SCALABLE LAYOUT OF LARGE GRAPHS
ON DISK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF
MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

By
Abdurrahman Yasar

June, 2015

Scalable Layout of Large Graphs on Disk
By Abdurrahman Yasgar
June, 2015

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Bugra Gedik (Advisor)

Assoc. Prof Dr. Hakan Ferhatosmanoglu

Asst. Prof. Dr. Giltekin Kuyzu

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

i

ABSTRACT
SCALABLE LAYOUT OF LARGE GRAPHS ON DISK

Abdurrahman Yasar
M.S. in Computer Engineering
Advisor: Assoc. Prof. Dr. Bugra Gedik
June, 2015

We are witnessing an enormous growth in social networks as well as in the volume
of data generated by them. As a consequence, processing this massive amount
of data has become a major problem. An important portion of this data is in
the form of graphs. In recent years, several graph processing and management
systems emerged to handle large-scale graphs. The primary goal of these systems
is to run graph algorithms in an efficient and scalable manner. Unlike relational
data, graphs are semi-structured in nature. Thus, storing and accessing graph
data using secondary storage requires new solutions that can provide locality of
access for graph processing workloads. In this work, we propose a novel scalable
disk layout technique for graphs, which aims at reducing the I/O cost of disk-
based graph processing algorithms. To achieve this goal, we designed a scalable
Map/Reduce-style method called ICBP, which can divide the graph into a series
of disk blocks that contain sub-graphs with high locality. Furthermore, ICBP can
order the resulting blocks on the disk to further reduce non-local accesses. We
experimentally evaluated ICBP to showcase its scalability, layout quality, as well
as the effectiveness of automatic parameter tuning for ICBP. We also deployed the
graph layouts generated by ICBP to the Neodj [I] graph database management
system. Our experimental results show that the default layout results in 1.5 to

2.5 times higher running times compared to ICBP.

Keywords: Block formation, disk layout, graph.

il

OZET

BUYUK QIZGELER ICIN OLCEKLENEBILIR DISK
YERLESIMI

Abdurrahman Yasar
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Danigmani: Assoc. Prof. Dr. Bugra Gedik
Haziran, 2015

Son yillarda sosyal ag kullaniminin hizli bir gekilde yayginlagsmasina taniklik et-
mekteyiz. Bu yayginlasmanin neticesindeyse sosyal aglar tarafindan olusturulan
veri biyiikligi devasa boyutlara geldi ve mevcut bu verinin iglenip anlam-
landirilmast gerek akademi gerekse sanayii i¢cin mithim bir konu haline dontigtii.
Bu verinin biiyiik bir kismiysa cizgeler halinde saklanmaktadir. Bu nedenledir
ki son birka¢ yilda biiyiik olcekli cizgeleri igleyebilmek amaciyla pek ¢ok sistem
geligtirilmigtir. Bu sistemlerin oncelikli hedefleri ise mevcut ¢izge algoritmalarin
biiyiik Olgekli cizgelerde etkin bir sekilde uygulanmasini saglamaktir. Fakat
iligkisel verilerin aksine ¢izgeler yar1 yapisal temeldedir. Bu nedenle ikincil depo-
lama alanlar1 iizerinden c¢izgelere ulagmak ve iglemek ¢izge icerisindeki bezerlikleri
gbz oniine alan farkli ¢oziimlere ihtiya¢ duymaktadir. Bu yilizden bu calismada
disk tzerinde rastgele gerceklestirilen okuma yazmalari indirgemek amaciyla
cizgelerin disk tizerindeki yerlegsimlerini 6lc¢eklenebilir bir sekilde gercekleyen bir
metot onermekteyiz. Bu amagla, ICBP adin1 verdigimiz, c¢izgeleri dagitik ve
olceklenebilir bir sekilde obeklere bolebilen bir metodu Hadoop yapisini baz alarak
hayata gecirdik. Onerdigimiz bu metot ébek olusturmann yaninda olusturulan
bu obeklerin disk iizerinde yerlesimini de saglamaktadir. Bu calismada bu
metodun detayli aciklamasinin beraberinde metodun etkinligini, kalitesini ve
olceklenebilirligini deneysel olarak sunacagiz.

Anahtar sézcikler: Obek olusturma, disk yerlegimi, cizge.

v

Acknowledgement

First of all, I would like to thank to my supervisor, Assoc. Prof. Dr. Bugra Gedik
for his exceptional inspiration, guidance, support and always being available to
me when I needed help during my graduate study. I have already learned a lot

from him in these two years.

I owe special thanks to Assoc. Prof. Dr. Hakan Ferhatosmanoglu, who con-
tributed continuously through the design and development of the studies we ex-
plain in this thesis, for his valuable suggestions and patience throughout this

study.

I am grateful to my jury member, Asst. Prof. Dr. Giiltekin Kuyzu for reading

and reviewing this thesis.

[thank my fellow labmates Semih Sahin, Dogukan Cagatay, Fuat Basik, Kaan
Bingol, Elif Eser and Mehmet Giivercin for the stimulating discussions, for the
sleepless nights we were working together before deadlines, and for all the fun we

have had in the last two years

I would like to thank to my family for supporting me with all my decisions
and for their endless love, especially my mother and sister for their support and

faith during my thesis work.

A very special acknowledgement goes to my girlfriend Nida Tangiin, who loved
and supported me all the time, and made me feel like anything was possible. 1

love you, Nida.

Contents

[2.3.1 Block Locality|.

[2.3.2 Ranking Locality]

B Solifion Overview]

[3.1 General Approach|. oo

[3.1.1 Identitying Diftusion Sets|.

[3.1.2 Coarse Partitioning|

[3.1.4 Packing]

vi

10

12

CONTENTS

B2 SCalabilityl . « « o e e e

Scalable Block Formation & Ranking)

[4.1 Identitying Diftusion Sets|.
4.2 Coarse Partitioning|
4.3 DBlock Formationl o
4.4 P Ol e

Experimental Evaluation|

[>.1 Experimental Setup|. L.

[>.1.1 Implementation

[5.3.1 Effectiveness of Coarse Partitioning|

[5.3.2 Assigning weights|

[5.3.3 Choosing Centers|

b.3.4 Locality and Block Size|.

[5.3.5 Ranking Locality|

Vil

15

17

17

21

24

25

28

CONTENTS viii

[5.3.6 Query Running Times| 36

6 Related Workl 38

[r__Conclusionl 42

List of Figures

[2.1 Toy graph illustrating block formation and ranking.| 6
3.1 Solution overview.. 13
(4.1 Illustration of packing.| 26
[>.1 Scalability w.r.t. ## of cores.| L. 30
[>.2 Scalability w.r.t. # of edges.|o 30
[>.3 ICBP with Metis & coarse partitioning.|. 31
[>.4 Assigning weights to diffusion sets.| 31
[>.5 Choosing initial centers.| 32
.6 Locality vs. blocksize| 32
[>.7 Ranking locality vs. graph size| 35
[>.8 Query running times with Neody.| 35

1X

Chapter 1

Introduction

We are witnessing an enormous growth in social networks and the volume of data
generated by them. An important portion of this data is in the form of graphs,
which are popular data structures used to represent relationships between enti-
ties. For instance, the graph structure may represent the relationships in a social
network, where finding communities in the graph [2] can facilitate targeted ad-
vertising. In the telco (telecommunications) domain, CDRs (call details reports)
can be used to capture the call relationships between people [3], and locating

closely connected groups of people can be used for generating promotions.

With the rise in the availability and volume of graph data, several graph pro-
cessing and management systems have been introduced to handle large-scale
graphs [4], Bl 6l [7, 8, @), 10, 11]. The primary goal of these systems is to manage
large graphs and execute graph algorithms on them in an efficient and scalable
manner. In this work, we focus on disk-based graph management systems [11 6],
and propose the first parallel and scalable Map/Reduce based disk layout tech-
nique. Unlike relational data, graphs are semi-structured in nature. Thus, storing
and accessing graph data using secondary storage requires new solutions that can

provide locality of access for graph processing workloads.

Many graph algorithms rely on the fundamental operation of graph traversal and

CHAPTER 1. INTRODUCTION 2

exhibit high access locality [I2]. Given that a vertex is visited during a traversal,
it is quite likely that the neighbors of this vertex will be visited shortly after.
For instance, an n-hop breadth first search around a vertex exhibits high locality.
This observation has motivated block-based disk layouts where the neighborlists
of vertices that are highly connected (e.g., form a community) are placed into the
same disk block [13]. This minimizes the number of blocks read, which reduces
[/O. It also avoids the costly disk seeks, since chasing blocks often requires seeking

to different areas of the disk.

In this work, we propose a novel scalable disk layout technique for graphs, which
aims at reducing the 1/O cost of disk-based graph processing algorithms. To
achieve this goal, we designed a scalable Map/Reduce style method called ICBP,
which can divide the graph into a series of disk blocks that contain sub-graphs
with high locality, as well as order these blocks on disk to reduce non-local ac-
cesses. In this work, we describe the ICBP method, including the challenges that
arose in applying ICBP in practice, the solutions applied, and an experimental

evaluation showcasing its effectiveness.

Identifying vertices that are ‘close’ with respect to locality of access during exe-
cution of graph algorithms is a challenging problem. Although neighbor lists of
vertices give some information about locality, it is not sufficient, as it is possible
for close vertices to have very few common neighbors. To illustrate, we can think
two hop neighbors of a vertex. Although the neighbor lists of these vertices may
have very few common neighbors, in a large graph we can certainly define them
as ‘close’ vertices. Accordingly, there should be a diffusion factor for each vertex,
which can vary based on the graph size. In this work, we use random walks
to produce diffusion sets of vertices. The idea behind building diffusion sets is
simple: for each vertex, do some number of random walks and assign weights to
vertices visited during the random walks. The resulting weighted sets of vertices
can be used to define closeness between the originating vertices. At this point,
we run into another challenge, namely defining the number of random walks and
their lengths, based on the graph characteristics. We address this challenge by

automatically tuning all ICBP parameters.

CHAPTER 1. INTRODUCTION 3

Once the closeness between vertices is defined, we can use it to form disk blocks
by co-locating close vertices within the same blocks. This could be achieved
by using bottom-up methods from the literature, such as hierarchical clustering.
Yet, these methods have high computational complexity, leading to prohibitive
costs for large-scale graphs. Thus, forming the disk blocks in a scalable manner
is a challenging problem. In this work, we use a coarse partitioning algorithm to
divide the large graph to in-memory processable sub-graphs. This coarse parti-
tioning gives us the ability to apply a computationally heavier block formation

algorithm on these sub-graphs, in parallel.

Since the size of the disk blocks are expected to be relatively small compared to
the graph size, the generated blocks are expected to contain many connections to
other blocks. Therefore, to benefit completely from the locality of blocks, they
need to be ordered on disk by taking into account the inter block dependencies.
In this work, we solve the problem of graph block ranking using a packing al-
gorithm which is a label based packing that follows the process of formation of
blocks. Packing algorithm simply orders the blocks based on their labels that
were generated as part of the block formation phase. We have integrated this
packing algorithm inside the block formation algorithm to avoid an additional

stage of computation.

In the literature, block formation for graphs has been considered [13], yet the
solutions are not parallel or scalable. When considering the size of social media
graphs and Big Data workloads, performing the block formation in a scalable
manner is an important task. In this work, we achieve scalability by implementing
all parts of our proposed solution as Map/Reduce (M/R) jobs, executed on the

Hadoop framework.

In summary, we make the following contributions:

e We propose an effective disk layout technique, ICBP, for large-scale graphs.
ICBP is aimed at increasing the performance of disk-based graph manage-

ment systems by increasing the locality of access of disk blocks.

CHAPTER 1. INTRODUCTION 4

e We develop Map/Reduce-based algorithms to implement ICBP, making the
disk layout generation scalable, so that large-scale graphs can be divided

into disk blocks using distributed processing.

e We propose evaluation metrics for measuring the efficacy of the ICBP disk
layout technique and present an experimental evaluation showcasing its disk

layout quality and running time scalability.

e We deployed the graph layouts generated by ICBP to the Neo4j [I] graph
database management system to understand the impact of the layouts gen-

erated by ICBP on the performance of query evaluation in a graph database.

The rest of this thesis is organized as follows. In Chapter [2| we formalize our
problem and evaluation metrics. Chapter |3 provides an high-level overview of
our solution. Chapter [4] describes the ICBP technique in detail, explaining how
our block formation algorithm works. Chapter 5| gives a detailed experimental
evaluation of our work and Chapter [6] presents the related work. Chapter

concludes the thesis.

Chapter 2

Problem Definition

Most graph analytics require graph traversals, where vertex access patterns follow
the connectivity structure of the graph. If the graph is laid out on the disk without
considering these patterns, the traversal operations may cause too many 1/0O
operations. This can create a bottleneck for graph processing and management
systems. Therefore, storing and accessing graph data using secondary storage
requires new solutions that can provide locality of access for graph processing

workloads.

Locality of access for graph analytics executing on disk-based graph processing
systems can be increased by locating graph vertices that are ‘close’ with respect to
connectivity structure of the graph close on the disk as well. Figure [2.1]illustrates
this. In the figure, we have a graph with 18 vertices stored on 6 blocks. Storing
vertices in blocks aims to put close vertices together and increasing the locality
of access. However, after generating locality-aware blocks, we still need to order
these blocks on disk because there are inter-block dependencies between each
other. In summary, our problem is composed by two sub-problems: First one is
locality-aware block generation. The second one is ranking and ordering these
block on disk.

CHAPTER 2. PROBLEM DEFINITION

Block 2

Block 4
Block 0 9:8,11
023 10: 11,12, 14
2:0’1 119,10,12
1:2,3

6,7,
4,5, 15: 13, 16 Block 3
16:13, 15,17 12:10, 11, 13
17:13,16 13:12, 14, 15,16 ,17

l 14:10, 13

order & packing of blocks

VoY Vo

[Block 0 |[Block 2 |[Block 1 |[Block 4 ||Block 3 [[Block 5 |

¢ ¢ write ¢ ¢
Y T S

Figure 2.1: Toy graph illustrating block formation and ranking.

CHAPTER 2. PROBLEM DEFINITION 7

Illustrative Example. Assume that as part of a graph analytic task we need
to access all vertices that are in 2-hop distance to vertex 0. 2-hop neighborhood
of vertex 0 contains 4 vertices, which are: 1, 2, 3, and 7. In the first scenario,
we consider that the assignment of vertices to blocks is being done randomly. In
this case, all of the four vertices could have been assigned to different blocks,
which would have resulted in 4 block accesses with a total of 12 vertex reads,
resulting in 42% success rate (number of vertices used per vertex read). However,
if we consider the block structure that is given in the Figure [2.1, we end up with 2
block accesses with a total of 4 vertex reads, resulting in 83% percent success rate.
As we can observe in this example, locality-aware block generation decreases the

number of block accesses and increases I/O performance.

Locality-aware block generation is highly critical to decrease the number of reads
from disk, and ultimately, to optimize the efficiency of the system. However, if
our secondary storage is an hard disk, seek time becomes important as well. In
our running example, we need to access a number of blocks and if these blocks are
randomly scattered on the disk, then to read a relatively small number of blocks,
we would spend too much seek time. For instance, let us assume that blocks are
ordered randomly on the disk as follows: 5, 2, 3, 4, 0, and 1. We need to access
all vertices that are in 2-hop distance from vertex 0. To start, we need to access
block 0, which is in the 5" position. Later, we must access block 2, which is
in the 2"d position. This means that the disk needs to first seek to position 5
and then seek around back to position 2. However, if we use the layout that we
defined in Figure [2.1], that is 0, 2, 1, 4, 3, and 5, we would avoid the additional
seek. Since blocks 0 and 2 are sequential, accessing these two blocks requires only
a single seek. In conclusion, with a smart ordering seek time can be decreased to

improve /O efficiency.

2.1 Notation

An undirected graph G = (V, E) consists of a set of vertices V' and a set of
edges E. An edge is denoted as e = (u,v) = (v,u) € E, where u # v and

CHAPTER 2. PROBLEM DEFINITION 8

u,v € V. The neighbor list of a vertex u € V is denoted as N,, and defined as
N, ={v € E| (u,v) € E}. N represents the set of all neighbor lists, that is
N = {N, | v € V}. For instance, if we consider Figure 2.1 the neighbor list of
vertex 0 is No = {2,3} and N is {No, N1, -, Ng}.

Given a graph, we generate a set of blocks, denoted by B. Each block B € B
contains at least one vertex and its neighbor list. Thus we can view a block as
a non-empty subset of the set of all vertex-neighborlist pairs. Formally, VB &€
B, B C {(u,N,) | ue€ V} and |B] > 0. Blocks do not share their elements,
that is Vg pycs, BN B = (). We denote the set of vertices in a block B as
Vi ={u| (u, N,) € B} and the set of neighbor lists as N = {N,, | (v, N,) € B}.
The set of blocks cover the entire graph G, that is V' = |5 Va. Finally, each
block is limited in size by a block size threshold denoted by t. Let s : B — N be
a function that assigns a size to a block, then we have VB € B, s(B) < t.

We assume that blocks are laid out on the disk sequentially. The place of a
block B on the disk is determined by its rank, denoted by r(B). The rank of
a block is simply the number of blocks that have been written before it. We
have 0 < r(B) < |B|, and V(g pcs,r(B) # r(B’). Finally, we define a function
d : B x B — N that represents the distance between two blocks on the disk. We
have d(B, B') = |r(B) — r(B’)|.

2.2 Problem Formulation

Our problem has two aspects, namely block formation and block ranking. In the
block formation problem, the aim is to generate blocks with high locality. We
define the locality of a block B using a metric that measures how well connected
the vertices within the block are and how well separated they are from the vertices
in other blocks, denoted by L(B). Thus, the goal is to maximize the total locality
over all blocks, denoted by L =), L(B).

In the block ranking problem, the aim is to assign close ranks to blocks that have

CHAPTER 2. PROBLEM DEFINITION 9

many edges connecting them, so that they are close on the disk. We define the
ranking locality of a block B using a metric that measures the on-disk distance
of B to other blocks it has edges into, denoted by R(B). Thus, the goal is to
maximize the total locality over all blocks, denoted by R =), 5 R(B).

2.3 Metrics

Evaluation of our proposed system depends on the definition of block and block

ranking localities. We now formally define these localities.

2.3.1 Block Locality

Locality of a block can be defined using two concepts: conductance and cohesive-
ness. Conductance is commonly used for graph partitioning. In our context it is
defined as the ratio of the number of edge cuts to the total number of edges in a

block. Formal definition of conductance is as follows:

[{(u,v) € B[[{u,v} V| =1}
{(u,v) € B[[{u,v} N Vs| > 0}

C4B) = (2.1)
For example conductance of Block 0 in Figure is C4(By) = % = 0.5. Because,

in the block, there are four edges, two of which are going out, that is (0,3) and
(1,3).

Conductance of a block is not sufficient to determine the locality of a block.
What is missing is the cohesiveness of the block. Cohesiveness is generally used
for finding highly connected regions or communities in graphs. In this work we
define cohesiveness of a block as the number of vertex pairs that are connected to
each other via an edge in the block, divided by the total number of vertex pairs.

Denoted by C", cohesiveness is formally defined as follows:

CHAPTER 2. PROBLEM DEFINITION 10

{(u,v) € E|u,v e Vp}
1Bl - (|B] —1)/2

C"(B) = (2.2)
Again, if we consider Block 0 in Figure [2.1) cohesiveness of the block becomes
CMBy) = % = 0.66. Because in block there are 2 connected pairs of vertices, out

of 3 possible connections.

These two metrics are complementary. Impact of dangling edges is captured by
conductance and connectivity within a block is captured by cohesiveness. To
obtain a high locality block, we need to increase cohesiveness, while decreasing

conductance.

As a result, we define the locality of a block B, denoted by L(B), as the geometric

mean of cohesiveness and one minus the conductance. That is:

L(B) = y/C(B) x (1 - CU(B)) (2.3)

Finally, if we apply this formula to Block 0, we obtain: L(By) =
1/0.33 x (1 —0.5) = 0.41.

2.3.2 Ranking Locality

We define ranking locality in terms of the distance between blocks of neighboring
vertices. Let us denote the ranking distance a vertex u € V has to its neighbor

vertices by R(u). Formally, we have:

R(u) =Y d(r(u),r(v)) (2.4)

veNu

Then the ranking locality for a block B is defined as:

> uevy, B(W)
dmam X ZUEVB |Nu|

R(B)=1-

CHAPTER 2. PROBLEM DEFINITION 11

In this formula, d,,,, represents the maximum possible distance in the layout such
that dye. = max,wevd(r(v), r(u). When there are no edges going outside of a
block, the ranking locality is 1. This is the ideal scenario. The ranking locality

could be negative.

Chapter 3

Solution Overview

In this chapter, we give an overview of our solution to scalable layout of large-
scale graphs. Our approach, named ICBPE], consists of a multi-stage process,
where each stage can be implemented in a scalable manner using map/reduce

style parallelism.

3.1 General Approach

ICBP has three major stages. The first stage identifies the diffusion sets of
vertices. The second stage performs coarse partitioning of the graph based on
locality. It uses the diffusion sets from the first stage to guide the partitioning.
The last two stages are used to form blocks and rank them. The forming of
blocks and their ranking are implemented in an integrated manner to reduce the
overhead of having an extra stage in the map/reduce flow. Figure illustrates

these stages.

'ICBP acronym is formed by the first letters of the four stages in our solution.

12

CHAPTER 3. SOLUTION OVERVIEW

B

RGN

Identifying Diffusion Sets Coarse Partitioning

13

Packing

Figure 3.1: Solution overview.

CHAPTER 3. SOLUTION OVERVIEW 14

3.1.1 Identifying Diffusion Sets

Diffusion set of a vertex is a summarized representation of its neighborhood in
the graph, not limited to single-hop neighbors. It can be used to define closeness
between vertices. To identify the diffusion set of a vertex, we perform random
walks starting from the vertex and record the vertices visited, together with the
number of times they have been visited during the random walks. The end result
is a weighted set of vertices. We perform ¢ random walks, each of length [. If
we choose small values for [and ¢, then the neighborhoods will be sparse and
thus similarities among neighborhoods of close vertices will be low. Conversely, if
we choose large values for [and ¢, then many neighborhoods will end up looking
similar, even if the vertices are not close. Also, large values will increase the

computation time significantly, as diffusion sets are computed for each vertex.
We address tuning of [and ¢ in Section [4.1]

3.1.2 Coarse Partitioning

After identifying diffusion sets for each vertex in the graph, we divide the graph
into k vertex-disjoint sub-graphs. Vertices that are close based on the similarity
of their diffusion sets are co-located on the same sub-graphs, as much as possi-
ble. The goal of the coarse partitioning is to create sub-graphs that can fit into
the memory available on a single machine. Furthermore, coarse partitioning also
helps us create sufficiently small sub-graphs that are suitable for executing com-
putationally more expensive block formation algorithms inspired by hierarchical
clustering. Naturally, as the input graph becomes larger in size, the number of
partitions we need tp create, that is k, increases as well. We address the tuning
of k in Section 4.2

CHAPTER 3. SOLUTION OVERVIEW 15

3.1.3 Block Formation

Block formation is performed in a bottom-up fashion. Initially, each vertex is
in a partition by itself. Then we successively merge pairs of partitions to create
bigger partitions. Among the possible pairs, we pick the one that minimizes the
distance between the diffusion sets of the vertices in the partitions. We further
detail this in Section [4.3] If a partition exceeds the maximum block size, a block
is formed from it. This block is output and removed from the partition. The

block formation completes when all vertices are assigned to a block.

3.1.4 Packing

Packing is performed in an integrated manner as part of the block formation.
When the block formation algorithm finalizes a block, the packing algorithm
assigns a rank label to the block. This rank label is a multi-segment string that
approximates the location of the block within the hierarchical merge-tree of the
vertices. Ordering the resulting blocks based on their rank labels gives their rank.
The base packing algorithm only orders blocks within the same coarse partition,
as the packing is performed independently for different partitions. A post-packing
algorithm applies the same logic to order the coarse partitions, to achieve the final

global ranking.

3.2 Scalability

Since we aim to perform locality-aware block formation and ordering for large-
scale graphs, scalability is a primary concern. Therefore, our entire solution is

designed to be run as a series of map/reduce (MR) tasks.

First, an MR task transforms the input graph given in the form of an edge list
into an adjacency list formatted graph. This step is not needed if the input graph

is already in the adjacency list format.

CHAPTER 3. SOLUTION OVERVIEW 16

Second, we use two MR tasks to form the diffusion sets. The first task is respon-
sible for performing random walks and forming the vertex visit lists. The second

job uses these lists to assign weights to vertices and form the final diffusion sets.

Third, we run a series of MR tasks to perform the coarse partitioning. The
coarse partitioning is implemented as variation of iterative k-means clustering.
An initial MR task is used to form initial partition centroids and the remaining

tasks are used to perform a single iteration of a k-means clustering algorithm.

Last, we use an MR task to run the block formation and packing for each one of

the coarse partitions we have created in the earlier stage.

Chapter 4

Scalable Block Formation &
Ranking

In this chapter, we discuss the details of the four stages comprising ICBP. For each

stage, we describe parameter tuning and scalable implementation techniques.

4.1 Identifying Diffusion Sets

Diffusion set of a vertex v, denoted by D,, is used to capture the close vertices
around v based on the vertices visited during random walks that start from wv.
To find D,, we apply t random walks around v, each of length [. These random
walks aim to locate vertices that are encountered close to each other during a
graph traversal. We compute the diffusion sets for all vertices in the graph and
implement it in a scalable manner using Map/Reduce. The more challenging
aspect of identifying diffusion sets is tuning the parameters k£ and [based on the

graph size and structure, which we discuss next.

Choosing t. Number of random walks (t) is critically important because if we
set a too small ¢ value, then the diffusion sets of vertices become very sparse and

defining similarity of vertices using these sets becomes ineffective. Otherwise,

17

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 18

if we set a too large t value, then the computation cost significantly increases
without any benefit in terms of creating a diffusion set that can capture vertex

similarity.

For a given graph, we define f as a cumulative distribution function of degrees,
such that for x € N f(z) = P(d < x). In other words, f(x) is the fraction of

vertices that have a degree less than equal to x. Then we choose t as follows:

t =min{z: f'(x) <€} (4.1)
Here, f’ is the derivative of the cumulative degree distribution function f. In
effect, we pick the smallest degree for which the distribution function’s slope
reaches €. Our experimental evaluation has shown that choosing ¢ = 1.0 gives

robust results for varying graph sizes.

Choosing [. Vertex similarities are directly related to the setting of I. With
large [values, the number of unique vertices that appear in diffusion sets increase
and all vertices becomes similar. On the other hand, with small [values, the
effectiveness of diffusion sets decreases as they become dissimilar even for close

vertices.

In order to decide [, the first thing we should know is the diameter of the graph.
Since social graphs exhibit small world phenomenon, their diameter can be es-
timated as the natural logarithm of the number of vertices they have, that is
In(|V]). Accordingly, [should be at most In(|V]). Recall that after finding dif-
fusion sets, we apply a coarse partitioning algorithm to divide the graph into k
sub-graphs. Therefore we choose [so as to cover the space with a sub-graph, as

follows:

[=1+ P”(WW (4.2)

M/R Implementation. t-I random walks are implemented via [repeated M /R

jobs, each one producing the vertices visited during the next hop of the random

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 19

Algorithm 1: Random Walk Mapper

Param : ¢, the number of random walks; isFirst, whether this is the first job
Input : (key,value)
if isFirst then
let (v, Ny) = (key, value)
for t times do
u < Ny[rand()]
| output (v, u)

else
if value is a neighbor list then
let (u, Ny) = (key, value)
output (u, Ny)
else

let (v, u) = (key,value)
| output (u,v)

walks, followed by a final M/R job for creating the diffusion sets. During the
first iteration, the mapper takes the input graph as the input as a list of vertex
to neighbot list mappings. For each vertex, it chooses ¢ random nodes from the
neighbor list and sends each vertex, neighbor pair to the reducer. The reducer is
an indentity reducer in the first iteration. The result is a file that contains the
matiator vertex as the key, and the wvisited vertex as the value. This MR job is
run for [— 1 more times after the first iteration. In the following iterations, the
mapper takes the original graph and the output from the previous step as input.
If a key/value pair comes from the original graph, then the mapper sends this pair
directly to the reducer. If not, it switches the initiator with the visitor and sends
the resulting pair to the reducer. This swapping enables joining the visited vertex
with its neighbor list, so that the next vertex to visit can be determined at the
reducer side. For each visited vertex, the reducer collects the initiators vertices
plus the neighborlist of the visited vertex. For each initiator, it determines the
next visited vertex using the neighborlist of the current one, and outputs an
initiator, next visited vertex pair. Algorithms [I] and [2| give the pseudo-codes
for the mapper and the reducer for the iterative steps of the random walks,

respectively.

When [iterations are completed, the final M/R job combines all intermediate

files and outputs the diffusion sets. Assigning weights to vertices in the diffusion

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 20

Algorithm 2: Random Walk Reducer
Param : isFirst, whether this is the first job
Input : (key,values)

N <+ nil > neighbor list of last visited vertex
V > initiator vertices for last visited vertex
if isFirst then
let (v,U) = (key, values)
foreach v € U do
| output (v, u)
else
let u = key
foreach value € values do
if value is a neighbor list then
let N, = value
N + N,
else
let v = value
L V<V +[v
foreach v € V do
L output (v, N[rand()])

sets is an important task performed by this last task, because it identifies the
vertices that are commonly visited (closer). We tested our system with several

alternatives for the weighting:

e non-weighted diffusion paths,
e occurrence count based weighted diffusion sets, and

o tf-idf based weighted diffusion sets.

Tf-idf based weights are computed by treating each diffusion set as a document
and using the traditional term frequency times inverse document frequency for-
mulation from information retrieval [I4]. In our context, the term frequency is
the weight of a vertex in the diffusion set. The inverse document frequency for a
vertex is the logarithm of the ratio of the total number of vertices to the number

of diffusion sets that contain the vertex.

These weight assignment policies are compared in the experimental evaluation

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 21

section in terms of their running times and quality of locality they provide.

4.2 Coarse Partitioning

After identifying diffusion sets for each vertex in the graph, we divide the graph
into k vertex-disjoint sub-graphs as part of the coarse partitioning stage. The goal
of the coarse partitioning is to create sub-graphs that can fit into the memory
available on a single machine. Furthermore, coarse partitioning also helps us cre-
ate sufficiently small sub-graphs that are suitable for executing computationally

more expensive block formation algorithms inspired by hierarchical clustering.

Our coarse partitioning algorithm is based on k-means [I5]. As such, we first
choose a set of k initial centers, denoted by C, from the graph. Then, for each
vertex v € V', we find the closest center ¢ € C and assign v to the cluster of c.
After all vertices are assigned, we obtain a list of vertices for each cluster, denoted
as as V, for center c. We then calculate the new centers, that is we update C, by
reducing V. into a new center value replacing the old one. The process is repeated
until convergence, detected based on comparing the difference between the new
and old clusters to a threshold.

We now describe the various details of the algorithm, such as the distance metric
we use, setting the value of k, and determining the initial centers. We then

provide a brief description of the M/R implementation.

Distance Metric. To determine closeness of vertex pairs we need to define a
distance metric. Since diffusion sets are just weighted sets of vertices, we use
a weighted Jaccard distance for this purpose. Jaccard similarity of two sets S

and T is the ratio of the size of their intersection to the size of their union,

that is }ggﬂ If we apply this in our context for two vertices u, v € V, we
get JS(u,v) = Ig“gg”i. As we mentioned before, the vertices in diffusion paths

could be weighted, in which case we have a weighted Jaccard similarity, defined

_ Zx) N min{w(a),’Dv),w(m,'Du)}
as sz(u U) - Zz:zvl:zu mam{w(z,Dv),w(x,Du)}
of vertex x in diffusion set D, After defining the similarity between two vertices,

. Here, w(z, D) represents the weight

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 22

the Jaccard Distance between them is simply: JD(u,v) =1 — JS,(u,v).

Choosing k. Tuning the k parameter is crucial because coarse partitioning aims
to divide the graph into in-memory processable sub-graphs for the following block
formation stage. Therefore, if we choose a too small k value, then we can run
out of memory in the block formation stage. On the other hand, if we choose a
too large k value, then we increase the processing time for the coarse partitioning
stage and we also lose the locality effect that will is needed for the block formation
stage to form blocks with high locality. Assume that all cores in our cluster has

M byte of memory and a vertex’s size is s byte. Then we choose k as follows:

k= U%w (4.3)

Is summary, we make k as small as possible without utilizing more than 80% of

the main memory on a node.

Initial Centers. One option to decide on the initial centers is to choose them
randomly. However, this has caused unstable performance both in terms of con-
vergence of the coarse partitioning stage as well as the locality of the resulting
blocks for the ICBP method. Instead, we came up with a more effective way of
setting the initial centers. The idea is to pick k£ vertices that are distant to each
other and have high degrees. These can be considered as influence centers in the
graph. To compute them, we added an M /R job to the system to sort the vertices
by degree. We then process this list, starting form the highest degree vertex. If
a vertex has a distance 0.9 or more to all of the the previously selected ones, we

select it as a center vertex. We stop when k vertices are selected.

Deciding Center Size. Cluster centers are weighted sets, just like the diffusion
sets. Recall that at the end of each iteration of k-means, we have to form new
centers. The size of these centers is also an important factor. If we choose a too
small size, then coarse partitioning converges too fast and the resulting clustering
have poor locality. If the size is too large, then the this delays convergence. We
set the center size to the average length of the diffusion paths within a cluster.
In our empirical study, this setting has resulted in good quality sub-graphs and

has shows good convergence behavior.

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 23

Algorithm 3: Coarse Partitioning Mapper
Param : C, set of centers, where for ¢ € C, c.id is the center id and c.S is the
diffusion set for the center.
Input : (key,value)
let (v, D,) = (key, value)
¢ < argmin,coJD(D,, c.S)
output (c.id, D)

Algorithm 4: Coarse Partitioning Reducer
Param : isLast, whether this is the last job
Input : (key,values)

O+ {} > Map from vertex to in-cluster occurrence count
size < 0 > Average diffusion set size in cluster
let cld = key > key is the cluster id

if not isLast then
foreach value € values do
let D = value > each value is a diffusion set
foreach v € D do
L Olv] + Ofv] +1
size < size + |D|
size < size/|values|
D <« argtop-k,c0O[v], where k = size
¢ < tuple(id=cld, S=D)
output (cld,c)
else
foreach value € values do
let D = value
¢ « tuple(id=cld, S=D)
output (cld,c)

M/R Implementation. Coarse partitioning implemented via repeated sequen-
tial M/R jobs. The first iteration, takes a set of initial centers denoted by C.
Other sequential jobs produce the new centers for following iterations until the
final M/R job. We produce new centers simply by counting number of occurances
of vertices in that cluster and getting the most frequent ones. In the final job we
generate clusters. Algorithms [3| and |4] give the pseudo-codes for the mapper and

the reducer for the coarse partitioning stage, respectively.

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 24

4.3 Block Formation

During block formation, vertices are placed into partitions in a bottom-up fash-
ion. Each vertex starts in its own partition and partitions are successively merged
by picking the closest pair of partitions at each step. We define the close-
ness of two partitions as the minimum Jaccard distance between the diffusion
sets of the vertices contained within. For partitions P and P’, this is given as
min{JD(D,,D,) : u € P Av € P'}. When the size of a potential block that
would be formed from vertices in the partition without a block assigned so far
exceeds the maximum block size, then a full block is formed and output. The

block formation completes when all vertices are assigned to a block.

Super blocks. In large graphs that exhibit power law [16] degree distribution,
popular nodes require special treatment. If we take the Twitter graph as an
example, a user with millions of followers becomes an exceptional case because
the size of his/her neighbor list exceeds the block size. In such exceptional cases,
we divide the neigbor list of the vertex into multiple block sized partitions. We

define a block that points to multiple such partitioned blocks a super block.

Block labeling. We assign labels to blocks for helping with the last stage of
the ICBP solution, that is packing. For this purpose, during the execution of the
block formation algorithm, each partition maintains a label. This partition label
is used to derive the block label later. It captures the merge history of partitions
with respect to blocks. Initially, each partition has its vertex id as its label. When
two partitions merge, this label is updated as follows: If the two partitions have
not produced a block before, the new label is taken as the label of the larger
partition. If only one of them has formed a block before, then its label is taken
as the partition label. Finally, if both of the partitions have produced a block
before, then the label is taken as the concatenation (using ":" as a delimiter) of
the two labels, label of the bigger partition appearing on the left. When a block
is produced, it gets the label of its partition, with an additional suffix (using "."
as a separator) representing the index among blocks generated with the same
partition label. Figure shows an example block formation process, where

numbers represent the order in which the partitions are merged. The partition

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING

25

Algorithm 5: Block Formation Algorithm

Param : S, block size; V: the set of vertices in the sub-graph

B+ 0 > Blocks to be generated

P Uyev {tuple(l=str(v),i=false, V=[v],U={v})}
while |P| > 1 do
{P, P'} + argmingp pncp
min{JD(Dy,D,) : u € P.UAv € P.U}
> Setup the partition label

if P,iAPy.ithen P,.l<+ P,.l+“:7 + P,
else if —-P,.i A\ P,.i then P,.l + P,.1

> Merge the partitions

P+ P\{P.}

P..U<+ P,.UUP,U

PV« P.VUP,V

if blockSize(P,.V) > S then

k < max{k : blockSize(P,.V[0:k]) < S}

B+~ BUB

return B

let P, = argminpycqp pry|P".U| > Small partition
let P, = P"s.t.P"#+ P, NP" € {P, P} > Large part.

P+ true > Remember generation of block

V' + P,.V[0:k] > Vertices to form a block
B+ {(v,N,) :v e V'} > Form the block

P,V + P, V\V' > Update unassigned vertices

labels are indicated on tree edges representing the merges. Blocks are marked

with dotted boxes and their block lables are indicated next to the boxes.

M/R implementation. Block formation is implemented with a single M/R

job, making use of only the map operation. Each map performs block formation

on one of the sub-graphs generated by the coarse partitioning stage and produce
blocks with their associated labels. Algorithm [5| gives the pseudo-code for this

process.

4.4 Packing

Social graphs exhibit small-world behavior, and thus most vertices are reachable

from each other via a small number of hops. Therefore, even with locality-aware

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 26

ae:j:p

FINAL NODE ORDER ON DISK

abcdhiefgijkl1mmnoopgqr

Figure 4.1: Hlustration of packing.

block formation, we will have many edges crossing between blocks. With the
packing algorithm, we aim to provide a locality-aware disk layout for graphs by
considering inter block similarities. Primary goal of packing process is to store

similar blocks close on disk.

The packing algorithm simply orders the blocks based on their labels that were
generated as part of the block formation phase. Before the sort, we replace the
vertex names that appear in the block labels with their order in the leaves of the
hierarchical merge tree. Then sorting the blocks by their labels locate blocks that

were close in the merge tree close on the disk as well.

For instance, in Figure first nodes a and b are merged. then e and f, and
so on. As you can see, we construct a tree in a bottom up manner. In this toy
example, for brevity and ease of exposition, we assume that all vertices have the
same degree d and size limit for a block is 3 x (d + 1), thus only 3 vertices fit
in a block. We observe that in the 7 iteration, the vertices [a, b, ¢] reach the
size limit and block formation algorithm generates them as a block. This block is
labeled as a.0 by taking the partition label at the time of block generation (a in
this case), and the index among the blocks that are generated with that partition

label (0 in this case). This procedure continues to create blocks out of vertices

[67 f?g]7 [j?k7 l]? [m7n7 0]7 a"nd [p7q7r}'

CHAPTER 4. SCALABLE BLOCK FORMATION & RANKING 27

In Figure [1.1 the block that contains vertices [d, h,1] is different, because the
vertices in this block are not contiguous at the leaf level. In the 11** step, the
partition that contains d merges with the partition that has earlier produced block
a.0. And in the 12" step, the partition that contains h and i merges with the
partition that earlier produced block e.0. Finally, 15" step, we merge these two
partitions. The resulting partitions gets the label a : e, because the constituent
partitions both have produced blocks earlier. Since the partition reaches the
maximum size, a new block that contains the vertices [d, h,] and has label a : e.0

is generated.

Finally, when block formation is completed, we order blocks by sorting their
labels. The end result is seen at the bottom of Figure 4.1}

Recall that this packing procedure is performed for each sub-graph in parallel.
Once the order of blocks with each sub-graph is determined, a sequential version
of the same process is applied across sub-graphs, by treating each sub-graph
as a virtual vertex and pre-computing the distances among them based on the
number of edges going in-between. The end result is an ordering that specifies

which sub-graph blocks go first on the disk.

Chapter 5

Experimental Evaluation

In this section, we evaluate our system, with a special focus on the impact of
the proposed optimizations on locality and scalability. Scalability experiments
evaluate the running time of our ICBP algorithm as a function of number of cores
used and the size of the graph. Locality experiments evaluate the performance of
ICBP using locality metrics, as well as query running times using an industrial

graph database system.

5.1 Experimental Setup

We first provide details on our implementation, evaluation environment, the

datasets used, and the metrics employed in our evaluation.

5.1.1 Implementation

Our implementation was done in Java 1.7 using Hadoop v2.6 [17] framework. For

evaluation of the coarse partitioning method we use Metis [I§] graph partitioning

28

CHAPTER 5. EXPERIMENTAL EVALUATION 29

tool and for evaluation of the layout we use Neodj [I] graph database. For work-

load generation, we use RMAT [19] implementation of Boost Graph Library [20].

5.1.2 Environment

For running the ICBP algorithm, we used a cluster with 8 machines and a total of
96 cores. Each machine has 2 Intel Xeon E5-2620 2.00GHz processors and 32GB
of memory. Each processor has 6 cores and our implementation use all of these
cores. Fach machine has 1TB disk space, made of up of 4 IBM Server X 5400
SATA disks using RAID-5. The operating system used was CentOS GNU/Linux
with the 2.6 kernel and ext4 filesystem. It is worth noting that our evaluation
heavily focuses on scalability and impacts of optimizations on locality and not on
absolute performance. In the experiments where we evaluate the performance of
our disk layout using the Neo4j [I] graph database, we use a Macbook-Pro with

an Intel i5 processor and 4GB of memory.

5.1.3 Data Sets

We used R-MAT [19] generated graphs, as well as real-world graphs obtained
from SNAP [21].

Synthetic Data: In our experiments, we use R-MAT generated power-law
graphs with small world properties. The R-MAT graph generator provides an ef-
ficient way for generating very large realistic graphs. We apply our ICBP method
to the graphs generated by R-MAT and analyze their locality and running time
performance under different configurations. In our testes we use RMAT graphs
with different sizes, where the number of edges is taken as 20 times the number

of vertices.

Real Data: In addition to the RMAT graphs, we also selected several small,
medium, and large size graphs from SNAP. These graphs are: ego-Facebook
(4039 vertices, 88234 edges), wiki-Vote (7,115 vertices, 103,689 edges), wiki-Talk
(2,394,385 vertices, 5,021,410 edges).

CHAPTER 5. EXPERIMENTAL EVALUATION 30

25000 3000,

2500

2000

15000

cution Time (s)
I
pad

Execution Time (s)
.

10000
%

E:

5000

0
12 24 36 48 60 72 84 96 40

Number of Cores Number of Edges(Millions)

Figure 5.1: Scalability w.r.t. # of Figure 5.2: Scalability w.r.t. # of
cores. edges.

5.2 Scalability

Figure [5.1] shows the running time of the ICBP method as a function of the num-
ber of cores used. The graph used in this experiment is an 80 million edge R-MAT
graph. Each bar represents the total amount of time the ICBP algorithm took to
generate the disk layout. The different colored sub-bars represent the time taken
by different stages on the ICBP method. The first sub-bar represent initializa-
tion, which is used to convert the initial graph from edge list representation to
adjacency list representation. The second sub-bar represents forming the diffu-
sion sets and the third bar represents coarse partitioning. The fourth and final
sub-bar represents block formation, which also performs packing. The figure also
shows an ideal line representing perfect scale-up. Figure [5.2] shows the running
time with the same breakdown, but as a function of the number of edges. Graphs
used in this experiment are 10, 20, 40, 80 and 200 million edge R-MAT graphs.

We observe from Figures [5.1] and [5.2] that initialization step takes negligible time
compared to other stages, as it is very light on computation. Among the re-
maining stages, forming the diffusion sets is cheaper than coarse partitioning and
block formation, but in general the distribution is quite balanced, especially with
increasing number of cores. The most striking observation from Figure [5.1] is
about scalability. We see that ICBP method’s running time with increasing core

sizes closely matches the running times represented by the ideal scale-up line.

CHAPTER 5. EXPERIMENTAL EVALUATION 31

® @ |CBP(Coarse Partitioning) W Initialization @ Locality - 200m
B B ICBP(Metis) B Oiffiision Path % Locality - 8om [10-14
3500HE=3 Coarse Partition +—+ Locality - 40m
[0 Block Formati @@ Locality - 20m
0.12
3000
= —~ 0.10
< 2 2500 /
o a
£ > £
E = = e oo o 0.08 2
s] < 2000 - -
2 o (=3 +1 //
=4] = o
3
3
%
oS

HIR A
|

Executi

1500 _x____/__—x— ,_r

1000 1 — 0.04

500 <z 0.02

0 X
88234 103689 _ 200000 1000000 2000000 _ 3000000 0" Non-weighted Weighted Tridf Weighted 0-°

Number of Edges Case

Figure 5.3: ICBP with Metis & coarse Figure 5.4: Assigning weights to diffu-
partitioning. sion sets.

We observe from Figure that the running time is not always linear in the
number of edges. t parameter is one of the key factors which determine the size
of diffusion sets. In our parameter selection policy, ¢t doesn’t increase proportional
to number of edges of the graph, instead it increases slowly. Therefore, the size

of diffusion so the running time is not always linear in the number of edges.

5.3 Locality

In this section, we study the effectivenesses of our proposed optimizations on the

locality of the layouts generated by ICBP.

5.3.1 Effectiveness of Coarse Partitioning

Coarse partitioning plays an important role in ICBP, as the localities of the
generated blocks are affected by the quality of the sub-graphs generated by coarse
partitioning. To understand the effectiveness of coarse partitioning, we compare

it to a more traditional approach: graph partitioning.

Metis [18] is one of the popular and effective graph partitioning methods in the

CHAPTER 5. EXPERIMENTAL EVALUATION 32

@& Locality - 200m
3500} %= Locality - 80m
+—+ Locality - 40m
a @ Locality - 20m
3000} 0.4
/ 0.10
5 25000 ER ey °
g 038
5
= 20000 = % :: £
5] 00s &8 g
= — 3 S 5
@ 15001 025
% -
1000} 0.00
0.1
®—8 |ocality - 20m
500} 0.02 =@ Locality - 40m
+—+ Locality - 80m
*® Locality - 200m
0 - -0.05 0.00, 0.0
Random Center Distant Center 32KB 64KB 128KB 256KB 512KB 1024KB
Case Block Size
Figure 5.5: Choosing initial centers. Figure 5.6: Locality vs. block size.

literature and it produces high-quality graph partitions. Therefore, in this exper-
iment, we compared the results from ICBP with those from a variant of ICBP
where the coarse partitioning is replaced by graph partitioning. The graph parti-
tioning aims to minimize the edge cut, while balancing the number of vertices in
each partition. Figure plots the locality of the resulting blocks, as a function
of graph size. We use 6 different graphs for this purpose. The first two graphs
are real graphs from SNAP, namely ego-Facebook and wiki- Vote, and the last four
ones are generated using R-MAT.

From Figure we observe that for small graphs (especially the first real-world
graph), ICBP with Metis can lead to improved locality compared to using ICBP
with coarse partitioning. However, for larger graphs, the localities achieved by
the two approaches are identical. We prefer coarse partitioning over Metis due
to its scalability and integration into ICBP’s Hadoop framework, as well as its
good locality for large-graphs that is the focus of this work. Figure[5.3|also shows
that Metis starts to take more time as the graph size is increased. Furthermore,
pre-processing also starts to take more time for Metis, as the graph needs to be
converted into the input format of Metis. The time taken by coarse partitioning,
on the other hand, is not effected as much from the number of vertices, even
though in absolute terms it takes more time than Metis for smaller graph sizes.
For 300 million edges, ICBP with coarse partitioning starts to take less time
compared to Metis. While there are parallel, scalable versions of Metis [22], they

do not integrate well with our M/R framework.

CHAPTER 5. EXPERIMENTAL EVALUATION 33

5.3.2 Assigning weights

Having weighted diffusion sets helps us better capture similarity for vertices,
which in turn is expected to improve block locality. To understand the im-
pact of weight assignment on the locality of the generated blocks, we compared
three alternatives schemes: non-weighted, occurrence counts as weights, and tf-
idf weights computed over occurrence counts. For the weighted schemes, it is
important to note that during random walks, the host vertex is assumed to be

visited as the first vertex.

Figure plots the execution time of ICBP (using the left y-axis) and locality
(using the right y-axis), for different weighting schemes and for R-MAT generated
graphs of different sizes (20, 40, 80, and 200 million edges).

We observe from Figure that for all graphs sizes, tf-idf based weight assign-
ment improves locality compared to non-weighted and occurence count based
weighted cases, with relative improvements ranging from 20% to 50%. Since
tf-idf based weights decrease the importance of very popular vertices in diffu-
sion sets, this type of weight assignment improves the quality of sub-graphs that
are generated with coarse partitioning by reducing the tendency of vertices to

accumulate in one cluster.

5.3.3 Choosing Centers

During coarse partitioning, in each iteration, we assign vertices to clusters based
on the similarity of their diffusion sets to cluster centers. The initial center
selection for coarse partitioning impacts these iterations, and thus the locality

and convergence.

In this experiment we examine two center selection strategies, namely random
and distant. The first selection strategy is to choose randomly selected k host
vertices and their adjacency lists as centers. The second selection approach is to

choose k£ most distant and highest degree host vertices and their adjacency lists

CHAPTER 5. EXPERIMENTAL EVALUATION 34

as initial centers, as explained earlier in Section [{.2] For this experiment, we

again used RMAT-generated graphs.

Figure plots the execution time of ICBP (using the left y-axis) and locality
(using the right y-axis), for the two center selection schemes and for 4 different
graph sizes (20, 40, 80, and 200 million edges).

We see that initial center selection strategies impact the convergence speed of
coarse partitioning. Based on our experiments, we have observed that starting
coarse partitioning with randomly selected centers from the graph sometimes
requires more iterations to converge. The 40 million edge graph is a good example
of this in Figure |5.5, where the coarse partitioning takes almost two times longer

with random center selection.

From Figure [5.5] we also observe that initial center selection strategy impacts
locality. For all graph sizes, the distant center selection strategy outperforms the

random one, up to 30% in some cases.

Although distant center selection strategy improves locality and speeds up con-
vergence, in some cases it also increases the time taken by the following stage
of ICBP, that is block formation. This can be observed for the 200 million edge
graph in Figure 5.5 Still, ICBP with distant center selection completes faster
than random selection, for all graph sizes. The reason block formation some-
times takes longer with distant center selection is that, higher quality sub-graphs
formed by it may have higher skew in their sizes, resulting in load imbalance

during the block formation stage.

5.3.4 Locality and Block Size

In this experiment we examine the effect of block size on locality. We apply ICBP
with blocks of size 32, 64, 128, 256, 512, and 1024 KBs. We use R-MAT graphs

with differing sizes and measure locality.

CHAPTER 5. EXPERIMENTAL EVALUATION 35

B Normal Layout
1.2¢ == ICBP Layout [{

[ng
o
v

=
o
S

o
©
v

-
ﬂ:
*

0.80-

o
©
=)

o
@
[}

Ranking Locality

0.75¢ @ 32KB-Blocks

m-m 64KB-Blocks

+—+ 128KB-Blocks|

0.70L -+ 256KB-Blocks

20M 40M 80M 200M
Number of edges

old start
old start
ot start

W
w

Figure 5.7: Ranking locality vs. graph Figure 5.8: Query running times with
size. Neod;j.

Figure 5.6 plots locality as a function of the block size, for graphs of different sizes.
The overall locality is shown on the left y-axis and 1 - conductance is shown on
the right y-axis. Since cohesiveness has a term that graphs quadratically with
the number of vertices in a block, it brings down the overall locality significantly.
Thus, we also show conductance separately in this experiment. We observe that,
as the block sizes increase, the conductance decreases. This is intuitive, as if
there was only a single block, then conductance would have been 1. However,
the overall locality decreases as the block size increases, due to the impact of

cohesiveness.

5.3.5 Ranking Locality

In this experiment, we evaluate ranking locality for different graph and block sizes.
We use Equation to compute ranking localities over all disk blocks. We use
distant center selection and tf-idf weight assignment strategies. The graphs used
are R-MAT generated.

Figure plots ranking locality as a function of graph size, for different block
sizes. Overall, ranking localities are high. An important observation from the
figure is about the sensitiveness of ranking locality to graph size. Small blocks

are more resilient to changes in the graph size. In fact, 32KB blocks have ranking

CHAPTER 5. EXPERIMENTAL EVALUATION 36

localities almost independent of graph size. On the other hand, 256KB blocks
show high variation in locality as the graph size changes, compared to smaller

block sizes.

5.3.6 Query Running Times

To understand the impact of the layouts generated by ICBP on the performance of
query evaluation in a graph database, we deployed the graph layouts generated by
ICBP to the Neodj [1] graph database management system. For this experiment,
we used the 80 million edge R-MAT graph. To evaluate query performance, we
used global BFS and DF'S queries, limited hop BFS and DFS queries and random
walks. The limited hop queries were run 100 times and the average results are
reported. These graph algorithms were implemented using the Java API provided
by Neo4j [1J.

Deployment of the ICBP generated layout to Neo4j is performed in two stages.
First stage is for preparation and the second one is for generation of the Neo4j
specific files on the disk. Neo4j stores graphs in separate files and uses a modified
version of edge list format to represent relationships between vertices. Since,
Neo4j doesn’t have a specific block notion and uses edge lists, our adjacency list
based block structure needs to be converted. In preparation stage we do this
conversion with two steps. First we merge blocks according to packing order
and obtain a single file; and second we transform this file into edge list format.
After the edge list file is generated, we create a second file which stores vertices
in the order of their appearance in the edge list. These two files become inputs
of the second stage. In the generation stage, we create Neodj specific files using

Map/Reduce jobs, consisting of consecutive join, union, and ascending sort jobs.

Figure [5.8[shows the running times of the algorithms, normalized with respect to
Neodj’s default layout (labeled as Normal in the graph). We also have absolute
running times as annotations in the figure. We show running times for both cold
start and hot start cases, except for the global queries for which a hot cache does

not make a difference (since the query touches the entire database). We observe

CHAPTER 5. EXPERIMENTAL EVALUATION 37

that the default layout of Neo4j has 43% and 92% higher running times compared
to ICBP for the BFS and DFS algorithms, respectively. For the cold start case
using limited hop queries, the default layout results in 1.5 to 2.5 times higher
running times compared to ICBP. The relative results are similar even for the
hot start case, except for 2-hop DFS where the normal layout and ICBP perform

similarly.

Chapter 6

Related Work

With the popularization of social networks and availability of large amounts of
relationship data in the form of graphs, graph data management and mining
became an important area of research and development. A survey can be found
here [23].

Graph representation is used frequently in many domains, such as social media
and telecommunications. For example, we can model the relationships in a so-
cial network using graphs and finding communities in the graph [2] can facilitate
targeted advertising. In the telco domain, CDRs (call details reports) can be
used to capture the call relationships between people [3], and locating closely
connected groups of people can be used for generating promotions. To handle
the graph processing and management needs of an increasing number of appli-
cations in diverse domains, several graph processing and management systems
have been introduced to handle large-scale graphs [4], (5] [6] 7, (8, ©1 [10] 1T, 241 25].
The primary goal of these systems is to manage large graphs and execute graph

algorithms on them in an efficient and scalable manner.

In this work, we focus on disk-based graph management systems [I], [6]. Un-
like relational data, graphs are semi-structured in nature. Thus, storing and

accessing graph data using secondary storage requires new solutions that can

38

CHAPTER 6. RELATED WORK 39

provide locality of access for graph processing workloads. In the literature there
are several works which try to increase efficiency of graph management systems,
like [I3] and [26].

One of the primary contributions of our work is the scalable block formation
algorithm used to generate locality-aware blocks by storing close vertices in the
same blocks as much as possible. A relevant work in this area is the disk lay-
out techniques proposed by Hoque and Gupta [I3] called Bondhu. Bondhu [I3]
presents a strategy for storing a social graph on disk. In this work they use com-
munity structures of social graph as a placement strategy. Using this strategy
they optimize the disk layout, so that graph traversals can be performed using
less I/0. Unlike their work, ICBP is a distributed graph layout algorithm (based
on Map/Reduce) that can scale to large graphs.

In [26], Nodine et al. studies the graph search problem for large graphs that
cannot fit into the main memory by trying to use blocks on disk efficiently. In
their work, they have shown that optimizing the blocking has increased the per-

formance of searching complete d-ary trees and d-dimensional grid graphs.

In [27], Gedik et al. have proposed a system for temporal storage and querying
of evolving interaction graphs. In this work they proposed several online block
formation algorithms that are used to reduce the I/O required to answer queries.
Besides, they have proposed and applied several locality metrics to analyze graph
blocks. In contrast to our work, their graphs are not relationship graphs, but
instead append-only interaction graphs with a temporal aspect. As a result,

their algorithms are streaming in nature.

GBASE [I0] is a disk-based graph management system. It is related to our work
in the sense that, it is a Map/ Reduce [28] based large-scale graph management
system. It employs a graph storage method that relies on block compression
to efficiently store homogeneous regions of graphs, and a grid based technique
to efficiently place blocks into files. However, the system is not optimized for

locality-awareness.

CHAPTER 6. RELATED WORK 40

In [29], Akyiirek et al. describes an adaptive technique for reducing disk seek
times. To achieve this goal they copy a number of frequently referenced disk
blocks to a reserved area near the middle of the disk from their current locations.
Block rearrangement is related with our work, because similarly we also need to
arrange and order graph blocks on disk to achieve good performance. In [29],
the arrangement of blocks are done based on block access frequencies and in our

work we do it based on block similarities.

BORG [30] is a self-optimizing layer in the storage stack. It reorganizes data on
disk by looking at access patterns. BORG aims to optimize read and write traffic
dynamically by making them more sequential. This work is relevant with ours,
in which we aim to organize locality-aware blocks of a graph on disk and make

reads more sequential.

TurboGraph [31] is designed as a single PC graph processing system. It leverages
the advantages of low latancy and random I/O capabilities of SSDs. Although
TurboGraph performs really well on SSD based disks, due to its parallel random

I/O dependent design, it performs poorly on conventional magnetic disks.

In [32], Xie et al. propose a novel block-oriented computation model. In their
model, computations are performed by iterating over locality-aware blocks. Al-
though their computation model is in vertex-centric programming abstraction,
instead of executing one vertex at a time they execute one block at a time and

achieve good cache performance.

Neodj [1] is a commercial disk-based graph management system. Although Neo4;
has implements optimizations such as indexing and caching, its on-disk graph
layout can be improved to increase query performance. In this work, we have
shown that locality-aware layouts generated by ICBP can be used to improve

Neo4j’s query performance by a factor of 2 or more.

In [33], Dominguez-Sal et al. studies the characteristics of the graphs which are
essential for benchmarks, and also the characteristics of the queries that are im-

portant in graph analysis applications. This study mainly helped us to determine

CHAPTER 6. RELATED WORK 41

graph characteristics that are useful for our methodology and parameter selection.

Chapter 7

Conclusion

We have developed a scalable system that generates locality aware blocks for
large graphs. The system maintains a method called ICBP, which can divide
the graph into a series of disk blocks that contain sub-graphs with high locality.
Furthermore, ICBP can order the resulting blocks on the disk to further reduce
non-local accesses. We experimentally evaluated ICBP to showcase its scalability,
layout quality, as well as the effectiveness of automatic parameter tuning for
ICBP. We demonstrated that ICBP is an effective disk layout technique, for large-
scale graphs and it increases the performance of disk-based graph management
systems by increasing the locality of access of disk blocks. As we have shown
in our first experiment; ICBP makes the disk layout generation scalable, so that
large-scale graphs can be divided into disk blocks using distributed processing.
Finally, we proposed evaluation metrics for measuring the efficacy of the ICBP
disk layout technique and present an experimental evaluation showcasing its disk

layout quality and running time scalability.

42

Bibliography

1]

“Neodj open source graph database.” http://neo4j.org/, retrieved Jan-
uary, 2010.

S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 483,
no. 3-5, pp. 75174, 2009.

A. A. Nanavati, G. Siva, G. Das, D. Chakraborty, K. Dasgupta, S. Mukher-
jea, and A. Joshi, “On the structural properties of massive telecom call
graphs: findings and implications,” in Proceedings of the ACM International
Conference on Information and Knowledge Management (CIKM), pp. 435-
444, 2006.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,” in
Proceedings of the ACM International Conference on Management of Data
(SIGMOD), pp. 135-146, 2010.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Heller-
stein, “Distributed GraphLab: A framework for machine learning and data

mining in the cloud,” Proceedings of the VLDB Endowment, vol. 5, no. 8,
pp. 716-727, 2012.

A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale graph
computation on just a PC,” in Proceedings of the USENIX Symposium on
Operating System Design and Implementation (OSDI), pp. 31-46, 2012.

43

http://neo4j.org/

BIBLIOGRAPHY 44

[7]

[10]

[11]

[12]

[13]

[16]

[17]

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “PowerGraph:
Distributed graph-parallel computation on natural graphs,” in Proceedings
of the USENIX Symposium on Operating System Design and Implementation
(OSDI), pp. 17-30, 2012.

B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a
memory cloud,” in Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 2013.

J. Mondal and A. Deshpande, “Managing large dynamic graphs efficiently,”
in Proceedings of the ACM International Conference on Management of Data

(SIGMOD), pp. 145-156, 2012.

U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos, “Gbase: A scalable
and general graph management system,” in Proceedings of the ACM Inter-
national Conference on Knowledge Discovery and Data mining (SIGKDD),
pp. 1091-1099, 2011.

“Apache Giraph.” giraph.apache.org/, retrieved June, 2013.

R. Steinhaus, “G-Store: A storage manager for graph data,” Master’s thesis,
University of Oxford, 2011.

I. Hoque and I. Gupta, “Disk layout techniques for online social network
data,” IEEE Computing, vol. 16, no. 3, pp. 24-36, 2012.

A. Rajaraman and J. D. Ullman, “Data mining,” in Mining of Massive

Datasets, pp. 1-17, Cambridge University Press, 2011.

J. MacQueen, “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, pp. 281-297, 1967.

M. Newman, “Power laws, pareto distributions and Zipf’s law,” Contempo-
rary Physics, vol. 46, no. 5, pp. 323-351, 2005.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,

giraph.apache.org/‎

BIBLIOGRAPHY 45

[18]

[19]

[23]

[24]

[25]

[20]

0. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop
YARN: Yet another resource negotiator,” in Proceedings of the Annual Sym-
posium on Cloud Computing (SOCC), pp. 5:1-5:16, 2013.

G. Karypis and V. Kumar, “Multilevel graph partitioning schemes,” in
Proceedings of the International Conference on Parallel Processing (ICPP),
pp. 113-122, 1995.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in In Fourth SIAM International Conference on Data
Mining, 2004.

J. G. Siek, L.-Q. Lee, and A. Lumsdaine, Boost Graph Library, The: User
Guide and Reference Manual. Addison-Wesley, 2002.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset
collection.” http://snap.stanford.edu/data, retrieved June, 2014.

D. Lasalle and G. Karypis, “Multi-threaded graph partitioning,” in Pro-
ceedings of the IEEE International Symposium on Parallel and Distributed
Processing (IPDPS), pp. 225-236, 2013.

C. Aggarwal and H. Wang, “Graph data management and mining,” in A
survey of algorithms and applications (C. Aggarwal, ed.), Springer, 2010.

R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx: A resilient
distributed graph system on spark,” in First International Workshop on

Graph Data Management Ezxperiences and Systems, pp. 2:1-2:6, 2013.

V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M. Haridasan,
“Managing large graphs on multi-cores with graph awareness,” in Proceedings
of the 2012 USENIX Conference on Annual Technical Conference, pp. 44,
2012.

M. H. Nodine, M. T. Goodrich, and J. S. Vitter, “Blocking for external graph
searching,” Algorithmica, vol. 16, no. 2, pp. 181-214, 1996.

http://snap.stanford.edu/data

BIBLIOGRAPHY 46

[27]

28]

[29]

[30]

[31]

[32]

[33]

B. Gedik and R. Bordawekar, “Disk-based management of interaction
graphs,” IEEE Transactions on Knowledge and Data Engineering (TKDE),
vol. 26, no. 11, pp. 26892702, 2014.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” in Proceedings of the USENIX Symposium on Operating System
Design and Implementation (OSDI), pp. 137-150, 2004.

S. Akyurek and K. Salem, “Adaptive block rearrangement,” ACM Trans.
Comput. Syst., vol. 13, no. 2, pp. 89-121, 1995.

M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Ran-
gaswami, and V. Hristidis, “Borg: Block-reorganization for self-optimizing
storage systems,” in Proccedings of the 7th Conference on File and Storage
Technologies, pp. 183-196, 2009.

W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu, “Tur-
bograph: A fast parallel graph engine handling billion-scale graphs in a single
pc,” in Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 77-85, 2013.

W. Xie, G. Wang, D. Bindel, A. Demers, and J. Gehrke, “Fast iterative graph
computation with block updates,” Proceedings of the Very Large Databases
Conference (PVLDB), vol. 6, no. 14, pp. 2014-2025, 2013.

D. Dominguez-Sal, N. Martinez-Bazan, V. Muntes-Mulero, P. Baleta, and
J. Larriba-Pey, “A discussion on the design of graph database benchmarks,”

in Performance Fvaluation, Measurement and Characterization of Complex
Systems (R. Nambiar and M. Poess, eds.), Springer Berlin Heidelberg, 2011.

	Introduction
	Problem Definition
	Notation
	Problem Formulation
	Metrics
	Block Locality
	Ranking Locality

	Solution Overview
	General Approach
	Identifying Diffusion Sets
	Coarse Partitioning
	Block Formation
	Packing

	Scalability

	Scalable Block Formation & Ranking
	Identifying Diffusion Sets
	Coarse Partitioning
	Block Formation
	Packing

	Experimental Evaluation
	Experimental Setup
	Implementation
	Environment
	Data Sets

	Scalability
	Locality
	Effectiveness of Coarse Partitioning
	Assigning weights
	Choosing Centers
	Locality and Block Size
	Ranking Locality
	Query Running Times

	Related Work
	Conclusion

