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OZET

Bu g¢alismada, sinirlari dalga gseklinde olan bir
kanalda Rivlin-Ericksen akiskanina ait akig, dlizlemsel
ve daimi hal ig¢in incelenmigtir. Xanal sinirlarini ve-
ren fonksiyon en genel halde ele alinmig, daha sonra
sinlizoidal cidar ig¢in ¢&zilm yapilmigtir.

Kanal yarigapinin kanal uzunluduna orani olan
§ pertiirbasyon parametresi olarak seg¢ilmisg, ¢8zlim igin
gerekli dedisken doéniislimleri ve boyutsuzlandirma iglem-
leri yapilarak akim fonksiyonu, & nin kiicik degerleri
igin uygunluk denkleminin seriye agilmasiyla hesaplanmig-
tir. Seri c¢ozlimdeki yakinsama kontrol edilerek yeterli
diizeyde oldugu gSsterilmigtir.

Newtonien ve non-Newtonien haller ve degisik
Reynolds sayilari ig¢in akim g¢izgileri c¢izilerek mukaye-
se edilmigtir. Viskoelastik katsayinin ¢ok kiiglik oldugdu
durumda akiskanin Newtonien akigskana benzer davranig g&s-
terdigi, geri akimin olugturdugu vorteksin az miktarda
bliylidiigi gdrilmiistlir. Viskoelastik katsayinin daha bil-
yiik deferinde geri akim bariz bir sekilde artmigtair.
Dlislik hizlarda ise vorteksin ortadan kayboldugu ve akis
profilinin dlizglinlegtidi belirlenmisgtir.

Akigkana ait gerilme tansdriinlin bilegenleri hare-
ket denkleminden hesaplanmig, kayma gerilmesi dederi igin
belirli bir noktada ¢ozilim yapilarak viskoelastik katsayi-
nin etkisi gdsterilmigtir. Basing dadilimini veren denk-
lemler elde edilmigtir.



SUMMARY

The Flow of a Rivlin-Ericksen Fluid in a Waving Channel

Analysis of forced convection and mass transfer
in Laminar flow inside a conduit has been the subject
of extensive study. Hydrodynamic solutions on steady
laminar flow with moderate Reynolds numbers in conduits
with irregular surfaces are obtained. 1In these surfaces
the spread of roughness has been large, compared with
the mean radius of the conduit. These results are of
considerable interest, especially for blood flow in
arteries with stenoses and for membrane Oxygenators using
parallel plates with wavy surfaces.

In this thesis, the fluid model is taken to be
Rivlin-Ericksen which is a non-Newtonian fluid. To give
an idea, some non-Newtonian effects are summarized below.

One of the most important non-Newtonian effects
is that viscosity changes due to the change in the
velocity field and normal stress differences affects
the motion of the fluid. A series of experiments are
made to see these effects. Some of these are tube flow
where shear thinning or shear thickening occurs; rod
climbing where the non-Newtonian Liguid shows the
Weissenberg effect; extrudate swell where a non-Newtonian
liquid shows diameter increase upon emergence from the
capillary tube; occurrence of secondary flows in the disk
and cylinder system; the tubeless siphon; the uebler
effect and flow through a sudden contraction.

In this study the steady flow of a Rivlin-Ericksen
fluid in a channel with waving surfaces is investigated.
The fluid is incompressible, the flow is two dimensional
and body forces are negligible. It differs from Sturges’
work in the way that Sturges study is unsieady and is
investigated only for sinusoidal boundary. In our study,
the boundary function can vary so that the problem can
be solved for different forms of the boundary, and the
problem is taken into account for steady motion.

The geometry of the flow is shown below.
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In our study the boundary of the channel is
given by,

(x) = d(l*eh(x)),
) =-d(l+eh(x))

Here h(x’) is chosen as a sinusoidal function.
The wavelength is shown to be 2n¢. & 1is defined as the
ratio of channel radius to its length., d<<g and the
average channel diameter is 2d. The velocity field of
the flow is defined as,

* * * »
u=u (x ,vy )

v’: v*(x‘,y”)

The constitutive equation of a Rivlin-Ericksen
fluid is given as,

T = -pI+of B1+a; Az+tazA1?,

where T is the stress tensor, p is pressure, I is the
tensor of unity, A; and A, are the first and the second
order Rivlin-Ericksen tensors respectively. §, is the
coefficient of apparent viscosity, o7 is the coefficient
of elastic viscosity and o, is the coefficient of cross
viscosity.

The basic equation of the problem is the
compatibility equation of a Rivlin-Ericksen fluid and
is obtained by putting the constitutive equation into
the equation of motion. The compatibility equation is
as follows,

= uvty

D(v2y*,u*) -t D(v*y*,v*)
D(x*,y") D(x*,y%)

The velocity components is terms of the stream
function ¥ are,

¥
u‘: Y
ay™
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The boundary conditions for the problem are defined
as the following:

1) Velocity is zero at the boundaries. So,

* oy*
At Yy =n, " =0
oy
¥ » Jy *
At Yy =n ’ ! =0
¥ w - ay ™
At Y =ﬂ+ ’ " = 0
X
ay*
* » -
At y =1 I - = 0
- X

2) The value of the flow rate is constant in the
channel. So that,
o
N, » ™
./ u. dy = constant
n

In the solution of our problem non-dimensional
values are used so that after the necessary non-
dimensionalizations are made, the compatibility equation
comes out to be,

D(V2y,v¥) D(V4y,v¥)

SRe ~y16 Re =vhy
a €1

Here § = — and Y] = —
2 d
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Perturbation method is used in the solution of
our problem and compatibility equation is expanded in
series in terms of §. The transformation of the
independent variables are also made in the way,

X =x
VY =@ L
n(x)

The compatibility equation is perturbated up to
the second order and solutions are made by integrating
equations using boundary conditions.

The zeroth order solution of the stream function is,

v, = - % (y3-3Y)
The first order solution is,
1 = ran (= g3 252 vy
The value of the secqnd qrder solution is,
Yo =(4r2=nn"){ 5% ¥e- T% Y3+7% Yy - %%%Eﬁa{n'Z(ggyll

-1155y%+4488Y7~8778Y5+8222Y3-2875Y) +nn" (-35y11

+385Y%-1518Y7+3234Y5-3279Y3+1213) }

Re?

Yy (4n' 2=nn") (5Y%9-36Y7+126Y5-164Y3+69Y) }
1120q2

For small values of §, the stream function is,
w=y0+sw1+52w2

The streamlines are plotted for Newtonian (y;=0)
and Non-Newtonian (Y1#0) cases for different Reynolds
numbers. In the Newtonian case a reverse flow is formed
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at ¥ = 1.001 due to the sudden decrease in velocity in
the climbing part of the boundary. This flow shows itself
in form of a vortex.

In the Non-Newtonian flow, the vortex area gets
larger pointing out that the effect of the reverse flow
is much more important. When y; gets the value -0.001
at Re = 25, the streamlines up to the value ¥ = 1 are
nearly the same, and at the value VY= 1.001 the vortex
enlarges slightly. However, at the value vy= -0,01,
the reverse flow becomes more effective and causes the
vortex to enlarge significantly. At lower values of the
Reynolds number (Re = 10, Re = 1) vortex disappears and
the flow adapts itself to channel geometry more easily.
It is observed that the streamlines move upwards as the
Reynolds number decreases.

The components of the stress tensor are calculated
in terms of the stream function. Solution is made for
the shear stress at the point,

X =20

Y =1

il

and it's found out to be,

6
0 - R_e +01086+9,05Y1

1

XY |

Y

non

where the effect of the viscoelastic coefficient is
clearly seen.

The pressure equations are also obtained from
the equation of motion.



BOLUM 1. GIRIS

Sainirlari dalga seklinde olan bir kanalda akig
problemi &zellikle tipta, damar tikaniklidi durumunda
kan akisinin incelenmesinde, ve biyolojide gok hiicreli
canlilarda olugan kirpiksi doku tabakasinin gercekleg-
tirdigi hareketin incelenmesinde ele alinmistir[1,2].
Bu hareketlere &rnek olarak {ireme sisteminde gametlerin
hareketi, beslenme ve solunum gibi olaylarda olusan
akiskan hareketi verilebilir[3]. Bunlarin disinda bu
problem yizey alaninin genigletilmesinin gerekli oldugu
durumlarda ve dalgali ylizeylere sahip paralel levhala-
rin kullanildigi mambranli oksijen dreticilerinde oldukga
biiylik &nem tasimaktadir.

Bu konuyla ilgili yapilmis ¢alismalarda Chow ve
grubu kanal profilinin dalgalanma genliinin, ortalama
kanal genigsligine oranla biliyllk oldugu durumlara ait ¢&6-
ziimler elde etmiglerdir. Taylor, Newtonien bir akigka-
nin hareketini, kanalin dalgalanma hareketinin sifira
gittigi limitte hesaplamaistir. Reynolds bu analizi ikin-
ci mertebe frekans dederi igin yapmis ve yerel atalet
terimini de ¢ozilimiine dahil etmigtir. Ancak konvektif iv-
meyi ihmal etmigtir[l]. Tuck ise her iki atalet terimi-
ni de dahil ederek bu durumun yliksek frekanslarda akis
hizini yariya kadar indirebildigini g8stermigtir[4].
Sonralari Chaudhury'nin viskoelastik etkileri de g&zdniline
almasi sonucu, akiskan elastistesinin bazi frekans defer-
leri ig¢in akigkan hizini artirdi§i, bazilari igin ise
azalttigi gérilmiistlir[3].

Dodson, Townsend ve Walters yaricapil boylamasina
eksen boyunca sinlizoidal de§igim g&steren dairesel kesit-
1i boruda Newtonien ve non-Newtonien akiskani incelemisg-

tir. Newtonien akigkan durumunda sinilizoidal yarigapla



borudaki akigskan debisi dlizglin yaricapli borudaki akig-
kan debisine g&re azalma g&stermistir. Viskoelastik
akiskan durumunda ise Oldroyd tipi akigkan model alina-
rak akigskandaki debi dliiglisinin non-Newtonien 8zelliklere
bagdli olarak deJigim gbsterdidi belirlenmigstir. Yapilan
teorik galismalar deneysel olarak da kanitlanmistir[5].

Sturges dligiik frekanslarda, daimi olmayan akisg-
kanlara ait integral formda bir blinye denklemi kullana-
rak sonsuz, uzayamayan, esnek ve dalgali profile sahip
bir levhanin olusturdugu hiz alanini incelemistir. So-
nu¢ olarak akiskan davranisinin dliglik frekanslarda, se-
¢ilen akiskan modelinden badimsiz oldudu, yliksek frekans-
larda ise akiskan modeline badli oldudunu gdstermigtir

[6].

Bu caligsmada sinirlari dalga seklinde olan bir
kanalda Rivlin-Ericksen akigkanina ait akig,dlizlemsel
ve daimi hal ig¢in incelenmigtir. Kanal profili Sturges'in
calismasinda oldudu gibi sadece sinlizoidal bir fonksiyon
olarak dedil, en genel halde ele alinmistir. Problemin
¢Ozlimlinde kullanilan temel denklem, Rivlin-Ericksen akig-
kanina ait uygunluk denklemidir. Pertilirbasyon ¢&zlim igin
uygun boyutsuzlandirma islemleri ve gerekli dedisken d&nili-
simleri yapilarak

pertlirbasyon parametresi olarak segilmis ve denklem §'nin
kliglik degerleri igin seriye agilmaigtir. (Ozlimlere ait di-
feransiyel denklemler integrasyon metoduyla ¢&zililerek akim
fonksiyonu elde edilmistir.



BOLUM 2. NON-NEWTONIEN AKISKANLARLA ILGIL1 GENEL BILGILER

Akigkanlarin hareketini, igindeki tasinim olaylarini
tanimlamak ig¢in kiitlenin, momentumun ve enerjinin akisi
ifadeleri ile birlikte slireklilik, hareket ve enerji denk-
lemlerine de ihtiyag¢ vardir. Sikigtirilamayan bir akiskan
olarak kabul edilen, yapisal olarak sabit sivilar igin
Newton'un viskozite kanununu kullanarak biinye denklemini

tanimlamanin yeterli oldudu gSriilmiigtiir.
T = -pl+udy (2.1)

Burada T geriime tans&ri, I birim tansdr, p izotropik

basing ve

Ay =v¥+ (v) T (2.2)

deformasyon hizlari tans&ridiir. u viskozitesi sicaklik,
basin¢g ve konsantrasyona bagli olup zamana veya herhangi
bir kinematik biiylikliiGe bagli de§ildir. Biliyiik molekiilli
akigkanlar, sabun eriyikleri ve iki fazli akiskanlar gibi
karmasik yapili akiskanlarin (2.1l) denklemi ile tanimlana-
mayacadi bilinmektedir [%].

Simdiye kadar g&zlenmig olan Non-Newtonien etkilerin
en Onemlileri viskozitenin hiz gradyentine bagli olarak de-
gisgim gbstermesi ve normal gerilme farklarinin akiskan hare-
ketini etkilemesidir. Bu ve benzeri etkilerin belirlenmesi
igin g¢egitli deneyler yapilmigtir. Asagida non-Newtonien
etkilerden bahsedilirken bu konuda yapilmis deneylere de

definilmigtir.



2.1. Hiz Gradyentine Badli Viskozite

Dislik kayma hizlarinda yaklasik ayni viskozite de-
Jerine sahip olan biri Newtonien dideri non-Newtonien iki
tliir akiskanin bulundudu iki tilip alttan bir levha ile kapati-
lir ve daha sonra levhalar kaldirilarsa non-Newtonien siva

dolu tiliplin daha cabuk bogaldigi goriiliir.

N NN N NN
%’
. = JI I
a b

- Sékil 2.1 Viskozitenin Hiz Gradyentine Bagli Degisimi

(N Newtonien akiskani, NN ise non~-Newtonien akigkani

gbstermektedir.)

Klasik termodinamikte Hagen ve Poiseuille kanununa
g8re, verilmis bir basing farki ic¢in tlipteki hacimsel debi,
akiskan viskozitesiyle ters orantilidair. Yukaridaki deney
gtz&nline alindiginda ylksek hiz gradyentinde non-Newtonien

sivil viskozitesinin daha diisiik oldugdu sonucuna varilabilir.

Viskozitenin, artan hiz gradyenti ile azalmasi ola-
yina kayma incelmesi, bu davranigsi g6steren akigkana ise
pseudoplastik adi verilir. Pseudoplastik sivilara Ornek
olarak erimis polietilen ve polipropilen verilebilir. Bu
etkiyl gbsteren makromolekiiler akigkan sayisi ¢ok fazladir,
Bazi akigskanlar ise Sekil 2.1.b de gbriilen Newtonien sivi-
dan daha yavas akar, yani kayma kalinliga gSsterir. Visko-
zitesi hiz gradyenti ile artan sivilara dilatant denir.

Ornek olarak sukroz eriyidinde titanyum oksidin olusturdudu



slispansiyon verilebilir. Bazi sivilar ise ancak belirli
bir akma gerilmesinden sonra akarlar. Bunlara viskoplas-
tik saivailar adi verilir. Bazi boyalar, yagdlar ve macun-

lar viskoplastiktir.

2.2, Daimi Kayma Akisinda Normal Gerilme Etkileri

Biri Newtonien dideri non-Newtonien sivi igeren
iki kaba birer mil sokularak ddndiirildiiglinde iki deigik

durumla karsilasilar.

Sekil 2.2 Weissenberg Etkisi

Bir Newtonien sivi olan gliserinle dolu olan kapta
vortekse rastlanir. Non-Newtonien polikrilamit eriyigdi bu-
lunan kapta ise polimer eriyik c¢ubuga tirmanir. Bu olay
diiglik ddnme hizlarinda dahi gerceklegir ve Weissenberg et-

kisi olarak adlandairilair.



Sivi dolu bir kaba, donen bir diskin daldirilmasiyla
olusan akis g6zdnline alindidinda diskin d&nmesi sonucu te-
Jetsel y&nde bir akig olusur. Kabin iist kismindaki akaisgkan
alttakinden daha bliylik agisal hizla dbnecektir. Bdylece
diske yakin akiskan daha biiyllk bir santrifuj kuvvete maruz
kalir. Bunun disinda esas akisa her ybnde dik zayif bir
ikincil akis mevcuttur. Buna ait bir fotodraf Sekil 2.3te

gbsterilmigtir.

Sekil 2.3 Disk-Silindir Sistemi

Sekil 2.3 te goriildidgl gibi disk-silindir sisteminde
non-Newtonien akiskanin bulundudu durumda ikincil akim ¢iz-

gilerinin y6ni digerine gbre terstir [8}.

Non-Newtonien akigskanlarin daimi kayma hareketinde
normal gerilme farklari ile birlikte g&riilen sasirtici et-
kilerden biri de meyilli bir kanalda hareket eden non-Nevtonien
sivinin yizeyinin kabarmasi, Newtonien sivi ylizeyinin ise
dliiz kalmasidir. Ayrica paralel iki levha arasinda hareket
eden non-Newtonien bir akiskanda kanalda agilan oyudun ta-
banina ve kanalin lizerine yerlestirilen basing transdiiser-
lerinde bir basing¢ farki Olc¢lilmesine radmen Newtonien akig-

kanda bdyle bir fark olusmaz.



2.3. Daimi Olmayan Kayma Hareketinde Gec¢ici Cevap

Gerilme rdlaksasyonu, silirlinme ve siinme gibi kiiclik
amplitlitlli dinamik kontrol deneylerinin bir c¢odu (8rnefin
salinimli hareketler) molekiiler yapiyi aydinlatmak igin
kimyacilar tarafindan uygulanmigtir. Ayrica, slinme, zamana
bagli basing gradyentli hareket ve salinim hareketi ilave
edilmis kayma akimi gibi biliylk amplitiitli zamana badli de-
neyler de yapilmigtair,

2.4, Diger Olaylar

Yukaridaki olaylar kayma akimini igermektedirler.
Kayma hareketi olmayan hareketler de bu gruptaki olaylar-
dir. Kliglkk bir hazne ¢ikiginda meydana gelen gisme olayi,
hazneden tilipe sivi akitildiginda ani daralma sonucu akig-
kanin bir miiddet duraklayip daha sonra hareketine devam
etmesi (Uebler etkisi), sikistirma akiminda asiri gerilme-
nin rolli, sifonun ucu g¢gekildigi halde akmaya devam ettigi
tlipsliz sifon olayi, muntazam olmayan tilip cikislarinda g&-
riilen erime kirilmasi olayi, bir polimer eriyidinin, ayni
polimer eriyigi bulunan bir kaba akitildidinda, sivi ylize-
yine carptidi zaman g&riilen oldukga ilging tepme olayi
veya Kaye olayi, hizli carpma testleri uygulandigi zaman
polimerik sivilarin kati gibi davranisi, Newton tipi akig-
kanlara bir miktar polimer ilave edildiginde girdabin engel-
lenmesi, akiskan i¢ine daldirilmis enine titregen ince bir
silindir civarinda akim ¢izgilerinde gdriilen tersinirlik
olaylaridir [Z].



BOLUM 3. PROBLEMIN GEOMETR1SI VE TEMEL DENKLEMLERI

Bu ¢alismada sinirlari dalga seklinde olan bir
kanal ig¢inde Rivlin-Ericksen akiskaninin daimi hareketi
incelenmektedir. Kullanilan akiskan sikigtirilamaz, ha-
reket dlizlemsel ve kiitle kuvvetleri ihmal edilebilecek
mertebededir.

2d —>

Sekil 3.1 Problemin Geometrisi

Sekil 3.1l.de goriildigli gibi kanal cidarlari edri-
seldir. Kanala ait {ist ve alt sinir denklemleri sirasiy-
la,

n(x*) = A(l+eh ()i (3.1

n¥ (x*) =-a(1+eh(x™))eurnnnn.... Ceeeeenee. (3.2)
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Burada h(x¥) sintizoidal bir fonksiyondur. ¢ kanal
uzunludu, 2d ortalama kanal genigligi, a dalgalanmanin
genligidir.

ez 2

d

seklindedir. DPalgalanma orani

§ = Q

2
olarak tanimlanmistir ve d<<g dir. Sinirlara ait dalga

boyu 2 I dir.
Akisa ait hiz alanzi,
* # ¥ K
u=u (x,y)
*
v =v® (x*,y")
olarak segilmigtir.

Caligmamizda kullanilan Rivlin-Ericksen akigkanina
ait bilinye denklemi,

T = -pl+agh, *a1By+a B2 (3.3)

seklindedir. Burada T gerilme tansOriinli, p basinci, I

birim tansdéri, %

mertebe Rivlin-Ericksen tansdrlerini . g&stermektedir[9].

ve A, sirasiyla birinci ve ikinci

a, g6rliinen viskozite katsayisi,a; elastik viskozite kat-
saylsl,a, ¢apraz viskozite katsayisidir. %1 ve A, nin
deJerleri sirasiyla,

B, =7+ (7" (3.4)
a, =vi+(vy)2vi. (v T (3.5)

olarak ifade edilir. Burada ¥ hizi, ? ivmeyli g&stermekte-
dir.



-10-

Akiskana ait hareket denklemi,
oy =pE+div T (3.6)

seklindedir. Burada f pbirim kiitle basina dis kuvvet, o
ise akiskan yodunlugudur.

Problemin ¢ozlimiinde kullanilan esas denklem,
Rivlin-Ericksen akiskanina ait blinye denkleminin, akisg-
kan hareket denklemine uyarlanmasiyla elde edilen uygun-
luk denklemidir ve daimi hal igin,

D(v2v¥,v%) _ilb(v“w“,w“)
D (x¥,y*) D(x¥,y*)

= uviy* (3.7)

olarak ifade edilir[3]. Burada v ¥ akim fonksiyonu,

o
—~ sy
€1 = 3
seklindeki elastik katsayi, v kinematik viskozitedir.

GOrliildligi gibi uygunluk denklemi akim fonksiyonu
cinsinden ifade edilmigtir. Bu ifadeden hiz alanina gegis,

*®  Hy¥

u = " (3.8)
3y
3
v'=-“" (3.9)
9x
seklindedir.

Probleme ait sinir sartlari, sinirlarda hizain sifir
olmasi nedeniyle,

» *

y=n,da 2 -0 (3.10)
3y ¥ ‘

* *

y=n"de 2 -0 (3.11)

- *

3y
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* % *
y =n,da -2 =0 (3.12)
ax ™
* *
y =nta -2 =0 (3.13)
X

ve kanal debisinin sabitliginden,

oA o w

”:f u .dy = sbt. (3.14)
ny

olarak belirlenir.

Problemin ¢&zilimlinde kullanilan boyutsuz bliyliklik-

ler,
. »
x ekseni y®niindeki mesafe, x = 2
'8
" *
vy~ ekseni ydniindeki mesafe, y = L
d
o ¥
Akim fonksiyonu, ¥ = —
Wﬁd

Reynolds sayisi, Re =’\3’°-1-g (v ortalama hiz olmak iizere)

U

seklindedir. Sinirlarin boyutsuzlandirma sonundaki

deferlerinin
ne =(l+eh(x)) (3.15)
n_=-(l+eh(x)) (3.16)

5 X
oldugu gdriilmektedir. Uygunluk denklemindeki V<¥ ve
vty® degerlerinin boyutsuzlandirilmasi ise,

o ow gzy¥ g2y*
V“P:: 1{‘_'_3‘{1 s Ve

ax™2 sy*2
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vhy T 272 (y2y*)

a“w*+23“w* Loty
Ix*h  px¥23y%2 yMn

oldugu g&zdniine alinarak,

2 2
y2y=g28°¥,3°¥ (3.17)
x2 3y?
. . nb 2 I L
piry=gul ¥, 287 3¥ L3 (3.18)
axh ax2oy? ay*

seklinde yapilir. BOylece boyutsuz uygunluk denklemi,

2 L
sre 2LTZ¥,¥) . o D(VIY,Y) oy (3.19)
D(x,y) D(x,y)

halini alir. Burada

§ = d
2
ve
- £i
Y1= d2

olarak tanimlanmistir. (3.19) denklemi agik olarak yazil-
diginda,

VHY+SRe{¥ R W2¥)'y —-v'y(V4Y¥) "x}-y1Res{¥ 'x (V¥Y¥) 'y

~y'y(vHy) 'x} = 0 (3.20)
elde edilir.

Boyutsuz sinir sartlari ise,
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y =n, da Iy © 0 (3.21)
v =n_ de §§»= 0 (3.22)
y =n+ da - <= = 0 (3.23)
y =n_de - 2 = 0 (3.24)

Etfu.dy =sbt (3.25)

seklinde yazilabilir,
(3.20) denklemi §'nan kiiglik deferleri igin
¥ =wo+aw1+52w2 (3.26)

seklinde seriye agildidinda sifirinci mertebe ¢Oziimli ve-

ren denklem,

=0 (3.27)

birinci mertebe ¢&zlimli veren denklem,

4 3 3
2 W1+Re(8Wo.3 Yo _ 9yo 3 ?o.)
oyt dx  3y3 3y 9xdy?

55 5
—Y1Re(aw°. Yo _ 3?0.8 Yo )

3x  9y° 3y  axsy"

=0 (3.28)

ikinci mertebe ¢Ozimli veren denklen,

5 3%¥o +3“W2+Re{(8W0.83W1+8W1.33Wo)
3Xoy2 ayH 3x  ay3 ox ay?
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3 3 5 5
8‘?0'3 ‘P1n+3‘{’1.3 Yo )}_YlRe{(awo‘a ‘P1+8‘i’1.8 1l’o)
3y 9xdy? 3y 9xay? X  ay° 8% ayS

-

_(3‘1’0.35"1’] +3‘P].ﬂ9__)} =0 {(3.29)
3y oaxoy"t 3y oxoy“

olarak hesaplanar.
Uygunluk denkleminin pertiirbasyon ¢&ziimii ig¢in,

X =x (3.30)

y o Y (3.31)
n(x)

seklinde bir degisken donilisiimii yapilmigstir. Kismi tili-
revlere ait defigken déniisiimleri Ek A da sunulmustur.



BSLUM 4. PROBLEMIN CHzuMy

4.1. Sifiranci Mertebe C¥zim
Sifirinci mertebe ¢dzlimli veren,

i
1 3%¥o _ 0
N

nt  aYH

denklemi integre edildiginde,

v3+B v2.cysp

2

\YQz

o [

(4.1)

(4.2)

oldugdu g6rlilir. Integrasyon sabitleri sinir sartlarin-

dan su sekilde hesaplanir:

Simetri nedenivle,

Y= 0 da vo= 0 dir.

Dolayisiyla D = 0 olarak belirlenir.

(3.21), (3.23) ve (3.31) den, sinirlarda

]
..-l
I~
Q>
&
o
o

y = n, oldudunda Y ve

3
)
<

Y = ne olduunda ¥ =1 ve - =— Y

1

(3.22), (3.24) ve (3.31)den,

vy = n oldujunda Y = -1 ve

(4.3)

(4.4)

(4.5)
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1
y = n oldugunda Y ==1 ve - I~ vy 2¥o = 0 (4.6)

- n Y

oldugu gbriildr. (4.3) ve (4.5) denklemlerinin ortak ¢&-

zlimlinden,

A=-2C (4.7)
(4.4) ve (4.6) dan,

B =20 (4.8)
elde edilir.

(3.25) denklemi,

deferleri yerine kondugunda,

+13% .y

{ Y = 2 (4.9)

haline gelir. (4.9) ve (4.7) denklemlerinin ortak ¢8zii-

miinden,
A = -3
C ==

integrasyon sabitleri elde edilir. Boylece,

v o-L(yi-3y) (4.10)
° 2

elde edilir.
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4.2. Birinci Mertebe G&zlm

(3.28) denklemi, Ek A daki kismil tlirevler yerine

kondudunda,

3%y, - _ZRen,BWo‘BZ?o
oyt 3Y Y4

=0 (4.11)

sekline donigir. (4.10)dan gerekli tirevler alinarak

(4.11) de yerine konursa,

I
3%l __gRen' (Y3-Y) (4.12)
P}l

olarak hesaplanir.

n= l+eh(x)

ifadesinin tiirevi,

n' = eh'(x) (4.13)

seklindedir. (4.13), (4.12)de yerine kondugunda,

I
3-{l = -9Rech’ (Y3-Y) (4.14)
Y

elde edilir. Gerekli integrasyonlar yapildidi taktirde,

¥,= Reeh' (— —— y7+-3 y5:By3.B y2.cy.p) (4.15)
280 40 6 2

seklinde hesaplanir. Sinir sartlarindan,

Y = 0 iken ¥;= 0 ve D = 0 dar.

(3.21), (3.23) ve (3.31) den,
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y =n, da Y = 1 ve

=

3% _ g
ey

L W.
y=n,da Y=1ve -1 yv23¥ .9
n Y

(3.22), (3.24) ve (3.31) den,

Y =n de Y
- n 9Y

#

'
y=n de ¥=-1ve-2y22¥
- n Y

=0

oldugu goriildr. (4.16) ve (4.18) den,

A+2C = - -
15
(4.17) ve (4.19)dan,
B =20

elde edilir.

1
+féi-l.aY = 0
_lay

seklindeki debi denklemive (4.20)nin

A= - 22

Ut
[o) T {¥V)

integrasyon sabitleri elde edilir.

ortak

yerine kondugunda birinci mertebe ¢&ziim,

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

¢Szilimlinden,

Bu sabitler (4.15)de



-]19-

¥, = l Ren' (- _é Y7+_§ Y5_ 22 Y3+_§
4

70 10 70 14

Y) (4.23)

bulunur.
4.3. 1kinci Mertebe Codzim

tkinci mertebe ¢8zimii veren (3.29) denklemi ve
Ek B den,

L
E_Xl - lay(4n12_nn")_Re2{nl2(2 Y7_ gi 5+§g§ lli

Y y3- Y)
ayYt 5 10 35 70
. 2 .2
et (- 2 y7.2L yso 2087 y3, 9 y) _y RET . i%54y5 ~108 Y3
14 10 70 10 2
+54y) =nn" (2L v5-27v3+27 vy (4.24)
2 2

seklinde hesaplanir. Bu denklem integre edildiginde,

2 11
v,= (4n'2-np") = y5- B&Z . vz(98y  -1155v9+4288y7

20 431200

11 2
~8778Y5) +qn" (-35Y +385Y%-1518Y7+3234Y5 )}-v,R&Z
1120n¢

{(4n'2=-nn") (5Y9-36Y7+126Y5) }+2 v3+B y2.cysp (4.25)

6 2
oldugu g&riilir. Denklemdeki sabitler sinir sartlaraindan,

Y = 0 iken ¥, = 0 ve D = 0,

(3.21), (3.23) ve (3.31) den,

y=nda¥=1ve22z. o (4.26)

n oY
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Yy =

-20~-

1§
n, de Y =1 ve -0y 2¥2 _
n Y
(3.22),(3.24) ve(3.31)den,
n de ¥ = -1 ve 1 3% = 0
- n oY
n' 3¥ o
n de Y z -1 ve - — Y =0
B n Y

denklemleriyle hesaplanir. (4.26) ve (4.28) den

3

(4n'2-nn") -

Re?
431200

{ - 43582n'2+17248nn"}

. 2
- l¢5§—3{846(4n'2—nn")}+A+2c = 0
1120n

ifadesi elde edilir. (4.27) ve (4.29) dan,

olarak hesaplanair.

+

Debi denkleminden,

1
1 3y

oldugu gbriiltir. (4.30) ve (4.32) den,

A=

2
-2 (4nr2-qny- —B€ 149332112-19674nn")

5 431200

2
B (- 984(4n"2-nn")}

1120n2

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)
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2
C = 3 (4n'2=-nn") - ——BE——{-2875n'2+1213nn“}
20 431200
2
—y;—R87 169 (40" 2-nn") } (4.34)
1120n2

seklindeki integrasyon sabitleri elde edilir. (4.33) ve
(4.34),(4.25)te yerine konarak gerekli diizenlemeler yapi-

lirsa, akim fonksiyonunun ikinci mertebe ¢dzimii,

) 2
Yo=(4n'2=nn") { 3 oyso 3 g3y _Re®

20 10 20 431200

11
{n'2(98Y -1155vY°

11 -
+4488Y7-8778Y5+8222Y3-2875Y) +nn" (-35Y +385Y%-1518Y7+3234Y5

- 2
-3279Y3+1213Y) }~Y;—28{ (4n' 2-nn") (5Y9-36Y7+126Y5-164Y3
1120n2

+69Y) } (4.35)
olarak elde edilir.

(4.10), (4.23) ve (4.35), (3.26) da yerine konursa,

vz - L (v3-3y)+dsment (- By7+2 ys- 33 y3. 3y
2 4 70 10 70 14
. 2 2 11
+82 (4" 2=nn") {— ¥5- —3 y3.3 yj- _8°Re% 15 9gy T -1155y9
20 10 20 431200 '

11
+4488Y7-8778Y5+8222Y3-2875Y) +nn"(-35Y +385Y%-1518Y7

. .t 2Pal .
+3234Y5-3279Y3-1213Y) }- 1$§—B§-{(4n'2-nn")(5Y9-36Y/+126Y5
11201

-164Y3+69Y) } (4.36)

seklinde akim fonksiyonu elde edilir.
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Ctzlimde kullanilan pertiirbasyon metodunda, seri

¢O6zlimlin yeterince yakinsak olup olmadi§i arastirilarak,

S¥ 4 ve 52y,
Yo §¥;

oranlari sayisal olarak hesaplanmistir. Hesaplanan oran

8,7

yaklasik olarak 10 =10 mertebesinde oldugundan yakinsa-

ma yeterli g8riilmiistiir.

Yukarida elde edilen akim fonksiyonunda, kanal
geometrisine ait biiylikliikler,

= 0.1
€= 0.4
h= Sin21x

seklinde segildidinde ve Re = 25 alindidinda vy;= 0
(Newtonien), y;= -0.00l1 (non-Newtonien) ve vy;= -0.01

deferleri igin akim ¢izgileri g¢izilmistir.

Sekil 4.1. de gdriildiigli gibi Newtonien akigskanin
akim ¢izgileri v¥=1 egrisinde dedisime ufrayarak vorteks
olugturmaktadair. Grafikte v=1l, v=1.001 deJerlerindeki
vorteksler ¢izilmistir. Vorteksin nedeni yiiksek hizlarin

frenlenmesi sonucu olugan geri akimdir.

Sekil 4.2 de +y;= -0.001 i¢in akim gizgileri ¢izil-
diginde Newtonien duruma benzer bir akig profiliyle karsi-
lagilir. Ancak vorteks bir miktar biiylimligtiir.

Sekil 4.3 te ise y;= -0.01 dederi ig¢in geri akimin
etkisi ve cidardan kopma belirgin bir gekilde artmigtar.
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Reynolds sayisinin etkisini g&rmek amaciyla diigiik
hizlarda Newtonien ve non-Newtonien akigskanlara ait akig
profilleri c¢izilmigtir. Sekil 4.4 ve Sekil 4.5 te gdriil-
dligd gibi Re = 10 ve Re = 1 dederleri verildiginde, koor-
dinat farklari segilen 8lgekte g¢ok dliglik mertebede kaldai-
gindan Newtonien ve non-Newtonien akigskanlara ait akim
gizgileri gakigmigtir. Ayrica, dlisik hizlarda akim ¢izgi-
lerinin yukari kaydigi ve akisin kanal geometrisine daha

iyi uyum sagladigi gSrliilmiistir.



0

—-24~

T T T T T T T ! T T 1 —>
017 0,2 03 04 05 0,6 07 08 09 10 11 12 X

Sekil 4.1 Newtonien Akiskana Ait Akim Cizgileri
Re =25 Yy = 0 \



_25_

144 ¥ =10
134
1,2

11-
1 =1001

10+ =095
094

0,84
0.7- W,

0,6-

H=09
08

L]

T T T T T T T T T
0 01 02 03 04 05 06 0,7 08 09 1,0 11 1.2

Sekil 4.2 Non-Newtonien Akigkana Ait Akim Gizgileri
Re =25 , Y1=<0.001
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61 02 03 04 05 06 07 08 09 10 11 12 X

Sekil 4.3 Non-Newtonien Akiskana Ait Akim Cizgileri

Re = 25 1 = -o0.01
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08

0.4

0 01 02 0304 05 0,6 07 08 09 10 11 12 X

Sekil 4.4 Akiskana Ait Akim Gizgileri
Re = 10 fy =0, - 0,001, - 0.01
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T T T  — T T ! ! ] >
0 01 0203 04 0506 07 08 09 10 11 12 X

Sekil 4.5 Akigkana Ait Akaim Qizgileri
Re = 1 X"= 0, - 0.001, - 0.01



BOLUM 5. GERILMENIN VE BASINCIN HESAPLANMASI

Rivlin-Ericksen akiskani ig¢in B&1llim 3'te verilen
blinye denkleminde birinci ve ikinci mertebe Rivlin-

Ericksen tans&rlerinin agik ifadeleri Ek C de verilmig-

tir.
)
*
u=8—‘y;
3y
¥
*
1 2
ax

oldugunda akigkana ait gerilme tansdriliniin bilegenleri

akim fonksiyonu cinsinden,

* * Zy* 2y ¥ 2 ¥ gy ¥
Tex = “P+ 20 _a_:_y+2°‘1{ 332 RS
’ X" 3y ax¥ay*  oy¥* ax*23y*
229” 92¢¥ _ av* p2y* | 92¢¥ 2
T PR rRACPRCR! - *)
ax "< ay*? ax 3x’ 3y ax oy
5 ¥ *
2 2
s LY, (5.1)
ax¥2 3y¥2
* 2y¥* azy* 2y ¥ 2 ¥ 3y % *
Txv = TV: :0.0{- 9" ¥ +u—}+dl{ 23 i -a Yoo 2 ly'.a‘y
¥ » ox¥2 py*2 ax oy* ox*®2  ox®3 ay*

¥ agy* XL A 2y % 2y ¥ * g3y*
Lo¥ 8% aw” 3%YT .8y 8%y ” _ avT 8%y

- * ’ *2 *, X 5 ¥* ) (5.2)
ax™ ax*2ay™  ay® ax¥ay' T ox™ay" ay*2  ax™ ay¥3



-30-

»* * 2y * 2% N2 ¥ #* 3, W
T =D caa B2ET gy (- B2HE 02T oy ¥ aly
2 X 3y ax¥*2 ay*2  5y¥* ax¥2;3¢y%¥

g2y * LPE 2y¥® Zy¥ 2
3% 9y ax™ ax™ syt sy¥*¢ 3XDY T
2y¥ A2y 2

ax¥2 ay¥2
olarak hesaplanir.

(5.2) denklemi boyutsuzlandirilarak,$2<<l ve
§3<< 1 oldugu gbzdniline alindiginda,

¥*
2 3 *) 9
?-L‘:-_Z—_a—'_‘g_za'\fl{ﬂoaw +2_a—‘1‘ .S\F
2
3
- 3% 3°% (5. 4)
ax oy

seklindedir. Ek A daki kaismitlirevlier (5.4)te yerine

kondugunda,
X =0
Yy =1

noktasina ait kayma gerilmesi,

n =1+e8in2rX

£ = 004
durumunda,
6
TXYIX =0 = +0,086+9,05y; (5.5)
Y el Re
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olarak belirlenir.

Basing dagrlimini veren denklemler ise hareket

denkleminden,

* w¥® a2yu¥ 2y b 3y % Sy*
G MR oy (@R et
ax ax™ ay¥2  axTay'ay* 3X*23y" 3y

1327%%  azy¥ aw* ahy* 33w a2y¥ a2y 53¢

+al( . , . N
ax¥25y* ox¥aoy®ay* ox*3oy¥ ox*3 sy¥2  ax¥Z ox¥ay*<

p2v¥ 32y¥ oy p3w¥ | 929X a3yK a2y piy¥

- 2 . - . .
ax¥2 3x¥oy* ax™ ax*23y*  ox¥*2 ox*¥3  ox¥2 jx¥oy*?

W oLy 3y 2 ¥ * Ly ¥ 2wk 3y %
LAYty ,32%Y 32y¥ ay¥ by LpR2¥* a3y
ax® ax¥2oy¥*?  ax¥oy¥2 oy¥2 ay¥* ax¥oy¥3  axtoy¥* osy¥3

gzy¥  g3y¥  gy¥ hy¥ p2y¥ g3y ¥
. — . )+a2(8 5
ax¥ay* ay¥3  ax¥ oy*t ax*ay* ox*2ay*

p2y¥ a3y¥ _52v¥ a3y¥  o3y¥ a2y a3y* a2y*

" : ) (5.6)
ax¥2Z jx¥3 ax¥2 axhy*? Ix¥® ay¥? ox*ay¥?2 sy¥2

+2

* * o2 y% * o2y 3y¥  a3y¥
3 a¥Y"T 9-V YT o4V 9
_.L_—_p( . - . )+ao(_ ¥ _'3 v
ay ¥ sy* 9x%¥2  ax* sx™oy™ ax*3  ox¥ay¥*?
oy (3R2¥T 2% a%u¥ 33wE _ ay* ahy¥ ay* iy ¥
Ix*2 ax¥23y¥ ax*oy* ox¥3 oy ¥® ox¥4 ox¥* ox¥3ay*
2y ¥ 3y ¥ ¥ ool Zy¥ y3y ¥
+1322Y 33y _ay¥ ohy _p32v ¥ 33y

ax¥oy* ox*oy¥2  oy¥ ax¥2yy¥2  jy*2 ax¥4yy¥
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_332¢ 23w ay* aby¥ L a2y¥ a3y¥, . o g32¢%  adv¥

. " az(
Ix¥2 3y%3 3x¥ ax¥oy¥3  sy*2 yy¥3 ax*ay* ax*ay*s
2u¥ 3y W N2y% n3y¥ Iy ¥ 2% 2u¥ c3y¥
p22¥Y 3%y _pd2¥* 3 w- 2% 02X 02vT 33T, g gy
ax¥2 x¥23y* dx¥2 Jy¥3 dx*¥2ay* oy¥2 ay¥2 Hy¥3

seklinde hesaplanair.



SONUCLAR

Dalgali bir kanalda akig problemi &zellikle tipta
damar tikanikli§i durumunda kan akisinin incelenmesinde
ve dalgali ylizeylere sahip paralel levhalarin kullanildai-
g1 oksijen lireticilerinde uygulama agisindan bliylik Onem

tasimaktadair.

Bu c¢aligsmada dalgali bir kanalda Rivlin-Ericksen
akiskanina ait akis dlizlemsel ve daimi hal ig¢in incelen-
mistir. Cidarin siniizoidal oldudu duruma ait ¢&ziimler
yapilarsk Newtonien ve Non-Newtonien akigkan hali ig¢in
cizilen akim ¢izgilerinin pek fazla de§ismedigi goriil-

miistiir.

Kanal geometrisi sabit tutularak Re = 25 igin
boyutsuz elastik katsayi y;= 0(Newtonien), y;=-0.001
(Non-Newtonien) ve y;= - 0.0l (Non-Newtonien) durumlarin-
da akim ¢izgilerinin grafigi ¢izilmistir., Newtonien
durumda v= 1 efrisine kadar olan kisimda akis, kanal
geometrisini takip etmesine radmen ¥ = 1 efrisinin
X = 0.95 civarinda iki farkli edri durumuna gec¢tidi, nor-
malde cidari takip eden bu edrinin b8lgede bir geri akim
ve buna badgli olarak vorteks olusturdudgu gSriilmektedir.
Bunun nedeni, cidar edrisinin alt b8limiinde yikselmig bulu-

nan haizlarin frenlenmis olmasidir.

Non~-Newtonien 6zelligi veren boyutsuz elastik kat-
sayl yi= -0.001 deferini aldiginda Newtonien durumdan asi-
r1 bir sapma gbriilmez, ancak geri akimin olusturdugu vor-
teks bir miktar bluyiir. v1=-0.01 dederinde dedigim daha
carpicidir, Bu durumda geri akim oldukg¢a etkin bir dedere

kavusmus ve vorteksin neden oldudu kopma belirginlesmistir.
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Reynolds sayisinin Re = 10 ve R = 1 geklindeki
daha dligik degerleri igin ayni igslemler tekrarlandiginda
dlislik hizlarda geri akimin olugsmadidi, akigin kanal geo-
metrisine son derece iyi uyum sadladidi gdriilmigtir.
Dlisik Reynolds sayilarinda Newtonien ve Non-Newtonien
akiskanlara ait akim g¢izgilerinde fark gok dliglik merte-~
bededir ve akim ¢izgileri segilen grafik &l¢efinde Ust-
liste cakismig durumdadir. Reynolds sayisinin degigimiy-
le gbzlenen bir baska 6zellik de akis hizinin azalmasiy-
la birlikte akim g¢gizgilerinin yukari dodru kaymasidir.

Akigkana ait gerilme tansdriniin bilegsenleri akim
fonksiyonu cinsinden bulunmug, boyutsuz kayma gerilmesi
bir noktada hesaplatilarak viskoelastik katsayinin et-
kisi g8riilmiigtlir. Basing dadilimini veren denklemler
hareket denkleminden elde edilmistir.

Bu ¢aligmayla ilgili olarak bundan sonra kanal
geometrisi degistirilerek de@igik cidar profilleri igin
¢8zilim yapilabilir. Ayrica pertilirbasyon ¢dzlimiin diginda
sayisal ¢8zlim yapilarak mukayese yoluna gidilebilir.

Kanal igindeki 1s1 transferi de inceleme konusu olabilir.



KAYNAKLAR

-

[1]

(8]

[o]

CHOW, J.C.F., and SODA, K., "Heat or Mass Transfer
in Laminar Flow in Conduits With Constriction™,
Journal of Heat Transfer, Transactions of the
ASME, Vol.95, 1973, pp 352-356.

BLAKE, J.R., "Infinite Models for Ciliary Propulsion®,

Journal of Fluid Mechanics, Vol.49, 1981, pp.
209-222.

CHAUDHURY, T.K., "On Swimming in a Visco-elastic
Liquid", Journal of Fluid Mechanics, Vol.95,
1979, pp.189-197.

TUCK, E.O., "A Note on a Swimming Problem", Journal
of Fluid Mechanics, Vol.31, 1968 . pp.305-308.

DODSON, A.G., TOWNSEND, P., and WALTERS, K.,
"On the Flow of Newtonian and non-Newtonian
Liquids through Corrugated Pipes", Rheologica
Acta, Vol.10, 1971, pp.508-516.

STURCES,L.D., "Motion Induced by a Waving Plate",
Journal of non-Newtonian Fluid Mechanics, Vol.8,
1981, pp. 357-364.

YALCINKAYA, G., "Newton Tipi Olmayan Akigkanlar Icin
Kullanisli Modeller", I.T.U., Cilt 46, Sayi 1-2,
1988, s.7-8.

BIRD, R.B., ARMSTRONG, G.C., HASSAGER, 0., "Dynamics
of Polymeric Liquids", Vol.l, 1977, John Wiley
and Sons, Inc., pp. 89-127.

GULEKEN, 0., "Cidarlari G8zenekli Ayni Eksenli Sabit
tki Silindir Arasinda Rivlin-Ericksen Akigkanina
Ait C6zlm", 1.T.U. Makina Fakiiltesi Doktora Tezi,
1974, Matbaa Teknisyenleri Basimevi, s.3,24.



Ek A. Degisken Doniisiimleri
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Fk B. Kaismi Tiirevler

Problemin pertlirbasyon ¢8ziimiine ait kismi tlirev-

ler asagida gOsterilmistir:
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Ek C. Akiskana Ait Biiyiikliikler

Rivlin-Ericksen akigkanina ait bazi biiyiikliiklerin

ifadesi:
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