzden bu çalışmada

disk üzerinde rastgele gerçekleştirilen okuma yazmaları indirgemek amacıyla

çizgelerin disk üzerindeki yerleşimlerini ölçeklenebilir bir şekilde gerçekleyen bir

metot önermekteyiz. Bu amaçla, ICBP adını verdiğimiz, çizgeleri dağıtık ve

ölçeklenebilir bir şekilde öbeklere bölebilen bir metodu Hadoop yapısını baz alarak

hayata geçirdik. Önerdiğimiz bu metot öbek oluşturmanın yanında oluşturulan

bu öbeklerin disk üzerinde yerleşimini de sağlamaktadır. Bu çalışmada bu

metodun detaylı açıklamasının beraberinde metodun etkinliğini, kalitesini ve

ölçeklenebilirliğini deneysel olarak sunacağız.

Anahtar sözcükler : Öbek oluşturma, disk yerleşimi, çizge.

iv

Acknowledgement

First of all, I would like to thank to my supervisor, Assoc. Prof. Dr. Buğra Gedik

for his exceptional inspiration, guidance, support and always being available to

me when I needed help during my graduate study. I have already learned a lot

from him in these two years.

I owe special thanks to Assoc. Prof. Dr. Hakan Ferhatosmanoğlu, who con-

tributed continuously through the design and development of the studies we ex-

plain in this thesis, for his valuable suggestions and patience throughout this

study.

I am grateful to my jury member, Asst. Prof. Dr. Gültekin Kuyzu for reading

and reviewing this thesis.

I thank my fellow labmates Semih Şahin, Dogukan Çağatay, Fuat Basik, Kaan

Bingol, Elif Eser and Mehmet Güvercin for the stimulating discussions, for the

sleepless nights we were working together before deadlines, and for all the fun we

have had in the last two years

I would like to thank to my family for supporting me with all my decisions

and for their endless love, especially my mother and sister for their support and

faith during my thesis work.

A very special acknowledgement goes to my girlfriend Nida Tangün, who loved

and supported me all the time, and made me feel like anything was possible. I

love you, Nida.

v

Contents

1 Introduction 1

2 Problem Definition 5

2.1 Notation . 7

2.2 Problem Formulation . 8

2.3 Metrics . 9

2.3.1 Block Locality . 9

2.3.2 Ranking Locality . 10

3 Solution Overview 12

3.1 General Approach . 12

3.1.1 Identifying Diffusion Sets 14

3.1.2 Coarse Partitioning . 14

3.1.3 Block Formation . 15

3.1.4 Packing . 15

vi

CONTENTS vii

3.2 Scalability . 15

4 Scalable Block Formation & Ranking 17

4.1 Identifying Diffusion Sets . 17

4.2 Coarse Partitioning . 21

4.3 Block Formation . 24

4.4 Packing . 25

5 Experimental Evaluation 28

5.1 Experimental Setup . 28

5.1.1 Implementation . 28

5.1.2 Environment . 29

5.1.3 Data Sets . 29

5.2 Scalability . 30

5.3 Locality . 31

5.3.1 Effectiveness of Coarse Partitioning 31

5.3.2 Assigning weights . 33

5.3.3 Choosing Centers . 33

5.3.4 Locality and Block Size . 34

5.3.5 Ranking Locality . 35

CONTENTS viii

5.3.6 Query Running Times . 36

6 Related Work 38

7 Conclusion 42

List of Figures

2.1 Toy graph illustrating block formation and ranking. 6

3.1 Solution overview. 13

4.1 Illustration of packing. 26

5.1 Scalability w.r.t. # of cores. 30

5.2 Scalability w.r.t. # of edges. 30

5.3 ICBP with Metis & coarse partitioning. 31

5.4 Assigning weights to diffusion sets. 31

5.5 Choosing initial centers. 32

5.6 Locality vs. block size. 32

5.7 Ranking locality vs. graph size. 35

5.8 Query running times with Neo4j. 35

ix

Chapter 1

Introduction

We are witnessing an enormous growth in social networks and the volume of data

generated by them. An important portion of this data is in the form of graphs,

which are popular data structures used to represent relationships between enti-

ties. For instance, the graph structure may represent the relationships in a social

network, where finding communities in the graph [2] can facilitate targeted ad-

vertising. In the telco (telecommunications) domain, CDRs (call details reports)

can be used to capture the call relationships between people [3], and locating

closely connected groups of people can be used for generating promotions.

With the rise in the availability and volume of graph data, several graph pro-

cessing and management systems have been introduced to handle large-scale

graphs [4, 5, 6, 7, 8, 9, 10, 11]. The primary goal of these systems is to manage

large graphs and execute graph algorithms on them in an efficient and scalable

manner. In this work, we focus on disk-based graph management systems [1, 6],

and propose the first parallel and scalable Map/Reduce based disk layout tech-

nique. Unlike relational data, graphs are semi-structured in nature. Thus, storing

and accessing graph data using secondary storage requires new solutions that can

provide locality of access for graph processing workloads.

Many graph algorithms rely on the fundamental operation of graph traversal and

1

CHAPTER 1. INTRODUCTION 2

exhibit high access locality [12]. Given that a vertex is visited during a traversal,

it is quite likely that the neighbors of this vertex will be visited shortly after.

For instance, an n-hop breadth first search around a vertex exhibits high locality.

This observation has motivated block-based disk layouts where the neighborlists

of vertices that are highly connected (e.g., form a community) are placed into the

same disk block [13]. This minimizes the number of blocks read, which reduces

I/O. It also avoids the costly disk seeks, since chasing blocks often requires seeking

to different areas of the disk.

In this work, we propose a novel scalable disk layout technique for graphs, which

aims at reducing the I/O cost of disk-based graph processing algorithms. To

achieve this goal, we designed a scalable Map/Reduce style method called ICBP,

which can divide the graph into a series of disk blocks that contain sub-graphs

with high locality, as well as order these blocks on disk to reduce non-local ac-

cesses. In this work, we describe the ICBP method, including the challenges that

arose in applying ICBP in practice, the solutions applied, and an experimental

evaluation showcasing its effectiveness.

Identifying vertices that are ‘close’ with respect to locality of access during exe-

cution of graph algorithms is a challenging problem. Although neighbor lists of

vertices give some information about locality, it is not sufficient, as it is possible

for close vertices to have very few common neighbors. To illustrate, we can think

two hop neighbors of a vertex. Although the neighbor lists of these vertices may

have very few common neighbors, in a large graph we can certainly define them

as ‘close’ vertices. Accordingly, there should be a diffusion factor for each vertex,

which can vary based on the graph size. In this work, we use random walks

to produce diffusion sets of vertices. The idea behind building diffusion sets is

simple: for each vertex, do some number of random walks and assign weights to

vertices visited during the random walks. The resulting weighted sets of vertices

can be used to define closeness between the originating vertices. At this point,

we run into another challenge, namely defining the number of random walks and

their lengths, based on the graph characteristics. We address this challenge by

automatically tuning all ICBP parameters.

CHAPTER 1. INTRODUCTION 3

Once the closeness between vertices is defined, we can use it to form disk blocks

by co-locating close vertices within the same blocks. This could be achieved

by using bottom-up methods from the literature, such as hierarchical clustering.

Yet, these methods have high computational complexity, leading to prohibitive

costs for large-scale graphs. Thus, forming the disk blocks in a scalable manner

is a challenging problem. In this work, we use a coarse partitioning algorithm to

divide the large graph to in-memory processable sub-graphs. This coarse parti-

tioning gives us the ability to apply a computationally heavier block formation

algorithm on these sub-graphs, in parallel.

Since the size of the disk blocks are expected to be relatively small compared to

the graph size, the generated blocks are expected to contain many connections to

other blocks. Therefore, to benefit completely from the locality of blocks, they

need to be ordered on disk by taking into account the inter block dependencies.

In this work, we solve the problem of graph block ranking using a packing al-

gorithm which is a label based packing that follows the process of formation of

blocks. Packing algorithm simply orders the blocks based on their labels that

were generated as part of the block formation phase. We have integrated this

packing algorithm inside the block formation algorithm to avoid an additional

stage of computation.

In the literature, block formation for graphs has been considered [13], yet the

solutions are not parallel or scalable. When considering the size of social media

graphs and Big Data workloads, performing the block formation in a scalable

manner is an important task. In this work, we achieve scalability by implementing

all parts of our proposed solution as Map/Reduce (M/R) jobs, executed on the

Hadoop framework.

In summary, we make the following contributions:

• We propose an effective disk layout technique, ICBP, for large-scale graphs.

ICBP is aimed at increasing the performance of disk-based graph manage-

ment systems by increasing the locality of access of disk blocks.

CHAPTER 1. INTRODUCTION 4

• We develop Map/Reduce-based algorithms to implement ICBP, making the

disk layout generation scalable, so that large-scale graphs can be divided

into disk blocks using distributed processing.

• We propose evaluation metrics for measuring the efficacy of the ICBP disk

layout technique and present an experimental evaluation showcasing its disk

layout quality and running time scalability.

• We deployed the graph layouts generated by ICBP to the Neo4j [1] graph

database management system to understand the impact of the layouts gen-

erated by ICBP on the performance of query evaluation in a graph database.

The rest of this thesis is organized as follows. In Chapter 2, we formalize our

problem and evaluation metrics. Chapter 3 provides an high-level overview of

our solution. Chapter 4 describes the ICBP technique in detail, explaining how

our block formation algorithm works. Chapter 5 gives a detailed experimental

evaluation of our work and Chapter 6 presents the related work. Chapter 7

concludes the thesis.

Chapter 2

Problem Definition

Most graph analytics require graph traversals, where vertex access patterns follow

the connectivity structure of the graph. If the graph is laid out on the disk without

considering these patterns, the traversal operations may cause too many I/O

operations. This can create a bottleneck for graph processing and management

systems. Therefore, storing and accessing graph data using secondary storage

requires new solutions that can provide locality of access for graph processing

workloads.

Locality of access for graph analytics executing on disk-based graph processing

systems can be increased by locating graph vertices that are ‘close’ with respect to

connectivity structure of the graph close on the disk as well. Figure 2.1 illustrates

this. In the figure, we have a graph with 18 vertices stored on 6 blocks. Storing

vertices in blocks aims to put close vertices together and increasing the locality

of access. However, after generating locality-aware blocks, we still need to order

these blocks on disk because there are inter-block dependencies between each

other. In summary, our problem is composed by two sub-problems: First one is

locality-aware block generation. The second one is ranking and ordering these

block on disk.

5

CHAPTER 2. PROBLEM DEFINITION 6

0 1

2

3

4

6

5

7

8

9

11

12
10

1315

16 17 14

0 : 2, 3
2 : 0, 1
1 : 2, 3

Block 0

4 : 6
5 : 3, 6, 7, 8
6 : 3, 4, 5, 8

Block 1

3 : 0, 1, 7
7 : 3, 8
8 : 5, 6, 7, 9

Block 2

12 : 10, 11, 13
13 : 12, 14, 15, 16 ,17
14 : 10, 13

Block 3

9 : 8, 11
10 : 11, 12, 14
11 : 9, 10, 12

Block 4

15 : 13, 16
16 : 13, 15, 17
17 : 13, 16

Block 5

Block 0 Block 2 Block 1 Block 4 Block 3 Block 5

disk

write

order & packing of blocks

Figure 2.1: Toy graph illustrating block formation and ranking.

CHAPTER 2. PROBLEM DEFINITION 7

Illustrative Example. Assume that as part of a graph analytic task we need

to access all vertices that are in 2-hop distance to vertex 0. 2-hop neighborhood

of vertex 0 contains 4 vertices, which are: 1, 2, 3, and 7. In the first scenario,

we consider that the assignment of vertices to blocks is being done randomly. In

this case, all of the four vertices could have been assigned to different blocks,

which would have resulted in 4 block accesses with a total of 12 vertex reads,

resulting in 42% success rate (number of vertices used per vertex read). However,

if we consider the block structure that is given in the Figure 2.1, we end up with 2

block accesses with a total of 4 vertex reads, resulting in 83% percent success rate.

As we can observe in this example, locality-aware block generation decreases the

number of block accesses and increases I/O performance.

Locality-aware block generation is highly critical to decrease the number of reads

from disk, and ultimately, to optimize the efficiency of the system. However, if

our secondary storage is an hard disk, seek time becomes important as well. In

our running example, we need to access a number of blocks and if these blocks are

randomly scattered on the disk, then to read a relatively small number of blocks,

we would spend too much seek time. For instance, let us assume that blocks are

ordered randomly on the disk as follows: 5, 2, 3, 4, 0, and 1. We need to access

all vertices that are in 2-hop distance from vertex 0. To start, we need to access

block 0, which is in the 5th position. Later, we must access block 2, which is

in the 2nd position. This means that the disk needs to first seek to position 5

and then seek around back to position 2. However, if we use the layout that we

defined in Figure 2.1, that is 0, 2, 1, 4, 3, and 5, we would avoid the additional

seek. Since blocks 0 and 2 are sequential, accessing these two blocks requires only

a single seek. In conclusion, with a smart ordering seek time can be decreased to

improve I/O efficiency.

2.1 Notation

An undirected graph G = (V,E) consists of a set of vertices V and a set of

edges E. An edge is denoted as e = (u, v) = (v, u) ∈ E, where u 6= v and

CHAPTER 2. PROBLEM DEFINITION 8

u, v ∈ V . The neighbor list of a vertex u ∈ V is denoted as Nu, and defined as

Nu = {v ∈ E | (u, v) ∈ E}. N represents the set of all neighbor lists, that is

N = {Nv | v ∈ V }. For instance, if we consider Figure 2.1, the neighbor list of

vertex 0 is N0 = {2, 3} and N is {N0, N1, · · · , N6}.

Given a graph, we generate a set of blocks, denoted by B. Each block B ∈ B
contains at least one vertex and its neighbor list. Thus we can view a block as

a non-empty subset of the set of all vertex-neighborlist pairs. Formally, ∀B ∈
B, B ⊂ {(u,Nu) | u ∈ V } and |B| > 0. Blocks do not share their elements,

that is ∀{B,B′}⊂B, B ∩ B′ = ∅. We denote the set of vertices in a block B as

VB = {u | (u,Nu) ∈ B} and the set of neighbor lists as NB = {Nu | (u,Nu) ∈ B}.
The set of blocks cover the entire graph G, that is V =

⋃
B∈B VB. Finally, each

block is limited in size by a block size threshold denoted by t. Let s : B → N be

a function that assigns a size to a block, then we have ∀B ∈ B, s(B) ≤ t.

We assume that blocks are laid out on the disk sequentially. The place of a

block B on the disk is determined by its rank, denoted by r(B). The rank of

a block is simply the number of blocks that have been written before it. We

have 0 ≤ r(B) < |B|, and ∀{B,B′}⊂B, r(B) 6= r(B′). Finally, we define a function

d : B × B → N that represents the distance between two blocks on the disk. We

have d(B,B′) = |r(B)− r(B′)|.

2.2 Problem Formulation

Our problem has two aspects, namely block formation and block ranking. In the

block formation problem, the aim is to generate blocks with high locality. We

define the locality of a block B using a metric that measures how well connected

the vertices within the block are and how well separated they are from the vertices

in other blocks, denoted by L(B). Thus, the goal is to maximize the total locality

over all blocks, denoted by L =
∑

B∈B L(B).

In the block ranking problem, the aim is to assign close ranks to blocks that have

CHAPTER 2. PROBLEM DEFINITION 9

many edges connecting them, so that they are close on the disk. We define the

ranking locality of a block B using a metric that measures the on-disk distance

of B to other blocks it has edges into, denoted by R(B). Thus, the goal is to

maximize the total locality over all blocks, denoted by R =
∑

B∈B R(B).

2.3 Metrics

Evaluation of our proposed system depends on the definition of block and block

ranking localities. We now formally define these localities.

2.3.1 Block Locality

Locality of a block can be defined using two concepts: conductance and cohesive-

ness. Conductance is commonly used for graph partitioning. In our context it is

defined as the ratio of the number of edge cuts to the total number of edges in a

block. Formal definition of conductance is as follows:

Cd(B) =
|{(u, v) ∈ E | |{u, v} ∩ VB| = 1}|
|{(u, v) ∈ E | |{u, v} ∩ VB| > 0}|

(2.1)

For example conductance of Block 0 in Figure 2.1 is Cd(B0) = 2
4

= 0.5. Because,

in the block, there are four edges, two of which are going out, that is (0, 3) and

(1, 3).

Conductance of a block is not sufficient to determine the locality of a block.

What is missing is the cohesiveness of the block. Cohesiveness is generally used

for finding highly connected regions or communities in graphs. In this work we

define cohesiveness of a block as the number of vertex pairs that are connected to

each other via an edge in the block, divided by the total number of vertex pairs.

Denoted by Ch, cohesiveness is formally defined as follows:

CHAPTER 2. PROBLEM DEFINITION 10

Ch(B) =
|{(u, v) ∈ E | u, v ∈ VB}|
|B| · (|B| − 1)/2

(2.2)

Again, if we consider Block 0 in Figure 2.1, cohesiveness of the block becomes

Ch(B0) = 2
3

= 0.66. Because in block there are 2 connected pairs of vertices, out

of 3 possible connections.

These two metrics are complementary. Impact of dangling edges is captured by

conductance and connectivity within a block is captured by cohesiveness. To

obtain a high locality block, we need to increase cohesiveness, while decreasing

conductance.

As a result, we define the locality of a block B, denoted by L(B), as the geometric

mean of cohesiveness and one minus the conductance. That is:

L(B) =
√
Ch(B)× (1− Cd(B)) (2.3)

Finally, if we apply this formula to Block 0, we obtain: L(B0) =√
0.33× (1− 0.5) = 0.41.

2.3.2 Ranking Locality

We define ranking locality in terms of the distance between blocks of neighboring

vertices. Let us denote the ranking distance a vertex u ∈ V has to its neighbor

vertices by R(u). Formally, we have:

R(u) =
∑
v∈Nu

d(r(u), r(v)) (2.4)

Then the ranking locality for a block B is defined as:

R(B) = 1−
∑

u∈VB
R(u)

dmax ×
∑

u∈VB
|Nu|

(2.5)

CHAPTER 2. PROBLEM DEFINITION 11

In this formula, dmax represents the maximum possible distance in the layout such

that dmax = maxu,v∈V d(r(v), r(u). When there are no edges going outside of a

block, the ranking locality is 1. This is the ideal scenario. The ranking locality

could be negative.

Chapter 3

Solution Overview

In this chapter, we give an overview of our solution to scalable layout of large-

scale graphs. Our approach, named ICBP1, consists of a multi-stage process,

where each stage can be implemented in a scalable manner using map/reduce

style parallelism.

3.1 General Approach

ICBP has three major stages. The first stage identifies the diffusion sets of

vertices. The second stage performs coarse partitioning of the graph based on

locality. It uses the diffusion sets from the first stage to guide the partitioning.

The last two stages are used to form blocks and rank them. The forming of

blocks and their ranking are implemented in an integrated manner to reduce the

overhead of having an extra stage in the map/reduce flow. Figure 3.1 illustrates

these stages.

1ICBP acronym is formed by the first letters of the four stages in our solution.

12

CHAPTER 3. SOLUTION OVERVIEW 13

Identifying Diffusion Sets Coarse Partitioning

Block Formation

Packing

Figure 3.1: Solution overview.

CHAPTER 3. SOLUTION OVERVIEW 14

3.1.1 Identifying Diffusion Sets

Diffusion set of a vertex is a summarized representation of its neighborhood in

the graph, not limited to single-hop neighbors. It can be used to define closeness

between vertices. To identify the diffusion set of a vertex, we perform random

walks starting from the vertex and record the vertices visited, together with the

number of times they have been visited during the random walks. The end result

is a weighted set of vertices. We perform t random walks, each of length l. If

we choose small values for l and t, then the neighborhoods will be sparse and

thus similarities among neighborhoods of close vertices will be low. Conversely, if

we choose large values for l and t, then many neighborhoods will end up looking

similar, even if the vertices are not close. Also, large values will increase the

computation time significantly, as diffusion sets are computed for each vertex.

We address tuning of l and t in Section 4.1.

3.1.2 Coarse Partitioning

After identifying diffusion sets for each vertex in the graph, we divide the graph

into k vertex-disjoint sub-graphs. Vertices that are close based on the similarity

of their diffusion sets are co-located on the same sub-graphs, as much as possi-

ble. The goal of the coarse partitioning is to create sub-graphs that can fit into

the memory available on a single machine. Furthermore, coarse partitioning also

helps us create sufficiently small sub-graphs that are suitable for executing com-

putationally more expensive block formation algorithms inspired by hierarchical

clustering. Naturally, as the input graph becomes larger in size, the number of

partitions we need tp create, that is k, increases as well. We address the tuning

of k in Section 4.2.

CHAPTER 3. SOLUTION OVERVIEW 15

3.1.3 Block Formation

Block formation is performed in a bottom-up fashion. Initially, each vertex is

in a partition by itself. Then we successively merge pairs of partitions to create

bigger partitions. Among the possible pairs, we pick the one that minimizes the

distance between the diffusion sets of the vertices in the partitions. We further

detail this in Section 4.3. If a partition exceeds the maximum block size, a block

is formed from it. This block is output and removed from the partition. The

block formation completes when all vertices are assigned to a block.

3.1.4 Packing

Packing is performed in an integrated manner as part of the block formation.

When the block formation algorithm finalizes a block, the packing algorithm

assigns a rank label to the block. This rank label is a multi-segment string that

approximates the location of the block within the hierarchical merge-tree of the

vertices. Ordering the resulting blocks based on their rank labels gives their rank.

The base packing algorithm only orders blocks within the same coarse partition,

as the packing is performed independently for different partitions. A post-packing

algorithm applies the same logic to order the coarse partitions, to achieve the final

global ranking.

3.2 Scalability

Since we aim to perform locality-aware block formation and ordering for large-

scale graphs, scalability is a primary concern. Therefore, our entire solution is

designed to be run as a series of map/reduce (MR) tasks.

First, an MR task transforms the input graph given in the form of an edge list

into an adjacency list formatted graph. This step is not needed if the input graph

is already in the adjacency list format.

CHAPTER 3. SOLUTION OVERVIEW 16

Second, we use two MR tasks to form the diffusion sets. The first task is respon-

sible for performing random walks and forming the vertex visit lists. The second

job uses these lists to assign weights to vertices and form the final diffusion sets.

Third, we run a series of MR tasks to perform the coarse partitioning. The

coarse partitioning is implemented as variation of iterative k-means clustering.

An initial MR task is used to form initial partition centroids and the remaining

tasks are used to perform a single iteration of a k-means clustering algorithm.

Last, we use an MR task to run the block formation and packing for each one of

the coarse partitions we have created in the earlier stage.

Chapter 4

Scalable Block Formation &

Ranking

In this chapter, we discuss the details of the four stages comprising ICBP. For each

stage, we describe parameter tuning and scalable implementation techniques.

4.1 Identifying Diffusion Sets

Diffusion set of a vertex v, denoted by Dv, is used to capture the close vertices

around v based on the vertices visited during random walks that start from v.

To find Dv, we apply t random walks around v, each of length l. These random

walks aim to locate vertices that are encountered close to each other during a

graph traversal. We compute the diffusion sets for all vertices in the graph and

implement it in a scalable manner using Map/Reduce. The more challenging

aspect of identifying diffusion sets is tuning the parameters k and l based on the

graph size and structure, which we discuss next.

Choosing t. Number of random walks (t) is critically important because if we

set a too small t value, then the diffusion sets of vertices become very sparse and

defining similarity of vertices using these sets becomes ineffective. Otherwise,

17

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 18

if we set a too large t value, then the computation cost significantly increases

without any benefit in terms of creating a diffusion set that can capture vertex

similarity.

For a given graph, we define f as a cumulative distribution function of degrees,

such that for x ∈ N f(x) = P (d ≤ x). In other words, f(x) is the fraction of

vertices that have a degree less than equal to x. Then we choose t as follows:

t = min{x : f ′(x) ≤ ε} (4.1)

Here, f ′ is the derivative of the cumulative degree distribution function f . In

effect, we pick the smallest degree for which the distribution function’s slope

reaches ε. Our experimental evaluation has shown that choosing ε = 1.0 gives

robust results for varying graph sizes.

Choosing l. Vertex similarities are directly related to the setting of l. With

large l values, the number of unique vertices that appear in diffusion sets increase

and all vertices becomes similar. On the other hand, with small l values, the

effectiveness of diffusion sets decreases as they become dissimilar even for close

vertices.

In order to decide l, the first thing we should know is the diameter of the graph.

Since social graphs exhibit small world phenomenon, their diameter can be es-

timated as the natural logarithm of the number of vertices they have, that is

ln(|V |). Accordingly, l should be at most ln(|V |). Recall that after finding dif-

fusion sets, we apply a coarse partitioning algorithm to divide the graph into k

sub-graphs. Therefore we choose l so as to cover the space with a sub-graph, as

follows:

l = 1 +

⌈
ln(|V |)
k

⌉
(4.2)

M/R Implementation. t-l random walks are implemented via l repeated M/R

jobs, each one producing the vertices visited during the next hop of the random

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 19

Algorithm 1: Random Walk Mapper
Param : t, the number of random walks; isFirst, whether this is the first job
Input : 〈key, value〉
if isFirst then

let 〈v,Nv〉 = 〈key, value〉
for t times do

u← Nv[rand()]
output 〈v, u〉

else
if value is a neighbor list then

let 〈u,Nu〉 = 〈key, value〉
output 〈u,Nu〉

else
let 〈v, u〉 = 〈key, value〉
output 〈u, v〉

walks, followed by a final M/R job for creating the diffusion sets. During the

first iteration, the mapper takes the input graph as the input as a list of vertex

to neighbot list mappings. For each vertex, it chooses t random nodes from the

neighbor list and sends each vertex, neighbor pair to the reducer. The reducer is

an indentity reducer in the first iteration. The result is a file that contains the

initiator vertex as the key, and the visited vertex as the value. This MR job is

run for l − 1 more times after the first iteration. In the following iterations, the

mapper takes the original graph and the output from the previous step as input.

If a key/value pair comes from the original graph, then the mapper sends this pair

directly to the reducer. If not, it switches the initiator with the visitor and sends

the resulting pair to the reducer. This swapping enables joining the visited vertex

with its neighbor list, so that the next vertex to visit can be determined at the

reducer side. For each visited vertex, the reducer collects the initiators vertices

plus the neighborlist of the visited vertex. For each initiator, it determines the

next visited vertex using the neighborlist of the current one, and outputs an

initiator, next visited vertex pair. Algorithms 1 and 2 give the pseudo-codes

for the mapper and the reducer for the iterative steps of the random walks,

respectively.

When l iterations are completed, the final M/R job combines all intermediate

files and outputs the diffusion sets. Assigning weights to vertices in the diffusion

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 20

Algorithm 2: Random Walk Reducer
Param : isFirst, whether this is the first job
Input : 〈key, values〉
N ← nil . neighbor list of last visited vertex
V ← [] . initiator vertices for last visited vertex
if isFirst then

let 〈v, U〉 = 〈key, values〉
foreach u ∈ U do

output 〈v, u〉
else

let u = key
foreach value ∈ values do

if value is a neighbor list then
let Nu = value
N ← Nu

else
let v = value
V ← V + [v]

foreach v ∈ V do
output 〈v,N [rand()]〉

sets is an important task performed by this last task, because it identifies the

vertices that are commonly visited (closer). We tested our system with several

alternatives for the weighting:

• non-weighted diffusion paths,

• occurrence count based weighted diffusion sets, and

• tf-idf based weighted diffusion sets.

Tf-idf based weights are computed by treating each diffusion set as a document

and using the traditional term frequency times inverse document frequency for-

mulation from information retrieval [14]. In our context, the term frequency is

the weight of a vertex in the diffusion set. The inverse document frequency for a

vertex is the logarithm of the ratio of the total number of vertices to the number

of diffusion sets that contain the vertex.

These weight assignment policies are compared in the experimental evaluation

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 21

section in terms of their running times and quality of locality they provide.

4.2 Coarse Partitioning

After identifying diffusion sets for each vertex in the graph, we divide the graph

into k vertex-disjoint sub-graphs as part of the coarse partitioning stage. The goal

of the coarse partitioning is to create sub-graphs that can fit into the memory

available on a single machine. Furthermore, coarse partitioning also helps us cre-

ate sufficiently small sub-graphs that are suitable for executing computationally

more expensive block formation algorithms inspired by hierarchical clustering.

Our coarse partitioning algorithm is based on k-means [15]. As such, we first

choose a set of k initial centers, denoted by C, from the graph. Then, for each

vertex v ∈ V , we find the closest center c ∈ C and assign v to the cluster of c.

After all vertices are assigned, we obtain a list of vertices for each cluster, denoted

as as Vc for center c. We then calculate the new centers, that is we update C, by

reducing Vc into a new center value replacing the old one. The process is repeated

until convergence, detected based on comparing the difference between the new

and old clusters to a threshold.

We now describe the various details of the algorithm, such as the distance metric

we use, setting the value of k, and determining the initial centers. We then

provide a brief description of the M/R implementation.

Distance Metric. To determine closeness of vertex pairs we need to define a

distance metric. Since diffusion sets are just weighted sets of vertices, we use

a weighted Jaccard distance for this purpose. Jaccard similarity of two sets S

and T is the ratio of the size of their intersection to the size of their union,

that is |S∩T ||S∪T | . If we apply this in our context for two vertices u, v ∈ V , we

get JS(u, v) = |Du∩Dv |
|Du∪Dv | . As we mentioned before, the vertices in diffusion paths

could be weighted, in which case we have a weighted Jaccard similarity, defined

as JSw(u, v) =
∑

x∈Dv∩Du
min{w(x,Dv),w(x,Du)}∑

x∈Dv∪Du
max{w(x,Dv),w(x,Du)} . Here, w(x,D) represents the weight

of vertex x in diffusion set D, After defining the similarity between two vertices,

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 22

the Jaccard Distance between them is simply: JD(u, v) = 1− JSw(u, v).

Choosing k. Tuning the k parameter is crucial because coarse partitioning aims

to divide the graph into in-memory processable sub-graphs for the following block

formation stage. Therefore, if we choose a too small k value, then we can run

out of memory in the block formation stage. On the other hand, if we choose a

too large k value, then we increase the processing time for the coarse partitioning

stage and we also lose the locality effect that will is needed for the block formation

stage to form blocks with high locality. Assume that all cores in our cluster has

M byte of memory and a vertex’s size is s byte. Then we choose k as follows:

k =

⌈
s× |V |√
0.8 ∗M

⌉
(4.3)

Is summary, we make k as small as possible without utilizing more than 80% of

the main memory on a node.

Initial Centers. One option to decide on the initial centers is to choose them

randomly. However, this has caused unstable performance both in terms of con-

vergence of the coarse partitioning stage as well as the locality of the resulting

blocks for the ICBP method. Instead, we came up with a more effective way of

setting the initial centers. The idea is to pick k vertices that are distant to each

other and have high degrees. These can be considered as influence centers in the

graph. To compute them, we added an M/R job to the system to sort the vertices

by degree. We then process this list, starting form the highest degree vertex. If

a vertex has a distance 0.9 or more to all of the the previously selected ones, we

select it as a center vertex. We stop when k vertices are selected.

Deciding Center Size. Cluster centers are weighted sets, just like the diffusion

sets. Recall that at the end of each iteration of k-means, we have to form new

centers. The size of these centers is also an important factor. If we choose a too

small size, then coarse partitioning converges too fast and the resulting clustering

have poor locality. If the size is too large, then the this delays convergence. We

set the center size to the average length of the diffusion paths within a cluster.

In our empirical study, this setting has resulted in good quality sub-graphs and

has shows good convergence behavior.

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 23

Algorithm 3: Coarse Partitioning Mapper
Param : C, set of centers, where for c ∈ C, c.id is the center id and c.S is the

diffusion set for the center.
Input : 〈key, value〉
let 〈v,Dv〉 = 〈key, value〉
c ← argminc∈CJD(Dv, c.S)
output 〈c.id,Dv〉

Algorithm 4: Coarse Partitioning Reducer
Param : isLast, whether this is the last job
Input : 〈key, values〉
O ← {} . Map from vertex to in-cluster occurrence count
size← 0 . Average diffusion set size in cluster
let cId = key . key is the cluster id
if not isLast then

foreach value ∈ values do
let D = value . each value is a diffusion set
foreach v ∈ D do

O[v]← O[v] + 1

size← size + |D|
size← size/|values|
D ← argtop-kv∈OO[v], where k = size
c← tuple(id=cId, S=D)
output 〈cId, c〉

else
foreach value ∈ values do

let D = value
c← tuple(id=cId, S=D)
output 〈cId, c〉

M/R Implementation. Coarse partitioning implemented via repeated sequen-

tial M/R jobs. The first iteration, takes a set of initial centers denoted by C.
Other sequential jobs produce the new centers for following iterations until the

final M/R job. We produce new centers simply by counting number of occurances

of vertices in that cluster and getting the most frequent ones. In the final job we

generate clusters. Algorithms 3 and 4 give the pseudo-codes for the mapper and

the reducer for the coarse partitioning stage, respectively.

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 24

4.3 Block Formation

During block formation, vertices are placed into partitions in a bottom-up fash-

ion. Each vertex starts in its own partition and partitions are successively merged

by picking the closest pair of partitions at each step. We define the close-

ness of two partitions as the minimum Jaccard distance between the diffusion

sets of the vertices contained within. For partitions P and P ′, this is given as

min{JD(Du,Dv) : u ∈ P ∧ v ∈ P ′}. When the size of a potential block that

would be formed from vertices in the partition without a block assigned so far

exceeds the maximum block size, then a full block is formed and output. The

block formation completes when all vertices are assigned to a block.

Super blocks. In large graphs that exhibit power law [16] degree distribution,

popular nodes require special treatment. If we take the Twitter graph as an

example, a user with millions of followers becomes an exceptional case because

the size of his/her neighbor list exceeds the block size. In such exceptional cases,

we divide the neigbor list of the vertex into multiple block sized partitions. We

define a block that points to multiple such partitioned blocks a super block.

Block labeling. We assign labels to blocks for helping with the last stage of

the ICBP solution, that is packing. For this purpose, during the execution of the

block formation algorithm, each partition maintains a label. This partition label

is used to derive the block label later. It captures the merge history of partitions

with respect to blocks. Initially, each partition has its vertex id as its label. When

two partitions merge, this label is updated as follows: If the two partitions have

not produced a block before, the new label is taken as the label of the larger

partition. If only one of them has formed a block before, then its label is taken

as the partition label. Finally, if both of the partitions have produced a block

before, then the label is taken as the concatenation (using ":" as a delimiter) of

the two labels, label of the bigger partition appearing on the left. When a block

is produced, it gets the label of its partition, with an additional suffix (using "."

as a separator) representing the index among blocks generated with the same

partition label. Figure 4.1) shows an example block formation process, where

numbers represent the order in which the partitions are merged. The partition

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 25

Algorithm 5: Block Formation Algorithm
Param : S, block size; V : the set of vertices in the sub-graph

B ← ∅ . Blocks to be generated
P ←

⋃
v∈V {tuple(l=str(v), i=false, V =[v], U={v})}

while |P| > 1 do
{P, P ′} ← argmin{P,P ′}⊆P

min{JD(Du,Dv) : u ∈ P.U ∧ v ∈ P ′.U}
. Setup the partition label
let Pn = argminP ′′∈{P,P ′}|P ′′.U | . Small partition

let Px = P ′′ s.t. P ′′ 6= Pn ∧ P ′′ ∈ {P, P ′} . Large part.
if Pn.i ∧ Px.i then Px.l← Px.l + “ : ” + Pn.l
else if ¬Px.i ∧ Pn.i then Px.l← Pn.l
. Merge the partitions
P ← P \ {Pn}
Px.U ← Px.U ∪ Pn.U
Px.V ← Px.V ∪ Pn.V
if blockSize(Px.V) ≥ S then

Px.i← true . Remember generation of block
k ← max{k : blockSize(Px.V [0:k]) ≤ S}
V ′ ← Px.V [0:k] . Vertices to form a block
B ← {(v,Nv) : v ∈ V ′} . Form the block
B ← B ∪B
Px.V ← Px.V \ V ′ . Update unassigned vertices

return B

labels are indicated on tree edges representing the merges. Blocks are marked

with dotted boxes and their block lables are indicated next to the boxes.

M/R implementation. Block formation is implemented with a single M/R

job, making use of only the map operation. Each map performs block formation

on one of the sub-graphs generated by the coarse partitioning stage and produce

blocks with their associated labels. Algorithm 5 gives the pseudo-code for this

process.

4.4 Packing

Social graphs exhibit small-world behavior, and thus most vertices are reachable

from each other via a small number of hops. Therefore, even with locality-aware

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 26

a b c d e f g h i j k l m n o p q r

a.0

e.0

a:e.0 j.0 j.1 p.0

a.0 a:e.0 e.0 j.0 j.1 p.0

a b c d h i e f g j k l m n o p q r

FINAL BLOCK ORDER ON DISK

FINAL NODE ORDER ON DISK

1 2 4 53

7 8 9 10

11 12 13

15 16

17

a
a

e

e

a:e

j
j

j p

p

j:p
a:e:j:p

a e h j n

:

Figure 4.1: Illustration of packing.

block formation, we will have many edges crossing between blocks. With the

packing algorithm, we aim to provide a locality-aware disk layout for graphs by

considering inter block similarities. Primary goal of packing process is to store

similar blocks close on disk.

The packing algorithm simply orders the blocks based on their labels that were

generated as part of the block formation phase. Before the sort, we replace the

vertex names that appear in the block labels with their order in the leaves of the

hierarchical merge tree. Then sorting the blocks by their labels locate blocks that

were close in the merge tree close on the disk as well.

For instance, in Figure 4.1, first nodes a and b are merged. then e and f , and

so on. As you can see, we construct a tree in a bottom up manner. In this toy

example, for brevity and ease of exposition, we assume that all vertices have the

same degree d and size limit for a block is 3 × (d + 1), thus only 3 vertices fit

in a block. We observe that in the 7th iteration, the vertices [a, b, c] reach the

size limit and block formation algorithm generates them as a block. This block is

labeled as a.0 by taking the partition label at the time of block generation (a in

this case), and the index among the blocks that are generated with that partition

label (0 in this case). This procedure continues to create blocks out of vertices

[e, f, g], [j, k, l], [m,n, o], and [p, q, r].

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 27

In Figure 4.1, the block that contains vertices [d, h, i] is different, because the

vertices in this block are not contiguous at the leaf level. In the 11th step, the

partition that contains d merges with the partition that has earlier produced block

a.0. And in the 12th step, the partition that contains h and i merges with the

partition that earlier produced block e.0. Finally, 15th step, we merge these two

partitions. The resulting partitions gets the label a : e, because the constituent

partitions both have produced blocks earlier. Since the partition reaches the

maximum size, a new block that contains the vertices [d, h, i] and has label a : e.0

is generated.

Finally, when block formation is completed, we order blocks by sorting their

labels. The end result is seen at the bottom of Figure 4.1.

Recall that this packing procedure is performed for each sub-graph in parallel.

Once the order of blocks with each sub-graph is determined, a sequential version

of the same process is applied across sub-graphs, by treating each sub-graph

as a virtual vertex and pre-computing the distances among them based on the

number of edges going in-between. The end result is an ordering that specifies

which sub-graph blocks go first on the disk.

Chapter 5

Experimental Evaluation

In this section, we evaluate our system, with a special focus on the impact of

the proposed optimizations on locality and scalability. Scalability experiments

evaluate the running time of our ICBP algorithm as a function of number of cores

used and the size of the graph. Locality experiments evaluate the performance of

ICBP using locality metrics, as well as query running times using an industrial

graph database system.

5.1 Experimental Setup

We first provide details on our implementation, evaluation environment, the

datasets used, and the metrics employed in our evaluation.

5.1.1 Implementation

Our implementation was done in Java 1.7 using Hadoop v2.6 [17] framework. For

evaluation of the coarse partitioning method we use Metis [18] graph partitioning

28

CHAPTER 5. EXPERIMENTAL EVALUATION 29

tool and for evaluation of the layout we use Neo4j [1] graph database. For work-

load generation, we use RMAT [19] implementation of Boost Graph Library [20].

5.1.2 Environment

For running the ICBP algorithm, we used a cluster with 8 machines and a total of

96 cores. Each machine has 2 Intel Xeon E5-2620 2.00GHz processors and 32GB

of memory. Each processor has 6 cores and our implementation use all of these

cores. Each machine has 1TB disk space, made of up of 4 IBM Server X 5400

SATA disks using RAID-5. The operating system used was CentOS GNU/Linux

with the 2.6 kernel and ext4 filesystem. It is worth noting that our evaluation

heavily focuses on scalability and impacts of optimizations on locality and not on

absolute performance. In the experiments where we evaluate the performance of

our disk layout using the Neo4j [1] graph database, we use a Macbook-Pro with

an Intel i5 processor and 4GB of memory.

5.1.3 Data Sets

We used R-MAT [19] generated graphs, as well as real-world graphs obtained

from SNAP [21].

Synthetic Data: In our experiments, we use R-MAT generated power-law

graphs with small world properties. The R-MAT graph generator provides an ef-

ficient way for generating very large realistic graphs. We apply our ICBP method

to the graphs generated by R-MAT and analyze their locality and running time

performance under different configurations. In our testes we use RMAT graphs

with different sizes, where the number of edges is taken as 20 times the number

of vertices.

Real Data: In addition to the RMAT graphs, we also selected several small,

medium, and large size graphs from SNAP. These graphs are: ego-Facebook

(4039 vertices, 88234 edges), wiki-Vote (7,115 vertices, 103,689 edges), wiki-Talk

(2,394,385 vertices, 5,021,410 edges).

CHAPTER 5. EXPERIMENTAL EVALUATION 30

12 24 36 48 60 72 84 96
Number of Cores

0

5000

10000

15000

20000

25000
E
x
e
cu

ti
o
n
 T

im
e
 (

s)
Initialization

Diffusion Path

Coarse Partition

Block Formation

Figure 5.1: Scalability w.r.t. # of
cores.

10 20 40 80 200
Number of Edges(Millions)

0

500

1000

1500

2000

2500

3000

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Initialization

Diffusion Path

Coarse Partition

Block Formation

Figure 5.2: Scalability w.r.t. # of
edges.

5.2 Scalability

Figure 5.1 shows the running time of the ICBP method as a function of the num-

ber of cores used. The graph used in this experiment is an 80 million edge R-MAT

graph. Each bar represents the total amount of time the ICBP algorithm took to

generate the disk layout. The different colored sub-bars represent the time taken

by different stages on the ICBP method. The first sub-bar represent initializa-

tion, which is used to convert the initial graph from edge list representation to

adjacency list representation. The second sub-bar represents forming the diffu-

sion sets and the third bar represents coarse partitioning. The fourth and final

sub-bar represents block formation, which also performs packing. The figure also

shows an ideal line representing perfect scale-up. Figure 5.2 shows the running

time with the same breakdown, but as a function of the number of edges. Graphs

used in this experiment are 10, 20, 40, 80 and 200 million edge R-MAT graphs.

We observe from Figures 5.1 and 5.2 that initialization step takes negligible time

compared to other stages, as it is very light on computation. Among the re-

maining stages, forming the diffusion sets is cheaper than coarse partitioning and

block formation, but in general the distribution is quite balanced, especially with

increasing number of cores. The most striking observation from Figure 5.1 is

about scalability. We see that ICBP method’s running time with increasing core

sizes closely matches the running times represented by the ideal scale-up line.

CHAPTER 5. EXPERIMENTAL EVALUATION 31

88234 103689 200000 1000000 2000000 3000000
Number of Edges

0

100

200

300

400

500

600

700

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

C
o
a
rs

e
 P

a
rt

.

M
e
ti

s

C
o
a
rs

e
 P

a
rt

.

M
e
ti

s

C
o
a
rs

e
 P

a
rt

.

M
e
ti

s

C
o
a
rs

e
 P

a
rt

.

M
e
ti

s

C
o
a
rs

e
 P

a
rt

.

M
e
ti

s

C
o
a
rs

e
 P

a
rt

.

M
e
ti

s

Initialization

Diffusion Path

Coarse Partition

Block Formation

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ca

lit
y

ICBP(Coarse Partitioning)

ICBP(Metis)

Figure 5.3: ICBP with Metis & coarse
partitioning.

Non-weighted Weighted TfIdf Weighted
Case

0

500

1000

1500

2000

2500

3000

3500

4000

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Initialization

Diffusion Path

Coarse Partition

Block Formation

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Lo
ca

lit
y

Locality - 200m

Locality - 80m

Locality - 40m

Locality - 20m

Figure 5.4: Assigning weights to diffu-
sion sets.

We observe from Figure 5.2 that the running time is not always linear in the

number of edges. t parameter is one of the key factors which determine the size

of diffusion sets. In our parameter selection policy, t doesn’t increase proportional

to number of edges of the graph, instead it increases slowly. Therefore, the size

of diffusion so the running time is not always linear in the number of edges.

5.3 Locality

In this section, we study the effectivenesses of our proposed optimizations on the

locality of the layouts generated by ICBP.

5.3.1 Effectiveness of Coarse Partitioning

Coarse partitioning plays an important role in ICBP, as the localities of the

generated blocks are affected by the quality of the sub-graphs generated by coarse

partitioning. To understand the effectiveness of coarse partitioning, we compare

it to a more traditional approach: graph partitioning.

Metis [18] is one of the popular and effective graph partitioning methods in the

CHAPTER 5. EXPERIMENTAL EVALUATION 32

Random Center Distant Center
Case

0

500

1000

1500

2000

2500

3000

3500

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Initialization

Diffusion Path

Coarse Partition

Block Formation

0.05

0.00

0.05

0.10

0.15

Lo
ca

lit
y

Locality - 200m

Locality - 80m

Locality - 40m

Locality - 20m

Figure 5.5: Choosing initial centers.

32KB 64KB 128KB 256KB 512KB 1024KB
Block Size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ca

lit
y

Locality - 20m
Locality - 40m
Locality - 80m
Locality - 200m

0.0

0.1

0.2

0.3

0.4

0.5

1
 -
 C

o
n
d
u
ct

a
n
ce

Conductance - 20m
Conductance - 40m
Conductance - 80m
Conductance - 200m

Figure 5.6: Locality vs. block size.

literature and it produces high-quality graph partitions. Therefore, in this exper-

iment, we compared the results from ICBP with those from a variant of ICBP

where the coarse partitioning is replaced by graph partitioning. The graph parti-

tioning aims to minimize the edge cut, while balancing the number of vertices in

each partition. Figure 5.3 plots the locality of the resulting blocks, as a function

of graph size. We use 6 different graphs for this purpose. The first two graphs

are real graphs from SNAP, namely ego-Facebook and wiki-Vote, and the last four

ones are generated using R-MAT.

From Figure 5.3 we observe that for small graphs (especially the first real-world

graph), ICBP with Metis can lead to improved locality compared to using ICBP

with coarse partitioning. However, for larger graphs, the localities achieved by

the two approaches are identical. We prefer coarse partitioning over Metis due

to its scalability and integration into ICBP’s Hadoop framework, as well as its

good locality for large-graphs that is the focus of this work. Figure 5.3 also shows

that Metis starts to take more time as the graph size is increased. Furthermore,

pre-processing also starts to take more time for Metis, as the graph needs to be

converted into the input format of Metis. The time taken by coarse partitioning,

on the other hand, is not effected as much from the number of vertices, even

though in absolute terms it takes more time than Metis for smaller graph sizes.

For 300 million edges, ICBP with coarse partitioning starts to take less time

compared to Metis. While there are parallel, scalable versions of Metis [22], they

do not integrate well with our M/R framework.

CHAPTER 5. EXPERIMENTAL EVALUATION 33

5.3.2 Assigning weights

Having weighted diffusion sets helps us better capture similarity for vertices,

which in turn is expected to improve block locality. To understand the im-

pact of weight assignment on the locality of the generated blocks, we compared

three alternatives schemes: non-weighted, occurrence counts as weights, and tf-

idf weights computed over occurrence counts. For the weighted schemes, it is

important to note that during random walks, the host vertex is assumed to be

visited as the first vertex.

Figure 5.4 plots the execution time of ICBP (using the left y-axis) and locality

(using the right y-axis), for different weighting schemes and for R-MAT generated

graphs of different sizes (20, 40, 80, and 200 million edges).

We observe from Figure 5.4 that for all graphs sizes, tf-idf based weight assign-

ment improves locality compared to non-weighted and occurence count based

weighted cases, with relative improvements ranging from 20% to 50%. Since

tf-idf based weights decrease the importance of very popular vertices in diffu-

sion sets, this type of weight assignment improves the quality of sub-graphs that

are generated with coarse partitioning by reducing the tendency of vertices to

accumulate in one cluster.

5.3.3 Choosing Centers

During coarse partitioning, in each iteration, we assign vertices to clusters based

on the similarity of their diffusion sets to cluster centers. The initial center

selection for coarse partitioning impacts these iterations, and thus the locality

and convergence.

In this experiment we examine two center selection strategies, namely random

and distant. The first selection strategy is to choose randomly selected k host

vertices and their adjacency lists as centers. The second selection approach is to

choose k most distant and highest degree host vertices and their adjacency lists

CHAPTER 5. EXPERIMENTAL EVALUATION 34

as initial centers, as explained earlier in Section 4.2. For this experiment, we

again used RMAT-generated graphs.

Figure 5.5 plots the execution time of ICBP (using the left y-axis) and locality

(using the right y-axis), for the two center selection schemes and for 4 different

graph sizes (20, 40, 80, and 200 million edges).

We see that initial center selection strategies impact the convergence speed of

coarse partitioning. Based on our experiments, we have observed that starting

coarse partitioning with randomly selected centers from the graph sometimes

requires more iterations to converge. The 40 million edge graph is a good example

of this in Figure 5.5, where the coarse partitioning takes almost two times longer

with random center selection.

From Figure 5.5, we also observe that initial center selection strategy impacts

locality. For all graph sizes, the distant center selection strategy outperforms the

random one, up to 30% in some cases.

Although distant center selection strategy improves locality and speeds up con-

vergence, in some cases it also increases the time taken by the following stage

of ICBP, that is block formation. This can be observed for the 200 million edge

graph in Figure 5.5. Still, ICBP with distant center selection completes faster

than random selection, for all graph sizes. The reason block formation some-

times takes longer with distant center selection is that, higher quality sub-graphs

formed by it may have higher skew in their sizes, resulting in load imbalance

during the block formation stage.

5.3.4 Locality and Block Size

In this experiment we examine the effect of block size on locality. We apply ICBP

with blocks of size 32, 64, 128, 256, 512, and 1024 KBs. We use R-MAT graphs

with differing sizes and measure locality.

CHAPTER 5. EXPERIMENTAL EVALUATION 35

20M 40M 80M 200M
Number of edges

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05
R

a
n
ki

n
g
 L

o
ca

lit
y

32KB-Blocks

64KB-Blocks

128KB-Blocks

256KB-Blocks

Figure 5.7: Ranking locality vs. graph
size.

BFS DFS 2-Hop BFS 4-Hop BFS 2-Hop DFS 4 Hop DFS RWalk
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
a
ti

o

8
.3

2
h

C
o
ld

 s
ta

rt

9
.2

1
h

C
o
ld

 s
ta

rt

3
8

6
s

C
o
ld

 s
ta

rt
2

2
6

s
H

o
t

st
a
rt

1
1

8
0

s
C

o
ld

 s
ta

rt
8

1
7

s
H

o
t

st
a
rt

5
8

7
s

C
o
ld

 s
ta

rt
3

4
1

s
H

o
t

st
a
rt

3
2

3
2

s
C

o
ld

 s
ta

rt
2

3
3

3
s

H
o
t

st
a
rt

3
6

5
s

C
o
ld

 s
ta

rt
3

3
2

s
H

o
t

st
a
rt

5
.8

2
h

C
o
ld

 s
ta

rt

4
.7

9
h

C
o
ld

 s
ta

rt

1
5

4
s

C
o
ld

 s
ta

rt
1

4
2

s
H

o
t

st
a
rt

6
4

2
s

C
o
ld

 s
ta

rt
5

8
0

s
H

o
t

st
a
rt

3
5

0
s

C
o
ld

 s
ta

rt
2

9
6

s
H

o
t

st
a
rt

1
7

1
3

s
C

o
ld

 s
ta

rt
1

4
4

0
s

H
o
t

st
a
rt

1
8

7
s

C
o
ld

 s
ta

rt
1

3
3

s
H

o
t

st
a
rt

Normal Layout

ICBP Layout

Figure 5.8: Query running times with
Neo4j.

Figure 5.6 plots locality as a function of the block size, for graphs of different sizes.

The overall locality is shown on the left y-axis and 1 - conductance is shown on

the right y-axis. Since cohesiveness has a term that graphs quadratically with

the number of vertices in a block, it brings down the overall locality significantly.

Thus, we also show conductance separately in this experiment. We observe that,

as the block sizes increase, the conductance decreases. This is intuitive, as if

there was only a single block, then conductance would have been 1. However,

the overall locality decreases as the block size increases, due to the impact of

cohesiveness.

5.3.5 Ranking Locality

In this experiment, we evaluate ranking locality for different graph and block sizes.

We use Equation 2.3.2 to compute ranking localities over all disk blocks. We use

distant center selection and tf-idf weight assignment strategies. The graphs used

are R-MAT generated.

Figure 5.7 plots ranking locality as a function of graph size, for different block

sizes. Overall, ranking localities are high. An important observation from the

figure is about the sensitiveness of ranking locality to graph size. Small blocks

are more resilient to changes in the graph size. In fact, 32KB blocks have ranking

CHAPTER 5. EXPERIMENTAL EVALUATION 36

localities almost independent of graph size. On the other hand, 256KB blocks

show high variation in locality as the graph size changes, compared to smaller

block sizes.

5.3.6 Query Running Times

To understand the impact of the layouts generated by ICBP on the performance of

query evaluation in a graph database, we deployed the graph layouts generated by

ICBP to the Neo4j [1] graph database management system. For this experiment,

we used the 80 million edge R-MAT graph. To evaluate query performance, we

used global BFS and DFS queries, limited hop BFS and DFS queries and random

walks. The limited hop queries were run 100 times and the average results are

reported. These graph algorithms were implemented using the Java API provided

by Neo4j [1].

Deployment of the ICBP generated layout to Neo4j is performed in two stages.

First stage is for preparation and the second one is for generation of the Neo4j

specific files on the disk. Neo4j stores graphs in separate files and uses a modified

version of edge list format to represent relationships between vertices. Since,

Neo4j doesn’t have a specific block notion and uses edge lists, our adjacency list

based block structure needs to be converted. In preparation stage we do this

conversion with two steps. First we merge blocks according to packing order

and obtain a single file; and second we transform this file into edge list format.

After the edge list file is generated, we create a second file which stores vertices

in the order of their appearance in the edge list. These two files become inputs

of the second stage. In the generation stage, we create Neo4j specific files using

Map/Reduce jobs, consisting of consecutive join, union, and ascending sort jobs.

Figure 5.8 shows the running times of the algorithms, normalized with respect to

Neo4j’s default layout (labeled as Normal in the graph). We also have absolute

running times as annotations in the figure. We show running times for both cold

start and hot start cases, except for the global queries for which a hot cache does

not make a difference (since the query touches the entire database). We observe

CHAPTER 5. EXPERIMENTAL EVALUATION 37

that the default layout of Neo4j has 43% and 92% higher running times compared

to ICBP for the BFS and DFS algorithms, respectively. For the cold start case

using limited hop queries, the default layout results in 1.5 to 2.5 times higher

running times compared to ICBP. The relative results are similar even for the

hot start case, except for 2-hop DFS where the normal layout and ICBP perform

similarly.

Chapter 6

Related Work

With the popularization of social networks and availability of large amounts of

relationship data in the form of graphs, graph data management and mining

became an important area of research and development. A survey can be found

here [23].

Graph representation is used frequently in many domains, such as social media

and telecommunications. For example, we can model the relationships in a so-

cial network using graphs and finding communities in the graph [2] can facilitate

targeted advertising. In the telco domain, CDRs (call details reports) can be

used to capture the call relationships between people [3], and locating closely

connected groups of people can be used for generating promotions. To handle

the graph processing and management needs of an increasing number of appli-

cations in diverse domains, several graph processing and management systems

have been introduced to handle large-scale graphs [4, 5, 6, 7, 8, 9, 10, 11, 24, 25].

The primary goal of these systems is to manage large graphs and execute graph

algorithms on them in an efficient and scalable manner.

In this work, we focus on disk-based graph management systems [1, 6]. Un-

like relational data, graphs are semi-structured in nature. Thus, storing and

accessing graph data using secondary storage requires new solutions that can

38

CHAPTER 6. RELATED WORK 39

provide locality of access for graph processing workloads. In the literature there

are several works which try to increase efficiency of graph management systems,

like [13] and [26].

One of the primary contributions of our work is the scalable block formation

algorithm used to generate locality-aware blocks by storing close vertices in the

same blocks as much as possible. A relevant work in this area is the disk lay-

out techniques proposed by Hoque and Gupta [13] called Bondhu. Bondhu [13]

presents a strategy for storing a social graph on disk. In this work they use com-

munity structures of social graph as a placement strategy. Using this strategy

they optimize the disk layout, so that graph traversals can be performed using

less I/O. Unlike their work, ICBP is a distributed graph layout algorithm (based

on Map/Reduce) that can scale to large graphs.

In [26], Nodine et al. studies the graph search problem for large graphs that

cannot fit into the main memory by trying to use blocks on disk efficiently. In

their work, they have shown that optimizing the blocking has increased the per-

formance of searching complete d-ary trees and d-dimensional grid graphs.

In [27], Gedik et al. have proposed a system for temporal storage and querying

of evolving interaction graphs. In this work they proposed several online block

formation algorithms that are used to reduce the I/O required to answer queries.

Besides, they have proposed and applied several locality metrics to analyze graph

blocks. In contrast to our work, their graphs are not relationship graphs, but

instead append-only interaction graphs with a temporal aspect. As a result,

their algorithms are streaming in nature.

GBASE [10] is a disk-based graph management system. It is related to our work

in the sense that, it is a Map/ Reduce [28] based large-scale graph management

system. It employs a graph storage method that relies on block compression

to efficiently store homogeneous regions of graphs, and a grid based technique

to efficiently place blocks into files. However, the system is not optimized for

locality-awareness.

CHAPTER 6. RELATED WORK 40

In [29], Akyürek et al. describes an adaptive technique for reducing disk seek

times. To achieve this goal they copy a number of frequently referenced disk

blocks to a reserved area near the middle of the disk from their current locations.

Block rearrangement is related with our work, because similarly we also need to

arrange and order graph blocks on disk to achieve good performance. In [29],

the arrangement of blocks are done based on block access frequencies and in our

work we do it based on block similarities.

BORG [30] is a self-optimizing layer in the storage stack. It reorganizes data on

disk by looking at access patterns. BORG aims to optimize read and write traffic

dynamically by making them more sequential. This work is relevant with ours,

in which we aim to organize locality-aware blocks of a graph on disk and make

reads more sequential.

TurboGraph [31] is designed as a single PC graph processing system. It leverages

the advantages of low latancy and random I/O capabilities of SSDs. Although

TurboGraph performs really well on SSD based disks, due to its parallel random

I/O dependent design, it performs poorly on conventional magnetic disks.

In [32], Xie et al. propose a novel block-oriented computation model. In their

model, computations are performed by iterating over locality-aware blocks. Al-

though their computation model is in vertex-centric programming abstraction,

instead of executing one vertex at a time they execute one block at a time and

achieve good cache performance.

Neo4j [1] is a commercial disk-based graph management system. Although Neo4j

has implements optimizations such as indexing and caching, its on-disk graph

layout can be improved to increase query performance. In this work, we have

shown that locality-aware layouts generated by ICBP can be used to improve

Neo4j’s query performance by a factor of 2 or more.

In [33], Dominguez-Sal et al. studies the characteristics of the graphs which are

essential for benchmarks, and also the characteristics of the queries that are im-

portant in graph analysis applications. This study mainly helped us to determine

CHAPTER 6. RELATED WORK 41

graph characteristics that are useful for our methodology and parameter selection.

Chapter 7

Conclusion

We have developed a scalable system that generates locality aware blocks for

large graphs. The system maintains a method called ICBP, which can divide

the graph into a series of disk blocks that contain sub-graphs with high locality.

Furthermore, ICBP can order the resulting blocks on the disk to further reduce

non-local accesses. We experimentally evaluated ICBP to showcase its scalability,

layout quality, as well as the effectiveness of automatic parameter tuning for

ICBP. We demonstrated that ICBP is an effective disk layout technique, for large-

scale graphs and it increases the performance of disk-based graph management

systems by increasing the locality of access of disk blocks. As we have shown

in our first experiment; ICBP makes the disk layout generation scalable, so that

large-scale graphs can be divided into disk blocks using distributed processing.

Finally, we proposed evaluation metrics for measuring the efficacy of the ICBP

disk layout technique and present an experimental evaluation showcasing its disk

layout quality and running time scalability.

42

Bibliography

[1] “Neo4j open source graph database.” http://neo4j.org/, retrieved Jan-

uary, 2010.

[2] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 483,

no. 3-5, pp. 75–174, 2009.

[3] A. A. Nanavati, G. Siva, G. Das, D. Chakraborty, K. Dasgupta, S. Mukher-

jea, and A. Joshi, “On the structural properties of massive telecom call

graphs: findings and implications,” in Proceedings of the ACM International

Conference on Information and Knowledge Management (CIKM), pp. 435–

444, 2006.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: a system for large-scale graph processing,” in

Proceedings of the ACM International Conference on Management of Data

(SIGMOD), pp. 135–146, 2010.

[5] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Heller-

stein, “Distributed GraphLab: A framework for machine learning and data

mining in the cloud,” Proceedings of the VLDB Endowment, vol. 5, no. 8,

pp. 716–727, 2012.

[6] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale graph

computation on just a PC,” in Proceedings of the USENIX Symposium on

Operating System Design and Implementation (OSDI), pp. 31–46, 2012.

43

http://neo4j.org/

BIBLIOGRAPHY 44

[7] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “PowerGraph:

Distributed graph-parallel computation on natural graphs,” in Proceedings

of the USENIX Symposium on Operating System Design and Implementation

(OSDI), pp. 17–30, 2012.

[8] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a

memory cloud,” in Proceedings of the ACM International Conference on

Management of Data (SIGMOD), 2013.

[9] J. Mondal and A. Deshpande, “Managing large dynamic graphs efficiently,”

in Proceedings of the ACM International Conference on Management of Data

(SIGMOD), pp. 145–156, 2012.

[10] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos, “Gbase: A scalable

and general graph management system,” in Proceedings of the ACM Inter-

national Conference on Knowledge Discovery and Data mining (SIGKDD),

pp. 1091–1099, 2011.

[11] “Apache Giraph.” giraph.apache.org/, retrieved June, 2013.

[12] R. Steinhaus, “G-Store: A storage manager for graph data,” Master’s thesis,

University of Oxford, 2011.

[13] I. Hoque and I. Gupta, “Disk layout techniques for online social network

data,” IEEE Computing, vol. 16, no. 3, pp. 24–36, 2012.

[14] A. Rajaraman and J. D. Ullman, “Data mining,” in Mining of Massive

Datasets, pp. 1–17, Cambridge University Press, 2011.

[15] J. MacQueen, “Some methods for classification and analysis of multivariate

observations,” in Proceedings of the Berkeley Symposium on Mathematical

Statistics and Probability, Volume 1: Statistics, pp. 281–297, 1967.

[16] M. Newman, “Power laws, pareto distributions and Zipf’s law,” Contempo-

rary Physics, vol. 46, no. 5, pp. 323–351, 2005.

[17] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,

giraph.apache.org/‎

BIBLIOGRAPHY 45

O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop

YARN: Yet another resource negotiator,” in Proceedings of the Annual Sym-

posium on Cloud Computing (SOCC), pp. 5:1–5:16, 2013.

[18] G. Karypis and V. Kumar, “Multilevel graph partitioning schemes,” in

Proceedings of the International Conference on Parallel Processing (ICPP),

pp. 113–122, 1995.

[19] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model

for graph mining,” in In Fourth SIAM International Conference on Data

Mining, 2004.

[20] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, Boost Graph Library, The: User

Guide and Reference Manual. Addison-Wesley, 2002.

[21] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset

collection.” http://snap.stanford.edu/data, retrieved June, 2014.

[22] D. Lasalle and G. Karypis, “Multi-threaded graph partitioning,” in Pro-

ceedings of the IEEE International Symposium on Parallel and Distributed

Processing (IPDPS), pp. 225–236, 2013.

[23] C. Aggarwal and H. Wang, “Graph data management and mining,” in A

survey of algorithms and applications (C. Aggarwal, ed.), Springer, 2010.

[24] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx: A resilient

distributed graph system on spark,” in First International Workshop on

Graph Data Management Experiences and Systems, pp. 2:1–2:6, 2013.

[25] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M. Haridasan,

“Managing large graphs on multi-cores with graph awareness,” in Proceedings

of the 2012 USENIX Conference on Annual Technical Conference, pp. 4–4,

2012.

[26] M. H. Nodine, M. T. Goodrich, and J. S. Vitter, “Blocking for external graph

searching,” Algorithmica, vol. 16, no. 2, pp. 181–214, 1996.

http://snap.stanford.edu/data

BIBLIOGRAPHY 46

[27] B. Gedik and R. Bordawekar, “Disk-based management of interaction

graphs,” IEEE Transactions on Knowledge and Data Engineering (TKDE),

vol. 26, no. 11, pp. 2689–2702, 2014.

[28] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large

clusters,” in Proceedings of the USENIX Symposium on Operating System

Design and Implementation (OSDI), pp. 137–150, 2004.

[29] S. Akyurek and K. Salem, “Adaptive block rearrangement,” ACM Trans.

Comput. Syst., vol. 13, no. 2, pp. 89–121, 1995.

[30] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Ran-

gaswami, and V. Hristidis, “Borg: Block-reorganization for self-optimizing

storage systems,” in Proccedings of the 7th Conference on File and Storage

Technologies, pp. 183–196, 2009.

[31] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu, “Tur-

bograph: A fast parallel graph engine handling billion-scale graphs in a single

pc,” in Proceedings of the 19th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 77–85, 2013.

[32] W. Xie, G. Wang, D. Bindel, A. Demers, and J. Gehrke, “Fast iterative graph

computation with block updates,” Proceedings of the Very Large Databases

Conference (PVLDB), vol. 6, no. 14, pp. 2014–2025, 2013.

[33] D. Dominguez-Sal, N. Martinez-Bazan, V. Muntes-Mulero, P. Baleta, and

J. Larriba-Pey, “A discussion on the design of graph database benchmarks,”

in Performance Evaluation, Measurement and Characterization of Complex

Systems (R. Nambiar and M. Poess, eds.), Springer Berlin Heidelberg, 2011.

	Introduction
	Problem Definition
	Notation
	Problem Formulation
	Metrics
	Block Locality
	Ranking Locality

	Solution Overview
	General Approach
	Identifying Diffusion Sets
	Coarse Partitioning
	Block Formation
	Packing

	Scalability

	Scalable Block Formation & Ranking
	Identifying Diffusion Sets
	Coarse Partitioning
	Block Formation
	Packing

	Experimental Evaluation
	Experimental Setup
	Implementation
	Environment
	Data Sets

	Scalability
	Locality
	Effectiveness of Coarse Partitioning
	Assigning weights
	Choosing Centers
	Locality and Block Size
	Ranking Locality
	Query Running Times

	Related Work
	Conclusion

