
HYPERGRAPH MODELS FOR PARALLEL
SPARSE MATRIX-MATRIX

MULTIPLICATION

a dissertation submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

doctor of philosophy

in

computer engineering

By

Kadir Akbudak

September, 2015

Hypergraph Models for Parallel Sparse Matrix-Matrix Multiplication

By Kadir Akbudak

September, 2015

We certify that we have read this dissertation and that in our opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of Doctor of

Philosophy.

Prof. Dr. Cevdet Aykanat (Advisor)

Prof. Dr. Hakan Ferhatosmanoğlu

Assoc. Prof. Dr. Alper Şen

Assoc. Prof. Dr. Murat Manguog̃lu

Assist. Prof. Dr. Tayfun Küçükyılmaz

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

HYPERGRAPH MODELS FOR PARALLEL SPARSE
MATRIX-MATRIX MULTIPLICATION

Kadir Akbudak

Ph.D. in Computer Engineering

Advisor: Prof. Dr. Cevdet Aykanat

September, 2015

Multiplication of two sparse matrices (i.e., sparse matrix-matrix multiplica-

tion, which is abbreviated as SpGEMM) is a widely used kernel in many ap-

plications such as molecular dynamics simulations, graph operations, and linear

programming. We identify parallel formulations of SpGEMM operation in the

form of C = AB for distributed-memory architectures. Using these formula-

tions, we propose parallel SpGEMM algorithms that have the multiplication and

communication phases: The multiplication phase consists of local SpGEMM com-

putations without any communication and the communication phase consists of

transferring required input/output matrices. For these algorithms, three hyper-

graph models are proposed. These models are used to partition input and output

matrices simultaneously. The input matrices A and B are partitioned in one di-

mension in all of these hypergraph models. The output matrix C is partitioned

in two dimensions, which is nonzero-based in the first hypergraph model, and it

is partitioned in one dimension in the second and third models. In partitioning of

these hypergraph models, the constraint on vertex weights corresponds to com-

putational load balancing among processors for the multiplication phase of the

proposed SpGEMM algorithms, and the objective, which is minimizing cutsize

defined in terms of costs of the cut hyperedges, corresponds to minimizing the

communication volume due to transferring required matrix entries in the commu-

nication phase of the SpGEMM algorithms. We also propose models for reducing

the total number of messages while maintaining balance on communication vol-

umes handled by processors during the communication phase of the SpGEMM

algorithms. An SpGEMM library for distributed memory architectures is devel-

oped in order to verify the empirical validity of our models. The library uses MPI

(Message Passing Interface) for performing communication in the parallel setting.

The developed SpGEMM library is run on SpGEMM instances from various re-

alistic applications and the experiments are carried out on a large parallel IBM

BlueGene/Q system, named JUQUEEN. In the experimentation of the proposed

iii

iv

hypergraph models, high speedup values are observed.

Keywords: sparse matrices, matrix partitioning, parallel computing, distributed

memory parallelism, generalized matrix multiplication, GEMM, sparse matrix-

matrix multiplication, SpGEMM, computational hypergraph model, hypergraph

partitioning, BLAS (Basic Linear Algebra Subprograms) Level 3 operations,

molecular dynamics simulations, graph operations, linear programming.

ÖZET

PARALEL SEYREK MATRİS-MATRİS ÇARPIMI İÇİN
HİPERÇİZGE MODELLERİ

Kadir Akbudak

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Prof. Dr. Cevdet Aykanat

Eylül, 2015

C = AB şeklindeki genel seyrek matris-matris çarpımı (SyGEMM), moleküler

dinamik benzetimi, çizge işlemleri, dog̃rusal programlama gibi pek çok uygula-

mada çekirdek işlem olarak kullanılmaktadır. SyGEMM işlemi için farklı para-

lelleştirme yöntemleri bulunmaktadır. Bu yöntemler için paralel SyGEMM algo-

ritmaları önermekteyiz. Önerilen algoritmalar iki evreden oluşmaktadır. Evre-

lerden birisi yerel çarpma işlemleri içermekte olup, çarpma evresi olarak isim-

lendirilmektedir. Dig̃er evre ise, çarpma evresi için gerekli matris elemanlarının

taşınması veya çarpma evresinde üretilen kısmi sonuçların aktarılarak toplan-

masından oluşmakta olup, iletişim evresi olarak isimlendirilmektedir. Bu paralel

algoritmalar için, girdi ve çıktı matrislerini aynı anda veri yinelemesiz olarak

bölümleyebilen üç tane hiperçizge modeli önermekteyiz. Bu üç model, girdi A

ve B matrislerini tek boyutlu (1D) olarak bölümlemekle beraber, ilk model çıktı

C matrisini sıfır-dışı tabanlı olarak iki boyutlu (2D) ve geri kalan modeller ise

çıktı C matrisini 1D olarak bölümlemektedir. Bu modellerde, köşe ag̃ırlıkları

üzerinde tanımlı olan bölümleme kısıtı, işlemcilerin işlemsel yüklerini dengelemeye

karşılık gelmektedir. Keside kalan hiperkenarlar üzerinde tanımlanan kesi boyu-

tunun azaltılması olan bölümleme amacı ise, iletişim evresinde yapılan toplam

iletişim hacmini azaltmaya karşılık gelmektedir. Ayrıca, toplam mesaj sayısını

azaltmakla beraber her bir işlemcinin yönettigi iletişimin hacmini dengelemeyi

hedefleyen hiperçizge modelleri de önermekteyiz. Önerilen hiperçizge model-

lerinin geçerlilig̃ini deneysel olarak da dog̃rulamak amacıyla, MPI (Message Pass-

ing Interface) tabanlı SyGEMM paket programı geliştirilmiştir. Çok çeşitli seyrek

matrisler üzerinde bu program kullanılarak JUQUEEN isimli bir IBM Blue-

Gene/Q sisteminde büyük ölçekli deneyler gerçekleştirilmiştir. Yapılan deney-

lerin sonucunda, önerilen hiperçizge modellerinin hesaplamarı önemli miktarda

hızlandırdıg̃ı gözlemlenmiştir.

Anahtar sözcükler : seyrek matrisler, matris bölümleme, paralel hesaplama,

v

vi

dag̃ıtık bellekte paralelleştirme, genel matris çarpımı, GEMM, seyrek matris-

matris çarpımı, SpGEMM, bilişimsel hiperçizge modeli, hiperçizge bölümleme,

BLAS (Basic Linear Algebra Subprograms) Seviye 3 işlemleri, moleküler dinamik

benzetimi, çizge işlemleri, dog̃rusal programlama.

Acknowledgement

I would like to express my gratitude to my supervisor Professor Cevdet Aykanat

for his suggestions, guidance, and encouragement to my research as being at the

beginning steps of my academic life and while performing research to develop

this thesis. His patience, motivation, lively discussions, cheerful laughter, and

insightful directions provided a comfortable and invaluable environment for my

research.

I must acknowledge efforts of members of Bilkent University for gathering

valuable researchers in Ankara/Turkey.

I am thankful to members of Department of Computer Engineering for pro-

viding us a comfortable working environment and research facilities.

I am thankful to valuable professors, Assoc. Prof. Dr. Hakan Ferhatosmanoglu

for his help throughout my research, Asst. Prof. Dr. Can Alkan for generously

sharing his computing resources, especially Intel Xeon Phi coprocessors, and huge

disk storage; Assoc. Prof. Dr. Alper Sen for being my jury member throughout

my PhD studies, Assoc. Prof. Dr. Murat Manguoglu and Asst. Prof. Dr. Tayfun

Kucukyilmaz for evaluating my PhD thesis.

I am grateful to my family, relatives and friends, especially Abdullah Bulbul,

Hasan Baris Gecer, and Mustafa Urel for their support and help; and to my

research group members: Mehmet Basaran, Vehbi Gunduz Demir, Mustafa Ozan

Karsavuran, Enver Kayaaslan, Tayfun Kucukyilmaz, Erkan Okuyan, Reha Oguz

Selvitopi, Fahrettin Sukru Torun, Ata Turk, and Volkan Yazici for being a good

team.

I thank TÜBİTAK for supporting grant throughout my PhD and also through-

out my MS studies.

This work is supported by the Partnership for Advanced Computing in Europe

(PRACE) First Implementation Phase project, which is funded partially by the

European Union’s Seventh Framework Programme (FP7/2007-2013) having the

number of agreement: FP7-261557 and RI-283493.

The experimental results presented in this thesis are achieved by the supports

of PRACE Research Infrastructure. This infrastructure provided us awards on

behalf of our applications to Access Calls. The results are achieved by using

vii

viii

these resources, which is accessing computing facilities at the large-scale parallel

system named JUQUEEN. JUQUEEN is located at the Jülich Super-computing

Centre (JSC), which is based in Germany.

ix

Publications

• K. Akbudak and C. Aykanat, Simultaneous Input and Output

Matrix Partitioning for Outer-Product-Parallel Sparse Matrix-

Matrix Multiplication, SIAM Journal on Scientific Computing,

vol. 36(5), pp. C568–C590, 2014, available at

epubs.siam.org/doi/abs/10.1137/13092589X

• O. Karsavuran, K. Akbudak and C. Aykanat, Locality-Aware Parallel

Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplica-

tion on Many-Core Architectures,

IEEE Transactions on Parallel and Distributed Systems, 2015,

available at

ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7152923

• K. Akbudak, E. Kayaaslan, and C. Aykanat, Hypergraph Partition-

ing Based Models and Methods for Exploiting Cache Locality in

Sparse Matrix-Vector Multiplication,

SIAM Journal on Scientific Computing, vol. 35(3), pp. C237–C262,

2013, available at

epubs.siam.org/doi/abs/10.1137/100813956

http://epubs.siam.org/doi/abs/10.1137/13092589X
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7152923
http://epubs.siam.org/doi/abs/10.1137/100813956

x

I dedicate this thesis to my beloved father,

who had always missed me.

Now, we are missing you...

Contents

1 Introduction 1

2 Background 4

2.1 Matrix Multiplication . 4

2.1.1 Inner-Product Formulation 5

2.1.2 Outer-Product Formulation 5

2.1.3 Row-by-Row Formulation 6

2.2 Hypergraph Partitioning (HP) . 7

3 Related Work 10

3.1 Sample Applications that Utilize SpGEMM 12

4 Parallel SpGEMM Algorithms 14

4.1 Outer-Product–Parallel SpGEMM Algorithm (CRp) 16

4.2 Inner-Product–Parallel SpGEMM Algorithm (RCp) 18

4.3 Row-by-Row–Product–Parallel SpGEMM

(RRp) . 19

5 Hypergraph Models for Parallel SpGEMM Algorithms 21

5.1 The Hypergraph Model Hcr for CRp 23

5.1.1 Model Correctness . 26

5.1.2 Model Construction . 32

5.2 The Hypergraph Model Hrc for RCp 34

5.2.1 Model Correctness . 36

5.2.2 Model Construction . 37

5.3 The Hypergraph Model Hrr for RRp 39

xi

CONTENTS xii

5.3.1 Model Correctness . 41

5.3.2 Model Construction . 42

6 Communication Hypergraph Models for Parallel SpGEMM Al-

gorithms 44

6.1 The Communication Hypergraph Models HC
cr, HC

rc, and HC
rr 45

6.1.1 Obtaining HC
cr from Hcr 46

6.1.2 Obtaining HC
rc from Hrc 46

6.1.3 Obtaining HC
rr from Hrr 47

6.2 Decoding a Partition of the Communication Hypergraph Model . 47

7 Experiments 48

7.1 Experimental Dataset . 48

7.2 Experimental Setup . 56

7.2.1 Partitioning Tool . 56

7.2.2 The SpGEMM Library . 57

7.2.3 The BlueGene/Q System 57

7.3 Performance Evaluation . 68

7.3.1 Effect of Balancing Constraint 68

7.3.2 Effect of Reducing Communication Volume 69

7.3.3 Comparison of Performances of the Hypergraph Models

Hcr, Hrc, and Hrr . 70

7.3.4 Performance Effects of Using the Communication Hyper-

graph Models HC
cr, HC

rc, and HC
rr 71

7.3.5 Speedup Curves . 81

8 Conclusion 89

9 Future Work 91

A The Parallel SpGEMM Library 93

A.1 Quick Start . 93

A.2 File Format for Sparse Matrices 94

A.3 Preprocessing Step for Partitioning Input and Output Matrices . 94

A.4 Parallel SpGEMM Computation 99

List of Figures

5.1 The proposed hypergraph model Hcr for CRp 24

5.2 A sample SpGEMM computation of the form C = AB 28

5.3 Hypergraph model Hcr for representing the SpGEMM operation

shown in Figure 5.2 and three-way partition Π(V) of this hyper-

graph. Each round vertex vx shown in the figure corresponds to

the atomic task of performing the a∗,xbx,∗ outer product. Each

triangular vertex vi,j corresponds to the atomic task of computing

final value of nonzero ci,j of matrix C. Each net ni,j corresponds

to the dependency between the task of summing partial result for

ci,j and the outer product computations that yields a partial result

for ci,j. 30

5.4 Matrices A, B, and C that are partitioned according to the parti-

tion Π(V) of Hcr given in Figure 5.3 31

5.5 The proposed hypergraph model Hrc for RCp 35

5.6 The proposed hypergraph model Hrr for RRp 40

7.1 Speedup curves on JUQUEEN for the proposed hypergraph models

of SpGEMM instances in the C = AAT category 82

7.2 Speedup curves on JUQUEEN for the proposed hypergraph models

of SpGEMM instances in the C = AAT category 83

7.3 Speedup curves on JUQUEEN for the proposed hypergraph models

of SpGEMM instances in the C = AAT category 84

7.4 Speedup curves on JUQUEEN for the proposed hypergraph models

of SpGEMM instances in the C = AA category 85

xiii

LIST OF FIGURES xiv

7.5 Speedup curves on JUQUEEN for the proposed hypergraph models

of SpGEMM instances in the C = AA category 86

7.6 Speedup curves on JUQUEEN for the proposed hypergraph models

of SpGEMM instances in the C = AA category 87

7.7 Speedup curves on JUQUEEN for the proposed hypergraph models

of SpGEMM instances in the C = AB category 88

List of Tables

4.1 Data access requirements of the four parallel SpGEMM algorithms. 16

7.1 Input matrix properties . 50

7.2 Output matrix properties . 53

7.3 Results of Hcr, Hrc, and Hrr . 59

7.4 Results of communication hypergraph models HC
cr, HC

rc, and HC
rr . 72

xv

List of Algorithms

1 Matrix multiplication algorithm based on inner-product formula-

tion, i.e., < i, j, k > loop order. 5

2 Matrix multiplication algorithm based on outer-product formula-

tion, i.e., < k, i, j > loop order. 6

3 Matrix multiplication algorithm based on row-by-row formulation,

i.e., < i, k, j > loop order. 6

4 Construction of the hypergraph model Hcr 33

5 Construction of the hypergraph model Hrc 38

6 Construction of the hypergraph model Hrr 42

xvi

Chapter 1

Introduction

Sparse matrix-matrix multiplication (SpGEMM) in the form of C = AB is an

important computational kernel in various applications. Some of these appli-

cations are molecular dynamics (MD) [1, 2, 3, 4, 5, 6, 7, 8, 9], graph opera-

tions [10, 11, 12, 13, 14, 15, 16, 17], recommendation systems [18], and linear

programming (LP) [19, 20, 21]. All of these applications definitely necessitate

the use of parallel processing on large-scale systems in order to reduce their run

times for large data.

There are several ways to formulate the general matrix-matrix multiplication.

Four common formulations (see Section 13.2 of [22]) can be listed as follows:

• sum of outer products of columns of A and respective rows of B

• inner products of rows of A and columns of B

• pre-multiplication of rows of A with B

• post-multiplication of A with columns of B

Depending on these formulations, we propose parallel SpGEMM algorithms.

All of these algorithms have two phases:

1

• multiplication phase, which consists of SpGEMM

• communication phase, which consists of transfer of required input matrix

entries or transfer of produced partial results to the owner processor

The efficiency and scalability of the proposed parallel algorithms depends on

the following quality criteria:

(1) balance among computational loads of processors

(2) total volume of communication

(3) total number of messages transferred over the interconnect network

(4) maximum volume of communication performed by a processor

(5) maximum number of messages handled by a processor

In this work, we first propose hypergraph partitioning (HP) based methods,

which successfully and directly achieve the first two quality metrics, and indirectly

achieve the third criterion. In the HP based methods, the partitioning constraint

defined over the weights of the vertices corresponds to achieving the first criterion,

whereas the partitioning objective of minimizing the cutsize defined over the cut

nets corresponds to achieving the second criterion.

We also propose models for reducing the total number of messages (the third

quality criterion) while maintaining balance on communication volumes (the

fourth quality criterion) handled by processors during the communication phase

of the SpGEMM algorithms. The communication hypergraph model is first pro-

posed in [23] for the parallel sparse matrix-vector multiplication (SpMV) opera-

tion. The work [23] is further enhanced by [24]. The performance improvement by

the proposed hypergraph models for reducing communication volume in parallel

SpGEMM operations can be further enhanced by the use of the communication

hypergraph models in a second preprocessing stage. In this second stage, the

partitioning information of the first stage is preprocessed in order to reduce the

2

total number of messages while maintaining balance on communication volumes

handled by processors. This preprocessing step consists of construction of the

respective communication hypergraph model and partitioning it. The partition-

ing objective of minimizing cutsize corresponds to minimizing the total number

of messages transferred over the network. The partitioning constraint of bal-

ancing the part weights corresponds to maintaining balance on the volume of

communication handled by processors.

The correctness of the proposed methods are shown both theoretically and

empirically. For the empirical verification, we develop an SpGEMM library [25],

which is based on MPI (Message Passing Interface) [26]. Extensive experimental

analysis using our SpGEMM library are performed on a wide range of sparse

matrices from different applications. A very large-scale supercomputer named

JUQUEEN, which is an IBM BlueGene/Q system, is selected as an experimental

testbed. Scalability of our SpGEMM library up to 1024 processors show the

validity of the proposed HP based methods in practice.

This thesis is organized as follows: The background material on matrix multi-

plication and HP is given in Chapter 2. We review related work on SpGEMM in

Chapter 3. The proposed parallel SpGEMM algorithms are presented in Chap-

ter 4. We describe and discuss the proposed HP-based models and methods and

their theoretical verification in Chapter 5. In Chapter 6, the communication

hypergraph models are described. The empirical verification via presenting and

discussing the experimental results is performed in Chapter 7. Thesis is con-

cluded in Chapter 8, and some of the future research opportunities provided by

this thesis are given in Chapter 9.

3

Chapter 2

Background

In this chapter, background material about matrix multiplication and hyper-

graph partitioning (HP) will be given. The matrix multiplication problem will

be defined and its different formulations will be given in Section 2.1. Note that

the problem definition and the formulations do not depend on sparsity of the

involving matrices.

Section 2.2 will present the definition of hypergraph and the HP problem

with the objective of cutsize minimization under the constraint of balancing part

weights.

2.1 Matrix Multiplication

Multiplication of two matrices A and B of sizes, respectively, M -by-N and N -

by-R yields matrix C of size M -by-R as follows:

ci,j =
k=N∑
k=1

ai,kbk,j (2.1)

Here, the subscripts denote the index of matrix element, e.g., ai,k denotes ele-

ment at row i and column k of matrix A. The matrix multiplication given in

4

Algorithm 1 Matrix multiplication algorithm based on inner-product formula-
tion, i.e., < i, j, k > loop order.

Require: A, B, and C
1: for i← 1 to M do
2: for j ← 1 to R do
3: ci,j ← 0
4: for k ← 1 to N do
5: ci,j ← ci,j + ai,kbk,j
6: end for
7: end for
8: end for
9: return C

Equation (2.1) can be expressed in various ways. The most common ones are as

follows:

2.1.1 Inner-Product Formulation

In this formulation, matrix multiplication is defined as follows:

ci,j = ai,∗b∗,j (2.2)

Here, ai,∗ denotes row i of matrix A and b∗,j denotes column j of matrix B.

The multiplication ai,∗b∗,j is called as the inner product of row i of matrix A

with column j of matrix B. Each inner product yields a scalar value, which is

a nonzero element of C matrix. The pseudocode for this formulation is given

in Algorithm 1. The loop order used in this algorithm is commonly known as

< i, j, k > [27].

2.1.2 Outer-Product Formulation

In this formulation, matrix multiplication is defined as follows:

C =
k=N∑
k=1

a∗,kbk,∗ (2.3)

5

Algorithm 2 Matrix multiplication algorithm based on outer-product formula-
tion, i.e., < k, i, j > loop order.

Require: A, B, and C
1: C ← 0
2: for k ← 1 to N do
3: for i← 1 to M do
4: for j ← 1 to R do
5: ci,j ← ci,j + ai,kbk,j
6: end for
7: end for
8: end for
9: return C

Algorithm 3 Matrix multiplication algorithm based on row-by-row formulation,
i.e., < i, k, j > loop order.

Require: A, B, and C
1: for i← 1 to M do
2: ci,∗ ← 0
3: for k ← 1 to N do
4: for j ← 1 to R do
5: ci,j ← ci,j + ai,kbk,j
6: end for
7: end for
8: end for
9: return C

Here, a∗,k denotes column k of matrix A and bk,∗ denotes row k of matrix B. The

multiplication a∗,kbk,∗ is called as the outer product of column k of matrix A with

row k of matrix B. Multiplication of two such vectors, i.e., an outer product,

yields a matrix, so final C matrix is summation of these partial result matrices.

The pseudocode for this formulation is given in Algorithm 2. The loop order used

in this algorithm is known as < k, i, j >.

2.1.3 Row-by-Row Formulation

In this formulation, matrix multiplication is defined as follows:

ci,∗ = ai,∗B (2.4)

6

Here, ci,∗ denotes row i of matrix C. The multiplication ai,∗B is called as the

pre-multiply of row i of matrix A with whole matrix B. Each pre-multiply yields

a row of C matrix. The pseudocode for this formulation is given in Algorithm 3.

The loop order used in this algorithm is known as < i, k, j >.

The column-by-column formulation, which is defined as the post-multiply of

whole matrix A with column j of matrix B, is dual of row-by-row formulation.

2.2 Hypergraph Partitioning (HP)

A hypergraph H= (V ,N) consists of a vertex set V and a net (hyperedge) set

N [28]. Every net n ∈ N connects a subset of vertices, i.e., n ⊆ V . The vertices

connected by a net n are named as pins of that net and Pins(n) notation is used

to denote these vertices. A net n can be associated with a cost c(n). A net’s

degree is defined as the count of the net’s pins. That is, for net n,

deg(n) = |Pins(n)|. (2.5)

The nets connecting a vertex v are called the nets of the vertex and Nets(v)

notation is used to denote these nets. A vertex’s degree is defined as the count

of the vertex’s nets. That is, for vertex v,

deg(v) = |Nets(v)|. (2.6)

Three types of quantities is used to define the size of a given hypergraph: the

vertex count (|V|), the net count (|N |), and the pin count:∑
n∈N

deg(n) =
∑
v∈V

deg(v). (2.7)

When the partitioning involve more than one constraint, a vertex v is associated

with T weights. Here, T denotes the constraint count. w(v) is used to denote the

weight of the vertex v. If multiple weights are assigned to vertex v, wt(v) is used

to denote the tth weight of the vertex v.

For a hypergraph H = (V ,N), Π(V) ={V1,V2, . . . ,VK} is a K-way partition-

ing of the set of vertices V if the K parts are pairwise disjoint and mutually

7

exhaustive. A K-way vertex partition of H is said to satisfy the partitioning

constraint if

Wt(Vk) ≤ W avg
t (1 + ε), for k = 1, 2, . . . , K; and for t = 1, 2, . . . , T. (2.8)

Here, part Vk’s weight Wt(Vk) for the tth constraint is defined as the sum of the

weights wt(v) of the vertices in that part, i.e.,

Wt(Vk) =
∑
v∈Vk

wt(v), (2.9)

W avg
t is the average part weight, i.e.,

W avg
t =

∑
v∈V wt(v)

K
, (2.10)

and ε represents the predetermined, maximum allowable imbalance ratio.

In a partition Π(V) of H, a net that has at least one pin (vertex) in a part is

said to connect that part. Connectivity set Λ(n) of a net n is defined as the set of

parts connected by n. Connectivity λ(n)= |Λ(n)| of a net n denotes the number of

parts connected by n. A net n is said to be cut (external) if it connects more than

one part (i.e., λ(n) > 1), and uncut (internal) otherwise (i.e., λ(n) = 1). The set

of cut nets of a partition Π is denoted as Ncut. A vertex v is a boundary vertex

if and only if a cut net connects the vertex v. If the vertex v is not connected by

any cut net, this vertex v is an internal vertex.

In partitioning of a hypergraph, the objective of partitioning is minimizing the

cutsize. The cutsize of a partition can be defined on the costs of the cut nets.

One of the definitions for cutsize is [29]:

cutsize(Π(V)) =
∑

n∈Ncut

c(n)
(
λ(n)− 1

)
(2.11)

Here, each cut net n contributes the cost of c(n)(λ(n) − 1) to the cutsize. This

cutsize definition is also known as “connectivity-1” metric.

Another definition for cutsize is [29]:

cutsize(Π(V)) =
∑

n∈Ncut

c(n) (2.12)

8

Here, each cut net n contributes the cost of c(n) to the cutsize irregardless of its

connectivity set. This cutsize definition is also known as “cutnet” metric. The

HP problem is shown to be in the set of NP-hard problems [30].

9

Chapter 3

Related Work

Some of the computational kernels in linear algebra are classified according to

the BLAS (Basic Linear Algebra Subprograms) [31] standard as follows:

• Level 1: scalar, vector and vector-vector operations

• Level 2: matrix-vector operations

• Level 3: matrix-matrix operations

The classification is also valid for sparse vectors and matrices [32]. The focus

of this thesis is sparse matrix multiplication, which is a sparse Level 3 operation.

Gustavson [33] propose an efficient sequential SpGEMM algorithm. In [33],

different formulations of SpGEMM are analyzed in terms of the data accesses

and the number of multiplications. The most efficient scheme is reported to be

row-by-row formulation against the inner-product formulation, because all data

accesses contribute to output in the row-by-row formulation, whereas all data

access may not yield a result because of merge operations in the inner-product

formulation. The algorithm in [33], which is based on row-by-row formulation,

is also used in MATLAB as its dual form of column-by-column formulation [34].

Our SpGEMM library also uses this algorithm as sequential kernels of the library.

10

There are successful SpGEMM libraries for distributed memory architectures.

These libraries do not perform symbolic SpGEMM prior to numerical SpGEMM

so they perform dynamic memory allocation during multiplication. Here and

hereafter, parallelization of the SpGEMM computation in the form of C = AB

on a system having K processors will be considered. Tpetra [35] package of

Trilinos [36] uses one-dimensional rowwise partitioning of the input matrices A

and B. The parallel algorithm used by Tpetra has K stages. At each stage,

blocks of B matrix are shifted among neighboring processors on a virtual ring of

processors so that each one of the processors has a block of rows of the output

matrix C at the end. This parallelization scheme is based on the row-by-row

formulation.

Combinatorial BLAS (CombBLAS) [37] adopts the SUMMA (Scalable Uni-

versal Matrix Multiplication Algorithm) [15]. The serial SpGEMM algorithm of

CombBLAS uses hypersparse matrix multiplication kernel [16], which has a run

time complexity proportional to the number of nonzeros of the input matrices.

Since multiplication of irregularly sparse matrices incurs load imbalance in a par-

allel SpGEMM algorithm, the matrices that will be multiplied by CombBLAS

are randomly permuted in order to balance computational loads of processors.

SUMMA [38] uses 2D checker-board partitioning of the input matrices A and B.

This algorithm runs on a mesh of
√
K ×

√
K processors. It involves a consecu-

tive series of
√
K number of broadcasts along rows and columns of the processor

grid. Rowwise broadcasts consist of the row blocks of the input matrix A and

columnwise broadcasts consist of the column blocks of the input matrix B. Each

processor is responsible for computing a block of the 2D checkerboard partitioned

output matrix C. At each stage, local blocks of the output C matrix are updated

via multiplying the received input matrices. At the end of
√
K stages, the final

output matrix C is obtained.

The work [39] investigate the cost of communication occurred during parallel

SpGEMM operation involving sparse random matrices. Tighter lower bounds are

provided by Ballard et. al. [39] for the expected costs of SpGEMM operation.

Two recursive and iterative SpGEMM algorithms based on three-dimensional

partitioning are proposed in [39] in order to achieve the provided bounds. These

11

SpGEMM algorithms are reported to be adaptation of previous matrix multi-

plication algorithms [40, 41] for dense matrices. These algorithms also do not

benefit from the sparsity patterns of the input and output matrices.

3.1 Sample Applications that Utilize SpGEMM

Here, two sample applications, which use parallel SpGEMM operations, are dis-

cussed. In molecular dynamics simulations, CP2K program [9] utilizes SpGEMM

operations in performing parallel atomistic and molecular simulations of biolog-

ical systems, liquids, and solid state materials. Parallel SpGEMM operations in

the form of C = AA (i.e., C = A2) are performed in iterations of Newton-Schulz

method. This method is used to calculate the result of the sign function for

an input matrix A. This kernel is reported to occupy at least half of the total

simulation time [2]. CP2K uses Cannon’s algorithm [42] for performing parallel

SpGEMM operations [43].

In order to solve large linear programming (LP) problems, iterative interior

point methods are generally utilized. At each iteration of the solvers of LP

problems, these methods try to find solutions to the normal equations having the

form of (AD2AT)x = b to determine search directions. Here, A is a sparse matrix

and it defines the constraints of the problem. D is a positive matrix, which

has nonzeros in only diagonal entries. While the normal equations are being

solved, direct solvers [19, 20, 21] based on Cholesky factorization and iterative

solvers [21] that use preconditioners need explicitly-formed coefficient matrix.

In every outer iteration, the coefficient matrix is formed through the SpGEMM

operation. The nonzero structures of input matrices A and B=D2AT remain the

same throughout the iterations. Among the most time consuming parts of the

LP solvers, i.e., SpGEMM and Cholesky factorization operations, for some LP

problems, the SpGEMM computation may take significantly longer than Cholesky

factorization [21].

The above-mentioned libraries and works do not benefit from the nonzero

12

structures of the input or output matrices. In other words, they do not preprocess

the input matrices A and B, or perform symbolic SpGEMM prior to numeric

SpGEMM to obtain sparsity pattern of the output matrix C. However, the

sparsity pattern of matrices can be used to reduce communication overhead during

the parallel SpGEMM operation. This idea is widely used in sparse matrix-vector

multiplication (SpMV) [29, 44].

To our knowledge, this thesis is the first attempt to preprocess the input

matrices in order to obtain an efficient parallelization. So symbolic multiplication

is performed for obtaining the computation pattern, which will be partitioned.

This step is necessary in order to obtain a “good” partitioning of these matrices,

so that the obtained matrix partitioning incurs less communication overhead and

yields better balance on computational loads of processors during the SpGEMM

operation. Depending on the nonzero structures of matrices, our aim is to devise

sophisticated matrix partitioning methods that achieve reducing communication

overhead and obtaining computational load balance during the parallel SpGEMM

operations on distributed memory architectures.

13

Chapter 4

Parallel SpGEMM Algorithms

We consider the parallelization of the SpGEMM operation of the form C = AB:

We propose four parallel algorithms based on 1D partitioning of the two input

matrices A and B as follows:

• Column-by-Row-product parallel (a.k.a. outer-product parallel) (CRp)

• Row-by-Column-product parallel (a.k.a. inner-product parallel) (RCp)

• Row-by-Row-product parallel (RRp)

• Column-by-Column-product parallel (CCp)

Note that in the abbreviated names of the above-mentioned SpGEMM algo-

rithms, the first capital letters stand for the rowwise or columnwise partitioning

of input matrix A, whereas the second one stand for the rowwise or columnwise

partitioning of input matrix B. Also note that these parallel algorithms depend

on the matrix multiplication formulations described in Section 2.1.

The CRp algorithm is based on conformable columnwise partitioning of A

matrix and rowwise partitioning of B matrix. In the CRp algorithm, the outer

product of column i of A with row i of B is defined as an atomic task, so that the

14

SpGEMM operation is split into concurrent outer-product computations. In this

algorithm, entries of both input matrices are accessed only once, whereas output

matrix entries are accessed multiple times.

The RCp algorithm is based on rowwise partitioning of A matrix and column-

wise partitioning of B matrix. In the RCp algorithm, the inner product of a row

of A matrix with a column of B matrix is an atomic task, so that the SpGEMM

operation is split into concurrent inner-product computations. RCp has two vari-

ants: A-resident and B-resident. In A-resident RCp, A- and C-matrix entries are

accessed only once, whereas B-matrix entries are accessed multiple times. In B-

resident RCp, B- and C-matrix entries are accessed only once, whereas A-matrix

entries are accessed multiple times. Since these two variants are dual, we will only

consider A-resident RCp throughout this thesis. In other words, the B-resident

RCp algorithm can easily be derived from the A-resident RCp algorithm.

The RRp algorithm is based on rowwise partitioning of both A and B matrices.

In the RRp algorithm, pre-multiply of a row of A matrix with whole B matrix is

defined as an atomic task, so that the SpGEMM operation is split into concurrent

vector-matrix multiplications. A- and C-matrix entries are accessed only once,

whereas B-matrix entries are accessed multiple times in this algorithm.

The CCp algorithm is based on columnwise partitioning of both A and B

matrices. In the CCp algorithm, post-multiply of whole A matrix with a column

of B is defined as an atomic task, so that the SpGEMM operation is split into

concurrent matrix-vector multiplications. B- and C-matrix entries are accessed

only once, whereas A-matrix entries are accessed multiple times in this algorithm.

Since CCp is dual of RRp, CCp will not be discussed in the rest of the thesis.

Note that the rows of the C matrix are accessed once in both RRp and CCp

algorithms.

Figure 4.1 presents the data access requirements of the above-mentioned four

algorithms with respect to the input and output matrices A, B, and C. As seen

in this figure, all algorithms require multiple accesses of only one matrix, whereas

the remaining two matrices are accessed only once. As also seen in the figure, only

15

CRp requires multiple accesses of the output matrix. Single accesses denoted by

“s” do not incur communication because partitions of the respective matrix reside

at the owner processor. Multiple accesses denoted by “m” incur communication

of the respective input/output matrix because partitions of the matrix is required

by processors other than the owner processor.

Table 4.1: Data access requirements of the four parallel SpGEMM algorithms.

Parallel SpGEMM algorithms C A B

CRp outer-product parallel m s s

RCp inner-product parallel
A-resident s s m
B-resident s m s

RRp row-by-row–product parallel s s m
CCp column-by-column–product parallel s m s

“s” denotes single access, whereas “m” denotes multiple accesses to the
rows/columns/nonzeros of matrices.

4.1 Outer-Product–Parallel SpGEMM Algo-

rithm (CRp)

In outer-product–parallel SpGEMM algorithm (CRp), conformable 1D column-

wise and 1D rowwise partitioning of the input matrices A and B are used as

follows:

Â = AQ =
[
A1 A2 . . . AK

]
and B̂ = QB =

B1

B2

...

BK

 (4.1)

Here, K denotes the number of parts and Q is the permutation matrix obtained

from the partitioning. In Equation (4.1), the same permutation matrix Q is used

to reorder columns of matrix A and rows of matrix B in order to achieve con-

formable columnwise and rowwise partitioning of matrices A and B. According

to the input partitioning given in Equation (4.1), each processor Pk owns column

16

slice Ak and row slice Bk of the permuted matrices. Consequently, as a result of

the conformable partitioning of input matrices, each processor Pk performs the

outer-product computation of AkBk without any communication. Note that any

row/column replication is not considered in the input data partitioning given in

Equation (4.1).

According to the input matrix partitioning given in Equation (4.1), the out-

put C matrix is calculated as follows using the results of the local SpGEMM

computations:

C = C1 + C2 + . . .+ CK (Ck = AkBk is performed by processor Pk). (4.2)

Communication occurs in the summation of local Ck matrices. This is because

many single-node-accumulation (SNAC) operations are needed to compute the

final value of nonzero cij of C using the partial results generated by the local

SpGEMM operations. In this CRp algorithm, the multiplication phase consists

of local SpGEMM computations without any communication and the communi-

cation phase consists of many SNAC operations.

The input partitioning on matrices A and B does not yield a natural and

inherent output partitioning on the C matrix. The processor that will be assigned

the responsibility of summing all the partial results for each nonzero ci,j of C is

determined by the output partitioning. Summation of all the partial results for

each nonzero ci,j of C is defined as

ci,j =
∑

c
(k)
i,j ∈Ck

c
(k)
i,j . (4.3)

Here, c
(k)
i,j ∈ Ck means that c

(k)
i,j is a nonzero of Ck and so this value is a partial

result for ci,j of C. The performance of the computation phase, which depends

on the input partitioning, is directly related with the computational load balance

among processors, whereas the overhead due to communication of partial results

is the performance bottleneck in the communication phase, which depends on the

output partitioning.

For output partitioning, 2D partitioning of the output matrix C will be con-

sidered. Here, the 2D output partitioning is based on partitioning nonzeros of

17

matrix C so that the atomic tasks in communication phase is defined as the tasks

of computing nonzeros of C. In this SpGEMM algorithm, the worst-case commu-

nication is (K − 1)nnz(C) words and K(K − 1) messages. Here, the number of

nonzeros in a matrix is denoted by nnz(·). This worst case communication hap-

pens when a partial result for every nonzero of the output C matrix is generated

by every local SpGEMM computation.

4.2 Inner-Product–Parallel SpGEMM Algorithm

(RCp)

The inner-product–parallel SpGEMM algorithm (RCp) is based on 1D rowwise

partitioning of A and C; and 1D columnwise partitioning of B as follows:

Â = PA =

A1

A2

...

AK

 , B̂ = BQ =
[
B1 B2 · · · BK

]
, and

Ĉ = PCQ =

C1

C2

...

CK

 (4.4)

Here, K denotes the number of parts; and P and Q denote the permutation

matrices obtained from partitioning. The use of the same permutation matrix for

row reordering of A and row reordering of C shows that the rowwise partition on

the input matrix A directly induces a rowwise partition on the output matrix C.

In the input partitioning given in Equation (4.4), each processor Pk owns a row

slice Ak and column slice Bk of the permuted matrices.

According to the input and output data partitioning given in Equation (4.4),

the output matrix C is computed as follows:

Ck = AkB for k = 1, 2, . . . , K. (4.5)

18

Each submatrix-matrix multiplication Ck = AkB will be assigned to a processor

of the parallel system. A nice property of this partitioning scheme is that A

and C matrices are not communicated. However, columns of the input matrix B

must be replicated to the processors that need these B-matrix columns for the

computation of Ck = AkB. The replication of B matrix constitutes the com-

munication phase of the parallel SpGEMM algorithm. After the communication

phase, Ck = AkB is performed without any communication in the multiplication

phase. The worst case communication of this algorithm is (K − 1)nnz(B) words

and K(K − 1) messages. This worst case communication happens when each

Ck = AkB multiplication requires whole matrix B.

4.3 Row-by-Row–Product–Parallel SpGEMM

(RRp)

The row-by-row–product–parallel SpGEMM algorithm (RRp) is based on 1D

rowwise partitioning of A, B, and C matrices as follows:

Â = PAQ =

A1

A2

...

AK

 , B̂ = QB =

B1

B2

...

BK

 , and Ĉ = PC =

C1

C2

...

CK

 (4.6)

Here, K denotes the number of parts; and P and Q denote the permutation

matrices obtained from partitioning. The use of the same permutation matrix for

row reordering of A and row reordering of C shows that the rowwise partition on

the input matrix directly induces a rowwise partition on the output matrix.

According to the input and output data partitioning given in Equation (4.6),

the output matrix C is computed as follows:

Ck = AkB for k = 1, 2, . . . , K. (4.7)

Each submatrix-matrix multiplication Ck = AkB will be assigned to a processor

of the parallel system. A nice property of this partitioning scheme is that A and

19

C matrices are not communicated. However, rows of the input matrix B must

be replicated to processors that need the respective rows for the computation of

Ck = AkB. The replication of B matrix constitutes the communication phase of

the parallel SpGEMM algorithm. After the communication phase, Ck = AkB is

performed without any communication in the multiplication phase. The worst

case communication of this algorithm is (K − 1)nnz(B) words and K(K − 1)

messages. This worst case communication happens when each Ck = AkB multi-

plication requires whole matrix B.

Note that the definitions of local SpGEMM operations in RCp and RRp algo-

rithms are same. They only differ in the partitioning of B matrix, i.e. B matrix is

partitioned columnwise in RCp and rowwise in RRp. The use of the same defini-

tion of local SpGEMM operations is because only two variants of RCp algorithm

are given as depicted in Table 4.1 in order to obey the owner computes rule.

Hence, the owner computes rule enables avoiding unnecessary communication of

either one of the input matrices in these variants.

20

Chapter 5

Hypergraph Models for Parallel

SpGEMM Algorithms

In this thesis, we propose one hypergraph model for each one of the three parallel

SpGEMM algorithms proposed in Chapter 4. These three hypergraphs contain

a vertex to represent each atomic task of local SpGEMM operation. These hy-

pergraphs also contain a vertex for each entity of the communicated matrix to

enable simultaneous input and output partitioning. These hypergraphs contain

a net (hyperedge) for each communicated entity (row/column/nonzero) of the

corresponding matrix in order to represent the total volume of communication

that occur in the communication phase of the SpGEMM algorithms. By using

these hypergraph models, hypergraph partitioning (HP) methods are proposed

to simultaneously partition the input and output matrices in one step. That is,

partitioning of input and output matrices are performed in a single partitioning

process. The constraint in the partitioning of these hypergraph models corre-

sponds to computational load balancing among processors for the multiplication

phase of the parallel SpGEMM algorithms. The objective of minimizing the cut-

size corresponds to minimizing the total volume of communication that occurs in

the communication phase of the parallel algorithms.

Note that the proposed models do not use any of the previously proposed

21

hypergraph models (e.g., column-net, row-net, and row-column-net (finegrain)

hypergraph models [45, 29]) for partitioning sparse matrices for SpMV. The aim

of the hypergraph models proposed in this thesis is representing the SpGEMM

computations.

The proposed hypergraph models and HP-based methods are tested on many

SpGEMM instances arising in various applications. The well-known HP tool

PaToH [46] is used the partition the hypergraph models of the SpGEMM in-

stances. In order to show that the theoretical improvements due to the hyper-

graph models are also valid in practice, an MPI (Message Passing Interface)-

based [26] SpGEMM library [25] is designed and developed using the C program-

ming language. Parallel SpGEMM runs on large-scale distributed-memory IBM

BlueGene/Q system, named JUQUEEN, show that the proposed models and

methods achieve good scalability and high speedup.

Note that the constructions of the hypergraph models for CRp and RCp require

apriori knowledge of the pattern of computation that yields the output matrix C.

Through performing symbolic SpGEMM, this pattern of computation is obtained

from the nonzero structures of the input matrices A and B. This requirement of

symbolic multiplication before partitioning is an important difference, when the

proposed partitioning methods are compared against the partitioning methods

for parallel SpMV. This is because the computational structure of the SpMV

operation directly and solely depends on the sparsity pattern of the input matrix

A.

22

5.1 The Hypergraph Model Hcr for CRp

In this model, an SpGEMM computation of C = AB is represented as a hyper-

graph Hcr = (V = VAB ∪ VC,N) for 1D conformable columnwise partitioning of

A and rowwise partitioning of B, and the nonzero-based 2D partitioning of the

output C matrix. The vertices in VAB are referred to as input vertices and the

vertices in VC are referred to as output vertices. There exists an input vertex vx

in VAB for each column x of A and row x of B. There exist both an output vertex

vi,j in VC and a net ni,j in N for each nonzero ci,j of the output C matrix. ni,j

connects vx if and only if there exists a nonzero at row i and column x of A; and

there exists a nonzero at row x and and column j of B. That is, ni,j connects

vx if the outer-product computation of column x of A with row x of B yields a

partial result for ci,j of C. ni,j also connects vi,j. So ni,j is defined as follows:

Pins(ni,j) = {vx : ai,x ∈ A ∧ bx,j ∈ B} ∪ {vi,j}. (5.1)

As seen in Equation (5.1), each net ni,j connects at least one input vertex vx and

exactly one output vertex vi,j. Note that, the definitions of input vertices contain

single subscript, whereas the definitions of nets and output vertices contain double

subscript.

The number of vertices, nets, and pins of the proposed hypergraph model Hcr

can be expressed using the properties of input A and B matrices, and the output

C matrix:

|V| = nnz(C) + cols(A) = nnz(C) + rows(B), (5.2)

|N | = nnz(C), (5.3)

of pins =

cols(A)∑
x=1

(
nnz(a∗,x) · nnz(bx,∗)

)
+ nnz(C). (5.4)

Here, rows(·) and cols(·) respectively represent the number of rows and the num-

ber of columns of a given matrix. The summation term in Equation (5.4) given for

calculating the number of pins of Hcr is equal to the number of multiply-and-add

operations to be executed in an SpGEMM computation C = AB.

23

vx

a∗,x/bx,∗

vy

a∗,y/by,∗

vz

a∗,z/bz,∗

ni,j

vi,j

ci,j
←

ci,j = cxi,j + cyi,j + czi,j

← cyi,j

←
c
x
i,j

←
c z
i,j

Figure 5.1: The proposed hypergraph model Hcr for CRp

Two weights are assigned to each vertex in order to encode the computational

costs of the multiply-and-add operations in the multiplication phase and the sum-

mation operations in the communication phase of CRp. In other words, the first

and second weights of a vertex correspond to the computational loads of the

atomic task represented by that vertex for the multiplication and communication

phases, respectively. A vertex vx in VAB corresponds to the atomic task of com-

puting the outer product of column x of A with row x of B. The outer-product

computation a∗,xbx,∗ yields nnz(a∗,x) · nnz(bx,∗) multiply-and-add operations to

obtain nnz(a∗,x) ·nnz(bx,∗) number of partial results. Hence, vertex vx is assigned

the following two weights:

w1(vx) = nnz(a∗,x) · nnz(bx,∗), w2(vx) = 0. (5.5)

Note that w1(vx) also corresponds to the number of nets that connect the input

vertex vx, i.e.,

deg(vx) = w1(vx). (5.6)

Each vertex vi,j in VC corresponds to the the atomic task of computing ci,j via

24

summing the partial results generated by the outer-product computations, i.e.,

ci,j =
∑

vx∈Pins(ni,j)

cxi,j, (5.7)

and storing the final result ci,j. Each net ni,j corresponds to the dependency

of the calculation of ci,j to the outer-product operations, i.e., the vertices in

Pins(ni,j)− {vi,j} correspond to the set of partial outer-product results that are

required for calculating the final value of ci,j.

Figure 5.1 shows the hypergraph model Hcr and encoding of the in-

put and output dependencies. As shown in the figure, the net ni,j with

Pins(ni,j) = {vx, vy, vz, vi,j} corresponds to the outer-product computations

a∗,xbx,∗, a∗,yby,∗, and a∗,zbz,∗, which yield partial results cxi,j, c
y
i,j, and czi,j, re-

spectively. Hence, vertex vi,j corresponds to the atomic task of computing the

final value of ci,j via the summation ci,j = cxi,j + cyi,j + czi,j. Here, cxi,j denotes the

partial result for ci,j generated by the outer product a∗,xbx,∗. Hence, the following

two weights are assigned to vertex vi,j:

w1(vi,j) = 0, w2(vi,j) = |Pins(ni,j)| − 1. (5.8)

As seen in Equations (5.5) and (5.8), the first and second vertex weights corre-

spond the computational loads of the atomic tasks associated with these vertices

in the multiplication and communication phases of CRp, respectively. Hence, the

second weights of the input vertices are set to be equal to zero (i.e., w2(vx) = 0

in Equation (5.5)) because the atomic tasks associated with the input vertices

do not incur any computation in the communication phase. Similarly, the first

weights of the output vertices are set to be equal to (i.e., w1(vi,j) = 0 in Equa-

tion (5.8)) because the atomic tasks associated with the output vertices do not

incur any computation in the multiplication phase.

Each net ni,j represents the dependency related with only one nonzero ci,j,

cost c(ni,j) is set to be equal to one, i.e.,

c(ni,j) = 1. (5.9)

25

A K-way partition Π(V) = {V1,V2, . . . ,VK} on V inherently induces a parti-

tion Π(VAB) on VAB ⊆ V and a partition Π(VC) on VC ⊆ V . Note that, that

part Vk is assumed to be assigned to processor Pk for k = 1, 2, . . . , K without loss

of generality. Π(VAB) is decoded as an input partition on the columns of A and

rows of B; and Π(VC) is decoded as an output partition on the nonzeros of matrix

C. That is, vx in Vk means that column a∗,x of A and row bx,∗ of B are stored by

only processor Pk and the responsibility of performing the outer-product compu-

tation a∗,xbx,∗ without any communication is assigned to Pk in accordance with

the owner computes rule. vi,j in Vk denotes that responsibility of summing the

partial results for computing the final result of ci,j and storing ci,j is assigned to

processor Pk.

5.1.1 Model Correctness

The correctness of the proposed hypergraph model Hcr can be proved by showing

the following:

(a) The two partitioning constraints on part weights correspond to balancing

computational loads of processors during the two phases of CRp.

(b) The partitioning objective of minimizing cutsize corresponds to the mini-

mization of the total volume of communication during the communication

phase of CRp.

Consider a K-way partition Π(V) = {V1,V2, . . . ,VK} of vertices of Hcr for

both (a) and (b).

For (a), Π(V) is assumed to satisfy balance constraints given in Equation (2.8)

for T = 2. Considering the first weights given in Equations (5.5) and (5.8), the

first partitioning constraint correctly encodes balancing the computational loads

in terms of number of multiply-and-add operations in local outer products to

be performed by processors in the multiplication phase. Considering the second

weights given in Equations (5.5) and (5.8), the second partitioning constraint

26

correctly encodes balancing the number of local summation operations on the

partial-results to be performed by processors in the communication phase.

The above-mentioned correctness of the second partitioning constraint depends

on a naive implementation. In this naive implementation scheme, each processor

obtains separate output C matrix for each local outer-product computation rather

than accumulating on a single local output matrix C. In an efficient implemen-

tation scheme, each processor Pk accumulates results of its outer-product com-

putations on a single local output C matrix just after every local outer-product

computation as follows

Ck = Ck + a∗,xbx,∗, where vx ∈ Vk. (5.10)

The correctness of the first partitioning constraint for the multiplication phase is

not disturbed in this efficient implementation scheme because each scalar multiply

operation incurs a scalar addition operation as follows

cxi,j = cxi,j + ai,x · bx,j. (5.11)

However, the correctness of the second partitioning constraint is disturbed for the

communication phase. Anyway, the second partitioning constraint may still be

used to enforce balancing the computational loads of the local summations during

the communication phase of this efficient implementation scheme, because such

errors are expected to happen for the second weights of the vertices in all parts

of a partition.

For showing (b), consider an output vertex vi,j, which is assigned to Vk (i.e.,

vi,j ∈ Vk). Recall that each net ni,j connects only one output vertex, which is

vi,j ∈ Vk. Then, each part Vm ∈ Λ(ni,j) − {Vk} has at least one input vertex

corresponding to an outer-product computation that yields a partial results for

ci,j. So, for each part Vm ∈ Λ(ni,j)−{Vk}, processor Pm computes a partial result

c
(m)
i,j =

∑
vx∈Vm

cxi,j (5.12)

27

C

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9
10
11

× ×
× ×

× × × ×
× × × ×
× × ×

× × ×
× × ×
× × × × × × ×

× ×
× ×
× × × × ×
×

× ×

×

×

×

×
=

A

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9
10
11

×
×

× ×
× ×
×

× ×
×

× × × ×
×

×
× × × × ×

×

×

×
×

× ×

B

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9

× ×
×
× × ×

× ×
×

× × ×
× × ×
×

× ×
×

×

×

Figure 5.2: A sample SpGEMM computation of the form C = AB

from the results of its local outer-product computations. Here, c
(m)
i,j denotes the

sum of local partial results obtained from outer-product computations corre-

sponding to vertices vx ∈ Vm. After the outer-product computations, proces-

sor Pm sends c
(m)
i,j to processor Pk. Hence, vi,j ∈ Vk means that processor Pk

will receive only one partial result from each of the λ(ni,j) − 1 processors in

Λ(ni,j)−{Vk}. After receiving these partial results, processor Pk will accumulate

them for computing the final value of ci,j. As seen in Equation (2.11), the con-

tribution of net ni,j to cutsize is λ(ni,j)− 1. As a result, the equivalence between

λ(ni,j) − 1 and the communication volume occurred in the summation of ci,j in

the communication phase is shown. Consequently, the total communication vol-

ume in this communication phase is correctly encoded by the cutsize given in

Equation (2.11).

In order to illustrate the proposed hypergraph model Hcr, a sample SpGEMM

computation and its hypergraph model are included. Figure 5.2 displays a sample

SpGEMM operation. The input matrices are A and B are 11×9 and 9×8 matrices

that have 26 and 21 nonzeros, respectively. The output matrix C is an 11×8

matrix that has 44 nonzeros. There are 9 outer-product computations in the

multiplication of these A and B matrices.

Figure 5.3 illustrates the hypergraph model Hcr that is used for modeling the

SpGEMM operation shown in Figure 5.2. The input and output vertices are

28

respectively represented by circles and triangles in Figure 5.3. There are 9+44 =

53 vertices in Hcr as seen in the figure. There are also
∑9

x=1 deg(vx) = 61 pins in

Hcr. As also seen in the figure, deg(v4) = 6 since nnz(a∗,4) · nnz(b4,∗) = 3 · 2 = 6.

29

v1

v5 v7 v6 v4

v8

v9 v3 v2

n11,7

v11,7

n6,3

v6,3

n8,4

v8,4

n8,7

v8,7

n11,4v11,4

n3,8

v3,8

n8,8
v8,8

n11,6

v11,6

n2,2

v2,2

n2,7

v2,7

n10,2

v10,2 n11,2

v11,2
n10,7

v10,7

n4,4
v4,4

n1,4

v1,4

n5,5

v5,5

n5,6

v5,6
n5,7

v5,7
n8,5v8,5

n8,6

v8,6
n11,5

v11,5

n9,8

v9,8

n9,7

v9,7

n3,7

v3,7

n7,8v7,8

n7,1

v7,1

n3,1

v3,1

n7,4

v7,4

n3,4v3,4

n8,1

v8,1

n6,4

v6,4

n6,7

v6,7

n8,3

v8,3

n4,6

v4,6

n4,7

v4,7

n10,3

v10,3

n1,6v1,6

n1,7

v1,7

n9,4

v9,4

n11,8

v11,8

n5,4v5,4

n7,7
v7,7

n1,5

v1,5

n4,5

v4,5

V3

V1 V2

Figure 5.3: Hypergraph model Hcr for representing the SpGEMM operation shown in Figure 5.2 and three-way partition
Π(V) of this hypergraph. Each round vertex vx shown in the figure corresponds to the atomic task of performing the a∗,xbx,∗
outer product. Each triangular vertex vi,j corresponds to the atomic task of computing final value of nonzero ci,j of matrix
C. Each net ni,j corresponds to the dependency between the task of summing partial result for ci,j and the outer product
computations that yields a partial result for ci,j.

30

C

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9
10
11

P3P3

P1 P1

P2 P2 P2P2

P3P3P3P3

P3P3P3

P1P1 P1

P2 P2 P2

P2 P1P1P3P3P1P2

P2P2

P1 P1

P1 P3P3P3P1

P1

P3P3

P2

P2

P3

P2
=

A

7 1 5 4 8 6 2 3 9

1
2
3
4
5
6
7
8
9
10
11

×
×

× ×
× ×
×

××
×

×× ××
×

×
× × ×× ×
×

×

×
×

×

P1 P2 P3

×

B

1 2 3 4 5 6 7 8

7
1
5
4
8
6
2
3
9

× ×

×
× × ×

× ×
×

× × ×

× × ×

×

× ×

×

×
×

P1

P2

P3

Figure 5.4: Matrices A, B, and C that are partitioned according to the partition
Π(V) of Hcr given in Figure 5.3

A three-way partition Π(V) of Hcr is also shown in Figure 5.3. The three-

way partition of the sample input and output matrices induced by this Π(V) are

shown in Figure 5.4. In Π(V) of Hcr, W1(V2) = w1(v4) + w1(v6) + w1(v8) =

deg(v4) + deg(v6) + deg(v8) = 6 + 12 + 4 = 22. Similarly, W1(V1) = 14 and

W1(V3) = 25. As a result, a percent load imbalance value of 23% on the first

vertex weights is incurred by this Π(V). In Π(V), W2(V1) = 13, W2(V2) = 14, and

W2(V3) = 17 since parts V1, V2, and V3 contain 13, 14, and 17 output vertices as

shown by triangles. As a result, considering this partition Π(V), load imbalance

on the second weights of vertices is equal to 16%.

In the three-way partition Π(V) ofHcr shown in Figure 5.3, these four nets n8,7,

n8,4, n11,7, and n11,4 are cut. All of the other 40 nets are uncut, in other words

they are internal to a part. As shown in the figure, net n8,7 has two pins in each

part so λ(n8,7) = 3. As a result, cut net n8,7 incurs a cost of λ(n8,7)−1 = 3−1 = 2

to the cutsize. v8,7 is in part V1 means that the responsibility of summing the

partial nonzero results obtained from the local outer-product computations is

assigned to processor P1. P1 will receive the partial result c
(2)
8,7 = c4

8,7 + c6
8,7 from

P2 and the partial result c
(3)
8,7 = c3

8,7 + c9
8,7 to P1 from P3. So, only two words will

be communicated during the calculation of final value for c8,7 by P1. Hence, the

equivalence between λ(n8,7)− 1 and the communication volume occurred during

the calculation of c8,7 in the communication phase is shown. In a similar way,

31

since λ(n8,4)− 1 = 1, λ(n11,7)− 1 = 1, and λ(n11,4)− 1 = 1 for the remaining cut

nets, total cutsize is equal to five. As a result, the total volume of communication

is equal to five words. Therefore, the total volume of communication occurred in

this phase is correctly encoded by the cutsize given in Equation (2.11).

5.1.2 Model Construction

Algorithm 4 shows the pseudocode for constructing the hypergraph model Hcr for

outer-product based multiplication of a given pair of A and B matrices stored in

CSC and CSR formats [47], respectively. Here, CSC refers to compressed sparse

columns and CSR refers to compressed sparse rows. For the sake of efficiency

in constructing Hcr, Algorithm 4 utilizes the net-list representation instead of

pin-list representation of hypergraphs. That is, net-list definition given below is

utilized instead of pin-list definition given in Equation (5.1):

Nets(vx) = {ni,j : ai,x ∈ A ∧ bx,j ∈ B}, (5.13)

Nets(vi,j) = {ni,j}. (5.14)

This net-list definition enables the proper allocation and construction of the net

lists of the vertices in successive locations of a net lists array. For the current

vertex vx, a net list allocation of appropriate size and weight assignments are

performed at lines 6 and 7, respectively. The test at line 10 is performed to

identify a new net ni,j and hence an output vertex vi,j to assign the next available

indices to ni,j and vi,j at lines 11 and 12, respectively, during the construction.

The two weights for a new output vertex vi,j are initialized at line 14 and the

second weight of an existing output vertex is incremented at line 16. Net ni,j–

irregardless of being a new or an existing net–is appended to the end of the net

list of vertex vx at line 18.

32

Algorithm 4 Construction of the hypergraph model Hcr

Require: A matrix in CSC format and B matrix in CSR format

1: VAB ← ∅
2: VC ← ∅
3: N ← ∅
4: for each column x of A do

5: VAB ← VAB ∪ {vx}
6: allocate net list of size nnz(a∗,x) · nnz(bx,∗) for vertex vx
7: w1(vx)← nnz(a∗,x) · nnz(bx,∗); w2(vx)← 0

8: for each nonzero aı,x in column x of A do

9: for each nonzero bx,j in row x of B do

10: if ni,j /∈ N then

11: N ← N ∪ {ni,j}
12: VC ← VC ∪ {vi,j}
13: Nets(vi,j)← {ni,j}
14: w1(vi,j)← 0; w2(vi,j)← 1

15: else

16: w2(vi,j)← w2(vi,j) + 1

17: end if

18: Nets(vx)← Nets(vx) ∪ {ni,j}
19: end for

20: end for

21: end for

22: return Hcr(V = VAB ∪ VC,N)

33

5.2 The Hypergraph Model Hrc for RCp

In this model, an SpGEMM computation C = AB is represented as a hypergraph

Hrc = (V = VA ∪ VB,N) for 1D rowwise partitioning of A and C matrices; and

1D columnwise partitioning of B matrix. There exists a vertex vx ∈ VA for each

row x of A. There exists a vertex vj ∈ VB for each column j of B. There exists a

net ni,j ∈ N for each nonzero bi,j of B. Net ni,j connects vertices corresponding

to the rows that have nonzeros at ith column of A as well as vj. That is, ni,j

connects vx if and only if the pre-multiply of row x of A with B requires nonzero

bi,j of matrix B. So ni,j is defined as follows:

Pins(ni,j) = {vx : ax,i ∈ A ∧ bi,j ∈ B} ∪ {vj}. (5.15)

As seen in Equation (5.15), each net ni,j connects at least one vertex that repre-

sents a column of matrix B. Note that single subscript is used for both types of

vertices. When x is used in subscript, the vertex that represents the atomic task

of computing pre-multiply is intended, whereas when j is used, the vertex that

represents a column of matrix B is intended.

The number of vertices, nets, and pins of the proposed hypergraph model Hrc

can be expressed using the attributes of input matrices A and B:

|V| = rows(A) + cols(B), (5.16)

|N | = nnz(B), (5.17)

of pins = |{(x, i, j) : ax,i ∈ A ∧ bi,j ∈ B}|+ nnz(B). (5.18)

In Equation (5.18), which is for calculating the number of pins of Hcr, the term

for the size of the set corresponds to the total number of scalar multiply-and-add

operations to be performed in an SpGEMM computation C = AB.

Single weight is assigned to each vertex vx in order to encode the computational

costs of the multiply-and-add operations in the multiplication phase of RCp.

Each vertex vx ∈ VA represents the atomic task

cx,∗ = ax,∗ ×B (5.19)

34

vx

ax,∗

vy

ay,∗

vz

az,∗

vj

b∗,j

vk

b∗,k

nh,k

bh,k

cx,j = ax,i bi,j + ax,h bh,j

cx,k = ax,h bh,k

cy,j = ay,i bi,j

cy,k = ay,h bh,k

cz,k = az,h bh,k

nh,j

bh,j

ni,j

bi,j

ay,h

a
x,h

az,h

ax,h

ax,i

ay,
i

Figure 5.5: The proposed hypergraph model Hrc for RCp

of pre-multiplying row x (ax,∗) of A with matrix B to compute the xth row of C

(cx,∗). So vertex vx ∈ VA is associated with a weight w(vx) proportional to the

computational load of this vector-matrix product in terms of scalar multipy-and-

add operations. That is,

w(vx) =
∑

ax,i∈ax,∗
nnz(bi,∗). (5.20)

The weight w(vj) of vertex vj ∈ VB is set to be equal to zero since it does not

represent any computation. That is,

w(vj) = 0. (5.21)

The existence of vj vertices with zero weights is to enforce columnwise partitioning

of matrix B. Each net ni,j ∈ N represents the requirement of B-matrix nonzero

bi,j in order to compute cx,j = ax,ibi,j. So cost c(nx) of net nx is set to be equal

to one. That is,

c(ni,j) = 1. (5.22)

35

Figure 5.5 shows the hypergraph model Hrc and the dependencies in scalar

multiplications of input matrix nonzeros. As seen in this figure, net ni,j with

Pins(ni,j) = {vx, vy, vj} corresponds to the need of multiplications ax,ibi,j and

ay,ibi,j for B-matrix nonzero bi,j, which is in column j of B.

A K-way partition Π(V) = {V1,V2, . . . ,VK} on V inherently induces a parti-

tion Π(VA) on VA ⊆ V and a partition Π(VB) on VB ⊆ V . Π(VA) is decoded as a

partition on the rows of A and rows of C; and Π(VB) is decoded as a partition on

the columns of B. That is, vx in Vk denotes that row x of A is stored by only pro-

cessor Pk and Pk is held responsible for computing the pre-multiply cx,∗ = ax,∗B.

vj in Vk denotes that responsibility of storing column j of matrix B and sending

the nonzeros of this column to other processors is assigned to processor Pk.

5.2.1 Model Correctness

The correctness of the proposed hypergraph model Hrc can be proved by showing

the following:

(a) The partitioning constraint on part weights corresponds to the balancing

computational loads of the processors during the multiplication phase of

RCp.

(b) The partitioning objective of minimizing cutsize corresponds to the mini-

mization of the total volume of communication occurred during the com-

munication phase of RCp.

Consider a K-way partition Π(V) = {V1,V2, . . . ,VK} of vertices of Hrc for

both (a) and (b).

For (a), Π(V) is assumed to satisfy the balance constraint given in Equa-

tion (2.8) for T = 1. Considering the weights given in Equations (5.20) and (5.21),

the partitioning constraint correctly encodes balancing the computational loads in

36

terms of number of multiply-and-add operations in local pre-multiply operations

to be performed by processors during the multiplication phase.

For showing (b), consider a vertex vj, which is assigned to Vk (i.e., vj ∈ Vk).

Recall that each net ni,j connects only one vertex vj, which represents column j

of B. Assume that |Λ(ni,j) − {Vk}| ≥ 1. Then, each part Vm ∈ Λ(ni,j) − {Vk}
has at least one vertex corresponding to a pre-multiply operation that requires

nonzero bi,j of matrix B. So, for each part Vm ∈ Λ(ni,j) − {Vk}, processor

Pm receives bi,j from Pk. Hence, vj ∈ Vk means that processor Pk will send

only one nonzero to each of the λ(ni,j) − 1 processors corresponding parts Vk
in Λ(ni,j) − {Vk}. After the receive of required nonzeros of matrix B, the pre-

multiply operations are performed. As seen in Equation (2.11), the contribution

of net ni,j to cutsize is λ(ni,j)−1. As a result, the equivalence between λ(ni,j)−1

and the communication volume regarding the transfer of nonzeros of matrix B

in the communication phase is shown. Consequently, the total communication

volume during this communication phase is correctly encoded by the cutsize given

in Equation (2.11).

5.2.2 Model Construction

Algorithm 5 shows the pseudocode for constructing the hypergraph model Hrc

for inner-product based multiplication of a given pair of A and B matrices. This

algorithm requires matrix A to be in CSC format, whereas matrix B can be in

COO format. Here, COO refers to coordinate format, in which nonzero elements

stored as row index, column index, and nonzero value tuples. Algorithm 5 utilizes

the pin-list representation of hypergraphs. For the current net ni,j, net cost

assignment and pin list allocation of appropriate size are performed at lines 7

and 8, respectively. Vertex vx is appended to the end of the pin list of net ni,j at

line 10. The weight of vertex vx is incrementally updated at line 11. At line 13,

the vertex vj representing column j of B is appended to the end of the pin list

of net ni,j.

37

Algorithm 5 Construction of the hypergraph model Hrc

Require: A matrix in CSC format and B matrix in COO format

1: VA ← {vx : ax,∗ ∈ A}
2: w(vx)← 0,∀vx ∈ VA

3: VB ← {vj+rows(A) : bi,j ∈ B}
4: N ← ∅
5: for each nonzero bi,j of B do

6: N ← N ∪ {ni,j}
7: c(ni,j)← 1

8: allocate pin list of size (nnz(a∗,i) + 1) for net ni,j

9: for each nonzero ax,i in column i of A do

10: Pins(ni,j)← Pins(ni,j) ∪ {vx}
11: w(vx)← w(vx) + 1

12: end for

13: Pins(ni,j)← Pins(ni,j) ∪ {vj+rows(A)}
14: end for

15: return Hrc(V = VA ∪ VB,N)

38

5.3 The Hypergraph Model Hrr for RRp

In this model, an SpGEMM computation C = AB is represented as a hypergraph

Hrr = (V = VA∪VB,N) for 1D rowwise partitioning of A, B and C. There exists

a vertex vx ∈ VA for each row x of A. There exist both a vertex vi ∈ VB and a

net ni ∈ N for each row i of B. Net ni connects vertices corresponding to the

rows that have nonzeros at ith column of A as well as vi. That is, ni connects vx

if and only if the pre-multiply of row x of A with B requires row i of matrix B.

So ni is defined as follows:

Pins(ni) = {vx : ax,i ∈ A} ∪ {vi}. (5.23)

As seen in Equation (5.23), each net ni connects at least one vertex that rep-

resents a row of matrix B. Note that single subscript is used for both types of

vertices. When x is used in subscript, the vertex that represents the atomic task

of computing pre-multiply is intended, whereas when i is used, the vertex that

represents a row of matrix B is intended.

The number of vertices, nets, and pins of the proposed hypergraph model Hrr

can be expressed using the attributes of input matrices A and B:

|V| = rows(A) + rows(B), (5.24)

|N | = rows(B), (5.25)

of pins = |{(x, i) : ax,i ∈ A ∧ bi,∗ ∈ B}|+ rows(B). (5.26)

In Equation (5.26), which is for calculating the number of pins of Hrr, the term

for the size of the set corresponds to the total number of operations of scaling

a row of B matrix by a nonzero of A matrix to be performed in an SpGEMM

computation C = AB.

Single weight is assigned to each vertex vx in order to encode the computational

costs of the multiply-and-add operations in the multiplication phase of RRp.

Each vertex vx ∈ VA represents the atomic task

cx,∗ = ax,∗ ×B (5.27)

39

vx

ax,∗

vy

ay,∗

vz

az,∗

nh

bh,∗

vh

bh,∗

ci,∗ ← ai,x bx,∗ + ai,y by,∗

cj,∗ ← aj,x bx,∗ + aj,y by,∗

cy
k,∗ ← ak,y by,∗

ni

bi,∗

vi

bi,∗

ay,h

a
x,h

az,h

ax,i

ay,
i

Figure 5.6: The proposed hypergraph model Hrr for RRp

of pre-multiplying row x (ax,∗) of A with matrix B to compute the xth row of C

(cx,∗). So vertex vx ∈ VA is associated with a weight w(vx) proportional to the

computational load of this vector-matrix product in terms of scalar multipy-and-

add operations. That is,

w(vx) =
∑

ax,i∈ax,∗
nnz(bi,∗). (5.28)

The weight w(vi) of vertex vi ∈ VB is set to be equal to zero since it does not

represent any computation. That is,

w(vi) = 0. (5.29)

The existence of vi vertices with zero weights is to encode rowwise partitioning

of matrix B as a vertex partition. Each net ni ∈ N represents the requirement

of B-matrix row bi,∗ by the computation of cx,∗ = ax,∗bi,∗. So cost c(nx) of net nx

must be proportional to the number of nonzeros in row i of B matrix. That is,

c(ni) = nnz(bi,∗). (5.30)

Figure 5.6 shows the hypergraph model Hrr and the dependencies in the multi-

plications of A-matrix nonzeros and B-matrix rows. As seen in this figure, net ni

40

with Pins(ni) = {vx, vy, vz, vi} corresponds to the need of multiplications ax,ibi,∗,

ay,ibi,∗, and az,ibi,∗ for B-matrix row bi,∗.

A K-way partition Π(V) = {V1,V2, . . . ,VK} on V inherently induces a parti-

tion Π(VA) on VA ⊆ V and a partition Π(VB) on VB ⊆ V . Π(VA) is decoded as a

partition on the rows of A and C matrices; and Π(VB) is decoded as a partition

on the rows of B matrix. That is, vx in Vk denotes that row x of A is stored

by only processor Pk and Pk is held responsible for computing the pre-multiply

cx,∗ = ax,∗B. vi in Vk denotes that responsibility of storing row i of matrix B and

sending this row to other processors is assigned to processor Pk.

5.3.1 Model Correctness

The correctness of the proposed hypergraph model Hrr can be proved by showing

the following:

(a) The partitioning constraint on the part weights corresponds to balancing

the computational loads of processors during the multiplication phase of

RRp.

(b) The partitioning objective of minimizing the cutsize corresponds to the

minimization of the total volume of communication occurred during the

communication phase of RRp.

Consider a K-way partition Π(V) = {V1,V2, . . . ,VK} of vertices of Hrr for

both (a) and (b).

For (a), Π(V) is assumed to satisfy balance constraint given in Equation (2.8)

for T = 1. Considering the weights given in Equations (5.28) and (5.29), the

partitioning constraint correctly encodes balancing the computational loads in

terms of number of multiply-and-add operations in local pre-multiply operations

to be performed by processors during the multiplication phase.

41

For showing (b), consider a vertex vi, which is assigned to Vk (i.e., vi ∈ Vk).

Recall that each net ni connects only one vertex vi, which represents a row of B.

Then, each part Vm ∈ Λ(ni) − {Vk} has at least one vertex corresponding to a

pre-multiply operation that requires row i (bi,∗) of matrix B. So, for each part

Vm ∈ Λ(ni) − {Vk}, processor Pm receives bi,∗ from Pk. Hence, vi ∈ Vk means

that processor Pk will send only one row to each of the λ(nj) − 1 processors in

Λ(nj) − {Vk}. After the receive of required rows of matrix B, the pre-multiply

operations are performed. As seen in Equation (2.11), the contribution of net ni

to cutsize is c(ni)(λ(ni)−1). As a result, the equivalence between c(ni)(λ(ni)−1)

and the communication volume regarding the transfer of rows of matrix B in the

communication phase is shown. Consequently, the total communication volume

during this communication phase is correctly encoded by the cutsize given in

Equation (2.11).

5.3.2 Model Construction

Algorithm 6 Construction of the hypergraph model Hrr

Require: A matrix in CSC format and B matrix in COO format

1: VA ← {vx : ax,∗ ∈ A}
2: w(vx)← 0,∀vx ∈ VA

3: VB ← {vi+rows(A) : bi,∗ ∈ B}
4: N ← ∅
5: for each row bi,∗ of B do

6: N ← N ∪ {ni}
7: c(ni)← nnz(bi,∗)

8: allocate pin list of size (nnz(a∗,i) + 1) for net ni

9: for each nonzero ax,i in column i of A do

10: Pins(ni)← Pins(ni) ∪ {vx}
11: w(vx)← w(vx) + c(ni)

12: end for

13: Pins(ni)← Pins(ni) ∪ {vi+rows(A)}
14: end for

15: return Hrr(V = VA ∪ VB,N)

Algorithm 6 shows the pseudocode for constructing the hypergraph model Hrr

42

for row-by-row parallel multiplication of a given pair of A and B matrices. This

algorithm requires matrix A to be in CSC format, whereas matrix B can be in

COO format. Algorithm 6 utilizes the pin-list representation of hypergraphs. For

the current net ni, net cost assignment and pin list allocation of appropriate size

are performed at lines 7 and 8, respectively. Vertex vx is appended to the end of

the pin list of net ni at line 10. The weight of vertex vx is incrementally updated

at line 11. At line 13, the vertex vi representing row i of B is appended to the

end of the pin list of net ni.

43

Chapter 6

Communication Hypergraph

Models for Parallel SpGEMM

Algorithms

In this chapter, we propose communication hypergraph models for further im-

proving the performance of the SpGEMM algorithms proposed in Chapter 4.

The hypergraph models proposed in Chapter 5 aim at reducing total communi-

cation volume while maintaining computational load balance among processors.

The communication hypergraph models proposed in this chapter aim at reducing

total number of messages while maintaining balance on communication volumes

handled by processors. In the overall framework, the hypergraph models proposed

in Chapter 5 are used in the first stage of preprocessing step and the communi-

cation hypergraph models are used in the second stage of the preprocessing step

prior to parallel SpGEMM operation. Note that the notion of communication hy-

pergraph model is first proposed in [23] in order to improve parallel performance

of sparse matrix-vector multiplication (SpMV) in the form of y = Ax.

In this thesis, we propose how to generate communication hypergraph models

HC
cr, HC

rc, and HC
rr for the three hypergraph models Hcr, Hrc, and Hrr, respec-

tively. In partitioning of HC
cr, HC

rc, and HC
rr, the objective of minimizing cutsize

44

corresponds to minimizing the total number of messages transferred over network

and the constraint of balancing part weights corresponds to maintaining balance

on communication volumes handled by processors.

6.1 The Communication Hypergraph Models

HC
cr, HC

rc, and HC
rr

Recall that, in the hypergraph models Hcr, Hrc, and Hrr, there are two types of

vertices:

• vertices corresponding to SpGEMM computations in the multiplication

phase,

• vertices corresponding to matrix entries to be transferred in the communi-

cation phase.

The communication hypergraph aims at modeling only the communication,

hence HC
cr, HC

rc, and HC
rr use the part information of second type of vertices in the

Hcr, Hrc, and Hrr models, respectively. The part information is obtained after

partitioning the corresponding hypergraph models, Hcr, Hrc, andHrr. Recall that

the part information of vertices is decoded as task to processor assignment since

part k is assumed to be assigned to processor Pk for k = 1, 2, . . . , K without loss

of generality.

In the communication hypergraph model, communication tasks are represented

with vertices and the processors are represented with nets. Considering the

SpGEMM algorithms, there are two kinds of communication tasks:

• Gathering operation: the gathering of partial results from processors in

order to calculate the final value of ci,j in the CRp algorithm

45

• Replication operation: the replication of B-matrix nonzeros in RCp and

B-matrix rows in RRp to processors that need the corresponding B-matrix

entities.

In the communication hypergraph model, there exists a net for each processor

and there exists a vertex for each communicated entry. A net connects a vertex if

and only if the communicated entry, which is represented by that vertex, is sent

to or received by the processor, which is represented by that net. Each such net

also connects a vertex fixed to a part.

Each net is associated with a unit weight. Vertices corresponding to the com-

municated entries are associated with a weight proportional to the volume of

communication that occurs in sending these communicated entries. This weight-

ing scheme will be used to maintain balance on the volumes of messages sent by

processors.

6.1.1 Obtaining HC
cr from Hcr

Given a partition Π(V) of Hcr, the boundary vertices of Hcr corresponding to

C-matrix nonzeros are vertices of HC
cr. The processors that involve in communi-

cation correspond to nets. A net connects a vertex if and only if the processor

corresponding to that net generates a partial result or gathers the partial results.

6.1.2 Obtaining HC
rc from Hrc

Given a partition Π(V) of Hrc, the boundary vertices of Hrc corresponding to B-

matrix columns are vertices ofHC
rc. The processors that involve in communication

correspond to nets. A net connects a vertex if and only if the processor corre-

sponding to that net needs at least one nonzero of B-matrix column represented

by that vertex or owns this B-matrix column.

46

6.1.3 Obtaining HC
rr from Hrr

Given a partition Π(V) of Hrr, the boundary vertices of Hrr corresponding to

B-matrix rows are vertices of HC
rr. The processors that involve in communication

correspond to nets. A net connects a vertex if and only if the processor corre-

sponding to that net needs the B-matrix row represented by that vertex or owns

this B-matrix row.

6.2 Decoding a Partition of the Communication

Hypergraph Model

A K-way partition of vertices of the communication hypergraph can be decoded

as follows: Note that, that part k is assumed to be assigned to processor Pk

for k = 1, 2, . . . , K without loss of generality. A vertex in part k is decoded

as the communication task related with that vertex is assigned to processor Pk.

That is, Pk is held responsible for gathering all the partial results from other

processors in the CRp algorithm or replicating the B-matrix entities to other

processors in the RCp and RRp algorithms. In this partitioning, minimizing the

cutsize (2.11) encodes minimization of total number of messages transferred over

network. Maintaining balance (2.8) corresponds to balancing volumes of messages

sent by processors. For details of the communication hypergraph, please refer

to [24].

47

Chapter 7

Experiments

In this chapter, empirical verification of the parallel algorithms proposed in Chap-

ter 4, the hypergraph models proposed in Chapters 5 and 6 will be presented and

discussed.

7.1 Experimental Dataset

Matrices arising in real applications that involve SpGEMM operations and matri-

ces obtained from the the University of Florida Sparse Matrix Collection [48] are

included in the test dataset. For the application of molecular dynamics simula-

tions, we simulate H2O molecules by executing CP2K [9]. During the simulation,

two SpGEMM instances, which are used in calculations related with Kohn-Sham

Density Functional Theory, are dumped. For cut-off values of 0.5 10−7 and 10−6,

the matrices cp2k-h2o-.5e7 and cp2k-h2o-e6 are respectively obtained. For the

application of linear programming (LP), LP constraint matrices are downloaded

from the University of Florida Sparse Matrix Collection. For the application of

recommendation systems [18], two matrices, amazon0312 and amazon0302, are in-

cluded. These matrices represent the relation between similar items. User prefer-

ence matrices, amazon0312-user and amazon0302-user, are randomly generated

48

according to Zipf distribution.

The test dataset are divided into three categories according to the multipli-

cation types of SpGEMM instances. The multiplication types are: C = AAT ,

C = AA, and C = AB. In each category, matrices are displayed in alphabetical

order of their names.

Tables 7.1 and 7.2 respectively show the properties of input and output ma-

trices. In the tables, the number of rows, columns, and nonzeros are given first.

Then, the average and maximum number nonzeros per row and column are given

in “avg” and “max” columns, respectively.

49

Table 7.1: Input matrix properties

Number of nnz in row nnz in column

Instance Matrix rows columns nonzeros avg max avg max

C = AAT

AAT1 cont11 l 1,468,599 1,961,394 5,382,999 4 5 3 7

AAT2 fome13 48,568 97,840 285,056 6 228 3 14

AAT3 fome21 67,748 216,350 465,294 7 96 2 3

AAT4 fxm3 16 41,340 85,575 392,252 9 57 5 36

AAT5 fxm4 6 22,400 47,185 265,442 12 57 6 24

AAT6 lp pds 20 33,874 108,175 232,647 7 96 2 3

AAT7 pds-30 49,944 158,489 340,635 7 96 2 3

AAT8 pds-40 66,844 217,531 466,800 7 96 2 3

AAT9 pds-50 83,060 275,814 590,833 7 96 2 3

AAT10 pds-60 99,431 336,421 719,557 7 96 2 3

AAT11 pds-90 142,823 475,448 1,014,136 7 96 2 3

AAT12 sgpf5y6 246,077 312,540 831,976 3 61 3 12

AAT13 watson 1 201,155 386,992 1,055,093 5 93 3 9

AAT14 watson 2 352,013 677,224 1,846,391 5 93 3 15

C = AA

50

Table 7.1: Input matrix properties (continued)

Number of nnz in row nnz in column

Instance Matrix rows columns nonzeros avg max avg max

AA1 144 144,649 144,649 2,148,786 15 26 15 26

AA2 2cubes sphere 101,492 101,492 1,647,264 16 31 16 31

AA3 Chevron4 711,450 711,450 6,376,412 9 9 9 9

AA4 cp2k-h2o-.5e7 279,936 279,936 3,816,315 14 24 14 27

AA5 cp2k-h2o-e6 279,936 279,936 2,349,567 8 20 8 20

AA6 mac econ fwd500 206,500 206,500 1,273,389 6 44 6 47

AA7 majorbasis 160,000 160,000 1,750,416 11 11 11 18

AA8 mario002 389,874 389,874 2,101,242 5 7 5 7

AA9 mc2depi 525,825 525,825 2,100,225 4 4 4 4

AA10 poisson3Da 13,514 13,514 352,762 26 110 26 110

AA11 scircuit 170,998 170,998 958,936 6 353 6 353

AA12 t2em 921,632 921,632 4,590,832 5 5 5 5

AA13 thermomech dK 204,316 204,316 2,846,228 14 20 14 20

AA14 tmt sym 726,713 726,713 5,080,961 7 9 7 9

AA15 torso2 115,967 115,967 1,033,473 9 10 9 10

AA16 xenon2 157,464 157,464 3,866,688 25 27 25 27

51

Table 7.1: Input matrix properties (continued)

Number of nnz in row nnz in column

Instance Matrix rows columns nonzeros avg max avg max

C = AB

AB1
amazon0302 262,111 262,111 1,234,877 5 5 5 420

amazon0302-user 262,111 1,000 2,111,519 8 911 2,112 2,278

AB2
amazon0312 400,727 400,727 3,200,440 8 10 8 2,747

amazon0312-user 400,727 1,000 3,226,140 8 461 3,226 3,405

AB3
crashbasis 160,000 160,000 1,750,416 11 11 11 18

majorbasis 160,000 160,000 1,750,416 11 11 11 18

AB4
darcy003 389,874 389,874 2,101,242 5 7 5 7

mario002 389,874 389,874 2,101,242 5 7 5 7

AB5
thermomech dK 204,316 204,316 2,846,228 14 20 14 20

thermomech dM 204,316 204,316 1,423,116 7 10 7 10

52

Table 7.2: Output matrix properties

Number of nnz in row nnz in column

Instance Matrix rows columns nonzeros avg max avg max

C = AAT

AAT1 cont11 lcont11 l-T 1,468,599 1,468,599 18,064,261 12 23 12 23

AAT2 fome13fome13-T 48,568 48,568 658,136 14 568 14 568

AAT3 fome21fome21-T 67,748 67,748 640,240 9 97 9 97

AAT4 fxm3 16fxm3 16-T 41,340 41,340 765,526 19 158 19 158

AAT5 fxm4 6fxm4 6-T 22,400 22,400 526,536 24 98 24 98

AAT6 lp pds 20lp pds 20-T 33,874 33,874 320,120 9 97 9 97

AAT7 pds-30pds-30-T 49,944 49,944 468,266 9 97 9 97

AAT8 pds-40pds-40-T 66,844 66,844 637,867 10 97 10 97

AAT9 pds-50pds-50-T 83,060 83,060 802,503 10 97 10 97

AAT10 pds-60pds-60-T 99,431 99,431 972,220 10 97 10 97

AAT11 pds-90pds-90-T 142,823 142,823 1,363,698 10 97 10 97

AAT12 sgpf5y6sgpf5y6-T 246,077 246,077 2,776,645 11 367 11 367

AAT13 watson 1watson 1-T 201,155 201,155 1,937,163 10 123 10 123

AAT14 watson 2watson 2-T 352,013 352,013 3,390,279 10 123 10 123

C = AA

53

Table 7.2: Output matrix properties (continued)

Number of nnz in row nnz in column

Instance Matrix rows columns nonzeros avg max avg max

AA1 144144 144,649 144,649 10,416,087 72 116 72 116

AA2 2cubes sphere2cubes sphere 101,492 101,492 8,974,526 88 180 88 180

AA3 Chevron4Chevron4 711,450 711,450 17,706,328 25 25 25 25

AA4 cp2k-h2o-.5e7cp2k-h2o-.5e7 279,936 279,936 17,052,039 61 99 61 103

AA5 cp2k-h2o-e6cp2k-h2o-e6 279,936 279,936 7,846,956 28 50 28 50

AA6 mac econ fwd500mac econ fwd500 206,500 206,500 6,704,899 32 215 32 157

AA7 majorbasismajorbasis 160,000 160,000 8,243,392 52 52 52 68

AA8 mario002mario002 389,874 389,874 6,449,598 17 19 17 19

AA9 mc2depimc2depi 525,825 525,825 5,245,952 10 10 10 10

AA10 poisson3Dapoisson3Da 13,514 13,514 2,957,530 219 584 219 584

AA11 scircuitscircuit 170,998 170,998 5,222,525 31 1,885 31 1,885

AA12 t2emt2em 921,632 921,632 11,924,892 13 13 13 13

AA13 thermomech dKthermomech dK 204,316 204,316 7,874,152 39 52 39 52

AA14 tmt symtmt sym 726,713 726,713 14,503,181 20 25 20 25

AA15 torso2torso2 115,967 115,967 2,858,293 25 27 25 28

AA16 xenon2xenon2 157,464 157,464 14,037,210 89 99 89 99

54

Table 7.2: Output matrix properties (continued)

Number of nnz in row nnz in column

Instance Matrix rows columns nonzeros avg max avg max

C = AB

AB1 amazon0302amazon0302-user 262,111 1,000 9,787,258 37 913 9,787 11,024

AB2 amazon0312amazon0312-user 400,727 1,000 24,951,760 62 500 24,952 29,392

AB3 crashbasismajorbasis 160,000 160,000 8,243,392 52 52 52 68

AB4 darcy003mario002 389,874 389,874 6,449,598 17 19 17 19

AB5 thermomech dKthermomech dM 204,316 204,316 7,874,148 39 52 39 52

55

7.2 Experimental Setup

The partitioning tool used in partitioning the proposed hypergraph models of the

test SpGEMM instances will be given in Section 7.2.1. In Section 7.2.2, overview

of our SpGEMM library will be given. Some of the important properties of the

parallel platform, on which the experiments are carried out, will be mentioned in

Section 7.2.3.

7.2.1 Partitioning Tool

In order to partition the proposed hypergraph models of the SpGEMM instances,

the successful state-of-the-art serial hypergraph partitioning (HP) tool PaToH [46]

is used. Recursive bipartitioning scheme is used in PaToH for obtaining multiway

partitions of a given hypergraph. For bipartitioning a given hypergraph, PaToH

uses multilevel approach. Each level consists of coarsening, initial bipartitioning

and uncoarsening phases [46, 29].

In the experiments, PaToH’s PATOH SUGPARAM SPEED parameter is used. This

parameter enables finding reasonably good bipartitions faster than the default

parameter as mentioned in the manual [46]. A trade-off between the bipartitioning

time and the solution quality is established through using absorption clustering

using pins in the coarsening phase and using boundary FM for faster refinement

in the uncoarsening phase. The use of absorption clustering using pins in the

coarsening phase also leads to less number of levels.

The results are reported by averaging the values obtained in three different

runs because PaToH uses randomized algorithms. Each of these three runs is

randomly seeded. The maximum allowed imbalance ratio ε is set to be equal to

10%. The hypergraphs of the SpGEMM instances are partitioned for each value

of K = 256, 512 and 1024. Here, K is the number of used processors of the

parallel system.

56

7.2.2 The SpGEMM Library

In order to show the actual performances of the proposed SpGEMM algorithms

and hypergraph models, a SpGEMM library is developed. This library is based

on the MPI (Message Passing Interface) library [26] so it is designed for run-

ning on distributed memory architectures. The library is developed using the C

programming language. This library can perform the following operations:

• Conversion of sparse matrices stored as text to binary format in order to

decrease time spent in file I/O.

• Sequentially multiply two sparse matrices using Gustavson’s SpGEMM al-

gorithm [33]

• Partition given two input matrices according to the models proposed in

Chapter 5

• Perform parallel multiplication of given two matrices according to a given

partitioning information using the parallel SpGEMM algorithms proposed

in Chapter 4

• Verify numerical correctness of the multiplication results

The manual of this library can be found in Appendix Chapter A. The library

can be downloaded from [49].

7.2.3 The BlueGene/Q System

Our SpGEMM library is tested on an IBM BlueGene/Q system, named

JUQUEEN. JUQUUEN is located at the Jülich Supercomputing Centre in Ger-

many. A compute node of the BlueGene/Q system has 16 PowerPC A2 cores.

These cores are clocked at 1.6 GHz. A compute node has 16 GB of RAM. The

compute nodes of BlueGene/Q system are connected to each other via a five

dimensional torus network.

57

The BlueGene/Q system has special compiler named IBM XL compiler suite.

Our SpGEMM library is compiled with the C compiler of this suit using O2 flag.

The BlueGene/Q system uses MPI implementation based on MPICH2 [50]. Eight

processes per node is used on JUQUEEN during the parallel runs.

Each parallel SpGEMM operation is repeated 10 times and average of these 10

runs are reported. Before these runs, three SpGEMM operations are performed

in order to alleviate the cold start problem. The sequential algorithm of pro-

posed by Gustavson [33] is used to measure sequential run time on a single core

of JUQUEEN. Speedup values on JUQUEEN are computed according to these

sequential run times.

58

Table 7.3: Results of Hcr, Hrc, and Hrr

Measured percent imbalance Communication volume per proc.

Speedup Mult. phase Comm. phase Average Maximum

Instance Matrix K Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr

C = AAT

AAT1 cont11 lcont11 l-T

256 215 215 215 5 4 3 67 41 40 0.003 0.042 0.042 0.005 0.060 0.082

512 409 409 410 6 5 4 76 42 45 0.002 0.030 0.030 0.004 0.043 0.062

1024 621 735 749 6 6 6 222 40 37 0.002 0.021 0.022 0.003 0.036 0.048

AAT2 fome13fome13-T

256 131 114 106 20 13 14 56 28 32 0.020 0.905 0.916 0.031 1.153 1.717

512 172 135 140 26 21 21 58 40 34 0.012 0.537 0.545 0.023 0.750 1.105

1024 190 140 175 32 27 26 44 49 51 0.008 0.325 0.324 0.027 1.078 0.827

AAT3 fome21fome21-T

256 131 99 104 11 18 18 54 64 54 0.013 0.492 0.492 0.021 0.893 0.988

512 165 123 136 13 20 19 59 67 77 0.008 0.319 0.323 0.015 0.574 0.740

1024 180 148 191 17 23 21 67 73 59 0.006 0.213 0.212 0.010 0.353 0.484

AAT4 fxm3 16fxm3 16-T

256 117 80 88 52 79 87 170 137 118 0.004 0.106 0.112 0.020 0.279 0.444

512 157 100 139 80 97 98 160 159 107 0.006 0.115 0.113 0.026 0.328 0.432

1024 187 116 177 96 104 101 137 183 99 0.007 0.107 0.106 0.029 0.444 0.499

AAT5 fxm4 6fxm4 6-T

256 97 74 80 54 85 81 122 83 90 0.007 0.133 0.146 0.023 0.342 0.615

59

Table 7.3: Results of Hcr, Hrc, and Hrr (continued)

Measured percent imbalance Communication volume per proc.

Speedup Mult. phase Comm. phase Average Maximum

Instance Matrix K Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr

512 130 100 111 63 95 98 107 73 83 0.009 0.161 0.161 0.031 0.441 0.610

1024 157 106 141 68 107 113 98 108 83 0.010 0.145 0.142 0.030 0.693 0.864

AAT6 lp pds 20lp pds 20-T

256 88 67 75 11 20 19 59 59 60 0.016 0.635 0.638 0.029 1.128 1.444

512 96 82 101 17 23 23 78 63 60 0.011 0.422 0.419 0.020 0.688 0.923

1024 110 85 128 22 28 28 67 87 59 0.007 0.279 0.273 0.013 1.050 0.728

AAT7 pds-30pds-30-T

256 104 84 91 12 18 19 65 51 59 0.014 0.555 0.553 0.026 0.879 1.217

512 131 107 118 13 19 20 67 57 68 0.009 0.372 0.370 0.018 0.605 0.801

1024 143 107 154 19 26 25 70 92 74 0.006 0.237 0.236 0.011 0.376 0.601

AAT8 pds-40pds-40-T

256 129 99 103 11 16 16 51 57 50 0.013 0.503 0.506 0.023 0.837 1.156

512 169 132 134 12 20 20 56 56 72 0.008 0.322 0.326 0.015 0.565 0.750

1024 184 143 181 17 23 23 57 71 68 0.006 0.216 0.214 0.010 0.354 0.560

AAT9 pds-50pds-50-T

256 141 104 110 10 16 16 52 60 61 0.012 0.452 0.459 0.019 0.859 1.099

512 189 144 154 12 20 20 58 63 64 0.008 0.307 0.310 0.015 0.527 0.697

1024 209 171 209 16 23 22 60 66 62 0.005 0.209 0.208 0.009 0.329 0.463

60

Table 7.3: Results of Hcr, Hrc, and Hrr (continued)

Measured percent imbalance Communication volume per proc.

Speedup Mult. phase Comm. phase Average Maximum

Instance Matrix K Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr

AAT10 pds-60pds-60-T

256 149 118 112 11 18 17 59 52 70 0.011 0.415 0.413 0.018 0.758 0.949

512 211 155 164 12 19 20 58 65 73 0.007 0.294 0.292 0.012 0.484 0.700

1024 239 184 226 15 20 22 73 70 67 0.005 0.196 0.194 0.009 0.330 0.455

AAT11 pds-90pds-90-T

256 169 130 130 11 17 17 54 55 61 0.009 0.353 0.357 0.017 0.760 0.898

512 255 187 195 13 18 18 62 58 55 0.006 0.258 0.257 0.012 0.454 0.560

1024 301 207 271 14 22 23 66 85 65 0.004 0.168 0.167 0.008 0.310 0.376

AAT12 sgpf5y6sgpf5y6-T

256 159 105 115 8 22 24 122 84 101 0.002 0.244 0.251 0.007 0.770 1.850

512 196 113 150 11 36 32 181 90 109 0.002 0.222 0.220 0.005 0.485 1.349

1024 215 103 170 18 47 46 167 110 133 0.002 0.162 0.159 0.005 0.285 0.738

AAT13 watson 1watson 1-T

256 188 165 158 4 12 11 94 91 92 0.002 0.146 0.146 0.005 0.428 0.721

512 291 236 224 7 21 20 101 99 98 0.002 0.140 0.139 0.004 0.377 0.699

1024 358 312 298 14 34 40 127 71 72 0.001 0.103 0.102 0.003 0.243 0.508

AAT14 watson 2watson 2-T

256 217 177 170 7 14 12 111 98 104 0.001 0.087 0.094 0.003 0.281 0.564

512 363 282 253 10 20 22 104 107 124 0.001 0.087 0.088 0.003 0.275 0.484

61

Table 7.3: Results of Hcr, Hrc, and Hrr (continued)

Measured percent imbalance Communication volume per proc.

Speedup Mult. phase Comm. phase Average Maximum

Instance Matrix K Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr

1024 502 397 375 13 32 30 135 86 95 0.001 0.083 0.081 0.002 0.211 0.394

avg.

256 140 110 113 12 19 18 75 64 66 0.007 0.267 0.273 0.014 0.549 0.812

512 194 148 161 15 24 24 81 69 72 0.005 0.209 0.209 0.012 0.409 0.607

1024 228 172 218 20 29 29 89 80 70 0.004 0.151 0.149 0.009 0.341 0.467

C = AA

AA1 144144

256 145 163 163 40 33 33 99 79 76 0.025 0.170 0.172 0.043 0.317 0.373

512 267 299 307 43 36 36 99 76 76 0.018 0.119 0.119 0.030 0.209 0.285

1024 422 520 543 50 37 36 107 70 81 0.013 0.083 0.083 0.021 0.139 0.227

AA2 2cubes sphere2cubes sphere

256 195 196 197 9 9 10 52 36 39 0.032 0.241 0.243 0.047 0.322 0.447

512 290 336 355 12 11 11 104 53 43 0.021 0.161 0.162 0.044 0.215 0.331

1024 376 536 588 14 15 14 128 48 39 0.014 0.108 0.109 0.026 0.148 0.250

AA3 Chevron4Chevron4

256 236 215 222 8 14 11 75 51 51 0.005 0.040 0.040 0.009 0.060 0.074

512 421 467 468 4 3 3 72 53 53 0.004 0.028 0.028 0.007 0.044 0.055

62

Table 7.3: Results of Hcr, Hrc, and Hrr (continued)

Measured percent imbalance Communication volume per proc.

Speedup Mult. phase Comm. phase Average Maximum

Instance Matrix K Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr

1024 671 863 874 10 3 4 217 52 55 0.003 0.020 0.020 0.005 0.032 0.043

AA4 cp2k-h2o-.5e7cp2k-h2o-.5e7

256 192 194 193 6 5 6 54 42 36 0.010 0.129 0.125 0.014 0.162 0.188

512 351 355 362 6 7 6 53 42 46 0.006 0.081 0.079 0.010 0.114 0.135

1024 273 622 648 6 7 7 125 47 40 0.004 0.052 0.051 0.007 0.072 0.106

AA5 cp2k-h2o-e6cp2k-h2o-e6

256 199 196 199 5 6 5 48 30 34 0.005 0.100 0.101 0.008 0.127 0.168

512 348 357 360 6 6 6 66 38 39 0.004 0.063 0.063 0.005 0.087 0.116

1024 476 588 606 6 6 7 88 41 43 0.002 0.041 0.041 0.004 0.059 0.084

AA6 mac econ fwd500mac econ fwd500

256 124 184 172 88 11 17 166 34 32 0.002 0.342 0.208 0.012 0.559 0.462

512 199 297 289 109 14 21 227 34 41 0.002 0.224 0.135 0.030 0.431 0.387

1024 317 398 401 138 17 24 241 38 60 0.001 0.138 0.088 0.020 0.307 0.320

AA7 majorbasismajorbasis

256 170 194 199 6 5 3 76 47 35 0.015 0.086 0.065 0.024 0.125 0.105

512 286 343 348 8 6 6 69 51 46 0.011 0.064 0.050 0.018 0.096 0.102

1024 430 536 567 11 9 10 70 54 45 0.008 0.047 0.038 0.014 0.071 0.091

AA8 mario002mario002

256 205 210 211 5 4 5 65 49 49 0.005 0.057 0.056 0.009 0.093 0.117

63

Table 7.3: Results of Hcr, Hrc, and Hrr (continued)

Measured percent imbalance Communication volume per proc.

Speedup Mult. phase Comm. phase Average Maximum

Instance Matrix K Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr

512 378 396 391 7 6 5 74 42 40 0.003 0.041 0.041 0.006 0.064 0.084

1024 588 680 672 10 8 8 101 43 45 0.003 0.029 0.029 0.005 0.050 0.063

AA9 mc2depimc2depi

256 246 239 235 11 21 20 58 38 44 0.007 0.077 0.076 0.012 0.111 0.134

512 444 425 419 17 27 30 64 40 45 0.005 0.056 0.054 0.009 0.083 0.098

1024 581 723 710 38 30 31 114 41 37 0.004 0.040 0.039 0.007 0.061 0.079

AA10 poisson3Dapoisson3Da

256 134 125 144 15 14 13 51 56 63 0.068 0.427 0.430 0.105 0.661 1.331

512 177 160 230 43 16 17 69 65 55 0.049 0.315 0.309 0.097 0.937 1.157

1024 230 180 292 38 24 23 72 66 72 0.034 0.230 0.223 0.083 1.228 1.461

AA11 scircuitscircuit

256 33 141 140 205 17 17 1302 163 205 0.025 0.118 0.120 1.170 0.286 2.820

512 40 178 174 515 28 27 975 218 266 0.017 0.090 0.092 1.198 0.268 3.088

1024 39 204 190 1132 37 42 779 218 356 0.012 0.069 0.069 1.237 0.314 4.821

AA12 t2emt2em

256 214 222 220 8 6 5 70 43 43 0.005 0.046 0.047 0.008 0.071 0.078

512 401 419 411 10 8 8 71 41 44 0.004 0.033 0.033 0.007 0.050 0.056

1024 704 748 742 14 13 12 102 40 48 0.003 0.023 0.024 0.005 0.035 0.042

64

Table 7.3: Results of Hcr, Hrc, and Hrr (continued)

Measured percent imbalance Communication volume per proc.

Speedup Mult. phase Comm. phase Average Maximum

Instance Matrix K Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr

AA13 thermomech dKthermomech dK

256 210 214 212 6 4 5 73 47 44 0.006 0.055 0.055 0.010 0.081 0.097

512 395 406 415 5 6 5 79 52 48 0.005 0.041 0.041 0.009 0.061 0.074

1024 692 748 758 8 5 6 89 54 46 0.004 0.030 0.030 0.007 0.048 0.059

AA14 tmt symtmt sym

256 226 231 231 4 4 4 82 43 47 0.005 0.043 0.043 0.009 0.063 0.090

512 425 442 443 5 5 5 68 53 49 0.004 0.031 0.031 0.006 0.047 0.068

1024 718 809 803 6 6 5 97 47 48 0.003 0.022 0.022 0.005 0.034 0.052

AA15 torso2torso2

256 172 190 192 4 4 4 52 45 47 0.013 0.089 0.093 0.022 0.145 0.199

512 267 313 327 6 6 6 68 52 45 0.010 0.066 0.069 0.018 0.105 0.142

1024 378 479 482 10 9 8 72 46 50 0.007 0.050 0.052 0.013 0.080 0.114

AA16 xenon2xenon2

256 190 186 189 5 3 3 56 50 41 0.008 0.102 0.102 0.013 0.141 0.170

512 355 351 359 5 3 4 62 52 47 0.006 0.068 0.068 0.010 0.098 0.139

1024 592 618 653 5 4 4 96 56 51 0.004 0.046 0.046 0.006 0.069 0.118

avg.

256 168 191 193 11 8 8 82 48 49 0.010 0.102 0.097 0.021 0.156 0.218

512 283 334 344 14 9 9 91 53 53 0.007 0.072 0.068 0.018 0.119 0.171

65

Table 7.3: Results of Hcr, Hrc, and Hrr (continued)

Measured percent imbalance Communication volume per proc.

Speedup Mult. phase Comm. phase Average Maximum

Instance Matrix K Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr

1024 402 535 560 18 11 11 121 54 56 0.005 0.050 0.048 0.013 0.091 0.145

C = AB

AB1 amazon0302amazon0302-user

256 166 9 119 11 70 14 185 88 71 0.001 1.151 0.294 0.013 148.728 0.987

512 239 8 158 15 99 14 282 90 84 0.001 0.599 0.170 0.033 153.874 0.884

1024 309 9 226 26 109 16 271 88 111 0.001 0.312 0.098 0.024 97.508 0.524

AB2 amazon0312amazon0312-user

256 79 9 110 58 78 25 167 104 66 0.032 0.856 0.340 0.154 206.787 1.228

512 101 9 152 78 98 22 276 101 56 0.016 0.458 0.202 0.114 185.904 0.916

1024 63 8 159 60 117 22 214 96 61 0.014 0.246 0.119 0.073 152.334 0.830

AB3 crashbasismajorbasis

256 167 192 195 6 6 4 84 36 57 0.014 0.085 0.065 0.027 0.120 0.110

512 274 342 349 8 6 5 87 47 52 0.011 0.063 0.050 0.021 0.095 0.103

1024 428 544 575 11 8 9 72 56 48 0.008 0.047 0.038 0.014 0.073 0.084

AB4 darcy003mario002

256 208 210 211 6 4 3 82 39 43 0.005 0.056 0.057 0.008 0.084 0.112

512 382 393 388 8 6 7 61 40 43 0.003 0.041 0.041 0.006 0.067 0.077

1024 584 682 683 11 9 9 95 38 47 0.003 0.029 0.029 0.005 0.048 0.064

66

Table 7.3: Results of Hcr, Hrc, and Hrr (continued)

Measured percent imbalance Communication volume per proc.

Speedup Mult. phase Comm. phase Average Maximum

Instance Matrix K Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr Hcr Hrc Hrr

AB5 thermomech dKthermomech dM

256 170 218 216 8 5 5 75 53 44 0.009 0.055 0.055 0.016 0.083 0.105

512 321 420 415 8 7 6 71 43 54 0.007 0.041 0.040 0.011 0.061 0.080

1024 565 756 750 11 7 6 80 45 48 0.005 0.030 0.030 0.009 0.048 0.060

avg.

256 151 58 163 11 15 7 110 58 55 0.007 0.192 0.115 0.023 1.915 0.275

512 241 83 267 14 18 9 124 59 56 0.005 0.124 0.078 0.022 1.618 0.220

1024 307 116 403 19 23 11 126 61 59 0.004 0.080 0.053 0.016 1.196 0.170

Overall

256 154 129 152 11 12 11 82 56 56 0.008 0.164 0.151 0.018 0.370 0.381

512 238 198 245 14 14 13 91 60 60 0.006 0.119 0.109 0.016 0.283 0.294

1024 308 273 366 19 18 16 108 64 62 0.004 0.083 0.077 0.012 0.223 0.237

67

7.3 Performance Evaluation

For evaluating performances of the proposed models, the speedup values measured

on JUQUEEN are reported. The metrics related with communication overhead

and load balancing are also reported in order to give insights into the quality of

partitioning. Table 7.3 contains these results for the three categories of the test

dataset. Geometric averages of the results in each category are reported at the

end of the category.

In the performance evaluation, parallel SpGEMM libraries such as CombBLAS

and Trilinos are not used as baseline. This is because these libraries are very

slow compared to our SpGEMM library. The reason behind the slowness of

CombBLAS and Trilinos is that they do not calculate the output matrix C in a

symbolic multiplication step so they have to perform dynamic memory allocation.

7.3.1 Effect of Balancing Constraint

In order to evaluate the quality of load balancing of the proposed models, the

measured load imbalance values of the two phases of the proposed SpGEMM

algorithms are reported in Table 7.3. While reporting these imbalance measures,

barrier synchronization is used between the multiplication and communication

phases.

As seen in Table 7.3, the load imbalance values for the multiplication phase is

rather low and close to 10%, which the maximum allowable imbalance ratio given

to PaToH. The load imbalance values for the multiplication phase are considerably

smaller than that for the communication phase. This shows the benefit of the

constraint enforced during the partitioning.

There are some instances that the imbalance values for the multiplication phase

are higher than the maximum allowable imbalance ratio of 10%. This may be

attributed to the “difficultness” of the problem which depends on the sparsity

68

structure of the matrices. If tighter constraints are enforced (e.g. ε = 0.05), the

solution space will be more restricted. Hence, the cutsize will be larger and the

partitioning will take more time to satisfy the tight constraint.

The high imbalances of Hcr for the communication phase can be attributed

to the implementation issue discussed in Section 5.1.1. The correspondence be-

tween the second weights of vertices and the amount of summation performed in

summation phase, in fact, depend on partitioning of vertices. In other words, the

weights of vertices must be updated according to change in part of the vertex.

Nevertheless, the second constraint can still be used to balance computational

loads of the processors in the summation phase.

7.3.2 Effect of Reducing Communication Volume

The quality metrics on the communication overhead are given in Table 7.3. The

average and maximum volume of messages sent by processors is given in ‘Average‘

and “Maximum” columns, respectively. These communication volume values are

normalized with respect to the number of multiply-and-add operations performed

in the respective SpGEMM instance. Hence, these values represent the amount

of communicated data words (i.e., floating point numbers) transferred per 1000

multiply-and-add operations.

As seen in the Table 7.3, the average and maximum volume of communication

per multiply-and-add operation is small, i.e., below 0.4 words per 1000 multiply-

and-add operations on the overall average. In other words, most of the multi-

plications do not require communication so that the communication overhead is

reduced.

As seen in the Table 7.3, on the average, the maximum volume of communica-

tion is twice the average volume of communication. This is because the proposed

models and methods mainly encode the balancing constraint on computational

loads of processors. These models and partitioning methods can be enhanced to

encode the balancing constraint on communication loads of processors.

69

7.3.3 Comparison of Performances of the Hypergraph

Models Hcr, Hrc, and Hrr

The relative performance of the proposed three hypergraph models will be dis-

cussed here. According to the averages given in Table 7.3, the superiority of the

proposed models depends on the computation pattern of the SpGEMM instances.

For LP matrices in the C = AAT category, Hcr performs the best; and Hrr

performs better thanHcr. The reason behind the superior performance ofHcr can

be observed in the average volume of communication column. On the average,

Hcr achieves significantly smaller average volume of communication with respect

to the other models. Hence, these results show the important impact of volume of

communication on the parallel performance of SpGEMM operations on large-scale

distributed memory architectures.

The inferior performance of Hrr can be attributed to the large messages since

whole row of B matrix is communicated. This can be observed from the relatively

greater difference in the average and maximum volume of communication.

For the category of C = AA, Hrr performs the best; and Hrc performs better

than Hcr. Although the average communication volume of Hcr is smaller than

those of other models, Hcr suffers from the high imbalance in multiplication and

summation phases. Hrr performs considerably better than Hrc.

For the category of C = AB, Hrr performs the best; and Hcr performs better

than Hrc. A situation similar to that in C = AA category can be seen here.

Although the average communication volume of Hcr is smaller than those of other

models, Hcr suffers from the high imbalance in multiplication and summation

phases. However, Hcr still performs better than Hrc. Hrr performs considerably

better than the other models.

70

7.3.4 Performance Effects of Using the Communication

Hypergraph Models HC
cr, HC

rc, and HC
rr

The results for using the communication hypergraph models for improving the

communication induced by the three hypergraph models are presented in Ta-

ble 7.4. Since the communication hypergraph models aim at reducing total

amount of messages and balancing volumes of messages sent by processors, the

average and maximum number of sent messages are reported in the table.

As seen in Table 7.4, in general, use of the communication hypergraph models

yield decrease in the average number of messages. It is clear that the decrease in

the average number of messages also corresponds to decrease in the total number

of messages. The use of the communication hypergraph models can also maintain

balance on the communication volume handled by processors. This effect can

indirectly be seen in the “maximum number of messages” column. As seen in this

column, there are significant differences between the maximum number of message

values of the proposed hypergraphs models and those for when the communication

hypergraph models are used.

In general, the use of the communication hypergraph models successfully de-

creases the total number of messages sent by processors. For some SpGEMM

instances in the C = AB category, the average number of messages is increased

when the communication hypergraph models are used. This anomaly can be at-

tributed to the restriction of the solution space depending on the communication

patterns induced by those SpGEMM instances and the heuristics used in the

partitioning.

71

Table 7.4: Results of communication hypergraph models

HC
cr, HC

rc, and HC
rr

Number of sent messages

Speedup Average Maximum

Instance Matrix K Hcr HC
cr Hrc HC

rc Hrr HC
rr Hcr HC

cr Hrc HC
rc Hrr HC

rr Hcr HC
cr Hrc HC

rc Hrr HC
rr

C = AAT

AAT1 cont11 lcont11 l-T

256 215 215 215 207 215 212 17 13 13 13 10 12 17 13 13 13 10 12

512 409 409 409 399 410 407 19 15 14 11 12 10 19 15 14 11 12 10

1024 621 692 735 709 749 741 18 15 14 12 11 10 18 15 14 12 11 10

AAT2 fome13fome13-T

256 131 156 114 83 106 109 48 21 31 31 31 23 48 21 31 31 31 23

512 172 208 135 87 140 162 59 26 61 63 54 30 59 26 61 63 54 30

1024 190 207 140 79 175 218 61 26 98 127 68 32 61 26 98 127 68 32

AAT3 fome21fome21-T

256 131 153 99 81 104 105 45 19 61 48 41 26 45 19 61 48 41 26

512 165 216 123 115 136 155 50 21 75 61 55 29 50 21 75 61 55 29

1024 180 246 148 161 191 216 52 23 84 74 56 28 52 23 84 74 56 28

AAT4 fxm3 16fxm3 16-T

256 117 125 80 86 88 93 22 17 71 25 28 16 22 17 71 25 28 16

512 157 175 100 132 139 137 28 21 90 29 31 21 28 21 90 29 31 21

1024 187 222 116 177 177 208 34 17 110 31 30 19 34 17 110 31 30 19

72

Table 7.4: Results of communication hypergraph models

HC
cr, HC

rc, and HC
rr (continued)

Number of sent messages

Speedup Average Maximum

Instance Matrix K Hcr HC
cr Hrc HC

rc Hrr HC
rr Hcr HC

cr Hrc HC
rc Hrr HC

rr Hcr HC
cr Hrc HC

rc Hrr HC
rr

AAT5 fxm4 6fxm4 6-T

256 97 114 74 82 80 88 25 10 45 24 31 13 25 10 45 24 31 13

512 130 164 100 119 111 134 25 13 50 22 32 13 25 13 50 22 32 13

1024 157 178 106 147 141 172 29 17 65 23 44 16 29 17 65 23 44 16

AAT6 lp pds 20lp pds 20-T

256 88 118 67 64 75 55 46 20 64 53 44 58 46 20 64 53 44 58

512 96 141 82 85 101 117 52 23 79 65 52 27 52 23 79 65 52 27

1024 110 147 85 97 128 146 48 24 80 89 45 25 48 24 80 89 45 25

AAT7 pds-30pds-30-T

256 104 133 84 76 91 94 50 21 69 55 48 29 50 21 69 55 48 29

512 131 185 107 104 118 141 52 22 76 63 52 29 52 22 76 63 52 29

1024 143 160 107 133 154 187 53 23 86 90 56 26 53 23 86 90 56 26

AAT8 pds-40pds-40-T

256 129 155 99 88 103 101 48 19 63 47 43 29 48 19 63 47 43 29

512 169 213 132 117 134 151 51 22 74 66 55 32 51 22 74 66 55 32

1024 184 202 143 162 181 214 53 23 90 94 56 30 53 23 90 94 56 30

AAT9 pds-50pds-50-T

256 141 166 104 91 110 109 47 20 65 50 43 30 47 20 65 50 43 30

512 189 214 144 134 154 169 54 22 83 64 52 30 54 22 83 64 52 30

73

Table 7.4: Results of communication hypergraph models

HC
cr, HC

rc, and HC
rr (continued)

Number of sent messages

Speedup Average Maximum

Instance Matrix K Hcr HC
cr Hrc HC

rc Hrr HC
rr Hcr HC

cr Hrc HC
rc Hrr HC

rr Hcr HC
cr Hrc HC

rc Hrr HC
rr

1024 209 186 171 188 209 235 55 25 86 100 57 30 55 25 86 100 57 30

AAT10 pds-60pds-60-T

256 149 175 118 96 112 119 50 20 61 48 52 29 50 20 61 48 52 29

512 211 247 155 141 164 175 53 23 75 67 58 33 53 23 75 67 58 33

1024 239 227 184 202 226 257 63 24 86 100 60 32 63 24 86 100 60 32

AAT11 pds-90pds-90-T

256 169 187 130 105 130 131 48 22 59 59 45 30 48 22 59 59 45 30

512 255 282 187 160 195 202 55 22 86 84 66 30 55 22 86 84 66 30

1024 301 233 207 224 271 297 61 25 103 122 59 32 61 25 103 122 59 32

AAT12 sgpf5y6sgpf5y6-T

256 159 180 105 128 115 136 39 20 79 56 61 28 39 20 79 56 61 28

512 196 269 113 157 150 188 52 28 127 93 104 35 52 28 127 93 104 35

1024 215 348 103 194 170 233 56 31 153 125 125 55 56 31 153 125 125 55

AAT13 watson 1watson 1-T

256 188 178 165 161 158 158 13 10 12 12 12 9 13 10 12 12 12 9

512 291 287 236 224 224 236 19 11 15 11 16 11 19 11 15 11 16 11

1024 358 437 312 308 298 319 26 14 21 14 19 11 26 14 21 14 19 11

74

Table 7.4: Results of communication hypergraph models

HC
cr, HC

rc, and HC
rr (continued)

Number of sent messages

Speedup Average Maximum

Instance Matrix K Hcr HC
cr Hrc HC

rc Hrr HC
rr Hcr HC

cr Hrc HC
rc Hrr HC

rr Hcr HC
cr Hrc HC

rc Hrr HC
rr

AAT14 watson 2watson 2-T

256 217 220 177 172 170 175 18 11 13 13 13 9 18 11 13 13 13 9

512 363 373 282 275 253 269 19 11 18 13 17 10 19 11 18 13 17 10

1024 502 583 397 406 375 405 24 13 27 15 21 14 24 13 27 15 21 14

avg.

256 140 159 110 102 113 114 33 17 42 33 32 22 33 17 42 33 32 22

512 194 231 148 145 161 178 39 19 55 41 40 22 39 19 55 41 40 22

1024 228 258 172 193 218 251 42 21 67 54 43 23 42 21 67 54 43 23

C = AA

AA1 144144

256 145 140 163 153 163 163 49 30 43 25 36 17 49 30 43 25 36 17

512 267 259 299 299 307 314 55 31 43 31 39 18 55 31 43 31 39 18

1024 422 418 520 530 543 586 62 32 49 39 39 18 62 32 49 39 39 18

AA2 2cubes sphere2cubes sphere

256 195 185 196 177 197 191 43 28 29 23 24 17 43 28 29 23 24 17

512 290 312 336 320 355 356 49 31 36 28 29 19 49 31 36 28 29 19

1024 376 307 536 528 588 614 60 33 39 33 30 18 60 33 39 33 30 18

75

Table 7.4: Results of communication hypergraph models

HC
cr, HC

rc, and HC
rr (continued)

Number of sent messages

Speedup Average Maximum

Instance Matrix K Hcr HC
cr Hrc HC

rc Hrr HC
rr Hcr HC

cr Hrc HC
rc Hrr HC

rr Hcr HC
cr Hrc HC

rc Hrr HC
rr

AA3 Chevron4Chevron4

256 236 230 215 210 222 212 17 14 9 9 9 9 17 14 9 9 9 9

512 421 412 467 447 468 458 18 15 12 12 11 10 18 15 12 12 11 10

1024 671 699 863 832 874 859 21 16 12 10 11 9 21 16 12 10 11 9

AA4 cp2k-h2o-.5e7cp2k-h2o-.5e7

256 192 184 194 169 193 185 40 27 27 21 22 18 40 27 27 21 22 18

512 351 337 355 317 362 353 37 28 28 22 25 20 37 28 28 22 25 20

1024 273 306 622 585 648 641 39 28 31 23 23 18 39 28 31 23 23 18

AA5 cp2k-h2o-e6cp2k-h2o-e6

256 199 198 196 176 199 195 35 22 23 20 23 15 35 22 23 20 23 15

512 348 353 357 322 360 358 36 23 24 18 21 16 36 23 24 18 21 16

1024 476 538 588 542 606 631 34 22 24 19 22 14 34 22 24 19 22 14

AA6 mac econ fwd500mac econ fwd500

256 124 123 184 164 172 167 39 25 14 16 19 18 39 25 14 16 19 18

512 199 214 297 268 289 279 65 22 27 25 31 23 65 22 27 25 31 23

1024 317 362 398 382 401 419 89 24 36 32 43 29 89 24 36 32 43 29

AA7 majorbasismajorbasis

256 170 167 194 179 199 198 22 14 10 11 9 7 22 14 10 11 9 7

512 286 280 343 317 348 352 21 15 12 10 10 9 21 15 12 10 10 9

76

Table 7.4: Results of communication hypergraph models

HC
cr, HC

rc, and HC
rr (continued)

Number of sent messages

Speedup Average Maximum

Instance Matrix K Hcr HC
cr Hrc HC

rc Hrr HC
rr Hcr HC

cr Hrc HC
rc Hrr HC

rr Hcr HC
cr Hrc HC

rc Hrr HC
rr

1024 430 430 536 531 567 580 25 16 13 12 11 8 25 16 13 12 11 8

AA8 mario002mario002

256 205 205 210 205 211 208 15 14 10 9 9 8 15 14 10 9 9 8

512 378 381 396 379 391 390 16 15 10 9 9 9 16 15 10 9 9 9

1024 588 603 680 652 672 691 17 14 12 10 11 8 17 14 12 10 11 8

AA9 mc2depimc2depi

256 246 245 239 198 235 177 17 15 9 16 10 16 17 15 9 16 10 16

512 444 457 425 357 419 323 18 14 9 16 9 15 18 14 9 16 9 15

1024 581 622 723 599 710 566 19 15 11 17 10 16 19 15 11 17 10 16

AA10 poisson3Dapoisson3Da

256 134 130 125 129 144 153 58 30 69 70 45 26 58 30 69 70 45 26

512 177 179 160 180 230 260 86 36 110 112 51 31 86 36 110 112 51 31

1024 230 259 180 223 292 376 99 37 180 152 78 38 99 37 180 152 78 38

AA11 scircuitscircuit

256 33 75 141 143 140 158 40 24 39 48 66 22 40 24 39 48 66 22

512 40 75 178 202 174 234 45 24 65 75 83 27 45 24 65 75 83 27

1024 39 73 204 227 190 324 72 28 102 127 129 47 72 28 102 127 129 47

77

Table 7.4: Results of communication hypergraph models

HC
cr, HC

rc, and HC
rr (continued)

Number of sent messages

Speedup Average Maximum

Instance Matrix K Hcr HC
cr Hrc HC

rc Hrr HC
rr Hcr HC

cr Hrc HC
rc Hrr HC

rr Hcr HC
cr Hrc HC

rc Hrr HC
rr

AA12 t2emt2em

256 214 214 222 217 220 216 19 15 9 10 11 9 19 15 9 10 11 9

512 401 396 419 406 411 408 19 15 11 10 10 10 19 15 11 10 10 10

1024 704 697 748 728 742 725 20 16 11 10 11 9 20 16 11 10 11 9

AA13 thermomech dKthermomech dK

256 210 205 214 203 212 209 16 16 10 10 9 9 16 16 10 10 9 9

512 395 391 406 386 415 408 19 14 10 9 10 8 19 14 10 9 10 8

1024 692 678 748 705 758 755 21 16 12 11 11 9 21 16 12 11 11 9

AA14 tmt symtmt sym

256 226 223 231 224 231 228 17 15 9 9 11 9 17 15 9 9 11 9

512 425 417 442 425 443 436 18 16 12 11 10 10 18 16 12 11 10 10

1024 718 727 809 779 803 792 20 16 12 10 11 10 20 16 12 10 11 10

AA15 torso2torso2

256 172 168 190 180 192 187 16 13 9 9 8 7 16 13 9 9 8 7

512 267 266 313 303 327 325 18 15 10 9 10 10 18 15 10 9 10 10

1024 378 396 479 456 482 498 21 15 11 12 10 8 21 15 11 12 10 8

AA16 xenon2xenon2

256 190 186 186 169 189 182 26 21 22 18 18 15 26 21 22 18 18 15

512 355 346 351 321 359 347 33 24 23 23 19 15 33 24 23 23 19 15

78

Table 7.4: Results of communication hypergraph models

HC
cr, HC

rc, and HC
rr (continued)

Number of sent messages

Speedup Average Maximum

Instance Matrix K Hcr HC
cr Hrc HC

rc Hrr HC
rr Hcr HC

cr Hrc HC
rc Hrr HC

rr Hcr HC
cr Hrc HC

rc Hrr HC
rr

1024 592 608 618 576 653 640 39 25 26 25 22 15 39 25 26 25 22 15

avg.

256 168 173 191 179 193 188 26 19 17 16 16 13 26 19 17 16 16 13

512 283 295 334 320 344 345 30 20 20 19 18 14 30 20 20 19 18 14

1024 402 430 535 523 560 587 34 21 24 22 21 15 34 21 24 22 21 15

C = AB

AB1 amazon0302amazon0302-user

256 166 171 9 52 119 85 54 43 255 255 209 249 54 43 255 255 209 249

512 239 323 8 31 158 114 104 42 511 511 313 435 104 42 511 511 313 435

1024 309 558 9 24 226 176 191 39 1023 1023 329 541 191 39 1023 1023 329 541

AB2 amazon0312amazon0312-user

256 79 114 9 56 110 83 231 81 255 255 253 255 231 81 255 255 253 255

512 101 222 9 69 152 114 386 102 511 511 499 511 386 102 511 511 499 511

1024 63 412 8 36 159 144 704 116 1023 1023 854 991 704 116 1023 1023 854 991

AB3 crashbasismajorbasis

256 167 165 192 162 195 168 19 14 10 18 11 14 19 14 10 18 11 14

512 274 274 342 294 349 302 23 16 11 19 10 16 23 16 11 19 10 16

79

Table 7.4: Results of communication hypergraph models

HC
cr, HC

rc, and HC
rr (continued)

Number of sent messages

Speedup Average Maximum

Instance Matrix K Hcr HC
cr Hrc HC

rc Hrr HC
rr Hcr HC

cr Hrc HC
rc Hrr HC

rr Hcr HC
cr Hrc HC

rc Hrr HC
rr

1024 428 441 544 503 575 520 24 17 14 23 11 16 24 17 14 23 11 16

AB4 darcy003mario002

256 208 206 210 203 211 209 16 14 10 9 9 9 16 14 10 9 9 9

512 382 382 393 378 388 392 16 14 10 9 11 10 16 14 10 9 11 10

1024 584 607 682 663 683 681 17 14 12 10 11 10 17 14 12 10 11 10

AB5 thermomech dKthermomech dM

256 170 166 218 194 216 187 18 14 10 18 9 15 18 14 10 18 9 15

512 321 313 420 372 415 363 18 14 11 16 10 15 18 14 11 16 10 15

1024 565 569 756 679 750 665 20 15 12 20 11 18 20 15 12 20 11 18

avg.

256 151 162 58 113 163 136 37 25 36 45 34 41 37 25 36 45 34 41

512 241 298 83 155 267 224 48 27 50 59 44 56 48 27 50 59 44 56

1024 307 511 116 181 403 359 64 28 73 86 51 69 64 28 73 86 51 69

Overall

256 154 166 129 134 152 147 30 19 27 25 24 19 30 19 27 25 24 19

512 238 268 198 210 245 249 35 21 34 30 28 21 35 21 34 30 28 21

1024 308 359 273 302 366 390 41 22 42 38 32 22 41 22 42 38 32 22

80

7.3.5 Speedup Curves

The speedup curves are presented in Figures 7.1- 7.7. The names of input matrices

are given on the top of each plot. The sequential running time Ts of a single

SpGEMM operation is also given for each SpGEMM instance in the bottom right

corner of each plot. Ts is given in terms of seconds. In the figures, the x-axis

show the number of processors, i.e., 256, 512, and 1024. This axis is in logarithm

scale. The y-axis shows the speedup.

As seen in the figures, at least one of the proposed models achieve significant

scalability. In general, the use of the communication hypergraph improves the

proposed hypergraph models, which consider only minimization of the commu-

nication volume. Especially for the C = AAT category, the best performance is

obtained through using the communication hypergraph. This can be attributed

to the very irregular sparsity pattern of the input LP constraint matrices. As a

result, in most of the SpGEMM instances, the proposed models scale up to 1024

processors, thus these results verify the empirical validity of the proposed models

and methods.

The superiority of the proposed algorithms and models depends on the amount

of imbalance in computation and communication loads of processors. For the

computation phase, the only performance issue computational load imbalance,

whereas where are multiple quality criteria for the communication phase. Four of

these quality criteria for evaluating the performance of the communication phase

are presented in Tables 7.3 and 7.4.

81

Figure 7.1: Speedup curves on JUQUEEN for the proposed hypergraph models
of SpGEMM instances in the C = AAT category

82

Figure 7.2: Speedup curves on JUQUEEN for the proposed hypergraph models
of SpGEMM instances in the C = AAT category

83

Figure 7.3: Speedup curves on JUQUEEN for the proposed hypergraph models
of SpGEMM instances in the C = AAT category

84

Figure 7.4: Speedup curves on JUQUEEN for the proposed hypergraph models
of SpGEMM instances in the C = AA category

85

Figure 7.5: Speedup curves on JUQUEEN for the proposed hypergraph models
of SpGEMM instances in the C = AA category

86

Figure 7.6: Speedup curves on JUQUEEN for the proposed hypergraph models
of SpGEMM instances in the C = AA category

87

Figure 7.7: Speedup curves on JUQUEEN for the proposed hypergraph models
of SpGEMM instances in the C = AB category

88

Chapter 8

Conclusion

We proposed three parallel SpGEMM algorithms and three hypergraph models

for these algorithms. These models achieve simultaneous partitioning of input

and output matrices for sparse matrix-matrix multiplication (SpGEMM) of the

form C = AB. The proposed algorithms contain two separate phases: multipli-

cation and communication phases. In all of the three hypergraph models, there

exists a vertex in order to represent an atomic task of computation in the multipli-

cation phase of the two-phase SpGEMM algorithms.. In all models, there exists

a hyperedge (net) for a communicated entity of matrices in order to encode the

total volume of communication that will occur during the communication phase

of the two-phase SpGEMM algorithms. The constraints used in partitioning

the proposed hypergraph models correspond to balancing computational loads of

processors. The partitioning objective of minimizing cutsize corresponds to min-

imizing the total volume of communication, which occur in the communication

phase.

We also proposed models for reducing the total number of messages while

maintaining balance on communication volumes handled by processors during the

communication phase of the SpGEMM algorithms. The performance improve-

ment by the proposed hypergraph models for reducing communication volume

was further enhanced by the use of the communication hypergraph models in a

89

second stage. In this second stage, the partitioning information of the first stage

was preprocessed. This preprocessing step consisted of construction of the respec-

tive communication hypergraph model and partitioning it. Minimizing the total

number of messages transferred over network was shown to be encoded by the

partitioning objective of minimizing cutsize. Maintaining balance on communica-

tion volumes handled by processors was shown to be encoded by the partitioning

constraint of balancing part weights.

The validity of the proposed models and methods were empirically tested on a

wide range of sparse matrices. We developed an SpGEMM library based on the

MPI (Message Passing Interface) library. This library contains the proposed three

parallel SpGEMM algorithms and matrix partitioning tools for these algorithms

Parallel SpGEMM runs on large-scale distributed memory IBM BlueGene/Q sys-

tem, named JUQUEEN, showed that the proposed models achieve high speedup

values.

90

Chapter 9

Future Work

In this thesis, we only consider multiplication of two sparse matrices. There

exist applications that involve triple matrix product. One of such applications is

algebraic multigrid solver. The product P TAP is formed to construct the grid

hierarchy of an algebraic multigrid partial differential equation (PDE) solver [51,

52]. Hypergraph partitioning based models and methods can be investigated in

order to model the communication costs and computation loads; and this model

can be used to reduce the communication cost during this triple matrix product.

Obtaining increasing speedup on an unbounded number of processors becomes

very important to reach exascale computing power via combining compute nodes

by using interconnection networks. For this type of parallel systems, the signifi-

cant factor in the communication overhead becomes the number of messages when

the number of processors increases. In other words, communication overhead due

to volume is dominated by the overhead of message latency [53].

One of the solutions for decreasing message latency overhead is using col-

lective communication primitives instead of using point-to-point communication

when the number of messages is large enough. The collective communication

achieves reducing the number of concurrently sent messages with respect to the

point-to-point scheme. So, network congestion is reduced. Efficient collective

91

communication schemes can be integrated in the communication phase of our

parallel SpGEMM library.

92

Appendix A

The Parallel SpGEMM Library

A.1 Quick Start

1. Download the latest version of the library from http://sites.google.

com/site/kadircs/.

2. Decompress the downloaded archive.

3. Set the variable named ROOT defined in Makefile.inc to the full path of

the uncompressed library folder.

4. Compile the source code using the following command:

> make

5. The following command runs the library for a small dataset. The name of

the matrix is smallA and C = AA operation is performed.

> ./run.sh

93

http://sites.google.com/site/kadircs/
http://sites.google.com/site/kadircs/

A.2 File Format for Sparse Matrices

The SpGEMM library uses binary format for input and output matrices. Storage

size of the binary format is less than the storage size of the Matrix Market [54]

format so read and write operations of large sparse matrices are faster. The fol-

lowing command can be used for conversion of a sparse matrix in Matrix Market

format to the binary format utilized by the library:

> ./sspmxm/mtx2bintriplet in.mtx out.bin

For converting a sparse matrix in the binary format utilized by the library to

Matrix Market format:

> ./sspmxm/bintriplet2mtx in.bin out.mtx

A.3 Preprocessing Step for Partitioning Input

and Output Matrices

Prior to multiplication of matrices, partitioning information must be obtained

via this preprocessing step.

The hypergraph models for outer-product and inner-product formulations de-

pend on the sparsity pattern of the output C matrix and all of the multiplication

routines require C matrix for symbolic multiplication. So the output C ma-

trix must be generated before preprocessing and multiplication steps using the

./sspmxm/smult program as follows:

> ./sspmxm/smult A.bin B.bin C.bin resultFile.txt CSR SKIP ZERO ROWS

94

The parameters of ./sspmxm/smult:

1) A.bin input matrix A in binary format

2) B.bin input matrix B in binary format

3) C.bin output matrix C in binary format

4) resultFile.txt the statistics related with the program are appended to

this file

5) CSR SCHEME the scheme used for multiplication. CSR SKIP ZERO ROWS

ensures that A-matrix rows that will not incur any com-

putation are skipped using the sparsity pattern of the

output C matrix.

Partition information for the parallel SpGEMM computation is obtained by us-

ing the ./preprocess/preprocess program, which takes the following sequence

of parameters:

1) P number of partitions, which is also equal to number of

processors

2) FORMULATION matrix multiplication formulation used in the parallel al-

gorithm:

• FORM OUTER: Outer-product formulation

• FORM INNER: Inner-product formulation

• FORM ROWROW: Row-by-row formulation

2) METRIC the objective of partitioning:

• CON: the cutsize calculated according to the

“connectivity-1 metric”

• CUT: the cutsize calculated according to the “cutnet

metric”

95

3) IMBAL maximum allowed value for the constraint of the parti-

tioning. The given value must be in the range of [0.0 ...

0.5]

4) RCNETCOST for experimentation only, use RCNNZ

5) ZNETCOST scheme used for calculating costs of nets in the hyper-

graph

• ZABVERT: cost of a net is the equal to the input

vertices connected by that net

• ZUNIT: all nets have unit cost

6) MATRIX FORMAT

• MTX: Matrix Market format

• TRIBIN: Binary file consisting of row, column, value

tuples

7) MATRIX A path of the input matrix A stored in binary format

8) MATRIX B path of the input matrix B stored in binary format

9) MATRIX C path of the output matrix C stored in binary format. C

matrix will be used in construction of the hypergraph

model of the SpGEMM computation

10) RESULTFILE experimental results related with partitioning will be ei-

ther printed to standard output or appended to a the

given text file

• stdout: standard out

• FILENAME: name of the file to which results will be

appended

96

11) PART

• DOPART: perform partitioning and write partition

information into file

• LOADPARTVEC: read partition information form file

• CONSTRUCT HYPERGRAPH ONLY: only constructs the

hypergraph of the SpGEMM computation and exits

12) PARTVECFILE name of text file which will contain partition information

13) PARTMTX

• PARTMTX: input and output matrices will also be

partitioned and written to files

• PARTONLY: matrices will not be partitioned

97

14) HYPERGRAPH MODEL

• HPMODEL C NZ: hypergraph model for outer-product

formulation (nonzero-based partitioning of C ma-

trix)

• HPMODEL C ROW: hypergraph model for outer-

product formulation (row-based partitioning of C

matrix)

• HPMODEL C COL: hypergraph model for outer-

product formulation (column-based partitioning of

C matrix)

• HPMODEL INNER B SUBCOL: hypergraph model for

inner-product formulation (A-resident. Only re-

quired nonzeros of B matrix is communicated.)

• HPMODEL ROWROW AC ROW: hypergraph model for

row-by-row formulation (Both A and C matrices

are partitioned rowwise.)

15) STRMTXC use the value of the above-mentioned parameter MATRIX

C

16) STRMTXCSS use null because this parameter is used for other mod-

els and methods that are implemented for experimental

purposes

98

17) OUTPUT VERTEX

WEIGHTS

weighting scheme of output vertices, which represent the

communication operations

• ZERO: zero weight

• UNIT: unit weight

• ABVERTICES OF ZNET: weight of an output vertex is

equal to the number of input vertices connected by

the net that connects this output vertex

18) CSR SCHEME use CSR SKIP ZERO ROWS

19) INPUT VERTEX

WEIGHTS

weighting scheme of output vertices, which represent the

communication operations

• ABMULT: number of nets that connect the vertex

• ABMULTIROW: another weighting scheme for testing

purposes

20) PARTREPEAT number of partitionings. The given value must be greater

than 0.

A.4 Parallel SpGEMM Computation

The parallel SpGEMM computation is performed using the ./pspmxm/pspmxm

program. This program needs an MPI library installed in the system. The

following sequence of parameters is required by the program:

1) P total number of MPI ranks

2) STRMTXA use null because this parameter is used for other mod-

els and methods that are implemented for experimental

purposes

99

3) STROUTPUTMTX use null because this parameter is used for other mod-

els and methods that are implemented for experimental

purposes

4) MATRIX C path to the output matrix C that will be computed in

parallel

5) COMMUNICATION

PATTERN

communication pattern that will be used in the communi-

cation phase. Use NOCOMM because this parameter is used

for other models and methods that are implemented for

experimental purposes.

6) MULTIPLICATION

TYPE

use SYMBOLIC

7) PARTVEC path to the text file that contains partition information

8) CSR SCHEME

• CSR NORMAL: Gustavson’s sequential SpGEMM al-

gorithm

• CSR SKIP ZERO ROWS: The outermost for-loop iter-

ates over nonempty rows of matrix C

9) SEND MODE use NORMAL

10) WRITE C MATRIX

• WRITEMTX: write the computed C matrix into file

• DONTWRITEMTX: do not write the computed C ma-

trix

2) FORMULATION matrix multiplication formulation used in the parallel al-

gorithm

11) HYPERGRAPH MODEL the hypergraph model used in partitioning

12) MATRIX A path to input matrix A stored in binary format

13) MATRIX B path to input matrix B stored in binary format

14) MATRIX C path to output matrix C stored in binary format to be

loaded for the parallel symbolic multiplication

100

15) PERFORM

NUMERICAL CHECK
• PERFORM CHECK IN PREPROCESSING: check numeri-

cal equality of the loaded input matrix C and the

matrix C computed by the parallel SpGEMM op-

eration

• NO CHECK IN PREPROCESSING: no check

16) PARTREPEAT number of partitionings. The given value must be greater

than 0.

101

Bibliography

[1] M. Challacombe, “A general parallel sparse-blocked matrix multiply for

linear scaling SCF theory,” Computer Physics Communications, vol. 128,

no. 12, pp. 93 – 107, 2000.

[2] J. VandeVondele, U. Borstnik, and J. Hutter, “Linear scaling self-consistent

field calculations with millions of atoms in the condensed phase,” Journal of

Chemical Theory and Computation, vol. 8, no. 10, pp. 3565–3573, 2012.

[3] M. Challacombe, “A simplified density matrix minimization for linear scaling

self-consistent field theory,” The Journal of Chemical Physics, vol. 110, no. 5,

pp. 2332–2342, 1999.

[4] S. Itoh, P. Ordejn, and R. M. Martin, “Order-N tight-binding molecular dy-

namics on parallel computers,” Computer Physics Communications, vol. 88,

no. 2-3, pp. 173 – 185, 1995.

[5] H. B. Schlegel, J. M. Millam, S. S. Iyengar, G. A. Voth, A. D. Daniels, G. E.

Scuseria, and M. J. Frisch, “Ab initio molecular dynamics: Propagating the

density matrix with gaussian orbitals,” The Journal of Chemical Physics,

vol. 114, no. 22, pp. 9758–9763, 2001.

[6] X.-P. Li, R. W. Nunes, and D. Vanderbilt, “Density-matrix electronic-

structure method with linear system-size scaling,” Physical Review B, vol. 47,

pp. 10891–10894, Apr 1993.

102

[7] J. M. Millam and G. E. Scuseria, “Linear scaling conjugate gradient density

matrix search as an alternative to diagonalization for first principles elec-

tronic structure calculations,” The Journal of Chemical Physics, vol. 106,

no. 13, pp. 5569–5577, 1997.

[8] A. D. Daniels, J. M. Millam, and G. E. Scuseria, “Semiempirical methods

with conjugate gradient density matrix search to replace diagonalization for

molecular systems containing thousands of atoms,” The Journal of Chemical

Physics, vol. 107, no. 2, pp. 425–431, 1997.

[9] “CP2K home page.” http://www.cp2k.org/.

[10] M. O. Rabin and V. V. Vazirani, “Maximum matchings in general graphs

through randomization,” Journal of Algorithms, vol. 10, no. 4, pp. 557–567,

1989.

[11] P. D’Alberto and A. Nicolau, “R-kleene: A high-performance divide-and-

conquer algorithm for the all-pair shortest path for densely connected net-

works,” Algorithmica, vol. 47, no. 2, pp. 203–213, 2007.

[12] R. Yuster and U. Zwick, “Detecting short directed cycles using rectangular

matrix multiplication and dynamic programming,” in Proceedings of the Fif-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’04,

(Philadelphia, PA, USA), pp. 254–260, Society for Industrial and Applied

Mathematics, 2004.

[13] J. R. Gilbert, V. B. Shah, and S. Reinhardt, “A unified framework for numer-

ical and combinatorial computing,” Computing in Science & Engineering,

vol. 10, no. 2, pp. 20–25, 2008.

[14] V. B. Shah, An interactive system for combinatorial scientific computing

with an emphasis on programmer productivity. PhD thesis, UNIVERSITY

OF CALIFORNIA Santa Barbara, 2007.

[15] A. Buluç and J. R. Gilbert, “Parallel sparse matrix-matrix multiplication

and indexing: Implementation and experiments,” SIAM Journal of Scientific

Computing (SISC), vol. 34, no. 4, pp. 170 – 191, 2012.

103

http://www.cp2k.org/

[16] A. Buluc and J. Gilbert, “On the representation and multiplication of hy-

persparse matrices,” in IEEE International Symposium on Parallel and Dis-

tributed Processing, IPDPS’08, pp. 1–11, April 2008.

[17] A. Buluç and J. R. Gilbert, “Highly parallel sparse matrix-matrix multi-

plication,” Tech. Rep. UCSB-CS-2010-10, University of California, Santa

Barbara, Computer Science Department, June 2010.

[18] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-

to-item collaborative filtering,” Internet Computing, IEEE, vol. 7, no. 1,

pp. 76–80, 2003.

[19] G. Karypis, A. Gupta, and V. Kumar, “A parallel formulation of interior

point algorithms,” in Supercomputing 94, 1994.

[20] R. H. Bisseling, T. M. Doup, and L. Loyens, “A parallel interior point al-

gorithm for linear programming on a network of transputers,” Annals of

Operations Research, vol. 43, pp. 51–86, 1993.

[21] E. Boman, O. Parekh, and C. Phillips, “LDRD final report on massively-

parallel linear programming: the parPCx system,” tech. rep., SAND2004-

6440, Sandia National Laboratories, 2005.

[22] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear Al-

gebra. Society for Industrial and Applied Mathematics, 2011.

[23] B. Uçar and C. Aykanat, “Minimizing communication cost in fine-grain par-

titioning of sparse matrices,” in Computer and Information Sciences-ISCIS

2003, pp. 926–933, Springer, 2003.

[24] B. Uçar and C. Aykanat, “Encapsulating multiple communication-cost met-

rics in partitioning sparse rectangular matrices for parallel matrix-vector

multiplies,” SIAM Journal on Scientific Computing, vol. 25, no. 6, pp. 1837–

1859, 2004.

[25] K. Akbudak and C. Aykanat, “Parallel Sparse Matrix-Matrix Multiplication

Library,” Technical report BU-CE-1402, Computer Engineering Department,

Bilkent University, Ankara, Turkey, 2014.

104

[26] “Message passing interface forum.” http://www.mpi-forum.org/.

[27] P. Sulatycke and K. Ghose, “Caching-efficient multithreaded fast mul-

tiplication of sparse matrices,” in Parallel Processing Symposium, 1998.

IPPS/SPDP 1998. Proceedings of the First Merged International Parallel

Processing Symposium and Symposium on Parallel and Distributed Process-

ing 1998, pp. 117–123, Mar 1998.

[28] C. Berge and E. Minieka, Graphs and hypergraphs, vol. 7. North-Holland

publishing company Amsterdam, 1973.

[29] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning based decom-

position for parallel sparse-matrix vector multiplication,” IEEE Transactions

on Parallel Distributed Systems, vol. 10, no. 7, pp. 673–693, 1999.

[30] T. Lengauer, Combinatorial algorithms for integrated circuit layout. Chich-

ester, U.K.: Willey–Teubner, 1990.

[31] Basic Linear Algebra Subprograms Technical (BLAST) Forum, University

of Tennessee, Knoxville, Tennessee, BLAST Forum Standard, 2001. http:

//www.netlib.org/blas/blast-forum/.

[32] “Sparse Basic Linear Algebra Subprograms (BLAS) Library.” http://math.

nist.gov/spblas/.

[33] F. G. Gustavson, “Two fast algorithms for sparse matrices : Multiplication

and permuted transposition,” ACM Transactions on Mathematical Software

(TOMS), vol. 4, no. 3, pp. 250–269, 1978.

[34] J. R. Gilbert, C. B. Moler, and R. Schreiber, “Sparse matrices in MAT-

LAB : Design and implementation,” SIAM Journal on Matrix Analysis and

Applications, vol. 13, no. 1, pp. 333–356, 1992.

[35] K. Nusbaum, “Optimizing Tpetra’s sparse matrix-matrix multiplication rou-

tine,” tech. rep., SAND2011-6036, Sandia National Laboratories, 2011.

[36] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G.

Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, et al.,

105

http://www.mpi-forum.org/
http://www.netlib.org/blas/blast-forum/
http://www.netlib.org/blas/blast-forum/
http://math.nist.gov/spblas/
http://math.nist.gov/spblas/

“An overview of the trilinos project,” ACM Transactions on Mathematical

Software (TOMS), vol. 31, no. 3, pp. 397–423, 2005.

[37] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS: design, implemen-

tation, and applications,” International Journal of High Performance Com-

puting Applications, vol. 25, no. 4, pp. 496–509, 2011.

[38] R. A. van de Geijn and J. Watts, “SUMMA: scalable universal matrix mul-

tiplication algorithm,” Concurrency - Practice and Experience, vol. 9, no. 4,

pp. 255–274, 1997.

[39] G. Ballard, A. Buluc, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz, and

S. Toledo, “Communication optimal parallel multiplication of sparse ran-

dom matrices,” in Proceedings of the Twenty-fifth Annual ACM Symposium

on Parallelism in Algorithms and Architectures, SPAA’13, (New York, NY,

USA), pp. 222–231, ACM, 2013.

[40] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and

O. Spillinger, “Communication-optimal parallel recursive rectangular ma-

trix multiplication,” in Proceedings of 27th International Parallel Distributed

Processing Symposium, pp. 261–272, IEEE, May 2013.

[41] E. Solomonik, A. Bhatele, and J. Demmel, “Improving communication per-

formance in dense linear algebra via topology aware collectives,” in Proceed-

ings of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’11, (New York, NY, USA), pp. 77:1–

77:11, ACM, 2011.

[42] L. E. Cannon, A Cellular Computer to Implement the Kalman Filter Algo-

rithm. PhD thesis, Bozeman, MT, USA, 1969. AAI7010025.

[43] U. Borštnik, J. VandeVondele, V. Weber, and J. Hutter, “Sparse matrix mul-

tiplication: The distributed block-compressed sparse row library,” Parallel

Computing, vol. 40, no. 5, pp. 47–58, 2014.

[44] B. Hendrickson and T. G. Kolda, “Partitioning rectangular and structurally

nonsymmetric sparse matrices for parallel computation,” SIAM Journal on

Scientific Computing, vol. 21, no. 6, pp. 2048–2072, 2000.

106

[45] Ü. V. Çatalyürek, C. Aykanat, and B. Uçar, “On two-dimensional sparse

matrix partitioning: Models, methods, and a recipe,” SIAM Journal on

Scientific Computing, vol. 32, no. 2, pp. 656–683, 2010.

[46] Ü. V. Çatalyürek and C. Aykanat, PaToH: A Multilevel Hypergraph Parti-

tioning Tool, Version 3.0. Computer Engineering Department, Bilkent Uni-

versity, Ankara, Turkey., 1999.

[47] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU Press,

2012.

[48] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,”

ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1, p. 1,

2011.

[49] “Sparse Matrix-Matrix Multiplication Library v1.0.” https://sites.

google.com/site/kadircs/.

[50] “MPICH, high-performance and widely portable implementation of the Mes-

sage Passing Interface (MPI) standard.” https://www.mpich.org/.

[51] M. Adams and J. W. Demmel, “Parallel multigrid solver for 3D unstructured

finite element problems,” in Supercomputing, ACM/IEEE 1999 Conference,

pp. 27–27, IEEE, 1999.

[52] W. L. Briggs, S. F. McCormick, et al., A multigrid tutorial, Second Edition.

Society for Industrial and Applied Mathematics, Philadelphia, 2000.

[53] R. Selvitopi, M. Ozdal, and C. Aykanat, “A novel method for scaling it-

erative solvers: Avoiding latency overhead of parallel sparse-matrix vector

multiplies,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,

pp. 632–645, March 2015.

[54] “Matrix Market Text File Formats.” http://math.nist.gov/

MatrixMarket/formats.html.

107

https://sites.google.com/site/kadircs/
https://sites.google.com/site/kadircs/
https://www.mpich.org/
http://math.nist.gov/MatrixMarket/formats.html
http://math.nist.gov/MatrixMarket/formats.html

	Introduction
	Background
	Matrix Multiplication
	Inner-Product Formulation
	Outer-Product Formulation
	Row-by-Row Formulation

	Hypergraph Partitioning (HP)

	Related Work
	Sample Applications that Utilize SpGEMM

	Parallel SpGEMM Algorithms
	Outer-Product–Parallel SpGEMM Algorithm (CRp)
	Inner-Product–Parallel SpGEMM Algorithm (RCp)
	Row-by-Row–Product–Parallel SpGEMM (RRp)

	Hypergraph Models for Parallel SpGEMM Algorithms
	The Hypergraph Model Hcr for CRp
	Model Correctness
	Model Construction

	The Hypergraph Model Hrc for RCp
	Model Correctness
	Model Construction

	The Hypergraph Model Hrr for RRp
	Model Correctness
	Model Construction

	Communication Hypergraph Models for Parallel SpGEMM Algorithms
	The Communication Hypergraph Models HcrC, HrcC, and HrrC
	Obtaining HcrC from Hcr
	Obtaining HrcC from Hrc
	Obtaining HrrC from Hrr

	Decoding a Partition of the Communication Hypergraph Model

	Experiments
	Experimental Dataset
	Experimental Setup
	Partitioning Tool
	The SpGEMM Library
	The BlueGene/Q System

	Performance Evaluation
	Effect of Balancing Constraint
	Effect of Reducing Communication Volume
	Comparison of Performances of the Hypergraph Models Hcr, Hrc, and Hrr
	Performance Effects of Using the Communication Hypergraph Models HcrC, HrcC, and HrrC
	Speedup Curves

	Conclusion
	Future Work
	The Parallel SpGEMM Library
	Quick Start
	File Format for Sparse Matrices
	Preprocessing Step for Partitioning Input and Output Matrices
	Parallel SpGEMM Computation

